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SUMMARY 

 

The universal triggering event of eukaryotic chromosome segregation is the 

proteolytic cleavage of chromosomal cohesin by separase. The activity of this 

essential but potentially also very dangerous protease must be tightly controlled. 

Prior to the onset of anaphase separase is kept inactive by association with either 

securin or cyclin-dependent kinase 1 (Cdk1) in conjunction with cyclin B1. Only when 

all chromosomes interact properly with the mitotic spindle apparatus does the 

anaphase promoting complex or cyclosome (APC/C), a multisubunit E3 ligase, 

mediate the ubiquitylation of securin and cyclin B1. Their subsequent proteasomal 

degradation then releases active separase. Murine embryonic stem cells, which lack 

securin and express a Cdk1-resistant phosphorylation site mutant separase are 

viable. Thus, additional regulations of sister chromatid separation by separase must 

exist. 

It was reported that human separase cleaves not only cohesin but also itself and, 

furthermore, that it interacts with protein phosphatase 2A (PP2A). However, the 

functions of separase's auto-cleavage and PP2A-interaction remain enigmatic. 

Moreover, securin was reported to also interact with PP2A but, strangely, with a 

different isoform of the phosphatase. Thus, the question needs clarification of 

whether separase or securin or both interact with which isoform of PP2A. 

In this study, further insights into the relationship between separase auto-cleavage 

and PP2A binding are presented. Phosphorylation of a serine residue in close 

proximity to the major cleavage site of separase was found to stimulate auto-

cleavage of separase. Interestingly, a quantitative mass-spectrometric approach 

(SILAC) identified this serine residue as a substrate of separase-bound PP2A. 

Furthermore, a point mutation within separase was identified, which totally abolishes 

PP2A binding and which maps to the immediate vicinity of the auto-cleavage sites. 

Thus, PP2A prevents the auto-cleavage of separase both catalytically and sterically. 

It could further be shown that non-cleavable separase exhibits increased association 

with PP2A and that forced cleavage of separase displaces PP2A. Taken together, 

these results demonstrate that auto-cleavage and PP2A binding constitute two 

antagonistic mechanisms of separase regulation. 
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Evidence is provided that the interaction of PP2A with securin is indirect and bridged 

by separase, and that it is the B56- and not the B55-isoform of PP2A which 

associates with the separase-securin complex. Moreover, free securin is shown to be 

degraded in early mitosis in a phosphorylation- and APC/C-dependent manner, while 

separase-associated securin is kept dephosphorylated and, thus, protected by PP2A. 

Securin levels are frequently increased in tumors. In normal cells, the early removal 

of excessive securin might later ensure swift separase activation and anaphase 

onset, thereby contributing to faithful chromosome segregation.  
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ZUSAMMENFASSUNG 

 

Das auslösende Ereignis eukaryotischer Chromosomensegregation ist die 

proteolytische Spaltung des chromosomalen Cohesins durch Separase. Die Aktivität 

dieser wichtigen, aber potentiell auch sehr gefährlichen Protease muss streng 

reguliert werden. Vor Beginn der Anaphase wird Separase durch Assoziation mit 

Securin oder Cyclin-abhängiger Kinase 1 (Cdk1) in Verbindung mit Cyclin B1 inaktiv 

gehalten. Erst wenn alle Chromosomen korrekt mit dem mitotischen Spindelapparat 

assoziiert sind, wird der Anaphase Promoting Complex oder Cyclosome (APC/C), 

eine E3-Ligase, aktiviert und vermittelt die Ubiquitinierung von Securin und Cyclin 

B1. Der anschließende proteasomale Abbau dieser Inhibitoren entlässt Separase in 

aktivierter Form. Murine embryonale Stammzellen, denen Securin fehlt und die eine 

Cdk1-resistente Separase-Mutante überexprimieren, sind lebensfähig. Daher muss 

es zusätzliche Regulationsmechanismen für Separase geben, welche die 

Schwesterchromatid-Trennung regulieren. 

Es wurde berichtet, dass menschliche Separase nicht nur Cohesin sondern auch 

sich selbst spalten kann. Außerdem interagiert Separase mit Protein Phosphatase 

2A (PP2A). Allerdings sind die Funktionen dieser Selbstspaltung und PP2A-

Interaktion noch immer ungeklärt. Darüber hinaus wurde berichtet, dass Securin 

auch mit PP2A interagieren kann, allerdings mit einer anderen Isoform. Daher muss 

die Frage geklärt werden, ob Separase oder Securin oder beide mit welcher Isoform 

von PP2A interagieren. 

In dieser Studie werden neue Einblicke in die Beziehung zwischen Separase-

Selbstspaltung und PP2A-Bindung geliefert. Es konnte die Phosphorylierung eines 

Serinrestes in unmittelbarer Nähe zu der wichtigsten Selbstspaltstelle von Separase 

festgestellt werden. Außerdem konnte gezeigt werden, dass diese die Selbstspaltung 

der Separase stimuliert. Interessanterweise konnte in einem quantitativen massen-

spektrometrischen Ansatz (SILAC) dieser Serinrest als Substrat der Separase-

gebundenen PP2A identifiziert werden. Darüber hinaus konnte eine Punktmutation in 

Separase identifiziert werden, welche die Interaktion mit PP2A verhindert und in 

umittelbarer Nähe zu den Selbstspaltstellen liegt. PP2A verhindert also die 

Selbstspaltung der Separase sowohl auf eine katalytische als auch auf eine sterische 
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Art. Es konnte weiterhin gezeigt werden, dass nicht-spaltbare Separase stärker mit 

PP2A interagiert und erzwungene Spaltung PP2A von Separase verdrängt. 

Zusammengenommen zeigen diese Ergebnisse, dass Selbstspaltung und PP2A-

Bindung zwei antagonistische Mechanismen der Separaseregulation darstellen. 

Es konnte nachgewiesen werden, dass die Interaktion von PP2A mit Securin indirekt 

ist und durch Separase überbrückt wird. Außerdem wurde gezeigt, dass es sich 

hierbei um die B56- und nicht um die B55-Isoform der PP2A handelt. Weiterhin 

konnte ein phosphorylierungs- und APC/C-abhängiger Abbau von Separase-freiem 

Securin in früher Mitose gezeigt werden, während Separase-assoziiertes Securin 

durch PP2A dephosphoryliert und geschützt wird.  

In Tumoren sind die Securinmengen oft erhöht. In normalen Zellen könnte die 

frühzeitige Entfernung des überflüssigen Securins später eine rasche Separase-

Aktivierung sowie einen zeitgerechten Anaphase-Beginn gewährleisten und damit 

eine akkurate Chromosomensegregation ermöglichen.  
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1. INTRODUCTION 

 

1.1. The eukaryotic cell cycle - principles of regulation and control 
 

The ability of cells to duplicate and divide is of fundamental importance for all living 

organisms, not only in embryonic development but also in the regeneration of adult 

tissues. In the course of a cell cycle, the genetic material must first be duplicated 

completely and accurately before being equally distributed between the two arising 

daughter cells. In eukaryotes, this is achieved in two timely distinct phases, S phase 

(synthesis) and M phase (mitosis), which are separated by gap phases G1 (between 

M and S) and G2 (between S and M) (Fig. 1). G1 phase is characterized by cell 

growth and extensive protein biosynthesis, especially of proteins required for 

subsequent DNA replication in S phase, while G2 phase prepares cells for upcoming 

mitosis by the production of critical mitotic proteins such as the microtubules needed 

to form the mitotic spindle. G1, S and G2 phases, which together take up to 95% of 

the time of a typical human somatic cell cycle, constitute the time between two 

consecutive M phases and are therefore collectively referred to as interphase. Cells 

may become quiescent or senescent and leave the cell cycle in G1 to enter G0 

phase, a phase where cells temporarily or terminally stop proliferating. While many  

cell types in mature organisms, such as neurons, are thought to be in a 'post-mitotic', 

terminally differentiated state, other types of cells, such as epithelial cells, will 

continue to divide throughout an organism's life and enter G0 only in response to a 

lack of growth factors or nutrients. 

 

To minimize cell cycle errors, which can cause birth defects and contribute to cancer, 

and to ensure faithful DNA replication in S phase and DNA segregation in mitosis, 

so-called checkpoints supervise critical cell cycle transitions. These control systems 

are highly regulated and constitute all-or-nothing switches. In G1 phase, a 'restriction' 

checkpoint controls if cells are ready to enter S phase and start duplicating their 

genetic material or whether cells are destined to leave the cell cycle at this stage and 

enter the resting G0 phase. Once this checkpoint is passed, cells are liscensed to 

enter a full cell cycle. In G2, the DNA damage checkpoint is responsible for 

preventing mitotic entry until replication defects or DNA damage of other sorts have 
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been repaired. Finally, at the metaphase-to-anaphase transition of mitosis, the 

'spindle assembly checkpoint' (SAC) closely monitors correct spindle attachment 

before the DNA is allowed to segregate. After the cell has split into its two daughter 

cells, these re-enter G1 phase (Morgan, 2007) (Fig. 1). 

 

The course of cell cycle events is controlled primarily by reversible, post-translational 

modifications of proteins, such as phosphorylation, and by irreversible, switch-like 

degradation of proteins (Murray and Kirschner, 1989). The family of cyclin-dependent 

kinases (Cdks) are the key enzymes that drive cell cycle progression. The regulated 

cyclic synthesis of cyclins, Cdk associating and activating proteins, promotes 

oscillating Cdk activities throughout the cell cycle and therefore cyclical changes in 

the phosphorylation of components of the cell cycle machinery. Irreversible 

destruction of cyclins leads to inactivation of Cdks, which in turn allows phosphatases 

to dephosphorylate Cdk substrates. Specific pairs of Cdk-cyclin complexes are 

formed and activated throughout the cell cycle. In mammalian cells, the main Cdk-

cyclin complexes are formed by cyclin A, cyclin B and cyclin E. Cdk1 together with 

cyclin B1 triggers entry into mitosis and is hence also referred to as MPF (mitosis 

promoting factor). Cyclin A in complex with Cdk1 or 2 drives S and G2 phase 

progression, while Cdk2-cyclin E regulates G1/S transit and DNA synthesis (Fig. 1). 
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FIGURE 1. Schematic overview of the cell cycle. 

Depicted are the main cell cycle phases of a typical mammalian somatic cell. The 
corresponding Cdk-cyclin complexes that govern these phases are indicated. 
Highlighted in red are critical control points that monitor the correct course of 
important cell cycle transitions. See text for details. Figure taken and modified from 
(Pines, 2011). 
 

 

1.2. The establishment of sister chromatid cohesion in S phase 
 

In the course of a cell cycle, the cell always has to know which pairs of double-

stranded DNA molecules (sister chromatids) belong together. This is essential, both 

to allow for equal distribution of the genetic information to each daughter cell in 

mitosis, but also to enable postreplicative repair of DNA double-strand breaks by 

homologous recombination in G2 phase. Therefore, mechanisms are in place that 

hold sister chromatids together from the time of DNA replication in S phase until the 

metaphase-to-anaphase transition of mitosis. This sister chromatid cohesion is 

mediated on the one hand by topological inter-sister DNA links (DNA catenation), 

which naturally occur when replication forks meet during DNA synthesis, and by the 

cohesin complex.  

 

G2 checkpoint 

Spindle assembly checkpoint 

(SAC) 

G1 checkpoint    
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This ring-shaped multi-protein complex contains four main subunits - Smc1 and 

Smc3, which belong to the familiy of 'structural maintenance of chromosomes' (SMC) 

proteins, the kleisin subunit Scc1/Rad21 and Scc3/SA (SA1 and SA2 in vertebrates) 

(Fig. 2). SMC proteins are widely conserved in the three domains of life and 

contribute to a variety of processes involving chromosome dynamics, not only 

chromosome segregation but also DNA recombination and repair. Structurally, SMC 

proteins are characterized by a large, elongated coiled coil region that forms an 

ATPase 'head' at one end, where N- and C-terminus of the back-folded proteins 

meet, and a so-called 'hinge' domain at the other end. Within the cohesin ring, the 

two SMC subunits dimerize over their hinge regions, forming a V-shape that can be 

visualized by electron miscroscopy. Over the ATPase head domains situated at the 

top of the V-shape, Smc1 and Smc3 interact with the C- and N-terminus of the Scc1 

subunit, respectively, thereby completing the ring. Scc1 is further associated with a 

fourth, peripheric subunit, Scc3/SA, which exists in two different versions in somatic 

vertebrate cells, SA1 and SA2 (Losada et al., 1998; Losada et al., 2000; Melby et al., 

1998; Michaelis et al., 1997). Beside these core subunits, a variety of accessory 

proteins have been identified that can modulate cohesin behavior and stability. 

Among these are Wapl (wings apart-like) and Pds5 (precocious dissociation of 

sisters 5), which interact not only with Scc1 and Scc3/SA but also with each other, 

and have been characterized as possessing an anti-establishment activity, being 

involved in destabilizing cohesin-chromatin interactions in G2 and prophase of 

mitosis (Gandhi et al., 2006; Kueng et al., 2006; Shintomi and Hirano, 2009). 

Antagonistically, cohesin-associating protein soronin has been implicated in cohesion 

establishment and/or maintenance in G2 phase (Schmitz et al., 2007). Soronin, 

which can only bind to replicated chromatin associated with cohesin, is potentially 

involved in stabilizing 'established' cohesion (Lafont et al., 2010). 
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FIGURE 2. Schematic depiction of the cohesin ring complex. 

According to the ring model, the subunits of the cohesin complex form a large ring 
that encircles both sister chromatids, therey providing a topological linkage between 
sister chromatids from the time of their synthesis in S phase until the metaphase-to-
anaphase transition of mitosis. See text for details. Figure taken and modified from 
(Peters et al., 2008). 
 

 

Cohesin is loosely loaded onto chromatin before DNA replication (in late G1 phase in 

budding yeast or already in telophase of mitosis in higher eukaryotes), by a process 

involving the proteins Scc2 and Scc4 in yeast (Ciosk et al., 2000), as well as 

orthologs of Scc2 and Scc4 in addition to pre-replication factors in higher eukaryotes 

(Takahashi et al., 2004; Watrin et al., 2006) (Fig. 3). In S phase, concomitant with 

DNA replication, previously loaded cohesin now forms a tight link between the newly 

synthesized sister chromatids (Toth et al., 1999). This establishment requires the 

activity of the Eco1/Ctf7 (Esco1 and Esco2 in humans) acetyltransferase (Ivanov et 

al., 2002; Toth et al., 1999), which can acetylate cohesin subunit Smc3, leading to 

the dissociation of anti-establishment factors Wapl1 and Pds5. Eco1 has been shown 

to interact with several DNA replication-fork components, including the DNA 

polymerase processivity clamp PCNA (Moldovan et al., 2006; Skibbens et al., 1999), 

arguing for replication-coupled cohesion establishment.  

'hinge' domain 

'head' domain 

'head' domain 



Introduction 

  13 

In an unperturbed cell, no cohesin is established de novo after S phase, but the 

already established cohesin must be maintained throughout G2 phase until mitosis. 

Recently, a possible mechanism by which cohesion establishment is restricted to S 

phase was revealed. Cdk1-dependent phosphorylation of Eco1 from late S phase 

until mitosis was shown to lead to its SCF-dependent degradation (Lyons and 

Morgan, 2011). In the event of DNA damage however, Eco1 is stabilized and can 

acetylate cohesin subunit Scc1, again counteracting the anti-establishment activity of 

Wapl1 (Heidinger-Pauli et al., 2009). Thus, new cohesion can be established to aid in 

DNA repair.  

 

How cohesin exerts its cohesion mediating function on chromosomes is still subject 

of ongoing debate. Based on its large ring structure and strong biochemical 

evidence, the most appealing model (the so-called 'ring model') is that a single 

cohesin ring encircles the two sister chromatids, thereby acting as a topological linker 

rather than directly binding to the chromosomes (Anderson et al., 2002; Gruber et al., 

2003; Haering et al., 2002) (Fig. 2). 

 

FIGURE 3. Model of cohesin and its establishment/resolution cycle.  

Shown is the cohesin cycle from S. cerevisiae. Note that in higher eukaryotes, 
loading of cohesin (represented here by green rings) onto DNA commences as early 
as telophase of mitosis and additionally depends on pre-replicative complexes.  
Cohesin is then established in S phase. Resolution of cohesin begins in prophase of 
mitosis and is completed at the metaphase-to-anaphase transition by the action of 
separase. See text for details. Figure taken from (Carretero et al., 2010). 

Wapl           
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1.3. The process of sister chromatid separation in mitosis 

 

In higher eukaryotes, mitosis begins with the condensation of DNA into densly 

packed chromosomes in the nucleus. At the same time, centrosomes, the 

microtubule organizing centers (MTOCs) localised in the cytoplasm of animal cells, 

separate and initiate the assembly of the mitotic spindle (prophase). In 

prometaphase, the nuclear envelope breaks down (nuclear envelope breakdown, 

NEB) and the condensed chromosomes start migrating to the center of the cell and 

attaching to the biopolar array of microtubules. Attachment occurs via protein 

complexes known as kinetochores, that assemble at the primary constriction regions 

of the mitotic chromosomes, the centromeres, onto chromatin containing the histone 

H3 variant CENP-A (centromeric protein-A). The two sister chromatids of a 

chromosome are each attached to microtubules emanating from opposite poles of 

the spindle by metaphase. At this stage, the spindle assembly checkpoint (SAC) 

monitors kinetochor-microtubule attachment and tension generated by correct bipolar 

kinetochor-microtubule attachment. Once the SAC is satisfied, the separation of 

sister chromatids at the metaphase-to-anaphase transition can be triggered by a 

protease called separase, which cleaves cohesin, the multisubunit ring structure 

responsible for holding the sister chromatids together. This process is mediated by a 

ubiquitin protein ligase called the anaphase-promoting complex or cyclosome 

(APC/C). Every chromatid is then moved towards its pole by shortening of the spindle 

microtubules (anaphase A) and by an increase in interpolar distance (anaphase B). 

During telophase, the spindle dissamsembles and a nuclear envelope reforms 

around the now decondensing chromosomes. Finally, a contractile actinmyosin ring 

creates a cleavage furrow and mediates cleavage and abscission of the two daughter 

cells (Morgan, 2007) (Fig. 1). 

 

1.3.1. The resolution of cohesion in mitosis 
  

To enable the synchronous separation of sister chromatids at the metaphase-to-

anaphase transition of mitosis, removal of all cross-links between sister chromatids 

must be carefully orchestrated. Untanglement of inter-sister DNA catenation takes 

place throughout G2 and is catalyzed by topoisomerase II. In addition, a complex 

structurally related to cohesin, the condensin complex, associates with chromatin at 
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the onset of mitosis and is involved in DNA condensation and the resolution of sister 

chromatids in preparation for their segregation. By early mitosis, most catenations 

are resolved and DNA is highly condensed. At this stage, cohesin, which is 

distributed along the entire length of chromosomes as cells enter mitosis, constitutes 

the major topological link between sister chromatids. In higher eukaryotes, cohesin is 

removed from chromosomes in two waves (Sumara et al., 2000; Waizenegger et al., 

2000) (Fig. 4). Already in prophase more than 90% of cohesin is removed from 

chromatid arms by the action of protein kinases Plk1 (polo-like kinase 1) and Aurora 

B (Losada et al., 2002; Peters et al., 2008; Sumara et al., 2000). Plk phosphorylates 

the Scc3 subunit of cohesin (Hauf et al., 2005), thereby possibly enabling Wapl1-

Pds5 to promote a conformational change in the cohesin ring which leads to its 

dissociation (Gandhi et al., 2006). This so-called 'prophase pathway' in early mitosis 

gives rise to the typical X-shaped morphology of metaphase chromosomes, 

characterized by their centromeric constriction. Protected from the cohesin removal 

induced by Plk and Aurora B are the centromeric regions of chromosomes, where 

shugoshin (Sgo1) and its partner PP2A are localized. While Sgo1 itself may serve as 

a physical protector for centromeric cohesin, its recruitment of PP2A serves to 

counteract cohesin phosphorylation and thereby stabilizes cohesin rings in this 

region (Kitajima et al., 2006; Riedel et al., 2006; Tang et al., 2006). 

 

The resolution of DNA catenation and the removal of all chromosome arm cohesion 

by metaphase means that sister chromatids are only held together by residual 

cohesin around the centromeric regions of chromosomes at this stage. At the 

metaphase-to-anaphase transition, the protease separase is activated via the 

APC/CCdc20-mediated degradation of its inhibitor proteins securin and cyclin B1 and 

cleaves the Scc1 subunits of the remaining cohesin complexes on all chromosomes 

(Hauf et al., 2001; Uhlmann et al., 1999) (Fig. 4). 

 

 

 

 

 

 



Introduction 

  16 

 

FIGURE 4. Model of sister chromatid separation in higher eukaryotic mitosis.  

In higher eukaryotes, cohesin is removed from chromosomes in 2 steps. In the so-
called prophase pathway, cohesin is initially removed from chromosome arms. 
Centromeric cohesin is protected by the Sgo1-PP2A complex, giving rise to the 
characteristic X-shaped metaphase chromosome structure. Once all chromosomes 
are correctly attached to the mitotic spindle and the spindle assembly checkpoint is 
satisfied, separase inhibitors securin and MPF (cyclin B1 of the Cdk1-cyclin B1 
complex) are degraded in an APC/CCdc20-dependent manner, liberating active 
separase. Separase then proteolytically cleaves any remaining cohesin, separating 
the sister chromatids from each other. Figure modified from O. Stemmann. 
 

 

1.3.2. The spindle assembly checkpoint 
 

Separase is activated by the concomitant APC/CCdc20-mediated targeting of its 

inhibitors securin and Cdk1 regulatory subunit cyclin B1 for proteasomal degradation 

(Cohen-Fix et al., 1996; King et al., 1995; Zou et al., 1999). It is crucial for the fidelity 

of sister chromatid segregation that this irreversible all-or-nothing step is only 

activated once all chromosomes are bioriented at the metaphase plate, i.e. attached 

to microtubules emanating from opposite poles of the cell. This is controlled by a 

cellular surveillance machinery known as the spindle assembly checkpoint (SAC), 

that monitors the attachment of spindle microtubules to the kinetochores of 

chromosomes and delays anaphase onset in response to spindle defects (Fang et 

al., 1998; Schott and Hoyt, 1998). Only when the SAC is satisfied and the SAC signal 

prophase metaphase anaphase 
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inactivated can its central target, the APC/C, be activated. It is still not clear whether 

the SAC, which is essential in mammalian cells and is triggered in every mitosis, 

even in unperturbed cell cycles, is an attachment- or a tension-sensing activity, or 

whether both parameters are detected to generate a 'wait anaphase' signal in the 

presence of unattached kinetochors. On a molecular basis, the APC/C is inhibited in 

such an event by a four-protein complex known as the mitotic checkpoint complex 

(MCC), which consists of the checkpoint proteins Mad2 (mitotic arrest deficient), 

Bub3 (budding uninhibited by benzimidazole), BubR1, and the APC/C activator 

Cdc20 (Sudakin et al., 2001) (Fig. 5). Additionally, proteins like Mad1 as well as the 

kinases Bub1, Mps1 and Aurora B are involved in regulating SAC activity, signal 

amplification and the rate of MCC formation. Within the MCC, Mad2 and BubRI can 

directly interact with and inhibit Cdc20. It is thought that MCC formation occurs 

directly at unattached kinetochores. All MCC components are found to localize here. 

