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Chapter 1

Introduction

The history of discovery of ferroelectricity in single crystals (Rochelle salt), dates

back to 1921. Later, in the early to mid 1940s, during World War II, the pressing

need for larger capacitors lead to the discovery of ferroelectricity in ABO3-type per-

ovskite, BaTiO3 (Haertling, 1999), with a high dielectric constant. Since then, there

has been a continuous succession of new materials and technological developments

that have led to a significant number of industrial and commercial applications that

can be directly credited to this most unusual phenomenon.

Towards designing new molecular ferroelectrics, strong hydrogen bonds (H-bonds;

Gilli and Gilli (2009)) have received considerable attention, due to their functional

ability to control properties of many different systems. Novel solid-state materials

can be designed by particular donor and acceptor functional groups governed by a

H-bond pattern. Supramolocular assemblies are designed for ferroelectrics where H-

bonds are one of the non-covalent bonds to bind two molecular moieties. The H-bond

is much weaker than covalent bonds. Therefore, H-bonded systems easily undergo

temperature or pressure induced phase transitions, as the result of exchanges of H-

bonds, proton transfer, or proton disordering (Gilli and Gilli, 2009; Jeffrey, 1997).

Further experimental evidence will be discussed in Chapters 4, 3, and 5. The effect

of H-bonds on physical properties of materials requires an understanding of crystal

structures. Aside from spectroscopic and theoretical methods, diffraction methods

are a very important tool for studying hydrogen bonds. Structural analysis by single

crystal X-ray or neutron diffraction may provide very precise information about not

only interatomic distances, but also the exact location of H atoms in the structure.

The purpose of the present thesis is to study temperature-dependent phase tran-

sition in hydrogen bonded molecular compounds, in order to gain knowledge about

1



2 CHAPTER 1. Introduction

the role of hydrogen bonds in structural phase transitions. Single crystal X-ray

diffraction is applied to two hydrogen bonded supramolecular compounds, which

undergo phase transitions to incommensurately modulated phases. Hence, Chap-

ter 2 gives an introduction to aperiodic crystallography, with a focus on incom-

mensurately and commensurately modulated molecular crystals. The concept of a

superspace approach (van Smaalen, 2012) is described. An overview to molecular

aperiodic crystals is given and special methods for molecular compounds, i.e. rigid

bodies, are introduced.

The study of phase transitions is at the core of condensed-matter physics. The

material undergoes a change of symmetry at most phase transitions. The ferroelec-

tric phase is defined by the possessing a spontaneous polarization (Ps). Paraelectric

to ferroelectric phase transition are results from structural changes in crystal and

are able to be distinguished from behavior of electric polarization, which can be

reversed by application of an external electric field (Lines and Glass, 2001; Kittle,

2005) (Fig. 1.1).

Polarization hysteresis loop is the characteristic of ferroelectric materials, which

arises due to the presence of ferroelectric domains in the crystal. At coercive field, Ec,

polarization reversal occurs giving a large dielectric non-linearity [Fig. 1.1(c)]. The

area within loop is a measure of the energy required to twice reverse the polarization.

At zero field, the electric displacement within a single domain (saturated value of

the displacement) has two values corresponding to the opposite orientation of the

spontaneous polarization (±Ps),(Lines and Glass, 2001). In a multi-domain crystal,

the average zero-field displacement can have any value between these two extremes.

In principle, the spontaneous polarization is equal to the saturation value of the

electric displacement extrapolated to zero field, [Fig. 1.1(b-c)], and usually it is

larger than the remanent polarization, Pr, which is displacement at zero field (Lines

and Glass, 2001). The distinguishing feature of ferroelectrics is that the spontaneous

polarization can be reversed by a suitably strong applied electric field in the opposite

direction [Fig. 1.1 (a)]. The polarization is therefore dependent on the current

electric field, and the direction of electric field. Therefore, these materials can be

used as a memory function, and ferroelectric capacitors.

Fig. 1.2(a) shows temperature-dependent hysteresis loops for the co-crystal of

phenazine-chloranilic acid (abbr. Phz-H2ca). The width of the loop at lower tem-

perature is larger. By increasing the temperature, the coercive field decreases [Fig.

1.2 (b)], the loops become sharper and at temperature larger than T I
c = 253 K, the

loop is disappearing and the crystal becomes paraelectric [Fig. 1.2(a)]. At T I
c = 253
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Figure 1.1: (a) Temperature dependence of spontaneous polarization Ps along the crys-

tallographic b-axis of Phz-H2ca and its deuterated co-crystals (reprinted from Fig.8 of

Horiuchi et al. (2009)). (b) A hysteresis loop in deuterated co-crystal of Phz-D2a along

the direction of b-axis at T= 288 K (reprinted from graphical abstract of Horiuchi, Kumai

and Tokura (2005)). (c) A hysteresis loop (P–E), illustrating the coercive field, Ec, the

spontaneous polarization, Ps, and the remanent polarization, Pr. The behaviour of the

loop is the same as Phz-D2a, that Ps is equal to the saturated polarisation, since, the

direction of E has been chosen along the direction of the Ps, i.e. along b-axis.
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Figure 1.2: Temperature dependence of hysteresis loops in Phz-H2ca (a). Temperature

dependence of remanent polarization Pr and coercive electric field Ec (b). Compare the

curves in (b) with the change of size of loops shown in (a)(a and b are reprinted from Fig.7

of Horiuchi et al. (2009)).

K, Ec has the minimum value of external field sufficient to reverse the spontaneous

polarization. The remanent polarization Pr increases stepwise up to T IC
c . Below

T IC
c , although Ec increases rapidly, the Pr does not change significantly (Horiuchi

et al., 2009) [Fig. 1.2 (b)].

Since the electrical polarization, P, is a vector, the point group of the crystal must

not contain any symmetry operator which changes the direction of polarization, e.g.

an inversion operator. The crystal must be polar, i.e. have a polar space group.

Eleven out of thirty two crystal classes are centrosymmetric (non-polar crystal). Ten

out of twenty one non-centrosymmetric crystal classes are characterized by a unique

polar axis. Crystals belonging to these classes are considered to be polar because

they may posses a spontaneous polarization (Lines and Glass, 2001).

All polar space groups are non-centrosymmetric, but the reverse is not true. For

example, the space group P21 and superspace group P21(1/2 σ2 1/2)0 are both non-

centrosymmetric and polar where ferroelectric phase transition is reported in lower

temperatures for Phz-H2ca (Chapters 4 and 3). On the other hand, the space group

P212121 is non-centrosymmetric but not polar where the reduction of symmetry

from centrosymmetric to non-centrosymmetric space group at lower temperature is
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not a ferroelectric phase transition (Chapter 5). In summary, there are only ten

crystal classes that allow a macroscopic polarization: 1, 2, m, mm2, 4, 4mm, 3, 3m,

6, 6mm.

Most ferroelectric materials for applications belong to the class of inorganic per-

ovskite oxides, specifically barium titanate (BTO) and lead zirconate titanate (PZT)

(Gonzalo, 1990). However, these materials have some drawbacks, e.g. heavy weight,

high-processing temperatures. Furthermore, a high lead content concerning envi-

ronmental issues. Rochelle salt (Valasek, 1920), is not only the first discovered

ferroelectric material but it is also the first molecular ferroelectric. Although, later,

a few other molecular systems, such as thiourea (Goldsmith and White, 1959), tri-

glycine sulfate (TGS) (Hashino et al., 1959), and vinylidene fluoride copolymers

(Furukawa, 1989) were discovered, their poor performance compare to BTO kept

them as materials without widespread use. It is only recently that the organic fer-

roelectrics received considerable attention. The discovery of diisopropylammonium

bromide (DIPAB) (Fu et al., 2013) (with a polar point group at room temperature)

which posses spontaneous polarization, Ps = 23 µC/cm2 below Tc= 426 K (remark-

ably matching that of BTO with Ps = 26 µC/cm2 below Tc= 393K (Lines and

Glass, 2001)) was a significant step in designing organic ferroelectrics. Ferroelectric-

ity in DIPAB is the result of alignment of the polar molecules in the crystal. Also,

successive development of organic ferroelectrics is reported for the hydrogen bonded

assemblies where the ferroelectricity is governed by proton disordering or proton

transfer within hydrogen bonds (Horiuchi and Tokura, 2008). An example from

this family is croconic acid (Horiuchi et al., 2010), as a single-component molecular

crystal, with comparable properties of the inorganic ones with Ps = 21 µC/cm2 at

room temperature. Croconic acid is a π-conjugated system with keto-enol transfor-

mation which causes polar hydrogen bond at crystalline state. These developments

in ferroelectrics are reflected in two recent publications, titled Ferroelectric Organic

Materials Catch Up with Oxides (Bonnell, 2013) and Can molecular ferroelectrics

challenge pure inorganic ones? (Wang and Gao, 2013).

Ferroelectricity has been reported for H-bonded supramolecular crystals with

binary neutral acid-base systems, i.e. co-crystals of phenazine (Phz) as base with

three acids, namely 2,5-halo-3,6-dihydroxy-p-benzoquinone (chloranilic acid, H2ca),

bromanilic acid (H2ba), and fluoranilic acid (H2fa) (Horiuchi et al., 2009). Both Phz

as a base and H2ca as an acid are π-conjugated system. H2ca is a strong diprotic

acid (pk1=0.73, pk2=3.08) which can be dissociate to monoanion and dianion based

on the strength of the base Fig. 1.3. Due to the π-conjugated systems of both acid
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Figure 1.3: (a) Dissociation of acid H2ca to monoanion and dianion. (b) Protonation of
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and base, the organic co-crystal has a dark brown color. Hydrogen bonded linear

chains are governed by alternating molecules of Phz and H2ca, Fig.1.4.

The ferroelectric phase transitions have been confirmed by pyroelectric charge

measurements at different temperatures (Horiuchi et al., 2009), Figs. 1.1 and 1.2. At

room temperature the co-crystal of Phz-H2ca is in paraelectric phase, (PE-phase).

Below T I
c = 253 K, the crystal undergoes to a first ferroelectric phase transition

(FE-I phase). Further cooling, follows by two more ferroelectric phase transitions:

an incommensurate phase, below T IC
c = 147 K (FE-IC phase), and a commensurate

phase below T II
c = 137 K (FE-II phase) (Horiuchi et al., 2009).

The crystal structure of Phz-H2ca has been established within the PE phase.

Both Phz and H2ca are neutral and all hydrogen bonds between them are equivalent

by the symmetry of the centrosymmetric space group P21/n (Horiuchi, Ishii, Kumai,

Okimoto, Tachibana, Nagaosa and Tokura, 2005), Fig.1.4. It has been found that

below T I
c = 253 K, the reduction of symmetry to a polar space group P21 is the

result of acidic H atoms within one of the two of the intermolecular O–H· · ·N, H-

bonds (Horiuchi, Ishii, Kumai, Okimoto, Tachibana, Nagaosa and Tokura, 2005;

Gotoh et al., 2007; Kumai et al., 2007). The understanding of ferroelectricity within

incommensurate or commensurate phases belongs to number of unsolved problems

of solid-state physics in relation to ferroelectricity. Hence, Chapters 4 and 3 are
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a

c

Figure 1.4: Projection of the crystal structure of Phz–H2ca at ambient condition along b

axis. Equivalent H-bonded layers of Phz–H2ca are shown in half a unit cell. Two active

H-bonded sites are indicated in dashed-lined ellipses. The atoms are shown for nitrogen

in blue, oxygen in red, carbon in gray, hydrogen in black, and chlorine in green.

Figure 1.5: Hydrogen displacement between N1 and O1 through the hydrogen bond at

four valid values of phase t of modulation wave at FE-II phase in the hydrogen bonded

co-crystal of Phz–H2ca. Details will be discussed in Chapter 4.
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dedicated to the behavior of Phz-H2ca in its commensurate and incommensurate

ferroelectric phases, respectively.

Another series of supramolecular ferroelectrics belong to the family of hydrogen

bonded hybrid organic-inorganic complexes. Hybrid materials combine the advanta-

geous properties of inorganic solids with those of organic molecules. Overlapping the

p-orbitals between adjacent conjugated organic molecules eases charge transfer. In

addition, inorganic backbones are formed by strong covalent or ionic metal–halogen

bonds to form an extended framework which allows magnetic interactions. The H-

bond is a bridge between organic and inorganic blocks. The functional groups in

organic molecules arrange in a way that makes hydrogen bond with the halogen

atoms of the inorganic block. This type of hydrogen bond resembles those of pure

organic ferroelectrics (Chapters 4 and 3).

Morpholinium, as organic block has been used with halogenoantimonates (III)

and halogenobismuthates (III) as inorganic blocks with stoichiometry of RMX4

(Owczarek et al., 2013) and R2MX5 (Owczarek et al., 2012) (R stands for organic

cation, M: Sb(III), Bi(III), and X: Cl, Br, I). The complexes with stoichiometry

R2MX5 show non-linear optical, dielectric dispersion and polar properties. Among

RMX4 analogs, only [C4H10NO][BiBr4] undergoes structural phase transition which

is ferroelastic (Owczarek et al., 2013). Perchlorate or tetrafluoroborate anions with

pyridinium (Czarenki et al., 1994a), (Czarenki et al., 1994b), or imidazolium (Pajak

et al., 2004; Czapla et al., 2005) cations belong to the RMX4 family that include

aromatic or cycloalkane amine with inorganic acids with tetrahedral geometry. The

mechanism of ferroelectric phase transition is related to the movement and partial

ordering both of the dipolar cationic moieties and of the distorted tetrahedral an-

ions at lower temperatures in comparison to high temperatures. On the other hand,

in the case of cation, 1,4-diazabicyclo[2.2.2]octane, the mechanism of phase tran-

sition is connected to proton displacement within hydrogen bond (Katrusiak and

Szafranski, 1999).

The behavior of morpholinium cation as cycloalkane amine with inorganic acids

[BF4] (Owczarek et al., 2008), [ClO4] (Grigoriev et al., 2008), and [ReO4] (Grig-

oriev et al., 2007) has been extensively studied. The morpholinium cation makes

hydrogen bonds with different ionic blocks that affect the dynamics of anion. Tem-

perature dependent measurements have been done in order to track the behaviour

of complex of morpholinium cation with tetrafluoroborate anion (Fig. 1.6) (Szklarz

et al., 2009; Owczarek et al., 2008; 2011). The ionic complex undergoes two phase

transitions, upon cooling. At room temperature, the crystal posses centrosymmetric
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(a) (b)

Figure 1.6: (a) Schematic depiction of molecular structure of morpholinium tetrafluorob-

orate. (b) Molecular configuration of morpholinium cation and tetrafluoroborate anion.

The atoms are shown for nitrogen in blue, oxygen in red, carbon in gray, hydrogen in

black, and BF4 anion in a green tetrahedral.

space group Pnam and contains H-bonded [C4H10NO]+ and [BF4]
− in the unit cell

(Fig. 1.7). The single crystal X-ray structure at several temperatures 160, 180, 240,

290 K, with highly disordered anion with orthorhombic symmetry of space group

Pnam has been reported (phase I) by Szklarz et al. (2009). At lower temperatures,

the crystal undergoes two phase transitions: below T I
c = 153 K the crystal to an

incommensurate phase (phase II) (Szklarz et al., 2009) and below T II
c = 117/118 K

(phase III) to a commensurate phase or a threefold superstructure (Szklarz et al.,

2009; Owczarek et al., 2008).

In order to analyse the phase transition mechanism, it is necessary to gain knowl-

edge of structural changes in different phases, Chapter 5 is dedicated to the struc-

tural analysis of morpholinium tetrafluoroborate at its incommensurate phase. Sin-

gle crystal x-ray diffraction is used for structure determination at T=130 K. The

incommensurately modulated structure is solved and refined within a superspace

approach (van Smaalen, 2012).
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C1

C2

O1N1

H1c
H1d

b

ac

BF4

Figure 1.7: Two types of hydrogen bonds, N–H· · ·F and N–H· · ·O, in morpholinium

tetrafluoroborate crystal at T=160 K. Tetrafluoroborate anion is highly disordered with

fourfold sites. Experimental details will be discussed in Chapter 5.



Chapter 2

Aperiodic Molecular Crystals

2.1 Periodic versus aperiodic Crystals

A crystal is a solid matter in which a basic motif is repeated regularly along all

three dimensions. The translational symmetry can be characterized by the lattice

Λ = {a1, a2, a3} with lattice vectors

L = l1a1 + l2a2 + l3a3. (2.1)

Where li (i = 1,2,3) are integers. Translational symmetry implies long-range order

of the atomic structure. As a consequence, the diffraction pattern exhibits sharp

Bragg reflections (Stout and Jensen, 1989). The position of atom µ within the first

unit cell is given by its coordinates [x01(µ), x
0
2(µ), x

0
3(µ)] with respect to the basis

vectors of the lattice, according to:

x0(µ) = x01(µ)a1 + x02(µ)a2 + x03(µ)a3. (2.2)

Aperiodic crystals are crystalline materials also with long-range order and in conse-

quence sharp Bragg reflections, but without translational symmetry. The work on

incommensurate crystal structures was pioneered by de Wolff (1974). He was able to

index the diffraction pattern of anhydrous γ-Na2CO3 by four integer indices and he

proposed the superspace description for this kind of crystals (de Wolff, 1974). Based

on these findings the atomic structures of aperiodic crystals are described today by

the so-called superspace theory, as it was developed by de Wolff, Janner and Janssen

(1981). Aperiodic crystals are classified in three groups: modulated crystals, incom-

mensurate composite crystals and quasicrystals (van Smaalen, 2012). Modulated

11
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crystals are discussed in detail in the following sections, since, this thesis reports

analysis of molecular modulated structures.

2.2 Modulated Structures

In modulated crystals the translational symmetry can be recovered by the super-

space approach in higher dimensions (van Smaalen, 2012; de Wolff et al., 1981). A

incommensurate structures are then given by modulation functions together with

the positions x0(µ) of the atoms in the unit cell of basic model for the crystal struc-

ture is employed that has translational symmetry in a space with (3+d) dimensions,

where d is the number of independent modulated structures, however, are not arbi-

trary; they follow distinct rules. In other words, the modulated structure is the basic

structure with modulation wave vectors. Modulated structures are those structures

in which three-dimensional translational symmetry is destroyed. These distortions

in periodic distortions. These distortions can mathematically be described by so-

called atomic modulation functions. The positions of atoms in structure (Eq. 2.2).

Modulated structures are classified in two groups, commensurately and incommen-

surately modulated structures (Fig. 2.1). Commensurately modulated crystals are

superstructures with transitional symmetry. Fig. 2.1.(b) shows a twofold super-

structure, which has translational symmetry with periodicity of two times that of

the basic cell. The twofold superstructure can be described with a commensurate

wave where the displacement of atoms in neighboring unit cells are equal but of op-

posite direction ± a2. Therefore, the periodicity of modulation wave is equal to the

superlattice period, i.e. 2a2 (Chapter 4 will discuss refinement of a twofold super-

structure by describing it as a commensurately modulated structure). If the period

of modulation wave does not fit with any integer number of lattice translations, then

it is called incommensurate. Periodicity in incommensurate crystals is defined by

incommensurate modulation function together with periodic basic cell [Fig. 2.1.(c)]

(van Smaalen, 2012).

Three independent modulation functions are required for describing the displace-

ment of each atom from its position in the basic structure toward its position in the

superstructure. Modulation functions can be harmonic (continuous) and therefore

be expressed by sine/cosine waves or they may be discontinuous, in which case crenel

or saw-tooth functions are needed for their description.

Modulation functions are wave functions. The direction and wavelength of the
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a2

a1

Figure 2.1: (a) Basic crystal structure. (b) Formation of a superstructure with doubled

periodicity of basic structure along a2 axis, represented as commensurate structure with

displacement wave. (c) Formation of an incommensurate structure with displacement

wave.
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wave functions is characterized by a wave vector q. Each modulation wave vector

can be defined by its components σi (i=1,2,3) with respect to the basis vectors of

the reciprocal lattice of the basic structure, Λ∗ = {a∗

1, a
∗

2, a
∗

3}, according to:

q = σ1a
∗

1 + σ2a
∗

2 + σ3a
∗

3. (2.3)

If at least one of the components is an irrational number, then the structure is

incommensurately modulated.

