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A B S T R A C T

This thesis covers two prominent material systems in the still emerging field
of nano-optics. On the one hand, we study the optical properties of graphene,
from a general point of view as well as under symmetry breaking induced by
strain. On the other hand, we make use of the plasmonic properties of gold
nanostructures and investigate the generated nonlinear signals on a local scale.
With both systems being promising candidates for nanophotonic applications,
a spectroscopic investigation is of utmost importance to gain a deeper under-
standing of the interaction of these systems with light.

Graphene’s band structure exhibits a saddle point, which gives rise to a unique
optical response in the visible and ultraviolet wavelength regime. Assuming a
discrete excitonic state in the vicinity of the saddle point, a classical Fano model
based on interference between a continuum of states and the discrete state can
be applied. It reproduces very well both lineshape and position of the measured
spectrum even down to infrared wavelengths. After a discussion of the general
optical properties, we study the influence of strain on graphene. Unlike most
other modifications, strain breaks the symmetry of the lattice and the band
structure and is hence predicted to induce profound changes in the optical
spectrum. In addition to a study of the response considering different substrate
materials, we introduce Raman spectroscopy as a reference measurement to
reliably quantify the amount of strain applied to the graphene flakes. However,
our thorough investigations indicate that the Fano resonance in graphene is
very robust towards strain as we do not observe strain-induced changes in the
optical spectrum.

The second part of this thesis addresses the nonlinear optical properties of gold
nanostructures. Whereas most investigations in nonlinear plasmonics focus on
the enhancement of nonlinear processes and their spectral characteristics, we
consider the spatial origin of the signals which is still under debate. Due to the
coherence of the higher harmonics generation process, the third-harmonic emis-
sion from different emitting centers of a nanostructure interferes. In analogy to
classical diffraction experiments, the interference pattern observed in the Fourier
plane is very sensitive towards parameters such as separation and relative phase
of the emitting spots. We use this method to accurately determine the high fields
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inside the nanostructures as the source of third-harmonic generation. Moreover,
we show that the emission properties of an elongated plasmonic structure can be
switched between a configuration with one emission spot in the center and a con-
figuration with two spatially separated spots by slightly varying the excitation
wavelength. Due to the third power dependence of the third-harmonic genera-
tion process, the near-fields generated in the vicinity of the particle switch ac-
cordingly. While assemblies of nanoparticles are commonly used to shape fields,
we show that the local field can also be sculptured around a single, elongated
nanostructure by taking higher-order plasmonic modes into account. This ap-
proach opens up a new direction for field shaping on the nanoscale.
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Z U S A M M E N FA S S U N G

Diese Dissertation befasst sich mit zwei bedeutenden Materialsystemen auf dem
Gebiet der Nano-Optik. Auf der einen Seite untersuchen wir die optischen Ei-
genschaften von Graphen, sowohl unter allgemeinen Gesichtspunkten als auch
bei von Dehnspannung hervorgerufenem Symmetriebruch. Andererseits nutzen
wir die plasmonischen Eigenschaften von Gold-Nanostrukturen und analysieren
die erzeugten nichtlinearen Signale auf einer lokalen Skala. Beide Systeme sind
vielversprechende Kandidaten für nanophotonische Anwendungen, daher ist
es von großer Bedeutung, mithilfe von spektroskopischen Untersuchungen ein
tieferes Verständnis über ihre Wechselwirkung mit Licht zu erlangen.

Graphens Bandstruktur weist einen Sattelpunkt auf, der zu einem charakteristi-
schen optischen Spektrum im sichtbaren und ultravioletten Wellenlängenbereich
führt. Wird ein diskreter exzitonischer Zustand in der Nähe des Sattelpunktes
angenommen, kann ein klassisches Fano-Modell angewendet werden, welches
die Kopplung zwischen einem Kontinuum von Zuständen und dem diskreten
Zustand beschreibt. Das Modell führt im Hinblick auf Linienform und Position
zu einer guten Übereinstimmung mit dem gemessenen Spektrum bis in den
infraroten Bereich. Nach einer Diskussion der allgemeinen optischen Eigen-
schaften untersuchen wir den Einfluss von Dehnspannung auf Graphen. Im
Gegensatz zu den meisten Effekten wird hier die Symmetrie des Gitters und
der Bandstruktur gebrochen, was zu tiefgreifenden Änderungen im optischen
Spektrum führen sollte. Neben einer Analyse des Spektrums bei Verwendung
unterschiedlicher Substratmaterialien stellen wir Raman-Spektroskopie vor, mit
welcher die in den verschiedenen Messgeometrien angelegte Dehnspannung
quantifiziert werden kann. Unsere Untersuchungen zeigen jedoch, dass die
Fanoresonanz in Graphen sehr stabil auch gegenüber Dehnspannung ist, da
keine Änderungen im optischen Spektrum beobachtet werden.

Der zweite Teil dieser Dissertation beschäftigt sich mit den nichtlinearen op-
tischen Eigenschaften von Gold-Nanostrukturen. Während die meisten Studi-
en in nichtlinearer Plasmonik sich auf die Verstärkung von nichtlinearen Pro-
zessen und deren spektrale Charakteristik konzentrieren, betrachten wir den
räumlichen Ursprung der Signale, der Gegenstand aktueller Diskussion ist. Auf-
grund der Kohärenz des nichtlinearen Prozesses interferiert die Emission der
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dritten Harmonischen von verschiedenen, räumlich getrennten Emissionspunk-
ten der Nanostruktur. In Analogie zu klassischen Beugungsexperimenten ist das
im Fernfeld beobachtete Interferenzmuster sehr sensibel auf Parameter wie den
Abstand und die relative Phase der Emissionsspots. Wir nutzen diese Methode
um mit großer Genauigkeit zu bestimmen, dass die hohen Felder innerhalb der
Nanostrukturen die Quelle der dritten Harmonischen sind. Zudem zeigen wir,
dass durch Variieren der Anregungswellenlänge die Emission einer ausgedehn-
ten plasmonischen Struktur zwischen einer Konfiguration mit einem zentralen
Emissionspunkt und einer Konfiguration mit zwei räumlich getrennten Emissi-
onspunkten geschalten werden kann. Durch die Potenzabhängigkeit der dritten
Harmonischen verschieben sich die erzeugten Nahfelder in der Umgebung des
Partikels auf gleiche Weise. Während üblicherweise räumliche Anordnungen
von Nanopartikeln ausgenutzt werden um Felder zu formen, zeigen wir, dass
auch das lokale Feld um eine einzelne, ausgedehnte Nanostruktur durch Be-
rücksichtigung von Plasmonmoden höherer Ordnung kontrolliert werden kann.
Dieser Ansatz eröffnet neue Möglichkeiten für das Formen von Feldern auf der
Nanoskala.
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1
P R E FA C E A N D O U T L I N E

The investigation of the properties of light and especially the interaction of light
with matter is one of the traditional branches in classical physics. Despite hav-
ing been object of study for centuries, optics is still a very lively field of re-
search, bringing forth a plethora of breakthroughs and applications. Prominent
examples of milestones in optics are new light sources including lasers and light-
emitting diodes, optical fibers, photonic crystals, or solar cells [1, 2].
Toward the end of the last century, novel technologies allowed for the fabrica-
tion and observation of nanoscale structures, paving the way for the new field
of nanotechnology. Nanostructures exhibit a variety of exceptional properties as
they bridge the gap between the bulk and the quantum regime. Amongst many
other interesting characteristics, the light–matter interaction on the nanoscale
gives rise to outstanding effects. In consequence, plasmonics [3] and metama-
terials [4, 5] as examples for nano-optical phenomena have to be added to the
list of milestones [2]. Quite recently graphene, a monolayer of carbon atoms [6],
and other monolayer crystals [7] became available as novel platform to study the
interaction of light with purely two-dimensional systems [8, 9, 10].
In contrast to bulk material, nanostructures offer the possibility to tailor the
optical properties by varying parameters such as size or geometry [11, 12].
Additional flexibility is gained by arranging nanoparticles into assemblies and
combining different structures into hybrid systems [13, 14]. Sculptured two- and
three-dimensional nanoarchitectures give the power to control and manipulate
light and its flow at the nanoscale, overcoming the diffraction limit [1]. One of
the most prestigious amongst the many prospects in nanophotonics are optical
circuitry and computing. Combining nanoscale emitters, waveguiding structures
as well as switching and other processing devices on a chip potentially allows
for fully integrated light-based communication systems [1].

This thesis aims at a more thorough understanding of the optical properties of
two different nanoscopic systems.
First, we consider graphene which, being a two-dimensional material, can be
viewed as "nano" in the third dimension. Since its discovery in 2004 [6], many
important aspects of graphene and related systems have been studied [15]. How-
ever, the analysis of the optical properties still lags behind as most investigations
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2 preface and outline

focus on electronic transport properties. Using optical spectroscopy, one can get
further insight into the electronic structure of graphene and gain a deeper under-
standing of the nature of the excited states. This is particularly interesting in the
visible to ultraviolet wavelength regime, where graphene’s extraordinary band
structure exhibits a saddle point [16]. Besides the fundamental research interest,
a detailed investigation of the optical properties is of essential importance on
the route towards applications of graphene in optoelectronics, for example in
modulators or detectors [17, 18].
Second, we study plasmonic structures which are mostly metal nanoparticles
and hence truly "nano". Particle plasmons are collective oscillations of the elec-
trons, manifesting as resonances in the visible wavelength regime. These excita-
tions are associated with strong local fields and have found already a multitude
of applications ranging from sensing [19, 20] up to negative index and cloaking
materials [21, 22, 23, 24]. While the linear interaction of plasmons with light is
quite well understood, questions remain on the nonlinear behavior. Such devia-
tions from the linear interaction with light are observed at high excitation powers
and give rise to interesting effects including frequency conversion processes and
modulation of the signals [25]. In this context, nanostructures offer new possibil-
ities in nonlinear optics, for example promising nonlinear optical components to
be scaled down or allowing for ultrafast response times [26].
Merging graphene and plasmonic nanostructures adds a new playground to the
field of nanophotonics. First experiments revealed the great potential of such
hybrid systems for optoelectronic devices [27, 28] or sensor applications [29],
paving the way towards tunable optical nanocircuits [8, 30, 1].

Due to the fundamentally different nature of the two systems under consid-
eration as well as the related experiments and methods, this thesis is divided
into two parts. While the first part covers the optical properties of graphene,
the nonlinear emission characteristics of gold nanostructures are studied in the
second part.

In chapter 2, we first present a short review of the extraordinary material prop-
erties of graphene. After discussing the crystal and resulting electronic struc-
ture, we focus on the optical properties. Providing the basis for later studies,
we restrict here to the visible and near-infrared wavelength regime. Moreover,
an overview of the fabrication and characterization techniques for graphene is
given.
Chapter 3 gives an introduction to linear spectroscopy of graphene in the visi-
ble and UV wavelength regime. First, the experimental setup is presented. We
will then see that graphene’s band structure exhibits a saddle point which is
associated with an excitonic state. A simple Fano lineshape can fully describe



preface and outline 3

the characteristic absorbance spectrum in the vicinity of the saddle point, but
also down to infrared frequencies. The properties of the excitonic resonance in
graphene are discussed and compared to excitons in graphene-related systems.
In addition, we show that the optical constants of graphene can be extracted
from the Fano fit using the Kramers-Kronig relations.
The influence of strain on the Fano resonance is investigated in chapter 4.
Strain causes intriguing effects as it breaks the symmetry in the crystal as well
as the band structure. Regarding the experimental methods, we present our
reflection setup which includes a path for in-situ Raman measurements and
discuss how strain is applied to our samples. Based on the optical constants
of graphene, the optical spectrum of graphene on an arbitrary substrate can
be calculated with a transfer matrix formalism. After introducing this method,
we will study the optical response on different substrates. In our experiments,
Raman spectroscopy is used as a reference to quantify the amount of strain on
the samples. Finally, we discuss our results on the effect of strain on the optical
spectrum of graphene in the ultraviolet regime.

In view of our experiments with plasmonic structures, chapter 5 is dedicated to
the fundamentals of nonlinear nano-optics. After a general discussion of light-
matter interaction, we focus on some essential aspects regarding nonlinear plas-
monics. Here, we provide an overview of nonlinear optical processes before giv-
ing a brief introduction to plasmonics.
In chapter 6, we summarize the methods that are relevant for our investiga-
tions. The nanostructures are fabricated in a standard electron beam lithography
process. With a nonlinear transmission setup in combination with back focal
plane imaging, we measure spectra of the nonlinear signals and capture the spa-
tial emission characteristics of individual nanostructures. We discuss a simple
method to calculate radiation patterns which is based on the emission proper-
ties of a dipole near an interface. A finite element method allows us to simulate
the distribution of linear and nonlinear fields around a plasmonic structure.
Chapter 7 presents the essential results of our study of the third-harmonic
emission properties of nanostructures. First, we discuss the working principle of
our experiments at the example of very small rod structures, which yields first
intriguing insights. In analogy to classical diffraction experiments, interference
is observed between light from different emitting centers. That way, we build
the nonlinear plasmonic analogue of a classical double slit from two spatially
separated nanorods. Based on these observations, we exploit higher order
plasmonic modes in an elongated structure to switch the emission properties
between different configurations. Finally, we show that the generated nonlinear
near fields exhibit the same switching behavior.
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Part of the work presented in this thesis has been published already. Chapter 3

is based on the results obtained by our coworkers [31] and is published as a
chapter covering "Spectroscopy of Graphene at the Saddle Point" in the book
"Optical Properties of Graphene" [32]. Chapter 7 closely follows our publication
"Shaping the nonlinear near field" [33].
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O P T I C A L S P E C T R O S C O P Y O F G R A P H E N E





2
G R A P H E N E – A 2 D W O N D E R L A N D

Graphene, a monolayer of carbon atoms arranged in a two-dimensional (2D) lat-
tice, has attracted a lot of research interest in the last years. Being sometimes
called the ’mother’ of all graphitic materials [34], it can be stacked into 3D
graphite and rolled into 1D carbon nanotubes or 0D fullerenes. Despite hav-
ing been studied theoretically for decades [35, 36, 37], graphene – like all strictly
2D materials – was long presumed to be thermodynamically unstable in its free
state [38, 39, 40, 41]. Apart from the existence as part of larger 3D structures, it
was considered to be a purely academic model system [42]. The discovery of the
existence of 2D atomic crystals [7] and especially that of graphene in 2004 [6, 43]
hence came as a surprise. It has triggered an overwhelming and still-growing
number of theoretical and experimental investigations and was awarded with a
Nobel prize in Physics in 2010.
This is certainly due to the fact that graphene is a superlative material in many
regards. It is the thinnest and at the same time strongest material ever measured
[44] and exhibits a record room temperature thermal conductivity [45]. Most
striking, however, are its electronic properties, such as the high carrier mobility
and the presence of a quantum Hall effect at room temperature [6, 46]. Besides
being of general interest for physicists and material scientists, graphene is a
promising candidate for a long list of applications, ranging from electronics and
optoelectronics via sensing and energy storage to biomedicine [17, 47, 48].

Most of graphene’s physical properties emerge directly from its unique band
structure. In the first sections of this chapter, we will give an overview of the
atomic and electronic structure (section 2.1) and the resulting optical properties
(section 2.2). The fabrication and characterization techniques used in this thesis
are presented in section 2.3.
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8 graphene – a 2d wonderland
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Figure 2.1: a) Honeycomb lattice of graphene with the lattice vectors a1, a2. The unit cell
contains two carbon atoms, belonging to the two sublattices A and B. Part of
triangular sublattice A is indicated by dashed blue lines. b) Corresponding
Brillouin zone with the reciprocal lattice vectors b1, b2 and important points
in reciprocal space.

2.1 crystal and electronic structure

The carbon atoms in graphene are arranged in a hexagonal honeycomb lattice
shown in figure 2.1a. The structure can be described as two interleaving triangu-
lar lattices, i. e. with a basis of two atoms per unit cell [16].
The trigonal planar structure of graphene arises from the sp2 hybridization
which leads to the formation of robust σ bonds with a carbon–carbon separa-
tion of a0 = 1.42 Å. The remaining p orbital is oriented perpendicular to the
molecular plane and hybridizes covalently with the orbitals of neighboring car-
bon atoms to form the valence and conduction bands π and π∗, respectively. The
π bands are responsible for conduction and hence determine most of graphene’s
electronic and optical properties.
The hexagonal symmetry is retained in the Brillouin zone (BZ) as shown in
figure 2.1b. Γ , K and M are points of high symmetry in reciprocal space, where
Γ is the center point of the BZ. The six so-called Dirac points K are at the
corners of the BZ, whereas M denotes a saddle point between two neighbor-
ing Dirac points. The two sets K/K’ and M/M’ correspond to the two sublattices.

The band structure of the π bands of graphene can be calculated with a sim-
ple tight-binding model [35, 16]. The Hamiltonian including nearest and next-
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nearest neighbor hopping of the electrons (in natural units  h = c = 1) is given
by

H =− t
∑

<i,j>,s

(a†i,sbj,s + h.c.)

− t ′
∑

<i,j>,s

(a†i,saj,s + b
†
i,sbj,s + h.c.).

(2.1)

ai,s (a†i,s) annihilates (creates) an electron with spin s (s =↑, ↓) on sublattice A,
the same definition is used for bi,s and b

†
i,s in sublattice B. t and t ′ are the

nearest and next-nearest neighbor hopping energies, corresponding to hopping
between the sublattices and hopping in the same sublattice. This leads to the
energy bands [35, 16]

E±(~k) = ±t
√
3+ f(~k) − t ′f(~k) (2.2)

with

f(~k) = 2 cos
(√
3kya0

)
+ 4 cos

(√
3

2
kya0

)
cos
(
3

2
kxa0

)
. (2.3)

Here, the plus sign denotes the antibonding π∗ band, the minus sign the bind-
ing π band. The symmetry between the π and π∗ bands is broken for finite values
of the next-nearest neighbor hopping energy t ′. Figure 2.2 shows the full band
structure of graphene for t = 2.7 eV and t ′ = −0.2t. The valence and conduction
bands are touching at the Dirac points which coincide with the Fermi energy
for undoped graphene. Graphene is hence classified as a semimetal or zero-gap
semiconductor. Due to symmetry, neighboring Dirac points K and K’ as well as
neighboring saddle points M and M’ are degenerate.
The dispersion at the K points is obtained by expanding the band structure from
equation 2.2 for small ~q relative to the Dirac point [35, 16]:

E±(~q) ≈ vF|~q|+O[(q/k)
2]. (2.4)

vF = 3ta0/2 is the Fermi velocity, which corresponds to an effective speed of
light and is on the order of vF ' 106 m/s. In consequence, the Fermi velocity is
a constant independent of the momentum, resulting in a linear dispersion at the
Dirac cones. This behavior is similar to relativistic particles and contrasts with
the usual case of a quadratic dispersion with v = q/m =

√
2E/m. In the low

energy limit, the charge carriers in graphene are described as massless fermions
by the relativistic (2+1)-dimensional Dirac equation rather than the Schrödinger
equation:

EΨ(~r) = −i h vF ~σ · ∇Ψ(~r) (2.5)
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with the vector of Pauli matrices ~σ = (σx,σy) in 2D and the eigenenergies
E = ±vFq. The wave function Ψ(~r) is a two-component spinor where the compo-
nents correspond to the two sublattices. In analogy to the spin index in quantum
electrodynamics (QED), this is interpreted as a pseudospin of the states close to
the Dirac point. The massless Dirac fermion characteristic of the charge carriers
in graphene manifests in various transport experiments, for example in the min-
imum conductivity at the charge neutrality point or the anomalous half-integer
quantum Hall effect [46]. This makes graphene an ideal and easily accessible
platform for studies of QED effects even at room temperature [34].
Another consequence of the linear dispersion at the Dirac point is the ambipolar
field effect where the conduction channel can be switched between electrons
and holes [6]. When graphene is doped for example by electrostatic gating, the
Fermi energy is shifted away from the Dirac point to either higher or lower
energies, corresponding to electron and hole conduction, respectively. Doping is
a very interesting technique as it allows to continuously tune the charge carrier
density. Apart from transport, it also affects the optical properties of graphene,
as is described in the following section.

K’

K

M’

G
kx

ky

M

Figure 2.2: Full band structure of graphene in the Brillouin zone calculated from a tight-
binding model with the hopping energies t = 2.7 eV and t ′ = −0.2t.
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2.2 optical properties of graphene

2.2.1 Optical conductivity

While the DC conductivity is typically measured in transport experiments, the
frequency-dependent optical conductivity becomes important when light inter-
acts with a material. For light of frequency ω and wave vector ~k, the electric field
is given by

~E = ~E0 exp(~k~r−ωt). (2.6)

The complex dielectric function ε and the complex optical conductivity σ de-
scribe the response of the material to the excitation field. They are introduced
through the constitutive relations of Maxwell’s equations:

~D(~k,ω) = ε(~k,ω)~E(~k,ω) (2.7)
~j(~k,ω) = σ(~k,ω)~E(~k,ω) (2.8)

where ~D is the electric displacement field and ~j the electric current density. At
optical frequencies, the dependency on the wave vector can be neglected.
The response functions are linked via

ε(ω) = ε0 +
iσ(ω)

ω
(2.9)

with the vacuum permittivity ε0. Quantities like reflectivity or transmission that
are typically observed in optical experiments emerge directly from the response
functions. For example, the optical absorption is proportional to the real part of
the conductivity (at normal incidence).

The optical properties of graphene arise once again from its unique band struc-
ture and 2D nature. Depending on the wavelength regime, two distinct contri-
butions need to be considered. While interband transitions define the optical
response from visible down to mid-infrared photon energies, intraband pro-
cesses corresponding to conduction by free carriers become important in the far-
infrared [49, 50]. The different mechanisms are shown schematically in figure 2.3.
While for intraband transitions momentum conservation requires scattering on,
for example, phonons or defects, interband transitions are direct transitions.

2.2.2 Interband transitions: constant absorption and Pauli blocking

The optical conductivity arising from interband transitions in graphene is ex-
pected to be a universal constant in a broad range of photon energies [51, 49]:

σ0 ≡
e2

4 h
≈ 6.08× 10−5Ω−1. (2.10)
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Remarkably, the optical response is hence independent of both frequency and
material parameters, but is a direct consequence of the linear dispersion at the
Dirac point. From equation 2.10, it follows that the absorption of a graphene
sheet at visible and near-infrared wavelengths can be expressed as [52]

A =
πe2

 hc
= πα ≈ 2.3%, (2.11)

so that the optical response of graphene is defined solely by the fine structure
constant α ≈ 1/137. Equation 2.11 coincides with the absorption of photons by
2D massless Dirac particles calculated with Fermi’s golden rule. The validity of
this result has been confirmed by spectroscopic experiments on free-standing
graphene in the visible wavelength regime [53]. The absorption of 2.3% is
a surprisingly high value for a monolayer and makes it possible to identify
individual graphene layers with the bare eye. When more than one graphene
layer is considered, the absorption increases linearly with the layer number N
as A ≈ Nπα (for N < 5) [53].

