
Bayreuther Arbeitspapiere zur Wirtschaftsinformatik

Lehrstuhl für
Wirtschaftsinformatik

Information Systems
Management

Bayreuth Reports on Information Systems Management

No. 52

October 2011

Sebastian Hudert

The BabelNEG System - A Protocol-generic
Infrastructure for Electronic SLA Negotiations in the
Internet of Services

ISSN 1864-9300

Die Arbeitspapiere des Lehrstuhls für

Wirtschaftsinformatik dienen der Darstellung

vorläufiger Ergebnisse, die i. d. R. noch für

spätere Veröffentlichungen überarbeitet werden.

Die Autoren sind deshalb für kritische Hinweise

dankbar.

 The Bayreuth Reports on Information Systems

Management comprise preliminary results

which will usually be revised for subsequent

publications. Critical comments would be

appreciated by the authors.

Alle Rechte vorbehalten. Insbesondere die der

Übersetzung, des Nachdruckes, des Vortrags,

der Entnahme von Abbildungen und Tabellen –

auch bei nur auszugsweiser Verwertung.

 All rights reserved. No part of this report may

be reproduced by any means, or translated.

Authors: Information Systems Management
Working Paper Series

Edited by:

Prof. Dr. Torsten Eymann

Contact:

Universität Bayreuth

Lehrstuhl für Wirtschaftsinformatik (BWL VII)

Prof. Dr. Torsten Eymann

Universitätsstrasse 30

95447 Bayreuth

Germany

Email: wirtschaftsinformatik@uni-bayreuth.de

ISSN

Sebastian Hudert (University of Bayreuth)

1864-9300

The BabelNEG System – A
Protocol-generic Infrastructure for

Electronic SLA Negotiations in the Internet
of Services

Dissertation
zur Erlangung des Grades eines Doktors der Wirtschaftswissenschaften

der Rechts- und Wirtschaftswissenschaftlichen Fakultät
der Universität Bayreuth

Vorgelegt
von

Sebastian Hudert
aus

Schweinfurt

Dekan: Prof. Dr. Markus Möstl
Erstberichterstatter: Prof. Dr. Torsten Eymann
Zweitberichterstatter: Prof. Dr. Guido Wirtz
Tag der mündlichen Prüfung: 04. 10. 2011

Acknowledgments

The research presented in this doctoral thesis has been carried out during my assignment
at the Department of Information Systems Management at the University of Bayreuth.
Along the path towards this thesis, I was involved in several research projects and the
academic life in general, providing me a very challenging but also stimulating work
environment. I owe a debt of gratitude to many people who have assisted me along the
way and influenced both my work and my understanding of the topic of electronic SLA
management.

In particular, I wish to express my gratitude to my primary supervisor, Professor Dr.
Torsten Eymann for the opportunity he gave me at his department. The discussions
we had, his many conceptual and methodical suggestions and not least his constant
encouragement fundamentally affected my work and crucially contributed to its success.

I am grateful to Professor Dr. Guido Wirtz from the Mobile and Distributed Systems
Group at the Otto-Friedrich University Bamberg. He decisively influenced my way of
assessing and designing distributed software infrastructures during his supervision of
both my diploma and co-supervision of my doctoral thesis.

Furthermore I am deeply indebted to my colleagues at Bayreuth University for their
relentless assistance with conceptual, technical and methodological problems along the
way. Depending on their academic origin in computer science or business administra-
tion / economics they all provided me with valuable input and helped me understand
the intricacies of the research area I worked in. In spite of all difficulties occurring in
such a demanding project, they managed to create an almost homelike environment for
which I am deeply grateful. In particular, I would like to thank Stefan König whom I
had the honor to get to know at the very beginning of my undergraduate studies and
work together ever since as well as Christoph Niemann for the many discussions on
research methodology and conceptual help he accorded me. A special thanks goes to
Axel Pürckhauer for his constant technical support of our work; me having been able
to continuously work on my research is greatly owed to his efforts. I am proud to have
been a member of this team and to be able call these people my friends.

Torsten Eymann always encouraged an exchange of ideas with the national and in-
ternational research community. On many occasions he gave me the opportunity to
visit conferences and workshops, give talks and in general meet researchers from all over
the globe, working on similar topics. Among these, I owe much gratitude to Prof. Dr.
Udo Krieger (Otto-Friedrich University Bamberg) for believing in me and acquainting me
with Dr. Heiko Ludwig from IBM Research and the area of automated SLA negotiations
in general. This opened many doors for me in the academic world. I consequently want
to thank Dr. Ludwig for escorting me and my work for a long time and for the endless
phone calls we had over the years, in which he consulted me in much more than just my

iii

research topic. I am also very grateful to researchers I was lucky to meet within the col-
laborative projects I worked in, such as CATNETS, SORMA or eRep, as well as the ones
I met at research forums, such as the Open Grid Forum or at Dagstuhl Castle. Among
these I particularly owe Philipp Wieder (Georg-August University Göttingen), Dr.-Ing.
Bastian Koller (High Performance Computing Center Stuttgart), Dr. Shamima Pau-
robally (University of Westminster), Prof. Omer F. Rana (Cardiff University), Dr.-Ing.
Nicolas Repp (Technical University of Darmstadt) and Prof. Frances Brazier (Technical
University of Delft) for their time and the valuable input they gave me for my work.

With all my heart I thank my wonderful family and friends. My parents Karin and
Werner raised, supported, taught and loved me in a way I am but beginning to grasp and
they still continue to do so. Without the unconditional help, patience and understanding
received from them and my much valued brother Fabian this work would never have been
possible. I am forever indebted to them for all they did for me throughout my life.

Finally my most heartfelt gratitude goes to Verena. Having met her at the beginning
of my time in Bayreuth and coming to know her support, constant encouragement and
her unconditional love and companionship, I consider the greatest godsend in my life.

Bayreuth, October 2011
Sebastian Hudert

iv

Abstract

Visions of the next-generation Internet of Services are driven by digital resources traded
on a global scope. For the resulting economic setting, automated on-line techniques for
handling services and resources are needed, as well as for advertising and discovering or
for the on-the-fly negotiation of proper terms for their use.

This thesis presents the results of my dissertation project. They comprise a service
infrastructure, able to support the structured discovery and protocol-generic negotiation
of electronic service level agreements (SLAs) and thus services themselves.

The need for such an artifact is deduced from a detailed scenario analysis, extrapolat-
ing past and current developments in distributed business information systems. Based
on economic theory, the need for both negotiation processes as such and the possibility
to adapt to different protocols at run time is inferred in a second step.

The requirements for my prototype system are then derived from the scenario model
and underlying economic theories. I discuss conceptual foundations, comprising theoret-
ical principles for the design, formulation, discovery, negotiation, and subsequent usage
of (electronic) SLAs in distributed information systems.

After having presented these fundamental concepts, the actual infrastructure design,
thus the proposed solution to the stated research problem, is detailed. The underlying
idea is to decouple the good to be sold (the SLA) from the negotiation protocol, enabling
a service provider to apply different negotiation protocols for the same service over time.

Furthermore, for the consumer side a protocol-generic negotiation component is de-
signed, capable of automatically adapting to different protocols, as offered by the service
providers. The conceptual copula between these two sides is a set of structured service de-
scription documents, defining not only the service-relevant functional and non-functional
parameters, but also the applied negotiation protocol in a machine-readable way.

The last chapter presents a thorough assessment of the infrastructure design, includ-
ing the actual implementation of the developed mechanisms and data structures in a
Java-based simulation environment, the conceptual demonstration of the system’s effec-
tiveness (with regard to the stated requirements) as well as a simulative demonstration
step proving the adaptability of the service consumer agents. With these assessment
steps, the system’s capability to fulfill all stated requirements could be shown, thus
proving its effectiveness to solve the research problem.

v

Contents

List of Figures ix

List of Tables xi

Abbreviations xiii

1. Research Problem and Approach 1
1.1. Introduction and Motivation . 1

1.1.1. Scenario Model . 2
1.1.2. Research Problem . 7

1.2. Structure of this Thesis . 9
1.3. Research Method . 11

1.3.1. General Considerations . 11
1.3.2. Design Science in Information Systems Research 13
1.3.3. Implementation of the Design Science Paradigm 19

2. Objectives and Foundations 23
2.1. Requirements Analysis . 23
2.2. Conceptual Foundations . 26

2.2.1. Service Level Agreements in the Internet of Services 26
2.2.2. Discovery Phase . 40
2.2.3. Negotiation Phase . 45

2.3. Related Work . 55
2.3.1. Projects Building on WS-Agreement 56
2.3.2. Approaches Offering Significant Progress Beyond WS-Agreement . 59
2.3.3. Projects Focusing on Economic Aspects 62
2.3.4. Initial Approaches Towards Protocol-Generity in SLA Negotiations 64

3. Design and Development 71
3.1. Abstract Design Idea . 71
3.2. Service Description Documents . 73

3.2.1. Service Type . 73
3.2.2. Extended SLA Template . 75
3.2.3. Service Identificator . 83
3.2.4. Final SLA . 84

3.3. Protocol Design . 85
3.3.1. Discovery Phase . 85

vii

Contents

3.3.2. Negotiation Phase . 87
3.4. Architecture Design . 88

3.4.1. Role-based Architecture . 88
3.4.2. Internal Behavior: Service Provider 90
3.4.3. Internal Behavior: Service Consumer 91
3.4.4. Internal Behavior: Registry . 94
3.4.5. Internal Behavior: Negotiation Coordinator 94
3.4.6. The protocol-generic SC Strategy Component 94

4. Assessment of the Developed System 99
4.1. Prototypical System Implementation . 99
4.2. Conceptual Demonstration . 100

4.2.1. Assessment on the Basis of the Stated Requirements 100
4.2.2. Conceptual Assessment of the Service Description Documents . . . 101

4.3. Simulative Demonstration of the Prototype’s Effectiveness 106
4.4. Evaluation based on Meffert’s Theory on Flexibility 117
4.5. Assessment of the Communication Overhead Introduced by the Babel-

NEG System . 124

5. Lessons Learned and Future Steps 127
5.1. Summary and high-level Interpretation of Results 127
5.2. Critical Reflection on the Applied Research Method 128
5.3. From Prototype to Product . 129
5.4. Future Work . 131

A. Appendices 135
A.1. Service Description Schema Documents 135

A.1.1. Service Type Document . 135
A.1.2. Extended SLA Template Document 137
A.1.3. Service Identificator Document . 143

A.2. Activity Diagrams of the Service Management Agents 144
A.2.1. Service Consumer . 144
A.2.2. Service Provider . 146
A.2.3. Sub-diagram (SP): Affirming that Service Description Documents

are Known at the Registry . 147

viii

List of Figures

1.1. Relation of IoS, SOC, GC and CC . 6
1.2. Consolidated Research Process . 13
1.3. Research Process applied for this Thesis 20

2.1. Integrated Service Life Cycle Model for the IoS 24
2.2. SLAng “reference model for Application Services Provisioning” (Skene,

Lamanna, and Emmerich 2004, p. 182) . 36
2.3. WS-Agreement Architectural Model (Andrieux et al. 2007, p. 12) 38
2.4. WS-Agreement SLA Model (Andrieux et al. 2007, p. 14) 39
2.5. Relation between Web Services Standards 41
2.6. WS-Discovery Protocol with Discovery Proxies (Beatty et al. 2005, p. 13) 43
2.7. Abstract Architecture of a Software Agent (Russell and Norvig 1995, p. 45) 53

3.1. Document-based Architecture . 74
3.2. Excerpt of the ST Schema Definition . 75
3.3. Excerpt of the EST Schema Definition . 76
3.4. Type Declaration: Role Element . 77
3.5. Type Declaration: Negotiation Object Element 78
3.6. Ordered vs. Not Ordered Domains . 79
3.7. Type Declaration: Attribute Restriction Element 80
3.8. Type Declaration: Process Element . 83
3.9. Discovery Phase Overview . 86
3.10. Role-based Architecture . 88
3.11. State Diagram: Service Provider . 90
3.12. State Diagram: Service Consumer . 92

4.1. SimIS Toolkit . 100
4.2. Sample Service Description Documents . 102
4.3. Example SLA Document . 103
4.4. Sequence Diagram representing an EA / DA Protocol 105
4.5. Sample EST Document for an EA protocol 106
4.6. Sequence Diagram representing a FPA Protocol 107
4.7. EST Document defining a FPA Protocol 107
4.8. Sequence Diagram representing a CM (Double Auction) Protocol 108
4.9. EST Document defining a CM (Double Auction) Protocol 109
4.10. Sequence Diagram representing an AO / MAO Protocol 110
4.11. Sample EST Document for the AO Protocol 111

ix

List of Figures

4.12. Results of using the following Protocols: AO 116
4.13. Results of using the following Protocols: AO and EA 117
4.14. Results of using the following Protocols: AO, EA and DA 118
4.15. Results of using the following Protocols: AO, EA, DA and CM (double

auction) . 119
4.16. Results of using the following Protocols: AO, EA, DA, CM (double auc-

tion) and FPA . 120
4.17. Results of using the following Protocols: AO, EA, DA, CM (double auc-

tion), FPA and MAO . 122
4.18. Evaluation based on Meffert’s Activity Flexibility Concept 123

A.1. Activity Diagram: SC (part1) . 144
A.2. Activity Diagram: SC (part2) . 145
A.3. Activity Diagram: SP . 146
A.4. Sub-diagram for the SP: Affirmation that EST and ST Documents are

known at the Registry . 147

x

List of Tables

2.1. Negotiation Protocol Types . 50
2.2. Related Work . 68

xi

Abbreviations

ACK Acknowledgement (Message Type)

Akogrimo Access to Knowledge through the Grid in a mobile World (Project)

AL Application Layer

AO Alternate Offers

ASAPM Adaptive Service Agreement and Process Management (Project)

ASG Application Services Grid (Project)

ASP Application Service Provider

AssessGrid Advanced Risk Assessment & Management for Trustable Grids
(Project)

BEinGRID Business Experiments in the GRID (Project)

BREIN Business objective driven reliable and intelligent Grids for real
Business (Project)

CATNETS Catallaxy paradigm for decentralized operation of dynamic ap-
plication networks (Project)

