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1. Summary 

Until today, organic semiconductors as well as hybrid organic-inorganic perovskites have 

emerged as promising classes of semiconductors. This is obvious, for instance from the 

significantly increase in efficiencies within the last years in optoelectronic devices such as 

solar cells or light emitting diodes based on these two classes. Improved device 

efficiencies were realised mainly due to increased efforts in the field of device 

engineering. However it is also clear that for further improvement of devices, a 

fundamental understanding on the nature and dynamics of excited states within the 

semiconductor material is essential. Irrespective of whether organic- or hybrid organic-

inorganic perovskite semiconductors are considered, a major factor controlling device 

performance is the morphology of the semiconductor, since the morphology of the 

material is correlated in a sensitive way with its electric properties.  

So in the case of organic semiconductors the questions arise how the relative alignment 

of individual constituents or chromophores of conjugated polymers impact on the 

electronic structure, how major changes in structure, such as order-disorder transitions, 

occur and how they can be influenced. In contrast to organic semiconductors, i.e. 

conjugated polymers, oligomers or small molecules, hybrid organic-inorganic perovskites 

have a crystalline nature. Therefor the correlation between morphology and electronic 

structure transforms into the aim to understand how structural changes of the perovskite 

unit cell impact on corresponding electronic structure. On the one hand it is known that 

the structure of the unit cell of hybrid perovskites can undergo minor and also major 

changes dependent on temperature. On the other hand, a deep understanding on the 

origin of these temperature dependent changes has not yet established. Therefore 

relevant questions in that context are concerned with: what contributes to the spectral 

shift of the optical spectra of perovskites? How does the nature of the excited states 

evolve as a function of temperature and is it possible to gain control on the 

morphological state of the perovskite and even manipulate the latter?  

This thesis contributes to the tasks and questions raised above and is thus concerned with 

the issue how changes in morphology modify the electronic structure and electronic 

interactions among chromophores and constituents of organic- and hybrid organic-

inorganic semiconductors. 
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Chapters 4.2 – 4.6 focus on organic semiconductors. Chapter 4.2 first reveals the nature 

of temperature induced order-disorder transitions in the conjugated polymer P3HT to be 

a first order rather than a second order transition. This study is conducted by temperature 

dependent emission and absorption measurements of different batches of P3HT with 

different molecular weight and polydispersity. Both last-mentioned material properties 

are also identified to impact on the order-disorder transition, where the molecular 

weight is correlated with the critical temperature for the transition and the polydispersity 

impacts on how distinct the transition takes place.  

Chapter 4.3 then shows how temperature dependent ordering processes of P3HT can be 

understood and interpreted by applying detailed spectroscopic analysis on temperature 

dependent emission and absorption spectra. It assigns the temperature dependent 

phases to main-chain and side-chain order. With that, two distinct aggregate species that 

differ in their side-chain order could be identified by optical spectroscopy at low 

temperatures.  

In Chapter 4.4 the spectroscopic analysis tools developed in chapters 4.2 and 4.3 were 

applied to temperature dependent steady-state as well as transient absorption 

measurements of the conjugated polymer MEHPPV. The latter also shows an order-

disorder transition which was induced by decreasing the temperature. Analysing the 

spectra at low temperatures revealed an ultrafast energy transfer between disordered 

and highly planar chain segments. It further shows that in the case of MEHPPV, 

disordered and highly planar chain segments must be in a close proximity.  

After that, Chapter 4.5 deals with a detailed investigation of the excited state dynamics 

within the aggregated phase of MEHPPV. Applying transient absorption spectroscopy 

and coherent ultrafast electronic 2D spec1troscopy, exciton relaxation and energy 

transfer dynamics also in the aggregated phase are analysed. 

Chapter 4.6 gives an overview on the results of temperature induced order-disorder 

transitions of various materials that were investigated in the Köhler group within the last 

years. As these transition occurs not only in polymers, but also in oligomers and even in 

small molecules, Chapter 4.6 puts these transitions into a more general context and 

shines light on how aggregate formation takes place and in which different ways the 

measured emission and absorption spectra can be analysed. 
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Chapter 4.7 - 4.9 focus on the hybrid organic-inorganic perovskite CH3NH3PbI3. 

Chapter 4.7 deals with the analysis of the temperature and excitation fluence dependent 

emission properties of CH3NH3PbI3 between 300 – 5 K. With that it was possible to identify 

a temperature independent critical excitation density for amplified spontaneous 

emission. A second aspect of Chapter 4.7 is concerned with the effect of local heating of 

the perovskite at low temperatures. Here I present the discovery on the possibility to 

deliberately induce structural phase changes by appropriate laser excitation which are 

then kinetically frozen out and finally trapped at low temperatures. As the different 

phases also have different band gap energies, corresponding emission of the phase takes 

place at distinct wavelengths. Additionally this process is found to be reversible and 

highly reproducible which paves the way to, in principle, exploit this phenomenon for an 

all optical memory device. 

Beside the distinct change of the optical spectra when undergoing the tetragonal -

orthorhombic phase transition, hybrid organic-inorganic perovskites additionally exhibit 

a temperature dependent continuous spectral shift. Chapter 4.8 works out the origin of 

this shift where it shows that the significant temperature dependent lattice expansion of 

hybrid perovskites is the dominant underlying process. Analysis on temperature 

dependent absorption and emission spectra in the framework of Urbach theory, further 

allow to distinguish between static and dynamic disorder in the material. This in turn 

gains knowledge on how the morphological state of this class of semiconductor is linked 

to its electronic structure. 

In regard to commercialisation of perovskite solar cells, a crucial aspect is to have control 

on the structural stability during the processing. Chapter 4.9 describes a proof of principle 

work where perovskite layers with high crystallinity could be successfully processed using 

the aerosol deposition method. As the latter is a dry process where the source material 

(powder) is prepared independently from the deposition step, it decouples the material 

synthesis and layer formation, which is unique compared to all other processing methods 

for organic-inorganic perovskites. 

An extended summary of the individual chapters is given in section 3 “Overview of the 

Thesis”. 
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Zusammenfassung 

Bis heute haben organische Halbleiter als auch hybrid organisch-anorganische 

Perowskite sich als vielversprechende Halbleiterklasse hervorgetan. Zum Beispiel wird 

dies offensichtlich durch den signifikanten Anstieg der Effizienten innerhalb der letzten 

Jahre von opto-elektronischem Bauteilen wie Solarzellen oder LEDs, welche auf diesen 

beiden Materialklassen basieren. Verbesserte Bauteileffizienzen wurden hauptsächlich 

durch gesteigerte Bemühungen im Feld des Device-engineerings realisiert. Jedoch ist es 

auch klar, dass für weitere Verbesserungen von Bauteilen ein fundamentales Verständnis 

über die Natur und die Dynamik der angeregten Zustände innerhalb des 

Halbleitermaterials essentiell ist. Ungeachtet ob organische oder organisch-anorganische 

perowskitische Halbleiter betrachtet werden, ist ein wesentlicher Faktor welcher die 

Bauteileffizienz kontrolliert die Morphologie des Halbleiters, da die Morphologie des 

Materials sensitiv mit seinen elektrischen Eigenschaften gekoppelt ist. 

Im Falle von organischen Halbleitern stellen sich daher die Fragen wie sich die relative 

Anordnung der einzelnen Konstituenten oder Chromophore von konjugierten 

Polymeren auf deren elektronischen Struktur auswirken, wie wesentliche Änderungen in 

der Struktur wie beispielsweise Ordnungs-Unordnungs-Übergänge stattfinden und wie 

sie beeinflusst werden können. Im Gegensatz zu organischen Halbleitern, d.h. 

konjugierten Polymeren, Oligomere oder kleine Moleküle, besitzen hybride organische-

anorganische Perowskite eine kristalline Natur. Daher geht hier der Zusammenhang 

zwischen Morphologie und elektronischer Struktur über in das Bestreben zu Verstehen 

wie sich strukturelle Änderungen der Perowskit Einheitszelle auf die entsprechende 

elektronische Struktur auswirken.  

Auf der einen Seite ist bekannt, dass die Struktur der Einheitszelle des hybrid-

Perowskiten geringfügige als auch bedeutende Änderungen in Abhängigkeit der 

Temperatur erfahren kann. Auf der anderen Seite, hat sich bisher ein tiefgehendes 

Verständnis über den Ursprung dieser temperaturabhängigen Änderungen noch nicht 

herausgebildet. Daher beschäftigen sich relevante Fragestellungen in diesem 

Zusammenhang mit: Was trägt zu den spektralen Verschiebungen in den optischen 

Spektren von Perowskiten bei? Wie entwickelt sich die Natur der angeregten Zustände 
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als Funktion der Temperatur und ist es möglich, Kontrolle über die morphologischen 

Zustände des Perowskiten zu erhalten und diese sogar zu manipulieren? 

Diese Arbeit trägt zu den oben aufgeworfenen Aufgaben- und Fragestellungen bei und 

beschäftigt sich somit mit dem Aspekt, wie Änderungen in der Morphologie die 

elektronische Struktur und elektronische Interaktionen zwischen Konstituenten von 

organischen- und hybriden organisch-anorganischen Halbleitern modifizieren. 

Kapitel 4.2 – 4.6 fokussieren sich auf organische Halbleiter. Kapitel 4.2 zeigt zunächst 

auf, dass die Natur temperaturinduzierter Ordnungs-Unordnungs-Übergänge des 

konjugierten Polymers P3HT vielmehr ein Prozess erster Ordnung anstelle zweiter 

Ordnung ist. Diese Untersuchung wurde durchgeführt mithilfe von temperatur- 

abhängigen Emissions- und Absorptionsmessungen an verschiedenen Chargen von P3HT, 

mit unterschiedlichen Molekulargewichten und Polydispersitäten. Beide letztgenannten 

Materialeigenschaften konnten identifiziert werden sich auf den Ordnungs-

Unordnungs-Übergang auszuwirken, wobei das Molekulargewicht mit der kritischen 

Temperatur des Übergangs korreliert ist und die Polydispersität beeinflusst, wie deutlich 

der Übergang stattfindet. 

Kapitel 4.3 zeigt dann wie temperaturabhängige Ordnungsprozesse von P3HT durch die 

Anwendung detaillierter spektroskopischer Analysen der temperaturabhängigen 

Emissions- und Absorptionsspektren verstanden werden können. Es weist die 

temperaturabhängigen Phasen der Ordnung der Haupt- und Seitenketten zu. Dadurch 

konnten durch optische Spektroskopie bei tiefen Temperaturen zwei individuelle Spezies 

von Aggregaten identifiziert werden, welche sich in der Ordnung ihrer Seitenketten 

unterscheiden  

In Kapitel 4.4 wurden die in den Kapiteln 4.2 und 4.3 entwickelten spektroskopischen 

Analyse-Tool auf temperaturabhängige steady-state als auch transiente 

Absorptionsmessungen des konjugierten Polymers MEHPPV angewendet. Dieses zeigt 

auch einen Ordnungs-Unordnungs-Übergang, welche durch Temperaturerniedrigung 

induziert wurde. Analysen an den Spektren bei tiefen Temperaturen konnten einen 

ultraschnellen Energietransfer zwischen den ungeordneten und hoch planaren 

Kettensegmenten deutlich machen. Es zeigt weiterhin dass sich im Falle von MEHPPV, 

ungeordnete und hoch planare Kettensegmente in unmittelbarer Nähe zueinander 

befinden müssen. 
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Danach beschäftigt sich Kapitel 4.5 mit einer detaillierten Untersuchung der Dynamiken 

der angeregten Zustände innerhalb der aggregierten Phase von MEHPPV. Durch 

Anwendung transienter Absorptionsspektroskopie und kohärenter ultraschneller 

elektronischer 2D-Spektroskopie, werden Relaxationsprozesse von Exzitonen und 

Energietransferdynamiken auch in der aggregierten Phase untersucht.  

Kapitel 4.6. gibt einen Überblick über die Ergebnisse der temperaturinduzierten 

Ordnungs-Unordnungs-Übergänge verschiedener Materialsysteme, welche innerhalb der 

letzten Jahre in der Köhler Arbeitsgruppe untersucht wurden. Da diese Übergänge nicht 

nur in Polymeren auftreten, sondern auch in Oligomeren und sogar in kleinen 

Molekülen, stellt Kapitel 4.6. diese Übergänge in einen generelleren Kontext und zeigt 

auf, wie Aggregation stattfindet und auf welchen unterschiedlichen Wegen die 

gemessenen Emissions- und Absorptionsspektren analysiert werden können.  

Kapitel 4.7 bis 4.9 fokussieren sich auf den hybriden organisch-anorganischen 

Perowskiten CH3NH3PbI3. Kapitel 4.7 beschäftigt sich mit der Analyse der temperatur- und 

anregungsdichtenabhängigen Emissionseigenschaften von CH3NH3PbI3 zwischen 300 – 

5 K. Damit war es möglich eine temperaturunabhängige kritische Anregungsdichte für 

verstärkte spontane Emission zu identifizieren. Ein zweiter Aspekt von Kapitel 4.7 

beschäftigt sich mit dem Effekt des lokalen Erhitzens des Perowskiten bei niedrigen 

Temperaturen. Hier präsentiere ich die Entdeckung der Möglichkeit, bewusst 

Phasenänderungen durch geeignete Laseranregung in der Struktur zu induzieren, 

welche dann bei niedrigen Temperaturen kinetisch ausgefroren und letztlich 

eingeschlossen werden. Da die unterschiedlichen Phasen auch unterschiedliche 

Bandlücken besitzen, finden die zugehörigen Emissionen bei individuellen Wellenlängen 

statt. Zusätzlich konnte dieser Prozess als reversibel und höchst reproduzierbar 

identifiziert werden, was den Weg ebnet um dieses Phänomen prinzipiell für ein 

vollständig optisches Speichermedium auszunutzen.  

Neben den deutlichen Änderungen der optischen Spektren während des Durchlaufens 

des tetragonal - orthorhombisch Phasenübergangs, zeigen hybride organisch-

anorganische Perowskite zusätzlich eine kontinuierliche temperaturabhängige spektrale 

Verschiebung. Kapitel 4.8 arbeitet den Ursprung dieser Verschiebung heraus bei der 

gezeigt wird, dass die signifikante temperaturabhängige Gitterausdehnung von 

hybriden Perowskiten der dominante zugrundeliegende Prozess ist. Analysen an den 
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temperaturabhängigen Absorptions- und Emissionsspektren im Rahmen der Urbach 

Theorie erlauben des Weiteren, zwischen statischer und dynamischen Unordnung 

innerhalb des Materials zu unterscheiden. Dies wiederum liefert Einsichten inwiefern die 

morphologische Gestalt dieser Halbleiterklasse mit ihrer elektronischen Struktur 

verbunden ist.  

Ein entscheidender Aspekt im Hinblick auf die Kommerzialisierung von Perowskit 

Solarzellen ist Kontrolle über die strukturelle Stabilität während der Prozessierung zu 

besitzen. Kapitel 4.9 beschreibt eine Machbarkeitsstudie bei der Perowskitschichten mit 

hoher Kristallinität erfolgreich mithilfe einer aerosolbasierten Kaltabscheidungs-

methode prozessiert werden konnten. Da dieser ein trockener Prozess ist, bei dem das 

Ausgangsmaterial (Pulver) unabhängig vom Abscheidungsschritt präpariert wird, 

entkoppelt es Materialsynthese und Schichtbildung. Dies ist einzigartig im Vergleich zu 

allen anderen Prozessiermethoden für organisch-anorganische Perowskite.  

Eine erweiterte Zusammenfassung der einzelnen Kapitel findet sich in Teil 3 „Overview 

of the Thesis“. 
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2. Introduction 

2.1. Motivation 

Driven by the desire for green energy supply and a simultaneous reduction of overall 

power consumption, the need for a new generation of highly efficient optoelectronic 

devices which offer the possibilities for an wide field of application as well as simple and 

low cost production at a large scale, has gained momentum within the last years.  

At present, two classes of semiconductors are particularly promising to satisfy these 

requirements, which are organic semiconductors and hybrid organic-inorganic 

perovskites. For instance, organic semiconductors have impressively proven their 

commercial applicability in the field of display technology where, organic light emitting 

diodes (OLEDs) emerged as state of the art display technology. Furthermore, the power 

conversion efficiencies of organic solar cells have also steadily increased and are currently 

reaching 11.5%.1 Also hybrid organic-inorganic perovskites have drawn enormous 

attention mainly in the solar cell community, where the power conversion efficiencies of 

perovskite based solar cell underwent a drastic increase within the last few years up to 

currently 22.1%.1  

However, independent of the type of optoelectronic device and class of semiconducting 

material, a distinct knowledge and control on the charge carrier dynamics i.e. the 

dissociation of excitations or the transport of charge carriers is essential to obtain high 

device efficiencies.2-4 These dynamics are inextricable linked with, and thus highly 

sensitive to the ordering and alignment within the active semiconducting material.5-9 

Thus, this thesis is concerned with the issue how changes in morphology modify the 

electronic structure and electronic interactions among chromophores and constituents 

of organic- and hybrid organic-inorganic semiconductors. 

In the case of organic polymers, ordering processes have been mainly investigated upon 

cooling from the melt for flexible polymers like polystyrene or polydiacetylenes which 

typically undergo rod-to-coil phase transitions.10-12 Such order-disorder transitions can 

also occur during the formation of thin films of organic conjugated polymers by spin-

coating from solution. They have a more rigid character (rigid + semicrystalline) and are 

mainly used in organic solar cells. Despite their importance in optoelectronic devices, 
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surprisingly little is known on how the conjugated polymer chains align and pack, though 

this can have major impact on their corresponding electronic structure. The formation of 

“aggregates”, i.e. domains with ordered, interacting chromophores is therefore an 

important issue in the field of organic semiconductor physics. Among other methods, a 

way to induce aggregate formation in conjugated polymer solutions is to decrease the 

solvent quality, which can be done in a very systematic way by lowering the 

temperature.13,14  

As changes in the conformation of semiconductor materials also impact on their 

electronic structure, corresponding optical properties do so as well. Thus, temperature 

dependent optical steady-state spectroscopy is a highly attractive tool for investigating 

temperature induced order-disorder transition phenomena. Furthermore it is relatively 

easily accessible and, with it, detailed information about the morphology, ordering 

processes, as well as valuable information about the nature of the excited states of the 

investigated material can be obtained.  

Therefore temperature dependent absorption and emission measurements were carried 

out for solutions of different conjugated polymers. They were carried out with the goal 

to develop a deep and a more generalized understanding on the aggregation behaviour 

of this materials and to gain knowledge on how the chain segments of the different 

structural phases electronically interact (chapter 4.2 to 4.6).  

In addition to organic semiconductors, hybrid perovskites are also known to exist in 

different morphologies. In the case of perovskites, different morphologies refer to the 

different crystal structures such as cubic, tetragonal or orthorhombic structure of the unit 

cell which are known to depend on temperature.15 Similar to the case of organic 

semiconductors, changes in the structure can have distinct impact on the electronic 

properties also in the case of hybrid perovskites.16,17 Until now, fundamental knowledge 

on the origin of temperature dependent spectral shifts in the optical spectra are sparse. 

Furthermore the temperature dependent nature of the excited states remains under 

debate and thus needs further investigations. In that context, strategies to correlate the 

degree of disorder in hybrid perovskites with their optical spectra have also not yet been 

established, though they are highly desirable. To address these open issues, I carried out 

temperature dependent absorption and emission measurements on the hybrid 
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perovskite CH3NH3PbI3, to investigate the impact of morphological changes of the crystal 

structure on the corresponding electronic properties (chapter 4.7 to 4.9). 

In the following section 2.2, the physical origin of the optoelectronic properties of 

organic conjugated materials are introduced, including the impact of interacting 

constituents. As the class of hybrid perovskite semiconductors has come up only recently, 

section 2.3 then gives a brief historical overview of this new class of semiconducting 

material, followed by a summary of the origin of their optoelectronic properties. 

 

 

2.2. Optical properties of organic semiconductors 

Origin of the conducting properties and concept of disorder 

Organic semiconductors mainly consist of carbon-hydrogen and carbon-carbon bonds. 

Depending on the binding partner, carbon can form energetically favourable hybrid 

orbitals from which single, double or triple bonds form whereby the electrons of the 

hybrid orbitals form covalent sigma bonds. In contrast to that, the electrons of the p-

orbitals that are not involved in the hybridisation overlap and form a -orbital (-bond), 

whereby the corresponding electrons delocalise. 

Conjugated polymers often are characterized by the alternation of single and double 

bonds, and the electrons in the -orbitals delocalize over a number of repeating units. 

The occupied and unoccupied molecular states are separated by an energy gap. The 

highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital 

(LUMO) are usually bonding  and antibonding *-orbitals. 

The length over which the electronic wave function can delocalize is called conjugation 

length. In real systems, this length is substantially limited by chemical defects and 

influenced by changes in the local dielectric constant, i.e. by its polarizability and by 

structural disorder of the polymer chain. As a consequence, the energy values of the 

individual HOMO and LUMO levels are Gaussian distributed and thus lead to an 

inhomogeneous broadening of the density of states (DOS), which in turn results also in 

a broadening of corresponding optical spectra as will be explained in more detail further 

below (Figure 1).18 
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Figure 1: Illustration of the different energy levels of an ensemble of chromophores due to 

structural disorder, leading to a Gaussian distributed density of states (DOS).  

 

Optical transitions 

The fundamental basis to understand the absorption and emission spectra of conjugated 

polymers can be seen in the Franck-Condon-Principle. This principle says that electronic 

transitions between the electronic ground state S0 and the first excited state S1 occur 

significantly faster (in the order of 10-15 s) than the typical timescales of the motion of 

the corresponding atomic nucleus (typically in the range of 10-13 s). Therefore the 

configuration coordinate Q of the system is assumed to stay constant during a transition, 

so that the latter appears as a vertical transition in the energy diagram. Figure 2 

illustrates the processes that occur for the absorption and emission of organic 

semiconductors.  

In that picture, the potential energy curves (often approximated by a Morse potential) 

including their respective vibrational modes are indicated for both, the ground state S0 

and the first excited state S1. The vibrational modes are labelled as 𝑣 = 0,1,2,3 … with their 

energy levels being separated by the constant vibrational energy ℏ𝜔𝑖. In absorption, an 

electron is lifted from the lowest vibrational level of the electronic ground state into an 

arbitrary vibrational state of the S1. It then relaxes non-radiatively to the lowest 

vibrational level of the S1. Finally the excited state decays back to a certain vibrational 

level of the ground state via emitting a photon. 



Introduction 

13 

 

Figure 2: Top: Illustration of the various transitions in PL (left) and absorption (right) between the 

electronic ground state S0 and excited state S1. The potential energies of S1 and S0 together with 

their corresponding vibrational energy levels (here shown between 0 and 3) as a function of the 

configuration coordinate 𝑄 are shown. The displacement of the configuration coordinate 

between S0 and S1 is denoted as ∆𝑄. Furthermore the vibrational wave functions of the equidistant 

vibrational levels, energetically separated by ℏ𝜔𝑖 are indicated as well. Bottom: Exemplary mirror-

symmetric absorption (red) and emission (blue) spectra which result from the transitions, 

following the Frank-Condon-principle. 

Here the intensities of transitions into the various vibrational states of the S0 for emission 

and into the various vibrational states of the S1 in the case of absorption depend on the 

overlap of the wave functions of initial and final state.5,19 As the vibrational levels in both 

ground and excited state are equidistant (within the harmonic approximation), 

absorption and emission spectra both result as a composition of various energetically 

evenly spaced spectral features with a certain progression regarding their individual 

intensities (compare Figure 2). The latter is determined by the wave function overlap of 

initial and final state and is thus determined by the degree of displacement Q of the 

configuration coordinate between the electronic ground and excited state.  
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In that context the Huang Rhys Parameter S is a measure of the strength of the electron-

phonon-coupling and is correlated with Q via:20 

     𝑆 =
𝑀𝜔

2ℏ
(∆𝑄)2      (1) 

With 𝑀 being the reduced mass and  the vibrational energy. In the case of harmonic 

oscillators the relative transition strength of the progression of vibronic levels 𝑣 is then 

given by: 

     𝐼𝑣 =
𝑆𝑣𝑒−𝑆

𝑣!
      (2) 

In the emission and absorption spectra of real systems the transition lines are not sharp 

as suggested by the above described model but broadened. In the case of the conjugated 

polymer systems that are investigated in this thesis, a Gaussian broadening due to their 

structural disorder can be assumed. According to the Franck-Condon-Principle, 

absorption and emission spectra have a mirror symmetry. On the other hand, this is not 

the case for conjugated polymers, which can be attributed to geometric relaxation and 

a distribution of conjugation lengths. Because all different domains/parts of the polymer 

absorb, usually a rather unstructured and broadened absorption spectrum is observed. 

In contrast to that, corresponding emission spectra often appear more structured and 

spectral features are more distinct due to the possibility of the excited states to relax 

towards lower energy sites of the polymer chain before the emission process takes place. 

To model measured absorption and photoluminescence spectra of real systems, it is 

necessary to additionally consider the effect of the photon density-of-states of the 

surrounding medium on the emission rate of the investigated material. Here, from the 

Einstein relation it follows that the term 𝑛(ℏ𝜔) ⋅ ℏ𝜔 has to be introduced with 𝑛(ℏ𝜔) 

being the refractive index of the investigated material system at photon energy ℏ𝜔.21 It 

than follows that the photoluminescence spectra 𝐼𝑃𝐿(ℏ𝜔) and absorption spectra 𝐼𝐴𝑏𝑠(ℏ𝜔) 

of organic materials can be modelled by:22-24 

  𝐼𝑃𝐿(ℏ𝜔) = [𝑛(ℏ𝜔) ⋅ ℏ𝜔]3 ⋅ ∑
𝑆𝑣𝑒−𝑆

𝑣!𝑣 ⋅ Γ ⋅ 𝛿(ℏ𝜔 − (ℏ𝜔0 − 𝑣ℏ𝜔𝑖))  (3) 

  𝐼𝐴𝑏𝑠(ℏ𝜔) = 𝑛(ℏ𝜔) ⋅ ℏ𝜔 ⋅ ∑
𝑆𝑣𝑒−𝑆

𝑣!𝑣 ⋅ Γ ⋅ 𝛿(ℏ𝜔 − (ℏ𝜔0 + 𝑣ℏ𝜔𝑖))  (4) 
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ℏ𝜔0 corresponds to the photon energy of the 0-0 transition, Γ to the Gaussian peak 

function and 𝛿 represents the delta peak distribution. Note, that in the here developed 

model, only one vibrational mode with an energy value of ℏ𝜔𝑖 is considered. The various 

energies of vibrations that are present in the investigated sample are typically assessed 

via Raman spectroscopy measurements. 

In the past, the above derived modelling of the optical spectra has successfully applied 

to a variety of conjugated polymers.23,25-29 Often an effective vibrational mode with an 

energy value between 0.17 eV – 0.18 eV is assumed, which is mainly due to the C=C 

symmetric stretching mode. 

This single mode Franck Condon Analysis has therefore proven to be a simple applicable 

method to extract detailed information from measured PL or absorption spectra of 

conjugated polymers. On the other hand, as will be explained in detail in the next section, 

the optical properties and corresponding transitions can undergo significant changes 

when electronic coupling between polymer chains or chromophores is present. Therefore 

the applicability of the above developed modelling of the optical spectra is limited to 

the case of non-interacting single emitters (intrachain excitations). Modified and 

extended versions of the above developed model that take into account intermolecular 

interactions will be topic further below. 

 

Impact of molecular coupling on optical properties - Evolution of H- and  

J- Aggregates 

The aggregation of conjugated polymers due to attractive intermolecular interactions is 

a well-known phenomenon in the field of organic materials.4,13,14,30-33 . In such cases, the 

excited state energies of involved constituents can split up and various possibilities for 

optical transitions can evolve. They depend on the relative orientation of the involved 

dipole moments, which can lead to a complex overall process. Therefore it appears 

beneficial to first consider the simplest possible system which is the strong interaction of 

two identical molecules labelled as molecule A and B (see also Figure 3 which illustrates 

the following considerations). In the framework of Kasha’s theory,34,35 the ground state 

of this dimer is then described by the Hamiltonian of the form 𝐻 = 𝐻𝐴 + 𝐻𝐵 + 𝑉𝐴𝐵, with 

𝐻𝐴 and 𝐻𝐵 being the operators of the isolated molecules and 𝑉𝐴𝐵 represents a 
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intercoupling potential term. When solving corresponding Schrödinger equations one 

gets the ground state energy 𝐸𝐺𝑆 = 𝐸𝐴 + 𝐸𝐵 + 𝐷 with 𝐸𝐴 and 𝐸𝐵 being the corresponding 

ground state energies, and 𝐷 being the negative energy value due to the van der Waals 

interactions between both molecules. 

In the case of the excited state it is not possible to differ between excitation from 

molecule A or B, due to the assumption of two identical molecules. Therefore the 

coupling between the single molecules can be seen as either symmetric or antisymmetric 

so that the corresponding wave function reads as Ψ𝐸± =
1

√2
(Ψ𝐴

∗Ψ𝐵 ± Ψ𝐴Ψ𝐵
∗). Using this 

wave function together with the Hamiltonian described above to solve the Schrödinger 

equation, it follows 𝐸𝐸± = 𝐸𝐴
∗ + 𝐸𝐵 + 𝐷′ ± 𝛽. Here 𝐸𝐴

∗ is the energy of the excited molecule 

A and 𝐸𝐵 the energy of the ground state of molecule B. Similar to before, 𝐷′ corresponds 

to the energy of the van der Waals interactions between the two molecules in the excites 

state. 𝛽 represents the energy of the transfer interaction between the molecules and 

results in a splitting of the excited state energies. Consequently the transition energy, 

being relevant for absorption measurements, is given by ∆𝐸𝑡𝑜𝑡𝑎𝑙 = ∆𝐸𝐴 + ∆𝐷 ± 𝛽 with 

∆𝐸𝐴 = 𝐸𝐴
∗ − 𝐸𝐴 being the excitation energy of a single molecule and ∆𝐷 reflects the 

difference between 𝐷′ and 𝐷 and is negative as usually |𝐷′| > |𝐷|. Due to its interaction, 

the dimer has two excited state levels which differ in energy by 2𝛽. Depending on the 

relative orientation of the transition dipole moments in both molecules, there exist 

various scenarios for oscillator strengths of the transitions between the ground state and 

both excited states of the dimer. In that context one can differentiate between two 

limiting cases of relative dipole orientation: 

One scenario applies when the molecules, or in more general the involved constituents 

align linearly straight in a sequential row. In that case the transition dipole moments add 

up, so that the lower excited state doubles its dipole moments, while in the higher 

excited state the dipole moments compensate to zero. As a consequence, the 

corresponding optical (absorption) transitions from the ground state into the higher 

energy excited state level carry no oscillator strength, while excitations into the lower 

excited state energy level are allowed. Therefore absorption and emission are red shifted 

compared to the monomer level, and the emission intensity is amplified. Consequently, 

the Stokes Shift is small in this case because transitions in both, absorption and emission 

take place between the same energy levels. Molecular aggregates, where the dipole 
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moments align in the this manner are typically called J-Aggregates (after E.E. Jelly,36 or 

Scheibe-Aggregates after Scheibe).37  
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Figure 3: Illustration of the different energetic shifts and splitting of the energy levels occurring 

for the formation of an ideal dimer. The corresponding relative orientations of the transition 

dipoles for the two classes of aggregates are indicated as arrows. 

In contrast to the above described case, a different class of aggregate results when the 

dipole moments of interacting molecules stack in a parallel coplanar fashion. Then the 

dipole moments add up in such a way, that they compensate to zero in the lower energy 

excited state level and double in the higher energy excited state, which is the exactly 

opposite behaviour compared to J-aggregates. As a consequence, absorption exclusively 

takes place to the higher energy level of the excited state, leading to a (hypsochromically) 

blue shifted absorption spectrum compared to the corresponding monomer spectrum. 

This absorption is then followed by non-radiative internal conversion of the excited state 

to the lower lying excited state energy level. Because the latter energy level does not 

carry any oscillator strength, the relaxation of the excited state to the ground state finally 

must occur non-radiatively. Therefore for a perfectly aligned coplanar stack at zero 

temperature, no emission spectrum is expected. In real systems, due to a non-perfect 

structural alignment of the constituents and temperature effects it is often possible to 

observe a weak emission. Here, because the energy levels of the absorption and of the 

(weak) emission differ, typically an enhanced Stokes Shift is observed. Due to its 

hypsochromically shifted absorption, this class of aggregates is referred to as  

H-aggregate. 
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Exciton bands in perfectly ordered idealised organic crystals 

The above given description of the energy levels and values were developed for the 

simple case of two interacting molecules. This picture can now be expanded toward an 

infinite number of perfectly aligned constituents (in the absence of disorder). Here the 

dipole moments of the single molecules are approximated as a point dipole and 

furthermore, only nearest neighbour dipole-dipole interactions between adjacent 

molecules are considered. Using the same quantum mechanical approach as in the case 

for the dimer, it follows for the energies of the excited state as a function of the wave-

vector of the exciton: ∆𝐸(𝑘) = ∆𝐸𝑀𝑜𝑛𝑜𝑚𝑒𝑟 + ∆𝐷 ± 2𝐽 cos 𝑘𝑎 with ∆𝐸𝑀𝑜𝑛𝑜𝑚𝑒𝑟 being the 

transition energy of the monomer, ∆𝐷 is the gas to-crystal-shift. Note that due to the 

energetic overlap of the large number of involved molecules, a band structure evolves.  

𝐽 refers to the degree of excitonic coupling which describes the transfer interaction 

between neighbouring molecules and is mainly determined by the transition dipole 

moments of the involved molecules. Due to the conservation of momentum, absorption 

of visible light only takes place for 𝑘 = 0.18 In the here described case of an ideal crystal, 

for each excited state energy level an exciton band forms with an energetic width of 4𝐽 

(see Figure 4 for illustration). 

 

Figure 4: Transition of the splitted energy levels of a dimer toward the energy band structure of 

an idealised crystal consisting of dimers in which a large number of molecules are interacting 

within the excited state. The width of the bands is 4J and thus depends on the strength of the 

interaction between the molecules. 

Within each band, excited states can in principle completely delocalize and move without 

restrictions. In a real system, thermally excited molecular dynamics as well as the 

energetic disorder need to be considered, which lead to a deviation compared to the 

behaviours of an ideal system. 
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Toward real systems: weakly interacting H- and J- Aggregates including vibronic 

coupling 

To account for the static and dynamic disorder effects that occur in real polymeric 

systems, Spano and co-workers developed an extended theoretical model on the basis of 

Kasha’s investigations.38-41 The key development is the expansion of the wave function of 

the excited states by distinguishing between one-particle-states (where one molecule is 

in an electronic and also in a vibronic excited state, while all other molecule are in the 

ground state) and two-particle-states (one vibronically plus electronically excited 

molecule and another molecule which is in its electronic ground state but in an excited 

vibronic state). This leads to the energy schemes shown in Figure 5 for H- and  

J- aggregates. Note that no thermal effects, as well as no further disorder of the sites are 

yet considered. Every vibronic level of the excited state S1 of a chromophore splits into 

an exciton band including its corresponding vibrational states. Its width is determined by 

the degree of electronic coupling strength and corresponding Franck-Condon-Factor. 

 

Figure 5: Scheme of the exciton bands in the weak coupling limit for H- (a) and J- aggregates (b), 

as well as the scheme of the exciton band in the strong coupling limit again for H- (c) and J-

aggregates (d). In all cases, occurring transitions for absorption (blue) and emission (red) between 

S0 and S1 are indicated. From Ref 40 

If this value is smaller than the vibrational quantum ℏ𝜔0, the vibrational bands are 

energetically separated which is called the weak-exciton-coupling-limit. In contrast to 

that, if the exciton bandwidth is large, they are superimposing and lead to a cumulated 

exciton band (Figure 5b). This regime is then referred to as strong-excitonic-coupling-
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limit. The above described theory further gives the possibility to model the impact of 

coupling strength on the changes in the optical spectra. Figure 6 shows modelled 

absorption and emission spectra of H- and J-Aggregate type couplings of perfectly 

ordered chromophores, in each case for different degrees of coupling strength.  

 

Figure 6: Calculated absorption (blue) and emission (red) spectra for (a) H-aggregates and (b) J-

aggregates with a chain length of 20 repeating units. From top to bottom the coupling strength 

increases from 𝟎. 𝟓ℏ𝝎𝒊 to 𝟔ℏ𝝎𝒊. Values are ℏ𝝎𝒊=0.17 eV, S=1. From Ref 40 

In the case of H-Aggregates, for increasing coupling strength between the aggregated 

chromophores, both the S1S0 0-0 / 0-1 peak ratio in absorption, as well as the overall PL 

intensity decrease and the Stokes Shift between absorption and emission spectrum 

increases. The opposite behaviour is observed in the case of J-Aggregates.  
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Here for increasing coupling, the 0-0/0-1 peak ratio in absorption increases and the 

corresponding PL spectra exhibit an enhanced intensity. Furthermore the S1-S0 0-0 

transitions of PL and absorption are in resonance, so that no Stokes Shift can be observed. 

When a perfectly ordered system at 0 K is assumed, the 0-0 Peak in the PL spectra is 

completely absent in the case of the H-aggregate due to the 𝑘 = 0 selection rule.  

However when static disorder is introduced into the investigated aggregate 

arrangement, symmetry is reduced which thus softens the selection rules where in turn 

the S1S0 0-0 transition becomes partly allowed in H-aggregates, while for J-aggregates 

the relative strength of the S1S0 0-0 transition decreases due to introduced localisation 

effects (Figure 7 left column).  

 

Figure 7: Simulated effect of disorder (left column) and temperature (right column) on the PL 

spectra of H- (top) and J-Aggregates (bottom). From Ref 40 

The same spectroscopic behaviours can be observed when considering thermal effects 

(Figure 7 right column). Here the S1S0 0-0 transition becomes allowed in H-aggregates 

as exciton states straight above the bottom of the exciton band can be populated by 

thermal activation. For J-aggregates the S1S0 0-0 transition intensity decreases when 

thermally activated k ≠ 0 states return to vibrationally excited electronic ground states. 

So in overall, static disorder as well as thermal effects degrade the general specific 

spectroscopic signatures of H- and J-aggregates. 
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FC Analysis of weakly interacting conjugated polymers 

In the case of weakly interacting H-aggregates such as P3HT, Spano and co-workers have 

developed a modified Franck-Condon-Analysis to fit the absorption spectra of 

aggregated P3HT.38,42 On the basis of the model which accounts for a single emitter 

discussed in above (equations 3 - 4), an additional term is introduced so that the Frank-

Condon-fit changes to 

𝐼𝐴𝑏𝑠(ℏ𝜔) = 𝑛(ℏ𝜔) ⋅ ℏ𝜔 ∑
𝑆𝑣

𝑣!𝑣 (1 −
𝑊𝑒−𝑆

2ℏ𝜔𝑖
(∑

𝑠𝑛

𝑛!(𝑛−𝑣)𝑛≠𝑣 ))

2

Γ ⋅ 𝛿(ℏ𝜔 − (ℏ𝜔0 + 𝑣ℏ𝜔𝑖))  (5) 

With 𝑊 being the exciton bandwidth, 𝑛 the vibrational quantum number and the other 

parameters defined as in equations 3 - 4. From fitting this modified FC-progression to the 

low energy side of the measured absorption spectrum of P3HT, it is possible to extract 

the exciton bandwidth and thus the degree of intermolecular coupling. 

As described in previous section, in the absence of disorder and thermal effects, the 0-0 

transition is forbidden in the case of H-aggregates. However in real systems this selection 

rule is relaxed and a diminished 0-0 transition can usually be observed in PL spectra of 

aggregated P3HT.41 Furthermore in the case of weakly interacting H-aggregates, the 

relative intensities of the transitions in the higher vibrational states of the S0 stay mainly 

unaffected compared to the corresponding case for a single emitter of P3HT.38 Therefore 

it is possible to fit the PL spectrum of aggregated P3HT, using a modified Frank-Condon 

Progression taking into account the decreased intensity of the 0-0 transition described 

by,  

𝐼𝑃𝐿(ℏ𝜔) = [𝑛(ℏ𝜔) ⋅ ℏ𝜔]3 [𝛼Γ(ℏ𝜔 − ℏ𝜔0) + ∑
𝑆𝑣𝑒−𝑆

𝑣!𝑣=1 ⋅ Γ ⋅ 𝛿(ℏ𝜔 − (ℏ𝜔0 − 𝑣ℏ𝜔𝑖))]  (6) 

With 𝛼 being a scaling factor. This modified FC progression was successfully applied first 

by Clark et al. to analyse emission spectra of films of P3HT.43 In summary, the presented 

model / modified Franck-Condon progressions are a powerful tool to analyze emission 

and absorption spectra of conjugated organic materials in various conformational states 

including aggregated phases where the coupling between the constituents has to be 

taken into account.  
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2.3. Optical properties of hybrid lead halide perovskites 

Brief introduction and developments of perovskite based optoelectronic devices 

within the last years 

The term perovskites originally refers to the calcium titanium oxide CaTiO3, discovered 

by Gustav Rose in 1840 and named after the Russian mineralogist Lev Perovski.44 

Nevertheless materials which in general show a ABX3 crystal structure, are typically said 

to have a perovskite structure.45 The A position corresponds to a cation, B to a metal and 

X to an anion (Figure 8). In an idealised arrangement the crystal structure then consists 

of a BX6 octahedral network with A ions in the interstices.46 

 

Figure 8: (a) Perovskite unit cell of the pseudocubic lattice showing the A cation in orange, the 

metal B cation in red, and the X anion in blue. (b) Representation of the perovskite lattice in terms 

of an anion corner-shared 3D network of (BX6)4− octahedra, with B cations at their centers and A 

cations between them. 

To form a perovskite, the different constituents have to satisfy the geometrical 

framework condition described by 𝑡√2 (𝑟𝐵 + 𝑟𝑋) = 𝑟𝐴 + 𝑟𝑋, where 𝑡 is the so called 

tolerance factor with values between 0.8 and 1, while 𝑟𝐴, 𝑟𝐵, and 𝑟𝑋 are the effective ionic 

radii for the A, B and X ions respectively.45 As a consequence a high number of different 

perovskite materials with various compositions, structures and thus properties exist,47,48 

which have successfully been applied in a diversity of devices such as of transducers, 

modulators, capacitors and actuators.49 

A 

X 

B 

a) b) 
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In 1978 hybrid organic-inorganic perovskites were characterised for the first time by 

Weber and co-workers.50-52 This type of perovskite is classified by the chemical species of 

its constituents, where A is a monovalent organic cation (i.e. Methylammonium, 

Formamidinium or Octylammonium), B is a (semi-)metalic cation (i.e. Pb, Bi, Sn, Sb, Ge) 

and X is halide anion such as I, Br or Cl. Possible relevance as an active material in 

optoelectronic devices was shown by Mitzi and co-workers during the 1990’s.49,53-56 

Starting with the first report of a perovskite based solar cell in 2009,57 and following 

major breakthroughs in the fabrication and architecture in 2012,58,59 the research field of 

hybrid organic-inorganic perovskites has gained incredible momentum until today. This 

is surely due to the rapid increase in power conversion efficiencies that have been 

demonstrated within the last few years, currently with a highest certified efficiency of 

22.1%.1 A further aspect that accounts for the enthusiasm on hybrid perovskites are the 

various additional fields of application which have developed within the last few years 

besides the main application in photovoltaics. Here since the year 2014 various works 

have demonstrated room temperature lasing from thin films, nanowires or nanocrystals 

of hybrid organic-inorganic perovskites which show low thresholds fluences and high 

quality factors.60-71 Also the usage of hybrid perovskites in light emitting diodes has 

emerged within the last years,72-81 where recently major improvements were made 

regarding their electroluminescence efficiency.82 In that context, replacing the organic 

cation with the inorganic caesium has also proven to end up in an easy to process metal 

halide perovskite structure that shows promising photonic properties.83,84 

In general, hybrid metal halide perovskites yield a high colour purity and are easy to 

synthesis from low cost abundant available materials. A further major point, making this 

class of materials highly attractive for light emitting applications, is the ability to easily 

tune the band gap and thus the optical properties by simple changes of the material 

composition.85 It has been shown that the bandgap of the mixed perovskite 

CH3NH3PbBrxI3-x can be tuned continuously between 1.5 eV up to 2.2 eV for increasing 

fraction X of the bromine halide.86 When applying the same strategy to mixtures of 

bromide and chloride it is further possible to tune the bandgap within the higher spectral 

range up to more than 3.1 eV.87,88 (see Figure 9 in the case of CsPbX3’ nanocrystals in 

solution). Recently tuning the optical bandgap was also achieved as a function of size of 

perovskite crystals on the nanoscale.89,90 By employing perovskite crystals of different 

compositions and sizes into a host matrix it was even possible to achieve tuneable white 
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light emission.89 Beside the use of hybrid perovskites in the field of photovoltaic and light 

emitting applications described above, further fields of applications have been explored 

recently. Hybrid halide perovskites were found to work as transistors,56,91 and show 

applicability as memristors.92-94 

 

Figure 9: An overview of the PL spectra of samples obtained by mixing CsPbBr3 NCs with either 

CsPbCl3 or CsPbI3 NCs in various ratios. From Reference 95 

Since perovskites also absorb in higher-energy spectral regions, a successful use as  

UV- and X-ray detectors could be shown as well,96-102 which impressively demonstrate the 

wide field of possible applications for hybrid perovskites. Furthermore its high overall 

potential beyond the known applications is also demonstrated as they cover some 

intriguing physical effects that were discovered recently like photon recycling,103 laser 

cooling,104 or the existence of a hot phonon bottleneck.105,106 

Beside all the fascination and excitement about this class of material, there are still some 

detrimental aspects, which still prevent its commercialisation. Until now, the perovskite 

active material which has shown best results in photovoltaics and thus is used in most 

research studies, contains lead as the metallic B cation. While it is classified as toxic,107 the 

estimated amount of lead in case of a hypothetic commercialisation of perovskite 

photovoltaics fraction has been estimated as relatively low.108 Nevertheless, its use in 

hybrid perovskite based devices is under heavy debate and thus efforts to find less toxic 

B cations alternatives are current topic. Here the successful use of less toxic metals or 
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semimetals like bismuth109 or copper110 in perovskite solar cells has been demonstrated, 

where tin-based perovskites have shown passable power conversion efficiencies of 

around 6%.111-113  

A further drawback of hybrid perovskite based devices are their degradation and stability 

issues. Degradation can be induced by oxygen, light, moisture or temperature. 

Optimization of interfaces, materials, device architectures and the use of alternative 

hole-conductor materials in the case of solar cells have improved the stability within the 

last years, yet they are still limited to a non-commercial level.114,115  

A further technical prerequisite for the commercialisation of perovskite based 

optoelectronic devices is the development of appropriate processing techniques which 

allow for precise control on film formation, film thickness and which are capable to 

upscaling. A variety of different methods were investigated in the last years. Most of 

them are based on the combination of two different compounds (typically from 

solutions) where at least one compound is a halide, leading to the formation of the 

perovskite crystals during (mostly) a drying process.116 All methods reported so far have 

in common that the crystalline perovskite structure itself develops during film formation. 

