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Summary 

 

Teleost fish and urodele amphibians are unique among vertebrates in that they possess the ability to 

replace limbs and fins with the exact replicates of the original throughout life by epimorphic 

regeneration. Following appendage amputation, a pool of lineage-restricted highly-proliferative 

mesenchymal cells (the so called blastema) forms at the site of regeneration, from which the lost 

appendage faithfully regrow.  

For this thesis, I have investigated the functions of retinoic acid (RA) signaling in zebrafish fin 

regeneration. I demonstrate that RA signaling is an essential component of the genetic network 

underlying blastema formation and subsequent proliferation and survival of blastema cells. Synthesis of 

RA becomes upregulated within the first hours after fin amputation close to the amputation site, where 

it is required to mobilize cell division in post-mitotic stump cells that will give rise to the blastema. 

Genetic inhibition of RA signaling upon fin amputation causes suppression of blastema formation and 

failure of fin regeneration. RA synthesis remains high in the mature blastema and drives regenerative 

outgrowth by promoting blastema proliferation. The blastema is a mass of fast-cycling cells in an adult 

animal, raising the question of why blastema cells are not eliminated due to anti-cancer mechanisms. 

My findings indicate that blastema cells evade cell death by elevated levels of the anti-apoptotic factor 

Bcl2, the expression of which is positively regulated by RA signaling.  

The zebrafish caudal fin is supported by several bony fin rays, derived from intramembranous 

ossification, which run from proximal to distal and are separated by soft interray tissue. Rapid 

replacement of lost bone during fin regeneration is achieved via dedifferentiation of osteoblasts from a 

post-mitotic, matrix-producing state to a cycling, immature preosteoblastic state, and vice versa, 

redifferentiation to a mature state. Here, I demonstrate that RA signaling inhibits switching between the 

mature and immature state while promoting osteoblast proliferation and bone matrix synthesis and 

unravel how the osteoblast regenerative program is achieved against continued RA synthesis during fin 

regeneration. Stump osteoblasts that participate in blastema formation transiently produce Cyp26b1, an 

enzyme that inactivates RA. This elegant mechanism allows the establishment of an osteoblast 

progenitor pool despite raising RA levels in the fin stump. Preosteoblasts pass through a number of cell 

divisions in the distal blastema where RA synthesis is high, whereas more proximal cells redifferentiate 

to form new bone. Fibroblasts-like blastema cells in those areas of redifferentiation lower local RA 

concentrations via Cyp26b1 activity, thereby ensuring redifferentiation of osteoblasts. This allows two 

processes to run in parallel: Proliferation for the continuous supply of osteoblasts in the distal part and 

redifferentiation of osteoblasts more proximally where the fin rays re-emerge.  

During fin regeneration, osteoblasts have to respect fin ray-interray borders in order to faithfully 

reestablish the original fin pattern. However, why preosteoblast remain restricted to ray regions and do 

not invade the regenerating interray tissue has so far been unresolved. Here, I show that epidermal 

niches of low RA levels are established in regions where new rays are to form. This allows the spatially 

restricted production of a signal that pilots preosteoblasts to target regions. Interestingly, it emerged 
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that osteoblasts themselves exert a piloting function for other cell types that also have to be directed to 

appropriate regions. 
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Zusammenfassung 

 

Knochenfische und Schwanzlurche können ihr ganzes Leben hindurch ihre Gliedmaßen vollständig  

nachwachsen lassen. Diese Fähigkeit ist einzigartig unter Wirbeltieren und beruht auf dem Prozess der 

epimorphen Regeneration. Nach Amputation einer Gliedmaße wird ein sogenanntes Blastem, das aus 

sich schnell-teilenden, gewebetreuen Zellen besteht, an der Amputationswunde gebildet. Aus dem 

Blastem wird der verlorene Teil der Gliedmaße regeneriert. 

Im Rahmen dieser Dissertation wurden die Funktionen des Retinsäure Signalweges während der 

Flossenregeneration im Zebrafisch untersucht. Hierbei konnte gezeigt werden, dass der Retinsäure 

Signalweg eine entscheidende Rolle während der Blastembildung spielt und anschließend für die 

Proliferation und das Überleben der Blastemzellen benötigt wird. Innerhalb weniger Stunden nach der 

Amputation wird die Synthese von Retinsäure im Stumpfgewebe hochreguliert. Postmitotische 

mesenchymale Blastem-Vorläuferzellen benötigen die erhöhte Retinsäure-Konzentration, um in den 

Zellzyklus einzutreten. Wird der Retinsäure Signalweg blockiert, so kann sich kein Blastem bilden, und 

die Flosse wächst nicht nach. Nachdem sich das Blastem gebildet hat, wird Retinsäure weiterhin 

benötigt, um die Proliferation der Blastemzellen sicherzustellen und dadurch das regenerative 

Auswachsen voranzutreiben.  

Das Blastem ist eine Ansammlung von sich schnell-teilenden Zellen. Es stellt sich deshalb die Frage, 

warum Blastemzellen in einem erwachsenen Tier überhaupt überleben können und nicht aufgrund von 

Mechanismen, welche normalerweise die Entstehung von Tumoren verhindern, eliminiert werden. In 

diesem Zusammenhang konnte ich zeigen, dass Blastemzellen aufgrund einer erhöhten Konzentration 

des anti-Apoptose-Faktor Bcl2 überleben können. Die Expression von bcl2 wird durch Retinsäure 

gefördert.   

Die Schwanzflosse des Zebrafisches wird durch knöcherne Flossenstrahlen verstärkt. Flossenstrahlen 

entstehen durch desmale Ossifikation und verlaufen parallel zur proximal-distalen Flossenachse. 

Zwischen den einzelnen Flossenstrahlen befindet sich weiches Zwischenstrahlgewebe. Die rasche 

Regeneration der Flossenstrahlen nach der Amputation wird durch eine temporäre Dedifferenzierung 

von ausdifferenzierten Osteoblasten sichergestellt. Diesbezüglich konnte ich zeigen, dass Retinsäure 

sowohl die Dedifferenzierung als auch die anschließende Rückdifferenzierung der Osteoblasten 

verhindert. Die Proliferation der Osteoblasten und die Produktion von Knochenmatrix wiederum werden 

von Retinsäure gefördert. Osteoblasten im Stumpf müssen sich vor Retinsäure schützen, um 

dedifferenzieren zu können. Hierfür produzieren Osteoblasten Cyp26b1, ein Retinsäure-abbauendes 

Enzym. Mit Hilfe von Cyp26b1 können Osteoblasten im Stumpf dedifferenzieren und zu Blastemzellen 

werden. Nach mehreren Zellteilungen im distalen Bereich des Regenerats differenzieren Osteoblasten 

wieder zu Matrix-produzierenden Knochenzellen. Eine erhöhte Retinsäure-Konzentration im distalen 

Regenerat fördert die Proliferation der dedifferenzierten Osteoblasten. In proximalen Regionen wird 

Retinsäure hingegen durch Cyp26b1 in Fibroblasten abgebaut. Durch diesen Mechanismus kann 

sichergestellt werden, dass sich Osteoblasten in proximalen Bereichen nicht weiter teilen und 

stattdessen differenzieren.   
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Osteoblasten müssen während der Flossenregeneration die Grenzen der Flossenstrahlen respektieren 

und dürfen nicht in das Zwischenstrahlgewebe einwandern. Nur so kann das ursprüngliche 

alternierende Muster von Knochenstrahlen und Zwischenstrahlgewebe wieder hergestellt werden. Wie 

dies erreicht wird, war bisher völlig unklar. Hier konnte ich zeigen, dass bestimmte Regionen in der 

Epidermis Retinsäure abbauen und dadurch die Produktion eines Signals ermöglichen, welches die 

Osteoblasten an die richtigen Stellen im Regenerat lotst. Andere Zelltypen wiederum orientieren sich an 

den Osteoblasten. 
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Abbreviations 

 

Adh  alcohol dehydrogenase 

Aldh  aldehyde dehydrogenase 

Bcl2  B-cell lymphoma 

Bmp  Bone morphogenetic protein 

Crabp  cellular retinoic acid-binding protein 

Crbp  cellular retinol-binding protein 

Cyp26             cytochrome P450 subfamily 26 

Fgf  Fibroblast growth factor 

hpa  hours post amputation 

Igf  Insulin growth factor 

P-D  proximo-distal 

RA  retinoic acid 

RAR  retinoic acid receptor 

RARE  retinoic acid response element 

Rbp  retinol-binding protein 

RXR  retinoic X receptor 

Shh  Sonic hedgehog 

Stra6  stimulated by RA gene 6 

  

 

 

 



6  

Introduction 

 

Introduction 

 

Regeneration in animals 

Regeneration refers to the morphological and functional restoration of lost or damaged tissues 

or body parts. By contrast, although often misleadingly called homeostatic regeneration, 

homeostasis refers to the maintenance of tissues.  

Regeneration has always fascinated the human imagination. The study of regeneration holds 

the potential of impacting human life by providing medical strategies to repair and replace 

injured tissues and organs. The idea of regrowing a lost or damaged body part can be traced 

back to the beginnings of civilization, and testimonies to that account can be found from the 

texts of acient Egypt to Greek mythology to Middle Age writings (Sánchez Alvarado, 2000; 

Tsonis, 2000). In the Greek mythology, Promethus regenerated its liver after each attack of a 

ravenous eagle and the many-headed hydra responded to Heracles` attacks by growing two 

new heads for every one that was cut off.  

The ability for regeneration is widely but non-uniformly represented among all animal phyla 

(Brockes and Kumar, 2008; Sánchez Alvarado and Tsonis, 2006). Some invertebrate species are 

able to restore their entire body from a few remaining cells. Planarians are extreme in that they 

are capable to replace their whole body by a single so called c-neoblast (Wagner et al., 2011). 

The ability to restore all tissues and organs is restricted to few invertebrate species, but 

remarkable regenerative capacities can also be found among vertebrate species (Sánchez 

Alvarado and Tsonis, 2006). Teleost fish and amphibians can regenerate a variety of complex 

structures, e.g. their limbs and fins and the heart. Conversely, mammals have very limited 

capacities for regeneration. In general, regenerative abilities are higher in vertebrate embryos 

and larvae than in adults. For instance, anuran amphibians can regenerate their limbs as 

tadpoles, but are unable to do so after metamorphosis. Young mammals have some capacity to 

regenerate their digit tips, while this ability is largely lost in adults (Douglas, 1972; Masaki and 

Ide, 2007). 

Despite the field of regenerative biology has made remarkable progress in identifying the 

underlying cellular and molecular mechanisms of regeneration, many fundamental aspects are 

still poorly understood und it has remained unclear why mammals are largely incapable of 

regenerating damaged body parts. 
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Basic mechanisms of regeneration 

 

Regeneration of tissues and organs requires dramatic changes in cellular behavior. Different 

regenerative strategies are used in different scenarios, all resulting in the reestablishment of 

appropriate tissue structure and function and integration of polarity and positional identity 

cues with preexisting body structures (Sánchez Alvarado and Tsonis, 2006). Of note, the same 

tissue in different animals does not always regenerate in the same way. For instance, 

regeneration of the newt lens occurs via transdifferentiation from pigment epithelial cells at 

the tip of the dorsal iris, whereas during lens regeneration in Xenopus species, a new lens 

regenerate from the inner layer of the outer cornea (Henry and Tsonis, 2010). A further 

example is the restoration of muscle during amphibian limb regeneration. Myofiber 

dedifferentiation takes place during newt limb regeneration, while axolotls activate muscle 

stem cells (Sandoval-Guzmán et al., 2014).  

Regeneration can occur by three major ways, that are not mutually exclusive (Gilbert, 2000; 

Sánchez Alvarado and Tsonis, 2006). The first mechanism, termed morphallaxis, proceeds 

without cell proliferation. During morphallaxis lost body parts are replaced by remodeling of 

the remaining part. Hydra head regeneration provides a typical example for morphallaxis. After 

decapitation, positional values are reset along the remaining body axis resulting in a properly 

patterned but smaller hydra. The second mechanism, termed epimorphic regeneration, 

involves formation of a mass of undifferentiated proliferating cells (the so-called blastema), 

that give rise to the different cell types and will reconstitute the lost part. Blastema cells can 

arise by two different mechanisms: activation of stem cells or dedifferentiation of mature cells. 

Epimorphic regeneration is characteristic of regenerating vertebrate appendages. A third type 

of regeneration, termed compensatory regeneration, is an intermediate type. Here, cells 

proliferate, but maintain their differentiated function. This type of regeneration is characteristic 

of the mammalian liver.  

 

 

Appendage regeneration in vertebrates 

Regeneration of lost limbs and fins in vertebrate is the most dramatic and prominent example 

for epimorphic regeneration. While the cellular and molecular mechanisms involved in limb and 

fin development are highly conserved among vertebrates, the responses upon amputation 

varies greatly (Sánchez Alvarado and Tsonis, 2006; Stoick-Cooper et al., 2007). Urodele 

amphibians can regenerate limbs throughout life and from any level along the proximo-distal 

(P-D) axis. During tadpole stages before metamorphosis, anuran amphibians can regrow their 

limbs perfectly (Slack et al., 2008; Suzuki et al., 2006). However, this ability gradually declines in 
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the term of pattern formation, resulting in incomplete regenerates. After metamorphosis, limb 

regeneration in anuran amphibians results in a cartilaginous protrusion referred to as spike. 

Birds cannot regenerate their limbs and wings, while some ability for limb regeneration has 

been reported in mammals. Regeneration of the digit tips occurs in neonatal mice as well as in 

embryos after amputation through the distal phalanx (Masaki and Ide, 2007; Reginelli et al., 

1995), and cases of digit tip regeneration has also been reported in children (Douglas, 1972). 

Teleost fish regenerate their paired and unpaired fin throughout life, but they cannot 

regenerate internal skeletal elements at the base of their fins (Akimenko et al., 2003).  

Appendage regeneration is a local response of the stump and in its most successful form 

generates a near-perfect copy of the lost appendage. Central questions in understanding 

appendage regeneration are: How does the limb or fin discriminate between a normal wound 

and an amputation? What are the cellular sources of the new tissues? What are the similarities 

and differences between blastema formation and malignant transformation and how does the 

evolution of central cellular growth and tumor suppressor mechanisms impacts regenerative 

capacity? How are the new tissues functionally integrated with the scale and size of the pre-

existing tissues?  

 

 

Zebrafish fin regeneration 

Owing to its accessibility for genetic manipulation and simple anatomical structure, the 

zebrafish (Danio rerio) fin has emerged as a powerful model for unravelling the underlying 

cellular and molecular mechanisms of vertebrate appendage regeneration (Akimenko et al., 

2003; Gemberling et al., 2013; Poss et al., 2003). Most studies have been performed on the 

caudal fin because it is easily accessible for manipulations and surgery and provides a large 

amount of tissues to examine compared to the other fins. 

The zebrafish caudal fin consists of endoskeletal and exoskeletal elements, but only the 

exoskeletal elements can regenerate (Akimenko et al., 2003). The endoskeleton, located at the 

base of the fin, is made of endochondral bone and supports the exoskeleton.  The exoskeletal is 

composed of 16-18 bony fin rays (called lepidotrichia) that run from proximal to distal and are 

separated by soft interray tissue. Each fin ray consists of two concave and opposed hemirays of 

accelular bone, which are made up of successive segments and held in place by nonmineralized 

ligaments (Fig. 1). Hemirays form via intramembranous ossification and surround a soft core of 

fibroblasts, osteoblasts, pigment cells, arterial blood vessels and nerves. The bone matrix is laid 

down by osteoblasts that cover the inner and outer bone surface. Fin rays are separated by 

boneless tissue, composed of fibroblasts, venous blood vessels, pigment cells and nerves.  
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The zebrafish caudal fin grows throughout life via the sequential, distal addition of new 

segments to each fin ray (Hall, 2010). Of note, hemiray thickness increases over time by adding 

new matrix along the entire fin length. With the exception of the most lateral, fin rays bifurcate 

at specific positions along the P-D axis. The most proximal segment of the fin ray is connected 

to muscles of the fin base by tendons. The external part of the fin is devoid of muscles.  

 

 

Fig.1. Overview of relevant structures and 

cell types of a fin ray. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fin regeneration is a rapid, temperature dependent process (Akimenko et al., 2003; Gemberling 

et al., 2013; Poss et al., 2003). The zebrafish caudal fin regenerates faster at higher 

temperatures. Moreover, the more tissue removed, the faster is the regrow. This is clearly 

demonstrated when a "staircase" amputation is performed on a single fin. In such fins, 

regeneration proceeds fastest from the most proximal amputation site.  

After amputation, the fin regrows within approximately two weeks through epimorphic 

regeneration. Due to the fin ray-interray structure of the fin, the regenerate consists of a 

succession of two types of structures: the dense ray blastema forming at the level of each fin 

ray surrounded by a loose blastema arising from the boneless interray tissue (Fig. 2). While ray 

blastema formation and restoration of the ray regions has been studied in much detail, 

regeneration of the interray regions is poorly understood. To avoid confusion, in this thesis, 

blastema only refers to the ray blastema.  
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Fig.2. Overview of a regenerating fin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fin regeneration can be divided into three successive events very similar to those known from 

amphibian limb regeneration (Akimenko et al., 2003; Gemberling et al., 2013; Pfefferli and 

Jaźwińska, 2015a): (1) Wound healing and formation of a wound epidermis, (2) blastema 

formation and (3) regenerative outgrowth and repatterning (Fig. 3). In the following section 

each step will shortly be discussed.  

(1) Wound healing and formation of a wound epidermis: Within the first 1-3 hours after 

amputation (hpa), wound healing is achieved by rapid apical migration of epidermal cells 

located lateral and proximal to the amputation site. This early response is independent of cell 

proliferation (Poleo et al., 2001). After amputation, there is very little bleeding and injured 

blood vessels have healed within 24 hours (Bayliss et al., 2006; Huang et al., 2003). Following 

wound closure, epidermal cells accumulate at the wound site to form a multilayered epidermal 

layer called wound epidermis. Wound epidermis formation is also dominated by cell migration 

(Poleo et al., 2001). Successful fin regeneration crucially depends on reciprocal interactions 

between the mature wound epidermis and blastema cells (Chablais and Jazwinska, 2010). 

(2) Blastema formation (18-48 hpa): As the wound epidermis is forming, blastema formation is 

initiated in the stump mesenchyme. The fin blastema is a mass of lineage-restricted highly 

proliferating progenitor cells (Gemberling et al., 2013; Knopf et al., 2011; Stewart and 

Stankunas, 2012). During blastema formation, cells of the ray mesenchyme within one-two 

segment lengths two the amputation site start to proliferate and migrate towards the wound 

site where they accumulate into a blastema beneath the wound epidermis. The blastema forms 

essentially from fibroblasts of the stump connective tissue and from stump osteoblasts via 

dedifferentiation of mature cells. In addition, a small population of pigment cell precursors that 
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arise from stem cells contribute to the blastema. Finally, blood vessels and nerves grow into the 

mature blastema.                                                                                 

(3) Regenerative outgrowth and repatterning (48 hpa to approximately two weeks after 

amputation): Following blastema formation, regenerative outgrowth is marked by changes in 

proliferation, morphological, and molecular profiles (Akimenko et al., 2003; Pfefferli and 

Jaźwińska, 2015b). During regenerative outgrowth, the regenerate comprises a mature 

blastema in its distal portion and a differentiating region in its proximal portion. Thus, 

differentiation progresses in a distal-to-proximal direction, so that fast cycling blastema cells in 

the distal region become slow-cycling cells in more proximal regions, which subsequently 

mature to pattern the new fin tissue. As during fin growth, fin rays regenerates by the 

successive distal addition of new segments. 
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The retinoic acid signaling pathway 

Retinoic acid (RA) is a low molecular weight, lipophilic signaling molecule derived from retinol 

(vitamin A). Vitamin A is best known for its requirement for vision, as isomerization of its 

derivative retinaldehyde triggers the phototransduction process in photoreceptors of the retina 

(Parker and Crouch, 2010). Vitamin A deficiency in vertebrate embryos leads to wide and 

complex spectrum of developmental abnormalities (Niederreither and Dolle, 2008; Rhinn and 

Dollé, 2012). The molecular basis of vitamin A action during development was clarified when it 

was demonstrated, that its metabolite RA, activates target gene expression by acting as a ligand 

for RA receptors (RARs). Owing to its ability to modulate transcription, RA regulates a variety of 

processes during embryogenesis and in adults such as organogenesis and embryonic pattern 

formation, tissue homeostasis and immunity (Duester, 2008; Kam et al., 2012; Niederreither 

and Dolle, 2008; Rhinn and Dollé, 2012).  

Animals cannot synthesize vitamin A de novo. β-carotene, a vitamin A precursor, or vitamin A 

has to be taken up by dietary sources. Since vitamin A is lipophilic, distribution via the 

circulatory system requires binding to retinol binding proteins (Rbp) and complex formation 

with transthyretin (Ttr) (Duester, 2008; Theodosiou et al., 2010). The transmembrane protein 

Stra6  (stimulated by retinoic acid gene 6) mediates uptake of the retinol-RBP-Ttr complex 

(Kawaguchi et al., 2007). Intracellular retinol is bound to cellular retinol-binding proteins (Crbp) 

(Theodosiou et al., 2010). RA is synthesized from retinol via two consecutive oxidations (Fig. 4). 

During the first step, retinol is oxidized to retinaldehyde either by microsomal retinol 

dehydrogenases (Rdhs) or by cytosolic alcohol dehydrogenases (Adhs). Alternatively, 

retinaldehyde can be synthesized by cleavage of β-carotene, a reaction carried out by β-

carotene oxygenases. Subsequently, retinaldehyde is further oxidized to RA by up to three 

retinaldehyde dehydrogenases, which are commonly referred to Raldh1-3. Under the new 

nomenclature for aldehyde dehydrogenases (Aldhs), these proteins have been renamed to 

Aldh1as (Vasiliou et al., 1999). Zebrafish possess only two Aldh1a enzymes (Aldh1a2 and 

Aldh1a3) (Pittlik et al., 2008). Whereas, retinaldehyde can be reduced to retinol by members of 

the dehydrogenase/reductase SDR family, the oxidation of retinaldehyde to RA is an 

irreversible process (Duester, 2008; Theodosiou et al., 2010). Although, there are two 

biologically active isomers of RA, all-trans RA and 9-cis RA, 9-cis RA is not detected during 

mouse development and a putative biological function has been discussed controversially 

(Kane, 2012; Mic et al., 2003). all-trans RA acts as a ligand for RARs. Mammals have three RARs 

(RARα, RARβ, and RARγ), whereas zebrafish possess four genes (raraa, rarab, rarga, and rargb) 

(Waxman and Yelon, 2007). RARs are steroid receptor and form heterodimers with the retinoid 

X receptor (RXRs) (Rhinn and Dollé, 2012). The RAR/RXR heterodimer binds to RA response 

elements (RAREs) in regulatory regions upstream of target genes. In the absence of RA, 

RAR/RXRs act as transcriptional repressors by recruiting a complex of corepressor proteins. 
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Binding of RA to RAR/RXR leads to dissociation of the corepressors complex and recruitment of 

coactivators resulting in target gene expression.  

RA can be degraded into more polar metabolites such as 4-oxo-RA and 4-OH-RA by enzymes of 

the cytochrome P450 subfamily 26 (Cyp26a1, Cyp26b1, and Cyp26c1). Cellular RA-binding 

proteins (Crabp-I and -II) are thought to provide robustness to RA signaling as they are capable 

to either sequester RA and transfer it to Cyp26s (Crabp-I) or to deliver it to RARs (Crabp-II).  

 

Fig. 4. Simplified overview of 

RA synthesis, degradation and 

signaling.  

 

 

 

 

 

 

 

 

 

Retinoic acid signaling in regeneration 

One major goal in regeneration research is to gain a thorough knowledge of the underlying 

signaling networks of regeneration. RA has long been associated with regeneration due to the 

ability of exogenous RA treatment to induce "super-regeneration" in amphibian limbs, the 

formation of supernumerary elements along the P-D limb axis (Maden, 1982; Maden, 1983; 

Maden and Hind, 2003). However, it has remained unresolved whether RA has an endogenous 

function during vertebrate appendage regeneration. For detailed information about the 

phenomenon of "super-regeneration" and our current understanding on RA signaling functions 

in regeneration, the reader is referred to chapter 2. 
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Synopsis 

 

Thesis topic 

 

By using the regenerating caudal fin of zebrafish as model system, I proved a putative 

involvement of RA signaling in vertebrate appendage regeneration and explored its specific 

functions during fin regeneration. 

The findings of this thesis are presented in the form of a cumulative thesis, consisting of three 

published research articles (chaper 1,3 and 4) and one published review article (chapter 2), and 

are summarized below.  

 

 

Chapter 1 

 

In chapter 1, I demonstrate that RA signaling is indispensable for adult zebrafish fin 

regeneration, thereby providing for the first time evidence that RA signaling has an endogenous 

function in adult vertebrate appendage regeneration. 

By genetic and pharmacological manipulations, I investigated the cellular and molecular 

consequences of loss- and gain of RA signaling for fin regeneration. I show that fin amputation 

induces upregulation of RA synthesis in the stump mesenchyme where it controls the 

expression of ligands of the Fgf, Wnt/β-catenin and Igf signaling pathway, which have 

previously been identified as crucial regulators of blastema formation and wound epidermis 

maturation. Inhibition of RA signaling upon fin amputation causes suppression of blastema 

formation by preventing cell cycle entry of postmitotic stump cells and interferes with 

formation of a proper wound epidermis. In the established blastema, RA signaling remains high 

and drives regenerative outgrowth by supporting blastema proliferation. Besides a putative, 

more direct mitogenic function, RA signaling indirectly regulates blastema proliferation through 

the activation of growth-stimulatory signals mediated by Fgf and Wnt/β-catenin signaling, as 

well as by reducing signaling through the growth-inhibitory non-canonical Wnt pathway.  

Cell cycle reentry of postmitotic cells and dedifferentiation are characteristics of malignant 

transformation, raising the question of why blastema cells are not eliminated through tumor 

suppressor mechanisms.  My findings indicate that blastema cells evade cell death by elevated 

levels of the anti-apoptotic factor Bcl2, the expression of which is positively regulated by RA 

signaling.  
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Together, this study support the hypothesis that RA signaling is an essential component of 

vertebrate appendage regeneration and provides mechanistic insights of RA signaling in wound 

epidermis formation, blastema formation and blastema maintenance in the regenerating fin. 

 

 

Chapter 2 

 

In chapter 2, I integrate the gained insights of RA signaling in fin regeneration with what is 

known more generally about RA signaling in animal regeneration and discuss a putative 

involvement of RA signaling in amphibian limb regeneration. 

 

 

Chapter 3 

 

RA is a diffusible signaling factor, raising the question in which cell types RA signaling acts 

during fin regeneration and how cell lineage-specific programs are protected from regenerative 

crosstalk between neighboring fin tissues. In chapter 3, I show how bone regeneration is 

achieved against a background of massive RA synthesis during fin regeneration. 

Osteoblasts revert from a non-cycling, mature to a cycling, immature preosteoblastic state 

during blastema formation. During regenerative outgrowth, preosteoblasts finally 

redifferentiate into mature bone matrix producing osteoblasts. My findings demonstrate that 

RA signaling promotes bone matrix synthesis and osteoblast proliferation while inhibiting 

switching between the mature and immature state. Upon fin amputation, stump osteoblasts 

that will participate in blastema formation, counteract raising RA levels by upregulation of the 

RA degrading enzyme cyp26b1. This elegant mechanism allows the establishment of an 

osteoblast progenitor pool in a high RA environment that is required for blastema formation. 

RA dependent proliferation of preosteoblasts is ensured by downregulation of cyp26b1 upon 

dedifferentiation. Redifferentiation of preosteoblasts is controlled by a presumptive RA 

gradient, in which high RA levels towards the distal tip of the regenerate inhibit differentiation 

and promote proliferation. This might be achieved through repression of Bmp signaling and 

promotion of Wnt/β-catenin signaling. Fibroblasts-like blastema cells in more proximal regions 

lower local RA concentrations via Cyp26b1 activity, thereby ensuring redifferentiation of 

osteoblasts. This allows two processes to run in parallel: Proliferation for the continuous supply 

of osteoblasts in the distal part and redifferentiation of osteoblasts more proximally where the 

fin rays re-emerge. In addition, my findings indicate that proper hemiray regeneration requires 

the interplay between bone matrix-producing osteoblasts and bone-resorbing osteoclasts and  
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suggest that RA signaling controls formation of new bone matrix at two levels, by ensuring 

matrix synthesis by osteoblasts and by preventing resorption by osteoclasts. 

In summary, this study reveals how RA signaling orchestrates osteoblast behavior throughout 

all stages of fin regeneration and unravel a so far unnoticed important role of bone resorption 

by osteoclasts in fin regeneration. 

 

 

Chapter 4 

 

Fin rays are separated by soft interray tissue. This pattern has to be re-established during 

regeneration. However, the mechanisms that confine osteoblasts to only extend the existing 

rays have remained unresolved. Having shown in chapter 3 that the osteoblast regenerative 

program depends on the tight regulation of RA levels, chapter 4 addresses a putative 

involvement of RA signaling in the spatial regulation of bone regeneration and ray-interray 

patterning. 

Upon dedifferentiation, preosteoblasts migrate into the nascent blastema, where they remain 

restricted to proximal lateral positons. My findings show that epidermal niches of low RA levels, 

established by Cyp26a1, allow the spatially restricted production of a signal that pilots 

preosteoblasts to target regions. Disruption of these niches causes preosteoblasts to ignore ray-

interray boundaries and to invade interrays where they form ectopic bone.  Moreover, it 

emerged that osteoblasts themselves exert a piloting function for non-osteoblastic blastema 

cells and blood vessels. During regenerative outgrowth, the cyp26a1-expressing niches remain 

required for the production of Shh which in turn promotes osteoblast proliferation. Finally, my 

data indicate that cyp26a1 expression is spatially confined by Fgf signaling.   

In summary, this study uncovers the mechanism that compels osteoblasts to respect ray-

interray boundaries and explain how the alternating pattern of rays and interray tissue 

becomes re-established during fin regeneration.  
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Abstract 

 

Adult teleosts rebuild amputated fins through a proliferation-dependent process called 

epimorphic regeneration, in which a blastema of cycling progenitor cells replaces the lost fin 

tissue. The genetic networks that control formation of blastema cells from formerly quiescent 

stump tissue and subsequent blastema function are still poorly understood. Here, we 

investigated the cellular and molecular consequences of genetically interfering with retinoic 

acid (RA) signaling for the formation of the zebrafish blastema. We show that RA signaling is 

upregulated within the first few hours after fin amputation in the stump mesenchyme, where it 

controls Fgf, Wnt/β-catenin and Igf signaling. Genetic inhibition of the RA pathway at this stage 

blocks blastemal formation by inhibiting cell cycle entry of stump cells and impairs the 

formation of the basal epidermal layer, a signaling center in the wound epidermis. In the 

established blastema, RA signaling remains active to ensure the survival of the highly 

proliferative blastemal population by controlling expression of the anti-apoptotic factor bcl2. In 

addition, RA signaling maintains blastemal proliferation through the activation of growth-

stimulatory signals mediated by Fgf and Wnt/β-catenin signaling, as well as by reducing 

signaling through the growth-inhibitory non-canonical Wnt pathway. The endogenous roles of 

RA in adult vertebrate appendage regeneration are uncovered here for the first time. They 

provide a mechanistic framework to understand previous observations in salamanders that link 

endogenous sources of RA to the regeneration process itself and support the hypothesis that 

the RA signaling pathway is an essential component of vertebrate tissue regeneration. 
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Introduction 

 

Fish and amphibians have the ability to regenerate appendages that are lost or injured. 

Following amputation, the lost appendage regrows through a proliferation-dependent process 

known as epimorphic regeneration that involves three successive stages: wound healing, 

blastema formation, and regenerative outgrowth and repatterning. Despite great progress in 

recent years (Brockes and Kumar, 2008; Tanaka and Reddien, 2011), the underlying molecular 

mechanisms are still insufficiently understood. The retinoic acid (RA) signaling pathway 

(Theodosiou et al., 2010) has a long history in the study of vertebrate appendage regeneration. 

Treatment of regenerating amphibian limbs with excess RA causes patterning defects and a 

respecification of positional information (Maden and Hind, 2003; Maden, 1982; Maden, 1983; 

Niazi and Saxena, 1978). A role for RA has therefore been invoked in proximal-distal patterning. 

However, reliable loss-of-function experiments to verify the endogenous role(s) of RA in limb 

regeneration have never been performed.  