2.3 Superspace approach

2.3.1 Reciprocal superspace

Diffraction pattern of modulated crystals contain two sets of reflections, main and

satellite reflections. The concept of superspace is based on the observation that all

Bragg reflections can be indexed by (3+d) integers. Due to the lack of transitional

symmetry, all reflections cannot be indexed according a lattice in 3D space. Nev-

ertheless, the main reflections of modulated crystal can be indexed by reciprocal

lattice:

Λ∗ = {a∗

1, a
∗

2, a
∗

3}. (2.4)

The main reflections are usually strong and they define an average or basic structure

with translational symmetry. Deviations from this translational symmetry are re-

flected in the diffraction pattern by satellite reflections. Satellite reflections cannot

be indexed with three small integer numbers. Therefore, depending on the dimen-

sion of modulation, one, two, or three additional vectors q are required to index

all Bragg reflections, i.e. main and satellite reflections. In case of (3+1)D, four

integers needed to index all reflections. Therefore, by selecting the fourth vector

a∗

4 = q, all reflections can be indexed. Fig. 2.2 exhibits the diffraction pattern of

[C4H10NO]+[BF4]
− in its incommensurate phase. It has orthorhombic symmetry, all

reflections, including main and satellite reflections, can be indexed with one extra

vector q =(σ1 0 0) (detailed description provided in Chapter 5). The fourth basis

vector can be expressed as:

a∗

4 = σ1a
∗

1 + σ2a
∗

2 + σ3a
∗

3. (2.5)

Indeed, a∗

4 in the Eq. 2.5 is the definition of q vector (Eq. 2.3 ).
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h4l

a*

c*

q

Figure 2.2: Reconstruction of h4l layer of reciprocal space of morpholinium tetrafluo-

roborate in its incommensurate phase, T=130 K. The diffraction pattern exhibits the

rectangular reciprocal lattice of main reflections, and first-order satellite reflections of 1D

modulation along a∗. All reflections can be indexed with four integers (h, k, l,m) by ap-

plying the (3+1)-dimensional superspace approach with additional vector q = (σ1 0 0)

and σ1 = 0.4216. See Chapter 5 for experimental details.

The scattering vectors of Bragg reflections for (3+1)d modulated structures is

expresses as in Eq. 2.6 which makes possible to index all reflections by four integer

(h1, h2, h3, h4)

H = h1a
∗

1 + h2a
∗

2 + h3a
∗

3 + h4a
∗

4. (2.6)

As discussed in Section 2.2 incommensurability is identified by the irrational

components of the q vector (at least one out of three components). Experimentally,

the incommensurate q vector varies as a function of temperature, or pressure.

For understanding the superspace approach, the original idea of de Wolff can be

followed. The periodicity can be recovered in higher dimensional space by consid-

ering that the observed Bragg reflections in 3D space are the projections of Bragg

reflections in (3+d)D space. Fig. 2.3 is a schematic representation of the diffraction

pattern of one-dimensionally modulated morpholinium tetrafluoroborate along a∗

including main and first-order satellite reflections (compare Fig. 2.2). The positions

of observed reflections in real space are the projections of reciprocal lattice vectors in

reciprocal superspace. For the projection, an additional vector is required. Vector

b∗ introduces the additional superspace dimension which is perpendicular to real

space (or physical space). Hence, the reciprocal superspace vectors includes three
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q-q

a*

b*

-a*

a *s4

Figure 2.3: Schematic drawing of diffraction pattern for one-dimensionally modulated crys-

tal of morpholinium tetrafluoroborate exhibiting the (3+1)D superspace approach along

the reciprocal lattice line a∗ including the main reflections (black circles) and satellites

(blue circles). The superspace reciprocal lattice is represented in black dashed lines. The

reciprocal lattice points in superspace are projected onto reflection positions in 3D space

(physical space) by blue dashed lines.

reciprocal basis vectors in 3D space with components zero along the additional di-

mensions, together with the additional vectors with components q along real space

and b∗ along the additional space (van Smaalen, 2004; 2012). If we define the re-

ciprocal basis vectors in 3D as a∗

i , the superspace reciprocal vectors a∗

si are (van

Smaalen, 2012):

Σ∗ :

{

a∗

si = (a∗

i , 0) i = 1, 2, 3

a∗

s4 = (a∗

4,b
∗).

(2.7)

2.3.2 Direct superspace

Similar to 3D periodic structures, the inverse Fourier transform of the phased diffrac-

tion pattern results in the crystal structure, that is periodic in direct superspace.

The direct-lattice basis vectors related to Σ∗ are (van Smaalen, 2012):

Σ :

{

asi = (ai,−σib) i = 1, 2, 3

as4 = (0,b).
(2.8)

The relation between direct and reciprocal lattice vectors in 3D space is appli-

cable for superspace as well (van Smaalen, 2012):

a∗

sk · ask′ = δkk′ (2.9)
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If k = k′ then δkk′ = 1 and otherwise zero. A fourth coordinate axis, b, is introduced

perpendicular to physical space. Vector b is dimensionless, with arbitrary length.

It is parallel to the reciprocal basis vector b∗, and its length defined by b∗b =1.

Coordinates (xs1, xs2, xs3, xs4) in direct superspace are defined relative to Σ as:

xs = xs1as1 + xs2as2 + xs3as3 + xs4as4. (2.10)

The superspace coordinates of a atom in direct space are obtained by :

xsi = xi i = 1, 2, 3

xs4 = q · x.
(2.11)

Where x= (x1, x2, x3) are the coordinates in physical space with respect to the

basic structure lattice, Λ. The coordinates of a point which is located outside of

physical space, are obtained by adding the value of distance between the point and

physical space to the q ·x term. This distance defines a new parameter t (Fig. 2.4).

xs4 = t+ q · x. (2.12)

A cut in fourth dimension axis (as4) parallel to physical space defines a t section.

Physical space is recovered at t=0. The superspace coordinates of the basic structure

position of an atom are defined as:

x̄s4 = x̄4 = t+ q · x̄. (2.13)

x̄4 is equal to the fourth superspace coordinate. If all atoms with non-periodic

arrangement in 3D space (physical space, the cut at t=0) are translated to a direct

superspace unit cell by application of the translations Σ (Eq. 2.8), the translated

atoms will form a dense set of points with a wavy shape. This wavy line is shape of

atomic modulation function. Modulation functions are wave functions with period

of one. Hence, the parameter t is called phase of modulation with a value between

0 to 1 [Fig. 2.4(c)]. t has an important role in the crystal-chemical analysis of

aperiodic crystals. The argument x̄4 in Eq. 2.13 appears in wave functions u(x̄4) of

atom µ. As discussed in Section 2.1 modulation wave functions are defined in three

directions as :

uµ(x̄4) = uµ1(x̄4)a1 + uµ2 (x̄4)a2 + uµ3 (x̄4)a3. (2.14)

The basic position is defined by x̄

x̄ = x̄1a1 + x̄2a2 + x̄3a3 (2.15)
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(a) (b)

(c)

Figure 2.4: (a) Unit cell of the direct superspace lattice with intersection along a1 at 3D

space (i.e. t=0). The angle φ (sin(φ)= (σ1 as4/as1)) defines the direction of as1 (reprinted

of Fig. 7. from van Smaalen (2004)). (b) The coordinates of one atom at its basic position

(x̄s1,x̄s4) with respect to Σ in superspace and x̄1 with respect to Λ in 3D space. The atom

shifted from its basic position by vector u (reprinted of Fig. 7. from van Smaalen (2004)).

(c) Translation of atoms in 3D space towards the first unit cell (reprinted of Fig. 8. from

van Smaalen (2004)).
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The position of atom µ with basic position of x̄ in the crystal is given by

x
µ
i = x̄µ + uµ(x̄4). (2.16)

Any periodic function can be written as a Fourier series, which can be a contin-

uous modulation function:

uµi (x̄4) =
∞
∑

n=1

An
i (µ) sin(2πnx̄4) +Bn

i (µ) cos(2πnx̄4). (2.17)

An
i (µ) and Bn

i (µ) , (i = 1,2,3), define the six independent coefficients for atom µ in

three directions of space. The order of harmonics is defined by n.

2.4 Aperiodic molecular compounds

The majority of modulated structures that have been analyzed are materials not

composed of individual molecules, but extended solids such as metals, alloys, ceram-

ics. The present thesis focuses on incommensurately modulated molecular crystals.

The origin of the modulation and the possible ways how they can be analyzed differs

from metallic or ionic compounds (Schönleber, 2011; van Smaalen, 2012; Wagner and

Schönleber, 2009). For molecules and molecular ions the conformation of the entity

as a whole has to be taken into account. In metallic or ionic solids, atoms are to

a certain degree free to move independently within the lattice. The covalent bonds

within a molecular entity drastically limit this kind of movement, and large parts of

molecules have a predetermined shape that cannot be altered. This character gives

the opportunity to employ rigid bodies for molecular fragments. On the other hand,

non-covalent interactions have great effects on crystal packing and the modulation

of molecular compounds.

A well known example of an organic incommensurately modulated compound

is biphenyl, Fig. 2.5 (Baudour and Sanquer, 1983; Dzyabchenko and Scheraga,

2004). The dihedral angle between two phenyl rings widely varies depending on

the environment. In the gas phase the stable conformer is at dihedral angle 44.4◦

(Bastiansen and Samdal, 1985). In solution dihedral angle is ranging from 19 to 32◦

depending on the intermolecular interactions between neighboring molecules and

π–π interactions between neighboring phenyl rings (Eaton and Steele, 1973).

In the solid state the crystal behaves interesting as temperature varies. X-ray

studies has been done at different temperatures. At room temperature the two rings
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Figure 2.5: Molecular structure of biphenyl. The main modulation is a result of torsion

of the C–C bond between two rigid phenyl rings.

are coplanar, i.e the torsion angle is 0◦. The observed planar structure is in fact

the statistical average of two alternately twisted conformations (Charbonneau and

Delugeard, 1977). Hence, the crystal symmetry belongs to centrosymmetric space

group P21/a. This symmetry has been reported for the crystal structure at higher

temperatures in phase I, at T= 110 to 298 K (Charbonneau and Delugeard, 1976),

(Charbonneau and Delugeard, 1977).

The two low temperature phases of biphenyl were found to be incommensu-

rate. At lower temperatures molecules take one of the two conformers with dif-

ferent torsion angles in an alternating ordered manner. The first phase transition

happens at 40 K (phase II). In phase II, due to the constrained torsional angles

in the incommensurate molecules, thus, the crystal loses the inversion symmetry

with doubled length of the longest axis of the unit cell in HT. The dihedral an-

gles observed in the low temperature varying between ± 10◦ (phase II) (Atake and

Chihara, 1980). Further cooling lead to second phase transition at 20 K (phase

III) that is also incommensurately modulated. The dihedral angle are close to ±

11◦. The origin of the modulation was shown to be a result of an competition

between the intramolecular forces favouring nonzero torsion angle and the crystal

packing effects (Dzyabchenko and Scheraga, 2004). The incommensurate crystal

structure of (6R,7aS)-6-(tert-butyl-dimethylsilanyloxy)-1-hydroxy-2-phenyl-5,6,7,7a

tetrahydropyrrolizin-3-one has been successfully refined in superspace using a rigid

body approach (Wagner and Schönleber, 2009). Three individual molecular frag-

ments each act as rigid units, while the overall shape of the molecule varies signifi-

cantly with the phase of the modulation.

Recently the incommensurate crystal structurer of adamantan-1-ammonium 4-

fluorobenzoate was reported (Schönleber et al., 2014). The modulation for this

molecule was described not only by displacements of atoms, but also by varying
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orientations of three rigid fragments: the adamantan-1-ammonium cation, the fluo-

rophenyl, and the carboxylate group (Schönleber et al., 2014).

In this thesis two modulated molecular crystals will be presented: the commen-

surate and incommensurate phase of the co-crystal of phenazine and chloranilic acid

(Chapters 4 and 3) and the incommensurately modulated structure of crystals of

morpholinium tetrafluoroborate (Chapter 5).

2.4.1 Rigid bodies and local symmetries for molecules

Different parameters in crystal structures can be modulated. They include positions

of atoms, site occupancy, and atomic displacement parameters (ADPs). Each har-

monic modulation function (Eq. 2.17) includes for each atom in the basic-structure,

six parameters of displacive modulation, two for occupancy modulation, and twelve

parameters for modulation of ADPs. In Chapters 4 and 3, harmonic modulation

functions are applied to the coordinates and ADPs for each individual atom in the

unit cell. Alternatively, modulation functions can be applied to a group of atoms

rather than individual atoms (Section 2.4). This method is called the rigid body ap-

proach. The rigid body approach was introduced for incommensurately modulated

molecular structures by Petricek et al. (1985). A group of atoms in a molecule with

a rigid covalently bonded framework, can be treated as rigid body, e.g. a benzene

ring. A so-called pseudo-rigid body approach can be used for groups of atoms where

the internal structure is also varied in the refinement. Degrees of freedom can be

reduced by application of the local symmetry for the pseudo-rigid body. Any of the

thirty two crystallographic point groups and any non-crystallographic point group

can be used for definition of local symmetry. For example, a sixfold orientationally

disordered nitrate group is defined as a rigid group in Λ-cobalt(III) sepulchrate trini-

trate (Schönleber et al., 2010). The local symmetry 32 (Schönflies, D3) is applied for

planar molecule of NO3 group, which improves the crystal structure model. Also,

this approach can be generalized for molecules which is consist of non-rigid groups.

The refinement of both standard and incommensurate crystal structures of mor-

pholinium tetrafluoroborate (Chapter 5) are examples where a fourfold disordered

tetrafluoroborate is defined as non-rigid group.

Jana2006 (Petricek et al., 2014) is not only a software that is suitable for mod-

ulated crystal structure analysis but also it makes possible for refining the molecular

structures within rigid bodies approach.

The dynamics of a rigid body, rb, in which all interatomic distance and bond
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lengths are fixed constraints is an excellent approximation, although, this is an

idealization which ignores elastic and plastic deformations of real body. In fact it

reduces the number of parameters of all constituent atoms to one body with six

degrees of freedom. The possible motions which leave the interatomic distances

fixed are combinations of:

(a) translations of the body as a whole, rb → rb + T

(b) rotations of the body about a fixed point, k.

Describing the translations can be specified by giving the coordinates of the fixed

point, k, in the body. Often k is center of mass or one particular atom belonging to

the body. In order to discuss other atoms forming the pseudo-rigid body, we will use

an orthonormal coordinate system fixed in body, known as body coordinates with

the origin fixed in k. The constraints mean that the position of each atom of the

body x0(µ), has fixed coordinates of in terms of this coordinate system. Thus the

configuration of the body in the crystal is completely specified by x0(k;µ) toghether

with a rotation R(k) and translation T:

x0(µ) = [R(k)× x0(k;µ))] +T(k) (2.18)

As discussed the displacement of atoms involved in molecular fragments are not

determined by each individual atom location, but by a point common to all atoms in

molecular fragment. Therefore, modulation of molecular crystal affect entire rigid

body and modulation functions can be used for it. The coordinates, x0(k), are

introduced for the center or reference point of rigid body k, if the rotation is done

about the origin of coordinate system, then it would be equal to the translation.

x0(k) = T (2.19)

Displacive modulations are described by two modulation functions (van Smaalen,

2012): a vector function, uk
T [x̄s4(k)], for modulation of translations and axial vector

function, uk
R[x̄s4(k)], for describing the modulation of the rotations.

uµ[x̄s4(µ)] = uk
T [x̄s4(k)] + uk

R[x̄s4(k)]× x0(k;µ)]. (2.20)

Modulation function of rigid body are a function of Eq. 2.13

x̄s4(k) = t+ q · [L + x0(k)]. (2.21)

Although thermal motion does not effect the internal structure of rigid body,

they might be refined for whole the molecule as TLS parameters that stands for
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Translation-Libration-Screw formalism (Schomaker and Trueblood, 1968). The TLS

parameters can be employed as an independent parameters instead of the temper-

ature parameters of individual atoms. Similar to the individual atoms, in addition

to the molecular modulated displacement parameters (i.e. rotation and translation

parameters) TLS thermal parameters can be modulated. Modulation functions are

applied for whole the molecule within the TLS formalism.

Other parameters in the model molecule include occupancy. Occupancy of molec-

ular orientations also can be modulated. The modulation of the occupational prob-

abilities that are described by harmonic modulation functions is given by:

pµ(x̄s4) = P 0(µ) +

∞
∑

n=1

[P sn(µ) sin(2πnx̄s4(k)) + P cn(µ) cos(2πnx̄s4(k))]. (2.22)

Average occupation probabilities of the molecule is P0(µ) and modulation function

pµ(x̄s4) are occupation in the nth cell with Fourier coefficients of P sn(µ) and P cn(µ).

The order of harmonics is given by n.

Full site occupancies are required for all values of t in x̄s4 = t + q· x0(µ) leading

to the condition:

Nsite
∑

µ=1

pµ[t+ q · x0(µ)] = 1. (2.23)

The calculated probabilities of different sites of the molecule versus phase of

modulation, t which is shown in Fig. 5.3 fulfils the condition of Eq. 2.23.
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Chapter 3

Resonance-stabilized partial

proton transfer in hydrogen bonds

of incommensurate

Phenazine–chloroanilic acid 1

3.1 Introduction

Organic compounds are of interest as ferroelectric materials, because they have

a low specific weight and they are potentially cheap to produce (Horiuchi and

Tokura, 2008). Furthermore, organic compounds offer more possibilities than in-

organic compounds for designing properties. Organic materials based on hydrogen-

bonded supramolecular chains with a polar space group form one class of ferroelec-

tric materials. The co-crystal of phenazine (Phz) and 2,5-dichloro-3,6-dihydroxy-p-

benzoquinone (chloranilic acid, H2ca) is one of several recently discovered hydrogen-

bonded organic ferroelectrics (Horiuchi, Ishii, Kumai, Okimoto, Tachibana, Nagaosa

and Tokura, 2005; Horiuchi et al., 2009; Kumai et al., 2012; 2006).

Phz-H2ca contains chains of alternating Phz and H2ca molecules connected through

O–H· · ·N intermolecular hydrogen bonds. At room temperature, all hydrogen bonds

are equivalent by the symmetry of the centrosymmetric space group P21/n (Z = 2),

and the crystal of Phz-H2ca is paraelectric (PE phase) (Horiuchi, Ishii, Kumai, Oki-

1This chapter has been published as: Leila Noohinejad, Swastik Mondal, Sk Imran Ali, Somnath

Dey, Sander van Smaalen and Andreas Schönleber: Resonance-stabilized partial proton transfer

in hydrogen bonds of incommensurate Phenazine–chloroanilic acid; Acta Cryst . B , 71: 228- 234

(2015)
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moto, Tachibana, Nagaosa and Tokura, 2005; Kumai et al., 2007). Below T I
c = 253

K the symmetry is reduced to P21 (Z = 2), allowing for two inequivalent hydrogen

bonds. One of the two bonds exhibits partial proton transfer, which is responsi-

ble for the spontaneous polarization (FE-I phase) (Horiuchi, Ishii, Kumai, Okimoto,

Tachibana, Nagaosa and Tokura, 2005; Kumai et al., 2007; Gotoh et al., 2007). Phz-

H2ca has an incommensurately modulated structure between T IC
c = 147 K and T II

c

= 137 K (FE-IC phase) (Saito et al., 2006; Horiuchi et al., 2009). Below T II
c another

ferroelectric phase is stable, that can be characterized as a twofold superstructure

of the room-temperature structure (FE-II phase) (Noohinejad et al., 2014).

Here we report the crystal structure of the incommensurate phase, employing

the superspace formalism applied to single-crystal X-ray diffraction data. The mod-

ulation is found to mainly affect the positions of the hydrogen atoms within the O–

H· · ·N intermolecular hydrogen bonds. Evidence for proton transfer in part of these

bonds is provided by the correlated variations of bond lengths reflecting resonance

stabilization of the anion. A detailed comparison of the various phases reveals that

the incommensurate phase has a crystal structure intermediate between the crystal

structures of the FE-I and FE-II phases. A mechanism is proposed for the sequence

of phase transitions.

3.2 Experimental

3.2.1 X-ray diffraction

Single crystals of Phz-H2ca were obtained by cosublimation of phenazine and chlo-

ranilic acid (Horiuchi, Ishii, Kumai, Okimoto, Tachibana, Nagaosa and Tokura,

2005; Noohinejad et al., 2014). A diffraction experiment at T = 139 K was per-

formed on the same crystal as was employed in our previous study on the com-

mensurate FE-II phase (Noohinejad et al., 2014). X-ray diffraction data have been

measured at beamline F1 of Hasylab at DESY in Hamburg, Germany, employing a

MAR165 CCD detector mounted on a kappa diffractomter. The temperature of the

crystal was regulated by a nitrogen gas-flow cryostat. X-ray diffraction data were

collected by ϕ scans and ω scans for various settings of the orientation of the crystal.

To better evaluate strong and weak reflections, two measurements were performed

with the same measurement strategies but with different exposure times of 20 and

160 seconds, respectively. Data processing of the measured images has been done

with the software Eval15 for indexing and extraction of integrated intensities of
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Bragg reflections (Schreurs et al., 2010), and with Sadabs for absorption correc-

tion (Sheldrick, 2008). The latter employed groups of equivalent reflections defined

according to the point group 2/m, which appeared as symmetry of the diffraction.

Experimental details are given in Table 5.1.

Indexing of the diffraction images with Eval15 resulted in an indexing with

four integers on the basis of a monoclinic unit cell closely related to the unit cell

of the FE-I phase at 160 K (Horiuchi, Ishii, Kumai, Okimoto, Tachibana, Nagaosa

and Tokura, 2005) together with the incommensurate modulation wave vector q′

= (1
2
, σ2

′, 1

2
), where σ2

′ = 0.4861. However, the integration routine of Eval15

did not accept a modulation wave vector with rational components. Therefore, the

integration has been performed within the supercentered setting with q′

i = (0, σ2
′, 0)

and centering translation (1
2
, 0, 1

2
, 1

2
) with respect to the transformed basic-structure

unit cell A = a− c, B = b, and C = a+ c (Stokes et al., 2011). The same setting

has been employed in Sadabs.

