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Abstract 

Information on soils such as nutrient availability is essential for sustainable mountain 

ecosystem management. Heterogeneous soil nutrients might determine growth, distribution, 

and diversity of plants. Therefore, spatial patterns of soil nutrients should be investigated in 

mountainous areas.  

Digital soil mapping (soil landscape modelling) was used for important chemical soil 

parameters in the Soyang lake watershed, South Korea. Specific purposes are: (1) to develop 

maps of soil nutrients for ecological land potential assessment, (2) to investigate spatial 

patterns of various phosphorus (P) fractions, and (3) to predict nitrogen (N) to P ratios in the 

topsoil layer.  

Firstly, vegetation indices had the highest predictive power for soil nutrients. Using selected 

instead of all predictors via recursive feature elimination (RFE) improved prediction results 

considerably. Random forest (RF) showed the best performance compared to support vector 

regression (SVR) and generalized additive models (GAM). Cluster analysis identified four land 

potential classes: fertile, medium and unfertile with an additional class dominated by high 

phosphorus and low carbon and nitrogen contents due to human impact. This study provides 

an effective approach to map ecological land potentials for sustainable mountain ecosystem 

management. 

Secondly, surface curvature and elevation were important predictors for all P fractions. The 

concentrations of all P fractions changed with surface curvature and elevation. Higher values 

of most P fractions were found at the lower slope due to soil erosion. Especially, organic P was 

enriched at the lower slope, while the relative portion of residual P fractions was largest at the 

upper slope.  

Finally, surface curvature was selected as an important predictor for P contents in organic and 

mineral A horizons. LiDAR derived vegetation predictors and normalized difference vegetation 
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index (NDVI) strongly contributed to model N in the organic layer. N to P ratios in the organic 

and mineral A horizons showed higher values at convex upper slopes and increased with 

surface curvature. This implies that spatial patterns of P and N in a mountainous catchment 

with steep slopes under monsoon conditions are mainly controlled by topography. 

In this thesis, various methods (e.g. predictor selection and importance, uncertainty 

assessment, and LiDAR analysis) were applied to digital soil mapping. Important 

environmental predictors and processes related to spatial patterns of soil nutrients were 

investigated. Based on our results, it is possible to better understand soil nutrient dynamics in 

landscapes and identify sensitive areas under environmental changes (e.g. areas with high 

nitrogen deposition). 
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Zusammenfassung 

Informationen über Böden, insbesondere deren Nährstoffverfügbarkeit, sin notwendig für ein 

nachhaltiges Management von Gebirgslandschaften. Die räumliche Verteilung der 

Bodennährstoffe hat hierbei oft einen großen Einfluss auf Wachstum, Verteilung und Diversität 

der Pflanzen. Der Erfassung der Raummuster von Bodennährstoffen in Berglandschaften 

kommt damit eine große Bedeutung zu. 

Methoden der digitalen Bodenkartierung (Bodenlandschaftmodellierung) wurden im Soyang-

Einzugsgebiet auf wichtige chemische Bodenparameter angewandt. Die spezifischen Ziele 

sind: (1) die Bereitstellung von Karten von Bodennährstoffen zur Beurteilung der 

Bodenfruchtbarkeit, (2) die Analyse der Raummuster der verschiedenen Phosphorfraktionen, 

(3) die flächige Vorhersage der N:P-Verhältnisse im Oberboden. 

Es zeigte sich, dass Vegetationsindizes die beste Vorhersagegüte für Bodennährstoffe 

aufwiesen. Die Einschränkung auf ausgewählte Prädiktoren mit dem „recursive feature 

elimination“-Algorithmus (RFE) verbesserte die Vorhersagen deutlich im Vergleich zur 

Vorhersage mit allen Prädiktoren. Random Forest zeigte hierbei die beste Vorhersageleistung 

im Vergleich zu den anderen benutzten Methoden (support vector regression (SVR) und 

generalized additive models (GAM)). Anhand von Clusteranalysen konnten vier Klassen von 

Standortspotentialen unterschieden werden: fruchtbar, mittel und unfruchtbar und eine 

zusätzliche Klasse mit hohen Phosphorgehalten, sowie niedrigen Kohlenstoff- und 

Stickstoffgehalten als Folge anthropogener Einflüsse. Insgesamt stellt diese Arbeit einen 

Beitrag zur Kartierung ökologischer Standortspotentiale und zum nachhaltigen Management 

von Bergökosystemen dar. 

Zweitens, Oberflächenkrümmung und Höhe waren wichtige Prädiktoren für alle 

Phosphorfraktionen. Die Konzentrationen aller Phosphorfraktionen änderten sich mit der 

Oberflächenkrümmung und der Höhe. Als Folge der Bodenerosion wurden am Unterhang oft 
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erhöhte Werte der meisten Phosphorfraktionen gefunden. Besonders der organisch 

gebundene Phosphor war am Unterhang angereichert, während die relativen Anteile der 

restlichen Phosphorfraktionen an der oberen Hangseite am höchsten waren.  

Schließ lich wurde die Oberflächenkrümmung als eine wichtige Vorhersagevariable für 

Phosphorgehalte in organischen und mineralischen A-Horizonten identifiziert. LiDAR basierte 

Vegetationsparameter und NDVI (normalized difference vegetation index) waren wesentliche 

Prädiktoren für die Modellierung von N in der organischen Auflage. Die N:P-Verhältnisse in 

organischen Auflagen und A-Horizonten zeigten höhere Werte an konvexen Oberhängen und 

nahmen mit der Oberflächenkrümmung zu. Das bedeutet, dass in einem gebirgigen 

Einzugsgebiet mit steilen Hängen unter Monsoonklima die Raummuster von Phosphor und 

Stickstoff hauptsächlich durch die Topografie kontrolliert werden. 

In dieser Arbeit wurden unterschiedliche Methoden (z.B. Prädiktor-Selektion und -Relevanz, 

Unschärfeanalysen) und Analysen von LiDAR-Daten für digitale Bodenkarten angewandt. 

Wichtige ökologische Parameter und Prozesse wurden hinsichtlich ihrer Bedeutung für die 

räumliche Verteilung von Bodennährstoffen in der Landschaft analysiert. Letztlich kann man 

hiermit auch die Mechanismen der Nährstoffdynamik in Landschaften besser verstehen und 

sensitive Bereiche bei veränderten Umweltbedingungen identifizieren (z.B. Flächen mit hoher 

Stickstoff-Deposition). 
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Chapter 1 Synopsis 

1.1 Soil nutrients in the mountainous ecosystem: background 

Many studies showed essential roles of mountain soils for ecological functions (Ballabio, 2009; 

Roman et al., 2010; Wilcke et al., 2010). Mountain soils can serve as an important indicator of 

natural disasters (e.g. landslides) (Ließ et al., 2011) and also as a sensible measure of 

environmental changes such as climate change (Rodionov et al., 2007). Furthermore, soil 

nutrients such as nutrient availability determine forest growth and product (Benner et al., 2010; 

Osman, 2013). Hence, mountain soils should be considered as an key environmental factor 

for sustainable management in mountainous ecosystems (Funnell and Parish, 2005). 

However, existing soil maps have limitations in providing detailed spatial information 

particularly concerning the soils in mountain regions (Burrough et al., 2000; Grunwald, 2006). 

Firstly, polygon-based soil maps couldn’t describe continuous local variations of soil properties. 

Secondly, they don’t provide information on values of soil properties required by environmental 

models since they were based on soil types. Lastly, traditional soil mapping based on field 

work requires long time, expensive costs, and many soil mappers for the update. Finally, these 

maps don’t quite provide suitable data for environmental modelling and land management. Soil 

maps of Korea are available for agricultural (1:5,000) and forest (1:25,000) purposes. These 

maps have similar limitations. The agricultural maps don’t have detailed information on 

mountain soils, while forest soil maps have not been surveyed in any agricultural areas. Few 

data was collected in the Soyang lake watershed. 

Soil processes are controlled by a number of environmental factors operating over time to 

develop a particular soil profile with its horizontation and properties (Amundson, 2014). Jenny 

(1941) proposed a state factor equation and identified the principal factors as climate (c), 

organisms (o), relief (r), parent material (p), and time (t). Recent developments in geographic 

information system and remote sensing techniques made it possible to analyse the quantitative 

relationships between the spatial soil distribution pattern and environmental factors. There 
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have been many attempts to investigate these relationships (Dobos and Hengl, 2009; 

Grunwald, 2009; McBratney et al., 2003; Minasny and McBratney, 2015) by supervised 

learning methods such as support vector regression (SVR) (Smola and Schölkopf, 2004), 

random forest (RF) (Breiman, 2001) or artificial neural networks (ANN) (Bishop, 1995). This 

approach is called 'soil-landscape modelling', 'digital soil mapping’ (DSM) or 'Predictive soil 

mapping', which can be defined as the development of a numerical or statistical model of the 

relationship between environmental predictors and soil properties (Scull et al., 2003).  

Mountain areas provide a real challenge to any soil mapping approach as they are poor 

accessibility, have scarce data availability, and various slope processes like mass movement, 

debris flow, and severe soil erosion. Soils in mountain areas have developed by complex 

interactions among various environmental factors. In mountain areas, organic matter 

accumulation, biochemical weathering, and nutrient cycling are enhanced by vegetation in the 

soil (Brady and Weil, 2010). Furthermore, parent rock materials can determine the nutrient 

level (e.g. soil nitrogen and phosphorus) (Binkley and Fisher, 2012; Mage and Porder, 2013; 

Morford et al., 2011). Especially, it is difficult to quantify the spatial variability of the soil 

chemical properties related to soil nutrients because the chemical properties have high 

variations depending on time and are influenced by various soil-forming factors (Dobos and 

Hengl, 2009). 

This study aims at predicting spatial distributions of important soil chemical properties in 

mountain regions using supervised learning methods including uncertainty analysis in order to 

determine the spatial soil fertility patterns which determine plant growth and hence forest 

growth and management. 
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1.2 Digital soil mapping 

Digital soil mapping is the procedure of arranging information on individual natural resources 

to understand their similarities, relationships and spatial patterns to infer the spatial distribution 

of soil properties based on climate, geology, vegetation, soil and relief. The procedure is 

described by Figure 1.1. The three following questions are important issues for digital soil 

mapping (Lagacherie and McBratney, 2007): (1) What environmental factors are of particular 

importance? (2) How to select the best prediction model? (3) How better the outputs of digital 

soil mapping show? (e.g., uncertainty visualization) 

1.2.1 Supervised learning methods: correlation modelling 

 

McBratney et al. (2003) reviewed the recent methods for digital soil mapping and suggested 

the inclusion of soil (s) and spatial information (n) as predictors in addition to Jenny’s 

environmental factors (Equation 1.1).  

 

 

Figure 1.1 Digital soil mapping procedures. S: soil properties, f: models. 
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S = f(s, c, o, r, p, a, n) , (1.1) 

S= soil (Sc for soil classes or Sp for soil properties); s= existing soil information; c= climate; r= 

relief (topographic attribute); p= parent material; a= age; n= spatial position 

 

Several of methods for spatial soil modelling f() are available: Multiple linear regression, 

generalized linear models, generalized additive models (GAM), ANN, classification and 

regression trees (CART) and RF were used to predict soil properties. Multiple linear regression 

is one of the most used methods (Grunwald, 2009; Grunwald, 2006; McBratney et al., 2003). 

This method requires several samples for good performance and is based on linear 

relationships between environmental predictors and soil properties. In mountain areas, 

however, the number of available soil samples is limited and the relationships are often non-

linear. These issues are partially resolved by non-parametric machine learning techniques 

(Ballabio, 2009). The machine learning techniques have a common ability to consider 

nonlinear relationships between responses and independent variables and the ability can be 

used for complex soil and environmental factor relationships in the mountain area. However, 

the models have some difficult characteristics, namely; they are not easy to interpret, require 

to tune many parameters, and might be not computationally efficient for large datasets (Kuhn 

and Johnson, 2013). The predictive power, ease of use and interpretability change based on 

model’s complexity (Table 1.1). 

CART, GAM, RF and SVR were used in predicting mountain soil properties and showed good 

results for digital soil mapping (Ballabio, 2009; Ließ et al., 2012; Tesfa et al., 2009) because 

the tuning of parameters may fit data from different environmental conditions well and allow 

the construction of appropriate models. The available machine learning models have been 

compared for better predictions (Table 1.1) (Manuscript 1). 
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In general, the prediction result is made better with more predictors but this can lead to over-

fitted models which fit random noise of data instead of the underlying pattern due to the 

extremely complex model and too many predictors in comparison with the number of samples 

(Hastie et al., 2009; Hjort and Luoto, 2013; Kuhn and Johnson, 2013; Park and Vlek, 2002). 

Predictor selection is a critical step of regression methods, because this approach can reduce 

the number of predictors and produce the optimized model (Guyon and Elisseeff, 2003). 

Although various selection methods have been suggested, recursive feature elimination (RFE) 

performed improved results in digital soil mapping (Ballabio, 2009; Brungard et al., 2015). This 

is because RFE can avoid checking the whole combinations of predictors and effectively 

remove uninformative predictors. 

Models represent reality as simplified patterns but might overemphasize patterns (Kuhn and 

Johnson, 2013). Therefore, assessing models should be required for modelers to obtain the 

reproducible pattern in the data. For model validation, different methods of splitting data into 

tuning and test datasets have been proposed. K-fold cross-validation (CV) is a resampling 

method partitioning the sample into k subsets, evaluating the model on one subset and training 

Table 1.1 Summary of the strengths and weaknesses of different predictive models.  

 Strengths Weaknesses 

LM High ease of use, high interpretability, 

high parsimony 

Low predictive power, low flexibility, 

low robustness to outliers 

GAM High computational efficiency, rather 

high flexibility  

Low parsimony, low Interpretability, 

low robustness to outliers 

RF High ease of use, high computational 

efficiency, high robustness to outliers, 

high predictive power 

Low parsimony, low interpretability 

SVR High flexibility, high predictive power Low parsimony, low interpretability, 

low computational efficiency 

LM: linear models, GAM: generalized additive models, RF: random forest, SVR: support 

vector regression. Source: adapted from Hastie et al. (2009), Minasny and Hartemink 

(2011), Hjort and Luoto (2013), and Elith and Franklin (2013).      
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the model by the remaining subsets, and repeating this procedure K times. Generally, 

modelers use the averaged performance result. They provide standard errors which can be 

used for uncertainty analysis of digital soil mapping. Methods to analyse the digital soil map 

uncertainty include monte carlo simulation, bootstrapping, and cross-validation (Minasny and 

Bishop, 2008). 

1.2.2 Environmental predictors: terrain analysis and remote sensing 

 

Climate and parent material are key factors for soils in the global, continental, and regional 

scale, while soils are locally determined by vegetation and topography over smaller areas 

(Gerrard, 2000). Most studies used different parameters from the Digital Elevation Model (DEM) 

such as elevation, slope angle, aspect, upslope contributing area (specific catchment area), 

profile and plan curvature, wetness index, and stream power index as predictors. Only using 

terrain predictors can product digital soil maps with the good accuracy (Ballabio, 2009). Moore 

et al. (1993) studied A horizon depth and soil texture using a DEM. McKenzie and Ryan (1999) 

reached relatively high predictive values for total phosphorus (R2= 0.78) and soil carbon (R2= 

0.54). Gessler et al. (2000) accounted for between 52 and 88% of soil property variance, such 

as soil depth, A horizon depth, and soil carbon.  

Spatial distributions of vegetation are related to the spatial heterogeneity in soil resource 

distributions (Binkley and Fisher, 2012). Soil development is also influenced by vegetation, 

which means vegetation coexists with soil as part of a feedback system (Ballabio et al., 2012). 

LiDAR (Light detection and ranging) metrics and normalized difference vegetation indices can 

be used as vegetation predictors. LiDAR is a remote sensing technology which has structural 

information on the illuminated surface, including 3D terrain, vegetation canopy information, and 

object heights. Especially, precisive DEMs and forest structure predictors from LiDAR data can 

improve the quality of soil nutrient models (Manuscript 3).  
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1.2.3 Scale: neighbourhood size effects 

 

Scale issues are important to soil, geography, ecology and earth science (Phillips, 1999). Scale 

mainly consists of cartographic scale, process scale and analysis scale (Montello, 2001). 

Cartographic scale refers to the proportion of size of an object on a map relative to the real 

size in the world. Process scale is the size at which a physical earth structure or process 

operates irrespective of how they are researched (Montello, 2001). This scale is related with 

the spatial extent based on the characteristic of the natural process. Analysis scale is the size 

of the measure unit such as pixel size of digital elevation data (resolution) (Zhang et al., 2013).  

In perspective to analysis scale, researchers should choose the suitable grid size of 

environmental predictors, measurement scale and the extent of research area in digital soil 

mapping to investigate the relationships between predictors and soil properties. Many studies 

found scale-dependency of soil–environmental factor relationships in various environmental 

conditions. However, the issue of scale has not been solved perfectly. There have been active 

debates associated with different methods and perspectives in the generation, analysis, and 

selection of DEMs (Kim and Zheng, 2011). Many studies have tried to find the right analysis 

scale. This right scale was simulated by constantly increasing either the cell size of DEMs or 

the neighborhood size (Drăguţ et al., 2009). About 15 – 30m grid sizes are recommended in 

many studies for digital soil mapping (Erskine et al., 2007; Kim and Zheng, 2011; Maynard and 

Johnson, 2014; Park et al., 2009). Cavazzi et al. (2013) investigated the interacting effects 

between window and grid sizes and also suggested the choice of fine scale DEMs in digital 

soil mapping is not always best. There has been little consideration of the effects of the 

neighborhood size for prediction of soil nutrients.  

Effects of the neighborhood extent have an influence on values of terrain predictors (e.g. slope, 

aspect, and curvature) and finally on results of digital soil mapping (MacMillan and Shary, 2009; 

Maynard and Johnson, 2014; Wood, 2009). It is normally calculated based on 3x3 cell 
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neighborhood extents that can only consider the local variability. In the large extent, it is more 

similar to landform elements such as upper slope, linear slope, and lower slope which is critical 

to understand spatial patterns of soil nutrients as well as potentials of mountainous ecosystems. 

Therefore, effects of the neighborhood extent should be investigated for digital soil mapping 

(Manuscript 2). 

1.3 Soil nutrient dynamics of mountainous ecosystems under nitrogen 

deposition 

When the supply of nutrients is not enough relative to the demands of the plant, growth is 

limited by the availability of the most limiting nutrients, which is called as Liebig’s law of the 

minimum (Craine, 2009). Growth can be promoted only by increasing the supply of the limiting 

nutrients according to this Liebig’s law. Growth increases linearly with the rate of addition of 

limiting nutrients in experiments and also responds to more limiting nutrients in the field 

(Chapin and Eviner, 2013).  

Nitrogen (N) and phosphorus (P) commonly limit the terrestrial primary production (Vitousek et 

al., 2010, 2002). N and P limitation change over the course of soil development. Primary 

productivity is limited by N availability in young soils but increasingly by P availability in old 

soils as parent materials are weathered and P is lost via leaching over millions of years 

(Laliberté et al., 2013). N limitation might be changed into P limitation by high anthropogenic 

N deposition during short-term periods in terrestrial ecosystems (Braun et al., 2010; Vitousek 

et al., 2010). This might also occur in Korea, since nitrogen inputs have increased rapidly in 

Korea due to huge industrial operations and intense agricultural activities (Jang et al., 2011; 

Kim et al., 2014b; Kim et al., 2011). Therefore, identifying soil nutrient dynamics such as N and 

P is critical to understand environmental changes of mountainous ecosystems in South Korea. 

Various P fractions are important to understand P cycles in soils (Cross and Schlesinger, 1995; 

Yang and Post, 2011). Especially, Hedley P fractionations can be useful because P fractions 
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from Hedley method provide a comprehensive status of soil P pools which consist of organic 

and inorganic P ranging from available P to stable P according to accessibilities by plants. The 

biogeochemical cycle of P in soils is complex. P transformations during the course of 

pedogenesis are toward the P pools consisting of stable organic P and residual P (Walker and 

Syers, 1976). During this course, each P fraction can be distributed across the landscape, 

which can exert important influences on potential P availability and limitation for plants (Smeck, 

1985). The spatial pattern of P fractions from Hedley procedure depending on topographic 

sequences was found (Agbenin and Tiessen, 1994; Araújo et al., 2004; Roberts et al., 1985; 

Smeck, 1985; Tiessen et al., 1994; Vitousek et al., 2003). However, relationships between 

various soil P fractions and environmental predictors have not yet been fully understood and 

spatial prediction of P Hedley fractionations was not tried (Manuscript 2). 

Under low nutrient available environments such as mountainous ecosystems, an 

understanding of the organic layer nutrients is critical for sustainable ecosystem management. 

