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Abstract: We present sufficient conditions for the asymptotic stabilization of an equilibrium point

for nonlinear discrete time systems when using optimal controls derived from an infinite horizon

optimal control problem using a discounted stage cost. An illustrative example is provided to

highlight possible conservativeness in these conditions.
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1 Introduction

Asymptotic stabilization of an equilibrium point via optimal control techniques has long
been used as a method for computing feedback stabilizers, particularly in the context
of the infinite-horizon linear quadratic regulator problem [10] (see also [1, Sections 9.2.3,
9.2.6]). In this context, under appropriate assumptions, the solution to the algebraic Riccati
equation provides a static state feedback stabilizer that also solves the optimal control
problem.

In the more general case of nonlinear systems with positive definite (possibly nonlin-
ear) stage costs, such constructive techniques are not so straightforward. In the case
of continuous-time systems, the value function for a particular optimal control problem
is known to be a control Lyapunov function [14], from which it is possible to construct
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feedback stabilizers. However, explicitly constructing such a feedback stabilizer is known
to pose significant challenges [2].

On the other hand, for discrete time systems, deriving a feedback stabilizer from a con-
trol Lyapunov function is relatively straightforward. Moreover, as before, such a control
Lyapunov function can be constructed as the value function of an appropriately defined
optimal control problem [6, 11]. However, the difficulty remains that solving the optimal
control problems posed in [6, 11] is numerically difficult.

One possible solution to the numerical difficulty of computing closed-loop optimal con-
trols is via receding horizon or model predictive control [5]. Indeed, recent results have
demonstrated that as the horizon length grows, the solutions obtained via receding horizon
control closely approximate the infinite horizon solution [8].

A somewhat similar solution arises by considering an infinite horizon optimal control prob-
lem with a discounted cost. In other words, the stage cost at the current time carries a
greater weighting than the stage cost at future times. Consequently, states and controls far
into the future have a limited effect on the present, suggesting the possibility of truncat-
ing the cost function once the discounted stage cost becomes sufficiently small, not unlike
taking a sufficiently large horizon in the context of receding horizon control.

In addition to their potential as a numerical technique, optimal control problems with
a discounted stage cost commonly arise in applications in economics. In the context of
welfare maximization problems involving rational decision-makers, consumption at the
current time provides greater welfare than consumption in the future, with the discount
factor reflecting a trade-off between current and future consumption [9, 12].

In this paper, we consider discounted optimal control problems for nonlinear discrete time
systems and provide sufficient conditions for when the optimal controls yield an asymp-
totically stable equilibrium. These results are discrete time analogues of the analysis in
[3]. However, due to the fact that the construction of optimal and approximately optimal
feedback laws is — at least conceptually — much easier than in continuous time, we are
able to formulate our statements directly in terms of feedback controllers, instead of open
loop controls as in [3]. Moreover, this way of formulating the results in discrete time allows
us to provide an alternative and less conservative condition, see Section 6.

Asymptotic stabilization of the origin for discrete time systems using discounted optimal
control was considered in [13], where the starting point was essentially the behavior of the
optimally controlled system when the discount factor is taken to be unity; i.e., consideration
of the undiscounted case. By contrast, the sufficient conditions we propose involve bounds
on the value function (in terms of the stage cost) and the discount factor. No explicit
reference to the undiscounted case is required.

The paper is organized as follows. In Section 2 we provide the necessary problem setup and
definitions and in Section 3 we provide a sufficient condition for the asymptotic stability
of an equilibrium point using optimal controls derived from an optimal control problem
with a discounted stage cost. Section 4 describes a controllability condition that implies
the aforementioned sufficient condition. Section 5 provides a practical asymptotic stability
result when only an approximately optimal feedback law is available. Section 6 provides a
less conservative sufficient condition than that in Section 3 in the case where an optimal
feedback law is known. Section 7 investigates the special case of a simple linear system with
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a discounted quadratic stage cost. This example serves to highlight the conservativeness
of our results. Some brief conclusions are provided in Section 8.