3.2.2 Choice of the superspace group

The low-temperature superstructure of the FE-II phase at 100 K has been described

as a commensurately modulated structure with a basic structure similar to the

structure at higher temperatures and the commensurate modulation wave vector

qcomm = (1
2
, 1

2
, 1

2
). The superspace group P21(

1

2
σ2

1

2
)0, with σ2 =

1

2
has been found

to describe the symmetry of this phase (Noohinejad et al., 2014).

Presently, the indexing with modulation wave vector q′ = (1
2
, σ2

′, 1

2
) and σ2

′ =

0.4861 (see Section 3.2.1) leads to the superspace group P21(
1

2
σ2

′ 1

2
)s. The acentric

superspace group is established by the lack of inversion symmetry of both the FE-I

and FE-II phases (see the Introduction) as well as by measurements of the electrical

polarization, indicating a ferroelectric state below T I
c (Horiuchi et al., 2009). The

two superspace groups appear to be alternate settings of superspace group No. 4.1.6.3

with standard setting P21(
1

2
0 σ3)0 (Stokes et al., 2011). The two settings can be

transformed into each other by a shift of the origin. However, this would result in

different coordinates of the atoms in the basic structures of the low-temperature

and incommensurate phases, which is not desired. The setting with zero intrinsic

translation along the fourth coordinate can also be obtained by the choice of a

different modulation wave vector for the incommensurate modulation, according to

q = a∗ + b∗ + c∗ − q′

= (1
2
, σ2,

1

2
)

(3.1)
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Table 3.1: Crystal data and refinement details for model A

Temperature (K) 139
Chemical formula C18Cl2H10O4N2

Formula weight 389.19
Superspace P21(1/2 σ2 1/2)0
q (1/2, 0.5139, 1/2)
a (Å) 12.372 (2)
b (Å) 3.7649 (5)
c (Å) 16.8315 (2)
β (◦) 107.789 (7)
V (Å3) 746.52 (14)
Z 2
Crystal size (mm3) 0.22× 0.125× 0.05
Crystal color Dark brown
Crystal form Platelet
Radiation type Synchrotron
Wavelength (Å) 0.5600
Scan mode ω and φ
Theta range (deg) 1.92 to 33.33
Range of h -16 to 16
Range of k -7 to 7
Range of l 0 to 33
Range of m -1 to 1
µ (mm−1) 0.243
Absorption corr. empirical
Tmin, Tmax 0.7769, 0.9910
No. of reflections
Measured 25001
Independent 15433
Observed 8092
Main (obs, all) 5607, 5942
Satellites, 1st order (obs, all) 2485, 9491
Rint(obs, all) 1.85, 1.94
Criterion for observed reflection I > 3σ(I)
Refinement, Software on F , Jana2006
Weighting scheme 1/(σ(F )2 + (0.01Fobs)

2)
GOF obs,GOF all 2.78, 2.08
Robs

F , Rall
F (all) 0.0449, 0.0720

Robs
F , Rall

F (main) 0.0411, 0.0425
Robs

F , Rall
F (sat) 0.1268, 0.3661

No. of parameters 719
∆ρmax, ∆ρmin (e Å−3) 0.63, -0.55
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with

σ2 = 1− σ2
′ = 0.5139 (3.2)

Diffraction data were re-indexed according to this transformation (Eqs. 3.1 and

3.2), and the superspace group P21(
1

2
σ2

1

2
)0 with σ2 = 0.5139 has been used for all

refinements.

3.2.3 Structure refinements

Initial values for the parameters of the basic structure have been taken from the

basic structure at 100 K (Noohinejad et al., 2014). Anisotropic atomic displace-

ment parameters (ADPs) have been used for all non-hydrogen atoms. Hydrogen

atoms were placed at calculated positions with a bond length d(C–H) of 0.96 Å,

and they were refined using a riding model with isotropic ADPs equal to 1.2 times

the equivalent isotropic ADPs of the bonded carbon atoms. Hydrogen atoms of

the hydroxyl groups were located in the difference Fourier map. They were then

shifted to positions fulfilling the restraints d(O–H) = 0.85 (2) Å and ∠(C–O–H) =

109.5 (2.0)◦ (Müller et al., 2005; Engh and Huber, 1991), while their isotropic ADPs

were restricted to 1.5 times the equivalent isotropic ADPs of the adjacent oxygen

atoms. Employing Jana2006 (Petricek et al., 2014), the positions of all atoms were

refined with these restraints in effect. In the last step the restraints were released,

resulting in a good fit to the main reflections with Robs = 0.0412.

Three approaches have been chosen for determination of the atomic modulation

functions for the incommensurate phase. In one approach, the modulation func-

tions of the model at 100 K (Noohinejad et al., 2014) were used as starting model.

The same superspace group was employed, but with σ2 = 0.5139 instead of the

commensurate value of 0.5. The refinement converged smoothly to a good fit to

the combined set of main and satellite reflections, resulting in model A (Table 5.1).

Model A involves one harmonic wave for the displacive modulation of all atoms as

well as one harmonic wave for the modulation of ADPs of all non-hydrogen atoms.

The origin was fixed on the Cl2 atom. Inversion twins are expected to be present,

because the IC phase has been reached by phase transitions, starting with the cen-

trosymmetric PE phase at room temperature. Twinning did have a marginal effect

on the refinement, while a significant deviation from equal volume fractions of the

twin domains was not found. Therefore, equal volume fractions were employed for

the final refinements. A model with the alternative symmetry P21(
1

2
σ2

1

2
)s did not

lead to a good fit to the data.
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Table 3.2: R values for the different structure models. Included are R values and partial

R values for observed (obs; defined by I > 3σI) and all (all) reflections.

Model A B C

GOF obs 2.78 2.78 2.79

Robs
F (all) 0.0449 0.0449 0.0451

Robs
F (main) 0.0411 0.0412 0.0411

Robs
F (sat) 0.1268 0.1266 0.1301

GOF all 2.08 2.08 2.08

Rall
F (all) 0.0720 0.0718 0.0720

Rall
F (main) 0.0425 0.0425 0.0425

Rall
F (sat) 0.3661 0.3634 0.3663

No. of parame-

ters

719 719 719

Starting with the same basic structure, model B was developed by assigning arbi-

trary but small values to the modulation parameters of the heaviest atom (chlorine).

Refinements alternated with the subsequent introduction of modulation parameters

for the O, N, C and H atoms, finally resulting in a fit to the diffraction data of equal

quality as that of model A (Table 3.2).

In a completely different approach, charge-flipping was applied for the direct so-

lution of the incommensurately modulated structure in superspace (Palatinus, 2013;

Palatinus and Chapuis, 2007). For the solution, the software Superflip suggested

the centrosymmetric symmetry P21/n(
1

2
σ2

1

2
)00. Since we knew that the modu-

lation is non-centrosymmetric, we have chosen the superspace group P21(
1

2
σ2

1

2
)0.

Jana2006 was subsequently used to extract the basic-structure positions and val-

ues of the first-order harmonics of the displacive modulation functions for all non-

hydrogen atoms. Atoms were then named to match Fig. 3.1. For this model the

basic-structure coordinates were refined against all reflections, resulting in RF =

0.3046, Rmain
F = 0.2901 and Rsat

F = 0.6184. Hydrogen atoms were added at cal-

culated positions near carbon atoms as in model A. Refinement of the atomic co-

ordinates within the riding model resulted in RF = 0.3037, Rmain
F = 0.2892 and

Rsat
F = 0.6174. Subsequent refinement of anisotropic ADPs of the non-hydrogen

atoms resulted in RF = 0.0680, Rmain
F = 0.0430 and Rsat

F = 0.6081. Hydrogen atoms

of the hydroxyl groups were located in the difference Fourier map and treated like

in model A. Refinement of the restrained model gave RF = 0.0672, Rmain
F = 0.0427
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Figure 3.1: Phenazine C12H8N2 and chloranilic acid C6Cl2H2O4 with the atom labels as

employed in the present work.

and Rsat
F = 0.5993. Refinement of the free model gave RF = 0.0666, Rmain

F = 0.0420

and Rsat
F = 0.5998. Small values were applied to the displacive modulation func-

tions of the hydrogen atoms. Refinement of the modulated structure resulted in

RF = 0.0472, Rmain
F = 0.0412 and Rsat

F = 0.1787. Finally, modulation parameters

were introduced for the ADPs of the non-hydrogen atoms, resulting in the final fit

of model C to the diffraction data as given in Table 3.2.

3.3 Discussion

3.3.1 The structure model

The final fit to the diffraction data is excellent for the main reflections (Table 5.1).

The rather high value of Robs
F (sat) = 0.127 can completely be explained by the

weakness of the satellite reflections and the resulting values for Rσ(sat) = 0.151,

representing the average standard uncertainty over intensity, and Rint(sat) = 0.129

for averaging satellite reflections.

Model A and model B give the same fit to the diffraction data (Table 3.2).

Although modulation parameters are different, these two models are completely

equivalent. They differ from each other by a phase shift (Fig. 3.2). Further support

for model A comes from difference Fourier maps obtained after refinements of model

A and of a similar model without the acidic hydrogen atoms (see Supporting Infor-

mation). Model C has been obtained by solving the modulated structure by charge

flipping in superspace. The modulation of model C is different from the modula-

tions in models A and B, but Robs
F (sat) is clearly higher for model C than for the

other two models (Table 3.2). Therefore, model C provides a less good description
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Figure 3.2: Interatomic distances (Å) as a function of the phase t of the modulation. The

t plot for model B (in blue) is superimposed onto the t plot for model A (in black), after

application of a phase shift of −0.5139 in t to model B.

of the modulation than models A and B do. Difficulties in obtaining the correct

structure model by charge flipping are probably related to the pseudo-symmetry of

the structure, with deviations from inversion symmetry being mainly the result of

rearrangements of hydrogen atoms.

These properties give strong support that model A (as well as the equivalent

model B) is the correct model for the modulated crystal structure of the incom-

mensurate phase. In view of these results, we have restricted the analysis to model

A.

3.3.2 Resonance-stabilized proton transfer

The modulated structure of the incommensurate phase of Phz-H2ca has been suc-

cessfully determined at a temperature of 139 K. The magnitudes of the modulation

amplitudes of the atoms reveal that the major effect of the modulation is a dis-

placive modulation of the hydrogen atom of one of the two hydrogen bonds in which

each molecule is involved in. This feature is in complete agreement with the crystal

structures of the FE-I and FE-II phases, where also one half of the hydrogen bonds

is involved in the distortions of the structure.

More precisely, the crystal structure of the FE-I phase contains one crystallo-

graphically independent molecule H2ca with two independent oxygen atoms involved

in O–H· · ·N hydrogen bonds, denoted by O1 and O2 (Gotoh et al., 2007). The ba-

sic structure of the FE-IC phase is the same as the crystal structure of the FE-I
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Figure 3.3: Selected interatomic distances (Å) as a function of the phase t of the mod-

ulation. (a) The O–H and N–H distances within the two hydrogen bonds. (b) C–C and

C–O distances of the resonance system stabilizing the Hca− anion, as well as the C6–O2

distance not involved in resonance. Notice the different length scale on the vertical axes

for panels (a) and (b).

phase, so that the FE-IC phase contains modulated atoms O1 and O2. Finally, the

FE-II phase represents a twofold superstructure of the structure of the FE-I phase.

Together with a reduction of the point symmetry to triclinic, this results in four

crystallographically independent molecules H2ca with atoms O1A through O1D de-

rived from O1, and atoms O2A through O2D derived from O2 (Noohinejad et al.,

2014). In all three phases, the hydrogen bonds O2–H1o2· · ·N2 are not involved in

superstructure formation. For the FE-IC structure, Table 3.3 and Fig. 3.3(a) show

that bond lengths involving the O2, H1o2 and N2 atoms exhibit only a weak de-

pendence on the phase t of the modulation. For the FE-I and FE-II structures this

property has been previously determined by (Gotoh et al., 2007) and (Noohinejad

et al., 2014), and it is summarized in Table 3.3. Therefore, the hydrogen bonds

O2–H1o2· · ·N2 do not play a direct role in the ferroelectricity of this compound.

The largest variation of bond lengths within the FE-IC phase is found for the

hydrogen bond O1–H1o1· · ·N1, with a variation of ∆d(O1–H1o1) = 0.25 Å and

∆d(N1–H1o1) = 0.42 Å (Table 3.3). All other bonds are much less affected by the

modulation, with a maximum variation of 0.06 Å for C3–O1 in H2ca and of 0.019 Å

for C14–C15 in Phz (see Appendix A). The next largest variations of bond lengths

are found for C3–C2, C1–C2 and C1–O4 (Table 3.4). These bonds are precisely

those involved in resonance stabilization of the Hca− ion, as it is obtained after

transfer of the proton within the O1–H1o1· · ·N1 hydrogen bond. Further evidence

for this interpretation comes from t-plots (Fig. 3.3), which show that an elongation

of the O1–H1o1 bond (interpreted as proton transfer) correlates with an elongation

of the C3–C2 and C1–O4 bonds, for which resonance represents the admixture of
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Table 3.3: Geometry of the inter-molecular hydrogen bonds O1–H1o1· · ·N1 and O2–

H1o2· · ·N2 at different temperatures corresponding to the FE-I, FE-IC and FE-II phases,

respectively. Interatomic distances are given in Å and bond angles in degree. (max-min)

provides the difference between maximum (max) and minimum (min) separation in de-

pendence on the phase t of the modulation in the FE-IC phase. Mean gives the value

averaged over t. Standard uncertainties are given in parentheses.

Atoms 170 K a 139 K 100 K b

distance distance max-min distance
O1–H1o1 1.02(4) 1.44(2) (mean) 0.25 0.943(15) (A)

1.32(2) (min) 1.609(15) (B)
1.57(2) (max) 1.066(14) (C)

1.467(14) (D)
O2–H1o2 0.73(2) 0.91(2) (mean) 0.06 0.863(15) (A)

0.88(2) (min) 0.796(15) (B)
0.94(2) (max) 0.840(14) (C)

0.815(13) (D)
H1o1–N1i 1.66(4) 1.320(14) (mean) 0.42 1.879(15) (A)

1.11(2) (min) 1.027(15) (B)
1.53(2) (max) 1.700(14) (C)

1.205(14) (D)
H1o2–N2ii 2.15(2) 1.945(2) (mean) 0.05 1.908(14) (A)

1.92(2) (min) 2.121(14) (B)
1.97(2) (max) 1.944(14) (C)

2.084(14) (D)
O1–N1i 2.6446(16) 2.629(2) (mean) 0.07 2.6976(14) (A)

2.586(2) (min) 2.5736(14) (B)
2.672(2) (max) 2.6726(14) (C)

2.5974(42) (D)
O2–N2ii 2.7722(16) 2.763(2) (mean) 0.09 2.7086(15) (A)

2.715(3) (min) 2.8251(15) (B)
2.811(3) (max) 2.7264(15) (C)

2.8062(15) (D)
O1–H1o1–N1i 159 (3) 144.8(15) (mean) 9.9 143.8(11) (A)

139.5(14) (min) 154.4(11) (B)
149.7(16) (max) 149.3(10) (C)

152.6(10) (D)
O2–H1o2–N2ii 145(2) 149.2(18) (mean) 5.4 153.7(11) (A)

146.4(17) (min) 147.5(12) (B)
152.0(18) (max) 154.5(11) (C)

147.60(12) (D)
Symmetry codes for N1 and N2 in the structure model at T = 139 K are:

(i) x− 1, y, z; (ii) x, y + 1, z. aFrom (Gotoh et al., 2007). bFrom (Noohinejad et al.,

2014); the labels A, B, C, and D refer to the four molecular chains, which have

become independent in the crystal structure at low temperatures.
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Figure 3.4: Schematic representation of resonance within the anion Hca− of chloranilic

acid.

single-bond character into these formally double bonds (Fig. 3.4). Concomitantly,

C1–C2 and C3–O1 have become shorter due to admixture of double-bond character

into formally single bonds. A similar variation of bond lengths is found in the crystal

structure of the FE-II phase (Table 3.4). The results support the model of partial

proton transfer (see Section 3.3.3).

3.3.3 The ferroelectric phase transitions

Ferroelectricity in Phz-H2ca at low temperatures is the result of intermolecular

proton transfer within the O1–H1o1· · ·N1 hydrogen bonds (Horiuchi, Kumai and

Tokura, 2005; Kumai et al., 2007; Gotoh et al., 2007; Kumai et al., 2012; Noohine-

jad et al., 2014). Consideration of the positions of the hydrogen atoms within the

O1–H1o1· · ·N1 hydrogen bonds of the crystal structures of the three phases leads

to the following model for the phase transitions.

At room temperature (PE phase) all hydrogen bonds are equivalent by symme-

try of the centrosymmetric space group. Consequently, any dipole moment of the

O1–H1o1· · ·N1 hydrogen bond will be perfectly compensated by a dipole moment of

the O2–H1o2· · ·N2 hydrogen bond on the same molecule that points in the opposite

direction, because O1 and O2 are related by the inversion center. The ferroelectric

phase transition towards the FE-I phase is characterized by loss of inversion sym-

metry. The O2–H1o2 remains short and should be interpreted as a covalent O–H

bond that acts as hydrogen-bond donor towards N2 (Table 3.3). The O1–H1o1 is

clearly elongated as compared to a covalent bond, but it is not completely broken.

The N1–H1o1 distance is clearly shorter than in the PE phase, but it is not yet the

distance of ≈ 1.03 Å of a covalent N–H bond. Therefore, it can be concluded that

this structure exhibits partial proton transfer within the O1–H1o1· · ·N1 hydrogen
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Table 3.4: Selected bond lengths (Å) at different temperatures corresponding to the FE-I,

FE-IC and FE-II phases, respectively. (max-min) provides the difference between maxi-

mum (max) and minimum (min) separation in dependence on the phase t of the modulation

in the FE-IC phase. Mean gives the value averaged over t. Standard uncertainties are

given in parentheses.

Bond 170 K a 139 K 100 K b

distance distance max-min distance

C3–O1 1.2923(13) 1.281(2) (mean) 0.060 1.3200(14) (A)

1.251(2) (min) 1.2536(14) (B)

1.311(2) (max) 1.3054(14) (C)

1.2676(14) (D)

C6–O2 1.3204(13) 1.312(3) (mean) 0.004 1.3133(15) (A)

1.310(2) (min) 1.3204(15) (B)

1.314(2) (max) 1.3118(14) (C)

1.3214(14) (D)

C4–O3 1.2269(15) 1.219(2) (mean) 0.008 1.2243(14) (A)

1.215(2) (min) 1.2211(14) (B)

1.223(2) (max) 1.2248(14) (C)

1.2201(14) (D)

C1–O4 1.2291(15) 1.221(2) (mean) 0.026 1.2183(14) (A)

1.208(2) (min) 1.2385(14) (B)

1.234(2) (max) 1.2210(14) (C)

1.2355(14) (D)

C1–C2 1.4404(15) 1.428(3) (mean) 0.043 1.4590(8) (A)

1.406(3) (min) 1.4114(7) (B)

1.449(3) (max) 1.4496(8) (C)

1.4207(8) (D)

C2–C3 1.3713(16) 1.372(3) (mean) 0.047 1.3517(9) (A)

1.349(3) (min) 1.3949(9) (B)

1.396(3) (max) 1.3622(9) (C)

1.3843(9) (D)

N1–C12 1.3493(13) 1.342(2) (mean) 0.006 1.3451(11) (A)

1.339(2) (min) 1.3465(11) (B)

1.345(2) (max) 1.3468(14) (C)

1.3443(12) (D)

N1–C17 1.3472(17) 1.344(2) (mean) 0.005 1.3490(14) (A)

1.342(2) (min) 1.3505(14) (B)

1.347(2) (max) 1.3464(14) (C)

1.3526(14) (D)
aFrom (Gotoh et al., 2007). bFrom (Noohinejad et al., 2014).
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bonds.

The low-temperature FE-II has four crystallographically independent O1–H1o1· · ·N1

hydrogen bonds. The partial proton transfer of the FE-I phase is replaced in the

FE-II phase by complete proton transfer in one half of these hydrogen bonds (B

and D), and the absence of proton transfer in the other half (A and C) (Table

3.3). The FE-I phase transfers into the FE-II phase via the intermediate FE-IC

phase. Structurally, the FE-IC phase appears intermediate between the high- and

low-temperature ferroelectric phases too. The incommensurate modulations repre-

sents a modulation of the O1–H1o1· · ·N1 hydrogen bond between one with almost

full proton transfer and one which can be characterized as almost no proton transfer

(Table 3.3 and Fig. 3.3). Despite an incommensurability of the FE-IC phase, it ap-

pears that—on average—one quarter of the hydrogen bonds has full proton transfer

in both the FE-IC and FE-II phases, while half of the hydrogen bonds in the FE-I

phase are affected by partial proton transfer. These similarities might explain the

only marginal effects of the ferroelectric incommensurate and lock-in transitions on

the macroscopic electric dipole moment (Horiuchi et al., 2009).