Owing to the advantages offered by genetic screens, transgenesis and chemical genetics, fin 

regeneration in adult zebrafish has received exceptional attention (Iovine, 2007). The adult 

caudal fin consists of bony fin rays that are connected to each other by soft interray tissue 

(Akimenko et al., 2003; Becerr et al., 1983). Each fin ray is composed of two facing, concave 

hemirays that surround a core of fibroblasts, osteoblasts, pigment cells, nerves and blood 

vessels. The RA receptor rarga has been found to be strongly expressed in the adult fin 

blastema (White et al., 1994) and gene expression profiles of regenerating larval and adult fins 

have identified aldh1a2 (raldh2), which encodes the major enzyme for embryonic RA synthesis, 

as highly expressed (Mathew et al., 2009). In zebrafish larvae, repair of the caudal fin fold after 

amputation has been shown to depend on RA signaling (Mathew et al., 2009). However, larval 

fin folds are different from adult fins in many respects and it is unclear whether the signaling 

mechanisms driving larval regeneration apply to the adult blastema. Taken together, despite 

more than three decades of research into the effects of exogenous RA on regenerating 

amphibian limbs, evidence for a functional involvement of RA signaling in regenerating 

appendages of adult vertebrates is still missing. In this study, we demonstrate that RA signaling 

is essential for adult fin regeneration and provide mechanistic insights into a function for RA 

signaling in wound epidermis formation and in the generation and maintenance of the 

blastema.  
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Material and Methods 

 

Zebrafish husbandry and fin amputation 

Zebrafish strains of Konstanz wild types and the transgenic lines [Tg(hsp70I:dn-fgfr1)]pd1 (Lee et 

al., 2005), [Tg(hsp70l:dn-zrar-egfp)]pd18 (Kikuchi et al., 2011) and [Tg(hsp70I:cyp26a1)]kn1 were 

reared and staged at 28.5°C according to Kimmel et al. (Kimmel et al., 1995). Transgenic strains 

were analyzed as heterozygotes; wild-type siblings served as controls. Fish that were 3-14 

months old were used for regeneration experiments. Caudal fins were amputated along the 

dorsoventral axis, intersecting the median rays approximately halfway. Fish were allowed to 

regenerate for various times at 27-28°C. 

 

Construction of hsp70l:cyp26a1 

To construct the hsp70I:cyp26a1 transgene (Kikuchi et al., 2011), egfp from phsp70I:egfp 

(Halloran et al., 2000) was replaced by zebrafish cyp26a1 (NM_131146) and the entire cassette 

was inserted into the I-SceI backbone vector (Thermes et al., 2002). Plasmid DNA was injected 

together with I-SceI meganuclease (NEB) into one-cell stage embryos to create germline 

transgenic founder fish. 

 

Heat shock experiments 

Embryos were heat-shocked at 38°C for 1 hour. Heat shock of adult fish was performed once 

daily by transferring fish from 27-28°C water to 33-34°C water for 30 minutes and subsequently 

to 38°C water for 1 hour. 

 

BrdU and RA treatments 

For bromodeoxyuridine (BrdU, Sigma) and all-trans RA (Sigma) treatments, fish were injected 

intraperitoneally with 30 µl solution. BrdU, at 2.5 mg/ml in PBS, was injected 6 hours (during 

blastema formation) or 30 minutes (during regenerative outgrowth) prior to fixation. RA was 

injected at 1 mM in 1% DMSO/PBS. Control fish were injected with an equivalent concentration 

of DMSO/PBS. Fins of BrdU-treated fish were fixed in 4% PFA in PBS, washed in 0.3% Triton X-

100 in PBS (PBTx) and DNA was denatured with 2M HCl for 20 minutes at 37°C. Fins were 

washed, then incubated with mouse anti-BrdU antibody (1:50, Sigma) and subsequently with 

goat anti-mouse Alexa Fluor 568 antibody (1:800, Molecular Probes). Cryosections were 

counterstained with DAPI. 

 

Cryosectioning 

For cryosectioning, fins were embedded in 1.5% agar/5% sucrose in PBS. Embedded fins were 

saturated in 30% sucrose and subsequently frozen in Tissue-Tek O.C.T. Compound (Sakura) in 

liquid nitrogen. Longitudinal sections were cut at 18 µm.  
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In situ hybridization 

Digoxigenin-labeled RNA antisense probes were synthesized from cDNA templates: egr2a 

(krox20) (Oxtoby and Jowett, 1993), myoD (myod1 – Zebrafish Information Network) (Weinberg 

et al., 1996), aldh1a2 (Grandel et al., 2002), rarga (Joore et al., 1994), rdh10a (ImaGenes, 

IRAKp961E15293Q) and rdh10b (ImaGenes, IRBOp991E024D). In situ hybridization of whole fins 

and embryos was performed as previously described (Poss et al., 2000a) with minor 

modifications. For in situ hybridization on cryosections, proteinase K treatment was replaced by 

permeabilization in PBTx for 30 minutes prior to prehybridization. Stained whole-mounts and 

sections were cleared in ethanol. Whole mounts were transferred into 75% glycerol in PBS for 

documentation. 

 

TUNEL staining 

For TUNEL staining on cryosections, fins were fixed and processed as for in situ hybridization on 

sections. Sections were permeabilized in PBTx and equilibrated with terminal deoxynucleotidyl 

transferase (TdT) buffer [200 mM potassium cacodylate, 25 mM Tris, 0.05% (v/v) Triton X-100, 

fluorescein-12-dUTP, 40 µM dTTP and 0.02 units/µl TdT (all Fermentas). Slides were incubated 

at 37°C for 3 hours and washed in PBT. Sections were blocked in 0.5% Blocking Reagent (Roche) 

in PBT and incubated with sheep anti-fluorescein AP antibody (1:2000, Roche). The staining 

reaction was carried out as for in situ hybridization. 

 

Analysis of cell proliferation, cell death and regenerative growth 

For quantification of BrdU-labeled and TUNEL-labeled cells, two to six representative sections 

per fin from 5-11 fish per group were used. Labeled cells were counted within 100 µm proximal 

to the amputation plane in the epidermis and inside an area of 50x100 µm in the mesenchyme 

at 32 hours post-amputation (hpa). For quantification at 3 and 4 days postamputation (dpa), 

cells were counted distal to the amputation plane and calculated per 500 µm regenerate 

length. To determine growth in regenerating fins of heat-shocked RA injected hsp70:dn-fgr1 

fish, fins were photographed at 70 hpa (before the first heat shock and first RA injection) and 5 

dpa. The length of the regenerate (from the amputation plane to the distal tip) was measured 

using AxioVision software (Carl Zeiss). Growth between the two time points was calculated for 

each fish (n=10-12 fish per group). Statistical significance was calculated using Student’s t-test. 

 

Hematoxylin staining 

Fins were fixed in 4% PFA in PBS, transferred to methanol and stored at –20°C. Fins were 

rehydrated prior to cryosectioning. Sections were stained in Mayer’s Hematoxylin Solution 

(Sigma) for 3-5 minutes, washed in water and cleared in 0.37% HCl in 70% ethanol for 5-10 

seconds. 
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Quantitative real-time PCR 

For RNA extraction at 0, 6 and 10 hpa, tissue within 1 mm proximal to the amputation plane 

was harvested. At 73 hpa, tissue distal to the amputation plane was harvested. Each sample 

was prepared from 4-11 fins. Total RNA was extracted with Trizol reagent (Invitrogen) and 

treated with DNase I (Fermentas). Equal amounts of total RNA from each sample were reverse 

transcribed with SuperScript III reverse transcriptase (Invitrogen) using oligo(dT) primers. For all 

samples, reverse transcriptase-negative controls were included to verify the purity of the 

samples. Quantitative real-time PCR (qPCR) was performed using a C1000 thermal cycler 

combined with a CFX96 real-time PCR detection system (Bio-Rad) and Maxima SYBR Green 

qPCR Master Mix (Fermentas). Primers are listed in supplementary material Table S1. qPCR 

reactions for each sample and each target gene were performed in triplicate. Three samples 

were used for each gene at 0, 6 and 10 hpa; two to three samples were used for each gene at 

73 hpa. qPCR data were analyzed using CFX Manager software (Bio-Rad). Expression levels at 0 

and 6 hpa in wild-type fins were normalized to ef1a levels (normalization to gapdh levels 

produced very similar results). Expression levels at 73 hpa were normalized to actb1 levels 

(normalization to ef1a levels produced very similar results). Expression levels at 0 and 10 hpa 

under altered RA levels were normalized to the input RNA amount by performing a RiboGreen 

assay (Invitrogen) for exact RNA quantification. This technique was used because normalization 

to different reference genes gave conflicting results. Statistical significance was calculated using 

Student’s t-test. 
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Results 

 

Blastema formation requires upregulation of RA synthesis 

A previous microarray analysis has shown that expression of the RA-synthesizing enzyme 

aldh1a2 is upregulated in regenerating caudal fins of adult zebrafish at 24 hours post 

amputation (hpa) (Mathew et al., 2009). In order to better understand the spatial and temporal 

expression of aldh1a2 and other RA pathway components during blastemal formation we 

performed gene expression studies and found that aldh1a2 expression is upregulated within 6 

hpa (Fig. 1A). aldh1a2 transcripts were detected within approximately one segment length 

proximal to the amputation plane in the ray and interray mesenchyme (Fig. 1B,C; data not 

shown), whereas the most distal mesenchyme is initially (at 18 hpa) devoid of aldh1a2. RA 

synthesis through aldh1a2 requires a reliable source of retinaldehyde. Accordingly, we found 

that expression of retinol dehydrogenase 10b (rdh10b) is induced after amputation (Fig. 1A). 

rarga has been shown to be expressed in the mature blastemal (White et al., 1994). We 

investigated rarga expression in the fin stump and detected 1.7-fold higher expression of rarga 

at 6 hpa as compared with 0 hpa (Fig. 1A). Together, our expression analyses shows that fin 

amputation induces upregulation of essential components of the RA pathway. 

      

 
Fig. 1. Fin amputation induces RA synthesis in the stump tissue. (A) qPCR determination of aldh1a2, rdh10b and 
rarga transcript levels at 6 hpa relative to uncut (0 hpa) fins. Error bars, s.e.m. *, P<0.01. (B,C) In situ hybridization 
on longitudinal section (B) and whole fins (C) demonstrates aldh1a2 expression in the stump mesenchyme. Note 
the absence of aldh1a2 transcripts in the most distal mesenchyme at 18 hpa. sm, stump mesenchyme; r, hemiray; 
we, wound epidermis. Dashed lines indicate amputation plane. Scale bars: 100µm in B; 200mm in C. 

 

During blastema formation, which occurs at ~12-48 hpa, cells of the ray mesenchyme within 

one to two segment lengths proximal to the amputation plane start to proliferate and migrate 

distally to form the blastema. Expression of aldh1a2 in this region suggests that blastema 

formation requires high levels of RA at the local origin of blastema cells. To investigate the 

consequences of impaired RA signaling for fin regeneration we developed a transgenic 

zebrafish line that allows heat shock-inducible degradation of endogenous RA. The 
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Tg(hsp70I:cyp26a1)kn1 strain, referred to hereafter as hsp70:cyp26a1, harbors zebrafish 

cyp26a1, which encodes an RA-degrading enzyme, driven by the heat-inducible zebrafish hsp70 

promoter (Halloran et al., 2000). We found that induction of the transgene during 

embryogenesis results in strong, ubiquitous cyp26a1 expression (not shown) and phenocopies 

the effects of complete loss of RA signaling. A brief heat shock at 6 hours post fertilization (hpf) 

caused specific and organ-wide developmental defects that are known hallmarks of impaired 

RA signaling (supplementary material Fig. S1) (Begemann et al., 2001; Begemann et al., 2004; 

Gibert et al., 2006; Grandel et al., 2002). When adult hsp70:cyp26a1 fish were exposed to a 

heat shock during fin regeneration, strong cyp26a1 expression could be detected in the whole 

fin (not shown). Thus, the hsp70:cyp26a1 line is a reliable tool to interfere with RA signaling in 

embryos and adult fish. 

To test whether RA signaling is required for blastema formation, we applied daily heat shocks 

to adult hsp70:cyp26a1 fish starting with the first heat shock 2 hours before fin amputation. 

This treatment caused a complete and early block to fin regeneration (22/34 fish), whereas 

regeneration was unperturbed in heat-shocked wild-type fish (39/39 fish) (Fig. 2A). In addition, 

this effect is reversible: removing the heat shock treatment resulted in normal blastema 

formation and complete fin regeneration. To determine the cellular nature of regenerative 

failure, we examined Hematoxylin-stained fin sections of heat-shocked wild type and 

hsp70:cyp26a1 fish at 45 hpa. Whereas wild-type regenerates displayed a well-developed 

blastema between the amputation plane and a multilayered wound epidermis, hsp70:cyp26a1 

fins exhibited a complete absence of blastema cells (Fig. 2B). Several layers of epithelial cells 

sealed the wound in hsp70:cyp26a1 fish, indicating normal re-epithelialization of the stump 

surface. However, cells of the basal epidermal layer did not adopt their typical cuboidal shape 

(Fig. 2C). Extracellular matrix remodeling and disorganization of the stump mesenchyme 

adjacent to the amputation site are an early response prior to blastema formation. 

Interestingly, disorganized stump mesenchyme proximal to the wound site was also observed in 

hsp70:cyp26a1 regenerates (Fig. 2D). 

To confirm the absence of blastema cells in hsp70:cyp26a1 fish we examined the expression of 

fgf20a and msxb, two markers that are strongly expressed in blastema cells (Akimenko et al., 

1995; Whitehead et al., 2005). Neither gene could be detected in heat-shocked hsp70:cyp26a1 

fins at 32 hpa (fgf20a, 6/7 fins; msxb, 3/5 fins) and 48 hpa (msxb, 6/8 fins) (supplementary 

material Fig. S2). The absence of a distinct basal epidermal layer in hsp70:cyp26a1 fish suggests 

that the initial specification of the wound epidermis is affected. lef1, which marks the basal 

epidermal layer and the distal blastema (Poss et al., 2000b), could not be detected in 

hsp70:cyp26a1 fins at 46 hpa (3/4 fins) (supplementary material Fig. S2). Furthermore, lef1 

expression was also absent at an earlier time point (at 32 hpa; 5/8 fins) demonstrating that lef1 

expression is not initiated in the absence of RA signaling. 
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The failure of blastema formation might be a consequence of defects in wound healing and in 

the formation of a proper wound epidermis. We showed that this is not the case by inhibiting 

RA signaling after wound healing had taken place, applying the first heat shock at 24 hpa. 

Regeneration was completely blocked in 13 out of 21 hsp70:cyp26a1 fish (supplementary 

material Fig. S3). In summary, neither blastema cells nor the basal epidermal layer is formed or 

specified correctly in the absence of RA signaling. 

 

       
 

 

 

RA signaling controls cell cycle entry at the onset of blastema formation 

During blastema formation, formerly quiescent cells of the ray mesenchyme start to proliferate 

and migrate towards the amputation plane. To understand why blastemal formation fails in the 

absence of RA signaling, we assayed cell proliferation in heat-shocked hsp70:cyp26a1 fish at 32 

hpa. We found a dramatic decrease in proliferating stump cells (Fig. 3A,B). Similar results were 

obtained for the transgenic strain hsp70:dn-zrar, in which heat shock treatment induces 

expression of a dominant-negative zebrafish retinoic acid receptor alpha (rara) (Kikuchi et al., 

2011) (Fig. 3C), providing independent evidence for the requirement of RA signaling for 

Fig. 2. RA signaling is necessary for 
blastema formation. (A) Inhibition of RA 
signaling in hsp70:cyp26a1 fish by 
applying daily heat shocks (commencing 2 
hours before fin amputation) results in an 
early and complete block to fin 
regeneration. (B-D) Hematoxylin-stained 
longitudinal sections indicate absence of 
blastema cells in hsp70:cyp26a1 fins at 45 
hpa and lack of a distinctive basal 
epidermal layer. Several layers of 
epithelial cells seal the amputation plane, 
indicating normal initial wound healing. 
Remodeling of the stump mesenchyme 
adjacent to the amputation site is 
apparent in both wildtype and 
hsp70:cyp26a1 fish. (B) Overviews of 
stained sections. (C,D) Magnified view of 
the wound epidermis-mesenchyme 
boundary (C) and the stump mesenchyme 
(D). Dashed lines indicate amputation 
plane. hs, heat shock; b, blastema; be, 
basal epidermal layer; sm, stump 
mesenchyme; we, wound epidermis. 
Scale bars: 500 µm in A upper panels; 200 
µm in A lower panels; 100 µm in B; 50 µm 
in C,D. 
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blastema formation. The lack of proliferating cells suggested that proliferation was either not 

induced or that cycling cells underwent cell death. To discriminate between these possibilities, 

we compared the number of dying cells between wildtype and hsp70:cyp26a1 stumps at 32 

hpa. Since we did not observe enhanced cell death in hsp70:cyp26a1 stumps, neither in the 

mesenchyme nor in the epidermis (supplementary material Fig. S4), we conclude that induction 

of cell proliferation in the ray mesenchyme fails in the absence of RA signaling. RA signaling 

might be sufficient to induce cell cycle entry of blastema progenitor cells, as cells of the ray 

mesenchyme become exposed to high levels of RA as a consequence of fin amputation. 

Previous studies have shown that RA treatment can cause mispatterning in regenerating fins, 

slow down regeneration or even block blastema formation (Géraudie et al., 1995; White et al., 

1994). However, because these effects might have been caused by increased cell death, 

especially in the wound epidermis (Géraudie and Ferretti, 1997), we developed an RA 

treatment regime that efficiently enhances RA signaling in the regenerating fin, but does not 

induce cell death. We found that intraperitoneal (IP) injection of 1 mM RA dissolved in a low 

concentration of DMSO does not induce cell death during blastema formation and regenerative 

outgrowth, even if injected every 12 hours for several days (supplementary material Fig. S5B; 

data not shown). Increased RA signaling in the regenerate should result in decreased aldh1a2 

and rdh10a transcript levels and enhanced cyp26a1 levels, as has been shown for embryonic 

development (Dobbs-McAuliffe et al., 2004; Hu et al., 2008). Accordingly, we detected an 

autoregulatory component of RA signaling in the regenerating caudal fin 4 hours after IP 

injection of 1 mM RA (supplementary material Fig. S5A). 

We tested the effect of exogenous RA on proliferation of the ray mesenchyme during blastema 

formation. We injected RA every 12 hours, with the first injection directly after fin amputation, 

and assayed cell proliferation at 32 hpa. Mesenchymal proliferation was significantly increased 

in RA-treated fish (Fig. 3D), demonstrating that RA signaling is not only required for cell cycle 

entry but is also sufficient to increase the proliferation of stump cells. These findings clearly 

show that the previously reported negative effects of RA on fin regeneration were secondary 

effects caused by enhanced cell death. 
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Fig. 3. Induction of cell proliferation in the fin stump requires RA signaling. (A-C) Inhibition of RA signaling in 
hsp70:cyp26a1 and hsp70:dnzrar fish results in a significant decrease in proliferating cells in the fin stump (daily 
heat shocks, commencing 2 hours before amputation). (A) Longitudinal sections stained for BrdU and with DAPI 
demonstrate a near absence of BrdU-positive cells in hsp70:cyp26a1 fins at 32 hpa. (B,C) Quantification of BrdU-
labeled cells within a defined area at 32 hpa in hsp70:cyp26a1 (wild type, n=39 sections; hsp70:cyp26a1, n=44) (B) 
or hsp70:dn-zrar stumps (wild type, n=20; hsp70:dn-zrar, n=31) (C). (D) Exogenous RA promotes mesenchymal 
proliferation in the stump [RA intraperitoneal injection (IP) every 12 hours, first IP at 0 hpa]. Quantification of 
BrdU-labeled cells at 32 hpa in RA-treated stumps (DMSO vehicle, n=16; RA, n=18). Error bars, s.e.m. *, P<0.0001 in 
B,C; *, P<0.005 in D. Dashed lines indicate the amputation plane. hs, heat shock. Scale bar: 100 µm. 

 

 

Key pathways involved early in blastema and wound epidermis formation are regulated by 

RA signaling 

To understand the molecular consequences of early upregulation of RA levels in the stump, we 

examined the effects of altered RA signaling on key pathways involved in blastema and wound 

epidermis formation. Fgf and Wnt/β-catenin signaling have been shown to be required for 

blastema formation and subsequent blastema proliferation. Within the first few hours after 

amputation, expression of fgf20a and wnt10a is strongly upregulated. Moreover, homozygous 

mutants in fgf20a (dob) fail to form a blastema and show an abnormal wound epidermis (Lee et 

al., 2005; Poss et al., 2000a; Stoick-Cooper et al., 2007; Whitehead et al., 2005). By contrast, the 

ligand responsible for activation of the Wnt/β-catenin signaling pathway during fin 

regeneration remains a matter of speculation. We examined whether induction of fgf20a and 

Wnt ligand expression in the fin stump is regulated by RA signaling by performing loss- and 

gain-of-function experiments. Amputation induced fgf20a upregulation was clearly diminished 

in heat-shocked hsp70:cyp26a1 fish at 10 hpa, whereas upregulation of wnt10a and wnt10b 

was unaffected (Fig. 4A). Because not all hsp70:cyp26a1 fish respond equally well to the heat 

shock treatment, the reduction in fgf20a expression observed might be underrepresentative. 

Furthermore, overexpression of cyp26a1 results in strong downregulation of baseline fgf20a 

expression in unamputated fins (Fig. 4A), suggesting that reduced upregulation of fgf20a in 

hsp70:cyp26a1 fins is not a secondary effect of impaired fin regeneration, but reflects a more 

direct requirement for RA signaling for fgf20a expression. Exogenous RA does not induce 

upregulation of fgf20a expression in unamputated fins and we did not detect increased 

upregulation of fgf20a in RA-treated fins at 10 hpa (Fig. 4B). Interestingly, RA treatment 
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resulted in decreased upregulation of wnt10a at 10 hpa, but further increased regeneration-

induced wnt10b upregulation. Strikingly, we found that exogenous RA is sufficient to induce 

wnt10b upregulation in unamputated fins.  

Although re-epithelialization of the stump surface does not require RA signaling, formation of 

the basal epidermal layer depends on RA signaling. Chablais and Jazwinska (Chablais and  

Jazwinska, 2010) reported a fundamental role for Igf signaling in the formation of the basal 

epidermal layer via paracrine activation of Igfr in the wound epidermis. Igf2b is produced and 

secreted from cells of the stump mesenchyme, demonstrating the importance of interactions 

between the mesenchyme and the forming wound epidermis. The lack of the basal epidermal 

layer in RA-deficient fish might therefore be caused by a reduction in paracrine signals derived 

from the stump mesenchyme. To test this, we examined the effects of altered RA signaling on 

early igf2b expression in the fin stump. Loss of RA in unamputated fins had no effect on 

baseline igf2b expression, whereas regenerationinduced igf2b upregulation was reduced in 

heat-shocked hsp70:cyp26a1 fins (Fig. 4A). RA treatment further increased igf2b expression at 

10 hpa and even induced igf2b upregulation in unamputated fins (Fig. 4B). Thus, RA is required 

for the strong induction of igf2b during regeneration and is sufficient to induce igf2b in the 

unamputated fin, indicating that impaired wound epidermis formation in hsp70:cyp26a1 fish is 

caused by impaired igf2b induction. Together, these findings demonstrate that RA signaling 

stimulates wnt10b expression and is crucial for amputation-induced fgf20a and igf2b 

expression in the fin stump. 

 

   
Fig. 4. RA signaling regulates Fgf, Wnt/β-catenin and Igf signaling in the fin stump. qPCR determination of fgf20a, 
wnt10a, wnt10b and igf2b expression levels under altered RA signaling. (A) Expression levels in hsp70:cyp26a1 fins 
at 0 and 10 hpa relative to wild-type control at 0 hpa (single heat shock 12 hours before RNA extraction). (B) 
Expression levels in RA-treated fins at 0 and 10 hpa relative to DMSO control at 0 hpa (single RA IP 10 hours before 
RNA extraction). Expression of all genes was significantly higher at 10 hpa relative to 0 hpa. Error bars, s.e.m. *, 
P≤0.01. hs, heat shock. 
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RA signaling is essential for proliferation and survival of the mature blastema 

Following the formation of a blastema aldh1a2, rarga and rdh10a are strongly expressed in the 

blastema (supplementary material Fig. S6), whereas rdh10b transcripts could not be detected. 

Since RA signaling is necessary for cell proliferation during blastemal formation, we tested the 

effect of inhibiting RA signaling on proliferation of the mature blastema. We applied a single 

heat shock at 72 hpa and examined proliferation 8 hours later. Our analysis revealed a 

significant reduction of BrdU-positive cells in hsp70:cyp26a1 regenerates, both in the 

mesenchyme and epidermis (Fig. 5A,B). msxb is strongly expressed in blastema cells and has 

been shown to be required for blastema proliferation (Akimenko et al., 1995; Nechiporuk and 

Keating, 2002; Thummel et al., 2006). To test whether the observed decrease in proliferation is 

reflected in altered msxb expression, and to detect early expression changes, we examined 

msxb expression by qPCR at 73 hpa immediately after a single heat shock. We found that msxb 

transcripts were reduced to half their normal levels in hsp70:cyp26a1 regenerates (Fig. 5C). 

Thus, RA signaling is not only required for blastemal formation but also for subsequent 

blastema proliferation.  

Daily heat shocks starting at 72 hpa resulted in a reversible and robust block to regenerative 

outgrowth in hsp70:cyp26a1 fish (10/10 fish) and a loss of already regenerated tissue (Fig. 

6A,C). Remarkably, within the first 10 hours after heat shock, the blastemal in hsp70:cyp26a1 

regenerates turned opaque (10/10 fish) (Fig. 6B), suggesting extensive cell death. In support of 

this, we found a high number of TUNEL-labeled mesenchymal cells in hsp70:cyp26a1 

regenerates 8 hours after heat shock (Fig. 7A,B). Importantly, most TUNEL-positive cells were 

restricted to the distal half of the mesenchyme, indicating that undifferentiated blastema cells 

are unable to survive in the absence of RA signaling. Very similar results were obtained with the 

hsp70:dn zrar line (supplementary material Fig. S7), demonstrating that the massive cell death 

in hsp70:cyp26a1 fish is caused by impaired RA signaling, rather than by non-specific effects of 

cyp26a1 overexpression. Fgf, Wnt/β-catenin and Activin-βA, among other pathways, have been 

shown to positively regulate blastema proliferation (Jazwinska et al., 2007; Poss et al., 2000a; 

Stoick-Cooper et al., 2007). Cell death caused by inhibition of these pathways has not been 

reported. Thus, RA might be an essential part of the mechanism promoting survival of the 

blastema. Bcl2 family proteins are essential regulators of various cell death mechanisms, 

including apoptosis, necrosis and autophagy (Yip and Reed, 2008). bcl2 overexpression has 

been shown to inhibit cell death induced by many stimuli, including growth factor deprivation. 

Bcl2 is therefore a major candidate for RA-mediated protection from cell death in blastema 

cells and possibly other stress-induced states. Because bcl2 expression in the regenerating fin 

had not been investigated, we analyzed bcl2 transcript levels. qPCR analysis revealed 2.5-fold 

higher levels of bcl2 transcripts at 6 hpa compared with uninjured fins (0 hpa) (Fig. 7C), 

indicating that protection against cell death is enhanced in the regenerating fin. To test 

whether bcl2 expression is regulated by RA signaling, we performed loss- and gain-of-function 
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experiments. We applied a single heat shock to wild-type and hsp70:cyp26a1 fish at 72 hpa and 

compared expression immediately following the heat shock. Transcript levels were significantly 

reduced in hsp70:cyp26a1 regenerates (Fig. 7D). We next increased RA signaling by IP injection 

of RA and examined bcl2 expression 4 hours later. Expression was 1.75-fold higher in RA-

injected than in vehicleinjected fish (Fig. 7D). These results reveal a strong RA-mediated pro-

survival mechanism in blastema cells that is mediated by upregulation of bcl2 expression. 
  

      
Fig. 5. RA signaling is required for blastema proliferation. Inhibition of RA signaling in hsp70:cyp26a1 fish, when 
instigated during regenerative outgrowth, results in downregulation of msxb expression and loss of blastema 
proliferation. (A) Longitudinal sections stained for BrdU and with DAPI demonstrate absence of BrdU-positive cells 
in hsp70:cyp26a1 regenerates at 81 hpa after a single heat shock at 72 hpa. (B) Quantification of BrdU-labeled cells 
(wild type, n=17 sections; hsp70:cyp26a1, n=16). (C) qPCR determination of msxb transcript levels in 
hsp70:cyp26a1 regenerates relative to wild-type regenerates at 73 hpa. Error bars, s.e.m. *, P<0.0001. Dashed 
lines indicate amputation plane. Scale bar: 100 µm. 
 

 

        
 

Fig. 6. RA signaling is essential for regenerative 
outgrowth and maintenance of the regenerate. 
Inhibition of RA signaling in hsp70:cyp26a1 fish 
during regenerative outgrowth blocks further 
regeneration and abolishes maintenance of the 
regenerate (daily heat shocks, first heat shock at 72 
hpa). (A) Before the first heat shock, regeneration 
in hsp70:cyp26a1 fish is indistinguishable from that 
of wild-type fish. (B) Ten hours after the first heat 
shock, the blastema of hsp70:cyp26a1 fish 
regenerates appears dark. (C) Two days later, 
regenerative outgrowth is blocked and already 
regenerated tissue is lost. Note the decrease in 
tissue distal to the amputation plane in 
hsp70:cyp26a1 regenerates between A and C. 
Dashed lines indicate amputation plane. hs, heat 
shock. Scale bar: 200 µm. 
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Fig. 7. Blastema cells possess 
a strong RA-mediated pro-
survival mechanism. (A,B) 
Loss of RA signaling during 
regenerative outgrowth 
causes cell death in the 
regenerate after a single heat 
shock at 72 hpa. (A) TUNEL 
staining on longitudinal 
sections at 81 hpa reveals 
massive cell death in the 
distal mesenchyme in 
hsp70:cyp26a1 fish. (B) 
Quantification of TUNEL-
labeled cells in 
hsp70:cyp26a1 regenerates 
at 81 hpa (wild type, n=35 
sections; hsp70:cyp26a1, 
n=31). Pink and green bars in 
B show the ratio of labeled 
cells between the distal and 
proximal mesenchyme of 
hsp70:cyp26a1 fish as a 
percentage of the total 
number of labeled cells in the 
mesenchyme. (C) qPCR 

determination of bcl2 transcript levels at 6 hpa relative to uncut (0 hpa) fins. (D) bcl2 transcript levels, determined 
by qPCR, in heat-shocked hsp70:cyp26a1 fish (control is heat-shocked wild-type fish) and RA-treated fish (control is 
vehicle-treated fish) relative to control fish at 73 hpa (single heat shock at 72 hpa, single RA IP at 69 hpa). Error 
bars, s.e.m. *, P<0.0001 in B; *, P<0.01 in C; *, P<0.001 in D; ns, not significant. Dashed lines indicate amputation 
plane. DM, distal mesenchyme; PM, proximal mesenchyme; hs, heat shock. Scale bar: 100 µm. 

 

 

RA, Fgf, Wnt/β-catenin and non-canonical Wnt signaling cooperate to regulate blastemal 

proliferation 

To gain insights into the gene network underlying blastemal proliferation we investigated 

regulatory interactions between RA, Fgf and Wnt/β-catenin at 73 hpa using a qPCR approach. 

Expression of the Fgf target mkp3 (dusp6 – Zebrafish Information Network) and the Wnt/β-

catenin target axin2 was strongly diminished at the end of a single heat shock in hsp70:cyp26a1 

regenerates (Fig. 8A). Conversely, treating fish for 4 hours with RA caused upregulation of 

axin2. Expression of the Fgf target mkp3 remained unchanged under these conditions, most 

likely owing to the short duration of the treatment. We then investigated which Fgf and Wnt 

ligands might mediate the positive effect of RA. fgf20a showed increased expression in RA-

injected fish and decreased following cyp26a1 overexpression. Expression of both wnt10 

paralogs was unchanged in hsp70:cyp26a1 fins. However, RA treatment resulted in 

downregulation of wnt10a expression and in a striking upregulation of wnt10b. Thus, it is likely 

that wnt10b, either alone or together with other Wnts, mediates the positive effect of RA 

signaling on the Wnt/β-catenin pathway in the mature blastema. Wnt/β-catenin signaling has 
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previously been shown to be required for Fgf signaling during fin regeneration and has 

therefore been suggested to act upstream of Fgf activation (Stoick-Cooper et al., 2007). To test 

this, we made use of the transgenic hsp70:dn-fgfr1 strain (Lee et al., 2005), which allows heat 

shock-induced inhibition of Fgf signaling. We applied a single heat shock and compared 

expression levels directly at the end of the heat shock. Expression of mkp3 was strongly 

reduced in hsp70:dn-fgfr1 regenerates, demonstrating the efficiency of Fgf signaling inhibition. 