As a result, material synthesis is interconnected with film processing. This implies that it 

is not possible to improve the quality of the perovskite without also modifying the film 

formation, and vice versa. Furthermore while most of the processing methods result in 

the formation of sub-µm thick perovskite layers, optimized for the use in photovoltaic 

applications, processing methods which deliver higher layer thickness, as would be 

desirable when used as X-ray detector, have not been presented so far. 

As a final remark on the current state of the field it is worth mentioning that the main 

optoelectronic properties of the hybrid perovskites are due to the inorganic B and X 

components, so their character and general behaviours in principle are mainly that of 

inorganic semiconductors like GaAs or Si. Thus the application of established theories 

and models originally developed for inorganic semiconductors to the current field of 

hybrid perovskite appears reasonable. However many researchers which have just 

recently changed their focus of research toward hybrid perovskites are originally coming 

from different photovoltaic communities like organics, quantum dots or dye sensitized 

solar cells. Thus they are not necessarily familiar with the above mentioned theories and 

models of inorganic semiconductor, which might be a drawback for the field. 
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Origin of the optical properties of hybrid perovskites - Electronic structure 

The optical properties of organic semiconductors are dominantly transitions between 

mostly the HOMO and LUMO levels of the chromophores, as described in section 2.2. The 

formation of bands is prevented by the relatively high degree of disorder in this class of 

materials. In contrast to this, due to its crystalline structure, hybrid perovskites clearly 

show a band structure, which was extensively investigated in the past by different 

theoretical approaches like density functional theory calculations,15,117-122 or many-body 

perturbation theory.123 Figure 10 shows an exemplary schematic illustration of the band 

structure of cubic CH3NH3PbI3.  

 

Figure 10: (a) Illustration of the electronic band structure of CH3NH3PbI3. Coloured upward-

pointing arrows represent allowed photoinduced electronic transitions. (b) Absorption spectrum 

showing that a continuum of electronic transitions between the R and M valleys leads to strong 

absorption across the visible range. Relaxation toward the R valley gives rise to a 

photoluminescence peak near 1.6 eV arising due to transitions from conduction band minimum 

to valence band maximum at the R point. From Reference 124 

It has been shown that the valence band consists mainly of iodine 5p-states with a small 

additional contribution from 6s-states of lead leading to a hybridisation between them, 

and that the conduction band is primary defined by the empty 6p-states of lead (compare 

Figure 11 of a projected DOS of tetragonal CH3NH3PbI3).119,121-123,125-128 This behaviour is 

similar to ionic materials, where typically the conduction band is predominantly defined 

by the electronic states of the cation and the valence band by the anion. From the density 
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of states of the different constituents of the CH3NH3PbI3 in Figure 11 it also becomes clear, 

that the electronic contribution of the organic cation takes places several electron-volts 

below the valence band maximum.15,123,127,129,130 From this, one can conclude that no 

electronic interaction takes place between the organic cation and the inorganic part of 

the hybrid perovskite. From this behaviour the actual role of the organic cation in hybrid 

perovskite can be uncovered and understood. Its main purpose can be seen in delivering 

a scaffold in which the inorganic framework forms corner sharing (PbI2-) octahedral.  

  

Figure 11: Projected density of states (DOS) of tetragonal CH3NH3PbI3 showing elemental 

contributions to each band. From Ref 131 

In passing it should be mentioned that due to the presence of heavy lead and iodine, an 

elevated degree of spin-orbit-coupling was found in the hybrid perovskite, which impacts 

on the band structure, so that it lowers the band gap due to splitting of the conduction 

band.117,122 

Optical transitions occur at the high symmetry R-point in the Brillouin Zone, where also 

the direct-bandgap nature becomes obvious as the minimum of the conduction band and 

the valence band maximum are at the same k-point. As a consequence absorption occurs 

without the need of any phonons which is reflected in the usually strong absorption 

onset observed at about 1.6 eV. From the band diagram it also becomes clear that the M 
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and R points are connected in the reciprocal space. This allows absorption in a wide 

wavelength range from which the continuous absorption above the band edge in the 

absorption spectra results.15,118,119 After absorption into the conduction band, the photo-

generated electrons then relax to the minimum of the conduction band at the R point, 

from which they decay back into the valence band under emission of a photon. Therefore 

the emission spectrum of an ideal hybrid perovskite consists of a single feature centred 

barely below the band edge.132 

The description of the optical properties of hybrid perovskites are developed from the 

band structure properties so far. However, photo generated electrons and holes can be 

correlated due to their coulomb forces, so that they do not behave like two independent 

particles anymore. This behaviour results in their internal energy being lower than the 

bandgap energy Eg (Figure 12a).18,133  

 

Figure 12: (a) Illustration of the exciton dispersion relations of a Wannier exciton in a direct 

semiconductor.133 (b) Typical absorption spectra of CH3NH3PbI3 at 30 K, which illustrates the 

contributions from excitons (red area) and band to band transitions (blue area) to the overall 

absorption spectrum. Here the measured spectrum was analysed by modelling the spectrum using 

Elliot’s theory.134 

Though reported values for exciton binding energies of hybrid perovskites can vary 

significantly,124 they are generally in the range < 70 meV and are thus sufficiently low to 

allow a description of the corresponding excitons within the Wannier-Mott model. In the 

latter it is assumed that an electron in the conduction band can orbit around the hole, 

like an s-electron in a hydrogen atom.  
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The resulting energy levels of these bound states En are located below the band gap Eg 

and determined by a Rydberg like expression via:  

    𝐸𝑛 = 𝐸𝑔 −
𝜇𝑒𝑓𝑓𝑒4

8ℎ𝜀𝑟
2𝜀0

2

1

𝑛2      (7) 

Where 𝜇𝑒𝑓𝑓 is the effective reduced mass of the electron-hole system, 𝜀𝑟 the dielectric 

constant and 𝑛 is a quantum number. While this Rydberg series of distinct exciton 

absorption peaks could be well resolved for highly pure inorganic semiconductors at 

lowest temperatures like GaAs,135 or Cu2O,136 only one exciton absorption feature is 

observed in hybrid perovskites as shown in Figure 12 for the case of CH3NH3PbI3. The 

increased linewidth of the exciton features is assumed to be due to disorder. 

 

Temperature dependent morphological states of hybrid perovskites 

It is well known that perovskites in general are prone to undergo structural changes of 

their unit cell as a function of temperature. Especially different degrees of tilting of the 

(BX6)4- octahedral (see Figure 13 left column) leads to different crystal structures like 

cubic, tetragonal or orthorhombic.47 Such a behaviour could also be observed for hybrid 

perovskites.15,50,137 Moreover these structural phase transition can also impact on the band 

gap of the material and thus lead to a change in their corresponding optical 

properties.138,139 For example, the architectural hybrid perovskite CH3NH3PbI3 is known to 

be in a cubic phase for temperatures above 330 K,140 adopts a tetragonal crystal structure 

within the temperature range of 330 – 160 K and is in an orthorhombic phase below 

160 K.15 While only subtle changes of the optical band gap at the cubic – tetragonal 

transition are observed,141 a significant change in the optoelectronic properties of the 

perovskite takes place at the tetragonal - orthorhombic phase transition. During that 

phase transition the optical band gap increases by about 80 meV, and this is directly 

reflected in the absorption and emission spectra as reported by several groups in the 

past.62,141-147 
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Figure 13: Crystal structures of the tetragonal (a) and orthorhombic (b) phase of CH3NH3PbI3. 

Photoluminescence (c) and absorption (d) spectra of CH3NH3PbI3 at different temperatures, from 

which the impact of structural phase change from tetragonal to orthorhombic crystal structure 

below 160 K on the optical properties can be seen (Absorption data from Tobias Meier). 

This behaviour is illustrated in Figure 13 where absorption and emission spectra of 

CH3NH3PbI3 for different temperatures between 300 K and 5 K are shown. While the 

detailed analysis of the temperature effects on the optical spectra of hybrid perovskites 

is focus of Chapter 4.7 and 4.8, the general ability of optical spectroscopy to investigate 

structural dynamics also for this class of material already becomes clear.   
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3. Overview of the Thesis 

The primary goal of the thesis is to obtain a fundamental knowledge on how changes in 

morphology modify the electronic structure and interactions among chromophores and 

constituents of organic- and hybrid organic-inorganic semiconductors. To achieve this 

goal, the thesis consists of eight manuscripts, where five focus on organic semiconductors 

(chapters 4.2 – 4.6), while three deal with the hybrid organic-inorganic perovskite 

CH3NH3PbI3 (chapters 4.7 – 4.9) (see Figure 14c). Chapter 4.2 focuses on identifying the 

nature of temperature induced order-disorder transitions of the conjugated polymer 

P3HT and how material properties like polydispersity and molecular weight impact on 

this transition. With this knowledge, it was then possible to perform a proper analysis of 

the temperature dependent photoluminescence spectra of P3HT (Figure 14a), which is 

focus of chapter 4.3. Here the results of structural investigation were combined with the 

analysis on the temperature dependent optical spectra. This allowed me to, (i), interpret 

and understand the temperature dependent ordering processes of P3HT and their 

signatures on corresponding optical spectra within the entire investigated temperature 

range, (ii), it was possible for the first time, to identify two different aggregate species 

of P3HT at low temperatures using optical spectroscopy. The knowledge about the 

analysis methods of the optical spectra derived in chapters 4.2 and 4.3, were then used 

to investigate energy transfer processes between disordered and ordered domains (also 

induced by temperature) of the conjugated polymer MEHPPV (see Figure 14b) described 

in Chapter 4.4. By doing this, contributions from disordered and ordered phases in the 

transient absorption spectra of MEHPPV at low temperature could be identified, which 

allowed me to conclude that an ultrafast energy transfer of excited states from the 

disordered phase to planarized chain segments occurs. Once the excited state dynamics 

between the ordered and disordered phase of MEHPPV were clarified, we consecutively 

went on to also investigate the excited state dynamics that occur within the aggregated 

phase of MEHPPV (chapter 4.5). By combining broadband transient absorption 

spectroscopy with coherent ultrafast electronic 2D spectroscopy, exciton relaxation and 

energy transfer dynamics in the aggregated phase are revealed. In the Köhler group, 

temperature induced order-disorder transitions could not only be observed in P3HT or 

MEHPPV, but also in a variety of different materials, including low band gap polymers, 

conjugated oligomers and even in small molecules. Chapter 4.6 therefore summarizes 
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and reviews the results on all materials so far investigated and puts temperature induced 

order-disorder transitions into a more general context. It discusses general parameters 

that influence these ordering dynamics and shows how optical spectroscopy can be used 

to gain information on the different conformational states of the investigated organic 

materials. Phase transitions not only occur in organic conjugated material but are also 

known to take place in another class of solar cell material, which are hybrid organic-

inorganic perovskites. 

 

Figure 14: Chemical structures of (a) Poly(3-hexylthiophene) (P3HT), used in chapters 4.2 and 4.3, 

(b) Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) used in chapters 4.4 

and 4.5 and (c) the crystal unit cell of the organic-inorganic perovskite methylammonium lead 

iodide (CH3NH3PbI3 or MAPbI3) used in chapters 4.7 to 4.9.  

Chapter 4.7 to 4.9 deal with the hybrid organic-inorganic perovskite CH3NH3PbI3. Similar 

to the case of the neat organic semiconductors, the focus of the works is to gain a deep 

knowledge and even control on the different morphological states of the investigated 

material. The optical properties of organic-inorganic perovskites are also sensitive to 

their morphology and it is furthermore known that they adopt different crystal structures 

(e.g. tetragonal, orthorhombic) depending on temperature. Chapter 4.7 thus deals with 

the analysis of the temperature dependent emission properties of CH3NH3PbI3 between 

300 – 5 K. I found that there is a temperature independent critical excitation density for 

amplified spontaneous emission. A further important aspect of this chapter is the 

discovery to reproducibly induce, probe and erase the tetragonal crystal structure at low 

temperatures, where intrinsically an orthorhombic crystal structure is present by 

exposing the sample to appropriate laser fluences. To also understand the temperature 

dependent shift of the optical band gap which is present in CH3NH3PbI3, chapter 4.8 

presents an analysis on temperature dependent absorption and emission spectra in the 
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framework of Urbach theory, which also clarifies the aspect of the different types of 

disorder in the material. In regard to commercialisation of perovskite solar cells, a crucial 

aspect is the structural stability during the processing. Chapter 4.9 describes a proof of 

principle work where perovskite layers with high crystallinity could be successfully 

processed using the aerosol deposition method. As the latter is a dry process where the 

source material (powder) is prepared independently, it decouples the material synthesis 

and layer formation, which is unique compared to all other processing methods for 

organic-inorganic perovskites. 

 

The Impact of Polydispersity and Molecular Weight on the Order − Disorder 

Transition in Poly(3-hexylthiophene)  

In chapter 4.2 I investigated the impact of polydispersity and molecular weight on the 

temperature induced order-disorder transition in P3HT in solutions of THF. For decreasing 

temperature, spectral dynamics in both, absorption and corresponding PL spectra are 

observed. Analysing the data, it becomes clear that the order-disorder transition of P3HT 

occurs in three major steps which are for decreasing temperature: (i) planarization of the 

disordered phase, (ii) aggregate formation (iii) planarization of the aggregated phase. 

To analyse the spectral changes in a detailed and quantitative way, a decomposition of 

the measured absorption spectra is necessary to distinguish between the spectral 

contributions of the disordered phase and aggregated phase. From these spectral 

decompositions it was possible to calculate the relative fraction of aggregated chains in 

the investigated solution at a certain temperature. Furthermore the usage of specially 

synthesised and thus well-defined P3HT with different chain lengths yet low 

polydispersity allowed us to study the impact of polydispersity and chain length on the 

phase transition. From the temperature dependent fraction of aggregate for P3HTs with 

different chain lengths a clear correlation between the critical transition temperature at 

which the order-disorder transition takes place (indicated by a significant increase of 

fraction of aggregate) and the chain length of P3HT was observed (Figure 15a). In 

addition we could even show that this correlation can be understood in the framework 

of a mean-field theory that describes a coil globule transition of polymers. This could be 

seen from the overall good quality of the fit to the data, which also allowed us to extract 

relevant parameters like the theta temperature of P3HT in THF. As a second parameter 
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that impacts on the phase transition, we identified the influence of polydispersity on the 

shape of the transition. In that context, shape corresponds to the steepness of increase 

of the temperature dependent fraction of aggregate (Figure 15b). We compared the 

temperature dependent fraction of aggregates in two batches of P3HT, which both have 

the same molecular weight / chain length, yet clearly differ in their polydispersity. The 

specially synthesised P3HT had a PDI = 1.16 in contrast to a PDI = 2.0 for the “high PDI” 

compound which was chosen to be in the range of typical values that can be found for 

commercially available P3HTs. Here a more gradual and smeared out increase of the 

fraction of aggregate within the transition temperature region was observed.  

 

Figure 15: (a) Fraction of aggregates in the solution as a function of temperature for the three 

P3HTs with different molecular weight. (b) Comparison between the fraction of aggregates of 

P3HT with low PDI and P3HT with high PDI as a function of temperature. 

This behaviour could be well explained when considering the correlation between the 

critical temperature of the transition and the chain length of the polymers. In this context 

a wide distribution of chain lengths directly results in a corresponding wide distribution 

of critical transition temperatures. These are intermixing when an ensembles of polymer 

chains with high PDI is investigated, which then results in the observed disproportionally 

smearing out of the temperature dependent fraction of aggregate transition. From this 

result the phase transition was associated to be rather first order than to have a second 

order nature. 
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Spectroscopic Signature of Two Distinct H-Aggregate Species in Poly(3-

hexylthiophene)  

With the knowledge about the temperature dependent conformation dynamics of P3HT 

in solution from chapter 4.2, it appeared straightforward to extend our analysis on the 

temperature dependent optical spectra of P3HT towards a detailed investigation on the 

basis of the PL data which is presented in chapter 4.3. The investigated P3HT solution 

showed a phase transition with the first spectral features from an aggregated phase 

arising below a temperature of 270 K. Within the transition temperature region we 

applied our spectral decomposition approach to the photoluminescence (PL) spectra and 

obtained the PL spectra of only the aggregated phase. We were able to observe that the 

emission spectrum of that aggregated phase undergoes drastic changes within the 

temperature range between 265 K down to 160 K (Figure 16a). 

 

Figure 16: (a) Fluorescence spectra of aggregated P3HT in the temperature range from 265 to 

160 K where the polymer chains are in fluid solution. The spectra are normalized to the intensity 

of the S1 → S0 0−1 feature. (b) Modified Franck−Condon analysis (green solid line) of the 

fluorescence spectra (black squares) of P3HT aggregates at 160 and 5 K using a superposition of a 

higher energy vibronic progression (HEP) (blue solid line) and a lower energy vibronic progression 

(LEP) (red solid line). (c) Sketch illustrating the interpretation of the two different PL progressions 

toward different aggregate species with crystalline backbone yet different degree in side chain 

order.  
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First I interpreted red shift of the overall PL spectrum for decreasing temperature as a 

planarization of the aggregated chains. Second, I considered the changes in the peak 

ratio of theS1S0 0-0/0-1 transition in the framework of a theoretical model of weakly 

interacting aggregates developed by Spano and co-workers which describes the impact 

of intermolecular coupling between aggregated chains on their optical properties. This 

allowed me to identify an increase in intermolecular coupling for decreasing 

temperature. Concomitantly it suggests a rather disordered and only weakly interacting 

character of the aggregated chains within the temperature range straight below the 

aggregation onset, that changes to a more ordered and more strongly interacting chains 

as temperature is reduced.  

Furthermore from applying Franck-Condon Analysis on the temperature dependent PL 

data down to 5 K, it became clear that the spectra could only be modelled in a satisfying 

way when an additional vibronic progression was introduced to the FC Analysis 

(Figure 16b). This suggested the existence of different aggregate species (Figure 16c). 

This scenario could then further be proofed by carrying out additional spectroscopic 

approaches such as time resolved emission spectroscopy and steady-state emission 

spectroscopy for different excitation wavelengths. Furthermore the same vibrational 

progressions as in solution were also found at low temperature for corresponding films 

of the P3HT that we investigated. This allowed us to compare our work to the results of 

a past work where the identical batch of P3HT was investigated via scattering 

experiments.148,149 That work studied the structural evolution of P3HT when cooling from 

the melt toward room temperature, where it undergoes a similar order-disorder 

transition than in our case in solution. Using this, we were able to draw an overall picture 

of the different dynamics and morphological states that occur when P3HT is cooled and 

undergoes an order-disorder transition. First, the surprisingly small intermolecular 

coupling of the aggregated phase in a small temperature range below the transition 

temperature can be interpreted to stem from a structural phase where the backbones 

are layer separated yet they and also the side chains still are disordered. For lower 

temperatures we find the main chains are ordered, yet the side chain are disordered.  

At the lowest temperatures measured, both, backbone and side chains are ordered. 
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Ultrafast Energy Transfer between Disordered and Highly Planarized Chains of 

Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) 

In this work we investigated the energy transfer between disordered and highly 

planarized chains of the conjugated polymer MEHPPV. To do so, we first performed 

temperature dependent absorption and emission spectroscopy. Comparable to the 

previous works on P3HT, three different temperature regions could also be observed for 

MEHPPV, which occur for decreasing temperature in a sequence of (i) planarization of 

the disordered phase, (ii) order-disorder transition (iii) planarization of the aggregated 

phase (Figure 17a). After performing spectral decomposition it becomes clear that the 

aggregated phase of MEH-PPV consists of highly planar chain segments with low 

intermolecular coupling between the chains. This was concluded from the shape of the 

neat absorption and emission spectra of the aggregated phase, which had mirror image 

character and yield very high S1S0 0-0/0-1 peak ratios. We then calculated the 

temperature dependent fraction of aggregates from both, absorption and emission data 

(Figure 17b). It turned out that the fraction of aggregate increases steeply within the 

temperature range between 180 K – 160 K and saturates for lower temperatures. While 

the fraction of aggregate calculated from the absorption data yields a maximum value 

of approximately 30% aggregated chains at a temperature of 120 K, the fraction of 

aggregate calculated from PL suggests that the entire emission stems from the 

aggregated phase below 160 K.  

 

Figure 17: (a) Steady-state absorption spectra of MEH-PPV in MTHF for different temperatures, 

between 300, and 120 K. (b) Fraction of planarized chromophores as a function of temperature 

obtained from the absorption spectra (open green diamonds) and from the emission spectra 

(orange dots). 
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This difference suggests an efficient energy transfer from the disordered toward the 

ordered phase which we then investigated in detail using fs-transient absorption 

spectroscopy. We used our knowledge on the spectral decomposition of both, absorption 

spectra (from chapter 4.2) and emission spectra (from chapter 4.3) of aggregated 

polymer solutions at low temperature, and we applied these techniques to the time 

resolved transient absorption spectra. In a first step we considered the transient 

absorption spectrum of aggregated MEHPPV solution at 120 K at an excitation energy of 

2.12 eV where exclusively the planar chain segments were excited. Here, by appropriate 

normalizing the 120 K PL spectrum to the stimulated emission (SE) part of the transient 

absorption spectrum, it was possible to extract the spectral shape of the ground state 

bleach (GSB) of the planarized chain segments. Using the thereby obtained spectra of 

both SE and GSB of the ordered chain segments then allowed us to also decompose low 

temperature transient absorption spectra with a higher excitation energy at 2.48 eV, 

where also the disordered phase absorbs. Figure 18a shows the corresponding 

decomposed transient absorption spectrum, 1 ps after excitation, where, in addition to 

the contribution from planarized chain segments (red area), also a certain contribution 

from the disordered phase (blue area) to the overall ground state bleach is evident. As a 

function of time, the relative amount of the latter contribution reduces, while the 

relative amount of GSB from planarized chains increases (Figure 18b).  

 

Figure 18: (a) Pump−probe spectra for excitation at 2.48 eV (where coiled chains absorb) at 120 K 

for a time delay of 1 ps after excitation. In addition to the total ΔT/T signal (dots), the 

contributions of SE, GSB from disordered chromophores, and the GSB from the planarized 

chromophores are indicated by orange, blue, and red solid lines, respectively. (b) Percentage of 

the ground-state bleach signal that is due to planarized chromophores (open square symbols) or 

to disordered chromophores (filled round symbols) as a function of time. The dashed line is a 

guide to the eye. 
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From this behaviour an efficient energy transfer from disordered towards highly 

planarized chain segments, on the timescales of a few picoseconds could be inferred. 

From the short timescale we further suggested that both, disordered and planarized 

chain segments must be in a close proximity. 

 

Relaxation dynamics and exciton energy transfer in the low-temperature phase of 

MEH-PPV 

Chapter 4.4 focuses on the energy transfer from the disordered to planarized chains of 

aggregated MEHPPV in solution at low temperatures. Spurred from these results, in 

Chapter 4.5 we consequently moved on to perform a detailed analysis on the excited 

state dynamics within the planarized aggregated phase of MEHPPV in solution. To do so, 

we performed ultrafast transient absorption spectroscopy as well as coherent electronic 

two-dimensional spectroscopy. To exclude additional dynamics occurring from energy 

transfer processes from the disordered to the aggregated phase, we excited our sample 

only at low energies where absorption is entirely due to the aggregated phase. In order 

to identify relaxation processes within the aggregated phase, we used excitation 

energies of 2.03 eV, which only excites the most planarized chain segments, and 2.1 eV, 

which excites the aggregated phase also at slightly higher energy allowing for relaxation 

processes. In general the transient absorption spectra at low T exhibited various distinct 

bands due to stimulated emission and ground-state-bleach signals (Figure 19a). The well 

resolved character of the spectra allowed to analyse the spectral moments of the 

individual bands which are defined as 𝑀0(𝑇) = ∑ 𝐼(𝑣, 𝑇) ∙ ∆𝑣
𝑣2
𝑣1

 and 𝑀1(𝑇) =
1

𝑀0(𝑇)
∑ 𝑣 ∙

𝑣2
𝑣1

𝐼(𝑣, 𝑇) ∙ ∆𝑣, where 𝐼(𝑣, 𝑇) reflects the intensity of absorption change at a certain 

population time T and frequency 𝑣. ∆𝑣 is the frequency interval between the data points 

and 𝑣1and 𝑣2 define the summation limits of each band. First, by calculating the zero-

order moments 𝑀0 we were able to analyse the population dynamics which revealed to 

have a complex character. Due to the broad distribution of polymer chains that was 

present in our sample (PDI=4), the complex population dynamics could be due to a broad 

distribution of rates or arise from several distinct kinetic processes. In the first case, an 

appropriate description is a stretched exponential decay model. From this it is possible to 

identify two time regimes with different slopes when plotting the data in a Kohlrausch-

Williams-Watts representation (Figure 19b). 



Overview of the Thesis 

55 

 

Figure 19: (a) Selection of transient absorption spectra at 140 K and different population times 

upon excitation at 2.10 eV. (b) Kohlrausch-Williams-Watts representation of the zero order 

moment decay of the B00 band at 140 K upon excitation at 2.10 eV. 

The behaviour at short times characterized by a slope of unity indicated a vanishing 

dispersion of the excited state where energetic relaxation to nearest neighbours with 

lower energy occurs via single jumps. This results in the fact that lower energy sites 

become subsequently unavailable for other adjacent excitations, from which the 

decreased slope in Figure 19b at longer times with a value of 0.4 results. The latter is 

between the limits of 0.5 and 1/3, which are expected for Förster transfer from a random 

ensemble of donors to a dilute array of acceptors in a 3D and a 2D case respectively. 

In the second case a multi exponential approach using four exponentials also fitted the 

measured data and revealed for time constants. However, both models ended up in the 

same attempt to distinguish between a fast and a slow regime, with dynamics occurring 

on time scales faster or longer than tens of nanoseconds respectively. In the multimode 

model the obtained time constants of about 40 ps and 320 ps in the slow dynamic regime 

were ascribed to the S1S0 relaxation of the excited states at the bottom of the density 

of states of the aggregated phase. For the stretched exponential model we could show 

that an additional dispersive energy transfer dynamic has to be considered at longer 

times. 

Consequently we also performed an analysis on the spectral shifts that occur in the 

transient absorption spectra as a function of time by calculating the first spectral moment 

of the different spectral bands 𝑀1. For excitation energy of 2.03 eV no significant spectral 
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shift to the red as a function of time, where we were able to distinguish between two 

time constants being in the ranges of 200-250 fs and 4 ps.  

The same spectral shift behaviour with the same two time constants could also be 

extracted from the coherent 2D spectroscopy measurements (see Figure 20a for two 2D 

plots). Here we focused on the spectral region of the B00 band, where the amplitude of 

red shift increased with excitation energy (Figure 20b), similar to the results from 

transient absorption. From global analysis of the 2D data we were also able to identify a 

further fast decay component in the sub 30 fs range. Taking all results into account we 

were finally able to develop a detailed picture on the occurring dynamics within the 

aggregated phase of MEHPPV. 

 

Figure 20. (a) Selection of measured (normalized) 2D spectra of MEH-PPV at different population 

times T as indicated in the inset. Contour lines display signal levels from 5% (light pink) to 95% 

(dark red) in steps of 10%. (b) Temporal evolution of the first moment (i.e., average spectral 

position) of the signal along the detection axis (symbols) for the different excitation wavenumbers 

shown by the vertical lines in panel (a). Overlaid solid lines show the best individual bi-exponential 

fit of each trace 

Figure 21 illustrates the measured spectral dynamics with their different time constants 

toward the corresponding physical dynamics. First, the time constant in the 30 fs range 

is ascribed to a localization process of the initially delocalized excited state on smaller 

domains. This process is followed by an exciton relaxation process, populating the 

bottom of the density of states within a 200-250 ps time scale. Due to the time evolution 

of the features in the 2D spectra, we were able to associate the 4 ps time constant to 

arise from spectral diffusion of the excitons within the exciton density of states towards 

the lowest energy states of the aggregated phase.  

b) a) 
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Figure 21: Illustration of the different dynamics with their corresponding time constants. 

Afterwards, either radiative relaxation or further energy transfer towards defect states 

occur on timescales on the tens to hundreds of picoseconds. 
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The Temperature Induced Order-Disorder Transition in Solutions of Conjugated 

Polymers Probed by Optical Spectroscopy 

-conjugated materials is known to significantly impact on the 

photophysics of thin films and optoelectronic devices, only little is known about the 

nature and the general mechanisms on how such aggregates form. In chapter 4.2 – 4.5 

the conjugated polymers P3HT and MEHPPV were investigated, where in both 

compounds aggregate formation occurs upon cooling. In addition, other conjugated 

polymers such as polyfluorene with octyl sidechains (PFO) or the poly(p-phenylene 

ethynylene) derivative MEHPPE are also known to show order-disorder transitions. In the 

Köhler group, temperature induced order-disorder transitions were observed also for 

oligo PPV, the low bandgap polymer PCPDTBT, and for the small molecule DTS(FBTTH2)2 

within the last years. In chapter 4.6, I compare and discuss how temperature induced 

aggregate formation in solution is manifested in a range of conjugated homopolymers, 

a low-bandgap-type donor-acceptor polymer and in low molecular weight compounds. 

To do so I first considered the temperature dependent absorption spectra of the different 

compounds (Figure 22).  
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Figure 22: Temperature dependent absorption spectra of the investigated material systems in 

MTHF solution showing aggregation behaviour. The chemical structure is indicated on top of each 

panel. For each compound, the spectrum measured at the highest temperature, at a temperature 

directly above the phase transition, and at the lowest temperature are indicated in blue, green 

(dotted) and red respectively. 
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It became clear that all compounds show the same temperature dependent three step 

process upon cooling that is (i) planarization of the disordered phase, (ii) aggregate 

formation (iii) planarization of the aggregated phase. To gain further insights into the 

nature of the order-disorder transition and to identify the spectral character of the pure 

phases, I discuss different approaches to decompose the measured absorption spectra. 

From the decomposition, the temperature dependent fraction of aggregate can be 

obtained. When comparing the fraction of aggregate of all investigated materials, it 

became clear that the critical transition temperature and the steepness of the transition 

depend sensitively on the material. However the occurrence of an order-disorder 

transition is a general property of all compounds investigated.  

To identify the nature of the phase transition, we first reconsider the results on the 

temperature induced aggregate formation of different batches of P3HT. Here we show 

that the transition temperature depends on the chain length and can be described in the 

framework of a mean-field model developed by Sanchez for coil globule transition. By 

further taking into account the results of the order-disorder transition of the molecule 

DTS(FBTTH2)2, the impact of polydispersity on the phase transition can be identified, 

which is smearing out the temperature dependence of the transition due to the 

distribution of molecular weights and associated transition temperatures. These findings, 

reveal the nature of the order-disorder transition to be first order. In the following we 

show that the mechanism of the aggregation process can be understood as a coil-globule 

process, where the chain expands before it collapses into a highly ordered dense state.  

We furthermore discuss the role of side chains in the aggregation process. They can have 

major impact on the collapse process, which depends on whether the side chains induce 

structural disorder or support to planarize the backbone. The impact of different side 

chain order on the aggregation process and the correlated optical spectra is then 

discussed for aggregated P3HT, where at lowest temperatures the existence of two 

different PL progressions is observed. These progressions are associated with different 

crystal structures that differ in their side chain order, while their main chains are ordered. 

To explain the energetic shift in the optical spectra between the two structures, we 

highlight the role of environmental polarization, as the two structures differ in the 

degree of long range order. The latter affects the electrostatic van der Waal type 

interaction between the chromophores, leading to different polarization energies for 
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both structures. We point out the importance of future investigations to clarify the 

impact of the changes in polarisation energies between the different morphologies on 

the optical spectra. Finally, it is possible to derive a summarized picture, which correlates 

the temperature dependent conformational states to the optical spectra (Figure 23). 

 

 

Figure 23: Summary of the changes that can occur in morphology and optical spectra upon 

cooling a solution of -conjugated materials. 
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Reversible Laser Induced Amplified Spontaneous Emission from Coexisting 

Tetragonal and Orthorhombic Phases in Hybrid Lead Halide Perovskites 

Within the last view years, organic-inorganic mixed halide perovskites caused enormous 

attraction in the solar cell community, convincing with high device performances and the 

possibility for low cost production. In 2014, low threshold levels for amplified stimulated 

emission showed that mixed halide perovskites can also be used as easy to fabricate lasers 

with high quality factors. All these outstanding properties are mainly attributed to the 

high crystallinity of the perovskite structure. In this context, an interesting aspect of these 

perovskite materials is that most of them can exist in different crystal structures 

depending on the temperature. Here, similar to the organic material systems that were 

investigated in chapters 4.2 – 4.6, changes in the (crystal) structures also can have 

significant impact on the optical properties of these perovskite materials. In the first 

section of this chapter we investigate the temperature dependent PL properties of the 

hybrid perovskite CH3NH3PbI3, which is known to be in a tetragonal phase at high 

temperatures (330 K – 163 K) and in an orthorhombic phase at low temperatures  

(< 163 K). For cooling within the temperature range of 300 K – 160 K, we observe a single 

PL feature, attributed to emission from the tetragonal phase, which shifts to the red. 

However, when further decreasing the temperature below 160 K, a new blue shifted PL 

feature evolves at the expense of intensity of the PL from the tetragonal phase. It is 

attributed to PL from the orthorhombic phase and also shifts to the red upon further 

decreasing the temperature down to 5 K. When repeating the temperature dependent 

PL measurements at a higher excitation fluence amplified spontaneous emission (ASE) 

features can be observed in both phases. We further could observe a temperature 

threshold for this process, similar to a fluence threshold that is normally observed in 

literature. This effect could be understood when taking into account thermally activated 

non-radiative decay channels which we also observed. With that, we succeeded in 

calculating a temperature independent threshold exciton density required for ASE in 

both phases. 

After having understood the temperature dependent PL dynamics of the perovskite in 

its different structural phases, we performed further analysis of the emission spectrum at 

lowest temperatures. Here we were able to show that a second PL feature can be induced 

when the sample is exposed to a high fluence excitation (Figure 24). We interpret this 
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discovery to arise from local heating during excitation with high fluence from which a 

modification of the crystal structure toward the tetragonal phase is induced. The latter 

is then kinetically frozen in when the high intensity laser is turned off. 

 

Figure 24. (a) The emission spectrum of perovskite film at 5 K before (blue line) and after (orange 

line) high fluence (1615 μJ/cm−2) excitation, recorded with a fluence of 21 μJ/cm−2. (b) Schematic 

illustrating how illumination by an intense laser pulse can induce the formation of a metastable 

trapped tetragonal phase. 

Figure 24b illustrates the proposed scenario. We found this interpretation corroborated 

by several aspects. Due to the spectral shape and lifetime, we could exclude that the 

induced PL feature originates from a bound exciton of the orthorhombic phase, as it is 

sometimes found in literature. Moreover, the spectral position of the induced feature 

perfectly met the expected value which was obtained when extrapolating the 

temperature dependent red shift of the tetragonal PL toward 5 K. Furthermore, the 

metastable nature of the induced phase could be identified, as it vanished for mild 

heating of the sample. Evidence for the temperature induced heating that occurs during 

laser excitation was then given by investigating the PL spectra during high fluence 

excitation, where we observed an additional broad PL band at lower spectral energies.  

It could be associated to arise from a superposition of various PL peaks of the tetragonal 

phase with different peak energies. This appeared evident when considering (i) the 

spectral behaviour of the low energy band when changing the excitation fluence, (ii) the 

above described temperature dependence of the PL peak position and (iii) assuming a 

temperature gradient across the Gaussian excitation profile on the sample. Using the 

knowledge about the metastable nature of the induced tetragonal phase at 5 K, we also 

succeeded to detrap the induced tetragonal phase by local heating due to appropriate 
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laser excitation of the sample. The detrapping of the kinetically frozen in tetragonal 

phase was seen upon a certain excitation fluence and became faster for increasing 

fluence. 

Since we showed that the tetragonal phase can be induced and detrapped all optically 

by choosing appropriate laser fluences, we finally did a proof of principle demonstration 

to use CH3NH3PbI3 as an all optical memory device. To this end we used high- mid- and 

low fluences to perform write- erase- and read processes of the tetragonal phase 

respectively, which could be probed by the PL peak intensities of the two phases 

(Figure 25).  
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Figure 25 (Lower panel) Peak intensities at 5 K of the ASE at 1.61 eV (blue dots) in the 

orthorhombic phase and of the ASE at 1.53 eV (red diamonds), attributed to the tetragonal phase. 

The peak intensities were recorded using a fluence of 21 μJ/cm−2 ( = “read” mode) after previous 

illumination with pulses at a fluence of 1615 μJ/cm−2 ( = “write” mode) or at 811 μJ/cm−2 ( = “erase” 

mode) as illustrated in the upper panel. 

It was possible to perform reproducible sequences of write-read-erase cycles. Finally, 

spatially resolved PL mapping before/after writing and after an erase process further 

revealed the reproducible nature of the laser induced phase change.  

 

Effect of Thermal and Structural Disorder on Electronic Structure of Hybrid 

Perovskite Semiconductor CH3NH3PbI3 

In this chapter, the temperature dependence of the optical properties of CH3NH3PbI3 

from room temperature to 6 K is investigated. In both, the tetragonal (T > 163 K) and 

the orthorhombic (T < 163 K) phase of CH3NH3PbI3, the band gap (from both absorption 
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and photoluminescence measurements) decreases with decrease in temperature - in 

contrast to what is normally seen for many inorganic semiconductors such as Si, GaAs, 

GaN etc. By temperature dependent X-ray measurements we find that in CH3NH3PbI3, the 

temperature coefficient of thermal expansion is large and accounts for the positive 

temperature coefficient of the band gap. We also performed spectral analysis of the 

temperature dependent absorptions spectra in the framework of Elliot’s theory. With it 

we succeeded to distinguish between spectral contributions from excitons and band to 

band transitions. Further analysing the temperature dependent linewidth of the 

excitonic contribution reveals, that the orthorhombic phase is the better ordered one 

compared to the tetragonal phase at higher temperatures. Further considering the 

temperature dependent absorption spectra, we identified an Urbach focus point 

(Figure 26a) in both phases which demonstrates the possibility to analyse the low energy 

edge of the excitonic peak in the framework of the Urbach formalism. In the latter, we 

found the Urbach energy, which is related to the degree of disorder in the sample, to be 

surprisingly small for solution processed semiconductors. 
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Figure 26: (a) Logarithmic representation of absorption coefficient as a function of photon energy 

at different temperatures in the tetragonal phase of CH3NH3PbI3. Linear fits to the absorption 

edges end up in a common Urbach focus at 1.541 eV. (b) Normalized PL spectrum of CH3NH3PbI3 

at 100 K (blue dots) together with fits of the higher energy PL edge using a single Gaussian 

(orange line) or a Gaussian + exponential (green line) function 

When analysing the temperature dependent Urbach energy we were able to distinguish 

between static and dynamic disorder in the sample. I could also observe this 

discrimination of disorder in the temperature dependent photoluminescence spectra.  

By differentiating between Gaussian and exponential contributions to the shape of the 

PL it was possible to analyse the impact of static and dynamic disorder on the spectra. 
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Overall, our study establishes a methodology using optical techniques for the concise 

characterisation of disorder in new perovskite materials 

 

Compact Layers of Hybrid Halide Perovskites Fabricated via the Aerosol 

Deposition Process – Uncoupling Material Synthesis and Layer Formation 

Metal halide perovskites have attracted enormous attention within the last few years in 

the solar cell community and also, more recently in the LED sector. A main factor of that 

success can be attributed to their capability of combining both, superior charge transport 

properties due to their crystalline nature, together with a high versatility in combining 

and/or mixing of different constituents to tune their optoelectronic properties. On the 

other hand a clear limitation of this class of material can be seen in the inseparability of 

material synthesis and layer formation. In the past, a variety of different methods have 

been presented to properly form layers of halide perovskites. Mostly they are based on 

the combination of two different compounds (typically from solutions) where at least 

one compound is a halide, leading to the formation of the perovskite crystals during 

(mostly) a drying process. All methods reported so far have in common that the crystalline 

perovskite structure itself develops during film formation. As a result, material synthesis 

is interconnected with film processing. This implies that it is not possible to improve the 

quality of the perovskite without also modifying the film formation, and vice versa.  

To this end we used the aerosol deposition method to process layers of the hybrid 

perovskite CH3NH3PbI3.  

The method is commonly used to produce dense ceramic coatings at room-temperature 

directly from a bulk powder that is transferred into an aerosol and then spray-coated 

onto a substrate where the dense films are formed without any temperature treatment 

(see Figure 27a).The dry nature of the AD process is in contrast to the already used sol-

gel spray coating methods that have been applied to hybrid perovskites so far. In the 

latter, the constituents for the halide perovskite are deposited by a spray and the 

reaction occurs during the drying process of the film, whereas in the AD process the 

ready-made crystalline perovskite powder is deposited. We finally succeeded to form 

CH3NH3PbI3 perovskite layers by aerosol deposition. 
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Figure 27: (a) Schematic representation of an AD setup with its typical components. The zoomed 

area at the right-hand side illustrates the film formation process in more detail. (b) XRD patterns 

of a reference film produced by a vapor-assisted crystallization approach (red) and the AD-

processed film (black). 

The films show typical optical properties, high crystalline quality, compactness and good 

contact to underlying layers. Furthermore the absence of any features from PbI2 

incorporations from the measured XRD patterns (Figure 27b) proofs the non-destructive 

character of the process. 

 

In summary, I have demonstrated that disorder – order transitions in organic 

semiconductors can be analyzed through careful optical spectroscopy, and that they can 

be described as first-order phase transitions with certain general features as detailed in 

Chapter 4.2 – 4.6. In a similar way, a phase transition from tetragonal to orthorhombic 

phases in a hybrid perovskite can dominate the optical spectra and can be exploited for 

an all-optical memory device. For both classes of materials, temperature dependent 

absorption and photoluminescence measurements were found to be a powerful and 

effective technique to study excited states.  
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4. Publications 

4.1. Individual Contributions to Joint Publications 

1. The Impact of Polydispersity and Molecular Weight on the Order − Disorder Transition 

in Poly(3-hexylthiophene)  

Fabian Panzer, Heinz Bässler, Ruth Lohwasser, Mukundan Thelakkat and Anna 

Köhler, 

Journal Physical Chemistry Letters 5 (2014) 2742−2747 

 

Based on data taken in the framework in my diploma thesis, I analysed and 

interpreted the spectra, and together with Heinz Bässler and Anna Köhler I wrote the 

manuscript. 

 

2. Spectroscopic Signature of Two Distinct H-Aggregate Species in Poly(3-

hexylthiophene) 

Fabian Panzer, Michael Sommer, Heinz Bässler, Mukundan Thelakkat, Anna Köhler 

Macromolecules 48 (2015) 1543–1553 

 

Using P3HT synthesised by Michael Sommer, I prepared all samples (films and 

solutions) used. I performed all temperature dependent steady-state absorption and 

emission measurements. Furthermore I performed all site selective emission 

measurements and time resolved PL measurements. I performed all Franck-Condon 

Analysis and interpreted the data. Together with Anna Köhler and Heinz Bässler I 

wrote the manuscript. 

 

3. Ultrafast Energy Transfer between Disordered and Highly Planarized Chains of  

Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) 

Thomas Unger, Fabian Panzer, Cristina Consani, Federico Koch, Tobias Brixner, Heinz 

Bässler and Anna Köhler 

ACS Macro Letters 4 (2015) 412-416 

 

I prepared the solutions measured. I measured all temperature dependent steady-

state absorption and emission spectra. I performed all analysis on the steady-state 

data (including the Franck-Condon analysis on the aggregate absorption spectrum). I 

interpreted the data and wrote the part of the manuscript which relates to the 

steady-state data. I furthermore reviewed and edited the overall manuscript and 

graphs. 
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4. Relaxation dynamics and exciton energy transfer in the low-temperature phase of  

MEH-PPV 

Cristina Consani, Federico Koch, Fabian Panzer, Thomas Unger, Anna Köhler and 

Tobias Brixner 

The Journal of Chemical Physics 142 (2015) 212429 

 

I prepared the solutions that were measured. I measured all steady-state absorption 

and emission spectra used in the manuscript. I analysed the transient absorption data 

which described the population dynamics in the framework of a broad rate 

distribution by using a Kohlrausch-Williams-Watts (KWW) representation of the 

experimental data. I was heavily involved in the discussion of the results and 

interpretation of the findings. Furthermore I wrote minor parts of the manuscript 

and reviewed the overall manuscript. 

 

5. The Temperature Induced Order-Disorder Transition in Solutions of Conjugated 

Polymers Probed by Optical Spectroscopy 

Fabian Panzer, Heinz Bässler, Anna Köhler 

Invited Feature Article, The Journal of Physical Chemistry B (prepared for submission) 

 

I conceived the idea and designed the structure of the manuscript. I performed all 

additional temperature dependent absorption and emission measurements for BEH-

PPV (Polymer and Oligomers), MEH-PPE and PFO. I analysed the temperature 

dependent absorption and emission spectra for MEH-PPE, PFO, BEH-PPV (Polymer and 

Oligomer). I interpreted the data. Together with Anna Köhler and Heinz Bässler I 

wrote the manuscript. I furthermore reviewed and edited the overall manuscript and 

graphs and developed the overall summary table. 

 

6. Reversible Laser Induced Amplified Spontaneous Emission from Coexisting 

Tetragonal and Orthorhombic Phases in Hybrid Lead Halide Perovskites 

Fabian Panzer, Sebastian Baderschneider, Tanaji Gujar, Thomas Unger, Marius 

Jakoby, Sergey Bagnich, Heinz Bässler, Jürgen Köhler, Ralf Moos, Mukundan 

Thelakkat, Richard Hildner, Anna Köhler 

Advanced Optical Materials (2016), DOI: 10.1002/adom.201500765 

 

I conceived the idea and designed the experiments under supervision from Anna 

Köhler and Ralf Moos. I performed all temperature dependent and fluence 

dependent steady-state emission measurements. I assisted Sebastian Baderschneider 

to carry out the spatial resolved measurements. Together with Anna Köhler and 

Richard Hildner I wrote the manuscript.  
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7. Effect of Thermal and Structural Disorder on Electronic Structure of Hybrid Perovskite 

Semiconductor CH3NH3PbI3 

Shivam Singh, Cheng Li, Fabian Panzer, K. L. Narasimhan, Anna Gräser, Tanaji P. Gujar, 

Anna Köhler, Mukundan Thelakkat, Sven Huettner, and Dinesh Kabra 

(2016) submitted  

 

Based on the PL data which were taken for the manuscript “Reversible Laser Induced 

Amplified Spontaneous Emission from Coexisting Tetragonal and Orthorhombic 

Phases in Hybrid Lead Halide Perovskites” I performed further analysis on the PL data. 

