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Abstract 

This thesis is comprised of my original contribution to the development of the bio-based 

material poly(limonene carbonate) (PLimC). There is a huge need for such polymeric 

materials based on natural resources as the supply of fossil feedstocks is limited and it is 

going to cease within this century. -

- s can only succeed if the performance of the green 

material can compete with or even excel that of the established polymers. The latter is true 

for PLimC and thus I have dedicated my entire thesis to this material. 

Within the family of such bio-based plastics, PLimC takes a special role as it is the 

copolymer of (oxidized) limonene (LO)  a by-product of the orange industry  and CO2. 

To incorporate this abundant greenhouse gas into a polymeric backbone is a field of 

research itself but in the case of PLimC this is only a side note. The real excitement to work 

with this material arises from its properties and the vast diversity of its modifications. The 

discussions of the development, applications and modifications of PLimC are outlined in 

dedicated chapters within this thesis (Chapters 3-5). 

The discussion starts with the development of the material from a low-molecular-weight 

polymer into a high-molecular-weight engineering thermoplastic in Chapter 3. The chapter 

  deals with the synthetic strategies towards 

a controlled and economical 

properties. The control of the molecular weight of PLimC was found to be crucially 

dependent on the composition of the monomer LO, which is inherently contaminated with 

hydroxy-carrying molecules. These impurities act as chain transfer agents in the Zn(II)-

catalyzed copolymerization and thus keep the molecular weight of PLimC low. The 

treatment of LO with an O-methylating agent was found to quantitatively mask those 

alcohols as an enabler to yield high molecular weights of PLimC (>100 kDa). These long 

chains give the material the mechanical integrity to be processed into fibres, films or sheets 

that can withstand external stress. The economical aspect is covered by a stereo- and 

regioselective synthesis of the trans isomer of LO as the catalyst rejects to incorporate the 

cis isomer into the backbone of PLimC. The epoxidation of limonene would usually yield a 

1:1 mixture of cis- and trans-LO but the detour via the bromohydrin and the subsequent 
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ring-closure in basic environment gives trans-LO (>95%) as the major product. This trans-

enriched monomer is successfully coupled with CO2 in high conversions to give PLimC 

with little residual epoxide. The resulting amorphous thermoplastic exhibits high heat- (Tg 

of 130 °C) and scratch-resistance with an extraordinary transparency (94%), which render 

it a potential coating or glazing material. 

This application of PLimC as a glazing material 

s in terms of breathability and membranes are 

introduced. The concepts are based on the very high permeability of PLimC for gases like 

O2 and CO2 (12 and 68 barrer, respectively). Together with the exceptional optical and 

mechanical properties, PLimC constitutes the first polymeric glass with the ability to 

breathe. Such a breathing glass is still a very good thermal insulator and thus can be utilized 

as window panes in well-insulated constructions (e.g. in passive houses or closed 

greenhouses) to supply the interior with fresh air. The advantage of this passive exchange 

of air is the avoidance of an active ventilation system that has to be accessorily equipped 

with a heat exchange unit to reduce heat losses due to the introduction of cold fresh air. In 

case of PLimC as the breathing glass, the transport of fresh air is realized through the 

polymer matrix while the transport of heat is hindered due to the low thermal conductivity 

of material (0.15 W K-1 m-1). According to our calculations, such a breathing glass made of 

PLimC cannot replace the entire ventilation system yet but it can already compensate for a 

part of the ventilation and thus save energy. Further improvements of the material and its 

processing are envisioned to replace the active ventilation systems eventually. Another 

application of PLimC arises from the fact, that the material shows not only a high 

permeability of CO2 but also a distinct selectivity for the gas over N2. The development of 

polymeric membranes for gas separation processes is a rapidly growing field as carbon 

capture (removal of CO2 from process gases) is one of the technologies that is anticipated 

to abate the anthropogenic greenhouse effect. Here, PLimC is a potential candidate to be 

applied in gas separation units due to its good separation characteristic but moreover due 

to its above-mentioned mechanical toughness and thermal resistance that should give it the 

long-term stability and processability most state-of-the-art polymeric membrane materials 

lack. 

  



Abstract 

ix 

To tune the performance of PLimC in respect of the mentioned applications but also to 

change the nature of the material completely, various manipulations on the double bond of 

the unsaturated polycarbonate were carried out. These manipulations are discussed in 

Chapter 5  ent . With a variety of polymer analogous 

reactions it could be shown that PLimC is a real bio-based platform. The spectrum of 

induced changes and added functionalities spans from rubbery over hydrophilic and smart 

to antibacterial materials, using simple and cost-effective chemistry. The astonishing 

transformation of the high-Tg thermoplastic PLimC into a rubber was accomplished by 

quantitative thiol-ene addition of a short-chained mercaptoester to the double bond. This 

attachment was accompanied by a drop of Tg and YOUNG  K and three 

orders of magnitude (1 MPa), respectively. The hydrophilization, on the other hand, was 

chosen as a strategy towards an increased rate of biodegradation as we have found PLimC 

being highly resistant to hydrolysis and microorganism in industrial compost or 

concentrated enzyme suspensions. Such a hydrophilization was achieved via two synthetic 

routes: one involves the thiol-ene chemistry with mercaptoethanol, the other being an acid-

catalyzed electrophilic addition of an oligomeric poly(ethylene glycol) with one free 

hydroxy function. The latter can be regarded as greener route, since it avoids the 

employment of toxic thiols. It is limited to low conversions though, as the residence time 

of the polycarbonate has to be kept short in such an acidic environment. The contact angle 

to water and the Tg were depressed successfully in both cases, whereas a biodegradability 

was still not observed. We would ascribe this high bio-stability to the rigid and bulky 

backbone of PLimC that readily shields the attack of cleaving agents. The smart behaviour 

of PLimC is related to its pH-responsiveness when mercaptoacetic acid is attached to the 

double bond. With this carboxylic acid functionality PLimC becomes soluble in basic 

media, that is, it readily dissolves in sea-water, whereupon the rate of degradation is 

accelerated by several orders of magnitude compared to a condensed film. Such a material 

can significantly reduce waste accumulation in the oceans while keeping structural integrity 

during the intended use (as long as contact with bases is avoided). The last example of 

valorising the platform polymer is the addition of antibacterial activity to PLimC in the 

form of pendant quaternized amine groups in a two-step synthesis. Here, only a partial 

conversion was performed deliberately to keep the polymer insoluble in water and thus 

making it a viable choice for application as a coating material with permanent activity 



Abstract 

x 

against bacteria. These examples state just a small selection of many possible modifications 

of PLimC and we anticipate to see many derivatives to be introduced within a short time. 
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Zusammenfassung 

Diese Dissertation beinhaltet meinen originären Beitrag zur Entwicklung des biobasierten 

Materials Polylimonencarbonat (PLimC). Das Angebot fossiler Rohstoffe ist begrenzt und 

wird noch innerhalb dieses Jahrhunderts erlöschen. Daher gibt es eine große 

Notwendigkeit zur Entwicklung solcher polymerer Materialien, die auf natürlichen 

Ressourcen basieren. durch  biobasierte

Kunststoffe kann jedoch nur gelingen, wenn die Leistung des grünen Materials mit der 

etablierter Polymere mithalten oder diese sogar übertreffen kann. Letzteres trifft auf PLimC 

zu, weshalb ich meine gesamte Doktorarbeit diesem Material gewidmet habe. 

Innerhalb der Familie der biobasierten Kunststoffe nimmt PLimC eine besondere Rolle ein, 

da es das Copolymer des (oxidierten) Limonens (LO)  ein Nebenprodukt der 

Orangenindustrie  und CO2 ist. Dabei stellt der Einbau dieses reichlich vorhandenen 

Treibhausgases ein eigenes Forschungsfeld dar, spielt aber im Falle von PLimC nur eine 

Nebenrolle. Der wahre Reiz bei der Arbeit mit diesem Material rührt von seinen 

Eigenschaften und der riesigen Vielfalt seiner Modifikationen her. Den Diskussionen über 

die Entwicklung, Anwendungen und Modifikationen von PLimC ist in dieser Arbeit je ein 

Kapitel gewidmet (Kapitel 3 bis 5). 

Sie beginnt mit der Entwicklung des Materials von einem niedermolekularen Polymer hin 

zu einem hochmolekularen technischen Thermoplast in Kapitel 3. Dieses Kapitel mit dem 

hin zu 

einer kontrollierten und ökonomischen Darstellung von PLimC und das allgemeine 

Eigenschaftsprofil des Materials. Es wurde schnell ersichtlich, dass die Kontrolle des 

Molekulargewichts von PLimC sehr eng mit der Zusammensetzung des Monomers LO 

verknüpft ist, das von Natur aus mit Molekülen verunreinigt ist, die Hydroxygruppen 

tragen. Diese Verunreinigungen wirken als Kettenübertragungsmittel bei der Zn(II)-

katalysierten Copolymerisation und begrenzen folglich das Molekulargewicht. Die 

Behandlung von LO mit einem O-methylierenden Reagens konnte erfolgreich zur 

Maskierung dieser Alkohole genutzt werden, sodass tatsächlich hohe Molekulargewichte 

für PLimC (>100 kDa) erreicht werden konnten. Genau diese langen Ketten geben dem 

Material die mechanische Stabilität, um in Fasern, Filmen oder Platten verarbeitet zu 

werden, die äußeren Belastungen widerstehen können. Der ökonomische Aspekt wird von 
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einer stereo- und regioselektiven Synthese des trans-Isomers von LO abgedeckt, da der 

Katalysator den Einbau des cis-Isomers ins Rückgrat von PLimC verweigert. Die 

Epoxidierung von Limonen resultiert normalerweise in einer 1:1 Mischung von cis- und 

trans-LO, wohingegen der hier gewählte Umweg über das Bromhydrin mit 

anschließendem Ringschluss in basischer Umgebung trans-LO (>95%) als Hauptprodukt 

liefert. Dieses trans-angereicherte Monomer kann dann erfolgreich mit CO2 bei hohen 

Umsätzen und geringem Restgehalt vom Epoxid in PLimC überführt werden. Der 

erhaltene amorphe Thermoplast zeigt eine hohe Hitzebeständigkeit (Tg bei 130 °C), gute 

Kratzfestigkeit und zusätzlich außergewöhnliche Transparenz (94%), wodurch er sich zum 

Beschichtungs- oder Verglasungsmaterial qualifiziert. 

Die Anwendung von PLimC als Verglasungsmaterial wird in Kapitel 4 Anwendungen von 

PLimC  diskutiert. Darin werden innovative Konzepte hinsichtlich Atmungsaktivität und 

Membranen vorgestellt. Die Konzepte basieren auf der sehr hohen Permeabilität von 

PLimC für Gase wie O2 und CO2 (12 bzw. 68 barrer). Zusammen mit den hervorragenden 

optischen und mechanischen Eigenschaften stellt PLimC das erste polymere Glas mit der 

Fähigkeit zu atmen dar. Trotz der Fähigkeit zu atmen ist dieses Glas immer noch ein sehr 

guter thermischer Isolator und kann deshalb als Scheibe in gut isolierten Gebäuden (z.B. in 

Passivhäusern oder geschlossenen Treibhäusern) eingesetzt werden, um den Innenraum 

mit Frischluft zu versorgen. Der Vorteil dieses passiven Luftaustauschs liegt in der 

Vermeidung einer aktiven Belüftungsanlage, die zusätzlich noch mit einem 

Wärmetauscher ausgestattet werden muss, um Wärmeverluste, aufgrund von 

eingebrachter kalter Frischluft, zu reduzieren. Im Falle von PLimC als atmendem Glas wird 

der Transport von Frischluft durch die Polymermatrix realisiert, wohingegen der 

Transport von Wärme, aufgrund der geringen Wärmeleitfähigkeit des Materials (0.15 W K-

1 m-1), stark beeinträchtigt ist. Laut unserer Berechnungen kann ein atmendes Glas aus 

PLimC die Belüftungsanlage noch nicht komplett ersetzen, aber es kann bereits einen Teil 

der Belüftung übernehmen und folglich Energie einsparen. Weitere Verbesserungen des 

Materials und seiner Verarbeitung werden jedoch letztendlich dazu in der Lage sein das 

Belüftungssystem komplett überflüssig zu machen. Eine andere, ähnliche Anwendung von 

PLimC rührt daher, dass das Material nicht nur eine hohe Permeabilität für CO2 aufweist, 

sondern auch eine ausgeprägte Selektivität für das Gas gegenüber N2 besitzt. Die 

Entwicklung von polymeren Membranen zur Gastrennung ist ein schnell wachsendes Feld, 

da die Kohlenstoffabscheidung (Entfernung von CO2 aus Prozessgasen) als eine der 
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Technologien angesehen wird, die den anthropogenen Klimawandel abschwächen kann. In 

diesem Sinne ist PLimC ein potentieller Kandidat, um in Gastrennungsanlagen aufgrund 

seiner guten Trenneigenschaften, aber eben auch wegen seiner schon genannten 

mechanischen und thermischen Robustheit, eingesetzt zu werden. Diese Merkmale geben 

dem Polymer die Langzeitstabilität und Verarbeitbarkeit, die den meisten hochmodernen 

Membranmaterialien fehlt. 

Um die Leistung von PLimC mit Blick auf die genannten Anwendungen zu verbessern, 

aber auch um die Natur des Materials komplett zu verändern, wurden verschiedene 

Manipulationen an der Doppelbindung des ungesättigten Polycarbonats durchgeführt. Die 

Manipulationen werden in Kapitel 5 Modifikationen von PLimC it einer 

Reihe von polymeranalogen Reaktionen konnte gezeigt werden, dass PLimC eine echte 

biobasierte Plattform darstellt. Das Spektrum an herbeigeführten Änderungen und 

hinzugefügten Funktionalitäten reicht von gummiartigen, über hydrophile und smarte bis 

hin zu antibakteriellen Materialien, die mit einfacher und kostengünstiger Chemie 

hergestellt wurden. Die erstaunliche Verwandlung des hoch-Tg Thermoplasten PLimC in 

einen Gummi konnte durch die quantitative Addition eines kurzkettigen Mercaptoesters  

mittels Thiol-ene Chemie  an die Doppelbindung erreicht werden. Diese Anlagerung 

wurde von einem Absturz des Tg um 120 K und des E-Moduls um drei Größenordnungen 

(1 MPa) begleitet. Die Hydrophilisierung hingegen wurde als Strategie gewählt, um die 

Geschwindigkeit der Bioabbaubarkeit zu erhöhen, da wir bei PLimC eine hohe Resistenz 

gegenüber Hydrolyse und Mikroorganismen in Industriekompost bzw. konzentrierten 

Enzymsuspensionen festgestellt haben. Diese Hydrophilisierung wurde über zwei 

synthetische Routen erreicht: die eine greift wieder auf die Thiol-ene Chemie zur 

Anlagerung von Mercaptoethanol zurück, während sich die andere eine säurekatalysierte 

elektrophile Addition von oligomerem Polyethylenglykol mit einer freien Hydroxy-

funktion zunutze macht. Letztere kann als grünere Route angesehen werden, da die 

Verwendung von giftigem Thiol vermieden wird. Sie ist jedoch begrenzt auf geringe 

Umsätze, da die Verweilzeit des Polycarbonats in dieser sauren Umgebung kurz gehalten 

werden muss. Sowohl der Kontaktwinkel zu Wasser als auch der Tg wurden in beiden Fällen 

erfolgreich gesenkt, wobei eine Bioabbaubarkeit noch immer nicht beobachtet werden 

konnte. Wir würden die hohe Biostabilität dem starren und voluminösen Rückgrat von 

PLimC zuschreiben, das effektiv jegliche Angriffe mit dem Ziel der Kettenspaltung 

abschirmt. Das smarte Verhalten von PLimC bezieht sich auf seine pH-Empfindlichkeit, 
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wenn Mercaptoessigsäure an die Doppelbindung addiert wurde. Mit dieser 

Carbonsäurefunktion wird PLimC löslich in basischen Medien, d.h. es löst sich schnell in 

Meerwasser auf, woraufhin auch die Zersetzungsgeschwindigkeit um mehrere Größenord-

nungen gegenüber einem kompakten Film zunimmt. Ein solches Material kann die 

Ansammlung von Müll in den Ozeanen erheblich senken, wohingegen es während des 

beabsichtigten Gebrauchs seine strukturelle Integrität beibehält (solange der Kontakt mit 

Basen vermieden wird). Als ein letztes Beispiel zur Wertsteigerung des Plattformpolymers 

PLimC sei die Addition von antibakterieller Aktivität in Form von quaternisierten 

Amingruppen in einer zweistufigen Synthese erwähnt. In diesem Fall wurden die 

Doppelbindungen absichtlich nur teilweise funktionalisiert, damit das erhaltene Polymer 

wasserunlöslich bleibt und so als Beschichtungsmaterial mit permanenter Aktivität gegen 

Bakterien zur Anwendung kommen kann. Die hier genannten Beispiele zeigen nur einen 

kleinen Ausschnitt von vielen möglichen Modifikationen von PLimC und wir erwarten in 

naher Zukunft noch viele weitere zu entdecken. 
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1.1 The versatile molecule CO2 

1.1.1 The greenhouse gas 

The natural transformation of annually 200 Gt of CO2 and water into high-energy 

substances, known as photosynthesis, is one of the essential processes to make life on earth 

possible.1 To date, there exists no equivalent human-created imitation of that process, to 

exploit sunlight for synthesis, i.e. as a supplier of energy, as efficiently as nature. On the 

contrary, the anthropogenic emission of CO2 is an ever growing global menace, mainly 

caused by incineration of carbon matter, leading to an annual emission of more than 

32 Gt.2,3 CO2 is a greenhouse gas, which leads to warming of the atmosphere of the earth, 

eventually increasing the chances of catastrophic weather phenomena and a rising sea level. 

The contributors to climate change are illustrated in Fig. 1-1. The radiative balance between 

incoming solar shortwave radiation (SWR) and outgoing longwave radiation (OLR) is 

influenced by global climate contributors. Solar cycles, leading to fluctuations in the energy 

output, can cause changes in the energy balance. Human activity changes the emissions of 

gases and aerosols, which are involved in atmospheric chemical reactions, resulting in 

modified ozone and aerosol amounts. Ozone and aerosol particles absorb, scatter and 

reflect SWR, changing the energy balance. Some aerosols act as cloud condensation nuclei 

modifying the properties of cloud droplets and possibly affecting precipitation. Because 

interaction of clouds with SWR and LWR is strong, small changes in the properties of 

clouds have important implications for the radiative budget. Anthropogenic changes in 

greenhouse gases (CO2, CH4, N2O, ozone, chlorofluorocarbon) and large aerosols (>2.5 µm 

in size) modify the amount of outgoing LWR by absorbing outgoing LWR and re-emitting 

less energy at a lower temperature. Surface albedo is altered by changes in the vegetation or 

land surface properties, snow or ice cover and ocean color. These changes are driven by 

natural seasonal and diurnal changes (snow cover), as well as human activities (changes in 

crop type, vegetation in general).2 From those contributors, CO2 is identified as the one 

increasing the most significantly due to anthropogenic emissions. 
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Figure 1-1 | Main contributors to climate change. The input of SWR and output of LWR is influenced by 
the combination of aerosols, clouds, concentration of ozone and greenhouse gases in the atmosphere. 
Furthermore, the surface albedo plays an important role, i.e. ocean color, coverage with ice and snow and 
major changes in the vegetation (reproduced from Forster et al.2). 

This can also be expressed in numbers, by looking at the concentration of the gas in the 

atmosphere. In the pre-industrial age the concentration would not exceed 280 ppm and 

even in 1950, i.e. 200 years later, the concentration was below 320 ppm (Fig. 1-2). In the last 

six decades the accumulation of CO2 in the atmosphere accelerated dramatically leading to 

values above 380 ppm in 2010. The predictions (FAR, SAR, TAR and AR4 taken from IPCC 

reports in 1990, 1996, 2001 and 2007, respectively) draw an even worse scenario of what to 

expect in the near future. Hence, measures have been taken by people all over the world, to 

turn this trend around or at least to slow it down. Of course, the reduction of emission is a 

major strategy to limit global warming. Though, since the need for energy remains high or 

is more likely even growing, there are technologies evolving which deal with the capture of 

CO2 out of the atmosphere, to store or transform it into something useful, just as 

photosynthesis.4 6 
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Figure 1-2 | CO2 in the atmosphere. Projections of the observed increase (dark blue line with dots) of 
the concentration of CO2 in the atmosphere from 1950 to 2030. The projections were made in different 
years (FAR from IPCC report in 1990, SAR from IPCC report in 1996, TAR from IPCC report in 2001 and AR4 
from IPCC report in 2007), but all are showing the same trend and confirming the development of 
concentration (reproduced from Kaspar et al.3). 

1.1.2 The C1 building block 

It seems to be so easy for green plants, to transform CO2 into biomass but considering the 

molecular properties of the gas, it becomes obvious that much energy is needed to change 

its chemical structure. The carbon is in the highest oxidation state (+IV) and the Gibbs free 

energy is -393 kJ mol-1. The needed energy for a transformation can be supplied externally 

or by the use of high-energy compounds, supported by a suitable catalyst. Established 

procedures are the production of urea by reacting CO2 with ammonia (annual capacity of 

150 Mt) or the production of inorganic carbonates like Na2CO3 via the SOLVAY-process 

(annual capacity of 45 Mt).7,8 Furthermore, carbon dioxide is transformed into methanol 

(annual capacity 6 Mt), organic carbonates (annual capacity of 100 kt) or salicylic acid via 

the KOLBE-SCHMITT-process (annual capacity 60 kt).9 11 The hydrogenation of CO2 to yield 

formic acid is still discussed on an academic level but it is gaining significant attention 

nowadays.12 16 Apart from the transformation, considerable attention is drawn towards 

polymeric materials derived from CO2.5 Homopolymerization of the gas is currently only a 

theoretical experiment, as ceiling temperatures are anticipated far below realistic 

conditions.17 Actual experiments have been carried out with CO2 and dienes and with vinyl 
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ethers18 or the combination with , -dibromo compounds and potassium salt of diols 

catalyzed by crown ethers.19,20 Another example involves formaldehyde as comonomer with 

bases and Lewis acids as catalysts to give non-alternating adducts.21,22 More controlled and 

of growing interest is the reaction of CO2 with epoxides, which is catalyzed by various 

organometallic1,23 26 or organocatalysts27,28 to give cyclic carbonates and polycarbonates. 

This topic is discussed in more detail in section 1.3.2. 

1.1.3 The supercritical solvent 

Carbon dioxide exhibits a phase transition at 31.2 °C and 76.3 bar, where it is entering the 

supercritical region (see Fig. 1-3).4 Here, the molecule can act as solvent for many other 

compounds, which is of advantage compared to other organic solvents, as it is non-toxic, 

non-flammable and inexpensive. Although quite some energy is needed to maintain these 

conditions, it might be favorable to use supercritical CO2 (scCO2), as it is volatile under 

atmospheric pressure and as such easy to remove from the reaction mixture.9,29 By 

adjustment of the pressure it is possible to tune the solubility of reactants in scCO2 and thus 

it is possible to improve turn over frequencies and selectivities of the reaction.30,31 

 

Figure 1-3 | Phase diagram of CO2. In the diagram the triple point at 5.3 bar and -56.7 °C and the critical 
point at 76.3 bar and 31.2 °C are indicated (reproduced from Markewitz et al.4 with permission from the 
Royal Society of Chemistry). 
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A combination of CO2 as solvent and reactant is also subject of many scientific 

publications,32,33 e.g. it was successfully employed for direct synthesis of dimethyl carbonate 

by Ballivet-Tkatchenko et al. which is used as fuel additive.34 Darensbourg and coworkers 

used it in copolymerization with epoxides, which eventually could lead to completely green 

products where not only the monomers are bio-based but also the use of toxic organic 

solvents is avoided.35 The supercritical fluid is also extensively employed as solvent and 

foaming agent in polymer extrusion, showing the great versatility of this molecule in terms 

of synthesis and processing.36,37 

1.1.4 Carbon capture and storage technologies 

Significance of the technology 

The volatility of CO2 has to be taken into consideration when its utilization as reactant or 

solvent is desired. It is not technically feasible to separate the gas from the atmosphere, as 

the concentration is still far too low (<400 ppm) compared to the other constituents like 

nitrogen and oxygen. Due to this issue two terms have evolved over the past years, one 

called carbon capture and storage (CCS) and the other carbon capture and utilization 

(CCU).4,38,39 The first is mainly focused on storing the greenhouse gas in huge reservoirs 

that are isolated from atmosphere, whereas the latter addresses the transformation and 

fixation of CO2 by turning it into platform and specialty chemicals as discussed in 1.1.2. 

The projected emission of carbon dioxide in 2050 is reported in the Blue Map Scenario of 

the International Energy Agency (IEA) to reach nearly 60 Gt a-1 as shown in Fig. 1-4.40 
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Figure 1-4 | Anthropogenic emission of CO2. The emissions of CO2 (in Gt) today and a projection for 
2050 with reduction measures suggested by the IEA Blue Map Scenario published in 2010. According to 
the IEA the annual emission of CO2  Gt a-1 to 58 Gt a-1, if no counter measures are 
taken. As such, they identified an improved end-use/electricity and power generation efficiency, a 
switching of end-user fuels, the expansion of nuclear and renewables power generation and CCS 
(reproduced from Iglesias et al.40). 

According to this scenario, toda 2 of 32 Gt a-1 will nearly 

double until 2050. On the other hand, a reduction of 60% would be necessary to fulfill the 

set climate goals, i.e. to limit the global temperature rise to about 2 °C. This discrepancy is 

addressed in the report, suggesting various measures to reduce the actual emission of the 

greenhouse gas by combustion of fossil energy carriers. Besides the improvement of end-

use/electricity and power generation efficiency, the authors propose a switching of end-use 

fuel, the expansion of nuclear and renewables power generation and last but not least the 

employment of CCS. The latter could contribute to about 8.2 Gt a-1, showing the huge 

significance of those technologies.  

Storage of CO2 

CCS and CCU comprise a wide range of technologies that essentially deal with the capture, 

transport, storage and use of CO2 in various ways. As illustrated in Fig. 1-5, these 

technologies are in very different stages of development, some having already entered the 

markets (e.g. urea production or transport in pipelines) while others are tested in pilot 

plants (e.g. production of aliphatic polycarbonates or postcombustion technologies) or are 

still investigated in the laboratory (e.g. membranes or photocatalytic and electrocatalytic 
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activation of CO2) and a few only exist as ideas and concepts (e.g. artificial photosynthesis).4 

The utilization of CO2 has already been discussed in detail in the previous chapters and its 

transport is a simple and established technology as it only involves gas pipelines installed 

either onshore or offshore. More challenging is the storage of the volatile gas as leaking has 

to be prevented and large volumes are required. In this sense, geological storage formations 

are being investigated intensively, whereas the introduction of the gas into the ocean is 

prohibited due to negative impacts on the flora and fauna living there. A prerequisite for 

such geological storage options is a gas-tight barrier, trapping the gas inside the reservoir. 

Usually these barriers consist of a clay stone or salt layer, which is often found above deep-

lying porous rock layers, which are filled with brine. When CO2 is introduced in those so-

called saline aquifers, it will be partly absorbed by the ambient rock formation water and in 

the long term transformed by mineralization.41,42 Another man-made reservoir is found in 

depleted petroleum and gas wells, that in some cases can be  if not yet completely depleted 

 further extracted by injection of CO2. This advantageous method is called Enhanced Oil 

Recovery (EOR) or Enhanced Gas Recovery (EGR) and usage of the gas as an extraction 

agent gives the industry another incentive to inject carbon dioxide in those reservoirs. 

 
Figure 1-5 | Technologies in carbon capture and utilization. Stages of realization from concept to 
market entry for various technologies of capturing (blue), transporting (orange), storing (green) and 
utilizing (turquoise) CO2 (reproduced from Markewitz et al.4 with permission from the Royal Society of 
Chemistry). 
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A similar approach is also taken in non-exploitable coal seams that can be flushed with CO2 

to recover the coal seam gas for utilization and to use those seams for storage. The global 

available storage capacities of these reservoirs can only be estimated but, according to the 

IEA, saline aquifers might hold 1000 to 10 000 Gt, petroleum/gas fields add up to 600-

1200 Gt and coal seams contribute with 3-200 Gt.43 Until now, about 0.75 Gt CO2 are stored 

in such reservoirs onshore and offshore all over the world.4,42 

Capture of CO2 

The step so far neglected in the discussion is the actual capture of carbon. Though, this is 

the step of major importance as it is the least developed of all four (see Fig. 1-5, compare 

with stages of transport, storage and utilization, which all have at least one technology 

commercialized). Obviously, only if efficient separation of CO2 can be accomplished, the 

three other steps can apply. The most important technological concepts for carbon capture 

involve  

 chemical or physical absorption,  

 adsorption phenomena and  

 organic or inorganic membrane-based 

separation techniques.44,45 Among them, chemical absorption is the dominating 

technology, whereas alkanol amine solutions, e.g. of monoethanolamine (MEA) or 

diethanol 46 The mechanism 

relies on the formation of carbamates, which exist in equilibrium with the hydrolytic 

products hydrogen carbonate and the corresponding ammonium ion. Technically, the 

reaction is conducted at 40 °C, passing the CO2 enriched gas through the aqueous amine 

solution in an absorption tower. The gas is subsequently released in a stripping tower at 

elevated temperatures (100 140 °C), whereas the regeneration of the solvent is connected 

to a considerable energy penalty, due to the high heat of formation of the carbamates.47 In 

this context, new sterically hindered and/or tertiary amines (mechanism for tertiary 

amines, does not involve formation of carbamate but only hydrogen carbonate and 

ammonium ion) have been developed, e.g. 2-amino-2-methyl-1-propanol or N-

methyldiethanolamine, respectively, exhibiting enhanced absorption rates, higher loading 

capacities, lower binding affinities to CO2 and increased regeneration rates compared to 

MEA and DEA.48,49 As an alternative, solutions of inorganics have been investigated, e.g. 
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aqueous solutions of potassium and sodium carbonate or ammonia, respectively. The latter 

is implemented in the technical process as the so-called chilled-ammonia process, whereas 

the underlying chemical reaction between CO2 and aqueous ammonia is the formation of 

ammonium bicarbonate at temperatures below 20 °C.50 The regeneration of the solvent is 

performed at 80 °C, thus showing an energetic advantage over the MEA and DEA solution 

process, which are operated at higher temperature in the regeneration stage. 

The other absorption-based concept in the scope of carbon capture is the one relying on 

physical absorption at high partial pressure and low temperature. Commercial physical 

absorbents include mixtures of dialkylethers/poly(ethylene glycol) (Selexol®) or -40 °C cold 

methanol (Rectisol®), which have already been established industrially for natural gas 

sweetening. Another class of CO2-selective physical absorbents constitutes ionic liquids 

that are promising candidates in the CCS process, as they not only have a very low vapor 

pressure and dissolve a large quantity of the gas but are also non-flammable, thermally 

stable and environmentally benign.51,52 These physical solvents are advantageous over 

chemical absorbents in the regard of energy consumption during regeneration of the liquid, 

i.e. removal of the dissolved CO2, by heat or pressure reduction.51 Though, they require high 

pressure streams to absorb a significant amount of gas and thus are only economical if not 

too much energy has to be expended on compression of the gases involved.  

The third class of carbon capture materials relies on adsorption phenomena and is usually 

employed in condensed phase, i.e. packed adsorbent beds in columns. Apart from the 

engineering challenges involved in the implementation of the process (heat exchange 

efficiency), adsorbent materials exhibit a superior energy efficiency compared to absorbent 

liquids, such as MEA, DEA solutions or Selexol®. Among those materials various classes 

have proven their efficiency in capturing CO2, e.g. metal oxides, hydrotalcite-like 

compounds and porous compounds.53 55 As structural motif, the latter shows either micro- 

or mesoporous properties, hence, fulfilling the necessity to expose a high surface area for 

adsorption of CO2-molecules. Examples are carbonaceous adsorbents like activated carbon 

or carbon molecular sieves, respectively, zeolites and organic or metal-organic frameworks 

(MOFs). For all adsorbents, the capacity and selectivity are dependent on operational 

temperature and pressure, though regarding selectivity there are additional complex 

parameters to consider, i.e. molecular sieving effects, thermodynamic equilibrium effects 

and kinetic effects.56 
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The last class discussed here are membranes, which are still in a very early stage of 

development in the field of carbon capture technologies (see Fig. 1-5). Though, they are 

gaining more and more attention due to their low energy requirements and a high flexibility 

in terms of configurations and applications in the process.57 The class can be subdivided 

into inorganic and organic membranes, the first comprising ceramics, metal oxides, 

molecular sieves and MOFs, the latter consisting of polymers like cellulose acetate (CAc), 

polysulfones (PSU), polyamides (PA), polyimides (PI), polycarbonates (PC) etc.58,59 The 

performance of membranes is generally evaluated in terms of permeability (transport 

properties) and selectivity (separation properties). A more comprehensive overview over 

polymeric membrane materials in gas separation in general is given in section 1.2, while 

continuing here with a brief look into inorganic membranes and subsequently into 

technically relevant applications of the presented separation techniques and materials in 

the context of CCS. Inorganic membranes can be composed of either porous or non-porous 

materials, which are usually thermally more stable than their organic counterparts. As such, 

they can be employed for example in hydrogen/carbon dioxide separation at temperatures 

above 800 °C (conditions in precombustion technology, see next section). They are based 

on microporous materials, e.g. inorganic perovskite oxides, zeolites or palladium alloy 

tubes.44,60 Microporosity was already structural motif for adsorption phenomena discussed 

previously, and it is not surprising that similar materials can also act as membrane 

materials. Hence, apart from aluminophosphates, silica and the very expensive palladium 

alloy tubes, again MOFs, immobilized on a carrier material, play a crucial role.61,62 They all 

rely to a high extent on molecular sieving effects, i.e. molecular size and shape selectivity, 

and consequently, they are limited in view of overall performance. Another challenge to the 

membrane technology is the scalability of the separation modules, as the volume streams 

involved in the process are very large. 