There are forest floors in mountain areas. The organic layers contain large stocks of soil 

nutrients which are changed organic to inorganic forms by mineralization of litter and organic 

matter (Wilcke et al., 2010). Many researches tried to make the spatial explicit prediction of 

mineral soil nutrients such as nitrogen (Peng et al., 2013; Pastick et al., 2014; Uriarte et al., 

2015) and phosphorus (Agbenin and Tiessen, 1994; Araujo et al., 2004; Mage and Porder, 

2013) in forest areas. Wilcke et al. (2002) reported the amount of nutrients and turnover time 

in organic layers of Ecuadorian tropical montane forest. Wilcke et al. (2008) also confirmed 

elevation gradient with decreasing contents of N and P in organic layers and the correlation 

between macronutrients (N and P) and tree growth. Soethe et al. (2008) found the stocks of N 

in the organic layer was significantly differ by elevation but N to P ratio did not response with 

increasing elevation in a tropical montane forest. Understanding relationships between spatial 

variation in organic layer nutrient contents (especially P) and variation in environmental factors 

was limited (Table 1.2) (Manuscript 3). 
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Table 1.2 Selected studies on digital soil mapping of regression approaches for N and P. 

Reference Study area 

(km2) 

Land 

use 

Soil  Predictors Models 

Moore et 

al. (1993) 

0.05 C avP 

(M) 

Slope, wetness index, 

stream power index 

linear 

regression 

McKenzie 

and Ryan 

(1999) 

500 F TP 

(M) 

Slope, curvature, relief, 

gamma radiometrics 

Regression 

tree 

Johnson 

et al. 

(2000) 

2.4 F TN (O 

& M) 

Elevation, slope, wetness 

index, flow accumulation 

Linear 

regression 

Ryan et al. 

(2000) 

2.7 & 484 F TP 

(M) 

Aspect, curvature, gamma 

radiometrics, landsat TM, 

magnetic intensity 

Regression 

tree, linear 

regression 

Seibert et 

al. (2007) 

Sweden F TN (O 

& M) 

Elevation,  

upslope area, slope, wetness 

index 

Correlation 

analysis 

Sumfleth 

and 

Duttmann 

(2008) 

10 C TN 

(M) 

Elevation, altitude above 

channel network 

Regression 

kriging 

Kunkel et 

al. (2011) 

16 F & G TN 

(M) 

Vegetation index, Solar 

radiation  

Linear 

regression 

Kim and 

Zheng 

(2011) 

0.05 SD TP 

(M) 

Elevation, slope, aspect, 

curvature, upslope area, 

wetness index 

Spatial 

regression 

Kim et al. 

(2014c) 

418 W TN & 

TP 

(M) 

Various vegetation index, 

elevation, lithology, 

hydrology 

Random forest 

Roger et 

al. (2014) 

1670 C & G P fra. 

(M) 

Elevation, slope, wetness 

index, relief, land use, 

curvature 

Regression 

kriging 

F: forest area, C: crop area, G: grassland, SD: sand dune, W: wetland, TN: total nitrogen, 

TP: total phosphorus, avP: available phosphorus, P frac.: P fractions, O: organic horizon, 

M: mineral horizon. 
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1.4 Complex TERRain and ECOlogical heterogeneity (TERRECO) 

This PhD research is a part of complex TERRain and ECOlogical heterogeneity (TERRECO) 

which is the international research training group to focus on the evaluation of ecosystem 

services in mountainous landscapes. Especially, an assessment framework will be developed 

to quantify trade-offs (e.g. between crop production and water quality) to support human well-

being and will be applied to determine how shifts in climate and landuse in complex terrain 

influence naturally derived ecosystem services (Kang and Tenhunen, 2010). Spatial 

information on site characteristics such as nutrient availability which determine forest growth 

and agricultural production is essential for ecosystem services of complex terrain region. 

1.5 Overview of this thesis 

1.5.1 Objectives  

 

In order to investigate the spatial soil nutrient distribution pattern of the Soyang watershed, 

digital soil maps were developed, which include estimates of map uncertainty. Specific 

purposes were: (1) to develop maps of soil nutrients for land potential assessment, (2) to 

investigate spatial patterns of various P fractions, and (3) to predict N to P ratios in the topsoil 

layer.  

Two different approaches were used for (1) less detailed soil nutrient maps of the whole 

Soyang watershed for land potential assessment and (2) high precision soil nutrient maps for 

a subarea of the watershed providing detailed environmental information in order to identify 

spatial patterns of soil nutrients in a mountainous watershed only vegetated with forest areas. 

Available LIDAR data and a high resolution remote sensing image (4 m Komsat-2) for this 

subarea provided a possibility for the development of these high precision maps.  
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Study 1: Spatial soil nutrients prediction using three supervised learning methods for 

assessment of land potentials in complex terrain 

Spatial distributions of topsoil carbon (C), N and available P in mountain regions were identified 

using supervised learning methods, and a functional landscape analysis was performed in 

order to determine the spatial soil fertility pattern for the Soyang Lake watershed in South 

Korea. Specific research purposes were (1) to identify important predictors; (2) to develop 

digital soil maps; (3) to assess land potentials using digital soil maps. 

 

Study 2: Spatial patterns of soil phosphorus fractions in a mountainous watershed 

We used digital soil maps in order to investigate the spatial distribution of different P fractions. 

Specific research purposes were (1) to identify the important environmental predictors, and (2) 

to map different P fractions using the quantitative relationships between P fractions and 

important predictors. 

 

Study 3: Spatial topsoil N:P ratios under monsoon conditions in a complex terrain of 

South Korea 

In order to understand the spatial patterns of organic layer and mineral soil N and P, digital soil 

maps were developed using LiDAR DEM (digital elevation model) and vegetation parameters 

as predictors. The specific aims of our research were (1) to test the importance of LiDAR-

derived vegetation and topographical parameters to understand the spatial N and P patterns, 

(2) to identify subareas with critical P contents, and (3) to test different validation strategies for 

N and P depending spatial uncertainty structures. 
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1.5.2 Study area 

 

This thesis was researched in two watersheds. Firstly, the Soyang lake watershed is located 

in the north-eastern part of Gangwon-do province, South Korea (Figure 1.2 C) (Manuscript 1). 

It extends between 70 and 1700 m a.s.l. and covers an area of 2,776 km². Soyang lake, 

impounded by an artificial dam in 1973, is located about 10 km northeast of Chuncheon. The 

lake was constructed for flood control, water supply and hydroelectric power generation for 

downstream areas. Particularly, in the northern part of the watershed there are several no-go-

areas contaminated by landmines and military facilities due to the close vicinity to North Korea.   

 

Figure 1.2 Research areas. (A) The map of the Korean Peninsula. (B) The Soyang 

watershed is located in the north-eastern part of South Korea. (C) The map shows the 

spatial distributions of sampling points for the first manuscript. The Soyang watershed is 

near the border to North Korea and includes two national parks (Seorak and Odae). The 

Soyang river originates from Mu, Seorak and Obdae Mountain. (D) The research area with 

the sampling points for the second and third manuscripts. 
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It receives an average of 1,179 mm of mean annual rain fall. About 70 % of the annual rain 

falls heavily in the summer monsoon season (Bartsch et al., 2014). The whole physical 

geographical feature is an incised meander that has a narrow river valley due to tectonic 

process during the Quaternary (Lee, 2004). The Soyang river originates on several mountains 

of the watershed. The watershed includes two national parks (Seorak and Odae).  

The research area is mostly covered by forest (80%) with deciduous trees (51.8%), coniferous 

(25.4%), and mixed (22.8%) trees as dominant forest types. The areas geology is dominated 

by banded gneiss and granite (Korea Institute of Geology Mining and Material, 2001). 

Chuncheon and Haean consist of granite and show plain areas. Moderately coarse textured 

soil and clay loam soil cover around 60% of the area (National Academy of Agricultural Science, 

2013).  

Our second study area is located in the downstream area of the Soyang watershed (Figure 1.2 

D) (Manuscript 2 and 3). During 30 years, a mean annual temperature is 11.1 °C (-4.6 – 24.6 °

C) and a mean annual rainfall is 1,347 mm, with about 824.4 mm falling between June, July 

and August (Korea meteorological administration, 2015). The area’s geology is dominated by 

granitic gneiss and banded gneiss. The area is 9.84 km2 and elevation ranges between 320 

and 868 m above sea level. There are various toposequences with steep slopes (over 45°). It 

is in a headwater catchment that has narrow depositional areas (Wohl, 2010). Its soils are 

mainly composed of fine gravelly sandy loam soils and fine sandy loam and gravelly loam soils 

(National Academy of Agricultural Science, 2013). It is a national forest mainly vegetated by 

Mongolian oak (Quercus mongolica) and Korean pine (Pinus koraiensis) vegetation.  
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1.5.3 Methods and results 

 

1.5.3.1 Spatial soil nutrients prediction using three supervised learning methods for 

assessment of land potentials in complex terrain 

 

Spatial distributions of topsoil C, N, and available P in mountain regions were identified using 

supervised learning methods, and a functional landscape analysis was performed in order to 

determine the spatial land potentials. 139 surface soil samples were collected by conditioned 

Latin Hypercube Sampling (cLHS) which is a stratified sampling design to obtain a 

representative dataset for the Soyang Lake watershed. cLHS was applied to guarantee for 

optimal coverage of the variability of environmental covariates in feature space (Minasny and 

McBratney, 2006). Impractical sampling designs are common in the cLHS due to difficult 

accessibility and sparely distributed locations within the study area (Roudier et al., 2012). 

Therefore, the sampling method for this research considered operational field constraints such 

as accessibility and no go areas contaminated by landmines as well as budget limitations. 

Terrain parameters and different vegetation indices were derived for predictors. We compared 

a generalized additive model (GAM) to random forest (RF) and support vector regression 

(SVR).  

Predictor selection was used based on the recursive feature elimination (RFE) which 

calculates ranks of each predictor based on predictor importance measure, removes one 

lowest important predictor from the model including all predictors, and repeats this step until 

the only one most important predictor is left (Kuhn and Johnson, 2013). Performances of the 

combinations of predictors (all predictors to the most important predictor) are evaluated using 

root mean square error (RMSE) or R2. A land potential assessment for soil nutrients was 

performed using trimmed k-mean cluster analysis which is a robust method and can handle 

the dataset with extreme values.  
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Vegetation indices showed most powerful predictabilities for soil nutrients. RF showed the best 

result among the three supervised learning methods. RF had better predictability and easier 

model construction and interpretability than SVR. GAM showed larger uncertainty concerning 

the variability of RMSE. Therefore, it is not easy to make the generalization of relationships 

between soil nutrients and environmental predictors using GAM. Finally, RF was selected for 

the prediction model of all three soil nutrients. 

The areas dominated by high density of vegetation and deciduous forest at higher elevation 

showed higher C and N contents. C and N contents had strong correlations with vegetation 

indices. Higher contents of topsoil available P were found in the lower plain areas dominated 

by rice paddies. Soil P distributions were disturbed by historical landuse changes over natural 

processes. Spatial soil nutrient patterns were changed with effects of the vegetation and 

landuse and locally governed by topographical gradients in our research area.  

Cluster analysis identified four land potential classes: fertile (C2), medium (C3) and low fertile 

(C4) forest lands with an additional class (C1) dominated by high P and low C and N contents 

due to human impact. C2 and C3 showed relatively high mean C and N contents based on 

other researches. The results showed C1 has relatively high P contents and C2, C3 and C4 

had low P contents. Most of the areas (forest) showed low phosphorus contents. Table 1.3 

shows the core findings of the manuscript 1. 

 

Table 1.3 Highlights for manuscript 1. 

- Vegetation indices have powerful abilities to predict soil nutrients 

- Using only selected predictors via recursive feature elimination improves prediction 

results 

- An effective approach to map land potentials for mountain ecosystem management 
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1.5.3.2 Spatial patterns of soil phosphorus fractions in complex terrain 

 

Digital soil maps were developed in order to quantify the spatial variability of different P 

fractions. The number of 91 soil samples was collected from the A horizon in 2014. cLHS was 

applied to get a representative dataset. Effects of the neighborhood extent for surface 

curvature were investigated. Solutions with 3x3 to 35x35 window sizes (30 ~ 350 m 

neighborhood extents) were tested and the best solution was selected based on results of 

Pearson’s correlation. Multiple linear regression model was applied for the spatial explicit 

prediction and recursive feature elimination was compared with stepAIC function. Model 

performances were tested using 5 repetitions of 10-fold cross validation. Finally, 50 models 

were provided for each P fraction. One-way analysis of variance (ANOVA) was applied to 

investigate significant difference in P fractions depending on landform elements. Kruskal-

Wallis test and post-hoc test were used due to non-normality and heterogeneity of variances 

of the dataset. 

Surface curvature was sensitive to changing the neighborhood extent and 19x19 window size 

was best for most P fractions. Values of Pearson correlation analysis between P fractions and 

surface curvature were largely changed based on neighborhood extents. This implied 

neighborhood extents strongly contributed to predictability of our P models. Surface curvature 

(19x19) was the best predictor for most P fractions. Total P showed the highest R-square while 

resin P and residual P showed lower results.  

The concentrations of all P fractions changed with the gradients of surface curvature and 

elevation in results of ANOVA. The total soil P contents showed clear downslope increases 

both at the low (300-600m) and high altitude (600-900m). Especially, the proportion of organic 

P was enriched at the lower slope, while the proportion of residual P concentrations at the 

upper slope were higher. Interestingly, two proportions had an inverse relation. Additionally, 

resin-P, a bioavailable P for plants, showed a downslope increase. Available P increased with 
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increasing elevation. Soil erosion process with the steep slope and heavy monsoon rains might 

result in the spatial differentiation of soil P fractions. Table 1.4 shows the core findings of the 

manuscript 2. 

1.5.3.3 Spatial topsoil N:P ratios under monsoon conditions in a complex terrain of 

South Korea 

 

Digital soil maps of N and P in both organic and mineral A horizons were developed using 

LiDAR terrain and forest structural predictors. The number of 91 soil samples was used. 

Terrain predictors were calculated with the open source software SAGA and the CURV3 

program. All analyses for a set of vegetation predictors and a DEM from LiDAR data were 

performed within the commercial software ‘LAStools’. NDVI was constructed. RF for the 

prediction model and RFE for predictor selection were used. For the test of different cross 

validation (CV) strategies, 2, 5, 10, 20-fold and leave-one-out CV in n repetitions were explored 

for best validation methods. Each k-fold CV was repeated 50 (2-fold), 20 (5-fold), 10 (10-fold), 

and 5 (20-fold) times. The total number of external validation was set at 100. For N and P, 100 

R–Squares and RMSE were calculated and the standard deviations of the 100 outputs 

represent uncertainty of spatial explicit predictions. All spatial predictions were done with 10 m 

resolution. 

Table 1.4 Highlights for manuscript 2. 

- There are only very few studies that used digital soil mapping for spatial patterns of soil 

P fractions in complex landscapes 

- Our study revealed that topography influenced the abundance of soil P fractions 

- The proportion of Organic P was enriched at the lower slope, while the proportion of 

residual P was increased upslope 

- This has important implications for soil fertility in the mountainous ecosystems with low 

P availability 
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In the result, the 10 repetitions 10-fold method showed relatively good R2 (0.23 – 0.52) and 

low standard deviation. Spatial patterns in maps of soil nutrients were not quite different 

depending on CV methods. However, standard deviations (uncertainty) of N and P decreased 

with increasing the number of calibration dataset. Therefore, repeated 10-fold CV is 

recommended for the model validation using small size samples like our research.  

Surface curvature had the highest predictor importance for P contents in organic and mineral 

A horizons. LiDAR vegetation predictors and vegetation index showed a strong relationship 

with N in the organic layer. Models for P showed better results compared to N models. N to P 

ratios in the organic and mineral A horizons increased in close vicinity to the upper slope due 

to soil erosion process. Based on N to P ratios, the upper slope areas might be affected by 

higher phosphorus limitation under high nitrogen deposition. Table 1.5 shows the core findings 

of the manuscript 3. 

1.6 Conclusions and discussion 

1.6.1 Supervised learning methods: What is the best prediction model for digital 

soil mapping? (Manuscript 1 and 3) 

 

Various supervised learning methods can be used for digital soil mapping. The methods from 

linear regression, generalized additive models (GAM), random forest (RF), and support vector 

Table 1.5 Highlights for manuscript 3. 

- Repeated 10-fold CV is recommended for small sample sizes in digital soil mapping 

- Surface curvature was the best predictor, while LiDAR metrics and vegetation index 

were selected for N in the organic layer 

- Higher values of N to P ratios in the organic and mineral A horizons were found at the 

upper slope 
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regression (SVR) were used for this thesis. Among these methods, RF showed powerful 

modelling performances as well as the ease of model construction and interpretability 

(Manuscript 1). However, RF don’t have high interpretability compared with linear regression 

or classification regression trees. The model structure of “block box” machine learning can be 

interpreted to extract rules from the predicted model (Barakat and Diederich, 2004). Ballabio 

(2009) used decision trees to extract the understandable structure from the SVR result of the 

soil prediction. Additionally, RF has another weakness which is not good for measure data with 

small portions of extreme values (Kuhn and Johnson, 2013). The model tends to underestimate 

for samples in the high or low extreme values because RF uses the average of the data in the 

terminal (leaf) nodes. Alternatively, cubist uses linear models to predict the outcome in the leaf 

nodes. Although cubist was successful for applications of digital soil mapping (Adhikari and 

Hartemink, 2015; Adhikari et al., 2014), the prediction accuracy and uncertainty of cubist 

should be assessed for small sample sizes due to possibilities of over-fitting with other models 

in the next study.  

1.6.2 Scale issues: What can we learn from scale for digital soil mapping? 

(Manuscript 1, 2, and 3) 

 

Digital soil mapping can identify spatial patterns of soils, but may be influenced by scale 

parameters, including the spatial extent. We found the effects of the spatial extent. Vegetation 

indices were the most important predictors in the Soyang watershed (Manuscript 1), while 

topography predictors strongly contributed to explaining soil nutrient patterns in the small 

watershed (Manuscript 2 and 3). For N, most important predictors were vegetation indices 

(NDVI and GNDVI) and elevation in the Soyang watershed and elevation and surface curvature 

in the small watershed. All vegetation indices (NDWI, NDVI, and GNDVI) were selected as 

important predictors for available P in the Soyang watershed, while elevation and surface 

curvature showed powerful predictabilities in the small watershed.  
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Different predictors were selected for models in the both watersheds (Manuscript 1, 2 and 3). 

This is because key factors are different in the both watersheds. Soyang watershed is mainly 

covered by various landuse types including forest, deforested areas, and agricultural areas 

(Kim et al., 2014a). Various vegetation indices can be considered as indicators of landuse and 

forest types (Jones and Vaughan, 2010). Most Ah horizon was disappeared due to soil erosion 

in the deforested areas which had lower N contents compared to typical forest soils. Moreover, 

there are various forest types (deciduous, coniferous, and mixed forests) in the Soyang 

watershed (Kim et al., 2014a). Vegetation indices can be powerful for the spatial prediction of 

soil nutrients under the environmental conditions (Mulder et al., 2011).  High C and N contents 

found at higher elevation and in forest areas with higher vegetation density which can be also 

measured by vegetation indices (Manuscript 1). In the small watershed, however, the variation 

of forest cover is not quite large. Vegetation index was not the best predictor to model N 

contents, while the strong environmental correlations between N and elevation were found 

 

Figure 1.3 Process scale of environmental factors that influence on ecosystem (Jeong et 

al., 2012a). 
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(Manuscript 3). For available P, the spatial distribution also was related to the land use patterns 

due to fertilizer in the Soyang watershed (Manuscript 1). These areas with the larger amounts 

of phosphorus found in Chuncheon and Haean (Figure 1.2).  

Depending on spatial extents, main environmental factors are exchanged because each factor 

is interconnected with other factors and exerts mainly influences on environmental phenomena 

(e.g. soils) in the optimum spatial extent scale (Gibson et al., 2000) (Figure 1.3). This implied 

that each main process is different based on each scale (spatial extents) (Phillips, 1999). 

Naturally, key predictors can be changed with increasing or decreasing the spatial extent. In 

our study areas, spatial patterns of soil nutrients were detected well with topography in the 

small watershed, while vegetation indices showed powerful predictability of the soil nutrients 

in the Soyang watershed.  

Studies exploring the influence of the spatial extent on digital soil mapping are rare. Generally, 

it is expected that increasing the extent corresponds to increase complexity and hence 

decrease the quality of the model. However, Vasques et al. (2012) reported the quality of soil 

C models increased with increases in the spatial extent. In our results, the quality of soil nutrient 

models (R-square) slightly decreased with an increase in the spatial extent. 

Effects of the neighborhood extent have an important role for digital soil mapping because 

these can improve the model accuracy (MacMillan and Shary, 2009; Maynard and Johnson, 

2014; Wood, 2009). We investigated effects of the neighborhood extent (window size) for only 

surface curvature in a small watershed (Manuscript 2 and 3). Most soil nutrients were sensitive 

with changing neighborhood extents except N in the organic layer. P models showed results 

of the correlation coefficient (r) between -0.25 and -0.5. P was more sensitive with 

neighbourhood extents than N (-0.15 ≤ r ≤ -0.1). Among P fractions, different results showed. 