2 Problem formulation

Given a discount factor 0 < β < 1 and a stage cost g : X × U → R we consider the
discounted optimal control problem

minimize J(x0, u(·)) =

∞∑
k=0

βkg(x(k), u(k)) (2.1)

with respect to the control functions u(·) ∈ U = {u : N0 → U}, where N0 denotes the
natural numbers including 0. The state trajectory x(k) is given by the discrete time
control system

x(k + 1) = f(x(k), u(k)), k ∈ N0 (2.2)

and the minimization is subject to the initial condition x(0) = x0 and the control and
state constraints u(t) ∈ U, x(t) ∈ X, where X and U are subsets of normed spaces X and
U , respectively. The functions f : X × U → X and g : X × U → R are assumed to be
continuous. We assume that the set X is viable, i.e., for any x0 ∈ X there exists at least one
u(·) ∈ U with u(k) ∈ U and x(k) ∈ X for all k ∈ N0. Control functions with this property
will be called admissible and the set of all admissible control functions will be denoted by
Uad. The fact that we impose the state constraints when solving (2.1) implies that the
minimization in (2.1) is carried out over the set of admissible control functions only.

We define the optimal value function of the problem as

Vβ(x0) := inf
u(·)∈Uad

J(x0, u(·)).

Throughout the paper we assume that Vβ(x0) is finite for all x0 ∈ X. An admissible control
function u∗(·) ∈ Uad is called optimal for initial condition x0 ∈ X if the identity

J(x0, u
∗(·)) = Vβ(x0)

holds. We summarize a few statements on optimal value functions and optimal controls
which can be found, e.g., in [7, Chapter 4]. The optimal value function satisfies the dynamic
programming principle

Vβ(x) = inf
u∈U: f(x,u)∈X

{g(x, u) + βVβ(f(x, u))}. (2.3)

If u∗(·) is an optimal control sequence for initial condition x0 = x ∈ X, then the identity

Vβ(x) = g(x, u∗(0)) + βVβ(f(x, u∗(0))) (2.4)

holds. In this case, the “inf” in (2.3) is actually a “min”. If this holds for all x ∈ X, we
can define a (not necessarily unique) map µ∗ : X → U which assigns a minimizer of the
right hand side of (2.3) to each x, i.e.,

µ∗(x) ∈ argmin
u∈U: f(x,u)∈X

{g(x, u) + βVβ(f(x, u))}. (2.5)
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Then, any such map µ∗ is an optimal feedback law, i.e., the closed loop trajectories defined
by

x∗(0) = x0, x∗(k + 1) = f(x∗(k), µ∗(x∗(k))), k ∈ N0 (2.6)

are optimal trajectories and u∗(k) = µ∗(x∗(k)) is an optimal control sequence for initial
value x0.

Our goal in this paper is to derive conditions under which optimal (and also approximately
optimal, in a sense defined in Section 5, below) feedback laws µ∗ (and µε, respectively)
asymptotically stabilize a desired equilibrium point for the closed loop system. To this
end, we say that a pair (xe, ue) ∈ X×U is an equilibrium if f(xe, ue) = xe. An equilibrium
is called asymptotically stable, if there exists a function1 η ∈ KL such that all closed loop
trajectories x(k) satisfy the inequality

‖x(k)− xe‖ ≤ η(‖x(0)− xe‖, k) (2.7)

for all k ∈ N0.

3 A condition on the optimal value function

Theorem 3.1: Let xe ∈ X be an equilibrium and consider a discounted optimal control
problem with positive definite stage cost w.r.t. xe, i.e., g(x, u) ≥ α1(‖x−xe‖) for a function
α1 ∈ K∞ and all x ∈ X and u ∈ U. Assume that the optimal value function Vβ satisfies
Vβ(x) ≤ α2(‖x− xe‖) and

Vβ(x) ≤ C inf
u∈U

g(x, u) (3.1)

for all x ∈ X, a function α2 ∈ K∞, and a constant C ≥ 1 satisfying

C < 1/(1− β). (3.2)

Then the equilibrium xe is asymptotically stable for the optimally controlled system.

Proof. We first observe that, under the assumptions, Vβ satisfies the inequality

Vβ(x0) = inf
u∈Uad

∞∑
k=0

g(x(k), u(k)) ≥ inf
u∈U

g(x0, u) ≥ α1(‖x0 − xe‖). (3.3)

Note that the first inequality in (3.3) implies that C in (3.1) must satisfy C ≥ 1.

