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Abstract

Parallel computers are commonplace. The trend of increasing the number
of processor cores highlights the importance of parallel computing: a single-
threaded program uses a fraction of a modern processor’s resources and potential,
and that fraction will only decrease over the coming processor generations.

Existing abstractions for writing parallel programs, such as threads and mu-
tual exclusion locks, are difficult to understand, use, and reason about, making
them a poor choice for mainstream parallel programming. Higher-level abstrac-
tions aim to achieve a more favorable division of labor between programmers
and compilers/runtime systems, with programmers expressing and exposing par-
allelism and compilers/runtime systems managing parallel execution.

A popular and effective abstraction is that of a task, a piece of work, usu-
ally a function or a closure, that is safe to execute in parallel with other tasks.
Scheduling decisions, including the mapping of tasks to threads, are made by the
runtime system and are not imposed on the programmer.

Tasks are well-suited to express fine-grained parallelism, but whether fine-
grained parallelism brings performance gains depends on the runtime system
and its implementation. State-of-the-art runtime systems employ the scheduling
and load balancing technique of work stealing, which is known to be efficient,
both in theory and practice. In work stealing, idle workers, called thieves, re-
quest tasks from busy workers, called victims, thereby balancing the load. Most
implementations of work stealing take advantage of shared memory by letting
thieves “steal” tasks from the double-ended queues (deques) of their victims.

Modern multiprocessors feature increasingly complex architectures that make
it challenging to implement efficient yet flexible work-stealing schedulers. Future
manycore processors may have limited support for shared memory, or may rely
on message passing for scalable inter-core communication, such as Intel’s SCC
research processor, a recent example of a “cluster-on-a-chip”.

This thesis aims to put work stealing based on message passing on a bet-
ter, more practical foundation, developing techniques to rival the performance of
concurrent deque-based implementations, while remaining more flexible. Work
stealing based on message passing has been studied before, notably in the context
of distributed systems, where MPI still dominates. We present a work-stealing
scheduler in which workers communicate with each other through channels, a
lightweight message passing abstraction that goes back to Hoare’s Communicat-
ing Sequential Processes (CSP). Channels feature prominently in modern pro-
gramming languages such as Go and Rust, which advocate messages to commu-
nicate, synchronize, and share state between threads. The advantage of using



channels, as opposed to using low-level synchronization primitives, is that chan-
nels decouple the scheduler from processor-specific features, thereby increasing
its flexibility. Large parts of this thesis are dedicated to making channel-based
work stealing perform well on modern shared-memory multiprocessors.

We describe an implementation in which workers exchange asynchronous steal
requests and tasks by passing messages over channels. Termination is detected
as a consequence of forwarding steal requests instead of requiring additional
control messages to be passed between workers. Dependencies between tasks,
most importantly, between parent and child tasks, are expressed with futures,
which can be implemented efficiently in terms of channels.

Private task queues are more flexible than concurrent ones. We show a simple
extension that provides support for adaptive stealing—the ability to switch the
stealing strategy at runtime. Fine-grained parallelism requires not only efficient
work stealing, but also granularity control to overcome the overhead of task
creation and scheduling. Similar tasks, such as iterations of a parallel loop, can
be combined into a single task ready to split whenever parallelism is needed.
We extend previous work on lazy splitting, integrate it with channel-based work
stealing, and demonstrate performance comparable to dedicated loop schedulers
in OpenMP. Finally, we provide experimental evidence that channel-based work
stealing performs on par with runtime systems based on concurrent deques.



Zusammenfassung

Parallelrechner auf Basis von Mehrkernprozessoren sind heutzutage allgegen-
wärtig. Da anzunehmen ist, dass die Anzahl der Prozessorkerne, die auf einem
Chip Platz finden, weiter steigen wird, besteht Handlungsbedarf. Ohne Paral-
lelverarbeitung bleibt das Potenzial eines modernen Rechners zunehmend unge-
nutzt. Aus diesem Grund gewinnen Techniken der parallelen Programmierung
mehr und mehr an Relevanz.

Die klassische Thread-Programmierung gilt als zu diffizil, um ein geeignetes
Programmiermodell zu bieten, das auch von Nicht-Experten effektiv eingesetzt
werden kann. Eine vielversprechende Alternative ist die Benutzung von Tasks
anstelle von Threads. Ein Task bezeichnet eine beliebige Berechnung innerhalb
eines Programms, die unabhängig von anderen Berechnungen und damit parallel
ausgeführt werden kann. Der Programmierer hat die Aufgabe, Tasks zu spezifizie-
ren, während das Laufzeitsystem für deren Ausführung sorgt. Dabei übernimmt
das Laufzeitsystem viele kritische Funktionen einschließlich der Verwaltung von
Threads, der Zuweisung von Tasks an Threads und der Lastverteilung.

Tasks sind leichtgewichtiger als Threads und somit einfach zu erzeugen, selbst
für relativ feingranulare Aufgaben. Task-parallele Programme generieren in der
Regel eine Vielzahl von Tasks, mit dem Ziel, diese möglichst gleichmäßig an die
ausführenden Worker Threads zu verteilen. Wie feingranular die Tasks dabei sein
dürfen, hängt von der Effizienz des Laufzeitsystems ab.

Von besonderer Bedeutung ist das Work Stealing, eine Scheduling-Technik,
bei der Worker Threads, die keine Tasks mehr haben, anderen Worker Threads
durch Stehlen Arbeit abnehmen, wodurch eine dynamische Lastverteilung erzielt
wird. Üblicherweise besitzt jeder Worker Thread eine eigene Queue-Datenstruktur
(Deque), in die Tasks abgelegt und zur Ausführung entnommen werden, und die
von anderen Worker Threads zugegriffen werden kann, um Stehlen zu ermögli-
chen. Solche Implementierungen sind oft aus Effizienzgründen auf eine bestimmte
Hardware-Architektur zugeschnitten. Da die Zukunft Cluster-ähnlichen Vielkern-
prozessoren gehören dürfte, ist davon auszugehen, dass Work Stealing Scheduler
an diesen Umstand angepasst werden müssen. Eine zu starke Plattformabhän-
gigkeit, was zum Beispiel das Vorhandensein bestimmter Synchronisationsopera-
tionen betrifft, kann auf lange Sicht eine Portierung erschweren.

Die vorliegende Arbeit verfolgt das Ziel, eine effiziente und gleichzeitig flexi-
ble Alternative zum klassischen Work Stealing im gemeinsamen Adressraum zu
entwickeln. Zu diesem Zweck wird ein Laufzeitsystem entworfen, in dem Wor-
ker Threads ausschließlich über Channels miteinander kommunizieren. Direktes
Stehlen ist nicht mehr möglich: Worker Threads senden Steal Requests, die mit



Tasks beantwortet oder abgelehnt werden.
Channels bieten ein einfaches Interface für den Nachrichtenaustausch zwi-

schen Threads, das von der Hardware-Architektur abstrahiert und effizient im-
plementiert werden kann. Gepufferte Channels ermöglichen asynchrone Kommu-
nikation, so dass Worker Threads in der Lage sind, Steal Requests untereinander
auszutauschen, ohne Antworten abwarten zu müssen. Das Senden eines Steal
Requests ist dadurch vergleichbar mit einem asynchronen Aufruf, der eventuell
einen Task über einen separaten Channel zurückliefert. Die Terminierung ei-
ner task-parallelen Berechnung kann aus Steal Requests abgeleitet werden und
erfordert kein verteiltes Protokoll mit zusätzlichem Nachrichtenaustausch. Task-
abhängigkeiten, zum Beispiel zwischen Eltern- und Kindtasks, werden durch Fu-
tures ausgedrückt, welche eng mit Channels korrespondieren.

Worker Threads verwalten Tasks in privaten Deques. Dies vereinfacht die
Realisierung flexibler Strategien wie zum Beispiel adaptives Stehlen, bei dem
jeder Worker Thread selbst entscheidet, wieviele Tasks gestohlen werden sollen.

ImMittelpunkt der Arbeit steht die effiziente Ausführung feingranularer Tasks.
Um den Overhead der Taskverwaltung zu reduzieren, ist es möglich, ähnliche
Tasks, insbesondere Iterationen paralleler Schleifen, so zusammenzufassen, dass
weitere Tasks nur nach Bedarf erzeugt werden. Überschüssige Tasks werden auto-
matisch sequentialisiert und verursachen keinen Overhead. Das vorgestellte Lauf-
zeitsystem implementiert und erweitert das sogenannte Lazy Splitting, welches
ermöglicht, parallele Schleifen ähnlich effizient auszuführen wie mit OpenMP,
ohne auf die Unterstützung eines Loop Schedulers angewiesen zu sein.

Mithilfe der entwickelten Techniken lässt sich trotz expliziter Kommunikation
gute Performance erzielen. Bei einem Vergleich auf drei unterschiedlichen Syste-
men landet das vorgestellte Laufzeitsystem vor Cilk Plus und Intel OpenMP und
nur knapp hinter einer Variante mit Chase-Lev Deques.
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1 | Introduction

For almost a decade, since the introduction of the first commercial multicore processors,
parallelism has been the primary method of improving processor performance [38].
Today, the computing landscape is dominated by multicores. Even mobile processors as
found in laptops, tablets, and smartphones have two or more cores. And yet, despite the
ubiquity of parallel computers, writing programs that take advantage of multiple cores
remains challenging. This is unfortunate, because the performance gap between simple,
sequential code and well-parallelized code has been growing over the last processor
generations and will likely continue to grow [220].

1.1 The Changing Microprocessor Landscape

While the number of cores per chip has not turned out to double every two years, it is
slowly but steadily increasing [190]. Current top-of-the-line Intel Xeon server processors
have up to 24 cores, which, coupled with simultaneous multithreading (SMT), can
execute instructions from 48 independent hardware threads at the same time (24 cores
× 2 threads per core) [13]. Modern coprocessors including GPGPUs integrate many
small cores, not ideal for running sequential programs, but, taken together, capable of
accelerating highly parallel workloads. Intel’s first commercial manycore processor, the
Xeon Phi, has between 57 and 61 Pentium-class cores [12] and requires at least two
threads per core to fulfill its true potential (see [126], Chapter 8, pp. 249–250).

Researchers are experimenting with hundreds to thousands of cores on a single chip
[54, 127, 52]. It seems likely that the trend of increasing parallelism will continue,
although at some point a fraction of the cores may have to be powered off and turned
into “dark silicon” [84]. To an increasing extent, processor architectures embrace het-
erogeneity to overcome the inefficiency of general-purpose, power-constrained hardware
[135, 123, 108, 237]. Unfortunately, a growing diversity of microprocessors will only
add to the challenge of parallel programming.

Whether hardware-managed cache coherence is here to stay, or whether it will be
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gradually abandoned on the road to more and more cores, remains to be seen. Some
researchers argue that the communication overhead associated with cache coherence
protocols will grow to the point where the amount of traffic between caches saturates
the interconnect and practically limits the number of cores that can be put on a chip
[42, 124, 134]. If this prediction turns out to be true, message-passing chips with
non-cache-coherent memories might start to replace their cache-coherent counterparts,
so that, if needed, coherence might have to be enforced by software. Others remain
optimistic that directory-based protocols can scale to large numbers of cores [161].

What is undisputed, however, is the importance of scalable on-chip interconnects
[164, 55, 189, 192]. Early multicore processors were based on the idea of modular tiles
containing processor cores and communication switches with the goal of scaling the
number of cores as transistor budgets increase [252, 153, 180, 238]. A more recent
example of a tiled architecture is the Single-Chip Cloud Computer (SCC), the second
of Intel’s Terascale Research processors [110], which connected 24 dual-core tiles in a
two-dimensional mesh network [124]. The majority of the system memory was mapped
as private, turning the SCC into a “cluster-on-a-chip” with a message passing program-
ming model. A small amount of on-chip memory—16 KB per tile—was set aside to
accelerate communication between cores. Programming the SCC had a lot in common
with programming a distributed system, starting, of course, with the preference for
sending and receiving messages over modifying shared state.

1.2 The Growing Importance of Parallel Programming

The end of frequency scaling has led to the realization that parallelism is essential for
continued performance improvements. Whether shared memory or message passing,
parallel programming techniques are more important than ever for a simple reason [233]:
single-threaded applications use only one core, a fraction of a processor’s resources and
potential. On top of that, single-threaded performance no longer improves at the same
rate as it did in the past. In fact, it may not improve at all if clock rates are lowered to
reduce power consumption. If performance is a concern, applications must be written
to use multiple, mostly independent threads of execution.

“Threads and locks” are sometimes described as the “assembly language” of shared-
memory concurrency [36, 128]: a low-level programming model that reflects how multi-
core processors operate. The fundamental problem with this level of abstraction is that
it is extremely difficult to reason about all possible thread interleavings for anything
but the most trivial programs, so it becomes hard to write code that is free of deadlocks,
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data races1, and race conditions in general [146, 30, 262]. Even so called “benign” data
races [182] suffice to make program behavior impossible to predict, which is to say, all
bets are off in the presence of a data race [51].

The challenge is to find ways to lower the barrier to parallel programming while pro-
ducing correct and efficient programs for multi- and manycore platforms [38]. Achiev-
ing this goal requires raising the level of abstraction above “threads and locks”. While
threads remain important, especially in I/O-intensive applications that involve block-
ing, it is often easier to think in terms of logical tasks rather than directly in terms of
threads. Task-centric approaches are a promising way to deal with parallelism because
they offload the burden of thread management, task creation, task scheduling, and
load balancing to the runtime system/library, instead of imposing it on the program-
mer. Delegating these responsibilities to a library frees the programmer from concerns
about multithreading—task-parallel programs rest on top of thread pools—and from
the need to devise ad-hoc solutions for task scheduling and load balancing. Besides
these benefits, tasks can be used where threads may not be profitable, for example in
programs with many independent but short-lived computations.

Task-based abstractions are seeing widespread adoption. Java [193], C# [62], and
C++11 [257] provide library support for asynchronous computations in the form of
tasks, encouraging programmers to prefer tasks to threads when possible. Scott Meyers,
for example, argues that the higher level of abstraction that tasks embody “frees you
from the details of thread management”, such as dealing with oversubscription2 and
load balancing [167]. Unlike threads, tasks “provide a natural way to examine the
results of asynchronously executed functions”.

The parallel programming languages X10 [65, 217], Chapel [1, 69], and Habanero
Java [64] have been designed from the beginning to support tasks. X10 and Chapel
were funded by DARPA’s High Productivity Computing Systems (HPCS) program and
aim to improve the programmability of large-scale machines by providing partitioned
global address space (PGAS) abstractions [27] on top of distributed memory [263, 216].
Habanero Java, which is based on an earlier version of X10, consists of a set of parallel
extensions to the Java language, compatible with recent versions of the Java virtual
machine. All three languages share the approach of expressing parallelism in terms of
tasks rather than threads. In Chapel, for instance, all parallel constructs, including
data-parallel forall loops, are implemented on top of tasks.

Task-based programs rely on efficient runtime support. This is a point worth em-

1Concurrent but unsynchronized access to mutable data.
2Having more runnable threads than available processors increases the scheduling overhead.
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phasizing: a task abstraction is only as good as its implementation. Runtime systems
must be able to handle large numbers of fine-grained tasks without much overhead;
otherwise, task-based programs may fail to achieve the desired performance, with little
hope of running efficiently on more and more cores in the future.

State-of-the-art runtime systems employ a scheduling technique called work stealing
as a means of load balancing: idle workers become thieves that “steal” tasks from busy
workers, thereby balancing work as needed. Work stealing is often based on concurrent
data structures, such as double-ended queues (deques), which grant thieves access to
the tasks of their victims. Comparatively few implementations are based on message
passing, despite the benefits of keeping tasks in private data structures that rule out
concurrent access [28]. The goal of this dissertation is to strengthen the case for runtime
systems in which worker threads communicate via messages rather than shared memory.

1.3 Motivation

Our previous work [120, 121, 200] has led us to the conclusion that work-stealing sched-
ulers are difficult to port to architectures with unusual characteristics, such as limited
support for shared memory or lack of universal synchronization primitives [113]. Both
Cell [123] and SCC [165] processors supported shared memory, but their architectures
made it impossible to implement concurrent data structures without overhead such
as issuing multiple DMA transfers to update a value (on Cell) or invalidating certain
cache lines to avoid reading stale data (on SCC). The SCC, for example, provided only a
small number of test-and-set registers to compensate for the lack of atomic operations,
requiring a combination of shared state and message passing to reduce contention [253].
In addition, the small size of the on-die message-passing buffers made it impractical to
keep many tasks close to cores, where they could be accessed efficiently [200].

As scaling requires less sharing and more distribution, it seems reasonable to assume
that manycore architectures will draw inspiration from clusters. We argue that, in light
of the importance of scalable inter-core communication, parallel runtime systems will
benefit from adopting message passing, in terms of portability and performance. To
facilitate the transition, we propose a work-stealing runtime system in which workers
communicate exclusively over channels. (We will often shorten the term worker thread
to just worker.) Such a runtime system requires workers to send “steal requests” in
order to receive tasks, which involves explicit cooperation between thieves and victims:
thieves initiate steals, but depend on victims to send tasks. Work-stealing deques, on
the other hand, assume that thieves and victims cooperate implicitly by following the
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same synchronization protocol.
Channels are well-known building blocks for concurrent systems: they permit threads

to communicate and synchronize execution by exchanging messages through buffered
or unbuffered message queues, without dictating a specific implementation [224]. As
a simple message passing abstraction, channels can be used in programs that are in-
tended to run on a wide variety of platforms, including those where MPI, for example,
would incur too much overhead. How channels are implemented depends on the plat-
form: shared-memory channels are often concurrent FIFO queues; distributed-memory
channels are built on top of lower-level messaging primitives. An implementation of
channels for the SCC would use the processor’s message-passing features [195, 201] or
leverage the native communication library [165]. Using channels for communication,
or message passing in general, has another practical advantage: concurrent deques be-
come redundant and can be replaced by private data structures, including lists and
trees. Channels that need not support an arbitrary number of senders or receivers
are amenable to optimization [206]. Additionally, by limiting the number of messages
that workers are allowed to send, channels are strictly bounded, and sending can be
guaranteed to always succeed without blocking a worker.

This dissertation explores a work-stealing runtime system in which workers com-
municate by exchanging messages over channels. In particular, we aim to

• make all inter-worker communication explicit by sending and receiving messages
instead of modifying shared state to improve the architectural flexibility of work
stealing,

• demonstrate comparable or better performance to existing runtime systems based
on concurrent deques. This requires that channel communication does not affect the
runtime system’s ability to exploit fine-grained parallelism.

1.4 Contributions

While work stealing based on message passing is not a new idea, we present, to the
best of our knowledge, the first scheduler that uses channels with the goal of decoupling
task scheduling and load balancing from the choice of low-level communication. Large
parts of this dissertation are dedicated to making this scheduler perform well under
stressful workloads.

• We introduce a work-stealing scheduler in which n workers communicate through 2n
channels. Every worker has two channels for receiving messages from other workers:
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one channel for steal requests (using many-to-one communication) and one channel
for tasks (using one-to-one communication). All channels have bounded capacity
and limited concurrency, which simplifies their implementation.

• Our work-stealing scheduler handles steal requests differently than other schedulers:
when a steal fails, the request is not returned to the thief, but forwarded to another
victim, resulting in an attempt to steal on behalf of the thief. This reduces the
number of messages and allows a worker to initiate a steal and continue working
while the steal is carried out by coworkers.

• We highlight the importance of stealing multiple tasks and present a shared-memory
implementation of steal-half—stealing half of a victim’s tasks—without increasing
the number of messages among workers. Using a simple heuristic that allows workers
to choose and switch between steal-one and steal-half at runtime, we are able to
combine the best of both strategies in order to achieve robust performance beyond
tree-structured computations. This is a good example of how private deques afford
the flexibility to implement new work-stealing strategies, without having to resort
to customized data structures [28].

• We describe a new algorithm for termination detection that leverages asynchronous
steal requests instead of requiring separate control messages. We show how this al-
gorithm can be turned into a task barrier with little additional communication over-
head. Tasks may have to wait for the results of other tasks. Such data dependencies
are best expressed with futures. We describe a channel-based implementation of
futures for nested parallelism, which achieves comparable performance to Cilk Plus.

• Fine-grained parallelism on the order of a few thousand CPU cycles can overwhelm
a runtime system with the sheer number of tasks to create, schedule, and distribute.
The ideal runtime system guarantees load balance without creating more tasks than
necessary by increasing the granularity of tasks to a degree that permits efficient
scheduling. Tzannes et al. proposed Lazy Binary Splitting (LBS) to defer the
creation of tasks until workers are assumed to benefit from additional parallelism
[245]. We describe splittable tasks—bundles of similar but independent tasks, such
as, perhaps most importantly, iterations of a parallel loop—and evaluate different
splitting strategies based on LBS in the context of concurrent deques and in the
context of private deques. We find that our implementations come within 2.3% of
the performance of loop scheduling in OpenMP (averaged over all benchmarks on
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a 48-core system) without the need to choose a chunk size, thus combining good
performance with ease of programming.

• The success of channel-based work stealing depends on the efficiency of its imple-
mentation. We demonstrate competitive performance to traditional work-stealing
schedulers on a set of task-parallel benchmarks and workloads using 24, 48, and 240
threads. Channel-based work stealing is on average faster than Cilk Plus and Intel
OpenMP and only slightly slower than using Chase-Lev deques. These results make
us confident that channels are useful building blocks for constructing work-stealing
runtime systems.

1.5 Context

Channel-based work stealing grew out of the difficulties that we encountered in port-
ing task-based runtime systems to different processor architectures. We started to
embrace the idea of using explicit communication when we experimented with task-
parallel programming on the SCC processor, whose lack of cache coherence and uni-
versal synchronization primitives proved challenging for shared-memory concurrency.
We implemented a number of message-based schedulers, some of them still sharing
deques, others using mailboxes instead of channels. After the MARC program had
ended and our access to the SCC had expired in late 2013 [14], we went on to pursue
channel-based communication on more conventional multiprocessors to be able to draw
performance comparisons with popular work-stealing schedulers such as Cilk Plus and
Intel’s OpenMP runtime library. The scheduler that we describe in this thesis has
evolved considerably from our early prototypes, which is why we omit any preliminary
experiments on the SCC.

In its current state, our implementation is likely not as scalable as schedulers that
target large-scale systems. The programming language X10, for example, distinguishes
between intra-node and inter-node load balancing [100, 218, 265]. While we focus
on intra-node load balancing, channel-based work stealing is flexible enough to cross
node boundaries. That said, scaling out to multiple nodes will be easier if workers
are grouped into partitions or places, which enable hierarchical work stealing and ter-
mination detection. For the purpose of this thesis, we can think of our scheduler as
operating within a single, implicitly defined partition.
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1.6 Outline

The main text is structured as follows:

Chapter 2 describes the notion of tasks in parallel programming, and explains why
tasks are an effective abstraction on top of “threads and locks”. With a task abstrac-
tion comes the need for a runtime system that hides lower-level details, including
thread management, task scheduling, and load balancing. We look at task pools,
typical task pool implementations, and the scheduling technique of work stealing.

Chapter 3 describes a work-stealing scheduler that employs private task queues and
shared channels for communication between worker threads. Channels provide a
message passing abstraction that allows the scheduler to operate on any system
that is capable of supporting message queues.

Chapter 4 deals with constructs for termination detection in task-parallel computa-
tions: a task barrier to wait for the completion of all tasks and futures to support
tree-structured computations including strict fork/join parallelism in the style of
Cilk. Both constructs are based on channels.

Chapter 5 focuses on fine-grained parallelism. We introduce a heuristic for switch-
ing stealing strategies at runtime and propose extensions to the lazy scheduling of
splittable tasks that achieve comparable performance to dedicated loop schedulers.

Chapter 6 compares the performance of channel-based work stealing with three work-
stealing schedulers that use concurrent deques, both lock based and lock free, on a
set of task-parallel benchmarks and workloads, demonstrating that channel commu-
nication does not prevent efficient scheduling of fine-grained parallelism.

Chapter 7 concludes by summarizing our findings and proposing ideas for future work.



2 | Technical Background

This chapter provides the necessary background on task parallelism, task-parallel pro-
gramming, and runtime systems based on work-stealing scheduling.

Recent years have witnessed the growing importance of parallel computing. Section
2.1 draws an important distinction, that between concurrency and parallelism. Tasks
make it easier to express parallelism, without giving concurrency guarantees. Sections
2.2–2.4 deal with threads and tasks, the benefits of programming with tasks compared
to programming with threads, and the task model we are going to use, which offers
portable abstractions for writing task-parallel programs.

The supporting runtime system is responsible for mapping tasks to threads. Section
2.5 contrasts static with dynamic scheduling. Section 2.6 describes the data structures
behind dynamic schedulers —task pools—whose implementations can be centralized
or distributed. Central task pools limit the scalability of dynamic schedulers. Dis-
tributed task pools solve this scalability problem, but add complexity in the form of
load balancing. Section 2.7 elaborates on load balancing techniques, primarily on work
stealing, and summarizes the pioneering results of Cilk that continue to influence the
design and implementation of task schedulers [21]. Section 2.8 concludes with a list of
task-parallel benchmarks and a few words about performance.

2.1 Concurrency and Parallelism

Due to the proliferation of microprocessors with increasing numbers of cores, concur-
rency and parallelism are becoming more and more important, as is the search for
better programming abstractions than “threads and locks” [233]. While threads have
long been used as building blocks for concurrent and parallel systems, higher-level
abstractions tend to be designed with either concurrency or parallelism in mind [133].

Concurrency and parallelism are related but distinct concepts (see, for example, the
introductory chapters in [156], [244], and [60], or refer to [213] for a thorough discussion
of concurrency as used in different programming paradigms). In practice, however, the

9
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distinction is often obscured by a tendency to view both concurrency and parallelism
as a means to improve performance, despite the fact that concurrency is a way to
structure programs and not necessarily a recipe for parallel speedup [155, 109, 197].

Concurrency refers to multiple activities or threads of execution that overlap in
duration [212]. Consider two threads T1 and T2. If one of the two threads, say T1,
completes before the other thread, T2, starts running, T1 and T2 execute in sequence
without interleaving. If T2 starts running before T1 completes, T1 and T2 happen
logically at the same time; both threads have started and neither has completed [221].
We say T1 and T2 happen concurrently. It is left to the implementation whether T1

and T2 happen physically at the same time, that is, in parallel.

Parallelism results from simultaneous execution of two or more independent com-
putations. By contrast, concurrency describes the structure of systems, programs, and
algorithms in terms of threads and their interactions through memory. In that sense,
concurrency facilitates parallelism: a concurrent program is easily turned into a paral-
lel program by executing two or more threads simultaneously, for example by binding
threads to different cores of a multicore processor. When forced to run on a single core,
a program can be concurrent without being parallel.

Multiple threads are often a prerequisite for parallel execution, but parallelism
is not tied to threads. At the machine level, independent instructions may execute
in parallel (instruction-level parallelism), and SIMD instructions operate on multiple
data elements packed into vectors (data parallelism). Because concurrency can be seen
as dealing with more than one thing at the same time, we might think of parallelism
as an instance of concurrency [56, 224]; programs must exhibit concurrency at some
level of abstraction to make use of parallelism. For this reason, concurrency is usually
considered to be a more general concept than parallelism.

Modern systems based on multicore processors benefit from both data and task
parallelism. Data parallelism can be considered a subset of task parallelism [36]. It is
possible to express a data-parallel computation as a task-parallel computation in which
tasks are set up to perform the same operations on different elements of the data. Task
and data parallelism are not mutually exclusive. Consider for example a blocked matrix
multiplication that creates a task per matrix block and uses vector operations to speed
up block-wise multiplications.
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2.2 Tasks and Threads

Multithreaded programming has received a great deal of attention, but remains re-
garded as challenging, perhaps too challenging to make parallel programming accessible
to a wide range of programmers. Higher-level abstractions than “threads and locks”
are needed to reduce complexity and enable programmers to be more productive.

When we talk about multithreaded programming, we refer to the use of multiple,
preemptively scheduled native (kernel) threads that share a common address space1.
Multithreaded programming is thread-centric. Programmers are required to think in
terms of threads—independent sequences of instructions—and how these threads may
work together to achieve their purpose. Threads provide control over which computa-
tions are carried out in parallel, but at the cost of introducing complexity that must
be dealt with and pitfalls that must be avoided [146, 166].

According to Leung [150], a good programming model (1) is less error prone than
using threads directly, (2) makes it easy to identify independent computations, and
(3) runs on current and future parallel hardware with increasing numbers of cores.
The most promising approach is to raise the level of abstraction and make threads an
implementation detail hidden from the programmer. Programs that utilize multiple
threads in a way that is transparent to the programmer are implicitly multithreaded.
Such programs are composed of tasks.

Since task is a very general term, we start with a simple definition: in the context of
parallel computing, a task is a sequence of instructions that may be executed in parallel
with other tasks (see [163], Section 2.4, page 16). In general, tasks denote pieces of code,
usually functions or function objects, and all the arguments needed for execution. Tasks
are potentially parallel (see [166], Section 2.3, page 44): a task is an opportunity for
parallel execution, a hint to the runtime system that some computation can be done in
parallel. Key to the idea of using tasks is to identify enough such opportunities and let
the runtime system decide how to distribute the work. Intel’s developer documentation
puts it this way [10]:

Design your programs to try to create many more tasks than there are
threads, and let the task scheduler choose the mapping from tasks to threads.

A task-parallel program with sufficient potential for parallel execution can achieve
portable performance; it can run efficiently on different systems with different numbers

1Another form of multithreading is based on cooperatively scheduled threads, which are typically
implemented in user space. An example library is GNU Portable Threads [83].
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1 func recurse(depth int) int {
2 if depth < 2 {
3 return compute()
4 }
5
6 x := make(chan int, 1)
7
8 // Create task
9 go func() {

10 x <- recurse(depth - 1)
11 }()
12
13 y := recurse(depth - 2)
14
15 // Wait for child task to finish
16 return <-x + y + 1
17 }

1 recurse :: Integer -> IO Integer
2 recurse depth
3 | depth < 2 = return compute
4 | otherwise = do
5
6 mvx <- newEmptyMVar
7
8
9 forkIO $ do

10 x <- recurse (depth-1)
11 putMVar mvx x
12
13 y <- recurse (depth-2)
14 x <- readMVar mvx
15
16 return (x + y + 1)

Listing 2.1: Task-parallel tree recursion in the Go (left) and Haskell (right) programming
languages. A word of caution: return and <- have different meanings in Go and Haskell.
What looks like imperative code in Haskell is actually translated into a chain of function
calls.

of cores as the runtime system takes care of allocating machine resources. (Assuming
the runtime system does not turn into a bottleneck.) Theoretically, task-parallel pro-
grams may scale up to the point where all potential parallelism is converted to actual
parallelism. When the number of tasks exceeds the number of hardware threads, some
of the tasks will be queued and run later.

Scott defines tasks as passive entities, implying that tasks are scheduled by threads,
which he defines as active computations [221]. Scott’s definition has some appeal, al-
though in practice, tasks may be indistinguishable from user-level threads if implemen-
tations choose a direct mapping from tasks to threads [99, 236]. In fact, concurrent
programming languages lend themselves to writing programs in a task-parallel style if
their runtimes permit user-level threads to execute in parallel (that is, if M user-level
threads are scheduled across N kernel threads, see [203], Section 3.8.2.2, pp. 150–151).

Listing 2.1 shows an example of a tree recursion in Go. Tasks are mapped one-to-
one to goroutines2, while goroutines are multiplexed onto native threads by the Go-
internal scheduler. Listing 2.1 also includes the same tree recursion written in Haskell
using lightweight threads (created with forkIO3) and synchronization variables (MVars).
Unless the number of threads reaches into the tens or hundreds of thousands, and as
long as tasks are sufficiently coarse grained, ad-hoc approaches to task parallelism may
be surprisingly efficient.

Implementation-wise, it may help to think of tasks as deferred function calls. Listing
2A goroutine is a lightweight thread with a variable-sized stack that grows and shrinks as needed.
3Haskell has an operator that creates “sparks”, which are the equivalent of passive tasks [158].
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1 #include <stdio.h>
2
3 typedef struct {
4 int (*f)(int, int);
5 int a, b;
6 } Task;
7
8 int sum(int a, int b)
9 {

10 return a + b;
11 }
12
13 int main(void)
14 {
15 Task t = {sum, 1, 2};
16
17 printf("%d\n", t.f(t.a, t.b));
18
19 return 0;
20 }

1 #include <iostream>
2 #include <functional>
3
4 struct Task {
5 using fun = std::function<int(int, int)>;
6
7 Task(fun f, int a, int b)
8 : f_(f), a_(a), b_(b)
9 {}

10
11 int operator()() const
12 { return f_(a_, b_); }
13
14 fun f_;
15 int a_, b_;
16 };
17
18 int main()
19 {
20 Task t([](int a, int b) {
21 return a + b;
22 }, 1, 2);
23
24 std::cout << t() << "\n";
25 }

Listing 2.2: Tasks as deferred function calls. Examples in C (left) and C++11 (right), whose
support for closures makes it possible to create tasks that refer to anonymous functions.

2.2 shows two examples of packaging a function of signature int(int, int) to be called
at a later time. Packaging a function means storing the function (pointer or closure)
along with its arguments in a task descriptor. To achieve parallelism, the function must
be called from a different thread context, which requires moving the task, for example
by handing it off to a new thread. We will come back to the subject of implementation
in Section 2.4.

2.3 Task-parallel Programming

Task-parallel programming shifts the focus from threads to tasks. Programmers can
concentrate on finding independent computations and enforcing synchronization where
necessary. How these computations map onto actual threads is an implementation
detail. To appreciate the difference between threads and tasks, consider the code in
Listing 2.3.

Both programs look similar except for their verbosity and different ways of returning
values from asynchronously executed functions. But the difference is less a matter
of syntactic convenience than a matter of semantics. Task-parallel programs begin
with a single thread of execution that logically forks into two threads whenever a task
is encountered. Tasks can be viewed as hints to the compiler and runtime system
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1 void *do_this(void *arg)
2 {
3 // Compute x
4 *(int *)arg = x;
5 return NULL;
6 }
7
8 void *do_that(void *arg)
9 {

10 // Compute y
11 *(int *)arg = y;
12 return NULL;
13 }
14
15 int do_sth_else(void)
16 {
17 // Compute z
18 return z;
19 }
20
21 int main(void)
22 {
23 pthread_t thrds[2];
24 int x, y, z;
25
26 pthread_create(&thrds[0], NULL,
27 do_this, &x);
28 pthread_create(&thrds[1], NULL,
29 do_that, &y);
30
31 z = do_sth_else();
32
33 pthread_join(thrds[0], NULL);
34 pthread_join(thrds[1], NULL);
35
36 // Do something with x, y and z
37
38 return 0;
39 }

1 int do_this(void)
2 {
3 // Compute x
4 return x;
5 }
6
7 int do_that(void)
8 {
9 // Compute y

10 return y;
11 }
12
13 int do_sth_else(void)
14 {
15 // Compute z
16 return z;
17 }
18
19 int main(void)
20 {
21 int x = spawn do_this();
22 int y = spawn do_that();
23 int z = do_sth_else();
24
25 sync;
26
27 // Do something with x, y and z
28
29 return 0;
30 }

Listing 2.3: The difference between programming with threads and programming with
tasks is less a matter of syntax than a matter of semantics. A task is a candidate for parallel
execution and as such not guaranteed to run in a separate thread. Examples in C with POSIX
Threads (left) and C extended with constructs for task parallelism (right).
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about which computations are candidates for parallel execution. As such, a task is not
guaranteed to run in a separate physical thread. It may be deferred to run at a later
time, or it may be executed sequentially to avoid surplus parallelism. Consequently,
there is no guarantee that any two tasks will run concurrently, or in parallel, for that
matter. In fact, scheduling is the responsibility of the runtime system, and part of
the idea of using tasks is to trust the runtime system to make efficient scheduling
decisions. Because efficiency is deemed more important than fairness, tasks are usually
not preempted but run to completion [10].

