
A Strictly Feasible Sequential Convex

Programming Method

Von der Universität Bayreuth

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

vorgelegt von

Sonja Lehmann

geboren in Erlangen

1. Gutachter: Prof. Dr. Klaus Schittkowski

2. Gutachter: Prof. Dr. Michael Stingl

Tag der Einreichung: 9. Juni 2011

Tag des Kolloquiums: 18. November 2011

Fakultät für Mathematik, Physik und Informatik
Angewandte Informatik VII

Abstract

In free material optimization (FMO), one tries to find the best mechanical structure
by minimizing the weight or by maximizing the stiffness with respect to given load
cases. Design variables are the material properties represented by elasticity tensors
or elementary material matrices, respectively, based on a given finite element dis-
cretization. Material properties are as general as possible, i.e., anisotropic, leading to
positive definite elasticity tensors, which may be arbitrarily small in case of vanishing
material. To guarantee a positive definite global stiffness matrix for computing design
constraints, it is required that all iterates of an optimization algorithm retain positive
definite tensors. Otherwise, some constraints, e.g., the compliance, cannot be evalu-
ated and the algorithm fails.

FMO problems are generalizations of topology optimization problems. The goal of
topology optimization is to find the stiffest structure subject to given loads and a
limited amount of material. In contrast to FMO the material is explicitly given and
cannot vary. Based on a finite element discretization, in each element it is decided
whether to use material or not. The regions with vanishing material are interpreted
as void. The resulting optimization problem can be solved by numerous efficient non-
linear optimization methods, for example sequential convex programming methods.

Sequential convex programming (SCP) formulates separable and strictly convex non-
linear subproblems iteratively by approximating the objective and the constraints.
Lower and upper asymptotes are introduced to truncate the feasible region. Due to
the special structure, the resulting subproblems can be solved efficiently by appropri-
ate methods, e.g., interior point methods. To ensure global convergence, a line search
procedure is introduced. Moreover, an active set strategy is applied to reduce compu-
tation time.

The iterates of SCP are not guaranteed to be inside the corresponding feasible region
described by the constraints. As a consequence it is not able to solve free material
optimization problems as the compliance function is only well-defined on the feasible
region of some of the constraints.

We propose a modification of a SCP method that ensures feasibility with respect to a
given set of inequality constraints. The resulting procedure is called feasible sequential
convex programming method (SCPF). SCPF expands the resulting subproblems by
additional nonlinear constraints, that are passed to the subproblem directly to en-
sure their feasibility in each iteration step. They are referred as feasibility constraints.
In addition, other constraints may be violated within the optimization process. As
globalization technique a line search procedure is used to ensure convergence. The

The research was supported by FP-6 STREP 30717 PLATO-N (Aeronautics and Space),
PLATO-N - A PLAtform for Topology Optimisation incorporating Novel, Large-Scale, Free-Material
Optimisation and Mixed Integer Programming Methods

ii

resulting subproblems can be solved efficiently taking the sparse structure into ac-
count. Moreover, semidefinite constraints have to be replaced by nonlinear ones, such
that SCPF is applicable. SCPF successfully solved FMO problems with up to 120.000
variables and 60.000 constraints. Within a theoretical analysis global convergence of
SCPF is shown for convex feasibility constraints.

The research was supported by FP-6 STREP 30717 PLATO-N (Aeronautics and Space),
PLATO-N - A PLAtform for Topology Optimisation incorporating Novel, Large-Scale, Free-Material
Optimisation and Mixed Integer Programming Methods

Zusammenfassung

Ziel dieser Dissertation ist die Entwicklung eines effizienten Lösungsverfahrens für
komplexe Optimierungsprobleme aus der Freien Materialoptimierung. Dabei han-
delt es sich um eine spezielle Problemstellung aus dem Bereich der mechanischen
Strukturoptimierung. Aus einer vorgegebenen Menge an Material soll die stabilste
Struktur eines Objekts, z.B. eines Bauteils, berechnet werden. Zu den Anwendun-
gen zählen unter anderem der Fahrzeug- und Flugzeugbau. Die Variablen sind Elas-
tizitätstensoren, die die Materialeigenschaften des zu optimierenden Objekts in je-
dem Element einer vorgegebenen Finite Elemente Approximation widerspiegeln. Diese
können durch eine symmetrische 3×3 Matrix bzw. 6×6 Matrix dargestellt werden. Um
den physikalischen Gesetzmäßigkeiten zu genügen, müssen diese Matrizen bestimmte
mathematische Bedingungen erfüllen. Im Gegensatz zu anderen Problemklassen in
der Strukturoptimierung sind die Materialeigenschaften nicht vorgegeben. Stattdessen
ist die Wahl des Materials Teil der Optimierung, so dass in jedem Element unter-
schiedliches Material gewählt werden kann. Die Freie Materialoptimierung ist eine
Verallgemeinerung der Topologieoptimierung. Bei der Topologieoptimierung ist das
Material zur Bestimmung der optimalen Struktur für ein beliebiges Objekt unter Ein-
fluss von verschiedenen Kräften vorgegeben. Im Gegensatz zur Freien Materialopti-
mierung existieren für die Topologieoptimierung geeignete effiziente Lösungsverfahren,
die Problemstellungen mit einer großen Anzahl von Variablen und Nebenbedingun-
gen lösen können. Da die Optimierungsvariablen für Probleme der Freien Materialop-
timierung aus Elastizitätstensoren bestehen, können die bekannten effizienten Ver-
fahren der Topologieoptimierung nicht in der Freien Materialoptimierung eingesetzt
werden. Daher wird eine Weiterentwicklung des Optimierungsverfahrens ’Sequential
Convex Programming’ (SCP) vorgestellt.

In der ursprünglichen Form zählt das SCP Verfahren zu den effizientesten Lösungsan-
sätzen für Probleme der Topologieoptimierung. Der Algorithmus approximiert ein all-
gemeines nichtlineares Optimierungsproblem durch eine Folge streng konvexer, se-
parabler Teilprobleme. Diese Teilprobleme lassen sich auf Grund ihrer Eigenschaften
und ihrer Struktur effizient lösen. Iterativ wird aus der Lösung eines vorangegangenen
Teilproblems ein neues formuliert. Unter bestimmten Voraussetzungen konvergiert die
Folge der Lösungen der Teilprobleme gegen die optimale Lösung des Ausgangspro-
blems. Um globale Konvergenzaussagen zu erhalten, wird eine Schrittweitensteuerung
angewendet, die eine Verbesserung der aktuellen Iterierten garantiert.

Das SCP Verfahren ist für die Freie Materialoptimierung nicht anwendbar, weshalb
der Algorithmus umfassend weiterentwickelt werden muss. Da das ursprüngliche Ver-
fahren semidefinite Nebenbedingungen nicht berücksichtigen kann, müssen diese Ne-
benbedingungen geeignet umformuliert werden. Von zentraler Bedeutung für Pro-

The research was supported by FP-6 STREP 30717 PLATO-N (Aeronautics and Space),
PLATO-N - A PLAtform for Topology Optimisation incorporating Novel, Large-Scale, Free-Material
Optimisation and Mixed Integer Programming Methods

iv

bleme aus der Freien Materialoptimierung ist es, dass bestimmte Nebenbedingungen
in jedem Iterationsschritt erfüllt sind, da gewisse Funktionen und deren Gradienten
nur dann berechnet werden können. Das in dieser Arbeit entwickelte, strikt zulässige
SCP Verfahren (SCPF, für Feasible Sequential Convex Programming) garantiert die
Zulässigkeit einer Menge von konvexen Nebenbedingungen in jeder Iteration. Diese
Nebenbedingungen werden im Folgenden als strikt zulässige Nebenbedingungen be-
zeichnet. SCPF integriert die strikt zulässigen Nebenbedingungen direkt in das Teil-
problem, während die übrigen Nebenbedingungen und die Zielfunktion durch konvexe,
separable Funktionen approximiert werden. Dadurch wird sichergestellt, dass alle Ite-
rationspunkte innerhalb der zulässigen Menge liegen, die von den strikt zulässigen
Nebenbedingungen beschrieben wird. Durch die Einführung zweier flexibler Asymp-
toten wird der zulässige Bereich der Teilprobleme zusätzlich eingeschränkt. Das re-
sultierende Teilproblem besitzt eine eindeutige Lösung und kann aufgrund seiner
besonderen Struktur effizient mit Inneren Punkte Methoden gelöst werden. Das Ver-
fahren SCPF wurde auf Probleme der Freien Materialoptimierung angewendet und
hat Probleme mit bis zu 120.000 Variablen und 60.000 Nebenbedingungen erfolgreich
gelöst. Außerdem können globale Konvergenzeigenschaften für convexe strikt zulässige
Nebenbedingungen gezeigt werden.

The research was supported by FP-6 STREP 30717 PLATO-N (Aeronautics and Space),
PLATO-N - A PLAtform for Topology Optimisation incorporating Novel, Large-Scale, Free-Material
Optimisation and Mixed Integer Programming Methods

CONTENTS

List of Symbols . vii

1. Introduction . 1

2. Basic Theory of Nonlinear Optimization 11

3. Feasible Sequential Quadratic Optimization Methods 17

3.1 Modified Method of Topkis and Veinott 18

3.2 A feasible SQP method by Panier and Tits 20

3.3 A feasible SQP method by Herskovits and Carvalho 22

3.4 A feasible SQP method by Panier and Tits 24

3.5 A feasible SQP method by Lawrence and Tits 26

3.6 A feasible SQP method by Zhu, Zhang and Jian 28

3.7 A feasible SQP method by Jian and Tang 31

3.8 A feasible SQP method by Zhu . 33

3.9 A feasible SQP method by Zhu and Jian 34

3.10 A feasible SQP method by Hu, Chen and Xiao 37

4. Sequential Convex Programming Methods 39

4.1 Method of Moving Asymptotes . 39

4.2 The SCP-Method of Zillober . 44

4.3 The Globally Convergent Method of Moving Asymptotes 51

5. A Strictly Feasible Sequential Convex Programming Method 55

5.1 Feasible Sequential Convex Programming 55

5.2 Global Convergence . 59

5.2.1 Notation and Analysis . 59

5.2.2 Preliminary Results . 63

5.2.3 Convergence Theorems . 80

6. Free Material Optimization . 109

6.1 Theory and Problem Formulation . 109

6.2 Reformulation according to Benson and Vanderbei 115

6.3 Reformulation Based on Determinants 118

vi CONTENTS

6.4 Evaluations of Functions and Derivatives 120

7. Numerical Implementation and Results 123

7.1 Implementation . 123

7.1.1 Active Set Strategy . 123

7.1.2 Linear Constraints . 124

7.1.3 Infeasible Subproblems . 125

7.1.4 Line Search Procedure . 126

7.1.5 Stopping Criteria . 127

7.2 Program Organization . 128

7.3 Numerical Results . 130

7.3.1 Free Material Optimization . 130

7.3.2 Application in Petroleum Engineering 141

8. Conclusion and Outlook . 147

9. Appendix . 149

9.1 Program Documentation . 149

Bibliography . 157

Acknowledgement . 165

Erklärung . 167

LIST OF SYMBOLS

SCPF feasible sequential convex programming method, 1

FMO free material optimization, 1

n number of primal variables, 1

x ∈ Rn primal variable of dimension n, 1

f (x) objective function, 1

me number of equality constraints, 1

cj (x) , j = 1, . . . ,me equality constraints, 1

mc number of equality and inequality constraints, 1

cj (x) , j = me + 1, . . . ,mc inequality constraints, 1

mf number of feasibility constraints, 1

ej (x) , j = 1, . . . ,mf feasibility constraints, 1

F feasible set given by the feasibility constraints ej (x), 1

NSDP nonlinear semidefinite programming, 2

l number of load cases, 2

fj, j = 1, . . . , l set of loads, 2

K (E) global stiffness matrix, 2

m number of finite elements, 2

Ei, i = 1, . . . ,m elasticity matrices, 2

SCP sequential convex programming method, 2

CONLIN convex linearization method, 2

MMA method of moving asymptotes, 2

SQP sequential quadratic programming method, 3

GCMMA globally convergent method of moving asymptotes, 3
(k) iteration index, 5

d(k) ∈ Rn+mf+mc search direction with respect to primal and dual vari-
ables in iteration k (SQP and FSQP: with respect to
primal variables only, i.e., d(k) ∈ Rn.), 5

θ > 0 positive parameter to define feasible direction, 6

σ ∈ (0, 1] stepsize to yield a descent in the merit function, 6

viii List of Symbols

y ∈ Rmc+mf dual variable, 7

IPM interior point method, 7

F feasible region, 11

J (x) set of active constraints, 12

L (x, y) Lagrangian function, 12

yc ∈ Rmc dual variables with respect to constraints cj (x) ,
j = 1, . . . ,mc, 12

ye ∈ Rmf dual variables with respect to constraints ej (x) ,
j = 1, . . . ,mf , 12

H(k) = H
(
x(k), y(k)

)
Hessian of Lagrangian with respect to x or adequate
approximation in iteration k, 13

LICQ linear independence constraint qualification, 13

KKT Karush-Kuhn-Tucker first order optimality conditions,
13

z(k) ∈ Rn primal solution of the subproblem in iteration k, 14

v(k) ∈ Rmc+mf dual solution of the subproblem in iteration k , 14

r ∈ (0, 1) positive parameter used in Armijo condition, 14

FSQP feasible sequential quadratic programming method, 17

QP quadratic programming, 17

d
(k)
0 ∈ Rn solution of QP in iteration k, 17

J(k) = J
(
x(k)
)

set of active constraints in iteration k, 18

t vector of weighting factors of appropriate size, 19

AJ(k)

(
x(k)
)
∈ Rn×|J(k)| matrix of gradients of active constraints with respect to

J(k) in iteration k, 22

eJ(k)

(
x(k)
)
∈ R|J(k)| vector of active constraints with respect to J(k) in itera-

tion k, 22

1 vector of ones of appropriate size, 23

p0 vector of zeros of appropriate size, 29

Ui, i = 1, . . . , n upper asymptote for primal variable xi, i = 1, . . . , n, 40

Li, i = 1, . . . , n lower asymptote for primal variable xi, i = 1, . . . , n, 40

I
(k)
+ index set of nonnegative partial derivatives of objective

in iteration k, 40

I
(k)
− index set of negative partial derivatives of objective in

iteration k, 40

f (k) (x) MMA / SCP / GCMMA / SCPF approximation of f (x)
in iteration k, 40

I
(j,k)
+ index set of nonnegative partial derivatives of inequality

constraint cj (x) , j = me + 1, . . . ,mc, in iteration k, 41

List of Symbols ix

I
(j,k)
− index set of negative partial derivatives of inequality

constraint cj (x) , j = me + 1, . . . ,mc, in iteration k,
41

c
(k)
j (x) , j = 1, . . . ,mc MMA / SCP / GCMMA / SCPF approximation of con-

straint cj (x) , j = 1, . . . ,mc, in iteration k, 41

x
(k)
i , i = 1, . . . , n lower bound on primal variable xi, i = 1, . . . , n, for the

subproblem generated in iteration k, 41

x
(k)
i , i = 1, . . . , n upper bound on primal variable xi, i = 1, . . . , n, for the

subproblem generated in iteration k, 41

ω ∈]0; 1[constant to define minimal distance between box con-
straints of the subproblem and asymptotes, 41

X(k) domain of variables x ∈ Rn of subproblem formulated
in iteration k, 41

T1, T2 positive parameters to define update of asymptotes, 43

Φρ (x, y) augmented Lagrangian merit function, 44

ρ ∈ Rmc+mf penalty parameters, 44

J (k) set of active constraints with respect to augmented La-
grangian in iteration k, 44

J
(k)

set of inactive constraints with respect to augmented
Lagrangian in iteration k, 44

τ > 0 positive parameter to ensure strict convexity of f (k) (x),
45

η
(k)
i ≥ η(k) > 0, i = 1, . . . , n estimation of curvature of f (k) (x) in variable xi,

i = 1, . . . , n, in iteration k, 48

δ(k) norm of primal search direction in iteration k, 48

κ1, κ2 positive parameters for penalty update, 49

ξ positive constant value to prevent steep approximations,
49

Lmin lower bound on asymptotes L
(k)
i , i = 1, . . . , n, in each

iteration k, 49

Umax upper bound on asymptotes U
(k)
i , i = 1, . . . , n, in each

iteration k, 49

T3, T4 positive parameters to define convex approximation of
GCMMA, 52

F feasible region with respect to feasibility constraints, 56

F
(k)
X feasible region of subproblem with respect to feasibility

constraints and box constraints in iteration k, 56

ρc ∈ Rmc penalty parameters for equality and inequality con-
straints, 57

ρe ∈ Rmf penalty parameters for feasibility constraints, 57

x List of Symbols

∆x(k) ∈ Rn search direction of primal variables in iteration k, 61

Rf (k)(x), R
c
(k)
j

(x), Rej(x) residual of Taylor series to the corresponding functions
f (k)(x), c

(k)
j (x), j = 1, . . . ,mc and ej(x), j = 1, . . . ,mf ,

64

κ(k) smallest singular value of Jacobian of the active con-
straints in iteration k, 81

ymax maximal Lagrangian multiplier, 82

∆yc ∈ Rmc search direction of dual variable with respect to inequal-
ity constraints cj(x), j = 1, . . . ,mc, 82

∆ye ∈ Rmf search direction of dual variable with respect to feasibil-
ity constraints ej(x), j = 1, . . . ,mf , 82

Sp space of symmetric matrices of size p, 109

Sp+ space of symmetric positive semidefinite matrices of size
p, 109

Sp++ space of symmetric positive definite matrices of size p,
109

Ω domain space for FMO, 109

FE finite element discretization, 109

q number of nodes of finite element discretization, 109

E block diagonal matrix consisting of matrices Ei,
i = 1, . . . ,m, 110

ng number of Gauss integration points, 111

uj ∈ R2q, j = 1, . . . , l displacement vector for corresponding load fj,
j = 1, . . . , l, 111

I identity matrix of appropriate size, 112

ν∈ R+ positive value to prevent numerical instabilities, 112

α ∈ R additional variable for the multiple load case, 112

V amount of given material, 112

ν upper bound to prevent numerical instabilities, 112

si,j (E) stress constraints for element i ∈ {1, . . . ,m} and load
case j ∈ {1, . . . , l}, 114

sσ ∈ R+ upper bound on stress constraints, 114

E ′ E − νI, 115

L (E ′) Λ (E ′)L (E ′)T eigenvalue decomposition of E ′, 115

L (E ′) = L lower triangular matrix of the eigenvalue decomposition
of E ′, 115

Λ (E ′) diagonal matrix containing eigenvalues of E ′, 115

λj (E ′) , j = 1, . . . , 3m eigenvalues of E ′, 115

E ′j−1 submatrix of E ′ of size j − 1, 116

List of Symbols xi

kjj j-th diagonal entry of E ′, 116

kj first j − 1 elements of j-th column of E ′, 116

Lj−1 submatrix of L of size j − 1, 116

lj first j − 1 elements of j-th column of L, 116

1p p-th unity vector, 117

dj (E ′) , j = 1, . . . , 3m determinant of E ′j, 119

kpq element of E ′ in row p and column q, 119(
E ′j
)
pq

submatrix of E ′j reduced by row p and column q, 119

a ∈ R+ positive parameter to define active constraints for the
corresponding active set strategy, 123

A(k) active set, 124

L set of linear inequality constraints, 124

L set of nonlinear inequality constraints, 124

M(k)
e set of violated equality constraints in iteration k, 125

|M(k)
e | number of violated equality constraints in iteration k,

125

M(k)
c set of violated inequality constraints in iteration k, 125

|M(k)
c | number of violated inequality constraints in iteration k,

125

M(k) set of violated equality and inequality constraints in it-
eration k, 125

|M(k)| number of violated equality and inequality constraints
in iteration k, 125

γ ∈ R|M(k)| additional variable to ensure feasibility of infeasible sub-
problems, 125

1. INTRODUCTION

In this thesis a strictly feasible sequential convex programming algorithm (SCPF) is
presented. The goal is to generate an iteration sequence which is strictly feasible for a
special class of constraints, called feasibility constraints, while other constraints may
be violated during the iteration process. The algorithm is motivated by applications in
free material optimization (FMO), where some constraints and the objective function
can only be evaluated, if certain feasibility constraints are satisfied. Other typical
applications are square roots or logarithmic functions of analytical expressions. We
proceed from the following problem formulation

min
x

f (x) x ∈ Rn

s.t. cj (x) = 0, j = 1, . . . ,me

cj (x) ≤ 0, j = me + 1, . . . ,mc

ej (x) ≤ 0, j = 1, . . . ,mf

(1.1)

where the feasibility constraints ej (x) , j = 1, . . . ,mf , are at least twice continuously
differentiable on Rn. We assume that some of the constraints cj (x) , j = 1, . . . ,mc,
and the objective function f (x) can only be evaluated on the feasible set

F := {x ∈ Rn | ej (x) ≤ 0, j = 1, . . . ,mf } . (1.2)

In addition, the regular constraints cj(x), j = 1, . . . ,mc and the objective function
f(x), are at least twice continuously differentiable on F . Moreover, box constraints
can be added to optimization problem (1.1), which is typically the case in practical
applications.

The development of SCPF is motivated by problems arising in free material optimiza-
tion (FMO), see Bendsøe et al. [7], which is an extension of topology optimization, see
Bendsøe and Sigmund [8]. Within a given design space, topology optimization finds
the optimal material layout for a given set of loads and given material. An under-
lying finite element discretization is used to decide in each element whether to use
material or not. The stiffness of the structure is defined by the so-called compliance
function, which measures the displacement of the structure under loads. The smaller
the compliance the stiffer the resulting structure. In addition, the total amount of
material is bounded. To prevent numerical instabilities, i.e., checkerboard phenomena
or grey zones, a filter can be used, see Ni, Zillober and Schittkowski [61]. Topology op-
timization problems are large scale nonlinear programs, that can be solved efficiently
by appropriate algorithms, e.g., the method of moving asymptotes, see Svanberg [80]

2 1 Introduction

and Sigmund [77]. The resulting structure consists of void and material.

Free material optimization (FMO) is introduced in a series of papers, e.g., Bendsøe
et al. [7], Bendsøe and Dı́az [6], Bendsøe [5] and Zowe, Kočvara and Bendsøe [107].
FMO tries to find the best mechanical structure with respect to one or more given load
cases in the sense that a design criterion, e.g., minimal weight or maximal stiffness, is
obtained. The material properties as well as the material distribution in the available
space are included in the optimization process. Therefore, FMO is a generalization of
topology optimization. As shown, e.g., by Kočvara and Stingl [50], the FMO problem
can be formulated for a given set of loads by a nonlinear semidefinite programming
(NSDP) problem based on a finite element discretization. The common FMO formu-
lation is to minimize the maximal compliance fTj K

−1 (E) fj for load fj, j = 1, . . . , l,
where l is the number of load cases and K (E) the global stiffness matrix. A more
detailed description is found in Hörnlein, Kočvara and Werner [40] and Kočvara and
Zowe [51]. As a measure of the material stiffness, we use the traces of the elasticity
matrices Ei, which are the design or optimization variables. The elasticity matrices
Ei, i = 1, . . . ,m, fulfill the basic requirements of linear elasticity, i.e., they are sym-
metric and positive semidefinite. Moreover, volume constraints and box constraints
preventing singularities are introduced.

The strictly feasible sequential convex programming (SCPF) method is an extension
of the sequential convex programming (SCP) method, which is frequently used in
mechanical engineering. SCP does not ensure feasibility of its iterates, i.e., mf = 0.
The algorithm approximates the optimal solution by solving a sequence of convex
and separable subproblems, where a line search procedure with respect to the aug-
mented Lagrangian merit function is used for guaranteeing global convergence. SCP
was originally designed for solving structural mechanical optimization problems and
it is often applied in the field of topology optimization. Due to the fact that in some
special cases, typical structural constraints become linear in the inverse variables, a
suitable substitution is applied, which is expected to linearize these functions in some
sense, see Zillober, Schittkowski and Moritzen [105].

SCP methods are derived from the optimization method CONLIN (CONvex LIN-
earization), see Fleury and Braibant [29] and Fleury [28]. The algorithm formulates
convex and separable subproblems by linearizing the problem functions with respect
to reciprocal variables, if the partial derivative is negative in the current iterate. Oth-
erwise, it is linearized in the original sense. As the success of CONLIN is dependent on
the starting point and the method might end in oscillation, Svanberg [80] extended
the algorithm proposing the method of moving asymptotes (MMA). Two flexible
asymptotes, a lower and an upper one, are introduced truncating the feasible region.
The functions are linearized with respect to one of the asymptotes, depending on the
sign of the partial derivative. The resulting convex and separable subproblems can be
solved efficiently due to their special structure. The asymptotes are adapted in each

3

iteration, to control the curvature of the Lagrangian function and thus influence the
convergence.

SCP is an extension of MMA including a line search procedure, as no convergence proof
can be given for MMA. The iterates are valuated with respect to a merit function,
which combines the descent of the objective function and the feasibility in a suitable
way. The stepsize is reduced until a descent in the merit function, e.g., the augmented
Lagrangian function, is obtained. An active set strategy can be applied to reduce
the size of the subproblem, saving computational effort. The program SCPIP30.f is
an efficient implementation of SCP, where the sparse structure of the gradients and
the Hessian is taken into account. Some comparative numerical tests of SCP, sequen-
tial quadratic programming (SQP) and some other nonlinear programming codes are
available for test problems from mechanical structural optimization, see Schittkowski,
Zillober and Zotemantel [76]. For the resulting SCP method global convergence is
shown, see Zillober [97, 102].

Although no convergence proof for the original version of MMA can be given, the al-
gorithm yields good results in practice. In 1995, Svanberg [81] presented an extension
which is globally convergent but in most cases not as efficient as the original MMA
version. Later on, a new globally convergent method called GCMMA (globally conver-
gent method of moving asymptotes) was developed, yielding good results in practice.
It is only applicable for inequality constraints, i.e., me = 0. Proceeding from a feasible
starting point x(0) ∈ F , the algorithm creates a sequence of feasible iteration points,
i.e., mc = 0, mf 6= 0. Svanberg [82, 83] proposed additional inner iterations ensuring

f
(
z(k,p)

)
≤ f (k,p)

(
z(k,p)

)
(1.3)

ej
(
z(k,p)

)
≤ e

(k,p)
j

(
z(k,p)

)
, j = 1, . . . ,mf (1.4)

where f (k,p) (x) is the strictly convex approximation of f (x) and e
(k,p)
j (x) is the convex

approximation of ej (x) , j = 1, . . . ,mf , in the outer iteration k and the inner iteration
p. Moreover, z(k,p) ∈ Rn is the optimal solution of the corresponding subproblem. If
(1.3) or (1.4) is violated for at least one constraint or the objective function, a more
conservative subproblem is formulated based on the MMA approximation. It can be
shown that the inner iteration loop terminates within a finite number of iterations.
Note that the functions have to be evaluated at infeasible points.

Many optimization methods, for example SQP, apply trust region techniques to show
global convergence. Ni [60] introduced a new version of MMA, where the convex sub-
problems are additionally restricted by a trust region. In contrast to MMA and SCP,
it is only applicable for box constraints, x ≤ x ≤ x while equality and inequality
constraints cannot be handled, i.e., me = mc = mf = 0.

Ertel [19] combined the method of moving asymptotes with the filter approach pro-
posed by Fletcher and Leyffer [26]. An iterate is accepted, if a descent in the objective

4 1 Introduction

function or a reduction of the constraint violation is obtained. Otherwise, the point
is rejected and a new subproblem is generated by reducing the distance between the
asymptotes. Filter methods induce a non-monotone iteration sequence. A convergence
proof for a SQP-filter method is given by Fletcher, Toint and Leyffer [27].

Stingl, Kočvara and Leugering [79] proposed a generalization of SCP for semidefinite
programs called PENSCP. They consider the following problem formulation

min
Z

f (Z) Z ∈ Sn

s.t. cj (Z) ≤ 0, j = 1, . . . ,mc

Z − Z � 0

Z − Z � 0

(1.5)

where Sn denotes the space of symmetric matrices of size n. The algorithm creates a
sequence of first order block-separable convex approximations. In contrast to MMA
and SCP, the method uses constant asymptotes. Moreover, a line search procedure is
applied to ensure a sufficient descent in the objective function. The resulting semidef-
inite subproblem can be solved efficiently due to its specific structure by appropriate
solvers, e.g., PENNON, see Kočvara and Stingl [48]. Global convergence of the result-
ing algorithm can be shown, see Stingl, Kočvara and Leugering [79].

As SCP achieves good results for topology optimization problems, it is to be applied
to free material optimization. Some of the problem specific functions of FMO are only
defined within the feasible region given by feasibility constraints ej (x) , j = 1, . . . ,mf ,
which are nonlinear reformulations of Ei � 0, i = 1, . . . ,m. The SCP method pro-
posed by Zillober [97] is not ensuring feasibility of the iterates during the solution
process. Therefore, it is extended such that strict feasibility subject to a special set
of constraints is guaranteed in each iteration step. The convex feasibility constraints
are passed to the subproblem directly while the objective function as well as the re-
maining constraints are approximated based on the MMA approximation scheme. An
active set strategy is applied for the remaining constraints only, to ensure feasibility
whenever functions or gradients are to be evaluated. In addition, constraints that are
expected to be active in the optimal solution are always included in the active set.
The subproblems possess an unique solution. They can be solved efficiently exploit-
ing the sparse structure of the gradients and Hessian. A line search is performed to
ensure global convergence. The corresponding convergence proof of the resulting fea-
sible sequential convex programming method is given for convex feasibility constraints.

Feasible optimization methods compute a sequence of feasible iterates, i.e., only fea-
sibility constraints ej (x) , j = 1, . . . ,mf , are considered, i.e., me = mc = 0. In the
literature, several feasible optimization methods can be found. In many real world
applications, the optimization problems are of high dimension and the function and
gradient evaluations might be time consuming. Using feasible optimization techniques,

5

the optimization process can be aborted at each iterate yielding a feasible, although
not optimal, solution. The most important feasible optimization methods are feasible
interior point methods, projection methods and feasible direction methods.

Feasible interior point methods start from the interior of the feasible region and com-
pute an iteration sequence that approaches the boundary. A subclass are barrier meth-
ods, where a barrier parameter combines the constraints and the objective function.
This yields to the so-called barrier function which is to be minimized, e.g., by New-
ton’s method. Typically the barrier function is only defined on the feasible region and
tends to infinity at the boundary. A popular barrier function is the logarithmic barrier
function

f (x) + µ

mf∑
i=1

ln (−ej (x)) , (1.6)

where µ ∈ R+ is the barrier parameter. Starting with a large µ, it is reduced iter-
atively such that solutions near the boundary can be obtained. These methods are
especially successful for convex optimization problems, see Jarre and Stoer [43].

Another class of feasible optimization methods are projection methods. In each iterate
x(k), the algorithms compute a search direction d(k) ∈ Rn and project the resulting
point x(k)+d(k) on the boundary of the feasible region, if necessary. The projected point
on the boundary is denoted by x

(k)
P ∈ Rn. The projected search direction d

(k)
P ∈ Rn

consists of two components. Inside the interior of the feasible region, the projected
search direction is given by d(k). The second part is described by the segment of the
boundary between the intersection point of d(k) with the boundary and the projection
point x

(k)
P . A line search is performed along the projected search direction d

(k)
P . To

ensure feasibility, the problems have to be convex. Figure 1.1 shows the projection of
an infeasible point on the boundary of the feasible set. The resulting projected search
direction is given by the red line.

)(kx

)()(kk dx 

)(k

Px

Fig. 1.1: Projection method

6 1 Introduction

The effort to compute the projection depends on the algorithm and on the con-
straints of the optimization problem. Some popular projection methods are presented
by Rosen [71, 72] and by Polak [67]. Projection methods are often combined with
other efficient nonlinear optimization methods to compute the descent direction d(k).
Jian, Zhang and Xue [46] developed a feasible SQP method in combination with proj-
ection methods. The quadratic subproblem is solved to obtain a descent direction.
Moreover, the iterate is projected on the boundary and a line search is performed.

Feasible direction methods compute a feasible direction d(k), which ensures the ex-
istence of θ(k) ∈ R+, such that x(k) + σ(k)d(k) is feasible for all σ(k) ≤ θ(k), where
σ(k) ∈ R is the stepsize. Many different feasible direction methods can be found in the
literature. The first feasible direction algorithm is the P1 algorithm developed by Zou-
tendijk in 1960, see [106]. In each iteration step, an improving feasible search direction
is determined and an extended line search is performed, yielding a sufficient descent
in the objective function and satisfying the constraints ej (x) ≤ 0, j = 1, . . . ,mf .
Proceeding from a feasible starting point x(0), in each iteration k a search direction
d(k) is computed, which is a descent direction with respect to the objective function
and the ε active constraints J(k)

ε :=
{
j = 1, . . . ,mf | ej

(
x(k)
)
≥ −ε

}
, ε ∈ R+ , i.e.,

∇f
(
x(k)
)T
d(k) ≤ 0

∇ej
(
x(k)
)T
d(k) ≤ 0, j ∈ J(k)

ε .
(1.7)

Iteratively, a linear subproblem, is formulated, which maximizes the minimal descent,
see Großmann and Kleinmichel [34] and Ishutkin and Großmann [42]. We denote the
solution of

min
δ,d

δ d ∈ Rn, δ ∈ R

s.t. ∇f
(
x(k)
)T
d ≤ δ

∇ej
(
x(k)
)T
d ≤ δ, j ∈ J(k)

ε

‖d‖∞ ≤ 1

(1.8)

by
(
d(k), δ(k)

)
. If ε is adapted adequately, it can be shown that δ(k) ≤ 0, for all

k = 0, 1, The size of ε is very important for the convergence of the algorithm.
If ε becomes too small, a typical oscillating behavior can be observed. An enhance-
ment of Zoutendijk’s P1 algorithm is his P2 algorithm, developed in 1961, see Zou-
tendijk [106], which is more robust than the first method, as ε need not be adapted.
We get

(
d(k), δ(k)

)
by solving

min
δ,d

δ d ∈ Rn, δ ∈ R

s.t. ∇f
(
x(k)
)T
d ≤ δ

ej
(
x(k)
)

+∇ej
(
x(k)
)T
d ≤ δ, j ∈ J(k)

ε

‖d‖∞ ≤ 1

(1.9)

7

with J(k)
ε :=

{
j = 1, . . . ,mf | ej

(
x(k)
)
≥ −ε

}
. A convergence proof for both methods

can be given for convex constraints ej (x) , j = 1, . . . ,mf , see Bertsekas [10].

For Zoutendijk’s P1 and P2 methods only linear convergence can be shown. Therefore,
the subproblems are extended such that second order information is included. One
possibility is to compute a descent direction d

(k)
0 ∈ Rn by solving a quadratic sub-

problem (QP), i.e., a quadratic objective function and linear constraints, according
to SQP methods, see Schittkowski and Yuan [75],

min
d

1

2
dTH

(
x(k), y(k)

)
d+∇f

(
x(k)
)T
d d ∈ Rn

s.t. ej
(
x(k)
)

+∇ej
(
x(k)
)T
d ≤ 0, j = 1, . . . ,mf

(1.10)

where H
(
x(k), y(k)

)
∈ Rn×n is the Hessian of the Lagrangian function with respect

to x or an appropriate approximation. Moreover, y(k) ∈ Rmf is the dual variable.
The resulting search direction d

(k)
0 may not be feasible, as for active constraints

∇ej
(
x(k)
)T
d

(k)
0 = 0 is allowed, which yields to a search direction tangential to the

feasible region, see Panier and Tits [65]. Therefore, a correction is determined by
tilting the original direction towards the feasible region. To ensure fast convergence
near a solution an additional search direction is computed by bending. An extended
line search is performed along the search arc consisting of all three directions, such
that feasibility and a sufficient descent in the objective function is guaranteed. The
computational complexity per iteration of the feasible SQP methods is significantly
higher compared to usual SQP methods. In state-of-the-art methods the computa-
tional complexity has been reduced.

Moreover, several feasible direction interior point algorithms (FDIP) are developed.
In general, interior point methods (IPM) compute in each iteration a Newton descent
direction by solving a linear system of equations. The resulting search direction might
not be a feasible direction. Therefore, a second linear system is formulated where the
right hand side is perturbed ensuring a feasible direction. Some of the FDIP methods
solve a third linear system to ensure superlinear convergence near a stationary point.
Analogue to feasible SQP methods, a line search along the search arc is performed to
ensure both feasibility and a descent in the objective function.
Several feasible direction interior point methods are given in the literature, e.g., Panier,
Tits and Herskovits [66], Herskovits [35, 36], Bakhtiari and Tits [3] and Zhu [95]. The
globally and locally superlinear convergent algorithm FAIPA belongs to the latest al-
gorithms and is briefly presented, see Herskovits, Aroztegui, Goulart and Dubeux [37].
In each iteration k a feasible descent arc is computed such that a new interior point
with a lower objective function value can be found. Three linear systems have to be
solved in each iteration, where the matrices remain unchanged. We proceed from a
feasible starting point x(0) ∈ Rn. The first linear system is derived from Newton’s

8 1 Introduction

method applied to the KKT conditions computing
(
d

(k)
0 , y

(k)
0

)
[
H
(
x(k), y(k)

)
∇e
(
x(k)
)

Y (k)∇e
(
x(k)
)T

E
(
x(k)
)] [

d
y

]
= −

[
∇f

(
x(k)
)

0

]
(1.11)

where E
(
x(k)
)

:= diag
(
e1

(
x(k)
)
, . . . , emf

(
x(k)
))

, and y
(k)
i , i = 1, . . . ,mf , are the

Lagrangian multipliers forming Y (k) := diag
(
y

(k)
1 , . . . , y

(k)
mf

)
. The Hessian of the La-

grangian function or an appropriate approximation is denoted by H
(
x(k), y(k)

)
∈ Rn×n

and ∇e
(
x(k)
)

:=
[
∇e1

(
x(k)
)
, . . . ,∇emf

(
x(k)
)]

.

The resulting search direction d
(k)
0 ∈ Rn is not necessarily a feasible direction. The

right hand side is to be perturbed, to ensure that d
(k)
0 does not become tangent to the

feasible region. The solution of[
H
(
x(k), y(k)

)
∇e
(
x(k)
)

Y (k)∇e
(
x(k)
)T

E
(
x(k)
)] [

d
y

]
= −

[
0
y(k)

]
(1.12)

is denoted by
(
d

(k)
1 , y

(k)
1

)
. The resulting direction d

(k)
1 ∈ Rn improves feasibility. With

help of d
(k)
0 and d

(k)
1 the feasible descent direction d(k) ∈ Rn can be computed by

d(k) := d
(k)
0 + t(k)d

(k)
1 , where t(k) ∈ R+ ensures a sufficient descent in the objective

function, see Herskovits and Santos [39]. To ensure superlinear convergence near a

stationary point, an additional direction d̃(k) ∈ Rn and the corresponding multipliers
ỹ(k) ∈ Rmf have to be computed by solving[

H
(
x(k), y(k)

)
∇e
(
x(k)
)

Y (k)∇e
(
x(k)
)T

E
(
x(k)
)] [

d
y

]
= −

[
0

Y (k)w̃(k)

]
(1.13)

where the feasibility factor w̃(k) ∈ Rmf estimates the curvature of the constraints by
approximating their second order derivatives analogously to Taylor. A line search is

performed along the search arc given by x(k) + σ(k)d(k) +
(
σ(k)
)2
d̃(k), such that the

following conditions hold

f
(
x(k) + σ(k)d(k) +

(
σ(k)
)2
d̃(k)
)

< f
(
x(k)
)

+ rσ(k)∇f
(
x(k)
)T
d(k) (1.14)

ej

(
x(k) + σ(k)d(k) +

(
σ(k)
)2
d̃(k)
)
≤ 0, j = 1, . . . ,mf (1.15)

with r ∈ (0, 1). However, all these methods cannot prevent function evaluations at

infeasible points, as x(k) + σ(k)d(k) +
(
σ(k)
)2
d̃(k) might be infeasible for σ(k) = 1, as

θ(k) < 1 is possible.

In the following chapter, basic theory of nonlinear optimization is reviewed. Optimal-
ity criteria and convergence rates are presented.
In Chapter 3 a review of the state-of-the-art feasible direction sequential quadratic

9

programming methods is given. The algorithms are formulated and convergence rates
are given.
In Chapter 4 sequential convex programming methods are discussed. Based on the
method of moving asymptotes as proposed by Svanberg [80] in Section 4.1, the ap-
proximation schemes are presented. In Section 4.2 the SCP algorithm developed by
Zillober [98], which is based on a line search procedure and the corresponding aug-
mented Lagrangian merit function, is summarized. Moreover, the globally convergent
MMA algorithm is presented in Section 4.3, where inner and outer iteration cycles
are combined to ensure global convergence.
The strictly feasible sequential convex programming method (SCPF) is introduced
in Chapter 5. The SCP algorithm is extended and adapted such that feasibility with
respect to a subset of constraints is guaranteed in each iteration. The resulting strictly
feasible sequential convex programming method is presented and formulated in Sec-
tion 5.1. A global convergence proof is given in Section 5.2.
The main applications arise in free material optimization where elasticity tensors must
be positive definite in order to evaluate a valid global stiffness matrix. The problem
formulation is derived in Chapter 6. Reformulations to replace semidefinite constraints
by nonlinear ones are proposed. First and second order derivatives are given.
The implementation and additional features speeding up the algorithm are presented
in Chapter 7. Applications arising in FMO and oil industry are presented. Feasibility
constraints are identified and the corresponding MMA approximations are given. Nu-
merical results for a test set are shown.
The Appendix contains the program documentation as well as a detailed description
of the calling parameters and the reverse communication.

2. BASIC THEORY OF NONLINEAR
OPTIMIZATION

Within this chapter we will briefly review basic theory of nonlinear programming,
that is necessary for the subsequent chapters. The main topic of this thesis is to
combine constraints that have to be satisfied in each iteration step, called feasibility
constraints, and constraints that might be infeasible until the optimal solution is
found, referred as regular constraints. Most nonlinear optimization methods do not
guarantee feasibility during the optimization process, while some specific algorithms
ensure feasibility in the main iterates, called feasible optimization methods. In the
subsequent chapters we will consider both, feasible optimization methods and others.
Therefore, we proceed from the nonlinear optimization problem where the constraints
are divided into feasibility constraints ej (x) , j = 1, . . . ,mf , and regular constraints
cj (x) , j = 1, . . . ,mc.

min
x

f (x) x ∈ Rn

s.t. cj (x) = 0, j = 1, . . . ,me

cj (x) ≤ 0, j = me + 1, . . . ,mc

ej (x) ≤ 0, j = 1, . . . ,mf

(2.1)

The constraints ej (x) , j = 1, . . . ,mf , which have to be feasible in each iteration step
are defined on Rn and are at least twice continuously differentiable. The objective
function f (x) and the constraints cj (x) , j = 1, . . . ,mc, are defined on the feasible
region of the constraints ej (x) , j = 1, . . . ,mf . i.e., they may be violated within the
optimization process. In addition, they are at least twice continuously differentiable
on the subset given by the feasibility constraints. Note that in some chapters only
feasibility constraints are present, i.e., me = mc = 0, while they vanish in other
chapters, i.e., mf = 0. Moreover, the feasible region is given by Definition 1.

Definition 1. The feasible region of (2.1) is defined by the set

F := {x ∈ Rn | cj (x) = 0, j = 1, . . . ,me}
∩ {x ∈ Rn | cj (x) ≤ 0, j = me + 1, . . . ,mc} (2.2)

∩{x ∈ Rn | ej (x) ≤ 0, j = 1, . . . ,mf }

In general, the inequality constraints are divided into two groups, active and inactive
constraints. We define

12 2 Basic Theory of Nonlinear Optimization

Definition 2. The constraint cj, 1 ≤ j ≤ mc, or ej, 1 ≤ j ≤ mf respectively, is
active at x ∈ F, if

cj (x) = 0 (2.3)

or

ej (x) = 0 (2.4)

holds. Moreover, the active set at x ∈ F is defined by

J (x) := {j ∈ {1, . . . ,mc} | cj (x) = 0}
∪ {j ∈ {1, . . . ,mf} | ej (x) = 0} . (2.5)

Nonlinear programming deals with finding a minimum with respect to the feasible
region F, given in Definition 1. We distinguish local and global minima.

Definition 3. x? ∈ F is a local minimum, if there exist a neighborhood U (x?), such
that

f (x?) ≤ f (x) (2.6)

holds for all x ∈ U (x?) ∩ F.

x? ∈ F is a global minimum, if

f (x?) ≤ f (x) (2.7)

holds for all x ∈ F.

The optimality criteria are based on the Lagrangian function, which combines the
value of the objective function and the constraints via the Lagrangian multipliers.

Definition 4. The Lagrangian function corresponding to optimization problem (2.1)
is defined by

L (x, y) := f (x) +
mc∑
j=1

(yc)j cj (x) +

mf∑
j=1

(ye)j ej (x) (2.8)

where

y :=

(
yc
ye

)
∈ Rmc+mf (2.9)

are Lagrangian multipliers or dual variables, while x ∈ Rn are the primal variables.

13

Some nonlinear programming algorithms use second order information, motivated by
Newton’s method. This means that they take the Hessian of the Lagrangian (2.8) into
account. In the following, the Hessian of the Lagrangian function with respect to x is
denoted by

H (x, y) := ∇2
xxL (x, y) . (2.10)

To save computational effort and to ensure positive definiteness, H (x, y) can be ap-
proximated in a certain sense by appropriate updating schemes, e.g., the widely used
BFGS update, see Schittkowski and Yuan [75]. In the following we denote the Hessian
or its approximation at iteration k by

H(k) := H
(
x(k), y(k)

)
. (2.11)

Before we can formulate optimality criteria, we consider the linear independence con-
straint qualification (LICQ).

Definition 5. The linear independence constraint qualification (LICQ) is satisfied
at a feasible solution x ∈ F, if the gradients of the active constraints are linearly
independent at x.

A constraint qualification is a necessary requirement for the following first order nec-
essary optimality condition.

Lemma 2.1. Let x? ∈ Rn be a local minima of (2.1) and let the LICQ hold. Then there
exists a y? ∈ Rmc+mf such that the following Karush-Kuhn-Tucker (KKT) conditions
hold

∇xL (x?, y?) = 0 (2.12)

cj (x?) = 0, j = 1, . . . ,me (2.13)

cj (x?) ≤ 0, j = me + 1, . . . ,mc (2.14)

ej (x?) ≤ 0, j = 1, . . . ,mf (2.15)

(y?c)j ≥ 0, j = me + 1, . . . ,mc (2.16)

(y?e)j ≥ 0, j = 1, . . . ,mf (2.17)

(y?c)j cj (x?) = 0, j = me + 1, . . . ,mc (2.18)

(y?e)j ej (x?) = 0, j = 1, . . . ,mf (2.19)

Definition 6. If (x?, y?) satisfies the KKT conditions (2.12) - (2.19), it is called
stationary or KKT point.

It can be shown that the Lagrangian multipliers are unique, if the LICQ holds, see
Schittkowski and Yuan [75]. Otherwise, this might lead to numerical instabilities
within the optimization process.

In general, optimization problem (2.1) is solved iteratively by constructing a sequence
of subproblems. At each iterate x(k) ∈ Rn, a subproblem is formulated which can be

14 2 Basic Theory of Nonlinear Optimization

solved efficiently by appropriate solution methods. Typically, it possesses a special
structure that can be exploited. The next iterate is determined by the solution of the
current subproblem. The resulting iteration sequence converges towards a stationary
point under certain assumptions.

To ensure global convergence, i.e., a stationary point is found independently of the
starting point, the algorithms are equipped with globalization techniques. In general,
we distinguish between

1. trust region methods, see Vardi [89], Byrd, Schnabel and Shultz [15] and Omo-
jokun [62],

2. filter methods, see Fletcher and Leyffer [26],

3. and line search methods, see Armijo [2], Ortega and Rheinboldt [63].