In order to prove asymptotic stability of xe for the optimally controlled system, we now
show the existence of η ∈ KL such that the inequality (2.7) holds for all optimal trajectories.
To this end, let x∗(·) be an optimal trajectory with corresponding optimal control sequence
u∗(·). For the optimal trajectory, (2.4) yields the equation

Vβ(x∗(k)) = g(x∗(k), u∗(k)) + βVβ(x∗(k + 1))

1As usual, we say that γ : R+
0 → R+

0 is a K-function if it is continuous and strictly increasing with
γ(0) = 0. It is called a K∞-function if additionally it is unbounded. A function η : R+

0 × R+
0 → R+

0 is a
KL-function if it is continuous, for each t ≥ 0 the map r 7→ η(r, t) is a K-function, and for each r ≥ 0 the
map t 7→ η(r, t) is strictly decreasing and converges to 0 as t→∞. By convention, η(0, t) = 0 for all t ≥ 0.
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for all k ∈ N0. From this we can estimate

Vβ(x∗(k + 1))− Vβ(x∗(k)) =
1

β

(
βVβ(x∗(k + 1))− βVβ(x∗(k))

)
=

1

β

(
βVβ(x∗(k + 1))− Vβ(x∗(k)) + (1− β)Vβ(x∗(k))

)
=

1

β

(
− g(x∗(k), u∗(k)) + (1− β)Vβ(x∗(k))

)
≤ 1

β

(
− 1

C
Vβ(x∗(k)) + (1− β)Vβ(x∗(k))

)
=

κ

β
Vβ(x∗(k))

where κ = (1− β)− 1/C < 0. This implies

Vβ(x∗(k + 1)) ≤ σVβ(x∗(k))

for σ = κ/β+ 1 = (C − 1)/(Cβ) and since C ≥ 1 we obtain σ ∈ [0, 1). Hence, Vβ(x∗(k)) ≤
σkVβ(x∗(0)) decreases exponentially. From this and from (3.3) we obtain

‖x∗(k)− xe‖ ≤ α−11

(
Vβ(x∗(k))

)
≤ α−11

(
σkVβ(x∗(0))

)
≤ α−11

(
σkα2(‖x∗(0)− xe‖)

)
which proves the claim since η(r, k) = α−11 (σkα2(r)) is a KL-function.

Remark 3.2: (i) The proof shows that the optimal value function Vβ is a Lyapunov
function in the sense of, e.g., [7, Definition 2.18].

(ii) The inequality Vβ(x) ≤ α2(‖x− xe‖) follows from (3.1) for α2 = Cγ if infu∈U g(x, u) ≤
γ(‖x − xe‖) holds for some γ ∈ K∞ and all x ∈ X. Typical choices of g penalizing the
distance from an equilibrium, such as g(x, u) = ‖x−xe‖κ+λ‖u−ue‖κ satisfy this inequality
for any λ ≥ 0, κ > 0.

(iii) Since g in Theorem 3.1 is nonnegative, the inequality Vβ ≤ V1 holds for all β ∈ (0, 1].
Hence, if there exists C > 0 such that (3.1) holds for β = 1 (which is similar to a condition
used in model predictive control, see, e.g., [15, 8] and [7, Remark 6.15]), then (3.1), (3.2)
hold for all β sufficiently close to 1.

4 A condition based on controllability

One of the main features of condition (3.1), (3.2) is that it can in principle be checked
without knowing the optimal control and even without knowing the optimal value function
Vβ. It suffices to know an upper bound for Vβ. Such an upper bound can be computed
by means of the following controllability condition. This condition has previously been
discussed in the context of model predictive control, see [4] or [7, Assumption 6.4].

Definition 4.1: Let (xe, ue) ∈ X × U be an equilibrium with g(xe, ue) = 0. We say that
the system is asymptotically controllable to xe with respect to the cost g, if there are K > 0
and σ ∈ (0, 1) such that for each initial condition x0 ∈ X there exists an admissible control
u ∈ Uad with

g(x(k), u(k)) ≤ Kσk inf
u∈U

g(x0, u)

for all k ≥ 0.
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Remark 4.2: We note that this definition is satisfied, e.g., for costs of the form g(x, u) =
‖x − xe‖κ, κ > 0, if the system is exponentially controllable to xe. This means that
there are L > 0 and ω ∈ (0, 1) such that for each x0 there is an admissible control with
||x(k) − xe|| ≤ L||x0 − xe||ωk. In this case, one easily computes that Definition 4.1 holds
with K = Lκ and σ = ωκ.