CC Cloud Computing

CDA Continuous Double Auction

CM Call Market

COBIT Control Objectives for Information and Related Technology

DA Dutch Auction

DHT Distributed Hash Table

DS Design Science

EA English Auction

EC European Commission

EPR Endpoint Reference

xiii

Abbreviations

EST Extended SLA Template

FIPA Foundation for Intelligent Physical Agents

FPA Fixed Price Auction

FPSB Auction First-price-sealed-bid Auction

GB Gigabyte

GC Grid Computing

GGF Global Grid Forum

GN Generic Negotiator

GT Guarantee Term

HPC4U Highly Predictable Cluster for Internet-Grids (Project)

ID Identifier

IETF Internet Engineering Task Force

IL Infrastructure Layer

IoS Internet of Services

IS Information Systems

ISP Independent Service Provider

ITIL IT Infrastructure Library

NACK Non-Acknowledgement (Message Type)

NC Negotiation Coordinator

NextGRID Architecture for the Next Generation Grids (Project)

OASIS Organization for the Advancement of Structured Information
Standards

OCL Object Constraint Language

OGF Open Grid Forum

OGSA Open Grid Services Architecture

OLA Operational Level Agreement

P2P Peer-to-Peer

xiv

Abbreviations

QoS Quality-of-Service

RA Registry Agent

RDA Reverse Dutch Auction

REA Reverse English Auction

REPAST Recursive Porous Agent Simulation Toolkit

RFC Request for Comments

SC Service Consumer

SDT Service Description Term

SI Service Identificator

SimIS Simulating and Internet of Services (Toolkit)

SLA Service Level Agreement

SLO Service Level Objective

SLP Service Location Protocol

SLS Service Level Specification

SO Service Orientation

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SOC Service Oriented Computing

SORMA Self-Organizing ICT Resource Management (Project)

SOS Service Oriented System

SP Service Provider

SRT Service Reference Term

ST Service Type

UDDI Universal Description, Discovery and Integration

UML Unified Modeling Language

URI Uniform Resource Identifier

USD US Dollar

xv

Abbreviations

WS Web Service

WS-Agreement Web Services Agreement

WS-Discovery Web Services Dynamic Discovery

WSCM Web Services Composition Management

WSLA Web Service Level Agreement

WSOL Web Services Offering Language

XML Extensible Markup Language

xvi

1. Research Problem and Approach

As of now, computer networks
are still in their infancy, but as
they grow up and become
sophisticated, we will probably
see the spread of ’computer
utilities’ which, like present
electric and telephone utilities,
will service individual homes and
offices across the country.

(Leonard Kleinrock, UCLA press
release announcing the launch of

the ARPANET in 1969)

1.1. Introduction and Motivation

Visions of 21st century’s information systems (IS) show highly specialized digital ser-
vices and resources, which collaborate continuously and with a global reach. Today’s
Internet of mainly human interactions evolves to a global, socio-technical information
infrastructure, where humans as well as software agents, acting on their behalf, con-
tinuously interact to exchange data and computational resources. Possibly millions of
service providers (SPs), consumers (SCs) and a multitude of intermediaries like brokers
or workflow orchestrators are present, forming a global economic environment. This
vision is commonly referred to as the Internet of Services (IoS) (Ruggaber 2007; Schroth
and Janner 2007).

Building on currently applied computing paradigms, such as Service-oriented (SOC)
(Foster 2005), Grid (GC) (Foster, Kesselman, and Tuecke 2001) or Cloud Computing
(CC) (Buyya et al. 2009), the IoS vision defines highly dynamic networks of composable
services, offered and consumed on demand and on a global scope. It rigorously focuses
on the goal of an Internet-based service economy, similar to the real-world service sector.
Digital services are offered over electronic service markets, purchased by respective cus-
tomers and then combined with internal or other external services to business workflows
of varying complexity. In that, it allows even very small and specialized companies to
find a niche in the digital economy where they can compete with the ubiquitous inter-
national enterprises, which in turn have to face a much higher competition on the global
market (Theseus 2009).

Economic success of the IoS crucially depends on new business models, as well as their
supporting technical infrastructure, enabling trading processes down to the level of an
individual service, and the subsequent charging based solely on its usage and delivered

1

1. Research Problem and Approach

quality-of-service (QoS). Such models imply the need for mechanisms guaranteeing QoS
for each service invocation, even across enterprise boundaries.

Since a scenario like the IoS inherently lacks the applicability of centralized QoS
management, guarantees must be obtained to this end in the form of bi- or even multi-
lateral service level agreements (SLAs), assuring service quality across individual sites
(Ludwig et al. 2003a).

In the following the results of my dissertation project, dealing with the automated
management (more specifically, the discovery and negotiation) of electronic services and
respective SLAs in the IoS, are presented.

1.1.1. Scenario Model

In this subsection a detailed scenario model, subsequently acting as the context for this
thesis, is derived. For this purpose current trends in distributed IS are analyzed first.
Building on those developments, a generic scenario model, anticipating the future IoS
environment, can be induced in a second step.

Service Orientation and Service Oriented Architectures

In recent years a new paradigm of designing and implementing business IS has been
established: Service Orientation (SO). The main idea behind this concept is that every
functionality offered by humans, organizational entities or computer systems is consid-
ered an abstract service, each of which can again be combined with others to create more
complex composite services.

Before detailing the individual assumptions and design principles present in this
paradigm, a set of related key concepts have to be defined and distinguished from each
other, namely SOC, Service Oriented Architectures (SOAs) and Service Oriented Sys-
tems (SOS).

Each of these concepts builds on the basic idea of SO, however each represents a
different perspective on this vision. In order to distinguish these paradigms, a well-
known concept in IS research can be employed, the distinction between the task layer
and the task operator layer (Ferstl and Sinz 2008, pp. 2-5). The task layer comprises
all abstract tasks and their combination to processes, whereas the task operator layer
contains all human or automated operators present in a given enterprise system, which
on their part can execute tasks assigned to them.

Applied to the SO realm, a SOA defines all services, and therefore abstract functional-
ities, existing in a given system, thus representing the task layer. Just as with traditional
enterprise IS the operators (task operator layer) providing the individual services can be
both humans1 or computer programs (also referred to as electronic services or service
instances2). The design paradigm concerned with the definition and implementation of
such electronic services is called SOC.
1For the remainder of this thesis human task operators will be omitted; the primary focus of my work
lies on electronic services, the automated task operators.

2Although technically a distinction between service (task layer) and service implementation (task op-
erator layer) would also be appropriate here, in the majority of the scientific literature only the term

2

1.1. Introduction and Motivation

All of the abovementioned concepts apply to either the abstract vision of service-based
systems or the way the implied tasks are structured. An actual service-based system is
called SOS, representing the set of electronic services offering the tasks defined in a SOA
and consequently its automated task operators.

According to the general agreement in the literature (see for example Papazoglou and
Georgakopoulos 2003; Srinivasan and Teadwell 2005) an electronic service (instance),
can thus be defined as follows:

• An electronic service is an individually addressable software component that pro-
vides some functionality to a service requester.

• Services can be accessed over an electronic network, such as an enterprise intranet.

• Individual services can be composed to higher-level, more complex services, result-
ing in possibly multiple levels of service complexity.

• Services only advertise details, such as their capabilities, interfaces or accepted
protocols that are needed to interact with them. Technical implementation details
of the service are hidden from the service requestors.

• Regarding their interaction, electronic services are loosely coupled. This means
that their interactions are not hardcoded in each individual service, but every
service requester discovers and binds a given other service, it interacts with, at run
time.

Among others, the main advantage of the resulting SOSs is a much higher flexibility,
when compared to traditional systems. Due to the loose coupling service requesters
do not rely on hard-coded links, but on dynamic service discovery and invocations.
Additionally, SOSs allow for the dynamic instantiation and removal of service instances
to cope with load fluctuations. The new service instances just have to be registered to
the discovery system and can immediately be invoked (allowing for a better distribution
of incoming service requests to available instances).

Due to the prominent advantages of this concept the SO vision has broadly been
adopted within the last years for whole business IS as well as within individual soft-
ware systems. Significant research work has been dedicated to the definition of technical
service standards (such as Web Services (WS) (Booth et al. 2004), the Universal Descrip-
tion, Discovery and Integration (UDDI) (Bellwood et al. 2004) and the Simple Object
Access Protocol (SOAP) (Gudgin et al. 2007)) supporting the definition, description and
discovery as well as the interaction with electronic services.

Grid Computing

In parallel to these developments, regularly applied within a given enterprise, a paradigm
for distributed IS has emerged, which is mostly dealing with the coordination of elec-
tronic resources across organizational boundaries: GC. It has been introduced in the

service is used, referring to both concepts depending on the context. I will also proceed this way, as
especially with my focus on electronic task operators this distinction is of minor importance.

3

1. Research Problem and Approach

early years of the new millennium as a new paradigm for distributed execution of
resource-demanding computing tasks (Foster 2002; Foster and Kesselman 2004; Foster,
Kesselman, and Tuecke 2001).

According to two of the most recognized Grid researchers, Ian Foster and Carl Kessel-
man, GC is mainly concerned with ”coordinated resource sharing and problem solving
in dynamic, multi-institutional virtual organizations” (Foster, Kesselman, and Tuecke
2001, p. 201), emphasizing the cross-organizational nature of Grid systems.

Grids can thus be defined as:

• Systems that “coordinate[...] resources that are not subject to centralized con-
trol”, also addressing problems such as security, policy or payment occurring when
resources are shared across organizational domains (Foster 2002, p. 2). Those re-
sources range from computational, storage and network resources to code reposi-
tories (Foster, Kesselman, and Tuecke 2001).

• In doing so, Grids employ “standard, open, general-purpose protocols and inter-
faces” (Foster 2002, p. 2), supporting the sharing process.

• The final overall goal of GC is “to deliver nontrivial qualities of service”, following
the vision of the individual “utility of the combined system [being] significantly
greater than that of the sum of its parts” (Foster 2002, p. 3). This last statement
explicitly confirms GC’s focus on the user, aiming at maximizing the performance
of a user’s application, run on the distributed Grid nodes (Schopf and Nitzberg
2002).

With the definition of the Open Grid Services Architecture (OGSA) (Foster et al.
2002a) the GC vision has been integrated with emerging SO principles. The traditional
goal of GC, to execute individual jobs on a set of distributed resources, remained the
same, however a much more precisely described architecture for those resources was
given. According to the vision of SO, each Grid resource was considered to be a ser-
vice. Service semantics and management interfaces for the basic building blocks in such
systems, Grid Services, were given, thus converging the metaphors used in business
transactions (i.e. electronic business relationships with external or internal SPs) and in
computing technology. The central concept of a distinct service has become the glue
between those worlds.

This concept did not only provide a common basis for computer scientists and potential
business users but also enabled the emergence of a powerful abstraction concept in
distributed computing: Virtualization. “Virtualization enables consistent resource access
across multiple heterogeneous platforms [and] also [the] mapping of multiple logical
resource instances onto the same physical resource...” (Foster et al. 2002b, p. 40). From
a user perspective virtualization thus aims at completely hiding not implementation but
also deployment details of a given service. Service requestors only deal with the offered
interfaces and do not need any information of the actual implementation or computer
hardware the service instance is deployed on.

4

1.1. Introduction and Motivation

Cloud Computing

CC as the most current development builds on GC, SO and Virtualization technologies
(Foster et al. 2002b) in order to implement “parallel and distributed system[s] consist-
ing of a collection of interconnected and virtualized computers that are dynamically
provisioned and presented as one or more unified computing resources based on SLAs,
established through negotiation between the service provider and consumers” (Buyya
et al. 2009, p. 601).

CC can thus be characterized as follows:

1. Clouds heavily build on virtualization technologies. All offered computing re-
sources are virtualized, thus hiding the implementation details from the end user.

2. Cloud services are offered by independent and external SPs.

3. Cloud resources are dynamically provisioned on demand. Computing power is
supplied that can dynamically scale up or down as the demand for the hosted
services varies.

4. Each CC offering is based on possibly pre-negotiated SLAs. Therefore the main
goal of each Cloud service is to meet certain QoS levels.

5. CC resources are accessed over standard Internet protocols.

The main difference between CC and GC is probably that a cloud tries to present a
centralized “image” that manages and schedules its resources in the background (e.g. at
commercial data centers as with Amazon3) as opposed to Grids which explicitly offer
access to decentralized resources with local policies (Begin 2008).

Clouds introduce a new abstraction layer between the raw resources and the users:
a virtualization layer. All resources available at a given data center are pooled as an
input for the virtualization layer, which in turn offers the available resources as discrete
computing blocks to the users in the form of virtual servers. By introducing this virtu-
alization layer Clouds manage to break down the potential M:N relationships between
users and resources to two sets of 1:N relationships (users to virtualization layer and
virtualization layer to resources respectively), therefore reducing the complexity of the
overall system. In contrast, Grid systems combine resources, located in different orga-
nizational domains, to execute resource demanding jobs in parallel. Subsequently the
individual partial results are collected from the individual Grid nodes and combined to
a single result of the overall job.

Common Vision: Internet of Services

In the last subsections the state of the art in distributed computing was sketched in
terms of three commonly applied paradigms for system design and operation. The
presented developments expose a high degree of similarity in terms of the mechanisms
and technologies used.

3http://aws.amazon.com/

5

1. Research Problem and Approach

Service
Orientation

Grid
Computing

Cloud
Computing

Internet of
Services

composable
electronic

services

service
consumption

across company
boundaries

on demand
invocation

based on SLAs

Figure 1.1.: Relation of IoS, SOC, GC and CC

Each of the depicted scenarios builds on very similar technical infrastructures, based
on the Internet as a communication infrastructure. Also, the applied computational
abstraction for all of those systems is always a service.

On the other hand, they differ slightly in the way the individual services are managed
and used on a higher abstraction level. This is especially noticeable when looking at the
applied invocation paradigms, the point of control within each invocation, the overall
system configuration as well as the scope of the employed systems. However, not having
different infrastructures but only using them differently should not prevent a develop-
ment of consolidating and integrating computing paradigms in order to implement more
powerful and efficient global systems.

Thus, many experts in IS research and industry share a common vision for the next
generation Internet, based on highly dynamic networks of composable services, offered
and consumed on a global scope, ultimately leading to innovative business models and
supporting the transition from value chains to value nets (Blau et al. 2009; Scheithauer
and Winkler 2008).