The correlation coefficients of organic P showed remarkably increased -0.25 to -0.48, while 

resin P’s slightly changed -0.1 to -0.28 with neighborhood extents. Most nutrients showed best 
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results in an extent of the 190 m which might adequately represent the spatial land surface 

configuration of our research area determining soil processes. In this thesis, the neighborhood 

effect of only surface curvature was explored. The effect for slope, aspect, and plan and profile 

curvature and various combinations should be investigated further to predict soil nutrients.  

1.6.3 Soil-vegetation-topography interactions for nutrient dynamics (Manuscript 

2 and 3) 

 

Topography exerted an influence on soil P in our study area. P availability in soils is locally 

influenced by mineral type, clay, pH, temperature, moisture and organic matter (Brady and 

Weil, 2010; Negassa and Leinweber, 2009). The factors related to P availability are controlled 

under topographical characteristics in the landscape-scale (Camargo et al., 2012; Vincent et 

al., 2014; Zhou et al., 2016). We found significant differences between P fractions at different 

topographic positions (manuscript 2). Higher contents of various P fractions were found at the 

lower slope. Especially, the proportion of residual P showed the opposite trend with that of 

organic P at different topographic positions. This suggested that potential sources for P 

availability at the upper slope are relatively poorer than at the lower slope because residual P 

is strongly stable and highly insoluble. Therefore, productivity at the upper slope might be 

limited by P under high rates of nitrogen deposition.  

Identifying spatial patterns of nutrients in the topsoils is useful to understand soil-vegetation-

topography interactions in the landscape-scale. By surface and subsurface flows, nutrients 

were moved along the hillslope. Moreover, soil erosion process with heavy rains and steep 

slopes strongly operates in the mountain watershed (Jeong et al., 2012b; Jung et al., 2012). 

With soil nutrients, water availability is a key factor determining the distribution and growth of 

plants. Generally, soils at the convex upper slope are drier than might be expected because 

water is diffusing in the slopes, while soils at the concave lower slope tend to be wetter (Park 

and Van De Giesen, 2004). Accordingly, higher nutrient (P) and moisture availability at the 
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lower slope lead to a higher productivity that results in the accumulation of organic matter 

(Agbenin and Tiessen, 1994). Moreover, it could be that the organic matter at the lower slope 

has higher P contents due to high P contents in the plant litter inputs (Manuscript 2). On the 

other hand, lower soil P contents and P availability at the upper slope might produce P-deficient 

leaves which in turn result in higher N to P ratios in the organic layer. As a result, the higher 

plant litter nutrient contents can cause lower N to P ratios in organic layers at the lower slope 

(Manuscript 3). This implied that topography, soil, and vegetation might be strongly 

interconnected (Amundson et al., 2015), especially, under steep slopes and monsoon 

conditions and the relationships can allow to expand the understanding of nutrient cycles (e.g. 

P) (Zhou et al., 2016). 

1.7 List of manuscripts and specification of individual contributions 

The three studies in the thesis refer to different manuscripts. Three manuscripts were 

submitted.  

 

Manuscript 1 (Chapter 2) 

Authors: Gwanyong Jeong, Hannes Oeverdieck, Soo Jin Park, Bernd Huwe, Mareike Ließ 

Title: Spatial soil nutrients prediction using three supervised learning methods for assessment 

of land potentials in complex terrain 

Journal: Catena 

Status: under review 

Own and author contributions statement: 
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Own contribution: concept and study design 50%, data acquisition 50%, analyses of samples 

80%, data analyses and figures 100%, discussion of results 80%, manuscript writing 70% 

G. Jeong, H. Oeverdieck, S.J. Park, B. Huwe, and M. Ließ  designed the research; G. Jeong 

and H. Oeverdieck performed the research; Samples were analysed in the BayCEER lab and 

the Agricultural Technology Center of Yanggu, South Korea; G. Jeong analyzed the data; G. 

Jeong and M. Ließ  interpreted and discussed results; Figures and tables were created by G. 

Jeong; G. Jeong wrote the first draft of the manuscript; Revision and rewriting of the 

manuscript was done by G. Jeong, B. Huwe, and M. Ließ . 

G. Jeong is the corresponding author. 

 

Manuscript 2 (Chapter 3) 

Authors: Gwanyong Jeong, Marie Spohn, Soo Jin Park, Bernd Huwe, Mareike Ließ  

Title: Spatial patterns of soil phosphorus fractions in a mountainous watershed 

Journal: Catena 

Status: under review 

Own and author contributions statement: 

Own contribution: concept and study design 70%, data acquisition 90%, analyses of samples 

70%, data analyses and figures 100%, discussion of results 70%, manuscript writing 70% 

G. Jeong, M. Spohn, S.J. Park, B. Huwe, and M. Ließ  designed the research; G. Jeong 

performed the research with support from 2 Hiwis; Samples were analysed in Eurofins, Jena 

and laboratory of isotope biogeochemistry, BayCEER; G. Jeong analyzed the data; G. Jeong 

and M. Spohn interpreted and discussed results; Figures and tables were created by G. 
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Jeong; G. Jeong wrote the first draft of the manuscript; Revision and rewriting of the 

manuscript was done by G. Jeong, M. Spohn, B. Huwe, and M. Ließ . 

G. Jeong is the corresponding author. 

 

Manuscript 3 (Chapter 4) 

Authors: Gwanyong Jeong, Kwanghun Choi, Marie Spohn, Soo Jin Park, Bernd Huwe, Mareike 

Ließ 

Title: Spatial topsoil N:P ratios under monsoon conditions in a complex terrain of South Korea  

Status: In preparation for publication 

Own and author contributions statement: 

Own contribution: concept and study design 70%, data acquisition 90%, analyses of samples 

70%, data analyses and figures 100%, discussion of results 70%, manuscript writing 70% 

G. Jeong, K. Choi, M. Spohn, S.J. Park, B. Huwe, and M. Ließ  designed the research; G. 

Jeong and K. Choi performed the research with support from 2 Hiwis; Samples were analysed 

in Eurofins, Jena and laboratory of isotope biogeochemistry, BayCEER; G. Jeong analyzed 

the data. G. Jeong, M. Spohn, and B. Huwe interpreted and discussed results; Figures and 

tables were created by G. Jeong; G. Jeong wrote the first draft of the manuscript; Revision 

and rewriting of the manuscript was done by G. Jeong, K. Choi, M. Spohn, B. Huwe, and M. 

Ließ . 

G. Jeong is the corresponding author. 



 

Page 27 

 

1.8 References 

Adhikari, K., Hartemink, A.E., 2015. Digital Mapping of Topsoil Carbon Content and Changes 

in the Driftless Area of Wisconsin, USA. Soil Sci. Soc. Am. J. 79, 155. 

doi:10.2136/sssaj2014.09.0392 

Adhikari, K., Hartemink, A.E., Minasny, B., Bou Kheir, R., Greve, M.B., Greve, M.H., 2014. 

Digital mapping of soil organic carbon contents and stocks in Denmark. PLoS One 9, 

e105519. doi:10.1371/journal.pone.0105519 

Agbenin, J.O., Tiessen, H., 1994. Phosphorus transformations in a toposequence of lithosols 

and cambisols from semi-arid northeastern brazil. Geoderma 62, 345–362. 

doi:10.1016/0016-7061(94)90098-1 

Amundson, R., 2014. Soil Formation, in: Holland, H., Turekian, K. (Eds.), Treatise on 

Geochemistry. Academic Press, San Diego, CA, pp. 1–26. doi:10.1016/B0-08-043751-

6/05073-8 

Amundson, R., Heimsath, A., Owen, J., Yoo, K., Dietrich, W.E., 2015. Hillslope soils and 

vegetation. Geomorphology 234, 122–132. doi:10.1016/j.geomorph.2014.12.031 

Araújo, M.S.B., Schaefer, C.E.R., Sampaio, E.V.S.B., 2004. Soil phosphorus fractions from 

toposequences of semi-arid Latosols and Luvisols in northeastern Brazil. Geoderma 

119, 309–321. doi:10.1016/j.geoderma.2003.07.002 

Ballabio, C., 2009. Spatial prediction of soil properties in temperate mountain regions using 

support vector regression. Geoderma 151, 338–350. 

doi:10.1016/j.geoderma.2009.04.022 

Ballabio, C., Fava, F., Rosenmund, A., 2012. A plant ecology approach to digital soil 

mapping, improving the prediction of soil organic carbon content in alpine grasslands. 

Geoderma 187-188, 102–116. doi:10.1016/j.geoderma.2012.04.002 



 

Page 28 

 

Barakat, N., Diederich, J., 2004. Learning-based Rule-Extraction from Support Vector 

Machines. Int. J. Comput. Intell. 2, 59–62. doi:10.1007/978-3-540-75390-2 

Bartsch, S., Frei, S., Ruidisch, M., Shope, C.L., Peiffer, S., Kim, B., Fleckenstein, J.H., 2014. 

River-aquifer exchange fluxes under monsoonal climate conditions. J. Hydrol. 509, 601–

614. doi:10.1016/j.jhydrol.2013.12.005 

Benner, J., Vitousek, P.M., Ostertag, R., Bruijnzeel, L.A., Scatena, F.N., Hamilton, L.S., 

2010. Nutrient cycling and nutrient limitation in tropical montane cloud forests, in: 

Bruijnzeel, L., Scatena, F., Hamilton, L. (Eds.), Tropical Montane Cloud Forests, 

Science for Conservation and Management. Cambridge University Press, New York, pp. 

90–100. 

Binkley, D., Fisher, R., 2012. Ecology and management of forest soils. John Wiley & Sons, 

West Sussex. 

Bishop, C.M., 1995. Neural networks for pattern recognition. Clarendon Press, Oxford. 

Brady, N.C., Weil, R.R., 2010. Elements of the nature and properties of soils. Prentice Hall, 

New Jersey. 

Braun, S., Thomas, V.F.D., Quiring, R., Flückiger, W., 2010. Does nitrogen deposition 

increase forest production? The role of phosphorus. Environ. Pollut. 158, 2043–2052. 

doi:10.1016/j.envpol.2009.11.030 

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32. 

Brungard, C.W., Boettinger, J.L., Duniway, M.C., Wills, S.A., Edwards, T.C., 2015. Machine 

learning for predicting soil classes in three semi-arid landscapes. Geoderma 239-240, 

68–83. doi:10.1016/j.geoderma.2014.09.019 



 

Page 29 

 

Burrough, P. a., van Gaans, P.F.M., MacMillan, R. a., 2000. High-resolution landform 

classification using fuzzy -means. Fuzzy Sets Syst. 113, 37–52. doi:10.1016/S0165-

0114(99)00011-1 

Camargo, L.A., Marques, J., Pereira, G.T., Alleoni, L.R.F., 2012. Spatial correlation between 

the composition of the clay fraction and contents of available phosphorus of an Oxisol at 

hillslope scale. Catena 100, 100–106. doi:10.1016/j.catena.2012.07.016 

Cavazzi, S., Corstanje, R., Mayr, T., Hannam, J., Fealy, R., 2013. Are fine resolution digital 

elevation models always the best choice in digital soil mapping ? Geoderma 195-196, 

111–121. doi:10.1016/j.geoderma.2012.11.020 

Chapin, F.S., Eviner, V.T., 2013. Biogeochemical Interactions Governing Terrestrial Net 

Primary Production, 2nd ed, Treatise on Geochemistry. Academic Press, San Diego, 

CA. doi:10.1016/B978-0-08-095975-7.00806-8 

Craine, J.M., 2009. Resource strategies of wild plants. Princeton university press, New 

Jersey. 

Cross,  A. F., Schlesinger, W.H., 1995. A literature review and evaluation of the Hedley 

fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural 

ecosystems. Geoderma 64, 197–214. doi:10.1016/0016-7061(94)00023-4 

Dobos, E., Hengl, T., 2009. Soil mapping applications, in: Hengl, T., Reuter, H. (Eds.), 

Geomorphometry: Concepts, Software, Applications. Elsevier, Amsterdam, pp. 461–

479. 

Drăguţ, L., Schauppenlehner, T., Muhar, A., Strobl, J., Blaschke, T., 2009. Optimization of 

scale and parametrization for terrain segmentation: An application to soil-landscape 

modeling. Comput. Geosci. 35, 1875–1883. doi:10.1016/j.cageo.2008.10.008 



 

Page 30 

 

Elith, J., Franklin, J., 2013. Species Distribution Modeling, in: Levin, S. (Ed.), Encyclopedia of 

Biodiversity. Academic Press, San Diego, CA, pp. 692–705. doi:10.1016/B978-0-12-

384719-5.00318-X 

Erskine, R.H., Green, T.R., Ramirez, J. a., MacDonald, L.H., 2007. Digital Elevation 

Accuracy and Grid Cell Size: Effects on Estimated Terrain Attributes. Soil Sci. Soc. Am. 

J. 71, 1371. doi:10.2136/sssaj2005.0142 

Funnell, D., Parish, R., 2005. Mountain environments and communities. Routledge, London. 

Gerrard, J., 2000. Fundamentals of soils. Routledge, New York. 

Gessler, P.E., Chadwick, O. a., Chamran, F., Althouse, L., Holmes, K., 2000. Modeling Soil–

Landscape and Ecosystem Properties Using Terrain Attributes. Soil Sci. Soc. Am. J. 64, 

2046. doi:10.2136/sssaj2000.6462046x 

Gibson, C.C., Ostrom, E., Ahn, T.K., 2000. The concept of scale and the human dimensions 

of global change: A survey. Ecol. Econ. 32, 217–239. doi:10.1016/S0921-

8009(99)00092-0 

Grunwald, S., 2009. Multi-criteria characterization of recent digital soil mapping and modeling 

approaches. Geoderma 152, 195–207. doi:10.1016/j.geoderma.2009.06.003 

Grunwald, S., 2006. Environmental soil-landscape modeling: Geographic information 

technologies and pedometrics. Taylor & Francis, Boca Raton, Boca Raton. 

Guyon, I., Elisseeff, A., 2003. An introduction to variable and feature selection. J. Mach. 

Learn. Res. 3, 1157–1182. 

Hastie, T.J., Tibshirani, R.J., Friedman, J.H., 2009. The elements of statistical learning: data 

mining, inference, and prediction. Springer, New York. 



 

Page 31 

 

Hjort, J., Luoto, M., 2013. Statistical Methods for Geomorphic Distribution Modeling, in: 

Shroder, J., Baas, A.C.W. (Eds.), Treatise on Geomorphology. Academic Press, San 

Diego, CA, pp. 59–73. doi:10.1016/B978-0-12-374739-6.00028-2 

Jang, S.-K., Sung, M.-Y., Shin, A.-Y., Choi, J.-S., Son, J.-S., Ahn, J.-Y., Kim, J.-C., Shin, E.-

S., 2011. A Study for Long-term Trend of Acid Deposition in Korea. J. Korea Soc. 

Environ. Adm. 17, 183–192. 

Jenny, H., 1941. Factors of soil formation: A sytem of quantitative pedology. McGraw-Hill, 

New York. 

Jeong, G.Y., Yang, H.M., Kim, S.K., Park, S.J., 2012a. Ecoregion Classification using Multi-

Hierarchy of Environmental Factors. J. Korean Geogr. Soc. 47, 654–676. 

Jeong, J.J., Bartsch, S., Fleckenstein, J.H., Matzner, E., Tenhunen, J.D., Lee, S.D., Park, 

S.K., Park, J.H., 2012b. Differential storm responses of dissolved and particulate 

organic carbon in a mountainous headwater stream, investigated by high-frequency, in 

situ optical measurements. J. Geophys. Res. Biogeosciences 117, 1–13. 

doi:10.1029/2012JG001999 

Johnson, C.E., Ruiz-Mendez, J.J., Lawrence, G.B., 2000. Forest Soil Chemistry and Terrain 

Attributes in a Catskills Watershed. Soil Sci. Soc. Am. J. 64, 1804–1814. 

Jones, H.G., Vaughan, R.A., 2010. Remote sensing of vegetation: Principles, techniques, 

and applications. Oxford University Press, Oxford. 

Jung, B.J., Lee, H.J., Jeong, J.J., Owen, J., Kim, B., Meusburger, K., Alewell, C., Gebauer, 

G., Shope, C., Park, J.H., 2012. Storm pulses and varying sources of hydrologic carbon 

export from a mountainous watershed. J. Hydrol. 440-441, 90–101. 

doi:10.1016/j.jhydrol.2012.03.030 



 

Page 32 

 

Kang, S., Tenhunen, J., 2010. Complex Terrain and Ecological Heterogeneity (TERRECO): 

Evaluating Ecosystem Services in Production Versus water Quantity/quality in 

Mountainous Landscapes. Korean J. Agric. For. Meteorol. 12, 307–316. 

doi:10.5532/KJAFM.2010.12.4.307 

Kim, D., Zheng, Y., 2011. Scale-dependent predictability of DEM-based landform attributes 

for soil spatial variability in a coastal dune system. Geoderma 164, 181–194. 

doi:10.1016/j.geoderma.2011.06.002 

Kim, I., Le, Q.B., Park, S.J., Tenhunen, J., Koellner, T., 2014a. Driving Forces in Archetypical 

Land-Use Changes in a Mountainous Watershed in East Asia. Land 3, 957–980. 

doi:10.3390/land3030957 

Kim, I., Lee, K., Gruber, N., Karl, D.M., Bullister, J.L., Yang, S., Kim, T., 2014b. Increasing 

anthropogenic nitrogen in the North Pacific Ocean. Science 346, 1102–1106. 

Kim, J., Grunwald, S., Rivero, R.G., 2014c. Soil Phosphorus and Nitrogen Predictions Across 

Spatial Escalating Scales in an Aquatic Ecosystem Using Remote Sensing Images. 

IEEE Trans. Geosci. Remote Sens. 52, 6724–6737. 

Kim, T.-W., Lee, K., Najjar, R.G., Jeong, H.-D., Jeong, H.J., 2011. Increasing N Abundance 

in the Northwestern Pacific Ocean Due to Atmospheric Nitrogen Deposition. Science 

334, 505–509. doi:10.1126/science.1206583 

Korea Institute of Geology Mining and Material, 2001. Explanatory note of the Gangreung 

Sokcho sheet 1:250,000. Korea Institute of Geology, Mining and Material, Daejeon. 

Korea meteorological administration, 2015. Korea weather survice. http://www.kma.go.kr/ 

(accessed 3.18.16). 

Kuhn, M., Johnson, K., 2013. Applied predictive modeling. Springer, New York. 



 

Page 33 

 

Kunkel, M.L., Flores, A.N., Smith, T.J., McNamara, J.P., Benner, S.G., 2011. A simplified 

approach for estimating soil carbon and nitrogen stocks in semi-arid complex terrain. 

Geoderma 165, 1–11. doi:10.1016/j.geoderma.2011.06.011 

Lagacherie, P., McBratney, A.B., 2007. Spatial soil information systems and spatial soil 

inference systems: perspectives for digital soil mapping, in: Lagacherie, P., Mcbratney, 

A.B., Voltz, M. (Eds.), Digital Soil Mapping: An Introductory Perspective. Elsevier, 

Amsterdam, pp. 3–22. 

Laliberté, E., Grace, J.B., Huston, M. a., Lambers, H., Teste, F.P., Turner, B.L., Wardle, D. 

a., 2013. How does pedogenesis drive plant diversity? Trends Ecol. Evol. 28, 331–340. 

doi:10.1016/j.tree.2013.02.008 

Lee, G., 2004. Characteristics of Geomorphological Surface and Analysis of Deposits in 

Fluvial Terraces at Upper Reach of Soyang River. J. Korean Geogr. Soc. 39, 27–44. 

Ließ, M., Glaser, B., Huwe, B., 2012. Uncertainty in the spatial prediction of soil texture. 

Comparison of regression tree and Random Forest models. Geoderma 170, 70–79. 

doi:10.1016/j.geoderma.2011.10.010 

Ließ, M., Glaser, B., Huwe, B., 2011. Functional soil-landscape modelling to estimate slope 

stability in a steep Andean mountain forest region. Geomorphology 132, 287–299. 

doi:10.1016/j.geomorph.2011.05.015 

MacMillan, R.A., Shary, P.A., 2009. Landforms and landform elements in geomorphometry, 

in: Hengl, T., Reuter, H.I. (Eds.), Geomorphometry: Concepts, Software, Applications. 

Elsevier, Amsterdam, pp. 227–254. 

Mage, S.M., Porder, S., 2013. Parent Material and Topography Determine Soil Phosphorus 

Status in the Luquillo Mountains of Puerto Rico. Ecosystems 16, 284–294. 

doi:10.1007/s10021-012-9612-5 



 

Page 34 

 

Maynard, J.J., Johnson, M.G., 2014. Scale-dependency of LiDAR derived terrain attributes in 

quantitative soil-landscape modeling: Effects of grid resolution vs. neighborhood extent. 