3.4 Conclusions

The incommensurately modulated structure of the ferroelectric incommensurate

(FE-IC) phase of Phz-H2ca has been successfully determined. It is shown that

this structure is intermediate between the ferroelectric FE-I and FE-II phases. Half

of the intermolecular hydrogen bonds exhibit partial proton transfer within the FE-I

phase. This becomes an incommensurate variation between strong and very weak

proton transfer within the FE-IC phase, while in the FE-II phase, the active half of

the hydrogen bonds splits into a hydrogen bond with complete proton transfer and

one without proton transfer. Strong support for proton transfer in part of the hydro-

gen bonds has been obtained through the variations of the lengths of precisely those

bonds that are involved in resonance stabilization of the Hca− ion (Section 3.3.2).

Proton transfer in only part of the hydrogen bonds has been explained as the result

of Coulomb interactions between the resulting ionic species (Kumai et al., 2012).

Proton transfer is in line with the acidities of the two molecules with pKa1 = 1.23

for the proton acceptor Phz, and pKa1 = 0.76 for the proton donor H2ca (Albert

and Phillips, 1956; Molcanov and Kojic-Prodic, 2010). One could thus suggest that

the incommensurability will be the result of competition between the inclination to-
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wards proton transfer of single hydrogen bonds and avoiding unfavorable Coulomb

repulsion within the crystalline lattice of molecules.
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Chapter 4

Ferroelectricity of

phenazine–chloranilic acid at T =

100 K 1

4.1 Introduction

Most applications of ferroelectric materials involve inorganic compounds, such as

lead zirconate titanate Pb(Zr,Ti)O3 (PZT), barium titanate BaTiO3 (BTO), lay-

ered perovskites like strontium bismuth tantalate SrBi2Ta2O9 (SBT), and lithium

niobate LiNbO3 (LNB).(Gonzalo, 1990) The performance of low-molecular-weight

organic ferroelectrics generally is less good than of these oxides. Nevertheless, or-

ganic compounds are an attractive alternative to inorganic ferroelectric materials,

because they are lead free, environmentally friendly and potentially cheaper to pro-

duce.

Recently, diisopropylammonium bromide (DIPAB) has been reported to exhibit

a spontaneous electrical polarisation of similar magnitude as BTO.(Fu et al., 2013)

Ferroelectricity in DIPAB is the result of alignment of the polar molecules in the

crystal. Another mechanism of ferroelectricity is proton transfer within hydrogen

bonds, resulting in charge separation on originally neutral molecules. A single-

molecule material of this type is croconic acid.(Horiuchi et al., 2010) Ferroelectric

properties have also been reported for the hydrogen-bonded co-crystal of phenazine

(Phz) and 2,5-dichloro-3,6-dihydroxy-p-benzoquinone (chloranilic acid, H2ca) as well

1This chapter has been published as: Leila Noohinejad, Swastik Mondal, Alexander Wölfel, Sk

Imran Ali, Andreas Schönleber, and Sander van Smaalen : Ferroelectricity of phenazine–chloranilic

acid at T = 100 K; J . Chem. Crystallogr , 44: 387- 393 (2014)
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Figure 4.1: Phenazine C12H8N2 (bottom) and chloranilic acid C6Cl2H2O4 (top) with

the atom labels as employed in the present work. (a) Neutral form with an O–H· · ·N

intermolecular hydrogen bond (molecules A—see Fig. 5.5), and (b) ionic form with an

O· · · H–N hydrogen bond (molecules B). Hydrogen atoms attached to carbon atoms of

Phz are not shown.

as for similar co-crystals containing bromanilic acid or fluoranalic acid instead of

H2ca (Fig. 4.1).(Horiuchi, Ishii, Kumai, Okimoto, Tachibana, Nagaosa and Tokura,

2005)

Phz-H2ca is paraelectric at room temperature (PE phase). The crystal con-

tains mixed chains of hydrogen bonded, neutral Phz and H2ca molecules, which

run along [1 1 0] and [1 1̄ 0] of the monoclinic unit cell with space group P21/n

(Fig. 4.2).(Horiuchi, Ishii, Kumai, Okimoto, Tachibana, Nagaosa and Tokura, 2005)

The first ferroelectric (FE-I) phase forms at temperatures below T I
c = 253 K. The

reduction of symmetry towards P21 is the result of proton displacements within

half of the hydrogen bonds (one per molecule).(Horiuchi, Ishii, Kumai, Okimoto,

Tachibana, Nagaosa and Tokura, 2005; Gotoh et al., 2007; Kumai et al., 2007) Fer-

roelectricity remains on further cooling, but two more phase transitions have been

identified.(Saito et al., 2006) An incommensurate (FE-IC) phase forms below T IC
c

= 147 K, which becomes a twofold superstructure below the lock-in transition at

T II
c = 137 K (FE-II phase).(Horiuchi et al., 2009) Crystal structures have not been

reported for the FE-IC and FE-II phases. However, models have been proposed for

the FE-II phase, which involve various distributions over the unit cell of neutral

and ionic hydrogen bonds (Fig. 4.1).(Horiuchi et al., 2009; Amano et al., 2009; Lee

et al., 2012) In particular, Kumai et al.(Kumai et al., 2012) proposed that Coulomb

repulsion would be responsible for an arrangement of neutral (Fig. 4.1(a)) and ionic
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Figure 4.2: Crystal structure at ambient conditions. (a) Projection along b. (b) Projection

along c∗ of the layer centered on z = 0.25 containing hydrogen-bonded chains along [1 1 0],

(c) and of the layer centered on z = 0.75 with chains along [1 1̄ 0].

(Fig. 4.1(b)) chains, which alternate along b.

Here, we report the twofold superstructure of the FE-II phase at 100 K. A descrip-

tion as commensurately modulated structure within the superspace approach(van

Smaalen, 2012; Schönleber, 2011) appeared to be essential for solving this super-

structure. We establish proton transfer in one quarter of the hydrogen bonds in a

pattern similar to the charge order proposed by Kumai et al.,(Kumai et al., 2012)

and at variance with other models.(Horiuchi et al., 2009; Amano et al., 2009; Lee

et al., 2012) The role of hydrogen bonding in stabilizing the Fe-II phase is analyzed.

4.2 Experimental

4.2.1 Crystal growth

Sublimation experiments were performed in evacuated quartz glass ampoules (pres-

sure less than 7 × 10−3 mbar) with a temperature T1 at the educt side and a tem-

perature T2 at the product side. Phenazine (Alfa; purity 99%) and chloranilic acid

(Alfa; 98%) were purified by repeated sublimation with T1 = 423 and T2 = 293 K

for phenazine, and T1 = 458 and T2 = 293 K for chloranilic acid. Co-crystals were

obtained by sublimation of a mixture of phenazine and chloranilic acid of molar

ratio 1:1 placed at the educt side in a quartz glass tube.(Horiuchi, Ishii, Kumai,
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Okimoto, Tachibana, Nagaosa and Tokura, 2005) The following temperature profile

was used: heating of product side to T2 = 453 K (2 hours), heating of educt side to

T1 = 423 K (2 hours), cooling of product side to T2 = 293 K (6 hours), slow cooling

of ampoule to ambient temperature (1 hour). Dark brown crystals in the shapes of

plates were obtained at the product side.

In alternative procedures, a 1:1 molar mixture of phenazine and chloranilic acid

was dissolved in ethanol or in acetone. Crystallisation was achieved by slow evapo-

ration of the solvent. Needle-shaped crystals were obtained in this case.

4.2.2 X-ray diffraction

Single-crystal X-ray diffraction experiments have been performed at beam line F1

of Hasylab at DESY (Hamburg, Germany) with monochromatic radiation of wave-

length λ = 0.5600 Å. Single crystals of dimensions between 0.05 and 0.30 mm were

glued to glass hairs attached to copper pins and mounted on a standard goniome-

ter head placed on a Huber four-circle kappa diffractometer. Diffraction data were

collected with a MAR165CCD area detector, employing φ and ω scans. The temper-

ature of the crystal was regulated by an open-flow nitrogen-gas cryostat by Oxford

Cryosystems.

Preliminary diffraction experiments confirmed that both needle-shaped and plate-

like crystals possess the lattice parameters of Phz-H2ca.(Horiuchi, Ishii, Kumai,

Okimoto, Tachibana, Nagaosa and Tokura, 2005) A platelet crystal of dimensions

0.22 × 0.13 × 0.05 mm3 was selected for the diffraction experiment at T = 100 K.

Diffraction data were collected in multiple runs, employing various off-sets for the

setting angles of the diffractometer. The effective dynamic range of the experiment

was increased by repeating runs with exposure times of 4, 36 and 300 s.

The software Eval15(Schreurs et al., 2010) was used for data processing of the

measured diffraction images. All Bragg reflections could be indexed by a pseudo-

monoclinic, F -centered 2a× 2b× 2c supercell of the primitive monoclinic unit cell

valid at temperatures above T IC
c (twofold superstructure). Alternatively, the diffrac-

tion data can be indexed on the primitive a×b×c monoclinic unit cell together with

a commensurate modulation wavevector q, then allowing the superspace approach

to be used for structural analysis (Table 5.1).(Janssen et al., 2006; Schönleber, 2011;

van Smaalen, 2012) In this description, all Bragg reflections are indexed by four

integers (h, k, l,m) according to:

H = ha∗ + kb∗ + lc∗ +mq (4.1)
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Main reflections have indices (h, k, l, 0), while superlattice reflections are indexed

as satellite reflections with indices (h, k, l, 1). Because 2q = (1, 1, 1) is a reciprocal

lattice vector of the basic-structure lattice, only one order of satellite reflections

(m = 1) exists.

Employing either kind of indexing, integrated intensities were obtained of 61772

Bragg reflections. Absorption correction was applied to these data by Sadabs

(Sheldrick, 2008). The data were averaged in point group 1 (Table 5.1). Since

inversion twin domains possess equal volume fractions (Section 4.2.3), the absorption

correction was determined by SADABS employing equivalence relations based on

point symmetry 1̄.

4.2.3 Determination of the superstructure

The crystal structure of the FE-I phase with space group P21 is preserved as basic

structure at low temperatures. Accordingly, a successful refinement of this structure

was obtained against the main reflections, resulting in a R value of Robs
F = 0.0411.

The superstructure is described as commensurately modulated structure within

the superspace approach.(van Smaalen, 2012) The symmetry then is given by the

monoclinic superspace group P21(1/2 σ2 1/2)0, No. 4.1.6.3 with standard setting

P21(1/2 0 γ)0 and γ = σ2.(Stokes et al., 2011; van Smaalen et al., 2013) The positions

of the atoms are described as the sum of a position in the basic-structure unit cell

and a value of a single-harmonic modulation function defined by

uµi (x̄s4) = Aµ
i sin(2πx̄s4) +Bµ

i cos(2πx̄s4) (4.2)

Each atom µ in the basic-structure unit cell has modulation amplitudes Aµ
i and

Bµ
i for coordinates i = x, y, z. Similar modulation functions were applied to the

anisotropic atomic displacement parameters (ADPs) for all non-hydrogen atoms.

In the present case, all physical-space sections t of superspace lead to the same

superstructure, so that the value t = 0 was chosen for all computations. Employing

the transformation from the superspace to the supercell descriptions shows that the

twofold superstructure has triclinic symmetry P1. Here, we describe this super-

structure by an eightfold 2a × 2b × 2c pseudo-monoclinic unit cell, which then is

F centered (space group F1). Since the low-temperature phase has been obtained

through phase transitions by cooling a crystal with originally P21/n symmetry at

room temperature, one can expect the crystal to be twinned by pseudo-merohedry.

The structure refinements showed that domains related by the inversion have equal
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Table 4.1: Crystal data and structure refinements for the superspace and supercell models

Mfree.

Superspace Supercell

Temperature (K) 100 100

Chemical formula C18H10Cl2N2O4 C18H10Cl2N2O4

Formula weight 389.19 389.19

(Super-)space P21(1/2 σ2 1/2)0 F1

group No. 4.1.6.3 No. 1

q (1/2, 1/2, 1/2) –

a (Å) 12.4141(2) 24.8282(4)

b (Å) 3.7627(5) 7.5254(10)

c (Å) 16.855(2) 33.711(4)

β (deg) 107.772(7) 107.772(7)

V (Å3) 749.76(14) 5998.1(11)

Z 2 16

Dcalc (g cm−3) 1.7234 1.7234

Crystal size (mm3) 0.22× 0.125× 0.05

Crystal color dark brown

Crystal form platelet

Radiation type synchrotron

Wavelength (Å) 0.5600

Scan mode ω and φ

Theta range (deg) 1.9–29.8

µ (mm−1) 0.242

Absorption corr. Sadabs

Tmin, Tmax 0.5288, 0.7459

No. of reflections

Measured 61772

Independent 27880

Observed 25683

Main (obs, all) 13289, 13945

Satellites (obs, all) 12394, 13935

Rint 0.0478

GOF obs,GOF all 2.81, 2.71 2.30, 2.19

Robs
F , Rall

F (all) 0.0431, 0.0468 0.0431, 0.0468

Robs
F , Rall

F (main) 0.0404, 0.0434 0.0405, 0.0435

Robs
F , Rall

F (sat) 0.0604, 0.0680 0.0605, 0.0680

No. of parameters 719 2a

Extinction Type I, Isotropic

correction Gaussian distribution

∆ρmax, ∆ρmin

(e Å−3)

0.67, -0.71 0.74, -0.96

aRefinement of only the scale factor and extinction parameter.
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volume fractions. Employing this constraint on the four possible domains resulted

in a volume fraction of 0.2476 (6) for the initial twin domain.

All structure refinements were performed with Jana2006.(Petricek et al., 2014)

The atomic coordinates of the crystal structure at T = 160 K were used as starting

point for the successful refinement of the basic structure against main reflections

within space group P21. Hydrogen atoms attached to the carbon atoms were placed

at calculated positions in the plane of the phenyl ring with bond lengths of d(C–H)

= 0.96 Å and equal C–C–H bond angles. Their positions and ADPs were constrained

employing a riding model with isotropic ADPs equal to 1.2 times that of the carbon

atoms they are bonded to. Hydrogen atoms of the hydroxyl groups were initially

located in the difference Fourier map. Their positions were subsequently refined

while applying restraints d(O–H) = 0.85±0.02 Å on the bond lengths and 109.5±2.0◦

on the C–O–H bond angles.(Müller et al., 2005; Engh and Huber, 1991) The second

value indicates the steepness of each constraint. A riding model was used for the

ADPs with isotropic ADPs of hydrogen atoms set equal to 1.5 times the equivalent

isotropic ADP of the oxygen atom it is bonded to.

Employing the monoclinic superspace symmetry, modulation amplitudes accord-

ing to Eq. 4.2 were introduced for all atoms of the basic structure, and they were

given small positive values. Refinement of the modulated structure against all re-

flections, while keeping the constraints and restraints for hydrogen atoms, converged

to a good fit to the diffraction data with Robs
F (all) = 0.0434, Robs

F (main) = 0.0407

and Robs
F (sat) = 0.0612. The resulting structure model is denoted as Mres.

A second structure model, denoted as Mfree, was created by a refinement in which

the restraints on the bond lengths and bond angles of the hydrogen atoms of the

hydroxyl groups were removed. A marginally better fit to the diffraction data was

obtained than for Mres (Table 5.1). Main differences between the two models are

the positions of the hydrogen atoms.

The final superspace models were transformed into structure models on the eight-

fold 2a×2b×2c supercell with space group F1. Refinements of only the scale factor

and extinction parameter reproduced theR values of the superspace refinements (Ta-

ble 5.1). The triclinic supercell models contain four crystallographically independent

atoms for each independent atom of the basic structure, which are distinguished by

appending the letters A through D to the atomic names.

In a second approach, structure solution was tried within a conventional ap-

proach, directly employing the F centered eightfold supercell. Application of Su-

perflip(Palatinus, 2004) allowed all non-hydrogen atoms to be located. Structure
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refinements followed by the introduction of hydrogen atoms (riding model) finally

resulted in a fit to the diffraction data with Robs
F (all) = 0.0456, Robs

F (main) = 0.0420

and Robs
F (sat) = 0.093. The significantly higher partial R value for the superlattice

reflections testifies that the solution for the superstructure is less good in this case

than in case of the superspace approach (compare Table 5.1).

4.3 Results and discussion

Single crystals of Phz-H2ca grown by sublimation possess a much less anisotropic

shape than single crystals grown from solution. The former are thus more suitable

for X-ray diffraction experiments, and one specimen has been used for the present

diffraction experiment of the FE-II phase at a temperature of 100 K.

The superstructure has been successfully solved within the superspace approach.

Apart from small displacements of all atoms, major effect of the formation of the

superstructure is the repositioning of hydrogen atoms of the hydroxyl groups as

compared to their positions within the FE-I phase at 160 K.(Horiuchi, Ishii, Kumai,

Okimoto, Tachibana, Nagaosa and Tokura, 2005; Gotoh et al., 2007) The refinement

with strong restraints on the O–H bond lengths (model Mres) already suggests that

two out of eight hydrogen atoms are not bonded to oxygen any more (Table 4.2). Free

refinement of the positions of all eight hydrogen atoms of the four H2ca molecules

(model Mfree) then gives proof that these two hydrogen atoms are transferred from

oxygen to nitrogen; the observed N–H distances are close to the value of 1.03 Å

expected for N–H bonds in organic salts.(Allen et al., 1987) The O–H· · ·N hydrogen

bond is replaced by an O· · ·H–N hydrogen bond.

Both the PE and FE-I phases contain a single crystallographically independent

molecule of Phz and of H2ca [Fig. 4.1(a)]. H2ca is centrosymmetric within the PE

phase, such that any supposed polarization through proton transfer within the O1–

H· · ·N1 hydrogen bond would be matched by a polarization of opposite sign within

the O2–H· · ·N2 hydrogen bond. The FE-I phase is defined by O1 and O2 being

crystallographically independent atoms, thus allowing for partial proton transfer of

solely the O1–H· · ·N1 hydrogen bond [Fig. 4.1(b)].(Horiuchi, Ishii, Kumai, Okimoto,

Tachibana, Nagaosa and Tokura, 2005; Gotoh et al., 2007; Kumai et al., 2007) The

FE-II phase is characterized by loss of the twofold screw axis as well as by the

formation of a twofold superstructure, resulting in a total of four crystallographically

independent molecules of both species. They separate into four hydrogen-bonded
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mixed chains that run along [1, ±1, 1] (Fig. 5.5), and that we denote by A, B, C

and D chains, while the appropriate letter is appended to the symbols of the atoms

(compare Table 4.2).

As is apparent from the experimental O–H and N–H distances, one of the two

hydrogen bonds of each of the four H2ca molecules remains an O–H· · ·N hydrogen

bond (O2 and N2 atoms; see Table 4.2), whereas half of the molecules is involved in

proton transfer, then resulting in an O· · ·H–N type of hydrogen bond for O1 and N1

atoms. Proton transfer thus is found on chains B and D, while molecules in chains

A and C remain neutral. The present results provide strong experimental evidence

in favor of the theoretical model proposed by by Kumai et al.(Kumai et al., 2012)

and it is at variance with the model proposed by Lee et al.(Lee et al., 2012) as well

as earlier models for the mechanism of ferroelectricity in this compound.

Table 4.2: Intermolecular hydrogen bonds (Å, deg) for both structure models Mfree and

Mres.

Hydrogen bond d(O–H) d(H–N) d(O· · ·N) angle

O1A–H1o1A· · ·N1A i Mfree 0.943(15) 1.879(15) 2.6976(14) 143.8(11)

Mres 0.909(13) 1.921(13) 2.6997(14) 142.5(10)

O1B· · ·H1o1B–N1B i Mfree 1.609(15) 1.027(15) 2.5736(14) 154.4(11)

Mres 1.247(13) 1.397(13) 2.5747(14) 153.8(9)

O1C–H1o1C· · ·N1C ii Mfree 1.066(14) 1.700(14) 2.6726(14) 149.3(10)

Mres 0.956(13) 1.830(12) 2.6735(14) 145.5(9)

O1D· · ·H1o1D–N1D ii Mfree 1.467(14) 1.205(14) 2.5974(42) 152.6(10)

Mres 1.190(13) 1.487(12) 2.5999(14) 152.1(9)

O2A–H1o2A· · ·N2A iii Mfree 0.863(15) 1.908(14) 2.7086(15) 153.7(11)

Mres 0.806(13) 1.989(12) 2.7104(15) 148.8(9)

O2B–H1o2B· · ·N2B iii Mfree 0.796(15) 2.121(14) 2.8251(15) 147.5(12)

Mres 0.794(13) 2.149(12) 2.8259(16) 143.3(10)

O2C–H1o2C· · ·N2C iii Mfree 0.840(14) 1.944(14) 2.7264(15) 154.5(11)

Mres 0.809(13) 2.002(12) 2.7271(15) 148.9(9)

O2D–H1o2D· · ·N2D iii Mfree 0.815(43) 2.084(14) 2.8062(15) 147.60(12)

Mres 0.788(13) 2.135(12) 2.8081(15) 143.4(10)

Symmetry codes: ix− 1, y, z; iix+ 1, y, z; iiix, y + 1, z.