As mentioned above, the Fermi energy can be shifted away from the Dirac point
by doping. Moreover, a finite temperature smears out the distribution of charge
carriers at the Fermi level. Both effects hence influence the optical conductivity

EF

E

kx

Pauli blocking of
interband transitions

p

*
p

intraband
transitions

interband
transitions

EF

Figure 2.3: Schematic view of intra- and interband transitions near the Dirac point of
graphene. Additional momentum for example from phonon scattering (gray
arrow) is needed for intraband transitions. Pauli blocking of interband tran-
sitions occurs for E < 2EF when the Fermi energy deviates from the charge
neutrality point.
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Figure 2.4: Optical conductivity of graphene at low photon energies. a) Interband tran-
sitions at room temperature (solid lines) and T = 0 K (dashed lines) for
different values of the chemical potential µ, illustrating the Pauli blocking.
In b), the intraband term is also taken into account with different scattering
rates Γ = 1/τ (adapted from [54]).

at low energies. This can be taken into account by a Fermi-Dirac distribution so
that [54]

σ(ω,µ, T) =
e2

2 h

[
tanh

(
 hω+ 2µ

4kBT

)
+ tanh

(
 hω− 2µ

4kBT

)]
(2.12)

where µ is the chemical potential corresponding to the deviation of the Fermi
energy from the Dirac point. Regarding the interband transitions, photons with
energies smaller than 2µ cannot excite transitions because the initial or final
states are not occupied (see also figure 2.3). Figure 2.4a shows this so-called
Pauli blocking in the conductivity spectra for different values of the chemical
potential, calculated from equation 2.12. For intrinsic doping and at room
temperature, the influence of these corrections can be neglected at photon
energies larger than 0.5 eV, as has been confirmed experimentally [54].

2.2.3 Intraband transitions: Drude model

At very low photon energies, the intraband response from the quasi-free carriers
can be described to a good approximation with a Drude model [49, 55]. The
frequency-dependent conductivity is then given by

σ(ω) =
σ0

1+ iωτ
=

iD

π(ω+ iτ)
(2.13)

where τ is the electron scattering time.



14 graphene – a 2d wonderland

The Drude weight D = vFe
2
√
πn = e2/ hEF with the charge carrier density n

deviates from its conventional form due to the zero mass of the charge carriers.
Equation 2.13 can be generalized for finite temperatures and doping with the
Kubo formula [56, 54]. The optical conductivity considering both intra- and
interband contributions is shown in figure 2.4b for different values of the
Fermi energy and typical scattering times [54]. The intraband transitions lead
to a strong increase of the optical conductivity at very small photon energies
ω � 0.5 eV and hence are not relevant in the wavelength regime considered in
our experiments.

Consequently, the optical response of graphene in the visible and near-infrared
regime is constant as both the contribution from intraband transitions as well
as temperature- and doping-corrections to the interband transitions can be ne-
glected. At these photon energies, the conductivity is still defined by the approx-
imately linear dispersion in the vicinity of the Dirac cones.
In chapter 3 of this thesis, we will show that this approximation breaks down at
even higher photon energies in the ultraviolet where the band structure exhibits
a saddle point.

2.2.4 Plasmons in graphene

An additional phenomenon that is observed in the optical response of graphene
are plasmons, i. e. a collective oscillation of the free charge carriers. Plasmons in
graphene are distinct from those in metals or other two-dimensional electron
gases (2DEGs) due to the exceptional nature of the Dirac particles.

While plasmons are strongly damped and hence cannot be excited in undoped
graphene, they are supported in doped graphene where the density of states at
the Fermi level is finite [16].
The Dirac equation for massless charge carriers in 2D implies that the plasmon
frequency scales with the Fermi energy and the carrier density as ωp ' E1/2F '
n1/4 [57, 16] as compared to ωp ' n1/2 in conventional semiconductors. In
contrast to metals, the plasmonic response in graphene is therefore tunable over
a wide energy range with the help of doping, where carrier densities as high as
n ' 1014/cm2 have been reached [58].
For sufficiently high doping (EF >  hω), the wavelength of the propagating sur-
face plasmons in graphene is given by [8]

λp ≈ λ0
4α

εr + 1

EF
 hω

(2.14)
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where εr is the substrate permittivity and λ0 the free-space excitation wave-
length. This relation is governed by the fine structure constant α and indicates a
strong localization of the plasmonic mode as the wavelength is strongly reduced
compared to the excitation wavelength.

In practice, the large momentum mismatch between photons and plasmons
must be overcome in order to observe a plasmonic response. This has for exam-
ple been achieved by near-field infrared excitation of graphene sheets with a
metal tip [59, 60]. Alternatively, localized plasmons can be observed in graphene
nanostructures such as nanoribbons where the plasmon resonance additionally
scales with the structure size w asωp ' n1/4w1/2 [61]. The missing momentum
could also be provided by an emitter which couples to a graphene sheet, poten-
tially offering a platform to study quantum effects like vacuum Rabi splitting [8].

Summarizing, plasmons in graphene provide an attractive alternative to metal
plasmonics as they offer a wide tunability and exhibit high field confinement.
However, graphene plasmonics is so far limited to infrared wavelengths due to
experimental restrictions on both doping and structure size and is therefore not
studied in this thesis.

2.3 sample fabrication and characterization

As shown in 2004 by Geim and Novoselov, graphene as well as other 2D crystals
can easily be obtained by mechanical cleavage from bulk material [6, 7]. All sam-
ples studied in this thesis are prepared using the mechanical exfoliation method
described in the following. Although alternative preparation techniques such as
chemical vapor deposition or chemical exfoliation provide large area samples
and consequently are promising for graphene applications, the quality of the
exfoliated graphene flakes is still unsurpassed.

2.3.1 Exfoliation of graphene from graphite

Graphite is a 3D stack of graphene layers. While the σ bonds within the graphene
planes are strong, the individual layers are only weakly coupled by van der
Waals forces and can hence easily be separated. In the original approach [7],
the layered crystal is rubbed against another solid surface where a variety of
flakes attaches. In fact, graphene layers are deposited onto paper whenever we
draw with a pencil. This method has been further optimized regarding both
the yield of monolayers as well as the size of the obtained flakes. Starting from a
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Figure 2.5: Mechanical exfoliation of graphene from graphite flakes using adhesive tape.
Images are taken from [62].

small piece of highly oriented pyrolitic graphite (HOPG), adhesive tape (typically
Scotch or Nitto) is used to peel off thinner pieces from the graphite as shown in
figure 2.5. These layers are thinned out further by repeated peeling with the tape
until transparent few-layer flakes are observed. The tape is then pressed against
a substrate transferring part of the flakes. That way, graphene layers of different
thickness with a size up to about 100 µm can be obtained.

2.3.2 Characterization methods: optical microscopy and Raman spectroscopy

The first characterization of graphene samples is done with an optical micro-
scope. Most samples were exfoliated on an oxidized silicon substrate. Due to the
oxide layer, even thin layers give substantial contrast with respect to the empty
substrate. As they are transparent, the optical path adds up and the interference
color changes [7]. We mostly used substrates with a 300 nm thick oxide layer,
which give optimum contrast under white light illumination [63]. As shown
in figure 2.6, graphene flakes can be identified with the bare eye and located
within the marker grid on the sample for a later measurement.

To further confirm that the identified flakes are monolayer graphene, Raman
spectroscopy is a commonly used tool. Here, the exciting laser light interacts
with the vibrational, rotational, and other low-energy modes of the system, so
that the scattered light exhibits lines shifted with respect to the excitation energy
by the energy of the corresponding mode. This Raman shift ∆w indicates the
Raman wavelength λ1 relative to the excitation wavelength λ0 as

∆w =
1

λ0
−
1

λ1
. (2.15)
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50mm

 a

monolayer

10mm

 b

Figure 2.6: Identification of graphene flakes on an oxidized silicon substrate with an op-
tical microscope. a) With low magnification (20x objective), a variety of flakes
of different contrast and hence different thickness are visible. The flakes are
localized in the array of marker structures. b) Monolayer graphene flakes can
be identified under high magnification (100x objective).

It provides a fingerprint of the molecular structure of the sample and can be
used to monitor changes of the chemical bonds.
Graphene’s electronic structure leads to a unique Raman spectrum with two
prominent modes as shown in figure 2.7. The G peak at 1580 cm−1 corresponds
to a high-frequency E2g phonon [64, 65], where the two sublattices oscillate

a

E2g

A1

1

2
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Graphite

b

G 2D

G 2D

(G)

(D)

Figure 2.7: a) Underlying phonon modes of graphene’s Raman spectrum. b) Raman spec-
trum of graphene and graphite and the evolution of the 2D peak with increas-
ing layer number. Taken from [64].
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against each other as illustrated in figure 2.7a. The D peak at about 1350 cm−1

can only be excited in the presence of defects, its absence thus indicates a high
quality of the graphene sheet. As shown in figure 2.7a, this mode is due to
the breathing of the carbon ring [65]. The most prominent feature at about
2700 cm−1 is the second order of the D peak and therefore called 2D peak. It
is a two-phonon band and is also allowed in defect-free graphene, as momen-
tum is always conserved in this second-order process [64, 65].
The shape of the 2D Raman peak of graphene changes distinctly with the layer
number [64] as shown in figure 2.7b. Bilayer graphene exhibits a much broader
and red-shifted 2D band compared to its monolayer. It has four components,
related to the splitting of the π and π∗ bands into subbands. For more than 5

layers, the spectrum can hardly be distinguished from graphite anymore, where
the 2D peak consists of two components. Consequently, Raman spectroscopy can
clearly distinguish between different layer numbers.
Apart from the quality and the layer number of the sample, Raman spectroscopy
allows to determine the crystallographic orientation and to monitor perturba-
tions of the structure induced for example by strain, which will be used and
shown in section 4.5 of this thesis.

Optical microscopy combined with Raman spectroscopy allows a quick local-
ization of graphene flakes and confirms the layer thickness and sample quality.
Further characterization methods (like for example AFM or TEM measurements)
are thus not necessary for this work.

2.3.3 Transfer to an arbitrary substrate

After the graphene samples are characterized, the flakes can be transferred to
an arbitrary substrate using a polymer membrane. This method permits also the
fabrication of free-standing graphene flakes as are considered in the transmission
experiments in section 3.2.
The key steps of the transfer process are illustrated in figure 2.8. First, the
substrate with exfoliated graphene is coated with a few hundred nanometer
thick layer of polymer resist (PMMA, poly(methyl methacrylate)). To obtain free-
standing samples, apertures with a diameter of a few µm are written on top
of the flakes using electron beam lithography. This lithography technique is es-
sential for the fabrication of plasmonic nanostructures; a detailed description of
the process is given in section 6.1. After patterning, the resist is developed to
remove the exposed areas. To obtain supported samples, i. e. when graphene is
transferred to an arbitrary substrate, the patterning and development steps are
skipped. The polymer layer together with the graphene flakes are then detached
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from the substrate by etching the silicon dioxide layer in a 5% sodium hydroxide
solution at 90

◦C. The membrane which floats on the water surface is fished out
to rest on the desired substrate. In order to maintain the free-standing character
of the sample, a quartz frame is used to support the membrane. Regarding the
supported samples, the resist layer can finally be dissolved with acetone.

exfoliation on 
oxidized silicon

1.

exposure with 
electron beam

3.

e- e-

development
of resist

4.

spincoating of
PMMA layer

2.

90°C
aq. NaOH 

free-standing graphene
on quartz frame

graphene on
arbitrary substrate

etching of the oxide layer
® floating membrane

5.

Figure 2.8: Key steps of the graphene transfer process. Electron beam exposure and de-
velopment is relevant for the free-standing graphene samples only, so that
step 3 and 4 are optional. The membrane with the graphene flakes can be
fished out either with quartz frame to obtain free-standing samples or with
an arbitrary substrate for which the PMMA layer can be washed off.





3
S P E C T R O S C O P Y O F G R A P H E N E AT T H E S A D D L E P O I N T

This chapter follows closely the identically named book chapter in "Optical
properties of graphene" [32] and is based on the publication "Excitonic Fano
Resonance in Free-Standing Graphene" by our coworkers [31].

As has been shown in section 2.2, at frequencies above the far-infrared region,
the optical response of graphene is dominated by interband transitions between
the valence and conduction band. This leads to a constant absorption of πα at
near-infrared and visible wavelengths. In this chapter, the optical properties at
even higher photon energies are considered. The band structure of graphene
exhibits a saddle point between two neighboring Dirac cones, so that the
approximation of the linear dispersion must break down at some point. As a
consequence, the optical absorption is expected to deviate from its constant
value for photon energies in the visible and ultraviolet regime.

This chapter covers the linear optical response of graphene near the saddle point.
After a theoretical treatment of saddle point phenomena like the van Hove singu-
larity (section 3.1), the experimental method based on transmission spectroscopy
of graphene in the ultraviolet and visible wavelength regime will be presented
in section 3.2. We will then show that the optical properties of graphene near the
saddle point can only be explained when many-body effects like electron-hole
interactions are taken into account (section 3.3). A simple model based on the
classical theory by Fano is presented in section 3.4 which is able to describe the
response down to near-infrared energies. In section 3.5, general properties of the
excitonic resonance in graphene and graphene-related materials as well as its de-
pendence on influences like doping will be discussed. Finally, we demonstrate
that the optical constants of graphene can be extracted from a fit to the Fano
model in combination with the Kramers-Kronig relations.

21
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3.1 van hove singularities in the band structure

In a solid state system, the electronic states form bands, described by a dispersion
relation E(~k) which relates the energy of the state with the electron wavevector ~k.
Many different wavevectors can result in the same energy. The density of states
ρ gives the number of states that fall within an energy range E to E+ dE

ρ(E) =
1

4π3

∫
dS~k

|∇~kE(
~k)|

. (3.1)

where dS~k is a surface of constant energy E. Obviously, the density of states
diverges at points where the dispersion relation E(~k) exhibits a horizontal
tangent, i. e. when ∇~kE = 0, as pointed out by van Hove [66]. The wavevectors
at which van Hove singularities occur are the critical points of the Brillouin zone.

Optical spectra are related to transitions between electronic states. The transition
probability Wif of transitions excited by a photon with energy E =  hω are
described by Fermi’s golden rule as

Wif ∼=
2π
 h

∣∣〈f|Ĥ ′|i〉∣∣2 ρj(E). (3.2)

|i〉 and |f〉 represent the initial and final states of the transition. Ĥ ′ is the
perturbation operator, which for optical transitions is proportional to the dot
product of the vector potential ~A and the dipole operator p̂ [67]. ρj(E) is the
joint density of states [68]. It is calculated according to equation 3.1, replacing
the electronic band E(~k) with the optical band Ecv(~k) = Ec(~k) − Ev(~k). Ec and
Ev are the dispersion relations of conduction and valence band, respectively
[69]. So-called optical critical points occur when∇~kEcv = ∇~kEc−∇~kEv = 0 [69].

Van Hove singularities are classified by the curvature of the bands when moving
away from the critical points. In two and three dimensions, a critical point can
represent a minimum or a maximum in the band separation or else a saddle
point, whereas in the one dimensional case only a minimum or a maximum is
possible. The behavior of the density of states in the vicinity of a critical point
depends on the type of the van Hove singularity as well as the dimensionality
of the system [67].

Looking at the band structure of graphene shown in figure 3.1a, we can identify
a saddle point at the M point in the Brillouin zone. Here, both electronic bands
and hence also the optical band Ecv have a horizontal tangent. Consequently, an
electronic and an optical critical point coincide at the M point of graphene. At a
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Figure 3.1: a) Band structure of graphene with Dirac point K, center of the Brillouin zone
Γ , and saddle point M. EvH is the energy gap at the saddle point.b) Schematic
dependence of the density of states and the optical conductivity on the en-
ergy in the vicinity of the van Hove singularity EvH at a saddle point in a two
dimensional system.

saddle point with energy gap EvH in a two dimensional system, the joint density
of states is given by

ρ(E) ∝ − ln|E− EvH|. (3.3)

Since the density of states is symmetric around the singularity, from Fermi’s
golden rule one would expect the optical spectrum to be also symmetric around
EvH as schematically shown in figure 3.1b. Towards lower energies, the linear
dispersion at the Dirac cones shapes the optical response. Here, the universal
value of the optical conductivity of σ(E) = πe2/2h should be recovered, corre-
sponding to a constant absorbance of πα ≈ 2.3% for monolayer graphene [52, 53].

3.2 experimental realization : transmission spectroscopy

To investigate the optical properties of graphene in the visible and ultraviolet
wavelength regime, different sample and measurement geometries are possible.
In the following, we will describe in more detail a transmission measurement of
free-standing graphene which has been published in [31].

Free-standing graphene samples can be fabricated by transferring graphene
from a substrate to an aperture of polymer resist. This geometry is advantageous
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Figure 3.2: a) Optical microscope image of a measured free-standing graphene layer,
taken in transmission mode. b) Schematic view of the experimental setup.
Adapted from [31].

as it eliminates potential influences of the substrate, so that the response is
purely determined by the optical properties of the graphene sheet. The graphene
flakes are first exfoliated from natural graphite on an oxidized silicon substrate.
The number of layers can be determined by the optical contrast in a microscope
image and by Raman spectroscopy. The sample is coated with a polymer resist
and apertures with a diameter of a few µm are written on top of the flakes using
electron beam lithography. After development, the structured polymer layer
together with the graphene flake are removed from the substrate by etching
the silicon dioxide in an alkaline solution. A typical free-standing graphene
sample is shown in figure 3.2a. Due to the 2.3% absorption in the visible, we can
identify the graphene sheets that extend over the holes in the polymer layer.

The transmission of the samples is measured in a confocal microscope (see fig-
ure 3.2b). The light source combines a tungsten halogen bulb and a deuterium
lamp, providing unpolarized white light with photon energies from 1.5 to 5.5 eV.
The light is focused onto the sample by an all-reflective Cassegrain objective and
the transmitted light is collected with a UV microscope objective. The spatial res-
olution on the sample is better than 1.5 µm, ensuring that only the free-standing
part of the graphene flake is measured. The transmitted light is analyzed in a
spectrometer consisting of a monochromator and a CCD camera as detector. The
spectrum is combined from exposures with two different gratings.
The transmittance T is defined as

T =
Tg − Tr
Tr

, (3.4)

where Tg is the transmission through the graphene layer and Tr the transmission
through an empty reference aperture. This normalization eliminates all spectral
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dependencies of the setup such as the lamp spectrum, possible dispersion
of the optical elements etc. The weak absorption of the thin graphene sheets
implies a negligible reflectance, hence the absorbance A follows directly from
the transmittance as A = 1− T .

The measured absorption spectra for monolayer and bilayer graphene are shown
in figure 3.3a. At low photon energies below 2 eV, the absorption spectra are
almost flat and approach the predicted value of πα and 2πα for the monolayer
and the bilayer sample, respectively. Towards higher energies, the absorbance
increases monotonically until it reaches a maximum value at about 4.6 eV.
Beyond the peak, it steeply decreases, thus giving rise to an asymmetric line
shape. The absorbance of graphene in the UV reaches a maximum of about 11%,
a strikingly high value for a single-atom thick system.

Our results are in accordance with those obtained from reflectivity measure-
ments on graphene on a silicon dioxide substrate [70] as well as the absorption
and transmission curves from ellipsometric data [71]. Both find an asymmetric
line shape and a redshift from the van Hove singularity. For graphene supported
on a transparent substrate with negligible absorption and refractive index ns, the
optical conductivity is related to absorbance and transmittance via [72, 70]

σ(E) ∝ A =
ns − 1

2
T =

n2s − 1

4
R. (3.5)
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Figure 3.3: a) Measured absorbance A = 1− T spectrum of free-standing mono- and bi-
layer graphene (red lines). The curves approach the universal value of πα and
2πα at lower energies, but the peaks are red-shifted compared to the energy
of the van Hove singularity (vH). b) Close-up up showing that the asymmet-
ric line shape of the monolayer spectrum (red line) cannot be brought into
agreement with a model neglecting electron–hole interactions (grey dashed
line). Figure adapted from [31].
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The reflectance contrast R is defined and measured in analogy to the transmit-
tance T (see equation 3.4). Due to these simple relations, the data obtained with
the different measurement methods can easily be compared.

To model the measured data, we first draw on the relations developed in the
previous section. We have seen that the spectral shape of the interband transi-
tions near the saddle point in a two dimensional system is proportional to the
joint density of states. To take inhomogeneous broadening due to carrier relax-
ation into account, the resulting line shape can be convoluted with a Gaussian
function of width γ. This simple single-particle model based on band-to-band
transitions thus predicts a symmetric absorption spectrum of the shape

A(E) = B+C

[
exp

(
−
(E− EvH)

2

γ2

)
⊗ [− ln|E− EvH|]

]
. (3.6)

EvH is given by the transition energy at the van Hove singularity, which is about
5.15 eV for monolayer and 5.0 eV for bilayer graphene [73]. The constant absorp-
tion at low energies from the Dirac cones is modeled as an offset B, so that the
constant scaling factor C and the width γ are the only free parameters.
However, this model utterly fails to describe the measured absorbance spectrum
as is shown in the close-up in figure 3.3b. The measured absorbance peak
is red-shifted compared to the position of the van Hove singularity to about
4.6 eV. However, even when the van Hove singularity is shifted to this energy
as in figure 3.3b, the pronounced asymmetry of the line shape disagrees
with the predicted symmetric response. Obviously, the absorption spectrum
of free-standing graphene in the visible and UV regime cannot be described
considering band-to-band transitions only. In this approximation, the charge
carriers are uncorrelated and interactions are not taken into account. We
therefore conclude that many-body effects cannot be neglected here and we will
address this issue in the next sections.

3.3 saddle point excitons and many-body effects

As we have seen in the previous section, the single non-interacting particle
picture fails to describe the absorption spectrum of graphene in the visible and
UV regime. A similar effect has been observed in the optical spectra of bulk
semiconductors such as CdTe or ZnTe [74], where the discrepancies between
experiment and theory based on band-to-band transitions have been explained
by Coulomb effects between electrons and holes at the critical points [75].
When an electron is excited from the valence to the conduction band, it will
interact with the remaining electrons in the valence band, which can also be
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described in terms of the interaction with a hole. Due to the attractive Coulomb
interaction between electron and hole, their motion will be correlated, resulting
in a bound electron–hole pair known as an exciton. Assuming that excitonic
states exist in the vicinity of the saddle point, the optical spectra of CdTe and
ZnTe have been explained successfully. Since the constant energy surfaces near
a saddle point have hyperbolic shape, such excitonic states are called hyperbolic
or saddle point excitons [67]. In analogy to the semiconductor example, we
will in the following assume an excitonic state near the saddle point in graphene.

Depending on the screening of the Coulomb interaction by the valence electrons,
excitons can be weakly to tightly bound. In semiconductors, where the bind-
ing energy of an exciton can be described in analogy to the hydrogenic atom,
the screening scales inversely with the dielectric constant of the material and is
usually on the order of a few meV [67]. In three dimensional bulk metals, the
screening is large and thus usually prevents correlated electron–hole pairs [76].
However, when the dimensionality is reduced such as in one-dimensional metal-
lic carbon nanotubes, the screening is weakened so that excitonic correlations
can occur [77].
The screening depends on the density of states near the Fermi energy. Graphene
is a semi-metal, so that the density of states vanishes at the Dirac point and
then grows linearly. In bilayer graphene, however, the density of states is
constant and nonzero near the Dirac point [16]. For Fermi energies near the
Dirac point, the screening ability of electrons in monolayer graphene is therefore
reduced compared to the bilayer. Hence, we expect that the exciton binding
energy, corresponding to the energy difference between the saddle point and
the discrete excitonic state, is larger in monolayer than in bilayer graphene.

The influence of excitonic effects on the optical response of graphene has
first been investigated theoretically by Yang et al. [73]. Using first-principles
calculations based on a many-body Green’s function, this approach indicates
remarkable effects of Coulomb interactions on the optical response of graphene.
According to these calculations, the attractive interactions between electrons and
holes dominates over the repulsive interaction between the electrons. Overall, a
red-shift of the absorption peak to about 4.5 eV with an asymmetric line shape
is predicted, which is in very good agreement with the effects observed in the
measurements.