Geoderma 230-231, 29–40. doi:10.1016/j.geoderma.2014.03.021 

McBratney, A.B., Mendonça Santos, M.L., Minasny, B., 2003. On digital soil mapping, 

Geoderma. doi:10.1016/S0016-7061(03)00223-4 

McKenzie, N.J., Ryan, P.J., 1999. Spatial prediction of soil properties using environmental 

correlation. Geoderma 89, 67–94. doi:10.1016/S0016-7061(98)00137-2 

Minasny, B., Bishop, T.F.A., 2008. Analysing uncertainty, in: McKenzie, N., Grundy, M., 

Webster, R., Ringrose-Voase, A. (Eds.), Guidelines for Surveying Soil and Land 

Resources. CSIRO Publishing, Melbourne, pp. 383–393. 

Minasny, B., Hartemink, A.E., 2011. Predicting soil properties in the tropics. Earth-Science 

Rev. 106, 52–62. doi:10.1016/j.earscirev.2011.01.005 

Minasny, B., McBratney, A.B., 2015. Digital soil mapping: A brief history and some lessons. 

Geoderma 264, 301–311. doi:10.1016/j.geoderma.2015.07.017 

Minasny, B., McBratney, A.B., 2006. A conditioned Latin hypercube method for sampling in 

the presence of ancillary information. Comput. Geosci. 32, 1378–1388. 

doi:10.1016/j.cageo.2005.12.009 

Montello, D.R., 2001. Scale in geography, in: Smelser, N.J., Baltes, P.B. (Eds.), International 

Encyclopedia of the Social & Behavioral Sciences. Pergamon press, Oxford, pp. 13501–

13504. 

Moore, I.D., Gessler, P.E., Nielsen, G.A., Peterson, G.A., 1993. Soil Attribute Prediction 

Using Terrain Analysis. Soil Sci. Soc. Am. J. 57, 443–452. 



 

Page 35 

 

Morford, S.L., Houlton, B.Z., Dahlgren, R.A., 2011. Increased forest ecosystem carbon and 

nitrogen storage from nitrogen rich bedrock. Nature 477, 78–81. 

doi:10.1038/nature10415 

Mulder, V.L., de Bruin, S., Schaepman, M.E., Mayr, T.R., 2011. The use of remote sensing in 

soil and terrain mapping — A review. Geoderma 162, 1–19. 

doi:10.1016/j.geoderma.2010.12.018 

National Academy of Agricultural Science, 2013. Korean Soil Information System. 

http://soil.rda.go.kr/soil/index.jsp (accessed 1.12.16). 

Negassa, W., Leinweber, P., 2009. How does the hedley sequential phosphorus fractionation 

reflect impacts of land use and management on soil phosphorus: a review. J. Plant Nutr. 

Soil Sci. 172, 305–325. doi:10.1002/jpln.200800223 

Osman, K.T., 2013. Forest Soils: Properties and Management. Springer International 

Publishing Switzerland. 

Park, S.J., Rüecker, G.R., Agyare, W.A., Akramhanov, A., Kim, D., Vlek, P.L.G., 2009. 

Influence of Grid Cell Size and Flow Routing Algorithm on Soil-Landform Modeling. J. 

Korean Geogr. Soc. 44, 122–145. 

Park, S.J., Van De Giesen, N., 2004. Soil-landscape delineation to define spatial sampling 

domains for hillslope hydrology. J. Hydrol. 295, 28–46. 

doi:10.1016/j.jhydrol.2004.02.022 

Park, S.J., Vlek, P.L.G., 2002. Environmental correlation of three-dimensional soil spatial 

variability: A comparison of three adaptive techniques. Geoderma 109, 117–140. 

doi:10.1016/S0016-7061(02)00146-5 

Phillips, J.D., 1999. Earth surface systems: Complexity, order, and scale. Blackwell 

publishers, Oxford. 



 

Page 36 

 

Roberts, T.L., Stewart, J.W.B., Bettany, J.R., 1985. The influence of topography on the 

distribution of organic and inorganic soil phosphorus across a narrow environmental 

gradient. Can. J. Soil Sci. 65, 651–665. 

Rodionov,  a., Flessa, H., Grabe, M., Kazansky, O. a., Shibistova, O., Guggenberger, G., 

2007. Organic carbon and total nitrogen variability in permafrost-affected soils in a forest 

tundra ecotone. Eur. J. Soil Sci. 58, 1260–1272. doi:10.1111/j.1365-2389.2007.00919.x 

Roger, A., Libohova, Z., Rossier, N., Joost, S., Maltas, A., Frossard, E., Sinaj, S., 2014. 

Spatial variability of soil phosphorus in the Fribourg canton, Switzerland. Geoderma 

217-218, 26–36. doi:10.1016/j.geoderma.2013.11.001 

Roman, L., Scatena, F.N., Bruijnzeel, L.A., 2010. Global and local varaitions in tropical 

montane cloud forest soils, in: Bruijnzeel, L., Scatena, F., Hamilton, L. (Eds.), Tropical 

Montane Cloud Forest: Science for Conservation and Management. Cambridge 

University Press, New York, pp. 77–89. 

Roudier, P., Beaudette, D.E., Hewitt, A.E., 2012. A conditioned Latin hypercube sampling 

algorithm incorporating operational constraints, in: Minasny, B., Malone, B., McBratney, 

A. (Eds.), Digital Soil Assessments and beyond. CRC Press, Boca Raton, pp. 227–231. 

Ryan, P.J., McKenzie, N.J., O’Connell, D., Loughhead,  a. N., Leppert, P.M., Jacquier, D., 

Ashton, L., 2000. Integrating forest soils information across scales: Spatial prediction of 

soil properties under Australian forests. For. Ecol. Manage. 138, 139–157. 

doi:10.1016/S0378-1127(00)00393-5 

Scull, P., Franklin, J., Chadwick, O.A., McArthur, D., 2003. Predictive soil mapping: a review. 

Prog. Phys. Geogr. 27, 171–197. doi:10.1191/0309133303pp366ra 

Seibert, J., Stendahl, J., Sørensen, R., 2007. Topographical influences on soil properties in 

boreal forests. Geoderma 141, 139–148. doi:10.1016/j.geoderma.2007.05.013 



 

Page 37 

 

Smeck, N.E., 1985. Phosphorus dynamics in soils and landscapes. Geoderma 36, 185–199. 

Smola, A., Schölkopf, B., 2004. A tutorial on support vector regression. Stat. Comput. 14, 

199–222. doi:Doi 10.1023/B:Stco.0000035301.49549.88 

Soethe, N., Lehmann, J., Engels, C., 2008. Nutrient availability at different altitudes in a 

tropical montane forest in Ecuador. J. Trop. Ecol. 24, 397–406. 

doi:10.1017/S026646740800504X 

Sumfleth, K., Duttmann, R., 2008. Prediction of soil property distribution in paddy soil 

landscapes using terrain data and satellite information as indicators. Ecol. Indic. 8, 485–

501. doi:10.1016/j.ecolind.2007.05.005 

Tesfa, T.K., Tarboton, D.G., Chandler, D.G., McNamara, J.P., 2009. Modeling soil depth 

from topographic and land cover attributes. Water Resour. Res. 45, 1–16. 

doi:10.1029/2008WR007474 

Tiessen, A.H., Chacon, P., Cuevas, E., 1994. Phosphorus and Nitrogen Status in Soils and 

Vegetation along a Toposequence of Dystrophic Rainforests on the Upper Rio Negro. 

Oecologia 99, 145–150. 

Vasques, G.M., Grunwald, S., Myers, D.B., 2012. Influence of the spatial extent and 

resolution of input data on soil carbon models in Florida, USA. J. Geophys. Res. 

Biogeosciences 117, 1–12. doi:10.1029/2012JG001982 

Vincent, A.G., Sundqvist, M.K., Wardle, D. a, Giesler, R., 2014. Bioavailable soil phosphorus 

decreases with increasing elevation in a subarctic tundra landscape. PLoS One 9, 

e92942. doi:10.1371/journal.pone.0092942 

Vitousek, P., Chadwick, O., Matson, P., Allison, S., Derry, L., Kettley, L., Luers, A., Mecking, 

E., Monastra, V., Porder, S., 2003. Erosion and the Rejuvenation of Weathering-derived 



 

Page 38 

 

Nutrient Supply in an Old Tropical Landscape. Ecosystems 6, 762–772. 

doi:10.1007/s10021-003-0199-8 

Vitousek, P.M., Hättenschwiler, S., Olander, L., Allison, S., 2002. Nitrogen and Nature. 

Ambio A J. Hum. Environ. 31, 97–101. doi:10.1579/0044-7447-31.2.97 

Vitousek, P.M., Porder, S., Houlton, B.Z., Chadwick, O. a, Applications, S.E., January, N., 

Applications, E., Houlton, Z., 2010. Terrestrial phosphorus limitation : mechanisms , 

implications , and nitrogen — phosphorus interactions. Ecol. Appl. 20, 5–15. 

doi:10.1890/08-0127.1 

Walker, T.W., Syers, J.K., 1976. The fate of phosphorus during pedogenesis. Geoderma 15, 

1–19. doi:10.1016/0016-7061(76)90066-5 

Wilcke, W., Boy, J., Goller, R., Fleischbein, K., Valarezo, C., Zech, W., 2010. Effect of 

topography on soil fertility and water flow in an Ecuadorian lower montane forest, in: 

Bruijnzeel, L., Scatena, F., Hamilton, L. (Eds.), Tropical Montane Cloud Forests, 

Science for Conservation and Management. Cambridge University Press, New York, pp. 

402–409. 

Wilcke, W., Oelmann, Y., Schmitt, A., Valarezo, C., Zech, W., Homeier, J., 2008. Soil 

properties and tree growth along an altitudinal transect in Ecuadorian tropical montane 

forest. J. Plant Nutr. Soil Sci. 171, 220–230. doi:10.1002/jpln.200625210 

Wilcke, W., Yasin, S., Abramowski, U., Valarezo, C., Zech, W., 2002. Nutrient storage and 

turnover in organic layers under tropical montane rain forest in Ecuador. Eur. J. Soil Sci. 

53, 15–27. doi:10.1046/j.1365-2389.2002.00411.x 

Wohl, E., 2010. Mountain rivers. American Geophysical Union, Washington, DC. 



 

Page 39 

 

Wood, J., 2009. Geomorphometry in LandSerf, in: Hengl, T., Reuter, H.I. (Eds.), 

Geomorphometry: Concepts, Software, Applications. Elsevier, Amsterdam, pp. 333–

349. 

Yang, X., Post, W.M., 2011. Phosphorus transformations as a function of pedogenesis: A 

synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences 8, 

2907–2916. doi:10.5194/bg-8-2907-2011 

Zhang, X., Drake, N.A., Wainwright, J., 2013. Spatial Modelling and Scaling Issues, in: 

Wainwright, J., Mulligan, M. (Eds.), Environmental Modelling: Finding Simplicity in 

Complexity. John Wiley & Sons Ltd, West Sussex, pp. 69–90. 

Zhou, J., Wu, Y., Bing, H., Yang, Z., Wang, J., Sun, H., Sun, S., Luo, J., 2016. Variations in 

soil phosphorus biogeochemistry across six vegetation types along an altitudinal 

gradient in SW China. Catena 142, 102–111. doi:10.1016/j.catena.2016.03.004 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Page 40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Page 41 

 

Chapter 2 Spatial soil nutrients prediction using three 

supervised learning methods for assessment of land 

potentials in complex terrain 

Gwanyong Jeong1, Hannes Oeverdieck1, Soo Jin Park2, Bernd Huwe1, Mareike Ließ 1 

1Department of Geosciences/ Soil Physics Division, University of Bayreuth, Universitaetsstrasse 30, 95447 

Bayreuth, Germany 

2Department of Geography, Seoul National University, Shilim-Dong, San 56-1, Kwanak-Gu, Seoul 151-742, South 

Korea 

Corresponding author: gwanyong.jeong@uni-bayreuth.de 

Abstract 

Mountain soils play an essential role in ecosystem management. Assessment of land 

potentials can provide detailed spatial information particularly concerning nutrient availability. 

Spatial distributions of topsoil carbon, nitrogen and available phosphorus in mountain regions 

were identified using supervised learning methods, and a functional landscape analysis was 

performed in order to determine the spatial soil fertility pattern for the Soyang Lake watershed 

in South Korea. Specific research purposes were (1) to identify important predictors; (2) to 

develop digital soil maps; (3) to assess land potentials using digital soil maps.  

Soil profiles and samples were collected by conditioned Latin Hypercube Sampling considering 

operational field constraints such as accessibility and no go areas contaminated by landmines 

as well as budget limitations. Terrain parameters and different vegetation indices were derived 

for the covariates. We compared a generalized additive model (GAM) to random forest (RF) 

and support vector regression (SVR). For the predictor selection, we used the recursive feature 

elimination (RFE). A land potential assessment for soil nutrients was conducted using trimmed 

k-mean cluster analysis. 
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Results suggested that vegetation indices have powerful abilities to predict soil nutrients. Using 

selected predictors via RFE improved prediction results. RF showed the best performance. 

Cluster analysis identified four land potential classes: fertile, medium and low fertile with an 

additional class dominated by high phosphorus and low carbon and nitrogen contents due to 

human impact. This study provides an effective approach to map land potentials for mountain 

ecosystem management. 

Keywords: mountain soil, soil nutrients, digital soil mapping, land potential assessment 

 

2.1 Introduction 

Recent research has shown an increased interest in mountain soils and their essential role in 

ecological functions (Ballabio, 2009; Roman et al., 2010; Wilcke et al., 2013). Mountain soils 

are regarded as a key factor for conservation and sustainable management in mountain 

regions. They have effects on downstream water quality and quantity, and nutrient dynamics 

as an input source (Wohl, 2010). Mountain soils and particularly their organic layers contain 

large stocks of soil nutrients released by mineralization of the organic matter (Wilcke et al., 

2010). Especially, nitrogen and phosphorus deficiencies exert influences on limitation of plant 

growth in mountain areas. It is an important issue to understand nutrient supply in mountain 

areas which influences plant productivity, diversity and compositions (Benner et al., 2010). 

Last but not least, spatial information on soil nutrients is required to understand and manage 

mountain ecosystems. 

Properties of mountain soils have a high local variability (Holtmeier, 2009). This is because 

mountain areas underlie a high variability in climatic conditions, topography, parent material 

and vegetation (Funnell and Parish, 2005). Several processes such as creeping, erosion, 

solifluction, and landslide lead to nutrient losses in some parts and accumulations in others. 
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Organic matter accumulation, nutrient cycling and disturbance are enhanced by vegetation 

and animals (Brady and Weil, 2010). Furthermore, parent rock material influences the spatial 

distribution of base status and nutrient contents in the soil (Binkley and Fisher, 2012). Complex 

interactions among these various environmental factors generate a considerable spatial 

heterogeneity of physical and chemical soil properties. Mountain areas also provide various 

challenges to any soil mapping approach as they are difficult to access and have scarce data 

availability. Construction of soil dataset in mountain areas frequently requires considerable 

amounts of cost, time, and labor due to these reasons. Digital soil mapping can be a useful 

tool to reduce this kind of efforts as well as obtain reasonable results (Ballabio, 2009; Ließ et 

al., 2012). 

Soil fertility refers to the soil’s ability to provide nutrients in available forms and appropriate 

amounts for plant growth and reproduction (Osman, 2013). Soil fertility plays a key role in land 

potential or capacity (Osman, 2013; Stockdale et al., 2013). In mountain areas, comprehensive 

information on the soil fertility is needed. Some researches on land potentials performed spatial 

predictions based on digital soil mapping but most studies focused on agricultural areas (Al-

Shamiri and Ziadat, 2012; Harms et al., 2015; Sun et al., 2012). Moreover, there were a few 

researches on spatial predictions for soil fertility in mountain areas. In this study, we tried to 

develop soil nutrient maps in order to investigate land potentials in the Soyang watershed, 

South Korea. Specific research purposes were (1) to identify the most important environmental 

predictors to predict soil nutrients, (2) to develop digital soil maps with uncertainty and (3) to 

assess land potentials.  
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2.2 Materials and methods  

The whole procedure in this study is outlined in Figure 2.1. Our methods consisted of following 

three steps; predictor selection, model tuning and validation, and functional analysis.  

2.2.1 Research area 

 

The Soyang lake watershed is located in the north-eastern part of Gangwon-do province, 

South Korea. It extends between 70 and 1700 m a.s.l. and covers an area of 2,776 km². The 

Soyang lake was impounded by an artificial dam in 1973, located about 10 km northeast of 

Chuncheon. The dam was constructed for flood control, water supply and hydroelectric power 

generation for downstream areas. Being close to an even crossing the border to North Korea, 

parts of the corresponding watershed are not accessible due to military facilities and 

 

Figure 2.1 Flowchart of the proposed procedure. C = carbon, N = nitrogen, P = available 

phosphorus, RFE = recursive feature elimination, GAM = generalized additive model, SVR 

= support vector regression, RF = random forest, CV = cross validation, RMSE = root mean 

squared error, SD = standard deviation. 
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contamination by landmines. The Soyang river originates from Mu, Seorak and Obdae 

Mountain (Figure 2.2). The whole geomorphological feature is an incised meander that has a 

narrow river valley due to tectonic process during the Quaternary (Lee, 2004). The area’s 

geology is dominated by banded gneiss and granite (Korea Institute of Geology Mining and 

Material, 2001). Chuncheon and Haean consist of granite and show plain areas. Moderately 

coarse textured soil and clay loam soil cover around 60% of the area (National Academy of 

Agricultural Science, 2013). The area receives 1,179 mm of mean annual rain fall. It is mostly 

covered by forest (80%) with deciduous trees (51.8%), coniferous (25.4%), and mixed (22.8%) 

trees as dominant forest types and includes two national parks (Seorak and Odae).  

 

Figure 2.2 Research area. (A) The map of the Korean Peninsula. (B) The Soyang 

watershed is located in the north-eastern part of South Korea. (C) The map shows the 

spatial distributions of sampling points. The Soyang watershed is near the border to North 

Korea and includes two national parks (Seorak and Odae). The Soyang river originates 

from Mu, Seorak and Obdae Mountain. (D) The landuse map of Soyang watershed from 

Korean Environmental Geographic Information Service (EGIS) (http://egis.me.go.kr) 
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2.2.2 Soil dataset and environmental predictors 

 

About 139 samples were collected in the research area in 2013 (Figure 2.2). To obtain a 

representative dataset for the Soyang Lake watershed, conditioned Latin Hypercube Sampling 

(cLHS) was applied to guarantee for optimal coverage of the variability of environmental 

covariates (Minasny and McBratney, 2006). Impractical sampling designs are common in 

cLHS due to difficult accessibility and sparely distributed locations within the study area 

(Roudier et al., 2012). The sampling method for this research, therefore, considered 

operational field constraints such as accessibility and no go areas contaminated by landmines 

as well as budget limitations. cLHS was performed within R package "clhs" (Minasny and 

McBratney, 2006). 

Available phosphorus (P) of the topsoil horizon was extracted by the Lancaster method (pH 

4.25), a P extractant for a wide range of soils (Cox, 2001; Kim et al., 2013). Alternatives are 

the Bray 1 method developed on acid soils and the Olsen method, originally proposed for 

alkaline soils but now also used for acid and neutral soils (Sims and McGrath, 2012). The P 

content in the extractant was then measured by inductively coupled plasma optical emission 

spectroscopy (Cox, 2001). The topsoil total carbon (C) and nitrogen (N) contents were 

determined by CNS-Analyser with conductivity detectors by high temperature combustion. 

Various vegetation parameters derived from satellite images were used as predictors in 

addition to terrain parameters derived from a DEM of 30 m ASTER data from the U.S. 

Geological Survey (USGS) website (http://earthexplorer.usgs.gov/) (Table 2.1). They were 

calculated with the terrain analysis modules of the open source software SAGA (SAGA User 

Group Association, 2011). Different vegetation indices were extracted from a 30 m landsat TM 

image on 25th May 2009 from USGS website (http://glovis.usgs.gov/).  
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Table 2.1 Environmental predictors for digital soil mapping 

 Predictor Method Reference 

1 Elevation (ELEV) - - 

2 Slope degree (SLO) Slope, aspect, curvature 

saga module 

(Zevenbergen 

et al., 1987) 

3 Strahler order ≥5 

Overland flow distance to channel 

network (OFD) 

Overland low distance to 

channel network saga 

module 

(Strahler, 

1957) 

4 Vertical overland flow distance (vOFD) Overland low distance to 

channel network saga 

module 

(Freeman, 

1991) 

5 Horizontal overland flow distance 

(hOFD) 

Overland low distance to 

channel network saga 

module 

(Freeman, 

1991) 

6 Valley depth (VD) Valley depth saga 

module 

- 

7 Catchment area (CA) Catchment area (Flow 

tracing) saga module 

(Costa-Cabral 

and Burges, 

1994) 

8 Convergence index (CONV) Convergence index saga 

module 

(Koethe and 

Lehmeier, 

1996) 

9 Positive and negative openness 

(POPEN, NOPEN) 

Topographic openness 

saga module 

(Yokoyama et 

al., 2002) 

10 Normalized difference vegetation index 

(NDVI) 

(NIR – Red)/ (NIR+Red) (Tucker and 

Sellers, 1986) 

11  Green normalized difference vegetation 

index (GNDVI) 

(NIR – Green)/ 

(NIR+Green) 

(Gitelson et al., 

1996) 

12 Normalized difference water index 

(NDWI) 

(NIR – SWIR)/ 

(NIR+SWIR) 

(Gao, 1996) 

NIR= near-infrared, SWIR= shortwave-infrared 
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2.2.3 Supervised learning methods 

 

Three supervised learning methods, generalized additive model, random forest, and support 

vector regression were compared. These methods have the common ability to model complex 

nonlinear relationships between soil properties and environmental predictors. They showed 

good performances in mountain areas (Ballabio, 2009; Ließ et al., 2012; Tesfa et al., 2009).  