This thesis focuses on line search methods only. We denote the primal solution of the
subproblem in iteration k by z(k) ∈ Rn and the dual solution by v(k) ∈ Rmc+mf . In

each iteration, a sufficient descent with respect to a suitable merit function Φ

(
x
y

)
is required, which combines objective function and constraints in an adequate way.
If
(
z(k), v(k)

)
yields no sufficient descent, the so-called Armijo line search algorithm

can be applied, see Armijo [2], Ortega and Rheinboldt [63]. By successive bisection of
σ(k) ∈ R+, starting from σ(k) = 1, it finds the first σ(k) satisfying

Φ

((
x(k)

y(k)

)
+ σ(k)d(k)

)
≤ Φ

(
x(k)

y(k)

)
+ rσ(k)∇Φ

(
x(k)

y(k)

)T
d(k), (2.20)

where r ∈ (0, 1) is constant and where d(k) :=

(
z(k) − x(k)

v(k) − y(k)

)
, d(k) ∈ Rn+mf+mc is

called search direction. We define

Definition 7. A primal search direction ∆x(k) ∈ Rn, ∆x(k) := z(k)−x(k) is a descent
direction of a real continuously differentiable function f (x) at x(k) ∈ Rn, if

∇f
(
x(k)
)T

∆x(k) < 0 (2.21)

holds.

The efficiency of an algorithm is given by the convergence rate, which measures how
fast the iteration sequence converges towards a stationary point x? in the neighbor-
hood of x?. We define three different convergence rates.

Definition 8. An iteration sequence
{
x(k)
}

is said to converge linearly towards a
stationary point x? ∈ Rn, if there exists a c1 ∈]0, 1[with∥∥x(k+1) − x?

∥∥ ≤ c1

∥∥x(k) − x?
∥∥ (2.22)

for all k sufficiently large.

15

An iteration sequence
{
x(k)
}

is said to converge superlinearly towards a stationary

point x? ∈ Rn, if there exist a sequence
{
c(k)
}

with c(k) ∈ R+ converging to zero with∥∥x(k+1) − x?
∥∥ ≤ c(k)

∥∥x(k) − x?
∥∥ (2.23)

for all k sufficiently large.

An iteration sequence
{
x(k)
}

is said to converge quadratically towards a stationary
point x? ∈ Rn, if there exists a c2 ∈ R+ with∥∥x(k+1) − x?

∥∥ ≤ c2

∥∥x(k) − x?
∥∥2

(2.24)

for all k sufficiently large.

Under some assumptions, sequential quadratic programming (SQP) methods, con-
verge with local superlinear convergence rate towards a KKT point specified in Def-
inition 6, see Schittkowski and Yuan [75]. A necessary requirement is that stepsize
σ(k) = 1 is accepted in the neighborhood of a solution. The globalization techniques
often prevent the acceptance of stepsize one, which leads to slow convergence. This
behavior is called the Maratos effect, see Maratos [57]. In the literature, several tech-
niques can be found to prevent the Maratos effect, e.g.,

1. non-monotone techniques, see Ulbrich and Ulbrich [86] and Gould and Toint [33],

2. watch-dog techniques, see Chamberlain et al. [17],

3. smooth exact penalty functions or the augmented Lagrangian function as merit
function, see Schittkowski [73], Powell and Yuan [68, 69] and Ulbrich [87],

4. second order correction techniques, see Fletcher [25], Mayne and Polak [59] and
Fukushima [30].

3. FEASIBLE SEQUENTIAL
QUADRATIC OPTIMIZATION
METHODS

In this chapter, a brief review of existing feasible sequential quadratic optimization
techniques (FSQP) is given. The methods guarantee that each main iterate is fea-
sible, i.e.,

{
x(k)
}
∈ F, but function evaluations at infeasible points are nevertheless

necessary. We proceed from the following problem formulation:

min
x

f (x) x ∈ Rn

s.t. ej (x) ≤ 0, j = 1, . . . ,mf

(3.1)

where f (x) and ej (x) , j = 1, . . . ,mf , are at least twice continuously differentiable.
We require that the nonlinear constraints ej (x) , j = 1, . . . ,mf , are satisfied in each
iteration step after a possible restoration phase. The feasible region F is specified in
Definition 1. Note that in this chapter d(k) ∈ Rn denotes the primal search direction.

In the literature, several different classes of feasible algorithms can be found. In the
sequel, we focus on feasible direction sequential quadratic programming methods.
First, we define a feasible direction according to Herskovits and Carvalho [38].

Definition 9. A search direction d ∈ Rn is a feasible direction at x ∈ F, if for some
θ ∈ R+

x+ σd ∈ F (3.2)

holds for all σ ∈ [0, θ].

We will consider different feasible direction approaches, that are based on the se-
quential quadratic programming (SQP) method, see Schittkowski and Yuan [75] for a
review of general SQP methods. SQP algorithms converge towards a stationary point,
see Definition 6, by solving a sequence of quadratic programming (QP) subproblems
of the form

min
d

1

2
dTH(k)d+∇f

(
x(k)
)T
d d ∈ Rn

s.t. ej
(
x(k)
)

+∇ej
(
x(k)
)T
d ≤ 0, j = 1, . . . ,mf

(3.3)

where H(k) is the Hessian of the Lagrangian or an appropriate approximation, see

(2.10) and (2.11). Let the solution of (3.3) in iteration k be
(
d

(k)
0 , y

(k)
0

)
where the

18 3 Feasible Sequential Quadratic Optimization Methods

corresponding dual variable is denoted by y
(k)
0 ∈ Rmf . The next iterate x(k+1) is

computed by

x(k+1) := x(k) + σ(k)d
(k)
0 , (3.4)

where the stepsize σ(k) ∈ R+ is determined by a line search procedure, such that a
descent in the corresponding merit function is obtained.

In general, feasible SQP methods compute a search direction d
(k)
0 analogously to SQP

methods, which needs to be adapted as it may be infeasible. Especially, if a constraint
ej (x) , j = 1, . . . ,mf , is active, i.e., ej

(
x(k)
)

= 0, the corresponding search direction
can be asymptotic with respect to the feasible region. Feasible SQP methods modify
d

(k)
0 , such that a feasible descent direction is obtained. An extended line search pro-

cedure ensures that the next iterate is feasible and yields a descent with respect to
the objective function. The different methods are based on either solving QPs or least
squares problems.

3.1 Modified Method of Topkis and Veinott

In 1967, Topkis and Veinott [85] formulated a feasible direction algorithm motivated
by Zoutendijk’s P1 and P2 [106] methods. Topkis and Veinott propose to solve the
following linear subproblems iteratively,

min
δ,d

δ d ∈ Rn, δ ∈ R

s.t. ∇f
(
x(k)
)T
d ≤ δ

ej
(
x(k)
)

+∇ej
(
x(k)
)T
d ≤ δ, j ∈ J(k)

−1 ≤ di ≤ 1, i = 1, . . . , n

(3.5)

with

J(k) :=
{
j = 1, . . . ,mf

∣∣ ej (x(k)
)

= 0
}
. (3.6)

Let the solution of (3.5) in iteration k be
(
δ(k), d(k)

)
. The algorithm is also equipped

with an extended line search strategy that ensures both a descent direction with re-
spect to the objective function f (x) and feasibility with respect to the inequality
constraints ej (x) , j = 1, . . . ,mf . The solution of (3.5) is not unique and oscillating
might slow down convergence, see Birge, Qi and Wei [11].

To speed up the observed slow convergence, Birge, Qi and Wei [11] extended the
method of Topkis and Veinott by quadratic subproblems and quasi-Newton approxi-
mations. The corresponding subproblem is solved iteratively

min
δ,d

δ +
1

2
dTH(k)d d ∈ Rn, δ ∈ R

s.t. ∇f
(
x(k)
)T
d ≤ t

(k)
0 δ

ej
(
x(k)
)

+∇ej
(
x(k)
)T
d ≤ t

(k)
j δ, j ∈ J(k)

(3.7)

3.1 Modified Method of Topkis and Veinott 19

with t
(k)
j > 0, j = 0, . . . ,mf . H

(k) ∈ Rn×n is a symmetric positive definite approxima-
tion of the Hessian of the Lagrangian function, see (2.10) and (2.11). We denote the
solution of (3.7) by

(
δ(k), d(k)

)
. If the matrix H(k) is positive definite, i.e., H(k) � 0,

problem (3.7) is convex, see Geiger and Kanzow [32]. The unique solution can be
computed efficiently by an appropriate QP solver. Moreover, it can be shown that
δ(k) ≤ 0, see Birge, Qi and Wei [11].

An extended line search procedure is applied to ensure a descent in the objective
function f (x) and feasibility with respect to the constraints ej (x) , j = 1, . . . ,mf .
Motivated by the high cost of function evaluations in many applications, the corre-
sponding implementation forces to accept stepsize one. Whenever σ(k) 6= 1, the pa-
rameter t

(k+1)
j , j = 0, . . . ,mf , is enlarged, which emphasizes feasibility, see Lawrence

and Tits [54]. The corresponding update rules are given as follows

t
(k+1)
0 :=

{
t
(k)
0 , if f

(
x(k) + d(k)

)
≤ f

(
x(k)
)

+ r∇f
(
x(k)
)T
d(k)

2t
(k)
0 , otherwise

(3.8)

t
(k+1)
j :=

{
t
(k)
j , if ej

(
x(k) + d(k)

)
≤ 0, j = 1, . . . ,mf

2t
(k)
j , otherwise

(3.9)

with r ∈ (0, 1).

The algorithm according to Birge, Qi and Wei [11] can be written as follows:

Algorithm 1. Modified method of Topkis and Veinott [11]

Step 0: Choose feasible starting point x(0) ∈ F, parameters r ∈ (0, 1), t
(0)
j > 0,

j = 0, . . . ,mf and H(0) ∈ R(n×n) symmetric and positive definite. Let k := 0.

Step 1: Formulate and solve (3.7) to obtain
(
δ(k), d(k)

)
.

Step 2: If
(
δ(k), d(k)

)
= 0 then STOP.

Step 3: Get stepsize σ(k) := max
{

0.5l, l = 0, 1, 2, . . .
}

such that

f
(
x(k) + σ(k)d(k)

)
≤ f

(
x(k)
)

+ rσ(k)∇f
(
x(k)
)T
d(k) and

ej
(
x(k) + σ(k)d(k)

)
≤ 0, j = 1, . . . ,mf .

Step 4: Determine t
(k+1)
j > 0, j = 0, . . . ,mf , according to (3.8) and (3.9).

Step 5: Compute a symmetric and positive definite matrix H(k+1) ∈ R(n×n) by a
quasi-Newton formula.

Step 6: Set x(k+1) := x(k) + σ(k)d(k) and k := k + 1, goto Step 1.

It can be guaranteed that σ(k) exists, such that the requirements in Step 3 are satisfied.
Under certain conditions global convergence can be shown, see Birge et al. [11].

20 3 Feasible Sequential Quadratic Optimization Methods

3.2 A feasible SQP method by Panier and Tits

In 1987, Panier and Tits [64] proposed a feasible direction algorithm, which is under
certain conditions locally superlinear convergent. To ensure global convergence a first
order feasible search direction will be used far away from the solution, see Algorithm 2
Step 5. Otherwise, two QPs and one least squares problem have to be solved in

each iteration. Beginning with the solution
(
d

(k)
0 , y

(k)
0

)
of (3.3), the right hand side

of the inequality constraints is modified to guarantee a search direction aligning to
the interior of the feasible region and thus to ensure feasibility. The value of this
perturbation depends on the solution d

(k)
0 ∈ Rn of (3.3). We obtain the following

second QP in iteration k,

min
d

1

2
dTH(k)d+∇f

(
x(k)
)T
d d ∈ Rn

s.t. ej
(
x(k)
)

+∇ej
(
x(k)
)T
d ≤ −

∥∥∥d(k)
0

∥∥∥β1

, j = 1, . . . ,mf

(3.10)

with β1 > 2. The resulting search direction d(k) ∈ Rn is a feasible direction, see Panier
and Tits [64]. Moreover, in the neighborhood of the solution of (3.1), d(k) is guaranteed
to be a descent direction with respect to f (x). To prevent the Maratos effect, it is
necessary to bend the search direction and perform a line search along the resulting
search arc, see Mayne and Polak [58]. Therefore, we introduce an additional search

direction d̃(k) ∈ Rn which tends to zero, if d(k) is small. To compute d̃(k) the following
linear least squares problem is to be solved,

min
d

1

2
‖d‖2 d ∈ Rn

s.t. ej
(
x(k) + d(k)

)
+∇ej

(
x(k)
)T
d = −

∥∥∥d(k)
0

∥∥∥β2

, j ∈ J(k)
(3.11)

with β2 ∈ (2, 3) and

J(k) :=

{
j = 1, . . . ,mf

∣∣∣∣ ej (x(k)
)

+∇ej
(
x(k)
)T
d(k) = −

∥∥∥d(k)
0

∥∥∥β1
}
. (3.12)

Note that x(k) + d(k) might be infeasible. In this case, the constraints have to be
evaluated at infeasible iterates to formulate (3.11).

Solving the QPs (3.3), (3.10) and (3.11) together with a line search along the search

arc x(k) +σ(k)d(k) +
(
σ(k)
)2
d̃(k) does not lead to global convergence, see Lawrence and

Tits [54]. Therefore, a feasible first order search direction d(k) is computed far away

3.2 A feasible SQP method by Panier and Tits 21

from the solution, i.e., if one of the following conditions holds∥∥∥d(k)
0

∥∥∥ > M (3.13)∥∥∥H(k)d
(k)
0

∥∥∥ >
∥∥∥d(k)

0

∥∥∥1/2

(3.14)∥∥d(k)
∥∥ > M (3.15)

∇f
(
x(k)
)T
d(k) > min

{
−
∥∥∥d(k)

0

∥∥∥β2

,−
∥∥d(k)

∥∥β2

}
(3.16)∥∥∥d̃(k)

∥∥∥ >
∥∥d(k)

∥∥ (3.17)

with M ∈ R+. The feasible first order search direction d(k) satisfies

∇f
(
x(k)
)T
d(k) ≤ −δ (3.18)

∇ej
(
x(k)
)T
d(k) ≤ −δ, j = 1, . . . ,mf (3.19)

with δ ∈ R+. One possibility is to solve (3.5) to obtain d(k) and set d̃(k) = 0. This
may lead to slow convergence, if the starting point is badly chosen, see Lawrence and
Tits [54].

Algorithm 2. Feasible direction SQP method by Panier and Tits [64]
Step 0: Choose feasible starting point x(0) ∈ F, parameters β1 > 2, β2 ∈ (2, 3),

β ∈ (0, 1) , r ∈ (0, 1),M ∈ R+, H(0) � 0. Let k := 0.

Step 1: Solve (3.3) to obtain d
(k)
0 . If no optimal solution exists or

∥∥∥d(k)
0

∥∥∥ > M

or
∥∥∥H(k)d

(k)
0

∥∥∥ > ∥∥∥d(k)
0

∥∥∥1/2

, goto Step 5.

Step 2: If d
(k)
0 = 0, then STOP.

Step 3: Solve (3.10) to obtain d(k). If no optimal solution exists or
∥∥d(k)

∥∥ > M

or ∇f
(
x(k)
)T
d(k) > min

{
−
∥∥∥d(k)

0

∥∥∥β2

,−
∥∥d(k)

∥∥β2

}
, goto Step 5.

Step 4: Solve (3.11) to obtain d̃(k). If no optimal solution exists or
∥∥∥d̃(k)

∥∥∥ > ∥∥d(k)
∥∥,

then goto Step 5.
Else goto Step 6.

Step 5: Compute a feasible first order descent direction d(k) satisfying (3.18) and

(3.19), e.g., solve (3.5). Set d̃(k) = 0.

Step 6: Compute stepsize σ(k), i.e., the first value σ(k) in sequence {1, β, β2, . . .}
satisfying

f
(
x(k) + σ(k)d(k) +

(
σ(k)
)2
d̃(k)
)
≤ f

(
x(k)
)

+ rσ(k)∇f
(
x(k)
)T
d(k) and

ej

(
x(k) + σ(k)d(k) +

(
σ(k)
)2
d̃(k)
)
≤ 0, j = 1, . . . ,mf .

22 3 Feasible Sequential Quadratic Optimization Methods

Step 7: Set x(k+1) := x(k) + σ(k)d(k) +
(
σ(k)
)2
d̃(k), compute a symmetric and positive

definite matrix H(k+1) ∈ R(n×n) by a quasi-Newton formula, k := k + 1 and
goto Step 1.

3.3 A feasible SQP method by Herskovits and

Carvalho

Herskovits and Carvalho [38] proposed a feasible direction algorithm, which is under
certain conditions locally superlinear but not globally convergent. In each iteration,
two QPs have to be solved. Considering problem (3.3), the resulting descent direction

d
(k)
0 ∈ Rn might be infeasible depending on the curvature of the active constraints. To

ensure that the search direction d
(k)
0 is also a feasible direction, a modified quadratic

program is solved. Active constraints of the original QP (3.3) are included as equality
constraints with a modified right hand side. The perturbation factor depends on the
norm of the original search direction d

(k)
0 . In addition, a line search is performed with

respect to the Lagrangian function defined in (2.8). The solution
(
d

(k)
0 , y

(k)
0

)
of (3.3),

defines the active set J(k) in iteration k and its complement J(k)

J(k) :=

{
j = 1, . . . ,mf

∣∣∣∣ (y(k)
0

)
j
6= 0

}
, (3.20)

J(k)
:=

{
j = 1, . . . ,mf

∣∣∣∣ (y(k)
0

)
j

= 0

}
. (3.21)

Whenever (3.3) is solved, a modified QP is formulated depending on the resulting

search direction d
(k)
0 and a weighting factor t(k) ∈ R+. We get d(k) by solving

min
d

1

2
dTH(k)d+∇f

(
x(k)
)T
d d ∈ Rn

s.t. ej
(
x(k)
)

+∇ej
(
x(k)
)T
d = −t(k)

∥∥∥d(k)
0

∥∥∥2

, j ∈ J(k)
(3.22)

The value of t(k) has to be chosen such that specific conditions for active and inactive
constraints are satisfied. Considering the active constraints, we define

eJ(k)

(
x(k)
)

:=
[
ej
(
x(k)
)]T

J(k) ∈ R|J(k)| (3.23)

AJ(k)

(
x(k)
)

:=
[
∇ej

(
x(k)
)]

J(k) ∈ Rn×|J(k)| (3.24)

It is shown by Herskovits and Carvalho [38] that

∇xL
(
x(k), y

(k)
0

)T
d(k) ≤ ∇xL

(
x(k), y

(k)
0

)T
d

(k)
0 (3.25)

holds, if

eJ(k)

(
x(k)
)T (

AJ(k)

(
x(k)
)T (

H(k)
)−1

AJ(k)

(
x(k)
))−1

1 > 0 (3.26)

3.3 A feasible SQP method by Herskovits and Carvalho 23

or

t(k) ≤ t
(k)
0 :=

(1− β1)∇xL
(
x(k), y

(k)
0

)T
d

(k)
0∥∥∥d(k)

0

∥∥∥2

eJ(k) (x(k))
T
(
AJ(k) (x(k))

T
(H(k))

−1
AJ(k) (x(k))

)−1

1

(3.27)

where β1 ∈ (0, 1), 1 is a vector of ones of appropriate size and L
(
x(k), y(k)

)
is the

Lagrangian function defined in (2.8). Moreover, d
(k)
0 is a descent direction, i.e.,

∇xL
(
x(k), y

(k)
0

)T
d

(k)
0 < 0 (3.28)

holds. It can be shown that inactive constraints, ej (x) , j ∈ J(k)
, are still inactive in

the modified QP, i.e.,

ej
(
x(k)
)

+∇ej
(
x(k)
)T
d(k) < −t(k)

∥∥∥d(k)
0

∥∥∥2

, (3.29)

for all j ∈ J(k)
, if

∇ej
(
x(k)
)T(

H(k)
)−1

AJ(k)

(
x(k)
) (
AJ(k)

(
x(k)
)T(

H(k)
)−1

AJ(k)

(
x(k)
))−1

1− 1 > 0 (3.30)

or

t(k) ≤
(
t
(k)
1

)
j

(3.31)

with

(
t
(k)
1

)
j
:=

∥∥∥d(k)
0

∥∥∥−2 (
ej
(
x(k)
)

+∇ej
(
x(k)
)T
d

(k)
0

)
∇ej (x(k))

T
(H(k))

−1
AJ(k) (x(k))

(
AJ(k) (x(k))

T
(H(k))

−1
AJ(k) (x(k))

)−1

1− 1
(3.32)

holds. Therefore, we set

t(k) :=

{
0.5t

(k)
M , if t(k−1) > t

(k)
M

t(k−1), otherwise
(3.33)

with

t
(k)
M := min

j∈J(k)

{
t, t

(k)
0 ,
(
t
(k)
1

)
j

}
(3.34)

and t ∈ R+. For a detailed description see Herskovits and Carvalho [38].

24 3 Feasible Sequential Quadratic Optimization Methods

Algorithm 3. Feasible direction SQP method by Herskovits and
Carvalho [38]

Step 0: Choose feasible starting point x(0) ∈ F, set parameters r ∈ (0, 1), t ∈ R+,
0 < t(−1) < t, β ∈ (0, 1) , β1 ∈ (0, 1) and H(0) ∈ R(n×n) symmetric and positive
definite. Let k := 0.

Step 1: Solve (3.3) to obtain
(
d

(k)
0 , y

(k)
0

)
.

Step 2: If d
(k)
0 = 0 then STOP.

Step 3: If (3.26) does not hold, determine t
(k)
0 according to (3.27).

Step 4: If (3.30) does not hold, determine
(
t
(k)
1

)
j
, j ∈ J(k)

according to (3.32).

Step 5: Update t(k) according to (3.33).

Step 6: Solve (3.22) to obtain d(k).

Step 7: Compute stepsize σ(k), i.e., the first value σ(k) in sequence {1, β, β2, . . .}
satisfying

L
(
x(k) + σ(k)d(k), y

(k)
0

)
≤ L

(
x(k), y

(k)
0

)
+ rσ(k)∇xL

(
x(k), y

(k)
0

)T
d(k) and

ej
(
x(k) + σ(k)d(k)

)
≤ 0, j = 1, . . . ,mf .

Step 8: Set x(k+1) := x(k) + σ(k)d(k), compute a symmetric and positive definite matrix
H(k+1) ∈ R(n×n) by a quasi-Newton formula, set k := k + 1 and goto Step 1.

It can be shown that the resulting descent direction d(k) is a feasible direction ac-
cording to Definition 9. In addition, the Maratos effect is avoided, see Herskovits and
Carvalho [38].

3.4 A feasible SQP method by Panier and Tits

The concept of the feasible SQP method proposed by Panier and Tits [65] is based
on the idea of generating an iteration sequence such that

f
(
x(k+1)

)
< f

(
x(k)
)

(3.35)

and

ej
(
x(k+1)

)
≤ 0, j = 1, . . . ,mf (3.36)

holds. Even if the search direction d
(k)
0 ∈ Rn resulting from (3.3) is a feasible direc-

tion according to Definition 9, local superlinear convergence is not guaranteed, since
stepsize one might be infeasible. Therefore, the search direction d

(k)
0 is ’titled’, i.e.,

replaced by a convex combination d(k) :=
(
1− t(k)

)
d

(k)
0 + t(k)d

(k)
1 , where d

(k)
1 ∈ Rn is

3.4 A feasible SQP method by Panier and Tits 25

an arbitrary feasible descent direction and t(k) ∈ [0, 1]. To ensure superlinear conver-
gence in the neighborhood of a stationary point, one forces t(k) → 0 appropriately.

Moreover, a line search is performed along the arc x(k) + σ(k)d(k) +
(
σ(k)
)2
d̃(k), which

can be interpreted as ’bending’. Without bending, x(k) + d(k) may neither be feasible
nor yield a descent in the objective function.

After solving (3.3), a feasible descent direction d
(k)
1 is computed satisfying the following

requirements

1. d
(k)
1 = 0, if x(k) is a KKT point,

2. ∇f
(
x(k)
)T
d

(k)
1 < 0, if x(k) is not a KKT point,

3. ∇ej
(
x(k)
)T
d

(k)
1 < 0,∀j = 1, . . . ,mf , with ej

(
x(k)
)

= 0, if x(k) is not a KKT
point.

The solution d
(k)
1 ∈ Rn of the least squares problem

min
d

1

2
‖d‖2 + max

{
∇f

(
x(k)
)T
d, max

j=1,...,mf

{
ej
(
x(k)
)

+∇ej
(
x(k)
)T
d
}}

(3.37)

satisfies these requirements, see Panier and Tits [65]. The feasible direction is defined
by

d(k) :=
(
1− t(k)

)
d

(k)
0 + t(k)d

(k)
1 , (3.38)

where the weighting factor t(k) ∈ [0, 1] is computed such that t(k) is bounded away

from zero, if d
(k)
0 6= 0 and t(k) = 1, if d

(k)
0 becomes large. There are many possibilities

to compute t(k), for example

t(k) := min

(
1,
∥∥∥d(k)

0

∥∥∥β1
)

or t(k) :=

∥∥∥d(k)
0

∥∥∥β1(
1 +

∥∥∥d(k)
0

∥∥∥β1
) , (3.39)

with β1 ≥ 2, see Panier and Tits [65]. As t(k) is bounded from below by a positive
constant at every nonstationary point, d(k) is a feasible descent direction. To prevent
the Maratos effect, an additional QP has to be solved

min
d

1

2

(
d(k) + d

)T
H(k)

(
d(k) + d

)
+∇f

(
x(k)
)T (

d(k) + d
)

d ∈ Rn

s.t. ej
(
x(k) + d(k)

)
+∇ej

(
x(k)
)T
d ≤ −

∥∥d(k)
∥∥β2

, j = 1, . . . ,mf

(3.40)

with β2 ∈ (2, 3). Let the solution of (3.40) in iteration k be d̃(k) ∈ Rn. d̃(k) is set to
zero, if the current iterate is far away from the solution, i.e., if∥∥∥d̃(k)

∥∥∥ > min
{∥∥d(k)

∥∥ , C} (3.41)

holds, where C ∈ R+ is a given large number. Otherwise, global convergence can
not be guaranteed. Note that in (3.40) the inequality constraints are evaluated at
x(k) + d(k), which might be infeasible.

26 3 Feasible Sequential Quadratic Optimization Methods

Algorithm 4. Feasible direction SQP method by Panier and Tits [65]
Step 0: Choose feasible starting point x(0) ∈ F, parameters r ∈ (0, 1), β ∈ (0, 1) ,

β1 ≥ 2, β2 ∈ (2, 3) , C ∈ R+ and H(0) ∈ R(n×n) symmetric and positive
definite. Let k := 0.

Step 1: Solve (3.3) to obtain d
(k)
0 .

Step 2: If d
(k)
0 = 0, then STOP.

Step 3: Solve (3.37) to obtain d
(k)
1 .

Step 4: Set t(k) according to (3.39). Let d(k) :=
(
1− t(k)

)
d

(k)
0 + t(k)d

(k)
1 .

Step 5: Solve (3.40) to obtain d̃(k). If
∥∥∥d̃(k)

∥∥∥ > min
{∥∥d(k)

∥∥ , C}, set d̃(k) = 0.

Step 6: Compute stepsize σ(k), i.e., the first value σ(k) in sequence {1, β, β2, . . .}
satisfying

f
(
x(k) + σ(k)d(k) +

(
σ(k)
)2
d̃(k)
)
≤ f

(
x(k)
)

+ rσ(k)∇f
(
x(k)
)T
d(k) and

ej

(
x(k) + σ(k)d(k) +

(
σ(k)
)2
d̃(k)
)
≤ 0, j = 1, . . . ,mf .

Step 7: Set x(k+1) := x(k) + σ(k)d(k) +
(
σ(k)
)2
d̃(k), compute a symmetric and positive

definite matrix H(k+1) ∈ R(n×n) by a quasi-Newton formula, k := k + 1 and
goto Step 1.

Under certain conditions, global convergence and local two-step superlinear conver-
gence can be shown, i.e.,

lim
k→∞

∥∥x(k+2) − x?
∥∥

‖x(k) − x?‖
= 0, (3.42)

where x? ∈ Rn is a stationary point, see Panier and Tits [65]. The algorithm can be ex-
tended, such that equality constraints can be handled, see Lawrence and Tits [53]. The
resulting algorithm is implemented efficiently, see user’s guide by Zhou and Tits [93].

3.5 A feasible SQP method by Lawrence and Tits

Lawrence [52] and Lawrence and Tits [54] proposed an algorithm ensuring feasibility
with respect to the inequality constraints ej (x) , j = 1, . . . ,mf . Under certain condi-
tions, the algorithm is globally and locally superlinear convergent. The method aims
to reduce the computational work per iteration. In each iteration one QP and two
related least squares problems have to be solved. Instead of solving (3.3), a QP, which

3.5 A feasible SQP method by Lawrence and Tits 27

is closely related to (3.7), is solved

min
d,δ

δ +
1

2
dTH(k)d d ∈ Rn, δ ∈ R

s.t. ∇f
(
x(k)
)T
d ≤ δ

ej
(
x(k)
)

+∇ej
(
x(k)
)T
d ≤ t(k)δ, j = 1, . . . ,mf

(3.43)

where t(k) → 0, t(k) ∈ R+. We denote the solution of (3.43) by
(
d(k), δ(k)

)
. A large

value of t(k) forces to become a feasible solution, while a small value emphasizes the
descent with respect to the objective function. Moreover, t(k) is bounded from below
by a positive constant away from a stationary point to guarantee a feasible descent
direction. It can be shown that δ(k) ≤ 0, see Birge, Qi and Wei [11]. The resulting

search direction d(k) ∈ Rn is supposed to converge towards the solution d
(k)
0 ∈ Rn of

(3.3) as fast as possible.

To ensure local superlinear convergence properties, a correction step d̃(k) ∈ Rn has to
be computed by solving

min
d

(
d(k) + d

)T
H(k)

(
d(k) + d

)
+∇f

(
x(k)
)T (

d(k) + d
)

d ∈ Rn

s.t. ej
(
x(k) + d(k)

)
+∇ej

(
x(k)
)T
d ≤ −

∥∥d(k)
∥∥β1

, j ∈ J(k)
(3.44)

with β1 ∈ (2, 3) and

J(k) :=
{
j = 1, . . . ,mf

∣∣∣ ej (x(k)
)

+∇ej
(
x(k)
)T
d(k) = t(k)δ(k)

}
. (3.45)

(3.44) can be equivalently formulated as a least squares problem, see Lawrence and

Tits [54]. If
∥∥∥d̃(k)

∥∥∥ is large, we expect to be far away from the solution. To ensure

global convergence, d̃(k) is set to zero in this case, see Lawrence and Tits [54]. An
additional QP has to be solved to update the weighting factor t(k+1)

min
d

1

2
dTH(k)d+∇f

(
x(k)
)T
d d ∈ Rn

s.t. ej
(
x(k)
)

+∇ej
(
x(k)
)T
d = 0, j ∈ J(k)

(3.46)

which is, after a change of variables, equivalent to a least squares problem, see

Lawrence and Tits [54]. Let the solution of (3.46) be
(
d

(k)
E , y

(k)
E

)
. It can be shown

that d
(k)
E is an approximation of d

(k)
0 and for k sufficient large

d
(k)
E = d

(k)
0 (3.47)

holds. (3.46) is solved to update the perturbation parameter t(k) of (3.43). We get

t(k+1) :=


C(k+1)ε2, if

∥∥d(k)
∥∥ ≥ ε

C(k+1)
∥∥∥d(k+1)

E

∥∥∥2

, if
∥∥d(k)

∥∥ < ε,
∥∥∥d(k+1)

E

∥∥∥ ≤ D and y
(k+1)
E ≥ 0

C(k+1)
∥∥d(k)

∥∥2
, otherwise

(3.48)

where C(k+1) ∈ R+, D ∈ R+, ε ∈ R+.

28 3 Feasible Sequential Quadratic Optimization Methods

Algorithm 5. Feasible direction SQP method by Lawrence and Tits [54]
Step 0: Choose feasible starting point x(0) ∈ F, parameters r ∈ (0, 1), β ∈ (0, 1),

t(0) > 0 and H(0) ∈ R(n×n) symmetric and positive definite. Set 0 < C < C,
C(0) ∈ R+, D ∈ R+, ε ∈ R+, β1 ∈ (2, 3). Let k := 0.

Step 1: Solve (3.43) to obtain
(
d(k), δ(k)

)
.

Step 2: If d(k) = 0, then STOP.

Step 3: Solve (3.44) and denote the solution by d̃(k). If no solution exists or∥∥∥d̃(k)
∥∥∥ > ∥∥d(k)

∥∥ holds, let d̃(k) = 0.

Step 4: Compute stepsize σ(k), i.e., the first value σ(k) in sequence {1, β, β2, . . .}
satisfying

f
(
x(k) + σ(k)d(k) +

(
σ(k)
)2
d̃(k)
)
≤ f

(
x(k)
)

+ rσ(k)∇f
(
x(k)
)T
d(k) and

ej

(
x(k) + σ(k)d(k) +

(
σ(k)
)2
d̃(k)
)
≤ 0, j = 1, . . . ,mf .

Step 5: Set x(k+1) := x(k) + σ(k)d(k) +
(
σ(k)
)2
d̃(k). Select C(k+1) ∈

[
C,C

]
.

Compute a symmetric and positive definite matrix H(k+1) ∈ R(n×n) by a
quasi-Newton formula.

Step 6: If
∥∥d(k)

∥∥ < ε, solve (3.46) to obtain
(
d

(k+1)
E , y

(k+1)
E

)
.

Step 7: Determine t(k+1) according to (3.48).

Step 8: Set k := k + 1 and goto Step 1.

3.6 A feasible SQP method by Zhu, Zhang and

Jian

The feasible direction SQP algorithm presented by Zhu, Zhang and Jian [94], solves
two linear systems and one QP per iteration. Under certain conditions, the resulting
method is globally and locally superlinear convergent. To save computational effort,
the size of subproblem (3.3) is reduced to the number of ε active constraints, i.e., only

constraints contained in J(k)
ε given by (3.49) are considered in the subproblem. We

denote the ε active set in iteration k by

J(k)
ε :=

{
j = 1, . . . ,mf

∣∣∣ −εµ(k)
j ≤ ej

(
x(k)
)
≤ 0

}
, (3.49)

with ε ∈ R+ and µ(k) ∈ Rmf .

3.6 A feasible SQP method by Zhu, Zhang and Jian 29

We define eJ(k)
ε

(
x(k)
)
∈ R

∣∣∣J(k)
ε

∣∣∣
and AJ(k)

ε

(
x(k)
)
∈ Rn×

∣∣∣J(k)
ε

∣∣∣
according to (3.23) and

(3.24) by

eJ(k)
ε

(
x(k)
)

:=
[
ej
(
x(k)
)]T

J(k)
ε

(3.50)

AJ(k)
ε

(
x(k)
)

:=
[
∇ej

(
x(k)
)]

J(k)
ε
. (3.51)

Moreover, if

det
(
AJ(k)

ε

(
x(k)
)T
AJ(k)

ε

(
x(k)
))

< ε, (3.52)

holds, ε has to be adapted to ensure that the gradients of the active constraints are of
full rank, see Zhu, Zhang and Jian [94]. After updating ε = 0.5ε and J(k)

ε until (3.52) is
violated, the ε active set (3.49) is adjusted. This procedure, called Pivoting Operation
(POP), terminates in a finite number of iterations, see Gao, He and Wu [31].

The subproblem derived from (3.3) is formulated by

min
d

1

2
dTH(k)d+∇f

(
x(k)
)T
d d ∈ Rn

s.t. ej
(
x(k)
)

+∇ej
(
x(k)
)T
d ≤ 0, j ∈ J(k)

ε

(3.53)

We denote the solution of (3.53) by
(
d

(k)
0 , y

(k)
0

)
. Moreover, we obtain the matrix

A1

J(k)
ε

(
x(k)
)
∈ R

∣∣∣J(k)
ε

∣∣∣×∣∣∣J(k)
ε

∣∣∣
by applying a permutation matrix P (k) ∈ Rn×n yielding(
A1

J(k)
ε

(
x(k)
)

A2

J(k)
ε

(
x(k)
)) := P (k)AJ(k)

ε

(
x(k)
)

(3.54)

such that A1

J(k)
ε

(
x(k)
)

is invertible. The following linear system is solved to obtain

search direction d̃
(k)
1 ∈ R

∣∣∣J(k)
ε

∣∣∣
A1

J(k)
ε

(
x(k)
)T
d = −

∥∥∥d(k)
0

∥∥∥β1

1− eJ(k)
ε

(
x(k) + d

(k)
0

)
(3.55)

where β1 ∈ (2, 3) and 1 a vector of ones of appropriate size. Note that function
evaluations at infeasible points might be necessary to formulate (3.55). We define the
feasible direction d(k) ∈ Rn by

d(k) := d
(k)
0 + d

(k)
1 , (3.56)

with d
(k)
1 ∈ Rn given by

d
(k)
1 :=

(
P (k)

)T (d̃
(k)
1

p0

)
(3.57)

where p0 is a vector of zeros of appropriate size.

30 3 Feasible Sequential Quadratic Optimization Methods

To prevent the Maratos effect, an additional correction term d̃(k) ∈ Rn has to be
computed. We define (

∇f 1
(
x(k)
)

∇f 2
(
x(k)
)) := P (k)∇f

(
x(k)
)

(3.58)

such that ∇f 1
(
x(k)
)
∈ R

∣∣∣J(k)
ε

∣∣∣
. Moreover, d̃

(k)
2 ∈ R

∣∣∣J(k)
ε

∣∣∣
and d

(k)
2 ∈ Rn is denoted by

d̃
(k)
2 :=

∇f
(
x(k)
)T
d

(k)
0

1− 2

∣∣∣∣1T (A1

J(k)
ε

(x(k))
)−1

∇f 1 (x(k))

∣∣∣∣
(
A1

J(k)
ε

(
x(k)
))−T

1, (3.59)

d
(k)
2 :=

(
P (k)

)T (d̃
(k)
2

p0

)
. (3.60)

Note that A1

J(k)
ε

(
x(k)
)

has to be inverted, which increases the computational effort.

The correction term preventing the Maratos effect is given by

d̃(k) := −∇f
(
x(k)
)T
d

(k)
0

(
d

(k)
0 + d

(k)
2

)
. (3.61)

In each iteration µ(k) ∈ Rmf has to be adapted dependent on the solution
(
d

(k)
0 , y

(k)
0

)
of subproblem (3.53). We get

µ
(k+1)
j :=


min

{
max

{(
y

(k)
0

)
j
,
∥∥∥d(k)

0

∥∥∥} , µ} , if j ∈ J(k)
ε

min
{∥∥∥d(k)

0

∥∥∥ , µ} , if j ∈ J(k)

ε

(3.62)

where µ ∈ R+ is an appropriate upper bound.

The feasible direction SQP method can be summarized according to Zhu, Zhang and
Jian [94].

Algorithm 6. Feasible direction SQP method by Zhu, Zhang and Jian [94]
Step 0: Choose feasible starting point x(0) ∈ F. Set parameters r ∈ (0, 1), ε ∈ R+,

β = 0.5, β1 ∈ (2, 3) , β2 > 2, β3 ∈ (0, 1), µ ∈ R+ and H(0) ∈ R(n×n)

symmetric and positive definite. Let k := 0.

Step 1: Define ε and J(k)
ε according to (3.49).

Step 2: Formulate and solve (3.53) with respect to active set J(k)
ε to obtain

(
d

(k)
0 , y

(k)
0

)
.

Step 3: If d
(k)
0 = 0, then STOP.

Step 4: Compute d̃
(k)
1 , d

(k)
1 and d(k) according to (3.55), (3.57) and (3.56).

3.7 A feasible SQP method by Jian and Tang 31

Step 5: If ∇f
(
x(k)
)T
d

(k)
0 ≤ min

{
−β3

∥∥∥d(k)
0

∥∥∥β2

,−β3

∥∥d(k)
∥∥β2

}
,

f
(
x(k) + d(k)

)
≤ f

(
x(k)
)

+ rσ(k)∇f
(
x(k)
)T
d

(k)
0 and

ej
(
x(k) + d(k)

)
≤ 0, j = 1, . . . ,mf ,

then set σ(k) = 1, d̃(k) = d(k) and goto Step 8.

Step 6: Compute d̃
(k)
2 , d

(k)
2 and d̃(k) according to (3.59), (3.60) and (3.61).

Step 7: Compute stepsize σ(k), i.e., the first value σ(k) in sequence {1, β, β2, . . .}
satisfying

f
(
x(k) + σ(k)d̃(k)

)
≤ f

(
x(k)
)

+ rσ(k)∇f
(
x(k)
)T
d(k) and

ej

(
x(k) + σ(k)d̃(k)

)
≤ 0, j = 1, . . . ,mf .

Step 8: Set x(k+1) := x(k) + σ(k)d̃(k) and compute a symmetric and positive definite
matrix H(k+1) ∈ R(n×n) by a quasi-Newton formula. Define µ(k+1) according
to (3.62).

Step 9: Set k := k + 1, goto Step 1.

3.7 A feasible SQP method by Jian and Tang

Under certain conditions, the algorithm introduced by Jian and Tang [44] is globally
and locally superlinear as well as quadratically convergent without requiring strict
complementary. It solves iteratively one QP. Moreover, in each iteration the feasible
search direction is determined by two formulas.

Analogue to (3.53) in Section 3.6 a QP is formulated with respect to the ε active set,
where µ(k) = 1, i.e.,

J(k)
ε :=

{
j = 1, . . . ,mf

∣∣−ε ≤ ej
(
x(k)
)
≤ 0

}
, (3.63)

with ε ∈ R+. According to POP in Section 3.6, ε has to be reduced until

det
(
AJ(k)

ε

(
x(k)
)T
AJ(k)

ε

(
x(k)
))

> ε (3.64)

holds, where AJ(k)
ε

(
x(k)
)
∈ Rn×

∣∣∣J(k)
ε

∣∣∣
is defined according to (3.51). As the resulting

solution d
(k)
0 ∈ Rn of (3.53) is not necessarily a feasible direction, a correction d(k) ∈ Rn

has to be determined given by

d(k) := d
(k)
0 − t(k)AJ(k)

ε

(
x(k)
) (
AJ(k)

ε

(
x(k)
)T
AJ(k)

ε

(
x(k)
))−1

1, (3.65)

where t(k) ∈ R is defined by

t(k) :=

∥∥∥d(k)
0

∥∥∥(d(k)
0

)T
H(k)d

(k)
0

2

∣∣∣∣1T (AJ(k)
ε

(x(k))
T
AJ(k)

ε
(x(k))

)−1

AJ(k)
ε

(x(k))
T ∇f (x(k))

∣∣∣∣ ∥∥∥d(k)
0

∥∥∥+ 1

. (3.66)

32 3 Feasible Sequential Quadratic Optimization Methods

Note that AJ(k)
ε

(
x(k)
)T
AJ(k)

ε

(
x(k)
)

has to be inverted which increases the computa-

tional effort. It can be shown that d(k) is a feasible descent direction. To prevent the
Maratos effect we have to define a correction direction d̃(k) ∈ Rn by

d̃(k) := −AJ(k)
ε

(
x(k)
) (
AJ(k)

ε

(
x(k)
)T
AJ(k)

ε

(
x(k)
))−1

(∥∥∥d(k)
0

∥∥∥β1

1 + eJ(k)
ε

(
x(k) + d(k)

)
− eJ(k)

ε

(
x(k)
)
− AJ(k)

ε

(
x(k)
)T
d(k)

)
(3.67)

with β1 ∈ (2, 3) and eJ(k)
ε

(
x(k)
)
∈ R

∣∣∣J(k)
ε

∣∣∣
defined according to (3.50). To compute (3.67)

active constraints have to be evaluated at iterate x(k) +d(k). Although d(k) is a feasible
direction, the iterate might be infeasible, if θ(k) < 1, see Definition 9.

Algorithm 7. Feasible direction SQP method by Jian et al. [45]
Step 0: Choose feasible starting point x(0) ∈ F, set parameters r ∈ (0, 1), β ∈ (0, 1),

β1 ∈ (2, 3), ε ∈ R+ and H(0) ∈ R(n×n) symmetric and positive definite.
Let k := 0.

Step 1: Define J(k)
ε and ε according to (3.63).

Step 2: Solve (3.53) to obtain d
(k)
0 .

Step 3: If d
(k)
0 = 0, then STOP.

Step 4: Compute d(k) according to (3.65) and d̃(k) according to (3.67).

Step 5: Compute stepsize σ(k), i.e., the first value σ(k) in sequence {1, β, β2, . . .}
satisfying

f
(
x(k) + σ(k)d(k) +

(
σ(k)
)2
d̃(k)
)
≤ f

(
x(k)
)

+ rσ(k)∇f
(
x(k)
)T
d(k) and

ej

(
x(k) + σ(k)d(k) +

(
σ(k)
)2
d̃(k)
)
≤ 0, j = 1, . . . ,mf .

Step 6: Set x(k+1) := x(k) +σ(k)d(k) +
(
σ(k)
)2
d̃(k) and compute a symmetric and positive

definite matrix H(k+1) ∈ R(n×n) by a quasi-Newton formula.

Step 7: Set k := k + 1, goto Step 1.

The algorithm is extended such that equality constraints can be handled, see Jian,
Tang, Hu, Zheng [45]. Equality constraints are added to the objective function by a
corresponding penalty function, see Mayne and Polak [58]. It can be shown that the
solution of the resulting penalty problem is identical to the solution of the original
problem, if the penalty parameters are large enough, see Jian, Tang, Hu, Zheng [45].

3.8 A feasible SQP method by Zhu 33

3.8 A feasible SQP method by Zhu

Zhu [95] presented a feasible direction algorithm, solving one QP per iteration. To
prevent the Maratos effect an additional linear system has to be solved, which con-
tains active inequality constraints only. Under certain conditions, the algorithm is
globally and locally superlinear convergent. According to Section 3.5, we start with
the following quadratic subproblem

min
δ,d

δ +
1

2
dTH(k)d d ∈ Rn, δ ∈ R

s.t. ∇f
(
x(k)
)T
d ≤ δ

ej
(
x(k)
)

+∇ej
(
x(k)
)T
d ≤ t(k)δ, j = 1, . . . ,mf

(3.68)

where t(k) ∈ R+. Let the solution of (3.68) be defined by
(
δ(k), d(k)

)
. It can be shown

that δ(k) ≤ 0, see Birge, Qi and Wei [11]. Moreover, the resulting descent direction is
feasible, if t(k) is positive, see Zhu [95]. To prevent the Maratos effect it is necessary

to determine a correction d̃(k) ∈ Rn. We define the active set by

J(k) :=
{
j = 1, . . . ,mf

∣∣∣ ej (x(k)
)

+∇ej
(
x(k)
)T
d(k) = t(k)δ(k)

}
. (3.69)

Whenever AJ(k)

(
x(k)
)
∈ Rn×|J(k)| defined by (3.24), has full rank, the correction d̃(k)

is computed. We define the permutation matrix P (k) ∈ Rn×n(
A1

J(k)

(
x(k)
)

A2
J(k)

(
x(k)
)) := P (k)AJ(k)

(
x(k)
)

(3.70)

such that A1
J(k)

(
x(k)
)
∈ R|J(k)|×|J(k)| consist of

∣∣J(k)
∣∣ linearly independent rows and

A2
J(k)

(
x(k)
)

contains the remaining rows. We denote the solution of the following linear

system by d
(k) ∈ R|J(k)|

A1
J(k)

(
x(k)
)T
d = −Ψ(k)1− eJ(k)

(
x(k) + d(k)

)
(3.71)

with

Ψ(k) := max
{∥∥d(k)

∥∥β1
,−t(k)δ(k)

∥∥d(k)
∥∥} , (3.72)

δ(k) ≤ 0, β1 ∈ (2, 3) and eJ(k) (x) ∈ R|J(k)| defined according to (3.23). The correction

term d̃(k) ∈ Rn, preventing the Maratos effect, is given by

d̃(k) :=
(
P (k)

)T (d
(k)

p0

)
(3.73)

where p0 is a vector of zeros of appropriate size. Formulating the linear system (3.71),
active constraints have to be evaluated at x(k) + d(k), which might be an infeasible
point, although d(k) is a feasible direction, see Definition 9.