Consequently and in accordance with the interpretation of other groups [71, 70],
it is a clear signature of saddle point excitons that is observed in the optical
spectrum of graphene in the visible and ultraviolet wavelength regime. Due
to the attractive interaction between electron and hole, these excitons form
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Figure 3.4: Band structure of graphene with the discrete excitonic state (marked as a
dot) near the saddle point M with resonance energy Er. Note that this sketch
merges one- and two-particle pictures for a more intuitive visualization. As
schematically shown on the right, a Fano resonance can be interpreted as
interference between transitions to a discrete state and a continuum of states.

a discrete state at an energy slightly below the saddle point as indicated in
figure 3.4. In the next section, we introduce a simple model to calculate the
optical response of graphene including excitonic effects.

3.4 interpretation of the spectrum with a classical fano model

To explain the influence of electron–hole interactions on the optical spectra
of semiconductors, Phillips drew on the classical theory developed by Fano
[78, 79]. In this picture, a resonance occurs when a discrete state couples to a
continuum of states, giving rise to an asymmetric line shape. Fano interpreted
this in a general approach by configuration interaction between two quantum
mechanical channels, belonging to transitions to the discrete state and the
continuum, respectively. In graphene, the discrete excitonic state near the M
point in the band structure overlaps with the continuum of states descending
from the saddle point down to the Dirac point, the so-called Dirac continuum,
as shown in figure 3.4.

With the Fano model, the resulting absorption spectrum has the form

AFano(E) = C
(s+ q)2

1+ s2
= C

(
1+

q2 − 1

1+ s2
+

2qs

1+ s2

)
, (3.7)

with

s =
E− Er

γ/2
. (3.8)
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The Fano resonance can be interpreted as interference between the two chan-
nels, i. e. between transitions into the continuum and to the discrete state (see
figure 3.4). Here, the discrete exciton state is modeled as a Lorentzian resonance
of width γ and energy Er. These quantities determine the parameter s. The unit-
free Fano parameter q is given by the ratio of the transition probabilities to the
discrete state and to the continuum. C is an overall scaling factor.
The three terms in the parentheses of equation 3.7 correspond to the spec-
trally constant absorption of the Dirac continuum, the discrete state, and the
interference, respectively. The interference term leads to the asymmetric line
shape, which can be ascribed to destructive interference between the channels.
Alternatively, it can be understood in terms of the phase change by π of the
Lorentzian in the vicinity of the resonance. For a negative Fano parameter
q, the interference term is positive below the resonance (s < 0) and negative
above (s > 0). Coming from low energies, this leads to the slow increase of the
absorbance toward the resonance and the steep decrease beyond. In the limit
of vanishing transitions into the continuum, the Fano parameter q becomes
infinite and equation 3.7 reduces to a Lorentzian, as expected. Far away from
the resonance Er, the transitions to the continuum dominate the response.

As can be seen in figure 3.5, a Fano model using equation 3.7 excellently de-
scribes the measured data over the entire spectral range for both monolayer and
bilayer graphene. The asymmetric peak in the ultraviolet is well reproduced in
line shape as well as position and there is a very good agreement also down
to low photon energies. Table 3.1 summarizes the resulting values of the fit pa-
rameters for the two measured samples as well as two other mono- and bilayer
samples. The low-energy limit A(0) of the absorption obtained from the fit pa-
rameters agrees well with the universal value of nπα (n = 1, 2). The relevance
of the other fit parameters is discussed in the next section in the context of the
intrinsic properties of the excitonic state.
Note that no signature of the direct interband transition at EvH appears in the
measured and fitted spectra. This can be explained in terms of a redistribution
of oscillator strength by the resonant excitons, in accordance with the theory
presented above [73].

Finally, we remark that the optical response of graphene is fully determined by
the topology of the band structure, whereas its detailed shape seems to be less
relevant. To illustrate this idea further, imagine the band dispersion of graphene
as a rubber sheet which is pinned down at all points corresponding to the Dirac
points in the band structure. If now the sheet is pulled up at the center of each
Brillouin zone, automatically a saddle point as well as a continuum of states
evolves. Following this topological reasoning, we suggest that the system can
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data set Er (eV) γ (eV) q C (%) A(0)/(πα) Eb (meV)

monolayer* 4.73 1.30 −3.3 0.9 0.82 420

monolayer 4.78 1.58 −3.6 0.7 0.75 370

bilayer* 4.70 1.63 −3.2 2.0 2.0 270

bilayer 4.73 1.39 −3.3 1.8 1.7 240

Table 3.1: Summary of the Fano fitting parameters and deduced values for different sam-
ples. The data sets marked with (*) are shown in figure 3.3 and figure 3.5. A(0)
is the absorbance at zero energy in units of πα. Eb is the exciton binding en-
ergy calculated from the difference between Er and the van Hove singularity
EvH.
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always be described with a single resonance, irrespective of the details of the
band structure such as the slope of the Dirac cones. Hence, it is not surprising
that we find an excellent agreement between our measured data and a Fano
model fit, even when ignoring details of the band structure.

3.5 properties of the excitonic resonance in graphene

3.5.1 General properties of the excitonic resonance

The fit parameters from the Fano interference model as listed in table 3.1 reveal
several properties of the excitonic resonance.
The binding energy of the exciton is calculated as the energy difference from
the resonance to the van Hove singularity as EvH − Er (see section 3.3). We find
values of about 400 meV for monolayer and 250 meV for bilayer graphene. This
confirms the reasoning given in section 3.3 that the binding energy is larger in
monolayer graphene due to reduced screening at the Fermi energy. The obtained
values of the exciton binding energy are surprisingly large, as compared to a few
tens of meV in metallic carbon nanotubes [77].
Whereas there is a systematic variation of the excitonic binding energy between
monolayer and bilayer, the other fit parameters γ and q are seemingly only sub-
ject to sample-to-sample variation. The linewidth γ corresponds to a lifetime
τ =  h/γ of the excitonic state. The large values of γ emerging from the Fano
fit indicate very short exciton lifetimes on the order of 0.5 fs. Moreover, the
linewidth exceeds the exciton binding energy by about a factor of three. Hence,
the exciton is strongly modified due to the coherent superposition with the con-
tinuum, or, in other words, the exciton quickly decays into the continuum of
states. Consequently, one speaks of an excitonic resonance rather than of truly
bound excitons in graphene. In this context, a resonant state describes a bound
state whose energy level overlaps with the band states of its host [67].

3.5.2 Influence of doping

The influence of doping on the excitonic resonance has been studied both ex-
perimentally and theoretically by Mak et al. [80]. The measured and calculated
optical conductivity spectra for different levels of doping are shown in figure 3.6.
In the experiments, a graphene field-effect transistor is prepared on a transpar-
ent quartz substrate and contacted with a transparent polymer electrolyte top
gate. That way, high carrier concentrations on the order of n ≈ 1014cm−2 of
both holes and electrons can be obtained, corresponding to a Fermi energy of up
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Figure 3.6: Calculated conductivity spectra σ(E) with quasiparticle lifetime effects in-
cluded (dashed red lines) are compared to experimental spectra (solid black
lines) for four different doping levels, given by the carrier density n. Adapted
from [80].

to 1.2 eV. At low photon energies, a progressive suppression of the absorption is
observed with increasing doping, as expected due to Pauli blocking of interband
transitions [81]. The absorption peak in the UV shows a redshift and becomes
broader as well as more symmetric for both electron and hole doping, whereas
the absolute peak height is not affected. All effects can be explained by the in-
creased dielectric screening which leads to a modification of the Coulomb inter-
actions. The enhanced screening weakens the electron–hole interactions, hence
giving rise to a more symmetric absorption peak. This agrees with the fact that
the symmetric line shape emerging from the band-to-band transitions should be
recovered in the limit of vanishing excitonic effects. The redshift of the resonance
is attributed to the repulsive electron–electron interaction which with increasing
doping dominates over the attractive electron–hole interaction. The increased
width of the peak corresponds to a decreased lifetime of the excitonic state. This
is the result of an increased density of states at the Fermi energy due to the
doping and hence an increased number of available decay channels.

3.5.3 Evolution with increasing layer number

As shown in section 3.4 and 3.5, bilayer graphene exhibits a slightly redshifted ex-
citonic resonance, so that the binding energy of the exciton is reduced compared
to monolayer graphene. With increasing layer number N = 1− 5, interlayer inter-
actions modify the band structure, also near the saddle point [82, 83]. Due to the
symmetry of the bands, however, only optical transitions with energies compara-
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ble to that of the monolayer are allowed. On the other hand, screening increases
with the thickness of the sample due to the increasing density of states at the
Fermi energy [16]. The peak position is a result of the competing contributions of
attractive electron–hole and repulsive electron–electron interaction, as discussed
above. While the attractive interaction dominates for monolayer graphene, both
contributions are increasingly screened and cancel for N > 3 [73]. This is un-
derlined by experiments showing that the optical conductivity increases almost
linearly with N and that the peak position exhibits only a negligible redshift [70]
which quickly converges towards the value of bulk graphite [84, 73].

3.5.4 Twisted bilayer graphene

So far, our discussions have focused on graphene sheets with the most com-
mon stacking, so-called Bernal stacking, where adjacent layers are shifted by one
atomic spacing. When the layers are twisted compared to the Bernal stacking con-
figuration, interlayer interactions perturb the band structure and additional van
Hove singularities emerge, as has been observed for example in bilayer graphene
with scanning tunneling spectroscopy [85]. These features are very interesting as
they can be tuned via the rotation angle. The rotation-induced van Hove sin-
gularities give rise to additional peaks in the optical spectra of twisted bilayer
graphene. In addition to the redshift of the peaks due to excitonic effects, co-
herent interactions between multiple van Hove singularities seem to cause a
redistribution of oscillator strength [86].

3.5.5 Graphene-related low-dimensional systems

When the dimensionality of graphene is further reduced by structuring it for
example into nanoribbons, excitonic effects will dominate the spectrum as a con-
sequence of enhanced Coulomb interactions. However, the band structure is com-
pletely altered compared to graphene so that the excitons observed in graphene
nanoribbons are of different nature. They are not related to a saddle point but
to van Hove singularities at the band gap or represent so-called dark edge exci-
tons [87, 88]. The emerging excitonic peaks in the optical spectrum depend on
the structure and width of the ribbons and are in the visible energy range for
few nanometer wide ribbons [89]. The behavior is very similar to that of one di-
mensional carbon nanotubes [90, 91, 92]. This does not come as a surprise, since
graphene nanoribbons essentially are unzipped carbon nanotubes.
Besides graphene, a lot of attention has been paid recently to other two dimen-
sional crystals that exhibit a hexagonal arrangement of atoms, the so-called
graphene analogues. Extensively studied systems are monolayers of hexagonal
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boron nitride as well as transition metal dichalcogenides (XY2, with X=Mo,W
and Y=S,Se,Te). These systems offer an interesting alternative to graphene
especially regarding optoelectronic applications as they possess sizable band
gaps of a few hundred meV up to a few eV, hence allowing to build switchable
devices. Excitonic states have also been observed in the optical response of these
materials in the visible and ultraviolet wavelength regime [93, 94, 10, 95]. As for
nanoribbons, these excitonic states are related to the band gaps at the K point of
the band structure.

3.6 derivation of the optical constants from the fano model

In the last section of this chapter, we would like to address an additional
benefit of the Fano model. In combination with the Kramers-Kronig relations,
the optical constants can be recovered from measured optical spectra. This
represents an interesting alternative to ellipsometric measurements that are
often used to determine optical constants.

In general, the complex refractive index and the complex dielectric function are
linked via

ñ = n+ iκ =
√
ε̃ =

√
ε1 + iε2. (3.9)

The real part n of the complex refractive index describes the dispersion. The
imaginary part κ is called the extinction coefficient and captures the absorption
of the material.
Kramers-Kronig relations describe the fundamental connection between the real
and imaginary parts of a system’s response to a sinusoidal perturbation. An
important application in optical spectroscopy is the calculation of the real refrac-
tive index from the extinction coefficient typically measured in transmission [69].
When both quantities are measured, the Kramers-Kronig relations are used to
check the consistency of the data.
In the formulation by Kramers [96], the real and imaginary part of the dielectric
function are connected by integral relationships as follows:

ε1(ω) − 1 =
2

π
P

∫∞
0

ε2(ω
′)ω ′

ω ′2 −ω2
dω ′ (3.10a)

ε2(ω) = −
2ω

π
P

∫∞
0

ε1(ω
′) − 1

ω ′2 −ω2
dω ′ +

4πσDC

ω
, (3.10b)

where P denotes the Cauchy principal value. Note that the DC conductivity,
σDC, vanishes for many materials, so that the last term in equation 3.10b is often
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neglected. To do this calculation correctly, in principle a measurement over the
whole frequency range from zero up to infinity is required. Unavoidably, the fi-
nite range of any measurement leads to inaccuracies. Several methods have been
suggested to improve the accuracy of the transformation and its convergence
[97]. However, even a finite spectral range leads to good results when the main
features of the function are captured and proper extrapolations are made. An im-
portant condition is that the considered functions decay faster than 1/ω so that
ε1 → 1 for ω → ∞. This behavior corresponds to a driven harmonic oscillator
that at large frequencies cannot follow the excitation anymore.
The accuracy of the optical constants derived with the Kramers-Kronig relation
is usually comparable to those derived from ellipsometric measurements which
critically depend on the choice of the physical model. The Kramers-Kronig
relations are therefore extensively used in many areas of spectroscopy, ranging
from photoemission and electron energy loss spectroscopy up to high energy
particle physics and acoustics.

In our approach, the optical constants of graphene are calculated from the Fano
fit to the measured absorbance spectrum shown in section 3.4. That way, the
spectral range is extended from the measured range of 1.5− 5.5 eV to the range
0.5− 12 eV in which the Fano is considered to be valid, hence improving the ac-
curacy of the deduced optical constants. For the calculation, the infinite integral
in equation 3.10a is transformed into a sum over a finite number of N energy
increments:

ε1(E) − 1 =
2

π
∆E

N∑
k=1

ε2(k) E(k)

E(k)2 − E(j)2
, (3.11)

where the summand for k = j is zero to exclude the pole from the integration.
The absorption (or transmission/reflection) curve resulting from a Kramers-
Kronig consistent set of optical constants ε1, ε2 is calculated with a transfer
matrix method [98]. Based on the Fresnel coefficients, this method describes the
propagation of light through a multilayer system as a function of the thicknesses
and the optical constants of the individual layers. It has been used already in the
early days of graphene to study its visibility on different substrates [63]. In our
fitting routine, the optical constants are varied until the absorption spectrum
calculated with the transfer matrix method fits the measured curve best. The
optical constants derived from the Fano model are shown in figure 3.7. Within
the measured wavelength regime, there is a good qualitative agreement with
the optical constants of graphene [71, 99] as well as of graphite [84, 100].

Having the optical constants at hand, the response of graphene on an arbitrary
substrate can be calculated with the transfer matrix formalism [63]. In this case,
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Figure 3.7: The Kramers-Kronig consistent optical constants n and k of graphene derived
from the Fano model in the visible and UV wavelength regime.

usually reflectivity contrast measurements are performed as described in sec-
tion 3.2. The calculations are a simple method to predict the value and spectral
dependence of the optical response, giving hence also an estimate of the visibil-
ity of the graphene flakes on the substrate. It will be used in chapter 4 where
the influence of strain on the optical spectrum is studied. The transfer matrix
method is discussed in detail in section 4.3.



4
E F F E C T O F S T R A I N O N T H E O P T I C A L P R O P E RT I E S O F
G R A P H E N E

In the previous chapter, we have seen that the excitonic Fano resonance arises
from the saddle point in graphene’s band structure. As long as the overall shape
of the band structure is retained, the optical spectrum in this wavelength regime
is very robust towards modifications for example due to doping or interlayer
interactions. Hence, in order to induce profound changes in the spectrum, the
band structure of graphene must be modified. An intriguing possibility to
controllably alter the band structure is strain. The effect of strain on graphene’s
properties is subject of intensive research, mainly with respect to its electronic
properties [101]. In this context, the opening of a band gap at the Dirac points
has long been discussed [102, 103], but finally shown to be hardly achievable
under realistic experimental conditions [104, 105, 106]. Nevertheless, strain
engineering is of high interest as it offers to create and tailor local gauge fields
[104, 106, 107]. This might even induce a superconducting state in graphene, as
is suggested by theory [108]. In practice, the strain dependence of the electrical
resistance has been successfully used in sensor applications [109, 110]. With
regard to the great potential of graphene for optoelectronic applications such
as printable and foldable displays and devices [111, 112], a study of the optical
properties of graphene under strain is certainly indispensable.

In this chapter, the effects of uniaxial strain on the optical spectra of graphene
will be examined. After introducing the concept of uniaxial strain and discussing
the resulting modifications in the band structure (section 4.1), the experimen-
tal setup combining reflectivity and Raman measurements is presented in sec-
tion 4.2. The optical properties of graphene on different flexible substrates are
analyzed in the central part of this chapter. In section 4.3, we briefly give an
overview of the calculation of optical responses with the transfer matrix method
and compare the results from theory and experiment in section 4.4. The amount
of strain applied to the samples is quantified from in-situ Raman measurements
(section 4.5). Finally, we discuss our results on the behavior of the optical spec-
trum of graphene under strain in section 4.6.

37
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4.1 uniaxial strain : breaking the symmetry

The most simple way to deform a graphene sheet is to stretch it along one di-
rection, applying uniaxial strain. Most experimental and theoretical studies of
graphene under strain consider this deformation method. In contrast to symmet-
ric strain where the symmetry of the lattice remains unchanged, uniaxial strain
is asymmetric and breaks the hexagonal symmetry of the lattice.
Considering a graphene sheet as shown in figure 4.1, different distinct directions
can be identified. Most prominent are the so-called zigzag (ZZ) and armchair
(AC) directions which repeat every 60

◦ due to the hexagonal symmetry. A
symmetry breaking in the lattice due to strain at the same time breaks the
hexagonal symmetry in the Brillouin zone, where the Dirac points are shifted
from the corners of the original hexagon as indicated in figure 4.2a. Obviously,
the changes in the BZ and hence the behavior of the electronic states depend
critically on the strain direction.

The strain-induced anisotropy in the band structure can be calculated with a
modified tight-binding approach [114]

H =
∑
~R,~δ

t(~δ)a†~R
b~R+~δ + h.c. (4.1)

where ~R is the position vector and ~δ = ~δ1,2,3 the connection of site ~R to the next
neighbors. The hopping parameter t(~δ) reduces to the unperturbed scalar value
in the absence of strain. In the linear elastic case, the deformed lattice distances
~δ are related to the unperturbed ones ~δ0 by [114]

~δ = (1+ ε) ·~δ0. (4.2)

zigzag strain armchair strainq = 0°

Figure 4.1: Main directions and corresponding strain in the graphene lattice (blue:
zigzag direction, green: armchair direction). The strain angle is defined rela-
tive to the armchair direction.
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Figure 4.2: a) Graphene lattice under zigzag and armchair strain and induced changes
in the band structure. b) Corresponding band structure, calculated with den-
sity functional theory for 10% strain compared to the tight-binding model
without strain. Shown is a cut along the important points of the unperturbed
BZ. Adapted from [113].

ε is the strain tensor [115]

ε = ε

(
cos2 θ− ν sin2 θ (1+ ν) cos θ sin θ

(1+ ν) cos θ sin θ sin2 θ− ν cos2 θ

)
(4.3)

which depends on the strain angle θ as indicated in figure 4.1. ε is the tensile
strain applied to the sample. ν is the Poisson’s ratio, which is ∼ 0.14 for free-
standing graphene corresponding to the in-plane Poisson’s ratio of graphite [116]
or otherwise represents the value of the used substrate when perfect contact is
assumed. Of particular interest are the deformed bond lengths for strain along
the AC and ZZ direction at θ = 0◦ and θ = 90◦, respectively:

AC : |~δ1| = |~δ3| = 1+
3

4
ε−

3

4
εν, |~δ2| = 1+ ε (4.4a)

ZZ : |~δ1| = |~δ3| = 1+
3

4
ε−

1

4
εν, |~δ2| = 1− εν (4.4b)

The inverse lattice vectors can be calculated with equation 4.4, confirming
the above-mentioned shifting of the Dirac points. In addition to the bond
deformation, the hopping parameter t(~δ) changes with strain, but cannot be



40 effect of strain on the optical properties

straightforwardly determined [114]. Moreover, next nearest neighbor hopping
as well as many body effects have been neglected so far.

We therefore draw on calculations performed with density functional theory
(DFT) where both next nearest neighbor hopping and many-body effects are
included. As an additional benefit, this also allows a prediction of the behavior
of the optical spectra under strain (see section 4.6). The results for the band
structure from Liang et al. [113] are obtained with DFT in the local-density
approximation and are shown in figure 4.2b. The shifting of the Dirac points is
well reproduced. What is of special importance regarding the optical spectrum
of graphene is the behavior at the saddle points. While neighboring saddle
points M and M’ are degenerate in the unperturbed case, this degeneracy is
lifted for both strain directions. As the transitions at the van Hove singularities
are related to the optical absorption, we expect a splitting and shifting of the
Fano resonance of graphene in the UV. This chapter aims at the observation of
such behavior in the optical spectrum.

4.2 experimental realization : reflection and raman spec-
troscopy

Compared to the measurements on free-standing graphene presented in sec-
tion 3.2, the experimental method needs to be adapted and extended in order
to study the strain dependence of the optical spectra. First, we now consider
graphene supported on flexible substrates, so that reflectivity instead of trans-
mission is observed. Moreover, a Raman path is added to the setup, allowing
to characterize the samples and to monitor perturbations. Finally, a four-point
bending device is used to apply uniform uniaxial strain.

4.2.1 Reflectivity setup

The reflectivity experiment has been set up by diploma student Patrick Her-
linger, detailed information about the setup and its individual components
can be found is his thesis [117]. A simplified sketch of the setup is shown in
figure 4.3.

The white light source (Ocean Optics DH-2000) consists of a combined tungsten
and halogen lamp, providing light with photon energies between 1.5 and 5.5 eV.
The most critical component is the beamsplitter as our measurements require
a constant splitting ratio over the whole energy range. Here, a customized
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Figure 4.3: Schematic overview of the reflectivity setup.

all-dielectric 50:50 beam splitter (Cascade Optics) proved to be the best choice
with regard to spectroscopy as well as imaging applications. The all-reflective
Cassegrain objective (Davin Optronics 74x) now focuses and recollects the
reflected light. To navigate and position the white light spot on the sample, a
home-built wide field microscope unit can be integrated into the setup when
necessary. Spectral analysis is done with a monochromator (Princeton Instru-
ments Acton SP2500) equipped with a UV-enhanced CCD camera (Princeton
Instruments Pixis 100). The complete spectrum is merged from two exposures
with different gratings covering the UV and the visible wavelength regime,
respectively.

As mentioned in section 3.2, the reflectivity of the graphene flakes is given in
analogy to transmittance by

R =
Rg − Rs
Rs

(4.5)

corresponding to the reflection contrast between the supported graphene flake
(Rg) and the bare substrate (Rs). Again, this normalization eliminates the intrin-
sic spectral dependencies of the setup.

4.2.2 In-situ Raman measurements

To characterize the measured samples as well as to monitor eventual per-
turbations, a Raman path is included in the existing setup. Here, an in-situ
implementation as shown in figure 4.4 is desirable. This permits to quickly
switch between the reflectivity and the Raman measurement mode by inserting
and removing a flip mirror while the sample does not have to be moved.
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Figure 4.4: Implementation of the in-situ Raman characterization method.

