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Abstract

Turbine blades which are used in the hot paths of aerospace or industrial gas turbines are usually
manufactured as casted single crystalline parts. However, even though grain boundaries are excluded,
the degradation behavior of respectively developed single crystal nickel-base superalloys, is still quite
complex involving a number of very different microscopic effects. One of these is the diffusion-limited
coarsening of the γ′-precipitates. Long-term aging or creep loading along the <100> crystallographic
orientation results in the anisotropic coarsening of the γ′-precipitates. In the end, the microstructure
contains quite large, irregularly shaped precipitates or plate-like precipitates aligned either parallel
(P -type rafts) or perpendicular (N -type rafts) to the loading direction. This behavior is detrimental
for the properties of these materials since their superior properties emanate from the size, morphology
and distribution of the γ′-precipitates [R. Reed: Cambridge University Press, (2006)]. In order to
efficiently design these materials, the phenomenon of coarsening should be known in detail to optimize
the materials accurately.

On this background, the general objective of this thesis is to develop an integrated computational
approach for simulating morphological evolution in single crystal Ni-base superalloys. As a first step
towards that aim, a multi-component phase field model coupled to inputs from CALPHAD-type and
kinetic databases for the relevant driving forces was developed based on the grand-potential formalism
similar to Plapp [Phys. Rev. E, 84: 031601 (2011)]. The thermodynamic formulation of the model
was validated by comparisons to ThermoCalc equilibrium calculations and DICTRA sharp-interface
simulations. Phase field approaches that allow for anisotropies of the interfacial energy sufficiently
high so that the interface develops sharp corners due to missing crystallographic orientations were
formulated. This called for a regularization that enforces local equilibrium at the corners, and the
method of Eggelston et al. [Physica D 150, 91 (2001)], generalized to arbitrary crystal symmetries
and rotations of the crystalline axes was adapted for that context. Mechanical effects accounting for
the contributions from the misfit, anisotropic and inhomogeneous elasticity and creep loading were
integrated physically consistent. The mechanical effects are incorporated into the phase field model
via the Allen-Cahn equation based on Steinbach [Physica D, 217, 153 (2006)] and Fleck et. al [Philos.
Mag., 90, 265 (2010)]. The relaxed displacement fields required to calculate the elastic driving force
was obtained by solving the mechanical equilibrium using an iterative Jacobi relaxation scheme using
a staggered grid based on the finite difference method.

Morphological evolution and kinetics in single crystal Ni-base superalloys was studied. To gain
insight in optimized alloying, a systematic computational measure to assess and track the evolution
anisotropic microstructures was integrated in the model. Previously, focusing on the solidification
behavior, Heckl et al. [Metal. and Mater. Trans. A, 41, 202 (2010)] discussed Ruthenium (Ru) as
a possible Rhenium (Re) replacement-candidate for next generation Ni-based superalloys. Employing
phase field simulation studies, we performed virtual experiments of the coarsening behavior in Re
and Ru containing alloys. The simulations revealed that the degradation of the γ-γ′ microstructure
via coarsening is considerably slower in Re-containing superalloys. We observed that an increase in
the Re content strongly reduces the γ′-coarsening kinetics and the simulations explicitly resolved the
time dependence of that slow down beyond experiment. Likewise, it was found that Ru variations
have no significant effect on the coarsening kinetics. The simulations revealed the mechanism by
which Re reduces coarsening kinetics. The simulations showed that Re slows interface mobility by
accumulating along the path of moving γ/γ′-interfaces, a behavior we attribute to its low diffusivity
and low solubility in the γ′-precipitate. The virtual experiments allowed for a systematic quantification
of the relative contribution of each solute in a superalloy to coarsening. This can be understood as
a first step toward a simulation-based design and optimization of alloy composition.
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1 Introduction

Technologically relevant single crystal Ni-base superalloys exhibit essentially two phase
microstructures consisting of γ′-precipitates coherently embedded in a continuous γ-
matrix. In Ni-base superalloys used for high temperature applications such as aero
engine or power plant gas turbine blades, the second phase γ′-precipitates are generated
through solid→solid transformation from the parent γ-matrix. While the continuous
γ-matrix has a disordered fcc1(A1) crystal structure, the precipitates are of the ordered
fcc(L12) crystal structure. Due to the different partitioning behavior of solutes, the
compositions of the two solid phases are often different. The difference in composition
and structural arrangements of the two phases is accompanied by a difference in the
lattice parameters. To maintain lattice continuity across the phase boundary, local
elastic deformations are required as illustrated in Fig 1 (a) which generates coherency
strain energy. The resulting coherency strain energy as illustrated in Fig 1 (b) plays a
critical role in determining the transformation path and microstructure evolution during
solid-state transformations.

(a)

 γ  γ'

(b)

γ'

γ

Figure 1: Coherent γ/γ′-interface in a negatively misfitting superalloy. To maintain me-
chanical continuity across the phase boundary, anisotropic elastic deforma-
tions appear in its vicinity. The anisotropic elastic deformations determine the
transformation path and microstructure evolution during solid-state transfor-
mations.

In a two phase system, the morphology of the second phase γ′-precipitates is deter-
mined by the interplay of the isotropic interfacial energy and anisotropic elastic energy.
The magnitude of the misfit generally influences the morphology of the γ′-precipitates,
e.g., alloys with a zero misfit generally have spherical precipitates whereas those with
a non-zero misfit have cuboidal or plate-like precipitates. While the interfacial en-
ergy(which is generally isotropic in Ni-base superalloys [48]) favors a spherical precipitate
morphology, the elastic energy due to the coherency strain is minimized when the pre-
cipitates exhibit a cuboidal morphology as shown in Fig 1 (b) or plate-like precipitates.
This statement is equivalent to the stipulation that the strain energy effect be stronger

1fcc - face-centered cubic



than the surface effect. A variation of the relative strengths of the two effects would
result in a continuous transition from rather spherically shaped particles to equiaxial
morphologies [41]. The precipitates acquire morphologies for which the total energy is
minimum and the rate at which the morphologies are formed is affected by the kinetics
of the transformation which is influenced by the diffusion of solutes in the system.
In the last few years or so, phase field modeling has become an important tool for the

quantitative study of microstructure evolution in complex binary and multi-component
metallic alloys. Various aspects relevant in materials science ranging from the initial
solidification to late-stage solid-state transformations have so far been successfully ad-
dressed using phase field modeling techniques as discussed in the review articles by
Emmerich [17], Asta et. al [1], and Wang et. al [80]. The major advantage of this ap-
proach is given by its great flexibility of modeling, which allows to address even complex
systems involving several different physical mechanisms at the same time. The general
idea behind phase-field modeling is to include an order parameter, that denotes the
phases in a given system. Taking for example a two phase system - the order parameter
has a constant value in each bulk phase, e.g., φ = 1 in the matrix phase and φ = 0 in
the precipitate phase. Then, the interface between different phases is represented by a
smooth transition region where the order parameter varies smoothly from 0 to 1. Thus,
the interface width is smeared over a finite width. In contrast to the sharp interface
models, the explicit tracking of the interface is unnecessary in phase field modeling. In
phase field modeling, free moving interfaces between different phases are not treated
as geometric boundaries, i.e. boundary conditions do not have to be applied explicitly
at the interfaces. Rather, all the information about the motion and precise location of
the phase boundaries is implicitly contained in the phase field, which obeys a partial
differential equation that is solved within the whole computational domain [24]. The
formulation of a phase field model generally starts from a functional that includes the
necessary interfacial, thermodynamic and material descriptions. Depending on the sys-
tem, as many as possible degrees of freedom can be incorporated in the functional, e.g.,
thermodynamic, elastic, plastic, magnetic contributions etc.
The general aim of this doctoral thesis is to comprehensively study morphological

evolution and respective kinetics in commercial single crystal Ni-base superalloys. For
this particular purpose, an advanced phase field simulation tool linked to high quality
thermodynamic and kinetic databases that obey the CALPHAD2 standard is developed.
Using the developed simulation tool we:

• analyze the contributions from interfacial energy, misfit, anisotropic and inho-
mogeneous elasticity to (i) non-directional γ′-coarsening and (ii) directional γ′-
coarsening, i.e., rafting under external loading applied along a <100> crystallo-
graphic direction,

• perform systematic virtual experiments to identify the influence of refractory el-
2CALculation of PHAse Diagrams
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ements like Re, W, Ru, etc., on coarsening and perform a sensitivity studies to
optimize alloy chemistry with respect to coarsening,

• identify the mechanism by which elemental diffusion and segregation affect coars-
ening,

• identify the temporal law during coarsening in elastically stressed multi-component
alloys.

Most phase field models for solid→solid transformations are limited to the case of the
technologically less interesting Ni-Al binary alloy. As a result, the contributions of inter-
diffusion to coarsening have largely been ignored in the numerical studies. Nonetheless, a
number of experimental studies, amongst them [32, 63, 86], reveal a substantial contribu-
tion from diffusion-particularly in the γ-matrix to the kinetics of phase transformations
in Ni-base superalloys. Most phase field models focus mainly on the mechanics, however,
to efficiently simulate microstructural evolution in Ni-base superalloys, it is vital not to
neglect the relevant contribution from multi-component thermodynamics. Although Ni-

(a) Phase field simulation of non-directional γ′-coarsening showing the segregation of solutes.

(b) SEM photographs of the time evolution during long-term aging at t=0, 250 and 500 h [44].

Figure 2: Coarsening of the γ′-precipitates in the single crystal CMSX4 at 1273.15 K.
The top row is the prediction of coarsening using the phase field method and
the bottom row is the experimental observation.

Al alloys can be used as a pseudo for the analysis of the more chemically complex Ni-base
superalloys; binary and multi-component alloys are totally different systems. Ni-base su-
peralloys can contain up to a dozen alloying elements, which results in a more complex

3



chemical and mechanical behavior of Ni-base superalloys under thermo-mechanical ex-
posure. To accurately simulate the microstructure evolution in Ni-base superalloys with
the realistic kinetics, it is important to take into account the contributions of the diffu-
sivities and partitioning behaviors of all alloying elements. It is one of the key results of
this work that certain elements, particularly the refractory elements may have a large
impact on the nature and kinetics of coarsening, even when they are present in the alloys
in relatively small amounts. In this thesis, single crystal Ni-base superalloys with up to
8 alloying components are numerically studied.

This thesis is organized as follows:
Chapter 2, presents the derivation and validation of the multi-component thermody-

namic formulation of the phase field model. The multi-component thermodynamic for-
mulation is extended based on the model for binary alloys derived from a grand-potential
functional [58]. The extended phase field model uses inputs from the commercial TTNi83

and MobNi14 databases for the thermodynamic and kinetic driving forces, respectively.
Due to the absence of kinetic data for the γ′-phase, symmetric diffusion matrices are
adopted in the model for both the γ-matrix and γ′-precipitates. Using a symmetric
model for diffusion eliminates the need to incorporate the anti-trapping current in the
diffusion equations. The Allen-Cahn equation and set of diffusion equations are solved
numerically on uniform square grids using explicit finite-difference methods.
The crystalline nature of solids results in the anisotropy of many thermo-physical pa-

rameters like the interfacial energy, lattice misfit, elastic anisotropy etc [10, 41, 59]. Some
of the parameters vary with different crystallographic orientations and their orientational
dependence determines certain material properties. The morphology of γ′-precipitates is
determined by the interplay between interfacial energy and the coherency strain energy;
these can be anisotropic to varying strengths depending on the material system [26, 41].
How to incorporate the anisotropy of these two contributions is the challenge in phase
field modeling. How to incorporate the anisotropic interfacial and elastic energies is
done in chapter 3. First, we study two approaches of including a highly anisotropic
interfacial energy in phase field models. We use approaches that allow for anisotropies
sufficiently high so that interface develops sharp corners due to missing crystallographic
orientations: the classical one that allows for the interface to vary with orientation and
more recent formulation that has a constant interface width. Second, an approach of
incorporating mechanical effects in phase field models is formulated and implemented.
For solid-state transformations in Ni-based superalloys e.g., precipitation, coarsening
etc., we have to account for at least elastic contributions arising from the misfit and
elastic inhomogeneity in addition to the surface effects and thermodynamics. We use
the approach of Steinbach et al. [69] to model the dependence of the total strain on the
phase field by postulating equal elastic stresses in the two bulk phase at the interface
region. In this approach, elastic inhomogeneity and anisotropy are incorporated by as-
suming a phase dependence of the cubic elastic constants. We demonstrate that both a

3ThermoTech
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high anisotropy of the interfacial energy and anisotropic elasticity lead to cuboidal pre-
cipitate morphologies. However, the incorporation of the two anisotropies in one phase
field model requires precise knowledge of their relative weighting.
In chapter 4, the influence of rhenium (Re) on the kinetics of coarsening is studied.

For a comparative study, two single crystal superalloys are simulated; the Re-containing
CMSX4 and the Re-free CMSX6. Phase field simulations are done for two cases: with
contributions from (i) isotropic interfacial energy, misfit and elasticity inhomogeneity
(ii) isotropic interfacial energy, misfit and elasticity inhomogeneity and under external
loading along a <100> crystallographic direction. For the sake of comparison, the initial
microstructure for the phase field simulations is obtained from SEM5 photographs of “as-
heat” treated samples of CMSX4 and CMSX6. The results are compared qualitatively to
the experimental observations e.g., in the case of non-directional coarsening in Fig 2b.
The idea to numerically study the influence of Re on coarsening is motivated by the
experimental studies [32, 63, 86] which observed a marked reduction of the coarsening
kinetics due to Re additions. To characterize the kinetics of coarsening, a quantification
routine is integrated in the simulation tool. The formation of vastly irregularly shaped
precipitates during coarsening presents a problem in finding a global measure that quan-
tifies the evolution of such a microstructure. The quantification routine in this work uses
the aspect ratio calculated on the basis of interface orientations as the global measure.
A unique feature of this routine is that it quantifies at each time step, the coarsening of
anisotropic and coalesced precipitates.
In chapter 5, virtual experiments to determine the influence of varying rhenium (Re)

and ruthenium (Ru) additions on the kinetics of coarsening are done. The experiments
are performed on 12 different virtual superalloys, with systematically varied Re and
(Ru) contents. The decision to jointly vary the Re and Ru additions is motivated by the
studies [12, 35, 36], which proposed Ru as a possible Re replacement-candidate to reduce
the formation of the detrimental topologically close packed phases during solidification.
Given the identified positive role of Ru in suppressing the formation of the detrimental
phases, simulations are done to reveal its influence on coarsening. Additionally, in this
chapter, we perform studies to identify the temporal law during the non-directional
coarsening of the virtual superalloys. Coarsening kinetics in technical alloys is generally
quantified using the classical LSW6-theory [49, 75]. The classical theory was based on
the strict assumptions of a vanishing volume fraction of stress-free coherent precipitates
in binary systems. Given the long recognized role of elastic fields during solid-solid
transformations, we discuss the applicability of the LSW-theory to multi-component
alloys with an elastic misfit. We extend the classical LSW-theory for binary alloys to
multi-component diffusion based on scaling argument similar to the one established by
Müller-Krumbhaar [53]. We demonstrate the principle feasibility of our simulation tool
in identifying the coarsening exponents during non-directional coarsening.

5Scanning Electron Microscopy
6 Lifshitz, Slyosov and Wagner theory
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Finally, chapter 6 gives a comprehensive conclusion of the thesis by discussing the
results and the potential of the phase field model for further extensions and applications.

In this thesis, a step-wise development of a quantitative phase-field model for model-
ing microstructural evolution in multi-component systems is presented. The step-wise
development is categorized into three sub-divisions listed as:

• Formulation and validation of multi-component thermodynamics; this is based on
the numerical calculation of Eqs. (30)-(47), giving rise to the results in chapter 2.

• Coupling of anisotropic effects in chapter 3 which is subdivided as:

- inclusion of anisotropic surface effects done in Eqs. (50)-(67). The resulting model
formulations are used to study equilibrium morphologies in solid-solid systems,
- inclusion of anisotropic and inhomogeneous elastic effects resulting in model equa-
tions (109)-(119) which are the basis of the applied studies in chapters 4 and 5.

• Application to solid-state transformations in Ni-base superalloys: The application
of the equations (109)-(119) is done in chapter 4 and 5 to study microstructural
evolution in commercial Ni-base superalloys.

Apart from being of scientific importance via aiding the understanding the behavior
of metallic alloys, the thesis casts a foundation of basic knowledge required for the
development of a quantitative simulation tool, highlighting the limitations and challenges
to be overcome in the development.
Some parts of this thesis have been published in the following:

• L. Mushongera, M. Fleck, J. Kundin, and H. Emmerich. Effect of Re on directional γ′-
coarsening in commercial single crystal Ni-base superalloys: A phase field study, Acta Mater.,
93:60, 2015

• L. Mushongera, M. Fleck, J. Kundin, F. Querfurth, and H. Emmerich. Phase-field study of
anisotropic γ′-coarsening kinetics in Ni-base superalloys with varying Re and Ru contents, Adv.
Eng. Mater., DOI: 10.1002/adem.201500168, 2015.

• J. Kundin, L. Mushongera, and H. Emmerich. Phase-field modeling of microstructure formation
during rapid solidification in Inconel 718 superalloy, Acta Mater. 95, 343, 2015.

• J. Kundin, L. Mushongera, T. Göehler, and H. Emmerich. Phase-field modeling of the gamma
prime coarsening behavior in nickel based superalloys. Acta Mater., 60:3758, 2012.

• M. Fleck, L. Mushongera, D. Pilipenko, K. Ankit, and H. Emmerich. On phase-field modeling
with a highly anisotropic interfacial energy. Eur. Phys. J. Plus, 126:95, 2011.
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2 Phase field modeling of interdiffusion-limited transformations
on the basis of a grand-potential formalism

Phase field methods based on the Allen-Cahn and/or Cahn-Hilliard equations have
been used extensively for studying microstructural evolution in elastically stressed solids
(see review by Wang et al. [80]). Various phase field formulations have been derived
to study phase transformations in Ni-base superalloys. For example, phase field mod-
els formulated on a purely elasticity framework [33, 44, 48], have been used to study
non-directional coarsening and rafting in Ni-base superalloys. In these models, the me-
chanical effects are incorporated by coupling an elastic energy term to the free energy. On
another level, phase field models with contributions from plastic strains [6, 88, 89, 90, 92]
have also been developed to study rafting. In these models, plastic effects are included
by adding an eigenstrain in the elastic energy term that accounts for the dislocations in
the system. Furthermore, [30] has used an elasto-viscoplastic model to study microstruc-
ture evolution under creep loading in Ni-base superalloys. All the models formulated
using these various frameworks [6, 30, 33, 48, 88, 89, 90, 92] converge in identifying the
lattice misfit, elastic inhomogeneity and applied load as the driving forces for rafting.
The resulting microstructures obtained using the different approaches are also qualita-
tively similar although quantitative comparisons [89] have revealed that the kinetics of
evolution does differ. The mechanical effects of the phase field model in this work are
incorporated on an elastic framework similar to [44, 69].
Most of the phase field models are limited to the case of the binary Ni-Al system.

Although binary Ni-Al alloys can be used as a pseudo for the analysis of the more chem-
ically complex Ni-base superalloys, the binary and multi-component alloys are totally
different. Ni-base superalloys can contain up to a dozen alloying elements. This results
in a more complex chemical and mechanical behavior of Ni-base superalloys under high
temperature exposure. To accurately simulate the microstructure evolution and capture
the realistic kinetics in Ni-base superalloys, it is important to develop a multi-component
phase field model that takes into account the contributions of the diffusivities and the
segregation behavior of all alloying elements.
The aim of this chapter is to develop a numerical tool that can be used to analyze the

moving boundary problem involving multi-component solute interactions. The thermo-
dynamic formulation presented in this chapter shall be the basis of the model extension
in the following chapter. The multi-component thermodynamic formulation of the model
is extended based on the model for binary alloys [58]. A symmetrical model for diffu-
sion, i.e., equal diffusion matrices for the matrix and the precipitates, is used in the
simulations. To test the ability of the model to capture the correct kinetics in a multi-
component system, phase field and DICTRA/ThermoCalc7 simulations are compared
for the simple case of a γ → γ′ phase transformation at a temperature of 12713.15 K.
The results show a convincing quantitative agreement between the sharp interface and
diffuse interface models.

7Thermo-Calc Software AB
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This chapter is organized as follows; in the following, the extension of the binary model
[58] to a multi-component model is presented. This is followed by the derivation of the
explicit model equations and formulation of their numerical solutions based on the finite
difference method (FDM). The thermodynamic consistency of the model is then tested
by comparing phase-field simulations of γ → γ′ transformation against DICTRA and
ThermoCalc simulations.
Part of this chapter is published in [L. Mushongera, M. Fleck, J. Kundin, and H.

Emmerich, Acta Mater., 93:60, 2015].

2.1 Diffuse-interface modeling

A non-conserved field variable φ(~x, t) is introduced to describe the coherent two phase
γ/γ′ microstructure of Ni-base superalloys. Fixed values of the phase field variable φ are
assigned to represent the two coherent phases, 1 for the matrix and 0 for the precipitate.
Furthermore, the interface between the two bulk phases is postulated to be smooth
and smeared over a finite width. In general, the basic starting point for the derivation
of phase field models is a relevant thermodynamic potential to which various degrees
of freedom are coupled. In this work, a grand-potential functional whose mesoscopic
variables are φ and µ, is introduced to describe the γ/γ′ microstructure. The grand-
potential formalism is based on the work of Plapp [58]. The grand-potential functional
is given as the integral of the grand-potential densities of a given volume domain

Ω [φ(~x, t)] =
ˆ
V
ω(φ, µ, T )dV, (1)

on the region V . We consider the grand-potential density to be a sum of the interfacial
and thermodynamic grand-potential densities

ω(φ, µ) = ωint(φ,∇φ) + ωch(φ, µ). (2)

Since the aim of this chapter is to test the thermodynamic formulation of the model
via analytical and DICTRA simulations, we limit to the interfacial and thermodynamic
terms. For now, we ignore elastic effects. The issue of incorporating elastic effects in
the phase field model shall be discussed in the following Chapter 3. The interfacial
grand-potential density is described as

ωint(φ,∇φ) = 3σξ
2 (∇φ)2 + 6σ

ξ
gdw(φ), (3)

allows for the formation of two bulk domains with values φ = 0 and φ = 1 separated by
interfaces which are smeared over a finite width. The parameter σ corresponds to the
equilibrium interface energy and ξ is the interface width. The term ∇φ is the gradient
energy and is a double well potential function that guarantees that the grand-potential
functional has two minima, at φ = 0 and φ = 1 corresponding to the bulk phases.
The gradient energy term and the double well potential determine the interface in a
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counteracting manner; the interface tends to be sharp to reduce the regions where the
interfacial grand-potential density is positive. The interfacial grand-potential density
gdw(φ) is positive when 0 ≤ φ ≤ 1; as a counteracting effect, the interface tends to be
diffuse to reduce the the energy associated with the gradient of the phase field [4]. The
assignment of fixed values to represent the two coherent phases, 1 for the matrix and 0
for the precipitate requires that the double well potential gdw(φ) has two minima, at 0
and 1, thus

gdw(0) = gdw(1), (4)
∂gdw
∂φ

∣∣∣∣
φ=0,1

= 0, (5)

∂2gdw
∂φ2

∣∣∣∣∣
φ=0,1

> 0. (6)

The above stipulated conditions satisfy the common tangent construction. A simple
choice of a double well potential is

gdw(φ) = 6σ
ξ
φ2(1− φ)2. (7)

This potential represents an equilibrium two phase scenario whereby the two bulk phases
corresponding to the equally deep wells have the same grand-potential densities. How-
ever, this scenario is rather unphysical in material systems. A rather more physical sys-
tem is that which represents two phases with different thermodynamic grand-potential
densities. This representation can be achieved by inclusion of an interpolation function to
couple the different thermodynamic grand-potential densities. Addition of interpolated
thermodynamic grand-potential densities to the double well potential as in Eq. (2) tilts
it by an amount that is proportional to the local driving force for phase transformations
[25]. In this case, one phase is favored to grow at the expense of the other.

2.1.1 Thermodynamics

The thermodynamic contribution ωch(φ, µ) in Eq. (1) is postulated as the interpolation
of the bulk grand-potential densities

ωch(φ, µ) = ωγch(µ)h(φ) + ωγ
′

ch(µ)h(1− φ), (8)

where an interpolation function h(φ) is used to describe material properties. The inter-
polation function should vary smoothly between the fixed values, φ = 0 and φ = 1 and
should satisfy the conditions 

h(0) = 0
h(1) = 1
∂φh(φ)|φ=0,1 = 0.

(9)
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A third order polynomial of type

h(φ) = φ2(3− 2φ), (10)

that satisfies the above conditions is chosen as the interpolation function. The thermody-
namic grand-potential densities of the phases can be obtained by a Legendre transform
of the free energies [58]

ωp(µ) = fpch(c, T )− µcp, (p = γ or γ′), (11)

where fpch(c, T ) is the parabolic free energy of phase p.

2.1.2 Grand-potential density for binary alloys

We start by looking at the construction of parabolic free energies for binary alloys
similar to Plapp [58]. For a binary alloy, the free parabolic wells in concentration for the
bulk phase p is described as

fpch(cp, T ) = 1
2X

p (cp −Ap)2 +Bp, (p = γ or γ′), (12)

The first derivative of the free energy (12) with respect to the concentration yields its
diffusion potential

µ = ∂fpch(c, T )
∂c

(13)

= Xp(cp −Ap).

The phase dependent constants Ap and Bp are related to the equilibrium compositions
cp,eq which are evaluated via the common tangent construction. The second derivative
of the free energy (12) with respect to the concentration

Xp = ∂

∂c

(
∂fpch
∂c

)

= ∂

∂c

∂fpch∂c︸ ︷︷ ︸
µ

 = ∂µ

∂c
, (14)

yields the thermodynamic factor. This value corresponds to the curvature of the free
energy curves of the phases. The thermodynamic factor can be calculated for a specific
alloy and temperature from DICTRA/MobNi1 database. As a standard condition for
thermodynamic stability of the parabolic free energy of phase p (12), the condition

Xp = ∂

∂c

(
∂fpch
∂c

)
> 0, (15)
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should be satisfied. Inserting equation (13) into (12) yields an expanded form of the
parabolic free energies

fphch = 1
2X

p (cp −Ap)2 +Bp (16)

= 1
2 X

p (cp −Ap)︸ ︷︷ ︸
µ

(cp −Ap) +Bp

= 1
2µ(cp −Ap) +Bp.

Inserting (16) in the Legendre transform (11), we get the thermodynamic grand-potential
density of a phase p for a binary alloy

ωp(µ) = fpch − µc
p (17)

= 1
2µ(cp −Ap) +Bp − µcp

= −1
2µ(cp +Ap) +Bp

= −1
2µ
(
µ

Xp
+ 2Ap

)
+Bp

= −1
2
µ2
Xp
− µAp +Bp.

Inserting (17) for each phase in (8), we get the explicit form of the thermodynamic
contribution for a binary system

ωch(φ, µ) = ωγch(µ)h(φ) + ωγ
′

ch(µ)h(1− φ) (18)

=
(
−1

2
µ2
Xγ
− µAγ +Bγ

)
h(φ)

+
(
−1

2
µ2
Xγ′ − µAγ

′ +Bγ′
)
h(1− φ).

In the following, we now extend this formulation to multi-component systems. The
situation will naturally be different due multiple solute interactions and the presence of
thermodynamic factor matrices for the two phases.

2.1.3 Extension to multicomponent alloys

Now we extend the formulation of [58] for binary alloys by including the multiple
solute interactions. The parabolic free energy of phase p in a multi-component system
becomes

fpch(cp, T ) =
∑
i

1
2
∑
j

χpij (ci −Api )
2

+Bp, (p = γ or γ′), (19)

where i and j are the species in a multi-component system. The first derivative of the
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free energy with respect to the concentration yields its diffusion potential

µi = ∂fpch(c, T )
∂c

(20)

=
∑
j

χpij(cp −Ap),

Inserting the expression for the chemical potential (20) in the parabolic free energy of a
multi-component system (19) yields

fpch(cp, T ) =
∑
i

1
2
∑
j

χpij (ci −Api )
2

+Bp, (21)

=
∑
i


1
2
∑
j

χpij (ci −Api )︸ ︷︷ ︸
µi

(ci −Api )

+Bp,

=
∑
i

(1
2µi (ci −Api )

)
+Bp.

Using the Legendre transform (11), we get the grand-potential density of a phase p

ωph(µ) = fphch −
∑
i

µic
ph
i (22)

= −1
2
∑
i

µi

∑
j

χpijµj + 2Aphi

+Bph

=
∑
i

−1
2
∑
j

χpijµi2− µiA
ph
i

+Bph

= −
∑
i

1
2
∑
j

χpijµj −A
p
i

µi +Bp.

Using Eq. (22) to expand Eq. (8) yields the thermodynamic grand-potential density of
a multi-component system

ωch(φ, µ) = ωγch(µ)h(φ) + ωγ
′

ch(µ)h(1− φ), (23)

= h(φ)

−∑
i

1
2
∑
j

χγijµ
2
j −A

γ
i µi

+Bγ


+ [1− h(φ)]

−∑
i

1
2
∑
j

χγ
′

ijµ
2
j −A

γ′

i µi

+Bγ′

 .
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Since, the generalized susceptibility can be defined as the second derivative of the grand-
potential with respect to the diffusion potential, the parameter χij can be interpreted as
a generalized susceptibility [58], which corresponds to the inverse of the thermodynamic
factor matrix. More precisely, χij are the components of the matrix χ̂ which is the
inverse of the thermodynamic factor matrix X̂. The indices i, j denote the species in
the Ni-base superalloy excluding the base element Ni. More details on multi-component
systems with two or more phases can be found in [45, 46].