Large-scale applications of carbon capture technologies 

Industrially most pertinent to the concepts of capturing carbon are gas streams in chemical 

and power plants, due to the large volumes associated with the production of synthesis gas, 

hydrogen and ammonia or the combustion of fuels, respectively.7 Furthermore, the 

sweetening of natural gas, which is typically contaminated with over 40% of CO2 and N2, is 

a major field in this regard. 
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Within the scope of power plants, three major routes have evolved (illustrated in Fig. 1-

6):63,64 

 the postcombustion technology is implemented within the flue gas stream to 

capture CO2 before exhaustion into the atmosphere; 

 precombustion defines the method of CO2-separation from synthesis gas (syngas) 

derived from fuel, prior to energy conversion; 

 the oxyfuel process involves the recirculation of a concentrated stream of CO2 into 

a combustion chamber, where it is injected together with pure oxygen, prepared 

from an air separation step, and a suitable fuel, e.g. coal, natural gas or syngas. 

It has to be stated that all mentioned technologies require additional energy to separate, 

capture, condition and compress/liquefy the gas. Hence, this extra energy input  ranging 

between 10 to 14% points  has to be taken into consideration when the real carbon capture 

value is calculated. 

 
Figure 1-6 | Concepts of carbon capture. An overview of the capturing of CO2 in the postcombustion, 
precombustion and oxyfuel processes (reproduced from Feron and Hendriks65). 
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Furthermore, the post-, precombustion and oxyfuel processes implicate different 

conditions in terms of temperature, pressure, steam content, gas composition and 

contamination.4 

The postcombustion process is the most developed among those technologies, since 

retrofitting of existing power plants is most easily realized.65,66 As the name is suggesting, 

the process is implemented within the flue gas stream to capture as much CO2 as possible 

at relatively low temperatures and nearly atmospheric pressure. Before the decarbonized 

gas is exhausted into the atmosphere a final purification step for the removal of dust, sulfur 

and nitrogen compounds is installed.67 The wet scrubbing method with a MEA solution is 

already implemented in pilot-scale in power plants, leading to a CO2-separation efficiency 

of 80-95%. Countries like the USA, Denmark and Germany are testing this technology with 

separation capacities of up to 800 t of CO2 per day.4,68 A major challenge is the degradation 

of the solvent due to oxygen and contaminants in the flue gas, such as SOx and NOx 

compounds. The concentration of these contaminants has to be kept below 10 ppm to be 

negligible, whereas the concentration that is legally allowed for flue gas released into the 

atmosphere is set to 70 ppm.69 Consequently, the use of less sensitive washing agents is a 

measure to increase the lifetime of the solutions used for CO2 separation. Another challenge 

is the already addressed additional energy demand for solvent regeneration. This is 

exemplified by the values for energy and steam demand per tonne of CO2 captured, being 

4 GJ and about 50% of the low pressure steam in the plant, respectively. Hence, an energy 

penalty of about 14% for this technology causes an additional output of CO2 and costs of 

about 30 per tonne of CO2.68 

capture compete with its ease of retrofitting it to existing plants.  

Thus, alternative routes with improved efficiency are investigated intensively, one of them 

being the so-called precombustion process. Here, the carbon is separated from the fuel gas 

stream before the combustion. The underlying principle involves the partial oxidation of 

fossil fuels in an O2-deficient atmosphere (Eq. 1-1 for gasification of coal, Eq. 1-2 for 

reforming of methane) and the presence of water to produce syngas, i.e. hydrogen and 

carbon monoxide. The latter is converted to CO2 via the water-gas shift reaction in the 

presence of water, giving another equivalent of hydrogen (see Eq. 1-3). At this point, 

decarbonization is achieved by separating CO2 from H2 in the high-pressure, high 

temperature gas stream. The hydrogen-enriched gas is eventually introduced into gas 
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turbine combustors to produce energy with high efficiency (see Fig. 1-6 for schematic 

description of the process).  

 
 

(1-1) 

  (1-2) 

  (1-3) 

For power plants using the gasification of coal, the term Integrated Gasification Combined 

Cycle has evolved with CO2 separation being an option but not a necessity. The partial 

oxidation of coal (gasification) or natural gas is carried out in the presence of oxygen and 

water, whereas nitrogen is separated from air before it is fed into the reactor. This prior air 

separation step is advantageous, as it leads to higher conversion of the coal/natural gas, 

facilitates separation of CO2 from H2 and leads to an overall decreased volume stream.70 

Integrated Gasification Combined Cycle pilot plants have been built since the 1980s and 

recently efforts have been made to CCS units before the combustion of the fuel gas.4 The 

major advantage of this technology compared to the postcombustion process it the reduced 

energy capture penalty due to higher concentrations of CO2 and higher partial pressures. 

Furthermore, the produced H2-rich fuel can also be utilized as a feedstock in chemical 

industry, in fuel cells for direct power generation or as an intermediate for other fuels like 

methanol.71 On the other hand, the accompanying higher investment costs and more 

complex setup, which prohibit retrofitting of existing power plants, have to be assessed 

against their life cycle environmental impacts.72 

A different approach is taken for the oxyfuel technology, whereas pure oxygen is used for 

the combustion of fossil fuels. To enrich the stream of CO2, the gas is recirculated and 

released only when a sufficient concentration of carbon dioxide for sequestration is 

reached. For complete exclusion of nitrogen during combustion the introduced air is 

separated in a preliminary step and only O2 is introduced into the combustion chamber. 

The recirculation of the flue gas stream allows enrichment with CO2 to about 90%, whereas 

usually the concentration of flue gas from power plants lies below 15%. Due to the high 

concentration, the gas stream is directly condensed and subsequently demoisturized, 

cleaned from SOx and NOx compounds and compressed for transport and storage. For the 

separation of O2 from N2, state-of-the-art are cryogenic air separation units that are 

operated at low temperatures (<-182 °C) to condense oxygen and to purify it by high-
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pressure distillation. This separation process is of course energy intensive and purities of 

99.5 vol% are necessary to maintain high efficiency of the process and alternatives for 

separation, e.g. oxygen transport membranes are investigated.68,73 75 The overall energy 

penalty for the implementation of the oxyfuel process was calculated to range between 8 to 

10% points, with 6% points contribution from the air separation, i.e. the efficiency loss is 

lower compared to post- and precombustion processes.4 Combined with the low level of 

CO2 emission from such power plants the technology is promising, though major 

challenges are the high investment costs as standard equipment has to be modified and 

retrofitting existing plants is difficult.  

All of the above described technologies, i.e. postcombustion, precombustion and oxyfuel 

involve at least one gas separation step, be it carbon dioxide from nitrogen in the flue gas, 

oxygen from nitrogen in an air separation unit or both, respectively. And each of those 

separation steps requires a significant amount of energy to realize separation. Membranes 

can provide an alternative in this context, as they avoid extensive energy input for 

regeneration of absorbents/adsorbents or for cooling air to -182 °C.57 Among membranes, 

polymeric materials constitute a major class for separation of gases and the  in this thesis 

introduced  poly(limonene carbonate) might be a viable choice in one or more of the 

above described processes, due to its excellent transport and separation properties for CO2 

and other gases. 
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1.2 Polymeric membranes for gas separation 

1.2.1 Significance of membranes in industry 

In 1980, the first large scale application of membrane gas separation was launched by 

Permea (now Air Products). They installed polysulfone (PSU) hollow fiber membrane 

modules for the separation and recovery of hydrogen from the purge gas stream of 

ammonia plants with their so-called Prism membranes.76 Within the next decades, the 

development of new materials and processes has led to further industrial applications, 

which is illustrated by the milestones in Fig. 1-7. Apart from PSU, polymers used in 

commercialized membranes include mainly cellulose acetate (Separex 1982, Cynara 1983, 

UOP 1995), polyimide (Ube 1989 and Medal 1994), polyphenylene ether (PPE, Delair 1991, 

also called polyphenylene oxide) and polyethylene oxide (GKSS/MTR 2008).59  

 
Figure 1-7 | The evolution of membranes for gas separation. Milestones in the evolution of membrane 
gas separation technology within the first large-scale application in 1980 by Permea until the launch of a 
pilot plant with PEO membranes in 2010 (reprinted from Ismail et al.59 with permission from Springer 
International Publishing). 
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The gas streams in industrial processes are usually large and a high flux of the separated gas 

(permeate) has to be realized. Hence, a high surface area to module volume ratio of the 

membrane material is required (> 1000 m² m-³) that is either produced by flat sheet spiral 

wound or hollow fiber modules.77 The growing significance of membrane technology can 

be explained by the advantages of membranes for gas separation: 

 Simplicity in concept and operation 

 Low energy requirements for complete separation (no regeneration of sorbents etc.) 

 Modularity and ease of scale-up 

 High efficiency in use of raw materials 

 Avoidance of moving parts 

These advantages have led to the re-evaluation of technical processes, wherever gas 

separation plays a crucial role. Except for CO2 separation in CCS technology in power 

plants and purification of natural gas, industry is confronted with separation problems 

among other things in refineries (H2/hydrocarbons), ammonia plants (H2/N2) and 

polyolefin production (light gases/volatile organic compounds, VOCs). Each of those 

problems implies a gas mixture of two or more gases. In most cases, the problem can be 

reduced to the separation of one gas pair, e.g. the separation of hydrogen from nitrogen in 

the ammonia purge gas.  

Table 1-1 | Main industrial applications for gas separation with membrane materials .59,78,79 

gas pair industrial process 

H2/CO2 hydrogen generation in precombustion technology 

H2/N2 ammonia purge gas 

H2/hydrocarbons hydrogen recovery in refineries 

O2/N2 air separation to yield oxygen (oxyfuel, steel industry) and nitrogen 

CO2/CH4 natural gas sweetening, land fill gas upgrading 

CO2/N2 flue gas treatment (postcombustion) 

H2O/CH4 drying of natural gas 

H2S/hydrocarbons sour gas treatment 

hydrocarbons/air hydrocarbon recovery or pollution control 

He/N2 helium recovery 

light gases/VOCsa)  polyolefin purge gas purification 
a)VOCs like ethylene or propylene 
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An overview over such fundamental gas pairs and their occurrence in industrial processes 

is presented in Table 1-1. For the choice of the best membrane material, its selectivity for 

one molecule of the gas pair is essential. However, membranes for gas separation also imply 

some practical problems leading to a decreased performance over time. One major effect is 

fouling of the membrane due to blockage of the surface and/or pores. The fouling can arise 

from strong physical interaction, i.e. adsorption of sulfur compounds such as H2S or SO2 

or accumulation of small particles. The latter can be removed by reverse purging with a 

non-adsorbing gas (or filtered off before contact with the membrane), whereas the first 

might lead to an irreversible deterioration of the membrane. Another disadvantage of this 

type of gas separation is the risk of leaks in the membrane that are inherently produced as 

thin as possible to maintain a high flux of the gas stream. Additionally, polymeric materials 

are prone to chemical attack by reactive compounds like acids, bases, radicals etc. and might 

lose mechanical stability or undergo physical or chemical transformations leading to 

changed separation properties.78 

1.2.2 Fundamentals of membrane transport phenomena 

The membrane-based separation of gases is primarily dependent on the transport of the 

individual molecules through the material. The driving force is, as postulated in FICK

law, the diffusive flux J along a concentration gradient towards the lower concentration 

region under the assumption of steady state. The magnitude of this flux is proportional to 

the concentration difference. The proportionality constant between the flux and the 

gradient in the concentration for a given system is called diffusivity or diffusion coefficient 

D as expressed in Eq. 1-4.80,81 

 𝐽 = −𝐷
𝜕𝑐

𝜕𝑥
 (1-4) 

Another important principle in this context is HENRY

the amount of gas dissolved in the contacting liquid (or here amorphous polymer) is 

proportional to its partial pressure in the gas phase.82 

A schematic of the most frequently observed transport mechanisms in membrane 

separation processes is illustrated in Fig. 1-8. They can be subdivided into porous and non-

porous transport phenomena, whereas the KNUDSEN diffusion and molecular sieving 

belong to the first group and the solution-diffusion mechanism belongs to the latter. For a 
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given gas pair, the decisive parameter for the KNUDSEN diffusion is the molecular weight of 

the molecules, as it correlates inversely proportional with the mean free path in a 

confinement, i.e. a pore. The pores are larger than the gas molecules (2  50 nm) but smaller 

than the mean free path resulting in more collisions with the pore wall than with other gas 

molecules.83 Molecular sieving takes advantage of the size difference of molecules, i.e. the 

kinetic diameter as shown in Table 1-2, and is possible for membranes with very small pores 

(< 20 Å).84 For a monodisperse pore diameter distribution a complete separation of gases is 

theoretically possible if one of the gas molecules is larger than the pore.85  

 
Figure 1-8 | Mechanism of gas transport through membranes. Schematic illustration of the three major 
mechanisms of transport of gas molecules through porous (KNUDSEN diffusion, molecular sieving) or non-
porous (solution-diffusion) membranes. For materials showing KNUDSEN diffusion, the separation is 
achieved by the difference in molecular weight of the molecules, whereas molecular sieving is based on 
size exclusion with smaller pores. Solution-diffusion takes place in dense polymeric membranes, which 
leads to separation if solubility and/or diffusivity of the gas pair differ significantly (adapted from Ismail et 
al.59). 

For non-porous amorphous polymers solution-diffusion is the dominant transport 

mechanism. It involves three steps, starting with the adsorption of gas molecules on the 

surface of the membrane on the feed side.86,87 After diffusion of the molecules through the 

polymer matrix, the third step is completed with desorption, i.e. evaporation of the 

diffusing species. This process was first described in literature by Thomas Graham 

150 years ago and it is controlled by two major parameters of the penetrating gas: the 

diffusion coefficient D and the solubility coefficient S.88 The rate determining step is the 

creation of holes with sufficient size in the polymer matrix to allow the penetrant molecules 

to move along the concentration gradient.  
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Table 1-2 | Selection of gases relevant to industrial separation processes. 

molecule 
molecular weight 

(g mol-1) 
kinetic diameter 

(Å) 

H2 2 2.89 

CH4 16 3.80 

H2O 18 2.65 

N2 28 3.64 

O2 32 3.46 

CO2 44 3.30 

This thermally stimulated segmental motion of polymer chains is very slow compared to 

molecular kinetics and can be described with the sorption-diffusion theory.89 Solubility and 

diffusivity of the gas may be affected by the chain packing density, orientation of the chains, 

crystallinity, polarity, nature of functional group, plasticizers, fillers and humidity. The 

performance of a non-porous polymeric membrane with respect to a single gas is expressed 

by the permeability P, which is defined as the product of diffusivity and solubility (see  

Eq. 1-5). 

 𝑃 = 𝐷 × 𝑆 (1-5) 

Alternatively, the permeability can also be expressed by J and the partial pressure difference 

p normalized by the thickness l of the membrane as shown in Eq. 1-6:  

 𝑃 =
𝐽 ∙ 𝑙

∆𝑝
 (1-6) 

Typically for membrane materials, i.e. high flux materials, the unit for permeability is given 

in barrer, with: 

1 𝑏𝑎𝑟𝑟𝑒𝑟 = 10−10
𝑐𝑚³ (𝑆𝑇𝑃)𝑐𝑚

𝑐𝑚² 𝑠 𝑐𝑚𝐻𝑔
 

The membrane thickness-normalized permeability is sometimes replaced by the thickness 

dependent permeance Q to give a more practical value for the performance of a membrane 

(see Eq. 1-7) that is only a few micrometers (or even 100 nm) thick: 

 𝑄 =
𝐽

∆𝑝
 (1-7) 

The unit often used in the context of permeance of polymeric membranes is gas permeation 

unit (GPU) and is by definition: 
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1 𝐺𝑃𝑈 = 10−6
𝑐𝑚³ (𝑆𝑇𝑃)

𝑐𝑚² 𝑠 𝑐𝑚𝐻𝑔
 

The other decisive parameter for gas separation membranes is the selectivity  (A/B) for 

gas A in a mixture of the two gases A and B, i.e. the ratio of permeabilities for a given gas 

pair A/B. When the permeabilities  obtained from single gas measurements  are used for 

the calculation, the ideal separation factor, the so-called permselectivity is defined by Eq. 1-

8. 

 𝛼(𝐴/𝐵) =
𝑃𝐴

𝑃𝐵
 (1-8) 

Selectivities in non-porous membranes are usually high, while the effective transport of gas 

molecules through the materials is rather slow compared to porous membranes. The size 

of the permeating species in non-porous membranes is of minor importance and rather the 

solubility in the medium governs the performance of the material in regard of gas 

separation. From a technical point of view, both the permeability and the selectivity of a 

membrane material should be as high as possible, thus leading to a fast separation of high 

purity gases. However, there is an inherent trade-off, i.e. reciprocal relationship between 

both parameters that is empirically described by Eq. 1-9. 

 𝑃𝐴 = 𝑘𝑢𝑝𝛼(𝐴/𝐵)𝑛𝑢𝑝  (1-9) 

with kup and nup being empirically determined parameters for a given gas pair. This 

relationship can be visualized in an upper bound when selectivity is plotted against 

permeability. Lloyd M. Robeson established this upper bound in systematic studies and 

published this line in the above-mentioned special type of plot for the first time in 1991.90,91 

In Fig. 1-9 such a ROBESON plot for the gas pair CO2/CH4 is shown for a vast variety of glassy 

and rubbery polymers. The dashed line represents the empirically found upper bound that 

was not yet surpassed 25 years ago. However, 17 years later, Robeson updated and revised 

his database of glassy and polymeric membrane materials and shifted the upper bound to 

higher values, which was recently again outperformed by new materials and shall be 

-of-the- 1.2.3.79,91  
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Figure 1-9 | Original ROBESON plot from 1991. The plot for the separation factor of CO2/CH4 versus the 
permeability of CO2 for glassy and rubbery polymeric membranes. The dashed line indicates the upper 
bound as an empirical border, representing the trade-off between selectivity and permeability (reprinted 
from Robeson90 with permission from Elsevier). 

Another important property related to membrane materials and their performance is the 

distribution of free volume elements in the polymer matrix, as transport is facilitated in an 

interconnected microporous environment. The free volume Vf is the space not occupied by 

molecular chains in the glassy polymer, due to limited packing density of amorphous 

domains. Vf can be expressed mathematically as the difference of the specific volume Vsp 

and the specific VAN DER WAALS volume VW,s multiplied by 1.3 (see Eq. 1-10). The VAN DER 

WAALS volume is calculated using the group contribution method of BONDI and the factor 

is introduced to compensate for the steric demand of any molecule that is, even at 0 K, 

higher than its VW,s.92 94 

 𝑉𝑓 = 𝑉𝑠𝑝 − 1.3𝑉𝑊,𝑠 (1-10) 

A quantity often reported in literature is the fractional free volume (FFV) that is obtained 

by division of the free volume by the specific volume of the polymer: 

 𝐹𝐹𝑉 =
𝑉𝑓

𝑉𝑠𝑝
 (1-11) 

Typically, values of the FFV range from 0.11 for barrier materials to 0.29 for membrane 

materials.95,96 
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The theoretical approach using VAN DER WAALS radii of molecules to deduce free volume 

can be supported by experimental values, obtained from positron annihilation lifetime 

spectroscopy (PALS). Rather than the fraction of free volume, here, the mean pore size 

(even on the sub-nanometer scale) is measured that is usually proportional to the FFV.97 99 

To interpret the data recorded in a PALS experiment the TAO-ELDRUP model is applied.100

102 The non-destructive technique involves the generation of positrons from a radioactive 

source, which are injected into the condensed matter under investigation. The positrons 

interact primarily with the electrons in the matrix to produce a metastable 

positron/electron state called positronium (Ps). The latter usually annihilates rapidly  

accompanied by the emission of a photon  by interaction with other (free) electrons in the 

matrix. However, if voids, e.g. cavities in a polymer membrane, are present the electron-

density-free space has a prolonging influence on the lifetime  of a positronium. From this 

difference in lifetime of positroniums the cavity radius rc can be deduced. To explain the 

theoretical background of the spectroscopic technique it has to be mentioned that 

positroniums exist in two spin states. For opposite spin of the electron and the positron the 

term para-positronium (p-Ps) is used with a self-annihilation lifetime in vacuum of 125 ps. 

The lifetime of an ortho-positronium (o-Ps, parallel spin of electron and positron), on the 

other hand, is three orders of magnitude higher (142 ns) in vacuum, while pick-off of an 

electron of opposite spin leads to a reduction of lifetime to < 4 ns. This reduction is 

dependent on the size of the void the o-Ps is trapped in and thus the rate of pick-off 

annihilation po is inversely proportional to rc of the hole. In the semi-empirical TAO-

ELDRUP model the potential well of finite height associated with the hole is replaced by an 

infinitely high potential with the radius rc + r (the penetration depth  of a Ps wave 

function into the cavity walls was empirically found to be 1.66 Å). The mathematical 

expression for the relation of pick-off rate, the lifetime of the o-Ps 3 and the cavity radius 

is shown in Eq. 1-12.98 

 𝜆3 =
1

𝜏3
= 2 𝑛𝑠−1 [1 −

𝑟𝑐

𝑟𝑐 + 𝛿𝑟
+

1

2𝜋
𝑠𝑖𝑛 (

2𝜋𝑟ℎ

𝑟𝑐 + 𝛿𝑟
)] (1-12) 

The spectroscopically obtained lifetime distribution can be transformed by numerical 

Laplace inversion into a rc probability function and subsequently into a hole volume 

distribution that is a major interest in terms of membrane science.103,104 
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1.2.3 State-of-the-art polymers for gas separation 

Many classes of polymers have been evaluated in terms of applicability in membrane 

technology, e.g. polyamides,105 polyimides,106,107 polycarbonates,108,109 polyarylates,110 

poly(phenylene ether)s,111 poly(ethylene oxide)s,112 polyanilines,113,114 polysulfones,115,116 

polyacetylenes,117,118 acetylated cellulose119 etc. For the purpose of CO2 separation, those 

polymers with a high permeability (> 100 barrer) and selectivity (> 30) for the gas are 

limited in number. Polymers that are commercially available in membrane modules are 

illustrated in Fig. 1-10 with a selection of membrane-related properties shown in Table 1-3. 

Except for the acetylated cellulose, a common motif are aromatic units like bisphenol A 

(BPA) that give rise to rather rigid backbones, which is reflected in the high glass transition 

temperatures ( > 150 °C) and fair CO2 permeabilities ranging from 2.6 barrer for the 

poly(ether imide) (PEI) to 48 barrer for PPE.120,121 The selectivities of these established 

materials are mediocre with regard to the upper bound in a ROBESON plot. The highly 

permeable polymer PPE exhibits the lowest selectivity of only 17, while PI shows the highest 

 (CO2/CH4) with 41 and a fair P (CO2) of 12.122  

 
Figure 1-10 | Commercial polymers for the gas separation. Examples of commercial polymers 
employed in membrane modules are bisphenol-A polycarbonate (BPA-PC), polysulfones (PSU), poly(ether 
imide) (PEI), poly(phenylene ether) (PPE), polyimide (PI) and cellulose acetate (CAc, with triplicate 
substitution of hydroxy groups). 
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Efforts have been made to improve the performance of these established membrane 

materials. Successful techniques involve the halogenation or introduction of sterically 

demanding groups to increase free volume.121,123 125 The addition of functional groups for 

facilitated transport (solute interacts chemically with matrix material, thus greatly 

improving solubility of the permeate) is another promising route to increase the 

performance of a membrane.126 However, state-of-the-art materials have been developed 

from new monomers to give permeabilities for small molecules like CO2 beyond 100 barrer, 

as shown in Fig. 1-11 and Table 1-3. 

Table 1-3 | Properties of commercially available and state-of-the-art membrane materials. 

polymer 
Tg 

(°C) 
FFV 

 
p  

(kPa) 
P (CO2)  

(barrer) 
 (CO2/CH4)  

 
ref. 

 

State-of-the-art       

PTMSP >300 0.29 100 47000 1.6 117,127 

PIM-1 - 0.26 400 5100 9.6 128 

TR-PI - 0.27 100 1620 46 129 

TOX-PIM-1 - - 400 1100 60 128 

DATRI-PIa) 430 0.23 100 189 31 122 

commercial       

PPE 215  70 48 17 123 

PIb) 300 0.17 100 12 41 96 

CAc 188 0.21 100 6.9 37 78,119,130 

BPA-PC 150 0.16 100 6.8 25 131 

PSU 186 0.15 100 5.6 22 96,116 

PEI 216 0.14 300 2.6 39 120 
a)permeability tested at 35 °C, b)permeability tested at 30 °C 

For the design of new membrane materials there are some considerations to be made. 

Properties that promise high performance as membrane materials include a high fraction 

of free volume and selective solubility for one gas. For glassy polymers, important structural 

motifs are very rigid and twisted backbones or a high chain mobility, as they are found in 

polymers with intrinsic microporosity (PIMs) like PIM-1 or poly(1-trimethylsilyl-1-

propyne) (PTMSP), respectively.118,132 134  



1  Introduction 

26 

 
Figure 1-11 | State-of-the-art polymeric membrane materials. Structures of polymers with very high 
permeabilities and selectivities for state-of-the-art membrane applications: poly(1-trimethylsilyl-1-
propyne) (PTMSP), polymer with intrinsic microporosity 1 (PIM- -hexafluoroisopropylidene-
2,6-triptycene imide) (PI-DATRI), thermally rearranged polyimide (TR-PI). 

The first is based on a spirobisindane ladder structure and yields permeation rates for CO2 

of over 5000 barrer combined with  for this permeation  excellent selectivity of nearly 10. 

Even one order of magnitude higher is P (CO2) (47 000 barrer) of the latter, which is based 

on a substituted acetylene species (the repeating units are shown in Fig. 1-11). However, 

the intrinsic trade-off demands a low selectivity of 1.6 over CH4. The other two polymers 

shown in Fig. 1-11 contain imide linkages possessing enhanced rigidity in the backbone 

compared to traditional PIs. The copolymerization of the sterically very demanding 

triptycene-based monomer 2,6-diaminotriptycene (DATRI) with the fluorinated 

diphthalic anhydride derivative yield a polymer (DATRI-PI) with an extremely high Tg of 
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430 °C and a P (CO2) of nearly 200 barrer accompanied by a very high CO2/CH4 selectivity 

of over 30.122 The permeation performance is further improved for the thermally rearranged 

PI (TR-PI) yielding either polybenzimidazole, polybenzoxazole or polybenzothiazole 

membranes (depending on the initial PI carrying amine, alcohol or thiol functions in ortho-

linkage position, respectively)129,135 For the here presented polybenzimidazole an 

exceptional combination of very high CO2 permeability (P (CO2) = 1620 barrer) and strong 

selectivity over methane (  (CO2/CH4) = 46) was achieved. This high free volume polymer 

is an example for a material actually surpassing the upper bound proposed by Robeson in 

2008 as illustrated in Fig. 1-12.91  
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Figure 1-12 | ROBESON plot with state-of-the-art polymers. The plot for the gas pair CO2/CH4 with the 
commercial and state-of-the-art polymeric membrane materials shows that some of the latter can actually 
surpass the ROBESON upper bound from 2008. 

Thermal rearrangement seems to be the method of choice to produce materials surpassing 

the upper bound of 2008, as it is also the case for PIM-1 that was annealed at high 

temperatures (> 300 °C) in the presence of oxygen to yield thermal-oxidatively crosslinked 

PIM-1 (TOX-PIM-1) with a permeability of 1100 barrer and a selectivity of about 60 versus 

methane.128 The new generation of membrane polymers suffers mainly from aging and 

fouling effects that lead to deterioration of the performance in a relatively short time. The 

aging can be ascribed mainly to the relaxation of the polymer backbone into a 
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thermodynamically favorable state.97,117,136 Also, the used monomers are rather expensive 

thus leading to high investment costs when applied on larger scale. Consequently, there is 

a need for materials that can combine high performance as a gas separating membrane with 

long-term stability and affordability. 
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1.3 Polycarbonates 

First discoveries in the field of PCs date back to 1898, when Einhorn reported the successful 

transformation of hydroquinone- and resorcinol-derivatives into polymers.137 He 

copolymerized the aromatic diols with phosgene in pyridine solution to produce linear 

polycarbonates. The reaction with hydroquinone yielded an insoluble crystalline solid, 

melting above 280 °C. The resorcinol derivative, on the other hand, gave an amorphous 

material, that would decompose already at 200 °C. Four years later, an alternative route 

towards the same PCs was reported by Bischoff and Hedenstroem, who employed a 

transesterification with diphenyl carbonate as a substitute for phosgene.138 It took another 

three decades until attention was drawn towards this class of materials again, which is likely 

explained by the poor solubility and processability of those resins. Two pioneers in the field 

of macromolecular chemistry, Carothers and van Natta, demonstrated two pathways for 

the production of aliphatic, low molecular weight, low melting polycarbonates by either 

transesterification of diols with diethyl carbonate or ring opening polymerization (ROP) of 

cyclic carbonates.139 The latter route was taken up by a coworker of the DuPont company, 

who filed a patent on the transesterification of 1,6-hexandiol and dibutyl carbonate to yield 

a high molecular weight polymer with low melting point.140 These materials with low 

softening temperatures were not really commercially successful, because applications in 

everyday life were very limited. In 1954, Schnell and coworkers from Bayer AG took up the 

initial concept of aromatic PC, to produce high melting, high molecular weight polymers.141 

-dihydroxydiphenyl alkanes were investigated in the context of PC, which 

is the family of compounds bisphenol A also belongs to.  

1.3.1 Aromatic polycarbonates 

This can be seen as the breakthrough in the field of thermoplastic PCs, as the materials  

especially those derived from BPA  were not only stable at elevated temperature but also 

soluble in organic solvents, transparent (i.e. amorphous) and mechanically superior to 

other commercially available plastics.142,143 Because of this excellent property profile, many 

companies initiated research and development of bisphenol A polycarbonate (BPA-PC). 

After some legal disputes involving General Electric and Mobay Chemical, the Bayer AG 

received the rights for the  at the time commercially most relevant  production of BPA-

PC via an interfacial reaction of BPA and phosgene (Fig. 1-13a).144 146 To date this method 
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still dominates the market with only minor alterations of the process. The 

transesterification of BPA (also covered in the patent of Schnell et al.) with diphenyl 

carbonate is not as popular, but it has gained more attention in the 1980s, when several 

plants in China, Japan and Spain have been built in this regard (Fig. 1-13b).147 150 

 
Figure 1-13 | The production of BPA-PC. Industrially employed processes for the production of BPA-PC 
via (a) interfacial copolymerization of BPA and phosgene or (b) melt polycondensation of BPA with 
diphenyl carbonate. 

Technically, the interfacial process involves in the first step the dissolution of BPA in 

dichloromethane (DCM) together with phenol as end-capper to maintain control over the 

molecular weight. The next step consists of the addition of phosgene and aqueous sodium 

hydroxide to the reactor, which will result in a two-phase liquid-liquid system, with the 

base NaOH intercepting hydrogen chloride and leading to hydrolysis of BPA phosgene 

condensates and deprotonation of BPA. After completion, the organic phase is separated 

from the aqueous phase and washed several times with acidified and pure water to remove 

residual salts and base. In the last step, the PC is isolated either by solvent exchange and 

subsequent evaporation of the solvent, steam precipitation or addition of a non-solvent and 

subsequent filtration and drying. The low reaction temperature (40 °C) leads to a kinetically 

driven distribution of molecular weights and makes a quantitative end-capping necessary. 

Otherwise the material is going to redistribute into its thermodynamic product, which is 

accompanied by a decrease of molecular weight. 

The transesterification process, on the other hand, comprises the base-catalyzed 

condensation of the phosgene-synthon diphenyl carbonate and BPA. The reaction 

temperature has to be kept high in order to keep both starting materials and products 

molten. The applied temperatures span from 150 to 350 °C, starting with pressures of 

200 mbar and a stepwise reduction to 1 or even 0.1 mbar for an efficient removal of phenol. 
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The quality of the resulting product is directly related to the starting materials (no solvents, 

no workup and no phosgene are needed) and thus if the latter are contaminant-free so is 

the product. The catalyst loading level lies in the parts per billion (ppb) region and is 

negligible with regard to the final product.150 Another advantage of the transesterification 

process is thermodynamically controlled molecular weight distribution of the final product. 

Hence, a processing-induced redistribution of the polymer chains is avoided, which 

improves the processability of the material. Since the use of phosgene is also avoided, this 

route is environmentally and processing-related favorable over the interfacial route.151 

However, from an economic and product quality viewpoint, the latter is still more feasible 

from an industrial point of view. 

The production of the thermoplastic resin BPA-PC is an ever growing market, which is 

reflected in the annual growth rates of approximately 8%.152 A total consumption of 3.7 Mt 

was reported for 2012, with Asia having a share of 60% followed by Europe, the Middle East 

and Africa with 23%, North America with 15% and lastly South America with 2%.153 Typical 

applications of PC are electronic, household, optical, automotive, construction and medical 

devices. The key properties of the thermoplastic to give it such a broad range of applications 

are its outstanding impact strength, transparency, toughness, high elongation, good heat 

resistance, light weight and dimensional stability. Especially the use of PC in data storage 

technology, i.e. compact discs (CD), digital versatile discs (DVD) or  more recently  Blu-

ray discs are famous examples, where the key properties impact strength and clarity of the 

material are mandatory. Another example is the use as medical devices, which need to be 

biocompatible and sterilizable. PC is both, biocompatible and exposable to all important 

sterilizing techniques, e.g. ethylene oxide (EO), gamma rays, electron beams or steam and 

hence a suitable choice to produce connectors, valves, controls, catheters etc.147  

1.3.2 Aliphatic polycarbonates 

Historic evolution 

As mentioned briefly in paragraph 1.3, the first aliphatic polycarbonates (APC) were 

reported by Carothers and van Natta in 1930, when DuPont evaluated market potential of 

this new kind of polymers.139 The low Tg materials were prone to hydrolysis and as such 

considered inferior to other engineering thermoplastics. With the discovery of BPA-PC in 

the 1950s an ongoing success story of aromatic PC distracted attention from APCs even 
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further. A landmark in the field was established by Inoue et al., who published pioneering 

work in 1969 on the synthesis of aliphatic polycarbonates by zinc-catalyzed 

copolymerization of CO2 and epoxides.154,155 But APCs were hardly recognized until the 

1990s, when academic and commercial interest rose due to emerging markets in the field 

of biomedical and biodegradable applications.26,44,156 158 Current industrial applications are 

limited to low molecular weight polyols used for the production of polyurethanes and 

segments in copolymers, respectively, as the poor thermal and mechanical properties have 

hindered expansion into the area of thermoplastic resins.159,160 However, in regard of 

biomedical applications, the low glass transition temperatures, superior biocompatibility 

and degradability of APCs are advantageous properties that are recently exploited in the 

field.161,162 

Synthetic routes towards aliphatic PCs 

Synthetic strategies towards aliphatic PCs are versatile, as the polycondensation 

(transesterification) and ROP have already been presented by Carothers and van Natta in 

1930 and 1932, respectively, and the copolymerization of CO2 with epoxides was shown by 

Inoue et al. in 1969 (see Fig. 1-14).139,154 Based on these fundamental routes various 

modifications of the synthesis163 168 and introduction of new functional monomers169 178 

have revived academic research in the field. 