34 3 Feasible Sequential Quadratic Optimization Methods

In each iteration, the weighting parameter t(k) ∈ R+ has to be adapted,

t(k+1) := min
{
t,
∥∥d(k)

∥∥β2
}
, (3.74)

with β2 ∈ (0, 1) and t ∈ R+.

Algorithm 8. Feasible direction SQP method by Zhu [95]
Step 0: Choose feasible starting point x(0) ∈ F and set parameters t(0) ∈ R+, r ∈ (0, 1),

t ∈ R+, β ∈ (0, 1) , β1 ∈ (2, 3) , β2 ∈ (0, 1) and H(0) ∈ R(n×n) symmetric and
positive definite. Let k := 0.

Step 1: Solve (3.68) to obtain d(k).

Step 2: If d(k) = 0, then STOP.

Step 3: Define J(k) according to (3.69).

Step 4: If AJ(k)

(
x(k)
)

has full rank, solve (3.71) to obtain d
(k)

. Determine d̃(k) according
to (3.73).

Else d̃(k) = 0.

Step 5: If
∥∥∥d̃(k)

∥∥∥ > ∥∥d(k)
∥∥, set d̃(k) = 0.

Step 6: Compute stepsize σ(k), i.e., the first value σ(k) in sequence {1, β, β2, . . .}
satisfying.

f
(
x(k) + σ(k)d(k) +

(
σ(k)
)2
d̃(k)
)
≤ f

(
x(k)
)

+ rσ(k)∇f
(
x(k)
)T
d(k) and

ej

(
x(k) + σ(k)d(k) +

(
σ(k)
)2
d̃(k)
)
≤ 0, j = 1, . . . ,mf .

Step 7: Set x(k+1) := x(k) +σ(k)d(k) +
(
σ(k)
)2
d̃(k) and compute a symmetric and positive

definite matrix H(k+1) ∈ R(n×n) by a quasi-Newton formula. Set t(k+1)

according to (3.74).

Step 8: Set k := k + 1, goto Step 1.

3.9 A feasible SQP method by Zhu and Jian

Zhu and Jian [96] presented a feasible direction SQP method for which, under certain
conditions, global and local superlinear convergence can be shown. In each iteration
one QP and a system of linear equations need to be solved. According to Section 3.6,
we formulate the reduced subproblem (3.53) with the corresponding ε active set

J(k)
ε :=

{
j = 1, . . . ,mf

∣∣∣ −εµ(k)
j ≤ ej

(
x(k)
)
≤ 0

}
, (3.75)

with µ(k) ∈ Rmf . The parameter ε ∈ R+ is adapted as described in Section 3.6 until

det
(
AJ(k)

ε

(
x(k)
)T
AJ(k)

ε

(
x(k)
))

> ε, (3.76)

3.9 A feasible SQP method by Zhu and Jian 35

holds, where AJ(k)
ε

(
x(k)
)
∈ Rn×

∣∣∣J(k)
ε

∣∣∣
is defined according to (3.51). The solution of

(3.53) is denoted by d
(k)
0 ∈ Rn and the corresponding Lagrangian multipliers are given

by y
(k)
0 ∈ R|J(k)|. In each iteration, µ(k+1) ∈ Rmf has to be adapted, using the following

update rule

µ
(k+1)
j :=

 min

{
max

{(
y

(k)
0

)
j
,
∥∥∥d(k)

0

∥∥∥} , µ} , j ∈ J(k)
ε

1
2
µ

(k)
j , otherwise

(3.77)

where µ ∈ R+ is an upper bound.

As d
(k)
0 may not be a feasible direction, a correction has to be determined. Therefore,

we define a permutation matrix P (k) ∈ Rn×n(
A1

J(k)
ε

(
x(k)
)

A2

J(k)
ε

(
x(k)
)) := P (k)AJ(k)

ε

(
x(k)
)

(3.78)

such that A1

J(k)
ε

(
x(k)
)
∈ R|J

(k)
ε |×|J

(k)
ε | is the maximal linearly independent row subset of

AJ(k)
ε

(
x(k)
)
. We define (

H1
d

(
x(k)
)

H2
d

(
x(k)
)) := P (k)

(
H(k)d

(k)
0

)
(3.79)

such that H1
d

(
x(k)
)
∈ R|J

(k)
ε |. Moreover, we define d

(k)

1 ∈ R|J
(k)
ε |

d
(k)

1 := −t(k)
(
A1

J(k)
ε

(
x(k)
))−T

1 (3.80)

with t(k) ∈ R given by

t(k) :=

∥∥∥d(k)
0

∥∥∥2

∇f
(
x(k)
)T
d

(k)
0

1 + 2

∣∣∣∣1T (y(k)
0 +

(
A1

J(k)
ε

(x(k))
)−1

H1
d (x(k))

)∣∣∣∣ ∥∥∥d(k)
0

∥∥∥2
. (3.81)

The correction d
(k)
1 ∈ Rn is computed by

d
(k)
1 :=

(
P (k)

)T (d
(k)

1

p0

)
(3.82)

where p0 is a vector of zeros of appropriate size. This leads to the corresponding
feasible search direction

d(k) := d
(k)
0 + d

(k)
1 . (3.83)

36 3 Feasible Sequential Quadratic Optimization Methods

In order to prevent the Maratos effect we have to solve a linear system to obtain

d̃
(k)
1 ∈ R

∣∣∣J(k)
ε

∣∣∣

A1

J(k)
ε

(
x(k)
)T
d = −

∥∥∥d(k)
0

∥∥∥β1

1− eJ(k)
ε

(
x(k) + d(k)

)
+ eJ(k)

ε

(
x(k)
)

+ AJ(k)
ε

(
x(k)
)T
d(k)(3.84)

with β1 ∈ (2, 3). The correction term d̃(k) ∈ Rn is defined by

d̃(k) :=
(
P (k)

)T (d̃
(k)
1

p0

)
. (3.85)

Note that we have to evaluate inequality functions at x(k) + d(k), which might be
infeasible, although d(k) is a feasible descent direction.

Algorithm 9. Feasible direction SQP method by Zhu and Jian [96]
Step 0: Choose feasible starting point x(0) ∈ F and set parameters r ∈ (0, 1), β = 0.5

and H(0) ∈ R(n×n) symmetric and positive definite. Let k := 0.

Step 1: Define J(k)
ε according to (3.75).

Step 2: Formulate and solve (3.53) with respect to active set J(k)
ε to obtain d

(k)
0 .

Step 3: If d
(k)
0 = 0, then STOP.

Step 4: Compute d
(k)
1 according to (3.82) and (3.80) and d(k) according to (3.83).

Step 5: Solve (3.84) to obtain d̃
(k)
1 . Define d̃(k) according to (3.85). If

∥∥∥d̃(k)
∥∥∥ > ∥∥d(k)

∥∥,

set d̃(k) = 0.

Step 6: Compute stepsize σ(k), i.e., the first value σ(k) in sequence {1, β, β2, . . .}
satisfying

f
(
x(k) + σ(k)d(k) +

(
σ(k)
)2
d̃(k)
)
≤ f

(
x(k)
)

+ rσ(k)∇f
(
x(k)
)T
d(k) and

ej

(
x(k) + σ(k)d(k) +

(
σ(k)
)2
d̃(k)
)
≤ 0, j = 1, . . . ,mf .

Step 7: Set x(k+1) := x(k) +σ(k)d(k) +
(
σ(k)
)2
d̃(k) and compute a symmetric and positive

definite matrix H(k+1) ∈ R(n×n) by a quasi-Newton formula. Define µ(k+1)

according to (3.77).

Step 8: Set k := k + 1, goto Step 1.

Under certain assumptions global and superlinear convergence can be shown. Based on
the feasible SQP algorithm presented by Zhu and Jian [96], the problem formulation
is extended by equality constraints which are included in the objective function using
a penalty function, see Ren, Duan, Zhu and Luo [70].

3.10 A feasible SQP method by Hu, Chen and Xiao 37

3.10 A feasible SQP method by Hu, Chen and

Xiao

Hu, Chen and Xiao [41] created a feasible direction SQP method which is under
certain conditions globally and locally superlinear convergent. In each iteration, one
QP and two linear systems have to be solved including active constraints only. We
define AJ(k)

ε

(
x(k)
)

according to (3.51) by

AJ(k)
ε

(
x(k)
)

:=
[
∇ej

(
x(k)
)]

J(k)
ε
∈ Rn×

∣∣∣J(k)
ε

∣∣∣
, (3.86)

A
(
x(k)
)

:=
[
∇ej

(
x(k)
)]
j=1,...,mf

∈ Rn×mf . (3.87)

The corresponding active set is defined by

J(k)
ε :=

j = 1, . . . ,mf

∣∣∣∣∣∣ ej
(
x(k)

)
+ ε

∥∥∥∥∥
[

∇xL
(
x(k), y(k)

)
min

{
−f
(
x(k)

)
, y

(k)
1 , . . . , y

(k)
mf

}]∥∥∥∥∥
1/2

≥ 0

 (3.88)

where ε ∈ R+, L(x(k), y(k)) is defined in (2.8) and y(k) ∈ Rmf is given by

y(k) := −
(
A
(
x(k)
)T
A
(
x(k)
)

+ E
(
x(k)
)2
)−1

A
(
x(k)
)T ∇f (x(k)

)
, (3.89)

with

E
(
x(k)
)

:= diag
(
e1

(
x(k)
)
, . . . , emf

(
x(k)
))
. (3.90)

Analogue to the POP procedure presented in Section 3.6, ε has to be reduced until the
gradients of the active constraints are linearly independent. The quadratic subproblem

is formulated analogously to (3.53). The resulting solution is denoted by
(
d

(k)
0 , y

(k)
0

)
.

In addition,
(
d

(k)
1 , y

(k)
1

)
is computed by solving the following linear system[

H(k) AJ(k)
ε

(
x(k)
)

AJ(k)
ε

(
x(k)
)T

0

][
d
y

]
=

[
−∇f

(
x(k)
)

−
∥∥∥d(k)

0

∥∥∥β1

1

]
(3.91)

where β1 > 2. To define a feasible descent direction d(k) ∈ Rn we use a suitable
combination of the descent direction d

(k)
0 ∈ Rn and the feasible direction d

(k)
1 ∈ Rn.

We get

d(k) := d
(k)
0 + t(k)d

(k)
1 (3.92)

where t(k) ∈ R is given by

t(k) :=


t, if ∇f

(
x(k)
)T
d

(k)
1 ≤ 0

−∇f
(
x(k)
)T
d

(k)
0

∇f (x(k))
T
d

(k)
1 + β2

, otherwise
(3.93)

38 3 Feasible Sequential Quadratic Optimization Methods

with β2 ∈ R+ and a corresponding upper bound t ∈ R+. To prevent the Maratos
effect and thus ensure local superlinear convergence, an additional linear system has
to be solved[

H(k) AJ(k)
ε

(
x(k)
)

AJ(k)
ε

(
x(k)
)T

0

][
d
y

]
=

[
0

−
∥∥d(k)

∥∥β3
1− ẽJ(k)

ε

(
x(k) + d(k)

)] (3.94)

where β3 ∈ (2, 3) and

ẽJ(k)
ε

(
x(k) + d(k)

)
:= eJ(k)

ε

(
x(k) + d(k)

)
− eJ(k)

ε

(
x(k)
)
− AJ(k)

ε

(
x(k)
)T
d(k). (3.95)

Let the solution be
(
d̃(k), ỹ(k)

)
. Note that x(k) + d(k) might be infeasible, although

d(k) is a feasible direction. A line search is performed along the resulting search arc

x(k) + σ(k)d(k) +
(
σ(k)
)2
d̃(k). The complete algorithm is formulated as follows:

Algorithm 10. Feasible direction SQP method by Hu, Chen and Xiao [41]
Step 0: Choose feasible starting point x(0) ∈ F, set parameters ε ∈ R+, β1 > 2, β2 > 0,

β3 ∈ (2, 3), r ∈ (0, 1), β = (0, 1), t ∈ R+ and H(0) ∈ R(n×n) symmetric and
positive definite. Let k := 0.

Step 1: Reduce ε until (3.86) is linearly independent.

Step 2: Formulate and solve (3.53) with respect to active set J(k)
ε to obtain

(
d

(k)
0 , y

(k)
0

)
.

Step 3: If d
(k)
0 = 0, then STOP.

Step 4: Solve (3.91) to obtain
(
d

(k)
1 , y

(k)
1

)
.

Step 5: Compute d(k) according to (3.92).

Step 6: Solve (3.94) to obtain
(
d̃(k), ỹ(k)

)
. If

∥∥∥d̃(k)
∥∥∥ > ∥∥d(k)

∥∥, set d̃(k) = 0.

Step 7: Compute stepsize σ(k), i.e., the first value σ(k) in sequence {1, β, β2, . . .}
satisfying

f
(
x(k) + σ(k)d(k) +

(
σ(k)
)2
d̃(k)
)
≤ f

(
x(k)
)

+ rσ(k)∇f
(
x(k)
)T
d(k) and

ej

(
x(k) + σ(k)d(k) +

(
σ(k)
)2
d̃(k)
)
≤ 0, j = 1, . . . ,mf .

Step 8: Set x(k+1) := x(k) +σ(k)d(k) +
(
σ(k)
)2
d̃(k) and compute a symmetric and positive

definite matrix H(k+1) ∈ R(n×n) by a quasi-Newton formula.

Step 9: Set k := k + 1, goto Step 1.

4. SEQUENTIAL CONVEX
PROGRAMMING METHODS

4.1 Method of Moving Asymptotes

We consider the general nonlinear optimization problem

min
x

f (x) x ∈ Rn

s.t. cj (x) ≤ 0, j = 1, . . . ,mc

(4.1)

where f (x) and cj (x) , j = 1, . . . ,mc, are at least continuously differentiable on Rn.
First we review the so-called method of moving asymptotes (MMA), see Fleury [28]
and Svanberg [80]. MMA is a nonlinear programming algorithm that creates a se-
quence of convex and separable subproblems, which are easy to solve due to their
special structure. The resulting primal solution x(k) ∈ Rn in the corresponding itera-
tion k, is used to formulate a new subproblem. MMA achieves good results in practice,
although no convergence proof is given. The algorithmic scheme of MMA is illustrated
in Figure 4.1.

Problem

MMA Subproblem

Interior point
method

Solution Process

Approximation

Fig. 4.1: Procedure of MMA-Algorithm

40 4 Sequential Convex Programming Methods

The idea behind MMA is the segmentation of the n-dimensional problem space into
n one-dimensional spaces. One of the fundamental features is the introduction of
two flexible asymptotes Ui and Li, i = 1, . . . , n, for each optimization variable xi,
i = 1, . . . , n, which truncate the feasible region. Important additional features are

1. linearization of nonlinear inequality constraints and the objective function with
respect to the lower or upper asymptote depending on the sign of the partial
derivative at the current iteration point,

2. general-purpose solver applicable to any nonlinear program,

3. generation of convex and separable subproblems, i.e., diagonal Hessian matrices
of the Lagrangian function, see Definition 4,

4. efficient solution of the large and sparse nonlinear subproblems by an interior
point method.

In each iteration k the objective function and the inequality constraints are linearized
with respect to the inverse variables 1

U
(k)
i − xi

and 1

xi − L
(k)
i

depending on the sign of the

corresponding partial derivative at the current iterate. These sets are denoted by

I
(k)
+ :=

{
i = 1, . . . , n

∣∣∣∣∣ ∂f
(
x(k)
)

∂xi
≥ 0

}
(4.2)

and

I
(k)
− :=

{
i = 1, . . . , n

∣∣∣∣∣ ∂f
(
x(k)
)

∂xi
< 0

}
, (4.3)

respectively. Thus, the resulting approximation of the objective function at an iterate
x(k) ∈ Rn is

f (k) (x) := f
(
x(k)
)

+
∑
I
(k)
+

[
∂f
(
x(k)
)

∂xi

(
U

(k)
i − x

(k)
i

)2
(

1

U
(k)
i − xi

− 1

U
(k)
i − x

(k)
i

)]
(4.4)

−
∑
I
(k)
−

[
∂f
(
x(k)
)

∂xi

(
x

(k)
i − L

(k)
i

)2
(

1

xi − L
(k)
i

− 1

x
(k)
i − L

(k)
i

)]

with L
(k)
i < xi < U

(k)
i , see Svanberg [80].

4.1 Method of Moving Asymptotes 41

The nonlinear inequality constraints cj (x) , j = 1, . . . ,mc, are approximated ana-
logously to (4.4) by

c
(k)
j (x) := cj

(
x(k)
)

+
∑
I
(j,k)
+

[
∂cj
(
x(k)
)

∂xi

(
U

(k)
i − x

(k)
i

)2
(

1

U
(k)
i − xi

− 1

U
(k)
i − x

(k)
i

)]
(4.5)

−
∑
I
(j,k)
−

[
∂cj
(
x(k)
)

∂xi

(
x

(k)
i − L

(k)
i

)2
(

1

xi − L
(k)
i

− 1

x
(k)
i − L

(k)
i

)]

with L
(k)
i < xi < U

(k)
i and

I
(j,k)
+ :=

{
i = 1, . . . , n

∣∣∣∣∣ ∂cj
(
x(k)
)

∂xi
≥ 0

}
, (4.6)

I
(j,k)
− :=

{
i = 1, . . . , n

∣∣∣∣∣ ∂cj
(
x(k)
)

∂xi
< 0

}
. (4.7)

To prevent U
(k)
i −xi = 0, i = 1, . . . , n, or xi−L(k)

i = 0, i = 1, . . . , n, we define suitable
lower and upper bounds for x ∈ Rn within the subproblem

x
(k)
i := x

(k)
i − ω

(
x

(k)
i − L

(k)
i

)
, i = 1, . . . , n (4.8)

and

x
(k)
i := x

(k)
i + ω

(
U

(k)
i − x

(k)
i

)
, i = 1, . . . , n (4.9)

with ω ∈]0; 1[constant.

We obtain the subsequent subproblem by applying the approximations (4.4) and (4.5),

min
x

f (k) (x) x ∈ Rn

s.t. c
(k)
j (x) ≤ 0, j = 1, . . . ,mc

x
(k)
i ≤ xi ≤ x

(k)
i , i = 1, . . . , n

(4.10)

The functions are defined on the subset X(k) given by the box constraints (4.8) and
(4.9), i.e.,

X(k) :=
{
x ∈ Rn

∣∣ x(k) ≤ x ≤ x(k)
}
. (4.11)

Moreover,

L
(k)
i < x

(k)
i ≤ xi ≤ x

(k)
i < U

(k)
i (4.12)

42 4 Sequential Convex Programming Methods

holds. The first and second order derivatives of the convex approximations can be
given analytically by

∂f (k) (x)

∂xi
=



∂f
(
x(k)
)

∂xi

(
U

(k)
i − x

(k)
i

)2

(
U

(k)
i − xi

)2 , if i ∈ I(k)
+

∂f
(
x(k)
)

∂xi

(
x

(k)
i − L

(k)
i

)2

(
xi − L(k)

i

)2 , otherwise

(4.13)

∂2f (k) (x)

∂xi∂xj
= 0, ∀i 6= j (4.14)

∂2f (k) (x)

∂2xi
=



2
∂f
(
x(k)
)

∂xi

(
U

(k)
i − x

(k)
i

)2

(
U

(k)
i − xi

)3 , if i ∈ I(k)
+

−2
∂f
(
x(k)
)

∂xi

(
x

(k)
i − L

(k)
i

)2

(
xi − L(k)

i

)3 , otherwise

(4.15)

The derivatives for inequality constraints c
(k)
j (x) , j = 1, . . . ,mc, can be obtained

by replacing f (x) by cj (x) , j = 1, . . . ,mc, and I
(k)
+ by I

(j,k)
+ . It is easy to see that

the functions are strictly convex, if
∂f
(
x(k)
)

∂xi
6= 0 and

∂cj
(
x(k)
)

∂xi
6= 0 holds for all

i = 1, . . . , n, and j = 1, . . . ,mc.

The approximations (4.4) and (4.5) are convex and of first order, i.e.,

f (k)
(
x(k)
)

= f
(
x(k)
)
, c

(k)
j

(
x(k)
)

= cj
(
x(k)
)
, ∀ j = 1, . . . ,mc

∇f (k)
(
x(k)
)

= ∇f
(
x(k)
)
, ∇c(k)

j

(
x(k)
)

= ∇cj
(
x(k)
)
, ∀ j = 1, . . . ,mc

f (k) convex, c
(k)
j convex, ∀ j = 1, . . . ,mc

f (k) separable, c
(k)
j separable, ∀ j = 1, . . . ,mc

(4.16)

The subproblem can be solved by an interior point method, where the separability of
the approximations f (k)(x) and c

(k)
j (x), j = 1, . . . ,mc, can be exploited.

In each iteration k, the asymptotes have to be adapted. The update rules are presented
in the following algorithm, according to Zillober [104] extended by some additional
conditions which are essential to prove convergence of the SCP algorithm presented
in Section 4.2.

4.1 Method of Moving Asymptotes 43

Algorithm 11. Update of asymptotes
For iteration number k = 0, 1, . . . and constants Lmin < Umax, ξ ≥ 0, 0 < T1 < 1 and
T2 > 1 we compute for each i = 1, . . . , n

k < 2 : L
(k)
i := x

(k)
i − max

{
1,
∣∣∣x(k)
i

∣∣∣} ,
U

(k)
i := x

(k)
i + max

{
1,
∣∣∣x(k)
i

∣∣∣}.

k ≥ 2 : If sign
(
x

(k)
i − x

(k−1)
i

)
6= sign

(
x

(k−1)
i − x(k−2)

i

)
, then

L
(k)
i := max

{
x

(k)
i −max

{
ξ, T1

(
x

(k−1)
i − L(k−1)

i

)}
, Lmin

}
,

U
(k)
i := min

{
x

(k)
i + max

{
ξ, T1

(
U

(k−1)
i − x(k−1)

i

)}
, Umax

}
,

else

L
(k)
i := max

{
x

(k)
i −max

{
ξ, T2

(
x

(k−1)
i − L(k−1)

i

)}
, Lmin

}
,

U
(k)
i := min

{
x

(k)
i + max

{
ξ, T2

(
U

(k−1)
i − x(k−1)

i

)}
, Umax

}
,

Suitable values for the parameters are T1 = 0.7 and T2 = 1/T1 respectively, see
Svanberg [80], while Zillober et al. [105] propose T1 = 0.7 and T2 = 1.15. Within
the MMA procedure ξ = 0 and Umax = −Lmin = ∞. To prove global conver-
gence of SCP, it is essential that ξ > 0. Within the algorithm, the values are set
to ξ = 0.5 and Umax = −Lmin = 1.D5. We distinguish two different situations. If

sign
(
x

(k)
i − x

(k−1)
i

)
6= sign

(
x

(k−1)
i − x(k−2)

i

)
, the distance between the asymptotes is

reduced to prevent oscillation. As a consequence the domain shrinks. Otherwise, the
distance is enlarged to allow larger steps and to speed up convergence. Svanberg [80]
determines the asymptotes in the first iteration dependent on box constraints of the
original problem, if they exist.

We can now formulate the corresponding MMA algorithm according to Svanberg [80].

Algorithm 12. Method of Moving Asymptotes

Step 0: Choose starting point x(0) ∈ Rn. Set parameter ξ = 0, Lmin = −∞,
Umax =∞, T2 > 1, 0 < T1 < 1 and ω ∈]0; 1[. Compute f

(
x(0)
)
,∇f

(
x(0)
)
,

cj
(
x(0)
)
, ∇cj

(
x(0)
)
, j = 1, . . . ,mc. Let k := 0.

Step 1: Determine L
(k)
i and U

(k)
i , i = 1, . . . , n, by Algorithm 11 and let f (k) (x), c

(k)
j (x),

j = 1, . . . ,mc, be defined by (4.4) and (4.5). Define x
(k)
i and x

(k)
i , i = 1, . . . , n,

according to (4.8) and (4.9). Formulate subproblem (4.10) for the correspond-
ing iteration k.

Step 2: Solve (4.10). Let x(k+1) be the optimal solution of the subproblem.

Step 3: If x(k+1) = x(k), then STOP. x(k+1) is the solution of (4.1).

Step 4: Set k = k + 1 and compute f
(
x(k)
)
,∇f

(
x(k)
)
, cj

(
x(k)
)
,∇cj

(
x(k)
)
,

j = 1, . . . ,mc. Goto Step 1.

44 4 Sequential Convex Programming Methods

For this method convergence cannot be guaranteed in a formal way despite of excel-
lent numerical results. In later papers, Svanberg presented an extension of his MMA
method such that convergence can be shown, see Svanberg [81] and [82]. The resulting
algorithm, called GCMMA, is presented in Section 4.3.

4.2 The SCP-Method of Zillober

The sequential convex programming method (SCP) is an extension of the method
of moving asymptotes. We proceed from the following optimization problem, where
equality constraints are included additionally,

min
x

f (x) x ∈ Rn

s.t. cj (x) = 0, j = 1, . . . ,me

cj (x) ≤ 0, j = me + 1, . . . ,mc

(4.17)

Moreover, SCP ensures convergence by introducing a merit function and a corre-
sponding line search procedure, see Zillober [101]. The merit function combines the
objective function and the constraints in a suitable way. A possible merit function for
problem (4.17) is the augmented Lagrangian function Φρ : Rn+mc → R for a given set
of penalty parameters ρj > 0, j = 1, . . . ,mc,

Φρ

(
x
y

)
= f (x) +

mc∑
j=1


yjcj (x) +

ρj
2
c2
j (x) , if j ∈ J(x)

−
y2
j

2ρj
, otherwise

(4.18)

where y ∈ Rmc are the corresponding Lagrangian multipliers. Moreover, we define the
active set with respect to the augmented Lagrangian by J(x) and its complement by
J(x),

J(x) := {1 ≤ j ≤ me}

∪
{
me + 1 ≤ j ≤ mc

∣∣∣∣ −yjρj ≤ cj (x)

}
(4.19)

J(x) := {me + 1 ≤ j ≤ mc | j 6∈ J } . (4.20)

It can be shown that Φρ

(
x
y

)
is differentiable. The penalty parameters ρ ∈ Rmc must

be carefully adapted during the solution process to guarantee a sufficient descent and
global convergence, see Schittkowski [73]. Choosing the augmented Lagrangian merit
function is motivated by the following properties, Zillober [101]:

4.2 The SCP-Method of Zillober 45

Lemma 4.1. 1. A point (x?, y?) is stationary for Φρ

(
x
y

)
defined by (4.18) for

a positive fixed ρ ∈ Rmc , if and only if it is stationary for problem (4.17).

2. Let (x?, y?) be stationary for problem (4.17) and let the gradients of the active
constraints be linearly independent in x?, i.e., Definition 5 (LICQ) holds. Then
there exists a positive parameter ρ? ∈ Rmc, such that x? is a local minimizer for

Φρ

(
x
y?

)
, ∀ ρ ≥ ρ?.

Proof. Fletcher [23, 24].

To ensure strict convexity of the approximated objective function f (k) (x) and thus
an unique solution of the subproblem, an additional parameter τ > 0 is introduced to

ensure that
∂2f (k) (x)

∂2xi
> 0 holds for all i = 1, . . . , n, see Zillober [104]. The resulting

approximation of the objective function at iterate x(k) is

f (k) (x) := f
(
x(k)
)

+
∑
I
(k)
+

[
∂f
(
x(k)
)

∂xi

(
U

(k)
i − x

(k)
i

)2
(

1

U
(k)
i − xi

− 1

U
(k)
i − x

(k)
i

)]

−
∑
I
(k)
−

[
∂f
(
x(k)
)

∂xi

(
x

(k)
i − L

(k)
i

)2
(

1

xi − L
(k)
i

− 1

x
(k)
i − L

(k)
i

)]
(4.21)

+
∑
I
(k)
+

τ

(
xi − x(k)

i

)2

U
(k)
i − xi

+
∑
I
(k)
−

τ

(
xi − x(k)

i

)2

xi − L(k)
i

with L
(k)
i < xi < U

(k)
i , τ > 0, I

(k)
+ and I

(k)
− defined by (4.2) and (4.3). Equality

constraints cj (x) , j = 1, . . . ,me, are linearized by

c
(k)
j (x) := cj

(
x(k)
)

+
n∑
i=1

∂cj
(
x(k)
)

∂xi

(
xi − x(k)

i

)
. (4.22)

The inequality constraints cj(x), j = me + 1, . . . ,mc, are approximated analogously
to the MMA algorithm, see (4.5). For an illustration, Figure 4.2 presents the approx-

imation of the objective function f (x) with respect to an upper asymptote U
(k)
i for

given i ∈ I(k)
+ and k.

46 4 Sequential Convex Programming Methods

f(x)

xx(k)x(k+1)

Objective f(x)

Approximation f(k)(x)

Asymptote Ui
(k)

Fig. 4.2: Approximation scheme of SCP

The first and second order derivatives of the convex approximations can be given
analytically, see Ertel, Schittkowski and Zillober [20].

∂f (k) (x)

∂xi
=


∂f(x(k))
∂xi

(
U

(k)
i −x

(k)
i

)2

(
U

(k)
i −xi

)2 + τ

(
xi−x

(k)
i

)2
+2
(
xi−x

(k)
i

)(
U

(k)
i −xi

)
(
U

(k)
i −xi

)2 , if i ∈ I(k)
+

∂f(x(k))
∂xi

(
x
(k)
i −L

(k)
i

)2

(
xi−L

(k)
i

)2 − τ
(
xi−x

(k)
i

)2
−2
(
xi−x

(k)
i

)(
xi−L

(k)
i

)
(
xi−L

(k)
i

)2 , otherwise

(4.23)

∂2f (k) (x)

∂xi∂xj
= 0, ∀i 6= j (4.24)

∂2f (k) (x)

∂2xi
=


2
∂f(x(k))
∂xi

(
U

(k)
i −x

(k)
i

)2

(
U

(k)
i −xi

)3 + 2τ

(
U

(k)
i −x

(k)
i

)2

(
U

(k)
i −xi

)3 , if i ∈ I(k)
+

−2
∂f(x(k))
∂xi

(
x
(k)
i −L

(k)
i

)2

(
xi−L

(k)
i

)3 + 2τ

(
x
(k)
i −L

(k)
i

)2

(
xi−L

(k)
i

)3 , otherwise

(4.25)

4.2 The SCP-Method of Zillober 47

The second order derivatives are positive, as

∂

∂xi
τ

(
xi − x(k)

i

)2

+ 2
(
xi − x(k)

i

)(
U

(k)
i − xi

)
(
U

(k)
i − xi

)2

= τ
2
(
xi − x(k)

i

)(
U

(k)
i − xi

)2

+ 2
(
U

(k)
i − xi

)2 ((
U

(k)
i − xi

)
−
(
xi − x(k)

i

))
(
U

(k)
i − xi

)4

+ τ

2
(
U

(k)
i − xi

)((
xi − x(k)

i

)2

+ 2
(
xi − x(k)

i

)(
U

(k)
i − xi

))
(
U

(k)
i − xi

)4

= 2τ

(
U

(k)
i − xi

)2

+ 2
(
xi − x(k)

i

)(
U

(k)
i − xi

)
+
(
xi − x(k)

i

)2

(
U

(k)
i − xi

)3

= 2τ

((
U

(k)
i − xi

)
+
(
xi − x(k)

i

))2

(
U

(k)
i − xi

)3

= 2τ

(
U

(k)
i − x

(k)
i

)2

(
U

(k)
i − xi

)3 > 0

holds for i ∈ I
(k)
+ . This can be shown analogously for i ∈ I

(k)
− . The derivatives for

inequality constraints c
(k)
j (x) , j = me+ 1, . . . ,mc, can be obtained by replacing f (x)

by cj (x) and τ = 0. The corresponding subproblem is formulated by

min
x

f (k) (x) x ∈ Rn

s.t. c
(k)
j (x) = 0, j = 1, . . . ,me

c
(k)
j (x) ≤ 0, j = me + 1, . . . ,mc

x
(k)
i ≤ xi ≤ x

(k)
i , i = 1, . . . , n

(4.26)

where x
(k)
i and x

(k)
i , i = 1, . . . , n, are defined according to (4.8) and (4.9). Due to

strict convexity of the objective function the resulting subproblem (4.26) possesses an
unique solution, Zillober [98].

We denote the primal solution of subproblem (4.26) in iteration k by z(k) ∈ Rn and the
dual solution by v(k) ∈ Rmc . In each iteration, it is tested whether

(
z(k), v(k)

)
yields a

sufficient descent with respect to the augmented Lagrangian merit function. Therefore,
the so-called Armijo steplength algorithm, see Armijo [2], Ortega and Rheinboldt [63],
is applied. In each iteration k, the stepsize σ(k,i), with σ(k,0) := 1, is reduced by a
constant factor β ∈ (0, 1) iteratively, i.e.,

σ(k,i+1) := βσ(k,i) (4.27)

48 4 Sequential Convex Programming Methods

until the following condition is satisfied for the first time

Φρ(k)

((
x(k)

y(k)

)
+ σ(k,i)d(k)

)
≤ Φρ(k)

(
x(k)

y(k)

)
+ rσ(k,i)∇Φρ(k)

(
x(k)

y(k)

)T
d(k), (4.28)

where r ∈ (0, 1) is constant and where the search direction d(k) ∈ Rn+mc is given by

d(k) :=

(
z(k) − x(k)

v(k) − y(k)

)
. (4.29)

Condition (4.28) ensures a sufficient descent in the augmented Lagrangian merit func-

tion. To update the penalty parameter ρ
(k)
i , i = 1, . . . ,mc, additional parameters

η
(k)
i , i = 1, . . . , n, are introduced, which estimate the curvature of the approximated

objective function f (k) (x)

η
(k)
i :=



(
∂f
(
x(k)
)

∂xi
+ τ

)
2U

(k)
i − z

(k)
i − x

(k)
i(

U
(k)
i − z

(k)
i

)2 , if i ∈ I(k)
+

−

(
∂f
(
x(k)
)

∂xi
− τ

)
−2L

(k)
i + z

(k)
i + x

(k)
i(

z
(k)
i − L

(k)
i

)2 , otherwise

(4.30)

and we define

η(k) := min
i=1,...,n

η
(k)
i . (4.31)

The penalty parameters are updated until the descent property

∇Φρ(k)

(
x(k)

y(k)

)T
d(k) ≤ −

η(k)
(
δ(k)
)2

2
(4.32)

is satisfied, where δ(k) ∈ R denotes the norm of the search direction with respect to
the primal variable x(k), i.e.,

δ(k) :=
∥∥z(k) − x(k)

∥∥
2
. (4.33)

Within the update loop the penalty parameters are denoted by ρ
(k,i)
j , j = 1, . . . ,mc,

where i denotes the i-th penalty parameter update within iteration k. ρ
(k,0)
j is initial-

ized by ρ
(k−1)
j , j = 1, . . . ,mc. The corresponding update is described by Algorithm 13

according to Zillober [103].

4.2 The SCP-Method of Zillober 49

Algorithm 13. Update of penalty parameters
Let κ1 > 1, κ2 > κ1 be suitable constants and let k be the index of the current iteration.
Let x(k) ∈ Rn the current primal and y(k) ∈ Rmc the current dual variable. Moreover,(
z(k), v(k)

)
is the solution of subproblem (4.26) defined in x(k) and ρ

(k,i)
j , j = 1, . . . ,me,

is a given penalty parameter.

If j ∈ {1 ≤ j ≤ me} or j ∈

{
me + 1 ≤ j ≤ mc

∣∣∣∣∣ − y
(k)
j

ρ
(k,i)
j

≤ cj
(
x(k)
)}

:

if cj
(
x(k)
)
> 0 and ∇cj

(
x(k)
)T (

z(k) − x(k)
)
6= 0 or

cj
(
x(k)
)
< 0 and ∇cj

(
x(k)
)T (

z(k) − x(k)
)
> 0 :

ρ
(k,i+1)
j := min

κ2ρ
(k,i)
j , max

κ1ρ
(k,i)
j ,

∣∣∣∣∣∣
2
(
v

(k)
j − y

(k)
j

)
cj (x(k))

∣∣∣∣∣∣



else:

ρ
(k,i+1)
j := κ1ρ

(k,i)
j

Else:

if
(
v

(k)
j − y

(k)
j

)
< 0 :

ρ
(k,i+1)
j := min

κ2ρ
(k,i)
j , max

κ1ρ
(k,i)
j ,

∣∣∣∣∣∣
y

(k)
j

(
v

(k)
j − y

(k)
j

)
4mc

η(k) (δ(k))
2

∣∣∣∣∣∣



else:

ρ
(k,i+1)
j := κ1ρ

(k,i)
j

κ1 prevents that the penalty parameters converge too slowly towards an upper bound.
κ2 ensures that the penalty parameters do not increase too quickly. Zillober [102] pro-
poses to set κ1 = 2 and κ2 = 10.

To prove global convergence it is essential that the lower and upper asymptotes L
(k)
i

and U
(k)
i , i = 1, . . . , n, are adapted carefully and satisfy certain conditions see Zil-

lober [98] or Ertel [19]. We define

Definition 4.1. A sequence of asymptotes
{
L(k)

}
,
{
U (k)

}
is called feasible subject

to a bounded sequence
{
x(k)
}

with L
(k)
i < x

(k)
i < U

(k)
i , i = 1, . . . , n, if there exists a

ξ > 0 and Lmin, Umax ∈ R, Lmin < Umax such that

1. L
(k)
i ≤ x

(k)
i − ξ, U

(k)
i ≥ x

(k)
i + ξ, for all i = 1, ..., n, and k ≥ 0.

2. L
(k)
i ≥ Lmin, U

(k)
i ≤ Umax, ∀ k ≥ 0, i = 1, . . . , n.

The first part of this definition prevents the curvature of the approximations from
becoming too steep. The second part prevents that L

(k)
i → −∞ and U

(k)
i →∞ as

−∞ < Lmin ≤ L
(k)
i < U

(k)
i ≤ Umax <∞ (4.34)

50 4 Sequential Convex Programming Methods

holds. The asymptotes need to be feasible according to Definition 4.1 to ensure conver-
gence of sequential convex programming (SCP) methods, see Zillober [102]. In general,
it is possible to choose different asymptotes for the objective and (each) constraint.
Although this might improve the performance of the algorithm we proceed with one
pair of asymptotes for both, objective and constraints, as the computational effort
is much higher otherwise, Zillober [103]. Algorithm 11 ensures a feasible sequence of
asymptotes according to Definition 4.1.

The SCP algorithm introduced by Zillober [104] can be summarized as follows:

Algorithm 14. Sequential Convex Programming

Step 0: Choose starting point x(0) ∈ Rn and y(0) ≥ 0. Compute f
(
x(0)
)
,∇f

(
x(0)
)
,

cj
(
x(0)
)
,∇cj

(
x(0)
)
, j = 1, . . . ,mc. Set parameters ξ > 0, Lmin < Umax,

T2 > 1, 0 < T1 < 1, ω ∈]0; 1[, r ∈ (0, 1), β ∈ (0, 1), τ > 0, κ2 > κ1 > 1 and

penalty parameters ρ
(−1)
j > 0, j = 1, . . . ,mc. Let k := 0.

Step 1: Determine L
(k)
i and U

(k)
i , i = 1, . . . , n, by Algorithm 11. Let f (k) (x), c

(k)
j (x),

j = 1, . . . ,mc, be defined by (4.21), (4.22) and (4.5). Define x
(k)
i and x

(k)
i ,

i = 1, . . . , n, according to (4.8) and (4.9). Formulate (4.26) for the
corresponding iteration k.

Step 2: Solve (4.26). Let z(k) be the optimal solution of (4.26) and v(k) the
vector of the corresponding Lagrangian multipliers.

Step 3: If z(k) = x(k), then STOP.
(
x(k), v(k)

)
is a KKT point of (4.17).

Step 4: Let d(k) :=

(
z(k) − x(k)

v(k) − y(k)

)
, δ(k) :=

∥∥z(k) − x(k)
∥∥

2
and η(k) as defined in (4.31).

Let i = 0 and ρ(k,0) := ρ(k−1).

Step 5: Compute Φρ(k,i)

(
x(k)

y(k)

)
,∇Φρ(k,i)

(
x(k)

y(k)

)
,∇Φρ(k,i)

(
x(k)

y(k)

)T
d(k).

Step 6: If ∇Φρ(k,i)

(
x(k)

y(k)

)T
d(k) > −

η(k)
(
δ(k)
)2

2
, update penalty parameters according

to Algorithm 13. Let i = i+ 1 and goto Step 5.
Otherwise, let ρ(k) := ρ(k,i), i = 0 and σ(k,0) := 1.

Step 7: Compute f
(
x(k) + σ(k,i)

(
z(k) − x(k)

))
, cj
(
x(k) + σ(k,i)

(
z(k) − x(k)

))
,

j = 1, . . . ,mc, and Φρ(k)

((
x(k)

y(k)

)
+ σ(k,i)d(k)

)
.

If (4.28) is not satisfied, let σ(k,i+1) := βσ(k,i), i = i+ 1 and repeat (Armijo).
Otherwise, σ(k) := σ(k,i).

Step 8: Let

(
x(k+1)

y(k+1)

)
:=

(
x(k)

y(k)

)
+ σ(k)d(k), k := k + 1.

Step 9: Compute ∇f
(
x(k)
)
,∇cj

(
x(k)
)
, j = 1, . . . ,mc, and goto Step 1.

4.3 The Globally Convergent Method of Moving Asymptotes 51

Subproblem (4.26) can be solved by an interior point method, see Zillober [99]. The
size of the primal-dual system of linear equations can be reduced depending on the
number of constraints and variables, see Zillober [100]. The asymptotes truncate the
feasible region and allow to control the curvature of the merit function. A convergence
proof is given in Zillober [97] and [102]. The line search procedure can be replaced by
a filter method. A comparative numerical study of SCP-Filter and the presented SCP
method is given in Ertel [19]. A trust-region SCP algorithm is introduced in Ni [60].
Some numerical results for problems resulting from topology optimization are given
in Ni, Zillober and Schittkowski [61].

4.3 The Globally Convergent Method of Moving

Asymptotes

As no convergence proof for the MMA algorithm presented in Section 4.1 can be given,
Svanberg [83] presented an extension called globally convergent method of moving
asymptotes (GCMMA). Starting from a feasible point x(0) ∈ Rn, GCMMA creates a
sequence of feasible iterates. As GCMMA is not able to handle equality constraints,
we proceed from the following problem formulation

min
x

f (x) x ∈ Rn

s.t. ej (x) ≤ 0, j = 1, . . . ,mf

xi ≤ xi ≤ xi, i = 1, . . . , n

(4.35)

containing box constraints. Moreover, f(x) and ej(x), j = 1, . . . ,mf , are at least
continuously differentiable on X given by

X := {x ∈ Rn | x ≤ x ≤ x} . (4.36)

In contrast to MMA and SCP, the subproblems are formulated by approximating
the functions with respect to both inverse variables 1

U
(k)
i − xi

and 1

xi − L
(k)
i

. The result-

ing approximations are strictly convex and separable. To ensure a feasible iteration
sequence, the method combines an inner and an outer iteration process. Within the in-
ner iteration process a sequence of subproblems is solved, until the objective function
is decreased and the constraints yield a smaller function value than their approxi-
mations at the solution of the subproblem. Otherwise, the iterate is rejected and a
new subproblem is formulated and solved. Therefore, we introduce a second iteration
index. We denote the approximations of the objective function by f (k,p) (x) and the

approximations of the constraints by e
(k,p)
j (x) , j = 1, . . . ,mf , where k denotes the

outer iteration and p the inner iteration, respectively. The approximation scheme of

52 4 Sequential Convex Programming Methods

the objective function in iteration (k, p) is given by

f (k,p) (x) := f
(
x(k)
)

+
∑
I
(k)
+

[
∂f
(
x(k)
)

∂xi

(
T3

(
U

(k)
i − x

(k)
i

)2
(

1

U
(k)
i − xi

− 1

U
(k)
i − x

(k)
i

)

+ T4

(
x

(k)
i − L

(k)
i

)2
(

1

xi − L(k)
i

− 1

x
(k)
i − L

(k)
i

))]

−
∑
I
(k)
−

[
∂f
(
x(k)
)

∂xi

(
T4

(
U

(k)
i − x

(k)
i

)2
(

1

U
(k)
i − xi

− 1

U
(k)
i − x

(k)
i

)
(4.37)

+ T3

(
x

(k)
i − L

(k)
i

)2
(

1

xi − L(k)
i

− 1

x
(k)
i − L

(k)
i

))]

+
n∑
i=1

τ
(k,p)
0

xi − xi

((
U

(k)
i − x

(k)
i

)2
(

1

U
(k)
i − xi

− 1

U
(k)
i − x

(k)
i

)

+
(
x

(k)
i − L

(k)
i

)2
(

1

xi − L(k)
i

− 1

x
(k)
i − L

(k)
i

))
with T3 > 1 and 0 < T4 < 1, τ

(k,p)
0 ∈ R+, I

(k)
+ and I

(k)
− are defined according to

(4.2) and (4.3). Moreover, the asymptotes L
(k)
i and U

(k)
i , i = 1, . . . , n, are com-

puted by Algorithm 11. Svanberg [84] proposes T3 = 1.001 and T4 = 0.001. The
inequality constraints ej (x) , j = 1, . . . ,mf , are approximated analogously. In con-
trast to the MMA and SCP algorithm, see Section 4.1 and Section 4.2, a parameter
τ

(k,p)
j ∈ R+, j = 1, . . . ,mf , is introduced for each constraint and the objective func-

tion, which leads to strictly convex approximations. The corresponding subproblem
is given by

min
x

f (k,p) (x) x ∈ Rn

s.t. e
(k,p)
j (x) ≤ 0, j = 1, . . . ,mf

x
(k)
i ≤ xi ≤ x

(k)
i , i = 1, . . . , n

(4.38)

where x
(k)
i and x

(k)
i , i = 1, . . . , n, are defined according to (4.8) and (4.9) with ω = 0.9,

see Svanberg [84]. As the resulting subproblem is strictly convex, see Svanberg [82],
it exhibits an unique solution denoted by z(k,p) ∈ Rn. If the following conditions hold

f (k,p)
(
z(k,p)

)
≥ f

(
z(k,p)

)
(4.39)

0 ≥ e
(k,p)
j

(
z(k,p)

)
≥ ej

(
z(k,p)

)
, j = 1, . . . ,mf (4.40)

the inner iteration is terminated and the next iterate is given by

x(k+1) := z(k,p). (4.41)

4.3 The Globally Convergent Method of Moving Asymptotes 53

Otherwise, the inner iteration process is continued, i.e., p is increased by one and a
more restrictive subproblem (4.38) is formulated by increasing τ

(k,p)
j , j = 1, . . . ,mf ,

for each constraint which violates (4.40). τ
(k,p)
0 is increased, if the objective function

violates (4.39), see Svanberg [84]. τ
(k,0)
0 is initialized in each outer iteration k by

τ
(k,0)
0 :=

0.1

n

n∑
i=1

∣∣∣∣∣∂f
(
x(k)
)

∂xi

∣∣∣∣∣ (xi − xi) (4.42)

and τ
(k,p+1)
0 is updated according to

τ
(k,p+1)
0 :=


min

{
10τ

(k,p)
0 , 1.1

(
τ

(k,p)
0 + ι

(k,p)
0

)}
, if f (k,p)

(
z(k,p)

)
< f

(
z(k,p)

)
τ

(k,p)
0 , otherwise

(4.43)

with ι
(k,p)
0 ∈ R given by

ι
(k,p)
0 :=

(
f
(
z(k,p)

)
− f (k,p)

(
z(k,p)

)) n∑
i=1

(
U

(k)
i − z

(k,p)
i

)(
z

(k,p)
i − L(k)

i

)
(xi − xi)(

U
(k)
i − L

(k)
i

)(
z

(k,p)
i − x(k)

i

)2

 (4.44)

The values of τ
(k,p)
j , j = 1, . . . ,mf , are defined analogously using ej(x) instead of

f(x). Within the inner iteration loop the gradients need not be adapted. This leads
to the following algorithm

Algorithm 15. Globally Convergent Method of Moving Asymptotes

Step 0: Choose feasible starting point x(0) ∈ F. Compute f
(
x(0)
)
,∇f

(
x(0)
)
, ej

(
x(0)
)
,

∇ej
(
x(0)
)
, j = 1, . . . ,mf . Set parameters ξ = 0, −Lmin = Umax =∞, T3 > 1,

0 < T4 < 1, ω = 0.9. Let k := 0 and p := 0.