According to the so-called 'template model', Mad1 bound to unattached kinetochores 

serves as a template for the conformational activation of central MCC component 

Mad2. Mad2 can adopt two native conformations, known as Mad2-open (Mad2O) and 

Mad2-closed (Mad2C), Mad2-closed being the form that can bind Cdc20 and thereby 

inhibit the APC/C (De Antoni et al., 2005; Luo et al., 2004). Briefly, soluble cytosolic 

Mad2-open is converted into Mad2-closed by a transient interaction with stably 

kinetochore-bound Mad1. Thus activated Mad2-closed bound to Mad1 now itself 

serves as a template for further Mad2-open forms, which are recruited to the site of 

unattached kinetochores, converted to Mad2-closed, and thereby activated to bind 

Cdc20. In this way, the checkpoint signal at a single unattached kinetochor is 

amplified rapidly (De Antoni et al., 2005). Inactivation of the SAC signal upon 

correction of all erroneous microtubule-kinetochore attachments occurs in a switch 

like manner. The exact mechanism of MCC disassembly, which ultimately releases 

Cdc20, making it available for the formation of an active APC/C, is still incompletely 

understood, but involves both the motor protein dynein and the Mad2-open 

mimicking inhibitor p31comet  (Howell et al., 2001; Mapelli et al., 2006; Xia et al., 2004).  
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FIGURE 5. The 'template model' of spindle assembly checkpoint signaling. 

The template model of SAC activation and signal amplification describes how Mad1-
Mad2 complexes at unattached kinetochores may induce a conformational 
conversion of soluble Mad2-open (Mad2O) into Mad2-closed (Mad2C), thereby 
catalyzing Mad2 binding to its target Cdc20. Together with Bub3 and BubR1, the 
Cdc20-Mad2C complex then forms the so-called mitotic checkoint complex (MCC), 
which inhibits APC/CCdc20 activation and therby induces a mitotic arrest until all 
kinetochors are correctly attached to the mitotic spindle. Figure modified from O. 
Stemmann. 
 

 

1.3.3. The ubiquitin-proteasome system 
 

Proteolysis via the ubiquitin-proteasome system (UPS) controls mitotic progression at 

multiple stages, namely at sister chromatid separation, Cdk1 inactivation and exit 

from mitosis. The first step of this pathway is to mark substrates that are destined for 

degradation with the small (79 aa) ubiquitous protein ubiquitin. The assembly of 

polyubiquitin chains on substrate proteins like securin and cyclin B1 (ubiquitylation) is 

sequentially performed by the ubiquitin activating enzyme (E1), the ubiquitin 

conjugating enzyme (E2) and a ubiquitin ligase (E3). ATP-dependent activation of a 

ubiquitin protein is achieved by the covalent attachment of the carboxyl terminus of a 

glycine residue of ubiquitin to the sulfhydryl group of a cysteine in the active site of 
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the E1 enzyme, forming a high energy thioester bond. The activated ubiquitin is then 

transferred to the active site cysteine of the E2 enzyme, which catalyzes the 

formation of an isopeptide bond between the glycine residue of the ubiquitin and the 

amino group of a lysine side chain of the target protein. This ubiquitylation reaction is 

dependent on the E3 enzyme, which either serves as a platform to bring together the 

E2 enzyme and specific substrates, or takes over the activated ubiquitin from the E2 

enzyme to then conjugate it onto the substrates. Additional ubiquitins are 

subsequently added onto pre-conjugated ones to form long polyubiquitin chains that 

are recognized by the 26S proteasome, a large multisubunit protease complex, which 

degrades the ubiquitylated protein to small peptides (Peters, 2006; Pickart and 

Eddins, 2004) (Fig. 6). 

 

 
 

FIGURE 6. Overview of the ubiquitin/proteasome pathway. 

Proteins designated for rapid proteasomal destruction are marked for recognition by 
the 26S proteasome by the covalent addition of a long polyubiquitin chain. This 
ubiquitylation is achieved by the successive action of three enzymes termed E1, E2 
and E3. E3 is a ubiquitin ligase which catalyzes the final conjugation of a ubiquitin to 
the target protein. The key mitotic E3 ubiquitin ligase is the anaphase promoting 
complex/cyclosome (APC/C). Figure taken and modified from 
(CellSignalingTechnology, 2010). 
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The key mitotic E3 ubiquitin ligase is the anaphase promoting complex/cyclosome 

(APC/C), which targets critical mitotic reguatory proteins like securin and A- and B-

type cyclins, leading to activation of separase and inactivation of the corresponding 

Cdk kinase. The human APC/C is a complex of 13 subunits, including the cullin 

subunit (Apc2), the RING finger subunit (Apc11) as part of the active, E2 ubiquitin 

conjugate binding site, the Apc10 subunit involved in substrate recognition and the 

tetratrico peptide repeat (TPR) subunit Apc3/Cdc27, over which the APC/C core 

complex interacts with one of two co-activator proteins. These are Cdc20 and Cdh1, 

both characterized by an N-terminal "C-box", which is needed for binding the APC/C 

core and for promoting ubiquititylation, and a C-terminal isoleucin-arginine (IR) tail, 

which meditiates interaction with the Apc3/Cdc27 subunit of the APC/C core. 

Additionally, the C-termini of these APC/C co-activators contain a so-called WD40 

domain made up of tryptophan-aspartate-rich repeats that are predicted to fold into 

seven-bladed ß-propeller-like structures and are involved in binding to specific 

recognition motifs within the substrates. Substrates may contain one or several so-

called KEN- and/or destruction (D)-boxes. The KEN motif comprises the amino acids 

lysine, glutamate and asparagine, while D-boxes are characterized by a conserved 

arginine-leucine (RxxL) consensus motif. Both resemble recognition sites for the 

APC/C and as such are part of the degrons that ultimately lead to substrate 

degradation. 

 

In mitosis, the APC/C co-operates with Cdc20, which can only associate with and 

activate the APC/C when several APC/C subunits have been phosphorylated by 

different kinases like Plk1 and Cdk1 during S and G2 phase and early mitosis, and 

when Emi1, a strong interphase inhibitor of APC/CCdc20, has been degraded (via the 

SCF complex, another E3 ubiquitin ligase). Active APC/CCdc20 then mediates the 

degradation of substrates like cyclin A and Nek2A in prometaphase and of securin 

and cyclin B1 at the metaphase-to-anaphase transition. The drop in Cdk1 activity 

associated with cyclin B1 degradation promotes the formation of an APC/CCdh1 

complex during anaphase and telophase, which then stays active throughout G1 

phase and mediates the degradation of securin, cyclins, Plk1, Cdc20, thus 

inactivating the APC/CCdc20, and finally of the E2 enzyme UbcH10, thereby 

inactivating itself and allowing S phase entry by accumulation of S phase cyclins 

(Peters, 2006). 
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A second major E3 ubiquitin ligase involved in cell cycle progression is the SCF 

complex. The human SCF complex is composed of 3 core subunits (Skp1, the cullin 

Cul1 and the RING protein Rbx1) and one member of a large family of F-box 

proteins. In humans, 69 different F-box protein genes have been identified to date. F-

box proteins are characterized by the presence of an F box domain, which interacts 

directly with the Skp1 subunit of the SCF core (Bai et al., 1996), and usually contain 

WD40 or leucine-rich repeats that can directly interact with the target proteins and 

confer substrate specificity. The SCF core complex is active throughout the cell 

cycle, and regulation of substrate ubiquitylation is mostly controlled on the level of 

subtrate phosphorylation. In addition, conjugation of the ubiquitin-like protein NEDD8 

to the cullin subunit (neddylation) appears to be required for SCF function (Saha and 

Deshaies, 2008). 

 

Polyubiquitylated proteins are targeted to the 26S proteasome for proteolytical 

destruction. This giant protease complex (approx. 2.5 MDa) is part of the ubiquitin-

proteasome system (UPS), which constitutes the major cytosolic proteolytic system 

in eukaryotes. Structurally, the proteasome contains two functionally distinct 

particles, the 20S core particle and two distally positioned 19S regulatory particles 

(Fig. 6), which are both connected to the core by a substrate translocation channel. 

Generally, ubiquitylated proteins are recognized by the 19S regulatory particle in an 

ATP-dependent manner and are subsequently unfolded and deubiquitylated here. 

Importantly, ubiquitin molecules are recycled by the cell, and can be re-activated by 

E1 enzymes to start ubiquitylation of new proteins. Following their translocation into 

the 20S core particle, proteins are degraded by proteolysis (Fig. 6). This 

compartmentalized structure of the proteasome holoenzyme enables substrate 

proteins to be degraded in a very selective and processive manner, in contrast to the 

low specificity degradation of proteins by proteases in the lysosome, for example 

(Finley, 2009; Pickart and Cohen, 2004).  

 

 

1.3.4. Regulation of separase activity 
 

APC/C-mediated securin and cyclin B1 degradation initiates the activation of 

separase, which then performs the decisive step in sister chromatid separation by 
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cleaving the last persisting cohesin bonds between sister chromatids. Separase, 

which belongs to the family of Cys-endopeptidases, is considered the universal 

trigger of eukaryotic anaphase (Kumada et al., 2006; Wirth et al., 2006). Separase is 

essential for viability. This is underlined by the fact that deletion of both copies of 

separase causes embryonic lethality in mice, and mouse embryonic fibroblasts 

lacking separase become highly polyploid (Wirth et al., 2006). Despite low 

conservation of their primary structures, separases from different species might have 

conserved tertiary structures (Jager et al., 2004). The active site of this large protein 

(233 kDa in humans) is located near the C-terminus and contains a conserved 

histidine and cysteine residue forming the catalytic dyad (Uhlmann et al., 2000). 

Active separase, which cleaves proteins specifically after the arginine of an ExxR 

consensus sequence (Stemmann et al., 2001; Sullivan et al., 2004; Uhlmann et al., 

1999), cleaves the Scc1 subunit of both chromosomal and centrosomal cohesin 

(Schöckel et al., 2011; Tsou and Stearns, 2006; Uhlmann et al., 1999). In addition, 

the meiotic Scc1-homolog Rec8 (Petronczki et al., 2003) and the kinetochore-

associated protein Slk19 in budding yeast (Sullivan et al., 2001) have been identified 

as separase substrates. In higher eukaryotes, active separase also cleaves itself. 

Once cleaved, the generated separase fragments remain associated and catalytically 

active. Thus, cleavage is not required for separase activation, at least in vitro 

(Waizenegger et al., 2002; Zou et al., 2002). Thus, the functional relevance of this 

mechanism is still unclear.  

 

Based on low resolution electron microscopy pictures of the human separase-securin 

complex, as well as detailed bioinformatic analysis of the human separase sequence 

(2120 residues), general structural characteristics of this protease complex were 

proposed (Viadiu et al., 2005). The N-terminal half of separase might have a 

superhelical structure and consist of 26 ARM or HEAT repeats, which are often 

implicated in protein-protein interactions, whereas the C-terminal half is predicted to 

consist of two caspase domains, of which only the most C-terminal one is active. N- 

and C-terminus are separated by a 280 residue long unstructured region (amino 

acids 1276-1556). Most mapped phosphorylation sites as well as separase's auto-

cleavage sites fall into this unstructured stretch, suggesting that this region has a 

central regulatory function (Fig. 7).  
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FIGURE 7. Proposed domain structure of human separase. 

Overview of important regulatory residues and domains within human separase. The 
serine at position 1126 as well as the highlighted residues within the central Cdc6-
like domain (CLD, amino acid position 1342-1400) are critical for cyclin B1-Cdk1 
binding. In close proximity are separase's main auto-cleavage (AC) sites (ExxR sites 
at amino acid positions ER1483/6, ER1503/6 and ER1532/5). The PP2A binding site 
characterized by Holland and colleagues (amino acid position 1419-1474; Holland et 
al., 2007) maps to a region between the CLD and the AC sites. The cysteine at 
position 2029 is essential for separase's proteolytic activity. 
 
 

To date, human separase has been shown to interact with three different partners. 

Prior to anaphase, separase is inhibited by (mutually exclusive) association with 

cyclin B1-Cdk1 complex (also known as mitosis promoting factor, MPF) or securin 

(Funabiki et al., 1996; Gorr et al., 2005; Stemmann et al., 2001; Stratmann and 

Lehner, 1996; Yamamoto et al., 1996; Zou et al., 1999). In addition, protein 

phosphatase 2A (PP2A) can interact with human separase, although the function of 

this association remains unknown (Holland et al., 2007). 

 

1.3.4.1. Securin-mediated separase inhibition 

 

Securins from different eukaryotic species are conserved in their function as small 

stoichiometric inhibitors of anaphase, but show little or no sequence homolgy. 

Generally, securins are considered to be natively unfolded proteins and as such 

contain little secondary structure elements (Csizmok et al., 2008; Sanchez-Puig et 

al., 2005). Common features of all securins however include their basic amino-

terminal halves, which contain at least one APC/C recognition motif (KEN- and/or D-

box), their acidic carboxy-terminal halves, which have been implicated in binding 
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separase, as well as their relatively small size (< 30 kDa). How exactly securin binds 

and inhibits separase is still not fully understood. Both separase termini have been 

reported to be involved in binding securin, suggesting that separase that is bound to 

securin may adopt a conformation, in which the amino terminus is in close proximity 

to the carboxy terminus (Hornig et al., 2002; Jager et al., 2001; Jensen et al., 2001; 

Kumada et al., 1998). Indeed, there is evidence that separase can undergo large 

conformational changes, both upon dissociation from its inhibitors securin (Hornig et 

al., 2002) and  as a result of phosphorylation by MPF (Boos et al., 2008). 
 

In fission yeast and Drosophila, securin is essential for chromosome segregation 

(Funabiki et al., 1996; Stratmann and Lehner, 1996; Yamamoto et al., 1996). It might 

also serve as a recruitment factor for correct intracellular localization of separase in 

fission and budding yeast (Hornig et al., 2002; Jensen et al., 2001; Kumada et al., 

1998). In higher eukaryotes, securin is dispensible for viability. Both mice and 

cultured human cells are viable and show only a mild phenotype upon knock-out of 

securin (Mei et al., 2001; Pfleghaar et al., 2005; Wang et al., 2003). This can be 

explained by the existance of MPF, which can phosphorylate and then bind to inhibit 

separase in mitosis (Stemmann et al., 2001). 
 

Surprisingly, securin not only functions as an inhibitor but also as an activator of 

separase, since knockout of securin in vertebrates leads to a reduced level and 

activity of separase (Pfleghaar et al., 2005). How securin exerts its positive effect on 

separase has not yet been elucidated. It might be involved in proper localization of 

separase (Jensen et al., 2001) or act as a chaperone assisting in correct folding 

(Nagao et al., 2004). 
 

 

1.3.4.2. MPF-mediated separase inhibition 
 

MPF (Cdk1-cyclin B1) mediated phosphorylation of Ser1126 on human separase 

indirectly promotes the stepwise formation of a separase-MPF complex that, 

ultimately, inhibits not only separase but also leads to the inactivation of Cdk1. 

Ser1126 phosphorylation is thought to induce a conformational change in separase, 

leading to the demasking of the actual MPF binding site (Boos et al., 2008) (Fig. 8). 

This site lies within the unstructured regulatory region of separase (amino acids 

1276-1556), more precisely in a Cdc6-like domain (CLD, amino acid position 1342-
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1400) exhibiting a weak homology to budding yeast Cdc6, which shows similar 

phosphorylation-dependent Cdk1 binding behavior (Mimura et al., 2004). MPF 

phosphorylates Thr1346 within this region, Polo like kinase (Plk) may further 

phosphorylate Thr1363 and Ser1399, and these phosphorylations are the basis for 

stable MPF binding to the CLD via the regulatory Cdk1 subunit cyclin B1 (Boos et al., 

2008; Gorr et al., 2005; Stemmann et al., 2001). 
 

 

FIGURE 8. Model for the stepwise assembly of the separase-Cdk1 complex. 

The phosphorylation of separase by cyclin B1-Cdk1 complex in mitosis is thought to 
induce a conformational change in separase that allows inhibitory binding of the 
kinase complex to the protease. See text for details. Figure taken from (Boos et al., 
2008). 
 

Several in vivo studies have highlighted the crucial importance of MPF for the 

regulation of vertebrate separase and demonstrate that in contrast to securin, MPF-

mediated separase inhibition is essential for the viability of mammals (Holland and 

Taylor, 2006; Huang et al., 2008; Huang et al., 2005). 
 

 

1.4. Cyclin-dependent kinase 1 (Cdk1) as the master regulator of mitosis 
 

Reversible phosphorylation is one of the most important post-translational 

modifications of proteins, and is characterized by the protein kinase catalyzed 

transfer and covalent attachment of a phosphoryl group from ATP to the free 

hydroxyl groups of serine, threonine or, less commonly, tyrosine residues of proteins. 

Phosphorylation of a protein can alter such important attributes as its biological 

activity, localization, stability and interaction behavior. 
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Cdk1, one of 428 serine/threonine (Ser/Thr) protein kinases encoded in the human 

genome (Manning et al., 2002), is considered the master regulator of mitosis. In 

association with its regulatory subunits cyclin B1 or cyclin A2 it phosphorylates a 

series of mitotic targets containing (S/T-P-X-K/R) consensus sites, leading to mitotic 

entry (Fig. 1). Among these critical targets are lamins, which make up the nuclear 

lamina and are associated with the inner nuclear membrane. Once phophorylated by 

Cdk1-cyclin B1, nuclear lamins start depolymerizing and the nuclear envelope 

disassembles (Heald and McKeon, 1990). Furthermore, formation of the mitotic 

spindle depends on the phosphorylation of microtubule associated proteins (MAPs) 

by Cdk1-cyclin B1. Correspondingly, downregulation of Cdk1 activity at the end of 

mitosis is essential for the spindle to disassemble. 

 

During S and G2 phase, cyclin B1 slowly accumulates in the cell and binds to Cdk1. 

This early Cdk1-cyclin B1 complex is phosphorylated at T161 in the so-called T-loop 

of Cdk1 by Cdk activating kinase (CAK), but remains inactive due to additional 

inhibitory phosphorylations on T14 and Y15 that block the active site of the kinase. 

These phosphorylations are imposed by the kinases Wee1 and Myt1 and have to be 

removed in late G2 by protein phosphatase Cdc25 before Cdk1 is fully activated. In a 

positive feedback loop, Cdk1-cyclin B1 activates its own activator, Cdc25, while 

simultaneously inhibiting its inhibitor Wee1 by phosphorylation.  

 

Directly associated with active Cdk1-cyclin B1 complexes are small regulatory 

subunits of the Cks family (Cdc kinase subunit), although the exact function of these 

accessory proteins is still unknown (Bourne et al., 1996; Harper, 2001). Mammals 

have two paralogs, Cks1 and Cks2 (Richardson et al., 1990), although in contrast to 

the yeast Cks, neither appears to be crucial for Cdk function. Their possession of an 

anion binding pocket suggests that Cks proteins may function in recruiting Cdk1-

cyclin B1 complexes to already phosphorylated targets (Bourne et al., 2000). 

 

During interphase, cyclin B1 can shuttle between the nucleus and the cytoplasm but 

is primarily sequestered in the cytoplasm by a cytoplasmic retention signal (CRS). 

The active Cdk1-cyclin-B1 complex first concentrates at the centrosome in the 

cytoplasm, before being abruptly imported into the nucleus about 5 minutes before 

NEB (Gavet and Pines, 2010; Hagting et al., 1999; Ookata et al., 1992; Pines and 
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Hunter, 1991). This nuclear accumulation appears to be regulated in part by Plk1 

(Jackman et al., 2003; Toyoshima-Morimoto et al., 2001; Yuan et al., 2002) and is 

dependent on cyclin A2 (De Boer et al., 2008; Fung et al., 2007; Gong et al., 2007). 

The Cdk1-Cyclin B1 complex then localizes to chromosomes and kinetochores early 

in mitosis (Bentley et al., 2007). At the metaphase-to-anaphase transition, cyclin B1 

is degraded via the APC/CCdc20 in a checkpoint-dependent manner (Clute and Pines, 

1999; Jackman et al., 1995; Minshull et al., 1990; Pines and Hunter, 1991). 

Interestingly, the chromosomal and kinetochor-localized pools of cyclin B1 are the 

first to disappear as soon as the APC/C becomes active (Bentley et al., 2007; Clute 

and Pines, 1999). Cyclin B1 degradation leads to Cdk1 down-regulation and 

subsequently allows for dephosphorylation of nuclear lamins, DNA decondensation 

and disassembly of the mitotic spindle in preparation for mitotic exit. 

 

Accumulation of cyclin B1 is necessary to trigger entry into mitosis, and degradation 

of cyclin B1 and thus Cdk1 inactivation is essential for mitotic exit (Murray and 

Kirschner, 1989; Murray et al., 1989). Accordingly, a nondegradable variant of cyclin 

B1 arrests cells in mitosis (Holloway et al., 1993; Wheatley et al., 1997). 

 

Another important Cdk complex driving G2 phase and mitotic entry in vertebrate cells 

is Cdk2 (sometimes Cdk1) in association with cyclin A (Fig. 1). There are 2 subtypes 

of cyclin A in mammalian cells, A1 and A2, of which cyclin A1 expression is restricted 

to germ cells, while cyclin A2 is ubiquitously expressed (Sweeney et al., 1996). In 

mammalian cell lines, cyclin A2 is first detectable during S phase and is degraded 

independently of the SAC already during prometaphase (den Elzen and Pines, 2001; 

Geley et al., 2001; Pines and Hunter, 1991). Like cyclin B1, cyclin A2 shuttles 

dynamically between the cytoplasm and the nucleus during interphase (Jackman et 

al., 2002). Unlike cyclin B1 however, Cdk-cyclin A2 complexes are active and found 

entirely within the nucleus in early prophase, suggesting that mitotic entry events like 

DNA condensation that occur before NEB may rely on Cdk-cyclin A2 activity, while 

Cdk1-cyclin B1 becomes important at the end of prophase, when cyclin A2 starts 

being degraded, to initiate processes like NEB and mitotic spindle assembly. In 

support of this are findings by Gong and colleagues who demonstrated that 

knockdown of cyclin A2 and even more so of cyclin A2 and cyclin B1 together 

significantly delayed NEB, while cyclin B1 knockdown alone had only minor effects 
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on the timing of NEB in HeLa cells (Gong et al., 2007). Furthermore, cyclin A2 

appears to play an important role in governing DNA condensation, as this process is 

severely delayed in cyclin A2 knockdown HeLa cells (Gong and Ferrell, 2010). Thus, 

it seems as though entry into mitosis is dependent on both cyclin A2 and B1-

associated Cdk1 activity, with cylin A2 being able to substitue for cyclin B1, while 

progression through mitosis absolutely relies on Cdk1-cyclin B1 (Lindqvist et al., 

2009). 

 

1.5.  Roles of protein phosphatase 2A (PP2A) in cell cycle progression 
 

The level of phosphorylation of a protein is determined by the rates of its 

phosphorylation and dephosphorylation. Dephosphorylation is catalyzed by 

phosphatases, which counteract kinase activity by hydrolysing the phosphoester 

bonds between the hydroxyl groups of specific amino acids and phosphoryl groups. 

There is a great discrepancy between the number of Ser/Thr kinases (428) and the 

corresponding number of catalytic subunits of Ser/Thr phosphatases (30) in the 

human genome (Johnson and Hunter, 2005; Lander et al., 2001; Venter et al., 2001). 

This is explained by the fact that many Ser/Thr phosphatase holoenzymes share a 

common catalytic subunit, and are distinguished by a large number of varying 

regulatory subunits. Protein phosphatase 2A (PP2A) belongs to the Ser/Thr 

phosphatase subgroup of phosphoprotein phosphatases, and is also one of the most 

abundant eukaryotic enzymes. Structurally, the PP2A holoenzyme is a heterotrimeric 

complex composed of three subunits: a 36 kDa catalytic (PP2A-C) and a 65 kDa 

scaffolding (PP2A-A) core subunit dimer, associated with a member of one of four 

families of regulatory subunits (PP2A-B). These regulatory subunit families (PP2A-

B/B55, -B'/B56, -B'' and -B''') confer subcellular localization and substrate specificity 

to the PP2A holoenzyme. Each family can be further subcategorized into various 

isoforms that are encoded by different genes (the human PP2A-B'/B56 family can be 

subcategorized into B'/B56-α, -β, -γ, -δ and -ε for example). Including multiple splice 

variants of some isoforms, at least 16 different regulatory subunits have been 

characterized to date (Janssens and Goris, 2001; Shi, 2009; Xu et al., 2006; Yang 

and Phiel, 2010). Although cellular PP2A can generally exist either as a 

heterodimeric core enzyme (PP2A-A and -C subunits) or as a heterotrimeric 

holoenzyme, the relative stability of the three subunits seems to be co-regulated, at 

least in higher eukaryotes. Knockdown of either PP2A-A or -C subunits in Drosophila 
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S2 cells leads to the concomitant disappearance of the regulatory subunits, and vice 

versa (Silverstein et al., 2002). And also in mammalian cells the PP2A-C and most -B 

subunits are only stable when they complex with the A subunit (Li et al., 2002; 

Sablina and Hahn, 2007; Strack et al., 2004; Strack et al., 2002). 