This vision builds on the aforementioned paradigms of SO, GC and CC by still follow-
ing the service paradigm, the orchestration of internal and the choreography of external
services as well as their on demand consumption. In addition to combining all these con-
cepts, the IoS puts a much stronger focus on new business models and the commercial
application of the SO ideas.

Summarizing the IoS scenario model results in the following set of characteristics:

• The IoS is composed of a set of electronic services.

• Services vary in complexity and therefore range from raw (hardware) resources to
very complex workflows.

• They can be stand-alone (they only fail if an internal error occurs) or composite
(meaning that a service depends on other service(s) which can potentially fail,
ultimately also causing the composite service to fail).

• Each of the services is deployed at an abstract infrastructure node, representing a
server or on a higher level a data center or organization.

6

1.1. Introduction and Motivation

• These nodes are interconnected via the Internet.

• Services and nodes can dynamically appear and disappear again, due to the IoS
being an open system.

• Each of the services (more precisely, their respective management components)
can adopt different roles, ranging from SPs and SCs to mediating roles such as a
service broker.

For the remainder of this thesis this abstract scenario model is assumed as the problem
context for my dissertation project.

1.1.2. Research Problem

The IoS scenario, as described in the last subsection, is more and more becoming reality.
However, especially when employing this emerging global infrastructure for business
workflows, still several serious issues remain unsolved until today.

Especially the need for guaranteed reliability and service quality becomes more promi-
nent, as no longer the question of “who provides the service?” matters but only whether
she is able to achieve the requested result. The assurance of such QoS even becomes
crucial when external services are to be integrated into business critical workflows.

However, in globally distributed service systems no central QoS control can be easily
implemented. Such systems inherently lack any type of control hierarchy, thus QoS man-
agement must be implemented in a decentralized way. Researchers agree that the most
promising mechanisms currently available for this task are bi- or even multilateral SLAs
in which the involved transaction partners assure each other certain QoS guarantees
(provider side) or financial settlement (consumer side) (Keller et al. 2002a; Seidel et al.
2007). Such service contracts ensure service quality across individual sites and therefore
across organizational boundaries in a decentralized way. Representing qualitative guar-
antees placed on services, SCs can benefit from SLAs because they make non-functional
properties of services predictable. On the other hand, SLAs enable SPs to manage their
capacity, knowing the expected quality levels.

A crucial phase throughout the SLA-based service management life cycle is the ne-
gotiation of the respective SLA document. A negotiation basically “constitute[s] the
process of two or more parties communicating in order to proceed from some conflict
situation to an agreement” (Hudert 2006, p. 13). Bichler et al. define negotiations as
“the decision-making approach used to reach consensus whenever a person, organization
or another entity cannot achieve its goals unilaterally” (Bichler, Kersten, and Strecker
2003, p. 312).

Based on these definitions a negotiation represents a configuration of two or more
parties (SP and SC in the IoS scenario), arguing about some abstract good (a SLA,
governing a respective service invocation). In such situations the interests of the involved
parties collide and lead to a conflict situation concerning the subject of the negotiation
(SPs will probably want to deliver a low quality for much money whereas SCs probably
have quite opposing intentions).

7

1. Research Problem and Approach

For a long time, economic research came up with a rich set of different negotiation
protocols (Ströbel and Weinhardt 2003), such as single or double sided auctions (see
(Wurman, Wellman, and Walsh 2001) or (Klemperer 1999) for detailed overviews) or
one-on-one bargaining protocols (see example Smith 1980), each tailored to a different
negotiation setting and thus exhibiting very specific characteristics. Depending on the
characteristics of the traded services, the market configuration or the context of the
negotiators, a different negotiation protocol has to be used to reach the highest-overall
efficiency of the service market (Buyya et al. 2009; Neumann et al. 2008; Paurobally,
Tamma, and Wooldridge 2007). Common knowledge between researchers thus states
that “there is no single best [solution] for all imaginable sourcing activities” (Block
and Neumann 2008, p. 44) or contrarily that negotiation systems only supporting one
particular protocol lack flexibility as needed in various negotiation scenarios (Benyoucef
and Rinderle 2006; Kersten, Law, and Strecker 2004; Paprzycki et al. 2004; Strecker et
al. 2006). Others more implicitly argue in the same direction by implementing systems
capable of providing more than one protocol to the user (Wurman, Wellman, and Walsh
1998) or by defining taxonomies and ontologies used to structure currently used and
newly designed protocols (Ermolayev and Keberle 2006; Lochner and Wellman 2004;
Rolli et al. 2006; Tamma, Wooldridge, and Dickinson 2002; Wurman, Wellman, and
Walsh 2002).

Research areas like Mechanism Design (Bichler 2001), dealing with the conceptual de-
sign of negotiation mechanisms, base their work on the very fact that there is no single
perfect mechanism. Mechanism designers do so by employing both intuition and expe-
rience with market mechanisms or more formal tools like mathematical optimization, in
order to design negotiation protocols satisfying a set of a priori determined requirements.

Among others, the following attributes determine the suitability of a negotiation pro-
tocol for a given market setting (Bichler, Kersten, and Strecker 2003):

• Characteristics of the negotiation object. This also includes time constraints as
for example present with perishable goods. Furthermore valuation (common value
vs. private value) and the uniqueness of this product is considered (commodities
vs. individually tailored goods).

• Market configuration. This incorporates supply as well as demand situation as
perceived by a market participant.

• Context of the negotiators. This attribute comprises for example the negotiators’
sourcing objectives or potential timing constraints posed on them for making the
transaction.

• Risks associated with a protocol for a given set of negotiators. A protocol’s asso-
ciated risk has to be compatible with the risk attitude of the involved agents and
the nature of the negotiation object.

Given the global context of the envisioned scenario it is thus not likely, or even efficient,
that only one central marketplace for electronic services will emerge, offering a single,

8

1.2. Structure of this Thesis

known protocol. Instead, a system of marketplaces offering different protocols is foreseen
on the basis of economic theory. Each marketplace will offer an individual negotiation
protocol, depending on the characteristics of its actual context. On the other hand it
becomes necessary for SCs to take part in several marketplaces, even at the same time
in order to fulfill ones individual service needs.

However, current systems restrict SCs in that they are only able to interact with one
distinct service market they were implemented for (and are therefore only technically
compatible with the applied negotiation protocol). This unnecessarily decreases the
potential flexibility and efficiency of the IoS as a whole. SCs should be able to buy, and
therefore negotiate about, any fitting service, regardless of the market it is offered in,
and thus regardless of the protocol with which it is offered.

Finally, the usage of automated negotiation and discovery systems becomes crucial
given the dynamic nature of distributed workflow execution and the increased complexity
of global service selection as present in the IoS. Manual negotiations of human users
would by far not be efficient enough to cope with these circumstances.

Research Question Subsequently, the research question to be answered during this
dissertation project is:

How, can automated SLA discovery and negotiation mechanisms for highly distributed
IoS settings be designed to support protocol-generic negotiation processes? 4

1.2. Structure of this Thesis

On a first layer this thesis is structured into five high-level chapters, each of which is
dealing with one particular aspect of my work and its scientific context.

In chapter 1 I motivate my dissertation project by producing answers for the following
questions:

• What is the problem context my research is grounded in? And consequently, which
environments will profit from the achieved results?

• What scientific problem arises in such settings and how can the overall research
question, to be answered within this thesis, be defined accordingly?

• Which scientific method has been applied to answer the stated question?

In doing so, I have first presented a detailed scenario analysis in subsection 1.1.1,
building on current developments in distributed computing and ultimately defining the
context for my research. In a second step, the actual research problem has been deducted
from this scenario model (section 1.1.2), followed by a precise definition of the research

4The discovery of electronic services and respective SLA offers is of secondary interest in this work.
Hence, it will only be covered within my thesis to the extent needed for the protocol-generic negoti-
ation phase.

9

1. Research Problem and Approach

question underlying my work. Section 1.3 closes this first chapter by presenting the
research method applied.

The second chapter provides an overview on the scientific context of the identified
research problem. The questions answered in this chapter are:

• What requirements can be identified for a potential solution of the stated research
problem in the given scenario?

• Which theoretical concepts and research work provide valuable input for my work?

• Which alternative solutions to at least parts of the stated problem exist and why
are they not sufficient?

Building on the scenario analysis done in subsection 1.1.1, a requirements analysis for
my work is provided in section 2.1, delimiting the range of potential solutions. Theo-
retical foundations for my thesis are then presented in section 2.2. I close this chapter
with a list of related research efforts, targeting (parts of) the identified problem in 2.3.
They are structured according to the requirements derived before, thus explicitly stating
which of the requirements can already be satisfied with current technology and which
cannot.

The central deliverable of my work, the design of the BabelNEG system, is presented
in chapter 3. In doing so, it will answer the following questions:

• What is the underlying solution idea I have applied to the stated problem?

• Which computational entities have been designed to realize this idea?

• How have these components been designed and why?

Section 3.1 presents this design idea and sections 3.2 - 3.4 provide information on the
developed concepts, distinguishing between data structures, interaction patterns and
functional components.

Chapter 4 subsequently addresses the evaluation of my proposed design with respect
to the identified requirements. Here, also the steps to be undertaken for actually deploy-
ing, parameterizing and starting the system are described (this also includes example
instantiations of the developed data structures).

• How can the proposed design be implemented in a prototypical system?

• Is such an infrastructure prototype able to fulfill all stated requirements (effective-
ness)?

• How good is it able to do so (efficiency)?

To this end the prototypical implementation of my system design is presented in
section 4.1 before the conceptual and simulative assessment of this prototype is shown

10

1.3. Research Method

in sections 4.2 and 4.2.2. Chapter 4 closes with a final evaluation step, investigating the
efficiency of the proposed solution (sections 4.4 and 4.5).

The fifth chapter of this thesis is finally concerned with both, a retrospective reflection
on the developed system design and applied research method (section 5.2) as well as with
an outlook on related further research questions that have been identified in the course
of my dissertation (section 5.4). It will thus answer the questions:

• What was the essential outcome of this dissertation project?

• How can the appropriateness of the applied research method be assessed?

• How could the developed mechanism be efficiently implemented within a running
commercial service infrastructure and how could it be extended in order to further
increase its utility (future work)?

1.3. Research Method

In this section the research method applied within my thesis to answer this question is
described. A short overview on research methods, as present in the current IS research
landscape, is given first before the one chosen for this dissertation project is described
in more detail.

1.3.1. General Considerations

On an abstract level, a research method describes the general course of action under-
taken in any research effort. To this end, research methods regularly comprise a set of
intersubjectively understandable, normative rules, which are to be used as goal-oriented
directives for a research process at hand (Wilde and Hess 2007, p. 281). Since its advent
as a research discipline a variety of different research methods were employed in the
field of IS research, ranging from case studies, laboratory experiments and simulations
to mathematical proofs (Glass, Ramesh, and Vessey 2004, p. 91) (Wilde and Hess 2007,
p. 282).

When trying to further distinguish the research methods present, not only in IS re-
search but in research in general, one can identify two main classes of research methods:
such applying to descriptive research and such suitable for prescriptive research. The
main goal of descriptive research is to explain certain phenomena that can be observed
in nature, society etc. Research methods for this paradigm thus focus on the observation
of some entity (or a system of entities) and the subsequent analysis of the resulting data.
On the other hand, prescriptive research aims at solving complex problems identified by
the researcher. Respective research methods therefore define steps to identify and solve
such problems as well as to assess the achieved results in the light of the problem to be
solved (Hevner et al. 2004). This second type of research is often called Design Science
(DS), especially in IS and engineering disciplines.

While IS research has been dominated historically by descriptive research approaches,
in recent years there is a growing trend to generate a more holistic view of research as

11

1. Research Problem and Approach

such. Initiated by Herbert Simon in his influential book “The Sciences of the Artificial”
(Simon 1996), research efforts aiming to improve the environment, rather than to explain
it became more and more prominent. Such (DS) research efforts produce artifacts that
serve a distinct purpose and are subsequently evaluated regarding their utility, instead
of with regard to their explanatory power, as with descriptive research. Such artifacts
are defined as artificial, human-constructed entities as opposed to something that occurs
naturally (Simon 1996).

March and Smith argued on the structural equivalence of both research paradigms
on an abstract level: Descriptive research (as mainly present in the natural sciences)
consists of two activities. A theory has to be developed (theorize), based on empirical
observation results, and justified, building on a potentially huge set of empirical evidence
and inductive steps (March and Smith 1995, p. 255). DS on the other hand, is based on
two activities as well: A researcher has to build an artifact that improves the environ-
ment. Subsequently, in order to prove that the research has been effective, the artifact
needs to be evaluated (March and Smith 1995, p. 255).

Figure 1.2 follows this rationale and tries to integrate the two research paradigms on an
abstract level. In doing so it also supports Hevner’s view, propagating both approaches
to complement each other on a high-level perspective (Hevner et al. 2004, p. 98). The
top half of the research cycle displays descriptive research, the bottom half shows DS
with the corresponding steps5.

The cycle has two potential starting points, depending on the research question to
be addressed. If a researcher seeks to explain an observed phenomenon (descriptive
research), the entry point is on the left hand side. She starts with an existing technology
and discovers a certain new phenomenon that was not yet investigated. In the theorize
phase, she develops a hypothetical theory that could explain the phenomenon, potentially
based on some empirical evidence such as observation data. To obtain a useful theory, it
needs to be justified. All explanations and predictions of the theory must be consistent
with the empirical findings. In line with Popper’s philosophy of science, even in that
case the developed theory or hypothesis still remains “tentative” (Popper 2002, p. 280)
because it can still be refuted by empirical findings in the future. This leads to the
well-known process of theory justification or rejection within the descriptive sciences.

The second potential entry point is on the right hand side. If the research question
aims to solve a problem (Hevner et al. 2004, p. 78), the research is design oriented or
prescriptive. Building on the theoretical foundations that have been generated within
descriptive research, a researcher implements an artifact. After the implementation,
the artifact must be evaluated. Only if it provides greater utility than other, existing
artifacts, it can be considered useful, and the research problem can thus be considered to
be brought one step closer to an ultimate solution. To complete the cycle, an evaluated
artifact can be the source of new descriptive research, as it denotes newly available
technology, whose effects on existing systems can be investigated as part of a descriptive
research effort.

5For the remainder of this section I will focus on descriptive and prescriptive research in the area of IS,
although the assertions made are also applicable for other research areas.