Tasks are meant to make it easy to express fine-grained parallelism, which applica-
tions must exhibit to benefit from increasingly parallel hardware [219]. Programs may
create millions of tasks, rendering a direct mapping from tasks to threads impractical
in general due to the cost of thread creation and context switching. Instead, tasks are
executed by a pool of worker threads, mirroring the available hardware parallelism.
A common approach is to create a worker thread for each physical or logical proces-
sor. Irregular algorithms, for which the amount of parallelism may not be known until
runtime, tend to create large numbers of tasks ranging from very fine grained (on the
order of a few 1000 processor cycles) to coarse grained (on the order of milliseconds
to seconds). The challenge of extracting parallelism from a set of tasks lies in efficient
scheduling and load balancing, happening dynamically at runtime.

Common to all task-parallel programs is the need to create tasks and synchronize
their execution to be able to express meaningful computations. The example in Listing
2.3 uses two language keywords, which were introduced by Cilk: spawn f(...) runs
f(...) as a task, possibly in parallel with the rest of the program, and sync waits for
the completion of all tasks created in the scope of the function. While details vary
between implementations, similar constructs appear in every programming model that
is based on tasks.

Roughly classified, task-parallel programming models are either 1) language based
or 2) library based [63]. Language-based approaches to task parallelism include new
languages, such as X10 [65, 217] and Chapel [1, 69], and extensions to existing lan-
guages, such as the Cilk extensions to C [95], the Intel Cilk Plus extensions to C/C++
[6], and the Habanero Java extensions to Java [64]. The most prominent and widely
used libraries for task parallelism are the Java Concurrency Utilities (JUC) [145, 193],
Intel’s Threading Building Blocks (TBB) [205], Microsoft’s Task Parallel Library (TPL)
for .NET [149], and Apple’s Grand Central Dispatch (GCD) [4].

Beginning with version 3.0, OpenMP has started to support tasks to better handle
unstructured parallelism [40, 17, 18]. The next section will introduce a task model



16 2.4 Implementing a Task Model

similar to that of OpenMP4, which, as we see it, strikes a good balance between ex-
pressiveness and potential performance.

2.4 Implementing a Task Model

For the programmer, it is important that a task model is easy to use and flexible
enough to express common task-parallel patterns such as fork/join. The implementer’s
job is to find a good trade-off between the flexibility of a task model and the efficiency
of its implementation. The task model is supported by a runtime system/library that
manages parallel execution, including task creation, scheduling, and load balancing. We
assume programs are written in C, which is also the language of our runtime system.

2.4.1 Interface

We keep the interface fairly simple, relying on preprocessor macros to hide low-level
details that are of no concern to the programmer. Macros provide a simple layer of
abstraction that would otherwise require compiler support in the form of language
constructs, such as Cilk’s spawn and sync. Without compiler support, however, we
have to assume that tasks refer to named functions rather than arbitrary function-like
objects, owing to the lack of closures in C. We provide the following macros:

TASKING_INIT()

Initializes the runtime system, creating worker threads, setting up data structures,
and causing worker threads to wait for tasks. The number of worker threads is taken
from the environment variable TASKING_NUM_WORKERS and defaults to the number of
available processors minus one, since one thread is already running.

TASKING_EXIT()

Finalizes the runtime system, completing remaining tasks, cleaning up resources,
and joining worker threads.

TASKING_BARRIER()

Executes a task barrier, which blocks the caller until all tasks created prior to the
barrier, including tasks created transitively, have finished execution. A task barrier
boils down to detecting termination of a task-parallel computation—a problem that
will be discussed in depth in Sections 4.1 and 4.2.
4More precisely, the task model is similar to that of tied tasks in OpenMP. In addition, OpenMP

supports untied tasks, which, when suspended, can resume execution on any thread in the team.
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ASYNC(f, a, b, ...)

Creates a task for calling f(a, b, ...) and adds it to the task pool. Every func-
tion f that is called like this must have a corresponding declaration of the form
ASYNC_VOID_DECL(f , τ1 x1; . . . ; τn xn; x1, . . . , xn), where xi is the ith parameter of
f , and τi is the type of xi. Note that f is assumed to have no return value.

ASYNC(f, a, b, ..., &res)

Creates a task for calling res = f(a, b, ...) and adds it to the task pool. Every
function f that is called like this must have a corresponding declaration of the form
ASYNC_DECL(τf , f , τ1 x1; . . . ; τn xn; x1, . . . , xn), where τf is the return type of f , xi

is the ith parameter of f , and τi is the type of xi. Synchronization is needed before
the caller can use the value of res.

Creating a task involves adding it to the task pool, the set of tasks that are ready
to run [203]. An asynchronous function that returns a value to the caller can be
generalized to a future [91]:

FUTURE(f, a, b, ...)

Creates a task for calling res = f(a, b, ...), adds it to the task pool, and returns
a value of type future, a placeholder for the result res, whose implementation will
be revealed in Section 4.3. Every function f that is called like this must have a
corresponding declaration of the form FUTURE_DECL(τf , f , τ1 x1; . . . ; τn xn; x1, . . . ,
xn), where τf is the return type of f , xi is the ith parameter of f , and τi is the type
of xi. The future’s result must be awaited before it can be used.

AWAIT(fut, typ)

Blocks the caller until the result of future fut is available and returns it. This
result is assumed to have type typ. A regular, blocking function call such as
int s = f(a, b) can be simulated with int s = AWAIT(FUTURE(f, a, b), int).

First introduced in functional programming languages, such as Multilisp, a parallel
dialect of Scheme [107], futures have found their way into numerous other programming
languages [65, 149, 230, 193]. Essentially, a future is a placeholder for an asynchronous
computation, a proxy for the eventual result of that computation. In the context of task
parallelism, a future represents the pending result of a task. “Forcing” or “touching”
a future means waiting for the result to be determined.
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1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <assert.h>
4 #include "tasking.h"
5
6 int sum(int a, int b)
7 {
8 return a + b;
9 }

10
11 ASYNC_DECL(int, sum, int a; int b, a, b);
12
13 int main(void)
14 {
15 int s, a = 4, b = 2;
16
17 // Start of parallel region
18 TASKING_INIT();
19
20 ASYNC(sum, a, b, &s);
21
22 TASKING_BARRIER();
23
24 assert(s == 6);
25
26 // End of parallel region
27 // Implicit barrier
28 TASKING_EXIT();
29
30 return 0;
31 }

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <assert.h>
4 #include <omp.h>
5
6 int main(void)
7 {
8 int s, a = 4, b = 2;
9

10 // Start of parallel region
11 #pragma omp parallel
12 {
13 #pragma omp master
14 {
15 #pragma omp task \
16 firstprivate(a, b) \
17 shared(s)
18
19 s = a + b;
20 }
21
22 #pragma omp barrier
23
24 assert(s == 6);
25
26 } // End of parallel region
27 // Implicit barrier
28
29 return 0;
30 }

Listing 2.4: Basic structure of using tasks with our runtime system compared to OpenMP
3.x. The main difference between the two tasking models is that the code between
TASKING_INIT and TASKING_EXIT is executed by a single thread, thread 0, whereas in
OpenMP, a parallel region is executed by every thread that is created at the enclos-
ing #pragma omp parallel (OMP_NUM_THREADS-1 threads, unless overriden by a call to
omp_set_num_threads or by a num_threads clause).

Tasks and futures have a lot in common. Both refer to asynchronous computations
that provide opportunities for parallelism. Coming from functional programming, fu-
tures are associated with having a result that is used later in the program. Technically
speaking, futures are allowed to return nothing, in which case only their side effects
matter (see, for example, the concept of a void future in [167], pp. 262–271). Dis-
tinguishing between tasks and futures makes it possible to optimize the former while
retaining the flexibility of the latter. Unlike futures, tasks need not return handles,
signal completion, or deliver results since execution can be synchronized by means of
other constructs. This is also what distinguishes tasks in our implementation from
tasks in X10. The latter are associated with an enclosing finish scope that tracks the
number of pending tasks and must be updated accordingly [137].

We will describe the implementation of futures in Section 4.3 and focus on ASYNC

tasks for now. Listing 2.4 shows a toy example in which the main thread of control,
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called master, creates a task for evaluating s = a + b. The code on the left interfaces
with our runtime system, the code on the right uses OpenMP compiler directives.
Whether the sum is actually calculated in parallel is determined at runtime5. After
the barrier in line 22, the task is done and its result can be used (documented with an
assertion in line 24). In our implementation, a task barrier is initiated by the master,
whereas in OpenMP, a task barrier requires a thread barrier, which means that all
workers must synchronize in addition to executing tasks. We will have more to say
about task barriers and synchronization in Chapter 4.

2.4.2 Implementation

Listing 2.5 shows the OpenMP version of the program after #pragma omp lowering
and expansion6. What the compiler does is rewrite the program to allow for parallel
execution by multiple threads. Parallel regions and tasks are outlined into separate
functions. Library calls are inserted to create and join threads, define tasks, and
synchronize execution.

Listing 2.6 shows our version of the program after preprocessing, in abbreviated form
to make it more readable. Every function that may be called asynchronously must have
a corresponding declaration, which generates the necessary code for interfacing with
the runtime library. We distinguish between asynchronous functions that return values
to the caller, as in this example, and functions that return nothing. Thus, we have
different types of declarations, ASYNC_VOID_DECL and ASYNC_DECL, the latter requiring
the return type as the first macro argument. Tasks are created with ASYNC, which is
so named because it marks an asynchronous function call that returns immediately,
without waiting for the function to complete. Notice the similarity to Listing 2.2. A
task refers to a function and must save the arguments with which the function will be
called. At this point, the arguments are captured, but the function call is deferred.
Strictly speaking, the last value passed to ASYNC is not an argument of sum, but reserved
for sum’s return value, which is required by the caller. This is analogous to how OpenMP
compilers treat shared variables.

Task functions are auto generated and type erased to void(void *), which makes
them easy to call from the runtime library, but requires that all arguments be packed
into a data structure and unpacked again in preparation for running the task. Tasks
are enqueued via rts_push, which is not exposed to the programmer. By the time
ASYNC “returns”, the new task may have already started running on a different worker.

5Parallel execution is unlikely because there is only one task and its result is immediately required.
6gcc -fopenmp -fdump-tree-ompexp-all (GCC 4.8.1, openSUSE 13.1)
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1 struct omp_data {
2 int a, b, s;
3 };
4
5 struct omp_task_data {
6 int a, b, *s;
7 };
8
9 // Outlined task

10 void omp_task_fn_0(struct omp_task_data *task_data)
11 {
12 int a, b, *s;
13
14 a = task_data->a;
15 b = task_data->b;
16 s = task_data->s;
17
18 *s = a + b;
19 }
20
21 // Outlined parallel region
22 void main_omp_fn_0(struct omp_data *omp_data)
23 {
24 int s, a, b;
25
26 struct omp_task_data task_data;
27
28 if (omp_get_thread_num() == 0) {
29 task_data.a = omp_data->a;
30 task_data.b = omp_data->b;
31 task_data.s = &omp_data->s;
32 GOMP_task(omp_task_fn_0, &task_data, NULL, 16, 8, 1, 0);
33 }
34
35 GOMP_barrier();
36
37 s = omp_data->s;
38
39 assert(s == 6);
40 }
41
42 int main(void)
43 {
44 int s, a = 4, b = 2;
45
46 struct omp_data omp_data;
47
48 omp_data.a = a;
49 omp_data.b = b;
50 omp_data.s = s;
51
52 GOMP_parallel_start(main_omp_fn_0, &omp_data, 0);
53
54 main_omp_fn_0(&omp_data);
55
56 GOMP_parallel_end();
57
58 a = omp_data.a;
59 b = omp_data.b;
60 s = omp_data.s;
61
62 return 0;
63 }

Listing 2.5: Program 2.4 (right) after GCC’s source-level transformations from OpenMP to
multithreaded code (abbreviated and added comments to make it more readable).
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1 int sum(int a, int b)
2 {
3 return a + b;
4 }
5
6 // ASYNC_DECL expands to a data structure to hold the task’s arguments
7 struct sum_task_data {
8 int a; int b; int *s;
9 };

10
11 // and a task function that wraps the call to sum
12 void sum_task_func(struct sum_task_data *d)
13 {
14 typeof((d)->a) a = (d)->a;
15 typeof((d)->b) b = (d)->b;
16 typeof((d)->s) s = (d)->s;
17
18 int tmp = sum(a, b);
19 *s = tmp;
20 }
21
22 int main(void)
23 {
24 int s, a = 4, b = 2;
25
26 tasking_init();
27
28 do { // ASYNC creates a task and enqueues it
29 Task *__task = task_alloc();
30 struct sum_task_data *__d;
31 __task->parent = get_current_task();
32 __task->fn = (void (*)(void *))sum_task_func;
33 __d = (struct sum_task_data *)__task->data;
34 *(__d) = (typeof(*(__d))){ a, b, &s };
35 rts_push(__task);
36 } while (0);
37
38 rts_barrier();
39
40 assert(s == 6);
41
42 tasking_exit_signal();
43 tasking_exit();
44
45 return 0;
46 }

Listing 2.6: Program 2.4 (left) after preprocessor macro expansion (abbreviated and added
comments to make it more readable).
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Initialization, finalization, and barrier synchronization expand directly to runtime
library calls as in OpenMP. The main semantic difference between OpenMP tasking
and our implementation comes from TASKING_INIT. In OpenMP, parallel regions are
outlined as functions and executed by every thread in the team (hence the pragma
guarding task creation). In our implementation, the master goes on to execute the
code between TASKING_INIT and TASKING_EXIT, whereas newly created worker threads
enter a scheduling loop in the runtime library. The program remains sequential until an
asynchronous function call creates a task to be picked up by one of the worker threads or
the master itself. Eventually, the master orders termination by calling TASKING_EXIT

and joins the worker threads as they complete. We can think of the code between
TASKING_INIT and TASKING_EXIT as the top-level or root task, and all tasks that are
created during the execution of a program as child tasks. Every child task has a parent
task, and, in fact, we store a reference to the parent in the task descriptor. We will see
how this reference is used when we look at futures in Section 4.3.

2.5 Task Scheduling

Task-parallel programming raises the level of abstraction from managing threads to
specifying tasks, which may or may not run in parallel, depending on decisions made
at runtime. These decisions are the responsibility of the task scheduler, which deter-
mines the mapping from tasks to worker threads. Consequently, much of the efficiency
of using tasks depends on the scheduler and its ability to handle workloads, which differ
in the number, granularity, and order of tasks, including potential dependencies. The
granularity of a task is defined by the amount of computation in relation to commu-
nication/synchronization. Tasks that compute very little are fine grained. Dividing
a workload into many fine-grained tasks is good for load balancing and scalability, as
long as the cost of scheduling does not outweigh the benefit of parallel execution. The
finer the granularity, the more attention must be paid to low overheads.

Depending on workload parameters, we roughly distinguish between static and dy-
namic workloads. Static workloads are predictable, not subject to change at runtime,
and lend themselves to static scheduling. Dynamic workloads depend on input or other
program parameters not known until runtime and tend to vary as the computation un-
folds, making static scheduling impractical in most cases.
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2.5.1 Static Scheduling

The scheduling algorithm determines how tasks are mapped to threads for execution.
In static scheduling, the assignment of tasks to threads is fixed, either as part of the
compilation process or at runtime. As an example, consider the static scheduling
(schedule(static)) of loop iterations in OpenMP: a parallel loop of N iterations is
compiled such that every thread executes N/T iterations, assuming N is an even mul-
tiple of T , the number of threads. Thread 0 will then execute the first N/T iterations,
thread 1 will execute the next N/T iterations, and so on. This division incurs (almost)
no runtime overhead, but is only efficient as long as N/T iterations roughly equal N/T
percent of the total work. If that is not the case and load imbalance arises, static
scheduling has no means to counter it.

2.5.2 Dynamic Scheduling

Dynamic scheduling, on the other hand, assigns tasks to threads as needed, thereby
maintaining load balance. The price to pay for dynamic scheduling is increased runtime
overhead. Returning to the example of scheduling parallel loops in OpenMP, it is a
good idea to use dynamic scheduling (schedule(dynamic)) whenever the amount of
work per iteration is unknown or varies widely. The dynamic scheduler keeps track of
iterations in a shared location, so that idle workers can claim new iterations and come
back for more once they have finished their current batch of work. The higher runtime
overhead compared to static scheduling is the result of fetching iterations, including
contending for iterations with other threads.

The shared location can be generalized to a task pool, a data structure that holds
all tasks that are ready to run, not necessarily in any particular order. Tasks are added
to the task pool and retrieved for execution [203].

2.5.3 Task Graphs

Tasks and their dependencies form a task graph: a directed acyclic graph (DAG), where
every node represents a task, and a directed edge from node A to node B indicates
that B depends on results computed by A [34]. Figure 2.1 shows an example task
graph that can be scheduled with the help of a task pool. We use similar notation to
Blelloch et al. [46]: Each vertex v represents a task of duration t(v). The sum of all
t(v) is the work of the graph, or the time it takes to execute all tasks sequentially. A
dependency (u, v) between two tasks u and v means that u must complete before v
can start execution. Hence, v is not ready until all the tasks it depends on have been
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Figure 2.1: Example task graph showing tasks (vertices) with their dependencies (edges).
The graph on the right-hand side indicates that explicit synchronization may be used to
schedule tasks in an order that respects their dependencies, though possibly at the cost of
losing parallelism, as in this example. The resulting schedule is non-greedy [48], unlike the
schedule on the left-hand side.

completed. For simplicity, we assume a perfect task pool with zero overhead for task
insertion and removal, so that tasks are scheduled as soon as they enter the task pool.

Figure 2.1 includes two P -processor schedules, P ≥ 3. A schedule is a sequence
(V1, V2, · · · , VT ), where Vi is the set of tasks that are running during time step i. For a
complete formal definition, we refer the reader to [46]. The greedy schedule on the left-
hand side assumes that tasks are created and scheduled as soon as their dependencies
are satisfied [48]. Task H, for example, depends on both E and F and is guaranteed to
be scheduled during the time step following the completion of either E or F , whichever
finishes last. More generally, if E is scheduled during time step i and F is scheduled
during time step j, H will be scheduled during time step max(i + t(E), j + t(F )).
This does not hold for the schedule on the right-hand side, which relies on explicit
synchronization to ensure that tasks are scheduled in an order that respects their
dependencies. A task may be ready, but its creation may be deferred until other,
possibly unrelated tasks have finished execution, due to explicit synchronization. The
potential loss of parallelism is often accepted as a trade-off for a simpler programming
model and a runtime system that avoids task dependencies and the associated overhead
of determining when tasks are ready to be scheduled.



25

2.6 Task Pools

Task pools can be distinguished in two categories depending on their implementation:
central and distributed [131, 258]. A central task pool is a global container for tasks,
which workers are free to enqueue and dequeue. A distributed task pool contains a set
of local task pools, usually one per worker. Workers operate on their local task pools
and rely on load balancing when running out of work.

Central task pools provide implicit load balancing, but require synchronization for
every task pool access. Frequent task pool access leads to contention, which can harm
scalability; a consequence of N workers trying to access a shared data structure.

Distributed task pools solve the scalability problem of central task pools, but with
distribution comes the need for load balancing to divide work evenly among available
workers. Local task pools may be completely unsynchronized, in which case load
balancing must be realized by sending tasks among workers.

The limited scalability of central task pools is problematic even on hardware with
relatively modest core counts. Figure 2.2 compares two OpenMP tasking implementa-
tions using the UTS benchmark (described at the end of this chapter) [184, 25]. GNU’s
libgomp [3] implements a central task pool; Intel’s runtime library [9] assigns a task
queue to every worker thread and uses work stealing for load balancing. We will take
a closer look at work stealing in the next section. GCC’s implementation of OpenMP
performs best with up to eight workers; above eight, every worker taking part in the
computation increases task pool contention and causes execution to slow down. Intel’s
implementation on the other hand demonstrates that scalability is not elusive. With 48
workers, the performance gap between central and distributed task pools has reached
a factor of 223. Central task pools provide a simple solution for small-scale systems,
but their limitations are apparent. For this reason, we will focus on distributed task
pools and will not further consider central task pools.

2.7 Load Balancing

Distributed task pools introduce the need for load balancing. What happens when
some workers exhaust their local task pools while others still have tasks left? There
are two ways to distribute tasks: (1) Share some of the local tasks with underutilized
workers, or (2) let idle workers take the initiative to “steal” some of the local tasks of
other workers. The former is called work sharing, the latter work stealing [171, 49].
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Figure 2.2: Testing the OpenMP tasking implementations of GNU and Intel C compilers:
GNU libgomp versus Intel OpenMP Runtime Library. The benchmark that is used here is
UTS with binomial tree T3L, which has about 111 million nodes (80% leaves) and a depth of
17 844. Benchmark programs are detailed in Section 2.7. In the graph on the left, speedups
are based on median execution times of three individual runs and refer to slightly different
sequential baselines, depending on which compiler is used: 37.8 seconds in the case of GCC
and 39.5 seconds in the case of ICC. The graph on the right plots the ratio of execution times.
At 48 threads, the performance gap between GNU’s and Intel’s runtime libraries has reached
a factor of 223. (GCC 4.9.1, -O3, ICC 14.0.1, -O3, AMD Opteron multiprocessor)

2.7.1 Work Sharing

Work sharing can be implemented by maintaining a separate pool of tasks, which
workers can turn to after running out of work [131, 200]. Workers with tasks to spare
must prevent this pool from draining, or else idle workers will not be able to go back
to work. A central task pool represents the simplest possible implementation of work
sharing because every task is shared once it is enqueued, hence the reason why the load
is considered to be balanced at all times.

2.7.2 Work Stealing

Work stealing was named after the fact that concurrent data structures, most notably
concurrent deques, allow “thieves” to “steal” tasks from “victims” without interfering
with the victims’ execution7. In systems with distributed address spaces, work stealing
requires cooperation between victims and thieves: victims send tasks in reaction to
steal requests they receive. Because of this explicit message exchange, some authors
prefer the term work requesting [178]. Work sharing and work stealing are instances
of sender-initiated and receiver-initiated load balancing [81, 44]. Tasks are transferred

7This is a bit of a simplification because thief and victim may have to synchronize.



2.7.2 Work Stealing 27

from sender to receiver as a result of either the sender’s actions (work sharing) or the
receiver’s actions (work stealing).

The Cilk multithreaded runtime system The idea of work stealing originated
from research on parallelism in functional programming languages in the early 1980’s
[59, 106, 107]. Much of the groundwork that influenced the design and implementation
of schedulers was laid in the Cilk project at MIT [21]. Cilk established a provably
efficient, randomized work-stealing scheduler for fully-strict computations, in which
child tasks are required to synchronize with their parents (well-structured fork/join
computations) [95, 49].

Tasks and child tasks A multithreaded program can be viewed as a DAG of compu-
tations (vertices) linked by dependencies (edges) [48]. Spawn edges create child tasks,
which represent potential parallelism, and join edges introduce synchronization. In a
fully-strict DAG, every task Γ must synchronize with its parent, the task that spawned
Γ. In a strict DAG, every task Γ must synchronize with one of its ancestors, the par-
ent of Γ or, recursively, an ancestor of the parent of Γ. A DAG in which every task
ends with a join edge is said to be terminally strict [32]. Figure 2.3 shows examples
of fully-strict and strict multithreaded computations that are also terminally strict.
Terminal strictness is often implied when waiting for completion is the only means of
synchronization between tasks and child tasks.

Let T1 be the execution time of a fully-strict computation DAG on one processor,
TP be the execution time on P processors, and T∞ be the execution time on an infi-
nite number of processors. The latter is also known as the critical path length: the
theoretically shortest execution time resulting from the longest chain of sequential de-
pendencies. Cilk’s work-stealing scheduler executes a computation on P processors in
expected time T1/P + O(T∞), assuming the two bounds TP ≥ T1/P and TP ≥ T∞

are met. The result is near-optimal linear speedup if T1/P � T∞, or equivalently, if
T1/T∞ � P , that is, the potential parallelism far exceeds the number of processors,
which highlights the importance of breaking down a program into many independent
tasks. T1 is known as the work of the computation, and the ratio T1/TS describes the
work overhead relative to the serial elision with execution time TS

8.

The work-first principle Cilk’s work-first principle states that the work overhead
should be minimized, since it has a big impact on performance, whereas overheads on

8The serial elision of a Cilk program is obtained by removing all Cilk keywords [95].
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(a) Fully-strict computation DAG (b) Strict computation DAG

Figure 2.3: The DAG model for multithreading. Tasks, drawn as rectangles around sequen-
tial computations (vertices) and continuations (horizontal edges), are connected by spawn
and join edges. A spawn edge creates a new task, which may execute in parallel with other
tasks. A join edge ends a task after synchronizing with the parent (a) or an ancestor (b). The
work is the time it takes to execute all computations in a DAG, and the span, or critical-path
length, is the time it takes to execute the longest path of dependencies. The ratio of work to
span gives the maximum possible speedup for any number of processors. It is an indication of
how much potential parallelism a DAG contains. Strictness does not require synchronization
between parent and child tasks, allowing computations at different levels of the spawn tree
to execute in parallel without unnecessary dependency constraints. There are two such op-
portunities in this example, with the result that the strict computation DAG contains more
potential parallelism than its fully-strict counterpart. In (a), the ratio of work to span is
14/12 = 1.16, whereas in (b), it is 14/10 = 1.4.

the critical path T∞ are much less important as long as sufficient parallelism exists,
and steals are rare. In other words, optimizations should target the common case,
the execution path where no work is stolen, even if that means adding overheads to
the critical path. Specifically, as much of the scheduling cost as possible should be
shifted to idle workers, since idle workers have no other work to do. Similar time,
space, and communication bounds have been proved for the more general class of strict
multithreaded computations, in which child tasks are required to synchronize with their
ancestors but may outlive their parents [85, 32].

Work-first scheduling Cilk’s task creation strategy is the result of strict adherence
to the work-first principle. As in lazy task creation [172], a task is turned into a function
call, while the continuation following the spawn operation is pushed onto the deque
for idle workers to steal [95]. Upon returning from the task, the worker that pushed
the continuation checks if the continuation has been stolen, and if so, becomes a thief
itself. Otherwise, the worker picks up and resumes the continuation.
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Help-first scheduling The alternative to Cilk’s task creation strategy is to queue
the task and execute the continuation. Because this strategy neither assumes compiler
support nor a continuation-passing programming style, it is the strategy of choice for
many tasking libraries, including our own. Guo et al. call the “steal child” approach
help-first, to suggest that help is needed to run a task, and to distinguish it from Cilk’s
“steal parent” approach, which is a consequence of the work-first principle [101]. Help-
first is less space efficient than work-first. In theory, help-first may require unbounded
space and may overflow heap memory, whereas work-first provably requires at most S1P

space, a multiple of the space required by the serial execution S1. A simple example may
help to visualize the difference between help-first and work-first. Consider the following
loop, in which a single thread spawns N tasks before running them in sequence at the
sync statement, all under the assumption that no thieves are present [208]:

for (i = 0; i < N; i++)
spawn f(i);

sync;

With help-first, the program requires space proportional to N, because N tasks are
created and enqueued before the sync statement is reached, at which point tasks are
scheduled for execution. With work-first, the program runs in constant space, deferring
only the continuation of the loop in each iteration. Suppose the loop spawns one million
tasks, each taking up 192 bytes9. Running the program on one processor will allocate
192 MB of memory to store the tasks, which will make the loop noticeably slower
than its sequential version. Using our runtime system, for example, we measure a work
overhead of 2.42, compared to 1.37 for Cilk Plus, when function f does nothing else but
return (see Figure 2.4 (a)). Half of the work overhead can be attributed to allocating
memory. By allocating memory ahead of time, the work overhead drops to 1.7. The
remaining overhead compared to sequential execution is caused by task creation and
deque operations, which cannot be eliminated without serializing tasks.

For comparison, we show how using a concurrent deque, similar to Cilk’s imple-
mentation [95], can affect the work overhead. Private deques have the advantage of
efficient operations, but require that victims steal on behalf of thieves, which is at odds
with the work-first principle as formulated by Cilk.

Figure 2.4 (b) indicates that work overheads tend to be small for non-empty tasks.
Given tasks of one microsecond, which we count as fine-grained parallelism, work-first
has no measurable overhead on average, while help-first adds 6% to the sequential
execution time.

9The actual size of a task in our implementation.
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Figure 2.4: Work overhead T1/TS for running a sequential loop that spawns one million
tasks using work-first and help-first task creation strategies. Operating a concurrent deque
is more expensive than operating a private deque; hence the greater work overhead. (ICC
14.0.1, -O2, Intel Core i7-4770)

Advantages of help-first are less stack pressure and better performance when steals
are frequent. (Remember that one of the assumptions underlying the work-first princi-
ple is that steals are rare.) A more practical advantage of help-first is that it tends to
be easier to reason about than work-first. Imagine a sequence of statements that looks
like this:

S1;
spawn S2;
S3;

Under work-first, S1 and S3 are executed by different threads if a thief steals the
continuation following S2 while the worker is still busy with S2. For this reason, we
may observe that a procedure is called by a thread T1, but returns on a different thread
T2 [210]. Under help-first, S2 may be executed by a different thread, but S1 and S3 are
guaranteed to run on the same thread (intuitive function call/return).

Guo et al. have developed an adaptive work-stealing scheduler for Habanero Java
that switches between help-first and work-first depending on the stealing rate and
recursion depth [102]. If steals are rare, the scheduler operates under the work-first
policy in order to guarantee bounded use of space. Otherwise, if steals are frequent, or
if stacks exceed a certain depth, the scheduler prefers to create tasks according to the
help-first policy. Scheduling decisions are reevaluated periodically.

A simpler way to try to combine the benefits of work-first and help-first is to bound
the number of tasks per deque [170]. Bounded deques make it impossible to enqueue
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tasks beyond a certain threshold, which bounds the memory consumption and work
overhead because tasks that cannot be enqueued are executed sequentially without
being created. Tasks are created only when deque space is available. Such a scheduler
can be viewed as alternating between help-first and work-first if we think of work-first
as invoking a task directly, without creating a stealable continuation.

An interesting load balancing strategy, which can be labeled work stealing in ret-
rospect, was proposed by Rudolph et al [214]. Every processor has a local “workpile”
(task queue) on which it operates. Whenever a processor accesses its own workpile, it
performs load balancing with a probability that is inversely proportional to the size of
its workpile. Load balancing consists of choosing a random workpile and equalizing the
number of tasks in the two workpiles. When a processor’s local workpile contains fewer
tasks than the randomly chosen workpile of another processor, equalizing the number
of tasks in the workpiles amounts to stealing work from the other processor.

2.7.3 Data Structures for Work Stealing

Many implementations of work stealing assume that workers communicate through
shared memory. The usual implementation is as follows: Each worker maintains a
deque of tasks, which it treats as a stack, pushing and popping tasks at the bottom
[37, 111, 66]. When a worker finds its deque empty, it becomes a thief, randomly selects
a victim among the other workers, and tries to steal a task from the top of the victim’s
deque. If the steal fails, for example, because the victim has no tasks that could be
stolen, the thief selects a new victim and tries again, repeating the procedure until a
steal succeeds.

Work-stealing deques provide three main operations: push, pop, and steal. One
thread pushes/pops tasks to/from one end of the deque, while other threads are allowed
to steal tasks from the other end. The work-first principle suggests that push and
pop should be fast operations because they contribute to the work overhead. Cilk
introduced the THE protocol to manage deques [95]. In Cilk, each deque has an
associated lock, but only steal requires locking; pop avoids locking in the common case,
requiring only a memory fence, unless victim and thief contend for the last task, in
which case locking is used to resolve the conflict. Arora et al. removed the need for
locking with non-blocking (lock-free) deques10 [37]. Chase and Lev improved on Arora
et al.’s implementation by using a ring buffer that can grow to prevent overflow [66].

10Lock freedom gives a progress guarantee: among all threads trying to perform a deque operation,
one is guaranteed to succeed [114]. Lock freedom implies that no thread can stall the system by
preventing other threads from making progress on their own.
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Non-blocking deques require the use of a universal synchronization primitive such as
compare-and-swap (CAS) [113]. A steal involves one CAS. A pop involves one CAS if
it tries to take the last task and must prevent a race with a concurrent steal; otherwise,
a pop may require only a memory fence analogous to the THE protocol.

Michael et al. have shown that memory fences can be avoided if workers are allowed
to remove a task more than once [169]. Morrison et al. have found a way to avoid
memory fences by deriving a reordering bound under a total store ordering (TSO)
memory model [176]. The reordering bound depends on the size of the processor’s store
buffer and the number of stores between invocations of pop, which can be determined
with the aid of static code analysis. When a thief tries to steal a task, but the number of
tasks is below the reordering bound, thief and victim might be contending for the same
task. To maintain the safety property, the thief either aborts or seeks to synchronize
with the victim to verify that the task is stealable (basically sending a steal request).
Option one, aborting, relaxes the semantics of work stealing, as steals may fail not
only in the presence, but also in the absence of conflicts. Option two, synchronization,
introduces the need for polling to detect when steals are stalled until acknowledged by
the victim.

Classic work stealing with push and pop operating in a LIFO manner and steal op-
erating in a FIFO manner is biased towards divide-and-conquer algorithms, in which
tasks close to the root of the computation carry large chunks of the total work. A
single steal can thus transfer a substantial amount of work, and a few steals may suf-
fice for load balancing. Some work-stealing deques support stealing multiple tasks at
once, usually up to half of the tasks in a deque [111]. Deques, or task queues in gen-
eral, may be split into private and public parts to allow unsynchronized access to a
subset of the tasks [131, 74, 121, 247]. While split deques permit efficient implemen-
tations of pop, they require their owners to regularly check (poll) if there are tasks
available to thieves and, if not, try to move some tasks from the private to the public
region. Implementation-wise, split deques are halfway between shared and private de-
ques. Thieves can steal on their own as long as tasks are publicly available. If there is
nothing left to steal, thieves post “split requests” to which recipients should respond
in a timely manner, hence the need for polling [247].

2.7.4 Distributed Work Stealing

Early in the history of work stealing, researchers concluded that shared memory would
enable more efficient work-stealing policies than possible with message passing [229]. In
distributed-memory environments, the necessity to communicate by passing messages



2.7.4 Distributed Work Stealing 33

dictates a certain amount of cooperation between victims and thieves.
Distributed work stealing is either centered around explicit message passing, most

often in the form of MPI-like send/receive [93], or implemented on top of higher-level
global address space abstractions, which hide the communication from the parallel
runtime. Dinan et al. describe work-sharing and work-stealing implementations of the
UTS benchmark using MPI [75]. In later work, Dinan et al. show the scalability of
work stealing in the context of PGAS [73, 74]. Communication libraries such as ARMCI
[183] and GASNet [53], or the recently released MPI-3 standard [16], provide APIs for
one-sided remote memory access (RMA) operations that facilitate the implementation
of work stealing on distributed-memory systems. Work-stealing schedulers written in
GAS/PGAS languages interface with the same communication libraries, if not directly,
at least indirectly [185, 222, 170].