Remarkably, both axin2 and aldh1a2 transcript levels were reduced in hsp70:dn-fgfr1 

regenerates (Fig. 8A). Thus, Wnt/β-catenin signaling and RA synthesis are positively regulated 

by Fgf signaling. Together, these findings demonstrate that RA, Fgf and Wnt/β-catenin signaling 

regulate each other in a positive reciprocal manner, rather than following an epistatic hierarchy 

during fin regeneration (Fig. 8B). 

If this model is correct, enhancing RA signaling in heat-shocked hsp70:dn-fgfr1 fish should not 

rescue blastema proliferation and regenerative outgrowth. To examine this, we blocked Fgf 

signaling in hsp70:dn-fgfr1 fish for 2 days during regenerative outgrowth b applying the first 

heat shock at 72 hpa and simultaneously enhanced RA signaling through daily RA IP injections. 

We found an increase in tissue distal to the amputation plane by ~400 µm in vehicle- and RA-

injected heat-shocked wild-type fish (supplementary material Fig. S8). By contrast, RA injection 

into hsp70:dn-fgfr1 fish failed to rescue regenerative outgrowth. Moreover, there was a 

decrease in already regenerated tissue in hsp70:dn-fgfr1 fish that suggests that the interactions 

we identified between the RA and Fgf pathways are also employed to promote cell survival. The 

non-canonical Wnt pathway has been shown to act as a negative modulator of fin regeneration 

(Stoick-Cooper et al., 2007). Overexpression of wnt5b inhibits fin regeneration, whereas wnt5b 

loss-of-function accelerates regeneration. Interestingly, wnt5b expression is positively 

regulated by Fgf, Igf and Wnt/β-catenin signaling (Fig. 8A) (Chablais and Jazwinska, 2010; Lee et 

al., 2009; Stoick-Cooper et al., 2007), indicating that a negative feedback mechanism modulates 

the overall rate of regeneration through non-canonical Wnt signaling. Because of the observed 

positive regulation between RA and the Fgf and Wnt/β-catenin pathways, we expected reduced 

wnt5b expression in hsp70:cyp26a1 regenerates. However, expression was mainly unaffected 

(Fig. 8A). Moreover, we found a decrease in wnt5b expression in RA-injected fish. Our findings 

show that the noncanonical Wnt pathway is negatively regulated by RA, indicating that RA 

signaling counteracts the negative-feedback loop that is activated by Fgf and Wnt/β-catenin 

signaling. Moreover, the interactions between RA, Fgf and Wnt/β-catenin in the mature 

blastema correlate with those observed for blastema formation. 
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Fig. 8. A complex molecular regulatory network underlies blastema proliferation. (A) qPCR determination of RA, 
Wnt and Fgf pathway components and targets during regenerative outgrowth in RA-treated (control is vehicle-
treated fish), hsp70:cyp26a1 and hsp70:dn-fgfr1 (control is heat-shocked wild-type fish) relative to control fish at 
73 hpa (single heat shock at 72 hpa, single RA IP at 69 hpa). Error bars, s.e.m. *, P<0.01. (B) Simplified model of 
regulatory interactions underlying blastema proliferation. RA, Wnt/β-catenin and Fgf signaling regulate each other 
in a positive reciprocal manner and act as positive regulators of blastemal proliferation. The non-canonical Wnt 
pathway inhibits proliferation and is positively modulated by Wnt/β-catenin and Fgf signaling. RA signaling 
negatively regulates non-canonical Wnt signaling. Black arrows indicate newly identified interactions (this study), 
whereas gray arrows indicate previously identified interactions (Lee et al., 2009; Stoick-Cooper et al., 2007). hs, 
heat shock. 
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Discussion 

 

In this study we have identified fundamental roles of RA signaling in adult fin regeneration, 

findings that contribute to a more thorough understanding of the molecular events underlying 

the development and maintenance of the regeneration blastema. Amputation of the caudal fin 

results in the activation of as yet unidentified signals that initiate blastemal formation in the 

stump tissue. Strong aldh1a2 expression is rapidly induced in the stump mesenchyme, 

indicating that cells that will give rise to the blastemal become exposed to high RA levels within 

the first few hours after amputation. Rapid induction of aldh1a2 is also a hallmark of zebrafish 

heart regeneration, where it is expressed in both the epicardium and endocardium, highlighting 

the importance of RA signaling in promoting cell division during the injury response of a variety 

of tissues (Kikuchi et al., 2011; Lepilina et al., 2006). 

Activation of RA signaling in the fin stump is required for the strong amputation-induced fgf20a 

expression and promotes induction of wnt10b expression. Thus, RA, Fgf and Wnt/β-catenin 

signaling constitute parts of a signaling network that controls blastema formation. After re-

epithelialization of the wound, mesenchymal cells in the stump start to proliferate and migrate 

distally to form the blastema. Loss of RA signaling blocks entry of the blastemal precursors into 

the cell cycle. Conversely, exogenous RA is sufficient to promote mesenchymal proliferation, 

suggesting that RA signaling confers mitogenic activity during blastemal formation. In addition, 

it might control an earlier step in blastemal formation that is preconditional for cell cycle entry. 

Another early and essential step in regeneration is the formation of a specialized wound 

epidermis. Although the initial sealing of the stump surface does not require RA signaling, 

specification of the basal epidermal layer fails in the absence of RA. Igf signaling has been 

shown to regulate proper wound epidermis formation via paracrine activation of Igf receptors 

in the forming wound epidermis (Chablais and Jazwinska, 2010). We show that RA signaling is 

required and probably sufficient to induce igf2b expression in mesenchymal cells underlying 

the wound epidermis. The lack of the basal epidermal layer in RA-deficient regenerates might 

therefore be caused by a reduction in paracrine signals derived from the stump mesenchyme. 

Once the blastema has formed, RA signaling remains highly active in the mature blastema to 

ensure proliferation and survival. Besides a possible, more direct mitogenic function, RA 

signaling indirectly regulates blastema proliferation through integrating signals that either 

stimulate or inhibit proliferation (Fig. 8B). RA antagonizes the inhibitory effect of non-canonical 

Wnt signaling and, in parallel, promotes this same pathway via stimulation of Fgf and Wnt/β-

catenin signaling. We propose that this complex regulatory network ensures tight control over 

blastemal proliferation. Moreover, our findings demonstrate that RA, Fgf and Wnt/β-catenin 

signaling cooperate through mutually stimulatory interactions to regulate blastema 

proliferation, rather than acting in a fixed epistatic hierarchy. It remains to be shown whether 

this also holds true for the initiation of regeneration in the fin stump. 
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Mature blastema cells are in a fast-cycling state. It is an open and interesting question how such 

a highly proliferative cell population can be maintained in an adult animal. We found that 

expression of the pro-survival gene bcl2 is upregulated within the first few hours after fin 

amputation. Importantly, blocking RA signaling by overexpression of cyp26a1 or dn-zrar in the 

mature blastemal results in downregulation of bcl2 expression, followed by massive cell death. 

Our data indicate that blastema cells receive protection against cell death through increased 

levels of the anti-apoptotic factor Bcl2, the expression of which is positively regulated by RA 

signaling. We therefore suggest that blastema cells possess a strong RA-mediated pro-survival 

mechanism that allows maintenance of the blastema in the adult fish and provides robustness 

to environmental perturbation. Interestingly, RA signaling inhibition during blastema formation 

does not cause cell death in the stump mesenchyme, nor does manipulation of RA signaling 

during the first few hours after amputation affect upregulation of bcl2 expression (data not 

shown). These findings indicate that only mature blastema cells require RA signaling for 

enhanced bcl2 expression and survival. 

Exogenous RA has previously been shown to adversely affect fin regeneration and even block 

blastema formation (Géraudie et al., 1995; White et al., 1994), but the underlying cellular 

mechanisms have not been analyzed. A follow-up study by Géraudie and Ferretti found that 

incubation of zebrafish in high RA concentrations or IP injection of RA, when diluted in high 

DMSO concentrations, causes enhanced cell death in the wound epidermis and blastema 

(Géraudie and Ferretti, 1997). We have developed an RA treatment regime that does not 

induce cell death; rather, it demonstrably enhances RA signaling and positively influences fin 

regeneration. Thus, the reported negative effects of RA treatment (Géraudie et al., 1995; White 

et al., 1994) are very likely secondary effects caused by enhanced cell death. 

An important question is whether this spectrum of specific functions of RA in zebrafish 

blastema development is at work in other regeneration-competent vertebrates. In support of 

this view, endogenous RA has been detected in salamander blastemas (Brockes, 1992; Scadding 

and Maden, 1994; Viviano et al., 1995). Furthermore, axolotl limb regeneration can be blocked 

by applying aldehyde dehydrogenase inhibitors with broad target specificity (Maden, 1998), 

suggesting that RA signaling fulfils similar roles in fin and limb regeneration. 

In regenerating salamander limbs, RA is thought to be synthesized in the wound epidermis 

(Viviano et al., 1995); however, the expression of genes encoding RA-synthesizing enzymes has 

not been investigated so far. Although we cannot exclude the possibility that RA might also be 

produced by epidermal cells in the regenerating fin, the zebrafish aldh1a2 and rdh10a 

expression patterns strongly suggest that RA production is restricted to the stump mesenchyme 

and blastema. Interestingly, a study by McEwan et al. (McEwan et al., 2011) has shown that 

expression of the Xenopus aldh1a2 ortholog is not upregulated in regenerating tadpole 

hindlimbs. However, expression is retained from development in proximal cells bordering the 

body wall, indicating that an RA source would be available for regeneration. Investigating the 
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sources of RA in regenerating limbs of adult urodele amphibians might reveal important 

differences in RA distribution between the regenerating limbs of adult and larval amphibians as 

well as between regenerating limbs and fins. Thus, although the roles of RA in regeneration 

might be conserved, its sources might have diverged during evolution. 

In amphibians, treatment of regenerating limbs with RA results in a phenomenon known as 

‘super-regeneration’, in which additional limb structures are regenerated that would normally 

be found proximal to the amputation plane (Maden and Hind, 2003; Maden, 1982; Maden, 

1983; Niazi and Saxena, 1978). RA has therefore been proposed to act as a morphogen 

responsible for a gradient of positional information along the proximal-distal (P -D) axis during 

limb regeneration. It has been demonstrated that the PD pattern of limb segments in mouse 

and chicken is specified during embryonic development through a balance between proximal 

RA and distal Fgf activity (Cooper et al., 2011; Roselló-Díez et al., 2011). These studies support a 

patterning function of RA signaling in vertebrate limbs. Provided that loss-of-function 

experiments can show that this also holds true for limb regeneration, super-regeneration would 

be the expected outcome, reflecting the earlier patterning role of RA in limb development. So 

far, investigations in teleosts into a putative role for RA signaling in P-D patterning of the 

regenerating caudal fin have proved extremely difficult owing to the lack of reliable readouts of 

P-D patterning and insufficient knowledge concerning the processes that set up the caudal fin 

P-D axis. Although fin rays branch dichotomously, the mechanisms controlling branching are 

unknown and might not be appropriate readouts of a hypothetical P-D patterning gradient. The 

findings reported here are the first to be supported by loss- and gain-of-function experiments 

that propagate the idea that RA signaling is an essential component of vertebrate appendage 

regeneration. The mechanistic framework provided here should inform and advance future 

research to help uncover the function of RA during the repatterning phase of regeneration and 

to understand its roles from an evolutionary perspective. 
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Gene Forward primer Reverse primer 

aldh1a2  GAGAGAGACAGTGCTTACCTTGC CACAAAGAAGCAGGGGAGG 

axin2 GCAGCACAGTTGATAGCCAG GTCTTGGCTGGCACATATCC 

bactin1 TTGCTCCTTCCACCATGAAG CTTGCTTGCTGATCCACATC 

bcl-2 AAGCGAGGATATGTGTGG CAGTCAAAAGTGTGGCAG 

cyp26a1 GATGGGAGCTGATAATGTG CCTGAACCTCCTCTCTGACC 

ef1a TACGCCTGGGTGTTGGACAAA TCTTCTTGATGTATCCGCTGAC 

fgf20a AAAAGCTGTCAGCCGAGTGT TGGACGTCCCATCTTTGTTG 

gapdh GTGGAGTCTACTGGTGTCTTC GTGCAGGAGGCATTGCTTACA 

igf2b GCAGGTCATTCCAGTGATGC TCTGAGCAGCCTTTCTTTGC 

mkp3 GACTTGTGGAGCGGAGGAC CCTCTCTTCTCTCGTCGTCG 

msxb CATCTTTCACATCTCCTCCTCG CTTTCGCCCTCCTGTTCTG 

rarga CAAGAGCAAAAGCAGCAGG GAATACTGCGACGGAAGAAAC 

rdh10a CAACCCGATGTCAAAAGAGG CCAACCTCCCTACGCACTTTC 

rdh10b GGGACATCAACCGACAGAG GTCTCCCACCTCACTGCG 

wnt10a ATTCACTCCAGGATGAGACTTCATA GTTTCTGTTGTGGGCTTTGATTAG 

wnt10b TGAGCAGCACACCTTCATC TGGAGAGAAACGGATAAACAGAC 

wnt5b GCCGCCTATGCAACAAGAC GCACACAAACTGGTCTACGAG 

Fig. S1. The hsp70:cyp26a1 line efficiently 
inhibits RA signaling. (A) Heat-shock of 
hsp70:cyp26a1 embryos for 1 hour starting at 
6 hpf results in close proximity of the first 
somite to the otic vesicle and a kink at the 
head-trunk boundary at 24 hpf, representative 
of complete loss of RA signaling. (B) Whole 
mount in situ hybridization with egr2a, a 
marker of hindbrain rhombomeres 3 and 5, 
illustrates absence of rhombomere 5 in 
hsp70:cyp26a1 embryos, caused by posterior 
expansion of more anterior rhombomeres. hs, 
heat-shock; o, otic vesicle; s, first somite; 3, 
rhombomere 3; 5, rhombomere 5. Scale bars: 
100 µm. 
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Fig. S2. Expression of markers for the blastema and the 
basal epidermal layer are impaired in the absence of RA 
signaling. Whole mount in situ hybridization 
demonstrates that neither the blastema nor the basal 
epidermal layer are formed or specified correctly in 
heat-shocked hsp70:cyp26a1 fish (daily heat shocks, 1

st
 

heat shock 2 hours before amputation). (A-C) In wild-
type regenerates, msxb and fgf20a are strongly 
expressed in cells of the forming blastema at 32 or 46 
hpa. Expression of both genes is undetectable in 
regenerates of hsp70:cyp26a1 fish. (D-E) Expression of 
lef1, which marks the basal epidermal layer and distal 
blastema cells in wild-type regenerates, is absent in 
hsp70:cyp26a1 fins at 32 and 48 hpa. Dashed lines 
indicate the amputation plane. hs, heat shock; Scale bar: 
200 µm. 

 

Fig. S1. The hsp70:cyp26a1 line efficiently inhibits RA 
signaling. (A) Heat shock of hsp70:cyp26a1 embryos for 
1 hour starting at 6 hpf results in close proximity of the 
first somite to the otic vesicle and a kink at the head-
trunk boundary at 24 hpf, representative of complete 
loss of RA signaling. (B) Whole mount in situ 
hybridization with egr2a, a marker of hindbrain 
rhombomeres 3 and 5, illustrates absence of 
rhombomere 5 in hsp70:cyp26a1 embryos, caused by 
posterior expansion of more anterior rhombomeres. hs, 
heat shock; o, otic vesicle; s, first somite; 3, rhombomere 
3; 5, rhombomere 5. Scale bars: 100 µm. 
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Fig. S4. Inhibition of RA signaling does 

not enhance cell death during 

blastema formation. Inhibition of RA 

signaling in hsp70:cyp26a1 fish does not 

enhance the number of TUNEL positive 

cells in the fin stump (daily heat shocks, 

1
st

 heat shock 2 hours before 

amputation). (A) Longitudinal sections 

stained for TUNEL show few TUNEL 

positive cells in the epidermis of wild-

type and hsp70:cyp26a1 fins at 32 hpa. 

(B) Quantification of TUNEL-labeled cells within a defined area at 32 hpa (wild-type: n=32; hsp70:cyp26a1: n=25). 

Error bars, SEM. ns, not significant. Dashed lines indicate the amputation plane. hs, heat shock; Scale bar: 100 µm. 

 

 

 Fig. S5. Intraperitoneal injection of 

RA efficiently enhances RA signaling 

in the regenerating fin but does not 

enhance cell death. (A) Increased RA 

signaling after intraperitoneal (IP) 

injection of RA causes decreased 

expression of RA synthesizing 

enzymes and enhanced expression of 

cyp26a1. qPCR determination of 

aldh1a2, rdh10a and cyp26a1 

transcript levels in regenerates of RA-

treated fish relative to control (DMSO 

injected) fish at 73 hpa (single RA IP 

at 69 hpa). (B) IP injection of 1 mM RA does not enhance cell death (RA IP every 12 hours, 1
st

 IP at 3 dpa). 

Quantification of TUNEL labeled cells at 4 dpa (DMSO: n=13; RA: n=12). Error bars, SEM. *P<0.0001. 

Fig. S3. Impaired blastema formation in RA-
deficient regenerates is independent of the 
wound healing process. Inhibition of RA 
signaling in hsp70:cyp26a1 fish after wound 
healing has taken place results in a complete 
block of fin regeneration (daily heat shocks, 
1

st
 heat shock at 24 hpa). Dashed lines 

indicate the amputation plane. hs, heat 
shock; Scale bars: 500 µm upper panel; 200 
µm lower panel. 
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Fig. S6. RA pathway components are highly expressed 
during regenerative outgrowth. Whole mount in situ 
hybridization at 48 and 72 hpa (A) and in situ hybridization 
on longitudinal sections at 72 hpa (B) reveals expression of 
aldh1a2, rdh10a and rarga in the blastema. rarga and 
rdh10a transcripts can be detected in the whole blastema 
at 72 hpa, whereas aldh1a2 expression is more restricted 
to distal blastema cells. Dashed lines indicate amputation 
plane. Scale bars: 200 µm in A; 100 µm in B.  

 

Fig. S7. Blastema cells rapidly die after a single heat shock in 
hsp70:dn-zrar fish. Quantification of TUNEL labeled cells in       
hsp70:dn-zrar regenerates at 79 hpa (single heat shock at 72 hpa; wild-
type: n=25; hsp70:dn-zrar: n= 19) Error bars, SEM. *P<0.0001. 

 

Fig. S8. RA treatment fails to rescue regenerative outgrowth in heat-
shocked hsp:dn-fgfr1 fins. Enhancing RA signaling in heat-shocked 
hsp70:dn-fgfr1 fins does not rescue morphological growth. 
Determination of increase/decrease of fin tissue distal to the 
amputation plane between 3 and 5 dpa in RA and/or vehicle injected, 
heat-shocked wild-type and hsp70:dn-fgfr1 fish. The first heat shock 
was applied at 72 hpa, injections were given daily starting with the first 
at 70 hpa. Error bars, SEM. ns, not significant. hs, heat-shock; IP, 
intraperitoneal. 
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Abstract  

The ability to regenerate injured or lost body parts has been an age-old ambition of medical 

science. In contrast to humans, teleost fish and urodele amphibians can regrow almost any 

part of the body with seeming effortlessness. Retinoic acid is a molecule that has long been 

associated with these impressive regenerative capacities. The discovery 30 years ago that 

addition of retinoic acid to regenerating amphibian limbs causes “super-regeneration” 

initiated investigations into the presumptive roles of retinoic acid in regeneration of 

appendages and other organs. However, the evidence favoring or dismissing a role for 

endogenous retinoids in regeneration processes remained sparse and ambiguous. Now, the 

availability of genetic tools to manipulate and visualize the retinoic acid signaling pathway 

has opened up new routes to dissect its roles in regeneration. Here, we review the current 

understanding on endogenous functions of retinoic acid in regeneration and discuss key 

questions to be addressed in future research. 
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Introduction  

The ability of some animals to regenerate whole organs has always fascinated and inspired 

artists and scientists alike. Even though the ability to regrow lost tissues is widely distributed 

within the animal kingdom [1, 2], examples of organ regeneration in amniotes in the wild 

remain sparse.  

Among vertebrates, urodele amphibians and teleost fish are the true champions of 

regeneration, being able to regrow whole organs including appendages, the brain and spinal 

cord, the liver and the heart throughout life. Anuran tadpoles possess similar regenerative 

capacities that are, however, absent in adult frogs. Autotomy of the tail is widespread 

among lizards, along with the ability to regenerate parts of the severed tail [3, 4]. While birds 

seem to be incapable of regenerating any body parts, adult mammals are capable of liver 

regeneration. Furthermore, the mammalian heart is able to partially regenerate before and 

during a short time period after birth [5] and digits can regenerate postnatally and to some 

extent even in adults [6]. The ability to shed and regenerate patches of skin may have 

evolved to escape predation in African spiny mice [7].  

One of the hopes of regeneration research is to uncover ways to improve regeneration of 

damaged tissues and organs or even induce regeneration of non-regenerating body parts in 

humans. If this is to become a feasible goal, a thorough knowledge of the underlying 

molecular mechanisms in animals capable of this remarkable feat is essential and should 

eventually lead to an understanding why it fails in humans.  

The vitamin A metabolite retinoic acid (RA) is an important regulator of vertebrate 

development [8–10]. Thirty years ago, it was first discovered that the addition of retinoids to 

the amputated amphibian limb generates duplications of proximal skeletal elements [11, 

12]. Since then, the ability of RA to respecify positional identity during limb regeneration has 

been the focus of intense investigation and prompted research into its effects on other 

regenerating organs and cell types [13, 14]. Despite progress in understanding the effects of 

increased retinoid signaling during regeneration, it had long been neglected to investigate 

whether retinoids are truly required for regeneration. 

The identification of the genes involved in retinoid and particularly RA metabolism and the 

possibility to examine the consequences of manipulating and visualizing RA signaling in 

genetically accessible organisms have now led to a better understanding of the roles of 

endogenous RA during regeneration. In this review, we highlight recent findings on the roles 

of endogenous retinoids during regeneration. Our main focus will be on organ and 

appendage regeneration in vertebrates, while a look at invertebrate regeneration will add to 

the picture of endogenous retinoid signaling in regeneration. We would like to point the 

reader towards a number of topical review articles that to varying extents touch upon 

retinoid signaling in tissues and organs that could not be covered in this review. These 
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include the roles of RA during lung regeneration [15, 16] and regeneration in the central 

nervous system [17–22]. 

A short guide to the retinoic acid signaling machinery  

RA is a small lipophilic molecule derived from retinol (vitamin A). The acidic vitamin A 

metabolite RA acts as a ligand for transcription factors that regulate a variety of processes, 

including organogenesis, embryonic pattern formation, cell proliferation and differentiation, 

cell death, immunity and tissue homeostasis [23, 24]. Since animals cannot synthesize 

vitamin A de novo, retinol or its precursor β-carotene has to be taken up through dietary 

sources. Typically, retinol is distributed via the circulatory system bound to retinol-binding 

protein (Rbp), and this complex is associated with another protein, transthyretin (Ttr) [9, 25] 

(Fig. 1). Binding of Ttr to Rbp prevents the elimination of retinol in the kidney. Retinol-Rbp-

Ttr is taken up by target cells via the multitransmembrane protein Stra6 (stimulated by 

retinoic acid gene 6) [26]. Intracellular retinol is bound to cellular retinol-binding proteins 

(Crbp) [23]. Synthesis of RA from retinol requires two consecutive enzymatic reactions: Ini-

tially, retinol is oxidized to retinaldehyde, a step carried out either by cytosolic alcohol 

dehydrogenases (Adhs) or by retinol dehydrogenases (Rdhs). Conversely, retinaldehyde can 

be reduced to retinol by members of the dehydrogenase/ reductase SDR family (Dhrs) [27–

29]. Retinaldehyde can be further oxidized to RA by up to three retinaldehyde dehy-

drogenases that still are commonly referred to as Raldh1-3. Here we use the new ALDH 

nomenclature, which is based upon that used for P450 enzymes, under which these proteins 

have been renamed to Aldh1a1-3 [30].  

There are two biologically active isomers of retinoic acid, all-trans RA and 9-cis RA. Little is 

known about their specific synthesis and isomerization [31], but all-trans RA is the abundant 

form with described biological functions. An alternative route to RA synthesis is the cleavage 

of β-carotene into two molecules of retinaldehyde, followed by oxidation to RA. Cleavage of 

β-carotene is carried out by β-carotene oxygenase I (Bco-I) (Fig. 1). A tight control over 

expression levels of RA synthesizing enzymes, most importantly the Aldh1a-class proteins, is 

an important mechanism in controlling spatial and temporal availability of RA during 

developmental processes.  

RA acts as a positive regulator of transcriptional activation by binding to retinoic acid 

receptors (RARs). RARs are highly conserved among vertebrates and primarily bind all-trans 

RA. Mammals possess three RARs (RARα, RARβ, and RARγ), whereas zebrafish possess four 

genes (raraa, rarab, rarga, and rargb). RARs are steroid receptors that act as heterodimers 

with retinoid X receptors (RXRs). RXRs can bind 9-cis RA, however, 9-cis RA cannot be 

detected endogenously in mouse embryos [32] and its biological function has been a matter 

of debate [33], suggesting that RXRs mainly act as heterodimeric partners for RARs and other 
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steroid receptors. In the nucleus, RAR/RXR heterodimers bind to retinoic acid response 

elements (RAREs) in regulatory regions upstream of target genes (Fig. 1). Binding to RAREs is 

independent of RA availability, so that RAR/RXRs recruit a complex of corepressor proteins 

to the promoter region in the absence of RA, resulting in repression of downstream genes. 

Binding of RA to RAR/RXR leads to dissociation of corepressors and recruitment of 

coactivators resulting in target gene expression [8, 9]. Beside the canonical mode of RA 

action, mediated by RAR/RXR heterodimers, several alternative mechanisms have been 

suggested [34–37] that we will not revisit here.  

The interplay between cells expressing enzymes that either synthesize or degrade RA 

produces local sources and sinks of RA that can result in the establishment of RA gradients 

[38]. Tight control of the distribution and levels of RA is therefore essential. Enzymes of the 

cytochrome P450 subfamily 26 (Cyp26a1, Cyp26b1, and Cyp26c1) degrade RA into more 

polar metabolites [23]. Intracellular RA can be bound by cellular RA-binding proteins (Crabp-I 

and -II). Crabps transport RA both to RARs and to Cyp26s. Whereas Crabp-II favors delivery 

of RA to RARs, Crabp-I sequesters available RA and transfers it to Cyp26s. Crabps are 

therefore thought to play an important function in signaling robustness as they are able to 

compensate for changes in RA production [39]. For more detailed information about RA 

signaling, the reader is referred to recent reviews on the topic [8, 23, 24]. 
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Fig.1. Simplified scheme of retinoid metabolism and retinoic acid signaling in vertebrates. Oviparous eggs of 
fish, amphibians, and reptiles already contain stores of retinaldehyde in the yolk that are processed during 
embryonic development. Adult vertebrates obtain retinoids through the diet in the form of carotenes, e.g., as 
β-carotene, which are converted to retinaldehyde. Alternatively, retinol circulates the blood stream, enters the 
cell, and is successively oxidized to retinaldehyde and to retinoic acid (RA). In the absence of RA, dimers of RA- 
and retinoid X-receptors (RAR-RXR) suppress the transcription of target genes. In the presence of RA, co-
repressors are released and replaced with co-activators, resulting in target gene activation. RA is degraded by 
Cyp26, which oxidizes RA into biologically inactive metabolites. See main text for further details. 

 

Exogenous RA and “super-regeneration” in the limb  

Amphibians and teleost fish are able to regenerate lost appendages through the formation 

of a blastema at the amputation site. The blastema is a mass of highly proliferative, 

undifferentiated progenitor cells that provide a source of new cells to replace the lost 

structures. For a comprehensive overview of regeneration in the limbs and tails of 

amphibians and the zebrafish caudal fin we refer the reader to recent reviews on these 

topics [40–47].  

RA has a long history in the study of vertebrate appendage regeneration. When 

administered during the stage of initial blastema formation, RA proximalizes, posteriorizes, 

and ventralizes the positional identities of blastema cells in a concentration-dependent 

manner [48]. The work of Stocum and Cameron [49] provides an account on the history of 

research into the roles of RA in determining positional identity, with a focus on the urodele 
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amphibians. The effect that has received most attention is that of proximalization, in which 

the regenerate contains additional proximal limb structures, a phenomenon referred to as 

“super-regeneration” [11, 12, 14, 50] that has been described for limb regeneration in 

several urodele and anuran species. Furthermore, several studies demonstrated spectacular 

effects of RA treatment on regenerating amphibian tails, in which additional hindlimbs 

formed from the amputation site [14, 51–53].  

Super-regeneration has a clear dose–response, as increasing the RA concentration added to 

the regenerate leads to the regeneration of ever more proximal structures of the limb. This 

observation led to a search for the molecules that mediate this effect and culminated in the 

identification of Prod 1, a cell-surface molecule of the Ly6 family, whose expression is 

upregulated by RA [54]. Prod 1 is expressed in dermal fibroblasts and in a gradient with high 

proximal expression and low distal expression during development and regeneration [55]. 

Several assays showed that Prod 1 expression on the cell surface is crucial for converting a 

distal to a proximal cell identity. In search for a Prod 1 ligand, nAG (newt anterior gradient 

protein) was identified as a secreted growth factor for blastema cells that binds to Prod 1 in 

a yeast two-hybrid screen [55]. After limb amputation and retraction of severed axons, nAG 

is expressed in Schwann cells of the distal nerve sheath when regenerating axons repopulate 

the distal stump and later is required for its own expression in gland cells of the wound 

epithelium [55]. nAG is required for the continued proliferation of blastema cells, and the 

shift in nAG expression from Schwann cell to wound epithelium reflects a corresponding 

shift in the dependency of blastema proliferation from nerve to wound epithelium [56]. 

Notably, Prod1, and thereby its role in encoding P-D identity, is considered to be 

salamander-specific [57]. Thus, the failure of limb regeneration in other vertebrates could be 

correlated with a lack of positional identity in adult limb cells due to the absence of Prod1.  

In the regenerating zebrafish caudal fin, treatment with high RA concentrations was shown 

to result in fin patterning defects, and regeneration was slowed down or blocked [58, 59]. In 

a follow-up study, Géraudie and Ferretti [60] showed that as a consequence of RA treatment 

there was a strong increase in cell death in the wound epidermis and blastema. Thus, the 

reported phenotypes were most likely due to secondary effects caused by enhanced cell 

death. 

 

RA in regeneration of the zebrafish fin  

RA in larval caudal fin regeneration  

The caudal fin of adult zebrafish forms via a larval precursor, the caudal part of the median 

fin fold. The larval fin has a very simple layout, being composed of an epithelial sheet that is 

filled with mesenchymal cells [61, 62]. Its structure is based upon radially extending 
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unmineralized fiber bundles called actinotrichia. During larval-to-adult transition the task of 

skeletal support is taken over by the bony fin rays (lepidotrichia), which form through 

intramembranous ossification. Actinotrichia remain only at the distal growing ends of each 

fin ray [44].  

Regeneration of the larval caudal fin occurs very quickly, within 3–4 days [63]. Within a few 

hours after amputation the wound is sealed by epithelial cells that form the wound 

epidermis. Next, proliferation is induced in mesenchymal cells throughout the caudal fin. In 

contrast to fin regeneration in adult fish, however, formation of a distinct blastema, i.e., 

accumulation of proliferating cells beneath the wound epithelium, is not observed [64].  

aldh1a2, the gene that encodes the major RA-producing enzyme in the embryo, is among 

those genes that are strongly upregulated during zebrafish larval and adult caudal fin 

regeneration [65]. Within 4 h after amputation, aldh1a2 becomes upregulated, which 

suggests that RA signaling may be required for regeneration. As a first approach towards 

testing a potential role for RA in larval fin regeneration, caudal fins of zebrafish larvae were 

amputated and then treated with an antagonist of RA synthesis (4-

diethylaminobenzaldehyde, DEAB). Fin regeneration in DEAB treated larvae was blocked 

probably due to reduced cell proliferation in the mesenchyme. In addition, molecular 

markers specific to the wound epidermis and the proliferating mesenchyme were not 

induced [65]. Since injection of morpholinos designed to block the translation of aldh1a2 

mRNA resulted in the same phenotypes, the observed effects could be attributed to the loss 

of Aldh1a2-mediated RA synthesis. Although this study has demonstrated an essential 

function for RA signaling in larval fin regeneration, the exact functions remain to be resolved. 