Proposition 4.3: Assume that the condition from Definition 4.1 is satisfied. Then (3.1)
holds with C = K

1−βσ .

Proof. Fix x0 ∈ X and let u ∈ Uad be the control from Definition 4.1. Then we have

Vβ(x0) ≤
∞∑
k=0

βkg(x(k), u(k)) ≤ K inf
u∈U

g(x0, u)
∞∑
k=0

(βσ)k =
K

1− βσ
inf
u∈U

g(x0, u)

which proves the claim.

Remark 4.4: In the situation of Remark 4.2, Proposition 4.3 implies that the assumptions
of Theorem 3.1 are satisfied if the inequality C < 1/(1 − β) holds for C = K/(1 − βσ),
σ = ωκ and K = Lκ. This is equivalent to β satisfying the inequality

β ≥ Lκ − 1

Lκ − ωκ
. (4.1)

This inequality is always satisfied for β sufficiently close to 1, because the right hand side
of (4.1) is less than 1 since ωκ < 1. Note also that the expression on the right is decreasing
for decreasing κ, hence choosing a smaller κ yields a larger range of discount factors β for
which asymptotic stability can be ensured by Theorem 3.1.

5 Approximately optimal feedback laws

Strictly optimal feedback laws may not always be computable, either analytically or numer-
ically. For this reason we now investigate what can be said about the stability properties
when only an approximately optimal feedback law is known. Observing that by (2.3) and
(2.5) an optimal feedback law satisfies the inequality

g(x, µ∗(x)) + βVβ(f(x, µ∗(x))) ≤ Vβ(x),

we say that an admissible feedback law µε : X→ U is approximately optimal with pointwise
approximation error ε(x) if the inequality

g(x, µε(x)) + βVβ(f(x, µε(x))) ≤ Vβ(x) + ε(x) (5.1)

holds for all x ∈ X.

Theorem 5.1: Let the assumptions of Theorem 3.1 hold and consider an approximately
optimal feedback law µε : X→ U whose error satisfies the inequality

ε(x) ≤ max{δVβ(x), δε0}

for constants 0 < δ < 1/C − (1− β) and ε0 ≥ 0. Then there exists ηδ ∈ KL such that each
trajectory xε(·) of the closed loop system with feedback law µε satisfies the inequality

‖xε(k)− xe‖ ≤ max{ηδ(‖xε(0)− xe‖, k), α−11 ((1 + δ)ε0/β)}.
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Proof. First note that the upper bound on δ is positive since C < 1/(1−β). Now consider
a trajectory xε(·) of the closed loop system and choose the minimal k0 ∈ N0 ∪ {∞} such
that Vβ(xε(k0)) ≤ ε0, where we set k0 = ∞ if this inequality is never satisfied. Then for
k ≤ k0−1 we can estimate the difference Vβ(xε(k+ 1))−Vβ(xε(k)) ≤ (κ/β)Vβ(xε(k)) as in
the proof of Theorem 3.1, replacing −1/C by −1/C+δ which yields κ = (1−β)−1/C+δ <
0. Denoting the resulting η by ηδ, since it depends on δ via κ and σ (since σ = κ/β + 1),
we obtain ‖xε(k)− xe‖ ≤ ηδ(‖xε(0)− xe‖, k) and thus the claim for all k = 0, . . . , k0.

If k0 =∞ this finishes the proof. Otherwise we now show by induction that

Vβ(xε(k)) ≤ (1 + δ)ε0/β (5.2)

for all k ≥ k0. For k = k0 the choice of k0 implies Vβ(xε(k0)) ≤ ε0 ≤ (1 + δ)ε0/β. For
k → k + 1 we assume (5.2) and distinguish two cases:

Case 1: Vβ(xε(k)) ≥ ε0. In this case we can derive the estimate Vβ(xε(k+1))−Vβ(xε(k)) ≤
κ/βVβ(xε(k)) < 0 as above, yielding Vβ(xε(k + 1)) ≤ Vβ(xε(k)) ≤ (1 + δ)ε0/β, i.e., (5.2)
for k + 1.