Even though message passing schedulers have the benefit of flexibility and portabil-
ity, they are seldom considered in the context of shared memory. Feeley argued that a
message passing implementation of Lazy Task Creation (LTC) [172] is both simpler and
more efficient than an implementation that relies on shared memory [89]. He showed
that a private stack of suspended continuations can be cached efficiently (write-back),
unlike a shared stack, which causes writes to main memory in the absence of cache
coherence (write-through). In addition to improving parallel performance, he was able
to reduce the work overhead of LTC.

Lazy Threads [99] and StackThreads/MP [236], both inspired by LTC, reduce the
cost of thread creation by allocating stacks lazily. In Lazy Threads, for example, a
child executes on the stack of its parent. The parent is suspended until the child blocks
or returns, or a steal request causes the parent to be migrated to another processor.
Both Lazy Threads and StackThreads/MP rely on polling to detect steal requests.

Hendler et al. proposed work dealing, an alternative load balancing strategy akin
to work sharing [112]. Instead of operating on deques, workers send every task they
create to one of n producer-consumer buffers; every worker has n such buffers from
which it consumes tasks. Tasks are distributed according to fixed policies, and once
distributed, tasks are never reassigned. Hendler et al. emphasize the locality-oriented
nature of work dealing, but also admit that having to traverse up to n buffers before
finding work becomes increasingly inefficient for larger values of n. At least on small-
scale systems, this overhead seems to be negligible.

Load balancing based on sending tasks between workers is implemented in the
Tascell framework [117] and in the Manticore programming language [92, 202]. Tascell
is unique in that it does not create tasks in the usual sense, but rather maintains
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information about points in the program’s execution where tasks can be spawned if
the need arises. Whenever a worker receives a steal request, it backtracks to the oldest
potential spawn point, spawns a task, sends it to the requesting worker, and returns
to the point from which it backtracked and resumes execution. Manticore is a parallel
variant of Standard ML with a work-stealing runtime system based on private deques
and steal request messages. Manticore’s decision to use private deques was motivated
by the desire to not compromise the performance of garbage collection [202].

In a recent paper, Acar et al. prove that work-stealing algorithms with private
deques guarantee the same theoretical bounds as work-stealing algorithms with con-
current deques [28]. The paper proposes a receiver-initiated algorithm based on steal
requests and a sender-initiated algorithm similar to work dealing. In both algorithms,
worker threads communicate through a set of shared variables, relying on atomic oper-
ations to distribute tasks. This limits the flexibility of the schedulers. In the receiver-
initiated algorithm, for example, a victim can receive at most one steal request at a
time. A steal request is simply a thief’s ID written to a victim’s request cell. We
explore a more general approach than Acar et al. For example, channels allow steal
requests to be queued, enabling strategies such as lazy adaptive splitting (see Chapter
5), which greatly contribute to the efficiency of channel-based work stealing.

Work stealing with private deques can be thought of as delegation, in which a server
thread does work on behalf of others [61]: a thief requests a task by delegating the steal
to a victim, the only thread allowed to access a given deque. One of the benefits of
delegation—the abstraction layer that it introduces—makes a case for message-passing
schedulers, especially when portability is a concern.

2.7.5 Hardware Support for Work Stealing

Thanks to Moore’s Law [173], transistor budgets have grown to the point that some
hardware can be dedicated to inter-thread communication and synchronization. Exam-
ples include Intel’s Single-Chip Cloud Computer (SCC) [124, 165], Tilera’s TILE-Gx
processor family [256], Kalray’s MPPA accelerators [70], and the PRAM-based XMT
architecture [255, 250].

Petrovic et al. showed that hardware support for message passing can improve
thread synchronization, leading to more efficient data structures including stacks and
queues [196]. Calciu et al. observe that delegation-based data structures can sometimes
outperform their concurrent counterparts [61]. Sanchez et al. proposed asynchronous
messages independent of the cache hierarchy for fast communication between threads
[215]. They showed that a few message-passing primitives combined with user-level
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interrupts upon message arrival suffice to implement flexible and scalable task sched-
ulers. Prior work proposing hardware task queues along with automated load balancing
promised significant speedups over software schedulers, but lacked the flexibility that
software schedulers provide [136]. Rosas-Ham et al. integrated hardware task queues
with control logic to raise and handle steal requests without processor involvement
[211]. Like [136], they accept hardwired scheduling for the benefit of simpler runtime
systems. Steal request and response messages are sent independently of a software
scheduler’s operation. Hardware-accelerated queues, in contrast to custom hardware
queues, have also been proposed [129, 148].

2.8 Benchmark Programs

This section introduces the set of benchmarks and microbenchmarks on which we evalu-
ate our runtime system throughout the remaining chapters. We do not claim that these
programs (written in C) exhibit the best performance among all possible implementa-
tions. In particular, matrix multiplication and LU decomposition cannot compete with
optimized routines from linear algebra libraries such as Intel’s Math Kernel Library [8].
We are primarily interested in programs with challenging task structures and their par-
allel speedups, which we use to compare the performance of different runtime systems.
The variables that appear in the benchmark descriptions correspond to parameters
that can be changed by the user.

SPC A Simple Producer-Consumer benchmark. A single worker produces n tasks,
each running for t microseconds. This benchmark allows us to test how many con-
current consumers a single producer can sustain.

BPC A Bouncing Producer-Consumer benchmark, which is a producer-consumer
benchmark with two kinds of tasks, producer and consumer tasks [74]. Each pro-
ducer task creates another producer task followed by n consumer tasks, until a
certain depth d is reached. Consumer tasks run for t microseconds. The smaller the
values of n and t, the harder it becomes to exploit the available parallelism. This
benchmark stresses the ability of the scheduler to find and load-balance work.

Treerec A simple tree-recursive computation, similar in structure to Fibonacci, which
is often used to estimate task scheduling overheads [78]. Each task n ≥ 2 creates
two child tasks n − 1 and n − 2 and waits for their completion. Leaf tasks n < 2
perform some computation for t microseconds before returning. This simulates a
cut-off, as if tasks were inlined after reaching a certain recursion depth.
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Matmul A blocked matrix multiplication of two N × N matrices of doubles, each
partitioned into (N

B
)2 B × B blocks [139]. The block size B determines the task

granularity and must be a divisor of N .

LU A blocked LU decomposition of a sparse N×N matrix of doubles, partitioned into
(N

B
)2 B×B blocks. The block size B determines the task granularity and must be a

divisor of N . The sparsity of the matrix—the fraction or percentage of blocks that
contain only zeros—increases with the number of blocks in each dimension. Blocks
that contain only zeros are not allocated. The code is based on the OpenMP version
from the Barcelona OpenMP Tasks Suite (BOTS) [78, 20].

Quicksort A recursive algorithm that performs an in-place sort of an array of n in-
tegers by partitioning it into two sub-arrays according to some pivot element and
recursively sorting the sub-arrays. The pivot is chosen as the median of the first,
middle, and last array elements. For sub-arrays ≤ 100 elements, the algorithm falls
back to using insertion sort, which is usually faster on small inputs.

Cilksort A recursive algorithm inspired by [35] that sorts an array of n integers by
dividing it into four sub-arrays, recursively sorting the sub-arrays, and merging the
sorted results back together in a divide-and-conquer fashion to expose additional
parallelism. For sub-arrays ≤ 1024 elements, the algorithm performs a sequential
quick sort with median-of-three pivot selection and partitioning, and for sub-arrays
≤ 20 elements, the algorithm falls back to using insertion sort. The code is based
on the version distributed with MIT Cilk [21].

NQueens A recursive backtracking algorithm that finds all possible solutions to the
N -Queens problem of placing N queens on an N ×N chessboard so that no queen
can attack any other queen. The code is based on the OpenMP version from the
BOTS project [78, 20], which in turn is derived from the version distributed with
MIT Cilk [21].

UTS The Unbalanced Tree Search: an algorithm that counts all nodes in a highly
unbalanced tree [184]. The tree is generated implicitly; each child node is constructed
from the SHA-1 hash of the parent node and child index. The code is based on the
Pthreads version from the official UTS repository [25].

All benchmarks have the form init(); compute(); fini();, with application-
specific initialization/finalization in init/fini, as well as the required calls to start/stop
the runtime system. When we talk about a benchmark’s execution time, we mean the
execution time of compute.
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Benchmark Tasks Median task length, IQR Phases Category

Matmul 2048 32 262 144 77µs, 1µs 64 flat
LU 4096 64 23 904 556µs, 15µs 128 flat
— fwd 1024 363µs, 3µs
— bdiv 1024 332µs, 4µs
— bmod 21 856 557µs, 17µs
Quicksort 108 1 697 314 5µs, 11µs 1 recursive
Cilksort 108 1 070 421 34µs, 57µs 1 recursive
— cilksort 87 380 82µs, 294µs
— cilkmerge 983 041 19µs, 23µs
NQueens 14 27 358 552 7µs, 12µs 1 recursive
UTS T1L 102 181 081 < 1µs, 1µs 1 recursive
UTS T2L 96 793 509 1µs, 1µs 1 recursive
UTS T3L 111 345 630 < 1µs, 1µs 1 recursive

Table 2.1: Workload characteristics of selected benchmarks. LU and Cilksort comprise
different types of tasks, as itemized above. Task lengths were measured on one core of the
AMD Opteron multiprocessor, using GCC 4.9.1 with all optimizations enabled (-O3). Parallel
phases end with barrier synchronization to ensure that all tasks have run to completion.
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2.8.1 Speedup and Efficiency

Sequential execution can mean two things: running a sequential version of compute or
running a parallelized version of compute, but using a single thread to do so. To avoid
confusion, we follow the convention of Cilk and denote sequential execution times with
TS and T1. Unlike TS, T1 includes the overhead of parallelization so that T1 ≥ TS.

We define the speedup over sequential execution as

SP = TS

TP

, (2.1)

where TP is the parallel execution time of compute with P processors or threads [82].
An alternative definition of speedup over sequential execution would be

SP = T1

TP

. (2.2)

It is usually safe to assume that TS/TP gives a lower bound for T1/TP .

Intuitively, a program is considered scalable if additional processors speed up the
program’s execution. If we increase the number of processors by a factor of N , and the
program runs roughly N times faster as a result, we speak of linear scaling. Efficiency
is defined as the speedup divided by the number of processors used to obtain that
speedup [82]:

EP = SP

P
. (2.3)

Expressed as a value between zero and one, efficiency indicates how well parallel pro-
cessors are utilized, compared to how much effort is spent on communication and
synchronization. High efficiency means good utilization with little overhead. Programs
that scale linearly have an efficiency close to 1.

A note on the graphs in this thesis: when we report execution times, speedups, or
efficiencies, we plot the median of ten program runs, except where noted, along with
10th and 90th percentiles, where visible. The difference between the 10th and 90th
percentiles, also known as the interdecile range, covers 80% of the dispersion of a data
set and is a useful measure of spread around the median. As such, it gives a sense of
the variability that we observe between program runs, after excluding minimum and
maximum execution times.
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2.9 Summary

Task-parallel programming revolves around tasks—independent units of work eligible
for parallel execution. Tasks simplify the expression of fine-grained parallelism, while
shifting the burden of task creation, management, scheduling, and load balancing to
the runtime system, a library that provides these services in addition to maintaining
a pool of worker threads to take advantage of multicore systems. The programmer
remains responsible for defining tasks and inserting synchronization operations to join
tasks, await results, and orchestrate execution.

Task-parallel programs may create millions of short-lived tasks, much more than
can possibly run in parallel. This gives the runtime system the freedom to utilize
different numbers of cores and helps programs achieve scalable performance.

The scheduling and load balancing technique of choice is work stealing, which is
commonly implemented with concurrent deques, using shared memory or a global ad-
dress space abstraction. Message-based implementations are usually geared toward
cluster systems. As it appears increasingly likely that future microprocessors will share
some similarities with clusters, message passing may become the most efficient way
for threads to communicate with each other. Starting with the next chapter, we will
explore an implementation of work stealing that is based on exchanging messages over
channels, which lend themselves to efficient message passing on different systems.
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The previous chapter ended with a brief summary of the status quo: tasks have emerged
as a useful abstraction in parallel programming, and work stealing is becoming an
indispensable component of efficient runtime systems. We noted that strict dependence
on shared memory may pose a problem when faced with the task of porting a runtime
system to a less conventional processor architecture. While we cannot predict the
future1, we argue that runtime systems will benefit from changes that increase their
flexibility without sacrificing performance.

This chapter introduces a work-stealing scheduler in which worker threads com-
municate by sending messages over channels. Section 3.1 starts with a description of
channels and our motivation for using them to exchange steal requests and tasks among
workers. Before we dive into steal requests in Section 3.3, we give a short overview of
the scheduler in Section 3.2. Central to work stealing is choosing victims and deciding
how many tasks to steal. Victim selection is discussed in Section 3.4. Stealing multiple
tasks to reduce the frequency of load balancing operations is the focus of Section 3.5.
Section 3.6 emphasizes the importance of software polling, without which long-running
tasks would prevent workers from handling steal requests.

3.1 Channels

Channels for interprocess communication can be traced back to Tony Hoare’s Com-
municating Sequential Processes (CSP), a formal notation for describing concurrent
systems [118, 212]. CSP influenced the design of a number of programming lan-
guages, including Occam, Amber, Newsqueak, Alef, Limbo, and, most recently, Go
[23]. Newsqueak and its descendants leading up to Go treat channels as typed, first-
class values: they can be assigned to variables, passed as parameters, returned from
functions, and sent over channels like any other value. Concurrent ML (CML), an
extension of Standard ML, goes one step further and makes synchronous operations in-

1“Prediction is very difficult, especially about the future.” —Niels Bohr
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volving channels first-class, with the result that channel communication can be hidden
behind user-defined protocols [207].

Channels, in the original sense of CSP, serve the dual purpose of communication
and synchronization: CSP channels are unbuffered so that sender and receiver syn-
chronize at the point of message exchange. While this behavior makes reasoning about
concurrent programs easier, it is too restrictive for use in a performance-critical run-
time system, where worker threads should not be hindered from making progress by
waiting on channel operations to complete. Go [23] and Rust [24], for example, sup-
port buffered channels for asynchronous sends and receives, allowing messages to be
queued and later received. Manticore and MultiMLTon, two multicore-aware variants
of Standard ML, incorporate CML-style concurrency and add support for asynchronous
messages and events [92, 223]. Barrelfish is a multikernel operating system that runs
an independent kernel on every core of a multicore processor, using buffered channels
for inter-core communication [42]. The authors of Barrelfish are careful to note that
absence of shared state at the OS level does not preclude applications from sharing
memory [42]. The same can be said for a work-stealing runtime system that prefers
explicit communication. We will, however, see a few examples where it is useful to be
able to share state between workers. Channel communication can be used to ensure
that a worker has exclusive access to some data until ownership is given to another
worker. This enables important optimizations, such as avoiding to copy heap-allocated
objects on shared-memory systems.

3.1.1 Why Channels?

Channels are the building blocks of our choice, because channels

• provide a message passing abstraction that is easy to use, yet flexible enough to
support the types of messages that need to be sent among worker threads,

• can be implemented efficiently on top of different communication mechanisms, in-
cluding coherent and non-coherent shared memory and distributed memory,

• are amenable to optimization, such as compile-time specialization of send or receive
operations, if the number of senders or receivers can be determined statically [206],

• appear as first-class constructs or standard library components in modern program-
ming languages, such as Go and Rust, and most importantly,

• allow us to design task schedulers that are largely decoupled from low-level commu-
nication details.
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These reasons are first and foremost practical reasons. After all, worker threads must
be able to communicate efficiently, and efficiency demands lightweight abstraction.
Channels allow us to replace concurrent deques with private data structures as simple
as arrays or linked lists. Furthermore, channels can have specialized and more efficient
operations if their usage deviates from the general pattern of many-to-many messaging.
As an example, consider a channel that is used by N client threads to send messages
to a server thread. If the server thread is the only one to receive messages from the
channel, it is allowed to forego synchronization that would otherwise be needed to
coordinate access if more threads wanted to receive a message.

Modern programming languages with a systems focus, such as Go and Rust, encour-
age programmers to “share memory by communicating”, rather than to “communicate
by sharing state” [97]. Channels let us apply this motto to runtime systems and li-
braries.

3.1.2 The Channel API

Channels behave like FIFO queues, and the runtime system assumes that messages are
received in the order they were sent. We focus on buffered channels for asynchronous
messaging. The channel API is small; the functions we use are summarized in the
following list:

Channel *channel_alloc(size_t sz, unsigned int n, chan_t t);

Allocates and returns a channel of type t for elements ≤ sz bytes. Valid types are
defined by the enumeration constants MPMC, MPSC, and SPSC, which describe common
patterns of communication:

• MPMC (multiple producers, multiple consumers): denotes a channel that permits
multiple threads to send and receive messages. This is the most general type of
channel, suitable for many-to-many communication.

• MPSC (multiple producers, single consumer): allows multiple threads to send, but
at most one thread to receive messages.

• SPSC (single producer, single consumer): limits communication to one sender and
one receiver.

The parameter n defines the channel’s capacity—the maximum number of elements
that can be buffered internally. The interface suggests that all channels are bounded,
that is, have a finite capacity. Unbounded channels with resizable buffers could be
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used in place of bounded channels, but are not needed for our purpose. As we shall
see later, we can give an upper bound on the number of messages in the scheduler
so that channels can be sized appropriately at allocation time to guard against the
possibility of blocking sends or message loss.

void channel_free(Channel *ch);

Frees the memory associated with channel ch.

bool channel_send(Channel *ch, void *data, size_t sz);

Sends an element of sz bytes at address data to channel ch. Returns false if the
channel is full, true otherwise.

bool channel_receive(Channel *ch, void *data, size_t sz);

Receives an element of sz bytes from channel ch. The element is stored at address
data. Returns false if the channel is empty, true otherwise.

unsigned int channel_peek(Channel *ch);

Returns the number of buffered items in channel ch. This function checks for avail-
able messages without receiving them.

There is no distinction between the two endpoints of a channel, which means that
every thread that holds a reference to a channel may use that reference to send and
receive messages. In situations where the communication behavior can be analyzed
or is known beforehand, specialized channels (MPSC, SPSC) may be used in place of
more general ones (MPMC) to reduce overhead and improve performance [206].

3.1.3 Channel Implementation

Channels have a practical advantage over work-stealing deques: channels—and FIFO
queues in general—are easier to implement than deques with concurrent push, pop, and
steal operations. Deques require expensive synchronization operations that cannot be
eliminated without relaxing the semantics of the work-stealing algorithm [169, 39] or
assuming bounded store/load reordering [176]. Channels, on the other hand, can be
implemented efficiently, especially under the assumption of limited concurrency [71,
39, 144]. As it turns out, single-consumer queues (MPSC, SPSC) suffice to construct
efficient schedulers.
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Shared Memory Listing 3.1 sketches a simple implementation of SPSC channels
on a typical shared-memory multiprocessor [142, 116]. Channels are implemented as
ring buffers with head and tail pointers (actually buffer indices). Elements are added
to the tail and removed from the head, so that head lags behind tail. We prefer ring
buffers to linked lists because channels need not be resizable; they always contain a
bounded number of elements. The memory barriers in lines 21 and 38 ensure that
writes to head and tail occur in program order. If left unconstrained, non-sequentially-
consistent2 architectures are free to reorder loads and stores in accordance with their
memory models [177, 31], potentially violating the correctness of the algorithm [142].

Shared-memory channels are suitable for passing values as well as references. Con-
sider the following example to send a large data structure over a channel:

Channel *chan = channel_alloc(sizeof(Large_data_structure), 1, SPSC);
Large_data_structure *d = ...
channel_send(chan, d, sizeof(Large_data_structure));

Instead of copying sizeof(Large_data_structure) bytes into and out of the channel,
first, when sending, and second, when receiving, data can be moved between threads
without copying. Assuming d is allocated from heap memory, a send can be used to
transfer ownership of the referenced data:

Channel *chan = channel_alloc(sizeof(Large_data_structure *), 1, SPSC);
Large_data_structure *d = ...
channel_send(chan, (void *)&d, sizeof(Large_data_structure *));

Notice how the channel has changed from storing values to storing pointers. A thread
must not access data for which it has relinquished ownership, in much the same way
that data must not be touched after it has been freed.

Distributed Memory Channels can be used to exchange data among processes in
a distributed environment. A possible implementation of SPSC channels is shown in
Listing 3.2, where we take advantage of MPI’s nonblocking send and receive operations
instead of maintaining channel buffers ourselves. Point-to-point messages as in MPI
enforce the property that only one process receives from a channel. Additionally, MPI’s
semantics guarantee that messages are received in the order they were sent (see [15],
Section 3.5, pp. 42–45), provided the channel is used as intended3. Handing over a
channel between two processes requires copying the channel descriptor and changing
the value of receiverID to point to the new receiver. Each channel must tag its

2Sequential consistency [141] forbids observable reordering of memory operations.
3Using the same implementation for MPSC messaging would violate the FIFO property of channels!
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1 typedef struct channel {
2 unsigned int cap;
3 size_t itemsize;
4 unsigned int head;
5 // Appropriate padding to avoid false sharing ...
6 unsigned int tail;
7 char *buffer;
8 } Channel;
9

10 bool channel_send(Channel *chan, void *data, size_t size)
11 {
12 unsigned int newtail;
13
14 if (IS_FULL(chan))
15 return false;
16
17 assert(size <= chan->itemsize);
18 memcpy(chan->buffer + chan->tail * chan->itemsize, data, size);
19
20 newtail = INCREMENT(chan->tail, chan->cap);
21 memory_barrier();
22 chan->tail = newtail;
23
24 return true;
25 }
26
27 bool channel_receive(Channel *chan, void *data, size_t size)
28 {
29 unsigned int newhead;
30
31 if (IS_EMPTY(chan))
32 return false;
33
34 assert(size <= chan->itemsize);
35 memcpy(data, chan->buffer + chan->head * chan->itemsize, size);
36
37 newhead = INCREMENT(chan->head, chan->cap);
38 memory_barrier();
39 chan->head = newhead;
40
41 return true;
42 }

Listing 3.1: Implementation sketch of SPSC channels on a typical shared-memory multi-
processor. Elements are added to the tail and removed from the head of a circular array of
bounded size. For performance reasons, it is important that head and tail occupy separate
cache lines, or otherwise, sender and receiver end up constantly invalidating each other’s
cached values of head and tail (false sharing). Memory barriers (affecting both compiler and
hardware) prevent reordering of prior loads and stores with updates of head and tail.
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1 typedef struct channel {
2 int receiverID;
3 int tag;
4 size_t itemsize;
5 } Channel;
6
7 bool channel_send(Channel *chan, void *data, size_t size)
8 {
9 MPI_Request req;

10
11 MPI_Isend(data, size, MPI_BYTE, chan->receiverID, chan->tag, MPI_COMM_WORLD, &req);
12 MPI_Wait(&req, MPI_STATUS_IGNORE);
13
14 return true;
15 }
16
17 bool channel_receive(Channel *chan, void *data, size_t size)
18 {
19 MPI_Request req;
20 int flag;
21
22 MPI_Iprobe(MPI_ANY_SOURCE, chan->tag, MPI_COMM_WORLD, &flag, MPI_STATUS_IGNORE);
23 if (flag) {
24 MPI_Irecv(data, size, MPI_BYTE, MPI_ANY_SOURCE, chan->tag, MPI_COMM_WORLD, &req);
25 MPI_Wait(&req, MPI_STATUS_IGNORE);
26 }
27
28 return (bool)flag;
29 }

Listing 3.2: Channels as thin wrappers around two-sided communication operations using
the example of nonblocking send and receive in MPI. The MPI_Wait in line 12 waits until the
data has been copied out of the send buffer; it does not necessarily mean that the message
has been received. Similarly, the MPI_Wait in line 25 waits until the message has arrived in
the receive buffer. The receiver first probes whether a message is available that matches the
channel’s tag before it initiates the receive operation.

messages with a unique identifier so that receivers are able to distinguish messages
belonging to different channels.

Channels may be thin wrappers around message passing primitives, as we have seen
in Listing 3.2. Lower-level implementations may utilize remote memory access (RMA)
to send and receive messages. As part of our work in [201], we have implemented
channels based on one-sided put and get operations between the local message passing
buffers on Intel’s SCC processor. Figure 3.1 shows the communication latencies for
bouncing a small, cache-line-sized message between a pair of cores. This “ping-pong”
benchmark measured the round-trip latency between core number 0, at the bottom
left corner of the chip, and a second core that varied from being 0 to 8 hops away.
General MPMC channels added 23–41% overhead on top of the native communication
library’s send and receive operations (RCCE). MPSC and lock-free SPSC channels,
however, allowed faster communication than RCCE, showing the benefit of specializing
an implementation to the communication pattern [206].
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Figure 3.1: Round-trip latencies in microseconds on the Intel SCC for passing a 32-byte
message back and forth between core 0 and a second core that varies from being 0 to 8 hops
away. A distance of 0 corresponds to core 0 communicating with core 1 of the same tile, a
distance of 8 corresponds to core 0 communicating with core 47. The results show the fastest
of ten trials, each trial being the average of 1000 round trips. The chip was operated in its
default Tile533/Mesh800/DDR800 configuration (all values in MHz).

Distributed-memory implementations of channels have copy semantics, regardless if
a machine supports shared memory. Send and receive operations are required to copy
messages between private memory and channel buffers. Friedley et al. propose an API
for ownership passing that enables move semantics4 in MPI programs [94]. Combined
with other recent developments, such as the extended RMA model of MPI-3 [119]
and improved producer-consumer communication [43], MPI may permit increasingly
efficient channel implementations.

3.2 Scheduler Overview

When we introduced the task model in Section 2.4 of the previous chapter, we men-
tioned that TASKING_INIT creates a number of worker threads that wait for tasks to
become available. The master thread is responsible for supplying initial tasks. Ev-
ery thread, including the master thread, maintains a private deque of tasks, which
represents pending work. Figure 3.2 depicts the main scheduling loop.

Workers repeatedly pop tasks from the bottom of their private deques À until they
have no work left to do. Whenever a worker i creates a task t, it pushes t onto the
bottom of its private deque (not shown in Figure 3.2) so that t will be popped next

4We borrow the term “move semantics” from C++11, where it implies that resources may be moved
between scopes without copying.
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Schedule()
Let Qi be the private deque of tasks of worker i,

Ci be the channel for sending steal requests to worker i,
Ti be the channel for sending tasks to worker i

1 while true
2 while Qi is not empty
3 Pop task t from the bottom of Qi À

4 while Ci is not empty
5 Receive and handle steal request Á

6 Run task t
7 Select a worker j, j 6= i, at random Â

8 Send a steal request to channel Cj

9 while Ti is empty
10 if Ci is not empty
11 Receive and handle steal request Ã

12 if master has signaled termination
13 return
14 Receive task t from channel Ti Ä

15 Run task t

Figure 3.2: The main scheduling loop that every worker thread keeps executing until the
master thread signals termination.
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1 typedef struct steal_request {
2 int thief;
3 Channel *chan;
4 // Possibly other fields
5 } StealRequest;

Listing 3.3: A minimal steal request message contains the thief’s ID (thief) and a reference
to a channel for sending tasks (chan).

unless a steal causes t to be sent to another worker j. Steal requests are handled after
every push and after every pop Á. A successful steal requires worker i to remove a
task from the top of its private deque and to send the “stolen” task to the thief. A
failed steal implies that worker i has no tasks left, in which case stealing continues after
selecting a new victim. How this works is described in detail in the following section.

Figure 3.2 shows an instance of a parsimonious work-stealing algorithm [228]: a
worker i sends a steal request to another worker j, j 6= i, only when its private deque
is empty Â. But steal requests are more flexible than that: a worker may initiate a
steal at any time by sending a message (asynchronously) and continue where it left off,
without waiting for a response. Whether sent before or after running out of work, steal
requests may incur a delay that cannot be hidden, during which a worker has nothing
else to do but to service incoming messages Ã. A successful steal ends with the receipt
of a task Ä. Running this task may result in new tasks being created and pushed to
the bottom of the private deque, completing an iteration of the scheduling loop.

3.3 Steal Requests

Stealing tasks without being able to access other workers’ deques requires cooperation
between victims and thieves. When a worker runs out of tasks, it becomes a thief by
sending steal requests to selected victim workers, which either reply with tasks or signal
that they have no tasks left. A steal request is a message containing the thief’s ID, a
reference to a channel for sending tasks from victim to thief, and possibly other fields
carrying additional information, as shown in Listing 3.3.

When the runtime system starts up, every worker allocates two channels: a channel
for receiving steal requests and a channel for receiving tasks. A reference to the latter
is stored in steal requests, and workers use this reference to send tasks. By “owning”
two channels, workers are able to receive steal requests and tasks independently of
other workers, which in turn enables efficient channel implementations based on single-
consumer queues [39]. The total number of channels grows linearly with the number
of workers: n workers allocate 2n channels to communicate with each other.
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3.3.1 Number of Steal Requests

When we introduced the channel API earlier in this chapter, we said that all chan-
nels have bounded capacity. This, of course, requires that the number of messages is
bounded as well, given that workers should never block trying to send messages to full
channels. Matching traditional work stealing, we allow one outstanding steal request
per worker. This decision has two important consequences: (1) The number of steal
requests is bounded by n, the number of workers. (2) A thief will never receive tasks
from more than one victim at a time. It follows from (1) that a channel capacity of
n − 1 is sufficient to deal with other workers’ steal requests since no more than n − 1
thieves may request tasks from a single victim. We actually increase the capacity to n
so that steal requests can be returned to their senders, for instance, in case of repeated
failure. (2) implies that, at any given time, a task channel has at most one sender and
one receiver, meeting the requirements for an SPSC implementation.

Suppose all n workers have issued steal requests, and one of them, worker i, starts to
create tasks. Letm be the number of tasks that are sent in response to a successful steal
request. Worker i will handle at most n−1 steal requests by sending (n−1)·m tasks. It
may or may not be able to discard its own steal request before sending the last of those
tasks. The total number of messages is therefore bounded by (n−1)·m+1 = n·m−m +
1. Assumingm is constant5, communication grows linearly with the number of workers.
The amount and frequency of communication is a major factor in determining the work
stealing overhead.

3.3.2 Handling Steal Requests

When a worker has no tasks left to send in response to a steal request, it must react in
some way to make sure that stealing can continue. In other message-passing schedulers,
every steal request is acknowledged to inform a thief about the outcome of a steal
[75, 204]. A positive acknowledgment message is followed up with tasks, a negative
acknowledgment message prompts the thief to select another victim and try again.

It seems natural to acknowledge steal requests, but the problem with this approach
is twofold: First, steals that succeed after t tries involve 2t messages, t steal requests
plus t acknowledgments. Ideally, t tries should involve no more than t messages. Sec-
ond, workers should respond to every message, including every acknowledgment, as
promptly as possible, because otherwise, stealing comes to a halt. This makes it dif-
ficult to overlap stealing with other work, unless workers regularly check for incoming

5We will later describe an implementation that has m = 1.
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(a) Acknowledging every steal request (b) Forwarding failed steal requests

Figure 3.3: Possible message flows for steal requests. With (a), every attempt at stealing
involves two messages: a request and an answer, either negative (no task) or positive (task).
We implement (b), which omits acknowledgment messages. Steal requests are forwarded until
tasks are found. Effectively, victims assume the role of thieves and send steal requests on
their behalf. Steal requests and tasks are sent over separate channels.

steal requests and acknowledgments.
Our solution is to eliminate acknowledgment messages altogether by having victims

forward steal requests they cannot handle themselves. In other words, victims resend
steal requests on behalf of thieves if necessary, as if they intended to steal. Forwarding
a steal request, however, does not mean that the steal request is “hijacked” as it still
points to the original thief.

Figure 3.3 illustrates our approach. Suppose workerW1 receives a steal request from
worker W2, but has nothing left to share. Rather than return a message to W2, saying
the steal has failed (Figure 3.3 (a)), W1 forwards the steal request to another potential
victim, worker W3 (Figure 3.3 (b)). Because W3 has tasks to spare, it will pass some
of its work on to W2 using the channel contained in the steal request. Otherwise, if the
steal failed again, W3 would select another victim and forward the steal request, or,
alternatively, if stealing is unlikely to succeed, return the steal request to W2, which
might choose to back off from stealing and try again at a later time.

The forwarding of steal requests makes it easier for workers to start stealing before
they strictly need to. For example, a worker may initiate a steal by sending a request
after popping the last task from its deque (and before running the task). Once initiated,
the steal is carried out by the victim, or other victims after that. Ideally, when the
worker finishes its last task and runs out of work, new work has already arrived and can
be picked up immediately. Sending a steal request becomes an asynchronous operation
that, like a future, can be waited for when its result, a task, is needed to continue
execution. Stealing ahead of time can mask communication latency and reduce the
time spent waiting to receive new work. In the absence of acknowledgment messages,
the time between initiating a steal and receiving tasks depends primarily on the victims’
responsiveness—their ability to handle steal requests in a timely manner.
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HandleStealRequest() // First version

Let Qi be the private deque of tasks of worker i,
Ci be the channel for sending steal requests to worker i,
S be the steal request to handle

1 if Qi is not empty
2 Pop task t from the top of Qi

3 Send task t to channel S.chan
4 else
5 Select a worker j, j 6= i ∧ j 6= S.thief , at random
6 Send S to channel Cj

Figure 3.4: When a worker receives a steal request but cannot send a task in return, it
selects another worker to which it forwards the steal request.

Figure 3.4 summarizes how workers respond to steal requests. Tasks are popped,
oldest first, from the top of the local deque and sent to channel S.chan, which belongs
to worker S.thief . If worker i’s deque is empty and the steal request must be rejected,
worker i picks a new victim to which it forwards the steal request, leaving S.chan and
S.thief unchanged.

Recall the workers’ scheduling loop in Figure 3.2. Having sent a steal request, a
worker that becomes idle may have to wait until the steal succeeds. While waiting for
tasks to arrive, the worker keeps forwarding steal requests from other workers because
it has no tasks left. Implementation-wise, there is no difference between initiating a
steal (lines 7–8 of Figure 3.2) and forwarding a steal request (lines 5–6 and 10–11 of
Figure 3.4) apart from the set of potential victims and the contents of the steal request,
which identify the initial sender as the actual thief who will receive the stolen tasks,
if any are found. Thus, by forwarding steal requests, a worker is actively stealing, not
for itself but on behalf of other workers. Seen from this angle, the workers’ scheduling
loop follows conventional work stealing: workers execute local tasks and try to steal
after running out of work.

Forwarding steal requests appears both simpler and more efficient than sending
acknowledgment messages. We would expect a measurable difference in performance
when work stealing happens frequently and latency matters. Figure 3.5 shows the
result for a sample BPC workload with fine-grained tasks. Forwarding yields in fact
between 17% and 33% better overall performance because of increased work-stealing
efficiency. Even with empty tasks and no useful work to do, close to 80% of all steal
requests result in tasks being sent to thieves.
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Figure 3.5: Acknowledging failed steal attempts versus forwarding steal requests. The two
figures examine the results of running BPC with d = 100 000, n = 9, and t between 0 and
10 microseconds. The figure on the right shows the percentage of steal requests that were
answered with tasks. (GCC 4.7.1, -O3, AMD Opteron multiprocessor, 48 worker threads)

3.4 Victim Selection

Before a worker can send a steal request, it must pick a victim. Cilk has proved the
efficiency of work stealing by selecting victims uniformly at random, and other sched-
ulers have largely followed suit. On large-scale systems where it becomes impractical to
try to steal from every potential victim, work stealing is usually restricted to selecting
victims from predefined sets [234] or is guided by locality information to favor nearby
victims [170].