 

Several studies have suggested general roles for PP2A in regulating cell cycle 

progression and mitotic processes in particular. These include the regulation of the 

G2/M transition (Goris et al., 1989; Vigneron et al., 2009) as well as the metaphase-

to-anaphase transition in both mitosis and meiosis (Chang et al., 2011; Vandre and 

Wills, 1992). All these studies are based on observations made after chemically 

inhibiting the catalytic subunit of PP2A using okadaic acid (OAA), a polyether fatty 

acid isolated from the marine sponge Halichondria okadai. OAA specifically inhibits 

Ser/Thr phosphatases 1 and 2A, the inhibitory effect being strongest for PP2A (with 

an inhibitory constant (IC50) of 0.1 nM compared to 10 nM for PP1) (Bialojan and 

Takai, 1988; Cohen et al., 1990; MacKintosh et al., 1990). 

 

PP2A-B'/B56 containing PP2A holoenzymes in particular have previously been 

shown to interact with shugoshin 1 (Sgo1) at centromeres and function in protecting 

centromeric cohesin in early mitosis (Kitajima et al., 2006; Riedel et al., 2006; Tang 

et al., 2006). In interphase, PP2A-B'/B56 family members are largely localized in the 

cytoplasm, but have the ability to shuttle between nucleus and cyctoplasm (Flegg et 

al., 2010). Interestingly, human separase can also interact with a PP2A holoenzyme 

comprising the PP2A-B'/B56 regulatory subunit (Holland et al., 2007). All five 

isoforms of the B'/B56 regulatory subunit family have the ability to associate with 

separase, and separase was shown to associate with similar amounts of active PP2A 

holoenzyme both in G1/S-arrested and mitotic cell populations (Holland et al., 2007). 

Furthermore, separase auto-cleavage negatively regulates PP2A association, as a 

non-cleavable separase variant was shown to recruit more PP2A than wild type 

separase (Holland et al., 2007). For human securin, a direct interaction with PP2A-

B/B55 containing PP2A holoenzyme has been reported (Gil-Bernabé et al., 2006).  
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1.6. Specific characteristics of meiosis 

 

Meiosis is characterized by two consecutive rounds of chromosome segregation, 

without an intermediate S phase. This leads to the generation of 4 haploid cells that 

each contain a single homolog (one chromatid) of each chromosome. During sexual 

reproduction, these haploid cells in the form of gamets (eggs and sperm) fuse to form 

a diploid zygote, containing one sister chromatid from the maternal and the homolog 

sister chromatid from the paternal parent. Initial meiotic S phase results in two sister 

chromatids per homolog, which are linked tightly by cohesins along their entire 

lengths. During the first meiotic division (MI), the homologous chromosomes are 

separated. This is achieved by pairing them in tetrads in prophase of MI. 

Homologous DNA recombination between homologous non-sister chromatids at this 

stage leads to crossovers that become visible as so-called chiasmata. These 

crossovers have an important impact on generating genetic variation. As in mitosis, 

cohesin is essential for mediating cohesion between sister chromatids. Cleavage of 

the meiotic Scc1 homolog Rec8 (Watanabe et al., 2001) by separase leads to the 

dissociation of arm cohesin at the metaphase-to-anaphase transition of MI, while 

centromeric cohesin is protected, thereby keeping sister chromatids together. This 

protection of centromeric cohesin in anaphase of MI is ensured by shugoshin 2 

(Sgo2)-PP2A, similar to the protection of centromeric cohesin in prophase of mitosis 

by the Sgo1-PP2A complex. Mouse oocytes lacking Sgo2 display a premature 

release of the meiosis-specific Rec8 cohesin complexes from anaphase I 

centromeres (Llano et al., 2008). A special prerequisite for the segregation of 

homologous chromosomes in MI is that both kinetochors of each sister chromatid 

behave as one entity and attach to microtubules emanating from the same spindle 

pole. The second meiotic division (MII) then leads to the separation of the sister 

chromatids in a process very similar to mitosis. 

 

Importantly, in order for cells to progress from meiosis I to meiosis II, Cdk1 must not 

be inactivated completely as at the end of mitosis. While some Cdk1 targets must be 

dephosphorylated to enable spindle disassembly, it is absolutety crucial that 

components of the replication origin for example remain phosphorylated to prevent a 

round of DNA replication between MI and MII. 
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During vertebrate spermatogenesis, meiosis results in four haploid spermatids. Due 

to the asymmetric nature of the cell divisions in vertebrate oogenesis on the other 

hand, only one oocyte is generated, while three so-called polar bodies are left to 

degenerate. The oocyte is arrested in metaphase of meiosis II until fertilization. This 

metaphase II arrest in Xenopus oocytes is called cytostatic factor (CSF) arrest and is 

imparted by xErp1/hEmi2-mediated APC/CCdc20 inhibition (Haccard et al., 1993; 

Masui and Markert, 1971). In this state, cyclin B1 is stabilized and Cdk1-cyclin B1 

activity is high. Fertilization leads to an influx of Ca2+ ions, and this triggers the SCF-

dependent proteolytic degradation of xErp1/hEmi2. This activates the APC/CCdc20 

and oocytes can exit meiosis II (Rauh et al., 2005; Schmidt et al., 2005; Tung et al., 

2005). This system can be put to use to study mitotic and meiotic events. Injecting 

females of the African clawed frog Xenopus laevis with the hormone chorionic 

gonadotropin causes them to lay eggs that are arrested in metaphase of meiosis II 

(CSF arrest). Extracts made from these eggs (CSF extracts) can be induced to cycle 

through mitosis-like metaphase II by the addition of Ca2+ ions that mimick fertilization. 

Addition of Ca2+ alone triggers progression into interphase. The prior addition of  non-

degradable cyclin B1Δ90 (cyclin B1 with an N-terminal deletion of 90 amino acids, 

which comprise its destruction box) maintains high Cdk1-cyclin B1 activity and 

thereby arrests the extracts in anaphase. Low concentrations of cyclin B1Δ90 merely 

block mitotic exit, while high concentrations additionally inhibit separase activity 

(Stemmann et al., 2001). 

 

1.7. Aims of this study 
 

The key issue to be solved after the identification of B'/B56 subunit containing PP2A 

as a novel interacting partner of human separase is how this phosphatase might be 

involved in regulating separase activity. Central to answering this question is the 

identification of PP2A substrate sites as well as a detailed characterization of the 

PP2A binding site on separase. In addition, the function of separase auto-cleavage 

has remained enigmatic to date, and this study aims at giving further insights into the 

nature and purpose of this mechanism, particularly in the light of the identified 

antagonistic relationship between separase auto-cleavage and PP2A binding 

(Holland et al., 2007). Furthermore, securin has been reported to interact with B/B55 

subunit containing PP2A, and this interaction was reported to protect securin from 
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SCF-dependent degradation (Gil-Bernabé et al., 2006). In the present study, this 

reported function of securin as a PP2A substrate will be reassessed with regards to 

the regulatory PP2A subunit and the degradation mechanism involved. As a starting 

point towards approaching the above mentioned issues, a quantitative mass 

spectrometry approach was applied, identifying both separase and securin as 

substrates of separase-associated PP2A. 
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2. RESULTS 

 
2.1. Characterization of the separase-securin-PP2A complex composition 
 
Holland et al. (2007) had previously identified the B' (B56) regulatory subunit isoform 

of PP2A as an interaction partner of separase. On the other hand, Gil-Bernabé et al. 

(2006) had reported the B (B55) regulatory subunit isoform of PP2A to be a direct 

interaction partner of securin. It therefore remained to be unambiguously clarified 

whether PP2A interacts directly with separase or securin (or both), and which isoform 

of the phosphatase would do so. 

 

2.1.1. Separase forms a heterotrimeric complex with securin and PP2A 
 

To test if separase, securin and PP2A can form a heterotrimeric complex, a tandem 

affinity purification was performed from mitotic Hek293T cells co-expressing ZZ-TEV-

separase and securin-FLAG (Fig. 9). The ZZ-TEV-tag comprises two IgG binding 

domains of protein A and a tobacco etch virus (Tev) protease cleavage site. In a first 

purification step, ZZ-TEV-tagged separase was isolated on IgG sepharose and 

eluted by treatment with Tev protease. From this eluate, securin-FLAG was isolated 

in a second step using anti-FLAG agarose. Bound proteins were subsequently 

detected by immunoblotting. As illustrated by the presence of its catalytic subunit, 

PP2A was present in the tandem affinity purified separase-securin complex (lane 3). 

This association was specific because in corresponding controls, PP2A did not bind 

unspecifically to either IgG sepharose (lane 4) or anti-FLAG agarose (lane 5). Thus, 

a heterotrimeric securin-separase-PP2A complex does indeed exist. 
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FIGURE 9. Separase forms a heterotrimeric complex with securin and PP2A. 

(A) Schematic overview of the tandem affinity purification procedure. (B) Hek293T 
cells co-expressing ZZ-TEV-separase and securin-FLAG or untagged securin were 
synchronized in prometaphase of mitosis with nocodazole. In a first step, ZZ-TEV-
separase was purified using IgG sepharose with subsequent Tev protease elution. 
Released proteins were then purified in a second step over anti-FLAG beads, and 
bound proteins were detected by immunoblotting. The catalytic subunit of PP2A 
(PP2A-C) was detected as a representative of the whole PP2A complex. As a control 
for unspecific binding to IgG sepharose, Tev protease was added already during cell 
lysis procedure (lane 4). Unspecific association with anti-FLAG agarose was 
excluded by tandem affinity purification from lysates of cells overexpressing 
untagged instead of FLAG-tagged securin (lane 5). The asterisk (*) corresponds to 
the IgG light chain. 
 
 
 
2.1.2. PP2A interaction with securin is bridged by separase 

 
To answer the question of whether PP2A within this complex interacts with separase, 

securin or both, PP2A's association with separase-securin complex versus separase-

free securin was analyzed. For this purpose, HeLa cells were transfected with 

expression plasmids coding for untagged separase, securin and PP2A-B'-FLAG, and 

then arrested in early mitosis. From the corresponding lysate, all separase was 

removed by immunoprecipitation (IP) using anti-separase beads. Separase-free 

securin was then isolated from the supernatant of this IP by a second round of 

immunoprecipitation using anti-securin beads. Finally, proteins bound to immobilized 
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anti-separase, anti-securin or unspecific IgG (Ctrl) were analyzed by immunoblotting. 

(Fig. 10). A fraction of the PP2A-B' pool present in the lysate (input) was bound to the 

separase-securin complex (Sep IP). However, no PP2A-B' signal above background 

intensity (Ctrl IP) could be detected in the securin IP (Sec IP). Thus, free securin 

cannot bind PP2A. If they co-purify, then their interaction is indirect, mediated by 

separase. 

 

 

FIGURE 10. PP2A interaction with securin is bridged by separase. 

HeLa cells co-expressing separase, securin and PP2A-B'-FLAG were synchronized 
with nocodazole. Separase-securin complex was precipitated from cell lysate using 
anti-separase coupled protein G sepharose beads (Sep). In a second step, free 
securin was precipitated from cell lysate depleted of separase-securin complex using 
anti-securin coupled protein G sepharose beads (Sec). Proteins were eluted by 
boiling in sample buffer and detected by immunoblotting. Rabbit unspecific antibody 
coupled to protein G sepharose beads was used as a control for unspecific binding 
(Ctrl). Note that free securin (2nd IP) exhibits decreased mobility relative to 
separase-associated securin (1st IP). 
 

 

2.1.3. Separase interacts with PP2A-B’ but not -B subunit 
 

The finding of a direct separase-PP2A interaction largely contradicts a previous study 

by Gil-Bernabé et al. (2006), which claims that securin directly interacts with the B 

(B55) isoform of PP2A. However, Fig. 10 clearly demonstrates that PP2A interaction 

with securin is actually bridged by separase, as free securin is not associated with 

PP2A at all. Furthermore, Holland et al. (2007) identified the B' (B56) as opposed to 

the B (B55) regulatory subunit isoform of PP2A in a mass spectrometric analysis of 

separase associated proteins. To ultimately clarify which of these two isoforms of 

PP2A interacts with separase, FLAG-tagged PP2A-B or -B' were overexpressed in 
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Hek293T cells together with securin and one of three variants of Myc-tagged 

separase. More specifically, wild-type (WT) separase was compared to non-

cleavable (NC) separase, which binds PP2A more efficiently than WT (Holland et al., 

2007), and to a PP2A-binding deficient separase variant (ΔEEEL), which will be 

described later (Fig. 17). As judged by Myc-immunoprecipitations followed by 

Western analysis, only PP2A-B' but not -B co-purified with separase, and it did so 

only with the WT and NC form, as expected (Fig. 11). 
 

 

FIGURE 11. Separase interacts with the B' but not the B isoform of PP2A.  

Hek293T cells co-expressing Myc-separase variants, untagged securin and PP2A-B-
FLAG or PP2A-B'-FLAG were synchronized with nocodazole. An affinity purification 
was performed using anti-Myc agarose beads with subsequent elution by boiling in 
SDS sample buffer. For the control samples (Ctrl), the empty Myc expression vector 
was transfected together with securin and PP2A-B- or B'-FLAG encoding plasmids. 
Eluted proteins were detected by immunoblotting. 
 

 

2.2. Identification of PP2A substrate sites on separase and securin 
 

As established so far, separase directly interacts with securin on the one hand, and 

the B' isoform of PP2A on the other hand to form a heterotrimeric complex. Using a 

malachite green phosphatase assay, it had previously been shown that the PP2A 

associated with separase is catalytically active (Holland et al., 2007), raising the 

question of whether the associated separase and/or securin might be substrate(s) of 

the phosphatase. Holland et al. (2007) had described a small deletion within 

separase (amino acids 1419-1473) that resulted in greatly reduced binding of the 

protease to PP2A. A similar variant, which lacked amino acids 1408-1478 (described 

in Fig. 17), was now to be quantitatively compared to wild-type separase in terms of 

phosphorylation status of the protease and associated securin. 
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2.2.1. Both separase and securin are substrates of separase-bound PP2A 

 

To map and quantitatively assess phosphorylation sites on separase and/or securin, 

a SILAC (Stable Isotope Labeling with Amino acids in Cell culture) mass 

spectrometric approach was embarked upon (Fig. 12A). For this technique, one 

group of cells was metabolically labeled through growth in medium supplemented 

with 'heavy' forms of particular amino acids, in this case arginine (R10: 13C6,15N4) and 

lysine (K8: 13C6, 15N2). At the same time, a second group of cells was grown in the 

corresponding normal 'light' cell culture medium (R0/K0). After 6 cell doublings, the 

'light' cells were transfected to overexpress ZZ-TEV-separase, while the 'heavy' cells 

were transfected to overexpress ZZ-TEV-separaseΔPP2A. Untagged securin was co-

expressed in both cases. Following a cell cycle arrest in mitosis, the cells were lysed 

in the presence of phosphatase inhibitors to preserve phosphorylations. From these 

lysates the corresponding separase-securin complexes were purified over IgG 

sepharose and eluted by Tev protease treatment. The two eluates were 

characterized by Coomassie-staining and immunoblotting to ensure comparable 

amounts of separase and securin in both samples (Fig. 12B, C). The eluates were 

subsequently combined, resolved by SDS-PAGE and stained with Coomassie. The 

separase and securin bands were excised and digested in-gel using endoproteinases 

trypsin and AspN. Following an enrichment of phosphorylated peptides on a TiO2 

matrix, the peptides were analyzed by mass spectrometry. Owing to the fact that 

peptides of the ΔPP2A separase variant are heavier by 10 Da per arginine and by 8 

Da per lysine residue, they could easily be distinguished from the chemically identical 

but lighter peptides of wild-type separase. Hence, the ratio of peak intensities for any 

given peptide pair in the resulting mass spectrum directly correlates with the 

abundance ratio of the two peptides. Generally, a 'heavy'-to-'light' ratio of ≥ 2 or ≤ 0.5 

indicates a significant difference in the phosphorylation status under the two 

conditions. 
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FIGURE 12. Isolation of differentially labeled, PP2A-less or -containing 
separase-securin complexes for comparative, quantitative mass spectrometry.  

(A) Schematic overview of the SILAC (Stable Isotope Labeling with Amino acids in 
Cell culture) mass spectrometric approach. (B) Coomassie-stained gel of the two 
affinity purified separase-securin complexes before they were combined. Separase 
and securin bands that were later excised from the corresponding Coomassie gel of 
the mixed eluates are indicated (boxes). The asterisk (*) marks the height of the C-
terminal auto-cleavage fragment of separase. (C) Immunoblot of the two affinity 
purified separase-securin complexes before they were combined. Note: the catalytic 
subunit of PP2A (PP2A-C) that was detected here as a representative of the whole 
PP2A complex is absent from the purified ΔPP2A (Δ1408-78) separase-securin 
complex as expected. The subsequent mass-spectrometric analysis was performed 
by C. Pan in the lab of M. Mann (MPI for Biochemistry, Martinsried). 

 

This analysis identified both separase and securin as substrates of separase-bound 

PP2A, because for both proteins peptides whose phosphorylation status differed 

significantly within the two samples were found (Fig. 13 and 18). Phosphorylation 

sites within separase (Fig. 13) that were altered in their phosphorylation status 

between the ΔPP2A variant as compared to the wild-type cluster in two regions, i.e. 

the Cdc6-like domain (CLD, amino acids 1342-1400) and the vicinity of the main 

auto-cleavage site (ER1503/6). For securin (Fig. 18), the identified PP2A substrate 

residues largely mapped to the N-terminus, in close proximity to securin's KEN- and 

D-box. The following chapters will take a closer look at the identified PP2A substrate 

sites on both separase (chapter 2.2.2.) and securin (chapter 2.2.4.) and, with the help 

of appropriate follow-up experiments, will try to put these results into a functional 

context.  
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FIGURE 13. Separase is a substrate of separase-associated PP2A. 

(A) PP2A substrate sites identified within separase by quantitative mass-
spectrometric analysis (SILAC approach, see Fig. 12). Residues depicted in green 
represent sites that are hyper-phosphorylated in the absence of PP2A from 
separase-securin complexes. Residues depicted in red indicate a corresponding 
hypo-phosphorylation. (B) PP2A substrate sites within separase map to two 
locations: sites within or close to the Cdc6-like domain (CLD) and sites in proximity of 
separase's main auto-cleavage site (underlined). Green arrows show upregulated 
phosphorylation in the absence of PP2A. Correspondingly, red arrows show 
dephosphorylation in the absence of PP2A. This experiment was independently 
conducted two times. However, while the second experiment qualitatively confirmed 
most residues of the first experiment, the differences in phosphorylation were less 
pronounced overall. This might have been due to incomplete labeling of the cells 
prior to transfection and less material being used. Therefore, only results of one 
experiment are depicted here. H = 'heavy' peptides, L = 'light' peptides; ratios were 
normalized (norm.) to those of unrelated, unphosphorylated peptide pairs. 
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2.2.2. What is the role of PP2A-dependent dephosphorylation of separase? 

 
An obvious possibility is that PP2A counteracts the phosphorylation-dependent 

binding and inhibition of separase by cyclin B1-Cdk1. Indeed, one separase residue 

within and two residues close to the Cdc6-like domain (CLD, amino acids 1342-1400) 

exhibited markedly increased phosphorylation in the absence of PP2A, i.e. in the 

ΔPP2A variant compared to wild-type separase (Fig. 13). The CLD constitutes the 

cyclin B1 binding site of separase and has previously been carefully mapped and 

extensively characterized (Boos et al., 2008). Although the binding of cyclin B1 

occurs in a phosphorylation-dependent manner, the three residues identified here lie 

either just outside the CLD (Thr1333 and Ser1334) or have no measurable impact on 

cyclin B1 binding (Thr1389). Moreover, the phosphorylation status of Ser1126, 

whose Cdk1-dependent phosphorylation is an essential prerequisite for binding and 

inhibition of separase by cyclin B1-Cdk1, was not changed in the ΔPP2A variant 

compared to wild-type separase. Consistent with this, cyclin B1-Cdk1 binding to the 

ΔPP2A variant is not increased relative to wild-type separase (Holland et al., 2007). 

Thus, contrary to the intuitive model, PP2A does not seem to antagonize the 

phosphorylation dependent inhibition of separase by cyclin B1-Cdk1. 

 

2.2.2.1. PP2A counteracts phosphorylation-dependent cleavage of separase 
 

The phosphorylation status of a second region on separase appeared to be heavily 

influenced by PP2A. Ser1501, just 6 amino acids upstream of the major auto-

cleavage site on separase (ER1503/6), was significantly hyper-phosphorylated in the 

ΔPP2A separase variant. To further characterize Ser1501 phosphorylation and 

identify relevant kinases, the AQUA (Absolute Quantification of proteins) method 

(Gerber et al., 2003) was applied. Briefly, two standard peptides were synthesized to 

resemble tryptic separase peptides containing Ser1501 in its phosphorylated or 

dephosphorylated state. A leucine residue at the C-terminal end of these peptides 

contained stable isotopes, enabling the distinction by mass-shift of these synthetic 

peptides from the corresponding native peptides formed by proteolysis. Affinity-

purified separase was then incubated with different kinases or reference buffers in 

the presence of ATP. Following separation by SDS-PAGE, separase bands were 

digested in-gel with trypsin in the presence of defined amounts of the AQUA 
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peptides. Finally, peptides were extracted and quantitatively analyzed by mass 

spectrometry. In this manner, it was found that Ca2+/calmodulin-dependent protein 

kinase (CaMKII) and protein kinase A (PKA) but not cyclin B1-Cdk1 or Polo kinase 

can phosphorylate separase at Ser1501 (Gerber et al., 2003). Consistently, this site 

indeed constitutes a consensus phosphorylation site for both CaMKII (R-X-X-S/T) as 

well as PKA (R-R/K-X-S/T), as annotated in the 'Phosphorylation Site Database' 

(PHOSIDA).  In S. cerevisiae it is known that cleavage of cohesin subunit Scc1 by 

separase is enhanced by phosphorylation of a serine residue at the same relative 

position of -6 (Alexandru et al., 2001). To answer the question if auto-cleavage of 

human separase is also stimulated by phosphorylation, HA-tagged separases were 

expressed that lacked the first and third auto-cleavage sites (R1486A and R1535A) 

and were catalytically inactive (C2029S). One of two such variants additionally had 

Ser1501 replaced by Ala. The two variants were purified from Hek293T cells using 

anti-HA agarose beads, phosphorylated by PKA in situ, competitively eluted with HA 

peptide, and then used as substrates for active, untagged separase in a cleavage 

assay (Fig. 14A). Analysis by anti-HA immunoblot showed that auto-cleavage was 

more efficient when separase could still be phosphorylated at position 1501 (Fig. 

14B). Thus, similar to the situation with S. cerevisiae Scc1, phosphorylation just 

upstream of the major cleavage site renders separase a better substrate for itself. 

Together with the fact that this site is a substrate for PP2A, one can conclude that 

PP2A antagonizes the auto-cleavage of separase by dephosphorylation of Ser1501.  
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FIGURE 14. Phosphorylation of Ser1501 promotes separase auto-cleavage.  