 
Figure 1-14 | The production of APCs. Synthetic routes towards aliphatic polycarbonates either by (a) 
polycondensation/transesterification of diols (or polyols) with dimethyl carbonate, (b) ROP of cyclic 
carbonates or (c) copolymerization of epoxides and CO2. 
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In the early days, polycondensation of APCs was accomplished by the employment of 

phosgene and its derivatives to yield polymers with broad molecular weight distribution.139 

The control over the outcome of polymerization was improved when knowledge from the 

BPA-PC production was transferred to the synthesis of APCs. The use of dialkyl carbonates 

enabled higher degrees of polymerization by running a two-step process.179 181 In the first 

step, oligocondensates of aliphatic diols and alkyl carbonates are produced in the melt. 

Subsequently, transesterification of the end-groups using a suitable transesterification 

catalyst would lead to high-molecular-weight (HMW) polycarbonates. A TiO2/SiO2-based 

catalyst was reported to produce polycarbonates of diols of butane, pentane and hexane, 

respectively, having weight average molecular weights (Mw) of > 166 kg mol-1 and low 

dispersity (Ð < 1.9).165 Others have reported the successful preparation of APCs by 

polycondensation using enzymes as catalyst, which enables milder reaction conditions and 

a higher tolerance with respect to functional groups on the monomers.182 However, 

drawbacks of the enzymatic polycondensation are high catalyst loadings, long reaction 

times, low molecular weights and a high Ð. 

The obvious advantage of polycondensation for the preparation of APCs compared to ROP 

and CO2/epoxide coupling is the flexibility of carbon number between two carbonate 

groups. Consequently, linkages with ten and more carbon atoms have been realized in the 

PC backbone, which is a unique way of tuning the properties of the APC.183 

ROP of six-membered cyclic carbonates (five-membered rings are thermodynamically 

stable and do not undergo ROP)1, on the other hand, is more effective for the production 

of high molecular weight APCs with low dispersity. The technique was applied to 

trimethylene carbonate 1 (Fig. 1-15) by Carothers et al. just two years after their discovery 

of polycarbonates, though the products suffered from low purity and low molecular 

weight.184 Due to similarities of cyclic carbonates to lactones, most catalysts used in ROP of 

lactones have also been tested for their carbonate counterparts. As such, the reaction can 

be conducted in melt or in solution, while the mechanism range from anionic, cationic over 

coordination-insertion and monomer activation to enzymatically promoted 

polymerization.185 Apart from metal-based catalysts, recently, organocatalytic ROP has 

received much attention to lower the level of toxic residues in the polymer. Basic 

catalysts167,186,187 like tertiary amines, guanidines, amidines etc. and acidic catalysts like 

diphenyl phosphate188 and triflic acid189 191 have been used successfully for the conversion 
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of cyclic carbonates into polymers. Furthermore, enzymes have shown activity in ROP of 

these compounds, though they lack in efficiency and control of molecular weight compared 

to metal- and organo-based catalysts.164,168,192 194 The great variety of catalysts for ROP is 

matched by the variety of monomers available for the ring-opening reaction. Besides 

trimethylene carbonate, the most widely used structures shown in Fig. 1-15: carbonates of 

2,2-bis(hydroxymethyl)propionic acid,195 pentaerythritol196 and trimethyolalkane197 giving 

2, 3a/b and 4, respectively. The resulting structures are ideal candidates for biomedical 

application as they show tunable degradation rates by adjustment of hydrophilicity and Tg. 

Furthermore, the ROP of carbonates tolerates a broad range of functionalities to produce 

APCs under mild conditions. Hence, much effort has been spent on engineering of tissue 

scaffolds by electrospinning of fiber mats198,199 or the synthesis of biodegradable 

elastomers,200 203 hydrogels204 208 and drug-delivery carriers.209 211  

 
Figure 1-15 | Cyclic carbonates for the production of APCs. Most widely used cyclic carbonates for the 
ROP to produce APCs: trimethylene carbonate 1 and carbonates of 2,2-bis(hydroxymethyl)propionic acid 
2, carbonate of pentaerythritol 3a/b and carbonate of trimethyolalkane 4. 

The third major route towards APCs is the coupling of highly reactive epoxides with the 

nearly inert molecule CO2 (energetic considerations were discussed in 1.1.2). In respect of 

CCU, it turned out to be a very economic and sustainable pathway to produce 

thermoplastics, binders, coating resins or foams using this copolymerization technique.1,212

219 It is one of the most recent examples of utilization of CO2 on a large scale and thus a vast 

number of epoxides and catalysts have been screened to expand the spectrum of this 

chemical route.154,220,221 Recently, it was reported that some catalysts are resistant to co-

contaminants (water, N2, CO, thiols and amines) present in the CO2 exhausted from power 

stations and show high activity in the coupling of the gas with epoxides. This is an 

important step in the field of carbon capture and utilization.222 

Mechanistically, the metal-catalyzed copolymerization follows a coordination-insertion 

process with the initial insertion of a ring-opened epoxide into the metal-oxygen bond and 

subsequent insertion of CO2 to give the carbonate group as shown in Fig. 1-16 (example 
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with propylene oxide (PO)). For a strictly alternating insertion of epoxide and CO2 a defect-

free polycarbonate is obtained. However, this ideal case is often flawed by the consecutive 

addition of epoxides or backbiting reactions leading to undesired ether linkages in the 

backbone. The latter also produces cyclic carbonates that will compromise yield of the APC 

and might act as a plasticizer in the final product.1,223 

 

Figure 1-16 | Catalytic cycle of the production of PPC. The catalytic cycle of metal-catalyzed 
polymerization of propylene oxide with CO2. The reaction is initiated by the insertion of the epoxide into 
the metal-oxygen bond and subsequent insertion of CO2. In the ideal case, this sequence is repeated as a 
strictly alternating insertion of epoxide and CO2 to yield a defect-free polycarbonate. However, the 
consecutive addition of epoxide and backbiting leads to undesired ether formation, whereas the latter 
produces cyclic carbonate as a side-product. 
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The presence of hydroxy-containing compounds in the reaction mixture might lead to 

chain transfer reactions that result in low molecular weight polymers.224 227 The 

regioselectivity of the copolymerization depends on the epoxide and the catalytic system in 

use. State-of-the-art catalysts are able to produce poly(propylene carbonate) (PPC) with a 

very high ratio of head-to-tail linkages, i.e. a regioregular copolymer, as can be verified by 

an analysis of the carbonyl region in 13C NMR spectra (> 150 ppm).228 The stereoselectivity 

is another important parameter determining the microstructure of the produced APC. For 

PO syndio-enriched PPC and for cyclohexene oxide (CHO) completely syndiotactic 

poly(cyclohexene carbonate) (PCHC) were obtained by careful design of the catalytic 

system.229,230 

Epoxides and catalysts used for the coupling with CO2 

Besides CHO and PO (shown in Fig. 1-17 as 7 and 12, respectively), many other epoxides 

have been successfully transformed into polycarbonates by copolymerization with CO2 as 

shown in Fig. 1-17.231 236 Among them, the polymers of ethylene oxide 6 and hexene oxide 

8c poly(ethylene carbonate) (PEC) and poly(hexene carbonate) (PHC) were tested together 

with PPC, PCHC and BPA-PC in regard of their thermal and mechanical properties with 

the data collected in Table 1-4. The glass transition temperature is rather low for open chain 

APCs as it is -10 °C for PHC and only rises to 40 °C for PPC.  

 
Figure 1-17 | Epoxides for the production of APCs. A selection of epoxides successfully copolymerized 
with CO2 to produce APCs using a variety of organometallic catalysts. 

For alicyclic polycarbonates like PCHC a glass transition (118 °C) closer to BPA-PC 

(149 °C) was reported, though the mechanical properties of the latter are not reached by 

any of the aliphatic counterparts. PCHC might have a similar tensile strength s and elastic 
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modulus though elongation is limited to about 1% until it breaks, which already hints at 

the brittleness of the polymer in contrast to the very tough BPA-PC.237 The open chain 

APCs cannot compare to the aromatic counterpart as their softening temperature is at least 

one order of magnitude lower and they do not aim for applications as engineering 

thermoplastics but rather soft blocks in copolymers or synthetic elastomers. Of all the other 

epoxides shown in Fig. 1-17, the alicyclic bio-based (R)-limonene oxide (LO) 15 shall be 

y of its copolymerization with 

CO2 and microstructural composition of the resulting APC are introduced here while the 

results and discussion of this thesis are dedicated to the valorization, processing and 

applications of poly(limonene carbonate) (PLimC). 

Table 1-4 | Thermal and mechanical data of APCs and BPA-PC. 

polymer epoxide 
Tg

 a)
 

(°C) 
Tmax 

b)
 

(°C) 
s 

(MPa) 
YOUNG  modulus 

(MPa) 
strain at break  

(%) 
ref. 

 

PEC 6 10 230  3-8 >600 238 

PPC 7 40 252 7-30 700-1400 600-1200 239,240 

PHC 8c -10 290    238 

PCHC 12 118 308 40-44 3500 1.1-2.3 237,241 

BPA-PC - 149 500 47 2400 30-50 237,242 

a)measured at 10 K min-1 in differential scanning calorimetry experiment, b)measured at 10 K min-1 heating rate under 

N2 in thermogravimetric analysis experiment. 

However, most research has been directed towards the synthesis of PPC, which is a low-Tg 

amorphous thermoplastic that is produced on an industrial scale.243,244 The epoxide PO is a 

readily available commodity chemical and the production capacity of 10 000 t a-1 has been 

surpassed by established companies (Covestro AG and Empower Materials) and 

newcomers (Novomer Inc.).245  °C have made it 

applicable as temporary binder while its biodegradability have made it eligible for blending 

with natural polymers like starch.246 

Both, PCHC and PPC have been subjected to countless organometallic heterogeneous and 

homogeneous catalysts, respectively.1,218,220,245,247 Most common metals are Zn(II), Co(III) 

and Cr(III) coordinated by more or less sterically demanding, symmetric or asymmetric 

ligands.  

Prominent heterogeneous catalysts are zinc glutarate 16 (or other carboxylates) and 

double metal cyanides (DMCs) 17 (see Fig. 1-18a). Typical features are LEWIS acidity and 



1  Introduction 

38 

low redox reactivity of the metals and ligands like alkoxides, carboxylates, halides and other 

anionic groups.231,248 251 In contrast to their homogeneous counterparts, these solid catalysts 

require much more forcing conditions, that is, high pressures of CO2 (> 5 MPa) and 

elevated temperature (60-130 °C) to produce APCs characterized by numerous defects, i.e. 

an ether-enriched backbone of the polycarbonate. The productivity, or turn-over number 

(TON, grams of polymer produced per gram of catalyst) of the most widely used 

heterogeneous catalyst zinc glutarate for the production of PPC is typically in the range of 

70 g PPC/g Zn. Furthermore, the activity, that is, turn-over frequency (TOF, moles of 

polymer produced per mole of catalyst per hour) is limited to < 10 h-1.252,253 Despite of the 

low performance of zinc glutarate, it is industrially relevant because of the inexpensive 

reagents and its simple synthesis, both mandatory for large-scale applications.26 DMCs, on 

the other hand, show high catalytic performance in the conversion of epoxides and CO2 

into polymers. For the Co-Zn species 17, turnover numbers of up to 1000 have been 

reported,254,255 while a Co-Ni DMC has an TOF of 1860 h-1.256 However, DMCs are also 

active in the homopolymerization of epoxides and thus the percentage of ether linkages in 

the polymer is very high. 

 together with 

the production of high ether contents  not compensated by the very high activity of the 

species. Hence, academic focus has been shifted towards the development of efficient 

homogeneous catalysts. A selection of homogeneous bicomponent catalyst systems is 

given in Fig. 1-18b. They consist of metal(III) centers in combination with co-catalysts, 

such as bis(triphenylphosphine)iminium chloride ([PPN]Cl) or LEWIS bases like 4-

dimethylaminopyridine. As ligand porphyrins 18,257 260 -bis(salicylidene)ethylene-

diamine (salen) 19221,223,241,261 and salans (reduced salen) 228,262,263 are most commonly 

attached to the metal. Newer generations of bicomponent salens have the co-catalyst 

covalently attached to the ligand 20, which results in even higher TOFs than for the 

detached systems.264 Generally, porphyrin-based catalysts exhibit rather low activity with 

TOFs of 3-21 h-1 and produce low molecular weight copolymers of PO/CHO and CO2.258,265 

Salen-Co complexes 19 with the co-catalyst [PPN]Cl and tert-butyl (R = t-Bu) moieties give 

rise to a TOF of 1400 h-1, i.e. two orders of magnitude higher than that of porphyrin 

complexes. Higher selectivities and activities at low temperature are realizable when the co-

catalyst is covalently attached to the salen ligand, as it is the case for salen 20 that is tethered 

to a piperidinium moiety. At room temperature and 1.4 MPa pressure of CO2 a TOF of 
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250 h-1 and a selectivity towards the carbonate of >99% was accomplished.264 For a similar 

Co-salen complex that is tethered with four quaternary ammonium moieties, an unrivaled 

TOF of 26 000 h-1 was reported by Sujith et al. for the copolymerization of PO and CO2 at 

2 MPa and 80 °C, which is more than 200 000 times higher than the first experiments 

carried out by Inoue in 1969 (TOF = 0.12 h-1).155,266 

 
Figure 1-18 | Catalysts employed for the coupling of epoxides and CO 2. A selection of (a) 
heterogeneous catalysts such as zinc glutarate 16 or double metal cyanide 17 complexes and (b) 
homogeneous bicomponent catalyst systems such as porphyrins 18, salen 19 and bifunctional salen 
complexes tethered to piperidinium moieties 20 and (c) dinuclear, i.e. bimetallic catalysts such as -
diiminate 21 and tethered bdi 22 complexes used in the copolymerization of epoxides and CO2 to give 
APCs. 
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Examples of homogeneous dinuclear catalysts are shown in Fig. 1-18c. Metals with 

oxidation state +2 and +3 are employed in combination with either mononucleating or 

dinucleating ligands, e.g. Zn(II)-based -diiminates (bdi) 21 267 271 or tethered Zinc bdi 

complexes 22 272,273 and Mg(II)/Zn(II)/Co(II/III)-based salans, respectively.274 Coates and 

coworkers were the first to develop highly active bdi-based catalysts.271 The secret of their 

high activity was identified to be the existence of dimeric species that are only loosely 

associated. This observation was confirmed by kinetic studies, which revealed reaction 

orders of zinc between 1.0 and 1.8, i.e. implicating dimers bridged by either small ligands 

like acetate (OAc) or the growing polymer chains.269 The activity of the 21 is very 

susceptible to the choice of the N-aryl moieties on the bdi ligands (R1 and R3 of 21), which 

is reflected by the unproductive complex for the copolymerization of CHO and CO2 with 

R1/R3 being methyl moieties. However, exchange of the methyl moieties by ethyl or iso-

propyl (i-Pr) groups raises TOFs to 431 h-1 and 360 h-1, respectively,269 while the asymmetric 

catalyst (R1 = ethyl, R3 = i-Pr) would even increase TOF to 729 h-1. To further improve 

activity, the electronic of the complex can be tuned by replacing the R2 proton by an 

electron-withdrawing cyano substituent, as the resulting asymmetric catalyst yields PCHC 

with a TOF of 2290 h-1.275 Based on these findings, much effort has been directed towards 

the tethering of two metal centers to bring them into vicinity. Most successful in regard of 

activity was the group of Rieger in Munich, who connected two asymmetric fluorinated bdi 

ligands with aryl bridges to give the dinuclear catalyst 22. Its performance towards the 

CHO/CO2 copolymerization was found to be the highest at 100 °C and 3 MPa, showing an 

unprecedented TOF of 155 000 h-1.273 

1.3.3 The versatile molecule limonene 

The epoxide (R)-LO is derived from (R)-limonene (23a), which is an doubly unsaturated 

alicyclic terpene. It is found in the peel of citrus fruits (orange, lemon, lime, mandarin, 

grapefruit), while its stereoisomer (S)-limonene (23b) is found in the essential oils of oaks 

and pines (see Fig. 1-19).276 The latter has a turpentine smell, whereas the (R)-isomer is 

responsible for the typical orange odour in many cosmetics and food. (R)-limonene has a 

share of roughly 95% in orange oil,277 which corresponds to 3.8 wt% of the entire peel.278 

Considering an annual production of oranges of about 52 million tonnes, this results in a 

capacity of more than 500 kt a-1 (estimated from 70 Mt a-1 oranges produced) of which 70 kt 

are extracted by centrifugation or steam distillation each year.279,280 Hence, the terpene 
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shows an abundance that makes it a viable choice as feedstock for industrial processes. 

Furthermore, as it is derived from the waste, that is, the peel of the oranges, there is no 

competing interest with the production of food. This is a clear advantage of limonene over 

starch-based materials, such as poly(lactic acid), since the latter are derived from corn, 

which, in turn, is an integral part of the nutrition in many regions of the world.281 

 

Figure 1-19 | The stereoisomers of limonene. Limonene is a bio-based alicyclic terpene that is found in 
several plants and fruits. The (R)-isomer 23a is the major component in citrus fruits, such as oranges and 
lemons, whereas (S)-limonene (23b) is emitted by oaks and pines. 

Limonene has a growing number of applications, due to its availability and non-toxicity. 

One of the earliest uses as a cleaning agent is based on the good solvent properties of 

limonene (it can hold up to 2.5 times of its own weight).282 The environmentally benign 

biosolvent can replace toxic solvents, such as toluene, n-hexane and halogenated organic 

solvents. For instance, it was used in a formulation with a surfactant in large quantities for 

degreasing of equipment after the Deepwater Horizon oil spill in 2011.280 The employment 

as solvent of limonene can also be expanded chemical processes, where it is readily used in 

chromatography and extraction of natural products.283,284 Besides the application as a 

solvent, the unmodified terpene is also added to natural pesticides in order to repel insects 

without harming mammals, birds or fish.285 Furthermore, (R)-limonene exhibits activity in 

the treatment of cancerous cells and the prevention of asthma.286,287 

However, the true potential of the doubly unsaturated terpene lies in the chemical 

modifications on the reactive double bonds. A comprehensive review on the possible 

manipulations was presented by Thomas and Bessière in 1989,277 Apart from the 

attachment of small molecules, the terpene was successfully homopolymerized cationically 

by FRIEDEL-CRAFTS or radically by ZIEGLER-NATTA catalysts.288,289 The use of those low-

molecular-weight polymers and the control of the resulting structures was limited, though, 

and it was only in the last two decades that a number of new polymeric materials have 

emerged based on limonene. One approach involves the dehydrogenation of limonene to 

give the aromatic p-cymene that is subsequently oxidized to terephthalic acid for the 
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production of polyesters such as PET.290,291 Another chemical route exploits the double 

bonds of limonene for the thiol-

to materials that are suitable as sealants and adhesives.292 294 Yet another approach  utilized 

within this thesis  is based on the partial (LO) or complete epoxidation of the double bonds 

of limonene. These highly active epoxy groups can be coupled catalytically with the nearly 

inert CO2 to give polycarbonates or dicarbonates for the isocyanate-free production of 

polyurethanes, respectively.160,295 Besides the copolymerization with CO2, LO was employed 

as monomer for direct cationic polymerization296 and as comonomer for the production of 

polyesters.297 

1.3.4 Poly(limonene carbonate) 

Catalyst 21 was successfully employed in the copolymerization of the bio-based and 

sterically very demanding epoxide (R)-limonene oxide 15 with CO2 to yield PLimC.295 Only 

few other bio-based oxiranes have been subjected to the copolymerization with CO2, 

amongst them epoxidized fatty acids298 and 1,4-cyclohexdiene.299,300 Upon partial oxidation, 

a mixture of cis-LO (15a) and trans-LO (15b) is obtained, differing in the orientation of 

the methyl and the iso-propylene moieties. This rather subtle difference in stereochemistry 

has a dramatic effect on the reactivity of the epoxides, as the cis-isomer is nearly completely 

omitted in the copolymerization and 15b is enriched in the backbone of PLimC. 

 
Figure 1-20 | The production of PLimC. The copolymerization of (R)-limonene oxide and CO2 catalyzed 
by the zinc complex 21, giving regioregular PLimC below 40 °C and regioirregular PLimC above 40 °C, 
respectively, while the cis-isomer does not take part in the reaction. 
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The schematic of the reaction is shown in Fig. 1-20 also illustrating the importance of 

reaction temperature. Byrne et al. reported that samples produced below 40 °C resulted 

exclusively in head-to-tail connected (regioregular) PLimC, while above 40 °C the 

regiocontrol was compromised and regioirregular PLimC was obtained. The catalytic 

activity of various derivatives of 21 was also evaluated, whereas one of the best bdi catalysts 

was that with ethyl moieties (R1, R3 = ethyl, R2, R4 = H) giving a moderate TOF of 32 h-1 at 

25 °C, 0.7 MPa pressure of CO2 and a catalyst loading of 0.4 mol% (Ð > 1.13). The 

molecular weights of the amorphous copolymers were limited to 10.8 kg mol-1 and 

25.0 kg mol-1 for (R)-LO and (S)-LO, respectively. Even with those low molecular weights, 

a promising glass transition temperature of 110 °C (close to the Tg of high molecular weight 

PCHC with 118 °C)241 was achieved, indicating a high rigidity of the backbone. On the one 

hand, this rigidity was expected to result in a Tg similar to that of BPA-PC for higher degrees 

of polymerization. On the other hand, the rigidity should also result in a low packing 

density of the polymer chains and thus a high free volume, which is a prerequisite for high 

performance in respect to transport phenomena. The latter can be related to optics or 

membrane technology and the facilitated movement of photons or small molecules, 

respectively, eventually giving highly transparent and permeable materials. Based on these 

assumptions, the research was material scientifically-driven: firstly, improving general 

polymeric properties by increasing molecular weight of PLimC, secondly creating a 

portfolio of properties for the bio-based APC and, last but not least, identifying applications 

of the new material. 

Recently, reports have been published on stereocomplexed PLimC (regioregular 

enantiopure (S)- and (R)-PLimC blended after polymerization),301 evaluation of an -diol 

of PLimC as coating material216 and the activity of an Al-based amino-tris(phenolate) 

catalyst towards the incorporation of both cis/trans-LO, respectively.302 However, in all 

claim. 
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2.1 Outline 

The central element of this thesis is the bio-based amorphous material PLimC. The polymer 

was already introduced in 2004 by Coates and coworkers, but only after our findings 

regarding the synthesis of high molecular weight PLimC, the polymer would transition into 

a thermoplastic material that is comparable to established engineering thermoplastics like 

BPA-PC (Chapter 3). The original PLimC possesses a unique profile of properties that 

implies not only good mechanics and optics but also a high permeability of gases. This 

unique combination of properties suggests applications as a breathable glazing material in 

well-insulated constructions or as a membrane for gas separation in CCU processes 

(Chapter 4). 

 

Figure 2-1 | The evolution of PLimC. This thesis is dedicated to the development of a high-performance 
thermoplastic material with a vast number of possible modifications and innovative applications. The 
syntheses involved in the economical production of high-MW PLimC and its macroscopic properties are 
discussed in Chapter 3. These syntheses include the stereoselective production of trans-LO, the 
subsequent masking of hydroxy impurities by methylation and eventually the zinc-catalyzed 
copolymerization of LO with CO2 to give high-MW PLimC in high yields on the kg-scale. Potential 
applications of PLimC are discussed in Chapter 4. The concepts include the application of PLimC as a 
breathing glass for a passive gas exchange in well-insulated buildings and as gas separation membrane. 
Chemical modifications of PLimC by addition of various compounds to the double bond are discussed in 
Chapter 5. The new materials are characterized by dramatic changes in mechanical (rubbery), functional 
(antibacterial, hydrophilic or pH-responsive) and processability (saturated) properties. 
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We have identified the great versatility of PLimC being a platform polymer due to the 

unsaturated backbone. The double bonds were exploited for simple addition reactions to 

induce dramatic changes in terms of mechanical (transition from a high-Tg thermoplastic 

to rubber), functional (addition of antibacterial activity, hydrophilicity and pH-

responsiveness, respectively) or processability (melt stability) properties (Chapter 5). The 

complete evolution of PLimC from a low-MW polymer to a versatile high-performance 

thermoplastic is illustrated in Figure 2-1 and as such summarizes the contents of this 

dissertation.

2.2 Synthesis & properties of PLimC 

(published in: Green Chemistry 2016, 18, 760) 

The Zn(II) catalyst (used throughout this thesis) shown in Figure 2-2 is capable of coupling 

LO and CO2 to give PLimC. However, the catalyst  carrying a bulky -diiminate (bdi) 

ligand and an acetate moiety as initiator  incorporates only the trans isomer of LO due to 

steric effects. 

 

Figure 2-2 | Catalytic coupling of LO and CO2. Schematic of the (a) stereo- and regioselective conversion 
of (R)-limonene into the bromohydrin and (b) the subsequent ring-closure in the presence of a base to 
give the trans isomer of LO. (c) The schematic shows the zinc-catalyzed copolymerization of trans-LO and 
CO2 to give PLimC. The catalyst employed throughout this thesis is a -diiminate Zn(II) complex with an 
acetate moiety [(bdi)Zn( -OAc)] as initiator for the copolymerization. In the background of the schemes 
the 10 L reactors of polymer and monomer syntheses are shown that were employed for the kg-batch-
production.  
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Thus, starting from the orange-peel-based (R)-limonene, a stereo- and regioselective route 

was employed to produce trans-LO as major product. The selective conversion of limonene 

first into its bromohydrin using N-bromosuccinimide (NBS), and subsequently into the 

reactive monomer in the presence of a base, is an important step towards a sustainable 

synthesis of PLimC, as the polymer yield is close to 100% and no valuable bio-based LO (a 

commercial mixture consists of 50% cis-LO) is wasted. The high conversion of LO was also 

mandatory for the kg-batches produced of PLimC (10 L reactor of both monomer and 

polymer production shown as background of Figure 2-2), since a high amount of unreacted 

cis-LO would be very solvent-intensive and tedious and therefore un-economical. 

Another key towards the economical production of PLimC is an efficient and fast catalysis 

of the process. In cooperation with a group of the TU Munich we have investigated the 

kinetic parameters of the copolymerization of CO2 and LO catalyzed by [(bdi)Zn( -OAc)]. 

To our surprise, the coupling of both monomers is dependent of the square of the 

concentration of LO, as shown in Eq. 2-1 (k is the apparent rate constant). 

 
𝑑[𝑃𝐿𝑖𝑚𝐶]

𝑑𝑡
= 𝑘 × [𝐶𝑂2]0 × [𝐿𝑂]2 × [𝑍𝑛]1 (2-1) 

It is widely recognized that the incorporation of the epoxide into the polymer chain is the 

rate-determining step. However, usually the rate of polymerization is only singly dependent 

on the concentration of the epoxide and thus we have proposed a different mechanism for 

the production of PLimC.  

 
Figure 2-3 | Steric effects during chain propagation of PLimC. In kinetic investigations of the 
polymerization of PLimC, the Zn-based catalyst was found to be active only if two consecutive insertions 
of LO occur. Since the insertion of LO is the rate-determining step, the rate of polymerization is dependent 
on the square of the concentration of LO. 
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The key step, as shown in Figure 2-3  is the consecutive insertion of two LO monomers 

into the dimeric species of the catalytic centre, whereas the pathway of chain propagation, 

with only one LO attached, is blocked, due to sterical hindrance of the bulky epoxide. Thus, 

the development of new catalysts, which are less dependent on the 

concentration/stereochemistry (catalyst for incorporation of trans- and cis-LO presented 

in 2015) of LO and show higher TOFs, is highly desirable. 

The crucial step in the development of PLimC as a material with substantial mechanical 

strength was the production of high-MWs of the polymer. Since the first trials of the 

copolymerization of LO and CO2 yielded only oligomers even with high trans-LO/catalyst 

ratios (catalyst incorporates only trans isomer in polymer backbone), we had a closer look 

at the catalytic system (see red circles in Figure 2-4c). The zinc-based catalyst was identified 

as the crucial component of the copolymerization, as it is very sensitive to chain transfer 

agents, that is, compounds carrying hydroxy functions. In gas chromatography-mass 

spectrometry (GC-MS) experiments a number of such impurities were found in quite 

substantial amounts as illustrated in Figure 2-4a. 
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Figure 2-4 | The production of high-MW PLimC. (a) The gas chromatograms of a commercial mixture of 
cis- and trans-LO before and after a treatment with the masking agents NaH and MeI. Among the 
molecular structures  identified by GC-MS  in the LO mixture, a number of compounds was found 
carrying hydroxy groups, which act as CTAs in the zinc-catalyzed copolymerization of LO and CO2. (b) A 
scheme of the masking reaction with NaH and MeI indicates the quantitative masking of hydroxy 
impurities in the LO monomer. The use of the strong base NaH and the small methylating agent MeI are 
necessary to account for the weak acidity of the protons and the sterical demand of the tertiary alcohols, 
respectively. (c) The copolymerization of LO and CO2 is crucially dependent on the masking of any 
potential CTAs that would limit the number of repeating units of PLimC, resulting in MWs well below 
20 kDa. Only with the masking reaction there is a linear dependency of MW on the trans-LO/catalyst ratio 
that was otherwise not observed. 
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c 



2  Overview of the thesis 

64 

These tertiary alcohols are typical side-products of the bio-based LO and due to very similar 

boiling points their thermal separation is virtually impossible. Alternatively, a chemical 

deactivation of the protic compounds was sought of that could suppress any chain transfer 

reactions without compromising the stability of the reactive epoxide LO. Such a 

deactivation was accomplished with a treatment of the monomer with sodium hydride 

(NaH) and iodomethane (MeI) (see Figure 2-4b). The strong base NaH and the small 

methylating agent MeI are required 

the sterical demand, respectively. Such a treatment leads to quantitative masking of the 

impurities and the copolymerization proceeds without chain transfer reagents that would 

limit the MW of the polymer. Hence, the theoretically expected linear dependency of Mn of 

PLimC on the trans-LO/catalyst ratio was eventually found (see blue triangles in Figure 2-

4c). Only after the discovery of this masking reaction, the production of PLimC with MWs 

well above 100 kDa (Ð of 1.12) was readily accessible and with it the desired mechanical 

robustness. 

The major drawback of PLimC  as of all aliphatic PCs  is the thermal lability of the melt. 

Due to its high Tg of 130 °C a temperature above 200 °C is required to reduce the viscosity 

of the melt to a value that is compatible to extrusion or injection molding processes. A crude 

sample of PLimC decomposes well below 200 °C, exhibiting a 5% mass loss at 205 °C (T5%) 

(see Figure 2-5a). This thermal instability is primarily influenced by residual catalyst, that 

is, Zn(II) species and hydroxy groups on the polymer chain ends. The removal of metal 

traces was achieved by the addition of the chelating agent ethylenediaminetetraacetic acid 

(EDTA) immobilized on silica particles (EDTA-Si, see Figure 2-5b) to a concentrated 

solution of crude PLimC. The heterogeneous EDTA-Si particles are simply filtered off from 

the polymer solution after the successful complexation of Zn(II) (complete removal of 

EDTA is compulsory, since carboxylic acid groups also destabilize the melt of PLimC). The 

chain ends, on the other hand, are readily capped with anhydrides, such as acetic anhydride 

(see Figure 2-5c), which esterify the hydroxy groups in moisture-free environment 

(anhydride most conveniently added as a quenching agent to the solution of polymerization 

with the metal catalyst still attached to the chain end). Both, the residual catalyst and the 

terminal hydroxy groups in the polymer enable hydrolytic cleavage of the backbone at 

elevated temperature. The concerted treatment with EDTA-Si and an anhydride after 

polymerization yield a pure PLimC with a T5% of 240 °C. The by 35 °C improved thermal 

stability of the melt contributes significantly to a facilitated processing of the thermoplastic. 
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To date, no further stabilization was achieved, since many pathways exist that involve 

abstraction of more or less acidic protons from the backbone of PLimC. This abstraction is 

accompanied by the eventual release of CO2 as a major driving force. 
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Figure 2-5 | Thermal stabilization of PLimC. (a) Thermogravimetric analysis of PLimC measured at 
10 K min-1 in N2 atmosphere. Crude PLimC decomposes quickly at temperatures well below 200 °C due to 
residual catalyst (Zn(II)) traces and hydroxy groups at the chain ends of the polymer, whereas Zn removal 
and end-capping can significantly improve stability of the melt of PLimC. (b) The scheme illustrates the 
synthesis of EDTA-Si that is employed as heterogeneous Zn(II) removal agent in the purification of PLimC. 
EDTA-Si is added to a concentrated solution of PLimC and removed by simple filtration after chelating of 
any residual metal catalyst. This route allows a significant reduction of organic solvents involved in the 
purification of PLimC, since no repetitive precipitation from diluted polymer solutions is necessary 
(extremely important on large-scale production of polymer). (c) The second detrimental effect concerning 
thermal stability arises from terminal hydroxy groups at the chain ends of PLimC that increase hydrolytic 
activity of the melt at elevated temperatures. The scheme shows the exemplary end-capping of PLimC 
chains with acetic anhydride that is readily accomplished in a moisture free environment. 

An initial aim of the synthesis of PLimC was to provide a bio-based alternative to the 

bisphenol A and phosgene derived BPA-PC. To substitute these toxic monomers with the 

main component of orange peel, that is, a by-product of the orange industry, and the 

greenhouse gas CO2 is an engrossing motivation in its own right. But to provide a viable 

alternative to the engineering thermoplastic BPA-PC was the real challenge. In terms of 

mechanical, thermal and optical properties, PLimC is a surprisingly strong competitor, as 

it has a lower density (light weight construction), similar tensile performance and a glass 

transition (130 °C) only 18 °C below that of its aromatic counterpart (see Table 2-1). 

Additionally, the optical characteristics of PLimC are superior to those of BPA-PC, 

b 

a c 
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exhibiting higher overall transmission of visible light, a similar haze and higher clarity. This 

profile of properties suggests the utilization of PLimC in optical applications where 

mechanical robustness is necessary. 