3.4.1 Random Victim Selection

Random victim selection makes it easy to steal on behalf of other workers. A thief
can, for example, use its steal request to pass along a copy of its random number state
to have victims generate the same random sequence. Notice the close correspondence
between line 7 of Figure 3.2 and line 5 of Figure 3.4. We have looked at deterministic
strategies, such as selecting victims round robin based on rank or worker ID, but our
experiments have led us to the conclusion that the robustness of a randomized strategy
is hard to rival. Recent work by Perarnau et al. studying the UTS benchmark confirms
that performance increases significantly by replacing deterministic with random victim
selection [194]. Prior to that, Faxén et al. proposed alternative strategies to random
victim selection, but found that neither sampling a number of victims nor constraining
the set of victims to steal from made a noticeable difference in performance in their
tests with up to 64 workers [88].
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There is, however, a potential problem that we must consider when randomly se-
lecting victims: the latency due to failed steals. With concurrent deques, a thief can
probe a victim’s deque before committing a steal. If a deque turns out to be empty,
the thief proceeds to the next victim. To some extent, this is like aborting a steal that
is bound to fail: an optimization to compensate for the lack of direction in choosing
victims. Private deques permit no such optimization in the absence of shared state.
Every steal that fails generates another message that must be sent, received, and han-
dled, adding up to the time it takes to find work. Even stealing ahead of time might
not suffice to cover the latency that results from a large number of failed steals. It is
therefore important to avoid unnecessary communication to the best extent possible.

Suppose only one worker has tasks left. Under random victim selection, the proba-
bility of picking this worker among n potential victims is 1

n
. The probability of picking

this worker after k unsuccessful attempts is (1− 1
n
)k · 1

n
, k ∈ {0, 1, 2, . . .}. The number

of unsuccessful attempts follows a geometric distribution with probability of success
p = 1

n
and expected value n− 1.

Random victim selection can be improved by removing victims after unsuccessful
attempts. Failing once increases the probability of success to 1

n−1 . Failing twice in-
creases the probability of success to 1

n−2 , and so on. In the best case, it takes a single
attempt to find the right victim. In the worst case, it takes n attempts to sample ev-
ery victim. On average, it takes 1+2+···+n

n
= n+1

2 attempts, which include n−1
2 failures.

Saving (n − 1) − n−1
2 = n−1

2 attempts can make a difference in practice, but does not
change the fact that the expected number of failures increases linearly with the number
of potential victims.

3.4.2 Remembering the Last Victim

Figure 3.6 shows the inefficiency of random victim selection on the example of the
matrix multiplication benchmark in which a single worker creates all tasks. Instead
of choosing victims independently at random, we avoid choosing a victim more than
once, as described above. This can be done in two ways:

The first is to store the set of previously selected victims in the steal request and
update it in case of failure. If there are many potential victims, it may be more practical
to focus on the m, m < n, most recently selected victims, rather than trying to fit n
worker IDs into a steal request6.

The second is to take advantage of shared memory. Every worker i keeps a list
of potential victims, which it starts to shuffle to pick the first victim [80]. If the steal

6A more compact representation such as a bitset could help.
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Figure 3.6: Random victim selection may not be the best strategy when a single worker
creates all tasks, as in this example of multiplying two 2048 × 2048 matrices using blocks
of size 32 × 32. The figure on the right shows the numbers of failed attempts before a steal
request succeeded (medians of averages from ten program runs). (GCC 4.9.1, -O3, AMD
Opteron multiprocessor)

request fails, the first victim, which now assumes the role of thief, continues the shuffling
of worker i’s list to pick the second victim, and so on, until a single victim remains. A
pointer to this (partially shuffled) list of victims can be passed along with each steal
request, sharing state by communicating [97].

Figure 3.6 (b) confirms that, on average, a steal request succeeds after n−1
2 failures.

It seems pointless to ask the same workers over and over again if only one of them
can possibly send tasks. We can devise a simple strategy without necessarily knowing
which worker we are looking for: remember the victim of the last successful steal, and
target this victim first when running out of tasks next time. If this last-victim check
fails to have the desired effect because the victim in question has run out of tasks in
the meantime, victim selection proceeds in the same way as previously. The result is
up to 35% better performance compared to completely random selection, as shown in
Figure 3.6 (a).

Is it always preferable to send steal requests to the last victim if we know that
other workers will decline? The answer is, perhaps surprisingly, negative. The following
analysis assumes that out of n potential victims (n+1 workers), only one has tasks that
workers are trying to steal, and that, under random victim selection, a steal request is
expected to succeed after n−1

2 failures.
Let tsendR be the time it takes to send a steal request and tsendT be the time it

takes to send a task. In addition, let trecvR be the time it takes to receive a steal
request. We further define tlat, tsel, and tsteal to be the message handling latency,
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the time it takes to select a victim, and the time it takes to steal (dequeue) a task,
respectively. The time for a failed steal that results in a forwarded request can be
broken down as tfail = tlat + trecR + tsel + tsendR, while a successful steal amounts to
tsucc = tlat + trecR + tsteal + tsendT . Randomly selecting victims, the time it takes to
receive a task becomes

tRws = tsel + tsendR + n− 1
2 · tfail + tsucc

= n+ 1
2 · (tsendR + tlat + trecR + tsel) + tsteal + tsendT . (3.1)

By timing the different operations, we observed that tsel ≈ tsteal, whereas communica-
tion is an order of magnitude more expensive. (Recall that neither tsel nor tsteal involves
synchronization.) To simplify, we drop tsel and tsteal and say that

tRws ≈
n+ 1

2 · (tsendR + tlat + trecR) + tsendT . (3.2)

In other words, work stealing is dominated by the cost of communication, including
message handling latencies.

Now consider that thieves may prevent further failure (assuming enough tasks are
available) by sending steal requests to the victim from which they received their last
tasks. When n steal requests are lined up (worst case), and all orderings are equally
likely, the expected time it takes to receive a task is

tLV
ws = tsel + c · tsendR + tlat + n+ 1

2 · (trecR + tsteal + tsendT ), (3.3)

with c ≥ 1 accounting for the possibility that sending steal requests to a single victim
may increase contention among thieves, and tlat being amortized over n+1

2 steal requests,
which can be handled in succession. We omit tsel and tsteal just like we did above and
conclude that

tLV
ws ≈ c · tsendR + tlat + n+ 1

2 · (trecR + tsendT ). (3.4)

Last-victim selection may not be able to reduce the number of messages, but it
increases the efficiency with which steal requests are handled. Random victim selection
is sensitive to variations in tlat. Workers that are busy running tasks cannot respond
to steal requests, causing latency to increase, which in turn increases linearly with the
number of workers. On the other hand, workers that are idle have nothing to do besides
handling messages, in which case latency becomes negligible. If tasks are so short that
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tlat is of no significance, random victim selection incurs a communication overhead of
n+1

2 · (tsendR + trecR) + tsendT , compared to c · tsendR + n+1
2 · (trecR + tsendT ) for last-

victim selection. Assuming ideal channels, that is, assuming c = 1 and tsendR = tsendT ,
both strategies have the same communication cost. But more realistically, we expect
c > 1 and possibly tsendR ≥ tsendT because steal requests are sent over MPSC channels,
whereas tasks are sent over SPSC channels. Therefore, c · tsendR + n+1

2 · tsendT > n+1
2 ·

tsendR + tsendT leads to last-victim selection having higher communication cost than
random victim selection. Under the assumption of observable contention (c > 1),
tsendT ≥ tsendR or tsendR > tsendT and c > (n+1)/2·(tsendR−tsendT )+tsendT

tsendR
suffice for last-

victim selection to be outperformed by random victim selection.
As an example for the latter case, suppose that sending a steal request takes 5%

longer than sending a task. Figure 3.7 plots the values of c above which last-victim
selection would incur more overhead in terms of channel operations. Judging from
these numbers, it is entirely possible that, for sufficiently short tasks, random victim
selection provides better load balancing, despite the number of failed attempts caused
by sending steal requests to random workers.

The results of testing our hypothesis on the SPC benchmark are shown in Figure 3.8.
Up to a task length of roughly 25 microseconds, random victim selection is preferable
to last-victim selection because it achieves a better distribution of work, as measured
by the number of tasks assigned to each consumer. For longer tasks and thus longer
message handling latencies, the opposite is true, with last-victim selection providing
better load balancing and performance. Interestingly, last-victim selection is fast for
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Figure 3.8: In a single-producer and multiple-consumers setting, as in this example of
running SPC with n = 106 and t between 0 and 100 microseconds, last-victim selection
leads to a poor distribution of work when scheduling fine-grained tasks of up to roughly 25
microseconds. Above that task length, however, it achieves a better distribution of work
than random victim selection. The bottom figures show the numbers of tasks executed per
consumer (medians of 460 data points, along with 10th and 90th percentiles). A horizontal
line labeled “Ideal” indicates a perfectly even distribution of work. (GCC 4.9.1, -O3, AMD
Opteron multiprocessor, 48 worker threads)
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empty tasks because it fails to distribute many of them. Empty tasks are a special
case for which load balancing is guaranteed to be detrimental to performance; there is
simply no parallelism to take advantage of.

3.4.3 Limitations

Random victim selection tends to work well when the load is fairly balanced, that
is, when most workers can send tasks in response to steal requests. When workers
frequently run out of work, however, last-victim selection may reduce the number of
failed steals, unless the last victim frequently runs out of work too. If that happens to
be the case, last-victim selection yields no improvement over random victim selection.

The problem is that, without further communication, workers have no way to know
whether a potential victim has tasks or not. Probing a victim’s deque to make sure
it is non-empty before deciding to send a steal request requires support for shared
memory and atomic operations to prevent data races. Another potential optimization
with the same goal is to allow workers to close their channels (temporarily) while they
are idle. Closed channels could then be skipped when searching for victims. Unlike in
Go, where a closed channel indicates that no more values will be sent, a worker would
signal that no more steal requests will be received and handled until the channel is
reopened. Again, this is easy to implement if shared memory is available, in which case
determining whether a channel is closed amounts to the same as determining whether
a deque contains tasks: both approaches involve reading shared state to distinguish
idle from busy workers. Idle workers are not selected as victims.

Sanchez et al. proposed a work-stealing scheduler in which managers oversee groups
of workers [215]. Receiving updates from workers, managers keep approximate task
counts and initiate steals based on this information. Update messages serve the purpose
of notifying managers about changes in the task distribution as well as triggering steal
requests, which are sent by managers whenever a worker appears to be running out
of tasks. Steal requests are sent to the workers with the most tasks to minimize the
chance of failure. It is unclear, however, to which extent this scheduler is able to scale
without the supporting hardware primitives presented in the paper.

3.5 Importance of Steal-Half for Fine-grained Parallelism

Different victim selection strategies may affect the overhead associated with stealing
a task, but may not prevent frequent stealing in unbalanced computations. The cycle
of stealing a task, executing it, and running out of work again becomes increasingly
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Figure 3.9: Being able to reduce the work-stealing overhead is essential for scheduling
fine-grained parallelism. Informed by the results of Section 3.4, we combined steal-one with
random victim selection in (a) and last-victim selection in (b). (GCC 4.9.1, -O3, AMD
Opteron multiprocessor)

inefficient with decreasing task lengths.
Suppose m workers are trying to balance n tasks. Let t be the time it takes to run

a task (task length) and tws be the time it takes to steal a task. (Recall Equations
(3.2) and (3.4).) If t� tws, that is, if t+ tws ≈ t, the speedup of the computation will
approach the number of workers m. Using a concrete example, ten workers are able to
execute 100 tasks, each taking one second, in ten seconds. If t ≈ tws such that t+ tws ≈
2t, the speedup will not exceed m/2. Generally speaking, the speedup is bounded by

n·t
(n·(t+tws))/m

, which simplifies to t·m
t+tws

. We expect no speedup if t is approximately equal
to tws

m−1 . If t falls below tws

m−1 , the parallel computation will end up being slower than
the sequential one; the speedup will turn into a slowdown. Theoretically, if t were so
small that t+ tws ≈ tws, the speedup would tend towards zero.

3.5.1 Stealing Single Tasks

Figure 3.9 uses the SPC benchmark as an example to show the practical limitations of
stealing single tasks, a strategy we call steal-one. Judging from the speedup curves, it
takes more than 10µs to receive a task in Figure 3.9 (a) and less than 100µs in Figure
3.9 (b). We can estimate tws using the speedup formula above, but must be aware of
the underlying assumption that n tasks are distributed evenly among m workers, which
may not hold true in practice. Solving S = t·m

t+tws
for tws gives tws = t·m

S
− t. With 48

threads, one of them managing termination detection, we measure speedups of 4.5 and
32.5 for t = 10µs and t = 100µs, respectively. Substituting the values of S, t, and m,
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we get tws = tRws = 94.4µs for t = 10µs and tws = tLV
ws = 44.6µs for t = 100µs. (We

use different victim selection strategies, see Figure 3.9.) Though difficult to determine
precisely, we measure a median latency of 121µs for t = 10µs and 44µs for t = 100µs.
(The measured values show a high variability; the 50% central ranges are 142µs for
t = 10µs and 49µs for t = 100µs.) One value is very close to the estimate, the other
value is off by 28%. In fact, t = 10µs yields an uneven distribution of work, unlike
t = 100µs, as hinted at in Figure 3.8. Worker 0, which creates all tasks, also runs many
more tasks than other workers. The actual overhead associated with work stealing is
thus higher than the estimate, which does not account for load imbalance.

We should be convinced by now that steal-one is inadequate for scheduling fine-
grained parallelism, unless a few steals suffice to maintain load balance. Reducing the
cost of work stealing also means reducing the frequency with which workers need to
steal. The idea is simple: workers may try to steal multiple tasks at a time to amortize
the cost of stealing over n, n > 1, tasks that can be executed in sequence. Stealing
multiple tasks helps spread the work, especially when dealing with large numbers of
tasks. With more workers having tasks to spare, subsequent steals are more likely to
succeed, even if victims are selected randomly.

3.5.2 Stealing Multiple Tasks

There are static and dynamic approaches to stealing multiple tasks. A possible strategy
is to steal a fixed amount of work, say n tasks, and fall back to steal-one when a victim
has less than n tasks left. Such a strategy, though easy to implement, becomes difficult
to use when the workload is unknown or changes at runtime. Finding a value of n that
is neither too small nor too large requires experimentation.

Dynamic strategies solve this problem by choosing n based on the number of tasks
m in a victim’s deque such that n = f(m), where f is a monotonically non-decreasing
function [44]. The more tasks are there for thieves to steal, the larger the value of n will
tend to be. In this way, thieves are able to adapt to the workload. Among the different
possibilities, stealing half of a victim’s tasks, that is, f(m) = bm

2 c, has emerged as a
robust strategy [111, 44]. The idea behind steal-half is to transfer half of a victim’s
remaining work with a single steal, assuming a correlation between the number of tasks
and the amount of work to do.

The results of using steal-half are included in Figure 3.9. Efficiency is up from 10%
in (a) and 69% in (b) to 88% in (a) and 96% in (b). To understand where the large
difference in performance comes from, Figure 3.10 shows execution profiles. Execution
time is broken down into the time spent running tasks, enqueuing/dequeuing tasks,
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Figure 3.10: Execution time profile of SPC with n = 106 and t = 10µs under (a) steal-one
and (b) steal-half work stealing. Worker 1 was dedicated to termination detection and is
excluded from the list of worker IDs. The different sections of code were timed by inserting
RDTSC instructions to read the processors’ time-stamp counters (see [125], Chapter 17). This
slowed down execution by 10% and 2% compared to the uninstrumented versions of steal-one
and steal-half. (GCC 4.9.1, -O3, AMD Opteron multiprocessor, 24 worker threads)
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sending/receiving tasks, sending/receiving steal requests, and idling. The time spent
for work stealing, directly or on behalf of other workers by means of forwarding steal
requests, is derived from handling steal requests and tasks. A worker is idle while
waiting to receive tasks.

Under steal-one, worker 0 does more work than necessary, executing over twice
as many tasks as other workers, which spend less than 20% of their time on useful
work. By contrast, under steal-half, workers get to run a lot more tasks as the cost
of scheduling and work stealing shrinks to 5–8%. Apart from worker 0, which is busy
creating and distributing tasks, workers spend more than 90% of their time running
tasks. This vastly better utilization of workers explains the significant speedup of
steal-half over steal-one.

3.5.3 Implementing Steal-Half with Private Deques

Private deques have the benefit that stealing multiple tasks is a relatively straightfor-
ward extension. The same cannot be said for concurrent deques, which must resort to
coarse-grained locking or implement intricate synchronization protocols [111].

In our implementation, every worker has a doubly-linked list that serves as a private
deque, with push and pop operating on one end, and steal operating on the other end.
Steal-half requires a worker to traverse the list, find the middle element, split the list
in half, and send the second half to the thief using the channel reference in the steal
request. Sending tasks sequentially, one by one, incurs overhead proportional to the
length of the list. In addition, it is no longer possible to guarantee that channel_send
never blocks as victims may try to send more tasks than a channel can buffer.

Shared memory permits an efficient solution with constant overhead: a single
pointer-sized message can move a list of tasks between workers without copying. Steal-
ing proceeds as follows: The victim splits its deque in half, intending to give away one
half to the thief. Splitting a deque with head hv creates a new deque with head ht

whose ownership is transferred by sending ht (a pointer) to the thief. This requires
that channel_send and channel_receive copy pointers rather than tasks by using
the technique outlined in Section 3.1.3. Upon completing the steal, the victim’s lo-
cal pointer goes out of scope, permitting only the thief to access tasks through ht.
The thief receives ht, prepends the list of stolen tasks to its own deque, and continues
working. While copying tasks is inevitable in the absence of shared memory, similar op-
timizations may be used to limit the number of messages in a distributed environment,
provided that tasks are stored in a way to facilitate one-sided access [185].

A doubly-linked list is not the most efficient data structure when it comes to split-
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ting [29], but in practice, workers rarely pile up huge numbers of tasks while other
workers remain idle. Tasks need not be stored in lists; they can also be stored in trees,
which permit asymptotically efficient implementations of steal-half at the expense of
adding overhead to task insertion and removal [122]. Using forests of binomial trees,
for example, would enable thieves to steal the largest trees in the forests. Because
task queues are private, no synchronization is needed, no matter how complex the
underlying data structures are.

An alternative to arranging tasks in trees is building up nested lists. Cong et al.
insert tasks into lists before making them available to thieves [67]. This task creation
strategy saves deque operations and supports efficient stealing, but does not expose
parallelism while a batch of tasks is being created. A batch is unsplittable and must be
executed sequentially. The challenge is to schedule batches that are neither too small
nor too large for the problem at hand. Cong et al. use a bounded exponential growth
function to generate small batches when tasks are needed for load balancing and large
batches when enough tasks are available to keep workers busy.

3.6 Importance of Polling for Coarse-grained Parallelism

We noted in Section 3.4.2 that message handling delays affect the time it takes to steal
a task. Especially random victim selection is prone to poor performance when steal
requests take a long time to get processed. (Recall Equation (3.2).) To stay responsive,
workers must regularly check for steal requests. Such checks are easily integrated with
deque operations, primarily push and pop, which we assumed are called frequently
enough to guarantee progress. But even if most tasks are indeed fine grained, this
assumption is bound to become a problem.

Suppose a worker schedules a single long-running task that does not call back into
the runtime system. While the worker is busy running the task, any steal request
that arrives is put on hold until the task is finished. The performance implications
are shown in Figure 3.11 using the BPC benchmark. Let us concentrate on the red
curve first. The other curves represent three attempts to improve performance—two
based on software polling, one based on interrupts—which are described in turn in the
following subsections.

Whether tasks run for 10µs or 100µs has practically no effect on scalability, a result
that seems to contradict the expectation that coarse-grained parallelism is easier to
exploit than fine-grained parallelism. On closer inspection, it becomes clear that idle
workers are stalled until their steal requests are handled, which requires waiting for
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Figure 3.11: The longer it takes to execute a task, the more important it becomes to check
for pending steal requests. (GCC 4.9.1, -O3, AMD Opteron multiprocessor)

other workers to finish their current tasks. It is not hard to imagine a scenario where
n workers are sitting idle until the only worker with tasks to spare returns from a long-
running task. The longer it takes to complete a task, the more important it becomes
to check if steal requests are waiting to be handled, and, if so, handle them.

3.6.1 Software Polling

Software polling necessitates a new function rts_poll, which, when called, handles
pending steal requests. Programmers can incorporate this function in long-running
tasks and have workers periodically check for steal requests. This guarantees that
message latencies are bounded and independent of task length. In the case of BPC,
it makes sense to add polling to the compute-intensive consumer tasks, which neither
create child tasks nor synchronize with other tasks and thus do not invoke the runtime
system. A consumer task contains a loop to which we add a call to rts_poll on every,
say, tenth iteration. Alternatively, we may install a timer to poll at regular intervals.
The blue curve in Figure 3.11 reveals that polling is simple and effective: scalability
improves with increasing task length, as one would expect.

To understand the influence of polling on the performance of work stealing, Figure
3.12 breaks down the execution time for each worker in a 24-thread run. Not paying
attention to steal requests while scheduling an unbalanced computation such as BPC
can impede the performance of workers. As long as tasks are sufficiently fine grained,
workers can respond to steal requests in a timely manner. The situation changes, the
longer it takes to complete a task: the message latency grows proportionally to the task
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Figure 3.13: Parallel efficiency varies with the time between two polling operations. The
rightmost values, 10µs in (a) and 100µs in (b), correspond to no polling while tasks are
running. (GCC 4.9.1, -O3, AMD Opteron multiprocessor)

length. Increasing the task length is akin to decreasing the responsiveness of workers,
which is a major factor in the performance of load balancing. In practice, tasks can
vary in length by multiple orders of magnitude, from microseconds to seconds, and
runtime systems are expected to handle a wide range of parallel workloads.

On top of the delay, stealing often fails; on average, eight attempts are needed to
receive new work. The net result is that workers spend less than 50% of their time
on tasks, in contrast to more than 90% when workers poll once every microsecond for
the duration of a task. The difficulty that comes with polling is to strike a balance
between polling frequently enough and polling too frequently. On the one hand, steal
requests must be handled promptly, or stealing stalls and performance suffers. On the
other hand, polling incurs overhead that gets in the way of other work. Failure to keep
this overhead in check can degrade performance.

Figure 3.13 shows how efficiency varies with the polling interval. Short intervals
down to 1µs are feasible because checking for steal requests is relatively cheap. In the
absence of steal requests, rts_poll returns after calling channel_peek, which takes
around 200 cycles on our test system.

3.6.2 Polling with a Background Thread

An interesting question to consider is: can we take advantage of software polling with-
out requiring the programmer to manually insert polling statements? The idea is to
use a background thread to process messages while a worker is busy running tasks.
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Our implementation is as follows: Every worker creates a helper thread, pinned
to the same processor, that sleeps until being notified. When woken up, the helper
thread assumes ownership of the worker’s deque and channels and starts handling steal
requests by running a loop that calls rts_poll before yielding control back to the
worker. As long as the helper thread is tasked with handling steal requests, the worker
must not access its deque, poll for steal requests, or touch any data structure belonging
to the runtime system. For this reason, the helper thread is only allowed to service
steal requests while the worker is running user code. It is put to sleep when a task
is finished. Thus, every long-running task starts with a call to wake_helper and ends
with a call to stop_helper.

Unfortunately, context switches and synchronization come with a cost that is re-
flected in Figure 3.11. That helper threads succeed in handling the majority of steal
requests is practically irrelevant, given how much overhead is introduced. Repeating
the experiment on a 12-core, 24-thread Intel Xeon E5-2630 processor and assigning
helper threads to the logical processors afforded by Hyper-Threading did not change
the results.

3.6.3 Interrupts

Software interrupts triggered by signals provide an alternative to polling. Typically
used to notify processes of exceptional events, such as the notorious segmentation vi-
olation, signals allow processes or threads to communicate without exchanging data,
except for the signal number. Processes can catch signals by defining and registering
signal handlers, procedures that are invoked upon receipt of the signals they are reg-
istered to handle. The advantage of interrupt-driven communication is that processes
do not have to wait or poll for messages. Signals are handled as soon as they arrive,
unless these signals are blocked or otherwise ignored.

We install a process-wide signal handler for the user-defined signal SIGUSR1 and
cause every steal request to send a signal via pthread_kill(thr, SIGUSR1), where thr
is the thread ID of the selected victim. The signal handler wraps a call to rts_poll,
which, because it involves deque and channel operations, cannot safely execute in run-
time system context7. For this reason, and to keep complexity under control, signals
are blocked by default and must remain blocked for as long as a worker executes run-
time system code. When a worker enters a task function, a call to enable_interrupts

unblocks signals and allows interrupts to occur. When a worker leaves a task function,
7If a signal interrupts the execution of a non-reentrant function, and the signal handler happens

to call the same function, the behavior of the program is undefined.
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Figure 3.14: The problem with signals: Unbalanced computations cause frequent interrupts,
as in this of example of running BPC with d = 10 000 and n = 9. The corresponding speedups
are included in Figure 3.11. (GCC 4.9.1, -O3, AMD Opteron multiprocessor)

a call to disable_interrupts makes sure that signals are blocked again.
Figure 3.11 shows that interrupts fail to scale beyond a dozen workers. For the

fine-grained workload, we measure a maximum speedup of 3.57. Starting from six
workers, every additional worker slows down execution. With 14 workers, the parallel
program is already slower than its sequential version. The medium-grained workload
scales slightly better, achieving a speedup of 10.45 with 14 workers.

Unbalanced computations such as BPC generate many steal requests. Figure 3.14
gives an idea of the resulting signal overhead by plotting the number of signals sent
divided by the work of the computation. Hundreds of signals on average per millisecond
interrupt the program far too often. Judging from these numbers, between 20 and 50
signals per millisecond can be tolerated. The gentle slope resulting from t = 100µs
suggests that interrupts might be a viable alternative to polling, given sufficiently
long-running tasks and small worker pools.

Again, repeating the experiment on a 12-core, 24-thread Intel Xeon E5-2630 pro-
cessor, we measured speedups of 4.54 (t = 10µs) and 14.26 (t = 100µs) with six and 18
workers. Beyond these numbers of workers, performance degraded, albeit slower than
in Figure 3.11.

3.6.4 Polling versus Interrupts

In the end, like many decisions, choosing between polling and interrupts involves a
trade-off. Both approaches have their strengths and weaknesses. Polling succeeds as
a low-overhead mechanism for handling steal requests, at the cost of shifting some
burden from the runtime system to the programmer. Interrupts are raised and handled
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transparently, but the associated overhead can be overwhelming. It is well known
that coarse-grained parallelism favors interrupts, while fine-grained parallelism requires
polling [226, 57, 143, 154].

Ideally, we would like to be able to combine the performance of polling with the
reliability of interrupts. Addressing this problem in hardware might lead to an effi-
cient solution, such as an interrupt-based mechanism that executes entirely in user
space [215]. Building on top of cache coherence protocols, communication could be
accelerated by exposing cache events, such as updates to specific cache lines to indi-
cate the availability of messages, that trigger interrupts and cause the processor to call
predefined handler functions [225, 181]. For now, we stick with polling for practical
reasons. Without some hardware support, an interrupt-driven implementation is hard
to reconcile with the idea of a runtime system that targets fine-grained parallelism:

• Interrupts have a certain runtime overhead, exacerbated by frequent transitions
between user mode and kernel mode, which renders them impractical for frequent
events such as steal requests. Part of the overhead may be amortized by merging
signals close in time to each other [22], but apart from causing fewer interrupts, the
potential for optimization is limited.

• Interrupt handling complicates (an already complex) runtime system as interrupts
happen at unpredictable times and demand immediate attention. Suppose a worker
is interrupted while pushing tasks onto its deque. The interrupt might have occurred
when the worker was updating the head, leaving the deque in an inconsistent state
until control is transferred back from the interrupt handler. To prevent interrupt
handlers from accessing inconsistent data structures, interrupts must be disabled
on entry into critical sections and restored on exit. Forgetting to do so will lead to
unpredictable results. There may be no practical alternative but to leave interrupts
disabled, except when running user code.

• Relying on the operating system to interrupt the execution of workers runs counter
to our stated goal of improving portability without sacrificing performance, unless
we can guarantee the efficiency of the operating system.

Software polling can be integrated with local deque operations, such that every
push/pop has the side effect of handling steal requests. In case of no steal requests,
polling overhead is determined by channel_peek. When scheduling fine-grained par-
allelism, workers push/pop tasks frequently enough to obviate the need for rts_poll



3.6.4 Polling versus Interrupts 71

in most cases. Likewise, programs that create many child tasks, such as implementa-
tions of divide-and-conquer algorithms, tend to achieve short message latencies. For
long-running tasks it is up to user code to determine the frequency of polling.

Therein lies the biggest downside of polling: it affects the performance of the run-
time system if used incorrectly. The programmer must be aware of this limitation and
work around it when necessary by inserting (or removing) calls to the runtime library.
The problems with imperfect or “leaky” abstractions are well known [130, 227]. How-
ever, as pointed out by Spolsky [227], all non-trivial abstractions tend to leak some
implementation details that are considered part of the abstraction. Mytkowicz et al.
argue that every task abstraction is leaky in the sense that programmers must reason
about task granularity to avoid creating too many fine-grained tasks [179]. Even the
most carefully optimized runtime system carries some overhead that can neither be
hidden nor ignored. Whether polling can benefit performance is likewise a matter of
task granularity.

Many runtime systems that need to handle messages prefer polling over interrupts.
X10 provides a method called Runtime.probe to handle pending activities including
steal requests [218, 100]. Manticore integrates polling with garbage collection [202].
Lazy Threads [99] and StackThreads/MP [236] depend on polling to know when to
migrate threads to other processors. In sufficiently advanced implementations, the
compiler may help with inserting runtime checks into application code [90].

Polling and interrupts can be combined, motivated by the observation that the
dynamic behavior of some programs complicates a choice between the two approaches
[143, 154]. Maquelin et al. proposed Polling Watchdog, a hardware extension that
generates a (hardware) interrupt when the network is not polled within a certain period
of time after the arrival of a message [154]. The work-stealing scheduler of Acar et al.
creates an additional thread that issues interrupts as frequently as every 200µs [28].
This is akin to polling at regular intervals without assistance from the programmer. To
approach the performance of polling, however, more control may be needed than the
runtime system allows. We have seen in Figures 3.11 and 3.13 that a polling interval
of 200µs is too long for our purposes.

We end the discussion by revisiting the results of section 3.4.2. Recall that, given a
single producer, multiple consumers, and steal-one work stealing, random victim selec-
tion is preferable to last-victim selection when confronted with fine-grained parallelism
of up to 25µs per task. (See Figure 3.8.) Above 25µs, however, last-victim selection
wins because it is less sensitive to message handling delays. What happens when we
introduce polling? After all, polling serves to reduce message handling delays, so we
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expect performance to improve, especially when victims are selected randomly. Figure
3.15 confirms: polling narrows the performance gap between the two strategies, with
speedups of up to 2.52× over the previous results in Figure 3.8. In terms of relative
performance, we reach the same conclusion as in section 3.4.2, except for the point of
intersection, which has shifted from 25µs to 35µs.

3.7 Summary

This chapter has focused on steal requests and tasks—the data that is exchanged over
channels. Every worker allocates two specialized channels: an MPSC channel where
it receives steal requests and an SPSC channel where it receives tasks. Steal requests
are forwarded rather than acknowledged, letting workers steal on behalf of others upon
receiving steal requests that cannot be handled. Random victim selection fits in well
with forwarding steal requests, but may cause a lot of communication if only few
workers have tasks left. Stealing half of a victim’s tasks—steal-half—is straightforward
to implement with private task queues, especially when shared memory is available,
in which case tasks do not need to be copied. While steal-half is important to tackle
fine-grained parallelism, polling is necessary to achieve short message handling delays
when workers schedule long-running tasks.
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Synchronization is required to coordinate the execution of tasks. Our task model is
inspired by OpenMP 3.0 [40, 17, 18], which offers two synchronization constructs: a
full task barrier and a task barrier for child tasks. The former detects when all tasks
are done; the latter waits only for immediate child tasks. We support a more general
synchronization construct—futures [91]—for which we present a portable and efficient
implementation based on channels.

Section 4.1 starts with an algorithm for termination detection in preparation for de-
scribing task barriers in Section 4.2. Fine-grained synchronization is achieved with the
help of futures, whose implementation is detailed in Section 4.3. Futures lend them-
selves to parallelizing divide-and-conquer algorithms. Whether they are lightweight
enough to be able to compete with Cilk Plus is evaluated in Section 4.4.

4.1 Termination Detection with Steal Requests

Workers are either busy, executing tasks, or idle, searching or waiting for tasks. Ter-
mination detection is the problem of determining when all workers are idle, meaning
that every task created up to this point in the program has been completed. Because
of the nature of work stealing, idle workers may continue working at any point in time,
as long as there are tasks in the system.

Termination detection is relatively straightforward to implement with shared mem-
ory or a shared memory abstraction [116, 67]. The basic idea is to count the number
of idle workers (or busy workers) to detect when all deques are empty and all work is
done. Initially, the count of idle workers is equal to the number of workers N . A count
of N indicates that the computation has terminated (or has not been started). When
a worker starts working, it decrements the count. When a worker runs out of tasks
and starts stealing, it increments the count. Before a worker tries to steal a task from
a non-empty deque, it decrements the count to avoid a race condition with the victim,
which might run out of tasks and declare itself idle before the thief has a chance to get

73
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back to work. Without a prior decrement, the victim could trigger false termination
detection by incrementing the count to N , signaling completion while the computation
is still in progress. If a thief has decremented the count, but stealing fails, it must
increment the count again.

Distributed termination detection is based on collecting votes to decide if termi-
nation has occurred [162]. In Dijkstra’s classic algorithm, N processors are arranged
in a ring [72]. An idle processor, say processor 0, initiates termination detection by
sending a token to its neighbor, processor 1, which receives the token, colors it if the
computation is still in progress, and passes it along to processor 2. This token passing
continues until the token is returned to processor 0, which, depending on the color of the
token and its own vote, can conclude termination or start a new round of termination
detection at a later time.

Dijkstra’s token-passing algorithm has been used by distributed work-stealing sched-
ulers [75, 204]. Dinan et al. have implemented a variation of this algorithm in which
workers are arranged in a tree, rather than in a ring [73, 74]. Tokens are passed down
the tree, asking for votes, and up the tree, combining votes from subtrees. Termination
is detected when the root receives a positive vote; otherwise, if one or more workers
disagree, a new round of voting is started.

4.1.1 Managing Idle Workers

In this section, we introduce a termination detection barrier that does not depend on
shared state nor burdens workers with separate control messages, which are required
by distributed memory algorithms. The former is the result of using channel commu-
nication; the latter is achieved by collecting information about steal requests. There is
no need to inject more messages into the system when steal requests are already passed
between workers. Additional data, if needed, can be piggybacked with steal requests.
In addition, forwarding makes sure that workers enter termination detection only when
it is likely that no work remains [185].