Common tangent construction

When two connected phases are in chemical equilibrium with each other, the diffusion
potentials need to be continuous at the common interface, i.e. µγ,eqi = µγ

′,eq
i . The

equilibrium values cp,eqi and fp,eqch (cp,eqi ) are found by the common tangent construction.
The illustration in Fig. 3 shows the parabolic free energies for a ternary system with
two phases γ and γ′ in equilibrium. Similar to the case of binary alloys, the equilibrium
compositions cp,eqi of the two phases can be found via the common tangent construction
which also identifies the general minimum free energy. In the case of binary alloys, a
tangent line connects the two phases, which identifies the phase equilibrium composi-
tions. In ternary alloys, there is a common tangent plane that is connected to both free
energy surfaces and this can be used to find a set of tie-lines and a corresponding set
of equilibrium compositions. By projecting the connection of common tangent plane to
both free energy surfaces onto the composition plane as shown in Fig. 3, the γ+γ′ phase
field is defined for a particular temperature.

µi
γ=µi

γ'

µk
γ=µk

γ'

µj
γ=µj

γ'

γ γ'

fγ

fγ'

Tieline

Figure 3: Illustration of the common tangent plane construction for a ternary alloy
(based on [59]). A common tangent plane is connected to both free energy
surfaces and this can be used to find a set of tie-lines and a corresponding set
of equilibrium compositions.

The phase dependent constants Api and Bp in Eqs. (19)-(23) are related to the equi-
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librium compositions cp,eqi and the equilibrium free energy densities fp,eqch (cp,eqi ), respec-
tively. To determine the constant Bp, the parabolic free energy in Eq. (19) is used. This
expression is inverted to yield,

Bp = fp,eq −
∑
i

∑
j

(
1
2

(µeqi )2

Xp
ij

)
µeqj . (24)

To calculate the constant Api , the first derivative of the parabolic free energies with
respect to the compositions as in Eq. (20) is simply inverted to yield

Api = cp,eqi + µeqi∑
j
Xp
ij

. (25)

Once all the values have been calculated, one can simply fit all the obtained parameters
into the free energies to get the grand potential densities.

2.2 Phase-field equation

The evolution of the phase field is assumed to evolve towards the minimization of the
potential Ω

∂φ

∂t
= − K

3σξ
δΩ
δφ
, (26)

where, the constant K is the kinetic coefficient which is related to the motion of the
interface. The variation of the grand potential functional to the phase field is evaluated
according to

δΩ
δφ(~x) = ∂ω

∂φ
−
∑
ψ

∂ψ
∂ω

∂(∂ψφ) , (27)

where ψ is the spatial coordinate. At a constant temperature, the variation of the
grand-potential functional in Eq. (1) with respect to φ and µ results in

δΩ =
ˆ
dV

{
−3σξ∇2φ+ 6σ

ξ
g′(φ) (28)

+ h′(φ)
(
∂ωch(µ)
∂h

)}
δφ

+
{
h(φ)∂ω

γ
ch(µ)
∂h

+ [1− h(φ)]∂ω
γ′

ch(µ)
∂h

}
δµ,

with the requirement that ∂φh(φ)|φ=0,1 = 0 such that the driving force vanishes outside
of the interfacial region. From this expression, the variational derivative with respect to
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the order parameter φ can can be written as

δΩ
δφ

= −3σξ∇2φ+ 6σ
ξ
g′dw(φ) + h′(φ)

(
∂ωch
∂h

)
. (29)

Substituting the functional derivative (29) into (26) results in the explicit phase field
equation

∂φ

∂t
= − K

3σξ
δΩ
δφ

(30)

= − K

3σξ

(
−3σξ∇2φ+ 6σ

ξ
g′dw(φ) + h′(φ)

(
∂ωch
∂h

))
= K

(
∇2φ− 2

ξ2 g
′
dw(φ)− 1

3σξh
′(φ)

(
∂ωch
∂h

))
,

where the thermodynamic driving force for phase transformation is given as the partial
derivation of the grand-potential density with respect to the interpolation function

∂ωch
∂h

= ωγch(µ)− ωγ
′

ch(µ) (31)

=
(∑

i

(1
2χ

γ
ijµ

2
j −A

γ
i µi

)
+Bγ

)
−
∑
i

(1
2χ

γ′

ijµ
2
j −A

γ′

i µi

)
+Bγ′

=
∑
i

1
2
∑
j

∆χijµj −∆Ai

µi + ∆B,

where4B = Bγ−Bγ′ ,4Ai = Aγi −A
γ′

i and4χij = χγij−χ
γ′

ij . Long term microstructural
evolution in Ni-base superalloys is characterized by the degradation of microstructures
via the coarsening of precipitates which leads to the reduction of the interfacial energy.
An efficient phase field model should correctly reproduce the experimental energies of
the interfaces. When the size of the domain is much larger than the interfacial width,
the microstructural evolution is barely controlled by the interfacial width. If one is
not interested in the initial stages of microstructural evolution, then the reproduction
of experimental interfacial energies in the model is not necessary. Furthermore, for
diffusion-limited transformations, the interface width should be much larger than the
grid size ∆x. An optimal choice for the interface width should be around ξ ≈ 2.5∆x. The
mesh size ∆x for phase-field simulations should be small enough to resolve interfaces.
It is worth noting that the interface width ξ is a numerical parameter rather than a
physical entity whose value is chosen purely for numerical reasons.

2.2.1 Numerical solution

Discretizing the time evolution of the phase-field equation (30) using the finite differ-
ence method we get
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φn+1(i, j) = φn(i, j) + ∆φn(i, j)
∆t ∆t, (32)

where n is the time index and ∆φn(i, j) is the change φ between n and n+1. Discretizing
in space we get

1
K

∆φn(i, j)
∆t = 1

(∆x)2 (φn(i+ 1, j) + φn(i− 1, j)) (33)

+ 1
(∆x)2 (φn(i, j + 1) + φn(i, j − 1))

− 1
(∆x)2 (4φn(i, j))− 2

ξ2 g
′
dw(φn)

− 1
3σξh

′(φn)

∑
i

1
2
∑
j

∆χijµj −∆Ai

µi + ∆B

 ,
where i, j are spatial indices.

2.2.2 Stationary solution

The variation of the grand-potential functional Ω with the respect to φ gives the
driving force for phase transition. At equilibrium the grand-potential densities of the
two phases are equal, ωγ(µ) = ωγ

′(µ) which implies that the thermodynamic driving
force ∂ωch/∂h in Eq. (30) vanishes. Thus, the equilibrium solution for a planar interface
is obtained by minimizing the variation of the grand potential Ω with respect to φ

δΩ
δφ

= δ

δφ
ωint(φ,∇φ) = 0 (34)

δ

δφ

(3σξ
2 (∇φ)2 + 6σ

ξ
gdw(φ)

)
= −3σξ ∂

2φ

∂x2 + 6σ
ξ
g′(φ) = 0.

At equilibrium, the interfacial grand-potential density ωint(φ,∇φ) only adds to the en-
ergy within the interface [58]. Therefore the contribution ωint(φ,∇φ) can be assumed
to be equal to the interface energy σ

ˆ ∞
−∞

(
3σξ
2

(
∂φ0
∂x

)2
+ 6σ

ξ
g(φ0)

)
dx = σ. (35)

From this, it can be seen that interfacial properties can be controlled without taking
into account the bulk thermodynamics. A solution for a planar interface along the x

17



direction can be obtained by minimizing Ω with respect to φ

−3σξ ∂
2φ

∂x2 + 6σ
ξ
g′dw(φ) = 0. (36)

The solution is independent of the grand-potential densities of the two bulk phases.
There are four steady-state solutions of Eq. (36) for a planar interface along the x
direction. Two solutions are of a single matrix φ = 0 and single precipitate φ = 1
everywhere in the domain. Another is solution of a continuous interface between the
matrix and precipitate phases; however, this solution is unstable. There is also a non-
trivial two-phase solution with an interface at position x0

φ0(x) = 1
2

(
1 + tanhx− x0

ξ

)
(37)

where ξ is the interface thickness.

2.2.3 Dynamic solution

Now considering the case of a small but non-vanishing driving force, i.e., µ0 = const.
Such a scenario leads to a steady-state motion of the planar interface. To examine a
planar steady state interface, Eq. (37) is switched to a coordinate frame moving at a
constant velocity v. Therefore, ∂φ/∂t changes to −v (∂φ/∂t). Since the phase field φ
is considered to be a non-conserved order parameter, the dynamics of the phase field
model are described through the Allen Cahn equation

∂φ

∂t
= K

(
∇2φ− 2

ξ2 g
′
dw(φ)− λ

3σξh
′(φ)µ0

)
. (38)

The steady state motion of the planar interface can be solved analytically by the following
expression

φ(x, t) =1
2

(
1 + tanh x− vt

ξ

)
. (39)

Evaluating further, the theoretical interface velocity is given by

v = K

σ
µ0. (40)

where K is the kinetic coefficient and σ is the isotropic interfacial energy.

2.3 Multi-component diffusion equations

To account for the transport of solutes in a multi-component alloy, a set of i diffusion
equations is required. The derivation of the diffusion equations is started from the
conservation condition
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∂c̄i(φ)
∂t

+ ~∇·~ji = 0, (41)

where c̄i(φ) is the local concentration and ~ji is the flux of solutes which is given by

~ji = −
∑
j

(
Mp
ij
~∇µj

)
, (p = γ or γ′), (42)

where Mp
ij is the atomic mobility matrix. Further evaluation yields the equation of

motion for a given species i

∂c̄i(φ)
∂t

−
∑
j

~∇
(
Mp
ij
~∇µj

)
= 0. (43)

The non-equilibrium concentration profile is related to the grand-potential functional Ω
via the variational derivative with respect to µ

c̄i(φ) = − δΩ
δµi

= −h(φ)∂ω
γ

∂µi
− (1− h(φ))∂ω

γ′

∂µi
(44)

= −h(φ) ∂

∂µi

[
−
∑
i

(1
2χ

γ
ijµ

2
j −A

γ
i µi

)
+Bγ

]

−(1− h(φ)) ∂

∂µi

[
−
∑
i

(1
2χ

γ′

ijµ
2
j −A

γ′

i µi

)
+Bγ′

]

= h(φ)
[∑

i

(
χγijµj +Aγi

)]
+ (1− h(φ))

[∑
i

(
χγ

′

ijµj +Aγ
′

i

)]
.

Note here that cp = ∑
i

(
χpijµj +Api

)
. Inserting Eq. (44) into (41) we obtain

∑
j

~∇
(
Mp
jk
~∇µk

)
= ∂c̄i(φ)

∂t
(45)

∑
j

~∇
(
Mp
jk
~∇µj

)
= ∂

∂t

{
h(φ)

[∑
i

(
χγijµj +Aγi

)]

+ (1− h(φ))
[∑

i

(
χγ

′

ijµj +Aγ
′

i

)]}
.

∑
j

~∇
(
Mp
ij
~∇µj

)
=

∑
jk

(χ)ij
∂µi
∂t

+ ∆Aj
∂h

∂φ

∂φ

∂t∑
jk

(χ)−1
ij
~∇
(
Mp
jk
~∇µk

)
= ∂µi

∂t
+
∑
jk

(χ)−1
ij ∆Aj

∂h

∂φ

∂φ

∂t
.

Evaluating further, we obtain the equations for the evolution of the diffusion potential
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fields

∂µi
∂t

=
∑
jk

(χ)−1
ij
~∇
(
Mp
jk
~∇µk

)
−
∑
j

(χ)−1
ij ∆Aj

∂h

∂φ

∂φ

∂t
, (46)

where the concentration difference ∆Ai = Aγi −A
γ′

i is independent from the phase field.
Here, we defined the interpolated susceptibility matrix χij(φ) as χij(φ) = h(φ)χγij +
h(1− φ)χγ

′

ij , with χ
p
ij = ∂cpi /∂µj . At this stage, we point out that in general we have to

take the inverse of the susceptibility matrix at each grid-point and each time step. This
is obviously computationally expensive. To simplify Eq. (46), we adopt equal matrices
for the two phases, that: χγik = χγ

′

ik and Mγ
ij = Mγ′

ij . In the case of equal mobility
and thermodynamic matrices for the two phases, the phase-field dependence drops and
Eq. (46) simplifies to

∂µi
∂t

=
∑
j

Dij

(
∇2µj

)
− ∆Ai

χi

∂h

∂φ

∂φ

∂t
, (47)

where the diffusion coefficient is defined as Dij = Mij/χi. It should be noted here that
Xi = 1/χi.

2.3.1 Numerical solution

Discretizing the time evolution of the diffusion equation in Eq. (47) using the finite
difference approach we get

µn+1(i, j) = µn(i, j) + ∆µn(i, j)
∆t ∆t. (48)

Discretizing in space as well we get

∆µn(i, j)
∆t =

∑
j

Dij

(∆x)2 (µn(i+ 1, j) + µn(i− 1, j)) (49)

+
∑
j

Dij

(∆x)2 (µn(i, j + 1) + µn(i, j − 1))

−
∑
j

Dij

(∆x)2 (4µn(i, j))− h′ (φn) ∆Ai
χi

∆φn(i, j)
∆t ,

where i and j are spatial indices.
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2.4 Model validation: Application to γ → γ′ transformation

As a basic validation of our extended phase field model, predictions by the PFM8 are
compared with one-dimensional ThermoCalc equilibrium calculations as well as DIC-
TRA sharp interface simulations. The phase-field simulations are performed without
the contributions from elasticity since the ThermoCalc and DICTRA models do not
include elasticity. In PFM, a thin strip of γ-matrix of length Lx = 1000∆x and width
Ly = 50∆x is used. A γ′-precipitate of size 50∆x × 50∆x is embedded on the left side

T=1273.15 Kv

0.1µm 2.0µm

γ
γ'

Figure 4: Schematic illustration of a DICTRA one-dimensional simulation set-up. Due
to the lack of kinetics data for the γ′-precipitate, the concentration in phase
is fixed to the equilibrium value pre-calculated in ThermoCalc.

of the γ-matrix. A uniform grid spacing 4x = 8.6 nm and interface width ξ = 24x are
chosen. Furthermore, for the phase-field set-up to resemble a one-dimensional system,
appropriate boundary conditions are chosen. For the phase fields φ, Dirichlet boundary
conditions are applied on all domain boundaries. For the diffusion potential field µ, Von
Neumann boundary conditions are applied on the left boundary while Dirichlet bound-
ary conditions are set for the rest of the boundaries. A time step of ∆t = 5 × 10−3 s
is used in the phase field simulations. The interfacial energy is assumed to be isotropic
with a value of 80 mJ/m2.

2.4.1 Validation of the interface kinetics

For the validation of interface kinetics, we restrict to the simple case of γ → γ′ trans-
formation in a binary Ni-Al alloy. A phase-field simulation of the diffusion-controlled
growth of a γ′-precipitate in the Ni-20 wt.%Al alloy at 1273.15 K until equilibrium is
performed. The Al content of the alloys is chosen in a manner that the simulations

8 Phase Field Method
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at 1273.15 K fall within the two phase γ − γ′ region of the NiAl phase diagram. A
DICTRA sharp-interface simulation is also done at the same length- and time-scale and
the results are compared. In the DICTRA sharp-interface set-up, a thin region of the
γ′-precipitate of thickness 0.2 µm is placed in the γ-matrix of size 2 µm. The system
is closed. At time t > 0 s, the γ′-precipitate is expected to grow into the γ-matrix.
In both the DICTRA and PFM simulations, the initial composition of Al is set to 20
wt.% everywhere throughout the γ-matrix. The composition of Al in the γ′-precipitate
is set to be the equilibrium composition 22.87 wt.%, a value calculated in advance from
ThermoCalc. This is done because the DICTRA model does not account for diffusion
in the γ′-precipitate.
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Figure 5: Time evolution of the Al concentration profiles during γ → γ′ transformation
in a binary Ni-20 wt.%Al alloy. The precipitate evolves until the equilibrium
volume fraction of 56% is reached. In the initial stages, the γ′-precipitate grows
at a much faster rate due to the presence of a relatively large amount of free
Al solutes in the γ-matrix. As the Al solutes become depleted in the matrix
the γ′-precipitate growth rate starts to decelerate until it eventually stops.

The plot in Fig 5 shows the time evolution of the Al concentration profiles. It can
be seen that the precipitate evolves until the equilibrium volume fraction of 0.56 or
56% is reached. This equilibrium value is identical to the one predicted by ThermoCalc
equilibrium calculations. In the initial stages, the precipitate grows at a much faster
rate due to the presence of a relatively large amount of free Al solutes in the γ-matrix.
As the Al solutes become depleted in the matrix, the precipitate growth rate starts to
decelerate until it eventually stops. One can view the equilibrium regime as the state
when the amount of Al solutes in the γ-matrix is so low that it can not sustain further
growth of the precipitate.
The plot in Fig. 6 shows a plot of the comparison of the evolution of the γ′-precipitate

volume fraction as a function of the real time. Provided that the PFM operates in a
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Figure 6: This figure shows the evolution of the γ′-volume fraction as a function of time
during growth in Ni-20wt.%Al at 1273.15 K. The precipitate is allowed to grow
for a time of 1× 109 s. The phase-field results are represented by the solid red
line while DICTRA results are denoted by the blue dots. The dashed black
line represents the equilibrium γ′-volume fraction predicted by ThermoCalc.

sharp interface limit, where the interface width is negligibly small compared with the
diffusion length as well as the total length Lx of the system, the resulting growth kinetics
are in good agreement with the DICTRA simulations. If, however, the phase field width
is chosen to be in the same order of magnitude as the diffusion length, then it is already
known that the growth kinetics predicted from a diffuse interface model such as the
PFM differ quite substantially from corresponding sharp interface results. This problem
can be cured up to some extent by a thin interface analysis as proposed by Karma and
coworkers [40] or as more recently discovered be introducing a kinetic cross coupling
between the phase field and the diffusion field [5, 7]. Within our current formulation, we
include none of these advanced techniques, because according to our observations this
issue seems to be much less critical for coarsening than it is for growth.

2.4.2 Validation of equilibrium multi-component concentration profiles

Here, we validate our extended multi-component model via ThermoCalc calculations
with respect to equilibrium phase concentrations. Quasi one-dimensional phase-field
simulations of the γ → γ′ phase transformation at 1273.15 K for CMSX4 and CMSX6
superalloys with compositions given in Table 1 are performed.
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Al Co Cr Mo Re Ta Ti W Ni
CMSX4 5.6 9.6 6.4 0.6 3.0 6.5 1.0 6.4 base
CMSX6 4.8 5.0 9.8 3.0 - 2.0 4.7 - base

Table 1: The composition in wt.% of the superalloys under study.

The initial composition of each species is set to be uniform in both the γ′-precipitate
and the γ-matrix. For both the phase and concentrations fields: Dirichlet boundary
conditions are applied on all domain boundaries. The precipitate growth is limited by
solute diffusion until the equilibrium volume fraction of about 56% is reached. Fig. 7
shows the PFM predictions of the time evolution of a) Ta and b) Cr concentration
profiles in the CMSX4 superalloy.
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Figure 7: Evolution of Ta and Cr profiles during γ′-growth in CMSX4 at 1273.15 K.

As the precipitate grows, Ta diffuses from the γ-matrix into the γ′-precipitate which
allows the precipitate to grow further in size. On the other hand, as the precipitate
grows, Ta solutes become depleted in the matrix. The depletion of Ta solutes in the
matrix leads to a reduction of the growth rate of the precipitate and eventual ceasation
of growth. Cr is rejected by the precipitate, which results in its pile-up in the γ-matrix.
The counteracting mechanisms of absorption and rejection of solutes by the γ′-precipitate
controls the motion of the interface. This is in contrary to the Ni-Al case where only
the absorption of Al was responsible for the interface motion. We now compare the
concentration profiles obtained from PFM at t = 108 s with corresponding ThermoCalc
equilibrium calculations. Since ThermoCalc only calculates equilibrium values, we plot
only the final concentrations of PFM to the equilibrium values from ThermoCalc. A
comparison of equilibrium concentration profiles from PFM and bulk concentrations
obtained from ThermoCalc for CMSX4 and CMSX6 are shown in Fig. 8 a) and b),
respectively. The PFM predictions are in good agreement with the ThermoCalc results.
In the phase-field profiles, the concentrations are measured from the precise location
which is defined by the 0.56 location on the abscissa of the plot. The precise location of
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the interface is identified as the position when φ = 0.5, which corresponds to the middle
of the hyperbolic tangent phase-field profile.
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Figure 8: This figure shows the equilibrium phase concentrations obtained from phase-
field simulations (linespoints) and ThermoCalc (dashed lines) in (a) CMSX4
and (b) CMSX6 after the γ → γ′ transformation at 1273.15 K. These profiles
correspond are the plots obtained at time, 1 × 109 s. The precise location of
the interface is described by the 0.56 location on the abscissa of the plots.

The diffuse interface of width 2ξ in the concentration profiles from PFM emanates from
the coupling of the thermodynamic properties of the bulk phases using the interpolation
function h(φ). Fig. 8 also shows the general partitioning behavior of the solutes in Ni-
base superalloys. The solutes Al, Ni and Ti-which are known to be γ′-formers, tend to
partition more to the γ′-precipitate while Co, Cr, Mo, W and Re tend to partition more
to the γ-matrix. In the following chapters, the influence of the partitioning behavior on
the precipitate morphology and evolution kinetics shall be studied in detail.
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2.5 Conclusion

A multi-component phase-field model based on the grand-potential formalism was
presented. The model can be used to study morphological evolution in microstructures
of arbitrary misfits, elastic inhomogeneities and external loads. As opposed to the well-
known Kim-Kim-Suzuki model [42], the need to solve the equilibrium condition at each
time step is eliminated. By virtue of the diffusion potential being the dynamic variable,
the equilibrium condition is automatically satisfied in the multi-component model. This
greatly reduces the computational costs when alloys with a multiple number of elements
are simulated. The diffusion equations in the model use diffusion matrices to take into
account the cross interactions between the solutes. The phase field model uses ther-
modynamic and kinetic input values obtained by CALPHAD tools. To circumvent the
lack of kinetic data for the ordered γ′-phase in Ni-base superalloys, the multi-component
model uses a symmetric model which assumes equal diffusion in both solid phases.
The thermodynamic consistency of the model was tested by comparing phase-field

simulations to DICTRA and ThermoCalc simulations. DICTRA sharp interface calcu-
lations provide a simple approach for quantitative studies of diffusion-controlled phase
transformations. The elemental partitioning behavior observed in phase-field simula-
tions is consistent with observations from DICTRA and ThermoCalc. Furthermore, the
predictions of interface kinetics by the phase field model were in agreement with one di-
mensional DICTRA simulations. The observed agreements of the two interface models
demonstrate the ability of the phase field model to efficiently and accurately study the
microstructure evolution in Ni-base superalloys. Rather than limiting to the Ni-Al alloy
as it is done in most phase-field simulations, it makes a lot of sense to study real Ni-base
superalloys as it will be done in the rest of this work.
As a possibility for further development, the multi-component phase field model can

be further extended by coupling it through some interface to thermodynamic and kinetic
databases to obtain the relevant driving forces. This could be of particular importance
for non-isothermal transformations where thermodynamic and kinetic parameters have
to be recalculated for each temperature.
The presented phase field model will be applied in the next chapters to solve realistic

materials problems in multi-component alloys. For the simulation of solid-solid transfor-
mations, the multi-component phase field model will be coupled to elastic effects using
linear elastic constitutive relations.
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3 Modeling of structural transformations in Ni-base superalloys

Generally, phase field models for solid-solid transformations in Ni-base superalloys
assume the interfacial energy to be isotropic. Thus in these models, the cuboidal shape
of the γ′-precipitates is attributed to cubic elasticity [44, 48, 50, 85, 89]. Li et al. [48]
argued that the anisotropy of the interfacial energy is relatively small at the high tem-
peratures at which precipitate growth and coarsening in Ni-base superalloys occur. This
argument justifies the assumption of isotropic interfacial energies in phase field models.
Nonetheless, the true extent of the effects of the “small” anisotropy of the interfacial
energy on precipitate morphology is yet unclear. Therefore, it would be inaccurate to
neglect the contributions from the anisotropy of the interfacial energy on the precipitate
morphology during solid-solid transformations in Ni-base superalloys. But including the
anisotropy of the interfacial energy in phase field models with elastic effects requires the
knowledge of the relative weighting of the contributions from interfacial energy and elas-
tic anisotropies. This is surely tough to quantify due to the lack of experimental data of
the anisotropy of the interfacial energies in Ni-base superalloys. The aim of this chapter
is to show that the interfacial energy anisotropy and elastic anisotropy can both lead
to the formation of precipitates with four-fold symmetry. To understand the effects, we
first study precipitate morphologies in the presence of anisotropy of the interfacial energy
only and then in the presence of isotropic interfacial energy and elastic anisotropy.
Methods of introducing a weak interfacial anisotropy into phase field models, without

intending to describe the development of corners and facets, has been already known for
quite a long time (see, for example, [11, 29, 40, 43, 52, 81]). In these formulations, the
anisotropy comes into the phase field model, by allowing the gradient energy coefficient
to depend on the interfacial orientation. For this kind of anisotropic phase field models,
McFadden et al. [52] could show that the usual Gibbs-Thomson equation for the depen-
dence of the diffusion potential on both the interfacial curvature and the orientation is
recovered in the sharp interface limit. An undesired side effect of the formulation, using
an orientation-dependent gradient energy coefficient, is the resulting kinetic anisotropy
in such phase field models. For quantitative simulations, this kinetic anisotropy has to
be counterbalanced by an appropriately chosen anisotropic kinetic coefficient [40]. Re-
cently, other anisotropic phase-field formulations were proposed, where also the energy
hump, that has to be overcome for the transformation, is chosen to depend on the ori-
entation [51, 71]. These formulations neither lead to an intrinsic kinetic anisotropy nor
involve an interface width that varies with orientation.
Mechanical effects are typically incorporated in phase-field models by coupling an

elastic energy term to the free energy functional (see, for example, review by [80]). The
models (e.g., [33, 37, 48]) use a Cahn-Hilliard type fourth order partial differential equa-
tion for the concentration, the order parameter in the Landau sense. The misfit-strain
effects are incorporated by the application of the Vegard’s law to NiAl binary alloys,
by assuming that the local equilibrium volume of the elementary cell depends linearly
on the local concentration of Al. The resulting volume differences between the Al-rich
and the Al-depleted regions are mapped to an eigenstrain which couples to the local
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concentration field. However, the local concentration vector in the bulk in these mod-
els is constant which is not consistent with the solute depletion and enrichment zones
observed in multi-component Ni-base superalloys e.g., in [35, 36, 61]. In order to cir-
cumvent this, one can introduce a dimensionless order parameter, which distinguishes
between the phases similar to [23, 69]. Then thermodynamics couple to this field, re-
sulting in a formulation, where an Allen-Cahn type second order equation couples to a
set of second order multi-component diffusion equations. The local concentration vector
in the Allen-Cahn type description is not constant within the bulk which is consistent
with the solute depletion and enrichment zones observed in technical alloys.
The chapter is split into two subsections. In subsection 3.1 two different formulations

of including the anisotropy of the interfacial energy are presented. The study focuses
on the case of strong anisotropies leading to equilibrium shapes with sharp corners due
to missing high-energy orientations. In subsection 3.2, two formulations of including
anisotropic elasticity are presented. Microstructure evolution in Ni-base superalloys is
then studied for two scenarios; first microstructure evolution is studied in the presence
of the misfit and elastic inhomogeneity. Secondly, microstructure evolution is studied in
the presence of the misfit and elastic inhomogeneity and applied load.
Parts of this chapter have been published in [Eur. Phys. J. Plus, 126:95, 2011.] and

[Acta Mater., 93:60, 2015].

3.1 Equilibrium precipitate morphologies due to anisotropic interfacial
energy

The crystalline nature of solids results in anisotropy of many thermophysical param-
eters. In particular, the interfacial energy between different phases is often found to
be a function of the crystallographic orientation of the interface. Using the well-known
Wulff theorem, the orientational dependency of the interfacial energy σ(θ) can be re-
lated to the equilibrium shape of a particle embedded in a matrix phase, and vice versa
[10]. For sufficiently small anisotropies, the equilibrium shape is smooth. However, as
the anisotropy increases the equilibrium particle morphology develops straight edges,
known as facets, as well as corners, where certain interfacial orientations are excluded
from the particle shape. However, developing phase-field models for strongly anisotropic
interfacial energies, i.e. also accounting for sharp corners and facets, turns out to be
challenging due to two principle difficulties [70]: First, sharp corners that arise due to
missing orientations in the equilibrium shape are related to the non-convexity of the
parametric inverse interfacial energy plot 1/σ(θ). This eventually leads to ill-posed
phase-field equations for these orientations, which have to be regularized. The second
problem is that ideal straight facets require sharp cusp-like minima in the interfacial
energy σ(θ). Then, the non-differentiability there results in undefined equilibrium and
motion equations for interfaces having the orientation of a facet. To cure the problem
of ill-posed phase-field equations for high-energy orientations Kobayashi et al. [43], as
well as Eggleston et al. [16] suggest a regularization method, where the polar plot of
the inverse of the interfacial energy is convexified. Recently, there were also a number of
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attempts to regularize the phase-field by including higher-order terms [34, 71, 83, 84]. In
this respect, also sharp interface equilibrium shapes have been studied [68]. The other
challenging issue of anisotropic interfacial energies is faceting, due to non-differentiable
cusps in the -plots. The easiest way to circumvent this problem is to use approximative
rounded -functions, as throughly discussed in [15].
In section. 3.1 two different anisotropic phase-field formulations, using a simple two-

phase model involving only one particle and one matrix phase. We focus on the case of
strong anisotropies leading to equilibrium shapes with sharp corners due to missing high-
energy orientations. To be able to recover accurately equilibrium shapes with corners
due to missing orientations, we apply the regularization technique of Eggleston et al.
[16]. This method is reformulated in terms of the phase field’s unit normal-vector,
being advantageous in two respects: first, a gain in the computational performance, and
second, an increase in the numerical accuracy due to a more accurate measure of the
phase field orientation even in the vicinity of the corners. Furthermore, we generalize
the method to arbitrary crystal symmetries and discuss also rotations of the particle’s
crystalline orientation. We also discuss the numerical implementation of the presented
two phase-field models. To achieve the necessary numerical accuracy and stability, we
develop a new and efficient explicit finite difference algorithm, by combining the two-step
differentiation of Debierre et al. [15] with a staggered grid formulation.