Step 1: Determine L
(k)
i and U

(k)
i , i = 1, . . . , n, by Algorithm 11 and define τ

(k,0)
j ,

j = 0, . . . ,mf , according to (4.42). Define x
(k)
i and x

(k)
i , i = 1, . . . , n, accord-

ing to (4.8) and (4.9).

Step 2: Define f (k,p) (x), e
(k,p)
j (x), j = 1, . . . ,mf , according to (4.37). Solve (4.38)

for the corresponding outer iteration k and inner iteration p. Let z(k,p) be the
optimal solution.

Step 3: If (4.39) and (4.40) are satisfied then goto Step 5.

Step 4: Update τ
(k,p+1)
j , j = 0, . . . ,mf , according to (4.43), set p = p+ 1 and goto

Step 2.

54 4 Sequential Convex Programming Methods

Step 5: Set x(k+1) := z(k,p). If x(k+1) = x(k), then STOP. x(k+1) is the solution
of (4.35).

Step 6: Set k = k + 1, p = 0 and compute f
(
x(k)
)
,∇f

(
x(k)
)
, ej

(
x(k)
)
, ∇ej

(
x(k)
)
,

j = 1, . . . ,mf . Goto Step 1.

It can be shown that the inner iteration process, given by Step 2 - Step 5, terminates
after a finite number of iterations. Moreover, global convergence can be shown, see
Svanberg [82]. Note that the functions might be evaluated at infeasible iterations, to
test whether (4.39) and (4.40) holds.

5. A STRICTLY FEASIBLE
SEQUENTIAL CONVEX
PROGRAMMING METHOD

In many applications, some problem functions are only defined on a certain domain
specified by other constraints. Since most nonlinear optimization methods cannot
ensure feasibility during the solution process, these problems cannot be solved appro-
priately. Typical examples are the logarithmic or square root functions, e.g.,

c1 (x) := log (e1 (x)) , (5.1)

c2 (x) :=
√
e2 (x), (5.2)

where e1 (x) and e2 (x) are nonlinear functions. To ensure that c1 (x) and c2 (x) can
be evaluated, the constraints

e1 (x) > 0, (5.3)

e2 (x) > 0, (5.4)

need to be satisfied. Note that we require e2 (x) > 0 such that c2 (x) is continuously
differentiable for all x satisfying (5.4).

We present an extended version of the SCP Algorithm 14 guaranteeing feasibility
of a given subset of constraints in each iteration, which will be referred to as feasi-
bility constraints ej (x) ≤ 0, j = 1, . . . ,mf . The resulting method is called feasible
sequential convex programming method (SCPF). It is assumed that the constraints
cj (x) , j = 1, . . . ,mc, as well as the objective function f (x) can only be evaluated, if
all feasibility constraints ej (x) ≤ 0, j = 1, . . . ,mf , are satisfied.

5.1 Feasible Sequential Convex Programming

In the sequel, we consider problem (4.17) extended by additional feasibility constraints
ej (x) , j = 1, . . . ,mf , that have to be satisfied whenever the objective function f (x)
and the constraints cj (x), j = 1, . . . ,mc, need to be evaluated. We get

min
x

f (x) x ∈ Rn

s.t. cj (x) = 0, j = 1, . . . ,me

cj (x) ≤ 0, j = me + 1, . . . ,mc

ej (x) ≤ 0, j = 1, . . . ,mf

(5.5)

56 5 A Strictly Feasible Sequential Convex Programming Method

The objective function f (x) and constraints cj (x) , j = 1, . . . ,mc, are supposed to
be at least continuously differentiable on the subset

F := {x ∈ Rn | ej (x) ≤ 0, j = 1, . . . ,mf } . (5.6)

The functions ej (x) , j = 1, . . . ,mf , must be convex and at least twice continuously
differentiable on Rn, see Ertel, Schittkowski and Zillober [22]. As a consequence, F is
convex which is important to guarantee feasibility, if the stepsize is reduced during a
line search procedure.

Proceeding from a feasible starting point with respect to feasibility constraints, i.e.,
x(0) ∈ F , SCPF generates a sequence of convex subproblems, which are easy to
solve due to their special structure. Moreover, they contain the nonlinear constraints
ej (x) , j = 1, . . . ,mf , to ensure their feasibility. The objective function f (x) and
the constraints cj (x) , j = 1, . . . ,mc, are approximated by convex and separable

functions according to (4.21), (4.22) and (4.5) yielding f (k) (x) and c
(k)
j (x) , j =

1, . . . ,mc, while the constraints ej (x) , j = 1, . . . ,mf , are passed to the subproblem
directly. We implicitly assume that the nonlinear functions e1 (x) , . . . , emf (x) and
their derivatives are much easier to evaluate than the functions and gradients of f(x)
and c1 (x) , . . . , cmc (x).

In each iteration k we obtain the following subproblem,

min
x

f (k) (x) x ∈ Rn

s.t. c
(k)
j (x) = 0, j = 1, . . . ,me

c
(k)
j (x) ≤ 0, j = me + 1, . . . ,mc

ej (x) ≤ 0, j = 1, . . . ,mf

x
(k)
i ≤ xi ≤ x

(k)
i , i = 1, . . . , n

(5.7)

The box constraints are defined by

x
(k)
i := x

(k)
i − ω

(
x

(k)
i − L

(k)
i

)
, i = 1, . . . , n (5.8)

and

x
(k)
i := x

(k)
i + ω

(
U

(k)
i − x

(k)
i

)
, i = 1, . . . , n (5.9)

where ω ∈]0, 1[is a suitable constant. The asymptotes L
(k)
i and U

(k)
i , i = 1, . . . , n, are

defined according to Algorithm 11 satisfying Definition 4.1. The solution x(k) ∈ Rn of
(5.7) lies in the set F

(k)
X

F ⊇ F
(k)
X (5.10)

with

F
(k)
X := F ∩X(k) (5.11)

X(k) :=
{
x ∈ Rn

∣∣ x(k) ≤ x ≤ x(k)
}
. (5.12)

5.1 Feasible Sequential Convex Programming 57

To assure global convergence of the algorithm, we apply a line search procedure. The
feasibility constraints have to be included in the differentiable augmented Lagrangian
merit function (4.18). We get

Φρ

(
x
y

)
:= f (x) +

me∑
j=1

(
(yc)j cj (x) +

(ρc)j
2

c2
j (x)

)

+
mc∑

j=me+1


(yc)j cj (x) +

(ρc)j
2

c2
j (x) , if −

(yc)j
(ρc)j

≤ cj (x)

−
(yc)

2
j

2 (ρc)j
, otherwise

+

mf∑
j=1


(ye)j ej (x) +

(ρe)j
2

e2
j (x) , if −

(ye)j
(ρe)j

≤ ej (x)

−
(ye)

2
j

2 (ρe)j
, otherwise

(5.13)

for a given set of penalty parameters

ρ :=

(
ρc
ρe

)
(5.14)

with (ρc)j > 0, j = 1, . . . ,mc, and (ρe)j > 0, j = 1, . . . ,mf . Moreover, we denote the
Lagrangian multipliers for the constraints cj (x) , j = 1, . . . ,mc, and the feasibility
constraints ej (x) , j = 1, . . . ,mf , by

y :=

(
yc
ye

)
(5.15)

with yc =
(
(yc)1 , . . . , (yc)mc

)T ∈ Rmc , and ye =
(

(ye)1 , . . . , (ye)mf

)T
∈ Rmf . The

penalty parameters are updated according to Algorithm 13, see Section 4.2.

The feasible SCP algorithm is summarized as follows:

Algorithm 16. Feasible Sequential Convex Programming

Step 0: Choose feasible starting point x(0) ∈ F . Set parameters ξ > 0, Lmin < Umax,
T2 > 1, 0 < T1 < 1, ω ∈]0; 1[, r ∈ (0, 1), β ∈ (0, 1), τ > 0, κ2 > κ1 > 1 and
y(0) ≥ 0. Compute f

(
x(0)
)
,∇f

(
x(0)
)
, cj
(
x(0)
)
,∇cj

(
x(0)
)
, j = 1, . . . ,mc,

and ej
(
x(0)
)
,∇ej

(
x(0)
)
, j = 1, . . . ,mf . Set penalty parameters

(
ρ

(−1)
c

)
j
> 0,

j = 1, . . . ,mc, and
(
ρ

(−1)
e

)
j
> 0, j = 1, . . . ,mf . Set k := 0.

Step 1: Determine L
(k)
i and U

(k)
i , i = 1, . . . , n, by Algorithm 11. Let f (k) (x), c

(k)
j (x),

j = 1, . . . ,mc, be defined by (4.21), (4.22) and (4.5). Define x
(k)
i and x

(k)
i ,

i = 1, . . . , n, according to (4.8) and (4.9). Formulate (4.26) for the
corresponding iteration k.

58 5 A Strictly Feasible Sequential Convex Programming Method

Step 2: Solve (5.7). Let z(k) be the optimal solution of subproblem (5.7) and
v(k) the vector of corresponding Lagrangian multipliers.

Step 3: If z(k) = x(k), then STOP.
(
x(k), v(k)

)
is a KKT point of (5.5).

Step 4: Let d(k) :=

(
z(k) − x(k)

v(k) − y(k)

)
, δ(k) :=

∥∥z(k) − x(k)
∥∥

2
and η(k) as defined in (4.31).

Let i = 0 and ρ(k,0) := ρ(k−1).

Step 5: Compute Φρ(k,i)

(
x(k)

y(k)

)
,∇Φρ(k,i)

(
x(k)

y(k)

)
,∇Φρ(k,i)

(
x(k)

y(k)

)T
d(k).

Step 6: If ∇Φρ(k,i)

(
x(k)

y(k)

)T
d(k) > −

η(k)
(
δ(k)
)2

2
, update penalty parameters according

to Algorithm 13. Let i = i+ 1 and goto Step 5.
Otherwise, let ρ(k) := ρ(k,i), i = 0 and σ(k,0) := 1.

Step 7: Compute f
(
x(k) + σ(k,i)

(
z(k) − x(k)

))
, cj
(
x(k) + σ(k,i)

(
z(k) − x(k)

))
,

j = 1, . . . ,mc, ej
(
x(k) + σ(k,i)

(
z(k) − x(k)

))
, j = 1, . . . ,mf , and

Φρ(k)

((
x(k)

y(k)

)
+ σ(k,i)d(k)

)
.

If (4.28) is not satisfied, let σ(k,i+1) := βσ(k,i), i = i+ 1 and repeat (Armijo).
Otherwise, σ(k) := σ(k,i).

Step 8: Let

(
x(k+1)

y(k+1)

)
:=

(
x(k)

y(k)

)
+ σ(k)d(k), k := k + 1.

Step 9: Compute ∇f
(
x(k)
)
,∇cj

(
x(k)
)
, j = 1, . . . ,mc,∇ej

(
x(k)
)
, j = 1, . . . ,mf ,

and goto Step 1.

It might happen that the constraints of subproblem (5.7) become inconsistent. In this
case, the subproblem is extended by additional variables, see Section 7.1.3 for details.

By assumption, the subset F described by the feasibility constraints is convex. This is
important for the line search procedure as strict feasibility cannot be ensured on the
whole interval

[
z(k), x(k)

]
otherwise. Moreover, subproblem (5.7) possesses an unique

solution, if F is convex.

The feasibility constraints ej (x) , j = 1, . . . ,mf , have to be satisfied whenever the
objective f (x) and the constraints cj (x) , j = 1, . . . ,mc, are evaluated. Due to the
formulation of the approximations (4.21), (4.22) and (4.5) they may be violated within
the solution process of the subproblem.

In contrast to the feasible direction SQP algorithms presented in Chapter 3, stepsize
σ(k) = 1 ensures feasibility with respect to the feasibility constraints. In addition, the
search direction need not be adapted to ensure a feasible iteration point x(k+1). The
globally convergent MMA method, presented in Section 4.3, computes a sequence of
feasible iteration points. Compared to SCPF, function evaluations are still necessary
at infeasible points.

5.2 Global Convergence 59

A convergence proof of the feasible sequential convex programming method is given
in Section 5.2. The implementation of SCPF is based on SCPIP30.f, see Zillober [103].
It is extended by feasibility constraints that are handled separately during the opti-
mization process. In addition, the predictor corrector interior point method, which is
used in SCPIP30.f to solve the subproblem (4.26), is replaced by the general nonlinear
programming solver IPOPT, see Wächter and Biegler [90]. If no feasibility constraints
are present, i.e., mf = 0, the iteration sequences of SCPF and SCP are identical.

5.2 Global Convergence

5.2.1 Notation and Analysis

We proceed from optimization problem (5.5) and omit equality constraints to ease
the notation, i.e., me = 0. We get

min
x

f(x) x ∈ Rn

s.t. cj(x) ≤ 0, j = 1, . . . ,mc

ej(x) ≤ 0, j = 1, . . . ,mf

(5.16)

where f (x) and cj (x) , j = 1, . . . ,mc, are supposed to be at least continuously dif-
ferentiable on the subset

F := {x ∈ Rn | ej (x) ≤ 0, j = 1, . . . ,mf } , (5.17)

while ej (x) , j = 1, . . . ,mf , are convex and at least twice continuously differentiable
on Rn. Moreover, we assume:

Assumption 1. The feasible region described by the feasibility constraints is nonempty,
i.e.,

F := {x ∈ Rn | ej(x) ≤ 0, j = 1, . . . ,mf } 6= ∅. (5.18)

and compact.

As a consequence, the functions f(x), cj(x), j = 1, . . . ,mc, and ej(x), j = 1, . . . ,mf ,
and the corresponding partial derivatives are bounded on F , which is important to
show that the corresponding dual variables are bounded.

Note that we omit box constraints throughout our theoretical analysis to simplify
the notation. They are introduced again for the implementation of the algorithms to
guarantee that the variables retain in a compact set described by box and feasibility
constraints.

60 5 A Strictly Feasible Sequential Convex Programming Method

By approximating the inequalities cj(x) ≤ 0, j = 1, . . . ,mc, according to (4.5) and
the objective function f(x) according to (4.21) we obtain the subproblem (5.7), i.e.,

min
x

f (k)(x) x ∈ Rn

s.t. c
(k)
j (x) ≤ 0, j = 1, . . . ,mc

ej(x) ≤ 0, j = 1, . . . ,mf

x
(k)
i ≤ xi ≤ x

(k)
i , i = 1, . . . , n

(5.19)

The box constraints are chosen in the following way

x
(k)
i := x

(k)
i − ω

(
x

(k)
i − L

(k)
i

)
, i = 1, . . . , n (5.20)

x(k) :=
(
x

(k)
1 , . . . , x(k)

n

)T
(5.21)

x
(k)
i := x

(k)
i + ω

(
U

(k)
i − x

(k)
i

)
, i = 1, . . . , n (5.22)

x(k) :=
(
x

(k)
1 , . . . , x(k)

n

)T
(5.23)

with ω ∈]0; 1[constant. To ease the notation, the box constraints in iteration k are
considered as linear inequality constraints defined by

b
(k)
i (x) := xi − x(k)

i ≤ 0, i = 1, . . . , n, (5.24)

b
(k)
n+i (x) := x

(k)
i − xi ≤ 0, i = 1, . . . , n. (5.25)

The corresponding Lagrangian multipliers are given by v
(k)
u ∈ Rn for the upper bounds

b
(k)
i (x), i = 1, . . . , n, and v

(k)
l ∈ Rn for the lower bounds b

(k)
i+n(x), i = 1, . . . , n.

Moreover, we define

Au(k) (x) :=
(
∇b(k)

1 (x), . . . ,∇b(k)
n (x)

)
∈ Rn×n, (5.26)

Al(k) (x) :=
(
∇b(k)

n+1(x), . . . ,∇b(k)
2n (x)

)
∈ Rn×n. (5.27)

It is easy to see, that

Au(k) (x) = −Al(k) (x) = I, (5.28)

where I ∈ Rn×n is the identity matrix.

We proceed from a sequence of feasible asymptotes as specified in Definition 4.1, i.e.,

Lmin ≤ L
(k)
i ≤ x

(k)
i − ξ, ∀i = 1, . . . , n (5.29)

Umax ≥ U
(k)
i ≥ x

(k)
i + ξ, ∀i = 1, . . . , n (5.30)

with ξ > 0. We denote the primal solution of subproblem (5.19) in iteration k by
z(k) ∈ Rn, the dual solution by v(k) ∈ Rmc+mf and define

∆x(k) := z(k) − x(k). (5.31)

5.2 Global Convergence 61

Before proving global convergence we subsume the following definitions.

c(x) := (c1(x), . . . , cmc(x))T (5.32)

e(x) :=
(
e1(x), . . . , emf (x)

)T
(5.33)

bu(x) := (b1(x), . . . , bn(x))T (5.34)

bl(x) := (bn+1(x), . . . , b2n(x))T (5.35)

yc :=
(
(yc)1 , . . . , (yc)mc

)T
(5.36)

ye :=
(

(ye)1 , . . . , (ye)mf

)T
(5.37)

y :=

(
yc
ye

)
(5.38)

vc :=
(
(vc)1 , . . . , (vc)mc

)T
(5.39)

ve :=
(

(ve)1 , . . . , (ve)mf

)T
(5.40)

v :=

(
vc
ve

)
(5.41)

vu := ((vu)1 , . . . , (vu)n)T (5.42)

vl := ((vl)1 , . . . , (vl)n)T (5.43)

vb :=

(
vu
vl

)
(5.44)

ρc :=
(
(ρc)1 , . . . , (ρc)mc

)T
(5.45)

Γc := diag
{

(ρc)1 , . . . , (ρc)mc
}

(5.46)

ρe :=
(

(ρe)1 , . . . , (ρe)mf

)T
(5.47)

Γe := diag
{

(ρe)1 , . . . , (ρe)mf

}
(5.48)

ρ :=

(
ρc
ρe

)
(5.49)

Jc(x) :=

{
j = 1, . . . ,mc

∣∣∣∣∣−(yc)j
(ρc)j

≤ cj(x)

}
(5.50)

J c(x) :=

{
j = 1, . . . ,mc

∣∣∣∣∣−(yc)j
(ρc)j

> cj(x)

}
(5.51)

Je(x) :=

{
j = 1, . . . ,mf

∣∣∣∣∣−(ye)j
(ρe)j

≤ ej(x)

}
(5.52)

Je(x) :=

{
j = 1, . . . ,mf

∣∣∣∣∣−(ye)j
(ρe)j

> ej(x)

}
(5.53)

62 5 A Strictly Feasible Sequential Convex Programming Method

Ac(x) := (∇c1(x), . . . ,∇cmc(x)) ∈ Rn×mc (5.54)

Ae(x) :=
(
∇e1(x), . . . ,∇emf (x)

)
∈ Rn×mf (5.55)

A(x) := (Ac(x), Ae(x)) ∈ Rn×mc+mf (5.56)

yc :=
(
(yc)1 , . . . , (yc)mc

)T
with (yc)j :=

{
(yc)j , if j ∈ Jc(x)

0, otherwise
(5.57)

ye :=
(

(ye)1 , . . . , (ye)mf

)T
with (ye)j :=

{
(ye)j , if j ∈ Je(x)

0, otherwise
(5.58)

vc :=
(
(vc)1 , . . . , (vc)mc

)T
with (vc)j :=

{
(vc)j , if j ∈ Jc(x)

0, otherwise
(5.59)

ve :=
(

(ve)1 , . . . , (ve)mf

)T
with (ve)j :=

{
(ve)j , if j ∈ Je(x)

0, otherwise
(5.60)

c(x) := (c1(x), . . . , cmc(x))T with cj(x) :=

{
cj(x), if j ∈ Jc(x)
0, otherwise

(5.61)

e(x) :=
(
e1(x), . . . , emf (x)

)T
with ej(x) :=

{
ej(x), if j ∈ Je(x)
0, otherwise

(5.62)

ĉ(x) := (ĉ1(x), . . . , ĉmc(x))T with ĉj(x) :=

{
cj(x), if j ∈ Jc(x)

− (yc)j
(ρc)j

, otherwise
(5.63)

ê(x) :=
(
ê1(x), . . . , êmf (x)

)T
with êj(x) :=

{
ej(x), if j ∈ Je(x)

− (ye)j
(ρe)j

, otherwise
(5.64)

c̃(x) := (c̃1(x), . . . , c̃mc(x))T with c̃j(x) :=

{
cj(x), if j ∈ Jc(x)

− (yc)j
2(ρc)j

, otherwise
(5.65)

ẽ(x) :=
(
ẽ1(x), . . . , ẽmf (x)

)T
with ẽj(x) :=

{
ej(x), if j ∈ Je(x)

− (ye)j
2(ρe)j

, otherwise
(5.66)

If required, we add the upper index (k) to denote the k-th iteration step. To ease the
notation we define

J (k)
c := Jc(x

(k)) (5.67)

J
(k)

c := J c(x
(k)) (5.68)

J (k)
e := Je(x

(k)) (5.69)

J
(k)

e := Je(x
(k)) (5.70)

5.2 Global Convergence 63

5.2.2 Preliminary Results

The convergence proof for Algorithm 16 is an extension of the convergence proof of
Algorithm 14, see Zillober [97, 98] and [102]. For the nonlinear optimization problem
(5.16), the Lagrangian function (2.8) can be written as

L (x, y) = f(x) + yTc c(x) + yTe e(x) (5.71)

∇xL (x, y) = ∇f(x) + Ac(x)yc + Ae(x)ye (5.72)

and, respectively, the augmented Lagrangian (5.13) is given by

Φρ

(
x
y

)
= f(x) + yTc c̃(x) +

1

2
ρTc c

2(x) + yTe ẽ(x) +
1

2
ρTe e

2(x) (5.73)

with the corresponding gradient

∇Φρ

(
x
y

)
=

 ∇f(x) + Ac(x) (yc + Γcc(x)) + Ae(x) (ye + Γee(x))

ĉ(x)

ê(x)

(5.74)

Moreover, we consider the first order necessary optimality conditions (KKT, see Def-
inition 6 and (2.12) - (2.19)) for the subproblem. We denote the Lagrangian function
(2.8) of subproblem (5.19) in iteration k by L(k)(z, v). As

(
z(k), v(k)

)
is a KKT point

of subproblem (5.19) and Au = −Al = I, we get

∇xL
(k)
(
z(k), v(k)

)
= ∇f (k)

(
z(k)
)

+ Ac(k)
(
z(k)
)
v(k)
c

+Ae
(
z(k)
)
v(k)
e + v(k)

u − v
(k)
l = 0 (5.75)(

v(k)
c

)
j
c

(k)
j

(
z(k)
)

= 0, j = 1, . . . ,mc (5.76)(
v(k)
e

)
j
ej
(
z(k)
)

= 0, j = 1, . . . ,mf (5.77)(
v

(k)
b

)
j
b

(k)
j

(
z(k)
)

= 0, j = 1, . . . , 2n (5.78)

c
(k)
j

(
z(k)
)
≤ 0, j = 1, . . . ,mc (5.79)

ej
(
z(k)
)
≤ 0, j = 1, . . . ,mf (5.80)

b
(k)
j

(
z(k)
)
≤ 0, j = 1, . . . , 2n (5.81)(

v(k)
c

)
j
≥ 0, j = 1, . . . ,mc (5.82)(

v(k)
e

)
j
≥ 0, j = 1, . . . ,mf (5.83)(

v
(k)
b

)
j
≥ 0, j = 1, . . . , 2n (5.84)

Applying the Taylor approximation with residual Rf (k)(x), R
c
(k)
j

(x) and Rej(x) for the

corresponding functions, we obtain the following equations for the objective f(x):

f (k)(x) = f
(
x(k)
)

+∇f (k)
(
x(k)
)T︸ ︷︷ ︸

=∇f(x(k))
T

(
x− x(k)

)
+Rf (k)(x) (5.85)

∇f (k)(x) = ∇f
(
x(k)
)

+∇Rf (k)(x) (5.86)

64 5 A Strictly Feasible Sequential Convex Programming Method

and respectively for the constraints cj(x), j = 1, . . . ,mc, and ej(x), j = 1, . . . ,mf ,

c
(k)
j (x) = cj

(
x(k)
)

+∇c(k)
j

(
x(k)
)T︸ ︷︷ ︸

=∇cj(x(k))
T

(
x− x(k)

)
+R

c
(k)
j

(x) (5.87)

∇c(k)
j (x) = ∇cj

(
x(k)
)

+∇R
c
(k)
j

(x) (5.88)

ej(x) = ej
(
x(k)
)

+∇ej
(
x(k)
)T (

x− x(k)
)

+Rej(x) (5.89)

∇ej(x) = ∇ej
(
x(k)
)

+∇Rej(x) (5.90)

Moreover, we can determine the gradients of each function cj(x), j = 1, . . . ,mc, and
ej(x), j = 1, . . . ,mf , at iterate z(k) using (5.87) and (5.89) by

c
(k)
j

(
z(k)
)

= cj
(
x(k)
)

+∇cj
(
x(k)
)T

∆x(k) +R
c
(k)
j

(
z(k)
)

(5.91)

∇cj
(
x(k)
)T

∆x(k) = c
(k)
j

(
z(k)
)
− cj

(
x(k)
)
−R

c
(k)
j

(
z(k)
)

(5.92)

with ∆x(k) = z(k) − x(k). Analogue we obtain

∇ej
(
x(k)
)T

∆x(k) = ej
(
z(k)
)
− ej

(
x(k)
)
−Rej

(
z(k)
)
. (5.93)

As the approximations c
(k)
j (x) of cj(x), j = 1, . . . ,mc, are convex, the corresponding

R
c
(k)
j

(x) is nonnegative. The same holds for Rej(x), j = 1, . . . ,mf , respectively, as

the functions ej(x), j = 1, . . . ,mf , are convex by assumption. We consider the Taylor
series of ej(x), j = 1, . . . ,mf , evaluated in z(k) for the current iterate x(k).

ej
(
x(k)
)

= ej
(
z(k)
)

+∇ej
(
z(k)
)T (

x(k) − z(k)
)

+Rej

(
x(k)
)︸ ︷︷ ︸

≥0

≥ ej
(
z(k)
)

+∇ej
(
z(k)
)T (

x(k) − z(k)
)

= ej
(
z(k)
)
−∇ej

(
z(k)
)T (

z(k) − x(k)
)

ej
(
x(k)
)
− ej

(
z(k)
)
≥ −∇ej

(
z(k)
)T

∆x(k) (5.94)

We define

Rc(k) (x) :=
(
R
c
(k)
1

(x) , . . . , R
c
(k)
mc

(x)
)T
∈ Rmc (5.95)

∇Rc(k) (x) :=
(
∇R

c
(k)
1

(x) , . . . ,∇R
c
(k)
mc

(x)
)
∈ Rn×mc (5.96)

and

Re (x) :=
(
Re1 (x) , . . . , Remf

(x)
)T
∈ Rmf (5.97)

∇Re (x) :=
(
∇Re1 (x) , . . . ,∇Remf

(x)
)
∈ Rn×mf (5.98)

5.2 Global Convergence 65

respectively. The exact values of R
c
(k)
j

(x) , ∇R
c
(k)
j

(x) , j = 1, . . . ,mc, and Rf (k) (x),

∇Rf (k) (x) can be obtained according to the following lemma, see Zillober [102] Section
2.3. The lemma is used to prove Lemma 5.4, which is an essential part to show
that a sufficient descent with respect to the augmented Lagrangian is obtained, see
Theorem 5.2.

Lemma 5.1. Let f (k)(x) and c
(k)
j (x), j = 1, . . . ,mc, be convex approximations (4.21)

and (4.5) formulated in x(k) ∈ Rn by Algorithm 16. Moreover, the corresponding

asymptotes L
(k)
i and U

(k)
i , i = 1, . . . , n, be feasible according to Definition 4.1. Then

the following equations hold for all k ≥ 0

Rf (k)(x) =
∑
I
(k)
+

[
∂f
(
x(k)
)

∂xi
+ τ

]
(
xi − x(k)

i

)2

U
(k)
i − xi

 (5.99)

−
∑
I
(k)
−

[
∂f
(
x(k)
)

∂xi
− τ

]
(
xi − x(k)

i

)2

xi − L(k)
i



R
c
(k)
j

(x) =
∑
I
(j,k)
+

∂cj
(
x(k)
)

∂xi


(
xi − x(k)

i

)2

U
(k)
i − xi

 (5.100)

−
∑
I
(j,k)
−

∂cj
(
x(k)
)

∂xi


(
xi − x(k)

i

)2

xi − L(k)
i



∂Rf (k)(x)

∂xi
=



[
∂f
(
x(k)
)

∂xi
+ τ

][(
xi−x

(k)
i

)(
2U

(k)
i −xi−x

(k)
i

)
(
U

(k)
i −xi

)2

]
, if i ∈ I(k)

+

−

[
∂f
(
x(k)
)

∂xi
− τ

][(
xi−x

(k)
i

)(
−2L

(k)
i +xi+x

(k)
i

)
(
xi−L

(k)
i

)2

]
, if i ∈ I(k)

−

(5.101)

∂R
c
(k)
j

(x)

∂xi
=


∂cj
(
x(k)
)

∂xi

[(
xi−x

(k)
i

)(
2U

(k)
i −xi−x

(k)
i

)
(
U

(k)
i −xi

)2

]
, if i ∈ I(j,k)

+

−
∂cj
(
x(k)
)

∂xi

[(
xi−x

(k)
i

)(
−2L

(k)
i +xi+x

(k)
i

)
(
xi−L

(k)
i

)2

]
, if i ∈ I(j,k)

−

(5.102)

where τ > 0 and I
(k)
+ , I

(k)
− ,I

(j,k)
+ and I

(j,k)
− are defined by (4.2), (4.3), (4.6) and (4.7).

66 5 A Strictly Feasible Sequential Convex Programming Method

Proof. We obtain the following condition by exploiting the equality of the Taylor
series (5.85) and the definition of the approximation (4.21). We get:

f (k) (x)
(5.85)
= f

(
x(k)
)

+∇f
(
x(k)
)T (

x− x(k)
)

+Rf (k)(x)

f (k) (x)
(4.21)
= f

(
x(k)
)

+
∑
I
(k)
+

[
∂f
(
x(k)
)

∂xi

(
U

(k)
i − x

(k)
i

)2
(

1

U
(k)
i − xi

− 1

U
(k)
i − x

(k)
i

)]

−
∑
I
(k)
−

[
∂f
(
x(k)
)

∂xi

(
x

(k)
i − L

(k)
i

)2
(

1

xi − L(k)
i

− 1

x
(k)
i − L

(k)
i

)]

+
∑
I
(k)
+

τ

(
xi − x(k)

i

)2

U
(k)
i − xi

+
∑
I
(k)
−

τ

(
xi − x(k)

i

)2

xi − L(k)
i

This leads to

Rf (k)(x)

= −f
(
x(k)
)
−∇f

(
x(k)
)T (

x− x(k)
)

+ f
(
x(k)
)

+
∑
I
(k)
+

[
∂f
(
x(k)
)

∂xi

(
U

(k)
i − x

(k)
i

)2
(

1

U
(k)
i − xi

− 1

U
(k)
i − x

(k)
i

)]

−
∑
I
(k)
−

[
∂f
(
x(k)
)

∂xi

(
x

(k)
i − L

(k)
i

)2
(

1

xi − L
(k)
i

− 1

x
(k)
i − L

(k)
i

)]

+
∑
I
(k)
+

τ

(
xi − x(k)

i

)2

U
(k)
i − xi

+
∑
I
(k)
−

τ

(
xi − x(k)

i

)2

xi − L(k)
i

=
∑
I
(k)
+

∂f
(
x(k)
)

∂xi


(
U

(k)
i − x

(k)
i

)2

U
(k)
i − xi

−
(
U

(k)
i − x

(k)
i

)
−
(
xi − x(k)

i

)
︸ ︷︷ ︸

=−U(k)
i +2x

(k)
i −xi



−
∑
I
(k)
−

∂f
(
x(k)
)

∂xi


(
x

(k)
i − L

(k)
i

)2

xi − L(k)
i

−
(
x

(k)
i − L

(k)
i

)
+
(
xi − x(k)

i

)
︸ ︷︷ ︸

=−2x
(k)
i +xi+L

(k)
i


+
∑
I
(k)
+

τ

(
xi − x(k)

i

)2

U
(k)
i − xi

+
∑
I
(k)
−

τ

(
xi − x(k)

i

)2

xi − L(k)
i

5.2 Global Convergence 67

Rf (k)(x)

=
∑
I
(k)
+

∂f
(
x(k)
)

∂xi


(
U

(k)
i − x

(k)
i

)2

U
(k)
i − xi

−

(
U

(k)
i − 2x

(k)
i + xi

)(
U

(k)
i − xi

)
U

(k)
i − xi


−
∑
I
(k)
−

∂f
(
x(k)
)

∂xi


(
x

(k)
i − L

(k)
i

)2

xi − L(k)
i

−

(
2x

(k)
i − xi − L

(k)
i

)(
xi − L(k)

i

)
xi − L(k)

i


+
∑
I
(k)
+

τ

(
xi − x(k)

i

)2

U
(k)
i − xi

+
∑
I
(k)
−

τ

(
xi − x(k)

i

)2

xi − L(k)
i

=
∑
I
(k)
+

∂f
(
x(k)
)

∂xi
(
U

(k)
i

)2

+
(
x

(k)
i

)2

− 2U
(k)
i x

(k)
i −

(
U

(k)
i

)2

+ 2U
(k)
i x

(k)
i − 2xix

(k)
i + x2

i

U
(k)
i − xi


−
∑
I
(k)
−

∂f
(
x(k)
)

∂xi
(
L

(k)
i

)2

+
(
x

(k)
i

)2

− 2L
(k)
i x

(k)
i −

(
L

(k)
i

)2

+ 2L
(k)
i x

(k)
i − 2xix

(k)
i + x2

i

xi − L(k)
i


+
∑
I
(k)
+

τ

(
xi − x(k)

i

)2

U
(k)
i − xi

+
∑
I
(k)
−

τ

(
xi − x(k)

i

)2

xi − L(k)
i

=
∑
I
(k)
+

∂f
(
x(k)
)

∂xi


(
x

(k)
i

)2

− 2xix
(k)
i + x2

i

U
(k)
i − xi

+
∑
I
(k)
+

τ

(
xi − x(k)

i

)2

U
(k)
i − xi

−
∑
I
(k)
−

∂f
(
x(k)
)

∂xi


(
x

(k)
i

)2

− 2xix
(k)
i + x2

i

xi − L(k)
i

+
∑
I
(k)
−

τ

(
xi − x(k)

i

)2

xi − L(k)
i

68 5 A Strictly Feasible Sequential Convex Programming Method

Rf (k)(x) =
∑
I
(k)
+

∂f
(
x(k)
)

∂xi


(
xi − x(k)

i

)2

U
(k)
i − xi

+
∑
I
(k)
+

τ

(
xi − x(k)

i

)2

U
(k)
i − xi

−
∑
I
(k)
−

∂f
(
x(k)
)

∂xi


(
xi − x(k)

i

)2

xi − L(k)
i

+
∑
I
(k)
−

τ

(
xi − x(k)

i

)2

xi − L(k)
i

=
∑
I
(k)
+

[
∂f
(
x(k)
)

∂xi
+ τ

]
(
xi − x(k)

i

)2

U
(k)
i − xi


−
∑
I
(k)
−

[
∂f
(
x(k)
)

∂xi
− τ

]
(
xi − x(k)

i

)2

xi − L(k)
i


R
c
(k)
j

(x) can be computed analogously for each cj(x), j = 1, . . . ,mc, by setting τ = 0.

The derivatives of Rf (k)(x) can be determined easily, since
∂f
(
x(k)
)

∂xi
, U

(k)
i , L

(k)
i , x

(k)
i

and τ are constant. We get for an arbitrary i ∈ I(k)
+

∂Rf (k)(x)

∂xi
=

[
∂f
(
x(k)
)

∂xi
+ τ

]2
(
xi − x(k)

i

)(
U

(k)
i − xi

)
+
(
xi − x(k)

i

)2

(
U

(k)
i − xi

)2


=

[
∂f
(
x(k)
)

∂xi
+ τ

]
(
xi − x(k)

i

)(
2U

(k)
i − 2xi + xi − x(k)

i

)
(
U

(k)
i − xi

)2


=

[
∂f
(
x(k)
)

∂xi
+ τ

]
(
xi − x(k)

i

)(
2U

(k)
i − xi − x

(k)
i

)
(
U

(k)
i − xi

)2


and respectively for i ∈ I(k)

−

∂Rf (k)(x)

∂xi
= −

[
∂f
(
x(k)
)

∂xi
− τ

]2
(
xi − x(k)

i

)(
xi − L(k)

i

)
−
(
xi − x(k)

i

)2

(
xi − L(k)

i

)2


= −

[
∂f
(
x(k)
)

∂xi
− τ

]
(
xi − x(k)

i

)(
2xi − 2L

(k)
i − xi + x

(k)
i

)
(
xi − L(k)

i

)2


= −

[
∂f
(
x(k)
)

∂xi
− τ

]
(
xi − x(k)

i

)(
−2L

(k)
i + xi + x

(k)
i

)
(
xi − L(k)

i

)2



5.2 Global Convergence 69

In total we get:

∂Rf (k)(x)

∂xi
=



[
∂f
(
x(k)
)

∂xi
+ τ

]
(
xi − x(k)

i

)(
2U

(k)
i − xi − x

(k)
i

)
(
U

(k)
i − xi

)2

 , if i ∈ I(k)
+

−

[
∂f
(
x(k)
)

∂xi
− τ

]
(
xi − x(k)

i

)(
−2L

(k)
i + xi + x

(k)
i

)
(
xi − L(k)

i

)2

 , if i ∈ I(k)
−

The partial derivatives of R
c
(k)
j

(x), j = 1, . . . ,mc, can be computed analogously by

setting τ = 0.

The following lemma gives an important relation between the Lagrangian multipliers
of the box constraints v

(k)
u and v

(k)
l and the search direction ∆x(k). The results are

needed to prove Lemma 5.3, which is used to show that a sufficient descent with re-
spect to the augmented Lagrangian is obtained, see Theorem 5.2.

Lemma 5.2. Let the sequences
{
x(k), y(k)

}
and

{
z(k), v(k)

}
be computed by Algorithm

16. The box constraints of subproblem (5.19) in iteration k are given by b
(k)
u (x) and

b
(k)
l (x) and the corresponding Lagrangian multipliers are denoted by v

(k)
u ∈ Rn and

v
(k)
l ∈ Rn, respectively. Let ∆x(k) := z(k) − x(k) be the primal search direction, where
z(k) is the primal solution of subproblem (5.19) formulated in the current iterate x(k).
Then the following inequalities (

v(k)
u

)T
∆x(k) ≥ 0 (5.103)(

v
(k)
l

)T
∆x(k) ≤ 0 (5.104)

hold for all k ≥ 0.

Proof. We consider the definition of x
(k)
i , i = 1, . . . , n, and x

(k)
i , i = 1, . . . , n, see

(5.20) and (5.22). We start with the proof of (5.103)(
v(k)
u

)T
∆x(k)︸ ︷︷ ︸

=z(k)−x(k)

=
(
v(k)
u

)T (
z(k) − x(k)

)
=

(
v(k)
u

)T
z(k)−

(
v(k)
u

)T
x(k) +

(
v(k)
u

)T
x(k)︸ ︷︷ ︸

=0

−
(
v(k)
u

)T
x(k)

=
(
v(k)
u

)T
z(k) −

(
v(k)
u

)T
x(k)︸ ︷︷ ︸

=
(
v
(k)
u

)T
b
(k)
u (z(k))=0, (5.78)

+
(
v(k)
u

)T
x(k) −

(
v(k)
u

)T
x(k)

=
(
v(k)
u

)T
x(k) −

(
v(k)
u

)T
x(k)

=
(
v(k)
u

)T (
x(k) − x(k)

)︸ ︷︷ ︸
>0, (5.22)

≥ 0

70 5 A Strictly Feasible Sequential Convex Programming Method

Analogously, we can proof (5.104)

(
v

(k)
l

)T
∆x(k)︸ ︷︷ ︸

=z(k)−x(k)

=
(
v

(k)
l

)T (
z(k) − x(k)

)
=

(
v

(k)
l

)T
z(k)−

(
v

(k)
l

)T
x(k) +

(
v

(k)
l

)T
x(k)︸ ︷︷ ︸

=0

−
(
v

(k)
l

)T
x(k)

=
(
v

(k)
l

)T
z(k) −

(
v

(k)
l

)T
x(k)︸ ︷︷ ︸

=−
(
v
(k)
l

)T
b
(k)
l (z(k))=0, (5.78)

+
(
v

(k)
l

)T
x(k) −

(
v

(k)
l

)T
x(k)

=
(
v

(k)
l

)T
x(k) −

(
v

(k)
l

)T
x(k)

=
(
v

(k)
l

)T (
x(k) − x(k)

)︸ ︷︷ ︸
<0, (5.20)

≤ 0

The next Lemma provides an upper bound on the descent of the objective function
in iteration x(k). The proof of Zillober [102], see Section 2.3, is extended by feasibil-
ity constraints ej(x), j = 1, . . . ,mf . The results are required in Theorem 5.2, which
shows that a sufficient descent with respect to the augmented Lagrangian is obtained.

Lemma 5.3. Let the sequences
{
x(k), y(k)

}
and

{
z(k), v(k)

}
be computed by Algo-

rithm 16 and let f (k)(x) and c
(k)
j (x), j = 1, . . . ,mc, be the corresponding convex

approximations defined by (4.21) and (4.5), obtained by a sequence of feasible asymp-
totes according to Definition 4.1. Moreover, the primal search direction is denoted by
∆x(k) := z(k)− x(k), where z(k) is the primal solution of subproblem (5.19) formulated
in the current iterate x(k). If ej(x), j = 1, . . . ,mf , are convex functions, then

∇f
(
x(k)
)T

∆x(k) ≤ −∇Rf (k)

(
z(k)
)T

∆x(k) −
(
v

(k)
c

)T
Ac(x

(k))T∆x(k)

−
(
v

(k)
c

)T
∇Rc(k)(z

(k))T∆x(k)

+
(
v

(k)
e

)T (
e
(
x(k)
)
− e

(
z(k)
))

(5.105)

holds for all k = 0, 1, 2,

5.2 Global Convergence 71

Proof. Proceeding from (5.75) we get:

∇xL
(k)
(
z(k), v(k)

)
= ∇f (k)

(
z(k)
)︸ ︷︷ ︸

=∇f(x(k))+∇R
f(k)(z

(k)), (5.86)

+ Ac(k)(z
(k))v(k)

c︸ ︷︷ ︸
=Ac(x(k))v

(k)
c +∇R

c(k)
(z(k))v

(k)
c , (5.88)

+Ae(z
(k))v(k)

e + v(k)
u − v

(k)
l

= ∇f
(
x(k)
)

+∇Rf (k)

(
z(k)
)

+ Ac(x
(k))v(k)

c +∇Rc(k)(z
(k))v(k)

c

+Ae(z
(k))v(k)

e + v(k)
u − v

(k)
l

= 0

By reformulation and multiplication with ∆x(k) we get

∇f
(
x(k)
)T

∆x(k) = −∇Rf (k)

(
z(k)
)T

∆x(k) −
(
v(k)
c

)T
Ac(x

(k))T∆x(k)

−
(
v(k)
c

)T ∇Rc(k)(z
(k))T∆x(k) −

(
v(k)
e

)T
Ae(z

(k))T∆x(k)︸ ︷︷ ︸
≥e(z(k))−e(x(k)), (5.94)

−
(
v(k)
u

)T
∆x(k)︸ ︷︷ ︸

≥0, see (5.103)

+
(
v

(k)
l

)T
∆x(k)︸ ︷︷ ︸

≤0, see (5.104)

≤ −∇Rf (k)

(
z(k)
)T

∆x(k) −
(
v(k)
c

)T
Ac(x

(k))T∆x(k)

−
(
v(k)
c

)T ∇Rc(k)(z
(k))T∆x(k) +

(
v(k)
e

)T (
e(x(k))− e(z(k))

)

To prove that the search direction is a descent direction for the augmented Lagrangian,
we need the following lemma, which shows that condition (5.106) holds. We review
the proof of Zillober, see Section 2.3 of [102].

Lemma 5.4. Let the sequences
{
x(k), y(k)

}
and

{
z(k), v(k)

}
be computed by Algo-

rithm 16 and let c
(k)
j (x), j = 1, . . . ,mc, be the corresponding convex approximations,

obtained by a sequence of feasible asymptotes according to Definition 4.1. Let the pri-
mal search direction be ∆x(k) := z(k) − x(k), where z(k) ∈ Rn is the primal solution
of subproblem (5.19) formulated in x(k) ∈ Rn. Moreover, let the corresponding La-

grangian multipliers be defined by v
(k)
c ∈ Rmc, then(

v(k)
c

)T
Rc(k)(z

(k))−
(
v(k)
c

)T ∇Rc(k)(z
(k))T∆x(k) ≤ 0 (5.106)

holds for all k = 0, 1, 2,

Proof. As (
v(k)
c

)T
Rc(k)(z

(k))−
(
v(k)
c

)T ∇Rc(k)(z
(k))T∆x(k)

=
mc∑
j=1

[(
v(k)
c

)
j
R
c
(k)
j

(
z(k)
)
−
(
v(k)
c

)
j
∇R

c
(k)
j

(
z(k)
)T

∆x(k)
]

72 5 A Strictly Feasible Sequential Convex Programming Method

holds, we consider each constraint cj(x), j = 1, . . . ,mc individually, to show that
each term of the sum is less or equal than zero. For this purpose, we use the results
of Lemma 5.1.