The intensity of the scattered Raman light increases with decreasing wavelength
λ0 of the excitation light as I ∝ 1/λ40. However, for excitation at blue wave-
lengths, the absorption of graphene and potentially also the substrate increases
so that the samples heat up more easily. Moreover, usually a larger fluorescence
background is observed in this case. As a compromise and due to availability,
we use a pump laser (Coherent Verdi V8) at a wavelength of 532 nm. This
laser provides very stable and narrow-linewidth output which is essential for
Raman measurements. To avoid heating-induced shifting of the Raman peaks,
the laser power on sample is kept below 2 mW. Behind the laser, a clean-up
filter (Semrock HC Laser Clean-up MaxLine 532/2) transmits light at 532 nm
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Figure 4.5: a) Raman spectrum of a bulk PET sample. The inset shows the fundamental
building block of the polymer. The most prominent peaks at 1300 cm−1,
1615 cm−1, and 1730 cm−1 correspond to C–O stretching, breathing of
the ring, and stretching of the C=O double bond. b) Raman spectra of
graphite and graphene on quartz. The G and 2D modes can be identified
at ∼1650 cm−1 and ∼2700 cm−1, respectively, and show the expected line
shapes.
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only. A very steep Notch filter (Semrock Single Notch Filter 532/17 – U grade)
blocks the excitation light and allows the observation of the Raman lines that
are shifted to higher and lower energies.

The intensity ratio of these so-called Stokes and Anti-Stokes lines is given by
the occupation probabilities n of the initial states which follow a Boltzmann
distribution:

IAS
IS

=
n(ν = 1)

n(ν = 0)
= exp

(
−
hνm

kT

)
(4.6)

At room temperature and for a mode energy of νm = 1000 cm−1, this gives
a value of e−5 ≈ 0.7%. In our experiments, we hence observe the redshifted
Stokes lines only. To get an overview of the whole relevant wavenumber regime,
a low-resolution grating with 150 l/mm is used in the spectrometer, while
a grating with 1800 l/mm yielding a high resolution of ∼1 cm−1 is used to
monitor the individual Raman lines.

To check the performance of our Raman setup, we first take a Raman spectrum
of a PET block as shown in figure 4.5a. We observe good agreement with lit-
erature data (see for example [118]) and can even assign the individual peaks
to different vibrational modes. As a next step, we measure exfoliated graphene
on a quartz substrate, which has the advantage that quartz itself does not ex-
hibit Raman modes in the condsidered energy regime. The resulting spectra of
multi- and monolayer graphene are shown in figure 4.5b. The position as well as
the line shape of the G and 2D mode agree well with the reference spectra (see
figure 2.7b), proving the performance of our in-situ Raman measurements.

4.2.3 How to apply strain: bending method

To complete our experimental setup, we need a method to apply strain to the
samples. Our experiment imposes several conditions on the straining device:

- we need uniform strain over an area of 10x10 mm2,

- the amount of strain should be controllable and ideally reach values up to
about 5%,

- accessibility with the Cassegrain objective (working distance 1 mm, diame-
ter ∼30 mm) is crucial.

To meet these requirements, we developed a four-point bending device as shown
in figure 4.6a. Bending has the advantage that it can easily be implemented in
the experiment. As the bending radius is always large compared to the size of
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Figure 4.6: a) Strain is applied to the sample (3 mm thick PET block) with a four-point
bending device (a = 1 cm). The outer pins (black) are fixed while the inner
pins (red) are moveable with the linear stage (25 mm travel). b) Important
parameters for beam bending theory, allowing to estimate the amount of
strain applied to the sample. R is the bending radius, h the sample thickness,
dα the central angle, and ds/ds ′ the neutral/deformed length element.

the flakes, out-of-plane curving can be neglected, so that the applied strain is
uniaxial. Four-point bending is advantageous as it results in a uniform amount
of strain between the two inner pins. The exact position of the graphene flake
on the substrate is then less critical. The distance between the outer pins is 4 cm,
which ensures accessibility with the objective.

The amount of strain that is applied to the samples can be calculated from beam
theory [119]. The relevant parameters are given in figure 4.6b. When the sample
is bent, strain increases linearly from the inner side with compressive strain
(ε < 0) to the outer side with tensile strain (ε > 0). The so-called neutral fiber
at h/2 does not change its length ds = Rdα, while the outer fiber is stretched to
ds ′ = (R+ y)dα. Consequently, the tensile strain is

ε =
ds ′ − ds

ds
=
y

R
. (4.7)

For our four-point bending device with a travel l of the inner pins, the strain can
be estimated from [120]

ε =
y

R
=
3ly

4a2
. (4.8)

For a = 1 nm and a 1 mm thick sample, 5% strain correspond to a travel
of l ≈ 13 mm while for a 5 mm thick sample, the minimum step size of
∆l = 0.05 mm still gives good controllability of the strain with ∆ε ≈ 0.1%. The
bending device hence meets all the requirements.
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4.3 calculation of the optical response of multilayer systems

with a transfer matrix formalism

In section 3.6, we have seen that the optical constants of graphene in the con-
sidered wavelength regime can be derived from the Fano fit to the absorption
spectrum with the help of the Kramers-Kronig relations. The general optical
response of graphene embedded in a multilayer system can be calculated with a
transfer matrix formalism that is based on the Fresnel coefficients. The number,
order, and thickness of the layers can be easily varied while only the optical
constants of the individual layers need to be known. In the following, we will
give a short overview over the formalism, a more detailed description can be
found for example in [98].

Basically, the approach treats two phenomena separately and combines them
by matrix multiplication. First, light is refracted and partially reflected at each
interface. The electric field in each layer can be split into two components E+i
and E−i for the light travelling to left and to the right, respectively (considering a
vertical interface and light travelling from left to right). The electric fields on the
two sides i and j of the interface are linked via the interface transition matrix

Tij =
1

tij

(
1 rij

rij 1

)
(4.9)

as (
E+i

E−i

)
= Tij

(
E+j

E−j

)
. (4.10)

The Fresnel coefficients for reflection rij and transmission tij for normal inci-
dence depend on the refractive index n of the layers and are given by

rsij = −rpij =
ni −nj
ni +nj

(4.11a)

tsij = t
p
ij =

2ni
ni +nj

. (4.11b)

s and p indicate the components for polarization perpendicular and parallel to
the plane of incidence, respectively. Second, the propagation of the light through
the individual layers must be taken into account. The layer propagation matrix
for layer j with thickness dj is

Pj =

(
e−iβj 0

0 eiβj

)
(4.12)
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with

βj =
2π

λ
nj(λ) dj. (4.13)

The response of a multilayer is then calculated by multiplying the electric field
vector of the incoming light with the propagation and interface matrices of the
individual layers. This multiplication can be condensed into a single transfer
matrix M. The total reflection and transmission coefficients are simply given by

r =
M12

M22
and t =

1

M22
, (4.14)

yielding the reflection R = |r|2 and transmission T = γ |t|2, where γ = nN/n1 for
a system of N layers. Note that absorption A = 1− T − R occurs in the presence
of absorbing layers with non-zero imaginary part of the refractive index. This
method allows also the quick estimation of contrast signals by calculating two
systems that differ in one layer only.

In the next section, the transfer matrix method based on the optical constants
of graphene derived from the Fano fit is used to calculate the reflectivity of
graphene on different substrates.

4.4 visibility and raman spectrum on various substrates

Regarding the strain experiments, we would like to measure the optical spec-
trum of graphene on a flexible substrate. Here, different choices are possible but
several aspects must be taken into account and verified before strain is applied.
An obvious choice for a flexible substrate are plastics, i. e. polymers like PET
(poly(ethylene terephthalate)) or PMMA (poly(methyl methacrylate), plexiglas).
Also very thin glass substrates with a thickness of 50 or 100 µm offer sufficient
flexibility. Last, PDMS (polydimethylsiloxane) combines high flexibility with
stickiness, hence promising good adhesion.

The graphene transfer process as described in section 2.3 suggests the removal of
the PMMA transfer membrane with acetone as the last transfer step. This is not
possible with the polymer substrates as they would be damaged and partially
dissolved. On the other hand, the presence of the membrane causes unwanted
interference effects in the spectra. As an alternative to transfer, graphene can be
exfoliated directly on the plastic substrates. Especially when no marker system
is available, it is crucial to check if the visibility of the flakes on the considered
substrate is high enough. In addition to visibility, the shape of the optical



4.4 visibility and raman spectrum on various substrates 47

spectrum must allow the observation of changes in the vicinity of the saddle
point transition, i. e. at about 290 nm. Moreover, the Raman spectrum on the
considered spectrum must be conclusive. The Raman lines of graphene should
not be hidden behind substrate modes or a large luminescence background.

The reflectivity and Raman spectra of graphene on different substrates are sum-
marized in figure 4.7 and will now be discussed individually. All samples have
been fabricated by direct exfoliation of graphene without a transfer process. Thin
glass (Schott D263Teco 100 µm), PMMA (Evonik Plexiglas Foil 0.375 mm), and
PET (Mitsubishi Hostaphan 350 µm) substrates have been purchased while the
PDMS is fabricated from raw materials in-house (Dow Corning Sylgard184 Kit).
The measured reflectivity spectra are compared to calculations with the transfer
matrix code using tabulated data [121, 122] for the optical constants of the sub-
strates. Although the polymers show a variety of Raman modes, identification
of the G and 2D peaks of graphene is still possible.

i) Thin glass:

As shown in figure 4.7a, the Fano resonance is retained in the optical spectrum
of graphene on the glass substrate. The reflectivity reaches a maximum value of
about 35% and decreases to about 8% in the visible region, which is sufficient
to identify monolayer flakes. Regarding the Raman spectrum in figure 4.7e, the
Raman modes of graphene can be easily identified as the glass shows no lines
itself. The glass substrate is hence well suited for the strain application.

ii) PMMA:

Also on the PMMA substrate, a Fano lineshape is observed in the reflectivity
spectrum shown in figure 4.7b. The maximum reflectivity is about 30% while
the visibility at green and red wavelengths is about 10%. The Raman spectrum
in figure 4.7f exhibits a variety of modes. Although most arise from the substrate,
the Raman lines of graphene can still be identified at the expected wavenumbers
as indicated. Therefore, also PMMA complies with the conditions.

iii) PET:

Regarding the reflectivity spectrum of graphene on PET shown in figure 4.7c, a
different behavior is observed. The original Fano lineshape is modulated with
a maximum reflectivity of only 8% and drops below 4% at visible wavelengths.
This behavior is due to the non-negligible absorption of PET, which renders
an identification of graphene flakes almost impossible. Moreover, it hampers
the observation of strain-induced changes in the reflectivity spectrum. Also the
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Figure 4.7: a-c) Calculated and measured reflectivity of graphene on different substrates:
a) glass, b) PMMA, c) PET and d) PDMS. e-h) Corresponding Raman spectra.
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Raman spectrum in figure 4.7g is more complex. While the 2D mode can be
easily identified, the G mode is found in the flank of a PET Raman mode. Overall,
PET as substrate material is not a good choice due to the distorted reflectivity
spectrum with weak visibility.

iv) PDMS:

As shown in figure 4.7d, the Fano resonance in the reflectivity spectrum is again
retained on the PDMS substrate. Maximum value and visibility are comparable
to those obtained with glass and PMMA. In the Raman spectrum in figure 4.7h,
the graphene modes can be clearly identified. The PDMS substrate seems to be
applicable in the strain experiments.

There is a good agreement between the measured reflectivity spectra and the
spectra calculated with the transfer matrix formalism for glass, PMMA, and
PET. This is essential in order to analyze the strain-induced changes in the
spectra, i. e. in the optical constants of graphene. Regarding PDMS, although
the overall shape agrees well, the reflectivity is considerably underestimated. In
contrast to the other substrates, the optical constants here depend critically on
the exact recipe and raw materials used to fabricate the PDMS. It seems that the
values found in the literature [122] are not appropriate here. Due to the good
quality of the signals, the PDMS substrate will still be considered in the further
experiments.

4.5 quantifying strain with raman spectroscopy

After having studied which substrates are suitable for the investigation of strain
on the optical properties of graphene, strain can be applied in a next step. The
amount of strain on the samples can be estimated from beam bending theory as
described in section 4.2 (see equation 4.8). However, one cannot safely assume
perfect adhesion of the flakes to the substrates. It is thus indispensable to have
a reference measurement that directly quantifies the amount of strain applied to
the graphene flakes. Here, Raman spectroscopy offers the possibility to not only
characterize the samples but has been shown to represent a reliable strain gauge
[116]. Conveniently, it at the same time allows to determine the crystallographic
orientation of the graphene flakes when the crystal symmetry is broken by strain
[123].
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4.5.1 Strain dependence of the Raman modes

When graphene is subject to tensile strain, in general a redshift of the phonon
modes is observed, i. e. a phonon softening [103, 116, 123]. This can be explained
by the elongation of the carbon–carbon bonds due to the stretching, which leads
to a bond weakening and hence a lower vibrational frequency [103]. The rate of
the shift depends on the anharmonicity of the interatomic potentials [123] and
is quantified by the Grüneisen parameters γ and β for hydrostatic and shear
deformation, respectively [124].

For the doubly degenerate E2g phonon which gives rise to the G mode, they are
given by

γE2g = −
1

ω0E2g

δωhE2g
δεh

and βE2g =
1

ω0E2g

δωsE2g
δεs

(4.15)

where the indices h and s mean hydrostatic and shear, respectively. The overall
behavior of the E2g mode under uniaxial strain is described by [116]

∆ωG± = ∆ωhE2g ±∆ω
s
E2g

= −ω0GγE2g(1− ν)ε±
1

2
ω0GβE2g(1+ ν)ε

(4.16)

in dependence of the Poisson’s ratio ν and the applied strain ε. This corresponds
to a shifting and a splitting of the G peak into two subbands named G+ and G−.
The behavior of the 2D mode is in general more complex as it is affected by any
change in the band structure in contrast to the zone center only in case of the G
mode. This can lead to peak broadening and splitting [65].

Several groups have published their results on the strain dependence of the
Raman modes of graphene. We trust the study of Mohiuddin et al. [116] because
it on the one hand represents the most complete and reliable investigation and
on the other hand constitutes the highest values for the shifting of the modes.
Moreover, a similar measurement method is used. Their results will therefore
serve as a reference for our measurements. We suspect, as will also be the case
in our experiments later in this section, that adhesion is not perfect in the other
experiments, which leads to an overestimation of the applied strain. Mohiuddin
et al. [116] obtain values of ∼ −64 cm−1/% for the shifting of the 2D mode with
increasing strain and ∼ −10.8 cm−1/% and ∼ −31.7 cm−1/% for the G+ and G−

modes, respectively. For a Poisson’s ratio of ν = 0.33 (graphene on PET), this
corresponds to Grüneisen parameters of γE2g = 1.99 and βE2g = 0.99, which
agrees well with first-principles calculations [116].
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In a next step, we would like to see the effect of strain on the Raman spectrum
of graphene in our experiment. According to the outcome of the last section,
substrate materials to be considered here are thin glass, PMMA, and PDMS.
In the following, the results of the individual measurements are summarized
and compared to the reference. The intensity ratio and the exact position of the
Raman peaks depends on the used substrate [65]. As we do not consider absolute
intensities or peak positions, this does not restrict the applicability of our strain
calibration method.

i) Thin glass:

The 2D Raman peak of graphene on glass is shown in figure 4.8a. When the
substrate is bent, strain should be applied and a shifting of the Raman peak is
expected. However, no shifting of the 2D peak position is observed as indicated
by the red data points in figure 4.8b. As the Poisson’s ratio of glass ν = 0.2
[125] is smaller than that of PET used in the reference, the resulting shift per
1% strain should be less distinct but still clearly visible. We therefore conclude
that the adhesion of the flake to the substrate is weak so that no strain is actu-
ally applied to the graphene. To improve the contact, gold bars are fabricated
with electron beam lithography to clamp the flake to the substrate as shown
in figure 4.9. Data points measured on the clamped structure are indicated as
black crosses in figure 4.8b. Strikingly, also this method does not yield an im-
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Figure 4.8: a) 2D Raman peak of graphene on a thin glass substrate measured with a
high-resolution grating, integration time 10 min, binning 4 pixels. The peak
position can be extracted from a Lorentzian fit (dark red line). b) While the
reference predicts a strong shifting of the 2D mode with increasing strain
(grey dashed line), no change in the peak position is observed here (red
dashed line). Red crosses mark data points where the flake is clamped while
black crosses indicate measurements without clamps. Stretching corresponds
to the nominal value of strain calculated from equation 4.8.
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20µm

monolayer
gold bars

Figure 4.9: Microscope image of a monolayer graphene flake on glass, clamped with
gold bars fabricated by electron beam lithography to improve the adhesion.

provement. Commonly, thin glass substrates are provided by the manufacturer
with a layer preventing adhesion between individual substrates. We suspect that
this layer has not been completely removed in our standard cleaning process
involving acetone and isopropanol baths. Unfortunately, more intense treatment,
for example with ultrasound, is not possible here as the ultrathin substrates are
very fragile. This sample geometry will therefore not be considered further.

ii) PMMA:

The Raman spectra of graphene on PMMA for different degrees of bending are
shown in figure 4.10a and c. Clearly, a shifting to lower frequencies is observed
for both the G and the 2D mode. The position of the respective peaks obtained
from a Lorentzian fit to the spectra is plotted in dependence of the nominal strain
in figure 4.10b and d. From a linear fit to the data points, we find a shift of ∼

−52 cm−1/% for the 2D mode and ∼ −25 cm−1/% for the G mode. Considering
the Poisson’s ratio ν = 0.36 of PMMA [126], these values do not reach those
of the reference (∼ −64 cm−1/% (2D) and ∼ −32 cm−1/% (G−)). The reference
values fit excellently to the measured data when an offset of 0.18% is assumed in
the stretching (see dashed lines). We attribute this to an error in the adjustment of
the zero position of the straining device. Overall, comparing our measurements
to the reference, we achieve almost 0.6% strain on the graphene sample using
a PMMA substrate. Repeated up- and down-cycling of the stretching did not
result in major deviations or hysteresis so that this method is very reliable (see
figure 4.10b and d). It is noteworthy that the G+ mode seems to be suppressed in
our experiments, as the spectra can always be fitted with a single Lorentzian line
only and its position agrees well with the G− mode. We think this could be due to
the substrate choice and refer to other measurements where also no splitting was
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Figure 4.10: Behavior of the Raman modes of graphene on PMMA with strain. a, c) G
and 2D mode measured with the high-resolution grating for increasing
bending, integration time 12 min. b, d) Shifting of the G and 2D mode
obtained from repeated stretching and relaxing with linear fits (light gray
dashed lines). Peak positions are again extracted from Lorentzian fits to the
spectra. Assuming an offset of 0.18% in the stretching, the slope of the lin-
ear fits is in excellent agreement with the reference (dark gray dashed lines).
This offset directly gives the strain values (top axis).
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observed [103]. Nevertheless, this does not limit our strain calibration method as
the G− and 2D mode show the expected behavior.

iii) PDMS:

At last, we investigate the strain dependence of the Raman modes of graphene
on a PDMS substrate. Also here, clearly an effect is visible as shown in fig-
ure 4.11a and c. While the 2D mode is redshifted, here we see a shifting and also
a splitting of the G mode. However, in the plot of the peak positions over the
stretching a nonlinear behavior arises, see figure 4.11b and d. Although some
stretching steps result in a considerable peak shift, other data points indicate a
backshifting towards the original peak position. Apparently the PDMS relaxes
in a nonlinear way, which is also confirmed by the observation of a distinct drift
of the focus during the measurements. Due to this nonlinearity, we deduce the
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Figure 4.11: Strain-induced changes in the Raman modes of graphene on PDMS. a) Split-
ting and shifting of the G mode with Lorentzian fits. b) Shifting of the G+

and G− modes. c) 2D mode. d) Shifting of the 2D mode with Lorentzian fits.
In b) and d), the applied strain has been calculated from the shifting of the
peaks due to the nonlinear behavior.
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applied strain directly in comparison to the reference, as shown in the top axis
of the plots. We neglect the influence of the Poisson’s ratio which is slightly
higher here ν=0.5 [126] and emphasize that this method is not accurate, but still
allows a rough estimate of the applied strain. That way, we see that up to ∼ 0.9%
strain can be applied with the PDMS substrate.

In summary, our experiments indicate missing adhesion of graphene on the thin
glass substrates, so that this sample geometry will not be considered in the fol-
lowing. In case of the PMMA and PDMS substrates, we successfully verified that
strain is applied to the graphene flakes with the help of in-situ Raman measure-
ments. Moreover, the amount of strain can be quantified when the spectra are
compared to a reference measurement. While PMMA sample gives a very repro-
ducible behavior with a maximum strain of ∼ 0.6%, the PDMS sample shows a
nonlinear behavior but allows slightly higher strain values up to ∼ 0.9%. These
results constitute a good basis to study the effects of strain on the excitonic Fano
resonance of graphene in the following section.

4.5.2 Determination of the lattice orientation

In the investigation of the effect of strain on the optical spectrum of graphene,
we will see later (section 4.6) that the behavior depends on the orientation of
the graphene lattice relative to the stretching direction. The crystal orientation
of strained graphene can be determined from the polarization dependence of
the Raman peaks, which will be shown in the following at the example of the
sample with graphene on PMMA.
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tion of the strain axis with respect to the armchair direction in the graphene
lattice. In our experiment, the polarization of the excitation light is perpen-
dicular to the strain axis. The image shows the actually measured flake.
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Figure 4.13: a) Polarization dependence of the G+ and G− Raman modes: the excitation
polarization is kept constant (perpendicular to the strain axis) and the po-
larization of the scattered light is probed with an analyzer. Step size is 15

◦,
integration time 15 min per spectrum. b) Polar plot of the intensity of the
G− mode (sum over 5 cm−1 to reduce noise) with a sin2 fit from which the
strain angle can be determined.

Above we have seen that the G mode exhibits a splitting into two subbands
when strain is applied. As is shown in figure 4.12a, this is due to the orthogonal
phonon displacements: the displacement regarding the G+ mode is perpendic-
ular to the strain axis, whereas it is parallel in case of the G− mode [116]. The
emission probability of these phonons depends on the excitation polarization θin,
the analyzer polarization θout, and the strain angle θs as defined in figure 4.12b.
While the angles θin, out are known with respect to the strain axis, the angle θs

between strain axis and crystallographic axis (armchair direction) is unknown.
It can however be determined from the polarization dependence of the intensity
of the G± modes, which is given by [123]

I(G−) ∝ sin2(θin + θout + 3θs) (4.17a)

I(G+) ∝ cos2(θin + θout + 3θs) (4.17b)

The factor of three for the strain angle arises from the symmetry of the lattice.

In our Raman experiments, the orientation of the excitation polarization is fixed
and perpendicular to the strain axis, so that θin = 90◦. The strain angle can
hence be directly extracted from a measurement of the analyzer polarization
dependence of the G± modes as shown in figure 4.13a. We observe a clear
sin2 behavior of the G− mode. Also the G+ mode is now observed, however,
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it is still very weak and its polarization dependence cannot be evaluated as
the signal barely exceeds the noise. Figure 4.13b shows a polar plot of the
intensity of the G− mode with a sin2 fit. From the fit, we obtain the strain angle
θs = 1

3(9.9
◦ − θin) = −26.7◦ which is very close to the zigzag direction at an

angle of 30◦ relative to the armchair direction.

4.6 effect of uniaxial strain on the excitonic fano resonance

In this last section, we will investigate the strain-dependence of the optical spec-
trum of graphene in the visible and ultraviolet wavelength regime. Before we
present and discuss our experimental results, we consider the predictions from
theory in order to get a feel for the expected behavior.

4.6.1 Theoretical predictions

In section 4.1, we have seen that strain has intriguing effects on the electronic
band structure of graphene. Of special importance regarding the optical
spectrum in the visible and ultraviolet regime are the induced changes in the
vicinity of the saddle point. We showed that the symmetry breaking in the
lattice lifts the degeneracy between neighboring M and M’ points (see figure 4.2).

