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1        Summary 

Methane (CH4) is an important greenhouse gas and is predominantly produced by 

methanogens.  The production of CH4 is driven by a stepwise degradation of organic matter 

into intermediates by a complex microbial food web in which methanogenesis is the terminal 

process.  This food web trophically links fermentation, syntrophic fermentation, acetogenesis, 

and methanogenesis.  However, methanogenic habitats can differ in pH, temperature, and 

availability of nutrients and carbon sources, and thus, may harbor dissimilar microbial 

communities that are adapted to those varying conditions and collectively catalyze the 

degradation of complex organic matter.  In other words, methanogenic food webs of different 

CH4-emitting habitats may be driven by functionally redundant anaerobes.  Despite these 

theoretical considerations, methanogenic food webs are for the most part conceptualized 

rather than resolved.  The objectives of this dissertation were to (a) resolve the complex 

methanogenic food webs of contrasting CH4-emitting habitats and (b) determine if those 

methanogenic food webs are driven by functionally redundant anaerobes. 

The objectives were addressed with cultivation-dependent, analytical, and molecular 

approaches, including isolation, supplementation of anoxic slurries, determination of 

dissimilation products, quantification of cultivable microorganisms, stable isotope probing, 

quantification of gene copy numbers, analysis of 16S rRNA and 16S rRNA genes, and analysis 

of structural genes.  Soil from four contrasting mires, root-free soil and soil-free roots of mire 

plants, and gut contents of the earthworm Eudrilus eugeniae were analyzed. 

Contrasting mire soils showed similar glucose-, acetate-, and H2-CO2-dependent 

product profiles, cell numbers of cultivable microorganisms, and gene copy numbers, but major 

differences were observed in bacterial and methanogenic communities.  Only 15 % of species-

level mcrA and family-level 16S rRNA gene phylotypes (mcrA encodes the alpha-subunit of 

methyl-CoM reductase) were common to all mire soils, indicating that methanogenic food webs 

are for the most part driven by dissimilar microorganisms. For example, Clostridiaceae were 
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common to all mire soils whereas Bacillaceae or Peptococcaceae were restricted to only one 

of the mire soils.  About 40 % of the detected family-level phylotypes of each mire soil have no 

cultured isolate, illustrating that a diverse array of mire-derived microorganisms await 

characterization.  The majority of taxa detected in acidic mire soils were also detected in more 

neutral mire soils whereas many taxa detected in more neutral mire soils were not detected in 

acidic mire soils, suggesting that pH restricted the diversity of microorganisms in acidic mire 

soils. 

Formate can be a substrate for methanogens and is released from mire-derived 

fermenters and from plant roots as a root exudate, suggesting that the root zone might be a 

hot spot for methanogenesis.  Surprisingly, soil-free roots of Molinia caerulea and Carex sp. 

from one of the aforementioned mires initially produced H2-CO2 in response to supplemental 

formate.  Two isolates related to Citrobacter and Hafnia were obtained from those roots and 

were capable of fermentation.  Both isolates catalyze the formation of H2 from formate via the 

formate-hydrogenlyase complex harboring a group 4 [NiFe]hydrogenase.  The production of 

CH4 and acetate by methanogens and acetogens, respectively, occurred subsequently either 

indirectly from formate-derived H2 or directly from supplemental formate.  These observations 

illustrate a potential trophic interaction between formate-hydrogenlyase-containing fermenters, 

acetogens, and methanogens. 

Gut contents of the CH4-emitting earthworm E. eugeniae fermented glucose, produced 

acetate from H2-CO2 via acetogenesis, and produced CH4.  A methanogenic and an acetogenic 

enrichment were obtained from gut contents.  The methanogenic enrichment utilized formate 

and H2-CO2 and contained species of Methanobacterium.  The acetogenic enrichment formed 

acetate from formate and H2-CO2 in a stoichiometric ratio indicative of acetogenesis and 

contained an acetogen related to Terrisporobacter.  Most detected fermenters, acetogens, and 

methanogens differed from taxa detected in mire soils and on mire-derived plant roots. 

Fermenters and acetogens were isolated or enriched from aerated forest soil, roots of 

mire plants, and gut contents of the earthworm E. eugeniae.  The fermenters produced 
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intermediates that were consumed by the acetogens.  For example, the Clostridium-related 

acetogen SB1 was enriched in a culture together with the Clostridium-related fermenter SB3 

and the Carnobacterium-related fermenter SB4 from roots of mire plants.  Both fermenters 

were obtained in pure culture and produced H2, ethanol, formate and lactate from glucose 

under anoxic conditions.  In contrast, in co-culture with the Clostridium-related acetogen SB1, 

only acetate was produced from glucose, indicating that the acetogen utilized the fermentation 

products of the two fermenters.  These findings illustrate the potential trophic interactions and 

functional redundancy of fermenters and acetogens in contrasting habitats. 

The collective results indicated that microbial processes driving the methanogenic food 

webs in mire soils, the rhizosphere of mire plants, and gut contents of E. eugeniae are 

qualitatively more similar than dissimilar but are facilitated by dissimilar microbial communities.  

The functional redundancy of the microbial communities is in particular reflected by the large 

number of detected taxa not identical in each of the anoxic habitats but nonetheless catalyzing 

similar processes. 
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2 Zusammenfassung 

Methan (CH4) ist ein wichtiges Treibhausgas, welches vor allem von Methanogenen 

produziert wird.  Die Produktion von CH4 ist von dem schrittweisen Abbau organischen 

Materiales in Intermediate angetrieben.  Der Abbau wird von einem komplexen mikrobiellen 

Nahrungsnetz mit Methanogenese als abschließendem Prozess katalysiert.  Dieses 

Nahrungsnetz verbindet Gärung, syntrophe Gärung, Acetogenese und Methanogenese.  

Methanogene Habitate variieren jedoch in pH, Temperatur, Verfügbarkeit von Nährstoffen und 

Kohlenstoffquellen, und könnten daher unterschiedliche mikrobielle Gesellschaften aufweisen, 

welche an die verschiedenen Bedingungen angepasst sind und gemeinsam den Abbau von 

komplexem, organischem Materials katalysieren.  Das heißt, methanogene Nahrungsnetze in 

unterschiedlichen CH4-emittierenden Habitaten könnten durch funktionell redundante 

Anaerobe angetrieben werden.  Unabhängig von theoretischen Betrachtungen sind 

methanogene Nahrungsnetze größtenteils konzipiert und wenig aufgeklärt.  Die Zielsetzung 

dieser Dissertation war es (a) komplexe methanogene Nahrungsnetze von unterschiedlichen 

CH4-emittierenden Habitaten aufzuklären und (b) zu bestimmen, ob diese methanogenen 

Nahrungsnetze von funktionell redundanten Anaeroben angetrieben sind. 

Die Fragestellung wurde mit kultivierungsabhängigen, analytischen und molekularen 

Methoden bearbeitet, welche Isolierung, Supplementierung von anoxischen 

Aufschlämmungen, Bestimmung von Dissimilationsprodukten, Quantifizierung von 

kultivierbaren Mikroorganismen, Beprobung von stabilen Isotopen, Quantifizierung von 

Kopienzahlen von Genen, Analyse von 16S rRNA und 16S rRNA Genen, und Analyse von 

strukturellen Genen umfasste.  Der Boden von vier unterschiedlichen Mooren, wurzelfreier 

Boden und bodenfreie Wurzeln von Moorpflanzen, und der Darminhalt des Regenwurmes 

Eudrilus eugeniae wurden analysiert. 

Die unterschiedlichen Moorböden wiesen ähnliche Glukose-, Acetat- und H2-CO2-

abhängige Produktprofile, ähnliche Zellzahlen kultivierbarer Mikroorganismen und ähnliche 
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Kopienzahlen von Genen auf.  Die bakteriellen und methanogenen Gesellschaften zeigten 

hingegen große Unterschiede.  Lediglich 15 % der mcrA Phylotypen auf Speziesebene (mcrA 

kodiert die Alphauntereinheit der Methyl-CoM Reduktase) und 16S rRNA Gen Phylotypen auf 

Familienebene konnten in allen Moorböden nachgewiesen werden, was auf methanogene 

Nahrungsnetze hindeutet, die größtenteils durch unterschiedliche Mikroorganismen 

angetrieben werden.  Clostridiaceae beispielsweise wrden in allen Moorböden detektiert 

wohingegen Bacillaceae oder Peptococcaceae begrenzt auf nur einen der Moorböden waren.  

Von jedem Moorboden waren etwa 40 % der detektierten Phylotypen auf Familienebene mit 

keinem kultivierten Isolat assoziiert.  Dies veranschaulicht das breite Spektrum an 

Mikroorganismen in Moorböden, welches es noch zu charakterisieren gilt.  Der Großteil der 

Taxa, der in sauren Moorböden detektiert wurde, wurde auch in eher neutraleren Moorböden 

detektiert.  Viele Taxa, die in eher neutraleren Moorböden detektiert wurden, wurden nicht in 

sauren Moorböden detektiert.  Diese Beobachtungen sind ein Hinweis darauf, dass die 

Diversität an Mikroorganismen in sauren Moorböden durch den pH eingeschränkt wurde. 

Formiat kann als Substrat von Methanogenen verwendet werden und wird von Gärern, 

die in Moorböden zu finden sind, und von Pflanzenwurzeln in Form von Wurzelexsudaten 

freigesetzt, was auf den Wurzelbereich als Hotspot für Methanogenese hinweisen könnte.  

Überraschenderweise produzierten bodenfreie Wurzeln von Molinia caerulea und Carex sp. 

aus einem der zuvor genannten Moore zunächst H2-CO2 als Reaktion auf die Zugabe von 

Formiat.  Zwei Isolate wurden von genannten Wurzeln gewonnen, welche mit Citrobacter und 

Hafnia verwandt sind und gären können.  Beide Isolate katalysieren die Bildung von H2 aus 

Formiat mittels des Formiat-Hydrogenlyase-Komplexes, welcher eine Gruppe 4 

[NiFe]Hydrogenase enthält.  Die Produktion von CH4 und Acetat durch Methanogene und 

Acetogene trat nach der Produktion von H2 auf, entweder indirekt von aus Formiat gebildetem 

H2 oder direkt von zugegebenem Formiat.  Diese Beobachtungen veranschaulichen potentielle 

trophische Interaktionen zwischen Acetogenen, Methanogenen und Gärern, die einen 

Formiat-Hydrogenlyase-Komplex besitzen. 
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Der Darminhalt des CH4-emittierenden Regenwurmes E. eugeniae fermentierte 

Glukose, produzierte H2-CO2 aus Acetat durch Acetogenese und produzierte CH4.  Eine 

methanogene und eine acetogene Anreicherungskultur wurden aus dem Darminhalt 

gewonnen.  Die methanogene Anreicherungskultur nutzte Formiat und H2-CO2 und beinhaltete 

Spezies der Gattung Methanobacterium.  Die acetogene Anreicherungskultur bildete Acetat 

aus Formiat und H2-CO2 in einem stöchiometrischen Verhältnis, welches auf Acetogenese 

hinwies, und beinhaltete einen zu Terrisporobacter verwandten Acetogenen.  Die meisten 

detektierten Gärer, Acetogenen und Methanogenen unterschieden sich von Taxa, die in 

Moorböden oder an Wurzeln von Moorpflanzen gefunden wurden. 

Gärer und Acetogene wurden aus belüftetem Waldboden, Wurzeln von Moorpflanzen 

und dem Darminhalt des Regenwurmes E. eugeniae isoliert oder angereichert.  Die Gärer 

produzierten Intermediate, welche von den Acetogenen konsumiert wurden.  Der Acetogene 

SB1 (verwandt zu Clostridium) beispielsweise wurde in einer Kultur zusammen mit den Gärern 

SB3 (verwandt zu Clostridium) und SB4 (verwandt zu Carnobacterium) aus Wurzeln von 

Moorpflanzen angereichert.  Beide Gärer wurden in Reinkultur gewonnen und produzierten 

unter anoxischen Bedingungen H2, Ethanol, Formiat und Laktat aus Glukose.  Im Kontrast 

dazu, produzierte die Kokultur mit dem Acetogenen SB1 lediglich Acetat von Glukose.  Dies 

weist darauf hin, dass der Acetogene SB1 Gärungsprodukte der beiden Gärer nutzen kann.  

Diese Beobachtungen veranschaulichen die möglichen trophischen Interaktionen von Gärern 

und Acetogenen in unterschiedlichen Habitaten. 

Die Gesamtheit der Ergebnisse zeigt, dass sich die mikrobiellen Prozesse, welche die 

methanogenen Nahrungsnetze in Moorböden, der Rhizosphäre von Moorpflanzen und dem 

Darminhalt von E. eugeniae antreiben, qualitativ stärker ähneln als unterscheiden, jedoch von 

unterschiedlichen mikrobiellen Gesellschaften ermöglicht werden.  Die funktionelle 

Redundanz mikrobieller Gesellschaften ist besonders durch die große Anzahl detektierter 

Taxa reflektiert, welche in den jeweiligen anoxischen Habitaten nicht identisch sind, aber 

dennoch ähnliche Prozesse katalysieren. 
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3 Introduction 

Methane (CH4) is an important greenhouse gas and is predominantly produced by 

methanogens in various anoxic habitats when carbon dioxide (CO2) is the main terminal 

electron acceptor (Bouwman 1990, Thauer 1998, Dianou et al. 2001, Mizukami et al. 2006).  

The production of CH4 is driven by a stepwise degradation of organic biopolymers into 

intermediates by a complex microbial food web in which methanogenesis is the terminal 

process (Zehnder 1978, McInerney and Bryant 1981, Drake et al. 2009).  This food web 

trophically links fermentation, syntrophic fermentation, acetogenesis, and methanogenesis 

(Zehnder 1978, McInerney and Bryant 1981, Drake et al. 2009), suggesting that similar 

processes fuel methanogenesis in different anoxic habitats.  However, methanogenic habitats 

can differ in pH, temperature, and availability of nutrients and carbon (Westermann 1993, Ding 

et al. 2002, Wüst et al. 2009b), and thus may harbor contrasting microbial communities that 

are adapted to those varying conditions and collectively catalyze the degradation of complex 

organic biopolymers.  In other words, methanogenic food webs of different CH4-emitting 

habitats may be driven by functionally redundant anaerobes (i.e., by microorganisms that are 

identical in function but phylogenetically distinct).  Despite these theoretical considerations, 

methanogenic food webs are for most part conceptualized in textbooks rather than resolved in 

the primary literature (Drake et al. 2009).  The focus of this dissertation was to (a) resolve the 

complex methanogenic food webs of contrasting CH4-emitting habitats and (b) determine if 

those methanogenic food webs are driven by functionally redundant anaerobes. 

3.1 Greenhouse gases contribute to global warming 

Thirty percent of the energy of sunlight is reflected back into the solar system whereas 

the remaining 70 % are absorbed by molecules in the atmosphere and on the Earth’s surface 

(Rogers and Whitman 1991, Stocker et al. 2013).  Molecules in the atmosphere such as water, 

CO2, and CH4 are very effective in absorbing the energy of sunlight, and reflecting a part of it 

back into the solar system or towards the Earth’s surface (Rogers and Whitman 1991).  CH4 
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is the most abundant hydrocarbon in the atmosphere and can be chemically oxidized to water 

vapor and CO2 (Bouwman 1990, Rogers and Whitman 1991).  The oxidation of CH4 results in 

the production of ozone under high NOx concentrations and for example occurs in polluted air 

in the troposphere (Rogers and Whitman 1991).  Consequently, increasing concentrations of 

CH4 positively influence the concentration of toxic tropospheric ozone, and thus contributes to 

air pollution (West et al. 2006).  CH4 also reacts with chlorine (Cl) in the atmosphere and forms 

hydrogen chloride (HCl) and CH3 (Bouwman 1990, Rogers and Whitman 1991).  CH3 is further 

oxidized whereas HCl is rained out of the stratosphere as acidic rain (Rogers and Whitman 

1991).  The absorption of sun energy is essential to maintain an average global temperature 

that makes life possible on earth (i.e., approximately 15 °C) (Rogers and Whitman 1991). 

CO2 and CH4 are the two most important greenhouse gases with the greatest impact 

on global warming (Andreae and Crutzen 1985, Bouwman 1990).  For example, CO2 and CH4 

account for 82 % and 10 % of total emitted greenhouse gases in the United States, respectively 

(Leaf et al. 2003).  Two hundred years ago, the concentration of atmospheric CO2 was about 

280 ppm and has been increasing since (Barnola et al. 1987, Stocker et al. 2013).  In 2011, 

CO2 concentration approximated 391 ppm (Stocker et al. 2013).  The increase of CO2 in the 

atmosphere is a result of human activity and mostly due to fossil fuel burning (Rogers and 

Whitman 1991, Stocker et al. 2013).  In 1750, the concentration of CH4 was 0.7 ppm and had 

increased up to 1.8 ppm in 2011 (Stocker et al. 2013).  Between 1980 and 2006 the annual 

emission of CH4 remained fairly stable with approximately 550 Tg CH4 per year but started to 

increase again since 2007 (Stocker et al. 2013).  Sources of CH4 are natural wetlands, 

agriculture and waste, ruminants, fossil fuel related emissions, biomass and biofuel burning 

(Liu and Whitman 2008, Stocker et al. 2013, Moore et al. 2014).  Anthropogenic emissions 

account for approximately 50 % of total emissions (Stocker et al. 2013).  Microbially mediated 

CH4 production occurs in various anoxic habitats under the absence of O2 and other electron 

acceptors except CO2 (Balch et al. 1979, Rogers and Whitman 1991, Ding et al. 2002).  Natural 

wetlands are the single most important source of CH4 and account for approximately 187-

224 Tg CH4 yr-1 which is 34-41 % of total CH4 emission (Liu and Whitman 2008, Stocker et al. 
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2013).  It is predicted that a rising concentration of greenhouse gases in the atmosphere will 

increase global warming and thus being the trigger to increasing global temperature, rising sea 

level, diminishing snow and ice covers, increasing extreme weather, and increasing 

acidification of the oceans (Rogers and Whitman 1991, Stocker et al. 2013). 

The average global temperature increased 0.6 °C per 10 years over the last 30 years 

in high-latitude regions of the Earth, regions that include most of the permafrost-influenced 

soils (Schuur et al. 2015).  Normally frozen soil thaws and stored recalcitrant carbon is 

decomposed by trophically linked microbial food webs and released into the atmosphere in 

form of CO2 and CH4 (Schuur et al. 2015).  The total global organic carbon pool in soil is 

estimated to be 2,344 Pg carbon in the top three meters (Jobbágy and Jackson 2000).  In 

comparison, the organic carbon pool in soil of the northern permafrost soil is estimated to be 

1,035 Pg carbon in the top three meters (Schuur et al. 2015), illustrating that approximately 

45 % of the total global organic carbon pool is stored in northern permafrost soils and 

theoretically can be released as CO2 and CH4 when frozen soils thaw and contribute to global 

warming. 

3.2 Natural wetlands: A source of CH4 

Wetlands are distinguished from other terrestrial ecosystems by having (a) a water 

table near the land surface, (b) unique soil conditions that are strongly influenced by the limited 

availability of molecular oxygen (O2), and (c) a specialized biota that is characterized by plants 

and other organisms that are adapted to wet and reduced soils (Charman 2002, Rydin and 

Jeglum 2006).  Peatland, mires, fens, and bogs are specific types of wetlands (Crum 1992, 

Westermann 1993, Charman 2002).  Mires include fens and bogs, and peat-forming mires are 

often called peatlands (Charman 2002).  Peat consists predominantly of remains from plants 

(Gorham 1991).  Fens and bogs are characterized by pore water with a low pH, low 

concentrations of ions, and low availability of O2 (Crum 1992, Westermann 1993).  Bogs have 

a lower pH and lower concentrations of ions than fens (Crum 1992, Westermann 1993).  Water 

and nutrients in fens derive from precipitation and other sources such as ground water, and in 
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bogs solely from precipitation (Charman 2002).  The vegetation of fens and bogs differs 

(Gorham 1991, Crum 1992).  Species of Carex are more often found in fens and species of 

Sphagnum are more often found in bogs (Gorham 1991, Crum 1992).  It has been observed 

that the pH is influenced by the growth rate of Sphagnum moss and becomes more acidic with 

higher growth rates (Charman 2002).  On a dry weight basis, Sphagnum moss consists to 10-

30 % of uronic acids (i.e., sugar acids with a carboxyl group) (Charman 2002).  The carboxyl 

group removes cations from the environment of the Sphagnum moss and thus contributes to 

low ion concentrations in bogs (Charman 2002). 

Peatlands are especially interesting in regard to greenhouse gases.  On one hand, 

peatlands emit considerable amounts of CH4 and on the other hand store CO2 from the 

atmosphere in the form of peat (Gorham 1991).  The area of peatland is estimated to be about 

4 x 106 km2 worldwide, which is about 2.3 % of the earth’s terrestrial surface and most parts of 

it are distributed on the northern hemisphere (Gorham 1991, Immirzi et al. 1992, Charman 

2002).  In Germany alone, an area of about 15 x 103 km2 is covered by peat, which is about 

4.3 % of the total area of Germany (Montanarella et al. 2006).  Despite this relatively small 

area, peatlands of the northern hemisphere store about one third (i.e., 455 Pg carbon) of the 

total global pool of soil carbon and contribute considerably to the emission of CH4 (Gorham 

1991, Stocker et al. 2013). 

CH4 is produced from methanogens that have been studied in diverse wetlands 

(Großkopf et al. 1998, Bräuer et al. 2004, Chin et al. 2004, Cadillo-Quiroz et al. 2006, Wüst et 

al. 2009a, Lin et al. 2014b).  Methanogens of such habitats consume predominately H2-CO2 

and acetate that can be produced by fermentation (Chin et al. 2004, Bräuer et al. 2004, Drake 

et al. 2009).  The trophic interactions between fermenters and methanogens in wetland soils 

are less studied in comparison to CH4 emission and methanogenesis, and are for most parts 

conceptualized. 
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3.3 Plants influence the emission of CH4 in wetland soils 

Vegetation influences the emission of CH4 in water-saturated soils (Koelbener et al. 

2010, Williams and Yavitt 2010), and up to 90 % of the emitted CH4 might be facilitated by 

plants (Watanabe et al. 1999, Colmer 2003) (Figure 1).  For example, rice paddy soils have 

higher CH4 emission rates than paddy soils without plants (Dannenberg and Conrad 1999).  

The capacity of plants to transport CH4 from the roots to the atmosphere varies depending on 

season and plant species (Ding et al. 2002, Ding and Cai 2003, Laanbroek 2010).  For 

instance, species of Carex increase the emission of CH4 from wetland soils more than other 

typical wetland plants (Ding et al. 2002, Ström et al. 2005, Kao-Kniffin et al. 2010, Koelbener 

et al. 2010,).  The emission of CH4 increases with increasing water-table, above ground plant 

biomass, stem density, density of plant roots, plant litter, and availability of labile organic 

carbon (Jobbágy and Jackson 2000, Joabsson and Christensen 2001, Ding et al. 2002).  While 

stem density increases with increasing above ground plant biomass, and labile organic carbon 

increases with depth, density of plant roots, water-table, and plant litter (Jobbágy and Jackson 

2000, Joabsson and Christensen 2001, Ding et al. 2002).  With freshwater marshes, it has 

been observed that the emission of CH4 is driven by the availability of labile organic carbon, 

whereas the availability of labile organic carbon is rather influenced by high amounts of plant 

litter and a high water table than by photosynthetically active Carex and Deyeuxia plants and 

above ground biomass (Ding et al. 2002).  With paddy soil, it has been observed that up to 

70 % of the emitted CH4 derived from exudates of the rice plant (Watanabe et al. 1999), 

indicating that plant species influences the carbon source for methanogenesis. 

Plants influence the emission of CH4 by (a) releasing organic carbon into the soil that 

can fuel methanogenesis (Jones 1998, Ström et al. 2003), (b) transporting CH4 from the soil 

into the atmosphere via the aerenchyma in roots, stems, and leaves (Verville et al. 1998), and 

(c) leaking O2 into the rhizosphere, and thus, inhibiting methanogenesis and stimulating 

methanotrophy (Van der Nat and Middelburg 1998, Armstrong et al. 2000, Laanbroek 2010, 

Lamers et al. 2013).  The aerenchyma is a special tissue in roots, stems, and leaves of plants 

in water-saturated soils allowing the diffusion of O2 from leaves into roots and the diffusion 
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from CO2 and CH4 from roots into leaves and from there into the atmosphere (Armstrong 1979, 

Colmer 2003, Ding and Cai 2003, Laanbroek 2010).  Up to 40 % of O2 which diffuses from 

leaves to roots for root respiration is lost to soil and may form an oxic zone around the root 

(Colmer 2003).  Obligate aerobes such as the methylotrophs Methylomonas, Methylobacter, 

Methylococcus (Horz et al. 2001) and obligate anaerobes such the methanogens 

Methanosarcinaceae, Methanobacteriaceae, and Methanocellaceae can be detected on roots 

of rice plants (Chin et al. 2004), indicating that the rhizosphere of wetland plants offer habitats 

for microorganisms that require different O2 availabilities. 

 

Figure 1: Theoretical model of the emission of CH4 in water-saturated soils. 

Red rods indicate methanogens.  A thicker arrow indicates a potentially more important flux than a 

thinner arrow.  Legend: CPL, plant litter-derived carbon; CPS, photosynthesis-derived carbon.  Model 

was created based on observations made by Watanabe et al. (1999), Colmer (2003), Koelbener et 

al. (2010), and Williams and Yavitt (2010). 

The term rhizosphere derives from the Greek and descripts the ‘influence of a root on 

its surrounding’ and is generally the zone of soil that is subjected to the influence of the living 
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plant root (Brimecombe et al. 2001, Pinton et al. 2001).  Compounds that are released by the 

root are called exudates (Walker et al. 2003).  Soil within two millimeters of the root can be 

affected by plant exudates and plant-derived O2 (Armstrong et al. 2000, Pinton et al. 2001).  

Root exudates constitute a smorgasbord of substrates for microorganisms and include 

polysaccharides, sugars, amino acids, organic acids, fatty acids, sterols, phenols, growth 

factors, enzymes, flavones, nucleotides, and mucilage (Brimecombe et al. 2001, Uren 2001, 

Walker et al. 2003). Such compounds are released actively and controlled by the roots (Jones 

1998, Pinton et al. 2001, Bais et al. 2006).  Passive leakage including the release of sugars 

approximates five percent of plant-fixed carbon (Uren 2001, Lambers et al. 2009).  Thirty to 

sixty percent of the carbon fixed by photosynthesis can be translocated to the roots and up to 

70 % of carbon in roots can be released into rhizospheric soil (Coleman 1976, Neumann and 

Römheld 2001, Pinton et al. 2001, Uren 2001).  The amount of compounds released depends 

on plant age, plant species, light intensity, soil type, nutritional status of the plant, stress 

factors, mechanical impedance, temperature, and microbial activity in the rhizosphere 

(Brimecombe et al. 2001, Pinton et al. 2001, Koelbener et al. 2010).  Organic carbon can be 

released in concentrations of 10-250 mg g[root]-1 and enhances the growth of microorganisms 

in rhizospheric soil (Brimecombe et al. 2001, Lambers et al. 2009).  Generally, microbial activity 

and biomass is higher in the rhizosphere (e.g., 109 to 1012 cells g[rhizosphere soil]-1) than in 

bulk soil (Brimecombe et al. 2001, Pinton et al. 2001). 

Microorganisms mediate the turnover of carbon, nitrogen and other nutrients as well as 

the mineralization of organic compounds in soil, and thus, enhance the growth of plants 

(Brimecombe et al. 2001).  Plants can be highly selective for their microbial community in the 

rhizosphere and thus improve their health (Brimecombe et al. 2001).  Plants influence their 

environment including microorganisms by specific compounds that are actively released from 

roots (Jones 1998, Brimecombe et al. 2001, Bais et al. 2006).  Such compounds may (a) 

chelate metals for detoxification (e.g., aluminum) or mobilize nutrients (e.g., phosphorus, iron 

[Lambers et al. 2009]), (b) attract beneficial microorganisms (Döbereiner and Pedrosa 1987, 

Bais et al. 2006), (c) increase the capacity of soil to hold water (Walker et al. 2003), (d) enable 
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communication with other plants (e.g., release of phytotoxins that inhibit growth of neighboring 

plants [Bais et al. 2006]), and (e) enable communication to microorganisms (e.g., plant 

exudates mimic quorum sensing of bacteria [Bais et al. 2006]).  Beneficial microbes can be N2-

fixing Proteobacteria (Döbereiner and Pedrosa 1987, Bais et al. 2006), bacteria that produce 

antibiotics against potential pathogens (Bais et al. 2006, Lambers et al. 2009), or sulfide-

oxidizing bacteria (Friedrich et al. 2001, Lamers et al. 2013). 

3.4 Earthworms: A source of CH4? 

Earthworms belong to the class Oligochaeta and inhabit terrestrial habitats (Edwards 

2004).  Species that measure a few millimeters and species that measure more than one meter 

are known (Lee 1985, Edwards and Bohlen 1996, Makeschin 1997).  Earthworms ingest 1-30 

times the fresh weight of their own body per day and have an average gut passage time of 

2-24 hours (Brown et al. 2000).  Soil and organic matter that passes through the earthworm is 

reconstructed in its physical, chemical, and biological properties (Brown et al. 2000).  

Consequently, earthworms interact and affect soil organisms, for example, by (a) exploiting 

soil organic matter that can be utilized by other organisms or (b) forming burrows that aerate 

the soil (Lavelle 1986, Brown 1995, Brown et al. 2000). 

Earthworms have specific feeding preferences.  Epigeic earthworms such as Eudrilus 

eugeniae feed on and dwell in litter but do not form burrows (Bouché 1977, Lavelle 1981, 

Brown 1995, Brown et al. 2000).  Eudrilus eugeniae is native to certain African soils and is 

used commercially in vermicomposting systems in other parts of the world (e.g., processing of 

cow manure and sugar cane in Brazil [Martinez 1998, Domínguez 2004; Oboh et al. 2007]).  

Anecic earthworms such as Lumbricus terrestris feed on litter and soil, dwell in soil, and form 

vertical burrows (Bouché 1977, Lavelle 1981, Brown 1995).  Endogeic earthworms such as 

Pontoscolex corethrurus feed on and dwell in soil, and form horizontal burrows (Bouché 1977, 

Lavelle 1981, Brown 1995).  They also graze on rhizospheric soil (Doube and Brown 1998) 

that is richer in plant-derived organic carbon and has a higher abundance of microorganisms 

than bulk soil (Brimecombe et al. 2001, Neumann and Römheld 2001, Pinton et al. 2001, Uren 
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2001).  Earthworm activity has been shown to decrease diseases of plant roots (Doube and 

Brown 1998).  Plants benefit from burrows and cast in burrows (Brown et al. 2000).  Burrows 

deliver O2 to roots and provide little resistance to growing roots in comparison to compact soil 

(Brown et al. 2000).  Cast represents an easily available source of nutrients for plants (Brown 

et al. 2000).  Earthworms distribute beneficial microorganisms such as species of N2-fixing 

Rhizobium (Stephens et al. 1994). 

 

Figure 2: Anatomy of the digestive system of an earthworm. 

The figure was modified from Horn et al. (2003b) and Wüst et al. (2009b) and is based on knowledge 

gained from L. terrestris. 

Earthworms ingest soil, organic matter, fungi, protozoa, and other organisms (Brown 

et al. 2000).  Those substrates pass pharynx, crop, and gizzard (Brown et al. 2000).  Ingested 

material such as soil, fungal hyphae, large bacteria, and algae are ground and mixed in crop 

and gizzard (Brown et al. 2000).  In the foregut, a high amount of water and a carbon-rich 

secrete called mucus is provided to the ingested organic matter, and the pH is neutralized 

(Barois and Lavelle et al. 1983, Lavelle 1986, Martin et al. 1987, Trigo and Lavelle 1993).  Most 

digestion occurs in midgut and hindgut where bacteria become activated by supplements of 

the foregut (e.g., water, carbon) and metabolize the ingested organic matter (Parle 1963, 

Brown et al. 2000).  Water, nutrients, and organic carbon are assimilated by the earthworm in 

the hindgut (Brown et al. 2000). 

Different earthworm species produce mucus with a similar carbon and nitrogen content, 

indicating that mucus of different earthworm species is constructed similarly (Brown et al. 

Pharynx Gizzard

Crop

HindgutMidgutForegut

AnusClitellum

Mouth

Emission of H2 & N2O 



INTRODUCTION 

18 

2000). Mucus consists of amino acids, organic acids, amino sugars, sugars, and glycoproteins 

(Rahemtulla and Løvtrup 1975, Martin et al. 1987, Drake and Horn 2007, Wüst et al. 2009b).  

For example, glucose, maltose, formate, and acetate were detected in the gut of earthworms 

(Drake and Horn 2007, Wüst et al. 2009b).  The amount of mucus decreases during gut 

passage from the anterior to the posterior end of the earthworm (Trigo et al. 1999).  Epigeic 

and anecic earthworms have a lower percentage of mucus in their guts than endogeic 

earthworms which seems to correlate with the amount of carbon ingested with soil (Trigo et al. 

1999).  Epigeic and anecic earthworms have a more carbon rich diet than endogeic 

earthworms do, and thus, the more carbon rich the ingested substrate is the less mucus is 

secreted to the gut (Trigo et al. 1999). 

The earthworm gut is characterized by a high water content, a neutral pH, a high 

content of mucus-derived saccharides, and anoxia (Barois and Lavelle 1986, Brown 1995, 

Trigo et al. 1999, Horn et al. 2003b, Drake and Horn 2007), and thus constitutes an ideal 

habitat for soil-derived anaerobes.  Microorganisms in the gut derive from substrate that the 

earthworm feeds on (Bassalik 1913, Karsten and Drake 1997, Ihssen et al. 2003, Horn et al. 

2006b, Wüst et al. 2009b, Contreras 1980, Drake and Horn 2007).  Different earthworm 

species affect the ingested microbial community differently (Brown 1995).  For example, 

cultivable cell numbers increase during gut passage in Lumbricus rubellus but decrease in 

Aporrectodea caliginosa (Kristufek et al. 1992, Brown 1995).  The ratio of microorganisms that 

grow under obligate anoxic conditions to those growing under oxic conditions was higher with 

gut contents of earthworms than with soil (Karsten and Drake 1995).  In general, the number 

of cultivable microorganisms in the gut is higher than in preingested soil and anaerobes can 

be 4-4,000 times more abundant in the gut than in the soil (Drake and Horn 2007). 

Living earthworms emit denitrification-derived N2, the greenhouse gas nitrous oxide 

(N2O), and fermentation-derived H2 (Karsten and Drake 1997, Horn et al. 2006a, Wüst et al. 

2009b).  H2 and N2O are present in the O2-free gut center of the earthworm L. terrestris (Wüst 

et al. 2009b).  N2 and N2O are produced by denitrifiers such as Bradyrhizobium, Sinorhizobium, 
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and Pseudomonas in the earthworm gut (Horn et al. 2006b), and H2 from fermenters such as 

glucose-fermenting taxa belonging to Clostridiaceae and Enterobacteriaceae (Wüst et al. 

2011).  Molecular and cultivation-dependent analysis indicated that denitrifiers and fermenters 

derive from ingested soil and become activated in the earthworm gut (Karsten and Drake 1997, 

Ihssen et al. 2003, Horn et al. 2006b, Wüst et al. 2009b).  N2O-producing microorganisms were 

most active in the crop, gizzard, and hindgut whereas H2-producing fermenters were most 

active in foregut and hindgut (Wüst et al. 2009b).  Denitrifiers in the earthworm gut might utilize 

sugars and organic acids that originate from hydrolysis and fermentation of mucus-derived 

saccharides.  Slurries with gut contents consumed saccharides more rapidly than slurries with 

soil (Karsten and Drake 1995), illustrating that the earthworm gut constitutes an ideal habitat 

for anaerobes such as fermenters and denitrifiers.  Besides fermenters and denitrifiers (Drake 

et al. 2009, Palmer et al. 2010), acetogens and methanogens are examples of anaerobes that 

are important in wetland soils (Drake et al. 2009) but generally appear to be rather unimportant 

in the earthworm gut (Hornor and Mitchell 1981, Karsten and Drake 1997).  Exceptions might 

be found in the earthworms E. eugeniae, P. corethrurus, and Rhinodrilus alatus that have 

recently been discovered to emit CH4 in vivo (Depkat-Jakob et al. 2012). 

3.5 Anaerobic food webs drive the emission of CH4 

Anoxic CH4-emitting habitats have in common that a trophically linked microbial 

community degrades complex organic matter to intermediates that terminally drive 

methanogenesis if CO2 is the major terminal electron acceptor, collectively called ‘intermediary 

ecosystem metabolism’ (Figure 3) (Zinder 1993, Glissmann and Conrad 2000, Kotsyurbenko 

2005, Drake et al. 2009, Brune 2014).  Mire soils, the rhizosphere of wetland plants, and the 

earthworm gut are examples of anoxic habitats with complex microbial food webs and 

communities (Kraigher et al. 2006, Lu et al. 2006, Drake and Horn 2007, Drake et al. 2009, 

Wu et al. 2009, Dedysh 2011, Wüst et al. 2011, Lin et al. 2014a, Lin et al. 2014b, Bertani et al. 

2016). 
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Figure 3: Hypothetical model of the intermediary ecosystem metabolism in CH4-emitting 

habitats if CO2 is the main terminal electron acceptor. 

The dashed line indicates that some of the intermediates such as formate and methanol can be 

used by methanogens.  Figure was modified from Zehnder (1978), McInerney and Bryant (1981), 

and Drake et al. (2009). 

Plant-derived biopolymers are the major input of carbon into mire soils, rhizosphere of 

wetland plants, and also a source of carbon for microorganisms in the gut of litter-feeding 

earthworms (Zinder 1993, Watanabe et al. 1999, Brown et al. 2000, Ding et al. 2002).  

Lignocellulose constitutes a main component of plant-derived biomass and can account for 

50-80 % of total plant biomass (Ahmed et al. 2001).  Lignocellulose consists of cellulose, 

hemicellulose, and lignin (Ahmed et al. 2001).  Cellulose and hemicellulose are polymers that 

consist of sugars (Kokorevics et al. 1997, Ahmed et al. 2001).  Cellulose consists of glucose 

only whereas hemicellulose consists mostly of xylose, other sugars, and only partially of 

glucose (Malburg et al. 1992, Kokorevics et al. 1997, Ahmed et al. 2001, Lynd et al. 2002).  

Microorganisms excrete exoenzymes that hydrolyze polymers to mono- and disaccharides and 

subsequently ferment those (Kang et al. 2004, Kotsyurbenko 2005, Drake et al. 2009).  The 

major input of carbon for microorganisms in the earthworm gut derives from mucus (Lavelle et 

al. 1995, Martin et al. 1987, Trigo et al. 1999, Drake and Horn 2007).  Gut contents may contain 
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up to 80 % worm-derived mucus (Trigo et al. 1999) and enzymes that degrade 

oligosaccharides and polysaccharides (Zhang et al. 1993).  Some of those enzymes derive 

from ingested microorganisms (Zhang et al. 1993). The highest amount of those enzymes was 

detected in foregut and midgut where the amount of mucus is the highest (Zhang et al. 1993, 

Trigo et al. 1999), indicating that those enzymes may contribute to the degradation of mucus.  

Hydrolyzed mucus consists of diverse mono- and disaccharides including glucose (Rahemtulla 

and Løvtrup 1975, Wüst et al. 2009b). 

Fermentation products indicative for mixed acid, propionate, and butyrate fermentation 

have been detected in gut contents of L. terrestris and moderate acidic mire soil (Hamberger 

et al. 2008, Drake et al. 2009, Wüst et al. 2009b).  Additionally, fermentation products indicative 

of amino acid and lactate fermentation have been detected in gut contents of L. terrestris (Wüst 

et al. 2009b).  With soil from a moderate-acid mire, cellulose was degraded to propionate, 

acetate and CO2 and Porphyromonadaceae, Acidobacteriaceae and Ruminococcaceae were 

identified as active fermenters that utilize cellulose directly or utilize cellulose-derived 

cellobiose or glucose indirectly (Schmidt et al. 2015).  In taiga pond sediments, cellulose is 

fermented to acetate, propionate, iso-valerate, and H2 (Kotsyurbenko 2005).  In soil of a 

moderate-acidic mire, glucose and xylose are fermented to acetate, butyrate, propionate, 

formate, CO2 and H2 (Hamberger et al. 2008).  Acidaminococcaceae, Actinomycetales, 

Aeromonadaceae, Clostridiaceae, Enterobacteriaceae, and Pseudomonadaceae were 

identified as taxa being involved in the degradation of glucose and xylose (Hamberger et al. 

2008).  Clostridium intestinale was isolated from roots of a wetland plant and grows by 

fermentation under anoxic conditions (Gößner et al. 2006).  C. intestinale utilizes cellobiose, 

glucose, fructose, and N-acetylglucosamine and produces acetate, butyrate, lactate, formate 

and H2 as fermentation products (Gößner et al. 2006).  Taxa potentially capable of fermentation 

were detected in the rhizosphere of rice plants (e.g., Clostridia, Acidobacteria, Bacteroidetes 

[Lu et al. 2006]).  With gut contents of L. terrestris, the fermentation of glucose yielded acetate, 

butyrate, formate, lactate, propionate, succinate, ethanol, H2 and CO2, and Enterobacteriaceae 

and Clostridiaceae were identified as active glucose-utilizing fermenters (Wüst et al. 2011). 
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Products of primary fermentation such as ethanol, butyrate and propionate can be 

utilized by secondary fermenters that form H2, CO2, formate and acetate (McInerney and 

Bryant 1981, Schink 1997).  Secondary fermenters are most often trophically linked with an 

H2- or acetate-utilizing microorganism that makes the dissimilation of ethanol, butyrate, and 

propionate thermodynamically feasible under anoxic conditions (Schink 1997).  Such a partner 

can be a methanogen or an acetogen (Bryant et al. 1977, Schink 1997).  Thus, secondary 

fermenters link primary fermentation with acetogenesis and methanogenesis (Jackson et al. 

1999, Lengeler et al. 1999). 

Acetogens form acetate that subsequently fuels methanogenesis (Balch et al. 1979, 

Drake et al. 2006, Hädrich et al. 2012).  Acetogens in mire soils utilize H2-CO2, formate, 

methanol, and potentially many other substrates including sugars (Wüst et al. 2009a, Hädrich 

et al. 2012).  Acetogens in paddy soils and attached to rice roots utilize H2-CO2 and potentially 

other substrates, and have been associated with species of Clostridium and Sporomusa 

(Conrad and Klose 1999, Liu and Conrad 2011).  Acetogens active in those habitats are mostly 

unknown (Drake et al. 2009, Hädrich et al. 2012).  Two acetogens, Sporomusa rhizae and 

Terrisporobacter glycolicus, have been isolated from roots of wetland plants (Küsel et al. 2001, 

Gößner et al. 2006).  Both acetogens grow on H2-CO2, formate, and lactate (Küsel et al. 2001, 

Gößner et al. 2006).  Acetogenesis in the earthworm gut is hitherto thought to be unimportant 

(Drake et al. 2009). 

Methanogenesis in mire soils is studied well.  Mire-derived methanogens utilize H2-

CO2, formate, acetate, and methanol (Williams and Crawford 1984, Horn et al. 2003a, Cadillo-

Quiroz et al. 2006, Wüst et al. 2009a).  Methanobacteriaceae, Methanocellaceae, 

Methanomicrobiaceae, Methanoregulaceae, “Methanosaetaceae”, and Methanosarcinaceae 

have been detected in mire soils (Horn et al. 2003a, Juottonen et al. 2005, Cadillo-Quiroz et 

al. 2006, Hamberger et al. 2008, Putkinen et al. 2009, Wüst et al. 2009a, Lin et al. 2014a).  

Methanogens that are capable to grow on H2-CO2 and acetate were detected in rhizospheric 

soil and attached to roots of rice plants (i.e., Methanomicrobiaceae, Methanobacteriaceae, 
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Methanosarcinaceae, “Methanosaetaceae”, Methanocellaceae [Chin et al. 2004, Lu and 

Conrad 2005]).  Methanogenesis in the earthworm gut is hitherto thought to be unimportant 

(Drake et al. 2009) but in vivo emission of CH4 from earthworms has recently been discovered 

(Depkat-Jakob et al. 2012). 

Collectively those studies indicate that similar processes occur in diverse anoxic 

habitats and those processes seem to be linked to different taxa, indicating a functional 

redundancy of microorganisms.  The fermentation of complex organic matter and the 

production of CH4 have been well studied in anoxic habitats but intermediary trophic links and 

microorganisms involved in those processes are less studied and mostly conceptualized 

(Karsten and Drake 1995, Kotsyurbenko et al. 1996, Glissmann and Conrad 2000, Bräuer et 

al. 2004, Drake et al. 2009, Wüst et al. 2009a, Schmidt et al. 2015). 

3.6 Fermentation 

Fermentation is widespread within Bacteria, Archaea, and Eukaryotes (Lengeler et al. 

1999).  Species related to Clostridiaceae (Wiegel 2009), Acidobacteriaceae (Pankratov et al. 

2012), Planctomycetaceae (Kulichevskaya et al. 2007), Veillonellaceae (Rainey 2009b), and 

many other bacterial taxa are capable of fermentation. 

Table 1: Cultivable cell numbers of fermenters in paddy and fen soil. 

Supplemental 

substrate 
Cultivable cell number per gDW

a Habitat Reference 

Xylan 0.4 – 9.4 x 108 Paddy soil Chin et al. 1999 

Cellobiose 0.1 – 20 x 106 Paddy soil Chin et al. 1999 

Sugars mixture 0.8 – 13 x 107 Paddy soil Chin et al. 1999 

Glucose 0.1 – 25 x 106 Paddy soil Chin et al. 1999 

Glucose 0.01 – 10 x 107 Fen soil Wüst et al. 2009a 

Xylose 0.8 – 50 x 106 Fen soil Wüst et al. 2009a 

a Cell numbers may contain a minor part of non-fermenters growing on supplemental substrates. 

Fermenters were isolated from divers habitats such as swamp (Su et al. 2014), 

anaerobic sludge (Qiu et al. 2014), digester sludge (Alves et al. 2013), rumen (Sun et al. 2015), 
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and wetland soil (Kulichevskaya et al. 2014b).  Fermenters in wetland soils can account for 

approximately 0.8 x 106 to 9.4 x 109 cultivable fermenters gDW
-1 (Table 1)(Chin et al. 1999, 

Wüst et al. 2009a). 

Various fermentation pathways are known (Müller 2001).  Most are named after the 

major fermentation end product (Lengeler et al. 1999, Müller 2001).  Sugars, organic acids, 

amino acids, polyols, and purine may serve as substrates (Linden 1988, Lengeler et al. 1999, 

Müller 2001).  Glucose can be fermented predominantly to (a) lactate (lactic acid fermentation), 

(b) propionate (propionic acid fermentation), (c) butyrate (butyrate fermentation), (d) a mixture 

of acids (mixed acid fermentation), or (e) ethanol (ethanol fermentation) (Table 2).  Propionate, 

butyrate, and ethanol fermentation are thermodynamically more favorable than homolactic and 

heterolactic fermentation (Table 2) (Linden 1988, Lengeler et al. 1999, and Müller 2001). 

Table 2: Representative fermentation pathways of glucose.a 

Fermentation pathway 
Overall stoichiometry for the fermentation of 

glucose 

Standard 

change in Gibbs 

free energy 

ΔG°’ (kJ mol-1)b 

Homolactic fermentation C6H12O6  2 CH3CHOHCOO- + 2 H+ -198 

Heterolactic fermentation 
C6H12O6  CH3CHOHCOO- + H+ + CH3CH2OH + 

CO2 
-211 

Propionate fermentation 
3 C6H12O6  4 CH3CH2COO- + 2 CH3COO- + 6 H+ 

+ 2 CO2 + 2 H2O 
-934 

Butyrate fermentation C6H12O6  CH3CH2CH2COO- + H+ + 2 CO2 + 2 H2 -255 

Mixed acid fermentation 

C6H12O6  COO-CH2CH2COO- + CH3CHOHCOO- 

+ CH3COO- + HCOO- + CH3CH2OH + CO2 + H2 

(non stoichiometric) 

n.a. 

Ethanol fermentation C6H12O6  2 CH3CH2OH + 2 CO2 -236 

a Data derived from Linden (1988), Lengeler et al. (1999), and Müller (2001). Legend: C6H12O6, 

glucose; CH3CHOHCOO-, lactate-; CH3CH2CH2COO-, butyrate-; COO-CH2CH2COO-, succinate2-; 

CH3COO-, acetate-; HCOO-, formate-; CH3CH2OH, ethanol; CO2, carbon dioxide; H2, molecular 

hydrogen; H+, proton; n.a., not applicable. 
b Standard changes in Gibbs free energy are given for the complete reaction and derived from 

Lengeler et al. (1999). 

An organic compound serves as electron donor and electron acceptor during 

fermentation (Müller 2001, Cocaign-Bousquet et al. 2002, Madigan and Martinko 2006).  An 
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intermediate is formed during oxidation of the organic compound and serves as electron 

acceptor (Müller 2001).  Pyruvate can be an intermediate and is formed by glycolysis (Lengeler 

et al. 1999, Müller 2001, Cocaign-Bousquet et al. 2002).  The organic compound is partly 

oxidized and only a part of the energy in this compound can be conserved in ATP (Müller 2001, 

Cocaign-Bousquet et al. 2002).  Most of the energy is conserved during glycolysis and is used 

to synthesize ATP by substrate level phosphorylation (Romano and Conway 1996, Lengeler 

et al. 1999, Madigan and Martinko 2006).  Additional ATP can be conserved by a sodium or 

proton gradient and electron-transport-coupled phosphorylation in some cases (Müller 2001), 

for example during citrate fermentation with the help of a Na+-translocating decarboxylase 

(Dimroth 1997).  Less than one mol and up to four moles of ATP can be conserved from one 

mol of substrate depending on the substrate and fermentation pathway used (Müller 2001). 

3.7 Formation of H2 by the formate-hydrogenlyase complex 

Formate is a common product of mixed acid fermentation (Linden 1988, Lengeler et al. 

1999, Müller 2001).  It is either excreted, decomposed to CO2 and H2, or utilized as source of 

electrons to reduce nitrate or fumarate (Peck and Gest 1956, Rossmann et al. 1991, Sawers 

1994, Leonhartsberger et al. 2002).  The decomposition of formate to H2 and CO2 under anoxic 

conditions counteracts acidification of the medium and is catalyzed by enzymes such as the 

formate-hydrogenlyase (FHL) complex and is in some cases coupled to the translocation of 

protons and potentially the conservation of energy (Stephenson and Stickland 1932, Andrews 

et al. 1997, Bagramyan et al. 2002, Graentzdoerffer et al. 2003, Trchounian and Sawers 2014).  

The O2-sensitive FHL complex consists of a formate dehydrogenase and a hydrogenase 

(Figure 4) (Peck and Gest 1956, Axley et al. 1990). 

The presence of intracellular formate is required for the expression of genes encoding 

the FHL complex (Rossmann et al. 1991).  Formate dehydrogenase transfers electrons from 

formate to a hydrogenase (Peck and Gest 1956, Graentzdoerffer et al. 2003).  The 

hydrogenase produces H2 from protons and formate-derived electrons (Sauter et al. 1992, 

Graentzdoerffer et al. 2003).  Escherichia coli harbors two FHL complexes consisting of a 
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formate dehydrogenase that can be either coupled to a membrane-bound [NiFe]-hydrogenase 

(Böhm et al. 1990, Sauter et al. 1992) or a membrane-bound and potentially energy-dependent 

[NiFe]-hydrogenase (Andrews et al. 1997, Bagramyan et al. 2002). 

 

Figure 4: Generalized flow of formate-derived electrons within an FHL complex of E. coli. 

Figure was created based on observations made by Sauter et al. (1992), Andrews et al. (1997), and 

Sawers (1994).  Metal clusters are indicated.  Legend: blue, subunits of hydrogenase with a Ni-Fe 

active site of the large subunit; green, formate dehydrogenase; HCOO-, formate-; CO2, carbon 

dioxide; H+, proton; e-, electron. 

Methanogens such as Methanobacterium formicicum contain an FHL complex that can 

form H2 and CO2 from high millimolar concentrations of formate or reverse the reaction and 

form formate from high concentrations of H2 and CO2 (Wu et al. 1993). 

3.8 Acetogenesis 

Acetogens produce approximately 1013 kg acetate per year accounting for about 10 % 

of the global acetate production in terrestrial habitats (Wood and Ljungdahl 1991).  Acetogens 

are known to be strict anaerobes but some species show a certain extent of tolerance to O2 

(Drake et al. 2008, Küsel et al. 2001).  Most acetogens belong to the Bacteria but also two 

species of Archaea are capable of acetate production via acetogenesis (Rother and Metcalf 
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2004, Henstra et al. 2007, Drake et al. 2008).  Over 100 different bacterial species are known 

which belong to the genera Acetitomaculum, Acetoanaerobium, Acetobacterium, 

Acetohalobium, Acetonema, Alkalibaculum, Blautia, Butyribacterium, Caloramator, 

Clostridium, Eubacterium, Holophaga, Marvinbryantia, Moorella, Natroniella, Natronincola, 

Oxobacter, Ruminococcus, Sporomusa, Syntrophococcus, Terrisporobacter, 

Thermacetogenium, Thermoanaerobacter, Tindallia, and Treponema (Drake et al. 2008, Liu 

et al. 2008, Wolin et al. 2008, Allen et al. 2010, Gerritsen et al. 2014).  Most acetogens belong 

to the class Clostridia (Drake et al. 2008).  Archaeoglobus fulgidus and Methanosarcina 

acetivorans belong to the Archaea and are capable to produce acetate from carbon monoxide 

(CO) under laboratory conditions (Rother and Metcalf 2004, Henstra et al. 2007). 

Table 3: Cultivable cell numbers of acetogens in different habitats. 

Substrate 

converted 

to acetate 

Cultivable cell number 

per (a) gDW or (b) gFW 
Habitat Reference 

H2-CO2 

(a) 3.2 – 70 x 101  Conifer litter Reith et al. 2002 

(a) 1.9 – 42 x 104 Leaf litter Reith et al. 2002 

(a) 1.8 – 44 x 103 Forest soil Schnurr-Pütz et al. 2006 

(b) 0.3 – 70 x 105 Rhizosphere sediment Küsel et al. 1999 

(b) 1.9 – 42 x 103 Unvegetated sediment Küsel et al. 1999 

(b) 3.1 – 36 x105 Rumen, lamb Doré et al. 1995 

(b) 0.03 – 3100 x 105 Feces, human Doré et al. 1995 

(b) 1.4 – 3.1 x 104 Digester sludge Doré et al. 1995 

(b) 0.9 – 200 x 104 Ditch sediment Harriott and Frazer 1997 

Vanillate 

(a) 3.2 – 70 x 101 Conifer litter Reith et al. 2002 

(a) 0.5 – 11 x 102 Leaf litter Reith et al. 2002 

(a) 0.1 – 44 x 102 Forest soil Schnurr-Pütz et al. 2006 

(b) 1.9 – 42 x 104 Rhizosphere sediment Küsel et al. 1999 

(b) 0.5 – 11 x 102 Unvegetated sediment Küsel et al. 1999 

(b) 0.7 – 27 x 104 Ditch sediment Harriott and Frazer 1997 

Ethanol 
(a) 1.1 – 5.0 x 102 Conifer litter Reith et al. 2002 

(a) 0.5 – 11 x 103 Leaf litter Reith et al. 2002 
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Acetogens are widely distributed (Drake et al. 2006) and have been isolated from 

diverse habitats such as the termite gut (Kane et al. 1991), human gut (Doré et al. 1995), oxic 

soil (Gößner et al. 1999), rhizosphere (Küsel et al. 1999), hypersaline water (Ollivier et al. 

1994), deep subsurface sediments (Liu and Sulfita 1993), or roots of wetland plants (Küsel et 

al. 2001).  Cultivable acetogens can account for approximately 3.2 x 101 to 4.2 x 105 H2-

utilizing acetogens gDW
-1 (Reith et al. 2002), 3.2 x 101 to 4.4 x 103 vanillate-utilizing 

acetogens gDW
-1 (Reith et al. 2002, Schnurr-Pütz et al. 2006), 1.1 x 102 to 1.1 x 104 ethanol-

utilizing acetogens gDW
-1 (Reith et al. 2002) (Table 3). 

Acetogens have a broad substrate range and can grow on saccharides, organic acids, 

alcohols, CO, and H2 (Drake et al. 2008) (Table 4).  The calculated standard changes in Gibbs 

free energy (ΔG°’) illustrate that acetogens that grow on glucose conserve more energy than 

acetogens that grow on formate or H2-CO2 (Table 4).  Consequently, an acetogen that 

dissimilates glucose may assimilate more carbon, produce more biomass, and grow faster 

than as acetogen that grows on formate or H2-CO2. 

Table 4: Representative growth-supportive substrates of acetogens. 

Substratea 
Overall stoichiometry for the production of 

acetatea 

Standard change in 

Gibbs free energy 

ΔG°’ (kJ mol-1)b 

Cellobiose C12H22O11 + H2O  6 CH3COOH -675 

Glucose C6H12O6  3 CH3COOH -310 

Formic acid 4 HCOOH  CH3COOH + 2 CO2 + 2 H2O -109 

Ethanol 2 CH3CH2OH + 2 CO2  3 CH3COOH -75 

Methanol 4 CH3OH + 2 CO2  3 CH3COOH + 2 H2O -211 

CO 4 CO + 2 H2O  CH3COOH + 2 CO2 -175 

H2-CO2 4 H2 + 2 CO2  CH3COOH + 2 H2O -95 

H2-CO 2 H2 + 2 CO  CH3COOH -135 

a Data derived from Drake (1994). Legend: C12H22O12, cellobiose; C6H12O6, glucose; HCOOH, formic 

acid; CH3COOH, acetic acid; CH3CH2OH, ethanol; CH3OH, methanol; CO, carbon monoxide; CO2, 

carbon dioxide; H2, molecular hydrogen, H2O, water. 
b Standard changes in Gibbs free energy were calculated based on the Gibbs free energy of 

formation and are given for the complete reaction (Thauer et al. 1977, Conrad and Wetter 1990, 

Berg et al. 2003). 
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Acetogens use CO2 as terminal electron acceptor and produce acetate via the acetyl-

CoA “Wood/Ljungdahl” pathway (Drake et al. 2008) (Figure 5).  The acetyl-CoA pathway is 

linear and CO2 is not bound to intermediates of the pathway (Drake et al. 2008).  In contrast, 

pyruvate is carboxylated with CO2 to form oxaloacetate in the citric acid cycle (Berg et al. 

2003).  Because of the simplicity and linearity of the acetyl-CoA pathway, it is speculated that 

this pathway was used for energy conservation in first free-living cells rather than complex 

cycles such as the citric acid cycle (Fuchs 1986, Sousa et al. 2013, Nitschke and Russell 

2013). 

The acetyl-CoA pathway is composed of two branches named methyl and carbonyl 

branch (Figure 5) (Drake et al. 2006).  CO2 is fixed in both branches and is reduced to a methyl 

group in the methyl branch or to a carbonyl group in the carbonyl branch (Drake et al. 2006, 

Ragsdale and Pierce 2008).  In the methyl branch, formate dehydrogenase reduces CO2 to 

formate (Drake et al. 2006, Ragsdale and Pierce 2008).  Formate is activated by 

formyltetrahydrofolate synthetase with an adenosine triphosphate (ATP) (Drake et al. 2006, 

Ragsdale and Pierce 2008).  Formyltetrahydrofolate synthetase is encode by fhs that can be 

used as structural gene marker in molecular analysis to study acetogens (Leaphart and Lovell 

2001).  The formyl group is bound to tetrahydrofolate and is further reduced to a methyl group 

(Drake et al. 2006, Ragsdale and Pierce 2008).  A corrinoid protein transfers the methyl group 

from tetrahydrofolate to CO dehydrogenase/acetyl-CoA synthase complex (CODH/ACS 

complex) (Ragsdale and Pierce 2008).  In the carbonyl branch, the CO dehydrogenase 

function of the CODH/ACS complex reduces CO2 to a carbonyl group (Drake et al. 2006, 

Ragsdale and Pierce 2008).  CODH/ACS complex catalyzes the formation of acetyl-CoA from 

coenzyme A, the methyl group, and the carbonyl group (Drake et al. 2006, Ragsdale and 

Pierce 2008).  Acetyl-CoA is either used for assimilation or for energy conservation via 

substrate-level phosphorylation and formation of acetate (Drake et al. 2006, Ragsdale and 

Pierce 2008).  Acetate kinase catalyzes the reaction from acetyl-phosphate to acetate and at 

the same time forms ATP by substrate-level phosphorylation (Drake et al. 2006, Ragsdale and 
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Pierce 2008).  Additional ATP is conserved from a sodium motive force and electron-transport-

coupled phosphorylation that involves the Rnf complex (Poehlein et al. 2012). 

 

Figure 5: The acetyl-CoA “Wood/Ljungdahl” pathway. 

Figure was modified from Müller et al. (2004) and Drake et al. (2008).  Legend: CH3COOH, acetic acid; 

CH3COO-PO3
2-, acetyl phosphate; HCOOH, formic acid; CO2, carbon dioxide; CHO-H4F+, 

formyltetrahydrofolate; CHΞH4F, methenyltetrahydrofolate; CH2=H4F, methylenetetrahydrofolate; CH3-

H4F, methyltetrahydrofolate; H4F, tetrahydrofolate; [CH3], methyl group; [CO], carbonyl group; 

CODH/ACS complex, CO dehydrogenase/acetyl-CoA synthase complex; CoA, coenzyme A; Pi, inorganic 

phosphate; e-, electron; Co-protein, corrinoid protein; ADP, adenosine diphosphate; ATP, adenosine 

triphosphate; SLP, substrate-level phosphorylation. 

Acetogens that grow on sugars conserve energy from glycolysis, the oxidation of 

pyruvate to acetate, and the acetyl-CoA pathway (Drake et al. 2006).  For example, three 
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molecules of acetate are produced from one molecule of glucose (Drake et al. 2006).  Two 

molecules of acetate derive from glycolysis and the oxidation of pyruvate, and one molecule 

derives from the acetyl-CoA pathway (Drake et al. 2006).  Two molecules of CO2 are produced 

during the oxidation of pyruvate (Drake et al. 2006).  In theory, it looks as if the produced CO2 

could be reduced in the acetyl-CoA pathway and acetogens would be independent of 

additional CO2.  Interestingly, growth of acetogens on sugars can be impaired if grown without 

supplemental CO2 (Andreesen et al. 1970, O’Brian and Ljungdahl 1972, Braun and Gottschalk 

1981).  Studies with 14C demonstrated that approximately one-third of glucose-derived carbon 

is recovered in CO2 and the other two-thirds are recovered in acetate, indicating that 

endogenous CO2 is used to form one acetate (Drake et al. 2006). 

3.9 Methanogenesis 

Methanogens produce approximately one billion tons of CH4 per year on a global scale 

(Thauer 1998).  All methanogens are strict anaerobes and belong to the Archaea (phylum 

Euryarchaeota) (Balch et al. 1979, Thauer 1998, LPSN, http://www.bacterio.net).  

Approximately 200 different methanogenic species are known, which belong to the genera 

Halomethanococcus, Methanimicrococcus, Methanobacterium, Methanobrevibacter, 

Methanocalculus, Methanocaldococcus, Methanocella, Methanococcoides, Methanococcus, 

Methanocorpusculum, Methanoculleus, Methanofollis, Methanogenium, Methanohalobium, 

Methanohalophilus, Methanolacinia, Methanolinea, Methanolobus, Methanomassiliicoccus, 

Methanomicrobium, Methanomethylovorans,  Methanoplanus, Methanopyrus, Methanoregula, 

Methanosaeta, Methanosalsum, Methanosarcina, Methanosphaera, Methanosphaerula, 

Methanospirillum, Methanothermobacter, Methanothermococcus, Methanothermus, 

Methanothrix, Methanotorris, and Methermicoccus (LPSN, http://www.bacterio.net).  Most 

species belong to the family Methanobacteriaceae (LPSN, http://www.bacterio.net). 
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Table 5: Cultivable cell numbers of methanogens in different habitats. 