A simple point charge model with a negative charge of one electron on oxygen

O1 and a positive charge on the matching N1 atom leads to a dipole moment of this

hydrogen bond that is approximately directed along [±1, 2 0] (Table 4.3). Since only
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Figure 4.3: Projections of the crystal structure of the FE-II phase. (a) a, c Plane of the

F -centered triclinic supercell with a projection of the type B and type D chains. (b) a, b

Plane with type A and type B chains centered on z ≈ 0.125. (c) a, b Plane with type C

and type D chains centered on z ≈ 0.375. Cl atoms, H atoms of Phz, and double-bonded

O atoms have been omitted from (b) and (c) for clarity.
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chains B and D contain the ionic O1· · ·H–N1 hydrogen bond, the polarisation of the

material is the sum of their contributions. The direction of the resulting polarisation

vector is close to b, reminiscent of the monoclinic symmetry at higher temperatures.

Consideration of dipole moments of the A and C chains shows that the direction of

a polarisation that would be the sum of A, B, C and D is exactly along b (Table

4.3). This feature is the result of the superspace approach to the crystal structure,

by which atomic displacements are described by a single normal mode of the high

temperature space group P21.(Perez-Mato et al., 2010; van Smaalen, 2012)

Within the model of Kumai et al.(Kumai et al., 2012) only B and D chains

contribute to the polarisation. Accordingly, we find a magnitude of 2.54 µC/cm2

from the point charge model and the experimental crystal structure. This value

is in good agreement with the experimental value.(Horiuchi, Kumai and Tokura,

2005) It is also close to the value of 2.25 µC/cm2 as obtained from full electronic

structure calculations.(Lee et al., 2012) (Lee et al.(Lee et al., 2012) obtained 4.5

µC/cm2 assuming proton transfer on all molecules.)

However, it is interesting to note that the two molecules without clear proton

transfer do show elongated O–H bonds (O1A-H and O1C-H in Table 4.2) similar

to the elongated O1–H bond in the FE-I phase.(Horiuchi, Ishii, Kumai, Okimoto,

Tachibana, Nagaosa and Tokura, 2005; Gotoh et al., 2007; Kumai et al., 2007) The

latter is supposedly responsible for the polarisation above T IC
c . Contributions to the

polarisation of these molecules should be considered in any theoretical approaches.

Table 4.3: Dipole moments of intermolecular hydrogen bonds O1–H· · ·N. Vectors p are

given by their approximate lattice directions, and with respect to a Cartesian coordinate

system with x̂c ‖ a, ŷc ‖ b, and ẑc⊥ a,b. Values are normalised to give the contribution

to the polarisation in µC/cm2. Data are for the structure model Mfree. B + D: sum of

contributions of molecules B and D; A + C: sum of contributions of molecules A and C.

Hydrogen bond lattice direction (px, py, pz) magnitude

O1A–H1o1A· · ·N1A i [1, 2, 0] (2.413, 1.341, −0.829) 2.882

O1B· · ·H1o1B–N1B i [1, 2, 0] (2.352, 1.261, −0.664) 2.750

O1C–H1o1C· · ·N1C ii [−1, 2, 0] (−2.403, 1.322, 0.795) 2.856

O1D· · ·H1o1D–N1D ii [−1, 2, 0] (−2.361, 1.280, 0.698) 2.775

B + D (−0.010, 2.541, 0.034) 2.542

A + C (0.010, 2.664, −0.034) 2.664

Symmetry codes: ix− 1, y, z; iix+ 1, y, z.
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4.4 Conclusions

Crystals of Phz-H2ca have been grown by sublimation as well as by slow evaporation

of a solvent. A needle-shaped morphology has been obtained by crystallisation from

solution, while platelike crystals were obtained by sublimation.

The precise crystal structure is presented for the second ferroelectric phase FE-

II at a temperature of 100 K. The structural distortion with respect to the FE-I

phase is successfully described by a single normal mode, which thus is found to be

responsible for the low-temperature phase transitions.

The mechanism of ferroelectricity is proton transfer within one of the two hy-

drogen bonds of each molecule, but for only half of the molecules. A simple point

charge model with one negative charge on O1 and a positive charge on N1 quantita-

tively reproduces the polarisation of the material. The resulting pattern of ionized

hydrogen bonds O· · ·H–N is in agreement with the theoretical model proposed by

Kumai et al.,(Kumai et al., 2012) and it is at variance with other theories.(Horiuchi

et al., 2009; Amano et al., 2009; Lee et al., 2012) However, the O1–H· · ·N1 hydrogen

bonds of the second half of the molecules do show elongated O1–H bonds. It is thus

proposed that contributions of these molecules to the polarisation of the material

should be considered in future studies.
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Chapter 5

Disordered BF4
− Anions in the

Incommensurate Crystal of

Morpholinium Tetrafluoroborate1

5.1 Introduction

Among non-covalent interactions between molecules, hydrogen bonding has been

recognized as an important and powerful interaction towards building supramolecu-

lar assemblies (Biedermann and Schneider, 2016). Hydrogen-bonded supramolecular

assemblies can be found in a wide range of key systems ranging from the building

blocks of life, DNA, to technological devices, e.g. non-linear optical devices and

ferroelectrics (Sun et al., 2014; Horiuchi and Tokura, 2008). Ferroelectric and non-

linear optical properties have been reported for hydrogen-bonded organic–inorganic

hybrid complexes with stoichiometry ABX4, where BX4
− is a tetrahedral anion, like

perchlorate or tetrafluoroborate, and A+ is a heteroatomic aromatic or cycloalkane

cation, like pyridinium (Czarenki et al., 1994a;b) or imidazolium (Pajak et al., 2004;

Czapla et al., 2005). Different mechanisms of the ferroelectric phase transitions for

these type of compounds have been reported. For the compounds mentioned above,

the ferroelectric phase transition is related to the partial ordering of both the dipolar

cationic moieties and the distorted tetrahedral anions at lower temperatures in com-

parison to higher temperatures or intermolecular hydrogen bond between cation and

anion. In the case of the cation 1,4-diazabicyclo[2.2.2]octane the mechanism of the

phase transition is connected to proton transfer within the intermolecular hydrogen

1This chapter is in preparation for publication by Leila Noohinejad, Vaclav Petricek, Andreas

Schönleber, and Sander van Smaalen.
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bond (Katrusiak and Szafranski, 1999).

Recently, the salt of morpholinium and tetrafluoroboric acid has been studied

(Owczarek et al., 2008). At room temperature (phase I), the crystal contains hydro-

gen bonded chains of [C4H10NO]+[BF4]
− in the orthorhombic unit cell with space

group Pnam. The crystal structure of phase I has been reported by Szklarz et al.

(2009) at several temperatures: 160, 180, 240 and 290 K. An incommensurate phase

(phase II) forms below Tc,I = 153 K, which becomes a threefold superstructure be-

low Tc,II = 117-118 K (phase III) (Szklarz et al., 2009; Owczarek et al., 2008). The

phase transition from I to II has been classified as second order and continuous. The

reduction of symmetry towards P212121 on a threefold supercell (phase III) is the

result of fully ordered anions at lower temperatures (Owczarek et al., 2008). The

incommensurate to commensurate phase transition is classified as first order and it

exhibits discontinuous character but it is non ferroelectric (Owczarek et al., 2011).

For understanding the mechanism of phase transition, analysis of the structural

changes in different phases is necessary. Here, we report the disordered incommen-

surate structure in phase II of [C4H10NO]+[BF4]
−. The incommensurately modu-

lated structure is described within the superspace approach (van Smaalen, 2012) by

the centrosymmetric superspace group Pnam(σ1 0 0)00s (No. 62.1.9.6 with stan-

dard setting Pmcn(0 0 σ3)s00 (Stokes et al., 2011)). The modulation is found to

involve a variation of occupancies of the four orientations of [BF4]
−, correlated with

displacements of the morpholinium cations. We also report the crystal structure in

phase I at T = 160 K that is successfully refined by using the pseudo-rigid body

approach for [BF4]
−. The pseudo-rigid-body approach eases the refinement of the

orientational fourfold disordered anion by reducing the number of parameters.

5.2 Experimental

5.2.1 Crystal growth and X-ray diffraction

16 mL of an aqueous solution of ammonium tetrafluoroborate (2.5 g, 23.8 mmol)

was added to 8 mL of an aqueous solution of morpholinium (2.1g, 24.1 mmol).

The solution was stirred and the volume was reduced by slow evaporation until the

yellowish crystals were formed. The co-crystal was recrystallized from methanol by

slow evaporation. The resulting colorless crystals were collected by filtration and

dried in a vacuum desiccator over P2O5.

Single-crystal X-ray diffraction has been measured at T= 160 K (phase I), T
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Figure 5.1: Reconstruction of h4l layers of reciprocal space of morpholinium tetrafluo-

roborate in its (a) normal phase (phase I), (b) incommensurate phase (phase II) and (c)

commensurate phase (phase III). Notice satellite reflection with q = (0.4126, 0, 0) in phase

II and with qcomm = (0, 0, 1

3
) in phase III.

= 130 K (phase II), and T= 110 K (phase III) on a MAR345 diffractometer with

Mo-Kα radiation. Diffraction data were collected in multiple runs, with zero off-

set of the area detector for data at 160 K, and with zero and 30 degree off-sets

for data at 130 K and 110 K. The temperature of the crystal was regulated by an

open-flow nitrogen cryostat. In the incommensurate and commensurate phases three

different exposure times of 4, 25, and 200 seconds were used in five different runs

with the same measurement strategy, in order to obtain a complete dataset including

strong and weak reflections. The diffraction pattern of phase I reflects a rectangular

reciprocal lattice of main reflections [Fig. 5.1(a)]. Additional Bragg peaks appeared

at lower temperatures, indicating the formation of modulated phases. At T= 130 K,

the diffraction pattern represents main reflections and first-order satellite reflections

that can be indexed with the incommensurate modulation wave vector q = (σ1, 0,

0), σ1 = 0.4126 [Fig. 5.1(b)]. At T=110 K, the diffraction pattern can be indexed

by main reflections together with first-order satellite reflections of commensurate

modulation with qcomm = (0, 0, σ3) and the rational component σ3=
1

3
[Fig. 5.1(c)].

Indexing of the 130 K data by the software Eval15 (Schreurs et al., 2010) re-

sulted in a primitive orthorhombic unit cell together with the modulation wave

vector. Integrated intensities of Bragg reflections were obtained with Eval15.

They were scaled and absorption correction was applied by the software Sadabs

(Sheldrick, 2008). The diffraction symmetry appeared to be mmm, and the data

were averaged in this point group. Main reflections are surrounded by strong first-

order satellite reflections, which is noticeable in the values of Rσ (the value of the
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average standard uncertainty over intensity). Nearly equal values have been found

for satellite reflections (Rσ(sat) = 0.0191) and main reflections (Rσ(main) = 0.0170).

In a second attempt second-order satellite reflections were included into the inte-

gration procedure with Eval15. Only a few weak second-order satellite reflections

were found (Rσ(sat) = 0.1537). Incorporation into the refinement did not improve

the structure model. Therefore, the structural analysis is based on the reflections

up to first-order satellite reflections: reflections (h, k, l,m) with m = 0, ±1 (Fig.

5.1). Crystal data are summarized in Table 5.1.

5.2.2 Structure solution and rigid body refinement

The diffraction pattern indicates a primitive orthorhombic lattice [Fig. 5.1(b)]. The

centrosymmetric orthorhombic crystal structure (Pnam) at high temperatures is

preserved as basic structure in the incommensurate phase. Reflection conditions

on the observed data are in agreement with the orthorhombic superspace group

Pnam(σ1 0 0)00s. (No. 62.1.9.6 with standard setting Pmcn(0 0 σ3)s00 (Stokes

et al., 2011; van Smaalen et al., 2013)).

The atomic coordinates of the crystal structure at T = 160 K (Szklarz et al.,

2009) were used as starting point for the successful refinement of the basic structure

against main reflections within space group Pnam. All refinements have been per-

formed with the software Jana2006 (Petricek et al., 2014). Anisotropic atomic dis-

placement parameters (ADPs) have been refined for the atoms of the morpholinum

molecular cation. Hydrogen atoms were placed at calculated positions with bond

lengths of d(C–H)=0.96 Å, and d(N–H)=0.92 Å. They were refined using a riding

model with isotropic ADPs equal to 1.2 times or 1.5 times the equivalent anisotropic

ADPs of the carbon or nitrogen atoms to which they are bonded to, respectively.

For refinement of the fourfold orientationally disordered tetrafluoroborate anion a

pseudo-rigid body approach is applied by using Jana2006. The tetrafluoroborate

anion is described as one molecule. Although the ideal geometry for the tetraflu-

oroborate anion seems to be tetrahedral, a search in CCDC database (using Con-

Quest2015) as well as several recently published crystal structures of molecular com-

pounds containing [BF4]
− show that bond lengths and angles deviate significantly

from tetrahedral symmetry (Price et al., 2014; Mercadal et al., 2014; Schick et al.,

2014; Buist et al., 2014). Therefore, the point group 1 is used as local symmetry of

the anion (see Tables 5.2 and 5.3).

Boron has been placed at the origin of the local coordinate system of the pseudo-
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Table 5.1: Crystal data and refinement details

Temperature (K) 130

Chemical formula C4NOH10 BF4

Formula weight 174.93

Superspace group Pnam(σ1 0 0)00s

q (0.4216(5),0,0)

a (Å) 8.0948(13)

b (Å) 9.4092(15)

c (Å) 9.5492 (14)

V (Å3) 727.3(14)

Z 4

Dcalc (g cm
−3) 1.5975

Crystal size (mm3) 0.22× 0.29× 0.15

Crystal color Colorless

Radiation type Mo-Kα

Wavelength (Å) 0.7107

Scan mode φ

Theta range (deg) 1.92 to 33.33

Range of h 0 to 10

Range of k 0 to 18

Range of l 0 to 18

Range of m -1 to 1

µ (mm−1) 0.174

Absorption corr. Sadabs

Tmin, Tmax 0.4553 ,0.7486

No. of reflections

Measured 47623

Independent 6389

Main reflections (obs, all) 1070, 2231

Satellites, 1st order (obs, all) 1732, 4158

Rint(obs, all) averaged in mmm 3.16, 6.59

Criterion for observed reflection I > 3σ(I)

Refinement, Software on F , Jana2006

GOF obs,GOF all 4.44, 3.04

Robs
F , Rall

F (all),wR(all) 0.0642, 0.1711, 0.0818

Robs
F , Rall

F (main), wR(all) 0.0519, 0.1378, 0.0817

Robs
F , Rall

F (sat), wR(all) 0.0848, 0.2204, 0.0820

No. of parameters 185

∆ρmax, ∆ρmin (e Å−3) 0.71, -0.57
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Table 5.2: Selected bond lengths (Å) with average values, maximum values and minimum

values as a function of phase of modulation, t for the morpholinium molecule. The bond

lengths of [BF4]
− are independent of phase of modulation. Standard uncertainties are

given in parentheses.

Bond Average Min. Max.

O1-C1 1.4323(13) 1.4162(13) 1.4468(13)

N1-C2 1.4942(12) 1.4784(13) 1.5086(13)

B1a-F1a 1.383(16) 1.383 1.383

B1a-F2a 1.376(17) 1.376 1.376

B1a-F3a 1.381(18) 1.381 1.381

B1a-F4a 1.377(15) 1.376 1.377

B1b-F1b 1.38(3) 1.38 1.38

B1b-F2b 1.378(14) 1.378 1.378

B1b-F3b 1.38(2) 1.38 1.38

B1b-F4b 1.38(2) 1.38 1.39

Table 5.3: Selected bond angles (deg) of the [BF4]
− molecules.

Atoms Angle

F1a-B1a-F2a 110.6(11)

F1a-B1a-F3a 108.8(10)

F1a-B1a-F4a 109.1(11)

F2a-B1a-F3a 110.1(11)

F2a-B1a-F4a 110.2(10)

F3a-B1a-F4a 108.1(11)

F1b-B1b-F2b 110.5(12)

F1b-B1b-F3b 108.6(16)

F1b-B1b-F4b 109(2)

F2b-B1b-F3b 110.3(13)

F2b-B1b-F4b 110.2(17)

F3b-B1b-F4b 108.0(15)
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Figure 5.2: (a) Molecular structure of the fourfold disordered [BF4]
− ion, with the atom

labels as employed in the present work. (a) Superposition of the four orientations of

[BF4]
−. (b) Orientation Ma together with Ma′ obtained from Ma by the mirror operator.

(c) Orientation Mb together with Mb′.

rigid body, and it has been used to define the central point of the molecule. Disorder

is described by defining and refining four positions/orientations of this molecule.

The orientation of the first molecule (Ma) is defined by three rotations (angles

φ, χ and ψ) about axes through the origin of the local coordinate system. The

position of the rotated molecule Ma then is defined by a translation (again three

parameters). Values of these six parameters have been initially chosen such that

the atoms of Ma coincide with the atoms in the atomic model. The orientation

and position of the second pseudo-rigid body (Mb) is obtained in a similar way

(Tables C.1 and C.2 in the appendix). Two more positions/orientations are obtained

because of the mirror symmetry of the space group, resulting in molecules Ma′ (with

the same occupancy as Ma) and Mb′ (with the same occupancy as Mb). All four

positions/orientations occupy the same region within the unit cell and therefore

describe fourfold orientational disorder (Fig. 5.2). In order to preserve stoichiometry,

the sum of occupancies of Ma and Mb has been constrained to 0.5 in all refinements.

The best fit to the diffraction data is obtained for a refinement of the average

structure against main reflections, employing the TLS model for the ADPs of [BF4]
−,

resulting in Robs
F (main) = 0.0539 and wRall

F (main) = 0.0838. The refined occupan-

cies of the different orientations of [BF4]
− are Occ(Ma) = Occ(Ma′) = 0.180 (14)

and Occ(Mb) = Occ(Mb′) = 0.320. The average structure is nearly equal to the

structural model at 160 K (see Table C.7 in Appendix C.2).

Charge flipping in superspace has been applied for solution of the incommen-

surately modulated structure (Palatinus, 2013; Palatinus and Chapuis, 2007). For

the resulting superspace electron density Superflip suggested the centrosymmet-
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Figure 5.3: Occupancies of the four orientations of disordered [BF4]
− as a function of the

phase of modulation t. Occupancies in the final structure model are shown for Ma and

Mb. Dashed curves represent occupancies of Ma′ and Mb′, which are related to Ma and

Mb by the superspace mirror operator.

ric superspace group Pnam(σ1 0 0)00s, in agreement with subsequent refinements of

the modulated structure. The amplitudes of first-order harmonics of the displacive

modulation functions of the C, N and O atoms were extracted from the electron

density, and used as starting point for the refinement. The displacive modulation

of hydrogen atoms was refined according to the riding model. Refinement of this

modulated structure model against main and first-order satellite reflections resulted

in Robs
F (main) = 0.0817, Robs

F (sat) = 0.5505 and wRall
F (all) = 0.4843.

In the second step modulations were introduced for the occupancies of Ma and

Mb. With small initial values for the modulation parameters, the refinement con-

verged to Robs
F (main) = 0.0616, Robs

F (sat) = 0.1239 and wRall
F (all) = 0.1180. The

much better fit to the diffraction data demonstrates the importance of varying occu-

pancies for the modulation. The average occupancies changed dramatically, resulting

in Occ(Ma) = 0.279 (5) and Occ(Mb) = 0.221 (Figs. 5.2 and 5.3, and Table 5.4).

Thirdly, first-order harmonic modulation amplitudes were introduced for the

displacements and rotations of the molecular orientations. Independent parameters

are used for Ma and Mb, while those of Ma′ and Mb′ follow by symmetry. The fit

to the diffraction data is improved at Robs
F (main) = 0.0528, Robs

F (sat) = 0.0882 and

wRall
F (all) = 0.0857. The resulting orientations are illustrated for four t values in

Fig. 5.4. (see Tables C.1 and C.2 in Appendix C.1).
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Table 5.4: Modulation parameters for the occupations of the two unique orientations

of [BF4]
−. P 0(µ) is the average occupancy, P s(µ) the sine component and P c(µ) the

cosine component of the modulation function of orientation µ given by pµ(x̄s4) = P 0(µ)+

P s(µ) sin(2πx̄s4) + P c(µ) cos(2πx̄s4).

Molecule P0(µ) Ps(µ) Pc(µ)

Ma 0.185(8) -0.120(6) 0.150(9)

Mb 0.315(8) -0.140(8) 0.139(9)

t = 0.085 t = 0.315 t = 0.565 t = 0.815
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Figure 5.4: Hydrogen bonding between the morpholinium cation and the disordered anion

[BF4]
−. Hydrogen-bonded contacts in the modulated structure are shown at four values

of t. Conformations of cationic molecule and orientations of [BF4]
− vary as a function of

phase of modulation t.
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(a) (b)c

b

Figure 5.5: Crystal packing of morpholinium tetrafluoroborate (average structure). (a)

Projection of one unit cell. (b) Projection of one pair of molecules (0 < x < 1/2). Blue=

nitrogen, red= oxygen, gray= carbon, black= hydrogen, green indicates partially occupied

atom sites of disordered [BF4]
−.