A summary of the simulated optical spectra for the different strain and polariza-
tion directions by Liang et al. [113] is shown in figure 4.14. Their computational
approach starts from the electronic band structure of strained graphene obtained
with density functional theory as shown in figure 4.2. The absorption spectrum
is then calculated from the electron-hole excitations of the two-particle Green’s
function and the transition matrix element [127], so that excitonic effects are
included. Alternatively, a single-particle Green’s function delivers the spectra
without electron-hole contributions. Figure 4.14a shows the optical spectrum of
pristine graphene without strain. It corresponds to the spectrum obtained by
Yang et al. [73] which is in excellent agreement with the experimental results
[31, 70] as presented in chapter 3. The absorbance spectra with 10% strain
for zigzag and armchair polarization are shown in figure 4.14b-e. Regarding
excitation polarized parallel to the zigzag direction (b and d), no splitting of the
absorption peak is observed. This is in contrast to armchair polarization where
the expected splitting related to transitions at M and M’ points is clearly visible
(c and e). The strong polarization dependence is explained by the symmetry of
the wave functions at M and M’, leading to a suppression of the transitions at M’
for zigzag polarization [113]. All absorption peaks are considerably redshifted
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zigzag and armchair directions. The curves calculated including excitonic
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body effects into account (blue). Adapted from [113].
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due to electron-hole interactions.

Similar studies have been performed by other groups [128, 115] however with-
out taking many-body effects into account. Their results confirm the calcula-
tions made by Liang [113] as they yield a good agreement regarding both the
peak positions and the polarization dependence in the optical spectra without
electron-hole interactions. Therefore, we trust also the calculations including ex-
citonic effects presented above and set out to observe the predicted changes in
our experiments on strained graphene.

4.6.2 Experimental results

Before discussing our results, we would like to turn the attention towards the
given experimental conditions. Due to the fabrication of graphene with an ex-
foliation technique, the orientation of the flakes on the substrate is random. It
can be determined from Raman spectroscopy, but cannot be controlled as the
substrate has a preferred mounting direction. Furthermore, the white light from
our source is unpolarized. A polarizer would allow to chose a certain excitation
polarization, however, this results in a very low excitation power and long inte-
gration times. We therefore decided to neglect the polarization dependence of
the spectra in a first step and measure with unpolarized light. This has the ad-
vantage that unpolarized light represents a superposition of zigzag and armchair
polarization. We hence expect to see a change in the spectra independent of the
actual crystal orientation because then in all cases a splitting of the absorption
peak is predicted, as we have seen in figure 4.14b-e. Once a distinct change in the
optical spectrum is observed, the experimental setup can be improved further so
that polarization dependent measurements become possible.

i) PDMS:

Figure 4.15 summarizes our investigation of strain on the optical spectrum of
graphene on PDMS. While the sample is continuously stretched, the Raman
modes shown in figure 4.15c-d indicate a backshifting close to the original posi-
tion for the last stretching step. We assume that the contact to the substrate is lost
when a certain amount of strain is reached so that the flake relaxes. The strain val-
ues corresponding to the individual spectra can be estimated from equation 4.16

for the G± mode (with ν = 0.5 and the Grüneisen parameters as given above)
and from direct comparison with the reference shift of −64 cm−1/% [116] for the
2D mode. Although this method is only an approximation, the values obtained
for the different modes are in a good agreement and are indicated in the reflec-
tivity spectra in figure 4.15a.
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We immediately see that a drastic change is observed in the simultaneously mea-
sured reflectivity spectra in figure 4.15a, where the maximum of the peak in
the ultraviolet increases from about 30% to more than 100%. Moreover, a sig-
nal seems to be modulated onto the original Fano lineshape which could indi-
cate a peak splitting in the UV. Naturally, the induced changes in the spectrum
should scale linearly with strain. We therefore expect the spectrum to come back
close to the Fano lineshape in the last measurement where the strain decreases
from ε = 0.6% to ε = 0.15% according to the Raman spectra. However, the re-
flectivity continuously increases with increasing stretching although the flake
relaxes. We therefore suspect that it is the substrate rather than the graphene
flake that gives rise to the observed behavior. To verify this assumption, let us
consider the reflection spectra of graphene and graphene on the PDMS substrate
shown in figure 4.15b and c. They are not normalized, so that the spectral shape
is largely determined by the light source. Indeed, our suspicion is confirmed:
while only minor changes are observed in the reflection of graphene on PDMS
(figure 4.15b), there is a dramatic decrease in the reflection of the PDMS refer-
ence (figure 4.15c). It seems that the structure of the PDMS substrate used in our
investigation is severely altered by strain. The behavior is less pronounced when
a graphene cover layer is present, which seems to partially prevent the structure
modification. Moreover, the reflectivity decrease and the exact spectral shape
varies significantly over the sample. These facts hint at surface damages such
as crack formation or other roughening effects. Consequently and regardless of
the reason for the reflection decrease, the normalization of the reflectivity signal
fails as PDMS exhibits spatial inhomogeneity and different behavior with and
without graphene. That way, the evaluation of the spectra is ruled out. In addi-
tion to the reflectivity increase, the discrepancy also explains the modulation of
the reflectivity signal in the vicinity of the maximum. It does not originate from
the graphene flake but clearly corresponds to the features of the lamp spectrum
in this spectral regime. Using the reflection spectrum of unstrained PDMS as
reference for all measurements is not a valid option as, in this case, one cannot
separate anymore between contributions from the graphene flake and contribu-
tions from the substrate.
In summary, we therefore state that PDMS does not allow the evaluation of
strain-induced changes in the reflectivity spectrum of graphene. Any effects aris-
ing from the graphene flake are obscured by strain-induced and spatially varying
modifications of the substrate.

ii) PMMA:

As we have seen in section 4.5, up to 0.6% strain can be applied reliably to a
graphene sheet on PMMA. We monitor the Raman modes for every measured
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Figure 4.16: Comparison of the reflectivity spectra of graphene on PMMA with and with-
out strain. Shown is only the UV regime where the strain-induced changes
are expected. a) and b) represent different measurement series. The devia-
tion arises from spatial inhomogeneities of the substrate. The strain value
is determined from the corresponding Raman spectra and is the maximum
value achieved in the respective measurement series.

reflectivity spectrum to estimate the amount of strain applied to the graphene
flake. The Raman spectra are not shown in the following as they do not yield
any further insight.
Figure 4.16 shows the reflectivity spectra without and with maximum achievable
strain for two independent measurement series. For each series, the position of
the light spot on the flake and on the substrate is fixed. In contrast, different
positions on the flake have been measured in the different series. Obviously, the
spectra within one series are comparable whereas slight deviations regarding
both lineshape and maximum reflectivity arise between the series. We attribute
this to spatial inhomogeneities of the substrate, leading to small variations in
the optical constants and hence a few percent deviation in the response of the
system. Nonetheless, the two examples in figure 4.16 clearly show that we do
not observe a distinct change in the reflectivity spectrum of graphene. In addi-
tion to the spectra shown here, we have measured several strain cycles between
0 and 0.6% strain with step sizes of 0.025− 0.05%. None of the series shows the
development of a strain-induced feature like for example an additional peak or
a peak broadening. Any deviations from the Fano lineshape can either not be
reproduced when the measurement is repeated or turn out to be not system-
atic. We hence conclude that we do not see an effect of strain on the reflectivity
spectrum of graphene on PMMA for strain values up to 0.6%.
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∆E (eV) ∆λ (nm)

10% 1.65
∗ ∼ 130

∗

2% 0.33 ∼ 20

0.6% 0.10 ∼ 5

Table 4.1: Estimation of the peak splitting for different amounts of strain. Data marked
with an asteriks (∗) is extracted from [113], the other values are extrapolated
from these values. Splitting in wavelength regime is calculated relative to the
peak position without strain at E0 = 4.8 eV.

4.6.3 Discussion

Summarizing the experimental results, we have seen that our measurement
method works – i. e. we apply strain to a graphene sheet on PMMA and are
able to simultaneously measure Raman and reflectivity spectra – but we do not
observe a strain-induced change in the Fano resonance. Is this in contradiction to
the results from theory which predict a distinct effect? Here, we must be aware
of the fact that the calculations by Liang [113] are carried out for 10% strain,
whereas we reach below 1% strain with our experimental method. Inevitably,
the expected changes in the optical spectrum will be considerably weaker. As-
suming that the peak splitting with strain is linear in energy, the splitting at
other strain values can be estimated from a simple extrapolation.
Table 4.1 shows the splitting of the peaks at 10% strain extracted directly from
the calculation [113] (see figure 4.14) and the extrapolated splitting at 2% and
0.6%. Considering the strain values reached in our experiments, the expected
splitting is only on the order of 5 nm. This is a very small value compared to
the total width of the peak of 80− 100 nm. As a consequence, we cannot expect
to see a splitting of the UV peak in the experiment. The predicted effect might
however manifest in a broadening of the peak. In our case, also this change will
be subtle so that a careful analysis of the data is necessary in order to separate
systematic changes from non-systematic deviations in the measurement. Note
that this is most probably still the case for 20 nm splitting at 2% strain, which
corresponds to an amount of strain that can be reliably achieved with the
bending method (reported for example by [123]).

To get the clearest picture possible, we hence evaluate all reflectivity measure-
ments performed with the PMMA sample as this allows a statistical analysis of
potential changes in the spectra. Here, the Fano model presented in section 3.4
constitutes a simple yet powerful method to capture the overall shape of a
spectrum. As shown in section 4.4, the measured reflectivity signal is in good
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agreement with the spectrum calculated with a transfer matrix model based on
the optical constants of graphene extracted from a Fano fit to the absorption
spectrum of a free-standing sample. Running this argument in reverse, we
conclude that Fano fits to the strain-dependent spectra should reveal potential
changes in the spectrum. We are very well aware of the fact that this method
is not accurate: in fact, two independent Fano resonances should emerge with
strain, corresponding to the non-degenerate saddle point excitons. In this case,
however, the large number of fitting parameters leads to inconclusive results.
We hence restrict to a single Fano lineshape, carefully checking the goodness of
the fit and keeping in mind that potential trends in the fitting parameters have
no physical meaning except for indicating strain-induced deviations.

Figure 4.17 shows scatter plots of the four Fano fitting parameters as a function
of applied strain. Deviations from values of the Fano parameters determined for
free-standing graphene (see Table 3.1) are attributed to the interaction with the
substrate. Evidently, the parameters show a significant spread, which however
agrees well with the variation observation for different graphene flakes without
strain, which has been determined by Patrick Herlinger in his diploma thesis
[117]. From his results, we originally concluded that the parameter spread is due
to sample-to-sample inhomogeneities. In contrast, the present results suggest
that the spread mainly arises from the measurement accuracy of our experimen-
tal setup.
However, the substantial number of data points in our experiment should at
least partially compensate for this uncertainty, potentially allowing trends to be
noticeable in the distribution. The linear fits to the data in figure 4.17 show that
minor trends are observed for the different Fano parameters. We are mainly in-
terested in the trend in the linewidth Γ . With increasing strain, we would expect
a broadening due to the onset of a peak splitting and hence an increase in the
linewidth. As shown in figure 4.17a, instead a narrowing with −70 meV/% is
observed. However, the uncertainty of the extracted slope is many times higher
than the actual value, undermining the validity of the fit. The same behavior is
observed for the other Fano parameters. In consequence, neither the data nor the
fit allows conclusion to be drawn about the influence of strain on the reflectivity
spectrum. Note that this is also the case when the measurement series are an-
alyzed individually. The limited measurement accuracy results in a substantial
spread of the data and a considerably larger number of data points would be
required to compensate for this.
In summary, we have seen that also the Fano fit does not reveal strain-induced
changes in the reflectivity spectrum of graphene for strain values up to 0.6%.
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4.7 conclusions and outlook

In this chapter, we have presented a detailed investigation of the effects of strain
on the optical properties of graphene. Using a bending method and flexible
substrates, strain values of up to a few percent lie within reach. Starting from
a white light reflection setup, a Raman path was included in the experiment,
allowing an in-situ characterization of the samples. We showed that the strain
sensitivity of graphene’s Raman modes in combination with well-established
reference measurements establishes a reliable strain gauge. Moreover, we
successfully demonstrated that the crystal orientation can be determined
from polarization-dependent Raman measurements. Most important for our
investigation is the fact that substrates and sample geometries must meet a
set of requirements. These are imposed by our experimental conditions and
include the adhesion of the flake to the substrate, the accessibility of the Raman
spectrum, and good contrast in the optical spectrum. Step by step, we therefore
tested the suitability of different substrate materials. Regarding our application,
PMMA proved to be the best choice. Several strain cycles were measured with
this sample, reproducibly providing strain values up to 0.6%. While the Raman
spectra unambiguously show that strain is applied, we observed no effect in the
reflectivity signal of graphene on PMMA. In contrast to theoretical calculations
which predict a distinct splitting of the UV peak for 10% strain, more subtle
changes are expected for small amounts of strain. However, even a careful
analysis of the measured spectra with a Fano fitting method in combination
with statistical analysis did not reveal any deviations arising from the applied
strain.

We see mainly two possibilities for observing the predicted effect in spite
of the given experimental results. First, it is clearly desirable to improve the
measurement accuracy. Here, higher quality substrates and an optimization of
the fabrication process could reduce or even eliminate spatial inhomogeneities.
In addition, modulation techniques can help to suppress noise and background
effects. With the present sample geometry, the maximum achievable strain
is evidently too small to cause distinct effects. As a consequence, one might
have to consider other approaches. However, many of the suggested and
investigated straining methods lead to small-area and strongly nonuniform
strain [44, 129, 130] and hence are not compatible with optical measurements.
In our opinion, most promising alternatives to the bending technique are the
clamping of graphene to piezoelectric substrates [131] and thin-film shrinkage
technologies [132]. Both methods can provide tunable strain up to about 10%
over large areas. Such more advanced samples will inevitably lead to more
complex optical spectra. As in our investigation, it must be assured that the
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analysis of the changes caused by a strain-induced modification of graphene’s
optical properties is still feasible.

Overall, our investigations prove once more the astonishing robustness of the
optical spectrum of graphene as realistic amounts of strain have no detectable
effect on the excitonic Fano resonance. Hence, we conclude that graphene’s band
structure is not only very stable against layer interactions and doping, but also
against severe perturbations such as strain. The finding that strain hardly influ-
ences the optical properties of graphene is in fact beneficial regarding potential
applications in optoelectronics where, on the contrary, strain-induced changes in
the appearance or even the functionality of a device must be ruled out.
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5
F U N D A M E N TA L S O F N O N L I N E A R N A N O - O P T I C S

Nano-optics or nanophotonics is an area of research covering the interaction of
nanoscale systems with light, mostly in the visible wavelength regime [133, 1].
Many investigations in nano-optics involve metal nanoparticles which constitute
the fundamental building blocks of plasmonics and metamaterials [22, 3].
Plasmonic effects are found for example in stained glasses and hence have in
fact been observed for centuries. However, sophisticated techniques are required
for the controlled fabrication of nanostructures, so that plasmonics is still a quite
new field of research. Whereas the linear optical properties of nanoparticles and
their assemblies are widely studied [13, 3], there are still many open questions
regarding the nonlinear response of plasmonic structures. In our experiments,
we study the nonlinear emission properties of individual gold nanostructures,
shedding light onto different aspects of the still growing field of nonlinear
plasmonics.

In this chapter, we provide an overview of the fundamentals of nonlinear nano-
optics. First, a general introduction to the interaction of light with matter is given
in section 5.1. Here, Maxwell’s equations form the basis for a formal description.
Drude-Lorentz theory is presented to model the linear material response. Our
experiments focus on nonlinear material properties. An overview of important
nonlinear optical processes and relevant properties of the signals is given in
section 5.2. As plasmonic nanostructures are considered in our studies, we finally
touch on the basics of plasmons in metal nanoparticles as well as the field of
nonlinear plasmonics (see section 5.3).

71
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5.1 light-matter interaction : electromagnetic theory

5.1.1 Maxwell’s equations

Maxwell’s equations represent the basic equations of electromagnetic theory and
describe the interaction of light with matter. In this section, we follow the descrip-
tion by Jackson and Maier [134, 3, 135]. The macroscopic Maxwell’s equations
read

~∇ · ~D = ρext (5.1a)

~∇× ~E = −
∂~B

∂t
(5.1b)

~∇ · ~B = 0 (5.1c)

~∇× ~H = ~jext +
∂~D

∂t
. (5.1d)

This set of equations is completed by the two constitutive relations

~D = ε0~E+ ~P (5.2a)

~H =
1

µ0
~B− ~M, (5.2b)

with the electric and magnetic field ~E and ~H, the dielectric displacement ~D,
the magnetic induction ~B, the external charge density ρext, the external current
density ~jext, the polarization ~P, the magnetization ~M, the vacuum (electric)
permittivity ε0, and the vacuum (magnetic) permeability µ0. These equations
hence link the four macroscopic fields to the external charge and current
densities as well as the polarization and magnetization.

Polarization and magnetization represent the response of the medium to the elec-
tric and magnetic field of the incident wave. In this work, we restrict to isotropic
and nonmagnetic media so that the magnetic response can be neglected. The
polarization results from the alignment of microscopic dipoles with the electric
field, yielding a linear relationship:

~P = ε0 χ(~E) ~E (5.3)

where χ is the dielectric susceptibility. For low field intensities, the response of a
medium is linear in the fields. In this case, the constitutive relations simplify to

~D = ε0ε ~E (5.4a)

~H =
1

µ0µ
~B (5.4b)
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with the relative permittivity or dielectric constant ε and the relative perme-
ability µ. Furthermore, Ohm’s law establishes a linear relationship between the
current and the electric field via the conductivity σ:

~j = σ ~E. (5.5)

In contrast to the external current density ~jext, ~j is the current density in the
medium. It is linked to the internal charge density ρ by ∇ ·~j = −∂ρ/∂t which
represents charge conservation. This also requires that the internal current den-
sity is related to the polarization by

~j =
∂~P

∂t
. (5.6)

Comparing the above equations yields ε = 1+ χ. In general, the material con-
stants ε and µ are second rank tensors and simplify to scalars only in the
isotropic case.
From permittivity and permeability, the complex refractive index ñ can be de-
rived as

ñ = n+ iκ =
√
εµ, (5.7)

which for nonmagnetic media with µ = 1 simplifies to ñ =
√
ε.

Taking into account equations 5.2a and 5.6 and the fact that ∂/∂t → −iω in
frequency domain, we acquire a fundamental relationship between conductivity
and dielectric function:

ε(~k,ω) = 1+ i
σ(~k,ω)

ε0ω
(5.8)

which has already been introduced in section 2.2. At optical frequencies, the
dependency on the wavevector ~k can be neglected as the wavelength in the
material is significantly longer than the mean free path of the electrons [3].
Investigating the optical properties of a material, it is sufficient to determine
either of the complex response functions ε, ñ, σ, or χ as they are all equivalent
due to the above relations.

5.1.2 Drude-Lorentz theory of the linear material response

This section treats the Drude-Lorentz theory as a classical microscopic model for
the frequency dependent complex response functions [76]. While the Lorentz
model describes the response of the bound electrons, the Drude model treats
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the free charge carriers.

In the Lorentz model, the response of electric charges in matter can be described
by harmonic oscillators. For electrons driven by an applied electromagnetic field,
the equation of motion is given by

~̈x+ γ~̇x+ω20~x = −
e

m
~E, (5.9)

with the displacement ~x, the electron mass m and charge e, the applied electric
field ~E, and the decay rate γ and eigenfrequency ω0 of the harmonic oscilla-
tor. The solution to equation 5.9 is a superposition of a transient part, which
is damped and dies away, and an oscillatory part with the frequency ω of the
driving field. We are interested in the long-lasting oscillatory part

~x =
(e/m)

ω2 −ω20 + iγω
~E. (5.10)

For an ensemble of many oscillators n per unit volume, the dipole moments of
the single oscillators ~p = −e~x sum up to the polarization (per unit volume)

~P = −ne~x = −
n (e2/m)

ω2 −ω20 + iγω
~E. (5.11)

Comparing this result with ~P = ε0χ~E, we obtain the dielectric function for the
system of harmonic oscillators

ε = 1+ χ = 1−
ne2

mε0

1

ω2 −ω20 + iγω
(5.12)

with the real and imaginary parts

ε1 = 1−
ne2

mε0

(ω2 −ω20)

(ω2 −ω20)
2 + γ2ω2

(5.13a)

ε2 =
ne2

mε0

γω

(ω2 −ω20)
2 + γ2ω2

. (5.13b)

In contrast to semiconductors or dielectrics, the conduction band of a metal is
partially filled, allowing a quasi free movement of the electrons. Therefore, the
conduction electrons in a metal are described as free electrons in the Drude
model. They follow the same equation of motion as in the Lorentz oscillator
model, but with vanishing restoring force so that ω0 = 0 and

~̈x+ γD~̇x = −
e

m
~E. (5.14)
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Figure 5.1: Comparison between the dielectric function measured by Johnson and
Christy [136] (circles) and the Drude model (solid lines) with ωp = 8.89 eV
and γD = 0.07088 eV [137].

γD is the phenomenological Drude damping parameter which accounts for devi-
ations from the free electron approximation, for example due to scattering. The
dielectric function can be derived as above to

ε = 1+ χ = 1−ω2p
1

ω(ω+ iγD)
(5.15)

with real and imaginary parts

ε1 = 1−
ω2p

ω2 + γ2D
(5.16a)

ε2 =
γDω

2
p

ω(ω2 + γ2D)
. (5.16b)

Here, we have introduced the plasma frequency

ωp =

√
ne2

mε0
. (5.17)

It can be interpreted as the frequency of the collective oscillation of the free
electrons in the metal, which corresponds to a quasiparticle excitation called
plasmon. n is the density of the free electrons and m the effective mass of an
electron. In this simple picture, the optical properties of a metal are solely deter-
mined by the plasma frequency and the damping constant. In spite of its simplic-
ity, the Drude model is a good way to estimate the optical constants of metals.
As shown in figure 5.1, the measured data for gold agrees well with the Drude
model, especially in the infrared and visible wavelength regime. The deviations
in the imaginary part of the dielectric function above 2.2 eV (corresponding to
wavelengths below 550 nm) are due to interband transitions – the so-called d
band absorption – which also lead to increased damping [3].
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5.2 nonlinear optical processes

Beyond the linear processes considered so far, we will now turn to nonlinear
optical phenomena which are investigated in this part of the thesis. In nonlinear
media, the material responds nonlinearly to the electric field of the excitation
light. The field of nonlinear optics is tightly associated with the development
of the laser as nonlinear effects require high intensity coherent excitation as is
provided by lasers and especially by ultrashort laser pulses. In this overview of
nonlinear optical phenomena, we closely follow the notation and argumentation
of Boyd [25].

5.2.1 Nonlinear polarization and nonlinear susceptibilities

In the previous section, we have seen that the polarization of a material in the
linear regime is related to the electric field by equation 5.3

~P(t) = ε0 χ ~E(t).

Microscopically, the nonlinearity of a material originates from the anharmonicity
of the atomic potentials. While harmonic potentials are a good approximation for
low excitation fields, anharmonic contributions are non-negligible when the field
is on the order of the interatomic fields. In nonlinear optics, this is accounted for
by generalizing the above relation to

~P(t) = ε0 χ
(1) ~E(t) + ε0 χ

(2) ~E(t)2 + ε0 χ
(3) ~E(t)3 + ... (5.18a)

≡ ~P(1)(t) + ~P(2)(t) + ~P(3)(t) + ... (5.18b)

so that the polarization is a power series in the field strength. The first term
describes linear effects while the higher order terms give the nonlinear polar-
ization. ~P(n) are referred to as nth-order polarizations. χ(n) are the nth-order
susceptibilities, which in general are tensors of rank (n+ 1).