Substrate 

converted to 

CH4 

Cultivable cell number 

per (a) gDW or (b) gFW 
Habitat Reference 

Fermentation 

products 

(a) 0.2 – 20 x 105 Fen soil Wüst et al. 2009a 

(a) 0.2 – 200 x 102 Forest soil Schnurr-Pütz et al. 2006 

H2-CO2 (a) 0.6 – 10 x 107 Bog soil Horn et al. 2003a 

Acetate (a) 0.2 – 5.4 X 105 Paddy soil Mizukami et al. 2006 

Methanol, 

H2-CO2 
(b) 9 – 66 x 106 Permafrost soil Morozova et al. 2007 

Methanogens are widely distributed and have been isolated from diverse habitats such 

as human feces (Dridi et al. 2012), paddy soil (Dianou et al. 2001), anaerobic digester (Zellner 

et al. 1998), oil field (Cheng et al. 2008), deep sea marine sediments (Kurr et al. 1991, Mikucki 

et al. 2003), Arctic permafrost sediments (Shcherbakova et al. 2011), or peatlands (Bräuer et 

al. 2011, Cadillo-Quiroz et al. 2014). 

Table 6: mcrA copy numbers of methanogens in different habitats. 

Substrate 

converted to CH4 

mcrA copy numbers 

per (a) gDW or (b) gFW 
Habitat Reference 

Fermentation 

products 
(a) 2.1 x 109 Biogas reactor Kampmann et al. 2012 

Unknowna 

(a) 0.1 – 1.2 x 108 River sediment Zeleke et al. 2013 

(b) 104 – 107 Marine sediment Schippers et al. 2012 

(b) 0.1 – 7.9 x 108 Peat Freitag et al. 2010 

(b) 106 – 109 Wetland soil Bae et al. 2015 

a The substrate of methanogenesis is not given but CH4 was likely produced from fermentation 

products such as acetate, formate, and H2-CO2. 

Cultivable methanogens can account for approximately 0.2 x 102 to 1.0 x 108 

methanogens gDW
-1, and can be more abundant in water-saturated soil than in forest soil (Table 

5) (Horn et al. 2003a, Schnurr-Pütz et al. 2006).  mcrA gene copy numbers can range from 107 

to 109 gDW
-1 (Table 6) (Kampmann et al. 2012, Zeleke et al. 2013). 
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Table 7: Representative growth-supportive substrates of methanogens. 

Substratea 
Overall stoichiometry for the                        

production of CH4
a 

Standard change in 

Gibbs free energy 

ΔG°’ (kJ mol-1)b 

Acetic acid CH3COOH  CH4 + CO2 -36 

Formic acid 4 HCOOH  CH4 + 3 CO2 + 2 H2O -145 

Methanol 4 CH3OH  3 CH4 + CO2 + 2 H2O -320 

H2-methanol CH3OH + H2  CH4 + H2O -112 

H2-CO2 4 H2 + CO2  CH4 + 2 H2O -131 

a Data derived from Zinder (1994).  Legend: CH3COOH, acetic acid; HCOOH, formic acid; CH3OH, 

methanol; CO2, carbon dioxide; H2, molecular hydrogen; CH4, methane; H2O, water. 
b Standard change in Gibbs free energy was calculated based on the Gibbs free energy of formation 

and is given for the complete reaction (Thauer et al. 1977, Conrad and Wetter 1990, Berg et al. 

2003). 

The substrate range of methanogens is restricted (Zinder 1994, Balch et al. 1979).  

Most methanogens grow on acetate, formate, methanol, methylamine, or H2-CO2 (Balch et al. 

1979, Zinder 1994).  Some methanogens may additionally use secondary alcohols such as 2-

propanol or 2-butanol (Maestrojuán et al. 1990, Zellner et al. 1998, Dianou et al. 2001).  Growth 

on methanol, formate, or H2-CO2 is thermodynamically more favorable than growth on acetate 

(Table 7). 

Similar to the acetyl-CoA “Wood/Ljungdahl” pathway, it is speculated that 

methanogenesis was one of the early pathways that were used for energy conservation in free-

living cells (Sousa et al. 2013).  The formation of CH4 from formate occurs stepwise (Figure 6) 

(Thauer 1998).  Formate is first converted to H2 and CO2 and CO2 is subsequently reduced to 

CH4 with H2 (Thauer 1998).  The formyl group of CO2 is first bound to methanofuran by 

formylmethanofuran:H4MPT formyltransferase and is then transferred to tetrahydro-

methanopterin (H4MPT) (Shima et al. 1995, Thauer 1998).  The formyl group is subsequently 

reduced to a methyl group (Thauer 1998).  Methyl-H4MPT:coenzyme M methyltransferase 

transfers the methyl group from tetrahydromethanopterin to coenzyme M (Thauer 1998).  

When methanol is used, the methyl group is directly transferred from methanol to coenzyme 

M by methanol:coenzyme M methyltransferase (Sauer et al. 1997). 
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Figure 6: Reactions and enzymes involved in the formation of CH4 from H2-CO2, formic acid, 

acetic acid, methanol, and methylamine. 

Figure was created based on information published in Thauer (1998) and Welte and Deppenmeier (2014).  

The figure is simplified and does not show all reactants and products of reactions.  Legend: CH3COOH, 

acetic acid; CH3COO-PO3
2-, acetyl phosphate; HCOOH, formic acid; CO2, carbon dioxide; CH4, methane; 

H2, molecular hydrogen; CHO-MFR, formylmethanofuran; CHO-H4MPT, formyltetrahydromethanopterin; 

CHΞH4MPT+, methenyltetrahydromethanopterin; CH2=H4MPT, methylenetetrahydromethanopterin; CH3-

H4MPT, methyltetrahydromethanopterin; CH3-H4SPT, methyltetrahydrosarcinapterin; CH3-S-CoM, 

methyl-coenzyme M; CODH/ACS, carbon monoxide dehydrogenase/ acetyl-CoA synthase; [H], hydrogen 

atoms; ATP, adenosine triphosphate; CoA, coenzyme A; CoB, coenzyme B; CoM, coenzyme M; CoM-S-

S-CoB, heterodisulfide of coenzymes M and B; F420H2, reduced cofactor F420; Fdred, reduced ferredoxin; 

MFR, methanofuran; H4MPT, tetrahydromethanopterin; H4SPT, tetrahydrosarcinapterin; black lines, 

formic acid and H2-CO2 consuming methanogens; blue lines, aceticlastic methanogens; green, methanol 

and methylamine consuming methanogens; grey box, reactions occurs in all methanogens. 
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When acetate is used, acetate is bound to coenzyme A and acetyl-CoA is produced by 

acetate kinase and/or phosphotransacetylase (Latimer and Ferry 1993, Thauer 1998).  The 

methyl group of acetyl-CoA is transferred to tetrahydrosarcinapterin (H4SPT) by CODH/ACS 

complex and further transferred to coenzyme M by methyl-H4SPT:coenzyme M 

methyltransferase (Fischer et al. 1992).  Methyl-coenzyme M reductase catalyzes the final 

reaction and the release of CH4 from coenzyme M (Shima et al. 1997, Bonacker et al. 1993).  

A heterodisulfide is produced from coenzyme M and coenzyme B during this final reaction 

(Thauer 1998).  Methyl-coenzyme M reductase is encoded by mcrBDCGA and mrtBDGA 

(Lehmacher and Klenk 1994, Thauer 1998).  The α subunit of methyl-coenzyme M reductase 

is encoded by mcrA and mrtA and can be used as gene marker for molecular analysis 

(Springer et al. 1995, Lueders et al. 2001).  The transfer of the methyl group to coenzyme M 

by a methyltransferase is coupled to the generation of a sodium gradient, and thus, the 

conservation of energy (Thauer 1998, Thauer et al. 2008).  The reduction of the heterodisulfide 

with H2 is coupled to the generation of a proton gradient (Thauer 1998, Deppenmeier and 

Müller 2007, Thauer et al. 2008).  Additional ATP is conserved from a sodium motive force and 

electron-transport-coupled phosphorylation that involves the Rnf complex (Welte and 

Deppenmeier 2014). 

3.10 Hypothesis and Objectives 

CH4 is one of the most important greenhouse gases in our atmosphere (Stocker et al. 

2013).  A considerable amount of CH4 is formed from methanogenesis in diverse anoxic 

habitats (Kotsyurbenko et al. 1996, Thauer 1998, Zellner et al. 1998, Bräuer et al. 2004, Dridi 

et al. 2012, Stocker et al. 2013) and wetland plants can mediate the emission of CH4 from 

water-satuarated soil by releasing root-derived organic carbon that serve as precursors of CH4 

production (Jones 1998, Ström et al. 2003).  Most microbiological studies that have 

investigated the production of CH4 in anoxic habitats have focused on either a single 

intermediary process linked to CH4 or a single habitat (e.g., Kotsyurbenko et al. 1996, Bräuer 

et al. 2004, Cadillo-Quiroz et al. 2006, Drake et al. 2009, Lin et al. 2014a, Lin et al. 2014b), 
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and little is known about the potential differences and similarities of anaerobic processes and 

associated microbial communities driving methanogenesis in contrasting methanogenic food 

webs (i.e., potential functional redundancy of anaerobes). 

Plant roots and earthworms have common impacts on their environment: they (a) 

influence the microbial community in soil (Lavelle 1986, Jones 1998, Brown et al. 2000, Bais 

et al. 2006), (b) supply soil-derived microorganisms with easily available carbon (Martin et al. 

1987, Uren 2001, Walker et al. 2003, Wüst et al. 2009b), and (c) increase the number of 

microorganisms in comparison to bulk soil (Brimecombe et al. 2001, Pinton et al. 2001, Drake 

and Horn 2007). 

Although fermentation, acetogenesis, and methanogenesis are facilitated by root-

containing mire soils (Bräuer et al. 2004, Drake et al. 2009, Hunger et al. 2011a, Hunger et al. 

2015, Schmidt et al. 2016), functional links between active microorganisms and the roots 

themselves are not well established.  Formate can be an important intermediate of the 

anaerobic food web in mire soils and can reach concentrations of up to 0.65 mM in mire pore 

water (Küsel et al. 2008).  It derives from exudates of wetland plant roots (Koelbener et al. 

2010) or from fermentation of plant-derived polymers (Drake et al. 2009), and is a substrate 

that can be rapidly utilized by mire methanogens (Hunger et al. 2011a).  Fermenters, 

acetogens, and methanogens can be associated with roots of wetland plants (Conrad and 

Klose 1999, Küsel et al. 2001, Chin et al. 2004, Gößner et al. 2006).  The availability of root-

derived organic carbon, such as sugars, and root-derived methanogenic and acetogenic 

substrates, such as formate, suggests that those functional groups might also be associated 

with other wetland plant roots.  Despite the conceptualized importance of the wetland root to 

the production of CH4, information on specific mechanisms by which the root zone mediates 

the transformation of plant-derived organic carbon to CH4 is scant. 

The earthworm gut constitutes an ideal habitat for soil-derived anaerobes that grow on 

mucus which is excreted by the earthworm (Brown et al. 2000, Drake and Horn 2007).  Studies 

with different earthworm species showed that fermentation and denitrification are important 
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microbially mediated processes in the earthworm gut (Karsten and Drake 1997, Horn et al. 

2006a, Wüst et al. 2009b, Wüst et al. 2011).  Some earthworm species such as E. eugeniae 

emit CH4 in vivo (Depkat-Jakob et al. 2012) but functional links to other anaerobes such as 

fermenters or acetogens that provide H2, CO2, or acetate for methanogenesis are unknown. 

Similar processes occur in diverse anoxic habitats and those processes seem to be 

linked to different taxa, indicating a functional redundancy of microorganisms.  The production 

of CH4 has been well studied in diverse anoxic habitats but intermediary trophic links and 

microorganisms involved in the methanogenic food web are less studied and mostly 

conceptualized (Karsten and Drake 1995, Kotsyurbenko et al. 1996, Glissmann and Conrad 

2000, Bräuer et al. 2004, Drake et al. 2009, Wüst et al. 2009a, Schmidt et al. 2015).  Mire ‘soil’, 

the rhizosphere of mire plants, and the gut of the earthworm E. eugeniae are examples of such 

CH4-emitting anoxic habitats.  The following hypothesis was formulated based on published 

literature: 

 

Methanogenic food webs of contrasting CH4-emitting habitats                                      

are driven by functionally redundant anaerobes. 

 

The objectives of this dissertation were to (a) resolve the complex methanogenic food 

webs of mire soils, mire rhizosphere, and gut contents from the earthworm E. eugeniae and 

(b) determine if those contrasting methanogenic food webs are driven by functional redundant 

anaerobes.  The bacterial and the methanogenic communities were analyzed by cultivation-

dependent, analytical and molecular approaches, including isolation, supplementation of 

anoxic slurries, determination of dissimilation products, quantification of cultivable 

microorganisms, stable isotope probing, quantification of gene copy numbers, analysis of 16S 

rRNA and 16S rRNA genes, and analysis of structural genes. 
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4 Material and Methods 

4.1 Sampling sites 

4.1.1 Mires 1 and 3, Oberpfalz 

Mires 1 and 3 were located 410 m above sea level near Grafenwöhr in the Oberpfalz 

(Germany). 

 

Figure 7: Images of mire 1 (A) and mire 3 (B). 

Images were taken by S. Hunger. 

The vegetation of mire 1 consists of wood sorrel (Oxalis acetosella), remote sedge 

(Carex remota), stinging nettle (Urtica dioica), hairy chervil (Chaerophyllum hirsutum), cluster 

dock (Rumex conglomeratus), spruce (Picea abies), and true forget-me-not (Myosotis 

palustris).  Mire 3 is dominated by peat moss (Sphagnum sp.) with a few rushes (Juncus 

conglomeratus), and is surrounded by moor grass (Molinia caerulea), birch (Betula sp.), 

heather (Calluna vulgaris), and pine (Pinus sp.). 

4.1.2 Mire 2, Fichtelgebirge 

Mire 2 is located 700 m above sea level in the Lehstenbach catchment of the 

Fichtelgebirge (Germany).  The vegetation is dominated by moor grass (M. caerulea), sedges 

(Carex rostrata, Carex nigra, Carex canescens), rushes (Juncus effusus), sheathed cotton 

A B
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sedge (Eriophorum vaginatum), and peat moos (Sphagnum sp.) (Gerstberger 2001, Paul et 

al. 2006). 

 

Figure 8: Images of mire 2 (A) and a vertical cut of the mire ’soil’ (B). 

Images were taken by S. Hunger. 

The mire is surrounded by spruce (Picea abies) (Gerstberger 2001).  Samples included 

whole soil cores, roots of specific plants and root-free soils from the same patches where plant 

roots were taken.  Whole soil cores contained soil and plant roots, and such samples were 

termed ‘soil’ hereafter. 

4.1.3 Mire 4, Erzgebirge 

Mire 4 is located 936 m above sea level in the Wilzsch and the Rolava catchment of 

the Erzgebirge (Germany).  The vegetation consists of sheathed and common cotton sedge 

(Eriophorum vaginatum, Eriophorum angustifolium), sedges (Carex pauciflora, Carex limosa), 

black crowberry (Empetrum nigrum), bog bilberry (Vaccinium uliginosum, Vaccinium 

oxycoccos), peat moos (Sphagnum cuspidatum, Sphagnum fuscum, Sphagnum balticum, 

Sphagnum dusenii), bog rosemary (Andromeda polifolia), and mountain pine (Pinus mugo) 

(Rentsch and Zitzewitz 2005). 

 

A B
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Figure 9: Image of mire 4. 

Image was taken by S. Hunger. 

4.1.4 Forest, Koke’e State Park 

Koke’e State Park is located northwest on Kaua’i (Hawaii, USA).  Soil was taken from 

a forest.  Soil of this area developed from volcanic rock (for further site description see Küsel 

et al. [2002]). 

4.2 The earthworm Eudrilus eugeniae 

Specimens of the earthworm Eudrilus eugeniae (Eudrilidae) were obtained from the 

distributer Minhobox (Juiz de Fora, Minas Gerais, Brazil) in September 2011 and May 2012. 

 

Figure 10: Image of the earthworm E. eugeniae. 

Image was taken by Dr. P. S. Depkat-Jakob. 
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4.3 Sampling procedure 

Mires were sampled with a soil corer or a spade.  Samples were taken from a depth of 

5-30 cm, included soil and roots, and were termed ‘soil’ samples.  Samples of specific plant 

roots were taken from mire 2.  Plants were identified on site and their roots collected.  Roots 

were cut once to separate them from stem and leaves, and were collected together with soil 

that was attached to the roots.  Some Carex samples could not be assigned to a specific 

species because collection took place when Carex was not in bloom, and such samples were 

termed Carex sp. which were C. nigra, C. rostrata, or Carex canescens.  Samples for 

enrichment of isolates were obtained from patches with equal distribution of Carex sp. and M. 

caerulea.  Samples were stored in airtight sterile plastic bags on ice for slurry experiments and 

chemical analysis or stored in liquid dinitrogen (N2) for molecular analysis.  Samples were 

collected on the same day at which incubations were started. 

Earthworms were kept on composted cow manure for at least 60 hours in the dark 

before use.  Adult earthworms that were used for the analysis were approximately 2.3 ± 0.2 g 

and 11-20 cm in length (Schulz et al. 2015).  Gut contents was squeezed out of washed 

earthworms under O2-minimized conditions (Depkat-Jakob et al. 2012, Schulz et al. 2015). 

4.4 Solutions, media, and buffer 

Solutions, media, and buffer were prepared with deionized water (Seralpur Pro CN, 

Seral Erich Alhäuser, Ransbach-Baumbach, Germany).  For preparation of anoxic solutions, 

deionized water was boiled for approximately 30 minutes and was cooled down during flushing 

with 100 % CO2 or 100 % N2 (Hungate 1969, Daniel and Drake 1993).  Anoxic solutions were 

stored in gastight serum bottles that were sealed with rubber stoppers and crimps.  All anoxic 

and oxic solutions were sterilized by autoclaving (1 bar overpressure, 120 °C, 25 minutes; 

autoclave, Adolf Wolf SANOclav, Bad Überkingen, Germany) or filter sterilization (0.2 µm pore 

size).  The pH of oxic and anoxic solutions was adjusted with oxic or anoxic HCl, NaOH or 

bicarbonate solutions (4.8.3). 
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4.4.1 Defined mineral medium DM1 (anoxic) 

Anoxic defined mineral medium DM1 was prepared according to Hunger et al. (2015). 

Mineral salts in mg L-1: 

KH2PO4     10 

NH4Cl      4.6 

MgCl2•6 H2O     10 

CaCl2•2 H2O     10 

Trace metals in mg L-1: 

MnSO4•H2O     2.5 

FeCl2•4 H2O     0.7 

CoCl2•2 H2O     1 

CaCl2•2 H2O     1 

ZnCl2      0.5 

AlK(SO4)4•12 H2O    0.2 

H3BO3      0.1 

Na2MoO4•2 H2O    0.1 

CuSO4•5 H2O     0.1 

Na2WO4•2 H2O    0.05 

NiCl2•2 H2O     0.2 

H2SeO3     0.5 

Vitamins in mg L-1: 

pyridoxal HCl    0.05 

thiamine HCl    0.25 

riboflavin    0.25 

nicotinic acid    0.25 

calcium D-pantothenate  0.25 

p-aminobenzoic acid   0.25 
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lipoic acid    0.15 

biotin     0.1 

folic acid     0.1 

cyanocobalamin   0.25 

The pH was adjusted according to the in situ pH of the corresponding mire pore water. 

4.4.2 Defined mineral medium DM2 (anoxic) 

Anoxic defined mineral medium DM2 was prepared modified from Balch et al. (1979), 

Paul et al. (2006), and Wüst et al. (2009a). 

Mineral salts in mg L-1: 

(NH4)2SO4    12.6 

Na2SO4    13.5 

CaCl2•2 H2O    10 

MgCl2•6 H2O    10 

FeCl2•4 H2O    10 

KH2PO4    0.4 

Trace metals in mg L-1: 

C6H6NNa3O6• H2O   15 

MnSO4• H2O    5 

FeSO4•7 H2O    1 

CoCl2•6 H2O    1 

CaCl2•2 H2O    1 

ZnSO4•7 H2O    1 

AlK(SO4)2•12 H2O   0.2 

CuSO4•5 H2O    0.1 

H3BO3     0.1 

Na2MoO4•2 H2O   0.1 
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Concentration of vitamins were as described with defined mineral medium DM1 (4.4.1).  

The pH was adjusted to 4.8. 

4.4.3 Reduced undefined medium RU1 (anoxic) 

Anoxic reduced undefined medium RU1 was prepared according to Hunger et al. 

(2016).  Concentration of vitamins were as described with defined mineral medium DM1 

(4.4.1). 

Mineral salts in mg L-1: 

KH2PO4     500 

NH4Cl      400 

NaCl      400 

MgCl2•6 H2O     50 

CaCl2•2 H2O     10 

Trace metals in mg L-1: 

C6H6NNa3O6•H2O    7.5 

MnSO4•H2O     2.5 

FeSO4•7 H2O     0.5 

Co(NO3)2•6 H2O    0.5 

ZnCl2      0.5 

AlK(SO4)4•12 H2O    0.05 

H3BO3      0.05 

Na2MoO4•2 H2O    0.05 

CuSO4•5 H2O     0.05 

Na2WO4•2 H2O    0.05 

NiCl2•2H2O     0.25 

H2SeO3     0.25 
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Supplements in mg L-1: 

cysteine    250 

Na2S•7-9 H2O    250 

resazurin    1 

NaHCO3    7,500 

yeast extract    500 or 1,000 

The pH was adjusted to 5.0 or 6.8. 

 

4.4.4 Reduced undefined medium RU2 (anoxic) 

Anoxic reduced undefined medium RU2 was prepared according to Hunger et al. 

(2016). 

Supplements in mg L-1: 

cysteine    250 

Na2S•7-9 H2O    250 

resazurin    1 

NaHCO3    7,500 

yeast extract    500 or 1,000 

Mineral salts, trace metals, and vitamins were as described with defined mineral 

medium DM1 (4.4.1).  Additionally, 50 mL root extract L-1 (4.4.11) were added.  The pH was 

adjusted to 5.0 or 6.8.  Supplemented root extract was prepared from roots of mire 2. 

4.4.5 Reduced undefined medium RU3 (anoxic) 

Anoxic reduced undefined medium RU3 was prepared modified from Balch et al. 

(1979), Daniel et al. (1990), and Wüst et al. (2009a).  Mineral salts, trace metals, and vitamins 

were as described with defined mineral medium DM1 (4.4.1). 
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Supplements in mg L-1: 

cysteine    250 

Na2S•7-9 H2O    250 

resazurin    1 

NaHCO3    7,500 

yeast extract    500 or 1,000 

The pH was adjusted to 6.8.  Additionally, 10 mL worm extract L-1 (4.4.13) were added 

after autoclaving. 

4.4.6 Reduced undefined medium RU4 (anoxic) 

Anoxic reduced undefined medium RU4 was prepared modified from Balch et al. (1979) 

and Wüst et al. (2009a).  Mineral salts, trace metals, and vitamins were as described with 

defined mineral medium DM1 (4.4.1). 

Supplements in mg L-1: 

cysteine    250 

Na2S•7-9 H2O    250 

resazurin    1 

NaHCO3    7,500 

yeast extract    500 

tryptone    500 

The pH was adjusted to pH 6.8.  Additionally, 10 mL worm extract L-1 (4.4.13) were 

added after autoclaving. 

4.4.7 Undefined mineral medium UM1 (oxic) 

Oxic undefined mineral medium UM1 was prepared according to Hunger et al. (2016).  

Mineral salts and trace metals were as described with reduced undefined medium RU1 (4.4.3).  

Vitamins were as described with defined mineral medium DM1 (4.4.1). 
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Supplements in g L-1: 

yeast extract    0.5 or 1 

The pH was adjusted to 5.0. 

4.4.8 Undefined mineral medium UM2 (anoxic) 

Anoxic undefined mineral medium UM2 was prepared according to Hunger at al. 

(2015).  Mineral salts, trace metals, and vitamins were as described with defined mineral 

medium DM1 (4.4.1). 

Supplements in g L-1: 

yeast extract    0.5 

tryptone     0.5 

Additionally, 50 mL root extract L-1 (4.4.11) or 50 mL soil extract L-1 (4.4.12) were 

added.  Supplemented extracts were prepared from ‘soil’ of mire 1 for ‘soil’ slurries from mire 1, 

from roots of mire 2 for ‘soil’ slurries from mire 2, from roots of mire 3 for ‘soil’ slurries from 

mire 3, and from roots of mire 4 for ‘soil’ slurries from mire 4.  The pH was adjusted according 

to the in situ pH of the corresponding mire pore water. 

4.4.9 Undefined mineral medium UM3 (oxic) 

Oxic undefined mineral medium UM3 was prepared according to Hunger et al. (2015).  

Mineral salts, trace metals, and vitamins were as described with defined mineral medium DM1 

(4.4.1). 

Supplements in g L-1: 

yeast extract    0.5 

tryptone     0.5 

Additionally, 50 mL root extract L-1 (4.4.11) or 50 mL soil extract L-1 (4.4.12) were 

added.  Supplemented extracts were prepared from ‘soil’ of mire 1 for ‘soil’ slurries from mire 1, 

from roots of mire 2 for ‘soil’ slurries from mire 2, from roots of mire 3 for ‘soil’ slurries from 
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mire 3, and from roots of mire 4 for ‘soil’ slurries from mire 4.  The pH was adjusted according 

to the in situ pH of the corresponding mire pore water.  After autoclaving, 0.5 g 

cycloheximide L-1 were added to inhibit growth of eukaryotes. 

4.4.10 Undefined mineral medium UM4 (anoxic) 

Anoxic undefined mineral medium UM4 was prepared according to Balch et al. (1979) 

and Daniel et al. (1990). 

Trace metals in mg L-1: 

C6H6NNa3O6•H2O   7.5 

MnSO4•H2O    2.5 

FeSO4•7 H2O    0.5 

Co(NO3)2•6 H2O   0.5 

ZnCl2     0.5 

NiCl2•6 H2O    0.25 

CuSO4•5 H2O    0.05 

AlK(SO4)2•12 H2O   0.05 

H3BO3     0.05 

Na2MoO4•2 H2O   0.05 

Supplements in mg L-1: 

resazurin     1 

NaHCO3    3,500 

yeast extract     1,000 

The pH was adjusted to 6.8. 

4.4.11 Root extract (oxic) 

A mixture of roots was collected from mire ‘soil’ cores (mires 2-4, 4.1.1, 4.1.2, 4.1.3) 

and one root extracts per mire was prepared according to Hunger et al. (2015). Roots were 

washed extensively to remove soil particles.  ‘Soil’ cores of mire 1 contained very little roots 
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and no root extract was prepared.  Root extracts were prepared by grinding root of 

approximately 300 g fresh weight with a mortar and pestle in liquid nitrogen.  Deionized water 

was added to ground roots to a final volume of one liter.  Solutions with ground roots were 

autoclaved, incubated for one week and filtered to remove particles resulting in a clear root 

extract.  Root extracts were utilized as supplements to medium that was used to prepare 

slurries (4.4.1) and serial dilutions (4.6.1, 4.7). 

4.4.12 Soil extract (oxic) 

Mire 1 contained very little roots, thus a soil extract was prepared according to Hunger 

et al. (2015).  The soil extract was prepared by mixing 500 mL deionized water with 500 g soil.  

The solution with soil was autoclaved, incubated for one week and filtered to remove particles 

resulting in a clear soil extract. 

4.4.13 Worm extract (anoxic) 

E. eugeniae was not accessible in Germany, therefore the earthworm Lumbricus 

terrestris was used to obtain a worm extract.  Approximately 60 g earthworms were washed 

with sterile water and numbed on ice before shredding in a blender for 60 seconds twice.  The 

blender was cooled on ice before and in between blending.  Shredded worms were diluted with 

120 mL sterile deionized water and incubated on an end-over-end shaker at 4 °C for 

approximately 12 hours.  Worm extract was centrifuged for 10 minutes by 5,000 g.  

Supernatant was sterile filtrated into a sterile serum bottle, gas-tight sealed with sterile butyl 

rubber stoppers and flushed with sterile 100 % argon for 30 minutes. 

4.4.14 Solidified reduced undefined medium RU1 (anoxic) 

Solidified reduced undefined medium was prepared modified from reduced undefined 

medium RU1 (4.4.3, Hunger et al. 2016) with the addition of 10 g gelrite L-1 and 50 mL root 

extract L-1.  Supplemented root extract was prepared from roots of mire 2.  The pH was 

adjusted to 5.0. 
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4.4.15 Solidified undefined mineral medium UM4 (anoxic) 

Anoxic solidified undefined mineral medium UM4 was prepared according to undefined 

mineral medium UM4 (4.4.10, modified from Balch et al. [1979] and Daniel et al. [1990] with 

the addition of 15 g agar L-1.  The pH was adjusted to 6.8. 

4.4.16 Semi-solid medium RU1 (anoxic) 

Anoxic semi-solid medium RU1 was prepared modified from reduced undefined 

medium RU1 (4.4.3, modified from Hunger et al. [2016]) with the addition of 2.2 g agarose L-1.  

The pH was adjusted to pH 6.8. 

4.4.17 Semi-solid medium RU3 (anoxic) 

The semi-solid medium was prepared according to the reduced undefined medium RU3 

(4.4.5, modified from Balch et al. [1979], Daniel et al. [1990], and Wüst et al. [2009a]) with the 

addition of 2.2 g agarose L-1.  The pH was adjusted to 6.8. 

4.4.18 LB agar plates with ampicillin 

LB agar plates with ampicillin were prepared modified from Sambrook et al. (1989). 

In g L-1: 

tryptone    10 

yeast extract    5 

NaCl     5 

agar     15 

 

Additionally, sterile filtrated solutions of ampicillin, isopropyl β-D-1-

thiogalactopyranoside (IPTG), and 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) 

were added to warm solution after autoclaving and before solidifying, resulting in a final 

concentration of (in mg L-1): 
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ampicillin    100 

IPTG      120 

X-gal     40 

The pH was adjusted to 7.0.  LB agar plates that were used with pJET1.2/blunt vector 

plasmid-containing E. coli lacking IPTG or X-gal. 

4.4.19 SOC medium 

SOC medium was prepared according to Sambrook et al. (1989). 

In mg L-1: 

tryptone    2,000 

yeast extract    500 

NaCl     60 

KCl     20 

Additionally, sterile filtrated solutions of MgCl2, MgSO4, and glucose were added to 

medium after autoclaving, resulting in a final concentration of (in mg L-1): 

MgCl2      200 

MgSO4     250 

glucose    360 

The pH was adjusted to 7.0. 

4.4.20 Diethylpyrocarbonate-treated deionized water 

Deionized water was treated with 10 mL diethylpyrocarbonate (DEPC) L-1 at 37 °C for 

4 hours to inactivate RNases (Sambrook et al. 1989). DEPC was inactivated by autoclaving. 

4.4.21 PCR-water 

Deionized water was sterile filtrated to remove particles and autoclaved to inactivate 

DNases. 
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4.4.22 Crystal violet 

Crystal violet was prepared modified from Bast (1999), by dissolving 15 g of crystal 

violet in 100 mL 96 % ethanol at 50 °C.  The cold solution was filtrated (0.2 µm pore size).  On 

a per liter basis, 250 mL crystal violet-ethanol solution and 10 g ammonium oxalate 

monohydrate were mixed. 

4.4.23 Safranin 

Safranin was prepared according to Bast (1999), by dissolving five grams of safranin 

in 100 mL 96 % ethanol at 50 °C.  The cold solution was filtrated (0.2 µm pore size) and diluted 

1:10 with deionized water. 

4.5 Anoxic incubations of environmental samples 

4.5.1 Preparation of anoxic slurries 

Slurries were prepared from the following environmental samples: whole soil cores (i.e., 

‘soil’), root-free soils, soil-free roots of Carex sp. and M. caerulea, and gut contents of the 

earthworm E. eugeniae. 

‘Soil’ from one sampling point was manually homogenized and used directly for 

experiments.  Plant roots and attached soils were handled in an O2-free chamber (Mecaplex, 

Grenchen, Switzerland) until transferred to serum bottles.  Soil was separated from roots with 

a sieve and did not contain any detectable roots; this soil was utilized as root-free soil.  Roots 

were washed extensively with sterile anoxic water until all soil particles were removed.  

Earthworms were washed and exposed to ice-cold, sparkling mineral water.  Gut contents 

(approximately 25 g) was squeezed out from approximately 100 earthworms while gassing 

with 100 % argon to minimize exposure of the gut contents to air.  Gut contents was 

homogenized and kept under an anoxic atmosphere of 100 % argon. 

Environmental samples were added to infusion flasks, were sealed with rubber 

stoppers and crimps, and flushed with sterile gas (100 % helium or N2 depending on the 
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detector used for gas analysis).  If not otherwise mentioned, environmental samples were 

diluted with anoxic solutions or media. 

4.5.2 Analysis of functional redundancy in contrasting mire ’soils’ 

Most microbiological studies that have investigated the production of CH4 in mire ‘soils’ 

have focused on either a single intermediary process linked to CH4 production or a single 

wetland ‘soil’ (e.g., Kotsyurbenko et al. 1996, Bräuer et al. 2004, Cadillo-Quiroz et al. 2006, 

Drake et al. 2009, Lin et al. 2014a, Lin et al. 2014b), and little is known about the potential 

differences and similarities of microbially mediated anaerobic processes and associated 

microbial communities that drive methanogenesis in contrasting CH4-emitting mire ‘soils’. 

 

Figure 11: Experimental set-up of anoxic slurries with ‘soils’ from contrasting mires. 

Fresh weight ‘soils’ from mire 1-4 were diluted with anoxic defined mineral medium DM1 (4.4.1).  

Treatments were prepared for triplicate analysis.  Unsupplemented slurries served as controls.  

Slurries were incubated in the dark at 15 °C. 

Samples were taken in summer or early autumn between June 2011 and August 2013 

from mires 1 to 4 (4.1.1, 4.1.2, 4.1.3).  Samples were taken from whole soil cores (i.e., ‘soil’).  

‘Soil’ samples that were used for the analysis of cultivable microorganisms (4.7) and gene copy 

numbers (4.10.10) were collected within nine days from all mires.  Three ‘soil’ cores per mire 

were analyzed that were 4-100 m apart from each other. 

For preparation of anoxic slurries, 10 g of fresh weight ‘soil’ were placed in sterile 

250 mL-infusion flasks and were diluted with 35 mL anoxic defined mineral medium DM1 

(4.4.1).  The pH of DM1 was adjusted according to the pH of the corresponding mire pore 

water (Table 24).  Slurries were either treated with 5 mM glucose, 0.3 mM acetate or 10 mL of 

+ N2 + glucose + CO2-H2 + acetate

homogenized ‘soil’ cores
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100 % H2 and CO2 gas (4:1)(Figure 11).  Glucose, H2 and CO2 were supplemented once at 

the beginning of incubation, acetate was supplemented repeatedly every week.  

Unsupplemented slurries served as controls.  Treatments and controls were prepared in 

triplicates.  Slurries were incubated at 15 °C in the dark.  Samples for molecular analysis of 

bacterial 16S rRNA genes and mcrA (encodes alpha-subunit of methyl-CoM reductase of 

methanogens) were collected at the beginning of the incubation and after 21 days of 

supplementation. 

4.5.3 Analysis of FHL activity, methanogenesis and acetogenesis with roots 

of mire-derived plants 

Formate is one of the most important organic acids that is released from the roots of 

wetland plants (Koelbener et al. 2010) and it is a substrate that can be rapidly utilized by mire 

methanogens, acetogens, and converted to H2 and CO2 by FHL-containing taxa (Hunger et al. 

2011a).  Methanogens are associated with rice roots (Conrad and Klose 1999, Chin et al. 

2004), and the availability of root-derived methanogenic substrates such as formate suggests 

that methanogens might also be associated with other wetland plant roots. 

 

Figure 12: Experimental set-up of formate-supplemented root-free soil slurries and soil-free 

root slurries from C. rostrata, C. nigra and M. caerulea. 

Roots and soils of C. rostrata, C. nigra, and M. caerulea were collected from mire 2 and were 

separated in an anoxic chamber.  Fresh weight soils or roots were diluted with anoxic defined mineral 

medium DM1 (4.4.1).  Slurries were treated with formate.  Unsupplemented slurries served as 

controls.  Replication of experiments can be found in legend of corresponding figures in the Results 

section.  Slurries were incubated in the dark on an end-over-end shaker at 15 °C. 

root-free soil

+ N2

root-free soil

+ N2

+ formate

soil-free roots

+ N2

soil-free roots

+ N2

+ formate

root-free soil soil-free roots

roots and attached soils of

Carex rostrata, Carex nigra, or Molinia caerulea
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Samples of plant roots and attached soils from C. rostrata, C. nigra, M. caerulea or a 

mixture of roots were taken in October 2010, April and October 2012, and April 2013 from mire 

2 (4.1.2).  Samples were taken 1-20 m apart from each other.  Replicates in treatments reflect 

replicates of plant patches.  Two grams of fresh weight soil-free roots or root-free soils were 

added to 120-mL infusion flasks in an anoxic chamber.  Unless otherwise stated, roots and 

soils were diluted 1:10 (w/v) with anoxic defined mineral medium DM1 (pH 4.5, 4.4.1).  Slurries 

with soil-free roots or root-free soils were supplemented with 1-5 mM formate for triplicate or 

sextuplicate analysis (details can be found in corresponding figure legends).  Unsupplemented 

slurries served as controls (Figure 12).  Slurries were incubated at 15 °C in the dark on an end-

over-end shaker to ensure that roots were covert with medium.  Samples for molecular analysis 

of mcrA were collected at the beginning of the incubation with C. rostrate roots and after 

28 days of supplementation. 

4.5.4 ‘Stable isotope probing’ of mire ‘soil’ with [13C]formate 

Supplemental formate stimulated the production of acetate and CH4 in anoxic slurries 

with ‘soil’ from mire 2 (Wüst et al. 2009a), which was indicative for acetogenesis and 

methanogenesis in this mire ‘soil’, respectively.  Different methanogens were detected by 

molecular analysis but acetogens remained unknown (Wüst et al. 2009a).  A DNA stable 

isotope probing (SIP) experiment with anoxic [13C]formate-supplemented ‘soil’ slurries (5.3) 

was conducted to identify active acetogens and methanogens.  The identification of active 

methanogens based on the analysis of mcrA and active bacterial taxa based on 16S gene 

analysis was part of my diploma thesis (Hunger et al. 2011a).  The analysis of active acetogens 

by obtaining bacterial fhs sequences (encodes the formyltetrahydrofolate synthetase, 4.10.9, 

4.11.1) from aforementioned ‘soil’ slurries and the determination of the content of 13C-enriched 

acetate (4.8.9) was part of my doctoral dissertation. 

Three whole soil cores (i.e., ‘soil’) were taken from a depth of 0-20 cm in July 2008 

(4-5 m apart) from mire 2 (4.1.2).  The ‘soil’ was homogenized.  Thirty-five grams of fresh 

weight homogenized ‘soil’ were placed in sterile 500-Ml infusion flasks and diluted with 125 mL 
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anoxic defined mineral medium DM2 (pH 4.8, 4.4.2).  Slurries were preincubated to remove 

alternative electron acceptors such as nitrate, sulfate and iron(III), and thus minimize labeling 

of microorganisms that could anaerobically respire formate (Figure 13). 

 

Figure 13: Experimental set-up of formate-supplemented ‘soil’ slurries. 

Fresh weight ‘soil’ from mire 2 was diluted with anoxic defined mineral medium DM2 (4.4.2).  Anoxic 

slurries were preincubated for 15 days to reduce alternative electron acceptors.  After preincubation, 

slurries were treated with [13C]formate or [12C]formate and additionally with 12CO2 in triplicates.  

Unsupplemented slurries served as controls.  Slurries were incubated in the dark at 15 °C. 

After 15 days of preincubation, sodium[13C]formate (99 at % 13C) and 

sodium[12C]formate-supplemented slurries were pulsed daily with approximately 64 µmol 

formate per slurry.  Control slurries lacked supplemental formate.  [13C]formate could be 

converted to 13CO2 and H2, resulting in potentially labelled 13CO2 in the gas phase.  Two 

safeguards against CO2 cross-feeding were taken: (a) formate treatments were pulsed daily 

with 192 µmol 12CO2 (i.e., sodium [12C]bicarbonate) per slurry, and (b) the gas phases of 

slurries were exchanged with sterile 100 % N2 before substrate pulsing was initiated and every 

subsequent fourth day.  For exchanging the gas phase with N2, slurries were evacuated under 

sterile conditions for 30 minutes at approximately -800 mbar, followed by replacement of the 

gas phase with 100 % N2.  This procedure was repeated after 15 minutes.  Finally, slurries 

were flushed with sterile 100 % N2 for 20 minutes.  The pH was adjusted every fourth day to 

approximately pH 4.5 with anoxic sterile five molar HCl.  Slurries were incubated for 39 days 

+ N2
+ N2

+ NaHCO3

+ NaH13COOH

+ N2

+ NaHCO3

+ NaHCOOH

PREINCUBATION
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horizontally in the dark at 15 °C.  Samples for DNA SIP were taken after preincubation (i.e., 

day 16) and after 24 days of formate-supplementation (i.e., day 39) (4.10.7). 

4.5.5 ‘Stable isotope probing’ of gut contents derived from the earthworm 

E. eugeniae with [13C]glucose 

The earthworm gut is an anoxic and saccharide-rich habitat that harbors denitrifiers and 

fermenters (Drake and Horn 2007, Karsten and Drake 1997, Wüst et al. 2009b), suggesting 

that guts of other earthworms have similar capacities.  The earthworm E. eugeniae not only 

emits N2O and H2 that are indicative for denitrification and fermentation but also emits CH4 that 

is indicative for methanogenesis (Depkat-Jakob et al. 2012, and unpublished data).  A 

methanogenic enrichment derived from gut contents of E. eugeniae (4.6.3) displayed the 

capacity for methanogenesis along with the capacity for acetogenesis (Figure 50).  Based on 

this observation a RNA stable isotope probing experiment with [13C]glucose- and H2-

supplemented gut contents of E. eugeniae was conducted to identify active acetogens. 

 

Figure 14: Experimental set-up of glucose-supplemented slurries with gut contents of 

E. eugeniae. 

Anoxic gut contents of E. eugeniae was preincubated for three days to remove alternative electron 

acceptors.  After preincubation, fresh weight gut contents was diluted with anoxic sodium phosphate 

buffer.  Slurries were treated with CO2 and [13C]glucose, or CO2, [13C]glucose and H2 for triplicate 

analysis.  Unsupplemented slurries served as controls.  Slurries were incubated in the dark at 25 °C. 

+ N2
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+ CO2
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Gut content of E. eugeniae was collected (4.5.1) and preincubated under a 100 % 

argon atmosphere in a sterile, gas-tight serum bottle at room temperature for three days to 

reduce alternative electron acceptors (Figure 14).  On the fourth day, sterile 120-mL serum 

bottles were filled with one gram of preincubated gut contents in an anoxic chamber (100 % 

N2 atmosphere).  Gut contents in serum bottles was diluted with nine milliliters of sterile, anoxic 

sodium phosphate buffer (15 mM NaH2PO4, 20 mM Na2HPO4, pH 7.0).  Six slurries were 

pulsed twice a day with 350 µM [13C]glucose (Sigma-Aldrich Chemie GmbH, 99 at % 13C) and 

had approximately five percent 12CO2 added to the gas phase once at the beginning of the 

incubation.  Approximately 10 % H2 were added once at the beginning of the incubation to 

three of the [13C]glucose-supplemented slurries to additionally stimulate acetogenesis.  Three 

unsupplemented slurries served as controls.  Slurries were incubated at 25 °C in the dark.  

Samples for RNA SIP were taken after preincubation (i.e., day 4) and after seven days of 

glucose-supplementation (i.e., day 10) (4.10.7). 

4.6 Enrichment and isolation procedures 

4.6.1 Enrichment and isolation of FHL-containing bacteria, fermenters, and 

an acetogen from mire-derived roots 

Carex and Molinia roots transformed formate to H2 and CO2, and likewise displayed the 

potential for hydrogenotrophic acetogenesis (Figure 33).  A mixture of soil-free Carex and 

Molinia roots from mire 2 (4.1.2) were used to enrich and isolate bacteria potentially associated 

with these activities.  The enrichment medium contained H2 and formate in order to maximize 

the likelihood of obtaining such microorganisms. 

Roots were incubated in reduced undefined medium RU2 (without root extract, 4.4.4) 

in the dark at 15 °C.  The gas phase was 100 % CO2.  The medium of early enrichments 

contained 10 mM 2-bromoethanesulfonic acid to inhibit methanogenesis, 5 mM formate, and 

approximately 10 % H2 at pH 5.  Later incubations were performed without 2-

bromoethanesulfonic acid at pH 6.8 to increase growth.  At the beginning, whole roots were 

transferred and served as inoculum.  After three transfers of roots, the medium was 
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supplemented with five percent root extract and the liquid phase served as inoculum for further 

enrichments.  The final enrichment was designated FH (because formate and H2 were provided 

with the intent to enrich formate- and H2-utilizing bacteria).  The initial root enrichment 

converted approximately 54 mmol formate L-1 and 87 mmol H2 L-1 as co-substrate to 36 mmol 

acetate L-1. 

Isolates SB1 (Citrobacter-related) and SB2 (Hafnia-related) were obtained by (a) 

plating 1:10 serial dilutions of enrichment FH on formate-supplemented solidified reduced 

undefined medium RU1 (H2-CO2 gas phase, pH 5.0, 4.4.14), (b) transferring single colonies to 

liquid reduced undefined medium RU1 (pH 5.0, 4.4.3), and (c) repeating steps a and b two 

more times.  Solidified and liquid reduced undefined medium RU1 contained five millimolar 

formate.  The gas phase of serum bottles with liquid reduced undefined medium RU1 contained 

approximately 10 % H2.  Characterization of the isolates was performed in oxic undefined 

mineral medium UM1 (pH 5, 4.4.7) or reduced undefined medium RU1 (pH 5, 4.4.3).  

Incubations were performed in the dark at 15 °C. 

Isolates SB3 (Clostridium-related) and isolate SB4 (Carnobacterium-related) were 

obtained by (a) inoculating glucose-supplemented semi-solid medium (pH 6.8, 4.4.16) with 

1:10 serial dilutions of the acetogenic enrichment FH, (b) transferring single colonies to liquid 

medium (pH 6.8, 4.4.3), and (c) repeating steps (a) and (b) four more times.  Characterization 

of the isolates was performed in reduced undefined medium RU1 (pH 5 or pH 6.8, 4.4.3).  

Incubations were performed in the dark at 15 °C. 

Although enrichment FH displayed acetogenic activity, no pure acetogenic isolate was 

obtained by the aforementioned protocol.  Acetogenic activity was lost after a few transfers if 

the new medium lacked autoclaved roots or sterile root extract (4.4.11).  Characterization of 

the acetogenic enrichment was performed in the reduced undefined medium RU1 at pH 5 and 

pH 6.8.  Incubations were performed in the dark at 15 °C. 
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4.6.2 Isolation of an acetogen and a fermenter from forest ‘soil’ 

Acetogens are often thought to be obligate anaerobes but have been isolated from 

habitats that are exposed to O2 such as the roots of the sea grass Halodule wrightii (Küsel et 

al. 2001) or oxic Egyptian soil (Gößner et al. 1999), indicating that acetogens can be O2 tolerant 

to some extent.  In this regard, anoxic slurries with forest ‘soil’ from Koke’e State Park (4.1.4) 

converted supplemental H2 and CO2 to acetate in a stoichiometric ratio that was indicative for 

acetogenesis (Küsel et al. 2002), and thus the objective of this study was to isolate an acetogen 

from this forest ‘soil’. 

For initial enrichment, aerated soil from Koke’e State Park was diluted 1:10 (w/v) in 

undefined mineral medium UM4 (pH 6.8, 4.4.10).  This medium was lacking reducing agents 

to increase the likelihood of obtaining an acetogen with at least a minimal tolerance to O2.  

Infusion flasks were incubated horizontally at 30 °C and were not shaken.  The acetogenic 

culture KH (for Kaua’i, Hawaii) was obtained by streaking enrichments on solidified undefined 

mineral medium UM4 (H2-CO2 gas phase, 4.4.15), transferring colonies to liquid undefined 

mineral medium UM4, and then re-streaking two times.  Culture KH formed acetate in response 

to xylan and raffinose, saccharides that are not normal substrates for known acetogens (Drake 

et al. 2006), and it was suspected that KH might contain more than one microorganism.  KHa 

and KHb were taken from the highest growth-positive dilutions of undefined mineral medium 

UM4 supplemented with either H2 or raffinose, respectively.  KHa and KHb were then obtained 

from isolated colonies on solidified undefined mineral medium UM4 (pH 6.7, 4.4.15).  

Undefined mineral medium UM4 (6.8, 4.4.10) was used for further characterization of KHa and 

KHb. 

4.6.3 Enrichment of methanogens and acetogens from gut contents of 

E. eugeniae 

The earthworm E. eugeniae emitted CH4 and displayed the potential of 

methanogenesis being an active process in the earthworm gut (Depkat-Jakob et al. 2012).  

Attempts were made to isolate methanogens from gut contents of E. eugeniae by diluting gut 
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contents 1:10 (w/v) with reduced undefined medium RU4 (pH 6.8, 4.4.6) in a H2-CO2 

headspace (approximately 1:9).  The enrichment was transferred into new medium RU4 and 

incubated at 25 °C with a H2-CO2 headspace (approximately 1:9).  After another transfer of the 

enrichment to new medium RU4 with a 100 % CO2 headspace and either 22 mM H2 or 5 mM 

acetate supplementation.  Enrichment was incubated at 25 °C for 14 days.  Unfortunately, 

further attempts to transfer and enrich the methanogens failed and the enrichment was lost. 

The methanogenic enrichment converted H2 and CO2 not only to CH4 but also to 

acetate, suggesting that the gut contents of E. eugeniae harbors acetogens.  Thus, gut 

contents of E. eugeniae was diluted 1:10 (w/v) with reduced undefined medium RU3 (pH 6.8, 

4.4.5).  The gas phase was 100 % CO2.  A serial dilution was prepared.  H2 served as substrate 

and only highest dilutions that converted H2 to acetate were selected for further serial dilutions.  

The enrichment was transferred four times in liquid medium until semi-solid medium was 

utilized for further enrichment by (a) serial 1:10 dilutions (w/v) of the enrichment prepared with 

semi-solid medium RU3 (4.4.17), (b) single colonies transferred from semi-solid medium RU3 

to liquid reduced undefined medium RU3, and (c) steps (a) and (b) were repeated once more.  

Characterization of the acetogenic enrichment was performed in reduced undefined medium 

RU3.  Incubations were performed in the dark at 25 °C. 

4.7 Determination of cultivable microorganisms 

The most probable number (MPN) approach was used to estimate the number of 

cultivable aerobes and anaerobes in four contrasting mire ‘soils’ (Phelps 1908, Oblinger and 

Koburger 1975).  ‘Soil’ samples were taken 4-100 m apart from each other and were collected 

within nine days from all mires.  Undefined mineral media UM2 (anoxic, 4.4.8) and UM3 (oxic, 

4.4.9) were used to estimate the number of microorganisms.  Media (4.4.8, 4.4.9) for the 10-

fold dilution series did not contain yeast extract or tryptone.  The pH of the media UM2 and 

UM3 was adjusted according to the in situ pH of the corresponding mire pore water.  Two oxic 

and two anoxic 10-fold dilution series were prepared from three ‘soil’ samples of each mire.  

Microbes were dispersed in the first dilution of the 10-fold dilution series with the help of a 
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dispersion solution (150 g sodium pyrophosphate L-1) and a mechanical procedure (1 hour at 

15 °C with 100 cycles min-1 on an end-over-end shaker) (Bast 1999).  The 10-fold dilution 

series were used to inoculate wells in quadruplicates in 96-well plates.  Preparation of anoxic 

dilution series was performed in an anoxic chamber (100 % N2 gas phase).  Inoculated 96-well 

plates were incubated in the dark at 15 °C under anoxic (100 % N2 gas phase) or oxic 

conditions for 18 weeks.  Wells were scored growth-positive if the optical density increased at 

least 0.01 units (4.9.4) and growth was visible to the naked eye.  Cultivable cell numbers are 

per gram soil dry weight (i.e., [g soilDW]). 

4.8 Analytical techniques 

4.8.1 Dry weight 

Dry weight of environmental samples was determined in triplicates by weighing 

samples before and after drying at 60 °C for approximately 72 hours. 

4.8.2 Sampling and preparation of liquid samples 

Gas and liquid phase were sampled with sterile and gas-flushed syringes.  Liquid 

samples were stored at -20 °C for chemical analysis or at -80 °C for molecular analyses.  

Untreated gut contents of E. eugeniae and the substrate that the earthworm was raised on 

were taken and stored in RNAlater RNA Stabilization Reagent (Qiagen, Hilden, Germany) to 

stabilize nucleic acids until analyzed. 

4.8.3 pH 

The pH of liquid samples was determined with a pH electrode (InLab R422, Mettler 

Toledo GmbH, Gießen, Germany) and a digital pH meter (WTW pH 330, Wissenschaftlich-

Technische Werkstätten, Weilheim, Germany). 

4.8.4 Quantification of ions by ion chromatography 

Nitrate, sulfate, phosphate and chloride were analyzed at the Center for Analytical 

Chemistry (Bayreuth Center of Ecological and Environmental Research, University of 
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Bayreuth, Bayreuth, Germany) (Hunger et al. 2011a).  Nitrate and sulfate were analyzed with 

a Dx500 ion chromatograph equipped with an ED 40 detector and AS 4A-SC column (Dionex 

Corporation, Sunnyvale, USA).  The mobile phase was 1.8 mM sodium carbonate and 1.7 mM 

sodium bicarbonate at a flow rate of 2 mL min-1.  The column temperature was 35 °C. 

4.8.5 Quantification of total nitrogen and carbon content 

Total nitrogen and total carbon content in solid samples were analyzed at the Center 

for Analytical Chemistry (Bayreuth Center of Ecological and Environmental Research, 

University of Bayreuth, Bayreuth, Germany).  Solid samples were dried for 48 hours at 60 °C 

and were ground to powder with a mixer mill (MM200, Retsch, Haan, Germany) before 

measurement.  Total nitrogen and total carbon content of powdered samples were analyzed 

with an element analyzer (ThermoQuest, Flash EA 1112, Thermo Fisher Scientific, Waltham, 

USA).  Samples were combusted at 900 °C under an O2 gas flow to CO2, NOx, and water.  

Gases were collected in a helium gas flow with a flow rate of 130 mL min-1 and NOx was 

reduced in a column with copper oxide to N2.  CO2 and N2 were quantified with a thermal 

conductivity detector (Thermo Quest, Flash EA 1112, Thermo Scientific, Waltham, USA). 

4.8.6 Quantification of non-purgeable organic carbon 

Non-purgeable organic carbon (NPOC) in liquid samples was analyzed at the Center 

for Analytical Chemistry (Bayreuth Center of Ecological and Environmental Research, 

University of Bayreuth, Bayreuth, Germany).  Liquid samples were filtrated (0.45 µm pore size) 

and acidified with two normal HCl before measurement.  Acidification of samples dissolved 

bicarbonates and released them as CO2.  Acidified samples were treated with an inert gas to 

blow out the CO2 and other volatile compounds from samples.  NPOC was analyzed with a 

TOC/TNb analyzer (multi N/C 2100, Analytik Jena, Jena, Germany).  Samples were 

combusted at 800 °C under synthetic air gas flow.  Produced CO2 was quantified with a 

nondispersive infrared sensor NDIR detector (NDIR detector, Analytik Jena, Jena, Germany) 

which determined the optical dispersion of gases. 
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4.8.7 Quantification of gases 

H2, CO2 and CH4 were measured with gas chromatographs equipped with thermal 

conductivity detector, helium ionization detector or flame ionization detector (5890 series II, 

Hewlett-Packard, Palo Alto, USA or SRI Instruments, Torrance, USA) (Küsel and Drake 1995, 

Hunger et al. 2011a).  The thermal conductivity detector measured the changes in the thermal 

conductivity of analytes in the carrier gas in comparison to the thermal conductivity of pure 

carrier gas.  The flame ionization detector measures ions that were formed during ionization 

of analytes in a H2 flame.  The helium ionization detector measured ions that were formed 

during ionization of analytes by metastable helium.  Concentrations of gases are combined 

concentrations from gas and liquid phases and were calculated from the ideal gas law (4.12.5) 

taking into consideration the ambient pressure (Barogeber, 946...1053 hPa, ThiesClima, 

Göttingen, Germany), overpressure in incubation flasks (DMG 2120, Ballmoos Elektronik AG, 

Horgen, Switzerland), temperature, pH (4.8.3), and volume of gas and liquid phases in serum 

bottles, infusion flasks and tubes (Blachnik 1998, Krichevsky and Kasarnovsky 1935).  

Standard curves were used to calculate the gas concentration in gas samples.  Standard 

curves were prepared by triplicate determination of the area peak derived from known 

concentrations of seven H2 standard, seven CH4 standards, and nine CO2 standards.  In order 

to compare consumption and production of gases and organic compounds, amounts of gases 

were given in relation to liquid phases. 

.
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Table 8: Settings for Hewlett Packard 5890 Series II and SRI 8610C gas chromatographs. 

 Hewlett Packard 5890 Series II SRI 8610C 

Gases measured CO2 CH4 H2, CH4 CO2 CH4, H2 CH4 

Detector thermal 

conductivity 

detector (TCD) 

flame ionization 

detector (FID) 

thermal 

conductivity 

detector (TCD) 

thermal 

conductivity 

detector (TCD) 

helium ionization 

detector (HID) 

flame ionization 

detector (FID) 

Column chromosorb 102, 

2 m x 1/8’’a 

molecular sieve,  

2 m x 1/8’’a 

molecular sieve,  

2 m x 1/8’’a 

HayeSep-D,            

2 m x 1/8’’b 

6‘ molecular sieve 

13x columnb 

HayeSep-D,             

2 m x 1/8’’b 

Carrier gas helium helium argon helium helium helium 

Flow rate 15 mL min-1 40 mL min-1 33 mL min-1 25 mL min-1 20 mL min-1 40 mL min-1 

Oven temperature 40 °C 60 °C 60 °C 80 °C 80 °C 60 °C 

Injector 

temperature 

150 °C 120 °C 150 °C 60 °C 60 °C 60 °C 

Detector 

temperature 

175 °C 150 °C 175 °C 175 °C 150 °C 380 °C 

Volume injected 0.1-0.2 mL 0.1-0.2 mL 0.1-0.2 mL 1 mL 1 mL 0.4-1 mL 

Additional settings - - - TCD amplifier 

high 

HID current on, 

250 °C 

FID amplifier high 

Lower 

quantification limit 

100 ppm 0.6 ppm 100 ppm (H2) 

1000 ppm (CH4) 

0.5 % 19 ppm (CH4) 

97 ppm (H2) 

19 ppm 

a Alltech, Unterhaching, Germany. 
b SRI Instruments, Torrance, USA
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4.8.8 Quantification of sugars, ethanol and organic acids 

Liquid samples from slurries were centrifuged (5,000 g, five minutes) and the 

supernatant was filtrated (0.2 µm pore size) into a 1.5 mL-glass vial.  The glass vial was sealed 

and used for analysis.  Organic acids, sugars and ethanol in liquid samples were determined 

with a high performance liquid chromatograph (1090 series II, Hewlett Packard, Palo Alto, 

USA) that was equipped with a variable wavelength UV detector and a refractive index detector 

(Series 1200, Agilent Technologies, Böblingen, Germany) (Wüst et al. 2009b).  The UV 

detector measures the absorption of light from analytes at a wavelength of 210 nm.  The 

refractive index detector measures the refractive index of the analytes in comparison of the 

refractive index of the pure mobile phase.  Twenty microliter sample were injected into the 

mobile phase (4 mM H3PO4, pH 2.5) via an autosampler and the sample-mobile phase mixture 

was pumped through an ion exclusion column (Rezex ROA Organic Acid H+ column, 

300 x 7.8 mm, Phenomenex, Torrance, USA) with a flow rate of 0.8 mL min-1.  The column 

was heated to 60 °C by an oven.  Stronger interactions of an analyte with the column material 

(sulfonated polystyrol-divinylbenzol-copolymere) leads to a longer retention time of the 

compound.  Standard curves were used to calculate the concentration of compounds in liquid 

samples.  Standard curves were prepared by triplicate determination of the area peak from 

known concentrations of eight to nine standards per compound. 

4.8.9 Determination of [13C]-enriched organic acids and gases by liquid 

chromatography coupled to isotope ratio mass spectrometry 

The 13C content of organic acids was determined by the Max Plank Institute for 

Terrestrial Microbiology (Prof. R. Conrad, Marburg, Germany) by liquid chromatography 

coupled to isotope ratio mass spectrometry (FinniganTM LC IsoLink, Thermo Fisher Scientific, 

Waltham, USA) (Krummen et al. 2004).  Organic acids were separated by high performance 

liquid chromatography, oxidation, and supplementation of acid/catalyst reagents (ammonium 

peroxodisulfate, phosphoric acid, silver nitrate).  Organic compounds were oxidized to CO2 in 

an oxidation reactor at 100 °C.  CO2 of the liquid phase was degassed by a helium counter 
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flow, which was then dried in an on-line gas-drying unit and injected into the mass 

spectrometer. 

4.8.10 Determination of the volume of the liquid and gaseous phases of 

incubation flasks 

Volume of gas and liquid phase are necessary to calculate concentrations of gases and 

were determined from each incubation flask (i.e., serum bottle, infusion flask and tube).  The 

interface of liquid and gas phase was marked.  The volumes were determined under the 

assumption that one gram of water occupies one mL of volume.  The incubation flasks were 

weighed empty, completely filled with water, and filled with water up to the mark.  The volume 

of the liquid phase was determined by subtracting the weight of the empty incubation flask from 

the weight of the same incubation flask that was filled up to the mark.  The volume of the gas 

phase was determined by subtracting the weight of the incubation flask that was filled up to 

the mark from the weight of the same incubation flask that was completely filled.  The complete 

volume of the incubation flask was determined by subtracting the weight of the empty 

incubation flask from the weight of the same incubation flask that was completely filled. 

4.9 Microbiological methods 

4.9.1 Gram staining 

Gram staining was used to differentiate between microorganisms (Bast 1999).  Glass 

slides were cleaned with 96 % ethanol before 100 µL cell suspension were transferred on top 

of the slide.  Cells were fixated to the glass surface by swiping the slide through a flame three 

times.  Remaining liquid evaporated at room temperature within 30 minutes.  Fixated cells were 

exposed to crystal violet for one minute (4.4.22).  Crystal violet penetrates the cell wall and cell 

membrane.  Cells were rinsed and incubated for one minute with Lugol’s iodine solution 

(13 mM iodine, 40 mM potassium iodide).  During this step, the chloride anion of crystal violet 

is exchange with iodine from the Lugol’s iodine solution and a water-insoluble violet complex 

is formed.  Cells were rinsed with 96 % ethanol and the violet complex outside of cells and 
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inside of cells with a thin murein structure are dissolved and washed off.  The violet complex 

inside of cells with a thicker murein structure (stain Gram positive) was maintained and the 

ethanol dehydrated the murein structure.  Cells were washed with deionized water to remove 

the ethanol.  Cells were exposed to safranin for 30-60 seconds (4.4.23) and non-violet cells 

stained red (stain Gram negative).  Cells were rinsed with deionized water and dried at room 

temperature before microscopy. 

4.9.2 Cytochrome c oxidase test 

Cytochrome c oxidase is a part of the electron transport chain of aerobes (Berg et al. 