3.1.1 Phase-field model

First, a phase-field φ(~x, t), which discriminates between the two different phases is
introduced. To distinguish between the phases, the fixed value 0 is assigned to the
precipitate phase and 1 to the matrix phase. The total free energy of the a system is
given as integral over the free energy density f(φ,∇φ), which decomposes into interfacial,
fint(φ,∇φ), and bulk contributions, fbulk(φ)

F [φ(~x, t)] =
ˆ
V

(fint(φ,∇φ) + fbulk(φ))︸ ︷︷ ︸
f(φ,∇φ)

dV (50)

The interfacial contribution fint(φ,∇φ) depends on both the phase field φ and its gra-
dient ∇φ. For the isotropic phase-field model, we can write the interfacial contribution
as

fint(φ,∇φ) = U

(
a2

2 (∇φ)2 + g(φ)
)

(51)

where, g(φ) = φ2(1− φ)2 is the double well potential, guaranteeing that the free energy
density has two local minima at φ = 0 and φ = 1, that corresponds to the two distinct
phases of the system. The phase field parameters U and a define, respectively, the
interfacial energy scale and the characteristic length scale over which the phase field
varies. The bulk contribution to the free energy density has to interpolate between the
different bulk free energies fp and fm of the particle and the matrix phase, respectively.
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We write
fbulk(φ) = h(φ)fm + (1− h(φ))fp (52)

where the interpolation function h(φ) has to be monotonic between φ = 0 and φ = 1,
and has to satisfy the conditions h(0) = 0 and h(1) = 1. Furthermore, we demand
∂φh(φ)|φ=0,1 = 0, since the minima of the total free energy density should remain at 0
and 1 also for sufficiently small but non-vanishing bulk free energy densities, fm,p 6= 0.
The phase-field evolution shall obey a dissipative Allen-Cahn equation

∂φ

∂t
= −KδF

δφ
(53)

where K is the kinetic coefficient, and δF/δφ denotes the functional derivative of the
free energy functional with respect to the phase field order parameter. Generally, this
derivative can be written as

δF

δφ
= ∂f

∂φ
−∇ ∂f

∂ (∇φ) (54)

where the last term denotes the divergence of the partial derivative of the free energy
density with respect to the gradient of the phase field ∇φ. Before introducing anisotropy
into the phase-field model, we discuss the steady state motion of the planar interface.
In this case, the phase-field equation of motion Eq. (53) reduces to an effectively one
dimensional equation, and we obtain in the isotropic case

∂φ

∂t
= KU

(
a2∂

2φ

∂n2 − g
′(φ)

)
−K (fm − fp)h′(φ) (55)

where the ′ denotes the derivative with respect to φ, and ∂/∂n indicates the spatial
derivative along the interface-normal direction ~n.

We find an analytic steady state solution, that connects the particle and the matrix
phase

φ0(~x, t) = 1
2

(
1 + tanh

(
2~x · ~n− υnt

ξ

))
(56)

where ξ = 2
√

2a is the actual interface width, and υn = 3
√

2aK (fm − fp) denotes the
steady state interface velocity. Then, using this solution of the planar front motion,
we can calculate the total free energy of the heterogeneous two-phase system at bulk
equilibrium, i.e. fm = fp, which relates to the interface energy density of the phase-field
model

σ ≡
ˆ ∞
−∞

U

(
a2

2 (~n · ∇φ0)2 + g(φ0)
)
dn = ξU

12 (57)

In Fig. 9, we show that in the quasi one dimensional case, i.e. planar interface with
fixed orientation, the phase field simulations reproduce this functional behavior from

31



the steady state solution Eq. (56) very nicely, even in the presence of anisotropy, as will
be discussed below. It is possible to write down the isotropic phase-field model in terms
of the more easy to grasp parameters σ, denoting the interfacial energy density, and the
actual interface width ξ instead of the two scales a and U. Then, we obtain the free
energy functional, how may

F [φ(~x, t)] =
ˆ
V

(3σξ
4 (∇φ)2 + 12σ

ξ
g(φ) + fbulk(φ)

)
dV. (58)

3.1.2 Inclusion of anisotropic interfacial energy

Now we introduce the desired orientational anisotropy into the phase-field model as
done in our work [24]. In this subsection, we aim to discuss two different anisotropic
formulations: The Varying Interface Width formulation, denoted by VIW, and the
Varying Interfacial Energy formulation, indicated by VIE. The first model corre-
sponds to rather common anisotropic phase-field formulations, being frequently used in
the literature. Here, the characteristic length scale a and thus also the interface width
ξ is considered to vary with the interface orientation

a(VIW) ≡ a0α(θ) (59)

where α(θ) denotes the anisotropy function. We call this model the Varying Interface
Width formulation, denoted by VIW. The interface-orientation-angle θ is related to the
gradient of the phase-field, tan θ = ∂yφ/∂xφ, where ∂x and ∂y abbreviate the partial
derivatives ∂/∂x and ∂/∂y, respectively. In the present work, we restrict to a two
dimensional description, where a single angle is sufficient to describe the orientation of
the interface.
On the other hand, for the second and less common anisotropic phase-field model, the

interfacial energy scale U is regarded to depend on the interface orientation

U (VIE) ≡ U0α(θ) (60)

We call this model the Varying Interfacial Energy formulation, abbreviated by VIE. The
derivative of the anisotropy function α(θ) with respect to the gradient of the phase-field
∇φ is given by

∂α(θ)
∂ (∂xφ) = −α′(θ) ∂yφ

(∇φ)2 , (61)

∂α(θ)
∂ (∂yφ) = α′(θ) ∂xφ

(∇φ)2 . (62)

where, in this respect, the ′ denotes the derivative with respect to the orientation. Insert-
ing either Eq. (59) or Eq. (60) into Eq. (50) yields the anisotropic free energy functional,
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from which the functional derivative has to be taken according to Eq. (54). Finally,
inserting this expression into the Allen-Cahn Eq. (53), we obtain the phase-field kinetic
equation

1
K

∂φ

∂t
= ∂x

(
∂fint
∂ (∂xφ)

)
+ ∂y

(
∂fint
∂ (∂yφ)

)
− Ug′(φ) + µ0h

′(φ). (63)

where we introduced the difference in the diffusion potentials between the particle and
the matrix phase, µ0 ≡ fp − fm, and

∂f
(VIW)
int

∂ (∂xφ) = U
(
a2(θ)∂xφ− a(θ)a′(θ)∂yφ

)
, (64)

∂f
(VIW)
int

∂ (∂yφ) = U
(
a2(θ)∂yφ+ a(θ)a′(θ)∂xφ

)
. (65)

Usually, the kinetic equation is found to be further evaluated, i.e. the partial derivatives
are taken analytically (see for instance [16]). However, since we will calculate these
derivatives numerically later on, similarly to [15, 40], we prefer to keep the above style of
presentation. For the varying interface energy formulation, we can proceed in a similar
way only using Eq. (60) instead of Eq. (59). Thus for the partial derivatives with respect
to the gradient of the phase-field we obtain instead

∂f
(VIE)
int

∂ (∂xφ) = U(θ)a2∂xφ− U ′(θ)
a2

2 ∂yφ− U
′(θ)g(φ) ∂yφ

(∇φ)2 , (66)

∂f
(VIE)
int

∂ (∂xφ) = U(θ)a2∂yφ+ U ′(θ)a
2

2 ∂xφ+ U ′(θ)g(φ) ∂xφ

(∇φ)2 . (67)

The main difference between the two models is of course, that in the second model, the
height of the double well hump is considered to depend on the interface orientation [51].

However, we would also like to point out another significant difference between the
models: The anisotropy function α(θ) enters as a square into the first VIW9 model,
while this is not the case for the second VIE10 formulation. This is especially surprising,
since taking the square of a periodic function can lead to a doubling of its period.

9Varying Interface Width formulation
10Varying Interfacial Energy formulation

33



 1

 1.1

 1.2

 1.3

 1.4

 0  10  20  30  40

ξ/
ξ 0

θ0

VIW: δ=0.05

VIE: δ=0.05

VIW: δ=  0.2

VIE: δ=  0.2

 0

 0.5

 1

-2 -1  0  1  2

φ

x/ξ0

Figure 9: The figure summarizes the results of the one dimensional studies of the growth
of the planar front due to a constant diffusion potential µ0 using the two dif-
ferent anisotropic phase-field formulations. Here, VIW means the phase-field
formulation with a varying interface width, while VIE denotes the phase-field
formulation where the interfacial energy is chosen to be orientationally de-
pendent. The interface width ξ/ξ0 as a function of the crystalline orientation
angle θ0 of the rotated anisotropy function (90) is shown. The symbols de-
note the phase-field results, and the theoretical expectations from the analytic
steady state solution Eq. (56) are indicated by the corresponding solid lines.
For the case of δ = 0.2 the convexification method explained in section. 3.1.5
is employed, as indicated by the gray line color.
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Figure 10: The figure summarizes the results of the one dimensional studies of the growth
of the planar front due to a constant diffusion potential µ0 using the two dif-
ferent anisotropic phase-field formulations. Here, VIW means the phase-field
formulation with a varying interface width, while VIE denotes the phase-field
formulation where the interfacial energy is chosen to be orientationally de-
pendent. The dimensionless growth velocity υ/Kµ0 as a function of the crys-
talline orientation angle θ0 of the rotated anisotropy function (90) is shown.
For the case of δ = 0.2 the convexification method explained in section. 3.1.5
is employed, as indicated by the gray line color.
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Thus, in the present context of an anisotropy function representing the crystalline
symmetry, a naive expectation is that using the same function α(θ) the two models
should sometimes lead to different crystalline symmetries. However, we never observed
such an effect and therefore believe that the present formulations are correct.

3.1.3 Numerical implementation

To solve the phase-field Eq. (63) numerically, an explicit finite difference method with
a uniform square mesh is developed. The mesh size is h = 0.1ξ and the computational
domain considered is the quadrant h ≤ x ≤ Mh and h ≤ y ≤ Nh where M and N
are integers. The domain is surrounded by a one-grid-point boundary containing the
boundary information. Then, φi,k shall denote the discretized phase-field at the point
(x = ih, y = kh). For the approximation of the time derivative, we use a standard
explicit Euler scheme with a time step ∆t.

Figure 11: Illustration of the numerical implementation of the anisotropic phase-field
model using a staggered grid [57, 67]. The phase-field is considered to “live”
on the nodal points indicated by the circles. However, the derivatives of the
interfacial free energy density with respect to either ∂xφ or ∂yφ, i.e. Eqs. (64)
and (64), “live” on at points shifted by h/2 in the x− or in the y−direction,
respectively, as highlighted by the boxes.
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However, more critical are the approximations to the spatial derivatives, and in order
to achieve the desired accuracy, we develop a staggered grid formulation [57, 67]. This
implies, that we proceed in two steps using alternately forward and backward first order
finite difference schemes. For the sake of brevity, we demonstrate this procedure only for
the VIW− formulation. The application to the VIE− formulation is straight forward.
In the bulk regime, where |∇φ| < 10−8, we set all contributions in the phase-field

equation involving gradients to be zero. Conversely, when |∇φ| 6= 0, we have to build
an approximative expression for ∂f (VIW)

int /∂ (∂xφ) “living” at points, on a grid, which is
shifted along the x− axis by h/2 and ∂f (VIW)

int /∂ (∂yφ) “living” at points shifted along
the y− axis by h/2 (see Fig. 11. To construct the partial derivatives 64 and 65 of the
interfacial free energy at these intermediate nodal points, we need expressions for the
phase-field gradients in between the grid points. Therefore, we define

(∂xφ)i+ 1
2 ,k

= [φi+1,k − φi,k] /h, (68)

(∂xφ)i,k+ 1
2

= [φi+1,k+1 + φi+1,k − φi−1,k − φi−1,k+1] /4h, (69)

(∂yφ)i+ 1
2 ,k

= [φi+1,k+1 + φi,k+1 − φi,k−1 − φi+1,k−1] /4h, (70)

(∂yφ)i,k+ 1
2

= [φi,k+1 − φi,k] /h, (71)

where Eqs. (69) and (70) correspond to appropriately averaged centered differencing
approximations. Apart from the phase field gradients, it is also required to write down
expressions for the anisotropy function α(θ) and its first derivative α′(θ). Since both
these functions exhibit periodicity reflecting the crystalline anisotropy, it is possible to
write them in terms of powers of sin θ and cos θ. Then the latter terms are related to
the unit normal vector, which can be efficiently approximated by

(cos θ)i+ 1
2 ,k

= (nx)i+ 1
2 ,k

= (∂xφ/ |∇φ|)i+ 1
2 ,k
, (72)

(sin θ)i+ 1
2 ,k

= (ny)i+ 1
2 ,k

= (∂yφ/ |∇φ|)i+ 1
2 ,k
, (73)

and corresponding expressions at the sites in between grid points in the y−direction. Us-
ing de Moivre’s formula, the above mentioned anisotropy function (81) and its derivative
(82) can be expressed analytically in terms of powers of sinusoidal functions [9],

αν,δ(θ) = 1 + δ

1 +
bν/2c∑
k=0

(−1)k
(

ν
2k + 1

)
nν−(2k−1)
x n2k+1

y

 , (74)

α′ν,δ(θ) = −νδ

bν/2c∑
k=0

(−1)k
(

ν
2k

)
nν−2k
x n2k

y

 . (75)

where
(
ν
k

)
denotes the binomial coefficient, and we directly write nx and ny instead of
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cos θ and sin θ. Now, using Eqs. (68)–(75) we compute the derivatives ∂f (VIW)
int /∂ (∂xφ)

at (i + 1/2, k) and ∂f (VIW)
int /∂ (∂yφ) at (i, k + 1/2) for each point in the computational

domain, and the results are stored in intermediate arrays, according to the staggered
grid shown in Fig. 11. We apply no-flux boundary conditions for the two fields storing
the intermediate information about the partial derivatives.
In the second step, we approximate the missing spacial derivatives on the right hand

side Eq. (63) by a backward finite difference formula. Therefore the discretized phase-
field equation finally reads

1
K

φm+1
i,k − φmi,k

∆t = 1
h

[(
∂fint
∂ (∂xφ)

)m
i,k

−
(
∂fint
∂ (∂xφ)

)m
i−1,k

(76)

+
(

∂fint
∂ (∂yφ)

)m
i,k

−
(

∂fint
∂ (∂yφ)

)m
i,k−1


−Ug′(φmi,k) + µ0h

′(φmi,k),

where m denotes the time index.

3.1.4 Volume preservation

To obtain equilibrium shapes, the proposed Allen-Cahn equation is not very well
suited, since it involves non-conserved order parameter dynamics leading either to growth
or shrinking of the particle. From a theoretical point of view, it is better to use the
Cahn-Hilliard equation, as done e.g., in [16, 71], which additionally involves the conti-
nuity condition for the order parameter φ. On the other hand, using the Cahn-Hilliard
equation leads to a fourth order differential equation, which dramatically influences the
performance of the simulation. Therefore, for the present work we will stick to the
Allen-Cahn dynamics, and circumvent the problem of a growing or shrinking particle
by considering the diffusion potential difference µ0 to be time dependent such that a
volume change of the particles is prohibited. The physical idea behind this technique, is
that we control the diffusion potential via, e.g. the external temperature, such that the
particle is held always critical, meaning that it neither grows nor shrinks [40]. Thus, the
time dependence has to be chosen such that the volume of the particles is conserved

0 = d

dt
V (t) =

ˆ
V

∂

∂t
(1− φ(~x, t)) dV (77)

Now, depending on the considered formulation we use the respective phase-field equation,
that is, either Eq. (63) for the VIW−model or Eq. (67) for the VIE−model, and obtain
the time dependence of the diffusion potential difference

µ0(t) = R(t)
H(t) (78)
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where we introduce the following abbreviations:

R(t) = K

ˆ
V

(
∂x

(
∂fint
∂ (∂xφ)

)
+ ∂y

(
∂fint
∂ (∂yφ)

)
− ∂fint

∂φ

)
dV, (79)

and
H(t) =

ˆ
V
h′(φ)dV (80)

As shown in [56], this method is also suited for the multi-phase application. In Fig 12 we
compare the equilibrium shapes produced by the two different models and the theoretical
prediction from the Wulff construction, as will be discussed in next section. In this figure
one can clearly see, that if the φ = 1/2−contour is considered to indicate the interface
shape both models reproduce the theoretic Wulff construction nicely.

φ = 0.1

φ = 0.5

φ = 0.9

Wulff

VIW

VIE

Figure 12: Equilibrium shapes obtained from the varying interface width formulation
(VIW solid lines) and the varying interfacial energy formulation (VIE dashed
lines). In either cases, the anisotropy function Eq. (81) with a two fold sym-
metry and an anisotropy strength of δ = 0.5 has been used. The phase field
is indicated by three different contours at φ = 0.1, 0.5, 0.9. The red lines
depict the corresponding parametric Wulff construction (85)–(86).

Also, in contrast to the results presented in [51], we do not observe a deviation of the
VIW model from the Wulff construction. Rather, from a point of view of reproducing
the correct equilibrium shapes, we can not give any clear preference towards one of the
two different phase-field formulations.

3.1.5 Equilibrium shape of a particle in a matrix

Due to the underlying crystalline lattice the free energy of the interface between the
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particle and matrix should depend on its orientation with respect to the basic lattice
vectors. Therefore, we consider the interfacial energy to be anisotropic, γ(θ) = γ0α(θ),
where the anisotropy function α(θ) reflects the functional dependence of the orientation
with respect to some fixed crystalline axis.

a)
-1.5
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 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

Wulff

α(θ)
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b)
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Figure 13: a): Parametric plot of the anisotropy function α(θ), Eq. (84) (solid black
line) and the related Wulff construction Eqs. (85)–(86) (solid red line). The
equilibrium shape of the particle corresponds to the Wulff construction with-
out the “ears”. The dotted line indicates the regularization of the anisotropy
function αreg(θ), which leads to the same Wulff construction, but without the
“ears”. b): To illustrate the convexification method, the parametric inverse
anisotropy function, 1/α(θ), as well as the inverse regularization function
1/αreg(θ) has been plotted.

So far we did not specify any anisotropy function α(θ), which should exhibit a period-
icity reflecting the crystalline symmetry. For the present work, we focus on the following
anisotropy function:

α(θ) = 1 + δ (1 + cos(νθ)) , (81)

α′(θ) = −νδ sin(νθ), (82)

α′′(θ) = −ν2δ cos(νθ), (83)

where δ denotes the anisotropy strength, ν is an integer and defines the symmetry of
the resulting equilibrium shape and α′(θ), α′′(θ) is the first and second derivative of
the anisotropy function with respect to the interface orientation angle. Note, that the
function is written such that it fixes the minimal interfacial energy, which in principle
allows us to choose the anisotropy strength to be larger than 1. For the case of a four-fold
symmetry and anisotropy strength δ = 0.2, the function is plotted in parametric form
in Fig. 13 as

x = α(θ) cos(θ) , y = α(θ) sin(θ). (84)
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Wulff’s theorem demands that the equilibrium shape of the particle is surrounded by
the multitude of tangents to the α− plot [10]. Thus we can calculate the equilibrium
shape of a precipitate in parametric form as

x = α(θ) cos(θ)− α′(θ) sin(θ), (85)

y = α(θ) sin(θ) + α′(θ) cos(θ). (86)

This is the so-called “Wulff construction”, which is shown in red (light solid line in
black and white) in Fig. 13a. For sufficiently large δ, the particle equilibrium shape
develops sharp corners, where certain high energy orientations are missing. The latter is
accompanied by the appearance of the “ears”, i.e. metastable and unstable branches, in
the Wulff construction, as can be also seen in the figure. From a computational point of
view, the occurrence of “ears” leads to an ill-posed phase-field evolution equation, which
needs to be regularized [16, 70].

a)a) b)

Wulff construction
phase field

a) b)

c)

a) b)

c) d)

Figure 14: In this figure we compare the parametric Wulff construction (85)-(86) and
the phase field contours at φ = 1/2 after long simulation times: a) three fold
symmetry, δ = 0.4; b) four fold symmetry, δ = 0.2; c) five fold symmetry,
δ = 0.2; d) six fold symmetry, δ = 0.1. In all the cases the VIE−formulation
(60) in combination with the anisotropy function (81) has been used.

To resolve this problem, we refer to the convexification method suggested by Eggleston
et al. [16], as will also be reviewed briefly in the following. Missing orientations in the
equilibrium shape occur when the reciprocal α−plot first becomes concave, which is the
case when α+ α′′ = 0. Therefore, α+ α′′ = 1 + δ − (ν2 − 1)δ cos(νθ) = 0, meaning that
δ > 1/(ν2−2). If now the anisotropy strength exceeds this threshold, we obtain the first
missing orientations by the condition
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0 = d

dθ

(cos θ
α(θ)

)
= α(θm) sin θm + α′(θm) cos θm (87)

To find the first missing orientation θm, we suggest a standard Newton iteration (see
e.g. [28]) as given by ,

θ(n+1)
m = θ(n)

m −
α(θm) sin θm + α′(θm) cos θm

(α(θm) + α′′(θm)) cos θm
(88)

where n indicates the iteration step. Now, using this angle θm and by proper rotation
we can, identify all the regimes of orientations, where the reciprocal α−plot of Eq. (81)
is concave. Therefore, in order to regularize the phase-field equation, we replace the
anisotropy function α(θ) by a new function α̃(θ) such that it still produces the same
equilibrium shape, but having a fully convex reciprocal α̃−plot. As also suggested in
[16], we replace the anisotropy function in these regimes by appropriately chosen circular
sections, i.e. straight lines in the reciprocal parametric plot, as illustrated in Fig. 13 for
the case of four-fold crystalline symmetry.
However, since the direct numerical measure of the interface orientation angle, such as

θ = arctan ∂yφ/∂xφ, turned out to be erroneous, we use the components of the normal
vector nx ≡ cos θ = ∂xφ/ |∇φ| and ny ≡ sin θ = ∂yφ/ |∇φ| instead, to rule out the
discrepancy. In this respect, we write the regularized interfacial energy function as

α̃(θ) =



αreg(0) if n̂x(0) > cos(θm)
αreg(1) if n̂x(1) > cos(θm)
...

...
αreg(ν − 1) if n̂x(ν − 1) > cos(θm)
α(θ) else

(89)

where the regularization is given by αreg(k) = α(θm)
cos(θm) n̂x(k), with the appropriately

rotated normal interface vector n̂x(k) = nx cos(2π
ν k) + ny sin(2π

ν k) (see also Eq. (91).
Finally, demonstrating that this method leads to the correct equilibrium shapes, we
compared in Fig. 14 resulting phase field contours using the VIE model with their corre-
sponding parametric Wulff constructions for a number of different crystalline symmetries.

The cases when the basic crystal lattice vectors do not correspond to the cartesian
axis is also addressed. In this case the anisotropy function is shifted by the orientation
angle θ0,

α(θ) ≡ α(θ − θ0) (90)

Then we construct the anisotropy function (74) and its derivative (75) using a normal
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vector ~n′ which is rotated by the orientation angle θ0,

~n′ = ~R(θ0)~n = 1
|∇φ|

(
cos θ0 − sin θ0
sin θ0 cos θ0

)(
nx
ny

)
, (91)

where ~R(θ0) is the rotation matrix. Notice, that the rotated normal vector ~n′ should be
used only for the construction of the anisotropy function and its derivative. All other
expressions in Eqs. (64)–(65) need to be constructed out of the original normal vector
~n. The reason why we operate here on the level of the normal interface vector instead
of directly using a shifted angle θ − θ0 is again related to the fact that the numerical
measure of the normal vector turns out to be more accurate.

x

y

θ0 = 125°

θ0 =   65°

θ0 =     5°

Wulff

Figure 15: The rotated Wulff construction is compared with phase field contours, that
were obtained after long simulation times using the anisotropy function (81)
with δ = 0.4 and a three fold symmetry being rotated, according to (90), by
different orientation angles θ0. For the phase-field simulations, the VIW−
formulation (59) has been used.

To demonstrate the accuracy of the rotations performed in our code, in Fig. 15, we plot
the phase field contours of an anisotropic particle, where the anisotropy function is shifted
by three different orientation angles θ0 = 5o, 65o, 125o. The contours of θ0 = 5o and
θ0 = 125o lie quite nicely upon each other, as well as on the rotated Wulff construction.
Only the corner of the θ0 = 125o contour pointing to the right reveals some limitations
of the accuracy. Note, that this corner corresponds to dynamics that are subjected to
rotations beyond 2π, since for the selection of the corners in the convexification method,
a similar rotation was used.
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3.2 Modeling of strain-induced effects

The second phase γ′-precipitates in Ni-base superalloys are generated through solid
to solid transformations from the parent γ-phase. While the continuous γ-matrix has
a disordered fcc crystal structure, the precipitates are of the ordered fcc(L12) crystal
structure. Due to the different partitioning behavior of solutes, the compositions of the
two solid phases are often different. The difference in the composition and structural
arrangements of the two phases is accompanied with a difference in the lattice parameters
[60, 61, 73]. To maintain lattice continuity across the boundary local elastic deformations
are required which generates coherency strain energy. The resulting coherency strain
energy plays a critical role in determining the transformation path and microstructure
evolution during solid-state transformations.
Phase-field methods have been used extensively to study microstructural evolution

in elastically stressed solids. These models have been used to study non-directional
coarsening [38, 76] and rafting in binary NiAl alloys [6, 33, 88, 89, 90]. Some models
were formulated on a purely elasticity framework [33, 37, 48], some have been coupled
with dislocation dynamics [88, 89, 90] while [30] has developed an elasto-viscoplastic
model. Zhou et al. [89] identified that microstructures obtained using “elastic” models
are qualitatively similar to those obtained by the “elastic-plastic” although the kinetics
differ. In this work, misfit strain effects are incorporated by adding an elastic energy
term to the validated model in chapter 2. We use the approach of [69] to model the
dependence of the the total strain on the phase field which assumes equal elastic stresses
in the two bulk phases at the diffuse interface. We assume the interfaces to be coherent,
although this might not necessarily hold due to large deformations resulting from the
larger misfit of the two phases. Dislocation motion can be incorporated in the phase
field model but is expensive. It is more expensive than the incorporation of elastic
heterogeneity as done in this work, which has been shown [33, 89] to be a good first
approximation to the influence of the micro-mechanics on the coarsening kinetics in Ni-
base superalloys. The influence of plasticity on phase transformations has been studied
extensively numerically by Zhou et al. [88, 89, 90, 91] and Gaubert et al. [31]. Thus,
this thesis focuses on the contributions of interdiffusion to solid-state transformations.
Neglecting the anti-phase domains, a single non-conserved field variable φ(~x, t) is in-

troduced to describe the coherent γ/γ′ two phase microstructure. To distinguish between
the two distinct bulk phases, fixed values of the phase field variable φ are assigned to
represent them, 1 for the γ-phase and 0 for the γ′-phase. Additionally, it is postulated
that φ(x, t) varies smoothly within an interface of a finite width. We neglect the ap-
pearance of anti-phase boundaries, which form between different translational variants
of the ordered γ′-phase. The emphasis of the current model is to find a quantitative
description of the coarsening kinetics of the γ′-phase. The current description is solely
based on the assumption that the coarsening kinetics is limited by the complex interdif-
fusion kinetics of multiple components in the γ-phase. Strictly speaking, we develop a
model for coarsening kinetics with low γ′-fraction. It is possible to include the influence
from anti-phase boundaries by an extension of the description of the ordered γ′-phase
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via multiple order parameters as has been demonstrated before [30, 79, 90]. However, a
quantitative kinetic description of the γ′-coarsening behavior including the effect of anti-
phase boundary migration requires reliable values for the anti-phase mobilities. They are
certainly difficult to measure directly in the experiment. We define the grand-potential
functional as the integral over the grand-potential density ω(φ,∇φ), which decomposes
into interfacial, and thermodynamic and elastic contributions,

Ω [φ(~x, t)] =
ˆ
V

(ωint + ωch + ωel) dV. (92)

The interfacial contribution ωint depends on both the phase field φ and its gradient ∇φ.
The interfacial energy σ for this case is assumed to be isotropic, thus the interfacial
contribution is explicitly written as

ωint(φ,∇φ) = 3σξ
2 (∇φ)2 + 6σ

ξ
gdw(φ), (93)

where, g(φ) = φ2(1− φ)2 is the double well potential, guaranteeing that the free energy
density has two local minima at φ = 0 and φ = 1, that corresponds to the two distinct
phases of the system and ξ is the interface width. The thermodynamic contribution ωch
is postulated as a mixture of the bulk grand-potential densities

ωch(φ, µ) = ωγch(µ)h(φ) + ωγ
′

ch(µ)h(1− φ), (94)

where the interpolation function h(φ) has to be monotonic between φ = 0 and φ = 1,
and has to satisfy the conditions h(0) = 0 and h(1) = 1. Furthermore, we demand
∂φh(φ)|φ=0,1 = 0, since the minima of the total grand-potential energy density should
remain at 0 and 1 also for sufficiently small but non-vanishing bulk grand-potential
energy densities. The grand-potential density of the phase p can be obtained by a
Legendre transform of the free energies

ωp(µ) = fpch(c, T )− µcp, (p = γ or γ′), (95)

where fpch(c, T ) is the parabolic free energy of phase p

fpch(cp, T ) =
∑
i

1
2
∑
j

χpij (ci −Api )
2

+Bp, (96)

where, i and j are the species in a multi-component system. The parameter χpij is related
to the equilibrium thermodynamic factor matrix of phase p and the constants Api and Bp

are related to the equilibrium compositions and Gibbs energies of phase p, respectively.
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3.2.1 Inclusion of mechanical effects

Mechanical effects are included in the model via the elastic energy term ωel in Eq. (92).
To write the expression of the elastic energy, we first define a displacement field u. Elastic
deformation is described via a vector field u, which provides the displacement vector for
a given point of the body with respect to its reference configuration. A material point x
of the undeformed body will be found at x+u(x) in the deformed material. Using linear
elasticity theory, the strain tensor is introduced as the symmetric spatial derivative of
the displacement field. The strain tensor is calculated from the displacement ui by the
kinematic equation

εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
, (97)

where i, j denote the spatial coordinates. To complete the definition of the elastic
energy density, the stress-free strain (eigenstrain) tensor ε0

ik(r) is required. Its physical
definition is the value of which the strain tensor at x would have in the case the material
is unstressed. In linear elasticity, the elastic energy is a quadratic function of the strain
tensor. Assuming that the elastic energy is zero at zero stress, the elastic energy can be
written as [26]

ωel = 1
2

ˆ
V

∑
iklm

Ciklm
([
ε̃ik(~r)− ε0

ik(~r)
] [
ε̃lm(~r)− ε0

lm(~r)
])
dV. (98)

Following Khachaturyan [41], the elastic strain field εij can be written as the sum of
homogeneous and heterogeneous strain strain ε̃ik = ε̄ik + εik. The homogeneous strain
is assumed to take a constant value ε̄ik = ε0

ik<h(φ)>, where < ... > symbolizes the
averaging over the volume. The heterogeneous strain εik should be calculated from the
mechanical equilibrium conditions. With these values Eq. (98) can be written as

ωel = 1
2

ˆ
V

∑
iklm

Ciklm
(
[ε̄ik + εik]− ε0

ikh(φ)
) (

[ε̄lm + εlm]− ε0
lmh(φ)

)
dV. (99)

After transformation of Eq. (99) using the property
´
V εlmdV = 0, we get

ωel = 1
2

ˆ
V

∑
iklm

Ciklmε
0
ikε

0
lmh

2(φ)dV (100)

+ 1
2

ˆ
V

∑
iklm

Ciklm
(
ε0
ikε

0
lm < h(φ) >2 −2ε0

ikε
0
lm(φ) < h(φ) > h(φ)

)
dV

+ 1
2

ˆ
V

∑
iklm

Ciklm
(
εikεlm − 2ε0

ikεlmh(φ)
)
dV,

here, the first term is the total elastic energy associated with the shape restoration of
particles of the γ′-phase, the second term is the homogeneous relaxation and the last
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term is the heterogeneous relaxation of the elastic energy.