1.1.1.1 Generalized additive model 

 

The generalized additive model (GAM) is an extension of the generalized linear model (Hastie 

and Tibshirani, 1990). It uses a smooth function which allows identifying nonlinear relationships 

between the response and predictor variables. The GAM used for this study was penalized 

regression splines, which adds a penalty term for “overfitting” to the goodness-of-fit term to 

minimize the sum of squared residuals (Wood, 2006).  

The GAM tries to find the optimum balance between model fit and model smoothness. This is 

controlled by the smoothing parameter, λ. With λ being too small, data points are fitted as good 

as possible resulting in a “wiggly” model. With λ being too large, the function f(x) is smoothed 

into a straight line. The applied R package “mgcv” uses cross-validation to determine λ (Wood, 

2006). 

2.2.3.1 Support vector regression 

 

Support vector regression (SVR) is a powerful data mining technique that can be generalized 

to non-linear models using a kernel function (Vapnik, 1995). The kernel function is used to 

transform the input predictor space into a higher dimensional space. ε-SVR was used for this 

research (Smola and Schölkopf, 2004). For regression, SVM finds the best fit in the feature 

space but uses a loss function to find the regression line that minimizes model errors or 

residuals. The loss function in ε-SVR uses not squared but absolute residuals over the 
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threshold  while the loss function ignores all errors within ± . This approach shows robust 

effects that are not sensitive to outliers on the prediction (Cherkassky and Mulier, 2007). With 

, the loss function can add a penalty (cost) for large residuals. There is a relationship between 

the  and the cost parameter (Kuhn and Johnson, 2013). At the initial step, 0.1 (default value) 

was chosen for , and kept fixed while tuning the value of cost via 10-fold cross validation. We 

used the radial basis kernel (Equation 2.1), a general kernel function shown to be very effective. 

Its parameters are easier to tune than those of other kernels (Ballabio, 2009; Kuhn and 

Johnson, 2013).  

k(𝑥𝑖, 𝑥𝑗)  =  exp (−σ ∥ 𝑥𝑖 − 𝑥𝑗 ∥2), (2.1) 

Where k is the kernel function, σ represents a scaling parameter, x is the input vectors, and 

∥∥ is the Euclidean norm. 

The radial basis function requires to tune the sigma (σ) parameter that controls its width. In the 

applied R package “caret” (Kuhn and Johnson, 2013), σ is automatically tuned. The SVR was 

performed within R package "kernlab" (Karatzoglou et al., 2004). 

2.2.3.2 Random forest 

 

Random forest (RF) is an ensemble learning method which operates by building a set of 

regression trees and averaging the results (Breiman, 2001). Each regression tree is 

constructed based on bootstrap samples of the data. A random subset of predictors of a 

predefined size (mtry) is used to fit each tree. Each tree is grown until the specified minimum 

node size (nodesize) is reached. RF uses some data (default: 1/3 of all data) as a test subset 

to calculate the prediction error (out of bag error). As long as the number of trees (ntree) is 

large, this out of bag error always converges (Breiman, 2001). RF guarantees model stability 

that means low bias and low variance via corrections of overfitting habit for each tree (Hastie 
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et al., 2009). According to Kuhn and Johnson (2013) and Strobl et al. (2009), RF does not 

need much tuning. The number of trees (ntree) was set to 1000. The default value five was 

used as minimum node size. The value of mtry was tuned using the train command in the R 

package “caret” (Kuhn and Johnson, 2013). RF was performed within R package 

"randomForest" (Breiman, 2001).  

2.2.4 Recursive feature elimination 

 

Predictor selection is a critical step in supervised learning methods, because this approach 

can remove uninformative and noisy predictors from the dataset and save computing time. 

This predictor selection, usually known as feature selection, can be placed into two categories 

which are filter and wrapper methods (Guyon and Elisseeff, 2003). The filter methods are a 

preprocessing step that evaluates the relevance of the predictors without models. This 

approach has some drawbacks: e.g. undesirable inputs are filtered out of the data, the 

selection criterion is not related to the effectiveness of the model, and important interactions 

between predictors cannot be quantified (Javaheri et al., 2014). The wrapper methods conduct 

a search in the target model itself to find an optimal combination of predictors considering the 

predictors’ interactions (John et al., 1994). We used recursive feature elimination (RFE) which 

is a popular wrapper method.  

RFE is a backward selection algorithm which iteratively eliminates the least important 

predictors from the model based on an initial predictor importance measure (Kuhn and 

Johnson, 2013). For RF, the random forest variable importance is used. For SVR and GAM, 

the predictor importance is evaluated using the locally weighted regression model (LOESS) 

smoother for modelling nonlinear relationships (Kuhn and Johnson, 2013). Predictor 

importance measures based on the R2. Firstly, the full model is created using all predictors 

and a measure of predictor importance is computed to rank the predictors from most important 

to least. Secondly, the models are tuned and trained iteratively with the most important 



 

Page 51 

 

predictors and without least important predictors until only one predictor remains. The RFE 

incorporating resampling (5 repetitions of 10-fold cross validation) was used for this. At the end, 

the appropriate number of predictors and the final list of selected predictors are determined. 

The predictors are returned in the order of the most important to the least important. The 

package “caret” provides the functions for RFE (Kuhn and Johnson, 2013). 

2.2.5 Model validation 

 

To compare model performance, the root mean squared error (RMSE) and pearson’s 

correlation coefficient (r) were calculated. Soil samples were randomly divided into two 

datasets. The first dataset (80%) was used to tune the parameters of the models by 10-fold 

cross validation. The second dataset (20%) was used to estimate model performances. This 

procedure was repeated 100 times. At the end, 100 tuned models and RMSEs were returned 

for each model algorithm and each soil property. 

2.2.6 Land potential assessment 

 

Trimmed k-mean cluster analysis was applied to conduct a land potential evaluation. The soil 

nutrient maps for C, N, and P were used as input data. The k-mean algorithm splits the 

observation dataset into distinct groups (Hastie et al., 2009). It minimizes the within-class 

variance (homogeneous) and maximises the variance between classes (heterogeneous). Like 

other statistical methods, clustering methods might be influenced by few extreme values (Fritz, 

2012). For robustification, the trimmed k means technique discards a proportion of the most 

distant observations from the centroid of each cluster (Farcomeni and Greco, 2015). The 

trimmed k means method requires two parameters: the number of clusters (k) and the 

proportion of observations with extreme values (α). Solutions with 2 to 10 clusters and α values 

from 0 to 20% were tested, and the best solution was selected based on the calculated 
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likelihood values that assess probabilities of cluster membership for the dataset. The trimmed 

k-means cluster analysis was performed within R package "tclust" (Fritz, 2012).  
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2.3 Results and discussion 

2.3.1 Soil nutrients 

 

Table 2.2 shows descriptive statistics of the collected soil dataset. Mean topsoil C content was 

33 ± 20 mg/g and mean topsoil N content was 2 ± 1 mg/g. Both C and N didn’t show a strong 

skewness (Figure 2.3). Topsoil available P content ranged from 1.01 to 849.70 mg/ kg with a 

mean concentration of 72.65 ± 156.30 mg/kg. Soil P data exhibited a strong positive skewness 

(Figure 2.3). Soil P showed a coefficient of variation (CoV) of 214.94 % and high variance. 

Table 2.2 Statistical summary of the collected soil dataset 

 Mean SD MIN Median Max CoV 

(%) 

Skew Kurt 

C (mg/g) 32.78 20.25 1.10 29.35 97.60 61.78 0.73 0.27 

N (mg/g) 2.29 1.33 0.30 2.02 7.00 58.08 1.02 0.82 

P (mg/kg) 72.71 156.27 1.01 25.36 849.70 214.92 3.42 10.96 

SD = standard deviation, MIN= minimum, MAX= maximum, CoV= coefficient of variation, 

Skew= Skewness, Kurt= Kurtosis. 

 

Figure 2.3 Histograms and probability functions of C, N and P for all data (a-c). 
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2.3.2 Recursive feature elimination 

 

The RFE reduced the number of predictors to those listed in Table 2.3. Using selected 

predictors via RFE improved the prediction results. The selected predictors were different for 

each soil nutrient and each supervised method (Table 2.3). This result is a commonly observed 

phenomenon in digital soil mapping (Brungard et al., 2015; Miller et al., 2015; Poggio et al., 

2013).  

NDVI had the highest overall predictor importance for C in all three algorithms. Among the 

terrain parameters, elevation and some hydrological parameters (vertical overland flow 

distance or catchment area) were selected by each of the models. The latter corresponds to 

accumulations of water, nutrients, and sediments from upslope (Gruber and Peckham, 2009). 

The convergence index is an important predictor in GAM while GNDVI is an important predictor 

in RF and SVR (Table 2.3). 

Table 2.3 Predictors selected by recursive feature elimination 

 Carbon Nitrogen Phosphorus 

GAM NDVI, ELEV, CONV, 

vOFD 

NDVI, CONV, GNDVI, 

NOPEN, vOFD 

NDWI, CA, VD, OFD, 

CONV, hOFD, ELEV, NDVI, 

NOPEN, GNDVI, POPEN, 

vOFD 

RF NDVI, ELEV, GNDVI, 

vOFD, CA, OFD, 

NDWI, hOFD, NOPEN, 

VD, POPEN 

NDVI, GNDVI, ELEV, 

VD, OFD, hOFD, 

vOFD, CA, POPEN, 

NDWI, NOPEN 

NDWI, NDVI, GNDVI, 

NOPEN, VD, vOFD, OFD, 

hOFD, ELEV 

SVR NDVI, GNDVI, ELEV, 

POPEN, CA, VO, 

NDWI 

POPEN, ELEV, NDVI, 

VD, GNDVI, vOFD, 

CA, CONV, NDWI, 

OFD, hOFD, NOPEN, 

SLO 

NDWI, NDVI 
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The NDVI had the highest overall predictor importance in GAM and RF models for N but 

POPEN was selected in SVR model as the best predictor. Like C, similar predictors such as 

NDVI, GNDVI, and elevation were selected. Hydrological predictors were important for N.  

The selected predictors for P prediction were distinguished with those for C and N. Here, the 

NDWI (instead of NDVI) had the highest overall predictor importance. For all three models, 

vegetation indices (NDWI and NDVI) were selected among the predictors. For GAM, 

catchment area, valley depth, and overland flow distance were important predictors. Results 

suggested the spectral predictors derived from the remote sensing image have powerful 

abilities to predict soil nutrients. 

2.3.3 Model comparison 

 

Figure 2.4 shows the boxplots of the RMSE and r distributions (prediction error) from the 100 

models for each of the three nutrients and model algorithms. RF showed the best performance 

considering the median RMSE of the 100 model runs (Table 2.4). For N and P, RF also showed 

the lower variability of the RMSE compared to GAM and SVR. SVR and RF had the similar 

result for C and N content. GAM showed rather worse results based on RMSE. GAM also 

showed larger uncertainty concerning the variability of RMSE. Therefore, it is not easy to 

generalize underlying relationships between soil properties and environmental predictors using 

GAM. RF and SVR were better models than GAM in our results.  

Tesfa et al. (2009) reported that the performances of RF were slightly better than that of GAM 

for the prediction of soil depth. Brungard et al. (2015) reported that RF showed a better result 

to predict soil classes compared to SVM. Similar results were reported by Kampichler et al. 
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(2010) and Hsieh et al. (2011) in ecological and medical applications.  However, some studies 

showed contrasting results. Li et al. (2015) tested GAM, RF, and SVM for fish stock 

assessment and found that SVM slightly outperformed RF. Similar to our results, the 

performance of GAM was worse than that of RF and SVM. Compared to SVR, RF is the easier 

procedure, because SVR requires the tuning of more parameters. Kampichler et al. (2010) 

compared five machine learning methods based on modelling performance, modelling effort, 

classifier comprehensibility, and method intricacy. They recommended the use of RF because 

of its modelling performance as well as the ease of model construction and interpretability. Our 

results also indicated that RF can produce good model results for soil nutrient prediction. 

 

Figure 2.4 (a) – (c) RMSE of the 100 models, (d) – (f) Pearson’s correlation coefficients (r) 

of the 100 models. 
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Finally, we selected the best model algorithm based on the median RMSE to predict the spatial 

distribution of each soil nutrient: RF for the prediction of all three soil nutrients.  

2.3.4 Spatial prediction 

 

The procedure’s results are two maps for each of the three nutrients which display the mean 

and standard deviation of the 100 predictions. Figure 2.5 refers to the C content in the surface 

horizon. Figure 2.6 depicts the spatial N distribution, while Figure 2.7 shows the P content. The 

spatial patterns of C and N were similar, but the available P pattern was individual. Kovačević 

et al. (2010) reported the strong positive correlation between C and N (r=0.98) but the relatively 

weak relationship between C and available P (r=0.37). Similar findings are also found by other 

studies (Camargo et al., 2012; J. Kim et al., 2014; Kunkel et al., 2011; Sumfleth and Duttmann, 

2008).  

The vegetation indices made strong contributions to explain the spatial patterns of soil nutrients 

as noted above. Higher values of C and N contents can be found at higher altitudes (Figure 

2.5 and 2.6) where vegetation density (NDVI) is high. The NDVI is related to biomass, leaf area 

index (LAI), and the fraction absorbed photosynthetically active radiation (FPAR) which 

indicate biophysical measures to model soil nutrients (Grunwald et al., 2015; Mulder et al., 

Table 2.4 Statistical Summary of supervised model performances 

Model Model 

estimate 

Carbon Nitrogen Phosphorus 

SVR Median r 0.493 0.521 0.598 

Median RMSE 17.616 1.141 126.0 

RF Median r 0.427 0.552 0.754 

Median RMSE 17.544 1.131 120.4 

GAM Median r 0.461 0.382 0.667 

Median RMSE 18.588 1.338 120.6 

r= Pearson’s correlation coefficient 
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2011). The strong relationship between NDVI and soil nutrients was also reported by other 

studies  for C and N (Kunkel et al., 2011; Sumfleth and Duttmann, 2008) and P and N (J. Kim 

et al., 2014). Sumfleth and Duttamann (2008) reported C (r=0.55) and N (r=0.52) contents to 

be significantly related to NDVI in an agricultural landscape. Kunkel et al. (2011) accounted for 

54% of C stock variance and 37% of N stock variance using only NDVI in an area vegetated 

with grass and forest. As C and N contents are dependent on input rates from litterfall, C and 

N contents have significant correlations with NDVI.  

Elevation might be an indicator of soil temperature and decomposition rates which result in C 

and N accumulations (Binkley and Fisher, 2012; de Brogniez et al., 2015; Osman, 2013). 

Positive relationships between C and N and elevation were reported by Kunkel et al. (2011) 

and Peng et al. (2013). In the Soyang watershed, the areas at higher elevation are dominated 

  

 

 

Figure 2.5 Carbon content map with random forest 
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Figure 2.6 Nitrogen content map with random forest  

 

Figure 2.7 Available phosphorus content map with random forest 

 



 

Page 60 

 

by forest lands which were partly designated natural conservation areas, national parks or 

military areas which might indicate a low level of disturbance. The lower areas are 

characterized by mountain farmlands and paddy areas (Kim et al., 2014). Considering the long 

history of landuse in the areas at lower elevation, the human impact led to a change in the 

spatial patterns of the soil nutrients (Figure 2.2). These land uses in the mountainous areas 

cause severe soil erosion, resulting in the loss of soil nutrients (Arnhold et al., 2013). The larger 

contents of C and N in the forest compared to the agricultural topsoils are consistent with the 

results found by Ruidisch et al. (2013) in the same watershed. This result is well-known but 

these patterns can’t easily be detected by simple linear regression because of various land 

use types in the lower areas and the complexity of soil forming factors in high relief areas.  

Among the areas at higher altitudes, the areas with the highest C content were close to the 

valley bottom. Lateral movement of water, sediment and nutrients is controlled by the slope 

configuration and the downslope hydraulic gradient which in turn result in this spatial 

differentiation of soil nutrients (Huggett, 1975; Moore et al., 1993; Park and Burt, 2002). Areas 

dominated by forest with higher vegetation density almost coincided with locations where the 

largest N contents were calculated (Figure 2.6). High N contents were predicted for the 

concave areas and for the eastern parts of the research area in the high mountain area. Usually, 

C and N are correlated. However, in our results, the spatial distribution of the N contents was 

strongly related to the channel networks (predictors OFD, vOFD and hOFD) (Figure 2.6). In 

the western part of the research area composed of coniferous forest and the plain agricultural 

area of Chuncheon (Figure 2.2), the C and N contents were generally lower than in other areas.  

Areas with the highest contents of topsoil available P can be clearly related to locations near 

the lower plain area measured by high catchment area, high positive and low negative 

openness, and low vegetation indices in the western parts of the study area and related to rice 
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paddy and dry field areas (Figure 2.7). These areas with the larger amounts of P include 

Chuncheon and Haean (Figure 2.2). Historical land use changes natural processes and has 

effects on the soil P distribution (Roger et al., 2014). Similar to C and N, the spatial distribution 

of the P content corresponded to the land use patterns. However, in contrast to C and N, the 

hilltops and the shoulder areas showed lower P contents. Within the forest area, the P content 

was highest near the valley bottom and concave areas.  

There were a few researches about spatial predictions of available P. Camargo et al. (2012) 

identified hillslope curvatures were useful to understand spatial available P patterns (Figure 

2.7). In contrast to this, convergence index related to the curvature was not selected in our RF 

P model (Table 2.3). Moore et al. (1993) reported a similar spatial distribution of available P 

with slope, stream power index and wetness index as statistically significant predictors. In our 

research, slope was not selected but the model included hydrological predictors similar to 

those selected by Moore et al. (1993) (Table 2.3). McKenzie and Ryan (1999) found higher 

total P to be associated with lower elevation which represents a nutrient and material 

accumulation zone. Most of P is attached in the sediment as relatively insoluble substances 

and is accumulated in lower elevation or concave areas because P tends to react more readily 

to positively charged calcium, iron, and aluminium ions in soils (Bauer and Velde, 2014).  

Figure 2.5b, 2.6b, and 2.7b show the standard deviation of C, N and P contents. Higher 

standard deviation of the C content was found in the coniferous forest land near the Soyang 

dam (Figure 2.5b) while high uncertainty for the N content was shown along the high ridges 

(Figure 2.6b). The spatial prediction uncertainty for available P was higher in lower and 

agricultural areas than in other areas (Figure 2.7b). The uncertainty for all soil nutrients was 

lower in mid-slope areas. Especially, higher uncertainty for P showed in areas with higher 

values of contents because of soil data structure. The soil data with a small proportion of 

extreme values shows skewed so that the data sparsity creates uncertainty (Elith and 

Leathwick, 2009).  
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2.3.5 Land potential assessment  

 

Trimmed likelihood curves were used to choose k and α (Farcomeni and Greco, 2015). Figure 

2.8 shows a high increase of the likelihood value between k=2 and K=3, with still some 

noticeable difference between k=3 and k=4, while no substantial increase in the likelihood 

between K=4 and K=5 is found. For α, we considered the degree of the likelihood increase. 

Considering Figure 2.8, we decided to use k=4 and α = 0.05. Class zero of Figure 2.9 included 

all extreme values which were trimmed from the data. It basically includes areas of agricultural 

land use which - due to fertilizer application - show a very different soil nutrient status, mainly 

indicated by the high P contents (Table 2.5). Class one had low C and N contents and high P 

contents. The areas also indicate agricultural land use in Haean and Chuncheon (Figure 2.2). 

This class occurs on lower slope and foot slope landform positions. Although this class is small 

areas, these areas are strongly affected by human impacts. Class two had high C and N 

contents. It occurs on concave mid slope positions and on the crest of high ridges vegetated 

with deciduous or mixed forest. Class two indicates a relatively fertile land. If these areas will 

 

Figure 2.8 Classification trimmed likelihoods (CTL) for the land potential assessment. 

Numbers on the lines indicate the number of clusters for the particular setting 
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be changed into other landuse types, much soil C might be lost. Class three had medium 

contents of soil nutrients. It occurs in mid to lower slope dominated by deciduous or mixed 

forest. Class four was characterized by low C, N, and P contents. This cluster might indicate a 

vulnerable mountain area of relatively low fertility. The landscape position is typical linear mid 

slope positions and dominated by coniferous forest or mixed forest. 