An interesting question is whether RA regulates mesenchymal proliferation in a direct or 

indirect way. Transgenic zebrafish lines that report activation of RARs [66, 67] should be 

helpful in identifying cell populations that are direct targets of RA. Notably, aldh1a2 is not 

expressed in the larval caudal fin and is neither required for its initial development [68, 69] 

nor for its later outgrowth (Blum and Begemann, unpublished), suggesting that its up-

regulation is a regeneration-specific response.  

Fgf and Wnt/β-catenin signaling have been shown to be required for larval fin regeneration 

and it has been proposed that both signaling pathways act upstream of RA signaling [65]. 

However, this model is not sufficiently supported and is partly inconsistent with a previous 

study. Inhibition of Wnt/β-catenin signaling results in failure of aldh1a2 upregulation after 

amputation, but it remains to be shown whether activation of Wnt/β-catenin is independent 

of RA signaling. Although expression of wnt10a is not affected in the regenerating larval fin 

upon DEAB treatment, expression of Wnt/β-catenin target genes have not been investi-

gated. Importantly, the ligand responsible for Wnt/β-catenin activation in the regenerating 

fin has not been identified and inhibition of RA signaling during adult fin regeneration results 

in downregulation of Wnt/β-catenin signaling that is independent of Wnt10a [70].  
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RA signaling is required for wound epidermis formation in the larval caudal fin and was 

placed upstream of Fgf signaling [65]. If this proves true, then inhibition of Fgf signaling 

should cause wound epidermis defects. This is in conflict with an earlier study by Kawakami 

et al. [63], which suggests that Fgf signaling is not involved in wound epidermis formation. 

Further investigations are therefore required to clarify this discrepancy and unravel putative 

epistatic relationships.  

 

Regeneration of the adult caudal fin  

The adult zebrafish caudal fin consists of 16–18 parallel bony fin rays that are separated by 

soft interray tissue [44, 71]. Each fin ray possesses two facing segmented hemirays of dermal 

bone (Fig. 2). The fin harbors a relatively small number of cell types: three types of pigment 

cells, osteoblasts that line up along the bone matrix that they secrete, dermal fibroblasts, 

endothelial cells, neuronal axon tracts and associated glial cells, resident blood cells, and 

cells of the epidermis. Importantly, striated muscle and cartilage are absent.  

Adult fin regeneration passes through several steps: first, epidermal cells surrounding the 

wound become migratory and close the wound with a thin epithelial sheet [44, 72]. 

Subsequently, the epithelial covering thickens by accumulation of additional epithelial layers 

and forms the wound epidermis, which is characterized by a basal epithelium of cuboidal 

cells (Fig. 2). Both processes, initial covering of the wound and subsequent thickening of the 

covering, are dominated by cell migration and do not require cell proliferation. Next, 

formerly quiescent non-epidermal cells of the stump enter the cell cycle and migrate 

towards the amputation plane. They form the blastema, an outwardly homogeneous mass of 

proliferating progenitor cells that provide a source of new cells to replace the amputated 

structures. Several studies have shown that blastema cells in the regenerating fin are highly 

restricted with respect to developmental identity [73–75]. However, Singh et al. [76] could 

show that osteoblasts are dispensable for regeneration of bony fin rays and suggest that 

fibroblasts may have the potential to transdifferentiate into skeletal tissue. With the 

exception of melanocyte stem cells [75, 77] it is dedifferentiated cells of the distinct cell 

lineages that contribute to the blastema instead of undifferentiated precursors [73, 74, 78]. 

Eventually, cells of the proximal blastema drop out of the cell cycle and enter a 

differentiation program that restores the lost tissue types [44, 72, 79].  

 

RA in blastema formation and proliferation  

aldh1a2 is expressed during adult caudal fin regeneration [65] and our own work has helped 

to uncover the endogenous roles of RA signaling in this process [70]. Within 6 h after caudal 

fin amputation, aldh1a2 as well as rdh10b, encoding a retinol dehydrogenase [80, 81], and 
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the RA receptor rarga are upregulated in the stump tissue next to the amputation site. 

Expression of aldh1a2 extends up to two fin ray segments proximal to the wound in the ray 

mesenchyme, a region from which cells are recruited that contribute to the blastema [82, 

83]. Thus, blastema precursor cells become exposed to high RA levels upon fin amputation. 

Several genes in the RA signaling pathway are also transcribed in proliferating cells of the 

blastema, suggesting that RA is essential for blastema cells at all stages of regeneration [70].  

Two possible approaches are currently in use to genetically block RA signaling in adult 

zebrafish. One is to overexpress a dominant negative form of zebrafish raraa (dn-zrar) [84] 

that has lost its RA-dependent transcriptional activation activity while retaining the ability to 

form heterodimers with RXR. This construct blocks the activation of RA target genes despite 

the presence of RA [85]. Another method is to induce expression of cyp26a1 with the goal of 

breaking down endogenously available RA to interfere with target gene activation [70]. Both 

strategies accomplish complete and organ-wide inactivation of RA signaling by putting them 

under control of a heat shock promoter (hsp) and activating strong overexpression by timed 

heat-shocks in hsp:cyp26a1 and hsp:dn-zrar transgenic animals. When RA signaling is 

inactivated during fin regeneration, early steps of blastema development are initiated, as 

indicated by the remodeling of extracellular matrix and disorganization of the stump 

mesenchyme adjacent to the amputation site [70]. However, blastema precursor cells do not 

start to enter the cell cycle or express molecular markers of the proliferating blastema. Both 

hsp:cyp26a1 and hsp:dn-zrar produced identical phenotypes, thus providing independent 

evidence for an endogenous function of RA in blastema formation (Fig. 2).  

Failure of cell-cycle entry seems to be an inherent trait of the mesenchyme itself and not a 

secondary effect caused by defects in the wound epidermis (which without RA does not 

form properly, as delineated further below), because applying a single heat-shock once a 

proper wound epidermis has formed does not rescue proliferation. Accordingly, rarga is 

strongly expressed in the blastema once it has formed, but a low-level expression of other 

RA receptor genes in the wound epidermis is likely. Injection of RA into the blood stream 

during blastema formation is sufficient to increase the proliferation of mesenchymal 

blastema precursors. Once a blastema has formed and regeneration is well under way, 

suppression of RA signaling leads to a severe reduction in cell proliferation not only in the 

blastema but also in the epidermis. Therefore, RA signaling is required for cell-cycle entry of 

cells that are destined to contribute to the blastema and to provide a progenitor-niche for 

proliferating blastema cells (Fig. 2b, c). It is not yet known whether RA is also required for 

the dedifferentiation process of blastema precursors, nor whether all blastema precursors 

synthesize RA and also receive the signal. Another open question is whether RA directly 

regulates proliferation in blastema cells or indirectly influences the proliferation via other 

factors. Since RA promotes Fgf and Wnt/β-catenin signaling [70], both of which are required 
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for blastema proliferation [86–88], RA might act through Fgf and/or Wnt/β-catenin as a pro-

proliferative signal.  

It has been a long-standing question to what extent limb and fin regeneration recapitulates 

development. While wound healing and blastema formation are regeneration-specific 

events, the underlying cellular and molecular mechanisms of growth and patterning are very 

similar in regenerating and developing appendages [40, 43]. The adult caudal fin grows 

throughout life by adding new bone segments to the distal end of each fin ray. Accordingly, 

strong expression of aldh1a2 can be found in the growing fin ray tips in the uncut fin (Blum 

and Begemann, unpublished), suggesting that RA is also required for proliferation during 

normal fin outgrowth. An interesting question is whether RA signaling has similar functions 

in larval and adult fin regeneration. RA signaling is required for cell proliferation in both 

models. However, larval fin regeneration is different from adult regeneration in many 

respects. There is no evidence for a proliferating blastema, the larval fin lacks tissue types, 

e.g., bone and blood vessels, which are prominent in the adult fin and the wound epidermis 

is only a very thin structure without a distinct basal layer [63]. Importantly, adult fin 

regeneration requires cell dedifferentiation and re-entry into the cell cycle within the 

otherwise quiescent stump tissue, whereas larval fin regeneration is rather accomplished by 

an increase in proliferation in an already growing organ. Thus, direct comparisons are 

difficult and it remains to be shown whether RA signaling regulates cell proliferation in a 

similar or different way (e.g., directly or indirectly) in the larval and adult fin.  

 

RA and the formation and function of the adult wound epidermis  

The wound epidermis serves as a physical barrier and provides important signals for the 

underlying mesenchyme. Reciprocal interactions between the wound epidermis and 

blastema cells are essential for successful regeneration [89, 90]. Although the wound surface 

is covered with several epithelial layers, the wound epidermis lacks a distinct basal layer in 

the absence of RA signaling [70]. Chablais and Jazwinska [90] found that Igf signaling plays a 

crucial role in the formation of the basal epidermal layer. The ligand Igf2b is synthesized and 

secreted from the stump mesenchyme and activates Igfr in the wound epidermis in a parac-

rine fashion. Notably, RA signaling is required for induction of igf2b expression after fin 

amputation and is even able to induce igf2b expression in unamputated fins [70]. Thus, RA 

might control wound epidermis formation through induction of igf2b in the stump 

mesenchyme (Fig. 2b). It is currently unknown if activation of igf2b by RA is a direct process, 

which would require the isolation and functional characterization of RAREs in the igf2b 

promoter. However, an in silico analysis identified DR5 RAREs in the promoter region of 

human and mouse Igf2 [91], suggesting that igf2b is directly regulated by RA in the 
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regenerating fin. Activation of Igf signaling in the wound epidermis is essential for prolifera-

tion in the underlying mesenchyme [90]. Interestingly, initiation of cell proliferation in the 

stump mesenchyme during blastema formation does not require Igf signaling, thereby 

excluding the possibility that RA acts exclusively through Igf in the regenerating fin.  

Wound epidermis formation is initially independent of proliferation, but regenerative 

outgrowth requires a constant supply of new epidermal cells. At the same time, RA pro-

duction in the blastema is necessary for epidermal proliferation [70] (Fig. 2b, c). Whether 

epidermal cells receive RA signals in a paracrine manner, or whether RA signals indirectly to 

the epidermis through other pathways has not yet been resolved. Igf signaling in the wound 

epidermis is not required for its proliferation [90], thus an involvement of Igf signaling in 

mediating the pro-proliferative effect of RA on epidermal cells can be ruled out.  

 

          
 

Fig. 2 Zebrafish fin regen-
eration. a Longitudinal section 
through a regenerating 
zebrafish caudal fin, indicated 
by yellow parallelogram. b 
Formation of the wound 
epidermis and the blastema. c 
Regenerative outgrowth. The 
fin is covered by a 
multilayered epidermis (green 
and grey) that is characterized 
by a basal epidermal layer 
(grey). Underneath, hemirays 
are formed by bone matrix 
(yellow), areas of RA synthesis 
(inferred from aldh1a2 
expression; dark blue) are 
found in distal stump tissue 
and in proliferating blastema. 
Circled numbers indicate 
biological roles of RA signaling 
during both stages of 
regeneration. 
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RA in blastema survival of the adult fin  

Blastema formation involves the transformation of formerly quiescent differentiated stump 

cells into migratory and less differentiated cells that accumulate to form a highly prolif-

erative cell mass. Typically, such behavior triggers apoptosis to prevent tumor formation. It 

is an open and interesting question how blastema cells escape apoptosis. Blastema cells are 

exposed to high concentrations of RA in the regenerating fin. On the other hand, RA is well 

known for its anticarcinogenic and pro-apoptotic activities and is used in therapeutic agents 

to treat several human cancers [92]. Therefore, it is somewhat surprising that down-

regulation of RA signaling in hsp:cyp26a1 and hsp:dn-zrar fish results in rapid death of 

blastema cells [70]. The exact mechanisms underlying this phenomenon are currently not 

understood.  

During cancer formation, cells avoid apoptosis through the upregulation of anti-apoptotic 

proteins and/or downregulation of proapoptotic signals [93]. Apoptosis is mediated through 

two general routes, the intrinsic and extrinsic pathways, both of which ultimately activate 

caspases. The intrinsic pathway is triggered by intracellular events such as DNA damage, 

growth factor deprivation and oxidative stress, and is controlled through mitochondria and 

the endoplasmic reticulum [94]. The intrinsic apoptotic pathways are regulated by members 

of the Bcl-2 family of proteins [95]. The family contains anti-apoptotic proteins like Bcl-2 

itself that promote survival, as well as the pro-apoptotic members that promote cell death. 

The anti-apoptotic proteins sequester pro-apoptotic ones, therefore their relative expression 

levels are important and an increase in anti-apoptotic proteins protects a cell from death. 

Enhanced levels of Bcl-2 can be found in a variety of human cancers, where they are 

responsible for resistance to radiation and to chemotherapeutic drugs that counteract 

uncontrolled proliferation by inducing apoptosis [93]. Bcl-2 has therefore been an attractive 

target for anticancer drug design. Besides being an anti-apoptotic protein, Bcl-2 is involved in 

other forms of cell death. An inhibitory function of Bcl-2 has been reported for autophagy 

and programmed necrosis [96, 97].  

In the regenerating fin increased RA levels upregulate bcl-2 expression and a heat shock in 

the hsp:cyp26a1 and hsp:dn-zrar lines rapidly reduces expression [70]. These findings 

indicate that blastema cells avoid cell death through RA-dependent upregulation of bcl-2 

thereby allowing them to survive in an adult organism (Fig. 2c). However, it remains to be 

shown which mode(s) of cell death are inhibited by Bcl-2 and RA in the regenerating fin. In 

human and mouse DR5 RAREs have been identified in the Bcl-2 promoter [91], thus, bcl-2 

might be a direct target of RA signaling in the regenerating fin. Interestingly, protection from 

cell death is also inferred from proteomic analysis in the regenerating axolotl limb. Here, 

metabolism in the blastema is reduced and protective mechanisms are at work at various 

levels, including the upregulation of antimicrobial and antioxidant proteins, the differential 
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regulation of proapoptotic and antiapoptotic proteins, and responses targeted at reducing 

cell stress caused by the accumulation of unfolded proteins [98].  

The ability of RA to promote proliferation and prevent death in blastema cells may appear 

curious, since RA is well known for its ability to cause cell-cycle arrest, differentiation and 

apoptosis [92, 99]. However, growth inhibition is cell type-specific and in the context of 

other cell types RA may even enhance proliferation and survival [100]. Schug et al. [34] 

proposed that the opposing effects of RA on cell growth emanate from the preferred 

activation of either of two different nuclear receptors: RA acts as a signal that inhibits 

proliferation and induces apoptosis via activation of RARs. In contrast, binding to peroxisome 

proliferator-activated receptor (PPAR) β/δ, a nuclear receptor which also forms 

heterodimers with RXRs, promotes proliferation and survival. Although, this might be an 

elegant explanation, another study clearly demonstrated that RA is not able to activate 

PPARβ/δ [101]. Further investigations will be necessary to determine how RA promotes cell 

growth in some models and inhibits cell growth in others.  

 

Signaling pathways interacting with RA in adult fin regeneration  

The identification of a signal that is sufficient to induce regeneration in an amputated 

mammalian limb would be an attractive goal of regeneration research. However, it is not yet 

clear whether one signal alone is sufficient to activate the full spectrum of regenerative 

responses or whether several signals have to act simultaneously. An important step towards 

this goal is to clarify how distinct pathways communicate with each other. Several 

interaction partners of RA signaling in the regenerating fin have been identified [70]. The 

regulatory relationship between RA and Igf signaling has already been discussed in the 

context of wound epidermis formation. Apart from RA signaling two other pathways that are 

required for blastema formation are Fgf and Wnt/β- catenin signaling [86–88, 102]. fgf20a, 

alone or in cooperation with other Fgf ligands, is responsible for Fgf activation in the 

regenerating fin [102], whereas the ligand responsible for Wnt/β-catenin activation has not 

been identified. We could show that activation of RA signaling in the fin stump is required 

for the expression of fgf20a and of wnt10b [70]. However, even though RA treatment 

induces upregulation of wnt10b, it is not sufficient to induce fgf20a expression in an 

unamputated fin.  

Once a blastema has formed, RA ensures proliferation and survival of blastema cells. Here, 

RA, Fgf and Wnt/β- catenin signaling cooperate through reciprocal stimulatory interactions. 

Interestingly, the non-canonical Wnt pathway, which has been shown to act as a negative 

modulator of fin regeneration [86], is repressed by RA signaling. Possible interactions with 

other pathways remain to be shown.  
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Even though first insights into how RA signaling interacts with other pathways have already 

been gained, a more thorough understanding is currently hampered by our limited 

knowledge of the function of each pathway. More precisely, it needs to be clarified in which 

cell lineage(s) each pathway acts and which cellular mechanism(s) it regulates. As tools for 

tissue-specific genetic manipulations in adult zebrafish are emerging and systems that 

reliably report activity of distinct pathways in adult tissues are developed [74, 103–105], a 

new level of understanding should be reached concerning tissue- and pathway-specific 

questions that provide important new insights into the molecular regulation of the distinct 

cell lineages during adult fin regeneration.  

 

Endogenous RA signaling in amphibian limb regeneration  

RA has traditionally been studied for the teratogenic effects following exposure to 

exogenous RA in regenerating amphibian limbs (as described above). The ability of RA to 

cause dramatic effects in limb regeneration raises the question whether these effects are 

indicative of a corresponding biological role of RA. Only few studies have focused on a 

putative endogenous function of RA in regenerating amphibian limbs. Maden [106] showed 

that limb regeneration in axolotl is inhibited by treatment with disulfiram, a broad range 

inhibitor of aldehyde dehydrogenases. Disulfiram also blocks the activity of DNA 

methyltransferases [107] and the 26S proteasome [108], and can elicit pro-apoptotic and 

anti-proliferative effects. Thus treating regenerating limbs with this compound might 

efficiently block RA synthesis, but most likely also interferes with other processes. Del Rincon 

and Scadding [109] demonstrated that implanted beads soaked with RAR antagonists can 

modify patterning in the regenerating limb. However, the underlying mechanisms have not 

been investigated.  

To better understand the roles of RA in amphibian limb regeneration, it was important to 

determine which tissues express RA pathway components, and to show which cells respond 

to RA. By using high performance liquid chromatography (HPLC) RA could be detected in 

both the epidermis and blastema of regenerating axolotl limbs [110, 111]. Several RARs are 

expressed in the newt blastema [112–116] and at least RARδ1, an ortholog of mammalian 

RARγ, is expressed in both the blastema and epidermis [117].  

Monaghan et al. [118] showed that aldh1a3 and rdh10 are expressed in regenerating limbs 

of adult axolotl. Whereas the spatial expression pattern of rdh10 has not been investigated, 

aldh1a3 was detected exclusively in a subset of cells within peripheral nerve bundles. 

Although aldh1a3-positive cells might provide enough RA for RAR activation in their direct 

environment, it is less likely that they produce sufficient amounts of RA for the blastema or 

overlying wound epidermis.  
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As in the regenerating zebrafish fin, aldh1a2 might also provide a major source for RA in the 

regenerating amphibian limb. A study by McEwan et al. [119] has shown that there is no de 

novo expression of aldh1a1-3 in regenerating hindlimbs of Xenopus tadpoles. However, 

aldh1a2 expression is retained from development in a patch of anterior/proximal stump cells 

and in a patch of proximal limb cells. It has not been tested how far RA can penetrate into 

neighboring tissue, but blastema cells in amputated tadpole limbs are close to the proximal 

limb. The generation of transgenic Xenopus reporting RA activity could help to answer this 

question. After limb amputation RA might diffuse from the proximal limb to the wound site, 

providing a source of RA required for regeneration. Such a mechanism could operate in 

anuran amphibians, as they are only able to regenerate prior to metamorphosis when limbs 

are still small and RA from proximal limb cells is still available. In contrast, urodele 

amphibians can regenerate limbs also during adulthood, suggesting that an amputation-

induced new source of RA would be required. Unfortunately, expression of aldh1a2 has not 

been investigated in adult regenerating urodele limbs. Thus, it remains an open question 

whether, and how, sufficient amounts of RA are provided in the regenerating limb of adult 

amphibians. In favor of a role for RA in urodele limb regeneration, rdh10 is expressed in the 

regenerating axolotl limb, where it provides a reliable source of retinaldehyde [118]. 

Investigating the spatial expression pattern of both aldh1a2 and rdh10 in regenerating limbs 

should therefore be an important next step.  

A transgenic axolotl line that harbors a reporter construct (RARE:GFP) containing eight DR5-

type retinoic acid response elements from the mouse RARβ promoter region allows 

visualization of RAR activation in living animals throughout life [120]. RARE:GFP transgenic 

axolotl do report RA signaling activity in the regenerating limb, but in the wound epidermis 

rather than in the mesenchyme. The few structures that report RA activity within the 

blastema could be identified as axons and cells in close proximity of axons. These findings 

are in accordance with the expression of aldh1a3 in a subset of cells associated with nerve 

bundles in the blastema (as mentioned above). Notably, upregulation of RA pathway 

components has been shown for regenerating mammalian neurons [121–123] and RA 

treatment induces axon outgrowth where it does not normally occur [124]. Furthermore, an 

antagonist specific for RARβ inhibits neurite outgrowth from spinal cord cultures of newt, 

suggesting that RA has a conserved function in neuron regeneration.  

Given the important mesenchymal function of RA in the regenerating zebrafish fin it is 

curious that RARE:GFP activity is absent from the majority of mesenchyme in transgenic 

axolotl. Transgenic zebrafish lines that harbor constructs very similar to that used for the 

RARE:GFP axolotl line do not reliably report RA activity and report only weakly post-

development [66, 67]. A similar explanation for the absence of reporter activity in axolotl 

blastema cells is rather unlikely, since RARE:GFP activity is clearly detected in some 

mesenchymal cells. Support for the idea that RA does not directly act in the axolotl limb 
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mesenchyme is provided by the exclusive expression of crabp1 in the mesenchyme [118], as 

Crabp1 is thought to sequester RA and facilitate its degradation by Cyp26s [125–127]. It 

therefore should be important to determine whether RA signaling in the regenerating 

zebrafish fin mainly acts in the blastema or in the wound epidermis.  

RA might be a critical element of limb regeneration by regulating wound epidermis function 

rather than directly controlling processes in the mesenchyme. Appendage regeneration 

depends on mutual interactions via paracrine signals between wound epidermis and the 

underlying blastema [89, 90]. It is therefore possible that RA signaling in the axolotl wound 

epidermis results in secretion of growth factors from epidermal cells that control blastema 

proliferation in a paracrine manner. The wound epidermis in newt has previously been 

shown to produce RA [111]. Curiously, the main stereoisomer detected was 9-cis RA. While it 

is generally accepted that all-trans RA is the main biologically active stereoisomer, a 

biological role for 9-cis RA is still a matter of debate [33].  

Of particular interest is a better understanding of the involvement of RA in proximal–distal 

patterning. Interestingly, when RARE:GFP axolotls are treated with RA, gfp expression is 

induced only in a blastema cell population likely to be fibroblasts [120]. The positional 

memory of the limb is thought to reside in connective tissue fibroblasts [128–130], therefore 

this distinct cell population might be responsible for the proximalizing effect of RA. Thus, if it 

were possible to single out RARE-GFP-positive fibroblasts and determine their expression 

profiles, new insights might be gained into the long-known phenomenon of super-regen-

eration. Notably, reporter activity is absent in the blastema in animals that did not receive 

RA treatment. This finding raises the question whether RA has an endogenous function in 

proximo-distal identity. Unfortunately, reporter activity in RARE:GFP animals has only been 

examined in limbs that were amputated just proximal to the elbow. If RA signaling directly 

controls positional identity in connective tissue fibroblasts, then amputation at different 

positions along the proximal–distal axis should result in differences in RARE:GFP activity in 

these cells. An alternative explanation might be that RA activity in the wound epidermis 

regulates the release of yet unknown factors that determine positional identity in 

fibroblasts. This model might explain why reporter activity is absent from the mesenchyme. 

In chicken and mouse, it has been demonstrated that proximal– distal identity of limb 

segments is specified during development through a balance between proximal RA and 

distal Fgf activity [131, 132]. If positional information in amphibian limb cells is also 

established during development by RA activity, de novo positional information during 

regeneration would be unnecessary. However, high RA concentrations might allow 

respecification during regeneration.  

Overall, although there is strong support for an endogenous function of RA in amphibian 

limb regeneration, conclusive evidence is still not available. 
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Endogenous RA in amphibian tail regeneration  

Tail amputation in adult urodele amphibians results in the complete replacement of all tail 

structures. This ability is intriguing because tail regeneration involves the restoration of the 

spinal cord. Although the tail regenerates via similar steps and mechanisms as the limb, 

there are important differences: whereas a blastema-like structure forms from cartilage, 

muscle and fibroblasts, the spinal cord forms the so-called ependymal tube [47]. The 

ependymal tube is a pseudostratified neuroepithelium that forms from ependymal cells that 

line the central canal of the spinal cord and is very similar to the neural tube of an embryo. 

As regeneration proceeds, the ependymal tube elongates and neurons and glia cells 

differentiate.  

In urodele amphibians RA signaling has been investigated in adult newt. Carter et al. [116] 

could show that following tail amputation the levels of RARβ2 mRNA and protein in the 

stump increase in ependymal cells and in meningeal cells that ensheath the spinal cord, and 

also increase in the ependymal tube. Three weeks after amputation RARβ2 expression can 

also be detected in a population of blastema cells. Notably, tail regeneration can be inhibited 

by treatment with a RARβ-specific antagonist. Interestingly, antagonist treatment starting at 

6 dpa does not impair tail regeneration. This finding demonstrates that RARβ2 has an early 

function in tail regeneration, but is most likely not required for the proliferation of blastema 

and ependymal tube cells. The expression pattern of RARβ2 suggests an involvement of 

RARβ2-mediated signaling in the formation of the ependymal tube rather than in blastema 

formation. Using the same antagonist, it has previously been shown that RARβ activity is 

crucial for neurite outgrowth from newt spinal cord cultures [133], supporting the idea that 

RARβ2 activity controls regeneration of the spinal cord in the urodele tail. After tail 

amputation ependymal cells start to proliferate and migrate towards the wound site where 

they form the ependymal tube. It will therefore be interesting to investigate whether RARβ2 

activity plays a role within the ependymal cells during ependymal tube formation. Also, the 

source of RA is yet to be determined. Interestingly, aldh1a2 is upregulated as a consequence 

of spinal cord lesion also in the rat [134]. Besides a possible function of RA signaling in 

ependymal tube formation, RA might fulfill additional roles in tail regeneration. Examining 

RA activity in the regenerating tail of transgenic RARE:GFP axolotl might be a useful next 

step. Overall, RARβ-mediated RA signaling is required for tail regeneration in adult newt, 

most likely for the formation of the ependymal tube.  

Aldh1a2 has been shown to be up-regulated in the neural ampulla, notochord cells and 

mesenchyme during Xenopus tail regeneration [119]. Moreover, several Rars are expressed 

in the regenerating tail of another anuran species [135]. Disulfiram treatment has been 

shown to inhibit tail regeneration in anuran tadpoles, but as discussed above in the context 
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of limb regeneration, the inhibitory effect might be caused by interfering with mechanisms 

other than RA signaling.  

It should be noted that the regenerated anuran tadpole tail is only an imperfect copy of the 

amputated part [45]. Importantly, the neural tissue does not seem to regenerate properly. 

The segmented pattern of the spinal nerves is not re-established and dorsal root ganglia fail 

to regrow. Furthermore, tail regeneration in anurans involves replacement of the notochord, 

which is not present in the adult urodele tail and fails to regenerate in urodele tadpoles. 

Thus, caution is warranted when generalizing findings on tail regeneration.  

 

RA in zebrafish heart regeneration  

In humans, cardiac infarction results in the local disruption of the blood supply to the heart. 

Deprived of oxygen, heart muscle cells undergo cell death and are subsequently removed by 

immune cells. A scar remains that disturbs the fine-tuned interplay of muscle contraction 

and the hydrodynamics of blood flow through the chambers. Further complications and 

heart failure are the likely consequences. While cardiac muscle cells in humans do not 

regenerate after myocardial infarction, zebrafish are very efficient at regenerating cardiac 

muscle. A common procedure to study heart regeneration has been the amputation of the 

tip of the ventricular muscle, which is readily accessible through the pericardium [136]. 

However, amputation does not produce the same kind of damage as cardiac infarction, 

which leaves behind the debris of dead cells. Cryocauterization, in which ventricular 

cardiomyocytes undergo massive necrosis after contact with a frozen object, overcomes this 

limitation, resembles the effects of reduced blood supply and results in many of the same 

cellular responses as amputation [137–139]. The molecular mechanisms underlying zebrafish 

heart regeneration, which we discuss below, have so far been examined in the amputation 

model.  

 

The cellular mechanisms underlying zebrafish heart regeneration  

The vertebrate heart consists of three layers: The epicardium on the outside, which provides 

precursors for the coronary vasculature, the muscular myocardium, and the endocardium, a 

vasculogenic mesothelial layer that faces the cardiac lumen. Upon injury, a clot of 

erythrocytes forms within minutes after amputation, which within a week is replaced by an 

assembly of fibrin fibers and collagen deposits. Next, the clot is surrounded, invaded and 

eventually replaced by myofibers in a slow process that takes up to 60 days [136, 140]. The 

outer region of the myocardium is formed by two layers that are comprised of compact 

myocytes on the outside and myocytes that are organized into trabecular arrangements 
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more internally. Uninjured adult hearts have a low rate of proliferation in compact myocytes 

and little proliferation in trabecular myocytes. Rather than by proliferation (hyperplasia), 

adult hearts mainly gain volume through an increase in cell size (hypertrophic growth).  

Upon injury, a blastema of proliferating cells forms within the myocardium that gradually 

replaces the amputated heart muscle. The source of regenerated cardiomyocytes has been 

identified using an inducible recombination system that allowed cardiomyocytes to be 

genetically marked early in development. Most, if not all regenerated cardiomyocytes were 

shown to arise from differentiated labeled cardiomyocytes that re-entered the cell cycle 

[141, 142]. As cardiomyocytes detach from each other, they disassemble their sarcomeres 

and upregulate markers of cell-cycle progression [136, 141, 143], but they do not upregulate 

cardiac progenitor markers, suggesting that dedifferentiation does not turn back the clock to 

the earliest stages of cell type specification.  

 

RA signaling during cardiomyocyte regeneration  

Microarray analyses aimed at finding genes that respond to regeneration in the zebrafish 

adult and larval caudal fin as well as the adult heart have shown that despite radical 

differences in tissue composition between these organs, common expression changes exist 

that might reflect conserved molecular signaling during the initiation of regeneration [65, 

144, 145]. A significant observation resulting from these studies was that strong 

upregulation of aldh1a2 expression was conserved and common to all three regenerating 

organs.  

Myocardial regeneration involves all three layers of the heart. A particularly interesting idea 

was that the epicardium might be involved in the regeneration process, similar to the 

multilayered wound epidermis [146, 147]. Intact hearts show little epicardial aldh1a2 

expression, yet within 24 hpf upon injury aldh1a2 is strongly upregulated throughout the 

entire epicardium, including the atrium and outflow tract. By 3 dpa most epicardial aldh1a2-

positive cells enter S-phase and by 7 dpa this response localizes to the wound. Thus, the 

entire epicardium expands in an organ-wide fashion to create a new epithelial cover for the 

exposed myocardium. By 7–14 dpa, at a time when myocyte proliferation is also maximal, 

epicardial proliferation homes in on the wound to close the epithelial cover [146].  

Soon afterwards, subsets of epicardial cells migrate and integrate into the wound. Instead of 

contributing to the pool of cardiomyocytes, these cells are fibroblast-like cells, some of 

which are later found surrounding the vascular network [147, 148]. While aldh1a2 

expression subsides in the epicardium during this phase, integrating epicardial cells maintain 

high expression while regeneration continues. A surge in Aldh1a2 expression in the atrial 

and ventricular epicardium is also observed in the developing mouse heart, where at the 

same time both the epicardium and myocardium respond to RA as demonstrated by 
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expression of a RARE-driven reporter [149]. Upregulation of epicardial RA synthesis thus 

seems to be a response that is reactivated from an earlier developmental program. Several 

other genes required for zebrafish heart regeneration also regulate embryonic heart 

development, leading to the proposal that adult hypertrophic cardiomyocytes 

dedifferentiate back to the embryonic hyperplastic stage so that they can proliferate once 

more [150, 151].  