12

1.3. Research Method

discover justify

buildevaluate

descriptive research

prescriptive research

application

solution
proposal

theory,
problem
definition

problem
discovery

Figure 1.2.: Consolidated Research Process

The consolidated research process thus integrates descriptive as well as prescriptive
research. The choice of methods is based on the research problem to be addressed: If its
aim is to explain something, it starts on the left hand side of the cycle and uses the two
activities of descriptive research. Research that tries to improve the environment with
a novel artifact uses the DS part of the cycle. It starts on the right hand side and uses
the two activities of prescriptive research.

Due to the nature of my research goal, a DS research process has been chosen accord-
ingly. In the next subsection this lower side of the research cycle, as presented above, as
well as its actual implementation within my work is described in more detail.

1.3.2. Design Science in Information Systems Research

As just described, DS is “fundamentally a problem solving [research] paradigm”, orig-
inating in the engineering sciences and the science of the artificial (Hevner et al. 2004,
p. 76). In doing so it “seeks to extend the boundaries of human and organizational
capabilities by creating new and innovative artifacts” (Hevner et al. 2004, p. 75).

When trying to further detail this paradigm it can be useful to distinguish two per-
spectives on it: the dynamic perspective, defining the process of designing an artifact,
as opposed to the static perspective, describing the structure of the design knowledge
(result of the DS process). This follows the rationale of Walls et al. who regard design
as both a process (set of activities) and a product (designed artifact) (Walls, Widmeyer,
and El Sawy 1992, p. 42).

13

1. Research Problem and Approach

Design Science Research Process

Up until now a significant amount of different DS research process models have been
developed in science and industry; Peffers et al. (2008) give a good overview on the
most prominent ones. The same authors also attempted to create a consolidated process
model that is consistent with the ones found in the literature. It provides a nominal
process description for DS research (as guideline for a) researchers conducting DS work
as well as b) reviewers when assessing it) (Peffers et al. 2008). This model has been
adopted as a basis for this thesis, as it provides the most structured and comprehensive
process description for DS currently available.

It comprises six distinct activities:

1. Problem Identification and Motivation

2. Objectives of a Solution

3. Design and Development

4. Demonstration

5. Evaluation

6. Communication

Problem Identification and Motivation This step aims at “defin[ing] the specific re-
search problem and justify[ing] the value of its solution” (Peffers et al. 2008, p. 52). This
phase marks one of the most crucial steps during any DS research effort, as it identifies
the goals and application context for the artifacts to be developed subsequently. In the
context of IS research, a problem is considered relevant whenever it can be described as
an “unsolved and important business problem...” (Hevner et al. 2004, p. 84) occurring
in the context of “the interaction of people, organizations and information technology”
(Hevner et al. 2004, p. 85).

DS researchers always have to make sure that their research attempt can be distin-
guished from routine design, and is thus worthy of a research effort. Hevner et al. present
a set of characteristics a problem should exhibit for its solving being a legitimate DS
process (Hevner et al. 2004, p. 81):

• unstable requirements and constraints based upon ill-defined environmental con-
texts.

• complex interactions among subcomponents of the problem and its solution.

• inherent flexibility to change design processes as well as design artifacts.

• a critical dependence upon human cognitive abilities (e.g. creativity) to produce
effective solutions.

14

1.3. Research Method

• a critical dependence upon human social abilities (e.g. teamwork) to produce
effective solutions.

Hence, given at least one of the abovementioned requirements is fulfilled for the prob-
lem addressed in this thesis, the DS method can be considered appropriate for my
dissertation project.

Objectives of a Solution In the next phase, the problem definition developed in the first
step is used to derive precise requirements for the artifacts to be developed. These can
either be quantitative or qualitative, the former defining measurable metrics “in which a
desirable solution would be better than current ones”, the latter defining how the newly
designed artifact will “support solutions to problems not hitherto addressed” (Peffers
et al. 2008, p. 55). Especially in case of quantitative objectives being identified, this step
requires the researcher to have extensive knowledge on currently available solutions to
the identified problem and their efficiency.

Design and Development This step marks the core process of all DS projects, as it
comprises the actual creation of the artifact, providing the researchers with a solution
to the identified research problem. This includes the determination of the “artifact’s
desired functionality and its architecture” (Peffers et al. 2008, p. 55).

A lot of very detailed process models for this phase have been developed, ranging from
the traditional Waterfall Model for Software Engineering (Royce 1987) to the iterative
Spiral Model (Boehm 1986).

Whichever approach is used, the researcher is bound to build on the common knowl-
edge currently available in the respective research discipline (Hevner et al. 2004, p. 80),
also called Justificatory Knowledge in (Gregor and Jones 2007, p. 322). On the other
hand the researcher is urged to apply rigorous research methods to her work, which can
be assessed based on the “applicability and generalizability of the [developed] artifact”
(Hevner et al. 2004, p. 88).

Hevner et al. define such an artifact to be “created to address an important orga-
nizational problem [and it being] described effectively, enabling its implementation and
application in an appropriate domain” (Hevner et al. 2004, p. 82). They also identified
four different types of artifacts that can be the result of a DS activity (Hevner et al.
2004, p. 77):

• Construct (vocabulary and symbols)

• Model (abstraction and representation)

• Method (algorithms and practices)

• Instantiation (implemented and prototype systems)

Gregor and Jones categorize them into two distinct groups, namely “theories [or]
immaterial artifacts” (constructs, models or methods)” and “instantiations [or] material
artifacts” (instantiation) (Gregor and Jones 2007, p. 321).

15

1. Research Problem and Approach

Demonstration During this step the artifact’s capability to solve the addressed research
problem is to be shown. Most DS research models integrate this phase with the next
one, as both aim at assessing the developed artifact. The difference between both is
basically whether the capability of the developed artifact to solve the problem at all is
assessed (demonstration) or how good it does so (evaluation). This distinction allows
for a much more structured assessment, especially in cases where artifacts are designed
addressing problems that were not addressed before at all. Here the first question to ask
is whether the artifact fulfills its requirements and questions about the quality of the
solution (evaluation) are secondary. In these cases the “research contribution lies in the
novelty of the artifact and in the persuasiveness of the claims that it is effective” (March
and Smith 1995, p. 260).

Evaluation After having shown that the artifact essentially fulfills its purpose, the
evaluation step addresses the quality of the designed solution. According to Peffers et
al. this involves the “compari[son of] the objectives of a solution to actual observed
results from use of the artifact in the demonstration” (Peffers et al. 2008, p. 56). By
building on a set of evaluation criteria (which should be derived from the objectives of
the solution) as well as objective evaluation methods this steps basically measures how
good the artifact solves the stated problem.

Following Hevner et al., all evaluation criteria for IS artifacts originate in the business
environment they are supposed to be applied in; common examples for such criteria
are for example completeness, functionality, consistency or performance (Hevner et al.
2004, p. 85). It is up to the actual researchers to identify the criteria appropriate for the
respective work and specify the way those are calculated based on the observation made
from using the artifact.

Past developments have shown that even artifacts that were worse than their competi-
tors in the traditional metrics not only kept being used by a significant set of customers,
but often even outlived their “better” predecessors. Such technology is often called
disruptive as opposed to the sustaining technology it sets out to outclass (Christensen
1997). These new technologies obviously exhibited some characteristics that were not
part of traditional evaluation in the respective context, but that proved to be very much
important over time (a good example for this are the 3,5” and 2,5” hard discs). This
phenomenon can easily be observed in DS research as well and has to be taken into
account when defining the metrics for a given evaluation setting: even if a new artifact
renders to be worse than present ones on some scale it might be much better in a new,
not yet considered metric, which could become very important in the future. In such
DS efforts it is crucial to explicitly define the characteristic(s) in which the designed ar-
tifact is varying from its competitors and why this metric can be foreseen to be of future
importance. An actual assessment of this assertion can only be made over a significant
period of time during which this new metric has to prove its importance (long-term
evaluation of disruptive research artifacts).

Based on the structure of the artifact and the identified evaluation criteria an appro-
priate evaluation technique must be selected as a second step (see (Hevner et al. 2004)

16

1.3. Research Method

or (Bucher, Riege, and Saat 2008) for examples). The most prominent ones, in the
context of DS research, are probably building and applying of software prototypes in
a productive environment, computer simulations, surveys or lab experiments (Bucher,
Riege, and Saat 2008, p. 81) as well as analytical (if possible) or descriptive evaluations
(Hevner et al. 2004, p. 86).

Communication The final step within every DS effort should be the communication
of the results to fellow “researchers and other relevant audiences, such as practicing
professionals” (Peffers et al. 2008, p. 56). Hevner et al. define the two classes of potential
audiences as “technology-oriented as well as management audiences” (Hevner et al. 2004,
p. 90), given the application domain of IS research.

The challenge occurring in this final step is a) to identify respective outlets that
promise a good visibility among the addressed audiences (e.g. conferences or journals)
as well as to b) identify all results interesting for these groups. This includes not only
the artifact itself, but also “the [addressed] problem and its importance, [..] its utility
and novelty, the rigor of its design, and its effectiveness” (Peffers et al. 2008, p. 56).

Results of Design Science Efforts: Design Theories

A question, occurring during the communication step of DS research at the latest, is
how “design knowledge[, being the result of any DS effort,] can be captured, written
down and communicated” (Gregor and Jones 2007, p. 313). An abstract guideline for DS
researchers is needed for structuring their achieved results in a way they can communicate
them. Gregor and Jones proposed such a guideline by consolidating former works on
DS theories from Walls et al. (Walls, Widmeyer, and El Sawy 1992) and Dubin (Dubin
1978). The main idea is not to view the designed artifact as the primary result of a DS
process, but rather that it is no more than the nucleus around which a comprehensive
design theory is to be defined. The scientific findings of a DS process are expected to
be generalizable (much more than the sole artifact would be) theories which should be
able to act as part of the theoretical basis for future research efforts.

The proposed structure of a DS theory identifies eight different categories or abstract
components that should be the result of an ideal DS process (Gregor and Jones 2007,
p. 322):

• Purpose and Scope

• Constructs

• Principles of Form and Function

• Artifact Mutability

• Testable Propositions

• Justificatory Knowledge

17

1. Research Problem and Approach

• Principles of Implementation

• Expository Instantiation

Purpose and Scope This aspect defines the high-level goals of the developed design
theory (in which the developed artifact is grounded / which was derived from the devel-
oped artifact). In doing so, the scope or boundaries of the theory, and systems for which
it applies respectively, are shown. The requirements are to be stated on a “meta-level”
in that the goal of a DS researcher should be to define a design “theory that is suited
to a whole c1ass of artifacts that are typified by these requirements” (Gregor and Jones
2007, p. 325).

Constructs Constructs represent the basic vocabulary of any theory, consisting of its
(“indicative, rather than [complete]”) set of “entities of interest” (Gregor and Jones
2007, p. 325). It can thus be seen as an extended glossary of “physical phenomena or
abstract theoretical terms” (Gregor and Jones 2007, p. 325) used in a given theory, such
as “software agent” or “SLA”.

Principles of Form and Function This component describes the “structure, [...] shape
[...], properties and functions” (Gregor and Jones 2007, p. 326) of an artifact. It thus
defines the “blueprint” for individual instantiations following the respective design the-
ory.

Artifact Mutability Given the inherently changing context of any IS artifact this aspect
of a design theory covers the capabilities of a developed artifact when evolving over time
and adapting to new application settings and organizational environments.

Testable Propositions This component describes a set of “testable propositions or
hypotheses” (Gregor and Jones 2007, p. 327) on the behavior of the developed artifact.
By this means it provides the main input for assessment of the artifact, taking place in
the demonstration and evaluation steps as presented above.

Justificatory Knowledge The theoretical basis on which the design theory is grounded
is known as justificatory knowledge. It thus represents related artifacts and respective
theories underlying the current DS effort. This concept is to be distinguished from other
DS projects aiming at the same problem (regularly known as related work in scientific
papers), as those are basically competitors to the currently designed approach whereas
the justificatory knowledge only provides a common ground for all those efforts.

Principles of Implementation This aspect describes “the means by which the design
is brought into being” (Gregor and Jones 2007, p. 328). An abstract guideline for imple-
menting the design theory in an actual artifact is given, thus depicting how the results
of the DS effort can be applied in real-world settings.

18

1.3. Research Method

Expository Instantiation An actually instantiated artifact implementing the developed
design theory “contributes to the identification of potential problems in a theorized
design and in demonstrating that the design is worth considering” (Gregor and Jones
2007, p. 329). It therefore proofs that the theory can be instantiated and that such
an artifact ultimately solves the addressed research problem (the demonstration and
evaluation phases of the research process assess the developed design on the basis of
such an instantiation)6.

Any DS effort (such as the one presented in this thesis) should aim at describing the
proposed problem solution from all these perspectives in order to allow for generalization
and application of the results in real-world settings as well as in future scientific projects.

1.3.3. Implementation of the Design Science Paradigm

Design Science Process

This dissertation project follows the DS process model that was introduced in the last
subsection except for one additional phase concerning the Metrics Operationalization
and Testbed Implementation. Such efforts are also present in the model proposed by
Peffers et al. (Peffers et al. 2008, p. 54), however, they are not explicitly presented as a
distinct phase, which underrepresents their value to the overall process in my opinion.

The complete process as adopted for this thesis is shown in figure 1.3:

As a first step, the research problem has been identified (it has already been detailed
in section 1.1): the lack of mechanisms for a comprehensive and fully automated dis-
covery and flexible negotiation of SLAs in distributed settings such as the IoS. It has
been deduced from a detailed scenario model for the IoS after investigating respective
literature on service-based systems as well as the research problems stated within current
national and international research projects.

The problem addressed in this thesis clearly fulfills at least some of the criteria Hevner
et al. (Hevner et al. 2004) impose on a DS project. The complex nature of service-
based settings and the intricate interactions and dependencies between the different
components of the IoS can probably be seen as the most prominent one.

Next, the objectives for solution to the respective problem are stated in 2.1. They
primarily originate in a thorough analysis of scientific literature about the stated scenario
and research problem.

After the objectives for this DS project are defined, two basically independent phases
can begin: the design and development of the actual artifact (i.e. the SLA management
infrastructure) as well as the definition of the evaluation metrics and the testbed imple-
mentation. These two phases have no actual contact points, so they can be conducted
independently. The only requirement regarding the overall process is that the testbed,
within which the designed and implemented artifact is to be assessed, must be finished
before starting the demonstration and evaluation phases. The testbed used within this

6Having produced an expository instantiation does not necessarily render a design effort to be valid
DS, as in the case of just having such an artifact without an appropriate theory of design “the level
of knowledge is that of a craft-based discipline” (Gregor and Jones 2007, p. 329).