The form of the linear as well as the nonlinear susceptibility tensors is deter-
mined by the symmetry of the material. According to Neumann’s principle [138],
the physical properties of a crystal must be invariant under the same symmetry
operations as the crystal itself, determined by its point group. Hence, consid-
ering the symmetry properties of the corresponding crystal class, the number
of nonzero and independent tensor elements can often be tremendously re-
duced. For example, the linear susceptibility condenses into a scalar value for
isotropic and cubic materials. Out of the 32 crystal classes, 11 are centrosymmet-
ric, i. e. possess an inversion center. When the sign of the excitation field changes
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Figure 5.2: Geometry and energy level diagram of second-harmonic generation (SHG).
Dashed lines represent virtual energy levels.

in a centrosymmetric material, the sign of the induced nonlinear polarization
must also change due to the inversion symmetry:

−~P(2)(t) = ε0 χ
(2) [−~E(t)]2 = ~P(2)(t). (5.19)

This relation is only satisfied if the second-order polarization and hence χ(2)

vanishes. Consequently, centrosymmetric media do not exhibit second-order op-
tical effects. In contrast, third-order nonlinear phenomena are allowed for both
centro- and non-centrosymmetric materials.

5.2.2 Nonlinear optical processes

The most prominent effects investigated in nonlinear optics and also in this thesis
are second- and third-order processes. To introduce the basic concept of these
interactions, we first discuss second-order processes at the example of a lossless
and dispersionless medium.

i) Second-harmonic generation

Consider a laser beam with electric field

~E(t) = Ee−iωt + c.c. (5.20)

excites a material with second-order susceptibility χ(2). c.c. denotes the complex
conjugate and E is the field amplitude. From ~P(2) = ε0χ

(2)~E2, we then obtain

~P(2)(t) = ε0χ
(2)
[
2EE∗ + (E2e−2iωt + c.c.)

]
. (5.21)

Consequently, there are two contributions, one at zero frequency and one at
twice the excitation frequency. The first leads to a process called optical rectifica-
tion, but does not generate radiation as the second time derivative vanishes. The
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Figure 5.3: a) Sum-frequency generation (SFG) and b) difference-frequency generation
(DFG). Shown are the geometry and the energy level diagram of the respec-
tive process. Dashed lines represent virtual energy levels.

latter contribution leads to second harmonic generation (SHG) which is schemat-
ically shown in figure 5.2. In this process, two photons of the excitation light gen-
erate one photon at the second-harmonic frequency 2ω. Usually not all power
is converted so that the output light consists of ω and 2ω. SHG is a commonly
used tool to frequency-double the output of infrared laser such as Nd:YAG and
provide light in the visible spectral regime.

ii) Sum- and difference-frequency generation

Next, a field consisting of two different frequency components is applied:

~E(t) = E1e
−iω1t + E2e

−iω2t + c.c. (5.22)

for which the second-order polarization then reads

~P(2)(t) = ε0χ
(2)
[
E21e

−2iω1t + E22e
−2iω2t

+ 2E1E2e
−i(ω1+ω2)t + 2E1E

∗
2e

−i(ω1−ω2)t

+ c.c. + 2(E1E∗1 + E2E
∗
2)
]
.

(5.23)

Using the notation

~P(t) =
∑
n

P(ωn)e
−iωnt, (5.24)

the complex amplitudes of the various terms of the nonlinear polarization are
given by

P(2ω1) = χ(2) E21 (5.25a)

P(2ω2) = χ(2) E22 (5.25b)

P(ω1 +ω2) = 2χ(2) E1E2 (5.25c)

P(ω1 −ω2) = 2χ(2) E1E
∗
2 (5.25d)

P(0) = 2χ(2) (E1E
∗
1 + E2E

∗
2). (5.25e)
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Apart from the zero-frequency and the SHG contributions, two new contribu-
tions can be identified. The process in equation 5.25c converts two photons of fre-
quency ω1 and ω2 into a photon of the sum of these frequencies ω1+ω2 and is
hence called sum-frequency generation (SFG), shown in figure 5.3. SHG is in fact
a special case of SFG with ω1 = ω2. In analogy, equation 5.25d describes differ-
ency frequency generation (DFG), where the frequency of the generated photon
is the difference of the incoming photon frequencies. However, energy conserva-
tion in this case requires that for any photon created at frequency ω1 −ω2, a
photon at ω1 is destroyed, but one at ω2 is created by stimulated emission, as
can also be seen in the energy level diagram in figure 5.3b. The lower-frequency
excitation field is amplified in this process which is hence also called optical
parametric amplification. Adding an optical resonator, this is used to build an
optical parametric oscillator. SFG and DFG are essential in laser applications to
extend the accessible frequency range.

iii) Third-harmonic processes

Regarding the third-order nonlinear polarization, obviously many contributing
terms arise when the field consists of two or even three different frequency com-
ponents, as shown in equation 5.23 for the second-order case. Consquently, a
multitude of nonlinear frequency mixing processes arise. Involving four photons,
these effects are referred to as four wave mixing (FWM). In case of a monochro-
matic fields of frequency ω as is considered in our experiment, only two terms
remain. In the third-harmonic generation (THG) process, three photons of fre-
quency ω are combined to generate a high-energy photon at 3ω (see figure 5.4b).
This effect is in complete analogy to SHG. The other term leads to an intensity-
and χ(3)-dependent refractive index at the fundamental frequency ω, which can
result in effects like self focusing or self phase modulation.

iv) Multi-photon photoluminescence

In addition to the nonlinear optical effects discussed so far, we also observe
multi-photon excited photoluminescence in our experiments. The underlying
nonlinear optical effect is multi-photon absorption which is followed by photo-
luminescence. As an example, a three-photon photoluminescence (3PPL) process
is shown in figure 5.4c. The name is determined by the number of photons that
are absorbed in the process. Similar to THG, three excitation photons are con-
verted into a photon of higher energy, however, with a frequency ωL that is
smaller than three times the excitation frequency ω. This deviation is due to the
fact that, after excitation, the system nonradiatively relaxes into a lower-energy
state from which it then decays, emitting luminescence light at ωL.



80 fundamentals of nonlinear nano-optics

v) Parametric processes and coherence

Nonlinear optical effects are categorized into parametric and non-parametric
processes. In a parametric process, the quantum mechanical state of the system
is not changed by the interaction with the excitation field, so that the initial and
final states are identical. Consequently, parametric processes are considered to
be instantaneous and are in general coherent. Except for the ground state, the
involved energy levels are virtual. The properties of the light generated in a para-
metric process are hence directly correlated with the properties of the excitation
light such as phase and polarization. Higher harmonic generation (SHG, THG)
and frequency-mixing processes (DFG, SFG, FWM) are examples of parametric
processes. On the other hand, any quantum state of the system changes in a
non-parametric process and population is transferred between two real levels.
Such processes are often related to loss and, most importantly, are not coherent
so that the generated light can have random phase and polarization. Absorption
and inelastic scattering are typical examples of non-parametric processes. Multi-
photon photoluminescence is hence the result of a non-parametric process and
not coherent with the excitation light.

vi) Relative strength of the nonlinear optical processes

In general, the probability of a process decreases significantly with the number
of photons involved. As mentioned above, higher-order nonlinear effects can
still become comparable to linear ones when the excitation field intensity is
on the order of the interatomic field strength, which is achievable with lasers.
At a fixed excitation power, the strength of the nonlinear contributions usually
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Figure 5.4: Overview of the nonlinear processes observed in our experiments. a) Second-
harmonic generation (SHG), b) third-harmonic generation, and c) multi-
photon photoluminescence, here involving four photons. Dashed lines rep-
resent virtual states, solid lines real states.
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decreases with increasing order. Naturally, the strength of a certain effect is
determined by the corresponding nonlinear susceptibility χ(n). Although the
symmetry considerations according to Neumann’s principle are very powerful,
they cannot predict the relative strength of different χ(n) processes. Some
semi-empirical models relate the nonlinear susceptibility of a material to its
linear susceptibility. For example, Miller’s rule predicts the second-order non-
linearity and can be generalized to third-order in some cases [139, 25]. Typically,
only one of the nonlinear processes of a certain order (for second order see
equations 5.25a-5.25d) is efficient in a bulk material. This is due to the fact
that the phase-matching condition must be fulfilled, i. e. there must be a fixed
phase relation between the different waves to ensure constructive interference
and hence high conversion efficiency. In practice, nearly any process can be
phase-matched by creating a structure of a certain periodicity in the crystal, a
technique which is called quasi-phase-matching. For structures smaller than
the wavelength, phase-matching conditions are not relevant [26] whereas other
effects become important, which will be discussed in the next section. Finally,
the efficiency of a particular parametric process can be enhanced considerably
when one of the virtual states coincides or nearly coincides with a real state.
In this case, the coupling of the system to the excitation field is particularly
strong, resulting in a large nonlinear susceptibility. This includes also material
resonances like plasmonic resonances. Here, a perturbation term can be added
to the Lorentz model (see section 5.1), resulting in an anharmonic oscillator
model which predicts the frequency dependence of the nonlinear signal from
a plasmonic structure. The anharmonic oscillator model is a basic part of our
simulations of nonlinear responses and fields which is discussed in section 6.4.

5.3 plasmonics

As mentioned in section 5.1, the plasma frequency ωp in the Drude model for
the free electrons in a metal can be recognized as the frequency of a collective
oscillation of the electron sea, corresponding to a quasiparticle excitation. The
quanta of this excitation are called volume plasmons. Being longitudinal by na-
ture, volume plasmons cannot be excited with (transverse) electromagnetic fields.
Also at the surface of the interface between a dielectric and a metal, collective
oscillations of the electrons can arise. The resulting surface plasmons are excited
by electromagnetic fields and propagate along the interface [3]. Correctly, they
are referred to as surface plasmon polaritons (SPP) due to the coupling between
the electromagnetic fields in the metal and the dielectric. Most often, the term
"plasmon" is used for a third category of quasiparticles, named localized surface
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Figure 5.5: Excitation of a particle plasmon by an optical field with electric field vec-
tor ~E and wavevector ~k. a) Schematic illustration of the displacement of the
electrons. The size of the nanoparticles is usually smaller than the excita-
tion wavelength. b) Plasmonic hot-spots in the vicinity of the nanoparticle.
Shown is the absolute value of the electric field calculated with a finite ele-
ment method (at the plasmon resonance).

plasmon or particle plasmon, which we will restrict to in the following. Again,
the correct name is particle plasmon polariton because of the coupling to the
exciting electromagnetic field. We show below that this excitation is naturally as-
sociated with conducting nanoparticles. Accordingly, plasmonics usually refers
to the optical properties of metal nanoparticles.

5.3.1 Plasmons in metal nanoparticles

When a nanoparticle is excited by an external light field as shown in figure 5.5a,
the free electrons are displaced with respect to the positively charged ions of the
lattice. For particle sizes smaller than the excitation wavelength, the confinement
due to the particle boundaries leads to a quantization of the eigenenergies of
the electron gas, in a first approximation corresponding to a harmonic potential.
The quanta of the excitation are referred to as particle plasmon resonances.
At a plasmon resonance, high field intensities can emerge in the vicinity of
the particle, the so-called plasmonic hot-spots (see figure 5.5b). Relative to the
electric field in free space, the near-fields can easily be enhanced by an order
of magnitude [140, 3]. This effect is exploited using plasmonic particles as
nanoantennas to enhance weak optical signals [141, 142].

As long as the particles are not too small (> 10 nm) so that quantum effects can
be neglected [143], the interaction of nanoparticles with light is still governed
by Maxwell’s equations. Moreover, the particles are typically small compared to
the wavelength of light d � λ. The phase of the electromagnetic field can then
be assumed to be constant over the particle volume and retardation effects can
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be neglected. In this quasi-static approximation, the particle interacts with an
electrostatic field which simplifies the problem significantly.
To understand the origin of a plasmonic resonance, we first consider a spherical
particle of radius a and dielectric constant ε in a medium with dielectric constant
εm that is excited by a static electric field with amplitude E0. A full discussion of
this problem is given for example by Maier [3]. Solving Maxwell’s equations with
the adequate boundary conditions, the potential outside of the particle evaluates
to

Φout(r, θ) = −E0r cos θ+
ε− εm
ε+ 2εm

E0a
3 cos θ
r2

. (5.26)

This corresponds to a superposition of the applied field, described by the first
term, and the field generated by the particle in the second term. Remarkably, the
second field is equivalent to that of a dipole located at the particle center. The
field hence induces a dipole moment

~p = 4πε0εma
3 ε− εm
ε+ 2εm

~E0, (5.27)

in the sphere. Introducing a polarizability α defined by ~p = ε0εmα~E0 yields

α = 4πa3
ε− εm
ε+ 2εm

. (5.28)

Evidently, the polarizability is maximized and a resonance occurs when |ε+2εm|

is minimized. The resonance position depends strongly on the particle material
as well as the refractive index of the surrounding medium. The electric field
inside and outside the particle read as

~Ein =
3εm

ε+ 2εm
~E0 (5.29a)

~Eout = ~E0 +
3~n(~n · ~p) − ~p

4πε0εm

1

r3
(5.29b)

with the unit vector ~n. The localized electric field around the nanoparticle hence
shows a dipole-like distribution. As mentioned above, the fields inside and out-
side the particle are enhanced as the polarizability is minimized at the resonance.
In optics, the efficiency with which an obstacle scatters or absorbs light is given
by the cross sections Cscat and Cabs, respectively. These quantities describe how
much energy is scattered/absorbed relative to the incident power. An enhance-
ment of the polarizability of a small particle at a plasmon resonance leads also
to increased scattering and absorption cross sections [144]:

Cscat =
k4

6π
|α|2 =

8π

3
k4a6

∣∣∣∣ 3εm

ε+ 2εm

∣∣∣∣2 (5.30a)

Cabs = k=[α] = 4πka3=

[
3εm

ε+ 2εm

]
. (5.30b)
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= denotes the imaginary part of the function. Both interactions hence scale
strongly with the particle radius. Unsurprisingly, the absorption scales with the
particle volume a3.

We will now relax some of the approximations made above and discuss some
more general cases.
When the particle is excited with an oscillating electromagnetic field ~E(t) =
~E0e

−iωt instead of a static one, an oscillating dipole moment ~p(t) =

ε0εmα~E0e
−iωt is induced. This leads to scattering of the excitation wave and

can be identified as radiation by a point dipole [3]. While the near field kr� 1 is
the same as in the static case, spherical waves are now radiated into the far field
kr� 1 [134].
For larger particles which are not small compared to the wavelength of light,
the quasi-static approximation is not valid anymore and retardation effects come
into play. However, the problem can still be solved analytically for spherical parti-
cles, as has been shown by Mie [145]. In this approach, the internal and scattered
field are expanded into a set of normal modes. The solution to the scattering
problem is then an infinite series of vector spherical harmonics. That way, in ad-
dition to the fundamental dipolar mode also higher order plasmon resonances
emerge at higher energies. For silver spheres, the appearance of higher order
plasmon resonances with increasing diameter is shown in figure 5.6. For gold
spheres, this effect is less distinct due to the d-band absorption below 550 nm.
Higher order modes can be modeled analytically also for nanorods, treating
them as one dimensional cavities [146, 147]. In the rod, standing wave patterns
are formed, resulting in fields and consequently a current density distributions
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Figure 5.6: Mie theory: Normalized extinction cross section of silver spheres with diam-
eters between 10 and 200 nm in a medium with refractive index n = 1.5. The
dielectric constant of silver is chosen according to measured data [136]. With
increasing diameter, higher order plasmon resonances appear.
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Figure 5.7: Higher order plasmon modes in an extended rod structure. Shown are the
absolute values of the electric field (a) and the current (b) calculated with a
finite element method.

in the rod as schematically illustrated in figure 5.7. The order n of the mode is
given by the number of current density lobes. Due to symmetry of the rod and
the excitation, only odd order modes are allowed. In contrast to the odd order
modes, the even order modes have no net dipole moment and hence cannot be
excited optically.

In conclusion, we have seen that a plasmon resonance can emerge when
conducting nanoparticles are excited with light. The spectral position of the
resonance depends on the particle material, its size, and the surrounding
medium. For gold, the plasmon resonance is in the visible regime for particles
of a few tens of nanometers in diameter. Unlike silver, it is also stable towards
oxidation, and hence is the material of choice in plasmonics. When the particle
geometry deviates from a sphere and the particle size is comparable to or larger
than the wavelength, it is usually a demanding task to compute scattering and
absorption cross sections, since there is no simple analytical solution. Therefore,
these quantities are typically calculated using numerical methods, in our case a
finite element method which is discussed in section 6.4.

5.3.2 Nonlinear plasmonics

The investigation of nonlinear optical effects in combination with plasmonics is
interesting in many regards. A good overview of this topic is given by [26].
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In addition to many other exceptional properties, metals exhibit strong opti-
cal nonlinearities with nonlinear susceptibilities comparable or even exceeding
those of commonly used nonlinear crystals [148, 149]. On the nanoscale, metal
structures thus become promising candidates for frequency conversion appli-
cations as they can couple very efficiently to light [148]. As mentioned in the
last section, the efficiency of nonlinear signals can often be related to the linear
response. Adding a perturbation term to the Lorentz oscillator model (see sec-
tion 5.1) yields an anharmonic oscillator model, which is a simple but successful
method to predict the spectral dependence [150] and efficiency [151] of nonlin-
ear processes in plasmonic structures. As the (linear) plasmon resonance can be
shaped via material, shape, size, etc. [11], this allows to optimize structures with
respect to their nonlinear optical properties. In our numerical calculations, we
also take advantage of the relation between linear and nonlinear response (see
section 6.4).
Besides the nonlinear optical properties of the plasmonic structures themselves,
nonlinear plasmonics also investigates the modification of the nonlinear re-
sponse from a surrounding medium due to the interaction with plasmonic
structures. Many studies have focused on the enhancement of nonlinear pro-
cesses by plasmonic structures. Here, the plasmonic structure typically acts as
a nanoantenna, boosting a nonlinear response via the enhanced local fields
[152, 153].



6
M E T H O D S

In this chapter, we give an overview of the techniques needed and used for the
experimental and theoretical investigation of the nonlinear emission properties
of nanostructures. The field of nano-optics emerged from advances in fabrica-
tion techniques including lithography and thin-film technology, which is still a
very active area of research and development. In the following, we first give a
short summary of the fabrication process of metal nanostructures with electron
beam lithography in section 6.1. In order to measure the optical properties es-
pecially of individual nanoscopic systems, powerful microscopes and sensitive
detection schemes are indispensable. In our measurements, we combine a nonlin-
ear transmission setup with back focal plane imaging to fully capture the emis-
sion properties of the plasmonic structures. The experimental setup is described
in section 6.2. In addition to the experimental methods, simulation techniques
are essential to interpret and optimize the investigated structures. To simulate
the spatial emission characteristics of the nanostructures, we developed a code
based on the problem of a dipole at an interface which is presented in section 6.3.
A finite element method is used to calculate the linear and nonlinear local fields
of the nanostructures (see section 6.4).

6.1 nanofabrication : electron beam lithography

In the following, we give a short introduction to the standard nanofabrication
process with electron beam lithography as illustrated in figure 6.1. This process
is very versatile and allows the fabrication of nanostructures of nearly arbitrary
shape and arrangement in two dimensions. The samples investigated in this
thesis have been fabricated in the cleanroom of the Max Planck Institute for
Solid State Research in Stuttgart.

All samples are fabricated on 170 µm thick glass cover slips, which is adapted
to the correction of the immersion objective used in the transmission meas-
urement. After cleaning the substrate, a double layer of resist (PMMA (poly
methylmethacrylate), 250k/2.5% and 950k/1.5%, Allresist) is spin coated (5 s at
3000 rpm and 30 s at 8000 rpm). Each layer is baked for 5 min at 160

◦C on a
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Figure 6.1: Main steps of the electron beam lithography process.
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hotplate. While the ∼ 50 nm thick, high chain-length top layer guarantees high
resolution, the ∼ 150 nm thick layer with lower chain-length facilitates the lift-off
process. Finally, a water-soluble conductive polymer (espacer, Showa Denko)
is spin coated (60 s at 4000 rpm, no baking) to avoid charging of the sample.
Alternatively, a few nanometers of chromium can be evaporated to provide
conductivity. The sample is then exposed with a beam of electrons (Raith eline,
20 kV acceleration voltage, 20 µm aperture yielding ∼ 150 pA beam current).
The exact exposure parameters depend on the desired structure size, density,
and quality, see table 6.1 for typical values. After exposure, the conductive layer
is washed off with destilled water (alternatively, the chromium layer is removed
with a commercially available chromium etchant). The resist is developed for
90 s in a 1:3 mixture of MIBK (methylisobutylketone) and isopropanol and
development is stopped in a pure isopropanol bath (30 s). The metal layers are
evaporated thermally (Oerlikon–Leybold Univex). A 2− 3 nm thick chromium
(or titanium) layer provides adhesion of the gold film to the glass substrate. The
height of the evaporated layer depends on the desired structure and is typically
∼ 30 nm. In the lift-off step, the remaining resist film with the excess metal
is removed from the sample (remover based on NEP (N-ethyl-2-pyrrolidone),
Allresist, at 65

◦C for 2 h).

After fabrication, a bright- and dark-field capable microscope gives a first
impression of the sample quality (see figure 6.2a,b). Here, we see if the lift-off
was successful and the structures exist. However, only a scanning electron
microscope (SEM) can resolve nanometer size substructures. It is hence an
indispensable tool to check the sample quality and measure structure sizes (see
figure 6.2c). Due to contamination of the sample under the SEM, all optical
measurements must be finished before this final characterization.

write field size 100 x 100 µm2

acceleration voltage 20 kV

aperture 20 µm

beam current ∼ 150 pA

settling time 1 ms

area/curved elements dose 325 µC/cm2

area/curved elements step size 4 nm

line dose 1300 pC/cm

line step size 2 nm

Table 6.1: Exposure parameters of a typical electron beam lithography process.



90 methods

a cb

20µm100µm

268 nm
69 nm

109 nm

Figure 6.2: Characterization of the nanostructures. a) Bright-field microscope image of
a sample consisting of different 100× 100 µm2 fields with dense nanostruc-
tures and a gold marker structure. Objective magnification is 5×. b) Dark-
field microscope image resolving single nanostructures with 2.5 µm spacing.
Objective magnification is 100×. c) SEM images of a gold nanorod and a
nanorod pair. Magnification is 50.000×.

6.2 experimental realization : nonlinear transmission setup

and back focal plane imaging

A schematic sketch of the nonlinear transmission setup is shown in figure 6.3.
A frequency-doubled Nd:YVO4 laser (Coherent Verdi G18, 532 nm, 18 W CW)
pumps a high-power titanium–sapphire oscillator operated at 800 nm (Coherent
MIRA, 76 MHz, ∼ 150 fs, 4 W). Part of the pulsed output light is guided to an
optical parametric oscillator (Coherent MIRA-OPO) which is used in the linear
cavity configuration. It provides infrared pulses (76 MHz, ∼ 180 fs) which are
tunable in the wavelength regime 1050–1500 nm with few hundred mW output
power. Using a half-wave plate, the linear polarization of the infrared light can
be rotated. The excitation power is adjusted to the desired value with neutral
density filters. A 1000 nm longpass filter transmits the infrared light only. In
the microscope unit, an infrared lens (NA 0.6) focuses the light to a spot size
of ∼ 1.5 µm on the sample. The sample is mounted on a 3D piezo stage and
can hence be scanned in the laser focus. The transmitted light as well as the
generated nonlinear signals are collected with a high NA oil immersion objective
(60×, NA 1.35). A Schott KG5 glass is used to remove the infrared excitation light.
Instead of or in combination with the Schott glass, longpass and bandpass filters
allow the investigation of signal contributions at specific wavelengths. The light
is then guided to the monochromator (Princeton Instruments Isoplane SCT 320)
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Figure 6.3: Sketch of the nonlinear transmission setup.

equipped with a CCD camera (Princeton Instruments Pixis 400), allowing both
imaging of the sample with a mirror and spectral analysis of the signal with a
grating. Alternatively, the structures can be mapped and localized on the sample
with a single photon counting avalanche photo diode (APD).
With an APD and a spectrometer, nanostructures can hence be localized on the
sample and information about emission intensities as well as spectra can be
obtained.