(A) Two HA3-tagged separase variants (R1486A, R1535A, C2029S and either 
S1501A or S1501S) were purified from Hek293T cells using anti-HA agarose, treated 
with PKA and ATP on beads, and used as substrates for active, untagged separase 
in an in vitro cleavage assay. Proteins were eluted by boiling in SDS sample buffer 
and analyzed by anti-HA immunoblot. (B) The two blots contain the same samples, 
loaded in two different ways. Asterisks (*) show irrelevant bands, arrow heads ( ) 
mark separase's N-terminal cleavage fragment. This experiment was performed by 
O. Stemmann. 

 

2.2.2.2. Separase-PP2A association is not phosphorylation-dependent 

 

An unexpected result was obtained for a stretch of phosphorylation sites between the 

2nd (ER1503/6) and 3rd (ER1532/5) auto-cleavage site on separase: here, the 

degree of phosphorylation decreased in the absence of PP2A. Ser1508, Ser1513, 

Ser1515 and Thr1519 are all significantly hypo-phosphorylated in the ΔPP2A variant 

relative to wild-type separase (Fig. 13A and B). This result seems counter-intuitive, 

as one would expect increased phosphorylation in the absence of the phosphatase. 

Interestingly, phosphorylation of xErp1/Emi2 has been reported to result in the 

association of PP2A with this meiotic inhibitor of APC/C (Wu et al., 2007). 

Importantly, the relevant phosphorylation sites are not substrates but rather part of 

the PP2A binding motif and, as such, protected from dephosphorylation. Assuming a 

similar scenario in separase, one could speculate that the region, which is less 

phosphorylated in the absence of PP2A, is, in fact, part of a larger PP2A binding site 

Purification from transfected 293T cells 

Treatment with PKA/ATP on beads 

Analysis by anti-HA immunoblot 

Use as substrate for active, untagged 

separase in cleavage assay 

S F E I L R  

HA3- 

A  

1501 

R1486A R1535A C2029S 

* 

A B 

1501 Ala 1501 Ser 

0         5        15      120 0         5        15      120 min. 

       0                   5                   15                 120 min. 

!"
!"
!"

!"
!"
!"

Ala Ala Ala Ala Ser Ser Ser Ser 1501 



Results 

  43 

of separase. It is possible that this cluster of phosphorylations is protected from 

dephosphorylation when covered by PP2A. To test this possibility, variants were 

generated, in which the corresponding Ser/Thr phosphorylation sites (Ser1508, 

Ser1513, Ser1515 and Thr1519) were mutated to Ala or Asp, to prevent or mimick 

their phosphorylation, respectively (Fig. 15B; 4xA and 4xD variant). After expression 

of the corresponding ZZ-TEV-separase variants together with securin and PP2A-B' 

and subsequent affinity purification over IgG sepharose, separase-associated 

proteins were analyzed by immunoblotting. However, none of the two variants 

showed an altered association with PP2A in comparison to wild-type separase. 

 

It had been shown that mutation of the phosphorylation sites S335 and T336 or of a 

nearby SQSE motif in xErp1/Emi2 largely abrogated PP2A binding (Wu et al., 2007). 

Based on a sequence alignment of this characterized PP2A binding motif of 

xErp1/Emi2 with the auto-cleavage region of separase, another separase variant was 

designed and subsequently analyzed with regard to PP2A binding (Fig. 15C). First, 

four potentially important residues were replaced by alanines. In addition, the major 

auto-cleavage site was inactivated (ER1503/6AA) to ensure that potential alterations 

in the amount of bound PP2A were not due to auto-cleavage mediated loss of PP2A 

(see chapter 2.2.3. below). Finally, PP2A interaction with this 6xA separase variant 

was analyzed. However, similar amounts of PP2A co-immunoprecipitated with 6xA 

and wild-type separase. Therefore, the Ser/Thr residues around separase's main 

auto-cleavage site, which are less phosphorylated in the absence of PP2A, are 

nevertheless not involved in PP2A binding. 
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FIGURE 15. Ser/Thr residues around separase's main auto-cleavage site are 
not involved in PP2A binding. 

(A) Alignment of Xenopus, mouse, and human separase sequences around the auto-
cleavage region. Sequences were taken from the GenBank sequence database and 
alignment was carried out using the ClustalW sequence alignment program. The 
numbers on the left side show the positions of the corresponding amino acids. The 
conserved ExxR auto-cleavage motifs are marked (1st, 2nd and 3rd auto-cleavage 
site). Identical residues among all three species are shaded in black and marked (*), 
conserved substitutions are marked (:) and semi-conserved substitutions are marked 
(.) (B) The Ser/Thr residues downstream of separase's 2nd auto-cleavage site 
(underlined), which were collectively hypo-phosphorylated (red) in the ΔPP2A 
separase variant (SILAC experiment, Fig. 13), were mutated to Ala or Asp, 
respectively (blue). The upregulated Ser1501 residue is highlighted in green. 
Hek293T cells co-expressing these ZZ-TEV-separase variants, untagged securin and 
PP2A-B'-FLAG were synchronized with nocodazole. An affinity purification was 
performed using IgG sepharose with subsequent Tev protease elution. For the 
control sample (Ctrl), Tev protease was added already during cell lysis procedure. 
Eluted proteins were detected by immunoblotting. (C) Alignment of mapped PP2A 
binding motifs on xErp1/hEmi2 (red) and the corresponding residues on separase, 
which partially overlap with the stretch of downregulated Ser/Thr sites identified in the 
SILAC screen (Fig. 13). ST336AA and S342/344A mutations in xErp1/hEmi2 are 
impaired in their ability to bind PP2A (Wu et al., 2007). Hek293T cells co-expressing 
corresponding ZZ-TEV-separase variants, untagged securin and PP2A-B'-FLAG 
were synchronized with nocodazole. An affinity purification was performed using IgG 
sepharose with subsequent Tev protease elution. For the control sample (Ctrl), Tev 
protease was added already during cell lysis procedure. Eluted proteins were 
detected by immunoblotting.     
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2.2.3. Separase's PP2A-binding and auto-cleavage sites partially overlap 

 

As established before (Holland et al., 2007) and now supported by data from the 

SILAC screen, PP2A binding and separase auto-cleavage exhibit an antagonistic 

relationship. This is further exemplified by the finding that ΔPP2A separase shows 

increased auto-cleavage (Fig. 12B, asterisk). Vice versa, Holland and colleagues 

could show that a non-cleavable (NC) separase variant showed increased PP2A 

binding. Accordingly, cleavage of separase might destroy the PP2A binding site and 

result in the release of the phosphatase from the protease. To test this prediction, the 

main cleavage site of separase (ER1503/6) was either rendered non-cleavable (NC, 

ExxR to RxxE) or replaced by a Tev protease cleavage site (NCTEV). In addition, both 

variants had their first and third auto-cleavage sites destroyed and were expressed 

as Myc-tagged fusion proteins in Hek293T cells. While securin and PP2A-B'-FLAG 

were always co-expressed, Tev protease was either included or left out. 

Corresponding cell lysates were passed over anti-Myc agarose and captured 

proteins analysed by immunoblotting. As shown in Fig. 16, NCTEV separase was very 

effectively cleaved by Tev protease (lanes 4 and 8), while NC separase remained 

unperturbed (lanes 2 and 6). As expected, cleavage by Tev protease indeed induces 

PP2A dissociation from separase (lane 8), although not to 100%. This is likely due to 

the fact that residual amounts of full-length separase are still present. This result is in 

accordance with findings by Holland and colleagues (Holland et al., 2007), which 

show that PP2A purified from cells is predominantly associated with full-length as 

opposed to cleaved separase, in contrast to securin and cyclin B1, which both also 

associate with a cleaved pool of separase. 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FIGURE 16. Separase cleavage induces partial PP2A dissociation. 

Hek293T cells co-expressing non-cleavable (NC) Myc-separase3xNC or Tev-protease 
cleavable (NCTEV) Myc-separase2xNC/1xTEV site, untagged securin, PP2A-B'-FLAG and 
untagged Tev protease were synchronized with nocodazole. An affinity purification 
was performed using anti-Myc agarose beads with subsequent elution by boiling in 
SDS sample buffer. Eluted proteins were detected by immunoblotting. 

 

The hyper-recruitment of PP2A to NC separase was largely but not completely 

abolished by a 55 amino acid deletion (Δ1419-1473) upstream of the auto-cleavage 

sites (Holland et al., 2007). This suggests that additional sites on separase may be 

involved in PP2A association. In a quest to characterize the PP2A binding domain on 

separase to a more complete extent, a fine-mapping was conducted. To this end, ZZ-

TEV separase variants were generated in which different amino acid stretches within 

the characterized 55 amino acid PP2A binding domain but also beyond this region 

were deleted. Due to the importance of the auto-cleavage sites in PP2A binding 

behavior, a small deletion between the 1st and 2nd major cleavage sites on separase 

was also tested (Fig. 17A). All ZZ-TEV-separase variants were co-expressed in 

Hek293T cells together with securin and PP2A-B'-FLAG. Purification of separase-

securin-PP2A complexes from mitotic lysates was done by IgG sepharose and Tev-

protease elution. Bound proteins were then detected by immunoblotting. In one 

sample, the ZZ-tag was removed from separase by addition of Tev protease prior to 

the affinity matrix (Fig. 17B, lane 10). Non-cleavable (NC) separase (lane 13) and 

protease-dead (PD) separase (lane 12), i.e. separase's with mutations that alleviate 
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separase auto-cleavage, show increased PP2A binding compared to wild-type 

separase (lane 11) as expected. A ΔCLD variant also showed increased PP2A 

binding (lane 19). Surprisingly, dissecting the characterized Δ55 amino acid domain 

(Δ1419-1473) even further (lanes 15 and 16) did not increase associated PP2A 

levels, and likewise, expansion of this domain by a few amino acids on either side 

(Δ1408-1478, lane 17) had no diminishing effect on PP2A binding. The same amount 

of residual PP2A was associated with all these variants, arguing for only an indirect 

involvement of this domain in binding PP2A. Strikingly, deleting only 4 amino acids 

(Δ1490-1493; ΔEEEL) between the 1st and 2nd auto-cleavage site completely 

abolished PP2A association with separase (lane 14). An alignment of this region on 

human separase with the corresponding Xenopus and mouse separase sequences 

(Fig. 17C) revealed a conservation of the EEE motif between species, suggesting 

that this may indeed constitute a relevant PP2A binding site on separase. As 

demonstrated by the enhanced cleavage after Ser1501 phosphorylation (Fig. 14) and 

the identification of this Ser1501 residue as a substrate of PP2A in the SILAC screen 

(Fig. 13), PP2A can catalytically disrupt separase auto-cleavage. Here it was now 

shown that on top of this catalytic block, there also seems to be a sterical hinderance 

of auto-cleavage by PP2A, owing to the fact that the PP2A binding and auto-

cleavage sites partially overlap. 
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FIGURE 17. Fine-mapping of the PP2A-binding site on separase. 

(A) Schematic representation of human separase variants, showing the CLD region, 
the PP2A binding region and the auto-cleavage sites (AC). Deleted regions are 
highlighted in red. (B) Hek293T cells co-expressing ZZ-TEV-separase variants, 
untagged securin and PP2A-B'-FLAG were synchronized with nocodazole. An affinity 
purification was performed using IgG sepharose with subsequent Tev protease 
elution. For the control sample (Ctrl), Tev protease was added already during cell 
lysis procedure. Eluted proteins were detected by immunoblotting. (C) Excerpt of 
alignment (Fig. 15A) around separase's 1st auto-cleavage site (ExxR motif 
underlined). Conserved residues between Xenopus, mouse, and human separase 
sequences are shaded in black. In an otherwise poorly conserved sequence stretch, 
the EEE motif (highlighted in red) which, when deleted (Δ1490-93, ΔEEEL) abolishes 
PP2A binding to separase (Fig. 17A, B), is conserved between species.   
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2.2.4. Implications of securin as a PP2A substrate 

 

2.2.4.1. Separase stabilizes bound securin by PP2A-mediated de-
phosphorylation 
 

For securin, the PP2A substrate residues identified in the SILAC screen largely 

mapped to the N-terminus (Fig. 18A and B). The phosphorylation status of Ser31, 

Thr66 and Ser87/89 on securin bound to a ΔPP2A separase variant was significantly 

increased compared to securin in complex with wild-type separase. This seems 

coherent with observations made in previous experiments. Firstly, when separase-

bound securin is compared to separase-free securin in mitotic cells (Fig. 10), securin 

in complex with separase indeed exhibits an increased electrophoretic mobility 

compared to the bulk of free securin (Sep IP vs. Sec IP), arguing that it is hypo-

phosphorylated. Furthermore, when securin bound to wild-type separase is 

compared to securin bound to a ΔPP2A separase variant in lysates where 

phosphorylations are conserved by the addition of phosphatase inhibitors (Fig. 12C), 

a prominent second securin band with slower gel mobility (indicating hyper-

phosphorylation) appears in the ΔPP2A separase-securin complex. These findings 

strongly argue that separase-bound PP2A keeps separase-associated securin 

dephosphorylated. 
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FIGURE 18. Securin is a substrate of separase-associated PP2A. 

(A) PP2A substrate sites identified within securin by quantitative mass-spectrometric 
analysis (SILAC approach, see Fig. 12). Residues depicted in green represent sites 
upregulated in their phosphorylation status in the ΔPP2A separase variant over wild-
type separase. (B) Schematic location of PP2A substrate sites on securin. Green 
arrows indicate upregulated phosphorylation in the absence of PP2A. This 
experiment was independently conducted two times. However, while the second 
experiment qualitatively confirmed most residues of the first experiment, the 
differences in phosphorylation were less pronounced overall. This might have been 
due to incomplete labeling of the cells prior to transfection and less material being 
used. Therefore, only results of one experiment are depicted here. H = 'heavy' 
peptides, L = 'light' peptides; ratios were normalized (norm.) to those of unrelated, 
unphosphorylated peptide pairs. 
 
 

Securin's KEN- and D-box (amino acids 9-11 and 61-64, respectively) constitute the 

recognition motifs for the APC/C and are essential for securin's proteasomal 

degradation. Considering the proximity of the identified PP2A substrate residues on 

securin to these destruction motifs, one could imagine that separase plays a part in 

stabilizing bound securin via dephosphorylation by PP2A in this complex. To analyze 

if dephosphorylated, separase-bound securin is in fact stabilized over free, 

phosphorylated securin, a cycloheximide (CHX) shut-off experiment was conducted 

(Fig. 19A). To this end, stable HeLa FlpIn cell lines were generated that express 

FLAG-tagged securin upon tetracycline induction (Fig. 20). Stable wild-type securin 
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expressing cells were thymidine-nocodazole synchronized to quantitatively arrest 

them in prometaphase, when securin levels in the cell are highest, i.e. just before 

bulk APC/C activity is switched on. After addition of CHX to prevent re-synthesis of 

securin, cells were harvested in intervals of 2 hours over a 10 hour period. In a first 

round of immunoprecipitation, separase-securin complexes were depleted from the 

lysates by separase IP. From the remaining, separase-free supernatants, free 

securin was then purified by anti-FLAG IP. Heterogeneous phosphorylations can 

result in broadened migration behavior in SDS-PAGE and, consequently, be 

misinterpreted as degradation. Therefore, immunoprecipitated samples were treated 

with λ-phosphatase prior to analysis to ensure that securin would run as one distinct 

band. While separase-bound securin levels showed no alteration over 6 hours, free 

securin levels had already decreased to less than half the initial amount after 4 

hours. Thus, the degradation kinetics of separase-bound securin were considerably 

slower than those of free securin (Fig. 19C). Owing to the cytotoxic effects of CHX, 

cells began to become apoptotic after 8 hours. This is mirrored in the rising sub-G1 

phase cell content (Fig. 19B) and also in the declining separase levels after 10 hours 

(Fig. 19C). A similar stabilization of separase-bound securin was obtained for 

endogenous proteins in normal HeLa cells (data not shown; S. Hellmuth, master 

thesis in the lab of O. Stemmann, 2010). Here, free securin started being degraded 

already after 2 hours, and no free securin could be detected on the immunoblot after 

8 hours. In contrast, separase-bound securin remained completely stable over 8 

hours, and slowly started dissapearing only after 10 hours, probably as a 

consequence of apoptosis as judged by the accompanying DNA content profiles. 

Therefore, free securin is less stable than separase-associated securin and slowly 

proteolysed even in prometaphase-arrested cells. 
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FIGURE 19. Free securin is degraded faster than separase-bound securin. 

(A) HeLa FlpIn cell lines were synchronized in prometaphase with thymidine (thym) 
and nocodazole (noc) as indicated, and tetracycline (tet) induced to overexpress 
securinWT-FLAG. After mitotic shake-off, cells were held in nocodazole and treated 
with cycloheximide (CHX) over 10 h. Cells were harvested at the indicated time 
points. (B) DNA content profiles of cells before and after synchronization and CHX 
treatment. Numbers represent the sub G1 population (%) as an indicator of 
apoptosis. c represents the DNA content. (C) Separase-securin complexes were 
isolated by anti-separase coupled to protein G sepharose beads and eluted by 
boiling in sample buffer. Free securin was isolated from lysates depleted of 
separase-securin complex by anti-FLAG coupled to protein G sepharose beads, λ-
phosphatase treated and eluted by boiling in sample buffer. Proteins were detected 
by immunoblotting.  
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FIGURE 20. Characterization of stable securin HeLa FlpIn cell lines. 

(A) HeLa FlpIn cell lines were tetracycline (Tet)-induced for 14 h to overexpress 
securinWT-FLAG or securinmKEN/mDB-FLAG. Securin was purified from cell lysates 
using anti-FLAG beads, resolved by SDS-PAGE, and analysed by immunoblotting. 
(B) Growth curves of induced and uninduced HeLa FlpIn securin clones over 120 h. 
Population doubling (PD) times were calculated using the formula (log N-log N0)/log 
2, N being the final and N0 the initial cell number for each time point. Similar growth 
behavior was observed in 2 independent experiments. (C) DNA content and 
granularity profiles of stable HeLa FlpIn clones overexpressing FLAG-securinWT upon 
tetracycline (Tet) induction. Cells were fixed, stained with propidium iodide and 
analyzed by FACS. (i) DNA content profiles: x axis, fluorescence units; y axis, 
number of cells; c represents the DNA content (ii) Granularity profiles: x axis, 
granularity units; y axis, arbitrary cell size units. (D) DNA content and granularity 
profiles of stable HeLa FlpIn clones overexpressing FLAG-securinmKEN/mDB upon 
tetracycline (Tet) induction. Cells were fixed, stained with propidium iodide and 
analyzed by FACS. (i) DNA content profiles: x axis, fluorescence units; y axis, 
number of cells; c represents the DNA content. (ii) Granularity profiles: x axis, 
granularity units; y axis, arbitrary cell size units. (E) Viable cell diameter distribution of 
uninduced stable securin HeLa FlpIn clones (WT or mKEN/mDB securin) as 
calculated by Vi-CELLTMXR Cell Viability Analyzer using the ViCELLXR 2.03 
software. (F) Light microscopic pictures of stable securin HeLa FlpIn clones before 
and after Tet-induction.   
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2.2.4.2. Phosphorylation-dependent degradation of securin is APC/C-

dependent 
 

In an attempt to determine whether this faster degradation of separase-free securin 

over bound securin is dependent on the APC/C, stable HeLa cell lines were 

generated, which expressed a corresponding APC/C-resistant FLAG-tagged securin 

(with mutated KEN- and D-box) upon tetracycline induction (Fig. 20). However, these 

cells were per se polyploid (Fig. 20D and E). This is probably due to low basal 

expression of the highly toxic APC/C-resistant securin even in the absence of 

tetracycline, the accumulation of which blocks chromosome segregation and 

consequently also causes cytokinesis defects. A CHX shut-off experiment comparing 

the half-lifes of separase-bound vs. free securin in mitosis, as conducted for WT 

securin (Fig. 19), was not possible using this cell line. Induced HeLa FlpIn cells 

expressing APC/C-resistant securinmKEN/mDB-FLAG started becoming extremely 

apoptotic already after 4 hours of CHX treatment (data not shown). Therefore, a 

different approach was embarked upon. Using unsynchronized HeLa FlpIn cell lines 

that express FLAG-tagged securinWT or securinmKEN/mDB upon tetracycline induction, 

phosphorylation-dependent degradation of securin over a shorter period of time was 

analyzed, before variant securin expression rendered cells apoptotic. Cells were 

treated with CHX to prevent re-synthesis of securin, and with okadaic acid (OAA) to 

specifically inhibit PP2A (Fig. 21A). In a 3 hour CHX shut-off alone, wild-type securin 

levels were greatly diminished but residual amounts remained (lane 3). Concomitant 

OAA treatment on the other hand lead to complete securin degradation after 3 hours 

(lane 4). The levels of the APC/C-resistant securin also decreased slightly after a 3 

hour CHX shut-off (lane 8) but, in contrast to wild-type securin, additional OAA 

treatment did not lead to complete degradation (lane 9). Instead, securin was hyper-

phosphorylated, as demonstrated by an upward smear of the corresponding band in 

the immunoblot. After λ-phosphatase treatment, this phosphorylation induced shift 

was reversed (lane 10), clearly showing that a mutated KEN- and D-box renders 

securin fully resistant against this phosphorylation-dependent degradation. Similar 

results were obtained using Xenopus egg extracts that were arrested in metaphase 

and then released by Ca2+ addition in the presence of CHX and OAA. As predicted, 

wild-type securin was rapidly degraded, while variant securin was stabilized (Fig. 
21B, top blots). OAA-treatment merely induced the afore seen phosphorylation 
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dependent change in electrophoretic migration behavior as revealed by λ-

phosphatase treatment (Fig. 21B, bottom blots). Therefore, in contrast to wild-type 

securin, APC/C resistant securin is not degraded in a phosphorylation dependent 

manner in the pseudo-mitotic state mimicked here by OAA addition, arguing that this 

form of degradation is APC/C dependent. These results again contradict previous 

findings by Gil-Bernabé and colleagues (Gil-Bernabé et al., 2006), who not only 

argued that securin itself is associated with (the B55 isoform of) PP2A, but also that 

phosphorylated securin is degraded in an APC/C-independent but SCF-dependent 

manner.  
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FIGURE 21. APC/C-resistant securin is not degraded in a phosphorylation-
dependent manner. 

(A) HeLa FlpIn cell lines were tetracycline (Tet)-induced to overexpress FLAG-
tagged securinWT or securinmKEN/mDB. Cycloheximide (CHX) shut-off was done with or 
without simultaneous okadaic acid (OAA) treatment over 3h. Securin was purified 
from cell lysates using anti-FLAG beads. Where indicated, securin was treated with 
λ-phosphatase (λ-PPase) prior to elution from beads by boiling in sample buffer. The 
asterisk (*) corresponds to the IgG light chain. (B) 35S-labelled securin was incubated 
in CHX-supplemented CSF-arrested Xenopus egg extract. The extract was released 
from metaphase-II-like arrest by Ca2+ addition with or without simultaneous OAA or 
DMSO control treatment. Where indicated, samples where treated with λ-
phosphatase (λ-PPase) prior to boiling in sample buffer. Securin was detected by 
autoradiography. 
 

 

In an attempt to specifically link the identified PP2A substrate sites on securin to the 

stabilizing effect of separase-associated PP2A, the appropriate serine and threonine 

residues (Ser31, Thr66 and Ser87/89) were mutated. The degradation behavior of 

the resulting variants (triple alanine or triple aspartate, respectively) was then 

analyzed in Xenopus egg extracts supplemented with CHX and released from 

metaphase arrest by Ca2+ addition. If the postulated theory holds true, one would 

expect the phosphorylation-resistant serine-to-alanine variant to be degraded with 

slower kinetics than wild-type securin. Vice versa, the serine-to-aspartate variant 

might be degraded faster if the negatively charged amino acids were to successfully 

mimick phosphorylation in this case. However, as Fig. 22 shows, no significant 

differences in the degradation kinetics could be detected with either variant. This 

could be due to the fact that often, when the regular phosphorylation residues are 

inaccessible or mutated, as is the case here, neighbouring sites are modified instead. 
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FIGURE 22. Securin variants, which have PP2A substrate sites mutated, are 
degraded with wild-type kinetics in Xenopus egg extract. 
35S-labelled in vitro expressed securin proteins were incubated in cycloheximide 
(CHX) supplemented CSF extracts. After 15 min. (at t=0 min.), the extracts were 
released by addition of Ca2+. At the indicated time points, samples were taken for 
analysis by SDS-PAGE and autoradiography.   