I fitted the high energy edge of the PL spectra at different temperatures and analysed 

the obtained fit parameters. I calculated and interpreted the temperature dependent 

Stokes shift. I interpreted the temperature dependent PL data and wrote the part of 

the manuscript which correlates to the PL data. I was heavily involved in the 

interpretation of the measured and analysed data. I furthermore reviewed and edited 

the overall manuscript and graphs. 

 

8. Compact Layers of Hybrid Halide Perovskites Fabricated via the Aerosol Deposition 

Process – Uncoupling Material Synthesis and Layer Formation 

Fabian Panzer, Dominik Hanft, Tanaji Gujar, Frank-Julian Kahle, Mukundan 

Thelakkat, Anna Köhler, Ralf Moos 

Materials 9 (2016), 277 

 

I assisted Dominik Hanft with the aerosol deposition of the perovskite powder and 

Tanaji Gujar taking the SEM images. I performed the absorption and emission 

measurements of the sample. I analysed and prepared all measured data and wrote 

the manuscript. 
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4.2. The Impact of Polydispersity and Molecular Weight on 

the Order − Disorder Transition  

in Poly(3-hexylthiophene) 
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The Impact of Polydispersity and Molecular Weight on the Order−
Disorder Transition in Poly(3-hexylthiophene)

Fabian Panzer,
†,‡

Heinz Bas̈sler,
‡
Ruth Lohwasser,

‡,§
Mukundan Thelakkat,

‡,§
and Anna Köhler*

,†,‡

†Experimental Physics II, ‡Bayreuth Institute of Macromolecular Science, and §Applied Functional Polymers, Macromolecular
Chemistry 1, University of Bayreuth, 95540 Bayreuth, Germany

*S Supporting Information

ABSTRACT: Conjugated poly(3-hexylthiophene) (P3HT) chains are known to exist at least
in two distinct conformations: a coiled phase and a better ordered aggregated phase.
Employing steady state absorption and fluorescence spectroscopy, we measure the course of
aggregation of P3HT in tetrahydrofuran (THF) solution within a temperature range of 300 K
to 170 K. We show that aggregation is a temperature controlled process, driven by a
thermodynamic order−disorder transition. The transition temperature increases with the
molecular weight of the chains and can be rationalized in the theory of Sanchez. This implies
a smearing out of the phase transition in samples with increasing polydispersity and erodes
the signature of a first order phase transition. The detection of a hysteresis when undergoing
cooling/heating cycles further substantiates this reasoning.

SECTION: Glasses, Colloids, Polymers, and Soft Matter

I t is well-known that upon cooling a solution of a conjugated
polymer such as polydiacetylene,1,2 poly(p-phenyleneviny-

lene),3,4 polyfluorene5 and polythiophene,6−8 aggregation
occurs. A signature of this phenomenon is the red-shift of
absorption and fluorescence spectra accompanied by spectral
narrowing. This indicates that in the aggregated phase, the
polymer chains are more extended and consequently more
ordered. Since in conjugated polymers change in carrier
transport is predominantly disorder-controlled, there is a
strong endeavor9 to understand how to introduce short-range
order in electronic devices such as field-effect transistors,
organic solar cells, or organic light-emitting diodes (OLEDs)
with conjugated polymers as active materials. Since the polymer
films are usually processed from solution, strategies are needed
toward the formation of ordered structures that exist already in
solution and are preserved during solution processing.10 To this
end, we characterize aggregation in solution of poly(3-
hexylthiophene) (P3HT), which is a preferred material used
for efficient organic solar cells. Stimulated by preceding work
on poly(2-methoxy-5-(2′ethyl-hexoxy)-1,4-phenylene-vinylene)
(MEH-PPV) in solution, we studied the aggregation of P3HT
in tetrahydrofuran (THF) solution as a function of temper-
ature, molecular weight, and polydispersity. In essence we find
that aggregation is, in principle, a first-order transition from a
coil to an ordered phase that is smeared out with progressing
polydispersity of the chains because the transition temperature
depends on molecular weight.

For our studies, we used P3HTs synthesized by a modified
Grignard metathesis reaction method as described elsewhere.11

Due to this synthetic method, the samples have a very low
polydispersity index (PDI) and thus a very narrow molar mass
distribution. The number-average molecular weight (Mn) and
the weight-average molecular weight (Mw) were measured by

gel permeations chromatography (GPC) in THF with
polystyrene as the calibration standard as well as matrix-
assisted laser desorption ionization-time-of-flight mass spec-
troscopy (MALDI-TOF MS). The polydispersity indices of the
low PDI samples were obtained by the GPC data, while the
numbers of repeating units, i.e., the degree of polymerization
(DP), were determined from the MALDI-TOF measurements,
within an experimental uncertainty of 2 repeating units.
Commercial P3HT (P3HT-COM) was purchased from
American Dye Sources Ltd. (ADS), Canada, and shows a
comparable molecular weight to P3HT-19, but a higher PDI of
2.0. Table 1 gives an overview of the relevant properties of the
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Published: July 17, 2014

Table 1. Overview of the Used Materials and Their
Corresponding Properties: The Number-Average Molecular
Weight (Mn) (Obtained by Both GPC and MALDI-TOF
Measuerments), Weight-Average Molecular Weight (Mw),
Resulting Polydispersity Index (PDI = Mw/Mn), and Degree
of Polymersiation (DP) (Obtained by MALDI-TOF
Measurements)

method GPC MALDI-TOF MS

notation Mn (g/mol) Mw (g/mol) PDI Mn (g/mol) DP

P3HT-5 5100 6300 1.22 3200 19

P3HT-11 11 300 12 500 1.11 7100 43

P3HT-19 18 600 21 600 1.16 12 400 74

P3HT-34 34 200 39 400 1.15 24 000 144

P3HT-COM 18 800 38 400 2.04 n.a. n.a.
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used materials including the notation used. We like to note that
in the P3HT series used here, the polymer chains do not fold
up to a size-exclusion chromatography (SEC) molecular weight
of ∼20 kg/mol (MALDI ∼ 12 kg/mol) both in bulk and in thin
films on cooling from melt.12

All samples were dissolved in THF at a concentration of 0.1
mg/mL. To ensure that all of the polymer chains are
completely dissolved, the solutions were heated to 40−50 °C
and stirred for about 10 to 30 min, depending on the molecular
weight. Absorption and emission spectra at different temper-
atures were recorded with a home-built setup. The solutions
were filled into a fused silica cuvette with 1 mm path length and
put into a temperature-controlled continuous flow cryostat
(Oxford instruments). In order to minimize the light intensity
impinging on the sample, we use two correlated mono-
chromators for incident as well as transmitted light. The latter
is recorded by a silicon diode and a lock-in-amplifier.

For emission measurements, the xenon lamp and the first
monochromator are replaced via a shutter by a diode laser with
an excitation wavelength at 405 nm (3.06 eV), exciting the
sample at a shallow angle. Emission is recorded by the same
detection unit. This ensures recording absorption and
fluorescence spectra at the same sample spot and temperature
immediately after one another. All spectra were corrected for
the transmission of the setup, using an oriel calibration lamp.
Sample heating or cooling was done in a stepwise fashion with a
heating or cooling rate of 2K per min and waiting 45 min

before taking the measurement at a given temperature.
Absorption as well as emission spectra for the three polymers
with different molecular weight and low polydispersity (P3HT-
19, P3HT-11, and P3HT-5) were measured within the
temperature range from 300 to 170 K, which is the glass
temperature of THF (Figure 1). While decreasing the
temperature from 300 K down to 170 K, we were able to
observe three distinct temperature ranges (see Table 2 for an
overview of all relevant temperatures and shifts).

At 300 K, the absorption spectra are broad and structureless.
When cooling from 300 K to the onset of the phase transition
(temperature range 1), the maxima of the spectra feature a red
shift by 35−50 meV, accompanied by an increase in intensity of
about 10%.

When further decreasing the temperature and entering the
temperature range 2, a vibrational resolved absorption spectrum
appears with a S1−S0 0−0 feature (A1) at 2.0 eV and a

Figure 1. Temperature-dependent absorption (a) as well as corresponding emission spectra (b) for the three Polymers P3HT-5100 (top), P3HT-11
(middle) and P3HT-19 (bottom) in THF, differing in their molecular weight. The spectra are taken from 300 to 170 K in steps of 10 K (usually) or
5 K (near the transition temperature).

Table 2. Overview of the Corresponding Concrete Values of
the Discussed Three Temperature Ranges for Three Samples
with Low Polydispersity

polymer range 1 Abs (Pl) (K) range 2 (K) range 3 (K)

P3HT-19 300−270 (280) 265−250 250−170

P3HT-11 300−260 (270) 250−230 230−170

P3HT-5 300−230 (250) 220−200 200−170

The Journal of Physical Chemistry Letters Letter
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vibrational satellite at 2.2 eV (A2 feature). At the same time,
absorption from the high energy region (above 2.5 eV) is
decreasing and an isosbestic point at about 2.5 eV is observed.
These main spectral changes take place within a small
temperature range of approximately 20−30K. Upon subsequent
cooling, the A1-Peak shifts toward lower energies and becomes
more intense.

At 300 K, all the fluorescence spectra are more structured
compared to the corresponding absorption spectra with a main
emission peak at approximately 2.16 eV and a second peak at
about 1.99 eV. Within temperature range 1, i.e., between 300 K
and the onset of the phase transition, the emission of the
samples shifts to lower energies and the overall intensity
increases. This is in analogy to absorption spectra. Within
temperature range 2, a distinct loss of intensity and
simultaneously change in the ratio between the peaks at 2.15
and 2.0 eV can be observed. This effect is more pronounced for
P3HT-19 and P3HT-11. At temperatures below the phase
transition (temperature range 3), a structured low energy
emission spectra can be observed. For both P3HT-19 and
P3HT-11 emission from the former pronounced peak at 2.15
eV vanishes. Instead a low energy peak at 1.9 eV appears at 240
K that shifts to 1.8 eV at 170 K. This is complementary to the
behavior of the low energy peak observed in corresponding
absorption spectra. In contrast to P3HT-19 and P3HT-11
within this temperature range, the emission spectrum of P3HT-
5 is more intense and basically retains its original structure
except for additional spectral broadening.

In general, the broad absorption and corresponding emission
spectra observed within the first temperature range (e.g., at 300
K) can be associated with P3HT chains in the coiled state,13,14

while the red-shifted, well-structured absorption and emission
spectra observed with the temperature below the phase
transition (e.g., at 170 K) are assigned to weakly interacting
H-type aggregates in which the chains are more planar and
more extended.15−18 Therefore, we interpret the data shown in
Figure 1 as the signature of a temperature-induced stepwise
phase transition from coiled phase toward aggregated P3HT.
The observed initial red shift within the first temperature range
is associated with an increase in conjugation length of the coiled
phase,19 and a concomitant increase in oscillator strength of the
polymer chains.20 This is the signature of an initial planarization
process of the coiled chains within the first temperature range.
The existence of an isosbestic point at 2.5 eV in the absorption
spectra within the second temperature regime indicates that
P3HT chains are gradually transformed from coiled to an
aggregated state.21 Within the temperature range 3 the

aggregate absorption spectra bear out a further redshift. This
can be a signature of an increase in conjugation length due to
an improved planarization of the aggregates or to spectral
diffusion due to energy transfer within aggregates. The strong
decrease in overall intensity compared to emission from coiled
phase demonstrates that in the aggregated phase the chains
form H-aggregates.8

In order to further investigate the temperature-dependent
conformational behavior of P3HT in solution, the measured
absorption spectra were deconvoluted into the spectra of the
aggregated and coiled polymer chains, following the approach
of Scharsich et al.22 Here the absorption spectrum of pure
coiled phase was scaled to the high energy shoulder of the
respective spectra and subtracted acquiring the fraction of pure
aggregate absorption. Taking into account the difference of
oscillator strength between coiled and aggregated polymer
chains as described in the Supporting Information, the fraction
of aggregates faggr in solution was obtained as a function of
temperature for all three samples (Figure 2a). Here we can see
that aggregation starts at lower temperatures for lower
molecular weights (P3HT-19 at 265 K, P3HT-11 at 255 K,
and P3HT-5 at 230 K). Below these temperatures, all samples
show a steep increase in aggregate fraction within a temperature
range of about 20−30 K. After that, the fraction of aggregate
saturates for these three samples toward the lowest measured
temperature. At 170 K, the maximum fraction of aggregates
reached is 60% for P3HT-19, 70% for P3HT-11, and 32% for
P3HT-5. These values (especially for P3HT-19 and P3HT-11)
are consistent with typical values found in the literature,8,22,23

indicating that the maximum fraction of aggregate is
independent of the way the samples are prepared.

The experiments demonstrate that molecular weight of the
polymers used has a significant influence on which temperature
the transition takes place. We infer the critical temperature
from the inflection point in the fraction of aggregate as a
function of temperature:

∂

∂
=

f

T
0

T

2
aggr

2

c (1)

Figure 2b shows that the obtained critical temperatures Tc

increase as a function of the number of monomer units for four
polymers.

Based upon mean field theory, Sanchez showed that an
infinite chain undergoes a second-order phase transition from a
swollen coil to a collapsed globule upon cooling below a critical

Figure 2. (a) Fraction of aggregates in the solution as a function of temperature for the three different P3HTs. (b) The dependence between the
critical transition temperature and molecular weight and a fit using eq 2.
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(transition) temperature Tc.
24 In finite systems, this transition

becomes pseudo-second order and depends on the chain
stiffness. The theory predicts that the critical temperature scales
with the number of repeat units N of the chains as

θ φ−

=

T

T N

c

c (2)

where φ is a constant that depends on the chain stiffness and
the so-called theta temperature θ is the critical temperature of
an infinite chain. Figure 2b shows that eq 2 provides an
excellent fit for Tc as a function of the monomer units and thus
the molecular weight of the polymer chains, with fitting
parameters φ = 8.7 ± 0.3 and θ = (278 ± 1) K.

Experiments on samples with similar molecular weight yet
different polydispersity (P3HT-COM) shed further light on the
nature of this transition. Figure 3a reveals clear differences
regarding the temperature dependence of the fraction of
aggregates. On one hand, the maximum fraction of aggregate at
around 77% for P3HT-COM at a temperature of 170 K is
approximately 20% higher compared to the corresponding
value for P3HT-19. Furthermore, the shape of the transition
seems to be more undefined and more continuous for the
P3HT-COM sample compared to the samples with low
polydispersity. By contrast, the critical temperatures Tc for
the samples with low and high polydispersity are nearly
identical, indicating that in this case polydispersity plays no
role. If a coil−globule transition in an infinite chain was a
second-order transition, it should be described by

∼

−

=

⎛

⎝
⎜

⎞

⎠
⎟f T

T T

T
a( ) , 0.33

a
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c
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where faggr is the fraction of the ordered chains.3 In order to
identify the order of the transition, we plotted faggr versus the
reduced temperature (Tc − T)/Tc on a double logarithmic scale
(Figure 3b). The dashed line indicates a slope of 0.33,
representing a second-order phase transition. The good quality
of the fit for the data of P3HT-COM (PDI = 2.0) is, indeed,
reminiscent as a second order phase transition. However, for
the sample P3HT-19 with low polydispersity, a clear deviation
from the second-order course (dashed line in Figure 3b) is
obvious. Therefore, we conclude that polydispersity determines
the temperature-dependent shape and any assignment to a
second order phase transition is accidental. As the transition
temperature depends on molecular weight, obviously a broad
distribution of chain lengths for high PDI samples smears out

the shape of the transition. Considering the steep transition for
the low PDI sample, we conclude that in the limit of a well-
defined chain length the transition is of first order. This is in
accordance with the work of Cone et al. on the formation of the
β-phase in poly(9,9′-dioctylfluorene) (PFO).5

Figure 4 shows that in P3HT-19, there is a hysteresis
regarding the fraction of aggregates observed upon sample

cooling and heating. In order to asses a possible influence of
waiting time between two consecutive 10 K temperature jumps,
the waiting time was increased up to 90 min. Here we found
that the waiting time has virtually no effect on the hysteresis
(see SI). This suggests that the hysteresis is linked to an
enhanced thermal stability of planarized structures. It was
suggested this may be due to side chain ordering occurring after
aggregation of the main chains25 which could lead to different
polymorphs.26 However, we cannot rule out the possibility that
the formation or dissolution of the aggregates during stepwise
sample cooling or heating is kinetically hindered which is often
the case in first order transitions. Experiments with different
heating/cooling rates would be required to tell this possibility.

In summary, we show that the aggregation of P3HT in
solution by lowering temperature can be described as a phase
transition from coiled phase toward aggregated P3HT. The
process is a sequence of swelling of the coiled phase, formation
of aggregates, and further planarization of the aggregate. This is
consistent with recent simulation of the initial crystallization

Figure 3. Comparison between the fraction of aggregates of P3HT-19 with low PDI and P3HT-COM with high PDI, (a) as a function of
temperature, and (b) as a function of the reduced temperature a((Tc − T)/Tc) plotted double logarithmically. Here, the dashed line indicates a slope
of 0.33, representing the expected course for a second order phase transition.

Figure 4. Normalized intensity of the A1-Peak gathered from
absorption spectra while going through a cooling/heating cycle.
Waiting time to ensure thermal stability within the solution was set to
45 min between every temperature.
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process of P3HT in solution.25 The authors conclude that this
nucleation process is the sequence of three steps, i.e., ring
orientation, elongation of the main chain and, finally ordering
the side chains. The bathochromic shift of the unstructured
absorption spectrum of P3HT above Tc is likely to be a
signature of the first step. We find that the subsequent
elongation of the chains and their concomitant collapse to
ordered aggregates appears as a thermodynamic first order
process.

Our results are corroborated by Monte Carlo simulations by
Kolinski and co-workers, who constrast the nature of the coil−
globule transition for flexible and for stiffer polymers.27 They
find that, whereas flexible chains collapse to an essentially
Gaussian, tight random coil, finite length polymers that have a
considerable degree of stiffness collapse into an ordered state
such as a rod-like bundle. Kolinski et al. compare this collapse
to the denatured-to-native transition in globular proteins. The
simulations predict that upon lowering the temperature, the
dimensions of the stiffer chains first increase until the chain
suddenly undergoes a pseudo-first-order phase transition to an
ordered dense state. Kolinski and co-workers attribute the
initial increase in chain dimension to the dominance of freezing
out rotational degrees of freedom over attractive interactions.
They suggest this prepares the chain just above the transition in
conformation composed of stiff sections connected by “flexible”
linkages, which thus primes the polymer to collapse into an
ordered structure.

The dependence between molecular weight of the used
polymer and the critical temperature of the transition can be
rationalized in terms of the theory of Sanchez. In samples with
higher polydispersity, realized in commercial samples, there is a
superposition of different transition temperatures of chains of
different lengths. This obscures the first-order character of the
transition. The hysteresis regarding the fraction of ordered
chains upon undergoing cooling/heating cycles is tentatively
attributed to side chain ordering.
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Determination of oscillator strength in the aggregate: 

We derived the relative change in oscillator strength between the aggregated and 

coiled phase, 𝜀𝑎𝑔𝑔/𝜀𝑐𝑜𝑖𝑙 , as described in detail in the supporting informations of J. Clark 

et al1 and in C. Scharsich et al2, using 

𝐴𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒

𝐴𝑐𝑜𝑖𝑙
= −

𝜀𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒

𝜀𝑐𝑜𝑖𝑙
 

with the areas taken from the shades regions as illustrated in Fig. S1. Using the change 

in oscillator strength thus derived and the change observed in the absorption spectra 

upon cooling, the fraction of aggregated chains was derived.  

 

Figure S1: Exemplary illustration of the procedure to determine the change in 

oscillator strength between coiled and aggregated phase of P3HT. The required areas 

Acoil and Aaggregate are highlighted.  

 

For comparison, we have also determined the fraction of aggregates by considering the 

intensity of the A1-Absorption peak of the aggregate as a function of temperature. 

Both methods yield the same temperature dependence (see Figure S2). 
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Figure S2: Normalised fraction of coiled phase derived by two different methods as a 

function of temperature. 

 

Impact of waiting time on the hysteresis of the fraction of aggregates: 
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Figure S3: Normalised fraction of aggregate as a function of temperature while going 

through a cooling/heating cycle for two different waiting times between two 

consecutive temperatures. 
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ABSTRACT: In an endeavor to correlate the optoelectronic properties
of π-conjugated polymers with their structural properties, we investigated
the aggregation of P3HT in THF solution within a temperature range
from 300 to 5 K. By detailed steady-state, site-selective, and time-resolved
fluorescence spectroscopy combined with Franck−Condon analyses, we
show that below a certain transition temperature (265 K) aggregates are
formed that prevail in different polymorphs. At 5 K, we can
spectroscopically identify two H-type aggregates with planar polymer
backbones yet different degree of order regarding their side chains. Upon
heating, the H-character of the aggregates becomes gradually eroded,
until just below the transition temperature the prevailing “aggregate”
structure is that of still phase-separated, yet disordered main and side chains. These conclusions are derived by analyzing the
vibrational structure of the spectra and from comparing the solution spectra with those obtained from thin films that were cooled
slowly from the melting temperature to room temperature and that had been analyzed previously by various X-ray techniques. In
addition, site selectively recorded fluorescence spectra show that there isdependent on temperatureenergy transfer from
higher energy to lower energy aggregates. This suggests that they must form clusters with dimensions of the exciton diffusion
length, i.e., several nanometers in diameter.

1. INTRODUCTION

A characteristic feature of organic solids is that electronic
coupling among the constituting elements is weak yet it
controls their optoelectronic properties. Deliberate or uninten-
tional modification of the morphology has therefore a
significant impact on the electronic properties such as the
transport of charge carriers and the dissociation of excitations,
i.e., excitons.1−4 Currently there is strong endeavor toward
understanding and controlling the relation between film
morphology and electronic structure in devices such as solar
cells and field effect transistors, using conjugated polymers as
active elements, with a view to improve their performance.5,6

Even though, understanding the formation of self-assembled
structures in rigid or semirigid conjugated polymers which are
typically processed out of solution is still less studied, especially
compared to the large body of work established for flexible,
nonconjugated polymers.

A material that emerged as a workhorse, notably in field of
organic photovoltaics,7−11 is regioregular poly(3-hexylthio-
phene) (P3HT). Since the discovery that in regioregular
P3HT the charge carrier mobility measured in the field effect
transistor configuration is much higher than in regiorandom
P3HT,12−14 much effort is currently spent on the under-
standing and improvement of structural order on P3HT.
Depending on solvent, temperature, molecular weight, and
sample preparation, it can exist in an amorphous phase with
coiled chain conformations or in an aggregated phase

containing planarized chains with some propensity to form
semicrystalline domains.11 These aggregates can be of an H-
type or of a J-type nature, depending on the strength of
interchain to intrachain coupling. The transition from one
coupling regime to the otherreported in particular for P3HT
nanofibersdepends sensitively to molecular weight and
regioregularity of the sample.15−18 It is also well established
that P3HT can adopt different morphologies; i.e., it is
polymorph.19−23 In different morphologies, the separation
and orientation of the polymer segments are different with the
consequence that the electronic properties depend on the
morphology.24

It is important to realize that, while being a workhorse,
P3HT is not a singular case but rather a model for other
technologically useful conjugated polymers. All of them have
more or less stiff backbones and are therefore prone to adopt
semicrystalline morphologies. For example, the poly(p-phenyl-
ene) derivative MEH-PPV has been shown to undergo a similar
disorder−order phase transition upon cooling a solution similar
P3HT,25 and the polyfluorene derivative PFO is well-known for
adopting an amorphous phase or an ordered β-phase.26

In structural studies including various techniques of X-ray
diffraction and microscopy, different polymorphs of P3HT-
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aggregates have been identified. For example, the work of Prosa
et al. and Mena-Osteritz et al. identified H-aggregates with
interdigitated side chains that form on graphite surfaces or, to a
small amount, under certain spin-casting conditions.27,28 They
can also be prepared by self-seeding approaches.29 This
polymorph of P3HT is frequently referred to as “form
II”.23,27 More common, however, are H-aggregates with
noninterdigitating, noncrystalline side chains,27,30−32 also
known as “form I”.23,27 They form in a layer structure of
separated main and side chains, where the main chains may
adopt either a liquid, smectic-like packing, or a regular,
crystalline packing. While the latter is thermodynamically
more stable, its formation is frequently kinetically hindered.

These structural techniques provide valuable insight into the
existing polymer morphologies and their formation processes.
They can, however, be too elaborate or time-consuming to be
applied routinely to the characterization of films that are to be
used in device structures. A comparatively fast and simple
approach to identify the presence of different H-aggregates in
films (or solutions) is to measure their fluorescence spectra, yet
this method requires that the spectral signatures of different
polymorphs be known.

Here, we have studied the formation of H-aggregates in
solution of tetrahydrofuran (THF) upon continuous cooling
from room temperature to 5 K with the aim to identify the
evolution of their spectral signatures. We find that the spectral
shape of the H-aggregate emission evolves continuously. From
the first appearance of aggregate emission at 265 K, the
spectrum changes from a vibrational structure that essentially
matches that of a nonaggregated chain to one with a strongly
suppressed 0−0 transition peak at 160 K and below.
Importantly, closer inspection identifies emission from two
distinct, coexisting polymorphs. Notably, these two polymorphs
are not the “form I” and “form II” mentioned in the literature
(ref 19). Rather, they are two variants of “form I”. Thus, the
fluorescence features are assigned to H-aggregates in a layer
structure of separated main and side chains. In both
polymorphs, the main chain is crystalline and the side chains
are noninterdigitated. Higher energy emission results for a
polymorph with disordered side chains while lower energy
emission is observed for a polymorph with crystalline (and still
noninterdigitated) side chains. Emission from both polymorphs
is also observed and assigned to in neat thin films, which is the
form in which P3HT is used in optoelectronic devices.

2. EXPERIMENTAL SECTION

2.1. Sample Preparation. For our studies, we used P3HT
synthesized by a modified Grignard metathesis reaction method as
described elsewhere.33 Because of this synthetic method, the sample
has a very narrow molar mass distribution and thus a very low
dispersity index (D = 1.16). The number-average molecular weight
(Mn = 18 600 g/mL) and the weight-average molecular weight (Mw =
21 600 g/mL) were measured by gel permeations chromatography
(GPC) in tetrahydrofuran (THF) with polystyrene as a calibration
standard. The number of repeating units was determined to 74 ± 2 by
MALDI-TOF measurements. The sample thus contains exactly one
tail-to-tail defect that is distributed along the entire chain.34 For all
solution measurements, we dissolved the polymer in THF at a
concentration of 0.2 mg/mL. To ensure that all of the polymer chains
are completely dissolved, the solution was heated to 40−50 °C and
stirred for about 30 min, so that no macroscopic particles could be
observed any more. For the measurements, the solution was filled in a
1 mm cuvette that could be sealed and inserted into a cryostat.

To carry out measurements on thin films, two films of P3HT were
spin-coated with 2000 rpm for 60 s from 10 mg/mL THF solution
onto silicon wafers covered with a natural oxide layer in nitrogen
atmosphere. One film was heated subsequently in nitrogen
atmosphere to 250 °C, i.e., above the melting temperature of P3HT
at 230 °C,30 and cooled slowly to room temperature at a rate of 1 K/
min using a programmable heating plate (Model HP60 from Torrey
Pines Scientific Inc.). In contrast to that, the other film was used
without any further treatments after spin-coating.

2.2. Steady-State Absorption and Emission Measurements.
To measure steady-state absorption as well as emission spectra for
different temperatures, we used a home-built setup that allows us to
record absorption and fluorescence spectra at the same sample spot
immediately after each other for each temperature step. In brief, the
sample (a 1 mm cuvette with solution or a film) was placed in an
Oxford Instruments cryostat. Sample heating or cooling was done in a
stepwise fashion with a rate of about 2 K/min and an equilibration
time of 30 min before taking the measurement. For absorption
measurements, the light from a xenon lamp was dispersed through a
first monochromator M1, transmitted through the sample, dispersed
through a second monochromator M2, and eventually recorded by a
silicium diode connected to a lock-in amplifier.

For emission measurements a flip mirror switched the incident light
to a diode laser with excitation wavelength 405 nm. The laser beam
was incident onto the sample at an angle of about 60° to the normal.
The resulting fluorescence was dispersed through the monochromator
M2 and recorded by the silicium diode connected to the lock-in
amplifier. The spectra were corrected for the transmission of the setup.
A more detailed description of the setup can be found elsewhere.35

To measure the emission in a site selective fashion, we replaced the
diode laser by a pulsed Nd:YAG laser with a pulse width of 7 ns.
Tunable excitation was obtained by converting the 355 nm pulse by an
optical parametric oscillator from GWU that covers a continuous
spectral range from 410 to 710 nm. The resulting emission was then

Figure 1. Absorption (a) as well as fluorescence spectra (b) of P3HT in THF solution for different temperatures. Spectra that belong to the three
inherent temperature ranges described in the text are indicated with different lines (dashed, dotted, and straight). Emission spectra were corrected
for the relative changes in absorption at 3.06 eV (being the excitation energy for all fluorescence spectra).
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recorded using a glass fiber connected to a spectrograph (Oriel
MS125) with an attached CCD camera (Andor iDus DU420).
2.3. Time-Resolved Emission Measurements. Time-dependent

emission spectra were recorded using a streak camera setup, with the
sample held again in a cryostat from Oxford Instruments. Light from a
80 MHz pulsed Chameleon II laser from Coherent was frequency
doubled by a second-harmonics generator to provide an excitation
energy of 3 eV. The emitted light was diffracted through an Acton SP-
2300i spectrograph and eventually recorded by an Optronis SC-10
streak camera combined with a TSU12-10 deflection unit and a SRU-
BA detection unit.

3. RESULTS

3.1. Temperature Dependence of the Aggregate
Emission. For a detailed spectroscopic investigation of the
P3HT electronic structure in the aggregated phase, we
measured absorption as well as emission spectra in THF
solution within the temperature range from 300 K down to the
melting point of THF (Figure 1), which is at about 160 K.36 As
discussed in detail in previous work,35 P3HT undergoes a
disorder−order transition upon cooling. In the spectra shown
in Figure 1, three regimes can be discerned. In the temperature
range from 300 to 270 K, i.e., above the phase transition
temperature, the absorption spectra are broad and structureless,
indicating that the chains are disordered.14,37 The bath-
ochromic shift by 40 meV of the maxima and the increase in
intensity of about 7% that is observed upon cooling from 300
to 270 K indicate an increased conjugation length that suggests
a swelling-up process of the chain backbone. This red-shift and
intensity increase are also reflected in the associated
fluorescence spectra, which are overall more structured,
featuring a S1 → S0 0−0 emission peak at 2.15 eV and a
vibrational satellite at about 2.0 eV. When lowering the
temperature from 265 to 250 K, a vibrationally resolved
absorption spectrum appears with a S1 ← S0 0−0 feature at 2.0
eV. The spectra at different temperatures feature an isosbestic
point at 2.53 eV. This is the signature of the occurrence of a
phase transition from the disordered to a more ordered
phase.35 The associated changes in the fluorescence spectra
have been attributed to the emergence of an additional
emission feature with a 0−0 peak at 1.90 eV that overlaps
with the 0−1 emission feature of the disordered phase and that
grows in relative intensity at the expense of the emission from
the disordered phase upon cooling to 250 K. This additional
emission has been assigned to the fluorescence of the ordered
phase. Upon subsequent cooling in the temperature range
below the phase transition, i.e., from 240 to 160 K, the 0−0
absorption peak of the ordered phase shifts toward lower
energies and becomes more intense, while the 0−0 emission
peak of the ordered phase appears to reduce in intensity. Both
absorption and emission spectra feature a very similar
bathocromic shift.

The analysis and interpretation of the development evident
in the spectral part attributed to the aggregated phase require a
deconvolution of the emission from disordered and ordered
phases. The procedure is illustrated in Figure 2. We consider
that the fluorescence spectrum well above the phase transition
temperature, e.g. at 280 K, contains only emission from the
disordered phase. To confirm this, Figure 2a illustrates that the
280 K fluorescence spectrum can be modeled satisfactorily in
terms of a Franck−Condon progression.38 This implies that the
energy dependence of the photoluminescence P(ℏω),
normalized to the cube of the refractive index n (assumed to
be constant within the investigated spectral range), to the cube

of the photon energy ℏω and to the intensity of the 0−0
vibrational peak I0−0, is given by
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where S = 1.1 is the Huang−Rhys factor of an effective
vibrational mode with energy Ed = 0.175 eV,4 Γ is the Gaussian
line width function with the standard deviation σ, and E0

denotes the energy of the 0−0 transition. Once the phase
transition sets in, i.e., for temperatures below 265 K, the spectra
cannot be modeled as progressions from one emitting state. As
mentioned above, we consider the spectra to result from the
superposition of emission from the disordered and ordered,
aggregated phase. To isolate the emission from the aggregated
phase, the 280 K emission spectrum is scaled to the high-energy
side of the actual emission spectra between 265 and 160 K
(here changes in E0 and σ were allowed to account for the
temperature dependency of these two parameters; see Figure
S1 in the Supporting Information) and subtracted. The
remaining emission is attributed to the aggregate phase (Figure
2b,c).

Figure 2. Illustration of isolating the fluorescence spectra of the
aggregate phase at selected temperatures. (a) The 280 K fluorescence
of the amorphous phase (black squares) is modeled by a Franck−
Condon analysis (blue solid line) using an effective mode (green
dashed line). (b, c) The 280 K spectrum (blue) is scaled to the high-
energy tail of the 265 and 230 K emission spectra (black squares). The
difference between the two spectra (red) is assigned to emission from
the aggregated phase.
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Figure 3. (a) Fluorescence spectra of aggregated P3HT in the temperature range from 265 to 160 K where the polymer chains are in fluid solution.
The spectra are normalized to the intensity of the S1→ S0 0−1 feature. (b) Temperature dependence of the ratio of the 0−0/0−1 features of the S1

→ S0 transition in the same range. (c) Fluorescence spectra of aggregated P3HT recorded at temperatures between 160 and 5 K, where THF is
crystalline.

Figure 4. (a) Modified Franck−Condon analysis according to eq 2 (green solid line) of the fluorescence spectra (black squares) of P3HT aggregates
at 240, 160, and 5 K using a single vibronic progression (green dotted line). (b) The same as in (a) but using a superposition of a higher energy
progression (HEP) (blue solid line) and a lower energy progression (LEP) (red solid line).
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Figure 3a shows the normalized spectra of aggregate
emission in the temperature range of 265−160 K. Note the
change in abscissa scale between Figures 2 and 3. The spectra
show a pronounced 0−0 feature at 1.9 eV, which shifts to 1.77
eV while decreasing the temperature down to 160 K.
Remarkably, the ratio of the 0−0/0−1 vibrational peak
intensities decreases continuously from about 1.2 at 265 K to
0.3 at 160 K (Figure 3b). Additional emission spectra were also
measured for the temperature range between 160 and 5 K
(Figure 3c). Since below 160 K THF is in a crystalline phase,36

the spectra correspond to P3HT chains embedded in a rigid
THF matrix. This preludes major conformal changes.
Accordingly, there is only a minor bathochromic shift when
decreasing the temperature from 150 to 5 K. In this
temperature range it was not possible to measure absorption
spectra because the THF matrix is opaque.
3.2. Evidence for Two Different Aggregate Phases.

While the deconvolution of the fluorescence spectra described
above is sufficient for an overall assessment of evolution of the
character of the aggregates, it is unable to account for important
details regarding the identification of their structure. For this
reason we carried out a modified (compared to eq 1) Franck−
Condon analysis based upon the approach by Clark et al.39 It
takes into account the decrease of the 0−0 peak intensity in the
fluorescence spectra when the chromophores form H-
aggregates. The fluorescence is then described by
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The term αΓ(ℏω − E0), in which α is the scaling factor,
accounts for the fact that in a disordered H-aggregate the 0−0
feature of the fluorescence spectrum is suppressed. For a
perfectly ordered H-aggregate, α would be zero since the 0−0
transition was symmetry-forbidden. The symbols take the same
meaning than for eq 1. The scaling factor α, the energy E0 of
the 0−0 transition, and the standard deviation σ of the
Gaussian line width were allowed to change with temperature,
while the Huang−Rhys parameter S = 1.1 and the effective
vibrational mode energy Ed = 0.175 eV were kept constant.
Figure 4a shows three emission spectra at representative
temperatures. While the spectrum at 240 K can be described
satisfactory by a single progression with one effective
vibrational mode, deviations between the Franck−Condon
analysis and the experimental data appear at 160 K. In
particular, the data show an additional shoulder at 1.9 eV and a
less structured spectral shape that cannot be accommodated
when using one progression. Using additional and/or different
vibrational modes does not help to overcome these deviations
in spectral shape and furthermore cannot be used to explain the
additional observed emission intensity in the range of 1.9 eV,
being higher than the proposed 0−0 energy at 1.8 eV. At 5 K,
the vibrational peaks at 1.62 and 1.45 eV carry additional low-
energy shoulders that cannot be modeled in terms of a single
Franck−Condon progression, even when hypothetically
considering additional/altered vibrational modes.

As an alternative approach, we considered the superposition
of two similar, modified Franck−Condon progressions
according to eq 2, i.e., a higher energy progression (HEP)
with a 0−0 transition centered at about 1.9 eV for the 160 K
spectrum and a lower energy progression (LEP) shifted by
about 80 meV to lower energies (see Figure 4b). It turns out

that the superposition of the HEP and LEP provides an
excellent fit to the experimental spectra in the entire
temperature range, while analyzing the low-temperature spectra
in terms of a single modified Franck−Condon progression was
unsuccessful. Figure 5 shows the relevant spectral parameters.

The 0−0 energy of the LEP (HEP) fluorescence spectrum
shifts from 1.91 eV (1.83 eV) at 240 K to 1.8 eV (1.72 eV) to 5
K, while the energy difference between the HEP and the LEP is
temperature independent (Figure 5a). Within the experimental
uncertainty both the Gaussian disorder parameter σ and the
ratio of 0−0/0−1 emission peaks are the same for the HEP and
LEP. The disorder parameter decreases continuously from 50
meV at 240 K to 35 meV at 5 K (Figure 5b). The 0−0/0−1
ratios behave similarly and decrease as a function of
temperature, starting at values at around 0.5 at 240 K and
saturating in the range of 0.23−0.28 for the lowest temper-
atures (Figure 5c). Thus, the spectral analysis of the
fluorescence spectra suggests the spectra to arise from the
superposition of two emissions that have the same H-type
nature and that are subject to the same inhomogeneous
broadening yet that differ in transition energy by about 80 meV.

The necessity to involve two Franck−Condon progressions
instead of only one is also borne out by an analysis of the
absorption spectra. To do this, we use a modified Franck−

Figure 5. Fit parameters derived from the modified Franck−Condon
analysis of the fluorescence spectra of P3HT aggregates using two
energetic different progressions (HEP, LEP) as a function of
temperature. (a) Energies of the 0−0 emission, (b) standard deviations
σ of the 0−0 feature, and (c) ratio of 0−0 and 0−1 emission. The
dashed vertical line indicates the glass transition temperature of THF.
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Condon Fit developed by Spano et al.40−43 which takes into
account the influence of intermolecular coupling on the
absorption spectrum of aggregates.
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where W defines the exciton bandwidth (and n being the
vibrational quantum number).

The difference between the Franck−Condon (FC) pro-
gression simulating the absorption of the aggregated phase and
the experimental spectra, i.e., the residue, should represent the
absorption spectrum of P3HT in the disordered phase. We find
that similar to the case of emission, modeling the spectra using
only one progression (see Figure S2 in the Supporting
Information) is unsuccessful. The sharp 0−0 peak at about
1.9 eV limits the Gaussian line width of the Franck−Condon
analysis and results in a residue that reveals a vibronic
progression and overall shape that are at variance with the
absorption spectra of the disordered phase shown in Figure 1a.
Successful modeling of the absorption spectra is, however,
possible by using a superposition of two progressions according
to eq 3. The two progressions have a spectral offset of about
100 meV, comparable to that in emission. Figure 6 shows the

absorption measured at 160 K, along with the two FC
progressions, their superposition, and the residue. The
progressions used an exciton bandwidth of W = 70 meV.
Analogous to the simulation of the fluorescence spectra of the
aggregates, we used constant values of S = 1.1 and Ed = 0.175

eV while the energy E0 of the 0−0 transition and the standard
deviation σ of the Gaussian line width were allowed to change
with temperature. Using two progressions, the residue matches
well with the absorption of disordered P3HT (cf. Figure 1a).
Thus, the analysis of the absorption spectra corroborates the
conclusion of two H-aggregates drawn from the analysis of the
fluorescence spectra.

The temperature dependence of the Gaussian disorder
parameter σ as well as the energy E0 of the S1 ← S0 0−0
transition obtained from the analyses of the absorption and
emission spectra are compared in Figure 7 for the lower energy
progression LEP. The data for the higher energy progression
HEP are analogous. Both parameters, σ as well as E0,
continuously decrease while cooling down the solution, with
E0 decreasing by 60 meV from 2.04 eV at 260 K down to 1.98
eV for 160 K (Figure 7a), and σ reducing by 14 meV from 57
meV toward 43 meV within the same temperature range
(Figure 7b). The Stokes shift between the 0−0 features in
absorption and emission is about 200 meV almost independent
of the temperature (see Figure S3 in the Supporting
Information). This comparable evolution of the progressions
in absorption and emission is consistent with the existence of
two H-aggregates that differ only slightly.

Further evidence for the presence of two different aggregate
phases is derived from experiments employing the site selection
technique. When scanning the excitation energy Eex from 2.070
to 1.865 eV, the fluorescence spectra change in a characteristic
way (Figure 8). This is most obvious in the 5 K emission
spectrum. For excitation within a spectral range from 2.070 to
1.938 eV, the fluorescence spectrum changes only marginally
and is characteristic of the higher energy (HEP) aggregate.
When exciting at 1.908 eV a low-energy shoulder on the 0−1
feature appears. Upon further decreasing of Eex to 1.865 eV, the
0−1 feature of HEP shifts by approximately 20 meV because
tail states of the distribution of HEP states are addressed. In
addition to this, the 0−1 transition of the lower energy
aggregate (LEP) spectrum becomes the dominant feature. This
is an unequivocal proof that the HEP and LEP emissions
originate from different aggregates. It also demonstrates that at
5 K there is little communication between the two different
aggregates. Otherwise, the fluorescence from the lower energy
aggregates should be sensitized by exciting higher energy
aggregates, contrary to experiment.

At 160 K, there are subtle differences in the evolution of the
spectra upon scanning Eex compared to the 5 K spectra. Again,
the site selectively excited fluorescence from the aggregates is a
superposition of emission from the higher energy progression

Figure 6. Absorption spectra of P3HT (black squares) at 160 K as well
as the Franck−Condon analysis (red solid line) according to eq 3
using two progressions (black dashed and dotted lines).

Figure 7. (a) Energies of the S1 → S0 0−0 peaks and (b) standard deviation σ for the low-energy progression (LEP) in absorption and emission.
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and from the lower energy progression. In contrast to the 5 K
spectra, the LEP is the dominant feature. Moreover, the spectral
position of the LEPtraced most easily by considering its 0−1
peak at about 1.62 eVremains nearly stationary when
scanning Eex from 2.070 to 1.865 eV, whereas the emission
from the HEP shifts bathochromic by 18 meV (see Figure S4
for FC analysis on the site selected spectra). It seems that at
160 K there is temperature-dependent energy transfer from
HEP to LEP which is frozen out at 5 K. This energy transfer
from HEP to LEP at 160 K can also be seen when considering
the time-dependent aggregate fluorescence spectra. Figure 9
shows spectra recorded within a time window of 15 ps for
different times up to 6 ns after the excitation pulse at a
temperature of 160 K. The spectra are normalized to unity at
the approximate energy of the LEP 0−0 feature near 1.78 eV. It
is evident how with increasing time the spectra reduce in

relative intensity at the spectral positions corresponding to the
0−0 and 0−1 vibrational peaks of the HEP, i.e., at about 1.9
and 1.7 eV, whereas the relative intensity of the LEP 0−1 peak
at about 1.6 eV increases. While a detailed analysis of the time
dependence of this energy transfer is beyond the scope of the
present paper, Figure 9 clearly corroborates the evidence for
two emitting species brought forward by the site selectively
recorded steady-state fluorescence spectra of Figure 8.

3.3. Nature of the Two Aggregate Phases. Having
ascertained the occurrence of two distinct, albeit similar, H-
aggregate phases for P3HT in THF at temperatures below the
phase transition, we were wondering first whether it would be
possible to assign the spectra to specific P3HT morphologies
and second whether the two different aggregate phases of
P3HT that we identified in solution can exist also in a bulk film.
To answer this question, we recorded emission spectra of
differently prepared P3HT films on silicon wafers at a
temperature of 5 K for different excitation energies Eex. One
film (“heated”) was heated to 250 C under nitrogen and then
cooled down slowly as described in the Experimental Section,
while the other one (“as cast”) was measured as spin-coated
without any further treatment (Figure 10). This sample
preparation protocol follows the approach taken by Wu et
al.,30 who studied the morphology of such films by X-ray
scattering.

The spectral shape of the emission spectrum of the “as-cast”
film undergoes only minor changes when decreasing excitation
energy Eex. For excitation at 2.070 eV, it features a 0−0
vibrational peak at about 1.85 eV, a 0−1 peak at about 1.675
eV, and a 0−2 peak at about 1.50 eV. As evident most clearly
when considering the 0−1 peak, the spectra shift to the red by
only about 20 meV upon reducing the excitation energy by 177
meV to 1.893 eV. In contrast to this, the shape of the emission
spectrum for the film, which was heated above its melting
temperature, changes significantly for different excitation

Figure 8. Fluorescence spectra (solid lines) of P3HT aggregates in
THF parametric in the excitation energy Eex (a) at 160 K and (b) at 5
K. The spectra are normalized to the intensity of the 0−1 feature.
Spectra of corresponding HEP and LEP at those temperatures are also
illustrated by dashed lines with filled area. The arrows indicate the
direction of decreasing excitation energy.

Figure 9. Normalized emission spectra (solid lines) of P3HT in THF
for different times after the excitation pulse at 160 K. The spectra are
normalized to unity at about 1.8 eV. For clarity, corresponding HEP
and LEP are also illustrated by dashed blue and red lines.

Figure 10. Normalized emission spectra of P3HT films at a
temperature of 5 K for different excitation energies Eex: (a) as-cast
film; (b) a treated (“heated) film as described in the text.
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energies. It appears to be made up by the superposition of two
progressions. The higher energy progression has a 0−0 peak at
about 1.85 eV and it is dominant for excitation at 2.070 eV,
while roughly 80 meV below, a lower energy progression can be
made out that is dominant for excitation at 1.865 eV.
Analogous to the qualitative spectral changes for P3HT in
THF at 5 K (Figure 8b), this LEP is first evident as an emerging
shoulder in the 0−1 peak for excitation at 1.908 eV and then
shifts to the red and becomes more and more intense for
decreasing excitation energy. By comparing Figures 10b and 8b,
it becomes obvious that the two aggregate phases (HEP and
LEP) are formed both in THF solution and also when slowly
cooling a P3HT film from above its melting temperature to
room temperature.