We take the following approach: A worker is assigned the task of determining
whether termination has occurred by keeping track of steal requests and counting the
number of idle workers. We call this worker manager. But simply counting every steal
request towards the number of idle workers may lead to early termination detection.
There are two complications that must be dealt with: First, workers may send specu-
lative steal requests, expecting to run out of work but not knowing for sure. Receiving
a steal request does not necessarily mean that the thief is idle. It may be that the
thief is trying to prefetch some work. Second, work stealing happens between workers,
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without the manager’s knowledge. If the manager were involved in every steal, it could
quickly become a bottleneck for scalability, especially with frequent load balancing.

The first problem to address is that of counting only idle workers. To distinguish
idle from busy workers, we extend steal requests with a field, status, that indicates
whether a worker is working, idle, or registeredIdle by the manager. Initially, a new
steal request identifies a worker as working, unless, of course, the worker is already
idle when it starts to steal. A worker is idle if it has nothing to do besides handling
messages and waiting for tasks.

Generally speaking, there are two possible outcomes of a steal request: it either
succeeds or fails. If it fails repeatedly, say n times, it is returned to allow the thief to
change the steal request to idle (if true). This is a point worth emphasizing: if the
steal request were not returned, the transition from working to idle could not happen;
only the thief itself is in a position to confirm that it has no tasks left.

Figure 4.1 shows the changes to the handling of steal requests. In addition to status,
a steal request is extended with another field, failed, that counts how many times a
steal request has been forwarded. This count is used to decide when a steal request
is returned to the thief (lines 29–31). A returned steal request is either discarded if
the worker has tasks (lines 1–5), forwarded again if the worker is still busy, but likely
running out of work soon (lines 21–23), or sent to the manager if the worker is idle.
(lines 18–20).

The manager handles steal requests just like other workers, except for the addi-
tional requirement to examine status in order to keep track of idle workers. When the
manager runs out of tasks and receives a steal request that points to an idle worker, it
changes the steal request to registeredIdle, updates the set of idle workers, and checks
for termination, that is, if every worker is registered as idle (lines 9–12). Afterwards,
it selects a new victim for the steal request. Note that, according to Figure 4.1, the
manager will eventually send a message to itself, passing up the opportunity to directly
register itself as idle. An implementation of HandleStealRequest should consider
this optimization. It is also possible to use a dedicated manager that forwards every
steal request. Because a dedicated manager has no need for a deque, nor for sending
own steal requests, it makes sense to write two versions of HandleStealRequest so
that manager and workers avoid unnecessary runtime checks.

The second problem is related to work stealing: idle workers, including those iden-
tified as registeredIdle, may receive tasks and start working again. Clearly, we do not
want to put the manager in a position to acknowledge every single steal, but we still
have to eliminate any possibility of detecting termination on the basis of outdated in-
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HandleStealRequest() // Second version

Let Qi be the private deque of tasks of worker i,
Ci be the channel for sending steal requests to worker i,
Cm be the channel for sending steal requests to manager m,
S be the steal request to handle,
n be the number of steals to attempt

1 if Qi is not empty
2 if i == S.thief
3 // Own steal request is no longer needed
4 Discard S
5 return
6 Pop task t from the top of Qi

7 Send task t to channel S.chan
8 else
9 if i == m ∧ S.status == idle
10 S.status = registeredIdle
11 Add S.thief to the set of idle workers
12 Check for termination
13 if S.failed == n
14 // Steal request must have been returned
15 assert i == S.thief
16 // Start new round of stealing (alternatively, back off if S.status == registeredIdle)
17 S.failed = 0
18 if worker i is idle
19 S.status = idle
20 Send S to channel Cm

21 else
22 Select a worker j, j 6= i, at random
23 Send S to channel Cj

24 else
25 S.failed = S.failed + 1
26 if S.failed < n
27 Select a worker j, j 6= i ∧ j 6= S.thief , at random
28 Send S to channel Cj

29 else
30 // Return steal request to S. thief
31 Send S to channel CS. thief

Figure 4.1: Because steal requests can be sent ahead of time, a worker must confirm that
it is idle before it can be counted as such by the manager.
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Figure 4.2: Updating the manager about the state of workers: a correct execution in the
presence of a race condition. ix, jx, and mx are events denoting the sending or the receipt of
a message x. The receipt of the update message m1 is not guaranteed to happen before the
receipt of a subsequent steal request from worker i. Specifically, since i2 and j2 are concurrent
events, neither i2 → j2 nor j2 → i2. As a result, the order of m1 and m2 depends on the
timing and sequence of the other workers’ operations.

formation. To illustrate the problem of early termination detection, suppose worker i
sends a task to worker j, which is idle and registered as such by the manager. (Worker
j’s steal request has status == registeredIdle.) There is no way the manager could
know that worker j has picked up a new task without simultaneously creating a race
condition with an undesirable outcome if, subsequently, worker i runs out of tasks and
becomes idle itself. The solution to this problem is to inform the manager of a worker’s
state change. We have two options: (1) have worker j send a message upon receiving
tasks, or (2) have worker i send a message on behalf of worker j, either before or after
sending tasks to j.

4.1.2 Updating the Manager

Let us first consider option (1). Figure 4.2 illustrates a possible ordering of sends
and receives among worker i, worker j, and the manager. In this diagram, threads
are drawn as horizontal lines, with time progressing from left to right. Dots denote
events, such as the sending or receipt of a message, and arrows indicate the direction
of communication between threads.

Four messages are shown: worker i sends a task to (idle) worker j, worker j sends
an update to the manager, and, at a later time, both worker i and worker j send
steal requests to the manager. The following discussion relies on two assumptions:
all messages are sent over channels, and messages sent over the same channel are not
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reordered. Let ax and bx denote the sending and the receipt of a message x between
workers a and b. Expressed in terms of “happens before” (→) [140], if ax→ bx (trivially)
and ax → ay, that is, worker a sends another message y after message x, then bx → by

by the FIFO property of the channel.
Looking at Figure 4.2, we see that m1 → m2. The manager receives the update

about worker j being no longer idle before a subsequent steal request sent by worker
i. Provided the manager acts on the update in the time between m1 and m2, the
possibility of early termination detection after m2 is eliminated. Can we prove that m1

→ m2, implying m2 9 m1 (strict partial order)?
We know that i1 → j1, j1 → j2, because worker j is responsible for sending the

update to the manager, and j2 → m1. By transitivity, i1 → j2 as well as i1 → m1. We
also know that i1 → i2, i2 → m2, and, again, by transitivity, i1 → m2. On the other
hand, neither i2 → j2 nor j2 → i2. We say the two events are concurrent, denoted i2 ||
j2. If we cannot order i2 and j2, there is no guarantee that m1 → m2. However unlikely,
it is possible that, in a given execution, i2 races with j2, causing m2 to happen before
m1. If the manager concludes that worker i is idle, but is still unaware that worker j
has picked up a new task, it may falsely detect termination.

Note that we have to be pessimistic: m2 → m1 does not pose a problem if the
manager has tasks itself, or if m2 is the receipt of a steal request that indicates that
worker i is still working. Such a steal request does not count towards the number of
idle workers.

Given that option (1) violates the safety property of termination detection, we are
left with option (2): have worker i send the update in place of worker j. Figure 4.3
shows a possible ordering of events, drawn like Figure 4.2 so that m1 → m2. Again,
can we prove that this is true for every possible ordering?

We now have i1 → m1, i1 → i2, because worker i is responsible for sending the
update to the manager, and i2 → j1. Of course, i1 → i2 and i2 → i3, just as i1 → i2

earlier in Figure 4.2. Since i1 → i3 by transitivity, m1 → m2 if update message and
steal request use the same channel. Provided that we implement update messages in
terms of steal requests and thereby unify both message types, option (2) guarantees
the correctness of the algorithm by taking advantage of the FIFO property of channels.

Meeting this requirement is straightforward. In fact, there is no need to distinguish
between update messages and steal requests in the first place. When worker i has tasks
and receives a steal request from worker j that is registeredIdle, worker i changes the
steal request back to working, forwards it to the manager as an update, and sends
a task to worker j, completing the steal. The manager receives the repurposed steal
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Figure 4.3: Updating the manager about the state of workers: a correct execution with
no potential race condition. ix, jx, and mx are events denoting the sending or the receipt
of a message x. The receipt of the update message m1 is guaranteed to happen before the
receipt of any subsequent steal request from worker i or worker j if update message and steal
requests are received on the same channel.

request and applies the update by removing worker j from the set of idle workers. This
requires the manager to distinguish updates from regular steal requests, which, unlike
updates, must be forwarded in case the manager has no task to send. If worker j’s
steal request is not registeredIdle, an update is not needed and simply omitted because
worker j is not in the set of idle workers, so nothing needs to be corrected.

Note that it does not matter which of the two messages—update to manager or task
to worker j—comes first. As long as worker i sends the update before a subsequent
steal request, the update will be received first.

Figure 4.4 highlights the final changes to the handling of steal requests. Only the
manager receives updates, which are handled differently from regular steal requests
(lines 1–3). If the manager handles a steal request that is registeredIdle, an update
message is omitted (lines 8–10). By writing two versions of HandleStealRequest,
one for i == m and one for i 6= m, we can eliminate the corresponding runtime checks
and simplify the code.

The fact that steals may generate update messages that are sent to the manager
has a consequence. Suppose worker i handles a steal request from worker j, which is
registered as idle. Worker i, having tasks, updates the steal request and forwards it
to the manager as required by the algorithm. It then reactivates worker j by sending
a task. Worker j receives the task, executes it, runs out of work again, and sends
another steal request, coincidentally, directly to the manager. While worker j’s new
steal request cannot overtake the old one (the update message), it may still be the case
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HandleStealRequest() // Final version

Let Qi be the private deque of tasks of worker i,
Cm be the channel for sending steal requests to manager m,
S be the steal request to handle

1 if i == m ∧ S.update == true
2 Remove S.thief from the set of idle workers
3 return
4 // S must be a regular steal request
5 assert S.update == false
6 if Qi is not empty
7 if S.status == registeredIdle
8 if i == m
9 // Manager omits sending an update message to itself

10 Remove S.thief from the set of idle workers
11 else
12 // Send an update message to the manager
13 S.status = working
14 S.update = true
15 Send S to channel Cm

16 if i == S.thief
17 // Own steal request is no longer needed
18 Discard S
19 return
20 Pop task t from the top of Qi

21 Send task t to channel S.chan
22 else
23 // Same as in Figure 4.1

Figure 4.4: A worker notifies the manager when it reactivates another worker. Consequently,
the manager must distinguish between updates and regular steal requests.
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that both messages arrive in close succession. This implies that a channel capacity of n,
with n being the number of workers, is no longer sufficient to guarantee non-blocking
operations when trying to send steal requests to the manager. To account for the
worst case of 2n simultaneous steal requests/updates, we must double that channel’s
capacity. Other channels are not affected since updates are only sent to the manager.

Termination detection does affect the maximum number of pending messages. Sup-
pose all workers including the manager are registered as idle, and worker i starts to
create tasks and handle steal requests. Let m be the number of tasks that worker i
sends to a thief. Given that worker i does not send tasks to itself, it will send at most
(n−1) ·m tasks (see Section 3.3.1) plus n−1 notifications. What happens with worker
i’s steal request? It is either discarded, requiring another notification, or forwarded.
Discarding it might cause worker i to send a new steal request shortly thereafter. The
total number of messages is therefore bounded by (n−1) ·m+n+1 = n ·m−m+n+1.
If m = 1, there are at most 2n pending messages (n− 1 tasks plus n+ 1 updates/steal
requests), doubling the previous value of n (n− 1 tasks plus one steal request).

4.1.3 Performance

Termination detection latency We will refer to the time it takes to detect termi-
nation after its occurrence as termination detection latency or delay. What interests us
is how explicit communication affects this delay. Figure 4.5 compares our algorithm to
an adaptation of Herlihy and Shavit’s algorithm [116]. In this implementation, there
is no manager; its role is filled by a shared variable count that workers increment and
decrement using atomic operations. A worker confirms that it is idle by incrementing
count. Whenever a worker sends a task to an idle thief, it decrements count. (Recall
that whether a thief is idle or not is recorded in its steal request.) Termination is
detected when count is found to equal the number of workers.

As a consequence of sending steal requests, workers must confirm that they are
idle before they are allowed to increment count. The steals attempted in between
help reduce the number of atomic operations and associated contention [185], but can
increase the latency to termination [218]. This is apparent in Figure 4.5 (on the right),
which shows worst-case latencies as a result of sending steal requests only after the
computation has already terminated. (The microbenchmark does not create tasks and
uses a thread barrier to line up all workers before they have a chance to send steal
requests.) Although this situation is unlikely to occur in practice, given that workers
are allowed to send steal requests ahead of running out of work, some workers may have
been busy and cannot declare themselves idle as long as their steal requests are being
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Figure 4.5: Termination detection latency in the best case, when all workers are already idle
(left), and in the worst case, when no steal request has been sent yet (right). Lines connect
the median latencies of 100 data points. Vertical bars show interdecile ranges. (ICC 14.0.1,
-O2, Intel Xeon Phi)

passed between coworkers. The resulting latency grows linearly with the number of
workers unless steal requests are returned after a constant number of failed attempts.
Assigning the task of counting idle workers to a manager increases latency by up to
22% compared to using shared state and atomic operations.

Figure 4.5 shows termination detection to be orders of magnitude faster when work-
ers are already idle. (The microbenchmark detects termination twice, measuring how
long it takes the second time.) This is not surprising as most communication has taken
place at this point. The difference in latency stems from worker 0 waiting to receive a
“termination detected” message, which is redundant when using shared state. Another
way to make these channel operations redundant is to have worker 0 detect termination
in the capacity of manager. While this is certainly possible, it may not represent the
best configuration, considering that worker 0 is intended to run the root task, whose
execution may conflict with runtime system duties, such as keeping track of idle work-
ers. Other workers are either running mostly short tasks or are handling steal requests,
which makes them better candidates for overseeing termination detection. In this and
the following experiments, worker 1 serves as manager. On a 60-core, 240-thread Xeon
Phi, the manager is forced to share a core with up to three coworkers.

Impact of update messages What also interests us is how update messages affect
performance. To this end, we pick the benchmark that generates the most traffic in
terms of update messages and determine the performance penalty for avoiding shared
state. In the presence of shared state, neither manager nor update messages are needed,



4.1.3 Performance 83

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 2100

 2200

 2300

 0  1  2  3  4  5  6  7  8  9  10

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Task length (µs)

Communication with manager

Shared counter

(a) 60 threads

 2100

 2200

 2300

 2400

 2500

 2600

 2700

 2800

 0  1  2  3  4  5  6  7  8  9  10

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Task length (µs)

Communication with manager

Shared counter

(b) 120 threads

 2300

 2400

 2500

 2600

 2700

 2800

 2900

 3000

 3100

 3200

 3300

 3400

 0  1  2  3  4  5  6  7  8  9  10

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Task length (µs)

Communication with manager

Shared counter

(c) 180 threads

 2600

 2800

 3000

 3200

 3400

 3600

 3800

 4000

 4200

 4400

 0  1  2  3  4  5  6  7  8  9  10

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Task length (µs)

Communication with manager

Shared counter

(d) 240 threads

Figure 4.6: Performance difference between termination detection involving explicit com-
munication and termination detection using shared state and atomic operations. The four
graphs show the results of running BPC with d = 100 000, n = 9, and t between 0 and 10
microseconds using 60, 120, 180, and 240 threads. (ICC 14.0.1, -O2, Intel Xeon Phi)

and atomic operations suffice to signal that idle workers are about to receive new tasks.
In the presence of a manager, reactivating an idle worker entails two channel operations
(not counting the channel operations needed to transfer tasks) and some bookkeeping
by the manager to maintain correctness.

Figure 4.6 shows BPC execution times as a function of task length. BPC is a
perfect adversary as it causes workers to send a significant number of update mes-
sages to the manager, placing a lot of burden on both workers and manager. This
burden decreases with increasing task length: we count up to 88 748 messages when a
task immediately returns (0 microseconds), but “only” up to 27 137 messages when a
task lasts 10 microseconds. Not entirely unexpected, we find the performance impact
of sending update messages to be more pronounced towards fine-grained parallelism.
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Worker-manager communication increases execution time by at most 6–13% compared
to reading and writing shared state. At the other end of the task spectrum, which still
represents fairly fine-grained parallelism, the performance penalty is reduced to 1–3%.
With 60 threads, the manager has a core to itself. With 120, 180, and 240 threads, it
shares a core with one, two, and three coworkers, respectively.

4.1.4 Limitations

The algorithm, as we have described it, has two primary limitations: (1) It is not
resilient to losing steal requests. (2) While any worker, including worker 0, can function
as manager, having a single manager oversee an increasing number of workers will
eventually create a bottleneck, in much the same way as a single shared variable will
eventually limit the scalability of Herlihy and Shavit’s algorithm [116]. Luckily, both
limitations can be addressed. We will not go into too much detail and just briefly
describe what we think is interesting future work.

Our reasoning about liveness assumed that the number of workers is known to the
manager1 and that messages are neither dropped nor held up forever. If messages,
specifically steal requests, were forgotten or held up indefinitely for some reason, live-
ness would not be guaranteed, and termination would not be detected reliably without
additional communication between manager and workers. For example, messages could
be resent upon request by the manager, rather than periodically after a certain amount
of time. In any case, we would have to give up the idea of a single steal request per
worker to support these changes. Fault tolerance in the face of worker failures or crashes
requires checkpointing and/or task recovery facilities, which are beyond the scope of
this work [50, 152, 259, 58].

So far, we assumed that a single worker is in charge of termination detection. As
the number of workers increases, keeping track of steal requests requires more and more
work, potentially overwhelming the manager with too many messages at the same time.
Heterogeneous systems may help mitigate this problem by placing the manager on a
latency-oriented core while running other workers on smaller, less powerful cores [135].
On larger systems, workers are often grouped into distinct places or locality domains
so that work stealing algorithms are able to prioritize local victims over remote victims
[102, 170, 235]. This makes it possible to initiate global load balancing only after local
load balancing has failed [218, 191]. In the same way, termination can be detected
locally within each place before communicating with other places.

1The number of workers in the worker pool need not be fixed. Workers may join or leave the
computation at any time, provided they notify the manager.
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Our algorithm can be made hierarchical by introducing the notion of places and set-
ting up one manager per place. Intra-place termination is detected as described above,
while inter-place (global) termination is decided among managers, without involving
other workers in the process. Places themselves can form trees that model the com-
plex memory hierarchies of large-scale systems and determine the flow of termination
detection messages between managers [260, 170]. For this thesis, however, we continue
to focus on workers within a single place.

4.2 Task Barriers

Task barriers enable us to write programs containing parallel regions: a parallel region is
characterized by a number of tasks, which must complete before execution can continue.
A simple example is the following piece of code, in which a task barrier ensures that a
loop will run to completion by waiting for every task created in the loop body:

for (i = 0; i < N; i++) {
if (some_condition(i)) {

ASYNC(f, i);
}

}
TASKING_BARRIER();

It is important to note that a task barrier says nothing about the order of execution of
tasks. All tasks are assumed to be independent and are scheduled accordingly.

A task barrier marks a global synchronization point—a point in the program where
all tasks are required to complete. We restrict such synchronization points to the
implicit root task, the code between TASKING_INIT and TASKING_EXIT; it is impossible
to invoke a task barrier from a child task or from any task that is a descendant of the
root task without violating the barrier semantics.

OpenMP has slightly different barrier semantics, which is not surprising given that
barriers existed before the introduction of explicit tasks in version 3.0 of the standard.
In OpenMP, a barrier requires that all threads of a team, created by a parallel region,
meet at the barrier and complete all tasks of the enclosing region before any thread of
the team is allowed to proceed. Invoking a barrier from a child task without executing
a nested parallel region will result in a deadlock, as indicated in Listing 4.1.

Recall that TASKING_INIT is roughly equivalent to #pragma omp parallel followed
by #pragma omp master. Ending a parallel region is roughly equivalent to calling
TASKING_EXIT; in both cases, an implicit barrier makes sure that all work is done
before any of the worker threads terminate. As a result of binding the root task to the
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1 #include "tasking.h"
2
3 int sum(int a, int b)
4 {
5 TASKING_BARRIER(); // Runtime error
6 return a + b;
7 }
8
9 int main(void)

10 {
11 // Start of parallel region
12 TASKING_INIT();
13
14
15 // Create child tasks
16 // running sum()
17
18
19 // Explicit barrier
20 TASKING_BARRIER();
21
22 // End of parallel region
23 // Implicit barrier
24 TASKING_EXIT();
25
26 return 0;
27 }

1 #include <omp.h>
2
3 int sum(int a, int b)
4 {
5 #pragma omp barrier // Deadlock
6 return a + b;
7 }
8
9 int main(void)

10 {
11 // Start of parallel region
12 #pragma omp parallel
13 {
14 #pragma omp master
15 {
16 // Create child tasks
17 // running sum()
18 }
19
20 // Explicit barrier
21 #pragma omp barrier
22
23 } // End of parallel region
24 // Implicit barrier
25
26 return 0;
27 }

Listing 4.1: Task barriers in child tasks are forbidden in our task model (left) and in
OpenMP 3.x (right).

master thread, only the master thread is allowed to call TASKING_BARRIER, turning a
team barrier into a single-worker barrier with no possibility for contention: the master
thread waits until all tasks have executed to completion and is then released from the
barrier. In other words, the master thread waits until termination is detected before
returning from the barrier.

4.2.1 Extending Termination Detection

Task-based programs may contain several parallel phases separated by task barriers.
The pattern of task creation often resembles the following structure:

// Create tasks
...
TASKING_BARRIER();
...
// Create tasks
...
TASKING_BARRIER();

Suppose worker 0 leaves a task barrier upon detecting termination. Returning from
TASKING_BARRIER, worker 0 is the only worker that can be considered busy, namely
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with the root task, but there is a pending steal request that indicates the opposite:
worker 0 is still counted as idle. This may lead the manager to detect termination
again; a direct consequence of outdated worker information.

The problem is that termination can no longer be considered a one-off event. The
manager cannot be oblivious to the fact that execution continues after a barrier without
raising the possibility of race conditions that undermine the safety property of our
algorithm. We can close the race window by putting worker 0 in charge of termination
detection. In general, however, any worker may function as manager, and worker 0 must
somehow signal “end of barrier” to convey to the manager that execution continues.
It may not be immediately obvious why additional communication is needed. If the
manager assumes that worker 0 is busy between barriers, it must wait for worker 0
to send a new steal request; otherwise, it has no way of knowing when its previous
assumption about worker 0 being busy is no longer valid. Termination detection is put
on hold until that message arrives. What complicates matters is that worker 0 is not
allowed to send a new steal request while the current one has not been handled.

The code on the left-hand side of Listing 4.1 serves as a good example because
it contains two task barriers in a row. (The second task barrier is hidden inside
TASKING_EXIT.) If the manager expects a message after completing the first task bar-
rier, but none is generated, termination will never be detected for the second task
barrier. Even creating new tasks does not guarantee that the manager will be notified,
unless a steal succeeds, or worker 0 gets a chance to revoke its steal request. In both
cases, the result would be an update sufficient to let the manager conclude that exe-
cution continues, knowing that one worker must be busy. Recall that an update takes
the form of a steal request. To simplify the discussion, we keep referring to these steal
requests as updates.

Revoking worker 0’s steal request This suggests a first solution: a guaranteed
way to trigger an update is to make sure that worker 0 revokes its pending steal request.
Doing so entails an update message, notifying the manager that worker 0 is no longer
idle. As a result of this update, termination can no longer be detected on the basis of
outdated information.

Figure 4.7 depicts the additional communication after detecting termination. The
time between detecting termination and sending an update to the manager (w2−w1) is
the time it takes worker 0 to revoke its steal request. We will refer to this time as task
barrier latency or delay. Note that worker 0 is not required to wait until the manager
has received the update if the manager knows about the barrier and awaits a message.
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Figure 4.7: Additional communication between worker 0 and the manager after detecting
termination: m1 and w1 denote the sending and the receipt of a “termination detected”
message. w2 andm2 denote the sending and the receipt of an update message. After applying
the update, all but one worker are registered as idle, and normal termination detection
continues. Worker 0 returns from the task barrier immediately after w2.

Worker 0 cannot cancel its steal request without receiving it first. In fact, worker 0
may have to wait until its steal request is returned by a coworker. This may involve a
non-constant amount of communication, depending on the number of attempted steals,
since worker 0’s coworkers, except the manager, are oblivious to the barrier. (Recall
that only worker 0 executes TASKING_BARRIER.) Couldn’t worker 0 just cancel a random
steal request to minimize waiting time? All that matters is that one worker is counted
as busy after a barrier, whether it is worker 0 or one if its coworkers. From the point
of view of the manager, it would appear as if worker 0 handed over the root task.

Revoking a random worker’s steal request Suppose worker 0 receives a steal
request from worker i, i 6= 0, and wants to cancel it. Since worker i must be aware that
its steal request vanishes, worker 0 fakes a successful steal by sending an empty dummy
task. Having acknowledged the steal, worker 0 leaves the barrier and continues with
the root task, knowing that termination cannot be detected while worker i appears to
be busy. But worker i will not stay busy for long because the dummy task contains
no real work. If worker 0 were not involved in handling worker i’s subsequent steal
request, termination could be detected: worker i could transition from working to idle
and lead the manager to conclude that every worker is idle, hence causing termination
to be detected. Thus, worker 0 must not be bypassed.

Our solution is simple: we modify the dummy task such that the receiver sends a
steal request to worker 02, which, being busy running the root task, will keep the steal
request until it can reply with a real task or has no work left. In the former case, there
is no need for an update message since worker i has not been counted as idle. In the

2void dummy_task(void) {/*send steal request to worker 0*/}
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Figure 4.8: Latency between detecting termination and worker 0 returning from the task
barrier. In this experiment, all workers, except worker 0, are allowed to back off from stealing
after failing n times, where n is the number of workers. When a worker backs off, it refrains
from sending a new steal request for a certain period of time, initially set to 100 microseconds.
Other workers’ steal requests are not delayed and are forwarded as usual. If stealing continues
to fail, the backoff period is doubled. If stealing succeeds, the backoff period is reset to its
initial value. Lines connect the median latencies of 100 data points. Vertical bars show
interdecile ranges. (ICC 14.0.1, -O2, Intel Xeon Phi)

latter case, worker i’s steal request may be handled by a coworker if one has been given
tasks in the meantime. (Some steal requests may have arrived ahead of worker i’s.) If,
however, every attempt to steal fails, worker i confirms that it is idle, and termination
may be detected. In the special case where worker 0 receives its own steal request, the
dummy task is elided, and the only message that is sent is an update to the manager.

4.2.2 Performance

Task barrier latency We expect a measurable benefit from being able to revoke
random steal requests. Figure 4.8 confirms that waiting for worker 0’s steal request to
be returned is a source of increasing latency. What is more interesting is that other
workers can affect this latency if they back off from stealing after failing a number of
times. A backoff is a useful strategy to limit contention for a few remaining tasks as
well as to adjust the number of messages in a terminating computation. Every worker,
with the exception of worker 0, may back off between steals, provided it has been
registered as idle to not interfere with termination detection. For the duration of a
backoff, a worker refrains from sending a new steal request, but keeps forwarding those
of its coworkers because it is not allowed to make backoff decisions on behalf of them.

On the one hand, the more workers back off and postpone their steal requests, the
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Figure 4.9: Task barrier overhead due to explicit communication versus using shared
state and atomic operations. Figure (a) quantifies task barrier latency with the help of
a microbenchmark; Figure (b) compares performance on a more realistic benchmark with
4096/64 · 2 = 128 task barriers. In both tests, workers are allowed to back off using the same
strategy as in Figure 4.8. The shared counter based task barrier has no discernible overhead
beyond that of termination detection. (ICC 14.0.1, -O2, Intel Xeon Phi)

smaller the communication overhead required to return worker 0’s steal request. The
result is a 71–75% reduction of latency, as shown in Figure 4.8 (a).

On the other hand, the more workers back off, the longer it may take before worker
0 receives one of the remaining steal requests. While we do see a slight increase in
latency in Figure 4.8 (b), the difference is never more than 12 microseconds, comparing
best and worst execution times. Median execution times are within two microseconds
of each other.

Whether or not workers are allowed to back off from stealing, the conclusion is the
same: performance-wise, it is far preferable to send a dummy task than to wait for
worker 0’s steal request to be returned. We measure between 33% (10 threads) and
98% (240 threads) lower latencies than the better results of Figure 4.8 (a).

Impact of explicit communication Worker-manager communication inevitably
adds some overhead to a task barrier. To quantify this overhead, we stress-test our
implementation with a microbenchmark. In addition, for a more realistic use case, we
pick the benchmark with the most task barriers and determine the performance impact
of using our implementation. The shared counter based algorithm serves as a baseline
where task barriers incur zero overhead beyond that of termination detection. Results
are shown in Figure 4.9.
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Figure 4.9 (a) depicts how long it takes to complete 1000 successive task barriers.
The results are interesting insofar as they highlight the overhead associated with steal
requests. On average, a task barrier requires at least 58 microseconds because of the
communication involved: worker 0 must receive a steal request from worker i, send an
update to the manager, send a dummy task to worker i, wait for worker i to receive and
run the dummy task, and forward worker i’s subsequent steal request to the manager
to make sure the condition for termination is met again. The first three operations
take 15–20 microseconds, as we have seen in Figure 4.8 (b). The remaining 38–43
microseconds give an idea of the minimum time required to detect termination after
a task barrier. For comparison, Figure 4.9 (a) also includes the performance of Intel
OpenMP. The combined thread/task barrier incurs more overhead than a pure task
barrier, but is still less expensive than explicit communication.

Figure 4.9 (b) shows the performance impact of worker-manager communication
in a more realistic setting. We pick the LU factorization benchmark because it can
be written with two task barriers per iteration, so efficient synchronization is of key
importance. Despite frequent communication, the increase in runtime is just between
0.5% and 5%, demonstrating that channel communication has a reasonable cost.

4.3 From Tasks to Futures

In general, tasks may have arbitrary dependencies that must be respected. As in [166],
Section 2.1, page 39, we will not distinguish between control and data dependencies
and simply say that task B depends on task A if A must precede B, either because of
A’s side effects, or because A produces data that B consumes. Formally, A precedes
B is written A ≺ B, which tells us that A and B are ordered and forbidden to execute
in parallel.

4.3.1 Channel-based Futures

Consider a simple Fibonacci-like tree recursion (without the base case):

int x = spawn f(n-1); // Create task for f(n-1)
int y = f(n-2); // Proceed recursively with f(n-2)
sync; // Wait until result of f(n-1) is available
return x + y;

Here, a task depends on the result of its child task, which in turn depends on the result
of its child task, and so on. Cilk and OpenMP provide constructs to suspend a task
until its children have finished execution. The same can be achieved with futures:
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future fx = FUTURE(f, n-1); // Create a future for f(n-1)
int y = f(n-2); // Proceed recursively with f(n-2)
int x = AWAIT(fx, int); // Wait for future’s result
return x + y;

The important insight is that futures can be viewed as channels: a future opens a
channel over which the result will be delivered. Setting the value of a future is equivalent
to sending the value to the channel. Forcing a future is equivalent to receiving the value
from the channel. When the value is needed, it is simply received from the channel,
blocking the receiver until the value is determined.

Creating a future for f(n-1) involves allocating a channel, creating a task, and
storing a reference to the channel in the task descriptor. The latter is taken care of by
ASYNC (cf. lines 28–36 in Listing 2.6):

Channel *ch = channel_alloc(sizeof(int), 1, SPSC);
ASYNC(f, n-1, ch);

The channel should be buffered (capacity > 0) to avoid the possibility of a blocking
send when a worker uses the channel reference after evaluating f(n-1). This means
that we cannot use ASYNC_DECL to generate the task function for f because it would
insert code to dereference ch (cf. lines 12–20 in Listing 2.6). We need a modified
version, FUTURE_DECL, that inserts a call to channel_send instead:

// At the end of the task function
int tmp = f(n-1);
channel_send(ch, &tmp, sizeof(int));

Before the future’s result can be used, it must be received from the channel. Until
the value is available, the task is suspended:

while (!channel_receive(ch, &x, sizeof(int))) suspend();
channel_free(ch);

This is known as data flow synchronization: waiting for data to become available, rather
than waiting for a task to finish execution. While a thread is blocked on a future, it
can try to schedule other work by calling back into the runtime system:

rts_force_future(ch, &x, sizeof(int));
channel_free(ch);

In this case, the runtime system takes care of receiving a value from channel ch. Finally,
by hiding channels behind a future type, we arrive at the macros that we introduced
back in Section 2.4.1:

future fx = FUTURE(f, n-1);
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1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <assert.h>
4 #include "tasking.h"
5
6 int sum(int a, int b)
7 {
8 return a + b;
9 }

10
11 FUTURE_DECL(int, sum, int a; int b, a, b);
12
13 int main(void)
14 {
15 int s, a = 4, b = 2;
16
17 TASKING_INIT();
18
19 future f = FUTURE(sum, a, b);
20
21 s = AWAIT(f, int);
22
23 assert(s == 6);
24
25 TASKING_EXIT();
26
27 return 0;
28 }

Listing 4.2: A minimal task-parallel program with future-based synchronization.

...
int x = AWAIT(fx, int);

Listing 4.2 repeats the toy example from Section 2.4, replacing the task barrier with
future-based synchronization. Note the use of FUTURE_DECL in the declaration of sum.
With help from the compiler, synchronization could be made implicit by figuring out
when a future’s result is needed and forcing it upon first touch.

Listing 4.3, which shows Listing 4.2 after macro expansion, reveals the underlying
channel operations. After creation (line 39), the future is stored in the task descriptor
(line 43) and later retrieved to send the result (line 27). Forcing a future translates into
a call to rts_force_future followed by freeing the associated channel. Note the use of
wrapper functions that act as getters and setters for channels. A future is a handle to a
channel and may contain different data, depending on how channels are passed between
workers. On the SCC, for example, we used a pair of integers3 to identify a channel
[201], hence the need for converting a “portable reference” to a regular Channel * and
vice versa. Shared-memory futures are raw pointers to channels and can be cast as
such.

3(ID of channel owner, byte offset into owner’s message passing buffer)
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1 int sum(int a, int b)
2 {
3 return a + b;
4 }
5
6 // FUTURE_DECL expands to a data structure to hold the task’s arguments,
7 struct sum_task_data {
8 int a; int b; future f;
9 };

10
11 // a function to allocate a future/channel,
12 static inline future make_sum_future(void)
13 {
14 future f;
15 channel_set(&f, __channel_alloc_impl__3(sizeof(int), 1, SPSC));
16 return f;
17 }
18
19 // and a task function that wraps the call to sum
20 void sum_task_func(struct sum_task_data *d)
21 {
22 typeof((d)->a) a = (d)->a;
23 typeof((d)->b) b = (d)->b;
24 typeof((d)->f) f = (d)->f;
25
26 int tmp = sum(a, b);
27 channel_send(channel_get(f), &tmp, sizeof(tmp));
28 }
29
30 int main(void)
31 {
32 int s, a = 4, b = 2;
33
34 tasking_init();
35
36 future f = ({ // FUTURE creates a task, enqueues it, and returns a future
37 Task *__task = task_alloc();
38 struct sum_task_data *__d;
39 future __f = make_sum_future();
40 __task->parent = get_current_task();
41 __task->fn = (void (*)(void *))sum_task_func;
42 __d = (struct sum_task_data *)__task->data;
43 *(__d) = (typeof(*(__d))){ a, b, __f };
44 rts_push(__task);
45 __f;
46 });
47
48 s = ({ // AWAIT forces the future and returns its result
49 int __tmp;
50 rts_force_future(channel_get(f), &__tmp, sizeof(__tmp));
51 channel_free(channel_get(f));
52 __tmp;
53 });
54
55 assert(s == 6);
56
57 tasking_exit_signal();
58 tasking_exit();
59
60 return 0;
61 }

Listing 4.3: Program 4.2 after preprocessor macro expansion (abbreviated to make it more
readable). Both FUTURE and AWAIT macros use statement expressions ({...}), a GNU
extension supported by GNU, Clang, and Intel compilers [2].
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4.3.2 Futures for Nested Parallelism

What is left to explain is the implementation of rts_force_future. Although fu-
tures can express more than nested parallelism [228], we experiment with a specialized
implementation as sketched in Listing 4.4. This implementation operates under the
assumption that if a task creates a future, the future’s result will be needed later on.
Herlihy et al. have shown that “well-structured futures” incur fewer deviations from
sequential execution than general, unstructured futures, resulting in better cache local-
ity, as measured by the number of cache misses [115]. Critical to this is using futures
in a disciplined way: making sure that every future is touched only once, either by
the task that created it or by a descendant of the task that created it. As a result, a
well-structured future is always created prior to being touched. Creating a future and
passing it around is certainly possible, but not the use case that rts_force_future is
trying to address, namely that of structured local-touch computations [115].