 

Even though the substrate-sites of separase-bound PP2A on securin could not be 

confirmed as being involved in phosphorylation-dependent degradation of securin 

using this approach, what seems clear from the data presented here so far is that 

within the separase-securin complex, securin not only acts as an inhibitor for the 

protease. At the same time separase also influences securin in a positive manner. 

More precisely, separase stabilizes bound securin, and this correlates with PP2A-

mediated dephosphorylation. In contrast, free securin is degraded by the APC/C in a 

phosphorylation- and APC/C-dependent manner. Fitting to this model and the data 

presented herein, Holland and Taylor have previously shown that overexpression of 

separase results in elevated levels of securin (Holland and Taylor, 2006). 
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2.3.  Securin has a positive effect on separase 

 

2.3.1. Securin prevents aggregation of separase 
 

The inhibitory function of securin on separase is well characterized (Cohen-Fix et al., 

1996; Funabiki et al., 1996; Stemmann et al., 2001; Zou et al., 1999). It binds and 

thereby inhibits separase's protease activity until anaphase onset, when it is 

polyubiquitylated and rapidly degraded, releasing active separase. In organisms like 

S. pombe and Drosophila (Funabiki et al., 1996; Stratmann and Lehner, 1996), loss 

of securin function results in the same phenotype as loss of separase function, 

namely a failure to separate chromosomes. This exemplifies that securin, besides 

inhibiting separase, also exerts a positive effect on the protease. Even in mammals, 

where securin is not essential (Mei et al., 2001; Pfleghaar et al., 2005), this positive 

influence of securin on separase is nevertheless conserved. Separase levels and 

activity are greatly reduced in human securin -/- cells, albeit sufficiently high to still 

mediate normal execution of anaphase (Pfleghaar et al., 2005). A mere inhibitory 

function of securin on separase would predict that separase activity were increased 

upon loss of securin. How, then, does securin exert its positive effect on separase? 

Several theories have been proposed. Both in budding and fission yeast, securin 

may be involved in proper localization of separase (Hornig et al., 2002; Nagao et al., 

2004). Several studies have also described securin as a transcriptional regulator 

(Bernal et al., 2002; Hamid and Kakar, 2004; Tong and Eigler, 2009). Using an 

electrochemical biochip (Pöhlmann, 2009; Wang et al., 2007), C. Pöhlmann and M. 

Sprinzl quantitatively compared the levels of separase mRNA from human securin 

knock-out relative to the parental HCT116 cells. This analysis revealed that separase 

mRNA levels are the same in both cell lines, arguing that securin does not influence 

separase on the level of transciption or mRNA stability. In an attempt to further 

characterize the positive effects of securin on separase, an aggregation assay was 

performed. This was to answer the question if securin might be required for separase 

to adopt a native, conformational state, ready to be activated as soon as securin is 

degraded. If this were the case, one would predict that without securin, separase 

becomes insoluble, as misfolded proteins tend to aggregate with each other via their 

exposed hydrophobic surfaces into insoluble complexes. Such a mechanism would 

ensure that separase is inhibited as soon as it has been translated, and that any 
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separase not associated with securin would aggregate, protecting the cell from 

premature separase activation and premature sister-chromatid separation. Therefore, 

Hek293T cells were transiently transfected to overexpress separase, thereby titrating 

out securin. The cells were mitotically arrested and the subsequent lysates cleared 

by centrifugation. Western analysis of soluble supernatant and insoluble pellet 

fractions revealed that the resulting level of soluble separase was low, as most 

separase accumulated in the pellet (Fig. 23, 'Sep.' lanes). Simultaneous 

overexpression of securin, however, greatly increased the level of soluble separase 

(Fig. 23, 'Sep. + Sec.' lanes). The overall level of separase was the same in both 

cases, as determined by analysis of whole cell extracts prior to centrifugation. This 

suggests that securin indeed functions as a chaperone for separase, preventing 

aggregation of the protease. A similar protection mechanism is known for the 

endonuclease CAD (caspase activated DNase), which aggregates when synthesised 

in the absence of its inhibitor ICAD (Sakahira and Nagata, 2002). ICAD ensures that 

CAD is correctly folded and ready to be activated as soon as ICAD is degraded upon 

apoptosis.  

 

 

FIGURE 23. Association with securin keeps separase soluble.  

Hek293T cells were transiently transfected to overexpress either separase alone or 
separase and securin together. Whole cell extracts (WCE) were centrifuged and the 
resulting soluble supernatants (SN) and insoluble pellet fractions (which were 
resolubilized in urea buffer) were analyzed by SDS-PAGE and immunoblotting.  
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2.3.2.  Securin associates with separase co-translationally 

 

Does securin associate with separase already as separase is being translated, i.e. 

co-translationally, or only after separase has been completely translated? To analyze 

the earliest steps in protein folding, the formation of so-called 'Ribosome Nascent 

Chain' (RNC) complexes is an appropriate method. It enables the isolation of a stable 

complex of mRNA, bound ribosome and a nascent polypeptide chain. In order for 

stable RNC complexes to form, the ribosome has to be stalled during translation. 

This can be achieved by expression of mRNA lacking a stop codon, thereby 

preventing the recruitment of termination factors. In vitro translation of N-terminal 

separase run-off transcripts of varying length in the presence of 35S labeled securin 

lead to the isolation of RNC complexes that could subsequently be analyzed for the 

presence of securin (S. Hellmuth, master thesis in the lab of O. Stemmann, 2010). A 

nascent polypeptide fragment spanning the first 627 amino acids of separase formed 

an RNC complex that co-precipitated securin (S. Hellmuth, personal communication), 

confirming the assumption that securin indeed associates with separase as the 

protease is being translated. This provides the first biochemical evidence for the 

possible mechanism and time of action of securin's positive effect on the native state 

of separase. 
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2.4. Cyclin A2 cannot substitute for cyclin B1 in binding separase 

 

Neither the possitive nor the negative effect of securin on separase is essential in 

higher eukaryotes. Since the phosphorylation-mediated inhibition of separase by 

cyclin B1-Cdk1 can only come into effect in mitosis, when this kinase is activated, the 

question remains as to how separase is held in check from the time of cohesion 

establishment in S phase until mitotic entry, especially in the absence of securin. 

Potential candidates here are cyclin A-Cdk complexes, because their activities first 

appear in early S phase, increase during G2 and are switched off soon after nuclear 

envelope breakdown due to APC/CCdc20-mediated degradation of cyclin A (Hu et al., 

2001). To examine if cyclin A-Cdk complexes can associate with separase and 

potentially inhibit the protease, stable cyclin A2 and/or stable cyclin B1 were 

transiently overexpressed in Hek293T cells together with wild-type or non-

phosphorylatable (PM) ZZ-TEV-tagged separase (Fig. 24). Cells were synchronized 

in prometaphase and treated with MG-262 to further stabilize the cyclins by inhibiting 

the proteasome. After purification of separase by IgG immunoprecipitation, 

associated cyclin levels were compared. As judged by protein levels in the input 

samples, cyclin A2 levels were comparable to cyclin B1 levels unter these cell 

synchronization conditions. However, while wild-type (but not PM) separase could 

interact with stable cyclin B1 (lanes 9, 10 and 14), no significant interaction with 

stable cyclin A2 could be detected (lanes 9, 10 and 12). Thus, cyclin A2 cannot 

substitute for cyclin B1 in binding and inhibiting separase in early phases of the cell 

cycle. 

 

 

 

 

 

 

 

 

 

 

 



Results 

  63 

 

FIGURE 24. Cyclin A2 cannot associate with separase. 

Hek293T cells were transfected with plasmids coding for wild-type (WT) or PM 
(S1126A, T1346A, ΔL1391-E1402) ZZ-TEV-tagged separase, together with plasmids 
coding for stable (ΔN) YC-tagged cyclin A2 and/or stable (ΔN) eYFP-tagged cyclin 
B1. Cells were arrested in prometaphase by nocodazole treatment and the 
proteasome was inhibited by MG-262 treatment for 2 hours prior to harvesting, 
thereby further stabilizing the cyclins. Separase-cyclin complexes were purified by 
IgG sepharose immunoprecipitation and subsequent Tev protease elution. To control 
for unspecific binding, Tev protease was already added to the appropriate lysates 
prior to immunoaffinity purification (lanes 8, 11 and 13). Eluted proteins were 
detected by immunoblotting. Note: both the eYFP- as well as the YC (amino acids 
155-239 of eYFP)-tag are recognized by the same anti-eGFP antibody. 
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3. DISCUSSION 

 

3.1.  PP2A interaction with securin is bridged by separase 
 

Both human securin and separase have previously been reported to associate with 

protein phosphatase 2A (PP2A) (Gil-Bernabé et al., 2006; Holland et al., 2007). This 

Ser/Thr protein phosphatase exists as a heterotrimer, consisting of a catalytic subunit 

(C), a scaffolding subunit (A) and one of four alternative regulatory subunits (B/B55, 

B′/B56, B″, or B'''). The nature of this regulatory subunit determines both substrate 

specificity and subcellular localization of the heterotrimeric PP2A complex. 

Importantly, in higher eukaryotes, monomeric PP2A subunits are unstable and 

degraded by the ubiquitin-proteasome protein degradation pathway (Li et al., 2002; 

Strack et al., 2004). Therefore, localization of the substrate-specificity determining 

regulatory subunits directly reflects the localization of the corresponding PP2A 

holoenzyme.  

 

Based on yeast two-hybrid and co-immunoprecipitation experiments, an interaction of 

human securin with the B (B55)-containing PP2A holoenzyme has been proposed 

(Gil-Bernabé et al., 2006). Separase on the other hand has been shown to interact 

specifically with the B' (B56)-containing PP2A holoenzyme by mass-spectrometric 

analysis of separase associated proteins and subsequent co-immunoprecipitation 

experiments from Hek293 cell lysates (Holland et al., 2007). Furthermore, B'-

containing PP2A was shown to associate with a GST-separase fragment (aa 1278-

1556) in vitro even in the absence of securin, and a securin-binding deficient 

separase variant (lacking the first 325 amino acids) could still bind PP2A.  

 

The present study now aimed to unambiguously clarify which of these two scenarios 

holds true. First, the existence of a heterotrimeric separase-securin-PP2A complex 

was clearly demonstrated (Fig. 9). Furthermore, while PP2A-B' co-precipitated with 

separase-securin complex from HeLa cell lysates, the isolation of separase-free 

securin did not yield any associated PP2A-B' (Fig. 10). The specificity of the PP2A-B' 

over a putative PP2A-B interaction was then demonstrated by co-

immunoprecipitation experiments from Hek293T cells (Fig. 11). Here, no association 
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of PP2A-B with separase could be observed, while PP2A-B' readily co-precipitated 

with the protease. Lastly, deleting the PP2A binding site from separase removed all 

traces of PP2A from the separase immunoprecipitate, without effecting securin 

binding (Fig. 17). Therefore, both securin and the B'-containing isoform of PP2A 

directly interact with separase to form a heterotrimeric complex. Together with the 

above mentioned findings by Holland et al. (2007), the data presented herein strongly 

argue that PP2A directly interacts with separase, and that the securin-PP2A 

interaction characterized by Gil-Bernabé and colleagues is likely to be indirect and 

bridged by separase. 

 

 

3.2. Positive effects of PP2A on securin 
 

The observation that overexpression of separase in human cells leads to a 

concomitant elevation of securin levels (Holland and Taylor, 2006) suggests that 

separase might positively affect securin, for example, by promoting securin 

synthesis, or by preventing its degradation. However, the nature of such a potential 

positive regulation mechanism has remained enigmatic.  

 

One important difference between free and separase-bound securin is that the 

former is phosphorylated in mitosis, whereas the latter is not (Fig. 10). This 

observation is coherent with the identification of securin as a substrate of separase-

associated PP2A (Fig. 18). Therefore, separase-associated PP2A keeps securin 

dephosphorylated within this complex. This is accompanied by slower degradation 

kinetics of bound vs. free securin within a nocodazole-induced prometaphase arrest 

(Fig. 19). The established view is that APC/CCdc20 can only mediate the destruction of 

securin at the metaphase-to-anaphase transition, when the spindle assembly 

checkpoint (SAC) is inactivated and Cdc20 can activate the APC/C. Because the 

SAC is activated in nocodazole arrested cells, APC/CCdc20 activity is inhibited. While 

this explains why separase-bound securin is stable in prometaphase, the turnover of 

free securin under these conditions implies that there might be an alternative securin 

degradation mechanism operating in early mitosis that defies the spindle checkpoint. 

Considering the hyper-phosphorylated nature of free securin over separase-bound 

securin, this mechanism is likely to be phosphorylation dependent.  
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There are several candidate kinases that have been reported to phosphorylate 

human securin. Of the PP2A substrate sites identified on securin in this study (Ser31, 

Thr66 and Ser87/89), Ser31 and its preceeding residues match the consensus site 

(S-X-X-S/T) for CK1 (casein kinase 1) phosphorylation, according to the PHOSIDA 

database. Experimentally, both Cdk1 and DNA-dependent protein kinase (DNA-PK) 

have been shown to phosphorylate human securin (Ramos-Morales et al., 2000; 

Romero et al., 2001). Cdk1 has also been shown to phosphorylate budding yeast 

securin, and interestingly, this correlates with slower APC/C-dependent degradation 

compared to unphosphorylated securin (Holt et al., 2008). This mode of regulation is 

contrary to the one proposed in this study, and budding yeast securin shows no 

sequence similarity to human securin. Nevertheless, this example still demonstrates 

that APC/C-dependent degradation of securin can, in principle, be regulated by 

phosphorylation at the substrate level. 

 

Interestingly, several APC/CCdc20 substrates have been identified in recent years that 

are degraded in prometaphase despite an active spindle checkpoint. The most 

prominent of these early mitotic APC/CCdc20 substrates is cyclin A. In mammalian 

somatic cells, cyclin A forms complexes with either Cdk1 or Cdk2 and is required for 

S phase and passage through G2 phase (Furuno et al., 1999; Pagano et al., 1992). 

Cyclin A-Cdk associates with Cdc20 already in late G2 phase, and is then degraded 

in mitosis right after nuclear envelope breakdown in an APC/CCdc20-dependent 

manner. Critical in this process is the recruitment of cyclin A-Cdk-Cdc20 complex to 

the (phosphorylated) APC/C by the small Cdk subunit Cks (den Elzen and Pines, 

2001; Geley et al., 2001; Wolthuis et al., 2008). Importantly, the checkpoint 

component Mad2 does not coimmunoprecipitate with cyclin A-Cdc20 complexes, 

arguing that Cdc20 is protected from mitotic checkpoint complex (MCC)-mediated 

inactivation by interaction with cyclin A (Wolthuis et al., 2008). Importantly, Cks 

interaction with cyclin A-Cdc20 must be bridged by Cdk to ensure timely degradation 

of the cyclin (den Elzen and Pines, 2001). Cks proteins can bind to phosphorylated 

proteins via their anion-binding pocket (Bourne et al., 2000). This raises the question 

of whether phosphorylation-dependent securin degradation may be mediated by 

Cks? Affinity purification of securin from nocodazole arrested HeLa cells, which had 

additionally been treated with the proteasome inhibitor MG-132 and the phosphatase 

inhibitor OAA, did not result in co-purification of either Cks1 or Cks2 (data not 
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shown). Therefore, a Cks-dependent recruitment of phosphorylated securin to the 

APC/C is unlikely. 

 

Another APC/CCdc20 substrate, Nek2A (NIMA [never in mitosis in Aspergillus 

nidulans]-related kinase 2A), is also degraded in prometaphase in a checkpoint-

independent manner. This depends on an exposed carboxy-terminal methionine-

arginine (MR) dipeptide tail, which is involved in direct, Cdc20-independent, binding 

of Nek2A to the core APC/C complex (Hayes et al., 2006). A similar C-terminal 

dipeptide tail mediates direct interaction of Cdc20 and Cdh1 to the APC/C 

(Vodermaier et al., 2003). Securin does not possess such an APC/C interacting 

motif. However, a direct interaction of securin with APC/C activating subunit Cdh1 

has been observed in early mitosis (Jeganathan et al., 2006). In addition, mRNA 

export factor Rae1 and nucleoporin Nup98 were shown to complex with both 

APC/CCdh1 and securin in prometaphase. In cells with low levels of Rae1 and Nup98, 

APC/CCdh1 was shown to mediate the premature destruction of securin already in 

prometaphase (Jeganathan et al., 2006; Jeganathan et al., 2005). It is generally 

accepted that APC/CCdh1 activity is associated with late mitotic and early G1 phase 

events (Kotani et al., 1999; Kramer et al., 2000). However, there is evidence that 

APC/CCdh1 may have earlier functions as well. In mouse oocyctes, for example, 

Cdh1-activated APC/C has been assigned essential roles in maintaining prophase I 

arrest (Reis et al., 2006; Reis et al., 2007). Thus, one possibility is that Rae1 and 

Nup98 specifically prevent the APC/CCdh1-dependent degradation of separase-

bound, dephosphorylated securin but not of free, phosphorylated securin. 
 

Finally, a recent study demonstrated that human anti-apoptotic protein Mcl-1 can be 

degraded in prometaphase-arrested cells in a phosphorylation- and APC/CCdc20- 

dependent manner (Harley et al., 2010), although the accompanying mechanism is 

still unclear.  

 

It cannot be completely excluded that free, hyperphosphorylated securin is degraded 

in an APC/C-independent manner. The second big group of E3 ubiquitin ligases 

regulating cell cycle control besides the APC/C complex are SCF ligases, which are 

active throughout the cell cycle and are known for specifically recognizing 

phosphorylated substrates. Indeed, such a mechanism has previously been 

proposed for securin degradation (Gil-Bernabé et al., 2006). Gil-Bernabé and 
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colleagues claim that B subunit-containing PP2A protects securin from SCF-

dependent degradation by direct interaction of PP2A with securin. However, this 

statement is clearly contradicted by the findings in this study. First of all, PP2A 

interaction with securin is not direct, but bridged by separase (Fig. 10). Secondly, not 

the B but the B' containing regulatory PP2A subunit is associated with this complex 

(Fig. 11). And finally, chemical PP2A inhibition by OAA treatment lead to the 

stabilization of an APC/C-resistant securin variant (mutated KEN- and D-boxes) 

compared to wild-type securin (Fig. 21), strongly arguing in favour of an APC/C-

dependent degradation mechanism. To confirm this, the degradation behavior of 

separase-free securin in a prometaphase-arrest is currently being investigated in a 

Cdc20 and/or Cdh1 knock-down background. Additionally, to confirm the increased 

stability of the SILAC phosphorylation site securin variant (Fig. 22) and thereby 

characterize separase-bound PP2A action on securin to a more complete extent, 

stable cell lines will be established which will inducibly express wild-type securin or 

the phosphorylation site variant. Following brief induction of transgene expression, 

the half-lifes of these securins will be determined by CHX shut-off experiments 

analogous to those conducted in Fig. 19 and 21. 

 

Summarizing the results of this section gives rise to a model in which separase-

associated PP2A keeps bound securin dephosphorylated to protect it from premature 

degradation by an APC/C-dependent mechanism that has yet to be fully 

characterized (Fig. 25). Thereby, the cell makes sure that excess free securin is 

removed prior to anaphase onset. This would permit a more rapid, switch-like 

induction of sister-chromatid separation because as soon as bulk APC/C activity is 

switched on, the degradation of separase-bound securin would immediately start. In 

fact, securin has been shown to not only be a substrate of the APC/C but to also 

function as an inhibitor of APC/C, possibly modulating the activity of the E3 ligase in 

early mitosis (Marangos and Carroll, 2008; Solomon and Burton, 2008). Excess of 

securin will keep the APC/CCdc20 busy, thereby delaying anaphase onset. 

Furthermore, separase might be repeatedly activated and re-inhibited in the 

presence  of excessive securin, which might result in asynchronous separation of 

sister-chromatids, missegregation and aneuploidy. It might be for these reasons that 

securin is frequently overexpressed in tumor cells (Pei and Melmed, 1997; Zou et al., 

1999). 
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FIGURE 25. Model for the APC/C-dependent degradation of separase-free 
securin in prometaphase. 

Separase-free securin can be phosphorylated upon mitotic entry, making it a 
substrate for basal APC/C activity in early mitosis. Separase-associated securin is 
protected from this degradation mechanism by separase-bound PP2A mediated 
dephosphorylation. Model with modifications from O. Stemmann. 
 
 

3.3. Positive effects of securin on separase 
 

A universal feature of all securin proteins is that they act as inhibitors of separase 

activity. However, based on several genetic studies, securin also seems to exert a 

positive, chaperone-like function on separase (Hornig et al., 2002; Jallepalli et al., 

2001; Nagao et al., 2004). This observation was confirmed and further characterized 

in this (chapter 2.3.) and a parallel study (S. Hellmuth, master thesis). 

Overexpression of wild-type separase under conditions where securin was limiting 

lead to the precipitation of bulk separase. Co-overexpression of securin, on the other 

hand, kept separase soluble. This indicates that newly synthesized separase 

aggregates in the absence of enough stabilizing securin. This is mirrored in the 

observation that when inhibitory securin is enzymatically removed from separase, the 

protease is very instable, highly prone to aggregation and only active for a short time 

in vitro. Together with results by S. Hellmuth (master thesis), which suggest that 

securin interacts with separase as soon as the protease is translated (chapter 2.3.2.), 

this offers new insights into the nature of securin's dual regulation of separase. 
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Generally, the primary structure (i.e. the amino acid sequence) of a protein carries 

the instructions that determine the correct tertiary conformation necessary for a 

protein to be fully functional (Anfinsen, 1973). During the folding process of a newly 

synthesized polypeptide, hydrophobic side chains are exposed that have a 

propensity to associate with each other and form aggregates. While this can be an 

ordered process (known as 'hydrophobic collapse') and is hypothesized to be a 

natural intermediate step in the folding process of many proteins (the so-called 

'molten globule' structure), it can also lead to inappropriate protein aggregations. To 

counteract misfolding and aggregation into non-functional structures, molecular 

chaperones play an important role in stabilizing nascent polypeptide chains co-

translationally. Typically, chaperones stabilize exposed hydrophobic residues of their 

substrates through rounds of ATP-dependent binding and release, until the substrate 

protein has achieved its native state (Netzer and Hartl, 1998). 
  
Securin may function as such a chaperone for separase, recognizing and binding to 

nascent polypeptide separase chains, thereby preventing their misfolding and 

aggregation. Functionally such a mechanism would ensure that separase, whose 

premature activation would pose a great threat for genome stability, is associated 

with its inhibitor from the time of its synthesis until timely activation of APC/CCdc20. 