−
(
v(k)
c

)
j
∇R

c
(k)
j

(
z(k)
)T

∆x(k) +
(
v(k)
c

)
j
R
c
(k)
j

(
z(k)
)

(5.100),(5.102)
=

∑
I
(j,k)
+

−
(
v(k)
c

)
j

∂cj
(
x(k)
)

∂xi
(
z

(k)
i − x

(k)
i

)2 (
2U

(k)
i − z

(k)
i − x

(k)
i

)
(
U

(k)
i − z

(k)
i

)2 −

(
z

(k)
i − x

(k)
i

)2

U
(k)
i − z

(k)
i


+
∑
I
(j,k)
−

(
v(k)
c

)
j

∂cj
(
x(k)
)

∂xi
(
z

(k)
i − x

(k)
i

)2 (
−2L

(k)
i + z

(k)
i + x

(k)
i

)
(
z

(k)
i − L

(k)
i

)2 −

(
z

(k)
i − x

(k)
i

)2

z
(k)
i − L

(k)
i


=

∑
I
(j,k)
+

−
(
v(k)
c

)
j

∂cj
(
x(k)
)

∂xi

(
z

(k)
i − x

(k)
i

)2

2U
(k)
i − z

(k)
i − x

(k)
i −

(
U

(k)
i − z

(k)
i

)
(
U

(k)
i − z

(k)
i

)2


+
∑
I
(j,k)
−

(
v(k)
c

)
j

∂cj
(
x(k)
)

∂xi

(
z

(k)
i − x

(k)
i

)2

−2L
(k)
i + z

(k)
i + x

(k)
i −

(
z

(k)
i − L

(k)
i

)
(
z

(k)
i − L

(k)
i

)2


= −

∑
I
(j,k)
+

(
v(k)
c

)
j︸ ︷︷ ︸

≥0

∂cj
(
x(k)
)

∂xi︸ ︷︷ ︸
≥0

(
z

(k)
i − x

(k)
i

)2

︸ ︷︷ ︸
≥0

 U
(k)
i − x

(k)
i(

U
(k)
i − z

(k)
i

)2


︸ ︷︷ ︸

>0

+
∑
I
(j,k)
−

(
v(k)
c

)
j︸ ︷︷ ︸

≥0

∂cj
(
x(k)
)

∂xi︸ ︷︷ ︸
<0

(
z

(k)
i − x

(k)
i

)2

︸ ︷︷ ︸
≥0

 x
(k)
i − L

(k)
i(

z
(k)
i − L

(k)
i

)2


︸ ︷︷ ︸

>0

≤ 0

5.2 Global Convergence 73

Moreover, we have to consider the parameter η
(k)
i , i = 1, . . . , n, see (4.30), which gives

an estimate of the curvature of the approximation of the objective function f (k)(x).

It is shown by Zillober, in Corollary 4.14 of [97], that η
(k)
i , i = 1, . . . , n, is bounded

from below, if the sequence of asymptotes is feasible. The parameter guarantees the
sufficient descent of the augmented Lagrangian function, see Theorem 5.2.

Lemma 5.5. Let the sequences
{
x(k), y(k)

}
and

{
z(k), v(k)

}
be computed by Algo-

rithm 16 with η
(k)
i , i = 1, . . . , n, defined by (4.30). If the sequence of asymptotes is

feasible according to Definition 4.1, then

min
i=1,...,n

η
(k)
i =: η(k) > η > 0 (5.107)

holds for all k = 0, 1, 2, . . . with

η := τ
(2− ω) ξ

(Umax − Lmin)2 . (5.108)

Proof. Using (5.22) we get for a fixed i ∈ I(k)
+ with ω ∈]0, 1[

z
(k)
i ≤ x

(k)
i︸︷︷︸

=x
(k)
i +ω

(
U

(k)
i −x

(k)
i

)
, (5.22)

z
(k)
i ≤ x

(k)
i + ω

(
U

(k)
i − x

(k)
i

)
−z(k)

i ≥ −x(k)
i − ω

(
U

(k)
i − x

(k)
i

)

Adding 2U
(k)
i − x

(k)
i leads to

2U
(k)
i − x

(k)
i − z

(k)
i ≥ 2U

(k)
i − x

(k)
i − x

(k)
i − ω

(
U

(k)
i − x

(k)
i

)
= (2− ω)

(
U

(k)
i − x

(k)
i

)
︸ ︷︷ ︸
≥ξ, (5.30)

In total we get

2U
(k)
i − z

(k)
i − x

(k)
i ≥ (2− ω) ξ (5.109)

74 5 A Strictly Feasible Sequential Convex Programming Method

We proceed from (4.30) and use (5.109), with a fixed i ∈ I(k)
+ .

η
(k)
i =

∂f
(
x(k)
)

∂xi︸ ︷︷ ︸
≥0

+τ

 2U
(k)
i − z

(k)
i − x

(k)
i(

U
(k)
i − z

(k)
i

)2

≥ τ
2U

(k)
i − z

(k)
i − x

(k)
i(

U
(k)
i − z

(k)
i

)2

> τ
2U

(k)
i − z

(k)
i − x

(k)
i

(Umax − Lmin)2

(5.109)

≥ τ
(2− ω) ξ

(Umax − Lmin)2︸ ︷︷ ︸
=:η

> 0

with τ > 0. The corresponding proof for i ∈ I(k)
− can be given analogously with (5.20)

and (5.29). All together we get:

η
(k)
i ≥ η(k) > η > 0, ∀i = 1, . . . , n. (5.110)

An important part of the convergence proof is to show that the penalty parameters and
the augmented Lagrangian function are bounded. Before we can show this, we have
to show that the gradients of the approximations f (k)(x) and c

(k)
j (x), j = 1, . . . ,mc,

are bounded on X(k). We review the proof for the objective function and the regular
constraints cj(x), j = 1, . . . ,mc, given by Zillober [97] in Theorem 4.13.

Lemma 5.6. Let the sequence
{
x(k), y(k)

}
be computed by Algorithm 16 and let f (k)(x)

and c
(k)
j (x), j = 1, . . . ,mc, be the corresponding convex approximations defined by

(4.21) and (4.5), obtained by a feasible sequence of asymptotes
{
L(k)

}
and

{
U (k)

}
according to Definition 4.1. Let the lower and upper bounds x

(k)
i and x

(k)
i , i = 1, . . . , n,

be defined by (5.20) and (5.22).
If F is nonempty and compact, then there exists M0 > 0 and Mj > 0, j = 1, . . . ,mc

such that ∣∣∣∣∂f (k)(x)

∂xi

∣∣∣∣ < M0, i = 1, . . . , n (5.111)∣∣∣∣∣∂c
(k)
j (x)

∂xi

∣∣∣∣∣ ≤ Mj, i = 1, . . . , n, j = 1, . . . ,mc (5.112)

holds for all x ∈ X(k) and k = 0, 1, 2, . . .

5.2 Global Convergence 75

Proof. We start with the derivatives of the approximated objective function, given in
(4.23)

∂f (k)(x)

∂xi
=

∂h(k)(x)

∂xi
+



∂f
(
x(k)
)

∂xi

(
U

(k)
i − x

(k)
i

)2

(
U

(k)
i − xi

)2 , if i ∈ I(k)
+

∂f
(
x(k)
)

∂xi

(
x

(k)
i − L

(k)
i

)2

(
xi − L(k)

i

)2 , otherwise

(5.113)

with

∂h(k)(x)

∂xi
=



τ

(
xi − x(k)

i

)2

+ 2
(
xi − x(k)

i

)(
U

(k)
i − xi

)
(
U

(k)
i − xi

)2 , if i ∈ I(k)
+

τ
−
(
xi − x(k)

i

)2

+ 2
(
xi − x(k)

i

)(
xi − L(k)

i

)
(
xi − L(k)

i

)2 , otherwise.

(5.114)

Moreover, we consider (5.20) and (5.22)

U
(k)
i −x(k)

i︸ ︷︷ ︸
=−x(k)

i −ω
(
U

(k)
i −x

(k)
i

)
, (5.22)

= U
(k)
i − x

(k)
i − ω

(
U

(k)
i − x

(k)
i

)

= (1− ω)
(
U

(k)
i − x

(k)
i

)
> 0 (5.115)

x
(k)
i︸︷︷︸

=x
(k)
i −ω

(
x
(k)
i −L

(k)
i

)
, (5.20)

−L(k)
i = x

(k)
i − ω

(
x

(k)
i − L

(k)
i

)
− L(k)

i

= (1− ω)
(
x

(k)
i − L

(k)
i

)
> 0. (5.116)

We can show that (5.114) is bounded. Starting with an arbitrary i ∈ I(k)
+ we get∣∣∣∣∣∣∣τ

(
xi − x(k)

i

)2

+ 2
(
xi − x(k)

i

)(
U

(k)
i − xi

)
(
U

(k)
i − xi

)2

∣∣∣∣∣∣∣
≤ τ

(
xi − x(k)

i

)2

+ 2
∣∣∣(xi − x(k)

i

)∣∣∣ (U (k)
i − xi

)
(
U

(k)
i − xi

)2

76 5 A Strictly Feasible Sequential Convex Programming Method

As ∣∣∣xi − x(k)
i

∣∣∣ < U
(k)
i − L

(k)
i , (5.117)

U
(k)
i − xi < U

(k)
i − L

(k)
i (5.118)

and

U
(k)
i − xi ≥ U

(k)
i − x

(k)
i (5.119)

holds, we get ∣∣∣∣∣∣∣τ
(
xi − x(k)

i

)2

+ 2
(
xi − x(k)

i

)(
U

(k)
i − xi

)
(
U

(k)
i − xi

)2

∣∣∣∣∣∣∣
< τ

(
U

(k)
i − L

(k)
i

)2

+ 2
(
U

(k)
i − L

(k)
i

)(
U

(k)
i − L

(k)
i

)
(
U

(k)
i − x

(k)
i

)2

(5.115)
= τ

3
(
U

(k)
i − L

(k)
i

)2

(1− ω)2
(
U

(k)
i − x

(k)
i

)2

Def. 4.1

≤ τ
3
(
U

(k)
i − L

(k)
i

)2

(1− ω)2 ξ2

≤ τ
3 (Umax − Lmin)2

(1− ω)2 ξ2
=: M

And respectively for i ∈ I(k)
−∣∣∣∣∣∣∣τ

−
(
xi − x(k)

i

)2

+ 2
(
xi − x(k)

i

)(
xi − L(k)

i

)
(
xi − L(k)

i

)2

∣∣∣∣∣∣∣
≤ τ

(
xi − x(k)

i

)2

+ 2
∣∣∣(xi − x(k)

i

)∣∣∣ (xi − L(k)
i

)
(
xi − L(k)

i

)2

As

xi − L(k)
i < U

(k)
i − L

(k)
i (5.120)

and

xi − L(k)
i ≥ x

(k)
i − L

(k)
i (5.121)

5.2 Global Convergence 77

holds, we get

∣∣∣∣∣∣∣τ
−
(
xi − x(k)

i

)2

+ 2
(
xi − x(k)

i

)(
xi − L(k)

i

)
(
xi − L(k)

i

)2

∣∣∣∣∣∣∣
< τ

(
U

(k)
i − L

(k)
i

)2

+ 2
(
U

(k)
i − L

(k)
i

)(
U

(k)
i − L

(k)
i

)
x

(k)
i − L

(k)
i

(5.116)
= τ

3
(
U

(k)
i − L

(k)
i

)2

(1− ω)2
(
x

(k)
i − L

(k)
i

)2

Def. 4.1

≤ τ
3
(
U

(k)
i − L

(k)
i

)2

(1− ω)2 ξ2

≤ τ
3 (Umax − Lmin)2

(1− ω)2 ξ2
= M

Due to Assumption 1,
∣∣∣∂f(x)
∂xi

∣∣∣ is bounded on F , i.e., there exists a M0 ≥ 0, such that∣∣∣∂f(x)
∂xi

∣∣∣ ≤ M0 holds. Together with the previous results and (5.113), we get for each

i ∈ I(k)
+

∣∣∣∣∂f (k)(x)

∂xi

∣∣∣∣ ≤
∂f
(
x(k)
)

∂xi

(
U

(k)
i − x

(k)
i

)2

(
U

(k)
i − xi

)2 +

∣∣∣∣∂h(k)(x)

∂xi

∣∣∣∣︸ ︷︷ ︸
<M

<
∂f
(
x(k)
)

∂xi

(
U

(k)
i − x

(k)
i

)2

(
U

(k)
i − x

(k)
i

)2 +M

(5.115)
=

∂f
(
x(k)
)

∂xi

(
U

(k)
i − x

(k)
i

)2

(
(1− ω)

(
U

(k)
i − x

(k)
i

))2 +M

=
∂f
(
x(k)
)

∂xi︸ ︷︷ ︸
≤M0

1

(1− ω)2 +M

≤ M0
1

(1− ω)2 +M

=: M0

78 5 A Strictly Feasible Sequential Convex Programming Method

The same can be shown for each i ∈ I(k)
− ,

∣∣∣∣∂f (k)(x)

∂xi

∣∣∣∣ ≤

∣∣∣∣∣∂f
(
x(k)
)

∂xi

∣∣∣∣∣
(
x

(k)
i − L

(k)
i

)2

(
xi − L(k)

i

)2 +

∣∣∣∣∂h(k)(x)

∂xi

∣∣∣∣︸ ︷︷ ︸
<M

<

∣∣∣∣∣∂f
(
x(k)
)

∂xi

∣∣∣∣∣
(
x

(k)
i − L

(k)
i

)2

(
x

(k)
i − L

(k)
i

)2 +M

(5.116)
=

∣∣∣∣∣∂f
(
x(k)
)

∂xi

∣∣∣∣∣
(
x

(k)
i − L

(k)
i

)2

(
(1− ω)

(
x

(k)
i − L

(k)
i

))2 +M

=

∣∣∣∣∣∂f
(
x(k)
)

∂xi

∣∣∣∣∣︸ ︷︷ ︸
≤M0

1

(1− ω)2 +M

≤ M0
1

(1− ω)2 +M

= M0

The corresponding proof for ∇c(k)
j (x), j = 1, . . . ,mc, can be given analogously with

τ = 0, i.e., ∣∣∣∣∣∂c
(k)
j (x)

∂xi

∣∣∣∣∣ ≤
∣∣∣∣∣∂cj

(
x(k)
)

∂xi

∣∣∣∣∣︸ ︷︷ ︸
≤Mj

1

(1− ω)2

≤ M j
1

(1− ω)2

=: Mj

Moreover, we need to show that the augmented Lagrangian merit function defined in
(5.73) is bounded from below. The proof including the objective function f(x) and
regular constraints cj(x), j = 1, . . . ,mc, is given in Theorem 5.3 of Zillober [97]. It
has to be extended by adding feasibility constraints ej(x), j = 1, . . . ,mf . Lemma 5.7
is needed for the main convergence Theorem 5.5.

5.2 Global Convergence 79

Lemma 5.7. Let F defined by (5.18) be nonempty and compact. Then there exists a
MΦ ∈ R such that

Φρ

(
x
y

)
≥MΦ (5.122)

holds for all x ∈ F , y ∈ Y with Y compact, (ρc)j ≥ 1, j = 1, . . . ,mc and (ρe)j ≥ 1,
j = 1, . . . ,mf .

Proof. Considering the augmented Lagrangian merit function (5.73), we obtain

Φρ

(
x
y

)
= f(x) + yTc c̃(x) +

1

2
ρTc c

2(x) + yTe ẽ(x) +
1

2
ρTe e

2(x)

= f(x) +
mc∑
j=1


(yc)j cj(x) +

(ρc)j
2

c2
j(x)︸ ︷︷ ︸

≥0

, if j ∈ Jc(x)

−
(yc)

2
j

2 (ρc)j
, if j ∈ J c(x)

+

mf∑
j=1


(ye)j ej(x) +

(ρe)j
2

e2
j(x)︸ ︷︷ ︸

≥0

, if j ∈ Je(x)

−
(ye)

2
j

2 (ρe)j
, if j ∈ Je(x)

≥ f(x) +
mc∑
j=1


(yc)j cj(x), if j ∈ Jc(x)

−
(yc)

2
j

2 (ρc)j
, if j ∈ J c(x)

+

mf∑
j=1


(ye)j ej(x), if j ∈ Je(x)

−
(ye)

2
j

2 (ρe)j
, if j ∈ Je(x)

As F is nonempty and compact, there exists min
x∈F

cj(x) ≤ 0, j = 1, . . . ,mc, min
x∈F

f(x),

and min
x∈F

ej(x) ≤ 0, j = 1, . . . ,mf , respectively. Moreover, there exists by assumption

a ymax ∈ R such that |yi| ≤ ymax, i = 1, . . . ,mc +mf .

80 5 A Strictly Feasible Sequential Convex Programming Method

Φρ

(
x
y

)
≥ min

x∈F
f(x) +

mc∑
j=1

{
ymax min

x∈F
cj(x), if j ∈ Jc(x)

−y2
max, if j ∈ J c(x)

+

mf∑
j=1

{
ymax min

x∈F
ej(x), if j ∈ Je(x)

−y2
max, if j ∈ Je(x)

= min
x∈F

f(x) + ymax

mc∑
j=1

{
min
x∈F

cj(x), if j ∈ Jc(x)

−ymax, if j ∈ J c(x)

+ ymax

mf∑
j=1

{
min
x∈F

ej(x), if j ∈ Je(x)

−ymax, if j ∈ Je(x)

≥ min
x∈F

f(x) + mc ymax min
j=1,...,mc

{
min
x∈F

cj(x),−ymax

}
+ mf ymax min

j=1,...,mf

{
min
x∈F

ej(x),−ymax

}
=: MΦ

5.2.3 Convergence Theorems

With the results of Section 5.2.2 we can prove the convergence of Algorithm 16. In
the following theorem it is shown that the primal and dual variables are bounded.
This is essential to give an estimation of the descent properties of the augmented
Lagrangian, see also Theorem 5.2. The proof is based on Theorem 5.6 of Zillober [97],
and Theorem 2.4.1 of Zillober [102], which are extended by ej(x), j = 1, . . . ,mf .

Theorem 5.1. Let the sequences
{
x(k), y(k)

}
and

{
z(k), v(k)

}
be computed by Algo-

rithm 16, where the corresponding approximations f (k)(x) and c
(k)
j (x) are defined by

(4.21) and (4.5). Moreover, let the smallest eigenvalue of AJ(k)

(
z(k)
)T
AJ(k)

(
z(k)
)

be

larger than a lower bound
(
κ(k)
)2
> 0. Let the asymptotes L

(k)
i and U

(k)
i , i = 1, . . . , n,

be feasible according to Definition 4.1 and let F defined by (5.18) be nonempty and
compact. Then all iterates x(k) are in F and the corresponding multipliers y(k) ∈
Rmc+mf are bounded, i.e., there exists a ymax ∈ R such that

∣∣∣v(k)
i

∣∣∣ ≤ ymax,
∣∣∣y(k)
i

∣∣∣ ≤
ymax, i = 1, . . . ,mc +mf , for all k ≥ 0.

Proof. We assume an infinite sequence
{
x(k), y(k)

}
. We start with a feasible point with

respect to the feasibility constraints, i.e., x(0) ∈ F . The solution z(k) of subproblem
(5.19) lies in F

(k)
X ⊆ F , see (5.11). As F is convex and x(k) ∈ F , x(k+1) ∈]x(k), z(k)] ⊆ F .

5.2 Global Convergence 81

According to Definition 2 we define the set of active constraints with respect to z(k)

by

Jc(k)
(
z(k)
)

:=
{
j = 1, . . . ,mc

∣∣∣ c(k)
j

(
z(k)
)

= 0
}

(5.123)

Je
(
z(k)
)

:=
{
j = 1, . . . ,mf

∣∣ ej (z(k)
)

= 0
}

(5.124)

Jb(k)
(
z(k)
)

:=
{
j = 1, . . . , 2n

∣∣∣ b(k)
j

(
z(k)
)

= 0
}

(5.125)

J(k) := Jc(k)
(
z(k)
)
∪ Je

(
z(k)
)
∪ Jb(k)

(
z(k)
)

(5.126)

We consider the optimality condition (5.75) of subproblem (5.19)

∇xL
(k)
(
z(k), v(k)

)
= 0

which leads to

∇f (k)
(
z(k)
)

= −Ac(k)
(
z(k)
)
v(k)
c − Ae

(
z(k)
)
v(k)
e − v(k)

u + v
(k)
l

= −
∑

j∈J
c(k)(z

(k))

(
v(k)
c

)
j
∇c(k)

j

(
z(k)
)

−
∑

j∈Je(z(k))

(
v(k)
e

)
j
∇ej

(
z(k)
)

−
∑

j∈J
b(k)(z

(k))

(
v

(k)
b

)
j
∇b(k)

j

(
z(k)
)

= −AJ(k)

(
z(k)
)
vJ(k) (5.127)

where the columns of the gradients of the active constraints c
(k)
j

(
z(k)
)
, j = 1, . . . ,mc,

ej
(
z(k)
)
, j = 1, . . . ,mf , and b

(k)
j

(
z(k)
)
, j = 1, . . . , 2n, form the n × |J(k)| matrix

AJ(k)

(
z(k)
)
∈ Rn×|J(k)|, i.e.,

AJ(k)

(
z(k)
)

:=
([
Ac(k)

(
z(k)
)]

J
c(k)(z

(k)),
[
Ae
(
z(k)
)]

Je(z(k)),
[
Ab(k)

(
z(k)
)]

J
b(k)(z

(k))

)
(5.128)

and vJ(k) are the corresponding Lagrangian multipliers, i.e.,

vJ(k) :=



[
v

(k)
c

]T
J
c(k)(z

(k))[
v

(k)
e

]T
Je(z(k))[

v
(k)
b

]T
J
b(k)(z

(k))

 ∈ R|J(k)| (5.129)

Let κ(k) ∈ R be the smallest singular value of −AJ(k)

(
z(k)
)
. Then

κ(k) := inf
w 6=0

∥∥−AJ(k)

(
z(k)
)
w
∥∥

2

‖w‖2

≤
∥∥−AJ(k)

(
z(k)
)
vJ(k)

∥∥
2∥∥vJ(k)

∥∥
2

=⇒
∥∥vJ(k)

∥∥
2
≤ 1

κ(k)

∥∥−AJ(k)

(
z(k)
)
vJ(k)

∥∥
2

(5.127)
=

1

κ(k)

∥∥∇f (k)
(
z(k)
)∥∥

2
,

82 5 A Strictly Feasible Sequential Convex Programming Method

if κ(k) 6= 0.
(
κ(k)
)2

is the smallest eigenvalue of AJ(k)

(
z(k)
)T
AJ(k)

(
z(k)
)

which is
bounded away from zero. Lemma 5.6, i.e.,∣∣∣∣∂f (k)(x)

∂xi

∣∣∣∣ < M0, i = 1, . . . , n (5.130)

implies ∥∥vJ(k)

∥∥
2
≤ 1

κ(k)

∥∥∇f (k)
(
z(k)
)∥∥

2
(5.131)

=
1

κ(k)


n∑
i=1

(
∂f (k)(z(k))

∂xi

)2

︸ ︷︷ ︸
<M2

0 , see (5.111)


1/2

(5.132)

<

√
n

κ(k)
M0 (5.133)

The same holds for v(k) as the remaining Lagrangian multipliers are equal to zero,

i.e.,
∥∥v(k)

∥∥
2
<

√
n

κ(k)
M0. We get the maximal value of the Lagrangian multipliers by

ymax := max
k

{∥∥v(k)
∥∥
∞ ,
∥∥y(k)

∥∥
∞ ,
∥∥y(0)

∥∥
∞

}
(5.134)

In terms of the unique optimal solution
(
z(k), v(k)

)
of subproblem (5.19) we define

δ(k) :=
∥∥z(k) − x(k)

∥∥
2
. (5.135)

We want to show that the resulting search direction

d(k) :=

 ∆x(k)

∆y
(k)
c

∆y
(k)
e

 (5.136)

with

∆x(k) := z(k) − x(k) (5.137)

∆y(k)
c := v(k)

c − y(k)
c (5.138)

∆y(k)
e := v(k)

e − y(k)
e (5.139)

is a descent direction for the augmented Lagrangian function Φρ

(
x
y

)
, i.e., there are

penalty parameters ρ ∈ Rmc+mf such that

∇Φρ

(
x(k)

y(k)

)T
d(k) < 0 (5.140)

holds. This leads to the following theorem, see Theorem 5.7 of Zillober [97] and The-
orem 2.4.2 of Zillober [102], respectively. Moreover, we include feasibility constraints
ej(x), j = 1, . . . ,mf .

5.2 Global Convergence 83

Theorem 5.2. Let the assumptions of Theorem 5.1 hold. Consider d(k) ∈ Rn+mc+mf

defined by (5.136) and η(k) defined by (4.30) with lower bound η > 0, see Lemma 5.5.
Let δ(k) := ‖z(k)−x(k)‖2 6= 0 hold and let the augmented Lagrangian be given by (5.73).
For each

(
x(k), y(k)

)
the following properties hold:

1. The loop consisting of Step 5 to Step 7 of Algorithm 16 is finite, i.e., there are

penalty parameters ρ(k) :=

(
ρ(k)
c

ρ(k)
e

)
> 0, ρ(k) ∈ Rmc+mf such that d(k) is a

descent direction for the augmented Lagrangian function, i.e.,

∇Φρ

(
x(k)

y(k)

)T
d(k) ≤ −

η(k)
(
δ(k)
)2

2
< 0, (5.141)

for all ρc ≥ ρ(k)
c and ρe ≥ ρ(k)

e .

2. For each δ > 0 there exists a ρδ :=

(
ρδc
ρδe

)
> 0, ρδ ∈ Rmc+mf such that for all(

x(k), y(k)
)
, with δ(k) ≥ δ,

∇Φρ

(
x(k)

y(k)

)T
d(k) ≤ −

η(k)
(
δ(k)
)2

2
< −ηδ

2

2
< 0, (5.142)

holds for all ρ ≥ ρδ.

Proof. According to Theorem 5.1, there exists an upper bound ymax ∈ R such that

ymax := max
k

{∥∥v(k)
∥∥
∞ ,
∥∥y(k)

∥∥
∞ ,
∥∥y(0)

∥∥
∞

}
(5.143)

holds.

We will start with the proof of the first part, which guarantees that we get a descent
direction, if the penalty parameters are large enough. In the second part of the theorem
it is shown, that the resulting penalty parameters are bounded for each δ(k) ≥ δ > 0.

∇Φρ

(
x(k)

y(k)

)T
d(k)

(5.74)
= ∇f

(
x(k)
)T

∆x(k) +
(
y(k)
c + Γcc

(
x(k)
))T

Ac
(
x(k)
)T

∆x(k)︸ ︷︷ ︸
=c(k)(z(k))−c(x(k))−Rc(k)(z

(k)), (5.92)

+ĉ
(
x(k)
)T

∆y(k)
c +

(
y(k)
e + Γee

(
x(k)
))T

Ae
(
x(k)
)T

∆x(k)︸ ︷︷ ︸
=e(z(k))−e(x(k))−Re(z(k)), (5.93)

+ê
(
x(k)
)T

∆y(k)
e

84 5 A Strictly Feasible Sequential Convex Programming Method

∇Φρ

(
x(k)

y(k)

)T
d(k)

(5.105)

≤ −∇Rf (k)

(
z(k)
)T

∆x(k)

−
(
v(k)
c

)T
Ac(x

(k))T∆x(k)︸ ︷︷ ︸
=c(k)(z(k))−c(x(k))−Rc(k)(z

(k)), (5.92)

−
(
v(k)
c

)T ∇Rc(k)(z
(k))T∆x(k)

+
(
v(k)
e

)T (
e
(
x(k)
)
− e

(
z(k)
))

+
(
y(k)
c + Γcc

(
x(k)
))T︸ ︷︷ ︸

≥0, Definition (5.50)

(
c(k)
(
z(k)
)
− c

(
x(k)
)
−Rc(k)

(
z(k)
))

+ĉ
(
x(k)
)T

∆y(k)
c

+
(
y(k)
e + Γee

(
x(k)
))T︸ ︷︷ ︸

≥0, Definition (5.52)

(
e
(
z(k)
)
− e

(
x(k)
)
−Re

(
z(k)
))

+ê
(
x(k)
)T

∆y(k)
e

= −∇Rf (k)

(
z(k)
)T

∆x(k)

−
(
v(k)
c

)T (
c(k)
(
z(k)
)
− c

(
x(k)
)
−Rc(k)

(
z(k)
))

−
(
v(k)
c

)T ∇Rc(k)

(
z(k)
)T

∆x(k) +
(
v(k)
e

)T (
e
(
x(k)
)
− e

(
z(k)
))

+
(
y(k)
c + Γcc

(
x(k)
))T

c(k)
(
z(k)
)︸ ︷︷ ︸

≤0

−
(
y(k)
c + Γcc

(
x(k)
))T

c
(
x(k)
)

−
(
y(k)
c + Γcc

(
x(k)
))T

Rc(k)

(
z(k)
)︸ ︷︷ ︸

≥0

+ĉ
(
x(k)
)T

∆y(k)
c

+
(
y(k)
e + Γee

(
x(k)
))T

e
(
z(k)
)︸ ︷︷ ︸

≤0

−
(
y(k)
e + Γee

(
x(k)
))T

e
(
x(k)
)

−
(
y(k)
e + Γee

(
x(k)
))T

Re

(
z(k)
)︸ ︷︷ ︸

≥0

+ê
(
x(k)
)T

∆y(k)
e

≤ −∇Rf (k)

(
z(k)
)T

∆x(k) −
(
v(k)
c

)T
c(k)
(
z(k)
)︸ ︷︷ ︸

=0, (5.76)

+
(
v(k)
c

)T
c
(
x(k)
)

+
(
v(k)
c

)T
Rc(k)

(
z(k)
)
−
(
v(k)
c

)T ∇Rc(k)

(
z(k)
)T

∆x(k)︸ ︷︷ ︸
≤0, (5.106)

+
(
v(k)
e

)T
e
(
x(k)
)
−
(
v(k)
e

)T
e
(
z(k)
)︸ ︷︷ ︸

=0, (5.77)

−
(
y(k)
c + Γcc

(
x(k)
))T

c
(
x(k)
)

+ ĉ
(
x(k)
)T

∆y(k)
c

−
(
y(k)
e + Γee

(
x(k)
))T

e
(
x(k)
)

+ ê
(
x(k)
)T

∆y(k)
e

5.2 Global Convergence 85

Using the Definitions (5.57)-(5.66) and ∆y
(k)
c := v

(k)
c − y(k)

c we get

∇Φρ

(
x(k)

y(k)

)T
d(k)

≤ −∇Rf (k)

(
z(k)
)T

∆x(k) +
∑
j∈J(k)

c

(
v(k)
c

)
j
cj
(
x(k)
)

+
∑
j∈J(k)

c

(
v(k)
c

)
j
cj
(
x(k)
)︸ ︷︷ ︸

≤0

+
∑
j∈J(k)

e

(
v(k)
e

)
j
ej
(
x(k)
)

+
∑
j∈J(k)

e

(
v(k)
e

)
j
ej
(
x(k)
)

︸ ︷︷ ︸
≤0

−
∑
j∈J(k)

c

(
y(k)
c

)
j
cj
(
x(k)
)

−
∑
j∈J(k)

c

(ρc)j c
2
j

(
x(k)
)

+
∑
j∈J(k)

c

cj
(
x(k)
) (

∆y(k)
c

)
j
−
∑
j∈J(k)

c

(
y

(k)
c

)
j

(ρc)j

(
∆y(k)

c

)
j

−
∑
j∈J(k)

e

(
y(k)
e

)
j
ej
(
x(k)
)
−
∑
j∈J(k)

e

(ρe)j e
2
j

(
x(k)
)

+
∑
j∈J(k)

e

ej
(
x(k)
) (

∆y(k)
e

)
j
−
∑
j∈J(k)

e

(
y

(k)
e

)
j

(ρe)j

(
∆y(k)

e

)
j

≤ −∇Rf (k)

(
z(k)
)T

∆x(k) +
∑
j∈J(k)

c

(
v(k)
c

)
j
cj
(
x(k)
)
−
∑
j∈J(k)

c

(
y(k)
c

)
j
cj
(
x(k)
)

︸ ︷︷ ︸
=

∑
j∈J(k)

c

cj(x(k))
(

∆y
(k)
c

)
j

−
∑
j∈J(k)

c

(ρc)j c
2
j

(
x(k)
)

+
∑
j∈J(k)

c

cj
(
x(k)
) (

∆y(k)
c

)
j

(5.144)

−
∑
j∈J(k)

c

(
y

(k)
c

)
j

(ρc)j

(
∆y(k)

c

)
j

+
∑
j∈J(k)

e

(
v(k)
e

)
j
ej
(
x(k)
)

︸ ︷︷ ︸
≤0

−
∑
j∈J(k)

e

(
y(k)
e

)
j
ej
(
x(k)
)

−
∑
j∈J(k)

e

(ρe)j e
2
j

(
x(k)
)︸ ︷︷ ︸

≥0

+
∑
j∈J(k)

e

ej
(
x(k)
) (

∆y(k)
e

)
j
−
∑
j∈J(k)

e

(
y

(k)
e

)
j

(ρe)j

(
∆y(k)

e

)
j

86 5 A Strictly Feasible Sequential Convex Programming Method

All together this leads to

∇Φρ

(
x(k)

y(k)

)T
d(k) ≤ −∇Rf (k)

(
z(k)
)T

∆x(k)︸ ︷︷ ︸
(a)

+
∑
j∈J(k)

c

2cj
(
x(k)
) (

∆y(k)
c

)
j
−
∑
j∈J(k)

c

(ρc)j c
2
j

(
x(k)
)

︸ ︷︷ ︸
(b)

−
∑
j∈J(k)

c

(
y

(k)
c

)
j

(ρc)j

(
∆y(k)

c

)
j︸ ︷︷ ︸

(c)

−
∑
j∈J(k)

e

(
y(k)
e

)
j
ej
(
x(k)
)

︸ ︷︷ ︸
(d)

+
∑
j∈J(k)

e

ej
(
x(k)
) (

∆y(k)
e

)
j︸ ︷︷ ︸

(e)

−
∑
j∈J(k)

e

(
y

(k)
e

)
j

(ρe)j

(
∆y(k)

e

)
j︸ ︷︷ ︸

(f)

(5.145)

We now have to show that (5.145) is less than −η(k)(δ(k))
2

2
. Therefore, we consider each

part individually.

Considering (a):
Using (5.101) we get:

∇Rf (k)

(
z(k)
)T

∆x(k)

=
∑
I
(k)
+

[
∂f
(
x(k)
)

∂xi
+ τ

]
(
z

(k)
i − x

(k)
i

)2 (
2U

(k)
i − z

(k)
i − x

(k)
i

)
(
U

(k)
i − z

(k)
i

)2

 (5.146)

−
∑
I
(k)
−

[
∂f
(
x(k)
)

∂xi
− τ

]
(
z

(k)
i − x

(k)
i

)2 (
−2L

(k)
i + z

(k)
i + x

(k)
i

)
(
z

(k)
i − L

(k)
i

)2


(4.30)
=

∑
I
(k)
+

η
(k)
i

(
z

(k)
i − x

(k)
i

)2

+
∑
I
(k)
−

η
(k)
i

(
z

(k)
i − x

(k)
i

)2

Together with Definition η(k) := min
i=1,...,n

η
(k)
i given in (4.31) we get

−∇Rf (k)

(
z(k)
)T

∆x(k) ≤ −η(k)
∥∥∆x(k)

∥∥2

2
= −η(k)

(
δ(k)
)2
< 0 (5.147)

5.2 Global Convergence 87

Considering (b):

As 0 ≤
(
v

(k)
c

)
j
≤ ymax and 0 ≤

(
y

(k)
c

)
j
≤ ymax,

∣∣∣∆ (y(k)
c

)
j

∣∣∣ =
∣∣∣(v(k)

c

)
j
−
(
y(k)
c

)
j

∣∣∣ ≤ ymax (5.148)

holds. This leads to∑
j∈J(k)

c

[
2cj
(
x(k)
) (

∆y(k)
c

)
j
− (ρc)j c

2
j

(
x(k)
)]

≤
∑
j∈J(k)

c

2
∣∣cj (x(k)

)∣∣ ∣∣∣(∆y(k)
c

)
j

∣∣∣︸ ︷︷ ︸
≤ymax, (5.148)

− (ρc)j c
2
j

(
x(k)
)

≤
∑
j∈J(k)

c

[
2
∣∣cj (x(k)

)∣∣ ymax − (ρc)j c
2
j

(
x(k)
)]

(5.149)

In the case of cj
(
x(k)
)

= 0, the corresponding term of (b) is equal to zero. We define

Z(k)
c :=

{
j ∈ J (k)

c

∣∣ cj (x(k)
)

= 0
}
. (5.150)

To ensure property (5.141), we assume that the penalty parameters (ρc)j , j ∈ J
(k)
c \Z(k)

c

are larger than
(
ρ

(k)
1

)
j
, j ∈ J (k)

c given by

(
ρ

(k)
1

)
j

:=
2ymax

|cj (x(k))|
, i.e.,

(
ρ

(k)
1

)
j
≤ (ρc)j , ∀j ∈ J

(k)
c \Z(k)

c . (5.151)

With (5.151) in (5.149) we get

∑
j∈J(k)

c

[
2cj
(
x(k)
) (

∆y(k)
c

)
j
− (ρc)j c

2
j

(
x(k)
)]

=
∑

j∈J(k)
c \Z

(k)
c

[
2cj
(
x(k)
) (

∆y(k)
c

)
j
− (ρc)j c

2
j

(
x(k)
)]

+
∑
j∈Z(k)

c

[
2cj
(
x(k)
) (

∆y(k)
c

)
j
− (ρc)j c

2
j

(
x(k)
)]

︸ ︷︷ ︸
=0

≤
∑

j∈J(k)
c \Z

(k)
c

[
2
∣∣cj (x(k)

)∣∣ ymax − (ρc)j c
2
j

(
x(k)
)]

88 5 A Strictly Feasible Sequential Convex Programming Method

∑
j∈J(k)

c

[
2cj
(
x(k)
) (

∆y(k)
c

)
j
− (ρc)j c

2
j

(
x(k)
)]

≤
∑

j∈J(k)
c \Z

(k)
c

[
2
∣∣cj (x(k)

)∣∣ ymax −
(
ρ

(k)
1

)
j
c2
j

(
x(k)
)]

=
∑

j∈J(k)
c \Z

(k)
c

[
2
∣∣cj (x(k)

)∣∣ ymax −
2ymax

|cj (x(k))|
c2
j

(
x(k)
)]

=
∑

j∈J(k)
c \Z

(k)
c

[
2
∣∣cj (x(k)

)∣∣ ymax − 2ymax

∣∣cj (x(k)
)∣∣]

= 0

In total we get ∑
j∈J(k)

c

[
2cj
(
x(k)
) (

∆y(k)
c

)
j
− (ρc)j c

2
j

(
x(k)
)]
≤ 0 (5.152)

for each (ρc)j ≥ ρ
(k)
1 := max

j∈J(k)
c \Z

(k)
c

{
2ymax

|cj(x(k))|

}
.

Considering (c):
The term contains the inactive inequality constraints with respect to the augmented
Lagrangian function. We get∣∣∣∣∣∣∣

∑
j∈J(k)

c

(
y

(k)
c

)
j

(ρc)j

(
∆y(k)

c

)
j

∣∣∣∣∣∣∣ ≤
∑
j∈J(k)

c

(
y

(k)
c

)
j

(ρc)j

∣∣∣(v(k)
c

)
j
−
(
y(k)
c

)
j

∣∣∣︸ ︷︷ ︸
≤ymax, (5.148)

≤ ymax

∑
j∈J(k)

c

(
y

(k)
c

)
j

(ρc)j

≤ (ymax)2
∑
j∈J(k)

c

1

(ρc)j

This can be summarized by∣∣∣∣∣∣∣
∑
j∈J(k)

c

(
y

(k)
c

)
j

(ρc)j

(
∆y(k)

c

)
j

∣∣∣∣∣∣∣ ≤ (ymax)2
∑
j∈J(k)

c

1

(ρc)j
. (5.153)

To ensure property (5.141), we assume that the penalty parameters (ρc)j , j ∈ J
(k)

c

are larger than ρ
(k)
2 given by:

ρ
(k)
2 := mc

10 (ymax)2

η(k) (δ(k))
2 , i.e., ρ

(k)
2 ≤ (ρc)j , j ∈ J

(k)

c . (5.154)

5.2 Global Convergence 89

Using (5.153) and the definition of ρ
(k)
2 in (5.154) we get∣∣∣∣∣∣∣

∑
j∈J(k)

c

(
y

(k)
c

)
j

(ρc)j

(
∆y(k)

c

)
j

∣∣∣∣∣∣∣ ≤ (ymax)2
∑
j∈J(k)

c

1

(ρc)j

≤ (ymax)2
∑
j∈J(k)

c

1

ρ
(k)
2

≤ mc (ymax)2

ρ
(k)
2

=
mc (ymax)2 η(k)

(
δ(k)
)2

10mc (ymax)2

=
η(k)

(
δ(k)
)2

10

As result we get ∣∣∣∣∣∣∣
∑
j∈J(k)

c

(
y

(k)
c

)
j

(ρc)j

(
∆y(k)

c

)
j

∣∣∣∣∣∣∣ ≤
η(k)

(
δ(k)
)2

10
, (5.155)

for each (ρc)j ≥ ρ
(k)
2 , j ∈ J (k)

c .

Considering the feasibility constraints we can exploit the fact, that each iterate is
feasible, i.e., the following inequalities hold

ej
(
x(k)
)
≤ 0, j = 1, . . . ,mf (5.156)

ej
(
z(k)
)
≤ 0, j = 1, . . . ,mf (5.157)

Considering (d):

Due to (5.52) we get for each j ∈ J (k)
e

0 ≥ ej
(
x(k)
)
≥
−
(
y

(k)
e

)
j

(ρe)j(
y

(k)
e

)
j

(ρe)j
≥ −ej

(
x(k)
)

=
∣∣ej (x(k)

)∣∣

90 5 A Strictly Feasible Sequential Convex Programming Method

This leads to ∣∣∣∣∣∣
∑
j∈J(k)

e

(
y(k)
e

)
j
ej
(
x(k)
)∣∣∣∣∣∣ ≤ ymax

∑
j∈J(k)

e

∣∣ej (x(k)
)∣∣

≤ ymax

∑
j∈J(k)

e

(
y

(k)
e

)
j

(ρe)j

≤ (ymax)2
∑
j∈J(k)

e

1

(ρe)j

To ensure property (5.141), we assume that the penalty parameters (ρe)j , j ∈ J
(k)
e

are larger than ρ
(k)
3 given by:

ρ
(k)
3 := mf

10 (ymax)2

η(k) (δ(k))
2 , i.e., ρ

(k)
3 ≤ (ρe)j , j ∈ J

(k)
e (5.158)

which leads to ∣∣∣∣∣∣
∑
j∈J(k)

e

(
y(k)
e

)
j
ej
(
x(k)
)∣∣∣∣∣∣ ≤ (ymax)2

∑
j∈J(k)

e

1

(ρe)j

≤ (ymax)2
∑
j∈J(k)

e

1

ρ
(k)
3

≤ (ymax)2mf
1

ρ
(k)
3

= (ymax)2mf

η(k)
(
δ(k)
)2

10mf (ymax)2

=
η(k)

(
δ(k)
)2

10

As result we get ∣∣∣∣∣∣
∑
j∈J(k)

e

(
y(k)
e

)
j
ej
(
x(k)
)∣∣∣∣∣∣ ≤ η(k)

(
δ(k)
)2

10
(5.159)

for each (ρe)j ≥ ρ
(k)
3 , j ∈ J (k)

e .

5.2 Global Convergence 91

Considering (e):
Analogue to (d) we can show that∣∣∣∣∣∣

∑
j∈J(k)

e

ej
(
x(k)
) (

∆y(k)
e

)
j

∣∣∣∣∣∣ ≤
∑
j∈J(k)

e

∣∣ej (x(k)
)∣∣ ∣∣∣(∆y(k)

e

)
j

∣∣∣
≤ ymax

∑
j∈J(k)

e

∣∣ej (x(k)
)∣∣

≤ ymax

∑
j∈J(k)

e

(
y

(k)
e

)
j

(ρe)j

≤ (ymax)2
∑
j∈J(k)

e

1

(ρe)j

To ensure property (5.141), we assume that the penalty parameters (ρe)j , j ∈ J
(k)
e

are larger than ρ
(k)
3 given by (5.158) which leads to∣∣∣∣∣∣
∑
j∈J(k)

e

(
y(k)
e

)
j
ej
(
x(k)
)∣∣∣∣∣∣ ≤ (ymax)2

∑
j∈J(k)

e

1

(ρe)j

≤ (ymax)2
∑
j∈J(k)

e

1

ρ
(k)
3

≤ (ymax)2mf
1

ρ
(k)
3

= (ymax)2mf

η(k)
(
δ(k)
)2

10mf (ymax)2

=
η(k)

(
δ(k)
)2

10

As result we get ∣∣∣∣∣∣
∑
j∈J(k)

e

(
y(k)
e

)
j
ej
(
x(k)
)∣∣∣∣∣∣ ≤ η(k)

(
δ(k)
)2

10
(5.160)

for each (ρe)j ≥ ρ
(k)
3 , j ∈ J (k)

e .

92 5 A Strictly Feasible Sequential Convex Programming Method

Considering (f):
It can be shown analogously to (c) that∣∣∣∣∣∣∣

∑
j∈J(k)

e

(
y

(k)
e

)
j

(ρe)j

(
∆y(k)

e

)
j

∣∣∣∣∣∣∣ ≤
η(k)

(
δ(k)
)2

10
(5.161)

for

(ρe)j ≥ ρ
(k)
3 := mf

10 (ymax)2

η(k) (δ(k))
2 , j ∈ J

(k)

e . (5.162)

Proceeding from (5.145) we can summarize previous calculations as follows:

∇Φρ

(
x(k)

y(k)

)T
d(k)

≤ −∇Rf (k)

(
z(k)
)T

∆x(k)︸ ︷︷ ︸
≤−η(k)(δ(k))

2
, (5.147)

+
∑
j∈J(k)

c

2cj
(
x(k)
) (

∆y(k)
c

)
j
−
∑
j∈J(k)

c

(ρc)j c
2
j

(
x(k)
)

︸ ︷︷ ︸
≤0, (5.152)

−
∑
j∈J(k)

c

(
y

(k)
c

)
j

(ρc)j

(
∆y(k)

c

)
j︸ ︷︷ ︸

≤
η(k)(δ(k))

2

10
, (5.155)

−
∑
j∈J(k)

e

(
y(k)
e

)
j
ej
(
x(k)
)

︸ ︷︷ ︸
≤
η(k)(δ(k))

2

10
, (5.159)

+
∑
j∈J(k)

e

ej
(
x(k)
) (

∆y(k)
e

)
j︸ ︷︷ ︸

≤
η(k)(δ(k))

2

10
, (5.160)

−
∑
j∈J(k)

e

(
y

(k)
e

)
j

(ρe)j

(
∆y(k)

e

)
j︸ ︷︷ ︸

≤
η(k)(δ(k))

2

10
, (5.161)

≤ −η(k)
(
δ(k)
)2

+ 0 +
η(k)

(
δ(k)
)2

10
+
η(k)

(
δ(k)
)2

10

+
η(k)

(
δ(k)
)2

10
+
η(k)

(
δ(k)
)2

10

< −
η(k)

(
δ(k)
)2

2
< 0

for (ρc)j ≥ ρ(k)
c with ρ(k)

c := max{ρ(k)
1 , ρ

(k)
2 },∀j = 1, . . . ,mc, and (ρe)j ≥ ρ(k)

e with

ρ(k)
e := ρ

(k)
3 ,∀j = 1, . . . ,mf .

5.2 Global Convergence 93

In the second part of the theorem we have to show that the resulting penalty pa-
rameters are bounded, if δ(k) ≥ δ. We have already shown that we get a descent
direction, if the penalty parameters are larger than

(ρc)j ≥ ρ
(k)
1 = max

j∈J(k)
c \Z

(k)
c

{
2ymax

|cj (x(k))|

}
, ∀ j = 1, . . . ,mc, (5.163)

(ρc)j ≥ ρ
(k)
2 = mc

10 (ymax)2

η(k) (δ(k))
2 , ∀ j = 1, . . . ,mc, (5.164)

(ρe)j ≥ ρ
(k)
3 = mf

10 (ymax)2

η(k) (δ(k))
2 , ∀ j = 1, . . . ,mf . (5.165)

As proved in Theorem 5.1 the Lagrangian multipliers are bounded by ymax. Moreover,
δ(k) is bounded away from zero due to δ(k) ≥ δ > 0. In Lemma 5.5 the lower bound
on η(k) > η > 0 is identified. In addition, the number of inequality constraints mc and
mf is finite. As a consequence the values of ρ

(k)
2 and ρ

(k)
3 are bounded. Therefore, we

only have to consider penalty parameter ρ
(k)
1 which depends on cj(x

(k)), j ∈ J (k)
c .