Finally, a modulation was introduced for the TLS parameters. Due to large

correlations in the refinements, the S tensors of TLS parameters set to zero. Again,

a significant improvement of the fit to the data has been obtained, with Robs
F (main)

= 0.0519, Robs
F (sat) = 0.0848 and wRall

F (all) = 0.0818.

5.3 Discussion

Molecular packing in crystalline morpholinium tetrafluoroborate is similar within

the whole range of temperatures 80–300 K. Compared to the Pnam structure at

ambient conditions (Phase I; Szklarz et al. (2009)), the incommensurate (phase

II; present work) and low-temperature (phase III; Owczarek et al. (2008)) phases

incorporate small molecular and lattice distortions accompanying partial order of

the orientations of [BF4]
− in phase II and complete order of [BF4]

− in phase III.

In agreement with the crystal structure of phase I (Szklarz et al., 2009), the

average or basic structure of phase II can be described as a stacking along c of

hydrogen-bonded molecular layers centered on mirror planes of Pnam (Fig. 5.5).

The two layers per unit cell are equivalent to each other through the n–glide. Mor-

pholinium cations are interconnected by N–H· · ·O hydrogen bonds to form molecular

zigzag chains along a (Fig. 5.6). Cavities between the chains accommodate the

fluoroborate anions. At higher temperatures, the cavities are larger than fluorob-
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Figure 5.6: Crystal structure of phase II in the commensurate approximation as a seven-

fold superstructure along a. One molecular layer (0 < z < 1/2) is shown in projection

along c. Dashed lines indicate H1d· · ·O and H1c· · ·F hydrogen bonds. Multiple orienta-

tions are shown for the [BF4]
− anions (atoms in green). Black [BF4]

− anions mark sites

where only three out of four orientations are present. Doubly pointed arrows connect

molecules for which interatomic distances are given in Table 5.5 and Fig. 5.9.
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Table 5.5: Interatomic distances (Å) between molecules connected by doubly pointed

arrows in Fig. 5.6. Average, minimum (min) and maximum (max) values (Å) are given for

the t dependence of interatomic distances. Standard uncertainties are given in parentheses.

Atom pair Direction Average Min Max Max-Min

C1–C1 a 8.112(6) 7.930(6) 8.260(6) 0.312

C2–C2 a 8.112(6) 7.912(6) 8.280(6) 0.368

O1–O1 a 8.101(6) 8.095(6) 8.107(6) 0.01

N1–N1 a 8.097(6) 8.095(6) 8.099(6) 0.004

C1–C1 b 9.4092(14) 9.4092(14) 9.4092(14) 0.0

C2–C2 b 9.4092(13) 9.4092(13) 9.4092(13) 0.0

O1–O1 b 9.4092(10) 9.4092(10) 9.4092(10) 0.0

N1–N1 b 9.4092(10) 9.4092(10) 9.4092(10) 0.0

C1–C1 c 9.5492(15) 9.5492(15) 9.5492(15) 0.0

C2–C2 c 9.5492(13) 9.5492(13) 9.5492(13) 0.0

O1–O1 c 9.5492(13) 9.5492(13) 9.5492(13) 0.0

N1–N1 c 9.5492(11) 9.5492(11) 9.5492(11) 0.0

orate, thus explaining the orientational disorder of the ions (Szklarz et al., 2009).

The diminished importance of entropy together with thermal expansion reducing

the average size of the cavities on cooling explain the development of orientational

order at lower temperatures.

The incommensurate modulation affects the positions and conformations of the

morpholinium ions, while keeping a nearly rigid pattern of N–H· · ·O hydrogen bonds

(Fig. 5.7). Displacements of all atoms along z reflect displacements of the molecular

anion along c (Fig. 5.8). Displacements parallel to the planes are restricted to the

carbon atoms [Fig. 5.8(a,b)]. They are responsible for conformational variations of

the morpholinium anions. The length of the cavities along the chain direction is

almost independent of t (Fig. 5.9) However, the modulation of the carbon atoms

parallel to the planes do affect the shapes of the cavities, while the modulation of

nitrogen (with attached hydrogen) will strongly affect the single, N–H· · ·F hydrogen

bond between morpholinium and each individual orientation of fluoroborate.

The second part of the incommensurate modulation is a variation of the oc-

cupancies of the four different orientation of [BF4]
−. Depending on the phase of

the modulation, the occupancies of single orientations varies between 0 and 0.5,

indicating a high degree of remaining disorder. Comparing t-plots shows that maxi-
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Figure 5.7: Distance (Å) as a function of t for H· · ·A in N–H· · ·O and N–H· · ·F hydrogen

bonds. Compare to Table 5.6. Solid curves (F1a and F4b) and dashed curves (F1a′ and

F4b′) are related by the mirror plane x, y, −z + 1/2, t+ 1/2.

Table 5.6: Geometry of intermolecular hydrogen bonds (Å, deg).

D–H· · ·A D–H H· · ·A D· · ·A ∠D–H· · ·A

N1–H1c· · ·F1a 0.92 (max) 2.07(9) 2.823(13) 137.66

0.92 (min) 1.98(9) 2.791(13) 147.40

N1–H1c· · ·F1a
′

0.92 (max) 2.07 2.823(13) 137.66

0.92 (min) 1.95 2.790(13) 145.35

N1–H1c· · ·F4b 0.92 (max) 1.95 2.74(2) 142.06

0.92 (min) 1.90 2.66(2) 139.68

N1–H1c· · ·F4b
′

0.92 (max) 1.95 2.73(2) 141.09

0.92 (min) 1.90 2.66(2) 138.93

N1–H1d· · ·O1ii 0.92 (max) 1.96 2.8516(12) 164.30

0.92 (min) 1.96 2.8531(12) 164.10

Symmetry code: ii x, y+1, z
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Figure 5.8: Displacement modulations (Å) of atoms of morpholinium and of the pseudo-

rigid bodies Ma and Mb describing different orientations of [BF4]
−.
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mum occupancy of orientations Ma and Mb coincides with H· · ·F hydrogen–acceptor

lengths close to the average H· · ·F length of ∼1.95 Å, i.e. the shortest hydrogen

bond has its maximum value and the longest hydrogen bond has its minimum value

at t ≈ 0.8. Minimum occupancy correlates with environments corresponding to too

short or too long hydrogen bonds (Figs. 5.3 and 5.7).

The observed contributions of all atoms to the modulation lead to a mechanism

for the phase transition, whereby at low temperatures morpholinium ions are shaped

around the fluoroborate ion, such as to optimize the interactions with one orientation

of this ion. Packing forces between morpholinium ions prevent one optimal shape of

cavities to be achieved, then leading to an incommensurately modulated structure

of the crystal.

This mechanism is more complicated than a simple order-disorder phase tran-

sition proposed by Owczarek et al. (2011). They have measured the transition

entropies of both phase transitions as ∆SI−II
exp = 7.13 J/mol·K and ∆SII−III

exp = 4

J/mol·K. It was noticed by Owczarek et al. (2011) that the sum of these two entropies

is nearly equal to the difference in configurational entropy of Sconf = R ln[4] = 11.52

J/mol·K for a fourfold disordered anion and the fully ordered state with Sconf =

R ln[1] = 0. Accordingly, it was suggested that the largest part of the orientational

disorder would disappear at the transition from phase I to phase II.

We have computed the configurational entropy for phase II from its structure

model. At each value of t the configurational entropy is obtained by the standard

expression, employing the four different occupancies of [BF4]
− according to Fig. 5.3.

The configurational entropy of the incommensurate phase then is defined as the av-

erage of this value over t. For the modulated occupancies at T = 130 K displayed in

Fig. 5.3 a configurational entropy of Sinc
conf = R ln[3.23] = 9.75 J/mol·K is obtained.

The normal-to-incommensurate phase transition thus corresponds to ∆SI−II
conf = 1.7

J/mol·K, much lower than the experimental value reported by Owczarek et al.

(2011). The small value of the change in configurational entropy indicates that

most of the disorder remains in the incommensurate phase II. The change on con-

figurational entropy (loss of disorder) cannot explain the much larger experimental

transition entropy. This supports the interpretation that the phase transition is not

a simple order-disorder transition, but that conformational changes of morpholinium

play at least an equally important role.
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5.4 Conclusions

A superspace structure model has been obtained for the incommensurately modu-

lated crystal structure of morpholinium tetrafluoroborate crystal (phase II at T =

130 K). The superspace group indicates that inversion symmetry is preserved in

phase II. Furthermore, the superspace group is in agreement with the second-order

character of the phase transition I–II (Owczarek et al., 2011). Switching the mod-

ulation wave vector from incommensurate along a∗ towards 1/3 along c∗ imposes

first-order character onto the transition II–III, in agreement with the measurements

by Owczarek et al. (2011).

The incommensurate modulation involves both displacive modulations of mor-

pholinium and occupational modulation of fluoroborate ions. The mechanism of the

incommensurate phase transition involves a tendency of morpholinium ions to adapt

their conformations such as to optimize the interactions with one orientation of the

tetrafluoroborate ion. A tendency that is counteracted by packing forces between

morpholinium ions preventing one optimal shape of cavities to be achieved, then

leading to an incommensurately modulated structure of the crystal. Accordingly

it could be shown that experimental transition entropies (Owczarek et al., 2011)

cannot be explained by changes in the configurational entropy derived from partial

order of tetrafluoroborate ions.
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Chapter 6

Summary

This thesis reports on phase transitions of hydrogen-bonded supramolecular crystals.

Two compounds have been selected, namely phenazine–chloranilic acid C18H10Cl2N2O4

(Phz-H2ca) and morpholinium tetrafluoroborate C4NOH10BF4 (MoB). Temperature-

dependent x-ray diffraction has been used, in order to uncover the atomic mechanism

of ferroelectricity in Phz-H2ca, and to understand incommensurability in molecular

crystals for both compounds. Single crystals of both compounds have been grown

according to procedures published in the literature. X-ray diffraction experiments

were done with synchrotron radiation on Phz-H2ca, employing a four-circle kappa

diffractometer and CCD area detector. X-ray diffraction on MoB was measured on

a two-circle diffractometer with an image-plate area detector in the laboratory in

Bayreuth, employing Mo-Kα radiation.

According to the literature, Phz-H2ca is paraelectric (PE phase) at room temper-

ature. Upon cooling, this material undergoes three phase transitions: paraelectric

(PE) to ferroelectric (FE-I phase) at T I
c = 253 K, FE-I to incommensurately modu-

lated (FE-IC phase) at T IC
c = 147 K, and finally a lock-in transition to a ferroelectric

twofold superstructure (FE-II phase) at T II
c = 137 K. The present study sought to

find the mechanism of ferroelectricity and the origin of the incommensurability in

Phz-H2ca. Diffraction data were collected at T = 139 K (FE-IC) and at 100 K (FE-

II). It was established that the non-centrosymmetric space group P21 of the FE-I

phase is preserved as symmetry of the average structures at lower temperatures.

The crystal structures of both the FE-IC and FE-II phases were successfully solved

and refined within the superspace approach. The superspace group is P21(
1

2
σ2

1

2
)0,

whith σ2 = 0.5139 in the FE-IC and σ2 = 1

2
in the FE-II phases. Accurate crystal

structures are reported for the FE-IC phase. One major result of the present work
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is the determination of the exact locations of hydrogen atoms within the intermolec-

ular O–H· · ·N hydrogen bonds. On the basis of the crystal structures, the following

mechanism for the phase transitions is proposed. The phase transitions are related

to proton transfer within the intermolecular O–H· · ·N hydrogen bonds. In the PE

phase all hydrogen bonds are equivalent by symmetry. In the FE-IC phase, the

modulation corresponds to an incommensurate variation between strong and very

weak proton transfer. In the FE-II phase, full proton transfer is found in part of the

hydrogen bonds O–H· · ·N, resulting in an alternation of neutral hydrogen-bonded

chains and ionic hydrogen-bonded chains.

Morpholinium tetrafluoroborate (MoB) belongs to a series of hydrogen bonded

ionic organometallic compounds with stoichiometry of ABX4 and orthorhombic sym-

metry Pnam. According to the literature, MoB undergoes two phase transition upon

cooling. At Tc1 = 153 K an incommensurate phase (phase II) forms. Further cooling

leads to a threefold superstructure (phase III) below Tc2 = 117-118 K. Diffraction

data have been collected at T = 160 K (phase I), T = 130 K (phase II) and T

= 110 K (phase III). The basic structure of phase II has an orthorhombic lattice

close to the lattice of phase I at higher temperatures. The symmetry of phase II

is described by the orthorhombic superspace group Pnam(σ1 0 0)00s. The incom-

mensurate modulation wavevector at T = 130 K is found as q = (σ1 , 0, 0) with

σ1 = 0.4126. A structure model for phase I is developed on the basis of [BF4]
−

described as a pseudo-rigid body that is then placed in four orientations, in order

to describe the disorder of this anion. This model is in accordance with the crystal

structure in the literature. The incommensurate modulation of phase II is found

to involve a modulation of occupancies of the four orientations of [BF4]
−, corre-

lated with displacements of the morpholinium cations. [BF4]
− in phase III is fully

ordered. The proposed mechanism for the phase transitions involves the notion of

entropy becoming less important at lower temperatures, while thermal expansion

leads to tighter cavities for [BF4]
−, and morpholinium adapts its conformations to

fit to one of the four orientations of [BF4]
−. It is shown that the incommensurate

phase transition is not driven by a change to the configurational entropy, and that

the computed changes of the configurational entropy do not explain the measured

transition entropies.



Chapter 7

Zusammenfassung

Diese Doktorarbeit berichtet über Phasenübergänge in supramolekularen Kristallen

mit Wasserstoffbrückenbindungen. Zwei Verbindungen wurden ausgewählt. Diese

sind zum einen Phenazin-Chloranilsäure C18H10Cl2N2O4 (Phz-H2ca) und zum an-

dern Morpholinum-tetrafluoroboat C4NOH10BF4 (MoB). Um den atomaren Mecha-

nismus der Ferroelektriziät in Phz-H2ca aufzuklären und die Inkommensurabilität in

beiden Verbindungen zu verstehen, wurden temperaturabhängige Röntgenbeugung-

sexperimente durchgeführt. Einkristalle von beiden Verbindungen wurden nach lit-

eraturbekannten Vorschriften gezüchtet. Phz-H2ca wurde am Synchrotron an einem

Vierkreis-Kappa-Diffraktometer mit CCD-Flächendetektor untersucht. Die Rönt-

genbeugung von MoB wurde an einem Zweikreis-Difraktometer mit einer Imageplate

und mithilfe von Mo-Kα-Strahlung im Labor des Lehrstuhls für Kristallographie in

Bayreuth gemessen.

Der Literatur entsprechend ist Phz-H2ca bei Zimmertemperatur paraelektrisch

(PE-Phase). Durch Abkühlen erfährt dieses Material drei Phasenübergänge: paraelek-

trisch (PE) zu ferroelektrisch (FE-I-Phase) bei T I
c = 253 K, FE-I zu inkommen-

surabel moduliert (FE-IC-Phase) bei T IC
c = 147 K, und letztendlich ein Lock-in-

Übergang zu einer ferroelektrischen zweifachen Überstruktur (FE-II-Phase) bei T II
c

= 137 K. Die vorliegende Studie versucht den Mechanismus der Ferroelektrizität und

den Ursprung der Inkommensurabilität in Phz-H2ca aufzuklären. Die Beugungs-

daten wurden bei T = 139 K (FE-IC) und 100 K (FE-II) aufgenommen. Es wurde

herausgefunden, dass die nichtzentrosymmetrische Raumgruppe P21 der FE-I-Phase

in der gemittelten Strutur bei tieferer Temperatur erhalten bleibt. Die Kristallstruk-

turen der beiden Phasen (FE-IC and FE-II) konnten erfolgreich mittels der Super-

raummethode gelöst und verfeinert werden. Die Superraumgruppe ist P21(
1

2
σ2

1

2
)0,
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mit σ2 = 0.5139 in der FE-IC und σ2 = 1

2
in der FE-II-Phase. Genaue Kristall-

strukturen wurden von der FE-IC-Phase berichtet. Ein wesentliches Ergebnis dieser

Arbeit ist die Bestimmung der exakten Position der Wasserstoffatome in den inter-

molkularen Wasserstoffbrückenbindungen. Basierend auf den vorliegenden Kristall-

strukturen wird der folgende Mechanismus vorgeschlagen. Den Phasenübergängen

liegt ein Protonentransfer zwischen intermolekularen O–H· · ·N-Wasserstoffbrück-

enbingen zugrunde. In der PE-Phase sind alle Wasserstoffbrückenbingen symme-

trieäquivalent. In der FE-IC-Phase basiert die Modulation auf einer inkommen-

surablen Veränderung zwischen schwachem und starkem Protontransfer. In der

FE-II-Phase wurde in einem Teil der O–H· · ·N-Wasserstofbrückenbindungen ein

kompletter Protonentransfer gefunden, wodurch sich neutrale und ionische Wasser-

stofbrücken entlang einer Kette abwechseln.

Morpholinum-tetrafluoroboat (MoB) gehört zu einer Gruppe von wasserstof-

fverbrückten organometallischen Verbindungen mit einer ABX4-Stöchiometrie und

einer orthorhombischen Pnam-Symmetrie. Literaturgemäß erfährt MoB beim Abkühlen

zwei Phasenübergänge. Bei Tc1 = 153 K bildet siche eine inkommensurable Phase

(II). Weiteres Abkühlen führt zu einer dreifachen Überstrukturphase (III) unterhalb

von Tc2 = 117-118 K. Beugungsdaten wurden bei T = 160 K (Phase I), T = 130 K

(Phase II) und T = 110 K (Phase III) aufgenommen. Die Basisstruktur von Phase

II hat ein orthorhomisches Gitter sehr ähnlich dem Gitter der Phase I bei höheren

Temperaturen. Die Symmetrie der Phase II wird durch the orthorhombische Su-

perraumgruppe Pnam(σ1 0 0)00s beschrieben. Der incommensurable Modulation-

swellenvektor bei T = 130 K wurde als q = (σ1 , 0, 0) mit σ1 = 0.4126 gefunden.

Das Strukturmodel von Phase I wurde mit einem [BF4]
−-Anion beschrieben als

pseudo starrem Gerüst, weches dann in vier verschingenen Lagen eingefügt wurde,

um die Fehlordnung zu beschreiben, entwickelt. Dieses Modell stimmt mit dem der

Literatur beschiebenen Kistallstruktur überein. In der inkommensurablen Modula-

tion von Phase II wurde eine Besetztungsmodulation von [BF4]
− gefunden welche

mit einer Verschiebungsmodulation der Morpholinumkationen einhergeht. [BF4]
−

in Phase III ist vollständig geordnet. In dem vorgeschlagenen Mechanismus für die

Phasenübergänge beinhaltet ein geringerer Einfluss der Entropie bei gerinerer Tem-

perutur, während thermische Ausdehnung zu engeren Kavitäten für [BF4]
− führt.

Die Konformation vom Morpholinum passt sich den vier verschiedenen Lagen von

[BF4]
− an. Es wurde gezeigt, das der inkommensurable Phasenübergang nicht durch

die Entropieänderung gesteuert wird, und dass die berechneten Änderungen der

Konformationsentropie nicht die gemessenen Übergangsentropien erklären.