4. DISCUSSION

The results obtained so far may be briefly summarized as
follows. Figures 1−3 show that upon reducing the temperature
of a THF solution of P3HT a transition from a phase with
disordered chain conformations to a phase with ordered chains
takes place. The emission from the ordered phase can be
extracted, and it displays a continuous red-shift and
concomitant reduction of the relative 0−0 peak intensity.
From the analysis of the spectra in Figures 4−7, it becomes
evident that absorption and emission of the ordered phase
originate from two distinct, albeit similar, species. The two
excitation features are both of the same H-type character
(indicated by the same low value of the 0−0 peak intensity), are
subject to the same degree of disorder (manifested in σ), and
are separated by about 80 meV. The site-selective and time-
dependent spectra of Figures 8−10 corroborate the evidence
for two distinct excited states, which indicate that at elevated
temperature energy transfer from the higher to the lower
energy state can occur and that both H-type aggregates can also
prevail in thin films when the processing conditions are chosen
suitably.
4.1. Temperature Dependence of the Aggregate

Emission. The emission spectra of aggregated conjugated
polymers such as P3HT have been discussed in terms of the
weakly interacting H/J aggregate model developed by Spano
and co-workers.39,42,44,45 This model considers chromophores
that interact weakly by dipole−dipole coupling with a coupling
energy that is less than the mean vibrational energy of the
emission or absorption spectra. The resulting absorption and
emission spectra of the H-type (= parallel dipole moments
between the interacting chromophores) or J-type (= collinear
dipole moments) aggregates still display a vibrational structure,
albeit the intensities of the vibrational peaks are modified. In
particular, the ratio between the 0−0 and 0−1 vibrational peaks
depends strongly on the strength and character of the
interchromophore coupling, yet also on the disorder present
in the sample and on the sample temperature. In general, a 0−
0/0−1 emission peak ratio that is enhanced compared to that
prevailing in the nonaggregated chromophore indicates a J-type
coupling, while a reduced emission peak ratio results from an
H-type coupling. Upon reducing the temperature, the relative
intensity of the 0−0 decreases (increases) further for a H-type
(J-type) aggregate. The presence of disorder, quantified by the
standard deviation σ of the inhomogeneously broadened
Gaussian line shape, significantly moderates these effects.46

We interpret the data shown in Figure 3a,b in this framework of
weakly interacting H/J-aggregates.

The low-temperature emission spectrum taken at 160 K has a
characteristic H-type aggregate character. This is evident from
its vibrational structure that features a low 0−0/0−1 peak ratio
and from the fact that it cannot be modeled using one or two
common Franck−Condon progressions as expressed in eq 1.
Rather, it requires the use of two similar, modified Franck−
Condon progressions with reduced 0−0 peak as given by eq 2.
Upon raising the temperature up to 265 K, the intensity of the
0−0 increases. Several factors contribute to this change in
vibrational structure. (i) For a given value of interchain
coupling and disorder in an H-aggregate, the relative intensity
of the 0−0 peak increases with temperature and can approach
the 0−0/0−1 ratio in the unaggregated molecule.46 (ii) In
addition, Figure 5b shows that in our sample the disorder itself
increases with temperature, which further enhances the increase
in the relative 0−0 intensity. (iii) This is intensified by thermal
expansion upon heating, which increases the interchain distance
thus reducing the interchain coupling. (iv) The observed
hypsochromic shift upon raising the temperature suggests a
reduction in conjugation length, implying an increase in
interchain coupling that would counteract to some extent the
increase in 0−0 caused by points i to iii.46 The combination of
these factors results in the observed overall increase in relative
0−0 peak intensity with temperature. Paradoxically at 265 K,
the aggregate spectrum closely resembles that of a non-
aggregated chain, except for the spectral position, as can be
seen from Figure 2b. Evidently, the symmetry reasons that
cause the 0−0 peak to vanish for a perfect weakly interacting H-
aggregate at 0 K are lifted by temperature and disorder.

4.2. Evidence for Two Different Aggregate Phases.
Testimony to the coexistence of two similar yet distinct weakly
interacting H-type aggregates in THF solution is given (i) by
the need to invoke two modified Franck−Condon progressions
to model the emission and absorption data (Figures 4 and 6),
(ii) by the ability to excite the two different aggregates
selectively (Figure 8), and (iii) by the time-dependent
fluorescence spectra at 160 K (Figure 9), where the spectral
features at the position of the higher energy progression decay
faster than the ones corresponding to the lower energy
progression. These observations allow no other interpretation.
The same two H-type aggregates also form in a thin film when
it has been heated and allowed to cool slowly, while only one
H-type aggregate prevails in a spin-cast film (Figure 10).
Comparison of the spectra obtained from both films for
excitation at 2.070 eV identifies the emission in the spin-cast
film as arising from the higher energy progression. Thus, in a
thin film structure, both polymorphs can be formed, yet the
formation of the lower energy polymorph is kinetically
hindered and requires suitable processing conditions. While
several polymorphs of P3HT H-aggregates have been identified
in structural studies, e.g., on the basis of wide-angle X-ray
scattering and scanning tunneling microscopy,23,27,28,30,31,47 the
signatures of different polymorphs in optical spectroscopy have,
to our knowledge, not been reported.

4.3. Nature of the Two Aggregate Phases. P3HT is
known to exist in different phases that have been identified by
structural studies.27,28,30,31,47−49 Wu et al. used DSC, small-
angle and wide-angle X-ray scattering, and AFM to investigate
the structure of a P3HT film prepared in the same way and
using material from the same batch as we use in our work.30

They investigate the structural changes of P3HT upon cooling
from the melt. In the isotropic melt, both the main chain and
side chains are uncorrelated. For ease of reference, we shall call
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this phase 1. It corresponds to morphology of the disordered
phase in solution. Upon cooling below the melting point, the
P3HT chains aggregate to form a layer structure of spatially
separated main and side chains.49 Both main and side chains are
still disordered and liquid-like. We refer to this as phase 2. It
exists only within a small temperature range until about 20 °C
below the melting point. Upon further cooling, the main chains
condense into a regular two-dimensional array. The poly-
thiophene backbone is planar and crystallized while the side
chains are still disordered (phase 3). Finally, when cooling
below 50 °C, the chains adopt a three-dimensional crystalline
topology with both main chains and side chains packed in a
regular, ordered fashion (phase 4). By employing scanning
electron microscopy and wide-angle X-ray scattering on P3HT
nanowires and P3HT nanotubes in porous templates, Martıń et
al. confirm this basic sequence of structural ordering.47 Very
recently, the existence of two phases with planar backbone, one
with ordered and one with disordered side chains, has also been
reported by Brambilla et al. on the basis of Raman
measurements.48

The phases 1 to 4 described here correspond to Figures 5e to
4b in Martıń et al.47 Note that the formation of the
thermodynamically more favorable crystalline phases 3 and 4
can be kinetically hindered.30 Independent of the processing
method (cooling from melt, cooling a solution, reducing
solution quality), the self-assembly process applies to about half
of the material, with the other half remaining amorphous.4,30,35

These phases 1−4 are all characterized by side chains that are
not interdigitated. In addition, a phase with interdigitated side
chains has been reported (referred to as form II crystals). As
mentioned above, such a structure can be formed under certain
circumstances, e.g., on a graphite surface due to interfacial
interactions,28,31 when the polymer is subjected to other
constraints during processing,27 or in highly ordered single
crystals grown from solution.29 Since the interdigitated
structure is accompanied by an increased π-stacking distance,
it is easily converted, e.g. by moderate heating, to a
thermodynamically more favorable structure with denser
backbone packing, where π-stacking is optimized by placing
the side chains into a noninterdigitated structure, tilted away
from the backbone.27,31 In particular, cooling from the melt
leads to noninterdigitated structures.27,30

A key result of the present investigation is the recognition
that in a P3HT film that has been slowly cooled from above the
melting point to room temperature, the same two different H-
aggregate species are found as in THF solution below the
disorder−order phase transition. This is documented by
Figures 8 and 10 and provides a link between the spectroscopy
of those aggregates and their microscopic structure revealed in
the recent structural studies. It allows to assign the fluorescence
spectra of the higher energy (HEP) and lower energy (LEP) H-
aggregates formed upon cooling P3HT in solution (see Figures
8 and 10). We can rule out an assignment of the HEP or LEP
emission to an interdigitated H-aggregate structure for two
reasons. First, as already mentioned, the interdigitated structure
does not form upon cooling from a melt.27,30 Second, in the
interdigitated structure, the π-stacking distance is increased.27,31

This would imply a reduced H-type coupling and thus
concomitant a higher 0−0/0−1 ratio for the HEP or the LEP
emission, at variance with experiment. Based on our
observation that HEP and LEP emission are characterized by
the same ratio of the 0−0/0−1 emission peaks (Figure 5), it is
straightforward to attribute the HEP and LEP emission to

phases 3 and 4, respectively. These are the aggregates with
crystallized main chains yet disordered side chains and those
with crystalline main and side chains. The two associated
polymorphs have very similar interchain coupling, differing only
regarding the degree of side-chain order.

The energy difference of about 70 meV between HEP and
LEP is somewhat surprising. Evidently it arises from the fact
that correlation between the laminar stacks is lost in phase 3
where the side chains separating the layers are disordered and
liquid-like, while it is preserved in the phase 4 due to the
crystalline side chains. Thus, this shift seems to reflect the
impact of interactions between different lamellar stacks on the
excited states energies, while ratio of the 0−0/0−1 emission
peaks is controlled mostly by the interaction within one stack.

The conclusion that in phases 3 and 4 the polymer backbone
is crystalline requires some specifying comment. In a molecular
crystal such as an anthracene crystal, the S1−S0 0−0 transitions
in absorption and emission are resonant, i.e., there is no Stokes
shift, and they are homogeneously broadened. In contrast, this
is not the case for the absorption and fluorescence spectra of
the HEP and LEP features. By comparing Figures 1 and 5, it is
evident that the 0−0 features of the fluorescence are offset from
those in absorption by 100−200 meV, and they bear out an
inhomogeneous broadening with a standard deviation of about
40 meV. The temperature-dependent Stokes shift can in part be
attributed to spectral diffusion.50,51 This spectral diffusion and
the inhomogeneous broadening are clear evidence for the
presence of energetic disorder. Such disorder can arise from
two causes, namely a variation in the polarization of the
environment or a variation in the conjugation length of the
chromophore. Since inhomogeneous line broadening and
spectral diffusion (Figures 5b and 5a, respectively) are identical
for both polymorphs, it follows that the different degree of
order in the side chains cannot be the main source for the
energetic disorder. Thus, we argue that the polythiophene
chromophores constituting the lamellar stack of H-aggregates
do not have identical conjugation length. Rather, there is some
distribution in conjugation length, despite the overall lamellar
arrangement. Another contribution to the Stokes shift arises
from the exciton band structure of the H-aggregate. In a
disordered H-aggregate, absorption takes place to the top of the
exciton band while emission occurs from its bottom. That
bandwidth separation is roughly given by We−S, where W is the
free exciton bandwidth and S is the Franck−Condon factor.42

Using the experimentally obtained values of W = 70 meV and S
= 1.1, we obtain a value of 23 meV for this contribution to the
Stokes shift.

Finally, we discuss whether and how the phase 2 relates to
our spectroscopic measurements. Phase 2 is the structure that
Wu et al. and Martin et al. reported to consist of spatially
separated main and side chains without lamellar crystals. This
phase prevails in samples when cooling from the melt for a
small temperature range below the melting point only.30,35 In
the context of Figures 2b and 3a we already mentioned that
there is a small temperature range just below the onset of
aggregation upon cooling, say at 265 and 260 K, where the
emission from the aggregate phase is clearly red-shifted from
that of the disordered phase, yet the vibrational structures of
the two emissions are nearly identical. It implies that the
interchain coupling is already sufficiently strong to reduce the
excited state energy, yet the prevailing disorder erodes any
signature of an H-aggregate in the 0−0 to 0−1 peak ratio. The
spectroscopic signature of the emission just below the onset of
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aggregation is fully consistent with the morphology suggested
for phase 2. We thus associate phase 2 with the emission
spectra of the aggregated domains shown in Figure 3c.
Obviously, upon further cooling this evolves into the crystalline
phases 3 and 4 with the associated typical H-aggregate spectra
showing the suppressed 0−0 peak.
4.4. An Estimate of the Domain Size. Having identified

the polymorphs causing the HEP and LEP, we now consider
which additional information we can extract from the site-
selective and time-dependent experiments (Figures 8−10)
regarding the microstructure of the P3HT H-aggregates. At 5
K, emission from phase 4 is observed when it is directly excited,
e.g., by using an excitation energy of 1.865 eV. In contrast,
when the excitation addresses phase 3, e.g., by exciting at 2.000
eV, emission is only seen from that phase, yet not from phase 4.
Evidently, at 5 K, there is no energy transfer from the lamellar
structure with still disordered side chains to the lamellae with
crystalline side chains. This applies to both the neat film
(Figure 10) and the frozen THF solution (Figure 8). Energy
transfer from phase 3 to phase 4 does, however, occur when the
temperature is raised to 160 K. For excitation at 2.070 eV, the
dominant part of the emission is due to the lower energy all-
crystalline phase 4, yet with a minor contribution from the
actually excited phase 3 with the noncrystalline side chains
(Figure 8). The time-dependent fluorescence spectra (Figure
9) indicate that this transfer takes place on a time scale of a few
nanoseconds. These observations allow for an estimate
regarding the size and distribution of the polymorphs.

(i) The appearance of energy transfer implies that the two
polymorphs must be sufficiently close. For the concentration
used here, this entails that an aggregated ensemble in solution
must contain both polymorphs.

(ii) The facts that the energy transfer takes place not on an
ultrafast time scale but rather on the comparatively slow
nanosecond range and that some emission from the higher
energy phase remains to be seen in the steady-state spectrum
for excitation at 2.000 and 2.070 eV suggest that each
polymorph must have a size that exceeds twice the exciton
diffusion range at that temperature.

A typical exciton diffusion length at room temperature is
about 5−10 nm.52 However, in an inhomogeneously broadened
density of states distribution the exciton diffusion length
decreases with decreasing temperature.53 Here the character-
istic parameter is the ratio between the standard deviation of
the Gaussian density of states distribution (σ) and kBT. When
decreasing σ/kBT from 2 (equivalent to T = 300 K and σ = 52
meV) to 4 (equivalent to about 150 K), the exciton diffusion
length decreases by a factor of roughly 5, i.e., to a value of 1−2
nm.53 Thus, the observed energy transfer implies a polymorph
size with a diameter exceeding a few nanometers. The overall
structural picture that emerges is that of an aggregated
ensemble that contains both a layered crystalline polymorph
with crystalline side chains and one with disordered side chains,
with both polymorphs extending over at least a few
nanometers. A possible overall scenario is that of a layered
crystalline polymorph with crystalline side chains (phase 4) in
the center and a surrounding layered crystalline polymorph
with disordered side chains (phase 3), embedded in the
remaining amorphous phase.
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E0 and  of the modelled coiled emission spectrum as a function of temperature: 
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Figure S1: Fit-parameters inferred from Franck-Condon analysis of the fluorescence spectra of P3HT 

in the amorphous phase as a function of temperature. (a) Energies of the 0-0-emission, (b) standard 

deviations  of the 0-0 feature. 

 

Modelling emission form amorphous phase at temperatures below 220 K was not possible due 

to the fact that emission from this phase completely vanished below this temperature and only 

aggregate emission was observed. 

 

Franck Condon Analysis of Absorption spectrum at 160 K: 

We also performed Franck Condon Analysis on the absorption spectrum at 160 K, using one 

progression Due to the decreased line width of the gaussians, it is not possible to model the measured 

spectrum in a satisfying way. Furthermore the resulting residue shows a very structured shape especially 

in the lower energy region between 1.9 and approximately 2.9 eV.  



Publications 

95 

2.0 2.4 2.8 3.2 3.6 4.0
0.0

0.2

0.4

0.6

0.8

1.0
A

b
s
o

rp
ti
o

n
 (

n
o

rm
a

lis
e

d
)

 

 

Energy (eV)

 Exp. Data

 Gaussians

 Sum

 Residue

 

Figure S2: Absorption spectra of P3HT (black squares) at 160 K, as well as the Franck-Condon analysis 

(red) according to eq. 3 using one progressions and the resulting residue (blue).  

 

Temperature dependent Stokes Shift of LEP phase: 
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Figure S3: Experimentally as well as theoretical estimated Stokes Shift as a function of temperature.  

 

The experimental Stokes shift was obtained by considering the energetic difference between the 0-0 

peaks in emission and corresponding absorption spectrum of the LEP (red dots).  

Resulting Stokes Shift from hopping theory is obtained using the expression:  

∆ϵ~
σ2

kT
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The temperature dependent values of sigma were obtained from the FC-Analysis and are shown in 

Figure 5 in the manuscript. 

 

FC-Analysis using two progressions (HEP/LEP) on the site selected emission 

spectra  
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Figure S4: Site selected (top: 2.070 eV; bottom: 1.865 eV) emission spectra at 160 K (left) and 5 K 

(right) and corresponding FC-Analysis using eq. 2 and two progressions LEP and HEP. 
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phenylenevinylene] (MEH-PPV)

Thomas Unger,†,‡ Fabian Panzer,†,‡ Cristina Consani,§ Federico Koch,§ Tobias Brixner,§,∥ Heinz Bas̈sler,‡

and Anna Köhler*,†,‡
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Hubland, 97074 Würzburg, Germany

*S Supporting Information

ABSTRACT: Upon cooling a solution of poly[2-methoxy-5-
(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), a
phase transition occurs, leading to the formation of aggregates.
We have studied the dynamics of singlet excitons in MEH-PPV
solution below the critical temperature of the phase transition
using steady-state photoluminescence measurements and
pump−probe fs-spectroscopy at different temperatures.
Spectral analysis indicates the coexistence of disordered
chromophores with highly planarized chromophores. The
high planarity is evidenced by a remarkably high 0−0/0−1 peak ratio in the spectra. By spectrally separating the contributions of
either type of chromophore to the pump−probe signal we find that energy transfer takes place within less than 1 ps from
disordered, unaggregated chain segments to highly planarized, aggregated chain segments. The short time scale of the energy
transfer indicates intimate intermixing of the planarized and disordered polymeric chromophores.

C onjugated polymers are prone to aggregation in
solution.1−3 Below a critical transition temperature that

depends on the chain length,4 isolated and more or less coiled
chains tend to aggregate with a concomitant increase of their
effective conjugation length. A manifestation of this phenom-
enon is the appearance of lower-energy absorption and
fluorescence bands so that the spectra exhibit an isosbestic
point. Absorption spectra demonstrate, nevertheless, that both
phases coexist well below the phase transition temperature with
the fractional contribution of the ordered phase increasing
upon further cooling. On the other hand, the fluorescence
comes almost exclusively from the ordered phase. This is a
signature of efficient energy transfer between both phases.
The purpose of the current work was to unravel the interplay

between the disordered and ordered phases, identify the nature
of both phases and measure of rate of energy transfer between
them. As a test material, we chose MEH-PPV in solution as a
prototypical π-conjugated polymer for which a wealth of
information is already existing, employing steady-state
absorption and fluorescence spectroscopy, as well as time-
resolved pump−probe spectroscopy within a broad temper-
ature range. Based on spectral decomposition techniques and
adopting Spano et al.’s H/J-aggregate model,5 we are able to
associate the room temperature phase with disordered chains or
chain segments, while, in the aggregated phase, chains or chain
segments prevail that are extended with predominant J-type

character. From the observation that energy transfer from the
disordered to the planarized chromophores occurs on a subps
time scale we will conclude that both types of chromophores
are intimately connected, for example, by forming an array of
extended chains surrounded with a “hairy” surface of coiled
chains.
For the investigation, we used MEH-PPV that was purchased

from American Dye Source Ltd. (ADS). It was dissolved in
methyltetrahydrofuran (MTHF) at a concentration of 0.2 mg/
mL. To ensure that all of the polymer chains are completely
dissolved, the solution was heated to 50−60 °C and stirred for
about 10 h until no macroscopic particles could be observed.
The experiments were performed in a temperature range
between 300 and 120 K where MTHF is liquid.6 Steady-state
absorption and emission spectra at different temperatures were
recorded with a home-built setup. The solutions were filled into
a 1 mm fused silica cuvette and put in a temperature-controlled
continuous flow cryostat (Oxford Instruments). In order to
minimize the light intensity impinging on the sample, we used
two correlated monochromators for incident as well as
transmitted light. The latter was recorded by a silicon diode
and a lock-in-amplifier.
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For steady-state emission measurements, the xenon lamp and
the first monochromator were replaced via a shutter by a diode
laser with an excitation wavelength at 405 nm (3.06 eV),
exciting the sample at a shallow angle. Emission was recorded
by the same detection unit. This ensured recording absorption
and fluorescence spectra at the same sample spot and
temperature immediately after one another. All spectra were
corrected for the transmission of the setup, using an Oriel
calibration lamp. Sample heating or cooling was done in a
stepwise fashion with a heating or cooling rate of 2 K per min
and waiting 30 min before taking the measurement at a given
temperature to ensure thermal equilibrium within the sample.
The transient absorption data with excitation at 2.48 eV

(pulse length 190 fs) were obtained using a 100 kHz setup from
Coherent Ltd., as described in more detail in the Supporting
Information (SI). In brief, the pump-pulse fluence was set to
about 10 μJ/cm2 to keep the pump−probe signal linear with
fluence (see Figure S1). The spectra were recorded using a
lock-in amplifier and a monochromator with a silicon diode. To
obtain transient absorption data with excitation at 2.12 eV
(pulse length 42 fs), a 1 kHz setup from Spectra Physics was
employed. Here also excitation pulse energies were low enough
to keep the signal in the linear regime.
Figure 1 shows the absorption and photoluminescence (PL)

spectra of MEH-PPV in MTHF solution in the temperature
range between 300 and 120 K. In absorption, the 300 K
spectrum is vibrationally unresolved with a maximum at 2.5 eV
(Figure 1a). It is associated with disordered coil-like polymer

chains.7−9 Upon cooling to 180 K, the spectra shift to the red
by about 80 meV. They continuously acquire vibrational
structure and a 0−0 feature near 2.3 eV develops. In contrast,
the emission spectrum at 300 K shows vibrational structure
with S1 → S0 0−0, 0−1, 0−2 peaks at 2.23, 2.07, and 1.89 eV,
respectively (Figure 1b). When lowering the temperature from
300 to 180 K, the spectra shift to the red by about 80 meV
similar to the behavior in absorption. This is accompanied by a
continuous increase in overall intensity, where the area beneath
the spectrum at 180 K more than triples compared to the area
at 300 K (see Figure S2 in SI for energetic shifts of the S1−S0
0−0 peak and area under the spectra as a function of
temperature). Thus, upon cooling until 180 K, absorption and
emission spectra shift to the red and become more intense.
This indicates that the conjugated segments of the chain
become more extended, although their overall chain con-
formation still corresponds to that of a disordered coil
conformation.4,10,11 This is similar to the behavior that was
recently observed when cooling solutions of P3HT,2,4 as well as
PCPDTBT.12

When further cooling below 180 K, a new absorption
(emission) peak near 2.1 eV (2.05 eV) appears and grows in
intensity at the expense of absorption (emission) from coiled
chains. It is assigned to the absorption (emission) of planarized
MEH-PPV chain segments in aggregates.7 Below 170 K,
emission from the coiled chains vanishes and the fluorescence
spectrum is dominated by the planarized chromophores. This is
consistent with earlier work,7 and has been attributed to the

Figure 1. Steady-state (a) absorption and (b) fluorescence spectra of MEH-PPV in MTHF for different temperatures, that is, at 300, 260, 220, 200,
180, 175, 170, 170, 165, 155, 140, and 120 K. Fluorescence spectra were corrected for the relative changes in absorption at the excitation energy
(3.06 eV).

Figure 2. (a) Absorption spectrum at 150 K (green dashed line) together with the absorption spectrum of the disordered phase (filled blue curve)
that was measured at 180 K and subsequently normalized to match the high energy tail of the 150 K absorption spectrum. The difference between
the 150 and 180 K spectra is shown by the red dots. This difference spectrum can be reproduced by a Franck−Condon progression (filled red
curve). (b) Fraction of planarized chromophores as a function of temperature obtained from the absorption spectra (open green diamonds) and
from the emission spectra (orange dots), as described in the Supporting Information.
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occurrence of a disorder−order transition. The PL spectra of
the planarized chromophores bear out a bathochromic shift
from 2.053 to 2.026 eV upon further cooling from 170 to 120 K
and the associated absorption spectra shift by the same amount
(Figure S2).
To gain detailed information about the absorption from the

planarized chains or chain segments requires decomposition of
the measured spectra below 180 K. Here we followed a scaling
approach, similar to that in Reference 13, which we already
used for decomposing absorption spectra of aggregated P3HT
in solution.2,4 This approach is applicable to MEH-PPV
because the spectra bear out an isosbestic point at 2.24 eV in
the temperature range of 180 to 140 K (Figure 1a), which is an
unambiguous evidence that a transition from a coiled to an
ordered phase is occurring.14,15 Figure 2a illustrates the
decomposition approach and shows the measured absorption
spectrum at 150 K (green dashed line) together with the
normalized absorption spectrum of the disordered phase
measured at 180 K (filled blue curve). The difference between
these spectra (red dots) is attributed to absorption from
planarized chromophores with peaks at 2.1 and 2.3 eV. A
Franck−Condon analysis of this absorption spectrum (filled red
curve) from the planarized chromophores yields a Huang−
Rhys parameter of S = 0.25, an I0−0/I0−1 ratio = 4, an effective
vibrational mode of Ed = 170 meV and a Gaussian line width of
σ = 48 meV. In the framework of the H/J-aggregate model
developed by Spano and co-workers,5 such a high I0−0/I0−1
ratio is a signature of strong coupling along the polymer chain
(intrachain) in the aggregated phase and correspondingly weak
coupling between different polymer chains (interchain). The
same high ratio applies to coupling along a linear arrangement
of chromophores and to coupling between chromophores in an
adjacent, face-to-face arrangement, respectively. Similar remark-
ably high I0−0/I0−1 ratios have been observed for fully
planarized single crystals of P3HT.16 This appears to be a
signature of ordered domains of π-conjugated chains in general,
tractable in terms of Spano et al.’s theory.5 The fraction of
planarized chromophores as a function of temperature is
displayed in Figure 2b. It was obtained from the absorption
fraction of planarized chain segments, taking into account the
relative change in oscillator strength between disordered and
planarized chain segments, as detailed in the SI.
From the absorption data we infer that below the critical

transition temperature, the percentage of planarized chromo-
phores increases continuously, saturating at a maximum value
of about 30% at 120 K. In contrast, the percentage of
fluorescence from planarized chromophores increases steeply
below the transition temperature, until below 160 K, emission
results entirely from the planarized chromophores. The fact
that emission results entirely from planarized chromophores
though they make up only 30% of the total composition implies
efficient energy transfer from disordered to planarized
chromophores.
Figure 3 shows the transient absorption spectrum of MEH-

PPV in solution at 120 K, excited at 2.12 eV and probed
between 2.5 and 1.7 eV with a delay time of 75 fs. As the
disordered chains do not absorb for excitation at 2.12 eV, we
assign the peak observed near 2.3 eV to the ground-state bleach
(GSB) of the S1 → S0 0−1 transition of the planarized
chromophores. The feature near 2.1 eV is the superposition of
the ground-state bleach of the 0−0 transition of the planarized
chromophores (as evident from Figure 1a) and the associated
stimulated emission (SE). Accordingly, the feature centered

near 1.9 eV is assigned to the 0−1 feature of the stimulated
emission transition (SE 0−1). Since the fluorescence spectrum
of the planarized chromophores is evident in Figure 1b, it is
possible to spectrally decompose the 0−0 feature of the pump−
probe spectrum into the contributions from GSB and SE. To
this end, we take the 120 K photoluminescence (PL) spectrum
and normalize it in such a way that the 0−1 peak of the PL
spectrum matches the 1.9 eV ΔT/T signal in intensity, taking
into account a slight spectral shift of about 10 meV between the
steady-state and the time-resolved spectra. Subtraction of the
120 K PL spectrum from the ΔT/T signal yields the spectrum
associated with the ground-state bleach.
From this spectral decomposition we find a 0−0/0−1 ratio

of the GSB that significantly exceeds unity, similar to that of the
absorption spectra obtained for the planarized chromophores
from steady-state data (Figure 2a). In a recent publication,17

absorption spectra of aggregated MEH-PPV were simulated
theoretically resulting in a significantly smaller 0−0/0−1 ratio
compared to this work, mainly due to an underestimated
contribution of the coiled phase to the overall absorption
spectrum.
When exciting a sample held at 120 K with 2.48 eV, Figure

2a tells us that 95% of the absorbing chromophores are in a
disordered conformation. Yet already at 1 ps after excitation,
the GSB signal shows signatures of both disordered and
planarized chromophores. This is documented by Figure 4 in
which pump−probe spectra are shown that are detected after a
delay time of 1 and 5 ps.
Spectra at further delay times are listed in the SI. Based on

the same decomposition routine as above, the total GSB signal,
due to disordered chromophores and to planarized chromo-
phores, was obtained. We then used the GSB signal from the
planarized chains derived in Figure 3, normalized it
appropriately, and subtracted it from the total GSB signal to
derive the GSB contribution of the disordered chain, analogous
to the spectral decomposition approach described above. The
relative contribution of planarized and of disordered
chromophores obtained by this procedure is displayed in
Figure 5 as a function of time. In both, Figures 4 and 5, we see
that the contribution due to the lower-energy, planarized
chromophores grows at the expense of the higher-energy,
disordered chromophores.

Figure 3. Pump−probe spectrum (gray dots) taken at 120 K, 75 fs
after excitation at 2.12 eV, where only the planarized chains absorb.
The spectrum is decomposed into the contributions from stimulated
emission (SE, filled orange curve) and ground-state bleach (GSB, filled
red curve). The SE contribution was obtained by normalizing the
120 K PL spectrum to match the 1.9 eV SE peak. The GSB
contribution was obtained by subtracting the normalized 120 K PL
spectrum from the total ΔT/T signal.
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We interpret the rising contribution from the planarized
chromophores to result from energy transfer from the higher-
energy disordered chromophores that is completed within a few
ps. A similarly rapid energy transfer from disordered to ordered
chain segments has been observed also in polyfluorene (PFO)
thin films.18 Such a fast transfer is incompatible with long-range
energy transfer from isolated coiled chains to planarized chains
(see SI). It rather suggests that planarized and coiled
chromophores are in close proximity, for example, by
planarized chain segments forming an ordered cluster
surrounded by more disordered coiled chains or chain
segments, which was also proposed recently.19,20 Since

experimental and theoretical previous work suggests that
MEH-PPV forms planarized segments above a certain
concentration,7,21 the planarized segments are more likely to
arise from coalescing chains than by self-folding.
In structures where acceptor chromophores are embedded in

a matrix of donor chromophores, energy transfer is
characterized by a kinetics comprising several compo-
nents.22−24 Initially, fast monoexponential decay of the donor
emission prevails due to energy transfer to immediately
adjacent acceptor sites. In a second step, the decay becomes
dispersive since energy transfer takes place over a range of
distances and in a multistep fashion. Both transfer types, that is,
(parallel) transfer over a range of distances and (sequential)
multistep transfer, have been shown to result in a stretched-
exponential decay law,25−31 also referred to as Kohlrausch−
Williams−Watts (KWW) decay law32
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where β is a parameter that accounts for the deviation from
nonexponentiality. β takes the value of 0.5 in the case of
Förster-type energy transfer. In the long-time limit, finally, the
donor decay is dominated by those donor chromophores that
decay naturally before energy transfer to distant acceptor sites
can occur. The donor emission thus asymptotically approaches
the natural donor decay lifetime. Figure 5 indicates that the
temporal evolution of the GSB contributions of disordered
chromophores and of planarized chromophores is consistent
with such a picture. The dashed lines indicate such a decay/
growth pattern with an initial exponential decay/growth with
about 300 fs lifetime, followed by a stretched-exponential with
β = 0.5 and a characteristic time in the range of 1 ps. Similar
values and quality of fit result when using a multiexponential
approach.
In passing we mention that, in Figure 4, we consider that the

slight difference between the measured ΔT/T signal at 1.75 eV
and the SE (derived from the normalized PL spectra) indicates
some excited-state absorption from disordered chromophores.
We now consider the decay of the pump−probe signal near

2.1 eV. This is interpreted as the decay of the excitations on the
planarized segments. Figure 6 reveals a decay that is not exactly
exponential yet approaches an exponential decay with a lifetime
of about 350 ps. Such deviation from monoexponentiality is an
ubiquitous phenomenon not only in energy-transfer studies but
also in time-resolved fluorescence studies on conjugated
polymers.24 It is usually associated with residual trapping at
unidentified traps such as oxidation products with a time-
dependent trapping rate that translates into a dispersive decay
law, described in terms of the Kohlrausch−Williams−Watts
(KWW) decay law,32 mentioned above. An exponent of 0.8
indicates that a small fraction of aggregate excitations are lost
via a weakly dispersive exciton motion toward unidentified
scavengers such as electron traps that are ubiquitous in π-
conjugated polymers.33−35

In conclusion, in addition to the observed ultrafast energy
transfer and implied core−shell structure of the aggregates, an
intriguing aspect of the present work relates to the
decomposition of the absorption spectra of MEH-PPV in
MTHF solution near and below the transition temperature. At
first glance, the overall spectra shown in Figure 2 resemble the
absorption spectra of weakly interacting H-aggregates in P3HT,
bearing out an apparent ratio of the 0−0 and 0−1 features of

Figure 4. Pump−probe spectra for excitation at 2.48 eV (where coiled
chains absorb) at 120 K for different time delays after excitation, that
is, (a) 1 and (b) 5 ps. In addition to the total ΔT/T signal (dots), the
contributions of SE, GSB from disordered chromophores, and the
GSB from the planarized chromophores are indicated by orange, blue,
and red solid lines, respectively.

Figure 5. Percentage of the ground-state bleach signal that is due to
planarized chromophores (open square symbols) or to disordered
chromophores (filled round symbols) as a function of time. The
dashed line is a guide to the eye, indicating a decay/growth pattern
with an initial exponential decay/growth, followed by a stretched-
exponential decay/growth.

ACS Macro Letters Letter

DOI: 10.1021/acsmacrolett.5b00133
ACS Macro Lett. 2015, 4, 412−416

415



 

102 

 

less than unity. Separating those spectra disproves this
conjecture. It turns out that the isolated spectrum of the
planarized chromophores is mirror-symmetric with the
fluorescence spectrum, thus, implying a high planarity of the
aggregated chains. In fact, comparison of the emission spectra
indicates the planarized chromophores in MEH-PPV to be as
planar as ladder-type poly(p-phenylene) (MeLPPP), where
covalent bridges enforce a rigid, flat structure and which
recently has shown room temperature Bose−Einstein con-
densation of cavity exciton-polaritons.36
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Figure 6. Decay of ΔT/T at 2.07 eV (dots) for EEx = 2.48 eV at 120 K,
presented in a Kohlrausch−Williams−Watts (KWW) plot for times
>10 ps. The red dashed line indicates a slope of 0.8, as discussed in the
text. For comparison, the blue crosses indicate the values obtained for
the area below the GSB + SE 0−0 band centered at 2.1 eV (=zeroth
spectral moment). Slight deviation at early time scales originate from a
spectral band shift. The inset shows ΔT/T at 2.07 eV plotted in a
semilogarithmic fashion, with the solid line indicating a mono-
exponential decay function with a lifetime of 350 ps.
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1. Description of the transient absorption setup with excitation at 2.1eV 

Transient absorption measurements with excitation at 2.48 eV were performed with 

a 100 kHz setup, consisting of a RegA9000 regenerative amplifier system from Coherent that 

delivered pulses, centered at 800 nm with a pulse width of about 190 fs as confirmed by an 

autocorrelator. 12% of the intensity was used to create the probe light externally in a YAG-

crystal in the range from 480 to 1300 nm. The remaining intensity pumped a dual-pass optical 

parametric amplifier to produce the excitation pulses in the range from 2.48 eV to 2.0 eV. The 

pump beam diameter was about 200 µm to ensure homogeneous excitation. For the 

measurements, the pump pulse fluence was set to about 10 µJ/cm2, at which the pump-probe 

signal was linear with fluence (see Figure S1). Spectra were recorded using a lock-in amplifier 

and a monochromator with a silicon diode.  
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Figure S1: Pump-probe signal as a function of fluence, probed at an energy of 2.34 eV.  

 

For the transient absorption measurements exciting at 2.1 eV, the sample was filled in a 

0.3 mm thick cell and placed in a continuous-flow cryostat (Oxford Instruments) operated 

with liquid nitrogen. The 42 fs excitation pulses at 2.1 eV were generated by a commercial 

parametric amplifier (TOPAS, Light Conversion), pumped by the output of a 1 kHz 

regenerative amplifier (Spitfire Pro, Spectra Physics) delivering 120 fs, 2.5 mJ pulses at 

800 nm. The white-light continuum used as a probe beam was generated by focusing a small 

fraction of the 800 nm pulses in a CaF2 window. Pump and probe diameters at the sample 

position were 50 μm and 30 μm, respectively. Also in this case, we used excitation-pulse 

energies (1.8 nJ) within the linear regime of excitation, where exciton-exciton annihilation 

processes are negligible. 
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2. Changes of steady-state absorption and emission spectra as a function of 

temperature 

The relative change of area under the measured emission spectrum was normalized to the 

area under the measured spectrum at a temperature of 300 K. Upon cooling down to 180 K, 

the area continuously increases and finally triples at 180 K (Figure S2a). Spectral shifts of 

emission and absorption spectra were determined by considering the energetic position of 

the S1-S0 0-0 peaks. In emission this was easily possible within the whole measured 

temperature range. In contrast to that, simple determination of the S1-S0 0-0 peak from the 

spectrally unresolved absorption spectra of the disordered phase was not possible 

(Figure S2b). 
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Figure S2: (a) Relative change in area under emission spectra, normalised to the area at 300 K. 

(b) Energetic position of the S1-S0 0-0 peaks of the aggregated phase (< 180 K) and disordered 

phase (>180 K). 
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3. Calculating the fraction of aggregates from absorption spectra 

The fraction of aggregated chains 𝑓𝑎𝑔𝑔 as a function of temperature is calculated by 

𝑓𝑎𝑔𝑔 = 𝐹 ∗ 𝑓𝑎𝑏𝑠𝑎𝑔𝑔𝑟 

where 𝑓𝑎𝑏𝑠𝑎𝑔𝑔𝑟 is the fraction of aggregate absorption from the measured absorption 

spectrum and F is the relative change of oscillator strength between disordered and 

aggregated chain conformation. We derived the relative change in oscillator strength 

between the aggregated and disordered phase, 𝜀𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒/𝜀𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟𝑒𝑑 , similar to the 

approach which is described in detail in the supporting informations of previous works by 

Clark et al.1 and Scharsich et al.2, using 

𝐴𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒

𝐴𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟𝑒𝑑
= −

𝜀𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒

𝜀𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟𝑒𝑑
= 𝐹 

with the areas taken from the shaded regions as illustrated in Figure S3. 
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Figure S3: Exemplary illustration of the procedure to determine the change in oscillator 

strength between coiled and aggregated phase of MEH-PPV. The required areas Adisordered and 

Aaggregate are highlighted.  
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From this approach, the relative change in oscillator strength between disordered and 

aggregated phase can be obtained within the temperature range between 180 K and 140 K, 

which is found to be near unity (Figure S4). 
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Figure S4: Relative change of oscillator strength between disordered and aggregated phase 

as a function of temperature.  
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4. Transient absorption spectra 
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Figure S5: Pump-probe spectra for excitation at 2.48 eV (where coiled chains absorb) at 120 K 

for different time delays after excitation, i.e. (a) 0.5 ps, (b) 10 ps and (c) 100 ps. In addition to 

the total T/T signal (dots), the contributions of SE, GSB from disordered chromophores and 

the GSB from the planarized chromophores are indicated by orange, blue and red solid lines, 

respectively. 
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5. Estimate of energy transfer range 

We will argue that the short timescale of energy transfer (< 1 ps) is not compatible with long-

range energy transfer from coiled to planarized chains. Transfer from coiled to planarized 

chains is completed within 1 ps. Thus, a generous upper limit for the transfer rate 𝑘 is 1x1012 

s-1. 

Suppose the transfer takes place from a coiled chromophore to a planarized chromophore 

that are separated by a long distance 𝑅. “Long”, in this context, in particular implies that the 

distance separating the centres of mass of the two chromophores is larger than their size. 

Thus, the point-dipole approximation applies. Let us suppose further that coupling between 

these chromophores is weak and that relaxation within S1 has occurred prior to energy 

transfer, so that the energy transfer can be presumed to be of a Förster-type nature. 

In the case of Förster-type energy transfer, the energy transfer rate 𝑘 from one chromophore 

to another at a distance 𝑅 is given by  

 𝑘 =
1

𝜏0
(

𝑅0

𝑅
)

6
,        (1) 

where 𝜏0 is the lifetime of the donor chromophore in the absence of the acceptor 

chromophore and 𝑅0 is the Förster radius. The Förster radius depends on the mutual 

orientation of the two chromophores, the refractive index of the surrounding medium, the 

fluorescence quantum yield of the donor chromophore and the spectral overlap between the 

donor emission and the acceptor absorption. Solving eq. (1) for 𝑅 yields 

 𝑅 =
𝑅0

√𝜏0𝑘6  .        (2) 

For the lifetime of the donor chromophore we take a lifetime of 500 ps, which is typical for -

conjugated polymers3 and which is consistent with the data shown in Figure 5 in the 

manuscript. Typical Förster radii are in the range of a few nanometers, with 5 nm being a 

generous upper limit for 𝑅0 when all parameters are maximized.4 

Thus, an upper limit for the distance between the two chromophores is 𝑹 ≤ 1.8 nm. This 

estimate demonstrates that energy transfer occurring on a picosecond timescale implies 

proximity between donor and acceptor chromophores. 
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Addendum – Estimate of the maximum Förster radius of 5 nm: 

R0 is given by:4 

𝑅0

𝑛𝑚
= 2.108 ∗ 10−2 {𝜅2Φ𝐷

0 𝑛−4 ∫ 𝐼𝜆
𝐷(𝜆) [

𝜀𝐴(𝜆)

𝑑𝑚3𝑚𝑜𝑙−1𝑐𝑚−1] (
𝜆

𝑛𝑚
)

4

𝑑𝜆
0

𝜆

}

1/6

 

with 𝜅2 being the dipole orientation factor, Φ𝐷
0  the fluorescence quantum yield of the donor 

in the absence of the acceptor, n the refractive index of the solvent medium, 𝜀𝐴 the molar 

extinction coefficient of the donor and 𝐼𝜆
𝐷 the donor emission spectrum normalized to an area 

value of unity. Φ𝐷
0  can at most be unity, and the refractive index cannot be lower than 1. For 

the extinction coefficient of the donor we take a maximum constant value of 105 cm2 mol-1,5 

i.e. we assume a step function. So far, all values have been assumed to take the maximum 

value that is allowed by theory.  

Let us presume that the overlap of donor and acceptor extends over a range of 100 nm, say, 

from 500 to 600 nm. Note that this is again a generous estimate and that typical values are 

smaller. Inserting these values into the above equation and carrying out the integral leads to 

R0=3.7 nm as maximum possible Förster radius. 

Thus, allowing for some margin, presuming a value of R0=5 nm is a generous upper 

limit. 
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4.5. Relaxation dynamics and exciton energy transfer in the 

low-temperature phase of MEH-PPV 
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Understanding the effects of aggregation on exciton relaxation and energy transfer is relevant to

control photoinduced function in organic electronics and photovoltaics. Here, we explore the photo-

induced dynamics in the low-temperature aggregated phase of a conjugated polymer by transient

absorption and coherent electronic two-dimensional (2D) spectroscopy. Coherent 2D spectroscopy

allows observing couplings among photoexcited states and discriminating band shifts from homo-

geneous broadening, additionally accessing the ultrafast dynamics at various excitation energies

simultaneously with high spectral resolution. By combining the results of the two techniques, we

differentiate between an initial exciton relaxation, which is not characterized by significant exciton

mobility, and energy transport between different chromophores in the aggregate. C 2015 AIP Pub-

lishing LLC. [http://dx.doi.org/10.1063/1.4918645]

I. INTRODUCTION

Molecular functional materials are currently subject to

extensive studies because of their applications in organic

electronics and photovoltaics. Among these materials, conju-

gated polymers are particularly attractive as they combine

high absorption cross sections with low-cost production

and deposition over flexible substrates.1–3 However, typical

efficiencies of solar cells based on conjugated polymers are

currently limited to <11%.4

The key parameters to understand photoinduced function

in these devices are the interactions of polymer structural

units (monomers), both within a single polymer chain and

between neighboring polymer chains in aggregates. Indeed,

such interactions affect the relaxation time scale of the

excited states, the population yield of mobile excitons versus

nonmobile species (e.g., excimers), the capability to transport

the absorbed energy over long distances, the formation of

charge-transfer states, and their dissociation into free charges

in proximity of the donor-acceptor interface. Particularly, the

efficiency of energy transport from the bulk of the donor

material towards the interface with the acceptor is among the

factors that have a significant influence on the performance of

organic photovoltaic devices.

Conformational disorder, which is among the distinctive

characteristics of conjugated polymers, has profound effects

on the dynamics of excitons and energy transfer. Together

with spatial variations in the polarization of the environ-

ment, conformational disorder breaks the conjugation along

the polymer chains and forms short conjugated segments

called “conformational subunits.”5,6 Absorption of a photon

populates exciton states which are initially delocalized over

a)Electronic mail: brixner@phys-chemie.uni-wuerzburg.de

several conformational subunits but localize on sub-100 fs

time scales on smaller domains due to dynamic coupling

between electronic and nuclear degrees of freedom.7 On

a longer time scale, electronic energy transfer is typically

described in terms of a sequence of Förster energy transfer

steps between localized excitons,8,9 although intermediate

regimes characterized by coherent intrachain energy transfer

have been reported for Poly[2-methoxy-5-(2-ethylhexyloxy)-

1,4-phenylenevinylene] (MEH-PPV) in chloroform.10 The

dynamics of energy transfer differs significantly along the

polymer chain (intrachain) and between different polymer

chains (interchain). The latter is typically one to two orders

of magnitude faster than intrachain energy transfer,11–14

explaining the more efficient energy transport observed in

films as compared to isolated polymer chains in solution.12,15,16

The picture of exciton dynamics described above applies

in general for conjugated polymers. However, the dynamics

of the photoexcited species, as well as the rate, the efficiency,

and the length scale of energy transport, can differ strongly

for different systems. Additionally, the photophysics of

conjugated polymers and their aggregates depends not only on

the chemical nature of the compound but also on its structure

and morphology.12,17–21 Hence, understanding the key factors

controlling exciton dynamics requires the capability to control

the structure of the aggregate. A possibility in this respect is to

use systemswhere both aggregation and themorphology of the

self-aggregated state can be controlled by external parameters.