Specific carbon values as indicators of soil quality were suggested by Romig et al. (1996): 

healthy (40 – 60 mg/g), unhealthy (< 20 mg/g or > 80 mg/g), or impaired (20 - 40 mg/g or 60 - 

80 mg/g). These values also were similar to around 40 mg/g reported by Hall (2008). Viscarra 

Rossel et al. (2010) and Tesfahunegn et al. (2011) suggested a lower value, 25 mg/g, for C to 

define high quality soil conditions. Some researches in Korea suggested the effective range 

ofC for the proper growth of the tree and crop is over 25 - 30 mg/g (Kang et al., 2012; Kim et 

al., 2010; Lee, 2012). Tesfahunegn et al. (2011) suggested 2.53 mg/g as the threshold value 

of N for high soil quality. Lee et al. (2012) suggested 2.5 mg/g for the effective value of the N 

content for the tree growth. According to these references, cluster two and three with a mean 

C content of 40 to 50 mg/g and a mean N content of 3 mg/g indicate healthy and high quality 

soil conditions (Table 2.5). Mean C and N contents of cluster one and four, 25 to 30 mg/g and 

Table 2.5 The descriptive summary of each cluster 

Cluster 
Carbon (mg/g) Nitrogen (mg/g) Phosphorus (mg/kg) Area 

(%) Min Mean Max Min Mean Max Min Mean Max 

0 14.28 25.07 63.95 1.12 1.95 4.55 43.60 171.8 327.43 5.00 

1 16.01 25.95 52.54 1.17 1.95 4.19 29.82 49.28 76.06 4.54 

2 34.75 49.18 71.81 2.06 3.46 5.12 10.16 18.95 45.48 19.00 

3 33.98 40.47 48.58 1.92 2.75 3.86 7.60 13.32 31.89 44.46 

4 15.38 30.00 35.58 1.10 2.05 3.21 5.80 12.62 31.60 27.01 

Total 14.28 37.87 71.81 1.10 2.62 5.12 5.80 23.75 327.43 100 
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2 mg/g, are lower. According to the mentioned references, C content is still good for effective 

tree and crop growth, but mean N content is too small.  

Sims and McGrath (2012) recommended optimum values for the plant growth by several P 

methods: over 10 mg/kg (Olsen) and over 30 mg/kg (Bray 1). Viscarra Rossel et al. (2010) 

suggested 18 - 60 mg/kg by Olsen method. Horneck et al. (2011) also suggested 40 - 100 

mg/kg (Bray 1) and 25 - 50 mg/kg (Olsen) as recommendation P values for agricultural areas. 

Aune and Lal (1997) defined as 7 - 10 mg/kg by Bray 1 although these values are the critical 

P level. Lee et al. (2012) suggested 60 mg/g (Lancaster) as the effective value of the P content 

for forest areas. For available P, there are many values and these values are a little 

inconsistent because chemical analysis methods are different. Kim et al. (2013) tried to 

compare various methods for available P for soils in paddy and upland fields. Available P of 

the Lancaster method was significantly correlated with those of Bray 1 (R2=0.94) and Olsen 

(R2=0.63). The values extracted by Bray 1 overestimated the Lancaster’s values while the 

results of Olsen method underestimated those of the Lancaster method. Therefore, 30 - 40 

mg/kg are considered as the effective range of P according to the above references. Results 

showed class one had relatively high P contents and class two, three and four mostly covered 

by forest areas had low P contents (Table 2.5). More complete overviews can be found in 

Schoenholtz et al. (2000), Sims and McGrath (2012) and Ewing and Singer (2012).  

Most of the areas, especially forest, showed low P contents possibly defining a phosphorus-

limited region. The amount of N deposition has increased rapidly in Korea due to 

industrialization, increase in fossil fuel combustion and intensive agricultural activities (Jang et 

al., 2011). The total N deposition was 12.9 – 24.9 kg/ha/year from 2005 to 2010 in South Korea 

and the results showed an increasing trend (Jang et al., 2011). The increase in N 

concentrations is most due to deposition of pollutant nitrogen from atmospheric sources (Kim 

et al., 2011). Kim et al. (2014) also reported the rate of increase of considerable N in the North 
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Pacific Ocean close to the Asian continent. The nitrogen enrichment may enhance P limitation 

and can change mountain ecosystems in the long-term.  
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Figure 2.9 Land potential assessment map 
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2.4 Conclusions 

In order to investigate the spatial soil fertility pattern for the Soyang Lake watershed in South 

Korea, soil nutrient maps were developed following specific procedures; predictor selection, 

model calibration and validation, and cluster analysis. Predictor selection results suggested 

that vegetation indices have powerful abilities to predict soil nutrients and using selected 

predictors via RFE improved the results. Remote sensing images indicate land use as well as 

vegetation density and composition which contribute to spatial patterns of soil nutrients. RF 

showed the best performance for all three soil nutrients.  

Higher values of C and N contents can be found at higher elevation within the Soyang 

watershed possibly due to a high vegetation density. Areas with higher contents of topsoil 

available P were found in areas under agricultural land use. Spatial soil nutrient patterns were 

influenced by the heterogeneity of the vegetation and land use and locally governed by slope 

configuration. Higher uncertainty for P showed in areas with higher values because the 

proportion of higher values was sparsity. Higher standard deviation values of the C content 

were found in the coniferous forest land near the Soyang dam while high uncertainty for the N 

content was shown along the high ridges. Spatial prediction uncertainty for available P was 

higher in lower and agricultural areas than in other areas. 

Cluster analysis identified four land potential classes: fertile, medium and low fertile forest 

lands with an additional class dominated by high P and low C and N contents due to human 

impacts. Cluster two and three showed relatively high mean C and N contents based on other 

researches. The results showed class one had relatively high P contents and class two, three 

and four had low P contents. Most of the areas (forest) showed low phosphorus contents 

possibly defining a phosphorus-limited region.  

This study provides an effective approach to map land potentials. This land potential 

assessment could provide an integrated spatial information to manage mountain ecosystems. 
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Abstract 

Topography might affect the spatial patterns of soil phosphorus (P) concentrations and on the 

abundance of soil P fractions in mountainous landscapes. However, few attempts have been 

made to quantify relationships between topography and soil P fractions. We investigated the 

spatial patterns of various P fractions in the topsoil of a forested watershed with steep slopes 

ranging from 300 to 900 m above sea level in South Korea. For this purpose, different P 

fractions including, total P, resin Pi, bicarbonate Pi, bicarbonate Po, hydroxide Pi, hydroxide 

Po, apatite Pi, and residual P were determined in 91 soil samples by Hedley fractionation.  We 

tested terrain parameters and the normalized difference vegetation index to predict spatial 

patterns of the P fractions.  
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Surface curvature contributed to 27 ~ 68 % of the total variations explained by regression 

models for each P fraction, and elevation contributed to 23 ~ 66% of the total variations. Based 

on surface curvature and elevation, we created digital soil maps depicting the spatial 

distribution of the P fractions. Total soil P concentration decreased strongly from lower slope 

to upper slope both at the low (300-600m) and high altitude (600-900m). While organic P was 

enriched at the lower slope likely due to erosion, the residual P fractions was largest at the 

upper slope. In conclusion, our results show that topography influences the spatial patterns of 

P fractions, allowing to predict areas which might be more sensitive to P limitation. 

Keywords: phosphorus; Hedley fractionation; digital soil mapping; topography; surface 

curvature; uncertainty. 

3.1 Introduction 

Phosphorus is an essential macronutrient for all organisms on Earth. Yet, little is known about 

the spatial distribution of P fractions in soil. Only a small proportion of soil total P is bioavailable, 

and most soil P is sorbed to calcium ions in young soils or to iron and aluminium ions in older 

soils (Walker and Syers, 1976). Recent progress in digital soil mapping (DSM) might help to 

improve our understanding of the spatial pattern of soil P fractions. 

Topography might be critical for the spatial patterns of soil P because it controls flows of water 

and materials (Huggett, 1975; Moore et al., 1993; Park and Burt, 2002). Topography proved 

to have effects on spatial variability of total soil P concentrations (Cheng et al., 2016; Kim and 

Zheng, 2011; McKenzie and Ryan, 1999; Yoo et al., 2009), available soil P (Camargo et al., 

2012; Moore et al., 1993) and various P forms (total, available, and organic) (Roger et al., 

2014). Camargo et al. (2012) identified curvature to be useful to understand spatial variability 

of available P.  
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Some studies identified the spatial distribution of P fractions gained by the Hedley fractionation 

on catenary sequences (Agbenin and Tiessen, 1994; Araújo et al., 2004; Roberts et al., 1985; 

Smeck, 1985; Tiessen et al., 1994; Vitousek et al., 2003). Agbenin and Tiessen (1994) reported 

that P contents decreased downslope in semi-arid regions of Brazil. Araújo et al. (2004) studied 

spatial variations of P fractions in toposequences of semi-arid soils and observed a spatial 

trend of organic P to increase downslope. Vitousek et al. (2003) found residual P decreased 

and organic P increased downslope. Mage and Porder (2013) confirmed parent material and 

topographical positions (ridge, slope, and valley) explained the variances of P status. These 

studies confirmed topographic effects on a variety of P fractions. However, quantitative 

relationships between soil P fractions and topography have not yet been fully investigated, and 

there are only very few studies that used DSM to better understand the spatial patterns of P 

fractions in complex landscapes. 

The great progress in DSM makes it possible to develop numerical or statistical models of the 

relationship between environmental predictors and soil properties (Grunwald, 2009; McBratney 

et al., 2003; Minasny and McBratney, 2015; Scull et al., 2003). A characteristic of DSM is that 

the soil of interest at "unknown" locations can be predicted quantitatively onto a digital soil map 

with uncertainty using the relationship between soil and environmental predictors at "known" 

locations under similar environmental conditions. Moreover, terrain analysis with digital 

elevation model (DEM) provides a variety of predictors which might represent the environment 

and indicate hydrological, geomorphological and pedological processes (Sabine Grunwald, 

2006; McBratney et al., 2003). These are useful tools to identify and understand spatial 

variability of soil properties. 

In the present study, we analyzed the spatial pattern of several soil P fractions in the topsoil of 

a mountainous watershed in South Korea using DSM. The purpose of this study was (1) to 

identify the environmental predictors of the spatial distribution of several P fractions, and (2) to 
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map different P fractions using the quantitative relationships between P fractions and 

environmental predictors. 

3.2 Materials and methods 

3.2.1 Research area 

 

This study area is a small headwater catchment with confined depositional areas (Wohl, 2010) 

located in the downstream area of the Soyang watershed, Gangwon-do province, South Korea 

(37° 59' 21" - 37° 59' 52" N and 127° 49' 51" - 127° 52' 03" E) (Figure 3.1). During 30 years, 

the average temperature of the air has been 11.1 °C (-4.6 – 24.6 °C) and the area has received 

a mean of 1,347 mm rain annually, with about 824 mm falling between June and August (Korea 

 

Figure 3.1 Research area. (A) South Korea. (B) Soyang watershed is located in the north-

eastern part of South Korea. (C) The map shows elevation and hillshade of our research 

area and a spatial pattern of sampling points. 
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meteorological administration, 2015). About 70 % of the annual rain falls heavily in the summer 

monsoon season (Bartsch et al., 2014). The area’s geology is dominated by granitic gneiss 

and banded gneiss (Korea Institute of Geology Mining and Material, 2001). It extends between 

320 and 868 m a.s.l. and has an area of 9.84 km2 and comprises steep slopes (over 45°). The 

soil texture is gravelly fine sandy loam, fine sandy loam (National Academy of Agricultural 

Science, 2013). It is covered by the national forest formed by Mongolian oak (Quercus 

mongolica) (40 - 50 years) and Korean pine (Pinus koraiensis) (30 - 35 years), with local 

occurrence of Japanese red pine (Pinus densiflora) and Japanese larch (Larix kaempferi).  

3.2.2 Soil sampling and chemical analyses  

 

Conditioned Latin Hypercube Sampling (cLHS) was applied to represent the density functions 

of the environmental predictor space and get a good dataset for regression modelling (Minasny 

and McBratney, 2006). The cLHS was performed with R package "clhs" (Roudier et al., 2012). 

A Qmini GNSS (global navigation satellite system) GPS was used to reduce the positioning in 

accuracy during field work to less than 5 m. A total number of 91 soil samples was collected 

from the A horizon in 2014 (Figure 3.1).  

The soil samples were air-dried and sieved (< 2 mm). Several P fractions were obtained 

according to Hedley method (Hedley et al., 1982)  The sequential extractions method first 

removes phosphate ions by anion exchange resins and then available and the more stable 

inorganic P and organic P fractions using a series of sequentially stronger extracting reagents. 

We used 0.5 g soils for the extraction. Resin Pi, bicarbonate Pi (NaHCO3 Pi), bicarbonate Po 

(NaHCO3 Po), hydroxide Pi (NaOH Pi), hydroxide Po (NaOH Po), apatite Pi (HCl Pi), and 

residual P (H2SO4/H2O2 P) were measured according to DIN EN ISO 6878 (DEV, 2002) using 

UV/VIS-spectroscopy (Perkin Elmer, Lambda 2, USA) in EUROFINS, Jena, Germany. The P 

fractions were reclassified into total P, resin Pi, available P (Resin Pi, bicarbonate Pi, and 

bicarbonate Po), organic P (bicarbonate Po and hydroxide Po), apatite Pi, and residual P (Yang 
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and Post, 2011). After grinding the samples, total carbon was measured by an elemental 

analyser (NA 1108, CE Instruments, Milano, Italy).  

3.2.3 Environmental predictors 

 

The 10 m digital elevation model (DEM) was produced using LiDAR (Light Detection and 

Ranging) point data surveyed by the National Geographic Information Institute (NGII) in South 

Korea (National Geographic Information Institute, 2015). The point observation data had a 

vertical accuracy of below 10 cm and an average of 4.08 points/ m2. 10 – 30 m grid sizes are 

recommended for digital soil mapping (Cavazzi et al., 2013; Erskine et al., 2007; Kim and 

Zheng, 2011; Maynard and Johnson, 2014; Park et al., 2009). This is because topographical 

details decrease with grid size over 30 m, while accuracy of DEM below 10 m can be easily 

affected by temporal and measurement errors. Topographical predictors were calculated with 

the terrain analysis modules of the open source software SAGA (Conrad et al., 2015) (Table 

Table 3.1 Environmental predictors for digital soil mapping. 

 Predictor Method Reference 

1 Elevation (ELEV) - - 

2 Slope degree (SLO) Slope, aspect, curvature 

saga module 

(Zevenbergen 

et al., 1987) 

3 Strahler order ≥5 

Overland flow distance to channel 

network (OFD) 

Overland low distance to 

channel network saga 

module 

(Strahler, 

1957) 

4 Solar radiation (SOL) Potential incoming solar 

radiation saga module 

(Böhner and 

Antonic, 2009) 

5 Surface curvature (CUR) CURV3 program (Park et al., 

2001) 

6 Normalized difference vegetation index 

(NDVI) 

(NIR – Red)/ (NIR+Red) (Tucker and 

Sellers, 1986) 

NIR= near-infrared 
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3.1). The normalized difference vegetation index (NDVI) was extracted from a 4 m Kompsat-2 

image from 11th October 2014. The NDVI was changed into 10 m cell size for DSM. 

Curvature is sensitive to changing neighborhood extent (Wood, 2009). It is normally calculated 

based on 3x3 cell neighborhood extents that can only consider the local variability. Effects of 

the neighborhood extent have an influence on values of terrain predictors (e.g. slope, aspect, 

and curvature) and finally on results of digital soil mapping (MacMillan and Shary, 2009; 

Maynard and Johnson, 2014; Wood, 2009). We investigated effects of the neighborhood extent 

for surface curvature. One advantage of this approach is an ability to consider the variability of 

slope configuration from fine scale to larger scale without decreasing DEM accuracy. Changing 

the cell size (over 30 m) can have the same effect but can lose original topographic details of 

the DEM. 

The surface curvature (CUR) value reflects the degree of bending three-dimensional surface 

morphology (Park et al., 2001). Positive curvature value indicates a convex morphology, while 

the negative curvature value represents a concave slope (Equation 3.1). The degree of 

bending surface morphology increases with increasing the value. The value will be close to 

zero at the linear slope. In the large extent, negative surface curvature value indicates 

predominantly concave lower slope, while positive surface curvature value indicates convex 

upper slope. 

𝐶𝑈𝑅 = (∑ (𝑛
𝑖=1 𝑍𝑐𝑖 − 𝑍𝑠𝑖)/𝑑)/𝑛,  (3.1) 

Where Zc is the elevation of the current cell, Zs is the elevation of surrounding points, d is the 

horizontal distance between the two points, and n is the total number of surrounding points.  

Solutions with 3x3 to 35x35 window sizes (30 ~ 350 m neighborhood extents) were tested and 

the best solution was selected based on results of Pearson’s correlation (Park et al., 2001). To 
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check variations of surface curvature with changing window size, the coefficient of variation of 

surface curvature was calculated. 

3.2.4 Linear regression model and ANOVA analysis 

 

A linear regression model was used to examine the influence of topography on P fractions. 

Spatial patterns of P fractions can be predicted quantitatively using the relationships terrain 

predictors and different P fractions.  

Predictor selection improves model results (Brungard et al., 2015; Miller et al., 2015; Poggio 

et al., 2013). Two methods were used for predictor selection. We used the stepAIC function 

(backward stepwise) which starts a model including all predictors and deletes one at a time 

until removing predictors would degrade the quality of the model based on akaike information 

criterion (AIC). The R package “MASS” was used for the stepAIC function (Venables and 

Ripley, 2002). Additionally, we used recursive feature elimination (RFE) which is a backward 

selection algorithm and iteratively eliminates the least important variables from the model 

based on an initial variable importance measure (Kuhn and Johnson, 2013). However, the RFE 

was incorporated with resampling (5 repetition 10-fold cross validation) to select the final list 

of predictors. The R package “caret” provides the functions for RFE (Kuhn and Johnson, 2013). 

Relative weights, measure the importance of predictors, approximates relative contributions of 

each predictor to R-square (R2) in the linear regression (Johnson, 2000). It is a useful mean to 

interpret the strength of each predictor in statistical relationships with the other predictors. 

Kabacoff (2015) provided a r code for relative weights. 

Model performance was tested by 5 repetitions of a 10-fold cross. As a consequence, 50 

models were adapted for each P fraction. All predictions should be accompanied by estimates 

of uncertainty which can give users or planners information on some constraint on the digital 
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soil maps. The standard deviations of 50 model results were considered as predictions of 

uncertainty (Ließ et al., 2014). 

One-way analysis of variance (ANOVA) was used to identify differences in P fractions between 

topographic positions. The assumptions required for ANOVA were assessed using Shapiro for 

normality and Bartlett test for homogeneity of variances. In case that the assumptions of the 

normality and the equality of variance was not met, Kruskal-Wallis test was used. The R 

package “pgirmess” was used for Kruskal-Wallis test (Siegel and Castellan, 1988). 

3.3 Results 

3.3.1 Phosphorus fractions 

 

The mean total P of the A horizons was 389 ± 171 mg kg-1 (Appendix 3.1). The total P 

concentrations in the A horizons showed a high variance based on values of standard deviation 

and coefficient of variation (CoV). Organic P revealed the highest mean content (158 ± 86 mg 

kg-1) compared to other P fractions, while Resin Pi had the smallest mean content (3.42 ± 1.63 

mg kg-1). Apatite Pi had the highest value of CoV (87.15 %) and exhibited a strong skewness 

and kurtosis with 4.15 and 27.71. A log transformation applied to resolve right-skewed 

distribution of apatite Pi. Apatite P ranged from 0.94 to 12.05% of total P with a mean of 2.48%, 

irrespective of the topographic position and altitude. 
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3.3.2 Models and predictors of soil phosphorus fractions 

 

Surface curvature was sensitive to changing the neighborhood extent (Figure 3.2). For 

example, values of Pearson correlation between total P and curvature ranged from -0.25 to -

0.50 (r). The 19 X 19 window size (CUR19) showed best results for most P fractions. This 

indicates that surface curvature was measured within 95 m radius at each cell. The window 

size increased with highlighting much more trends in curvature that indicates more distinct 

differences between the upper slope and the lower slope. Coefficient of variations reached the 

zero value almost at the plateau because the variations of curvature decrease with window 

size (Appendix 3.2).  

Surface curvature and elevation were selected for all P fractions by both predictor selection 

methods (Table 3.2). Slope degree was also an important predictor for all P fractions. The 

stepAIC function showed better results in almost all P fractions than recursive feature 

elimination but differences of performances were negligible (Figure 3.3). Selected predictors 

for total P, resin Pi, and apatite Pi were the same and similar predictors for the others were 

 

Figure 3.2 Correlations (r) between soil phosphorus fractions and surface curvature with 

varying the neighbourhood extent. 
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Table 3.2 Selected predictors. 

 stepAIC RFE 

Total P CUR19, ELEV, SOL, OFD, 

SLO 

CUR19, ELEV, SLO, OFD, 

SOL 

Resin Pi CUR19, ELEV, OFD, SLO CUR19, ELEV, SLO, OFD 

Available P CUR19, ELEV, OFD, SLO ELEV, CUR19 

Organic P CUR19, ELEV, OFD, SLO, 

SOL 

CUR19, ELEV, SLO, OFD, 

SOL, NDVI 

Apatite Pi CUR19, ELEV, SLO CUR19, ELEV, SLO 

Residual P CUR19, ELEV, SLO, SOL, 

NDVI 

CUR19, ELEV, SLO, SOL 

RFE: recursive feature elimination, CUR: surface curvature, ELEV: elevation, SOL: solar 

radiation, OFD: overland flow distance to channel network, SLO: slope degree, NDVI: 

normalized difference vegetation index. 