We consider (b) and ρ
(k)
1 :

This proof is divided into two cases. First we assume that the absolute value of each
constraint of J

(k)
c is bounded by 1

mc

ηδ2

20ymax
. In the second case we assume that it exceeds

this threshold. Let for each j ∈ J (k)
c∣∣cj (x(k)

)∣∣ ≤ 1

mc

ηδ2

20ymax

(5.166)

hold with η > 0, see (5.107). According to (5.149) we get for each j ∈ J (k)
c

2cj
(
x(k)
) (

∆y(k)
c

)
j
− (ρc)j c

2
j

(
x(k)
)
≤ 2

∣∣cj (x(k)
)∣∣ ymax − (ρc)j c

2
j

(
x(k)
)︸ ︷︷ ︸

≥0

≤ 2
∣∣cj (x(k)

)∣∣ ymax

Assuming (5.166) we get

2cj
(
x(k)
) (

∆y(k)
c

)
j
− (ρc)j c

2
j

(
x(k)
)
≤ 2

∣∣cj (x(k)
)∣∣︸ ︷︷ ︸

≤ ηδ2

20mcymax
, see (5.166)

ymax

≤ 2
ηδ2

20mcymax

ymax

=
ηδ2

10mc

,

Considering all constraints cj(x), j ∈ J (k)
c , we obtain∑

j∈J(k)
c

[
2cj
(
x(k)
) (

∆y(k)
c

)
j
− (ρc)j c

2
j

(
x(k)
)]
≤ ηδ2

10
. (5.167)

94 5 A Strictly Feasible Sequential Convex Programming Method

In addition, we have to show that the penalty parameter is bounded, if∣∣cj (x(k)
)∣∣ >

1

mc

ηδ2

20ymax

(5.168)

holds for j ∈ J (k)
c . To ensure property (5.142), we assume that the penalty parameters

(ρc)j , j ∈ J
(k)
c are larger than ρ4 given by:

(ρc)j ≥ ρ4 with ρ4 :=
40mc (ymax)2

ηδ2
, j ∈ J (k)

c . (5.169)

Using (5.169) we get:

2cj
(
x(k)
) (

∆y(k)
c

)
j
− (ρc)j c

2
j

(
x(k)
)

≤ 2
∣∣cj (x(k)

)∣∣ ymax − (ρc)j︸︷︷︸
≥ρ4

c2
j

(
x(k)
)

≤ 2
∣∣cj (x(k)

)∣∣ ymax − ρ4c
2
j

(
x(k)
)

(5.169)
= 2

∣∣cj (x(k)
)∣∣ ymax −

40mc (ymax)2

ηδ2
c2
j

(
x(k)
)

=
∣∣cj (x(k)

)∣∣
2ymax −

40mc (ymax)2

ηδ2

∣∣cj (x(k)
)∣∣︸ ︷︷ ︸

> 1
mc

ηδ2

20ymax


<

∣∣cj (x(k)
)∣∣(2ymax −

40mc (ymax)2

ηδ2

ηδ2

20mcymax

)
=

∣∣cj (x(k)
)∣∣ (2ymax − 2ymax)

= 0.

which shows that

2cj
(
x(k)
) (

∆y(k)
c

)
j
− (ρc)j c

2
j

(
x(k)
)

< 0 (5.170)

holds for all
∣∣cj (x(k)

)∣∣ > 1
mc

ηδ2

20ymax
and (ρc)j ≥ ρ4.

Combining (5.167) and (5.170) leads to∑
j∈J(k)

c

2cj
(
x(k)
) (

∆y(k)
c

)
j
− (ρc)j c

2
j

(
x(k)
)
≤ ηδ2

10
, ∀ (ρc)j ≥ ρ4 (5.171)

Together we get

∇Φρ

(
x(k)

y(k)

)T
d(k) < −ηδ2 +

ηδ2

10
+
ηδ2

10
+
ηδ2

10
+
ηδ2

10
+
ηδ2

10

= −ηδ
2

2
< 0

5.2 Global Convergence 95

for (ρc)j ≥ ρδc := max{ρ4, ρ5} = ρ4,∀ j = 1, . . . ,mc, and (ρe)j ≥ ρδe := ρ6, for all
j = 1, . . . ,mf , with

ρ4 := mc
40 (ymax)2

ηδ2
, ∀ j = 1, . . . ,mc (5.172)

ρ5 := mc
10 (ymax)2

ηδ2
, ∀ j = 1, . . . ,mc (5.173)

ρ6 := mf
10 (ymax)2

ηδ2
, ∀ j = 1, . . . ,mf (5.174)

In the next theorem we show that the penalty parameters are bounded, even if we are
in the neighborhood of a stationary point. The proof of Zillober [97, 102], see Theorem
5.9 and 2.4.3, respectively, is extended by feasibility constraints cj(x), j = 1, . . . ,mf .

Moreover, we omit the assumption
(
y

(k)
c

)
j

= 0 for all j ∈ J (k)

c and
(
y

(k)
e

)
j

= 0 for all

j ∈ J (k)

e .

Theorem 5.3. Let the assumptions of Theorem 5.1 hold. Consider d(k) ∈ Rn+mc+mf

defined by (5.136) and η(k) defined by (4.30) with lower bound η > 0, see Lemma 5.5.
Let δ(k) := ‖z(k)−x(k)‖2 6= 0 hold and let the augmented Lagrangian function be given
by (5.73). We denote

ϑ(k)
c :=

∥∥∥v(k)
c − y(k)

c

∥∥∥2

(δ(k))
2 , (5.175)

ϑ(k)
e :=

∥∥∥v(k)
e − y(k)

e

∥∥∥2

(δ(k))
2 . (5.176)

Let the sequences
{
x(k), y(k)

}
and

{
z(k), v(k)

}
fulfill the following conditions:

1. j ∈ J (k)
c , if and only if c

(k)
j

(
z(k)
)

= 0, j = 1, . . . ,mc.

2. j ∈ J (k)
e , if and only if ej

(
z(k)
)

= 0, j = 1, . . . ,mf .

3. There exists a ϑ ∈ R, such that ϑ
(k)
c ≤ ϑ and ϑ

(k)
e ≤ ϑ.

Then there exists a δr ∈ R+, such that

∇Φρ

(
x(k)

y(k)

)T
d(k) < −

η
(
δ(k)
)2

2
< 0 (5.177)

96 5 A Strictly Feasible Sequential Convex Programming Method

holds for all
(
x(k), y(k)

)
, δ(k) ≤ δr, ρ ≥ ρr, with ρr :=

(
ρrc
ρre

)
, ρrc ∈ Rmc, ρre ∈ Rmf ,

and

min
j=1,...,mc+mf

(ρr)j ≥
4ϑ

η
. (5.178)

Proof. Due to the first assumption and the complementary conditions (5.76) and

(5.77) we know that
(
v

(k)
c

)
j

= 0 for all j ∈ J (k)

c and
(
v

(k)
e

)
j

= 0 for all j ∈ J (k)

e . We

define

v(k)
c :=

((
v(k)
c

)
1
, . . . ,

(
v(k)
c

)
mc

)T
with

(
v(k)
c

)
j

:=

 0, if j ∈ J (k)
c(

v
(k)
c

)
j
, otherwise

(5.179)

v(k)
e :=

((
v(k)
e

)
1
, . . . ,

(
v(k)
e

)
mf

)T
with

(
v(k)
e

)
j

:=

 0, if j ∈ J (k)
e(

v
(k)
e

)
j
, otherwise

(5.180)

y(k)

c
:=

((
y(k)

c

)
1
, . . . ,

(
y(k)

c

)
mc

)T
with

(
y(k)

c

)
j

:=

 0, if j ∈ J (k)
c(

y
(k)
c

)
j
, otherwise

(5.181)

y(k)

e
:=

((
y(k)

e

)
1
, . . . ,

(
y(k)

e

)
mf

)T
with

(
y(k)

e

)
j

:=

 0, if j ∈ J (k)
e(

y
(k)
e

)
j
, otherwise

(5.182)

We proceed from (5.144)

∇Φρ

(
x(k)

y(k)

)T
d(k)

≤ −∇Rf (k)

(
z(k)
)T

∆x(k) +
∑
j∈J(k)

c

(
v(k)
c

)
j
cj
(
x(k)
)
−
∑
j∈J(k)

c

(
y(k)
c

)
j
cj
(
x(k)
)

︸ ︷︷ ︸
=

∑
j∈J(k)

c

cj(x(k))
(

∆y
(k)
c

)
j

−
∑
j∈J(k)

c

(ρc)j c
2
j

(
x(k)
)

+
∑
j∈J(k)

c

cj
(
x(k)
) (

∆y(k)
c

)
j

−
∑
j∈J(k)

c

(
y

(k)
c

)
j

(ρc)j

(
∆y(k)

c

)
j︸ ︷︷ ︸

=
(
v
(k)
c −y

(k)
c

)
j

+
∑
j∈J(k)

e

(
v(k)
e

)
j
ej
(
x(k)
)
−
∑
j∈J(k)

e

(
y(k)
e

)
j
ej
(
x(k)
)

︸ ︷︷ ︸
=

∑
j∈J(k)

e

ej(x(k))
(
v
(k)
e −y

(k)
e

)
j

−
∑
j∈J(k)

e

(ρe)j e
2
j

(
x(k)
)

+
∑
j∈J(k)

e

ej
(
x(k)
) (

∆y(k)
e

)
j︸ ︷︷ ︸

=
(
v
(k)
e −y

(k)
e

)
j

−
∑
j∈J(k)

e

(
y

(k)
e

)
j

(ρe)j

(
∆y(k)

e

)
j︸ ︷︷ ︸

=
(
v
(k)
e −y

(k)
e

)
j

5.2 Global Convergence 97

∇Φρ

(
x(k)

y(k)

)T
d(k)

≤ −∇Rf (k)

(
z(k)
)T

∆x(k)︸ ︷︷ ︸
≤−η(k)(δ(k))

2
<−η(δ(k))

2
, (5.147)

+
∑
j∈J(k)

c

2cj
(
x(k)
) (

∆y(k)
c

)
j︸ ︷︷ ︸

=2c(x(k))
T
(
v
(k)
c −y

(k)
c

)
, (5.61), (5.59)

−
∑
j∈J(k)

c

(ρc)j c
2
j

(
x(k)
)

︸ ︷︷ ︸
=c(x(k))

T
Γcc(x(k)), (5.61), (5.60)

−
∑
j∈J(k)

c

(
y

(k)
c

)
j

(
v

(k)
c

)
j

(ρc)j︸ ︷︷ ︸
=0

+
∑
j∈J(k)

c

(
y

(k)
c

)2

j

(ρc)j

+
∑
j∈J(k)

e

2ej
(
x(k)
) (

∆y(k)
e

)
j︸ ︷︷ ︸

=2e(x(k))
T
(
v
(k)
e −y

(k)
e

)
, (5.62)

−
∑
j∈J(k)

e

(ρe)j e
2
j

(
x(k)
)

︸ ︷︷ ︸
=e(x(k))

T
Γee(x(k)), (5.62)

−
∑
j∈J(k)

e

(
y

(k)
e

)
j

(
v

(k)
e

)
j

(ρe)j︸ ︷︷ ︸
=0

+
∑
j∈J(k)

e

(
y

(k)
e

)2

j

(ρe)j

Due to assumption,
(
v

(k)
c

)
j

= 0 holds for all j ∈ J (k)

c and
(
v

(k)
e

)
j

= 0 holds for all

j ∈ J (k)

e . Using

∥∥Γ1/2
c c

(
x(k)
)
− Γ−1/2

c

(
v(k)
c − y(k)

c

)∥∥2
= c

(
x(k)
)T

Γcc
(
x(k)
)

+
(
v(k)
c − y(k)

c

)T
Γ−1
c

(
v(k)
c − y(k)

c

)
−2c

(
x(k)
)T (

v(k)
c − y(k)

c

)

we get

2c
(
x(k)
)T (

v(k)
c − y(k)

c

)
− c

(
x(k)
)T

Γcc
(
x(k)
)

(5.183)

= −
∥∥Γ1/2

c c
(
x(k)
)
− Γ−1/2

c

(
v(k)
c − y(k)

c

)∥∥2
+
(
v(k)
c − y(k)

c

)T
Γ−1
c

(
v(k)
c − y(k)

c

)
The same holds for the constraints ej(x), j = 1, . . . ,mf , i.e.,

2e
(
x(k)
)T (

v(k)
e − y(k)

e

)
− e

(
x(k)
)T

Γee
(
x(k)
)

(5.184)

= −
∥∥Γ1/2

e e
(
x(k)
)
− Γ−1/2

e

(
v(k)
e − y(k)

e

)∥∥2
+
(
v(k)
e − y(k)

e

)T
Γ−1
e

(
v(k)
e − y(k)

e

)

98 5 A Strictly Feasible Sequential Convex Programming Method

All together this leads to

∇Φρ

(
x(k)

y(k)

)T
d(k)

< −η
(
δ(k)
)2

+ 2c
(
x(k)
)T (

v(k)
c − y(k)

c

)
− c

(
x(k)
)T

Γcc
(
x(k)
)︸ ︷︷ ︸

=−
∥∥∥Γ

1/2
c c(x(k))−Γ

−1/2
c

(
v
(k)
c −y

(k)
c

)∥∥∥2+
(
v
(k)
c −y

(k)
c

)T
Γ−1
c

(
v
(k)
c −y

(k)
c

)
, (5.183)

+
∑
j∈J(k)

c

(
y

(k)
c

)2

j

(ρc)j︸ ︷︷ ︸
=

(v(k)c −y(k)c)
2

j
(ρc)j

,
(
v
(k)
c

)
j
=0

+ 2e
(
x(k)
)T (

v(k)
e − y(k)

e

)
− e

(
x(k)
)T

Γee
(
x(k)
)︸ ︷︷ ︸

=−
∥∥∥Γ

1/2
e e(x(k))−Γ

−1/2
e

(
v
(k)
e −y

(k)
e

)∥∥∥2+
(
v
(k)
e −y

(k)
e

)T
Γ−1
e

(
v
(k)
e −y

(k)
e

)
, (5.184)

+
∑
j∈J(k)

e

(
y

(k)
e

)2

j

(ρe)j︸ ︷︷ ︸
=

(v(k)e −y(k)e)
2

j
(ρe)j

,
(
v
(k)
e

)
j
=0

= −η
(
δ(k)
)2 −

∥∥Γ1/2
c c

(
x(k)
)
− Γ−1/2

c

(
v(k)
c − y(k)

c

)∥∥2︸ ︷︷ ︸
≥0

+
(
v(k)
c − y(k)

c

)T
Γ−1
c

(
v(k)
c − y(k)

c

)
+

∑
j∈J(k)

c

(
v

(k)
c − y(k)

c

)2

j

(ρc)j︸ ︷︷ ︸
=
(
v
(k)
c −y(k)c

)T
Γ−1
c

(
v
(k)
c −y(k)c

)
−
∥∥Γ1/2

e e
(
x(k)
)
− Γ−1/2

e

(
v(k)
e − y(k)

e

)∥∥2︸ ︷︷ ︸
≥0

+
(
v(k)
e − y(k)

e

)T
Γ−1
e

(
v(k)
e − y(k)

e

)
+

∑
j∈J(k)

e

(
v

(k)
e − y(k)

e

)2

j

(ρe)j︸ ︷︷ ︸
=
(
v
(k)
e −y(k)e

)T
Γ−1
e

(
v
(k)
e −y(k)e

)

5.2 Global Convergence 99

∇Φρ

(
x(k)

y(k)

)T
d(k)

< −η
(
δ(k)
)2

+
(
v(k)
c − y(k)

c

)T
Γ−1
c

(
v(k)
c − y(k)

c

)
+
(
v(k)
c − y(k)

c

)T
Γ−1
c

(
v(k)
c − y(k)

c

)
︸ ︷︷ ︸

=
(
v
(k)
c −y

(k)
c

)T
Γ−1
c

(
v
(k)
c −y

(k)
c

)
, (5.57),(5.59),(5.179) and (5.181)

+
(
v(k)
e − y(k)

e

)T
Γ−1
e

(
v(k)
e − y(k)

e

)
+
(
v(k)
e − y(k)

e

)T
Γ−1
e

(
v(k)
e − y(k)

e

)
︸ ︷︷ ︸

=
(
v
(k)
e −y

(k)
e

)T
Γ−1
e

(
v
(k)
e −y

(k)
e

)
, (5.58),(5.60),(5.180) and (5.182)

= −η
(
δ(k)
)2

+
(
v(k)
c − y(k)

c

)T
Γ−1
c

(
v(k)
c − y(k)

c

)
+
(
v(k)
e − y(k)

e

)T
Γ−1
e

(
v(k)
e − y(k)

e

)
≤ −η

(
δ(k)
)2

+
∥∥Γ−1

c

∥∥ ∥∥v(k)
c − y(k)

c

∥∥2︸ ︷︷ ︸
=ϑ

(k)
c (δ(k))

2
, (5.175)

+
∥∥Γ−1

e

∥∥ ∥∥v(k)
e − y(k)

e

∥∥2︸ ︷︷ ︸
=ϑ

(k)
e (δ(k))

2
, (5.176)

= −η
(
δ(k)
)2

+
∥∥Γ−1

c

∥∥︸ ︷︷ ︸
≤ η

4ϑ
, (5.178)

ϑ(k)
c

(
δ(k)
)2︸ ︷︷ ︸

≤ϑ(δ(k))
2

+
∥∥Γ−1

e

∥∥︸ ︷︷ ︸
≤ η

4ϑ
, (5.178)

ϑ(k)
e

(
δ(k)
)2︸ ︷︷ ︸

≤ϑ(δ(k))
2

≤ −η
(
δ(k)
)2

+
1

4
η
(
δ(k)
)2

+
1

4
η
(
δ(k)
)2

= −1

2
η
(
δ(k)
)2

The first and the second assumption ensure that the set of active constraints is iden-
tical for the subproblem and the original problem. Close to a stationary point, this
is no restriction. The third assumption requires that the ratio of the change in the
dual variables and in the primal variables is bounded, i.e., if the change in the primal
variables is small the same holds for the dual variables. This cannot be guaranteed in
practice.

As a consequence of Theorem 5.2 and Theorem 5.3, there exists a penalty parame-
ter ρr ∈ Rmc+mf such that a descent in the augmented Lagrangian function is ob-
tained without increasing the penalty parameters. The penalty update presented in
Algorithm 13 ensures that ρr is reached. Thereafter the penalty parameters are not
adapted anymore. These results are summarized in the next corollary, see Zillober [102]
Corollary 2.4.4 and Zillober [97] Corollary 5.10.

Corollary 5.1. Let the sequence
{
x(k), y(k)

}
be computed by Algorithm 16. Let the

assumptions of Theorem 5.2 and Theorem 5.3 be valid. Then the sequence of penalty
parameter vectors is bounded, i.e., there exists a ρr ∈ Rmc+mf such that ρ(k) ≤ ρr for
all k = 0, 1, As a consequence there exists a k ∈ N such that ρ(k) = ρr for all
k ≥ k ≥ 0.

100 5 A Strictly Feasible Sequential Convex Programming Method

To prove the main convergence Theorem 5.5, it is essential to show that there exist a
subsequence with

∥∥∆x(k)
∥∥ ≤ ε, see Schittkowski [73].

Theorem 5.4. Let the assumptions of Theorem 5.3 hold. Let
{
x(k), y(k)

}
be computed

by Algorithm 16. Then there exists for each ε > 0 at least one k such that∥∥∆x(k)
∥∥ ≤ ε. (5.185)

Proof. As a consequence of Theorem 5.2 and Theorem 5.3 the penalty parameters are
bounded, see Corollary 5.1. We prove by contradiction, that (5.185) holds for at least
one k. We assume that

∥∥∆x(k)
∥∥ > ε for a fixed ε and each k. The penalty parameters

are constant after a certain iteration k, see Corollary 5.1. We consider the sequence{
x(k), y(k)

}
starting in iteration k and define the corresponding constant vector of

penalty parameters by ρr. Moreover,

∇Φρr

(
x(k)

y(k)

)T
d(k) < −ηε

2

2
< 0 (5.186)

holds with d(k) :=

(
z(k) − x(k)

v(k) − y(k)

)
6= p0, see Theorem 5.2 and Theorem 5.3. There

exists a i0 independent from k such that the Armijo condition (4.28) is satisfied for
all i ≥ i0, see Schittkowski [73]. As a consequence σ(k) ≥ σ := βi0 and we get

Φρr

(
x(k)

y(k)

)
− Φρr

((
x(k)

y(k)

)
− σ(k)d(k)

)
≥ −r σ(k)︸︷︷︸

≥σ

∇Φρr

(
x(k)

y(k)

)T
d(k)︸ ︷︷ ︸

≤− ηε2
2

≥ rσ
ηε2

2

for all k ≥ k. This leads to

lim
k→∞

Φρr

(
x(k)

y(k)

)
= −∞, (5.187)

which is a contradiction to Lemma 5.7. Therefore, the assumption is wrong and (5.185)
holds for at least one k.

With these results it is possible to formulate and prove the main convergence theorem,
see Zillober [97] Theorem 5.12, and Schittkowski [73] respectively.

5.2 Global Convergence 101

Theorem 5.5. Let the assumptions of Theorem 5.3 hold. Let
{
x(k)
}

,
{
y(k)
}

,
{
z(k)
}

,{
v(k)
}

, be computed by Algorithm 16. Then there exists an accumulation point (x?, v?)

of
{
x(k), v(k)

}
satisfying the KKT conditions for problem (5.16).

Proof. Theorem 5.1 shows that each element of the sequence
{
x(k), v(k)

}
lies in the

compact set (F × Y), with Y := {y ∈ Rmc+mf | y ∈ [p0, ymax1]}, where 1 is a vector
of ones of appropriate size and F is defined by (5.18). The results of Theorem 5.4
and the boundedness of

{
x(k)
}

and
{
v(k)
}

, guarantee the existence of at least one
accumulation point (x?, v?) and of an infinite subset S ⊆ N such that

lim
k∈S

∆x(k) = 0, (5.188)

lim
k∈S

x(k) = x?, (5.189)

lim
k∈S

v(k) = v?. (5.190)

We will show that the KKT conditions are satisfied for x? if ∆x
(k)
i −→ 0, k ∈ S holds.

We consider the KKT system of the subproblem

∇xL
(k)
(
z(k), v(k)

)
= ∇f (k)

(
z(k)
)

+ Ac(k)
(
z(k)
)
v(k)
c

+Ae
(
z(k)
)
v(k)
e + v(k)

u − v
(k)
l = 0 (5.191)(

v(k)
c

)
j
c

(k)
j

(
z(k)
)

= 0, j = 1, . . . ,mc (5.192)(
v(k)
e

)
j
ej
(
z(k)
)

= 0, j = 1, . . . ,mf (5.193)(
v

(k)
b

)
j
b

(k)
j

(
z(k)
)

= 0, j = 1, . . . , 2n (5.194)

c
(k)
j

(
z(k)
)
≤ 0, j = 1, . . . ,mc (5.195)

ej
(
z(k)
)
≤ 0, j = 1, . . . ,mf (5.196)

b
(k)
j

(
z(k)
)
≤ 0, j = 1, . . . , 2n (5.197)(

v(k)
c

)
j
≥ 0, j = 1, . . . ,mc (5.198)(

v(k)
e

)
j
≥ 0, j = 1, . . . ,mf (5.199)(

v
(k)
b

)
j
≥ 0, j = 1, . . . , 2n (5.200)

102 5 A Strictly Feasible Sequential Convex Programming Method

We prove that
∣∣∣c(k)
j

(
z(k)
)
− cj

(
x(k)
)∣∣∣ −→ 0 holds, for ∆x

(k)
i −→ 0, k ∈ S, with

z(k) = x(k) + ∆x(k).∣∣∣c(k)
j

(
z(k)
)
− cj

(
x(k)
)∣∣∣

=

∣∣∣∣∣cj (x(k)
)

+
∑
I
(j,k)
+

[
∂cj
(
x(k)
)

∂xi

(
U

(k)
i − x

(k)
i

)2
(

1

U
(k)
i − x

(k)
i −∆x

(k)
i

− 1

U
(k)
i − x

(k)
i

)]

−
∑
I
(j,k)
−

[
∂cj
(
x(k)
)

∂xi

(
x

(k)
i − L

(k)
i

)2
(

1

x
(k)
i + ∆x

(k)
i − L

(k)
i

− 1

x
(k)
i − L

(k)
i

)]

−cj
(
x(k)
) ∣∣∣∣∣

=

∣∣∣∣∣∣∣
∑
I
(j,k)
+

∂cj (x(k)
)

∂xi

(
U

(k)
i − x

(k)
i

)2


(
U

(k)
i − x

(k)
i

)
−
(
U

(k)
i − x

(k)
i −∆x

(k)
i

)
(
U

(k)
i − x

(k)
i −∆x

(k)
i

)(
U

(k)
i − x

(k)
i

)


−
∑
I
(j,k)
−

∂cj (x(k)
)

∂xi

(
x

(k)
i − L

(k)
i

)2


(
x

(k)
i − L

(k)
i

)
−
(
x

(k)
i + ∆x

(k)
i − L

(k)
i

)
(
x

(k)
i + ∆x

(k)
i − L

(k)
i

)(
x

(k)
i − L

(k)
i

)

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
∑
I
(j,k)
+

[
∂cj
(
x(k)
)

∂xi

(
U

(k)
i − x

(k)
i

)(∆x
(k)
i

U
(k)
i − x

(k)
i −∆x

(k)
i

)]

−
∑
I
(j,k)
−

[
∂cj
(
x(k)
)

∂xi

(
x

(k)
i − L

(k)
i

)(−∆x
(k)
i

x
(k)
i − L

(k)
i + ∆x

(k)
i

)]∣∣∣∣∣∣∣
As the asymptotes U

(k)
i and L

(k)
i , i = 1, . . . , n, are feasible, there exists a fixed ξ such

that

0 < ξ ≤ x
(k)
i − L

(k)
i , (5.201)

0 < ξ ≤ U
(k)
i − x

(k)
i (5.202)

holds for all i = 1, . . . , n and k = 0, 1,

5.2 Global Convergence 103

Moreover,
∣∣∣∆x(k)

i

∣∣∣ ≤ 1
2
ξ holds for k ∈ S sufficiently large. We get

∣∣∣c(k)
j

(
z(k)
)
− cj

(
x(k)
)∣∣∣

=

∣∣∣∣∣∣∣
∑
I
(j,k)
+

[
∂cj
(
x(k)
)

∂xi

(
U

(k)
i − x

(k)
i

)(∆x
(k)
i

U
(k)
i − x

(k)
i −∆x

(k)
i

)]

−
∑
I
(j,k)
−

[
∂cj
(
x(k)
)

∂xi

(
x

(k)
i − L

(k)
i

)(−∆x
(k)
i

x
(k)
i − L

(k)
i + ∆x

(k)
i

)]∣∣∣∣∣∣∣
≤

∑
I
(j,k)
+

∂cj (x(k)
)

∂xi

(
U

(k)
i − x

(k)
i

)
∣∣∣∆x(k)

i

∣∣∣
ξ −∆x

(k)
i


+
∑
I
(j,k)
−

∣∣∣∣∣∂cj
(
x(k)
)

∂xi

∣∣∣∣∣ (x(k)
i − L

(k)
i

)
∣∣∣∆x(k)

i

∣∣∣
ξ + ∆x

(k)
i


≤

∑
I
(j,k)
+

∂cj (x(k)
)

∂xi

(
U

(k)
i − x

(k)
i

)2
∣∣∣∆x(k)

i

∣∣∣
ξ


+
∑
I
(j,k)
−

∣∣∣∣∣∂cj
(
x(k)
)

∂xi

∣∣∣∣∣ (x(k)
i − L

(k)
i

)2
∣∣∣∆x(k)

i

∣∣∣
ξ



As

∣∣∣∣∂cj(x(k))
∂xi

∣∣∣∣, (U (k)
i − x

(k)
i

)
,
(
x

(k)
i − L

(k)
i

)
are bounded and ∆x

(k)
i −→ 0 holds, we

get
∣∣∣c(k)
j

(
z(k)
)
− cj

(
x(k)
)∣∣∣ −→ 0. As the KKT conditions hold for c

(k)
j

(
z(k)
)
, i.e.,

c
(k)
j

(
z(k)
)
≤ 0, we get cj (x?) ≤ 0.

Moreover, we consider the box constraints of the subproblem for k ∈ S.

b(k)
u (x) = x− x(k) ≤ 0 (5.203)

b
(k)
l (x) = x(k) − x ≤ 0 (5.204)

104 5 A Strictly Feasible Sequential Convex Programming Method

The definitions of x
(k)
i and x

(k)
i , i = 1, . . . , n given by (5.20) and (5.22) lead to

b
(k)
i (x(k) + ∆x(k)) = x

(k)
i + ∆x

(k)
i − x

(k)
i

(5.22)
= x

(k)
i + ∆x

(k)
i − x

(k)
i − ω

(
U

(k)
i − x

(k)
i

)
︸ ︷︷ ︸

≥ξ

≤ ∆x
(k)
i − ωξ

≤ 1

2
ωξ − ωξ < 0 (5.205)

b
(k)
n+i(x

(k) + ∆x(k)) = x
(k)
i − x

(k)
i −∆x

(k)
i

(5.20)
= x

(k)
i − ω

(
x

(k)
i − L

(k)
i

)
︸ ︷︷ ︸

≥ξ

−x(k)
i −∆x

(k)
i

≤ −ωξ −∆x
(k)
i

≤ −ωξ +
1

2
ωξ < 0 (5.206)

for
∣∣∣∆x(k)

i

∣∣∣ ≤ 1
2
ωξ and i = 1, . . . , n. The complementary condition (5.194) is satisfied

since

v(k)
u = v

(k)
l = 0. (5.207)

It is easy to see that ej(x
?) ≤ 0, j = 1, . . . ,mf , and v?e ≥ 0, due to (5.196) and

(5.199). From (5.198) we get

(v?c)j ≥ 0, j = 1, . . . ,mc. (5.208)

The complementarity conditions are satisfied as (5.192) and (5.193) holds, i.e.,

(v?c)j cj(x
?) = 0, j = 1, . . . ,mc (5.209)

(v?e)j ej(x
?) = 0, j = 1, . . . ,mf . (5.210)

To show that ∇xL(x?, v?) = 0, we consider the gradients of the constraints c
(k)
j (z(k)),

j = 1, . . . ,mc, with k ∈ S, see (4.23),

∂c
(k)
j

(
z(k)
)

∂xi
=



∂cj
(
x(k)
)

∂xi

(
U

(k)
i − x

(k)
i

)2

(
U

(k)
i − z

(k)
i

)2 , if i ∈ I(j,k)
+

∂cj
(
x(k)
)

∂xi

(
x

(k)
i − L

(k)
i

)2

(
z

(k)
i − L

(k)
i

)2 , otherwise.

5.2 Global Convergence 105

We consider the index set I
(j,k)
+ , i.e.,

∂c
(k)
j

(
z(k)
)

∂xi

=
∂cj
(
x(k)
)

∂xi

(
U

(k)
i − x

(k)
i

)2

(
U

(k)
i − x

(k)
i −∆x

(k)
i

)2

=
∂cj
(
x(k)
)

∂xi


(
U

(k)
i − x

(k)
i

)2

(
U

(k)
i − x

(k)
i −∆x

(k)
i

)2 −

(
U

(k)
i − x

(k)
i −∆x

(k)
i

)2

(
U

(k)
i − x

(k)
i −∆x

(k)
i

)2


+
∂cj
(
x(k)
)

∂xi

(
U

(k)
i − x

(k)
i −∆x

(k)
i

)2

(
U

(k)
i − x

(k)
i −∆x

(k)
i

)2

=
∂cj
(
x(k)
)

∂xi


(
U

(k)
i

)2

+
(
x

(k)
i

)2

− 2U
(k)
i x

(k)
i(

U
(k)
i − x

(k)
i −∆x

(k)
i

)2

+
2U

(k)
i x

(k)
i − 2∆x

(k)
i x

(k)
i + 2∆x

(k)
i U

(k)
i −

(
U

(k)
i

)2

−
(
x

(k)
i

)2

−
(

∆x
(k)
i

)2

(
U

(k)
i − x

(k)
i −∆x

(k)
i

)2

+1

)

=
∂cj
(
x(k)
)

∂xi

2∆x
(k)
i U

(k)
i − 2∆x

(k)
i x

(k)
i −

(
∆x

(k)
i

)2

(
U

(k)
i − x

(k)
i −∆x

(k)
i

)2 + 1


=

∂cj
(
x(k)
)

∂xi

2∆x
(k)
i

(
U

(k)
i − x

(k)
i −∆x

(k)
i

)
+
(

∆x
(k)
i

)2

(
U

(k)
i − x

(k)
i −∆x

(k)
i

)2 + 1


=

∂cj
(
x(k)
)

∂xi

 2∆x
(k)
i

U
(k)
i − x

(k)
i −∆x

(k)
i

+

(
∆x

(k)
i

)2

(
U

(k)
i − x

(k)
i −∆x

(k)
i

)2 + 1



106 5 A Strictly Feasible Sequential Convex Programming Method

As the sequence of asymptotes is feasible and
∣∣∣∆x(k)

i

∣∣∣ ≤ 1
2
ξ holds for k ∈ S sufficiently

large, we get∣∣∣∣∣∂c
(k)
j

(
z(k)
)

∂xi
−
∂cj
(
x(k)
)

∂xi

∣∣∣∣∣
=

∣∣∣∣∣∣∣
∂cj
(
x(k)
)

∂xi

 2∆x
(k)
i

U
(k)
i − x

(k)
i −∆x

(k)
i

+

(
∆x

(k)
i

)2

(
U

(k)
i − x

(k)
i −∆x

(k)
i

)2 + 1


−
∂cj
(
x(k)
)

∂xi

∣∣∣∣∣
≤

∂cj
(
x(k)
)

∂xi

 2
∣∣∣∆x(k)

i

∣∣∣
ξ −∆x

(k)
i

+

(
∆x

(k)
i

)2

(
ξ −∆x

(k)
i

)2


≤

∂cj
(
x(k)
)

∂xi

4
∣∣∣∆x(k)

i

∣∣∣
ξ

+
4
(

∆x
(k)
i

)2

ξ2


The gradients for the index set I

(j,k)
− can be computed analogously. We get

∣∣∣∣∣∂c
(k)
j

(
z(k)
)

∂xi
−
∂cj
(
x(k)
)

∂xi

∣∣∣∣∣ ≤
∣∣∣∣∣∂cj

(
x(k)
)

∂xi

∣∣∣∣∣
4

∣∣∣∆x(k)
i

∣∣∣
ξ

+
4
(

∆x
(k)
i

)2

ξ2



As

∣∣∣∣∂cj(x(k))
∂xi

∣∣∣∣ is bounded and ∆x
(k)
i −→ 0 holds, we get for k ∈ S

∣∣∣∣∣∂c
(k)
j

(
z(k)
)

∂xi
− ∂cj (x?)

∂xi

∣∣∣∣∣ −→ 0. (5.211)

Moreover, we consider the gradient of the approximated objective function f (k)(z(k))
with k ∈ S,

∂f (k)
(
z(k)
)

∂xi
=


∂f(x(k))
∂xi

(
U

(k)
i −x

(k)
i

)2

(
U

(k)
i −z

(k)
i

)2 + τ

(
z
(k)
i −x

(k)
i

)2
+2
(
z
(k)
i −x

(k)
i

)(
U

(k)
i −z

(k)
i

)
(
U

(k)
i −z

(k)
i

)2 , if i ∈ I(k)
+

∂f(x(k))
∂xi

(
x
(k)
i −L

(k)
i

)2

(
z
(k)
i −L

(k)
i

)2 − τ
(
z
(k)
i −x

(k)
i

)2
−2
(
z
(k)
i −x

(k)
i

)(
z
(k)
i −L

(k)
i

)
(
z
(k)
i −L

(k)
i

)2 , otherwise.

5.2 Global Convergence 107

The previous calculations equivalently hold for the first term. Moreover, we consider
the term dependent on τ . For i ∈ I(k)

+ we get

τ

∣∣∣∣∣∣∣
(
x

(k)
i + ∆x

(k)
i − x

(k)
i

)2

+ 2
(
x

(k)
i + ∆x

(k)
i − x

(k)
i

)(
U

(k)
i − x

(k)
i −∆x

(k)
i

)
(
U

(k)
i − x

(k)
i −∆x

(k)
i

)2

∣∣∣∣∣∣∣
= τ

∣∣∣∣∣∣∣
(

∆x
(k)
i

)2

+ 2∆x
(k)
i

(
U

(k)
i − x

(k)
i −∆x

(k)
i

)
(
U

(k)
i − x

(k)
i −∆x

(k)
i

)2

∣∣∣∣∣∣∣
= τ

∣∣∣∣∣∣∣
(

∆x
(k)
i

)2

(
U

(k)
i − x

(k)
i −∆x

(k)
i

)2 +
2∆x

(k)
i

(
U

(k)
i − x

(k)
i −∆x

(k)
i

)
(
U

(k)
i − x

(k)
i −∆x

(k)
i

)2

∣∣∣∣∣∣∣
= τ

∣∣∣∣∣∣∣
(

∆x
(k)
i

)2

(
U

(k)
i − x

(k)
i −∆x

(k)
i

)2 +
2∆x

(k)
i(

U
(k)
i − x

(k)
i −∆x

(k)
i

)
∣∣∣∣∣∣∣

For k ∈ S sufficiently large,
∣∣∣∆x(k)

i

∣∣∣ ≤ 1
2
ξ holds. Moreover, the sequence of asymptotes

is feasible. This leads to

τ

∣∣∣∣∣∣∣
(

∆x
(k)
i

)2

(
U

(k)
i − x

(k)
i −∆x

(k)
i

)2 +
2∆x

(k)
i(

U
(k)
i − x

(k)
i −∆x

(k)
i

)
∣∣∣∣∣∣∣

≤ τ


(

∆x
(k)
i

)2

(
ξ −∆x

(k)
i

)2 +
2
∣∣∣∆x(k)

i

∣∣∣(
ξ −∆x

(k)
i

)


≤ τ

4
(

∆x
(k)
i

)2

ξ2
+

4
∣∣∣∆x(k)

i

∣∣∣
ξ


And analogously for i ∈ I(k)

−

τ

∣∣∣∣∣∣∣−
(
x

(k)
i + ∆x

(k)
i − x

(k)
i

)2

− 2
(
x

(k)
i + ∆x

(k)
i − x

(k)
i

)(
x

(k)
i + ∆x

(k)
i − L

(k)
i

)
(
x

(k)
i + ∆x

(k)
i − L

(k)
i

)2

∣∣∣∣∣∣∣
≤ τ

4
(

∆x
(k)
i

)2

ξ2
+

4
∣∣∣∆x(k)

i

∣∣∣
ξ



108 5 A Strictly Feasible Sequential Convex Programming Method

As

∣∣∣∣∂f(x(k))
∂xi

∣∣∣∣ is bounded and ∆x
(k)
i −→ 0 holds, we get for k ∈ S,

∣∣∣∣∣∂f (k)
(
z(k)
)

∂xi
− ∂f (x?)

∂xi

∣∣∣∣∣ −→ 0. (5.212)

All together this leads to

‖∇xL(x?, v?)‖ =

∥∥∥∥∥∥∇xL
(k)(z(k), v(k))︸ ︷︷ ︸

=0

−∇xL(x?, v?)

∥∥∥∥∥∥
=

∥∥∇f (k)
(
z(k)
)

+ Ac(k)
(
z(k)
)
v(k)
c + Ae

(
z(k)
)
v(k)
e + v(k)

u − v
(k)
l︸ ︷︷ ︸

=0, (5.207)

−∇f (x?)− Ac (x?) v?c − Ae (x?) v?e‖

≤
∥∥∇f (k)

(
z(k)
)
−∇f (x?)

∥∥︸ ︷︷ ︸
−→0, (5.212)

+
mc∑
j=1

∥∥∥∇c(k)
j

(
z(k)
) (
v(k)
c

)
j
−∇cj (x?) (v?c)j

∥∥∥︸ ︷︷ ︸
−→0, (5.211)

+

mf∑
j=1

∥∥∥∇ej (z(k)
) (
v(k)
e

)
j
−∇ej (x?) (v?e)j

∥∥∥︸ ︷︷ ︸
−→0, ∆x(k)−→0

We have shown that ‖∇xL(x?, v?)‖ = 0. Together with the previous results, the KKT
conditions (2.12) - (2.19) are satisfied for (x?, v?) .

6. FREE MATERIAL OPTIMIZATION

The goal of free material optimization (FMO), see Bendsøe et. al. [7] and Zowe,
Kočvara and Bendsøe [107], is to find the best mechanical structure in the sense of
minimal weight or maximal stiffness with respect to a set of given loads based on
a finite element discretization. Moreover, additional constraints have to be satisfied.
The material itself, as well as its distribution in the available space is optimized. As
shown, e.g., by Kočvara and Stingl [50], the FMO problem can be formulated as a
nonlinear semidefinite programming (NSDP) problem. Other problem formulations
are given by Kočvara, Beck, Ben-Tal and Stingl [47].

FMO was first introduced by Bendsøe et al. [7], Bendsøe and Dı́az [6], Bendsøe [5]
and Zowe, Kočvara and Bendsøe [107]. The continuous problem formulation leads to a
saddle-point problem for which the existence of a solution can be shown, see Mach [56]
and Werner [91]. Based on a finite element discretization, in each finite element it is
determined which material is used. The goal is to find the distribution of material such
that the resulting structure becomes as stiff as possible, i.e., the compliance becomes
as small as possible.

In this section, we use the following notation. We define the space of symmetric ma-
trices of size p by Sp. Moreover, symmetric positive semidefinite matrices of size p are
defined by Sp+ and symmetric positive definite matrices by Sp++.

6.1 Theory and Problem Formulation

We proceed from a bounded domain Ω in the two or three dimensional space with a
Lipschitz boundary and a corresponding underlying finite element (FE) discretization
with m elements and q nodes of the design space. For a detailed description of the
Lipschitz boundary, we refer the reader to, e.g., Werner [91] and for the FE theory
to, e.g., Mach [56].

The design variable E is a block diagonal matrix consisting of symmetric matrices
Ei, i = 1, . . . ,m, that represent material properties in each finite element. The ma-
trices Ei, i = 1, . . . ,m, have to be symmetric and positive semidefinite, to satisfy the
basic requirements of linear elasticity, see Bendsøe et. al. [7]. Moreover, the variables
might become zero in some regions. This situation is known as vanishing material
and interpreted as void. Figure 6.1 shows an example of a design space and the corre-

110 6 Free Material Optimization

sponding finite element discretization. A single load is acting at the upper right corner
and the nodes on the left hand side are fixed, i.e., they are not allowed to move in any
direction. They are denoted by I. In each finite element, we determine the material
properties and thus identify the corresponding material.

Fig. 6.1: Design space given by a finite element discretization.

The design variable E is a matrix, dependent on the dimension of the given design
space and the number of finite elements m.

E :=


E1 0

E2

. . .

0 Em

 (6.1)

For the two dimensional space the matrices Ei, i = 1, . . . ,m, are 3× 3 matrices

Ei :=

 ei1 ei2 ei4
ei2 ei3 ei5
ei4 ei5 ei6

 � 0, i = 1, . . . ,m, (6.2)

see, e.g., Werner [91] for a detailed description of the derivation. This yields 6 variables
for each matrix Ei, i = 1, . . . ,m, since Ei is symmetric. In the three dimensional space
we get 6× 6 matrices, i.e., 21 variables for each matrix

Ei :=


ei1 ei2 ei4 ei7 ei11 ei16

ei2 ei3 ei5 ei8 ei12 ei17

ei4 ei5 ei6 ei9 ei13 ei18

ei7 ei8 ei9 ei10 ei14 ei19

ei11 ei12 ei13 ei14 ei15 ei20

ei16 ei17 ei18 ei19 ei20 ei21

 � 0, i = 1, . . . ,m. (6.3)

Therefore,

E ∈ S3m
+ , (6.4)

Ei ∈ S3
+, i = 1, . . . ,m (6.5)

6.1 Theory and Problem Formulation 111

holds for the two dimensional case and

E ∈ S6m
+ , (6.6)

Ei ∈ S6
+, i = 1, . . . ,m (6.7)

for the three dimensional case, respectively, where m is the number of finite elements.
In the sequel, we focus on the two dimensional case.

The so-called compliance function is a measure of the stiffness of the resulting struc-
ture. The smaller the value of the compliance the more robust is the structure with
respect to loads fj ∈ R2q, j = 1, . . . , l, where l denotes the number of load cases and
q the number of nodes. The stiffness of the structure is dependent on the material
properties of each element Ei, i = 1, . . . ,m, and is given by the global stiffness matrix
K (E) ∈ R2q×2q, see Ciarlet [18],

K (E) :=
m∑
i=1

Ki (E) (6.8)

Ki (E) :=

ng∑
k=1

BT
i,kEiBi,k (6.9)

where Ki(E) ∈ R2q×2q, Bi,k ∈ R3×2q and ng ∈ R defines the number of Gauss in-
tegration points. A detailed description how to compute the matrices Bi,k is given
in Hörnlein, Kočvara and Werner [40], Kočvara and Zowe [51], Zowe, Kočvara and
Bendsøe [107]. The behavior of the structure with respect to loads fj, j = 1, . . . , l, is
given by

fTj uj (E) , j = 1, . . . , l, (6.10)

where uj (E) ∈ R2q, j = 1, . . . , l, is the displacement vector. Its value is illustrated
in Figure 6.2, given by the sum of the deflection of the nodes caused by the acting
forces, which is marked by the red line.

Fig. 6.2: Compliance with respect to a given load.

112 6 Free Material Optimization

The displacement vector is determined by the equilibrium condition

K (E)uj (E) = fj, j = 1, . . . , l (6.11)

derived from linear Hooke’s law, which describes the equilibrium of internal forces and
the acting loads. This means

K (E)uj (E) = fj ⇐⇒ uj (E) = K (E)−1 fj, j = 1, . . . , l, (6.12)

=⇒ fTj uj (E) = fTj K (E)−1 fj, j = 1, . . . , l, (6.13)

where K−1 (E) fj can be computed by solving the linear system (6.11) to save com-
putational effort.

To ensure that the linear system is solvable we request that K (E) is positive definite,
i.e., K (E) ∈ S2r

++. This leads to the requirement that each matrix Ei, i = 1, . . . ,m is
positive definite, since

K (E) ∈ S2r
++ ⇐⇒ E ∈ S3m

++ (6.14)

⇐⇒ Ei ∈ S3
++, i = 1, . . . ,m (6.15)

Therefore, we require Ei − νI � 0, i = 1, . . . ,m, where I is the identity matrix and
ν ∈ R+ is a small positive value, see Kočvara and Stingl [49]. We have to ensure, that
the semidefinite constraints Ei − νI � 0, i = 1, . . . ,m, are satisfied, whenever the
linear system (6.11) is to be solved.

As FMO treats multiple load cases, i.e., different set of loads are acting independently,
we introduce an additional variable α ∈ R, which is to be minimized, requiring for
each load case

fTj K
−1 (E) fj ≤ α, j = 1, . . . , l, (6.16)

see Ben-Tal, Kočvara, Nemirovski and Zowe [4].