When forcing a future, we first check if the future’s result is already computed, and
if so, just return (lines 5–6). If not, we try to resolve the future by running all child tasks
of the current task, until the future’s result is available or no child tasks are left (lines
8–12). Finally, we have to assume that the corresponding task has been stolen and
switch to work stealing (lines 14–22). We can safely return from rts_force_future

in line 19 because send_steal_request preserves the invariant of one pending steal
request per worker and will not generate a new request until the thief has successfully
received a task and cleared the channel.

To summarize, there are three possibilities: (1) The future has been evaluated in
parallel, and its result can be received. (2) The future has not been started yet, in
which case it is evaluated sequentially. (3) The future is being evaluated by another
worker, in which case other work is picked up until the result can be received.

Forcing a future may have the side effect of evaluating other futures. For example,
imagine a worker creates three futures f1, f2, and f3, in this order, pushing each task
onto the bottom of its deque, and then forces f2, which we assume has not been stolen.
Because f3’s task sits on top of f2’s task in the worker’s deque, rts_force_future
evaluates f3 before it evaluates f2, with the result that a subsequent touch of f3 will
immediately return its value. Again, this is only reasonable if every future will be
touched, and there is no priority involved. It would be undesirable to evaluate f3 if its
result were not needed, or if f2 had a higher priority. A more flexible implementation
would have to defer f3’s task when touching f2.

Unrestricted work stealing in rts_force_future cannot guarantee that a task will
return from the function as soon as the value it is waiting for is available, leading
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1 void rts_force_future(Channel *chan, void *data, unsigned int size)
2 {
3 Task *task;
4
5 if (channel_receive(chan, data, size))
6 return;
7
8 while ((task = pop_child()) != NULL) {
9 run_task(task);

10 if (channel_receive(chan, data, size))
11 return;
12 }
13
14 while (!channel_receive(chan, data, size)) {
15 send_steal_request();
16 while (!channel_receive(chan_tasks, (void *)&task, sizeof(task))) {
17 handle_steal_requests();
18 if (channel_receive(chan, data, size))
19 return;
20 }
21 run_task(task);
22 }
23 }

Listing 4.4: Forcing a future involves channel communication.

to “buried joins” [87] and associated stack pressure through deep recursion: waiting
for a future may depend on completing stolen work, which in turn may depend on
completing stolen work, and so on [147]. For this reason, some implementations prefer
to use leapfrogging [251, 86] or other forms of depth-restricted work stealing [205, 33],
but risk losing parallelism and thus performance4 [232]. Van Dijk et al. have measured
stack depths for the UTS benchmark with input T3L using 48 workers on an AMD
Opteron multiprocessor, which comes close to our configuration [247]. They found
that unrestricted stealing creates 36%–223% deeper stacks than leapfrogging, requiring
between 0.3 and 1 MB of additional memory per worker.

4.4 Efficient Fork/Join Parallelism

Divide-and-conquer algorithms lend themselves to parallel execution: when a problem
is recursively divided into subproblems that can be solved independently, the number
of tasks after a few recursive steps provides plenty of opportunity for parallelism.

4.4.1 Cilk-style Fork/Join

Figure 4.10 shows an instance of a parallel divide-and-conquer algorithm. Until the
problem is small enough to be solved directly (lines 1–2), it is subdivided into smaller

4Intel TBB has since moved away from depth-restricted to unrestricted work stealing [159, 160].
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Solve(problem)
1 if problem is small enough
2 return Solution(problem)
3 else
4 problemi , problemj = Divide(problem)
5 solutioni = fork Solve(problemi)
6 solutionj = Solve(problemj)
7 join solutioni
8 solution = Combine(solutioni , solutionj)
9 return solution

Figure 4.10: Pseudocode of a parallel divide-and-conquer algorithm, in which a problem
is recursively divided into subproblems until the problems are small enough to be solved
directly. In general, a problem is divided into k ≥ 2 subproblems.

problems (lines 3–4), which are solved in parallel (lines 5–6). Synchronization is needed
(line 7) to combine the partial solutions into a total solution (lines 8–9).

Fork/join as a way of structuring parallel programs has been around for some time
[68]. Generally speaking, every program that forks into two or more concurrent threads
of execution and later joins (combines) the threads’ results is following the fork/join-
model of execution. Cilk has shown that forking tasks instead of threads and employing
workers to execute tasks enables efficient implementation of parallel divide-and-conquer
algorithms.

Figure 4.11 shows the typical structure of a task graph created by Cilk-style fork/join.
The proper nesting of tasks and child tasks is the result of strict synchronization: a
procedure that creates tasks is not allowed to return until it has joined all of its chil-
dren. If absent, joins are inserted or performed implicitly before every return. A join
is usually collective and synchronizes with every child spawned in the parent, rather
than allowing fine-grained control over which child to join and in which order.

The properties of strict fork/join are summarized concisely in Halpern’s proposal
for including task-parallel constructs in future revisions of the C++ standard [103]:

• Tasks can create child tasks, which may execute in parallel with other tasks and the
tasks that created them.

• A task can wait for its children to complete. A task cannot synchronize execution
with any other task that is not its child.

• A task is not allowed to return until all of its children have returned. This restriction
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Figure 4.11: Example task graph of a multithreaded program based on Cilk-style fork/join.
Child tasks are properly nested and joined collectively with their parents. This style of
fork/join is sometimes called spawn/sync in reference to the Cilk keywords of the same name
(see, for example, [221], pp. 116–118).

guarantees proper nesting of tasks as illustrated in Figure 4.11 and, by extension,
safe access to variables in the parent’s stack frame,5 assuming, of course, that workers
share the same address space.

4.4.2 Fork/Join with Futures

Futures can express the same computations as Cilk’s spawn and sync constructs [115].
Every spawn creates a future, and a sync is equivalent to forcing every future created
by a task. Ideally, we want the resulting programs to be as efficient as their Cilk coun-
terparts. Figure 4.12 shows the performance of our scheduler on three benchmarks
with strict fork/join parallelism: Treerec, N -Queens, and Cilksort. Except on Cilk-
sort, where the difference is less pronounced, future-based synchronization comes with
a high cost: with 48 threads, Cilk Plus is 2.4 times faster on Treerec and 1.76 times
faster on N -Queens than our scheduler. Performance profiling of N -Queens identifies
__channel_alloc_impl__3 as a hot spot (cf. line 15 in Listing 4.3) [11]. Our im-
plementation spends a significant amount of execution time allocating channels as a
result of creating futures6. The program that finds all solutions to the 14-Queens prob-
lem unfolds into 27 358 552 tasks, each of which allocates (and frees) a future/channel,
averaging around 10.5 million channels per second when using 48 threads.

Reusing memory that was allocated from the heap by caching channels in per-thread
free lists is an effective way to improve performance as shown in Figure 4.13. With
most heap allocations gone, overall performance is much closer to that of Cilk Plus.

5Referring to the lifetime of objects, not implying that access is exempt from coordination.
6According to the profiler [11], the heap itself is not the bottleneck, that is, heap contention is low.
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Figure 4.12: Performance of channel-based futures in our runtime system compared to
Intel Cilk Plus. Cilksort was run under numactl --interleave=all, which makes sure
that memory is allocated evenly among all NUMA nodes. (ICC 14.0.1, -O2, AMD Opteron
multiprocessor)

Our scheduler has caught up on Treerec and remains 8% behind on N -Queens with
48 threads—a reasonable result considering that all communication happens through
channels. Note that the definitions of FUTURE_DECL and AWAIT must be modified to
accommodate the use of free lists (cf. lines 15 and 51 in Listing 4.3).

Despite their good performance, futures are less convenient than spawn and sync
when joining more than a few child tasks. Consider the body of a recursive function f

that creates n child tasks and eventually collects their results:

future children[n];
int result = 0;
for (i = 0; i < n; i++) {

children[i] = FUTURE(f, depth-1);
}
...
for (i = 0; i < n; i++) {

result += AWAIT(children[i], int);
}

Such a function appears in N -Queens, for example, where a task spawns up to N child
tasks depending on how freely the next queen can be placed on the current board.
Using spawn and sync instead of futures removes bookkeeping and better expresses
intent. A single sync statement replaces up to N invocations of AWAIT:

int results[n], result = 0;
for (i = 0; i < n; i++) {
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Figure 4.13: Improved performance of channel-based futures in our runtime system com-
pared to Intel Cilk Plus. Cilksort was run under numactl --interleave=all, which makes
sure that memory is allocated evenly among all NUMA nodes. (ICC 14.0.1, -O2, AMD
Opteron multiprocessor)

results[i] = spawn f(depth-1);
}
...
sync;
for (i = 0; i < n; i++) {

result += results[i];
}

We have implemented spawn and sync macros to experiment with an implementation
that trades off future handles for collective joins. This implementation takes advan-
tage of one specific property of strict fork/join parallelism, namely that child tasks
may access variables in their parents’ stack frames, provided that workers share the
same address space (see above). Instead of using a channel, a parent may then pass a
reference to a local variable to its child, which will hold the child’s result once written.
Return values are no longer sent over channels to be received by parents, but stored di-
rectly in the parents’ stack frames. We can understand this implementation as another
specialization, whereby one-shot channels are replaced with synchronization variables
that can be written exactly once [46, 157].

A sync must wait for the completion of all children of the current task. We im-
plement this construct with the help of atomic join counters [47]. Every task keeps a
counter, which it increments when it creates a child, and which is decremented when
a child returns. A count of zero indicates no pending children, allowing the parent to
return from sync. Some implementations of OpenMP’s taskwait work in the same way
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Figure 4.14: Performance of Cilk-like spawn and sync constructs in our runtime system
compared to Intel Cilk Plus. Cilksort was run under numactl --interleave=all, which
makes sure that memory is allocated evenly among all NUMA nodes. (ICC 14.0.1, -O2, AMD
Opteron multiprocessor)

[241, 138]. It is worth noting that sync is oblivious to the grandchildren of a task. The
operation of a deep sync that waits until all transitively spawned tasks have finished
execution depends on child tasks to decrement a join counter only after all their own
children have finished execution. The last child that decrements a join counter is then
responsible for decrementing its ancestors’ join counters further up the tree [241]. Cilk
enforces strictness by automatically inserting a sync at the end of every procedure that
contains a spawn. Otherwise, in the absence of synchronization, tasks may outlive their
ancestors, in which case care must be taken to avoid dangling references.

Figure 4.14 shows that spawn and sync can help improve performance when the full
generality of futures is not needed. Our scheduler is now slightly faster than Cilk Plus
on Treerec. Using 48 threads, Cilk Plus comes out ahead with 3% better performance
on N -Queens and 4% better performance on Cilksort. We conclude that channel com-
munication among worker threads does not hinder efficiency when scheduling fork/join
computations. The results suggest that our scheduler can compete with Cilk Plus,
a mature work-stealing scheduler that has been carefully designed and optimized for
parallel divide-and-conquer algorithms.

One of the goals of Cilk was to address the shortcomings of using futures for fine-
grained parallelism [104, 105]. Whether performance should be counted among the
shortcomings is debatable. Our experiments so far have not borne out that futures are
only suitable for coarse-grained parallelism.

We could further optimize our implementation of futures to avoid channel commu-
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nication in the common case, namely when forcing a future that has not been stolen.
In fact, sequential execution is so common that it accounts for 96–99.9% of all future-
related channel operations in Treerec, N -Queens, and Cilksort (Figure 4.13). In other
words, workers mostly communicate with themselves, using channels to return values
from functions. To avoid this needless overhead, we could associate a future with a
reference to a local variable and replace this reference with a channel only when the
task is stolen. We leave this optimization for future work. Special care must be taken
if a worker is allowed to create a future and pass it on to another worker, in which case
channel communication cannot be elided.

4.5 Summary

This chapter has shown how termination can be derived from asynchronous steal re-
quests without additional control messages. The algorithm we described keeps track
of steal requests rather than workers as they run out of work and become idle. A task
barrier that requires all tasks to finish can await termination before letting execution
continue. Futures are easily expressed in terms of channels, allowing fine-grained syn-
chronization between tasks as well as strict fork/join parallelism in the style of Cilk.
Some overhead remains, but there is room for optimization.

Besides futures, there are other synchronization constructs that could leverage
channels, such as semaphores, synchronization variables [46, 69], and cyclic barriers
[193, 217]. Channels are useful building blocks not only for sending tasks between
workers, but also for exchanging data between tasks.
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Work stealing has evolved into the scheduling technique of choice for fine-grained task
parallelism. While there are still many systems in use that are well served by central
task pools, core counts continue to increase, and runtime systems are expected to
take advantage of the available hardware. Recall, for example, the experiment in
Figure 2.2, which showed the limited scalability of a central task pool compared to a
distributed task pool. But work stealing alone does not guarantee efficient scheduling.
As a rule of thumb, the fewer steals are necessary, the better the performance, which
is why victim selection and stealing strategies receive much emphasis in the design
and implementation of work stealing algorithms. There are many parameters to tune,
especially when scheduling fine-grained parallelism.

In Section 5.1, we see that steal-half is not always beneficial. It turns out a better
default is to let the runtime system decide which strategy to use. We propose an
adaptive strategy that is able to switch between steal-one and steal-half as needed.
Section 5.2 shows the difficulty of creating many fine-grained tasks. Similar tasks,
such as iterations of a parallel loop, can be combined and split at runtime to increase
the granularity of parallel work. We focus on Lazy Binary Splitting (LBS), which
promises robust performance without parameter tuning, unlike other strategies that are
sensitive to the choice of chunk size. Section 5.3 discusses different splitting strategies
and demonstrates their performance. We also show that LBS enables efficient loop
scheduling with performance close to dedicated loop schedulers.

5.1 Adaptive Work Stealing

We have implemented the two most common work-stealing strategies: steal-one—
stealing a single task from a victim—and steal-half—stealing half of a victim’s tasks.
Steal-half is itself an adaptive strategy. The more tasks a worker has enqueued, the
more tasks are returned by a successful steal. Conversely, if tasks are rare, steal-half
may return single tasks to the same effect as using steal-one.

103
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Figure 5.1: The work-stealing strategy makes little to no difference in performance when
scheduling divide-and-conquer algorithms. Tasks are synchronized using futures; associated
channels are kept in free lists rather than returned to the heap, for reasons discussed in the
previous chapter. Cilksort was run under numactl --interleave=all, which makes sure
that memory is allocated evenly among all NUMA nodes. (GCC 4.9.1, -O3, AMD Opteron
multiprocessor)

5.1.1 Choosing Between Steal-One and Steal-Half

In section 3.5, we have seen that steal-half is preferable to steal-one when workers need
to deal out large numbers of tasks. As a rule of thumb, shallow task trees lead to
frequent load balancing, which is bound to become a bottleneck unless the overhead
is amortized by stealing tasks in batches. Parallel divide-and-conquer algorithms, on
the other hand, are typically scheduled using steal-one because stealing the oldest task
already yields a significant portion of the work1. As a result, steals are infrequent,
leaving little room for improvement by choosing a strategy such as steal-half.

Consider, for example, the benchmarks with which we measured fork/join perfor-
mance towards the end of the previous chapter. For better comparison with Cilk Plus,
we configured our scheduler to use steal-one. Figure 5.1 attests that there is no ad-
vantage to be gained from using steal-half. In fact, performance is virtually identical
except for Cilksort, where steal-half is consistently 150–180 milliseconds slower than
steal-one, accounting for a 20% difference in performance with 48 threads.

We might be tempted to conclude that steal-half would be a good default strategy,
seeing that it outperforms steal-one on flat parallelism without losing too much on
nested parallelism. But let us look at another benchmark. Figure 5.2 shows the result
of running BPC with two very different inputs. In Figure 5.2 (a), parallelism is exposed
in short bursts of task creation, as every producer task creates only nine consumer tasks.

1Our discussion assumes the classic work-stealing algorithm in which workers treat their deques as
stacks, but steal tasks from other deques in FIFO order.
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Figure 5.2: The choice of work-stealing strategy may depend on input values, which are not
known until runtime. In (a), tasks are created in small numbers at a time—nine consumer
tasks for each of the 100 000 producer tasks. In (b), a single producer task creates 999 999
consumer tasks, all in sequence. (GCC 4.9.1, -O3, AMD Opteron multiprocessor)

Figure 5.2 (b) presents the exact opposite in terms of task creation: a single producer
task creates the entirety of consumer tasks, turning BPC into SPC, with unsurprisingly
similar results to Figure 3.9 (a). Forty-eight threads send an order of magnitude more
steal requests when stealing single tasks compared to stealing in batches. On top of
that, steal-one generates an average of 22.5 failed steals per request, a number that
can be reduced by last-victim selection, but not without affecting performance in other
ways. (Refer back to Section 3.4.2 for a detailed discussion of last-victim selection.)
Regardless of victim selection, steal-half ends up being much more efficient: a steal
succeeds within two attempts and moves an average of 35 tasks.

The situation is different with multiple producer tasks and limited parallelism at
each stage. First of all, steal-half provides little benefit over steal-one when no worker
has more than a few tasks to spare. In fact, steal-half only manages to move an
average of 1.5 tasks, yet this seemingly small difference between steal-half and steal-
one amounts to 11% more steal requests, together with a 66% increase in the number
of failed attempts before tasks are discovered. Steal-half ends up being less efficient
than steal-one because steal-half increases the need for rebalancing; being greedy and
stealing multiple tasks whenever possible may actually interfere with load balancing
and hurt performance.
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Figure 5.3: State diagram showing the conditions for switching between steal-one and steal-
half after every N steals. The smaller the value of N , the more transitions may occur. The
quality of a strategy is inversely proportional to the frequency of work stealing. Initially,
workers have to start with either steal-one or steal-half.

5.1.2 Adapting the Choice at Runtime

Choosing a strategy for every instance of a problem is tedious, let alone finding the
strategy that works best. Moreover, it is possible for an application to create different
task graphs over the course of several parallel phases. A single strategy, be it steal-one
or steal-half, may not be able to schedule all available parallelism efficiently, giving rise
to suboptimal performance.

If we assume that neither steal-one nor steal-half is strictly better than the other,
we might be able to get the best of both worlds by letting the runtime system decide
which strategy to use under what circumstances. This implies that workers switch
between steal-one and steal-half, depending on which strategy is deemed more effective.
Implementation-wise, the chosen strategy is stored in a binary flag that is added to
the steal request structure definition. A victim reads the value of the flag to perform
the desired steal on behalf of the thief. The main question that remains is, how should
workers decide which strategy to use?

We follow a simple heuristic: Prefer steal-one to steal-half when parallelism is lim-
ited or created recursively; otherwise choose steal-half. Put the other way round, prefer
steal-half to steal-one when steals are frequent despite abundant potential parallelism2.

Figure 5.3 illustrates the process of choosing a stealing strategy. A worker is in
one of two states corresponding to steal-one and steal-half. Depending on the outcome
of the previous N steals, a worker may pursue a different strategy or keep using the
current strategy for the next N steals.

Frequent stealing is an indication that a better strategy is needed. How do we
2Cilk and its descendants are built on the assumption that, given sufficient parallelism, steals are

rare. It is thus understandable that Cilk-style work stealing lacks support for steal-half.
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define “frequent”? Our main concern is fine-grained parallelism—tasks that are small
enough that efficient scheduling matters. Coarse-grained parallelism tends to dwarf
the time spent scheduling, to the point that work stealing may have little effect on
overall performance. Fine-grained parallelism, in contrast, is highly sensitive to the
choices made at runtime. In general, the fewer the number of steals, the better the
performance, provided that the work remains balanced throughout the computation.
That is to say, performance benefits from a high ratio of executed tasks to steals (not
stolen tasks!). The smaller the ratio, however, the stronger the case for a change of
strategy to try to reduce the work-stealing overhead.

Returning to Figure 5.3, we see that every transition is determined by the ratio of
executed tasks to steals. For a worker to calculate this ratio, the interval is limited to
the last N steals, during which a worker executes M tasks. A transition from steal-one
to steal-half as a result ofM/N = 1 usually means that allM tasks had to be stolen, or
that other workers were quick to steal every task that was created recursively. Similarly,
a transition from steal-half to steal-one as a result of M/N < 2 means that steal-half
has failed to reduce the work-stealing overhead by averaging less than two tasks per
steal. A worker takes M/N ≥ 2 as a sign that enough parallelism exists to be able
to benefit from steal-half. It may well be the case that some workers continue to use
steal-half, while others switch to steal-one, or vice versa. This helps avoid situations
like the motivating example above, where there is not enough parallelism for every
worker to steal more tasks than needed.

The value of N determines the number of steals and, as such, the length of the
interval after which a worker reevaluates its stealing strategy. The smaller the value of
N , the more transitions may occur. If steals are frequent, intervals tend to be short,
allowing workers to adapt their strategies continually. If steals are rare, intervals tend
to be longer, as workers are busy running tasks until the next load imbalance arises.

5.1.3 Performance

Figure 5.4 shows how adaptive work stealing compares to the best-performing strategies
from Figure 5.2. Before we discuss the results, it is time to fill in the last blank in our
algorithm, namely the choice of initial strategy. Referring back to Figure 5.3, workers
have the choice of starting with steal-one or steal-half. In fact, different workers might
start with different strategies, should some workloads warrant it. In our tests, at least,
it does not matter whether workers start with the one or the other; performance is
identical. For presentation, we pick the results of starting with steal-one and omit the
other results to avoid duplication.
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Figure 5.4: Adaptive work stealing versus the best-performing strategy for each of the two
workloads from Figure 5.2. The value of N is the number of steals after which a worker
reevaluates its stealing strategy (see Figure 5.3). Whether workers start out with steal-one
or steal-half does not make a measurable difference, so we omit the latter. (GCC 4.9.1, -O3,
AMD Opteron multiprocessor)

Most importantly, adaptive work stealing can match steal-one in Figure 5.4 (a)
and steal-half in Figure 5.4 (b). The latter results suggest that any reasonably small
value for N serves to approximate steal-half; larger values (>100) slowly start to affect
performance (not included in the figure). With 48 threads, there is practically no
difference between N = 3 and N = 50. Workers rely on steal-half 93.2% of the time,
±0.4% for N = 3 and ±0.7% for N = 50 (standard error of the mean).

Figure 5.4 (a) highlights the importance of choosing a good value for N . Among
the plotted values, only N = 25 and N = 50 lead to performance on par with steal-
one. Smaller values increase the chance of switching to steal-half, given the workload’s
9:1 ratio of consumer to producer tasks. For N = 3, workers fall back to steal-half
37.1%± 0.02% of the time (48 threads). As we increase N , it becomes clear that steal-
one is winning over steal-half. For N = 5 and N = 10, the percentage of steal-half
drops to 28.2% ± 0.02% and further to 14.6% ± 0.03%. A value of 25 is large enough
that workers dismiss steal-half and opt for steal-one 98.4%± 0.02% of the time.

To summarize Figure 5.4, the number of steals between intervals should be neither
too large nor too small. Workers need to base their decisions on more than a few steals,
but at the same time be quick to adapt when a strategy turns out to be inefficient.

Figure 5.5 shows four more benchmarks where the right strategy makes some, al-
beit small, difference in performance. Matrix multiplication and UTS benefit from
steal-half; LU decomposition and Cilksort benefit from steal-one. The results make
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(b) LU factorization of a 4096× 4096 matrix
partitioned into blocks of 64× 64 elements
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(c) Cilksort of 100 million integers
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Figure 5.5: Adaptive work stealing combines steal-one and steal-half to select the better-
performing strategy at runtime. Matrix multiplication and LU factorization were configured
to use “last-victim-first” instead of random victim selection. (GCC 4.9.1, -O3, AMD Opteron
multiprocessor)
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Figure 5.6: Creating a large number of very fine-grained tasks poses a problem to either
stealing strategy. (GCC 4.9.1, -O3, AMD Opteron multiprocessor)

us confident: steal-adaptive manages to combine the best of both strategies, relatively
independent of the value of N , save for UTS, where a larger N means fewer chances for
steal-half as workers err on the side of steal-one. WithN = 25, workers are led to choose
steal-half 20.8% ± 0.98% of the time, in stark contrast to less than one percent with
N = 50 (48 threads). The problem is not so much that steal-one is inefficient (UTS
includes recursive task creation), but rather that steal-half is sometimes preferable,
hence the need for shorter intervals to take advantage of steal-half, if only temporarily.
We will use N = 25 for all remaining experiments.

5.2 The Case for Splittable Tasks

Stealing multiple tasks is often a runtime system’s primary means to amortize work
stealing overheads. We have seen examples where steal-half improves load distribution
and overall performance, but we also remarked that, without sufficient parallelism,
steal-half may offer little advantage over steal-one.

Let us revisit the SPC benchmark from Section 3.5. Figure 5.6 (a) shows the result
of decreasing the task length to one microsecond. Now even steal-half fails to scale
beyond eight workers. Adaptive stealing can switch to steal-half, but cannot improve
its performance. The average ratio of tasks to steal requests plotted in Figure 5.6 (b)
gives an idea of the scheduling overhead and hints at decreasing batch sizes, which
limit the distribution of work. While private deques reduce the task creation overhead,
they cannot eliminate it. A worker executing the equivalent of



5.2.1 Bundling Tasks 111

 0

 8

 16

 24

 32

 40

 48

 0  8  16  24  32  40  48

S
p
e
e
d
u
p
 o

v
e
r 

s
e
q
. 
e
x
e
c
u
ti
o
n

Number of workers

Steal-adaptive

Lazy work splitting

(a) SPC with n = 106 and t = 1µs

10
0

10
1

10
2

10
3

10
4

10
5

 0  8  16  24  32  40  48

R
a
ti
o
 o

f 
ta

s
k
s
 t
o
 s

te
a
l 
re

q
u
e
s
ts

Number of workers

Steal-adaptive

Lazy work splitting

(b) SPC with n = 106 and t = 1µs

Figure 5.7: Creating a single task and splitting it into smaller tasks is much more efficient
than creating and scheduling a large number of tasks. (GCC 4.9.1, -O3, AMD Opteron
multiprocessor)

for (i = 0; i < N; i++)
spawn f(i);

risks creating too much parallelism to be useful or too little parallelism to be able to
schedule efficiently, depending on the number of iterations and the granularity of f. In
case of fine-grained parallelism, it may help to create tasks in parallel [239] or offload
task creation to a subset of the workers [121]. Ideally, however, a worker should create
only as much parallelism as needed to minimize runtime overheads.

5.2.1 Bundling Tasks

When a worker steals a number of tasks, the tasks are assumed to be unrelated. Every
task points to a function and contains its own data, reflecting the fact that tasks are
created dynamically at runtime. The for-loop above results in N tasks that share both
code and data except for different values of i. Instead of creating a large number of
almost identical tasks, we may create a single task and record that i ranges over [0, N)3.
The resulting task may be split into “smaller” tasks, possibly down to single iterations.
More importantly, splitting may be lazy, meaning that it allows delaying task creation
until parallelism is needed. If no parallelism is needed, no tasks are created. This
brings us closer to our ideal scheduler that increases the granularity of tasks while
maintaining load balance.

Figure 5.7 compares lazy work splitting to adaptive stealing. The difference in
3[a, b) denotes the half-open range from a (inclusive) to b (exclusive).



112 5.2 The Case for Splittable Tasks

efficiency is striking. At 48 workers, we count 8517 unique steal requests over the course
of ten program runs, compared to 3 969 873 for steal-adaptive. Lazy work splitting
succeeds in executing most iterations sequentially, without creating tasks. Less than
0.1% of all potential tasks are actually created and stolen. The remaining 99.9% are
executed with little runtime overhead.

Naturally, creating and scheduling fewer tasks has an effect on the work overhead
T1/TS. In Section 2.7.2, we measured a work overhead of 2.42—significantly more
than Cilk Plus’s 1.37. Lazy work splitting reduces this overhead to 1.03. This is only
possible because of granularity control [174]: unless needed for load balancing, tasks
are combined in an attempt to reduce scheduling overheads. It is thus no surprise that
single-worker execution comes close to sequential execution, in terms of performance
and semantics4.

Much of the work on controlling task granularity in parallel programs is orthogonal
to work splitting. Parallel divide-and-conquer algorithms tend to create so many tasks
that it is often feasible to apply a cut-off based on recursion depth or estimated task
demand [151, 76, 254, 242]. Tasks that are cut off are executed sequentially as part of
their parent tasks, which makes them candidates for inlining.

Cong et al.’s work-stealing scheduler, mentioned in Section 3.5.3, supports a form of
bundling that involves collecting tasks in a list before pushing the list onto a deque [67].
Thieves steal bundles, but cannot split them into smaller bundles to recover parallelism
if needed. Whether a task is bundled is based on the same reasoning as load-based
inlining [132]: a deque that contains only few tasks indicates that more parallelism is
needed, hence bundles should be small to maintain load balance; a deque that contains
many tasks indicates that workers are already busy and unlikely to benefit from more
parallelism, hence bundles should be large to reduce task creation and deque overheads.
Cong et al.’s adaptive strategy causes the size of a bundle to grow exponentially with
the size of a deque, up to some threshold.

5.2.2 The Structure of a Splittable Task

Before we begin to discuss strategies for work splitting, we must first establish the
structure of a splittable task. Such a task has two fields to represent the interval
[a, b) as well as a field to represent the next value in the range. The latter identifies
which task is being worked on. For simplicity, we assume a, b ∈ Z and a < b so that
[a, b) denotes the b − a tasks between a and b, including a and excluding b. We also

4Loop iterations are executed sequentially in program order, regardless of task creation being
work-first or help-first.
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assume that splitting an interval [a, b) produces two smaller intervals [a, c) and [c, b)
with a < c < b, that is, splitting requires b−a > 1. A task ceases to be splittable when
b− a = 1, in which case it is treated as a regular task.

Work stealing does not need to distinguish between regular and splittable tasks, to
place no restrictions on which tasks can be stolen. In particular, enqueued tasks are
not split by steals. (They may be split afterwards.) Workers must be able to determine
the task type by inspection. Other than that and the three integers described above,
a splittable task has the same fields as a regular task.

We introduce a macro ASYNC_FOR that wraps the creation of a splittable task:

ASYNC_FOR(f, a, b, args...);

creates a task that calls f(args...), passing in [a,b) internally to enable splitting while
running f. To replace

for (i = 0; i < N; i++)
ASYNC(f, i);

with a splittable task, we would write

ASYNC_FOR(f, 0, N);

and redefine f as

void f(void)
{

long i;
for_each_task (i) {

// Inlined body of task
}

}

using another helper macro for iterating and splitting. This is not the best or most
convenient interface, owing to the limitations of the C preprocessor, but works well
enough for experimentation, and serves to illustrate the code a compiler might generate.

Figure 5.8 depicts the splitting process, which involves cloning the current task, cal-
culating split, and adjusting the upper and lower bounds of each task. We assume that
workers continue execution where they left off before splitting by making the upper in-
terval [split,end) available for stealing. Subtracting start from next gives the num-
ber of tasks that have already been consumed, so in general, not (end - start) > 1

but (end - next) > 1 determines whether a task is further splittable.
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Figure 5.8: The size of a task shrinks as it is split into smaller tasks. The value of split,
which falls between next and end, determines the number of tasks in each half.

5.3 Strategies for Work Splitting

In Cilk Plus, a parallel loop, such as
cilk_for (i = 0; i < N; i++)

f(i);

is translated into a recursive procedure similar to
void loop(long start, long end)
{

long count = end - start;
if (count > K) {

long mid = start + count / 2;
spawn loop(start, mid);
loop(mid, end);

}
for (long i = start; i < end; i++)

f(i);
}

which splits the iteration range in half until the tasks have reached a predefined chunk
size K, equal to some fraction of the number of tasks N divided by the number of
workers P [26]. Tzannes et al. call this Eager Binary Splitting (EBS), to emphasize
that splitting proceeds eagerly, regardless of how many tasks are actually needed [245].
Creating approximately N/K tasks means that K should be chosen according to the
workload. Too many small tasks may overwhelm the runtime system; only few large
tasks may cause load imbalance and limit scalability.

Intel’s Threading Building Blocks (TBB) adopted a more robust strategy that tries
to split an iteration range into K · P chunks, where K is a small constant [209]. In
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addition, every stolen range is further split into at least V more chunks (if possible),
where V is on the order of K. TBB has settled on K = 4 and V = 4 [209]. This
so called auto partitioning derives the chunk size from the number of workers and the
fixed parameters K and V , rather than from the number of iterations, but is still eager
to create tasks, whether needed or not.

The alternative to EBS is to try to split a task as late as possible, when parallelism
is needed to keep workers busy. Tzannes et al. introduced Lazy Binary Splitting (LBS),
where a worker does not split unless its deque is empty [245]. As a result, LBS is able to
adapt to different workloads, without requiring the programmer or the runtime system
to specify a chunk size.

By being lazy, LBS shares some similarities with load-based inlining [132] and lazy
task creation [172]. Unlike the former, LBS tends to inline only small tasks before it
reevaluates the decision to create parallelism. Unlike the latter, LBS does not create a
stealable continuation in preparation for running a task, which explains why the work
overhead can drop below that of Cilk Plus. LBS achieves the same effect as indolent
closures [231]: it reduces overhead by creating tasks on demand, rather than eagerly
whenever a spawn operation is encountered.

We will henceforth use the term work splitting to encompass eager and lazy splitting.
EBS is an instance of eager splitting, while LBS is an instance of lazy splitting. Both
are work-splitting strategies in which workers, or victims, are responsible for splitting,
unlike thieves, which follow the usual work-stealing algorithm.

The opposite approach is to combine splitting with stealing. Orozco et al. pro-
pose task queue extensions to support splittable tasks, which they call polytasks [188].
Enqueuing a polytask makes N tasks available with a single push. Dequeuing a (non-
empty) polytask does not remove it from the queue, but splits off one task. This is
reminiscent of dynamic loop scheduling in OpenMP and raises the same questions about
contention and scalability. Hardware task queues [136] or enqueue/dequeue primitives
[129, 148] might be useful in this context.

Durand et al. make a case for work-stealing loop schedulers by showing that an
adaptive strategy outperforms dynamic and guided schedulers while being easier to
use for a programmer [79]. Their scheduler assigns every worker an equal number of
iterations in the beginning to avoid stealing when possible. When a worker runs out
of iterations, it selects a victim and steals half of its iterations, similar to steal-half.