2003).  Cytochrome c oxidase transfers electrons from cytochrome c to O2 forming water during 

the process and translocating H+ across the membrane to form an H+ gradient (i.e., 

electrochemical potential) that drives ATPases (Berg et al. 2003). 

A cell suspension was treated with N, N, N′ ,N′-tetramethyl-p-phenylenediamine (1 % 

TMPD, 0.1 % ascorbic acid, 70 Mm phosphate buffer, pH 7.0) for 20-30 seconds (modified 

from Liu and Jurtshuk 1986).  TMPD serves as electron donor for cytochrome c that 

subsequently reduces cytochrome c.  Colorless TMPD is oxidized and turns dark-blue, and 

Oxidase-positive cells dye blue within one minute.  Oxidase-negative cells show no or late blue 

staining. 

4.9.3 Catalase test 

Most aerobes and facultative aerobes contain catalase to detoxify hydrogen peroxide 

(Berg et al. 2003).  Catalase catalyzes the reaction of two molecules hydrogen peroxide to two 

molecules water and one molecule O2 (Berg et al. 2003).  A cell suspension was exposed to 

10 % hydrogen peroxide (modified from Madigan and Martinko [2006]).  Catalase-positive cells 

form foam resulting from the formation of O2.  Catalase-negative cells do not form foam. 
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4.9.4 Optical density 

The optical density of cultures in tubes or 96-well plates was measured at a wavelength 

of 660 nm with spectrophotometers (Milton Roy Spectronic 501, Bausch & Lomb Inc., 

Rochester, USA or µQuant, BioTek Instruments, Winooski, USA). 

4.9.5 Microscopy 

Cell morphology and mobility of microorganisms in cultures were observed with a 

microscope (Axioskop 2, Zeiss, Jena, Germany) equipped with an Axiocam MR monochrome 

(TV 2/3"C 0.63X 1069-414, Zeiss, Jena, Germany).  A 1,000-fold magnification was used with 

bright field to study microorganisms or with phase contrast 3 to determine the Gram staining. 

4.10 Molecular techniques 

4.10.1 Extraction of DNA and RNA 

Roots were ground with a sterile mortar and pestle in liquid nitrogen before nucleic acid 

extraction.  Samples that were stored in RNAlater RNA stabilization reagent were washed 

three times with RNase-free phosphate-buffered saline (137 mM NaCl, 2.7 mM KCl, 10 mM 

Na2HPO4, 1.8 mM KH2PO4, pH 7.4; centrifugation at 10,000 g, 15 minutes) before nucleic acid 

extraction (Depkat-Jakob et al. 2012).  Cells from enrichments and pure cultures were 

harvested by centrifugation (5,000 g for five minutes) of 1-10 mL of culture, and discarding of 

the supernatant resulting in a pellet of cells.  All other samples such as ‘soils’ were utilized 

without prior treatment. 

Nucleic acids were extracted by bead-beating lysis, organic solvent extraction, and 

precipitation (Griffiths et al. 2000).  Samples were handled on ice during extraction and 

centrifugation was performed at 4 °C.  For extraction of nucleic acids from environmental 

samples, 110 mg of 0.1 mm glass beads, 150 mg of 0.5 mm glass beads, 35 mg of 1.0 mm 

glass beads, and two 3.0 mm glass beads (BioSpec Products, Bartlesville, USA) were used.  

For extraction of nucleic acids from a cell pellet of cultures and ground roots, 35 mg of 0.1 mm 

glass beads and 35 mg of 0.5 mm glass beads (BioSpec Products, Bartlesville, USA) were 
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used.  Up to 0.5 g of sample, 0.5 mL extraction buffer (RNase- and DNase-free, 5 % 

cetrimonium bromide, 2 % NaCl, 120 mM potassium phosphate buffer, pH 8.0, 60 °C), and 

0.5 mL phenol/chloroform/isoamyl alcohol (25:24:1, pH 8.0) were added to samples and glass 

beads.  Cells in samples were lysed by bead-beating twice for 30 seconds and 5.5 m s-1 (Fast 

Prep FT120, Thermo Savant, Holbrook, USA).  Samples were cooled on ice in between bead-

beating.  Solid and liquid phases of sample were separated by centrifugation (14,000 g, five 

minutes).  Phenol residues in the liquid phase were removed by a chloroform-isoamyl alcohol 

(24:1) treatment.  Samples were homogenized with 0.5 mL chloroform-isoamyl alcohol, 

centrifuged (14,000 g, five minutes), and the upper liquid phase was used for precipitation.  

Nucleic acids were precipitated with polyethylene glycol (4.10.2) and dissolved in 55 µL 

DNase- and RNase-free water (DEPC-treated deionized water, 4.4.20) for RNA analysis or TE 

buffer (10 mM Tris-HCl, 1 mM ethylenediaminetetraacetic acid [EDTA], pH 8.0) for DNA 

analysis. 

For extraction of nucleic acids for quantitative PCR (4.10.10), nucleic acids were 

extracted twice by bead-beating lysis and organic solvent extraction.  Nucleic acid pellets from 

both extractions were dissolved as described above and were merged to one sample. 

4.10.2 Precipitation of nucleic acids with polyethylene glycol 

DNA from fractions after isopycnic centrifugation (4.10.7), nucleic acids after extraction 

(4.10.1), and RNA after digestion of DNA (4.10.5) were precipitated with twice the volume of 

polyethylene glycol 6000 (30 % polyethylene glycol, 0.1 M HEPES buffer, pH 7.0).  

Polyethylene glycol for precipitation of DNA from fractions after isopycnic centrifugation was 

supplemented with 1.6 M NaCl (Neufeld et al. 2007b).  For an easier visualization of the 

precipitated pellet with small amounts of nucleic acids, samples were treated with polyethylene 

glycol and three microliter glycogen (20 mg mL-1).  Nucleic acids were precipitated for two 

hours at room temperature and were centrifuged (14,000 g, 30 minutes, 4 or 15 °C).  

Supernatant was discarded and the nucleic acid pellet was washed twice with RNase- and 

DNase-free 70 % ethanol.  Nucleic acid pellets were dried to completely remove the ethanol. 
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4.10.3 Precipitation of nucleic acids with isopropyl alcohol 

PCR products were precipitated with 0.7-times the volume of 100 % isopropyl alcohol 

and 0.1-times the volume of five molar NaCl for approximately 12 hours at -20 °C.  After 

precipitation of nucleic acids, samples were centrifuged (13,000 g, 30 minutes, 4 °C).  Nucleic 

acid pellets were washed twice with DNase-free 70 % ethanol.  The pellets were dried to 

completely remove ethanol residues. 

4.10.4 Precipitation of nucleic acids with sodium acetate buffer 

RNA from fractions after isopycnic centrifugation (4.10.7) was precipitated with 

0.65 volumes of sodium acetate buffer (3 M, pH 5.2) and five times the volume of RNase-free 

96 % ethanol.  For an easier visualization of the precipitated RNA pellet, three microliter 

glycogen (20 mg mL-1) were added additionally.  RNA was precipitated for about 12 hours at -

20 °C and was centrifuged (14,000 g, 30 minutes, 4 or 15 °C).  Supernatant was discarded 

and the RNA pellet was washed twice with RNase-free 70 % ethanol.  RNA pellets were dried 

to completely remove the ethanol. 

4.10.5 Separation of RNA by enzymatic digestion of DNA 

DNA was removed from nucleic acid extractions with RNase-free DNase according to 

the manufacturer’s instructions (Promega, Mannheim, Germany).  Twenty-six microliters of 

sample with nucleic acids were digested with one unit DNase I in reaction buffer (10 mM Tris-

HCl, 2.5 mM MgCl2, 0.1 mM CaCl2, pH 7.5) for 45 minutes at 37 °C.  The reaction was stopped 

by precipitation of RNA with isopropyl alcohol (4.10.3).  

4.10.6 Quantification of nucleic acids 

Higher concentrations of nucleic acids (e.g., in PCR products) were quantified with a 

UV/Vis spectrophotometer (Nano Drop ND-1000, PEQLAB Biotechnologie, Erlangen, 

Germany).  DNA and RNA absorb UV light at a wavelength of 260 nm resulting in an increase 

of the optical density which is measured with the spectrophotometer and used to calculate 

DNA and RNA concentrations.  Contaminants in the samples are measured at 230 nm and 
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280 nm.  The 260 to 230 ratio and 260 to 280 ratio are used to determine the purity of nucleic 

acids.  Values between 1.8 and 2.0 indicate pure extracts.  Lower values indicate the presence 

of contaminants such as phenols, humic acids, or proteins. 

Lower concentrations of DNA (e.g., DNA from fractions after isopycnic centrifugation) 

were quantified with Quant-iT dsDNA PicoGreen Assay Kit (Invitrogen, Karlsruhe, Germany) 

according to the manufacturer’s instructions.  A DNA calibration curve was prepared from fresh 

reagents and measured each time.  Standard and samples were prepared in TE buffer (10 mM 

Tris-HCl, 1 mM EDTA, pH 7.5) in 96-well plates (Orange Scientific, Braine-l’Alleud, Belgium).  

PicoGreen reagents were added in a 1:1 ratio.  Reagents were homogenized by shaking for 

one minute.  Standards and samples were measured with a fluorimeter (FL x 800 Microplate 

Reader, BioTek Instruments, Bad Friedrichshall, Germany).  The fluorescent dye PicoGreen 

was excited at a wavelength of 485 nm and fluorescence emission intensity was measured at 

a wavelength of 528 nm.  Standards were measured in triplicates and samples in duplicates. 

Lower concentrations of RNA (e.g., RNA from fractions after isopycnic centrifugation) 

were quantified with Quant-iT RiboGreen RNA Assay Kit (Invitrogen, Karlsruhe, Germany) 

according to the manufacturer’s instructions.  An RNA calibration curve was prepared from 

fresh reagents and measured each time.  Standards and samples were prepared in TE buffer 

(10 mM Tris-HCl, 1 mM EDTA, pH 7.5) in 96-well plates (Orange Scientific, Braine-l’Alleud, 

Belgium).  PicoGreen reagents were added in a 1:1 ratio.  Reagents were homogenized by 

shaking for one minute.  Standards and samples were measured with a fluorescence reader 

(FL x 800 Microplate Reader, BioTek Instruments, Bad Friedrichshall, Germany).  The 

fluorescent dye RiboGreen was excited at a wavelength of 485 nm and fluorescence emission 

intensity was measured at a wavelength of 528 nm.  Standards were measured in triplicates 

and samples in duplicates. 

4.10.7 Density gradient centrifugation of DNA and RNA 

DNA and RNA stable isotope probing (SIP) were performed according to published 

protocols (Neufeld et al. 2007b, Whiteley et al. 2007, Degelmann et al. 2009).  DNA was added 
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to a gradient solution (buoyant density 1.725 g mL-1) containing a cesium chloride solution 

(buoyant density 1.881 g mL-1; 80.8 % of total) and gradient buffer (pH 8.0; 100 mM Tris-HCl; 

100 mM KCl; 1 mM EDTA; 19.2 % of total).  RNA was added to a gradient solution (buoyant 

density of 1.796 g mL-1) containing cesium trifluoroacetate (buoyant density 2.0 g mL-1, 79.3 % 

of total), 3.1 % deionized formamide and gradient buffer (pH 8.0, 100 mM Tris-HCl, 100 mM 

KCl, 1 mM EDTA, 17.6 % of total).  Gradient solutions and RNA or DNA were filled into 

OptiSeal Tubes (Beckmann, Fullerton, CA, USA).  Differences within the gradient density could 

cause differences in the gene libraries prepared from gradient fractions, thus resulting in 

inconsistencies in determining which microorganisms are labeled.  This problem was 

minimized by preparing all gradients with the same gradient solution. 

 

Figure 15: Fractionation of gradients after isopycnic centrifugation. 

Image was taken by S. Hunger. 

DNA was subjected to isopycnic centrifugation (177,000 g [44,100 rpm]) at 20 °C for 

40 hours (VTi 65.2 vertical rotor, Beckman Coulter, Brea, USA) and was fractionated.  RNA 

was subjected to isopycnic centrifugation (130,000 g [37,800 rpm]) at 20 °C for 67 hours (VTi 

65.2 vertical rotor, Beckman Coulter, Brea, USA) and was fractionated.  For fractionation of 

the gradients, blue dyed DEPC-treated water (4.4.20) was pumped (Econo Pump 1, Bio-Rad, 

Hercules, USA) with a flow rate of 455 µL min-1 into the centrifugation tubes (OptiSeal 
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Polyallomer centrifugation tubes, 13 x 48 mm, Beckmann Instruments, Brea, USA) pushing 

the gradient solution with the same flow rate from the centrifugation tubes into a new tube.  

Fractions of gradient solutions were collected in one-minute intervals. 

The buoyant density of the DNA and RNA gradient solutions and fractions was 

determined by weighing gradient solutions and fractions at 20 °C and 25 °C, respectively, and 

a digital refractometer (Reichert-Analytical Instruments).  DNA was precipitated with 

polyethylene glycol 6000 and glycogen (4.10.2), dissolved in 30 µL TE buffer (10 mM Tris-HCl, 

1 mM EDTA, pH 8.0), and concentrations were measured with Quant-iT PicoGreen Assay Kit 

(4.10.6).  RNA was precipitated with sodium acetate buffer (3 M, pH 5.2), glycogen and RNase-

free 96 % ethanol (4.10.4), dissolved in 20 µL RNase-free deionized water, and concentrations 

measured with Quant-iT RiboGreen Assay Kit (4.10.6). 

4.10.8 Reverse Transcription 

RNA was transcribed into complementary DNA (Sambrook et al. 1989) with 

SuperScript III Reverse Transcriptase or SuperScript III First-Strand Synthesis Super Mix 

modified from the manufacturer’s instructions (Invitrogen, Carlsbad, USA) (Table 9, Table 10). 

Table 9: Reagents for first step of the reverse transcription. 

Reagents 
SuperScript III Reverse 

Transcript 

SuperScript III First-Strand 

Synthesis SuperMix 

Random primers 50 ng 50 ng 

dNTPsa (10 mM each) 1 µL - 

Annealing buffer - 1 µL 

Template RNA 10 pg - 5 µg 0.1 pg - 5 µg 

RNase-free water ad 13 µL ad 8 µL 

a Legend: dNTP: deoxyribonucleotide. 

The secondary structure of the RNA was disrupted by heating RNA and reagents 

included in step one of the reverse transcription (Table 9) to 65 °C for five minutes.  Reagents 

were cooled on ice for one minute.  Reagents for step two were added and homogenized 

(Table 10).  An annealing step at 25 °C for five minutes allowed the random primers to bind 



MATERIAL AND METHODS 

76 

RNA.  The complementary DNA strand was formed by the elongation of the primers performed 

by the reverse transcriptase at 50 °C for 50 and 120 minutes with reagents of SuperScript III 

First-Strand Synthesis SuperMix and SuperScript III Reverse Transcript, respectively.  The 

reverse transcriptase was inactivated by heat treatment at 85 °C for five minutes and 70 °C for 

15 minutes with reagents of SuperScript III First-Strand Synthesis SuperMix and SuperScript 

III Reverse Transcript, respectively.  Complementary DNA was precipitated to remove 

reagents (4.10.3). 

Table 10: Reagents for second step of the reverse transcription. 

Reagents 
SuperScript III Reverse 

Transcript 

SuperScript III First-

Strand Synthesis 

SuperMix 

First-Strand Reaction Mix (2X)a - 10 µL 

First-Strand Buffer (5X)b 4 µL - 

DTT (0.1 M)c 1 µL - 

SuperScript III/RNaseOUT 

Enzyme Mixd - 2 µL 

SuperScript Reverse 

Transcriptase (200 U µL-1) 
1 µL - 

RNase-free water 1 µL - 

a Includes 10 mM MgCl2, 1 mM of each deoxyribonucleotide in buffer. 
b Includes 250 mM Tris-HCl, 375 mM KCl, 15 mM MgCl2, pH 8.3. 
c Dithiothreitol (DTT) was added to stabilize and improve the function of the reverse transcriptase. 
d Includes a reverse transcriptase and an RNase inhibitor.  Unit counts of enzymes are unknown. 

 

4.10.9 Polymerase chain reaction (PCR) 

One cycle of a polymerase chain reaction (PCR) is structured in three main steps  

(Table 12) (Sambrook et al. 1989): [1] denaturation of the template DNA, [2] annealing of 

primers (Table 11) on single stranded template DNA, and [3] elongation of primers by a DNA 

polymerase of Thermus aquaticus (Taq polymerase) (Chien et al. 1976, Saiki et al. 1988). 
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Table 11: Properties of primers. 

Primer and target Sequence Reference 

Bacterial 16S rRNA genes  

27f 5’-AGA GTT TGA TCM TGG CTC-3’ 
Lane 1991 

907r 5’-CCG TCA ATT CMT TTR AGT-3’ 

Methyl-CoM reductase-encoding genes, mcrA/mrtA  

mcrAf 5’-TAY GAY CAR ATH TGG YT-3’ Springer et al. 

1995 mcrAr 5’-ACR TTC ATN GCR TAR TT-3’ 

Formyltetrahydrofolate synthetase-encoding genes, fhs  

FTHFSf 5’-TTY ACW GGH GAY TTC CAT GC-3 Leaphart and 

Lovell 2001 FTHFSr 5’-GTA TTG DGT YTT RGC CAT ACA-3’ 

Bacterial [FeFe]-hydrogenase-encoding genes  

HydH1fa 5’-TIA CIT SIT GYW SYC CIG SHT GG-3’ Schmidt et al. 

2010; Schmidt et 

al. 2011 
HydH3r 5’-CAI CCI YMI GGR CAI SNC AT-3’ 

Bacterial group 4 [NiFe]-hydrogenase-encoding genes  

NiFe-uniF 5’-GAI MGI RTI TGY GGI ATH TGY-3’ 
Schmidt et al. 

2011 
NiFe-uniFb 5’-GAR MGI GTI TGY TCI CTG TGY-3’ 

NiFe-uniR 5’-GTR CAI SWI WIR CAI GGR TC-3’ 

pGEM-T vector-derived inserts  

M13f 5’-GTA AAA CGA CGG CCA G-3’ 
Messing 1983 

M13r 5’-CAG GAA ACA GCT ATG ACC-3’ 

pJET1.2/blunt vector-derived inserts  

pJET1.2f 5’-CGA CTC ACT ATA GGG AGA GCG GC-3’ manufacturers’ 

instructions pJET1.2r 5’- AAG AAC ATC GAT TTT CCA TGG CAG-3’ 

a The primer originally published in Schmidt et al. (2010) was modified as described in Schmidt et 

al. (2011). 

The general bacterial community was analyzed using the bacterial 16S rRNA (Table 

11).  Methanogens were identified by mcrA and mrtA.  mcrA encodes the alpha-subunit of 

methyl-CoM reductase (isoenzyme I) that catalyzes the terminal step in methanogenesis and 

mrtA encodes the alpha-subunit of the isoenzyme II (Thauer 1998, Pihl et al. 1994).  Acetogens 

were analyzed with fhs that encodes the formyltetrahydrofolate synthetase.  This enzyme 

catalyzes the activation of formate with ATP and one of the first steps of the methyl branch in 
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the acetyl-CoA pathway (Drake et al. 2006, Ragsdale and Pierce 2008).  Hydrogenase-

containing microorganisms were analyzed with genes that encode group 4 [NiFe]-

hydrogenases and [FeFe]-hydrogenases.  DNA fragments were amplified with primers 

according to the vector plasmids used for cloning. 

Table 12: Temperature and time protocols for PCR reactions. 

 Temperature in °C/duration in minutes:seconds 

Target 
Bacterial 

16Sa 

mcrA/ 

mrtAb 
fhsc 

Genes 

for 

[FeFe]-

H2asede 

Genes for 

group 4 

[NiFe]-

H2asefe 

Insert 

from 

vector 

plasmidg 

Insert 

from 

vector 

plasmidh 

Primer pair 27f, 907r 
mcrAf, 

mcrAr 

FTHFSf, 

FTHFSr 

HydH1f, 

HydH3r 

NiFe-uniF, 

NiFe-uniFb, 

NiFe-uniR 

M13f, 

M13r 

pJET1.2f, 

pJET1.2r 

Initial 

denaturation 
95/5:00 94/5:00 94/5:00 95/5:00 95/5:00 94/10:00 95/5:00 

Denaturation I 95/1:00 94/0:45 94/0:30 95/0:45 95/0:45 94/0:45 94/0:30 

Annealing I 40/1:00 50/0:45 58/0:45 55/0:45 50/0:45 54/0:45 60/0:30 

Elongation I 72/1:00 72/0:45 72/1:10 72/1:30 72/1:30 72/3:00 72/1:30 

Cycles I 5 35 35 40 40 30 35 

Denaturation II 95/0:30 - - - - - - 

Annealing II 43/0:30 - - - - - - 

Elongation II 72/1:10 - - - - - - 

Cycles II 30 - - - - - - 

Terminal 

elongation 
72/5:00 72/5:00 72/5:00 72/5:00 72/5:00 72/5:00 72/5:00 

a Bacterial 16S rRNA genes were amplified according to Lane (1991). 
b Methyl-CoM reductase-encoding genes were amplified modified from Lueders et al. (2001). 
c Formyltetrahydrofolate synthetase-encoding gene were amplified modified from Leaphart and 

Lovell (2001). 
d Bacterial [FeFe]-hydrogenase-encoding genes were amplified according to Schmidt et al. (2010) 

and Schmidt et al. (2011). 
e Legend: H2ase, hydrogenase. 
f Bacterial group 4 [NiFe]-hydrogenase-encoding genes were amplified according to Schmidt et al. 

(2011). 
g Inserts from pGEM-T vector were amplified according to Messing (1983). 
h Inserts from pJET1.2/blunt vector were amplified according to manufacturer’s instructions. 

Protocols for temperature, time, and PCR reagents were adjusted for each PCR assay 

to obtain stringent PCR protocols (Table 12, Table 13).  PCR assays were run in a 
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thermocycler (Labcycler, SensoQuest Biomedizinische Elektronik, Göttingen, Germany; 

peqSTAR 96 Universal, Peqlab Biotechnology, Erlangen, Germany). 

Table 13: Protocols for PCR reagents. 

   Final concentrations (unit listed with reagents) 

Target 
Bacterial 

16Sab 

mcrA/

mrtAac 
fhsad 

Genes 

for 

[FeFe] 

H2aseaef 

Genes for 

group 4 

[NiFe] 

H2aseafg 

Insert 

from 

vector 

plasmidhi 

Insert 

from 

vector 

plasmidij 

Primer pair 27f, 907r 
mcrAf, 

mcrAr 

FTHFSf, 

FTHFSr 

HydH1f, 

HydH3r 

NiFe-uniF, 

NiFe-uniFb, 

NiFe-uniR 

M13f, 

M13r 

pJET1.2f, 

pJET1.2r 

Each Primer 

(µM) 
0.6 4 4 2 0.5 0.2 0.2 

Bovine serum 

albumin       

(mg mL-1) 

0.4 0.4 0.4 0.1 0.1 - - 

Each dNTPk 

(mM) 
0.2 0.2 0.2 0.2 0.2 0.2 0.2 

Taq DNA poly-

merase         

(U 25 µL-1) 

0.6 0.6 0.6 0.6 0.6 1 1 

MgCl2 (mM) 3.6 2.6 3.6 3 3 2 2 

a PCR assay was prepared with 5 Prime master mix. 
b Bacterial 16S rRNA genes were amplified modified from Lane (1991). 
c Methyl-CoM reductase-encoding genes were amplified modified from Lueders et al. (2001). 
d Formyltetrahydrofolate synthetase-encoding genes were amplified modified from Leaphart and 

Lovell (2001). 
e Bacterial [FeFe]-hydrogenase-encoding genes were amplified according to Schmidt et al. (2010) 

and Schmidt et al. (2011). 
f Legend: H2ase, hydrogenase. 
g Bacterial group 4 [NiFe]-hydrogenase-encoding genes were amplified according to Schmidt et al. 

(2011). 
h PCR assay was prepared with Crystal Taq polymerase and buffer B (final concentrations: 80 mM 

Tris HCl, pH 9.5, 20 mM (NH4)2SO4, 0.02 % (w/v) Tween-20) (Biolab, Lüneburg, Germany). 
i Inserts from pGEM-T vector were amplified according to Messing (1983). 
j Inserts from pJET1.2/blunt vector were amplified according to manufacturer’s instructions. 
k Legend: dNTP: deoxyribonucleotide. 

Negative and positive controls were prepared with each PCR.  PCR-water (4.4.21) was 

used to prepare PCR assays and was also used as negative control to visualize potential 

contaminations.  PCR assays were only utilized for further analysis if the negative control 

showed no signal on agarose gels (i.e., no contaminations).  Chromosomal DNA of the 
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methanogen Methanosarcina mazei was used as positive control for analysis of methanogens.  

Chromosomal DNA of the acetogen Thermoanaerobacter kivui was used as positive control 

for PCR assays that targeted Bacteria in general and bacterial acetogens.  Chromosomal DNA 

of E. coli and a fen-derived ‘soil’ sample were used as positive controls for PCR assays that 

target bacterial group 4 [NiFe]-hydrogenase-encoding genes and bacterial [FeFe]-

hydrogenase-encoding genes, respectively. 

4.10.10 Quantitative PCR 

The quantity of a certain gene can be determined with quantitative PCR (qPCR).  The 

procedure of qPCR is similar to PCR (4.10.9) with the addition of a quantification step of the 

target genes.  A fluorescent dye such as SYBR Green is added to the PCR assay that 

intercalates with double stranded DNA (as specified by the manufacturer).  The assay also 

contained another fluorescent dye named fluorescein that is used as an internal reference to 

normalize instrument and pipetting variations (as specified by the manufacturer).  SYBR Green 

was excited at a wavelength of 490 nm and fluorescence emission intensity was measured at 

a wavelength of 530 nm.  Thus, the increasing quantity of target gene is measured by the 

increasing fluorescence signal of SYBR Green.  In this dissertation, bacterial 16S rRNA genes 

and mcrA were quantified to estimate the number of Bacteria and methanogen in 

environmental samples (Table 14, Table 15, Table 16), respectively. 

Table 14: Properties of primers for qPCR. 

Primer and target Sequence Reference 

Bacterial 16S rRNA genes  

Eub341f 5’-CCT ACG GGA GGC AGC AG-3’ 
Muyzer et al. 1993 

Eub534r 5’-ATT ACC GCG GCT GCT GG-3’ 

Methyl-CoM reductase-encoding genes, mcrA/mrtA  

mcrAf 5’-TAY GAY CAR ATH TGG YT-3’ Springer et al. 

1995 mcrAr 5’-ACR TTC ATN GCR TAR TT-3’ 

‘Soil’ samples were taken 4-100 m apart from each other and were collected within nine 

days from all four mires 
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Three ‘soil’ samples per mire (4.1.1, 4.1.2, 4.1.3) were obtained for nucleic acid 

extractions (4.10.1).  Each ‘soil’ sample was extracted three times, and each extraction was 

used for the triplicate qPCR assay for determining gene copy numbers.  Samples were diluted 

100-fold before adding to the qPCR reaction to minimize potential inhibition (Table 16). 

Table 15: Temperature and time protocols for qPCR reactions. 

 Temperature in °C/duration in minutes:seconds 

Target Bacterial 16Sa mcrA/mrtAb 

Primer pair Eub341f, Eub534r mcrAf, mcrAr 

Initial denaturation 95/8:00 95/8:00 

Denaturation 95/0:30 95/0:45 

Annealing 55.7/0:40 62/0:45 

Elongationc 72/0:30 72/0:45 

Cycles 30 50 

Terminal elongation 72/5:00 72/5:00 

a Bacterial 16S rRNA genes were amplified modified from Muyzer et al. (1993). 
b Methyl-CoM reductase-encoding genes were amplified modified from Depkat-Jakob et al. (2012). 
c Fluorescence signal was monitored after elongation was completed. 

qPCR assays were run in a qPCR cycler (iQ5 multicolor real-time PCR detection 

system, Bio-Rad Laboratories, Hercules, USA).  Negative and positive controls were prepared 

with each qPCR.  PCR-water (4.4.21) was used to prepare PCR assays and was also used as 

negative control to visualize potential contaminations.  PCR assays were only utilized for 

further analysis if the negative control showed no signal on agarose gels (i.e., no 

contamination).  Six standards of known template concentrations were prepared with each 

qPCR assay and copy numbers of target genes were calculated based on that standard curve.  

Melting curves were analyzed from 55-95 °C with increments of 0.5 °C. 

Standards were prepared from pGEM vector or pJET1.2/blunt vector plasmid inserts of 

the target gene.  For preparation of the insert, see chapter 4.10.14.  The inserts were amplified 

with the primers M13f and M13r or pJET1.2f and pJET1.2r (4.10.9).  Nucleic acids of PCR 

product were purified with an agarose gel (4.10.13), precipitated with isopropyl alcohol 

(4.10.3), resuspended in 50 µL TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0), and 
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quantified with Quant-iT dsDNA PicoGreen Assay Kit (4.10.6).  The purified PCR product 

served as template for qPCR standards.  Gene copy numbers of target genes in template DNA 

were calculated based on the concentration of template DNA (4.12.6). 

Table 16: Protocols for qPCR reagents. 

 Final concentrations (unit listed with reagents)a 

Target Bacterial 16Sb mcrA/mrtAc 

Primer pair Eub341f, Eub534r mcrAf, mcrAr 

Each Primer (µM) 0.75 1.25 

Bovine serum albumin (mg mL-1) - 0.25 

MgCl2 (mM) 3 6 

Template (%) 25 25 

a Each PCR assay was prepared with SensiMix SYBR & Fluorescein Kit.  Concentration of 

deoxyribonucleotides and heat-activated DNA polymerase in master mix is not given by the 

manufacturer. 
b Bacterial 16S rRNA genes were amplified modified from Muyzer et al. (1993). 
c Methyl-CoM reductase-encoding genes were amplified modified from Depkat-Jakob et al. (2012). 

4.10.11 Purification of PCR products 

DNA used for DNA SIP (4.10.7) was separated from RNA and purified from 

contaminants with Qiagen-tip Mini Kit (Qiagen, Hilden, Germany) according to manufacturer’s 

instructions.  Fifty-five microliter of sample containing nucleic acids were homogenized with 

150 µL QRL1 buffer and 1.35 mL QRV2 buffer, and centrifuged (14,000 g, 4 °C, five minutes).  

A purification column was equilibrated with one milliliter QRE buffer.  The sample-buffer 

mixture was transferred to the top of the column.  The sample was pulled through the column 

by gravity and was collected (sample with DNA).  The column was cleaned from RNA and 

contaminants such as proteins or polysaccharides with two milliliters QRW and one milliliter 

QRU buffer (45 °C).  The sample with DNA was transferred to the column again and washed 

with three milliliters QC buffer.  DNA was detached from the column with one milliliter QF buffer 

(45 °C) and collected.  DNA was precipitated with isopropyl alcohol (4.10.3). 
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4.10.12 Agarose gel electrophoresis 

Quality of PCR products was determined by agarose gel electrophoresis (gel 

electrophoresis apparatus, Techne, Jahnsdorf, Germany) (Sambrook et al. 1989).  A one 

percent agarose gel was prepared with TAE buffer (40 mM Tris, 20 mM acetate, 1 mM EDTA, 

pH 8.5, AppliChem GmbH, Darmstadt, Germany) and 0.5 µg mL-1 ethidium bromide.  Samples 

with nucleic acids were diluted 1:5 with gel loading dye and transferred in pockets of the 

agarose gel.  Fragment lengths were determined with a molecular weight marker (MWM-1, 

200-10,000 base pairs, Biovendis, Mannheim, Germany) that was also transferred in a pocket 

of the agarose gel.  A voltage of 90 mV was applied to the agarose gel by a power supply 

(Power-Pak 3000, Bio-Rad Laboratories, Hercules, USA) for 20-50 minutes depending on the 

length of the fragment.  Fragments in agarose gel were visualized with a Transilluminator 

(UVT-20M, Herolab, Wiesloch, Germany) and documented with a PowerShot G5 (Canon, 

Krefeld, Germany). 

4.10.13 Purification of nucleic acids by agarose gel electrophoresis 

DNA fragments for preparation of qPCR standards (4.10.10, 4.12.6) were purified by 

agarose gel electrophoresis to ensure that samples contained only fragments of a certain base 

pair length.  Agarose gel electrophoresis was performed with a one percent agarose gel 

(4.10.12).  The agarose gel was prepared with modified TAE buffer (40 mM Tris, 0.1 mM 

EDTA, pH 8.0, Merck Millipore, Darmstadt, Germany).  DNA fragments of desired length were 

cut out of the agarose gel and purified with Montage DNA Gel Extraction Kit (Merck Millipore, 

Darmstadt, Germany) according to manufacturer’s instructions.  The gel slice was added to 

the gel nebulizer in the extraction device.  The assembled device was centrifuged (10 minutes, 

5,000 g).  During this step, the agarose gel was nebulized, DNA and TAE buffer passed 

through a microporous membrane, and were collected at the bottom of the extraction device.  

The agarose was held back by the membrane.  DNA in TAE buffer was precipitated with 

isopropyl alcohol (4.10.3) and dissolved in 30 µL TE buffer (10 mM Tris-HCl, 1 mM EDTA, 

pH 8.0). 
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4.10.14 Cloning 

Cloning was performed modified from Sambrook et al. (1989).  PCR products for 

cloning were ligated into pGEM vector plasmid (pGEM-T System, Promega, Mannheim, 

Germany, modified manufactures’ protocol) or pJET1.2/blunt vector plasmid (CloneJET PCR 

Cloning Kit, Thermo Fisher Scientific, Waltham, USA, manufacturer’s protocol).  DNA in PCR 

products were separated from reagents of PCR reaction by precipitation of DNA with isopropyl 

alcohol (4.10.3).  Precipitated DNA was dissolved in 30 µL deionized water before use for 

ligation. 

For ligation of DNA fragments into pGEM-T vector plasmid, five microliters Rapid 

Ligation Buffer (2X), one microliter pGEM-T vector (50 ng), one microliter T4 DNA ligase 

(3 U µL-1), one microliter template PCR product and two microliters deionized water were 

homogenized and incubated over night at 4 °C.  The DNA fragment was ligated into the vector 

plasmid during this step. 

For ligation into pJET1.2/blunt vector plasmid, 5 µL reaction buffer (2X, content 

unknown), 0.5 µL DNA blunting enzyme (U µL-1 unknown), 1 µL template PCR product, and 

2.5 µL deionized water were homogenized, incubated at 70 °C for five minutes, and cooled on 

ice.  During this step, 3’-overhangs were removed from the DNA fragment and 5’-overhangs 

were filled in.  In a subsequent step, 0.5 µL pJET1.2/blunt cloning vector (50 ng µL-1) and 

0.5 µL T4 DNA ligase (5 U µL-1) were added, homogenized, and incubated at room 

temperature for five minutes.  The DNA fragment was ligated into the vector plasmid during 

this step. 

Performed on ice, 50 µL competent cells of E. coli JM109 (manufacturer’s instructions) 

were transformed with two microliter ligated vector plasmid.  Competent cells and plasmids 

were incubated on ice for 30 minutes to allow vector plasmids to attach to outer permeable cell 

membranes.  Vector plasmids were incorporated into cells during a 45-second heat shock at 

42 °C (Thermomixer, Eppendorf, Madison, USA).  Cells were cooled on ice and cautiously 

homogenized with 950 µL SOC medium (4.4.19).  Heat shock treated cells in SOC medium 
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regenerated for 1.5 hours at 37 °C.  Regenerated cells were harvested by centrifugation 

(5,000 g, six minutes).  Eight hundred microliter of supernatant were discarded and the pellet 

was resolved in the leftover 200 µL.  This cell suspension was transferred to LB agar plates 

(4.4.18).  Only cells that incorporated a vector plasmid (both vectors included an Ampicillin 

resistance gene) formed single colonies on LB agar plates (4.4.18) over night at 37 °C.  The 

pGEM-T vector plasmid additionally contained a lac operon (includes lacZ encoding for β-

galactosidase) which becomes non-functional due to insertion of a DNA fragment during 

ligation (i.e., no functional β-galactosidase may be formed).  Cells that contained an insertion 

in lacZ formed white colonies.  Cells that contained a functional lac operon had no insertion of 

a DNA fragment and produced a functional β-galactosidase.  Beta-galactosidase can be 

induced by IPTG and converts X-gal to 5-bromo-4-chloro-indoxyl that spontaneously forms 

5,5'-dibromo-4,4'-dichloro-indigo a blue insoluble pigment.  Those cells formed blue colonies.  

The pJET1.2/blunt vector plasmid contains the lethal gene eco47IR.  Only cells with inserted 

DNA fragment do not experience the eco47IR lethality and form colonies.  White colored 

colonies were picked randomly from LB agar plates. 

Correct inserts were determined by M13 or pJET1.2 PCR (primer set M13f/M13r and 

pJET1.2f/pJET1.2r, 4.10.9) according to publication or manufacturer’s instructions (Messing 

1983), respectively.  PCR fragments of selected clones were sequenced by Macrogen (Sanger 

method, Amsterdam, Netherlands). 

4.11 Bioinformatics 

4.11.1 Processing of sequences and assignment to phylotypes 

All sequences were analyzed with Mega (Tamura et al. 2007) and ARB software 

(Ludwig et al. 2004).  Mega software was used to remove residues of vectors and primers.  

MegaBLAST was used to compare sequences to those in public databases (Morgulis et al. 

2008).  Chimeric sequences of 16S rRNA gene sequences were identified by the greengenes 

tool Bellerophon (DeSantis et al. 2006) or by BLAST, and were excluded from further analysis.  
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Phylotypes of 16S rRNA and 16S rRNA genes were determined with RDP Classifier at a 

confidence threshold of 80 % (Wang et al. 2007), aligned with SINA web aligner (Pruesse et 

al. 2012), and merged with the latest 16S rRNA database from the SILVA homepage 

(www.arb-silva.de) (Pruesse et al. 2007).  Sequences of 16S rRNA and 16S rRNA genes were 

assigned to novel species- and family-level phylotypes based on a similarity threshold of 97 % 

and 87.5 % (Yarza et al. 2008), respectively.  Sequences of mcrA, fhs, and hydrogenase genes 

were translated in silico and aligned with reference sequences obtained from MegaBLAST 

using ClustalW algorithm implemented in ARB software.  Assignment of mcrA and fhs 

sequences to species- and family-level phylotypes is based on similarity thresholds of (a) 

85.7 % and 75.4 % for mcrA and (b) 76.4 % and 50.0 % for fhs (for details about the calculation 

see 4.11.5, 5.1.2, and Hunger et al. [2011a]). 

ARB software was used to align sequences, create distance matrices with the neighbor 

joining method, and calculated phylogenic trees (4.11.3).  The distance matrices were used to 

assign mcrA- and fhs-encoded amino acid sequences to species-level phylotypes with the 

software DOTUR (Schloss and Handelsman 2005).  Nomenclature of affiliated microorganisms 

was determined with the homepage of “List of prokaryotic names with standing in 

nomenclature” (LPSN, http://www.bacterio.net).  Methanosaetaceae are in quotes due to its 

current status as an illegitimate name (http://www.bacterio.net). 

4.11.2 Primer design 

Primers targeting fhs (encodes the formyl-tetrahydrofolate synthetase) or cooS 

(encodes a CO dehydrogenase) were newly designed to assess information on acetogens.  

PCR conditions were optimized with genomic DNA of the acetogens Terrisporobacter 

glycolicus KHa (details about this isolate can be found in chapters 4.6.2 and 5.6), Clostridium 

magnum (DSM2767), Clostridium drakei (DSM12750), Thermoanaerobacter kivui (DSM2030), 

Moorella thermoacetica (DSM2955), Moorella thermoautotrophica (DSM1974), Sporomusa 

silvacetica (DSM10669), and Acetobacterium woodii (DSM1030). 
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4.11.3 Phylogenic trees 

Phylogenic trees of mcrA, fhs, cooS, and hydrogenase genes were calculated with 

nucleotide and amino acid sequence with the following algorithms: neighbor-joining 

(Felsenstein, PAM, Olsen, or Dayhoff correction) (Saitou and Nei 1987), maximum-likelihood 

(Jukes-Cantor or Dayhoff correction) (Knoop and Müller 2009), and maximum-parsimony (no 

correction) (Knoop and Müller 2009).  Phylogenic trees of 16S rRNA and 16S rRNA genes 

were calculated with nucleotide sequences with the following algorithms: neighbor-joining 

(felsenstein correction) (Saitou and Nei 1987), maximum-likelihood (new rapid hill climbing 

algorithm) (Knoop and Müller 2009), and maximum-parsimony (no correction) (Knoop and 

Müller 2009).  More details concerning the calculation of trees can be found in the legend of 

the corresponding tree. 

4.11.4 Rarefaction analysis 

Rarefaction curves show the calculated number of phylotypes after n sequences 

(Hurlbert 1971, Heck et al. 1975) and allow estimations on the number of phylotypes depending 

on the number of sequences obtained.  A flattening curve indicates that only a few more 

phylotypes were to be expected if more sequences were obtained and that sequencing was 

sufficient. 

4.11.5 Similarity plots 

Species- and family-level threshold values were determined for the structural genes fhs 

and mcrA based on species- and family-level threshold values of 16S rRNA sequences 

(modified from Palmer et al. 2009). 

Sequences of structural genes and 16S rRNA from the same microorganism was 

obtained from NCBI (National Center for Biotechnology Information; 

http://www.ncbi.nlm.nih.gov) and SILVA (http://www.arb-silva.de), respectively.  Structural 

genes were in silico translated into amino acid sequences and aligned with ARB software.  The 

16S rRNA sequences were aligned by SINA web aligner (Pruesse et al. 2012) prior to 
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download.  Similarities in the sequences of different microorganisms were calculated by a 

pairwise comparison with MEGA software.  Similarities (𝑆) were calculated from the difference 

between two nucleotide or amino acid sequences (𝐷 with 0 ≤ D ≤ 1): 

𝑆 = 1 − 𝐷 

Phylogenic correlation plots (Purkhold et al. 2001, Palmer et al. 2009) of 16S rRNA 

gene sequence similarities and amino acid sequence similarities of mcrA or fhs were prepared 

with the following filters: for mcrA, 131 valid amino acids between positions 98 and 227 of 

mcrA-encoded amino acid sequence of Methanocella paludicola SANAE (NC_009089); for 

fhs, 351 valid amino acids between positions 134 and 486 of fhs- encoded amino acid 

sequence of Clostridium difficile 630 (NC_009089).  Similarities of mcrA- or fhs-encoded amino 

acid sequences were plotted against the similarities of the corresponding 16S rRNA 

sequences of the same microorganisms.  In total, 79 mcrA and 16S rRNA sequences were 

used to determine threshold values for mcrA-encoded amino acids, and 235 fhs and 16S rRNA 

sequences were used to determine threshold values for bacterial fhs-encoded amino acids.  

Assignment of mcrA and fhs sequences to taxonomic hierarchic phylotypes was based on 

correlations between amino acid sequences of the translated structural gene to the 16S rRNA 

gene sequences of the same cultured microorganisms.  16S rRNA gene sequence similarities 

of 97.0 % and 87.5 % are conservative threshold values for determining species- and family-

level differences, respectively, between microorganisms (Yarza et al. 2008). 

4.12 Calculations and statistics 

4.12.1 Calculation of recovery of carbon and reductant from supplemented 

substrates 

The recovery of supplement-derived carbon and reductant in products was calculated 

to estimate the turnover of supplements.  The calculation was based on the concentrations of 

supplements and the concentrations of observed products in the unsupplemented controls and 

the substrate-supplemented slurries within a certain time interval.  The net concentrations of a 
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certain compound were determined by (A) subtracting the concentration of the 

unsupplemented control from the concentration of the substrate-supplemented slurries, and 

(B) subsequently subtracting the concentration at an earlier time point of the incubation from 

the concentration at a later time point of the incubation (e.g., the beginning and the end of 

substrate-utilization).  For example, 5 mM glucose were fermented within five days, and 

0.8 mM propionate, 4 mM acetate, 1.5 mM butyrate, 2 mM formate, 7 mM CO2, and 12 mM H2 

more were detected in the glucose-supplemented slurries than in the unsupplemented control 

within those five days. 

For the calculation of carbon recovery, the number of carbon atoms in a compound was 

multiplied by the net concentration of this compound yielding carbon-moles of available carbon.  

For example, five millimolar glucose was multiplied by six yielding 30 mM carbon-moles.  The 

carbon-moles of the utilized substrate represent 100 % and carbon-moles of products were set 

in relation to that 100 % of the substrate.  For the calculation of the recovery of reductant, the 

number of electrons was calculated that is needed to completely oxidize a certain compound.  

The number of electrons was multiplied by the net concentration of this compound yielding 

electron-moles of available reductant.  For example, five millimolar glucose were multiplied by 

24 yielding 120 mM electron-moles.  The electron-moles of the utilized substrate represent 

100 % and electron-moles of products were set in relation to that 100 % of the substrate.  The 

addition of the percentages of products represents the recovery of either reductants or carbon 

from the utilized substrate.  In the example mentioned above, 85 % of glucose-derived carbon 

were recovered (8 % in propionate, 27 % in acetate, 20 % in butyrate, 7 % in formate, 23 % in 

CO2) and 84 % of glucose-derived reductant were recovered (9 % in propionate, 27 % in 

acetate, 25 % in butyrate, 3 % in formate, 20 % in H2). 

4.12.2 Mean value 

The sample mean (𝑥̅) is calculated from the size of the sampling (𝑛) and the sum of 

observed values of the sample (𝑥̅1, 𝑥̅2, …) (Paulson 2008): 
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𝑥̅ =  
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 

4.12.3 Standard deviation 

The standard deviation (𝑠) is calculated from the observed values of the sample (𝑥̅1, 

𝑥̅2, …), the mean value of all samples (𝑥̅), and the size of the sampling (𝑛) (Paulson 2008): 

𝑠 =  √
∑(𝑥 − 𝑥̅)2

(𝑛 − 1)
 

4.12.4 Molarities in solutions and slurries 

Solutions with a defined concentration were prepared for supplementation of slurries.  

The amount of compound (𝑚 in g) needed to prepare this solution was calculated from the 

desired concentration of this compound (𝑐 in mol L-1) in solvent (i.e., water), the molar mass of 

this compound (𝑀 in g mol-1), and the volume of the solvent (𝑉 in L): 

 𝑚 = 𝑐𝑀𝑉 

Slurries were treated with a defined volume of stock solution (𝑉𝑆 in mL) of a desired 

compound.  This volume was determined from the concentration of the stock solution (𝑐𝑆𝑡 in 

mM), the desired concentration in slurry (𝑐𝑆 in mM), and the total volume of the slurry (𝑉𝑇 in 

mL): 

𝑉𝑆 =  
𝑉𝑇𝑐𝑆

𝑐𝑆𝑡
 

4.12.5 Ideal gas law 

The concentrations of gases in incubation flasks were calculated based on the ideal 

gas law (Blachnik 1998, Krichevsky and Kasarnovsky 1935): 

𝑝 𝑉𝐺 =  𝑛𝐺  𝑅 𝑇 

 𝑛𝐺 =  
𝑝 𝑉𝐺

𝑅 𝑇
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The ideal gas law considers the partial pressure of the gas (𝑝 in mbar), volume of the 

gas phase (𝑉𝐺 in mL), universal gas constant (𝑅 equals 83.145 mbar mL K-1 mmol-1), and the 

actual temperature (𝑇 in K) for the calculation of the amount of gas in the gas phase (𝑛𝐺 in 

mmol). 

For calculation of gas concentrations in incubation flasks, the partial pressure of a gas 

is calculated from the overpressure in the incubation flask (𝑝𝑂 in mbar), the actual atmospheric 

pressure (𝑝𝐴 in mbar), and the measured rate of the gas in the incubation flask (𝑋 in 10-2 %): 

𝑝 = 𝑋 ( 𝑝𝑂  +  𝑝𝐴) 

The amount of physically dissolved gas in the liquid phase (𝑛𝐿 in mmol) was calculated 

from the partial pressure of the gas, volume of the liquid phase (𝑉𝐿 in mL), universal gas 

constant, the actual temperature, and the solubility coefficient (𝜆 in Ncm3[gas] g[H2O]-1, Table 

17): 

𝑛𝐿 =  
𝑝 𝑉𝐿𝜆

𝑅 𝑇
 

The amount of chemically dissolved CO2 in form of bicarbonate in the liquid phase (𝑛𝐶 

in mmol) was calculated from the amount of physically dissolved CO2 in the liquid phase (𝑛𝐿 in 

mmol), the pH of the liquid phase, and the logarithmic acid dissociation constant for 

bicarbonate (𝑝𝐾𝑎 equals 6.37 at 25 °C): 

𝑛𝐶 =  𝑛𝐿 10𝑝𝐻−𝑝𝐾𝑎 

The total amount of gas (𝑛𝑇 in mmol) in an incubation flask was the sum of the amounts 

of gas in gas and liquid phase: 

𝑛𝑇 =  𝑛𝐺 +  𝑛𝐿 +  𝑛𝐶 

The total amount of gas (𝑛𝑇) was used to calculate concentrations of gases per liter 

liquid phase, per gram dry weight, or per gram fresh weight. 
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Table 17: Solubility coefficient λ for gases dissolved in water at room temperature. 

 Solubility coefficient λ in water (Ncm3[gas] g[H2O]-1)ab 

 10 °C 15 °C 25 °C 30 °C 

CO2 0.987 0.851 0.646 0.516 

CH4 0.040 0.036 0.029 0.027 

H2 0.019 0.018 0.017 0.017 

O2 0.037 0.033 0.027 0.025 

a Reference: Blachnik (1998). 
b Ncm3[gas] g[H2O]-1 describes the amount of gas in Ncm3 that is dissolved in one gram water at 

980.1 hPa. 

4.12.6 Preparation of standards for qPCR 

The quantity of a target gene (𝑐𝑇𝐺 in targets µL-1) was calculated taking into 

consideration the concentration of standard DNA (𝑐𝑆𝑇 in ngDNA µL-1), length of the target gene 

(𝑛𝑇𝐺 in base pairs), molecular weight of one base pair in water (𝑀𝑊𝑏𝑝: 660 x 109 ng mol-1), and 

the Avogadro constant (𝑁𝐴: 6.23 x 1023 molecules mol-1): 

𝑐𝑇𝐺 =  
𝑐𝑆𝑇

𝑛𝑇𝐺  ×  𝑀𝑊𝑏𝑝
 ×  𝑁𝐴 

The exact number of bases for each target gene was determined by Sanger 

sequencing (Macrogen, Amsterdam, Netherlands). 

4.12.7 Conversion of rotational speed to relative centrifugal force 

The relative centrifugal force (𝑅𝐶𝐹 in g) of a rotor is calculated from the rotational speed 

(𝑁 in revolution per minute, rpm), and the rotational radius (𝑟 in mm): 

𝑅𝐶𝐹 = 1.12 × 10−6  ×  𝑟 × 𝑁2 

4.12.8 Principal component analysis 

The principal component analysis (PCA) was used to visualize a complex dataset in a 

single graph (Pearson 1901, Borg and Groenen 2005, Abdi and Williams 2010) and was 

performed with the software ‘R’.  PCA is a multivariate statistical analysis that structures and 

simplifies a complex dataset and plots the dataset in response to two principal components 
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(PC1 and PC2) whereby the highest variance is shown by PC1 and the second highest by 

PC2.  An arrow parallel to one of the axes of the principal components indicates the main driver 

of this variance.  The following parameters of ‘soils’ (A) and pore water (B) were used to 

calculate the PCA plot for the comparison of contrasting mire ‘soils’: (A) relative abundance of 

phyla-level 16S rRNA gene phylotypes prior to treatments, relative abundance of family-level 

mcrA phylotypes prior to treatments, water content, total carbon, total nitrogen, C/N ratio, 

cultivable number of microorganisms under aerobic conditions, cultivable number of 

microorganisms under anaerobic conditions, abundance of mcrA gene copy numbers, and 

abundance of 16S rRNA gene copy numbers, and (B) pH, NPOC, concentrations of ions (Cl-, 

NO3
-, PO4

3-). 

4.12.9 Analysis of variance 

The analysis of variance (ANOVA) was used to estimate significant differences 

between more than two sample groups (Paulson 2008).  ANOVA compared the variance 

between sampling groups to the variance within sampling groups.  The software ‘R’ and the 

library ‘laercio’ was used for ANOVA. 

4.12.10 Coverage of sequencing 

The coverage of sequencing was calculated to estimate if sampling was sufficient.  The 

coverage of a certain gene library (𝐶 in %) was calculated from the number of phylotypes that 

contained a single sequence (𝑛) and the total number of sequences obtained (𝑁) (Schloss et 

al. 2004): 

𝐶 =  (1 −  
𝑛

𝑁
)  100 

4.12.11 Change of Gibbs free energy 

Gibbs free energy was calculated to estimate if a certain microbial process was 

thermodynamically feasible under the experimental conditions and to estimate the changing 

thermodynamics of simultaneously occurring processes.  The change of the Gibbs free energy 
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(∆𝐺 in kJ mol-1) was calculated from the change of Gibbs free energy under standard conditions 

(∆𝐺°´ in kJ mol-1), actual temperature (𝑇 in K), gas constant (𝑅: 8.31 J mL-1 K-1), and equilibrium 

constant (𝐾´ without dimension) (Thauer et al. 1977, Conrad and Wetter 1990, Berg et al. 

2003): 

∆𝐺 =  ∆𝐺°´ + 𝑅𝑇𝑙𝑛𝐾´ 

The following equations were used to calculate Gibbs free energy values: 

4 H2 + CO2  CH4 + 2 H2O 

4 H2 + 2 CO2  CH3COO- + H+ + 2 H2O 

4 HCOO- + 4 H+  CH3COO- + H+ + 2 CO2 + 2 H2O 

4 HCOO- + 4 H+  CH4 + 3 CO2 + 2 H2O 

HCOO- + H+  H2 + CO2 

C6H12O6  3 CH3COO- + 3 H+ 

The Gibbs free energy under standard conditions was calculated from the standard 

Gibbs energy of formation (𝐺𝑓° in kJ mol-1, Table 18) of substrates and products of interest: 

∆𝐺°´ =  ∑ 𝐺𝑓° (𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠)  −  ∑ 𝐺𝑓° (𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒𝑠) 

Table 18: Gibbs energies of formation (∆Gf°)a. 

 ∆Gf° (kJ mol-1) 

Formate -351.0 

Acetate -369.4 

CO2 -394.4 

Water -237.2 

H+ per pH value -5.7 

CH4 -50.7 

H2 0.0 

a Values derived from Thauer et al. (1977) and Madigan and Martinko (2006). 

The equilibrium constant was calculated from actual concentrations of reactants 

([𝐴]𝑎[𝐵]𝑏 in M or atm) and products ([𝐶]𝑐[𝐷]𝑑 in M or atm).  Concentrations serve as base (i.e., 
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𝐴, 𝐵, 𝐶, 𝐷) and the stoichiometric number of reactants and products in the biochemical reaction 

serve as exponent (i.e., , 𝑎, 𝑏, 𝑐, 𝑑): 

𝑎A + 𝑏B  𝑐C + 𝑑D 

𝐾´ =  
[𝐶]𝑐[𝐷]𝑑

[𝐴]𝑎[𝐵]𝑏
 

Values are given in kJ mol-1 CH4 for methanogenesis, kJ mol-1 acetate for acetogenesis, 

and kJ mol-1 H2 for conversion of formate to H2 and CO2. 

4.13 Frequently used equipment 

The following equipment was used frequently: 

1.5 or 2.0 mL tubes (Safe Lock Tubes, Eppendorf, Hamburg, Germany); 1.5 or 2.0 mL 

tubes (Hartenstein, Würzburg/Versbach, Germany); 0.2 mL Top-line-PCR tubes (AHN 

Biotechnology, Nordhausen, Germany); 96 well plates (Sorenson Bioscience, Murray, USA); 

qPCR 96 well plates (Thermosprint plate 96, Biovendis, Mannheim, Germany); sterile filter 

(Minisart syringe filter, 0.2 µm pore size, Sartorius Stedim, Göttingen, Germany); filter (Nylon, 

0.22 µm pore size, Merz Brothers, Haid, Austria); syringes (1 mL/3 mL/50 mL, Becton 

Dickinson, Madrid/Laagstraat/Oxford, Spain/Belgium/UK, respectively); 27G 3/4’’ und 19G 1’’ 

needle (0.4 x 19 mm/1.1 x 25 mm, Becton Dickinson, Drogheda, Ireland); 21G 4 3/4’’ needle 

(0.8 x 120 mm, Becton Dickinson, Melsungen, Germany); serum bottles (Merck ABS, Dietikon, 

Switzerland); infusion flask (Müller + Krempel, Bülach, Switzerland); centrifuge 5415c 

(Eppendorf, Hamburg, Germany); centrifuge Sigma 1 15 K (Sigma-Aldrich, St. Louis, USA); 

Analytic AC 120 S weighing scale (Sartorius, Göttingen, Germany). 

4.14 Chemicals, reagents and gases 

Chemicals and reagents used in this study derived from Sigma-Aldrich (St. Louis, 

USA), Merck (Darmstadt, Germany), Thermo Fisher Scientific (Waltham, USA), Campro 

Scientific (Berlin, Germany), 5 Prime (Hilden, Germany), Biomers (Ulm, Germany), Axon 
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Labortechnik (Kaiserslautern, Germany), Eppendorf (Hamburg, Germany), New England 

Biolabs (Ipswich, USA), Bio-Rad (Hercules, USA), Promega (Mannheim, Germany), Bioline 

(Luckenwalde, Germany), Microsynth (Balgach, Switzerland). 

Gases derived from Rießner-Gase & Co. (Lichtenfels, Germany) (Table 19). 

Table 19: Purity of utilized gases. 

 Compressed air Ar N2 H2 CO2 CH4 He 

Purity DIN 3188 4.8 5.0 5.0 4.5 technical 4.6 

 

4.15 Software 

MPN values were calculated with the ‘MPN Calculator’ (www.i2workout.com/ 

mcuriale/mpn/index.html).  Data obtained from gas chromatographs were recorded and 

processed with ‘PeakSimple’ (Chromatography Acquisition and Integration Software, SRI 

Instruments, Torrance, USA) or ‘EuroChrom’ (Acquisition and Integration Software, Knauer, 

Berlin, Germany).  Data obtained from high performance liquid chromatography were recorded 

and processed with ‘ChemStation’ (Agilent Technologies, Santa Clara, USA).  ‘Gen5’ was used 

to record and process data from the fluorimeter and spectrometer (BioTek Instruments, 

Winooski, USA).  ‘Remote Capture’ was used to document the quality and fragment length of 

nucleic acids in agarose gels (Canon, Tokyo, Japan).  ‘MRGrab’ was used to document cell 

morphologies of microorganisms (Carl Zeiss, Oberkochen, Germany).  ‘Optical System 

Software’ was used to record and process data from iQ5 multicolor real-time PCR detection 

system (Bio-Rad Laboratories, Hercules, USA).  ‘DOTUR’ was used to assign sequences to 

phylotypes (https://github.com/mothur/DOTUR).  ‘R’ was used for statistical analysis 

(https://www.r-project.org and https://www.rstudio.com).  ‘aRarefactWin’ was used to calculate 

rarefaction curves (http://strata.uga.edu/ software/win/aRarefactWin.exe).  ‘Microsoft 2013’ or 

‘Microsoft 2016’ (Microsoft, Redmond, USA) and ‘SigmaPlot’ were used for processing, 

evaluation and visualization of data (Systat Software, San Jose, USA). 
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4.16 Accession numbers 

Most sequences obtained in this study are available from EMBL nucleotide sequence 

database (Table 20). 

 

Table 20: Accession numbers of sequences obtained from this study outlined in this 

dissertation. 

Origin Target 
Accession 

number 

Mire ‘soils’ mcrA/mrtA LN716108-7036 

C. rostrata roots mcrA/mrtA LT009513-676 

Substrate and gut contents of E. eugeniae mcrA/mrtA HE647204-384 

Gut-derived methanogenic enrichment, E. 

eugeniae 
mcrA/mrtA LK936462-502 

Glucose-supplemented gut contents of E. 

eugeniae (SIP) 
Bacterial 16S rRNA Not submitted 

Mire ‘soils’ Bacterial 16S rRNA gene LN715239-6107 

Root-derived enrichments Bacterial 16S rRNA gene LT009679-85 

Root-derived isolates Bacterial 16S rRNA gene LT009677-8 

Terrisporobacter glycolicus KHa Bacterial 16S rRNA gene FR850057 

Bacteroides xylanolyticus KHb Bacterial 16S rRNA gene FR850058 

Root-derived isolates Hydrogenase gene LT009686-7 

Glucose-supplemented gut contents of E. 

eugeniae (SIP) 
fhs Not submitted 

Formate-supplemented mire ‘soil’ (SIP) fhs FR725862-930 

Terrisporobacter glycolicus RD-1 fhs FR850046 

Clostridium drakei DSM12750 fhs FR850047 

Moorella thermoautotrophica DSM1974 fhs FR850048 

Sporomusa silvacetica DSM10669 fhs FR850049 

Terrisporobacter glycolicus KHa fhs FR850050 

Acetobacterium woodii DSM1030 cooS FR850051 

Thermoanaerobacter kivui ATCC33488 cooS FR850052 

Clostridium magnum cooS FR850053 

Clostridium drakei DSM12750 cooS FR850054 

Terrisporobacter glycolicus RD-1 cooS FR850055 

Terrisporobacter glycolicus KHa cooS FR850056 
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4.17 Contribution of other persons to this dissertation 

If not mentioned otherwise, sampling, preparation and processing of experiments, 

evaluation and visualization of data were performed by myself.  The majority of the results 

were published in peer-review journals (Hunger et al. 2011a, Hunger et al. 2011b, Depkat-

Jakob et al. 2012, Schulz et al. 2015, Hunger et al. 2015, Hunger et al. 2016) and were 

presented and discussed in this dissertation in a similar manner as in these publications.  In 

addition, some of the findings constitute the basis of additional manuscripts that are in 

preparation. 

4.17.1 Analysis of functional redundancy in contrasting mire ’soils’ 

The objective for this study and the experimental set-up were developed by myself.  

Part of the experiments were conducted by Anita S. Gößner (technician at the Department of 

Ecological Microbiology, University of Bayreuth, Bayreuth, Germany) or Claudia Burger as part 

of her Bachelor thesis (Department of Ecological Microbiology, University of Bayreuth, 

Bayreuth, Germany).  Both coworkers were supervised by myself.  Sampling was performed 

by myself together with Anita S. Gößner and Claudia Burger.  Preparation and processing of 

‘soil’ slurries from mires 1-3 (4.5.1, 4.5.2, 4.8.7, 4.8.8) was performed by Anita S. Gößner.  

Extraction of DNA (4.10.1), PCR (4.10.9), picking of clones (4.10.14), and reamplifying ligated 

fragments (4.10.9) was performed by Anita S. Gößner.  Ligation (4.10.14), transformation 

(4.10.14), and sequence analysis (4.11) was performed by myself.  Preparation and 

processing of ‘soil’ slurries from mire 4 (4.5.1, 4.5.2) were performed by Claudia Burger.  

Extraction of DNA (4.10.1), PCR (4.10.9), and cloning (4.10.14) for samples before treatment 

was performed by Claudia Burger.  Samples after treatment were processed by Anita S. 

Gößner and myself as described above.  Analysis of cultivable microorganisms (4.7) and gene 

copy numbers (4.10.10) was performed by myself.  Total nitrogen, total carbon, NPOC, and 

concentration of ions were analyzed at the Center for Analytical Chemistry (Bayreuth Centre 

of Ecological and Environmental Research, University of Bayreuth, Bayreuth, Germany).  

Evaluation, graphical presentation, and interpretation of data were performed by myself. 
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4.17.2 Analysis of FHL activity, methanogenesis and acetogenesis with roots 

of mire-derived plants 

The objective for this study and the experimental set-up were developed by myself.  