The sum of the diagonal elements of the matrices Ei, i = 1, . . . ,m, is a measure for
stiffness of the material in coordinate directions. The trace of Ei, i = 1, . . . ,m, can
be used as a cost function, see Bendsøe et al. [7], to represent the limited amount of
material. We introduce the upper bound V ∈ R and require

m∑
i=1

Trace (Ei) ≤ V, (6.17)

Trace (Ei) := ei1 + ei3 + ei6, i = 1, . . . ,m (6.18)

The trace of each element is bounded by ν ∈ R+, since it is not possible to produce
arbitrarily stiff material. This leads to

Trace (Ei) ≤ ν, i = 1, . . . ,m, (6.19)

see, e.g., Ben-Tal, Kočvara, Nemirovski and Zowe [4]. Moreover, from Ei − νI � 0,
i = 1, . . . ,m, we derive additional lower bounds on the trace, i.e.,

3ν ≤ Trace (Ei) , i = 1, . . . ,m. (6.20)

6.1 Theory and Problem Formulation 113

They can be expressed as box constraints for the diagonal variables, i.e., ei1, ei3 and
ei6,

ei1 ≥ ν, (6.21)

ei3 ≥ ν, (6.22)

ei6 ≥ ν. (6.23)

In the three dimensional case, the variables ei1, ei3, ei6, ei10, ei15 and ei21 are restricted.
In general, there are two possibilities to formulate the free material optimization

problem. One possibility is to minimize the volume function
m∑
i=1

Trace (Ei) with respect

to a given stability of the resulting structure. Another approach maximizes the stiffness
with respect to a limited volume. We focus on the second approach, which results in
the nonlinear semidefinite problem

min
E,α

α E ∈ S3m, α ∈ R

s.t.
m∑
i=1

Trace (Ei)− V ≤ 0

Trace (Ei)− ν ≤ 0, i = 1, . . . ,m

Ei − νI � 0, i = 1, . . . ,m

fTj K (E)−1 fj − α ≤ 0, j = 1, . . . , l

ei1 ≥ ν, i = 1, . . . ,m

ei3 ≥ ν, i = 1, . . . ,m

ei6 ≥ ν, i = 1, . . . ,m

(6.24)

The optimization variables are the entries eip, p = 1, . . . , 6 of the elementary stiffness
matrices Ei, i = 1, . . . ,m. The derivatives are specified in Ertel, Schittkowski and
Zillober [21] for all i = 1, . . . ,m, p = 1, . . . , 6 by

∂

∂eip

(
m∑
i=1

Trace (Ei)− V

)
=

{
1, if p = 1, 3, 6
0, otherwise

(6.25)

∂

∂eip
(Trace (Ei)− ν) =

{
1, if p = 1, 3, 6
0, otherwise

(6.26)

∂

∂eip

(
fTj K (E)−1 fj − α

)
= −uj (E)T

(
∂K (E)

∂eip

)
uj (E) (6.27)

∂

∂eip
K (E) =

∂

∂eip

(
m∑
i=1

ng∑
k=1

BT
i,kEiBi,k

)

=
m∑
i=1

ng∑
k=1

BT
i,k

∂Ei
∂eip

Bi,k (6.28)

114 6 Free Material Optimization

with

∂Ei
∂eip

=
([

1 0 0
0 0 0
0 0 0

]
,
[

0 1 0
1 0 0
0 0 0

]
,
[

0 0 0
0 1 0
0 0 0

]
,
[

0 0 1
0 0 0
1 0 0

]
,
[

0 0 0
0 0 1
0 1 0

]
,
[

0 0 0
0 0 0
0 0 1

])T
(6.29)

Moreover, additional constraints can be added to optimization problem (6.24). Espe-
cially stress constraints, such as ’von Mises stress conditions’, see, e.g., Li, Steven and
Xie [55], are very important from the engineering point of view. In the two dimensional
space the von Mises stress in an element i ∈ {1, . . . ,m} , and load case j ∈ {1, . . . , l} ,
can be formulated as

si,j (E) :=

ng∑
k=1

uj (E)T BT
i,kEiIEiBi,kuj (E) (6.30)

with

I =

 1 0 0
0 1 0
0 0 1

 (6.31)

see Kočvara and Stingl [50]. The integration of stress constraints lead to numerical
problems for the optimization method, as constraint qualifications, such as LICQ see
Definition 5 are not satisfied, see Achtziger and Kanzow [1] and Stingl [78].

To ensure stability si,j (E) may not exceed a given threshold sσ ∈ R+. For each load
case j ∈ {1, . . . , l}, and each element i ∈ {1, . . . ,m}, we get one additional constraint
that can be added to (6.24):

si,j (E) ≤ sσ, i = 1, . . . ,m, j = 1, . . . , l. (6.32)

The corresponding derivatives are given by

∂

∂eip

(
ng∑
k=1

uj (E)T BT
i,kEiIEiBi,kuj (E)− sσ

)

=

ng∑
k=1

−2uj (E)T K−1 (E)
∂K (E)

∂eip
BT
i,kEiIEiBi,kuj (E) (6.33)

+

ng∑
k=1

2uj (E)T BT
i,k

∂Ei
∂eip

IEiBi,kuj (E) ,

see Ertel, Schittkowski and Zillober [21].

Our goal is to solve (6.24) by Algorithm 16. As SCPF is not able to handle semidef-
inite constraints, they are reformulated by nonlinear constraints. Two reformulation
approaches can be used, which are presented in Section 6.2 and Section 6.3

6.2 Reformulation according to Benson and Vanderbei 115

6.2 Reformulation according to Benson and

Vanderbei

As SCPF is not able to handle semidefinite constraints they are replaced by nonlinear
ones such that Algorithm 16 can be applied. To ease the notation we define

E ′ := E − νI. (6.34)

Benson and Vanderbei [9] propose a reformulation which is only applicable for positive
definite constraints, i.e., E ′ � 0, E ′ ∈ S3m

++. As FMO requires positive semidefiniteness,
the reformulation of problem (6.24) by the approach of Benson and Vanderbei is not
exactly equivalent. The resulting 3m smooth constraints are nonlinear and convex.
This approach is based on the observation that each positive definite matrix E ′ ∈ S3m

++

can be decomposed by

E ′ = L (E ′) Λ (E ′)L (E ′)
T
, (6.35)

where the lower triangular matrix L (E ′) ∈ R3m×3m as well as the diagonal matrix
Λ (E ′) ∈ S3m

++ are unique, if E ′ is positive definite. The diagonal entries λj (E ′) ,
j = 1, . . . , 3m, of Λ (E ′) represent the eigenvalues of the matrix E ′. To ease the
notation we define

L := L (E ′) . (6.36)

The free material optimization problem (6.24) is reformulated exploiting the following
correlation

E ′ � 0 ⇐⇒ λj (E ′) > 0, j = 1, . . . , 3m. (6.37)

Benson and Vanderbei replace each entry of Λ (E ′) by a nonlinear smooth convex
function. As a result, the nonlinear convex semidefinite program (6.24) becomes a
nonlinear convex program.

We consider an arbitrary submatrix Ej, j ∈ {1, . . . , 3m} and the corresponding de-
composition to compute the j-th diagonal entry of Λ (E ′), denoted by λj (E ′).

E ′ = LΛ (E ′)LT (6.38)

E ′ =:


E ′j−1 kj ?

(kj)
T

kjj ?

? ? ?

 (6.39)

LΛ (E ′)LT =:


Lj−1 0 0

(lj)
T

1 0

? ? ?




Λj−1 (E ′) 0 0

0 λj (E ′) 0

0 0 ?



LTj−1 lj ?

0 1 ?

0 0 ?

(6.40)

116 6 Free Material Optimization

where E ′j−1 ∈ Sj−1
++ is the (j − 1)×(j − 1) submatrix of E ′, kjj is the j-th diagonal entry

of E ′ and kj is the vector of the first j − 1 elements of j-th column of E ′. Moreover,
Lj−1 ∈ R(j−1)×(j−1) is the (j − 1) × (j − 1) submatrix of L, Λj−1 (E ′) ∈ Sj−1

++ is the
(j − 1)× (j − 1) submatrix of Λ (E ′) and lj is the vector of the first j− 1 elements of
j-th column of L. In addition, ? denotes the remaining entries of corresponding size.
By multiplying the matrices in (6.40), we get the following relations:

E ′j−1 = Lj−1Λj−1 (E ′)LTj−1, (6.41)

kj = Lj−1Λj−1 (E ′) lj, (6.42)

kjj = λj (E ′) +
(
lj
)T

Λj−1 (E ′) lj. (6.43)

From (6.42) we obtain

lj = Λ−1
j−1 (E ′)L−1

j−1k
j. (6.44)

With (6.43) and (6.44) we get:

kjj = λj (E ′) +
(
lj
)T︸ ︷︷ ︸

=(kj)TL−Tj−1Λ−1
j−1(E′), (6.44)

Λj−1 (E ′) lj︸︷︷︸
=Λ−1

j−1(E′)L−1
j−1k

j , (6.44)

= λj (E ′) +
(
kj
)T
L−Tj−1Λ−1

j−1 (E ′) Λj−1 (E ′) Λ−1
j−1 (E ′)L−1

j−1k
j

= λj (E ′) +
(
kj
)T
L−Tj−1Λ−1

j−1 (E ′)L−1
j−1︸ ︷︷ ︸

=(E′j−1)
−1
, see (6.41)

kj

= λj (E ′) +
(
kj
)T (

E ′j−1

)−1
kj (6.45)

By reformulating (6.45) we can define each eigenvalue λj (E ′) , j = 1, . . . , 3m, of E ′

as a function of the entries of E. This leads to 3m nonlinear constraints given by

λj (E ′) = kjj −
(
kj
)T (

E ′j−1

)−1
kj, j = 1, . . . , 3m. (6.46)

It can be shown that the functions λj (E ′) , j = 1, . . . , 3m, are convex. The first and
second order derivatives are given analytically by Vanderbei and Benson [88]. We
review:

6.2 Reformulation according to Benson and Vanderbei 117

∂ (kj)
T (
E ′j−1

)−1
kj

∂kjp
=

(
kj
)T (

E ′j−1

)−1
1p + 1Tp

(
E ′j−1

)−1
kj (6.47)

∂2 (kj)
T (
E ′j−1

)−1
kj

∂kjp∂k
j
q

= 1Tq
(
E ′j−1

)−1
1p + 1Tp

(
E ′j−1

)−1
1q (6.48)

∂ (kj)
T (
E ′j−1

)−1
kj

∂kpq
= −

(
kj
)T (

E ′j−1

)−1
1p1

T
q

(
E ′j−1

)−1
kj (6.49)

∂2 (kj)
T (
E ′j−1

)−1
kj

∂kpq∂kkl
=

(
kj
)T (

E ′j−1

)−1
1k1

T
l

(
E ′j−1

)−1
1p1

T
q

(
E ′j−1

)−1
kj (6.50)

+
(
kj
)T (

E ′j−1

)−1
1p1

T
q

(
E ′j−1

)−1
1k1

T
l

(
E ′j−1

)−1
kj

∂2 (kj)
T (
E ′j−1

)−1
kj

∂kjp∂kkl
= −

(
kj
)T (

E ′j−1

)−1
1k1

T
l

(
E ′j−1

)−1
1p (6.51)

−1Tp
(
E ′j−1

)−1
1k1

T
l

(
E ′j−1

)−1
kj

with 1p is the p-th unity vector, kpq the entry of E ′ in row p and column q and kjp is
the pth entry of the vector kj. We can summarize the results as follows:

E ′ � 0⇐⇒ λj (E ′) > 0, j = 1, . . . , 3m

λj (E ′) = kjj −
(
kj
)T (

E ′j−1

)−1
kj. (6.52)

As

E ′ � 0 ⇐⇒ Ei − νI � 0, i = 1, . . . ,m (6.53)

holds, we consider the eigenvalues for each matrix Ei − νI, i = 1, . . . ,m. With (6.2)
and (6.46) we get three inequality constraints for each finite element

λi1 (Ei − νI) := ei1 − ν (6.54)

λi2 (Ei − νI) := (ei3 − ν)− e2
i2

ei1 − ν
(6.55)

λi3 (Ei − νI) := (ei6 − ν) +
2ei2ei4ei5 − e2

i4 (ei3 − ν)− e2
i5 (ei1 − ν)

(ei3 − ν) (ei1 − ν)− e2
i2

(6.56)

(6.54) can be handled as box constraint, while (6.55) and (6.56) are additional inequal-
ity constraints. This leads to the following nonlinear optimization problem arising from

118 6 Free Material Optimization

problem (6.24)

min
E,α

α E ∈ S3m, α ∈ R

s.t.
m∑
i=1

Trace (Ei)− V ≤ 0

Trace (Ei)− ν ≤ 0, i = 1, . . . ,m

fTj K (E)−1 fj − α ≤ 0, j = 1, . . . , l

(ei3 − ν)− e2i2
ei1−ν > 0, i = 1, . . . ,m

(ei6 − ν) +
2ei2ei4ei5−e2i4(ei3−ν)−e2i5(ei1−ν)

(ei3−ν)(ei1−ν)−e2i2
> 0, i = 1, . . . ,m

ei1 > ν, i = 1, . . . ,m

ei3 > ν, i = 1, . . . ,m

ei6 > ν, i = 1, . . . ,m

(6.57)

Previous calculations show that semidefinite matrices can be replaced by nonlinear
inequality constraints that are smooth and at least twice continuously differentiable.
It has to be noted that the evaluation of these functions is only possible on the
interior of S+, i.e., S++. Vanderbei et al. [88] propose to use an interior point method
in combination with a line search strategy. The stepsize is to be shortened until a
descent in the merit function is achieved and the current iterate becomes feasible. As
long as λj (E ′) > 0, j ∈ {1, . . . , 3m}, holds,

(
E ′j
)−1

can be evaluated and the step
is accepted. If a j ∈ {1, . . . , 3m} is detected such that λj (E ′) ≤ 0, the evaluation of
λj+1 (E ′) is not possible, as E ′j is not invertible. Thus, the stepsize is reduced and the
functions are evaluated at the new iterate.

6.3 Reformulation Based on Determinants

The disadvantage of Vanderbei and Benson’s approach presented in Section 6.2 is that
we can only compute the inverse matrix of E ′j, j = 1, . . . , 3m, if it is positive definite,
i.e., within the feasible region. Applying Algorithm 16 the feasibility constraints are
passed to the subproblem directly. The evaluation of infeasible iterates within the
subproblem solution process would fail, if some of the submatrices are not positive
definite. In addition, we have to ensure that ei1−ν 6= 0 and (ei3 − ν) (ei1 − ν)−e2

i2 6= 0,
since the functions (6.55) and (6.56) are not well defined otherwise.

This is the reason why we are looking for a modification of Benson and Vanderbei’s
approach. The idea is to consider the submatrices of matrix E ′. A matrix is positive
semidefinite, if each submatrix is positive semidefinite, i.e.,

E ′ � 0 ⇐⇒ E ′j � 0, ∀j = 1, . . . , 3m (6.58)

where E ′j ∈ Sj describes the j-th submatrix of E ′. Moreover, a matrix E ′ is positive
semidefinite, if the corresponding subdeterminants are greater or equal to zero. We

6.3 Reformulation Based on Determinants 119

get

E ′ � 0 ⇐⇒ dj (E ′) ≥ 0, ∀j = 1, . . . , 3m (6.59)

where dj (E ′) , j = 1, . . . , 3m, is the determinant of Ej given by the Laplace formula

dj (E ′) := det
(
E ′j
)

=

j∑
q=1

(−1)p+q kpq det
((
E ′j
)
pq

)
, (6.60)

and where kpq is the element of E ′ in row p and column q. Moreover,
(
E ′j
)
pq

is the

submatrix of E ′j reduced by row p and column q, i.e.,

E ′pq :=



k11 . . . k1 q−1 k1 q+1 . . . k1 3m
...

...
...

...
kp−1 1 . . . kp−1 q−1 kp−1 q+1 . . . kp−1 3m

kp+1 1 . . . kp+1 q−1 kp+1 q+1 . . . kp+1 3m
...

...
...

...
k3m 1 . . . k3m q−1 k3m q+1 . . . k3m 3m


(6.61)

It can be shown that the resulting functions dj (E ′) , j = 1, . . . , 3m are nonconvex and
polynomial. As (6.59) holds, the feasible region defined by dj (E ′) ≥ 0, j = 1, . . . , 3m,
is convex. The design variable E ′ is block diagonal, i.e., of the form

E ′ :=


� 0 0 · · · 0
0 � 0 · · · 0
...

.
...

0 · · · 0 � 0
0 · · · · · · 0 �

 (6.62)

Therefore it is sufficient to show that each 3×3 block � of E ′ is positive semidefinite.
The blocks are given by Ei − νI, i = 1, . . . ,m. We get the following three inequality
constraints from (6.60) and (6.2)

di1 (Ei − νI) := ei1 − ν ≥ 0 (6.63)

di2 (Ei − νI) := (ei3 − ν) (ei1 − ν)− e2
i2 ≥ 0 (6.64)

di3 (Ei − νI) := (ei6 − ν)
(
(ei3 − ν) (ei1 − ν)− e2

i2

)
−e2

i4 (ei3 − ν)− e2
i5 (ei1 − ν) + 2ei2ei4ei5 ≥ 0 (6.65)

for each elementary stiffness matrix Ei, i = 1, . . . ,m. As the first submatrix of a
block Ei − νI, i = 1, . . . ,m, consists of only one element, it can be handled as box
constraint. Therefore, 2m additional constraints have to be introduced.

120 6 Free Material Optimization

The following problem formulation (6.66) is equivalent to (6.24) and can be solved
efficiently by Algorithm 16.

min
E,α

α E ∈ S3m, α ∈ R

s.t.
m∑
i=1

Trace (Ei)− V ≤ 0

Trace (Ei)− ν ≤ 0, i = 1, . . . ,m

fTj K (E)−1 fj − α ≤ 0, j = 1, . . . , l

(ei3 − ν) (ei1 − ν)− e2
i2 ≥ 0, i = 1, . . . ,m

(ei6 − ν) ((ei3 − ν) (ei1 − ν)− e2
i2)

−e2
i4 (ei3 − ν)− e2

i5 (ei1 − ν) + 2ei2ei4ei5 ≥ 0, i = 1, . . . ,m

ei1 ≥ ν, i = 1, . . . ,m

ei3 ≥ ν, i = 1, . . . ,m

ei6 ≥ ν, i = 1, . . . ,m

(6.66)

This problem is nonlinear and nonconvex but exhibits a convex feasible region, as the
constraints dj (E ′) ≥ 0, j = 1, . . . , 3m, describe a convex domain.

6.4 Evaluations of Functions and Derivatives

Applying Algorithm 16 to solve (6.66), we have to compute first and second order
derivatives and evaluate the problem functions efficiently. The first subdeterminant is
handled as a box constraint while the first and second order derivatives of di2 (Ei − νI)
and di3 (Ei − νI) , i = 1, . . . ,m, are given explicitly. We consider an arbitrary finite
element i ∈ {1, . . . ,m} and the corresponding matrix Ei. The determinant of the
(2× 2) submatrix is dependent on three variables. We get

di2 (Ei − νI) = (ei3 − ν) (ei1 − ν)− e2
i2 (6.67)

∂di2 (Ei − νI)

∂eip
=


ei3 − ν
−2ei2
ei1 − ν

0
0
0

 (6.68)

∂di2 (Ei − νI)

∂eip∂eiq
=


0 0 1 0 0 0
0 −2 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (6.69)

6.4 Evaluations of Functions and Derivatives 121

The determinant of the (3× 3) matrix is dependent on all variables. Its first and
second order derivatives are

di3 (Ei − νI) := (ei6 − ν)
(
(ei3 − ν) (ei1 − ν)− e2

i2

)
−e2

i4 (ei3 − ν)− e2
i5 (ei1 − ν) + 2ei2ei4ei5

= (ei6 − ν) di2 (Ei − νI)− e2
i4 (ei3 − ν)− e2

i5 (ei1 − ν)

+2ei2ei4ei5 (6.70)

∂di3 (Ei − νI)

∂eip
=


(ei3 − ν) (ei6 − ν)− e2

i5

2ei4ei5 − 2ei2 (ei6 − ν)
(ei1 − ν) (ei6 − ν)− e2

i4

2ei2ei5 − 2 (ei3 − ν) ei4
2ei2ei4 − 2ei5 (ei1 − ν)

di2 (Ei − νI)

 (6.71)

∂di3 (Ei − νI)

∂eip∂eiq
=

0 0 ei6 − ν 0 −2ei5 ei3 − ν
0 −2 (ei6 − ν) 0 2ei5 2ei4 −2ei2

ei6 − ν 0 0 −2ei4 0 ei1 − ν
0 2ei5 −2ei4 −2 (ei3 − ν) 2ei2 0
−2ei5 2ei4 0 2ei2 −2 (ei1 − ν) 0
ei3 − ν −2ei2 ei1 − ν 0 0 0

(6.72)

7. NUMERICAL IMPLEMENTATION
AND RESULTS

7.1 Implementation

The implementation of Algorithm 16 is the FORTRAN code SCPF10.f. In this section,
we present details of the implementation of Algorithm 16. We introduce an active set
strategy, which reduces the size of the subproblem and thus enhance the computation
time, see Section 7.1.1. Moreover, the linear constraints can be passed to the sub-
problem directly, see Section 7.1.2. In addition, subproblem (5.7) might be infeasible.
In Section 7.1.3, the feasible region of the subproblem is extended, such that feasi-
ble solutions always exist. Moreover, a procedure for stepsize reduction is presented,
which is more efficient than the Armijo line search algorithm, see Section 7.1.4. Some
stopping criteria are presented in Section 7.1.5.

7.1.1 Active Set Strategy

An important feature improving the performance of the SCP Algorithm 14 and the
SCPF Algorithm 16 significantly is the usage of an active set strategy, Zillober [104].
The active set strategy reduces the dimension of the subproblem (5.7). Only those
constraints are integrated, that are active or violated at the current iterate or which
are supposed to become active or violated in the subsequent iteration. The other
constraints are neglected during the solution of the subproblem. As a consequence,
gradients have to be computed only for the constraints belonging to the active set. This
reduces the computational effort significantly, especially if the evaluation of gradients
is expensive. The selection of the constraints, which should be part of the active set
is difficult. If too many constraints are included in the active set, the computational
benefit is low. If only few constraints are considered, the solution process might cycle.
Equality constraints are included in the active set in each iteration. An inequality
constraint cj (x) , j ∈ {me + 1, . . . ,mc}, is included in iteration k, if

cj
(
x(k)
)
≥ −a, ∀j = me + 1, . . . ,mc (7.1)

holds, where a ∈ R+ is to be specified by the user. In addition, an inequality constraint
cj (x) , j = me+1, . . . ,mc, which was included in the active set during the last iteration
remains in the active set, if (

y(k)
c

)
j
6= 0 (7.2)

124 7 Numerical Implementation and Results

holds.

It can be beneficial that some specific constraints are part of the active set in each
iteration step, although they do not satisfy (7.1) or (7.2). The reason is that these
constraints are expected to be active in the optimal solution x? ∈ Rn, i.e.,

cj (x?) ≥ −a, ∀j = me + 1, . . . ,mc. (7.3)

These constraints are added to the active set permanently, if they are identified by
the user. Therefore, the active set is extended by this additional condition. We define
the active set by

A(k) :=
{
j = me + 1, . . . ,mc

∣∣ cj (x(k)
)
≥ −a

}
∪{

j = me + 1, . . . ,mc

∣∣∣ cj (x(k−1)
)
≥ −a and

(
y(k)
c

)
j
6= 0

}
∪ (7.4)

{j = me + 1, . . . ,mc | cj (x?) ≥ −a} .

It has to be noticed that the feasibility constraints ej (x) , j = 1, . . . ,mf , have to be
included in the active set in each iteration step. Otherwise, their feasibility cannot be
assured. This leads to the following reduced subproblem in iteration k derived from
(5.7)

min
x

f (k) (x) x ∈ Rn

s.t. c
(k)
j (x) = 0, j = 1, . . . ,me

c
(k)
j (x) ≤ 0, j ∈ A(k)

ej (x) ≤ 0, j = 1, . . . ,mf

x
(k)
i ≤ xi ≤ x

(k)
i , i = 1, . . . , n

(7.5)

Using an active set strategy on subproblem level allows to neglect feasibility con-
straints during the solution process of the subproblem.

7.1.2 Linear Constraints

Both the MMA and SCP method presented in Section 4.1 and 4.2 respectively, ap-
proximate linear inequality constraints in the same way as nonlinear ones, see (4.5).
SCPF10.f provides the opportunity to pass linear constraints directly to the subprob-
lem, which can be exploited on subproblem level. We define the set of linear constraints
by

L := {j = me + 1, . . . ,mc | cj (x) linear} (7.6)

and the set of nonlinear constraints by

L := {j = me + 1, . . . ,mc | j /∈ L} . (7.7)

7.1 Implementation 125

Taking the active set strategy presented in Section 7.1.1 into account, the subproblem
in iteration k is given by

min
x

f (k) (x) x ∈ Rn

s.t. c
(k)
j (x) = 0, j = 1, . . . ,me

cj (x) ≤ 0, j ∈ L ∩ A(k)

c
(k)
j (x) ≤ 0, j ∈ L ∩ A(k)

ej (x) ≤ 0, j = 1, . . . ,mf

x
(k)
i ≤ xi ≤ x

(k)
i , i = 1, . . . , n

(7.8)

7.1.3 Infeasible Subproblems

The formulation of subproblem (5.7) does not ensure that the feasible region is
nonempty, if the current iterate x(k) is infeasible. For this reason we have to consider
an extended problem formulation, whenever an infeasible subproblem is detected.
Therefore, the feasible region is enlarged by introducing additional variables for each
violated constraint. Due to strict feasibility of ej (x) , j = 1, . . . ,mf , this is only nec-
essary for the constraints cj (x) , j = 1, . . . ,mc. We consider the violated constraints
and define

M(k)
e :=

{
j = 1, . . . ,me

∣∣∣ c(k)
j

(
x(k)
)
6= 0

}
, (7.9)

M(k)

e :=
{
j = 1, . . . ,me

∣∣∣ c(k)
j

(
x(k)
)

= 0
}
, (7.10)

M(k)
c :=

{
j ∈ L ∩ A(k)

∣∣∣ c(k)
j

(
x(k)
)
> 0

}
∪
{
j ∈ L ∩ A(k)

∣∣ cj (x(k)
)
> 0

}
,(7.11)

M(k)

c :=
{
j ∈ A(k)

∣∣ j /∈M(k)
c

}
, (7.12)

M(k) := M(k)
e ∪M(k)

c (7.13)

The number of violated constraints in iterate x(k) is given by |M(k)|. We extend each

constraint c
(k)
j (x) , j ∈M(k), by

c
(k)
j (x)− γjcj

(
x(k)
)

= 0, j ∈M(k)
e (7.14)

cj (x)− γjcj
(
x(k)
)
≤ 0, j ∈M(k)

c ∩ L (7.15)

c
(k)
j (x)− γjcj

(
x(k)
)
≤ 0, j ∈M(k)

c ∩ L (7.16)

with −1 ≤ γj ≤ 1, j ∈ M(k)
e and 0 ≤ γj ≤ 1, j ∈ M(k)

c . It is easy to see that for
γj = 1, j ∈M(k), the current iterate x(k) becomes feasible for the extended subproblem.
Forcing the value of the additional variables γj, j ∈ M(k), to be as small as possible,

they are penalized in the objective function by the penalty parameter ρ
(k)
c ∈ Rmc ,

see (5.14) and the augmented Lagrangian function (5.13). We obtain the extended

126 7 Numerical Implementation and Results

subproblem

min
x,γ

f (k) (x) +
1

2

∑
j∈M(k)

(
ρ(k)
c

)
j
γ2
j x ∈ Rn, γ ∈ R|M(k)|

s.t. c
(k)
j (x)− γjcj

(
x(k)
)

= 0, j ∈M(k)
e

c
(k)
j (x) = 0, j ∈M(k)

e

cj (x)− γjcj
(
x(k)
)
≤ 0, j ∈M(k)

c ∩ L

c
(k)
j (x)− γjcj

(
x(k)
)
≤ 0, j ∈M(k)

c ∩ L

cj (x) ≤ 0, j ∈M(k)

c ∩ L

c
(k)
j (x) ≤ 0, j ∈M(k)

c ∩ L

ej (x) ≤ 0, j = 1, . . . ,mf

−1 ≤ γj ≤ 1, j ∈M(k)
e

0 ≤ γj ≤ 1, j ∈M(k)
c

x
(k)
i ≤ xi ≤ x

(k)
i , i = 1, . . . , n

(7.17)

Note that linear constraints might be violated in iteration k , if they were not included
in the active set of the previous iteration. Zillober [97] shows that under certain
conditions a descent in the augmented Lagrangian is still guaranteed for a similar
problem.

7.1.4 Line Search Procedure

The implementation of the line search procedure has a major impact on the perfor-
mance of the optimization algorithm. Frequently, the procedure is based on a quadratic
interpolation of the merit function, which is in some cases combined with the stepsize
reduction according to Armijo, see Schittkowski [74]. We use a quadratic interpolation

based on ∇Φρ(k)

(
x(k)

y(k)

)T
d(k), Φρ(k)

(
x(k)

y(k)

)
and Φρ(k)

((
x(k)

y(k)

)
+ σ(k,i)d(k)

)
and

define

σ :=
0.5
(
σ(k,i)

)2∇Φρ(k)

(
x(k)

y(k)

)T
d(k)

σ(k,i)∇Φρ(k)

(
x(k)

y(k)

)T
d(k) − Φρ(k)

((
x(k)

y(k)

)
+ σ(k,i)d(k)

)
+ Φρ(k)

(
x(k)

y(k)

) (7.18)

To avoid numerical instabilities in special cases of an unsuitable interpolation, the
procedure is combined with the Armijo step stepsize reduction rule (4.27), see Schitt-
kowski [74]. We define

σ(k,i+1) :=

{
max

{
σ; β2σ

(k,i)
}
, if σ < σ(k,i)

βσ(k,i), otherwise
(7.19)

7.1 Implementation 127

with β ∈ (0, 1) and 0 < β2 < β.

The stepsize σ(k,i) is reduced until the Armijo condition is satisfied for the first time,
i.e.,

Φρ(k)

((
x(k)

y(k)

)
+ σ(k,i)d(k)

)
≤ Φρ(k)

(
x(k)

y(k)

)
+ rσ(k,i)∇Φρ(k)

(
x(k)

y(k)

)T
d(k), (7.20)

holds with r ∈ (0, 1). This leads to the following algorithm

Algorithm 17. Line Search Procedure

Step 0: Set σ(k,0) := 1 and choose parameters r ∈ (0, 1), β ∈ (0, 1), 0 < β2 < β.

Compute Φρ(k)

(
x(k)

y(k)

)
, Φρ(k)

((
x(k)

y(k)

)
+ σ(k,0)d(k)

)
, ∇Φρ(k)

(
x(k)

y(k)

)T
d(k).

Set i := 0.

Step 1: If (7.20) is satisfied, then STOP, σ(k) = σ(k,i).

Step 2: Compute σ according to (7.18).

Step 3: Update σ(k,i+1) according to (7.19).

Step 4: Set i := i+ 1, compute Φρ(k)

((
x(k)

y(k)

)
+ σ(k,i)d(k)

)
and goto Step 1.

7.1.5 Stopping Criteria

Algorithm 16 seeks to find a stationary point of (5.5). Different stopping criteria can
be used, see Schittkowski [74]. The algorithm terminates, if an iterate

(
x(k), y(k)

)
is

considered as feasible, i.e.,∣∣cj (x(k)
)∣∣ ≤ ε, j = 1, . . . ,me (7.21)

cj
(
x(k)
)
≤ ε, j = me + 1, . . . ,mc (7.22)

ej
(
x(k)
)
≤ ε, j = 1, . . . ,mf (7.23)

where ε ∈ R+ is the feasibility tolerance and one of the following conditions holds,

1.
∣∣∣∇f (x(k)

)T
∆x(k)

∣∣∣+
mc∑
i=1

∣∣∣(y(k)
c

)
j
cj
(
x(k)
)∣∣∣+

mf∑
i=1

∣∣∣(y(k)
e

)
j
ej
(
x(k)
)∣∣∣ ≤ ε(7.24)

2.
∥∥∇f (x(k)

)∥∥ ≤ ε (7.25)

3.

∥∥∥∥x(k) − x(k−1)

x(k−1)

∥∥∥∥
∞
≤ ε, |f

(
x(k)
)
− f

(
x(k−1)

)
| ≤ ε

and

∣∣∣∣∣f
(
x(k)
)
− f

(
x(k−1)

)
f (x(k−1))

∣∣∣∣∣ ≤ ε (7.26)

4.
∥∥∇Φρ

(
x(k), y(k)

)∥∥
∞ ≤ ε (7.27)

5. |f
(
x(k−i))− f (x(k−i−1)

)
| ≤ ε, i = 0, . . . , 15 (7.28)

128 7 Numerical Implementation and Results

7.2 Program Organization

The implementation of Algorithm 16 is the FORTRAN code SCPF10.f. The pro-
gram is called via reverse communication. The user has to provide function and
gradient evaluations on request. Moreover, the Hessian evaluations must be pro-
vided for feasibility constraints. In general, it is distinguished between the inner and
the outer iteration sequence. The outer iteration sequence consists of the iterates
computed by Algorithm 16. Function and gradient evaluations are required for the
objective function f (x), the constraints cj (x) , j = 1, . . . ,mc, and feasibility con-
straints ej (x) , j = 1, . . . ,mf . Note that the gradients are to be computed for the
constraints included in the active set only, see Section 7.1.1. In addition, the resulting
subproblem (5.7) is solved iteratively. During this inner iterations, functions, gradients
and second order derivatives are to be evaluated only for the feasibility constraints
ej (x) , j = 1, . . . ,mf . The corresponding evaluations of the objective function f (k) (x)

and the constraints c
(k)
j (x) , j = 1, . . . ,mc, are determined internally in analytical

form by the approximation schemes (4.23) and (4.25). The subproblems are solved by
IPOPT, see Wächter and Biegler [90]. As it can only handle equality constraints, we
extend the subproblem (5.7) presented in Section 5.1 by introducing slack variables
s ∈ Rmc+mf−me . We get

min
x,s

f (k) (x) x ∈ Rn, s ∈ Rmc+mf−me

s.t. c
(k)
j (x) = 0, j = 1, . . . ,me

c
(k)
j (x) + sj−me = 0, j = me + 1, . . . ,mc

e′j (x) = 0, j = 1, . . . ,mf

x
(k)
i ≤ xi ≤ x

(k)
i , i = 1, . . . , n

0 ≤ si, i = 1, . . . ,mc −me +mf

(7.29)

where

e′j(x) := ej (x) + sj+mc−me , j = 1, . . . ,mf . (7.30)

A graphical presentation of the program organization is given in Figure 7.1. The al-
gorithm creates an output of the form

IT ITSUB ACT FEASIBILITY OBJECTIVE SIGMA NORM(DX) NORM(L X)

with

IT - iteration number
ITSUB - number of iterations to solve the subproblem
ACT - number of constraints within the active set
FEASIBILITY - sum of constraint violations, i.e., ‖c(x)‖1

OBJECTIVE - objective function value
SIGMA - stepsize
NORM(DX) - norm of primal search direction, i.e., ‖∆x‖2

NORM(L X) - norm of gradient of the Lagrangian function, i.e., ‖∇xL(x, y)‖∞

7.2 Program Organization 129

CALL SCPF(…) CALL IPOPT(…)Solution of subproblemOptimization method

CALL FUNCTION_FEAS_I(…)Evaluation of functions e‘j(x),

j=1,…mf at current iterate

CALL GRADIENT_FEAS_I(…)Evaluation of gradients of

e‘j(x), j=1,…mf at current

iterate

CALL FUNCTION_EVAL(…)

CALL FUNCTION_FEAS(…)

Evaluation of functions f(x),

cj(x), j=1,…mc and ej(x),

j=1,…mf at current iterate

CALL GRADIENT_EVAL(…)

CALL GRADIENT_FEAS(…)

Evaluation of gradients of

f(x), cj(x), j=1,…mc and

ej(x), j=1,…mf at current

iterate

CALL HESSIAN_FEAS_I(…)Evaluation of Hessian of

e‘j(x), j=1,…mf at current

iterate

Fig. 7.1: Reverse communication for SCPF-Algorithm

130 7 Numerical Implementation and Results

7.3 Numerical Results

7.3.1 Free Material Optimization

Free material optimization was introduced in Chapter 6. We proceed from problem
formulation (6.66) in Section 6.3, i.e.,

min
E,α

α E ∈ S3m, α ∈ R

s.t.
m∑
i=1

Trace (Ei)− V ≤ 0

Trace (Ei)− ν ≤ 0, i = 1, . . . ,m

fTj K (E)−1 fj − α ≤ 0, j = 1, . . . , l

−di2 (Ei − νI) ≤ −ε, i = 1, . . . ,m

−di3 (Ei − νI) ≤ −ε, i = 1, . . . ,m

eip ≤ e, i = 1, . . . ,m, p = 1, . . . , 6

eip ≥ e, i = 1, . . . ,m, p = 2, 4, 5

eip ≥ ed, i = 1, . . . ,m, p = 1, 3, 4

α ≤ α ≤ α

(7.31)

with

di2 (Ei − νI) := (ei3 − ν) (ei1 − ν)− e2
i2 (7.32)

di3 (Ei − νI) := (ei6 − ν)
(
(ei3 − ν) (ei1 − ν)− e2

i2

)
−e2

i4 (ei3 − ν)− e2
i5 (ei1 − ν) + 2ei2ei4ei5 (7.33)

The small parameter ε ∈ R+ is introduced to prevent numerical instabilities in case of
vanishing material. Otherwise, the LICQ, see Definition 5, is violated, as the gradients
become zero and thus linear dependent. Moreover, we introduce box constraints for
each variable. This is necessary to ensure a compact feasible set F , defined by

F := {eip ∈ R, i = 1, . . . ,m, p = 1, . . . , 6 | −di2 (Ei − νI) ≤ −ε}
∩ {eip ∈ R, i = 1, . . . ,m, p = 1, . . . , 6 | −di3 (Ei − νI) ≤ −ε} (7.34)

∩ X

with

X := {eip ∈ R, i = 1, . . . ,m, p = 2, 4, 5 | e ≤ eip ≤ e}
∩ {eip ∈ R, i = 1, . . . ,m, p = 1, 3, 4 | ed ≤ eip ≤ e} (7.35)

∩{α ∈ R | α ≤ α ≤ α}

Note that the lower bound on diagonal entries ensures that ei1 − ν 6= 0, i.e., ed > ν.

7.3 Numerical Results 131

The subproblem is generated by approximating the objective function as well as non-
linear inequalities. To ensure strict feasibility with respect to the subdeterminants, the
corresponding nonlinear functions are passed as feasibility constraints directly to the
subproblem. Within our test set the linear constraints are also passed to the subprob-
lem without approximation, see Section 7.1.2. This leads to the following subproblem

min
E,α

f (k) (E,α) E ∈ S3m, α ∈ R, s ∈ R1+3m+l

s.t.
m∑
i=1

Trace (Ei)− V + s1 = 0

Trace (Ei)− ν + s1+i = 0, i = 1, . . . ,m

c
(k)
j (E,α) + s1+m+j = 0, j = 1, . . . , l

−di2 (Ei − νI) + s1+m+l+i = −ε, i = 1, . . . ,m

−di3 (Ei − νI) + s1+2m+l+i = −ε, i = 1, . . . ,m

e
(k)
ip ≤ eip ≤ e

(k)
ip , i = 1, . . . ,m, p = 1, . . . , 6

α(k) ≤ α ≤ α(k)

0 ≤ si, i = 1, . . . , 3m+ l + 1

(7.36)

where

f (k) (E,α) = α(k) +

(
U

(k)
α − α(k)

)2

U
(k)
α − α

−
(
U (k)
α − α(k)

)
+ τ

(
α− α(k)

)2

U
(k)
α − α

+
m∑
i=1

6∑
p=1

τ

(
eip − e(k)

ip

)2

U
(k)
ip − eip

(7.37)

is the strictly convex separable approximation of the objective function f (E,α) = α.
The optimization variable eip corresponds to element i, while p defines the entry of the

corresponding elasticity matrix Ei. Note that U
(k)
ip is the corresponding upper asymp-

tote for eip, i = 1, . . . , n, p = 1, . . . , 6 and U
(k)
α the corresponding upper asymptote

for variable α. The lower asymptotes L
(k)
ip are defined analogously. Moreover, τ > 0

holds. The convex approximation of the compliance function (6.16) for a load case
j ∈ {1, . . . , l} is given by

132 7 Numerical Implementation and Results

c
(k)
j (E,α) = cj

(
E(k), α(k)

)
+

∑
I
(j,k)
+

∂cj
(
E(k), α(k)

)
∂eip


(
U

(k)
ip − e

(k)
ip

)2

U
(k)
ip − eip

−
(
U

(k)
ip − e

(k)
ip

) (7.38)

−
∑
I
(j,k)
−

∂cj
(
E(k), α(k)

)
∂eip


(
e

(k)
ip − L

(k)
ip

)2

eip − L(k)
ip

−
(
e

(k)
ip − L

(k)
ip

)

+

(
α(k) − L(k)

α

)2

α− L(k)
α

−
(
α(k) − L(k)

α

)
with

I
(j,k)
+ :=

{
i = 1, . . . ,m, p = 1, . . . , 6

∣∣∣∣∣ ∂cj
(
E(k), α(k)

)
∂eip

≥ 0

}
(7.39)

I
(j,k)
− :=

{
i = 1, . . . ,m, p = 1, . . . , 6

∣∣∣∣∣ ∂cj
(
E(k), α(k)

)
∂eip

< 0

}
(7.40)

and

cj (E,α) := fTj K (E)−1 fj − α, j = 1, . . . , l (7.41)

∂cj (E,α)

∂eip
:= −uj(E)T

∂K (E)

∂eip
uj(E), i = 1, . . . ,m, p = 1, . . . , 6 (7.42)

The computation of the Hessian is important to ensure local superlinear convergence
on subproblem level. Therefore, the Hessian of the Lagrangian function of the sub-
problem has to be determined. As the linear constraints are not approximated, the
corresponding Hessian becomes zero. The second order derivatives of the approxi-
mated functions c

(k)
j (E,α) , j = me + 1, . . . ,mc, and f (k) (E,α) are given by (4.25).

They are separable, i.e., the Hessian is diagonal. The Hessian of the compliance func-
tion is block separable, see (6.69) and (6.72). All together this leads to a (6m× 6m)
blockdiagonal matrix of the form

∂2L(k) (x, y)

∂xp∂xq
=


� 0 0 · · · 0
0 � 0 · · · 0
...

.
...

0 · · · 0 � 0
0 · · · · · · 0 �

 (7.43)

where � is a (6× 6) matrix. The implementation of function, gradient and Hessian
evaluation of the feasibility constraints was part of a diploma thesis, see Werner [92].

7.3 Numerical Results 133

Within the solution process, the variables are stored as a vector x ∈ R6m+1, i.e., six
variables for each Ei, i = 1, . . . ,m, and the additional variable α. We get

x := (e11, e12, e13, e14, e15, e16, e21, e22, . . . , em6, α)T . (7.44)

The internal parameters of the Algorithm are given in Table 9.3, see Appendix. The
specific constants of problem (7.31) are summarized in the following table.

Parameter Value

E(0) 10I

α(0) 1.2

e 1.D5

e -1.D5

ed 0.33333

α 1.D5

α 0.D0

ε 1.D-1

ν 100

ν 0.3333

V 0.3333ν

sσ 1.D1

Tab. 7.1: Parameters solving free material optimization problems

The active set parameter a is set to 1.1, while the stopping accuracy is 1.D-5.

The nonlinear FMO problem (7.31) is to be solved by Algorithm 16. The algorithm
was integrated into the PLATO-N interface, see Boyd [14]. We consider given test
cases of the PLATO-N academic test case library, see Bogomolny [13]. An overview
of the test set is given in Figure 7.2. Fixed nodes are denoted by I or N , while
allows to move in horizontal direction. Moreover, the loads are specified by arrows
pointing at the corresponding node. In case of several load cases the loads are enu-
merated. Note that the test case library does not contain the same discretization for
each test case, e.g., there exists no discretization with 9.500 elements for test case 1,
see Table 7.2.

134 7 Numerical Implementation and Results

1

2

Example 1: Single load case Example 2: Single load case Example 3: Multiple load case

Example 5: Single load case

Example 4: Single load case

Fig. 7.2: Test cases, see Bogomolny [13]

The results are illustrated, by plotting the traces in each finite element, see Bodnár [12].
The palette is given in Figure 7.3, where red denotes stiff material while the material
vanishes in dark blue regions. The data of the corresponding test cases is given in
Table 7.2.

1.00e+02

1.01e+00

2.60e+01

5.10e+01

7.50e+01

Fig. 7.3: Palette of graphical presentation

7.3 Numerical Results 135

The graphical presentation of the optimal material for test cases given in Figure 7.2
are presented in Figure 7.4 - 7.16.

Fig. 7.4: Single load problem 1.1 with 96 elements

Fig. 7.5: Single load problem 1.2 with 384 elements

136 7 Numerical Implementation and Results

Fig. 7.6: Single load problem 2.1 with 96 elements

Fig. 7.7: Single load problem 2.2 with 384 elements

Fig. 7.8: Single load problem 2.3 with 9.500 elements

7.3 Numerical Results 137

Fig. 7.9: Single load problem 3.1 with 96 elements

Fig. 7.10: Single load problem 3.2 with 384 elements

Fig. 7.11: Single load problem 3.3 with 9.500 elements

138 7 Numerical Implementation and Results

Fig. 7.12: Single load problem 4.1 with 300 elements

Fig. 7.13: Single load problem 4.2 with 1.300 elements

Fig. 7.14: Single load problem 4.3 with 7.500 elements

7.3 Numerical Results 139

Fig. 7.15: Single load problem 5.1 with 800 elements

Fig. 7.16: Single load problem 5.2 with 20.000 elements

140 7 Numerical Implementation and Results

Test Variables Regular Feasibility Total Iterations Time Load
case Constraints Constraints Constraints cases

1.1 577 98 192 290 123 2min 19sec 1
1.2 2.305 386 768 1.154 274 25min 14sec 1

2.1 577 98 192 290 284 5min 38sec 1
2.2 2.305 386 768 1.154 148 12min 33sec 1
2.3 57.601 9.602 19.200 28.802 331 17h 36min 1

3.1 577 99 192 291 108 2min 5sec 2
3.2 2.305 387 768 1.155 419 39min 4sec 2
3.3 57.601 9.603 19.200 28.803 400 20h 48min 2

4.1 1.801 302 600 902 185 10min 42sec 1
4.1stress 1.801 602 600 1.202 214 15min 34sec 1
4.2 7.801 1.202 2.400 3.602 183 38min 23sec 1
4.3 45.001 7.502 15.000 22.502 210 8h 22min 1

5.1 4.801 802 1.600 2.402 111 19min 55sec 1
5.2 120.001 20.002 40.000 60.002 300 48h 41min 1

Tab. 7.2: Data of numerical results

Moreover, problem 4.1 is extended by stress constraints (6.32), yielding an increase of
the number of regular constraints to 602. A graphical presentation of the stresses and
the resulting optimal structure is given in Figure 7.17. The plot on the left hand side
shows the density of the material in each finite element according to the values of the
traces, analogously to the previous results. On the right hand side, the values of the
stress constraints and the corresponding palette are shown for each finite element.

7.3 Numerical Results 141

Fig. 7.17: Single load problem 4.1 including stress constraints

Comparing the results of test case 4.1, see Figure 7.12, and test 4.1stress, see Fig-
ure 7.17, we observe a significant difference caused by the introduction of stress con-
straints. As stresses are additional constraints, the objective function is increased
yielding a structure which is less stiff. As the given amount of material is equivalent
for both test cases, only the distribution of the material differs in the solution. The
main difference are the bars on the left and right hand side, which stabilizes the struc-
ture and thus ensure that the stress constraints are satisfied.
As the gradients of the stresses are dense and the number of constraints are increas-
ing dependent on the discretization it is not possible to consider problem 4.2 and 4.3
including stresses.