19

1. Research Problem and Approach

Problem
Identification
and Motivation

Objectives of
a Solution

Design &
Development

Demonstration

Evaluation

Communication

Metrics
Operation-
alization

& Testbed
Implementation

distributed SLA
management

in the IoS
protocol-generic
and automated
discovery and
negotiation of

SLAs
protocol

description
language and
agent-based
infrastructure

agents acting
in different
negotiation

settings
(effectiveness)

SimIS Toolkit

dissertation
thesis and
scientific

publications

quality of the
solution

(efficiency)

Figure 1.3.: Research Process applied for this Thesis

thesis is the IoS simulation toolkit SimIS (“Simulating an Internet of Services”)7 (König,
Hudert, and Eymann 2010), which I co-developed. In parallel, the metrics to be used
within the demonstration and evaluation phases, are derived on the basis of the research
question and scenario definition at hand.

During the design and development of the actual artifact, the mechanisms and data
structures needed for solving the stated research problem are defined and subsequently
implemented in a proof-of-concept prototype.

Once both this expository instantiation as well as the testbed are finished, the demon-
stration and evaluation steps are undertaken. To this end, the developed software com-
ponents are deployed in a simulated IoS scenario (as parameterized using SimIS) and
subsequently assessed regarding the requirements defined before.

Following Bucher et al., simulation is a valid evaluation (and demonstration) technique
within DS whenever the application of a prototype in a real-world experiment is impos-
sible (see for example Bucher, Riege, and Saat 2008; Hudert, Niemann, and Eymann
2010). This can be due to pragmatic (e.g. investigations on fluid behavior in the core of

7http://sourceforge.net/projects/simis

20

1.3. Research Method

the sun), theoretic (e.g. what-if questions on different values for natural constants) or
ethical reasons (Hartmann 1996, p. 87). In the case of this project a pragmatic reason
is present, as a global IoS as I envision it, is still only a vision for future systems and
not already implemented reality in IS. Initial steps towards this vision can already be
observed in current infrastructures (for example SAP’s BusinessByDesign8, Enomaly’s
SpotCloud9 or SalesForce10), but the comprehensive IoS vision in its entirety is not
present yet. Simulation therefore represents an appropriate evaluation tool for exploring
these scenario settings, “that cannot (yet?) be investigated . . . by experimental means”
(Hartmann 1996, p. 87).

As a conceptually last step the results of this project are communicated in the form
of scientific publications (see Hudert (2006, 2009, 2010); Hudert and Eymann (2010,
2011a,b); Hudert, Ludwig, and Wirtz (2006, 2007, 2008, 2009); Hudert et al. (2009)) in
both, the computer science and business communities, contributions to conjoint research
projects as well with the publication of this thesis as a whole.

Resulting Design Theory

In order to describe all relevant input and (intermediate) results of my research project,
the remainder of this thesis is primarily structured according to the research process just
sketched. Nevertheless, I also tried to incorporate Gregor and Jones’ structure of a design
theory when presenting my results. In the following I very shortly want to provide some
overview information on where in this thesis which of the mentioned theory components
can be found. These remarks can thus act as an alternative approach for an outline of
this thesis and are supposed to guide the reader whenever she is particularly interested
in a distinct aspect of the theory resulting from my work.

• The Purpose and Scope of my work can be found in section 1.1 and more particu-
larly in 1.1.1, where my actual research goal is presented.

• Next, the Constructs used within this thesis are implicitly introduced in section
2.2. In this section also the Justificatory Knowledge is described as an input for
my work and whenever a distinct construct, that is needed in the further thesis, is
introduced, it is highlighted respectively.

• The main part of this thesis, the design of the SLA management infrastructure in
chapter 3 basically comprises the Principles of Form and Function, whereas the
Testable Propositions can be found in 4 as part of the demonstration and evaluation
experiments.

• Also located in chapter 4 is the description of the implemented proof-of-concept
prototype (Expository Instantiation).

8http://www.sap.com/germany/sme/solutions/businessmanagement/businessbydesign/index.epx
9http://www.spotcloud.com/

10http://www.salesforce.com

21

1. Research Problem and Approach

• The last two aspects of a design theory are concerned primarily with the time
after the actual research process and are thus mentioned in chapter 5: A short
guideline for how to use my system in a productive environment is given in 5.3
(Principles of Implementation) and finally the system’s capability to cope with
changing environments and potential extensions to the system to increase this
capability are sketched in 5.4 (Artifact Mutability).

22

2. Objectives and Foundations

In this chapter the objectives of my work as well as the conceptual foundations upon
which this thesis builds are presented.

2.1. Requirements Analysis

In investigating the identified research problem and the resulting research question, a
set of requirements for the intended solution can be identified. They are structured
according to the phases of the overall service life cycle (see figure 2.1) they refer to, i.e.
the discovery or negotiation phase, as those are the main focus of this thesis. Within the
negotiation phase requirements another level of categorization is introduced, following a
well-known distinction of negotiation research: negotiation object (referring to the entity
negotiated about), decision making strategy (referring to the way negotiators act during
a negotiation) and negotiation protocol (defining the way negotiators can communicate
during negotiation) (Jennings et al. 2001, pp. 200-201):

Discovery Phase: During the Discovery Phase, a system of market registries is needed
to support the discovery and publication of service offerings. This ensures effective and
efficient discovery processes in which potential transaction partners are made known to
each other, a prerequisite for any economic transaction.

R1 Market registries should be present for the service discovery phase (Buyya et al.
2009).

Negotiation Phase - Negotiation Object: Next the requirements for the negotiation
phase are presented, beginning with the ones concerning the negotiation object; in the
IoS these objects are service invocations and therefore SLAs. Due to the variety of
different services the complexity of such service invocations, respective SLAs of highly
varying complexity must be negotiable.

R2 Service management in the IoS should be based on (electronic) SLAs of varying
complexity (Barros, Dumas, and Bruza 2005; Blau, Stösser, and Block 2008; Buyya
et al. 2009; Ludwig et al. 2006; Neumann, Stösser, and Weinhardt 2007; Neumann
et al. 2008; Paurobally, Tamma, and Wooldridge 2007).

On the other hand, in order to delimit the potential agreement space a priori (for
example as needed in fixed price protocols) a possibility to define some SLA terms to
be non-negotiable is needed. These correspond to hard-coded service characteristics,

23

2. Objectives and Foundations

Figure 2.1.: Integrated Service Life Cycle Model for the IoS

that the offering management agent cannot (or is not willing to) change and therefore
negotiate about.

R3 Possible offers should be restrictable, including non-negotiable SLA terms (Brandic
et al. 2008b; Ludwig et al. 2006; Ziegler et al. 2008).

Negotiation Phase - Negotiation Protocol / Setting: In trying to cope with the
multitude of possible settings in the IoS it is inappropriate to only offer one particular
negotiation protocol (Neumann, Stösser, and Weinhardt 2007). Following the main moti-
vation for this thesis, such mechanisms would not provide the needed flexibility in order
to achieve efficient or even stable system states at some times. Analogous to real-world
economies digital service economies offering different negotiation protocols within indi-

24

2.1. Requirements Analysis

vidual service (micro-) markets are needed for efficient service management on a global
scope. Additionally, the knowledge of the protocols to be used has to be created or
discovered by the involved services during the discovery phase dynamically (this means
during run time).

With regard to the involved negotiator agents, this implies that they must be able
to act on different markets, thus within different protocols. Such settings are of special
interest in multi-tier market infrastructures as presented within a variety of different
research efforts (see for example Streitberger et al. 2008). These approaches try to cope
with the huge differences in complexity between the electronic services present in the
overall economy by introducing individual markets at each abstraction layer. Agents
then for example buy or sell raw resources on one market whereas they buy or sell more
complex services on the other one. In addition to this vertical view, agents can be
in the need of acting on horizontally distributed markets, for example when different
services offered on different micro-markets have to be combined to a complex workflow.
Such situations will be very common in global and protocol-generic infrastructures as
envisioned in this thesis.

R4 SLA negotiations should allow to change the applied negotiation protocol (protocol-
generity) (Barros, Dumas, and Bruza 2005; Brandic et al. 2008b; Buyya et al. 2009;
Ludwig et al. 2006; Neumann, Stösser, and Weinhardt 2007; Neumann et al. 2008;
Paurobally, Tamma, and Wooldridge 2007; Resinas, Fernandez, and Corchuelo
2010).

Taking this argument one step further, a restriction of the possible negotiation proto-
cols to a pre-defined set still does not provide the flexibility needed for the IoS scenario.
Given the massively distributed and dynamic setting, this assumption is easily justifiable
as very diverse negotiation situations (and thus different protocols) can be anticipated
to appear therein. Restricting the supported protocols to a pre-defined sub-set (known
to all involved negotiator agents at start-up) necessarily also restricts the benefits such
an infrastructure could achieve (Hudert, Ludwig, and Wirtz 2009).

R5 In order to cope with the highly dynamic IoS environment the available set of pro-
tocols should not be restricted a priori.

Negotiation Phase - Negotiation Strategy / Participants: A vast majority of re-
searchers agree that automated software agents should be employed for service manage-
ment in the IoS. Software agents can bring both, the flexibility and appropriate speed
as well as the required strategic intelligence, needed in such complex global systems.
Additionally, they represent the right abstraction level for user input as each agent can
be assigned to a human user and thus users can implement their desired negotiation
behavior within their agents, which will act on their behalf further on.

R6 Software agents should be applied for service management in the IoS (Barros, Du-
mas, and Bruza 2005; Blau, Stösser, and Block 2008; Borissov, Neumann, and

25

2. Objectives and Foundations

Weinhardt 2009; Bui, Gachet, and Sebastian 2006; Hung, Li, and Jeng 2004; Lud-
wig et al. 2006; Neumann, Stösser, and Weinhardt 2007; Paurobally, Tamma, and
Wooldridge 2007).

Other than the two main roles in each negotiation, SC and SP, additional software
agents are needed to act as third party roles for supporting the actual negotiation pro-
cesses. By employing such mediators, the overall complexity of the IoS can be reduced
and tasks ensuring the overall stability of the system can be safely implemented, such
as market makers matching bids in a two-sided auction process or negotiation brokers
assisting the agents in their decisions by providing reputation information, for example.

R7 Intermediaries should be present to act as auctioneers and market makers for nego-
tiation support (Barros, Dumas, and Bruza 2005; Buyya et al. 2009).

Aside from these conceptual requirements a SLA management infrastructure, as de-
veloped within this dissertation, should follow some fundamental technical claims, such
as being service-oriented and decentralized (Foster et al. 2002b; Hung, Li, and Jeng 2004;
Paurobally, Tamma, and Wooldridge 2007). This is a sine qua non for any mechanism
to be applied in the IoS, itself being service-oriented and decentralized.

Also, human users defining and executing business processes should not be bothered
with technical aspects of service discovery and negotiation. They should be able to
pass their preferences over to the service management agents and be presented with
the (hopefully positive) results of their invocations. The infrastructure should thus be
transparent to the user (Bui, Gachet, and Sebastian 2006).

Finally, in order to achieve an efficient service management layer a set of concepts
must be defined and commonly used among the management agents. Such concepts
mainly comprise the message types and interfaces involved as well as the discovery and
negotiation protocols (Brandic et al. 2008b; Buyya et al. 2009; Hung, Li, and Jeng 2004;
Ziegler et al. 2008).

2.2. Conceptual Foundations

In the following two sections the scientific context of my research project is presented.
On the one hand, this includes mechanisms and concepts fundamental to the addressed
research problem (and thus to both my dissertation as well as related research projects)
and on the other hand related research problems, dealing with similar research questions
like the one stated for this thesis. The former is being discussed in this section, the latter
in the next.

2.2.1. Service Level Agreements in the Internet of Services

In order to derive a consistent definition of a SLA, the core concept it relates to, the
service itself, must be defined. For this thesis the following definition is employed (see
for example Berger 2005, pp. 12-18):

26

2.2. Conceptual Foundations

Definition 2.1 A service is defined as an immaterial good that a SP delivers to a SC.
As opposed to material goods, the creation and consumption of such a service coincide
as a service is not storable.

Definition 2.2 An electronic service is consequently a service, which is requested, at
least partially created, delivered and otherwise communicated with by employing stan-
dardized, electronic communication channels and other software systems.

This definition stresses the point, that an electronic service, being the fundamental
concept of the IoS scenario, is defined by its capability to communicate with its con-
sumers over standardized, electronic communications channels, such as the Internet.
Also it demands the service to be at least partially created using software systems. This
excludes purely human-created services, such as a service a car mechanic would provide
its customer.

On the other hand, semi-automated services, such as a translation service with addi-
tional manual proof-reading, can be seen as an electronic service, as long as it is requested
and its results are returned over an Internet-based communication channel.

An electronic service is thus commonly described in terms of its functionality, mostly
called its offered operations. In addition to this “syntactical” description, a semantic
explanation of the offered functionality is given in many cases, allowing for automated
discovery and subsequent invocation. In combination these two aspects answer the
question on “What can a service deliver?”.

On the other hand, the service quality it is able to deliver to the SC, describes, how
a service delivers its offered functionality:

Definition 2.3 The quality a service is provided in, mostly referred to as QoS, defines
all characteristics of the delivered service with regard to its capability to achieve the
desired results.

The QoS a service delivers thus defines to what extent the service was able to satisfy the
SC in terms of non-functional characteristics. These non-functional aspects (as opposed
to the functional properties, defining the service’s operations), such as response time or
availability, vary over time, even for one and the same service instance. This results
from changing workloads or other external factors, such as denial-of-service attacks or
maintenance operations.

Fundamentally a service always provides the same set of operations, but it varies in
how good it is able to provide them. This effect is exploited when negotiating about
SLAs, as the QoS-affecting circumstances, such as priorities of the incoming requests,
allocated resources, schedules of maintenance operations etc., can (mostly even in an
automated fashion) be altered in favor or at the expense of an incoming service request.
By re-scheduling or intelligent assignment of resources to individual service instantiations
a desired QoS can be assured, ultimately allowing a SP to negotiate such QoS aspects
within certain boundaries. These boundaries mark the range, which it can reliably
achieve with its service without risking a SLA violation.