Case 2: Vβ(xε(k)) < ε0. In this case, we have ε(x) ≤ δε0. Then (5.1) implies βVβ(xε(k +
1)) ≤ Vβ(xε(k)) − g(xε(k), µ(xε(k))) + δε0 ≤ Vβ(xε(k)) + δε0 and thus Vβ(xε(k + 1)) ≤
1
β (Vβ(xε(k)) + δε0) ≤ (1 + δ)ε0/β, i.e., again (5.2) for k + 1.

Hence, for all k ≥ k0 from (5.2) we get

‖xε(k)− xe‖ ≤ α−11 (Vβ(xε(k))) ≤ α−11 (2ε0/β),

which shows the claim for k ≥ k0.
Remark 5.2: In case ε0 > 0, the property ensured by Theorem 5.1 is known as practical
asymptotic stability: the system behaves like an asymptotically stable system until it
reaches a neighborhood of xe. Here, the parameter δ in the error bound determines the
speed of attraction (the smaller δ the faster ηδ(r, k) tends to 0 as k →∞) and the parameter
ε0 determines the size of the exceptional neighborhood.

6 A weaker condition on the value function

The upper bound (3.1) on Vβ imposed in Theorem 3.1 and Theorem 5.1 has the advantage,
that it can be checked without knowing an optimal feedback law, as demonstrated in
Section 4. However, it can clearly be conservative. On the other hand, the first part of
the proof and (2.6) reveals that for the optimally controlled system inequality (3.1) can be
replaced by

Vβ(x) ≤ Cg(x, µ∗(x)), (6.1)

where µ∗ denotes the optimal feedback law, provided it exists. Obviously, the conditions
(3.1) and (6.1) only differ if g depends on u in a nontrivial way. In this case, however,
condition (6.1) can be significantly less conservative, as the first part of Example 7.1, below,
shows.

As in the proof of Theorem 3.1 one sees that the existence of C < 1/(1−β) satisfying (6.1)
is sufficient for Vβ being a Lyapunov function for the system and the extension of Theorem
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5.1 to (6.1) is straightforward, too. Moreover, it is also “almost” necessary for Vβ being a
Lyapunov function, because if there is x ∈ X with x 6= xe for which (6.1) does not hold for
any C < 1/(1 − β), then Vβ will not strictly decrease in this point and will thus not be a
Lyapunov function2.

However, the optimal value function being a Lyapunov function is not a necessary condition
for the discounted optimally controlled system to be asymptotically stable — not even in
the linear quadratic case, as the second part of the following example shows.

7 An example

The following example illustrates the conservativeness of the conditions (3.1), (3.2) and
(6.1), (3.2). We have intentionally selected a simple linear quadratic example in order to
ensure the existence of a linear optimal feedback law such that we can determine asymptotic
stability of the closed loop by computing eigenvalues. An optimal control problem is called
linear quadratic if

f(x, u) = Ax+Bu and `(x, u) = xTQx+ uTRu

for matrices A, B, Q and R of appropriate dimensions. It is well known that the undis-
counted infinite horizon optimal value function for this problem is given by V1(x) = xTPx
where P ∈ Rn×n solves the discrete time algebraic Riccati equation

P = ATPA−ATPB(R+BTPB)−1BTPA+Q

and the optimal feedback law is given by

µ∗(x) = (R+BTPB)−1BTPAx,

see, e.g., [1, Section 9.2.6]. The discounted functional for β ∈ (0, 1) can be rewritten as

∞∑
k=0

βk
(
x(k)TQx(k) + u(k)TRu(k)

)
=
∞∑
k=0

x̂(k)TQx̂(k) + û(k)TRû(k)

with x̂(k) =
√
βkx(k) and û(k) =

√
βku(k). Since x̂ and û satisfy the equation

x̂(k + 1) =
√
βk+1x(k + 1) =

√
βk+1(Ax(k) +Bu(k))

=
√
βA
√
βkx(k) +

√
βB
√
βku(k) =

√
βAx̂(k) +

√
βBû(k),

the discounted problem is equivalent to the undiscounted problem with matrices
√
βA,√

βB, Q and R. Hence, the linear quadratic infinite horizon discounted optimal control
problem can be solved via the discrete time algebraic Riccati equation with matrices