Part of the experiments were conducted by Anita S. Gößner, Madena Eppendorfer as part of 

her Master thesis (Department of Ecological Microbiology, University of Bayreuth, Bayreuth, 

Germany).  Anita S. Gößner and Madena Eppendorfer were supervised by myself.  Sampling 

was performed by myself together with Anita S. Gößner and Dr. Pedro Gerstberger (Plant 

Ecology Group, University of Bayreuth, Bayreuth, Germany).  Dr. Pedro Gerstberger identified 

the plants.  Preparation and processing of soil and root slurries (4.5.1, 4.8.7, 4.8.8) were 

performed by Anita S. Gößner and Madena Eppendorfer together with myself.  Extraction of 

DNA (4.10.1), PCR (4.10.9), picking of clones (4.10.14), and reamplifying ligated fragments 

(4.10.9) was performed by Anita S. Gößner.  Ligation (4.10.14), transformation (4.10.14), and 

sequence analysis (4.11) was performed by myself.  Changes of Gibbs free energy were 

calculated by Oliver Schmidt and graphical presentation was performed by myself.  Evaluation, 

graphical presentation, and interpretation of data were performed by myself. 

4.17.3 ‘Stable isotope probing’ of mire ‘soil’ with [13C]formate 

Sampling, preparation and processing of experiments, DNA SIP, molecular analyzes 

of mcrA and 16S rRNA gene sequences, evaluation and visualization of process and molecular 

data were performed by myself as part of my diploma thesis.  It was part of this doctoral 

dissertation to (a) analyze active acetogens by obtaining bacterial fhs sequences (2.10.9, 

2.11.1) from those ‘soil’ slurries and (b) determine the content of 13C-enriched acetate (2.8.9).  

Peter Claus and Prof. Dr. Ralf Conrad (Max Planck Institute of Terrestrial Microbiology, 

Marburg, Germany) conducted the analysis of 13C-enriched organic acids and gases (4.8.9).  

Evaluation, graphical presentation, and interpretation of data were performed by myself. 
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4.17.4 ‘Stable isotope probing’ of gut contents derived from the earthworm 

E. eugeniae with [13C]glucose 

The objective for this study and the experimental set-up were developed by myself.  

Parts of the experiments were conducted by Kristin Schulz (Master student, Department of 

Ecological Microbiology, University of Bayreuth, Bayreuth, Germany), Christina Bruß as part 

of her Master thesis (Department of Ecological Microbiology, University of Bayreuth, Bayreuth, 

Germany), Peter Claus (Max Planck Institute of Terrestrial Microbiology, Marburg, Germany), 

Prof. Dr. Ralf Conrad (Max Planck Institute of Terrestrial Microbiology, Marburg, Germany), 

and Prof. Dr. Harold L. Drake (Department of Ecological Microbiology, University of Bayreuth, 

Bayreuth, Germany).  Sampling of earthworms and obtaining gut contents was performed by 

Kristin Schulz and Prof. Dr. Harold L. Drake.  Preparation and processing of slurries with gut 

contents (4.2, 4.5.1, 4.8.7, 4.8.8) was performed by myself.  Molecular analysis (4.10.1, 4.10.5, 

4.10.7, 4.10.8, 4.10.9, 4.10.14, 4.11.1) was conducted by Christina Bruß.  Christina Bruß was 

supervised by myself.  Peter Claus and Prof. Dr. Ralf Conrad conducted the analysis of 13C-

enriched organic acids and gases (4.8.9).  Evaluation, graphical presentation, and 

interpretation of data were performed by myself. 

4.17.5 Enrichment and isolation of FHL-containing bacteria, fermenters, and 

an acetogen from mire-derived roots 

The objective for this study and the experimental set-up were developed by myself.  

Experiments were predominantly conducted by Anita S. Gößner who was elaborated and 

supervised by myself.  Sampling of roots was performed by myself together with Anita S. 

Gößner.  Preparation and processing of enrichments and characterization of isolates (4.6.1, 

4.9) was predominantly performed by Anita S. Gößner and partly by myself.  Extraction of DNA 

(4.10.1), PCR (4.10.9), and picking of clones (4.10.14) was performed by Anita S. Gößner.  

Ligation (4.10.14), transformation (4.10.14), and sequence analysis (4.11) of the acetogenic 

enrichment was performed by myself.  Kristina Schraml analyzed the hydrogenase genes of 

isolates (4.10.9, 4.11.3) as part of a six week practical course (Department of Ecological 

Microbiology, University of Bayreuth, Bayreuth, Germany) and was elaborated and supervised 
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by Oliver Schmidt (doctoral student, Department of Ecological Microbiology, University of 

Bayreuth, Bayreuth, Germany).  Evaluation, graphical presentation, and interpretation of data 

were performed by myself. 

4.17.6 Isolation of an acetogen and a fermenter from forest ‘soil’ 

The objective for this study and the experimental set-up were developed by Prof. Dr. 

Harold L. Drake and myself.  Samples were taken by Prof. Dr. Harold L. Drake.  Experiments 

were predominantly conducted by Anita S. Gößner who was predominantly supervised by Prof. 

Dr. Harold L. Drake.  Molecular analysis (4.10.1, 4.10.9) and xylan-dependent product profiles 

were conducted by myself and Anita S. Gößner.  Evaluation, graphical presentation, and 

interpretation of data were performed by myself. 

4.17.7 Enrichment of methanogens and acetogens from gut contents of 

E. eugeniae 

The objective for this study and the experimental setup were developed by myself.  

Sampling of earthworms and obtaining gut contents was performed by Dr. Peter S. Depkat-

Jakob (Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany).  

Initial incubations were performed by myself and Dr. Peter Depkat-Jakob.  Later incubations, 

enrichment, isolation, and characterization was conducted by myself.  Evaluation, graphical 

presentation, and interpretation of data were performed by myself. 
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5 Results 

5.1 Molecular tools for identification of methanogens and 

acetogens 

5.1.1 Newly developed primers targeting acetogens 

Acetogens are widespread within the Bacteria (Drake at al. 2006) and thus difficult to 

target by molecular approaches.  The most common primers to target acetogens are primers 

that target fhs (FTHFSf and FTHFSr, Leaphart and Lovell 2001).  fhs encodes the 

formyltetrahydrofolate synthetase (Leaphart and Lovell 2001), an enzyme of the acetyl-CoA 

pathway of acetogens binding the formyl group (-CHO) of formate to tetrahydrofolate forming 

formyltetrahydrofolate at the expense of one ATP (Drake et al. 2006, Ragsdale and Pierce 

2008).  Formyltetrahydrofolate synthetase is not restricted to acetogens and can also be found 

in other taxa such as sulfate-reducing bacteria, aceticlastic methanogens, and syntrophic 

acetate-oxidizing bacteria (Müller et al. 2013).  Thus, fhs primers target acetogens and non-

acetogens.  The primers FTHFSf and FTHFSr target acetogens within the genera Moorella 

and Sporomusa very weakly (own experience).  At the time of study, no other primers for the 

analysis of acetogens were available.  Only a few acetogen-associated gene sequences that 

encode other enzymes of the acetyl-CoA pathway were available from NCBI (i.e., 2009 and 

2010).  For example, cooS encodes a carbon monoxide dehydrogenase that can be a part of 

the CODH/ACS complex of acetogens (González and Robb 2000, Ragsdale and Pierce 2008, 

Köpke et al. 2013).  CooS sequences of the acetogens Clostridium difficile (AM180355) and 

Blautia hydrogenotrophica (NC_ACBZ01000127) were available but both sequences clustered 

more closely to non-acetogens than to each other in phylogenetic trees (Figure 16).  It was 

expected that samples of interest for molecular analysis contained Clostridium-related species 

rather than Blautia- and Moorella-related species and thus cooS primers for Clostridium-

related species were designed (Table 21).  Also, new primers for fhs were designed that target 

Moorella and Sporomusa. 
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Table 21: Newly designed primers for fhs and cooS. 

Primer and target Sequence 

Formyltetrahydrofolate synthetase-encoding genes, fhs 

  fhs610fa 5’-GTW GCH TCI GAR RTI ATG GC-3’ 

  fhs1249ra 5’-CYR CCY TTH GCC CAN AC-3’ 

Carbon monoxide dehydrogenase-encoding genes, cooS 

  cooS805fa 5’-AAR SCM CAR TGT GGT TTT GG-3’ 

  cooS2623rwa 5’-TTT TST KMC ATC CAY TCT GG-3’ 

  cooS103f-Ib 5’-AAG RCA CMD TGT GGT TTT GG-3’ 

  cooS103f-IIb 5’-ACW CCG CAC TGT AAA TTT GG-3’ 

  cooS634rb 5’-GAA DCC IVC CAA ICC RTC-3’ 

  cooS896r-Ib 5’-GCC AWT TTW RYR CCA TGT C-3’ 

  cooS896r-IIb 5’-CAT SGG RAT TCC SCK KC-3’ 

a Published in Hunger et al. (2011b). 
b Unpublished. 

Temperature and time protocols, concentrations of primers and concentrations of 

magnesium were optimized with genomic DNA from the acetogen Thermoanaerobacter kivui 

(positive control) and genomic DNA from Methanosarcina mazei (negative control) for each 

assay (Table 22, Table 23). 

Table 22: Temperature and time protocols for newly designed fhs and cooS primers. 

 Temperature in °C/duration in minutes:seconds 

 
fhs610f & 

fhs1249r 

cooS805f & 

cooS2623rw 

cooS103f-I, 

cooS103f-II & 

cooS634r 

cooS103f-I, 

cooS103f-II & 

cooS896r-I, 

cooS896r-II 

Initial 

denaturation 
94/5:00 94/5:00 94/5:00 94/5:00 

Denaturation 94/0:45 94/0:45 94/0:45 94/0:45 

Annealing 56/0:45 55/0:45 59/0:45 56/0:45 

Elongation 72/1:00 72/2:20 72/1:00 72/1:10 

Cycles 35 45 45 45 

Terminal 

elongation 
72/5:00 72/5:00 72/5:00 72/5:00 

The primer fhs610f and fhs1249r showed a signal of approximately 640 base pairs and 

targeted the acetogens Thermoanaerobacter kivui, Moorella thermoacetica, Moorella 
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thermoautotrophica, Clostridium drakei, Clostridium magnum, Terrisporobacter glycolicus, 

Sporomusa silvacetica, and Acetobacterium woodii but not the non-acetogen Methanosarcina 

mazei.  fhs sequences of T. glycolicus RD-1, C. drakei, M. thermoacetica, and S. silvacetica 

were not publicly available and were sequenced and submitted to EMBL database (Table 20). 

Table 23: Protocols for PCR reagents of newly designed fhs and cooS primers. 

 Concentrations (unit listed with reagents)a 

Reagents 
fhs610f & 

fhs1249r 

cooS805f & 

cooS2623rw 

cooS103f-I, 

cooS103f-II & 

cooS634rb 

cooS103f-I, 

cooS103f-II & 

cooS896r-I, 

cooS896r-II 

Each Primer 

(µM) 
4 4 1 1 

Bovine serum 

albumin        

(mg mL-1) 

0.4 0.4 0.4 0.4 

Each dNTPb 

(mM) 
0.2 0.2 0.2 0.2 

Taq DNA 

polymerase     

(U µL-1) 

0.24 0.24 0.24 0.24 

MgCl2 (mM) 2.6 2.6 2.6 2.6 

a Each PCR assay was prepared with 5 Prime master mix. 
b Legend: dNTP: deoxyribonucleotide. 

The alignment of cooS sequences was diverse and primers could not be designed for 

all cooS sequences.  The primers cooS805f and cooS2623rw were designed with cooS 

sequences of the non-acetogen Carboxydibrachium pacificum (NW_002243418) and the 

acetogen C. difficile (AM180355).  The PCR product yielded a signal of approximately 1,800 

base pairs.  These primers targeted T. kivui, C. drakei, C. magnum, T. glycolicus, and A. woodii 

but yielded no signal from genomic DNA of Moorella and Sporomusa species.  The cooS 

sequences of A. woodii, T. kivui, C. magnum, C. drakei, and T. glycolicus were sequenced 

(Table 20) and used for further design of primers.  Subsequently, the primers cooS103f-I, 

cooS103f-II, cooS634r, cooS896r-I, and cooS896r-II were designed and evaluated (Table 21, 

Table 22, Table 23). 
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Figure 16: Phylogenic maximum parsimony tree of in silico-translated amino acid sequences 

encoded by cooS retrieved from acetogens (bold) and next cultured non-acetogens. 

Sequences displayed in phylogenetic tree were obtained between 2009 and 2016.  Accession 

numbers are indicated.  Sequences correspond to residues 36 to 317 of the cooS-encoded amino 

acid sequence of A. fulgidus (NC_000917).  The phylogenetic tree was calculated using the 

maximum parsimony method.  Filled circles indicate congruent nodes in the neighbor joining tree, 

and the maximum likelihood tree.  Bootstrap values derived from the maximum parsimony tree 

(1,000 resamplings) and are only displayed at nodes congruent in all three trees.  The bar indicates 

a 0.1 change per amino acid.  Phyla were displayed color coded: red, Firmicutes; grey, 

Spirochaetae; green, Acidobacteria; blue, Euryarchaeota.  Sequences that were used for primer 

design in 2009 were indicated: a, cooS805f/cooS2623rw; b, all other primers. 
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The primers cooS103f-I, cooS103f-II, and cooS634r showed a signal of approximately 

550 base pairs with genomic DNA from T. kivui.  The primers cooS103f-I, cooS103f-II, 

cooS896r-I, and cooS896r-II showed a signal of approximately 800 base pairs with genomic 

DNA from T. kivui.  With the latter two primer assays, genomic DNA of the non-acetogen 

Methanosarcina mazei did not yield a PCR signal and genomic DNA of other acetogens beside 

T. kivui were not tested for PCR signals. 

Unfortunately, all fhs and cooS primer assays showed no PCR signal with DNA extracts 

from environmental samples (such as mire ‘soils’, roots or gut contents of earthworms).  Since 

the design of the primers, new fhs and cooS sequences of acetogens became available (Figure 

16) and primers that would target a broader range of acetogens could likely be designed and 

might deliver PCR signals from environmental samples of interest. 

5.1.2 Phylogenic correlation of 16S rRNA gene sequences to mcrA and 

bacterial fhs sequences 

McrA encodes the alpha-subunit of the methyl-CoM reductase of methanogens 

(Lehmacher and Klenk 1994, Pihl et al. 1994, Thauer 1998) whereas fhs encodes the formyl-

tetrahydrofolate synthetase of acetogens and other bacteria (Leaphart and Lovell 2001, Müller 

et al. 2013).  mcrA and fhs were used in this study to identify methanogens and acetogens, 

respectively.  Threshold values are helpful to cluster obtained sequences into phylotypes.  For 

example, a similarity threshold of 97 % can be used to cluster 16S rRNA gene sequences into 

species-level phylotypes (Yarza et al. 2008).  Corresponding threshold values were calculated 

for mcrA and fhs. 

Sequences of both genes were in silico translated into amino acids and plotted together 

with the corresponding 16S rRNA gene sequences of the same microorganisms (Figure 17).  

A threshold of 97 % and 87.5 % 16S rRNA gene sequence similarity (Yarza et al. 2008) was 

used to identify species- and family-level phylotypes, respectively.  Based on the plot of Figure 

17 corresponding thresholds were determined for mcrA-encoded and fhs-encoded amino acid 

sequences.  A species- and family-level threshold for (a) mcrA-encoded amino acid sequences 
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of 85.7 % and 75.4 %, and (b) bacterial fhs-encoded amino acid sequences of 76.4 % and 

50.0 % were obtained for species- and family-level phylotypes, respectively.  Those threshold 

values were conservative and allowed an estimation of the minimal number of species- and 

family-level phylotypes in this dissertation. 

 

Figure 17: Phylogenic correlation plots of 16S rRNA gene sequence similarities and amino 

acid sequence similarities of mcrA and fhs. 

Seventy-nine mcrA and 235 fhs sequences are plotted.  Sequences that were used can be found in 

Table 46 and Table 47.  The vertical solid lines intersecting the horizontal axes at 97 % and 87.5 % 

16S rRNA gene sequence similarity identify thresholds for species- and family-level phylotypes, 

respectively (Yarza et al. 2008).  The horizontal dotted and dashed lines intersecting the left vertical 

axes represent the 90 % quantile of pair wise comparisons of mcrA- or fhs-encoded amino acid 

sequence similarity and the 16S rRNA gene sequence similarity. Figure was modified from Hunger 

et al. (2011a). 

5.2 Similarities and dissimilarities of anaerobic processes and 

associated taxa in contrasting mire ’soils’ 

5.2.1 Abiotic characteristics 

The four mire ‘soils’ varied significantly in pH (p < 0.001), water content (p < 0.002), 

concentration of total carbon (p < 0.001), concentration of total nitrogen (p < 0.002), 

concentration of PO4
3- (p < 0.04), and had different vegetation’s (Table 24).  Concentrations of 

Cl-, NO3
-, and SO4

2- were similar (p > 0.06) in the contrasting mire ‘soils’, and NPOC increased 

with decreasing pore water pH.  Except of mire 1, all other mire ‘soils’ contained peat.  The 

concentration of total carbon increased and the concentration of total nitrogen decreased with 
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increasing water content.  Based on C/N ratio and pH (Joosten 2001), the ‘soil’ of mire 1 was 

eutrophic pH-neutral, the ‘soil’ of mire 2 was mesotrophic acidic, and the ‘soils’ of mires 3 and 

4 were oligotrophic acidic. 

Table 24: Characteristics of contrasting mires in Germany.a 

 Mire 1 Mire 2 Mire 3 Mire 4 

Type of mire Fen Fen Bog Bog 

Presence of peat No Yes Yes Yes 

pHb 7.6 ± 0.4 4.3 ± 0.1 4.9 ± 0.9 3.9 ± 0.1 

Water content (%) 81 ± 4 87 ± 6 93 ± 6 92 ± 2 

Total C (g kg-1)c 259 ± 70 380 ± 31 459 ± 6 482 ± 13 

Total N (g kg-1)c 20 ± 4 17 ± 4 10 ± 1 9 ± 1 

C/N ratio 13 22 46 53 

NPOC (mg L-1)bd 79 ± 32 115 ± 31 105 ± 36 171 ± 21 

Cl- (mg L-1)b 7.2 ± 4.7 2.1 ± 0.9 3.2 ± 1.9 5.7 ± 1.1 

NO3
- (mg L-1)b - 0.2 ± 0.1 1.0 ± 0.4 0.8 ± 0.4 

PO4
3- (mg L-1)b - 0.3 ± 0.1 - 4.2 ± 2.2 

SO4
2- (mg L-1)b 7.2 ± 1.6 18 ± 5 13 ± 3 8.6 ± 6.2 

Location Oberpfalz Fichtelgebirge Oberpfalz Erzgebirge 

a Table was modified from Hunger et al. (2015). Legend: -, not detected. 
b Of pore water. 
c Of soil dry weight. 
d Non-purgeable organic carbon (NPOC) in filtered liquid samples. 

5.2.2 Product profiles of anoxic unsupplemented ‘soil’ slurries 

CO2 and CH4 accumulated and traces of acetate, lactate, and formate were detected 

in all unsupplemented slurries (Figure 18, data for lactate and formate not shown), suggesting 

that methanogenesis, fermentation, and/or anaerobic respiration occurred at the expense of 

endogenous substrates. 

5.2.3 Effect of supplemental glucose on product profiles of anoxic ‘soil’ 

slurries 

Glucose consumption stimulated the production of various fermentation products and 

CH4 in all anoxic slurries (Figure 18, Table 25).  Most abundant products were butyrate, 

acetate, and CO2.  
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Figure 18: Effect of supplemental glucose on the production of organic acids and gases in 

anoxic ‘soil’ slurries derived from contrasting mires. 

The incubation temperature was 15 °C.  Symbols: open symbols, unsupplemented controls; closed 

symbols, glucose-supplemented slurries; hexagon, glucose; cross, ethanol; diamond, acetate; 

pyramid, butyrate; star, propionate; square, CO2; upside-down triangle, H2; circle, CH4.  Glucose 

was supplemented once at the beginning of incubation.  Values are the means of triplicate slurries.  

Error bars indicate the standard deviation.  Figure was modified from Hunger et al. (2015). 
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respectively.  Ethanol was produced during the degradation of glucose in slurries from mires 

1, 2, and 4, but not in slurries from mire 3 (Figure 18).  Accumulated H2 was consumed after 

glucose was completely degraded.  Acetate accumulated during the utilization of H2 and CO2 

in slurries from mire 1.  The consumption of CO2 and the accumulation of acetate were not 

observed after depletion of H2, indicating that acetogenesis was an ongoing process until H2 

was depleted.  Propionate was a minor product of the degradation of glucose in slurries from 

mires 1-3 (3-5 % of glucose-derived reductant) but more abundant in slurries of mire 4 (18 % 

of glucose-derived reductant).  Formate was detected periodically in trace amounts in all 

slurries, suggesting that varying amounts of formate might have been formed and utilized 

during the different incubations. 

Table 25: Recovery of glucose-derived reductant and carbon in anoxic slurries of contrasting 

mire ‘soils’. 

 Carbon recovered from 

glucose (%)a 
 Reductant recovered from 

glucose (%)a 

 Mires  Mires 

Products 1 2 3 4  1 2 3 4 

Acetate 20 20 16 24  20 20 16 24 

Butyrate 17 27 32 22  21 34 40 27 

Propionate 4 3 3 15  5 3 3 18 

Ethanol 9 7 0 4  13 10 0 7 

Formate 4 0 0 0  2 0 0 0 

CO2 25 21 29 23  n.a. n.a. n.a. n.a. 

CH4 2 0 1 3  3 1 3 3 

H2 n.a. n.a. n.a. n.a.  9 15 11 8 

Total : 81 78 81 91  73 83 73 87 

a Recovery was calculated based on process data at the beginning of incubation and the following 

time points that corresponded to either when glucose was fully consumed or the end of the 

incubation (see Figure 18): mire 1, three days incubation; mire 2, 15 days incubation; mire 3, six 

days incubation; mire 4, 21 days incubation.  Values are rounded to nearest whole number.  

Abbreviation: n.a., not applicable. 

5.2.4 Effect of supplemental H2-CO2 on product profiles of anoxic ‘soil’ 

slurries 

Supplemental H2-CO2 stimulated the production of acetate and CH4 in all anoxic slurries 

(Figure 19, Table 26).  The consumption of CO2 and H2 was concomitant with the formation of 
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acetate (Figure 19), an activity indicative of H2-dependent acetogenesis.  Acetate was 

consumed as soon as H2 was depleted. 

 

Figure 19: Effect of supplemental H2-CO2 on the production of acetate and CH4 in anoxic ‘soil’ 

slurries derived from contrasting mires. 

The incubation temperature was 15 °C.  Symbols: open symbols, unsupplemented controls; closed 

symbols, H2-CO2-supplemented slurries; diamond, acetate; star, propionate; square, CO2; upside-

down triangle, H2; circle, CH4.  H2 and CO2 were supplemented once at the beginning of incubation.  

Values are the means of triplicate slurries.  Error bars indicate the standard deviation.  Figure was 

modified from Hunger et al. (2015). 
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CH4 from H2-CO2 occurred before the apparent H2-CO2-dependent production of acetate in 

slurries from mires 2-4, whereas the apparent production of acetate from H2-CO2 occurred 

before the apparent H2-CO2-dependent production of CH4 in slurries of mire 1.  These 

contrasting patterns reflected the variability of competing processes (i.e. acetogenesis and 

methanogenesis) for H2-derived reductant. 

Table 26: Recovery of reductant from H2 and recovery of carbon from CO2 in anoxic H2-CO2-

supplemented slurries of contrasting mire ‘soils’. 

 Carbon recovered from CO2 (%)a  Reductant recovered from H2 (%)a 

 Mires  Mires 

Products 1 2 3 4  1 2 3 4 

Acetate 20 20 42 58  12 18 25 43 

CH4 57 20 43 15  67 36 52 22 

Total : 77 40 85 73  79 54 77 65 

a Recovery was calculated based on process data at the beginning of incubation and the following 

time points that corresponded to the highest acetate concentration (see Figure 19): mire 1, 10 days 

incubation; mire 2, 21 days incubation; mire 3, 12 days incubation; mire 4, 21 days incubation.  

Values are rounded to nearest whole number. 

The recovery of reductant in CH4 and acetate varied in ‘soil’ slurries from the contrasting 

mires (Table 26).  22-67 % of H2-derived reductant was recovered in CH4 and 12-43 % of H2-

derived reductant was recovered in acetate.  Recovery calculations for ‘soil’ slurries from 

mires 1 and 3 were done in the middle of the incubation at a time point when acetate was 

detected transiently and acetate concentrations were the highest (Figure 19).  It is unresolved 

how much of the H2-CO2-derived acetate was already converted to CH4 at those time points 

and thus might shift the recovery of H2-CO2-derived carbon and reductant from acetate towards 

CH4. 

5.2.5 Effect of supplemental acetate on product profiles of anoxic ‘soil’ 

slurries 

Supplemental acetate stimulated the production of CH4 in all slurries (Figure 20).  H2 

was transiently produced during the degradation of acetate in slurries from mires 1 and 3. 
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Figure 20: Effect of supplemental acetate on the production of gases in anoxic ‘soil’ slurries 

derived from contrasting mires. 

The incubation temperature was 15 °C.  Symbols: open symbols, unsupplemented controls; closed 

symbols, acetate-supplemented slurries; diamond, acetate; square, CO2; upside-down triangle, H2; 

circle, CH4.  Acetate was supplemented repeatedly during the incubation and time points of 

supplementation were indicated with arrows.  Values are the means of triplicate slurries.  Error bars 

indicate the standard deviation.  Figure was modified from Hunger et al. (2015). 
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CO2 to CH4 of 1:1.6, 1:1.2, and 1:1.2, respectively (Table 27), indicating that CH4 was not 

exclusively derived from supplemental acetate but also from endogenous substrates.  In this 

regard, the theoretical recovery of reductant above 100 % in slurries of mires 1 and 2 also 

indicated that supplemental acetate enhanced the utilization of endogenous substrates. 

 

Table 27: Recovery of reductant and carbon from acetate in anoxic acetate-supplemented 

slurries of contrasting mire ‘soils’. 

 Carbon recovered from 

acetate (%)a 
 Reductant recovered from 

acetate (%)a 

 Mires  Mires 

Products 1 2 3 4  1 2 3 4 

CO2 43 0 33 33  n.a. n.a. n.a. n.a. 

CH4 68 69 39 41  137 138 77 80 

Total : 111 69 72 74  137 138 77 80 

a Recovery was calculated based on process data at the beginning of incubation and day 21 (see 

Figure 20).  Values are rounded to nearest whole number.  Abbreviation: n.a., not applicable. 

 

5.2.6 Bioenergetics of H2-dependent methanogenesis and acetogenesis 

The estimated Gibbs free energy of H2-dependent methanogenesis (i.e. -32 to -100 kJ 

mol-1) and acetogenesis (i.e. -21 to -108 kJ mol-1) indicated that those processes were 

thermodynamically feasible under the experimental conditions (Figure 21).  The estimated 

Gibbs free energy of acetogenesis was 8-14 kJ mol-1 more negative than of methanogenesis 

in slurries of mire 1.  In contrast, the estimated Gibbs free energy of methanogenesis was 

19-43 kJ mol-1, 23-32 kJ mol-1, and 23-30 kJ mol-1 more negative than that of acetogenesis in 

slurries of mires 2, 3, and 4, respectively. 
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Figure 21: Estimated changes of the Gibbs free energy (∆G) in H2-CO2-supplemented slurries 

for H2-CO2-dependent methanogenesis and H2-CO2-dependent acetogenesis. 

Process data are plotted in Figure 19.  Color code for derivation of ‘soil’ slurries: red, mire 1; blue, 

mire 2; green; mire 3; orange, mire 4.  Values are the means of triplicate slurries.  Error bars indicate 

the standard deviation.  Figure was modified from Hunger et al. (2015). 

 

5.2.7 Diversity of mcrA phylotypes 

In total, 931 mcrA sequences clustered into 20 species-level and 10 family-level mcrA 

phylotypes (Table 28, Figure 24); including Methanobacteriaceae, Methanocellaceae, 
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phylotypes without any cultured isolates (Figure 23, Figure 24).  Rarefaction curves and 

coverage indicated that sampling was sufficient for species-level clustering of mcrA phylotypes 

(Figure 22, Table 28).  The diversity of species-level mcrA phylotypes decreased from mire 1 

to mire 2, to mire 3, and mire 4.  In this regard, water content and the C/N ratio increased 

(Table 24) with decreasing diversity of mcrA phylotypes, suggesting a correlation between the 

diversity of mcrA phylotypes, water content and C/N ratio. 
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Table 28: Coverage of clone libraries, number of mcrA sequences, and number of species-

level mcrA phylotypes obtained from contrasting mire ‘soils’ and slurries of anoxic 

incubations. 

Mires Clone libraries 
No. of 

sequences 

No. of 

phylotypes Coverage 

1 

Mire ‘soil’ 41 8 95 

Unsupplemented controla 47 8 94 

Glucose supplementationa 48 11 90 

Acetate supplementationa 50 10 92 

H2-CO2 supplementationa 46 8 98 

Total: 232 14 >99 

2 

Mire ‘soil’ 46 8 93 

Unsupplemented controla 45 10 96 

Glucose supplementationa 47 9 98 

Acetate supplementationa 48 10 98 

H2-CO2 supplementationa 40 6 98 

Total: 226 12 >99 

3 

Mire ‘soil’ 48 8 98 

Unsupplemented controla 46 6 >99 

Glucose supplementationa 48 7 >99 

Acetate supplementationa 48 5 >99 

H2-CO2 supplementationa 48 7 98 

Total: 238 8 >99 

4 

Mire ‘soil’ 46 4 98 

Unsupplemented controla 47 5 94 

Glucose supplementationa 53 5 98 

Acetate supplementationa 45 5 96 

H2-CO2 supplementationa 44 4 98 

Total: 235 8 >99 

a Sequences were obtained from ‘soil’ slurries after 21 days of anoxic incubation.  Process data can 

be found in Figure 18, Figure 19, and Figure 20. 

Methanoregulaceae was the most abundant taxon in all four mire ‘soils’ before 

incubation (Figure 23).  “Methanosaetaceae” and Methanocellaceae were the second and third 

most abundant taxa in mire ‘soil’ 1, respectively.  Methanosarcinaceae and “Methano-

saetaceae” were the second and third most abundant taxa in mire ‘soil’ 2, respectively. 
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Figure 22: Rarefaction analysis of species-level mcrA phylotypes obtained from 'soils' and 

‘soil’ slurries of contrasting mires. 

Sequences were obtained from ‘soils’ before incubation or from ‘soil’ slurries after 21 days of 

incubation.  Process data can be found in Figure 18, Figure 19, and Figure 20.  mcrA sequences 

were in silico translated into amino acids and based on an 85.7 % similarity cut-off clustered into 

species-level phylotypes (5.1.2).  A 95 % confidence interval is shown.  Curves were calculated 

according to the Hurlbert rarefaction (Hurlbert 1971).  Color code for plots of mires: blue, mire ‘soil’ 

before incubation; light green, unsupplemented control; red, glucose-supplemented slurries; dark 

green, acetate-supplemented slurries; pink, H2-CO2-supplemented slurries. Color code for plot of 

total number of sequences per mire: red, mire 1; blue, mire 2; green, mire 3; orange, mire 4. 
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In mire ‘soil’ 3, Methanosarcinaceae and family-level phylotype 1 were the second and 

third most abundant taxa, respectively.  “Methanosaetaceae” and Methanosarcinaceae were 

the second and third most abundant taxa in mire ‘soil’ 4, respectively.  These results indicate, 

that (a) in general mcrA-associated communities varied between contrasting mire ‘soils and 

(b) Methanoregulaceae was the most abundant taxon, indicating that Methanoregulaceae-

related taxa might play a major role in mire ‘soils’. 

 

Figure 23: Relative abundances of family-level mcrA phylotypes from contrasting mire ‘soils’. 

Samples were taken from mire ‘soils’ prior to incubation.  Methanosaetaceae are in quotes due to 

its current status as an illegitimate name (http://www.bacterio.net). 

‘Soil’ slurries from mires 1, 2, 3, and 4 showed similar diversities of species-level mcrA 

phylotypes before and after incubation (Figure 22).  Some species-level phylotypes had a 

relative abundance of 9-35 % in the mire ‘soil’ and decreased in abundance during incubation 

of the unsupplemented ‘soil’ slurries (e.g., PLT2 [Methanoregulaceae] and PLT12 

[Methanocellaceae]  in slurries of mire 1, PLT1 [Methanoregulaceae] and PLT14 

[Methanosarcinaceae] in slurries of mire 2, PLT4 [Methanoregulaceae] in slurries of mire 3, 

and PLT14 and PLT16 [“Methanosaetaceae”] in slurries of mire 4) (Figure 24), indicating that 

the experimental conditions did not favor the growth of associated methanogens.  Other 

species-level phylotypes increased in relative abundance in ‘soil’ slurries after supplementation 

with substrate stronger than in the unsupplemented controls (e.g., PLT1 and PLT2 in slurries 

of mire 2 after supplementation of H2-CO2, PLT7 [family-level phylotype 1] in slurries of mire 1 
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after supplementation of H2-CO2, and PLT14 in slurries of mires 1, 3, and 4 after 

supplementation of either glucose or acetate), indicating that associated methanogens were 

stimulated by H2-CO2, acetate, and/or glucose-derived fermentation products under the 

experimental conditions. 

 

Figure 24: Phylogenic maximum likelihood tree of (a) representative mcrA-encoded amino 

acid sequences retrieved from contrasting mire ‘soils’ and from anoxic ‘soil’ slurries, and (b) 

reference sequences. 

Sequences were obtained from mire ‘soils’ and from ‘soil’ slurries after 21 days of anoxic incubation 

(Figure 18, Figure 19, Figure 20).  mcrA sequences were in silico translated into amino acids and 

based on an 85.7% similarity cut-off clustered into species-level phylotypes (5.1.2).  Some species-

level phylotypes were less than 75.4 % similar to mcrA-encoded amino acid sequences of cultured 

isolates and were clustered into family-level phylotypes 1-5 (5.1.2).  Methanosaetaceae are in 

quotes due to its current status as an illegitimate name (www.bacterio.net).  Accession numbers are 

indicated in brackets.  Sequences correspond to residues 339-470 of the mcrA-encoded amino acid 

sequence and 1017-1410 of the mcrA sequence of Methanopyrus kandleri (AE009439).  Filled dots 

at nodes indicate the confirmation of tree topology by six calculations with the same data set 

whereby nucleic acid and corresponding amino acid sequences were used with maximum likelihood, 

neighbor-joining and maximum parsimony algorithms.  M. kandleri (AE009439) was used as 

outgroup.  Bar indicates a 0.1 estimated change per amino acid.  Legend:  A, mire ‘soil’; B, 

unsupplemented control; C, glucose-supplemented slurries; D, acetate-supplemented slurries; E, 

H2-CO2-supplemented slurries; PLT, phylotype; -, not detected.  Values are rounded to nearest 

whole number.  Figure was modified from Hunger et al. (2015). 
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17      29  26  19    8   17         2     -      -     4     -           2     -     -      -     -           -     -     6      -    5
18       5    -     4     2    7        13   22     9    4     5           -     -     -      -     -           -     -      -      -     -

19       -     -     2     -     -           -     -      -     -      -           -      -     -      -     -          -     -      -      -     -

15       -     -     -      -     -           -     2     4    2     -            -     -     -      -     -           -     6    2      -     -

20       -    2     2     -     -          2     4      -     4    3           4   24   19   27  25         -     -      -      -     -

PLT       A    B    C    D    E         A    B    C    D    E           A    B    C    D    E         A    B    C    D     E

       Mire 1                            Mire 2                            Mire 3                            Mire 4

Relative abundance of species-level mcrA phylotypes (%)
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Species-level phylotypes with a relative abundance of 24 % or more had a total relative 

abundance of 29 %, 59 %, 50 %, and 76 % in ‘soils’ of mire 1 (pH 7.6), mire 2 (pH 4.3), mire 3 

(pH 4.9), and mire 4 (pH 3.9), respectively (Figure 24), suggesting that acidic conditions 

restricted the relative number of dominant methanogenic phylotypes. 

5.2.8 Diversity of bacterial 16S rRNA gene phylotypes 

In total, 870 bacterial 16S rRNA gene sequences were obtained that clustered into 

86 family-level and 13 phyla-level phylotypes (Table 29).  Rarefaction curves and coverage 

indicated that sampling was not sufficient for family-level clustering of 16S rRNA gene 

phylotypes for single supplementations for mire ‘soils’ 1 and 2 but was sufficient for mire ‘soils’ 

3 and 4 and for analysis of total detected phylotypes per mire ‘soil’ (Figure 22, Table 29).  The 

diversity of family-level 16S rRNA gene phylotypes decreased from mire 1 to mire 2, mire 3, 

and mire 4 (Table 29, Figure 25).  In this regard, water content and the C/N ratio increased 

(Table 24) with decreasing diversity of 16S rRNA gene phylotypes, suggesting a correlation 

between the diversity of 16S rRNA gene phylotypes, water content and C/N ratio. 

The diversity of 16S rRNA gene phylotypes was similar within a single mire ‘soil’ and 

little affected by supplementation and incubation (Table 29, Figure 25).  Acidobacteria and 

Proteobacteria were the most abundant phyla in mire ‘soils’, and the relative abundance of 

Acidobacteria (especially Acidobacteriaceae, Figure 26, Table 30, Table 48) increased with 

decreasing mire pore water pH (Table 24).  Actinobacteria was the third most abundant taxon 

in mire ‘soils’ 1 and 3 but less abundant in ‘soils’ of mire 2 and 4.  Besides the high relative 

abundance of Acidobacteria and Proteobacteria, ‘soils’ of contrasting mires varied in their 

bacterial community composition.  Some family-level 16S rRNA gene phylotypes within the 

Acidobacteria with a relative abundance in the mire ‘soil’ of over 10 % decreased in relative 

abundance during the incubation period (e.g., phylotype 3 in mire 1, phylotype 5 in mire 2, and 

phylotype 1 in mire 4) (Table 30), indicating that the experimental conditions did not favor 

affiliated microorganisms, which were thus overgrown by other microorganisms. 
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Table 29: Coverage of clone libraries, number of 16S rRNA gene sequences, and number of 

family-level 16S rRNA gene phylotypes obtained from contrasting mire ‘soils’ and slurries of 

anoxic incubations. 

Mires Clone libraries 
No. of 

sequences 

No. of 

phylotypes Coverage 

1 

Mire ‘soil’ 42 31 43 

Unsupplemented controla 39 25 64 

Glucose supplementationa 41 27 54 

Acetate supplementationa 53 32 64 

H2-CO2 supplementationa 34 21 59 

Total: 209 56 93 

2 

Mire ‘soil’ 48 18 85 

Unsupplemented controla 42 21 74 

Glucose supplementationa 48 18 75 

Acetate supplementationa 45 22 64 

H2-CO2 supplementationa 41 19 73 

Total: 224 50 92 

3 

Mire ‘soil’ 42 16 83 

Unsupplemented controla 47 11 94 

Glucose supplementationa 46 13 89 

Acetate supplementationa 42 15 81 

H2-CO2 supplementationa 46 13 89 

Total: 223 33 93 

4 

Mire ‘soil’ 41 8 95 

Unsupplemented controla 44 13 84 

Glucose supplementationa 43 14 88 

Acetate supplementationa 46 8 91 

H2-CO2 supplementationa 40 19 65 

Total: 214 30 94 

a Sequences were obtained from ‘soil’ slurries after 21 days of anoxic incubation.  Process data can 

be found in Figure 18, Figure 19, and Figure 20. 
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Figure 25: Rarefaction analysis of family-level 16S rRNA gene phylotypes obtained from 

'soils' and ‘soil’ slurries of contrasting mires. 

Sequences were obtained from ‘soils’ before incubation or from ‘soil’ slurries after 21 days of 

incubation.  Process data can be found in Figure 18, Figure 19, and Figure 20.  The 16S rRNA gene 

sequences were based on an 87.5 % similarity cut-off clustered into family-level phylotypes (Yarza 

et al. 2008).  95 % confidence intervals are shown.  Curves were calculated according to the Hurlbert 

rarefaction (Hurlbert 1971).  Color code for plots of mires: blue, mire ‘soil’ before incubation; light 

green, unsupplemented control; red, glucose-supplemented slurries; dark green, acetate-

supplemented slurries; pink, H2-CO2-supplemented slurries. Color code for plot of total number of 

sequences per mire ‘soil’: red, mire 1; blue, mire 2; green, mire 3; orange, mire 4. 
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Hyphomicrobiaceae, Syntrophaceae, and family-level phylotypes 28 were the most 

abundant taxa in overall gene libraries of mire ‘soil’ 1 (Table 30, Table 31), and collectively 

accounted for 12 % of the bacterial community before incubation (Table 48).  Anaerolineaceae, 

and family-level phylotypes 3 and 41 were the most abundant family-level 16S rRNA gene 

phylotypes before incubation in mire ‘soil’ 1 (Table 30, Table 48).  Acidimicrobiaceae increased 

in relative abundance due to incubation of unsupplemented ‘soil’ slurries from mire 1 (Table 

30).  Other taxa displayed a higher increase in relative abundance due to supplementation 

compared to unsupplemented controls during incubation in ‘soil’ slurries from mire 1, such as 

Hyphomicrobiaceae in glucose- and acetate-supplemented slurries, and family-level 

phylotypes 28 and 37 in H2-CO2-supplemented slurries. 

 

Figure 26: Relative abundance of phylum-level 16S rRNA gene phylotypes from contrasting 

mire ‘soils’. 

Sequences derived from mire ‘soil’ before incubation.  Others include all sequences that could not 

be assigned to known phyla. 

Acidobacteriaceae, Planctomycetaceae, and Clostridiaceae were the most abundant 

taxa in overall gene libraries of mire ‘soil’ 2 (Table 31), and collectively accounted for 29 % of 

the bacterial community before incubation (Table 30).  Acidobacteriaceae, family-level 

phylotypes 1 and 5 were the most abundant family-level 16S rRNA gene phylotypes before 

incubation in mire ‘soil’ 2.  Family-level phylotype 13 and Planctomycetaceae increased in 

Legend:
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relative abundance due to incubation of unsupplemented ‘soil’ slurries from mire 2.  Other taxa 

displayed higher increase in relative abundance due to supplementation compared to 

unsupplemented controls during incubation of ‘soil’ slurries from mire 2, such as Clostridiaceae 

in glucose-supplemented slurries and Planctomycetaceae in acetate-supplemented slurries. 

Acidobacteriaceae, Acidimicrobiaceae, and family-level phylotype 1 were the most 

abundant taxa in overall gene libraries of mire ‘soil’ 3 (Table 31), and collectively accounted 

for 48 % of the bacterial community before incubation (Table 30).  Acidobacteriaceae and 

Acidimicrobiaceae were also the most abundant family-level 16S rRNA gene phylotypes before 

incubation in mire ‘soil’ 3.  Acidobacteriaceae, and family-level phylotypes 1 and 5 increased 

in relative abundance due to incubation of unsupplemented ‘soil’ slurries from mire 3.  Other 

taxa displayed a higher increase in relative abundance due to supplementation compared to 

unsupplemented controls during incubation of ‘soil’ slurries from mire 3, such as 

Acidobacteriaceae in glucose- or acetate- or H2-CO2-supplemented slurries and 

Planctomycetaceae in glucose-supplemented slurries. 

Acidobacteriaceae, Methylocystaceae, and Acetobacteraceae were the most abundant 

taxa in overall gene libraries of mire ‘soil’ 4 (Table 31), and collectively accounted for 73 % of 

the bacterial community before incubation (Table 30).  Acidobacteriaceae, Methylocystaceae, 

Acetobacteraceae, and family-level phylotype 1 were the most abundant family-level 16S 

rRNA gene phylotypes before incubation in mire ‘soil’ 4.  Methylocystaceae increased in 

relative abundance due to incubation of unsupplemented ‘soil’ slurries from mire 4.  Other taxa 

displayed a higher increase in relative abundance due to supplementation compared to 

unsupplemented controls during incubation of ‘soil’ slurries from mire 4, such as Clostridiaceae 

and Veillonellaceae in glucose-supplemented slurries, Veillonellaceae in H2-CO2-

supplementes slurries, and Methylocystaceae and Acetobacteraceae in acetate-

supplemented slurries. 
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Table 30: Most abundant family-level phylotypes (i.e. phylotypes with a relative abundance of 10 % or higher), relative abundance of bacterial 16S rRNA 

gene sequences from mire ‘soils’, and from slurries at the end of the 21 day incubation. 

 Relative abundance of 16S rRNA gene sequences (%)a 

 Mire 1  Mire 2  Mire 3  Mire 4 

Taxonomic level (phylum, family) A B C D E  A B C D E  A B C D E  A B C D E 

Acidobacteria                        

  Acidobacteriaceae - - - 4 -  25 14 15 20 27  29 34 39 40 43  41 32 23 24 28 

  Family-level phylotype 1b - 3 - 2 6  8 - 2 - 5  7 19 4 2 13  10 2 - - 8 

  Family-level phylotype 3b 10 3 2 4 -  - - - - -  - - - - -  - - - - - 

  Family-level phylotype 5b - - 2 2 -  13 - - - 7  5 11 11 - 9  - - - - - 

Actinobacteria                        

  Acidimicrobiaceae 2 10 - 6 3  - 7 2 9 2  12 11 9 10 4  2 - - - 5 

Chloroflexi                        

  Family-level phylotype 13b - - - - -  2 12 - - 5  - - - - -  - - - - - 

Firmicutes                        

  Clostridiaceae 5 3 5 - -  - 2 31 2 -  - - 2 - -  - 2 21 - - 

  Veillonellaceae - - - - -  - - 2 - 7  - - 2 - -  - - 7 2 10 

Planctobacteria                        

  Planctomycetaceae 2 5 - 4 -  4 10 15 20 10  5 - 11 - -  - 7 2 - 3 

Proteobacteria                        

  Hyphomicrobiaceae 2 5 15 13 6  6 5 6 2 -  - - 2 7 4  - - - - - 

  Methylocystaceae - 3 2 - -  4 2 - - 2  - - - 2 4  22 27 9 41 15 

  Acetobacteraceae - - - - 3  - - 4 - -  - - - 2 -  10 7 - 22 3 

  Family-level phylotype 28b 5 3 5 6 21  2 - - - -  - - - - -  - - 2 - - 

a The 16S rRNA gene sequences were based on an 87.5 % similarity cut-off clustered into family-level phylotypes (Yarza et al. 2008).  Values are rounded to nearest whole number.  

Legend: -, not detected; A, mire ‘soil’; B, unsupplemented control; C, glucose-supplemented slurries; D, acetate-supplemented slurries; E, H2-CO2-supplemented slurries.  Process 

data can be found in Figure 18, Figure 19, and Figure 20.  Table was modified from Hunger et al. (2015). 
b Sequences were considered to be family-level phylotypes without any cultured isolates if the 16S rRNA gene sequence was less than 87.5 % similar to the sequence of the closest 

related cultured species (Yashiro et al. 2011).



RESULTS 

127 

Table 31: Family-level phylotypes and relative abundances of total detected bacterial 16S 

rRNA gene sequences per mire ‘soil’ including sequences detected in slurries. 

Taxonomic level 

(phylum, class, family) 

Relative abundance of 16S rRNA gene sequences (%)a 

Mire 1 Mire 2 Mire 3 Mire 4 

Acidobacteria, Acidobacteria, 
    

  Acidobacteriaceae 1.0 20.1 37.2 29.4 

  Family phylotype 1b 1.9 3.1 9.4 3.7 

Acidobacteria, Holophagae, 
    

  Holophagaceae - 0.4 0.4 - 

Acidobacteria, unknown class, 
    

  Family phylotype 2b 0.5 - - - 

  Family phylotype 3b 3.8 - - - 

  Family phylotype 4b 3.3 - - - 

  Family phylotype 5b 1.0 4.0 7.2 - 

  Family phylotype 6b - 0.4 0.4 0.5 

Actinobacteria, Actinobacteria, 
    

  Acidimicrobiaceae 4.3 4.0 9.0 1.4 

  Mycobacteriaceae - 0.4 - - 

  Thermomonosporaceae 0.5 1.3 3.6 0.5 

  Conexibacteraceae, 
2.9 1.8 3.1 0.9   Patulibacteraceae, 

  Solirubrobacteraceae 

Actinobacteria, unknown class, 
    

  Family phylotype 7b 1.0 0.4 - - 

  Family phylotype 8b 2.4 - 0.9 - 

  Family phylotype 9b 1.4 - - - 

  Family phylotype 10b 1.0 - 0.4 - 

Armatimonadetes, Armatimonadia, 
   

  Armatimonadaceae - - - 0.9 

Bacteroidetes, Bacteroidia, 
    

  Family phylotype 11b - - - 0.5 

Bacteroidetes, Cytophagia, 
    

  Cytophagaceae 1.9 - - - 

Bacteroidetes, Sphingobacteriia, 
    

  Chitinophagaceae 0.5 0.4 0.4 0.5 

  Family phylotype 12b 0.5 - - 0.5 
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Taxonomic level 

(phylum, class, family) 

Relative abundance of 16S rRNA gene sequences (%)a 

Mire 1 Mire 2 Mire 3 Mire 4 

Chlorobi, Ignavibacteria, 
    

  Ignavibacteriaceae - 0.4 - - 

Chloroflexi, Anaerolineae, 
    

  Anaerolineaceae 3.8 1.3 0.4 - 

Chloroflexi, Ktedonobacteria, 
    

  Ktedonobacteraceae - 0.9 - - 

  Family phylotype 13b - 3.6 - - 

  Family phylotype 14b - 0.4 - - 

Chloroflexi, unknown class, 
    

  Family phylotype 15b 1.4 - - - 

  Family phylotype 16b - 0.4 - 0.5 

  Family phylotype 17b - 0.4 - 0.5 

  Family phylotype 18b 1.0 - - - 

  Family phylotype 19b 1.0 - - - 

  Family phylotype 20b - 1.8 - - 

Cyanobacteria, unknown class, 
    

  Family phylotype 21b - 0.4 0.9 1.9 

Firmicutes, Bacilli, 
    

  Bacillaceae 0.5 - - - 

Firmicutes, Clostridia, 
    

  Clostridiaceae 2.4 7.6 0.4 4.7 

  Peptococcaceae - 0.9 - - 

  Ruminococcaceae 1.4 0.4 - 0.9 

  Family phylotype 22b 1.4 - - - 

Firmicutes, Negativicutes, 
    

  Veillonellaceae - 1.8 0.4 3.7 

“Nitrospirae”, “Nitrospira”, 
    

  “Nitrospiraceae” 1.9 - 0.4 - 

Planctobacteria, Planctomycea, 
    

  Planctomycetaceae 2.4 11.6 3.1 2.3 

Proteobacteria, Alphaproteobacteria, 
   

  Caulobacteraceae - 0.4 0.4 - 

  Beijerinckiaceae 0.5 1.8 1.8 1.4 

  Bradyrhizobiaceae 2.9 1.3 2.7 2.8 

  Hyphomicrobiaceae 8.6 4.0 2.7 - 



RESULTS 

129 

Taxonomic level 

(phylum, class, family) 

Relative abundance of 16S rRNA gene sequences (%)a 

Mire 1 Mire 2 Mire 3 Mire 4 

  Methylocystaceae 1.0 1.8 1.3 23.4 

  Rhizobiaceae 0.5 - - - 

  Xanthobacteraceae 0.5 - - - 

  Methyloceanibacter-related  

    phylotype 
1.0 - - - 

  Acetobacteraceae 0.5 0.9 0.4 8.4 

  Rhodospirillaceae 2.4 - - 0.5 

  Family phylotype 23b - - - 0.5 

  Family phylotype 24b 1.0 - 0.4 2.8 

  Family phylotype 25b - 2.2 2.7 1.9 

Proteobacteria, Betaproteobacteria, 
   

  Comamonadaceae 1.4 - - - 

  Oxalobacteraceae - 0.9 0.4 - 

  Neisseriaceae - 1.3 - 1.9 

  Rhodocyclaceae - 0.4 - - 

  Family phylotype 26b - 0.4 - - 

  Family phylotype 27b 2.4 - - - 

  Family phylotype 28b 7.2 0.4 - 0.5 

Proteobacteria, Gammaproteobacteria, 
   

  Coxiellaceae - - - 0.5 

  Moraxellaceae 2.9 0.4 - - 

  Family phylotype 29b 1.0 - - - 

Proteobacteria, Deltaproteobacteria, 
   

  Bdellovibrionaceae - - 0.4 - 

  Desulfobacteraceae 1.0 - - - 

  Geobacteraceae 0.5 0.4 - - 

  Phaselicystidaceae, 
0.5 1.3 - - 

  Polyangiaceaed 

  Syntrophaceae 4.8 0.9 0.4 - 

  Syntrophobacteraceae - 0.9 - - 

  Syntrophorhabdaceae 0.5 - - - 

  Family phylotype 30b - 0.4 1.8 - 

  Family phylotype 31b 1.4 0.9 1.8 - 

  Family phylotype 32b 2.4 - - - 

  Family phylotype 33b 1.0 - - - 
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Taxonomic level 

(phylum, class, family) 

Relative abundance of 16S rRNA gene sequences (%)a 

Mire 1 Mire 2 Mire 3 Mire 4 

Spirochaetae, Spirochaetes, 
    

  Spirochaetaceae 0.5 2.2 - - 

  Family phylotype 34b - 1.3 - - 

Unclassified phylotypese 

    
  Xiphinematobacter-related, 1.0 - - - 

Unknown phylotypese 

    
  Family phylotype 35b 1.4 - - - 

  Family phylotype 36b - 0.4 - - 

  Family phylotype 37b 2.4 - - - 

  Family phylotype 38b 0.5 - - - 

  Family phylotype 39b 0.5 - - - 

  Family phylotype 40b - 0.9 0.4 - 

Verrucomicrobia, Opitutae, 
    

  Opitutaceae - 1.3 1.8 0.5 

Verrucomicrobia, unknown class, 
    

  Family phylotype 41b 3.3 3.6 2.2 1.9 

a The 16S rRNA gene sequences were based on an 87.5 % similarity cut-off clustered into family-level 

phylotypes (Yarza et al. 2008).  Values are rounded to nearest decimal and thus might not sum up to 

100 %.  Legend: -, not detected.  Table was modified from Hunger et al. (2015). 
b Sequences were considered to be a family-level phylotype without any cultured isolate if the 16S rRNA 

gene sequence was less than 87.5 % similar to the sequence of the closest related cultured species 

(Yarza et al. 2008). 
c Closest related cultured species: 94.5-88.8 % 16S rRNA gene sequence similarity to Conexibacter 

arvalis (AB597950), 92.9-87.2 % 16S rRNA gene sequence similarity to Patulibacter americanus 

(AJ871306), and 96.8-88.1 % 16S rRNA gene sequence similarity to Solirubrobacter soli (AB245334). 
d Closest related cultured species: 88.5-86.5 % 16S rRNA gene sequence similarity to Byssovorax 

cruenta (AJ833647), and 90.2-87.8 % 16S rRNA gene sequence similarity to Phaselicystis flava 

(EU545827). 
e Listed family-level phylotypes do not necessarily belong to the same phylum or class. 

Collectively, approximately half of the detected family-level phylotypes (i.e., 41 out of 

86 phylotypes, Table 31) were without any cultured isolates, indicating a high degree of 

unknown and potentially novel ecosystem functions.  Family-level phylotypes with a relative 

abundance of 10 % or higher had a total relative abundance of 10 %, 38 %, 41 %, and 83 % 

in ‘soils’ before incubation of mire 1 (pH 7.6), mire 2 (pH 4.3), mire 3 (pH 4.9), and mire 4 

(pH 3.9), respectively (Table 30), suggesting that acidic conditions restricted the relative 

number of dominant bacterial phylotypes. 
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5.2.9 Gene copy numbers and cultivable cell numbers 

Copy numbers of 16S rRNA genes and mcrA did not vary significantly (p > 0.35) 

between mire ‘soils’, indicating that the abundance of bacteria and methanogens were 

relatively uniform in the contrasting mire soils (Figure 27 A).  Gene copy numbers of 16S rRNA 

genes were significantly greater (p < 0.04) than gene copy numbers of mcrA (i.e., 0.1-28.8 x 

109 16S rRNA genes g[soilDW]-1 vs. 0.5-111.6 x 107 mcrA g[soilDW]-1) (Figure 27 A) in each mire 

‘soil’.  The average ratios of gene copy numbers of 16S rRNA genes to mcrA of the contrasting 

mires approximated 55, 40, 40, and 75 for ‘soils’ of mire 1, 2, 3, and 4, respectively.  Although 

the cultivable numbers of microbes capable of aerobic growth appeared to be somewhat 

greater in some cases than the cultivable number of microbes capable of anaerobic growth 

(Figure 27 B), the quantities of microorganisms capable of aerobic and anaerobic growth were 

not significantly different in the contrasting mire ‘soils’ (p > 0.15). 

 

Figure 27: Quantities of gene copy numbers (A) and cultivable cell cumbers (B) in contrasting 

mire ‘soils’. 

Symbols that overlap appear as one symbol.  Symbols: closed square, bacterial 16S rRNA gene 

copy numbers; open circle, mcrA gene copy numbers; closed circle, cultivable cell numbers under 

oxic conditions; open square, cultivable cell numbers under anoxic conditions.  Values are the 

means of triplicate gene copy number analysis and duplicate MPN analysis.  Error bars of gene copy 

numbers indicate the standard deviation.  Error bars of cultivable cell numbers indicate the highest 

and lowest confidence interval (95 %).  Figure was modified from Hunger et al. (2015). 
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5.3 Formate-dependent acetogenesis in moderately acidic mire 

‘soil’ 

5.3.1 Effect of supplemental formate on acetogenesis in anoxic ‘soil’ slurries 

Alternative electron acceptors (i.e., approximately 103 µmol iron(III) and 15 µmol 

sulfate g[soilDW]-1) in anoxic ‘soil’ slurries from mire 2 were reduced during 15 days of anoxic 

pre-incubation prior to supplementation of [12C]formate and [13C]formate.  Sulfate was not 

detected and iron(II) reached a stable final concentration at the end of the pre-incubation 

period.  Nitrate was not detected during the pre-incubation period (detection limit was 

0.13 µmol nitrate g[soilDW]-1).  Approximately 2.5 µmol CH4 g[soilDW]-1, 4 µmol acetate 

g[soilDW]-1, and 85 µmol CO2 g[soilDW]-1 were produced at the end of the pre-incubation period. 

Gases were removed prior to supplementation with formate.  A total of approximately 

25 µmol CH4 g[soilDW]-1, 5 µmol acetate g[soilDW]-1, and 2 µmol propionate g[soilDW]-1 were 

produced in the subsequent 23 days after the preincubation in unsupplemented controls 

(Figure 28).  Formate and H2 remained below 1 µmol g[soilDW]-1 in unsupplemented controls. 

Formate was supplemented each day and each formate pulse was essentially 

consumed within 24 hours (Figure 28).  In total, approximately 280 µmol formate g[soilDW]-1 

were supplemented within 23 days of anoxic incubation.  In total, 63 µmol H2 g[soilDW]-1, 

43 µmol CH4 g[soilDW]-1, 29 µmol acetate g[soilDW]-1, and 8 µmol propionate g[soilDW]-1 more 

were produced in formate-supplemented slurries compared to unsupplemented controls, 

indicating that formate stimulated the production of these compounds.  Concentrations of 

gases never exceeded 165 µmol CO2 g[soilDW]-1, 14 µmol CH4 g[soilDW]-1, and 16 µmol H2 

g[soilDW]-1 due to exchanges of the gas phase.  The apparent formate-dependent production 

of H2 suggested that taxa harboring a FHL complex, an enzyme complex that converts formate 

to H2 and CO2 (Vignais and Billoud 2007, Trchounian and Sawers 2014), were active in 

formate-supplemented slurries. 
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Figure 28: Effect of supplemental [13C]formate on the production of organic acids and gases 

in ‘soil’ slurries. 

‘Soil’ was obtained from mire 2 and anoxic slurries were incubated at 15 °C.  Shaded area indicates 

period of preincubation.  CO2 in formate-supplemented slurries is the combined CO2 from the 

bicarbonate pulses and CO2 derived from the apparent conversion of formate to H2 and CO2.  

Symbols: open symbols, unsupplemented controls; grey symbols, [12C]formate-supplemented 

slurries; closed symbols, [13C]formate-supplemented slurries.  The gas phase was periodically 

exchanged with 100 % N2.  Inserts show cumulative gas concentrations.  Values are the means of 

triplicate slurries and the error bars indicate standard deviation.  Figure was modified from Hunger 

et al. (2011a). 
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Formate-dependent production of H2 occurred before the formate-dependent 

production of acetate and CH4, underlying the rapid conversion of formate to H2 and CO2 by 

FHL-containing taxa.  Consumption of H2 was not observed, indicating that formate was the 

main driver for the production of acetate and CH4.  Approximately 17 at % and 1 at % of 

acetate-derived carbon were enriched with 13C in [13C]formate and [12C]formate-supplemented 

slurries, respectively, reinforcing the likelihood that acetogens participated in the synthesis of 

acetate in formate-supplemented slurries. 

Table 32: Recovery of reductant and carbon from supplemental formate after 23 days of 

supplementation.a 

 
Reductant recovered from formate 

(%) 

Carbon recovered from formate 

(%) 

Products [13C]formate [12C]formate [13C]formate [12C]formate 

Acetate 46 38 23 19 

Propionate 22 18 9 8 

CH4 54 70 14 18 

H2 24 21 n.a. n.a. 

Total: 146 147 46 45 

a Recovery was calculated based on process data at the beginning and after 23 days of formate 

supplementation (Figure 28).  CO2 was not considered in the calculation because it was regularly 

pulsed in form of bicarbonate and also removed by the exchange of the gas phase.  Values are 

rounded to nearest whole number.  Abbreviation: n.a., not applicable. 

Product profiles of 13C and 12C treatments (Figure 28, Table 32) were very similar, 

indicating that similar microbial activities occurred in these treatments.  Most reducing 

equivalents and carbon from supplemental formate were recovered in CH4 and acetate (Table 

32).  Recovery of supplemental formate-derived reductant exceeded 100 % in both 

[13C]formate and [12C]formate-supplemented slurries.  A recovery greater than 100 % 

suggested that supplemental formate enhanced the use of endogenous substrates (i.e., 

priming effect) which has been observed in other studies (Fontaine et al. 2004, Guenet et al. 

2010, Schellenberger et al. 2010). 
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5.3.2 Bioenergetics of formate-dependent acetogenesis 

The estimated Gibbs free energy of the apparent formate-dependent acetogenesis in 

[13C]formate-supplemented slurries averaged -42 kJ mol-1 acetate (Figure 29), indicating that 

this process was thermodynamically feasible under the experimental conditions. 

 

Figure 29: Estimated Gibbs free energy (∆G) of formate-dependent acetogenesis in 

[13C]formate-supplemented ‘soil’ slurries. 

Shaded area indicates period of preincubation.  Filled squares and dashed line show values of ∆G 

for formate-dependent acetogenesis and concentration of acetate, respectively.  Values are the 

means of triplicate slurries and the error bars indicate standard deviation.  For process data see 

Figure 28. 
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Figure 30: Distribution of DNA from [13C]formate-supplemented ‘soil’ slurries in a cesium 

chloride gradient. 

DNA derived from anoxic slurries after 23 days of formate supplementation (Figure 28).  Numbers 

indicate fractions used for molecular analysis.  Figure was modified from Hunger et al. (2011a). 

A total of 70 bacterial fhs sequences were obtained that clustered into 13 species-level 

phylotypes (Table 33).  Rarefaction curves and coverage indicated that sampling was sufficient 

for species-level clustering of fhs phylotypes in the heavy fraction derived from [13C]formate-

supplemented slurries, but not in the other two gene libraries (Figure 31, Table 33). 

Table 33: Coverage of clone libraries, number of fhs sequences, and number of species-level 

fhs phylotypes obtained from [13C]formate- and [12C]formate-supplemented ‘soil’ slurries. 