A slight modification of the experimental setup allows to obtain even more de-
tails about the light emission from the nanostructures by imaging the back focal
plane of the microscope objective. To explain the underlying method, we con-
sider a sample that emits plane waves in the focus of a lens – in our case the
oil immersion objective – as schematically shown in figure 6.4a. Following the
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Figure 6.4: a) Principle of back focal plane (BFP) imaging. Rays leaving the light under
the same angle are focused into one point in the BFP. b) Measured BFP image
of a 270 nm long gold nanorod.
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principles of ray optics, all light rays that leave the sample under a certain tilt
angle θi will be focused into one single point at a distance ri = fobj sin θi from
the optical axis, here shown in 2D. In 3D, this point corresponds to a ring with
radius ri. For any angle θi, the so-called back focal point (or ring) is found in
the same plane perpendicular to the optical axis. This plane is called back focal
plane (BFP) and contains information about the spatial emission properties of the
sample, i. e. how much light is emitted into which direction. In other words, the
Fourier transform of the emitting object is found in the back focal plane, which
is therefore sometimes also referred to as Fourier plane. Hence, by imaging the
back focal plane of the microscope objective, the Fourier image of the sample
in k space is acquired instead of the real space image. This can be achieved by
placing an additional lens, the so-called Bertrand lens, in the optical path such
that its focus coincides with the BFP. In our case, a lens with focal length 300mm
leads to a good image quality and size on the CCD camera.
Figure 6.4b shows an example of a measured BFP image. The expected ring
structure is clearly visible. Obviously, the image shows an outer limit which
corresponds to the maximum angle α collected by the lens/objective and is
hence given by its numerical aperture (here NA= n sinα = 1.35 with the
refractive index of the substrate n = 1.5). Moreover, most light is radiated
under high angles. For this reason, it is most important to use a high-NA
oil immersion objective. In the next section, we present a simple model to
calculate the radiation patterns of a nanoparticle on a substrate. In the course
of this discussion, also the intensity distribution in the pattern will be elucidated.

6.3 calculation of radiation patterns : dipoles at an interface

In the experiment, we measure the light that is emitted from nanostructures
excited at the plasmon resonance. As discussed in section 5.3, the radiated fields
in the quasi-static approximation then correspond to those of a point dipole. In
free space, the radiation pattern of a dipole is characterized simply by a sin2 θ
distribution with the angle θ between dipole axis and observation direction
[134]. However, the structures are fabricated on a substrate which scatters light.
Dipole emission near a planar interface is a typical problem in nanooptics as it
is relevant for many studies including for example single molecule and surface
enhanced spectroscopy. A comprehensive analysis can therefore be found in
many textbooks. We would like to restrict to a qualitative discussion of the key
steps and refer to [148] for a detailed derivation.
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Starting from a dipole with dipole moment ~p in free space, the electric field is
first decomposed into the s- and the p-polarized part for the components parallel
and perpendicular to the interface, respectively. In general, the light emitted from
the dipole is refracted and partially reflected at the interface. This is taken into
account by applying the Fresnel coefficients for reflection rs, rp and transmission
ts, tp to the s- and p-polarized components of the field. For a single interface
as in our case, the field in the upper half-space is then the superposition of the
primary dipole field and the reflected field. The field in lower half-space is given
by the transmitted field. When the signals are observed in the far-field zone as in
our experiments, the asymptotic form of the fields needs to be derived. Finally,
in the coordinate system depicted in figure 6.5, the fields read as [148, 154]

~Ep = c1(θ) cosΘ sin θ+ c2(θ) sinΘ cos θ cos(ϕ−Φ) (6.1a)
~Es = c3(θ) sinΘ sin(ϕ−Φ). (6.1b)

with their complex conjugates ~E∗p and ~E∗s. For radiation into upper half-space,
here air with n1 = 1, the coefficients are

c
↑
1 =

1

Π(θ)
+ rpΠ(θ) (6.2a)

c
↑
2 =

1

Π(θ)
− rpΠ(θ) (6.2b)

c
↑
3 = −

1

Π(θ)
+ rsΠ(θ) (6.2c)
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n  1

h

j

r

Figure 6.5: Coordinate system of the calculations for a dipole with dipole moment ~p

near an interface. A photon is emitted at a polar angle θ and azimuthal angle
ϕ to the optical axis. Θ is the polar angle and Φ the azimuthal angle of the
dipole axis.
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where

Π(θ) = e−ikn2 cosθh (6.3)

with the vacuum wavevector k = 2π/λ and the z coordinate h of the dipole above
the interface. For radiation into lower half-space, in our case glass with n2 = 1.5,
the coefficients emerge as

c
↓
1 = n2

cos θ
cos θs

tpΠs(θs) (6.4a)

c
↓
2 = ntpΠs(θs) (6.4b)

c
↓
3 = −n

cos θ
cos θs

tsΠs(θs) (6.4c)

where n = n2/n1 is the relative index of refraction and

Πs(θs) = eikn1 cosθsh. (6.5)

θs is linked to θ by Snellius’ law

sin θs
sin θ

=
n2
n1

. (6.6)

The Fresnel coefficients for reflection and transmission in non-magnetic media
are given by [72]

rp =
n2 cos θs −n1 cos θ
n1 cos θ+n2 cos θs

(6.7a)

rs =
n1 cos θ−n2 cos θs
n1 cos θ+n2 cos θs

(6.7b)

tp =
2n1 cos θs

n1 cos θ+n2 cos θs
(6.7c)

ts =
2n1 cos θs

n1 cos θs +n2 cos θ
. (6.7d)

The powers radiated into air (↑) and the substrate (↓) are then given by

P↑(ϕ,Θ,Φ) ∝ ~E↑p~E
↑∗
p + ~E↑s~E

↑∗
s (6.8a)

P↓(ϕ,Θ,Φ) ∝ ~E↓p~E
↓∗
p + ~E↓s~E

↓∗
s . (6.8b)

In our experiment, the intensity distribution is imaged in the back focal plane
of a f = 300 mm lens. This yields sin θ = r/f for the radial distance r from the
optical axis. To obtain the intensity distribution as observed in an experiment
from equation 6.8, an apodization factor 1/ cos θ needs to be added for energy
conservation [154]:

P(r,ϕ,Θ,Φ) ∝ 1

cos θ

(
~Ep~E

∗
p + ~Es~E

∗
s

)
. (6.9)
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vector is given by NA = 1.35.

For different dipole orientations, the resulting radiation patterns as calculated
from the above relations are shown in figure 6.6. The dipole orientation is clearly
reflected in the intensity distribution within the pattern. For example, from the
two horizontal dipole orientations in figure 6.6a and b, one sees that most of
the light is radiated into two lobes perpendicular to the dipole axis. In return,
conclusions about the dipole orientation can be drawn from measured emission
patterns. The apparent discontinuity in the pattern at NA = 1 corresponds to
the critical angle θc = arcsin(n1/n2) of total internal reflection at the interface.
The intensity at angles larger than the critical angle arises from the excitation
of propagating waves in the substrate by evanescent fields of the dipole, which
is called forbidden light [148]. The efficiency of this conversion decreases
exponentially with increasing distance of the dipole from the interface. In our
case, the particle, i. e. the dipole, is located almost directly at the interface so
that even most of the light is radiated at supercritical angles θ > θc beyond
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NA = 1. Note that this results in complex-valued θs according to Snellius’
law. According to the height of the nanostructures h = 30 nm, all patterns in
this thesis are calculated for dipoles at a distance of 15 nm to the interface,
corresponding to emission from the center of the structure.

Regarding our work, we have extended the above method to include a finite
number of dipoles. They are defined by their relative position as well as their
orientation and dipole moment. If more than one dipole is considered, first
the fields radiated from the individual dipoles are computed according to
equation 6.1. Here, only the dipole orientation and distance to the interface is
relevant. In a second step, the fields are weighted by the corresponding dipole
moment and shifted to the position of the respective dipole before adding up the
individual fields to the total fields ~Ep and ~Es. A position shift results in a relative
phase factor e−i~k∆~r. As the phase is accounted for throughout the calculation,
the fields from the individual dipoles can interfere on the nanoscale. Finally,
the intensity distribution is computed according to equation 6.9 from the total
fields. No example is shown here as this topic is discussed in detail in section 7.2.

6.4 finite element method calculation of the nonlinear re-
sponse

As discussed in section 5.3, there are analytical solutions to Maxwell’s equations
for the interaction of light with nanoparticles. However, these are limited to few
special cases, such as spherical particles and homogeneous environments. To
calculate the optical response or the electromagnetic fields for a wide range of
nanostructures, numerical methods need to be considered. Amongst a variety
of different techniques, a finite element method (FEM) is well suited for our
applications.

In brief, in the finite element method a system is subdivided into smaller parts,
the finite elements, which are flexible in size. Solutions to the problem are then
found by solving the boundary value problem for partial differential equations
for these elements. All models and simulations presented in the following and
in chapter 7 have been developed and carried out by Thorsten Schumacher with
the commercial software package ’Comsol Multiphysics’. Detailed information
about the FEM method can be found in his dissertation [155].
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In our simulations, we would like to calculate the nonlinear electric fields of
individual gold nanoparticles. As dielectric function of gold, we rely on the data
reported by Johnson and Christy [136].
We compute the solutions to Maxwell’s equations in frequency domain and un-
der plane wave excitation to obtain the electric field at a certain frequency ω0 as
superposition of incident and scattered field. The electric field is related to the
linear polarization, given by

~P(1)(~r,ω0) = ε0χ
(1)~E(~r,ω0) (6.10)

= ε0χ
(1)~E(~r)eiω0t. (6.11)

On a microscopic scale, each volume element can be interpreted as a dipolar
scatterer which carries a dipole moment scaling with the local electric field. The
linear polarization is then simply the average dipole moment per unit volume.
Based on the anharmonic oscillator model used in previous work [151, 150], each
dipole serves as nonlinear oscillator and generates nonlinear polarization [155].
Consequently, the third-order polarization ~P(3) can be calculated from the linear
polarization as

~P(3) ∝
(
~P(1)

)3
∝
(
χ(1)

)3
~E3(~r)ei3ω0t. (6.12)

~P(3) is a complex vector carrying amplitude and phase, and oscillates with 3ω0.
This third-harmonic polarization corresponds to a nonlinear field inside the ma-
terial and is the source of third-harmonic generation [155, 156]. Note that we
assume a flat dispersion of the susceptibility χ(3) and consider materials with
no second-order processes. To account for varying efficiencies of the third-order
process at different frequencies, usually a normalization factor is included in
equation 6.12. However, frequency dependencies and total amplitudes of the
third-harmonic generation are not relevant for our investigations, so that this
normalization can safely be neglected.
While the method gives out the linear field around the structure, the nonlinear
field, i. e. the field generated by the nonlinear polarization, cannot be straight-
forwardly computed. To simulate the nonlinear field outside the structure, the
third-harmonic polarization in the structure is set as boundary value for a new
calculation, solving the system at 3ω0.

As an example, the simulated linear and nonlinear fields of a resonantly excited
gold nanostructure are shown in figure 6.7. Throughout this thesis, all field
plots show a cut through the structure at z = 15 nm. Moreover, we use different
colormaps to clearly distinguish between the linear and nonlinear fields. As
we always consider field distributions and not absolute values of the fields,
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Figure 6.7: Finite element method simulation for a 270 nm long gold nanoparticle on a
glass substrate, excited at the fundamental plasmon resonance. Shown are the
computed a) linear response and b) nonlinear response at the third harmonic.
The linear field inside the particle is scaled up by a factor of ten for better
visibility.

the colorbars will be omitted in the next chapter. In figure 6.7, the nonlinear
field inside the particle corresponds to the linear field cubed whereas the
nonlinear field outside the particle is the result of a separate calculation at
3ω0. For the simple case shown here, the distribution of the nonlinear field is
similar to the linear one, which, however, is not always true. This gives new op-
portunities to shape nonlinear fields on the nanoscale, as discussed in section 7.5.
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T H I R D - H A R M O N I C G E N E R AT I O N O F G O L D N A N O R O D S

This chapter is based on our publication Shaping the nonlinear near field in Nature
Communications (2016) [33].

Light scattering at plasmonic nanoparticles and their assemblies has led to
a wealth of applications in metamaterials [4, 5] and nano-optics [133, 157].
While the focus of most studies still lies on the linear optical properties of
the nanostructures, the field of nonlinear plasmonics which was introduced
in section 5.3 is still growing. Many very interesting aspects of the nonlinear
processes in plasmonic nanostructures were studied during the last years [26].
Especially the spectral dependence [158, 151] and the enhancement of the
nonlinear signals [152, 153] has been investigated in detail. Although shaping
of linear as well as nonlinear fields around nanostructures is widely studied
[13, 159, 160, 161, 149], the influence of the field inside the nanostructures is
often overlooked. In this chapter, we present a new approach to nanoscale field
shaping based on higher harmonics generation in single elongated structures
taking into account higher order plasmonic modes.

We now have the theoretical background and relevant methods at hand to start
a detailed investigation of the nonlinear properties of plasmonic nanostructures.
After introducting the experimental technique, essential results regarding single
resonant nanorods are presented in section 7.1. These particles form the building
blocks of the nonlinear plasmonic double slit experiment (see section 7.2) where,
in analogy to classical diffraction experiments, interference between different
emitting centers is observed. That way, it constitutes a very sensitive tool to mea-
sure the separation between the emitters. As a side effect, this method allows us
to precisely determine the spatial origin of the nonlinear signals. The quality of
our calculations with respect to the experimental resolution is discussed in sec-
tion 7.3. Finally, we show in section 7.4 that the third-harmonic emission from
an individual extended nanostructure can be switched between different config-
urations. Due to the higher order process, the concomitant nonlinear near fields
switch accordingly, offering great potential to control field distributions from a
single nanostructure alone (see section 7.5).

99
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Figure 7.1: Schematic illustration of the experiment.

7.1 nonlinear emission properties of a single particle

The basic working principle of our experiments is shown schematically in fig-
ure 7.1. The nanostructures are fabricated on a glass substrate using electron
beam lithography. In a first step, we consider 270 nm long nanorods with 60 nm
width and 30 nm height. The sample is excited with a focused beam of infrared
pulses. Here, the excitation wavelength is fixed at 1170 nm. The polarization
of the excitation is chosen parallel to the long axis of the nanorods, excitation
power is ≈ 2.5 mW unless otherwise stated. The generated nonlinear radiation
is emitted into the substrate and collected with a high-NA objective.

7.1.1 Spectrum: contributions and power dependence

An SEM image of the investigated rod structure is shown in figure 7.2a. The
dimensions agree well with the nominal values. The fundamental dipolar plas-
mon resonance is excited resonantly in the rod at an excitation wavelength of
1170 nm, as can be seen in the calculated field distribution.
The measured spectrum in the visible wavelength regime is shown in figure 7.2b.
We can identify three contributions in the nonlinear signal. The narrow peaks at
half (585 nm) and one third (390 nm) of the excitation wavelength correspond
to second and third harmonic generation, respectively. This manifests in the ex-
pected square and cubic dependence of the signals on the excitation power (see
figure 7.3). Although gold as well as the structure itself is centrosymmetric and
hence should not exhibit a signal at the second harmonic, we see a distinct SHG
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peak. We attribute this to the fabrication process which inevitably leads to sur-
face roughness and irregularities in shape. This is confirmed by a strong varia-
tion in the SHG signal from nominally equivalent particles. Due to the higher
efficiency of the second order process, the SHG signal can be comparable to
the signal at the third harmonic. In fact, symmetry-forbidden SHG from gold
nanostructures has been observed in quite a number of studies, see for exam-
ple [162, 163, 164]. Apart from fabrication inaccuracies, it is also attributed to
the near field around the nanostructures, allowing for contributions from actu-
ally symmetry-forbidden tensor components [165]. However, the origin of these
signals is still under debate. In addition to the higher harmonics generation, the
spectrum shows a broad luminescence background. Due to the low energy of the
excitation photons, this response must arise from a multiphoton process. As the
signal extends down to the third harmonic wavelength, we suggest that the lu-
minesence is induced by absorption of three photons, resulting in a three photon
photoluminescence (3PPL) signal [166, 167]. Looking at the power dependence
of the signal in figure 7.3b, indeed a cubic law shows a good agreement with the
measured data. At low powers, the signal vanishes in the noise. Also the non-
linear luminescence response varies between individual particles and is strongly
influenced by the nanoscopic geometry of the structures [167, 168].
In conclusion, we have seen that both SHG and the observed multiphoton lumi-
nescence seem to be determined by surface effects and fabrication inaccuracies
and therefore do not fall within the scope of our investigations. Hence, we will
focus on the THG signal which is symmetry-allowed and very homogeneous.
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Figure 7.2: a) SEM image of the investigated structure and FEM calculation of the elec-
tric field around an equivalent structure excited at the fundamental plasmon
resonance. The field inside the structure is scaled up by a factor of ten for
better visibility. b) Measured spectrum of the 270 nm long rod at 1170 nm
excitation, showing the main contributions to the nonlinear signal.
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Figure 7.3: Power dependence of the signals. a) THG and SHG: plotted are the peak
values extracted from a Lorentzian fit. Dotted lines are power law fits. b) Lu-
minesence: plotted is the integrated intensity between 420 and 750 nm after
subtraction of the SHG peak. The colors represent three nominally equivalent
particles. Dotted line is a guide to the eye.
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7.1.2 Emission properties – back focal plane images

Regarding the emission properties of the single nanorod, we use a narrow band-
pass filter (center 390 nm, width 18 nm) to investigate the third-harmonic light
only. The radiation patterns are acquired using the spectrograph with a mirror
instead of a grating.
The measured back focal plane image of an individual nanorod excited at the
fundamental dipolar plasmon resonance is shown in figure 7.4a. Note that all
measured and calculated emission patterns in this chapter are normalized to
their maximum since we are interested in the intensity distribution within the
pattern only. The colorbars as well as the axis labeling will therefore be omit-
ted in the following. As discussed in the methods section, most of the light is
radiated into the substrate under supercritical angles beyond NA = 1 (see sec-
tion 6.3). The two lobes in ky direction hint at an orientation of the radiating
dipole moment along the x axis, coinciding with the orientation of the rod and
the excitation polarization. Figure 7.4b shows the emission pattern calculated for
a single dipole 15 nm above the air–glass interface. Obviously, the simple case
of a single dipole yields very good agreement with the measured pattern. To un-
derstand this, we consider the calculated linear field of the nanorod as shown in
figure 7.4b. At the plasmon resonance, the linear field outside the particle peaks
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Figure 7.4: Nonlinear plasmonic analog of a single slit. a) Back focal plane image of
the third harmonic light of a 270 nm long gold nanorod for an excitation
wavelength of 1170 nm. Scale bar in the SEM image is 200 nm. b) Emission
pattern of a dipole at an interface for 390 nm emission wavelength. Shown
are also the calculated linear and nonlinear fields.
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at the ends of the rod, forming hot spots. However, the field inside the particle is
the crucial parameter for nonlinear effects. In stark contrast to the external field,
it is highest in the center of the rod. Consequently, also the third-order polariza-
tion which scales with the third power of the field is enhanced in the center. The
simulation hence predicts the nonlinear light to be emitted from the center re-
gion of the rod. Since this region is small compared to the emission wavelength,
the good agreement with a single dipole calculation is not surprising.
We therefore conclude that it is the high field inside the gold structure that
causes third-harmonic generation. The emission properties of a single resonantly
excited nanorod can simply be described by a single dipole oriented parallel to
an interface.

7.2 nonlinear plasmonic analogue of young’s double slit

As discussed in section 5.2, higher harmonics generation is a coherent process
so that the third harmonic light is coherent with the exciting laser light. The
coherence manifests impressively when a nanorod pair as shown in the SEM
image in figure 7.5a is considered.
The observed back focal plane image is now distinctly altered: evidently, a
pattern of dark and bright stripes is superimposed onto the two-lobed dipolar
pattern. In the simulation, the nanorod pair corresponds to two dipoles with
a distance equivalent to the particle separation. Since the rods are excited
coherently by the same laser focus and hence emit coherently, the dipoles
oscillate in phase and have the same orientation and dipole moment. As shown
in figure 7.5, the calculated emission pattern is in good agreement with the
measurement regarding the position of the extrema as well as the intensity
distribution within the pattern.

Comparing our experiments to classical diffraction experiments, we see that an
individual nanorod acts similar to a single slit or even a point source of third
harmonic light. Consequently, a nanorod pair combines two emitting centers
and constitutes the nonlinear plasmonic analogue of Young’s double slit. In this
classical experiment, the coherent emission from two slits interferes due to the
wave nature of light and a characteristic pattern of dark and bright stripes can
be observed in the far field. The emerging Fraunhofer diffraction pattern corre-
sponds to the Fourier transform of the apertures [169]. The shape and intensity
distribution of the interference pattern in the far field is thus uniquely related to
both width and separation of the slits as well as their relative phase.
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Figure 7.5: Interference in the emission pattern of a pair of nanorods. Distance is 930 nm.
a) Measured back focal plane image. Scale bar in the SEM image is 500 nm.
b) Calculated radiation pattern for two dipoles oscillating in phase.

In our double slit analogue, we cannot straightforwardly vary all parameters.
The slit width as well as the emission wavelength is determined by the plasmon
mode. A relative phase between the two rods could be induced by a more
complex excitation geometry, for example using the steep curvature of the
wavefronts near the focal plane of a tightly focused laser beam [170]. Here
we are limited by the low NA of our excitation lens which does not allow for
noticeable phase differences. However, the nanorod separation can easily be
varied with electron beam lithography, simply by fabricating a series of pairs of
identical particles with increasing separation. The lower limit of the separation
is given by the rod dimension and a minimum gap of 60 nm to avoid plasmon
coupling. The maximum separation is determined by the size of the laser
spot. Hence, we can safely vary the nanorod separation between 330 nm and
930 nm. The full series of measured and calculated emission patterns is shown
in figure 7.6.

For a more detailed analysis, we condense the information contained in the emis-
sion patterns by studying the projection of the patterns onto the kx axis as shown
in the bottom row of figure 7.5. All information about the interference process
and hence the changes related to the distance variation is contained in the x
direction whereas the y direction only displays the two-lobed dipolar pattern.
Hence, no relevant information is lost due to the projection. The resulting inten-
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Figure 7.6: Full series of measured and calculated emission patterns for the plasmonic
double slit analogue in a side-by-side arrangement. Scale bar is 200 nm.
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Figure 7.7: Full series of measured and calculated emission patterns for the plasmonic
double slit analogue in a stacked arrangement. Scale bar is 200 nm.
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sity profiles for the smallest and the largest rod distance are shown in figure 7.8a.
In these intensity profiles, the correspondence to the classical experiments be-
comes even more apparent. The agreement between the intensity profiles from
experiment and theory is convincing. In the radiation patterns as well as the
intensity profiles, we see that with increasing nanorod separation, the number
of side maxima and hence also the number of minima increases. Apart from the
number, especially the exact position of the minima depends strongly on the
separation of the emitting centers. As shown in figure 7.8b, there is a good agree-
ment regarding number and position of the minima between measurements and
simulations for rod pairs of all distances between 330 and 930 nm.
The careful analysis of the interference pattern thus allows us to accurately
measure emitter distances which are smaller than the diffraction limit of the
excitation light. That way, the double slit analogue experiment further confirms
the centers of the rods as sources of the nonlinear signal. This issue will be
further discussed in the next section.
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Figure 7.8: Distance dependence of the nonlinear plasmonic double slit. a) Measured
(red squares) and calculated (black lines) intensity profiles for 330 and 930 nm
distance, corresponding to cuts through the distance dependent intensity pro-
jection shown in b). The squares and dashed lines indicate the positions of
the minima from measurement and calculation, respectively. The error bars
correspond to an increase to three times the noise level above the minimum.
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Figure 7.9: Nonlinear plasmonic ruler: calculated radiation patterns for two dipoles (left)
as well as an array of four dipoles (right) with distances in x and y direction
as indicated. Emission wavelength is 390 nm.