27

2. Objectives and Foundations

Building on this definition as well as the IoS scenario described before, a SP can be
defined.

Definition 2.4 A Service Provider (SP) is an organizational entity, managing and of-
fering a non-empty set of services, whose primary goal is to engage in transactions with
SCs, and in doing so, maximize its utility.

SPs are thus not necessarily actual enterprises, but also departments within such
enterprises or even governmental or research institutions. Their defining characteristic
is the administration of one or more services that are offered to potential customers.

Definition 2.5 A Service Consumer (SC) is an organizational entity in need of a dis-
tinct service, it is not able or willing to provide satisfactorily itself. It thus engages in a
transaction with a SP able to deliver this service, and at the same time tries to maximize
its utility resulting from that transaction.

In analogy to a SP, a SC is defined by its need for a particular service, it cannot
provide itself or at least not in a satisfying fashion. Again this concept is defined as an
abstract entity, explicitly allowing it to represent an internal (other department of the
same organization) or external (for example an actual customer) organization1.

Definition 2.6 Utility is used in this context as a subjective measure for the relative
preference a given entity has on a set of different aspects of a transaction.

Subjective means that the utility a given transaction result (for example a SLA)
would yield for a given entity (SC or SP) can potentially differ significantly from the
utility another entity associates with the same result. Utility is thus a way to weigh
different aspects of an agreement and calculate the overall valuation of it with respect to
a distinct individual, defining the respective weights. One SC could for example regard
an early guaranteed delivery time as the only relevant SLA guarantee and not care at
all about its costs and another one could define the exact opposing weights. In the end
one given SLA would thus be valuated quite differently by these two SCs. How the set
of agreement elements are weighed by a particular SC or SP is defined in its individual
Utility Function.

The arena in which the individual SPs and SCs communicate to maximize their indi-
vidual utility through agreements with one another is represented by the market they
take part in.

Definition 2.7 A market is an institutional context in which SPs and SCs meet and
engage in transactions.

1These two abstract definitions deliberately allow one organizational entity to act as both SP and SC.
This is one of the core assumptions of the IoS scenario.

28

2.2. Conceptual Foundations

On a higher abstraction level the market thus coordinates demand and supply via the
price. This economic control mechanism amongst individual actors (with potentially
conflicting interests and thus utility preferences) is commonly referred to as the invisible
hand (Smith 1976).

Having presented these fundamental concepts, a definition for the term SLA itself
can now be addressed. However, there exist a variety of such definitions in the scientific
literature. In order to derive a well-founded definition for this thesis, the most influential
ones are now shortly presented and discussed with regard to the assumed IoS scenario.

A very abstract definition of a SLA is given in (Karaenke and Kirn 2007, p. 104):
“Explicit formal statements of obligations and guarantees regarding grid services in a
business relationship are often referred to as service level agreements (SLAs).” Although
the authors mainly focus on GC environments, they already state the main characteris-
tics of a SLA, namely obligations and guarantees regarding the delivered service(s).

Karten defines a SLA to be a “formal negotiated agreement which helps to iden-
tify expectations, clarify responsibilities, and facilitate communication between a service
provider and its customers” (Karten 2003, p. 5) The main focus of this definition there-
fore lies in the specification of the goals to be achieved by a SLA. No concrete description
of the actual elements of the SLA documents is given.

A definition much more oriented towards electronic services is given by the Internet
Engineering Task Force (IETF)2 in (Westerinen et al. 2001, p. 13). There, a SLA is
defined as “[t]he documented result of a negotiation between a customer / consumer and
a provider of a service, that specifies the levels of availability, serviceability, performance,
operation or other attributes of the service.” Here, very specific elements of a SLA
documents are presented in terms of actually measurable service attributes upon which
the service level guarantees can be defined.

Similarly the Global Grid Forum (GGF), which became the Open Grid Forum (OGF)3

in September 2006, gives a definition of a SLA in the OGSA Glossary of Terms (Treadwell
2007, p. 11): They regard a SLA as a “contract between a provider and a user that
specifies the level of service that is expected during the term of the contract. SLAs
are used by vendors and customers, as well as internally by IT shops and their end
users. They might specify availability requirements, response times for routine and ad
hoc queries, and response time for problem resolution (network down, machine failure,
etc.).” Again, a set of possible SLA elements is given in terms of measurable service
characteristics. However, the authors also stress a point not present in most of the other
definitions: the possibility for SLA usage within a given organization. This is rather
new, as it abstracts from the image of an internal SP and an external organization
acting as a SC (or vice versa), but rather employs this relationship for both, internal
and cross-organizational interactions.

Keller et al. give a first hint at the possibility for electronic SLAs by stating “Web
Services provide the opportunity to dynamically bind to services at run time, i.e., to enter
and dismiss a business relationship with a service provider on a case-by-case basis and

2http://www.ietf.org/
3http://www.ogf.org/

29

2. Objectives and Foundations

on-demand [...]. Electronic contracts specify the way how these interactions are carried
out and which contractual parties are involved. An important aspect of a contract for
IT services is the set of Quality of Service (QoS) guarantees and the obligations of the
various parties. This is commonly referred to as a Service Level Agreement (SLA)”
(Keller and Ludwig 2003, p. 58).

Building on these definitions, the constituent characteristics of a SLA can be defined
as:

• A SLA represents some sort of negotiated agreement between the provider and
consumer of a service.

• It specifies the guaranteed characteristics for a given service invocation in terms
of measurable service aspects, such as availability or performance.

• Additionally a set of organizational assertions, such as the cost associated with a
service invocation or the penalties of not delivering the guaranteed service quality,
is defined.

• SLA documents in this vein are used for cross-organizational as well as internal
service deliveries.

Hence, the SLA concept as employed throughout this thesis is defined as follows.

Definition 2.8 A SLA is a structured document, describing a negotiated, bilateral4

agreement between a SP and a SC on the terms and conditions of the invocation(s)
of a (set of) (electronic) service(s). This agreement both obliges the SP to deliver to
the SC the respective service(s) in the stated quality and the SC to reciprocate this with
a defined compensation payment. Hence, a SLA contains a description of the delivered
services’ functionality, guarantees on the delivered service quality, as well as assertions
on the associated costs and penalties in case of a violation. The service quality guarantee
is further defined as a set of Service Level Objectives (SLOs). Finally, a SLA is always
valid for a distinct period of time.

Hence, a SLA document basically describes a temporary business relationship between
a SP and a SC, during which a defined set of services is delivered. It thus helps answering
the questions “Who is providing the service(s) to whom?”, “What services are provided
and under which conditions?” and “What consequences arise from either a service being
delivered as guaranteed or not?”.

When defining these respective QoS levels within a SLA document, SLO elements are
used:

Definition 2.9 A Service Level Objective (SLO) describes one particular QoS aspect
within a SLA document, thus consisting of a commonly known and measurable service
characteristic together with a respective target value. This target value then represents
the QoS guarantee for the respective service characteristic.

4Also multi-lateral SLAs are possible. However, they only play a minor role in settings, such as the
IoS, and are therefore not further considered in this thesis.

30

2.2. Conceptual Foundations

These definitions already show a fundamental gap between a SLA’s business-related
role and its implications on the technical infrastructure. On the one hand it is used as
a contractual agreement between SP and SC, within or even across enterprise bound-
aries, with all resulting requirements from a legal perspective. On the other hand it
regularly acts as an input for the, often even automated, management of the technical
IT infrastructure delivering the requested services. It can clearly be seen, that both
usage scenarios pose quite different requirements on the SLA document and its role in
the overall service management process.

Some scientists even accredit this fact in defining a SLA only being a part of a com-
prehensive contract between a SP and a SC (Karaenke and Kirn 2007; Leff et al. 2003),
focusing on the “operational definition of a service” (Karaenke and Kirn 2007, p. 104).
Similarly, they distinguish between SLAs targeting end users and those targeting other
SPs (Berger 2005, pp. 29-32).

In the following I will address this issue by shortly assessing the abstract SLA concept
as underlying this thesis in the light of both high-level business relationships and the
very precise task of automated SLA-based resource management.

SLAs as Instruments for Business Relationship Management

When investigating SLAs from a business perspective, scenarios like application service
provisioning, web hosting or IT outsourcing are of primary interest (Keller and Ludwig
2003). All those settings are characterized by bipartite relationships between SPs and
SCs, whose characteristics are regularly defined in terms of a SLA document (Goo,
Kishore, and Rao 2009). It subsequently acts as a legally binding contract between the
involved parties, denoting the rights, obligations and compensation payments associated
with the respective business transaction.

The ongoing trend of concentrating on the core business and thus outsourcing a lot of
the supporting functions (such as most parts of the IT infrastructure) in an enterprise to
specialist providers constantly increases the need for SLAs as a foundation for such busi-
ness relations. Additionally, the technical possibilities for more and more fine-grained
definition (and thus providing and purchasing) of individual services was one of the main
business-related drivers of the IoS as a model for future enterprise IS.

SLA documents play a very fundamental role in such IT outsourcing scenarios (Masche,
Mckee, and Mitchell 2006). When relying on external services for one’s own economic
performance, some degree of planning reliability becomes necessary. This can be realized
with the binding guarantees stated in a SLA.

On the other hand, most companies find themselves in a position where they not only
purchase external services, but also sell those to external customers (potentially even by
combining them with internal ones). The formerly internal and very technology-oriented
IS of a company is increasingly moving towards a customer-oriented infrastructure for
delivering services at least as parts of an economic transaction (Boehmann and Krcmar
2004).

In such cases, a SLA document helps the respective enterprise (acting as a classical
SP in this case) to plan and allocate their internal resources in a way that the promised

31

2. Objectives and Foundations

service guarantees are met. Several best practice frameworks for managing such enter-
prise IS in an efficient way have been published in the recent years, the IT Infrastructure
Library (ITIL) (Office of Government Commerce 2007) and Control Objectives for In-
formation and Related Technology (COBIT) (IT Governance Institute 2007) probably
being the two most prominent ones. Especially ITIL defines Service Level Management
as the fundamental set of management activities concerned with the negotiation, mon-
itoring and enforcement of service delivery processes according to agreed-upon SLAs
(Mayerl et al. 2005; Schaaf 2008).

The role of a SLA, from a business perspective, is thus quite clear: it defines all rights
and obligations of an actual business transaction and thus represents the legal basis for
any interaction between SC and SP. It has to cover a lot of terms and elements related
to these legal requirements in addition to the actual service (quality) description. Even
SLAs between individual departments within a large cooperation relate to this concept,
however they will regularly state internal prices and be able to omit some of the legal
aspects due to the overarching legal framework of the parent company.

Finally, SLAs allow a SP to fully exploit the economic measure of price differentiation
when defining individual service (quality) levels and their associated prices. Exploiting
different utility functions on the SC sides, a SP can thus maximize its profit, given it is
possible to enforce different quality levels during the actual service delivery process.

SLAs as Instruments for (Automated) Resource Management

In contrast to this very business-centric view on SLAs, such documents also play an im-
portant role in the (potentially automated) management of technical IS infrastructures.
First attempts to apply SLAs for automated resource management have been done in
the telecommunications industry (see for example Chakravorty et al. 2003; Mantar et
al. 2006) and subsequently in, mainly non-commercial, grids (see for example Parkin,
Badia, and Martrat 2008; Seidel et al. 2007)5.

The main focus here is to extract the SLOs stated in the SLA, derive respective
requirements posed on the managed infrastructure, calculate how this infrastructure
must be orchestrated in order to fulfill them and finally implement the result.

An important part of this task is marked by the scheduling of incoming requests and
their assignment to the available services or raw computing and storage resources (Seidel
et al. 2007). Furthermore, a SLA can even be employed for well-founded predictions on
potential violations and subsequent enforcement measures (Padgett, Djemame, and Dew
2005).

In order to allow such automated management of IT services a digitally processable
version of a SLA is needed (Leff et al. 2003).

Definition 2.10 An electronic SLA is a digital equivalent of a paper-based SLA, struc-
turing its contents into machine-readable elements.

5Going back even further, very initial works on object-oriented software engineering already applied the
concept of a contract as the main communication concept between individual software components,
governing the delivered functionality just as with today’s SLAs (Meyer 1992).

32

2.2. Conceptual Foundations

The main focus of such an electronic SLA thus lies in the information needed for
the automated scheduling and resource allocation, such as the stated SLOs, associated
costs and penalties as well as involved parties (as needed for example in systems with
individual users priorities). Hence, an electronic SLA aims at closing the gap between the
high-level business context, as defined in a SLA between the involved business partners,
and the very technical aspects of the underlying IS.

This aspect becomes even more prominent as current distributed and high-performance
computing infrastructures more and more evolve from purely academic and non-profit to
commercial infrastructures (Leff et al. 2003). In such cases SLA-based service provision-
ing and the possibility to offer “different service levels to different clients by dynamically
allocating resources for execution of individual [...] service requests” (Dan, Ludwig, and
Pacifici 2003, p. 1) becomes increasingly crucial for economic success.

As opposed to the business perspective presented in the last subsection, from a techni-
cal point of view a SLA simply has to define the guaranteed service quality and function-
ality (in terms of machine interpretable service metrics). This allows automated service
management systems to calibrate the available IT resources in a way that the overall
utility of the SP is maximized, based on the currently active SLAs and their associated
compensation payments and penalties.

An Integrated View on SLAs

This distinction between inter-organizational, legally binding business contracts and in-
ternal agreements for the (automated) management can also be found in the ITIL frame-
work. It distinguishes external contracts, called SLAs in ITIL, from internal agreements,
which are much more related to the underlying IS infrastructure, called Operational Level
Agreements (OLA) (Schaaf 2008, p. 46).

When taking a closer look on these two concepts, as well as the statements made in the
last two subsections, it becomes quite obvious on an abstract level that they do not differ
much. In both cases, an agreement document is created, stating the involved parties,
the functional and non-functional aspects of the service to be exchanged as well as a set
of organizational and other (for example legal) assertions on the respective transaction.
Current projects, especially in the domain of high-performance computing, are even
working on mechanisms to automatically map SLAs to OLAs, directly employed for the
automated infrastructure management (Hasselmeyer et al. 2006b).

This shows the structural equivalence of both agreement types. On an abstract view
a SLA thus consists of a set of elements. Berger gives a very extensive overview on such
elements, covering both the IT-relevant service aspects and the legal and organizational
elements (Berger 2005, p. 68).