In this paper, we investigate the low-temperature self-

aggregated phase of the polymer MEH-PPV in solution. In

MEH-PPV, two classes of chromophores have been observed,

one emitting at higher energy (“blue sites”) than the other

(“red sites”).22–25 The picture emerging from single-molecule

spectroscopy suggests that MEH-PPV can be found in two

distinct conformational classes, and that the relative amount

0021-9606/2015/142(21)/212429/11/$30.00 142, 212429-1 © 2015 AIP Publishing LLC
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of blue and red sites in a single chain is controlled by the

presence of interactions between segments of the polymer

chain that are brought into contact by chain folding. The red

sites have been repeatedly ascribed to planarized segments

characterized by an increased conjugation length compared

to the blue sites.25,26 It was also suggested that the formation

of the red sites might be related to aggregation.22,27 Recent

studies showed that concentrated solutions of MEH-PPV in

2-methyltetrahydrofuran (MeTHF) undergo a phase transition

from a coiled conformation (“blue phase”), characteristic of

room temperature, to an aggregated and planarized phase at

low temperatures (“red phase”), characterized by very long

conjugation length.28 The phase transition is accompanied by

the appearance of a low-energy band in both the absorption

and emission spectra.28,29 In the following, we will refer to the

blue (red) phase as coiled (aggregated) phase.

Although the ultrafast dynamics of the room-temperature

coiled phase of MEH-PPV has been extensively studied

both in solution and films,14,18,24,30,31 knowledge on the

ultrafast dynamics of the aggregated red phase is still sparse.

In the following, we use broadband transient absorption

spectroscopy and coherent electronic two-dimensional (2D)

spectroscopy to observe the exciton relaxation and energy

transfer dynamics in the planarized aggregated phase ofMEH-

PPV. Combining the results from these experiments allows

us to individuate two regimes of energy relaxation in the

aggregated phase of MEH-PPV. In particular, we separate

the initial exciton relaxation within a manifold of excitons

sharing a common ground state (relaxation without significant

energy transport) from the energy hopping between excitonic

states located on different polymer segments. Furthermore,

we show that the average time scale for energy hopping in

the aggregated phase is comparable with the typical values

reported for the red-emitting sites in single molecules.

II. EXPERIMENTAL METHODS

MEH-PPV was purchased from Sigma Aldrich (CAS

138184-36-8). Gel permeation chromatography measure-

ments were performed (PSS Polymer Standards Service Gmbh

in Mainz) using polystyrene as the calibration standard and

solving theMEH-PPV in 1,2,4-trichlorbenzol at a temperature

of 150 ◦C to make sure that it was completely dissolved.

This measurement provided the weight-average molecular

weight of the batch of sample used for our experiments

(Mw = 218.8 kDa) and the number-average molecular weight

(Mn = 58.12 kDa), resulting in a dispersity of D = Mw/Mn

= 3.76. The sample was dissolved in distilled MeTHF (Sigma

Aldrich) at a concentration of 0.2 mg/ml. The solution was

stirred and heated at ≈40–45 ◦C for 24 h, until no macroscopic

particles could be observed anymore. Absorption and emission

spectra at different temperatures were recorded with a home-

built setup which is described in detail elsewhere.32

For the time-resolved measurements, the 0.3 mm thick

sample cell was placed in a continuous-flow cryostat (Oxford

Instruments) operated with liquid nitrogen. Upon cooling the

sample from room temperature to 140 K, an optical density of

≈0.4 OD at 2.11 eV was achieved.

The light source for the ultrafast spectroscopy exper-

iments was a commercial Spitfire Pro-regenerative ampli-

fier (Spectra Physics) providing 120 fs, 2.5 mJ pulses at

800 nm with a repetition rate of 1 kHz. A small portion

(<1 µJ) of the 800 nm pulses beam was focused onto a

CaF2 window to generate the white-light continuum probe.

About one quarter of the laser intensity was used to pump

a commercial non-collinear parametric amplifier (TOPAS

White, Light Conversion) to generate the tunable excitation

pulses. For the experiments described here, the excitation

pulses were centered at 2.10 eV and 2.03 eV and pulse

lengths were 42 fs and 60 fs, respectively. Beam diameters

at the sample position were ≈50 µm and ≈30 µm for

the excitation and probe beams, respectively. For all the

experiments, we made sure that excitation-pulse energies were

within the linear regime of excitation, where exciton-exciton

annihilation processes are negligible (see also Fig. S1 in

the supplementary material).33,80 For the transient absorption

experiments, photon flux of 9.4 × 1013 photons/cm2 and 4.9

× 1014 photons/cm2 were used upon 2.10 eV and 2.03 eV

excitation, respectively.

The setup for 2D spectroscopy was described extensively

elsewhere.34Briefly, 35 fs excitation pulses centered at 2.10 eV

were generated by the TOPAS White and split into four

replicas, which served as three excitation pulses and local

oscillator in an inherently phase-stabilized fully noncollinear

four-wave mixing setup with heterodyne detection. The time

delay between the local oscillator and the third pulse was set

to 2.8 ps. The coherence time τ was sampled in steps of ∆τ

= 5.5 fs, covering a range of ±143 fs. Scattering contributions

may lead to distortions of the 2D signals and possible errors

in the phasing procedure, since they add up to the projection

of the signal on the detection axis. This might lead to errors

in the phasing procedure or misinterpretation of cross-peaks

and oscillating contributions. Therefore, it is important to

efficiently subtract these undesired scattering contributions.

Working with samples in the liquid phase often requires circu-

lation of the sample to reduce photodamage, but this might

lead to dynamic scattering. This dynamic scattering can be

effectively reduced by double-modulation lock-in detection.35

In our experiment, where the sample is still above the glass

temperature but is not circulated inside the cryostat, we can

perform scattering correction by acquiring certain scattering

contributions at each delay point and subtracting them from

the spectral interferograms before Fourier evaluation of the

data.36 In addition to our scattering correction routine, we

added a polarizer in the signal beam to reduce remaining

unpolarized scattered light. Data sets were phased to spectrally

resolved pump-probe data acquired in the same setup (see also

Fig. S2 in the supplementary material80). Optical signals were

recorded with a CCD-array spectrometer (Acton SpectraPro

2500i equipped with PIXIS 2K CCD camera).

III. RESULTS AND ANALYSIS

A. Transient absorption

Figure 1(a) shows the normalized steady-state S1← S0
absorption (red solid) and S1→ S0 emission spectra (red
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FIG. 1. (a) Static absorption (solid) and emission (dashed dotted) of the

aggregated phase (red) and coiled phase (blue) of MEH-PPV at 140 K

and 180 K, respectively. The laser spectra used in the experiments are also

shown (black and green dotted). Selection of transient absorption spectra

at 140 K and different population times upon excitation at (b) 2.10 eV

(1.69×104 cm−1) and (c) 2.03 eV (1.64×104 cm−1).

dashed-dotted) of MEH-PPV at 140 K, together with the

spectra of the laser pulses used for the experiments (black

and green dotted lines). The low-energy absorption feature

at 2.1 eV only appears below a critical temperature (here

180 K, see also the steady-state absorption at temperatures

immediately above the phase transition, plotted in blue in

Fig. 1(a)) and is attributed to the 0–0 transition of the

aggregated phase.28 The emission at 140 K is characterized

by three major bands at 2.04 eV, 1.88 eV, and 1.71 eV,

which are ascribed to the 0–0, 0–1, and 0–2 transitions,

respectively.

Selections of transient absorption spectra of the aggre-

gated phase of MEH-PPV at 140 K and different population

times T are shown for excitation at 2.10 eV (Fig. 1(b)) and

2.03 eV (Fig. 1(c)). No significant difference in the dynamics

is observed by lowering the temperature to 120 K (Fig. S3

in the supplementary material80). As it is the purpose of this

study to selectively investigate the dynamics in the aggregated

phase, we did not excite the sample at energies higher than

2.1 eV, where absorption from a fraction of the sample in the

coiled phase may still be present. For both excitation energies,

the transient signals are dominated by three major negative

bands at ≈2.27 eV, ≈2.08 eV, and ≈1.88 eV. A fourth small

negative band at ≈1.72 eV is evident upon 2.10 eV excitation;

upon 2.03 eV excitation, the noise in this spectral region is

comparable with the expected magnitude of such a feature.

By comparing the shape and energy position of the observed

bands with the inverted static absorption and emission (see

Fig. 1(a)), we can ascribe the negative feature at 2.27 eV to

the ground-state bleach of the vibronic 0–1 transition and we

will refer to this band as B01 in the following. The band at

2.08 eV (B00 in the following) contains contributions from

both the ground-state bleach and the stimulated emission (SE)

of the 0–0 transition, while the negative bands at ≈1.88 eV

(SE01) and ≈1.72 eV (SE02) arise from SE from the 0–1 and

0–2 vibronic transitions, respectively. No clear signatures of

excited-state absorption (positive ∆OD signals) are observed

in the entire investigated spectral range.

Interestingly, the ground-state bleach signal in the

2.10–2.50 eV region does not resemble the steady-state

absorption, but it appears as the mirror image of the stimulated

emission. Since no signatures of excited-state absorption are

detected in this spectral region, the discrepancy between

bleach and steady-state absorption must be ascribed to the

fact that only a fraction of the steady-state absorption stems

from the states absorbing at 2.10 eV, i.e., from the aggregated

phase. Although a precise determination of the fraction of

MEH-PPV in the planarized conformation is still pending,

the formation of the planarized chromophores is expected to

affect only a fraction of the sample. In fact, in conjugated

polymers typically between 40% and 60% of the polymer

chains can form planarized chromophores.32,37 Thus, we

assign the steady-state absorption above 2.10 eV that is not

reflected in a transient bleach signal to the contribution from

the coiled phase.

For both excitation energies, the transient absorption

signal decays non-exponentially and completely recovers in

less than 1 ns (Fig. S4 in the supplementary material80).

The most pronounced difference between the evolution of the

transient signals at the two excitation energies is observed in

the sub-10 ps dynamics. Upon excitation at 2.10 eV, all the

bands show a shift to lower energies, most pronounced in the

SE (Fig. 1(b)). The amplitude of this shift is almost completely

suppressed when the excitation is tuned to the lowest edge of

the aggregated-phase absorption at 2.03 eV (Fig. 1(c)).

In general, broadband transient absorption data can be

described globally by assuming kinetic models with rates that

are independent from the detection wavenumber. Such global

description allows identifying the spectral features associated

with different processes through their time evolution. How-

ever, when the transient spectra show pronounced spectral

shifts on time scales comparablewith the population relaxation

(such as in Fig. 1(b)), the results from such a global analysis

can be difficult to interpret.

Here, we follow a different approach. Since the transient

absorption signals are dominated by well-separated bleach

and SE bands, an analysis of the spectral moments of these

bands can be performed to disentangle different molecular

processes. We define the spectral moments M
(i)

0
and M

(i)

1
of
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the three major bands i (i = B01, B00 and SE01) according to

M
(i)

0
(T) =

ν
(i)
2
∑

ν=ν
(i)
1

I(ν,T) · ∆ν, (1a)

M
(i)

1
(T) =

1

M
(i)

0
(T)

ν
(i)
2
∑

ν=ν
(i)
1

ν · I(ν,T) · ∆ν, (1b)

where I(ν,T) is the absorbance change at frequency ν and

population time T , ν
(i)

1
and ν

(i)

2
are the frequency summation

limits for each band i, and ∆ν is the frequency interval

between data points. As long as bands are not overlapping,

the band integrals M
(i)

0
(zero-order moments) are not sensitive

to variations in the shape or position of the bands, but

probe exclusively the population dynamics. The first spectral

moments M
(i)

1
(T) correspond to the average spectral positions

of the bands and allow us to directly monitor band shifts.

Figures 2(a) and 2(b) depict M
(i)

0
(T) for 2.10 eV and

2.03 eV excitation, respectively (symbols). At both excitation

energies, the temporal evolution of the band integrals appears

as a non-exponential decay. A priori, due to the wide

distribution of polymer lengths and possible conformations

in our sample, the measured temporal evolution could arise

either (I) from a broad distribution of rates or (II) from

several distinct kinetic processes. We will now proceed to

analyze the observed population dynamics both via model

I and model II and provide arguments for both of them.

However, we stress that the main conclusion of our work,

i.e., the characterization of the dynamics of exciton relaxation

and transport within the aggregated phase, will be based on

the band-shift analysis that is completely independent from

the choice of the population-kinetics model.

Kinetics in case I can be modelled with a stretched expo-

nential function according to M
(i)

0
(T) = A · e−(Tτ )β with ampli-

tude A, characteristic time τ, and distribution width β. This

stretched exponential form is also known as Kohlrausch-

Williams-Watts (KWW) function.38 A number of theoretical

treatments have shown that the stretched exponential is recov-

ered when modelling independent, parallel single-step pro-

cesses on one hand yet, on the other hand, also for sequential,

multistep processes on disordered structures.38–45 In particular,

energy-dispersive hopping in disordered organic semiconduc-

tors is characterized by a KWW-like behaviour.8,46,47 In that

case, the double logarithmic plot ln(I(T = 0)/I(T)) of the

signal intensity I versus the time T typically shows two re-

gimes (see Fig. S5 in the supplementary material80). For short

times, a slope β of unity—equivalent to an exponential decay—

indicates vanishing dispersion. This is commonly interpreted

FIG. 2. Spectral moments of the three major bands observed in the transient absorption experiments as a function of the population time T : integrated intensity

M
(i)

0
(Eq. (1a)) of the three major bands for excitation at (a) 2.10 eV and (b) 2.03 eV and their average spectral position M

(i)

1
(Eq. (1b)) upon excitation at (c)

2.10 eV and (d) 2.03 eV. Consistent with the results of the maximum entropy method analysis, the temporal dependence of the spectral moments is fitted by a

multi-exponential kinetics (dashed lines).
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to designate energetic relaxation by jumps to lower energy

nearest neighbors. Subsequently, lower energy sites immedi-

ately adjacent to an excitation are no further available. Thus, at

longer times, jumps to non-nearest neighbours prevail and the

slope β acquires a value near 0.5. Note that values of β = 1/2

and β = 1/3 are expected for Förster transfer from a random

ensemble of donors to a dilute array of acceptors in a 3D and

2D case, respectively.

In case II, a multiexponential fit function

M
(i)

0
(T) =

∑4
j=1 Aj · e

−
T
τ j , with amplitudes Aj and character-

istic times τj, is suitable. Both models are approximately

consistent with our experimental data (Fig. S6 in the

supplementarymaterial80). In order to attempt a discrimination

without initial bias, the maximum entropy method (MEM)

is employed, via the open-source program MemExp,48,49 to

simulated data for models I and II and to the experimental

data (Fig. S7 in the supplementarymaterial80 shows exemplary

results for M
(B00)

0
). TheMEM analysis of the experimental data

contains four distinct time scale peaks (Figs. S4, S7, and S880)

and thus more clearly resembles model II rather than model

I. Thus, we further discuss our results in terms of a multi-

exponential fit. Fit constants are listed in Table I. Note that

despite the use of amulti-exponential model, the retrieved time

constantsmay be distributed; thus for the following discussion,

the values reported in Table Imust be interpreted as the average

time constants of different rate distributions. The fit results for

model I are listed in Table S1 of the supplementary material.80

The temporal evolution of the average spectral position

M
(i)

1
(T) of the three major bands is plotted in Figs. 2(c) and

2(d) for excitation at 2.10 eV and 2.03 eV, respectively, and fit

results are again reported in Table I. Upon excitation at 2.10 eV,

all bands show a red-shift which is completed within the

first 15 ps. The bleach band (B01) shifts mono-exponentially

towards lower wavenumbers on a≈4 ps time scale (see also the

τs
2
values in Table I). A red-shift with similar time constants

is observed also in the average spectral position of bands B00

and SE01, preceded by an additional fast (τs
1
≈ 200 − 250 fs)

red-shift. Noteworthy, the amplitude of the ≈4 ps red-shift is

virtually identical (42 ± 3 cm−1) for the B01 and SE01 bands.

The sub-300 fs shift appears exclusively in bands con-

taining contributions from SE, thus we ascribe it to processes

occurring in the excited state. The lack of such contribution in

the B01 band is a further indication that no significant excited-

state absorption is contributing to the signal in this spectral

region.

Upon excitation at 2.03 eV (Fig. 2(d)), no spectral

evolution is observed in the three bands, except for a very

small initial red-shift on a sub-500 fs time scale in the SE01

band.

B. Coherent 2D spectroscopy

Coherent electronic 2D spectroscopy can be seen as an

extension of transient absorption spectroscopy, where the

time-dependent molecular signal is measured as a function

of both the excitation and detection frequency. In coherent 2D

spectroscopy, the molecular response to the interaction with

three electromagnetic fields is measured as a function of three

time delays. For each fixed population time T (between the

second and third pulse), Fourier transformation of the emitted

signal with respect to the time delay τ between the first two

pulses, and t between the third pulse and the signal, yields

the excitation and detection axes, respectively. Since the 2D

signal and its time evolution allow mapping of electronic

couplings and correlations between initial and final electronic

states during molecular relaxation, respectively, coherent 2D

spectroscopy is particularly suitable to characterize processes

of energy transfer in complex systems.50–52 In the following,

we apply coherent 2D spectroscopy to discriminate between

band shifts and homogeneous broadening in the temporal

evolution of the aggregated-phase signal of MEH-PPV, as well

as to observe exciton dynamics and energy transfer at several

excitation energies with high frequency resolution.

Figures 3(a)-3(d) show a selection of 2D spectra of MEH-

PPV in the aggregated phase for four different population

times T . Data are acquired at 140 K with the excitation pulses

shown in Fig. 1(a) (black dotted), thus the lowest transition

band of the aggregated phase is selectively investigated. At all

population times, the 2D spectra are dominated by a single

feature, containing contributions from the bleach and SE of

the 0→ 0 transition (see also Fig. 1(b)). No clear signatures

of excited-state absorption are detected.

TABLE I. Characteristic time constants obtained from a multi-exponential global fit of the integrated signals

M
(i)

0
(T ) and from the independent fits of the average spectral position M

(i)

1
(T ) of the three major bands (i = B01,

B00, and SE01) of the transient absorption data described in Sec. III A.

Excitation energy 2.10 eV 2.10 eV 2.03 eV

Temperature 120 K 140 K 140 K

Population decay M0(T )

M0(T )=
∑4

j=1
A je

−
T
τ j

τ1 (fs) 220 ± 50 290 ± 40 240 ± 60

τ2 (ps) 2.6 ± 0.2 2.5 ± 0.3 5 ± 2

τ3 (ps) 41 ± 4 32 ± 3 41 ± 8

τ4 (ps) 320 ± 20 312 ± 11 380 ± 50

Band shift M
B01

1
(T )

τ
s
1
(fs) . . . . . . . . .

τ
s
2
(ps) 3.9 ± 0.8 4.8 ± 0.8 . . .

Band shift M
B00

1
(T )

τ
s
1
(fs) 200 ± 80 230 ± 70 <100

τ
s
2
(ps) 2.9 ± 0.5 3.6 ± 0.6 . . .

Band shift M
SE01
1

(T )
τ
s
1
(fs) 170 ± 40 250 ± 50 400 ± 200

τ
s
2
(ps) 2.8 ± 0.6 4.7 ± 1.1 . . .
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FIG. 3. Selection of experimentally retrieved (normalized) 2D spectra of MEH-PPV at different population times T : (a) 0 fs, (b) 60 fs, (c) 400 fs, and (d)

5000 fs. Contour lines display signal levels from 5% (light pink) to 95% (dark red) in steps of 10%. The dashed horizontal line marks the T = 0 average spectral

position of the 2D signal at ν̃τ = 1.6987×10
4 cm−1, while the black arrow indicates the shift of the 2D signal towards lower detection wavenumbers as a function

of the population time T . (e) Spectral evolution of the signal along the detection axis for excitation at ν̃τ = 1.6987×10
4 cm−1 (orange vertical dashed line in

panel (a)). (f) Temporal evolution of the first moment (i.e., average spectral position) of the signal along the detection axis (symbols) for the different excitation

wavenumbers shown by the vertical lines in panel (a). Overlayed solid lines show the best individual bi-exponential fit of each trace.

Themost prominent features in these spectra are the initial

elongation of the signal along the (−ν̃τ = ν̃t) diagonal, which

disappears on a time scale of <100 fs, and the continuous

red-shift of the 2D signal along the detection axis ν̃t (see the

horizontal dashed line and solid arrow in Figs. 3(a)-3(d)).

The temporal evolution of the 2D signal can be inspected

by performing a global analysis and constructing two-

dimensional decay-associated spectra (2D-DAS).53–55The 2D-

DAS are not required for further analysis but are reported

in Fig. S9 and discussed in Sec. S3 of the supplementary

material80 for completeness. In the following, we focus on the

spectral evolution of the 2D signal along ν̃t for different (fixed)

values of ν̃τ. One exemplary spectral evolution is plotted in

Fig. 3(e) for ν̃τ = 1.6987 × 104 cm−1 (i.e., along the dashed

orange cut in Fig. 3(a)). Similar to the analysis of the transient

absorption data, at each ν̃τ, we quantify the temporal evolution

of the average spectral position of the signal by calculating the

first spectral moment M1(ν̃τ,T) (see Eq. (1b)). The M1(ν̃τ,T) at

three different ν̃τ values are plotted in Fig. 3(f) and show that

the red-shift is absent (within our signal-to-noise ratio) when

exciting at the lowest edge of the MEH-PPV absorption band

(red) and increases in amplitude upon increasing ν̃τ (orange

and blue). Independent of ν̃τ, the band shift is almost complete

within 10 ps and the average position of the 2D signal reaches

an asymptotic value of ≈1.6750 × 104 cm−1.

In analogy with the analysis of the transient absorption

data, we fit the temporal evolution of the M1(ν̃τ,T) at all ν̃τ (not

just the exemplary ones shown in Fig. 3(f)) with bi-exponential

kinetics. The first time constant is allowed to be different for

ν̃τ < 1.679 × 104 cm−1, where an ultrafast (<40 fs) blue-shift

is observed. An independent fit of the M1(ν̃τ,T) for different

frequencies suggests a small increase of both time constants

with increasing ν̃τ. Such a trend would be expected if the shift

originates from the transfer of energy from high- to low-energy

exciton states, as relaxation from higher-energy states can

proceed through more intermediate steps than from the lower-

energy states. However, the signal-to-noise ratio of the data

did not allow for an accurate analysis of the ν̃τ dependence of

the shift rates. Thus, we preferred to describe the evolution of

the M1(ν̃τ,T) with the same time constants for all ν̃τ. The time

constants retrieved from this global analysis are 180 ± 30 fs

and 4.5 ± 1.1 ps and should be seen as average values over

the observed spectral range. These time constants also agree

well with the time scales of the band shifts observed in the

transient absorption data (Table I).

IV. DISCUSSION

A. Population dynamics

The analysis of the transient absorption data at different

excitation energies revealed complex population dynamics.

The 2Dexperiment identified an additional ultrafast (sub-30 fs)

component, shorter than our instrumental response function
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(see Fig. S9a in the supplementarymaterial80). This component

accounts for an ultrafast loss of memory in the system, visible

as the disappearance of the diagonal elongation in the 2D

spectra within the first 100 fs; the non-resonant response of the

solvent is also expected to contribute to this signal. An ultrafast

(≤25 fs) component was observed with three-pulse photon

echo peak shift (3PEPS)31,56,57 onMEH-PPV at room tempera-

ture and ascribed to ultrafast exciton localization. The ultrafast

depolarization of the anisotropy, proceeding on a similar time

scale, has been explained in terms of several competingmolec-

ular processes, including exciton relaxation within a manifold

of delocalized states and exciton localization.14,58As such pro-

cesses lead to a loss of the initial memory in the system, we

tentatively ascribe the <30 fs component observed in the 2D

experiment to the initial exciton relaxation and localization.

Non-exponential kinetics have been repeatedly observed

in solutions, films, and isolated molecules of MEH-

PPV.22,24,26,27,30,59,60 It was suggested that photoluminescence

decay in isolated chains is mono-exponential with character-

istic time scales between 0.4 and 1.2 ns, while non-exponential

relaxation was observed in presence of aggregation,24,27 in

films,17,61,62 and in collapsed MEH-PPV chains.23,63 All the

aforementioned configurations are characterized by a strong

reduction in the photoluminescence quantum yield, which

is ascribed to the formation of non-emissive interchain

species.16,24,64–66 These species, absorbing above 600 nm,

were assigned alternately to excimers, aggregates, polarons,

or polaron pairs, which are formed either via direct photoexci-

tation or via quenching of the singlet excitons.16,18,58,59,63,67,68

In none of our experiments on the aggregated phase

of MEH-PPV do we detect clear signatures of excited-state

absorption signals, neither in the transient spectra nor in the

temporal evolution of the signals (Figs. 1(b)-1(c) and Fig. S3

in the supplementary material80). This is somewhat surprising,

because excited-state absorption to the two-exciton state

should appear at energies close to the one-exciton absorption.

Deviations from this behavior can be expected in presence of

strong electron correlations such as in polyenes. We cannot

exclude that some excited-state absorption from the one-

exciton states overlaps with the signal at certain wavenumbers

(but not with the band B01, see Sec. III A); however, if

present, these contributions are not dominant. The 2D signal

at T = 0 peaks below the diagonal, and this feature could arise

from excited-state absorption contributions above the diagonal

or from an instantaneous Stokes shift or relaxation process

occurring within our time resolution. Although we cannot

unambiguously discriminate between the two interpretations,

we note that some instantaneous relaxation is expected

because of the ultrafast exciton localization process. Two-

dimensional double-quantum coherence spectroscopy69 could

provide a direct way to measure the energy position of the

two-exciton states in this system, as well as their correlations

with the one-exciton states. Instead, we can exclude the

presence of long-lived (>1 ns) excited species formed upon

direct photoexcitation, which are suggested to relax by re-

population of the emissive singlet exciton state in MEH-PPV

films. To the best of our knowledge, such excited species

were observed exclusively when the excitation energy was

tuned above 2.14 eV,16,17,24,59,63,67,68 where the coiled phase

absorbs. Thus, we suggest that these long-lived species are

not generated in significant amounts at the excitation energies

of our pulses.

In Sec. III A, we have reported the results of a multi-

exponential analysis of the M
(i)

0
(T) for the three major bands

observed in the transient absorption experiments. An alterna-

tive model which describes the data as a linear combination

of a single exponential and a stretched exponential decay is

additionally presented in the supplementary material (Table

S1).80 While our data cannot distinguish unambiguously

between the two models, both models result in a similar

interpretation for the population dynamics in the aggregated

phase of MEH-PPV.

For the following discussion, we distinguish between

two kinetic regimes: a “slow regime” comprising processes

occurring with characteristic time scales of tens to hundreds

of ps and a “fast regime” describing processes faster than

10 ps. The processes occurring in the “slow regime” result

in a complete recovery of the transient absorption signal at

all detection wavenumbers (i.e., a recovery of the thermalized

electronic ground state). As energy transfer between excitonic

states occurs on sub-10 ps time scales (see also the detailed

discussion in Sec. IVB), we ascribe the population decay in the

“slow regime” to the S1→ S0 relaxation of the exciton states

at the bottom of the density of states. According to the multi-

exponentialmodel, two distributed kinetics account for exciton

relaxation in the “slow regime,” with average time scales of

≈40 ps and≈320 ps. Upon 2.10 eV excitation and at 140 K, the

≈40 ps and ≈320 ps components account for a 25% and 43%

decay of the excited population, respectively. By lowering

the temperature to 120 K, about 38% of the total population

decay takes place on 40 ps, while the percentage of excitons

relaxing on the long time scale decreases to 32%. The presence

of two relaxation processes, with virtually the same time

scales as observed here, was previously reported for MEH-

PPV aggregates in solution, where interchain interactions

are likely to play a role in the photophysics.70 Motivated

by the simultaneous decay of an excited-state absorption

and the bleach signal, Rothberg and co-workers70 ascribed

the faster process to the non-radiative decay of polaron

pairs, and this interpretation additionally explained the low

photoluminescence quantum yield of their sample. In our

experiment, the ≈40 ps component appears as a simultaneous

decay of the bleach and SE signals. Thus, it cannot be

explained by the (non-radiative) decay of non-emissive states

like polaron pairs, which would not cause a decay of the SE. It

has been suggested that the geminate recombination of polaron

pairs may result in a delayed population of the emissive

singlet exciton states.24,61 Such a process has been invoked

to explain the long-lived emission tail in MEH-PPV films;

however, it can also not explain our experimental observations

as it would result in an increase (and not a decrease) of the

SE signal and it would not affect the bleach. Instead, we

suggest that the 40 ps component might be related to energy

transfer proceeding from the lowest-energy exciton states of

the aggregated phase to defect sites, while the 320 ps kinetics

could map the (radiative and intrinsic non-radiative) relaxation

of chromophores that are not in proximity of defect sites, and

thus are not quenched by such energy transfer process.
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In the same way as when interpreting the data in a multi-

exponential way, when describing the dynamics in the “slow

regime” as a single stretched exponential, i.e., by assuming that

the exciton relaxation has a very broad (β ≈ 0.48) distribution

of rates, the slow (>10 ps) kinetics is considered to describe

the S1→ S0 relaxation. However, in contrast to the multi-

exponential decay, the approximate exp
(

−

 
T
τ

�0.5)
dependence

can be interpreted to indicate dispersive energy transfer,

e.g., by dipole-dipole coupling, to lower-energy sites where

the excitation is immediately quenched.8,46,47 The spatial

distribution of such defect sites would lead to a concomitant

distribution of transfer rates and thus to the stretched-

exponential decay observed in the signals from stimulated

emission and ground-state bleach. In the structurally closely

related alkoxy-PPV-derivative OC1C10-PPV, a density of

electron traps with depth 0.7 eV on the order of 1023 m−3

was determined. These electron traps have been shown to

be omnipresent at about the same density in π-conjugated

polymers as they are likely to arise from some kind of water-

oxygen complex.71,72 It has been suggested that they also

function as exciton traps and in this way limit the exciton

diffusion length.73

A significant fraction of the excited population relaxes

to the ground electronic state on time scales faster than

10 ps, as shown by the simultaneous decrease of both SE

and bleach signals. As shown in Figs. 2(c)-2(d) and Table I,

the band-shift evolution, which probes exciton relaxation

and transfer (see also the discussion in Sec. IV B), is

also limited to the “fast regime.” We tentatively ascribe the

population decay in the “fast regime” to non-radiative internal

conversion processes mediated by the presence of defects in

the aggregated phase. According to this interpretation, exciton

relaxation and transfer can result in the population of defect

states that efficiently quench the excited population.23 Such

interpretation is consistent with the decrease of emission

quantum yield reported for MEH-PPV films and aggregates

as compared to single solvated chains.16,24,65,66

B. Energy transport and relaxation

Turning now to the temporal evolution of the spectral

average position of the transient bleach and stimulated

emission bands, the analysis of the transient absorption data

allowed us to distinguish two processes occurring on ≈200 fs

and ≈4 ps time scales. The former appears as a red-shift of

only the SE signals, while the latter can be detected in both

the ground-state bleach and the SE bands and is absent when

exciting at the onset of the absorption (2.03 eV).

Let us consider the slow (≈4 ps) shift first. A spectral shift

of the ground-state bleach can arise from spectral diffusion in

the electronic ground state or fromFörster energy transfer from

higher-energy to lower-energy excitons located at different

sites in the aggregate (exciton hopping). We now discuss both

putative explanations before illustrating how to differentiate

them.

Spectral diffusion in the ground state is observed in pres-

ence of an inhomogeneous distribution of transition energies.

Photoexcitation with spectra narrower than the inhomoge-

neous spectral width selects a sub-ensemble of chromophores

with their electronic transition matching the energy of the

excitation pulse. The hole generated in the ground-state distri-

bution by such photoselection is refilled prior to the excited-

state relaxation due to environment-induced fluctuations in

the transition energy of non-photoexcited chromophores.

Depending on whether the excitation pulse selects a sub-

ensemble of chromophores in the center of the transition

energy distribution (i.e., in the middle of the absorption band)

or at one edge of it, this process will appear as a broadening

or as a shift of the bleach band, respectively.

As the second possible explanation, (Förster) energy

transfer within the exciton density of states also results in a

shift of both absorption and emission towards lower energies as

the energy flows from higher-energy to lower-energy exciton

states located on different segments of the polymer. Förster

energy transfer occurs between excitonic states with little or

no orbital overlap by dipole-dipole coupling. Since the donor

and acceptor excitons do not share a common ground state,

relaxation of the excitons absorbing at higher energies results

in the recovery of the high-energy tail of the ground-state

bleach, while the simultaneous excitation of lower-energy

exciton states causes an increase of the low-energy side of

the bleach signal.

Coherent 2D spectroscopy can discriminate very clearly

between the aforementioned two processes as follows. Spec-

tral diffusion by homogeneous broadening in the ground state

appears as a loss of the memory of the initial excitation

(i.e., loss of the diagonal elongation), while the 2D signal

broadens symmetrically and becomes round. In our data,

none of these features is observed on time scales longer than

100 fs. Instead, on a 4 ps time scale, the signal intensity shifts

asymmetrically towards the cross-peak below the diagonal,

and this signifies excitonic energy transfer. Indeed, a 2D

spectrum correlates the initially photoexcited states (along ν̃τ)

with the signal arising from the states populated after waiting

time T . Thus in 2D spectroscopy, energy transfer appears as a

rise of the cross peaks between the initial high-energy states

(along ν̃τ) and the final lower-energy states (along ν̃t). When,

as in the case of MEH-PPV, the high exciton density prevents

us to distinguish the single exciton states (and thus the single

cross peaks), the energy flow through these states appears as a

red-shift of the 2D signal along the detection axis. Consistent

with our interpretation, the amplitude of red-shift increases

when moving the excitation to higher wavenumbers, because

higher-energy excitonic states are accessed (see also Fig. 3(f)).

Two-dimensional spectroscopy further allows us to

observe the dynamics of energy transfer as a function of the

excitation wavenumber ν̃τ. The amplitude of the ≈4.5 ps red-

shift observed in the 2D experiment is obtained from the global

analysis of M1(ν̃τ,T) and is plotted in Fig. 4 as a function of

ν̃τ. Since the bleach and SE components of the signal shift

simultaneously and with the same amplitude (as it is well

resolved by the analysis of the first moments of the transient

absorption bands B01 and SE01 upon 2.10 eV excitation),

the amplitude of the shift at each ν̃τ reflects the amount of

energy relaxation. No shift of the signal is observed, within

our signal-to-noise ratio, for ν̃τ < 1.6750 × 104 cm−1, except

for a small ultrafast component (<40 fs blue-shift) ascribed

to the initial loss of the diagonal elongation. Accordingly,

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

132.180.21.131 On: Tue, 21 Apr 2015 13:48:48



 

120 

  

212429-9 Consani et al. J. Chem. Phys. 142, 212429 (2015)

FIG. 4. Amplitude of the ≈4.5 ps red-shift along the detection axis observed

in the 2D experiment as a function of the excitation wavenumber ν̃τ, obtained

from the bi-exponential global fit of the M1(ν̃τ,T ). Error bars are ±σ. The

data are phenomenologically described by a linear fit (red line) with slope of

0.113±0.002.

we conclude that the position of the 0–0 transition for the

lowest exciton states in the aggregated phase of MEH-PPV is

ν̃ = (16750 ± 50) cm−1, where the confidence value of 50 cm−1

is given by the wavenumber separation between consecutive

ν̃τ points in Fig. 4.

Noteworthy, despite the fact that M1(ν̃τ,T) reaches the

same asymptotic value for each ν̃τ (Fig. 3(f)), the ≈4.5 ps red-

shift (Fig. 4) accounts only for a small fraction of the energy

relaxation (≈55 cm−1 at ν̃τ = 1.7224 × 104 cm−1 instead of the

expected ≈400 cm−1). This indicates that most of the energy

relaxation occurs on time scales much faster than 4.5 ps and

populates the low-energy exciton states, at most ≈55 cm−1

higher in energy than the lowest energy states of the aggregated

phase. Thus, Förster energy transfer occurs between states at

the bottom of the density of states.

The typical intrachain energy transport in the blue phase

of MEH-PPV is on the order of ≈250 ps, while much

faster energy transport is observed in films and ascribed to

interchain exciton hopping.12,15,16,74 The short average time

scale observed in our work indicates strongly, by comparison,

that energy transfer in the aggregated phase has mostly an

interchain character. The dominant interchain character of

energy hopping in the aggregated phase is not surprising,

due to the higher percentage of chromophores with interchain

neighbors in the ordered aggregated structure as compared to

the solvated molecules at room temperature. Additionally, the

average value of ≈4 ps for energy transfer in the aggregated

phase of MEH-PPV compares well with the observation by

Basché and coworkers,26who reported a 3.9 ps average energy

transfer time between red-emitting chromophores in packed

chain regions of single MEH-PPV molecules. Thus, it is

likely that the molecular organization of MEH-PPV in packed

chain regions is locally ordered and resembles that of the

low-temperature aggregate.

It would be meaningful to compare the average time scale

for Förster-like energy transfer in the aggregated phase and

in the coiled phase. However, we are not aware of a precise

estimation of either the excitation-dependent or the average

time constants for interchain exciton energy transfer in the

coiled phase of MEH-PPV. Energy transport in both room-

temperature and low-temperature films of MEH-PPV is found

to occur on a few-ps time scale with a rate that increases with

increasing excitation energy;16,75 however, it is not clear how

these value relate with the energy migration between blue and

red sites of MEH-PPV, which are believed to co-exist in films.

We noted before that both our transient absorption and

2D experiments show an additional ultrafast (≈200 fs) red-

shift of the transient signal, which is observed exclusively

in the SE bands and whose amplitude increases at higher

excitation energies. The ≈200 fs shift amplitude is plotted

in Fig. S10 of the supplementary material80 as a function

of the excitation wavenumber; however, the interpretation

of these data is complicated by the presence of overlapping

contributions. Several processes can cause a red-shift of the

SE, and in general, it is not trivial to distinguish whether such a

red-shift arises from exciton relaxation, vibrational relaxation,

or conformational dynamics in the excited state. As the≈200 fs

shift is observed exclusively in the SE signal, we can exclude

that it originates from Förster electronic energy transfer

between states located on different segments of the polymer,

which would result also in a red-shift of the bleach signal.

A decay in the transient grating and 3PEPS signals of the

room-temperature phase of MEH-PPV on similar time scales

(≈200 − 400 fs) was reported31,56 and ascribed to exciton

relaxation. The sub-ps red-shift of the emission observed in

several PPV-based polymers at room temperature was also

ascribed to exciton relaxation. Indeed, being absent in small

oligomers, this red-shift cannot be accounted for exclusively

by vibrational relaxation or solvation dynamics.76,77 A similar

argument has also been used to exclude that the aforemen-

tioned red-shift is primarily due to conformational dynamics

and planarization in the excited state. Conformational dy-

namics in the excited state are believed to play an important

role in the relaxation of photoexcited polymers. In particular,

ultrafast structural relaxation on a time scale comparable with

the period of high-frequency vibrational modes is believed to

FIG. 5. Schematic view of the photophysics of the aggregated phase of

MEH-PPV. The delocalized exciton states initially photoexcited (upper

frame) localize on an ultrafast (<30 fs) time scale on smaller domains on the

aggregate chains (lower frame). Within the following ≈200−250 fs, exciton

relaxation within these smaller domains occurs and leads to the population of

the exciton states at the bottom of the density of states. On a ≈4 ps time scale,

Förster energy transfer leads to migration of the exciton towards the lowest

energy states of the aggregated phase, from which energy transfer to defect

states and radiative relaxation take place.
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be responsible for the ultrafast exciton localization in MEH-

PPV.7,31,57,58 In contrast, torsional relaxation and excited-state

planarization are expected to take place on a time scale of a

few ps or longer in MEH-PPV at room temperature and in

solution.60,78,79 In an aggregated state and at low temperature,

we expect such conformational changes to be even slower.

In agreement with all these observations, we argue that

the ≈200 fs shift arises mostly from exciton relaxation within

a manifold of electronic states sharing the same ground state

(otherwise the bleach would shift as well). This assignment is

further supported by the fact that, as discussed above, on a ps

time scale, the exciton population is already relaxed to exciton

states at the bottom of the density of states, fromwhich Förster

energy transfer takes place.

V. SUMMARY AND CONCLUSIONS

Summarizing, the combination of broadband transient

absorption and coherent 2D spectroscopy experiments allows

us to propose the relaxation pathways shown in Fig. 5 for the

aggregated phase of MEH-PPV at low temperatures.

The initially delocalized photoexcited exciton states

localize on a sub-30 fs time scale on smaller conjugated

domains of the polymer chains (spectroscopic units in the

following).7Depending on the excitation frequency and owing

to the energetic disorder within the aggregate, different

spectroscopic units can be accessed. Exciton relaxation within

the manifold of states sharing the same ground state occurs

on a time scale of ≈200 fs, simultaneous with cooling. This

mechanism can be regarded as a relaxation process occurring

within each spectroscopic unit and leads to the ultrafast

population of the lowest excitonic states belonging to that

spectroscopic unit. Our 2D measurements reveal that in the

frequency range accessed by our pulses, the average energy

of the exciton states populated after the ≈200 fs relaxation

is at most ≈55 cm−1 higher than the lowest exciton states

of the aggregate. It would be interesting to compare this

value with the theoretical inhomogeneous width of the lowest-

exciton density of states in the aggregated phase that can be

accessed by our excitation pulses, as a function of the energetic

disorder and the excitonic density of states within the single

spectroscopic units.

Diffusion of the relaxed excitons occurs on a longer

(≈4 ps) time scale via interchain Förster energy transfer. As

no further signatures of energy transfer within the aggregated-

phase are detected on longer time scales, we conclude that

the ≈4 ps exciton diffusion localizes efficiently the excitons

in the energetic states at the bottom of the aggregated-phase

density of states. From these states, further exciton transfer

towards defect sites, as well as poplation relaxation, occurs

with a broad distribution of rates on time scales >10 ps.

Noteworthy, despite chain planarization in the excited

state is expected in polymers, we do not see clear signatures of

such a process in our data. The MEH-PPV aggregated phase

compares better to a bulk polymer than to solvated chains,

thus conformational effects are expected on time scales longer

than 10 ps. It is possible that due to the already highly planar

structure of the aggregated phase, the effects of conformational

changes on the emission spectra are too small to be detected

in our experiments. Experiments monitoring the aggregated-

phase emission with a higher spectral resolution could give an

answer to this question.

Coherent 2D spectroscopy is a particularly suited tech-

nique to observe the energetic relaxation as a function of the

excitation energy in complex systems. By combining coherent

2D spectroscopy and transient absorption, we have character-

ized the energy relaxation in the aggregated low-temperature

phase ofMEH-PPV. In particular, we showed thatmost exciton

relaxation is ultrafast with little spatial energy displacement,

and that 95% of excitons are localized in the low-energy

exciton states within the first ≈12 ps after excitation.
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de. SUPPLEMENTARY FIGURES AND TABLES

gIG. S1. Selection of transient absorption spectra at different population times for the aggregated

phase of MEH-PPV at 120 K and upon excitation at 2.10 eV (1.69× 104 cm−1).

S2



Publications 

125 

  

∆
m

O
D

0

-2

-4

-6

-1

-5

-3

0.1 1 10 100 1000
Time [ps]

0.1 1 10 100 1000

Time [ps]

∆
m

O
D

0

-1

-2

-3

Log(τ)
0-1-2

0.0

41 2 3

0.2

0.4

0.6

0.8

1.0

A
m

p
lit

u
d

e
 [
a

rb
. 
u

.]

0.0

0.2

0.4

0.6

0.8

1.0

A
m

p
lit

u
d

e
 [
a

rb
. 
u

.]

Log(τ)
0-1-2 41 2 3

(a) (b)

(c) (d)

hIG. S2. Temporal evolution of the transient absorption signal at four different probe wavenum-

bers (symbols) upon (a) 2.10 eV excitation and (b) 2.03 eV excitation. Dashed lines are the best

multi-exponential fits to the observed kinetics. The best rate distributions describing the temporal

evolution of the signal at 1.68×104 cm−1 eV are retrieved via the maximum entropy method via the

program MemExp and are shown (red) for (c) 2.10 eV excitation and (d) 2.03 eV excitation. Ver-

tical bars (black) indicate the time constants that best describe the data when a multi-exponential

model is assumed.
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0

iIG. S3. Kohlrausch-Williams-Watt representation of the M
(i)
0 (T ) decays (symbols) for i = B01,

B00 and SE01 at 140 K upon excitation at 2.10 eV (left panel) and 2.03 eV (right panel). The solid

lines indicate different slopes for ease of comparison.
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kIG. S5. Comparison between different kinetic models and experimental data. Time dependence

and best rate distribution retrieved by the MEM analysis via the program MemExp for the linear

combination of an exponential and a stretched exponential decay (first line), a multi-exponential

decay with four time constants (second line) and the experimentally measured band integral MB00

0

upon excitation at 2.10 eV of the 140 K sample (third line).
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(a)

(b)

lIG. S6. Best rate distributions describing the temporal evolution of M0 for the bleach bands B01

(blue squares) and B00 (red circles), upon excitation at (a) 2.10 eV and (b) 2.03 eV, as retrieved

via the maximum entropy method analysis. Vertical blue dashed (red solid) lines show the best

rate constants for the multi-exponential fit of the B01 (B00) population dynamics.
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mABLE S1. Characteristic time constants obtained from a fit of the integrated signals M
(i)
0 (T )

(i = B01, B00 and SE01) of the transient absorption data described in Section III.A of the main

paper, with the fit function M (i)(T ) = A1e
−

Tn1 +A2e
−( Tn2 )

β

.

oxcitation energy 2.10 eV 2.10 eV 2.03 eV

Temperature 120 K 140 K 140 K

population decay M0(T )

τ1 [ps] 1.18± 0.12 0.88± 0.07 0.26± 0.17

τ2 [ps] 74± 3 94± 3 63± 3

β [ps] 0.48± 0.01 0.49± 0.01 0.45± 0.02

ν
τ
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qIG. S7. Amplitude of the ≈ 200 fs red-shift along the detection axis observed in the 2D experiment

as a function of the excitation wavenumber ν̃τ , obtained from the bi-exponential global fit of

M1(ν̃τ , T ). Error bars are ±σ. Note that, in the fit, the amplitude of the ≈ 200 fs component

was fixed to 0 for ν̃τ < 1.679 × 104 cm−1, where no shift on this time constant was observed

within our signal-to-noise ratio. Differently from the ≈ 4 ps dynamics, where both the bleach

and SE contributions to the signal shift simultaneously towards lower wavenumbers, on a ≈ 200

fs timescale only the SE band red-shifts. Since M1(ν̃τ , T ) measures center of mass frequency of a

signal composed by overlapping (0-0) bleach and SE bands, the amplitude of the ≈ 200 fs shift is

not a direct quantitative measure of the shift of the SE band.