As an additional degree of freedom in our experiment, we can modify the
spatial arrangement of the nanorods from side-by-side to stacked as shown in
the SEM images in figure 7.7. Again, an interference pattern is superimposed
onto the two-lobed dipole pattern. However, now the interference process takes
place along the y direction so that the pattern of dark and bright stripes is
rotated by 90◦ compared to figure 7.6. The sensitivity of the interference process
towards the arrangement of the emitters can be exploited to determine not only
distances but also the direction of the displacement as is demonstrated by the
two exemplary cases in figure 7.9. That way, our method constitutes a nonlinear
plasmonic ruler allowing to measure distances and angles between nonlinear
emitters on the nanoscale.

Finally, we would like to emphasize that the observed interference effects rely
fundamentally on the coherent nature of the higher harmonics light. Interfer-
ence can also be observed in the SHG signal, however, less pronounced due to
the higher wavelength and unclear origin of the signal. In contrast, the lumines-
cence light is not coherent, leading to a homogeneous intensity distribution in
the radiation pattern independent of the considered structure, as shown in fig-
ure 7.10.

7.3 localizing the spatial origin of thg

7.3.1 Surface versus volume effects

As mentioned in section 7.1, the origin of the higher harmonics signals, especially
that of SHG, is still under debate. Many plasmonic effects and applications are
related to the strong local field enhancement in the vicinity of the nanostruc-
tures. These hot spots are also observed for our nanorod geometry as shown
in figure 7.2a. Although both our experiments as well as the calculations sug-
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gest the high internal fields and hence the particle volume as origin of the third
harmonic signal, we would like to exclude possible contributions from surface
effects at the ends of the nanorods.
To clarify this point, the measured radiation patterns are compared to different
simulations, shown in figure 7.11. Obviously, the patterns agree best when as-
suming a dipole in the center of each nanorod, corresponding to emission from
the particle volume. Emission from the ends of the particle is simulated by two
dipoles for each rod, with a separation equivalent to the rod length. In case of
the single rod structure, this yields two interference minima which are clearly
not observed in the experiment. For the double slit analogue, the minima aris-
ing from the particle size are superimposed onto the interference pattern arising
from the particle separation. This is in analogy to the influence of the slit width
in the classical double slit experiment, where the double slit interference pattern
is modulated by the single slit function. However, also here the intensity distribu-
tion within the pattern is best reproduced assuming emission from the centers,
which was also reflected in the very good overlap between the intensity profiles
from theory and experiment (see figure 7.8a). Overall, these simple considera-
tions allows us to exclude contributions to the TH signal due to surface effects
at the particle ends.

7.3.2 Narrowing down the spatial extent of the emission centers

To further elaborate on the spatial origin of the signal, we consider not only emis-
sion from the center and the ends of a rod, but vary the distance d of two dipoles
between 0 nm (corresponding to emission from the center) and 270 nm (corre-
sponding to the particle size) as shown in figure 7.12. That way, the sensitivity
of our method towards the spatial extent of the emitting center can be estimated.
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Figure 7.10: Nonlinear signal of a rod pair with 930 nm separation for 1170 nm excita-
tion, resolved with a 150 grooves/mm grating. While interference effects are
observed in the patterns at the TH and SH wavelengths, the luminescence
leads to a broad, homogeneous background.
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Figure 7.11: Ends vs center: full emission patterns of measurement and simulations with
one and with two dipoles for the single 270 nm long rod in a)-c) and the
double rod structure with a particle separation of 930 nm in d)-f).
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Figure 7.12: χ2 deviation of the measured and calculated intensity profiles for the single
(orange line) and the double rod structure with 930 nm separation (green
line). Each rod is represented by two dipoles with varying distance between
0 nm and 270 nm. Intensity profiles are normalized before comparing data
and calculation. χ2 is normalized such that χ2 = 1 at d = 0 nm.
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This study is analogous to a variation of the slit width in the classical diffraction
experiments.
For the single and the double rod structure, we compare the measured intensity
profiles with those obtained for the distance dependent calculation. As argued
above, it is sufficient to consider the intensity profiles since all information about
the interference process is retained in the projection onto the kx axis. To quantify
the agreement between the curves, the χ2 deviation is evaluated. It is defined as

χ2 =
∑

(Ic − Im)2

where Ic are the data points of the calculated profile and Im the data points
from the measurement. The intensity profiles Ic and Im are normalized, so that
χ2 compares the shape of the profiles only. In the resulting curves shown in fig-
ure 7.12, χ2 for the two different structures is normalized to the center emission
case, so that χ2 = 1 for d = 0 nm. Consequently, the deviation quantifies the
agreement of the profiles relative to the center emission case. This approach is
justified as the unnormalized and hence also the normalized χ2 for both struc-
tures reach the absolute minimum at d = 0 nm. Obviously, the deviation quickly
increases with increasing dipole distance. Especially the close-up view on the
right shows large deviations for dipole distances even below 100 nm. This be-
havior is more pronounced for the single rod structure, in accordance with the
above reasoning regarding figure 7.11. Supporting this point, the χ2 study clearly
excludes emission from the ends of the rods. Furthermore, it allows us narrow
down the spatial extent of the emitting center that can be resolved with our
experiment to a value far below 100 nm.

7.3.3 Quality of the single dipole approximation

In fact, the size of the emitting centers is revealed in the finite element calcu-
lations of the nonlinear polarization in the nanorods, as shown in figure 7.4b
and 7.5b. The nonlinear polarization is not a discrete function but is distributed
over the particle, which strictly speaking rules out the definition of a spatial
extent of the emission center. In this context, it is an intriguing question if our
experiment is able to distinguish between a point-like emitter and a smeared
out emission center with a finite extent. Completing the previous study, we now
would like to estimate the quality of the individual dipole approximation by
varying the dipole number in the calculation.
Figure 7.13 shows once more calculated radiation patterns, this time comparing
the results obtained from single dipoles to that from an array of many dipoles.
In figure 7.13b and e, the amplitudes and phases of the individual dipoles in the
grid are chosen according to the FEM calculation of the nonlinear polarization
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Figure 7.13: Influence of the dipole number. a), d) Calculated emission patterns from a
single dipole and two dipoles corresponding to a single and two double rod
structures with different separation, respectively. Calculated emission pat-
terns from 104 dipoles arranged in a 1 nm grid where amplitude and phase
of the dipoles b), e) corresponds to the nonlinear polarization calculated
with FEM or c), f) is constant, simulating homogeneous emission from the
whole rod.

in the nanorods (see figure 7.4b and 7.5b). The difference between the patterns
obtained with the single dipoles and the array with this "real" distribution
of dipole moment is marginal. For comparison, figure 7.13c and f show the
emission patterns assuming homogeneous emission from the whole volume of
the rod. This is in analogy to a finite slit width which results in an envelope
function for the interference pattern, as discussed above. Overall, increasing the
number of dipoles considered in the calculation does not yield an improvement
and the measured emission patterns are reproduced best by single dipoles.

In summary, we conclude that our assumption of single point-like dipoles yields
very good results regarding the calculation of radiation patterns as the finite
extent of the emitting spots is not resolved in our measurements. This allows us
to refrain from FEM simulations and minimizes the computational effort.
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7.4 switching the emission properties of a long rod

In this section, we extend the scope of our investigation of the nonlinear emis-
sion characteristics of nanostructures beyond small rods and turn our attention
towards elongated structures. Within the wavelength regime accessible in our
experiments, these structures are not excited resonantly at the fundamental
plasmon mode anymore, so that we deal with an unknown number and distri-
bution of emitting centers. Whereas the experiments so far were restricted to
excitation at 1170 nm, the excitation wavelength will be varied in the following.
The bandpass filter is now removed and a grating disperses the light in the
spectrometer. The convolution of spatial pattern and emission spectrum has
little influence on the observed radiation patterns, as the emission spectrum at
the third harmonic is very peaked.

Figure 7.14 summarizes the measurements of a 925 nm long gold rod. The angu-
lar emission pattern of the extended rod at an excitation wavelength of 1320 nm
clearly displays the characteristic interference pattern of a double slit where both
apertures emit in phase (see figure 7.14a). With the nonlinear ruler method pre-
sented above, the separation of the emitting centers can be determined according
to the number and position of the minima in the interference pattern. This anal-
ysis hints at two emitting centers in a distance of approximately 600 nm, as indi-
cated in the SEM image. When the fundamental wavelength is tuned to 1420 nm,
we obtain an angular pattern that deviates only slightly from a single dipole,
implying a dominant emission from the center of the rod (see figure 7.14c). Both
conclusions are confirmed by numerical simulations of equivalent rod structures
as shown in figure 7.14a and c.
Additional measurements were performed, covering the wavelength range
1170− 1420 nm. To gain an understanding of the wavelength dependent behav-
ior, we take the profiles corresponding to the emission patterns at 490 nm and
425 nm TH wavelength as templates for the states |1〉 and |2〉, respectively. The in-
tensity profiles at all other wavelengths are then fitted by a linear superposition
of these two limiting cases:

Itot = (1− a) |1〉+ a |2〉 .

Here, n = 1, 2 gives the number of emitting centers in the corresponding state
|n〉 and a is the weight (0 6 a 6 1). The weight a at all measured wavelengths is
determined by fitting the linear superposition to the measured data using a non-
linear Levenberg-Marquardt algorithm. The uncertainty in the fit parameter a is
estimated by the algorithm and given by the square root of the diagonal element
of the covariance matrix. Three times this standard deviation is given as error
bars in the plot. As the patterns at 490 nm and 425 nm were chosen as base func-
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Figure 7.14: Switching of nonlinear emission. a), c) The emission pattern of a 925 nm
long rod depends on the excitation wavelength. The two states |1〉 and |2〉
differ in the number of emitting spots, as indicated in the SEM images and
the calculated TH fields. b) We observe a transition within a wavelength
range of about 25 nm for the weight a of state |1〉 (red dots). The error bars
are three times the standard deviation of the fit. The black line is a guide to
the eye.
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Figure 7.15: Calculated absorption cross section (black line) and phase of the third-order
mode (red line) of a 925 nm long rod. The phase of the dipolar mode is not
calculated but outlined for reference only. Insets: linear field distributions at
the fundamental and the third-order resonance.

tions, the uncertainty vanishes at these wavelengths. As shown in figure 7.14b,
the weight a obtained in this way displays a transition between a single emitting
spot in the center (state |1〉) and two in-phase spots with well-defined separa-
tion (state |2〉). The transition is very steep, taking place within 25 nm at the
third-harmonic wavelength. The full series of the measured emission patterns in
dependence of the excitation wavelength is shown in figure 7.17b. The change of
the interference pattern nicely displays the described switching from single to a
double slit behavior, supporting our superposition ansatz.

To explain the switching of the emission pattern, we need to consider in more
detail the modes of the fundamental field. We have discussed in section 5.3
that the modes of long nanorods resemble standing waves, where only odd
modes can be excited optically in our configuration. As shown in figure 7.15,
the dipolar mode is shifted far into the infrared, whereas the third-order mode
shows a resonance in the wavelength regime where the experiments are carried
out. When the excitation wavelength is tuned over a plasmon resonance, the
phase of the mode changes by π. This behavior is in analogy to the phase change
of a driven harmonic oscillator. In the vicinity of the third-order resonance,
the third-order mode undergoes the phase change by π. In contrast, the phase
of the fundamental dipolar mode is unaffected at wavelengths far away from
the dipolar resonance. Tuning the excitation wavelength over the third-order
resonance thus induces a relative phase of π between the two modes.

The field distribution at different wavelengths can be described with a simple
dipole picture. We emphasize that this dipole picture used to describe the modes
is different from the one considered for the calculation of the radiation pat-
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Figure 7.16: Illustration of the mode superposition in the long rod for excitation below
(a) and above (b) the third-order resonance λres. Shown are the calculated
linear field distributions at the dipolar and third-order resonance and the
nonlinear fields at both sides of λres.

tern. Here, the dipoles indicate fields or current distributions in the rod, but are
not automatically equivalent to emitting centers. The linear fields of the dipolar
and the third-order mode then correspond to a single dipole and three counter-
oscillating dipoles, respectively, as indicated in figure 7.15. In the considered
wavelength regime, we always excite both modes with varying efficiency and ob-
serve their superposition. Figure 7.16 illustrates the situation at wavelengths be-
low and above the third-order resonance. For wavelengths below the resonance,
the overall phase between the modes vanishes. In the dipole picture, the single
dipole and the inner dipole of the third-order mode oscillate against each other
and cancel. As only the outer dipoles remain and generate a nonlinear signal,
this corresponds to the double slit behavior. Above the resonance, the relative
phase between the modes is π. Hence, the single dipole and the inner dipole of
the third-order mode add up while the outer dipoles are weakened. The center
dipole then dominates, which leads to the observed single spot emission pattern.
In conclusion, the simple dipole picture fully describes the observed switching
behavior. Both the relative amplitudes and the phase change around the higher
order plasmon resonance must be taken into account to explain the experimental
results.

Actually, the third-order plasmon resonance can be crossed in two ways as
indicated by the dashed white lines in figure 7.17a: either by changing the
excitation wavelength for a fixed rod length as discussed above or by changing
the rod length for a fixed excitation wavelength. When tuning the plasmon
resonance via the length of the nanorod, we observe the same transition of the
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pattern from double to a single slit analogue as shown in figure 7.17c. This
supports the explanation of the switching of the emission behavior of extended
gold nanostructures by higher order plasmon modes. Moreover, the observed
effects further prove that the high field regions in a plasmonic structure are the
source of THG.

Finally, we note that the third-order resonance of the investigated structures is
red-shifted compared to the calculation due to fabrication inaccuracies.
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Figure 7.17: a) Calculated absorption cross section for different nanorod lengths. The
wavelength regime has been divided into two parts with different resolution
at 1500 nm, indicated by the solid black line. b) Radiation patterns measured
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Figure 7.18: Nonlinear near-field and emission control. a) Slightly tuning the excitation
wavelength over a plasmon resonance drastically changes the far-field re-
sponse of a simple plasmonic structure. In our experiment, we switch be-
tween a configuration with one single and two separated emitting centers.
b) While the linear fields are almost unaffected, the emitting centers and the
concomitant nonlinear near-fields strongly depend on the excitation wave-
length.

7.5 nonlinear near-field shaping

In the previous section, we have discussed how the nonlinear emission properties
of an extended rod structure can be switched between different configurations
by slightly varying the excitation wavelength. A summary of the experiment is
given in figure 7.18a.

It is interesting to consider the behavior of the fields related to the response
of the nanostructure. Figure 7.18b shows the linear field at the excitation
wavelength as well as the fields at the third harmonic. These nonlinear fields
are generated by the nonlinear polarization in the particle which calculates as
the third power of the linear polarization in the material (see equation 6.12 and
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section 6.4). Evidently, the distribution of the linear local field is hardly affected
by the wavelength variation in the vicinity of the higher order resonance.
However, the nonlinear third-order process of third-harmonic generation ampli-
fies amplitude and phase differences of the fundamental field inside the rod.
Although the differences are minor at the fundamental, the cubic dependence
leads to drastic modifications in the distribution of the nonlinear polarization.
Consequently, the third-harmonic emission properties and the concomitant
near-fields at the third harmonic switch between different configurations as
demonstrated by the numerical simulations shown in figure 7.18b.

Whereas the shaping of linear and nonlinear fields by complex assemblies
of nanoparticles is common, our method enables field shaping with a single
nanostructure alone by engineering distribution of the fundamental field inside
the structure. It hence extends the range of well-established approaches in view
of opportunities and potential applications in nanophotonics.

7.6 conclusions and outlook

In this chapter, we have presented an overview of our studies on the nonlinear
emission properties of plasmonic nanostructures. Due to the coherent nature of
the signals from different emitting centers, interference effects are observed in
the far field. These can for example be exploited to localize the spatial origin of
the nonlinear signals, that way gaining a deeper understanding of the physical
processes in nonlinear plasmonics. Here, our experiments confirm the high
internal fields as source of the nonlinear signals, which are well described by
individual dipolar point emitters. Due to the high sensitivity of interference
signals, our technique constitutes a nonlinear plasmonic ruler which allows
to precisely measure distances, angles, and phases between emitting spots.
In further experiments, we have shown that the emission properties of an
elongated plasmonic structure can be switched between different configurations,
in analogy to a light switch on the nanoscale. Of particular interesting here
are the related nonlinear fields, which exhibit the same switching behavior. In
addition to established methods based on assemblies of nanoparticles, nanoscale
fields can hence be shaped with similar efficiency using a single nanostructure
alone.

Our experiments open up a new direction for nanophotonics. We see a wide
range of potential applications and intriguing opportunities for further studies.
On the one hand, switchable light sources on the nanoscale can be used to
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controllably excite other structures such as molecules or quantum dots in the
vicinity of the nonlinear hot spots. In consequence, our approach would not
be limited to the third harmonic wavelength anymore. In combination with
waveguiding structures [171, 172], the generated light could be guided away
from the switchable plasmonic structure, that way extending also the accessible
spatial range. The coherence of the individual emitting centers allows to operate
devices such as photonic beam splitters and paves the way towards optical
circuits [173, 174, 1]. On the other hand, the concept of tailoring local field
distributions is of great interest regarding the development and investigation
of extended electronic states [175]. Here, a prominent example is the mapping
of the spatial extent of delocalized excitonic states in multichromophoric
systems, which is crucial regarding potential light harvesting applications
[176, 177]. The near fields around a plasmonic structure offer the possibility to
controllably excite and probe certain excitations in such delocalized states. In
this context, a well-chosen and optimized switchable structure could provide a
versatile and powerful tool to quantify quantum coherence on a nanometer scale.
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C O N C L U S I O N A N D O U T L O O K

In this thesis, we have studied the optical properties of two prominent material
systems in the field of nano-optics, aiming at a deeper understanding of the
interaction of these nanoscopic structures with light.

The first part considered the linear optical response of graphene, from a general
point of view as well as under the influence of strain. Using optical spectroscopy,
one can get further insight into the electronic structure of graphene and the
nature of the excited states. This is particularly interesting in the visible to
ultraviolet wavelength regime, where graphene’s extraordinary band structure
exhibits a saddle point. Assuming an excitonic state in the vicinity of the
saddle point, a simple Fano model can describe the absorbance spectrum in
the visible and ultraviolet regime. The coupling of the discrete excitonic state
to the continuum of states from the saddle point down to the Dirac point
leads to an asymmetric peak. The measured data is in very good agreement
with the model even down to infrared photon energies. We have discussed
the properties of the excitonic resonance in graphene and graphene-related
systems. Furthermore, we showed that the optical constants of graphene can be
extracted from the Fano fit in combination with the Kramers-Kronig relations.
After this overview of the general optical properties of graphene, we presented
an investigation of the influence of strain on the Fano resonance. Strain causes
intriguing effects as it breaks the symmetry in the crystal as well as the band
structure, which is predicted to induce profound changes also in the optical
spectra. In order to meet the requirements imposed by the experimental
conditions, we have tested different substrate materials, especially with regard
to the adhesion of the graphene flakes as well as the contrast in the reflectivity
spectra. The strain sensitivity of graphene’s Raman modes in combination with
well-established reference measurement allows to reliably quantify the amount
of strain applied to the samples. That way, we have shown that uniaxial strain
of up to 1% can reproducibly be applied to graphene sheets on a PMMA sub-
strate using a bending method. Moreover, we have successfully demonstrated
that polarization-dependent Raman measurements allow us to determine the
crystal orientation relative to the strain direction. While the Raman spectra
unambiguously show that strain is applied, no effect in the reflectivity signal
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of graphene was observed. Theoretical calculations suggest a splitting of the
UV peak, however, the induced changes are subtle for strain values below 1%.
Even a careful analysis of the measured spectra with a Fano fitting method in
combination with statistical analysis did not reveal any deviations arising from
the applied strain. We attribute this to the limited measurement accuracy of
our experiment. Although this could be improved by an optimized fabrication
process and the use of modulation techniques, the maximum achievable strain is
evidently too small to cause distinct effects. As a consequence, other promising
approaches such as clamping of graphene to piezoelectric substrates should
be considered in future strain experiments. Overall, our investigations prove
an astonishing robustness of the Fano resonance in the optical spectrum of
graphene towards the influence of strain. This result is particularly interesting
in view of potential applications of graphene in optoelectronic devices such as
flexible and foldable displays. As strain hardly influences its optical properties,
a stable appearance of graphene-based flexible devices can be anticipated.

In the second part, we have presented an investigation of the nonlinear emission
properties of plasmonic gold nanostructures. While the linear interaction of
plasmons with light is quite well understood, questions remain on the non-
linear behavior. So far, most studies focused on the enhancement of nonlinear
processes and their spectral characteristics, whereas our experiments consider
the spatial origin of the third-harmonic signals. After a general discussion
of light-matter interaction on the nanoscale, we gave an overview of the
necessary experimental and calculation methods. The working principle of our
experiments was demonstrated at the example of very small rod structures.
Here, we have shown that the emission properties of a structure excited at the
fundamental plasmon resonance correspond to that of a dipole at an interface.
Due to the coherence of the third-harmonic generation process, the light emitted
from different, spatially separated rod structures interferes and characteristic
patterns can be observed in the far field. In analogy to the classical double
slit experiment, we demonstrated that two rods form a nonlinear plasmonic
double slit, which allowed us to accurately determine the high fields inside
the particles as source of the third-harmonic light. Moreover, higher order
plasmonic modes in an elongated rod structure can be exploited to switch the
emission properties between different configurations, similar to a light switch
on the nanoscale. Varying the wavelength of the excitation light, we observed a
transition between a configuration with two spatially separated emission centers
and a configuration with dominant emission from the center of the rod. Due
to the power dependence of the nonlinear process, the near-fields generated
in the vicinity of the particle exhibit the same switching behavior. In addition
to established methods based on assemblies of nanoparticles, nanoscale fields



conclusion and outlook 125

can hence be shaped with similar efficiency using a single nanostructure alone.
This approach opens up a new direction for nanophotonics. In combination
with other nanoscale structures placed in the nonlinear hot-spots as well as
waveguiding structures, the covered wavelength regime and the spatial range
can be extended considerably. The coherence properties of the process allow
for the development of operating nanophotonic devices such as beam splitters,
paving the way towards optical circuits. In addition, the concept of tailoring
local field distributions is highly interesting with regard to the investigation of
delocalized electronic states found for example in multichromophoric systems.
A well-designed switchable structure could provide a versatile and powerful
tool to map quantum coherence on a nanometer scale.

A separate investigation of graphene and plasmonic nanostructures is undoubt-
edly of fundamental research interest. Besides gaining a deeper understanding
of their properties, both material systems can be merged, that way adding a
new playground to the field of nanophotonics. While graphene combines ex-
ceptional electronic conductivity with a stable optical response, plasmonic struc-
tures offer wide tunability together with opportunities to shape and enhance
optical fields on the nanoscale. First experiments revealed the great potential of
graphene–plasmonic hybrid systems for optoelectronic devices or sensor appli-
cations. Merging optical and electrical length scales, these hybrid systems more-
over set the stage for electrically tunable integrated optical nanocircuits.
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