The epicardium is not the only cardiac layer that upregulates aldh1a2 expression upon 

injury. All three layers start to proliferate in response to injury, including endocardial cells 

close to the injured site [139]. Immediately following ventricle amputation, endocardial cells 

round up in shape and detach from the myocardium, initially independent of their proximity 

to the injury site, but within 1 day after injury they are confined to positions close to the 

wound. aldh1a2 is upregulated within 3 hpa in the endocardial endothelium of both 

chambers. As early as 1 dpa aldh1a2 localizes to the injury site and remains there 

throughout 7–14 dpa [84]. Endocardial cells near the wound site migrate into the wound 

where they continue to express aldh1a2.  

The co-occurrence of both epicardial and myocardial proliferation and epithelial migration 

conforms with possible roles for RA synthesis in controlling the proliferation of 

dedifferentiated cardiomyocytes in the blastema as well as regulating the emigration of 

epithelial cells into the myocardium. Direct proof that RA synthesis is required for the 

regenerative proliferation of cardiomyocytes comes from induced transgenic expression of 

Cyp26a1 (hsp:cyp26a1), and a dominant negative form of RARα (hsp70:dn-zrar). When RA 

signaling is blocked at 6 dpa and analyzed 1 day later, proliferation in the myocardium is 

reduced dramatically [84]. Thus, RA synthesis in epicardial and endocardial cells controls 

replacement of the underlying myocardium. Interestingly, exogenously supplied RA or a 

synthetic agonist that stimulates RARs fail to increase myocardial proliferation rates. This 

finding suggests that RA is a permissive rather than an instructive signal for myocardial 

regeneration. It remains to be shown whether RA acts directly in myocardial cells in a 

paracrine fashion or indirectly through other signals produced by epithelial cells in response 

to RA. Another open question is which cellular mechanism(s) are regulated by RA. The 

requirement for proliferation suggests that RA either controls the cell cycle and/or 

dedifferentiation of cardiomyocytes as a precondition to proliferation. It has been shown in 

the Drosophila eye and in Schwann cells that dedifferentiation is possible without the 

necessity to also proliferate [151]. This suggests that also cardiomyocyte dedifferentiation 

and proliferation might be separable steps that require distinct molecular triggers.  

Several studies into the function of RA signaling in the developing heart support the idea 

that RA is required for cardiomyocyte proliferation rather than regulating the number of 

proliferating cells indirectly by controlling de-differentiation. In mouse embryos at around 

12.5 days post-coitum (dpc), there is a major surge in RA synthesis in the ventricular 
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epicardium. At the same time, myocardial cells in the compact zone, which is closely 

attached to the epicardium, expand through proliferation to thicken the ventricular wall 

[152]. Together, this indicates that RA from the epicardium may induce cell proliferation in 

the compact cells through a paracrine mechanism. In support of this, RXRα knockout mice 

suffer from a hypoplastic myocardial wall and multiple ventricular septal defects. In fact, 

RXRα knockout mice as well as vitamin A-deficient rats show precocious sarcomeric 

organization in the compact layer, suggesting that RA is normally required to induce 

proliferation and prevent premature differentiation [149, 152–154]. 

It was further shown that epicardial proliferation during regeneration is not affected by the 

absence of RA signaling [84], however, an involvement of RA signaling in regulating invasion 

of epicardial- and/or endocardial cells into the wound has not been tested.  

The question whether RA signaling is associated with the ability to regenerate the heart from 

an evolutionary perspective was addressed in Polypterus, a fish whose lineage branches off 

at a basal position of the ray-finned fish (actinopterygia). The events following ventricular 

amputation are very similar to those in zebrafish, including fast and organ-wide aldh1a2 

upregulation in the epicardium, and sustained epicardial and endocardial aldh1a2 

expression in regions of injury and cardiomyocyte proliferation. The parsimonious 

interpretation is that RA-mediated heart regeneration is a basic trait of ray-finned fish [84]. 

The situation is different in mice, though. When myocardial infarction was induced by 

ligation of the coronary artery, no immediate Aldh1a2 expression was detectable in any 

cardiac tissue, only the epicardium showed limited sustained expression. Thus, the inability 

of the mouse heart to regenerate may be connected to the failure to express Aldh1a2 in 

non-myocardial heart tissues [84].  

 

RA in lens regeneration  

Some teleost and amphibian species are able to regenerate the lens following surgical 

removal (lentectomy). While lens regeneration has only been poorly investigated in teleosts, 

the cellular mechanisms underlying lens regeneration in amphibians are well known. In 

urodeles the lens regenerates through a process called Wolffian lens regeneration, in which 

cells of the dorsal iris transdifferentiate into lens fibers [155]. After lentectomy, pigmented 

epithelial cells (PECs) of the iris lose their pigment, dedifferentiate and re-enter the cell 

cycle. Several days later, a lens vesicle forms from de-differentiated PECs and cells in its 

posterior part start to elongate and differentiate into lens fibers. Cells in the anterior part 

contribute to the lens epithelium, a simple cuboidal epithelium that regulates most 

homeostatic functions of the lens. The size of the regenerating lens continuously increases 

through the addition of new lens fibers that differentiate from the lens epithelium. In anuran 
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amphibians, lens regeneration has been observed in tadpoles of some Xenopus species. In 

contrast to Wolffian lens regeneration, lens cells in anurans transdifferentiate from the cen-

tral region of the inner layer of the outer cornea [45]. We refer the reader to Henry and 

Tsonis [155] for a more comprehensive overview of amphibian lens regeneration.  

Although gene expression profiles identified RXRγ as being upregulated during Xenopus lens 

regeneration [156], the expression of RA pathway components has not been systematically 

investigated and studies of the putative roles of endogenous RA signaling in anuran lens 

regeneration are missing. In contrast, it was shown that RA has an endogenous function 

during lens regeneration in adult newts. After lentectomy expression of RARδ and RARα is 

upregulated in dedifferentiating PECs and remains high during lens fiber differentiation [157, 

158]. Remarkably, treatment with antagonists that either block the activity of all RARs (pan-

antagonist) or antagonists specifically targeted to RARα inhibits lens regeneration [157, 158], 

but the mechanisms underlying the failure of lens vesicle formation have not been 

investigated. It will be interesting to examine whether RA signaling is required for de-

differentiation and/or proliferation of PECs and therefore has a similar function in the 

recruitment of progenitors in the newt lens as it has in zebrafish fin regeneration. In some 

cases treatment with the pan-antagonist resulted in the formation of an ectopic lens from 

the ventral iris or even from the cornea. These findings are surely very interesting, however, 

with only very limited knowledge about the action of RA signaling during lens regeneration, 

it is not possible to interpret these results. Investigations into the temporal and spatial 

expression of RA metabolizing enzymes during lens regeneration might unravel putative RA 

sinks and sources and therefore could help to understand why inhibition of RAR activity 

blocks regeneration dorsally, but induces ectopic regeneration ventrally.  

 

Regeneration in mammals: RA and bone development in cervid antlers  

There are a number of examples of appendage regeneration in mammals, as in the closure 

of punch-hole wounds in the ears of rabbits and the MRL mouse strain, the regeneration of 

amputated digit tips in newborn rodents and humans, and the annual regeneration of 

antlers in deer [159], but so far an involvement of RA signaling has only been shown in antler 

regeneration. Deer antlers are a rare example of full appendage regeneration in mammals. 

Rather than a response to wounding by amputation, antler regeneration can be viewed as a 

regularly recurring phase of bone development (often referred to as physiological 

regeneration) that does not depend on tissue loss or wounding. This becomes evident when 

testosterone levels are artificially kept high: as a consequence, the preceding year’s antlers 

are not cast and a new set develops at the base of the old ones [160]. 
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Seasonal regeneration of antlers  

Antlers originally develop and are regenerated from pedicles, bilateral bony protrusions of 

the frontal bone. After antlers have been cast, the epidermis closes over the pedicle wound 

and forms a wound epithelium. This process is accompanied by the formation of the dermis 

that is separated from the wound epithelium by a basal lamina. Full-thickness skin inhibits 

regeneration in amphibians when placed on the amputation stump, but antler regeneration 

does not require contact between the wound epithelium and the proliferating mesenchyme.  

Underneath the skin the surface of the pedicle bone is formed by the periosteum, which 

provides a niche for resident stem cells that give rise to a mesenchymal growth zone. The 

growth zone has been compared to a blastema, because it consists of proliferating and 

undifferentiated cells that will develop into a new antler [161, 162]. Up until recently, the 

formation of the growth zone was thought to involve cellular dedifferentation processes. 

However, it has been shown that blastema cells express a marker for mesenchymal stem 

cells and can be differentiated into more than one cell type in vitro, suggesting a stem cell 

contribution to the blastema [163]. The mesenchymal growth zone is localized at the apex of 

the outgrowth, underneath the future perichondrium, and will give rise to the new antler by 

a continuous process of differentiation that generates chondroblasts. Chondroblasts mature 

into chondrocytes, which further differentiate into hypertrophic chondrocytes in a distal to 

proximal sequence (Fig. 3). Osteoblast progenitors from the perivascular tissue invade the 

hypertrophic cartilage, differentiate and secrete bone matrix. Thus, antler regeneration 

follows a mode of endochondral ossification to elongate the antler skeleton. In contrast, the 

simultaneous increase in antler width is brought about by intramembranous ossification. 

RA signaling in antler regeneration  

RA signaling is involved in the regulation of chondrogenesis and osteogenesis during antler 

regeneration. In the course of endochondral ossification during embryonic development, RA 

limits, and therefore controls, the timing of condensation and chondroblast differentiation 

when the skeletal cast is laid down, and it positively regulates the maturation and 

replacement by bone at later stages [164]. In other words, loss in RA signaling induces 

differentiation of chondroprogenitors early on but at later stages prevents hypertrophic 

differentiation of chondrocytes. The overall gene expression patterns of RA pathway 

components in the regenerating antler support what is known about its roles controlling 

cellular transitions during chondrogenesis in the embryo.  

The perichondrium contains a distal fibrous layer and a proximal blastema, which shows 

extensive proliferation and is, at least partially, if not wholly, derived from a stem cell niche 

in the periosteum. The expression of Aldh1a2 and the detection of all-trans RA confirm that 

the perichondrium is a source of RA. As during embryonic development, RARα is expressed 
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in the perichondrium, but is downregulated in the chondroprogenitors [165]. Experiments 

on primary mouse limb mesenchyme have confirmed that downregulation of RARα is 

required to ensure the differentiation of chondroblasts [166, 167]. As would be predicted for 

chondrogenesis, the chondroprogenitor layer does not expresses Aldh1a2, because RA 

signaling is a negative regulator of the chondroblast marker Col2a1 [166]. Finally, the carti-

lage layer is the site of chondrocyte hypertrophy and posthypertrophic chondrocyte 

mineralization. RA is a major regulator of these processes [164, 168] and its effects may be 

mediated by RXRβ, whose expression in chondrocytes continually increases as cells 

differentiate from chondroprogenitors to mature chondrocytes. Replacement of cartilage by 

bone originates in the cartilage layer, accordingly both Aldh1a2 and RARα are expressed in 

osteoblast progenitors located in the cartilage region and in the lateral pedicle, where they 

promote the increase in antler width through intramembranous bone formation. Treatment 

of cultured mesenchymal antler cells with RA promotes osteoblast differentiation and 

mature osteoblasts express Aldh1a2 in antler bone [165]. Taken together, the regenerating 

antler passes through the stages of endochondral ossification, in which RA regulates the 

transition between cell differentiation stages similar to the processes in embryonic bone 

development.  

In contrast, the mechanisms of antler blastema formation are inadequately understood and 

further examination is required to reveal whether RA could serve an earlier role in the 

periosteum stem cell niche and the mesenchymal growth zone. Both Rarα and Aldh1a2 are 

expressed in the blastema (prechondrogenic mesenchyme) and this tissue, in analogy to the 

situation in the zebrafish caudal fin blastema, might require RA to control growth and other 

aspects of the earliest regenerative events. Another lead in favor of this possibility comes 

from experiments in which RA was injected into the incipient pedicle anlage, which emerges 

from within a larger “antler regeneration area” of the frontal periosteum. The resulting 

shape changes in the injected pedicle and the increase in first antler size was examined 

histologically and thought to be caused by increased proliferation rates of cells presumed to 

reside in the perichondrium [169, 170]. Such a growth-promoting effect would be 

comparable to the known roles of RA in zebrafish fin and heart regeneration.  

Finally, in addition to bone tissue, antler regeneration involves the regeneration of 

epidermis, dermis, and vasculature and it needs to be investigated as to which extent RA 

signaling is involved in these processes. 
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Fig. 3 Antler regeneration. a Model of antler bud 9–10 days after casting. A wound epithelium (WE) closes over 
the wound, protected by a scab. In the center of the pedicle bone (PB), skin and wound epithelium overlay a 
granulation tissue (GT), its proximal part appears as undifferentiated mesenchymal tissue (UM). Mesenchymal 
growth zones (M) form at sites of antler branch formation. A new perichondrium envelopes the regenerating 
antler and is coherent with the pedicle periosteum. b Thirty days after casting, branches grow longitudinally at 
the distal tip, in which mesenchymal growth zones (M) form the inner layer of the perichondrium. 
Chondroprogenitors (CP) are situated more proximally, followed by cartilage (C). Osteoblasts replace cartilage 
(endochondral ossification) and form the new antler bone (B) (a, b modified after Price et al. [205]). c RA 
signaling acts at different levels of antler regeneration: RA is synthesized in the perichondrium and keeps the 
mesenchymal growth zone in a prechondrogenic state. Chondroblast differentiation is inhibited as long as RA 
signaling is high. Chondroprogenitors (chondroblasts) require RA for maturation, which might be provided by 
osteoblasts invading perivascular spaces in the cartilage zone. Osteoblasts produce RA and differentiate under 
the influence of RA signaling. Growth in width occurs by intramembranous bone formation, which also requires 
RA (not shown). d Fallow deer with “young” antlers (as in b). 

 

Invertebrate regeneration and the retinoid signaling machinery  

The RA signaling pathway, including the genetic machinery it employs, is not specific for 

vertebrates, in fact several of its physiological functions have been shown to be conserved in 

all chordates, which also include the invertebrate groups of the cephalochordates and the 

urochordates, also known as tunicates.  

The cephalochordate Amphioxus may play an important role in uncovering the origins and 

evolution of chordate regeneration mechanisms. Amphioxus shows extensive regenerative 

abilities and can regrow several organ types following amputations, both anterior and 

posterior to the pharynx. Tail regeneration has been shown to be an epimorphic process that 

employs stem cells as well as dedifferentiation of existing cells, the formation of a blastema, 

and the upregulation of genes in the blastema that are not expressed during embryonic 

development of the regenerating organ [171]. Cephalochordates evolved at the base of the 

chordates and therefore may possess regenerative mechanisms inherited and further 

modified by vertebrates. At the same time, various developmental processes that are RA-

regulated in vertebrates, like the control of antero-posterior pattern formation and neuronal 
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specification in a Hox-dependent manner [172] are also under the control of RA in 

Amphioxus. Accordingly, the Amphioxus genome possesses orthologs of most of the 

vertebrate components of the RA signaling pathway, including the metabolic enzymes and 

single copies of RA and RX receptors [173–175] (reviewed in: [176–178]). Whether the meta-

bolic enzymes are comparable in their substrate specificities, however, remains to be 

explored [179, 180]. Like its vertebrate counterparts, RA binds to and activates the 

Amphioxus RXR/RAR heterodimer [175]. On the other hand, orthologs of vertebrate Crabp, 

lecithin-retinol acyltransferase (Lrat), Rbp4, Ttr, and Stra6 are absent from the Amphioxus 

genome [179, 181]. In vertebrates retinol is esterified to retinyl esters by Lrat and stored in 

the liver. Rbp4 and Ttr transport retinol in the blood stream. The cellular uptake is 

subsequently mediated by Stra6 [25]. Taken together, at the base of the chordate lineage 

the basic components of the RA signaling machinery were most likely already present, 

whereas the system for retinoid storage, transport and cellular uptake might be functional 

innovations of vertebrates [179].  

Among the invertebrate animals, ascidians (the most representative class of the tunicates) 

possess the remarkable ability to regenerate the whole body [182]. Ascidians reproduce 

both sexually and asexually, forming colonies of clonal individuals. Regeneration has much in 

common with asexual reproduction by vegetative outgrowth, as both require local mitosis at 

the site of budding and regeneration, respectively [183]. RA treatment induces repatterning 

of the body in buds that sprout from the thoracic body wall of the tunicate Polyandrocarpa 

misakiensis. [184, 185]. The process is thought to be mediated by RAR-RXR heterodimers 

that are characterized by an affinity to vertebrate-type RAREs and the ability to act as RA-

dependent transcriptional activators [186]. The effects of RA are likely to be indirect, since 

coelomic cells treated with RA become competent to induce dedifferentiation of a 

multipotent cell type, the atrial epithelial cells constituting the inner vesicle of the bud [184]. 

In the colonial ascidian Botrylloides leachi, entire functional individuals can be regenerated 

from adult tissues, a process that requires RA synthesis and signaling through a RA receptor 

that is expressed in regeneration niches contained in fragments of blood vessels [187]. 

Although urochordates are thought to represent the sister group to vertebrates, compared 

to cephalochordates their derived anatomy is less well suited to unravel the roles of RA in 

regeneration from the perspective of an animal at the base of the phylum chordata. 

Moreover, RA signaling in tunicates has secondarily been modified, leading to diverged 

functions and loss of key components of the RA signaling machinery [177, 178]. The basic 

components for RA signaling (a single RAR/RXR heterodimer, Aldh1a and Cyp26) are present 

in the genome of the ascidian tunicate Ciona intestinalis. However, the larvacean tunicate 

Oikopleura dioica has lost key components of the RA signaling machinery, including RAR, 

Aldh1a and Cyp26 [177, 188]. Accordingly, the functions of RA signaling in tunicate 
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development seem to be limited. For instance, RA signaling probably only plays a minor role 

in the regulation of Hox genes [189–191].  

The ecdysozoans (among them insects, crustaceans and nematodes) differ from annelids and 

molluscs in their sister group, the lophotrochozoans, in that they appear to have secondarily 

lost both the RA receptor (but not RXR-like sequences) and the ability to regulate RA 

degradation through CYP26 enzymes [8, 177, 192]. Curiously, these specific losses also 

appear to have occurred in platyhelminths (flatworms), a phylum within the 

lophotrochozoans that exhibits exceptionally remarkable regenerative abilities [192, 193] 

and in which exogenous RA affects regeneration of anterior but not of posterior structures 

[194]. Thus, in these groups RA activity may occur independently of DNA binding through 

non-genomic signaling, yet influences the progress of regeneration.  

In Drosophila, a checkpoint mechanism operates in the third larval instar that delays entry 

into pupariation following tissue damage. When whole larvae are irradiated or when the 

apoptotic program is genetically activated in the imaginal discs, a neuroendocrine pathway 

that regulates the increase in ecdysone production that is required for progression from 

larval to pupal stages is temporarily inhibited [195]. Interestingly, a genetic screen for genes 

that take part in the checkpoint mechanism and thus diminish the developmental delay in 

response to damage, turned up several members of the retinoid signaling machinery. Among 

these were the genes for β-carotene 15,15′-monooxygenase (BCO), which controls the initial 

step in the release of retinaldehyde from stored carotenoids (Fig. 1), a gene with homology 

to mammalian type III alcohol dehydrogenase, which oxidizes vitamin A to retinaldehyde, a 

scavenger receptor that transports β-carotene into cells, and the aldehyde dehydrogenase 

gene that might act as a source of RA in Drosophila. In support of the interpretation that 

retinoid signaling is an important part of the checkpoint mechanism, larvae reared on 

carotenoid-deficient food exhibit a substantially attenuated delay before progressing into 

pupariation upon damage, but feeding β-carotene rescues the checkpoint mechanism. The 

retinoid signaling machinery was shown to be one part of the mechanism that suppresses 

the activation of the neuroendocrine pathway that stimulates ecdysone synthesis, although 

retinoid-independent mechanisms must exist as well [195]. Thus, retinoid biosynthesis in 

Drosophila is important for the maintenance of a condition that is permissive for 

regenerative growth.  

Another case of ecdysozoan regeneration that is influenced by RA signaling is exemplified by 

the fiddler crab (Uca pugilator), which is able to reflexively discard limbs as a response to 

predation (autotomy). Amputated and autotomized limbs can be regenerated completely 

during a single molt cycle (for a review see [196]), which is regulated by ecdysteroids that 

circulate in the hemolymph. During this first phase of limb regeneration, termed basal 

growth, a blastema forms under the wound and develops a fully segmented albeit small 

limb. Ecdysteroid signaling may play a role in the deposition of a flexible cuticle during basal 
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growth. This is followed by proecdysial growth during which tissue size increases due to 

protein synthesis and water uptake, and which is completed as the crab molts. Endogenous 

retinoic acids have been isolated from proecdysial growth phase limb blastemas and 

retinaldehyde enzymatic activity was detected in the regenerate [196, 197]. Interestingly, 

proecdysial growth is affected by artificially increased RA signaling: When RA is added to the 

seawater of newly autotomized fiddler crabs during the first 5 days of blastema formation, 

limb regeneration proceeds normally. However, exposure to RA during later stages results in 

segmentation defects that have been attributed to a failure of the epidermis to fold into the 

nascent blastema [198]. It has not been determined yet whether these effects originate in 

the epidermis, but RXR protein localizes to the epidermis. Another problem is that because 

both ecdysteroids and RA act through RXRs, ligand-bound RA receptors may compete with 

ecdysteroid receptors for the availability of RXRs. Because molting is regulated by 

ecdysteroids and is highly sensitive to changes in receptor activation, high concentrations of 

RA may interfere with regenerative steps that require low levels of ecdysteroid signaling 

[198]. In fact, RA has been shown to increase the expression of U. pugilator RXR in relation 

to the ecdysone receptor during the proecdysial growth phase of regeneration [199]. Finally, 

upon limb autotomy, immunostaining with heterologous vertebrate antibodies detects the 

presence of FGF 2-like proteins in the area distal to the severed nerve of the fiddler crab 

[200]. It remains to be shown whether limb regeneration in this arthropod is regulated by an 

endogenous retinoid pathway and analogously to the vertebrate limb, with regulatory 

functions embedded in the regeneration epidermis and regulatory interactions between the 

RA and FGF signaling pathways.  

Conclusions  

Evidence confirming activation of endogenous retinoid signaling pathways during animal 

regeneration has been accumulating over the last decade. At the same time, phar-

macological as well as genetic inhibition of RA signaling has shown that an activated RA 

pathway may be indispensable for regeneration. The necessity for RA is independent of the 

injured organ, as exemplified by zebrafish heart and fin regeneration, and there are 

indications from research into limb, tail and lens regeneration in amphibians that RA might 

be essential in controlling these processes. In the future rigorous testing of these hypotheses 

will be required. The zebrafish is perfectly suited to investigate putative functions of RA 

signaling in other regenerating organs (i.e., liver, kidney and brain) due to its ability to 

regenerate many organs and its accessibility to genetic and pharmacological manipulations. 

Investigations into RA signaling in kidney regeneration might be of particular interest. RA 

signaling is crucial during kidney organogenesis [201] and RA activity has been detected in 

the kidney of adult mice [202]. Notably, kidney tubulogenesis in vitro can be induced by RA 
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[203, 204]. Thus, RA has been proposed to promote kidney regeneration. Much needed 

thorough analyses of the distribution of sources and sinks of RA in regenerating organs 

should reveal similarities and differences across the regeneration models that may prove 

informative from a functional as well as evolutionary point of view. Finally, it will be 

absolutely essential to identify which signals activate RA signaling in response to injury. 

Probably even more important are investigations into the direct targets of RA signaling 

during regeneration, which should help to understand central issues that have emerged in 

the field so far: is RA directly required for blastema proliferation or does it play an exclusive 

or additional role in dedifferentiation and redifferentiation? If either is true in some animals, 

do others manage to regenerate without it and if so, how? What is the molecular basis of 

RA-mediated patterning during super-regeneration? Due to our extensive knowledge 

concerning RA pathway regulation and a growing array of drugs that target specific 

components, an in-depth understanding of the roles of endogenous RA signaling in 

regeneration holds great promise for regenerative therapies in human patients.  
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Abstract 

Zebrafish restore amputated fins by forming tissue-specific blastema cells that coordinately 

regenerate the lost structures. Fin amputation triggers the synthesis of several diffusible 

signaling factors that are required for regeneration, raising the question of how cell lineage-

specific programs are protected from regenerative crosstalk between neighboring fin tissues. 

During fin regeneration, osteoblasts revert from a non-cycling, mature state to a cycling, 

preosteoblastic state to establish a pool of progenitors within the blastema. After several 

rounds of proliferation, preosteoblasts redifferentiate to produce new bone. Blastema 

formation and proliferation are driven by the continued synthesis of retinoic acid (RA). Here, 

we find that osteoblast dedifferentiation and redifferentiation are inhibited by RA signaling, 

and we uncover how the bone regenerative program is achieved against a background of 

massive RA synthesis. Stump osteoblasts manage to contribute to the blastema by upregulating 

expression of the RA-degrading enzyme cyp26b1. Redifferentiation is controlled by a 

presumptive gradient of RA, in which high RA levels towards the distal tip of the blastema 

suppress redifferentiation. We show that this might be achieved through a mechanism 

involving repression of Bmp signaling and promotion of Wnt/β-catenin signaling. In turn, 

cyp26b1+ fibroblast-derived blastema cells in the more proximal regenerate serve as a sink to 

reduce RA levels, thereby allowing differentiation of neighboring preosteoblasts. Our findings 

reveal a mechanism explaining how the osteoblast regenerative program is protected from 

adverse crosstalk with neighboring fibroblasts that advances our understanding of the 

regulation of bone repair by RA. 
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Introduction 

Regeneration of amphibian and fish appendages proceeds through epimorphic regeneration, in 

which a blastema of cycling progenitor cells forms at the wound site. The blastema harbors a 

mixture of cells with distinct origins and fate-restricted potential that coordinately regenerate 

the lost appendage (Gemberling et al., 2013; Tanaka and Reddien, 2011). The zebrafish caudal 

fin, which completely regrows within two weeks upon amputation, has emerged as a powerful 

model to study the underlying cellular and molecular mechanisms of appendage regeneration. 

Amputation triggers successive steps (wound healing, blastema formation and regenerative 

outgrowth) that finally restore the original tissues, including bone, connective tissue, blood 

vessels, nerves, epidermis and pigment cells (Akimenko et al., 2003; Poss et al., 2003). Several 

signaling pathways have been implicated in fin regeneration (e.g. FGF, Igf, RA and Wnt/β-

catenin signaling) (Blum and Begemann, 2012; Chablais and Jazwinska, 2010; Poss et al., 2000; 

Stewart et al., 2014; Stoick-Cooper et al., 2007; Wehner et al., 2014; Whitehead et al., 2005). 

However, our understanding of their tissue-specific functions is very limited. Identifying the 

signals that act on the distinct cell lineages is therefore a crucial next step towards a thorough 

understanding of fin regeneration. Another major unresolved question is how regenerative 

programs specific for a particular cell lineage are protected from regenerative crosstalk 

between neighboring fin tissues. For example, high concentrations of diffusible signals required 

by many cells might interfere with a subset that must avoid them. 

The skeletal elements of the fin, the fin rays, run from proximal to distal and are separated by 

soft interray tissue (Akimenko et al., 2003). Each fin ray is made up of two opposed and 

segmented hemirays, derived from intramembranous ossification that surround a soft core of 

fibroblasts, blood vessels, nerves and pigment cells (Fig. 1A). The bone matrix is laid down by 

osteoblasts that line up along the bone surface. During fin regeneration osteoblasts switch from 

a non-cycling, matrix-producing (mature) state to a cycling, less differentiated (preosteoblastic) 

state, and vice versa (supplementary material Fig. S1; Knopf et al., 2011; Sousa et al., 2011; 

Stewart and Stankunas, 2012). This remarkable behavior allows rapid replacement of lost bone. 

Upon amputation, mature osteoblasts next to the amputation site become proliferative and 

migrate towards the wound site. In the nascent blastema, preosteoblasts align at proximal 

lateral positions, thereby forming a spatially restricted subpopulation of the blastema. After 

several rounds of division, preosteoblasts redifferentiate to form new bone tissue. 

Differentiation progresses in a distal-to-proximal direction, so that fast cycling preosteoblasts at 

the distal leading edge of aligned osteoblasts become slow-cycling differentiating cells, which 

subsequently mature into non-cycling matrix-producing cells (Stewart et al., 2014). Despite 

their dedifferentiation, osteoblasts remain lineage restricted (Knopf et al., 2011; Stewart and 

Stankunas, 2012). To achieve proper reconstitution of lost bone, appropriate ratios between 

osteoblast dedifferentiation, proliferation and redifferentiation must be tightly controlled. 
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However, the molecular mechanisms that control the transition between the distinct 

differentiation states within the osteoblast lineage have only recently begun to be addressed. 

Wnt/β-catenin and BMP signaling have been shown to regulate preosteoblast proliferation and 

differentiation via opposing activities (Stewart et al., 2014). The signals that control osteoblast 

dedifferentiation in the stump are unknown so far. 

Retinoic acid (RA) has been shown to play multiple roles in bone development and repair by 

exerting pleiotropic effects on cells of the chondroblast, osteoblast and osteoclast lineages 

(Adams et al., 2007; Allen et al., 2002; Conaway et al., 2013; Dranse et al., 2011; Koyama et al., 

1999; Laue et al., 2008, 2011; Li et al., 2010; Lie and Moren, 2012; Lind et al., 2013; 

Nallamshetty et al., 2013; Song et al., 2005; Spoorendonk et al., 2008; Weston et al., 2003; 

Williams et al., 2009). Although partially conflicting results were reported, the general 

consensus for osteoblastogenesis is that RA signaling restricts osteoblast differentiation but 

promotes subsequent bone matrix synthesis by mature osteoblasts. 

Fin amputation triggers massive RA synthesis that is indispensable for blastema formation and 

maintenance (Blum and Begemann, 2012, 2013), raising the question of how the osteoblast 

lineage deals with the massive background of RA signaling. Here, we demonstrate that two key 

steps of the osteoblast regenerative program, osteoblast dedifferentiation and subsequent 

redifferentiation, are adversely affected by RA from neighboring tissues. Moreover, we provide 

a conceptual framework for understanding how bone regeneration is achieved during fin 

regeneration. 
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Results 

Aldh1a2 and Cyp26b1 cooperate to control osteoblast activity in the uninjured fin 

The zebrafish caudal fin grows throughout life. Fin growth is achieved via the sequential, distal 

addition of new segments to each fin ray (Haas, 1962). At the same time, hemiray thickness 

increases over time by adding new bone matrix along the entire fin length, meaning that 

hemirays are thicker in older fish and at more proximal positions (Fig. 1B; supplementary 

material Fig. S2A). Thus, osteoblasts in the uninjured fin continuously synthesize basal levels of 

matrix. In larval zebrafish, RA promotes bone matrix synthesis (Laue et al., 2008; Li et al., 2010; 

Spoorendonk et al., 2008). We therefore expected a comparable role for RA signaling in 

osteoblasts in the adult fin. We detected expression of the RA synthesizing-enzyme aldh1a2 in 

proximity to hemirays (supplementary material Fig. S2B). Using aldh1a2:gfp fish (Pittlik and 

Begemann, 2012), aldh1a2-expressing cells could be identified as fibroblasts adjacent to 

osteoblasts (Fig. 1C). Osteoblasts were visualized by immunohistochemistry (IHC) for ZNS-5, an 

uncharacterized cell surface antigen specifically present on osteoblasts, irrespective of their 

differentiation status (Johnson and Weston, 1995; Knopf et al., 2011). This finding suggests that 

fin osteoblasts receive RA from neighboring fibroblasts. We have previously shown that 

intraperitoneal (IP) injection of RA efficiently enhances RA levels in the adult fin (Blum and 

Begemann, 2012). A single injection of RA resulted in enhanced expression of the bone matrix 

genes osteocalcin (osc) (also known as bglap), osteonectin (osn), collagen (col) 1a1a and 

col10a1 in the uninjured fin 10 h after injection (Fig. 1D). Conversely, breakdown of 

endogenous RA levels via overexpression of the RA-degrading enzyme cyp26a1 in 

hsp70I:cyp26a1 fish (Blum and Begemann, 2012) caused downregulation within 12 h after a 

single heat shock (Fig. 1D). Moreover, the hemiray surface was fully covered by osteoblasts 

after 10 days of RA inhibition in hsp70I:cyp26a1 fish (supplementary material Fig. S2C), 

indicating that downregulation of bone matrix genes was not due to osteoblast death. 

Together, these data show that RA signaling positively regulates bone matrix synthesis in the 

adult uninjured fin. 