Because of its dual function as chaperone and inhibitor, securin, contrary to typical 

chaperones, remains asociated with its substrate after synthesis and folding are 

completed, and is only dissociated at the metaphase-to-anaphase transition of 

mitosis, when it is degraded and releases active separase. A similar mechanism is 

known for caspase-activated DNase (CAD) and its inhibitor ICAD. CAD causes 

chromosomal DNA fragmentation during apoptosis, and is kept in check until then by 

its association with ICAD. When cysteine caspases are activated in apoptosis, ICAD is 

cleaved and active CAD released. It could be shown that ICAD associates with CAD 

co-translationally and assists folding of CAD. In addition to ICAD, heat shock proteins 

Hsc70/Hsp70 and Hsp40 are essential for the refolding of in vitro denatured CAD 

(Sakahira and Nagata, 2002). In this context it is interesting to note that human 

securin has also been reported to interact with another heat shock related 

chaperone, the DnaJ (Hsp40) homolog HSJ2 in a yeast two-hybrid screen (Pei, 

1999). 
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Securin itself is known as a natively unfolded or intrinsically unstructured protein 

(IUP), with no well-defined 3-dimensional structure. While the N-terminal half 

(containing the KEN- and D-box destruction motifs) is totally disordered, the C-

terminal half contains a few segments (aa150-159, aa113-S127 and aa174-178) that 

might adopt secondary structure elements (Csizmok et al., 2008). Interestingly, 

structural disorder has been described as an important functional feature of protein 

chaperones (Bhattacharyya and Das, 1999; Kim et al., 2002; Tompa and Csermely, 

2004). Both for protein and especially for RNA chaperones, the incidence of disorder 

predicted by PONDR (predictor of natural disordered regions) is extremely high. 

Mechanistically, structurally disordered chaperone regions may serve as molecular 

recognition elements that solubilize partially misfolded proteins through direct binding 

(Tompa and Csermely, 2004). 

 

What is the fate of separase that aggregates in the absence of stabilizing securin? 

Generally, proteins that are unable to adopt their native state are targeted for 

degradation by the ubiquitin-proteasome pathway (Hershko and Ciechanover, 1998; 

Hirsch and Ploegh, 2000). If the concentration of misfolded proteins in the cell 

becomes too high, aggregates are sequestered into so-called aggresomes and 

subsequently degraded throught the aggresome pathway (Garcia-Mata et al., 2002; 

Kopito, 2000; Rodriguez-Gonzalez et al., 2008). This involves the transport of 

aggresomal particles along microtubules towards the microtubule organizing center 

(MTOC), where they accumulate into a single aggresome that surrounds the MTOC. 

This is thought to activate the autophagic clearance mechanism, that ultimately 

terminates in lysosomal degradation. Such a mechanism is conceivable for the large 

amounts of separase that presumably accumulate in the cell when overexpressed in 

the absence of securin. To test for this, the localization behavior GFP-tagged 

separase in the presence or absence of securin could be analyzed by fluorescence 

microscopy. 

 

 

 

 

 

 



Discussion 

  72 

3.4. Intrinsic regulation of separase auto-cleavage and PP2A association 

 

In higher eukaryotes, separase cleaves not only cohesin's Scc1 subunit upon 

activation at the metaphase-to-anaphase transition, but also itself. Human separase 

has three well conserved auto-cleavage sites (Fig. 15A), which are characterized by 

ExxR consensus sequences also found on Scc1. Although separase auto-cleavage 

was recognized and initially characterized almost 10 years ago (Waizenegger et al., 

2002; Zou et al., 2002), its functional relevance remains enigmatic. In marked 

contrast to the related caspases, separase does not depend on self-cleavage for 

catalytic activity. In vitro, non-cleavable variants are as active in cleaving cohesin as 

wild-type separase (Waizenegger et al., 2002; Zou et al., 2002). In Drosophila, 

separase is encoded by two separate genes, one encoding a small protein containing 

the catalytic domain (SSE) and another encoding an N-terminal separase domain 

(THR). Based on genetic data, cleavage of THR by SSE after the metaphase-to-

anaphase transition results in degradation of the C-terminal cleavage product and 

has been proposed to help inactivate separase in telophase (Herzig et al., 2002; 

Jager et al., 2001). Furthermore, the C-terminal cleavage product of budding yeast 

Scc1 is rapidly degraded by the N-end rule pathway (Rao et al., 2001). Thus, one 

might assume that the cleavage fragments of human separase are also turned over 

more quickly than the uncleaved, full-length protease. However, the auto-cleavage 

fragments of human separase not only remain physically associated and catalytically 

active (Zou et al., 2002), they can also be readily detected as long as prometaphase 

of the next cell cycle (data not shown). In a CHX shut-off after nocodazole-induced 

mitotic arrest of HeLa cells, the degradation kinetics of full length separase were 

compared to those of separase cleavage fragments over a 10 hour period. Both 

separase species were similarly stable over this time period (data not shown). Thus, 

auto-cleavage does not mediate the rapid destruction of human separase. Support 

for this conclusion comes from Papi and colleagues. Introduction of cleavage-site 

mutations into the endogenous separase locus of human HCT116 cells by a knock-in 

approach generated clones, in which five of the six auto-cleavage sites in the 

genome were mutated (Papi et al., 2005). These cells delayed entry into mitosis and 

exhibited chromosome alignment defects, but demonstrated unperturbed mitotic exit 

and cytokinesis progression, suggesting a positive role for cleaved separase 

products during G2 and early mitosis of the next cell cycle. These functions of 
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separase cleavage products in G2/M transit and prometaphase progression are likely 

to be independent of separase's catalytic activity, since separase is inhibited by 

securin during these stages. 

 

Strikingly, regulation of auto-cleavage of human separase is closely linked to 

separase's ability to interact with PP2A. Non-cleavable separase variants are 

associated with more PP2A than wild-type separase (this study, Fig. 17B, lanes 13 

and 11; Holland et al., 2007). Vice versa, cleavage of separase prevents PP2A 

binding or even induces its dissociation from separase (Fig. 16). It could be shown 

that the nature of this mutual regulation is both steric and catalytic. More precisely, 

the PP2A binding site on separase was mapped to a small EEE(L) motif right 

between separase's first and second auto-cleavage site (Fig. 17C). Deletion of these 

four residues (aa 1490-93) lead to a quantitative loss of separase-PP2A association. 

Furthermore, phosphorylation of a well conserved serine residue (Ser1501) just prior 

to separase's second main cleavage site (ER1503/6) promotes separase auto-

cleavage in vitro. Intriguingly, this Ser1501 residue is one of the main substrate sites 

of separase associated PP2A (Fig. 13A, B). Holland and colleagues could show that 

the phenotype associated with overexpression of a non-cleavable (NC) separase 

variant was premature loss of sister chromatid cohesion and a prolonged mitotic 

arrest (Holland et al., 2007). This phenotype was fully rescued by additional deletion 

of the PP2A binding site, indicating that the hyper-activity of NC separase is a direct 

consequence of the increased PP2A interaction. 

 

The most obvious explanation for the premature loss of cohesion observed in NC 

separase expressing cells is that the accompanying increased PP2A association 

antagonizes Ser1126 phosphorylation and cyclin B1-mediated inhibition. Some 

observations support such a mutually exclusive action of PP2A and cyclin B1-Cdk1 

on separase. Firstly, when endogenous cyclin B1 was purified from mitotic HeLa 

lysates, separase but neither PP2A-A nor PP2A-C could be co-precipitated (Holland 

et al., 2007). Additionally, PP2A bound to separase has been shown to be 

catalytically active, and, using a phosphorylation-specific antibody, an increased level 

of Ser1126 phosphorylation was observed when PP2A binding to separase was 

inhibited (Holland et al., 2007). Finally, when PP2A-B' association with different 

separase variants was analyzed in this study, a NC/ΔCLD separase variant, which is 
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unable to interact with the cyclin B1-Cdk1 complex, showed significantly higher levels 

of associated PP2A than NC separase (Fig. 17B). On the other hand, several strong 

lines of evidence argue against the possibility that PP2A antagonizes Cdk1-

dependent regulation of separase. Equal amounts of cyclin B1 associate with wild-

type and ΔPP2A separase variants. Vice versa, a Ser1126Ala variant of separase, 

which cannot bind cyclin B1-Cdk1 complex, does not show elevated levels of PP2A 

association compared to wild-type separase (Holland et al., 2007). Furthermore, 

Ser1126 can be efficiently dephosphorylated when cyclin B1 is bound to separase, 

and this does not disrupt cyclin B1 binding (Holland and Taylor, 2006). Finally, 

compromising separase's PP2A binding ability does not result in increased 

phosphorylation of Ser1126 or the critical CLD residues Thr1346, Thr1363 and 

Ser1399 as judged by SILAC (Fig. 13A, B). Based on these conflicting results, it can 

therefore not be unambiguously clarified if the respective actions of PP2A and cyclin 

B1-Cdk1 on separase antagonize each other. To shed more light onto the relative 

actions of cyclin B1-Cdk1 and PP2A on separase function, an appropriate future 

experiment will be discussed later (end of chapter 3.6.). 

 

 

3.5. Relative importance of securin and MPF in the timely regulation of 
anaphase onset 
 

When a Cdk1-resistant Ser1126Ala separase variant is overexpressed in Hek293 

cells, sister chromatids separate prematurely and the SAC is activated (Holland and 

Taylor, 2006). This phenotype can be suppressed by simultaneous overexpression of 

securin, indicating that securin becomes limiting when separase alone is heavily 

overexpressed. Interestingly, under cyclin B1-Cdk1 and securin limiting conditions, 

sister chromatids separate just 5 minutes earlier than they normally do. Similarly, 

mouse embryonic stem (ES) cells of the genotype securin-/-/separaseWT/S1121A 

(Ser1121 of mouse separase corresponds to Ser1126 of human separase) were 

viable and largely displayed normal mitotic timing but failed to maintain sister 

chromatid cohesion only in response to the microtubule poison nocodazole (Huang et 

al., 2005). In ES cells that only lacked securin or only expressed the Cdk1-resistant 

separase, no premature sister chromatid separation was observed. Therefore, 

securin and Cdk1 can compensate each other in inhibiting separase, at least in 
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human Hek293 and ES cells. And even when separase is activated prematurely due 

to the loss of both these inhibitory mechanisms, the timing of sister separation is still 

not significantly disrupted in a normal, undisturbed cell cycle. This hints at a third 

mechanism that limits the activation of separase even when securin and the 

inhibitory phosphorylation are taken out of the equation. Alternatively, mechanisms 

may be in place that prevent prematurely activated separase from targeting its 

substrate. In budding yeast, for example, sister chromatid separation is positively 

influenced by phosphorylation of Scc1, which renders it a better substrate for 

separase (Alexandru et al., 2001). Separase-dependent cleavage of human Scc1 is 

also enhanced by phosphorylation of the substrate (Hauf et al, 2005). Therefore, it 

would be interesting to see whether mutations that prevent or mimick 

phosphorylation of Scc1 would alleviate or aggravate, respectively, the effect of 

separase deregulation. 

 

Importantly, while securin-mediated inhibition of separase is dispensable, inhibitory 

phosphorylation is crucial in embryonic germ cell development and in early 

embryogenesis. A mouse strain carrying the aforementioned Ser1121Ala point 

mutation is characterized by infertility of both sexes as well as complete primordial 

germ cell depletion in male mice (Huang et al., 2009; Huang et al., 2008; Xu et al., 

2011). This argues that the cyclin B1-Cdk1 inhibition mechanism is superior to 

securin in inhibiting separase, at least in some cell types.  

 

An interesting observation was made regarding separase regulation by cyclin B1-

Cdk1 in stable Hek293 cell lines. While bulk wild-type separase aggregated in mitosis 

in the absence of additionally transfected securin, most non-phosphorylatable 

Ser1126Ala separase did not (S. Hellmuth, master thesis and personal 

communication). This argues that securin-free separase aggregates because it is 

phosphorylated in mitosis. In interphase, neither wild-type separase nor the 

phosphorylation site variant aggregated under conditions of limiting amounts of 

securin, probably because of lack of phosphorylations in interphase. It is therefore 

possible that cyclin B1-Cdk1, much like securin, simultaneously acts as an inhibitor 

and as a chaperone for separase. Phosphorylation of separase by cyclin B1-Cdk1 in 

mitotis would therefore lead to aggregation unless it is immediately followed by 

binding of the Cdk1 complex. This model would also account for the fact that the 
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securin inhibiting mechanism is not essential, by demonstrating that in principle, 

cyclin B1-Cdk1 on its own can make sure that separase is kept in check until the 

spindle checkpoint is satisfied (Fig. 26).  

 

 

FIGURE 26. Putative chaperone function of cyclin B1-Cdk1 complex for 
separase may explain why securin is not essential in humans. 

Co-translational association of securin with separase ensures that separase can 
correctly fold into its native conformation and at the same time inhibits the protease 
(left branch). In the absence of securin, most separase aggregates (right branch). 
Any separase that does manage to natively fold in the absence of securin will be 
phosphorylated upon entry into mitosis by the cyclin B1-Cdk1 (MPF) complex. This 
phosphorylation would lead to an increased tendency to aggregate and thereby to 
inactivation of separase (right branch), unless MPF binds phosphorylated separase 
(middle branch). This physical association prevents aggregation and ensures 
separase activation upon APC/C activation. 
 

 

If securin is not essential, then what inhibits separase in earlier stages of the cell 

cycle, when cyclin B1-Cdk1 is not yet active? In this study, cyclin A-Cdk complexes 

were ruled out, as they cannot associate wih separase (chapter 2.4.). It is possible 

that in a securin-/- scenario, the spatial separation of separase and cohesin in 

cytoplasm and nucleus, respectively, suffices to prevent loss of cohesion prior to 

accumulation of cyclin B1 and entry into mitosis.  
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In conclusion, backed by the results of this study the regulation of anaphase onset 

can be outlined as follows. In a normal, unpertubed cell cycle, securin probably acts 

to support separase folding and mediates separase inhibition throughout interphase. 

Apart from binding securin, nuclear exclusion of separase prevents it from gaining 

access to its chromosomal substrate. In early mitosis, excess, free securin is 

phosphorylated by mitotic kinases and removed by basal APC/C activity, making the 

cell vulnerable for sudden increases in separase levels. Here, cyclin B1-mediated 

phosphorylation of separase takes over and removes any separase not associated 

with securin (and PP2A) by promoting its aggregation or re-inhibition by cyclin B1-

Cdk1 complex binding. 

 

3.6. How may PP2A contribute to orderly mitotic progression? 
 

The antagonistic relationship between separase-Cdk1 and separase-PP2A complex 

formation is further exemplified by the fact that Cdk1 is largely associated with 

cleaved separase (in which PP2A association is lost), whereas securin preferentially 

associates with uncleaved, full-length separase, as demonstrated by Cks2 versus 

securin immunoprecipitation experiments from mitotic Hek293T cell lysates (Gorr et 

al., 2005). These experiments also revealed a co-existence of separase-securin and 

separase-Cdk1 complexes in prometaphase cells. 
 

Therefore, separase-associated PP2A may fulfill two functions in early mitosis: one is 

to protect separase-bound securin from being degraded together with free securin, 

and the other is to mediate between securin and cyclin B1 binding to separase. In G2 

phase, securin-separase-PP2A complexes, as well as cleaved separase from the 

previous cell cycle in complex with securin exist. Upon entry into mitosis, free securin 

and securin bound to cleaved separase (i.e. securin not protected by separase-

bound PP2A) is phosphorylated and degraded by basal APC/C activity. Any free 

separase as well as cleaved separase freed from securin is phosphorylated by cyclin 

B1-Cdk1 and either bound and inhibited by this complex or left to aggregate. 

Therefore, in early mitosis, securin-separase-PP2A and separase-cyclin B1-Cdk1 

complexes coexist. When securin and cyclin B1 are degraded at the metaphase-to-

anaphase transition by the APC/C, both already cleaved and uncleaved separase are 

released from their cyclin B1- and securin-mediated inhibitions, respectively, 

releasing active separase (Fig. 27). 
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FIGURE 27. Model for the role of separase-bound PP2A in regulating anaphase 
onset. 

In interphase, securin-separase-PP2A and cleaved separase from the previous cell 
cycle in complex with securin exist. Upon entry into mitosis, securin not protected by 
PP2A activity is phosphorylated and degraded by basal APC/C activity. Therefore, in 
early mitosis, only the securin-separase-PP2A complexes persist. In addition, 
cleaved separase freed from its inhibitor securin can be phosphorylated and bound 
by its second inhibitor, the cyclin B1-Cdk1 complex. The burst of APC/C activity at 
the metaphase-to-anaphase transition leads to concomitant degradation of securin 
and cyclin B1, thereby activating separase. 
 

 

Considering the fatal consequences of premature sister chromatid separation for the 

cell, the aquisition of such a complex framework of intrinsic regulation for separase is 

perhaps not surprising. A critical experiment in further defining the role PP2A plays in 

mediating orderly anaphase onset will be the generation of Hek293 cell lines stably 

overexpressing a separase variant displaying a moderate level of premature sister 

chromatid separation (PSCS). The effects of concomitantly deleting the PP2A-

binding sites on this variant (ΔPP2A), or of concomitantly mutating the auto-cleavage 

sites on this variant (NC), on the extent of PSCS will be determined by FACS 

analysis and chromosome spreading. In order to be able to observe effects both 

ways, i.e. an aggrevation or an alleviation of PSCS, a LAG (Ala1380Leu, Pro1381Ala 

and Arg1386Gly) separase variant will be used, which is only partially Cdk1-resistant 

and shows a weaker level of PSCS than Ser1126Ala and ΔCLD (aa 1342-1400) 

separase variants. If PP2A antagonizes Cdk1 regulation of separase, a ΔPP2A 

mutation should alleviate the PSCS phenotype of LAG separase, while a mutation 

which renders separase non-cleavable should aggravate the PSCS phenotype. 
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4.     MATERIALS AND METHODS 

 
If not indicated otherwise, companies are situated in Germany. 
 
4.1. Materials 
 
4.1.1. Hard- and software 
 
This work was written on an "Apple MacBook2,1" (Apple Computer Inc., Cupertino, 

CA, USA) using "Microsoft® Word 2008" (Microsoft Corporation, Redmond, WA, 

USA). "Microsoft® Excel 2008" (Microsoft Corporation, Redmond, WA, USA) was 

used for generation of diagrams. Chemiluminescence signals of immunoblots as well 

as Coomassie stained gels were digitized using an "LAS-4000" system (Fuji Film 

Europe, Düsseldorf). Autoradiographies were digitized using an "FLA-7000" 

phosphorimager (Fuji Film Europe, Düsseldorf). The image analysis software 

MultiGauge (Fuji Film Europe, Düsseldorf) was used to visualize chemiluminescence 

signals from immunoblots and digitized autoradiographies. Processing of all images 

and generation of figures was done using "Microsoft® Powerpoint® 2008" (Microsoft 

Corporation, Redmond, WA, USA) and "Canvas 9.0.4" (ACD Systems International 

Inc., Victoria, B.C., Canada). "DNASTAR Lasergene" (GATC Biotech, Konstanz) was 

used for analysis of DNA and protein sequences. Literature and database searches 

were done with electronic online services provided by the "National Center for 

Biotechnology Information" (http://www.ncbi.nlm.nih.gov/). A service of the European 

Bioinformatics Institute was used for sequence aligments ("EMBOSS Pairwise 

alignment" algorithm, http://www.ebi.ac.uk/Tools/emboss/align/index.html). 

 
4.1.2. Protocols 
 
The methods described in this section are based on standard techniques (Ausubel 

and Struhl, 1998; Sambrook, 1989; Sambrook and Russell, 2001) or follow the 

manufacturer’s instructions. Where protocols have been modified, detailed 

information is provided. For all methods, de-ionized sterile water and, when 

appropriate, sterile solutions and sterile flasks were used. 
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4.1.3. Chemicals and reagents 

 
Unless otherwise stated, chemicals and reagents (pro analysis grade) were 

purchased from AppliChem (Darmstadt), Biomol (Hamburg), Biorad (Munich), GE 

Healthcare (Munich), Fermentas (St. Leon-Rot), Invitrogen (via Fisher Scientific, 

Schwerte), Merck/Calbiochem (Darmstadt), Millipore (Schwalbach), New England 

Biolabs (NEB, Frankfurt a. M.), Pierce/Fisher Scientific (Schwerte), Promega 

(Mannheim), Qiagen (Hilden), Roche Diagnostics (Mannheim), Roth (Karlsruhe), 

Serva (Heidelberg) and Sigma-Aldrich (Steinheim). 

 
4.1.4. Antibodies 

 
Commercial antibodies and affinity matrices used in this study were as follows: 

mouse monoclonal anti-securin (clone DCS-280, Abcam, Cambridge, UK), mouse 

monoclonal anti-separase (clone XJ11-1B12, Abcam, against C-terminal residues 

1866-1996 of human separase), rabbit polyclonal anti-separase (A302-214A, Bethyl, 

Montgomery, TX, USA, against residues 1100-1150 of human separase), mouse 

monoclonal anti-PP2A, C'α subunit (clone 1D6, Millipore), mouse monoclonal anti-

Myc (clone 4A6, Millipore), rabbit polyclonal anti-Myc (clone A-14, Santa Cruz 

Biotechnology, CA, USA), mouse monoclonal anti-Flag (clone M2, Sigma-Aldrich), 

rabbit polyclonal anti-FLAG (Sigma-Aldrich), mouse monoclonal anti-α-tubulin (clone 

12G10, Developmental Studies Hybridoma Bank), unspecific rabbit (Bethyl) IgG 

(Sigma-Aldrich) and IgG sepharose (4 Fast Flow; GE Healthcare). Polyclonal goat 

anti-rabbit-IgG, rabbit anti-goat-IgG, goat anti-mouse-IgG coupled to peroxidase 

(Sigma-Aldrich) or goat anti-mouse IgG (γ) coupled to peroxidase (KPL, 

Gaithersburg, MD, USA, heavy-chain specific) were used as secondary antibodies in 

immunoblotting. 