He defines a SLA to contain:

• contractual elements: defining the involved parties and legal conditions.

• service-related elements: specifying the functional and QoS assertions of the deliv-
ered service, along with the associated costs.

33

2. Objectives and Foundations

• management-related elements: mainly detailing the applied monitoring mecha-
nisms and penalties.

Especially the second, but also the third, set of elements could potentially be employed
directly as OLAs (given they can be represented in a machine-processable way) for the
management of the IT services involved.

Given this equivalency of internal and external SLAs and also taking into account the
abstraction level of my research goal I will not distinguish between those two concepts
for the remainder of this thesis. In the context of an automated SLA negotiation in-
frastructure, the primary requirement posed on a SLA document as the object under
negotiation, is that it must consist of a set of defined elements. Each of those must
have a defined identifier (ID) and a value, which is under negotiation. Consequently
these elements can either contain simple metrics and their values or even complex legal
expressions on compensation payments in case of a SLA violation.

Backing up this assumption, the IoS scenario further blurs the distinction between
internal and external services and thus agreements about their invocations. Every func-
tionality offered within or outside a given organization can be purchased and integrated
into a given workflow. Subsequently the document describing the respective transaction
will ultimately not differ any more from internal to cross-organizational invocations.

Note that at the moment SLA documents crossing enterprise boundaries are negoti-
ated manually and signed by human beings. An infrastructure as defined within this
thesis addresses the emerging need for automated service management from a technical
perspective. Such an approach however implies that software agents, used as negotia-
tors, must be able to derive legally binding contracts in order to implement an IoS as
envisioned.

This aspect is currently heavily discussed by lawyers and legislative institutions, as it
demands a significant change of the body of laws or at least their interpretation by the
involved judges (see for example Wettig and Zehendner 2004).

For my thesis I will assume that a solution to this problem will be found. This is
questionable, however initial approaches to electronic negotiations crossing company
boundaries are already applied in some isolated industries. Here, a framework contract
governs the overall federation of companies taking part in this “isolated” service economy.
This framework contract provides the legal basis for software agents to actually conclude
legally binding contracts.

Given such developments and the progress achieved in computer science and jurispru-
dence in that area indicate that the assumption of legal conformity of automated nego-
tiations can be assumed valid.

Description Languages for Electronic SLAs

A SLA document marks an important input for the configuration of an electronic service
which is part of a business transaction. In order to allow the automated negotiation and
management of such agreements a structured digital document type is needed, specifying
how the SLA elements can syntactically be expressed, a SLA description language.

34

2.2. Conceptual Foundations

Such a digital document schema regularly also allows for the definition of SLA tem-
plates (Ludwig et al. 2005).

Definition 2.11 A SLA template is a not completely filled out SLA document, which is
to be finalized during a negotiation process. In doing so, a SLA template defines the SLA
elements, that are under negotiation, optionally gives starting values for those and finally
states the rules, following which the final SLA can be derived during the negotiation.

A template thus marks the starting point for every SLA negotiation, providing the
SC with offered QoS metrics along with initial values offered by the SP. Based on these
values the SC can then create a counter offer or accept the offered SLA directly, de-
pending on the negotiation protocol applied. Additionally, SLA templates can be used
to implement efficient discovery processes, as they can be published and retrieved by
potential transaction partners according to many discovery protocols for electronic data
(the most prominent of which will be presented in section 2.2.2).

In the following the most well-known SLA definition languages are shortly sketched.

SLAng The Department of Computer Science at the University College London devel-
oped a language for representing electronic SLAs, building on the Extensible Markup
Language (XML): the SLAng language 6. SLAng aims at providing a clear definition of
the quality attributes associated with a digital service.

In contrast to some of the other languages presented in the following, SLAng only
specifies non-functional QoS attributes of a service, the functional aspects are not cov-
ered with this language. Hence SLAng SLAs contain elements stating the contractual
partners, context statements, such as duration of the agreement and the actual service
guarantees, called Service Level Specifications (SLS) (Skene, Lamanna, and Emmerich
2004) in SLAng.

The SLAng language was derived using an Application Service Provider (ASP) ref-
erence model subsequently defining which types of SLAs are available within SLAng.
In addition to vertical SLAs governing service delivery from more technical layers (for
example communication) to higher-level ones (for example application services) SLAng
also provides means for horizontal SLAs governing subcontracting of services on the
same layer (Skene, Lamanna, and Emmerich 2004).

Based on this architectural scenario SLAng exposes a two-layer design: the language
syntax is defined in terms of a Unified Modelling Language (UML) 2.0 (2005) model,
whereas the semantic of the SLA documents are stated in terms of Object Constraint
Language (2010) constraints. Based on these constructs SLA designers can specify a
number of different service metrics for each of the available SLA types, such as perfor-
mance, availability or security (Lamanna, Skene, and Emmerich 2003).

Finally, SLAng allows for the detailed definition of timing constraints for each service
guarantee, so-called schedules, describing which guarantee is to be valid at what point in
time. This very generic timing concept and the formal semantics just mentioned allow

6http://uclslang.sourceforge.net/index.php

35

2. Objectives and Foundations

Figure 2.2.: SLAng “reference model for Application Services Provisioning” (Skene,
Lamanna, and Emmerich 2004, p. 182)

for the automated validation and integration of different SLA documents. Additionally,
not only the actual service properties, but also available monitoring and backup solutions
as well as possible interaction behaviors of the involved parties can be modeled building
on the expressiveness of the UML language (Skene, Lamanna, and Emmerich 2004).
However the designers seem to have stopped working on that language in 2006 which
makes it not very reasonable to rely on this concept for future SLA documents, especially
since the authors of the corresponding website themselves advice SLA designers not to7.

WSOL Another SLA language was designed by Tosic et al. and is called the Web Ser-
vices Offering Language (WSOL) (Tosic, Patel, and Pagurek 2002). As already hinted in
the name, this SLA language explicitly aims at supporting the Web Services technologies
and therefore is compatible with related standards such as WSDL.

WSOL assumes web services to be offered in varying classes, marking a discrete con-
figuration of the service along with its functional and non-functional attributes. Taking
this into account a service offering, which can be expressed using the WSOL mecha-
nism is “a formal representation of one class of service of one web service” (Tosic et al.
2002, p. 1). WSOL documents thus state a given service class and consequently the SLA
associated with the services of that class.

In doing so, WSOL offers a set of language constructs to build a SLA document, such
as constraints, statements and constraint groups. The constraints can be further sub-
categorized into functional (such as pre- or post-conditions of some service invocation)
and non-functional (for example performance or availability of a service) constraints.
A statement is basically some important information about the respective service that
cannot be coded as a constraint, for example the price of a given service.

Finally, a constraint group allows for the, potentially recursive, grouping of individual
constraints, allowing for example the assignment of different monitoring units to each of

7http://uclslang.sourceforge.net/index.php

36

2.2. Conceptual Foundations

the groups. For such groups WSOL also offers a template construct.

Building on this very low level language the authors also designed mechanisms for a
structured Web Services Composition Management (WSCM) as well as a management
infrastructure, applying WSOL documents for distributed service management (Tosic
et al. 2004).

WSLA One of the most comprehensive SLA languages to date is the Web Service
Level Agreement (WSLA) (Ludwig et al. 2003b) language developed by IBM8. This
approach aimed at providing a specification for the definition and monitoring of SLAs
in a Web Service environment. Employing such a language an automated management
of electronic services based on the abstract notion of a contract was envisioned (Keller
et al. 2002b).

The main design principles of WSLA are an unambiguous specification of Web Service
SLAs, enabling an automated monitoring of the respective services, ease of SLA creation
by introducing SLA templates and offering XML Schema specifications for the WSLA
language as well as the incorporation of a distributed monitoring framework, in which
relevant monitoring and evaluation tasks can be outsourced to independent third party
monitoring services (Keller and Ludwig 2003).

To this end, WSLA not only defines the SCs and SPs (so-called primary parties) of
the SLA but also secondary parties supporting the enactment of the contract, so called
supporting parties. Such parties can be represented by measurement or condition evalua-
tion services, implementing the monitoring of the SLA or management service responsible
for taking respective management actions once a violation has occurred (Ludwig et al.
2003a).

A WSLA document thus not only describes the service related metrics, but also how
they are supposed to be measured (measurement directives) in case of raw metrics and
how they can be computed in case of higher-level metrics (in terms of aggregation func-
tions over lower-level parameters) (Ludwig et al. 2003a).

Finally, a SLA adhering to the WSLA specification contains a set of obligations stating
the SLOs and action guarantees of the respective SLA. A SLO represents a guarantee
concerning one or more service metrics as opposed to an action guarantee which defines
a promise to perform an action under a given condition.

Up to date the description of SLA elements concerning the validity of a given guarantee
(in WSLA implemented as validity periods), the metrics it builds on, how to measure
or calculate them as well as qualifying conditions on their measurement, has not been
designed in a more detailed way as done with the WSLA language. Nevertheless WSLA
is mostly focused on the sole purpose of describing a SLA document and does not cover
how to create or even negotiate one.

Hence, a new SLA language has been developed based on the WSLA ideas, and partly
by the same authors that represents the currently most widely used SLA language in
service based systems: Web Services Agreement (WS-Agreement). This standard simpli-
fies the WSLA data model and accompanies it with a set of defined protocol primitives

8http://www.ibm.com/us/en/

37

2. Objectives and Foundations

Agreement
Layer

Service
Layer

Agreement
Factory

Factory
Application

Instance

Responder

ProviderConsumer

Initiator

inspect()

create()

create()

foo()

Figure 2.3.: WS-Agreement Architectural Model (Andrieux et al. 2007, p. 12)

and interfaces for agreement creation and monitoring.

WS-Agreement The WS-Agreement specification is a standardization effort conducted
in the OGF in order to facilitate creation and monitoring agreements between a SP and
a SC. The specification draft (Andrieux et al. 2007) defines an XML representation of
agreements and agreement templates, a simple agreement establishment protocol as well
as corresponding interfaces for creating an agreement and monitoring it at run time.

WS-Agreement defines two roles in creating agreements: agreement initiator and
agreement responder. These two roles are completely independent from SP and SC,
as both the consumer and the provider shall be able to initiate the agreement creation
process.

WS-Agreement depicts a layered service model consisting of two layers: the service
layer and on top of that the agreement layer. The service layer represents the domain-
and application specific part of the proposed architecture. It contains the actual services
the agreements are created for. “The agreement layer provides a Web service-based
interface that can be used to create, represent and monitor agreements” (Andrieux et
al. 2007, p. 12). In order to facilitate agreement creation, agreement templates can be
offered just as in the WSOL approach.

In order to create a SLA, the agreement initiator proposes an agreement, optionally
derived from a template. The agreement responder then checks the offered agreement
and decides to accept or reject the offer according to its resource situation.

Agreements and agreement templates are both defined using the XML language. The
high-level elements are illustrated in figure 2.4.

38

2.2. Conceptual Foundations

Figure 2.4.: WS-Agreement SLA Model (Andrieux et al. 2007, p. 14)

Every agreement and agreement template is identified by an agreement id attribute.
This id has to be unique between the agreement initiator and responder. The main body
of any agreement consists of an optional name element used for human understandability,
a context section and the agreement terms. Agreement templates additionally contain a
creation constraint section (Andrieux et al. 2007).

The context section contains information about initiator and responder of the agree-
ment along with other metadata concerning the agreement as a whole. The agreement
terms on the other hand define the main part of an agreement. They denote the obliga-
tions of the involved parties resulting from the agreement. The WS-Agreement defines
two types of terms: service terms and guarantee terms (GTs).

Service terms “provide information needed to instantiate or otherwise identify a service
to which this agreement pertains and to which guarantee terms can apply” (Andrieux
et al. 2007, p. 17). The service terms are further subcategorized as service description
(SDTs), service reference (SRTs) and service property terms (SPTs). Service description
terms define the functionality of the service for which the agreement is created. Service
reference terms point to an existing service endpoint, to which the agreement relates,
whereas service property terms define “measurable and exposed properties associated
with a service” (Andrieux et al. 2007, p. 20). These measurable aspects of a service are
described as a set of variables. Each variable relates to an attribute of the service and
is associated with a metric to enable evaluation of this variable.

In order to define assurances on service quality for the described services, additional
guarantee terms can be specified representing the service levels both parties are agreeing
on. Each guarantee term specifies the obligated party of the guarantee which is needed
for enabling consumer-side guarantees. It can also define an optional qualifying condition
which must be met for the guarantee to be valid (Andrieux et al. 2007). Qualifying
conditions are assertions over service attributes and / or external factors such as date or

39

2. Objectives and Foundations

time. The actual guarantee is described in the service level objective element. Also each
guarantee is accompanied with some business values. Business values represent different
value aspects of an agreement. This construct can be used to represent the importance
of an agreement, the associated penalties and rewards for compliance to or violation of
an agreement or preferences on different service configurations.

All elements described up until now are present for agreements as well as for agreement
templates. However, agreement templates can be supplemented with an optional section
called agreement creation constraints. This element specifies “constraints on possible
values of terms for creating an agreement” (Andrieux et al. 2007, p. 29).

After having presented the foundations of service and SLA management from a static
perspective, concentrating on the content and usage of SLA documents, the related
processual aspects are presented in the following two subsections. Given the focus of my
dissertation these comprise primarily two phases of the service life cycle (see figure 2.1):
the discovery and the negotiation phase.

2.2.2. Discovery Phase

The main goal of the discovery phase is to bring together two or more potential trans-
action partners as a preparation of the following negotiation phase, in which the char-
acteristics of the product subject to the transaction are determined.

Definition 2.12 The discovery phase, as applied in the IoS, represents the process of a
SC looking for a respective service to invoke, locating such a service and contacting the
respective management component for a subsequent negotiation.

Each SP must be able to promote its offered services in a way that as many potential
SCs as possible are aware of this offering. On the other hand a SC must be able to access
as many service offerings as possible in order to find an appropriate transaction partner.

Analog to real world transactions a SC must also be able to filter the offered ser-
vices, and respective SLA offerings, according to some search criteria regularly received
from a human user or workflow orchestration engine. This possibility to filter poten-
tial offerings becomes even more important in service-based infrastructures employing
electronic SLAs. In such settings each offered service does not only provide potential
transaction partners with a set of descriptions of the offered functionality but also with
non-functional parameters, guaranteed for each service invocation. SCs can not only
search for fitting services, in terms of the functionality they provide, but also for the
ones doing it best in terms of offered QoS.