In order to maintain the right balance between stiffness and flexibility of hemirays, matrix 

synthesis has to be tightly controlled. The RA-degrading enzyme Cyp26b1 attenuates osteoblast 

activity in larval zebrafish (Laue et al., 2008; Spoorendonk et al., 2008). In situ hybridization 

(ISH) on uninjured fins revealed expression of cyp26b1 in fin osteoblasts (Fig. 1E). By contrast, 

expression of the two other RA-degrading enzymes, cyp26a1 and cyp26c1, could only be 

detected in a few single cells scattered throughout the mesenchyme and epidermis 

(supplementary material Fig. S2D,E), although we cannot completely rule out expression in few 

osteoblasts. These findings suggest that osteoblasts in the uninjured fin counteract excessive 

RA through Cyp26b1 activity. We tested this idea by blocking Cyp26 activity with the R115866 

compound, a selective antagonist of Cyp26 enzymes (Hernandez et al., 2007; Stoppie et al., 
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2000), and examined expression levels of osc, osn, col1a1a and col10a1. Expression was 

upregulated 12 h after IP injection (Fig. 1D). We conclude that Aldh1a2 in fibroblasts and 

Cyp26b1 in osteoblasts cooperate to control RA levels, and thus osteoblast activity in the adult 

fin (Fig. 1F). 

 

  

 

Stump osteoblasts upregulate cyp26b1 prior to dedifferentiation 

Fin amputation has previously been shown to induce upregulation of aldh1a2 in the stump 

mesenchyme in proximity to the wound site, and the resulting increase in RA levels is 

indispensable for blastema formation (Blum and Begemann, 2012) (Fig. 2A). Of note, analyses 

of stump tissue at 24 hours post amputation (hpa) in aldh1a2:gfp fish revealed that aldh1a2 

Fig. 1. Bone matrix synthesis in the 
uninjured fin is controlled by RA 
production and degradation. (A) Overview 
of relevant structures and tissue types of a 
fin ray. (B) Mean hemiray thickness at 
different positions along the proximodistal 
axis in adult fish (red) and at an 
intermediate position in fins of different 
lengths (black) show that hemirays are 
thicker in older fish (longer fin) and at more 
proximal positions. (C) IHC for ZNS-5 and 
GFP in aldh1a2:gfp fish in the uninjured fin 
reveals aldh1a2 expression in fibroblasts 
(arrowhead) adjacent to osteoblasts 
(arrow). Asterisk indicates bone matrix. (D) 
RA and R115866 injections upregulate 
expression of bone matrix genes. 
Conversely, inhibition of RA signaling in 
hsp70I:cyp26a1 fish downregulates 
expression (qPCR analysis). (E) ISH 
demonstrates cyp26b1 expression in 
osteoblasts (arrowhead). Asterisk indicates 
bone matrix. (F) Model of bone matrix 
synthesis regulation by RA synthesis and 
degradation in the uninjured fin. Data are 
represented as mean±s.e.m. *P<0.05, 
**P<0.01, ***P<0.001. Scale bars: 10 µm in 
C; 20 µm in E. h, hours; hs, heat shock. 
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expression remains excluded from osteoblasts upon amputation (Fig. 2B). The increase in RA 

synthesis in stump fibroblasts should enhance matrix synthesis in adjacent osteoblasts. 

However, expression of osc (Knopf et al., 2011; Sousa et al., 2011), osn, col1a1a and col10a1 

(supplementary material Fig. S3A) decreases upon amputation, suggesting that enhancing RA 

levels in osteoblasts upon fin amputation are counterproductive for their dedifferentiation. We 

therefore hypothesized that stump osteoblasts have to counteract rising intracellular RA levels 

in order to switch to a preosteoblastic state. Indeed, we detected increased expression of 

cyp26b1 at 5 hpa, followed by further upregulation during the next hours (Fig. 2A). Expression 

levels of cyp26a1 and cyp26c1 were unchanged or downregulated (supplementary material 

Fig. S3B). We noticed that whole-mount ISH (WISH) is not sensitive enough to detect cyp26b1 

expression in the uninjured fin, but allows visualization of enhanced cyp26b1 expression in the 

fin stump. Upregulated expression of cyp26b1 could be detected in single osteoblasts within 

one segment length proximal to the amputation plane (Fig. 2C) as early as 12 hpa. RA signaling 

employs a number of autoregulatory feedback mechanisms in order to obtain appropriate RA 

levels. For instance, enhanced RA levels usually cause upregulation of cyp26 expression (Dobbs-

McAuliffe et al., 2004; Hu et al., 2008; Lee et al., 2012). Accordingly, we detected increased 

cyp26b1 levels in uninjured fins 10 h after RA injection and decreased levels within 12 h after a 

single heat shock in hsp70I:cyp26a1 fish (supplementary material Fig. S3C). We therefore 

examined whether upregulation of cyp26b1 expression in stump osteoblasts also occurs when 

endogenous RA is removed. Interestingly, cyp26b1 expression was upregulated at 24 hpa 

despite heat shock-induced cyp26a1 expression in hsp70I:cyp26a1 fish (supplementary material 

Fig. S3D), suggesting that an RA-independent regeneration-specific program underlies 

upregulation of cyp26b1. 

 

 

Fig. 2. Stump osteoblasts upregulate cyp26b1 expression. (A) Fin amputation induces upregulation of aldh1a2 and 
cyp26b1 expression. qPCR analysis. P<0.05 unless noted otherwise. (B) IHC for ZNS-5 and GFP in aldh1a2:gfp fish at 
24 hpa reveals aldh1a2 expression in fibroblasts (arrowhead). (C) WISH indicates upregulated cyp26b1 expression 
within one segment length proximal to the amputation plane at 18 hpa. Longitudinal section on WISH shows 
upregulated cyp26b1 expression in single osteoblasts (arrowhead). Scale bars: 20 µm in B and C (section); 50 µm in 
C WISH. Dashed lines indicate amputation planes. 
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Osteoblast dedifferentiation requires inactivation of RA by Cyp26b1 

Osteoblast dedifferentiation is accompanied by downregulation of osc and upregulation of 

runx2b, a marker of immature osteoblasts (Knopf et al., 2011; Sousa et al., 2011). We found a 

similar upregulation of runx2a (not shown). In order to determine the requirement of Cyp26b1 

activity for osteoblast dedifferentiation we injected fish with either R115866 or RA and 

examined runx2 and osc expression at 10 or 24 hpa, respectively. Treatments were started 10 h 

before amputation (first IP at −10 hpa) to ensure sufficient drug concentrations in fin 

osteoblasts at the onset of dedifferentiation. Expression of runx2b was lower and osc 

expression was higher in RA- and R115866-treated fish than in control fish (Fig. 3A). In addition, 

runx2a expression was lower in RA-treated fish (Fig. 3A). Conversely, inhibition of RA signaling 

in hsp70I:cyp26a1 fish caused enhanced runx2 and decreased osc levels (Fig. 3A). These data 

reveal that stump osteoblasts fail to adopt characteristics of an immature state if RA levels are 

too high. Upregulation of fgf20a and igf2b, two positive regulators of blastema formation and 

proliferation (Chablais and Jazwinska, 2010; Whitehead et al., 2005), was enhanced in RA-

treated fish at 10 hpa (first IP at −10 hpa) (supplementary material Fig. S4A), indicating that our 

treatment regime did not generally impair initiation of fin regeneration. Furthermore, in 

treatments starting with the first injection at 0 hpa or later, runx2 upregulation and osc 

downregulation were largely unaffected (not shown), showing that Cyp26b1 activity is required 

very early in the stump. We next tested whether stump osteoblasts are able to enter the cell 

cycle in the absence of Cyp26b1 activity or during exogenously enhanced RA levels by assaying 

for 5-ethynyl-2′-deoxyuridine (EdU) incorporation at 24 hpa. The number of EdU+/ZNS-5+ cells 

was strongly reduced in R115866- and RA-injected fish (first IP at −10 hpa) (Fig. 3B,C). We only 

rarely detected dying osteoblasts in control, RA- and R115866-treated fish (data not shown), 

demonstrating that the decrease in proliferating osteoblasts was not due to enhanced cell 

death. Thus, stump osteoblasts do not start to proliferate if RA inactivation fails. An alternative 

explanation might be that RA signaling interferes more directly with osteoblast proliferation. 

However, injection of RA at 22 hpa, after many osteoblasts probably had already 

dedifferentiated, did not result in reduced osteoblast proliferation at 30 hpa (supplementary 

material Fig. S4B).  

Among the three cyp26 genes, only cyp26b1 is significantly expressed in the fin and becomes 

upregulated in response to fin amputation, implying that R115866 mainly acts in stump 

osteoblasts. Interestingly, in both RA- and R115866-treated fish (first IP at −10 hpa), regenerate 

length was slightly shorter at 2 dpa (supplementary material Fig. S4C,D), and the number of 

proliferating fibroblasts and epidermal cells was reduced at 24 hpa (supplementary material 

Fig. S4E). Cell death was not enhanced in fibroblasts at 24 hpa, and was only weakly enhanced 

in the epidermis of R115866-treated fish but not in RA-treated fish (supplementary material 

Fig. S4F). Notably, exogenous RA increases, rather than inhibits, fibroblast proliferation at 30 
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hpa, when RA treatment starts after osteoblasts have dedifferentiated (first IP at 22 hpa) 

(supplementary material Fig. S4G). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Osteoblast dedifferentiation requires RA inactivation by Cyp26b1. RA and R115866 injections starting at 
−10 hpa block osteoblast dedifferentiation. Inhibition of RA signaling in hsp70I:cyp26a1 fish positively affects 
dedifferentiation. (A) qPCR analysis of osteoblast markers at 10 and/or 24 hpa. (B) EdU

+
/ZNS-5

+
 cells per section at 

24 hpa. (C) IHC for ZNS-5 combined with EdU labeling. Images show the stump region adjacent to the amputation 
plane. White arrow indicates EdU

+
/ZNS-5

+
 cell, yellow arrow denotes EdU

+
 fibroblast, arrowhead indicates EdU

+
 

epidermal cell. (D) IHC for ZNS-5 and GFP in osc:gfp fish demonstrates absence of preosteoblasts in the blastema 
of R115866-treated fish at 2 dpa. Arrowhead indicates GFP

+
 preosteoblast in control fish. (E) Model for Cyp26b1 

function in osteoblast dedifferentiation. Data are represented as mean±s.e.m. *P<0.05, **P<0.01, ***P<0.001. ns, 
not significant. Scale bars: 20 µm in C; 100 µm in D. Dashed lines indicate amputation planes. hs, heat shock. 
 
 
Dedifferentiating osteoblasts downregulate the mature osteoblast marker osc, and 

redifferentiated osteoblasts upregulate its expression between 5 and 6 dpa (Knopf et al., 2011). 

Owing to the persistence of GFP protein, the transgenic osc:gfp line can therefore be used to 

detect dedifferentiated osteoblasts in the early blastema (Knopf et al., 2011; Sousa et al., 2011). 
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We assayed for the presence of GFP+ preosteoblasts in the blastema of RA- and R115866-

injected osc:gfp fish (first IP at −10 hpa). Whereas a population of GFP+ cells had accumulated in 

the blastemas of control fish at 2 dpa, the majority of blastemas in RA- and R115866-treated 

fish were largely devoid (<6 cells) of GFP+ cells (Fig. 3D; data not shown). Notably, RA or 

R115866 treatment does not interfere with preosteoblast migration (Blum and Begemann, 

2015), strongly suggesting that the absence of preosteoblasts in the blastema of RA- or 

R115866-treated fish is due to dedifferentiation failure. Together, our data reveal that RA 

signaling inhibits the switch from mature osteoblasts to proliferating preosteoblasts and 

demonstrate that Cyp26b1 activity is crucially required for osteoblast dedifferentiation 

(Fig. 3E). By contrast, subsequent proliferation does not require RA inactivation. Of note, the 

early blastema of RA- and R115866-treated fish (first IP at −10 hpa) did not harbor ZNS-5+ cells 

(Fig. 3D; data not shown), showing that missing dedifferentiated osteoblast were not replaced   

by cells that had differentiated de novo to osteoblasts. 

 
 
RA signaling positively controls preosteoblast proliferation 

Preosteoblasts and other stump cells migrate towards the wound site, where they form a 

blastema within the first two days after amputation. Subsequently, a high proliferation rate in 

the distal blastema cells ensures regenerative outgrowth, whereas more proximal cells 

differentiate to rebuild the lost fin structures. Preosteoblasts form a subpopulation at proximal 

lateral blastema positions (Knopf et al., 2011; Sousa et al., 2011). aldh1a2 is not expressed in 

preosteoblasts and redifferentiated osteoblasts, but in adjacent fibroblast-derived blastema 

cells at 3 dpa (Fig. 4A,B). Intriguingly, although cyp26b1 becomes upregulated in fibroblast-

derived cells in the proximal medial blastema, we could not detect cyp26b1 expression in 

osteoblasts at 2 or 3 dpa (Fig. 4C; data not shown). This finding indicates that, in contrast to 

dedifferentiating osteoblasts, preosteoblasts have ceased to remove RA. Having shown 

previously that RA signaling positively regulates blastema proliferation (Blum and Begemann, 

2012), we next examined whether preosteoblasts also proliferate in an RA-dependent manner. 

As complete inhibition of RA signaling causes death of blastema cells (Blum and Begemann, 

2012), we chose a mild inhibition of RA signaling, as achieved by heat-shocking hsp70I:cyp26a1 

fish at 37°C instead of 38°C, to investigate the effect of decreased RA levels on osteoblast 

proliferation during regenerative outgrowth. To estimate the reduction in RA levels upon heat-

shocking fish at 37°C in comparison to heat-shocking at 38°C, we examined expression levels of 

axin2 and cyp26b1 at 3 dpa. Wnt/β-catenin signaling in the regenerating fin is positively 

regulated by RA signaling, and, accordingly, axin2 expression becomes rapidly downregulated 

upon heat shock treatment in hsp70I:cyp26a1 fish (Blum and Begemann, 2012). Similar to the 

uninjured fin, cyp26b1 is a sensitive RA target during regenerative outgrowth (N.B. and G.B., 

unpublished). Downregulation of both genes was diminished and took longer in fish that 
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received a 37°C heat shock at 3 dpa in comparison to fish that received a 38°C heat shock 

(supplementary material Fig. S5A). The number of EdU+/ZNS-5+ cells was strongly reduced in 

hsp70I:cyp26a1 fish 3 h after a single 37°C heat shock at 3 dpa (Fig. 3D). Cell death was neither 

enhanced in osteoblasts nor in other cell types (data not shown). We next tested whether RA 

signaling is already required for preosteoblast proliferation in the stump. In contrast to 

blastema cells, stump cells survive well upon RA depletion (Blum and Begemann, 2012). We 

therefore examined the number of EdU+/ZNS-5+ stump cells at 30 hpa upon a 38°C heat shock 

at 24 hpa in hsp70I:cyp26a1 fish. We found a strong reduction in proliferating stump cells in 

hsp70I:cyp26a1 fish (supplementary material Fig. S5B). Injection of RA at 3 dpa caused a strong 

increase in the number of EdU+/ZNS-5+ cells within 6 h after injection (Fig. 4D,E). As mentioned 

before, elevated RA levels between 22 and 30 hpa did not affect proliferation of stump 

osteoblasts (supplementary material Fig. S4B). However, this could be explained by the 

opposing effects of RA on dedifferentiation and proliferation. Taken together, our data 

demonstrate that the proliferation of preosteoblasts is positively controlled by RA. 

 
Fig. 4. RA signaling promotes 
osteoblast proliferation. (A) IHC for 
ZNS-5 and GFP in aldh1a2:gfp fish at 3 
dpa reveals aldh1a2 expression in 
fibroblast-derived blastema cells 
(arrowhead). (B) ISH for aldh1a2 at 3 
dpa shows that expression is strongest 
in fibroblast-derived cells in the distal 
blastema but weak expression reaches 
far proximally. Asterisk indicates distal 
leading edge of preosteoblasts. (C) ISH 
for cyp26b1 at 3 dpa demonstrates 
expression in fibroblast-derived cells of 
the proximal medial blastema. Note 
absence of expression in the distal 
blastema (arrow) and in osteoblasts. 
Asterisk indicates distal leading edge of 
preosteoblasts, arrowhead denotes 
redifferentiated osteoblasts. (D,E) 
Inhibition of RA signaling in 

hsp70I:cyp26a1 fish at 3 dpa downregulates osteoblast proliferation. RA injection causes an increase in osteoblast 
proliferation at 6 h after IP. (D) EdU

+
/ZNS-5

+
 cells per section at 3 dpa. (E) IHC for ZNS-5 combined with EdU 

labeling. Arrowhead indicates EdU
+
/ZNS-5

+
 cell. Data are represented as mean±s.e.m. ***P<0.001. Dashed lines 

indicate amputation planes. Scale bars: 20 µm in A; 100 µm in B,C,E. h, hours; hs, heat shock. 
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RA signaling prevents preosteoblast redifferentiation 

After several rounds of proliferation, preosteoblasts become slow-cycling, differentiating cells 

in more proximal parts of the regenerate and eventually mature to matrix-producing 

osteoblasts (Stewart et al., 2014). The expression patterns of aldh1a2 and cyp26b1 at 3 dpa 

imply that RA concentrations within the regenerate decrease from distally high to proximally 

low levels (Fig. 5A and Fig. 4B,C). aldh1a2 expression is high in fibroblast-derived cells in the 

distal blastema, but rapidly decreases in more proximal cells. By contrast, cyp26b1 expression 

in fibroblast-derived blastema cells extends far proximally, but is absent in more distal cells, 

indicating that proximal fibroblast-derived blastema cells probably act as a sink for extracellular 

RA. Hence, osteoblasts experience different RA concentrations along the proximodistal axis. 

Given the positive role of RA in preosteoblast proliferation, we speculated that RA might keep 

preosteoblasts in a proliferative state and prevent differentiation towards the distal tip. This 

notion is also supported by the negative effect of RA signaling on early osteoblastogenesis 

during zebrafish larval development (Li et al., 2010). To test this hypothesis, we examined 

preosteoblast differentiation upon RA injection (first IP at 3 dpa). Because preosteoblast 

differentiation is accompanied by upregulation of osx, we used gfp expression in osx:gfp fish 

(Olsp7:nlsgfp; Spoorendonk et al., 2008) as a readout. The osx-free distal domain was expanded 

proximally in RA-treated fins 6 h after injection at 3 dpa (data not shown) and more 

pronounced 24 h after injection (Fig. 5B,C), indicating that preosteoblast differentiation was 

blocked. Expression of cyp26b1 in proximal fibroblast-derived blastema cells suggests that RA 

degradation is important to lower RA levels in proximal regions, which, in turn, should allow 

preosteoblast differentiation. In fact, differentiation was inhibited at 4 dpa in R115866-injected 

fish (IP at 3 dpa) (Fig. 5C). We therefore propose that, as soon as RA levels fall below a certain 

threshold in more proximal parts, preosteoblasts reduce their proliferation rate and 

differentiate. Thus, changes in RA levels along the proximodistal blastema axis should result in a 

shift of the distal limit of differentiating preosteoblasts. To test this model, we took advantage 

of the finding that aldh1a2 expression is expanded proximally, and that the distal limit of 

cyp26b1 expression is shifted proximally in fins that have been amputated at a more proximal 

position (=proximal cut), relative to the situation in fins that have been amputated at a more 

distal position (=distal cut) (Fig. 5D-G). In such regenerates, preosteoblast differentiation would 

be expected to be shifted proximally due to enhanced RA synthesis and delayed RA 

degradation. In agreement with this view, the osx-free distal domain extended further 

proximally (Fig. 5H). 
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Fig. 5. RA signaling keeps preosteoblasts in an undifferentiated state. (A) Distal blastema cells express aldh1a2 
but not cyp26b1. Double WISH at 3 dpa. (B,C) RA and R115866 injections at 3 dpa block preosteoblast 
differentiation. (B) Live images of osx:gfp fish at 4 dpa demonstrate an expanded distal osx-free region (doubled-
headed arrow) one day after RA injection. (C) Length of the osx-free domain. (D-H) aldh1a2 expression (D,F), the 
distal cyp26b1-free domain (E,G) and the osx-free domain (H) extend further proximally in regenerates that had 
been amputated at a more proximal level. (D) WISH for aldh1a2 at 3 dpa. Arrows indicate expression boundaries. 
(E) WISH for cyp26b1. Double-headed arrows indicate length of the cyp26b1-free region. (F-H) Length of the 
expression domain or of the distal expression-free region. (I) Injection of RA at 3 dpa downregulates bmp2b and 
dkk1b expression (qPCR analysis). (J) Model for regulation of preosteoblast differentiation by RA signaling. Data are 
represented as mean±s.e.m. *P<0.05, **P<0.01, ***P<0.001. Dashed lines indicate amputation planes. Scale bars: 
100 µm. h, hours. 

 

We next examined possible mechanisms that could explain how RA signaling interferes with 

preosteoblast differentiation. Wnt/β-catenin and BMP signaling have been shown to coordinate 

preosteoblast proliferation and differentiation (Stewart et al., 2014). Wnt/β-catenin signaling 

promotes proliferation towards the distal tip of the regenerate, whereas BMP signaling 

positively regulates differentiation by activating expression of osx and of the dickkopf WNT 

signaling pathway inhibitor 1b (dkk1b). bmp2b is expressed in differentiating preosteoblasts 

and is therefore probably the ligand responsible for activation of BMP signaling during 

differentiation. Intriguingly, we found that RA treatment downregulates expression of dkk1b 
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and bmp2b within one hour after IP injection at 3 dpa (Fig. 5I). These data imply that RA 

signaling might inhibit preosteoblast differentiation by negatively interfering with BMP and 

promoting Wnt/β-catenin signaling. In summary, our findings suggest a model in which 

preosteoblast differentiation is controlled by differences in RA concentrations along the 

proximodistal axis (Fig. 5J). High RA levels in the distal part promote proliferation and prevent 

premature differentiation. Conversely, non-cell-autonomous reduction of RA levels in more 

proximal regions through Cyp26b1 result in differentiation. Thus, both the switch from a 

mature to a preosteoblastic state in the stump and, vice versa, the switch back from a 

preosteoblastic to a mature state during regenerative outgrowth require inactivation of RA by 

Cyp26b1. 

 

RA signaling is required for bone matrix regeneration and prevents its degradation 

Redifferentiated osteoblasts start to secrete bone matrix to replace the lost bone. Given the 

positive effect of RA signaling on bone matrix production in the uninjured fin, we assumed a 

similar function during regenerative outgrowth. To test this we examined transcript levels of 

bone matrix genes under altered RA signaling conditions at 4 and 8 dpa. Because increased RA-

levels prevent preosteoblasts from differentiating, we restricted our analyses to GFP+ proximal 

tissue in osx:gfp (or osx:gfp, hsp70I:cyp26a1 double transgenic) fish and excluded the GFP-free 

distal tissue to ensure similar numbers of differentiated osteoblasts. Similar to the uninjured 

fin, expression of bone matrix genes was strongly downregulated after a single heat shock in 

hsp70I:cyp26a1 fish at 4 (0 h after heat shock) or 8 dpa (6 h after heat shock) (Fig. 6A; 

supplementary material Fig. S6). By contrast, expression of bone matrix genes was largely 

unaffected after RA injection (Fig. 6A; supplementary material Fig. S6). Very similar results were 

obtained by restricting our analyses to GFP+ proximal tissue in osc:gfp (or osc:GFP, 

hsp70I:cyp26a1 double-transgenic) fish to ensure similar numbers of mature osteoblasts at 8 

dpa (data not shown). As fin regeneration requires rapid formation of hemirays to support the 

new fin tissue, these results suggest that bone matrix genes are expressed at very high levels 

during regenerative outgrowth and cannot be further upregulated by exogenous RA. We next 

examined regenerated bone matrix by Alizarin Red staining in hsp70I:cyp26a1 fish that received 

a mild heat shock treatment (37°C), starting with the first heat shock at 3 dpa. As expected for 

mild inhibition of RA signaling, regenerative outgrowth was only slightly slowed down in 

hsp70I:cyp26a1 fish at 5 dpa (data not shown). However, the calcified fraction of the 

regenerate was reduced in hsp70I:cyp26a1 fish compared with wild-type fish (Fig. 6B). Thus, RA 

signaling inhibition during regenerative outgrowth interferes with bone calcification, which 

further demonstrates that bone matrix formation depends on RA signaling. Remarkably, RA and 

R115866 treatment for 3 days (first IP at 3 dpa) resulted in regeneration of irregular-shaped 

hemirays (Fig. 6C; data not shown). This phenotype was rather unexpected because enhanced 
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RA signaling barely affects expression of bone matrix genes. Resorption of bone matrix by 

osteoclasts is an obligatory process during bone growth, remodeling and fracture healing in 

mammals (Väänänen et al., 2000). Moreover, osteoclasts have been shown to be involved in 

healing of fin ray fractures in Medaka (Takeyama et al., 2014). Thus far, osteoclasts have not 

been implicated in fin regeneration. We assayed for osteoclasts using tartrate-resistant acid 

phosphatase (TRAP) staining to analyze the presence of the osteoclast-specific TRAP. TRAP+ 

cells were absent in the uninjured fin but could be detected after fin amputation at the wound 

site and within 1-2 segment lengths proximal to the amputation plane as early as 24 hpa 

(Fig. 6D). During regenerative outgrowth TRAP+ cells were still present at the wound site. 

Additionally, many TRAP+ cells were found at the inner and outer surface of new bone matrix 

(Fig. 6D,E). Whereas osteoclasts at the wound site are probably involved in healing of bone 

fractures that are occasionally induced during amputation, the presence of osteoclasts at newly 

regenerated rays suggest that hemiray regeneration requires the participation of osteoclasts. 

RA signaling has been demonstrated to inhibit osteoclast differentiation in vitro (Conaway et 

al., 2009; Hu et al., 2010). We thus speculated that excess of bone matrix in RA- and R115866-

treated fins was caused by defects in bone resorption. Indeed, the regenerate of RA- and 

R115866-treated fish were largely devoid of TRAP+ cells at 6 dpa upon 3 days of treatment 

(Fig. 6F; data not shown). Lack of TRAP+ cells suggests that enhanced RA levels either prevent 

osteoclast differentiation or induce osteoclast death. Alternatively, treatment might simply 

interfere with TRAP expression or activity. Interestingly, RA and R115866 treatment did not 

affect TRAP+ cells at the wound site (arrowhead in Fig. 6F). Given that osteoclasts at the wound 

site were already present at 3 dpa when treatment was initiated, this result indicates that 

enhanced RA levels are likely to interfere with osteoclast differentiation. Consistently, TRAP+ 

cells were absent from the wound site at 2 dpa in fish that received the first RA injection 

directly after fin amputation (Fig. 6G). These findings suggest that RA signaling controls 

formation of new bone matrix at two levels, by ensuring matrix synthesis by osteoblasts and by 

preventing degradation by osteoclasts (Fig. 6H). 
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Fig. 6. RA signaling promotes bone matrix synthesis while inhibiting degradation. (A) qPCR analysis. Inhibition of 
RA signaling in hsp70I:cyp26a1 fish at 4 dpa causes downregulation of bone matrix genes. Conversely, RA 
injections barely affect expression. (B) Downregulation of RA signaling in hsp70I:cyp26a1 fish between 3 and 5 dpa 
results in an enlarged noncalcified (Alizarin Red

–
) distal region (double-headed arrow) at 5 dpa. (C) RA injections 

starting at 3 dpa result in regeneration of irregularly shaped hemirays at 6 dpa. Hematoxylin staining. Lower panel 
shows hemiray outlines. (D,E) TRAP staining demonstrates presence of osteoclasts (arrowheads in D) at the wound 
site, in the early blastema and at the inner (arrowhead in E) and outer surface (arrow in E) of newly formed bone 
during regenerative outgrowth. (F) RA injections starting at 3 dpa result in fewer TRAP

+
 cells in the regenerate but 

not at the wound site (arrowhead) at 6 dpa. (G) RA injections starting at 0 hpa result in absence of TRAP
+
 cells at 

the wound site and in the early blastema. (H) Model for RA signaling function in bone matrix synthesis and 
degradation. Data are represented as mean±s.e.m. *P<0.05, ***P<0.01. ns, not significant. Dashed lines indicate 
amputation planes. Scale bars: 100 µm. 
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Discussion 

The fin blastema is a heterogeneous mixture of fate-restricted progenitor cells that are exposed 

to high levels of a variety of diffusible signaling molecules. Our work reveals that the 

amputation-induced burst of RA synthesis, which is indispensable for blastema formation and 

function (Blum and Begemann, 2012), is in conflict with the osteoblast regenerative program at 

two crucial stages, the switch from a mature to a preosteoblastic state and, vice versa, the 

switch back to a mature state. Specifically, we show that, although osteoblast proliferation and 

bone matrix synthesis requires RA from neighboring fibroblasts, dedifferentiating and 

redifferentiating osteoblasts have to avoid it. These findings provide novel insights into the 

molecular mechanisms that guide the regenerative program of osteoblasts during fin 

regeneration and shed light on the significant, but so far largely overlooked, issue of adverse 

regenerative crosstalk between neighboring fin tissues. 

Mature osteoblasts in the uninjured fin continuously produce low amounts of bone matrix. 

Here, RA signaling positively regulates expression of bone matrix genes. Notably, RA levels in 

osteoblasts are determined by RA synthesis in fibroblasts and cell-autonomous RA degradation 

by Cyp26b1 (Fig. 1F). This cooperation between RA synthesis and degradation in adjacent 

tissues might help to ensure tightly controlled RA levels in osteoblasts. 

Fin amputation results in enhanced RA synthesis in stump fibroblasts. The simultaneous 

upregulation of cyp26b1 in osteoblasts counteracts increasing levels of RA and thus facilitates 

their dedifferentiation (Fig. 3E). In the absence of Cyp26b1 activity, stump osteoblasts fail to 

adopt an immature state. Interestingly, enhanced cyp26b1 expression was only detected in a 

limited number of stump osteoblasts at a given time point, which might reflect either a short-

term requirement and/or is an indication of potential asynchronous dedifferentiation of 

osteoblasts. Alternatively, only a small number of osteoblasts might dedifferentiate in order to 

establish the preosteoblast progenitor pool. It would be of interest in the future to test 

whether short-term upregulation of cyp26b1 in single stump osteoblasts is sufficient to allow 

their dedifferentiation. 

Our previous work has demonstrated that blastema formation and mesenchymal proliferation 

in the stump are positively regulated by RA signaling (Blum and Begemann, 2012). 

Unexpectedly, in this study, we found that both RA treatment and inhibition of Cyp26 activity 

slow down proliferation of fibroblasts and epidermal cells if treatment is initiated sufficiently 

early to block osteoblast dedifferentiation. Importantly, our treatment regime did not generally 

impair initiation of blastema formation, as shown by enhanced upregulation of fgf20a and igf2b 

expression. Moreover, RA treatment even increases the proliferation rate of fibroblasts when 

RA treatment starts too late to interfere with osteoblast dedifferentiation. Although RA 

treatment most likely enhances RA levels in all fin tissues, inhibition of Cyp26 activity is thought 

to primarily enhance RA levels in cells that express at least one of the three cyp26 genes. Thus, 
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the spatial and temporal expression patterns of the three cyp26 genes in the fin stump imply 

that R115866 mainly acts in stump osteoblasts. Moreover, due to the rather small number of 

osteoblasts within the stump cell population, it is unlikely that cyp26b1-expressing osteoblasts 

act as a sink for extracellular RA and lower the concentration of RA within neighboring cells. 

Interestingly, ablation of osteoblasts during regenerative outgrowth dramatically slows down 

regeneration (Singh et al., 2012), suggesting that signals from osteoblasts promote proliferation 

of other blastema cells. We therefore propose that dedifferentiated osteoblasts might have a 

positive impact on other cell types already in the stump, and argue that reduced epidermal and 

fibroblast proliferation in the stump of RA- and R115866-treated fish might be due to disturbed 

osteoblast dedifferentiation. 

Singh et al. (2012) have shown that, following ablation of osteoblasts in the uninjured fin, bone 

can regenerate normally, suggesting the presence of a ZNS-5– osteoblast progenitor population 

that have yet to be identified, or that other cell types can transdifferentiate into osteoblasts. 