7.3.2 Application in Petroleum Engineering

Apart from free material optimization, there are other applications where infeasibility
of some constraints needs to be prevented in order to successfully solve the correspond-
ing optimization problem. This difficulty arises for example in petroleum engineering
for Lift Gas optimization, see Camponogara and Nakashima [16].

We proceed from an idealized optimization problem of the form

min
x

f (x) x ∈ R12

s.t. cj (x) ≤ 0, j = 1, . . . , 9

xi ≤ xi ≤ xi, i = 1, . . . , 12

(7.45)

142 7 Numerical Implementation and Results

with

f (x) := −
4∑
j=1

gj (x) (7.46)

cj (x) := r17 + r18f (x)− xj+4, j = 1, . . . , 4 (7.47)

c5 (x) := x1x9 + x2x10 + x3x11 + x4x12 − r19 (7.48)

cj+5 (x) := xj+8

(
xj+4 − rj+4

√
xjxj+8 + rj
rj+8 + rj

)
, j = 1, . . . , 4 (7.49)

0 ≤ xi ≤ r19, i = 1, . . . , 4 (7.50)

r17 ≤ xi ≤ ri, i = 5, . . . , 8 (7.51)

0 ≤ xi ≤ 1, i = 9, . . . , 12 (7.52)

with constant values ri > 0, i = 1, . . . , 19. The functions gj (x) , j = 1, . . . , 4, are
defined by

gj (x) := rj+12

[√
xjxj+8 + rj

rj+8

+

(
1− xjxj+8 + rj

rj+8

)]√
ẽj (x) (7.53)

with

ẽj (x) :=
ej (x)

ej (x)
(7.54)

ej (x) := xj+4 − rj+4

√
xjxj+8 + rj
rj+8 + rj

(7.55)

ej (x) := −rj+4

√
xjxj+8 + rj
rj+8 + rj

< 0. (7.56)

ẽj (x) , j = 1, . . . , 4, might become negative, within the optimization process. To
prevent negative values of ẽj (x) , j = 1, . . . , 4, and thus ensure that (7.53) is well
defined, feasibility constraints are introduced. The constant values ri, i = 1, . . . , 19,
are larger than zero, ensuring that

xjxj+8 + rj
rj+8

≥ 0 (7.57)

holds. As ej (x) < 0, j = 1, . . . , 4, we introduce ej (x) , j = 1, . . . , 4, given by (7.55),
as feasibility constraints. This leads to four feasibility constraints

ej (x) := xj+4 − rj+4

√
xjxj+8 + rj
rj+8 + rj

≤ −ε (7.58)

7.3 Numerical Results 143

where ε > 0 is introduced to prevent numerical instabilities. Otherwise, the compu-
tation of the gradient of

√
ẽj (x), j = 1, . . . , 4, see (7.53), fails, if the denominator

becomes zero.

Moreover, we can omit the inequality constraints c6 (x) , . . . , c9 (x), as

cj+5 (x) = xj+8ej (x) , j = 1, . . . , 4 (7.59)

and xj+8 ∈ [0, 1] holds.

The first and second order derivatives of the feasibility constraint ej (x) , j = 1, . . . , 4,
are given by

∂ej (x)

∂xi
=



− rj+4xj+8

2
√

xjxj+8+rj
rj+8+rj

(rj+8 + rj)

1

− rj+4xj

2
√

xjxj+8+rj
rj+8+rj

(rj+8 + rj)


(7.60)

∂2ej (x)

∂xi∂xq
=

 a 0 b
0 0 0
b 0 c

 (7.61)

with

a :=
rj+4x

2
j+8

4

(
xjxj+8 + rj
rj+8 + rj

)3/2

(rj+8 + rj)
2

b :=
rj+4xjxj+8

4

(
xjxj+8 + rj
rj+8 + rj

)3/2

(rj+8 + rj)
2

− rj+4

2

√
xjxj+8 + rj
rj+8 + rj

(rj+8 + rj)

c :=
rj+4x

2
j

4

(
xjxj+8 + rj
rj+8 + rj

)3/2

(rj+8 + rj)
2

It can be seen easily, that ej (x) , j = 1, . . . , 4, is convex as the corresponding Hessian
matrix is positive semidefinite. In total, we can reformulate (7.45) by

min
x

f (x) x ∈ R12

s.t. cj (x) ≤ 0, j = 1, . . . , 5

ej (x) ≤ −ε, j = 1, . . . , 4

xi ≤ xi ≤ xi, i = 1, . . . , 12

(7.62)

144 7 Numerical Implementation and Results

This leads to the following subproblem in iteration k

min
x,s

f (k) (x) x ∈ R12, s ∈ R9

s.t. c
(k)
j (x) + sj = 0, j = 1, . . . , 5

ej (x) + sj+5 = −ε, j = 1, . . . , 4

x
(k)
i ≤ xi ≤ x

(k)
i , i = 1, . . . , 12

0 ≤ si, i = 1, . . . , 9

(7.63)

where f (k) (x) is the convex approximation of f (x) according to (4.21) and c
(k)
j (x) ,

j = 1, . . . , 5, is the approximation of cj (x) , j = 1, . . . , 5, given by (4.5). Moreover,
x(k), x(k) ∈ Rn are defined by (4.8) and (4.9).

Algorithm 16 is applied to solve problem (7.62), using the constant values

r1 := 500 r2 := 400 r3 := 100 r4 := 100

r5 := 1500 r6 := 1400 r7 := 1000 r8 := 900

r9 := 3000 r10 := 3000 r11 := 3000 r12 := 3000

r13 := 2500 r14 := 2700 r15 := 2000 r16 := 2400

r17 := 250 r18 := 0.02 r19 := 400

(7.64)

The internal parameters of the Algorithm are given in Table 9.3, see Appendix. The
specific constants of problem (7.62) are summarized in the following table.

Parameter Value

x
(0)
i , i = 1, 2 10

x
(0)
i , i = 3, 4 100

x
(0)
i , i = 5, . . . , 9 250

x
(0)
i , i = 10, . . . , 12 1

ε 1.D-5

Tab. 7.3: Parameters solving Lift-Gas problems

The active set parameter a is set to 1.D10, while the stopping accuracy is 1.D-5.

The algorithm creates the following iteration sequence within 1 second.

7.3 Numerical Results 145

IT ITSUB ACT FEASIBILITY OBJECTIVE SIGMA NORM(DX) NORM(L X)
0 — — 0.4000D+03 -.3190D+02 — — 0.14D+01
1 75 9 0.2598D+02 – .3090D+02 0.10D+01 0.42D+02 0.27D+00
2 58 9 0.4092D+00 – .3124D+02 0.10D+01 0.53D+01 0.10D+00
3 70 9 0.1961D – 01 – .3123D+02 0.10D+01 0.15D+01 0.22D – 02
4 90 9 0.0000D+00 – .3123D+02 0.10D+01 0.57D – 01 0.18D – 03
5 69 9 0.0000D+00 – .3123D+02 0.10D+01 0.66D – 01 0.58D – 03
6 72 9 0.0000D+00 – .3123D+02 0.10D+01 0.16D – 01 0.42D – 03
7 66 9 0.0000D+00 – .3123D+02 0.10D+01 0.18D – 01 0.41D – 03
8 62 9 0.0000D+00 – .3123D+02 0.10D+01 0.37D – 01 0.56D – 03
9 77 9 0.0000D+00 – .3123D+02 0.10D+01 0.17D – 01 0.39D – 03

10 62 9 0.0000D+00 – .3123D+02 0.10D+01 0.61D – 01 0.56D – 03
11 58 9 0.0000D+00 – .3123D+02 0.10D+01 0.16D – 01 0.26D – 03
12 49 9 0.0000D+00 – .3123D+02 0.10D+01 0.25D – 01 0.22D – 03
13 49 9 0.0000D+00 – .3123D+02 0.10D+01 0.26D – 01 0.21D – 03
14 44 9 0.0000D+00 – .3123D+02 0.10D+01 0.59D – 01 0.24D – 03
15 62 9 0.0000D+00 – .3123D+02 0.10D+01 0.82D – 02 0.94D – 04
16 60 9 0.0000D+00 – .3123D+02 0.10D+01 0.58D – 02 0.11D – 03
17 53 9 0.0000D+00 – .3123D+02 0.10D+01 0.14D – 01 0.71D – 04
18 49 9 0.0000D+00 – .3123D+02 0.10D+01 0.90D – 02 0.43D – 04
19 47 9 0.0000D+00 – .3123D+02 0.10D+01 0.16D – 01 0.69D – 04
20 64 9 0.0000D+00 – .3123D+02 0.10D+01 0.71D – 02 0.28D – 04
21 58 9 0.0000D+00 – .3123D+02 0.10D+01 0.76D – 02 0.20D – 04
22 61 9 0.0000D+00 – .3123D+02 0.10D+01 0.85D – 02 0.33D – 04
23 54 9 0.0000D+00 – .3123D+02 0.10D+01 0.38D – 02 0.41D – 04
24 62 9 0.0000D+00 – .3123D+02 0.10D+01 0.21D – 02 0.15D – 04
25 57 9 0.0000D+00 – .3123D+02 0.10D+01 0.30D – 02 0.48D – 04
26 67 9 0.0000D+00 – .3123D+02 0.10D+01 0.33D – 02 0.22D – 04
27 90 9 0.0000D+00 – .3123D+02 0.10D+01 0.14D – 02 0.39D – 04
28 66 9 0.0000D+00 – .3123D+02 0.10D+01 0.27D – 02 0.53D – 04
29 80 9 0.0000D+00 – .3123D+02 0.10D+01 0.18D – 02 0.58D – 05

Note that from iteration 4 onwards, only the Lagrangian multipliers change until the
stopping criterion based on the KKT conditions is satisfied.

The optimal solution is given by

x1 := 368.68646 x2 := 369.73634 x3 := 394.87975
x4 := 399.41895 x5 := 256.24802 x6 := 256.24762
x7 := 256.24708 x8 := 256.24703 x9 := 0.18448106E − 05
x10 := 0.19999825E − 05 x11 := 0.42875094 x12 := 0.57757105

(7.65)

8. CONCLUSION AND OUTLOOK

The main focus of this dissertation is the development of a strictly feasible sequen-
tial convex programming (SCPF) method. SCPF guarantees that all iterates retain
feasible subject to a subset of special constraints called feasibility constraints. The
remaining constraints, so-called regular constraints, may be violated. In contrast to
feasible direction SQP methods and other algorithms yielding a feasible sequence of
iterates, SCPF is applicable, if the regular constraints are only well defined on the fea-
sible set of the feasibility constraints. Although these algorithms generate a sequence
of feasible iterates, they require function and gradient evaluations at infeasible points,
i.e., the feasibility constraints are not necessarily satisfied whenever function and gra-
dient evaluations are needed. SCPF solves continuous nonlinear programs iteratively,
by a sequence of convex subproblems, where the special structure can be exploited.
On subproblem level, the objective function as well as the regular constraints are re-
placed by convex and separable approximations, while the feasibility constraints are
included directly. A line search procedure guarantees global convergence. To ensure
feasibility with respect to feasibility constraints, even if the stepsize is reduced, we
require convexity for these special constraints. A convergence proof is given for convex
feasibility constraints.

The corresponding computer code SCPF10.f was implemented efficiently such that
large scale problems can be solved. If exists, the sparse structure of the gradients and
the Hessian is exploited. Moreover, linear constraints are approximated optionally. An
active set strategy is applied to reduce the size of the subproblems and thus speed
up the solution process. To satisfy feasibility constraints in every main iteration, the
active set strategy is only applied for regular constraints. The subproblems are solved
by IPOPT, where second order information ensures superlinear convergence on sub-
problem level.

The main application of SCPF is free material optimization (FMO), where sparse,
large-scale optimization problems are to be solved. Proceeding from a finite element
discretization the design of a structure is to be optimized, such that it becomes as stiff
as possible. The compliance function measures the stiffness of the resulting structure
dependent on the material properties in each finite element. In addition, the total
amount of material is bounded. Moreover, feasibility constraints are introduced to
ensure positive definiteness of the elementary stiffness matrices.

148 8 Conclusion and Outlook

Several different test cases with up to 20.000 finite elements yielding 120.000 variables
were successfully solved. Moreover, some of these test cases contain stress constraints,
which often cause numerical problems, since they violate constraint qualifications.

Other applications arise in petroleum industry, where square roots of some analytical
expressions, need to be computed. The introduction of feasibility constraints prevents
these expressions from becoming negative and thus ensures that they are well defined.

From the theoretical as well as the practical point of view, the requirement of convex
feasibility constraints is restrictive, but essential if a line search procedure is applied.
Using other globalization techniques, convexity is not necessarily needed. An appro-
priate convergence proof based on filter methods and a corresponding implementation
could be the result of further research.

Although SCPF has turned out to be very efficient, additional modifications might
improve the computational performance. A reduction of the calculation time is essen-
tial to allow the solution of three dimensional FMO problems or a finer discretization.
The computation time is expected to be reduced further by introducing an active set
strategy on subproblem level.

9. APPENDIX

9.1 Program Documentation

SCPF10.f is a FORTRAN subroutine, which is an extension of SCPIP30.f, see Zil-
lober [104]. To execute the program, the corresponding file has to be compiled and
linked with the object codes for function and gradient evaluations provided by the user.
All calculations within these subroutines are performed in double precision arithmetic.

CALL SCPF (N, MIE, MEQ, MF, IEMAX,
EQMAX, X0, X L, X U, F ORG,
H ORG, G ORG, DF, Y IE, Y EQ,
Y L, Y U, ICNTL, RCNTL, INFO,
RINFO, NOUT, R SCP, RDIM, R SUB,
RSUBDIM, I SCP, IDIM, I SUB, ISUBDIM,
ACTIVE, IERR, IERN, IECN, IEDERV,
IELPAR, IELENG, EQRN, EQCN, EQCOEF,
EQLPAR, EQLENG, MACTIV, SPIW, SPIWDIM,
SPDW, SPDWDIM, LINEAR, LACT, SETACT)

In the following table, the meaning of the parameters is described, which is an adap-
tion of the manual of SCPIP30.f, see Zillober [104]. Values that have to be set by the
user are marked with * in the first column. (*) stands for a value that has to be set
by the user on request (reverse communication). The name of the parameters and the
corresponding size can be found in the second column. Integer values are identified
by ’I’ in the third column, double precision values by ’D’. Variables which are not
allowed to alter during the optimization process are denoted by (NA).

* N I Number of variables, at least ≥ 1 (NA).
* MIE I Number of inequality constraints (NA).
* MEQ I Number of equality constraints (NA).
* MF I Number of feasibility constraints (NA).
* IEMAX I Dimension of arrays H ORG, Y IE, ACTIVE.

Must be at least MIE and ≥ 1 (NA).
* EQMAX I Dimension of arrays G ORG, Y EQ. Must be at

least MEQ and ≥ 1 (NA).
* X0(N) D Current iterate.
* X L(N) D Lower bounds on the variables (NA).

150 9 Appendix

* X U(N) D Upper bounds on the variables (NA).
(*) F ORG D Objective function value evaluated at X0.
(*) H ORG(IEMAX) D Function values of inequality and feasibility con-

straints evaluated at X0.
(*) G ORG(EQMAX) D Function values of equality constraints evaluated

at X0.
(*) DF(N) D Gradient of the objective function at X0.

Y IE(IEMAX) D Lagrange multipliers for inequality and feasibility
constraints in current iterate.

Y EQ(EQMAX) D Lagrange multipliers for equality constraints in
current iterate.

Y L(N) D Lagrange multipliers for the lower bounds on the
variables in current iterate.

Y U(N) D Lagrange multipliers for the upper bounds on the
variables in current iterate.

* ICNTL(13) I Integer array to be set by the user. A value 0 in-
dicates that the default values should be chosen
(NA).
ICNTL(1): desired optimization method:

1: method of moving asymptotes (default)
2: sequential convex programming

ICNTL(2): currently not used
ICNTL(3): maximum number of iterations.

ICNTL(3) ≥ 1. Default: 100
ICNTL(4): desired output level

1: no output
2: only final convergence analysis
3: one line of intermediate results (default)
4: more detailed results

ICNTL(5): maximum number of function calls in
the line-search procedure (≥ 1). Default: 10

ICNTL(6): Relaxed convergence check. The pro-
gram terminates, if A)-D) hold
A) the current iterate is feasible
B) the relative change of the last two succeeding

iteration points is less than RCNTL(6)
C) the absolute change of the last two objective

function values is less than RCNTL(5)
D) the relative change of the last two objective

function values is less than RCNTL(4).
Default: 0

ICNTL(7-13): internal use.

9.1 Program Documentation 151

* RCNTL(6) D Double precision array to be set by the user (NA).
A value 0 indicates that the default values should
be chosen.
RCNTL(1): desired final accuracy. Default: 1.D-7
RCNTL(2): double precision number that indi-

cates infinity. RCNTL(2) ≥ 1.D10.
Default: 1.D30

RCNTL(3): Active set parameter a, see Sec-
tion 7.1.1. Default: RCNTL(2)

RCNTL(4,5,6): see ICNTL(6). If ICNTL(6) 6= 1,
then RCNTL(4,5,6) are not used. Defaults:
RCNTL(4) = 1.D-2
RCNTL(5) = 1.D-2
RCNTL(6) = 1.D-2

INFO(23) I Integer array containing problem information.
INFO(1): number of evaluations of Lagrangian

function values
INFO(2): number of evaluations of Lagrangian

gradients
INFO(3): necessary value for RDIM
INFO(4): necessary value for RSUBDIM
INFO(5): necessary value for IDIM
INFO(6): necessary value for SPIWDIM
INFO(7): necessary value for SPDWDIM
INFO(8): necessary value for ISUBDIM
INFO(9-19): internal use
INFO(20): current iteration number
INFO(21): number of iterations performed to solve

last subproblem
RINFO(5) D Double precision array containing some problem

information.
RINFO(1): residual of the subproblem of the last

outer iteration
RINFO(2): maximum violation of constraints
RINFO(3): stepsize in last main iteration
RINFO(4): norm of the difference of the last two

iteration points
RINFO(5): norm of the gradient of the Lagrangian

computed at the last iterate
* NOUT I Output unit number (NA).

R SCP(RDIM) D Double precision working array of dimension at
least RDIM.

* RDIM I ≥ 44*N+18*IEMAX+10*EQMAX+2*IELPAR
+20+ICNTL(5) (NA).

152 9 Appendix

R SUB(RSUBDIM) D Double precision working array of dimension at
least RSUBDIM.

* RSUBDIM I ≥22*N+41*IEMAX+2*IELPAR+30 (NA).
I SCP(IDIM) I Integer working array of dimension at least IDIM.

* IDIM I ≥7*N+8*IEMAX+2*EQMAX+3*IELPAR+15
(NA).

I SUB(ISUBDIM) I Integer working array of dimension at least ISUB-
DIM.

* ISUBDIM I ≥2*N+3*IEMAX + IELPAR+5 (NA).
ACTIVE(IEMAX) I Active set. Constraint i is part of the active set↔

ACTIVE(i) = 1. Only gradients corresponding to
the active set have to be updated.

* IERR I Initialization: 0 (NA).
On return:
<0 : Reverse communication:
-1: function values are requested
-2: gradients are requested
0: successful computation
1: maximum number of iterations exceeded
2: N ≤ 0
3: MIE < 0 or MEQ < 0 or IEMAX < 1 or

EQMAX < 1
4: MIE > IEMAX or MEQ > EQMAX
5: IELPAR or EQLPAR < 1
6: for at least one component, the lower bound is

greater or equal to the upper bound.
8: RDIM too small, cf. INFO(3)
9: RSUBDIM too small, cf. INFO(4)
901: ISUBDIM too small, cf. INFO(8)
10: IDIM too small, cf. INFO(5)
120, 121 (12/0,12/1): SPDWDIM too small, see

INFO(7).
130, 131, 132, 133, 134, 135 (13/0..5): SPIWDIM

too small, see INFO(6)
14: the user provided for at least one constraint an

empty column in the Jacobian.
15: the Jacobian matrices are not stored column-

wise
16: the Jacobian matrices are not stored correctly.

For at least one column the components are out
of order.

161: (16/1) the Jacobian matrices are not stored
correctly. More columns than constraints are
provided.

9.1 Program Documentation 153

20: the feasible region of the current subproblem
is a singleton. One possible reason is, that the
feasible region of the original problem is empty!

21: for at least one component, lower and up-
per bound of a subproblem are almost equal.
The interior-point subproblem solver is not ap-
plicable!

22: line-search needs too much function evalua-
tions

23: the norm of the gradient of the Lagrangian is
close to 0 and no feasible solution of the sub-
problem is found. Together, it is very likely, that
the feasible region is empty.

24: the current value for IELENG/EQLENG is
larger than IELPAR/EQLPAR

30: error during solution of subproblem.
31: the subproblem could not be solved within the

maximum number of iterations.
(*) IERN(IELPAR) I Row indices of the entries of the Jacobian of the

inequality and feasibility constraints (NA).
(*) IECN(IELPAR) I Column indices of the entries of the Jacobian of

the inequality and feasibility constraints (NA).
(*) IEDERV(IELPAR) D Values of the entries of the Jacobian of the inequal-

ity and feasibility constraints. Only nonzero ele-
ments have to be stored, but zero elements are al-
lowed. The three arrays IERN, IECN and IEDERV
are expected to be sorted by function numbers and
inside one function by component numbers, i.e., it
is expected that the Jacobian is stored columnwise
(NA).

* IELPAR I Dimension of arrays IERN, IECN and IEDERV.
Must be at least IELENG and ≥1 (NA).

(*) IELENG I Current number of entries in IEDERV (NA).
(*) EQRN(EQLPAR) I Row indices of the entries of the Jacobian of the

equality constraints (NA).
(*) EQCN(EQLPAR) I Column indices of the entries of the Jacobian of

the equality constraints (NA).
(*) EQCOEF(EQLPAR) D Values of the Jacobian of the equality constraints.

Only nonzero elements have to be stored, but zero
elements are allowed. The three arrays EQRN,
EQCN and EQCOEF are expected to be sorted
by function numbers and inside one function by
component numbers, i.e., it is expected that the
Jacobian is stored columnwise (NA).

154 9 Appendix

* EQLPAR I Dimension of arrays EQRN, EQCN and EQCOEF.
Must be at least EQLENG and ≥1 (NA).

(*) EQLENG I Current number of entries in EQCOEF (NA).
MACTIV I Number of constraints included in the active set.
SPIW(SPIWDIM) I Integer working array of dimension at least SPI-

WDIM.
* SPIWDIM I Has to be at least (NA):

SPDW(SPDWDIM) D Double precision working array of dimension at
least SPDWDIM. For the handling see SPIW.

* SPDWDIM I Has to be at least (NA):
* LINEAR(IEMAX) I Input array indicating linear constraints, LIN-

EAR(i) = 0 ↔ constraint i is linear.
* SETACT(IEMAX) I Input array specifying constraints to be active in

every iteration, see Section 7.1.1.
* LACT I Length of SETACT during the optimization pro-

cess

The algorithm is based on reverse communication. The parameter IERR indicates the
required type of evaluation.

IERR = -1 Function evaluation for all constraints and objective, stored
in H ORG(1), . . . ,H ORG(MIE+MF),G ORG(1), . . . ,G ORG(MEQ)
and F ORG respectively.

IERR = -2 Gradient evaluation for the objective and for all constraints included
in the active set. The gradients of cj(x), j = 1, . . . ,me are stored
at positions 1, . . . ,EQLENG, of EQRN, EQCN and EQCOEF. The
gradients of cj(x), j = me + 1, . . . ,mc and ej(x), j = 1, . . . ,mf are
both stored in IERN, IECN and IEDERV, starting with the regular in-
equalities. The total number of entries is denoted by IELENG. Active
constraints are indicated by the array ACTIVE(j)=1. The gradient of
the objective is stored in dense format in DF.

Note, that whenever gradients are required, a previous call of function values was made
at the same iterate X0 and F ORG, H ORG and G ORG contain function values of
objective and constraints at X0. X0, F ORG, H ORG and G ORG are not allowed to
be altered during the computation of gradients.

Moreover, the function and gradient evaluations have to be computed on subproblem
level. Due to the approximation scheme of SCPF, the user has to adapt the following
routines, to provide the evaluation of the feasibility constraints in the current iterate.

9.1 Program Documentation 155

Function evaluation:

SUBROUTINE EV C(N1, XWS, MIE2, H APP, DAT, IDAT)

Gradient evaluation:

SUBROUTINE EV A(TASK, N1, XWS, NZ, VAL, COL, ROW,
DAT, IDAT)

Evaluation of Hessian:

SUBROUTINE EV H(TASK, N1, XWS, M, LAM, NNZH,
VOUT, IRNH, ICNH, DAT, IDAT)

The variables are defined as follows

N1 I Number of variables including slack variables (NA).
XWS(N) D Current iterate.
M I Number of equality constraints (NA).

(*) H APP(M) D Value of constraints at current iterate.
DAT(*) D Double precision working array (NA).
IDAT(*) I Integer working array (NA).
TASK I = 0, Compute maximal number of gradient or Hessian

entries
= 1, Compute gradients or Hessian

(*) NZ I Maximal number of gradient entries (NA).
(*) VAL(NZ) D Values of gradients. Only nonzero elements have to be

stored, but zero elements are allowed.
(*) COL(NZ) I Column indices of gradient.
(*) ROW(NZ) I Row indices of gradient.

LAM(M) D Lagrangian multipliers.
(*) NNZH I Maximal number of Hessian entries (NA).
(*) VOUT(NNZH) D Values of the Hessian. Only nonzero elements have to

be stored, but zero elements are allowed.
(*) IRNH(NNZH) I Row indices of the Hessian.
(*) ICNH(NNZH) I Column indices of the Hessian

For a more detailed description see Wächter and Biegler [90]. Note, that IPOPT solves
an extended subproblem including slack variables. Therefore, the subroutine to com-
pute the gradients of the feasibility constraints within the subproblem solution process
has to be adapted.

156 9 Appendix

The internally used parameters are given in the subsequent table.

Name Value

Lmin -1.D5

Umax 1.D5

ξ 0.5

T1 0.7

T2 1.15

ω 0.9

r 1.D-2

y
(0)
j , j = 1, . . . ,mc +mf 0.D0

ρ
(−1)
j , j = 1, . . . ,mc +mf 1.D0

κ1 2

κ2 10

β 5.D-1

β2 1.D-2

τ τ (k) = max
{

1.D-6, 1.D-5
∥∥∇f(x(k))

∥∥
∞

}
Tab. 9.3: Internally used parameters

BIBLIOGRAPHY

[1] W. Achtziger and C. Kanzow. Mathematical programs with vanishing con-
straints: optimality conditions and constraint qualifications. Technical report,
Institute of Applied Mathematics and Statistics, University of Würzburg, Ger-
many, 2005.

[2] L. Armijo. Minimization of functions having Lipschitz continuous first partial
derivatives. Pacific Journal of Mathematics, 16(1), 1966.

[3] S. Bakhtiari and A. Tits. A simple primal-dual feasible interior-point method
for nonlinear programming with monotone descent. Computational Optimization
and Applications, 25:17–38, 2003.

[4] A. Ben-Tal, M. Kočvara, A. Nemirovski, and J. Zowe. Free material design via
semidefinite programming. The multi-load case with contact conditions. SIAM
Journal Optimization, 9(4):813–832, 1999.

[5] M.P. Bendsøe. Optimization of Structural Topology, Shape and Material.
Springer, Heidelberg, 1995.

[6] M.P. Bendsøe and A.R. Dı́az. Optimization of material properties for Mindlin
plate design. Structural Optimization, 6:268–270, 1993.

[7] M.P. Bendsøe, J.M. Guedes, R.B. Haber, P. Pedersen, and J.E. Taylor. An
analytical model to predict optimal material properties in the context of optimal
structural design. J. Appl. Mech., 61:930–937, 1994.

[8] M.P. Bendsøe and O. Sigmund. Topology Optimization: Theory, Methods and
Applications. Springer-Verlag Berlin, 2003.

[9] H.Y. Benson and R.J. Vanderbei. Solving problems with semidefinite and related
constraints using interior-point methods for nonlinear programming. Mathemat-
ical Programming, Ser B 95:279–302, 2003.

[10] D.P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

[11] J.R. Birge, L. Qi, and Z. Wei. A variant of the Topkis-Veinott method for
solving inequality constrained optimization problems. Technical report, School
of Mathematics, University of New South Wales, Sydney, Australien, 1997.

158 Bibliography

[12] G. Bodnár. D7 - efficient algorithms for visualising FMO results. Technical
report, PLATO-N public report PU-R-5-2007, 2007.

[13] M. Bogomolny. D34 - test case library PLATOlib. Technical report, PLATO-N
public report PU-R-6-2008, 2008.

[14] R. Boyd. Specification of aircraft topology optimisation system, PLATO-N.
Technical report, PLATO-N public report PU-R-2-2007, 2007.

[15] R.H. Byrd, R.B. Schnabel, and G.A. Shultz. A trust region algorithm for nonlin-
early constrained optimization. SIAM Journal of Numerical Analysis, 24:1152–
1170, 1987.

[16] E. Camponogara and P.H.R. Nakashima. Solving a gas-lift optimization problem
by dynamic programming. European Journal of Operational Research, 174, 2006.

[17] R.M. Chamberlain, C. Lemarechal, H.C. Pedersen, and M.J.D. Powell. The
watchdog technique for forcing convergence in algorithms for constrained opti-
mization. Mathematical Programming Study, 16:1–17, 1982.

[18] P.G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland,
Amsterdam, 1979.

[19] S. Ertel. Anwendungen von Filtermethoden auf das Optimierungsverfahren
SCP. Diplomarbeit, Mathematisches Institut, Universität Bayreuth, 2006.

[20] S. Ertel, K. Schittkowski, and Ch. Zillober. D26 - sequential convex program-
ming for free material optimization. Technical report, PLATO-N public report
PU-R-4-2007, 2007.

[21] S. Ertel, K. Schittkowski, and Ch. Zillober. D14 - sequential convex program-
ming for free material optimization with displacement and stress constraints.
Technical report, PLATO-N public report PU-R-2-2008, 2008.

[22] S. Ertel, K. Schittkowski, and Ch. Zillober. A feasible sequential convex pro-
gramming method for free material optimization. In 8th World Congress on
Structural and Multidisciplinary Optimization, 2009.

[23] R. Fletcher. An exact penalty function for nonlinear programming with equali-
ties. Mathematical Programming 5, pages 129–150, 1973.

[24] R. Fletcher. An ideal penalty function for constrained optimization. Nonlinear
Programming 2, pages 121–164, 1975.

[25] R. Fletcher. Second order corrections for non-differentiable optimization, vol-
ume 912 of Lecture Notes in Mathematics, pages 85–114. Springer Berlin /
Heidelberg, 1982.

Bibliography 159

[26] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function.
Mathematical Programming, 91(2):239–269, 2002.

[27] R. Fletcher, P.L. Toint, and S. Leyffer. On the global convergence of a SQP-filter
algorithm. SIAM J. Optim., 13(1), 2002.

[28] C. Fleury. CONLIN: an efficient dual optimizer based on convex approximation
concepts. Structural Optimization, 1:81–89, 1989.

[29] C. Fleury and V. Braibant. Structural Optimization – a new dual method using
mixed variables. Int. J. Num. Meth. Eng., 23:409–428, 1986.

[30] M. Fukushima. A succesive quadratic programming algorithm with global and
superlinear convergence properties. Mathematical Programming, 35:253–264,
1986.

[31] Z.Y. Gao, G.P. He, and F. Wu. A method of sequential systems of linear equa-
tions with arbitrary initial point. Science in China Series A: Mathematics,
40(6):561–571, 1997.

[32] C. Geiger and C. Kanzow. Numerische Verfahren zur Lösung unrestringierter
Optimierungsaufgaben. Springer, 1999.

[33] N.I.M Gould and Ph.L. Toint. Global convergence of a non-monotone trustre-
gion filter algorithm for nonlinear programming, pages 125–150. Multiscale Op-
timization Methods and Applications, 2006.

[34] C. Großmann and H. Kleinmichel. Verfahren der nichtlinearen Optimierung.
Teubner-Verlag, 1976.

[35] J. Herskovits. A two-stage feasible directions algorithm for nonlinear constrained
optimization. Mathematical Programming, 36(1):19–38, 1986.

[36] J. Herskovits. Feasible direction interior-point technique for nonlinear optimiza-
tion. Journal of Optimization Theory and Applications, 99(1):121–146, 1998.

[37] J. Herskovits, J.M. Aroztegui, E. Goulart, and V. Dubeux. Large scale structural
optimization. Variational Formulations in Mechanics: Theory and Applications,
2006.

[38] J. Herskovits and L.A.V. Carvalho. A successive quadratic programming based
feasible directions algorithm. Analysis and Optimization Systems, 83:93–101,
1986.

[39] J. Herskovits and G. Santos. Feasible arc interior point algorithms for nonlinear
optimization. Computational Mechanics, New Trends and Applications, 1998.

160 Bibliography

[40] H. Hörnlein, M. Kočvara, and R. Werner. Material optimization: bridging the
gap between conceptual and preliminary design. Aerospace Science and Tech-
nology, 5, 2001.

[41] Q.-J. Hu, W.Y. Chen, and Y.-H. Xiao. An improved active set feasible SQP algo-
rithm for the solution of inequality constrained optimization problems. Journal
of Computational Analysis and Applications, 11(1):54–63, 2009.

[42] V.S. Ishutkin and C. Großmann. Verfahren der zulässigen Richtungen unter
Benutzung reduzierter Gradienten für nichtlineare Optimierungsprobleme. Op-
timization, (16):374–390, 1985.

[43] F. Jarre and J. Stoer. Optimierung. Springer-Verlag Berlin, 2004.

[44] J.-B. Jian and C.-M. Tang. An SQP feasible descent algorithm for nonlinear
inequality constrained optimization without strict complementarity. Computers
and Mathematics with Applications, 49:223–238, 2005.

[45] J.-B. Jian, C.-M. Tang, Q.-J. Hu, and H.Y. Zheng. A feasible descent SQP
algorithm for general constrained optimization without strict complementarity.
Journal of Computational and Applied Mathematics, 180:391–412, 2005.

[46] J.-B. Jian, K. Zhang, and S. Xue. A superlinearly and quadratically convergent
SQP type feasible method for constrained optimization. Appl. Math. J. Chinese
Univ. Ser. B, 15(3):319–331, 2000.

[47] M. Kočvara, A. Beck, A. Ben-Tal, and M. Stingl. PLATO-N work package
4: FMO models, task 2.2: Software specification, selection of FMO problem
formulations. Report, 2007.

[48] M. Kočvara and M. Stingl. PENNON - a generalized augmented Lagrangian
method for semidefinite programming. Report, University Erlangen, 2001.

[49] M. Kočvara and M. Stingl. Solving nonconvex SDP problems of structural opti-
mization with stability control. Optimization Methods and Software, 19(5):595–
609, 2004.

[50] M. Kočvara and M. Stingl. Free Material Optimization: towards the stress con-
straints. Structural and Multidisciplinary Optimization, 33(4-5):323–335, 2007.

[51] M. Kočvara and J. Zowe. Free Material Optimization: an overview. In A.H.
Siddiqi and M. Kočvara, eds., Trends in Industrial and Applied Mathematics,
Kluwer Academic Publishers, 2002.

[52] C.T. Lawrence. A computational efficient feasible sequential quadratic program-
ming algorithm. PhD thesis, University of Maryland, 1998.

Bibliography 161

[53] C.T. Lawrence and A.L. Tits. Nonlinear equality constraints in feasible sequen-
tial quadratic programming. Optimization Methods and Software, 6:265–282,
1996.

[54] C.T. Lawrence and A.L. Tits. A computationally efficient feasible sequential
quadratic programming algorithm. SIAM J. OPTIM., 11(4):1092–1118, 2001.

[55] Q. Li, G.P. Steven, and Y.M. Xie. On equivalence between stress criterion and
stiffness criterion in evolutionary structural optimization. Structural Optimiza-
tion, 18, 1999.

[56] J. Mach. Finite element analysis of free material optimization problem. Appli-
cations of Mathematics, 49(4):285–307, 2004.

[57] N. Maratos. Exact Penalty Function Algorithms for Finite Dimensional and
Control Optimization Problems. PhD thesis, Imperial College, London, 1978.

[58] D.Q. Mayne and E. Polak. Feasible directions algorithms for optimization
problems with equaltiy and inequality constraints. Mathematical Programming,
11:67–80, 1976.

[59] D.Q. Mayne and E. Polak. A superlinearly convergent algorithm for constrained
optimization problems. Mathematical Programming Study, 16:45–61, 1982.

[60] Q. Ni. A globally convergent method of moving asymptotes with trust region
technique. Optimization Methods and Software, 18:283–297, 2003.

[61] Q. Ni, Ch. Zillober, and K. Schittkowski. Sequential convex programming meth-
ods for solving large topology optimization problems: implementation and com-
putational results. Journal of Computational Mathematics, 23(5):491–502, 2005.

[62] E.O. Omojokun. Trust Region Algorithms for Optimization with Nonlinear
Equality and Inequality Constraints. PhD thesis, University of Colorado at
Boulder, USA, 1989.

[63] J.M. Ortega and W.C. Rheinboldt. Iterative Solution of Nonlinear Equations in
Several Variables. Classics in applied mathematics. Academic Press, New York,
1970.

[64] E.R. Panier and A.L. Tits. A superlinearly convergent feasible method for the
solution of inequality constrained optimization. SIAM J. Control and Optimiza-
tion, 25(4):934–950, 1987.

[65] E.R. Panier and A.L. Tits. On combining feasibility, descent and superlinear
convergence in inequality constrained optimization. Mathematical Programming,
59:261–276, 1993.

162 Bibliography

[66] E.R. Panier, A.L. Tits, and J.N. Herskovits. A QP-free, globally convergent, lo-
cally superlinearly convergent algorithm for inequality constrained optimization.
SIAM Journal on Control and Optimization, 2(4), 1988.

[67] E. Polak. Computational Methods in Optimization. Academic Press, 1971.

[68] M.J.D. Powell and Y. Yuan. A recursive quadratic programming algorithm that
uses differentiable exact penalty function. Mathematical Programming, 35:265–
278, 1986.

[69] M.J.D. Powell and Y. Yuan. A trust region algorithm for equality constrained
optimization. Mathematical Programming, 49:189–211, 1991.

[70] A. Ren, F. Duan, Z. Zhu, and Z. Luo. A feasible SQP method with superlinear
convergence for general constrained optimization. Journal of Applied Sciences,
7(10):1422–1427, 2007.

[71] J. B. Rosen. The gradient projection method for nonlinear programming. part
i. linear constraints. Journal of the Society for Industrial and Applied Mathe-
matics, 8(1):181–217, 1960.

[72] J. B. Rosen. The gradient projection method for nonlinear programming. part
ii. nonlinear constraints. Journal of the Society for Industrial and Applied Math-
ematics, 9(4), 1961.

[73] K. Schittkowski. On the convergence of a sequential quadratic programming
method with an augmented Lagrangian line search function. Optimization, 14,
1983.

[74] K. Schittkowski. Mathematische Grundlagen von Optimierungsverfahren, 1999.
Script.

[75] K. Schittkowski and Y. Yuan. Sequential quadratic programming methods.
Wiley Encyclopedia of Operations Research and Management Science, 2010. To
appear.

[76] K. Schittkowski, Ch. Zillober, and R. Zotemantel. Numerical comparison of
nonlinear programming algorithms for structural optimization. Structural Op-
timization, 7:1–19, 1994.

[77] O. Sigmund. A 99 line topology optimization code written in matlab. Structural
and Multidisciplinary Optimization, 21(2):120–127, 2001.

[78] M. Stingl. On the Solution of Nonlinear Semidefinite Programs by Augmented
Lagrangian Methods. Dissertation, Shaker Verlag, 2006.

[79] M. Stingl, M. Kočvara, and G. Leugering. A sequential convex semidefinite
programming algorithm with an application to multiple-load free material opti-
mization. SIAM Journal on Optimization, 20(1):120–155, 2009.

Bibliography 163

[80] K. Svanberg. The Method of Moving Asymptotes – a new method for struc-
tural optimization. International Journal for Numerical Methods in Engineer-
ing, 24:359–373, 1987.

[81] K. Svanberg. A globally convergent version of MMA without linesearch. In
N. Olhoff and G.I.N. Rozvany, editors, Proceedings of the First World Congress
of Structural and Multidisciplinary Optimization, pages 9–16. Pergamon, 1995.

[82] K. Svanberg. A new globally convergent version of the method of moving asymp-
totes. Technical Report TRITA/MAT-99-OS2, Department of Mathematics,
KTH, Stockholm, 1999.

[83] K. Svanberg. A class of globally convergent optimization methods based on
conservate convex separable approximations. SIAM J. Optimization, 12(2):555–
573, 2002.

[84] K. Svanberg. MMA and GCMMA, versions september 2007. Technical report,
Department of Mathematics, KTH, Stockholm, 2007.

[85] D.M. Topkis and A.F. Veinott. On the convergence of some feasible direction
algorithms for nonlinear programming. SIAM Journal on Control, 5:268–279,
1967.

[86] M. Ulbrich and S. Ulbrich. Non-monotone trust region methods for nonlinear
equality constrained optimization without a penalty function. Mathematical
Programming Ser B, 95:103–135, 2003.

[87] S. Ulbrich. On the superlinear local convergence of a filter-SQP method. Math-
ematical Programming, 100:217–245, 2004.

[88] R.J. Vanderbei and H.Y. Benson. On formulating semidefinite programming
problems as smooth convex nonlinear optimization problems. Technical report,
2000.

[89] A. Vardi. A trust region algorithm for equaltiy constrained minimization: con-
vergence properties and implementation. SIAM Journal on Numerical Analysis,
22:575–591, 1985.

[90] A. Wächter and L.T. Biegler. On the implementation of a primal-dual interior
point filter line search algorithm for large-scale nonlinear programming. Math-
ematical Programming, 106(1):25–57, 2006.

[91] R. Werner. Free Material Optimization - Mathematical Analysis and Numer-
ical Solution. PhD thesis, Institut für Angewandte Mathematik II, Friedrich-
Alexander-Universität Erlangen-Nürnberg, 2001.

[92] T. Werner. Interior point methods with second order derivatives for solving large
scale nonlinear programming problems. Diplomarbeit, Department of Computer
Science, University of Bayreuth, 2006.

164 Bibliography

[93] J.L. Zhou and A.L. Tits. User’s guide for FSQP version 3.5: A fortran code for
solving nonlinear (minimax) optimization problems, generating iterates satisfy-
ing all inequality and linear constraints. Technical report, 1995.

[94] Z. Zhou, K. Zhang, and J. Jian. An improved SQP algorithm for inequality
constrained optimization. Mathematical Methods of Operation Research, 58:271–
282, 2003.

[95] Z. Zhu. An efficient sequential quadratic programming algorithm for nonlinear
programming. Journal of Computational and Applied Mathematics, 175:447–
464, 2005.

[96] Z. Zhu and J. Jian. An efficient feasible SQP algorithm for inequality constrained
optimization. Nonlinear Analysis: Real World Applications, 10:1220–1228, 2009.

[97] Ch. Zillober. Eine global konvergente Methode zur Lösung von Problemen aus
der Strukturoptimierung. PhD thesis, Technische Universität München, 1992.

[98] Ch. Zillober. A globally convergent version of the method of moving asymptotes.
Structural Optimization, 6(3):166–174, 1993.

[99] Ch. Zillober. A practical interior-point method for a nonlinear programming
problem arising in sequential convex programming. Technical report, 1998.

[100] Ch. Zillober. A combined convex approximation – interior point approach for
large scale nonlinear programming. Optimization and Engineering, 2(1):51–73,
2001.

[101] Ch. Zillober. Global convergence of a nonlinear programming method using
convex approximations. Numerical Algorithms, 27(3):256–289, 2001.

[102] Ch. Zillober. Numerical Solution of Nonlinear Programming Problems by Convex
Approximation Methods. Habilitation, University of Bayreuth, 2001.

[103] Ch. Zillober. SCPIP - an efficient software tool for the solution of structural
optimization problems. Structural and Multidisciplinary Optimization, 24(5),
2002.

[104] Ch. Zillober. Software manual for SCPIP 3.0. Technical report, 2004.

[105] Ch. Zillober, K. Schittkowski, and K. Moritzen. Very large scale optimization by
sequential convex programming. Optimization Methods and Software, 19(1):103–
120, 2004.

[106] G. Zoutendijk. Methods of Feasible Directions. Elsevier, Amsterdam, 1970.

[107] J. Zowe, M. Kočvara, and M. Bendsøe. Free material optimization via mathe-
matical programming. Mathematical Programming, Series B, 79:445–466, 1997.

Acknowledgement

Finally, I would like to thank all those people who supported and accompanied me
during my time as a PhD student.

Especially, I am very thankful to my supervisor Prof. Dr. Klaus Schittkowski, who
supported and encouraged me during the last years. His expertise and helpful men-
toring allowed me to provide this scientific work and to finalize this thesis.

I am also very grateful to my co-advisor PD Dr. Christian Zillober. I learned and
profited a lot from his knowledge. His detailed and constructive comments have been
a great value throughout this study.

Further, I would like to thank Prof. Dr. Michael Stingl for the academic discussions
and the collaboration. His expertise, guidance and valuable advice have been very
helpful for this study.

My academic work was funded by the European project PLATO-N and a scholarship
of the ’Bayerische Staatsregierung’. I am very thankful for this support and the great
opportunity of a cooperation with industrial partners and scientific institutions. I en-
joyed the work with each partner very much and I profited a lot due to the support
that I obtained.

I am especially grateful to Prof. Dr. Dr. Martin Bendsøe and Prof. Dr. Mathias Stolpe,
who invited me to work at the DTU as part of a student exchange program. Their
profound knowledge and the productive collaboration (not only during this time) had
a strong influence on my research.

It has been a pleasure to join the mathematical institute of the DTU. I enjoyed the
exchange of knowledge and to learn more about Denmark. Thank you to everyone
who made the time in Lyngby so exciting: Steffi, Julia, Eduardo, Geoffrey, Mathias
and Patrick.
Tak Steffi, for your never ending patience, your encouraging support and the great
time we spent together with Anja.

I would like to thank all the members of our department for the very kind and friendly
atmosphere during work: Mrs. Lachmann, Axel, Björn, Oliver, Thomas and Thorsten.
Special thanks to Oliver for the endless and helpful discussions about convergence
proofs and algorithms, but especially for the daily coffee break, that helped to get the
head clear.

Freunde sind einzigartig und man sollte sie an dieser Stelle nicht vergessen, obwohl sie
nicht unbedingt direkt zur Entstehung einer Doktorabeit beitragen. Deswegen möchte
ich mich bei meinen lieben Freunden bedanken - weil ich immer auf Euch zählen kann:

’meine Bayreuther Mathematiker und Physiker’, für die zahlreichen Diskussionen, aber
vor allem für die Zeit in der es nicht um Mathematik ging.

die Erlanger-Clique - Alex, Jutta, Kuddel und Tine - weil ihr mich seit Jahren auf
meinem Weg begleitet.

Mein größter Dank gilt aber meiner Familie, besonders

meinem Mann Thomas, weil Du stets aufbauende Worte und Zeit für meine Probleme
findest und ich für Dich immer an erster Stelle stehe.

meinem Bruder Dirk, weil Du bei wissenschaftlichen Fragen aber besonders als großer
Bruder immer für mich da bist.

und vor allem meinen Eltern, weil ihr mir immer zur Seite steht und mich mit viel
Geduld und guten Ratschlägen unterstützt.

Sonja

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser
als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich
oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Bayreuth, den 9. Juni 2011

Sonja Lehmann
Ludwig-Thoma-Str 32e
95447 Bayreuth