Appendix A

Incommensurate

phenazine–chloranilic acid

A.1 Structural parameters of model A
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Table A.1: Fractional atomic coordinates (x, y, z) and amplitudes of the displacement modulation functions (in Å) of model

A. Standard uncertainties are given in parentheses.

Atom x y z Ax × a Ay × b Az × c Bx × a By × b Bz × c

Cl2 0.39426(2) 0.7594 0.425664(9) 0.0027(4) 0.0000 0.0064(3) -0.0019(4) -0.0108(3) 0.0012(3)

Cl1 0.10334(2) 1.36699(6) 0.076472(9) -0.0235(7) -0.0042(3) 0.0044(5) -0.0197(9) -0.0002(3) 0.0023(3)

O1 0.01710(6) 1.0198(3) 0.20084(4) 0.0032(11) 0.0045(1) -0.0032(13) -0.0088(11) -0.0320(1) 0.0069(10)

O2 0.47869(6) 1.1115(3) 0.30175(3) -0.0354(11) 0.0158(1) -0.0067(10) 0.0135(16) -0.0128(1) 0.0016(10)

O3 0.14288(6) 0.7382(3) 0.34754(4) 0.0042(10) 0.0124(2) -0.0025(12) -0.0004(10) -0.0399(1) 0.0043(10)

O4 0.35598(6) 1.3761(3) 0.15557(3) -0.0174(10) 0.0087(1) 0.0170(10) 0.0069(12) -0.0113(1) -0.0010(12)

N1 0.85572(7) 0.6962(3) 0.24458(4) 0.0111(12) 0.0034(1) 0.0293(12) 0.0030(12) 0.0030(1) -0.0012(15)

N2 0.64611(7) 0.4400(3) 0.25095(4) -0.0027(14) 0.0015(1) 0.0093(13) -0.0214(12) 0.0000(1) 0.0043(12)

C1 0.30168(9) 1.2333(3) 0.19627(4) -0.0437(15) 0.0041(1) 0.0042(13) -0.0036(21) -0.0034(1) 0.0003(15)

C2 0.18097(9) 1.2022(3) 0.17186(4) -0.0191(15) 0.0011(1) 0.0032(13) -0.0095(16) -0.0019(1) 0.0022(13)

C3 0.12546(9) 1.0428(3) 0.22157(4) -0.0104(20) -0.0019(1) 0.0040(15) -0.0414(16) -0.0132(1) 0.0027(13)

C4 0.19362(9) 0.8866(3) 0.30527(4) 0.0022(15) -0.0030(2) 0.0079(15) -0.0126(17) -0.0173 (1) 0.0040(15)

C5 0.31591(8) 0.9219(3) 0.33025(4) -0.0140(16) -0.0038(1) 0.0091(13) -0.0171(15) -0.0098(1) 0.0020(13)

C6 0.36782(8) 1.0814(3) 0.27986(4) -0.0334(15) 0.0041(1) 0.0027(13) -0.0054(19) -0.0053(1) 0.0007(13)

C7 0.81178(9) 0.5094(3) 0.10230(4) 0.0032(15) -0.0147(1) 0.0252(17) -0.0071(15) 0.0026(1) 0.0070(17)

C8 0.73694(9) 0.3530(3) 0.03492(4) 0.0084(15) -0.0166(1) -0.0039(17) 0.0028(15) -0.0060(1) 0.0059(13)

C9 0.63221(9) 0.2204(3) 0.03867(4) 0.0079(15) -0.0056(1) -0.0185(15) 0.0069(15) -0.0075(1) 0.0031(15)

Continued on next page.
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Atom x y z Ax × a Ay × b Az × c Bx × a By × b Bz × c

C10 0.60119(9) 0.2457(3) 0.10984(4) -0.0009(15) -0.0045(1) -0.0187(13) -0.0153(15) -0.0008(1) 0.0020(15)

C11 0.67723(9) 0.4113(3) 0.18154(4) -0.0062(17) -0.0026 (1) 0.0035(17) -0.0142(15) 0.0015(1) 0.0052(13)

C12 0.78295(8) 0.5441(3) 0.17721(4) -0.0090(15) -0.0011(1) 0.0269(17) -0.0046(15) 0.0038(1) 0.0062(17)

C13 0.69135(9) 0.6285(3) 0.39302(4) -0.0146(15) 0.0038(1) 0.0214(13) 0.0014(15) 0.0011(1) -0.0006(15)

C14 0.76521(9) 0.7854(3) 0.46057(4) -0.0145(15) -0.0072(1) 0.0135 (15) 0.0148(15) 0.0056(1) -0.0049(15)

C15 0.87021(9) 0.9210(3) 0.45697(5) 0.0000 (15) -0.0038(1) 0.0008(17) 0.0090(16) 0.0132(1) -0.0059(15)

C16 0.90122(9) 0.8951(3) 0.38591(5) -0.0010(16) -0.0049(1) 0.0056(15) 0.0235(17) 0.0151(1) -0.0051(15)

C17 0.82595(9) 0.7284(3) 0.31464(4) -0.0131(16) -0.0030(1) 0.0125(15) 0.0121(15) 0.0034(1) -0.0008(15)

C18 0.71946(9) 0.5983(3) 0.31757(4) -0.0209(15) 0.0030(1) 0.0155(13) -0.0047(16) 0.0019(1) 0.0007(15)

H1o1 -0.0461(11) 0.765(4) 0.2321(8) 0.1868(15) 0.0527(1) 0.0168(15) -0.0792(15) -0.0113(2) 0.0075(13)

H1o2 0.5251(11) 1.158(4) 0.2704(8) -0.0074(15) 0.0151(1) -0.0101(15) 0.0000(15) -0.0113(1) -0.0064(15)

H7 0.8834 0.5955 0.0992 0.0062 -0.0211 0.0471 -0.0074 0.0098 0.0038

H8 0.7558 0.3327 -0.0161 0.0087 -0.0248 -0.0067 0.0099 -0.0079 0.0064

H9 0.5814 0.1096 -0.0098 -0.0012 0.0011 -0.0219 0.0161 -0.0136 -0.0004

H10 0.5296 0.1537 0.1115 0.0074 -0.0030 -0.0168 -0.0210 0.0064 -0.0023

H13 0.6202 0.5382 0.3962 -0.0148 0.0053 0.0185 -0.0074 0.0053 0.0011

H14 0.7459 0.8045 0.5115 -0.0161 -0.0072 0.0067 0.0173 0.0090 -0.0053

H15 0.9207 1.0334 0.5054 0.0012 0.0072 -0.0135 0.0025 0.0196 -0.0053

H16 0.9727 0.9881 0.3842 0.0111 0.0041 -0.0050 0.0186 0.0188 -0.0056
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Table A.2: Anisotropic atomic displacement parameters (anisotropic ADPs) Uij of model

A. For each atom are given the basic-structure value (first line), the sine amplitude of the

first-harmonic modulation function (sin; second line), and the cosine amplitude (cos; third

line). Standard uncertainties are given in parentheses.

Atom U11 U22 U33 U12 U13 U23

Cl2 0.01737(18) 0.01914(12) 0.01152(7) -0.00017(11) 0.00280(9) 0.00293(6)

sin 0.0032(2) -0.00022(16) 0.00007(18) 0.00000(15) 0.00024(17) 0.00049(11)

cos 0.0021(2) -0.00196(17) -0.00069(18) 0.00006(14) -0.00065(16) 0.00021(11)

Cl1 0.01772(18) 0.01883(12) 0.01129(7) 0.00005(11) 0.00285(9) 0.00285(6)

sin 0.0017(2) -0.00089(16) -0.00044(17) -0.00150(17) -0.00058(16) 0.00029(12)

cos -0.0007(2) -0.00023(16) -0.00047(18) -0.00050(17) -0.00097(17) 0.00067(11)

O1 0.0117(4) 0.0259(4) 0.0183(2) -0.0023(4) 0.0042(3) 0.0039(3)

sin 0.0026(7) 0.0004(5) -0.0007(6) 0.0002(4) 0.0012(5) 0.0001(4)

cos 0.0037(7) -0.0035(6) 0.0001(6) -0.0010(4) 0.0010(5) 0.0020(4)

O2 0.0132(4) 0.0253(4) 0.0169(2) -0.0030(4) 0.0056(3) 0.0055(3)

sin 0.0001(7) 0.0037(5) 0.0002(6) -0.0028(5) -0.0007(5) -0.0008(4)

cos 0.0009(7) -0.0024(5) -0.0004(6) 0.0002(4) -0.0002(5) 0.0008(4)

O3 0.0167(4) 0.0272(4) 0.0177(2) -0.0030(5) 0.0081(3) 0.0054(3)

sin -0.0025(7) 0.0019(6) 0.0002(6) 0.0008(4) 0.0008(5) 0.0003(4)

cos 0.0055(7) -0.0061(6) -0.0011(6) 0.0007(5) 0.0001(5) 0.0029(4)

O4 0.0160(4) 0.0254(4) 0.0165(2) -0.0021(5) 0.0067(3) 0.0054(3)

sin 0.0002(7) 0.0019(5) -0.0009(6) -0.0007(5) 0.0003(5) 0.0012(4)

cos 0.0013(7) -0.0011(6) -0.0002(6) 0.0012(4) 0.0018(5) -0.0007(4)

N1 0.0132(5) 0.0140(3) 0.0123(2) 0.0001(4) 0.0029(3) 0.0007(2)

sin -0.0004(8) 0.0000(5) -0.0016(6) -0.0002(5) -0.0029(6) 0.0022(4)

cos -0.0024(8) 0.0013(5) -0.0001(6) -0.0012(5) -0.0016(6) -0.0014(4)

N2 0.0133(5) 0.0142(3) 0.0127(2) -0.0009(4) 0.0037(3) 0.0005(2)

sin 0.0020(8) -0.0005(5) 0.0005(6) -0.0003(5) 0.0002(6) 0.0005(4)

cos -0.0007(7) 0.0005(5) -0.0001(6) -0.0015(5) -0.0019(5) 0.0016(4)

C1 0.0165(6) 0.0137(4) 0.0114(2) -0.0004(5) 0.0044(3) 0.0002(3)

sin 0.0107(10) 0.0011(6) -0.0032(7) -0.0030(6) -0.0016(7) 0.0006(4)

cos -0.0030(10) -0.0001(6) 0.0004(7) 0.0006(6) -0.0010(7) -0.0003(4)

C2 0.0144(6) 0.0152(4) 0.0107(2) -0.0016(4) 0.0035(3) 0.0005(2)

sin -0.0024(10) 0.0019(6) -0.0020(7) -0.0020(6) -0.0024(7) -0.0002(4)

cos -0.0025(9) -0.0001(6) -0.0004(7) 0.0004(6) -0.0013(7) 0.0009(4)

C3 0.0145(6) 0.0152(4) 0.0122(2) -0.0001(5) 0.0039(3) 0.0000(3)

sin 0.0014(10) 0.0000(6) -0.0009(8) -0.0020(6) -0.0001(7) 0.0005(5)

cos 0.0026(10) -0.0031(6) -0.0002(7) -0.0029(6) 0.0004(7) 0.0010(4)

C4 0.0143(6) 0.0150(4) 0.0120(2) -0.0011(5) 0.0050(3) -0.0004(3)

sin 0.0006(9) 0.0001(6) 0.0012(7) 0.0022(6) 0.0020(7) -0.0003(5)

cos 0.0042(10) -0.0029(7) -0.0015(8) -0.0015(6) -0.0016(7) 0.0003(4)

C5 0.0125(6) 0.0137(4) 0.0110(2) -0.0009(4) 0.0029(3) 0.0007(2)

sin -0.0053(9) -0.0006(6) 0.0021(7) 0.0016(6) 0.0004(7) 0.0030(4)

cos -0.0004(9) -0.0005(6) -0.0015(7) -0.0010(6) -0.0005(6) -0.0003(4)

C6 0.0110(6) 0.0137(4) 0.0118(2) -0.0009(4) 0.0028(3) 0.0002(2)

sin 0.0030(9) 0.0002(6) 0.0003(7) -0.0023(6) -0.0003(7) 0.0008(4)

cos 0.0059(10) -0.0002(6) -0.0011(7) 0.0007(5) -0.0005(7) 0.0008(4)

Continued on next page.
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Atom U11 U22 U33 U12 U13 U23

C7 0.0159(6) 0.0159(4) 0.0142(3) -0.0004(5) 0.0051(3) -0.0009(3)

sin 0.0032(10) -0.0017(6) -0.0005(7) 0.0001(6) -0.0012(7) 0.0022(5)

cos 0.0021(9) -0.0011(6) 0.0007(7) 0.0016(6) -0.0005(7) 0.0020(5)

C8 0.0187(6) 0.0179(4) 0.0139(2) 0.0045(5) 0.0055(3) 0.0000(3)

sin 0.0037(11) -0.0040(7) 0.0009(8) -0.0013(6) 0.0009(7) -0.0001(5)

cos 0.0002(10) -0.0024(6) 0.0020(7) -0.0012(6) 0.0009(7) 0.0030(5)

C9 0.0166(6) 0.0165(4) 0.0138(3) 0.0015(5) 0.0022(3) -0.0020(3)

sin 0.0048(10) 0.0002(6) -0.0014(8) -0.0003(6) 0.0009(7) -0.0007(5)

cos 0.0142(10) -0.0009(6) -0.0038(8) 0.0013(6) 0.0024(7) 0.0006(5)

C10 0.0148(6) 0.0164(4) 0.0137(2) -0.0047(5) 0.0023(3) -0.0020(3)

sin -0.0042(9) 0.0009(6) -0.0004(7) -0.0022(6) -0.0014(7) -0.0020(5)

cos -0.0011(10) 0.0003(6) -0.0004(8) 0.0012(6) -0.0034(7) 0.0024(5)

C11 0.0161(6) 0.0119(4) 0.0118(2) 0.0000(4) 0.0028(3) 0.0008(2)

sin 0.0037(11) -0.0007(6) 0.0003(8) -0.0011(5) -0.0007(7) -0.0005(4)

cos -0.0014(9) 0.0000(6) -0.0008(7) -0.0008(6) 0.0000(6) 0.0021(4)

C12 0.0112(5) 0.0127(4) 0.0130(2) 0.0023(4) 0.0038(3) 0.0018(2)

sin 0.0023(9) -0.0002(6) -0.0006(7) -0.0002(5) 0.0001(6) 0.0018(4)

cos 0.0015(9) 0.0004(6) 0.0007(7) -0.0022(5) -0.0005(7) 0.0014(4)

C13 0.0159(6) 0.0180(4) 0.0135(2) 0.0018(5) 0.0060(3) 0.0012(3)

sin 0.0045(10) 0.0005(6) -0.0020(7) 0.0004(6) -0.0011(7) 0.0016(5)

cos -0.0003(9) 0.0007(7) 0.0000(7) -0.0013(6) -0.0003(7) 0.0002(5)

C14 0.0200(6) 0.0177(4) 0.0143(3) 0.0006(5) 0.0057(3) -0.0027(3)

sin -0.0021(10) -0.0015(7) -0.0002(8) -0.0022(6) -0.0019(7) 0.0012(5)

cos -0.0012(10) -0.0008(6) 0.0024(8) -0.0023(6) 0.0019(7) -0.0014(5)

C15 0.0160(6) 0.0168(4) 0.0143(3) 0.0002(5) 0.0024(3) -0.0028(3)

sin -0.0004(9) 0.0002(6) -0.0020(7) 0.0017(6) -0.0018(7) -0.0007(5)

cos 0.0044(11) 0.0025(6) -0.0004(8) 0.0021(6) 0.0010(7) -0.0010(5)

C16 0.0126(6) 0.0144(4) 0.0144(2) 0.0010(5) 0.0009(3) -0.0006(3)

sin 0.0023(8) -0.0013(6) 0.0000(7) -0.0005(6) -0.0007(6) 0.0001(5)

cos -0.0013(11) 0.0014(6) 0.0017(8) 0.0011(5) 0.0009(7) -0.0012(4)

C17 0.0144(6) 0.0124(4) 0.0124(2) 0.0018(4) 0.0050(3) 0.0009(2)

sin 0.0049(9) -0.0011(6) -0.0005(7) -0.0002(6) 0.0007(7) 0.0012(4)

cos -0.0060(9) 0.0003(6) 0.0011(7) 0.0032(5) -0.0014(7) 0.0001(4)

C18 0.0151(6) 0.0117(4) 0.0117(2) -0.0009(4) 0.0023(3) 0.0007(2)

sin 0.0015(9) -0.0001(6) -0.0012(7) -0.0013(5) -0.0005(7) 0.0021(4)

cos -0.0001(9) 0.0010(6) -0.0009(7) -0.0012(6) 0.0000(6) 0.0005(4)
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A.2 Modulation of the acidic hydrogen atoms

The difference Fourier map obtained after the final refinement of model A reveals

maxima on the covalent bonds (Fig. A.1). Apparently, the resolution of the diffrac-

tion data (Table 1 in the main text) was sufficient to obtain the reorganisation

of electron density due to chemical bonding. Nevertheless, the resolution of the

diffraction data is worse and the temperature of the crystal is higher than is gener-

ally accepted as necessary for a multipole refinement. Furthermore, software is not

available for multipole refinements of modulated structures. Therefore, we present

model A in the independent-atom approximation as the best model that we have

been able to achieve.

Similarly to covalent bonds, the difference Fourier map reveals density at lone

pairs of oxygen atoms. This density interferes with the density of the modulated

hydrogen atoms. Nevertheless, the difference Fourier map obtained after refinement

of a model without the acidic hydrogen atoms clearly shows positive density near

O2 of the O2–H1o2· · ·N2 hydrogen bond, which is well described by introducing

a virtually non-modulated hydrogen atom. See top row vs bottom row in Fig.

A.2. The remaining density near O2 in the difference Fourier map of model A will

represent the lone pair of O2.

Sections through the O1–H1o1· · ·N1 hydrogen bond of the same two difference

Fourier maps reveal density close to N1 for t = 0.31 and density close to O1 for

t = 0.85 (bottom row in Fig. A.3). This density is well described by the modu-

lated positions of H1o1 hydrogen atom, while the remaining density near O1 in the

difference Fourier map of model A should be interpreted as the lone pair of O1.
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Table A.3: Bond lengths (Å) for bonds between non-hydrogen atoms in model A. Standard

uncertainties are given in parentheses.

Bond Mean Min. Max. Max-Min

Cl2-C5 1.7153(15) 1.7131(15) 1.7178(15) 0.0047

Cl1-C2 1.7155(15) 1.7119(15) 1.7190(15) 0.0071

O1-C3 1.281(2) 1.251(2) 1.311(2) 0.060

O2-C6 1.312(3) 1.310(2) 1.314(2) 0.004

O3-C4 1.219(2) 1.215(2) 1.223(2) 0.008

O4-C1 1.221(2) 1.208(2) 1.234(2) 0.026

C1-C2 1.428(3) 1.406(3) 1.449(3) 0.043

C1-C6 1.508(2) 1.505(2) 1.510(2) 0.005

C2-C3 1.372(3) 1.349(3) 1.396(3) 0.047

C3-C4 1.522(2) 1.507(2) 1.537(2) 0.030

C4-C5 1.447(3) 1.438(3) 1.456(3) 0.018

C5-C6 1.351(3) 1.346(3) 1.356(3) 0.010

N1-C12 1.342(2) 1.339(2) 1.345(2) 0.006

N1-C17 1.344(2) 1.342(2) 1.347(2) 0.005

N2-C11 1.342(2) 1.338(2) 1.345(2) 0.007

N2-C18 1.3470(19) 1.342(2) 1.352(2) 0.010

C7-C8 1.360(2) 1.355(2) 1.364(2) 0.009

C7-C12 1.417(3) 1.415(3) 1.420(3) 0.005

C8-C9 1.408(3) 1.403(3) 1.413(3) 0.010

C9-C10 1.368(3) 1.364(3) 1.373(3) 0.009

C10-C11 1.427(2) 1.420(2) 1.434(2) 0.014

C11-C12 1.423(3) 1.420(3) 1.426(3) 0.006

C13-C14 1.357(2) 1.351(2) 1.363(2) 0.012

C13-C18 1.420(3) 1.417(3) 1.423(3) 0.006

C14-C15 1.414(3) 1.405(3) 1.424(3) 0.019

C15-C16 1.367(3) 1.361(3) 1.372(3) 0.011

C16-C17 1.420(2) 1.417(2) 1.424(2) 0.007

C17-C18 1.421(3) 1.417(3) 1.424(3) 0.007
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Figure A.1: Difference Fourier maps showing a section of 12× 12 Å2 in the plane through

the atoms C1—C3—C5 of the chloranilic acid ring.

Top row: model A.

Bottom row: model A without the acidic hydrogen atoms.

Left: section t = 0.31 corresponding to a maximum of the distance O1–H1o1 (cf Fig. 3 in

the main text).

Right: section t = 0.85 corresponding to a minimum of the distance O1–H1o1.

Positive contours (solid lines), negative contours (dotted lines) and the zero contour

(dashed lines) are drawn at intervals of 0.1 electrons/Å3. Coloured circles are the projected

positions of atoms that appear within 0.42 Å from the plane.
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O2 H1o2

N2

C11

Figure A.2: Difference Fourier maps showing a section of 6 × 6 Å2 in the plane through

the hydrogen bond defined by the atoms O2—H1o2· · ·N2.

Top row: model A.

Bottom row: model A without the acidic hydrogen atoms.

Left: section t = 0.31 corresponding to a maximum of the distance O1–H1o1 (cf Fig. 3 in

the main text).

Right: section t = 0.85 corresponding to a minimum of the distance O1–H1o1.

Positive contours (solid lines), negative contours (dotted lines) and the zero contour

(dashed lines) are drawn at intervals of 0.1 electrons/Å3. Coloured circles are the projected

positions of atoms that appear within 0.42 Å from the plane.
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N1

H1o1 O1

C3 C2

Figure A.3: Difference Fourier maps showing a section of 6 × 6 Å2 in the plane through

the hydrogen bond defined by the atoms O1—H1o1· · ·N1.

Top row: model A.

Bottom row: model A without the acidic hydrogen atoms.

Left: section t = 0.31 corresponding to a maximum of the distance O1–H1o1 (cf Fig. 3 in

the main text).

Right: section t = 0.85 corresponding to a minimum of the distance O1–H1o1.

Positive contours (solid lines), negative contours (dotted lines) and the zero contour

(dashed lines) are drawn at intervals of 0.1 electrons/Å3. Coloured circles are the projected

positions of atoms that appear within 0.42 Å from the plane.
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B.1 SupplementaryMaterial For Phenazine–Chloranilic

Acid at 100 K

Figures 4.2 in the main text shows the supramolecular chain B is on top of the chain

A and C is on top of the chain D which differentiate between each by 1/2 x fractional

coordinate. A with B chain and C with D are stacked by π–π interactions along

b with a typical π–π contacts of min. 3.368 Å, and max. 3.39 Å (Janiak, 2000).

The bond distances of the asymmetric unit are comparable with the observed aver-

age values for similar organic compounds listed in the Cambridge Crystallographic

Database (Macrae et al., 2008).