Gautier et al. describe X-Kaapi, a work-stealing runtime system for tasks with
dependencies [96]. X-Kaapi schedules parallel loops by splitting them into chunks of
equal size upon stealing. If there are k thieves trying to steal from the same victim,
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Split-Half(T )
Let Qi be the shared deque of tasks of worker i

1 // Preconditions: Deque is empty and task is splittable
2 assert Qi is empty ∧ T is splittable
3 count = T.end − T.next
4 split = T.next + count/2
5 T ′ = T // Make a copy of T
6 T ′.start = T ′.next = split
7 Push T ′ onto the bottom of Qi

8 T.end = split

Figure 5.9: When a worker schedules a splittable task and finds that its deque is empty, it
splits the task in half, enqueues the upper half, and continues work on the lower half.

one of them is elected to create k+ 1 chunks. We will later describe a similar strategy,
but with victims in charge of splitting (and sending tasks to thieves), eliminating the
need for synchronization between workers contending for chunks.

5.3.1 Using Concurrent Deques

Work splitting can be understood as a scheduling extension. As such, it is not tied
to any particular scheduler. We will focus on lazy splitting, starting with Tzannes et.
al’s description of LBS, which assumes a work-stealing scheduler based on concurrent
deques. Building on that, we propose alternative splitting strategies, first for use with
concurrent deques, and then for use with private deques and steal requests. Comparing
these extensions will give us a better sense of the utility of explicit communication in
supporting work splitting.

Lazy binary splitting LBS makes two assumptions: (1) It does not make sense to
continue creating tasks if workers are already busy and unlikely to benefit from more
parallelism. (2) An empty deque is an indication that more parallelism is needed, in
which case tasks are potentially valuable for maintaining load balance. Thus, when
a worker has scheduled a splittable task and finds that its deque is empty, it splits
the current task in half, enqueues one half to allow stealing, and continues work on
the other half, as detailed in Figure 5.9. We will call this strategy split-half because
it is based on the same idea as steal-half; it takes away half of the remaining tasks,
assuming that they constitute about half of the remaining work.

To combine very small tasks, a compiler may choose a profitable parallelism thresh-
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old (ppt) as a minimum chunk size for execution [245]. Lacking the necessary compiler
support, we will assume ppt = 1 so that workers reevaluate the decision to split upon
completing a task. This may add some runtime overhead in the form of frequent deque
checks, but these are cheap operations compared to the cost of creating tasks. As long
as the work is balanced and splitting is postponed, tasks are executed sequentially,
with deque checks being the only source of overhead.

Figure 5.7, for which we used split-half, is proof that fine-grained parallelism can be
scheduled efficiently using LBS. Unfortunately, we cannot always rely on tasks being
equally fine-grained. A few long-running tasks can indeed pose a problem for split-half.
Consider the following example: Worker 0 schedules a splittable task, denoted by the
interval [0, 16), finds that its deque is empty, splits off task [8, 16), and starts to execute
task 0. Worker 1 is idle, steals task [8, 16) from worker 0, splits off task [12, 16) (being
idle implies an empty deque), and starts to execute task 8. If, at this point, worker 0
continues to be busy, only task [12, 16) can be stolen. Hence, if more than four workers
are idle, some will be forced to wait until worker 0 or worker 1 split again.

We can think of two solutions to avoid this load imbalance: (1) resort to software
polling, which amounts to inserting deque checks into user code, or (2) choose an
alternative splitting strategy that achieves a better distribution of work than split-half.
Both solutions can be combined, but we may want to avoid polling, considering that
concurrent deques are meant to eliminate the need for it.

Lazy guided splitting The preceding example illustrates a potential problem of
splitting a task in half. Some workers may end up with too many tasks while others
are starving. Suppose a worker keeps only a fraction of the tasks by splitting [i, j) into
[i, i+K) and [i+K, j) such that K, the chunk size, is equal to 1

P
of the tasks, where

P is the number of workers. By following this strategy, worker 0 enqueues P−1
P

of the
tasks, worker 1 enqueues P−2

P−1 of the remaining tasks, and so on, until the (P − 1)th
split has the same effect as split-half.

Figure 5.10 shows an implementation of this strategy. We introduce a field, chunks,
initialized to P if P > 1 and 2 otherwise5, to determine the value of split and thus
the chunk size. The chunk size is simply split − T.next, which is equal to T.end−T.next

T.chunks .
Splitting a task T with T.chunks > 2 creates a task T ′ with T ′.chunks = T.chunks−1.
In other words, T ′ has all but one of T ’s chunks, reducing T to one chunk. Splitting a
task T with T.chunks == 2 results in split-half; it creates a task T ′ with T ′.chunks = 2,

5In the special case of P = 1, splitting can be entirely omitted, so setting T.chunks to 2 (or any
other value, for that matter) may have no consequence.
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Split-Guided(T )
Let Qi be the shared deque of tasks of worker i,

P be the number of workers
1 // Preconditions: Deque is empty and task is splittable
2 assert Qi is empty ∧ T is splittable
3 assert T.chunks ≥ 2 ∧ T.chunks ≤ P
4 count = T.end − T.next
5 if count < T.chunks
6 T.chunks = count
7 split = T.next + count/T.chunks
8 T ′ = T // Make a copy of T
9 T ′.start = T ′.next = split
10 T ′.chunks = max(T ′.chunks − 1, 2)
11 Push T ′ onto the bottom of Qi

12 T.end = split
13 T.chunks = 2

Figure 5.10: Lazily splitting a task into P chunks and reverting to split-half for each chunk.

which, in turn, will be split in half.
Guided splitting guarantees that a splittable task with sufficient parallelism can be

executed by P workers. This guarantee does not come for free. Unless most of the
workers are idle, producing P chunks may incur more overhead than necessary. To see
why, suppose worker 1 steals a splittable task [0, 1024) from worker 0. There are six
more workers, that is, P = 8. Suppose none of them attempts to steal. Worker 1 begins
by splitting [0, 1024) into [0, 128) and [128, 1024), pushing the latter task onto its deque.
After completing the first chunk, worker 1 pops [128, 1024) from its deque, splits off
[128, 256), pushes [256, 1024) back onto its deque, and executes the next chunk. This
is repeated until worker 1 fetches the last chunk, at which point the strategy reverts to
split-half. In total, worker 1 splits 14 times before it finishes executing the last task,
compared to 10 times if split-half was used from the beginning. While still small in
this example, the difference will increase with the number of workers, as illustrated in
Figure 5.11.

Frequent splitting may affect performance when it comes to fine-grained parallelism.
In fact, as the number of workers increases, it becomes more likely that guided splitting
produces small chunks, potentially increasing the scheduling overhead. In the worst
case, workers split off and execute one task at a time while passing the remaining
chunks back and forth, causing frequent steals and limiting parallelism. This problem
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Figure 5.11: The minimum number of splits involved in scheduling a splittable task of size
1024 as a function of the number of workers P .

can be mitigated to some extent by creating tasks up front. We can specialize
ASYNC_FOR(f, a, b, args...);

to
for (i = a; i < b; i++)

// Specialized version of ASYNC_FOR
ASYNC_FOR_SINGLE(f, i, args...);

if b - a <= N at the cost of losing the ability to benefit from work splitting below a
certain number of tasks. If tasks are very fine grained, however, neither guided splitting
nor single tasks guarantee efficient scheduling.

Lazy adaptive splitting The solution we would like to have can be described as
follows: “Use guided splitting when needed to facilitate the distribution of work; oth-
erwise, fall back to using split-half to bound the number of splits.” This strategy would
schedule small chunks when workers are likely to steal and large chunks when workers
are mostly busy, thus combining the benefits of split-half and split-guided. We can
achieve this by counting the number of idle workers. The more workers are idle, the
more tasks are needed to keep them busy; hence, a larger fraction of tasks is made
available for them to steal. The appeal of this strategy is derived from its easy integra-
tion with termination detection based on Herlihy and Shavit’s algorithm [116]. There
is no need to introduce more synchronization if the runtime system already provides
the required functionality. Figure 5.12 shows an implementation of adaptive splitting.
We will focus on line 5, the main difference from the previous strategy.
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Split-Adaptive(T )
Let Qi be the shared deque of tasks of worker i,

P be the number of workers,
Pidle be the current number of idle workers

1 // Preconditions: Deque is empty and task is splittable
2 assert Qi is empty ∧ T is splittable
3 assert T.chunks ≥ 2 ∧ T.chunks ≤ P
4 // A worker that splits cannot be idle
5 assert Pidle ≥ 0 ∧ Pidle < P
6 count = T.end − T.next
7 T.chunks = max(Pidle + 1, T.chunks)
8 if count < T.chunks
9 T.chunks = count
10 split = T.next + count/T.chunks
11 T ′ = T // Make a copy of T
12 T ′.start = T ′.next = split
13 T ′.chunks = max(T ′.chunks − 1, 2)
14 Push T ′ onto the bottom of Qi

15 T.end = split
16 T.chunks = 2

Figure 5.12: Lazily splitting a task into as many chunks as there are idle workers. In
contrast to guided splitting, this strategy removes the implicit assumption that all workers
are idle when scheduling a splittable task.
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The value of T.chunks, which is subsequently used to determine the chunk size, is
updated if the number of idle workers Pidle has increased such that more than T.chunks
chunks may be needed to correct the load imbalance. Because the value is not updated
if Pidle < T.chunks, it serves as an upper bound for the chunk size. The reason for this
upper bound is best explained with an example.

When a splittable task T is first created, T.chunks is set to max(Pidle + 1, 2), re-
flecting the number of idle workers at the time of T ’s creation. If no worker is idle,
T.chunks is set to 2, which means that split-half may be used. It does not mean that
split-half should be used when T is scheduled for execution because other workers may
become idle in the meantime, in which case the strategy deems it necessary to enqueue
a larger fraction of the tasks, proportional to the number of idle workers. Conversely,
the more workers are idle at the time of T ’s creation, the more likely it is that T is
immediately stolen and split based on a value that is unlikely to change much in the
short time since T ’s creation.

Recall from Section 4.1 that idle workers must decrement Pidle when trying to steal,
despite the possibility that steals may fail. As a result, it may appear that some workers
are working when in fact they are not. It is more accurate to say that Pidle estimates
the number of idle workers. With that said, suppose worker 0 creates and enqueues a
splittable task T with T.chunks == 7, estimating that there are six idle workers, that
is, Pidle == 6. Worker 1, being idle, steals T , goes on to split, estimates that there
are five idle workers, that is, Pidle == 5, calculates T.chunks = max(6, 6) = 6, and
splits accordingly. This is one possible outcome. Another possible outcome is that
worker 0 is led to conclude that fewer workers are idle due to concurrent steals causing
Pidle to drop temporarily. If the chunk size only depended on Pidle, worker 1 would
underestimate the load imbalance and claim a large chunk of T .

For this reason, the strategy errs on the side of smaller chunks by factoring in
worker 0’s estimate. This in turn relies on worker 0’s estimate being close to the
actual number of idle workers. If both worker 0 and worker 1 underestimated the
load imbalance, worker 1 might initially enqueue too few tasks, depending on how far
off both estimates were. In any case, using the maximum is better than deferring to
worker 1. Subsequent splitting allows workers to adjust the chunk size to account for
an increase in Pidle, giving adaptive splitting more leverage to counter load imbalance
than is possible otherwise.
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5.3.2 Using Private Deques and Steal Requests

With concurrent deques, workers base splitting decisions on deque checks. If a worker
discovers that its deque is empty, it tries to split the current task to enqueue new work.
The assumption that other workers are likely to steal is reasonable, but does not hold
in every case so that workers may end up splitting more often than necessary. In Figure
5.11, we have seen that binary, guided, and, by extension, adaptive splitting cannot
completely avoid creating tasks. If splitting were truly lazy, workers would not create
tasks unless asked to do so. This brings us back to our channel-based scheduler.

Using private deques workers can postpone splitting until they receive steal requests.
This implies that workers may never split. Let us focus the discussion on adaptive
splitting. Binary and guided splitting are similar enough to Figures 5.9 and 5.10 that
we will not duplicate the algorithms here. Note, however, that splitting ends with
sending the new task to the thief rather than pushing it onto the victim’s deque: with
binary splitting, the thief receives half of the victim’s tasks; with guided splitting, the
thief receives a fraction f ≥ 1

2 of the victim’s tasks, depending on the size of the chunks
that have already been split off.

Figure 5.13 shows adaptive splitting in the context of private deques and steal re-
quests, which allow workers to know exactly how many chunks to create. The assertions
in the first lines document important preconditions that are shared by all lazy strate-
gies: a worker will only split after it has received a steal request, found that its deque
is empty, and confirmed that the current task is splittable. Except for the addition of
steal requests, they are the same preconditions as before (cf. lines 1–2 in Figures 5.9,
5.10, and 5.12). As a consequence, a worker will not split unless its deque is empty. If
the deque contains leftover work, that work will be distributed first.

Adaptive splitting is straightforward to implement: given N steal requests, a worker
tries to split its current task [a, b) into N + 1 chunks of equal size, leaving one chunk
for itself. Up to b − a − 1 steal requests can be handled before the task ceases to be
splittable, that is, if N ≥ b − a, the last N − (b − a − 1) steal requests cannot be
handled and must be passed on to other victims. Note that, if N ≥ b − a − 1, the
task is broken down into single tasks, effectively reversing the bundling. The difference
between breaking down a bundle into single tasks and creating single tasks in the
first place is that the former eliminates all but two deque operations, while the latter
requires two deque operations per task.
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Split-Adaptive(T )
Let Qi be the private deque of tasks of worker i,

P be the number of workers,
S be the set of steal requests to handle

1 // Preconditions: Deque is empty and task is splittable
2 assert Qi is empty ∧ T is splittable
3 // Own steal request /∈ S
4 assert |S| > 0 ∧ |S| < P
5 chunks = |S|+ 1
6 for each steal request s ∈ S
7 count = T.end − T.next
8 if count == 1
9 // T is no longer splittable
10 // Forward steal request (see Figure 4.1)
11 continue
12 chunksize = max(count/chunks, 1)
13 split = T.end − chunksize
14 T ′ = T // Make a copy of T
15 T ′.start = T ′.next = split
16 if s.status == registeredIdle
17 // Notify manager (see Figure 4.4)
18 Send T ′ to channel s.chan
19 T.end = split
20 chunks = chunks − 1

Figure 5.13: Lazily splitting a task into as many chunks as there are pending steal requests.
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5.4 Performance of Work Splitting

Lazy splitting has been proposed to dynamically control the granularity of tasks, reduce
runtime overhead, and improve performance, with an eye towards nested parallelism,
to which eager splitting is oblivious [245]. How that performance translates to flat
parallelism, namely non-nested loops, will be addressed in this section.

5.4.1 Loop Scheduling

Loops with independent iterations are an important source of parallelism in many
applications. Task-parallel runtime systems may choose to model parallel loops in
terms of tasks. The obvious advantage of doing so is that iterations can be scheduled
by work stealing, providing dynamic load balancing, which is important for many
unbalanced loops. But not every loop is unbalanced, and paying the overhead of
work stealing may affect performance compared to much simpler, static scheduling,
especially when all iterations take the same amount of time. Fine-grained parallelism
requires that iterations are combined into chunks of useful work that a scheduler can
exploit. We have seen that lazy splitting is an efficient solution to this problem. Being
able to create tasks “on demand” makes chunking implicit and eliminates the need for
parameter tuning. This raises the question of whether lazy splitting has the potential to
replace dedicated loop schedulers. As a benchmark set, we consider the following non-
nested parallel loops, ranging from balanced to unbalanced, and spanning fine-grained
and coarse-grained parallelism:

FG Fine-grained parallelism: 10 000 000 iterations, each lasting one microsecond.

CG Coarse-grained parallelism: 960 iterations, each lasting ten milliseconds.

RG Randomly chosen granularity: 10 000 unbalanced iterations, biased towards fine-
grained parallelism. There are five different granularities, from one microsecond up
to ten milliseconds, separated by factors of ten. Approximately one third of the
iterations are very fine-grained; 6.6% are very coarse-grained. In between, 26.6% of
the iterations last ten microseconds, 20% last 100 microseconds, and 13.3% last one
millisecond.

IG Linearly increasing granularity: 2000 iterations between one microsecond (first
iteration) and ten milliseconds (last iteration). The increment between subsequent
iterations is five microseconds.
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Figure 5.14: Performance of OpenMP static, dynamic, and guided schedulers, and EBS as
implemented in Cilk Plus. Figure (a) shows the speedups obtained by choosing the default
chunk size for each scheduler. Figure (b) shows the speedups that resulted after manually
tuning the chunk sizes. (ICC 15.0.3, -O2, AMD Opteron multiprocessor, 48 threads/cores)

DG Linearly decreasing granularity: 2000 iterations between ten milliseconds (first
iteration) and one microsecond (last iteration). The decrement between subsequent
iterations is five microseconds.

All loops contain sufficient parallelism; some may benefit from chunking.
Figure 5.14 shows the performance of OpenMP static, dynamic, and guided [199]

schedulers as well as Cilk Plus, which splits eagerly by recursively dividing the itera-
tion range in half, creating tasks along the way. Static scheduling incurs no runtime
overhead besides calculating the iteration range based on a worker’s ID and the total
number of workers. Dynamic and guided scheduling require calls to the runtime library
to fetch iterations from a shared counter using atomic operations, such as fetch-and-add
or compare-and-swap, or locking as a fallback mechanism.

The first thing to note is the importance of choosing good chunk sizes for static
and dynamic scheduling and, to a lesser extent, Cilk Plus. Only guided scheduling
achieves near-optimal speedups across the board using its default chunking policy.
Intel OpenMP schedules 1

2P
of the remaining iterations, until their number is less than

2P · (K + 1), where P is the number of workers and K is the desired minimum chunk
size (K = 1 if unset)6. At this point, the remaining work is scheduled in chunks of K
iterations, after switching from guided to dynamic scheduling.

6See src/kmp_dispatch.cpp in the Intel OpenMP runtime library [9].
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Figure 5.15: Performance of different work-splitting strategies in combination with work
stealing based on concurrent deques (a) and private deques and channels (b). (ICC 15.0.3,
-O2, AMD Opteron multiprocessor, 48 threads/cores)

Cilk Plus calculates the chunk size according to min(2048, d N
8P
e), where N and P

are the numbers of iterations and workers7. When N ≤ 8P , the chunk size is set to one.
When N > 16384P , the chunk size is capped at 2048 iterations. As Figure 5.14 (a)
shows, this heuristic works well for most loops, but leaves some room for improvement
when iterations exhibit vastly different execution times. The speedups in Figure 5.14
(b) are the result of manually trying out each chunk size K ∈ {2i | 0 ≤ i ≤ 10} and
picking the best for each scheduler. For RG, for example, Cilk Plus performs best with
a chunk size of one. The default chunk size of 27 turns out to be too large for this kind
of unbalanced loop.

Figure 5.15 compares the performance of binary, guided, and adaptive splitting
using concurrent and private deques. There are several things worth noting. First,
lazy splitting delivers on its promise of robust performance without tuning parameters.
Second, explicit communication is as efficient as sharing splittable tasks in a traditional
work-stealing scheduler, with one exception: coarse-grained parallelism. Parallel loops
such as CG demand a perfectly equal distribution of work, or else performance will
suffer. This is difficult to achieve without knowing which worker has the largest chunk
of remaining iterations, which must be split evenly to provide every worker with the
same amount of work. Shared deques allow workers to find this chunk, steal it, and
split accordingly. Guided and adaptive splitting work well for CG, but less so when
combined with private deques. Binary splitting is a solid choice for fine-grained paral-

7See runtime/cilk-abi-cilk-for.cpp in the Intel Cilk Plus runtime library [6].
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Benchmark Speedup Performance of work splitting
OpenMP Cilk Plus Concurrent deques Private deques

FG 47.43 46.49 −0.3% +1.7% −0.1% +1.9%
CG 47.93 45.33 −0.7% +5.0% −5.2% +0.2%
RG 46.51 45.78 −2.9% −1.4% −2.1% −0.5%
IG 46.86 45.90 −1.9% +0.1% +0.9% +3.0%
DG 47.93 46.40 −4.6% −1.4% −4.9% −1.8%

Table 5.1: Summary of the best median results from Figures 5.14 (b) and 5.15. Lazy work-
splitting schedulers, whether based on concurrent or private deques, achieve performance
close to the best scheduler + chunk size combinations. (ICC 15.0.3, -O2, AMD Opteron
multiprocessor, 48 threads/cores)

lelism, but suboptimal for coarse-grained parallelism, unless supported by polling, as
Figure 5.15 (b) shows.

Steal requests make work splitting truly lazy, which we expect to be reflected in
the number of splits at runtime. In fact, FG causes binary, guided, and adaptive
splitting to perform, respectively, 11 295, 29 729, and 30 086 splits on average when
using concurrent deques, compared to 1072, 2947, and 1056 splits when using private
deques. Similarly but less pronounced, RG results in 1488, 2742, and 2730 splits on
average when using concurrent deques, compared to 428, 1360, and 406 splits when
using private deques.

The loop scheduling results are summarized in Table 5.1. Lazy splitting comes close
to the performance of loop scheduling in OpenMP and is marginally faster than eager
splitting in Cilk Plus, whether using concurrent deques or private deques and steal
requests (averaged over all benchmarks). Thus, lazy splitting manages to combine
good performance with ease of programming through implicit chunking.

5.4.2 Mixing Tasks and Splittable Tasks

Regular tasks and splittable tasks can be freely mixed. An interesting example is a
variation of BPC in which consumer tasks are bundled together so that a producer task
has to create only two tasks instead of n + 1. (Recall that each of d producer tasks
creates another producer task followed by n consumer tasks.) We can thus reduce
BPC to 2d + s tasks, which, depending on s, the number of splits performed, may be
significantly less than (n+ 1) · d. For example, if we assume that d = 1000, n = 9, and
that each splittable task is split twice, that is, s = 2000, the total number of tasks is
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Figure 5.16: Work splitting benchmarked using a variation of BPC in which consumer tasks
are bundled and scheduled as splittable tasks. We tested different workloads, starting with
d = 10 000, n = 9, and t = 10µs in Figure (a) and d = 100 000, n = 9, and t = 1µs in Figure
(b), successively decreasing d by a factor of ten while increasing n such that the total number
of tasks stays constant: 100 000 in Figure (a) and 1 000 000 in Figure (b). (ICC 15.0.3, -O2,
AMD Opteron multiprocessor, 48 threads/cores)

2 · 1000 + 2000 = 4000, instead of (9 + 1) · 1000 = 10 000 if regular tasks were used.
Reducing task creation by 60% will have a noticeable effect on the program’s efficiency
as long as load balancing does not suffer as a result.

The addition of splittable tasks does not change the breadth-first nature of work
stealing. As an example, suppose worker i has created a producer task followed by
a splittable consumer task and needs to schedule new work. The splittable consumer
task, pushed last, is popped first. If worker i receives a steal request from worker j, it
will not split, knowing that the oldest task—the producer task—should be stolen first.
In fact, sending the producer task will allow worker j to create tasks itself, and may
cause fewer steals than if worker j received a fraction of worker i’s consumer tasks.

We start our mixed-task BPC experiment with splittable tasks of limited parallelism
(n = 9). Since BPC is designed to stress dynamic load balancing, work splitting may
happen frequently enough to negate the benefit of bundling tasks for small values of n.
As we increase the number of consumer tasks per splittable task (up to n = 99 999),
we expect that fewer splits are required to achieve load balance, giving workers more
opportunities to serialize tasks and reduce overhead.

Figure 5.16 shows 48-core speedups over sequential execution for different values of
n and task lengths of 10µs and 1µs. We focus on lazy splitting in the context of private
deques and steal requests. For comparison, we include Cilk Plus (using its default
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chunking policy) in Figure 5.16 (a) and a regular, non-work-splitting implementation
of BPC in Figure 5.16 (b). We were not able to make Cilk Plus function correctly with
d = 100 000, which caused Cilk Plus to crash regardless of stack size.

Figure 5.16 (a) shows that lazy splitting outperforms eager splitting. For n = 9
and n = 99, Cilk Plus calculates a chunk size of one, whereas adaptive splitting, for
example, manages to reduce the number of tasks from 100 000 to 61 509 (n = 9) and
24 520 (n = 99) on average. This means that 43% (n = 9) and 76% (n = 99) of all
consumer tasks are executed sequentially. Starting with n = 999, Cilk Plus calculates
chunk sizes greater than one, but remains behind lazy splitting.

Reducing the task length to 1µs makes it difficult to achieve good speedups for small
values of n, whether using splittable tasks or not. The more tasks appear in sequence,
however, the easier it becomes for lazy splitting to distribute the work by sending
out large chunks. Contrast this with creating single tasks: the more tasks appear
in sequence, the higher the likelihood of a task creation bottleneck. For n = 999,
adaptive splitting is already 3.8× faster than our non-work-splitting implementation,
highlighting the importance of bundling tasks, which, in this case, allows workers to
serialize 96% of all consumer tasks.

To summarize this experiment, we note that lazy splitting is most effective when
there is plenty of potential parallelism, such as task-generating loops, that can be
bundled. The larger the bundles, the more potential for improvement. This does not
mean that we should avoid creating small bundles. Adaptive splitting, for example,
will convert a splittable task back into single tasks if there are sufficient steal requests.
The advantage of creating tasks lazily as opposed to eagerly is that no deque operations
are required beyond an initial push and pop.

Task-generating loops have received special support in OpenMP 4.5, the latest
version of the standard at the time of writing [19]. The taskloop construct, which
“specifies that the iterations of one or more associated loops will be executed in par-
allel using OpenMP tasks” (see [19], Section 2.9.2, page 87), addresses the problem of
distributing work to all threads in a team in the context of nested parallelism [240].
Threads can pick up tasks created by other team members, but cannot participate in
parallel loops they do not encounter8. Unless all threads in a team encounter a parallel
loop, iterations must be packaged as tasks to be able to distribute work, hence the need
for efficient task-generating loops [240]. Whether tasks are created eagerly or lazily is

8OpenMP distinguishes between implicit and explicit tasks [17]. A parallel region containing a
parallel loop creates a team of threads, assigns an implicit task to each thread, and schedules iterations
as part of these implicit tasks, which are assumed to cooperate in executing the loop. Explicit tasks
are those created by the task construct.
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left to the implementation. We hope to have shown that taskloops would benefit from
lazy splitting.

It is interesting to note that Tzannes et al.’s original implementation of LBS [245]
opted against breadth-first work stealing, with the result of causing frequent steals for
deeply nested parallelism [246]. In their follow-up work, Tzannes et al. used two deques
per worker: a private deque, where most tasks are kept, and a public, shared deque to
enable work stealing [246]. When a worker’s public deque is empty, the worker tries to
share its oldest task by moving it to the public deque or splitting it if possible. This so
called lazy scheduling combines private and public deques in a way that resembles the
use of channels: a public deque becoming empty is akin to a steal request waiting to be
received. Sharing a task is like sending it to a channel; stealing a task is like receiving
it from a channel. An important difference remains: steal requests make splitting truly
lazy; shared deques, even if empty, can only suggest—not guarantee—that parallelism
is needed.

5.5 Summary

The task abstraction encourages programmers to express fine-grained parallelism to-
wards improving performance. But any runtime system comes with overhead, and too
many short tasks may hurt performance. The primary sources of overhead are task
creation, scheduling, and load balancing in the form of work stealing. Steal-half may
help reduce the frequency of work stealing, but in some cases, being greedy and steal-
ing many tasks is counterproductive. Robust performance requires that workers adapt
their strategy if needed, based on their recent work-stealing history.

Adaptive stealing allows workers to choose and switch between steal-one and steal-
half at runtime, but cannot reduce the overhead of task creation. An effective way to
control the number of tasks by increasing their granularity is to bundle similar tasks,
such as iterations of a parallel loop. Instead of creating, enqueuing, and dequeuing
N tasks, a worker may create, enqueue, and dequeue a single task and defer splitting
until workers attempt to steal. We find that lazy strategies enable efficient scheduling
of fine-grained parallelism including parallel loops.
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The previous chapters introduced a work-stealing scheduler in which worker threads
communicate by sending messages over channels. We have already seen a few perfor-
mance results along the way. This chapter will focus on a performance comparison with
three work-stealing schedulers, all of which are based on concurrent deques. Our goal is
to demonstrate that explicit communication enables practical and efficient schedulers,
even on shared-memory systems, where the channel abstraction is not strictly needed
for threads to communicate.

Sections 6.1 and 6.2 give an overview of the competing runtime systems and ex-
plain our setup. Sections 6.3 through 6.9 present speedups for our set of task-parallel
benchmarks and discuss the most interesting results. Section 6.10 concludes by looking
at the average performance across all benchmarks.

6.1 Competing Runtime Systems

We have focused on developing a runtime system based on private deques and channels,
but we also looked at other runtime systems to assess the impact of explicit commu-
nication on the performance of work stealing. The following list reviews all runtime
systems that have been used throughout or in parts of this thesis:

Channel-based work stealing (Channel WS) Every worker has a private deque
of tasks and two channels to communicate with other workers. The private deque is
implemented as a doubly-linked list with head and tail pointers. Dequeuing a single
task, whether through pop or steal, is a constant-time operation. Stealing half of
a victim’s tasks has linear complexity (see Section 3.5.3). Channels are concurrent
FIFO queues implemented as circular arrays of fixed size. We can afford to use a
relatively simple channel implementation because channels are either MPSC (steal
requests) or SPSC (tasks), and the number of messages is bounded. Sending a steal
request involves locking; receiving a steal request is lock free. Sending a task is lock
free, as is receiving a task. A steal request takes up 32 bytes and is copied between
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threads. A task takes up 192 bytes and is moved between threads to avoid copying:
only a pointer is sent, sufficient to transfer ownership of a task or list of tasks from
victim to thief. We choose worker 1 to be in charge of termination detection in
addition to being a regular worker. Futures allocate and reuse SPSC channels as
described in Chapter 4. We configure the scheduler to use adaptive stealing and
adaptive splitting as proposed in Chapter 5.

Chase-Lev work stealing (Chase-Lev WS) This scheduler implements our task
model, but uses concurrent deques instead of private deques and channels. We
use an implementation of Chase and Lev’s non-blocking (lock-free) deque [66] from
the High Performance ParalleX (HPX) Library developed at Indiana University
[5]. This implementation issues atomic CAS operations. We allocate enough space
for the deques to avoid triggering reallocations at runtime. Termination detection
follows Herlihy and Shavit’s algorithm [116]. Futures are implemented on top of
SPSC channels analogous to the description in Chapter 4. Since we propose support
for work splitting in Chapter 5, we configure the scheduler to use adaptive splitting.

Intel Cilk Plus Cilk Plus is faithful to the work-first principle (see Section 2.7.2).
When a worker encounters a spawn statement, it defers the continuation of the parent
task and invokes the child task. The other schedulers take the opposite approach:
they defer the child task and continue to execute the parent task. Cilk Plus inherits
Cilk’s THE protocol for implementing deques [95]: steal requires locking; pop is
mostly lock free, unless victim and thief contend for the same task. Work splitting
(EBS) is provided by cilk_for, which produces chunks of 1 to 2048 iterations using
a simple heuristic (see Section 5.4.1).

Intel OpenMP OpenMP has evolved considerably over the last years, and task-based
parallelism is well established. Intel’s OpenMP runtime library includes a work-
stealing scheduler, which, while not mandated by the standard, is important for
fine-grained parallelism, as we have seen in Chapter 2 using the example of UTS.
Every worker maintains a deque of tasks implemented as a circular array of fixed size
(256 in ICC 15.0.3). When a worker has filled its deque and fails to enqueue a task,
it executes the task immediately. This can be seen as a form of granularity control,
where parallelism is cut off to prevent workers from piling up an excessive number
of tasks. All deque operations—push, pop, and steal—require locking. Neverthe-
less, Intel’s runtime library provides one of the best-performing implementations of
OpenMP tasks [186, 187, 198].
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It is important to benchmark channel-based work stealing against different concur-
rent deques. The selected schedulers provide us with the following deques, in order
of increasing sophistication: blocking (lock-based) deques, THE deques, and Chase-
Lev deques. While differing in implementation details, all schedulers share the same
breadth-first approach to work stealing, with victims selected at random. Workers
treat their own deques as stacks and execute tasks in LIFO order to preserve locality.

6.2 Setup

Section 2.8 introduced the benchmark programs. We make sure that every runtime
system is properly initialized before timing a computation so that none of the runtime
systems is put at a disadvantage. As the number of threads increases, so does the cost of
initializing (and finalizing) the runtime systems. In the case of Cilk Plus, we spawn and
synchronize a dummy task to force the creation of worker threads. Cilk Plus provides an
API function __cilkrts_init, which, when called, initializes the runtime system, but
does so without creating worker threads. These are created when the internal function
__cilkrts_start_workers is called the first time a task is spawned; hence, spawning
a dummy task during initialization has the side effect of creating worker threads in
addition to setting up the runtime system. In the case of OpenMP, we create a parallel
region and insert a barrier, either explicitly or implicitly, to ensure that all workers are
up and running when the clock is started.

To avoid thread migration, we pin workers to processor cores, except for Cilk Plus,
where thread affinities are not configurable (yet)1. Intel OpenMP allows to set thread
affinities via the environment variable KMP_AFFINITY. We use

KMP_AFFINITY=granularity=fine,scatter

on the Intel Xeon system,

KMP_AFFINITY=granularity=fine,compact

on the AMD Opteron system, and

KMP_AFFINITY=granularity=fine,balanced

on the Intel Xeon Phi. The latter is MIC Architecture specific and combines features of
compact—grouping together consecutive threads— and scatter—distributing threads
evenly across all cores. Until the number of threads exceeds the number of cores,

1Recent versions of the Intel Cilk Plus runtime library, up to and including Build 4420 released
in November 2015 [7], contain a comment in runtime/sysdep-unix.c: create_threads indicating that
binding threads to cores should be made an option.
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balanced has the same effect as scatter, placing a thread on every core, starting with
core 0. If there are more threads than cores, the first two threads are placed on core
0, the next two threads are placed on core 1, and so on, depending on the number of
threads. Consequently, if the system is fully loaded, threads 0–3 share core 0, threads
4–7 share core 1, and so on. This is the same as using compact, but is different from
using scatter, which keeps assigning threads to cores round robin. We should not
fail to mention that the order of assignment may be less relevant when all hardware
threads are used, as is the case in our experiments. That said, scatter and balanced

are sensible defaults for systems that support SMT.
We measure performance on three systems that are summarized in Appendix A: a 2-

socket Intel Xeon system, a 4-socket AMDOpteron system, and a Xeon Phi coprocessor.
We will refer to these systems as Small, Medium, and Large, based on the number
of hardware threads that they support and the number of worker threads that we
intend to start. This means we will look at 24-thread, 48-thread, and 240-thread
executions, corresponding to Small, Medium, and Large thread counts. The majority
of the benchmarks are not able to utilize 240 threads efficiently, which means that
these benchmarks also test how well the runtime systems cope with large numbers of
contending workers.

6.3 SPC

The SPC benchmark contains a single task-generating loop, which allows us to take
advantage of work splitting. With Intel OpenMP, we can create a task for each loop
iteration, but doing so neglects a better option: loop scheduling. We therefore use
guided scheduling, which avoids tasking-related overheads and has demonstrated good
performance in Section 5.4. The results are shown in Figure 6.1.