3.2.2.1 Coupling of eigestrain to phasefield

Misfit-strain effects are incorporated in the model by coupling though the dimen-
sionless scalar field i.e, the phase field, which has no other physical meaning than to
distinguish between the phases. By defining the γ-phase as the reference phase such
that its eigenstrain vanishes, we get

ε0
ik(φ) = (1− h(φ)) ε0

ik, (101)

where ε0
ik are the tensor coefficients determined by the crystallography of the phases.

We denote this coupling the Eigenstrain-Phasefield (EP). In the γ-γ′ system there
are only diagonal terms of the eigenstrain

ε0
ik(φ) = 2

(
aγ

′ − aγ

aγ′ + aγ

)
δik, (102)

where aγ and aγ′ are the lattice parameters of the matrix and precipitate, respectively
and δij is the Kronecker-delta function. Elastic anisotropy and inhomogeneity is intro-
duced in the model by postulating the elastic constants to be constant in each phase but
with different values

Cijkl(φ) = h(φ)Cγijkl + (1− h(φ))Cγ
′

ijkl. (103)

The stiffness tensor Cikjl is symmetric under the interchange of i and j of k and l and
of i, j and k, l and have symmetries reflecting the symmetries of the crystal lattice [26].
The following symmetry properties can be written

Cijkl = Cjikl = Cijlk = Cklij . (104)

The first two symmetries arise from the symmetry of the stress and strain tensors. The
last two arise from arguments based on the existence of the strain energy function. The
elastic constants can be written as C12 = λ, C11 = 2µ+ λ, C44 = µ, where λ and µ are
Lame’ coefficients. The elastic energy for the EP coupling is given as,

ωel(φ, ~u) = 1
2
∑
iklm

([
εik − ε0

ik(φ)
]
Ciklm(φ)

[
εlm − ε0

lm(φ)
])
, (105)

where the explicit expressions for ε0
ik(φ) and Ciklm(φ) are given by Eqs. (101) and (103),

respectively. Note that Eq. (105) inserted in Eq. (92) gives the elastic energy integrated
over the whole volume.
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Phase-field equation

The phase-field evolution shall obey the Allen-Cahn equation

∂φ

∂t
= −KδΩ

δφ
, (106)

where K is the kinetic coefficient and δΩ/δφ denotes the functional derivative of the
grand-potential functional with respect to the phase field order parameter. For the
isothermal case, the variation of the grand-potential functional in Eq. (92) with respect
to the order parameter φ and the diffusion field µ becomes

δΩ =
ˆ
dV

{
−3σξ∇2φ+ 6σ

ξ
g′(φ) (107)

+ h′(φ)
(
∂ωch(µ)
∂h

)
+ h′(φ)

(
∂ωel
∂h

)}
δφ

+
{
h(φ)∂ω

γ
ch(µ)
∂h

+ [1− h(φ)]∂ω
γ′

ch(µ)
∂h

}
δµ,

with the requirement that ∂φh(φ)|φ=0,1 = 0 such that the driving force vanishes outside
of the interfacial region. The partial derivative of the grand potential with respect to
the phase field gives the driving force for phase transition

δΩ =
ˆ
dV

{
−3σξ∇2φ+ 6σ

ξ
g′(φ) (108)

+ h′(φ)
(
∂ωch(µ)
∂h

)
+ h′(φ)

(
∂ωel
∂h

)}
δφ

Inserting the Eq. (108) in Eq. (106) gives the explicit phase-field equation

∂φ

∂t
= − K

3σξ
δΩ
δφ

(109)

K

(
∇2φ− 2

ξ2 g
′
dw(φ)

− 1
3σξh

′(φ)
[
∂ωch(φ, µ)

∂h
+ ∂ωel(φ, ~u)

∂h

])
.

The first derivative of Eq. (94) gives the thermodynamic driving force

∂ωch(φ, µ)
∂h

= ωγch(µ)− ωγ
′

ch(µ) (110)

=
∑
i

1
2
∑
j

∆χijµj −∆Ai

µi + ∆B,
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where 4B = Bγ − Bγ′ , 4Ai = Aγi − A
γ′

i and 4χij = χγij − χ
γ′

ij . In a similar manner,
the first derivative of Eq. (105) with respect to the interpolation function h(φ) gives the
elastic driving force for phase transformation. Evaluating the derivatives of the phase
dependent parameters in Eq. (105), gives the explicit elastic driving force

∂ωel(φ, ~u)
∂h

= ∂h(φ)
∂φ

(
1
2
∑
iklm

(εik − ε0
ik(φ))Ciklm(φ)iklm(εlm − ε0

lm(φ))
)

=
∑
iklm

(
∆Ciklm(εik − ε0

ik(φ))(εlm − ε0
lm(φ))

)
(111)

−2
∑
iklm

(
∆ε0

ikCiklm(φ)(εlm − ε0
lm(φ))

)
,

=
∑
iklm

(
∆Ciklm(εik − [1− h(φ)] ε0

ik)(εlm − [1− h(φ)] ε0
lm)
)

−2
∑
iklm

(
∆ε0

ik

(
h(φ)Cγiklm + (1− h(φ))Cγ

′

iklm

) (
εlm − [1− h(φ)] ε0

lm

))
,

where ∆Ciklm = Cγiklm − C
γ′

iklm and since the matrix is the reference phase ∆ε0
ik = ε0

ik.

Numerical solution for phase-field equation

Discretizing the time evolution of the phase-field equation using the finite difference
method we get

φn+1(i, j) = φn(i, j) + ∆φn(i, j)
∆t ∆t, (112)

where n is the time index and ∆φn(i, j) is the change φ between time step n and n+ 1.
Discretizing in space we get

1
K

∆φn(i, j)
∆t = 1

(∆x)2 (φn(i+ 1, j) + φn(i− 1, j)) (113)

+ 1
(∆x)2 (φn(1, j + 1) + φn(i, j − 1))

− 1
(∆x)2 (4φn(i, j))− 2

ξ2 g
′
dw(φn)

− 1
3σξh

′(φn)
(
∂ωch(φ, µ)

∂h

)
+ 1

3σξh
′(φn)

(
∂ωel(φ, ~u)

∂h

)
,

where i, j are spatial indices.

Diffusion equations

The multiple diffusion equations are formulated in the basis of the conservation con-
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dition
∂c̄i(φ)
∂t

+
∑
j

~∇
(
Mp
ij
~∇µj

)
= 0, (114)

where c̄i(φ) is the local concentration and Mp
ij is the atomic mobility matrix. Further

evaluation yields the equation of motion for a given species i equations for the evolution
of the diffusion potential fields

∂µi
∂t

=
∑
j

Dij

(
∇2µj

)
− ∆Ai

χi

∂h

∂φ

∂φ

∂t
, (115)

where the concentration difference ∆Ai = Aγi −A
γ′

i is independent from the phase field
and the diffusion coefficient is defined as Dij = Mij/χi. Here, the thermodynamic
factors are given as Xi = 1/χi. The concentration field for a solute i is calculated from
the concentration field i as

ci = χiµi +
(
Aγi h(φ) +Aγ

′

i (1− h(φ))
)
. (116)

The constants Aγi and Aγ
′

i are related to the equilibrium compositions ceq,γi and ceq,γ
′

i of
the precipitate and matrix phase, respectively.

Numerical solution for diffusion equations

Discretizing the time evolution of the diffusion equation in Eq. (115) using the finite
difference approach we get

µn+1
k (i, j) = µnk(i, j) + ∆µnk(i, j)

∆t ∆t. (117)

Discretizing in space as well we get

∆µnk(i, j)
∆t =

∑
j

Dij

(∆x)2 (µnk(i+ 1, j) + µnk(i− 1, j)) (118)

+
∑
j

Dij

(∆x)2 (µnk(1, j + 1) + µnk(i, j − 1))

−
∑
j

Dij

(∆x)2 (4µnk(i, j))− h′ (φn) ∆Ai
χi

∆φn(i, j)
∆t ,

where i and j are spatial indices and k is a species in an alloy.
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Mechanical Equilibrium

To calculate the elastic driving force ∂ωel/∂h for phase transformation in Eq. (111),
the displacement ui at each point in space is required. In the case of solid-state phase
transformations controlled by atomic diffusion, static elasticity (elastic equilibrium) is
assumed since elastic energy as described by the displacement field ui equilibrates much
faster than the characteristic diffusion time. In other words, the time for the relaxation
of the displacement field is much shorter than that of the solute diffusion field. Therefore,
displacement rapidly reaches equilibrium on the timescale of solute diffusion. The condi-
tion determining the displacement fields ui is that it should minimize the elastic energy.
The equation for this minimization, is called the equation of the mechanical equilibrium.
The solution of the elastic equilibrium is obtained by minimizing the grand potential
functional with respect to the displacement together with the boundary conditions

δΩ
δuk

=
∑
k

∂σik(φ)
∂xk

= 0, (119)

where the stress tensor is phase field dependent due to the dependence of the cubic
elastic constants and eigenstrain on the phase field. The stress tensor in (119) is defined
as the partial derivative of the elastic energy with respect to the strain tensor

σik(φ) = ∂ωel(φ, ~u)
∂ui,k

, (120)

where ui,k is ∂ui/∂xk. The stress tensor is related to the strain tensor by the Hooke’s
law

σik(φ) =
∑
iklm

Ciklm(φ)(εlm − ε0
lm(φ)), (121)

where ε0
lm(φ) and Ciklm(φ) are described in the Eqs. (101) and (103), respectively. A

complete description of the equilibrium problem requires the assignment of necessary
conditions on the elastic field variables at the interfaces and domain boundaries [26]. For
a two phase coherent microstructure, conditions of the continuity of atomic displacement
are set

[u] = 0 (122)

where [u] for the two phase γ−γ′ microstructure is [u]γγ′ which means uγ−uγ′ , which is
the difference in limiting values of u at the γ′-precipitate and γ-matrix side of the inter-
face. In addition to that, the values taken by the displacement fields u at the interface in
a deformed body should satisfy the energy minimizing condition. By assuming that the
energy of the interface depends only on the position relative to the lattice, the surface
energy is therefore not changed by changes in the displacement field at the interface and
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the minimization of the elastic energy gives∑
k

[σik]nk = 0, (123)

where [σik] means σγik − σ
γ′

ik and n is the vector normal to the interface. The meaning
of (123) is that the forces exerted on the γ′-precipitate and the γ-matrix side of the
interface are equal and opposite. The boundary conditions on the domain boundary
depend on the physical conditions. For this work, periodic boundary conditions taking
the domain Ψ to be rectangular or squared are used. The periodic boundary conditions
require that strain and stress fields are periodic with unit cell Ψ.
The three dimensional elasticity problem can effectively be simplified to a two direc-

tional problem by using the plane strain geometry assumption where the displacement
vector in one given direction equals zero and therefore vanishes. The displacement vector
in the z-direction is chosen to be zero and the other components do not depend on the
z-coordinate which gives the condition

ux = ux(x, y); uy = uy(x, y); uz = 0. (124)

Therefore, the strain components εzz, εxz and εyz are zero. We recall that Ciklm is
symmetric under the interchange of i and j of m and n and of the pair i, j and m,n. As
a result, there are three independent elastic constants in a cubic system, i.e., C11, λ and
µ and the stress-strain relation follows

σxx
σyy
σzz
σyz
σxz
σxy


=



C11 λ λ 0 0 0
λ C11 λ 0 0 0
λ λ C11 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ





εxx
εyy
εzz
2εyz
2εxz
2εxy


. (125)

Since the strain components εzz, εxz and εyz are zero, consequently, the components σxz
and σyz of the stress tensor also vanish. Taking into account the plane strain geometry
assumption, the mechanical equilibrium in Eq. (119) for the two dimensional elasticity
problem is written as

0 = ∂σxx(φ)
∂x

+ ∂σxy(φ)
∂y

, (126)

0 = ∂σyy(φ)
∂y

+ ∂σxy(φ)
∂x

. (127)

Using the relations (101) and (103) in (121), the diagonal terms of the phase dependent
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stress tensors are given as

σxx(φ) = C11(φ)
[
εxx − ε0

xx(φ)
]

+ λ(φ)
[
εyy − ε0

yy(φ)
]
− λ(φ)

[
ε0
zz(φ)

]
=

[
h(φ)Cγ11 + (1− h(φ))Cγ

′

11

] [
εxx − [1− h(φ)] ε0

xx

]
+
[
h(φ)λγ + (1− h(φ))λγ′] [

εyy − [1− h(φ)] ε0
yy

]
−
[
h(φ)λγ + (1− h(φ))λγ′] [1− h(φ)ε0

zz

]
, (128)

σyy(φ) = λ(φ)
[
εxx − ε0

xx(φ)
]

+ C11(φ)
[
εyy − ε0

yy(φ)
]
− λ(φ)

[
ε0
zz(φ)

]
=

[
h(φ)λγ + (1− h(φ))λγ′] [

εxx − [1− h(φ)] ε0
xx

]
+
[
h(φ)Cγ11 + (1− h(φ))Cγ

′

11

] [
εyy − [1− h(φ)] ε0

yy

]
−
[
h(φ)λγ + (1− h(φ))λγ′] [1− h(φ)ε0

zz

]
, (129)

and the shear stress is given as

σxy(φ) = 2µ(φ)
[
εxy − ε0

xy(φ)
]

(130)

= 2
[
h(φ)µγ + (1− h(φ))µγ′] [

εxy − [1− h(φ)] ε0
xy

]
.

Inserting (128) and (130) into (126), we get the equation

0 = ∂

∂x

[(
h(φ)Cγ11 + (1− h(φ))Cγ

′

11

)
(εxx − [1− h(φ)] ε0

xx) (131)

+
(
h(φ)λγ + (1− h(φ))λγ′) (εyy − [1− h(φ)] ε0

yy)

−
(
h(φ)λγ + (1− h(φ))λγ′) [1− h(φ)] ε0

zz)
]

+2 ∂
∂y

[(
h(φ)µγ + (1− h(φ))µγ′) (εxy − [1− h(φ)] ε0

xy)
]
.

Likewise, inserting (129) and (130) into (127) yields the equation

0 = ∂

∂y

[(
h(φ)λγ + (1− h(φ))λγ′) (εxx − [1− h(φ)] ε0

xx) (132)

+
(
h(φ)Cγ11 + (1− h(φ))Cγ

′

11

)
(εyy − [1− h(φ)] ε0

yy)

−
(
h(φ)λγ + (1− h(φ))λγ′) [1− h(φ)] ε0

zz)
]

+2 ∂

∂x

[(
h(φ)µγ + (1− h(φ))µγ′) (εxy − [1− h(φ)] ε0

xy)
]
.

The equations (131) and (132) need to be solved numerically to obtain the ux and uy
displacement fields necessary for the calculation of the elastic driving force ∂ωel/∂h (in
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Eq. 111) required in (Eq. 109) to change the phase field order parameter.

Numerical solution for the mechanical equilibrium

To obtain the ux and uy displacement fields, Eqs. (131) and (132) are solved, respec-
tively, using a Jacobi relaxation [8] based on the explicit finite difference with elastic
variables on a staggered grid [19, 57]. Before describing the Jacobi relaxation scheme,
we first look at the numerical discretization of Eqs. (131) and (132) using a staggered
grid. The staggered grid used to solve the two equations is illustrated in Fig 16. The
staggered grid has three different lattices which are shifted by ∆x/2. In the staggered

u
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x
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Figure 16: Staggered grid: The interpolation functions h(φ) are defined on the normal
grid depicted by the circles and the displacement fields ux and uy are defined
them shifted by ∆x/2. The shear strains at the square centers represented by
the hexagons also shifted by ∆x/2. Values for the interpolation function h(φ)
at the square centers are also required.The elasticity equations are only space
dependent and can therefore be solved independently from the phase-field
and concentration evolution equations.

grid, the diagonal terms of the strain tensor are located at the grid points (represented
by the circles) and the shear strains at the square centers (represented by the hexagons).
The displacements are located in between the grid points (represented by the rectangles)
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shifted by ∆x/2. The elastic constants Ciklm(φ) and eigenstrain ε0
ik(φ) are phase field

dependent through the coupling via the interpolation function h(φ). Thus, for the cal-
culation of the elastic constants and eigenstrain at the grid points (circles), the following
discretized interpolation functions at the circles are required

hcc = h(φ(i, j)), (133)

hpc = h(φ(i+ 1, j)), (134)

hcp = h(φ(i, j + 1)), (135)

hpp = h(φ(i+ 1, j + 1)). (136)

The discretized elastic constants and eigenstrain at the grid points (i, j) are

C11(i, j) = hccC
γ
11 + (1− hcc)Cγ

′

11, (137)
λ(i, j) = hccλ

γ + (1− hcc)λγ
′
, (138)

µ(i, j) = hccµ
γ + (1− hcc)µγ

′
, (139)

ε0
kl(i, j) = ε0

kl(1− hcc), (140)

where the interpolation function at grid point (i, j) i.e., hcc which is defined in (133).
The discretized elastic constants and eigenstrain at the grid points (i+ 1, j) are

C11(i+ 1, j) = hpcC
γ
11 + (1− hpc)Cγ

′

11, (141)
λ(i+ 1, j) = hpcλ

γ + (1− hpc)λγ
′
, (142)

µ(i+ 1, j) = hpcµ
γ + (1− hpc)µγ

′
, (143)

ε0
kl(i+ 1, j) = ε0

kl(1− hpc), (144)

where interpolation function hpc at the circle point (i + 1, j) is defined in (134). For
the calculation of elastic constants and eigenstrain at the square center (hexagons),
discretized interpolation functions are also required at the hexagons

hhh(i+ 1/2, j + 1/2) = 0.25 [h(i, j) + h(i+ 1, j) (145)
+h(i, j + 1) + h(i+ 1, j + 1)] ,

hmh(i− 1/2, j + 1/2) = 0.25 [h(i− 1, j) + h(i, j) (146)
+h(i− 1, j + 1) + h(i, j + 1)] ,

hhm(i+ 1/2, j − 1/2) = 0.25 [h(i, j − 1) + h(i+ 1, j − 1)
+h(i, j) + h(i+ 1, j)] .
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At the hexagon (i+ 1/2, j + 1/2), the elastic constants and eigenstrain are calculated as

C11(i+ 1/2, j + 1/2) = hhhC
γ
11 + (1− hhh)Cγ

′

11, (147)
λ(i+ 1/2, j + 1/2) = hhhλ

γ + (1− hhh)λγ′
, (148)

µ(i+ 1/2, j + 1/2) = hhhµ
γ + (1− hhh)µγ′

, (149)
ε0
kl(i+ 1/2, j + 1/2) = ε0

kl(1− hhh), (150)

where interpolation function hhh is defined in (145). Likewise, at the hexagon (i−1/2, j+
1/2), the elastic constants and eigenstrain are calculated as

C11(i− 1/2, j + 1/2) = hmhC
γ
11 + (1− hmh)Cγ

′

11, (151)
λ(i− 1/2, j + 1/2) = hmhλ

γ + (1− hmh)λγ′
, (152)

µ(i− 1/2, j + 1/2) = hmhµ
γ + (1− hmh)µγ′

, (153)
ε0
kl(i− 1/2, j + 1/2) = ε0

kl(1− hmh), (154)

where interpolation function hmh is defined in (146). The three non-zero elements of the
strain tensor are calculated as

εxx(i, j) = (ux(i, j)− ux(i− 1, j))/∆x, (155)

εyy(i, j) = (uy(i, j)− uy(i, j − 1))/∆x, (156)

εxy(i, j) = 1
2∆x (ux(i, j + 1)− ux(i, j) + uy(i+ 1, j)− uy(i, j)) . (157)

Using Eqs. (133)-(157), the spatial derivatives of the stresses in Eqs. (131) and (132) are
now discretized as,

∂σxx(φ)
∂x

=
(
C11(i+ 1, j)([ux(i+ 1, j)− ux(i, j)]− ε0

xx(i+ 1, j)) (158)

−C11(i, j)([ux(i, j)− ux(i− 1, j)]− ε0
xx(i, j))

+λ(i+ 1, j)([uy(i+ 1, j)− uy(i+ 1, j − 1])− ε0
yy(i+ 1, j))

−λ(i, j)([uy(i, j)− uy(i, j − 1)]− ε0
yy(i, j))

− λ(i+ 1, j)ε0
zz(i+ 1, j) + λ(i, j)ε0

zz(i, j)
)
/∆x2,

∂σxy(φ)
∂y

= (2µ(i+ 1/2, j + 1/2)([ux(i, j + 1)− ux(i, j)] (159)

−ε0
xy(i+ 1/2, j + 1/2))

−2µ(i+ 1/2, j − 1/2)([ux(i, j)− ux(i, j − 1)]
−ε0

xy(i+ 1/2, j − 1/2))
)
/∆x2,

55



∂σyy(φ)
∂y

=
(
λ(i, j + 1)([ux(i, j + 1)− ux(i− 1, j + 1)]− ε0

xx(i, j + 1))

−λ(i, j)([ux(i, j)− ux(i− 1, j)]− ε0
xx(i, j)) (160)

+C11(i, j + 1)([uy(i, j + 1)− uy(i, j)]− ε0
yy(i, j + 1))

−C11(i, j)([uy(i, j)− uy(i, j − 1)]− ε0
yy(i, j))

−λ(i, j + 1)ε0
zz(i, j + 1) + λ(i, j)ε0

zz(i, j))/∆x2,

∂σxy(φ)
∂x

= (2µ(i+ 1/2, j + 1/2)([uy(i+ 1, j)− uy(i, j)] (161)

−ε0
xy(i+ 1/2, j + 1/2))

−2µ(i− 1/2, j + 1/2)([ux(i, j)− ux(i− 1, j)]
−ε0

xy(i− 1/2, j + 1/2))
)
/∆x2.

Inserting the discretized spatial stresses Eqs. (158) and (159) into (131) gives

0 =
(
C11(i+ 1, j)([ux(i+ 1, j)− ux(i, j)]− ε0

xx(i+ 1, j))

−C11(i, j)([ux(i, j)− ux(i− 1, j)]− ε0
xx(i, j))

+λ(i+ 1, j)([uy(i+ 1, j)− uy(i+ 1, j − 1])− ε0
yy(i+ 1, j))

−λ(i, j)([uy(i, j)− uy(i, j − 1)]− ε0
yy(i, j))

−λ(i+ 1, j)ε0
zz(i+ 1, j) + λ(i, j)ε0

zz(i, j)
+2µ(i+ 1/2, j + 1/2)([ux(i, j + 1)− ux(i, j)]
−ε0

xy(i+ 1/2, j + 1/2))− 2µ(i+ 1/2, j − 1/2)([ux(i, j)− ux(i, j − 1)]

−ε0
xy(i+ 1/2, j − 1/2))

)
/∆x2, (162)

and inserting Eqs. (160) and (161) into (132) results in

0 =
(
λ(i, j + 1)([ux(i, j + 1)− ux(i− 1, j + 1)]− ε0

xx(i, j + 1))

−λ(i, j)([ux(i, j)− ux(i− 1, j)]− ε0
xx(i, j))

+C11(i, j + 1)([uy(i, j + 1)− uy(i, j)]− ε0
yy(i, j + 1))

−C11(i, j)([uy(i, j)− uy(i, j − 1)]− ε0
yy(i, j))

−λ(i, j + 1)ε0
zz(i, j + 1) + λ(i, j)ε0

zz(i, j))
+(2µ(i+ 1/2, j + 1/2)([uy(i+ 1, j)− uy(i, j)]
−ε0

xy(i+ 1/2, j + 1/2))− 2µ(i− 1/2, j + 1/2)([ux(i, j)− ux(i− 1, j)]

−ε0
xy(i− 1/2, j + 1/2))

)
/∆x2. (163)

The equations of the mechanical equilibrium (162) and (163) are solved iteratively in
each time step n by means of a Jacobi relaxation scheme [8, 21] to yield the ux and uy
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displacement fields,

∂ux
∂t∗

=
(
C11(i+ 1, j)([ux(i+ 1, j)− ux(i, j)]− ε0

xx(i+ 1, j))

−C11(i, j)([ux(i, j)− ux(i− 1, j)]− ε0
xx(i, j))

+λ(i+ 1, j)([uy(i+ 1, j)− uy(i+ 1, j − 1])− ε0
yy(i+ 1, j))

−λ(i, j)([uy(i, j)− uy(i, j − 1)]− ε0
yy(i, j))

−λ(i+ 1, j)ε0
zz(i+ 1, j) + λ(i, j)ε0

zz(i, j)
+2µ(i+ 1/2, j + 1/2)([ux(i, j + 1)− ux(i, j)]
−ε0

xy(i+ 1/2, j + 1/2))− 2µ(i+ 1/2, j − 1/2)([ux(i, j)− ux(i, j − 1)]

−ε0
xy(i+ 1/2, j − 1/2))

)
/∆x2, (164)

∂uy
∂t∗

=
(
λ(i, j + 1)([ux(i, j + 1)− ux(i− 1, j + 1)]− ε0

xx(i, j + 1))

−λ(i, j)([ux(i, j)− ux(i− 1, j)]− ε0
xx(i, j))

+C11(i, j + 1)([uy(i, j + 1)− uy(i, j)]− ε0
yy(i, j + 1))

−C11(i, j)([uy(i, j)− uy(i, j − 1)]− ε0
yy(i, j))

−λ(i, j + 1)ε0
zz(i, j + 1) + λ(i, j)ε0

zz(i, j))
+(2µ(i+ 1/2, j + 1/2)([uy(i+ 1, j)− uy(i, j)]
−ε0

xy(i+ 1/2, j + 1/2))− 2µ(i− 1/2, j + 1/2)([ux(i, j)− ux(i− 1, j)]

−ε0
xy(i− 1/2, j + 1/2))

)
/∆x2. (165)

where t∗ is the pseudo time with the property that t∗ → ∞, which satisfies the condition
of the mechanical equilibrium. The elasticity equations are only space dependent and can
therefore be solved independently from the phase-field and diffusion equations. While
the elastic fields are relaxed to fulfill the mechanical equilibrium conditions, the phase
fields are fixed. Once the displacement fields ux and uy are found, the corresponding
elements of the strain tensor εxx, εyy and εxz are calculated using (155), (156) and (157),
respectively. The elements of the strain tensor εxx, εyy and εxz are then used to calculate
the elastic driving force for phase transformation ∂ωel/∂h in Eq. (111). The ∂ωel/∂h
obtained at time step n is then used in Eqs. (109) and (115) to calculate the phase field
and diffusion potential fields, respectively, at the next time step n + 1. The algorithm
based on the Jacobi relaxation scheme is described in detail in the Appendix.
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3.2.2 Equilibrium morphology of a coherent γ′-precipitate

The morphology of coherent γ′-precipitates in Ni-base superalloys affect the resulting
internal strains which in turn influences the resulting thermo-mechanical properties. In
this subsection, we investigate the morphological evolution of γ′-precipitates during pre-
cipitation treatment (PT) of an elastically inhomogeneous and anisotropic single crystal
superalloy with a negative misfit. Of particular interest is the equilibrium morpholo-
gies of the coherent γ′-precipitates. We start the simulations from a uniform γ-matrix
which mimics the microstructure after the solution treatment (ST). The composition of
the CMSX4 superalloy used in the simulation is given in Table 3. The simulation of
precipitation treatment is done at a constant temperature of 1273.15 K. To allow for
a continuous domain, periodic boundary conditions are applied in all directions. The
simulation is performed on a system of size 451×4514x with a grid spacing of 4x = 8.6
nm in both directions. At first morphological evolution is studied for the case of a single
precipitate and then for the case of multiple precipitates.

3.2.3.1 Growth of a single γ′-precipitate

The simulation is initiated by placing a small spherical precipitate with radius 15∆x
at the center of the simulation domain. The initial precipitate size is chosen such that
it grows. The γ and γ′ phases have a uniform initial concentration but with different
diffusion potentials. It is observed that the precipiate grows until an equilibrium volume
fraction of 50%. The precipitate changed its morphology from a sphere (circle in 2D) to
a cube (square in 2D) as shown in Fig 17.