Table 2-1 | Comparison of bulk properties of PLimC and BPA-PC. 

 property PLimC BPA-PC 

general    

 density (g/cm3) 1.08 1.22 

 carbonate content (%) 99+ 100 

 contact angle to water (°) 93 82 

 Mn (kDa) 53.4 28.5 

 Ð 1.10 1.77 

mechanical    

 YOUNG modulus (GPa)a 0.95 2.35 

 tensile strength (MPa)a 55 65 

 elongation at break (%)a 15 50 

 pencil hardnessb B 8B 

thermalc    

 Tg (°C) 130 148 

 Tm (°C) - - 

 T5% (°C) 240 490 

opticald    

 transmission (%) 94 89 

 haze (%) 0.75 0.8 

 clarity (%) 99.8 99.5 
a measured at 5 mm min-1 strain rate, b test conducted according to ISO 15184 with BYK Pencil Hardness Tester and 
Derwent Graphic pencils, c measured at 10 K min-1 in N2 atmosphere, d thickness of sample 0.24 mm. 

 

2.3 Applications of PLimC 

(to be submitted) 

It was very exciting when we found that PLimC is not only permeable to light but also very 

permeable to gases like CO2 (68 barrer) and O2 (12 barrer). As a matter of fact, it is one 

order of magnitude more permeable to those small molecules than BPA-PC. As PLimC also 

exhibits a distinct selectivity for CO2 over N2 the material is applicable to the separation of 

CO2 in carbon capture processes. Furthermore, with its unique combination mechanical, 

optical and permeation properties, PLimC actually constitutes a new class of polymers that 
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we have termed  Both applications of PLimC as breathing glass and as 

membrane are discussed in this chapter, starting here with the former. 

The high transport of CO2 through the dense matrix of PLimC is accompanied by a high 

selectivity for the gas over N2 (selectivity of 22). This selectivity gives the polymer the 

characteristics to function as a membrane for the separation of fuel and flue gases (the 

relevant gas pair is CO2/N2). Such a membrane is illustrated in Figure 2-6a, where the feed 

side is a mixture of both gases, while the permeate side is CO2-enriched. The temperature-

dependent permeabilities of PLimC for the gases H2, CO2, N2 and CH4 are shown in Figure 

2-6b and the fast transport of the gases is ascribed to the large interconnected cavities in 

CONNOLLY

Figure 2-6c). We used PALS measurement to determine the cavity size experimentally and 

found a mean cavity radius of 3.3 Å (Figure 2-6d). These pores are significantly larger than 

those of BPA-PC or PMMA with 2.9 Å and 2.4 Å, respectively, and thus explain the higher 

diffusion through the matrix of PLimC. 
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Figure 2-6 | PLimC as membrane for gas separation. (a) Illustration of PLimC as membrane for the 
separation of CO2/N2. (b) Molecular dynamics simulation of the amorphous unit cell of PLimC and the 
CONNOLLY surface (blue) to illustrate the loose packing of polymer chains, resulting in cavities that are 
responsible for the high permeability for small molecules. (c) Temperature-dependent permeabilities of 
PLimC for H2, CO2, O2, CH4 and N2. (d) The cavity size distribution of an as-cast film of PLimC determined 
by PALS measurements. 
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We compared the commercialized polymers for gas separation applications, such as BPA-

PC, CAc, PI, PEI, PSU and PPE with PLimC in a ROBESON plot for the gas pair CO2/N2 

(Figure 2-7) and found the aliphatic polycarbonate to be superior in terms of permeability 

and selectivity. Although state-of-the-art polymeric membrane materials like PIM-1 and 

PTMSP (for chemical structures see Figure 2-7a) are even more permeable than PLimC by 

two or even three order of magnitude, respectively, they lack in mechanical robustness, 

long-term stability and processability. Furthermore, the building blocks of PLimC, that is 

limonene and CO2, are far less expensive than those of most state-of-the-art materials, 

which give PLimC a competitive edge over them. Another key to success might be the great 

susceptibility of the aliphatic PC to chemical modifications on the double bond. 
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Figure 2-7 | Membrane properties of PLimC. (a) The molecular structures of PMMA, BPA-PC, PLimC, PIM-
1 and PTMSP in order of increasing permeability. (b) ROBESON plot for the gas pair CO2/N2 with PLimC 
compared to commercial and state-of-the-art polymeric membrane materials. The commercial polymers 
include cellulose acetate (CAc), polyimide (PI), polyetherimide (PEI), polysulfone (PSU) and 
poly(phenylene ether) (PPE). 
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In contrast to the application as a membrane, an illustration of the use of PLimC as 

breathing glass in closed greenhouses and passive houses is given in Figure 2-8. The sheets 

made of PLimC readily transmit sunlight and the small molecules O2, CO2 and H2O, 

whereas the transport of heat is very limited due to the insulating characteristics of the 

polymer (PLimC exhibits a low thermal conductivity, which is seven times lower than that 

of soda-lime glass). 

 

Figure 2-8 | PLimC as breathable glazing material. The glass-like PLimC can be processed into window 
panes with high permeability of gases like O2 and CO2. The breathing window panes are installed in 
passive houses and greenhouses to supply the interior with fresh air without the need of active 
ventilation. Due to the thermal insulation properties of the glazing only gas but no heat is exchanged 
between in- and exterior and thus no energy is lost in the ventilation process. 

The concepts of both, the passive house and the greenhouse, are based on extensive 

insulation to minimize heat losses through the cladding. As the constructions are more or 

less gas-tight, the interior has continuously to be supplied with fresh air (in most cases 

colder than the exchanged stale air) from ventilations systems that additionally have to be 

equipped with heat-exchange units to reduce the heat losses due to ventilation. Here, the 

breathing glass can act as a passive ventilation system while being a good thermal insulator 

and thus reducing energy consumption due to heat losses and the installation and operation 

of sophisticated ventilation systems. For the assessment of feasibility of such a breathing 

glass, we focused on the exchange of CO2 between the in- and exterior of the buildings as it 

is the limiting factor in both constructions. In the case of the passive house the exhaled air 

from the resident leads to an accumulation of CO2 in a toxic concentration that is reached 

sooner than the depletion of O2 is going to affect the well-being of the resident. On the other 

hand, the plants in the greenhouse need a lot of CO2 for the photosynthesis and as the 

concentration of CO2 in the atmosphere is only 400 ppm (or 0.04%) the driving force to 
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transport the gas through the breathing glass is very limited (the transport, that is, the 

permeance of a gas through a membrane is dependent on the difference of partial pressure 

on both sides and the partial pressure is directly dependent on the concentration of a gas; 

for CO2 the partial pressure in the atmosphere is only 0.04 kPa and thus the difference of 

pressure can only be smaller than this value when the gas is consumed). 

An estimation of the counterbalancing of the CO2 level in both cases is presented in Table 2-

2. Taking the area and thickness of the glazing and the pressure difference into 

consideration, the values of respiration rate (resident or plants, respectively) and the 

permeance of the glazing are to be matched as far as possible to compensate the levels of 

CO2. For the greenhouse gas the calculated counterbalancing is only achieved to 0.1% of 

the necessary value (partial pressure is too low), but for the passive house a compensation 

of 2.5% is achieved with PLimC as breathing glass. Of course, this value has to be improved 

in order to replace the conventional ventilation system but the concept of breathing glasses 

has proven successful by this value, as a partial compensation of stale air can already save 

subst

engineering are expected to drive the value of counterbalancing of CO2-levels to 100% or 

even beyond. 

Table 2-2 | Estimation of CO2 counterbalancing in PLimC glazed greenhouses and passive houses. 

 passive house closed greenhouse 

area of glazing (m2) 20 500 

thickness of glazing (mm) 1.0 0.1 

partial pressure difference CO2 (kPa) 5.0a) 0.02 

respiration type exhalation of resident uptake by plants (200 m2)  

respiration rateb) (g[CO2] h-1) 41 400 

permeance of PLimC glassc) (g[CO2] h-1) 1.0  0.4 

ratio of counterbalancing CO2 levels (%) 2.5 0.1 
a)the partial pressure of 5.0 kPa corresponds to 5% CO2 in the atmosphere, which is already a value where a headache can 

occur when exposed to for a longer time b)values taken from reference 303, c)calculated from P(CO2) of PLimC of 68 barrer. 

Their breathability is the new and exciting aspect of glazing materials, but to qualify as such, 

also the conventional requirements of this class of materials have to be met in order to be 

regarded as a true competitor. In Figure 2-9 the performance in typical mechanical, optical, 

thermal and the innovative breathing properties of the predominant organic (BPA-PC and 

PMMA) and inorganic (soda-lime glass, the standard material for window panes, bottles, 

etc.) glazing materials are compared with PLimC. The radar chart illustrates very well that 
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the profile of PLimC is very balanced and that it can keep up or  in some instances  can 

even outperform the other materials. Besides the unmatched permeability (BPA-PC is one, 

PMMA is two orders of magnitude less permeable and soda-lime glass a real barrier to 

gases) of PLimC, the polymer can also convince with outstanding mechanical strength, as 

it is almost as impact resistant as  the number one among the commercial plastics  BPA-

PC and nearly as scratch-resistant as the hard PMMA. Among the four, PLimC exhibits the 

best insulating efficiency (thermal conductivity) and it is the lightest material (specific 

gravity), which is of importance wherever weight is a relevant criterion. Such a relevance is 

given for the construction of windows, which are in turn relying on a high optical clarity 

that is equally high for PMMA and PLimC. In conclusion, PLimC is a viable choice as 

glazing material in the construction sector but in combination with its high gas-

permeability it is the first breathing glass with a huge potential to reduce energy 

consumption in well-insulated buildings. A further chemical modification could eventually 

yield a breathing glass that can replace ventilation systems completely and thus save a 

substantial amount of energy. 
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Figure 2-9 | Performance of typical glazing materials. The relative performance of PLimC compared 
with the popular glazing materials BPA-PC, PMMA and soda-lime glass in various properties that are 
relevant for the application as glazing material. 

The right choice of attachment can enable an even higher permeation through PLimC, 

giving it the decisive advantage over other materials with respect to both the membrane 

and the breathing glass applications. Although the molecules to improve the permeation 

properties are yet to be found, we have successfully exploited the versatility of PLimC in 

many other instances and discuss the possibilities in the following chapter. 
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2.4 Modifications of PLimC 

(published in: Nature Communications 2016, DOI: 10.1038/ncomms11862) 

As exciting as the pure PLimC is, due to its inherent unsaturation, the aliphatic PC is 

susceptible to chemical addition reactions that can induce dramatic changes to the 

properties of the original PLimC. We attached a number of molecules to the backbone, by 

exploiting various chemical routes. The versatility of PLimC as a platform for new materials 

is illustrated in Figure 2-10. The alteration of mechanical and thermal properties of PLimC 

by chemical modifications is illustrated in Figure 2-11. The mechanics of the high-Tg 

(130 °C) thermoplastic PLimC  being similar to common engineering thermoplastics like 

BPA-PC and PET  can be changed on the order of magnitudes by quantitative attachment 

of the bio-based thiol-functionalized ester butyl-3-mercaptopropionate (B3MP) to the 

double bond of PLimC (Figure 2-11a). The produced material PLimC-B3MP is actually soft 

at room temperature, as a result of the by 120 °C depressed Tg. The very different behavior 

of polymeric chains above Tg lead to mechanical behavior of PLimC-B3MP that is typical 

for rubbers. 

 

Figure 2-10 | Modifications of PLimC. The high-Tg thermoplastic PLimC is readily transformed into 
rubbery (PLimC-B3MP), antibacterial (PLimC-NQ), hydrophilic (PLimC-N, PLimC-ME, PLimC-PEG), pH-
responsive/sea water-soluble (PLimC-MAc) or heat-processable (PMenC) materials by simple chemical 
manipulations on the double bond. The chemical routes imply thiol-ene click-chemistry, acid-catalyzed 
electrophilic addition (both polymer-analogous) or metal-catalyzed hydrogenation of the precursor 
limonene, respectively. 
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Hence, we have investigated the tensile properties of PLimC rubber (see ASHBY plot with 

tensile strength vs. YOUNG

Figure 2-11b). We found a YOUNG

modulus of 1 MPa and thus a decrease by three orders of magnitude compared to the 

original PLimC. The softness compromised tensile strength only by a factor of 5 (10 MPa 

for PLimC-B3MP), while the ductility was increased from 15% for unmodified PLimC to 

420% of its rubber. Such a tremendous change in mechanics suggests applications of the 

rubber PLimC-B3MP in completely new areas where PLimC would not be viable. Not a 

mechanical but rather a processability (thermal) upgrade was achieved by complete 

saturation of PLimC (Figure 2-11c). 

 

Figure 2-11 | Modification of mechanical and thermal properties of PLimC. (a) Attachment of a short-
chain mercapto-ester (B3MP) via polymer-analogous thiol-ene reaction. (b) The added ester induces a 
dramatic change in mechanical properties, turning the high-Tg PLimC into a rubber (PLimC-B3MP) with a 
decrease of Tg of 120 K. (c) The saturation of PLimC is achieved by regioselective hydrogenation of the 
precursor (R)-limonene with molecular hydrogen in the presence of Pt. The partially hydrogenated pre-
monomer menth-1-ene is stereoselectively epoxidized to give the trans isomer (same route as in Figure 
2-2 involving the bromohydrin as transition state) that is subsequently copolymerized with CO2 to give 
PMenC. 
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The hydrogenation of the double bond of every repeating unit renders the resulting 

poly(menthene carbonate) (PMenC) unreactive, that is, not cross-linkable, when it is heat-

processed in extrusion or injection molding processes. In contrast to the production of the 

PLimC rubber, the manipulation is performed on the precursor (R)-limonene by 

regioselective hydrogenation of the exo iso-propylene moiety with H2 in the presence the 

heterogeneous catalyst Pt on charcoal. The singly unsaturated menth-1-ene is epoxidized 

with NBS (compare with trans-LO production shown in Figure 2-2) to give the trans isomer 

of menthene oxide as major product. The detour via the bromohydrin is necessary as the 

catalyst [(bdi)Zn( -OAc)] is again selective for the coupling of the trans isomer of the 

saturated monomer with CO2. The properties of the amorphous PMenC are very similar to 

PLimC, both exhibiting a glass transition at 130 °C. But in contrast to PLimC, the saturated 

PMenC cannot crosslink or react with radicals like O2 at elevated temperatures. Thus, for 

the latter a better processability, i.e. extrusion and injection molding, and a prolonged UV 

stability are achieved. 

A variety of functional groups was attached to the platform PLimC to give the material a 

completely new set of active and passive properties (Figure 2-12). One common aim of the 

functionalizations of the unsaturated PC with mercaptoacetic acid (MAc), 

mercaptoethanol (ME) and poly(ethylene glycol) (PEG) (Figure 2-12a-c) is the 

hydrophilization and a decrease of Tg with an increasing degree of functionalization (DF). 

For carrying oxygen and not just carbon in the backbone, PLimC was expected to degrade 

in biological environments, that is, in the presence of enzymes like lipase or esterase or in 

highly active industrial compost. The rather hydrophobic (contact angle to water of 93°) 

and rigid polymer was not attacked by any of the species it was exposed to though. In order 

to facilitate enzymatic attack and cleavage of the backbone into smaller chains and 

eventually small molecules, the interaction between the polymer and the aqueous phase has 

to be increased by adding polar groups and eased segmental motion. This aim was achieved 

with the acid (MAc), alcohol (ME) and ether (PEG) functions and the dependences of the 

contact angle to water and the Tg on the degree of functionalization (DF) are shown in 

Figure 2-12d. For the addition of PEG to the double bond of PLimC a different chemical 

route, involving the acid-catalyzed electrophilic addition of the free hydroxyl group of the 

PEG-derivative, was utilized. The advantage of this synthetic route is the evasion of  often 

toxic  thiol groups on the functional molecule. However, the necessary acid in the reaction 

mixture degrades the PC-backbone rather quickly and thus only low DFs were 
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accomplished with PEG (< 20%) within the limited time of reaction. The acid MAc, on the 

other hand, can be attached quantitatively to PLimC using the radical pathway and this 

function renders the resulting material not only hydrophilic but also pH-responsive. This 

solubility in basic media (pH > 7) adds a very interesting characteristic to PLimC, as it is in 

this case sea water-soluble and thus much more prone to degradation of the backbone once 

it reaches the ocean. 
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Figure 2-12 | Functionalization of PLimC. (a) The addition of mercaptoacetic acid (MAc) to PLimC yields 
a pH-responsive PLimC-MAc that is soluble in basic media such as sea water.(b) The thiol-ene reaction 
with mercaptoethanol (ME) or (c) the acid-catalyzed electrophilic addition of poly(ethylene glycol) (PEG) 
give hydrophilic PLimC-ME and PLimC-PEG, respectively, both exhibiting decreased Tgs. (d) The 
dependency of the contact angle to water and the Tg of PLimC-MAc/ME/PEG on the DF. (e) The click 
reaction with a thiol-carrying tertiary amine and the subsequent quaternization with an aryl moiety add 
antibacterial activity to PLimC-NQ. (f) The time-dependent bacterial inhibition performances of PLimC-
NQ20 (20% quaternized amine) and highly active PHMG as positive reference material relative to pure 
PLimC in a shaking flask test. 
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This property could help to reduce the waste accumulation but still guarantee reasonable 

stability during use wherever basic media are avoided. Such an active function is also added 

by the introduction of a quaternized amine into the backbone of PLimC (Figure 2-12e). In 

this case the function is an antibacterial activity that has been successfully proven against 

the gram-negative bacteria Escherichia coli (E. coli). The two-step synthetic route starts 

again with a click-reaction to attach a tertiary amine to the double bond (PLimC-N) that is 

subsequently quaternized with an aryl moiety (PLimC-NQ). The DF was held below 50% 

to keep the material insoluble in water, since an application as antibacterial transparent 

coating is targeted for PLimC-NQ. The activity for a sample with 20% quaternized amine 

in the backbone was tested in a shaking flask test where the film is contacted to a bacteria 

suspension. PLimC-NQ20 shows inhibition of growth of bacteria after 12 h while the 

positive reference poly(hexamethylene guanidine) (PHMG) is already active after 6 h and 

PLimC shows no inhibition at all (Figure 2-12f). It is not surprising that the condensed 

PLimC-NQ (film does not disintegrate in contact with bacteria suspension) is less active 

than the dissolved PHMG but is actually a great property that PLimC-NQ20 exhibits 

antibacterial activity despite of the condensed state. Further improvement by the variation 

of DF, type of amine and type of quaternization moiety is still anticipated. 

The six new materials derived from the platform PLimC are only a small excerpt of the 

possibilities of modifications and still illustrate the versatility of the bio-based polymer. I 

would expect the PLimC family to grow rapidly in the forthcoming years. 
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2.5 Individual contribution to joint publications 

The results and manuscripts of this thesis are the collaborative outcome of the efforts of 

several scientists. In this section the individual contributions of all authors are specified  

Chapter 3  Synthesis & properties of PLimC 

The manuscript of this chapter was published in Green Chemistry 2016, 18, 760 under the 

title: 

Bio-based polycarbonate from limonene oxide and CO2 with high molecular 

weight, excellent thermal resistance, hardness and transparency 

by Oliver Hauenstein, Marina Reiter, Seema Agarwal, Bernhard Rieger and Andreas 

Greiner 

I designed and conducted the experiments, characterized the materials and wrote the 

manuscript except for the part of the kinetic investigations of the copolymerization. 

Marina Reiter planned and carried out the kinetic investigations of the copolymerization 

of LO and CO2 and wrote that part of the manuscript. 

Seema Agarwal co-supervised the project and corrected the manuscript. 

Bernhard Rieger supervised the kinetic investigations of the copolymerization and 

corrected the manuscript. 

Andreas Greiner supervised the project and corrected the manuscript. 

  



2  Overview of the thesis 

78 

Chapter 4  Applications of PLimC 

The manuscript of this chapter is intended to be submitted under the title: 

Membranes & breathing glass from bio-based polycarbonate 

by Oliver Hauenstein, Mushfequr Rahman, Mohamed Elsayed, Reinhard Krause-Rehberg, 

Volker Abetz and Andreas Greiner 

I designed and coordinated the experiments, characterized the materials and wrote the 

manuscript. 

Mushfequr Rahman planned and carried out the measurements of the permeabilities of the 

materials and discussed the results. 

Mohamed Elsayed carried out the PALS experiments and discussed the results. 

Reinhard Krause-Rehberg supervised the PALS experiments and discussed the results. 

Volker Abetz supervised the permeation measurements and discussed the results. 

Andreas Greiner supervised the project and corrected the manuscript. 

 

Chapter 5  Modifications of PLimC 

The manuscript of this chapter was published as full paper in Nature Communications 

2016 (DOI: 10.1038/ncomms11862) under the title  

Bio-based polycarbonate as synthetic toolbox 

by Oliver Hauenstein, Seema Agarwal and Andreas Greiner 

I designed and conducted the experiments, characterized the materials and wrote the 

manuscript except for the part of the kinetic investigations of the copolymerization. 

Seema Agarwal co-supervised the project and corrected the manuscript. 

Andreas Greiner supervised the project and corrected the manuscript. 
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Abstract 

Completely bio-based, high molecular weight (>100 kDa) poly(limonene carbonate) 

(PLimC) with attractive thermal (glass transition temperature, Tg = 130 °C) and optical 

properties (transmission 94%, haze 0.75%) was prepared by coupling bio-based 

limonene oxide (LO) and carbon dioxide (CO2) using a -diiminate zinc catalyst 

[(bdi)Zn(OAc)]. The molar mass of the polymer could be controlled by changing the ratio 

of catalyst and monomer, keeping molar mass dispersities low. The synthesis of the LO 

with very high content (>85%) of trans-isomer and absence of impurities with hydroxyl 

functionality was also established, which was necessary to obtain a high molar mass of 

polymer and almost quantitative conversion of epoxide during polymerisation. The 

upscaled syntheses of both the monomer and the polymer (> 1 kg/batch) were readily 

realised, suggesting an easy transfer to pilot plant scale. The polymerisation kinetics 

were studied suggesting a second order dependence on LO concentration, wherefrom 

a mechanism is proposed with an alternating insertion of LO and CO2. The effect of 

chain-ends on the thermal stability of PLimC was studied with a thermal desorption unit 

coupled with gas chromatography mass spectrometry (GC MS) experiments. PLimC 

with thermal stability as high as 240 °C could be achieved using appropriate end-

capping agents. PLimC is characterized by excellent transparency and hardness. 
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3.1 Introduction 

The conventional polycarbonate (PC) made by the condensation of bisphenol-A (BPA) and 

phosgene is an amorphous polymer with high impact strength, toughness, heat resistance 

and transparency, which finds applications as medical, automotive, optical and electronic 

devices.1 The drawback of BPA-PC is found in the choice of monomers, with phosgene 

being a highly toxic volatile compound and BPA raising concerns regarding negative health 

effects due to leaching out of the polymer when in contact with food.2 Additionally, both 

monomers are petro-based compounds and, recently, efforts have been made to replace 

them, at least partially, with bio-based diols, e.g. isosorbide derived from carbohydrate,3,4 

L-tyrosyine5 or terpene derivatives.6 An alternative route to the synthesis of PCs is the 

reaction of epoxides with CO2.7 This route avoids the use of poisonous phosgene by 

replacement with CO2, which is the most abundant greenhouse gas, far less hazardous and 

inherently bio-based.8 Inoue et al. published pioneering work in 1969 on the synthesis of 

aliphatic polycarbonates by coupling CO2 and epoxides with a zinc catalyst.9,10 Since then, 

a lot of research has been directed towards the copolymerization of CO2 and the commodity 

chemical propylene oxide (PO) to yield poly(propylene carbonate), which is a low Tg 

(~40 °C) amorphous thermoplastic that is produced on an industrial scale.11 13 The 

softening temperature of this material obviously limits the range of applications, thus, the 

use of bulkier epoxides resulting in higher dimensional stability at elevated temperature is 

desirable. Cyclohexene oxide is such an example for the coupling with CO2 that gives a PC 

with a Tg at around 120 °C, but, similar to PO, it is a petro-based monomer and its brittle 

nature results in poor mechanical properties.14 The PC produced in this way is always 

partially bio-based and can become fully bio-based depending upon the source of epoxide. 

In order to produce 100% sustainable PC, the choice of epoxide is crucial and, to the best 

of our knowledge, only epoxidized fatty acids,15 1,4-cyclohexadiene16,17 and limonene have 

been investigated.18 Limonene is an abundant alicyclic terpene, found in the peel of many 

citrus fruits and is the main component of orange oil, resulting in a capacity of more than 

520 000 tons/a (estimated from 70 Mt/a oranges produced) of which 70 kt are extracted 

each year.19,20 This available renewable non-food resource is a great choice for sustainable 

chemistry and the oxidation product LO is used as a monomer for direct cationic 

polymerisation,21 as a dioxide for isocyanate-free synthesis of polyurethanes22 or for 

copolymerisation with CO2.18,23,24 Coates et al. discovered an efficient single-site -diiminate 
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(bdi) zinc catalyst for copolymerisation of CO2 and LO to produce poly(limonene 

carbonate) with promising Tg (110 °C).18 The molar mass reported for the polymer was 

limited to 25 kDa and less material characterisation was reported. The polymerisation is 

stereoselective, incorporating only trans-LO in the polymer. Therefore, the commercial 

mixture of LO with an approximate content of at least 45% of the cis stereoisomer is rather 

uneconomical for this reaction because there is a huge amount of unreacted high boiling 

epoxide in the reaction mixture that has to be extracted, not to mention the waste of 

valuable bio resources. Later, the use of an Al(III) catalyst has proven to incorporate both 

isomers (with preference for trans-LO) into the polymer chain, but molar masses were still 

less than 11 kDa and monomer conversion was limited to <75%.24 The present work 

provides high molar mass (>100 kDa) PLimC in almost quantitative monomer conversion 

(>90%) for the first time, using a bdi-zinc catalyst with very attractive material properties 

that might challenge the predominance of BPA-PC by offering a bio-based, non-food, high-

Tg alternative. The use of LO with a very high content (>95%) of trans-isomer and the 

absence of impurities with hydroxyl functionality in the monomer were critical points for 

obtaining high molar mass and almost quantitative conversion of monomer during 

polymerisation. Both the monomer and polymer synthesis were readily scaled-up to 

~1.2 kg per batch. An in-depth study on the kinetics of polymerisation was performed to 

elucidate the mechanism of the alternating insertion of LO and CO2. 

3.2 Results and discussion 

Synthesis of limonene oxide 

Coates et al.18 found in 2004 that the copolymerisation of LO and CO2 with [(bdi)Zn(OAc)] 

is highly stereoselective with only the trans isomer being incorporated into the polymer. It 

would be desirable to start with LO containing high amounts of trans isomer for the 

reaction with CO2 to create an efficient reaction in terms of yield. Moreover, the 

commercial monomer contains large amounts of impurities, including hydroxyl 

functionalised molecules with high boiling points (170  200 °C), as identified by GC-MS 

(Fig. 3-1a). The hydroxyl acts as a chain transfer agent (CTA),25 even in very small amounts 

in the metal catalysed polymerisation of CO2 and LO, and provides only low molar mass 

polymers of around 25 kg/mol.18 In order to overcome these two major problems during 

copolymerisation, the monomer with a majority of trans isomer was synthesised and 
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hydroxyl groups of impurities are masked in the present work. A slightly modified 

procedure developed by Gurudutt et al. was used for the synthesis of LO to give about 83% 

of the trans isomer (Scheme 3-1).26 The monomer contained only 7% cis isomer and 10% 

other impurities coming from starting material and side reactions during the formation of 

bromohydrin (exo-double bond was also or exclusively brominated, respectively), as 

proved by GC (Fig. 3-1c). 
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Figure 3-1: Gas chromatograms of a commercial mixture of cis- and trans-LO (a), the same mixture after 
masking of the hydroxy impurities (b) and the masked product from stereoselective synthesis of trans-LO 
(c) with structures of identified hydroxyl impurities (by GC-MS). 

The synthetic route involves the endo-cyclic bromohydrin (regio- and stereoselective for 

limonene) in aqueous acetone with N-bromosuccinimide (NBS) as the bromine source. 

This bromohydrin is readily converted to the corresponding epoxide in the presence of 

aqueous sodium hydroxide. The monomer synthesis was successfully scaled up to 1.3 kg of 

LO per batch by transferring the reaction into a 10 L double-walled glass reactor with stirrer 

and thermostat to control the reaction temperature between 0 60 °C (Scheme 3-1). All 

organic solvents employed in the process were recovered by vacuum distillation containing 

almost no limonene by-products (high boiling liquids). Thus, the solvents can be easily 
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recycled in the process without prior purification which gives this synthesis a sustainable 

character. Both the commercial mixture and the stereoselective synthesized LO in this work 

contain impurities with hydroxyl groups. Although the latter produces fewer of these CTAs, 

they are still observable in the gas chromatograms (Fig. 3-1a and c). The impurities were 

not removable by simple distillation and chromatographic methods in an efficient way. 

Therefore, all hydroxyls were masked by O-methylation. Here the WILLIAMSON ether 

synthesis has proven to be the most efficient reaction by using sodium hydride (NaH) as a 

deprotonating agent and methyl iodide (MeI) as an O-methylating moiety (Scheme 3-2). A 

gas chromatogram of the commercial LO mixture after such a treatment is shown in Fig 3-

1b, where the signals assigned to the hydroxyl impurities have disappeared completely after 

the masking reaction (or partially depending on reaction time and steric demand of the 

molecule) Other masking reactions, such as silylation with trimethylsilyl chloride and 

catalytic amounts of Mg, gave some side reactions with the oxirane, while the use of benzyl 

bromide instead of MeI slowed down the ether synthesis significantly, i.e. seems to be too 

hindered to react with the bulky molecules carrying hydroxy groups shown in Fig. 3-1. 

 

Scheme 3-1: Stereoselective synthesis of trans-LO via the corresponding trans-bromohydrin that is 
subsequently ring-closed by the addition of a base at elevated temperature (left) and 10 L reactor 
employed for monomer synthesis (right). 
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Another great advantage of this epoxy non-destructive reaction is the simultaneous use of 

NaH as a drying agent for the monomer. The methylated mixture was then fractionally 

distilled to give an LO monomer with approximately 85% trans isomer and mainly cis-LO 

as a side product. This treatment might also be applicable to other epoxides (or other 

aprotic monomers) where hydroxyl impurities are disturbing the polymerization. 

Synthesis of poly(limonene carbonate) 

An inherent problem during the copolymerisation of LO and CO2 (see Scheme 3-3, 

Supplementary Figs 3-1 and 3-2 for NMR spectra) to produce PLimC was the limited 

molecular weight obtained even with very low catalyst concentrations, dried epoxide 

(Table 3-1, entries 1  3) and high conversions (> 90%). We expected longer chains at lower 

catalyst concentrations for this supposedly living catalytic system,27 but only slight changes 

in the molecular weight could be observed when the ratio monomer/catalyst was increased 

(see Fig. 3-2, red squares). The highest Mn received with a dried sample (over CaH2 or NaH) 

of trans-LO was 17.1 kDa (entry 1), while Ð was kept between 1.12  1.16 (Fig. 3-2, red 

circles). The low molecular weight obtained was supposedly due to the presence of 

impurities with hydroxyl groups in the monomer. After the treatment of the dried epoxide 

with iodomethane (masking agent, Scheme 3-2), the final copolymer had the expected high 

molecular weight corresponding to the amount of added catalyst (Table 3-1, entries 4  8 

and Fig. 3-2, blue squares). In this way, we were able to produce PLimC with molar masses 

up to 109 kDa, which is, to the best of our knowledge, the highest reported Mn for PLimC 

while keeping Ð low (1.10  1.19, Fig. 3-2, blue circles). 

 

Scheme 3-2: O-Methylation of OH-impurities with sodium hydride and methyl iodide by first stirring it for 
1 h at 0 °C followed by 24 h at 20 °C. 

The linear increase of the molecular weight with a growing LO/catalyst ratio is now in very 

good agreement with the data calculated (Fig. 3-2, black squares). It is self-explanatory that 

the molecular weight for almost any application should be as high as possible to maintain 

a certain mechanical strength. By masking the hydroxyl impurities in the monomer 

mixture, we are now able to adjust the molecular weight to the value desired, hence, opening 

the door to a new world of applications for this completely bio-based material (for full 
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structural characterisation by 1H and 13C NMR, see Supplementary Figs 3-1 and 3-2, 

respectively, which match well with literature).18 After gaining full control over the 

copolymerisation, i.e. the molecular weight of the polymer and stereoselective synthesis of 

the monomer, the next challenge was to upscale the polymerisation reaction. 
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Figure 3-2: Dependency of the molecular weight (determined by CHCl3-GPC) on the amount of catalyst 
loading after NaH (red squares) and after NaH/MeI- (blue squares) treatment, in comparison with the 
theoretical values (black squares) for an expected immortal catalytic system. The dispersity of the 
experimental values are represented by the circles, whereas red corresponds to NaH treatment and blue 
to the NaH/MeI treatment. 

Table 3-1: Copolymerisation of trans-LO and CO2 after different treatments of the epoxide with 
corresponding gel permeation chromatography (GPC) data. 

entry treatment [trans-LO]/[cat] conversiona 

(%) 
Mn,calc 

(kDa) 
Mn,GPC 

b 

(kDa) 
Ð b 

1 NaH 450 98 88.2 17.1 1.13 

2 NaH 250 98 49.0 16.5 1.12 

3 NaH 120 95 23.5 11.9 1.16 

4 NaH/MeI 470 85 92.2 108.6 1.13 

5 NaH/MeI 360 98 70.6 88.6 1.19 

6 NaH/MeI 190 93 37.2 56.2 1.13 

7 NaH/MeI 120 93 23.5 32.6 1.15 

8 NaH/MeI 80 98 15.7 25.4 1.17 
a Conversion relative to trans-LO in mixture. b molecular weights and dispersities were determined by CHCl3 GPC 
calibrated with polystyrene standards 
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For this, a monomer/catalyst solution was transferred into an evacuated high-pressure 10 L 

stainless steel reactor (Scheme 3-3) via cannula, where it is diluted to a 33 vol% solution 

with toluene via steel tubing connected to a toluene still. After pressurizing the reactor with 

CO2, the mixture is stirred for 72 h to produce up to 1.2 kg PLimC, which can be used for 

further processing. 