S8



Publications 

131 

 

4.6. The Temperature Induced Order-Disorder Transition 

in Solutions of Conjugated Polymers Probed by Optical 

Spectroscopy 

 

 

 
 

 
 
 
 

Fabian Panzer, Heinz Bässler and Anna Köhler 

 

 
 
 
 

Prepared for submission to 

The Journal of Physical Chemistry B 

As invited Feature Article 

 
 
 
 

 

  

 

P
L

Energy

P
L

Energy

P
L

Energy

P
L

Energy



Publications 

132 

The temperature induced order-disorder transition in 

solutions of conjugated polymers probed by optical 

spectroscopy 

 

Fabian Panzera,b,c, Heinz Bässlerb, Anna Köhlera,b,* 

 

a Experimental Physics II  

University of Bayreuth, 95540 Bayreuth, Germany 

 

b Bayreuth Institute of Macromolecular Research (BIMF) 

University of Bayreuth, 95440 Bayreuth, Germany 

 

c Department of Functional Materials 

University of Bayreuth, 95440 Bayreuth, Germany 

 

 

Corresponding Author 

*E-Mail: anna.koehler@uni-bayreuth.de 

 

Keywords: Phase Transition, aggregation, planarization, coil globule, collapse 

  

mailto:anna.koehler@uni-bayreuth.de


Publications 

133 

Abstract 

While the aggregation of -conjugated materials is known to significantly impact on the 

photophysics of thin films and optoelectronic devices, only little is known about the 

nature and the mechanisms on how such aggregates form. 

In this feature article, we compare and discuss how temperature induced aggregate 

formation in solution is manifested in a range of conjugated homopolymers, a low-

bandgap-type donor-acceptor polymer and in low molecular weight compounds. As 

aggregation impacts on the electronic structure, (temperature dependent) optical 

spectroscopy is a simple and powerful tool to analyse aggregate formation. We present 

how the temperature dependent optical spectra can be analysed and how they are 

associated to distinct conformational states. We show that aggregate formation 

proceeds in a similar manner in all the investigated compounds, and that the nature of 

the order-disorder transition in -conjugated materials is rather of first order nature. We 

show that the mechanism of the aggregation process can be understood as a coil-globule 

process, where the chain expands before it collapses into a highly ordered dense state. 

We furthermore discuss the important role of side chains and the impact of changes in 

environmental polarization during aggregate formation. Finally, a summarised picture is 

derived, where the temperature dependent conformational states are linked to the 

optical spectra. 
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1. Introduction 

Thin films of semiconducting polymers are often considered as being amorphous. In 

many cases, however, intermolecular interactions cause the formation of phases with 

some degree of short-range, or sometimes even longer-range order. These ordered 

polymer chains are commonly referred to as “aggregates”. By virtue of their mutual 

interaction, the electronic structure of polymers in such aggregates differs from that of 

the non-interacting chains in the amorphous matrix surrounding the aggregates. If 

aggregates are formed, this has a strong impact on the photophysical processes that 

occur in the polymer films, notably in devices. For example, the field effect mobility µ is 

higher in films containing aggregates,1-4 and the dissociation of electron-hole pairs in 

thin films is enhanced both in films containing only a single-compound,5-7 as well as in 

donor-acceptor composites in organic solar cells.8-12 As a result, there is a need to 

understand how such aggregates form and how they can be identified by simple 

spectroscopic means. 

The formation of crystalline areas has been studied for several decades with respect to 

flexible, non-conjugated polymers in the melt.13 In contrast, investigations on the 

aggregation of semi-rigid conjugated polymers in solution have emerged only in recent 

years.14-19 In consequence, the process of aggregate formation is not yet fully understood. 

When processing conjugated polymers from solution, e.g. by spin coating onto a 

substrate, the kinetics of solvent evaporation and associated film formation influences 

the process of aggregation strongly, and adds complexity to the thermodynamic 

process.20 As it is clear that understanding aggregate formation is a prerequisite for 

controlling the morphology of organic semiconductor films, research focused on 

assessing the influence of various parameters on the film formation process.  

For example, parameters that have been addressed are the role of the boiling point of 

the solvent (demonstrating that higher boiling point solvents are conducive to aggregate 

formation),5,20-22 the role of the solubility parameter of the solvent (showing that a poorer 

solvent is more likely to induce aggregation),23 the role of sidechains (long unbranched 

sidechains often support aggregation while branched sidechains frequently prevent it),24 

and the role of structural regularity (regioregular structure leads to more aggregation in 

P3HT than regiorandom structure).25,26 A further parameter that is anecdotally known to 
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affect aggregation include the “quality” of the batch of polymer – usually it is the 

polydispersity that is the key parameter here as shall be outlined further below. 

So far, investigations concentrated mainly on homopolymers such as polyfluorene with 

octyl sidechains (PFO),20,27-30 regioregular poly(3-hexylthiophene) (P3HT),1,3,31-34 and, to a 

lesser extent, derivatives of poly(p-phenylene vinylene) (PPV),35-41 and poly(p-phenylene 

ethynylene) (PPE).17,42-44 In addition to structural methods such as GiSAXS or GiWAXS or 

GiXRD,14,45,46 optical spectroscopy has emerged as a powerful tool to identify 

aggregation. The analysis of the data is greatly facilitated if kinetic effects – such as 

solvent evaporation rates – are reduced, so that thermodynamic effects are more 

dominant. A popular approach is therefore to investigate the aggregation processes in 

solution. For example, by gradually changing the composition of a mixed solvent, the 

solubility of the polymer may be reduced in a controlled way such as to induce 

aggregation.15,18,26,47 .While this approach is systematic, it is laborsome and prone to small 

errors as every solution needs to be prepared separately in order to keep the overall 

concentration constant. A simple way to reduce the quality of the solvent in a controlled 

and continuous way is to reduce the temperature. Many solvents can be classified as a 

“good” solvent (in the sense that the chains expands in this solvent) at elevated 

temperatures, and they become “poor” solvents (so that the chain contracts) at lower 

temperatures. Thus by reducing the temperature, aggregation can be induced to a 

polymer solution without any other changes to the system. In this feature article, we 

compare and discuss how aggregate formation is manifested in a range of 

homopolymers, a low-bandgap-type donor-acceptor polymer and in low molecular 

weight compounds. These materials have all been investigated by temperature-

dependent optical spectroscopy. The focus of this work is to show how aggregation 

proceeds in a similar manner in all these compounds, and how distinct conformation can 

be identified by the analysis of the associated spectra. 

To achieve this, it is helpful to summarize briefly what is known about the impact of 

inter-chromophore interaction on the structure of excited states. The changes in the 

optical spectra due to coupling of different chromophores have been established by 

Kasha.48,49 In brief, when two chromophores are adjacent, the electron distribution on 

one chromophore interacts electrostatically with the electron distribution on the other. 

In consequence, the energy of an optical transition is modified by two factors. First, the 
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energies in the ground state and in the excited state of each chromophore are reduced 

by the polarization energies D and D’, respectively, compared to the energies in the 

isolated chromophores. As D’ is typically larger than D, a bathochromic shift ∆D of the 

transition energy results. This energy shift – sometimes also called “gas-to-crystal shift” 

is akin to a solvation energy. The mutual van der Waals interaction between the two 

chromophore alters their charge distribution and thus reduces the overall energies. 

Second, due to their interaction, the energy levels of the two chromophores split by the 

resonance energy ß. This is illustrated in Figure 1. The energy of the associated optical 

transition is given by ∆𝐸𝑡𝑜𝑡𝑎𝑙 = ∆𝐸 + ∆𝐷 ± 𝛽 with ∆𝐸 being the excitation energy of a 

single molecule and ∆𝐷 = 𝐷 − 𝐷′ is the difference between 𝐷′ and 𝐷, being negative as 

usually |𝐷′| > |𝐷|.  

 

Figure 1: Illustration of the different energetic shifts and splitting of the energy levels occurring 

for the formation of an ideal dimer. The corresponding relative orientations of the transition 

dipoles for the two classes of aggregates are indicated as arrows. 

If the two chromophores are aligned in a coplanar fashion, the upper of the two energy 

levels carries all the oscillator strength and the absorption is hypsochromically shifted 

(“H-aggregate”). Emission and absorption from the lower level carries no oscillator 

strength in the case of perfectly ordered arrangement. The opposite is the case for a 

collinear arrangement, called “J-aggregate” or “Scheibe-aggregate” after Jelly,50 and 

after Scheibe.51 Consequently, the radiative decay constant is an important tool to 

identify whether any emission observed results from an aggregate with a H- or J-type 

nature. This description has been developed in the case when the coupling between the 

chromophores is strong, as is often the case for molecules or short oligomers, and in 

addition to these two limiting cases illustrated, there are other orientations that can 
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occur. By the way, if the coupling is particularly strong so that the two chromophores 

change their equilibrium geometry due to the interaction, the resulting excited state is 

termed an excimer and it is characterized by a particularly broad red-shifted weak 

emission. A contemporary discussion of H- and J- aggregation for short oligomers has 

recently been presented by Gierschner and Park,52 and a review on experimental results 

in dye molecules is given by Würthner et al.53 Figure 2 shows how the optical spectra and 

radiative decay constant are affected as a result of the interaction. 

 

Figure 2: Absorption (blue lines) and emission (red lines) features, and photophysical data (PL 

quantum yields 𝜱𝑭, lifetimes 𝝉𝑭, and rate constants 𝒌𝒓) of Distyrolbenzene-based materials, as 

measured on nanoparticle suspensions (solid lines) and in solution (dashed lines). Excimer emission 

bandshape, and J/H absorption bandshapes are indicated. From Ref 52 

The interaction that occurs between conjugated segments in semiconducting polymers is 

often weaker than that observed in short oligomers or dye molecules, so that the 

resulting spectra differ less from the spectra of the non-interacting chromophores. The 

most noticeable changes are spectral shifts in the range of 100 - 250 meV and changes in 

the distribution of the vibrational intensities. Spano has addressed these changes in 

vibrational structure in his theoretical approach.54-57 He could show that in the case of 

perfectly ordered weakly interacting H-aggregates at 0 K, the vibrational structure 

changes so that the 0-0 peak is reduced in absorption yet fully suppressed in emission. 

Correspondingly opposite changes with enhanced 0-0 peak occur for weakly interacting 
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J-aggregates. These effects are moderated if the temperature is higher or if the chains 

are not fully ordered. Importantly, it is possible to extract the intermolecular coupling 

strength from the relative height of the vibrational peaks in absorption.54 Spano has 

successfully applied his theory to the polymers P3HT as an example of a weakly 

interacting H-aggregate and to MEH-PPV as an example of a disordered, weakly 

interacting J-aggregate.57 P3HT nanofibers have also been interpreted as J-type 

structures. 12,58-60 

In summary, even though it is clear that crystalline areas, resulting from intermolecular 

interactions, are important for organic solar cells or field effect transistors, the formation 

of ordered structures in organic semiconductors is not fully understood. In this context, 

we address two aspects, that are  

(i) what causes the formation of ordered structures and how does it happen? 

(ii) How does the resulting electronic coupling in ordered structures impact on 

their electronic structure? 

by comparing temperature dependent spectroscopic data on a range of polymers and 

short oligomers. 
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2. Results and Discussion 

2.1. General phenomenology  

We shall first give an overview on the general features that are observed upon 

aggregation using the polymer P3HT as a model compound. Figure 3 shows temperature 

dependent absorption spectra of the widely used and intensively studied conjugated 

polymer P3HT. It is known to undergo an order-disorder transition in solution upon 

cooling,61,62 where the occurring spectral changes can be classified into three temperature 

ranges. 
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Figure 3: Absorption spectra of P3HT in THF solution for different temperatures. Spectra that 

belong to the three inherent temperature ranges described in the text are indicated with different 

lines (dashed, dotted, and straight). From Ref 62 

At the starting temperature at 300 K, the spectrum exhibits a featureless and rather 

broad spectral shape, which is attributed to a disordered chain conformation. When 

decreasing the temperature from the starting temperature onwards, the broad 

absorption spectrum shifts to the red and concomitantly gains intensity until a 

temperature of 270 K is reached (dashed lines in Figure 3). This red shift and increase in 

intensity suggests a planarization process of the disordered chains, leading to an 

increased conjugation length. Upon decreasing the temperature below a certain critical 

temperature (temperature range 2, dotted lines in Figure 3), the absorption from the 

higher energy regions decreases while an additional distinct, well structured absorption 

band appears at lower energy at 2.0 eV - 2.4 eV. In combination with the occurrence of 

an isosbestic point at 2.53 eV, the spectral changes within this temperature range can be 

attributed to an order-disorder phase-transition of P3HT. In this framework, the broad 
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absorption band centered at 2.8 eV is assigned to disordered chains in an amorphous 

phase whereas the structured absorption band at lower energies is attributed to ordered 

chains in an aggregated phase. Below this intermediate temperature range, in which the 

absorption spectrum undergoes the most significant changes, the new spectral features 

at low energies gain intensity upon further cooling and also shift to the red until the 

glass transition temperature of the solvent is reached (red lines in Figure 3). Similar to 

the temperature range 1, the red shift of the absorption feature of the aggregated phase 

is associated to a further planarization of the aggregated chain segments upon cooling 

to the lowest temperatures measured. Depending on the solvent, below a certain 

temperature the solvent forms a glass or crystallizes. In that case, further major 

conformational changes are prevented and increased light scattering often dominates.  

Thus, in summary the order-disorder transition of P3HT occurs in three major steps which 

are for decreasing temperature: (i) planarization of the disordered phase, (ii) aggregate 

formation (iii) planarization of the aggregated phase. This sequence of temperature 

dependent conformational changes is not limited to the case of P3HT but, rather, it 

appears also in various other conjugated compounds. Figure 4 shows the temperature 

dependent absorption spectra of a selection of different materials in which we also 

found aggregation upon cooling a solution. In all these compounds, the above 

mentioned three step sequence of conformational changes can be observed. In addition 

to P3HT, the selection of investigated materials also includes the homo-polymers PFO, 

MEHPPV and MEHPPE (Figure 4a-c).  

Furthermore we observed a temperature induced aggregation behaviour for an oligo 

PPV (Heptamer BEH-PPV, Figure 4e) and also for the more device relevant low bandgap 

polymer PCPDTBT (Figure 4d).63 Recently, Reichenberger et al also found that the  

-conjugated molecule DTS(FBTTH2)2, used for efficient solar cells, also undergoes a 

temperature induced order-disorder transition (Figure 4f).64 Even for this molecule, the 

same three step sequence of conformational changes upon cooling was observed as for 

the polymeric compounds. Therefore, the temperature dependent conformational 

changes appear to be a general phenomenon which not only applies to polymers, but 

also can be observed in oligomers as well as small molecules.  
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Figure 4: (a) - (f) Temperature dependent absorption spectra of the investigated material systems 

in MTHF solution showing aggregation behaviour. The chemical structure is indicated on top of 

each panel. For each compound, the spectrum measured at the highest temperature, at a 

temperature directly above the phase transition, and at the lowest temperature are indicated in 

blue, green (dotted) and red respectively. 

Nevertheless, when comparing the shape of the absorption spectra, differences between 

the compounds become evident. This is particularly clear at low temperatures where the 

aggregated phase dominates (Figure 4, red solid lines).  

 

 

2.2. Identification of the order-disorder transition by absorption spectroscopy - 

Approaches to analyse measured absorption spectra 

To gain further insights into both, the spectral character of the neat phases and the 

nature of the phase transition itself, it is necessary to analyze the measured spectra 

carefully. It is known that, during aggregation, a fraction of the polymer chains are 

aligned in a well ordered fashion while at the same time the remainder of chains is 

disordered.65 This semi-crystalline nature of conjugated polymers also impacts on the 
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absorption spectra, because the spectra of ordered and disordered domains are 

superimposed. To identify both phases thus requires a deconvolution of the absorption 

spectra.18,19,66-68 This can, for example, be done by suitably normalizing the absorption 

spectrum of the neat disordered phase (e.g measured at elevated temperature) such that 

it fits to the high energy side of an absorption spectra taken at a lower temperature 

where both, disordered and ordered, aggregated chains coexist. The difference between 

this spectrum and the normalized spectrum of the disordered chains then results from 

absorption of ordered chains in the neat aggregated phase. In recent studies we applied 

this method to decompose absorption spectra where features from disordered and 

ordered chain superimpose, and we found this method to apply to various -conjugated 

materials.41,61,64 We point out that preferably the absorption spectrum measured at a 

temperature directly above the critical transition temperature of the aggregation process 

should be used since this takes the planarization processes during the first temperature 

range into account. 

Figure 5a illustrates the result of this approach for the case of MEH-PPV, where the 

absorption spectrum at 180 K was used for fitting to the high energy side of the 150 K 

spectrum. The difference between these two spectra is assigned to absorption from 

aggregated MEH-PPV, thus allowing to determine the fraction of aggregate absorption 

 𝑓𝑎𝑏𝑠𝑎𝑔𝑔𝑟 relative to the overall absorption. In order to derive the actual fraction of 

aggregated chains 𝑓𝑎𝑔𝑔𝑟 from this, on needs to take into count that the oscillator strength 

may differ for chromophores in the disordered and in the aggregated phase. Following 

the approach demonstrated by Clark et al for P3HT,22 we use 𝑓𝑎𝑏𝑠𝑎𝑔𝑔𝑟 = 𝐹 ∗ 𝑓𝑎𝑔𝑔𝑟, where 

𝐹 is the relative change of oscillator strength between the disordered and aggregated 

chain conformation.22,41,61,63,64 As the oscillator strength 𝜀 correlates with the area below 

the absorption spectra, 𝐹 can be derived from the temperature dependent absorption 

spectra by:  

    
∆𝐴𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒

∆𝐴𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟𝑒𝑑
=

𝜀𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒

𝜀𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟𝑒𝑑
= 𝐹     (1) 

with the areas ∆𝐴𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 and ∆𝐴𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟𝑒𝑑 taken from the shaded regions as illustrated 

in Figure 5a. Using this approach, it is possible to calculate the absolute fraction of 

aggregate for each measured spectrum at a certain temperature below the phase 

transition. 
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Figure 5: (a) Illustration of the deconvolution approach of the absorption spectrum to obtain the 

contributions of disordered and aggregate phase (red) for MEHPPV. Areas which are relevant for 

the determination of the change in oscillator strength between disordered and aggregated phase 

are also indicated. (b) Temperature dependent fraction of aggregate for the different 

investigated material systems. 

An alternative method to derive the temperature dependent fraction of aggregates is to 

simply track the 0-0 Peak intensity of the aggregated phase as a function of temperature. 

While this is a simple, and thus fast approach, it has the disadvantage that only the 

qualitative character of the fraction of aggregates can be obtained yet absolute values 

cannot be acquired. 

Figure 5b shows the normalised fraction of aggregate as a function of temperature for 

the different materials investigated. In each case, the fraction of aggregates was 

obtained by using the above mentioned approach. For every investigated material system 

the fraction of aggregate is zero above the phase transition, by definition. Below a 

certain temperature the fraction of aggregate increases steeply and finally saturates at 

low temperatures. It is obvious that both, the steepness of the transition, (
𝜕𝑓

𝜕𝑇
)

𝑇≤𝑇𝑐

 and 

the transition temperature depends sensitively on the material, while the occurrence of 

an order-disorder transition is a general property of all compounds investigated. An 

important parameter toward an understanding of this phenomenon is the critical 

transition temperature Tc of the order-disorder transition. It is defined as the point of 

inflection of the fraction of aggregate faggr and calculated as: 

      
𝜕2𝑓𝑎𝑔𝑔𝑟

𝜕𝑇2 |
𝑇𝑐

= 0      (2) 
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In Table 1 the calculated values of Tc of the investigated compounds are listed from which 

the variety of critical temperatures that can occur becomes clear again. Furthermore 

Table 1 also gives further material parameters such as the chain length and 

polydispersity, whose influences on the phase transition we discuss in the following. 

 

Table 1: Overview of material parameters such as Mw, Mn, resulting Polydispersity Index via 

PDI=Mw/Mn Number of Repeating units (=Degree of Polymerisation) and relevant parameters that 

quantify the order-disorder transition; with critical transition temperature Tc, width of the 

transition T and the factor F which corresponds to the relative change in oscillator strength. 

Compound Type Tc T PDI Rep 

unit 

M Rep. 

unit 

Mw Mn Factor 

F 

  K K  # g/mol kg/mol kg/mol - 

P3HT Polymer 

266 12 1.2 205 

166 

39.4 34.2 

1.4 

252 35 2.0 113 38.4 18.8 

258 13 1.2 111 21.6 18.6 

248 11 1.1 68 12.5 11.3 

216 24 1.2 30 6.3 5.1 

PFO Polymer 245 33 2.9 79 391 90.7 30.9 1 

MEH-PPE Polymer 110 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

MEH-PPV Polymer 175 13 3.8 210 276 218.8 58.1 1 

PCPDTBT Polymer 295 50 1.7 25 535 23 13.5 1.4 

BEH-PPV 
Polymer 210 33 n.a. n.a. 

359 
n.a. n.a. 1 

Oligomer 155 22 n.a. 7 n.a. n.a. 1.1 

p-DTS-

(FBTTH2)2 

Molecule 200 6 1 1 1220 - - 

0.6 

 

When the spectrum of the aggregated chains is identified, it can be analysed with respect 

to the intensities of the different vibrational peaks in the framework of the theories 

developed by Spano or Gierschner.66,67  
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In the Spano-model, the free exciton bandwidth 𝑊 can be inferred from the ratio of the 

0-0 and 0-1 vibrational peaks, 𝐴0−0 and 𝐴0−1, according to 

    
𝐴0−0

𝐴0−1
≈ (

1−0.24𝑊/𝐸𝑝

1+0.073𝑊/𝐸𝑝
)

2

     (3) 

With 𝐸𝑝 being the main vibrational energy, which is often assumed to be dominated by 

the symmetric C=C stretch at 0.18 eV. When doing this, it is a good idea to actually 

analyse the spectra in terms of a Franck-Condon progression so that the intensities of the 

two vibrational peaks can be identified clearly (without contributions due to their 

overlap). Typical values for the bandwidth are in the range of 80 - 100 meV for P3HT, 22,34 

and for MEHPPV and PFO in the range of 30 meV.57 69 

 

2.3. The nature of the phase transition 

When the fraction of aggregates is recorded as a function of temperature in a 

commercially available sample such as MEH-PPV, the resulting curve (see Figure 5b) 

increases only gradually. It turns out that the shape of the curve empirically fits to a 

function of the form 𝑓(𝑇) = (
𝑇𝑐−𝑇

𝑇𝑐
)

1
3⁄
, which is characteristic for a 2nd order phase 

transition, suggesting that this might apply to the order-disorder transition in MEH-PPV.35 

In subsequent work, we addressed the issue of resolving the nature of the phase 

transition in a systematic manner by comparing the temperature dependence of the 

transition in a range of P3HTs with different molecular weights. These samples had been 

synthesized using a Grignard metathesis reaction method that ensured that all batches 

had not only a high degree of regioregularity but also, in particular, a small polydispersity 

as detailed in Table 1.61 Figure 6a shows the normalized fraction of aggregate as a 

function of temperature for P3HTs with molecular weights of 5, 11, 19 and 34 kDa. Except 

for the lowest molecular weight, one can see that the transition is steep, i.e. it occurs in 

a narrow temperature range. Moreover, the transition temperature Tc, inferred from the 

the inflection point, reduces with reducing chain length. This is illustrated further in the 

bottom panel, where the critical transition temperature is displayed as a function of 

repeat units in the chain. The same dependence had also been observed for PFO.19,70 In 

the case of PFO, Vanden Bout and co-workers used a model by Sanchez et al. to fit the 

chain lengths dependence. The model is based on a mean field theory of a polymer chain 
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with excluded volume and attractive interactions and describes the thermodynamic 

behaviour of polymer chains that undergo a coil globule transition.71 In the framework 

of the Sanchez-model, the critical transition temperature 𝑇𝑐 depends on the number of 

repeat units 𝑁 according to 

     
𝜃−𝑇𝑐

𝑇𝑐
=

𝜑

√𝑁
      (4) 

where  is a constant that depends on the chain stiffness and the theta temperature , 

which is the critical temperature of an infinite chain. For an infinite chain, this is a second-

order transition in the Landau sense, yet it becomes pseudo-second order for finite chain 

lengths. Figure 6a shows that the Sanchez-model of the coil-globule transition is suitable 

to describe the chain lengths dependence of the transition temperature also for P3HT. 

Due to the low polydispersity of the P3HT samples, the agreement is even improved 

compared to the PFO samples investigated by Vanden Bout et al.19 From Figure 6 it also 

becomes clear that, for short chains, Tc can be lower than the glass temperature or 

crystallization temperature of the solvent used, so that the phase transition cannot be 

observed in the temperature range in which the solvent is liquid. This is manifested, for 

example, for oligomers of PFO and of PPV-derivatives. We observed the order-disorder 

transition of the polymers PFO in MTHF solution at a temperature of 245 K, and of  

BEH-PPV at 210 K. In contrast, we could not observe any transition for analogous oligo-

fluorenes with 7 repeat units, consistent with a report by Cone et al.19 Using the Sanchez-

model would predict the Tc to be below 140 K for the PFO heptamer, i.e. at or below the 

glass temperature of MTHF which is about 130-140 K.72 Similarly, for a heptamer for a 

BEH-PPVs, the transition can still be observed at Tc = 155 K, yet it is not measurable for 

the pentamer. 
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Figure 6: (a) Normalised fraction of aggregate as a function of temperature four batches of P3HT 

with different molecular weights (top) and the corresponding critical transition temperatures 

(bottom), together with a fit of equation 4 (grey line, see text). (b) Normalised fraction of 

aggregate as a function of relative temperature (top) and corresponding normalised first 

derivative of the for the small molecule p-DTS(FBTTH2)2 and two P3HT samples with similar 

molecular weight and regioregularity yet different polydispersity (data from Refs 61 and 64). 

When considering the dependence of Tc on molecular weight for P3HT, we noticed that 

the samples with low polydispersity showed a significantly more narrow transition range 

than commercial samples with higher polydispersity yet the same molecular weight. This 

is displayed in Figure 6b. A measure for this is the width of the peak in the first derivative 

taken from the temperature dependent fraction of aggregate. This is shown in Figure 6b 

as a function of temperature difference to Tc. Two samples of P3HT with same molecular 

weight (~19 kDa) yet PDIs of 1.2 and 2.0, respectively, show a width (FWHM) of the 

transition of T=13 K and T=35 K, respectively. For comparison, we also include data for 

the molecule p-DTS(FBTTH2)2 which has a PDI of 1.0 and shows a width of T=6 K. This 

evolution can easily be understood in the framework of the Sanchez-model. If the 

transition temperature depends on chain length, then in more polydisperse samples 

different transition temperatures for the different chain lengths co-exist. Upon lowering 

the temperature, the longest chains collapse first, followed by the shorter chains at a 
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lower temperature, and as a result the transition appears to broaden out. This smearing 

out masks the actual temperature dependence of the transition. Figure 7a shows the 

temperature dependent fraction of aggregates for the two P3HT samples with different 

polydispersity plotted versus (
𝑇𝑐−𝑇

𝑇𝑐
)

1
3⁄
 on a double-logarithmic scale.  
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Figure 7: (a) The fraction of aggregated as a function of (Tc-T)/Tc in a double logarithmic 

presentation for the two P3HT samples with low and high PDI as indicated. The dashed line 

indicates a slope of 1/3. (b) Normalized fraction of aggregate of P3HT as a function of temperature 

upon cooling and subsequent heating. From Ref 61 

The solid line indicates a slope of 1/3, indicative of the second order phase transition. 

One can see that the more polydisperse sample appears to follow this relationship and 

only for the less polydisperse sample does the deviation from the slope of 1/3 become 

manifest and evident. This suggests that the transition is rather of first order nature, yet 

that it may appear as second order due to the superposition of different transition 

temperatures. Further support for the identification as first order is given by the fact that 

the transition temperature observed upon cooling and upon heating differ, e.g. by 20 K 

in the case of P3HT (Figure 7b). This can be attributed to the latent heat of crystallization 

and is often said to be a defining feature of a first-order phase transition.73  

So far, we focussed on the phenomenological description of the order-disorder transition 

and its manifestation in the absorption spectra. In summary, we found that (i) the 

transition proceeds in a three-step fashion, with the first step being a planarization and 

concomitantly often a swelling of the chain, the second step being the actual collapse 

into an ordered, electronically interacting structure, and the third step being the further 

elongation and perfection of order in the aggregated structure. (ii) We showed that the 

transition temperature depends on the chain length and can be described in the 
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framework of a mean-field model developed by Sanchez for coil-globule transitions. 

Finally, (iii), we demonstrated that in polydisperse samples, the temperature dependence 

of the transition can be smeared out due the distribution of molecular weights and 

associated transition temperatures. Moreover, we established that these phenomena are 

not limited to any particular semiconducting polymer but, rather, that they occur for a 

wide range of compounds encompassing homopolymers, copolymers, short oligomers 

and a molecule. We now discuss which general insight be inferred from these 

observations on the mechanism of the transition. 

 

2.4. The mechanism of the aggregation process 

A particular unusual feature in the order-disorder transition is the initial swelling of the 

polymer chain, caused by its planarization when the temperature of the solution is 

lowered within the first stage. The commonplace understanding of a coil-globule 

transition is that a chain is swollen in a “good” solvent yet collapses into a globule in a 

“poor” solvent.74 Thus, as the quality of a solvent is reduced upon reducing the 

temperature, one would expect a (continuously) reduced radius of gyration of the 

polymer. The associated increased number of twists and turns in the polymer chain would 

reduce the mean conjugation length so that one would expect a hypsochromic shift in 

the absorption spectra. However, the opposite effect is observed, i.e. the absorption 

spectra shift to the red spectral range upon cooling. A bathochromic shift usually 

suggests an increased conjugation length. The increase of conjugation length is 

confirmed by the fact that the oscillator strength of the transition also increases (see 

Figure 3, dashed lines and Figure 4). For a given non-interacting polymer chain or  

-conjugated molecule, an increased conjugation length suggests that conjugated 

segments have become more planar and, in the case of a polymer, more elongated. Due 

to the overall rigidity of semiconducting polymer chains, it is thus reasonable to infer a 

more swollen, expanded chain conformation at the lower temperature limit of the first 

stage, immediately prior to the collapse. This scenario may, at first, appear unusual since 

it is not observed for the well-investigated range of flexible polymer chains such as 

polystyrene.75 However, our scenario is corroborated by Kolinski et. al.76 who investigated 

how the stiffness of a polymer chain impacts on the temperature-dependence of the 

radius of gyration using Monte-Carlo (MC) simulations. This is shown in Figure 8a. 
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Kolinski and co-workers consider the ratio between chain stiffness, parametrized by 𝜖𝑔, 

and attractive interaction, expressed by 𝜖𝑎. If the chain is flexible relative to 𝜖𝑎, the radius 

of gyration indeed decreases continuously as shown in Figure 8. However, when the 

stiffness parameter exceeds twice the interaction parameter, the chain expands prior to 

a sudden collapse that becomes discontinuous for very rigid chains. Regarding the nature 

of the transition, Kolinski notes: “Sanchez's mean field theory prediction that the 

polymer collapse transition is second order does not contradict our findings since he 

assumes a priori a highly flexible chain. Our MC results also show a smooth gradual 

collapse transition for flexible polymers”. Figure 8b shows typical calculated chain 

conformations that pertain to the two limiting cases. The top row shows how a flexible 

chain (𝜖𝑔/𝜖𝑎=1) in the random coil, high temperature state collapses in the dense random 

coil. For a stiffer chain (𝜖𝑔/𝜖𝑎=4), the collapse into a highly ordered dense state is shown 

in the lower row of Figure 8b. This highly ordered dense state that is predicted by the 

MC calculation is also evident in the absorption spectra in form of the structured, red-

shifted lower energy absorption that is established in the third stage of the phase 

transition (c.f. Figure 3, dotted lines). The ordered arrangement can be inferred from the 

high degree of structure in the aggregate absorption as well as from the analysis of the 

spectral shape in the framework of Spano’s model of weakly interacting H- or J- 

aggregates (vide supra). 

 

Figure 8: Understanding the temperature dependent order-disorder transition as a collapse 

process. (a) Calculated radius of gyration as a function of temperature for polymer chains with 

different stiffness. (b) Illustration of two different cases: The collapse process of a flexible chains 

leads to a dense random coil state (top), whereas for a stiff polymer, the collapsed state can show 

an inner structure/order (bottom). 
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Thus, the conclusions that can be drawn from the absorption spectra on the mechanism 

of aggregation are (i) that the chain expands before collapsing, and (ii) that the collapsed 

chain adopts a highly ordered arrangement. Further, we conclude that (iii) the transition 

can be described in the frameworks developed by Sanchez et al. and Kolinski et al. for 

coil-globule transitions.71,76 We note in particular that the first two points mark a 

difference in the aggregation mechanism to the order-disorder transition that is 

commonly described for flexible polymer chains such as polystyrenes.  

 

2.5. The role of side chains in the aggregation process 

From the preceding discussion, the misleading impression may arise that polymer chains 

always collapse into a dense ordered form provided the solvent can be cooled to 

sufficiently low temperatures and remains liquid. This is, of course, not the case. A key 

parameter that controls whether or not a chain collapses into an ordered arrangement 

are the sidechains. If sidechains induce structural disorder, e.g. by occurring in a 

regiorandom arrangement or by being branched, the tendency to aggregate is reduced 

compared to polymers with regioregular sidechain arrangement or linear sidechains. 

Classical examples are regioregular P3HT versus regiorandom P3HT,25 polyfluorene or 

polyindenofluorene with octyl side chains (PFO, PIFTO) compared to the polymers with 

ethyl-hexoxy sidechains (PF2/6, PIFTO).7,27,77 

Sidechains can also promote aggregation when they induce a planar backbone 

conformation. This is the case of PPV-derivatives, with heptoxy-substituted PPV 

aggregates while heptyl-substituted PPV does not.78 The reason is that the heptoxy-

substituted PPVs adopt a fully planar conformation in contrast to the heptyl-substituted 

ones. This is likely to be associated with the lesser steric demand of the oxygen compared 

to a CH2 at the same place. The dominant role of sidechains is also evident when 

considering MeLPPP. The ladder-type polymer is rigid and planar, yet the sidechains have 

been synthesized with the aim of preventing aggregation by being sterically demanding. 

LPPP-derivatives with less elaborate sidechains were prone to the formation of excimers 

which is undesired for OLED applications.79  

 Even though the theories on order-disorder transitions mentioned above consider 

only the interaction of polymer segments of the main chain, they are able to capture 
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essential elements of the transition such as the dependence of Tc on chain length,71 and 

the change in polymer conformation upon cooling.76 This suggests that for these 

polymers, i.e. P3HT, PFO and MEH-PPV, the role of the sidechains in the transitions is a 

secondary one. Clearly, more theoretical development that includes the effects of 

sidechains, e.g. as in hairy rod models, would be desirable.80 This is even more the needed 

as in some cases, the crystallization of long alkyl side chains can precede and even drive 

the crystallization of the polymer backbone.81 

As an example for the role of sidechains in the aggregation process we discuss the 

changes observed in P3HT upon cooling in solution, shown in Figure 9. The same batch 

of P3HT had also been investigated by small-angle and wide-angle X-ray scattering (SAXS 

and WAXS) when cooling from the melt, so that the structural data and the spectroscopic 

data could be correlated.62,82 Whereas so far, we always considered the absorption 

spectra, Figure 9 display the emission spectra, that, for several reasons, are more sensitive 

to changes in the associated polymer conformations. In Figure 9a, the evolution of the 

spectra from 300 K and 160 K is shown for ease of comparison. The associated absorption 

is given by Figure 3, and the transition temperature is about 260 K. We can attribute the 

two spectra at 300 K and 280 K to the random coil conformation of the amorphous 

polymer phase. At 265 K, some aggregate formation has already occurred. Analogous to 

the absorption spectra, we can decompose the 265 K spectrum into spectral contributions 

from the disordered chains (blue shaded area in Figure 9b) and to contributions from the 

aggregated chains (red shaded area in Figure 9b). The X-ray data suggest that at this 

stage, there is some phase separation between the polymer backbones and the polymer 

sidechains, so that the polymer backbones are already on top of each other, though are 

not yet fully planar. In Figure 9c, only the spectra of the aggregated chains are displayed 

for different temperatures. Upon cooling, strong spectral changes occur that indicate 

further planarization and an increase of electronic interaction.62 This correlates with the 

structural signatures of backbone planarization observed in the SAXS and WAXS data. 

Few spectral changes occur from 160 K to 5 K, except that the spectra shift slightly to the 

red and they become better resolved. As a consequence of the better resolved vibrational 

structure, it becomes evident that the 5 K spectrum cannot be described in terms of a 

Franck-Condon vibrational progression of one emitting state. Rather, it results from the 

superposition of emission from two states. This was further confirmed by site selective PL 

spectroscopy as well as by time-resolved PL spectroscopy. The SAXS and WAXS data 
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indicate that there are, in fact, indeed two crystal structures.82,83 In both structures, the 

P3HT backbone is planarized and aggregated. However, in one structure, associated with 

the higher energy state, the sidechains are still disordered.  
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Figure 9: (a) PL-spectra of P3HT (19 kD) in THF solution for different temperatures. (b) Illustration 

of decomposing the PL spectrum at 265 K, to obtain the contributions from PL from disordered 

and aggregated phase. The 280 K emission of the disordered phase (blue) is scaled to the high 

energy tail of the 265 K emission spectra (black dots). The difference between the two spectra is 

assigned to PL from the aggregated phase (red). (c) PL spectra of the pure aggregated phase in 

the range between 265 K and 160 K, normalized to the intensity of the S1S0 0-1 feature. (d) PL 

spectrum of P3HT at 5 K (black dots). The two vibronic progressions that are needed to model the 

spectrum are shown as grey and green areas. Illustrations of the different morphologies that are 

correlated to the two aggregate species are also indicated.  
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This implies that the stacks of P3HT backbones are not well defined with respect to the 

position of the neighboring stack. In the other structure, associated with the lower 

energy state, both, backbone and sidechain are crystalline. In consequence, there is long-

range order as the position of adjacent stacks is better defined. We stress that for both 

structures, the planarity and order in the backbone arrangement is very similar, as is also 

evident from the similar ratios in the vibrational peaks. Even though they only differ in 

the degree of side chain order, the 0-0 transition energies of the two structures varies by 

about 80 meV.  

 

2.6. Role of environmental polarization  

The difference in energies between the two structures, i.e. the one where both backbone 

and sidechain are crystallized (“low energy progression”, LEP) and the one where only 

the backbones are crystallized (“high energy progression”, HEP) is intriguing. It cannot 

be accounted for by the electronic resonance interaction between the chromophores, 

e.g. as described in Spano’s theory, since this only encompasses the interaction of the  

-systems within a one-dimensional stack of backbones. This is also manifested by the 

similar ratios of the vibrational peaks for both progressions.  

What can give rise to this energy difference? We have already mentioned that upon the 

transition from isolated chains to condensed chains, the energy levels of the 

chromophores shift by the polarization energy D, which contains the van der Waals 

interactions of one chromophore with its environment. In a simplified treatment, this is 

often worked out in terms of point dipoles, yet for a more detailed analysis, one may 

need to consider extended charge distributions. The key difference between the phases 

pertaining to the HEP and the LEP is the degree of long-range order. In the case of, 

presumably, the LEP, the position of the adjacent -stacks is well-defined and ordered 

with respect to a particular conjugated segment of a chain, whereas this is not the case 

for the HEP, where stacks still have some degree of translational variation between 

adjacent stacks. As a result, there is a higher degree of long-range order for the LEP than 

for the HEP. We conjecture, that this affects the electrostatic van der Waals type 

interaction between chromophores, so that these differences in structural order translate 
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into differences in the polarization energies D. Sophisticated electrostatic calculations 

would be required to probe this hypothesis.  

With this in mind, we reconsider the PL spectrum of P3HT at 265 K (Figure 9b). It is 

remarkable that the shape of the aggregate spectrum closely resembles the spectrum of 

the disordered chain in the amorphous phase. Recall that the structural data indicate a 

stack of still disordered P3HT backbones. On the one hand, it may be possible to describe 

the spectral shape in terms of a highly disordered so-called HJ-aggregate,55 where the 

usual suppression of the 0-0 peak in emission is alleviated by the prevailing disorder. One 

the other hand, it may worthwhile to consider whether this feature could alternatively 

still be described in terms of a disordered polymer chain (without noticeable resonance 

interaction with adjacent backbones) whose energy levels are reduced by the increased 

polarization energy D in the stack environment. As the polarization energy depends on 

the polarizability of the molecules in the environment, it is evident that the mean local 

polarization energy is higher if the backbone is surrounded in its immediate vicinity only 

by the alkyl sidechains of neighbouring chains than if it is sandwiched in a stack, wedged 

between two backbones with extended -systems that are far more polarizable than 

alkyl chains. Clearly, there is a need for theoretical investigations into the effect of 

environmental polarization on the transition energies in order to accurately describe the 

spectral changes that occur in an order-disorder transition.  

 

2.7. Concluding summary and outlook 

We have shown that for -conjugated polymers and molecules, the formation of 

aggregates can be understood in terms of an order-disorder transition. The mechanism 

of aggregation differs from flexible polymers insofar that the chains planarize and may 

even swell up prior to collapsing into an ordered aggregate. This feature is common for 

a range of materials and is not particular to a specific compound. We demonstrated that, 

by analysing the absorption and emission spectra, detailed information can be obtained 

on the fraction of aggregates in the sample as well as on the degree of order and 

interaction that prevails in the aggregates and on the conjugation length. The nature of 

the phase transition has been identified as first order, though the superposition of 

different transition temperatures for different chain lengths in polydisperse samples can 
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give the impression of a second-order transition. The role of the sidechains has been 

highlighted. 

Figure 10 summarizes the changes that occur in morphology and spectra upon cooling a 

solution such as to induce an order-disorder transition. Future work should consider how 

the effect of sidechain interactions as well as of environmental polarization may be 

included in a theoretical treatment. 

 

Figure 10: Summary of the changes that can occur in morphology and optical spectra upon cooling 

a solution of conjugated polymers. 
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Acronyms: 

P3HT: Poly(3-hexylthiophene-2,5-diyl) 

PFO: Poly(9,9-di-n-octylfluorenyl-2,7-diyl) 

PCPDTBT: Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta  

[2,1-b;3,4-b′]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] 

MEH-PPE: Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenyleneethynylene] 

BEH-PPV: Poly[2,5-bis(2′-ethylhexyloxy)-1,4-phenylenevinylene] 

MEH-PPV: Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] 

DTS(FBTTH2)2: 7,7′-[4,4-Bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-

diyl]bis[6-fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5-yl)benzo[c][1,2,5]thiadiazole] 
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and with low trap-state densities.[3] This  
enabled the fabrication of perovskites 
solar cells that convinced the solar cell 
community with high performances 
such as power conversion efficiencies 
of over 20%,[4,5] while offering the pos-
sibility for low cost production, e.g., by 
solution-processing.[6] Meanwhile, fur-
ther device applications for organic–inor-
ganic mixed halide perovskites have been 
discovered. For example, in 2014, low 
threshold levels for amplified spon-
taneous emission showed that mixed 
halide perovskites can also be used 
for the facile fabrication of lasers with 
high quality factors.[7–10] Furthermore, 
it is known that most halide perovskite 
materials can exist in different crystal 
structures, depending on environmental 
conditions such as temperature.[11–13] 
Here, we show that a coexistence of 
tetragonal and orthorhombic phases 
within apparently the same crystalline 
grain can be optically induced into the 

halide perovskite CH3NH3PbI3 at low temperatures, leading 
to amplified spontaneous emission (ASE) simultaneously at 
two distinct wavelengths. The ASE feature associated with 
the (high temperature) tetragonal phase can be reproducibly 
written, read-out, and erased at 5 K by choosing appropriate 

The photoluminescence in a lead halide perovskite is measured for different 

temperatures (5–300 K) and excitation fluences (21–1615 µJ cm−2). It is found 

that amplified spontaneous emission (ASE) is observed for an excitation den-

sity larger than about 1 × 1018 cm−3 for both the tetragonal phase above 163 K 

and the orthorhombic phase below about 163 K. The fluence that is required 

to obtain this excitation density depends on temperature and phase since the 

nonradiative decay of excitations is temperature activated with different acti-

vation energies of 85 20±  and 24 5 meV±  for the tetragonal and orthorhombic 

phase, respectively. The ASE from the tetragonal phase—usually prevailing at 

temperatures above about 163 K—can also be observed at 5 K, in  

addition to the ASE from the orthorhombic phase, when the sample is 

previously exposed to a fluence exceeding 630 µJ cm−2 at a photon energy 

of 3.68 eV. This additional ASE can be removed by mild heating to 35 K 

or optically, by exposing the sample by typically a few seconds with a flu-

ence around 630 µJ cm−2. The physical mechanism underlying this optically 

induced phase transition process is discussed. It is demonstrated that this 

phase change can, in principle, be used for an all-optical “write–read–erase” 

memory device.
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1. Introduction

Organic–inorganic mixed halide perovskites received enormous 
attention over the last few years. They allow for the produc-
tion of crystalline films with a high structural stability[1,2] 
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which extend our findings can be exploited for use as an all 
optical data storage device.

The paper is structured as follows. Section 2 briefly intro-
duces the spectral features observed in the photoluminescence 
spectra for excitation at low and at high fluence as a function of 
temperature. In Section 3 we show that ASE of the tetragonal 
phase—usually prevailing at temperatures above 163 K—can be 
observed at 5 K provided the sample was previously exposed to 
high intensity illumination, and this feature can be removed by 
mild heating or illumination at moderate intensity. We discuss 
the underlying physical mechanism. Section 4 demonstrates 
that this phenomenon could, in principle, be used toward 
an all-optical 2D “write–read–erase” random access memory 
device, though its technological exploitation is limited by the 
associated low (<35 K) operational temperature. Our findings 
are summarized in Section 5, and experimental details are 
detailed in Section 6.