Figure 17: Sphere→cube transition in an elastically inhomogeneous and negatively mis-
fitting Ni-base superalloy. The elastic energy density distribution during
sphere to cube transition. The edges of the growing cuboidal precipitate
lie along the elastically soft <100>-crystallographic directions.

The morphological change is a result of the crystallographic anisotropy in the growth
rate of the precipitate due to varying elastic driving forces in different orientations. Small
γ′-precipitates are generally in the shape of spheres. Generally, a sphere has 1.24 less
surface area than a cube, therefore the precipitate tends to be spherical in shape to
minimize the surface energy. However, when the precipitates are coherently embedded
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in a matrix, the precipitates align along the elastically soft <100> crystallographic
orientations as shown in Fig 17. Other factors like the long-elastic interactions and
the diffusion fields around the precipitate also affect the precipitate morphology. In the
following sections, we look at the influence of long-range elastic interactions of precipitate
morphology. The influence of the diffusion fields on the morphology shall be studied in
the following chapters.

3.2.3.2 Growth and coarsening of multiple γ′-precipitates

We now study the growth and coarsening of multiple precipitates. Data on the nu-
cleation rate in the superalloy under study is readily not available in the literature.
To mimic the different nucleation rates and sites, the simulation is started from a mi-
crostructure consisting of randomly distributed quasi-spherical precipitates of different
sizes embedded within the matrix. The phase-field simulation of microstructural evolu-
tion during the precipitation of the γ′-phase at 1273.15 K is shown in Fig 18. The γ and
γ′ phases have a uniform initial concentration but with different diffusion potentials.

(i) (ii) (iii)

(iv) (v) (vi)

Figure 18: Phase-field simulation of microstructural evolution during precipitation of
the γ′-phase in Ni-base superalloys at 1273.15 K. The evolution involves two
stages; growth and coarsening. Growth occurs to satisfy local mass balance
at the γ − γ′ interface while coarsening minimizes the total energy of the
system.

The simulated evolution of multiple precipitates in Fig 18 reveals two regimes - growth
and coarsening. Precipitate growth occurs to satisfy local mass balance in the vicinity
of each γ − γ′ interface [38]. In the coarsening regime, larger precipitates with low
curvature grow at the expense of the smaller ones with high curvature which results in the
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minimization of the total energy of the system. The precipitates grow diffusionally until
an equilibrium volume fraction of around 50% is reached after which coarsening through
the ripening mechanism regime occurs. During the transformation, the precipitates
transform their shape from the initial quasi-sphere to quasi-cubes with a (100)γ ||(100)γ′

orientation relationship. The morphological change of the precipitates is a result of
the interplay between the isotropic interfacial energy and cubic elasticity. Since the
interfacial energy is assumed isotropic, the resulting cuboidal morphology is attributable
entirely to the contribution from cubic elasticity.

Figure 19: In this figure, we show the non-dimensional elastic driving force for phase
transformation δfel/δh. The elastic driving force is larger along the <111>-
crystallographic directions than along the <100>-crystallographic directions.
The anisotropic elastic driving forces results in faster growth rates along the
<111>-crystallographic directions than along the <100>-crystallographic di-
rections which gradually transforms the morphology of the γ′-precipitates
from the initial spheres to cubes.

To highlight the influence of the isotropic interfacial and anisotropic elastic energies
on precipitate shape, we consider a simple sphere of radius R; the interfacial energy
for a sphere is fint = 4πσR, where σ is the surface energy and the elastic energy of
the same sphere is fel =

(
4πR3/3

)
/Cε2, where C is the the shear modulus and ε is

the stress-free transformation strain. The interfacial and elastic energies are equal when
R ∼ R0 = 6σ/Cε2. When R < R0, the interfacial energy has a dominant effect on the
morphology of the precipitate. When R > R0, the influences of anisotropic elastic energy
on the morphology becomes dominant. Therefore, when the size is relatively small, the
precipitates are generally spheres changing to cubes as the size increases [26]. The sphere
to cube transition is attributed to the anisotropic elastic driving force δfel/δh shown for a
single precipitate in Fig 19. The elastic driving force is considerably larger than along the
along the <111>-crystallographic directions than along the <100>-crystallographic di-
rections. This results in a faster interface motion along the <111>-crystallographic direc-
tions than along the <100>-crystallographic directions which gradually transforms the
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morphology of the γ′-precipitates from the initial spheres to cubes. The cuboidal mor-
phology and (100)γ ||(100)γ′ orientation relationship allows the crystallographic planes
of the two phases to remain continuous at the interface which minimizes the interfacial
energy [41, 48]. To maintain lattice continuity, the misfit between the two phases is
accommodated by elastic displacement of atoms from their equilibrium positions in the
vicinity of the interfaces. The distortion of the lattices generates elastic strain energy
which influences the nature of microstructure evolution.

3.2.3 Effect of elastic inhomogeneity on morphological evolution

In this subsection, we investigate the influence of elastic inhomogeneity on morpholog-
ical evolution during long term aging. For the sake of comparison, the initial configura-
tions of our simulations are the same. The initial configurations correspond to the phase
field in Fig 20 generated from an SEM photograph. In the following, we describe the
method we use to generate the initial microstructure, this is then followed immediately
by the results of the phase-field simulations of coarsening in the presence of different
strengths of elastic inhomogeneity.

3.2.5.1 Generation of initial microstructure from SEM picture

Before long-term aging, the sample of the CMSX4 superalloy was vacuum heat treated
with a standardized three-step cycle, which included solution treatment (ST) for the
dissolution of residual eutectic and solutioning of γ′-particles. The sample was then given
two precipitation treatments (PT1 & PT2) at high and low temperature, to form the
typical cuboidal shape, size and distribution of the γ′-precipitates. The heat treatment
procedure is described in Table 2.

Sample Heat treatment conditions
CMSX4 AR: as received, no heat treatment

ST:1090°C/1h+
1305°C/6h vacuum atmosphere then fast cooling > 150°C min-1

PT1: 1140°C/4h inert gas atmosphere→air cooling
PT2: 870°C/16h inert gas atmosphere→air cooling

Table 2: Standard heat treatment of the CMSX4 sample.

The initial microstructure for the multiple particle simulations is obtained from the
SEM photograph of an as-heat treated sample of CMSX4 shown in Fig 20 (a). Using the
standard unix/linux program ImageMagick, we can convert standard pixel-graphics into
an ASCII-file containing a list of all the RGB-values for each pixel. Since, we operate on
a square-grid, similar to standard pixel graphic formats, we can directly read in these
RGB-values for each pixel, and can calculate a phase field value out of the given colour
values. Consequently, using a one to one correspondence between a pixel-graphic of size
409×357, we obtain a phase field simulation domain of the same size. The grid spacing
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of4x = 8.6 nm is then estimated from the given SEM resolution. However, the resulting
phase field does not yet exhibit the desired smooth tanh-type interface profiles with a
constant interface width given by ξ. Moreover, it is not compatible with the employed
periodic boundary conditions that are used in the simulations as some particles are cut
by the boundary of the simulation box. In order to overcome such inconsistencies in the
determined phase field, we perform a small and limited number of relaxation steps.

(a) (b) (c)

Figure 20: The initial microstructure used in the simulations (a) SEM photograph of
CMSX4 [44]; the area marked in green represents the sampled area (b) Phase
field of size 3.5µm x 3.0µm obtained directly from SEM photographs; some
particles are cut by the boundary of the simulation box (c) Initial microstruc-
ture used in the simulations; the interfaces are smooth with typical hyperbolic
tangent-like profiles.

Such initial phase field relaxation is done using the same phase-field model including
the presence of cubic elasticity to preserve the shapes of the precipitates but without the
application of external loads. After the phase field relaxation, the interfaces, as shown in
Fig 20 (c), are smooth with the desired tanh−like profiles of constant width ξ = 2.5∆x.
During the relaxation, the volume fraction decreased from nearly the thermodynamic
equilibrium phase fraction of 56% to about 54%.

3.2.5.2 Morphological pattern dependence on degree of elastic inhomogeneity

We first focus on morphological evolution of an elastically anisotropic and homoge-
neous system. Fig 21 shows morphological evolution of a system where both the matrix
and precipitate phases have equal elastic constants (Cγ

′

ij = Cγij). The red area represents
the γ′-phase and the blue area is the γ-matrix. During long-term aging of the homoge-
neous system, the matrix phase aligns itself and reshapes the γ′-precipitates to reduce
the elastic energy. The precipitates form a mesh-like structure aligned along the soft di-
rections. The system has a negative anisotropy factor, i.e. ξA = C11−C12−2C44 < 0, the
elastically soft directions correspond to the [100] and [010]-crystallographic directions.
We now investigate morphological evolution of an elastically anisotropic and inho-

mogeneous system. Fig. 22 shows the morphological evolution of a system with where
matrix and precipitate phases have different elastic constants. The elastic constants of
the γ′-precipitates are larger than those of the γ-matrix (Cγ

′

ij = 0.75Cγij). The parameter
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(i) (ii) (iii)

Figure 21: Morphological evolution during coarsening in an elastically anisotropic and
homogeneous system (Cγ

′

ij = Cγij). (i) t = 0 h; (iii) t = 24 h; (iii) t = 48 h.

ψ =
(
Cγ

′

ijs − C
γ
ij

)
/Cγ

′

44 defines the elastic inhomogeneity in an anisotropic system. The
system in Fig. 22 has elastic inhomogeneity of 25%. Under high thermal exposure, the
precipitates evolve from the initial cuboidal configuration to miniature raft-like struc-
tures aligned along the [100] and [010]-crystallographic directions. In case of a positive
anisotropy factor, the elastically soft directions correspond to the [111], [111̄] crystallo-
graphic directions etc [26].

(i) (ii) (iii)

Figure 22: Morphological evolution in an elastically anisotropic and inhomogeneous sys-
tem (Cγ

′

ij = 0.75Cγij). (i) t = 0 h; (iii) t = 24 h; (iii) t = 48 h.

The morphological evolution of a system with larger elastic inhomogeneity ψ=50% is
shown in Fig. 23. In comparison to the system with a relatively smaller inhomogeneity
(ψ=25%) in Fig. 22, the larger inhomogeneity results in cuboidal precipitates with quite
straight edges. The precipitates after 48 h exhibit interfaces perpendicular to the [100]
and [010] directions and are strongly aligned along those directions. While the mechanics
determine the alignment of the precipitates, the evolution of the morphology in Fig 21,
22 and 23 is achieved by two mechanisms: coalescence and ripening. In the early stages,
the coarsening process is achieved by both coalescence and ripening. Coalescence of the
γ′-precipitates occurs due to two reasons; the irregular shape of the precipitates and
small inter-precipitate distance. Since the precipitates are irregular due to long-range
elastic interactions, the diffusion fields are also irregular in shape. At a moment in
the time, the diffusion fields are bound to impinge and eventually overlap which results
in two neighboring γ′-precipitates merging to form one larger precipitate. In the late
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(i) (ii) (iii)

Figure 23: Morphological evolution in an elastically anisotropic and inhomogeneous sys-
tem (Cγ

′

ij = 0.5Cγij). (i) t = 0 h; (iii) t = 24 h; (iii) t = 48 h.

stage as the inter-particle spacing increases, coarsening is achieved mainly by ripening.
During ripening, the large precipitates with low curvature grow while the smaller ones
with high curvature shrink and eventually vanish. A drop in the volume fraction between
the initial and the final configurations is observed in Fig 21, 22 and 23. The reduction in
the volume fraction is an influence of the strain energy density of the system. The strain
energy density in the system is a function of the misfit strain. Due to changes in the
morphology, the strain energy density decreases to its minimum state. Such a drop in
the actually observed volume fraction as compared to the thermodynamically calculated
phase fraction is theoretically expected, and relates to the elastic hysteresis effect [20, 23].
If the experimental phase fraction can be measured with sufficient accuracy to resolve
this drop, this would offer an alternative way to measure the elastic energy density of a
given microstructure. A significant reduction in the strain energy density occurs in the
early stages at time At time 0 < t < 5 h because of rapid coalescence of precipitates with
their nearest neighbors due the large precipitate density. This reduction in the strain
energy density is accompanied by a rapid reduction of the precipitate volume fraction.
At time 5 < t < 48 h, reduction in the strain energy begins to slow down. The volume
fraction reaches its steady-state value when the strain energy density reaches minimum
state.

3.3 Conclusion

Phase-field modeling in the presence of highly anisotropic interfacial energies is ad-
dressed. In particular, we discussed two different ways of how to incorporate an orienta-
tion dependence of the interfacial energy in phase-field framework: In the first and quite
common anisotropic formulation, the interface width is considered to vary with the ori-
entation, while in the second rather new model only the interfacial energy is chosen to be
anisotropic, leading to a constant interface width. Studying the quasi–one-dimensional
case, where the interface is planar with a fixed orientation, we demonstrated, that both
approaches can be used for quantitative modeling. However, in this respect, the vary-
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ing interface formulation requires extra care due to the intrinsic kinetic anisotropy. To
be able to study equilibrium shapes, efficient volume conserving Allen-Cahn dynamics
were used, where through a properly chosen time dependence of a spatially constant
diffusion potential growth or shrinking of the particle is prohibited. To remove the ill-
posedness of the phase-field equations for high-energy orientations, which do not belong
to the equilibrium shape, we employed the convexification method of Eggleston et al
[16]. For both anisotropic phase-field formulations, the computed equilibrium particle
shapes, both with and without sharp corners, are in excellent agreement with the ana-
lytic Wulff construction. The numerical implementation of the presented two phase-field
models was developed and implemented. To achieve the necessary numerical accuracy
and stability, a new and efficient explicit finite difference algorithm was developed by
combining the two-step differentiation of Debierre et al. [15] with a staggered grid for-
mulation, due to the appearance of mixed spatial derivatives in the governing equations.
Furthermore, we demonstrated that this scheme provides sufficient accuracy to be able
to simulate even and odd symmetries as well as high angle rotations of the underlying
crystalline orientation.
We also discussed a formulation to incorporate the dependence of the total strain on

the phase field. Elastic anisotropy and inhomogeneity were also introduced by postulat-
ing the cubic elastic constants to be dependent on the dimensionless phase field order
parameter. The formulation was similar to Steinbach et al. [69] which assumes equal
elastic stresses in the two bulk phases at the diffuse interface. The formulation resulted
in an Allen-Cahn type second order equation coupled to a set of second order multi-
component diffusion equations. The phase field equation and multi-component diffusion
equations were solved on uniform square grids using explicit finite-difference methods.
The phase field model also incorporated an Jacobi iterative algorithm for numerically
solving the mechanical equilibrium of an elastically inhomogeneous system. For nu-
merical stability, particular attention was paid to the numerical implementation of the
mechanical equilibrium for the calculation of the displacement fields required to calculate
the elastic driving force. The Jacobi relaxation scheme was based on the explicit finite
difference with elastic variables on a staggered grid. The computed equilibrium cuboidal
morphologies and (100)γ ||(100)γ′ orientation relationship was consistent with the typical
“as-heat treated” microstructures of Ni-base superalloys. The sphere to cube transition
was attributed to the anisotropic growth rates of the interface along the <111> and
<100>-crystallographic directions.
The simulations showed that a high interfacial energy anisotropy and elastic anisotropy

can both lead to the formation of precipitates with four-fold symmetry. However, chal-
lenges can arise when both anisotropies are incorporated in a model. Including both the
anisotropy of the interfacial energy in a phase field model with elastic effects requires the
precise knowledge of the relative weighting of the contributions from interfacial energy
and elastic anisotropies. At the moment, this is tough to quantify due to the lack of
experimental data of the anisotropy of the interfacial energies in Ni-base superalloys.
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4 Effect of Re on directional γ′-coarsening in commercial single
crystal Ni-base superalloys: A phase-field study

Modern turbine blades which are used in the hot regions of gas turbines for the
aerospace or stationary power plant application are usually manufactured as casted
single crystalline parts. However, even though grain boundaries are excluded, the degra-
dation behavior of respectively developed single crystal nickel-base superalloys is still
quite complex involving a number of very different microscopic effects. One of these is
the diffusion mediated coarsening of the γ′-precipitates. During creep loading along the
<100> crystallographic orientation, the precipitates coarsen anisotropically and form
plate-like structures, which are also called rafts. In the end, the rafted microstructure
contains quite large and dispersed plate-like precipitates aligned either parallel (P -type
rafts) or perpendicular (N -type rafts) to the loading direction [13, 39]. This is detrimen-
tal for the properties of these materials since their superior properties emanate from the
size, morphology, distribution and volume fraction of the γ′-precipitates.
Generally, the modeling of coarsening of coherent phases in elastically anisotropic and

inhomogeneous situations has been reviewed by Fratzl et al. [26]. For two precipitates
as shown in Fig. 24 to raft along the [010]-direction, elements that are barely soluble in
the γ′-precipitate (Co, Cr, Mo, Re etc) should diffuse away from the growth path while
γ′-formers (Al, Ta and Ti) should diffuse into the precipitates.

Re, 

W

Co,

Cr, 

Mo

Ti, 

Ta
Al

Figure 24: Schematic illustration of solute flux during interdiffusion limited coarsening
under a compressive load applied along the [010]-direction in a Ni-base su-
peralloy with a negative misfit. This illustration is based on experimental
observations [32, 63].

For various reasons, technically used single crystal superalloys contain significant ad-
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ditions of a whole number of different refractory elements such as Mo, W, Ta and Re.
Experimental studies [32, 63, 86] have revealed that Re which is added mainly as a solid-
solution strengthener significantly reduces the kinetics of coarsening as well. Rüsing et
el. [63] observed the formation of Re clusters in the γ-matrix during coarsening in the
Ni-Al-Ta-Re superalloy. This segregation behavior of Re plays a major role in determin-
ing the kinetics of rafting. An experimental study by Giamei et al. [32] of model alloys
based on the MAR-M200 alloy concluded that for coarsening to occur, Re solutes should
diffuse away from the paths of moving γ − γ′ interfaces. Furthermore, simulations by
[72] identified that the γ− γ′ interface migration is controlled by atomic diffusion of Re.
So far, already a number of phase-field approaches have been used to study direc-

tional coarsening of rafting in Ni-base superalloys. For example, the rafting phenomenon
has been studied using phase-field models formulated on a purely elasticity framework
[33, 48]. Phase-field models with contributions from plastic strains [6, 90] have recently
been developed to study rafting. Furthermore, [30] has used an elasto-viscoplastic model
to study microstructure evolution under creep loading in Ni-base superalloys. All the
models formulated using these various frameworks converge in identifying the lattice
misfit, elastic inhomogeneity and applied load as the driving force for the directional
coarsening of γ′-precipitates. The resulting microstructures obtained using the different
approaches are also qualitatively similar although quantitative comparisons [89] have re-
vealed that the kinetics differ. While it is acknowledged that mechanics play a significant
role in determining the orientation of rafts, the influence of diffusion on coarsening is
crucial for the understanding of the kinetics of the process [87]. Most phase-field studies,
however, focus on the technically less interesting case of binary Ni-Al systems. However,
a ternary phase-field model that is linked directly to commercial CALPHAD software
to provide quantitative thermodynamic driving forces has been developed [82]. Our pre-
vious work [44] on non-directional coarsening in CMSX4 and CMSX6 during long-term
aging revealed that slow diffusing elements play an important role in determining the
nature and kinetics of coarsening.
The objective of this chapter is to study coarsening in the commercial CMSX4 and

CMSX6 Ni-base superalloys in the presence of applied loading along the [010] direction.
In that regard, we study the contributions from solute segregation to coarsening. Of
particular interest is to understand the mechanisms by which solutes with low diffusivities
e.g., Re, affect coarsening in elastically stressed Ni-based superalloys.
The phase field methodology has natured over the past two decades to address cou-

pled multi-physics problems in material science. The basis of the investigation is a
multi-component phase-field model formulated based on [44, 58]. The extended multi-
component phase-field model uses inputs from CALPHAD and kinetic databases for the
relative driving forces. The uniqueness of the extended multi-component model lies in
that it takes into account the cross interaction of all the solutes in Ni-base superal-
loys, even the slowest diffusing ones. The thermodynamic formulation in the phase-field
model is validated against DICTRA sharp-interface simulations as well as ThermoCalc
equilibrium calculations. Additionally, to account for the misfit between two types of
lattices, elastic inhomogeneity and applied loading, the model is coupled to an elastic
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term based on previous works [22, 23, 44]. Furthermore, a technique to quantify the
kinetics of rafting is integrated in the model. The occurrence of Ostwald ripening and
coalescence during the rafting process results in vastly irregular shaped precipitates. As
a result, it is quite difficult to find a global measure that quantifies the evolution of such
a microstructure. The approach presented in this work uses the aspect ratio calculated
on the basis of interface orientations as a quantitative measure. A unique feature of this
technique is that it quantifies the coarsening of anisotropic and coalesced precipitates.
In the following section, we provide the formulation of our extended multi-component

phase-field model. Studies of γ′-rafting morphological evolution and kinetics are then
presented in Section 4.2. In Section 4.3, simulation results of the contribution of solute
diffusivity to γ′-rafting are provided before concluding in the last section.
Parts of this chapter are published in [Acta Mater., 60:3758, 2012] and [Acta Mater.,

93:60, 2015].

4.1 Model description

In this section, we present a multi-component phase-field model coupled to an elastic
term that accounts for the contributions from the misfit and elastic inhomogeneity. We
neglect the contributions from plastic strains. The incorporation of plastic effect is in
principle possible but is extremely complicated. At least, more complicated than the
incorporation of elastic heterogeneity, which has been shown to be a good approximation
to the influence of the micro-mechanics on the coarsening kinetics in Ni-base superalloys
[33, 48, 89].
Neglecting the anti-phase domains, a single non-conserved field variable φ(~x, t) is in-

troduced to describe the coherent γ/γ′-two phase microstructure. To distinguish be-
tween the two distinct bulk phases, fixed values are assigned to represent them, 1 for
the γ-phase and 0 for the γ′-phase. Additionally, it is postulated that φ(~x, t) varies
smoothly within an interface of a finite width. We neglect the appearance of anti-phase
boundaries, which form between different translational variants of the ordered γ′-phase.
The emphasis of the current model is to find a quantitative description of the coars-
ening kinetics of the γ′-phase. The main assumption of the model is that the kinetics
of coarsening is limited by the complex interdiffusion kinetics of multiple components
in the γ-phase. Strictly speaking, this model is for the analysis of coarsening kinetics
in superalloys with low γ′-fractions. The full set of equations solved for the studies in
the following have been derived and validated in Chapters 2 and 3. The main model
equations are Eq. (106)-(165). In the following, we specify the full set of thermophysical
and elastic parameters for the numerical studies in Sections 4.2 and 4.3.

4.1.1 Determination and rescaling of input parameters

In this section, the input data that is used for the calibration of the model is used.
We perform simulations on the CMSX4 and CMSX6 commercial superalloys with a
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compositions presented in Table. 3.

Al Co Cr Mo Re Ta Ti W Ni
CMSX4 5.6 9.6 6.4 0.6 3.0 6.5 1.0 6.4 base
CMSX6 4.8 5.0 9.8 3.0 - 2.0 4.7 - base

Table 3: The composition of the superalloys under study.

The input parameters used in the simulations can be divided into three groups. First,
there are thermodynamic parameters, which depend on the alloy system: the equilibrium
phase compositions cp,eqi , equilibrium free energies fp,eqch and the equilibrium diffusion
potential µeqi . The equilibrium data are calculated using the ThermoCalc software. The
kinetic data includes the interdiffusion matrix Dp

ij and the thermodynamic factors Xp
ij .

The diffusion matrix terms are calculated by a subroutine of the DICTRA software. The
last set of parameters are the the elastic parameters, these include the elastic constants
Cpijkl and the lattice misfit ε00.
For the construction of the parabolic free energies

fpch = 1
2
∑
i

Xp
i (cpi −A

p
i )

2 +Bp, (166)

the phase dependent parameters Xp
i , A

p
i and Bp

i are required. The first derivative of
of the free energy, Eq. (166) with respect to the concentration of species i yields the
diffusion potential

µi = ∂fpch(ci, φ)
∂ci

= Xp
ii(c

p,eq
i −Api ), (167)

in the phase p. When two interconnected phases are in chemical equilibrium with each
other, the diffusion potentials need to be continuous at the common interface, that is

µi = ∂fγ

∂ci

∣∣∣∣
eq

= ∂fγ
′

∂ci

∣∣∣∣∣
eq

. (168)

The equilibrium cp,eqi and fp,eqch (cp,eqi ) are found by the common tangent construction.
The equilibrium values are extracted from ThermoCalc/TTNi8 database for a specific
alloy composition at a specific temperature.
To determine the values of Api and Bp from the equilibrium concentrations cp,eqi , the

equilibrium free energy densities fp,eqch (cp,eqi ), Eq. (166) is used. This expression is in-
verted to yields the values of the free energies

Bp = fp,eq − 1
2

(µeqi )2

Xp
ii

. (169)
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This expression is inverted to obtain the concentrations

Api = cp,eqi + µeqi
Xp
ii

. (170)

The obtained parameters are then fitted into thermodynamic grand-potential functional
(94) to complete the description of the thermodynamic driving force for phase transfor-
mation.

Al Co Cr Mo Re Ta Ti W
Xi 18.9 11.0 16.6 17.6 35.3 16.7 10.6 16.8

µeqi -0.18 -0.08 -0.07 -0.1 -0.09 -1.07 -0.19 -0.074

cγ,eqi 0.0306 0.1412 0.1214 0.0108 0.0619 0.0168 0.0033 0.0856
cγ

′,eq
i 0.0757 0.0613 0.0196 0.0023 0.0044 0.1022 0.0152 0.0473

fγ,eq -0.070909
fγ

′,eq -0.071758

Table 4: Thermodynamic factors Xi/X0 for CMSX4 (Scaling factor X0 = 106 J/mol-
at), equilibrium diffusion potentials µeqi /µ0 (Scaling factor µ0 = 106 J/mol),
equilibrium Gibbs free energies fp,eqch /f0 (Scaling factor f0 = 106 J/mol) at
1273.15 K and equilibrium phase concentrations cp,eqi (in wt.%).

Al Co Cr Mo Ta Ti
Xi 22.0 21.1 10.8 35.4 53.4 22.9

µeqi -0.19 -0.089 -0.06 -0.08 -0.18 -0.16

cγ,eqi 0.0253 0.0706 0.1895 0.0603 0.0077 0.0014
cγ

′,eq
i 0.0653 0.0342 0.028 0.0068 0.0294 0.0723

fγ,eq -0.080767
fγ

′,eq -0.098317

Table 5: Thermodynamic factors Xi/X0 for CMSX6 (Scaling factor X0 = 106 J/mol-
at), equilibrium diffusion potentials µeqi /µ0 (Scaling factor µ0 = 106 J/mol),
equilibrium Gibbs free energies fp,eqch /f0 (Scaling factor f0 = 106 J/mol) at
1273.15 K and equilibrium phase concentrations cp,eqi (in wt.%).

The interdiffusion coefficients used in our work are calculated from the diffusion mo-
bility database MobNi1 using the DICTRA software. The interdiffusion matrices for
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CMSX4 and CMSX6 at 1273.15 K are presented in Table. 6 and 7, respectively. Data
for diffusion in the ordered γ′-precipitate phase is not readily available. However, it is
generally known that diffusion in the γ′-precipitate is several orders of magnitude slower
than in the γ-matrix. In our simulations, for simplicity, we adopt a symmetric model
with equal diffusion matrices for both phases Dγ

ij = Dγ′

ij .

Al Co Cr Mo Re Ta Ti W
Al 5.98 -1.03 0.155 -0.132 -0.132 0.0222 0.0777 -0.165
Co 0.78 0.575 -0.255 -0.0262 -0.0026 0.0289 0.0323 -0.0363
Cr 0.18 -0.066 1.01 -0.0122 -0.0556 0.0477 0.100 -0.0642
Mo 1.72 -0.046 -0.054 0.657 -0.049 0.0305 0.0098 -0.0593
Re 1.30 -0.035 -0.011 -0.0381 -0.0056 0.0305 0.0716 -0.0218
Ta 2.40 -0.280 1.16 -0.0009 -0.0882 0.716 0.0131 -0.106
Ti 2.31 -0.810 1.03 0.0148 -0.101 0.0536 1.8 0.119
W 2.62 -0.776 0.560 -0.0089 -0.0575 0.0394 0.112 0.0004

Table 6: The scaled diffusion matrix Dγ
ij for CMSX4 at 1273.15 K obtained from DIC-

TRA using MobNi1 database (Scaling factor Ds = 10−14m2s−1).

Al Co Cr Mo Ta Ti
Al 0.396 -0.0320 0.0644 0.00188 0.00165 0.0367
Co -0.0320 0.0989 -0.0296 -0.00249 0.00149 0.0155
Cr 0.0644 -0.0291 0.12 -0.00245 0.00240 0.0436
Mo 0.00188 -0.0186 0.00732 0.0744 0.00162 0.0422
Ta 0.00165 0.00762 0.194 0.000698, 0.0710 0.0583
Ti 0.0367 -0.0294 0.160 0.00138 0.00270 0.247

Table 7: The scaled diffusion matrix Dγ
ij for CMSX6 at 1273.15 K obtained from DIC-

TRA using MobNi1 database (Scaling factor Ds = 10−14m2s−1).