Although this alternative mechanism probably does not play a role in normal fin regeneration, it 

has been debated whether impaired osteoblast dedifferentiation can be compensated by 

activation of an alternative bone regeneration program. The absence of ZNS-5+ cells in the 

blastema of RA- and R115866-treated fish indicates that missing preosteoblasts were not 

replaced. This finding shows that a putative alternative mechanism either does not become 

activated in the presence of stump osteoblasts or also requires protection from RA signaling. In 

contrast to dedifferentiating osteoblasts, cycling preosteoblasts do not express cyp26b1 and 

require RA signaling to proliferate, suggesting that dedifferentiation and subsequent 

proliferation are regulated by distinct signaling mechanisms. In agreement with this notion, Fgf 

signaling is required for preosteoblast proliferation, but not for dedifferentiation (Knopf et al., 

2011). Because aldh1a2 expression is high in stump fibroblasts, downregulation of cyp26b1 

should allow a rapid increase in RA levels in preosteoblasts and thus might be sufficient to 

ensure preosteoblast proliferation upon dedifferentiation. The transition back to a 

differentiated state during regenerative outgrowth is prevented and proliferation is promoted 

by high RA levels towards the distal tip of the blastema. Moreover, the rapid downregulation of 

bmp2 and dkk1b expression in RA-treated fish suggests that RA signaling controls preosteoblast 

differentiation through repression of Bmp signaling and promotion of Wnt/β-catenin signaling 

(Fig. 5J). Of note, differences in RA concentration along the proximodistal axis are established 

by opposing patterns of aldh1a2 and cyp26b1 expression in fibroblast-derived blastema cells. In 

contrast to the cell-autonomous function of Cyp26b1 in dedifferentiating stump osteoblasts, 

Cyp26b1 in proximal fibroblast-derived blastema cells acts non-cell-autonomously and thereby 

lowers extracellular RA that may diffuse into neighboring osteoblasts. Osteoblasts themselves 

neither produce RA nor inactivate it, indicating that RA levels in osteoblasts are determined by 

neighboring cells. In this model, inactivation of RA has a crucial function in controlling the 

proliferation rate and the position along the proximodistal axis where preosteoblasts 
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differentiate. shha, a member of the Hedgehog (Hh) family, is expressed in the basal epidermal 

layer adjacent to preosteoblasts and has been proposed to induce their differentiation (Laforest 

et al., 1998). Moreover, shha expression was reported to become downregulated upon 

immersion of fish in RA (Laforest et al., 1998), suggesting that the inhibitory effect of RA on 

preosteoblast differentiation might be at least partly due to interfering with Hh signaling. 

However, we found that, although expression of shha requires an RA-free epidermal niche 

established by Cyp26a1, inhibition of Hh signaling does not interfere with preosteoblast 

differentiation but rather blocks proliferation (Blum and Begemann, 2015). 

During regenerative outgrowth RA from fibroblast-derived blastema cells is indispensable for 

the expression of bone matrix genes. However, redifferentiated osteoblasts start to produce 

bone matrix at a position along the proximodistal axis where RA levels are already decreased, 

suggesting that low levels of RA are sufficient for matrix synthesis. New bone forms very rapidly 

during regenerative outgrowth. This requires a high rate of bone matrix secretion, raising the 

question of how the formation of thin, regularly shaped hemirays is ensured. The high number 

of osteoclasts in the regenerating fin and the striking bone phenotype in the absence of 

osteoclasts in RA- and R115866-treated fish is an indication for a thus far unnoticed important 

role of bone resorption in fin regeneration. We therefore propose that removal of excess 

matrix by osteoclasts is required to generate the final hemiray shape. The inhibitory effect of 

RA signaling on osteoclast development suggests that osteoclasts can only differentiate at 

positions along the proximodistal axis where RA levels are already low, a constituting regulatory 

mechanism that might serve to prevent premature bone resorption. 

During bone development and repair, RA inhibits osteoblast differentiation and drives 

subsequent matrix synthesis (Laue et al., 2008; Li et al., 2010; Lie and Moren, 2012; 

Spoorendonk et al., 2008), whereas in the osteoclast lineage, RA signaling has been shown to 

promote proliferation of precursors and bone matrix resorption but blocks differentiation 

(Conaway et al., 2009, 2013; Hu et al., 2010). Our findings on the function of RA signaling in the 

formation of osteoblasts and osteoclasts during fin regeneration are consistent with those 

found for bone development and remodeling. Importantly, we demonstrate that RA signaling 

orchestrates osteoblast behavior throughout all stages of fin regeneration. 
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Material and Methods 

Zebrafish husbandry and fin amputations 

Zebrafish were raised under standard conditions at 27-28°C. Experiments were performed with 

3- to 18-month-old fish. Size-matched siblings were used in all experiments. The following 

zebrafish lines were used: Konstanz wild type, hsp70l:cyp26a1kn1 (Blum and Begemann, 2012), 

aldh1a2:aldh1a2-gfpkn2 (Pittlik and Begemann, 2012), Ola.bglap:egfphu4008 (Knopf et al., 2011), 

Ola.sp7:nls-gfpzf132 (Spoorendonk et al., 2008). hsp70I:cyp26a1 fish were analyzed as 

heterozygotes; wild-type siblings served as controls. Reporter lines were analyzed as hetero- or 

homozygotes. Caudal fins were amputated along the dorsoventral axis, intersecting the median 

rays halfway for normal cuts, at ∼30% ray length for proximal cuts and at ∼70% ray length for 

distal cuts. Fish were allowed to regenerate for various lengths of time at 26-28°C. All animal 

experiments were approved by the state of Baden-Württemberg, Germany. 

Heat shock and drug treatment conditions 

Heat shocks were performed once daily by transferring fish to 33-34°C for 30 min and 

subsequently to 38°C (or 37°C) for 1 h. IP injections were performed every 12 h for experiments 

until 2 dpa, and every 24 h during regenerative outgrowth. Approximately 20 µl RA or R115866 

were injected. The following concentrations were used: 1 mM RA (all-trans RA, Sigma) in 1% 

DMSO/PBS; 0.67 mM R115866 (a gift from Janssen Pharmaceutica) in 10% DMSO/PBS. Control 

fish were injected with an equivalent concentration of DMSO/PBS. For IP injection, 

anesthetized fish were placed belly up in a slit in an agar plate, and the injection needle was 

inserted at a low angle with the tip pointing cranially close to the pelvic girdle. 1-ml tuberculin 

syringes (Omnifix, Braun) and 30-G hypodermic-needles (Sterican, Braun) were used. 

qPCR, analysis of cell proliferation and cell death, cryosectioning 

Gene expression levels were analyzed by qPCR (for primers, see supplementary material Table 

S1), cell death by TUNEL staining and cell proliferation by EdU labeling. Cryosectioning was used 

to produce longitudinal and transverse fin sections. Further information concerning these 

methods, as well as descriptions of imaging and length measurements, immunohistochemistry, 

in situ hybridization, TRAP staining, Hematoxylin staining and Alizarin Red staining can be found 

in the supplementary material methods. 

Statistics 

For quantified data, significance of differences was tested using Student's t-test. The numbers 

of specimens used for quantitative and nonquantitative experiments, and the number of 

specimens that showed the phenotype (for nonquantitative data) are given in supplementary 

material Tables S2 and S3. 

http://dev.biologists.org/content/142/17/2894?iss=17#ref-4
http://dev.biologists.org/content/142/17/2894?iss=17#ref-28
http://dev.biologists.org/content/142/17/2894?iss=17#ref-18
http://dev.biologists.org/content/142/17/2894?iss=17#ref-34
http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.120204/-/DC1
http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.120204/-/DC1
http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.120204/-/DC1
http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.120204/-/DC1
http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.120204/-/DC1


 
Chapter 3 

113 

 

Acknowledgements 

We thank S. Schulte-Merker for transgenic fish lines, Janssen Pharmaceutica for the R115866 

compound and A. Pfeifer, I. Zerenner-Fritsche, S. Leuschner and K.-H. Pöhner for fish care. 

 

Competing interests 

The authors declare no competing or financial interests. 

 

Funding 

N.B. was supported by fellowships from the University of Konstanz and the Research Training 

Group (RTG) 1331 and by a travelling fellowship from The Company of Biologists. This work was 

supported by a grant from the Deutsche Forschungsgemeinschaft [BE 1902/6-1 to G.B.]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



114  

Chapter 3 

 

References 
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Supplementary Material and Methods 

qPCR analysis  

For RNA extraction from uninjured fins, a 1 mm wide tissue stripe from the middle of the fin 

was harvested. For RNA extraction from 0-24 hpa, tissue within 1 mm proximal to the 

amputation plane was harvested. At 3, 4 and 8 dpa, tissue distal to the amputation plane was 

used. To analyze expression levels of bone matrix genes at 4 or 8 dpa, osx:gfp and osc:gfp (or 

hsp70I:cyp26a1, osx:gfp (osc:gfp) double transgenic) fish were used and the distal GFP-free 

tissue was carefully removed prior to RNA extraction by using an injection needle. Tissues from 

4-10 fins were pooled for each RNA sample. Total RNA was extracted with Trizol reagent 

(Invitrogen) or TriPure (Roche) and treated with DNase I. Equal amounts of total RNA from each 

sample were reverse transcribed with SuperScript III reverse transcriptase (Invitrogen) or 

Maxima Reverse Transcriptase (Thermo Scientific) using anchored oligo(dT) primers. 3-4 RNA 

samples were reverse transcribed per Experiment (Table S2 and S3). Quantitative real-time PCR 

(qPCR) was performed using a C1000 thermal cycler combined with a CFX96 real-time PCR 

detection system (Bio-Rad) and Maxima SYBR Green qPCR Master Mix (Thermo Scientific). 

Primers are listed in Table S1. qPCR reactions for each cDNA pool and each target gene were 

performed in triplicate. qPCR data were analyzed using the CFX Manager software (Bio-Rad). 

ef1a, tbp and actb1 were used as reference genes. Expression levels were normalized to 

expression levels of two reference genes (expression stability: Mean M <0.5) and expression 

ratios were calculated relative to control samples. Uninjured fins (= 0 hpa) were used as control 

for comparisons of expression levels between different time points. Regenerates of heat-

shocked non-transgenic siblings were used as control if expression levels were examined in 

hsp70I:cyp26a1 fish and regenerates of vehicle treated fish were used as control if expression 

levels were examined in RA- or R115866 treated fish. Reference genes were used in different 

combinations, depending on the treatment condition and regeneration stage. If normalization 

to different reference genes gave conflicting results (expression stability: Mean M ≥0.5), results 

were verified by normalization to the input RNA amount by performing RiboGreen or Qubit 

assays (Invitrogen). 

 

Imaging and measurements 

Images were captured with the Zeiss AxioVision or Zeiss ZEN software on a Zeiss Stemi 2000-C 

stereomicroscope equipped with an AxioCam ERc5s, a Leica MZ10F stereomicroscope equipped 

with an AxioCam MRc or a Zeiss Axio Imager.M2 equipped with a AxioCam MRc or a AxioCam 

MRm. For fluorescent microscopy of IHC or EdU stained sections and whole mounts, structured 

illumination microscopy were used (Zeiss ApoTome.2, Zeiss Axio Imager.M2). Zeiss ZEN and 



 
Chapter 3 

119 

 

Adobe Photoshop were used for image processing and length measurements. All length 

measurements were performed on the third dorsal and the third ventral fin ray. Measurements 

of hemiray thickness were performed on the third and fourth dorsal and the third and fourth 

ventral fin rays. Fin length was determined by measuring the length of the third ventral ray 

(peduncle to distal tip). 

 

Quantification of cell proliferation and cell death 

For quantification of cell proliferation and cell death at 24 and 30 hpa, EdU- or TUNEL-labeled 

epidermal cells and osteoblasts were counted within one segment length proximal to the 

amputation plane. Labeled stump fibroblasts were counted inside a defined area of 50 x 200 

µm adjacent to the amputation plane. For quantifications at 3 dpa, labelled cells were counted 

in the tissue distal to the amputation plane and normalized to the regenerate length. 

 

Cryosectioning 

For cryosectioning, fixed fins were decalcified in 10 mM EDTA in PBT (phosphate buffered saline 

(PBS) containing 0.1 % Tween20) and embedded in 1.5% agar, 5% sucrose in PBS. Embedded 

fins were saturated in 30% sucrose in PBS and subsequently snap-frozen in Tissue-Tek O.C.T. 

Compound (Sakura) in liquid nitrogen. Sections were cut at 16 µm.  

 

Immunohistochemistry  

For IHC, fins were fixed in 4% Paraformaldehyde (PFA) in PBS for 3 hours at room temperature 

or over night at 4°C, transferred to MeOH and stored at –20°C. Fins were rehydrated and 

cryosectioned or directly subjected to whole mount IHC. Sections or fins were washed in PBT, 

permeabilized in PBTx (PBS containing 0.3% Triton X-100) (30 min for sections and 1 hour for 

whole mounts), blocked in 2% blocking reagent (Roche) in PBT and subsequently incubated 

with primary antibodies diluted in 2% blocking reagent over night at 4°C. After several washes 

in PBT, tissue was incubated with secondary antibodies diluted in PBT for 3-4 hours at room 

temperature or over night at 4°C. Whole mounts were transferred to 70% glycerol in PBS for 

imaging. Sections were counterstained with DAPI and mounted using Mowiol containing 

DABCO. The following antibodies and dilutions were used: mouse ZNS-5 (Zebrafish 

International Resource Center) 1:1500, rabbit anti-GFP (Invitrogen, A6455) 1:500. Alexa- 

(Invitrogen) or Atto- (Sigma) labeled secondary antibodies were used. INT/BCIP (Roche) was 

used to detect AP-coupled antibodies. 
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TUNEL labeling 

TUNEL labeling was performed in combination with IHC for ZNS-5. Fins were fixed in 4% PFA in 

PBS for 3 hours at room temperature or over night at 4°C, transferred to MeOH and stored at –

20°C. Fins were rehydrated and cryosectioned. Sections were washed in PBS, permeabilized for 

30 min in PBTx and equilibrated in terminal deoxynucleotidyl transferase (TdT) buffer (200 mM 

potassium cacodylate, 25 mM Tris, 0.05% Triton X-100, 1 mM CoCl2, pH 7.2). The buffer was 

subsequently replaced with TdT buffer containing 0.5 µM fluorescein-12-dUTP, 40 µM dTTP and 

0.02 units/µl TdT (all Thermo Scientific). Slides were incubated at 37°C for 1-2 hours and 

washed in PBS. Sections were blocked in 2% Blocking Reagent in PBS and incubated with anti-

fluorescein-AP-coupled antibody (1:2000, Roche) and ZNS-5 antibody (1:1500) in 2% blocking 

reagent at 4°C over night. After several washes in PBT, TUNEL labeled cells were detected with 

NBT/BCIP. AP activity was subsequently quenched with 100 mM glycin (pH 2.2). Sections were 

washed in PBS, blocked in 2% blocking reagent and incubated with anti-mouse-AP-coupled 

antibody (1:500, Sigma). ZNS-5 labeled cells were detected with INT/BCIP (Roche). Sections 

were mounted using Mowiol. 

 

EdU labeling 

For EdU labelling, fish were IP injected with approximately 20 µl of 2.5 mg/ml EdU (Jena 

Bioscience) in PBS 1 hour (for analyses at 24 or 30 hpa) or 30 min (for analyses at 3 dpa) prior to 

fixation. Fins were fixed in 4% PFA in PBS for 3 hours at room temperature or over night at 4°C, 

transferred to MeOH and stored at –20°C. Fins were rehydrated, washed in PBT and 

permeabilized in PBTx for 30 min. Subsequently, fins were equilibrated in 100 mM Tris/HCl pH 8 

and EdU was detected using a copper-catalyzed azide-alkyne click chemistry reaction (0.6 µM 

Cy3- or Fluor488- labeled azides (Jena Bioscience), 100 mM Tris, 1 mM CuSO4, 100 mM ascorbic 

acid, pH 8) with 20 min incubation time. Labeled fins were cryosectioned. For EdU/IHC double 

staining, EdU labeling was performed on whole mounts and IHC was subsequently performed 

on sections. 

 

In situ hybridization 

Digoxigenin (DIG)- or fluorescein labeled RNA antisense probes were synthesized from cDNA 

templates: aldh1a2 (Grandel et al., 2002), cyp26a1 (Kudoh et al., 2002), cyp26b1 (Hernandez et 

al., 2007), cyp26c1 (Gu et al., 2005). WISH or ISH on sections was performed as previously 

described (Blum and Begemann, 2012). For double WISH DIG- and fluorescein-labeled probes 

were hybridized simultaneously. Fins were first incubated with anti-DIG-AP coupled antibody 

and color reaction was performed with BCIP/NBT. AP activity was quenched with 100 mM 

glycin (pH 2.2) and fluorescein was detected by using anti-fluorescein-AP coupled antibody and 

INT/BCIP as substrate.  
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TRAP staining 

For TRAP staining, fins were fixed in 4% PFA in PBS for 3 hours at room temperature or over 

night at 4°C, washed in PBT and permeabilized in PBTx for 30 min. Subsequently, fins were 

equilibrated in TRAP Puffer (0.1M NaAcetate, 0.1M acetic acid, 50mM NaTartrate) and color 

reaction was performed in TRAP buffer containing 0.1 mg/ml Naphtol AS-MX phosphate 

(Sigma) and 0.3 mg/ml Fast Red Violet LB (Sigma). Labeled fins were transferred to 70% glycerol 

in PBS for imaging or were cryosectioned. 

 

Hematoxylin staining  

Fins were fixed in 4% PFA in PBS, transferred to methanol and stored at –20°C. Fins were 

rehydrated prior to cryosectioning. Sections were stained in Mayer’s Hematoxylin Solution 

(Sigma) for 3-5 minutes, washed in water and cleared in 0.37% HCl in 70% ethanol for 5-10 

seconds. 

 

Alizarin Red staining 

For Alizarin Red staining, fins were fixed in 4% PFA in PBS, transferred to MeOH and stored at -

20°C. Fins were rehydrated, washed in PBT and stained in 0.1% Alizarin Red in 0.5% KOH 

overnight. Excess dye was removed by several washes in 0.5% KOH. Stained fins were 

transferred to 70% glycerol in 0.5% KOH for imaging. 
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Table S1. Primer sequences for qPCR experiments.  

Gene Forward primer Reverse primer 

aldh1a2  GAGAGAGACAGTGCTTACCTTGC CACAAAGAAGCAGGGGAGG 

axin2 GCAGCACAGTTGATAGCCAG GTCTTGGCTGGCACATATCC 

bactin1 TTGCTCCTTCCACCATGAAG CTTGCTTGCTGATCCACATC 

bmp2b CTGCTGACCACAAGTTTTCG CAAAGACAGCAGCAATCCC 

col10a1a GCATTCTTCTTCTCCTGGTG CCTGAACCCCAACCCCC 

col1a1a CAAAACAACGAAAACATCCC GCATTTGGTTTCGCTCTTTC 

cyp26a1 GATGGGAGCTGATAATGTG CCTGAACCTCCTCTCTGACC 

cyp26b1 GCTGGCTGCGTGTTTAGTG GCCGTCCCAGTAGATGAGTC 

cyp26c1 GCAGGAGACAAGGAGGAGG GCTTCTGCCGTCTCGTGTG 

dkk1b ATGCCAGAGACACTAAATGAACA TATGAAGGAAACCAGTTGAAAAA 

ef1a TACGCCTGGGTGTTGGACAAA TCTTCTTGATGTATCCGCTGAC 

fgf20a AAAAGCTGTCAGCCGAGTGT TGGACGTCCCATCTTTGTTG 

igf2b GCAGGTCATTCCAGTGATGC TCTGAGCAGCCTTTCTTTGC 

osc CCTGATGACTGTGTGTCTGAG CGCTTCACAAACACACCTTC 

osn GTGGAGGATGTTATTGCTGAG GGGGCAGGTCAAAGGGTC 

runx2a GATTTGTGCTCCCGCTTTAG CTGCTGGACGGCGGACTG 

runx2b GGAGTGGAGGGAGATGGAAG TAGCGAGTGGAAGAGTACAGATTG 

tbp CGGTGGATCCTGCGAATTA TGACAGGTTATGAAGCAAAACAACA 
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Table S2. Number of specimens used in quantitative and nonquantitative experiments (Figs. 1-6). Numbers for 
corresponding experiments, which are not shown in the figure, are included. For nonquantitative experiments: the 
first number indicates the number of specimens showing the phenotype, the second number the total number. 

 

 

 

 

 

 

Figure n= 

1B 
33-46 rays per position along the proximodistal axis in adult fish;  
27-39 rays per fin length class 

1D 3 cDNA samples per condition  

2A 3 cDNA samples per time point  

3A 3 cDNA samples per condition  

3B 
RA: DMSO= 15 sections (4 fins), RA= 35 sections (5 fins); 
R115866: DMSO= 35 sections (6 fins), R115866=53 sections (6 fins) 

3D 
RA: DMSO= 36/175 rays, RA= 181/237  rays;  
R115866: DMSO= 35/211 rays, RA= 122/223  rays 

4D 
wild type= 24 sections (6 fins), hsp70I:cyp26a1= 32 sections (10 fins); 
DMSO= 31 sections (8 fins), RA=29 sections (6 fins) 

5C RA: DMSO= 12 rays, RA= 12 rays; R115866: DMSO= 12 rays, R115866= 12 rays 

5F proximal= 7 rays, distal=7 rays 

5G proximal= 7 rays, distal=8 rays 

5H proximal= 13 rays, distal=12 rays 

5I 3 cDNA samples per condition  

6A 3-4 cDNA samples per condition 

6B wild type= 16 rays (8 fins), hsp70I:cyp26a1= 16 rays (8 fins); 

6C 
RA: DMSO= 0/5 fins , RA= 6/6 fins; 
R115866: DMSO= 0/6 fins, R115866= 6/6 fins 

6F 
RA: DMSO= 0/6 fins , RA= 5/6 fins; 
R115866: DMSO= 0/5 fins, R115866= 4/5 fins 

6G DMSO= 0/5 fins , RA= 6/6 fins 
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Table S3. Number of specimens used in quantitative and nonquantitative experiments (Figs. S1-4). Numbers for 
corresponding experiments, which are not shown in the figure, are included. For nonquantitative experiments: the 
first number indicates the number of specimens showing the phenotype, the second number the total number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure n= 

S2C wild type=  5/5 fins, hsp70I:cyp26a1= 5/5 fins 

S3A 3 cDNA samples per time point  

S3B 3 cDNA samples per time point  

S3C 3 cDNA samples per condition 

S3D 3 cDNA samples per condition 

S4A  3 cDNA samples per condition 

S4B DMSO= 25 sections (5 fins), RA= 25 sections (4 fins) 

S4D 
RA: DMSO= 30 rays, RA= 35 rays; 
R115866: DMSO= 24 rays, R115866= 26 rays 

S4E 
RA: DMSO= 15 sections (4 fins), RA= 35 sections (5 fins); 
R115866: DMSO= 35 sections (6 fins), R115866=53 sections (6 fins) 

S4F 
RA: DMSO= 16 sections (5 fins), RA= 25 sections (6 fins); 
R115866: DMSO= 27 sections (7 fins), R115866=30 sections (7 fins) 

S4G DMSO= 25 sections (5 fins), RA= 25 sections (4 fins) 

S5A 3 cDNA samples per condition 

S5B wild type= 17 sections (6 fins), hsp70I:cyp26a1= 17 sections (6 fins) 

S6 3 cDNA samples per condition 
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Fig. S1.  Overview of osteoblast 
differentiation states during fin 
regeneration.  Wound epidermis formation, 
which overlaps with blastema formation, is 
not shown. 
 

 

 

 

 

 

 

 

 

 

 

Fig. S2. Hemiray thickness 
increases during fin growth; 
RA signaling is not required 
for osteoblast survival.  (A) 
Sections of uninjured fins of 
different fin lengths reveal 
correlation between fin 
length and hemiray 
thickness. Fin lengths: 8, 4.5 
and 2.5 mm. Yellow bars: 
Hemiray thickness. (B) ISH 
demonstrates expression of 
aldh1a2 in proximity to 
hemirays (arrowhead). (C) 
Inhibition of RA signaling 
does not interfere with 
survival of mature 
osteoblasts. IHC for ZNS-5 
demonstrates a similar 
number of osteoblasts in wild 
type and hsp70I:cyp26a1 fish 
upon 10 days of heat-shock 
treatment. (D and E) ISH 
demonstrates expression of 
cyp26a1 (D) and cyp26c1 (E) 
in single epidermal (arrow) 
and mesenchymal 

(arrowhead) cells in uninjured fins. Scale bars: 20 µm in A, C; 50 µm in B, D and E. hs, heat-shock.  
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Fig. S3. Stump osteoblasts downregulate bone matrix genes; upregulation of cyp26b1 does not require RA 
signaling. (A) Fin amputation causes downregulation of bone matrix genes. qPCR analysis at 0 and 24 hpa. (B) 
Expression of cyp26a1 and cyp26c1 is unchanged or temporarily downregulated upon fin amputation. qPCR 
analysis at different time points after amputation. All not significant unless noted otherwise. (C) RA injection 
upregulates expression of cyp26b1 in uninjured fins. Inhibition of RA signaling in hsp70I:cyp26a1 fish 
downregulates expression. qPCR analysis. (D) Inhibition of RA signaling in hsp70I:cyp26a1 fish does not prevent 
cyp26b1 upregulation upon fin amputation. qPCR analysis at 24 hpa. Data are represented as mean±s.e.m. *p < 
0.05, **p < 0.01, ***p < 0.001. ns, not significant. h, hours. hs, heat-shock.  



 
Chapter 3 

127 

 

 
 

 



128  

Chapter 3 

 
Fig. S4. Stump osteoblasts require Cyp26b1 activity for dedifferentiation but not for subsequent proliferation. 
(A) RA injections starting at -10 hpa do not prevent upregulation of fgf20a and igf2b expression in the fin stump. 
qPCR analysis at 10 hpa. (B) Proliferation of stump osteoblasts is unaffected upon injection of RA at 22 hpa. 
EdU

+
/ZNS-5

+
 cells per section at 30 hpa. (C-F) Both RA and R115866 injections starting at -10 hpa slow down 

regeneration (C and D) and negatively impact proliferation of fibroblasts and epidermal cells (E), but do not 
increase cell death (F). (C) Fixed regenerates of RA-injected and control fish at 2 dpa. (D) Regenerate length of RA- 
and R115866-injected fish. (E and F) EdU

+
 (E) or TUNEL

+
 (F) cells per section at 24 hpa. (G) RA injection at 22 hpa 

promotes proliferation of fibroblasts. EdU
+
 cells per section at 30 hpa. Data are represented as mean±s.e.m. *p < 

0.05, ***p < 0.001. ns, not significant. Dashed lines indicate amputation plane.  

 

 
 

Fig. S5. Osteoblast 
proliferation in the stump 
requires RA signaling. (A) 
Comparison of axin2 and 
cyp26b1 downregulation 
during regenerative outgrowth 
between hsp70I:cyp26a1 fish 
that received a heat-shock at 
37°C and hsp70I:cyp26a1 fish 
that received a 38°C heat-
shock. qPCR analysis at 3 dpa. 
(B) Inhibition of RA signaling in 
hsp70I:cyp26a1 fish causes 
downregulation of osteoblast 
proliferation in the stump. 
EdU

+
/ZNS-5

+
 cells per section 

at 30 hpa. Data are represented as mean±s.e.m. **p < 0.01,  ***p < 0.001. hs, heat-shock. 
 

 

 

 

 

Fig. S6. Expression of bone matrix genes at 8 dpa 
requires RA signaling. Inhibition of RA signaling in 
hsp70I:cyp26a1 fish at 8 dpa causes downregulation of 
osc, osn, col1a1a and col10a1a expression. Conversely 
expression levels are unchanged in RA injected fish. 
qPCR analysis. Data are represented as mean±s.e.m.  *p 
< 0.05, **p < 0.01. ns, not significant.  
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Abstract 

The zebrafish caudal fin consists of repeated units of bony rays separated by soft interray 

tissue, an organization that must be faithfully re-established during fin regeneration. How and 

why regenerating rays respect ray-interray boundaries, thus extending only the existing bone, 

has remained unresolved. Here, we demonstrate that a retinoic acid (RA)-degrading niche is 

established by Cyp26a1 in the proximal basal epidermal layer that orchestrates ray-interray 

organization by spatially restricting osteoblasts. Disruption of this niche causes preosteoblasts 

to ignore ray-interray boundaries and to invade neighboring interrays where they form ectopic 

bone. Concomitantly, non-osteoblastic blastema cells and regenerating blood vessels spread 

into the interrays, resulting in overall disruption of ray-interray organization and irreversible 

inhibition of fin regeneration. The cyp26a1-expressing niche plays another important role 

during subsequent regenerative outgrowth, where it facilitates the Shha-promoted 

proliferation of osteoblasts. Finally, we show that the previously observed distal shift of ray 

bifurcations in regenerating fins upon RA treatment or amputation close to the bifurcation can 

be explained by inappropriate preosteoblast alignment and does not necessarily require 

putative changes in proximodistal information. Our findings uncover a mechanism regulating 

preosteoblast alignment and maintenance of ray-interray boundaries during fin regeneration. 
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Introduction 

Zebrafish regenerate amputated fins by establishing lineage-restricted blastema cells 

(Gemberling et al., 2013; Tanaka and Reddien, 2011). The zebrafish caudal fin possesses 16-18 

fin rays, each consisting of two segmented and opposing hemirays of acellular bone that 

surround a core of fibroblasts, osteoblasts, pigment cells, arterial blood vessels and nerves 

(Fig. 1A) (Akimenko et al., 2003). Fin rays are separated by boneless interray tissue, composed 

of fibroblasts, venous blood vessels, pigment cells and nerves. The principles that compel 

regenerating fin rays to respect ray-interray boundaries, therefore confining regenerating bone 

to extend the existing rays, are still unknown. Upon fin amputation, osteoblasts that cover the 

hemiray surfaces dedifferentiate into proliferating preosteoblasts and migrate into the nascent 

blastema, where they align at proximal lateral positions (Knopf et al., 2011; Sousa et al., 2011; 

Stewart and Stankunas, 2012). Thus, preosteoblasts form a layer between the basal epidermal 

layer and fibroblast-derived blastema cells. The distal blastema remains devoid of 

preosteoblasts. During subsequent regenerative outgrowth, proliferating preosteoblasts at the 

distal leading edge become differentiating osteoblasts in more proximal parts (Stewart et al., 

2014). Notably, neither osteoblasts nor non-osteoblastic blastema cells mix with adjacent 

interray cells (Stewart and Stankunas, 2012). Thus, the regenerating fin consists of repeating 

blastema units dedicated to each fin ray that are separated by regenerating interrays (Fig. 1A). 
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Results and Discussion 

cyp26a1-expressing epidermal niches control preosteoblast alignment and ray-interray 

organization 

During fin regeneration, fin rays respect ray-interray boundaries. An interesting exception 

occurs after amputation close to a bifurcation site (short cut, Fig. 1B). In such regenerates, 

sister rays ignore ray-interray boundaries and fuse (Fig. 1C) (Laforest et al., 1998), whereby the 

probability for ray fusion increases as the distance between them decreases (Fig. 1D). Using the 

osc:gfp line, which allows detection of preosteoblasts in the early blastema (Knopf et al., 2011; 

Sousa et al., 2011), we found ectopic preosteoblasts in the interray separating the two sister 

rays at 2 dpa (Fig. 1E). This finding reveals that sister ray fusion is due to preosteoblasts 

spreading into the interray. We were interested in the mechanisms that cause preosteoblasts 

to respect ray-interray boundaries. shha is expressed within the basal epidermal layer adjacent 

to pre- and differentiating osteoblasts (supplementary material Fig. S1) (Laforest et al., 1998; 

Lee et al., 2009; Quint et al., 2002; Zhang et al., 2012). We found a similar expression pattern 

for the RA-degrading enzyme cyp26a1 (Fig. 1F,G). By contrast, the RA-synthesizing enzyme 

aldh1a2 is expressed in fibroblast-derived blastema cells (Fig. 1G) (Blum and Begemann, 2012). 

Although proximal fibroblast-derived blastema cells express cyp26b1 (Blum and Begemann, 

2015), it is unlikely that RA diffusion into adjacent epidermal cells is efficiently prevented. We 

thus suspected that cyp26a1-expressing cells provide niches of low RA levels that might 

facilitate expression of RA-sensitive genes.  

It has been shown that immersion of fish in RA reduces shha expression (Laforest et al., 1998). 

However, RA administration via immersion induces epidermal cell death (Ferretti and Géraudie, 

1995; Géraudie and Ferretti, 1997); therefore, it has remained unclear whether this was a 

specific effect. We used intraperitoneal (IP) injection of RA, which efficiently enhances RA levels 

in the adult fin without causing cell death (Blum and Begemann, 2012), and found decreased 

expression of shha and of the Hh receptor and target ptch2 6 h after injection at 4 dpa (Fig. 1H). 