2. Spectroscopic Characterization  
of the Emission

2.1. Results

We synthesized a pore free and compact crystalline 
CH3NH3PbI3 layer consisting of micrometer sized grains by 
slightly modifying a published procedure.[14] To characterize 
the emission from this film, we carried out temperature 
dependent steady state photoluminescence (PL) measure-
ments at different excitation fluences. Using a low excitation 
fluence of 0.75 µJ cm−2, we observe the broad and featureless 
emission centered at about 1.60 eV at 300 K that is associ-
ated with the radiative decay of excited states in the tetragonal 
crystal structure (Figure 1a).[15,16] On cooling the sample to 
140 K, a higher energy emission appears around 1.68 eV along 
with the existing emission at 1.57 eV. On further cooling to 
40 K, the emission shifts to 1.64 eV and it dominates the spec-
trum. Upon excitation with a higher fluence of 85 µJ cm−2 we 
observe the same behavior of the broad and featureless emis-
sion bands upon cooling. However, in addition to these bands, 
sharp peaks emerge, and strongly grow in intensity, upon 
cooling (Figure 1b). Like the broad emission bands, the narrow 
peaks also show a red shift with decreasing temperature down 
to 1.61 eV at 5 K. For ease of reference, characteristic emis-
sions obtained for low and high fluences are displayed on a 
linear scale in Figure 1c for a temperature of 170  and 40 K, 
respectively. The fluence dependence of the integrated photo-
luminescence intensity and of the full width at half maximum 
(FWHM) of the emission are displayed in Figure 2a,b for three 
different temperatures. The associated spectra are detailed in 
the Supporting Information (Figure S1). These data show a 
characteristic threshold behavior, and we find that the lower 
the temperature, the lower the value of the threshold fluence. Vice 
versa, for the fluence of 85 µJ cm−2 chosen here, the threshold 
temperature for the narrow peak at 1.56 eV to appear is ≈210 K 
in case of the “high-temperature” regime, and for the “low-
temperature” range the narrow peak at 1.65 eV appears below 
135 K (see Figure 2c,d).

2.2. Discussion

The hybrid perovskite CH3NH3PbI3 is well known to undergo 
a transition from the tetragonal to the orthorhombic struc-
ture at about 160 K.[12,13,17] Using X-ray diffraction (XRD), we 
confirmed that this transition also takes place in our sample 
(see Figure S2, Supporting Information). At low fluence 
such as 0.75 µJ cm−2, we thus attribute the broad emission 
above 160 K centered at 1.60  to 1.75 eV to emission from the 
tetragonal crystal structure, while the broad emission cen-
tered at 1.64–1.68 eV at temperatures below 160 K is attrib-
uted to the orthorhombic phase. The narrow, intense peaks 
that appear in addition upon cooling when exciting at high 
fluence such as 85 µJ cm−2 are attributed ASE.[8,18,19] We base 
our assignment on the observation that, at a given tempera-
ture, these peaks show a characteristic line narrowing with 
simultaneous increase in emission intensity as a function 
of excitation fluence. This is summarized in Figure 2a,b and 
further detailed in the Supporting Information (Figure S1). 
For both the tetragonal and the orthorhombic phases, the 
emission shows a roughly linear bathochromic shift, con-
sistent with earlier work,[13,20] and an increasing intensity 
upon cooling from 300  to 150 K (tetragonal) and from 
140  to 5 K (orthorhombic).

To account for the intensity dependence of the emission at 
low fluence, we recall that the intensity of emission is given 

by I T
k

k k
I( ) r

r nr
0=

+

, where I0 is the emission intensity in the 

absence of nonradiative decay processes, kr and knr denote 
the radiative and nonradiative decay rates. We measured the 
temperature-dependence of the absorption at the excitation 
wavelength and found it to be independent of temperature 
(Figure S3a, Supporting Information). The Einstein coeffi-
cients then require the radiative decay rate kr also to be tem-
perature-independent. Thus, any temperature dependence of 
the emission must be attributed to knr. This applies to both 
the tetragonal and the orthorhombic phase. If we consider 
a simple thermally activated nonradiative decay process and 

write k k e
E

kT
nr nr

0
B

=
−

, the temperature-dependent emission inten-

sity becomes I T
k

k

E

kT
I( ) [1 exp( )]nr

0

r

B 1
0= + −

− . Fitting the experi-

mentally obtained temperature dependent PL intensity we find 
activation energies EB of 85 20±  and 24 5 meV±  for the temper-
ature-dependent nonradiative decay rate in the tetragonal and 
orthorhombic phase, respectively. The temperature dependence 
of the absorption and of the emission as well as the associated 
fits is shown in Figure S3 of the Supporting Information. The 
straight lines that are obtained in an Arrhenius-like representa-

tion, where 
I

I T
ln [

(0)

( )
1]−  is displayed as a function of inverse 

temperature, confirm that a thermally activated nonradiative 
decay process is a valid approach.

A thermally activated nonradiative decay process is also the 
mechanism that can account for the temperature-dependent 
ASE. The evolution of ASE in both phases as a function of 
temperature at constant higher laser fluence is remarkable, 
and it is consistent with the observation that the minimum 
fluence required to induce the ASE reduces with temperature. 
A prerequisite for amplified spontaneous emission is that the 
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optical gain exceeds the radiative and nonradiative losses in 
the medium. Thus it can only occur at a sufficiently high den-
sity of excitations. Such a density n builds up if the generation 
rate G, controlled by the fluence, exceeds the rates of radiative 

and nonradiative decay, i.e., 
dn

dt
G k k T n0 ( ( ))r nr< = − + . From the 

above-mentioned temperature-dependent absorption and photo-

luminescence measurements we found kr and G to be tempera-
ture independent while knr shows a simple temperature-activated 
behavior with activation energies of 85 20±  and 24 5 meV±  for 
the tetragonal and orthorhombic phases, respectively. By com-
bining the fluence dependence and temperature dependence 

with the activation energy, we can estimate the threshold exciton 
density n that is required for ASE to take place in our sample. We 

obtain n (1.02 0.2) 10 cmthreshold
tetragonal 18 3

= ±
−  for the tetragonal phase 

from 200 to 280 K and n (1.4 0.2) 10 cmthreshold
orthorhombic 18 3

= ±
−  for the 

orthorhombic phase at 135 K. The fact that for both phases 
the threshold exciton density required for ASE is found within 
the same range and essentially independent of temperature 
is a gratifying confirmation of our approach (Figure 2e). The 
estimate is based on the notion that, at a certain temperature, 
the density of excitations, n, contributing to ASE is given by  

n =ngenerated Φ = n
I T

I

( )
generated

0

, where Φ is the photoluminescence  
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Figure 1. Temperature dependent photoluminescence (PL) spectra recorded with a) fluences of 0.75 µJ cm−2 and b) of 85 µJ cm−2. The characteristic 
spectral ranges of tetragonal and orthorhombic PL are indicated by the red and blue areas, respectively. c) The characteristic PL spectra in the tetragonal 
phase at 170 K (red line) and in the orthorhombic phase at 40 K (blue line) for both high fluence (solid line) and low fluence (dashed line) on a linear scale.
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quantum yield and ngenerated is the number of excitons generated 

at the excitation intensity in the excitation volume. I T

I

( )

0

 is 

given by 
k

k

E

kT
[1 exp( )]nr

0

r

B 1
+ −

− . ngenerated is given by the excitation 

energy divided by the photon energy and excitation volume. 
When the threshold energy for ASE is used for the excita-
tion energy, this delivers the threshold density of excitations 

required for ASE. Full details of the calculation are given in the 
Supporting Information (Figure S4).

An essential notion in our discussion is the experimental 
finding that the nonradiative decay rate is thermally activated. 
From our data, we cannot unambiguously determine the origin 
of this thermally activated nonradiative decay process and its 
identification is not required for the analysis of our results. 
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Figure 2. a) The integrated photoluminescence (PL) intensity and b) the full width at half maximum (FWHM) for excitation at 3.68 eV as a function of 
laser fluence from 21 to 1615 µJ cm−2 at 280, 260, and 200 K. c) The integrated PL intensity as a function of temperature, recorded with a laser fluence 
of 85 µJ cm−2 for the temperature range between 80 and 160 K, and d) for the temperature range between 160 and 300 K. e) The calculated values of 

thresholdn  as a function of temperature. The average value of thresholdn  between 280 and 200 K is indicated as dashed line. The blue circle indicates the data 
point obtained for the orthorhombic phase, the red diamonds pertain to data points in the tetragonal phase.
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Following the approach by Wu et al.,[15] Chen et at.,[21] and 
Savenije et al.,[22] one might attribute the nonradiative decay 
channel mainly to thermally activated dissociation of excitons 
and associate the activation energies with exciton binding ener-
gies. The values of 85 20±  and 24 5 meV±  that we obtained 
for the tetragonal and orthorhombic phase are consistent with 
exciton binding energies reported earlier on the basis of tem-
perature-dependent photoluminescence measurements.[15,22] 
We note, however, that exciton binding energies are known to 
vary within a rather broad range between few meV up to 70 
meV,[13,15,22–27] and depend on the method chosen for investiga-
tion as well as on the particular crystal structure and composi-
tion of the hybrid perovskite.[27]

3. Reversible Induced Amplified Spontaneous 
Emission

3.1. Results

We observe that the emission recorded under low fluence excita-
tion is different when the sample had previously been exposed 
to high fluence excitation. Figure 3a shows the photolumines-
cence taken from the sample at 5 K upon low fluence excitation 
at 21 µJ cm−2 before and after a previous exposure to 100 pulses 

at 15 Hz at a high fluence of 1615 µJ cm−2. Even though the exci-
tation fluence is as low as 21 µJ cm−2, the emission centered at 
1.61 eV at 5 K is narrow with a FWHM of 9 meV, implying that 
it is due to ASE from the orthorhombic phase. When the sample 
had previously been exposed to high fluence excitation, a second 
narrow low energy peak at 1.53 eV appears (FWHM of 9 meV) 
at the expense of intensity from the peak at 1.61 eV. The relative 
intensity of the two peaks can be controlled by tuning the pre-
ceding fluence. Figure 3b illustrates, on a logarithmic intensity 
scale, that the narrow low energy peak does not appear when 
previously exposing the sample to 100 pulses at 15 Hz with flu-
ences of 168 or 329 µJ cm−2 and then recording the spectrum 
with excitation at 21 µJ cm−2. When the sample is exposed to a 
previous pulse train with a fluence of 627 µJ cm−2, the spectrum 
recorded under excitation at 21 µJ cm−2 shows a weak shoulder 
to appear at about 1.54 eV. For previous exposure to a pulse train 
with a fluence of 968, 1304 or 1615 µJ cm−2, the spectra obtained 
with excitation at 21 µJ cm−2 clearly show a narrow low energy 
peak, centered at 1.530, 1.523, and 1.522 eV, respectively. While 
the intensity of the 1.61 eV peak is not affected by previous expo-
sure at fluences of 168 or 329 µJ cm−2, it reduces for previous 
exposure to fluences from 627 µJ cm−2 onward, whereas the 
intensity of the low energy shoulder or peak increases.

This narrow low energy peak that can be induced by pre-
vious exposure to fluences above 627 µJ cm−2 appears to be 
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Figure 3. a) The emission spectrum of perovskite film at 5 K before (blue line) and after (orange line) high fluence (1615 µJ cm−2) excitation, recorded 
with a fluence of 21 µJ cm−2. b) Emission spectra recorded at low-excitation fluence (21 µJ cm−2) after exposure to different high-fluence excitation. 
c) PL spectra for increasing temperatures, recorded with a fluence of 21 µJ cm−2 after previous exposure to 1615 µJ cm−2.
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21 µJ cm−2. We observed no change in intensity in the course 
of our measurements. This is displayed in Figure S5 of the 
Supporting Information for a time scale of 30 min. Although 
the induced peak is stable with respect to time when recorded 
under low fluence, it is not stable with respect to temperature. 
Figure 3c shows that upon heating the sample from 5 K onward, 
the narrow low energy peak reduces in intensity and, concomi-
tantly, shifts to higher energies. For temperatures above 35 K it 
disappears. Modeling the reduction in the low energy peak as 

a thermally activated process, using 
∆

=

− ∆
I

I
e

E

k TB

0

, with ∆I being 

the change of emission intensity of the tetragonal phase relative 
to its maximum intensity I0 at 5 K, yields a thermal activation 
energy of ∆E = 3 meV for the removal of the narrow low energy 
peak.

In order to understand how exposure to high fluence may 
induce a remaining narrow low energy peak, it is instructive to 
consider the PL spectra recorded during exposure to high flu-
ence. Figure 4a shows the emission spectra recorded for, first, 
exposure to a pulse train of 100 pulses at 15 Hz at a fluence of 
329 µJ cm−2 (dashed line) and then recorded for exposure to 

the same pulse train at a fluence of 1615 µJ cm−2 (solid line). 
For reference, a Gaussian peak centered on 1.53 eV with a 
FWHM of 9 meV is also shown. Note that the spectra are dis-
played on a logarithmic intensity scale. In addition to the emis-
sion centered on 1.61 eV that is attributed to ASE from the 
orthorhombic phase, the spectrum recorded under a fluence of 
1615 µJ cm−2 shows an emission band of unusual shape that 
ranges from about 1.58  to 1.53 eV, where its emission intensity 
falls off drastically. This low energy edge of the band perfectly 
matches the Gaussian peak centered on 1.53 eV with a FWHM 
of 9 meV. Figure 4b displays the spectra that result when the 
sample was first exposed to a pulse train of 100 pulses at 15 Hz 
at a fluence of 1615 µJ cm−2 and then recorded using a single 
pulse of increasing fluences from 168 µJ cm−2 onward. It is evi-
dent that the low energy edge of the additional band remains 
identical in all spectra, whereas the high energy edge of the 
band increases in energy with increasing fluence. The position 
of the maximum intensity in the band, close to the high energy 
edge, is displayed in Figure 4c as a function of fluence.

Further insight into the origin of the low energy band 
observed during high fluence excitation, and, concomitantly, 
the low energy peak seen after high fluence excitation can be 
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Figure 4. a) Emission spectra at 5 K recorded first using a low excitation fluence of 329 µJ cm−2 (dashed blue line) and then using a high excitation 
fluence of 1615 µJ cm−2 (solid black line). The red dotted line indicates a Gaussian peak with a full width at half maximum of 9 meV, corresponding to 
the value for the 5 K ASE of the tetragonal peak. b) Emission recorded with different high fluence excitation as indicated in the figure, after the sample 
was previously excited by a pulse train with fluences of 1615 µJ cm−2. c) Energetic peak position of the peak in the lower energy band of (b), as a func-
tion of fluence. For ease of reference, the right axis shows the temperature associated with the peak position, taken from the dashed black line in 
Figure 6b below.
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gained from time-resolved PL spectra (Figure 5). In Figure 5a, 
a film at 5 K had first been exposed to an excitation fluence of 
1615 µJ cm−2. After that, its emission was recorded at 5 K as a 
function of time for excitation at a fluence of 630 µJ cm−2 with 
15 Hz. The top panel shows the resulting emission spectra on 
a linear scale at 0.1, 1.0, and 3.5 s after excitation. For all three 
spectra, the ASE peak of the orthorhombic phase at 1.61 eV is 
clearly visible. In addition, there is a low energy emission band 
with a peak that shifts from 1.55 eV to higher energies with 
increasing time. From about 1.0 s onward, it reduces in intensity 
while the 1.61 eV peak increases. This is displayed more clearly 

in the right panel. Similar spectra have been taken for a range of 
recording fluences, in each case after a previous exposure to a 
pulse train at 1615 µJ cm−2. The peak position of the low energy 
band as a function of time is shown in Figure 5b for the different 
recording fluences. We observe two trends. First, the initial posi-
tion of the low energy peak is at higher energies for higher flu-
ences. Second, with increasing recording fluence the blue shift 
in peak position with time increases. While the low energy peak 
remains essentially constant at about 1.532 eV upon recording at 
168 µJ cm−2, it shifts by about 20 meV to higher energies within 
less than a second when recording the spectra at 810 µJ cm−2.

3.2. Discussion

The observation that a narrow low energy 
peak can be induced in a hybrid lead iodide 
perovskite by previous illumination at suf-
ficiently high fluences, and that it can be 
removed by raising the temperature of the 
sample in a moderate way (Figure 3) raises 
some questions. First, it needs to be clarified 
what the narrow low energy emission is due 
to. Second, the process of how it forms and 
disappears for various experimental condi-
tions (Figures 4 and 5) should be illuminated.

Various works have shown that the emis-
sion spectra of hybrid lead iodide perovskites 
can consist of different spectral features at 
low temperatures.[8,15,16,28,29] Xing et al.,[8] 
Fang et al.,[16] and Kong et al.[28] attribute 
the additional emission features they found 
in addition to the free exciton emission of 
the orthorhombic phase to the transition of 
bound excitons. Their feature is typically at 
about 40 meV below the energy of the free 
exciton transition and it has a spectral width 
in the range of 50 meV with PL lifetimes in 
the µs range.[16] In contrast to this, the low 
energy peak we observe, for example, in 
Figure 3a at 1.53 eV, is separated by about 
80 meV from the emission feature of the 
orthorhombic phase and shows a FWHM of 
9 meV. Time resolved PL measurements at 
low temperature using a STREAK Camera 
Setup further reveals, that the induced emis-
sion feature decays on a ns timescale (see 
Figure S6, Supporting Information). Due to 
these differences in spectral signature and 
dynamics we dismiss emission from the 
bound excitons as a possible explanation for 
the low energy peak. In a similar way, we also 
discard emission from trap states as a pos-
sible origin. Trap states were found to show 
a broadly distributed emission over a spec-
tral range between approximately 1.3 and 
1.5 eV, in contrast to the narrow emission 
we observe.[30] As will be shown in Section 
4 further below, the narrow low energy 
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Figure 5. a) Emission spectra taken during illumination with a fluence of 630 µJ cm−2 as a func-
tion of time. The spectra are recorded immediately after the start of excitation. The film had 
previously been illuminated with high fluence of 1615 µJ cm−2. The color indicates the photolu-
minescence intensity. The top panel shows the spectra on a linear scale, obtained after a time 
of 0.1 s (yellow line), 1.0 s (purple line), and 3.5 s (orange line). The right panel shows the PL 
intensity of the peak at 1.61 eV (black line), attributed to the orthorhombic phase, and of the 
peak in the low energy band (pink line), attributed to the tetragonal phase, as a function of time. 
Dashed lines in the central panel indicate these positions. b) The time-dependent evolution 
of the ASE peak in the tetragonal phase taken during illumination with a fluence as indicated 
in the figure. The sample had previously been illuminated with a high fluence of 1615 µJ cm−2.
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R peak is highly reproducible and reversible, so that any perma-

nent damage to the sample such as a decomposition of the 
organic cation can be excluded. An indication to the origin of 
the low energy peak is its narrow spectral width, e.g., of 9 meV 
at 1.53 eV (Figure 3a). This is in good agreement with the 
linewidth of about 10–15 meV that we found for the ASE peak 
from the tetragonal phase as shown in Figures 2b. In fact, the 
energies at which the laser-induced narrow low energy peak is 
observed matches with the energies where ASE from excitations 
in the tetragonal phase could be expected at low temperatures, 
provided that a linear extrapolation of the temperature depend-
ence of the ASE peaks is valid as a first rough approximation. 
Figure 6b shows the temperature evolution of the ASE peaks in 
the orthorhombic and tetragonal phases, taken from Figure 1, 
along with the energies of the laser induced narrow low energy 
peak taken from Figure 3. Based on the narrow linewidth and 
energetic position we attribute the low energy emission to ASE 
from the tetragonal phase.

This assignment raises further questions. First of all, it is 
unexpected to observe a coexistence of peaks from the orthog-
onal and tetragonal phase below 40 K. Naively, one would 
expect energy transfer from the higher-energy peak to the 
induced lower-energy peak to suppress any emission from 
the orthorhombic phase. Evidently, the experimental data sug-
gest that complete energy transfer does not occur, implying a 
somewhat localized character of the fast decaying excitations. 
Second, it is equally unexpected to observe emission from a 
tetragonal phase at temperatures as low as 5 K, since this phase 
is known to be the stable phase only above 160 K.

To account for the laser-induced existence of a tetragonal 
phase at low temperatures such as 5 K, we propose the following: 
Local heating during excitation with high fluence induces a partial 
modification of the crystal structure toward the tetragonal phase. 
This structure is then kinetically frozen in when the high inten-
sity laser is turned off, thus leading to tetragonal inclusions in 
an orthorhombic matrix. Indeed, a simple estimate of the local 
heating effects during excitation indicates that a temperature 
above 163 K is reached for laser fluences above approximately 

600 µJ cm−2. This is in good agreement with the observation 
that a threshold fluence above about 630 µJ cm−2 is required 
to induce the 1.53 eV peak (see Figure 3b). Furthermore, based 
on the heat capacities and thermal conductivities of the lead 
halide perovskite and the supporting quartz substrate,[31] a fast 
drop of temperature back to 5 K can be expected on a timescale 
of a few 100 ns. The estimates for laser-induced heating and 
thermal dissipation of heat are detailed in the Supporting Infor-
mation. Thus, the scenario of a remaining, kinetically frozen 
out tetragonal phase within an orthorhombic matrix is con-
sistent with the material parameters. This hypothesis is illus-
trated in Figure 6a. Since the orthorhombic phase prevails at 
5 K while the tetragonal phase is observed from 163 K onward, 
we consider that the two phases, pertaining to different con-
figuration coordinates, are separated by an associated thermal 
activation energy of 163 K*kB = 14 meV for the orthorhombic-
to-tetragonal phase transition. From the analysis of Figure 3b 
we learned that a small activation energy of 3 meV is suffi-
cient to convert the tetragonal phase back to the orthorhombic 
phase. This small activation energy for overcoming the barrier 
to the energetically more stable orthorhombic phase is reason-
able given that the structural difference between the tetragonal 
and orthorhombic phase are only minor (lattice parameters: 
a = c = 8.65 Å, b = 12.45 Å at 155 K – tetragonal; a = 8.90 Å, 
b = 12.67 Å, c = 8.65 Å at 150 K – orthorhombic).[11] This picture 
also explains why coexisting emission from the tetragonal and 
orthorhombic phase has so far been reported only close to the 
temperature of the phase transition (≈160 K).[28]

Our hypothesis of local laser-induced heating is also con-
sistent with the peculiar photoluminescence spectrum that is 
obtained during the high fluence (1615 µJ cm−2) illumination, 
shown in Figure 4a. In this framework, we attribute the broad 
emission band to a superposition of ASEs from the tetragonal 
phase. Since the overall sample is held at 5 K, yet illumination 
with 1615 µJ cm−2 induces a local temperature well above 163 K, 
we expect a temperature gradient across the Gaussian excita-
tion profile, resulting in ASEs from tetragonal phases with a 
temperature distribution. From the already obtained correlation 
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Figure 6. a) Schematic illustrating how illumination by an intense laser pulse can induce the formation of a metastable trapped tetragonal phase. 
b) The positions of the ASE peaks in the orthorhombic (blue dots) and in the tetragonal phase (red diamonds) as a function of temperature, recorded 
with a fluence of 85 µJ cm−2. The dashed line indicates a linear interpolation of the peak position for the tetragonal phase. Red triangles indicate peak 
positions of ASE due to the tetragonal phase below 35 K that has been induced using previous illumination with a high fluence of 1615 µJ cm−2.
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Figure 7. (Lower panel) Peak intensities at 5 K of the ASE at 1.61 eV 
(blue dots) in the orthorhombic phase and of the ASE at 1.53 eV (red 
diamonds), attributed to the tetragonal phase. The peak intensities were 
recorded using a fluence of 21 µJ cm−2 ( = “read” mode) after previous 
illumination with pulses at a fluence of 1615 µJ cm−2 ( = “write” mode) 
or at 811 µJ cm−2 ( = “erase” mode) as illustrated in the upper panel.
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between temperature and peak position of the ASE from the 
tetragonal phase (Figure 6b), the spectral positions can directly 
be transferred to corresponding temperatures. It is a gratifying 
consistency that the range of the band from 1.52  to 1.58 eV 
matches with a temperature range from 5 to 210 K.

This is further supported by Figure 4b. We consider that the 
preceding pulse train with 1615 µJ cm−2 induces the transition 
to the tetragonal phase that is then kinetically frozen in. For 
subsequent illumination with a low fluence pulse of 21 µJ cm−2, 
we obtain the spectrum of ASE in the tetragonal phase at 5 K, 
i.e., a peak at 1.53 eV. Upon raising the fluence of the recording 
pulse from 168 µJ cm−2 onward, the center of the excitation 
spot raises in temperature, implying a temperature gradient to 
the border of the excitation spot. Consequently, the high energy 
tail of the band shifts to increasingly higher energies with tem-
perature, while the low energy edge at 1.53 eV remains.

The energetic position of the high energy edge of the band 
in Figure 4b is displayed at the time t = 0 in Figure 5b. The 
shift that is observed in Figure 5 in the course of time when 
the spectrum is recorded during continuous illumination with 
15 Hz at different fluences can easily be accounted for in our 
interpretation in a framework of local heating. It seems that for 
illumination with a low fluence, such as 168 µJ cm−2, the heat 
deposited into the excitation spot with each pulse is dissipated 
sufficiently rapid so that both the temperature of the excited 
spot as well as that of the surrounding material at 5 K remain 
unaltered. For a higher fluence, e.g., 630 µJ cm−2, the blue-shift 
of high-energy edge of the band within the first second indi-
cates ASE from a tetragonal phase with an increasingly hot 
center, while the temperature surrounding the excitation spot is 
still sufficiently cold, i.e., below 35 K, to prevent an annealing of 
kinetically trapped tetragonal phase. This is also confirmed by 
the unaltered intensity of the ASE peak of the orthogonal phase 
at 1.61 eV. After about one second, a stationary position of the 
high energy edge in the ASE band from the tetragonal phase 
indicates a stationary equilibrium between the heat deposited 
into the excitation spot and the heat dissipated into the sur-
rounding material, i.e., perovskite and substrate. Ultimately, 
this also raises the temperature of the material around the exci-
tation spot beyond the 35 K limit, thus allowing for detrapping 
of the kinetically trapped tetragonal-to-orthorhombic phase 
transition. Accordingly, this is accompanied by an increase in 
the intensity of the ASE from the orthogonal phase at 1.61 eV.

The fact that the phase transitions between tetragonal and 
orthorhombic phase can be induced and removed by suitable 
adjusting the fluence of the laser illumination implies that lead 
halide perovskites could, in principle, be used to build an all-
optical “random-access memory device.”

4. All Optical Write–Read–Erase Cycles

4.1. Results

Figure 7 shows a simple proof-of-principle demonstration for 
such an all-optical memory device. As indicated in the top 
panel, the sample was illuminated with consecutive trains of 
100 pulses at 15 Hz at, first, 1615 µJ cm−2 (the “write” process), 
then 21 µJ cm−2 (the “read” process), then 811 µJ cm−2 (the 

“erase” process) and finally again 21 µJ cm−2 (the “write” pro-
cess). The intensities of the ASE peaks from the orthorhombic 
phase at 1.61 eV and of the tetragonal phase at 1.53 eV, recorded 
during the “read” process, are displayed in the bottom panel of 
Figure 7. The reproducibility of the process is clearly evident 
(see also Figure S5b, Supporting Information). After each 
“write” process, the intensities of the two ASE peaks are com-
parable, and after each “erase” process, the orthorhombic ASE 
peak takes a maximum value while the tetragonal ASE peak 
almost disappears. Due to the apparently localized character of 
the excitations associated with the ASE peaks, data writing and 
reading (i.e., a strong tetragonal ASE peak) can be implemented 
in a two-dimensional fashion.

The reproducibility of the “write” and “erase” processes is 
also manifested on a microscopic scale. Figure 8 shows 2D 
intensity maps of the emission spectra for a 5 µm × 5 µm area 
of the film that was acquired at 1.5 K using a home-built con-
focal microscope with a spatial resolution of about 500 nm. The 
color scale decodes overall emission intensity that is spectrally 
integrated from 1.3 to 1.7 eV. The PL spectra, averaged over 
the entire 5 µm × 5 µm area for Figure 8a,c, and averaged over 
two smaller, 0.3 µm × 0.3 µm areas for Figure 8b, are shown in 
the bottom panels. In a pristine sample, only the 1.61 eV peak 
for the ASE of the orthorhombic phase is observed, though its 
intensity strongly varies across this area, as also observed by de 
Quilettes et al.[32] The size of the bright and darker regions in 
the film matches well with the grain size distribution found by 
transmission electron microscopy (0.2–1.2 µm), see Figure S7 
in the Supporting Information.

After a “write” process, we observe first a change in intensity 
distribution across the sample area. Second, we observe that the 
additional 1.53 eV peak, indicative of a tetragonal crystal struc-
ture, has been induced everywhere across the investigated area 
(Figure 8b), albeit to different degrees. This observation sug-
gests that both phases coexist within the same crystalline grain. 
Sample areas which have lower overall emission intensity have 
a higher relative contribution from the 1.53 eV peak. After an 
“erase” process, the original intensity distribution recovers and 
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we again observe merely emission at 1.61 eV across the entire 
sample area.

4.2. Discussion

The write–read–erase cycles shown in Figure 7 clearly dem-
onstrate that, in principle, the phase transition in the lead 
halide perovskite could be used for “all optical random-access-
memory” applications, using the induced tetragonal ASE peak 
as information carrier. The fluences used in Figure 7 for the 
“read” and for the “erase” process were chosen such as to ensure 
that the sample is not affected by the laser fluence during the 
“read” process, and to allow for a reasonably fast “erase” pro-
cess. The “write” and the “read” process can be carried out in 
single shot mode, so that the time required for these processes 
is only limited by the pulse width of the laser and its repetition 
rate (see Figure S8, Supporting Information). The “erase” pro-
cess, in contrast, requires sample heating above 35 K in an area 
surrounding the spot size. In the present mode of operation, 
this is achieved by controlling the balance of dose accumula-
tion and heat dissipation. The initial laser energy is deposited 
in the excitation area through optical absorption followed by 
subsequent vibrational cooling, and the resulting heat flow into 
the surrounding material generates a temperature gradient. 
The “erase” process, i.e., the tetragonal-to-orthorhombic transi-
tion occurs for the sample area where the temperature is above 
35 K yet below 160 K. An “erase” process with high fluence 
generates a strong temperature gradient across the excitation 
spot, so that the relevant temperature range is reached after a 
short accumulation time, yet only for a small circumference 

around the hotter center, leading to only partial “erase” of the 
1.53 eV peak. A more complete “erase” process, requiring a 
shallower temperature gradient, can be obtained by using a 
moderate fluence over a longer period of time. This trade-off 
explains why, in this mode of optical excitation with visible 
light, a single-shot “erase” process is not possible. The situa-
tion may be different for excitation with light in the infra-red 
spectral range. An interesting feature is the option to “write” 
and “read” in a 2D fashion. The entire area could, in prin-
ciple, be “written in” in parallel by using patterning and be 
“read out” by full size illumination combined with a charge-
coupled device (CCD) camera, thus allowing for fast data 
access.

5. Concluding Summary

We have shown that for this lead halide perovskite ampli-
fied spontaneous emission occurs for an excitation density 
exceeding 1 × 1018 cm−3. Whether this excitation density can 
be sustained depends on the balance between excitation flu-
ence and sample temperature. At temperatures below the 
tetragonal-to-orthorhombic phase transition temperature of 
163 K, high intensity laser pulses can locally heat the excitation 
spot thus resulting in a local orthorhombic-to-tetragonal phase 
transition that can get trapped kinetically if the surrounding 
material is at a temperature below 35 K. Detrapping is pos-
sible by mild heating above 35 K. This temperature can also be 
reached in the material surrounding the excitation spot by suit-
ably adjusting the illumination fluence and time. In principle, 
this phase change could be employed to make an all optical 
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Figure 8. Spatially resolved emission map of the perovskite film at 1.5 K. a) 5 × 5 µm² area of the film before writing. The spectrally integrated PL inten-
sity is color-coded (top panel). The PL spectrum averaged over the entire 5 × 5 µm² area demonstrates the presence of only the orthorhombic phase 
(bottom panel). b) The same 5 × 5 µm² area as in (a) after exposure to a high-fluence writing pulse (top panel). Two representative spectra acquired 
in the red boxed regions are depicted in the two bottom panels, indicating the presence of both the tetragonal as well as the orthorhombic phase all 
over the film. c) Same area after applying an erase pulse train (top panel) together with the PL spectrum integrated over the entire area (bottom panel), 
which shows that only the orthorhombic phase prevails.
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write–read–erase memory device, yet in practice the low tem-
perature associated with the phase change limits its potential.

6. Experimental Section

Materials: All materials were purchased from Sigma-Aldrich and used 
as received.

CH3NH3I Synthesis: Methylammonium iodide (MAI) was synthesized 
as discussed elsewhere.[33] In short, MAI was synthesized by reacting 
24 mL of methylamine (33 wt% in absolute ethanol) and 10 mL of 
hydroiodic acid (57 wt% in water) in a round-bottom flask at 0 °C for 
2 h with stirring. The precipitate was recovered by putting the solution 
on a rotary evaporator and carefully removing the solvents at 50 °C. The 
white raw product MAI was redissolved in 80 mL absolute ethanol and 
precipitated with the addition diethyl ether. After filtration, the step was 
repeated two times and white solid was collected and dried at 60 °C in a 
vacuum oven for 24 h.

CH3NH3PbI3 Film Preparation: The quartz substrates were cleaned 
with detergent diluted in deionized water, rinsed with deionized water, 
acetone, and ethanol, and dried with clean dry air. After cleaning, the 
substrates were transferred in a glovebox under nitrogen atmosphere. 
For perovskite formation, PbI2 (1 M) was dissolved in N,N-dimethyl 
formamide overnight under stirring conditions at 100 °C and 80 µL 
solution was spin coated on the quartz substrates at 2000 rpm for 50 s, 
and dried at 100 °C for 5 min. Powder of MAI (100 mg) was spread out 
around the PbI2 coated substrates with a petri dish covering on the top 
and heated at 165 °C for 13 h. To avoid that the samples were affected by 
air and humidity, 40 mg mL−1 poly(methylmethacrylate) (PMMA; Aldrich) 
in butyl acetate was spin-coated on top of the perovskite at 2000 rpm for 
30 s. All steps were carried out under a nitrogen atmosphere in a glove 
box. See Figure S7 of the Supporting Information for morphology of the 
perovskite film showing the micrometer sized crystalline grains.

Temperature Dependent Emission Measurements: Emission spectra 
were recorded with a home-built setup. For cooling, the sample was 
put into a continuous flow cryostat (Oxford Instruments, Optistat CF) 
and excited by a Nitrogen Laser (LTB, MNL 100) with 337 nm pulses 
and a repetition rate of 15 Hz. Changes in the laser output energy were 
achieved by a controllable polarization attenuator, which led to available 
fluences in the range between 0.75 and 1615  µL cm−2. The generated 
laser pulses were coupled into an optical fibre and directed toward the 
sample while being refocused by a lens. Emission from the sample was 
collected by another lens, focused to a spectrograph (Andor Shamrock 
303i, spectral resolution ≈2 nm) which was coupled with a cooled CCD 
camera (Andor iDus), acting as the detection unit. Measured spectra 
were corrected for CCD and grating responsivity.

Spatially Resolved Emission Measurements: For the spatially resolved 
PL spectroscopy, we used a home-built low-temperature confocal 
microscope. The sample is mounted in a liquid-helium bath cryostat at 
1.5 K. To read out the ASE from the perovskite films, we used a diode 
laser (BCL-020-405, CrystaLaser) operating at 405 nm. This laser light 
was directed to the cryostat, and focused by a microscope objective (NA 
= 0.85, Microthek) that was immersed in liquid helium. The combination 
of a motorized scan mirror and a telecentric lens system in front of the 
objective allowed to move the focal spot laterally across the sample 
in well-defined steps. The PL was collected by the same objective and 
passed the beam splitter and dielectric long pass filters to suppress 
residual laser light. Finally, it was focussed onto the entrance slit of a 
spectrograph (SpectraPro-150, Acton Research Corporation), spectrally 
dispersed by a grating (150 lines mm−1), and imaged onto a CCD-
camera (Pixelfly, PCO).

Supporting Information

The Supporting Information is available from the Wiley Online Library or 
from the author.
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1. Transition from spontaneous emission to amplified spontaneous emission (ASE) 

Figure S1: (a) The photoluminescence (PL) spectra for excitation at 3.68 eV with increasing 

laser fluence from 21 to 1615 µJ/cm2 at 280, 260 and 200 K. (b) The PL intensity (solid 

symbols) and FWHM (open symbols) as a function of laser fluence at 280, 260 and 200 K. Solid 

and dotted lines are guides to the eye. (c,d) Summary of the results on the PL intensity (c) and 

FWHM (d) as a function of laser fluence for 280 (black), 260 (red) and 200 K (green). In (c), 

threshold fluences for ASE are determined by the points of intersections from corresponding 

linear fits.  
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2. Temperature dependent XRD measurements 

 

This research was undertaken on the SAXS beamline at the Australian Synchrotron, Victoria, 

Australia. 

 

Figure S2: XRD patterns of the investigated sample at 295 K, 155 K and 90 K. The marks 

identify the existence of tetragonal (T) and orthorhombic (O) phases at 155 K. 
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3. Calculation of exciton binding energy 

 

The intensity of emission is given by 

𝐼(𝑇) =
𝑘𝑟

𝑘𝑟+𝑘𝑛𝑟
𝐼0        eq. S1 

where 𝐼(𝑇) is the temperature dependent emission intensity and 𝐼0 is the emission intensity 

in the absence of non-radiative decay processes, thus corresponding to the number of 

photogenerated excitons. 𝑘𝑟 and 𝑘𝑛𝑟 denote the radiative and non-radiative decay rates. 

Since the absorption is independent of temperature, the Einstein coefficients require the 

radiative decay also to be temperature-independent (Figure S3a). On the other hand, 

Figure 1a in the manuscript shows that the photoluminescence quantum yield, Φ, increases 

strongly upon cooling. From Φ = 𝑘𝑟 (𝑘𝑟 + 𝑘𝑛𝑟)⁄  it follows that the non-radiative decay rate 

in this lead halide perovskite reduces upon cooling. This applies to both the tetragonal and 

the orthorhombic phase. We conclude that the non-radiative decay channel is mainly due to 

a thermally activated process such as exciton dissociation. Hence, the temperature 

dependent non-radiative decay rate can be written as 𝑘𝑛𝑟 = 𝑘𝑛𝑟
0 𝑒−

𝐸𝐵
𝑘𝑇 , where 𝐸𝐵 is the exciton 

binding energy. Eq. S1 therefore becomes 

𝐼(𝑇) = [1 +
𝑘𝑛𝑟

0

𝑘𝑟
exp (−

𝐸𝐵

𝑘𝑇
)]

−1

𝐼0.      eq. S2 

The activation energy can be thus determined from fitting the experimentally obtained 

temperature dependent PL intensity analogous to recent reports in literature.[1, 2] We find 

activation energies of 85 ± 20 𝑚𝑒𝑉 and 24 ± 5 𝑚𝑒𝑉 for tetragonal and orthorhombic phase 

respectively. The prefactor 
𝑘𝑛𝑟

0

𝑘𝑟
 is (2.4 ± 1.0)103 and 70 ± 20 for the two phases, 

respectively. The agreement between experimental data and fit is shown in Figures S3b on a 

linear temperature scale and on Figure S3c in an Arrhenius fashion. 
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Figure S3: (a) Optical Density at 3.68 eV, which corresponds to the wavelength of the 

excitation laser, as a function of temperature. The dashed line indicates the constant average 

value. (b) PL peak intensity as a function of temperature for excitation fluence of 0.75 µJ/cm2.  

(c) ln [
𝐼(0)

𝐼(𝑇)
− 1] as a function of inverse temperature. For both, (b) and (c) symbols indicate 

experimental data and dashed lines correspond to fits. The temperature ranges pertaining to 

the orthorhombic and tetragonal phase are indicated by blue and red shading, respectively. 
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4. Estimation of critical exciton density for ASE 

 

The critical density of excitons for ASE decreases with temperature. From the discussion in 

section 3, we attributed non-radiative decay of excitations to a thermally activated process, 

while the radiative decay is independent of temperature. Thus, the density of excitations that 

contribute to ASE at a certain temperature is given by 

 𝑛𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑= 𝑛𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑Φ = 𝑛𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑
𝐼(𝑇)

𝐼0
  ,     eq. S3 

where Φ is the photoluminescence quantum yield and 𝑛𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 is the number of excitations 

generated at the ASE threshold intensity in the excitation volume. 
𝐼(𝑇)

𝐼0
 is given by 

[1 +
𝑘𝑛𝑟

0

𝑘𝑟
exp (−

𝐸𝐵

𝑘𝑇
)]

−1

, with 𝐸𝐵 =  85 meV  and 
𝑘𝑛𝑟

0

𝑘𝑟
= (2.4 ± 1.0)103 for the tetragonal 

phase. 𝑛𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 is given by, 

𝑛𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 =
𝐴𝑆𝐸 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑓𝑙𝑢𝑒𝑛𝑐𝑒∗𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎

𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒∗𝑝ℎ𝑜𝑡𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦
 .    eq. S4 

We assume illumination within the full layer thickness of 100 nm, and a radius of the laser 

spot of 0.091 cm, implying an excitation area of 0.026 cm2. This yields an excitation volume 

of 𝑉 = 0.026 cm2 * 100 nm= 2.6*10-6 m2 * 10-7 m=2.6*10-13 m3 = 2.6*105 µm3 = 2.6*10-7 cm3. 

The photon energy of the laser excitation is 3.68 eV. The ASE threshold excitation fluence in 

the tetragonal phase is taken from Figures S1c. With this, we get densities of 9.3 1019𝑐𝑚−3, 

8.5 1019𝑐𝑚−3 and  4.2 1019 𝑐𝑚−3 for 280, 260 and 200 K respectively. Furthermore from 

Figure 2, we identified the ASE threshold for the tetragonal phase at 210 K when using a 

fluence of 85 µJ/cm2, which then corresponds to a generated excitation density of 

1.4 1019 𝑐𝑚−3. 

Figure S4 shows the values of 𝑛𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 (black colour), 
𝐼(𝑇)

𝐼0
 (red colour) and the resulting 𝑛𝐴𝑆𝐸  

(blue colour), all as a function of temperature for the tetragonal phase. We find a temperature 

independent density of 𝑛𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 𝑡𝑒𝑡𝑟𝑎𝑔𝑜𝑛𝑎𝑙

= (1.02 ± 0.2) 1018𝑐𝑚−3 for the tetragonal phase.  
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Figure S4: The values of 𝑛𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 (black diamonds), 
𝐼(𝑇)

𝐼0
 (red circles) and the resulting 

𝑛𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (blue open diamonds), all as a function of temperature for the tetragonal phase. 

 

For the orthorhombic phase, we calculate the ASE threshold density at 135 K using the same 

approach as for the tetragonal phase yet using an activation energy of 24 meV and a prefactor 

𝑘𝑛𝑟
0

𝑘𝑟
= 70 ± 20. 

This leads to a value of 𝑛𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 𝑜𝑟𝑡ℎ𝑜𝑟ℎ𝑜𝑚𝑏𝑖𝑐 = (1.4 ± 0.2)1018𝑐𝑚−3, which is similar to the 

corresponding density of the tetragonal phase. 
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5. Stability and Reproducibility 

 

 

Figure S5: (a) 5 K emission spectra taken with 21 µJ/cm2 first after illumination with a high 

fluence 1615 µJ/cm2 pulse train (solid lines) and then after heating to 100 K (erase) and 

decreasing the temperature back to 5 K (dashed lines) for 5 consecutive cycles. (b) 5 K 

emission spectra taken with 21 µJ/cm2 at different times after initial illumination with a high 

fluence 1615 µJ/cm2 pulse train. 
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6. Time resolved emission spectra before and after writing process 

 

The time-dependent photoluminescence spectra were recorded using an Optronis SC-10 

streak camera with a TSU12-10 deflection unit, operated in single acquisition mode with 

analogue accumulation. The integration time of the SRU-BA readout unit was set to 40 ms 

and 300 frames have been added within each measurement. The excitation source was an 

80 MHz pulsed Coherent Chameleon Ultra laser with a pulse width of 140 fs. An APE pulse 

select divided the 80 MHz by a factor of 162, before the light was frequency doubled by an 

APE second-harmonic generator. The excitation energy hitting the sample, which was held in 

an Oxford Instrument cryostat, was set to 3.4 eV. Prior to the detection in the streak camera 

the photoluminescence spectra was diffracted by an Acton SP- 2300i spectrograph. The 

instrumental response function had a FWHM of 2 ns. All spectra were recorded with an 

excitation fluence of 20 µJ/cm2. 

For high fluence excitation we used the same Nitrogen Laser as for the steady state emission 

measurements with an excitation fluence of 1615 µJ/cm2. The sample was exposed to the 

high fluence by a pulse train of 100 pulses. Prior to high fluence excitation, the PL decay of 

the peak centred at 1.61 eV can be fitted using a biexponential decay with lifetimes of 4.5 

(76%) and 30 ns (24%). After high fluence excitation, an additional new emission feature at 

1.53 eV appears, similar to the scenario described in section 3 in the main text. Fitting the PL 

decay of the new emission feature using a biexponential function gives values of 1.5 ns (52%) 

and 6.3 ns (48%). In the same manner, the PL decay of the Peak at 1.61 eV gives values of 

3.1 ns (54%) and 12.5 ns (46%). Overall, the PL-Signals before and after high fluence excitation 

decay within tens of nanoseconds. No µs lifetimes were detected within the entire spectral 

range investigated.  
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Figure S6:  Time resolved photoluminescence spectra at 20 K taken with an excitation fluence 

of 20 µJ/cm2, before (a,b) and after (c-e) high fluence excitation. The two streak images of the 

time resolved PL spectra (a) before and (c) after high fluence excitation are accompanied by 

corresponding PL decays at 1.61 eV (blue line) and at 1.53 eV (red line). In (b,d,e) the 

corresponding instrumental response function (black line) and a biexponential fit (green 

dashed line), together with obtained values of the lifetimes are shown.  
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7. Estimate of local heating and temperature dissipation effects 

 

The change of temperature upon heating is given by the amount of heat delivered, 𝑄, divided 

by the heat capacity 𝐶 of the perovskite, ie.e Δ𝑇 = 𝑄  𝐶⁄ . 

The heat capacity of lead-halide perovskites is 𝐶 < 200 J/(K*mol).[3] We need the heat 

capacity per absorber, which is the unit cell. As shown in section 4, the excitation volume is 

2.6*10-7 cm3. In the orthorhombic phase, the unit cell has lattice parameter of a=0.88 nm, 

b=0.87 nm, c=1.28 nm,[4-6] which implies a volume of 0.98 nm3 = 0,98*10-9 µm3 for the unit 

cell. Hence, there are approximately 2.7*1014 orthorhombic unit cells within our excitation 

volume, which corresponds to 4.5*10-10 mol of unit cells. Therefore, the specific heat capacity 

𝑐 for the excitation volume is 

𝑐= 200 JK-1mol-1*4.5*10-10 mol = 9*10-2 µJ/K. 

In order to estimate the energy per pulse which can be used to heat up the material 

(=heat amount per pulse), we consider the difference between excitation pulse energy 

(3.68 eV) and the energetic level from which emission takes place at 5 K (1.61 eV). This yields 

3.68 eV-1.61 eV=2.07 eV = 3.3165*10-19J/Photon. Since the absorption is constant with 

temperature, no correction is needed. Further, we neglect reflection and scattering and 

assume that the entire laser pulse is absorbed. To obtain the number of photons per laser 

pulse we divide the energy of the laser (= fluence * excitation spot size) by the energy of a 

photon. 

 

Table T1 summarizes the temperature changes obtained per pulse for the different fluences. 