 

 

Scheme 3-3: Copolymerisation of cis/trans-LO and CO2 in the presence of a -diiminate zinc complex and 
the corresponding 10 L high-pressure reactor used for the production of PLimC on the kilogram scale. 

Catalyst removal with immobilised EDTA 

The scale up of PLimC raises the question how the amount of organic solvents can be 

avoided or at least minimised. The work-up of crude PLimC is usually conducted by 

repeated precipitation of the polymer (dissolved in chloroform or toluene) in methanol to 

remove residual catalyst. On the kilogram scale, this technique proves very cumbersome 
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and all but eco-friendly. Therefore, an efficient method of inactivating the Zn(II) metal 

towards PLimC was developed. One of the most common chelating ligands was used for 

the improvement of the thermal stability of the product: ethylenediaminetetraacetic acid 

(EDTA). The decomposition temperature was increased dramatically simply by adding the 

fully protonated (H4EDTA) form of the ligand to a crude polymer solution. 

 

Scheme 3-4: Synthesis of EDTA silica by primary amine functionalisation of silica with 3-aminopropyl-
trimethoxysilane and subsequent condensation with EDTA anhydride. 

The only drawback of this method comes from the bad solubility of EDTA in CHCl3 or 

toluene, hence, giving a suspension that is difficult to separate by filtration (the EDTA 

particles are too small). In order to not only inactivate the metal, but also to separate the 

inactivated complex (and excess EDTA) from the mixture, the use of immobilised EDTA 

was a probable solution that also supports the upscaling process, where a packed bed for 

catalyst removal is mandatory. A method to immobilise EDTA on silica was chosen because 

of its simplicity and because no swelling is necessary to enter the pores.28 Firstly, the silica 

is functionalised with 10% primary amine and a propyl spacer then this amine reacts readily 

with EDTA anhydride to give an amide-coupled EDTA on silica to give EDTA silica 

(Scheme 3-4). The reaction was followed by infrared spectroscopy and thermogravimetric 

analysis (TGA) (see Supplementary Figs 3-4 and 3-5). A very efficient procedure was 

developed to thermally stabilise PLimC without even precipitating the polymer once. To 

do this, a freshly prepared reaction mixture in toluene was further diluted with toluene and 

an end-capping agent acetic anhydride (20 wt% with respect to polymer). Then the solution 

was subdivided into three vessels for treatment with either no, 1 or 10 wt% EDTA silica, 

respectively. The mixtures were stirred for 2 h, filtered to remove silica particles and 

eventually cast into petri dishes to yield films of approximately 200 µm thickness. These 

films were dried in vacuo at 145 °C for 30 min to remove high boiling volatiles above the 

polymers Tg and then analysed by TGA (Fig. 3-3). The effect of EDTA silica is well 

illustrated in these thermograms, since obviously without any catalyst removal, the 5% 

decomposition temperature lies only at 205 °C (end-capping conditions were the same for 

all three samples). 
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Figure 3-3: TGA of cast films of a crude PLimC solution (in toluene) treated with 20 wt% acetic 
anhydride and no (black), 1% (red) or 10% (blue) EDTA silica. 

There is a slight increase of T5% with 1% EDTA silica, but still well below 210 °C, whereas 

with 10% of the immobilised chelating ligand, the thermal stability has risen to 236 °C (close 

to the all-time maximum for PLimC of 241 °C). Hence, with 10% of that silica, no 

precipitation of the polymer is needed at all. The reason why 1 wt% is not enough arises 

simply from the fact that only 10% (or rather less, because immobilisation is hardly 

quantitative) of the 1% EDTA silica bears EDTA groups, i.e. there is less than 0.2 mol% 

EDTA in the mixture, which translates to twice as many moles of Zn(II) compared to EDTA 

in that sample (having used 0.35 mol% of catalyst). 

Kinetic studies and mechanistic investigations of the copolymerisation of LO and 

CO2 

Upscaling the polymer production eventually leads to a re-evaluation of the catalytic system 

involved. A homogeneous catalyst might be most convenient for gram synthesis, but 

catalyst removal in up-scaled processes becomes tedious (see section above) and solvent 

intensive. Therefore, a heterogeneous catalyst is desirable that can remain in the polymer 

and that, most ideally, works in an aqueous environment to create a completely sustainable 

synthesis of polycarbonate. For the design of the latter, a deeper understanding of the 

mechanism of insertion of LO and CO2 into the Zn-O bond is essential and the kinetic 

studies presented here can help to elucidate the details of transition states and active species. 

In order to establish the rate law for the copolymerisation of trans-LO and CO2, the reaction 
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order in monomer, CO2 and catalyst were determined. Utilizing in situ attenuated total 

reflectance infrared (ATR IR) spectrometry, the reaction progress was observed by 

monitoring the increase of the carbonyl vibration stretching-mode of PLimC at 1749 cm-1. 

All experiments were performed at 20 °C.18 The kinetic equation can be described by 

d[LO]/dt = k · [CO2]a · [LO]b · [Zn]c, where k is the apparent rate constant and [LO], [CO2] 

and [Zn] are the concentrations of LO, CO2 and the catalyst, respectively. Finally, a, b and 

c are the orders of [LO], [CO2] and [Zn], respectively. To ascertain the catalyst order, the 

concentration of [(bdi)Zn(OAc)] was varied from 12.3  32.9 mM at otherwise constant 

reaction conditions at room temperature and 10 bar CO2 pressure. The reaction rates kobs 

were determined from the initial slopes. It has to be mentioned that an induction period of 

about 10  20 min was observed for all copolymerisation experiments. The double 

logarithmic plot of kobs against [Zn] showed that the copolymerisation reaction of LO was 

nearly first order in catalyst (Supplementary Fig. 3-6). The reaction order in CO2 was 

determined to be zero by varying the CO2 pressure from 5  20 bar with an otherwise 

constant composition of the reaction mixture (Supplementary Fig. 3-7). In order to assign 

the reaction order in LO, the concentration of LO is normally varied utilizing an additional 

solvent, such as toluene.29 31 An experiment of 2.5 mL toluene and 2.5 mL LO at a catalyst 

loading of 0.4 mol% at 10 bar CO2 pressure showed an induction period of nearly 1 h. By 

changing the volume of toluene to 3.0 mL, the induction period was increased to about 2 h. 

Therefore, rate calculation does not start before the carbonyl band of the polymer begins to 

rise (Supplementary Fig. 3-8) Experiments with limonene concentrations of 2.44  6.10 M 

were conducted, whereby plotting of ln kobs against ln[LO] resulted in an order of two in 

LO. As the induction process might still have some influence on the linear section of the 

reaction curve, an additional method for determination of the reaction order for the 

epoxide was established. Accordingly, an experiment with a catalyst loading of 0.4 mol%, 

11 bar CO2 and 2.5 mL toluene (total volume 5.0 mL) was performed (Supplementary 

Fig. 3-11a). The concentration of the catalyst and the CO2 pressure during the entire 

copolymerisation reaction remained practically unchanged, whereas the concentrations of 

LO and PLimC were varied. The reaction rate kobs can now be calculated for different 

epoxide concentrations out of the derivation of the curve measured at different conversions 

(Supplementary Fig. 3-10, Supplementary Eq. 3-2). The intensity of the carbonyl band of 

the polymer was correlated to the concentration of the polymer in the mixture by an 

independent multipoint calibration and, as a consequence, to the concentration of LO, as 
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shown in Supplementary Table 3-1. Deriving the polynomial copolymerisation curve, the 

slope of the tangents, directly related to the reaction rate, at 20, 30, 40, 60 and 80% 

conversion can be calculated. After double logarithmic plotting of the LO concentration 

against the corresponding reaction rates, the order in epoxide was again determined to be 

two (Supplementary Fig. 3-11b). Hence, the second method to establish the order in 

monomer confirms the first result, wherefore the overall rate equation can be written as 

d[LO]/dt = k· [CO2]0 · [LO]2 · [Zn]1. The group of Coates et al. investigated the reaction 

order for the copolymerisation of cyclohexene oxide and CO2 with the same 

[(bdi)Zn(OAc)] catalyst in 2003.29 They found an overall rate equation of d[CHO]/dt = k· 

[CO2]0 · [CHO]1 · [Zn]1, whereby the reaction order of one in cyclohexene oxide deviates 

from the reaction order of two in LO. Comparing cyclohexene oxide and LO, the steric 

demand of the latter attracts attention. The following pathway is proposed bearing all the 

reaction orders measured in mind (Fig. 3-4). In a first step, the dimeric catalyst coordinates 

one LO. 1H NMR measurements showed that the catalyst exists preferentially in its dimeric 

state,27,29 even in strong coordinating and polar solvents such as tetrahydrofurane 

(Supplementary Figs  3-12 and 3-13). Due to the steric demand of the monomer, the acetate 

group of the other zinc centre probably cannot attack the epoxide. 

 

Figure 3-4: Postulated mechanism for copolymerisation of CO2 and LO with catalyst [(bdi)Zn(OAc)]. 
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After a second LO is coordinated to the second zinc centre the monomeric catalyst can 

rearrange to enable the nucleophilic attack of the initiating group. Carbon dioxide is 

inserted and a dimeric state is formed again, as the equilibrium lies on the dimeric side. In 

order to enable chain propagation, again two LO molecules have to be coordinated to the 

catalyst in order to separate the two zinc centres. 

End-capping of PLimC with anhydrides and silicates 

High molecular weight PLimC has a glass transition temperature of 130 °C (for DSC trace 

see Supplementary Fig. 3-3). This is, to the best of our knowledge, the highest Tg reported 

for an aliphatic PC and comes relatively close to commercial BPA-PC that has a Tg of 

145 °C. On the other hand, the thermal stability of aliphatic polycarbonates is possibly the 

greatest obstacle when it comes to commercialisation of this polymer class for a broad range 

of applications.32,33 Poly(propylene carbonate) has a Tg at around 40 °C and a 

decomposition temperature of 200 °C seems acceptable.32 However, this leaves a very 

narrow processing window for PLimC with its glass transition at 130 °C. To overcome this 

limitation of a 5% decomposition temperature (T5%) for a catalyst-free polymer at 225 °C 

(Table 3-2 entry 1, Fig. 3-5), an attempt was made to end-cap the polymer that is 

presumably terminated by OH groups when precipitated in methanol. Four different 

anhydrides: acetic anhydride, maleic anhydride, trifluoroacetic anhydride, heptafluoro-

butyric anhydride and tetraethyl orthosilicate were chosen as end capping agents.  
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Figure 3-5: TGA of PLimC treated with various end-capping agents compared to an untreated sample 
(black curve). 
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With acetic, maleic and trifluoroacetic anhydride, an increase of 15 °C in T5% and of 16  

20 °C for the maximum decomposition temperature (highest decomposition rate, Tmax) 

could be observed (Table 3-2, entries 2  4). Capping the polymer with fluorinated butyric 

anhydride and silicate only slightly increased the onset of decomposition of PLimC 

(Table 3-2, entries 5 and 6), while the first at least increased Tmax significantly. 

Table 3-2: Thermal degradation properties of pure and end-capped PLimC. 

entry end-capper T5% (°C) Tmax (°C) 

1 - 225 244 

2 acetic anhydride 241 260 

3 maleic anhydride 240 265 

4 trifluoroacetic anhydride 242 260 

5 heptafluorobutyric anhydride 231 261 

6 tetraethyl orthosilicate 231 252 

This is a hint of only partial end-capping that can result from bad solubility of the end-

capping agent (fluorinated butyric anhydride) or low reactivity under the conditions 

chosen (orthosilicate). End-capping can only slightly improve the thermal stability of 

PLimC, therefore, the thermal degradation was studied in more detail to find a possible 

alternative technique of stabilizing the polymer at elevated temperatures.  
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Figure 3-6: Gas chromatogram of the products evolved by heating samples of pure (bottom) and end-
capped (top) PLimC for 20 min at 230 °C. The assignment of signals in the top spectrum results from mass 
spectroscopy analysis. 



Main article 

95 

To understand the mechanisms involved in the degradation of the PC, GC-MS coupled 

with a thermal desorption unit was employed. Here, the sample is heated to the temperature 

desired, while its decomposition products are condensed in another chamber for a defined 

time, where they are eventually injected onto the column. The spectra and therewith 

potentially identified products from a decomposition of PLimC for 20 °C min at 230 °C are 

presented in Fig. 3-6. The spectra of PLimC with and without end-capping look very similar 

and suggest decomposition via abstraction of CO2, probably by nucleophilic attack at an 

acidic hydrogen and a subsequent chain reaction. Though interestingly, only the spectrum 

of maleic anhydride end-capped PLimC shows a signal at 13.2 min, which is tentatively 

assigned to limonene carbonate which seems to be produced in significant amounts when 

the polymer is capped with maleic acid. The great variety of decomposition products is also 

illustrated in Scheme 3-5, where , i.e. acidic protons, are indicated by dashed 

lines. Those protons might be prone to nucleophilic attack (any nucleophile that is basic 

enough) and subsequent unzipping reactions then produce the products identified via 

abstraction of CO2. The diol might evolve by a different mechanism where no CO2, but 

rather CO abstraction is involved. The limonene carbonate mentioned above was possibly 

the backbiting product of maleic anhydride that activates a new pathway of decomposition 

to form the cyclic carbonate. This seems unreasonable for an end-capped product that 

should increase the thermal stability of the polymer, but at least the labile proton of a 

hydroxyl end group is protected against abstraction and TGA has proven the concept to be 

successful. 

 

Scheme 3-5: Thermal decomposition products of PLimC proposed by GC MS studies. The dashed lines on 
-hand side on the product side are decomposition products 

where no simple CO2 abstraction mechanism has taken place. 
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Table 3-3: Collection of general, mechanical, thermal and optical properties of PLimC. 

 property value unit method 

general density 1.08 g/cm3 balance (Archimedes) 

 carbonate content 99+ % 1H-NMR 

 contact angle to water 93 ° drop shape analyser 

 Mn 53.4 kDa GPC (CHCl3) 

 Ð 1.10 - GPC (CHCl3) 

mechanical E-modulus 0.95 GPa tensile tester 

 tensile strength 55 MPa tensile tester 

 elongation at break 15 % tensile tester 

 pencil hardness B  pencil hardness testerc 

thermala Tg 130 °C DSC 

 Tm - °C DSC 

 T5% 240 °C TGA 

 Tmax 265 °C TGA 

opticalb transmission 94 % hazemeter 

 haze 0.75 % hazemeter 

 clarity 99.8 % hazemeter 
a measured at 10 K min-1, b thickness of sample 0.24 mm, c test conducted according to ISO 15184 with BYK Pencil 
Hardness Tester and Derwent Graphic pencils. 

The material PLimC possesses a variety of very interesting properties that make it so 

worthwhile to work with. They are summarised in Table 3-3 with the method of 

determination in the right hand column. The carbonate content in the backbone is greater 

than 99% for a polymer with 52.4 kDa and a dispersity of 1.10. Such an alicyclic PC has a 

density as low as 1.08 g/cm³, which resembles that of PP or PE.  
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Figure 3-7: UV/Vis spectrum of a 240 µm thick film of PLimC produced by solvent casting. 
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The tensile properties were tested on a dog-bone shaped specimen produced by hot-

pressing and suggest a mechanical behaviour ranging between PS and BPA-PC 

(Supplementary Fig. 3-14). Though it should be noted that injection moulded samples 

might improve upon tensile testing. The hardness and scratch resistance was evaluated with 

respect to pencil hardness, whereby a pencil of hardness B left no scratch behind on the 

surface of a PLimC film. This is already a significant improvement compared to BPA-PC 

(Makrolon 2800® Bayer; test with same set-up) that could only resist 8B or softer. Acrylics 

(ZK50 Plexiglas® Evonik), on the other hand, are resistant to pencils as hard as 5H, but 

suffer from a very high brittleness. Thermally, this polymer is also surprising with (to the 

best of our knowledge) the highest reported Tg for an aliphatic PC of 130 °C. This thermal 

resistance makes it an interesting choice wherever contact with boiling water is likely. The 

amorphous polymer with its alicyclic structure suggests very attractive optical properties 

and, indeed, a film produced by solvent casting tested on a hazemeter gave values for 

transmission, haze and clarity of 94%, 0.75% and 99.8%, respectively. These results were 

independent of film thickness (tested films of 50 400 m thickness) and we would ascribe 

the missing 6% of transmission to 3% reflection on each of the interfaces (air/polymer

polymer/air). Upon reversion, this observation highlights the very low small and wide angle 

scattering, i.e. the high optical purity of PLimC. An ultraviolet visible (UV/Vis) spectrum 

of such a film (with a thickness of 240 µm) is also shown in Fig. 3-7. There is almost no 

absorbance of light in the visible region, thus, making it a perfect choice for applications 

where high transparency is necessary, e.g. packaging material or optical lenses. 

3.3 Conclusions 

In conclusion, we would like to present a 100% bio-based high molecular weight PLimC 

(>100 kDa) where we can tune the molecular weight over a wide range. Very important was 

the successful conversion of LO to PC by stereoselective high-yield epoxidation of 

limonene, which is nearly quantitative. The production of LO and PLimC was scaled up to 

kilograms per batch, while reducing the amount of organic solvents employed by a factor 

of 10 compared to standard precipitation methods. Kinetic studies suggested a second order 

dependence on LO concentration and indicates an alternating insertion of CO2 and LO. 

PLimC has a range of very attractive properties, e.g. a Tg as high as 130 °C, which is close to 

technical BPA-based PC. The excellent transparency of PLimC in combination with good 
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hardness, both better than BPA-PC, makes it a highly promising green coating material, 

which will be the topic of upcoming work. 

3.4 Experimental 

Materials 

(R)-Limonene (97%), acetyl acetone (99%), 2,4-diethylaniline (99%), N-bromosuccinimide 

(97%), sodium hydride (60% dispersion in mineral oil), iodomethane (99%, stabilised with 

silver), ethylenediaminetetraacetic acid (EDTA, 98.5%), acetic acid (99%) and acetic 

anhydride (99%) were used as received. (R)-LO (97%) was dried over NaH and distilled. 

Carbon dioxide (5.0, Linde Gase) was dried by passing through a column packed with a 

molecular sieve of 3 Å. The catalyst [(bdi)Zn(µ-OAc)]34 and EDTA-silica28 were synthesised 

according to literature procedures. 

Methods 

NMR spectra were recorded on a Bruker AMX-300 operating at 300 MHz. Chemical shifts 

 are indicated in parts per million (ppm) with respect to residual solvent signals. Thermo-

gravimetric analysis (TGA) was performed on a Netzsch TG 209 F1 Libra and differential 

scanning calorimetry (DSC) on a Mettler Toledo DSC 821c, both at a heating rate of 

10 K min-1 under N2 atmosphere. In situ IR measurements were carried out under an argon 

atmosphere using an ATR IR Mettler Toledo system. IR spectra of solids were obtained 

with a Digilab Excalibur FTS-3000 equipped with an ATR unit. Gas chromatography 

spectra were recorded on a Shimadzu QP-5050 with N2 as the carrier gas. GC-MS 

chromatograms were recorded on an Agilent 5977A MSD with He as the carrier gas. 

Relative molecular weights and dispersities were determined by GPC on an Agilent 1200 

system with chloroform as the eluent and polystyrene as the calibration standard. A 

Hazemeter BykGardner Haze-Gard Plus and a UV/Vis spectrometer V- 670 (JASCO) were 

employed for the testing of optical properties of solvent cast PLimC films having a thickness 

between 100 and 400 µm. A Zwick/Roell Z0.5 with testXpert II software and 5 mm min-1 

test speed were used for tensile testing of heat pressed PLimC specimen having a thickness 

of 300 µm. A BYK Pencil Hardness Tester and Derwent Graphic pencils were used to 

determine pencil hardness. 
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Synthetic procedures 

Synthesis of trans-LO. A modified procedure from Gurudutt et al.26 was used. A volume 

of 1.2 L (8.8 mol) limonene, 1 L water and 4.5 L acetone were filled into a 10 L temperature-

controlled reactor. The mixture was cooled down to 0 °C and 9.2 mol N-bromosuccinimide 

was added within 30 min. The solvent was evaporated at 50 °C and the resulting organic 

phase was diluted with 3 L diethyl ether. After removing the aqueous phase, the organic 

phase was washed with water once before the ether was removed at 50 °C. The crude 

bromohydrin was converted directly to the epoxide with 2 L of a 6 M NaOH solution at 

60 °C for 1.5 h. The alkaline solution was removed and the crude product diluted with 3 L 

diethyl ether before it was washed with 1.5 L of a saturated sodium bicarbonate solution 

and, subsequently, 1.5 L of water. After evaporating the solvent, 1.4 L of the crude product 

was obtained as a yellow viscous liquid. Gas chromatography analysis revealed a trans-LO 

content of 60%, which was isolated by fractional distillation at 80 °C and dynamic vacuum. 

The final product consisted of 5% limonene, 9% cis-LO and 85% trans-LO and 1% by-

products (determined by GC analysis). 

Masking of hydroxyl impurities in limonene oxide.  All manipulations were carried out 

under inert atmosphere. The crude oxirane was treated with 0.16 eq. of NaH (60% 

dispersion in mineral oil) at 0 °C. After stirring for 60 min, 0.08 eq. of iodomethane was 

added and the mixture was kept at 0 °C for another hour. The process of the reaction was 

monitored via GC and after 24 h, no more hydroxyl impurities could be detected and the 

mixture was fractionally distilled at 80 °C in a dynamic vacuum. The main fraction was 

collected at 5 mbar (~66%, containing 85% trans-limonene oxide).  

Synthesis of poly(limonene carbonate). An in vacuo pre-dried 120 mL autoclave at 

90 °C was charged in a glove box with 30 mmol of epoxide, 3 mL toluene and 0.4 mmol 

catalyst. The closed reactor was stirred for 15 min to dissolve the catalyst before it was 

evacuated and, subsequently, pressurised with 10 bar CO2. The reactor was opened after an 

adequate time and the viscous mixture diluted with toluene before 20 wt% (relative to LO) 

of acetic anhydride was added. After 1 h, the solution was precipitated in methanol and the 

product dried in vacuo. The product was characterised by 1H and 13C NMR spectroscopy 

(Supplementary Figs 3-1 and 3-2). 
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Purification of PLimC with on silica immobilised EDTA (EDTA-Si). An amount of 

20 wt% acetic anhydride and 10 wt% EDTA-Si were added to a 0.2 g/mL solution of crude 

PLimC in toluene and stirred for 3 h at room temperature. The suspension was filtered 

through a G3 glass frit to remove silica particles. The viscous polymer solution was cast on 

a glass plate after concentration and dried in vacuo at 50  120 °C for 12 h. 
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3.6 Supplementary information 
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NMR Analysis of PLimC from copolymerisation of trans-LO and CO2 with 

[(bdi)Zn(OAc)]. 

 

Supplementary Figure 3-1: 1H NMR spectrum of PLimC (entry 5, Table 3-1) recorded at 300 MHz in CDCl3. 

Peak assignment: 

1H NMR (300 MHz, CDCl3):  5.04 (1H, s, C(5)H), 4.71 (2H, m, C(8)H2), 2.42-2.20 (2H, m, 

C(1)H2), 1.85 (2H, m, C(4)H2), 1.71 (1H, m, C(3)H), 1.69 (3H, s, C(10)H3), 1.50 (3H, s, 

C(9)H3), 1.33 (2H, m, C(2)H2) ppm 
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Supplementary Figure 3-2: 13C NMR spectrum of PLimC (entry 5, Table 3-1) recorded at 300 MHz in CDCl3. 

Peak assignment: 

13C NMR (300 MHz, CDCl3):  152.0 (C11), 148.7 (C8), 109.4 (C7), 82.0 (C6), 75.4 (C5), 

37.6 (C3), 31.0 (C1), 22.3 (C4), 21.6 (C2), 21.0 (C10), 20.7 (C9) ppm 
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Thermal analysis of PLimC 

40 60 80 100 120 140

 

 
H

e
a

t 
fl
o

w
 (

W
 g

-1
)

e
x
o

Temperature (°C)
 

Supplementary Figure 3-3: DSC thermogram of PLimC (entry 5, Table 3-1) with second heating curve 
measured at 10 K min-1. 
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Characterisation of EDTA immobilised on silica 
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Supplementary Figure 3-4: ATR-FTIR spectra of amino-functionalised silica and EDTA functionalized 
silica. 

The resonances of functionalisation on silica particles are rather low (Supplementary 

Figure 3-4), i.e. amine vibrations are not observable at all and EDTA carbonyl vibrations 

are weak. Hence thermogravimetric analysis was employed to quantify the degree of 

functionalisation (Supplementary Figure 3-5).  
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Supplementary Figure 3-5: Thermogravimetric analysis of Silica, amino-functionalised silica and EDTA-
functionalized silica. 
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Kinetic investigation of copolymerisation of LO and CO 2 

 

 

Supplementary Figure 3-6: (a): Determination of the order of the catalyst in the copolymerization of CO2 
and LO. (b) Determination of the copolymerisation rate kobs as a change of absorbance at 1749 cm-1 with 
time at different loadings of [(bdi)Zn(OAc)] (reaction conditions: 5 mL LO, 11 bar CO2, room temperature, 
catalyst concentration: 12.3 - 32.9 mM, without solvent). 

a 

b 
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Supplementary Figure 3-7: (a) Determination of the order of CO2 in the copolymerization of CO2 and LO. 
(b) Determination of the copolymerisation rate kobs as a change of absorbance at 1749 cm-1 with time at 
different CO2 pressures (reaction conditions: 5 mL LO, catalyst loading 0.4%, room temperature, CO2 
pressure 5-20 bar). 

b 

a 
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Supplementary Figure 3-8: (a) Determination of the order of LO in the copolymerization of CO2 and LO. 
(b) Determination of the copolymerisation rate kobs as a change of absorbance at 1749 cm-1 with time at 
different LO concentrations (reaction conditions: 5 mL LO, catalyst loading 0.4%, room temperature, 
11 bar CO2, concentration LO: 2.4 - 6.1 mol/L). 

 

b 

a 
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Supplementary Figure 3-9: Intensity of the carbonyl stretching bond of PLimC against time with an 
induction period of about one hour (reaction conditions: concentration LO: 3.66 mol/L, 11 bar CO2, room 
temperature, catalyst concentration: 0.4%, volume (toluene): 2.0 mL). 

 

Supplementary Table 3-1: Determination of the calibration curve by varying concentrations of PLimC 
and LO. 

m of PLimC 

(g) 

V of toluene 

(mL) 

V of LO 

(mL) 

[LO] 

(mol L-1) 

conversion  

(a.u.) 

Intensity of (C=O) 

(a.u.) 

0.00 2.50 2.50 3.05 0 0 

0.10 2.50 2.40 2.93 0.04 0.072 

0.20 2.50 2.30 2.81 0.08 0.121 

0.30 2.50 2.20 2.68 0.12 0.209 

0.40 2.50 2.10 2.56 0.16 0.271 

0.50 2.50 2.00 2.44 0.20 0.316 

0.75 2.50 1.75 2.13 0.30 0.431 

1.00 2.50 1.50 1.83 0.40 0.598 

1.50 2.50 1.00 1.22 0.60 0.800 

2.00 2.50 0.50 0.61 0.80 1.000 

 

Determination of the calibration curve. A defined amount of PLimC, toluene and LO 

were transferred into the IR-autoclave. After pressurizing the autoclave with 11 bar CO2 at 

room temperature the system needs about two hours to completely solve the polymer to get 

a stable value for the intensity of the carbonyl stretching bond.  
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Supplementary Figure 3-10: (a) Intensity of the carbonyl stretching bond of PLimC against the 
concentration of LO measured in the in situ ATR IR. (b) Intensity of the carbonyl stretching bond of PLimC 
against conversion. 

 

a 

b 
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Supplementary Figure 3-11: (a) Intensity of the carbonyl stretching bond of PLimC against time (reaction 
conditions 2.5 mL LO, 2.5 mL toluene, 11 bar CO2, room temperature, catalyst loading 0.4%). (b) 
Determination of the order in LO by double logarithmic plot of the slope of the tangent against the 
concentration of LO. 

  

b

< 

a

< 
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Derivation of the polynomial fit: 

 f(x) = -0.18 + 4.73e-05 x -1.03 e-09 x2+ 1.29e-14 x3 -6.68e-20 x4 (3-1) 

 

 f´(x) = 4.73e-05 - 2.06e-09 x + 3.87e-14 x² - 2,67e-19 x³ (3-2) 

 

Supplementary Table 3-2: Overview of the correlation of the conversion and the corresponding 
concentration of LO with the intensity of the carbonyl stretching bond and the slope of the tangent 
(reaction conditions: 2.5 mL toluene, 2.5 mL limonene oxide, catalyst loading 0.4%, 11 bar CO2, room 
temperature). 

conversion 
(a.u.) 

intensity v[C=O] 
(a.u.) 

slope of tangents (f´(x)) 
 

ln f´(x) 
 

[LO] 
(mol L-1) 

ln[LO] 
 

0.2 0.316 3.01e-05 -10.41 2.44 0.97 

0.3 0.431 2.56e-05 -10.57 2.13 0.89 

0.4 0.598 2.10e-05 -10.77 1.83 0.81 

0.6 0.800 1.27e-05 -11.27 1.22 0.57 

0.8 1.000 6.47e-06 -11.95 0.61 0.18 
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Supplementary Figure 3-12: 1H NMR spectrum of the catalyst [(bdi)Zn(OAc)] recorded in C6D6. 

 

Supplementary Figure 3-13: 1H NMR spectrum of catalyst [(bdi)Zn(OAc)] recorded in THF-d8. 
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Stress-strain curves of PLimC 
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Supplementary Figure 3-14: Stress-strain curves of PLimC with Mn = 54 kDa, measured at a strain rate of 
5 mm min-1. 
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Abstract 

The separation of CO2 from fuel or flue gases, often described as carbon capture, 

is industrially most relevant, as the technique can provide a significant reduction of 

greenhouse gas emissions. The captured gas can be utilized in industrial 

processes such as the production of plastics by copolymerization with epoxides. 

These processes of separation and conversion of CO2 are unified in the term 

‘carbon capture and utilization’ and we found that the bio-based poly(limonene 

carbonate) (PLimC) – the copolymer of the orange peel-based limonene oxide (LO) 

and CO2 – is a material that unifies both processes in one material. Due to its high 

CO2-permeability of 68 barrer combined with a significant selectivity for the gas 

over N2, the application of PLimC as a membrane material for carbon capture 

processes is discussed. However, the bio-based thermoplastic PLimC exhibits not 

only an exceptionally high permeability but also excellent optical, mechanical and 

thermal performance. This unique combination of properties renders PLimC the 

ideal choice for applications as breathing glass. Here, we discuss potential 

applications of such a breathable glass in well-insulated constructions (passive 

houses, closed greenhouses) where this material could save substantial amounts 

of energy by avoidance of any active ventilation. 

  



4  Applications of PLimC 

120 

4.1 Introduction 

The anthropogenic emission of CO2 accumulates to 32 Gt each year, which is mainly caused 

by incineration of carbon matter. CO2 is a greenhouse gas that contributes significantly to 

ere1,2. Global warming increases chances of catastrophic 

weather phenomena and a rising sea level and thus impacts our everyday life dramatically. 

In the last decades, measures have been taken to reduce the emission and to contain the rise 

of CO2 levels in the atmosphere. Part of these measures can be described with the concepts 

of carbon capture and storage/utilization (CCS/CCU)3 6. CCU deals with the separation 

and transformation of CO2 from process gases (combustion gases in power plants, natural 

gas etc.) to prevent emission of the greenhouse gas into the atmosphere. The separation 

step is achieved either by the use of chemical/physical absorbents or by organic/inorganic 

membrane materials4,7. The class of absorbents is nowadays dominated by alkanol amine 

solutions, e.g. monoethanolamine and diethanolamine, that require high temperatures for 

regeneration of the solvent8,9 -

considerable energy penalty that adds to the total emission of CO2
10,11. The more 

sophisticated  though less developed  technology relies on the use of membrane materials 

that separate CO2 from other process gases by size-exclusion (mostly hybrid metal-organic 

frameworks)12 14 or solubility/diffusivity mechanisms (polymeric membranes), 

respectively15 18. The latter comprise a group of polymeric materials that exhibit 

permeabilities P (rate of transport through the matrix) and selectivities  (preference of one 

ted as the ratio of two 

permeabilities) extending over several orders of magnitude19. However, those materials 

frequently suffer from low long-term stability, known as aging, which prevented industrial 

application so far20. The large volumes of CO2 captured in the industrial processes are either 

stored in gas tight (often natural) basins (CCS)5,21 or transformed into high-value chemicals 

via various chemical routes (CCU). Some of those routes are based on transformations into 

bulk chemicals (urea, inorganic carbonates via SOLVAY process, methanol etc.)22,23 while 

others make use of the catalytic coupling of CO2 and epoxides to produce cyclic carbonates 

and polycarbonates (PCs)24 26. Coates et al. were the first to employ this route for the 

production of PLimC, the completely bio-based copolymer of the terpene derivative 

limonene oxide (LO) and CO2
27 29. In recent publications we could demonstrate the 

excellent thermal, optical and mechanical properties of poly(limonene carbonate) (PLimC) 
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and show the tremendous modification potential of the unsaturated PC by simple 

manipulations on the double bond30,31. Still, unmodified PLimC possesses a set of very 

interesting properties that were identified during the assessment of the polymer as a barrier 

material. The analysis revealed a very high permeability for small molecules like H2 and 

CO2. Hence, the material was assessed in terms of membrane applications as it exhibits not 

only a high permeability but a very good selectivity for CO2, too. In fact, it is the first 

material that unifies both carbon capture (separate CO2 with PLimC membrane) and 

utilization (copolymerize CO2 and LO to give PLimC) in one material.. Since PLimC is also 

very permeable to light and a barrier to heat (insulator) the unique profile of properties 

renders it a breathing glass . Hence, we elaborate 

on completely new applications of such a breathing window in the construction sector in 

order to reduce energy consumption. 

4.2 Results 

Permeation properties of PLimC 

In a first step, we wanted to assess the material PLimC (structure depicted Fig. 4-1a) with 

regard to its permeation properties. Here, we focus on the permeation, thermal and optical 

properties of PLimC compared with common amorphous thermoplastics and prominent 

polymeric membrane materials. The first are represented by polyimide (PI), polystyrene 

(PS), poly(phenylene ether) (PPE), cellulose acetate (CAc), poly(methyl methacrylate) 

(PMMA) and bisphenol-A polycarbonate (BPA-PC), whereas the latter comprise the 

polymer with intrinsic microporosity 1 (PIM-1)32 or poly(1-trimethylsilyl-1-propyne) 

(PTMSP)33 (structures of PMMA, BPA-PC, PIM-1 and PTMSP also shown in Fig. 4-1a). 