Injection of R115866, a selective antagonist of Cyp26 enzymes (Hernandez et al., 2007; Stoppie 

et al., 2000), also caused downregulation of shha and ptch2 (Fig. 1H,I), indicating that shha 

expression requires RA degradation. Accordingly, overexpression of cyp26a1 in hsp70I:cyp26a1 

fish (Blum and Begemann, 2012) at 4 dpa resulted in enhanced and laterally extended shha 

expression within the basal epidermal layer directly at the end of a single heat shock (Fig. 1J,K). 

We did not observe shha expression in interrays. We propose that this was due to the 

requirement for Fgfs (and putative other blastema-derived signals) for shha expression (Lee et 

al., 2009). 
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Fig. 1. shha expression is controlled by cyp26a1-expressing epidermal niches. Lateral expansion of the cyp26a1-
expressing niches and misguidance of preosteoblasts precede fusion of sister rays. (A) Overview of a regenerating 
fin. (B) Schematized representation of the amputation levels. (C-E,L) Amputations in proximity to bifurcations 
cause fusion of cyp26a1 expression domains (arrowhead in L), followed by spreading of preosteoblasts into the 
interray separating the two sister rays (arrowhead in E) and fusion of sister rays (arrow in C). (C) Alizarin Red 
staining at 9 dpa. Arrowheads indicate branching sites. (D) Distance range between sister rays for separated and 
fused rays. (E) IHC for ZNS-5 and GFP in osc:gfp fish at 2.5 dpa. (F,G) WISH and ISH on sections for cyp26a1 reveals 
expression in the proximal basal epidermal layer (arrowhead) adjacent to preosteoblasts (asterisks) at 2 and 3 dpa. 
(G) aldh1a2 is expressed in fibroblast-derived blastema cells, but not in preosteoblasts adjacent to cyp26a1-
expressing cells. (H,I) RA and R115866 injection downregulates shha and ptch2. Transcript levels 6 or 8 hours after 
injection at 4 dpa measured by qPCR (H); WISH for shha 12 hours after R115866 injection at 4 dpa (I). (J,K) 
Overexpression of cyp26a1 in hsp70I:cyp26a1 fish at 4 dpa causes upregulation of shha expression and lateral 
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expansion of the expression domains. Arrows mark the lateral expression limits. Of note, shha in wild-type controls 
is already expressed in subdomains due to the upcoming bifurcation event. (L) WISH for cyp26a1 at 1.5 dpa. 
Double-headed arrows in E and L: distance between sister rays. Asterisk marks the gap between the two 
subdomains. Data are represented as mean±s.e.m. *P<0.05, **P<0.01, ***P<0.001. Dashed lines indicate 
amputation plane. Scale bars: 100 μm. h, hours; hs, heat shock. 

 

 

Short-cut amputations resulted in shared cyp26a1 expression domains between sister rays at 

1.5 dpa (Fig. 1L), indicating that fusion of the RA-degrading niches precedes spreading of 

preosteoblasts into interrays. To examine how preosteoblasts behave if efficient lowering of RA 

levels in the cyp26a1-niches fails, we injected fish with RA or R115866, starting with the first IP 

directly after amputation (normal cut). We observed spreading of preosteoblasts into interrays 

in RA- and R115866-injected osc:gfp fish at 2.5 dpa (Fig. 2A; data not shown), indicating that 

preosteoblasts failed to align at proximolateral parts of the blastema and disregarded ray-

interray boundaries. Of note, formation of a distinct basal epidermal layer was not inhibited 

(supplementary material Fig. S2A). As R115866 treatment also reduced Cyp26b1 activity in 

fibroblast-derived blastema cells, we cannot exclude that misguidance of preosteoblasts in 

R115866- or RA-treated fish was at least partially due to enhanced RA levels in the 

mesenchyme. However, the expression pattern of cyp26a1 strongly supports a model in which 

alignment, and thereby spatial restriction of preosteoblasts, is controlled by signals from 

cyp26a1-expressing epidermal cells. 

Interestingly, treatment with RA or R115866 also caused expansion of the blastema marker 

msxb (Akimenko et al., 1995) into interrays (Fig. 2B; supplementary material Fig. S2B). 5-

ethynyl-2′-deoxyuridine (EdU) labeling further suggested that these were cycling blastema cells 

(Fig. 2C). We did not observe an enlarged preosteoblast or msxb+ cell population in RA- or 

R115866-treated fish (Fig. 2A,B; supplementary material Fig. S2B), thus making it unlikely that 

spreading into interrays was simply due to increased cell numbers. 

Blood vessels regenerate into the blastema accompanied by anastomosis between the injured 

arteries and veins of the same ray (Huang et al., 2003). Intriguingly, wounded arteries and veins 

had formed connections with vessels of neighboring rays in RA- and R115866-treated fli:gfp fish 

(Lawson and Weinstein, 2002) at 2.5 dpa (Fig. 2D; data not shown). Together, these data show 

that also non-osteoblastic cell types ignore ray-interray boundaries if efficient RA degradation 

in the proximal basal epidermal layer fails. 

Expansion of msxb expression into interrays was also observed in regenerates that lacked 

preosteoblasts, but showed expression of cyp26a1 (supplementary material Fig. S3). This was 

achieved by treating fish with the Hh inhibitor cyclopamine from 24 hpa onwards, a treatment 

condition that is expected to inhibit preosteoblast proliferation in the stump. We thus conclude 

that, rather than signals from cyp26a1-expressing cells, aligning preosteoblasts themselves 

provide spatial orientation for non-osteoblastic blastema cells. 
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To test how disrespect of ray-interray boundaries by blastema cells affects the overall 

organization of the regenerating fin, we gave the last RA or R115866 injection at 1.5 dpa and 

examined the long-term consequences for regeneration. Of note, owing to autoregulatory 

feedback mechanisms of RA signaling, cyp26a1 expression became upregulated in the entire 

regenerate during RA or R115866 treatment (data not shown). This upregulation can only 

counterbalance small fluctuations in RA levels and can therefore be neglected during the 

treatment period. However, ectopic expression persisted for some days after termination of 

treatment (supplementary material Fig. S4A), and was therefore expected to allow for shha 

expression in the entire regenerate. Consistently, we detected shha expression in both rays and 

interrays in R115866-treated shh:gfp fish (Ertzer et al., 2007) 2 days after treatment was 

stopped at 4 dpa (supplementary data Fig. S4B). As heat shock-induced overexpression of 

cyp26a1 at 4 dpa is insufficient to induce shha expression in interrays (Fig. 1J,K), this result 

suggests that shha expression in interrays in R115866-treated fish was due to ectopic blastema 

cells in the interray region. Thus, this finding supports a model in which shha expression is 

spatially confined by RA-degrading epidermal cells and signals from underlying blastema cells. 

In fins of R115866-treated fish, regeneration was subsequently irreversibly blocked and ectopic 

bone had formed in interrays at 11 dpa (Fig. 2E). However, bone matrix did not seal the wound 

(supplementary material Fig. S5), indicating that inhibition of regeneration was not due to a 

mechanical block but rather due to mispatterning of the early regenerate. In RA-treated fins, 

neighboring rays were occasionally connected by bony bridges at the amputation site (Fig. 2F), 

but otherwise, regeneration proceeded normally. This weaker phenotype was probably due to 

rapid clearance of excess RA after treatment had stopped. When fins were amputated within 

the third segment distal to the first branching point (long cut), RA treatment caused fusions of 

sister rays (supplementary material Fig. S6A). This is consistent with results obtained previously 

by RA treatment via immersion (Géraudie and Ferretti, 1997; Géraudie et al., 1995; White et al., 

1994). We next determined the distance range at which formation of ectopic bone occurs, and 

found a much greater range in RA-treated fish (supplementary material Fig. S6B). Fusion of 

sister rays had sometimes been interpreted as a proximalization of the regenerate (White et al., 

1994). However, our data show that sister rays fuse if preosteoblasts spread into interrays, 

which can be caused either by insufficient lowering of RA levels in the proximal basal epidermal 

layer or by induction of two RA-degrading domains in close proximity. Thus, our findings 

provide a more parsimonious explanation for sister ray fusion that is not based on putative 

changes in proximodistal information. 
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Fig. 2. Preosteoblast alignment and maintenance of the ray-interray organization requires RA-degrading 
epidermal niches. (A) IHC for GFP in osc:gfp fish reveals ectopic GFP

+
 preosteoblasts in interrays in RA-treated fish 

at 2.5 dpa. Arrowhead indicates preosteoblast in interray tissue, arrow indicates proximally migrating 
preosteoblast in interray tissue. (B,C) WISH for msxb (B) and EdU labeling (C) at 2.5 dpa demonstrate expansion of 
blastema cells into interrays in RA-treated fish. Arrowheads indicate ectopic blastema cells. (D) fli:gfp fish show 
misconnected blood vessels (arrowhead) in RA-treated fish at 2.5 dpa. (E,F) RA and R115866 treatment during 
blastema formation result in formation of ectopic bone at the wound site and in R115866-treated fish in an 
irreversible regeneration block. Arrowheads indicate ectopic bone, dashed lines indicate amputation plane. Scale 
bars: 100 µm. 

 

 

Cyp26a1 activity facilitates osteoblast proliferation through shha expression 

Proliferation of preosteoblasts has been suggested to be controlled by Shha (Laforest et al., 

1998; Lee et al., 2009; Quint et al., 2002; Zhang et al., 2012). We found reduced osteoblast 

proliferation within 12 h of cyclopamine treatment (Fig. 3A). Osteoblast differentiation was 

unaffected (supplementary data Fig. S7). Moreover, we did not detect TUNEL+ osteoblasts in 

control or cyclopamine-treated fish (data not shown). Hence, even though RA signaling 

promotes osteoblast proliferation (Blum and Begemann, 2015), prolonged experimental RA 

exposure should cause downregulation of shha and consequently lead to a reduction of 

osteoblast proliferation. Indeed, osteoblast proliferation was reduced 12 h after RA injection at 

3 dpa (Fig. 3B). Neither osteoblasts nor other cells undergo cell death after RA treatment via IP 
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injections (Blum and Begemann, 2012). Concomitant activation of Hh signaling, using the 

Smoothened agonist SAG, rescued osteoblast proliferation (Fig. 3C), thus confirming that 

decreased proliferation upon RA treatment was due to impaired Hh signaling. Together, these 

findings indicate that Shha from cyp26a1-expressing epidermal cells promotes proliferation of 

adjacent osteoblasts. Interestingly, cyclopamine treatment has been reported to block 

proliferation of fibroblast-derived blastema cells (Lee et al., 2009), for which ptch expression 

has not been demonstrated. Accordingly, prolonged RA treatment downregulated proliferation 

of fibroblast-derived blastema cells, and concomitant SAG treatment could rescue this effect 

(supplementary material Fig. S8). Although we cannot exclude a direct effect, Hh signaling 

might indirectly promote proliferation of other cell types via osteoblasts.  

Besides a requirement for shha expression, Fgf signaling has been shown to exclude shha from 

distal regions (Lee et al., 2009), suggesting that Fgf signaling restricts shha to the proximal basal 

epidermal layer by repressing cyp26a1. We manipulated Fgf signaling at 3 dpa by either 

overexpressing a dominant negative Fgfr1 (hsp70I:dn-fgfr1; Lee et al., 2005) or a constitutively 

active Ras (hsp70I:v-ras; Lee et al., 2009) and quantified cyp26a1 expression. cyp26a1 was 

downregulated in hsp70I:v-ras fish 2 h after a single heat shock and upregulated in hsp70I:dn-

fgfr1 fish at the end of a single heat shock (Fig. 3D), demonstrating that Fgf signaling inhibits 

cyp26a1 expression. Thus, proximal expansion of Fgf signaling should result in proximal 

regression of cyp26a1 expression. We took advantage of the finding that Fgf activity expands 

more proximally in fins that had been amputated at a more proximal position and retracts 

distally as regeneration proceeds (Lee et al., 2005, 2009). We found that amputation at a 

proximal position results in a proximal shift of the cyp26a1 expression domain (Fig. 3F,G). In 

return, cyp26a1 expression shifted distally during the course of regeneration (Fig. 3E). Notably, 

also the distal limit of aligned preosteoblasts was always adjacent to the distal limit of cyp26a1 

expression (Fig. 3E-H), suggesting that cyp26a1-expressing cells spatially confine preosteoblasts 

also along the proximodistal axis. 
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Fig. 3. Shha-promoted 
osteoblast proliferation 
requires cyp26a1 expression 
that is restricted to proximal 
regions by Fgf activity. (A,B) 
Cyclopamine (A) or 
prolonged RA (B) treatment 
downregulates osteoblast 
proliferation. EdU

+
/ZNS-5

+
 

cells per section at 3.5 dpa. 
(C) Inhibition of osteoblast 
proliferation 12 h after RA 
injection can be rescued by 
concomitant SAG treatment. 
EdU

+
/ZNS-5

+
 cells per section 

at 3.5 dpa. (D) Inhibition of 
Fgf signaling in hsp70I:dn-
fgfr1 fish results in 
upregulation of cyp26a1 
expression. Conversely, 
activation of Fgf signaling in 
hsp70I:v-ras fish results in 
the downregulation of 
cyp26a1. Transcript levels at 
3 dpa measured by qPCR. (E-
H) ZNS-5- and cyp26a1-free 
distal domains (double-
headed arrows) extend 
further proximally in 
regenerates that had been 
amputated at a more 
proximal level at 3 dpa (F-H), 

and retracts distally as regeneration proceeds (E). (G) WISH for cyp26a1. (H) IHC for ZNS-5. (E,F) Length of the 
cyp26a1- or ZNS-5-free distal domain. Data are represented as mean±s.e.m. *P<0.05, **P<0.01, ***P<0.001. ns, 
not significant; hs, heat shock. Scale bars: 100 μm. 
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Conclusions 

During fin regeneration the ray-interray organization has to be faithfully re-established in order 

to rebuild an exact copy of the lost fin parts and to ensure proper function of the regenerated 

fin. Here, we show that disrespect of the ray-interray boundaries by preosteoblasts and other 

blastema cells in the nascent blastema has adverse consequences for subsequent fin patterning 

and may disrupt the whole regeneration process. Our findings support a model in which signals 

from RA-degrading niches established by Cyp26a1 in the basal epidermal layer ensure the 

appropriate initial alignment of preosteoblasts in the nascent blastema (Fig. 4) and compel 

blastema cells to respect ray-interray boundaries. Furthermore, during regenerative outgrowth, 

Cyp26a1 activity remains important to facilitate Shha-promoted proliferation in adjacent 

preosteoblasts (Fig. 4).  

 

 

Fig. 4. Model for Cyp26a1 functions 

during fin regeneration. Schematic 

summary of Cyp26a1-mediated 

preosteoblast alignment and 

proliferation. 
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Material and Methods  

Zebrafish husbandry, fin amputations, heat shock and drug treatment conditions 

Zebrafish were raised under standard conditions at 27-28°C. Caudal fins of 3- to 18-month-old 

fish were amputated along the dorsoventral axis, intersecting the median rays halfway for 

normal cuts, at ∼30% ray length for proximal cuts, at ∼70% for distal cuts, within 1-2 segments 

distal to the first branching point for short cuts and within the third segment away for long cuts. 

Heat shocks were performed at 38°C for 1 h. Approximately 20 µl RA (all-trans RA, Sigma) or 

R115866 (Janssen Pharmaceutica) were intraperitoneally injected into size-matched siblings 

every 12 h. RA: 1 mM in 1% DMSO/PBS. R115866: 0.67 mM 10% DMSO/PBS. For cyclopamine 

treatment, fish were incubated in 5 μM cyclopamine (Sigma), 0.1% EtOH, 0.1% DMSO in E3-

medium (HEPES-buffered at pH 7.4). Cyclopamine was exchanged daily. SAG (Calbiochem) 

treatment was performed using 5 μM SAG in E3-medium. SAG stock solution was prepared in 

water. Control fish were always treated with an equivalent concentration of the drug solvent. 

All animal experiments were approved by the state of Baden-Württemberg, Germany. 

Osteoblast differentiation, qPCR, TUNEL staining, EdU labeling and cryosectioning 

Osteoblast differentiation was examined by measuring the GFP-free distal region in osx:gfp fish 

(Olsp7:nlsgfp; Spoorendonk et al., 2008). Gene expression levels were analyzed by qPCR (for 

primers see supplementary material Table S1), cell death by TUNEL staining and cell 

proliferation by EdU labeling. Cryosectioning was used to produce longitudinal and transverse 

fin sections. Further information concerning these methods, as well as descriptions of length 

measurements and cell number quantifications, imaging, immunohistochemistry, in situ 

hybridization and Alizarin Red staining can be found in the supplementary material methods. 

Statistics 

Student's t-test was used to test significance of differences. The numbers of specimens used 

are given in supplementary material Table S2. 
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Supplementary material 

 

Supplementary Material and Methods 

 

Zebrafish lines 

Konstanz wild type, Ola.bglap:egfphu4008 (Knopf et al., 2011), Ola.sp7:nls-gfpzf132 (Spoorendonk 

et al., 2008), hsp70I:dnfgfr1-egfppd1 (Lee et al., 2005), hsp70I:v-raspd9 (Lee et al., 2009), 

2.2shh:gfp:ABC#15sb15 (Ertzer et al., 2007) and fli1a:egfpy1 (Lawson and Weinstein, 2002) fish 

were used. Heat-shock lines were analyzed as heterozygotes; wild type siblings served as 

controls. 

 

Examination of osteoblast differentiation 

Because osteoblast differentiation is accompanied by upregulation of osx, we used gfp 

expression in osx:gfp fish (Ola.sp7:nlsgfp) as marker for differentiated osteoblasts and 

determined the length of the osx-free distal region to detect putative effects on osteoblast 

differentiation. 

 

Length measurements and quantification of cell numbers 

Length measurements were performed on the third dorsal and/or the third ventral fin ray. EdU- 

or TUNEL-labeled cells were counted in the tissue distal to the amputation plane in longitudinal 

sections. The distance between (sister) rays were measured at the amputation site.  

 

qPCR analysis  

Tissue distal to the amputation plane was used for RNA extraction. Tissues from 4-10 fish were 

pooled for each RNA sample. Trizol reagent (Invitrogen) or TriPure (Roche) was used for RNA 

extraction. RNA was treated with DNase I and equal amounts of total RNA from each sample 

were reverse transcribed with SuperScript III reverse transcriptase (Invitrogen) or Maxima 

Reverse Transcriptase (Thermo Scientific) using anchored oligo(dT) primers. A C1000 thermal 

cycler combined with a CFX96 real-time PCR detection system (Bio-Rad) was used for 

quantitative real-time PCR (qPCR). PCR reactions were performed by using the Maxima SYBR 

Green qPCR Master Mix (Thermo Scientific). qPCR reactions for each cDNA pool and each target 

gene were performed in triplicates. Data were analyzed with the CFX Manager software (Bio-

Rad). ef1a, tbp and actb1 expression levels were used for normalization. Expression levels were 

normalized to expression levels of two reference genes (expression stability: Mean M <0.5) and 

expression ratios were calculated relative to control samples. Regenerates of heat-shocked 



146  

Chapter 4 

 

non-transgenic siblings were used as control if expression levels were examined in hsp70I:dn-

fgfr1 or hsp70I:v-ras fish and regenerates of vehicle treated fish were used as control if 

expression levels were examined in RA- or R115866 treated fish. Reference genes were used in 

different combinations, depending on the treatment condition. If normalization to different 

reference genes gave conflicting results (expression stability: Mean M ≥0.5), results were 

verified by normalization to the input RNA amount by performing RiboGreen or Qubit assays 

(Invitrogen). Primers are listed in Table S1. 

 

Imaging  

Images were captured with the Zeiss AxioVision or Zeiss ZEN software on a Zeiss Stemi 2000-C 

stereomicroscope equipped with a AxioCam ERc5s, a Leica MZ10F stereomicroscope equipped 

with a AxioCam MRc or a Zeiss Axio Imager.M2 equipped with a AxioCam MRc or a AxioCam 

MRm. For fluorescent microscopy of IHC or EdU stained fins structured illumination microscopy 

was used (Zeiss ApoTome.2, Zeiss Axio Imager.M2). Zeiss ZEN and Adobe Photoshop were used 

for image processing and length measurements.  

 

Cryosectioning 

Fixed (and stained) fins were decalcified in 10 mM EDTA in PBT (PBS containing 0.1% Tween20), 

embedded in 1.5% agar, 5% sucrose in PBS and soaked in 30% sucrose in PBS. Embedded fins 

were snap-frozen in Tissue-Tek O.C.T. Compound (Sakura) in liquid nitrogen and sections were 

cut at 16 µm.  

 

Immunohistochemistry  

For IHC, fins were fixed in 4% Paraformaldehyde (PFA) in PBS and stored in MeOH at –20°C. IHC 

was performed on cryosections or whole mounts. Sections or fins were permeabilized in PBTx 

(PBS containing 0.3% Triton X-100) (30 min for sections and 1 hour for whole mounts), blocked 

in 2% blocking reagent (Roche) in PBT and subsequently incubated with primary antibodies over 

night at 4°C. Tissue was washed and incubated with secondary antibodies for 3-4 hours at room 

temperature or over night at 4°C. Whole mounts were transferred to 70% glycerol in PBS for 

imaging. Sections were counterstained with DAPI and mounted using Mowiol containing 

DABCO. The following antibodies and dilutions were used: mouse ZNS-5 (an uncharacterized 

cell surface antigen that is specifically present on osteoblasts irrespective of their 

differentiation status) (Zebrafish International Resource Center) 1:1500, rabbit anti-GFP 

(Invitrogen, A6455) 1:500. Alexa Fluor®- (Invitrogen), Atto- (Sigma) or alkaline phosphatase (AP) 

- (Sigma) conjugated secondary antibodies were used. NBT/BCIP (Roche) was used as substrate 

for alkaline phosphatase. 
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TUNEL labeling 

TUNEL labeling was performed in combination with IHC for ZNS-5 on cryosections. Fins were 

fixed in 4% PFA and stored in MeOH at –20°C. Sections were permeabilized for 30 min in PBTx 

and equilibrated in terminal deoxynucleotidyl transferase (TdT) buffer (200 mM potassium 

cacodylate, 25 mM Tris, 0.05% Triton X-100, 1 mM CoCl2, pH 7.2). Subsequently sections were 

incubated with TdT buffer containing 0.5 µM fluorescein-12-dUTP, 40 µM dTTP and 0.02 

units/µl TdT (all Thermo Scientific) for 1-2 hours at 37°C.  Sections were washed in PBT, blocked 

in 2% Blocking Reagent in PBS and incubated with anti-fluorescein-alkaline phosphatase 

coupled antibody (1:2000, Roche) and ZNS-5 antibody (1:1500) at 4°C over night. TUNEL labeled 

cells were detected with NBT/BCIP, AP activity was quenched with 100 mM glycin (pH 2.2) and 

ZNS-5 labeled cells were detected with anti-mouse-AP-coupled antibody (Sigma) using INT/BCIP 

(Roche) as substrate. Sections were mounted using Mowiol. 

 

EdU labeling 

Fish were IP injected with approximately 20 µl of 2.5 mg EdU (Jena Bioscience) in PBS 30 

minutes prior to fixation. Fins were fixed in 4% PFA and stored in MeOH at –20°C. EdU labeling 

was performed on whole mounts and cryosectioning was performed afterwards. For EdU 

detection, fins were permeabilized in PBTx for 30 min, equilibrated in 100 mM Tris/HCl pH 8 

and EdU was detected using a copper-catalyzed azide-alkyne click chemistry reaction (0.6 µM 

Cy3- or Fluor488- labeled azides (Jena Bioscience), 100 mM Tris, 1 mM CuSO4, 100 mM ascorbic 

acid, pH 8) with 20 min incubation time. IHC for ZNS-5 was subsequently performed on 

sections. Sections were counterstained with DAPI and mounted using Mowiol containing 

DABCO. Whole mounts were transferred to 70% glycerol/PBS for imaging. 

 

In situ hybridization 

Digoxigenin labeled RNA antisense probes were synthesized from cDNA templates: aldh1a2 

(Grandel et al., 2002), cyp26a1 (Kudoh et al., 2002), msxb (Akimenko et al., 1995), shha (Quint 

et al., 2002). WISH and ISH on sections was performed as previously described (Blum and 

Begemann, 2012). For double WISH DIG- and fluorescein-labeled probes were hybridized 

simultaneously. Fins were first incubated with anti-DIG-AP coupled antibody and color reaction 

was performed with BCIP/NBT. AP activity was quenched with 100 mM glycin (pH 2.2) and 

fluorescein was detected by using anti-fluorescein-AP coupled antibody and INT/BCIP as 

substrate. 

 

 

 



148  

Chapter 4 

 

 

Alizarin Red staining 

For Alizarin Red staining, fins were fixed in 4% PFA in PBS, transferred to MeOH and stored at -

20°C. Fins were rehydrated, washed in PBT and stained in 0.1% Alizarin Red in 0.5% KOH 

overnight. Excess dye was removed by several washes in 0.5% KOH. Stained fins were 

transferred to 70% glycerol in 0.5% KOH for imaging. 

 

 

 

 

Supplementary References 
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Table S1. Primer sequences for qPCR experiments.  

Gene Forward primer Reverse primer 

bactin1 TTGCTCCTTCCACCATGAAG CTTGCTTGCTGATCCACATC 

cyp26a1 GATGGGAGCTGATAATGTG CCTGAACCTCCTCTCTGACC 

ef1a TACGCCTGGGTGTTGGACAAA TCTTCTTGATGTATCCGCTGAC 

ptch2 GGAGATTTACCCCCAAGTTAC  CCAACAGACAGGGCTCCG 

shha CGGCAGAAGAAGACATCC  GAGCAATGAATGTGGGCTTT 

tbp CGGTGGATCCTGCGAATTA TGACAGGTTATGAAGCAAAACAACA 
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Table S2. Number of specimens used in quantitative and nonquantitative experiments (Fig. 1-3). Numbers for 
corresponding experiments, which are not shown in the figure, are included. For nonquantitative experiments: the 
first number indicates the number of specimens showing the phenotype, the second number the total number. 

 

 

 

 

 

Figure n = 

1C 36/39 rays (5 fins) 

1D fused rays = 37, separated rays = 138 

1E 19/25 rays (10 fins) 

1H 3 cDNA pools per condition 

1I DMSO = 0/5 fins, R115866 = 5/5 fins 

1J,K wild type = 0/11 fins, hsp70I:cyp26a1 = 10/10 fins 

1L 10/10 rays (4 fins) 

2A 
RA: DMSO = 0/30 fins, RA 30/31 fins;  
R115866: DMSO = 0/8 fins, R115866 = 9/9 fins 

2B DMSO = 0/23 fins, RA 21/21 fins 

2C DMSO = 0/8 fins, RA 9/9 fins 

2D 
RA: DMSO = 0/6 fins, RA 6/6 fins;  
R115866: DMSO = 0/6 fins, R115866 = 6/6 fins 

2E DMSO = 0/15 fins, R115866 19/19 fins 

2F DMSO = 0/21 fins, RA 4/22 fins 

3A DMSO = 20 sections (4 fins), cyclopamine = 35 sections (5 fins) 

3B DMSO = 22 sections (4 fins), RA = 24 sections (4 fins) 

3C 24 sections (6 fins) per condition 

3D 3 cDNA pools per condition 

3E 
cyp26a1: 3 dpa = 11 rays, 4 dpa = 6 rays, 5 dpa = 5 rays; 
ZNS-5: 3 dpa = 6 rays, 4 dpa = 9 rays, 5 dpa = 9 rays 

3F cyp26a1: proximal = 5 rays, distal = 5 rays; ZNS-5: proximal = 6 rays, distal = 7 rays 
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Table S3. Number of specimens used in quantitative and nonquantitative experiments (Fig. S1-8). Numbers for 
corresponding experiments, which are not shown in the figure, are included. For nonquantitative experiments: the 
first number indicates the number of specimens showing the phenotype, the second number the total number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure n = 

S2A 
RA: DMSO = 5/5 fins, RA = 5/5 fins; 
R115866: DMSO = 6/6 fins, R115866 = 5/5 fins 

S2B DMSO = 0/12 fins, R115866 = 12/12 fins 

S3A DMSO = 0/8 fins, cylopamine = 9/9 fins 

S3B DMSO = 4/4 fins, cylopamine = 4/5 fins 

S3C DMSO = 0/10 fins, cylopamine = 11/11 fins 

S4A DMSO = 0/5 fins, R115866 = 4/4 fins 

S4B DMSO = 0/5 fins, R115866 = 5/6 fins 

S6A DMSO = 3/17 rays (5 fins), RA = 15/18 rays (6 fins) 

S6B DMSO = 32 rays, RA = 150 rays 

S7 DMSO = 10 rays, cyclopamine = 12 rays 

S8 24 sections (6 fins) per condition 



152  

Chapter 4 

 
 

Fig. S1. shha is expressed within the basal epidermal layer adjacent to aligned 
osteoblasts. IHC for ZNS-5 and GFP in shh:gfp  fish at 3 dpa reveals shha expression 
in the basal epidermal layer adjacent to osteoblasts (ZNS-5

+
). Scale bar: 50 µm. 

 

 

 
 

Fig. S2. R115866 treatment does not interfere with basal 
epidermal layer formation, but cause lateral expansion of 
msxb

+
 cells into neighbouring interrays. (A) DAPI-stained 

transverse sections through the regenerate of DMSO- and 
R115866-treated fish reveal presence of a distinct basal 
epidermal layer. Arrowheads: Basal epidermal layer. (B) WISH 
for msxb at 2.5 dpa demonstrates expansion of blastema cells 
into interrays in R115866-treated fish. Arrowheads: Ectopic 
blastema cells. Dashed lines indicate amputation plane. Scale 
bars: 50 µm in A and 100 μm in B. 

 

 

 

 

 

 

 

 

 
Fig. S3. Absence of preosteoblasts 

causes blastema expansion. 

Cyclopamine treatment starting at 1 dpa 

results in preosteoblast-free blastema 

and lateral expansion of blastema cells, 

but normal cyp26a1 expression. (A) IHC 

for ZNS-5 and GFP in osc:gfp fish 

demonstrates lack of GFP
+
 

preosteoblasts in the blastema of 

cyclopamine treated fish at 2.5 dpa. 

Yellow dashed line indicates the distal 

blastema edge in cyclopamine treated 

fish. (B) WISH for cyp26a1 at 4 dpa 

reveals unaltered cyp26a1 expression in 

cyclopamine treated fish (C) WISH for 

msxb demonstrates lateral expansion of 

blastema cells into the interray tissue 

(arrowhead) in cyclopamine treated fish. Dashed lines indicate amputation plane. Scale bars: 100 μm. 
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Fig. S4. shha expression is ectopically expressed in interrays 
upon recovery from R115866 treatment. (A) WISH for cyp26a1 2 
days after termination of R115866 treatment at 4 dpa reveals 
cyp26a1 expression in the entire epidermis of ray and interray 
tissue. (B) IHC for GFP in shh:gfp  fish 2 days after termination of 
R115866 treatment at 4 dpa reveals ectopic shha expression in 
interrays. Asterisks indicate rays. Dashed lines indicate 
amputation plane. Scale bars: 100 μm. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. S5. Ectopic bone does not seal the wound in regenerates of 
R115966 treated fish. Distal view of an Alizarin Red stained regenerate 
of R115866-treated fish reveals that ectopic bone is restricted to lateral 
regions and does not seal the blastema. Arrowheads: Ectopic bone in 
the interray region. Dashed line indicate amputation plane. Scale bars: 
100 µm. 

 

 

 

 

 
Fig. S6. RA treatment induces ectopic bone in 
interrays and fusion of sister rays. (A) RA injections 
upon amputation within 3-4 segments distal to the 
first branching point (long cut) result in fusion of 
sister rays. Alizarin Red staining. Arrowheads: 
Branching site. Dashed lines indicate amputation 
plane. Scale bar: 100 µm. (B) The distance range 
between rays where formation of ectopic bone 
occurs is much greater in RA-treated fish. Box plot of 
distances between rays. 
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Fig. S7. Cyclopamine treatment does not impair osteoblast differentiation. Length 
measurement of the osx-free distal domain (tissue that does not contain 
differentiated osteoblasts) in osx:gfp fish at 4 dpa reveals that the osteoblast 
differentiation is unaffected in cyclopamine-treated fish. Data are represented as 
mean±s.e.m. ns, non significant. 

 

 

 

 

 

 
 

 

Fig. S8. Prolonged RA treatment impairs proliferation of fibroblast-
derived blastemal cells through repression of Hh signaling. Inhibition of 
proliferation of fibroblast-derived blastemal cells 12 h after RA injection 
can be rescued by concomitant SAG treatment. EdU

+
 cells per section at 

3.5 dpa. Data are represented as mean±s.e.m. *p < 0.05, **p < 0.01, ***p 
< 0.001.  
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