Another important quantity is the mobility matrix Mij . This can be deduced from
the diffusion matrix through the following relation,

D = MX, (171)

where X is the thermodynamic factor matrix. Furthermore, for the construction of the
parabolic free energies of the two phases Eq. (166) The parameters Xph

ii , A
ph
i and Bph

i

are required. The thermodynamic factors are evaluated deduced directly from DICTRA
as

Xph
ij =

(
∂2fph

∂ci∂cj

)
T,p,ck

= ∂µi/∂cj . (172)

The thermodynamic factors are evaluated as µi(c1, c2, c3, ..., cn) with n being the number
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of species in the multi-component system. Although a thermodynamic factor matrix
is obtained, the major terms Xii for the superalloy under study are several orders of
magnitude larger than the cross terms Xij . For simplicity, we therefore adopt only the
major terms and assume that they are equal Xγ

ii = Xγ′

ii = Xi. The values of Xi for
CMSX4 and CMSX6 alloys are presented in Table. 4 and 5, respectively.
The experimental values of the misfit ε00 and the elastic constants for both phases

are required. The cubic elastic constants used in the simulation are shown in Table 8.
A value of -0.14% is adopted from Pyczak et al. [61] as the misfit for both alloys. The
degree of elastic anisotropy, ξA = 2C44/C11 − C12 = 2.92, is positive, which shall result
in P−type rafting for a compressive external strain, i.e. the elongated γ′-precipitates are
preferentially aligned parallel to loading direction [33].

C11 C12 C44

γ 215.5/η 162/η 77.6/η
γ′ 222.7/η 164.2/η 85.6/η

Table 8: Elastic constants (in GPa) used in the simulations [65]. The rescaling parameter
η = 85.6 GPa.

In the simulations, the interfacial energy is assumed isotropic, with a value of 80mJ/m2

for CMSX4 and 120mJ/m2 for CMSX6. The surface energy is estimated by the classic
nearest-neighbor broken-bond concept known as the sharp interface approximation [66].
The kinetic coefficient K is related to the interdiffusion coefficients obtained from DIC-
TRA. Since we study interdiffusion-limited phase transformations, the kinetic coefficient
is chosen to be larger than any term in the diffusion matrix. The kinetic coefficient is
chosen to be 1.2× 10−14m2s−1 for CMSX4 and 0.8× 10−14m2s−1 for CMSX6.

4.2 Multiple γ′-precipitate rafting

We now employ the validated model extension to study microstructure evolution be-
yond the capability of ThermoCalc and DICTRA. To that end, we investigate interdiffusion-
limited γ′-rafting in elastically inhomogeneous superalloys. We perform simulations on
two quite different multi-component alloys indicating that the model allows to vary the
alloying composition without further restrictions.
In this section, we study the characteristics of coarsening in negatively misfitting

CMSX4 and CMSX6 superalloys with contributions from elastic heterogeneity and ap-
plied loading. A technique to quantify the kinetics of coarsening in microstructures with
anisotropic precipitates is then introduced.

4.2.1 Characteristics of γ′-rafting in elastically inhomogeneous superalloys

Using the presented multi-component model, morphological evolution at 1273.15 K
in negatively misfitting CMSX4 and CMSX6 is now investigated. A compressive strain
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(εa = −0.2%) is applied along the y-direction [010] for 28 h. It is observed that the γ′-
precipitates evolve from the quasi-cuboids in Fig. 20 (c) to plate-like structures, which
are elongated in the y-direction, as shown in Fig. 25. As expected, for the case of
a compressive strain applied to a negatively misfitting alloy, the γ′-rafts are oriented
parallel to the loading direction i.e. P -type rafting is observed, which is consistent with
previous predictions on the rafting orientation [33, 55, 64]. Rafting is then achieved by
the mechanism of interdiffusion-limited coarsening or Ostwald ripening. Fig. 25 shows
the as-rafted CMSX6 and CMSX4 microstructures obtained after 28 h of exposure at
1273.15 K under a compressive strain εa = −0.2%. It is observed that in the early
stages of the coarsening simulations, when many small precipitates exist, coalesce with
the neighboring precipitates the [010] direction is a frequent event. In the later stages
of the inter-precipitate spacing becomes larger, and particle coalescence events become
much more rare. At this stage, the larger precipitates grow and elongate at the expense
of the smaller or shorter precipitates, respectively, whereas the rate of mutual growth
and shrinkage is limited by diffusional transport in the γ−channels. We confirmed that
the total amount of solute of all elements is conserved in full numerical precision during
the whole coarsening simulation.

a) b)

Figure 25: Concentration field (wt.%) of Ta in (a) CMSX6; (b) CMSX4 after 28 h of
aging under a compressive strain (εa = −0.2%) along the [010] direction.
In the Re-free CMSX6, most particles are elongated up to a mean length
that exceeds the simulation domain while in the Re-containing CMSX4, the
particles are generally shorter and some are even cuboidal. The domain size
is 3.5µm x 3.0µm.

Also our simulations confirm the general picture that slow diffusing elements, partic-
ularly Re, play a major role in determining the kinetics of anisotropic γ′−coarsening.
Fig. 25 shows that after the simulation of 28 h of heat exposure at 1273.15 K, the whole
coarsening process in the Re-containing CMSX4-alloy is much less developed as com-
pared to the coarsening process in the Re-free CMSX6-alloy: particles in the CMSX4
simulation are generally shorter or even still cuboidal, while in the simulation of coars-
ening in the Re-free CMSX6-alloy the majority of particles has been elongated up to
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a mean length that exceeds already the simulation domain. Moreover, the simulated
microstructure of CMSX4 in Fig. 25 (b) reveals the formation of quite large Re accu-
mulation zones in the γ-matrix. This observation is in agreement with the experimental
findings by Rüsing et al. [63], who observed the presence of Re accumulation zones dur-
ing heat treatment of the Ni-Al-Ta-Re superalloy. The presence of the Re in the γ-matrix
inhibits the elongation of a precipitate. Furthermore, we observe in our simulations that
for the γ′-precipitate to grow along a certain orientation, Re should diffuse away from
the path of the advancing γ − γ′ interface.
The evolution of the γ′-precipitate volume fraction during high temperature exposure

of CMSX4 and CMSX6 in the absence and presence of external strains is shown in Fig. 28
(a). A drop in the volume fraction between the initial and the coarsened configurations
is observed. The reduction in the volume fraction is an influence of the strain energy
density of the system. The strain energy density in the system is a function of the misfit
strain and applied strain. Since we use the same initial microstructure, the total strain
energy at t = 0 is the same for the two alloys. However, due to different changes in
the morphology at t > 0 h, the strain energy density decreases to different minimum
states. Such a drop in the actually observed volume fraction as compared to the ther-
modynamically calculated phase fraction is theoretically expected, and relates to the
elastic hysteresis effect [23, 20]. If the experimental phase fraction can be measured with
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Figure 26: Time evolution of the γ′-volume fraction during coarsening under no applied
strain (εa = 0.0%) and under compressive strain (εa = −0.2%). The volume
fraction reaches its steady-state value when the strain energy density reaches
its minimum state.

sufficient accuracy to resolve this drop, this would offer an alternative way to measure
the elastic energy density of a given microstructure. It can be seen that the decrease of
the γ′-precipitate volume fraction is slower in CMSX4 than in CMSX6. The steady-state
volume fraction of CMSX4 of around 50% and CMSX6 is around 49%. In both alloys,
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a significant reduction in the strain energy density occurs in the initial stages t < 5 h
due to rapid coalescence of precipitates with their nearest neighbors along the energy
minimizing [010] direction. This reduction in the strain energy density is accompanied
by a rapid reduction of the precipitate volume fraction. At time 5 < t < 20 h, reduction
in the strain energy begins to slow down. At this stage, the translation of the precipi-
tates along the [010] direction occurs. The volume fraction reaches its steady-state value
when the strain energy density reaches its minimum state. However, rafting continues
in order to satisfy mass balance in the system. In the steady-state regime of the rafting
process, the constant volume fraction means that the lengthening of precipitates in the
[010] direction occurs simultaneously with the shrinkage of precipitates along the [100]
direction. Although a drop in the volume fraction during evolution under the applied
compressive strain is expected, the degree of change is perhaps overestimated due to
the relatively large applied strain used in the simulation. To further elucidate the in-
fluence of strain energy density on the γ′-precipitate volume fraction, we compare the
rafting simulations with our previous work on non-directional coarsening [54], when the
reduction of the strain energy density is much lower due to shape preservation. It is ob-
served that the γ′-precipitate volume fraction changes from 54.2% to 51.7% in CMSX4
to around 51.6% in CMSX6.

4.2.2 Quantification of anisotropic γ′-coarsening kinetics

Typically, the kinetics of coarsening is quantitatively characterized by some measure
that is based on the mean particle radius. Such a one-sidedness is not surprising, since
the majority of theoretical discussions as well as respective model developments start
from spherically shaped particles [26] and is therefore naturally centered around the
case of isotropic coarsening. However, while the mean particle radius is certainly a
meaningful quantity for the characterization of coarsening kinetics in the isotropic or
near isotropic case (i.e. basically spherical particles), we argue that this is not the
case of strongly anisotropic coarsening. Therefore, for the further characterization of
the morphological evolution during coarsening in Ni-base superalloys, we would like to
propose here a numerical measure to quantify the kinetics of anisotropic coarsening
of γ/γ′-microstructures. The measure is based on the diffuse interface description as
it results from the phase-field method. To quantitatively characterize the anisotropic
development during rafting in a microstructure with multiple precipitates, we define a
non-dimensionless aspect ratio

AR =
L[010]
L[100]

, (173)

where L[010] denotes that fraction of the total length of the γ/γ′-phase boundary, which
is oriented predominately parallel to the [010]-crystallographic plane. The information
about the a priori unknown interface orientation is related to the gradient of the phase
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field and here we use the unit normal vector as defined [24]

~n ≡
~∇φ∣∣∣~∇φ∣∣∣ . (174)

The phase-boundary length Lo of interfaces having an orientation which corresponds to
the crystallographic unit vector ~o, is calculated as follows

Lo = 1
2ξ

ˆ
{h(φ)h (1− φ) Θ (~n · ~o− cos(ϑ))} dV, (175)

where ξ is the interface width and Θ(x) is a step-function which has the value 1 if x ≤ 0
and 0 if x > 0, Finally, ϑ quantifies the uncertainty angle in the determination of the
interface orientation. A value of ϑ = π/4 is used in the simulations. The angle is chosen
such that as many as possible interfaces corresponding to the crystallographic unit vector
~o are included in the calculation. Note that the application of the interpolation function
h(φ) = φ2(3−2φ) in Eq. (175) provides a focus on the inner parts of the diffuse interface.
Using the presented measure, we can now quantify the kinetics of anisotropic coars-

ening of multiple precipitate. As a proof-of-accuracy of the quantitative measure of
the aspect ratio, we compare respective results to the time evolution of the aspect ra-
tio of a single precipitate, located in the center of the simulation domain (the precise
configuration is shown in Fig. 29).
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Figure 27: Comparison of the aspect ratioAR (in blue) calculated using Eq. (175) against
the reference aspect ratio (in red) calculated using line integrals over the phase
field (See Eq. (176)).

In the simple case of elongation of a single particle, the aspect ratio is naturally given
by the ratio Rc = lx/ly, where the lengths li of the particle in the i−th direction (i = x, y)

77



is calculated in a straight forward why by means of a respective line integral over the
phase field in the middle of the simulation domain, i.e.,

li =
ˆ Li

0
(1− φ(x, t))|xj=Lj/2 dxi, (176)

with i 6= j. The plot in Fig. 27 shows the comparison of the calculation of the single
particle aspect ratio using Eq. (175) and the reference aspect ratio as it results from the
line integrals using Eq. (176). The small deviation may result from the fact that, upon
the choice of an uncertainty angle ϑ to be significantly smaller than π/4, finite fractions
of the interface are excluded from the consideration in Eq. (176).
Using the presented quantitative measure, we can now quantify the kinetics of anisotropic

coarsening of a microstructure with multiple precipitates as in Fig. 25. The plot in Fig. 28
shows the evolution of the aspect ratio during multiple particle rafting at 1273.15 K.
The precipitates in CMSX6 elongate much faster than in CMSX4. The aspect ratio of
γ′-precipitates in CMSX6 after 28 h is 8.5 and 7.2 in CMSX4. The unsteady nature of
these two curves is attributed to the events of precipitate coalescence.
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Figure 28: Time evolution of the aspect ratio AR for two different systems: NS of size
409×3574x with interface width ξ = 5∆x and DS of double size 818×7144x
with interface width ξ = 2.5∆x. The precipitates in CMSX6 elongate much
faster than in CMSX4. The unsteady nature of these two curves is at-
tributed to the presence of precipitate coalescence. Insert: The plot of
∆AR = (ARDS−ARNS)/RNS shows that the calculation of AR is not greatly
influenced by changes of the interface width used in the phase-field model.

In order to quantitatively identify the impact of the artificially chosen large interface
width in the phase-field model, we perform comparable simulations, which differs only
in the choice of phase field widths. The first system, denoted by NS, is the previously
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defined one of size 409×3574x with interface width ξ = 5∆x. The second system
denoted by DS is of double size 818×7144x with interface width ξ = 2.5∆x. The
simulations with the different system configurations reveal that the precipitate aspect
ratio does not change by much with a change in the interface width used in the phase-field
model.

4.3 Isolated γ′-precipitate rafting

To further elucidate the rate-limiting influence of Re on γ′-rafting, we study the evolu-
tion of a single γ′-precipitate in an elastically inhomogeneous γ-matrix at 1273.15 K. For
the single precipitate simulations, a square domain of size 351×3514x is used. To obtain
the initial quasi-cuboidal shape, a spherical γ′-precipitate is placed in the γ-matrix at
the center of the simulation domain and then prerelaxed without external loading until
the quasi-cuboidal shape with a volume fraction of 56% is obtained. The sphere-to-
cube shape change is a result of the dominant effect of coherency strain energy on the
precipitate morphology [41].

Figure 29: Dimensionless elastic driving force field ∂ωel/∂h; the applied strain changes
the four-fold symmetry of the precipitate to two-fold symmetry. Due to the
compressive strain, the elastic driving force is highest along the [010] direction
which results in the elongation of the precipitate along this direction.

To trigger the rafting process, a compressive strain is applied to the cuboidal pre-
cipitate. Fig. 29 shows the morphology of an isolated γ-precipitate formed under a
compressive strain (εa = −0.2%) applied along the [010] direction. The applied strain
changes the four-fold symmetry of the precipitate to two-fold symmetry with the precip-
itate elongating along the [010] direction. Fig. 29 shows the dimensionless elastic driving
force field for the precipitate under the compressive strain. The elastic driving force is
highest along the [010] direction and this favors the elongation of the precipitate along
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this direction.
In the next subsection, we analyze the contributions from solute diffusivity to rafting

in CMSX4 and CMSX6 superalloys. In subsection 4.3.2, we then identify the mechanism
by which the refractory element Re affects rafting.

4.3.1 γ′-rafting kinetics with contributions from solute diffusivity

In this subsection, we present a sensitivity study to show the phase-field model’s capac-
ity to determine the relative contribution of each solute to the morphological evolution
and kinetics. This study can be understood as a sensitivity analysis to quantify the
impact of uncertainties in the diffusion coefficients. The sensitivity study is also meant
as a first step to show the capacity of the multi-component phase-field model to handle
changed diffusivities as well as in the second step changed compositions. The second
step would then result in true simulation based alloy design and optimization.
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Figure 30: Time evolution of the aspect ratio AR of an isolated γ′-precipitate for dif-
ferent choices of Re diffusivity D̃Re during P -type rafting under an applied
compressive strain (εa = −0.2%) along the [010] direction. The control diffu-
sivity is D̃Re = 1.0 which corresponds to the diffusion matrix given in Table 6.
A reduction in the diffusivity of Re results in a slower elongation.

To analyze the contribution of solute diffusivity to rafting, a study of the time evolution
of the aspect ratio AR of a single γ′-precipitate for different strengths of diffusivity of a
solute i is done. For this study, the control diffusivity is D̃i = 1.0, which corresponds to
the diffusion matrix given in Tables 6 and 7. For a species i, three other simulations are
done with diffusivity scaling D̃i = 0.2, D̃i = 0.5 and D̃i = 2.0. This is done by including
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a diffusivity scaling term D̃i to the diffusion equation Eq. (115) which becomes

∂µi
∂t

=D̃i

∑
j

(
Dij∇2µj

)
− ∆Ai

χi

∂h

∂φ

∂φ

∂t
. (177)

This allows for the scaling of the major and cross terms for species i in the diffusion
matrices in Table 6 and 7 while holding the rest of the interdiffusion coefficients constant.
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Figure 31: Aspect ratios AR of an isolated γ′-precipitate after 5 h of exposure at a
temperature of 1273.15 K under compression (εa = −0.2%) as a function of
the diffusivity D̃i of a species (a) CMSX6; only Ta and Mo has some very
small effect on rafting, (b) CMSX4; Re greatly affects the kinetics of rafting
in CMSX4 while Co, Mo and W contribute to a smaller extent.

For instance, the diffusivity scaling of D̃Al = 0.2 rescales the first row (major and cross
terms for Al) in Table 6. The evolution of AR with time as a function of the diffusivity
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of solute i is compared with the control aspect ratio (diffusivity strength of D̃i = 1.0).
The stronger (weaker) the deviation of the aspect ratio from the control aspect ratio,
the stronger (weaker) the influence of solute i on rafting. The influence of Re diffusivity
on rafting is shown in Fig. 30. Here, the evolution of the aspect ratio AR of an isolated
γ′-precipitate under a compressive strain is plotted as a function of exposure time for
different Re diffusivity D̃Re. Such a study is done for each element in the two alloys.
The aspect ratios after 5 h are plotted in Fig. 31 as a function of the diffusivity D̃i

for the two superalloys. For CMSX6, Fig. 31 (a), the diffusivity of Ta and Mo has some
effect on the elongation of the precipitate although the effect is very much negligible.
The control aspect ratio in CMSX6 is about 4.98. A reduction of the diffusivity of Ta
by scaling with D̃Ta = 0.2 results in an aspect ratio of about 4.93. For CMSX4, Fig. 31
(b), the influence of alloying elements on the nature of rafting is much more prominent.
While Co, Mo and W to a smaller extent affect rafting, it is the presence of Re that

greatly affect the nature and kinetics of the morphological evolution in CMSX4. The
control aspect ratio in CMSX4 is 4.65. Reducing the diffusivity of Re greatly reduces
the aspect ratio of the precipitate. For example, reducing the diffusivity of Re by scaling
with D̃Re = 0.2 results in an aspect ratio of about 2.8, which is a massive reduction
indeed. From these plots, it is clear that Re influences rafting to a greater extent.

4.3.2 Rate-limiting effect of Re

In this subsection, we now elucidate the mechanism by which Re limits rafting in
Ni-base superalloys. Just before the application of an external strain to the initial
cuboidal precipitate, the diffusion potential of Re in both the horizontal (parallel to the
(100) plane) and vertical γ-channels (parallel to the (010) plane) are equal. Such an
equilibrium state implies that no transport of Re solutes takes place. Application of a
compressive strain along the [010] direction to the initial quasi-cuboidal microstructure
distorts the diffusion potential of Re in the γ-channels. Consequently, a region of high
Re diffusion potential is formed in the horizontal channels in the vicinity of the γ-γ′
interfaces and a region of low diffusion potential of Re is formed in the vertical γ-matrix.
The resulting diffusion potential gradient drives the flux of Re solute atoms within the γ-
matrix. As the precipitate elongates along the [010] direction, Re solutes are rejected by
the advancing γ-γ′ interfaces. The rejection occurs because Re solutes are barely soluble
in the γ′-precipitate. The rejected Re solutes diffuse in the γ-matrix from the path of
advancing γ-γ′ interfaces to the vestige of the shrinking of precipitate. The formation of
Re accumulation zones in front of advancing γ-γ′ interfaces is also observed. Fig. 32 (a)
shows the distribution of Re in a rafted microstructure. The Re accumulation zones are
also observed during non-directionally coarsened microstructures (Fig. 32 (b)), which
results in the precipitates almost keeping their cuboidal morphology. The formation of
Re accumulation zones can be attributed to its low diffusivity. Various reasons have been
given in literature for the low diffusivity of Re; the work [32, 63, 73] attribute the low
diffusivity to its heavy atom while [27] attribute the low diffusivity of Re to the strong
electronic Ni-Re bonding. As the accumulation of Re solutes in front of advancing γ−γ′
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(a) (b)

Figure 32: Concentration field of Re (in wt.%) during (a) rafting under an applied load,
(b) non-directional coarsened coarsening. Re solutes which are not readily
soluble within the γ′-precipitate are transported away from the elongation
path. Owing to its low diffusivity, Re accumulation zones are formed and
increase with time in front of advancing γ-γ′-interfaces. This effect slows
down the elongation of the precipitate.

interfaces increases, elongation kinetics of the γ′-precipitate along the [010] direction is
significantly reduced. For the precipitate to elongate further, Re solutes should diffuse
away from the elongation path. The rate-limiting influence of Re on the migration of
γ − γ′ interface can be attributed a number of factors;

• Re is barely soluble in the γ′-precipitate and segregates to the γ-matrix. During
the coarsening simulations, expulsion of the minute amount of Re present in the γ′-
precipitate is observed. One can say that during coarsening in elastically stressed
alloys, the interface composition does not obey the local equilibrium assumption.

• its low diffusivity results in the formation of Re accumulation zones in the path
of migrating interface. Different reasons have been given in literature for the low
diffusivity of Re. Some authors [32, 63, 73] attribute the low diffusivity to its heavy
atom. Fu et al. [27] attribute the low diffusivity of Re to the strong electronic
Ni-Re bonding.

For W and Mo, we also observed the formation of minor accumulation zones in front
of advancing γ − γ′ interfaces. This behavior is not seen for the rest of the solutes
since their diffusivities and solubilities in the γ′-precipitate are relatively high. These
two effects result in the formation of accumulation zones just in front of the growing
interface. Additionally, the formation of accumulation zones in front of the interface
implies that the heavy Re atoms should simultaneously diffuse from the path of the the
moving interface in the direction shown by the arrows in Fig. 29 and this costs energy
which further reduces the driving force for interface migration. An opposite mechanical
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force exerted by the Re solute atoms in addition to the natural friction of interface
migration causes a reduction in the driving force for interface migration. Owing to a
lower driving force, it becomes difficult for the interface to migrate further. The pile-up
of Re solutes in front of the interface increases with time. As a result, the elongation of
the γ′ precipitate along the y-direction is significantly reduced.

4.4 Conclusion

A quantitative multi-component phase-field model was applied for the simulation of
γ′-coarsening during the aging of Ni-based superalloys. With a view to realistically cap-
turing the complex nature of interdiffusion, all input values for the phase-field simulations
were calculated by CALPHAD based tools, which are able to predict these properties
within their database definition limits. The model was applied to study the morpho-
logical evolution in the two commercially available CMSX4 and CMSX6 superalloys.
Furthermore, a numerical method to quantify the kinetics of γ′-coarsening were devel-
oped. This method can be used to quantify rafting in a microstructure with anisotropic
precipitates of random distribution. The method was used to quantify coarsening dur-
ing microstructural evolution in the presence of a uniaxial strain applied along a cubic
<100> direction. Phase-field simulation results of non-directional coarsening were com-
pared with experimental predictions. The phase field simulations were qualitatively in
agreement with experimental observations.
The simulations revealed that the coarsening process is considerably slower in CMSX4

than in CMSX6. The simulations provided an insight at the rate-limiting influence
of some alloying elements. It was revealed that the rate-limiting influence of certain
elements increases depending on their diffusion dynamics in relation to the interfacial
kinetics. It was observed that Re, plays a major role in reducing the rate of coarsening.
The simulations deduce that Re additions in CMSX4 reduce coarsening by keeping the
γ′-precipitates in their interfacial energy minimizing quasi-cuboidal configuration. Re
also reduces the growth and elongation of γ′-precipitate by reducing the driving force for
interface migration. This is caused by the accumulation of Re in the path of the growing
front. As the precipitate elongates with time, the amount of Re in growth path increases
- due to low diffusivity and its low solubility in the precipitate. An opposite mechanical
force exerted by the Re solute atoms in addition to the natural friction of interface
migration leads to a reduction in the driving force for interface motion and a subsequent
reduction of the coarsening process. This supports the experimental studies of [32, 63, 86]
who observed a dominant influence of Re on coarsening in single crystal superalloys. In
CMSX6, the situation is different; there a combined influence of a number of elements
on the kinetics - with Ta and Mo being the rather influential elements. However, the
influence of Ta and Mo is considerably less as compared to that of Re. This study showed
that elements e.g., Re, W, Mo and Ta have a rate-limiting influence on coarsening and
thus can be used for the fine-tuning of alloy microstructures.
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5 Phase-field study of anisotropic γ′-coarsening kinetics in
Ni-base superalloys with varying Re and Ru contents

The typical microstructure of single crystalline Ni-base cast alloys consists of cuboidal
γ′-precipitates coherently embedded in a continuous γ-matrix (Ni). The extraordinary
thermo-mechanical properties of these Ni-base superalloys largely depends on the mor-
phology, distribution, size and volume fraction of the γ′ precipitates. Under long-time
exposure to a high external temperature, the γ′-precipitates coarsen in order to reduce
the total amount of γ-γ′ interfaces. The respective driving force is called the Gibbs-
Thompson effect or capillarity. However, any change of the γ-γ′ microstructure involves
first order phase transformation processes between the two phases and leads to a release
or a capture of material. The release or capture of material results in finite chemical
deviations from the two phase γ-γ′ equilibrium state, which need to be transported dif-
fusively away from the interface through the system. The two main opposing driving
forces determine the coarsening-evolution: the Gibbs-Thompson effect on the one hand
and a local non-equilibrium diffusion potential resulting from a local non-equilibrium
chemical composition on the other hand. Consequently, as the whole process evolves,
larger precipitates grow at the expense of smaller ones, leading to an increase of the
mean particle size and a complimentary decrease of the total interfacial area. Since the
diffusive transport of material away from or towards to the interface is rather slow but
still a necessary requirement for the overall process to evolve, the kinetics of coarsening
is said to be diffusion-limited.
The kinetics of multi-particle coarsening is quantitatively described by the well known

LSW-theory of Ostwald ripening which was originally developed by Lifshitz and Slyosov
[49] as well as Wagner [75]. Even though the theory was based on the relatively strict
assumption of spherically shaped particles with an infinitesimally small volume fraction,
it turned out to be surprisingly successful, especially with regard to the application to
γ′-coarsening in Ni-based superalloys [2, 3, 74]. However, it is known that the elastic
interactions arising from a difference of lattice spacing between two coherently connected
phases can have a strong influence on the coarsening behavior of alloys. In the present
case of γ′-precipitates embedded into the γ-matrix, both phases are of face-centered-cubic
(fcc) crystallographic structure but with different lattice parameters which depend on
the overall alloying composition in a highly non-trivial way. There have been a lot
of attempts to extend the LSW-theory to also account for the elastic effects from the
coherency strains, which have been reviewed by Fratzl et al. [26]. In the discussion on the
LSW-theory, we shall focus on the so-called coarsening exponent which characterizes the
principle functional dependence of the mean particle radius R and the coarsening time
t. The classical LSW-theory of diffusion-controlled coarsening in binary alloys predicts
that the mean particle radius grows linearly in time, i.e. R3 ∝ t. The classical coarsening
exponent of three has been confirmed experimentally as well as in simulation work, when
the elastic effects are comparably small (see for instance the studies on ternary Ni-Al-Mo
alloys [77, 18]). On the other hand, there is a number of experimental and simulation
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studies which suggest that the coarsening exponent changes when the elastic effects
become more important [26].

(a)

(b)

0.5μm

Figure 33: Coarsening at 1273.15 K in CMSX4 with a misfit of −0.14% at t = 0, 14, 28,
42 h. The size of the simulation domain is 3.5*3.0 µm2. (a) a) Non-directional
coarsening with contributions from misfit and elastic inhomogeneity, (b) Raft-
ing with contributions from misfit, elastic inhomogeneity, and compressive
strain εa = −0.2% applied parallel the (010)-crystallographic direction.

In this work, we employ phase field simulations to study the temporal evolution of γ′-
coarsening in Ni-base superalloys. The phase field method is an ideal tool for the simula-
tion of microstructure evolution in complex binary and multi-component alloys. Various
aspects relevant in materials science ranging from the initial solidification to late-stage
solid-state transformations have been successfully addressed, so far, using phase-field
modeling techniques [1, 17, 80]. The major advantage of the method is given by its great
flexibility of modeling, which allows to address even complex systems involving several
different physical mechanisms at the same time. In the present case, where anisotropic
γ′-coarsening in technologically relevant Ni-based superalloys is considered, we have to
account for (at least) elastic contributions from the misfit between the two phases and
as well as for the complex thermodynamics and kinetics of the phase-separating multi-
component alloy. A respective realization of such a phase-field model then provides the
physically based microstructure evolution starting from a basically arbitrary initial sys-
tem state, as demonstrated in Fig 33 (a) for the case without mechanical loads and in
Fig 33 (b) for the case with an externally applied strain. Another example is simulated
temporal evolution of a single particle of cubic shape to a plate-like precipitate under
the influence of the externally applied stress, as shown in Fig 34. In both cases, the
simulated kinetics of coarsening turn out to be limited by the diffusional transport of
the nine different explicitly considered chemical components, namely: Ni, Al, Ta, Ti,
Co, Cr, W, Ru and Re.
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(i) (ii) (iii)
(a) Al diffuses to the advancing γ-γ′ interfaces which allows the γ′-precipitate to elongate further along the

[010]-direction. The precipitate shrinks along the [100]-direction to free a supplement of Al.

(i) (ii) (iii)
(b) Co diffuses from the path of the advancing γ-γ′ interfaces to the vestige of the shrinking precipitate

in the vertical γ-channels.

Figure 34: Cube→plate-like transformation of an isolated γ-precipitate during coarsen-
ing in CMSX4 under a compressive strain (εa = −0.2%) applied parallel the
(010)-crystallographic plane. The applied strain distorts the diffusion po-
tentials in the vertical and horizontal γ-channels creating diffusion potential
gradients which drive solute flux. The colour scheme represents the concen-
tration in wt.%. The arrows represent the flux of solutes.