Semicrystalline polymers have not been considered, since they usually lack in transparency 

and gas permeability due to crystallites in the matrix34 36. By plotting the O2- against the 

CO2-permeability of those polymers (Fig. 4-1b), the special role of PLimC is illustrated. 

Compared with engineering thermoplastics like BPA-PC and PMMA, PLimC 

(P(CO2)  = 68 barrer, 1 barrer = 10-10 cm³ cm cm-2 s-1 cmHg-1) is more permeable by one or 

two orders of magnitude, respectively, but up to three orders of magnitude less than state-

of-the-art membrane polymers like PIM-1 or PTMSP. Thus, this aliphatic PC is located at 

the interface of common thermoplastics and highly gas permeably polymers. The 

dependence of the CO2-permeability on the Tg is shown in Fig. 4-1c. The plot was chosen 
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to illustrate the rather low softening temperature of PLimC combined with its high 

permeability, which is atypical with respect to the other shown amorphous polymers. The 

lower Tg of the material enables the thermal processing of PLimC at much lower 

temperatures than it is possible for example for PPE or CAc  the latter being the only other 

bio-based polymer that could be relevant.  
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Figure 4-1 | Gas permeability of selected polymers with respect to thermal and optical properties . 
(a) The molecular structures of PMMA, BPA-PC, PLimC, PIM-1 and PTMSP in order of increasing 
permeability. (b) O2 vs. CO2 permeation of common amorphous thermoplastics (BPA-PC, CAc, PI, PMMA, 
PPE, PS)18 in comparison to PLimC. The CO2 permeabilities of the same polymers are plotted (c) vs. their Tg 
and (d) vs. their light transmission (specimen of 2 mm thickness). 
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At lower processing temperatures, the decomposition of the rather labile polymeric 

materials can be reduced significantly. The highly permeable polymers PIM-1 and PTMSP 

are not melt-processable at all, as they decompose before the Tg is reached. Another key 

feature of amorphous polymers is a high transmission of visible light. In Fig. 4-1d, the link 

between light and molecular (gas) transmission is drawn, where the optical performance is 

plotted against the CO2-permeability of the amorphous polymers. PLimC exhibits a very 

high transparency that is comparable to optical grades of PMMA and PS and superior to 

the aromatic polymers BPA-PC, PPE and the polyacetylene PTMSP. PI, PSU and PIM-1 

are coloured and thus cannot compete in optical applications. This unique combination of 

permeation, thermal and optical properties, renders PLimC a highly interesting material 

for membrane processes but also in applications where breathability and optical clarity are 

required. Both cases are discussed here, starting with the evaluation of the aliphatic 

polycarbonate in CCU processes. 

PLimC  a membrane in CCU processes 

Polymeric membrane materials are mainly utilized for the separation of small molecules 

due to the preferential solubility and/or diffusivity of one or the other in the polymer 

matrix18. PLimC was analysed in regard of the permeabilities of H2, N2, O2, CH4 and CO2, 

which are gases relevant to the chemical and energy industry, e.g. the isolation of oxygen 

from air (O2/N2), the separation of hydrogen from ammonia purge gas (H2/N2), the 

sweetening of natural gas (CO2/CH4) or the carbon capture from fuel and flue gases 

(CO2/N2)18,20. The measurement of the temperature-dependent transport of such molecules 

through a film of PLimC (Fig. 4-2d and Supplementary Fig. 4-1) revealed a for aliphatic 

PCs unprecedented  high permeability especially for CO2 (P (CO2) = 68 barrer at 30 °C). 

The preferred permeation of CO2 in the PLimC membrane results in a very good selectivity 

for carbon capture in fuel or flue gas applications, that is, for the gas pair CO2/N2 (Fig. 4-2e 

and Supplementary Fig. 4-2). In order to elucidate the underlying mechanism of such 

preferential transport, we employed the time-lag method (see Methods section) to separate 

the shares of solubility and diffusivity in the term permeability (permeability can be 

expressed as the product of both). The diffusivity is mainly governed by the kinetics of the 

gas and the free volume elements in the polymer matrix, whereas the solubility is based on 

the physico-chemical gas-matrix interactions18. Considering the kinetic radii of the 

investigated gases (see Fig. 4-2f), it is remarkable to see that the very small H2 (kinetic radius 
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of 1.44 Å)  with a 49 times higher diffusivity  permeates slower through the dense 

polymer matrix than the 15% larger CO2 (1.65 Å). This phenomenon cannot exclusively 

explained by the higher condensability of CO2 but rather by the very high affinity of the gas 

to the PLimC matrix, resulting in an even 52 times higher solubility compared with H2. 
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We can only speculate on the role of the functional groups, but the double bond and 

carbonate groups in the repeating unit are supposedly the key to the high affinity of CO2 to 

the polymer. At elevated temperatures, the typical increase of permeability is observed for 

all gases except for CO2 that remains at nearly the same level even at 80 °C (Fig. 4-2d). This 

behaviour results in decreasing selectivities for carbon capture applications as illustrated 

for the gas pairs CO2/N2 and CO2/CH4 in Fig. 4-2e and thus higher process temperatures 

should be avoided. Since the other gas pairs H2/N2 and O2/N2 are giving selectivities that 

are surpassed by many other materials and the H2 and O2 permeabilities are not as 

significant18, this paragraph focuses on the preferential transport of CO2 and a comparison 

to established and state-of-the-art polymeric materials for the CO2/N2 separation (carbon 

capture in fuel and flue gas) is drawn here. The CO2 permeability of PLimC is about one 

order of magnitude higher than that of standard BPA-PC and even 100 times more 

permeable than PMMA (Table 4-3)37,38. Compared to state-of-the-art membrane materials 

like the PIM-1 or PTMSP, though, PLimC performs lower by two or even three orders of 

magnitude, respectively. The lower permeability is probably connected to the smaller 

cavities in the aliphatic PC that were determined by positron annihilation lifetime 

spectroscopy (PALS). For PLimC we found a monomodal cavity radius (rc) distribution 

with a maximum at 3.3 Å (see Fig. 4-2c, Supplementary Fig. 4-3a and Supplementary 

Table 4-1), while PIM-1 and PTMSP exhibit a bimodal rc distribution with small cavities 

(rc < 3 Å) and a set of large cavities (rc > 5 Å)39. These large interconnected cavities are most 

likely responsible for the very high permeabilities of PIM-1 and PTMSP. However, they 

tend to collapse upon utilization of the materials as membranes, which eventually leads to 

deteriorating performance, i.e. aging, a major challenge in polymeric membrane 

technology. The collapse of cavities can be attributed to the relaxation of polymer chains 

into a thermodynamically favoured packing, as the production of the membranes from 

those high-Tg polymers (both PIM-1 and PTMSP decompose before softening)32,33 is based 

on solution casting (volatile solvents can increase cavity sizes and interconnectivity of 

cavities of the resulting polymer film)39. PLimC is solution/heat-processable and shows a 

similar cavity size in both cases (see Supplementary Fig. 4-3b). Thus, for this PC a long-

term stability of gas transport properties is anticipated, which is subject of further studies 

on the material. The significantly larger cavities of PLimC compared to BPA-PC (rc = 2.9 Å) 

can be assigned to the rather contorted backbone of the alicyclic structure being bridged 

via the carbonate group in the 1,2-position of the ring rather than the 1,4-position (para-
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position in bisphenol A, see Fig. 4-1d). Furthermore, the bulky iso-propylene moiety of 

PLimC might have a significant impact on the packing density. 

To elucidate the structure-properties relationship, a simulation of PLimC chains in an 

amorphous unit cell is shown in Fig. 4-2b. Ten chains with eight limonene carbonate 

repeating units each have been allowed to pack in the cell that was subsequently overlaid 

with a calculation of the CONNOLLY surface (blue). These blue voids represent the free 

volume (cavities) in the polymer matrix that can also be quantified in a semi-empirical 

approach by BONDI s group contribution theory40,41. In this approach the repeating unit of 

the polymer is disassembled into fragments (groups) of known volumetric properties and 

after addition of each fra

polymer. The resulting value gives an estimate of the so-called fractional free volume (FFV) 

in a polymer, thus the volume that is not occupied by any molecules. PLimC has a FFV of 

0.24 (see Supplementary Table 4-2), similar to the microporous PIM-1 (0.26)32,39,42 and 

significantly higher than standard thermoplastics like BPA-PC (0.16)17,43 though much 

lower than the high free-volume polymer PTMSP (0.29)37,44 as shown in Table 4-1. Together 

with the PALS data a consistent picture for the high permeability of PLimC is drawn. In 

fact, the data is even suggesting a long-term stability of the cavity size due to hindered 

packing of the bulky and contorted polymer chains. 

The most common technique for the visualization of the benchmarking of new membrane 

materials is a plot of the selectivity for a given gas pair versus the permeability of the gas in 

the numerator on a double logarithmic scale45. Such a so-called ROBESON-plot for the gas 

pair CO2/N2 is shown in Fig. 4-2g with a selection of commercial and state-of-the-art 

polymeric membrane materials compared with PLimC18,19,46,47. The dashed line illustrates 

the ROBESON upper bound that was found empirically by Robeson in 2008, indicating the 

inherent trade-off between permeability and selectivity48. Obviously, materials with an 

appreciable permeability (>10 barrer) that are close to or even beyond this upper bound are 

of great industrial interest, as they push the boundaries towards a more economical 

situation, where the overall gas transport through the membrane is improved without 

substantial sacrifices of the selectivity or vice versa. PLimC cannot surpass the upper bound 

and numerous polymers have been developed in the laboratory, which perform better in 

regard of separation properties (for a more comprehensive discussion of state-of-the-art 

polymeric membranes we would like to refer to reviews by Du et al. and Bernardo et al.)19,20. 
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However, the here presented material is superior to most commercial polymers in this 

CO2/N2 diagram and application as membrane for carbon capture processes is anticipated 

if long-term stability of the material and the performance for mixed gases are verified. This 

long-term stability is a major and unfortunately frequent problem of polymeric membranes 

as the rearrangement, that is, relaxation of polymer chains into a closer packing results in a 

deteriorating separation performance20. The relaxation pathways can be accessible by 

plasticization effects induced by polar gases like CO2 or accelerated thermal motion into a 

thermodynamically more favoured state. 

Table 4-1 | Volumetric and transport properties of selected barrier and membrane materials.  

    P   

polymer  FFVa) rc
b) CO2 CH4 N2 O2 H2 CO2/N2 ref 

 
(g cm-

3) 
 (Å) (barrer)   

PMMA 1.20 0.12 2.4 0.78 0.006 0.01 0.23 4.5 78 38,45 

BPA-PC 1.20 0.16 2.9 6.8 0.27 0.33 1.6 13 21 37,43 

PLimC 1.08 0.24 3.3 68 5.8 3.5 13 75 22 - 

PIM-1 1.08 0.26 
2.9; 
5.3c) 

6500 430 340 1300 3600 19 42 

PTMSP 0.76 0.29 
2.6; 
6.2c) 

47000 29900 11500 14800 24800 4.1 39 

a)calculated using BONDI b)determined by PALS experiments, c)PIM-1 and PTMSP exhibit a 

bimodal cavity size distribution, i.e. two values are given here  

In contrast to this aging, PLimC shows an interesting behaviour when exposed to 

permeation test with different gases and increasing temperature (see Supplementary Figs 4-

1 and 4-2). In fact, the permeability and selectivity for CO2 are improved upon such an 

annealing at elevated temperature. Consequently, the material can be considered to exhibit 

an anti-aging behaviour that differs from that of thermally rearranged polymers, which 

show increased permeability upon rearrangement of the backbone (covalent bonds are 

destroyed and rebuild)46. For PLimC no chemical changes were observed after the 

annealing and rather a recovery of the original permeability was found upon storing the 

sample for a week at ambient conditions. Hence, the effect is rather ascribed to a heat-

induced increased interconnectivity of cavities in the polymer matrix due to polymer chain 

rearrangements. This explanation is supported by PALS measurements, where the 

annealing of PLimC at 85 °C for 6 h lead to a broader size distribution of the cavities, that 

is, an increased dispersion of 3 (see Fig. 4-2c and Supplementary Fig. 4-3). Furthermore, 
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-

molecules H2 and CO2. This observation suggests a bottle-neck shaped interconnectivity, 

resulting in an improved selectivity for those gases with a small kinetic radius (see Fig. 4-

2f). Future studies will focus on the exploitation of this effect to improve membrane 

characteristics of PLimC even further. 

PLimC  a breathing glass 

The concept of breathable materials that repel liquids or dirt is known from fabrics like 

Gore-

highly transparent polymer sheets, as we found that PLimC is ten times more permeable to 

gases than BPA-PC37 and even two orders of magnitude more permeable than PMMA38 

(not to mention the prevalent glass for window panes, bottles etc., the inorganic soda-lime 

glass, which is virtually a barrier to gases, see Table 4-2). The special profile of properties of 

PLimC, considering its high permeability to gases and light combined with good 

mechanical and thermal resistance, suggest applications . The 

thermoplastic is an optically pure and mechanically robust material and thus state-of-the-

art membrane materials have not been considered for this assessment, as they are  to the 

best of our knowledge  either coloured or even opaque, not melt-processable, expensive 

and/or do not possess sufficient mechanical strength33,49 51. We envision PLimC30 as 

breathing glass for window panes in well-insulated houses (so-called passive houses)52 or 

greenhouses (so-called closed greenhouses)53,54 to avoid excessive ventilation and the 

accompanied heat or water loss, respectively. Due to the inherent breathability of a glass 

made of PLimC, the gas concentrations of the interior and the exterior are moving towards 

equilibrium as one of the gases is consumed or produced. A schematic of such an 

application as glazing in both a passive house and a closed greenhouse is shown in Fig. 4-3. 

The underlying concept in both cases is a very thoroughly heat-insulated cladding (roofing, 

walling, doors and windows) that limits overall heat-loss and thus saves substantial 

amounts of energy. In order to supply resident/plants with fresh air (residents exhale CO2 

that has to be removed, plants need CO2 for photosynthesis that the leafs have to be 

provided with) in such closed/passive constructions, there is a constant requirement for 

active ventilation to realize complete exchange of air within hours (passive houses)55 or even 

within minutes (closed greenhouses)54. 
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Figure 4-3 | PLimC as breathing glass. A schematic of the highly permeable glazing material is shown 
that can be used for window panes in passive houses to reduce energy consumption or as glazing sheets 
for greenhouses to reduce water losses due to continuous ventilation. An estimation of the CO2-
respiration rate of plants and humans in greenhouses or passive houses, respectively, is compared to the 
permeance of the corresponding glazing area is given in Table 4-2. 

Obviously, during colder days  and there exist many in northern Europe  with outside 

temperatures below 20 °C the exchange of hot air from inside with cold air from outside is 

accompanied by an enormous loss of heat and thus energy. Hence, the mandatory 

ventilation systems are equipped with heat recovery devices to reduce energy losses that 

would otherwise contradict the whole concept of those well-insulated buildings. 

Table 4-2 | Comparison of PLimC with typical glazing materials.  

property PLimC BPA-PC PMMA soda-lime glass 

permeability     

CO2 (barrer)c) 68 6.8 0.85 - 

O2 (barrer)c) 12 1.6 0.24 - 

H2O vapour (g mm atm-1 m-2 d-1) 11d) 4.4 0.005 - 

Tg (°C) 130 150 105 573 

transmittance (%) 92 90 92 90 

refractive index (589 nm, 25 °C) 1.501 1.587 1.491 1.518 

specific gravity (g cm-3) 1.08 1.20 1.19 2.52 

impact resistancea) (J) 2.00 3.33 0.55 0.33 

hardnessb) B 8B 4H 10H 

thermal conductivity (W K-1 m-1) 0.15 0.20 0.19 1.05 

a)tested in a ball drop experiment on specimen with 2.0 mm thickness and an area of 100 x 100 mm² b)tested with 
pencil hardness tester (ranging from 10B being the softest and 10H being the hardest grade on the scale) c)tested at 
30 °C and 100 kPa pressure difference, 1 barrer = 10-10 cm³ cm cm-2 s-1 cmHg-1 d)measured at 50% relative humidity 
and 22 °C in a constant-pressure setup. 
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Now, what if there was a way to avoid of such expensive, energy- and maintenance-

intensive equipment by rendering the passive house really passive? With a gas permeable 

glazing like PLimC, the supply with fresh air can occur through this material with  ideally 

 no need of an active ventilation system. A rough estimate for the counterbalancing of CO2 

levels in passive houses and greenhouses, respectively, each with a PLimC glazing is given 

in Table 4-3 (and Supplementary Tables 4-3 and 4-4). Not O2 but only CO2 and was 

considered for the calculation as it is the limiting factor in both applications: 

 The concentration of CO2 in the atmosphere of 400 ppm (equals to a partial 

pressure of 0.04 kPa) is rather low compared to O2 with about 21% (equals to a 

partial pressure of 21 kPa) and the permeation through a membrane is directly 

proportional to the partial pressure difference. 

 CO2 has the higher toxicity at relatively low concentrations, that is, the 5% that we 

have employed as concentration in the calculation for the passive house can already 

cause headaches and it should be regarded as upper limit. 

The parameters that the estimation is based on are the area and thickness of the glazing, the 

partial pressure difference between interior and exterior due to respiration, the respiration 

type (exhaling of CO2 by residents in a passive house; uptake of CO2 by plants), the 

respiration rate56 and the permeance (P multiplied by the thickness of the membrane; 

depends on the area and thickness of the glazing and the partial pressure difference of CO2) 

of the corresponding PLimC glazing. The numbers were chosen in order to draw a realistic 

picture of the requirements for each application and the last two values, that is, the 

respiration rate of the residents/plants and permeance of the glazing are the decisive 

parameters. The resident in the passive house has a respiration rate of 41 g[CO2] h-1 while 

the 20 m2 PLimC glazing could compensate for 1.0 g[CO2] h-1 or 2.5%. In the case of the 

closed greenhouse, a 500 m2 large and 0.1 mm thick PLimC cover can account for 

0.4 g[CO2] h-1, whereas the cultivation are of 200 m2 has a demand of 400 g[CO2] h-1 or, in 

other words, the demand outweighs the supply by a factor of 1000.  
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Table 4-3 | Estimation of CO2 counterbalancing in PLimC-glazed passive and greenhouses. 

 passive house closed greenhouse 

area of glazing (m2) 20 500 

thickness of glazing (mm) 1.0 0.1 

partial pressure difference CO2 (kPa) 5.0a) 0.02 

respiration type exhalation of resident uptake by plants (200 m2) 

respiration rateb) (g[CO2] h-1) 41 400 

permeance of PLimC glazingc) (g[CO2] h-1) 1.0 0.4 
a)the partial pressure of 5.0 kPa corresponds to 5% CO2 in the atmosphere, which is already a value where a headache 

can occur when exposed to for a longer time b)values taken from reference 56, c)calculated from P(CO2) of PLimC of 

68 barrer. 

For the greenhouse there is a great obstacle to this natural breathing of the glass due to the 

inherently low partial pressure difference upon consumption of the gas, e.g. a difference of 

only 0.02 kPa upon bisection of the atmospheric CO2 concentration of 400 ppm to 200 ppm 

(actually most plants prefer higher CO2 level than 400 ppm). Consequently, the application 

of PLimC glass in greenhouses is techno-economically less realistic than application of this 

material in passive houses. Although this first assessment of PLimC as breathable glazing 

displays only 2.5% compensation of the CO2 exhaled by the resident of the passive house, 

an application and therefore we still see a great potential of improvement from both the 

material scient

enhanced gas permeability and a larger and thinner glazing are highly desirable as they 

contribute proportionally to an increased permeance. Nevertheless, PLimC in its original 

form is already a very promising candidate, as breathability (ten times more permeable to 

CO2, O2 and H2O than BPA-PC) and thermal insulation are given and the overall 

performance as glazing material is outstanding. 

After introducing the concept of breathing glasses, we would like to comment on the 

feasibility of applying PLimC as a window pane by comparing it with the typical glazing 

materials PMMA, BPA-PC and soda-lime glass. The performance of those materials in 

(glazing-) relevant physical, mechanical and transport properties was assessed and 

visualized in the radar chart in Fig. 4-4 (on a scale of 0 to 10, for the worst to the best 

performance, respectively, with 0 being the centre of the chart; assessment is based on 

values given in Table 4-2, except for processability, which is based on stability of the melts 

and the temperatures involved during processing, that is, a correlation with Tg is present). 

Without commenting on every detail of the plot, it becomes obvious that PLimC covers the 
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largest area of this chart due to its very balanced profile of properties and the extraordinary 

permeability of CO2 (68.0 barrer). In contrast to this transparent membrane, soda-lime 

glass (no detectable permeability) and PMMA (0.85 barrer) are rather barriers for gases, 

while BPA-PC (6.8 barrer) is still one order of magnitude less permeable than PLimC. For 

consideration as a window pane, another important parameter is the mechanical 

robustness, as a hit on the surface should not shatter the glass immediately. The four 

materials have been exposed to a ball drop experiment (see methods section and 

Supplementary Fig. 4-4), with a steel ball of 250 g being released from different heights onto 

a 1.5 mm thick sheet of the material. The experiment gives valuable information regarding 

the impact resistance of a material and  as expected  soda-lime glass shatters at very low 

energies of impact (0.3 J). Among the plastics, PMMA (0.5 J) is known to be rather brittle, 

while BPA-PC (3.3 J) is one of the most impact resistant polymers on the market. 

Surprisingly, its aliphatic counterpart PLimC (2.0 J) is only 40% less resistant to the ball 

impact and four times stronger than PMMA and of course much stronger than soda-lime 

glass. This property together with a superior hardness to BPA-PC (Table 4-2) would justify 

an application of PLimC as glazing material. In combination with the high permeability the 

application as a breathing glass becomes obvious if not compulsory. In order to meet 

requirements of a passive house, the insulating performance of the windows is another 

important factor to be considered. 

 PLimC

 PC

 PMMA

 soda-lime glass

Processability

Specific

gravity

Hardness Impact

strength

Thermal

conductivity

Gas permeability

Transparency

 
Figure 4-4 | Performance of typical glazing materials. The radar chart illustrates the relative 
performance of PLimC to the popular glazing materials BPA-PC, PMMA and soda-lime glass in various 
properties that are relevant for the application as glazing materials (assessment is based on values given 
in Table 4-2; the processability was assessed with respect to the stability of the melt during processing 
and is not directly correlated to the Tg of the materials). 



Main article 

133 

Here, PLimC can benefit from the inherently low thermal conductivity of plastics, as it 

exhibits a seven times lower thermal conductivity (0.15 W K-1 m-1) than soda-lime glass 

(1.05 W K-1 m-1). As a consequence, the need for highly sophisticated constructions such as 

triple-glazing is reduced. The material and manufacturing costs have been omitted on 

purpose, since for PLimC no industrial process has been developed yet. The great 

availability of the bio-based raw material limonene (500 kt a-1 from orange peel)57 and CO2 

(32 Gt a-1, anthropogenic emission)2 should eventually result in a competitive pricing of 

PLimC on the market. Minor drawbacks of the aliphatic PC are the low degree of hardness 

and the poor processability (was assessed with respect to the stability of the melt during 

processing). The first could be tackled by using a highly permeable hard coating, while the 

latter is still to be solved in a concerted chemistry/engineering approach. However, by 

reminding the reader of the concept of breathability of the glazing, we anticipate for PLimC 

that the additional value outweighs the efforts to overcome the obstacles towards the final 

product by far. 

4.3 Outlook 

The high CO2 permeability of PLimC together with a significant selectivity for the gas 

suggest applications as a membrane material for carbon capture in fuel and flue gases. 

Compared to commercial membrane materials, PLimC is superior. The anti-aging effect, 

leading to an increased CO2 permeability upon prolonged exposure to higher temperatures, 

might still be advantageous to the high-permeability materials that usually suffer from 

deterioration performance upon prolonged usage. Future work will focus on the chemical 

modification of PLimC  as we could show the great versatility before  to improve 

membrane characteristics even further. In addition to the application as a membrane, the 

unique profile of properties of PLimC with its excellent mechanical, optical and thermal 

performance renders it a breathing glass. The application of this new concept to well-

insulated constructions such as passive houses, leads to a substantial reduction of heat 

consumption, as ventilation occurs passively through the windows made of PLimC and 

there is no need for sophisticated and expensive ventilation system with heat recovery units. 

The presented calculations suggest that the breathing glass can compensate for a part of the 

consumed (CO2-enriched) air and breathability could be improved even further by 

optimizations of the material and its processing. We are convinced that the concept of 
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breathing glass is not limited to the here-discussed applications and we are very excited to 

find new areas of utilization of PLimC. 

4.4 Methods 

Materials and instrumentation 

BPA- 30, 

PMenC and PLimC-ME31 were synthesized according to literature procedures. The thermal 

conductivity was measured with a Lasercom FOX 40 (software: WinTherm 50) on 

specimen with 1.5 mm thickness and polystyrene as reference material. The upper and 

lower plate temperatures were set to 30 and 20 °C, respectively. The mechanical strength of 

PLimC was tested in a ball drop experiment with 38 mm steel ball that was dropped onto 

2 x 100 x 100 mm³ sheets from various heights through a transparent pipe. The polymer 

sheets had been hot pressed at adequate temperature (140 °C of pre-shaped by solvent 

casting and pre-dried specimen of PLimC, 190 °C for PMMA and 240 °C for pre-dried 

BPA-PC) and fixed in a wooden frame (see Supplementary Fig. 4-4). In the frame, the 

sheets were supported by rubber on both sides to avoid tension/influences by direct contact 

between wood and specimen. The stability was compared to PMMA (Plexiglas® 8H, 

Evonik), PC (Makrolon® 2800, Covestro) and standard soda-lime glass. 

Permeability tests 

Single gas permeability of N2, O2, CH4, H2 and CO2 through the prepared membranes were 

pressure was 100 kPa for all the gases. Each measurement was repeated three times and for 

each sample. Permeability (P), diffusivity (D) and solubility (S) were determined in the 

 °C from the obtained pressure increase curves using the 

following equations: 

𝑃 = 𝐷 × 𝑆 =
𝑉𝑝𝑙

𝐴𝑅𝑇∆𝑡
𝑙𝑛

𝑝𝑓−𝑝𝑝1

𝑝𝑓−𝑝𝑝2
   (4-1) 

𝐷 =
𝑙2

6𝜃
     (4-2) 

where Vp is the permeate volume, l is the membrane thickness, A is the membrane area, R 

is the gas constant, pf t, pp1 
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and pp2 t is the 

time difference between two points on the time-pressure-curve and is the time lag.  

The ideal selectivity of the membranes is determined according to the following equation. 

𝛼(𝐴/𝐵) =
𝑃𝐴

𝑃𝐵
    (4-3) 

where (A/B) is the ideal selectivity, and PA and PB are single gas permeabilities of the two 

gases A and B, respectively. 

Simulation of an amorphous cell of PLimC 

A simulation of an amorphous unit cell of PLimC was carried out with the software 

Materials Studio (BIOVIA) using molecular dynamics. The cell was filled with eight chains 

each of ten repeating units and the Connolly surface (blue) was calculated. The parameters 

for the simulation are the density of PLimC of 1.08 g cm-3, a Connolly radius of 1.0 Å and 

a grid interval of 0.4 Å. 

PALS experiments 

PALS measurements were performed using a digital lifetime spectrometer system with a 

time resolution of 169 ps and the data were analysed using LT958. PALS spectra are 

composed of three lifetimes that can be extracted by a nonlinear least-squares fit of a 

weighted sum of exponentials: 

𝑁(𝑡) = ∑
𝐼𝑖

𝜏𝑖

𝑘+1
𝑖=1 𝑒𝑥𝑝 (−

𝑡

𝜏𝑖
)   (4-4) 

where i denotes the mean lifetime of the positron state i and Ii is the relative intensity of 

the lifetime component. A component with lifetime longer than 2 ns is absolutely attributed 

to ortho-positronium (o-Ps). The o-Ps R into the 

material surrounding the potential well and is equal to the thickness of the electron layer, 

which is approximately 1.656 Å. If the radius of the well is R, using quantum mechanics the 

o-Ps pick-off lifetime can be related to the radius of the cavity. Eq. 4-5 provides the 

relationship between R and 3. 

𝜏3 =
1

2
[1 −

𝑅

𝑅+∆𝑅
+

1

2𝜋
𝑠𝑖𝑛 (

2𝜋𝑅

𝑅+∆𝑅
)]

−1

  (4-5) 

  



4  Applications of PLimC 

136 

Calculation of the fractional free volume of PLimC 

The fractional free volume of an amorphous polymer can be calculated using Eq. 4-6: 

𝐹𝐹𝑉 =
𝑉𝑓

𝑉𝑠
=

(𝑉𝑠𝑝−1.3𝑉𝑊,𝑠)

𝑉𝑠𝑝
   (4-6) 

The free volume Vf can be expressed mathematically as the difference of the specific volume 

Vsp and the specific van der Waals volume VW,s (has to be multiplied by 1.3 beforehand, to 

compensate for the molecular steric demand of the polymer chains). VW,s is deduced from 

the sum of the van der Waals volumes of the individual fragments VW,i shown in 

Supplementary Table 4-2 divided by their fragmental molar mass Mi. The fragmentation 

was performed in accordance with BONDI 40,41 
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4.6 Supplementary information 
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Permeability of PLimC 

 
Supplementary Figure 4-1: Temperature-dependent permeability tests of PLimC with the sequence of 

gases: N2, O2, CH4, H2, CO2 and N2 (the whole measurement was repeated twice to account for 

reproducibility). For each temperature the sequence of gases was measured in a row before the sample 

was heated/cooled to the next temperature in the range from 30 to 80 °C. 
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Supplementary Figure 4-2: Temperature-dependent ideal selectivity of PLimC for the gas pairs: CO2/N2, 
CO2/O2, CO2/CH4, H2/CO2 and O2/N2, calculated from the single gas permeabilities shown in 
Supplementary Fig. 4-1. 
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Positron annihilation lifetime spectroscopy (PALS) 

Supplementary Table 4-1 | PALS data of PLimC films prepared by solvent casting or heat pressing.  

entry processing 3 (ns) I3 (%) rc (Å) 

1 solvent 2.56 33 3.32 

2 solvent 2.53 32 3.30 

3 heat 2.53 34 3.30 

4 heat 2.56 37 3.33 
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Supplementary Figure 4-3: PALS measurement with the lifetimes of Ps in a PLimC sample prepared by 

solvent casting (entry 1 from Supplementary Table 4-1). (b) Cavity radius in PLimC films calculated from 

3 with the corresponding intensity I3 of the signal. The samples were produced either by solvent casting 

or by heat pressing. 
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Calculation of the fractional free volume of PLimC 

Supplementary Table 4-2 | The FFV of PLimC and reference materials.  

fragment of 

PLimC 

Mi  

(g/mol) 

VW,i  

(cm³/mol) 
    

 

60.01 18.90     

 
15.03 13.67     

 

80.14 46.42     

 
41.09 27.22     

polymer 
M  

(g/mol) 

VW  

(cm³/mol) 

VW,s  

(cm³/g) 

Vsp 

(cm³/g) 

FFV  

(%) 
ref. 

PLimC 196.27 106.21 0.54 0.93 24  

PTMSP 142.23   1.33 29 1 

PIM-1 520.62   0.93 24 - 26 1 

BPA-PC 254.28   0.83 16 2 

Calculation of the fractional free volume of PLimC using the BONDI

contributing fragments with their VAN DER WAALS volumes (VW,i) are listed while the lower part shows the corresponding 
VAN DER WAALS volume of the repeating unit (VW), the specific VAN DER WAALS volume (VW,s) and the specific volume (Vs) 
of the polymer are shown. 
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Ball drop impact resistance 

  

Supplementary Figure 4-4: Ball drop test with (a) the whole setup of 2 m transparent pipe with height 
marks, the steel ball hold by a magnet and the polymer specimen fixed inside a wooden frame. (b) The 
two steel balls used for testing either with 23 or 38 mm diameter. (c) A magnification of the 100x100 mm² 
wooden frame with a polymer sheet inside. 

  

a 

b 

c 
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Calculation of respiration rate for glazing applications 

Passive house. For the calculation of evolution and removal of CO2 in a passive house the 

respiration rate (exhalation of CO2) of an adult was assumed to be 29 g (CO2) h-1. The value 

is obtained for an respiration rate of 6 L min-1 and a CO2 concentration of the exhaled air 

of 4%.3 For the calculations shown in Supplementary Table 4-3, a glazing area of the house 

of 20 m2 and a glazing thickness of 1.0 mm for a mechanically robust glass and of 0.1 mm 

for thin-walled glazing, were chosen. The partial pressure difference between inside and 

outside of the house was set for various air conditions, ranging from lethal 

( p(CO2)=10 kPa, that is, 100 000 ppm) to domestically allowed ( p(CO2)=0.5 kPa, that is, 

5 000 ppm) CO2 concentrations.4 

Supplementary Table 4-3 | PLimC as glazing material in passive houses.  

air condition 
p(CO2) thickness permeance of glazing permeance/respiration 

(kPa) (mm) (g[CO2] (20 m-2)  h-1) (%) 

lethal 10 1.0 0.81 2.8 

headache 5.0 1.0 0.41 1.4 

headache (thin-walled) 5.0 0.1 4.1 14.1 

critical 1.5 1.0 0.12 0.4 

allowed 0.5 1.0 0.04 0.1 

Parameters used for the calculations are P(CO2) = 68 barrer, thickness of glazing = 1.0 mm, the rate of respiration of 

one resident is 29 g (CO2) h-1, CO2) = 2.0 mg cm-3, passive house with 20 m2 glazing and one inhabitant.  



4  Applications of PLimC 

148 

Closed greenhouse. For the calculation of supply and demand of CO2 in a closed 

greenhouse the respiration rate (uptake of CO2 for photosynthesis) of the plants was 

assumed to be 2 g (CO2) m-2 h-1 with a total area of 200 m2 of cultivation.5 For the 

calculations shown in Supplementary Table 4-4, a glazing area of the house of 500 m2 and 

a glazing thickness of 0.1 mm for a mechanically robust film and of 0.01 mm for thin-walled 

glazing, were chosen. The partial pressure difference between inside and outside of the 

house was set for various air conditions, ranging from high ( p(CO2)=0.01 kPa, that is, an 

interior CO2-level of 300 ppm) to low ( p(CO2)=0.04 kPa, that is, an interior CO2-level of 

0 ppm) CO2 concentrations. 