 

Non-commercial antibodies used were: rabbit polyclonal anti-pSX104 (against His6-

hSecurin), rabbit polyclonal anti-pSX38 (against His6-tagged human separase 

residues 1305-1573), rabbit polyclonal anti-hSeparase-N (against N-terminal 

residues 2-16 of human separase, Stemmann et al., 2001), rabbit polyclonal anti-

hSeparase-M (against residues 1507-1521 of human separase) and mouse 

monoclonal anti-eGFP (against the C-terminal 3rd of eGFP; hybridoma cell line was 

kindly provided by D. van Essen & S. Saccani, MPI Freiburg). 
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4.1.5. Plasmids 
 

Vector Origin 

pCS2 Turner and Weintraub (1994), with modified MCS 

(FseI/AscI sites inserted) 

pcDNA5-FRT-TO Invitrogen 

pET28a Novagen, with modified MCS  

(FseI/AscI sites inserted) 
 
Plasmids Insert Tag Vector 

Separase    

pSX38 hSepS1305-T1573 fragment N-His6 pET28a 

pOS22 hSep N-ZZ-TEV4- pCS2 

pOS41 hSepPD N-ZZ-TEV4- pCS2 

pSX136 hSep - pCS2 

pOS337 hSep PM (S1126A, T1346A, ΔL1391-E1402) N-ZZ-TEV4- pCS2 

pAS1228 hSep3xNC (R>A), Δ1297-1404  N-ZZ-TEV4- pCS2 

pAS1229 hSep3xNC (R>A), Δ1296-1478 N-ZZ-TEV4- pCS2 

pAS1272 hSepPD, Δ1408-1478 N-ZZ-TEV4- pCS2 

pAS1273 hSepPD, Δ1454-1470 N-ZZ-TEV4- pCS2 

pAS1274 hSepPD, Δ1454-1479 N-ZZ-TEV4- pCS2 

pAS1275 hSepPD, Δ1490-1493 N-ZZ-TEV4- pCS2 

pFB1681 hSepPD, S1508-19A 4xA N-ZZ-TEV4- pCS2 

pFB2056 hSep3xNC (R>A) N-ZZ-TEV2- pCS2 

pFB2118 hSep2xNC (R>A), 1501-11 6xA N-ZZ-TEV4- pCS2 

pFB2490 hSepPD, S1508-19D 4xD N-ZZ-TEV4 pCS2 

pOS182 hSepPD, 2xNC (R>A), S1501A  N-HA3- pCS2 

pOS184 hSepPD, 2xNC (R>A), S1501S N-HA3- pCS2 

pFB2577 hSep N-Myc6- pcDNA5-FRT-TO 

pFB2603 hSepΔEEEL (Δ1490-93) N-Myc6- pcDNA5-FRT-TO 

pFB2609 hSep3xNC (ER>RE) N-Myc6- pcDNA5-FRT-TO 

pFB2700 hSep2xNC (ER>RE), 1503-09: ENLYFQG (TEV) N-Myc6- pcDNA5-FRT-TO 
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Securin    

pSX104 hSecurin N-His6 pET28a 

pSX100 hSecurin - pCS2 

pOS237 hSecurin -His6-Flag-His6-Flag-C pCS2 

pOS238 hSecurinmKEN/mDB -His6-Flag-His6-Flag-C pCS2 

pFB2234 hSecurin -His6-Flag-His6-Flag-C pcDNA5-FRT-TO 

pFB2235 hSecurinmKEN/mDB -His6-Flag-His6-Flag-C pcDNA5-FRT-TO 

pFB2570 hSecurin3xA (S31A, T66A, S87/89A)  -His6-Flag-His6-Flag-C pCS2 

pFB2571 hSecurin3xD (S31D, T66D, S87/89D) -His6-Flag-His6-Flag-C pCS2 

PP2A    

pFB2470 hPP2A Bα subunit -His6-Flag-His6-Flag-C pCS2 

pFB2471 hPP2A B’α subunit -His6-Flag-His6-Flag-C pCS2 

Others    

pLG2256 Tev proteaseS219V - pCS2 

pFB2340 hCyclin B1ΔN (Δ1-75) -YFP-C pCS2 

pFB2341 hCyclin A2ΔN (Δ1-86) -YC-C pCS2 

 

Source: pFB – this study; others – Stemmann laboratory plasmid collection 

PD: protease-dead (C2029S) 

NC (R>A): non-cleavable (R1486A, R1506A, R1535A) 

NC (ER>RE): non-cleavable (ER1483/6RE, ER1503/6RE & ER1532/5RE) 

mKEN/mDB: KEN to RDQ & RxxL to AxxA 
 

 

4.1.6. DNA oligonucleotides 
 

Plasmid Primer Sequence 

pFB2118 hSep_PP2A_6xA_W 

hSep_PP2A_6xA_C 

5'- GGCCTTTGCGATCCTCGCGGGCGCTGCCGGGGCAGACTCAGCCTCAGGTGG-3' 

5'- CCGGCAGCGCCCGCGAGGATCGCAAAGGCCATTTTTCTCCAGTTGTCAGTC-3' 

pFB2490 hSepS1508-19D+FB 

hSepS1508-19D-FB 

5'- TCCTTCCCACCATCGGCATCGTCTTCCCCGTCATCGCCCCTGAGGATCTC-3' 

5'- GATGACGGGGAAGACGATGCCGATGGTGGGAAGGATCCAGCTCCGGG-3' 

pFB1681 hSepPM1508-19-FB 

hSepPM1508-19+FB 

5'- GCTGACGGGGAAGACGCAGCCGCAGGTGGGAAGGCTCCAGCTCCG-3' 

5'- CCTTCCCACCTGCGGCTGCGTCTTCCCCGTCAGCGCCCCTGAGGATCTC-3' 

pFB2700 dbsep_1503-10_TEV_rev 

dbsep_1503-10_TEV_for 

5'- GAGGCTGAGTCTTCCCCCTGAAAGTAGAGGTTCTCAAAGCTCATTTTT-3' 

5'- AAAAATGAGCTTTGAGAACCTCTACTTTCAGGGGGAAGACTCAGCCTC-3' 
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pFB2570 hSecS31A 

hSecT66A 

hSecS87/89A 

5'- GGTCTGGACCTGCAATCAAAGCC-3' 

5'- AGGCTTTGGGAGCTGTCAACAGAG-3' 

5'- ACAAAAACAGCCAGCCTTTGCTGCCAAAAAGATG-3' 

pFB2571 hSecS31D  

hSecT66D  

hSecS87/89D 

5'- GTCTGGACCTGATATCAAAGCCT-3' 

5'- GCTTTGGGAGATGTCAACAGA-3' 

5'- AAAACAGCCAGACTTTGATGCCAAAAAG-3' 

pFB2470 hPP2A_Balpha_5’F 

hPP2A_Ba_3’open 

5'- TAAGGCCGGCCCATGGCAGGAGCTGGAGGA-3' 

5'- GGCGCGCCAATTCACTTTGTCTTGAAAT-3' 

pFB2471 hPP2A_B’a_5’F 

hPP2A_B’a_3’open 

5'- TAAGGCCGGCCCATGTCGTCGTCGTCGCCG-3' 

5'- GGCGCGCCATTCGGCACTTGTATTGCTG-3' 

pFB2340 5’F_hCycB1_D76 

hCycB1_3Aop_OS 

5'- GCTGGCCGGCCAATCATGGATAAAAAACTACCAAAACCT-3' 

5'- TTAGGCGCGCCTTAACACCTTTGCCACAGCC-3' 

pFB2341 5’F_hCycA2_V87 

hCycA2_3’opA 

5'- ATGGGCCGGCCATCATGGTTCCTCCTTGGAAAGCAAACA-3' 

5'- GGCGCGCCACAGATTTAGTGTCTCTGGTGGGTTGAGGA-3' 

 
 

4.2. Microbiological techniques 
 
If not indicated otherwise, percentages in buffer recipes are given as v/v. 

 
4.2.1. E. coli strains 
 
Strain Description and origin 

XL1-Blue E. coli supE44, hsdR17, recA1, endA1, gyrA46, thi, relA1, 

lac- [F' pro AB lacIq, Lac ZdM15, Tn10 (Tetr)] 

Stratagene/AgilentvTechnologies, Santa Clara, CA, USA 

Rosetta DE3 E. coli F-, ompT, hsdSB (rB
- mB

-), gal, dcm, λ 

(DE3 [lacI, lacUV5-T7 gene 1, ind1, sam7, nin5]) CamR 

Novagen/Merck 
 

4.2.2. E. coli media 
 
LB medium   1% (w/v) Tryptone (Difco, BD Biosciences, Heidelberg) 

    0.5% (w/v) yeast extract (Difco) 

    1% NaCl (w/v) 

    dissolved in ddH2O and sterilized by autoclaving 

 

LB agar   LB-medium with 1.5% agar (Roth) 
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4.2.3. Cultivation and storage of E. coli 

 
E. coli strains were grown in LB medium by shaking at 200 rpm at 37°C, LB agar 

plates were incubated at 37°C. Antibiotics for selection of transformed bacteria were 

added to media at 100 µg/ml (ampicillin), 30 µg/ml (kanamycin) or 34 µg/ml 

(chloramphenicol) final. Culture densities were determined by measuring the 

absorbance at a wavelength of 600 nm (OD600). Cultures on agar plates were stored 

at 4°C for up to 30 days. For long-term storage, liquid cultures were supplemented 

with glycerol to 20% final concentration, subsequently snap frozen and stored at -

80°C. 

 
4.2.4. Preparation of chemically competent E. coli 
 
Tbf1 buffer    30 mM KAc 

    50 mM MnCl2 

    100 mM KCl 

    15%  Glycerol 

    pH adjusted to 5.8 

 

Tbf2 buffer    10 mM MOPS/NaOH 

    75 mM CaCl2 

    10 mM KCl 

    15% Glycerol 

    pH adjusted to 7.0 

 

For preparation of chemical-competent bacteria, 300 ml LB medium was inoculated 

with 4 ml of an overnight culture derived from a single E. coli colony and grown at 

37°C to an OD600 of 0.5. After chilling the culture flask on ice for 15 min, cells were 

harvested by centrifugation (4°C, 5000 g, 15 min). All following steps were performed 

with prechilled sterile materials and solutions at 4°C. Sedimented bacteria were 

carefully resuspended in 90 ml Tbf1 buffer and chilled on ice for 15 min. After a 

second centrifugation (4°C, 5000 g, 15 min), bacteria were resuspended in 15 ml 

Tbf2 buffer and chilled on ice for 5 min. Finally, suspension of bacteria was aliquoted, 

snap-frozen and stored at -80°C. 

 
 



Materials and Methods 

  85 

4.2.5. Transformation of plasmid DNA into chemically competent E. coli 

 
Competent bacteria were thawed on ice. For chemical transformation, 50 µl of 

competent bacteria were mixed with 1 µl of plasmid DNA or 10 µl ligation reaction 

and incubated on ice for 20 min. A heat shock at 42°C was performed for 45 s. 

Subsequently, the cell suspension was incubated on ice for 2 min and after addition 

of 1 ml LB medium without antibiotics incubated on a shaker at 37°C for 45 min. After 

recovery, transformed cells were selected by streaking out the bacteria suspension 

on LB agar plates containing the respective antibiotic(s) and incubated overnight at 

37°C. 

 
4.2.6. Expression of proteins in E. coli 
 
For expression of recombinant proteins from pET28a expression plasmids, the E. coli 

strain Rosetta DE3 was used. LB medium was inoculated with a dilution of 1:100 of 

an overnight culture from a freshly transformed colony. The culture was grown at 

37°C and expression of protein(s) was induced by addition of IPTG (1 mM final 

concentration) at an OD600 of 0.5-0.8. After shaking for 3 h at 37°C, cells were 

harvested by centrifugation (4°C, 5000 g, 10 min). Pellets were either processed 

directly or stored at -80°C after snap-freezing. 

 

 

4.3. Molecular biological methods 
 
4.3.1. Isolation of plasmid DNA from E. coli 
 
2.5 ml of LB medium containing the appropriate antibiotic was inoculated with a 

single E. coli XL1-Blue colony harboring the DNA plasmid of interest and shaken for 

8-14 h at 37°C. Plasmid-DNA was purified via alkaline lysis of the bacteria and 

subsequent isolation by anion exchange columns according to the manufacturer’s 

instructions (Qiagen, "Plasmid Purification Handbook, Plasmid Mini Kit"). Larger 

amounts of DNA for transfection of human cells were isolated from a 250 ml 

overnight culture according to the manufacturer’s protocol (Qiagen, "Plasmid 

Purification Handbook, Plasmid Maxi Kit"). 
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4.3.2. Determination of DNA/RNA concentration in solution 

 
DNA or RNA concentrations were determined by measuring the absorbance at a 

wavelength of 260 nm (OD260) with a ND-1000 Spectrophotometer (Peqlab, 

Erlangen). An OD260 = 1 equals a concentration of either 50 µg/ml double-stranded 

DNA or 40 µg/ml RNA. 

 
4.3.3. Restriction digestion of DNA 
 
Sequence-specific cleavage of DNA with restriction enzymes was performed 

according to standard protocols (Sambrook and Russell, 2001) and the instructions 

of the manufacturer (New England Biolabs, NEB). Usually, 5-10 units of restriction 

enzyme were used for digestion of 1 µg DNA. Reaction samples were incubated in 

appropriate buffer at the recommended temperature for 1 h. Restriction digestion was 

then stopped by addition of DNA loading buffer. 

 
4.3.4. Dephosphorylation of DNA fragments 

 
To avoid religation of linearized vectors, the 5' end of vector DNA was 

dephosphorylated by adding 0.1 units of shrimp alkaline phosphatase and the 

appropriate buffer (Roche, Mannheim) and incubating for 1 h at 37°C. Subsequently, 

shrimp alkaline phosphatase was heat-inactivated 15 min at 70°C. 

 

4.3.5. Separation of DNA fragments by gel electrophoresis 

 
TBE buffer    90 mM Tris Base 

    90 mM Boric acid 

    2.5 mM EDTA 

 

DNA loading buffer  0.5% (w/v) SDS 

(5x)     0.25% (w/v) Orange G 

    25% Glycerol 

    25 mM EDTA (pH 8.0) 
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For analytical analysis and preparative isolation, DNA fragments were 

electrophoretically separated on agarose gels (0.8-2.0% of agarose in TBE buffer) 

containing ethidium bromide (0.5 µg/ml final concentration). DNA samples were 

mixed with DNA loading buffer and separated at 100 V in TBE buffer. DNA fragments 

could be visualized by intercalation of ethidium bromide into DNA by using a UV 

transilluminator (324 nm). The size of the fragments was estimated by standard size 

markers (O'GeneRuler 1kb or 100 bp DNALadder, Fermentas). 

 
4.3.6. Isolation of DNA from agarose gels 
 
TE buffer    5 mM Tris (pH 8.0) 

    1mM EDTA   

 
After gel electrophoresis DNA fragments were isolated by excising the respective 

piece of agarose using a scalpel. DNA was extracted from the agarose using QiaExII 

Gel Extraction kit (Qiagen) according to manufacturer’s instructions and eluted with 

50 µl TE buffer. 

 
4.3.7. Ligation of DNA fragments 
 
Amounts of isolated DNA fragments ("inserts") and linearized vectors were estimated 

on an ethidium bromide-containing agarose gel. For ligation reaction a molar ratio of 

2.5:1 of insert to vector was used. The reaction sample with a total volume of 10 µl 

usually contained 100 ng of vector DNA and 4 units of T4 DNA Ligase (Fermentas) 

and was incubated for 2 h at RT or overnight at 16°C in recommended amounts of 

reaction buffer (Fermentas). 

 
4.3.8. Sequencing of DNA 

 
Sequencing PCR and sample preparation were performed with the DYEnamic ET 

Terminator Cycle Sequencing Premix kit according to the manufacturer’s instructions 

(GE Healthcare). One sample usually contained 1 µg of plasmid DNA and 20 pmol of 

primer. DNA sequencing was then carried out by the core facility MPI for 

biochemistry (Martinsried) with an Abi-Prism 377 sequencer (Perkin Elmer) or by an 

external commercial provider (SeqLab, Göttingen). 
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4.3.9. Site-directed mutagenesis of DNA 

 
Site directed mutagenesis was usually perfomed using a fusion PCR based approach 

using two reverse complementary oligonucleotides harboring the desired mutation(s). 

In two separate PCR reactions, each oligonucleotide was used to create an upstream 

and a downstream fragment, respectively. The outer primers for these reactions were 

designed to terminate at useful restriction sites. After gel purification the two products 

were combined and fused in a PCR reaction with the two outer primers. The resulting 

fragments were restriction cloned into the desired vector. Verification was done by 

sequencing. 

 
For the introduction of multiple specific point mutations within a gene sequence the 

GeneEditor in vitro Site-directed Mutagenesis System (Promega) was used 

according to the manufacturer's instructions. The underlying principle is the use of at 

least two oligonucleotides, one introducing a mutation into the AmpR gene leading to 

resistance against the “GeneEditor” antibiotic and the others containing the desired 

point mutation(s). After denaturation of the plasmid of interest, the oligonucleotides 

were allowed to anneal and the second strand was completed by PCR. 

Subsequently, the double stranded plasmid was transformed into bacteria that were 

then selected on “GeneEditor” antibiotic containing agar plates. Introduced mutations 

were verified by sequencing. 

 
4.3.10. Polymerase chain reaction (PCR) 
 
PCRs were usually performed in a total volume of 50 µl with 50-200 ng of plasmid 

DNA, 0.25 µl of the respective forward and reverse oligonucleotide primer (100 mM), 

1 µl deoxynucleotide mix (10 mM, New England Biolabs, NEB) and 0.5 µl of Phusion 

DNA polymerase (Finnzymes, Espoo, Finland) in the corresponding PCR buffer (5x 

Phusion HF or GC buffer, Finnzymes). Amplification was carried out in a TC-512 

temperature cycler (Techne, Burlington, NJ, USA). The reaction profile was adjusted 

according to quantity and quality of template DNA, the length and G/C content of the 

oligonucleotides as well as the length of the amplified sequences. Usually, the 

denaturing step was done for 20 s at 98°C, annealing for 20 s at a temperature 

optimized for the individual primer pairs, and elongation at 72°C for 20 s/kbp. 
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4.4. Cell biological methods 

 
4.4.1.  Mammalian cell lines 
 
Cell line Description and origin 

Hek293T human embryonic kidney cell line transformed with SV40 

large T antigen 

HeLa L human cervix epithelial adenocarcinoma transformed by 

humanpathogene Papilloma virus, subclone L 

HeLa FlpIn human cervix epithelial cells modified by stable integration 

of a pFRT/lacZeo plasmid (Invitrogen) carrying the FRT 

recognition site for transgene integration by Flp-

recombinase (mediates zeocin resistance), and stable 

integration of a pcDNA6/TR plasmid (Invitrogen; modified 

by replacing the blastR gene with a puroR gene), for 

constitutive expression of the Tet-repressor (mediates 

puromycin resistance); This host cell line was kindly 

provided by Thomas U. Mayer (University of Konstanz) 

 
 
4.4.2. Cultivation of mammalian cells 

 
1x PBS   137 mM NaCl 

    2.7 mM KCl 

    10 mM Na2HPO4 

    2 mM KH2PO4, pH 7.4 

 
Cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM, PAA, Pasching, 

Austria). Media were supplemented with 10% heat inactivated (40°C, 10 min) fetal 

bovine serum (Biochrom, Berlin), 100 units/ml penicillin and 0.1 mg/ml streptomycin 

(PAA). Medium for HeLa FlpIn cells was additionally supplemented 4 µg/ml 

puromycine (Enzo Life Sciences, Plymouth Meeting, PA, USA) and 62.5 µg/ml zeocin 

(Invitrogen). Monolayer cultures were grown in cell culture dishes (Greiner Bio-One, 

Kremsmünster, Austria) at 37°C in a 5% CO2 atmosphere and were split at a ratio of 

1:4 to 1:8 twice a week. To split cells, medium was removed, cells were washed once 
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with PBS and subsequently incubated with 16 µl/cm2 Trypsin/EDTA solution (PAA) at 

37°C for 1 min (Hek293T cells) or 5 min (HeLa/HeLa FlpIn cells). By repeated 

pipetting in fresh medium, cells were detached from each other as well as from the 

culture dish. Subsequently, the cell suspension was diluted in medium and 

distributed on new cell culture dishes. Cell concentrations of suspensions were 

determined with a Vi-Cell counter (Beckman Coulter, Krefeld). 

 
4.4.3. Storage of mammalian cells 

 
Freezing medium  10% DMSO 

    90% Fetal bovine serum 

 
Cells were harvested at 80% confluence by trypsination as described above, 

resuspended in freezing medium and aliquoted in cryo vials (SARSTEDT, 

Nümbrecht). The cell suspension was then cooled to -80°C in an insulated container 

or cardboard box at a rate of about 1°C/min. For long-term storage cryo vials were 

transferred to a liquid nitrogen tank. 

 
For thawing, cryo-stocks were quickly removed from the liquid nitrogen freezer and 

placed into a 37°C water bath. To remove DMSO, tubes were briefly centrifuged (300 

g, 3 min). The supernatant was discarded and the cell pellet resuspended in DMEM 

and transferred to an appropriate cell culture dish containing DMEM. 

 
4.4.4. Transfection of Hek293T cells with plasmid DNA 

 
2x HBS (50 ml)  800 mg NaCl 

    37 mg KCl 

    10.65 mg Na2HPO4 

    100 mg Glucose 

    500 mg HEPES 

    pH 7.05 adjusted with NaOH, sterile filtered (0.2 µm pore 

    size) 

 

Hek293T cells were transfected by the calcium phosphate method. 2.5·106 cells per 

cell culture dish (100 mm) were spread and grown overnight. Shortly before 

transfection the next day, chloroquin was added to the medium to a final 
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concentration of 20 µM. For one transfection mix, 5-20 µg (depending on the 

construct) of plasmid DNA were mixed first with 680 µl water and then with 99.2 µl 

sterile 2 M CaCl2. Then 800 µl of 2x HBS solution were slowly added in small drops 

while gently vortexing. The transfection mix was immediately added to the cells by 

careful dripping onto the entire surface of the medium. 12 h later medium was 

exchanged. 24 h after transfection, nocodazole was added to the medium at a final 

concentration of 0.2 µg/ml to arrest cells in mitosis (unless interphase samples were 

prepared). 36 h after transfection, cells were harvested by rinsing the plate with the 

used cell culture medium. Following centrifugation (300 g, 3 min) cell pellets were 

washed once with PBS. Cell pellets were subsequently either lysed directly or snap 

frozen in liquid nitrogen and stored at -80°C for further use. 

 
4.4.5. Transfection of HeLa cells with plasmid DNA 
 
HeLa cells were either transfected using the cationic lipid reagent Lipofectamine 

2000 (Invitrogen/Fisher Scientific) or by polyethylenimine (PEI, linear, MW 25,000, 

Polysciences, Inc., Warrington, PA, USA), a cationic polymer. In the case of 

Lipofectamine 2000 a 1:2 ratio of DNA (µg):Lipofectamine (µl) was used. Cells were 

seeded in six-well plates at 0.5·106 cells/well in 1 ml DMEM medium supplemented 

with fetal bovine serum only. Transfection mixes were prepared in two steps. First, 

1.6 µg of DNA were diluted in 100 µl OptiMEM (Invitrogen/Fisher Scientific). In a 

separate tube, 3.2 µl of Lipofectamine 2000 were mixed well with 100 µl of OptiMEM 

by flicking the tube 20 times. After a 5 min incubation at RT, the DNA solution was 

pipetted to the Lipofectamine solution and mixed well. Following another incubation 

for 20 min at RT, the transfection mix was added to the cells. To limit cytotoxicity, 

medium was changed after 6 h, again using antibiotics-free DMEM medium. For PEI 

transfections, the ratio of DNA (µg):PEI (µl of 1 µg/µl stock solution) was 1:3. Cells 

were seeded at 106 cells per cell culture dish (100 mm). 1 µg/ml plasmid DNA was 

incubated in 1 ml DMEM medium without fetal bovine serum or antibiotics for 2 min 

at RT. After PEI addition, the transfection mix was vortexed, incubated at RT for 10 

min and added to the cells for 48 h. 
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4.4.6. Generation of stable cell lines 

 
HeLa FlpIn cell lines with stable, inducible transgenic expression were generated 

using the HeLa FlpIn host cell line (chapter 4.4.1.) from Invitrogen according to the 

manufacturer's instructions. Briefly, transgene plasmid DNA (His6-Flag-His6-Flag 

epitope tagged securin constructs in pcDNA5-FRT-TO vector background) and Flp 

integrase expression plasmid DNA (pOG44, Invitrogen) were transfected at a ratio of 

1:10 using Lipofectamine 2000 (Invitrogen/Fisher Scientific) or polyethylenimine (PEI, 

linear, MW 25,000, Polysciences, Inc., Warrington, PA, USA). 36 h after transfection, 

cells were split to a lower density, left to settle onto the cell culture dish for 6 h and 

selected for site-specific integration of the transgene with 400 µg/ml hygromycin 

(PAA). Once hygromycin resistant colonies were large enough to see by eye, they 

were re-plated and inducible expression of the transgene was tested by 5 µg/ml 

tetracycline (Serva) addition for 12-16 h.  

 
4.4.7. Synchronization and drug treatment of mammalian cells 

 
Synchronization of cells at the G1/S boundary of the cell cycle was done using 

thymidine. 2 mM thymidine (Sigma-Aldrich) was added to the culture medium for 20 

h. Cells were then released from the block by washing twice with medium followed by 

a 15 min incubation in the cell culture incubator and another medium change. In the 

case of a double thymidine block, 2 mM thymidine was readded 9 h after release 

from an 18 h thymidine block. 17 h later cells were released as described above. 

Synchronization of cells in prometaphase of mitosis was done using nocodazole. 200 

ng/ml nocodazole were added either to an asynchronous cell population for 12-16 h 

or 6 h after release from thymidine block for another 8 h. Purity of the cell cycle 

phases was confirmed by flow cytometry. 