The reason why such a large amount of alloying elements is explicitly resolved is related
to the fact that we aim to develop our phase-field model to serve as a useful tool for future
alloy design. In order to demonstrate the idea, we also perform a virtual experiment using
phase-field simulation studies to determine the influence of a varying alloy composition on
the cubic→plate-like transition as a simplified configuration of rafting. More specifically,
we perform here a simulation study considering 12 different virtual superalloys, where
the rhenium (Re) and ruthenium (Ru) contents are systematically varied. The decision
to jointly vary the Re and Ru additions, is motivated by the discussion in materials
science of whether Ru can act as a possible Re replacement-candidate, as suggested by
Caron [12] as well as Heckl et al. [36, 35], who focused on various aspects concerning
the solidification behavior as well as the influence on the formation of topologically close
packed phases. Here, the phase-field based simulation studies are used as a cheap and
fast tool for the development of alloys with regard to the γ′-coarsening behavior.
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The present work aims to demonstrate the principle feasibility as well as the value
of our recently developed phase-field model [54] with the particular focus on two dif-
ferent materials science aspects with regard to the γ′-coarsening behavior in Ni-based
superalloys:

• The identification of the coarsening exponent with and without elastic effects in
binary as well as multi-component alloys.

• The identification of the influence of variations of Re and Ru contents on the
kinetics of anisotropic γ′-coarsening.

The main model equations are already given in Eq. (106)-(165). In Section 5.2.2, we
present an analytic derivation of the LSW-theory for multi-component alloys without
elastic effects. In Section 5.2.3, we use phase-field simulations to validate the theoretical
extension of the LSW-theory and to determine the temporal law for multi-component
Ni-base superalloys with elastic effects. Results of a virtual experiment to determine the
influence of Re+Ru additions on γ′-morphology during coarsening are then presented in
Section 5.3 after which concluding remarks are given.
This chapter is published in [Adv. Eng. Mater., DOI: 10.1002/adem.201500168, 2015].

5.1 Simulation parameters

We investigate the coarsening kinetics in 12 model Ni-base superalloys adopted from
Heckl et al. [36]. The model Ni-base superalloys are derived from CMSX4 with a
chemistry of 12.58Al, 9.26Co, 7.58Cr, 0.38Mo, 0.98Re, 2.18Ta, 1.98W and bal. Ni in
at.%. The compositions of the alloys are systematically varied by stepwise additions of 0
to 2 at.% Re and 0 to 4 at.%Ru at the expense of the base element Ni. The compositions
of the 12 alloy and their designation is given in Table 9.

Table 9: Composition of model Ni-base superalloys in wt.%. The first digit in the model
superalloy designation is the Re content whilst the second is Ru content [36].
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The input parameters used in the simulations are divided into three groups.
First, there are thermodynamic parameters, these include the equilibrium phase com-

positions cp,eqi , equilibrium free energies fp,eqch and the equilibrium diffusion potential µeqi .
The second group is the kinetic data includes the interdiffusion matrix Dp

ij and the ther-
modynamic factors Xp

ij . The last set of parameters are the material parameters which
include the interface energy σ and the elastic constants Cpijkl and the lattice misfit ε00.

5.1.1 Thermodynamic parameters

The thermodynamic parameters depend on the alloy compositions. The equilibrium pa-
rameters are calculated for the given composition at a temperature of 1273.15 K using
the ThermoCalc/TTNi8 database. In Tables 10-12, we list the unscaled the equilib-
rium phase compositions, the equilibrium diffusion potentials and the equilibrium free
energies, respectively. How to retrieve the simulation parameters from from these listed
parameters as well as their rescaling is described in detail in subsection 4.1.1.

Table 10: The equilibrium phase compositions (in J/mol) at 1273.15 K.

Table 11: The equilibrium diffusion potentials (in J/mol) at 1273.15 K.

91



Table 12: The equilibrium Gibbs free energies (in J/mol) at 1273.15 K.

5.1.2 Kinetic parameters

The kinetic parameters are also composition. The diffusion matrix terms and thermo-
dynamic factor matrices are calculated at 1273.15 K by a subroutine of the DICTRA
software suing the MobNi1 database. Below, we give the unscaled elastic constants used
in the simulations. The rescaling of the kinetic parameters for phase field simulations is
described in detail in subsection 4.1.1.

Table 13: Diffusion coefficients (m2s−1) at 1273.15 K of 12 model Ni-base superalloys.
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Table 14: Diffusion coefficients (m2s−1) at 1273.15 K of 12 model Ni-base superalloys
(continued).
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Table 15: Diffusion coefficients (m2s−1) at 1273.15 K of 12 model Ni-base superalloys
(continued).

Table 16: Thermodynamic factors Xii (J/mol-at) at 1273.15 K.

Here, we restrict to major terms, Xii since the off-diagonal elements of the thermo-
dynamic factor matrix obtained from DICTRA are several orders of magnitude smaller
than the major terms.

5.1.3 Material parameters

The cubic elastic constants for the 12 model model superalloys are Cγ11 = 215.5 GPa,
Cγ12 = 162 GPa, Cγ44 = 77.6 GPa for the matrix and Cγ

′

11 = 222.7 GPa, Cγ
′

12 = 164.2 GPa,
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Cγ
′

44 = 85.6 GPa for the precipitate. A value of -0.14% is adopted from Pyczak et al.
[61] as the misfit for all the alloys. In the simulations, the interfacial energy is assumed
isotropic, with a value of 80mJ/m2 for all the alloys. The kinetic coefficient a K is
related to the interdiffusion coefficients obtained from DICTRA. The kinetic coefficient
K for each alloy is chosen to be larger than any term in the diffusion matrix.

5.2 Coarsening law during non-directional γ′-coarsening

The discussion of Ostwald ripening and the LSW-theory has a long history with re-
spect to the application to the description of γ′-coarsening in Ni-base superalloys [2, 3].
Nevertheless, there are still a number of open questions concerning the many aspects
that come along with the application of the LSW-theory to γ′-coarsening in Ni-base
superalloys, such as the prediction of coarsening rate constant, the prediction of the
particle size distribution as well as the determination of the coarsening exponent. How-
ever, within the present article, we focus on the discussion of the last point, namely:
the coarsening exponent. This aspect is discussed with regard to theoretical extensions
to multi-component diffusion and subsequent phase-field simulations of coarsening with
the mean particle radius of γ′-precipitates as the quantitative measure.

5.2.1 Stress-free binary alloys

First-order phase transformations typically results in a two phase mixture of second
phase precipitates embedded in a matrix. However, the microstructure is thermody-
namically unstable due to the larger amount of surface area present [74]. The desire of
the overall system to reduce its total amount of interface area results in the coarsening
of precipitates. The related driving force is the Gibbs-Thompson effect of capillarity.
Coarsening typically results in the increase of the mean precipitate size. Assuming a
spherical precipitate shape and that only a single length-scale, namely R exists, the
driving force for the ripening process according to is the curvature dependence of the
diffusion potential [53],

δµ = γκa3, (178)

where is κ = 2/R and a3 is the atomic volume and γ is the isotropic surface energy. The
change in precipitate radius in time follows

dR

dt
= −~j (179)

where ~j is the flux of solutes.
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Figure 35: Origin of coarsening in a binary Ni-Al alloy (figure following [59]). The Al
diffusion potential around the smaller precipitate with a radius of curvature
(r) is higher than that around the larger precipitate with radius of curvature
(R), as a result concentration of Al is highest in the vicinity of the smaller
γ′-precipitate.

Since only a single length scale R exists and the concentration field around a particle
is determined by the radius of the curvature. The diffusion potential gradient can then
be described as the ratio of the driving force for the ripening process and the radius of
the curvature

∇µ ≈ δµ

R
(180)

This results in the dissolution and eventual disappearance of energetically unfavorable
surfaces with high curvatures as shown in Fig. 35. Further expansion of Eq. (179) yields

dR

dt
= M

δµ

R
. (181)

Inserting Eq. (178) into Eq. (181) and further integration yields

R3(t)−R3(0) = kt, (182)

where k is the coarsening rate constant and R0 is the initial radius. This solution
corresponds to the theory for binary system by Lifshitz and Slyozov [49] and Wagner [75].
The theory was developed under the assumptions of coarsening of stress-free systems with
an almost vanishing volume fraction. This theory is also applicable to alloys with a high
volume fraction [26, 77].
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5.2.2 Stress-free multi-component alloys

In the following, we extend the classical LSW-theory for binary alloys to multi-component
diffusion by employing a scaling argument similar to the one established in Müller-
Krumbhaar [53]. For spherically shaped precipitate, this driving force is proportional to
the inverse of the radius R of the particle

δfσ = σκ = 2σ
R
, (183)

where κ = 2/R is the sum of the principle curvatures and δfσ denotes the free energy
density release due to the change of the total interface area. However, any morphological
change in the microstructure is related to phase transformations between the γ- and γ′-
phase which involves material transport of the alloying constituents. In particular, a
γ→γ′ transformation is accompanied by a release of the elements that partition to the
γ-matrix and a capture of the elements that partition to the γ′-phase as shown in Fig 36.
The resulting local accumulation or depletion zones are transported diffusively through

the γ-matrix. At the γ/γ′-interface, the conditions of material-conservation for each of
the alloying constituents is given by [14, 47]

vR∆ci = dR

dt
∆ci =

∑
j

(
Mγ
ij ∇µj |γ −M

γ′

ij ∇µj |γ′

)
, (184)

where vR is the radial velocity of the γ/γ′-interface, ∆ci is the miscibility-gap of species
i, Mp

ij is the mobility-matrix of phase p, and µi denotes the diffusion potential of species
i. In the quasi-steady state growth of the spherical γ′-particle in the supersaturated
γ-matrix, the concentration profile becomes flat on the γ′-side [14], which implies that
we can concentrate on the diffusion in the γ-matrix only.
The core of the classical LSW-law is a dynamic equilibrium between the thermody-

namic driving forces that arise from the Gibbs-Thompson effect on the one hand and
on the other hand from the chemical deviations from two-phase equilibrium due to the
diffusive transport. For a single diffusion component, such as in binary alloys, the central
scaling argument is that the size of the diffusion field around the spherical γ′-particle
is given by the particle radius R at any time of the process [49, 53]. We point out
that the scaling with the radius R stems from the nature of the quasi-static solution
to the problem of one-component diffusion limited growth of a spherical particle [14].
Here, we argue that this scaling should also hold for multi-component diffusion, because
the multi-component influence does not change the principle nature of the governing
equations.
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Ta

(a) The diffusion potential of Ta increases in the γ-matrix around a precipitate as the radius of
curvature decreases. Resulting diffusion potential gradients lead to the flux of Ta solutes from
smaller to larger precipitates. This allows the larger γ′-precipitates to grow in size while the
smaller ones shrink and vanish.

Cr

(b) The diffusion potential of Cr increases in the γ-matrix in the vicinity of a precipitate as the
radius of curvature increases. The diffusion potential gradients drive the flux of Cr solutes from
γ-matrix around the larger precipitates to the vestige of the shrinking smaller γ′-precipitates.

Figure 36: Ostwald ripening of spherical precipitates in a multi-component alloy. The
driving force for coarsening of the stress-free coherent microstructure is a
combination of thermodynamic driving forces that arise from the Gibbs-
Thompson effect and the chemical deviations from two phase γ-γ′ equilibrium
due to diffusive transport. The color scheme represents the concentration in
wt.%. and the flux represents the flux of solutes.

Knowing the scaling of the size of the multi-component diffusion field, we can estimate
the driving force from diffusion δfd that acts on the γ/γ′-interface. Similar to Müller-
Krumbhaar [53], we assume here δfd = ∑

j δµj ≈ R
∑
j ∇µj . Now, employing the

dynamic equilibrium of driving forces, δfσ = δfd, and Eqs. (183) and (184), we finally
obtain an ordinary differential equation for the particle radius as function of the time,

R2dR = k · dt, (185)

where k ≈ 2σ/
(∑

jk(M
γ
jk)−1∆ck

)
is the resulting coarsening rate constant, which is

related to the interface energy and an effective mobility of the multi-component system.
Here, (Mγ

jk)−1 is the inverse mobility matrix. Finally, an integration of Eq. (185) yields
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the classical LSW-law
Rn(t)−Rn0 = kt, (186)

where the coarsening exponent n turns out be 3 and R0 is the initial particle radius at
time t = 0. It can be seen that the extension of LSW theory to multiple component
diffusion does not alter the coarsening exponent. The picture changes completely when
elastic effects are included, as we shall show in the following via simulations. Notice,
that the coarsening rate constant calculated here is only a rough estimate. A precise
determination of the rate constant in the presence of the multi-component diffusion would
of course require a more detailed evaluation of the driving force equilibrium employed
above, and this is beyond the scope of the present article. Alternative derivations of the
coarsening law for multi-component alloys are done in Refs. [44, 45, 62].

5.2.3 Elastically stressed Ni-base superalloys with different Re contents

As seen in the preceding discussion, the classical LSW-theory as well as the multi-
component extension does not include elastic interactions between coherent precipitates.
We point out that there has been a number of attempts to include effects from elastic
interactions. Some studies suggest that coarsening is diffusion-controlled. For exam-
ple, coarsening in the early stages of the precipitation process was found to follow the
LSW-theory with an exponent of n = 3 [77]. On the other hand, a number of studies
suggest that the coarsening exponent changes or even varies in different alloys when the
elastic effects become more important. For example, [78] found coarsening in a number
of Ni-base superalloys to be diffusion-controlled with n = 3, interface reaction controlled
with n = 2 or controlled by both. Further, in Ref. [32], exponents ranging between
2 to 10 where observed during coarsening in Ni-base superalloys with varying compo-
sitions. Clearly, one can not randomly apply the LSW-theory to coarsening in Ni-base
superalloys.
The focus of this subsection is to determine if Eq. (182) holds for the coarsening regime

when the precipitates are large enough such that only the anisotropic elastic energy is
dominant. We perform large-scale 2D phase-field simulation studies of coarsening in two
alloys: CMSX4 and its derivative Alloy20. The composition of the two superalloys is
given in Table 9.
To determine the exponent n, a plot of log(R(t)) vs log(t+Rn0/k) is constructed. We

calculate the mean particle radius at each time step in the simulation as

R =
√
Vf/πN(t), (187)

where Vf is the total 2D volume of γ′-precipitates and N(t) is the precipitate number.
We redefine time t = 0 as shown by the dashed line in the insert of Fig 37. The time
t = 0 is when the Gibbs-Thompson effect and the chemical driving forces have reached
some equilibration, i.e. the volume fraction becomes constant (without elastic effects).
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A drop in the actually observed volume fraction as compared to the thermodynamically
calculated phase fraction is attributed to the initialization of the system starting from
a uniform diffusion potential throughout the domain. Furthermore, in the presence of
elastic effects, the drop in the phase fraction is augmented by the elastic hysteresis
effect. In the framework of our large-scale 2D phase-field simulation studies on the
temporal evolution of the precipitates, we start from a γ-γ′ microstructure with 480 fine
γ′-particles. The initial microstructure is generated directly from an SEM photograph of
an as-heat treated sample of the commercial CMSX4 superalloy. The generation method
has been described previously in detail in subsection 3.2.3. During the simulation, it was
possible to monitor coarsening up to late times where the number of particles reduced
to 16. During runtime of the simulation, the mean particle radius increased by a factor
of about 5.5. These large-scale simulation with a large particle number were necessary
to gain good statistics.
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Figure 37: Log-log plot of coarsening kinetics. Here, NiAl(NE) denotes coarsen-
ing of NiAl without elastic effects, CMSX4(NE) without elastic effects,
CMSX4(WE) with elastic effects and Alloy20(WE) with elastic effects. The
composition of the two alloys is the same except for 0.98at.%Re in CMSX4 and
2at.%Re in model Alloy20. The coarsening exponent is n = 3.07 (k = 0.0679
nm/h) for NiAl(NE), n = 3.08 (k = 0.0668 nm/h) for CMSX4(NE), n = 2.35
(k = 0.060 nm/h) for CMSX4(WE) and n = 2.2 (k = 0.0621 nm/h) for Al-
loy20(WE). Insert: The fitting of the log-log plot starts at t = 0 when the
volume fraction becomes constant.

The fitting for the evaluation of the coarsening exponent n is then done starting from
the redefined time t = 0 when the constant volume fraction has been reached. We first
determine the exponents for coarsening without elastic effects in Ni-20wt.%Al denoted
as NiAl(NE) and a multi-component superalloy denoted as CMSX4(NE). The log-log
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plot reveals an exponent of n = 3.12 for NiAl(NE) and n = 3.1 for CMSX4(NE). The
exponents are almost equal to the exponent derived in Eq. (182) for the case of coarsening
without elastic effects. The fitting is then done for the case of coarsening with elastic
effects for the two alloys, denoted as CMSX4(WE) and Alloy20(WE). A coarsening
exponent of n = 2.38 is found for CMSX4(WE) and n = 2.33 for Alloy20(WE). The
different coarsening exponents for CMSX4(WE) and Alloy20(WE) is a result of the
uncertainty in the fitting. The exponents identified in our simulations are in agreement
with the simulations of Leo et al. [38] who by employing a scaling argument predicted
that elastic effects change the exponent from n = 3 to n = 2, if the precipitates are
harder (i.e., more rigid) than the matrix. Although, the assumption of self-similarity in
[38] does not hold for Ni-base superalloys due to their largely anisotropic microstructures,
the influence of elastic effects on coarsening kinetics was clearly highlighted. Given the
presence of elements with low diffusivities in CMSX4 and Alloy20, e.g., Mo, Re, W etc,
one would expect the coarsening process in these superalloys to be diffusion-controlled.
However, an additional contribution from the misfit strains leads to a substantially faster
coarsening evolution as compared to the prediction from the LSW-theory.
To analyze the sensitivity of the model in determining the coarsening exponents, phase-

field simulations with a system of normal size (NS), with a relative grid size of4x/ξ = 0.2
and a system of double size (DS) with 4x/ξ = 0.4 where is the grid spacing and is the
interface width, are done. The deviation in the coarsening exponents for the two cases
is evaluated as 4n = (DS−NS/NS). The deviation is found in the order of 0.03. This
implies that the calculated exponents are not influenced by the choice of the phase field
interface width and grid spacing. Further, we assume Ostwald ripening to be the main
mechanism of coarsening we observe, since it is known to be the dominant mechanism
in the late stages of coarsening.

5.3 Influence of Re and Ru additions on cube→plate-like transformation

The addition of refractory elements has been known to influence the characteristics of
late-stage solidification in Ni-base superalloys. The experimental work [36], found Re to
increase the liquidus temperature although it has the tendency to increase the formation
of topologically close packed phased. Ru was added as a substitute for Re but it was
judged to have little effect on the solidification process. Here, we now perform a virtual
experiment using the phase field based tool to determine the influence of Re and Ru
on cube→plate-like transition. The phase field based simulation tool can be used as a
cheap and fast acting tool for the optimization of alloys with respect to coarsening.
We investigate the cube→plate-like transition in 12 model Ni-base superalloys with

compositions adopted from Heckl et al. [36]. The model Ni-base superalloys are derived
from CMSX4 with a chemistry of 12.58Al, 9.26Co, 7.58Cr, 0.38Mo, 0.98Re, 2.18Ta,
1.98W and bal. Ni in at.%. The compositions of the alloys are systematically varied by
stepwise additions of 0 to 2 at.% Re and 0 to 4 at.%Ru at the expense of the base element
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Ni. The other elements are held constant, which allows for a systematic study of the
influence of Re+Ru on the coarsening. The model superalloys are designated; Alloy00,
Alloy01, Alloy02, Alloy10, Alloy11, Alloy12, Alloy13, Alloy14, Alloy20, Alloy21, Alloy22,
Alloy23. The first digit in the model superalloy designation is the Re content whilst the
second is the Ru content.
We limit the virtual experiment to the case of coarsening of an isolated and initially

cuboidal γ′-precipitate under a load. The equilibrium γ′-precipitate volume fractions of
Ni-base superalloys under study are probably different but for the sake of comparison,
we initiate the simulations from one universal phase and concentration field. Raft-
ing is induced by applying a compressive strain (εa = −0.2%) parallel to the (010)-
crystallographic plane. The CMSX4 and its derivative alloys used in this study have
a negative anisotropy, i.e. C11 − C12 − 2C44 < 0, which implies that the elastically
soft orientations corresponds to the <100> crystallographic directions. Due to the neg-
ative misfit and the compressive strain, the γ′-precipitate elongates along the energy
minimizing [010]-crystallographic direction as in Fig. 38.
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Figure 38: Elastic energy density during cube→plate-like transition of precipitate af-
ter applying a compressive strain (εa = −0.2%) parallel to the (010)-
crystallographic plane. The precipitate elongates along the elastically soft
[010]-crystallographic direction.

To quantify the influence of Re and Ru additions on the cube→plate-like transition
during rafting, we use the aspect ratio defined in Eq. (173). The aspect ratios obtained
after 5 h of rafting are then plotted as a function of Ru for different constant Re. The
larger(smaller) the aspect ratio, the smaller(larger) the influence of the Re+Ru content
on rafting. Fig 39 (a)-(c) show the aspect ratios obtained after 5 h of rafting as a function
of the Ru contents for different constant Re.
We first reproduce the sensitivity study done in chapter 4. We limit the sensitivity

study by artificially modifying the diffusion coefficients of Mo in Alloy01 and Alloy02.
The blue and grid points in Fig 39 (a) show the aspect ratios obtained during a sensitivity
study with artificially changed diffusivities of Mo. The sensitivity study for the Re-free
Alloy01 and Alloy02 alloys, shows that; first - the model responds to changes in the
kinetic parameters; second - the element Mo has albeit small, a rate-limiting influence
on the rafting kinetics and thus can be used just like Re for the fine tuning of alloy
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microstructures. A more comprehensive sensitivity study considering several elements
was done in the work [54]. We now perform study on the 12 alloys using the real
thermodynamic and kinetic parameters.
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Figure 39: Aspect ratios after 5 h of rafting at 1273.15 K as a function of; (a)-(c) Ru
contents for different constant Re; (d) Re contents for different constant Ru.
A variation of Ru content has no significant effect on the γ′-morphology
while but an increase in the Re content leads to a significant reduction of
cube→plate-like transition. The blue (circles) and green (diamond) lines-
points in (a) show the aspect ratios obtained from a sensitivity study with
artificially changed diffusivities of Mo. The sensitivity study shows that in
the Re-free Alloy01 and Alloy02 alloys, the element Mo has albeit small, a
rate-limiting influence on the rafting kinetics and thus can be used just like
Re for the fine tuning of alloy microstructures and the respective coarsening
kinetics.

The plots show that the rate of cube→plate-like transition decreases as the Re content
is increased from 0 to 2at.%. An aspect ratio of around 4.5 is obtained after 5 h when
the Re content is 0at.%Re. The aspect ratio becomes 3.65 when 1at.%Re is added.
Further additions to 2at.%Re reduces aspect ratio to 2.2. The presence of Re in the
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Figure 40: (a) Diffusion potential field of Re during rafting of a γ′-precipitate under a
compressive strain (εa = −0.2%) applied parallel to the (010)-crystallographic
plane; under such a loading condition, the diffusion potential of Re is higher in
the vicinity of the horizontal γ/γ′-interfaces than in the vicinity of the vertical
γ/γ′ interfaces - this favors the flux of Re from the horizontal channels to the
vertical channels. (b) Concentration field (in wt.%); due to low solubility of
Re in the γ′-precipitate and its low diffusivity, Re solutes accumulate in front
of the elongating γ/γ′-interfaces. This effect slows down the the motion of
the interface and consequently the elongation of the γ′-precipitate.

γ-matrix favors the preservation of the quasi-cuboidal morphology. Further simulations
where done at an increased Re content up to 5at.% content, a similar trend in the
reduction of cube→plate-like transition was observed. Our work [54] has already revealed
that the presence of Re enrichment zones in the γ-matrix hinders γ-γ′ interface motion
which lead to a reduction in rafting. Fig 40 shows the rate limiting effect of Re during
rafting. Therefore, the trend observed in Fig. 39 where the rate of rafting decreases as
the Re additions increase can be explained as follows: since diffusion depends on the
composition, the higher the content of Re in the γ-matrix, the slower the γ-γ′ interface
motion. This simulation observation supports the experimental studies of [32, 86] where
an influential role of Re on the microstructure and kinetics during coarsening in Ni-base
superalloys was observed. The simulations reveal that Ru variations have no significant
effect on the cube→plate-like transition. Thus, Ru is not a good replacement for Re in
terms of reducing the degradation of Ni-base superalloys through coarsening. As a result,
in alloy optimization, the Ru content can be freely changed with regard to hindering the
precipitation of topologically close packed phases as done by [36, 35], while maintaining
the rate-limiting influence of Re on coarsening.
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5.4 Conclusion

The coarsening kinetics of γ′-precipitates in single crystalline Ni-based superalloys was
studied using phase-field simulations with inputs from CALPHAD-type thermodynamic
and kinetic databases. Besides the explicit resolution of the γ → γ′ transformations
coupled to multi-component diffusion, the model used in the simulations also accounts
for anisotropic elastic effects which emanate from misfit-strains at the coherent phase
boundary.
Firstly, the temporal evolution of coarsening was discussed in the context of theo-

retical extension of the LSW-theory to multi-component alloys. Simulations were done
to identify the coarsening exponent for elastically stressed Ni-base superalloys with the
explicit inclusion of up to nine chemical components. The simulation studies showed
that an additional influence from the coherency strain leads to a substantially faster
coarsening-evolution compared to the predictions from the LSW-theory. The simula-
tions also reveal that the influence of compositional effects on the coarsening kinetics is
minor compared to the elastic ones.
Secondly, a virtual experiment to determine the influence of varying (Re) and (Ru)

contents on the kinetics of cube to plate-like transition was performed. Consistent with
previous results, we observed that a change in the Re content strongly alters the ki-
netics of cube to plate-like transition. On the contrary, it is found that Ru variations
have no significant effect on the coarsening kinetics, which implies that in further al-
loy developments, the Ru content can be freely optimized with regard to other aspects
e.g., to suppress the formation of the detrimental topologically close packed phases,
while maintaining the rate-limiting influence of Re on coarsening. In general, the model
can be used as a tool to systematically analyze coarsening in elastically stressed multi-
component alloys and thus allows for true alloy design and related sensitivity studies of
elements.
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6 Summary