Supplementary Table 4-4 | PLimC as glazing material in closed greenhouses.  

CO2 level 
2) thickness permeance of glazing permeance/respiration 

(kPa) (mm) (g[CO2] (500 m-2) h-1) (%) 

high 0.01 0.1 0.20 0.05 

medium 0.02 0.1 0.41 0.1 

medium (thin-walled) 0.02 0.01 4.06 1.0 

low 0.04 0.1 0.81 0.2 

Parameters used for the calculations: P (CO2) = 68 barrer, the rate of respiration of an area of cultivation of 200 m2 is 

400 g (CO2) h-1, (CO2) = 2.0 mg cm-3, greenhouse with 200 m² cultivation and 500 m² glazing area.  
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Abstract 

Completely bio-based poly(limonene carbonate) is a thermoplastic polymer, which can 

be synthesized by copolymerization of limonene oxide (derived from limonene, which 

is found in orange peel) and CO2. Poly(limonene carbonate) has one double bond per 

repeating unit that can be exploited for further chemical modifications. These chemical 

modifications allow the tuning of the properties of the aliphatic polycarbonate in nearly 

any direction. Here we show synthetic routes to demonstrate that poly(limonene 

carbonate) is the perfect green platform polymer, from which many functional materials 

can be derived. The relevant examples presented in this article are the transformation 

from an engineering thermoplastic into a rubber, the addition of permanent 

antibacterial activity, the hydrophilization and even pH-dependent water solubility of 

the polycarbonate. Finally, we show a synthetic route to yield the completely saturated 

counterpart that exhibits improved heat processability due to lower reactivity. 

  



5  Modifications of PLimC 

154 

5.1 Introduction 

The petroleum-based plastics industry is facing two major challenges. On the one hand, 

there is the urgent environmental problem of pollution of the ocean with about 5 million 

tonnes of plastic waste per year.1,2 On the other hand, there is a natural limitation of 

petroleum resources, that eventually leads to a running out of oil and natural gas within 

this century.3 In order to overcome these limitations, efforts are directed towards the 

development of degradable polymers4,5 and the use of bio-based monomers6 8, respectively. 

Sometimes, both classes are combined, i.e. the polymer is bio-based and biodegradable, e.g. 

poly(lactic acid) (PLA) or polyhydroxyalkanoates (PHA).9 11 In other instances the polymer 

can be assigned either to the class of bio-based non-degradable plastics, such as bio-

polyethylene (bio-PE) or bio-poly(ethylene terephthalate) (bio-PET), or to the class of 

biodegradable petro-based plastics, e.g. poly(-caprolactone) (PCL) or poly(butylene 

adipate-co-terephthalate) (PBAT).8,12 However, even for a material which is assigned to 

both classes  as for PLA  the origin of the bio-based monomers is questionable, as lactic 

acid is derived from glucose, which is again derived from corn starch. The latter is also an 

important food resource and as such in competition with the use as precursor for the 

conversion into plastics. In contrast, limonene  a doubly unsaturated terpene  is a bio-

based non-food resource which is mainly derived from the peel of citrus fruits.13 15 As the 

major component of orange oil (>90%), it is an abundantly available side-product of the 

orange industry, produced in amounts of roughly 500 kt per year.16 Its versatility as a 

monomer is reflected by the great variety of polymers that are derived from limonene.13,17

19 In 2004, Coates and colleagues20 reported the elegant metal-catalyzed conversion of its 

oxidation product limonene oxide (LO) with CO2, to give a low molecular weight 

poly(limonene carbonate) (PLimC) (Fig. 5-1). An Al(III)-based catalyst was recently found 

to incorporate not only the trans- but also the cis-isomer of LO, which is an important step 

towards higher conversions.21 
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Figure 5-1 | Synthetic route towards PLimC. The copolymerization of limonene oxide and CO2 in the 
presence of a -diiminate zinc catalyst was discovered by Coates et al. and optimized in our group to yield 
high-molecular-weight PLimC. 

Inspired by the work of Coates et al.,20 we modified the copolymerization to yield high-

molecular weight (> 100 kDa) PLimC in kg quantities22 with a glass transition temperature 

of 130 °C, higher transparency than bisphenol-A polycarbonate (BPA-PC; 94% vs. 89%) 

and improved mechanical properties compared to the petro-based counterpart 

poly(cyclohexene carbonate) (PCHC, strain at break of 2% vs. 15% for PLimC).23 The 

amorphous thermoplastic still possesses one double bond per repeating unit. This suggests 

a broad range of modifications to tune the properties in almost any direction. Thus, we 

consider PLimC a platform, from which countless functional materials can be derived. In 

order to support this statement, we give here relevant examples of straight forward addition 

reactions, i.e. thiol-ene click chemistry,24 acid-catalyzed electrophilic addition and metal-

catalyzed hydrogenation. The first two are conducted as polymer-analogous reactions, 

while the latter involves modification of the pre-monomer limonene. The manipulations 

lead to dramatic changes in the property profile of the engineering thermoplastic PLimC, 

including a transformation into a rubbery material, antibacterial activity, increased 

hydrophilicity or even water solubility and last but not least improved melt processability. 

5.2 Results 

Modification of unsaturated PLimC 

The valorization of the platform polymer PLimC is illustrated in Fig. 5-2. When butyl-3-

mercaptopropionate (B3MP) is used, an enormous change in mechanical properties is 

achieved. This leads to a transformation of the high-Tg thermoplastic into rubbery PLimC-

B3MP with a nearly three orders of magnitude decreased YOUNG

this chemistry is also applied to transform PLimC into an antibacterial material, by 

covalently attaching a tertiary amine to the backbone (PLimC-N) and subsequent 
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quaternization with an aromatic moiety (PLimC-NQ). The antibacterial activity of PLimC-

NQ was successfully tested against Escherichia coli (E. coli) bacteria. Another aspect is the 

hypothetical biodegradability of PLimC, which would be expected for an aliphatic 

polycarbonate, as it was shown for others.25 27 Initial composting studies on PLimC revealed 

no degradation after prolonged exposure at elevated temperatures. This rather shows the 

high bio-stability of the material which is also desirable for many applications. Here, we 

present two major synthetic routes in order to tune the degradation behaviour of the rigid 

and hydrophobic polymer, i.e. either an acid-catalyzed electrophilic addition of 

poly(ethylene glycol)monomethyl ether (PEG-3-OH) resulting in PLimC-PEG or thiol-ene 

chemistry with mercaptoethanol (ME) to give PLimC-ME or mercaptoacetic acid (MAc) 

to yield PLimC-MAc, respectively. For the latter, this eventually even leads to pH-

dependent water solubility, i.e. the material dissolves readily in basic environment. 

 

 

Figure 5-2 | The valorization of PLimC. The versatility of the platform polymer PLimC is illustrated in this 

hexagon cluster. The double bond is utilized for addition reactions, to induce dramatic changes of the 

properties of PLimC. The addition of an alkyl ester (PLimC-B3MP) leads to a drop of Tg by 120 °C and of its 

YOUNG

(PLimC-MAc) yields a pH-dependent solubility in water, whereas the functionalization with hydroxyl 

(PLimC-ME) or polyethylene glycol (PLimC-PEG) groups results in a higher hydrophilicity. The attachment 

of a tertiary amine (PLimC-N) and subsequent quaternization with an aromatic moiety (PLimC-NQ) leads 

to antibacterial activity against E. coli. Another possibility is the complete hydrogenation of the double 

bond to give PMenC, a superior material for heat processing. 
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Apart from the above-mentioned addition reactions, the synthetic route to the fully 

hydrogenated polycarbonate poly(menthene carbonate) (PMenC) is also reported for the 

first time. The saturated polycarbonate might be a viable choice for replacing PLimC in 

thermal processing, as no cross-linking can occur. Thus, starting from the bio-based 

platform polymer PLimC, we could introduce antibacterial activity (ideal as coating 

material),28,29 elastomeric behaviour, hydrophilization, water solubility (both should 

accelerate biodegradation) and in fact inertness by hydrogenation to improve processing. 

The transformation into elastic PLimC 

The enormous versatility of PLimC is reflected in an experiment, where the thiol-

functionalized ester B3MP  the pure ester is found in many fruits30  is clicked to the 

double bond in nearly quantitative yield (schematic in Fig. 5-3, Supplementary Figs 5-1  5-

3). The Tg of PLimC lies at 130 °C, rendering it a typical engineering thermoplastic like 

polyamide, poly(ethylene terephthalate), BPA-PC etc. (yellow region in ASHBY plot of 

Fig. 5-3, Supplementary Table 5-1).31 The covalently attached butyl ester B3MP changes the 

thermal and hence the mechanical properties dramatically, i.e. the Tg drops to 5 °C 

(Table 5-1, Supplementary Table 5-2, Supplementary Fig. 5-4). Tensile testing of the new 

material revealed its high maximum elongation  combined with a low YOUNG

and tensile strength s, respectively. PLimC-B3MP with 0  2% residual double bonds in 

the backbone was prepared by variation of the reaction time (Supplementary Fig. 5-5). 

Curing the unsaturated polymers at 100 °C for 5 h renders the cross-linked samples 

insoluble while the mechanical properties can be adjusted (Supplementary Fig. 5-6, for a 

detailed discussion on the curing process see Supplementary Discussion). These 

observations combined with the elasticity (Supplementary Fig. 5-7) suggest a transition 

from the engineering thermoplastics region to the rubber region, i.e. the thermoplastic 

PLimC has become a PLimC rubber (PLimC-B3MP, red region in Fig. 5-3).32 This 

transition enables the application of the bio-based material in completely new areas, where 

elasticity and softness are required. Furthermore, we introduced a short alkyl chain ester 

into the repeating unit of PLimC. Addition of longer alkyl chains potentially leads to Tg 

values well below 0 °C, which is another very important parameter to tune the performance 

of the resulting rubber. 
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Table 5-1: Thermal  and tensile properties of PLimC,22 PLimC rubber, PC and silicone rubber.  

polymer Tg (°C) YOUNG  s (MPa)  (%) 

PLimC 130 950 55 15 

PLimC rubber 5 1.0 6.8 228 

BPA-PC 145 2500 65 125 

silicone rubber -125 1.0 4.8  7.0 100 - 400 

Data for PLimC rubber is taken from a cured sample of PLimC-B3MP with initially 2% unsaturation; for a more 
comprehensive table of polymers see Supplementary Table 5-1. 

This is an example of the transformation of PLimC into a completely new material by 

simple polymer analogous click chemistry, while keeping the material based on natural 

resources. Further studies will focus on the reduction of Tg and the control of mechanical 

properties to expand the coverage of the ASHBY plot. 
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Figure 5-3 | The transformation into elastic PLimC. The schematic illustrates the functionalization of 

PLimC with B3MP to give PLimC-B3MP, i.e. a PLimC rubber. The YOUNG

plastics, commodities (both yellow region) and rubbers (red region) are plotted against their tensile 

strength. The materials PLimC and PLimC rubber are highlighted as green circles, showing the dramatic 

change of mechanical properties upon functionalization of pure PLimC with B3MP. 
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The transformation into antibacterial PLimC 

In a recent publication we stated the thermal properties of PLimC, i.e. a Tg of 130 °C and a 

5% decomposition temperature (T5%) of 240 °C, resulting in a rather narrow window for 

processing.22 As an alternative to thermal processing, i.e. extrusion or injection moulding, 

the employment of a PLimC solution for the application as a coating is self-evident. The 

high transparency and good scratch resistance are very promising properties that should 

yield high-value materials in combination with an extra functionality. We picked one out 

of many possible functionalizations, to show how PLimC can be transformed into an 

antibacterial material by rather simple means. The strategy involves the addition of a 

tertiary amine to PLimC via thiol-ene click chemistry (PLimC-N) and the subsequent 

quaternization of the amine with an aryl halide (PLimC-NQ) (Supplementary Figs 5-8 - 5-

14, Supplementary Tables 5-3 and 5-4). The functionalization was performed with different 

degrees of functionalization (DFs), though keeping it below 70% to keep the material 

insoluble in water. Resistance to water is of major importance, to make the material 

applicable as coatings in everyday life, where contact with water is inevitable. On the other 

hand, antibacterial activity rises exponentially, if the polymer  or part of it  is water-

soluble, since i 33 

Therefore, a sample with 20% quaternized amine (PLimC-NQ20) was investigated, which 

does not disintegrate in contact with water and still shows antibacterial activity by 

inhibiting bacterial growth. For the evaluation of the antibacterial properties of the coating, 

films were placed in E. coli suspensions and the concentration of the Gram-negative 

bacteria was assessed after 0, 6, 12, 24 and 48 h (Supplementary Tables 5-5  5-7). 

Compared to pure PLimC, PlimC-NQ20 exhibited a strong inhibitory effect on bacteria 

growth after 24 h. The ratio of killed bacteria relative to PLimC samples is illustrated in 

Fig. 5-4. The inhibitory effect for the positive reference material polyhexamethylene 

guanidine hydrochloride (PHMG) is detected already after 6 h, when all bacteria were 

killed. The charged PLimC samples are less active. This is not surprising, as they are in 

condensed state and not dissolved like PHMG. Still, the antibacterial activity could be 

observed after 12 h of contact with the bacteria suspension, indicating a successful 

valorization of PLimC into antibacterial PLimC.  
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Figure 5-4 | The transformation into antibacterial PLimC. Schematic of the functionalization of PLimC 

with a tertiary amine (PLimC-N) and the subsequent quaternization with a benzyl moiety (PLimC-NQ). In 

the column diagram the bacterial inhibition performances of PLimC-NQ20 and a positive reference 

material (PHMG) relative to pure PLimC in a shaking flask experiment; tested on E. coli bacteria in buffer 

solution with polymer films (20 mg mL-1) at 20 °C, are illustrated. The inhibition was calculated by 

determination of the cfu of 10-fold diluted dispersions spread on agar plates (Supplementary Table 5-7). 

Here, as proof of principle, we can demonstrate that PLimC is readily transformable into a 

material with antibacterial activity by rather simple and cost-effective means. We would 

assume though that lots of parameters are still to be optimized, i.e. DF, length of spacer 

between thiol and amine, nature of the alkyl or aryl moiety on the amine and random 

distribution of quaternized amine along the backbone of the polymer vs. block copolymer 

structure. Furthermore, the types of bacteria have to be selected in respect of the targeted 

application. 

The transformation into hydrophilic/water-soluble PLimC 

The idea to render PLimC more hydrophilic was born, when studies on the degradation 

behaviour of pure PLimC in highly active compost at 60 °C (positive reference poly(L-lactic 

acid) disintegrated within one week) had been stopped after 60 days because no change, 

neither in the outer appearance nor in molecular weight, had been observed. The rather 

substantial bio-stability of this aliphatic polycarbonate is most likely explained by the three 

facts about PLimC. First of all, it has a very rigid backbone, resulting in a high Tg of 130 °C, 

which is about 100 °C higher than that of the readily biodegradable poly(propylene 
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carbonate).34,35 The rigidity of the backbone prevents the polymer chain segments from 

moving and therefore no exposure of the carbonate groups to enzymes/bacteria is possible. 

Second

connected to an isopropylene group and another methyl moiety vicinal to the carbonate. 

Thus, even if there are some exposed chains on the surface of such a film, the carbonate 

group is shielded against any attacking species. Eventually, PLimC is very hydrophobic 

which is represented by its contact angle to water (CAW) of 94°. This prevents not only 

enzymes from penetrating the polymer but also water. Hence, acid or basic hydrolysis  

usually the major breakdown mechanism for long polymer chains  is inhibited, so nearly 

no fragmentation of PLimC for further degradation takes place. In consideration of the 

underlying circumstances, the hydrophilization of PLimC was assumed to be a likely 

enabler for biodegradation. Three different strategies were employed to achieve hydrophilic 

PLimC: two of them involve the well-known thiol-ene chemistry with mercaptoethanol 

(ME) (Supplementary Fig. 5-15, Supplementary Table 5-8) or mercaptoacetic acid (MAc) 

as thiols, respectively (Supplementary Fig. 5-16).36 40 The other strategy is  an even simpler 

 acid-catalyzed electrophilic addition of PEG-3-OH to the double bond (Supplementary 

Fig. 5-17, Supplementary Table 5-9). The latter can also be acknowledged as a green 

reaction, hence keeping the bio-based character of PLimC, while grafting polar 

functionality. Indeed, the higher the DF, the smaller CAW becomes. Up to 18% conversion 

of the double bond was achieved by this electrophilic addition, but since it is acid-catalyzed, 

hydrolysis of the carbonate is an immanent side reaction, that eventually breaks down the 

polymer chains (Supplementary Fig. 5-18). So reaction times were kept short and a great 

excess of PEG-3-OH was maintained. The contact angle could be decreased below 80° with 

this technique. An even stronger decrease of the CAW could be achieved by radically adding 

ME to PLimC. Compared to the acid-catalyzed addition, the advantage of thiol-ene 

chemistry is the absence of hydrolytic side-reactions. Therefore, higher DFs are easily 

accessible. Here a DF of 70% resulted in a CAW of 70°. In order to hydrophilize the polymer 

even further, PLimC was functionalized with MAc, whereas 100% attachment of the acid 

yields a polymer with a CAW of 60°. A side effect of all above-mentioned modifications is 

the decrease of Tg with increasing DF (Fig. 5-5, stars, Supplementary Figs 5-19  5-21). In 

terms of degradability, this should further promote the breakdown of the polymer. The 

PEG and ME modified PLimCs were assessed regarding their degradation behaviour in 

acidic (pH 4), basic (pH 9) and enzymatic environment (esterase) at elevated temperatures 
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(37 °C). Within the timespan of four weeks no degradation characteristics, i.e. loss of mass, 

drop in molecular weight or surface alterations, could be observed (Supplementary Fig. 5-

22, Supplementary Table 5-10). These observations suggest that neither a bulk nor a surface 

erosion process is taking place for the samples in those environments on the time scale 

measured. Keeping in mind that hydrophilicity and the chain flexibility were augmented, 

but steric shielding of the carbonate group was unchanged (or even higher due to addition 

reactions), we noticed that the overall stability versus hydrolysis and/or enzymatic attack is 

still too high. However, on longer time scales, the backbone of PLimC is anticipated to be 

much more labile than that of a polyolefin and degradation should take place eventually. 

This makes it an interesting choice, wherever good stability against hydrolysis during 

application is required, but eventual disintegration on a reasonable timescale is desired. 

 
Figure 5-5 | The transformation into hydrophilic/water-soluble PLimC. Dependency of contact angle 

to water (squares) and Tg (stars) of a PLimC film on the degree of functionalization with PEG-3-OH (black), 

mercaptoethanol (red) or mercaptoacetic acid (blue), respectively. The schematic of the functionalization 

is shown for the thiol-ene addition of ME and MAc to give PLimC-ME and PLimC-MAc, respectively, and 

the electrophilic addition of PEG-3-OH to give PLimC-PEG.  

The functionalization of PLimC with acid functionality renders the material not only 

hydrophilic (CAW = 60°) but also pH responsive. A film of PLimC-MAc (DF = 100%) 

placed into a pH > 8 buffer solution will dissolve within minutes. In the dissolved state 

hydrolysis is of course highly accelerated compared to the condensed state. Therefore, the 

material would quickly disintegrate in seawater, which is usually slightly basic, and chain 

scission could readily occur. The exact degradation mechanism is yet to be studied, but this 

polymer could contribute in reducing the waste accumulation in the oceans.1 
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The saturation of PLimC 

Apart from the functionalization of PLimC, of course, it is also possible to hydrogenate the 

double bond, to render it unreactive, when it is heat processed or stored for a prolonged 

period of time. In contrast to the aforementioned modifications, this is not a polymer-

analogous reaction, but the manipulation is performed on the pre-monomer (R)-limonene. 

Indeed, this hydrogenation is very regioselective, when a heterogeneous catalyst like Pt on 

charcoal is used. Hence, a quantitative conversion to menth-1-ene (Men) can be achieved 

in reasonable time, while separation from the catalyst/carrier material is easy. We used the 

N-bromosuccinimide-(NBS)-route for epoxidation (see Fig. 5-6) of Men to menthene 

oxide (MenO), as it is an established reaction for the stereo- and regio-selective epoxidation 

of limonene.22 The route involves the formation of the bromohydrin MenBrOH and the 

subsequent ring-closure in a basic medium to yield MenO. The conversion of the monomer 

MenO and pre-monomers menth-1-ene and MenBrOH, respectively, were monitored by 

GC analysis (Supplementary Figs 5-23  5-25). 

 
Figure 5-6 | The saturation of PLimC. The synthetic route to PMenC starts from the metal-catalyzed 

hydrogenation of limonene, followed by the stereoselective epoxidation of menth-1-ene via its 

bromohydrin (MenBrOH) to trans-MenO and the subsequent copolymerization with CO2 to give the 

saturated polycarbonate PMenC. 

As the catalyst for the production of PMenC by copolymerization with CO2 is also selective 

towards the trans-isomer of MenO (Supplementary Figs 5-26  5-28), we still recommend 

taking the detour via the bromohydrin, but plan to look into new reactions to perform a 

more economical oxidation of menthene. The properties of PMenC are very similar to 

PLimC, as both are high-Tg amorphous polycarbonates (Supplementary Fig. 5-29). The 

only, and of course anticipated, difference is the inability of the polymer to cross-link or to 

perform any undesired oxidation reactions at elevated temperatures. For PLimC the 

addition of antioxidants, i.e. butylated hydroxytoluene derivatives, helps to reduce those 

side reactions, but for PMenC no additives are needed. Indeed, a better processability, i.e. 

extrusion and injection moulding, and a prolonged ultraviolet stability are anticipated. 

Both give extra value to this polymer. A combination of both MenO and LO for 
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copolymerization with CO2 is also possible, resulting in a defined number of available 

double bonds for post-modification reactions as shown above. 

5.3 Discussion 

In summary, we could show the huge versatility of the green platform polymer PLimC. The 

valorization was achieved either by polymer analogous thiol-ene chemistry and acid-

catalyzed electrophilic addition, or by metal-catalyzed hydrogenation of the pre-monomer. 

Thiol-ene chemistry proved to be the most versatile technique, adding not only 

hydrophilicity or pH-dependent solubility, but also antibacterial activity by 

functionalization with quaternary amines. Even a transformation of the high-Tg 

thermoplastic PLimC into a rubbery material could be achieved by addition of a thiol. Not 

as adaptable is the acid-catalyzed electrophilic addition of alcohols, though it proves to be 

more economical, since no costly functional thiols (employed in great excess) but only PEG 

and sulphuric acid are needed. Keeping the lability of the backbone of the aliphatic 

polycarbonate in mind, we note that this method is limited to short reaction times and 

hence only partial functionalization can be achieved. A quantitative conversion is possible 

for the regioselective hydrogenation of limonene, resulting in fully saturated PMenC after 

a few steps. This polycarbonate is oxidation-resistant and thus exhibits improved 

processability for extrusion and injection moulding. The valorization of PLimC 

significantly broadens the range of applications, as PLimC-NQ is a viable antibacterial 

coating material and PLimC-ME, PLimC-PEG and PLimC-MAc could be employed as 

packaging materials with tuneable degradation/dissolution mechanism. 

5.4 Methods 

Instrumentation and characterization 

NMR spectra were recorded on a Bruker AMX-300 operating at 300 MHz. Chemical shifts 

 are indicated in parts per million (ppm) with respect to residual solvent signals. Thermo-

gravimetric analysis was performed on a Netzsch TG 209 F1 Libra and differential scanning 

calorimetry on a Mettler Toledo DSC 821c, both at a heating rate of 10 K min-1 under N2 

atmosphere. Infrared spectra of solids were recorded with an ATR unit of a Digilab 

Excalibur FTS-3000. Gas chromatography was performed on a Shimadzu QP-5050 with N2 

as the carrier gas (temperature profile for GC studies: start at 40 °C hold for 5 min, heating 
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to 80 °C with 5 °C min-1, heating to 120 °C with 3 °C min-1 and hold for 3 min, heating to 

300 °C with 30 °C min-1). Relative molecular weights and dispersities were determined by 

gel permeation chromatography on an Agilent 1200 system with chloroform as the eluent 

and polystyrene as the calibration standard. A hazemeter BykGardner Haze-Gard Plus and 

a UV/Vis spectrometer V-670 (JASCO) were employed for the testing of optical properties 

of solvent cast PLimC films having a thickness between 100 and 400 µm. A Zwick/Roell 

Z0.5 test equipment with testXpert II software was employed for the tensile testing. The 

tests were performed at 21 °C and a relative humidity of 20%. The strain rate was set to 

5 mm min-1 to test the tensile properties of cast polymer films that were die-cut into 

specimen (dumb-bell shaped) having a width of 2 mm, a length of 20 mm and a thickness 

of 100 to 200 µm. A BYK Pencil Hardness Tester and Derwent Graphic pencils were used 

to determine pencil hardness. 

Synthetic Procedures 

All synthetic manipulations were carried out under exclusion of air in dry conditions, if not 

otherwise stated. The acid-catalyzed electrophilic addition and the thiol-ene chemistry 

were carried out as polymer analogous reactions. The hydrogenation of the exo double 

bond of limonene was performed on the pre-monomer, which was subsequently epoxidized 

and copolymerized with CO2, to give the polycarbonate PMenC. A detailed description of 

the synthetic procedures is given in the Supplementary Methods. 

Degradation tests in composting environment 

Composting tests were performed on cast films of PLimC (Mn = 54.0 kDa, Ð = 1.11) of 

200 µm thickness fixed in slide mounts. The three month matured compost was supplied 

by an industrial composting plant (Mistelbach) and directly used for PLimC burial tests. As 

positive reference material poly(L-lactic acid) (NatureWorks) was used. During the test the 

temperature was kept at 60 °C and the container was vented every two days (every three 

days after the first two weeks) and humidified if necessary (humidity was estimated by 

weighing of the container). 

  



5  Modifications of PLimC 

166 

Degradation tests in enzymatic environment 

The enzymatic tests were performed on cast films of PLimC, PLimC-ME (100% 

functionalized with ME) and BPA-PC (reference material) having a thickness of 100 µm, 

which were cut into 40 mg pieces. As media water, pH 4 buffer, pH 9 buffer and an esterase 

in pH 9 buffer (Esterase EL-01, triacylglycerol lipase, ASA Spezialenzyme GmbH, 1 part of 

enzyme suspension mixed with 4 parts of buffer solution, replaced after 10 days) were 

 °C the samples 

were shaken in a mechanical shaker (50 rpm) in 40 mL glass containers, which were filled 

to 75%. The mass loss (balance) and molecular weight (GPC) change were analyzed after 3, 

10 and 21 days in triplicate for each sample.  

Antibacterial activity tests 

Escherichia coli (E. coli, DSM no. 1077, K12 strain 343/113, DSMZ) as a Gram-negative 

test-organism was used to evaluate the antibacterial activity of the polycarbonates. We have 

chosen the Gram-negative bacteria E. coli for the antibacterial activity tests of PLimC-NQ 

to evaluate the general activity of the polymer towards a very common bacterium. CASO-

Boullion was used as nutrient for the E. coli (30 g L-1 in distilled water for liquid nutrient; 

15 g L-1 agar agar in addition for nutrient agar plates). The strain was preserved on nutrient 

agar plates and liquid cultures were grown by inoculation of liquid nutrient with a single 

bacteria colony using an inoculation loop. The inoculated broth was incubated with 

shaking at 37 °C until the optical density at 578 nm had risen to 0.125, indicating a cell 

density of 107-108 cfu mL-1. To obtain the final bacterial suspensions the inoculated broth 

was diluted with buffer solution (phosphate buffered solution, concentration of phosphate 

ions = 12 mM, pH = 7.4) to an approximate cell density of 105 cfu mL-1. The antibacterial 

activity was determined by the shaking flask method: polymer films with a mass of 40 mg 

and a thickness of 100 µm were incubated with 2 mL of bacteria suspension at ambient 

temperature in microcentrifuge tubes with contact times of 6, 12 and 24 h. After the defined 

time intervals, 100 µL specimens were drawn and spread on nutrient agar plates. After 

incubation at 37 °C for 24 h, colonies were counted and the reduction was calculated 

relative to the unfunctionalized PLimC sample. 
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Supplementary Figures 

 
Supplementary Figure 5-1: Representative 1H and 13C NMR spectra (recorded in CDCl3) of PLimC-B3MP1.0 
after reacting PLimC for 80 min with butyl-3-mercpatopropionate to give 99% conversion. The red 
rectangle indicates the methine resonance (adjacent to carbonate group) of both the unfunctionalized 
and the functionalized repeating unit, whereas the green rectangle marks the region where the protons 
of the (unfunctionalized) double bond are resonating. Since unsaturation is very low in all samples the 
region 5.2  4.6 ppm is magnified for all PLimC-B3MP samples in Supplementary Figure 5-2.  
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Supplementary Figure 5-2: Magnification of the methine and double bond proton resonances in the 
1H NMR spectra of PLimC-B3MP with a) 0%, b) 0.5%, c) 1.0% and d) 2% unsaturation in the backbone. The 
degree of unsaturation has been determined by integration of the signal at 4.7 ppm with respect to the 
methine proton at 5.0 ppm. 
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Supplementary Figure 5-3: Molecular weight distribution of the PLimC-B3MP samples with different DFs. 
Measurements were performed on a GPC with chloroform as eluent. 
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Supplementary Figure 5-4: Second heating cycle in DSC experiment of PLimC B3MP samples with 
various DFs recorded at 10 K min-1 in N2 atmosphere. All samples exhibit a glass transition at about 5 °C, 
as it was expected, since all samples exhibit a DF close to 100%. 
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Supplementary Figure 5-5: Effect of curing (time) on the tensile properties of PLimC-B3MP2.0. The 
diagram shows the tensile tests on specimens of PLimC-B3MP2.0 performed before curing (black) and after 
curing in air at 100 °C for 5 h (red) or 10 h (green), respectively. While the curing for 5 h has a dramatic 
effect on the tensile properties compared to the uncured sample, longer curing time (in total 10 h at 
100 °C) does not change the tensile properties any further. 
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Supplementary Figure 5-6: Stress-strain diagram of tensile testing of cured PLimC-B3MP specimens with 
(a) 2.0%, (b) 1.0%, (c) 0.5% and (d) 0.0% unsaturation in the (uncured) sample. The measurements were 
performed at a speed of 5 mm min-1 on specimen with a width of 2 mm, a length of 20 mm and a thickness 
of 150 µm. The films were cast from a methylene chloride solution, dried in vacuo at 20 °C and 
subsequently cured at 100 °C for 5 h in air. 
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Supplementary Figure 5-7: Evaluation of the elasticity of a cured specimen of PLimC-B3MP2.0 by cyclic 
elongation to 20% strain (40 cycles, 5 s strain, 10 s relaxation, strain rate 10 mm min-1). The strain is not 
completely reversible (maximum stress drops from 0.08 MPa for each consecutive cycle down to 0.06 MPa 
for the last cycle), as the Tg (5 °C) of the polymer is very close to the testing temperature of 21 °C, i.e. the 
slow dynamics can be assigned to the slow segmental motion of the polymer backbone. To improve 
reversibility in the strain experiment, the modification of PLimC with thiols that lower the Tg well below 
0 °C should be used. 
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Supplementary Figure 5-8: 1H NMR spectrum (recorded in CDCl3) of PLimC-N23 (57 kDa) after reacting 
PLimC (treated with antioxidant before) for 3 h with 2-(diethylamino)ethanethiol hydrochloride to give a 
DF of 23%. 1H NMR spectrum (recorded in CDCl3) of PLimC-N37 (85 kDa) after reacting PLimC for 3 h with 
2-(diethylamino)ethanethiol hydrochloride to give a DF of 37%. 
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Supplementary Figure 5-9: 1H NMR spectra (recorded in CDCl3) of PLimC-N46 and PLimC-N67 (both 
85 kDa) after reacting PLimC for 4 h or 6 h with 2-(diethylamino)ethanethiol hydrochloride to give a DF of 
46% and 67%, respectively. 
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Supplementary Figure 5-10: Representative 13C NMR spectrum (recorded in CDCl3) of PLimC-N67 
(85 kDa) after reacting PLimC for 6 h with 2-(diethylamino)ethanethiol hydrochloride to give a DF of 67%. 
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Supplementary Figure 5-11: 1H NMR spectrum (recorded in CDCl3) of PLimC-NQ20 (57 kDa) after reacting 
PLimC-23N for 24 h with benzyl bromide to give nearly quantitative quaternization of the amine. 1H NMR 
spectrum (recorded in DMSO-d6) of PLimC-NQ37 (85 kDa) after reacting PLimC-N37 for 24 h with benzyl 
bromide to give quantitative quaternization of the amine. 
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Supplementary Figure 5-12: 1H NMR spectra (recorded in DMSO-d6) of PLimC-NQ46 and PLimC-NQ61 
(both 85 kDa) after reacting PLimC-N46 and PLimC-N67 for 24 h with benzyl bromide to give quantitative 
or 90% quaternization, respectively. 
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Supplementary Figure 5-13: Thermogravimetric analysis of aminated (PLimC-N) and quaternized 
(PLimC-NQ) samples of PLimC with different DF, measured at 10 K min-1 under N2 atmosphere. 
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Supplementary Figure 5-14: Second heating runs of DSC experiment of aminated (PLimC-N23) and 
quaternized (PLimC-NQ20) samples, measured at 10 K min-1 in N2 atmosphere. The trace of PLimC-NQ20 
is cut off at 140 °C, since decomposition of the sample is already in full progress. 
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Supplementary Figure 5-15: Representative 1H and 13C NMR spectra (recorded in CDCl3) of PLimC-ME18 
after reacting PLimC for 1 h with mercaptoethanol to give 18% conversion. 
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Supplementary Figure 5-16: 1H and 13C NMR spectra (recorded in DMSO-d6) of PLimC-MAc after reacting 
PLimC for 3 h with mercaptoacetic acid to give quantitative conversion. 
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Supplementary Figure 5-17: 1H and 13C NMR spectra (recorded in CDCl3) of PLimC-PEG after reacting 
PLimC for 68 h with PEG-3-OH to give a degree of functionalization of 18%. 
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Supplementary Figure 5-18: GPC molar mass distribution (eluent was chloroform, calibration was 
performed with PS standards) of PLimC and the PEG functionalized samples, showing the effect of the 
acidic conditions, that degrade PLimC after prolonged exposure. 
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Supplementary Figure 5-19: Development of Tg with increasing functionalization of PLimC with ME. For 
longer reaction times and higher degree of functionalization the Tg is rising again, because of 
intermolecular cross-linking between the double bonds. 