 

For some experiments, cells were treated with the proteasome inhibitor MG-262 

(0.45 µM, Enzo Life Sciences), the serine/threonine protein phosphatase inhibitor 

okadaic acid (1 µM; Sigma) or the protein biosynthesis inhibitor cycloheximide (10 

µg/ml, Sigma) for 2 h, up to 4 h or up to 10 h prior to harvesting, respectively. 
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4.4.8. Flow cytometry 
 
To confirm the cell cycle phase of synchronized cells, cells were trypsinated from the 

cell culture dish, pelleted (300 g, 3 min) and transferred to a 15 ml Falcon (Greiner 

Bio-One) tube with 1x PBS. Cells were subsequently fixed with 70% ethanol (-20°C), 

washed twice with PBS/0.2% (w/v) BSA and passed through the 35 µm nylon mesh 

cap of a FACS tube (BD Biosciences). DNA staining was done using a 69 µM 

propidium iodide solution (in 38 mM tri-sodium citrate, Sigma-Aldrich). RNA was 

digested by simultaneously treating the cells with 100 µg/ml RNase A (Qiagen) for 1 

h at 37°C. DNA content was determined using a Beckman Coulter Cytomics FC 500 

flow cytometry device and the program CXP Analysis (Beckman). 

 
4.4.9. Stable Isotope Labeling with Amino acids in Cell culture (SILAC) 
 

SILAC labeling of Hek293T cells was carried out based on the protocol previously 

described (Ong and Mann, 2007). DMEM medium without arginine and lysine amino 

acids (Invitrogen) was supplemented with either 13C/15N labeled arginine and 

13C/15N labelled lysine (R10/K8), or with unlabeled arginine and lysine amino acids 

(R0/K0) (Sigma). Cells that were to be transfected with wild-type separase (plasmid 

pOS41, see chapter 4.1.5.) were cultured in R0/K0 medium, while cells that were to 

be transfected with ΔPP2A separase variant (plasmid pAS1272, see chapter 4.1.5.) 

were grown in R10/K8 medium over 6 generations. Labeled cells were transfected 

with the appropriate separase constructs together with wild-type securin (pSX100, 

see chapter 4.1.5.) using the calcium phosphate method (see chapter 4.4.4.) and 

arrested in prometaphase by nocodazole. The ZZ-TEV4-tagged separase was 

immunoprecipitated from cell lysates of the labeled and unlabeled cells by IgG-IP 

(see chapter 4.5.8.), before eluates were mixed at a 1:1 ratio. Proteins were 

separated using SDS-PAGE and subsequently digested by in-gel digestion using 

trypsin and AspN according to standard protocol (Shevchenko et al., 2006). 

Phosphorylated peptides were then enriched by Titansphere chromatography. 

Sample analysis was done by reversed phase LC-MS/MS using the Agilent 

Technologies 1200 nanoflow system connected to an LTQ Orbitrap XL system 

(Thermo Electron, Bremen, Germany) with a nanoelectrospray ion source (Proxeon 

Biosystems, Odense, Denmark) as described (Olsen et al., 2005). Peptides were 

identified using the Mascot-MatrixScience LLC software and quantified using 

MSQuant. 
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4.4.10. Preparation of cytoplasmic extracts from Xenopus laevis eggs 

 
MMR (25x)   2.5 M NaCl 

    50 mM KCl 

    25 mM MgCl2 

    50 mM CaCl2 

    2.5 mM EDTA/NaOH (pH 8.0) 

    125 mM HEPES/NaOH (pH 7.8) 

    pH 7.8, adjusted with NaOH 
 

XB-salts (20x)  2 M KCl 

    2 mM CaCl2 

    20 mM MgCl2 
  
Dejellying solution  2% (w/v) Cysteine (free base) 

    0.5x XB-salts 

    pH 7.8, adjusted with KOH 
 

CSF-XB (Murray, 1991) 100 mM KCl 

  0.1 mM CaCl2 

    2 mM MgCl2 

    10 mM HEPES/KOH (pH 7.7) 

    50 mM Sucrose 

    5 mM EGTA/KOH (pH 8.0) 

    pH 7.7, adjusted with KOH 
 

Cytochalasin B  10 mg/ml in DMSO (1000x)   
 

Sperm dilution buffer  5 mM HEPES/KOH (pH 7.7) 

    100 mM KCl 

    150 mM Sucrose 

    1 mM MgCl2 

 

Ca2+ (25x)   15 mM CaCl2 in sperm dilution buffer 
  

Cycloheximide (100x) 10 mg/ml in H2O (Calbiochem) 
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Laid eggs of Xenopus laevis are arrested in metaphase of meiosis II by cytostatic 

factor (CSF), a calcium-sensitive activity. Prior to extract preparation, all glasware 

used for buffers or extract preparation was therefore rinsed twice with ddH2O to 

remove contaminating calcium ions. Work with frogs and frog eggs was performed at 

18°C. Prepared extracts were kept on ice and were exclusively pipetted with cut tips. 

To induce egg laying, female frogs were injected with human chorionic gonadotropin 

(hCG, 1000 U/ml in ddH2O, Sigma). Depending on the size of the frog, about 0.7-1.0 

ml of hCG solution were injected into the dorsal lymph sac using a 27-gauge needle 

(B. Braun, Melsungen). 6-8 h later frogs were transferred to 1x MMR buffer. About 

20-24 h after injection, the laid eggs were collected in flat-bottomed glas dishes and 

washed briefly with 1 x MMR. The jelly coats of the eggs were removed by incubation 

in dejellying solution for 5-10 min. The procedure was terminated by extensive 

washing in CSF-XB. After all eggs with abnormal morphology had been removed, 

eggs were transferred to prepared 12 ml centrifuge tubes (Beckman Coulter) 

containing 1 ml CSF-XB and 10 µl cytochalasin B to block actin polymerization and 

thereby prevent cytokinesis. By centrifugation in a JS 13.1 swing-out rotor (Beckman) 

for 1 min at 200 g and 1 min at 600 g, eggs were tightly packed. Surplus of buffer on 

top of the packed eggs was removed. Eggs were then crushed and fractionated by 

centrifugation at 13,000 g for 10 min. Subsequently, the centrifugation tube was 

punctured with a 18-gauge needle at the lower end of the middle layer and the 

cytoplasmic fraction was transferred to a cooled eppendorf tube. Cytochalasin B was 

added to the cytoplasmic extract at a final concentration of 10 µg/ml. For the 

applications in this study, extracts were further supplemented with cycloheximide at a 

final concentration of 100 µg/ml to inhibit protein synthesis and recombinant human 

cyclin B1Δ90 (kindly provided by L. Schöckel) at a final concentration of 10 ng/µl to 

obtain "low Δ90" extracts that exhibit APC/C, Cdk1 and separase activity after 

release from metaphase II arrest by Ca2+ addition. 
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4.5. Protein methods 

 
4.5.1. SDS-polyacrylamide gel electrophoresis (SDS-PAGE)  
 
Laemmli running buffer 25 mM Tris 

    192 mM Glycine 

    3.5 mM SDS 

 
Sample buffer (4x)  250 mM Tris-HCl (pH 6.8) 

    40% Glycerol 

    8% (w/v) SDS 

    0.04% (w/v) Bromphenol blue 

    2 M β-Mercaptoethanol 

 
For the separation of proteins under denaturing conditions, SDS-PAGE was 

performed using commercially available "SERVAGelTM Neutral pH 7.4" gradient gels 

(Serva). Prior to loading, protein samples were mixed with sample buffer and 

denatured at 95°C for 5 min. As a molecular weight standard, PageRuler Prestained 

Protein Ladder (Fermentas) was used. Electrophoresis was carried out at 25 mA per 

gel in Laemmli running buffer. 

 
4.5.2. Immunoblotting 

 
Blotting buffer  25 mM Tris 

    192 mM Glycine 

    20% Methanol 

 

TBS-w   25 mM Tris (pH 7.5) 

    137 mM NaCl 

    2.6 mM KCl 

    0.05% Tween-20 

 

After separation via SDS-PAGE, proteins were transferred electrophoretically to a 

polyvinylidene fluoride (PVDF) membrane (Immobilon P, Millipore) using blotting 

buffer in a "semi-dry" blotting apparatus (Peqlab or Biorad). Prior to blotting, the 

hydrophobic PVDF membrane was briefly coated in 100% methanol. Protein transfer 
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was carried out at a constant voltage of 15 V for 45-60 min at RT. The membrane 

was blocked for unspecific binding with 5% skim milk in TBS-w for 40 min at RT. 

Subsequent incubation in primary antibody diluted in RotiBlock (Roth) was done at 

RT for 1-2 h or at 4°C o/n. The membrane was then washed three times with TBS-w 

for 5 min each. The appropriate horseradish peroxidase (HRP)-coupled secondary 

antibody was diluted in TBS-w and added to the membrane for 45 min at RT. 

Afterwards, the membrane was washed as before. Chemiluminescence detection 

was carried out using the protocol provided with the kit (ECL, GE Healthcare or HRP-

Juice, PJK GmbH, Kleinblittersdorf) and a CCD-based LAS-4000 camera system 

(Fuji). 

 
4.5.3. Coomassie staining 

 
Coomassie solution  0.4% (w/v) Coomassie Billiant Blue R250 

    0.4% (w/v) Coomassie Billiant Blue G250 

    40% Methanol (reagent grade) 

    10% Acetic Acid 

 

Destaining solution   30% Methanol 

    7% Acetic acid 

 

For coomassie staining, gels were incubated in coomassie solution after SDS-PAGE 

for at least 2 h. To remove unspecific stain, gels were subsequently transferred to 

destaining solution for 5-12 h. For long-term storage, coomassie-stained gels were 

dried on Whatman blotting paper (GE Healthcare) in a slab gel dryer (GD2000, 

Hoefer). 

 
4.5.4. Autoradiography 
 
After SDS-PAGE, gels were incubated in destaining solution for 20 min and 

subsequently washed with water. Gels were then dried on Whatman blotting paper 

(GE Healthcare) in a slab gel dryer (GD2000, Hoefer) and exposed to a film (BioMax 

MR, Kodak) for 3 h to 3 days, depending on the intensity of the expected signals. 

Autoradiographies were digitized using an FLA-7000 phosphorimager (Fuji Film 

Europe, Düsseldorf). 
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4.5.5. Coupled in vitro transcription/translation (IVT) 

 
In vitro transcription/translation in reticulocyte lysate supplemented with SP6 RNA 

polymerase was carried out using "TNT Quick Coupled Transcription/Translation 

System" (Promega, Mannheim). For a single reaction, 20 µl TNT Quick Master Mix, 1 

µl of pCS2 plasmid DNA (500 ng/µl), 1 µl of [35S] methionine (Hartmann Analytic 

GmbH, Braunschweig) and 3 µl of RNase free water were combined and incubated 

for 90 min at 30°C. 

 
4.5.6. Ni2+-NTA affinity purification of 6x-Histidine-tagged proteins 
 
Lysis buffer   400 mM NaCl 

    1x PBS     

 

Ni2+-NTA affinity purification was used to isolate recombinant His6-tagged separase 

and securin fragments from E. coli lysates for use as antigens in subsequent 

antibody purifications (see chapter 4.5.7.). Protein expression was done as described 

in chapter 4.2.6. Pelleted bacteria were resuspended in 10 ml of ice cold lysis buffer 

per g pellet. Cells were lysed in a high pressure homogenizer (Avestin, Ottawa, 

Canada) by cycling the cell suspension for 10 min. The lysate was cleared from 

debris by centrifugation in a JA- 25.50 rotor (Beckman Coulter) at 25,000 g for 30 

min, supplemented with 10 mM imidazole and subsequently incubated with 25 µl 

Ni2+-NTA agarose (Qiagen) per ml lysate for 2 h at 4°C on a turning wheel. Beads 

were washed with lysis buffer supplemented with 10 mM imidazole and 0.02% 

Tween-20. Bound protein was eluted from beads with 2 times 1 ml lysis buffer 

supplemented with 250 mM imidazole and 5 mM β-mercaptoethanol. Protein 

containing fractions were identified by SDS-PAGE and Coomassie staining. Peak 

fractions were pooled and dialyzed in part against 1x PBS (for rabbit injection) or 

coupling buffer (0.2 M NaHCO3/0.5 M NaCl pH 8.3) for coupling of NHS columns, 

see chapter 4.5.7.). Purified protein was aliquoted, snap-frozen using liquid nitrogen 

and subsequently stored at -80°C. 
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4.5.7. Purification of specific antibodies from rabbit serum 

 
For the generation of polyclonal antibodies against human separase and human 

securin, His6-tagged protein fragments of the desired epitope (see anti-pSX38 and 

anti-pSX104 antibodies chapter 4.1.4., non-commercial antibodies) were expressed 

in E. coli Rosetta DE3 and purified by Ni2+-NTA agarose pull downs. Rabbits were 

immunized three times with 0.5-1 mg of antigen in 1x PBS buffer mixed with 

TiterMaxTM Gold Adjuvant (Sigma) at a time over a ten week period (CovalAb, 

Villeurbanne, France). Antibodies raised against the antigen were purified by 

pumping the obtained rabbit serum over a HiTrap N-hydroxy-succinimide (NHS)-

activated column (GE Healthcare) coupled with the antigen according to the 

instructions of the manufacturer at a rate of 0.5 ml/min. After washing with 1x PBS 

and 5 mM Tris-HCl (pH 6.8), antibodies were eluted from the column with 100 mM 

Glycine/100 mM NaCl (pH 2.5). Fractions containing antibodies were identified by 

SDS-PAGE and Coomassie staining. Peak fraktions were pooled, dialyzed against 

PBS/50% glycerine, snap-frozen in aliquots and stored at -80°C.  

 
4.5.8. Co-Immunoprecipitation (Co-IP) experiments from transfected Hek293T 
cells 

 
Lysis buffer 2 (LP2)  20 mM Tris-HCl (pH7.7) 

    100 mM NaCl 

    10 mM NaF 

    20 mM β-Glycerophosphate 

    5 mM MgCl2 

    0.1% Triton X-100 

    5% Glycerol 

    1 mM EDTA 

 

LP2*    LP2 supplemented with 1x protease inhibitior cocktail 

    (Roche) 

 

Cells were harvested by scraping (HeLa cells) or rinsing (Hek293T cells) from a 

100 mm cell culture dish. After centrifugation for 3 min at 300 g at RT, cells were 

washed once with 1x PBS and centrifuged again. From here on all steps were 
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performed on ice. The cell pellets were resuspended in 500 µl LP2*, Dounce-

homogenized (using a glass dounce homogenizer, Wheaton, Millville, NJ, USA) and 

left on ice for 10 min. Lysates were centrifuged at 16,000 g for 30 min and the 

supernatant was transferred to a new tube. An input sample of 20 µl was extracted 

and mixed with SDS-PAGE sample buffer. Concomitantly, the appropriate affinity 

matrix was equilibrated by washing once with PBS/0.01% Tween-20 and once with 

LP2. For ZZ-TEV tagged separase, 25 µl IgG-SepharoseTM 6 Fast Flow beads (GE 

Healthcare) were used. For Myc6 epitope tagged separase, 5 µl anti-c-myc Agarose 

from rabbit (Sigma) were used. For His6-FLAG-His6-FLAG-tagged securin, 5 µl anti-

FLAG M2-Agarose from mouse (Sigma) were used. Subsequently, the supernatants 

were incubated with the equilibrated beads at 4°C for 3-4 h (FLAG IPs) or o/n (IgG 

IPs). Beads were then washed three times with LP2*. Elution of ZZ-TEV tagged 

separase from IgG-Sepharose beads was done with 1/2 bead volume His6-tagged 

Tev protease (12,000 U/ml, Core facility, MPI Martinsried; in the following referred to 

as His-Tev-protease) for 45 min at 18°C. As a negative control, 1/2 bead volume His-

Tev-protease was added during the incubation procedure. Beads were removed by 

passing the sample over a Mobicol microcolumn (Mobitec, Göttingen). The eluted 

protein samples were boiled for 5 min at 95°C. Elution of His6-FLAG-His6-FLAG- and 

Myc-tagged proteins was done by shaking the beads with 2x SDS-PAGE sample 

buffer (without β-mercaptoethanol) for 15 min at 80°C. Beads were removed by 

passing the sample over a Mobicol microcolumn before the eluted protein sample 

was supplemented with 0.5 M β-mercaptoethanol and boiled for 10 min at 95°C. 

 

For tandem affinity purification of overexpressed ZZ-TEV4-separase and securin-

His6-FLAG-His6-FLAG constructs from Hek293T cells, His-Tev-protease separase 

eluates from 10 ml LP2* lysates were expanded to 1 ml with LP2* and rotated for 4 h 

at 4°C together with anti-FLAG M2-agarose beads (Sigma). Subsequently, antibody-

beads were washed and eluted as before. 

 
4.5.9. Co-IP experiments of endogenous proteins 
 
CSF-XB washing buffer CSF-XB ((Murray, 1991); see chapter 4.4.10.) 

    0.01% Triton X-100 

    250 mM NaCl 
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10 µl protein G sepharose (4 Fast Flow, GE Healthcare) beads were washed twice 

with PBS/1% (w/v) BSA prior to coupling with approximately 5 µg of specific antibody 

for 90 min at RT. For standard IPs of endogenous separase, anti-pSX38 separase 

antibody was used. For analysis of endogenous separase-PP2A interaction 

specifically, anti-separase antibody from Bethyl (A302-214A), which binds to residues 

1100-1150 of human separase, was used. Coupled beads were washed three times 

with LP2 and incubated with LP2* lysates from confluent 100 mm cell culture dishes 

(see chapter 4.5.8.) at 4°C for 4 h or o/n. Protein G sepharose coupled unspecific 

rabbit IgG served as negative controls. Beads were washed three times with CSF-XB 

washing buffer and bound proteins were eluted by boiling 25 µl beads and buffer 

volume with 25 µl 2x SDS-PAGE sample buffer for 10 min at 95°C. Beads were 

removed by passing the sample over a Mobicol microcolumn. For some experiments, 

the separase depleted lysates were subjected to another round of immuno-depletion 

with protein G sepharose coupled anti-pSX104 securin antibody. IP and elution of 

beads was done as before. 

 
4.5.10. Lambda phosphatase treatment 
 
This method was used to determine whether differential migration behavior of 

proteins in SDS-PAGE or on autoradiography was caused by phosphorylation. For 

Lambda phosphatase treatment of immunoprecipitated proteins, proteins were left on 

beads after immunoprecipitation, washed three times with LP2* (see chapter 4.5.8., 

omitting NaF, β-glycerophosphate and EDTA) and incubated with 400 units Lambda 

phosphatase (NEB) per 50 µl beads suspension. 1x NEBuffer for Protein 

MetalloPhosphatases (PMP, NEB) was added and MnCl2 was set to a final 

concentration of 1 mM. Samples were incubated for 30 min at 30°C. Subsequently, 

proteins were eluted from beads as described (see chapter 4.5.8.). For Lambda 

phosphatase treatment of in vitro transcribed/translated proteins incubated in 50 µl 

CSF-extract for degradation studies, 3 µl sample were treated with 400 units Lambda 

phosphatase (NEB), 1x NEBuffer for PMP (NEB) and 1 mM MnCl2. 
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5. ABBREVIATIONS 

 

°C   degree Celsius 
A   ampere 
aa   amino acid(s) 
APC/C   anaphase promoting complex/cyclosome 
APS   ammonium peroxodisulfate 
AQUA   absolute quantification of proteins 
ARM   armadillo (protein domain) 
ATP    adenosine 5'-triphosphate 
bp    base pairs 
BSA    bovine serum albumin 
Bub    budding uninhibited by benzimidazole  
ca.    circa 
CAK    cdk-activating kinase 
CaMKII  Ca2+/calmodulin-dependent protein kinase 
Cdc    cell division cycle 
Cdk    cyclin-dependent kinase 
CHX    cycloheximide 
CLD    Cdc6-like domain 
CMV    cyto megalo virus 
CSF    cytostatic factor 
CSF-extract   X. laevis egg extract arrested in metaphase II by CSF activity 
C-terminus   carboxy terminus (C-terminal: carboxyterminal) 
Ctrl   control 
Da   dalton 
D-box   destruction box (aa sequence RxxL; x: any amino acid) 
dd   double distilled  
Δ   delta (deletion of a protein binding domain, eg. of the PP2A binding 
   domain on separase in a separaseΔPP2A variant) 
D. melanogaster  Drosophila melanogaster 
DMSO   dimethylsulfoxide 
DNA    deoxyribonucleic acid 
dNTP    deoxynucleotide 
DTT    dithiothreitol 
E. coli   Escherichia coli 
EDTA    ethylendiamine tetraacetic acid 
EGTA    ethylen glycol tetraacetic acid 
Emi   early mitotic inhibitor 
Erp   Emi related protein 
Fig   figure 
FLAG    epitope tag (aa sequence: DYKDDDDK) 
g    gram or gravitational constant (9.81 m/sec2) 
GFP   green fluorescent protein 
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GST    glutathione S transferase 
h    hour or human 
HA    hemagglutinin, epitope tag (aa sequence: YPYDVPDYA) 
HAc    acetic acid 
HBS   HEPES buffered saline 
HEAT    huntingtin, elongation factor 3, PP2A subunit A, TOR1  
   (protein domain) 
HEPES   4-(2-hydroxyethyl)-1piperazineethansulfonic acid 
His    histidine 
HRP    horse radish peroxidase 
H. sapiens   Homo sapiens 
IgG    immunoglobulin G 
IP    immunoprecipitation 
IPTG    isopropyl-β-D-thiogalactopyranoside 
IVT    in vitro transcription/translation 
k    kilo 
kb    kilo base pairs 
l   liter 
LB    Luria-Bertani 
µ    micro 
m    milli, meter, mouse or mutated 
M    mega or molar (mol/l) 
Mad    mitotic arrest deficient 
MCAK    mitotic centromere associated kinesin 
MCC    mitotic checkpoint complex 
MCS    multiple cloning site 
MG-262   proteasome inhibitor (MyoGenetics) 
min    minute(s) 
MMR    Marc's modified Ringer 
M. musculus  Mus musculus 
MPF   mitosis/maturation promoting factor 
mRNA   messenger RNA 
MT    microtubules 
Myc    c-Myc oncogene, epitope tag (aa sequence: EQKLISEEDL) 
n    nano 
NC   non-cleavable 
NHS    N-hydroxysuccinimid 
noc   nocodazole (MT poison) 
NTA    nitrilo tri-acetic acid 
N-terminus   amino terminus (N-terminal: aminoterminal) 
OAA   okadaic acid (phosphatase inhibitor) 
OD    optical density 
o/n   over night 
ORF    open reading frame 
p.a.    pro analysi   
PAGE    polyacrylamide gel electrophoresis 
PBS    phoshate buffered saline 
PCR    polymerase chain reaction 
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PD   protease-dead  
PEI    polyethylenimine 
PKA   protein kinase A 
Plk   polo-like kinase 
PPase   phosphatase  
PP2A   protein phosphatase 2A 
PVDF    polyvinylidene fluoride 
RING    really interesting new gene 
RNA    ribonucleic acid 
RNAi   RNA interference 
RNase   ribonuclease 
rpm    revolutions per minute 
RT    room temperature 
SAC    spindle assembly checkpoint 
SAP    shrimp alkaline phosphatase 
S. cerevisiae   Saccharomyces cerevisiae (budding yeast) 
SDS    sodium dodecylsulfate 
sec    seconds 
Ser/Thr  serine and threonine residues 
Sgo   shugoshin 
SILAC   stable isotope labeling with amino acids in cell culture 
SMC    structural maintenance of chromosomes 
SN   supernatant  
S. pombe  Schizosaccharomyces pombe (fission yeast) 
TBS    Tris buffered saline (TBS-w: TBS with 0.05 % Tween-20) 
TEMED   N,N,N',N'-tetramethylethylendiamine 
Tet   tetracycline 
Tev    protease of tobacco etch virus 
TEV   Tev protease recognition sequence (aa sequence: EXXYXQG/S) 
Tris    tris(hydroxymethyl)aminomethane 
U    unit 
V    volt 
v/v    volume per volume 
Wapl    wings apart-like 
WCE   whole cell extract 
w/v    weight per volume 
WT    wild-type 
XB   extract buffer 
x   any amino acid  
X. laevis   Xenopus laevis 
YC   C-terminal fragment of YFP 
YFP   yellow fluorescent protein 
ZZ    IgG binding domain of protein A 
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