The general objective of this thesis was to perform computational studies of the mor-
phological evolution and kinetics during aging heat treatment of single crystal Ni-base
superalloys. To that end, an integrated computational tool based on the phase field
method was respectively further developed. As a first step towards the creation of the
computational tool, a step-wise formulation of a quantitative phase-field model for simu-
lating microstructural evolution in multi-component systems was presented in the thesis.
The step-wise development included the formulation and validation of multi-component
thermodynamics, inclusion of anisotropic effects and the application to solid-state trans-
formations in Ni-base superalloys. The computational tool was applied for the prediction
of microstructural changes during the aging heat treatment of single crystal Ni-based su-
peralloys. In addition to that, it was used to analyze the relative contributions of solute
diffusivity and segregation to morphological evolution in chemically complex commercial
single crystal superalloys with up to a dozen alloying elements.
A multi-component phase field model coupled to inputs from the commercial TTNi8

and MobNi1 databases for the thermodynamic and kinetic driving forces, respectively,
was developed. The thermodynamic formulation of the multi-component phase field
model was extended from the binary model based on the grand-potential formalism of
Plapp [58]. As opposed to the well-known Kim-Kim-Suzuki (KKS) model [42], the need
to solve the equilibrium condition at each time step is eliminated. By virtue of the
concentration fields being a function of the diffusion potential, the equilibrium condition
is automatically satisfied in the extended multi-component model. This greatly reduces
the computational costs when it comes to simulating alloys with a multiple number of
elements. The diffusion equations of the extended multi-component model take into ac-
count the cross interactions between all the solutes in the multi-component alloy, even the
slow diffusing ones e.g, Re, W etc. The multi-component model uses a symmetric model
for diffusion which assumes equal diffusion in both phases - which eliminates the need to
incorporate the anti-trapping current in the diffusion equations. The consistency of the
thermodynamic formulation was validated by comparing phase-field simulations to DIC-
TRA sharp interface and ThermoCalc equilibrium simulations. To perform simulations
similar to DICTRA, dimensionless phase-field equations excluding elastic effects were
used in the validation. The DICTRA calculations naturally assume a sharp interface
setting. The results showed an agreement of the time evolution of concentration profiles
and volume fraction obtained by phase field and DICTRA as well as the equilibrium
phase concentrations and volume fraction obtained by phase field and ThermoCalc. The
observed agreement of the phase field simulations to DICTRA and ThermoCalc simula-
tions demonstrated the feasibilty of the phase-field model to efficiently and accurately
predict of inter-diffusion limited transformations in Ni-base superalloys. It should be
noted here that the choice of the interface width in the phase field is critical to the
agreement to the DICTRA model. Provided that the phase-field model operates in a
sharp interface limit, where the interface width is negligibly small compared with the
diffusion length as well as the total length of the system, the resulting growth kinetics
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are in good agreement with the DICTRA simulations.
As a second step towards the creation of the computational tool, different approaches

of incorporating the anisotropies of the interfacial and elastic energies in the phase-
field framework were formulated and tested. The general aim here was to show that
the interfacial energy anisotropy and elastic anisotropy can both lead to the formation
of precipitates with four-fold symmetry. To understand these effects, two independent
studies were done. First, two approaches of including the anisotropy of the interfacial
energy via an orientational dependence of the interfacial energy in phase-field frame-
work: In the first anisotropic formulation, the interface width was considered to vary
with the orientation, while in the second rather new model only the interfacial en-
ergy was chosen to be anisotropic, leading to a constant interface width. Applying to
the quasi–one-dimensional case with a planar interface of fixed orientation, we demon-
strated, that both approaches are suitable for quantitative modeling. However, in this
respect, the varying interface formulation requires extra care due to the intrinsic ki-
netic anisotropy. To study equilibrium shapes, efficient volume conserving Allen-Cahn
dynamics were used, where through a properly chosen time dependence of a spatially
constant chemical potential growth or shrinking of the particle is prohibited. To remove
the ill-posedness of the phase-field equations for high-energy orientations, which do not
belong to the equilibrium shape, the convexification method of Eggleston et al. [16]
was employed. For both anisotropic phase-field formulations, the computed equilibrium
particle shapes, both with and without sharp corners, are in excellent agreement with
the analytic Wulff construction. Special emphasis was given to the numerical imple-
mentation of the discussed anisotropic phase-field models. In this respect, we developed
a new explicit finite-difference scheme using a stagnation grid formulation, due to the
appearance of mixed spatial derivatives in the governing equations. Furthermore, we
demonstrated that this scheme provides sufficient accuracy to be able to simulate even
and odd symmetries as well as high angle rotations of the underlying crystalline ori-
entation. We also discussed a formulation to incorporate the dependence of the total
strain on the phase field. Elastic anisotropy and inhomogeneity were also introduced by
postulating the cubic elastic constants to be dependent on the dimensionless phase field
order parameter. The formulation was similar to Steinbach et al. [69] which assumes
equal elastic stresses in the two bulk phases at the diffuse interface. The formulation
resulted in an Allen-Cahn type second order equation coupled to a set of second order
multi-component diffusion equations. The phase field equation and multi-component
diffusion equations were solved on uniform square grids using explicit finite-difference
methods. The phase field model also incorporated an Jacobi iterative algorithm for
numerically solving the mechanical equilibrium of an elastically inhomogeneous system.
For numerical stability, particular attention was paid to the numerical implementation of
the mechanical equilibrium for the calculation of the displacement fields required to cal-
culate the elastic driving force. The Jacobi relaxation scheme was based on the explicit
finite difference with elastic variables on a staggered grid. The computed equilibrium
cuboidal morphologies and (100)γ ||(100)γ′ orientation relationship was consistent with
the typical “as-heat treated” microstructures of Ni-base superalloys. The sphere to cube
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transition was attributed to the anisotropic growth rates of the interface along the <111>
and <100>-crystallographic directions. The simulations showed that a high interfacial
energy anisotropy and elastic anisotropy can both lead to the formation of precipitates
with four-fold symmetry. However, challenges can arise when both anisotropies are in-
corporated in a model. Including both the anisotropy of the interfacial energy in a phase
field model with elastic effects requires the precise knowledge of the relative weighting
of the contributions from interfacial energy and elastic anisotropies. At the moment,
this is tough to quantify due to the lack of experimental data of the anisotropy of the
interfacial energies in Ni-base superalloys.
Phase field simulations of aging at 1000°C of Ni-base superalloys alloys containing

varying amounts of Re and Ru were done to analyze the influence of anisotropic elastic
effects which emanate from misfit-strains at the coherent phase boundary on the coars-
ening exponent. For quantitative analyses, the simulations were performed using initial
microstructures obtained from SEM photographs of “as-heat treated” samples. To sim-
ulate the aging process, phase field simulations were done with contributions from the
isotropic interfacial energy, misfit and elasticity inhomogeneity. The study was done
for the binary NiAl and CMSX4 and its derivative alloys with up to eight elements. A
degradation of the microstructure via coarsening of the precipitates was observed - the as
“heat treated” cuboidal precipitates morphed into rather irregularly shaped precipitates
with no preferential alignment orientation. The shape of the precipitates is determined
by the elastic interactions with its nearest neighbors. Coalescence of some precipitates
was observed in the early stages before Ostwald ripening became dominant in the later
stages. We studied the applicability of the LSW law [49, 75] to coarsening in alloys
with a coherent elastic misfit. The temporal evolution of coarsening was first studied
in the context of theoretical extension of the LSW-theory to multi-component alloys.
The temporal evolution was then studied in Ni-base superalloys with the explicit inclu-
sion of up to nine chemical components using phase field simulations with and without
elastic effects. Large-scale simulations of the aging process with up to 500 precipitates
were done. The large particle number was particularly necessary to gain good statistics.
The simulation studies showed that an additional influence from the coherency strain
energy leads to a substantially faster coarsening-evolution compared to the predictions
from the LSW-theory which was developed initially for stress-free binary alloys. The
simulations also revealed that the influence of compositional effects on the coarsening
exponent are minor compared to the elastic effects. Due to the relatively high volume
fractions of around 50% and the thin matrix channels, a study was done to analyze if
the multi-component model did not induce spurious coalescence between neighboring
precipitates. To analyze the sensitivity of the phase field model in calculating the coars-
ening exponents, simulations with different relative grid sizes were done. The deviation
in calculated exponents for the different relative grid sizes was found to be no larger
than 3%. We safely concluded that the calculated exponents in the simulations were not
influenced by the choice of the phase-field interface width and grid spacing. As such, the
coalescence observed in the early stages of the coarsening process was essentially a result
of long-range elastic interactions. The coalescence was limited mainly to the early stages
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of the coarsening process, after which Ostwald ripening became the dominant mecha-
nism. Thus, it is legitimate to consider Ostwald ripening to be the dominant effect for
long term studies for the extraction of the coarsening exponents.
Studies were done to analyze the influence of alloying composition on γ′-rafting ki-

netics during exposure at 1000°C of Ni-base superalloys alloys with contributions from
the isotropic interfacial energy, negative misfit, elasticity inhomogeneity and compressive
strain applied along the [100]-direction. Under the compressive load, a transformation
from the as “heat treated” cuboidal γ′-precipitates to plate-like structures aligned along
the elastically soft [010]-direction, i.e., rafting, was observed. Coalescence and elongation
of the precipitates was observed in the early stages before ripening became the dominant
mechanism in the later stages. To characterize the rafting evolution, an integrated tool
to quantify the evolution kinetics of microstructures with anisotropic γ′-precipitates and
also to identify systematically the sensitivity of different elements on resulting morpholo-
gies was developed. The integrated characterization tool used the aspect ratio calculated
on the basis of interface orientations as a quantitative measure. A unique feature of the
integrated characterization tool is that it quantifies the coarsening kinetics of anisotropic
and coalesced precipitates. Firstly, rafting was studied in the commercial CMSX4 and
CMSX6. The simulations revealed that the rafting process is considerably slower in
CMSX4 than in CMSX6. In this context, it was conclusively shown that the presence
of slow diffusing elements in CMSX4, plays a major role in reducing the rate of γ′-
coarsening. The results elucidated that Re slows the interface mobility by accumulating
along the path of the moving interface. The fact that Re is not soluble in the precipitate
and that its diffusivity is low leads to its accumulation along the paths of the moving
γ−γ′ interfaces. The Re accumulation zones hinder the motion of γ−γ′ interfaces which
slows down coarsening. One can conclude that the presence of Re in alloys hinders the
formation of rafts in Ni-base superalloys. Whether raft formation is beneficial or not to
the properties of Ni-base superalloys is still up for discussion in the materials science
field. Secondly, a virtual experiment to determine the influence of varying Re and Ru
contents on the kinetics of cube to plate-like transition was done. The simulation was
done for 12 model superalloys derived from CMSX4. The compositions of the alloys
were systematically varied by stepwise additions of 0–2 at% Re and 0–4 at%Ru at the
expense of the base element Ni. The virtual experiment was done by systematically
quantifying the relative contribution of each solute in the superalloys to rafting. The
motivation to jointly vary the Re and Ru additions emanated from the notion that Ru
could be a replacement for Re to retard the formation topologically close packed phases
during solidification as suggested by Caron [12] and Heckl et al. [35, 36]. Consistent
with previous results, it was observed that a change in the Re content strongly altered
the kinetics of cube to plate-like transition. However, it was found that Ru variations
have no significant effect on the coarsening kinetics, which implies that in further alloy
developments, the Ru content can be freely optimized with regard to other aspects e.g.,
to suppress the formation of the detrimental topologically close packed phases, while
maintaining the rate-limiting influence of Re on coarsening. Our studies allow a system-
atic quantification of the relative contribution of each solute in a superalloy to rafting.
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This is the first step towards a simulation-based design and optimization of alloy com-
positions. The sensitivity and numerical techniques presented in this work can be used
to develop composition-structure correlations in Ni-base superalloys.
The model developed in this thesis can be used as a tool to systematically opti-

mize several elements in parallel for a desired microstructure. The advantages of the
phase-field method where highlighted in that it allows to visualize how the different
phenomena discussed in the literature evolve in time. Furthermore, it allows for the
analysis of the changing influence of individual contributions to material degradation.
The multi-component phase-field model can be further extended by coupling it through
some interface to thermodynamic and kinetic databases to obtain the relevant driving
forces.
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7 Zusammenfassung

Turbinenschaufeln, die in heißen Regionen von Luft- und Raumfahrt oder in industriellen Gasturbinen
benutzt werden, werden normalerweise als gegossene, einzelne kristalline Teile hergestellt. Allerdings
ist das Abbauverhalten von den jeweils entstandenen Einzelkristall-Nickelbasis-Superlegierungen im-
mer noch sehr komplex und beinhaltet eine Vielzahl von sehr verschiedenen mikroskopischen Effekten,
selbst wenn Korngrenzen ausgeschlossen sind [R. Reed: Cambridge University Press, (2006)]. Einer
dieser Effekte ist die diffusionsbegrenzte Vergröberung der γ′-Ausscheidungen. Langzeit-Alterung oder
Kriechbelastung entlang der <100> kristallographischen Orientierung resultiert in der anisotropen
Aufrauung der γ′-Ausscheidungen. Am Ende enthält die Mikrostruktur große, unregelmäßig geformte
oder tellerartige Ausscheidungen, die entweder parallel (P-Typ Platten) oder senkrecht (N-Typ Plat-
ten) zur Belastungsrichtung ausgerichtet sind. Dieses Verhalten ist nachteilig für die Eigenschaften
dieser Stoffe, da ihre vorrangigen Eigenschaften von der Größe, der Morphologie und der Verteilung
der γ′-Ausscheidungen ausgehen. Um diese Stoffe effizient zu konzipieren und zu optimieren sollte
das Phänomen der Vergröberung im Detail bekannt sein. Vor diesem Hintergrund ist das allge-
meine Ziel dieser Arbeit, einen integrierten rechentechnischen Ansatz zu entwickeln, mit dem man
die morphologische Evolution in Einzelkristall-Nickelbasis-Superlegierungen simulieren kann. In einem
ersten Schritt, wurde dazu ein Multikomponenten-Phasenfeldmodell formuliert, welches einem groß-
kanonischen Potential-Formalismus basierend auf dem binären Model von Plapp [Phys. Rev. E,
84: 031601 (2011)] folgt. Die dafür erforderliche Gesamtheit an thermodynamischen und kinetis-
chen Inputdaten sind aus den kommerziell verfügbaren CALPHAD-Datenbanken TTNi8 und MobNi1
nach einer eigens für diesen Anlass entwickelten Schnittstelle gewonnen worden. Der thermodynamis-
che Ansatz des Modells wurde durch Vergleiche zu ThermoCalc Gleichgewichtsberechnungen und
zu DICTRA überprüft. Die mechanischen Effekte sind durch die Allen-Cahn Gleichung basierend
auf Steinbach [Physica D, 217, 153 (2006)] und Fleck et al. [Philos. Mag., 90, 265 (2010)] in
das Phasenfeldmodell integriert worden. Morphologische Entwicklung und Kinetik in Einzelkristall-
Nickelbasis-Superlegierungen wurden untersucht. Um Einblicke in optimierte Legierungen zu erhalten,
wurde ein systematisches, rechnerisches Maß in das Modell integriert, mit dem man die Entwicklung
von anisotropen Mikrostrukturen beurteilen und verfolgen kann. Zuvor haben Heckl et al. [Metal.
and Mater. Trans. A, 41, 202 (2010)], mit Fokus auf dem Erstarrungsverhalten, Ruthenium (Ru) als
einen möglichen Kandidaten diskutiert, der Rhenium (Re) für die nächste Generation von Nickelbasis-
Superlegierungen ersetzen könnte. Wir führten virtuelle Experimente des Vergröberungsverhaltens in
Legierungen, die Re und Ru enthalten, durch, indem wir Phasenfeldsimulationen angewandt haben.
Die Simulationen zeigten, dass die Zersetzung der γ-γ′- Mikrostruktur durch Vergröberung wesentlich
langsamer in Superlegierungen ist, die Re enthalten. Wir beobachteten, dass ein Zuwachs des Re-
Inhalts die γ′-Vergröberungskinetik start reduziert. Die Simulationsergebnisse zeigen, dass das Re, als
das am langsamsten diffundierendes Element, das Fortschreiten der Grenzfläche, durch eine Akkumu-
lation des Elementes vor der Phasengrenze ausbremst. Die Tatsache das Re in den Ausscheidungspar-
tikeln nicht löslich ist sowie auch die niedrige Diffusivität können so den Vergröberungsprozess aus-
bremsen. Die Experimente erlaubten eine systematische Quantifizierung des relativen Beitrags jedes
gelösten Stoffs in einer Superlegierung zu einer Vergröberung. Dies kann als der erste Schritt zu
einem simulationsbasierten Design und der Optimierung von der Zusammensetzung von Legierungen.
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8 Appendix A: Model equations and simulation algorithm

Here, we summarize the model that is the basis for the simulation studies in chapters
2-5 of this PhD thesis. The model consists of the phase-field equation (188), the diffu-
sion potential equations (189) and equations for the mechanical equilibrium (190). The
evolution equations are coupled to each other via the phase field order parameter φ(~x, t).
A detailed description of the coupling of the phase field φ(~x, t) to the diffusion potential
fields µi is given in chapter 2. The coupling is further extended in chapter 3 by includ-
ing elastic effects via the phase field dependent eigenstrain ε0

ik(φ) and elastic constants
Cikl(φ). The evolution equations are obtained from a grand-potential functional through
variational principles. The explicit phase field equation is given as

∂φ

∂t
= K

(
∇2φ− 2

ξ2 g
′
dw(φ) (188)

− λ

3σξh
′(φ)

∑
i

1
2
∑
j

(χγij − χ
γ′

ij )µj − (Aγi −A
γ′

i )

µi + (Bγ −Bγ′)


− λ

3σξh
′(φ)

(
∂ωel
∂h

)
The equations for the evolution of a set of n diffusion potential fields,

∂µi
∂t

=
∑
j

Dij

(
∇2µj

)
− ∆Ai

χi

∂h

∂φ

∂φ

∂t
, (189)

The diffusion potential has a source term that includes the phase field term ∂φ/∂t. The
phase field equation (188) and diffusion equations (189) are solved on uniform square
grids using explicit finite-difference methods. Second order discretization schemes are
used for the spatial derivatives and a first order scheme is used for the time derivatives.
The discretization of these evolution equations is given in (201) and (202). Periodic
boundary conditions are applied for the fields φ and µi in all directions. It is always
assumed that the system is locally at the interface at equilibrium

δΩ
δuk

=
∑
k

∂σik(φ)
∂xk

= 0, (190)

The mechanical equilibrium is solved using a Jacobi relaxation (Eqs. (191) and (192))
based on the explicit finite difference with elastic variables on a staggered grid. On the
staggered grid, eigenstrain and elastic constants are defined on the grid points and the
displacement in between them (see Fig 16). Periodic boundary conditions are applied
for the ux and uy displacement fields in all directions. The mechanical equilibrium (190)
is solved independently from the phase field (188) and the set of diffusion equations
(189). The mechanical equilibrium is solved first in order to obtain the displacement
fields and the corresponding elastic strains. The elastic strains are then used to calculate
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the elastic driving force which are then used in Eqs. (188) and (189).

Algorithm based on Jacobi relaxation

We now explain in detail the algorithm used for the simulation studies in this work. The
algorithm works as follows:
(1) Initialization of new run: there are two types of initialization modes (i) “read-

ing in” an existing phase field φ from old simulations (ii) describing a new phase field
configuration.
(2) For the given phase field configuration, the mechanical equilibrium (Eq. (190)) is

solved. The mechanical equilibrium is solved iteratively by means of a Jacobi relaxation
using a staggered grid (Eqs. (191) and (192)) to obtain the displacement fields ux and
uy, respectively. At the n time step, the algorithm
(a) calculates the initial solution of

∂ux
∂t∗

=
(
C11(i+ 1, j)([ux(i+ 1, j)− ux(i, j)]− ε0

xx(i+ 1, j))

−C11(i, j)([ux(i, j)− ux(i− 1, j)]− ε0
xx(i, j))

+λ(i+ 1, j)([uy(i+ 1, j)− uy(i+ 1, j − 1])− ε0
yy(i+ 1, j))

−λ(i, j)([uy(i, j)− uy(i, j − 1)]− ε0
yy(i, j))

−λ(i+ 1, j)ε0
zz(i+ 1, j) + λ(i, j)ε0

zz(i, j)
+2µ(i+ 1/2, j + 1/2)([ux(i, j + 1)− ux(i, j)]
−ε0

xy(i+ 1/2, j + 1/2))− 2µ(i+ 1/2, j − 1/2)([ux(i, j)− ux(i, j − 1)]

−ε0
xy(i+ 1/2, j − 1/2))

)
/∆x2, (191)

for the ux displacement field and

∂uy
∂t∗

=
(
λ(i, j + 1)([ux(i, j + 1)− ux(i− 1, j + 1)]− ε0

xx(i, j + 1))

−λ(i, j)([ux(i, j)− ux(i− 1, j)]− ε0
xx(i, j))

+C11(i, j + 1)([uy(i, j + 1)− uy(i, j)]− ε0
yy(i, j + 1))

−C11(i, j)([uy(i, j)− uy(i, j − 1)]− ε0
yy(i, j))

−λ(i, j + 1)ε0
zz(i, j + 1) + λ(i, j)ε0

zz(i, j))
+(2µ(i+ 1/2, j + 1/2)([uy(i+ 1, j)− uy(i, j)]
−ε0

xy(i+ 1/2, j + 1/2))− 2µ(i− 1/2, j + 1/2)([ux(i, j)− ux(i− 1, j)]

−ε0
xy(i− 1/2, j + 1/2))

)
/∆x2, (192)

and for uy displacement field, where i, j are spatial indices. Here, t∗ is the pseudo time.
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The relaxation scheme has the property that

∂ui
∂t∗

=
∑
k

∂σik(φ)
∂xk

= 0, (193)

as t∗ → ∞ which satisfies the condition of the mechanical equilibrium.
(b) refines the solution of Eq. (191) and (192) until the residuum is less than a given

value η (typically, less than 5×10−2 for this work). For the 2D case, we use the L2 norm
in defining the residuum: let the total number of grid points in the x and y-directions be
M and N , respectively. The residuum of the given simulation configuration at a given
pseudo time t∗ is calculated as

Residuum =
ˆ
V
dV

(∑
i

fabs∂ui
∂t∗

)
1

MN
, (194)

Since this is an iterative method, it is possible to use the displacements from the previous
time step as the starting point and thus expedite the iterative refinement procedure of the
solution. Thus, in the implementation, from the second time step onwards, the solution
from the previous step is used as the starting point for refinement of the solution.
(3) Once the relaxed displacement fields ux and uy are found;
(i) the corresponding elements of the strain tensor at the n time step are calculated

as
εnxx(i, j) = (unx(i, j)− unx(i− 1, j))/∆x, (195)

εnyy(i, j) = (uny (i, j)− uy(i, j − 1))/∆x, (196)

εnxy(i, j) = 1
2∆x

(
unx(i, j + 1)− unx(i, j) + uny (i+ 1, j)− uny (i, j)

)
. (197)

(ii) the elements of the strain tensor εxx, εyy and εxy are then used to calculate the
elastic driving force for phase transformation
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∂ωel
∂h

= 0.5∆C11
(
(εnxx(i, j)− [1− hcc] ε0

xx)(εnxx(i, j)− [1− hcc] ε0
xx)

+(εnyy(i, j)− [1− hcc] ε0
yy)(εnyy(i, j)− [1− hcc] ε0

yy)

− ([1− hcc] ε0
zz)([1− hcc] ε0

zz)
)

+ ∆λ
(
(εnxx(i, j)− [1− hcc] ε0

xx)

(εnyy(i, j)− [1− hcc] ε0
yy) + (εnyy(i, j)− [1− hcc] ε0

yy)

(− [1− hcc] ε0
zz) + (εnxx(i, j)− [1− hcc] ε0

zz)(− [1− hcc] ε0
zz)
)

+∆µ
(
(εnxy(i, j)− [1− hcc] ε0

xy)(εnxy(i, j)− [1− hcc] ε0
xy)

−([1− hcc] ε0
xz)([1− hcc] ε0

xz)− ([1− hcc] ε0
yz)([1− hcc] ε0

yz)
)

+(C11(i, j)
(
(εnxx(i, j)− [1− hcc] ε0

xx)
(
ε0
xx

)
+ (εnyy(i, j)− [1− hcc] ε0

yy)
(
ε0
yy

)
−([1− hcc] ε0

zz)
(
ε0
zz

))
+ λ(i, j)

(
(εnxx(i, j)− [1− hcc] ε0

xx)
(
ε0
yy + ε0

zz

)
+(εnyy(i, j)− [1− hcc] ε0

yy)
(
ε0
xx + ε0

zz

)
−([1− hcc] ε0

zz)
(
ε0
xx + ε0

yy

))
+2µ(i, j)

(
(εnxy(i, j)− [1− hcc] ε0

xy)
(
ε0
xy

)
− ([1− hcc] ε0

xz)(ε0
xz)

− ([1− hcc] ε0
yz)(ε0

yz)
)
, (198)

where ∆C11 = Cγ11 − Cγ’
11, ∆λ = λγ − λγ’, ∆µ = µγ − µγ’, hcc = h(φ(i, j)) and the

discretized elastic constants and eigenstrain are given in Eqs. (137)-(140).
(iii) Using the elastic driving force calculated in (198), the phase field and diffusion

potential fields are calculated. The phase field φ and diffusion potential fields µi are
calculated at the time step n+ 1 as

φn+1(i, j) = φn(i, j) + ∆φn(i, j)
∆t ∆t, (199)

µn+1(i, j) = µn(i, j) + ∆µn(i, j)
∆t ∆t, (200)
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where

∆φn(i, j)
∆t = K

∆x2 (φn(i+ 1, j) + φn(i− 1, j)) (201)

+ K

∆x2 (φn(1, j + 1) + φn(i, j − 1))

− K

∆x2 (4φn(i, j))− 2
ξ2 g
′
dw(φn)

− K

3σξh
′(φn)

∑
i

1
2
∑
j

∆χijµj −∆Ai

µi + ∆B


− K

3σξh
′(φn)

(
∂ωel
∂h

)
,

∆µn(i, j)
∆t =

∑
j

Dij

∆x2 (µn(i+ 1, j) + µn(i− 1, j)) (202)

+
∑
j

Dij

∆x2 (µn(1, j + 1) + µn(i, j − 1))

−
∑
j

Dij

∆x2 (4µn(i, j))− h′ (φn) ∆Ai
χi

∆φn(i, j)
∆t .

are the spatial derivatives of Eq. (188) and (189), respectively.
(5) The steps (2)-(3) are repeated to move in time for the given number of time steps.

9 Appendix B: Coupling of eigenstrain to concentration fields

We now give a possible extension of the formulation for incorporating misfit strain effects
presented in section 3.2.1. The idea here is to extend the Eigenstrain-Phasefield
coupling (EP11) coupling for the inclusion of misfit-strain effects in Eqs. (101-165), to a
more physically motivated coupling of the eigenstrain to some weighted average of the
local concentrations. Then, by giving the slow diffusing elements - a relatively large
weight (because of there relatively large atomic volume), a rather different mechanical
background arises, which results from the nontrivial distribution of misfit strains related
to the large depletion and accumulation zones of solutes. We denote the possible model

11Eigenstrain-Phasefield coupling
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extension as Eigenstrain-Phasefield-Concentration coupling (EPC12),

ε0
jk(φ, c) = (1− h(φ))

ε0
jk +

∑
i

∂ε0,γ′

jk

∂µi
(µi − µeqi )

 (203)

The coupling is done via the application of Vegard’s law, telling that the local equilibrium
volume of the elementary cell depends linearly on the local concentration. The Vegard’s
law is an approximate empirical rule which holds that a linear relation exists, at constant
temperature, between the crystal lattice constant of an alloy and the concentrations of
the constituent elements [12]. Consistent with Vegard’s law, the lattice parameters at
room temperature from the γ and γ′ lattice parameters that are estimated using the
formulas aγ = aNi + ∑

Vici and aγ
′ = aNi3Al + ∑

V ′i ci where aNi and aNi3Al are the
lattice parameters of pure Ni and pure Ni3Al, respectively. The values are aNi = 3.524
and aNi3Al = 3.57. Vi and V ′i are the Vegard’s coefficients in pure Ni and Ni3Al
respectively and, ci and c′i are the atomic fractions of species i in γ and γ′ phases. For a
multi-component system, the lattice parameters at room temperature for the precipitate
phase is estimated as a sum of the chemical contributions [12]

aγ(Ȧ) = 3.524 + 0.0196cco + 0.110ccr + 0.478cmo + 0.444cw + 0.441cre
+0.3125cru + 0.179cal + 0.422cti + 0.7cta + 0.7cNb, (204)

aγ
′(Ȧ) = 3.57− 0.04cco − 0.04ccr + 0.208cmo + 0.194cw + 0.262cre

+0.133cru + 0.5cta + 0.258cti + 0.46cNb. (205)

From here, we can calculate the eigenstrain as

ε0
ik = aγ

′

0.5 (aγ′ + aγ)δij . (206)

We postulate the elastic constants a linear mixture

Cijkl(φ) = h(φ)Cγijkl + (1− h(φ))Cγ
′

ijkl. (207)

The elastic energy contribution for this formulation becomes

ωel(φ, ~u,c) = 1
2
∑
iklm

(εij − ε0
ij(φ, c))Cijkl(φ)(εkl − ε0

kl(φ, c)). (208)

Inserting Eq. (208) into (92) gives the elastic energy integrated over the whole volume
for the EPC coupling. For the EPC coupling, the phase-field equation becomes

12Eigenstrain-Phasefield-Concentration coupling
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∂φ

∂t
= K

(
∇2φ− 2

ξ2 g
′
dw(φ) (209)

− λ

3σξh
′(φ)

∑
i

1
2
∑
j

(χγij − χ
γ′

ij )µj − (Aγi −A
γ′

i )

µi + (Bγ −Bγ′)


− λ

3σξh
′(φ)

(∑
iklm

(
∆Ciklm(εik − ε0

ik(φ, c))(εlm − ε0
lm(φ, c))

))
.

The resulting diffusion equations have an elastic contribution

∂µi
∂t

=
∑
j

~∇
(
Mij

~∇µj
)
− ∆Ai

χi

∂h

∂φ

∂φ

∂t
(210)

−
∑
j

~∇Mij
~∇
(∑
iklm

∂ε0
ik(φ, c)
∂µj

(
Ciklm(φ)[εlm − ε0

lm(φ, c)]
))

.

We assume that the contribution ∂ε0,ph
jk /∂µi in (210) for each solute i to correspond as

the Vegard’s coefficients given in (205). The mechanical equilibrium

∑
k

∂σik(φ, c)
∂xk

= 0. (211)

has to be solved for the elastic variables.

Comparison of EP and EPC

In this section, the two methods of coupling mechanical effects in the phase field model
are compared; first is the coupling of the eigenstrain to the phase field (Eqs. (101-
165)) denoted as EP and second is the extension by coupling to the concentration fields
(Eqs. (203-211)) denoted as EPC. The two formulations are compared via simulations
of the evolution of a single precipitate in a matrix at 1273.15 K. To test the consistency
of the models, simulations are done for four simulation domain sizes denoted as 1 for
251×2514x, 2 for 351×3514x, 3 for 451×4514x and 4 for 551×5514x where, 4x = 8.6
nm. The composition of the CMSX4 given in Table 3 is used for the simulations.
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Figure 41: Simulation of γ′-growth using EP (Eqs. (101-165)) and system number 2 of
size of 351×3514x at t=0, 2.5, 4.5 and 9.0 hr. The color depicts the elastic
driving force for phase transformation.

Figure 42: Simulation of γ′-growth using EPC (Eqs. (203-211)) and system number 2 of
size of 351×3514x at t=0, 3.5, 6.5 and 11 hr.

The Figs 41 and 42 show the evolution of a precipitate using EP and EPC, respec-
tively. In both cases, a sphere to cube transition is observed. The color depicts the
elastic driving force for phase transformation. The elastic driving force along the <111>
directions is larger than along the <100> directions due to the increasing contribution
from the coherent strain energy. The leads anisotropic growth rates <111> and <100>
directions which gradually transforms the precipitate morphology from a sphere to a
cube. The influence of mechanics on the morphology has been explained in detail in
subsection 3.2.2.

To test the consistency of the models, simulations are done using the four aforemen-
tioned system sizes. The behavior of γ to γ′ transformation does not deviate with a
change in domain size. The equilibrium volume fraction and morphologies are similar
for different simulation domain sizes. The equilibrium volume fraction obtained by EP
is 53% and 49% by EPC. This difference is due to different mechanical effects in the two
models. It takes more CPU time for EPC to reach the equilibrium volume fraction than
EP. For example, it takes 18 hours for EPC with a simulation domain size of 551×5514x
to reach the equilibrium volume fraction as compared to 13.5 hours for EP.
The plot in Fig 43 shows a comparison of the CPU time required to reach the equi-
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Figure 43: CPU time to reach the equilibrium precipitate volume fraction for different
system sizes for EP (in blue) and EPC (in red). The CPU time for any system
size to reach equilibrium is faster for EP than EPC.

librium volume fraction for simulations done with EP (in blue) and EPC (in red) for
different system sizes. The difference in the CPU time to equilibrium is attributable to
the relaxation of the elastic fields. This difference is due to the number of iterations
in relaxation loop needed for refinement of the solution to Eq. (193) until η < 5× 10−2.
The number of iterations for convergence, depends mainly on the ratio of the elastic
constants between phases and to a lesser extent the eigenstrain. The larger the differ-
ence the between the elastic constants between the phases, the greater the number of
iterations required. Since the coupling of elastic constants is similar for both EP and
EPC, the difference in the number iterations for convergence is due to the coupling of the
eigenstrain. The different mechanical effects lead to different relaxation times which lead
to different CPU times to equilibrium. The similarity in the final stage morphologies
motivate the application of the EP formulation in the following. The EPC is suitable for
problems where stationary evolution is crucial such as in strongly metastable conditions.
Details for such situations need to be elaborated further in more detailed studies.
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