 

Figure 3.3 Model validation tested by 5 repetitions of a 10-fold cross with the stepAIC 

function and recursive feature elimination (RFE). 
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selected by both methods. Predictors for P fractions except residual P were selected by the 

stepAIC function. 

Our linear model showed good performances for all P fractions except for resin Pi and residual 

P based on R2. Our results indicate relationships between environmental predictors and P 

fractions might be linear in our research area. Organic P showed the best result of the external 

validation with a mean of 0.58 (R2), while resin Pi (R2 = 0.26) and residual P (R2 = 0.25) fitted 

least according to R2. Total P fraction (R2 = 0.56) showed a better performance.  

Terrain predictors account for 26 – 58% of the total variations of P fractions in linear regression 

models. In the results of predictor importance, surface curvature is one of the best predictors 

for all P fractions except for available P (Table 3.3). Surface curvature contributed to 28 ~ 68 % 

of the total variations explained by regression models for each P fraction. Elevation contributed 

to 23 ~ 66% of the total variations explained by regression models. Considering a low relative 

Table 3.3 Relative importance of predictors. 

Predictors Total P 

(%) 

Resin Pi 

(%) 

Available P 

(%) 

Organic Po 

(%) 

Apatite Pi 

(%) 

Residual 

P 

(%) 

CUR19 57.56 

(3.69) 

55.06 

(5.62) 

27.48 

(3.92) 

54.18 

(4.00) 

67.91 

(4.08) 

58.76 

(6.58) 

ELEV 31.71 

(3.83) 

28.98 

(5.99) 

65.95 

(3.66) 

36.05 

(3.70) 

29.24 

(4.03) 

23.22 

(5.97) 

SOL 2.00 

(0.95) 

  1.44 

(0.86) 

 11.45 

(3.79) 

OFD 3.95 

(0.52) 

7.35 

(2.01) 

4.11 

(1.11) 

 3.76 

(0.52) 

  

SLO 4.78 

(1.26) 

8.61 

(3.64) 

2.46 

(1.18) 

4.56 

(1.36) 

2.84 

(0.68) 

6.57 

(2.47) 

NDVI       

Mean of 50 models, standard deviation of 50 models in parentheses. 
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weight of vegetation index (NDVI), terrain predictors showed promising results for prediction 

of P fractions.  

3.3.3 Spatial patterns of soil P fractions 

 

Differences of P fractions were identified based on elevation and curvature which were 

selected as the best predictors. Although the topographic classification criteria were rather 

arbitrary, surface curvature values were set at -1 and 1 to classify lower slope (< -1), mid slope 

(-1 to 1), and upper slope (> 1). The total P contents, and the proportions of organic P and 

residual P were significantly different between topographical positions (Figure 3.4). Total P 

was 2.2 times higher at the lower slope than on the upper slope at an altitude of 300-600 m, 

and 1.8 times at an altitude of 600-900 m (Figure 3.4a and b). Total P did not differ between 

the corresponding topographic positions at 300-600 and 600-900 m (Figure 3.4a and b). The 

proportion of organic P was significantly higher at the lower slope than on the upper slope at 

an altitude of 600-900 m (Figure 3.4c and d). The proportion of residual P showed the opposite 

trend than the organic P (Figure 3.4c and d). The proportion of residual P was highly correlated 

with the proportion of organic P (r=-0.97, p<0.001). The carbon-to-organic P ratios decreased 

with topographical positions (Figure 3.5c). Carbon contents had no significant relationship with 

surface curvature (r=-0.02, p=0.93) but carbon-to-organic P ratios strongly correlated with 

curvature (r=0.56, p<0.001).  

The maps for each P fraction display the mean of 50 predictions (Figure 3.6). We found evident 

differences between P fractions at different topographic positions in our maps. Higher values 

of total P contents were found at the lower slope. Total P concentrations increased with 

elevation (Figure 3.6a). Resin Pi showed higher contents at concave lower slopes than at 

convex upper slopes. Concentrations of available P were predicted to increase with elevation. 

Organic P, apatite Pi and residual P showed catenary differentiations across the landscape. 
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Figure 3.4 Concentrations of the phosphorus fractions at sites at an altitude of 300-600 m 

(a) and 600-900 m (b), and percentages of phosphorus fractions at sites at an altitude of 

300-600 m (c) and 600-900 m (d). Different letters indicate significant differences 

significantly different at p<0.05 with Kruskal-Wallis test. * p<0.05, ** p<0.01, *** p<0.001, 

and – stands for not significant. 
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Higher standard deviation of total P contents, resin P, available P, and organic P were found 

in the valley floor (Appendix 3.3). The spatial uncertainty for apatite P was high in the hillslope 

summit (Appendix 3.3e), while high uncertainty of residual P contents was found in the more 

extended areas compared to other fractions (Appendix 3.3f). 

 

 

Figure 3.5 Organic phosphorus (a), carbon (b), and carbon: organic phosphorus ratio (c) at 

the different topographical positions. Different letters indicate significant differences at 

p<0.05 with Kruskal-Wallis test. * p<0.05, ** p<0.01, and *** p<0.001. 
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Figure 3.6 Predicted mean phosphorus fractions with summaries of the column and row. 
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3.4 Discussion 

Our results show substantial effects of topography on soil total P and on P fractions (Figure 

3.6). This pattern can most likely be explained by erosion and soil creep at the upper slope, 

and colluvial deposition and accumulation at the lower slope.  

Concentrations of total and of organic P were higher at the lower slope than at the upper slope, 

while the residual P concentration was higher at the upper slope (Figure 3.6d). Similarly, 

McKenzie and Ryan (1999) identified higher total P at the depositional lower slope. The reason 

for this pattern is most likely erosion especially of organic matter, leading of an accumulation 

of organic P at the lower slope. Concentration of total P and organic P were significantly lower 

at the upper than at the lower slope (Figure 3.4).  

The different ratios of C-to-organic P are likely due to two processes (Figure 3.5b). First, higher 

total P contents at the lower slope might reduce organic P mineralization, leading to low ratios 

of C-to-organic P at the lower slope. Second, the low ratios of C-to-organic P might also be 

due to litter inputs to the soil with low C-to-P ratios at the lower slope caused by the high total 

P contents at this topographic position. The high total P contents likely lead to low C-to-P ratios 

in biomass which affects the C-to-P ratios of the soil organic matter through litter inputs (Huang 

and Spohn, 2015). 

Resin P is bioavailable for plants, and its concentration strongly depends on the activity of 

microorganisms that mobilize P (Richardson et al., 2009). Vincent et al. (2014) identified 

decreases of resin P contents with increasing elevation in a subarctic tundra. They explained 

this result by a decline in temperature that influences soil microbial activity. The curvature may 

indicate soil moisture, since soils on convex slopes are usually drier because water is moving 

down the slopes, while soils on convergent lower slope tend to be wetter. For this reason, 

slope curvature might have an effect on microbial activity. Moore et al. (1993) reported a similar 

result, showing a relationship between available P and lower slope degree, stream power index 
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and higher wetness index which indicate the lower slope. C contents had significant 

relationships with available P contents (r=0.67, p<0.001) and elevation (r=0.51, p<0.001). This 

indicates that the spatial pattern of P availability in our research area was related to organic 

matter.  

Several ratios of P fractions are used to qualitatively estimate the degrees of soil weathering. 

The apatite Pi-to-total P ratio is useful for estimating the long term apatite P reserve of a soil 

and the extent to which soil minerals have undergone P transformations. Weathering results 

in a progressive change of apatite P to residual P (Walker and Syers, 1976). Lightly weathered 

soils have a high percentage of P in apatite (47%), while in strongly weathered soils, apatite P 

only accounts for about 3% of total soil P (Yang and Post, 2011). Residual P increase with the 

weathering stage of soils so in highly weathered soils, residual P-to-total P ratio showed 0.50 

~ 0.59 (Yang and Post, 2011). Residual P-to-total P ratios ranged from 20.3 to 73.3% with a 

mean of 45.00%, showing a high variability of ratios compared to other results (Agbenin and 

Tiessen, 1994; Araújo et al., 2004). Total P contents in the soils under study ranged from 160 

to 920 mg kg-1 with a mean of 389 mg kg-1. They corresponded to an average P content of a 

global soil P dataset (Yang and Post, 2011), although the variation was high. 

Our maps of soil P fractions were produced with predictabilities from 25% to 58%. Topography 

explained 26% of resin P variance and 25% of residual P variance in the regression model 

(Figure 3.3). Moore et al. (1993) accounted for 48% of available P variance. McKenzie and 

Ryan (1999) reached high predictive values for total P (78%) but Kim and Zheng (2011) 

reported relatively lower R2 (0.11) of total P in a coastal dune. Based on these results, total P 

(56%), organic P (58%), available P (44%), and apatite P (46%) reached high predictive values 

only using terrain variables, but resin Pi and residual P showed relatively low predictive values. 

This implies that there are other factors that shape the distribution of resin P and residual P 

that were not included in our model.  



 

Page 97 

 

The highest uncertainties of spatial prediction for all P fractions were found in the adjacent 

valley floor, while the uncertainties for P fractions were lower in the ridge to mid-slope areas 

(Appendix 3.3). The uncertainties were related to the data structure. Less samples were 

collected in the adjacent valley than others and the unbalanced samples might have effects on 

the uncertainty. However, this is because of a geomorphological characteristic of our research 

area located in the upstream that has relatively small areas of lower slope where soils form 

and deposit. 

3.5 Conclusions 

This is one of the first studies that applied DSM to better understand and visualize spatial 

distributions of soil P fractions. Our study revealed that topography influenced the spatial 

variability of soil P fractions across a mountainous watershed. Especially organic P was 

strongly affected by surface curvature. This has important implications for soil fertility in 

mountainous ecosystems with low P availability and it might influence the productivity, 

biodiversity, and community composition of plants. 
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Appendix 3.1 Statistical summary of phosphorus fractions. 

 Mean SD MIN Median Max CoV 

(%) 

Skew Kurt 

Total P 389.07 171.04 160.00 330.00 920.00 43.96 1.40 4.52 

Resin Pi 3.42 1.63 0.40 3.10 9.00 47.80 1.02 4.32 

Available 

P 
35.71 17.03 8.40 32.50 83.50 47.69 0.61 -0.33 

Organic 

Po 
158.00 85.55 41.40 129.20 459.70 54.15 1.02 0.58 

Apatite 

Pi 
9.07 7.91 2.20 6.20 64.40 87.15 4.15 27.71 

Residual 

P 
144.39 41.33 80.70 136.80 285.70 28.63 1.15 4.51 

SD = standard deviation, MIN= minimum, MAX= maximum, CoV= coefficient of variation, 

Skew= Skewness, Kurt= Kurtosis 

 

Appendix 3.2 Coefficient of variations of surface curvature with varying the neighbourhood 

extent. 
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Appendix 3.3 Predicted SD phosphorus fractions with summaries of the column and row. SD: 

standard deviation. 
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Abstract 

Spatial patterns of nitrogen (N) and phosphorus (P) in topsoils are critical for plant nutrition. 

Relatively little is known about spatial patterns of N and P in the organic layer in mountainous 

landscapes. Therefore, digital soil maps of N and P in both the organic layer and the A horizon 

were developed using a LiDAR (light detection and ranging) DEM (digital elevation model) and 

LiDAR derived vegetation parameters. Soil samples were collected in a small watershed 

covered by forest in South Korea. LiDAR metrics, the normalized difference vegetation index 

(NDVI), and terrain parameters were derived as predictors. Spatial explicit predictions of N to 

P ratios were done using random forest with uncertainty analysis.  

mailto:gwanyong.jeong@uni-bayreuth.de
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Surface curvature showed the highest predictor importance for P contents in organic layers 

and A horizons, and LiDAR vegetation predictors and NDVI were important predictors for N in 

the organic layer. N:P ratios increased with surface curvature and were elevated at the convex 

upper slope compared to the concave lower slope. This was due to P enrichment of the soil at 

the lower slope and a more even distribution of N. Our digital soil maps showed that the topsoils 

at the upper slopes contained relatively little P. The findings are critical to understand dynamics 

of N and P in mountainous ecosystems with monsoon climate and steep slopes.  

Keywords: digital soil mapping, random forest, LiDAR, organic layer, nitrogen, phosphorus, 

complex terrain, South Korea. 

4.1 Introduction 

Nitrogen (N) and phosphorus (P) are the most limiting nutrients for the primary productivity in 

terrestrial ecosystems (Vitousek et al., 2010, 2002). Soil nutrient contents vary during long-

term soil development, in the way that N increase, while P declines during the course of 

pedogenesis. This is because N enters the ecosystem via N–fixing microorganisms, whereas 

P is derived from the weathering of phosphate minerals. As a result, primary productivity is 

initially N-limited in lightly weathered soils but increasingly P-limited in highly weathered soils 

over millions of years (Laliberté et al., 2013).  

P limitation might be further enhanced by atmospheric N deposition during short-term periods 

(years to decades) (Braun et al., 2010; Vitousek et al., 2010). Furthermore, enormous 

increases in N depositions were also found in East Asia where population and economy are 

growing rapidly (Manning, 2012). In Korea, atmospheric N inputs have rapidly increased due 

to huge industrial operations and intense agricultural activities (Jang et al., 2011; Il-nam Kim 

et al., 2014; Kim et al., 2011). The annual average wet input of N ranged 12.9 - 24.9 kg ha-

1year-1 from 2005 to 2010 at 33 sites in Korea (Jang et al., 2011). The increase in N 
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concentrations was caused by atmospheric N deposition (Kim et al., 2011). This might have 

effects on the productivity, biodiversity, and community composition of plants (Turner, 2008).  

An understanding of nutrient contents in the organic layer is critical for mountainous ecosystem 

management. Organic layers are made up of relatively freshly fallen organic matter, including 

whole leaves, twigs, and fruits. Nutrients that are returned to soil by litterfall are important for 

plant nutrition (Huang and Spohn, 2015). The N:P ratio in topsoil is used as indicators of 

potential growth limitation (Cleveland and Liptzin, 2007). The investigation of the spatial 

patterns of nutrients in the organic layer and the A horizon can be a useful tool to gain insight 

into soil-vegetation linkages if nutrients in the organic layer are outputs from vegetation (e.g. 

Uriarte et al. (2015)). 

Many researchers tried to assess spatial patterns of soil N (Kunkel et al., 2011; Liu et al., 2013; 

Peng et al., 2013) and P (J. Kim et al., 2014; McKenzie and Ryan, 1999; Roger et al., 2014). 

Little is known about the spatial pattern of N:P ratios in the organic layer that are caused by 

environmental factors such as topography and vegetation. Previous studies found 

environmental correlations between N contents in the O layer and topographic parameters in 

a temperate forested watershed (Johnson et al., 2000) and in boreal forests (Seibert et al., 

2007). Wilcke et al. (2008) reported an elevation gradient of decreasing contents of N and P 

in organic layers, while Soethe et al. (2008) found that the N stocks of the organic layer differ 

significantly with elevation in tropical mountainous forests. Our understanding of quantitative 

relationships between nutrient contents (especially P) in the organic layer and environmental 

factors is still limited.  

The factors of soil formation are generally used as predictors for regression-based digital soil 

mapping (McBratney et al., 2003; Scull et al., 2003). For spatial predictions, most studies used 

various topographical predictors derived from digital elevation models (DEM) such as elevation, 

slope angle, curvature, and wetness index. According to Ballabio (2009), maps of soil 
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properties can be produced with an good accuracy by only using terrain predictors in 

mountainous areas. On the other hand, the spatial vegetation pattern is related to the spatial 

heterogeneity of soils (Binkley and Fisher, 2012). Soil development is influenced by vegetation 

(Ballabio et al., 2012). Therefore, various vegetation predictors derived from satellite images 

have contributed to explaining the spatial variability of soil nutrients (Grunwald et al., 2015; 

Mulder et al., 2011). However, to our knowledge, no attempt to use LiDAR (Light detection and 

ranging) derived vegetation parameters for the spatial predictions of soil properties has been 

made yet.  

The vegetation LiDAR predictors could allow to extend our understanding of spatial soil data 

with better insight into the relationship between soils and vegetation. The LiDAR-derived 

vegetation predictors are related to the vertical variability of the vegetation within each cell 

which reflects forest structure metrics (Jones and Vaughan, 2010). Canopy cover percentage 

and maximum height can indicate the above ground biomass and the forest productivity 

(Zellweger et al., 2015). LiDAR predictors also can play a role as an ecological indicator such 

as light condition in the forest floor (Zellweger et al., 2015). LiDAR intensity varies with land 

cover and forest types (Ø rka et al., 2009). Additionally, LiDAR predictors are high resolution 

data which have detailed spatial information compared to other remote sensing data (e.g. Spot 

(15 m) or Landsat images (30 m)). It is expected that NDVI and LiDAR data are important for 

N predictions related to forest biomass, but probably not for P since P is mainly originating 

from bedrock. 

In order to understand the spatial patterns of N and P in the organic layer and mineral soil, 

digital soil maps were developed using LiDAR DEM (digital elevation model) and vegetation 

parameters as predictors. The specific aims of our research were (1) to test the importance of 

LiDAR-derived vegetation and topographical parameters to understand the spatial N and P 

patterns, (2) to identify subareas with critical P contents, and (3) to test different validation 

strategies for N and P depending spatial uncertainty structures. 
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4.2 Materials and methods 

4.2.1 Research area 

 

The study area is 9.84 km2 and located in the downstream area of the Soyang watershed, 

Gangwon-do province, South Korea (Figure 4.1). Soyang lake watershed is a major drinking 

water source for Seoul. The mean annual temperature is 11.1 °C and a mean annual rainfall 

of 1,347 mm (Korea meteorological administration, 2015). About 70 % of the annual rain (824.4 

mm) falls heavily in the summer monsoon season (June, July and August) (Korea 

meteorological administration, 2015). The area’s geology is Gyeonggi gneiss complex which 

consists of granitic gneiss and banded gneiss (metasedimentary rock) (Korea Institute of 

Geology Mining and Material, 2001). The parent materials formed in Paleoproterozoic and is 

oldest basement rocks in the Korean Peninsula (Chough, 2013). The elevation ranges 

between 320 and 868 m above sea level and the area consists of various steep slopes (over 

45°) because of tectonic uplift during the Quaternary (Lee, 2004).  

 

Figure 4.1 Research area. (A) The Soyang watershed within South Korea. (B) The research 

area within the Soyang watershed. (C) The research area with the sampling points. (D) The 

tree species map (fgis.forest.go.kr/). 
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It is in a headwater catchment that has narrow depositional areas and valley and plays 

important roles for  biogeochemical cycles and downstream hydrological systems due to a key 

source of nutrients  (Wohl, 2010). Its soils are mainly composed of fine gravelly sandy loam 

soils and fine sandy loam and gravelly loam soils (National Academy of Agricultural Science, 

2013). It is a national forest and main tree species are Mongolian oak (Quercus mongolica) 

(40 - 50 years) and Korean pine (Pinus koraiensis) (30 - 35 years), locally vegetated with 

Japanese red pine (Pinus densiflora) and Japanese larch (Larix kaempferi) (Figure 4.1D). 

4.2.2 Soil sampling and chemical analyses  

 

A total number of 91 soil samples was collected from the organic layer and the A horizon in 

2014. Conditioned Latin Hypercube Sampling (cLHS) was applied to optimize the density 

functions of the covariate space for the regression models (Minasny and McBratney, 2006). 

cLHS is a kind of stratified random sampling that divides empirical density functions based on 

the number of samples, draws one random sample within each interval, and then matches 

random samples across multiple predictors with conditioning to draw samples in the real world. 

cLHS was performed within R package "clhs" (Roudier et al., 2012). Spatial position 

information of sampling points was recorded with a Qmini H3 GNSS (global navigation satellite 

system) GPS (accuracy is within 5m) during field work. 

The samples of the organic layer were extracted by a metal frame of 0.3 m x 0.3 m. Mineral 

soil samples were air-dried and sieved (< 2 mm). The organic layer samples were oven-dried. 

Total P was extracted with HNO3 and HF and measured according to DIN EN ISO 11885 / 

22036 (DEV, 2002) by ICP-OES (Perkin Elmer, 2100 ZL, USA). After grinding to fine powder, 

total N was measured by an elemental analyser NA 1108 (CE Instruments, Milano, Italy). N:P 

ratios were calculated based on mass.  
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4.2.3 Environmental predictors 

 

LiDAR is a remote sensing technology which has structural information on the illuminated 

surface, including 3D terrain, vegetation canopy information, and object heights (Franklin, 

2010). LiDAR provides massive amounts of point data which include x, y, and z coordinates of 

the objects and can be changed into digital terrain model and digital surface model (Hyyppä et 

al., 2008). The laser emits short pulses of light and the sensors records echoes from leaves, 

branches, and underlying soil. The initial reflections are from the canopy top, next reflections 

come from lower canopy, and finally the last is from the ground (Jones and Vaughan, 2010). 