On systems Small andMedium, Channel WS and Chase-Lev WS deliver comparable
performance to Intel OpenMP’s guided scheduling, in line with the results of Section
5.4. Cilk Plus is slightly slower. On system Large, however, work splitting, whether ea-
ger or lazy, loses efficiency relative to guided scheduling. Moreover, Chase-Lev WS falls
short of Channel WS. Both succeed in load balancing, but overheads differ: Chase-Lev
WS performs roughly an order of magnitude more steals than Channel WS. The reason
is that Chase-Lev WS splits frequently, which impacts performance on fine-grained par-
allelism. This problem can be solved by using binary splitting, which manages to cut
down the number of tasks while maintaining load balance. With Channel WS, adap-
tive splitting is truly lazy and not outperformed by other strategies, demonstrating the
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(a) System Small
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(b) System Medium
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(c) System Large

Figure 6.1: 24-thread, 48-thread, and 240-thread speedups for SPC with n = 1 000 000
(1 000 000 tasks) and t = 1µs, 10µs, and 100µs. (ICC 15.0.3, -O2)

robustness of work splitting using private deques and steal requests.
Increasing work-stealing overheads limit the efficiency of Channel WS on system

Large. Using 60 workers, Channel WS is at most 8% slower than Intel OpenMP. Using
240 workers widens the gap to 42%. The number of failed attempts per steal increases
by a factor of 4.1. This suggests a difficulty in finding victims to steal from; a problem
that is absent from guided scheduling, which keeps all tasks in a central location.

6.4 BPC

Figure 6.2 shows speedups for BPC. We have chosen a moderately challenging workload
with d = 1000 and n = 999 because we noticed that Cilk Plus performs increasingly
poorly for larger values of d. With d = 10 000, for example, Cilk Plus barely surpasses
sequential performance, no matter which task length and how many worker threads
are used. The other runtime systems, including Intel OpenMP, do not exhibit this
behavior.

Not surprisingly, Intel OpenMP has trouble with very fine-grained parallelism, ow-
ing to the lack of efficient granularity control. Cilk Plus benefits from eager splitting,
but schedules smaller chunks than the adaptive strategies of Channel WS and Chase-
Lev WS, which achieve the lowest overhead. On system Small, Channel WS is on
par with Chase-Lev WS. On system Medium, Channel WS is 23% ahead of Chase-Lev
WS, but starts to fall behind as the task length is increased. The difference is more
pronounced on system Large, where scalability is key to good performance. Channel
WS does not scale as well as Chase-Lev WS and remains 24%, 11%, and 10% behind
for tasks of 1µs, 10µs, and 100µs. To understand where this difference comes from, we
try to quantify the efficiency of work stealing by counting the number of failed steal



136 6.5 Treerec

 0

 4

 8

 12

 16

 20

 24

1µs 10µs 100µs

S
p

e
e

d
u

p
 o

v
e

r 
s
e

q
. 

e
x
e

c
u

ti
o

n

(a) System Small
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(b) System Medium

 0

 40

 80

 120

 160

 200

 240

1µs 10µs 100µs

S
p

e
e

d
u

p
 o

v
e

r 
s
e

q
. 

e
x
e

c
u

ti
o

n

(c) System Large

Figure 6.2: 24-thread, 48-thread, and 240-thread speedups for BPC with d = 1000, n = 999
(1 000 000 tasks), and t = 1µs, 10µs, and 100µs. (ICC 15.0.3, -O2)

attempts, which determine the time it takes until new tasks arrive. On systems Small
and Medium, the average steal request incurs less than one failed attempt, indicating
that tasks are well balanced among workers. This is not the case on system Large,
where the collective number of failed attempts has increased by more than 10× com-
pared to the smaller systems. Chase-Lev WS incurs failed attempts as well, but far
fewer than Channel WS because workers check their victims’ deques before trying to
steal. In fact, we should not be too surprised that sending steal requests to random
workers may cause more communication as the number of workers increases. Since
BPC is meant to stress the runtime systems’ ability to locate tasks, it becomes more
difficult to maintain load balance at scale without efficient victim selection.

6.5 Treerec

In Section 4.4, we have used Cilk Plus as a reference for evaluating the performance of
our runtime system in the context of strict fork/join parallelism. Cilk Plus excels at
tree-structured computations that benefit from work-first scheduling. Figure 6.3 shows
speedups for Treerec with n = 32.

On system Small, Cilk Plus achieves perfect speedups, even for very fine-grained
tasks. This efficiency is only slightly reduced on system Medium, which matches our
earlier result in Section 4.4. On system Large, however, Cilk Plus suffers from similar
performance degradation as with BPC, leaving it behind Channel WS and Chase-Lev
WS. Channel WS is never slower than Chase-Lev WS, suggesting that steal requests
are handled efficiently. But this alone does not explain why Channel WS is able to
outperform Chase-Lev WS when tasks are very fine grained. Both runtime systems
allocate the same amount of memory for channel-based futures. Though Chase-Lev
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(a) System Small
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(b) System Medium
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(c) System Large

Figure 6.3: 24-thread, 48-thread, and 240-thread speedups for Treerec with n = 32
(3 524 577 tasks) and t = 1µs, 10µs, and 100µs. (ICC 15.0.3, -O2)

WS lacks support for steal-half, and, by extension, adaptive stealing, Channel WS
does not attempt to steal multiple futures; workers always opt for steal-one. We do
notice that workers initiate more steals. On system Large, for example, Channel WS
exchanges 26% more tasks than Chase-Lev WS without decreasing the percentage of
successful steals, which is roughly the same between Channel WS and Chase-Lev WS.
More steals imply more communication and thus overhead, which we must assume is
offset by improved load balancing.

Profiling reveals that workers spend less time waiting for stolen futures to be ful-
filled. This is a consequence of asynchronous steal requests, which allow workers to
return from rts_force_future even if a steal is pending, or tasks are sent concur-
rently (see Section 4.3 and Figure 4.4 in particular). Unlike Channel WS, Chase-Lev
WS cannot interrupt a steal to return from rts_force_future: stealing either succeeds
or fails. The best we can do is fail fast, for example, by trying to steal from a single
victim before testing again if a future is fulfilled, and, in fact, doing so helps improve
performance somewhat.

6.6 Sorting and N-Queens

Figure 6.4 shows three more benchmarks that exhibit strict fork/join parallelism:
Quicksort, Cilksort, and N -Queens. With a few exceptions, we see comparable perfor-
mance. Cilk Plus, for example, excels at N -Queens, achieving speedups of 10.6, 48, and
84.8 on systems Small, Medium, and Large, but channel WS comes close to these num-
bers; it is only 2–7% slower. What we think is interesting and not immediately obvious
is that Channel WS can be fast for Cilksort but slow for Quicksort. To understand
why, let us concentrate on system Large.
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(b) System Medium
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(c) System Large

Figure 6.4: 24-thread, 48-thread, and 240-thread speedups for Quicksort of 100 mil-
lion integers (1 697 314 tasks), Cilksort of 100 million integers (1 070 421 tasks), and
N -Queens with N = 14 (27 358 552 tasks). Quicksort and Cilksort were run under
numactl --interleave=all on systems Small (two NUMA nodes) and Medium (four
NUMA nodes). (ICC 15.0.3, -O2)

Quicksort with sequential partitioning is the least scalable of our benchmarks; its
speedup on P processors is bounded by P log2 N

2P−2+log2(N/P ) [243]. For N = 108 elements,
we should not expect a speedup of more than 13. Thus, Quicksort does not benefit
from having many workers compete for tasks. In fact, adding workers beyond a certain
number may result in a slowdown, regardless of which runtime system is used. If we
double the number of workers from 60 to 120, Chase-Lev WS, for example, takes 10%
longer to run. If we double the number of workers again, from 120 to 240, Chase-
Lev WS ends up running 44% longer than with 60 workers. Channel WS is initially
on par with Chase-Lev WS, but performance degrades faster. Doubling the number
of workers from 60 to 120 increases execution time by 17%. Doubling the number
of workers further from 120 to 240 increases execution time by 77%. That is, going
from 60 workers to 240 workers more than doubles the execution time. This amounts
to a performance difference of 31% between Channel WS and Chase-Lev WS. For
comparison, the difference is 7% with 120 workers and 1% with 60 workers.

As the number of workers increases, Channel WS becomes less efficient. Quicksort
shows a 10-fold increase in the number of steal requests with 240 workers instead
of 60 workers, suggesting that it takes effort to achieve load balance. In addition,
steal requests fail twice as often, since workers have fewer tasks. The result is a 20-
fold increase in the number of messages compared to using 60 workers. Cilksort, on
the other hand, shows a 4-fold increase, adding less overhead as a result. We also
find that Chase-Lev WS achieves a more even distribution of tasks in Quicksort, with
7072± 677 tasks/worker, compared to 7072± 2560 tasks/worker when using Channel
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(a) System Small
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(b) System Medium
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(c) System Large

Figure 6.5: 24-thread, 48-thread, and 240-thread speedups for UTS with input trees T1L
(102 181 081 tasks), T2L (96 793 509 tasks), and T3L (111 345 630 tasks). (ICC 15.0.3, -O2)

WS. Again, this is not the case in Cilksort, where both runtime systems achieve a
similar distribution of tasks (4460±167 tasks/worker for Chase-Lev WS and 4460±122
tasks/worker for Channel WS).

6.7 UTS

Figure 6.5 shows speedups for three UTS workloads: the geometric trees T1L and
T2L and the binomial tree T3L, all having around 100 million nodes. The nodes in a
geometric tree follow a geometric distribution in which the expected size of a subtree
increases towards the root. Geometric trees tend to be shallow: T1L has a depth of 13
and 80% leave nodes; T2L employs a less rigid cut off, resulting in a depth of 67 and
55.57% leave nodes.

The nodes in a binomial tree have eitherm children with probability q or no children
with probability 1 − q, where m and q are parameters that determine the shape of a
tree. The root is an exception, and has a specific branching factor b0. In the case of
T3L, the root has much more children (b0 = 2000) than other internal nodes (m = 5,
q = 0.200014)2. In contrast to geometric trees, binomial trees tend to be deep: T3L
has a depth of 17 844 and 80% leave nodes.

UTS creates millions of very fine-grained tasks, thereby exposing the runtime over-
head involved in scheduling and load balancing. As in previous benchmarks with
fine-grained parallelism, Intel OpenMP falls short in terms of scalability, owing to the
fact that even the most frequent deque operations—push and pop—require locking.
Cilk Plus achieves good speedups on T1L and T2L, but fails on T3L with an internal

2The complete set of parameters used to generate the trees along with tree statistics can be found
in the file sample_trees.sh included in the UTS distribution [25].
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(a) System Small
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(b) System Medium
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(c) System Large

Figure 6.6: 24-thread, 48-thread, and 240-thread speedups for multiplying two 4096× 4096
matrices of doubles using different block sizes: 32 × 32 (2 097 152 tasks), 64 × 64 (262 144
tasks), and 128× 128 (32 768 tasks). (ICC 15.0.3, -O2)

runtime system error, which is why Figure 6.5 is missing three bars. Increasing the size
of worker stacks makes no difference. Even a smaller binomial tree, such as T3, which
has a depth of 1572 and roughly 4 million nodes, causes Cilk Plus to abort execution.

Channel WS and Chase-Lev WS achieve similar performance within 5% of each
other, except on system Large, where T3L is 20% faster when using Channel WS. In
Figure 5.5, we have seen that steal-half reduced the execution time of T3L by 17%
because it managed to balance tasks with fewer steals than steal-one (48 workers).
The same happens here on system Large. Channel WS performs 55% fewer steals than
Chase-Lev WS, without sacrificing load balance, thanks to workers being able to switch
to steal-half. In fact, workers are too conservative in their choice of strategy: steal-
half is still 17% faster than adaptive stealing, which, nevertheless, provides 25% better
performance than steal-one. In contrast to T3L, the geometric trees T1L and T2L do
not benefit from steal-half so that workers stick to steal-one.

6.8 Matrix Multiplication

The remaining benchmarks exhibit flat parallelism. Figure 6.6 shows speedups for
multiplying two 4096× 4096 matrices of doubles using different block sizes. The block
size determines the task granularity. A small block size, such as 32 (1024 elements),
increases the number of tasks in each parallel phase. A large block size, such as 128
(16 384 elements), has the opposite effect. A block size in between, such as 64 (4096
elements), may be preferable in practice since it strikes a balance between the number
of tasks and the amount of useful work per task. Channel WS is supported by polling.
We add a call to rts_poll to the outermost loop of the multiplication kernel so that
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(a) System Small
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(b) System Medium
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(c) System Large

Figure 6.7: 24-thread, 48-thread, and 240-thread speedups for the LU decomposition of
a sparse 4096 × 4096 matrix of doubles using different block sizes: 32 × 32 (182 976 tasks),
64× 64 (23 904 tasks), and 128× 128 (3248 tasks). The percentage of nonzero blocks is 11%
for B = 32, 13% for B = 64, and 18% for B = 128. (ICC 15.0.3, -O2)

workers check once per iteration if there are pending steal requests. As a consequence,
the number of runtime library calls per task is equal to the block size.

Channel WS is among the best runtime systems on systems Small and Medium,
but falls behind on system Large as the block size is increased. Larger block sizes result
in fewer tasks being created in each parallel phase. Thus, workers have fewer tasks to
spare, and an increasing percentage of steal requests cannot be handled. Choosing a
block size of 128 on system Large causes the percentage of successful steals in Channel
WS to drop below 1%. Chase-Lev WS benefits from deque checks, which greatly reduce
the number of steal attempts. The percentage of successful steals in Chase-Lev WS
remains above 50%.

It is worth noting that Chase-Lev WS does not improve the distribution of tasks; it
achieves the same level of load balancing as Channel WS, but does so with significantly
less effort. Channel WS is up to 25% slower than Chase-Lev WS. Creating single tasks
rather than splittable tasks reduces the performance difference to 8% if combined with
last-victim selection. This reaffirms the importance of victim selection when parallelism
is limited.

6.9 Sparse LU

Figure 6.7 shows speedups for the LU decomposition of a sparse 4096× 4096 matrix of
doubles using different block sizes. As in the previous benchmark, a single worker is re-
sponsible for creating tasks. This LU decomposition differs by using futures rather than
task barriers because synchronization is frequent, and the number of tasks shrinks with
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each step of the decomposition so that task barriers become needlessly expensive. The
OpenMP implementation is likewise based on tasks and taskwaits [41, 40]. Again, the
block size determines the granularity and number of tasks. Later steps of the decom-
position have insufficient parallelism with fewer tasks than workers, causing significant
contention. The sparsity of the matrix makes it difficult to profit from dynamic loop
scheduling, whereas tasks are only created for nonzero blocks [41]. Channel WS is sup-
ported by the same polling strategy as above: every kernel contains a call to rts_poll

so that the block size determines the number of runtime checks per task.
Channel WS is mostly slower than Chase-Lev WS, up to 31% on system Large.

Interestingly, Chase-Lev WS is itself slower than Intel OpenMP on system Large. The
performance difference between the two increases with the number of workers. Al-
though futures are reused, they must be created first, causing a (potentially large)
number of allocations in the first step of the decomposition. Preallocating futures or
using spawn and sync (see Section 4.4) would indeed improve performance for smaller
block sizes, up to 10% in our measurements.

Channel WS would likewise benefit (12%) from fewer allocations. But these are not
the only overhead. More than above, random victim selection causes a huge number
of steal attempts. The larger the block size, or the larger the number of workers, the
smaller the percentage of successful steals. Even on system Small, stealing requires five
attempts on average to succeed; and more than that in case of longer but fewer tasks.
Most of the time, workers attempt to steal single tasks. Only the smallest block size
generates enough tasks to convince workers to switch from steal-one to steal-half. The
more workers are used, however, the less viable it becomes to steal multiple tasks, as
evidenced by the decreasing number of tasks received per steal, from an average of five
tasks on system Small to two tasks on system Large. Choosing a larger block size than
32 leaves little to no room for workers to make use of steal-half.

We tried different stealing strategies, such as steal-one combined with last-victim
selection, but none was able to improve upon adaptive stealing. Lastly, we implemented
victim checks analogous to the deque checks of Chase-Lev WS and others, and indeed,
these help improve performance. Once again, this shows the importance of victim
selection when parallelism is limited.

Choosing the largest block size increases contention over tasks to the point of slowing
down the benchmark, regardless of which runtime system is used. Channel WS, Chase-
Lev WS, Cilk Plus, and Intel OpenMP all take 83%, 81%, 60%, and 108% longer to
run with 240 instead of 60 workers.

Overall, this is a challenging benchmark that benefits from large matrices and small
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block sizes. Additional parallelism can be uncovered by expressing task dependencies
and taking advantage of fine-grained synchronization, which has been shown to improve
scalability [77, 249].

6.10 Summary

Tables 6.1, 6.2, and 6.3 summarize the median speedups for every benchmark. These
are not necessarily the best speedups that we measured. Some benchmarks are far from
utilizing 240 threads efficiently, and some perform better with fewer threads and less
contention. Nevertheless, we want to stress the runtime systems as much as possible,
and that involves using all available hardware threads.

In addition to speedups, the tables include deviations (in percent) from the best
results. The lower the deviation, that is, the closer it is to zero, the better the per-
formance relative to the other runtime systems. For a final ranking, we determine the
average performance of each runtime system on the set of 21 benchmarks/workloads
(20 in the case of Cilk Plus):

System Small System Medium System Large
1. Chase-Lev WS −1.6% 1. Chase-Lev WS −2.2% 1. Chase-Lev WS−13.7%
2. Channel WS −2.4% 2. Channel WS −2.4% 2. Channel WS −13.7%
3. Cilk Plus −4.6% 3. Cilk Plus −6.9% 3. Intel OpenMP −22.2%
4. Intel OpenMP −10.7% 4. Intel OpenMP −21.8% 4. Cilk Plus −28.1%
Channel WS comes out ahead of Cilk Plus and Intel OpenMP on all three systems.

Only Chase-Lev WS achieves better performance. We conclude that Channel WS is
competitive with state-of-the-art runtime systems based on concurrent deques.

Demonstrating good performance does not mean that there is no room for im-
provement. We have seen on multiple occasions that random victim selection becomes
increasingly inefficient when parallelism is limited or only few workers are able to cre-
ate tasks. A simple extension such as last-victim selection mitigates this problem in
some cases, but does not represent a general solution. As a consequence, adding more
workers than can be used increases the number of steal requests and the percentage of
those that fail, which tends to degrade performance.

By using a simple channel implementation that requires locking when sending steal
requests, Channel WS may incur more synchronization overhead than other runtime
systems. Consider that a steal request takes t attempts to succeed, acquiring and
releasing t locks in the process. Lock-free MPSC channels may be needed to match the
performance of lock-free deques such as Chase and Lev’s [168, 175, 261].
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Benchmark Speedup on System Small
Channel WS Chase-Lev WS Cilk Plus Intel OpenMP

SPC 1µs 23.89 (−0.3%) 23.93 (−0.2%) 23.17 (−3.3%) 23.97
SPC 10µs 23.89 (−0.4%) 23.99 23.26 (−3.0%) 23.99
SPC 100µs 23.99 23.99 23.27 (−3.0%) 24.00
BPC 1µs 23.09 23.10 20.61 (−10.8%) 10.47 (−54.7%)
BPC 10µs 23.90 23.91 23.69 (−0.9%) 23.16 (−3.1%)
BPC 100µs 23.99 23.99 23.97 (−0.1%) 23.93 (−0.3%)
Treerec 1µs 22.71 (−5.0%) 20.77 (−13.1%) 23.90 19.74 (−17.4%)
Treerec 10µs 23.85 (−0.6%) 23.80 (−0.8%) 23.99 23.11 (−3.7%)
Treerec 100µs 23.98 (−0.1%) 23.97 (−0.1%) 24.00 23.82 (−0.7%)
Quicksort 108 6.84 (−8.8%) 7.50 6.15 (−18.0%) 7.23 (−3.6%)
Cilksort 108 16.06 (−6.0%) 16.07 (−5.9%) 17.08 16.56 (−3.0%)
N -Queens 14 10.37 (−2.2%) 9.62 (−9.2%) 10.60 9.35 (−11.8%)
UTS T1L 11.45 (−1.7%) 11.61 (−0.3%) 11.65 6.58 (−43.5%)
UTS T2L 12.59 (−0.6%) 12.66 12.65 (−0.1%) 7.49 (−40.8%)
UTS T3L 11.22 (−0.4%) 11.27 N/A 7.07 (−40.8%)
MM 4096 32 12.47 (−1.0%) 12.59 12.03 (−4.4%) 12.08 (−4.1%)
MM 4096 64 12.04 (−0.7%) 12.13 11.93 (−1.6%) 11.98 (−1.2%)
MM 4096 128 12.09 (−2.7%) 12.42 12.35 (−0.6%) 12.38 (−0.3%)
LU 4096 32 10.89 (−9.6%) 11.58 (−3.8%) 7.19 (−40.3%) 12.04
LU 4096 64 11.58 (−5.8%) 12.22 (−0.6%) 11.51 (−6.3%) 12.29
LU 4096 128 10.64 (−4.9%) 11.16 (−0.3%) 11.10 (−0.8%) 11.19

Table 6.1: Median speedups and relative differences (in parentheses) on system Small. A
value of −x percent means that a speedup is x percent lower than the best median speedup
for the given benchmark. (ICC 15.0.3, -O2)
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Benchmark Speedup on System Medium
Channel WS Chase-Lev WS Cilk Plus Intel OpenMP

SPC 1µs 45.83 (−1.0%) 44.90 (−3.0%) 39.50 (−14.6%) 46.27
SPC 10µs 47.50 (−0.5%) 47.61 (−0.3%) 45.38 (−4.9%) 47.73
SPC 100µs 47.90 (−0.1%) 47.97 46.46 (−3.1%) 47.97
BPC 1µs 34.89 28.39 (−18.6%) 25.53 (−26.8%) 8.70 (−75.1%)
BPC 10µs 46.26 (−1.5%) 46.97 42.83 (−8.8%) 38.90 (−17.2%)
BPC 100µs 46.73 (−2.3%) 47.84 47.62 (−0.5%) 47.23 (−1.3%)
Treerec 1µs 45.28 (−0.7%) 45.59 44.92 (−1.5%) 32.76 (−28.1%)
Treerec 10µs 47.53 47.52 47.44 (−0.2%) 43.31 (−8.9%)
Treerec 100µs 47.80 (−0.3%) 47.91 47.93 47.14 (−1.6%)
Quicksort 108 8.36 8.24 (−1.4%) 7.73 (−7.5%) 8.04 (−3.8%)
Cilksort 108 18.09 (−4.1%) 18.49 (−2.0%) 18.86 18.39 (−2.5%)
N -Queens 14 45.67 (−6.5%) 46.15 (−5.5%) 48.83 34.66 (−29.0%)
UTS T1L 39.78 (−6.1%) 40.79 (−3.8%) 42.38 17.64 (−58.4%)
UTS T2L 40.74 (−5.3%) 41.80 (−2.9%) 43.04 16.26 (−62.2%)
UTS T3L 35.37 34.28 (−3.1%) N/A 17.56 (−50.4%)
MM 4096 32 13.79 (−1.7%) 14.03 13.17 (−6.1%) 4.09 (−70.8%)
MM 4096 64 20.32 20.16 (−0.8%) 19.38 (−4.6%) 17.43 (−14.2%)
MM 4096 128 31.64 30.67 (−3.1%) 30.94 (−2.2%) 23.11 (−27.0%)
LU 4096 32 19.13 19.12 (−0.1%) 10.60 (−44.6%) 18.61 (−2.7%)
LU 4096 64 28.70 (−7.7%) 30.47 (−2.0%) 27.27 (−12.3%) 31.10
LU 4096 128 24.36 (−13.1%) 28.03 27.04 (−3.5%) 27.02 (−3.6%)

Table 6.2: Median speedups and relative differences (in parentheses) on system Medium. A
value of −x percent means that a speedup is x percent lower than the best median speedup
for the given benchmark. (ICC 15.0.3, -O2)
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Benchmark Speedup on System Large
Channel WS Chase-Lev WS Cilk Plus Intel OpenMP

SPC 1µs 70.32 (−41.7%) 25.23 (−79.1%) 6.27 (−94.8%) 120.60
SPC 10µs 192.10 (−13.0%) 109.50 (−50.4%) 58.09 (−73.7%) 220.92
SPC 100µs 232.49 (−2.5%) 218.28 (−8.4%) 216.46 (−9.2%) 238.38
BPC 1µs 17.71 (−24.4%) 23.44 4.33 (−81.5%) 9.09 (−61.2%)
BPC 10µs 83.52 (−11.2%) 94.04 26.83 (−71.5%) 68.99 (−26.6%)
BPC 100µs 176.95 (−11.2%) 196.54 (−1.4%) 152.33 (−23.6%) 199.28
Treerec 1µs 65.24 53.67 (−17.7%) 11.89 (−81.8%) 17.98 (−72.4%)
Treerec 10µs 185.70 178.75 (−3.7%) 137.68 (−25.9%) 95.02 (−48.8%)
Treerec 100µs 232.68 231.69 (−0.4%) 226.05 (−2.8%) 194.77 (−16.3%)
Quicksort 108 7.41 (−38.7%) 10.76 (−10.9%) 11.08 (−8.3%) 12.08
Cilksort 108 85.76 (−5.5%) 73.37 (−19.2%) 70.42 (−22.4%) 90.78
N -Queens 14 79.67 (−6.1%) 78.63 (−7.3%) 84.85 71.80 (−15.4%)
UTS T1L 87.82 83.24 (−5.2%) 86.58 (−1.4%) 41.42 (−52.8%)
UTS T2L 90.91 (−0.4%) 86.26 (−5.5%) 91.25 42.23 (−53.7%)
UTS T3L 55.34 44.20 (−20.1%) N/A 35.68 (−35.5%)
MM 4096 32 98.45 (−12.6%) 92.19 (−18.2%) 112.65 43.27 (−61.6%)
MM 4096 64 97.19 (−13.5%) 106.98 (−4.8%) 105.92 (−5.7%) 112.37
MM 4096 128 80.01 (−20.5%) 100.66 99.15 (−1.5%) 97.98 (−2.7%)
LU 4096 32 27.05 (−37.5%) 35.53 (−17.9%) 19.24 (−55.5%) 43.27
LU 4096 64 37.16 (−23.5%) 42.09 (−13.3%) 47.80 (−1.6%) 48.57
LU 4096 128 11.55 (−25.9%) 14.87 (−4.6%) 15.58 12.74 (−18.2%)

Table 6.3: Median speedups and relative differences (in parentheses) on system Large. A
value of −x percent means that a speedup is x percent lower than the best median speedup
for the given benchmark. (ICC 15.0.3, -O2)



7 | Conclusion and Future Work

This final chapter recapitulates our results and outlines some possible directions for
future work.

7.1 Conclusion

We set out to create a work-stealing runtime system using private deques and channels
to eliminate the need for concurrent deques, which, in our experience, limit the flexibil-
ity of work stealing. Our goal was to explore a general message-passing implementation
that can compete with, or even outperform, concurrent deques.

Private deques are more flexible than concurrent deques by virtue of being private:
tasks may be stored in lists, trees, or other sequential containers, avoiding the com-
plications of concurrency. Explicit communication improves portability by removing
the dependency on shared memory. Workers exchange steal requests and tasks over
buffered channels. Asynchronous steal requests provide opportunities to overlap com-
munication with computation, for example, by initiating steals shortly before running
out of work. Since channels can be used to transfer ownership of data between workers,
it is possible to steal multiple tasks without increasing the number of messages. Long-
running tasks may have to poll to ensure that steal requests are handled in a timely
manner. Fine-grained parallelism mostly obviates the need for polling.

We derived an algorithm for termination detection that combines features of shared-
memory barriers and distributed-memory protocols. Termination is detected once all
workers are idle, as evidenced by their steal requests, without propagating additional
control messages. We extended the termination detection barrier to a task barrier with
little additional communication.

Tasks often depend on the results or side effects of other tasks, motivating the use of
futures, which can be viewed as channels connecting parent and child tasks. A worker
is free to pick up other tasks while waiting for a future’s result. With some tuning,
such as reducing the number of heap allocations, channel-based futures can compete
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with Cilk Plus on fork/join parallelism, while being more flexible in general.
We paid particular attention to fine-grained parallelism. Adaptive stealing com-

bines the benefits of steal-one and steal-half by choosing the appropriate strategy at
runtime. Though private deques reduce the cost of task creation, large numbers of fine-
grained tasks still necessitate granularity control. Splittable tasks address the problem
of overexposing parallelism by bundling and splitting off tasks as needed. Perhaps
most importantly, splittable tasks simplify loop scheduling, allowing the runtime sys-
tem to schedule chunks of iterations by work stealing. Lazy splitting has been shown
to achieve better performance portability than eager splitting. We developed exten-
sions to make lazy splitting more robust and demonstrated comparable performance
to dedicated loop schedulers.

Lastly, we showed that channel-based work stealing can compete with concurrent
deques on current multi- and manycore systems. In fact, channel-based work stealing
performed better on average than Intel Cilk Plus and Intel OpenMP.

7.2 Ideas for Future Work

Section 3.4 mentioned some alternatives to random victim selection. In sampling victim
selection [88] or the closely related group-based victim selection [45], a worker samples
n potential victims to determine and pick the one with the most tasks. Thanks to
asynchronous steal requests, sampling victim selection can be implemented by sending
and then forwarding a steal request n − 1 times and recording which worker has the
most tasks. After the sampling is done, the steal request is forwarded once again, this
time to the designated victim, which handles it like a normal steal request. Because
random victim selection can be thought of as sampling a single victim, it should be
possible to devise an adaptive strategy that varies n depending on the number of failed
attempts that a steal request has caused, with the goal of improving the effectiveness
of steal-half and, by extension, adaptive stealing. We are not aware of previous work
that has investigated the combination of sampling victims and steal-half.

When parallelism is limited, workers can reduce contention by backing off from
stealing. Saraswat et al. have proposed an interesting strategy in which workers back
off by sending steal requests to other workers, establishing “lifelines” that determine
how new work will be distributed [218]. The basic idea of remembering steal requests
is easy to implement in our runtime system. The more interesting question is whether
the benefits of work stealing and work sharing can be combined without having to
precompute suitable lifelines for each worker.
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Channel-based work stealing can be used on any system that is capable of support-
ing channels through shared memory, message passing, or a combination of both. This
includes future multi- and manycore processors as well as manycore clusters. To target
the latter, we may run an instance of channel-based work stealing on each node and
have managers relay messages between nodes. This makes it easy to specialize channels
for intra-node and inter-node communication to reduce latency where possible.

Since managers are responsible for termination detection, they can pass those steal
requests that could not be handled within their nodes on to other managers, initiating
global load balancing when local load balancing has failed. If we assume that only
managers are able to communicate with other nodes, managers act as proxies for inter-
node steals. Neither thief nor victim need to take special action; steal requests are
flexible enough to be “hijacked”, meaning a worker can change the channel reference
contained in a steal request and intercept tasks. By doing so, managers are able to
forward tasks from their nodes to other nodes and from other nodes to workers within
their nodes.

Hierarchical work stealing can help exploit locality in the presence of increasingly
complex memory hierarchies, including those of manycore clusters [170, 264]. Workers
running on cores in close proximity can be grouped together into places [102], with
managers being in charge of local termination detection and inter-place communication.
If workers can communicate directly with other places, for instance, within a single
node, managers need not participate in inter-place steals.

Work stealing may suffer from long message latencies. If parallelism is not the
limiting factor, workers can try to prefetch tasks by sending steal requests further ahead
of time. While prefetching did not improve performance in our tests, its potential for
hiding latency is worth exploring on more systems. It has been shown in the past that
prefetching benefits load balancing in high-latency networks [248].

Another way to prefetch tasks is to continue stealing even after succeeding. Workers
can forward steal requests until the desired number of tasks has been prefetched. Since
there is still only one steal request per worker, it is easy to ensure that tasks are never
sent concurrently so that workers can keep using SPSC channels. This would not be
possible if workers were allowed to send multiple steal requests. An alternative would
be to allocate a second SPSC channel to support two concurrent steal requests per
worker. For example, a worker could initiate a local and a remote steal request, the
latter for the purpose of prefetching, similar to the wide-area work-stealing strategy of
van Nieuwpoort et al [248].

We mentioned that steal requests may be hijacked in order to intercept tasks. Sup-
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pose worker i is idle. While waiting for tasks, it forwards steal requests from other
workers. Some steal requests, especially those meant for prefetching, can be considered
less urgent than others. Worker i could hijack such a steal request, hoping to reduce
its own time spent waiting. This would allow starving workers to get back to work
faster, without changing the upper bound for the number of steal requests, at the cost
of requiring MPSC channels for sending tasks between workers.

This much is certain: channel-based work stealing opens up many interesting av-
enues for future work, which we look forward to exploring.



A | CPU Architectures

The following tables summarize the CPU architectures on which we have run our tests.
Most of the information is taken from the lscpu command and from /proc/cpuinfo.
Minimum and maximum clock speeds are determined by reading

/sys/devices/system/cpu/cpu*/cpufreq/cpuinfo_{min,max}_freq.

The Intel Core i7 is included for completeness; it is used only in Figure 2.4. The
processor topologies in Figures A.1 and A.2 are gathered from lstopo with

lstopo --no-legend --no-io.

For lack of space, we omit similar topology information for the 240-thread Intel Xeon
Phi and point the interested reader to the Portable Hardware Locality (hwloc) project’s
web page at https://www.open-mpi.org/projects/hwloc, which contains a number of
examples, including the graphical output of running lstopo on a Xeon Phi coprocessor.
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152 A.2 2× Intel® Xeon® Processor E5-2630

A.1 Intel® CoreTM i7-4770 Processor

CPUs 8
Threads per core 2
Cores per socket 4
Sockets 1
NUMA nodes 1
CPU MHz min 800.000
CPU MHz max 3900.000
L1d cache 32 KB
L1i cache 32 KB
L2 cache 256 KB
L3 cache 8192 KB
Operating system openSUSE 13.1 (x86_64)
Kernel release 3.12.53-40-desktop

A.2 2× Intel® Xeon® Processor E5-2630

CPUs 24
Threads per core 2
Cores per socket 6
Sockets 2
NUMA nodes 2
CPU MHz 2900.000
L1d cache 32 KB
L1i cache 32 KB
L2 cache 256 KB
L3 cache 15360 KB
Operating system SUSE Linux Enterprise Server 11 (x86_64)
Kernel release 3.0.101-0.40-default
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A.3 4× AMD OpteronTM Processor 6172

CPUs 48
Threads per core 1
Cores per socket 12
Sockets 4
NUMA nodes 8
CPU MHz min 800.000
CPU MHz max 2100.000
L1d cache 64 KB
L1i cache 64 KB
L2 cache 512 KB
L3 cache 5118 KB
Operating system openSUSE 13.1 (x86_64)
Kernel release 3.11.10-21-desktop

A.4 Intel® Xeon PhiTM Coprocessor 5110P

CPUs 240
Threads per core 4
Cores 60
CPU MHz min 842.104
CPU MHz max 1052.630
L1d cache 32 KB
L1i cache 32 KB
L2 cache 512 KB
Operating system GNU/Linux-based microkernel
Kernel release 2.6.38.8+mpss3.4.1
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Machine (64GB total)
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Figure A.1: Processor topology of the 24-thread Intel Xeon system.
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Machine (126GB total)
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Figure A.2: Processor topology of the 48-thread AMD Opteron system.
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