√
βA

2We note that this condition is only “almost” necessary because it might happen that (6.1) holds with
an x-dependent constant C(x) which satisfies C(x) < 1/(1− β) for all x ∈ X but supx∈X C(x) = 1/(1− β),
which is neither a contradiction to the strict decrease property of a Lyapunov function nor is it sufficient
for the proof of Theorem 3.1. However, if we denote the infimal C for which (6.1) holds for all x ∈ X and
fixed β ∈ (0, 1) by Cβ and assume that β 7→ Cβ − 1/(1 − β) is strictly decreasing, then this exceptional
situation can only happen for one single value of β.
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and
√
βB.3 In the example, below, this equation was solved numerically using the DARE

routine in MAPLE. All numerical results were rounded to three or four significant digits.

Example 7.1: Consider the linear system x(k + 1) = Ax(k) +Bu(k) with

A =

(
2 0
1 2

)
and B =

(
1 0
0 1

)
.

We consider the quadratic stage cost g(x, u) = xTQx+ uTRu with

R = Q =

(
1 0
0 1

)
.

We first note that since both x 7→ infu g(x, u) and Vβ are quadratic functions with Vβ(x) >
infu g(x, u), a C satisfying (3.1), (3.2) exists for β sufficiently close to 1. By computing Vβ
via the Riccati equation, one can check numerically that such a C exists if and only if β is
larger than ≈ 0.846.

A numerical computation for β = 0.4 yields the optimal value function Vβ(x) = xTPx and
the optimal controller µ∗(x) = −Kx with

P =

(
4.39 1.46
1.46 3.12

)
and K =

(
1.33 0.199
0.728 1.06

)
.

By maximizing Vβ(x)/ infu∈U g(x, u) w.r.t. x, one checks that the minimal C satisfying
(3.1) for all x evaluates to C ≈ 5.34, which is considerably larger than 1/(1−β) = 1/0.6 =
5/3 = 1.6. Hence, the criterion from Theorem 3.1 does not hold. However, maximizing
Vβ(x)/g(x, µ∗(x)), one sees that the minimal C satisfying (6.1) for all x equals to C ≈ 1.45,
which is smaller than 1/(1 − β). Hence Vβ is still a Lyapunov function for the optimally
controlled system, even though the criterion in Theorem 3.1 fails to hold. Numerically,
this situation persists until β decreases to ≈ 0.3342.

The same computation for β = 0.334, however, yields the optimal value function Vβ(x) =
xTPx and the optimal controller µ∗(x) = −Kx with

P =

(
4.10 1.33
1.33 2.86

)
and K =

(
1.22 0.201
0.667 0.932

)
.

For x = (0.109, 0.994)T one checks that

Vβ(Ax−BKx)− Vβ(x) = 0.00269 > 0,

implying that Vβ increases along the closed loop solution and is therefore not a Lyapunov
function for the closed loop system. On the other hand, the eigenvalues of A − BK
are 0.924 ± 0.215i with modulus 0.949 < 1, which shows that the closed loop system is
asymptotically stable although Vβ is not a Lyapunov function. This situation holds until
β ≈ 0.3109. For smaller values of β, asymptotic stability of the closed loop no longer holds.

Summarizing, in this example condition (3.1) is satisfied for β ∈ [0.846, 1], condition (6.1)
holds for β ∈ [0.3342, 1] and the optimal feedback renders the origin asymptotically stable
for β ∈ [0.312, 1]. For β ∈ (0, 0.311], asymptotic stability of the origin is lost.

3This fact appears to be anecdotally known but we were not able to find a reference in the literature,
hence we provided this brief explanation here.
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8 Conclusions

Motivated by applications in economics and the numerical approximation of optimal con-
trols for infinite horizon optimal control problems, we provided a sufficient condition for
the asymptotic stabilization of an equilibrium point when using optimal controls derived
from an optimal control problem with a discounted stage cost. A reasonable controllability
condition was shown to imply the sufficient condition. In addition, practical asymptotic
stabilization was demonstrated when only an approximately optimal control is known and
a generally less conservative sufficient condition was derived when an optimal feedback sta-
bilizer is known. Finally, using a simple two-dimensional linear system and a discounted
quadratic cost, we illustrated the conservativeness inherent in the results.
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