Fluence (µJ/cm2) T (K) 

21 5 

168 36 

329 71 

482 104 

627 136 

811 176 

968 210 

1111 241 

1304 283 

1461 317 

1615 350 
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Excitation with a fluence of 1615 µJ/cm2 raises the temperature of the sample by 350 K. Due 

to the flat geometry of our excitation volume (cylinder with 100 nm height and 0.18 cm 

diameter), the associated heat is mainly dissipated into the quartz substrate underneath the 

excitation spot. Let us assume that the heat dissipation raises the temperature of the bath, 

i.e. the quartz substrate, only insignificantly, e.g. by 1K from 5K to 6K. This leads to a 

temperature difference of Δ𝑇 = 344𝐾 between the heated sample and the bath (=quartz 

substrate). Using a heat capacity of 𝑐𝑝𝑒𝑟𝑜𝑣𝑠𝑘𝑖𝑡𝑒= 200 JK-1mol-1 implies that a value of 31 µJ of 

heat needs to be dissipated. Quartz has a typical heat capacity of  𝐶𝑞𝑢𝑎𝑟𝑡𝑧 ≈ 700𝐽/(𝑘𝑔 𝐾). 

Thus, 31 µJ of heat can be dissipated while raising the temperature of the quartz by only 1K 

when using a mass of 44*10-9 kg of quartz. Since the density of quartz is  
ρ

𝑞𝑢𝑎𝑟𝑡𝑧
=

2.2 𝑔/𝑐𝑚3 , this implies a volume of roughly 20 10-12 m3 is required. As the excitation spot is 

circular with an area of 0.026cm2, this implies that a height of 6.3 µm of our quartz substrate 

is needed to dissipate the laser induced heat. This is easily fulfilled as the height of the 

substrates used in this study is approx. 3 mm. 

 

The timescale at which the induced high temperature due to laser excitation dissipates in the 

manner described above can be estimated using the heat equation:  

 
𝑄

𝑡
= 𝜆

∆𝑇

𝑙
𝐴        eq.S5 

Where 𝑄 is the heat to be dissipated, 𝑡 the time that is needed for disspation, 𝜆 the thermal 

conductivity, T is the temperature difference, 𝐴 is the area normal to heat flow, 𝑙 the length 

over which the dissipation takes place. Rearranging equation S5 gives: 𝑡 =
 𝑙

𝜆 ∆𝑇 

𝑄

𝐴
. 

Using values of 𝑄 = 31µ𝐽 , A = *10-6 cm2 , l = 6 µm , T=344 K and the thermal conductivity 

of lead halide perovskites which is 𝜆 = 0.5 
𝑊

𝐾 𝑚
,[7] leads to a value of t= 132 ns. 
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9. SEM Images of the used Perovskite Film 

 

   

 

Figure S7: Top View SEM image of the used perovskite thin film at low (a), mid (b) and high 

(c) magnification.  
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10. Single shot writing 

 

 

Figure S8: (a) Intensity of the ASE peaks at 1.53 eV (orange circles) and 1.61 eV (filled blue 

diamonds) measured for ten consecutive laser excitation shots with low fluence (21 µJ/cm2) 

and with high fluence (1615 µJ/cm2) as indicated in the top panel. We note that the low 

energy ASE peak already appears with the first high fluence shot. 
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Abstract 

In this paper, we investigate the temperature dependence of the optical properties of 

methylammonium lead iodide (MAPbI3 = CH3NH3PbI3) from room temperature to 6K. In 

both, the tetragonal (T> 163K) and the orthorhombic (T<163K) phase of MAPbI3, the 

band gap (from both absorption and photoluminescence (PL) measurements) decreases 

with decrease in temperature - in contrast to what is normally seen for many inorganic 

semiconductors, like; Si, GaAs, GaN etc. We show that in the perovskites reported here, 

the temperature co-efficient of thermal expansion is large and accounts for the positive 

temperature coefficient of the band gap. A detailed analysis of the exciton linewidth 

allows to distinguish between static and dynamic disorder. The low energy tail of the 

exciton absorption is reminiscent of Urbach absorption. The Urbach energy is a measure 

of the disorder, which is modelled using thermal and static disorder for both the phases 

separately. The static disorder component, manifested in the exciton linewidth at low 

temperature is small. Above 60 K, thermal disorder increases the linewidth. Both these 

features are a measure of the high crystal quality and low disorder of the perovskite films 

even though they are produced from solution.  
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Introduction 

In recent times lead based hybrid perovskite materials found a lot of attention, exhibiting 

solar cell efficiencies >20%1,2,3,4, high efficiency light emitting diodes5,6,7 and other 

optoelectronic applications8,9. The band gap of these materials can be tuned from NIR to 

UV by changing the halide ion. In a recent study, it has been shown that the temperature 

dependence of the band gap is anomalous – i.e. the band gap increases with 

temperature10. However, a clear understanding on the origin of this temperature 

dependence has not been established so far. In this paper we present a detailed study on 

the temperature dependence of the optical absorption and emission of high quality 

CH3NH3PbI3 films prepared on quartz substrate. First we study and explain the 

temperature dependence of the optical band gap, the exciton ΓEX and the sub-band gap 

absorption in these samples. Since the material undergoes a structural transition at low 

temperature, our studies encompass the room and low temperature phases of the 

material11. 

 

 

Results and discussion 

Structure and Lattice expansion: 

Hybrid perovskite MAPbI3 is known to have temperature dependent structural phase 

transitions. As depicted in Figure 1a, for temperatures T < 163 K it is in the orthorhombic 

phase (abc; ===900) and for temperatures 163 K <T< 327.3K it remains in the 

tetragonal phase a=bc; ===900. Beyond 3-27.3 K, MAPbI3 forms a cubic phase (a=b=c; 

===900). As shown in the supporting information, these crystalline structures can be 

clearly identified by X-ray scattering. With these temperature dependent X-ray 

measurements, we are able to determine the lattice expansion coefficient (
𝑑𝑙𝑛(𝑉)

𝑑𝑇
)

𝑃
.  

In particular, we have estimated this coefficient for the tetragonal and orthorhombic 

phase using temperature dependent X-ray scattering to be in the order of 10-4 K-1 which 

is in agreement with previously reported data by Kawamuraet.al.12 who found (
𝑑𝑙𝑛(𝑉)

𝑑𝑇
)

𝑃
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= (1.350.014) x 10-4 K-1. Using this value, we estimate (
𝑑𝐸𝑔

𝑑𝑙𝑛(𝑉)
)

𝑇
 to be 1.26 eV which is in 

good agreement with theoretical values estimated for the perovskite for example by 

Frost et al.13. V corresponds to the volume of the unit cell calculated as depicted in Figure 

2a. In the next section we will show the direct relation of the lattice expansion on the 

optical properties. 

 

Absorption 

Figure 1c and Figure 1d (See also in Figure 1S and Figure 2S in the Supporting 

Information) show the optical absorption spectra of a MAPbI3 film on quartz substrate in 

its orthorhombic and tetragonal phase at different temperatures. The onset of the 

optical absorption moves to higher energies with increase in temperature for both 

phases. Strong excitonic absorption features dominate the optical absorption edge10 and 

become even more pronounced at lower temperatures. In order to separate the band-

to-band absorption from the UV-Vis spectra we use Elliot theory (described in detail in 

the supporting information, Equation S1 and Fig.S1)6,14,15 to find the contribution of 

excitonic and interband absorption, i.e.,  𝛼𝑈𝑉−𝑉𝑖𝑠(𝜀) = 𝛼𝑒𝑥𝑐𝑖𝑡𝑜𝑛𝑖𝑐 + 𝛼𝑏𝑎𝑛𝑑−𝑡𝑜−𝑏𝑎𝑛𝑑. 

Fitting the optical absorption using this model provides the exciton binding energy (Ex), 

FWHM (ΓEX) of the exciton peak and the electronic bandgap (Eg)6. Table 1 shows the 

respective fitting parameters and Figure 2b the variation of the band gap with 

temperature. The band gap increases with temperature in contrast to what is normally 

observed in crystalline semiconductors where it decreases.16,17 In the vicinity of 160K the 

band gap exhibits a discontinuity, due to the structural phase transition from the 

orthogonal to the tetragonal phase.11 The respective temperature coefficient of bandgap 

(dEg / dT) is larger in the orthorhombic phase and in general the temperature dependence 

of the band gap 𝐸𝑔, can be expressed as 17-19 

(
𝑑𝐸𝑔

𝑑𝑇
)

𝑃
= (

𝑑𝐸𝑔

𝑑𝑇
)

𝑉
+ (

𝑑𝐸𝑔

𝑑𝑙𝑛(𝑉)
)

𝑇
× (

𝑑𝑙𝑛(𝑉)

𝑑𝑇
)

𝑃
      (1) 

The first term explicitly represents the electron phonon coupling through the 

deformation potential which results in a decrease of the band gap with temperature. 

The second term implicitly represents the lattice dilatation term which causes the band 

gap to increase with temperature. 
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Figure 1. (a) Crystal structure of MAPbI3 in orthorhombic and tetragonal phase, respectively. (b) 

Illustration of the fitting of the absorption spectra using Elliots theory with the excitonic and 

band-to-band contribution.UV-Vis absorption spectra of MAPbI3 thin film at different 

temperatures in (c) the orthorhombic and (d) the tetragonal phase respectively. Black solid line is 

the fit to the experimental absorption spectra (Scatter points).  

For most inorganic semiconductors the lattice dilatation term is much smaller than the 

electron phonon interaction term. Hence the band gap decreases with temperature for 

many inorganic semiconductors.18 This, however, is different in organometal halide 

perovskites such as MAPbI3, which can be seen when we express our experimental data 

using eq. 1. The second term, i.e. the lattice dilatation term, dominates the temperature 

dependence of the band gap for the lead perovskite reported here. From Fig. 2b we 

estimate (
𝑑𝐸𝑔

𝑑𝑇
)

𝑃
 to be (2.50  0.11) x 10-4

 eV/K for the tetragonal phase and (4.85  0.28) 

x 10-4eV/K for the orthorhombic phase. We estimate the volume expansion coefficient 

(vide supra) for the tetragonal phase to be (
𝑑𝑙𝑛(𝑉)

𝑑𝑇
)

𝑃
= (3.8290.014) x 10-4 K-1. Using this 

value, we estimate (
𝑑𝐸𝑔

𝑑𝑙𝑛(𝑉)
)

𝑇
 to be 1.26 eV which is in good agreement with theoretical 

values estimated for the perovskite13. We would like to point out that this value is a lower 
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limit as we have ignored the (negative) contribution to (
𝑑𝐸𝑔

𝑑𝑇
)

𝑃
 from the electron phonon 

term in eq.1. The thermal expansion coefficient of the perovskite samples is almost 50 

times larger than similar data for Si (3 x 10-6 K-1).19 We mention in passing that other lead 

compounds- like lead chalcogenides also have a positive temperature coefficient of the 

band gap, where volume expansion coefficient is higher than MAPbI3 resulting  in an 

even higher (
𝑑𝐸𝑔

𝑑𝑇
)

𝑃
 than MAPbI3.20 

After having discussed the temperature dependence of the electronic band gap we will 

now discuss the temperature dependence of this excitonic absorption term. The exciton 

binding energy Ex accounts for the energy difference between the electronic band gap 

and the excitonic peak position. The line width of the excitonic peak is a signature of the 

disorder present in the semiconductor. The disorder can be of static (structural) and/or 

dynamic (thermal) nature - both will broaden the excitonic line width.21,26 Figure 2a shows 

the FWHM line width ΓEX as a function of temperature. ΓEX decreases linearly with 

temperature till about 60K and begins to flatten out at lower temperature and decreases 

continuously through the phase transition. At very low temperature, broadening due to 

static disorder dominates ΓEX and is about 11.5 meV, which can be seen as a lower-bound 

of the inherent disorder in the film.  

For all higher temperatures the ΓEX is influenced by dynamic disorder (which will be 

analysed in more detail further below). The instrument broadened line width with about 

3 meV is much smaller than measured ΓEX at 60K.21 

A very typical approach well-known for inorganic solids attributes the dynamic disorder 

to the interaction with phonons. Then, the broadening ΓEX, can be fitted using a Bose-

Einstein type expression.22, 23 

𝛤𝐸𝑋(𝑇) = 𝛤0 +
𝛤𝑒𝑝

exp(
𝐸𝑃

𝑘𝐵𝑇
)−1

        (2) 

where, Γ0= intrinsic ΓEX width at T=0K, Γep= coupling constant and EP = phonon energy. 

Figure 2b shows the fit for two phases separately over the whole temperature range.  

The respective fitting parameters are summarized in Table 1. We note that Γ0= 11.64 meV 

(orthorhombic) and Γ0= 15.05 meV (tetragonal) is small for both phases, which is an 

indicative of high crystal quality of the film. Γ0 is marginally smaller for the orthorhombic 
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phase than tetragonal phase, which suggests that the orthorhombic phase is relatively 

more ordered than tetragonal phase in agreement with literature.24  

 

Figure 2. (a) Log of Volume of MAPbI3 in tetragonal phase as a function of temperature and solid 

line is a linear fit. (b) Variation of bandgap and FWHM of excitonic peak with temperature in 

orthorhombic and tetragonal phase of MAPbI3. Blue open circles (○) and red open squares (□) 

represents the bandgap at different temperature in orthorhombic and tetragonal phase. Blue 

solid circles (●) and red solid squares (■) represents the FWHM exciton in orthorhombic and 

tetragonal phase respectively. Blue and red solid lines are fits to the experimental data in the 

orthorhombic and tetragonal phase respectively. 

Considering that Ep (using equation 2) is ~ 210 cm-1 first principle calculations have shown 

that such low energy phonon modes relate to the coupled phonon mode between the 

inorganic cage and the MAI+ motion.24,25 In MAPbI3, the orthorhombic phase restricts the 

molecular ion motion relatively more compared to the tetragonal phase resulting in a 

lower dynamic disorder. Figure 3a and 3b show the plots of log  vs h𝜈 at different 
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temperatures for the low energy side of the absorption of exciton peak for the two 

phases. 

The low energy edge of the exciton peak satisfies the following empirical relation26 

𝛼 = 𝛼0exp [
𝜎(ℎ𝜈−𝐸0)

𝑘𝑇
]        (3) 

Where  is the absorption coefficient, 𝜎 the steepness parameter (vide infra) and k the 

Boltzmann constant. This empirical relation is valid for many semiconductor materials 

and is known as the Urbach rule.26 The exponential absorption is indicative of tail states 

which are a consequence of disorder.18, 26, 28, 29. In a logarithmic plot the fitting of the band 

edge at different temperatures results in a common focus E0.  

 

Figure 3. Logarithmic variation of absorption coefficient (α) with photon energy at different 

temperatures in (a) orthorhombic and (b) tetragonal phase of MAPbI3. 
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This Urbach focus is one of the characteristic features of Urbach absorption. As shown in 

Figure 3, the lines come to a separate common focus (E0) for each of the phases. A single 

E0 cannot fit both phases, reflecting the prevalence of different disorder of each of the 

phases. In most semiconductors the Urbach focus E0 is located at energies which are 

greater than the optical band gap providing theoretical maximum bandgap estimation.18, 

26, 28 In the present case however, as T decreases, the bandgap decreases and the slope of 

optical absorption becomes steeper. Since the temperature dependence of the band gap 

is positive, the Urbach focus (E0) now takes place at energies less than the band gap.  

The applicability of the Urbach rule in this case provides an elegant way in describing the 

minimum possible bandgap which can be achieved in MAPbI3 at zero disorder.  

We note, that due to the high absorption cross section and due to the primary relevance 

of higher tail states a fit accounting of even less than one order of optical density suffices 

this formalism. In particular, the excellent convergence substantiate the applicability of 

the Urbach rule within this rather small optical density range. As can be seen from 

photothermal deflection measurements27 the exponential tail may extend another 2-3 

magnitudes yet this is partially obscured here by scattering effects. 

Furthermore, the prevalence of the common focus shows that the Urbach rule is 

compatible with the above explained band gap shift due to lattice dilatation.  

The temperature dependence is accounted by the steepness factor 𝜎 which is described 

in the following section. Figure 4a shows the steepness parameter  as a function of 

temperature obtained by using equation 4. The steepness parameter is temperature 

dependent and, following the Urbach formalism, is approximated by26 

𝜎 = 𝜎0(2𝑘𝑇 ℎ𝜈𝑝⁄ )𝑡𝑎𝑛ℎ(ℎ𝜈𝑝 2𝑘𝑇⁄ )       (4) 

𝜎0 is a constant which is characteristic of the excitation and ℎ𝜈𝑝 quantifies the energy of 

involved phonons. Table 1 summarises the values of 𝜎0 and ℎ𝜈𝑝 obtained for the two 

phases. Using the values of 𝜎0 we calculate the Urbach energy. The energy 𝑘𝑇/𝜎 = 𝐸𝑢 is 

known as the Urbach energy and is related to the degree of disorder.  

Following Cody, the total disorder can be thought of as the sum of two terms - thermal 

disorder and static disorder.18 The thermal disorder arises from excitations of phonon 

modes and the static disorder is due to inherent structural disorder. Figure 4b shows the 

Urbach energy as a function of temperature.  
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 4.91±0.49 1.57±0.11 

 

This can be written quantitatively as a sum of thermal and structural disorder:18  

Eu (T, X) =K (<U2>T + <U2>x). 

Here,<U2>T is related to the mean square displacement of atoms (similar to the Debye 

Waller factor) and <U2>x is the quenched in inherent structural disorder. The temperature 

dependence of Eu can be estimated by describing the phonon spectrum to be an assembly 

of Einstein oscillators18.  

 

Table 1: Slope of Eg vs. T, Eg vs. Eu, volume vs. T, and extracted parameters Γ0, Γep, ELO, Θ, 

P, Eu (T=0) in orthorhombic and tetragonal phase of MAPbI3 film. 
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Following the procedure of Cody et al we write28 

𝐸𝑢(𝑇, 𝑃) = 𝐾 (
𝛩

𝜎0
) [

1+𝑃

2
+ {exp (

𝛩

𝑇
) − 1}−1]      (5) 

where, Θ is the Einstein characteristic temperature which corresponds to the mean 

frequency of lattice phonon excitation; P is the structural disorder and is defined as P = 

<U2>x / <U2>0 - the suffix 0 denotes the zero point vibrational mode. In a perfectly ordered 

semiconductor film P =0. Equation 5 is used to fit the data of Eu vs T for the two phases 

and the results are summarized in Table 1. 

 

Figure 4. (a) Steepness parameter as a function of temperature for MAPbI3together with 

corresponding fit (solid lines) of the experimental data using equation 4. (b) Urbach’s energy as a 

function of temperature for MAPbI3 in orthorhombic and tetragonal phase. (c) Bandgap as a 

function of Urbach energy. Blue circles (○) and red squares (□) represents the steepness parameter 

and corresponding solid colour lines represents the fit to the experimental data in orthorhombic 

and tetragonal phase respectively. 
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The small value of P reflects again the high crystal quality in these films and we again 

note that P is larger for tetragonal phase than orthorhombic phase confirming that the 

orthorhombic phase is more ordered. For comparison, structural disorder value P is found 

to be approximately 2.2 for a:Si.18 It is worth mentioning that the phonon modes, 

responsible for thermal disorder in the two phases match the ones responsible for exciton 

ΓEX broadening (see Table 1).The Einstein characteristic temperature Θ is lower for the 

orthorhombic phase confirming that the orthorhombic phase is more ordered than the 

tetragonal phase.  

In order to discuss how much the extrinsic disorder (𝐸𝑢(𝑇, 𝑃 = 0), which can be thermal or 

structural due to different processing conditions)29 of the material affects the band gap 

with respect to the intrinsic disorder (𝐸𝑢(𝑇 = 0, 𝑃)), we analyse the change in bandgap 

and Eu at a particular temperature. Figure 4 shows Eg vs Eu for the MAPbI3 film for both 

phases. As Eu increases, Eg also increases in both phases. The slope of Eg vs Eu is almost 

three times higher for the orthorhombic phase (dEg/dEu = 4.91±0.49) than for the 

tetragonal phase (dEg/dEu = 1.57± 0.11). 

This analysis establishes a relationship between the bandgap and the width of the 

absorption tail, i.e., Eu for each phase, which suggests that the bandgap of this material 

is determined by the degree of the thermal disorder in the film at given T. Since the 

orthorhombic phase is the relatively more ordered phase, a small change in Eu results in 

a larger change in Eg as compared to the tetragonal phase of MAPbI3. 

 

Photoluminescence 

Of course, the temperature dependency also affects the emission of the sample. In the 

following we will limit our discussion to two peculiarities which nicely confirm our results 

on disorder. Temperature dependent photoluminescence (PL) studies are carried out on 

MAPbI3 films. Figure 5a show the normalized PL spectra at different temperatures for the 

orthorhombic, (T< 167K) and tetragonal (T>167K) phase, respectively. The PL peak moves 

towards lower energy as temperature decreases in agreement with the band gap shift as 

seen in absorption measurements (Figure 5b).  
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Figure 5. (a) Photoluminescence of MAPbI3 film on glass substrate at T< 167K, i.e., in orthorhombic 

phase and at T >167K,i.e, in tetragonal phase of MAPbI3. (b) Plot of PL and excitonic peak positions 

at different temperatures (see also S6 of SI). (c) Example for fit of higher energy PL edge using a 

Gaussian and exponential function (d) Respective contributions of Gaussian and exponential 

function to the fit. 

For the PL spectra of the orthorhombic phase, we observe a remaining PL feature from 

the tetragonal phase around 1.6 eV in the vicinity of the transition temperature.30,35  

The temperature dependent energetic positions of the PL peak and the already 

determined excitonic peak from the absorption data is shown in Figure 5b. The energy 

difference between absorption and emission is about twice as large for the tetragonal 

phase than for the orthorhombic phase. We consider this difference arises from the 

broadening of the density of states induced by thermal disorder and is beautifully 

consistent with the results obtained from the absorption spectra analysis. 

This conclusion can be further substantiated by considering the evolution of the 

photoluminescence spectra with temperature.  

For the analysis of the photoluminescence spectra we focus on the high energy edge 

where the spectrum is not affected by lower energy emission features such as remaining 

tetragonal incorporations or possible bound exctions.30,31,35,8 We fit the blue edge by a 

a b 

c d 
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superposition of a Gaussian peak – attributed to the inhomogeneously broadened DOS 

due to static disorder – and exponential tails that reflect the additional broadening 

caused by thermal disorder (Figure 5c and supporting information).26 Considering the 

relative contributions of the Gaussian part (A) and the exponential contribution (B), we 

find that a Gaussian peak is fully sufficient to describe the emission below 60 K, yet from 

60 K onwards there is an increasing exponential contribution (Figure 5d). This is nicely 

consistent with the increase in FWHM observed in the absorption spectra (Figure 2b) and 

thus further supports our overall approach. 

 

 

Conclusion 

In conclusion, we have studied the temperature dependence of the optical properties of 

MAPbI3 perovskite films. The onset of optical absorption is dominated by exciton 

absorption. The band gap increases with temperature which is in strong contrast with 

the decrease in band gap with temperature seen in most crystalline inorganic 

semiconductors. This is confirmed from both absorption and photoluminescence 

measurements. We show that the positive temperature coefficient of the bandgap 

relates to the large temperature coefficient of lattice expansion in these materials. 

Lattice dilatation plays a much more significant role than electron–phonon interactions. 

The volume coefficient of MAPbI3 is (1.350.014) x 10-4 K-1, which is ~ 50 times larger than 

that for crystalline Si. A model, using Einstein oscillators fits to the exciton linewidth ΓEX 

indicates that the orthorhombic phase is slightly more ordered than the tetragonal 

phase. The low energy dependence of the exciton absorption is given by an exponential 

absorption tail reminiscent and consistent of classical Urbach absorption. From the 

temperature dependence of the Urbach energy, we estimate the disorder and show that 

it is surprisingly small in these samples - remarkable for solution processed 

semiconductors. The analysis on temperature dependent PL data consistently supports 

this picture. It allows to analyse the impact of static and dynamic disorder on the spectra 

by differentiating between Gaussian and exponential contributions to the shape of the 

PL. Overall, our study establishes a methodology using optical techniques for the concise 

characterisation of disorder in new perovskite materials. It correlates fundamental 
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aspects such as lattice dilatation, static and dynamic disorder to the optical properties of 

perovskite semiconductors. This provides important insights to the electronic and 

structural properties of MAPbI3 based perovskites which can be transferred to many 

related organic metal-halide perovskites. 

 

 

Experimental Methods 

CH3NH3I Synthesis  

All materials were purchased from Sigma-Aldrich and used as received. 

Methylammonium iodide (MAI) was synthesized as discussed elsewhere32,33 MAI was 

synthesized by reacting 24 mL of methylamine (33 wt. % in absolute ethanol) and 10 mL 

of hydroiodic acid (57 wt% in water) in a round-bottom flask at 0 °C for 2 h under Ar 

with stirring. The raw precipitate was recovered by removing the solvent in a rotary 

evaporator at 50 °C. The raw product was washed with dry ether, dried in vacuum at 60 

°C and redissolved in minimum possible boiling absolute ethanol. The pure MAI 

recrystallized on cooling is filtered and dried at 60 °C in a vacuum oven for 24 h.  

 

CH3NH3PbI3 Film Preparation 

For perovskite film formation, we adapted a published procedure.33,34The quartz 

substrates (spectrosil B) were cleaned with detergent diluted in deionized water, rinsed 

with deionized water, acetone and ethanol, and dried with clean dry air. After cleaning, 

the substrates were transferred in a glovebox under nitrogen atmosphere. For perovskite 

formation, PbI2 (1M) was dissolved in N,N-dimethyl formamide overnight under stirring 

conditions at 100 °C and 80 µl solution was spin coated on the quartz substrates at 2000 

rpm for 50 s, and dried at 100 °C for 5 min. Powder of MAI (100 mg) was spread out 

around the PbI2 coated substrates with a petridish covering on the top and heated at 165 

°C for 13 h. To protect the samples from air and humidity, 40 mg/ml 

poly(methylmethacrylate) (PMMA; Aldrich) in butyl acetate was spin-coated on top of 
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the perovskite at 2000 rpm for 30 sec. All steps were carried out under a nitrogen 

atmosphere in a glove box. 

Optical characterisation 

The films were measured in a quartz windows fitted helium flow cryostat unit. The 

absorption spectra were recorded using an Ocean Optics DS3000 Halogen-Deuterium 

light source and an Ocean Optics QE Pro spectrometer coupled with fiberoptics and 

lenses to the cryostat system. A temperature-step profile was applied to obtain the UV-

Vis spectra at the respective temperatures, allowing 10min equilibration time.  

For temperature dependent emission spectra we used a home built setup that was 

described in more detail recently.35 In Brief, the sample was put into a continuous flow 

cryostat (Oxford Instruments, Optistat CF) and was excited by a Nitrogen Laser (LTB, MNL 

100) with 337 nm pulses, at a fluence of 0.75 µJ/cm2 and a repetition rate of 15 Hz. The 

emitted light was detected by a CCD camera (AndoriDus) coupled to a spectrograph 

(Andor Shamrock 303i). Measured spectra were corrected for CCD and grating 

responsivity. 

 

XRD characterisation 

Perovskite films were prepared as described, but then scratched off in the glovebox and 

transferred into a Kapton sample holder (Aluminium discs sealed with Kapton tape, 

serving as windows). The samples were transported in inert atmosphere to the Australian 

Synchrotron, where they were measured at the SAXS beamline in a liquid nitrogen 

cooled temperature stage (Linkam) which was purged with nitrogen. The X-ray energy 

was at 10keV using a 4k Pilatus detector for the WAXS signal collection. 
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29 Wasim, S.M., Marıń, G., Rincón, C., Bocaranda, P. & Pérez, G. S. Urbach's tail in 
the absorption spectra of the ordered vacancy compound CuGa3Se5. J. Phys. Chem. 
Solids 61, 669–673 (2000). 

30a) Kong, W. et al. Characterization of an abnormal photoluminescence behavior upon 

crystal-phase transition of perovskite CH3NH3PbI3. Phys. Chem. Chem. Phys. 17, 

16405 (2015) b) Fang, H.-H. et al. Photophysics of organic–inorganic hybrid lead 

iodide perovskite single crystals, Adv. Funct. Mater. 25, 2378 (2015). 

31 Wehrenfennig, C., Liu, M., Snaith, H. J., Johnston, M. B. & Herz, L. M. Charge carrier 
recombination channels in the low-temperature phase of organic-inorganic lead halide 
perovskite thin films. APL Mater. 2, 081513 (2014). 
32 Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient 

hybrid solar cells based on meso-superstructured organometal halide perovskites. 

Science 338, 643-647 (2012). 

33 Gujar, T. P. & Thelakkat, M. Highly reproducible and efficient perovskite solar cells 

with extraordinary stability from robust CH3NH3PbI3: towards large area devices. 

Energy Technol. 4, 449 (2016). 

34 Chen, Q. et al. Planar heterojunction perovskite solar cells via vapor-assisted 

solution process. J. Am. Chem. Soc. 136, 622−625 (2014). 

35 Panzer, F. et al. Reversible laser induced amplified spontaneous emission from 
coexisting tetragonal and orthorhombic phases in hybrid lead halide perovskites. Adv. 
Opt. Mater. DOI: 10.1002/adom.201500765. 



Publications 

215 

Supporting Information: 

 

Effect of Thermal and Structural Disorder on Electronic 

Structure of Hybrid Perovskite Semiconductor CH3NH3PbI3 

 

 

Shivam Singh1#, Cheng Li2#, Fabian Panzer3,4,5 K. L. Narasimhan6, Anna Graeser2,Tanaji 

Gujar7,Anna Köhler3,4, Mukundan Thelakkat7, Sven Huettner2*, and Dinesh Kabra1* 

 

 

Department of Physics1 and Electrical Engineering6, Indian Institute of Technology 

Bombay, Powai, Mumbai (India) – 400076. 

Organic and Hybrid Electronics Group - Macromolecular Chemistry I 2, Experimental 

Physics II3, Bayreuth Institute of Macromolecular Research (BIMF)4, Department of 

Functional Materials5, Applied Functional Polymers - Macromolecular Chemistry I7, 

University of Bayreuth, 95440 Bayreuth, Germany 

 

# Authors contributed equally 

  



Publications 

216 

UV-Vis Spectrum analysis:  

In order to determine the electronic bandgap and excitonic properties of these materials 

we model our experimental results using Elliot’s theory of Wannier exciton in 3D 

semiconductors. The following equation is used to fit measured UV-Vis spectrums of 

CH3NH3PbI3 films: 

𝛼(𝐸) ∝
𝜇2

𝐸
[∑

2𝐸𝑥

𝑛3
𝑠𝑒𝑐ℎ (

𝐸 − 𝐸𝑛
𝑥

Γ
)

𝑛

+ ∫ 𝑠𝑒𝑐ℎ (
𝐸 − 𝐸𝑛

𝑥

Γ
)

1

1 − 𝑒
−2𝜋√

𝐸𝑥
𝐸1−𝐸𝑔

⁄

1

1 −
128𝜋𝜇𝑏

ℏ
(𝐸1 − 𝐸𝑔)

𝑑𝐸1

∞

𝐸𝑔

] 

Where Ex, μ, Γ, E and b are exciton binding energy, transition dipole moment, FWHM of 

excitonic peak, photon energy and non-parabolic contribution, respectively. This 

equation is valid for bulk semiconductors with Ex much smaller than the Eg (Wannier 

excitons) and was used to describe optical transitions to bound and/or ionized excitonic 

states in model inorganic semiconductors. In above equation there are two terms, first 

term represents excitonic levels below the conduction band of various perovskite 

semiconductors and second terms represents the continuum of states beyond the energy 

of Eg as band-to-band transition contribution in the overall optical absorption. The 

absorption in the continuum spectrum does not simply resemble a square root 

dependence of the density of states on energy α(h )2 = A(E-Eg) as expected for bare band-

to-band transitions between uncorrelated electrons and holes. The excitonic 

enhancement of the optical density of states at band-edge depends on the strength of 

the Coulomb interaction, through the exciton binding energy and reflects the strength 

of their correlation.36 
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Figure S1: UV-Vis absorption spectra of CH3NH3PbI3 thin film at different temperatures: (a) 

Orthorhombic (b) Tetragonal phase of ABI3. Black solid line is fit to the experimental absorption 

spectra (Scatter points). (c) UV-Vis absorption spectra of CH3NH3PbI3 at 30K. Red line is fit to the 

experimental absorption spectra (blue scatter points), where wine and olive line represents the 

exciton and band to band contributions respectively. (d) Variation of lattice constant with 

temperature (adapted from37). (e) Excitonic contribution in orthorhombic phase and (f) in 

tetragonal phase, visualizing the broadening with higher temperature.  (g,h) transmittance, 

scatter and reflectance measured with an integrating sphere showing that a certain amount of 

scattering is involved with these samples. 
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Fitting of Variation of exciton FWHM with temperature [Fig S2(a)]  

𝛤(𝑇) = 𝛤0 + 
𝛤𝑒𝑝

𝑒𝑥𝑝 (
𝐸𝑃

𝐾𝐵𝑇
) − 1

 

Where, Γ0= intrinsic linewidth at T=0K = (11.45±0.21) meV  

Γep = coupling constant =(14.55±1.67)meV  

EP = LO phonon energy = (13.14±1.21) meV  

Here, KB= 8.61X 10-2 meV/K 

Results from the fitting of Fig S2 (b) 

σ0 = (0.433±0.009)   ;         hνp = (20.58±1.13) meV  

Results from fitting of Fig S2 (c) 

Θ = Einstein Characteristic Temperature = (223±19) K 

P = Structural Disorder = (0.017±0.0.05) 

N = Thermal Phonon Interaction Term = 1 (Fixed) 

Eu (T=0K) =  21.47 meV  Eu(T=305K)= 58.72 meV  

 

 

 

 

 

Figure S2: (a) Variation of FWHM of excitonic peak with temperature in CH3NH3PbI3. (b) Steepness 

parameter as a function of temperature for CH3NH3PbI3. (c) Urbach energy as a function of 

temperature for CH3NH3PbI3. Red solid line is fit to the experimental data. Fittings are done 

without separating phases of CH3NH3PbI3.  
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Volume expansion coefficient of MAPbI3 

The volume expansion coefficient was determined by plotting ln(V) against T(K) and 

using the slope of the linear fit (Figure S3). The volume for the tetragonal cell was 

calculated after: V= a² * c 

For comparison Kawamura et al.38 calculated the volume after the same equation where 

a was calculated from 𝑎̃ = a / √2 and c from 𝑐̃ = 𝑐/2.  
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Figure S3: Thermal expansion within the tetragonal phase during cooling (approx. 10K/min). 

 For the orthorhombic cell the volume was calculated after V=a*b*c (Figure S4). 
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Figure S4: Thermal expansion within the orthorhombic phase within the heating cycle (approx. 

10K/min)  
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Photoluminescence: 

High energy side of the PL of the orthorhombic phase was fitted for temperatures <120K 

using a superposition of an exponential decay and a Gaussian:  

𝑦 =  𝑦0  +  𝐴 ∗ 𝑒
−

𝑥−𝑥0
𝑡1  +  (

𝐵

𝑤√𝜋/2
) 𝑒

−2(
𝑥−𝑥𝐶

𝑤
)

2
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Figure S5: PL spectra at 120K (top), 80K (middle) and 40K (bottom) together with best fits of the 

high energy side of the spectra using either a superposition of a Gaussian and an exponential 

(green line) or only a Gaussian (orange line).   
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Stokes Shift approach: 

By calculating the difference between the temperature dependent energetic positions 

of the PL peak and the already determined excitonic peak from the absorption data 

(Figure 2), we obtain the temperature dependent Stokes shift (Figure S6).  

 from PL/Abs

 from FWHM FWHM=
2
/kT

 

Figure S6: Calculated stokes shift form peak positions of the excitonic absorption peak and the 

photoluminescence peak (red symbols). The spectral diffusion calculation is given by the black 

open symbols. 

Within the tetragonal phase (300 K – 160 K) values are in the range of 30 - 35 meV and 

in the orthorhombic phase (< 160 K) in the range between 15-20 meV. 

It is known that, besides other parameters, the Stokes shift correlates with the degree of 

disorder in the material. As already established above, the structural disorder is small in 

both phases, which leads only to a small Stokes shift that we observe in our data in the 

entire temperature range investigated. To further investigate to which extend the 

observed Stokes shift can be attributed toward the small amount of disorder in the 

material, we fit the data set with a spectral diffusion term. Spectral diffusion is the 

diffusion of excited states through various energy sites at a given temperature. Assuming 

a Gaussian distribution of energy levels of the excitons with the width ΓEX, the difference 

between the PL and exciton absorption peak (Stokes shift) at given T is given by2:  

∆𝜖 =
𝜎 Γ𝐸𝑋

2

𝑘𝑇
    

The slope as well as the absolute values of the Stokes shift match well within the 

temperature range of the tetragonal phase, we therefore attribute the Stokes shift in 
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the tetragonal phase to be a consequence of the disorder in the material, which possibly 

can stem from a distribution of trap states and/or a distribution of excitonic active areas 

with different sizes within single grains. In contrast to the tetragonal phase, for 

temperatures below the phase transition the values ∆𝜖 which were calculated based on 

the FWHM of the PL Peaks seem to overestimate the Stokes shift by about 10-15 meV. 

While the detailed explanation and analysis on this difference is beyond the scope of this 

work, it nevertheless shows the higher order in the orthorhombic phase due to the 

experimentally obtained small Stokes shift at temperatures below the phase transition. 
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Abstract: We present the successful fabrication of CH3NH3PbI3 perovskite layers by the aerosol

deposition method (ADM). The layers show high structural purity and compactness, thus making

them suitable for application in perovskite-based optoelectronic devices. By using the aerosol

deposition method we are able to decouple material synthesis from layer processing. Our results

therefore allow for enhanced and easy control over the fabrication of perovskite-based devices, further

paving the way for their commercialization.

Keywords: AD; room temperature impact consolidation (RTIC); methylammonium lead trihalide;

MAPI3; CH3NH3PbI3; perovskite solar cell; X-ray diffraction; optical spectroscopy; scanning electron

microscopy (SEM)

1. Introduction

Hybrid lead-halide perovskites are attracting increasing attention among various research

communities due to their remarkable optoelectronic properties, which render them suitable for use as

highly efficient active semiconductors in different types of devices. Up to now, their most prominent

application is in perovskite-based solar cells, where efficiencies have grown from 9% in 2012 up to

a remarkable and commercially interesting 21% in 2015 [1,2]. Meanwhile, applications in the field

of lighting technology have also been developed. Here, different types of perovskite-based laser

devices have been reported within the past two years [3–6]. Further, by embedding the perovskite

material in a host matrix, perovskite-based white light light-emitting diodes were fabricated [7].

Since perovskites also absorb in higher-energy spectral regions, a successful use as UV- or X-ray

detectors was demonstrated recently [8–12]. Additionally, hybrid halide perovskites were found to

work as memory devices [13,14] and transistors [15], thus further extending the number of possible

fields of application for this material class. In general, all these different types of applications

impressively demonstrate the high potential of this class of materials.

Obtaining good control over the formation of the perovskite layer is a key requirement to enable

the exploitation of the perovskite’s optoelectronic properties in any of these applications. As a

Materials 2016, 9, 277; doi:10.3390/ma9040277 www.mdpi.com/journal/materials
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consequence, a variety of different methods for the formation of thin films of perovskite were presented

within the last years [16,17]. Most of the methods are based on the same principle. Two different

compounds, where at least one of them is a halide, are combined to result in a perovskite structure.

Usually, this is done in solution and the perovskite formation occurs during the drying process

which leads to the film [16]. This approach has the disadvantage that synthesis of the perovskite is

interconnected with the formation of the film, so that changes in the processing of the film imply

concomitant changes in the optoelectronic properties of the perovskites. Furthermore, it is difficult

to obtain layers with thicknesses significantly above 1 µm, which are needed, for instance, when

the perovskite is used in X-ray detectors. The development of an alternative approach, where the

perovskite synthesis is decoupled from the formation of the film and where films with a wide range

of thicknesses can be made easily and without altering the material’s properties, is therefore highly

desired. This would allow for more control over the processing of the various kinds of perovskite-based

devices, further paving the way for commercialization.

A novel processing method that may satisfy the aforementioned requirements is the so-called

aerosol deposition (AD) process or method. As we showed in several previous studies [18–22], this

method, emerging from the field of ceramics engineering, has proved to be applicable to various

material systems and applications. As a result, it attracted much attention over the past decade [23].

Moreover, AD was already used for the controlled formation of TiO2 layers in dye-sensitized solar

cells (DSSCs) [24,25]. In general, it is a method that is used to produce dense ceramic coatings fully at

room temperature conditions directly from a bulk powder. The powder is transferred into an aerosol

and then spray-coated onto a substrate where dense films are formed. Reported film thicknesses

range from a single micron up to several hundreds of micrometers, while reaching film porosities in

the single percent range without an additional sintering step [23]. This makes AD superior to other

manufacturing methods, especially for materials with low decomposition/degrading temperatures, as

is the case in organic-inorganic hybrid perovskites.

The dry nature of the AD process is in contrast to the already-used spray-coating methods that

have been applied to hybrid perovskites so far [26–30]. These methods have in common that the

perovskite is synthesized in situ after wet deposition of the reactants, which can render control over the

reaction difficult. For example, a perovskite precursor containing methylammonium iodide and lead

chloride is deposited by spray-coating and the perovskite forms after annealing [7,26], or PbI2 and

Ch3NH3I are subsequently deposited on a substrate by aerosol-assisted chemical vapor deposition and

an annealing step results in perovskite formation [28,30,31]. The dry deposition of perovskite powder

that we employ, however, implies that the synthesis of the perovskite and the formation of the film are,

finally, detached from each other and can be optimized independently. This is a major advancement

on the way to the commercialization of this class of semiconductor.

In this proof-of-principle study, we present the successful use of AD to form CH3NH3PbI3
perovskite layers, which show high crystalline quality, compactness and optoelectronic activity, thus

making this compound suitable for use as active elements in various perovskite-based devices.

2. Results and Discussion

A schematic illustration of the AD system that was used in this study is presented in Figure 1.

It consists of three main components, a deposition chamber, a vacuum pump, and an aerosol generation

unit. In the aerosol generation unit, a carrier gas flow (i.e., N2) is directed at the perovskite powder

filling which creates aerosolized particles within the aerosol chamber. Due to the pressure difference

compared to the deposition chamber, which is evacuated by a vacuum pump (ca. 10 mbar), the

perovskite particle gas flow is accelerated and dragged through a connecting pipe into the deposition

chamber. A slit nozzle is mounted to the exit of the pipe for additional acceleration of the aerosol

flow to form a high velocity jet. This jet is then focused toward a movable substrate, where it forms

a film when the particles impact on the substrate and consolidate (Figure 1) [23,32]. Here, various

parameters such as particle size, hardness of the material or velocity of the particle jet are known to
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affect the formation of a film processed by AD. For a detailed overview of the AD with parameters

influencing film formation, materials investigated so far (i.e., TiO2) and possible applications, we refer

to the reviews [20,23]. In contrast to the related method of organic vapor-phase deposition, which

has been used successfully for the fabrication of organic light-emitting diodes yet requires heating of

the equipment and the carrier gas to temperatures in the range of 200–300 ˝C, the aerosol formation

and deposition occurs at room temperature [33,34]. Thus, the principle of film formation is also called

Room Temperature Impact Consolidation (RTIC) [23].
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Figure 1. Schematic representation of an aerosol deposition setup with its typical components.

The zoomed area at the right-hand side illustrates the film formation process in more detail.

We prepared perovskite powder following a synthesis method as described in more detail in the

Experimental Section. Here, the perovskite material was pestled to a powder as the last preparation step

before spraying. Figure 2 shows an SEM top-view image of the synthesized powder. From this, a broad

distribution of particle sizes in the range of submicrons up to 30 µm becomes obvious. In principle,

such a wide distribution as well as the strong agglomeration of the powder particles is disadvantageous

for the AD process, where a rather narrow particle size distribution in the single-micron range is

usually desired [20,23]. When having a detailed view of the particles (Figure 2b), it can be seen that

they consist of smaller constituents, which reveals the partially agglomerated character of the powder,

which is also not advantageous for ADM. As will be explained in more detail below, it nevertheless

was possible to transform the perovskite powder into a film using AD.
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Figure 2. Top-view SEM images of the synthesized perovskite powder before spraying at (a) lower;

and (b) higher magnification.

To prove that film formation is possible on relevant interfaces, the perovskite powder was then

processed in terms of the above-described AD onto a glass substrate that was covered with a TiO2 layer.

The latter is frequently used as a transport layer in perovskite solar cells (Figure 3a) [35]. Figure 3b

shows the room temperature absorption spectrum of the thus-prepared perovskite film, along with the

corresponding normalized photoluminescence spectrum of the sample. The spectra exhibit the typical

optical features of CH3NH3PbI3 [36], which is a broad absorption within the entire visible range with

an absorption onset in the spectral range of about 770 nm. In emission, the samples show the typical

near–band edge emission feature at about 780 nm with a FWHM of 46 nm, in accordance with reported

literature values [36,37].

To further address the question on the structural quality of the processed layer, we performed XRD

measurements. Figure 3c shows the XRD pattern of one of the prepared samples processed via AD,

together with the XRD results of a perovskite filmwhich was fabricated via an optimized vapor-assisted

crystallization approach for comparison. The latter approach was developed recently in our group

and was proven to result in highly stable, uniform and compact layers [38]. When comparing the

XRD spectra, both methods lead to diffraction patterns with main features at 14.1˝, 28.4˝, 31.8˝ and

43.2˝ which are assigned to the 110, 220, 114 and 330 peaks of the CH3NH3PbI3 perovskite structure,

respectively [38–40]. From this, a perovskite-type structure of the AD-processed layer is evident.

Notably, no feature in the range of 12.6˝ is observed. Such a feature is commonly attributed to PbI2
incorporations, indicative of a non-completed perovskite formation during material synthesis or

a degradation process of the perovskite [39]. Thus, the absence of such characteristic features of

PbI2 in our spectra is formidable proof of the nondestructive character of the AD when processing

lead-halide perovskite powders. In contrast to the X-ray diffraction spectrum of the layer produced

by vapor-assisted crystallization, the X-ray diffraction features of the AD-processed sample generally

show less intensity and, simultaneously, a broader width of the peaks. From both of these observations

a smaller average grain size can be concluded [41].
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at a wavelength of 405 nm. The film was examined by X-ray diffraction (XRD), using a Bruker

D8 Advance, with Cu Kα (λ = 1.5406) X-Ray source. The scanning was conducted in the range of

2θ = 10˝–45˝, with a step size of 0.008˝ and at a rotation speed of 15 min´1. The generator voltage and

current were set to 40 kV and 40 mA, respectively. The surface morphology was characterized by field

emission scanning electron microscopy (FE-SEM) using a Zeiss 1530 instrument (Zeiss, Oberkochen,

Germany).with an accelerating voltage of 3.0 kV.
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