By separating the above-ground reflections, the ground reflections will enable to produce 

models of the terrain and finally vegetation using differences between above-ground and 

ground heights (Jones and Vaughan, 2010). With height data, LiDAR provides intensity data 

that reflect characteristics of objects and can be useful information on forest types and tree 

species (Ø rka et al., 2009). 

We used LiDAR point data which had a vertical accuracy of below 10 cm and an average of 

4.08 points/ m2, and surveyed by the National Geographic Information Institute (NGII) in South 

Korea (National Geographic Information Institute, 2015). The point data were pre-processed 

to identify ground returns, classify all returns and calculate the normalized vegetation heights. 

We calculated a set of forest structural predictors using LAStools program which provides a 

wide variety of processing methods on LiDAR data (Isenburg, 2014) (Table 4.1). The LiDAR 

predictors were considered to indicate important ecological factors such as light conditions 

close to the forest floor and the variation and distribution of vegetation along the vertical profile. 

The normalized difference vegetation index (NDVI) was derived from a 4 m Kompsat-2 image 

on 11th October 2014. 

Most topographical predictors were calculated with the terrain analysis modules of the open 

source software SAGA based on the LiDAR DEM (Conrad et al., 2015). In addition, surface 
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curvature that reflects the degree of bending three-dimensional surface morphology was 

calculated with the CURV3 program (Park et al., 2001). Surface curvature (CUR19) was 

measured within a 19 x 19 local window at each cell based on the best results of the correlation 

analyses. All predictors were changed into 10 m cell size via the nearest neighbor resampling 

method. 

 

Table 4.1 Environmental predictors for digital soil mapping 

 Predictor Method Reference 

1 Elevation (ELEV) - - 

2 Slope degree (SLO) Slope, aspect, curvature 

SAGA module 

Zevenbergen 

et al. (1987) 

3 Catchment area (CA) Catchment area (Parallel) 

SAGA module 

Costa-Cabral 

and Burges 

(1994) 

4 SAGA topographical wetness index 

(STWI) 

SAGA wetness index 

SAGA module 

Böhner et al. 

(2002) 

5 Surface curvature (CUR19) CURV3 program Park et al. 

(2001) 

6 Normalized difference vegetation index 

(NDVI) 

(NIR – Red)/ (NIR+Red) Tucker and 

Sellers (1986) 

7 Maximum height (Hmax) Lascanopy LAStools 

module 

Isenburg 

(2014) 

8 Canopy cover percentage (Hccp) Lascanopy LAStools 

module 

Isenburg 

(2014) 

9 Standard deviations of heights (Hstd) Lascanopy LAStools 

module 

Isenburg 

(2014) 

10 Forest canopy and height (Hch) Canopy cover 

percentage (Hccp) x 

maximum height (Hmax) 

- 

11 First return intensity average (Hfiravg) Lasgrid LAStools module Isenburg 

(2014) 

NIR= near-infrared 
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4.2.4 Random forest and ANOVA analysis 

 

Random forest (RF) is an ensemble learning method which operates by building a set of 

regression trees averaging the results (Breiman, 2001). Each tree is built by bootstrap samples 

of the data and a subset of predictors. As long as the number of trees is large, RF has low bias 

and low variance of prediction (Breiman, 2001). Therefore, the number of trees was set to 1000. 

The size of the predictor subset (mtry) was tuned by R package “caret” (Kuhn and Johnson, 

2013). RF was performed within R package "randomForest" (Breiman, 2001). 

RF is able to model complex nonlinear relationships between soil properties and environmental 

predictors. Compared to other supervised learning methods (e.g. neural networks and support 

vector regression), RF is easier to apply, because it does not require much tuning (Kuhn and 

Johnson, 2013; Strobl et al., 2009). Although RF does not show the structure of each tree, it 

has better interpretability because it provides a predictor importance measure. For this 

measure, predictor values are permuted. The importance is determined by the difference of 

mean square error before and after permuting (Strobl et al., 2009). RF showed good 

performance in digital soil mapping (Grimm et al., 2008; J. Kim et al., 2014; Ließ et al., 2012; 

Tesfa et al., 2009; Wiesmeier et al., 2011). Kampichler et al. (2010) recommended the use of 

RF because of its modelling performance as well as the ease of model construction and 

interpretability. 

Predictor selection influences model performance (Brungard et al., 2015; Miller et al., 2015; 

Poggio et al., 2013). Recursive feature elimination (RFE), a backward predictor selection 

method, starts with all predictors and iteratively eliminates the least important predictor one by 

one based on an initial RF predictor importance measure until the best predictor remains (Kuhn 

and Johnson, 2013). At the end, the best number of predictors and the final list of selected 

predictors are returned. The package “caret” provides the functions for RFE (Kuhn and 

Johnson, 2013). 
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To assess the model performance, R² and RMSE (root mean square error) was calculated. 

For model validation, we used k-fold cross-validation (CV) where the sample is partitioned 

randomly into k subsets; one subset is left out for model validation while the remaining subsets 

are used for model training; the process is repeated k times (once for each fold) and the k 

estimates of performance are summarized. In the k-fold CV, the choice of k choice was based 

on the partitioning in test and validation sets. In the case of 10-fold CV, for example, 10% data 

set are used for the validation and the remaining 90% data set are used for the calibration. The 

choice of k is usually 5 or 10, but there is no formal rule (Kuhn and Johnson, 2013). Although 

the subsets are generated randomly, the subdivision will still have an impact on model 

validation results. This can be acknowledged by repetitions of the n-fold CV. The number of 

repetitions (n) might also affect the estimation of model performance: The more repetitions, 

the better the results (Molinaro et al., 2005). We explored 2, 5, 10, 20-fold and leave-one-out 

CV in n repetitions to account for a total of 100 validation measures: 𝑛 × 𝑘 = 100. At the end, 

100 R–Squares and RMSEs were returned for each soil property. The standard deviation of 

the corresponding 100 predictions give a spatial uncertainty estimate. 

One-way analysis of variance (ANOVA) was used to test for differences in N and P contents 

in each topographical position. The assumptions for ANOVA were tested based on Shapiro 

test for normality and Bartlett test for homogeneity of variances. Kruskal-Wallis test was applied 

in case that the assumptions were not met. R package “pgirmess” was used for Kruskal-Wallis 

test (Siegel and Castellan, 1988). 

4.3 Results 

4.3.1 Descriptive statistics of soil nutrients 

 

The mean total N in the O layer (No) was the highest value (12245 ± 1986 mg kg-1). No had 

the lowest variance, while total P in the O horizons (Po) showed a relatively higher variance 

based on values of standard deviation and coefficient of variation (CoV) (Table 4.2). Therefore, 
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the variability of N:P ratios in the O horizons (No/Po) depended on Po contents. The total N 

and P ratios in the A horizons (Na/Pa) showed higher variances compared to the O horizons. 

The mean No/Po was 20.83 ± 4.82 and the mean Na/Pa was 7.91 ± 2.42.  

4.3.2 Predictors and models 

 

For the choice of k, we selected 10 repeated 10-fold CV. This CV showed the relatively good 

result of R-square and lower mean RMSE and the lower uncertainty for all soil nutrients (Figure 

4.2 and 4.3). Especially, spatial patterns of mean Po were not changed based on CV strategies, 

while uncertainty decreased prominently with increasing portions of calibration dataset 

(Appendix 4.2). The values of CoV (coefficient of variation) decreased sharply in the lower 

elevation areas with higher uncertainties based on CV strategies (Appendix 4.2b and h).  

RFE found the optimal combination of predictors to improve prediction results (Table 4.3). 

Surface curvature and elevation were selected for all soil nutrients. Additionally, selected 

predictors for Po and Pa were curvature and elevation. Normalized difference vegetation index 

(NDVI) and LiDAR vegetation predictors (Hfiravg, Hstd, and Hmax) were selected for No.  

Table 4.2 Statistical summary of N and P contents (mg kg-1) and ratios. 

 Mean SD MIN Median Max CoV 

(%) 

Skew Kurt 

No 12245  1986  8000 12200 17800 16.22  0.35  2.92  

Po 624  190  310 610  1240 30.39  0.44  2.97  

Na 2990  1348  700  2600 7300 45.07  0.81  3.52  

Pa 389  171  160  330 920 43.96  1.40  4.52  

No/Po 20.83  4.82  12.16  20.17  38.06  23.12  0.76  3.77  

Na/Pa 7.91  2.42  1.89  7.78  13.85  30.55  0.21  3.06  

SD = standard deviation, MIN= minimum, MAX= maximum, CoV= coefficient of variation, 

Skew= Skewness, Kurt= Kurtosis, N: nitrogen, P: phosphorus, o: organic horizon, a: mineral 

A horizon. 
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Our RF model showed good performances for all soil nutrients based on R2 (Figure 4.2). Mean 

R-Square values ranged from 0.23 to 0.52. Pa showed the best result of the validation while 

the R-square for Na/Pa was lowest. Models for P showed better results compared to N models.  

Terrain predictors accounted for 5.37 – 54.54 % of the total variations of soil nutrients in our 

RF models. Surface curvature was one of the best predictors for soil nutrients with the 

exception of No (Figure 4.4). Surface curvature contributed 6.50 - 53.07 % of the total 

variations explained by RF models for each soil nutrient. Elevation also showed larger predictor 

 

Figure 4.2 Model validation based on R-Square with cross validation methods. The dot lines 

refer to the leave-one-out cross-validated result. 2f: 2-fold 50 repetitions, 5f: 5-fold 20 

repetitions, 10f: 10-fold 10 repetitions, 20f: 20-fold 5 repetitions, N: nitrogen, P: phosphorus, 

o: organic horizon, a: mineral A horizon. 
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importance (9.55 – 39.22 %). NDVI and LiDAR-derived vegetation predictors (Hstd, Hmax, 

Hpdy, and Hfiravg) were also important for the nutrients. Results of RF predictor importance 

were not the same with RFE ś, but two results are quite similar and most important predictors 

were not different.  

 

 

 

Figure 4.3 Boxplots of standard deviations of 100 predicted values for each raster cell with 

cross validation methods. 2f: 2-fold 50 repetitions, 5f: 5-fold 20 repetitions, 10f: 10-fold 10 

repetitions, 20f: 20-fold 5 repetitions, LOO: leave-one-out, N: nitrogen, P: phosphorus, o: 

organic horizon, a: mineral A horizon.  
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Table 4.3 Selected predictors using recursive feature elimination (RFE) based on 10-fold 

10 repetitions. 

Soil properties Predictors 

No ELEV, NDVI, Hfiravg, CUR19, STWI, Hstd, Hmax 

Po CUR19, ELEV 

Na ELEV, CUR19 

Pa CUR19, ELEV 

N/Po CUR19, CA, Hstd, ELEV, Hmax, Hch 

N/Pa CUR19, CA, NDVI, ELEV, STWI 

ELEV: elevation, CUR19: surface curvature (19 x 19 window), STWI: SAGA topographical 

wetness index, CA: Catchment area, SLO: slope degree, NDVI: normalized difference 

vegetation index, Hfiavg: First return intensity average, Hstd: Standard deviations of 

heights, Hmax: Maximum height, Hch: Forest canopy and height (Hmax X Hccp). 

 

Figure 4.4 Mean relative importance of predictors for N and P based on the increased mean 

square error (%incMSE) from random forest. N: nitrogen, P: phosphorus, o: organic horizon, 

a: mineral A horizon. 
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4.3.3 Environmental relationships and spatial patterns of nutrients 

 

 Differences in N and P were identified based on surface curvature which was the best 

predictor (Figure 4.4). Although the topographic classification criteria were rather arbitrary, 

surface curvature values were set at -1 and 1 to classify lower slope (< -1), mid slope (-1 to 1), 

and upper slope (> 1). No and Na didn’t change depending on topographic positions, while Po 

and Pa were significantly different. The No/Po and Na/Pa were significantly different and 

widened from lower to upper slope positions (Figure 4.5). This implied that the significant 

differences were caused by P. The No/Po differed between the topographic positions 

combined with elevation (Appendix 4.3a), while Na/Pa did not show significant difference. 

 

Figure 4.5 Box plots of nitrogen, phosphorus, and the ratios in the organic horizon and in 

the mineral soil A horizon based on topographical positions (a-f). Different letters indicate 

significant differences at p<0.05 with Kruskal-Wallis test. ** p<0.01, and *** p<0.001. N: 

nitrogen, P: phosphorus, o: organic horizon, a: mineral A horizon. 
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The map of each nutrient displays the mean of 100 predictions (Figure 4.6). Contents of No 

and Na increased with elevation. We found remarkably different contents of P between the 

upper slope and the lower slope. No/Po and Na/Pa showed higher values at convex upper 

slope.  

Higher standard deviations of Po and No/Po were found at lower elevation and in the valley 

floor (Appendix 4.4). The spatial uncertainties of Na/Pa were high in the higher elevation 

(Appendix 4.4), while uncertainties of No and Na/Pa were complex and it is difficult to 

understand spatial patterns of uncertainty (Appendix 4.4).  
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Figure 4.6 Predicted mean soil N and P contents and ratios. N: nitrogen, P: phosphorus, o: 

organic horizon, a: mineral A horizon.  
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4.4 Discussion 

4.4.1 Model performances based on different cross validation strategies 

 

For small sample sizes, model calibration requires every possible dataset to improve the model 

result, while validation results can be different severely depending on which samples were 

included for the validation (Kuhn and Johnson, 2013). If we want to have the better trained 

model, portions of calibration dataset should be increased. However, portions of validation 

datasets should be increased to acquire a representative model to fit the underlying 

relationship (Remesan and Mathew, 2015). In our results, 20-fold CV showed the best result 

of R-square and RMSE and the lowest uncertainty of predictions (Figure 4.2 and 4.3), while 2-

fold CV showed the lowest R-Square and RMSE and the highest mean value of the uncertainty. 

Variations of standard deviations of 100 predictions decreased with increasing the number of 

samples for the calibration (2-fold to 20-fold) (Figure 4.3). This implied that in case of small 

sample sizes, bigger calibration datasets improved the estimates and reduced the uncertainty 

of the spatial prediction. Park and Vlek (2002) tested the change of the prediction error with 

different numbers of training data sets and confirmed when more samples were used for tuning 

dataset, the prediction accuracy becomes larger. Similar decreasing changes of the prediction 

error were also found in various prediction methods (Ballabio, 2009). However, these studies 

did not find systematic changes and thus not include suggestions of optimal validation methods 

for soil predictions. In this study, uncertainty structures were explored and might be used as 

criteria for optimal validation methods in the future. Remesan and Mathew (2015) required to 

investigate the optimal number of the calibration datasets because using very few datasets 

might result in poorly calibrated model, while lots of data for calibration might cause to 

overfitting. So, they recommended 10-fold CV. Specifically, Kuhn and Johnson (2013) 

suggested repeated 10-fold CV for small sample sizes because the bias and variance are not 

high and the computational efficiency is good. In our results, repeated 10-fold CV is also 
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recommended to predict soil nutrients in the case of small sample sizes due to relatively high 

predictability and low uncertainty.  

4.4.2 Important predictors of N and P 

 

Topography was the most important factor for spatial patterns of N in our study area. Elevation 

might reflect soil temperature and the rate of decomposition which result in contents of soil N 

(Binkley and Fisher, 2012; Huggett, 1995; Osman, 2013). In the results, elevation has strongly 

positive relationships with No (r=0.58, p<0.001) and Na (r=0.49, p<0.001). Bedison and 

Johnson confirm the relationship with elevation and No (R2= 0.41, P<0.001) in mountainous 

forested areas, USA. Additionally, positive relationships between Na and elevation were 

reported by Kunkel et al. (2011) and Wang et al. (2013). Peng et al. (2013) also showed that 

Na increased with elevation due to a low level of human disturbance. Catchment area (CA) 

and topographical wetness index (TWI) related to soil moisture were important predictors for 

No (Johnson et al., 2000; Seibert et al., 2007). Although Na showed a correlation with TWI 

(r=0.26, p<0.05), CA and TWI were not significant in our results. According to Aandahl (1948), 

higher nitrogen contents found at the lower slope. Na was not significantly related to 

topographic positions (Figure 4.5d), while surface curvature was selected as an important 

predictor for the Na model with elevation (Figure 4.4c). This is because higher Na was found 

in the areas of higher elevation and close to the lower slope (Figure 4.6c) which might have a 

higher productivity (plants and microbes) and therefore higher nitrogen fixation. 

The spatial pattern of N is determined by vegetation (Bedison and Johnson, 2009; Zhang et 

al., 2010). Although NDVI and LiDAR predictors were not selected as predictors for Na, 

maximum height (r=0.24, p<0.05) and standard deviations of heights (r=0.23, p<0.05) were 

correlated with Na. Other studies found significant relationships between Na and NDVI which 

can measure vegetation density and aboveground biomass (Kim et al., 2014; Kunkel et al., 

2011; Sumfleth and Duttmann, 2008). For No, NDVI ranked as the second important predictor 
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and the LiDAR intensity of first returns (Hfiravg), which is often used as an indicator of forest 

type (Ø rka et al., 2009), was an important predictor. This implies that the density of forest cover 

and forest types have an effect on No contents and No/Po ratios. No relationship between P 

and LiDAR predictors was found.  

The LiDAR-derived predictors are promising because of various advantages for DSM, as 

above mentioned. In future studies, the vegetation predictors should be applied to forest areas 

where the variation of forest cover is quite different. Forest structure (LiDAR metrics) can have 

an effect on erosion and deposition of materials which in turn might result in changed soil 

nutrient contents. Hahm et al. (2014) confirmed that differences in erosion rates were affected 

by tree canopy cover. However, there is no research that investigated the relationship between 

soil erosion, forest structures, and nutrient status using LiDAR data yet to our knowledge. 

4.4.3 Spatial patterns of N:P ratios 

 

Here we found that N:P ratios increased with surface curvature, and were elevated at the upper 

slope compared to the lower slope. This was due to P enrichment of the soil at the lower slope 

and a more even distribution of N (Figure 4.5). No/Po and Na/Pa were strongly related with 

surface curvature (Figure 4.4) and the topographical positions (Figure 4.5), which implies that 

P dynamics were affected strongly by topography. P carried from the upper slope was 

accumulated in the lower slope by surface and subsurface flows as previously reviewed by 

Smeck (1985). Soil erosion is strong in the watershed under study due to storm events and 

steep slopes (Jeong et al., 2012; Jung et al., 2012). As a consequences, the higher soil P 

contents at the lower slope compared to the upper slope can lead to a higher plant litter P 

contents, finally causing lower No/Po. Especially, No/Po compared with Na/Pa showed strong 

correlations with elevation, surface curvature and vegetation predictors (Figure 4.4 and 

Appendix 4.3), which means spatial patterns of No/Po might be caused by interconnected 

relationships with soil, topography and vegetation. Similarly, Uriarte et al. (2015) found that soil 
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N:P was correlated with leaf litter N:P and was determined by topography in a tropical 

mountainous forest with heavy rainfalls and steep slopes.  

4.5 Conclusions 

Here we created for the first time digital soil maps showing the spatial pattern of N:P ratios 

using terrain and LiDAR-derived vegetation predictors. In validation strategies, the repeated 

10-fold CV method showed relatively good predictability and low uncertainty. Both No/Po and 

Na/Pa ratios related to nutrient conditions showed higher values at the upper slope. These 

maps help to identify areas with low nutrient availability. Our analyses showed that topographic 

characteristics may help to predict spatial patterns of nutrients in mountainous regions.  
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Appendix 4.1 Model validation based on RMSE with cross validation methods. The dot lines 

refer to the leave-one-out cross-validated result. 2f: 2-fold 50 repetitions, 5f: 5-fold 20 

repetitions, 10f: 10-fold 10 repetitions, 20f: 20-fold 5 repetitions, N: nitrogen, P: phosphorus, o: 

organic horizon, a: mineral A horizon. 
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Appendix 4.2 Maps of mean and coefficient of variation (CoV) of 100 models of phosphorus in 

organic layers (Po) with cross validation methods. 2f50r: 2-fold 50 repetitions, 5f20r: 5-fold 20 

repetitions, 10f10r: 10-fold 10 repetitions, 20f5r: 20-fold 5 repetitions, N: nitrogen, P: 

phosphorus, o: organic horizon, a: mineral A horizon. 
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Appendix 4.3 Nitrogen and phosphorus ratios in the organic horizon (a) and in the mineral soil 

A horizon (b) based on two altitudes of 300-600 m and 600-900 m and three topographic 

positions (lower slope, midslope, and upper slope). Different letters indicate significant 

differences significantly different at p<0.05 with Kruskal-Wallis test. *** p<0.001. 
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Appendix 4.4 Predicted SD soil N and P contents and ratios. SD: standard deviation. N: 

nitrogen, P: phosphorus, o: organic horizon, a: mineral A horizon. 
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