The structural changes can be explained based on the model in superspace. Ac-

cording the continuous modulation functions, H1o1 atom exhibit the largest modula-

tion amplitude (Table B.2 and Fig. B.1), especially along a and they are responsible

for modulation and ferroelectric transformation. This interpretation is supported by

the variation in interatomic bonding distances due to the modulation wave, which

is by far the largest variation for the H1O1 atoms. The modulation of C3, O1, and

N1 follow of H1o1 Fig. B.1. Due to the formation of superstructure with a period

twice as large as the main period, the freezing of displacement wave gives four valid

points which can be explained in superspace model by t-plots at t equals to 0, 0.25,

0.5, and 0.75 or it can be explained as a two-fold superstructure by A, B, C, and D

fragments, Table B.3 and Fig. 1.5- B.1.
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Figure B.1: Interatomic distances and displacement parameters as a function of phase t

of modulation wave. Only the dashed lines in t-plots are giving a valid value due to the

commensurate phase.
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Table B.1: Intramolecular hydrogen bonds geometry (Å, deg) in refinement models, Mfree

Hydrogen bond d(O–H) d(H–O) d(O· · ·O) angle

O1A–H1o1A· · ·O3A 0.943(15) 2.371(12) 2.7112(11) 100.9(9)

O1B· · ·H1o1B· · ·O3B 1.609(15) 2.725(12) 2.7024(11) 72.0(5)

O1C–H1o1C· · ·O3C 1.066(14) 2.457(11) 2.7075(12) 91.7(7)

O1D· · ·H1o1D· · ·O3D 1.467(14) 2.608(11) 2.7061(12) 77.7(5)

O2A–H1o2A· · ·O4A 0.863(15) 2.437(11) 2.7055(11) 98.7(8)

O2B–H1o2B· · ·O4B 0.796(15) 2.434(11) 2.6320(11) 95.4(9)

O2C–H1o2C· · ·O4C 0.840(14) 2.450(11) 2.6903(10) 97.4(8)

O2D–H1o2D· · ·O4D 0.815(14) 2.420(11) 2.6471(10) 97.1(8)

Table B.2: Fractional coordinates of the basic structure (basic) and modulation parameters

(eqn (2) in the main text) for selected atoms

Atom i basic Ai (Å) Bi (Å)

O1 x 0.01723 (4) 0.0038 (5) -0.0183 (5)

y 1.02038 (17) -0.0083 (8) -0.0479 (6)

z 0.2097 (3) 0.008 (8) 0.0479 (6)

O2 x 0.47886 (4) -0.0456 (7) 0.0322 (7)

y 1.11199 (17) 0.0204 (6) -0.0240 (6)

z 0.30161 (3) -0.0060( 6) 0.0144 (6)

H1O1 x -0.0397 (6) 0.190 (10) -0.347 (12)

y 0.8104 (23) 0.089 (9) 0.157 (10)

z 0.2310 (5) -0.097 (10) 0.105 (11)

H1O2 x 0.51538 (7) -0.046 (9) 0.041 (9)

y 1.1773 (32) -0.058 (8) 0.062 (9)

z 0.2708 (5) -0.0179 (9) 0.008 (10)
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Table B.3: Selected bond distances and angles in A, B, C, and D supramolocular chains

(Å, deg)

A B C D

C3–O1 1.3200(14) 1.2536(14) 1.3054(14) 1.2676(14)

C6–O2 1.3133(15) 1.3204(15) 1.3118(14) 1.3214(14)

C4–O3 1.2211(14) 1.2243(14) 1.2248(14) 1.2201(14)

C1–O4 1.2183(14) 1.2385(14) 1.2210(14) 1.2355(14)

N1–C12 1.3451(11) 1.3465(11) 1.3443(14) 1.3468(12)

N1–C17 1.3490(14) 1.3505(14) 1.3464(14) 1.3526(14)

C3–O1–H1o1 115.4(7) 134.4(4) 122.2(6) 130.7(4)

C6–O2–H1o2 123.1(7) 126.9(8) 125.0(7) 125.2(7)
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Morpholinium tetrafluoroborate

C.1 Structural parameters in the incommensu-

rate phase
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Table C.1: Displacement modulation functions for two crystallographically independent

of [BF4]
− as defined in the pseudo-rigid-body approach. Molecular translations and their

harmonic modulations amplitudes At and Bt are given as relative coordinates.

Molecule xtrans ytrans ztrans

Ma 0.1764(10) 0.1458(7) 0.2620(5)

At 0.0004(8) 0.0009(7) 0.0086(6)

Bt -0.0052(9) -0.0025(8) 0.0009(6)

Mb 0.1542(4) 0.1251(3) 0.2632(4)

At -0.0016(4) -0.0001(3) 0.0015(2)

Bt -0.0025(4) 0.0007(3) -0.0029(3)

Table C.2: Angles for rotations of the pseudo-rigid bodies Ma and Mb towards their final

orientations, together with their harmonic modulation amplitudes Ar and Br.

Molecule φ χ ψ

Ma 0 0 0

Ar 0.0056(8) -0.0024(7) 0.0074(8)

Br -0.0035(9) 0.0013(8) 0.0018(8)

Mb -66.8(15) 72.3(4) 17.0(14)

Ar 0.0032(4) -0.0048(5) 0.0014(3)

Br 0.0031(4) 0.0124(5) -0.0011(3)

Table C.3: Fractional atomic coordinates for [BF4]
− model molecule at T = 130 K in

pseudo rigid body approach. Standard uncertainties are given in parentheses.

Atom x y z

B1 0.0 0.0 0.0

F1 0.05610(10) 0.11165(67) 0.08092(77)

F2 0.12854(71) -0.08766 (77) -0.03676(72)

F3 -0.11639 (93) -0.07496 (81) 0.07523(98)

F4 -0.0753(11) 0.05334(99) -0.11803(45)
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Table C.4: Anisotropic atomic displacement parameters (anisotropic ADPs) Uij (Å2) for

atoms of the morpholinium cation. Standard uncertainties are given in parentheses.

Atom U11 U22 U33 U12 U13 U23

O1 0.0268(4) 0.0225(3) 0.0408(4) 0.0068(2) 0 0
N1 0.0226(4) 0.0140(3) 0.0348(4) 0.0002(2) 0 0
C1 0.0319(4) 0.0254(3) 0.0355(4) 0.0038(2) -0.0016(3) -0.0080(3)
C2 0.0317(4) 0.0245(3) 0.0258(3) 0.0000(2) -0.0024(3) -0.0002(2)



92
A
P
P
E
N
D
IX

C
.
M
O
R
P
H
O
L
IN

IU
M

T
E
T
R
A
F
L
U
O
R
O
B
O
R
A
T
E

Table C.5: Fractional atomic coordinates (x, y, z) and amplitudes of displacement modulation functions (in Å). The coor-

dinates and amplitudes of atomic displacive modulation function for individual atoms involved in model molecule, BF4 (i.e.

rigid body), obtained after transformation of molecular model to the atomic model, two molecular positions are labeled as a

and b in atomic model. Standard uncertainties are given in parentheses.

Atom x y z Ax × a Ay × b Az × c Bx × a By × b Bz × c
O1 0.03325(8) 0.76042(7) 0.25 0 0 0.18697(86) 0 0 -0.13398(86)
N1 0.26967(10) 0.53852(7) 0.25 0 0 0.14133(76) 0 0 -0.12223(76)
C1 0.12677(9) 0.72991(7) 0.37325(7) -0.0590(7) -0.0519(7) 0.1573(8) -0.0614(7) 0.0740(7) -0.1091(8)
C2 0.17305(9) 0.57457(7) 0.37788(7) -0.0722(7) -0.0487(7) 0.1181(7) -0.0616(6) 0.0834(7) -0.0243(7)
H1c 0.2937 0.4431 0.25 0 0 0.1366 0 0 0.0516
H2b 0.2391 0.5566 0.4593 -0.1271 -0.0499 0.1413 -0.0793 0.1364 -0.0134
H2a 0.0747 0.5179 0.3809 -0.0567 -0.0687 0.0563 -0.0818 0.0725 -0.0134
H1d 0.3671 0.5886 0.25 0 0 0.1900 0 0 -0.0745
H1b 0.0626 0.7533 0.4544 -0.0696 -0.1016 0.1681 -0.1206 0.1016 -0.1251
H1a 0.2251 0.7867 0.374 -0.0712 -0.0339 0.1824 -0.0429 0.0828 -0.1537
B1a 0.1764(10) 0.1458(8) 0.262(5) -0.003(7) 0.009(7) 0.082(6) -0.042(7) -0.024(8) 0.009(6)
F1a 0.2325(14) 0.2575(10) 0.3429(9) -0.096 (11) 0.007(9) 0.136(9) -0.037(012) 0.006(10) -0.047(11)
F2a 0.3049(12) 0.0581(11) 0.2253(9) 0.055(9) 0.0875(10) 0.071(10) -0.053(10) -0.047(11) -0.005(12)
F3a 0.06(13) 0.0708(11) 0.3373(11) 0.041(10) -0.081(10) 0.015(10) -0.009(11) -0.046(11) 0.047(11)
F4a 0.1011(14) 0.1991(12) 0.144(7) -0.007(11) -0.030(10) 0.089(8) -0.065(11) -0.061(12) 0.020(8)
B1b 0.1542(4) 0.1251(3) 0.2632(4) -0.001(3) -0.009(3) 0.016(3) 0.001(3) 0.033(3) 0.012(4)
F1b 0.298(4) 0.047(4) 0.2512(13) 0.012(4) 0.023(5) 0.024(6) -0.019(4) 0.020(5) -0.112(6)
F2b 0.065(2) 0.119(3) 0.1410(10) 0.017(4) -0.122(6) 0.007(5) -0.016(5) 0.157(7) 0.019(5)
F3b 0.062(3) 0.071(3) 0.3725(12) -0.002(4) 0.039(6) 0.040(5) 0.011(5) -0.070(6) -0.026(6)
F4b 0.194(5) 0.264(2) 0.2939(13) -0.033(5) 0.011(5) -0.025(7) -0.032(5) -0.009(5) 0.162(7)
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Table C.6: Parameters for the harmonic occupational modulations for individual atoms, as

obtained by transformation of the pseudo-rigid-body model. Average occupancy (P0(µ))

and the amplitudes of the harmonic modulation function Ps(µ) and Pc(µ).

Atom P0(µ) Ps(µ) Pc(µ)
B1a 0.184953 -0.120295 0.150007
F1a 0.184953 -0.096757 0.166166
F2a 0.184953 -0.063294 0.181568
F3a 0.184953 -0.160144 0.106428
F4a 0.184953 -0.1431 0.1183
B1b 0.315047 -0.139946 0.139398
F1b 0.315047 -0.07811 0.181426
F2b 0.315047 -0.168714 0.1027724
F3b 0.315047 -0.169437 0.101526
F4b 0.315047 -0.12416 0.153257
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C.2 Rigid body refinement for the crystal struc-

ture at 160 K

X-ray diffraction is employed for the same crystal that is used in incommensurate

phase. Data were collected on a 2-circle diffractometer equipped with image plate

MAR345 detector. The crystal was cooled down to T=160 K employing an open flow

nitrogen cryostat by Oxford Cryosystems. The software Eval15 (Schreurs et al.,

2010) was used for data processing of the measured diffraction images. All Bragg

reflections that indexed by software Eval15 resulted in a primitive orthorhombic

cell, [ see Fig.5.1.a]. The integrated intensities (integration by Eval15) were scaled

and absorption correction was applied by the software Sadabs (Sheldrick, 2008) and

averaged in point group mmm. Initial values for the parameters of the structure

have been taken from the basic structure at 130 K (Section 5.2.2). Space group

Pnam has been selected. The same as the model of Szklarz et al. (2009) and model

at incommensurate phase (Section 5.2.2), the atoms O1, N1, H1c and H1d and the

[BF4]
− molecule occupy special position on the mirror symmetry plan. Therefore,

two orientations, Ma and Mb, for the molecular part have been used and the sum

of occupancies of two positions was restricted to 0.5. Two other symmetry related

orientations were generated by mirror operator, Table C.12. Anisotropic atomic

displacement parameters (ADPs) have been used for all non-H atoms excluding

atoms involved in the molecular part. Instead, TLS parameters for two orientations

of the [BF4]
− molecule have been refined. Employing JANA2006 (Petricek et al.,

2014), the positions of all atoms of morpholinium molecule and two orientations of

[BF4]
− molecule were refined. Refining the occupancies of two molecular orientations

which are located on m symmetry plane resulted in 19% (Ma) and 31% (Mb). The

refinement of structure by application of rigid body approach results in a good fit

to data with Robs
F = 5.06% , and Rall

F = 10.3%. More details about crystal structure

data and refinement parameters are given in Table C.7.

For comparison of the molecular model with the independent atomic model which

is reported by Szklarz et al. (2009), the data were refined against the model of Szklarz

et al. (2009). Refinement parameters and geometrical parameters for the molecular

model improve in the model that the four orientation of the anion are defined by

the rigid-body approach (Tables C.7, C.8, C.9 and C.10).
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Table C.7: Crystal data and refinement details

Rigid body model Atomic modela

Temperature (K) 160
Chemical formula C4NOH10 BF4

Formula weight 174.93
Space group Pnam
a (Å) 8.142(1)
b (Å) 9.419(2)
c (Å) 9.597(2)
V (Å3) 736.0(2)
Z 4
Dcalc (g cm

−3) 1.5787
Crystal color Colorless
Radiation type Mo-Kα
Wavelength (Å) 0.7107
Scan mode φ
Theta range (deg) 3.03 to 39.03
Range of h -10 to 10
Range of k -13 to 16
Range of l -17 to 16
µ (mm−1) 0.172
Absorption corr. Sadabs

No. of reflections
Measured 14079
Independent 1797
Observed 997
Rint(obs, all) averaged in mmm 4.41, 5.31
Criterion for observed reflections I > 3σ(I)
Refinement, Software on F , Jana2006
GOF obs,GOF all 3.31,2.47 3.16, 2.43
Robs

F , wRobs
F 0.0506, 0.0664 0.0542, 0.0724

No. of parameters 93 111
∆ρmax, ∆ρmin(e Å−3) 0.26, -0.22 0.3, -0.33

aRefinement of themodel ofSzklarzet al. (2009) against themeasured data inBayreuth.
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Table C.8: Bond lengths (Å) for two structural models at T = 160 K. Standard uncer-

tainties are given in parentheses.

Bond Rigid Body Model Atomic Modela

O1-C1 1.430(2) 1.4280(17)
C1-C2 1.5084(16) 1.5093(18)
C1-H1a 0.96 0.96
C1-H1b 0.96 0.96
C2-H2a 0.96 0.96
C2-H2b 0.96 0.96
N1-C2 1.4952(14) 1.4936(15)
N1-H1d 0.92 0.92
N1-H1c 0.92 0.92
B1a-F1a 1.37(2) 1.40(3)
B1a-F2a 1.38(2) 1.31(3)
B1a-F3a 1.37(2) 1.40(4)
B1a-F4a 1.38(3) 1.20(3)
B1b-F1b 1.37(3) 1.387(13)
B1b-F2b 1.38(2) 1.36(3)
B1b-F3b 1.37(2) 1.12(3)
B1b-F4b 1.38(2) 1.317(15)

aRefinement of themodel ofSzklarzet al. (2009) against themeasured data inBayreuth.
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Table C.9: Bond angles (deg) for two structural models at T = 160 K. Standard uncer-

tainties are given in parentheses.

Angle Rigid Body Model Atomic Modela

C1-O1-C1i 110.94(11) 110.97(10)
C1-C2-H2b 109.47 109.47
C2-N1-C2i 110.33(10) 110.29(10)
C1-C2-H2a 109.47 109.47
C2-N1-H1d 109.47 109.47
H2b-C2-H2a 109.82 109.82
C2-N1-H1c 109.47 109.47
C2i-N1-H1d 109.47 109.47
C2i-N1-H1c 109.47 109.47
H1d-N1-H1c 108.64 108.64
O1-C1-C2 110.61(11) 110.58(10)
O1-C1-H1b 109.47 109.47
O1-C1-H1a 109.47 109.47
C2-C1-H1b 109.47 109.47
C2-C1-H1a 109.47 109.47
H1b-C1-H1a 109.47 108.34
N1-C2-C1 109.12(10) 109.12(9)
N1-C2-H2b 109.47 109.47
N1-C2-H2a 109.47 109.47
F1a-B1a-F2a 111.1(13) 110(2)
F1a-B1a-F3a 109.1(14) 105(3)
F1a-B1a-F4a 108.9(14) 109.2(19)
F2a-B1a-F3a 109.8(14) 103(2)
F2a-B1a-F4a 107.4(13) 118(3)
F3a-B1a-F4a 110.1(15) 111(2)
F1b-B1b-F2b 111.4(15) 113.0(10)
F1b-B1b-F3b 109.1(14) 107.5(14)
F1b-B1b-F4b 107.4(15) 107.2(8)
F2b-B1b-F3b 109.8(14) 108.0(9)
F2b-B1b-F4b 107.4(15) 112.7(15)
F3b-B1b-F4b 110.1(15) 108.2(4)

ix, y,−z + 1/2.
aRefinement of themodel ofSzklarzet al. (2009) against themeasured data inBayreuth.
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Table C.10: Fractional atomic coordinates and isotropic displacement parameters (Å2) for

two structural models at T = 160 K. Standard uncertainties are given in parentheses.

Atom x y z Uiso

O1 0.02973(14) 0.76008(11) 0.25 0.0361(4)
O1a 0.02973(16) 0.76000(13) 0.25 0.0369(4)
N1 0.26672(15) 0.53943(11) 0.25 0.0274(4)
N1a 0.26672(17) 0.53936(13) 0.25 0.0282(4)
C1 0.12310(16) 0.73028(13) 0.37273(14) 0.0370(4)
C1a 0.12299(18) 0.73033(14) 0.37261(16) 0.0378(4)
C2 0.17055(15) 0.57557(11) 0.37783(12) 0.0321(3)
C2a 0.17055(17) 0.57554(13) 0.37769(14) 0.0331(4)
H1c 0.2906 0.444 0.25 0.041095
H1ca 0.2905 0.4439 0.25 0.033822
H2b 0.2366 0.5583 0.4589 0.038547
H2ba 0.2366 0.5583 0.4588 0.039688
H2a 0.0732 0.5182 0.3814 0.038547
H2aa 0.0732 0.5181 0.3812 0.039688
H1d 0.3638 0.5894 0.25 0.041095
H1da 0.3638 0.5894 0.25 0.033822
H1b 0.0592 0.7536 0.4536 0.044439
H1ba 0.0591 0.7536 0.4535 0.045368
H1a 0.2205 0.7878 0.3733 0.044439
H1aa 0.2203 0.7879 0.3732 0.045368
B1a 0.1761 0.1497 0.262 0.026532
B1aa 0.174(3) 0.137(2) 0.2684(5) 0.019(5)
F1a 0.2317 0.2605 0.3416 0.052829
F1aa 0.233(3) 0.2557(18) 0.342(2) 0.049(4)
F2a 0.3006 0.0566 0.2302 0.047879
F2aa 0.29684(15) 0.04914(12) 0.25 0.0520(5)
F3a 0.0539 0.0799 0.3329 0.059682
F3aa 0.066(3) 0.085(4) 0.332(3) 0.081(6)
F4a 0.1163 0.2022 0.1382 0.078348
F4aa 0.121(3) 0.208(3) 0.1381(11) 0.072(6)
B1b 0.1536 0.1228 0.2355 0.023328
B1ba 0.1568(16) 0.1300(9) 0.228(4) 0.028(5)
F1b 0.2947 0.0456 0.2538 0.04441
F1ba 0.29684(15) 0.04914(12) 0.25 0.0520(5)
F2b 0.0597 0.0688 0.1288 0.031546
F2ba 0.0575(11) 0.0678(8) 0.1320(8) 0.0287(13)
F3b 0.065 0.1218 0.3572 0.056123
F3ba 0.0638(14) 0.125(2) 0.3569(11) 0.061(4)
F4b 0.1948 0.2598 0.2003 0.062633
F4ba 0.1957(16) 0.2624(10) 0.1991(19) 0.066(5)

aRefinement of themodel ofSzklarzet al. (2009) against themeasured data inBayreuth.
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Table C.11: Fractional atomic coordinates for the [BF4]
− model molecule at T = 160 K

in pseudo rigid body approach. Standard uncertainties are given in parentheses.

Atom x y z
B1 0.0 0.0 0.0
F1 0.0556(18) 0.1108(13) 0.0797(18)
F2 0.1246(14) -0.0931 (14) -0.0318 (12)
F3 -0.1222 (18) -0.0698 (15) 0.0709(19)
F4 -0.0598 (24) 0.0525 (18) -0.1237(8)

Table C.12: Rotational and translational parameters for two defined molecular positions

of [BF4]
− anion, Ma and Mb, in rigid body approach for the structure at T=160 K.

Molecule φ χ ψ xtrans ytrans ztrans
Ma 0 0 0 0.1761(13) 0.1497(13) 0.2620(11)
Mb -78.49 51.22 4.492 0.1536(8) 0.1228(6) 0.2353(9)
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