Gene Clone librariesa 
No. of 

sequences 

No. of 

phylotypes 
Coverage 

fhs 

Heavy fraction [13C]formateb 44 7 >99 

Light fraction [13C]formateb 10 8 40 

Heavy fraction [12C]formatec 16 7 88 

Total: 70 13 93 

a Heavy fraction is fraction five and light fraction is fraction seven of a cesium chloride gradient (DNA 

SIP).  For process data see Figure 28. 
b Sequences derived from anoxic [13C]formate-supplemented slurries after 23 days of anoxic 

incubation. 
c Sequences derived from anoxic [12C]formate-supplemented slurries after 23 days of anoxic 

incubation. 
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only observed in the heavy fraction derived from [13C]formate-supplemented slurries, and may 

potentially be labeled.  Species-level phylotype PTL4 had a relative abundance of 45 % in the 

heavy fraction derived from [13C]formate-supplemented slurries.  PLT4 was not detected in the 

light fraction derived from [13C]formate-supplemented slurries and had a low relative 

abundance in the heavy fraction derived from [12C]formate-supplemented slurries, suggesting 

a potential labeling of associated taxa.  Unfortunately, it remains mostly unknown which fhs 

phylotypes might be labeled since (a) too few sequences were obtained from the heavy fraction 

derived from [12C]formate-supplemented slurries and the light fraction derived from 

[13C]formate-supplemented slurries, and (b) analyzed light and heavy fractions were 

insufficiently separated in the cesium chloride gradient. 

 

Figure 31: Rarefaction analysis of species-level fhs phylotypes obtained from [13C]formate- 

and [12C]formate-supplemented ‘soil’ slurries. 

Sequences were obtained from heavy fraction five and light fraction seven after isopycnic 

centrifugation of DNA derived from anoxic formate-supplemented ‘soil’ slurries (Figure 28).  fhs 

sequences were in silico translated into amino acids and based on a 76.4 % similarity cut-off 

clustered into species-level phylotypes (5.1.2).  95 % confidence intervals are shown.  Curves were 

calculated according to the Hurlbert rarefaction (Hurlbert 1971).  Color code: red, heavy fraction of 

[13C]formate-supplemented slurries; grey, light fraction of [13C]formate-supplemented slurries; black, 

heavy fraction of [12C]formate-supplemented slurries; blue, total number of sequences. 
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Figure 32: Phylogenic maximum parsimony trees of (a) representative fhs-encoded amino 

acid sequences retrieved from formate-supplemented ‘soil’ slurries and (b) reference 

sequences. 

Sequences derived from heavy fraction five and light fraction seven of [13C]-enriched DNA (Figure 30) 

obtained from [13C]formate-supplemented ‘soil’ slurries after 23 days of supplementation (Figure 28).  fhs 

sequences were in silico translated into amino acids and based on a 76.4 % similarity cut-off clustered 

into species-level phylotypes (5.1.2).  Accession numbers are indicated in brackets.  Sequences in Panel 

A correspond to residues 199-334 of the fhs-encoded amino acid sequence of Clostridium difficile 630 

(NC_009089).  Sequences of Panel B correspond to residues 292-407 of the fhs-encoded amino acid 

sequence of Clostridium difficile 630 (NC_009089).  Filled dots at nodes indicate the confirmation of tree 

topology by three calculations with the same data set (neighbor joining, maximum likelihood, and 

maximum parsimony algorithms).  Methanocorpusculum labreanum (CP000559) was used as outgroup.  

Bar indicates a 0.1 estimated change per amino acid.  Bootstrap values derived from the maximum 

parsimony tree (1,000 resamplings) are only displayed at nodes congruent in all three trees.  Grey 

highlights indicate sequences of acetogens.  Legend: [13C]H, heavy fraction from [13C]formate-

supplemented slurries; [13C]L, light fraction from [13C]formate-supplemented slurries; [12C]H, heavy 

fraction from [12C]formate-supplemented slurries; PLT, phylotypes; *, sequence was not submitted to 

EMBL and thus has no accession number.  Values are rounded to nearest whole number.  Figure was 

modified from Hunger et al. (2011a). 
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Four out of 13 species-level fhs phylotypes included cultured isolates.  Phylotypes 

PLT7 (85 % amino acid sequence similarity) and PLT8 (79 % amino acid sequence similarity) 

were most closely related to Variibacter gotjawalensis (BAT57791) (Figure 32).  Phylotypes 

PLT9 (99 % amino acid sequence similarity) and PLT12 (77 % amino acid sequence similarity) 

were most closely related to the acetogens C. drakei (FR850047) and Holophaga foetida 

(WP_005032698), respectively. 

5.4 Anaerobic processes associated with the root zone of mire-

derived plants 

5.4.1 Effect of supplemental formate on product profiles of root-free soil and 

soil-free root slurries 

Formate can be utilized by mire methanogens and can be released from roots of 

wetland plants (Hunger et al. 2011a, Koelbener et al. 2010).  Although formate was anticipated 

to directly trigger methanogenesis, the production of CH4 by anoxic slurries of soil-free roots 

obtained from Carex rostrata, Carex nigra, and Molinia caerulea was not stimulated by an initial 

pulse of formate (Figure 33, Figure 34).  Unsupplemented roots of C. rostrata, C. nigra, and 

M. caerulea initially formed H2 from endogenous sources.  The initial pulse of formate was 

rapidly consumed with the concomitant production of H2 and CO2 in a stoichiometric ratio of 

consumed formate to produced H2 of 1:0.9, 1:1.6, and 1:2 with roots of C. rostrata, C. nigra, 

and M. caerulea, respectively.  The rapid consumption of formate indicated that root-

associated microorganisms were poised to consume formate and that produced H2 derives 

from formate and other endogenous sources.  In this regard, up to 10 µmol formate per 

g[rootDW]-1 was detected with fresh Carex roots at the onset of unsupplemented incubations, a 

finding consistent with the release of formate from the roots of wetland plants (Koelbener et al. 

2010).  The production of H2 in response to the initial pulse of formate was transient with roots 

from C. rostrata and M. caerulea, and the subsequent consumption of formate-derived H2 was 

concomitant with an increased production of CH4 and acetate with C. rostrata roots (Figure 

33), activities indicative of hydrogenotrophic methanogenesis and acetogenesis, respectively. 
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Figure 33: Effect of formate pulses on product profiles of soil-free roots and root-free soils 

of C. rostrata and M. caerulea. 

Roots or soils were obtained from mire 2.  Roots or soils were diluted 1:10 with anoxic solution, 

incubated in anoxic flasks at 15 °C, and pulsed repeatedly (arrows) with approximately two millimolar 

formate.  Symbols: open symbols, unsupplemented controls; closed symbols, formate-

supplemented slurries.  Shaded area represents the period corresponding to the first pulse of 

formate.  Values are means with the standard deviation of triplicate analysis for formate treatments 

and duplicate analysis for controls.  Figure was modified from Hunger et al. (2016). 
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The subsequent consumption of formate-derived H2 with M. caerulea roots was 

concomitant with an increased production of acetate, propionate, and butyrate but not CH4, 

activities indicative of hydrogenotrophic acetogenesis and other processes.  Formate-derived 

H2 accumulated with roots from C. nigra, and accumulation ceased after the consumption of 

the third formate pulse (Figure 34), indicating a positive correlation between formate 

consumption and H2 production by FHL-containing taxa.  The production of acetate in formate-

supplemented slurries with C. nigra roots was negligibly elevated in comparison with the 

unsupplemented control after secondary and tertiary pulses of formate, suggesting that 

acetogenesis and other acetate-producing anaerobic processes (such as fermentation) were 

mostly substrate saturated. 

 

Figure 34: Effect of formate pulses on product profiles of soil-free roots and root-free soils 

of C. nigra. 

Roots or soils were obtained from mire 2.  Roots or soils were diluted 1:10 with anoxic solution, 

incubated in anoxic flasks at 15 °C, and pulsed repeatedly (arrows) with approximately one 

millimolar formate.  Symbols: open symbols, unsupplemented controls; closed symbols, formate-

supplemented slurries.  Shaded area represents the period corresponding to the first pulse of 

formate.  Values are means with the standard deviation of sextuplicate analysis.  Data plotted in this 

figure was obtained by Madena Eppendorfer as part of her master thesis. 
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The consumption of secondary and tertiary pulses of formate did not yield H2 but was 

concomitant with the increased production of CH4 and acetate in slurries with C. rostrata roots 

(Figure 33), indicating (a) that the consumption of formate-derived H2 was tightly coupled to 

methanogenesis and acetogenesis, or (b) that formate was directly dissimilated by 

methanogens and acetogens.  In contrast to C. rostrata roots, secondary and tertiary formate 

pulses with M. caerulea roots stimulated not only the production of acetate but also the 

production of propionate, butyrate, and H2, but not CH4. 

Slurries with root-free soil from the same patches where corresponding plant roots 

derived from were in general much less active than root slurries (Figure 33, Figure 34).  Except 

of the production of CH4 which is higher in slurries with soils from C. rostrata and C. nigra than 

in corresponding root slurries.  CH4 was not detected with ‘soil’ slurries from M. caerulea.  Initial 

formate pulses slightly stimulated the production of H2, CO2 and acetate in slurries with soil 

from C. rostrata, C. nigra, and M. caerulea.  Secondary and tertiary formate pulses slightly 

stimulated the production of propionate and butyrate in slurries with soil from M. caerulea which 

has also been observed with corresponding roots to a higher degree (Figure 33). 

The collective amount of reductant in the additional CH4 and acetate formed exceeded 

what was available in the consumed supplemental formate, suggesting that formate had a 

‘priming’ effect (Fontaine et al. 2004) on the consumption of endogenous organic carbon, an 

activity reported earlier with root-containing peat soil obtained from the same mire (5.3.1). 

5.4.2 Effect of increasing formate supplementation on product profiles of 

Carex root and soil slurries. 

The aforementioned findings unexpectedly indicated that Carex and Molinia roots had 

a high initial capacity for the anaerobic transformation of formate to H2 by enzymes such as 

FHL.  This anaerobic activity was examined in more detail by determining the initial response 

of roots and soils to increasing concentrations of formate.  Increasing amounts of supplemental 

formate yielded a rapid increase in the amounts of H2 produced by soil-free roots of Carex sp. 

(Figure 35).  Pulses with increasing amounts of supplemental formate had a marginal effect 
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on (a) H2 and CH4 production on Carex soil and (b) the production of CH4 on Carex roots.  

Based on the amount of supplemental formate (which was totally consumed in each treatment) 

and correcting for the amount of H2 formed in unsupplemented controls, formate:H2 ratios were 

approximately 1:1, thus confirming the activity of FHL-containing taxa located on Carex roots. 

 

Figure 35: Effect of supplemental formate on the formation of H2 and CH4 in slurries with soil-

free roots and root-free soils obtained from Carex. 

Roots or soils were obtained from Carex sp. (potentially Carex nigra, Carex rostrata, and Carex 

canescens) from mire 2.  Roots and soils were diluted 1:10 with anoxic solution and incubated in 

anoxic flasks at 15 °C.  Symbols:  open circle, unsupplemented controls; closed circle, 

supplemented with approximately 70 µmol formate gDW
-1; open triangle, supplemented with 

approximately 180 µmol formate gDW
-1; closed square, supplemented with approximately 390 µmol 

formate gDW
-1.  Values are means with the standard deviation of triplicate analysis.  Figure was 

modified from Hunger et al. (2016). 
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to produce more CH4 in comparison to soil-free roots without the addition of anoxic solution, 

an observation that has been made with slurries of roots and soils (Figure 33, Figure 34, Figure 

35).  Thus, those root- and soil-associated activities were independent of the slurry condition.  

H2 was not detected in incubations of unsupplemented non-slurries of root-free soil (Figure 

36), a result consistent with that observed with root-free soil slurries (Figure 33, Figure 34, 

Figure 35). 

 

Figure 36: Formation of gases from soil-free roots and root-free soils obtained from Carex 

sp. 

Roots or soils were obtained from Carex sp. (potentially C. nigra, C. rostrata, and C. canescens) 

from mire 2.  Roots or soils were incubated in anoxic flasks without the addition of anoxic solution 

and incubated at 15 °C.  Symbols:  closed circle, unsupplemented soil-free roots; open circle, 

unsupplemented root-free soils.  Values are means with standard deviation of sextuplicate analysis.  

Figure was modified from Hunger et al. (2016). 

5.4.4 Bioenergetics of anaerobic formate- and H2-driven processes 

Calculated Gibbs free energy for acetogenesis, methanogenesis, and the formation of 

formate-derived H2 by enzymes such as FHL were mostly negative in slurries with roots from 

C. rostrata and M. caerulea, and soils from the same plant patches (Figure 37), indicating that 

these processes were thermodynamically feasible during the incubations.  H2- and formate-

dependent methanogenesis was more negative than H2- and formate-dependent acetogenesis 

and also more negative than the formation of formate-derived H2, suggesting that these H2- 

and formate-driven processes had different thermodynamic potentials. 
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Figure 37: Calculated Gibbs free energy (∆G) in slurries with soil-free roots and root-free soils 

from C. rostrata and M. caerulea. 

The following concentrations and partial pressures were assumed when the corresponding 

substances could not be detected: 5 Pa for H2, 15 Pa for CO2, 0.5 Pa for CH4, one micromolar for 

formate and one micromolar for acetate.  This was necessary to avoid division by zero during 

calculations.  Process data of incubations are in Figure 33 and shaded area represents the period 

corresponding to the first pulse of formate.  Symbols: open symbols, unsupplemented controls; 

closed symbols, formate-supplemented slurries.  Values are means with standard deviation of 

triplicate analysis for formate treatments and duplicate analysis for controls.  Figure was modified 

from Hunger et al. (2016). 
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5.4.5 Diversity of mcrA/mrtA phylotypes of C. rostrata roots 

McrA and mrtA encode for the alpha-subunit of the isoenzyme I and II of the methyl-

CoM reductase, respectively, enzymes that catalyze the terminal step in methanogenesis 

(Thauer 1998, Pihl et al. 1994).  In total, 174 mcrA/mrtA sequences (including two mrtA 

sequences) obtained from C. rostrata roots clustered into nine species-level phylotypes (Table 

34).  Rarefaction analysis indicated the diversity of mcrA/mrtA phylotypes of roots were similar 

before and after incubation, and coverage indicated that sampling was adequate for species-

level determination (Table 34, Figure 38). 

 

Table 34: Coverage of clone libraries, number of mcrA/mrtA sequences, and number of 

species-level mcrA/mrtA phylotypes obtained from C. rostrata roots. 

Gene Clone librariesa 
No. of 

sequences 

No. of 

phylotypes Coverage 

mcrA/mrtA 

    

Roots before incubation 58 8 97 

Unsupplemented roots 59 6 >99 

Formate-supplemented 

roots 
57 6 97 

total: 174 9 >99 

a Unsupplemented roots and formate-supplemented roots were analyzed after 28 days of incubation 

(Figure 33). 

 

Methanosarcinaceae, Methanoregulaceae, and Methanobacteriaceae were the most 

abundant phylotypes detected before and after incubation of C. rostrata roots (Figure 39), 

indicating that hydrogenotrophic and aceticlastic methanogens were the most dominant taxa 

on C. rostrata roots and in root slurries after incubation.  Methanoregulaceae was the most 

abundant taxon before incubation of C. rostrata roots and decreased in relative abundance 

due to incubation, indicating that incubation conditions did not favor Methanoregulaceae-

associated methanogens. 
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Figure 38: Rarefaction analysis of species-level mcrA/mrtA phylotypes obtained from C. 

rostrata roots. 

Sequences were obtained from roots before and after 28 days of incubation (Figure 33).  mcrA/mrtA 

sequences were in silico translated into amino acids and based on an 85.7% similarity cut-off 

clustered into species-level phylotypes (5.1.2).  95 % confidence intervals are shown.  Curves were 

calculated according to the Hurlbert rarefaction (Hurlbert 1971).  Color code: red, roots without 

treatment; grey, unsupplemented roots; black, formate-supplemented roots; blue, total number of 

sequences.  Figure was modified from Hunger et al. (2016). 

 

Methanobacteriaceae was the most abundant taxon in unsupplemented controls after 

incubation and showed a lower relative abundance before incubation and after formate 

supplementation, indicating that incubation conditions supported growth of 

Methanobacteriaceae-affiliated methanogens but formate and/or products of formate 

consumption (e.g., accumulating acetate) inhibited those taxa. 
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Figure 39: Relative abundances of family-level mcrA/mrtA phylotypes from C. rostrata roots. 

The plot shows family-level mcrA phylotypes and one family-level mrtA phylotype.  Process data of 

incubations are in Figure 33.  Methanosaetaceae are in quotes due to its current status as an 

illegitimate name (http://www.bacterio.net). 

 

Methanosarcinaceae (consists of a Methanosarcina horonobensis-affiliated species-

level phylotypes, Figure 40) increased in relative abundance during incubation with 

supplemental formate, indicating that Methanosarcina-affiliated methanogens favored 

conditions in formate-supplemented slurries (e.g., high acetate and H2 concentrations).  

Methanocellaceae and “Methanosaetaceae” accounted collectively for not more than 19 %, 

indicating a relatively minor importance to the production of CH4. 
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Figure 40: Phylogenic maximum parsimony tree of (a) representative mcrA/mrtA-encoded 

amino acid sequences retrieved from C. rostrata roots and (b) reference sequences. 

Sequences were obtained from roots before and after 28 days of incubation (Figure 33).  mcrA/mrtA 

sequences were in silico translated into amino acids and based on an 85.7 % similarity cut-off 

clustered into species-level phylotypes (5.1.2).  Methanosaetaceae are in quotes due to its current 

status as an illegitimate name (http://www.bacterio.net).  Accession numbers are indicated in 

brackets.  Sequences correspond to residues 98-227 of the mcrA amino acid sequence of 

M. paludicola (AB300467).  Filled dots at nodes indicate the confirmation of tree topology in three 

calculations with the same data set (maximum parsimony, neighbor joining, and maximum likelihood 

algorithms).  M. kandleri (AE009439) was used as outgroup.  Bar indicates a 0.1 change per amino 

acid.  Bootstrap values are averages from the maximum parsimony tree (1,000 resamplings), the 

neighbor joining tree (1,000), and the maximum likelihood tree (100) and are only displayed at nodes 

congruent in all three trees.  Legend: PLT, phylotypes; -, not detected.  Values are rounded to the 

nearest whole number.  Figure was modified from Hunger et al. (2016). 

5.4.6 Diversity of bacterial 16S rRNA gene sequences in an early root-derived 

enrichment 

Roots of C. rostrata, C. nigra, and M. caerulea showed the capacity of formate-driven 

production of H2 and acetate (Figure 33, Figure 34).  Thus, a mixture of Carex and Molinia 

roots from mire 2 was used to enrich for bacterial taxa responsible for formate consumption.  

On a per liter basis, an early root enrichment consumed approximately 54 ± 6 mmol formate 

and 87 ± 3 mmol H2 as co-substrates and produced approximately 36 ± 2 mmol acetate at a 

pH of approximately five in the presence of BES.  In theory, 54 mmol formate and 87 mmol H2 

would collectively yield approximately 35 mmol acetate via acetogenesis.  Therefore, the 

substrate-product ratio of the early root enrichment was in strong evidence of acetogenesis.  
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consuming bacteria were identified by 16S rRNA gene analysis of this early root-derived 

enrichment. 

Table 35: Coverage of clone libraries, number of 16S rRNA gene sequences, and number of 

family-level 16S rRNA gene phylotypes obtained from mire-derived roots.a 

Gene Clone libraries No. of 

sequences 

No. of 

phylotypes 
Coverage 

16S rRNA 

gene 

Before incubationb 41 14 83 

Unsupplemented controlc 47 14 83 

Formate-H2-supplementationc 43 16 77 

Total: 131 31 90 

a Sequences derived from a mixture of M. caerulea and Carex sp. roots from mire 2. 
b Sequences were obtained from roots before incubation. 
b Sequences were obtained from roots after 23 days of anoxic incubation (i.e., the early enrichment). 

 

 

Figure 41: Rarefaction analysis of family-level 16S rRNA gene phylotypes obtained from mire-

derived roots. 

Sequences were obtained from a mixture of M. caerulea and Carex sp. roots before and after 

23 days of anoxic incubation. Assignment of 16S rRNA gene sequences to family-level phylotypes 

was based on an 87.5 % similarity cut-off (Yarza et al. 2008).  95 % confidence intervals are shown.  

Curves were calculated according to the Hurlbert rarefaction (Hurlbert 1971).  Color code: red, roots 

before incubation; grey, unsupplemented roots; black, formate-H2-supplemented roots; blue, total 

number of sequences. 
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In total, 131 16S rRNA gene sequences were detected with samples from the early 

enrichment, which clustered into seven phylum-level phylotypes and 31 family-level phylotypes 

(Table 35).  Rarefaction curves and coverage indicated that sampling was sufficient for family-

level clustering of 16S rRNA gene phylotypes (Table 35, Figure 41).  The diversity of family-

level phylotypes was similar on roots before and after the incubation and independent of 

supplementation (Figure 41). 

 

Figure 42: Relative abundance of phylum-level 16S rRNA gene phylotypes of mire-derived 

roots. 

Sequences derived from a mixture of M. caerulea and Carex sp. roots before and after 23 days of 

anoxic incubation.  “Others” include all sequences that could not be assigned to known phyla. 

Acidobacteria and “Nitrospira” were the most abundant phyla before incubation of roots 

and accounted for 31 % and 27 % but decreased in relative abundance during incubation (i.e., 

to approximately 4 % and 2 %), respectively (Figure 42), suggesting that affiliated taxa were 

abundant on roots before the incubation but were not stimulated by conditions of the 

incubation.  The relative abundance of Proteobacteria and Firmicutes increased during 

incubation from 14 % and 7 % to 51 % and 28 % with unsupplemented roots and 32 % and 

32 % with formate-supplemented roots, respectively, indicating that incubation conditions 

favored growth of Proteobacteria- and Firmicutes-affiliated bacteria.   
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16S rRNA gene sequences closely related to the acetogens Clostridium drakei (98 % 

sequence similarity, Y18813) and Clostridium scatologenes (98 % sequence similarity, 

AB601088) were detected on roots before incubation and relative abundance of those 

Clostridium-affiliated sequences increased during supplementation with formate and H2 

(Figure 43), indicating that Clostridium-affiliated root-derived acetogens might utilize formate 

and H2. 

Table 36: Taxonomic identities and relative abundances of 16S rRNA gene phylotypes of 

mire-derived roots. 

 Relative abundance (%)a 

  After 21 days 

Taxonomic level 

(phylum, class, family) 

Before 

incubation 
Control 

Formate, 

H2 

Acidobacteria, Acidobacteria, 
   

  Acidobacteriaceae 5 2 2 

Acidobacteria, Holophagae, 
   

  Holophagaceae 27 - 2 

Actinobacteria, Actinobacteria, 
   

  Iamiaceae 2 - - 

  Mycobacteriaceae 2 - - 

  Solirubrobacteraceae 7 - - 

  Streptomycetaceae - - 2 

  Thermomonosporaceae - - 2 

Bacteroidetes, Bacteroidia, 
   

  Bacteroidaceae - 13 16 

  Marinilabiliaceae - - 2 

  Porphyromonadaceae - - 7 

Bacteroidetes, Sphingobacteriia, 
   

  Chitinophagaceae - 2 - 

Firmicutes, Clostridia, 
   

  Clostridiaceae 2 6 7 

  Lachnospiraceae - 9 - 

  Peptococcaceae 5 - - 

  Ruminococcaceae - - 5 

Firmicutes, Negativicutes, 
   

  Veillonellaceae - 13 21 
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 Relative abundance (%)a 

  After 21 days 

Taxonomic level 

(phylum, class, family) 

Before 

incubation 
Control 

Formate, 

H2 

"Nitrospira", "Nitrospira", 
   

  "Nitrospiraceae" 27 2 - 

Proteobacteria, Alphaproteobacteria, 
   

  Acetobacteraceae - 2 2 

  Bradyrhizobiaceae - 2 2 

  Methylocystaceae - - 2 

  Rhodospirillaceae 2 6 - 

  Roseiarcaceae - - 2 

Proteobacteria, Betaproteobacteria, 
   

  Neisseriaceae - 2 2 

Proteobacteria, Deltaproteobacteria, 
   

  Desulfuromonadaceae 7 - - 

  Family-level phylotype 1b 5 - - 

Proteobacteria, Epsilonproteobacteria, 
   

  Campylobacteraceae - 2 - 

Proteobacteria, Gammaproteobacteria, 
   

  Enterobacteriaceae - 36 21 

Verrucomicrobia, Opitutae, 
   

  Opitutaceae 2 - - 

Others, Othersc, 
   

  Family-level phylotype 2b 2 - - 

  Family-level phylotype 3b 2 - - 

  Family-level phylotype 4b - 2 - 

a The 16S rRNA gene sequences were based on an 87.5 % similarity cut-off clustered into family-

level phylotypes (Yarza et al. 2008).  Values are rounded to nearest whole number and thus might 

not sum up to 100 %.  Legend: -, phylotype not detected. 
b Sequences were considered to be a family-level phylotype without any cultured isolate if the 

16S rRNA gene sequence was less than 87.5 % similar to the sequence of the closest related 

cultured species (Yarza et al. 2008). 
c Listed family-level phylotypes do not necessarily belong to the same phylum or class. 
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Figure 43: Phylogenic maximum parsimony tree of representative family-level 16S rRNA gene 

sequences from mire-derived roots and closely related sequences. 

Sequences were obtained from mire-derived roots before and after 23 days of anoxic incubation.  

The 16S rRNA gene sequences were based on an 87.5 % similarity cut-off clustered into family-

level phylotypes (Yarza et al. 2008).  Accession numbers are indicated in brackets.  Sequences 

correspond to nucleic acids 241-823 of the 16S rRNA gene sequence of E. coli (AB035923).  Filled 

dots indicate congruent nodes in neighbor joining and maximum likelihood trees.  Bootstrap values 

are from the maximum parsimony tree (1,000 resamplings) and are only displayed at nodes 

congruent in all three trees.  The 16S rRNA gene sequence of M. kandleri (M59932) was used as 

outgroup.  The bar indicates a 0.1 change per amino acid.  Phyla were displayed color coded: blue, 

Proteobacteria; light green, Bacteroidetes; red, Firmicutes; dark green, Acidobacteria; light grey, 

taxa not affiliated to a phylum; orange, Actinobacteria; dark grey, Verrucomicrobia; pink, 

Planctobacteria. 
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5.4.7 Utilization of formate and other properties of FHL-containing isolates 

obtained from mire roots 

Carex and Molinia roots from mire 2 had a very pronounced activity to form H2 from 

formate by microorganisms that harbor enzymes such as FHL.  To examine the type of 

microorganisms potentially associated with this activity, a mixture of Carex and Molinia roots 

from mire 2 was utilized to enrich FHL-containing taxa.  The enrichment yielded two 

fermentative facultative aerobes, SB1 and SB2, that converted formate to H2 and CO2 at pH 5.0 

(Figure 44). 

SB1 stained Gram negative, formed single motile rods, and was oxidase and catalase 

negative.  The 16S rRNA gene of SB1 was 99.6 % and 99.5 % similar to that of Citrobacter 

freundii and Citrobacter braakii, respectively, and the group 4 [NiFe]-hydrogenase gene 

sequence of SB1 was closely affiliated to that of C. freundii and Citrobacter amalonaticus 

(Figure 45), indicating that SB1 is a species of Citrobacter.  A PCR signal with primers that 

target [FeFe]-hydrogenase genes was negative, indicating that SB1 does not contain a [FeFe]-

hydrogenase. 

Glucose, arabinose, citrate, and formate were utilized under both oxic and anoxic 

conditions at an in situ-relevant pH of 5.0 by SB1.  Glucose, arabinose, citrate, and formate 

were completely oxidized at pH 5.0 after seven days when O2 was available.  Without O2 

available, supplemental substrates were not completely utilized at pH 5.0 (Table 37, Figure 

44) but fermentation of supplemental glucose was enhanced nearly two-fold by supplemental 

formate given as co-substrate (Figure 44).  Formate-supplemented cultures had a slightly 

elevated pH initially in comparison to cultures without formate (i.e., approximately 0.3 pH 

values higher).  The difference in pH becomes more pronounced the longer the incubation 

runs.  The utilization of glucose stops at a pH of 3.9 in glucose-supplemented cultures.  In 

contrast, pH in glucose-formate-supplemented cultures were never lower than pH 4.7, 

indicating that the enhanced utilization of glucose in glucose-formate-supplemented cultures 

was due to a higher pH.  The fermentation of glucose yielded ethanol, lactate, acetate, CO2, 
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and H2 as end products and showed the highest increase in optical density in comparison to 

the utilization of formate, citrate, and arabinose (Figure 44, Table 37). 

 

Figure 44: Effect of supplemental glucose and formate on the product profiles of isolates 

SB1 and SB2. 

Citrobacter-related isolate SB1 and Hafnia-related isolate SB2 were obtained from a mixture of roots 

from mire 2.  Isolates were incubated at 15 °C.  Symbols:  open circle, unsupplemented control; 

closed circle, glucose supplementation; open square, formate supplementation; closed square, 

supplementation of glucose and formate as co-substrates.  Abbreviation:  OD660, optical density at 

660 nm.  Values are the mean of triplicate analysis and the error bars indicate the standard deviation.  

Figure was modified from Hunger et al. (2016). 
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Supplemental formate was converted in a 1:0.7 ratio to H2 and in a 1:1 ratio to H2 if 

glucose was supplemented as co-substrate under anoxic conditions (production of glucose-

derived H2 was subtracted), illustrating the FHL-activity of SB1 to produce H2 from formate 

under different conditions.  Arabinose-supplemented cultures showed a similar pH as the 

unsupplemented control before the incubation but nevertheless utilized arabinose weakly 

under anoxic conditions.  Fermentation of arabinose yielded acetate, H2, and CO2 (Table 37).  

Anoxic utilization of citrate yielded succinate, acetate, and CO2 as fermentation products. 

 

Table 37: Effect of supplemental citrate and arabinose on product profiles of root-derived 

Citrobacter-related isolate SB1 under anoxic conditions. 

  

Concentrations of consumed substrates and  

released products after 14 days (mmol L-1)                          

and other parametersa 

  Unsupplemented Citrate Arabinose 

Substrate consumed n.a. 2.2 ± 0.6 0.4 ± 0.8 

Amounts of products after 14 days (below)  

 

Succinate - 3.4 ± 0.3 - 

Formate 0.5 ± 0.1 0.1 ± 0.1 0.4 ± 0.1 

Lactate 0.2 ± 0.1 - 0.2 ± 0.1 

Acetate 1.4 ± 0.0 3.9 ± 0.3 1.9 ± 0.1 

Ethanol 0.5 ± 0.1 0.9 ± 0.2 0.7 ± 0.1 

H2 0.8 ± 0.1 0.7 ± 0.1 1.4 ± 0.1 

CO2 0.9 ± 0.1 3.6 ± 0.2 1.4 ± 0.2 

pH before incubation 4.7 ± 0.0 6.3 ± 0.0 4.6 ± 0.0 

pH after incubation 5.1 ± 0.1 6.4 ± 0.0 4.8 ± 0.0 

∆OD660 40 ± 6 86 ± 7 51 ± 10 

a Citrobacter-related isolate SB1 was obtained from a mixture of roots from mire 2.  Approximately 

5 mmol substrate L-1 were supplemented once at the beginning of the anoxic incubation.  SB1 

cultures were incubated at 15 °C and pH 5.  Values are means of a triplicate analysis with standard 

deviation.  A standard deviation of 0.0 mmol L-1 indicates a standard deviation that is smaller than 

0.05 mmol L-1.  Legend: n.a., not applicable, -, no production or production lower than 0.05 mmol L-1. 
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SB2 stained Gram negative, formed single motile rods, was oxidase negative, and 

catalase positive.  The 16S rRNA gene of SB2 was 98.6 % and 99.6 % similar to that of Hafnia 

alvei and Hafnia paralvei, respectively, and the group 4 [NiFe]-hydrogenase gene sequence 

of SB2 was closely affiliated to that of H. alvei (Figure 45), indicating that SB2 is a species of 

Hafnia.  A PCR signal with primers that target [FeFe]-hydrogenase genes was negative, 

indicating that SB2 does not contain a [FeFe]-hydrogenase. 

Table 38: Effect of supplemental citrate and arabinose on product profiles of root-derived 

Hafnia-related isolate SB2 under anoxic conditions. 

  

Concentrations of consumed substrates and  

released products after 14 days (mmol L-1)                           

and other parametersa 

  Unsupplemented Citrate Arabinose 

Substrate consumed n.a. 5.0 ± 0.1 1.0 ± 0.6 

Amounts of products after 14 days (below)  

 

Succinate 0.2 ± 0.0 4.4 ± 0.5 0.2 ± 0.2 

Formate 0.5 ± 0.3 - 0.2 ± 0.4 

Lactate 0.1 ± 0.0 - 0.2 ± 0.1 

Acetate 1.5 ± 0.0 3.8 ± 0.3 2.3 ± 0.2 

Ethanol 0.3 ± 0.0 0.1 ± 0.1 1.1 ± 0.3 

H2 0.5 ± 0.2 0.6 ± 0.1 2.1 ± 0.7 

CO2 0.8 ± 0.1 3.7 ± 0.5 1.6 ± 0.4 

pH before incubation 5.0 ± 0.0 6.4 ± 0.0 4.9 ± 0.0 

pH after incubation 5.0 ± 0.1 6.5 ± 0.0 4.7 ± 0.1 

∆OD660 47 ± 7 75 ± 7 77 ± 5 

a Hafnia-related isolate SB2 was obtained from a mixture of roots from mire 2.  Approximately 

5 mmol substrate L-1 were supplemented once at the beginning of the anoxic incubation.  SB2 

cultures were incubated at 15 °C and pH 5.0.  Values are means of a triplicate analysis with standard 

deviation.  A standard deviation of 0.0 mmol L-1 indicates a standard deviation that is smaller than 

0.05 mmol L-1.  Legend: n.a., not applicable, -, not production or production lower than 0.05 mmol L-

1. 

Glucose, arabinose, citrate, and formate were utilized under both oxic and anoxic 

conditions at an in situ-relevant pH of 5.0 by SB2.  Glucose, arabinose, and formate were 

completely oxidized at pH 5.0 when O2 was available and citrate was used weakly during 
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seven days of incubation.  Without O2 available, supplemental glucose, formate, and citrate 

were completely utilized at pH 5.0 but supplemental arabinose was used weakly (Table 38, 

Figure 44).  In contrast to isolate SB1, isolate SB2 utilized glucose completely under anoxic 

conditions independent of (a) glucose being supplemented alone or as co-substrate with 

formate (Figure 44) and (b) an initially slightly elevated pH in formate-supplemented cultures 

in comparison to cultures without formate (i.e., approximately 0.3 pH values higher).  The pH 

in glucose-supplemented and glucose-formate-supplemented cultures was never lower than 

pH 4.4 and pH 5.6, respectively.  As has been shown with isolate SB1, formate utilization of 

isolate SB2 was enhanced when glucose was supplemented as co-substrate. 

 

Figure 45: Phylogenic maximum parsimony trees of 16S rRNA gene sequences (A) and in 

silico-translated amino acid sequences derived from group 4 [NiFe]-hydrogenase genes (B) 

of isolates SB1 and SB2 and closely related sequences. 

Accession numbers are indicated in brackets.  16S rRNA gene sequences correspond to residues 

70-1439 of the 16S rRNA gene sequence of E. coli (AB035923).  Hydrogenase amino acid 

sequences correspond to residues 246-528 of the E. coli hydrogenase 3 HycE protein (AAC75763).  

Filled dots indicate congruent nodes in the neighbor joining and the maximum likelihood tree.  The 

16S rRNA gene sequence (AB734660) and the hydrogenase amino acid sequence (ABC20475) of 

M. thermoacetica were used as outgroup in the respective trees.  The bar indicates a 0.1 change 

per nucleic or amino acid.  Bootstrap values are from the maximum parsimony tree (1,000 

resamplings) and are only displayed at nodes congruent in all three trees.  Figure was modified from 

Hunger et al. (2016). 
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glucose-derived H2 was subtracted), illustrating the FHL-activity of SB2 to produce H2 from 

formate under different conditions.  Arabinose was weakly utilized under anoxic conditions but 

resulted in a similar increase in optical density as utilization of citrate did (Table 38).  

Fermentation products from arabinose were acetate, ethanol, H2, and CO2.  Anoxic utilization 

of citrate yielded succinate, acetate, and CO2 as fermentation products. 

5.4.8 Utilization of glucose and other properties of fermentative isolates 

obtained from mire roots 

Two fermentative isolates, SB3 and SB4, were obtained from the same mixture of roots 

which Citrobacter-related isolate SB1 and Hafnia-related isolate SB2 derived from.  Isolates 

SB3 and SB4 fermented glucose under anoxic and pH neutral conditions but could not grow 

or grew minimal under oxic or anoxic conditions at pH 5, indicating a lower tolerance to acidic 

conditions than isolates SB1 and SB2. 

SB3 stained Gram negative, formed non-motile single rods, and was oxidase and 

catalase negative.  The 16S rRNA gene of SB3 was 99 % similar to that of Clostridium 

celerecrescens, and Clostridium sphenoides (Figure 46), indicating that SB3 is a species of 

Clostridium.  On a per liter basis, isolate SB3 converted approximately 5.0 mmol glucose to 

approximately 5.5 mmol ethanol, 3.1 mmol H2, 2.7 mmol acetate, 1.3 mmol formate, and 

0.2 mmol lactate under anoxic conditions (unsupplemented control was subtracted).  CO2 was 

used to prepare medium and was added as gaseous phase to tubes and thus was not 

monitored. 

SB4 stained Gram positive, formed motile rods that occurred single in pairs or chains, 

and was oxidase and catalase negative.  The 16S rRNA gene of SB4 was 99 % similar to that 

of Carnobacterium maltaromaticum (Figure 46), indicating that SB4 is a species of 

Carnobacterium.  On a per liter basis, isolate SB4 converted approximately 5.2 mmol glucose 

to approximately 5.2 mmol formate, 3.1 mmol acetate, 2.9 mmol ethanol, and 0.9 mmol lactate 

under anoxic conditions (unsupplemented control was subtracted).  H2 was not detected.  CO2 
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was used to prepare medium and was added as gaseous phase to tubes and thus was not 

monitored. 

 

Figure 46: Phylogenic maximum parsimony tree of 16S rRNA gene sequences from mire-

derived isolates, clone sequences from an acetogenic enrichment, and closely related 

sequences. 

Accession numbers are indicated in brackets.  Sequences correspond to residues 241-823 of the 

16S rRNA gene sequence of E. coli (AB035923).  Filled dots indicate congruent nodes in neighbor 

joining and maximum likelihood trees.  The 16S rRNA gene sequence of M. kandleri (M59932) was 

used as outgroup.  The bar indicates a 0.1 change per amino acid.  Bootstrap values are from the 

maximum parsimony tree (1,000 resamplings) and are only displayed at nodes congruent in all three 

trees.  Phyla were displayed color coded: blue, Proteobacteria; red, Firmicutes.  Sequences marked 

with a star were not submitted to EMBL and thus have no accession number. 
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and CO during the enrichment process.  The final acetogenic enrichment (designated FH) 

derived from the same mixture of roots where SB1, SB2, SB3, and SB4 derived from and 

contained one acetogen that was closely related to C. drakei, C. scatologenes, C. 

carboxidivorans, and C. magnum, and two fermenters, one closely related to Clostridium 

celerecrescens and isolate SB3, and the other closely related to C. maltaromaticum and isolate 

SB4 (Figure 46).  Enrichment FH produced acetate from formate.  Despite the vitamins and 

yeast extract-derived nutrients provided in the enrichment medium, the acetogenic activity of 

the enrichment was lost after a few transfers in medium that lacked autoclaved roots or root 

extract.  Thus, unknown plant-derived nutrients appeared to be important for maintaining the 

enriched clostridial acetogen. 

5.5 Anaerobic processes in gut contents of the CH4-emitting 

earthworm E. eugeniae 

5.5.1 Diversity of mcrA/mrtA genes and transcripts associated with gut 

contents 

It has recently been discovered that earthworms such as E. eugeniae emit various 

amounts of CH4 in vivo and can be as high as 41 nmol CH4 per g[earthwormFW]-1 in 5 hours 

(Depkat-Jakob et al. 2012).  Based on this observation, the gut contents of E. eugeniae was 

analyzed for the presence of mcrA/mrtA genes and transcripts to resolve methanogenic taxa 

potentially associated with the emission of CH4. 

In total, 367 mcrA/mrtA sequences from gut contents of E. eugeniae and from the 

substrate used to raise E. eugeniae on (i.e., composted cow manure) were obtained and 

clustered into 12 species-level phylotypes, eight family-level mcrA phylotypes and one family-

level mrtA phylotype (Table 39, Figure 48); including Methanobacteriaceae, 

Methanocellaceae, Methanomicrobiaceae, Methanoregulaceae, “Methanosaetaceae”, 

Methanosarcinaceae, Methanospirillaceae, and one family-level phylotype without any 

cultured isolates (Figure 48). 
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Table 39: Coverage of clone libraries, number of mcrA/mrtA sequences and transcripts and 

number of species-level mcrA/mrtA phylotypes obtained from gut contents of E. eugeniae 

and substrate. 

Target Clone libraries 
No. of 

sequences 

No. of 

phylotypes Coverage 

mcrA/mrtA 

gene 

Gut contents 94 6 >99 

Substratea 87 8 99 

mcrA 

transcript 

Gut contents 94 5 99 

Substratea 92 7 98 

 Total: 367 12 >99 

a Composted cow manure was used as substrate to raise earthworms on. 

 

 

Figure 47: Rarefaction analysis of species-level mcrA/mrtA phylotypes obtained from gut 

contents of E. eugeniae and substrate. 

Samples were taken from gut contents of E. eugeniae and the substrate used to raise the 

earthworms on (i.e., composted cow manure).  mcrA/mrtA sequences were in silico translated into 

amino acids and based on an 85.7 % similarity cut-off clustered into species-level phylotypes (5.1.2).  

95 % confidence intervals are shown.  Curves were calculated according to the Hurlbert rarefaction 

(Hurlbert 1971).  Symbols: red, mcrA transcript sequences from gut contents; orange, mcrA/mrtA 

sequences from gut contents; green, mcrA transcript sequences from substrate; yellow, mcrA/mrtA 

sequences from substrate.  Figure was modified from Depkat-Jakob et al. (2012). 
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Rarefaction curves and coverage indicated that sampling was sufficient for species-

level clustering of mcrA/mrtA phylotypes (Table 39, Figure 47).  The diversity of species-level 

mcrA/mrtA phylotypes and species-level mcrA/mrtA transcript phylotypes was similar in gut 

contents and substrate (Table 39, Figure 47). 

 

Figure 48: Relative abundance of family-level mcrA/mrtA phylotypes obtained from gut 

contents of E. eugeniae and substrate. 

Samples were taken from gut contents of E. eugeniae and the substrate used to raise the 

earthworms on (i.e., composted cow manure).  Family 1 is a family-level mcrA phylotype without 

cultured isolates.  Methanosaetaceae are in quotes due to its current status as an illegitimate name 

(http://www.bacterio.net). 

The Methanosarcina mazei-affiliated phylotype (Methanosarcinaceae) was the most 

abundant species-level mcrA phylotype in gut contents of E. eugeniae and substrate in gene 

and transcript level analysis and accounted for 55-67 %, suggesting that most of the present 

Methanosarcinaceae-affiliated taxa were active in gut contents and substrate (Figure 48, 

Figure 49).  Methanomicrobiaceae had a relative abundance of 25 % and 26 % on gene level 

in gut contents and substrate, respectively, and 8 % and 24 % on transcript level in gut 

contents and substrate, respectively, indicating that a minor part of Methanomicrobiaceae-

affiliated taxa was active in gut contents.  Methanobacteriaceae had a higher relative 

abundance on transcript level than on gene level and also a higher relative abundance in gut 

contents than in the substrate, indicating that Methanobacteriaceae-affiliated taxa were 

activated in gut contents.  Species-level mcrA phylotype PLT11 was most closely related to 

Legend:

DNA. cDNA. DNA cDNA

R
e
la

ti
v
e
 a

b
u

n
d

a
n

c
e
 (

%
)

0

20

40

60

80

100

Col 2 

Col 3 

Col 4 

Col 5 

Col 6 

Col 7 

Col 8 

Col 9 

Col 10 

Methanomicrobiaceae

Methanospirillaceae

Family 1

Methanoregulaceae

Methanobacteriaceae

Methanosarcinaceae

Methanobacteriaceae, mrtA

Methanocellaceae

"Methanosaetaceae"

Gut contents Substrate



RESULTS 

165 

Methanobacterium formicicum (94 % amino acid sequence similarity, EF465108) and showed 

the highest relative abundance of Methanobacteriaceae-affiliated species-level phylotypes 

(Figure 49).  Methanosaetaceae-, Methanospirillaceae- and Methanoregulaceae-affiliated 

phylotypes had very low relative abundances and were only detected at the transcript level. 

 

Figure 49: Phylogenic neighbor-joining tree of (a) representative mcrA/mrtA-encoded amino 

acid sequences retrieved from gut contents of E. eugeniae or substrate and (b) reference 

sequences. 

Sequences were obtained from gut contents of E. eugeniae and the substrate used to raise the 

earthworms on (i.e., composted cow manure).  mcrA/mrtA sequences were in silico translated into 

amino acids and based on an 85.7 % similarity cut-off clustered into species-level phylotypes (5.1.2).  

Methanosaetaceae are in quotes due to its current status as an illegitimate name 

(http://www.bacterio.net).  Accession numbers are indicated in brackets.  Sequences correspond to 

residues 98-227 of the mcrA-encoded amino acid sequence of M. paludicola (AB300467).  Dots at 

nodes indicate the confirmation of tree topology by all maximum likelihood and maximum parsimony 

calculations with the same data set.  M. kandleri (AE009439) was used as outgroup.  The bar 

indicates a 0.1 estimated change per amino acid.  Values next to the branches represent the 

percentages of replicate trees (>50 %) in which the associated taxa clustered together in the 

bootstrap test (10,000 bootstraps).  Legend: PLT, phylotype; -, not detected.  Values are rounded to 

nearest whole number.  Figure was modified from Depkat-Jakob et al. (2012). 
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Species-level phylotype PLT5 (family-level phylotype 1) was without cultured isolate 

and shares 72-84 % mcrA-encoded amino acid similarity to its next cultured relatives 

Methanosphaerula palustris (EU296536, 83-84 % similarity), Methanoculleus palmolei 

(AB300784, 79-84 % similarity), and Methanoregula formicica (AB479391, 72-77 % similarity). 

5.5.2 Properties of a methanogenic enrichment derived from gut contents 

Sequence analysis of mcrA/mrtA gene and transcript analysis of gut contents derived 

from E. eugeniae indicated the presence of different methanogens in the gut of E. eugeniae.  

Methanogens were enriched from gut contents of E. eugeniae. to analyze potential properties 

of those methanogens in the gut. 

 

Figure 50: Effect of supplemental H2, formate, acetate, and methanol on product profiles of a 

methanogenic enrichment. 

Incubation was performed at 25 °C.  Methanol concentrations could not be determined and 

consumption of methanol is unresolved.  Symbols: open circle, unsupplemented control; closed 

squares, H2 supplementation; open pyramid, formate supplementation; closed stars, methanol 

supplementation; closed triangle, acetate supplementation.  Values are means of triplicate analysis 

and the error bars indicate the standard deviation. 
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The methanogenic enrichment culture was supplemented with H2, formate, acetate, or 

methanol and incubated for 14 days under anoxic conditions.  The production of CH4 was 

highest with supplemental H2 followed by supplemental formate (Figure 50).  Supplemental 

acetate and methanol did not stimulate the production of CH4.  Surprisingly, supplemental H2 

and methanol stimulated the production of acetate, suggesting the formation of acetate by 

acetogenesis.  H2-derived production of acetate exceeded the production of H2-derived CH4 

considerably. 

Table 40: Relative abundance of species-level mcrA/mrtA phylotypes from a methanogenic 

enrichment obtained from gut contents of E. eugeniae.a 

Relative 

abundance 

(%) 

Representative 

sequence 
Closest cultured sequence 

Similarity 

(%) 

39 C01 (LK936474) Methanobacterium ivanovii mrtA (EF465104) 97-100 

5 B02 (LK936469) Methanobacterium formicicum mrtA (EF465103) 98-99 

5 B05 (LK936472) Methanobacterium formicicum mcrA (EF465108) 100 

15 C06 (LK936477) Methanobacterium sp. mcrA (DQ677519) 94 

2 A03 (LK936464) Methanobacterium subterraneum mcrA (BAI67103) 98 

34 D06 (LK936483) Methanobacterium ivanovii mcrA (EF465107) 97-98 

a McrA/mrtA sequences were in silico translated into amino acids and based on an 85.7 % similarity 

cut-off clustered into species-level phylotypes (5.1.2).  Values for similarity are based on mcrA-

encoded amino acid sequences.  Accession numbers are indicated in brackets. 

In total, 41 mcrA/mrtA sequences were obtained from the H2-supplemented 

methanogenic enrichment.  Those sequences clustered into four species-level mcrA 

phylotypes and two species-level mrtA phylotypes affiliated with Methanobacteriaceae (Table 

40).  Sequences affiliated with Methanobacterium ivanovii were most abundant in the H2-

supplemented methanogenic enrichment. 

5.5.3 Effect of supplemental [13C]glucose and H2 on fermentation and aceto-

genesis in anoxic slurries with gut contents 

The consumption of H2 and the production of a considerable amount of acetate in the 

methanogenic enrichment (Figure 50), indicated the presence of hitherto unknown acetogens 

in gut contents of E. eugeniae.  Attempts were made to identify acetogens in mire ‘soil’ by DNA 
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SIP with [13C]formate (5.3, Hunger et al. 2011a).  Unfortunately, attempts remained mostly 

unsuccessful, potentially because of (a) labeled taxa were not identified as acetogens (i.e., 

next related isolates affiliated with labeled taxa were no acetogens and thus labeled taxa were 

not identified as an acetogen) or (b) mire-derived acetogens dissimilated [13C]formate and 

assimilated endogenous 12C-compounds and thus were not labeled.  In this regard, the Gibbs 

free energy under standard conditions for formate-dependent acetogenesis is -99 kJ mol-1 

whereby the Gibbs free energy under standard conditions for glucose-dependent acetogenesis 

is about seven times higher (i.e., -687 kJ mol-1) (own calculations), illustrating that dissimilation 

of glucose is thermodynamically more favorable than that of formate and might lead to an 

enhanced assimilation of glucose.  Glucose can be detected in millimolar concentrations in gut 

contents of earthworms and successfully served as model saccharide for analyses of 

microbially mediated anaerobic processes in the gut contents before (Wüst el al. 2011, Schulz 

et al. 2015).  Thus, an RNA SIP analysis was conducted with [13C]glucose in the attempt to 

identify active acetogens.  H2 and 12CO2 were supplemented as co-substrates to (a) minimize 

labeling of taxa by fermentation-derived 13CO2 during incubation and (b) additionally stimulate 

acetogens. 

Unsupplemented slurries with gut contents of E. eugeniae produced mostly acetate 

followed by CO2, propionate, H2, butyrate and traces of formate and CH4 (Figure 51, data for 

butyrate not shown).  Butyrate accumulated equally in all slurries to a final concentration of 

10 µmol g[gut contentFW]-1 (data not shown).  Traces of lactate were detected before the 

incubation and were consumed within the first two days (data not shown).  Succinate was 

detected in all slurries before the incubation but was only consumed in unsupplemented 

slurries, most likely due to the slightly more neutral pH of the unsupplemented controls (i.e., 

pH 6.9 in unsupplemented controls versus pH 6.3 in [13C]glucose- and [13C]glucose-H2-

supplemented slurries after seven days of incubation). 
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Figure 51: Effect of supplemental [13C]glucose and H2 on product profiles of gut contents 

from the earthworm E. eugeniae. 

Incubation was performed at 25 °C.  Symbols: open squares, unsupplemented controls; closed 

circles, [13C]glucose-supplemented slurries; closed triangle, [13C]glucose- and H2-supplemented 

slurries.  Arrows indicate time point of supplementation. Slurries that were supplemented with 

[13C]glucose were also supplemented with 12CO2 once at the beginning of incubation to dilute 

fermentation-derived 13CO2 during incubation.  Values are means of triplicate analysis.  Error bars 

indicate the standard deviation. 

 

Supplemental glucose was consumed without delay in all glucose-supplemented 

slurries with gut contents and stimulated predominantly the production of acetate (Figure 50, 

Table 42).  Succinate was detected before the supplementation of glucose and glucose 

consumption enhanced succinate concentrations only slightly.  Other typical fermentation 

products besides succinate, such as H2 and propionate, were also enhanced slightly in 
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glucose-supplemented slurries in comparison to unsupplemented controls.  Formate was 

detected transiently in glucose-H2-supplemented slurries and might have also been produced 

transiently in glucose-supplemented slurries without supplemental H2, indicating that some 

fermentation products were produced and quickly consumed by gut-derived microorganisms.  

Considering the transient appearance of formate (Figure 51) and the high 13C-enrichment of 

slightly stimulated fermentation products such as succinate and propionate (17-29 at %, Table 

41), it seems that production and consumption of glucose-derived fermentation products can 

be tightly coupled.  The recovery of glucose-derived carbon and reductant of approximately 

50 % indicated that a part of glucose-derived carbon and reductant might have been 

assimilated and/or was not detected.  Production of CH4 was not stimulated in slurries with 

supplemental glucose (Figure 51), but nevertheless was enriched with 13 at % of 13C (Table 

41), indicating that CH4 partially derived from 13C-enriched fermentation products. 

 

Table 41: Enrichment of 13C in products of anoxic slurries after seven days of incubation. 

 13C-content after 7 days (at %)a 

Treatment Acetate Succinate Propionate Butyrate CH4 CO2 

Unsupplemented control 1.2 ± 0.0 1.1b 1.1 ± 0.0 1.1 ± 0.0 1.1 ± 0.0 1.1 ± 0.0 

[13C]glucose, CO2 42 ± 1 25 ± 6 20 ± 2 20 ± 1 13 ± 1 18 ± 0.0 

[13C]glucose, H2, CO2 36 ± 1 29 ± 1 17 ± 1 19 ± 1 13 ± 1 19 ± 1 

a Values are means of triplicate analysis with standard deviation.  A standard deviation of 

0.0 13C at % indicates a standard deviation that is smaller than 0.05 13C at %. 
b Succinate in the unsupplemented control was only detected in one replicate and thus the given 

value represents the succinate concentration in one of three replicates. 

 

H2 was supplemented as co-substrate to half of the glucose-supplemented slurries.  

Supplemental H2 was consumed after a short lag phase of two days and stimulated the 

production of acetate in comparison to glucose-supplemented slurries lacking supplemental 

H2 (Figure 51, Table 42).  This additional production of acetate occurred concomitant with the 

consumption of H2, and the ratio of consumed H2 (220 µmol H2 g[gut contentFW]-1) to produced 
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acetate (46 µmol acetate g[gut contentFW]-1) approximated 4:0.84 which is indicative for H2-

dependent acetogenesis.  Acetate was less enriched in 13C in glucose-supplemented slurries 

with supplemental H2 (i.e., 36 at %) than in slurries lacking supplemental H2 (i.e., 42 at %) 

(Table 41), indicating that acetate in slurries with supplemental H2 was partially produced from 

12C-compounds such as 12CO2 by hydrogenotrophic acetogenesis. 

 

Table 42: Recovery of reductant and carbon from supplemental glucose, CO2, and H2 in 

anoxic slurries with gut contents of E. eugeniae. 

 Carbon recovered from glucose and 

CO2 (%)a 

 Reductant recovered from glucose 

and H2 (%)a 

Products With H2 Without H2  With H2 Without H2 

Acetate 36 24  36 26 

Succinate 15 16  13 15 

Propionate 1 7  1 8 

Formate 1 0  0.3 0 

Total: 53 47  50 49 

a Recovery was calculated based on process data at the beginning of incubation and after seven 

days of glucose supplementation (Figure 51).  Values are rounded to nearest whole number. 

 

5.5.4 Bioenergetics of H2- and glucose-dependent acetogenesis 

H2- and glucose-dependent acetogenesis was thermodynamically feasible in all anoxic 

slurries with gut contents of E. eugeniae during the incubation (Figure 52).  The Gibbs free 

energy of glucose-dependent acetogenesis was more negative than that of H2-dependent 

acetogenesis. 
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Figure 52: Estimated Gibbs free energy (ΔG) of H2- and glucose-dependent acetogenesis in 

anoxic slurries with gut contents of E. eugeniae. 

Process data can be found in Figure 51.  Legend: open squares, glucose-dependent acetogenesis in 

[13C]glucose-supplemented slurries; closed pyramid, glucose-dependent acetogenesis in [13C]glucose- 

and H2-supplemented slurries; closed circles, H2-dependent acetogenesis in [13C]glucose- and H2-

supplemented slurries; open triangle, H2-dependent acetogenesis in [13C]glucose-supplemented slurries.  

Values are means of triplicate analysis.  Standard deviation was plotted but was too little to appear as 

error bars.  The plot shows the change of ΔG values per acetate produced.  Consequently, ΔG values for 

glucose-dependent acetogenesis is three times higher than ΔG values for H2-dependent acetogenesis 

considering the whole reaction. 

 

5.5.5 Diversity of bacterial 16S rRNA phylotypes in [13C]glucose-

supplemented slurries 

After the isopycnic centrifugation of RNA in a cesium trifluoroacetate gradient and 

subsequent fractionation (4.10.7), heavy RNA from fractions three and four were pooled, and 

RNA from light fractions eight and nine were pooled, and used for the molecular analysis of 

bacterial 16S rRNA. 
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Figure 53: Distribution of RNA obtained from anoxic slurries with gut contents of E. eugeniae 

in cesium trifluoroacetate gradient.  

Process data can be found in Figure 51.  Legend: open circles, RNA from gut contents before the 

incubation; closed circles, RNA from [13C]glucose- and H2-supplemented slurries after seven days 

of incubation.  Numbers indicate fractions that were used for molecular analysis. 

 

In total, 601 bacterial 16S rRNA sequences were obtained that clustered into 33 family-

level phylotypes and four phylum-level phylotypes (Table 43) including Actinobacteria, 

Firmicutes, Proteobacteria, and Planctobacteria (Table 44).  Rarefaction curves and coverage 

indicated that sampling was sufficient for family-level clustering of 16S rRNA phylotypes (Table 

43, Figure 54).  The diversity of family-level 16S rRNA gene phylotypes was the highest in light 

fractions of [13C]glucose-supplemented slurries lacking supplemental H2 and the lowest in 

heavy fractions of [13C]glucose-supplemented slurries independent of supplemental H2, 

indicating the occurrence of specifically enriched phylotypes in heavy fractions. 
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Figure 54: Rarefaction analysis of family-level 16S rRNA phylotypes obtained from gut 

contents of E. eugeniae. 

Sequences derived from slurries with gut contents of E. eugeniae before and after seven days of 

anoxic incubation (Figure 48).  Assignment of 16S rRNA gene sequences to family-level phylotypes 

was based on an 87.5 % similarity cut-off (Yarza et al. 2008).  A 95 % confidence interval is shown.  

16S rRNA sequences derived from light and heavy fractions of cesium trifluoroacetate gradients 

after isopycnic centrifugation.  Color code: black, light fraction before incubation; light grey, light 

fraction of unsupplemented control; light blue, light fraction of [13C]glucose-supplementation; dark 

blue, heavy fraction of [13C]glucose-supplementation; light green, light fraction of [13C]glucose-H2-

supplementation; dark green, heavy fraction of [13C]glucose-H2-supplementation; red, total number 

of sequences. 

Family-level 16S rRNA phylotypes affiliated with Enterobacteriaceae, 

Lachnospiraceae, Peptostreptococcaceae, and Ruminococcaceae showed the highest 

relative abundance (Table 44).  Peptostreptococcaceae and Hyphomicrobiaceae were the 

most abundant taxa in light fractions derived from slurries before the incubation, indicating that 

affiliated microorganisms in gut contents were not stimulated by the experimental conditions.  

Species-level 16S rRNA phylotypes PLT1 and PLT2 (Peptostreptococcaceae) were affiliated 

with Clostridium bifermentans (98 % sequence similarity, X75906) and Eubacterium tenue 

(98 % sequence similarity, DQ445860), and accounted for 17 % and 26 % in light fractions 

derived from gut contents before supplementation of [13C]glucose (Figure 55), respectively.  

One species-level 16S rRNA phylotype PLT4 (Peptostreptococcaceae) was most closely 
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related to the acetogen Terrisporobacter glycolicus RD-1 (99 % sequence similarity, 

AJ291746), but was only detected in light fractions derived (a) from unsupplemented slurries 

after the incubation and (b) from [13C]glucose-supplemented slurries with supplemental H2, 

indicating that affiliated microorganisms did not assimilate glucose-derived 13C. 

Table 43: Coverage of clone libraries, number of 16S rRNA sequences, and number of family-

level 16S rRNA phylotypes obtained from anoxic slurries with gut contents of E. eugeniae. 

Target Clone libraries 
No. of 

sequences 

No. of 

phylotypes 
Coverage 

16S rRNA  

Before incubation La 89 18 94 

Control La 89 18 92 

[13C]glucose La 111 23 95 

[13C]glucose Hb 123 4 >99 

[13C]glucose-H2 La 96 15 94 

[13C]glucose-H2 Hb 93 5 98 

Total: 601 33 >99 

a Sequences derived from light fractions eight and nine.  
b Sequences derived from heavy fractions three and four. 