Supplementary information 

185 

40 60 80 100 120 140 160

 

 

H
e

a
t 
fl
o
w

 (
W

 g
-1
)

e
x
o

Temperature (°C)
 

Supplementary Figure 5-20: DSC thermogram of PLimC-MAc measured at 10 K min-1 in N2 atmosphere 
showing a glass transition of the sample at 82 °C. 
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Supplementary Figure 5-21: Second run of DSC experiments of PLimC functionalized with various 
amounts of PEG-3-OH by acid-catalyzed electrophilic addition of PEG-3-OH. 

  



5  Modifications of PLimC 

186 

 PLimC

 PLimC - esterase 21 d

 PLimC-ME7

 PLimC-ME7, esterase 21 days

 PLimC-ME46

 PLimC-ME46, esterase 21 d

 PLimC-ME82

 PLimC-ME82, esterase 21 d

10
4

10
5

0.0

0.5

1.0

1.5

 

 

R
I 
(a

.u
.)

molar mass (Da)

 
Supplementary Figure 5-22: Molar mass distribution of PLimC, PLimC-ME7/46/82 films before and after 
immersion for 21 days in an esterase buffer (pH 9) suspension. For all samples no significant change of 
molar mass distribution is observed, suggesting stability of the samples under these conditions. The 
eluent for GPC measurements was chloroform. 
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Supplementary Figure 5-23: GC analysis of menth-1-ene with a retention time of 16.4 min, after filtration 
step to remove the catalyst. 
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Supplementary Figure 5-24: GC analysis of the bromohydrin of menth-1-ene (MenBrOH) with retention 
times of 31.6 min (cis) and 31.9 min (trans), respectively, which was directly converted into the epoxide 
without prior purification. 
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Supplementary Figure 5-25: GC analysis of the MenO with retention times of 20.8 (cis) and 21.0 (trans) 
min, which was afterwards treated with NaH/ MeI and distilled. In the peak table below, the excess of 
trans-isomer is proven by the relative areas, i.e. 81% for trans-MenO. 
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Supplementary Figure 5-26: GC analysis of the precipitation bath of PMenC showing mainly cis-MenO 
(20.9 min) and trans-MenO (21.0 min). In the peak table below, the accumulation of cis-isomer is proven 
by the relative areas, i.e. 56% for cis-MenO compared to 44% trans-MenO, indicating the preferential 
incorporation of the latter into PMenC. 
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Supplementary Figure 5-27: 1H and 13C NMR spectra (recorded in CDCl3) of PMenC, which was produced 
by copolymerization of trans-menthene oxide with CO2 in the presence of a Zn catalyst. The preferential 
incorporation is also represented in the NMR spectra of PMenC. The 1H NMR spectrum shows a single peak 
at 5.00 ppm without any downfield shoulder, which would be an indication of incorporation of the cis-
isomer into the backbone. This argument is further supported by the 13C NMR spectrum of PMenC, which 
shows only one carbonyl resonance at 152.2 ppm i.e. no stereo-irregularities are present. 
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Supplementary Figure 5-28: GPC molar mass distribution (eluent was chloroform, calibration was 
performed with PS standards) of PMenC. The GPC analysis givs a relative Mn of 61.3 kDa and Ð of 1.14. 
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Supplementary Figure 5-29: TGA and DSC (2nd heating cycle) thermograms of PMenC measured at 
10 K min-1 in N2 atmosphere. The glass transition temperature is as for PLimC - found at 130 °C and also 
the 5% decomposition temperature remains at 240 °C. Hence the hydrogenation has no influence on the 
thermal properties of this aliphatic polycarbonate.  
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Supplementary tables 

Supplementary Table 5-1: Mechanical properties of selected commodities, engineering plastics and 
rubbers compared to PLimC and PLimC rubber from selected sources.1 3 

Polymer YOUNG (GPa) s (MPa)  (%) 

PLimC 0.95 55 15 

PLimC B3MP2.0 0.001 6.8 228 

PA-6 1.9 50 300 

PC 2.5 65 125 

PE 0.2 - 1 10 -30.0 600 - 800 

PET 3 54 275 

PMMA 3.2 65 10 

PP 1.4 32 400 

PTFE 0.5 13 200 

PVAc 0.6 30 10 - 20.0 

PVC 2.6 48 30 

Silicon rubber 0.001 4.8 - 7.0 100 - 400 

natural rubber 0.0013 17-25 750-850 

1,4-Polybutadiene 0.0013   

butyl rubber 0.001 18-21 750-950 

Neoprene 0.0016 25 800-1000 

 

Supplementary Table 5-2: Functionalization of PLimC with B3MP for various reaction times, resulting in 
different DFs and therefore different amounts of residual double bonds. The mol% of unsaturation of the 
uncured sample (100% - DF) is given as subscript in the sample name (i.e. PLimC-B3MP2.0 has 2 mol% 
unsaturated repeating units). The mechanical data was recorded after curing the samples for 5 h at 100 °C 
in air. 

# sample 
t  

(min) 
DFB3MP

a) 
(mol%) 

Mn
b)

 

(kDa) 
Ðb) 

 
s
c)  

(MPa) 
YOUNG c) 

(MPa) 

c) 
(%) 

1 PLimC 0 0 54.3 1.13 950 55 15 

2 PLimC-B3MP2.0 60 98.0 72.3 1.18 6.8 ± 0.8 1.05 ± 0.12 228 ± 6 

3 PLimC-B3MP1.0 80 99.0 73.3 1.18 7.2 ± 2.8 0.90 ± 0.15 265 ± 8 

4 PLimC-B3MP0.5 180 99.5 75.2 1.18 9.0 ± 0.9 0.52 ± 0.05 342 ± 9 

5 PLimC-B3MP0.0 300 >99.9 76.1 1.17 5.2 ± 0.2 0.32 ± 0.02 426 ± 4 

a)determined/estimated from analysis of 1H NMR spectra in the region of 4.7 ppm (protons of double bond), 
b)determined by GPC analysis, c)determined by tensile tests. 
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Supplementary Table 5-3: Functionalization of PLimC with 2-(diethylamino)ethanethiol in chloroform at 
60 °C for different reaction times and either 6 (entry 1) or 7 (entries 2-4) equivalents of thiol with respect 
to PLimC double bonds.  

# sample t (h) eq. thiol DFamine (%) pencil hardness 

1 PLimC-N23a) 3 6 23 7B 

2 PLimC-N37 3 7 37 7B 

3 PLimC-N46 4 7 46 8B 

4 PLimC-N67 6 7 67 8B 

a)molecular weight (Mn) of starting material PLimC was 57.3 kDa 

 

Supplementary Table 5-4: Quaternization of PLimC-N with benzyl bromide for different degrees of 
amination. Reaction was conducted in neat benzyl bromide (3 eq.) for 24 h without stirring, since the 
mixture was too viscous. After dilution with THF the polymer solution was repeatedly precipitated in 
hexane. 

# sample DFamine (%) DFquaternized (%) pencil hardness 

1 PLimC-NQ20 3 20 2B 

2 PLimC-NQ37 0 37 2B 

3 PLimC-NQ46 0 46 3B 

4 PLimC-NQ61 6 61 3B 
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Supplementary Table 5-5: Shaking flask test of PLimC and PLimC-NQ20 (duplicate test) in buffer. In the 
table the colony forming count (cfu) after the specified time of inoculation is listed, recalculated from the 
10-fold diluted sample. Besides the samples also positive reference (water soluble poly(hexamethylene-
guanidine) hydrochloride (PHMG) was tested, to compare the antibacterial activity of PLimC-NQ). 

t (h) N (cfu) N (cfu) R (%) N (cfu) R (%) N (cfu) R (%) 

 PLimC PLimC-NQ20 PLimC-NQ20 PHMG (positive ref.) 

0 170 160 0 180 0 230 0 

6 170 160 0 180 0 0 100 

12 1870 370 80 260 86 0 100 

24a 19000 660 97 2000 90 0 100 

48a 100000 12300 88 10200 90 0 100 

a)estimates are given, as the number of colonies even for the 10-fold dilution was above 300. 

 

Supplementary Table 5-6: Repetition of shaking flask test of PLimC and PLimC-NQ20 (tested in total 
three times). 

t (h) N (cfu) N (cfu) R (%) N (cfu) R (%) 

 PLimC PLimC-NQ20 positive ref. (PHMG) 

6 250 280 0 0 0 

12 150 260 0 0 100 

24 2000 15 99.3 0 100 
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Supplementary Table 5-7: Agar plates from spread bacteria suspensions of shaking flask test of PLimC, 
PLimC-NQ20 and PLimC-NQ37 for 6, 12, 24 and 48 h incubation time. A sample of PLimC-NQ37 was also 
tested in this run and interestingly, the antibacterial activity was lower compared to the less 
functionalized samples PLimC-NQ20. We would ascribe this rather unexpected behavior to the higher 
surface roughness of the cast films of PLimC-NQ37, leading to higher hydrophobicity although more polar 
groups are grafted to the polymer. Thus interaction with bacteria, i.e. with the cell membrane, is limited, 
which leads to low antibacterial activity. 

time of incubation 6 h   

concentration 100 10-1  

 

 

PLimC-NQ20 

 

PLimC-NQ37 

 

 

PLimC 

 

 

Positive reference 

(PHMG) 
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Supplementary Table 5-7 continued 

time of incubation 12 h   

factor of concentration 100 10-1  

 

 

PLimC-NQ20 

 

PLimC-NQ37 

 

 

PLimC 
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Supplementary Table 5-7 continued 

time of incubation 24 h   

concentration 100 10-1  

 

 

PLimC-NQ20 

 

PLimC-NQ37 

 

 

PLimC 

   

time of incubation 48 h   

concentration 100 10-1  

 

 

PLimC-NQ20 

 

PLimC-NQ37 
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Supplementary Table 5-8: Functionalization of PLimC with mercaptoethanol (PLimC-ME) for various 
reaction times, resulting in different degrees of functionalization and therefore lowered Tg and contact 
angles to water with respect to pure PLimC. The increasing Tg and CAW for samples reacted for longer than 
6 h, can be explained by cross-linking reactions between the double bonds, as the chain segment mobility 
is lowered and the cast films show a higher roughness, due to imperfections on the surface. 

# sample t (h) DFME (mol%) Mn (kDa) Ð Tg (°C) CAW (°) 

1 PLimC 0 0 42.1 1.13 130 94 

2 PLimC-ME7 1 7 42.9 1.08 113 86 

3 PLimC-ME18 2 18 49.2 1.08 110 80 

4 PLimC-ME46 3 46 56.5 1.06 100 79 

5 PLimC-ME82 6 82 63.4 1.11 91 70 

6 PLimC-ME81 16 81 70.5 1.26 95 97a) 

a)The prolonged reaction times lead to cross-linking, which also influenced surface roughness of cast films 

and thus the contact angle (higher for increased roughness). 

 

Supplementary Table 5-9: Functionalization of PLimC by sulfuric acid-catalyzed electrophilic addition of 
PEG-3-OH for different reaction times. 

# sample DFPEG (%) t (h) T (°C) CAW (°) Mn (kDa) Ð Tg (°C) 

1 PLimC - - - 93 54.3 1.10 130 

2 PLimC-PEG0.7 0.7 23 20 94 53.2 1.12  

3 PLimC-PEG1.7 1.7 43 30 99 47.2 1.24 129 

4 PLimC-PEG6.5 6.5 48 45 81 40.8 1.36 114 

5 PLimC-PEG18.1 18.1 68 54 79 31.6 1.32 91 
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Supplementary Table 5-10: Weight loss studies of PLimC, PLimC-ME7/ME46/ME82 and BPA-PC in various 
media, i.e. water, esterase, pH and pH 3 buffer for 3, 7 and 21 days. All samples were measured in triplicate 
and the mean values are given here relative to the original mass in % with standard deviation . The 
change of hydrophilicity and Tg do not promote mass loss of the polymer samples PLimC, PLimC-
ME7/46/82 or BPA-PC respectively, for the conditions tested. 

  PLimC PlimC-ME7 PLimC-ME46 PLimC-ME82 BPA-PC 

medium t (d) m (%)  m (%)  m (%)  m (%)  m (%)  

water 3 98.0 0.3 99.0 0.3 98.8 0.3 98.5 0.5 98.5 0.5 

 7 97.8 0.2 98.6 0.7 99.0 0.2 98.8 0.6 99.0 0.2 

 21 98.6 0.7 98.8 0.1 98.5 0.6 98.5 0.4 99.3 0.1 

            

esterase 3 98.2 0.2 98.8 0.6 97.8 0.5 98.0 0.9 98.5 0.4 

 7 99.1 0.0 98.9 0.2 98.3 0.3 99.0 0.5 98.8 0.3 

 21 98.0 0.8 99.4 0.3 98.7 0.5 98.8 0.1 97.9 0.8 

            

pH 9 3 98.4 0.5 99.5  98.5 0.5 98.5 0.5 98.8 0.3 

 7 99.1 0.4 99.2 0.1 98.3 0.6 97.8 1.0 99.0 0.2 

 21 98.9 0.4 98.9 0.6 99.1 0.1 98.6 0.4 98.5 0.6 

            

pH 4 3 99.4 0.3 99.0 0.5 98.5 0.5 98.5 0.3 99.3 0.4 

 7 98.6 0.7 98.1 0.7 98.8 0.2 98.8 0.8 98.5 0.8 

 21 98.8 0.1 98.3 0.1 97.9 0.6 98.0 0.6 98.9 0.3 
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Supplementary Discussion 

GPC analysis of PLimC-MAc 

GPC data of the acid-functionalized PLimC sample (PLimC-MAc) is not given as it is not 

soluble in CHCl3 and THF (only swells the polymer). The polymer is soluble in DMSO and 

DMF, though the sample elutes within the exclusion volume of the GPC column set due to 

the strong interaction with the eluent and weak interaction with the hydrophobic column 

packing material. 

Curing procedure and tensile tests for PLimC rubber 

The mechanical properties listed in Supplementary Table 5-2 were measured on samples 

that had been cured at 100 °C for 5 h in air. The curing procedure was applied in order to 

induce cross-linking of the residual double bonds in the polymer. After curing, the samples 

were assessed towards their solubility in chloroform and except for PLimC-B3MP0.0 (no 

cross-linking is possible even when exposed to 100 °C for 24 h) none of them dissolved but 

only swelling was observed. 

To elucidate the mechanism of heat-induced cross-linking, a solution of PLimC-B3MP2.0 

in chloroform was mixed with 1 wt% butylated hydroxytoluene (BHT, radical inhibitor) 

and cast into a film. After exposing the dry film to the same curing procedure (100 °C for 

5 h)  in contrast to the BHT-free samples  no cross-linking was observable, indicating a 

free radical cross-linking mechanism between adjacent double bonds of the partially 

unsaturated samples. The heat-induced cross-linking was proven indirectly by assessing the 

solubility and the mechanical properties of the cured samples. A direct analysis of residual 

double bonds by IR spectroscopy is not applicable because the low degree of unsaturation 

(< 3%) lies beyond the detection limit of the spectrometer. The effect of curing (time) is 

shown in Supplementary Fig. 5-5 for PLimC-B3MP2.0. The curing temperature of 100 °C 

was chosen due to the trade-off between decomposition of the backbone of the rather labile 

polycarbonate (as discussed in our previous article on PLimC)3 and the rate of thermally 

induced cross-linking (the higher the faster). On the one hand, a curing time of 5 h was 

found to be sufficient, since longer curing would not change the tensile properties any 

further. On the other hand, a curing time of 5 h was necessary, since samples heated for 

only 3 h were still soluble in chloroform. As an initial statement regarding the shelf life of 
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PLimC-B3MP2.0, we can state that a 100 µm film exposed to ambient conditions (21 °C, air 

with 50% relative humidity, laboratory lighting) for 20 days is still soluble in chloroform. 

The mechanical properties of the cured samples of PLimC-B3MP are shown in 

Supplementary Fig. 5-6. As expected, the introduction of cross-links leads to an increase of 

YOUNG

cross-linking density, i.e. higher amount of double bonds in the uncured sample, the strain 

at break is decreasing while the YOUNG s is 

running through a maximum for low cross-linking density (PLimC-B3MP0.5) but remains 

higher than in the saturated sample (PLimC-B3MP0.0). Furthermore, a study of elasticity is 

shown in Supplementary Fig. 5-7, where a cured PLimC-B3MP2.0 sample was strained by 

20% in 40 cycles (5 s strain, 10 s relaxation, strain rate 10 mm min-1). The strain is not 

completely reversible (maximum stress drops from 0.08 MPa for each consecutive cycle 

down to 0.06 MPa for the last cycle), as the Tg (5 °C) of the polymer is very close to the 

testing temperature of 21 °C, i.e. the slow dynamics can be assigned to the slow segmental 

motion of the polymer backbone. To improve reversibility in the strain experiment, the 

modification of PLimC with thiols that lower the Tg well below 0 °C should be used. 

Degradation tests in composting environment 

The PLLA samples readily disintegrated within the first two weeks (holes appeared after 8 

days), whereas PLimC samples did not show any traces of degradation even after 60 °C days 

under the conditions mentioned, i.e. no holes, no surface changes overserved by SEM 

imaging, no change of molecular weight (distribution) measured by GPC. From those 

observations we concluded, that PLimC possesses a rather good bio-stability against the 

industrial composting environment. 

Degradation tests in enzymatic environment 

The enzyme (13 000 units mL-1, substrate: glyceryl tributyrate) was chosen because of its 

high activity in the cleavage of ester linkages of condensed matter like water-insoluble 

polyesters that have been synthesized and readily degraded with this enzyme in our group.4 

The change of hydrophilicity and Tg do not promote mass loss of the polymer samples 

PLimC, PLimC-ME7/46/82 or BPA-PC respectively, for the conditions tested (see 

Supplementary Table 5-8). Furthermore, for none of the samples a significant change in 

molar mass was observed (see GPC data in Supplementary Fig. 5-22), from which was 
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deduced that the investigated polymers are stable under those conditions within 21 days. 

For further studies either the testing time should be increased or harsher conditions have 

to be applied. BPA-PC was employed as reference material and so far it can be stated, that 

PLimC and its modifications exhibit similar stability under those conditions. 

The saturation of PLimC 

The conversion of the monomer MenO and pre-monomers menth-1-ene and MenBrOH, 

respectively, were monitored by GC analysis. The chromatograms combined with the peak 

information are shown in Supplementary Figs 5-23  5-25, respectively. The GC analysis of 

the precipitation bath of PMenC (Supplementary Fig. 5-26) is added to prove the 

preferential incorporation of trans-MenO into the polymer chain. The accumulation of cis-

MenO after polymerization is obvious, rising from 8% before to 56% after copolymerization 

with CO2. The preferential incorporation is also represented in the NMR spectra of PMenC. 

The 1H-NMR spectrum (Supplementary Fig. 5-27) shows a single peak at 5.00 ppm without 

any downfield shoulder, which would be an indication of incorporation of the cis-isomer 

into the backbone. This argument is further supported by the 13C-NMR spectrum of 

PMenC, which shows only one carbonyl resonance at 152.2 ppm i.e. no stereo-irregularities 

are present. GPC analysis revealed a relative Mn of 61.3 kDa and Ð of 1.14 (Supplementary 

Fig. 5-28). 
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Supplementary methods 

Materials 

(R)-(+)-Limonene (97%, Sigma-Aldrich), hydrogen (5.0, Linde Gase), 

N-bromosuccinimide (97%, Sigma-Aldrich), sodium hydride (60% dispersion in mineral 

oil), iodomethane (99%, stabilized with silver), 5% platinum on charcoal (99%), 

mercaptoethanol (99%, Sigma-Aldrich), mercaptoacetic acid (99%, Sigma-Aldrich), 

2-(diethylamino)ethanethiol hydrochloride (95%, Sigma-Aldrich), butyl 

3-mercaptopropionate (98%, Sigma-Aldrich), benzyl bromide (99%, Alfa Aesar), 

poly(ethylene glycol) monomethyl ether (97%, Sigma-Aldrich) were used as received. 

Azobisisobutyronitrile (AIBN) was recrystallized from methanol. Toluene was dried over 

sec-butyl lithium and distilled. Tetrahydrofuran was dried over CaH2 and distilled, further 

dried over potassium and distilled before use. Chloroform was dried over CaH2 and 

distilled. Carbon dioxide (5.0, Linde Gase) was dried by passing it through a column packed 

with a molecular sieve of 3 Å. The zinc catalyst with -diiminate (bdi) and acetate ligand 

[(bdi)Zn(µ-OAc)]5 and PLimC3 were synthesized according to literature procedures. 
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Synthetic procedures 

All synthetic manipulations were carried out under exclusion of air in dry conditions, if not 

otherwise stated. The acid-catalyzed electrophilic addition of PEG-3-OH to PLimC and 

thiol-ene chemistry are polymer analogous reactions. However, the hydrogenation of the 

exo double bond of limonene was performed on the pre-monomer, which was subsequently 

epoxidized and copolymerized with CO2, to give the polycarbonate PMenC. 

 

Thiol-ene chemistry on PLimC 

PLimC was dissolved in degassed chloroform to produce a 2 wt% solution. After addition 

of 5 to 40 eq. of the desired thiol, 0.3 eq of AIBN were added. The solution was kept at 60 °C 

for the desired time, before the solution was concentrated and precipitated in an adequate 

non-solvent, corresponding to the functionalization, washed and reprecipitated when 

necessary. The resulting colorless samples were dried at 60 °C in vacuo (except for butyl 3-
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mercaptopropionate functionalized PLimC that was dried at 20 °C and 0.02 mbar and 

stored in argon atmosphere).  

PLimC-MAc: Functionalization with mercaptoacetic acid: 

The solvent was removed in vacuo and the polymer redissolved in acetone before it was 

precipitated in water several times. The product was functionalized with 100% 

mercaptoethanol. 

1H NMR (300 MHz, DMSO-d6):  5.01 (1H, s, CHO), 3.36 (2H, s, SCH2CH), 3.16 (2H, s, 

SCH2COOH), 2.62 (1H, m, SCH2CH), 2.36 (1H, m, CHaHbCOC=O), 2.22 (1H, m, 

SCH2CHCH), 1.90  0.95 (8H, m, CH3CCHaHbCH2CHCCH2), 0.85 (3H, s, 

CH3CHCH) ppm 

13C NMR (300 MHz, DMSO-d6):  171.6 (COOH), 152.0 (CO3), 81.5 (OCCH3), 74.6 

(CHO), 65.0 (CH2COOH), 33.7, 33.6, 21.3, 15.5, 15.4, 15.2 ppm 

PLimC-ME: Functionalization with mercaptoethanol: 

The polymer was precipitated in a 1:1 mixture of methanol:water. The product was 

functionalized with up to 73% mercaptoethanol. 

1H NMR (300 MHz, CDCl3):  5.04 (1H, s, CHOunfunctionalized), 4.99 (1H, s, CHOfunctionalized), 

4.71 (2H, d, C=CH2, 2J=7.4 Hz), 3.70 (2H, m, CH2CH2OH), 2.68 (2H, m, CH2CH2OH), 2.55 

(1H, m, SCH2CH), 2.36 (1H, m, CHaHbCOC=O), 2.21 (1H, m, CH3CHCH), 1.90  1.00 

(8H, m, CH3CCHaHbCH2CHCCH2), 0.94 (3H, s, CHCHCH3) ppm 

13C NMR (300 MHz, CDCl3):  152.1, 148.7, 82.0, 75.4, 60.4, 37.3, 35.9, 34.0, 33.8, 21.7, 20.9, 

16.0, 15.8 ppm 
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PLimC-B3MP: Functionalization with butyl 3-mercaptopropionate: 

The polymer was precipitated in methanol and subsequently dried at 20 °C and 0.02 mbar 

to avoid cross-linking of residual double bonds. The polymer was stored in Ar atmosphere. 

1H NMR (300 MHz, CDCl3):  4.96 (1H, s, CHO), 4.07 (2H, m, CH2OH), 2.72 (2H, m, 

SCH2CH2), 2.56 (3H, m, CHCH2S), 2.36 (2H, m, CH2COC=O), 2.00  1.00 (14H, m, 

CH3CCH2CH2CHCCH2 / CH2C(=O)OCH2CH2CH2), 0.94 (6H, s, CHCHCH3 / 

CH2CH3) ppm 

13C NMR (300 MHz, CDCl3):  172.1, 152.0, 82.0, 75.5, 64.7, 37.7, 37.4, 37.3, 37.2, 35.0, 34.0, 

30.7, 27.8, 27.7, 21.6, 19.2, 15.5, 13.8 ppm 

PLimC-N: Functionalization with 2-(diethylamino)ethanethiol hydrochloride: 

The polymer was precipitated in a basic 2:1 mixture of methanol:water (sodium 

bicarbonate was added, to produce a pH of 8) and washed with slightly basic water.  

1H NMR (300 MHz, CDCl3):  5.02 (1H, s, CHOunfunctionalized), 4.96 (1H, s, CHOfunctionalized), 

4.69 (2H, d, C=CH2, 2J=7.2 Hz), 2.60 (2H, m, SCH2CH2), 2.54 (2H, m, CH2CH2N), 2.52 (2H, 

m, NCH2CH3), 2.37 (1H, m, CHaHbCOC=O), 2.22 (1H, m, CHC=CH2), 2.00  1.10 (8H, m, 

CH3CCHaHbCH2CHCCH2), 1.01 (2H, t, NCH2CH3, 3J=7.1 Hz), 0.94 (3H, s, CHCHCH3, 

3J=6.2 Hz) ppm 

13C NMR (300 MHz, CDCl3):  152.1, 148.7, 109.4, 82.1, 81.8, 75.4, 53.0, 47.1, 37.9, 37.5, 

30.4, 30.3, 21.7, 20.8, 15.9, 15.6, 11.9 ppm 

PLimC-NQ: Quaternization of PLimC-N with benzyl bromide: 

3 eq. benzyl bromide were added to PLimC-N to give a highly viscous mixture. The reaction 

mixture was kept at 22 °C for 24 h before the polymer was precipitated repeatedly in 

hexane.  

1H NMR (300 MHz, DMSO-d6):  7.52 (5H, m, C6H5), 5.05 (1H, s, CHOunfunctionalized), 4.98 

(1H, s, CHOfunctionalized), 4.69 (2H, d, C=CH2, 2J=7.2 Hz), 4.62 (2H, m, C6H5CH2), 3.27 (6H, 

m, N(CH2CH2)2CH2CH2), 2.94 (2H, m, SCH2CH), 2.64 (2H, m, SCH2CH2), 2.33 (1H, m, 

CHaHbCOC=O), 2.13 (1H, m, CHC=CH2), 2.00  1.00 (14H, m, CH3CCHaHbCH2CH 

(CHCH3)CH2), 0.84 (6H, m, N(CH2CH3)2) ppm 

Acid-catalyzed electrophilic addition of PEG-3 to PLimC 
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PLimC was dissolved in chloroform (1.3 wt% solution), before 12 eq. of PEG-3-OH and 

0.33 eq. of concentrated H2SO4 were added. The reaction mixture was stirred for the desired 

time (24  68 h), concentrated in vacuo and the polymer precipitated in methanol. The 

colorless polymers were characterized by NMR/IR spectroscopy and contact angle 

measurements. 

1H NMR (300 MHz, CDCl3):  5.04 (1H, s, CHOunfunctionalized), 4.92 (1H, s, CHOfunctionalized), 

4.71 (2H, d, C=CH2, 3J=7.4 Hz), 3.63  3.45 (12H, m, PEG-3), 3.37 (3H, s, PEG-3-CH3), 2.42 

(1H, m, CHaHbCOC=O), 2.20 (1H, m, CHC=CH2), 1.83 (2H, m, CHCH2CH), 1.71  1.14 

(9H, m, CH3CCHaHbCH2CHCCH3), 1.06 (6H, s, CH2OC(CH3)2) ppm 

13C NMR (300 MHz, CDCl3):  152.0 (CO3), 148.8 (C=CH2), 109.4 (C=CH2), 82.0 (OCCH3), 

76.2 (COCH2), 75.4 (CHO), 72.0  70.7 (PEG-3), 60.4 (PEG-3-CH3), 59.2 (COCH2), 37.5 

(CHC), 30.9 (CH2CH2C), 22.3 (CHCH2CH), 21.6 (CH2CH2C), 21.0 (CH3COC), 20.7 

(CH3C(CH)CH2) ppm 
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The saturation of PLimC (PMenC) 

Synthesis of menth-1-ene.6 In a 130 mL stainless-steel autoclave 32 mL (R)-limonene 

and 0.05 mol% Pt (5 wt% on C) were added. The autoclave was pressurized with 10 

atmospheres of H2 and the suspension was stirred for 11 h at 25 °C. After filtration through 

a G4 glass frit the regioselectively hydrogenated terpene was used for stereoselective 

epoxidation. The reaction was monitored by gas chromatography. The colorless liquid 

consisted of 3.6% cis-menthane, 3.0% trans-menthane, 86.9% menth-1-ene and 6.5% (R)-

limonene (retention times: 14.33 (cis-menthane), 14.86 (trans-menthane), 16.17 (menth-1-

ene), 16.36 min ((R)-limonene)). 

Synthesis of trans-menth-1-ene oxide. The procedure for the stereoselective epoxy-

dation of menth-1-ene is analogue to the stereoselective epoxidation of (R)-limonene 

described elsewere.3,7 The epoxidation of menth-1-ene has also been subject in patent 

literature.8 The final product was analysed by gas chromatography and consisted of 2.0% 

cis-menthane, 2.0% trans-menthane, 8.5% cis-MenO and 85% trans-MenO and 6.5% by-

products (retention times: 14.85 (cis-menthane), 20.87 (cis-MenO), 21.03 min 

(trans-MenO). 

Masking of hydroxyl impurities in menth-1-ene oxide. Hydroxyl-containing 

impurities were masked according to a procedure previously described.3 The product was 

purified by vacuum distillation. The purified product used for polymerization consisted of 

0.9% cis-menthane, 1.0% trans-menthane, 9.0% cis-MenO and 88.9% trans-MenO. 

Synthesis of poly(menthene carbonate). The polymerization was carried out in 

accordance to the copolymerization of LO and CO2 that was described elsewhere.3 The 

product was characterized by 1H and 13C NMR spectroscopy. The precipitation bath was 

concentrated in vacuo and the residue analyzed by GC, whereas the chromatogram revealed 

an accumulation of cis-MenO, supporting the expectation that only the trans-isomer would 

be incorporated into the polymer. 

1H NMR (300 MHz, CDCl3):  5.00 (1H, s, CHO), 2.35 (1H, m, CHaHbCOC=O), 1.95  1.00 

(10H, m, CH3CCHaHbCH2CH(CH2)CH), 0.85 (6H, m, CH(CH3)2) ppm 

13C NMR (300 MHz, CDCl3):  152.0 (CO3), 82.2 (COCCH3), 75.7 (OCH), 36.3 

(CHCH(CH3)2), 32.1 (CHCH(CH3)2), 30.7 (CH2CH2C), 23.8 (CHCH2CH), 21.7 

(CH2CH2C), 19.8 (CH3CCH3), 19.6 (CH3CCH3) ppm  
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The material PLimC is a highly versatile thermoplastic that shows high performance with 

respect to optical, mechanical and permeation properties. The successful production of 

high-molecular-weight PLimC can be regarded as the enabler towards the exploitation of 

the polymer as an engineering thermoplastic with the mandatory robustness. Only this 

robustness can give the manufactured fibres, thin films or sheets of PLimC the integrity to 

be used in any application. It is the basis for utilization of PLimC as a coating, a membrane 

and especially as a breathing glass that was introduced within this thesis as innovative 

concept. The concept relies on the high transparency, impact resistance and  most 

importantly  on the facile transport of small molecules of CO2 and O2. I could show in 

feasibility studies that windows made of the breathing glass PLimC can supply the interior 

of well-insulated houses with fresh air. Hence the need for active energy-intensive 

ventilation systems can be reduced.  

Since the supply through the polymeric breathing glass cannot yet compensate for the 

demand of fresh air completely, the gas transport properties of PLimC should be enhanced 

even further. And here the unsaturated polycarbonate is at its most impressive, as it can be 

tuned in almost any direction  I have shown some examples in this thesis  executing 

simple chemistry on the double bond. This aspect of modifications of PLimC should be 

expanded by adding new functionalities to the platform but also by optimizing the 

parameters of the already presented materials. The optimization is necessary to identify the 

configuration of the bio-based material that can compete with established coatings, 

rubbers, biodegradables etc. A slightly different approach that was only touched upon in 

this thesis, is the copolymerization of LO, CO2 with a third monomer, be it another epoxide, 

a lactone or even an anhydride (less protic catalyst are necessary to incorporate the latter). 

This approach shows great promise to alter the stability of the backbone, thus leading to 

different mechanisms of degradation and decomposition. 

Coming back to the basis PLimC, there is still some work to be done in order to improve 

the economics and the processing of the material. Regarding the economics, the choice of 

catalyst has to be reconsidered, as the copolymerization of both trans- and cis-LO with CO2 

to give a high-molecular-weight PLimC (>80 kDa) is highly desirable. Furthermore, the 

catalyst should exhibits a TOF that is acceptable for implementation within an industrial 

process of the production of PLimC. The improvement of the rate of copolymerization is 
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challenging for the sterically demanding LO  for the employed catalyst we have found a 

2nd order dependency on LO  but here the key to an efficient synthesis of PLimC is located.  

With respect to the aspect of processing PLimC, there is a huge potential for the solvent-

based manufacture of fibres (e.g. from electrospinning) and films but also for the foaming 

in supercritical CO2. Nevertheless, the processing of the melt of PLimC is a major problem 

of the engineering thermoplastic, because the decomposition and softening temperature lie 

within a 100 K window. Hence, the viscosity of the melt is hardly low enough in the 

temperature region that would allow for decomposition-free processing of the aliphatic 

polycarbonate. Either additives, chemical manipulations on the backbone or engineering 

solutions have to be developed to give PLimC the processability it needs to compete with 

established materials. This aspect could also turn out to be crucial in the case, where the 

bio-based polymer is to be blended with commodities or other engineering thermoplastics 

in order to increase the green character of the petroleum-based plastics. 

.
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