Enterobacteriaceae and Lachnospiraceae had a higher relative abundance in heavy 

fractions than in light fractions derived from slurries after [13C]glucose-supplementation (Table 

44), indicating that affiliated microorganisms assimilated glucose-derived 13C.  Species-level 

16S rRNA phylotypes PLT20 and PLT21 (Enterobacteriaceae) were affiliated with Citrobacter 

murliniae (99 % sequence similarity, AF025369) and Erwinia persicina (98 % sequence 

similarity, AJ001190), and accounted for 16 % and 14 % in heavy fractions derived from 

[13C]glucose-supplemented slurries with supplemental H2 (Figure 55), respectively.  The 

species-level 16S rRNA phylotype PLT7 (Lachnospiraceae) affiliated with Robinsoniella 

peoriensis (99 % sequence similarity, AF445198) and accounted for 51 % and 46 % in heavy 

fractions derived from [13C]glucose-supplemented slurries lacking H2 and slurries with 

supplemental H2, respectively, and was more abundant in heavy fractions than in 

corresponding light fractions, indicating that affiliated microorganisms assimilated glucose-

derived 13C. 
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Table 44: Relative abundance of family-level 16S rRNA phylotypes from gut contents of 

E. eugeniae and phylogenic affiliations. 

 
Relative abundance of 16S rRNA sequences (%)a 

 Before 

incubation 

 After 7 days of incubation 

Taxonomy (phylum, class, family) 

 Control  [13C]glucose  [13C]glucose, H2 

Light  

fraction 
 Light 

fraction 
 Light 

fraction 

Heavy 

fraction 
 Light 

fraction 

Heavy 

fraction 

Actinobacteria, Actinobacteria, 
         

  Acidimicrobiaceae 2 
 

- 
 

- - 
 

- - 

  Aciditerrimonas-related phylotypeb 2 
 

2 
 

3 - 
 

1 - 

  Acidothermaceae 2 
 

1 
 

- - 
 

- - 

  Demequinaceae 1 
 

- 
 

- - 
 

1 - 

  Microbacteriaceae 3 
 

1 
 

5 - 
 

- - 

  Micromonosporaceae - 
 

1 
 

1 - 
 

- - 

  Nocardioidaceae - 
 

- 
 

2 - 
 

- - 

  Solirubrobacteraceae 1 
 

- 
 

1 - 
 

- - 

Firmicutes, Bacilli, 
         

  Bacillaceae - 
 

- 
 

3 - 
 

1 - 

  Paenibacillaceae - 
 

- 
 

3 2 
 

2 - 

Firmicutes, Clostridia, 
         

  Anaerovorax-related phylotypeb - 
 

2 
 

- - 
 

- 1 

  Christensenellaceae - 
 

8 
 

6 - 
 

3 - 

  Clostridiaceae - 
 

4 
 

1 - 
 

4 - 

  Lachnospiraceae - 
 

27 
 

29 57 
 

29 49 

  Peptostreptococcaceae 47 
 

3 
 

4 - 
 

6 - 

  Ruminococcaceae - 
 

33 
 

18 24 
 

33 17 

Proteobacteria, Alphaproteobacteria, 
         

  Bradyrhizobiaceae 1 
 

- 
 

- - 
 

- - 

  Hyphomicrobiaceae 10 
 

3 
 

1 - 
 

3 - 

  Methyloceanibacter-related phylotypeb 2 
 

- 
 

- - 
 

- - 

  Nordella-related phylotypeb - 
 

- 
 

2 - 
 

- - 

  Phyllobacteriaceae 4 
 

- 
 

1 - 
 

1 - 

  Rhizobiaceae 2 
 

- 
 

3 - 
 

1 - 

  Rhodobacteraceae 4 
 

1 
 

- - 
 

- - 

  Acetobacteraceae 1 
 

3 
 

- - 
 

- - 

  Rhodospirillaceae 1 
 

- 
 

2 - 
 

- - 

Proteobacteria, Gammaproteobacteria, 
         

  Enterobacteriaceae 2 
 

2 
 

10 17 
 

7 32 

  Methylococcaceae - 
 

- 
 

2 - 
 

- - 

          



RESULTS 

177 

 
Relative abundance of 16S rRNA sequences (%)a 

 Before 

incubation 

 After 7 days of incubation 

Taxonomy (phylum, class, family) 

 Control  [13C]glucose  [13C]glucose, H2 

Light  

fraction 
 Light 

fraction 
 Light 

fraction 

Heavy 

fraction 
 Light 

fraction 

Heavy 

fraction 

Proteobacteria, Deltaproteobacteria, 
         

  Desulfovibrionaceae - 
 

1 
 

2 - 
 

- - 

  Labilithrix-related phylotypeb - 
 

1 
 

- - 
 

1 - 

  Phaselicystidaceae - 
 

1 
 

2 - 
 

- - 

  Polyangiaceae 3 
 

- 
 

1 - 
 

- - 

Planctobacteria, Planctomycea, 
         

  Planctomycetaceae 8 
 

3 
 

2 - 
 

5 1 

a Assignment of 16S rRNA gene sequences to family-level phylotypes was based on an 87.5 % 

similarity cut-off (Yarza et al. 2008).  RNA was obtained from gut contents before and after incubation 

of unsupplemented controls, [13C]glucose-supplemented and [13C]glucose-H2-supplemented 

slurries.  16S rRNA sequences were obtained from light and heavy fractions of a cesium 

trifluoroacetate gradient.  Values are rounded to the next whole number and thus may not sum up 

to 100 %.  Legend: -, not detected. 
b 16S rRNA sequences from gut contents shared at least 87.5 % similarity (i.e., family-level 

threshold) to the sequences of the given genus.  Those genera are without hierarchical classification 

according to LPSN (www.bacterio.net) but cluster in phylogenetic trees within classes and phyla 

given in this table. 

 

The relative abundance of Ruminococcaceae in heavy fractions was slightly higher 

than in light fractions derived from [13C]glucose-supplemented slurries lacking supplemental 

H2.  Nevertheless, the relative abundance of Ruminococcaceae was (a) twice as high in light 

fractions than in heavy fractions derived from [13C]glucose-supplemented slurries with 

supplemental H2 but (b) higher in heavy fractions of [13C]glucose-supplemented slurries lacking 

supplemental H2 than in heavy fractions of [13C]glucose-supplemented slurries with 

supplemental H2, indicating that affiliated microorganisms might have assimilated 13C in 

glucose-supplemented slurries lacking H2. 
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Figure 55: Phylogenic maximum parsimony tree of (a) representative 16S rRNA sequences 

of most abundant families retrieved from gut contents of E. eugeniae and (b) reference 

sequences. 

Sequences derived from slurries with gut contents of E. eugeniae before and after seven days of 

anoxic incubation (Figure 51).  The 16S rRNA gene sequences were based on a 97 % similarity cut-

off clustered into family-level phylotypes (Yarza et al. 2008).  Species-level phylotypes shown had 

a total relative abundance of at least 5 %.  Accession numbers are indicated in brackets.  Sequences 

correspond to nucleic acids 226-907 of the 16S rRNA gene of E. coli (AB035923).  Filled dots 

indicate congruent nodes in the neighbor joining and the maximum likelihood tree.  The 16S rRNA 

sequence of M. kandleri (M59932) was used as outgroup.  The bar indicates a 0.1 change per 

nucleic acid.  Bootstrap values are from the maximum parsimony tree (1,000 resamplings) and are 

only displayed at nodes congruent in all three trees.  Relative abundances of species-level 

phylotypes in the clone libraries are given in parentheses in the following order: light fraction before 

incubation / light fraction after incubation of unsupplemented control / light fraction after incubation 

with [13C]glucose / heavy fraction after incubation with [13C]glucose / light fraction after incubation 

with [13C]glucose and H2 / heavy fraction after incubation with [13C]glucose and H2.  Legend: PLT, 

phylotype; -, not detected.  Values are rounded to nearest whole number. 

Clostridium bifermentans ATCC 638 (X75906)

Clone t0_H05 (17/-/-/-/-/-) PLT1

Eubacterium tenue ATCC 255 (DQ445860)

Clone t0_B11 (26/-/1/-/-/-) PLT2

Clone 456l_G01 (3/1/2/-/2/-) PLT3
Romboutsia lituseburensis EIB 6 (AY458860)

Terrisporobacter glycolicus RD-1 (AJ291746)

Clone 789l_C08 (-/2/-/-/4/-) PLT4

Clostridium celerecrescens DSM 5628 (AB294138)

Clone 789l_G02 (-/2/-/1/2/-) PLT5
Clostridium methoxybenzovorans DSM (AF067965)

Clostridium aminovalericum BEY11 (KC331198)

Clone 789l_G01 (-/-/2/-/3/-) PLT6

Robinsoniella peoriensis FPC47 (AF445198)

Cone 456s_B03 (-/4/10/51/10/46) PLT7

Clone 789l_C02 (-/-/-/-/7/-) PLT8
Parasporobacterium paucivorans SYR1 (AJ272036)

Epulopiscium fishelsoni (AF067414) 

Clone 456l_A09 (-/4/5/-/-/-) PLT9
Clone 123_D10 (-/9/1/-/1/-) PLT10

Clone456l_E11 (-/6/3/5/3/6) PLT11
Oscillibacter ruminantium GH1 (BAGW01000037)

Clone 456s_B08 (-/-/1/2/-/-) PLT12

Clone 123_H10 (-/4/1/1/-/-) PLT13

Intestinimonas butyriciproducens AP4 (JX101685)

Clone 789l_G06 (-/-/1/2/8/-) PLT14
Eubacterium desmolans ATCC 43058 (JNJN01000091)

Clone 789s_C08 (-/-/-/2/-/3) PLT15
Butyricicoccus pullicaecorum 1.2 (AQOB01000017)

Clone 789l_E05 (-/2/6/8/9/4) PLT16
Anaerofilum pentosovorans DSM (X97852)

Clone 789s_A06 (-/6/-/-/2/1) PLT17

"Candidatus Soleaferrea massiliensis" AP7 (JX101688)

Clone 789l_E01 (-/2/-/-/3/-) PLT18
Clostridium sporosphaeroides DSM 1294 (X66002)

Clone 789l_F08 (-/4/2/-/3/-) PLT19

Citrobacter murliniae CDC 2970 (AF025369)

Clone 789s_B05 (2/1/3/8/4/16) PLT20

 Erwinia persicina LMG 2691 (AJ001190)
Clone 789s_A11 (-/1/6/7/2/14) PLT21
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5.5.6 Diversity of fhs phylotypes in [13C]glucose-supplemented slurries 

The detection of fhs from gradient-derived nucleic acids failed and thus, fhs sequences 

were obtained from DNA that was obtained from slurries after seven days of incubation (Figure 

51).  A total of 185 bacterial fhs sequences were obtained that clustered into 11 species-level 

phylotypes (Table 45).  Rarefaction curves and coverage indicated that sampling was sufficient 

for species-level clustering of fhs phylotypes (Table 45, Figure 56).  Diversity of species-level 

fhs phylotypes was mostly similar in unsupplemented controls and [13C]glucose-supplemented 

slurries after the incubation (Table 45, Figure 56).  The total detected diversity was higher than 

diversities in single slurries, indicating that some phylotypes were not unique to a specific 

treatment. 

Table 45: Coverage of clone libraries, number of fhs sequences, and number of species-level 

fhs phylotypes obtained from anoxic slurries with gut contents of E. eugeniae. 

Gene Clone librariesa 
No. of 

sequences 

No. of 

phylotypes 
Coverage 

fhs 

Control 60 6 98 

[13C]glucose 62 9 98 

[13C]glucose-H2
 63 7 97 

Total: 185 11 99 

a Fhs sequences derived from anoxic slurries with gut contents of E. eugeniae after seven days of 

anoxic incubation (Figure 51).  Nucleic acid extracts were analyzed before isopycnic centrifugation. 

Detected fhs sequences were affiliated with Clostridia, Bacilli, and Alphaproteobacteria 

(Figure 57).  Species-level fhs phylotype PLT4 was affiliated with Clostridia and was most 

abundant in unsupplemented slurries and showed a lower relative abundance in [13C]glucose-

supplemented slurries, indicating that affiliated microorganisms preferred experimental 

conditions in unsupplemented slurries (e.g., relatively low concentrations of organic acids, 

glucose, and H2).  Species-level fhs phylotypes PLT9 and PLT11 clustered most closely with 

Mesorhizobium ciceri (94 % and 77 % amino acid similarity, respectively, CP002447) and were 

only detected in [13C]glucose-supplemented slurries lacking H2, indicating that affiliated 

microorganisms were stimulated by supplemental glucose but seemed to be inhibited by high 

H2 concentrations. 
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Figure 56: Rarefaction analysis of species-level fhs phylotypes obtained from gut contents 

of E. eugeniae. 

Sequences derived from slurries with gut contents of E. eugeniae after seven days of anoxic incubation 

(Figure 51).  fhs sequences were in silico translated into amino acids and based on a 76.4 % similarity 

cut-off clustered into species-level phylotypes (5.1.2).  A 95 % confidence interval is shown.  fhs 

sequences derived from anoxic slurries after incubation.  Nucleic acid extracts were analyzed before 

isopycnic centrifugation.  Color code: black, unsupplemented control; blue, [13C]glucose-supplementation; 

green, [13C]glucose-H2-supplementation; red, total number of sequences. 

Sequences of PLT9 and PLT11 overlapped with 156 amino acids and showed an 

amino acid sequences similarity of 86 %, indicating that PLT9 and PLT11 might actually derive 

from the same microorganism.  Species-level fhs phylotype PLT10 was affiliated with 

Clostridium celerecrescens (98 % amino acid similarity, WP_038283002) and dominated in all 

treatments after incubation, especially [13C]glucose-supplemented slurries with supplemental 

H2.  Species-level fhs phylotypes PLT2, PLT7, and PLT8 affiliated with the acetogen 

Marvinbryantia formatexigens (81 % amino acid similarity to PL2, WP_040782473), acetogen 

Blautia hydrogenotrophica (81 % amino acid similarity to PL2, WP_005953659), Clostridium 

ultunense (83 % amino acid similarity to PLT7, CP_005586003), and Lysinibacillus 

manganicus (90 % amino acid similarity to PLT8, WP_036183594), and were only observed 

in [13C]glucose-supplemented slurries whereby slurries with supplemental H2 showed a higher 

relative abundance than slurries lacking supplemental H2, indicating that affiliated 

microorganisms were stimulated by supplemental glucose and supplemental H2. 
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Figure 57: Phylogenic maximum parsimony trees of (a) representative fhs-encoded amino 

acid sequences retrieved from gut contents of E. eugeniae and (b) reference sequences. 

Sequences were obtained from slurries with gut contents of E. eugeniae after seven days of anoxic 

incubation (Figure 51).  fhs sequences were in silico translated into amino acids and based on a 

76.4 % similarity cut-off clustered into species-level phylotypes (5.1.2).  Accession numbers are 

indicated in brackets.  Sequences in Panel A correspond to residues 150-377 and sequences in 

Panel B correspond to residues 237-422 of the fhs-encoded amino acid sequence of 

M. thermoacetica (CP012370).  Filled dots indicate congruent nodes in the neighbor joining and the 

maximum likelihood trees.  M. labreanum (CP000559) was used as outgroup.  The bar indicates a 

0.1 change per amino acid.  Bootstrap values are from the maximum parsimony trees (1,000 

resamplings) and are only displayed at nodes congruent in all three trees.  Grey highlighting 

indicates sequences of acetogens.  Legend: PLT, phylotype; -, not detected.  Values are rounded 

to nearest whole number. 
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5.5.7 Properties of the acetogenic enrichment derived from gut contents 

The methanogenic gut-derived enrichment converted H2 (potentially together with CO2) 

to acetate (5.5.2) and stimulation of acetate production due to supplemental H2 in the RNA SIP 

analysis with supplemental [13C]glucose (5.5.3, 5.5.6) were indicative for the presence of 

acetogens in gut contents of E. eugeniae.  Acetogens were enriched from gut contents of E. 

eugeniae to analyze potential properties.  An acetogenic enrichment EE was supplemented 

with H2 or formate and incubated for 16 days under anoxic conditions.  Acetogenic enrichment 

EE produced acetate as major end product together with traces of succinate, butyrate, lactate, 

propionate, formate, and ethanol in anoxic medium alone (4.4.5 without the supplementation 

of H2 or formate).  Supplemental H2 and supplemental formate stimulated the production of 

acetate in a substrate to product ratio of 4:1 in each case (Figure 58), indicating for H2- and 

formate-dependent acetogenesis. 

 

Figure 58: Effect of supplemental H2 and formate on the product profiles of the acetogenic 

enrichment EE. 

Incubation was performed at 25 °C.  Legend: open symbols, unsupplemented control; closed 

symbols, H2 or formate supplementation; circle, H2; diamond, acetate; triangle, formate.  Values are 

means of triplicate analysis.  Error bars show the standard deviation. 
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The acetogenic enrichment stained Gram negative and consisted of uniform looking 

rods.  Analysis of 16S rRNA genes indicated that the acetogenic enrichment consisted of two 

microorganisms, 80 % of sequences were closely related to the fermenters Oscillibacter 

ruminantium (99.6 % sequence similarity, NR_118156) and Oscillibacter valericigenes (96 % 

sequence similarity, NR_074793), and the other 20 % were closely related to the acetogens 

Terrisporobacter glycolicum strain mammoth-9 (100 % similarity, LN998075) and 

Terrisporobacter mayombei (99.2 % similarity, NR_104744).  16S rRNA gene sequences that 

were related to O. ruminantium were 99.6-99.9 % similar to each other.  16S rRNA gene 

sequences that were related to Terrisporobacter glycolicus were 99.4-99.9 % similar to each 

other. 

5.6 Acetogenesis in aerated forest ‘soil’ 

Although, acetogenesis is mostly known to occur in anoxic environments such as mire 

‘soils’, rice field soils, and animal guts (Pester and Brune 2007, Liu and Conrad 2011, Hunger 

et al. 2015), aerated ‘soils’ also have the capacity to produce acetate (Küsel and Drake 1995, 

Peters and Conrad 1996) and acetogens have been isolated from such O2-influenced habitats 

(Kuhner et al. 1997, Gößner et al. 1999).  Hawaiian forest ‘soil’ from the Koke’e State Park 

produced acetate from H2 (potentially with CO2) under anoxic conditions, suggesting the 

presence of acetogens (Küsel et al. 2002). 

An initial acetogenic culture KH consisted of very similar looking rods that converted 

numerous substrates (including xylan and raffinose) to mainly acetate under anoxic conditions 

and was thought be a pure culture.  Xylan and raffinose are uncommon substrates for known 

acetogens (Drake et al. 2006), and it was suspected that KH was not a pure culture but 

consisted of at least two similar looking microorganisms.  Serial dilutions of KH with undefined 

mineral medium UM4 (4.4.10) and supplementation with either H2 or raffinose were prepared.  

The acetogen KHa and the fermenter KHb were obtained from the highest growth-positive 

dilution of H2- and raffinose-supplemented tubes, respectively.  A more detailed description of 
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utilized substrates, tolerance to salt, and sensitivity to O2 than described below can be found 

in Hunger et al. (2011b). 

 

5.6.1 Properties of the acetogenic isolate KHa obtained from forest ‘soil’ 

Isolate KHa had a 99 % 16S rRNA gene similarity to Terrisporobacter glycolicus 

DSM1288 (X76750), a 97 % fhs-encoded amino acid sequence similarity to the acetogen 

T. glycolicus RD-1 (FR850046), and a 73 % cooS-encoded amino acid sequence similarity to 

T. glycolicus RD-1 (FR850055) (Figure 59).  KHa grew anaerobically on H2-CO2, formate, 

ethanol, lactate, pyruvate, glucose, xylose, fructose, maltose, citrate, 1-propanol, n-butanol, 

and yeast extract, and formed predominantly acetate as end product together with traces of 

butyrate, ethanol, lactate, and H2 (see Hunger et al. [2011b] for more details). 

KHa consumed up to 1.5 % O2 and tolerated up to 3 % O2 in the gas phase and is 

capable of fermenting glucose under those conditions, illustrating the capacity of an acetogen 

to be O2 tolerant.  If exposed to low amounts of O2, KHa produced acetate as main end product 

together with low amounts of ethanol, lactate, and H2 from glucose.  If grown under anoxic 

conditions, KHa produced acetate as main end product together with traces of butyrate and H2 

from glucose. 

The substrate-product profile as well as the optimal growth conditions of KHa differed 

from those of fermentative T. glycolicus strains (Chamkha et al. 2001, Gaston and Stadtman 

1963) but were similar to those of acetogenic T. glycolicus RD-1 (Küsel et al. 2001), indicating 

that KHa was a new strain of T. glycolicus. 
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Figure 59: Phylogenic neighbor-joining trees of 16S rRNA gene sequences of KHa, KHb, and 

reference sequences (A), in silico-translated amino acid sequences encoded by fhs of KHa 

and reference sequences (B), and in silico-translated amino acid sequences encoded by 

cooS of KHa and reference sequences (C). 

Accession numbers are indicated in brackets.  Dots at nodes indicate the confirmation of tree 

topology by maximum likelihood and maximum parsimony calculations with the same data set.  The 

bar indicates a 0.1 estimated change per nucleic acid or amino acid.  The 16S rRNA gene sequence 

of M. kandleri (M59932), the fhs-encoded amino acid sequence of M. labreanum (CP000559), and 

the cooS-encoded amino acid sequence of A. fulgidus (NC_000917) were used as outgroups.  

Values next to the branches represent the percentages of replicate trees (>50 %) in which the 

associated taxa clustered together in the bootstrap test (1,000 bootstraps).  Figure was modified 

from Hunger et al. (2011b). 
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5.6.2 Properties of the fermentative isolate KHb obtained from forest ‘soil’ 

Isolate KHb had a 99 % 16S rRNA gene similarity to Bacteroides xylanolyticus 

(DQ497992) (Figure 59).  A PCR signal with primers that target fhs or cooS was not obtained 

from isolate KHb.  KHb grew anaerobically on xylan and raffinose and produced acetate, 

ethanol, lactate, formate, and H2 as end products. 

KHb consumed up to 4 % O2 and tolerated up to 6 % O2 in the gas phase during anoxic 

consumption of glucose and thus displayed a better tolerance to O2 than KHa did.  If exposed 

to low amounts of O2, KHb produced (a) more acetate, lactate, and formate, and (b) less H2 

from glucose than under anoxic conditions. 

The morphology and substrate-product profile of KHb were very similar to those of the 

type strain of B. xylanolyticus (Scholten-Koerselman et al. 1986), indicating that KHb was a 

new strain of B. xylanolyticus. 

 

5.6.3 Effect of supplemental xylan on product profiles of isolates KHa and 

KHb 

KHa and KHb derived from the enrichment KH that was capable of consuming xylan 

and producing acetate as the main end product under anoxic conditions.  Isolate KHa cannot 

utilize xylan but KHb can. Isolate KHb fermented xylan to ethanol, H2, and acetate under anoxic 

conditions (Figure 60). 

A co-culture of KHb and KHa consumed xylan and released acetate as main end 

product with traces of ethanol and H2 under anoxic conditions, suggesting a tight trophic link 

between acetogenic isolate KHa and fermentative isolate KHb. 
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Figure 60: Effect of supplemental xylan on product profiles of KHb and co-cultures of KHa 

and KHb. 

Incubation was performed at 30 °C.  Values were corrected with values obtained from control 

cultures lacking xylan (i.e., Bacteroides-related isolate KHb alone and in co-culture with 

Terrisporobacter-related isolate KHa).  Xylan was provided at a final concentration of approximately 

0.1 % (w/v). The xylan stock solution was a sterile anoxic suspension prepared from autoclaved 

xylan powder.  Symbols: filled circles, acetate; empty squares, ethanol; filled triangles, H2.  Values 

are means of triplicate analysis.  Error propagations were plotted but were too little to appear as 

error bars.  Figure was modified from Hunger et al. (2011b). 
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6 Discussion 

Methanogenic food webs are widespread and can be found in natural and 

anthropogenic water-saturated habitats (Großkopf et al. 1998, Drake et al. 2009, Kato et al. 

2015) such as mires, rice fields, or the alimentary canal of animals (Ohkuma et al. 1995, 

Yanagita et al. 2000).  Those food webs have in common that a community of trophically linked 

anaerobes collectively produce CH4 from organic polymers (Drake et al. 2009, Kato et al. 

2015).  The production of CH4 by methanogenic archaea is a well-studied process in diverse 

CH4-emitting habitats but the intermediary linked processes that precedes this production are 

less well understood and for most parts conceptualized rather than resolved (Zehnder 1978, 

McInerney and Bryant 1981, Drake et al. 2009).  This dissertation contributes to the 

understanding of methanogenic food webs of mire ‘soils’, rhizospheres of mire-derived plants, 

and the alimentary canal of the earthworm E. eugeniae.  

6.1 Fermentation and associated Bacteria 

6.1.1 Contrasting mire ‘soils’ 

All ‘soils’ of the contrasting mires fermented glucose (Figure 18).  CO2, butyrate, and 

acetate were the main fermentation products along with minor products such as H2, ethanol, 

and propionate, a fermentation product profile similar to those observed with monosaccharide-

supplemented Tundra wetland ‘soil’, monosaccharide-supplemented ‘soil’ from mire 2 in earlier 

studies, and rice straw-supplemented paddy ‘soil’ (Kotsyurbenko et al. 1996 [CO2 not 

determined], Glissmann and Conrad 2000 [CO2 not determined], Hamberger et al. 2008, Wüst 

et al. 2009a). 

16S rRNA gene sequences affiliated with Acidobacteriaceae, Clostridiaceae, 

Planctomycetaceae, and Veillonellaceae increased in their relative abundance in ‘soil’ slurries 

due to the supplementation of glucose (Table 30).  Acidobacteriaceae accounted for 25-41 % 

of the bacterial community in ‘soils’ of all acidic mires (Table 30).  Acidobacteriaceae-affiliated 
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sequences were most closely related to Telmatobacter.  Telmatobacter is adapted to 

moderately acidic pH, grows under microaerophilic and anoxic conditions, and ferments sugars 

(e.g., glucose, xylose) and polysaccharides (e.g., cellulose, cellobiose) to acetate, H2, and 

traces of other compounds (Pankratov et al. 2012).  Acidobacteriaceae have been labeled with 

[13C]xylose in slurries with ‘soil’ of mire 2 in earlier studies (Hamberger et al. 2008).  

Clostridiaceae produce butyrate or acetate as major fermentation products together with other 

organic acids, alcohols, H2, and CO2, and can utilize a wide range of sugars and proteinaceous 

substrates (Wiegel 2009), and indeed were labeled with [13C]glucose and [13C]xylose in slurries 

with ‘soil’ from mire 2 in earlier studies (Hamberger et al. 2008).  Many Clostridiaceae-affiliated 

sequences from mire 4 were related to the obligate anaerobes Clostridium puniceum, 

Clostridium butyricum, and Clostridium gasigenes.  C. puniceum, C. butyricum, and 

C. gasigenes ferment sugars and produce acetate, butyrate, and H2 as fermentation products 

(Lund et al. 1981, Wiegel 2009).  Additional fermentation products are (a) lactate, formate, and 

butanol for C. puniceum, and (b) ethanol, lactate, and butanol for C. gasigenes (Lund et al. 

1981, Wiegel 2009).  Other 16S rRNA gene sequences within the Clostridiaceae were affiliated 

with the obligate anaerobes Clostridium bowmanii, Clostridium frigidicarnis, and Clostridium 

hydrogeniformans.  C. bowmanii, C. frigidicarnis, and C. hydrogeniformans ferment 

carbohydrates such as glucose and produce butyrate, acetate, H2 and CO2 (Wiegel 2009, 

Bowman et al. 2010).  Other fermentation products are (a) formate, ethanol, lactate, and 

butanol for C. bowmanii, and (b) ethanol, butanol, isobutyrate, isovalerate, oxaloacetate, and 

lactate for C. frigidicarnis (Wiegel 2009).  Planctomycetaceae-affiliated sequences were 

related to Schlesneria paludicola.  S. paludicola is a facultative aerobe that was isolated from 

peat bogs (Kulichevskaya et al. 2007).  S. paludicola ferments carbohydrates such as glucose 

and maltose (Kulichevskaya et al. 2007).  Members of Veillonellaceae ferment sugars 

predominantly to acetate, propionate, CO2, and H2 and smaller amounts of butyrate and 

succinate (Rainey 2009b). 

Members of other families that were affiliated with detected 16S rRNA gene sequences 

are known to ferment sugars or other fermentable carbohydrates (i.e., Anaerolineaceae 
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[Yamada et al. 2006], Bacillaceae [Logan and De Vos 2009], Chitinophagaceae [Krieg et al. 

2011], Cytophagaceae [Irgens 1977], Holophagaceae [Coates et al. 1999], Ignavibacteriaceae 

[Iino et al. 2010], Methylocystaceae [Xie and Yokota 2005, Madhaiyan et al. 2013], 

Moraxellaceae [Juni and Bǿvre 2005], Neisseriaceae [Kwon et al. 2008], Opitutaceae [Chin et 

al. 2001], Oxalobacteraceae [Dehning and Schink 1989], Rhodospirillaceae [Sizova et al. 

2007], Ruminococcaceae [Rainey 2009a], Spirochaetaceae [Paster 2011]) (Table 31).  

Anaerolineaceae-affiliated sequences were related to species of the obligate anaerobes 

Leptolinea and Thermanaerothrix.  Members of Leptolinea hydrolyze polymers (e.g., starch) 

and ferment sugars such as glucose and xylose to predominantly lactate, acetate, pyruvate 

and H2 with traces of succinate and formate (Yamada et al. 2006).  Members of 

Thermanaerothrix hydrolyze polymers (e.g., xylan) and ferment sugars such as glucose and 

xylose to lactate, acetate, CO2, and traces of H2 (Grégoire et al. 2011).  The Bacillaceae-

affiliated sequence was related to species of Bacillus.  Members of this genera can be 

facultative aerobes or obligate anaerobes that are capable of fermentation under anoxic 

conditions (Logan and De Vos 2009).  Other members of the Chitinophagaceae are capable 

of fermentation and assimilation of sugars (Krieg et al. 2011).  Cytophagaceae-affiliated 

sequences were related to Meniscus glaucopis.  M. glaucopis is an aerotolerant anaerobe that 

ferments sugars such as raffinose, maltose, and glucose, and produces acetate, butyrate and 

succinate as end products (Irgens 1977).  Ignavibacteriaceae-affiliated sequences were 

related to Ignavibacterium album.  I. album is an obligate anaerobe that ferments sugars such 

as glucose and maltose (Iino et al. 2010).  Holophagaceae-affiliated sequences were related 

with Geothrix fermentans.  G. fermentans ferments citrate to predominantly acetate and 

succinate under the absence of alternative electron acceptors (Coates et al. 1999).  Some 

Methylocystaceae-affiliated sequences were related to species of Pleomorphomonas.  

Species of Pleomorphomonas are facultative aerobes that are capable of glucose fermentation 

(Xie and Yokota 2005, Madhaiyan et al. 2013).  Some Moraxellaceae-affiliated sequences 

were related to Enhydrobacter aerosaccus.  E. aerosaccus is a facultative aerobe that ferments 

sugars such as glucose under anoxic conditions and grows best under microaerophilic 
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conditions (Juni et al. 2005).  Neisseriaceae-affiliated sequences were related to 

Paludibacterium, a facultative aerobe that degrades cellulose and ferments glucose and other 

sugars (Kwon et al. 2008).  Opitutaceae-affiliated sequences were related to Opitutus terrae.  

O. terrae is an obligate anaerobe that ferments mono-, di- and polysaccharides (e.g., glucose, 

cellobiose, starch) to predominantly acetate and propionate together with traces of succinate, 

lactate, formate, ethanol, and H2 (Chin et al. 2001).  Oxalobacteraceae-affiliated sequences 

were related to species of Oxalobacter.  Members of Oxalobacter are anaerobes that ferment 

oxalate by decarboxylation and release formate and CO2 (Dehning and Schink 1989, Garrity 

et al. 2005g).  Rhodospirillaceae-affiliated sequences were related to Telmatospirillum 

siberiense.  T. siberiense is a facultative aerobe that grows well under low pH conditions 

(Sizova et al. 2007).  T. siberiense is capable of fermentation under anoxic condition and 

produces acetate, CO2, and traces of formate from citrate (Sizova et al. 2007).  

Ruminococcaceae are obligate anaerobes that ferment various carbohydrates (e.g., glucose) 

to acetate, formate, butyrate, ethanol, H2, and CO2 (Rainey 2009a).  Spirochaetaceae-affiliated 

sequences were related to species of Spirochaeta.  Spirochaetaceae grow on carbohydrates 

or amino acids under anoxic or microaerophilic conditions and species of Spirochaeta ferment 

mostly di- and monosaccharides such as cellobiose and glucose, respectively (Paster 2011). 

Secondary fermenters link primary fermentation with acetogenesis and 

methanogenesis via H2 and formate (Jackson et al. 1999, Lengeler et al. 1999).  16S rRNA 

gene sequences related to secondary fermenters were detected in some mire ‘soils’ (i.e., 

Syntrophaceae, Syntrophobacteraceae, Syntrophorhabdaceae).  Syntrophaceae-affiliated 

sequences were related to the obligate anaerobic species of Syntrophus and Smithella.  

Members of both genera are capable of fermenting crotonate, aromatic compounds or fatty 

acids such butyrate (Jackson et al. 1999, Kuever et al. 2005).  Syntrophobacteraceae-affiliated 

sequences were related to species of Syntrophobacter.  Species of Syntrophobacter are 

obligate anaerobes that ferment pyruvate, fumarate, malate, lactate or propanol (Kuever et al. 

2005).  Syntrophorhabdaceae-affiliated sequences were related to species of 

Syntrophorhabdus.  Species of Syntrophorhabdus are anaerobes that degrade aromatic 
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compounds (Qiu et al. 2008).  These taxa produce H2, formate, and/or acetate as fermentation 

end products and grow best in a syntrophic relationship with a H2-, formate-, and/or acetate-

savaging microorganism such as methanogens and acetogens (does not use acetate) 

(Jackson et al. 1999, McInerney et al. 2008, Qiu et al. 2008), suggesting similar partnerships 

between detected secondary fermenters with acetogens and methanogens in analyzed mire 

‘soils’. 

Based on the known properties of the detected taxa, fermentative taxa accounted for 

26 %, 40 %, 38 %, and 63 % in the ‘soils’ of mires 1, 2, 3, and 4, respectively (Table 31), and 

might collectively drive the fermentation of glucose and other fermentable compounds in mire 

‘soils’. 

6.1.2 The rhizosphere of mire plants 

Plant roots release organic carbon and thereby generate an easily available carbon 

sources for microorganisms near the root zone (Walker et al. 2003).  In this regard, 

unsupplemented soil-free roots released considerable more acetate, butyrate, propionate, and 

H2 than unsupplemented root-free soil obtained from the same plant patches (5.4.1, 5.4.2, 

5.4.3), indicating that (a) fermentation occurred in slurries with roots rather than with soils, and 

(b) fermentation of endogenous carbon might be a more pronounced process on roots than in 

soils potentially because of higher concentrations of endogenous plant-derived carbon at the 

root.  16S rRNA gene sequences affiliated with taxa that are known to ferment carbohydrates 

were detected on mire-derived roots (i.e., Acidobacteriaceae [Pankratov et al. 2012], 

Bacteroidaceae [Holdeman and Moore 1974], Campylobacteraceae [Luijten et al. 2003], 

Chitinophagaceae [Krieg et al. 2011], Desulfuromonadaceae [Schink 1984a], 

Enterobacteriaceae [Charrier et al. 2006], Holophagaceae [Coates et al. 1999], 

Lachnospiraceae [Parshina et al. 2003], Marinilabiliaceae [Zhao and Chen 2012], 

Neisseriaceae [Kwon et al. 2008], “Nitrospiraceae” [Henry et al. 1994], Opitutaceae [Chin et 

al. 2001], Porphyromonadaceae [Ueki et al. 2006], Roseiarcaceae [Kulichevskaya et al. 

2014a], Ruminococcaceae [Rainey 2009a], Veillonellaceae [Ueki et al. 2014]) (Table 36, 
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Figure 43).  Collectively, 68 % of detected taxa had the potential for fermentation, and might 

drive the fermentation of plant-derived carbohydrates in the rhizosphere of mire plants. 

Holophagaceae and “Nitrospiraceae” were affiliated with the most abundant family-

level 16S rRNA gene phylotypes before incubation of mire-derived roots and accounted each 

for 27 % of the bacterial community (Table 36).  Holophagaceae-affiliated sequences were 

related to Geothrix fermentans (Figure 43).  G. fermentans ferments citrate to acetate and 

succinate under the absence of alternative electron acceptors (Coates et al. 1999).  

“Nitrospiraceae”-affiliated sequences clustered with Thermodesulfovibrio yellowstonii (Figure 

43).  T. yellowstonii is an obligate anaerobe that ferments pyruvate (Henry et al. 1994).  

Opitutaceae and Desulfuromonadaceae were also detected on roots before incubation (Table 

36).  One 16S rRNA gene sequence was most closely related to Opitutus terrae (Opitutaceae), 

an anaerobe that was isolated from paddy soil (Chin et al. 2001).  O. terrae ferments sugars 

to predominantly propionate and acetate along with succinate, lactate, formate, ethanol and 

H2 (Chin et al. 2001).  Desulfuromonadaceae-affiliated sequences were related to Pelobacter 

propionicus (Table 36, Figure 43).  P. propionicus is an obligate anaerobe that ferments C2 

compounds such as 2,3-butanediol to acetate and propionate (Schink 1984a).  P. propionicus 

utilizes also other alcohols, lactate and pyruvate (Schink 1984a). 

Bacteroidaceae, Enterobacteriaceae, and Veillonellaceae were affiliated with the most 

abundant phylotypes that were detected after the anoxic incubation of unsupplemented and of 

formate-H2-supplemented roots (Table 36).  Bacteroidaceae-affiliated sequences were related 

to Bacteroides eggerthii (Figure 43).  B. eggerthii is an anaerobe that ferments sugars to 

succinate and acetate (Holdeman and Moore 1974).  Enterobacteriaceae-affiliated sequences 

were related to Buttiauxella gaviniae (Figure 43).  B. gaviniae oxidizes lactose and acetate 

under oxic conditions (Müller et al. 1996) whereby other species of Buttiauxella ferment 

cellobiose, maltose, and hydrolyze chitin (Charrier et al. 2006).  Veillonellaceae-affiliated 

sequences were related to Propionispira paucivorans and Propionispira raffinosivorans (Figure 

43).  P. paucivorans and P. raffinosivorans are obligate anaerobes that ferment sugars such 
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as glucose and organic acids such as lactate or succinate to acetate and propionate (Ueki et 

al. 2014).  Neisseriaceae-affiliated sequences were also detected after anoxic incubation of 

unsupplemented and formate-H2-supplemented roots and were related to Paludibacterium 

yongneupense (Table 36, Figure 43).  P. yongneupense is a facultative aerobe that was 

isolated from wetland peat and can grow at pH 4.0 (Kwon et al. 2008).  P. yongneupense 

hydrolyzes starch and cellulose, and ferments glucose (Kwon et al. 2008). 

Lachnospiraceae-affiliated sequences were detected before and after anoxic 

incubation of unsupplemented and formate-H2-supplemented roots and were related to 

Clostridium amygdalinum (Table 36, Figure 43).  C. amygdalinum is aerotolerant and ferments 

a wide range of carbohydrates such as glucose (Parshina et al. 2003).  Fermentation of 

glucose yields acetate, ethanol, H2 and CO2 (Parshina et al. 2003).   

Campylobacteraceae and Chitinophagaceae were detected after anoxic incubation of 

unsupplemented mire-derived roots (Table 36).  The Campylobacteraceae-affiliated sequence 

was related to Sulfurospirillum halorespirans (Figure 43).  S. halorespirans ferments fumarate 

and pyruvate (Luijten et al. 2003).  One Chitinophagaceae-affiliated sequence was related to 

Chitinophaga terrae (Figure 43).  C. terrae is an aerobe that was isolated from soil and grows 

on sugars (Kim and Jung 2007).  Other members of the Chitinophagaceae are capable of 

fermentation and assimilation of sugars (Krieg et al. 2011). 

Acidobacteriaceae-affiliated sequences were detected before and after anoxic 

incubation of formate-H2-supplemented roots and were related to “Candidatus Koribacter 

versatilis” (Table 36, Figure 43).  “Candidatus K. versatilis” has the potential to degrade 

polymers (e.g., cellulose), sugars (e.g., glucose), amino acids, and alcohols based on genome 

studies (Elkins et al. 2008).  Other members of Acidobacteriaceae such as Telmatobacter 

ferment sugars to predominantly acetate and H2 (Pankratov et al. 2012). 

Marinilabiliaceae, Porphyromonadaceae, Roseiarcaceae, and Ruminococcaceae, 

were detected after anoxic incubation of formate-H2-supplemented roots (Table 36).  One 

Marinilabiliaceae-affiliated sequences was related to Alkalitalea saponilacus (Figure 43).  A. 
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saponilacus is an anaerobe that ferments sugars and polymers to predominantly acetate and 

propionate (Zhao and Chen 2012).  Porphyromonadaceae-affiliated sequences were related 

to Paludibacter propionicigenes (Figure 43).  P. propionicigenes was isolated from rice plant 

residues in an anoxic rice field soil (Ueki et al. 2006).  P. propionicigenes ferments various di- 

and monosaccharides such as cellobiose or glucose, respectively, to acetate and propionate 

(Ueki et al. 2006).  Roseiarcaceae-affiliated sequences were related to Roseiarcus fermentans 

(Figure 43).  R. fermentans was isolated from Sphagnum peat and preferably ferments sugars 

(e.g., glucose, fructose) and organic acids (e.g., succinate, malate) under microaerophilic 

conditions and a pH of 5.5-6.5 (Kulichevskaya et al. 2014a).  Propionate, acetate, and H2 are 

released as major fermentation end products from fructose (Kulichevskaya et al. 2014a).  

Ruminococcaceae-affiliated sequences were related to Clostridium sporosphaeroides (Figure 

43).  C. sporosphaeroides produces predominantly acetate, butyrate, and H2 together with 

small amounts of propionate as fermentation end products from amino acids (Rainey 2009a, 

Cibis et al. 2016).  Growth on glucose is weak and propionate is produced from lactate (Rainey 

2009a, Cibis et al. 2016). 

Members of the Enterobacteriaceae, Lachnospiraceae, and Carnobacteriaceae were 

not detected with ‘soil’ or soil slurries of contrasting mires but were isolated from a mixture of 

mire-derived roots.  Carnobacteriaceae were not detected in ‘soils’ of contrasting mires or with 

mire-derived roots (5.2.8, 5.4.6).  Citrobacter-related isolate SB1 and Hafnia-related isolate 

SB2 (Enterobacteriaceae) fermented glucose, arabinose, and citrate to ethanol, organic acids, 

CO2, and H2 (5.4.7, 5.4.8).  Root-derived Clostridium-related isolate SB3 (Lachnospiraceae) 

and Carnobacterium-related isolate SB4 (Carnobacteriaceae) fermented glucose to ethanol, 

acetate, formate, and lactate.  Clostridium-related isolate SB3 additionally produced H2. 

 

Isolate SB1 was related to Citrobacter braakii and Citrobacter freundii (Figure 45).  

Members of Citrobacter are facultative aerobes that grow via respiration or fermentation and 

stain Gram negative (Brenner et al. 2005).  C. freundii and C. braakii utilize arabinose, glucose, 
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and citrate, and produce acid and gas from glucose fermentation (Brenner et al. 2005).  

Described properties of C. freundii and C. braakii have been also observed with Citrobacter-

related isolate SB1 (5.4.7, ), indicating that isolate SB1 is a species of Citrobacter.  All species 

of Citrobacter react Catalase positive (Brenner et al. 2005) but Citrobacter-related isolate SB1 

reacted repeatedly catalase negative.  Further investigations will have to determine if the tests 

for catalase activity failed or if isolate SB1 belongs to another genus. 

Isolate SB2 was related to Hafnia alvei and Hafnia paralvei (Figure 45).  H. paralvei 

and H. alvei stain Gram negative, react oxidase negative and catalase positive, and form motile 

rods (Brenner et al. 2005, Janda and Abbott 2006, Huys et al. 2010).  Both species produce 

acid from glucose and arabinose (Brenner et al. 2005, Janda and Abbott 2006, Huys et al. 

2010).  Some strains of H. alvei utilize citrate (Janda and Abbott 2006).  Described properties 

of H. paralvei and H. alvei have been also observed with Hafnia-related isolate SB2 (5.4.7), 

indicating that isolate SB2 is a species of Hafnia. 

Isolate SB3 was related to Clostridium celerecrescens and Clostridium sphenoides 

(Figure 46).  C. celerecrescens and C. sphenoides are obligate anaerobes (Palop et al. 1989, 

Rainey 2009a).  Isolate SB3 did not grow under oxic conditions, indicating that isolate SB3 is 

an anaerobe.  It cannot be ruled out that growth under oxic conditions was inhibited by the low 

pH (i.e., pH 5.0) or that isolate SB3 tolerates low concentrations of O2 but not high 

concentrations.  C. celerecrescens reacts catalase negative (Palop et al. 1989), as 

Clostridium-related isolate SB3 did.  C. celerecrescens stains Gram positive, is motile, utilizes 

glucose, and produces ethanol, acetate, formate, butyrate, lactate, succinate, CO2, and H2 as 

major fermentation products from cellulose or cellobiose (Palop et al. 1989, Rainey 2009a).  

Cellulose and cellobiose consist of glucose molecules (Kokorevics et al. 1997, Yang et al. 

2015) and should stimulate similar product profiles than glucose.  C. sphenoides stains Gram 

negative, occurs single, paired or on chains, and is motile (Rainey 2009a), as Clostridium-

related isolate SB3 did.  C. sphenoides ferments carbohydrates such as cellobiose, maltose, 

and citrate to predominantly acetate, formate, CO2, and H2 and small amounts of lactate, 
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succinate, and ethanol (Rainey 2009a).  Fermentation profile of Clostridium-related isolate SB3 

from glucose was similar (5.4.8) to the fermentation profiles of C. celerecrescens and C. 

sphenoides with the difference that Clostridium-related isolate SB3 did not produce butyrate 

or succinate as C. celerecrescens and C. sphenoides (also no production of butyrate) did 

(Palop et al. 1989), indicating that Clostridium-related isolate SB3 might be a new species. 

Next cultured relative of isolate SB4 was Carnobacterium maltaromaticum (Figure 46).  

Isolate SB4 grew minimal under oxic conditions and did not consume supplemental formate, 

citrate, or glucose, indicating that isolate SB4 is a facultative aerobe, as C. maltaromaticum is 

(Mora et al. 2003).  Growth under oxic conditions was likely inhibited by the low pH (i.e., 

pH 5.0).  C. maltaromaticum stains Gram positive and forms rods that can appear single or in 

chains (Mora et al. 2003).  Oxidase and catalase reactions are negative (Mora et al. 2003).  

Acetate, lactate, and ethanol are fermentation end products from glucose (Mora et al. 2003). 

Gas production is weak and might in some cases be non-detectable (Mora et al. 2003).  Above 

mentioned properties of C. maltaromaticum are shared with Carnobacterium-related isolate 

SB4.  Carnobacterium-related isolate SB4 is motile in contrast to C. maltaromaticum that is 

non-motile.  Motility is not uncommon to Carnobacterium species.  For example, 

Carnobacterium mobile is motile (Collins et al. 1987).  Those properties indicate that SB4 is 

similar but not identical to C. maltaromaticum and may be a new species. 

6.1.3 The gut of the earthworm E. eugeniae 

The mucus of the earthworm gut is rich on polysaccharides and hydrolyzed mucus 

consists of diverse sugars (Rahemtulla and Løvtrup 1975, Wüst et al. 2009b). For example, 

approximately 10 mM glucose and other saccharides such as arabinose, fucose, galactose, 

isomaltose, maltose, mannose, or rhamnose can be detected in hydrolyzed mucus (Wüst et 

al. 2009b).  Glucose serves as a potential carbon source for earthworm gut-derived 

microorganisms (Wüst et al. 2011, Schulz et al. 2015).  Slurries with gut contents of the 

earthworm E. eugeniae rapidly consumed supplemental glucose and produced acetate, 

succinate, propionate, butyrate, formate, CO2, and H2 (5.5.3), indicating the presence of active 
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fermenters in the earthworm gut.  A similar glucose-driven fermentation profile was observed 

with gut contents of L. terrestris and gut contents of E. eugeniae in earlier studies (Wüst et al. 

2011, Schulz et al. 2015).  Enterobacteriaceae, Lachnospiraceae, Peptostreptococcaceae, 

and Ruminococcaceae were the most abundant phylotypes detected in gut contents of 

E. eugeniae (Table 44).  Several species within those and other family-level 16S rRNA 

phylotypes are known to be capable of fermentation (e.g., species within Anaerovorax-related 

phylotype, Christensenellaceae, Clostridiaceae).  Those taxa were capable of producing the 

above mentioned organic acids and gases from glucose.  Taken together, taxa that are capable 

of fermenting glucose or other sugars had a relative abundance of approximately 49 % in the 

light fraction before treatment (Table 44) and might collectively drive the fermentation of 

mucus- and substrate-derived sugars in the earthworm gut. 

Lachnospiraceae-affiliated sequences were detected in all slurries after the anoxic 

incubation of gut contents and were labeled by [13C]glucose-derived carbon (Table 44, Figure 

55).  Members of Lachnospiraceae were also identified as glucose fermenters in an earlier 

study with gut contents of E. eugeniae (Schulz et al. 2015), reinforcing the likelihood of this 

taxa to be involved in fermentation of sugars in the gut of E. eugeniae.  Most Lachnospiraceae-

affiliated 16S rRNA sequences were related to sequences of (a) obligate anaerobes that are 

capable of fermentation (e.g., Clostridium celerecrescens, Clostridium aminovalericum, 

Robinsoniella peoriensis), (b) the anaerobe Parasporobacterium paucivorans, and (c) the 

symbiont Epulopiscium fishelsoni (Figure 55).  Sequences affiliated with R. peoriensis 

accounted for about 50 % of total detected taxa in heavy fractions of [13C]glucose-

supplemented slurries  (Figure 55) and were labeled by [13C]glucose-derived carbon.  

R. peoriensis was isolated from swine manure (Cotta et al. 2009).  R. peoriensis hydrolyzes 

polymers (e.g., starch) and ferments sugars such as glucose or arabinose to predominantly 

acetate and succinate together with traces of formate and lactate (Cotta et al. 2009).  

C. aminovalericum ferments various carbohydrates including amino acids and sugars such as 

glucose or arabinose (Hardman and Stadtman 1960).  Not only 16S rRNA sequences but also 

about half of the detected fhs sequences were affiliated with C. celerecrescens (PLT10, Figure 
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57).  C. celerecrescens was isolated from cow manure (Palop et al. 1989).  Cow manure was 

also the substrate on which E. eugeniae was raised on before the gut contents was obtained 

for analysis (4.3).  C. celerecrescens ferments sugars such as glucose, arabinose, or mannose 

(Palop et al. 1989).  Fermentation products are ethanol, acetate, formate, butyrate, lactate, 

succinate, CO2, and H2 (Palop et al. 1989).  P. paucivorans grows on methoxylated aromatic 

compounds and sulfide, and produces acetate and butyrate together with dimethyl sulfide and 

methanethiol (Lomans et al. 2001).  P. paucivorans is not capable of utilizing common 

carbohydrates such as glucose (Lomans et al. 2001).  E. fishelsoni was isolated from the gut 

of a reef fish and is a symbiont of this fish (Montgomery and Pollak 1988).  Species-level 

phylotypes that were related to the glucose fermenting taxa C. aminovalericum and 

C. celerecrescens were most often detected in light or heavy fraction after supplementation of 

gut contents with [13C]glucose, and species-level phylotype PLT7 related to the glucose 

fermenting taxa R. peoriensis was labeled by [13C]glucose-derived carbon (Figure 55), 

indicating the capacity of those phylotypes to ferment glucose in gut contents of E. eugeniae. 

Enterobacteriaceae-affiliated sequences were labeled by [13C]glucose-derived carbon 

in slurries with supplemental [13C]glucose-H2 and in slurries with supplemental [13C]glucose 

without H2 (Table 44, Figure 55), and were related to the facultative aerobes Citrobacter 

murliniae and Erwinia persicina.  Enterobacteriaceae were also identified as glucose 

fermenters in gut contents of the earthworm L. terrestris (Wüst et al. 2009b).  C. murliniae uses 

sugars (e.g., glucose), amino acids, and organic acids (e.g., propionate) for growth (Brenner 

et al. 1999).  E. persicina utilizes sugars such as glucose and arabinose, a few amino acids, 

and a few organic acids such as acetate (Hao et al. 1990).  Fermentation of glucose yields 

succinate, lactate, formate and acetate (Brenner et al. 2005).  The metabolic potentials of 

C. murliniae and E. persicina, indicated that the related taxa fermented glucose in slurries with 

gut contents of E. eugeniae and might have been additionally stimulated by high 

concentrations of organic acids such as acetate and propionate. 
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Ruminococcaceae-affiliated sequences were detected after the anoxic incubation with 

supplemental [13C]glucose and might be minorly labeled with [13C]glucose-derived carbon 

(Table 44).  Ruminococcaceae were also minorly labeled by [13C]glucose-derived carbon in 

another study with gut contents of E. eugeniae (Schulz et al. 2015).  Detected phylotypes were 

related to sequences of the obligate anaerobes Oscillibacter ruminantium, Intestinimonas 

butyriciproducens, Eubacterium desmolans, Butyricicoccus pullicaecorum, Anaerofilum 

pentosovorans, and Clostridium sporosphaeroides, and “Candidatus Soleaferrea massiliensis” 

(Table 44, Figure 55).  O. ruminantium, I. butyriciproducens, B. pullicaecorum, A. 

pentosovorans, and C. sporosphaeroides ferment sugars such as glucose (Zellner et al. 1996, 

Eeckhaut et al. 2008, Rainey 2009a, Kläring et al. 2013, Lee et al. 2013b, Cibis et al. 2016).  

O. ruminantium produces predominantly butyrate together with traces of acetate, ethanol and 

butanol as fermentation end products (Lee et al. 2013b).  I. butyriciproducens produces 

predominantly butyrate and acetate together with traces of lactate, isovalerate, and valerate 

as fermentation end products (Kläring et al. 2013).  B. pullicaecorum produces predominantly 

butyrate together with H2 and CO2 as fermentation end products (Eeckhaut et al. 2008).  A. 

pentosovorans produces lactate, acetate, ethanol, formate, and CO2 as fermentation end 

products (Zellner et al. 1996).  C. sporosphaeroides ferments amino acids well and glucose 

weakly, and produces predominantly acetate, butyrate, and H2 together with small amounts of 

propionate (Rainey 2009a, Cibis et al. 2016).  E. desmolans was isolated from cat feces (Morris 

et al. 1986).  E. desmolans ferments inositol and produces predominantly acetate and butyrate 

with traces of succinate and lactate but cannot ferment common sugars (Morris et al. 1986).  

“Candidatus Soleaferrea massiliensis” is an anaerobe with hitherto unknown metabolic 

potentials (Pfleiderer et al. 2013).  Most detected species-level phylotypes that were affiliated 

with Ruminococcaceae are capable of fermenting glucose but only phylotypes related to O. 

ruminantium and B. pullicaecorum were slightly more abundant in heavy fractions than in light 

fractions and could potentially be labeled by [13C]glucose. 

Peptostreptococcaceae-affiliated sequences had a relative abundance of 47 % in light 

fractions before the anoxic incubation but were also detected in light fractions after incubation 
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with supplemental [13C]glucose (Table 44).  Detected phylotypes were related to obligate 

anaerobic taxa that are capable of fermentation: Clostridium bifermentans, Eubacterium tenue, 

and Romboutsia lituseburensis (Figure 55).  C. bifermentans and E. tenue ferment sugars such 

as glucose weakly (Ludwig et al. 2009, Wiegel 2009), a possible explanation why related 

phylotypes were mostly detected before incubation with [13C]glucose (Figure 55).  

C. bifermentans produces predominantly acetate, formate, and H2 together with traces of 

butyrate and propionate as fermentation end products (Wiegel 2009).  E. tenue produces 

acetate, formate, and H2 together with traces of propionate, ethanol and other alcohols as 

fermentation end products (Ludwig et al. 2009).  R. lituseburensis ferments sugars including 

glucose to predominantly formate and acetate together with traces of lactate and propionate 

(Holdeman et al. 1977, Gerritsen et al. 2014).  Detected phylotypes that were affiliated with 

Peptostreptococcaceae are potentially capable of fermenting sugars but seemed to play a 

minor role in glucose fermentation in anoxic slurries with gut contents of E. eugeniae. 

Sequences affiliated with Christensenella minuta (Christensenellaceae) were detected 

in light fractions of the unsupplemented control and of [13C]glucose-supplemented slurries after 

the incubation (Table 44).  C. minuta ferments various sugars such as arabinose, xylose, and 

glucose to predominantly acetate and butyrate (Morotomi et al. 2012), indicating that detected 

phylotypes were potentially capable of glucose fermentation but seemed to play a minor role 

in the fermentation of glucose in anoxic slurries with gut contents of E. eugeniae and might 

have grown on other sugars. 

Clostridiaceae-affiliated sequences were detected in light fractions of the 

unsupplemented control and in light fractions of [13C]glucose-supplemented slurries after the 

incubation (Table 44, Figure 55), and were related to Clostridium sartagoforme, Clostridium 

disporicum, Clostridium celatum, and Clostridium puniceum.  In contrast, Clostridiaceae were 

labeled with [13C]glucose in gut contents of the earthworm L. terrestris (Wüst et al. 2009b).  C. 

sartagoforme, C. disporicum, C. celatum, and C. puniceum are obligate anaerobes that 

ferment various carbohydrates such as glucose or cellobiose to gas and acid (Partansky and 
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Henry 1935, Hauschild and Holdeman 1974, Lund et al. 1981, Horn 1987).  For example, C. 

disporicum produces predominantly acetate and lactate with traces of succinate, butyrate, and 

ethanol (Horn 1987), and C. celatum produces predominantly acetate, formate, ethanol, and 

H2 with traces of butyrate (Hauschild and Holdeman 1974).  Related phylotypes that were 

detected in gut contents of E. eugeniae were potentially capable of glucose fermentation but 

were not labeled under the experimental conditions, indicating that detected taxa played a 

minor role in the fermentation of glucose in anoxic incubations, and since phylotypes were not 

detected before the incubation they might also play a minor role in gut contents of the 

earthworm E. eugeniae. 

A few sequences affiliated with Anaerovorax odorimutans were detected in light and 

heavy fractions before and after supplementation with [13C]glucose.  A. odorimutans is an 

obligate anaerobe and ferments only butane-1,4-diamine, 4-aminobutyrate, and 4-

hydroxybutyrateamino acids and produced butyrate, acetate and H2 (Matthies et al. 2000), 

indicating that related phylotypes that were detected in gut contents of E. eugeniae were 

unlikely involved in the fermentation of glucose. 

6.2 Formation of H2 from formate and associated taxa 

Formate can be reversibly transformed to H2 and CO2 (HCOO- + H+ ↔ H2 + CO2) by 

enzymes such as the FHL complex that consists of a formate dehydrogenase and a 

hydrogenase (Trchounian and Sawers 2014).  This reaction has a Gibbs free energy under 

standard conditions close to that of thermodynamic equilibrium (G0´ ≈ 1 kJ mol-1).  However, 

the formation or consumption of formate can be thermodynamically favorable under 

physiological conditions and subsequently be coupled to energy conservation (Andrews et al. 

1997, Dolfing et al. 2008, Kim et al. 2010, Lim et al. 2012).  For example, Thermococcus 

onnurineus and other species of Thermococcus are capable to oxidize formate with H+ as 

electron acceptor, form H2 and CO2, and conserve enough energy for growth under 

hyperthermophilic conditions (Kim et al. 2010).  The formation of H2 from supplemental formate 

has been observed with mire ‘soil’ (Figure 28), soil-free roots of different plant species, and 
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root-free soils from the same patches were roots derived from (Figure 33, Figure 34, Figure 

35). 

The first two formate pulses stimulated predominantly the production of H2 and 

subsequent pulses stimulated additionally the production of acetate and CH4 in slurries with 

mire ‘soil’ (Figure 28), indicating that H2 was formed from formate and quickly utilized by H2-

scavenging microorganisms.  Rhodospirillum-affiliated microorganisms (Rhodospirillaceae) 

were identified in those slurries as potential FHL-containing taxa that formed formate-derived 

H2 (Hunger et al. 2011a).  16S rRNA sequences affiliated with Rhodocyclaceae were detected 

in formate-supplemented ‘soil’ slurries (Hunger et al. 2011a).  Some members of this family 

such as Rhodocyclus-affiliated species are capable of photoheterotrophic growth with H2 as 

electron donor under anoxic conditions (Garrity et al. 2005h), indicating that affiliated 

microorganisms might have utilized some of the H2 before acetogenesis and methanogenesis 

was active at times of incubation when slurries were exposed to light (e.g., during gas 

analysis). 

The formation of formate-derived H2 was a major process in slurries with Carex and 

Molinia roots from mire 2 (5.4.1).  Nearly equimolar amounts of H2 were formed by Carex and 

Molinia roots in response to an initial pulse of formate (Figure 33, Figure 34, Figure 35).  

Citrobacter-related isolate SB1 and Hafnia-related isolate SB2 (Enterobacteriaceae) derived 

from a mixture of Carex and Molinia roots and were capable to form H2 from formate (Figure 

44).  The saccharolytic fermenter Escherichia coli (Enterobacteriaceae) oxidizes formate to 

CO2 with a formate dehydrogenase (HCOO-  CO2 + H+ + 2e-) and subsequently reduces the 

protons to H2 with a membrane-bound hydrogenase (2H+ + 2e-  H2) (Böhm et al. 1990, 

Andrews et al. 1997), suggesting that the formation of H2 from formate occurred in a similar 

manner in Citrobacter-related isolate SB1 and Hafnia-related isolate SB2.  E. coli has two FHL 

complexes that consist of two different group 4 [NiFe]-hydrogenases, hydrogenase 3 (Hyc) 

and hydrogenase 4 (Hyf) (Peck and Gest 1957, Böhm et al. 1990, Sauter et al. 1992, Andrews 

et al. 1997, Bagramyan et al. 2002).  Genes that encode group 4 [NiFe]-hydrogenases were 
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detected in Citrobacter-related isolate SB1 and Hafnia-related isolate SB2, indicating that the 

FHL complex of SB1 and SB2 consists of a group 4 [NiFe]-hydrogenases.   

Other FHL complexes may consist of a formate dehydrogenases and a [FeFe]-

hydrogenase, for example the FHL complexes of the acetogen Acetobacterium woodii and the 

amino acid fermenter Eubacterium acidaminophilum (Graentzdoerffer et al. 2003, Poehlein et 

al. 2012).  Group 4 [NiFe]-hydrogenase genes affiliated with Acidobacteriaceae and [FeFe]-

hydrogenase genes affiliated Neisseriaceae were detected with Carex roots that derived from 

mire 2 (Hunger et al. 2016), indicating Acidobacteriaceae and Neisseriaceae that were 

detected on a mixture of mire 2-derived roots (Figure 43) were involved in H2 formation from 

formate. 

Citrobacter-related isolate SB1 and Hafnia-related isolate SB2 co-metabolized formate 

and glucose (Figure 44), and it is likely that formate would be utilized as a co-substrate by 

those taxa under in situ conditions due to the availability of diverse root-derived organic 

molecules.  In addition, the formation of diverse fermentation products such as ethanol, lactate, 

and H2 by Citrobacter-related isolate SB1 and Hafnia-related isolate SB2 (Figure 44) 

underscore the likelihood that such FHL-containing microorganisms can be trophically linked 

to secondary consumers in the root-zone.  In this regard, Citrobacter-related isolate SB1 and 

Hafnia-related isolate SB2 derived from the initial enrichment where the acetogenic enrichment 

FH was obtained from.  This initial enrichment already converted H2-CO2 and formate to 

predominantly acetate, indicating that Citrobacter-related isolate SB1 and Hafnia-related 

isolate SB2 might have had a trophic interaction with the acetogen in the initial enrichment.  

Similar to trophic interactions with acetogens and fermenters mentioned above (6.4), 

fermentation-derived lactate and H2-CO2 from Citrobacter-related isolate SB1 and Hafnia-

related isolate SB2 might have been used by the Clostridium-related acetogen in the initial 

enrichment.  Additionally, 16S rRNA gene sequences affiliated with Thermodesulfovibrio 

yellowstonii, Aciditerrimonas ferrireducens, Clostridium amygdalinum, Sulfurospirillum 

halorespirans that reduce sulfate, thiosulfate, nitrate, or iron(III) and use H2 as source for 
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reductant have been detected on mire-derived roots (Figure 43, 6.6.2), suggesting that H2 may 

partially be utilized by taxa capable of anaerobic respiration in the root-zone. 

Under in situ conditions O2 leaks periodically from roots (Armstrong et al. 1991, 

Kraemer and Alberte 1995), and considering the ability of Citrobacter-related isolate SB1 and 

Hafnia-related isolate SB2 to respire O2 such an interaction would be beneficial for O2-sensitive 

acetogens.  Formate consumption did not yield appreciable amounts of H2 when Citrobacter-

related isolate SB1 and Hafnia-related isolate SB2 respired O2, illustrating that the potential of 

H2-scavenging microorganisms such as acetogens, methanogens, photoheterotrophs, sulfate 

reducers, nitrate reducers, and iron(III) reducers to utilize formate-derived H2 will depend on 

the metabolic status of the FHL-containing taxa. 

Those findings point out that FHL-containing taxa occur in the roots-zone and have the 

potential to form formate-derived H2.  Many of those taxa are likely facultative aerobes as 

illustrated by the detection of FHL-containing Citrobacter-related isolate SB1 and Hafnia-

related isolate SB2, both of which are facultative aerobes.  However, it should be noted that 

obligate anaerobes such as sulfate reducers and methanogens may form H2 from formate 

independent of FHL by the combined activities of formate dehydrogenase and different 

hydrogenases (e.g., in the case of methanogens, by H2-forming methylene 

tetrahydromethanopterin dehydrogenase) (Wu et al. 1993, Lupa et al. 2008, Martins and 

Pereira 2013, Martins et al. 2015).  Thus, H2 might also be produced from formate independent 

of FHL. 

6.3 Acetogenesis and associated Bacteria 

6.3.1 Contrasting mire ‘soils’ 

Acetogenesis is a known process in mire ‘soils’ but active acetogens are for most parts 

unidentified (Bräuer et al. 2004, Deppe et al. 2010, Hunger et al. 2011a).  About 22-67 % and 

12-43 % of H2-derived reductant was recovered in CH4 and acetate (Table 26, Figure 19), 

respectively, indicating that acetogenesis competed with methanogenesis for H2-CO2 in 
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slurries of all mire ‘soils’.  The apparent production of CH4 from H2-CO2 occurred before the 

apparent H2-CO2-dependent production of acetate in ‘soil’ slurries from mires 2-4 (Figure 19), 

whereas the apparent production of acetate from H2-CO2 occurred before the apparent H2-

CO2-dependent production of CH4 in ‘soil’ slurries of mire 1.  Calculations of Gibbs free energy 

indicated that methanogenesis was thermodynamically more favorable than acetogenesis in 

‘soil’ slurries from acidic mires 2-4, whereas acetogenesis was thermodynamically more 

favorable than methanogenesis in ‘soil’ slurries from pH-neutral mire 1, indicating that 

methanogenesis outcompeted acetogenesis in acidic ‘soil’ slurries to a certain extend and vice 

versa in neutral ‘soil’ slurries.  In this regard, bog ‘soil’ methanogens and acetogens can 

compete for H2-CO2 until approximately four millimolar acetate is produced, which is likely due 

to the acetate-dependent impairment of methanogenesis (Bräuer et al. 2004).  16S rRNA gene 

sequences affiliated with taxa that contain acetogens were detected in slurries of all mire ‘soils’ 

(e.g., Clostridiaceae [Wiegel 2009], Holophagaceae [Thrash and Coates 2011], 

Peptococcaceae [Ezaki 2009], Ruminococcaceae [Bernalier et al. 1996b, Rainey 2009a], 

Spirochaetaceae [Paster 2011], and Veillonellaceae [Rainey 2009b]).  In addition, 

Clostridiaceae-affiliated sequences and increased in relative abundance due to supplemental 

glucose in ‘soil’ slurries from mire 2 and were related to the acetogens Clostridium 

carboxidivorans (98 % sequence similarity, FR733710), Clostridium drakei (97 % sequence 

similarity, Y18813), and Clostridium magnum (96 % sequence similarity, X77835).  These 

acetogens grow on sugars, alcohols, and organic acids, and C. carboxidivorans and C. drakei 

are also capable of growth on H2-CO2, CO, and amino acids (Drake et al. 2008, Wiegel 2009).  

Veillonellaceae-affiliated sequences increased in relative abundance due to supplemental H2-

CO2 in slurries with ‘soil’ from mires 2 and 4 (Table 30), and some of those sequences were 

related to the sequence of the acetogen Acetonema longum (91 % 16S rRNA sequence 

similarity, AJ010964) and multiple species of Sporomusa (89 % 16S rRNA sequence similarity; 

e.g., AJ279800 and Y09976).  Sporomusa utilizes H2-CO2, organic acids, and alcohols 

whereas Acetonema utilizes H2-CO2 and sugars (Rainey 2009b).  Peptococcaceae-affiliated 

sequences were related to species of Desulfosporosinus.  Members of Desulfosporosinus are 
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obligate anaerobes that produce predominantly acetate from organic compounds and H2-CO2 

(Ramamoorthy et al. 2006, Ezaki 2009).  Holophagaceae-affiliated sequences were related to 

Holophaga foetida.  H. foetida is an obligate anaerobe that produces acetate from aromatic 

compounds such as ferulate and 5-hydroxyvanillate and pyruvate (Liesack et al. 1994, Thrash 

and Coates 2011).  Collectively, those acetogens are capable of utilizing diverse substrates 

including H2-CO2, organic acids, alcohols, aromatic compounds, amino acids, and sugars 

(Bernalier et al. 1996a, Drake et al. 2008, Ezaki 2009, Paster 2011, Thrash and Coates 2011).  

The broad substrate spectrum of acetogens indicates that detected acetogens not only 

compete with methanogens for H2-CO2 but also compete with other microbes for a wide range 

of substrates in contrasting mire ‘soils’. 

Formate was detected transiently in slurries with ‘soil’ from all mires (5.2.3) and can be 

utilized by acetogens (Drake et al. 2006, Balch et al. 1979).  Supplemental [13C]formate 

stimulated the production of acetate in slurries with ‘soil’ from mire 2 (Figure 28), acetate was 

enriched in 13C after [13C]formate supplementation, and the estimated the Gibbs free energy 

for formate-dependent acetogenesis in ‘soil’ slurries was exergonic (Figure 29), suggest that 

acetogens from ‘soil’ of mire 2 are capable to utilize formate.  fhs sequences affiliated with the 

acetogens H. foetida, C. drakei, and C. carboxidivorans (Liesack et al. 1994, Drake 2009, 

Drake et al. 2008) were detected in [13C]formate-supplemented slurries with ‘soil’ from mire 2 

but none of them was labeled by [13C]formate-derived carbon in 16S rRNA gene analysis 

(Hunger et al. 2011a).  16S rRNA gene sequences affiliated with those acetogens have been 

detected in glucose-supplemented ‘soil’ slurries from mire 2 (Table 31), supporting the 

occurrence of Clostridium- and Holophaga-affiliated acetogens in ‘soil’ of mire 2.  C. drakei can 

grow on formate but C. carboxidivorans and H. foetida cannot (Liesack et al. 1994, Küsel et al. 

2000, Liou et al. 2005), indicating that affiliated acetogens might have dissimilated but not 

assimilated formate and/or might have other properties than cultured taxa. 
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6.3.2 The rhizosphere of mire plants 

H2-CO2 and formate are utilized by acetogens in mire ‘soils’ (Bräuer et al. 2004, Wüst 

et al. 2009a) but the effect of those compounds on the production of acetate in the rhizosphere 

of mire plants is unknown.  Supplemental formate in slurries with soil-free roots from 

C. rostrata, C. nigra, and M. caerulea stimulated the production of acetate directly or indirectly 

by formate-derived H2 (Figure 33, Figure 34), indicating that some mire-derived acetogens are 

tightly associated with plant roots.  Acetogens have been detected in deep cortex cells of the 

roots of the sea grass Halodule wrightii (Küsel et al. 1999) and on the roots of Spartina 

alterniflora from a salt marsh (Leaphart et al. 2003), and have been isolated from roots of 

H. wrightii from brackish water (Küsel et al. 2001) and roots of Juncus roemerianus from a salt 

marsh (Gößner et al. 2006).  In addition, acetogenesis can be associated with rice roots 

(Conrad and Klose 1999).  The stimulation of acetate production by formate was more 

pronounced with soil-free roots than with root-free soils from the same patches were plant 

roots derived from (Figure 33, Figure 34), indicating that acetogenesis seems to play a more 

important role near the root than in the surrounding soil.  Calculations of Gibbs free energy 

indicated that the production of acetate from formate was thermodynamically more favorable 

than from H2, proposing that root-derived acetogens might have used formate directly. 

The acetogen-containing families Clostridiaceae, Holophagaceae, Peptococcaceae, 

and Veillonellaceae were detected on mire-derived roots (Table 36, Figure 43).  

Veillonellaceae- and Holophagaceae-affiliated 16S rRNA sequences were related to non-

acetogens (Figure 43).  Clostridiaceae- and Peptococcaceae-affiliated 16S rRNA sequences 

were related to the acetogens C. drakei, Clostridium scatologenes, and Desulfosporosinus 

lacus (Figure 43).  D. lacus (Peptococcaceae) produces acetate from lactate and H2-CO2 under 

the absence of alternative electron acceptors (Ramamoorthy et al. 2006).  The relative 

abundance of Clostridiaceae-affiliated sequences (Table 36) indicated that affiliated taxa might 

utilize formate and H2 as carbon and energy source.  The formate- and H2-consuming 

enrichment FH that was obtained from the same mixture of roots contained one acetogen that 

was related to the acetogens C. drakei, C. scatologenes, C. magnum, and C. carboxidivorans 
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(Figure 46).  C. drakei and C. scatologenes are obligate anaerobes with a pH optimum of pH 

5.5-7.0 (Küsel et al. 2000, Liou et al. 2005).  C. drakei, C. scatologenes, and C. carboxidivorans 

utilize cellulose, sugars, alcohols, amino acids, H2-CO2, and H2-CO (Küsel et al. 2000, Liou et 

al. 2005, Wiegel 2009).  C. magnum grows on sugars and some alcohols but not on H2-CO2 

(Schink 1984b).  C. drakei and C. scatologenes utilize formate and lactate, and produce 

skatole, whereas C. carboxidivorans and C. magnum do not (Wiegel 2009, Küsel et al. 2000, 

Whitehead et al. 2008, Liou et al. 2005).  The root-derived enrichment FH produced acetate 

from H2, formate, lactate, and CO, and does not smell like skatole, suggesting that the 

acetogen in the enrichment FH is not C. drakei, C. scatologenes, C. magnum, or 

C. carboxidivorans but is a new species. 

6.3.3 The gut of the earthworm E. eugeniae 

Supplemental H2  (potentially with CO2), formate, and methanol stimulated the 

production of acetate in an acetogenic enrichment (Figure 50) that was obtained from gut 

contents of E. eugeniae.  The production of acetate was also stimulated by H2-CO2 in 

[13C]glucose-supplemented slurries with gut contents of E. eugeniae (Figure 51), indicating the 

presence of acetogens in the earthworm gut.  A few 16S rRNA sequences affiliated with 

Terrisporobacter glycolicus were detected but not labeled in [13C]glucose-H2-supplemented 

slurries.  The final acetogenic enrichment EE contained an acetogen that was related to T. 

glycolicus and Terrisporobacter mayombei and produced acetate from H2-CO2 and formate 

(5.5.7).  fhs sequences affiliated with T. glycolicus were detected in similar abundances in 

unsupplemented and [13C]glucose-supplemented slurries (Figure 57).  T. glycolicus utilizes 

glucose, fructose, formate, lactate, and H2-CO2 (Gerritsen et al. 2014).  T. mayombei grows 

on sugars, sugar alcohols, amino acids, and H2-CO2 (Kane et al. 1991).  These findings 

indicate that the gut of E. eugeniae contains a Terrisporobacter-related acetogen that can grow 

on formate and H2-CO2, and should be able to grow on glucose but might not have been 

stimulated by the experimental conditions and thus was not labeled in [13Cglucose-

supplemented slurries. 
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Lachnospiraceae-affiliated fhs sequences were detected in [13C]glucose-supplemented 

slurries and were more abundant in slurries with supplemental H2 than in slurries lacking H2 

(Figure 57).  Those sequences belong to the species-level phylotype PLT2 and were related 

to Blautia hydrogenotrophica and Marvinbryantia formatexigens (Figure 57), indicating that the 

affiliated microorganism was stimulated by H2-CO2.  M. formatexigens utilizes sugars and 

cellulose if formate is added as co-substrate (Wolin et al. 2003).  Glucose utilization yields 

equal amounts of succinate and acetate, together with lactate if formate is added in small 

amounts (Wolin et al. 2003).  Acetate is the sole end product from glucose if high amounts of 

formate are added (Wolin et al. 2003).  Formate alone without the supplementation of another 

carbohydrate is not utilized (Wolin et al. 2003).  B. hydrogenotrophica is an obligate anaerobe 

that utilizes sugars (e.g., glucose), formate and H2-CO2 (Bernalier et al. 1996b).  Acetate is the 

major end product from growth on glucose with ethanol and lactate being minor products 

(Bernalier et al. 1996b).  The properties of B. hydrogenotrophica and M. formatexigens 

indicated that the affiliated gut-derived microorganism might be an acetogen that utilizes 

glucose, formate, and H2-CO2.  A 16S rRNA phylotype related to M. formatexigens or B. 

hydrogenotrophica was not labeled with [13C]glucose-derived carbon but another 

Lachnospiraceae-affiliated phylotype related to R. peoriensis was labeled (Figure 55).  

M. formatexigens and B. hydrogenotrophica were distantly related to R. peoriensis and shared 

91 % and 92 % 16S rRNA gene similarity with R. peoriensis, respectively.  A fhs sequence of 

R. peoriensis was not available and thus it is unresolved if 16S rRNA phylotype PLT7 and fhs 

phylotype PLT2 might belong to the same organism. 

6.4 Trophic interactions of acetogens with fermenters 

The acetogenic Terrisporobacter-related isolate KHa and the fermentative Bacteroides-

related isolate KHb were obtained from a co-culture that derived from O2-influenced Hawaiian 

forest ‘soil’.  Bacteroides-related isolate KHb fermented substrates that were not used by 

Terrisporobacter-related isolate KHa and formed products that supported the growth of KHa.  

For example, xylan was not utilized by Terrisporobacter-related isolate KHa but was fermented 
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to ethanol and H2 by Bacteroides-related isolate KHb (Figure 60).  In contrast, co-cultures of 

Terrisporobacter-related isolate KHa and Bacteroides-related isolate KHb converted xylan to 

predominantly acetate together with minor amounts of ethanol and H2, indicating that products 

from KHb (i.e., ethanol and H2) were converted to acetate by KHa (Figure 61).  The apparent 

capacity of co-cultures to convert xylan to acetate is noteworthy, given the commercial interest 

in using acetogens to convert plant biomass to useful chemicals (www.zeachem.com). 

 

Figure 61: Hypothetical model illustrating the functional redundancy of trophic interactions 

between acetogens and fermenters of contrasting habitats. 

Arrows with broken lines indicate processes of potential importance.  The model for forest ‘soil’ was 

modified from Hunger et al. (2011b). 

An acetogenic enrichment FH was obtained from mire-derived roots.  The enrichment 

FH contained three microorganisms; a Clostridium-related acetogen, a Clostridium-related 

fermenter, and a Carnobacterium-related fermenter (Figure 46).  The two fermenters were 

separated from the acetogen and were named Clostridium-related isolate SB3 and 

Carnobacterium-related isolate SB4.  Unfortunately, attempts failed to obtain the acetogen in 

pure culture.  Clostridium-related isolate SB3 and Carnobacterium-related isolate SB4 likely 
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grew on yeast extract and/or root extract (components of anoxic medium [4.4.3]) during 

enrichment of the acetogen.  Both fermenters produced ethanol, lactate, and formate from 

supplemental glucose (5.4.8).  Clostridium-related isolate SB3 also produced H2.  Acetogens 

of the genera Clostridium are capable of acetate production from ethanol, lactate, formate, and 

H2-CO2 (Küsel et al. 2000, Liou et al. 2005) and the enrichment FH produced predominantly 

acetate from yeast extract (included in medium) and supplemental formate and H2-CO2, 

indicating that the Clostridium-related acetogen produced acetate from supplemental formate 

and H2-CO2, and potentially from fermentation-derived ethanol, lactate, formate, and H2 (Figure 

61). 

Another acetogenic enrichment called EE was obtained from gut contents of E. 

eugeniae.  Enrichment EE contained a Terrisporobacter-related acetogen and a Oscillibacter-

related fermenter (5.5.7).  Oscillibacter ruminantium and Oscillibacter valericigenes are the 

next closest relatives of Oscillibacter-related fermenter that derived from the acetogenic 

enrichment EE.  O. ruminantium and O. valericigenes are obligate anaerobes that ferment 

sugars such as glucose, xylose and ribose (Lee et al. 2013b, Iino et al. 2007).  O. valericigenes 

can also grow on arabinose but O. ruminantium cannot (Lee et al. 2013b, Iino et al. 2007).  

O. ruminantium produces butyrate as major fermentation end product together with minor 

amounts of acetate, ethanol, and butanol (Lee et al. 2013b).  O. valericigenes produces valeric 

acid as major fermentation end product (Iino et al. 2007).  It is not reported if one or both 

species produce lactate, formate, and/or H2 as fermentation product (Iino et al. 2007, Lee et 

al. 2013b).  Oscillibacter-related fermenter likely grew on yeast extract and/or worm extract 

(components of anoxic medium [4.4.5]) during enrichment of the acetogen.  T. glycolicus strain 

mammoth-9 was the next closest relative of Terrisporobacter-related acetogen.  T. glycolicus 

strain mammoth-9 was isolated from the human gut (Tidjani unpublished).  Some strains of  T. 

glycolicus are acetogenic and predominantly produce acetate from sugars, formate and H2-

CO2 (strain KHa [5.6.1], RD-1 [Küsel et al. 2001]).  The utilization of butyrate is not known from 

strains of T. glycolicus (Küsel et al. 2001, Hunger et al. 2011b) or from other acetogens (Drake 

et al. 2006).  Enrichment EE produced predominantly acetate together with traces of organic 
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acids such as butyrate and ethanol from supplemental yeast extract (included in anoxic 

medium [4.4.5]), formate, and H2-CO2, indicating that the Terrisporobacter-related acetogen 

produced acetate from supplemental formate and H2-CO2, and potentially from fermentation-

derived products such as ethanol (Figure 61). 

The production of lactate, formate, and H2 by an aerotolerant fermentative bacterium 

and subsequent utilization by an acetogen has been observed with two other commensal co-

cultures, namely Thermicanus aegyptius (fermenter) with Moorella thermoacetica (acetogen) 

(Gößner et al. 1999) and Clostridium intestinale (fermenter) with Sporomusa rhizae (acetogen) 

(Gößner et al. 2006).  With Bacteroides-related fermenter KHb and Terrisporobacter-related 

acetogen KHa that derive from Hawaiian forest ‘soil’ it has been observed that ethanol ca be 

a functional link between an aerotolerant fermenter and an acetogen, reinforcing the likelihood 

of a similar trophic interaction between (a) Carnobacterium-related fermenter SB4, 

Clostridium-related fermenter SB3, and Clostridium-related acetogen SB1, and (b) 

Oscillibacter-related fermenter and the Terrisporobacter-related acetogen that derived from 

the gut of E. eugeniae. 

Acetogens are classically considered to be obligate anaerobes (Drake et al. 2008).  

Terrisporobacter-related isolate KHa tolerated minimal amounts of O2, a characteristic shared 

with other acetogens (e.g., Sporomusa aerivorans, S. rhizae, T. glycolicus RD-1) (Küsel et al. 

2001, Karnholz et al. 2002, Boga and Brune 2003, Boga et al. 2003, Gößner et al. 2006) 

whereas fermentative Bacteroides-related isolate KHb tolerated and consumed higher 

amounts of O2 than did the acetogen KHa, a pattern also observed with the aforementioned 

commensal partnerships T. aegyptius with M. thermoacetica (Gößner et al. 1999) and 

C. intestinale with S. rhizae (Gößner et al. 2006).  The aforementioned partnerships, the parent 

enrichment KH from Hawaiian forest ‘soil’, enrichment FH from mire-derived roots, and the 

enrichment EE from gut contents of E. eugeniae have in common that they were composed of 

two or three functionally linked bacteria, one being an acetogen and the other being a 

fermenter.  Although the isolation of an acetogen together with an aerotolerant fermenter might 
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be considered a laboratory phenomenon, the accidental isolation and enrichment of five such 

partnerships illustrates a type of interaction that might occur in situ between so called obligate 

anaerobes and aerotolerant fermentative microorganisms.  In the case of acetogens in habitats 

subject to fluctuations of O2 availability (e.g., temporarily O2-influenced soil, rhizosphere), it 

would seem beneficial to be associated with O2-consuming aerotolerant fermentative 

microorganisms that convert non-acetogenic substrates to products that can subsequently 

support acetogenic growth. 

6.5 Methanogenesis and associated Archaea 

6.5.1 Contrasting mire ‘soils’ 

Methanogenesis in slurries of all mire ‘soils’ was stimulated by fermentation-derived 

intermediates, supplemental acetate, and supplemental H2-CO2 (5.2).  mcrA sequences that 

were affiliated with aceticlastic and hydrogenotrophic methanogens were detected in all mire 

‘soils’ but with variable relative abundances (Figure 24). 

“Methanosaetaceae”-affiliated sequences were more abundant in the near neutral pH 

‘soil’ of mire 1 than in the other more acidic mire ‘soils’ 2-4 (Figure 24), suggesting that 

“Methanosaetaceae” is not well adapted to acidic conditions.  This possibility is reinforced by 

earlier observations on the lower abundance of “Methanosaetaceae“ in more acidic Finnish 

peatland ‘soils’ than in less acidic Finnish peatland ‘soils’ (Putkinen et al. 2009).  

Methanosarcinaceae-affiliated sequences were detected in ‘soil’ slurries of all mires but only 

in acidic ‘soils’ from mires 2-4 (Figure 24).  Species of Methanosaeta (Methanosaetaceae) and 

Methanosarcina (Methanosarcinaceae) dissimilate acetate for the production of CH4 (Garrity 

and Holt 2001).  Species of Methanosarcina also grow on H2-CO2 and may only use acetate if 

H2 is depleted (Garrity and Holt 2001).  Small amounts of H2 were produced during the 

degradation of acetate in ‘soil’ slurries of mires 1-3 (Figure 20), an observation that has been 

made with pure cultures of Methanosarcina (Garrity and Holt 2001). 
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Acetate stimulated the production of CH4 (Figure 20), and mcrA sequences affiliated to 

obligate aceticlastic methanogens (i.e., species of Methanosaeta) were detected (Figure 24), 

suggesting that acetate was dissimilated via aceticlastic methanogenesis.  Recovery of 

acetate-derived reductant with slurries from mire 1 and 2 indicated that the dissimilation of 

endogenous substrates was enhanced by supplemental acetate, i.e. that acetate might have 

had a priming effect on methanogens and potentially other microorganisms capable of utilizing 

endogenous substrates for dissimilation and acetate for assimilation (Fontaine et al. 2004).  In 

this regard, many mcrA sequences that were affiliated with hydrogenotrophic methanogens 

were detected in slurries after the supplementation of acetate, implying that hydrogenotrophic 

methanogens might have been stimulated by acetate.  Species of Methanocella 

(Methanocellaceae) and Methanoregula (Methanoregulaceae) produce CH4 from H2-CO2 and 

cannot dissimilate acetate but require acetate for assimilation and growth (Sakai et al. 2008, 

Sakai et al. 2010, Bräuer et al. 2011, Yashiro et al. 2011).  The priming effect was observed 

with slurries from mire 1 and 2 (Table 27) and mcrA sequences affiliated with 

Methanocellaceae were only detected in ‘soils’ from mire 1 and 2 (Figure 24), indicating that 

the priming effect was at least partially a result of the dissimilation of endogenous substrates 

and assimilation of supplemental acetate by Methanocella-related methanogens.  Although 

Methanocellaceae was not detected in ‘soils’ of the oligotrophic acidic mires 3 and 4, 

Methanocellales has been detected in another oligotrophic acidic mire ‘soil’ at a depth of 25 cm 

or deeper (Lin et al. 2014a), suggesting that Methanocellaceae may occur in oligotrophic acidic 

mire ‘soils’ but may not always be important to methanogenesis. 

Formate was detected transiently in ‘soil’ slurries from all mires.  Some species of 

Methanoregulaceae, Methanocellaceae, and Methanobacteriaceae can utilize formate, such 

as Methanoregula formicica, Methanolinea mesophila, Methanocella paludicola, Methanocella 

arvoryzae, and Methanobacterium formicicum (Garrity and Holt 2001, Sakai et al. 2008, Sakai 

et al. 2010, Yashiro et al. 2011, Sakai et al. 2012).  Species-level mcrA phylotypes closely 

related to those species were detected in all mire ‘soils’ (Figure 24), indicating that formate 

may also be a precursor of CH4 production in those ‘soils’. 
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Most of the detected cultured methanogens grow over a pH range of five to nine but 

prefer pH neutral conditions (Garrity and Holt 2001).  An exception is Methanoregula boonei 

(Methanoregulaceae) that has a more acidic pH range (i.e., pH 4.5 to 5.5) (Bräuer et al. 2011).  

The properties of M. boonei are consistent with the observation that the relative abundance of 

Methanoregula-affiliated sequences increased in mire ‘soils’ (Figure 23) with decreasing pore 

water pH (Table 24).  Methanogens that can dissimilate H2-CO2 accounted for 56-87 % of the 

detected abundance of methanogens in mire ‘soils’, whereas methanogens that can dissimilate 

acetate accounted for only 22-39 % of the detected abundance of methanogens, highlighting 

the potential contrasting importance of hydrogenotrophic and aceticlastic methanogenesis in 

the investigated mires. 

6.5.2 The rhizosphere of mire plants 

Formate is one of the most important low-molecular-weight organic acids that are 

released from roots of wetland plants (Koelbener et al. 2010), and can serve as a substrate for 

methanogenesis (Balch et al. 1979).  Supplemental formate stimulated the production of CH4 

directly or indirectly due to the production of formate-derived H2 in slurries with soil-free roots 

from C. rostrata but not with roots from C. nigra or M. caerulea (5.4).  The production of CH4 

from supplemental formate was observed in all slurries with root-free soil from the same 

patched where roots derived from (5.4), indicating that methanogenesis may occur on mire 

derived-roots but is more pronounced in the surrounding soil.  Methanogenesis was one of the 

minor processes on mire derived-roots in comparison to formate-driven acetogenesis and the 

formation of formate-derived H2.  The production of CH4 from formate was thermodynamically 

more favorable than from H2 (Figure 37), indicating that root-derived methanogens might have 

used formate directly.  mcrA sequences affiliated to hydrogenotrophic and aceticlastic 

methanogens were obtained from soil-free roots of C. rostrata (Figure 40).  Species of 

Methanoregulaceae and Methanosarcinaceae can be abundant in mire ‘soil’ cores that contain 

roots (Figure 24, Hunger et al. 2011a, Schmidt et al. 2016) and were also the most abundant 

families (together with Methanobacteriaceae) from roots prior to incubation (Figure 40).  In 
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contrast to Carex roots, species of Methanobacteriaceae were detected with low abundances 

in contrasting mire ‘soils’ (Figure 24), indicating that species of Methanobacteriaceae may be 

more important on roots than in soils in terms of relative contribution to CH4 production.  

Methanoregulaceae-affiliated sequences were related to Methanoregula boonei and 

Methanosarcinaceae-affiliated sequences were related to Methanobacterium lacus (Figure 

40).  M. boonei and M. lacus produce CH4 from H2 and CO2 but not from formate (Bräuer et al. 

2011, Borrel et al. 2012, Cadillo-Quiroz et al. 2014).  Other members of Methanoregulaceae 

such as Methanoregula formicica can utilize H2 and formate (Yashiro et al. 2011); however, 

the detected mcrA sequences were only distantly related to this taxon.  The detected 

Methanoregula-affiliated sequences were most closely related to species that utilize H2 and 

CO2 (i.e., M. boonei, 92-98 % amino acid sequence similarity) rather than formate (i.e., M. 

formicica, 83-86 % amino acid sequence similarity).  Acetate is not utilized for the production 

of CH4 by M. boonei and M. lacus but stimulates the growth of these species (Bräuer et al. 

2011, Borrel et al. 2012, Cadillo-Quiroz et al. 2014).  Unlike other species of Methanosarcina 

that can grow on H2 (Balch et al. 1979), Methanosarcina horonobensis grows on acetate but 

not on H2 or formate (Shimizu et al. 2011).  In this regard, the highest relative abundance of 

M. horonobensis-affiliated sequences was detected in formate-supplemented Carex root 

incubations in which acetate was readily available (Figure 33, Figure 40).  Methanosaeta-

affiliated sequences were only detected with Carex roots before incubation (Figure 40).  That 

members of this acetate-utilizing genus grow slower than acetate-utilizing species of the genus 

Methanosarcina (Jetten et al. 1992) is consistent with the occurrence of Methanosarcina-

affiliated taxa rather than Methanosaeta-affiliated taxa after prolonged incubations in which 

acetate was readily available.  Based on the relative abundance of sequences detected with 

Carex roots (Figure 40), methanogens related to Methanocella paludicola and Methanocella 

arvoryzae had a low relative abundance on Carex roots.  M. paludicola and M. arvoryzae use 

formate, H2, and CO2 but not acetate for methanogenesis and occurred in low abundance in 

mire ‘soil’ cores containing roots (Figure 24, Sakai et al. 2008).  Methanocella-related taxa 

associated with Carex roots were not stimulated by supplemental formate (Figure 40), which 



DISCUSSION 

219 

is in contrast to earlier studies with ‘soil’ from the same mire (Hunger et al. 2011a) and might 

an indication of different methanogenic communities on roots and the surrounding soils.  

Approximately 74 % of the methanogens detected on roots before the incubation were 

affiliated to taxa that utilize H2 and CO2, whereas only approximately 7 % were affiliated to 

methanogenic taxa that utilize formate in addition to H2 and CO2 (Figure 40).  Even so, acetate 

accumulated in response to formate-pulses and a degradation was not observed, almost all 

detected methanogens are capable of dissimilation of acetate or require acetate for 

assimilation, indicating an essential importance of acetate to root-derived methanogens.  In 

earlier studies with ‘soil’ from the same mire, microorganisms related to Methanobacterium 

formicicum and Methanocella species were labeled from [13C]formate-derived carbon (Hunger 

et al. 2011a).  Those taxa have not been detected or not been stimulated by supplemental 

formate in slurries with Carex roots, indicating that formate-dependent methanogenesis might 

be driven by different methanogens on roots and surrounding soil.  The collective observations 

on methanogenic activities and detected methanogenic taxa suggest that H2-dependent 

methanogenesis was more important than formate-dependent methanogenesis to the initial 

methanogenic activity associated with Carex roots. 

6.5.3 The gut of the earthworm E. eugeniae 

Earthworms are known to emit the greenhouse gas N2O (Horn et al. 2006a).  Recently, 

it has been observed that earthworms of the species E. eugeniae also emit the CH4 in vivo 

(Depkat-Jakob et al. 2012).  [13C]glucose-supplemented slurries with gut contents of 

E. eugeniae produced 13C-enriched CH4 (Table 41), indicating that CH4 emitted from 

earthworms derives from methanogenesis in the earthworm gut.  Supplemental [13C]glucose 

stimulated the production of H2, CO2, acetate, and formate that were potentially used for the 

production of CH4.  mcrA sequences and transcripts affiliated with hydrogenotrophic and 

aceticlastic methanogens have been detected in gut contents of E. eugeniae (Figure 48).  All 

species-level phylotypes that were detected in gut contents were also detected in the substrate 

used to raise earthworms on (Figure 49), indicating that gut-associated methanogens derived 
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from the substrate earthworms were raised on.  Relative abundances of taxa detected in gut 

contents and substrate were similar for mcrA and mcrA transcript sequences, except for 

species-level phylotype PLT11 (Figure 49).  

Species-level phylotype PLT11 is related to Methanobacterium formicicum 

(Methanobacteriaceae) and became activated in gut contents.  In this regard, M. formicicum-

affiliated methanogens were also detected in the formate- and H2-utilizing methanogenic 

enrichment that derived from gut contents of E. eugeniae (Table 27) and were labeled with 

[13C]glucose-derived carbon in an earlier study with gut contents of E. eugeniae (Schulz et al. 

2015).  M. formicicum uses H2-CO2 and formate for the production of CH4 (Balch et al. 1979).  

mcrA transcripts affiliated with Methanobacterium ivanovii (Methanobacteriaceae) were 

detected (Figure 49).  M. ivanovii utilizes H2-CO2 for the production of CH4 and requires acetate 

for growth (Garrity and Holt 2001).  This results indicates, that Methanobacteriaceae-affiliated 

methanogens may grow on formate and H2 in the gut of E. eugeniae. 

Methanosarcinaceae-affiliated sequences were related to Methanosarcina mazei and 

formed the most abundant phylotype on both gene and transcript level in gut contents as well 

as in the substrate (Figure 49).  M. mazei uses H2-CO2, acetate, methanol, methylamine and 

trimethylamine for the production of CH4 (Liu et al. 1985).  Growth on acetate can be very weak 

with some strains and very rapidly with other strains (Liu et al. 1985), and acetate may only be 

used when H2 is not available (Garrity and Holt 2001).  Unsupplemented gut contents showed 

an immediate release of H2 (Figure 51), indicating that H2 is also present in the gut of 

E. eugeniae and proposing that Methanosarcina-affiliated phylotypes dissimilated likely H2 

rather than acetate. 

Methanomicrobiaceae-affiliated sequences were more often detected than 

Methanomicrobiaceae-affiliated transcripts in gut contents, and were related to 

Methanoculleus palmolei, Methanoculleus chikugoensis, and Methanoculleus marisnigri 

(Figure 49).  M. palmolei, M. chikugoensis, and M. marisnigri produce CH4 from H2-CO2, 

formate, 2-propanol-CO2, 2-butanol-CO2, and cyclopentanol-CO2 (Maestrojuán et al. 1990, 
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Zellner et al. 1998, Dianou et al. 2001), indicating that some methanogens in the gut of E. 

eugeniae might grow on secondary alcohols.  M. palmolei and M. chikugoensis require acetate 

for assimilation but M. marisnigri does not (Romesser et al. 1979, Maestrojuán et al. 1990, 

Zellner et al. 1998, Dianou et al. 2001). 

mcrA sequences or transcripts affiliated with Methanoregula formicica, 

Methanospirillum hungatei, Methanocella paludicola, Methanobacterium palustre, and 

Methanosaeta concilii were rarely detected, indicating that related phylotypes were of minor 

importance in gut contents of E. eugeniae.  M. formicica, M. hungatei, M. paludicola, and M. 

palustre are hydrogenotrophic methanogens that utilize H2-CO2 or formate (Ferry et al. 1974, 

Sakai et al. 2008, Yashiro et al. 2011), whereas aceticlastic M. concilii uses only acetate for 

the production of CH4 (Touzel et al. 1988, Patel and Sprott 1990).  M. palustre was isolated 

from a peat bog and can also use propanol-CO2 for the production of CH4 (Zellner et al. 1989). 

Methanogens that can dissimilate H2-CO2 accounted for 96-99 % in gut contents, 

whereas methanogens that can dissimilate acetate and H2-CO2 accounted for only 55-65 %, 

highlighting the potential importance of hydrogenotrophic and aceticlastic methanogenesis in 

gut contents of E. eugeniae.  About 25 % of detected mcrA phylotypes were affiliated with 

methanogens that use secondary alcohols such as 2-butanol and 2-propanol together with 

CO2 in addition to H2-CO2 for the production of CH4, indicating that methanogenesis in gut 

contents of E. eugeniae might also be driven by secondary alcohols.  In this regard, taxa that 

produce secondary alcohols were detected in slurries with gut contents, for example 

Oscillibacter ruminantium produces butanol from glucose fermentation (Lee et al. 2013b). 

6.6 Other processes and associated Bacteria 

6.6.1 Contrasting mire ‘soils’ 

Sulfate and/or nitrate were detected in all mire ‘soils’ (Table 24).  16S rRNA gene 

sequences that were affiliated with taxa capable of anaerobic respiration were detected in mire 

‘soils’ and/or ‘soil’ slurries (e.g., Acidimicrobiaceae, Bacillaceae, Bradyrhizobiaceae, 
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Comamonadaceae, Conexibacteraceae, Desulfobacteraceae, Geobacteraceae, 

Holophagaceae, Hyphomicrobiaceae, Moraxellaceae, Mycobacteriaceae, Neisseriaceae, 

“Nitrospiraceae”, Rhodospirillaceae, Steroidobacter, Thermomonosporaceae) (Table 48).  

Collectively, the detected taxa are capable to reduce sulfate, nitrate, iron(III), and humic acids, 

and may utilize organic acids, multi-carbon compounds, or H2 as sources of reductant (Coates 

et al. 1999, Kuever et al. 2005, Juni and Bǿvre 2005).  Most of those taxa are aerobes that 

preferentially respire different carbohydrates such as sugars, organic acids, amino acids, or 

alcohols (e.g., Acidimicrobiaceae [Itoh et al. 2011], Bacillaceae [Logan and De Vos 2009], 

Bradyrhizobiaceae [Garrity et al. 2005e], Comamonadaceae [Spring et al. 2004], 

Conexibacteraceae [Whitman and Suzuki 2012], Hyphomicrobiaceae [Garrity et al. 2005f], 

Methylocystaceae [Xie and Yokota 2005], Moraxellaceae [Pagnier et al. 2011], 

Mycobacteriaceae [Magee and Ward 2012], Neisseriaceae [Lin et al. 2008, Lee et al. 2013a], 

Rhodospirillaceae [Dziuba et al. 2016], Steroidobacter [Fahrbach et al. 2008, Sakai et al. 

2014], Thermomonosporaceae [Goodfellow and Trujillo 2012]), and some grow via 

phototrophy (e.g., Bradyrhizobiaceae [Garrity et al. 2005e], Hyphomicrobiaceae [Garrity et al. 

2005f]), or methylotrophy (e.g., Hyphomicrobiaceae [Garrity et al. 2005f]). 

Acidimicrobiaceae, Bradyrhizobiaceae, and a cluster related to Conexibacteraceae, 

Patulibacteraceae, and Solirubrobacteraceae were detected in ‘soils’ and/or ‘soil’ slurries of all 

mires (Table 31).  Acidimicrobiaceae-affiliated sequences were related to Aciditerrimonas 

ferrireducens.  A. ferrireducens is an acidophilic facultative aerobe that grows on sugars under 

oxic conditions and reduce iron(III) autotrophically with H2 under anoxic conditions (Itoh et al. 

2011).  Members of Bradyrhizobiaceae utilize nitrate as terminal electron acceptor under 

anoxic conditions together with sugars or amino acids (Garrity et al. 2005e).  Growth via 

respiration of O2 or photoheterotrophically is also possible (Garrity et al. 2005e).  Most species 

of Bradyrhizobiaceae fix N2 as intracellular nitrogen-fixing symbionts located in plant roots 

(Garrity et al. 2005e).  A cluster of sequences was equally close related to 16S rRNA gene 

sequences of Conexibacter, Patulibacter, Solirubrobacter (Conexibacteraceae, Patuli-

bacteraceae, Solirubrobacteraceae).  Members of Conexibacter reduce nitrate but prefer to 
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reduce O2 (Whitman and Suzuki 2012).  Members of Conexibacter, Patulibacter, 

Solirubrobacter are aerobes that grow on sugars such as glucose, cellobiose or amino acids 

(Whitman and Suzuki 2012). 

Hyphomicrobiaceae and Thermomonosporaceae were detected in ‘soils’ and/or ‘soil’ 

slurries of mires 1-3 (Table 48).  Hyphomicrobiaceae-affiliated sequences were related to 

species of Hyphomicrobium, Rhodoplanes, or Blastochloris.  Some species of 

Hyphomicrobium grow anaerobically with nitrate as the terminal electron acceptor together 

with C1 compounds such as methanol, methylamines, dichloromethane or methyl sulfate 

(Garrity et al. 2005f) whereas most species grow aerobically with O2 as the terminal electron 

acceptor together with C1 or C2 compounds such as methanol and acetate (Garrity et al. 2005f).  

Species of Rhodoplanes are anaerobes and species of Blastochloris are aerobes that grow 

photoheterotrophically on simple organic compounds such as acetate (Garrity et al. 2005f).  

The relative abundance of Hyphomicrobiaceae increased in slurries with ‘soil’ from mire 1 due 

to the supplementation of glucose and acetate, indicating that affiliated microorganisms might 

have grown on acetate (available in high amounts in glucose-supplemented slurries) during 

times of exposure to light (e.g., taking samples for chemical analysis).  Thermomono-

sporaceae-affiliated sequences were related to Actinomadura and Actinoallomurus.  Members 

of Actinomadura reduce nitrate but prefer O2 as electron acceptor and grow on amino acids 

and sugars such as glucose (Goodfellow and Trujillo 2012).  Some species of Actinoallomurus 

were isolated from roots (Indananda et al. 2011, Tang et al. 2013) and oxidize sugars or amino 

acids under oxic conditions (Indananda et al. 2011, Tang et al. 2013). 

Holophagaceae-affiliated sequences were detected in ‘soil’ slurries from mires 2 and 

‘soils’ from mire 3, and were related to Geothrix fermentans.  G. fermentans is an obligate 

anaerobe that reduces iron(III) and oxidizes organic acids such as acetate (Coates et al. 1999, 

Thrash and Coates 2011). 

Neisseriaceae-affiliated sequences were detected in ‘soil’ slurries of mires 2 and 4 

(Table 48), and some sequences were related to Pseudogulbenkiania.  Members of 
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Pseudogulbenkiania reduce nitrate under anoxic conditions but prefer O2 as electron acceptor 

and grow on sugars, organic acids and alcohols (Lin et al. 2008, Lee et al. 2013a). 

Geobacteraceae and Moraxellaceae were detected in ‘soils’ and/or ‘soil’ slurries of 

mires 1 and 2 (Table 48).  Geobacteraceae-affiliated sequences were related to members of 

Geobacter.  Members of Geobacter are obligate anaerobes that reduces iron(III), nitrate, and 

humic acids and use H2, formate, acetate and other multi-carbon compounds as electron 

and/or carbon sources (Kuever et al. 2005).  Moraxellaceae-affiliated sequences were related 

to members of Reyranella and Enhydrobacter.  Members of both genera are aerobes that are 

capable of reducing nitrate under microaerophilic or anoxic conditions (Juni and Bǿvre 2005).  

With O2 present, members of Reyranella oxidize sugars and polymers, and grows under low 

pH conditions (Lee et al. 2014b, Kim et al. 2013, Pagnier et al. 2011), whereas members of 

Enhydrobacter oxidize ethanol and organic acids such as acetate, ethanol, lactate, succinate, 

and formate (Juni and Bǿvre 2005). 

“Nitrospiraceae”-affiliated sequences were detected in ‘soils’ and/or ‘soil’ slurries of 

mires 1 and 3 (Table 48).  Detected sequences were related to Nitrospira marina and Nitrospira 

moscoviensis.  Nitrospira moscoviensis uses nitrate as electron acceptor under anoxic 

conditions but prefers O2 (Ehrich et al. 1995).  N. marina and N. moscoviensis oxidize nitrite to 

nitrate and may use CO2 as sole carbon source under oxic conditions (Ehrich et al. 1995, 

Watson et al. 1986). 

Rhodospirillaceae-affiliated sequences were detected in ‘soils’ and/or ‘soil’ slurries of 

mires 1 and 4 (Table 48), and were related to species of Magnetospirillum.  Members of 

Magnetospirillum prefer microaerophilic conditions and O2 as terminal acceptor but may also 

use other electron acceptor such as nitrate and grow on organic acids such as butyrate and 

lactate (Schleifer et al. 1991, Dziuba et al. 2016). 

Bacillaceae, Comamonadaceae, Desulfobacteraceae, and Steroidobacter (family-level 

phylotype 29) were detected only in ‘soil’ and/or ‘soil’ slurries of mire 1 (Table 48).  The 

Bacillaceae-affiliated sequence was related to species of Bacillus (Table 48).  Members of 
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Bacillus may reduce nitrate besides fermentation under anoxic conditions (Logan and De Vos 

2009).  Organic acids, sugars, H2, amino acids, and alcohols support grow via respiration 

(Logan and De Vos 2009).  Comamonadaceae-affiliated sequences were related to Ottowia 

thiooxydans and Ramlibacter solisilvae.  O. thiooxydans reduces nitrate but prefers O2 for 

respiration (Spring et al. 2004).  O. thiooxydans and R. solisilvae are facultative aerobes 

(Spring et al. 2004, Willems and Gillis 2005, Lee et al. 2014a).  O. thiooxydans grows on 

organic acids or amino acids (Spring et al. 2004) whereas R. solisilvae grows on a few sugars 

(Lee et al. 2014a).  Desulfobacteraceae-affiliated sequences were related to Desulfonema 

magnum.  D. magnum is an obligate anaerobe that reduces sulfate and uses organic acids 

such as formate, succinate, and acetate as electron and carbon source (Kuever et al. 2005).  

The genus Steroidobacter belongs to the order Xanthomonadales but is not classified on family 

level (according to ‘List of prokaryotic names with standing nomenclature’, www.bacterio.net).  

Members of Steroidobacter reduce nitrate under anoxic conditions but prefer O2 as electron 

acceptor and use steroidal hormones, polymers, sugars or acetate as electron and carbon 

source (Fahrbach et al. 2008, Sakai et al. 2014). 

The Mycobacteriaceae-affiliated sequence was detected in ‘soil’ slurries of mire 2 

(Table 48).  Members of Mycobacteriaceae prefer O2 as terminal electron acceptor but use 

nitrate as well and grow on pyruvate, citrate, and sugars such as xylose and sucrose (Magee 

and Ward 2012). 

Some Methylocystaceae-affiliated sequences were related to species of 

Pleomorphomonas and increased in relative abundance due to acetate supplementation in 

slurries with ‘soil’ from mire 4 (i.e., 41 % relative abundance, Table 48).  Species of 

Pleomorphomonas can grow on acetate and reduce nitrate (Xie and Yokota 2005, Madhaiyan 

et al. 2013), indicating a similar metabolism of Pleomorphomonas-affiliated microorganisms in 

mire ‘soil’. 

 



DISCUSSION 

226 

As indicated above many of the detected phylotypes are facultative aerobes.  More 

16S rRNA gene sequences that were detected are related to taxa that use O2 as electron 

acceptor and grow on polymers, sugars, or alcohols (e.g., Armatimonadaceae [Tamaki et al. 

2011], Caulobacteraceae [Garrity et al. 2005c], Ktedonobacteraceae [Cavaletti et al. 2006], 

Phaselicystidaceae [Garcia et al. 2009], Polyangiaceae [Reichenbach et al. 2006], 

Rhodocyclaceae [Weon et al. 2008], Xanthobacteraceae [Garrity et al. 2005a]).  

Armatimonadaceae-affiliated sequences were detected in ‘soil’ slurries of mire 4 (Table 48) 

and were related to Armatimonas rosea.  A. rosea grows on a few sugars, yeast extract, pectin 

and gellan gum (Tamaki et al. 2011).  Ktedonobacteraceae-affiliated 16S rRNA gene 

sequences were detected in ‘soil’ slurries of mire 2 (Table 48) and were related to 

Ktedonobacter racemifer.  K. racemifer grows under microaerophilic conditions and hydrolyzes 

starch (Cavaletti et al. 2006).  A few sequences were related to Phaselicystis flava 

(Phaselicystidaceae) and Byssovorax cruenta (Polyangiaceae).  Phaselicystis flava utilizes 

sugars (Garcia et al. 2009).  Byssovorax cruenta utilizes sugars and polymers such as 

cellulose and chitin (Reichenbach et al. 2006).  Rhodocyclaceae-affiliated sequences were 

detected in ‘soil’ slurries of mire 2 (Table 48) and were related to Uliginosibacterium 

gangwonense.  U. gangwonense was isolated from a Korean wetland, degrades polymers 

such as starch and cellulose, and grows on sugars such as glucose (Weon et al. 2008).  The 

Xanthobacteraceae-affiliated sequence was detected in ‘soil’ of mire 1 (Table 48) and was 

related to species of Labrys (Garrity et al. 2005a).  Members of Labrys grow on sugars such 

as glucose (Garrity et al. 2005a).  Family-level phylotype 1-affiliated sequences were detected 

in ‘soils’ of mires 2-4 and in ‘soil’ slurries of all mires (Table 48), and were related to the aerobic 

taxa “Candidatus Solibacter usitatus” and Bryobacter aggregatus.  “Candidatus S. usitatus” 

may be able to utilize polymers, sugars, amino acids, and alcohols, whereas B. aggregatus 

utilizes polysaccharides and sugars (Ward et al. 2009, Kulichevskaya et al. 2010), suggesting 

that members of family-level phylotype 1 might hydrolyze polymers and oxidize sugars in mire 

‘soils’. 
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Some members of the taxa mentioned above and other detected taxa that were 

detected can (a) fix N2 (e.g., Acetobacteraceae [Sievers and Swings 2005], Beijerinckiaceae 

[Garrity et al. 2005d], Bradyrhizobiaceae [Garrity et al. 2005e], Methylocystaceae [Bowman 

2005], Oxalobacteraceae [Garrity et al. 2005g], Rhizobiaceae [Kuykendall 2005]), (b) grow 

under low pH conditions (e.g., Acetobacteraceae [Sievers and Swings 2005], 

Acidimicrobiaceae [Norris 2012], Acidobacteriaceae [Thrash and Coates 2011], 

Beijerinckiaceae [Garrity et al. 2005d], Ktedonobacter [Cavaletti et al. 2006], Rhodocyclaceae 

[Weon et al. 2008]), (c) grow via methylotrophy (e.g., Beijerinckiaceae [Garrity et al. 2005d], 

Hyphomicrobiaceae [Garrity et al. 2005f], Methyloceanibacter [Takeuchi et al. 2014], 

Methylocystaceae [Bowman 2005]), or (d) grow photoheterotrophically (e.g., 

Acetobacteraceae [Sievers and Swings 2005], Bradyrhizobiaceae [Garrity et al. 2005e], 

Hyphomicrobiaceae [Garrity et al. 2005f]).  Acetobacteraceae-affiliated sequences were 

detected in ‘soil’ slurries of all mires (Table 48) and were related to Rhodopila globiformis.  

R. globiformis is a phototrophic purple non-sulfur bacterium that prefers to grow 

photoheterotrophically under anoxic conditions with for example gluconate, mannitol, ethanol 

or fructose (Sievers and Swings 2005). Other sugars or organic acids are assimilated in low 

concentrations (Sievers and Swings 2005).  Bradyrhizobiaceae-affiliated sequences were 

detected in ‘soils’ and ‘soil’ slurries of all mires (Table 48).  Most species of Bradyrhizobiaceae 

fix N2 as intracellular nitrogen-fixing symbionts located in plant roots (Garrity et al. 2005e).  A 

few sequences affiliated with Methyloceanibacter caenitepidi were detected in ‘soil’ slurries of 

mire 1 (Table 44).  M. caenitepidi is a facultative methylotroph that utilizes methanol and 

methylamines, but can also oxidize acetate (Takeuchi et al. 2014).  Some sequences that were 

affiliated with Methylocystaceae were related to species of Methylocystis (Bowman 2005).  

Members of Methylocystis are aerobic methylotrophs that grow only on CH4 and methanol 

(Bowman 2005).  Beijerinckiaceae-affiliated sequences were detected in ‘soils’ of mires 2-4 

and in ‘soil’ slurries of all mires (Table 48) and were related to species of Methanocella and 

Beijerinckia.  Members of Beijerinckia utilize sugars, organic acids, and alcohols whereas 

members of Methanocella oxidize methanol or CH4 (Garrity et al. 2005d). 
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The availability of O2 can fluctuate in mire ‘soils’ due to varying water tables, and taxa 

with facultative metabolic potentials have theoretical advantages over O2-sensitive obligate 

anaerobes such as methanogens during such fluctuations in O2 availability.  In this regard, (a) 

detected bacterial 16S rRNA gene sequences were affiliated with taxa that are thought to be 

obligate aerobes (e.g., Caulobacteraceae [Garrity et al. 2005c] and Thermomonosporaceae 

[Goodfellow and Trujillo 2012], Table 31) and (b) tolerance to O2 and/or the ability to grow 

under both oxic and anoxic conditions are properties of many of the detected taxa (e.g., 

Acidimicrobiaceae [Itoh et al. 2011] and Acidobacteriaceae [Thrash and Coates 2011, 

Pankratov et al. 2012], Table 31). 

 

Some 16S rRNA gene sequences were affiliated with taxa that grow within eukaryotes 

(e.g., “Candidatus Xiphinematobacter” [Vandekerckhove et al. 2000], Coxiellaceae [Santos et 

al. 2003]), suggesting that certain eukaryotes in mire ‘soils’ might harbor endosymbiotic 

bacteria.  “Candidatus Xiphinematobacter”-affiliated sequences were detected in ‘soil’ and ‘soil’ 

slurries of mire 1 (Table 48).  Members of “Candidatus Xiphinematobacter” are known as 

endosymbionts of nematodes (Vandekerckhove et al. 2000).  Coxiellaceae-affiliated 

sequences were detected in ‘soil’ slurries of mire 4 (Table 48) and were related to species of 

Aquicella.  Members of Aquicella grow within protozoa (Santos et al. 2003).  One 16S rRNA 

gene sequence was most closely related to Micavibrio (Bdellovibrionaceae), a taxon that preys 

as an exoparasite preferentially on bacteria of the genera Pseudomonas and Xanthomonas 

(Kuever et al. 2005).  These collective properties illustrate the broad metabolic diversity of 

bacterial communities in mire ‘soils’. 

6.6.2 The rhizosphere of mire plants 

16S rRNA gene sequences that were affiliated with taxa capable of anaerobic 

respiration were detected on mire-derived roots before and/or after anoxic incubation (i.e., 

Holophagaceae [Coates et al. 1999], Lachnospiraceae [Parshina et al. 2003], “Nitrospiraceae” 

[Spring et al. 1993, Henry et al. 1994], Peptococcaceae [Ramamoorthy et al. 2006], 
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unclassified family-level phylotype 1 [Itoh et al. 2011]).  Collectively, the detected taxa are 

capable to reduce sulfate, nitrate, iron(III), sulfite, benzaldehyde, and thiosulfate, and may 

utilize organic acids, sugars, or H2 as electron donor [Spring et al. 1993, Coates et al. 1999, 

Parshina et al. 2003]. 

Holophagaceae and “Nitrospiraceae” were the most abundant family-level phylotypes 

before incubation of mire-derived roots and accounted each for 27 % of the bacterial 

community (Table 36).  Geothrix fermentans belongs to the family Holophagaceae (Figure 43) 

and respires iron(III) or nitrate together with organic acids such as acetate, propionate of 

lactate under anoxic conditions (Coates et al. 1999).  “Nitrospiraceae”-affiliated sequences 

clustered with "Candidatus Magnetobacterium bavaricum" and Thermodesulfovibrio 

yellowstonii.  "Candidatus M. bavaricum" is most abundant in microaerobic zones and grows 

by anaerobic respiration with iron(III) (Spring et al. 1993).  T. yellowstonii is an obligate 

anaerobe and grows not only by fermentation but also by reduction of sulfate, sulfite, and 

thiosulfate, and oxidation of lactate, pyruvate, and H2 whereas acetate is releases after 

incomplete oxidation of lactate and pyruvate (Henry et al. 1994).  Sequences affiliated with 

unclassified family-level phylotype 1 were detected on mire-derived roots before incubation 

were related to Aciditerrimonas ferrireducens (Table 36, Figure 43).  A. ferrireducens is a 

facultative aerobe that grows with pH 2.0-4.5 and respires iron(III) together with sugars or H2 

under anoxic conditions (Itoh et al. 2011).  Peptococcaceae-affiliated sequences were 

detected before incubation of mire-derived roots and some sequences were related to 

Desulfosporosinus lacus (Table 36, Figure 43).  D. lacus is an acetogen that also reduces 

sulfate or iron(III) if available and uses lactate, formate, or H2 as electron donors.  Lactate is 

incompletely oxidized to acetate (Ramamoorthy et al. 2006).  Lachnospiraceae-affiliated 

sequences were detected after incubation of unsupplemented mire-derived roots and some 

sequences were related to Clostridium amygdalinum (Table 36, Figure 43).  C. amygdalinum 

grows on a wide range of carbohydrates not only by fermentation but also by anaerobic 

respiration with sulfite, benzaldehyde, and thiosulfate as electron acceptor and for example H2 

as electron donor (Parshina et al. 2003).  One Campylobacteraceae-affiliated sequence was 



DISCUSSION 

230 

detected after anoxic incubation of unsupplemented mire-derived roots and was related to 

Sulfurospirillum halorespirans (Table 36, Figure 43).  S. halorespirans grows not only by 

fermentation but also by anaerobic respiration under microaerophilic or anoxic conditions 

(Luijten et al. 2003).  Nitrate serves as electron acceptors and lactate, pyruvate, H2, or formate 

as electron donors (Luijten et al. 2003).  Lactate and pyruvate are oxidized incompletely to 

acetate (Luijten et al. 2003).  Neisseriaceae-affiliated sequences were detected after anoxic 

incubation of unsupplemented and formate-H2-supplemented mire-derived roots and were 

related to Paludibacterium yongneupense (Table 36, Figure 43).  P. yongneupense reduces 

nitrate but prefers O2 (Kwon et al. 2008). 

Sulfate is utilized by sulfate reducing bacteria such as D. lacus and T. yellowstonii as 

terminal electron acceptor (Henry et al. 1994, Ramamoorthy et al. 2006).  Released sulfide 

from microbially mediated sulfate reduction acts as phytotoxin (Peck 1961, Lamers et al. 2013).  

Plants leak O2 into the soil and thus counteract a reduced environment around the root that 

minimizes the production and thus the toxic effect of sulfide (Armstrong et al. 1991, Kraemer 

and Alberte 1995, Bezbaruah and Zhang 2005, Lamers et al. 2013).  Also, sulfide oxidizing 

aerobes benefit from plant-released O2 and plants benefit from microbially mediated sulfide 

oxidation (Friedrich et al. 2001, Lamers et al. 2013), and therefor building a symbiosis between 

wetland plants and sulfide oxidizing aerobes.  Sulfide oxidizing microorganisms such as 

species of Bacillus and Rhodocyclus have not been detected on mire-derived roots but in ‘soils’ 

of analyzed mires (Table 31, mire 2 [Hunger et al. 2011a]), indicating the potential symbiosis 

of sulfide oxidizing aerobes and plants in mire ‘soils’. 

As indicated above some of the detected phylotypes are facultative aerobes.  More 

16S rRNA gene sequences that were detected on mire-derived roots are related to taxa that 

use O2 as electron acceptor and grow on polymers, sugars, organic acids, or alcohols (e.g., 

Acetobacteraceae [Tazato et al. 2012], Chthoniobacter [Sangwan et al. 2004], Myco-

bacteriaceae [Tsukamura et al. 1981], Rhodospirillaceae [Liu et al. 2010], Solirubro-

bacteraceae [An et al. 2011], Streptomycetaceae [Nagai et al. 2011], Thermomonosporaceae 
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[Iinuma et al. 1994]).  Family-level phylotype 3, Mycobacteriaceae, and Solirubrobacteraceae 

were detected before incubation of mire-derived roots (Table 36).  The family-level 

phylotype 3-affiliated sequence was most closely related to Chthoniobacter flavus (Figure 43).  

C. flavus grows with sugars and polymers at a pH of 4.0-7.0 (Sangwan et al. 2004).  

Mycobacteriaceae-affiliated sequences were related to Mycobacterium tokaiense (Figure 43).  

M. tokaiense utilizes sugars (e.g., glucose), organic acids (e.g., acetate, citrate), and ethanol 

(Tsukamura et al. 1981).  Solirubrobacteraceae-affiliated sequences were related to 

Solirubrobacter ginsenosidimutans (Figure 43).  S. ginsenosidimutans was isolated from 

agricultural soil and grows on arabinose (An et al. 2011).  Rhodospirillaceae-affiliated 

sequences were detected before and after incubation of unsupplemented roots and were 

related to Dongia mobilis ( Table 35, Figure 43).  D. mobilis grows weakly on carbohydrates 

such as glucose or cellobiose (Liu et al. 2010).  Acetobacteraceae-affiliated sequences were 

detected after incubation of unsupplemented and formate-H2-supplemented roots and were 

related to Gluconacetobacter asukensis (Table 36, Figure 43).  G. asukensis grows on 

fructose, glucose, and acetate (Tazato et al. 2012).  Streptomycetaceae and Thermomono-

sporaceae were detected after incubation of formate-H2-supplemented roots (Table 36).  The 

Streptomycetaceae-affiliated sequence was related to Streptomyces aomiensis (Figure 43).  

S. aomiensis was isolated from soil and grows on sugars such as glucose and xylose (Nagai 

et al. 2011).  The Thermomonosporaceae-affiliated sequence was related to Actinocorallia 

herbida (Figure 43).  A. herbida hydrolysis starch and grows on sugars such as glucose (Iinuma 

et al. 1994).   

Bradyrhizobiaceae-affiliated sequence were detected after anoxic incubation of mire-

derived roots (Table 36) and were related to Bradyrhizobium valentinum.  B. valentinum was 

isolated from N2-fixing nodules of Lupinus mariae-josephae (Durána et al. 2014).  Members of 

Bradyrhizobium fix N2 and release ammonia as a nitrogen source for the plant (Brimecombe 

et al. 2001, Durána et al. 2014).  Expression of nodulation genes can be triggered by plant-

derived flavonoids in Bradyrhizobium (Brimecombe et al. 2001).  The activation of nodulation 

genes is needed to form nodules on plant roots, a formation known from leguminous plants 
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(Brimecombe et al. 2001, Frankowski et al. 2015).  Bradyrhizobium benefits from plant-derived 

carbon and the plant benefits from microbial-derived ammonia (Brimecombe et al. 2001).  The 

occurrence of Bradyrhizobiaceae-affiliated microorganisms on roots of wetland plants 

(Chaintreuil et al. 2000) suggests that N2-fixing microorganisms and plants might form a 

symbiotic link in mire ‘soils’. 

6.6.3 The gut of the earthworm E. eugeniae 

Nitrate can be detected in the earthworm gut and the concentration of iron(II) decreases 

from the anterior to the posterior end of the gut, indicating that iron(III) is reduced to iron(II) by 

anaerobic respiration and subsequently is assimilated by microorganisms and/or the 

earthworm (Wüst et al. 2009b).  Processed cow manure, the substrate of E. eugeniae, contains 

up to 60 mg nitrate kg-1 on a fresh weight basis (Depkat-Jakob et al. 2012) and provides a 

potential source of nitrate for anaerobic respiration.  16S rRNA sequences that were affiliated 

with taxa capable of anaerobic respiration were detected in gut contents of E. eugeniae before 

and/or after anoxic incubation (i.e., Acetobacteraceae [Jiang et al. 2006], Aciditerrimonas-

related phylotype [Itoh et al. 2011], Bradyrhizobiaceae [La Scola et al. 2003], 

Desulfovibrionaceae [Nanninga and Gottschal 1987, Sakaguchi et al. 2002], 

Enterobacteriaceae [Brenner et al. 2005], Hyphomicrobiaceae [Garrity et al. 2005f], 

Phyllobacteriaceae [Labbé et al. 2004, Kim et al. 2009], Ruminococcaceae [Lee et al. 2013b]).   

Collectively, the detected taxa are capable to reduce sulfate, nitrate, and iron(III), and may 

utilize ethanol, organic acids, sugars, or H2 as sources of reductant (Garrity et al. 2005f, Itoh 

et al. 2011, Nanninga and Gottschal 1987). 

Aciditerrimonas-related phylotype, Hyphomicrobiaceae, and Phyllobacteriaceae were 

detected in light fractions before and after the incubation of gut contents with [13C]glucose 

supplementation (Table 44).  Some 16S rRNA sequences were related to Aciditerrimonas 

ferrireducens (Aciditerrimonas-related phylotype).  A. ferrireducens is an acidophilic facultative 

aerobe that grows on sugars under oxic conditions and reduce iron(III) autotrophically with H2 

or heterotrophically with sugars under anoxic and low pH conditions (i.e., pH 2.0-4.5) (Itoh et 
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al. 2011).  Hyphomicrobiaceae-affiliated sequences were related to species of Hypho-

microbium vulgare and Rhodoplanes elegans.  Some species of Hyphomicrobium may reduce 

nitrate under anoxic conditions but prefers O2 as terminal electron acceptor (Garrity et al. 

2005f).  H. vulgare grows on organic acids such as formate and acetate and sugars such as 

glucose or arabinose (Stutzer and Hartleb 1899, Garrity et al. 2005f).  R. elegans is a 

phototrophic purple non-sulfur bacterium that is also capable of complete denitrification under 

anoxic conditions (Hiraishi and Ueda 1994).  Phyllobacteriaceae-affiliated sequences were 

related to Nitratireductor basaltis, Nitratireductor aquibiodomus, and Mesorhizobium huakuii.  

N. basaltis and N. aquibiodomus reduce nitrate to nitrite but prefer O2 as terminal electron 

acceptor (Labbé et al. 2004, Kim et al. 2009).  N. basaltis, N. aquibiodomus, and M. huakuii 

use sugars as carbon and electron source (Jarvis et al. 1997, Labbé et al. 2004, Kim et al. 

2009). 

Acetobacteraceae-affiliated sequences were detected in light fractions before and after 

the anoxic incubations of the unsupplemented gut contents (Table 44) and were related to 

Roseomonas terrae and Roseomonas lacus.  R. lacus reduces nitrate and grows on sugars 

such as rhamnose, galactose, and arabinose (Jiang et al. 2006).  R. terrae and R. lacus are 

facultative aerobes that hydrolyze urea (Jiang et al. 2006, Yoon et al. 2007).   

Desulfovibrionaceae-affiliated 16S rRNA sequences were detected in light fractions 

after the anoxic incubation of slurries with [13C]glucose-supplemented gut contents (Table 44) 

and were related with Desulfovibrio carbinolicus and Desulfovibrio magneticus.  D. carbinolicus 

and D. magneticus are obligate anaerobes that reduce sulfate (Nanninga and Gottschal 1987, 

Sakaguchi et al. 2002).  D. carbinolicus uses various substrates such as H2, ethanol, or 

propionate as electron and carbon sources whereas D. magneticus uses fewer substrates 

(e.g., pyruvate or lactate) (Nanninga and Gottschal 1987, Sakaguchi et al. 2002). 

One Bradyrhizobiaceae-affiliated sequences was detected in light fractions before the 

incubation of gut contents (Table 44) and was related to Bosea vestrisii.  B. vestrisii oxidizes 
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various sugars and some organic acids (La Scola et al. 2003).  Other strains of Bosea reduce 

nitrate (La Scola et al. 2003). 

Enterobacteriaceae-affiliated sequences were detected in light and heavy fractions 

before and after incubation (Table 44).  Some of those sequences were related to Erwinia 

persicina, a facultative aerobe that not only grows via fermentation but may also reduce nitrate 

to nitrite (Brenner et al. 2005). 

Ruminococcaceae-affiliated sequences were detected in light and heavy fractions in all 

treatments after the anoxic incubation and might be minorly labeled with [13C]glucose-derived 

carbon (Table 44).  Some of those sequences were related to Oscillibacter ruminantium, an 

obligate anaerobe that is not only capable of fermentation but may also respire and use sulfate 

and nitrate as terminal electron acceptor (Lee et al. 2013b).   

 

As indicated above many of the detected phylotypes are facultative aerobes.  More 

16S rRNA sequences that were detected in gut contents of E. eugeniae are related to taxa 

that use O2 as electron acceptor and grow on polymers, sugars, organic acids, amino acids, 

or alcohols (i.e., Acidothermaceae [Mohagheghi et al. 1986], Bacillaceae [La Duc et al. 2004], 

Demequinaceae [Finster et al. 2009], Labilithrix [Yamamoto et al. 2014], Microbacteriaceae 

[Shivaji et al. 2007], Micromonosporaceae [Goodfellow et al. 1990], Nocardioidaceae [Li et al. 

2007], Paenibacillaceae [Uetanabaro et al. 2003], Phaselicystidaceae [Garcia et al. 2009], 

Planctomycetaceae [Bauld and Staley 1976, Kulichevskaya et al. 2009], Polyangiaceae 

[Reichenbach et al. 2006], Rhodobacteraceae [Maszenan et al. 1997], Rhodospirillaceae 

[Maszenan et al. 2005], Solirubrobacteraceae [Wei et al. 2014]). 

Planctomycetaceae-affiliated sequences were detected in light and heavy fractions 

before and after the incubation of [13C]glucose-supplemented gut contents (Table 44) and were 

related to Planctomyces maris, Gemmata obscuriglobus, and Zavarzinella formosa (Table 44).  

P. maris uses sugars and organic acids such as glucose and lactic acid (Bauld and Staley 
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1976).  G. obscuriglobus and Z. formosa hydrolyze starch and utilize sugars such as glucose 

(Franzmann and Skerman 1984, Kulichevskaya et al. 2009).  Other members of 

Planctomycetaceae such as Schlesneria paludicola are capable of fermenting carbohydrates 

(Kulichevskaya et al. 2007). 

Paenibacillaceae-affiliated sequences were detected in light and heavy fractions after 

the incubation of [13C]glucose-supplemented gut contents (Table 44) and were related to 

Paenibacillus xinjiangensis, Paenibacillus agarexedens, and Paenibacillus residui.  P. 

xinjiangensis, P. agarexedens, and P. residui grow on sugars and alcohols (Uetanabaro et al. 

2003, Lim et al. 2006, Vaz-Moreira et al. 2010). 

Demequinaceae, Microbacteriaceae, Polyangiaceae, Rhodospirillaceae, and 

Solirubrobacteraceae were detected in light fractions before and after incubation of 

[13C]glucose-supplemented gut contents (Table 44).  Demequinaceae-affiliated sequences 

were related to Demequina lutea and Demequina salsinemoris.  D. lutea and D. salsinemoris 

utilize sugars such as glucose (Finster et al. 2009, Matsumoto et al. 2010).  D. lutea can also 

grow slowly under anoxic conditions (Finster et al. 2009).  Microbacteriaceae-affiliated 

sequences were related to Microbacterium indicum, Microbacterium kribbense, and Leifsonia 

poae.  M. indicum, M. kribbense, and L. poae utilize various sugars such as arabinose, 

galactose, or glucose (Evtushenko et al. 2000, Shivaji et al. 2007, Dastager et al. 2008).  

Polyangiaceae-affiliated sequences were related to Sorangium cellulosum and Byssovorax 

cruenta.  B. cruenta grows on sugars and polymers such as maltose, arabinose, or cellulose 

(Reichenbach et al. 2006).  S. cellulosum hydrolyzes cellulose, starch and chitin and grows on 

sugars such as glucose and xylan (Reichenbach 2005).  Rhodospirillaceae affiliated 

sequences were related to Defluviicoccus vanus.  D. vanus utilizes sugars, organic acids, and 

amino acids (Maszenan et al. 2005).  Other members Rhodospirillaceae such as 

Telmatospirillum siberiense are capable of fermentation under anoxic condition (Sizova et al. 

2007).  Solirubrobacteraceae-affiliated 16S rRNA sequences were related to species of 
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Solirubrobacter.  Members of Solirubrobacter utilize glucose and other sugars (Wei et al. 

2014). 

Bacillaceae, Labilithrix, Micromonosporaceae, Nocardioidaceae, and Phaseli-

cystidaceae were detected in light fractions after the incubation [13C]glucose-supplemented 

gut contents (Table 44).  Bacillaceae-affiliated sequences were related to Bacillus coahuilensis 

and Lysinibacillus odyssey.  B. coahuilensis grows on glycerol and citrate whereas L. odyssey 

utilizes acetate, pyruvate and some amino acids (La Duc et al. 2004, Cerritos et al. 2008).  

Labilithrix luteola grows on complex media (Yamamoto et al. 2014).  Micromonosporaceae-

affiliated sequences were related to Actinoplanes digitatis and Actinoplanes humidus.  A. 

digitatis and A. humidus grow on various sugars such as arabinose or glucose (Goodfellow et 

al. 1990).  Nocardioidaceae-affiliated sequences were related to Nocardioides exalbidus and 

Nocardioides ganghwensis.  N. exalbidus and N. ganghwensis utilize sugars such as glucose 

and fructose (Li et al. 2007, Yi and Chun 2004).  Phaselicystidaceae-affiliated sequences were 

related to Phaselicystis flava.  P. flava grows on sugars such as fructose, arabinose, or 

mannose (Garcia et al. 2009). 

Acidothermaceae and Rhodobacteraceae were detected in light fractions before and 

after the incubation of unsupplemented gut contents (Table 44).  Acidothermaceae-affiliated 

sequences were related to Acidothermus cellulolyticus.  A. cellulolyticus oxidizes various 

carbohydrates including glucose (Mohagheghi et al. 1986).  Rhodobacteraceae-affiliated 

sequences were related to Amaricoccus kaplicensis.  A. kaplicensis and other species within 

the Amaricoccus utilize organic acids, alcohols, amino acids, and sugars (Maszenan et al. 

1997). 

 

Some members of the taxa mentioned above and other taxa that were detected can (a) 

fix N2 (e.g., Bradyrhizobiaceae [Garrity et al. 2005e]), (b) grow via methylotrophy (e.g., 

Hyphomicrobiaceae [Garrity et al. 2005f], Methyloceanibacter [Takeuchi et al. 2014], 

Methylococcaceae [Bodrossy et al. 1997]), or (d) grow photoheterotrophically (e.g., 
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Bradyrhizobiaceae [Garrity et al. 2005e], Hyphomicrobiaceae [Hiraishi and Ueda 1994]), or (e) 

prey on other bacteria (e.g., Rhizobiaceae [Casida 1982]).  Hyphomicrobiaceae-affiliated 

sequences were detected in light fractions before and after the incubation of gut contents with 

supplemental [13C]glucose (Table 44) were related to species of Hyphomicrobium vulgare and 

Rhodoplanes elegans.  Species of Rhodoplanes grow with O2 as electron acceptor in the dark 

(Hiraishi and Ueda 1994).  Organic acids (e.g., acetate, butyrate) are used as electron and 

carbon source for phototrophic growth (Hiraishi and Ueda 1994).  Most species of 

Hyphomicrobium grow on one-carbon compounds such as methanol and methylamines, 

require CO2 for growth, and can grow in mineral medium without the addition of other carbon 

sources (Garrity et al. 2005f).  A few sequences affiliated with Methyloceanibacter caenitepidi 

were detected in light fractions before the incubation of gut contents (Table 44).  M. caenitepidi 

is a facultative methylotroph that utilizes methanol and methylamines, but can also oxidize 

acetate (Takeuchi et al. 2014).  Methylococcaceae-affiliated sequences were detected in light 

fractions after the incubation of [13C]glucose-supplemented gut contents (Table 44) and were 

related to Methylocaldum szegediense.  M. szegediense utilizes CH4 as sole carbon and 

energy source (Bodrossy et al. 1997).  Rhizobiaceae-affiliated sequences were detected in 

light fractions before and after the incubation of gut contents with supplemental [13C]glucose 

(Table 44) and were related to Ensifer adhaerens.  E. adhaerens is an aerobe that preys on 

Gram negative and Gram positive bacteria (Casida 1982).  Acidimicrobiaceae-affiliated 

sequences were detected in light fractions before the incubation of gut contents (Table 44) and 

were related to Ilumatobacter fluminis and Acidimicrobium ferrooxidans.  I. fluminis and A. 

ferrooxidans are aerobes (Clark and Norris 1996, Matsumoto et al. 2009).  A. ferrooxidans 

oxidizes ferrous iron autotrophically or heterotrophically under low pH conditions (Clark and 

Norris 1996).  These collective properties illustrate the broad metabolic diversity of bacterial 

communities in the gut contents of E. eugeniae. 
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6.7 Conclusions, limitations, and future perspectives 

Greenhouse gases such as CH4 contribute to global warming which, among others, is 

reflected in a rising global temperature, diminishing ice covers, and rising sea levels (Rogers 

and Whiteman 1991, Stocker et al. 2013, Schuur et al. 2015).  A considerable amount of CH4 

is produced from methanogens in diverse anoxic habitats (Thauer 1988).  The intent of this 

dissertation was to obtain insights into the methanogenic food webs of contrasting anoxic 

habitats including CH4-emitting mire ‘soils’, rhizosphere of mire plants, and gut contents of the 

earthworm E. eugeniae. 

 

Four contrasting mire ‘soils’ showed similar glucose-, acetate, and H2-CO2-dependent 

product profiles, cultivable cell numbers, and gene copy numbers, but major differences were 

observed between the microbial communities (Figure 62, Figure 63, Figure 64).  Only the 

following three species-level mcrA phylotypes (i.e., 15 % of the 20 detected) were common to 

all mires: PLT2, PLT14, and PLT17 that were closely related to Methanoregula boonei, 

Methanosarcina vacuolata, and Methanosaeta concilii, respectively (Figure 24, Figure 63).  

Furthermore, only the following 13 family-level 16S rRNA gene phylotypes (i.e., 15 % of the 86 

detected) were common to all mires: Acetobacteraceae, Acidimicrobiaceae, Acido-

bacteriaceae, Beijerinckiaceae, Bradyrhizobiaceae, Chitinophagaceae, Clostridiaceae, 

Methylocystaceae, Planctomycetaceae, Thermomonosporaceae, a family-level phylotype 

affiliated with Conexibacteraceae, Patulibacteraceae, and Solirubrobacteraceae, and family-

level phylotypes 1 and 41 (Table 31, Figure 63).  Whereas Actinobacteria, Chloroflexi, and 

Verrucomicrobia displayed a relative abundance of 10 % or higher in certain mire ‘soils’, the 

relative abundance of these taxa was lower in other mire ‘soils’ (e.g., the relative abundance 

of Actinobacteria in ‘soil’ of mire 1 was 15 % and of mire 3 was 19 % but was only 2 % in ‘soils’ 

of mires 2 and 4) (Figure 26). 
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Figure 62: Hypothetical model illustrating the functional redundancy of glucose-dependent 

methanogenic food webs of four contrasting mire ‘soils’ based on detected processes and 

known functions of detected taxa. 

Color code for phylotypes: red, mire 1; blue, mire 2; green, mire 3; orange, mire 4.  

Methanosaetaceae are in quotes due to its current status as an illegitimate name 

(http://www.bacterio.net).  Figure was modified from Hunger et al. (2015). 
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Planctobacteria, Proteobacteria, Spirochaetae, and Verrucomicrobia (Drake et al. 2009, Lin et 

al. 2014a, Lin et al. 2014b, Dedysh et al. 2006, Juottonen et al. 2005, Kraigher et al. 2006, 

Serkebaeva et al. 2013, Dedysh 2011).  Many of the detected family-level phylotypes of each 

mire ‘soil’ have no cultured isolates, and many of the detected phyla have been rarely reported 

for such ‘soils’ (e.g., Armatimonadetes, Chlorobi, “Nitrospirae”) (Juottonen et al. 2005, Dedysh 

et al. 2006, Kraigher et al. 2006, Drake et al. 2009, Dedysh 2011, Serkebaeva et al. 2013, Lin 

et al. 2014a, Lin et al. 2014b, Schmidt et al. 2015).  A greater number of 16S rRNA family-level 

phylotypes without any cultured isolates were detected in eutrophic mire ‘soil’ 1 (26 phylotypes) 

and mesotrophic mire ‘soil’ 2 (19 phylotypes) than in the oligotrophic mire ‘soils’ 3 (10 

phylotypes) and 4 (11 phylotypes) (Table 31).  However, the relative percentage of family-level 

phylotypes without any cultured isolates was similar in all mire ‘soils’ (i.e., 45 % for mire 1, 

39 % for mire 2, 34 % for mire 3, and 37 % for mire 4 [includes both mcrA and 16S rRNA gene 

phylotypes]), emphasizing that mires contain a very significant number of uncultured bacterial 

taxa that await characterization. 

 

 

Figure 63: Venn diagram of species-level mcrA (A) and bacterial family-level 16S rRNA gene 

(B) phylotypes of contrasting mire ‘soils’. 

Diagram includes total number of detected phylotypes from mire ‘soils’ and ‘soil’ slurries with and 

without supplementation (Figure 24, Table 31).  Figure was modified from Hunger et al. (2015). 
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‘Soil’ of mire 1 differed from other mire ‘soils’ mostly due to the high relative abundance 

of “Methanosaetaceae” and Methanocellaceae, and the neutral pH (Figure 64).  ‘Soil’ of mire 2 

differed from other mire ‘soils’ mostly because of the high relative abundance of novel family-

level mcrA phylotype 1 and Spirochaetae.  ‘Soil’ of mire 3 differed from other mire ‘soils’ mostly 

due to the high relative abundance of Methanobacteriaceae and Methanosarcinaceae.  ‘Soil’ 

of mire 4 differed from other mire ‘soils’ mostly due to the high relative abundance of 

Methanoregulaceae and the high concentration of phosphate.  Although it can be postulated 

that time of sampling may have contributed to some of the differences observed in the detected 

taxa, the gene copy numbers of Archaea and Bacteria in mire ‘soils’ may not differ significantly 

from one season to the next (Lin et al. 2014a). 

 

Figure 64: Principal component analysis of contrasting mire ‘soils’. 

Biplot was calculated with data from the following tables and figures: Table 24, Figure 23, Figure 26, 

Figure 27, see also 4.12.8.  Due to overlapping of arrows, only parameters that were significantly 

different and taxa that were most abundant are displayed.  Figure was modified from Hunger et al. 

(2015). 

0.0

0.5

1.0

-0.5

-1.0

-1.0 -0.5 0.0 0.5

Mire 3

Mire 2

Mire 4

Mire 1

Standardized PC1 (48.2% explained var.)

S
ta

n
d

a
rd

iz
e
d

 P
C

2
 (

3
4
.6

%
 e

x
p

la
in

e
d

 v
a

r.
)

-1.5



DISCUSSION 

242 

The majority of the species-level mcrA and family-level 16S rRNA gene phylotypes that 

were detected in slurries or ‘soils’ of mires 3 and 4 were also detected in slurries or ‘soils’ of 

mires 1 and 2 (Figure 63).  The higher the water content of the mire ‘soil’ the higher was the 

C/N ratio in the ‘soil’, the acidity in the pore water, and the lower the diversity of detected 

methanogens and Bacteria, indicating that the mentioned factors restrict the number of 

dominant microorganisms in ‘soils’ of mires 3 and 4. 

 

Wetland plants mediate the emission of CH4 from soil by releasing root-derived organic 

carbon which serve as precursors of CH4 production (Jones 1998, Ström et al. 2003).  Potential 

substrates for methanogenesis such as formate and acetate are released from the root of 

wetland plants or be produced by fermentation (Koelbener et al. 2010, Drake et al. 2009), but 

surprisingly, methanogenesis was not a dominant process in slurries with soil-free roots from 

CH4-emitting mire 2 (5.4).  Soil-free roots from this mire unexpectedly produced H2 and CO2 

as an initial response to formate, which potentially constitutes a trophic interaction between 

FHL-containing fermenters with acetogens and methanogens that scavenge formate-derived 

H2 (Figure 65).  In this regard, two isolates related to Citrobacter and Hafnia were obtained 

from those roots.  Both isolates catalyze the formation of H2 from formate via the formate-

hydrogenlyase complex that contains a group 4 [NiFe]hydrogenase.  It is worth mentioning, 

that similar observations were made with ‘soil’ from mire 2 that contained roots (6.2, Figure 

28). 

However, the possibility that in situ methanogenesis in the root-zone is periodically 

more significant than that initially observed under the experimental conditions of the present 

study cannot be excluded.  Formate-derived H2 is postulated to at least partially diffuse away 

from the root-zone under in situ conditions and become a source of energy and reductant for 

microbes less proximal but still very close to the root (Figure 65).  In this regard, the microbial 

community of mire soil has diverse functional groups such as iron reducers, sulfate reducers, 

as well as acetogens and methanogens, that might compete for H2 (Figure 62, 6.6.1, Paul et 
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al. 2006, Reiche et al. 2008, Drake et al. 2009), and future studies may resolve the trophic 

interactions between root-associated microorganisms and those proximal to the root-zone. 

 

Figure 65: Hypothetical model of formate-driven anaerobic processes that can occur in 

association with mire roots. 

Taxa are based on those detected in the present study, primarily with Carex roots.  The dominant 

initial formate-dependent process detected was the transformation of formate to H2 and CO2, as 

illustrated with the large red arrow.  Color code for taxa: red, FHL-containing taxa; green, acetogens; 

blue, methanogens.  Arrows with broken lines indicate processes of potential importance.  Figure 

was modified from Hunger et al. (2016). 

Further insights into the methanogenic food web of the rhizosphere of mire plants could 

be gained by quantification and localization of taxa that were identified in contributing to the 

utilization of formate and H2 on mire-derived roots (e.g., by qPCR and fluorescence 
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can be confirmed based on the data of this study.  Hitherto unknown are the factors (e.g., site, 

plant-specific exudates, microbial community, pH, water content) that drive the influence of 

plant species. 

 

It has recently been observed that the earthworm E. eugeniae emits CH4 in vivo 

(Depkat-Jakob et al. 2012).  Supplemental glucose stimulated similar product profiles but 

dissimilar taxa in gut contents of the earthworm and in mire ‘soils’ (Figure 62, Figure 66).   

 

Figure 66: Hypothetical model of the glucose-dependent methanogenic food web of the 

earthworm gut of E. eugeniae based on detected processes and known functions of detected 

taxa. 

Color code for taxa: red, fermenters; green, acetogens; blue, methanogens.  Methanosaetaceae are 

in quotes due to its current status as an illegitimate name (http://www.bacterio.net). 
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Anaerovorax, Christensenellaceae, Lachnospiraceae, and Peptostreptococcaceae 

were identified as fermenters in gut contents but were not detected or not associated with 

fermenters in mire ‘soils’ (Figure 62, Figure 66).  Acetogenesis and methanogenesis have been 

thought to be unimportant in the earthworm gut (Hornor and Mitchell 1981, Karsten and Drake 

1997) but have been observed to be stimulated by H2-CO2 and formate in gut contents of the 

earthworm E. eugeniae (Figure 50, Figure 51).  Acetogens related to Terrisporobacter, Blautia, 

and Marvinbryantia and methanogens related to Methanobacteriaceae, Methano-

microbiaceae, “Methanosaetaceae”, Methanosarcinaceae, and one family-level phylotype 

have been identified in gut contents (Figure 66), indicating that the impact of acetogenesis and 

methanogenesis might depend on the species, source of food, and/or feeding preference of 

the earthworm. 

With lower termites, it has been observed that collectively gut-derived microorganisms 

degrade complex organic matter and mainly acetogenesis-derived acetate is absorbed by the 

termite (Brune 2014).  Together with acetate also other short-chain fatty acids are absorbed 

by termites (Brune 2014).  Succinate, propionate, and butyrate were produced from 

supplemental glucose in gut contents of the earthworm E. eugeniae (Figure 51).  Thus, 

potentially fermentation-derived succinate, propionate, and butyrate in the earthworm gut 

(Figure 66) might be absorbed by the earthworm and similar interactions such as observed 

with lower termites between acetogens, other microorganisms and the termite might exist with 

certain earthworm species and could be addressed in future studies. 

 

Formate has been identified as an important intermediate in mire ‘soil’ and especially 

in the root zone of mire plants (Figure 65).  In gut contents, formate was detected as a glucose-

derived fermentation product, and formate-utilizing acetogens and methanogens were likewise 

detected, indicating that formate could be an important intermediate in gut contents of the 

earthworm E. eugeniae.  Even so, the role of formate as an intermediate forming a trophic link 

between FHL-containing fermenters, acetogens and methanogens for the earthworm gut has 
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not been investigated in this dissertation, future studies could highlight the importance of 

formate in this methanogenic food web. 

 

Acetogens are commonly thought of as being O2-sensitive strict anaerobes, and the 

association of acetogens with wetland plant roots and aerated forest soil might therefore be 

considered a paradox since roots periodically leak O2 (Armstrong et al. 1991, Kraemer and 

Alberte 1995).  However, acetogens isolated from roots and other habitats subjected to 

aeration have various mechanisms for dealing with oxidative stress, such as forming 

commensal partnerships with aerotolerant fermentative microorganisms that can consume O2 

and thereby protect the acetogen from oxidative stress (Figure 61, Gößner et al. 1999, Gößner 

et al. 2006, Küsel et al. 2001).  In these commensal interactions, the fermentative partner also 

forms products such as H2, formate, lactate, and ethanol that can be subsequently utilized by 

the acetogen.  The current study indicates that acetogens can utilize formate-derived H2 that 

is produced by FHL-containing fermenters and fermentation-derived compounds.  Those 

observations provide further insights into the interactions of acetogens with other functional 

groups of microorganisms. 

 

Stable isotope probing was used to identify active microorganisms in mire ‘soil’ and gut 

contents of E. eugeniae (5.3, 5.5.3).  This method is based on the assumption that 

microorganism dissimilate a certain compound (e.g., ferment glucose) and also assimilate that 

compound (e.g., synthesis of DNA and RNA).  In this dissertation, those compounds were 

either supplemental [13C]formate and [13C]glucose or 13C-enriched dissimilation products 

derived from [13C]formate and [13C]glucose consumption (i.e., cross-feeding, Neufeld et al. 

2007a).  The attempt to label acetogens with [13C]formate in mire ‘soil’ was not successful, 

likely due to (a) dissimilation and assimilation of [13C]formate being uncoupled (e.g., formate 

might have been dissimilated but an endogenous, non-labeled carbon source such as glucose 

was assimilated), (b) labeling might not have been sufficient, or (c) ‘soil’ samples for molecular 
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analysis might not have contained labeled acetogens (e.g., gene analysis of roots yielded 16S 

rRNA gene sequences closely related to known acetogens, indicating that roots contain 

acetogens but the sampling of ‘soil’ slurries with syringe and needle would collect 

predominantly soil particles but not roots).  Many acetogens are non-monophyletic, i.e., are 

phylogenetically distributed with non-acetogens in the same genera (Drake et al. 2008, Drake 

and Küsel 2005, Drake et al. 2006), a factor complicating their assessment by standard fhs 

and 16S rRNA gene analysis.  Several organisms originally described as non-acetogens have 

later been discovered to be acetogenic (e.g., T. glycolicus [Drake et al. 2006, Drake and Küsel 

2005, Küsel et al. 2001]), and thus, raising the question as to whether any of the detected non-

acetogenic taxa might contain heretofore unknown acetogenic capabilities.  A recent study in 

which new fhs primers were developed for accessing acetogens in the rumen identified 

potential acetogens that were not closely related to known acetogens (Henderson et al. 2010).  

Novel acetogens such as Alkalibaculum bacchi (Allen et al. 2010), Moorella 

perchloratireducens (Balk et al. 2008), and isolate TWA4 belonging to Lachnospiraceae 

(Gagen et al. 2014) have been isolated recently.  Those findings illustrate (a) the difficulties to 

identify acetogens with molecular methods and (b) the existence of hitherto unknown 

acetogens in various ecosystems which reinforces the likelihood that hitherto unknown 

acetogens contribute to the formation of acetate in mire ‘soils’, the mire rhizosphere, and the 

earthworm gut. 

 

The collective results indicated that microbial processes driving methanogenesis in 

mire ‘soils’, rhizosphere of mire plants, and gut contents of E. eugeniae are qualitatively more 

similar than dissimilar but are facilitated by dissimilar microbial communities.  The functional 

redundancy (Miki et al. 2014) of the microbial communities is particularly reflected in the large 

number of the detected fermentative taxa that are not identical in each of the anoxic habitats 

but nonetheless catalyze similar processes (Figure 62, Figure 66, 6.1.2).  Functional 

redundancy of microorganisms in other habitats has been observed, for example, for diverse 
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members of Rhodocyclales in activated sludge (Hesselsoe et al. 2009) or for the bacterial and 

archaeal community in mined, restored, and natural peatlands (Basiliko et al. 2013).  A minority 

of nine family-level phylotypes that harbor potential fermenters were shared between 

contrasting mire ‘soils’ and mire-derived roots (i.e., Acidobacteriaceae, Chitinophagaceae, 

Clostridiaceae, Holophagaceae, Neisseriaceae, Opitutaceae, Peptococcaceae, 

Ruminococcaceae, and Veillonellaceae), indicating that those taxa contribute to fermentation 

on roots and surrounding soils.  Some family-level 16S rRNA gene phylotypes that were 

affiliated with taxa that are capable of fermentation were detected with mire-derived roots but 

were not detected in ‘soils’ of analyzed contrasting mires (5.2), such as Bacteroidaceae, 

Campylobacteraceae, Enterobacteriaceae, Lachnospiraceae, Marinilabiliaceae, Porphyro-

monadaceae, Roseiarcaceae, indicating that roots of mire plants harbor different microbial 

communities than the surrounding soil.  In general mire ‘soil’ and roots of wetland plants shared 

more common phylotypes than with gut contents of the earthworm E. eugeniae (Figure 67).  A 

minority of phylotypes were detected in all three habitats: Acetobacteraceae, 

Bradyrhizobiaceae, Clostridiaceae, Methanobacteriaceae, “Methanosaetaceae”, Methano-

sarcinaceae, Rhodospirillaceae, Ruminococcaceae, and Solirubrobacteraceae.  Those taxa 

are capable of N2-fixation, fermentation, aerobic respiration, anaerobic respiration and 

methanogenesis. 

Methanogens that can grow with H2-CO2 were detected in similar relative abundance 

and accounted for 56-87 % in mire ‘soils’, 74 % with Carex roots, and 96-99 % in gut contents 

of E. eugeniae (6.5).  Many of the detected family-level mcrA phylotypes were detected in all 

three habitats but on a species level only Methanosaeta concilii was detected in mire ‘soil’, 

Carex roots, and gut contents of E. eugeniae (Figure 24, Figure 40, Figure 46).  Methanolinea 

mesophila and Methanosarcina vacuolata were only detected in mire ‘soils’ (Figure 24).  

Methanosarcina horonobensis and Methanobacterium lacus were only detected with Carex 

roots (Figure 40).  Species of Methanoculleus, Methanosarcina mazei, and Methanobacterium 

palustre were only detected in gut contents of E. eugeniae (Figure 46).  These findings illustrate 

the functional redundancy of methanogens in contrasting CH4-emitting habitats. 
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Figure 67: Venn diagram of archaeal and bacterial family-level phylotypes that were detected 

in mire ‘soil’, mire-derived roots, and gut contents of E. eugeniae. 

Diagram includes total number of detected phylotypes that were affiliated with classified taxa from 

(a) mire ‘soils’ and ‘soil’ slurries with and without supplementations (Figure 24, Table 31), (b) Carex 

roots and a mixture of mire-derived roots and root slurries with and without supplementations (Figure 

39, Table 36), and (c) gut contents and slurries with gut contents from E. eugeniae with and without 

supplementation (Figure 48, Table 44). 

The analyzed processes are parts of complex trophically linked food webs.  Those 

processes and associated taxa were assessed under laboratory conditions and thus might not 

reflect in situ field conditions but rather indicate potentials of anaerobic processes and 

microbial communities.  A more extensive sequencing of the microbial communities will be 

required to gain a more complete understanding of how bacterial and archaeal species-level 

diversities differ in contrasting anoxic habitats.  Likewise, transcriptomic or proteomic analyses 

would provide insight on which taxa respond to a particular in situ condition, seasonal effects, 

or perturbation thereof.  In this regard, non-methanogenic archaea were not assessed, and 

although bacteria (e.g., fermenters and acetogens) are conceived to be important to the 

intermediary production of methanogenic substrates and thus significant drivers of 

methanogenesis, non-methanogenic archaea may also catalyze such intermediary processes 

(Zehnder 1978, McInerney and Bryant 1981, Drake et al. 2009).  Nonetheless, within the 

constraints of these limitations, this dissertation gives insights into the broad metabolic 
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diversity of bacterial communities and the functional redundancy of anaerobes in mire ‘soils’, 

rhizosphere, and gut contents of E. eugeniae, and extended previous findings on fermentation, 

acetogenesis, and methanogenesis in those contrasting habitats (Drake and Horn 2007, Drake 

et al. 2009, Schulz et al. 2015). 
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10 Appendix 

Table 46: Sequences used for similarity plots of fhs and corresponding 16S rRNA gene 

sequences.a 

 
Accession numbers 

Taxa fhs 16S rRNA gene 

Acetobacterium carbinolicum DQ152908 X96956 

Acetobacterium psammolithicum AJ494824 AF132739 

Acetobacterium woodii AF295701 X96954 

Acholeplasma laidlawii NC_010163 CP000896 

Acidiphilium cryptum CP000697 CP000697 

Acidobacterium capsulatum NC_012483 CP001472 

Actinobacillus pleuropneumoniae NC_9053 CP000569 

Actinomyces urogenitalis NZ_ACFH01000006 ACFH01000038 

Aeromonas hydrophila NC_8570 AY987754 

Aeromonas salmonicida NC_9348 CP000644 

Agrobacterium radiobacter CP000628 CP000628 

Akkermansia muciniphila CP001071 CP001071 

Aliivibrio salmonicida NC_11312 FM178379 

Alistipes putredinis NZ_ABFK02000017 ABFK02000016 

Alkaliphilus metalliredigens CP000724 CP000724 

Anaerocellum thermophilum NC_12034 CP001393 

Anaerococcus lactolyticus NZ_ABYO01000281 ABYO01000217 

Anaerococcus tetradius NZ_ACGC01000008 ACGC01000107 

Anaerostipes caccae NZ_ABAX03000038 ABAX03000023 

Anaerotruncus colihominis ABGD02000027 ABGD02000021 

Arthrobacter aurescens NC_8711 CP000474 

Arthrobacter chlorophenolicus CP001341 AF102267 

Arthrobacter sp. FB24 CP000454 CP000454 

Atopobium rimae NZ_ACFE01000001 ACFE01000007 

Atopobium vaginae NZ_ACGK01000045 ACGK01000003 

Bacillus anthracis NC_12581 CP001215 

Bacillus cereus NC_6274 CP000001 

Bacillus coagulans NZ_AAWV01000108 AAWV02000001 

Bacillus pumilus NC_9848 AY167879 

Bacillus thuringiensis NC_5957 AB116122 

Bacillus weihenstephanensis CP000903 CP000903 



APPENDIX 

294 

 
Accession numbers 

Taxa fhs 16S rRNA gene 

Bacteroides cellulosilyticus NZ_ACCH01000370 ACCH01000108 

Bacteroides fragilis NC_3228 CR626927 

Bacteroides pectinophilus NZ_ABVQ01000035 ABVQ01000036 

Bacteroides stercoris NZ_ABFZ02000018 ABFZ02000010 

Bartonella tribocorum AM260525 AM260525 

Beijerinckia indica CP001016 CP001016 

Bifidobacterium adolescentis AP009256 AP009256 

Bifidobacterium animalis NC_11835 CP001213 

Bifidobacterium breve NZ_ACCG01000036 ACCG02000012 

Bifidobacterium catenulatum NZ_ABXY01000023 ABXY01000019 

Bifidobacterium dentium NZ_ABIX02000002 ABIX02000002 

Bifidobacterium gallicum NZ_ABXB01000003 ABXB03000004 

Bifidobacterium pseudocatenulatum NZ_ABXX02000001 ABXX02000002 

Blautia hydrogenotrophica NZ_ACBZ00000000 ACBZ01000217 

Blautia producta AF295707 AB196512 

Caldanaerobacter subterraneus AE008691 AE008691 

Campylobacter concisus CP000792 CP000792 

Campylobacter curvus NC_9715 CP000767 

Campylobacter rectus NZ_ACFU01000002 ACFU01000050 

“Candidatus Pelagibacter sp. HTCC7211” DS995298 ABVS01000001 

Capnocytophaga sputigena NZ_ABZV01000007 ABZV01000054 

Carboxydibrachium pacificum NW_2243368 ABXP01000185 

Carboxydothermus hydrogenoformans CP000141 CP000141 

Chloroflexus aggregans CP001337 CP001337 

Chloroflexus aurantiacus NC_10175 CP000909 

Chloroflexus sp. Y400fl NC_12032 CP001364 

Clostridium aceticum AF295705 Y18183 

Clostridium asparagiforme ACCJ01000481 ACCJ01000522 

Clostridium beijerinckii CP000721 CP000721 

Clostridium botulinum NZ_ABDQ01000008 ABDQ01000004 

Clostridium carboxidivorans ZP_5391913 ACVI01000229 

Clostridium cellulolyticum NC_11898 CP001348 

Clostridium difficile NC_9089 AM180355 

Clostridium formicaceticum AF295702 X77836 

Clostridium glycolicum CA6 GU124152 X76750 
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Accession numbers 

Taxa fhs 16S rRNA gene 

Clostridium hylemonae NZ_ABYI02000023 AB117569 

Clostridium kluyveri NC_9706 CP000673 

Clostridium magnum AF295703 GU129927 

Clostridium methylpentosum NZ_ACEC01000021 ACEC01000059 

Clostridium novyi NC_8593 CP000382 

Clostridium perfringens NC_8261 ABDV01000010 

Clostridium phytofermentans NC_10001 CP000885 

Clostridium scindens NZ_ABFY02000009 ABFY02000057 

Clostridium sp. M62/1 NZ_ACFX01000085 ACFX01000080 

Clostridium sp. SS2/1 NZ_ABGC03000031 ABGC03000041 

Clostridium thermocellum NC_9012 CP000568 

Coprothermobacter proteolyticus NC_11295 CP001145 

Corynebacterium aurimucosum NC_12590 AJ309207 

Corynebacterium diphtheriae NC_2935 BX248356 

Corynebacterium jeikeium CR931997 CR931997 

Corynebacterium matruchotii NZ_ACEB01000021 ACEB01000045 

Desulfatibacillum alkenivorans NC_11768 CP001322 

Desulfitobacterium hafniense NC_11830 AF403181 

Desulfobacterium autotrophicum CP001087 CP001087 

Desulfococcus oleovorans CP000859 CP000859 

Desulfomicrobium baculatum AJ494755 AF030438 

Desulfonatronospira thiodismutans NZ_ACJN01000001 ACJN01000005 

Desulfotomaculum reducens CP000612 CP000612 

Desulfovibrio desulfuricans CP001358 CP001358 

Desulfovibrio gigas AJ494759 DQ447183 

Desulfovibrio piger AJ494750 AF192152 

Desulfovibrio salexigens AJ494751 CP001649 

Desulfovibrio vulgaris AJ494752 DQ826728 

Dethiobacter alkaliphilus NZ_ACJM01000014 ACJM01000032 

Dictyoglomus thermophilum NC_11297 CP001146 

Dictyoglomus turgidum CP001251 CP001251 

Dinoroseobacter shibae CP000830 CP000830 

Dorea formicigenerans NZ_AAXA02000014 AAXA02000006 

Elusimicrobium minutum NC_10644 CP001055 

Enterococcus faecalis NZ_ACIX01000064 ACIX01000001 
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Accession numbers 

Taxa fhs 16S rRNA gene 

Enterococcus faecium NZ_ACHL01000094 ACHL01000045 

Eubacterium acidaminophilum AY722711 AF071416 

Eubacterium biforme NZ_ABYT01000111 ABYT01000002 

Eubacterium hallii NZ_ACEP01000047 ACEP01000116 

Eubacterium limosum AF295706 AB298909 

Exiguobacterium sp. AT1b NZ_ABPF01000008 CP001615 

Finegoldia magna ACHM01000230 ACHM01000169 

Fusobacterium nucleatum CM000440 AABF01000001 

Gardnerella vaginalis NZ_ACGF01000006 ACGF01000131 

Gemmatimonas aurantiaca AP009153 AP009153 

Granulibacter bethesdensis YP_743868 CP000394 

Haemophilus ducreyi NC_2940 AE017143 

Heliobacterium modesticaldum NC_10337 CP000930 

Herpetosiphon aurantiacus CP000875 CP000875 

Hyphomicrobium denitrificans ZP_5376333 ACVL01000012 

Hyphomonas neptunium NC_8358 CP000158 

Labrenzia aggregata ZP_1545457 AAUW01000002 

Labrenzia alexandrii ZP_5116914 ACCU01000015 

Lactobacillus brevis NZ_ACGG01000118 ACGG01000095 

Lactobacillus buchneri NZ_ACGH01000132 ACGH01000101 

Lactobacillus casei FM177140 FM177140 

Lactobacillus delbrueckii NC_8054 AB008207 

Lactobacillus fermentum NZ_ACGI01000041 ACGI01000130 

Lactobacillus gasseri NZ_ACGO01000006 ACGO01000023 

Lactobacillus hilgardii NZ_ACGP01000185 ACGP01000200 

Lactobacillus johnsonii ACGR01000038 ACGR01000047 

Lactobacillus paracasei NZ_ABQV01000011 ABQV01000067 

Lactobacillus plantarum ACGZ01000008 ACGZ01000098 

Lactobacillus reuteri AAPZ02000001 AAPZ02000001 

Lactobacillus ruminis NZ_ACGS01000013 ACGS01000025 

Lactobacillus sakei NC_7576 CR936503 

Lactobacillus salivarius ACGT01000002 AF089108 

Lactobacillus vaginalis NZ_ACGV01000115 ACGV01000168 

Lactococcus lactis NC_2662 AE005176 

Laribacter hongkongensis NC_12559 CP001154 
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Accession numbers 

Taxa fhs 16S rRNA gene 

Leuconostoc citreum DQ489736 DQ489736 

Leuconostoc mesenteroides NZ_ACKV01000069 CP000414 

Listeria monocytogenes NC_2973 AE017262 

Listeria welshimeri NC_8555 AM263198 

Maricaulis maris YP_756642 CP000449 

Marinitoga piezophila NW_2435198 ABXR01000030 

Mesorhizobium loti NP_104026 BA000012 

Mesorhizobium opportunistum ZP_5810756 ACZA01000068 

Methylibium petroleiphilum YP_1022452 AF176594 

Methylobacillus flagellatus CP000284 CP000284 

Methylobacterium chloromethanicum NC_11757 AF198624 

Methylobacterium extorquens CP000908 CP000908 

Methylobacterium nodulans NC_11894 CP001349 

Methylobacterium populi CP001029 CP001029 

Methylobacterium radiotolerans CP001001 CP001001 

Methylobacterium sp. 446 CP000943 CP000943 

Methylococcus capsulatus NC_2977 AE017282 

Methylophaga thiooxidans NW_2475443 ABXT01000015 

Mitsuokella multacida NZ_ABWK01000014 ABWK02000005 

Moorella thermoacetica NC_7644 CP000232 

Myxococcus xanthus NC_8095 CP000113 

Natranaerobius thermophilus NC_10718 CP001034 

Neisseria flavescens NZ_ACEN01000025 ACEN01000027 

Neisseria lactamica NZ_ACEQ01000038 AJ239283 

Neisseria meningitidis AL157959 AL157959 

Nocardioides sp. JS614 NC_8699 CP000509 

Opitutus terrae CP001032 CP001032 

Oribacterium sinus ACKX01000049 ACKX01000142 

Oxobacter pfennigii KPU46025 X77838 

Parabacteroides johnsonii NZ_ABYH01000144 ABYH01000014 

Paracoccus denitrificans CP000489 CP000489 

Petrotoga mobilis CP000879 CP000879 

Photobacterium profundum CR378672 AB003191 

Porphyromonas gingivalis NC_2950 AB035456 

Prevotella copri NZ_ACBX01000107 ACBX02000014 



APPENDIX 

298 

 
Accession numbers 

Taxa fhs 16S rRNA gene 

Propionibacterium acnes NZ_ABZW01000003 ABZW01000012 

Proteus mirabilis NZ_ACLE01000036 ACLE01000013 

Proteus vulgaris AF295710 DQ885257 

Pseudovibrio sp. JE062 DS996805 ABXL01000006 

Psychrobacter sp. PRwf1 CP000713 CP000713 

Rhizobium etli NC_10994 CP001074 

Rhizobium leguminosarum AM236080 AM236080 

Rhizobium sp. NGR234 CP001389 AY260147 

Rhodobacter sphaeroides CP000661 CP000144 

Roseiflexus castenholzii CP000804 CP000804 

Roseiflexus sp. RS1 CP000686 CP000686 

Roseobacter denitrificans NC_8209 CP000362 

Roseovarius nubinhibens ZP_958814 AALY01000001 

Rubrobacter xylanophilus CP000386 CP000386 

Ruegeria sp. R11 DS999054 ABXM01000001 

Ruminococcus lactaris NZ_ABOU02000048 ABOU02000049 

Ruminococcus torques NZ_AAVP02000021 AAVP02000002 

Saccharopolyspora erythraea NC_9142 AM420293 

Shewanella baltica CP000563 CP000563 

Shewanella halifaxensis CP000931 CP000931 

Shewanella loihica CP000606 CP000606 

Shewanella oneidensis NC_4347 AE014299 

Shewanella pealeana CP000851 CP000851 

Shewanella putrefaciens CP000681 CP000681 

Shewanella sp. W3181 CP000503 CP000503 

Shewanella woodyi CP000961 CP000961 

Sinorhizobium medicae CP000738 CP000738 

Sinorhizobium meliloti AL591688 AL591688 

Spiroplasma citri AM285305 AM285316 

Sporomusa ovata AF295708 AJ279800 

Sporomusa termitida AF295709 M61920 

Staphylococcus aureus NC_2952 BX571856 

Staphylococcus capitis ACFR01000005 ACFR01000029 

Staphylococcus carnosus NC_12121 AM295250 

Staphylococcus epidermidis NC_2976 CP000029 
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Accession numbers 

Taxa fhs 16S rRNA gene 

Staphylococcus haemolyticus NC_7168 AP006716 

Streptococcus agalactiae NC_7432 CP000114 

Streptococcus equi NC_12470 FM204884 

Streptococcus infantarius NZ_ABJK02000020 ABJK02000007 

Streptococcus mutans AE014133 AE014133 

Streptococcus pneumoniae NC_3098 AF003930 

Streptococcus pyogenes AE004092 AB002521 

Streptococcus sanguinis CP000387 CP000387 

Streptococcus suis NZ_AAFA03000003 AAFA03000005 

Streptococcus thermophilus NC_6449 CP000024 

Syntrophobacter fumaroxidans CP000478 CP000478 

Thermoanaerobacter kivui AF295704 L09160 

Thermoanaerobacter pseudethanolicus NC_10321 CP000924 

Thermoanaerobacter sp. X514 NC_10320 CP000923 

Thermodesulfovibrio yellowstonii NC_11296 CP001147 

Thermomicrobium roseum NC_11959 CP001275 

Thermosinus carboxydivorans NZ_AAWL01000002 AAWL01000001 

Thermotoga sp. RQ2 CP000969 AJ872273 

Thermus aquaticus NZ_ABVK02000006 ABVK02000001 

Treponema denticola NC_2967 AE017226 

Treponema primitia AJ494823 AF093251 

Ureaplasma parvum NC_10503 AF073456 

Ureaplasma urealyticum NZ_AAYN02000002 AAYN02000002 

Vibrio cholerae NC_12580 CP001233 

Vibrio fischeri NC_6840 CP000020 

Vibrio harveyi NZ_AAWP01000011 AAWP01000045 

Vibrio parahaemolyticus NW_2475411 ACCV01000071 

Vibrio sp. Ex25 DS267821 AAKK02000060 

Xanthobacter autotrophicus CP000781 CP000781 

a Sequences were plotted in Figure 17. 
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Table 47: Sequences used for similarity plots of mcrA and corresponding16S rRNA gene 

sequences.a 

 
Accession numbers 

Taxa mcrA 16S rRNA gene 

Methanobacterium beijingense EF465106 AY552778 

Methanobacterium bryantii AF313806 AF028688 

Methanobacterium formicicum DSM1535  EF465108 NR_025028 

Methanobacterium formicicum DSM1312  AF414050 AY196659 

Methanobacterium ivanovii  EF465107 AF095261 

Methanobacterium sp. HD1  AB288269 AB288265 

Methanobacterium sp. MB4  DQ677519 DQ677518 

Methanobacterium sp. T01  AB288286 AB288275 

Methanobacterium thermaggregans  AY289750 AF095264 

Methanobrevibacter arboriphilus  AF414035 AB065294 

Methanobrevibacter gottschalkii  EU919431 U55239 

Methanobrevibacter millerae  EU919430 AY196673 

Methanobrevibacter ruminantium  AF414046 AY196666 

Methanobrevibacter smithii  CP000678 CP000678 

Methanobrevibacter sp. WBY1  EU919429 EU919428 

Methanobrevibacter woesei  EU919432 U55237 

Methanocaldococcus infernus  AY354032 AF025822 

Methanocaldococcus jannaschii  NC_000909 NC_000909 

Methanocella paludicola  AB300467 AB196288 

Methanococcoides alaskense  AB353221 AY941802 

Methanococcus aeolicus  AY354034 U39016 

Methanococcus maripaludis  NC_005791 NC_005791 

Methanococcus vannielii  M16893 M36507 

Methanococcus voltae  X07793 U38461 

Methanocorpusculum bavaricum  AF414049 AF095266 

Methanocorpusculum labreanum  AY260441 AY260436 

Methanocorpusculum parvum  AY260445 M59147 

Methanocorpusculum sp. MSP  AY260448 AY260434 

Methanocorpusculum sp. T07  AB288289 AB288279 

Methanocorpusculum sp. T08  AB288290 AB288280 

Methanoculleus bourgensis DSM6216 AB300786 AB065298 

Methanoculleus bourgensis DSM3045 AB300787 AF095269 

Methanoculleus chikugoensis  AB300779 AB038795 
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Accession numbers 

Taxa mcrA 16S rRNA gene 

Methanoculleus palmolei  AB300784 Y16382 

Methanoculleus sp. HC1  AB288267 AB288263 

Methanoculleus sp. M07  AB288284 AB288273 

Methanoculleus sp. M11  AB288285 AB288274 

Methanoculleus sp. T02  AB288287 AB288276 

Methanoculleus sp. T05  AB288288 AB288278 

Methanoculleus sp. T14  AB288291 AB288282 

Methanoculleus submarinus  DQ229156 AF531178 

Methanoculleus thermophilus AB300783 AB065297 

Methanofollis liminatans  AF414041 Y16428 

Methanogenium boonei  DQ229161 DQ177343 

Methanogenium marinum  DQ229159 DQ177344 

Methanogenium organophilum  AB353222 M59131 

Methanohalophilus mahii  AB353223 M59133 

Methanolinea sp. TNR  AB496719 AB447467 

Methanolinea tarda  AB300466 AB162774 

Methanolobus zinderi  EU715818 EU711413 

Methanomethylovorans hollandica DMS1 AY260442 AF120163 

Methanomethylovorans hollandica ZB AY260437 AY260433 

Methanomethylovorans thermophila  AY672820 AY672821 

Methanomicrobium mobile  AF414044 AY196679 

Methanopyrus kandleri  AE009439 AE009439 

Methanosaeta concilii  AF414037 M59146 

Methanosaeta harundinacea 8Ac  AY970348 AY817738 

Methanosaeta harundinacea 6Ac  AY970349 AY970347 

Methanosalsum zhilinae  AB353224 FJ224366 

Methanosarcina barkeri  AY260430 CP000099 

Methanosarcina lacustris FRX1 AY260443 DQ058823 

Methanosarcina lacustris MM  AY260438 AY260430 

Methanosarcina lacustris MS  AY260439 AY260431 

Methanosarcina mazei  AB300781 AJ012095 

Methanosarcina sp. HB1  AB288266 AB288262 

Methanosarcina sp. HC2  AB288268 AB288264 

Methanosarcina sp. T36  AB288292 AB288283 

Methanosphaera stadtmanae  AF414047 AY260433 
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Accession numbers 

Taxa mcrA 16S rRNA gene 

Methanosphaerula palustris  EU296536 CP001338 

Methanospirillum hungatei  AF313805 CP000254 

Methanothermobacter thermautotrophicus  U10036 NC_000916 

Methanothermobacter thermoflexus  AY303950 X99047 

Methanothermobacter thermophilus DSM6529  AY289752 X99048 

Methanothermobacter wolfeii  AB300780 AB104858 

Methanothermococcus okinawensis  AB353229 AB057722 

Methanothermococcus thermolithotrophicus  AB353226 M59128 

Methanothermus fervidus  J03375 M59145 

Methanothermus sociabilis  AY289747 AF095273 

Methanotorris igneus  AB353228 M59125 

a Sequences were plotted in Figure 17. 
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Table 48: Class- and family-level phylotypes and relative abundances of bacterial 16S rRNA gene sequences from mire ‘soils’ and from slurries at 

the end of the 21 day incubation. 

 Relative abundance of 16S rRNA gene sequences (%)a 

Taxonomic level 

(phylum, class, family) 

Mire 1  Mire 2  Mire 3  Mire 4 

A B C D E  A B C D E  A B C D E  A B C D E 

Acidobacteria, Acidobacteria, 
                       

  Acidobacteriaceae - - - 4 -  25 14 15 20 27  29 34 39 40 43  41 32 23 24 28 

  Family phylotype 1b - 3 - 2 6  8 - 2 - 5  7 19 4 2 13  10 2 - - 8 

Acidobacteria, Holophagae,                        

  Holophagaceae - - - - -  - 2 - - -  2 - - - -  - - - - - 

Acidobacteria, unknown class,                        

  Family phylotype 2b 2 - - - -  - - - - -  - - - - -  - - - - - 

  Family phylotype 3b 10 3 2 4 -  - - - - -  - - - - -  - - - - - 

  Family phylotype 4b 2 5 7 - 3  - - - - -  - - - - -  - - - - - 

  Family phylotype 5b - - 2 2 -  13 - - - 7  5 11 11 - 9  - - - - - 

  Family phylotype 6b - - - - -  - - 2 - -  - - - - 2  - 2 - - - 

Actinobacteria, Actinobacteria,                        

  Acidimicrobiaceae 2 10 - 6 3  - 7 2 9 2  12 11 9 10 4  2 - - - 5 

  Mycobacteriaceae - - - - -  - - - 2 -  - - - - -  - - - - - 

  Thermomonosporaceae - - 2 - -  - 2 2 2 -  2 - 2 7 7  - - - - 3 

  Conexibacteraceae, 

5 8 - 2 - 

 

- 5 2 2 - 

 

5 6 - - 4 

 

- - 5 - -   Patulibacteraceae,    

  Solirubrobacteraceaec    



APPENDIX 

304 

 Relative abundance of 16S rRNA gene sequences (%)a 

Taxonomic level 

(phylum, class, family) 

Mire 1  Mire 2  Mire 3  Mire 4 

A B C D E  A B C D E  A B C D E  A B C D E 

Actinobacteria, unknown class,                        

  Family phylotype 7b 2 - 2 - -  2 - - - -  - - - - -  - - - - - 

  Family phylotype 8b 2 3 2 4 -  - - - - -  - - - 5 -  - - - - - 

  Family phylotype 9b - 3 - 2 3  - - - - -  - - - - -  - - - - - 

  Family phylotype 10b 2 - - 2 -  - - - - -  - - - - 2  - - - - - 

Armatimonadetes, Armatimonadia,                        

  Armatimonadaceae - - - - -  - - - - -  - - - - -  - 2 - - 3 

Bacteroidetes, Bacteroidia,                        

  Family phylotype 11b - - - - -  - - - - -  - - - - -  - 2 - - - 

Bacteroidetes, Cytophagia,                        

  Cytophagaceae - 5 2 - 3  - - - - -  - - - - -  - - - - - 

Bacteroidetes, Sphingobacteriia,                        

  Chitinophagaceae - - 2 - -  - - - 2 -  - - - 2 -  - 2 - - - 

  Family phylotype 12b - 3 - - -  - - - - -  - - - - -  - - - - 3 

Chlorobi, Ignavibacteria,                        

  Ignavibacteriaceae - - - - -  - - 2 - -  - - - - -  - - - - - 

Chloroflexi, Anaerolineae,                        

  Anaerolineaceae 7 3 5 2 3  4 - - - 2  2 - - - -  - - - - - 

Chloroflexi, Ktedonobacteria,                        

  Ktedonobacteraceae - - - - -  - 2 2 - -  - - - - -  - - - - - 
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 Relative abundance of 16S rRNA gene sequences (%)a 

Taxonomic level 

(phylum, class, family) 

Mire 1  Mire 2  Mire 3  Mire 4 

A B C D E  A B C D E  A B C D E  A B C D E 

  Family phylotype 13b - - - - -  2 12 - - 5  - - - - -  - - - - - 

  Family phylotype 14b - - - - -  - 2 - - -  - - - - -  - - - - - 

Chloroflexi, unknown class,                        

  Family phylotype 15b 2 - 5 - -  - - - - -  - - - - -  - - - - - 

  Family phylotype 16b - - - - -  - - 2 - -  - - - - -  - - - - 3 

  Family phylotype 17b - - - - -  - - - - 2  - - - - -  - - - - 3 

  Family phylotype 18b - - 2 2 -  - - - - -  - - - - -  - - - - - 

  Family phylotype 19b 2 - - 2 -  - - - - -  - - - - -  - - - - - 

  Family phylotype 20b - - - - -  - - - 2 7  - - - - -  - - - - - 

Cyanobacteria, unknown class,                        

  Family phylotype 21b - - - - -  - 2 - - -  - - 4 - -  - - 7 - 3 

Firmicutes, Bacilli,                        

  Bacillaceae - - - 2 -  - - - - -  - - - - -  - - - - - 

Firmicutes, Clostridia,                        

  Clostridiaceae 5 3 5 - -  - 2 31 2 -  - - 2 - -  - 2 21 - - 

  Peptococcaceae - - - - -  - 5 - - -  - - - - -  - - - - - 

  Ruminococcaceae 2 5 - - -  - - - - 2  - - - - -  - - 5 - - 

  Family phylotype 22b - - 5 2 -  - - - - -  - - - - -  - - - - - 

Firmicutes, Negativicutes,                        

  Veillonellaceae - - - - -  - - 2 - 7  - - 2 - -  - - 7 2 10 
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 Relative abundance of 16S rRNA gene sequences (%)a 

Taxonomic level 

(phylum, class, family) 

Mire 1  Mire 2  Mire 3  Mire 4 

A B C D E  A B C D E  A B C D E  A B C D E 

“Nitrospirae”, “Nitrospira”,                        

  “Nitrospiraceae” 2 3 2 2 -  - - - - -  2 - - - -  - - - - - 

Planctobacteria, Planctomycea,                        

  Planctomycetaceae 2 5 - 4 -  4 10 15 20 10  5 - 11 - -  - 7 2 - 3 

Proteobacteria, Alphaproteobacteria,                        

  Caulobacteraceae - - - - -  - - - 2 -  - - - 2 -  - - - - - 

  Beijerinckiaceae - - - 2 -  2 - - 4 2  2 4 - - 2  2 - 2 2 - 

  Bradyrhizobiaceae 2 - 2 4 6  4 - - - 2  7 - - 7 -  5 - 2 4 3 

  Hyphomicrobiaceae 2 5 15 13 6  6 5 6 2 -  - - 2 7 4  - - - - - 

  Methylocystaceae - 3 2 - -  4 2 - - 2  - - - 2 4  22 27 9 41 15 

  Rhizobiaceae 2 - - - -  - - - - -  - - - - -  - - - - - 

  Xanthobacteraceae 2 - - - -  - - - - -  - - - - -  - - - - - 

  Methyloceanibacter-related  

    phylotype 
- - 2 - 3  - - - - -  - - - - -  - - - - - 

  Acetobacteraceae - - - - 3  - - 4 - -  - - - 2 -  10 7 - 22 3 

  Rhodospirillaceae 2 5 - 4 -  - - - - -  - - - - -  - - 2 - - 

  Family phylotype 23b - - - - -  - - - - -  - - - - -  - - - - 3 

  Family phylotype 24b - - 2 - 3  - - - - -  2 - - - -  - 2 7 2 3 

  Family phylotype 25b - - - - -  - - 2 7 2  7 2 4 - -  7 - - 2 - 
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 Relative abundance of 16S rRNA gene sequences (%)a 

Taxonomic level 

(phylum, class, family) 

Mire 1  Mire 2  Mire 3  Mire 4 

A B C D E  A B C D E  A B C D E  A B C D E 

Proteobacteria, Betaproteobacteria,                        

  Comamonadaceae 2 3 - - 3  - - - - -  - - - - -  - - - - - 

  Oxalobacteraceae - - - - -  - - - - 5  - - 2 - -  - - - - - 

  Neisseriaceae - - - - -  - - 2 4 -  - - - - -  - 5 5 - - 

  Rhodocyclaceae - - - - -  - - - 2 -  - - - - -  - - - - - 

  Family phylotype 26b - - - - -  2 - - - -  - - - - -  - - - - - 

  Family phylotype 27b - 5 2 4 -  - - - - -  - - - - -  - - - - - 

  Family phylotype 28b 5 3 5 6 21  2 - - - -  - - - - -  - - 2 - - 

Proteobacteria, Gammaproteobacteria,                       

  Coxiellaceae - - - - -  - - - - -  - - - - -  - - - - 3 

  Moraxellaceae 2 3 2 4 3  - 2 - - -  - - - - -  - - - - - 

  Family phylotype 29b 2 - - 2 -  - - - - -  - - - - -  - - - - - 

Proteobacteria, Deltaproteobacteria,                        

  Bdellovibrionaceae - - - - -  - - - - -  2 - - - -  - - - - - 

  Desulfobacteraceae - 5 - - -  - - - - -  - - - - -  - - - - - 

  Geobacteraceae - - - 2 -  - - - 2 -  - - - - -  - - - - - 

  Phaselicystidaceae, 
- - - 2 - 

 
- 7 - - - 

 
- - - - - 

 
- - - - - 

  Polyangiaceaed    

  Syntrophaceae 5 5 2 6 6  2 - - - 2  - - - - 2  - - - - - 

  Syntrophobacteraceae - - - - -  - 5 - - -  - - - - -  - - - - - 
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 Relative abundance of 16S rRNA gene sequences (%)a 

Taxonomic level 

(phylum, class, family) 

Mire 1  Mire 2  Mire 3  Mire 4 

A B C D E  A B C D E  A B C D E  A B C D E 

  Syntrophorhabdaceae - - - - 3  - - - - -  - - - - -  - - - - - 

  Family phylotype 30b - - - - -  - - - 2 -  - 4 - 2 2  - - - - - 

  Family phylotype 31b 2 - 2 - 3  - 2 - 2 -  - 4 - 5 -  - - - - - 

  Family phylotype 32b 2 3 - 4 3  - - - - -  - - - - -  - - - - - 

  Family phylotype 33b - - - 2 3  - - - - -  - - - - -  - - - - - 

Spirochaetae, Spirochaetes,                        

  Spirochaetaceae 2 - - - -  6 - 2 2 -  - - - - -  - - - - - 

  Family phylotype 34b - - - - -  2 2 - 2 -  - - - - -  - - - - - 

Unclassified Taxonomy,                        

  Xiphinematobacter-related 2 - - 2 -  - - - - -  - - - - -  - - - - - 

Unknown Taxonomye,                        

  Family phylotype 35b - - 7 - -  - - - - -  - - - - -  - - - - - 

  Family phylotype 36b - - - - -  - - - 2 -  - - - - -  - - - - - 

  Family phylotype 37b 2 - - 2 9  - - - - -  - - - - -  - - - - - 

  Family phylotype 38b - - 2 - -  - - - - -  - - - - -  - - - - - 

  Family phylotype 39b - - 2 - -  - - - - -  - - - - -  - - - - - 

  Family phylotype 40b - - - - -  - 2 - - 2  - 2 - - -  - - - - - 

Verrucomicrobia, Opitutae,                        

  Opitutaceae - - - - -  4 - - 2 -  - - 7 2 -  - - - - 3 
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 Relative abundance of 16S rRNA gene sequences (%)a 

Taxonomic level 

(phylum, class, family) 

Mire 1  Mire 2  Mire 3  Mire 4 

A B C D E  A B C D E  A B C D E  A B C D E 

Verrucomicrobia, unknown class,                        

  Family phylotype 41b 7 3 - 2 6  6 5 4 - 2  7 2 - 2 -  - 7 - - 3 

a -, not detected; A, mire ‘soil’; B, unsupplemented slurries; C, glucose-supplemented slurries; D, acetate-supplemented slurries; E, H2-CO2-supplemented 

slurries.  Values are rounded to nearest whole number and thus might not sum up to 100 %. 
b Sequences were considered to be a family-level phylotype without any cultured isolate if the 16S rRNA gene sequence was less than 87.5 % similar to the 

sequence of the closest related cultured species (Yarza et al. 2008). 
c Closest related cultured species: Conexibacter arvalis (AB597950), 94.5-88.8 % 16S rRNA gene sequence similarity, Patulibacter americanus (AJ871306), 

92.9-87.2 % 16S rRNA gene sequence similarity, and Solirubrobacter soli (AB245334), 96.8-88.1 % 16S rRNA gene sequence similarity. 
d Closest related cultured species: Byssovorax cruenta (AJ833647), 88.5-86.5 % 16S rRNA gene sequence similarity, and Phaselicystis flava (EU545827), 

90.2-87.8 % 16S rRNA gene sequence similarity.  
e Listed family-level phylotypes do not necessarily belong to the same phylum or class. 
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