In the recent years a set of different mechanisms supporting the discovery and publica-
tion of electronic services have been developed (see for example Detken 2004; Hasselmeyer
2005). In the following I shortly sketch the most promising approaches with respect to
the anticipated IoS scenario.

40

2.2. Conceptual Foundations

Web Service
Architecture

Web Services SOAP

Registry

Figure 2.5.: Relation between Web Services Standards

Central Registries

Central registries represent a very common discovery mechanism. According to Has-
selmeyer (2005, p. 3) a service registry is a “service that provides references to other
services. It accepts requests for registration from services [...] and relays registration
information on demand to clients.”

The main task of a service registry is thus to store relevant information of available
service offerings (including the offered SLA templates) and provide this information to
respective SCs. For this purpose a defined data scheme for internal representation of
service data along with a set of query and registration methods are offered. However,
mostly no mechanisms are provided for finding such a central registry; this issue is
transferred to the actual service designers and deployers.

Some of the most common registry standards currently available are UDDI or the
ebXML9 Registry, both proposed by the Organization for the Advancement of Structured
Information Standards (OASIS) committee. Registry services like that are seen as one
of the three core parts of SOC, along with WSDL used to define electronic services and
the SOAP protocol as a way to access them.

Following the abstract consideration for a service registry, UDDI for example defines
a data model for the description of services and their providers along with a defined
interface for registration and discovery of services. The UDDI standard mainly builds
on the separation of service related data into three different types, represented as different
pages respectively:

• Information stored as white pages contains general data of a service provider, such
as the company name, contact data or other descriptive information.

• Yellow pages serve the same purpose as their pendant in the real world, the assign
the service (providers) to a set of categories which eases the discovery process.

9http://www.ebxml.org/

41

2. Objectives and Foundations

• Finally the green pages contain technical information concerning the offered web
services, such as syntax of the offered methods and the endpoint of the services.
WSDL documents are thus regularly referenced in these green pages.

Employing the SOAP protocol, SPs and SCs can register and discover respective data
sets at a given registry service. Especially the relation between SPs and actual service
offerings on a database level allows for querying trusted business partners and then
choosing one of their offered services (Hasselmeyer 2005).

Multi- or Broadcast-based Mechanisms

Another set of discovery mechanisms focus much more on the actual discovery process
as on the internal data model, while at the same time targeting massively decentralized
architectures. These systems can roughly be characterized as multi- or broadcast-based
systems.

Such mechanisms rely on multi- or broadcast communication (in the following sub-
sumed as manycast) in order to find or promote a given service offering over a com-
munication network. SPs send manycast messages describing the service(s) they offer,
hoping that a respective SC listens and responds to such a message. Contrarily, a SC
can demand a particular service by sending a manycast message containing its needs to
potential SPs, hoping one of them is offering a fitting service.

Manycast-based systems produce a massive amount of traffic, due to the non-directed
communication paradigm. Some of the protocols described in the following will employ
mediating third parties in order to address this issue.

One of the most important protocols building on manycast communications is the
Service Location Protocol (SLP). It was published as an IETF Request for Comments
(RFC)10. In contrast to UDDI, only the discovery protocol and not the applied data
model is specified along with the notion of service agents as service management com-
ponents, which follows the rationale of this thesis.

The roles present in the SLP are service agents, acting on behalf of one or more services
to be published, user agents, querying the offered services and optional directory agents
acting as registries.

Whether or not directory agents are used, depends on the size of the network; in small
networks they might be omitted and only manycast communication may be used. If
present however, manycast messages are only used for discovering these registries and
afterwards unicast communication is applied between SPs and SCs for efficiency reasons.

In order to reach a high robustness, service registrations are lease-based. A service
agent must renew its lease, and thus state that the respective service offering is still
valid, within fixed time intervals.

A very similar approach is marked by the Web Services Dynamic Discovery (WS-
Discovery) protocol (Beatty et al. 2005), which was developed by a large industrial

10http://www.ietf.org/rfc/rfc2608.txt

42

2.2. Conceptual Foundations

Figure 2.6.: WS-Discovery Protocol with Discovery Proxies (Beatty et al. 2005, p. 13)

consortium consisting of BEA Systems (now owned by Oracle)11, Microsoft12, Canon13,
Intel14 and WebMethods (now owned by Software AG)15.

In WS-Discovery a service joining the network sends a hello manycast message in
order to notify potential consumers of its presence. These service clients either listen
for such hello messages (passive discovery) or send a probe manycast message stating
the desired service type or scope (used for semantic grouping of services). SPs offering
an appropriate service respond via a unicast message. For discovery of a service by its
name, a resolution manycast message is sent accordingly, which is also answered by the
SP agent offering the service respectively.

To minimize manycast traffic, mediator services, so-called discovery proxies (see figure
2.6) can be present. These answer to any manycast message (probe or resolve) with a
hello unicast message announcing them. From then on the SCs switch from regular
to mediated mode and only contact these proxies in order to query potential services
(unicast). The proxy service from now on answers on behalf of the individual SPs.

Peer-to-Peer-based Mechanisms

Peer-to-Peer (P2P) systems are characterized by a highly dynamic set of participat-
ing entities (called peers), constantly interacting in a cooperative manner (Hasselmeyer
2005). All peers act as “both [...] a client and as a server (“servant”) and pay [their]
participation by providing access to some of [their] resources” (Aberer and Hauswirth
2002, p. 1). These resources are mostly media or other files that are distributed within a
P2P network. Prominent examples for P2P-systems are the Gnutella16 or BitTorrent17

infrastructures.

11http://www.oracle.com/bea/index.html
12http://www.microsoft.com/en/us/default.aspx
13http://www.canon.com/
14http://www.intel.com/
15http://www.softwareag.com/corporate/default.asp
16http://wiki.limewire.org/index.php?title=GDF
17http://www.bittorrent.com/

43

2. Objectives and Foundations

P2P systems follow three very fundamental design principles (Aberer and Hauswirth
2002):

• resource sharing : by combining distributed resources, more complex tasks can be
undertaken (similar to GC).

• decentralization: the involved resources are physically distributed among the peers,
thus avoiding central bottlenecks.

• self-organization of the peers: no central coordination node is present.

In such massively decentralized and dynamic systems the discovery of a given resource
becomes one of the main problems to deal with. When looking at the applied discovery
protocols, P2P systems can be distinguished into two major classes: unstructured and
structured systems (Steinmetz and Wehrle 2004).

In unstructured P2P systems a requesting node has no information on where the de-
sired digital resource can be found within the network. Regularly, so called flooding
protocols are employed. In a flooding protocol the requesting node sends a query mes-
sage to all neighboring peers and these pass the message on throughout the network.
Whenever a node offering the requested resource receives the query it simply answers
the requesting agent directly (Steinmetz and Wehrle 2004). It is quite obvious that such
an approach scales only very badly for very large networks (Kelaskar et al. 2002).

Trying to address this problem, structured P2P networks implement a distributed
indexing mechanism in a way that each peer is responsible for a distinct subset of the
available resources, each of which is uniquely identified with a key value. Whenever
a SC node requests a resource, it can use this indexing mechanism to locate the peer
offering the requested resource directly and does not have to broadcast the query message
into the whole network (Steinmetz and Wehrle 2004). These mechanisms are also called
Distributed Hash Tables (DHT) as they port the idea of key-value pairs for retrieving
and storing data to distributed systems and allow simple put- or get-operations to the
requesting application, just as with a regular hash table (Balakrishnan et al. 2003).

The probably most well-known DHT mechanism is Chord (Stoica et al. 2001). In a
Chord system the participating nodes are associated with unique IDs and structured into
a logical ring, in which each participant has exactly one predecessor and one successor
node. The ID, created by a hash function, determines the position of the peer in the
ring.

By employing these hash-generated IDs, the peer responsible for storing a distinct
data (and thus the peer that is to be asked during later discovery processes) can be
determined. Whenever a peer requests a resource it just creates the hash value of the
respective resource ID (for example service ID) and subsequently retrieves the responsible
node (the respective range of data files this node is responsible for depends on its own
ID and thus position in the ring).

Employing Chord-like discovery mechanisms potentially allows for leveraging both the
robustness of distributed P2P systems on the one hand and a scalable search mechanism
on the other.

44

2.2. Conceptual Foundations

After having given an overview on discovery protocols and system architectures, I
will now elaborate on the subsequent phase of the SLA management life cycle: the
negotiation phase. In this phase the potential transaction partners (that have found
each other during the discovery phase) actually engage in a negotiation process, which
if concluded successfully, results in an agreed-upon SLA document, acting as an input
for the following phases of the life cycle.

2.2.3. Negotiation Phase

Regularly, a negotiation on the found service(s) follows the discovery phase. This raises
the fundamental question on why such a negotiation is at all necessary. Why don’t we
just implement configurations where all resources are under the control of the parties
needing them? Why is there a need for coordination between a set of parties concerning
some distinct resources?

A lot of research groups work on questions like that, investigating in which situations
negotiations can and should be applied as well as what protocols to use in various
settings (see for example Bichler, Kersten, and Strecker 2003; Kersten, Law, and Strecker
2004; Kersten and Noronha 1999; Neumann et al. 2003; Ströbel and Weinhardt 2003;
Wurman, Wellman, and Walsh 1998, 2001). These numerous efforts basically resulted in
two distinct findings:

1. Negotiations are necessary in certain situations.

2. Potentially every negotiation situation requires a different protocol to result in
efficient outcomes.

In all situations where each side cannot achieve its goal locally and depends on some
other party, some negotiation mechanism is necessary for reaching an agreement on the
subject matter of conflict. This mutual dependency of the negotiating parties is referred
to as the key necessary condition for negotiations to occur (Ströbel 2000b). Sufficient
conditions necessary for negotiation in a narrow sense, as defined above, are according
to Ströbel (2000a,b) for example:

• unique goods

• non-repetitive, non-standard transactions

• unknown or very dynamic demand or supply

• unknown consumer value perceptions

• perishable goods

This assumption holds for a variety of situations in either the real (e.g. market places
for any types of goods, contract negotiations between countries or business contracts
between participants of a given supply chain etc.) or the electronic world (e.g. SLA

45

2. Objectives and Foundations

negotiations in the IoS). All of those scenarios are made up of individual nodes requesting
resources or goods from each other, therefore fulfilling the necessary condition.

Also at least one sufficient condition can be found for the IoS scenario, where the
present services are only available for a given timeslot and therefore exhibit all charac-
teristics of perishable goods. Also the complex structure implies very dynamic demand
and supply, fulfilling the third item listed.

After having shown the necessity of negotiations in the anticipated IoS setting, I will
now derive a definition of the mere term negotiation, as to be used for the remainder of
this thesis.

Since the contexts in which negotiations take place are numerous there are many
different definitions of negotiation processes describing the concept from different per-
spectives. Pruitt for example describes negotiations as “a form of decision making in
which two or more parties talk with one another in an effort to resolve their oppos-
ing interests” (Pruitt 1981, p. xi). “The parties first verbalize contradictory demands
and then move toward agreement by a process of concession making or search for new
alternatives” (Pruitt 1981, p. 1).

In my thesis I will use the following definition, as it focuses much more on electronic
environments:

Definition 2.13 A negotiation represents an “iterative communication and decision
making process[...] between two or more agents (parties or representatives) who: 1)
cannot achieve their objectives through unilateral actions; 2) exchange information com-
prising offers, counter-offers and arguments; 3) deal with interdependent tasks; and 4)
search for a consensus which is a compromise decision” (Bichler, Kersten, and Strecker
2003, p. 318).

This definition explicitly describes the information exchanged in the communication
process as offers and counter-offers. Additionally the parties involved in a negotiation
are further specified to be the parties, affected by the consensus to be reached, or alter-
natively agents acting on their behalf, which fits the IoS scenario very well.

The theoretical foundations of the service negotiation phase presented in the follow-
ing are subdivided into the already introduced perspectives on negotiation processes:
protocols, objects and strategies / participants18.

Negotiation Protocols

In general, a protocol describes the rules of an interaction between two or more parties.
This involves the definition of states the individual participants can be in, the possible
actions of the participants dependent of the current state and, optionally, particular
stimuli like received messages for example. Another facet of protocols is to define the
messages and message formats used in the interactions.

18According to the research question to be answered in this thesis, I will primarily focus on the protocol
perspective.

46

2.2. Conceptual Foundations

Definition 2.14 A negotiation protocol describes the sequence and exchanged content
of a negotiation process between the involved parties.

To give a short initial overview on existing negotiation protocols, a taxonomy is derived
in the following. It is based on other research works found in the literature, originating
in software agent, negotiation and electronic market research (see for example Bartolini,
Preist, and Jennings 2005; Bichler and Kalagnanam 2006; Hudert et al. 2009; Lomuscio,
Wooldridge, and Jennings 2003; Ströbel and Weinhardt 2003; Wurman, Wellman, and
Walsh 1998, 2001).

Essentially, negotiation protocols can be very roughly categorized according to their
overall configuration, e.g. the number and distribution of negotiating agents. Such a
categorization will result in the following classes of protocols:

• In 1:N negotiations one seller agent and an arbitrary set of buyer agents take part.
The buyers post bids to the one seller agent which in turn chooses the best posted
offer and engages in an agreement with the sender of this bid. Such 1:N situations
are called auctions.

• N:1 negotiations represent the class of reverse auctions. Reverse auctions consist
of one buyer and a set of sellers posting bids. The buyer then chooses the best bid
analogously to regular auctions, except that the best bid in a reverse auction is
the one with the lowest stated price whereas in regular auctions the highest posted
price wins.

• In N:M negotiation settings both, seller and buyer sets, can consist of an arbitrary
number of agents. Each agent is allowed to post bids to a central market instance
which matches offer and demand.

• 1:1 negotiations comprise two agents exchanging bids in order to reach an agree-
ment. 1:1 negotiations are also called bargaining scenarios.

When trying to further subcategorize these classes a more detailed set of characteristics
can be employed:

• Roles: The roles attribute specifies which roles are present in a negotiation. In
general two roles are inherently participating in a negotiation: SP and SC. Addi-
tionally, an optional mediator role can be present, allowing for the implementation
of central market instances (often called market brokers), auctioneers or trusted
third parties.

• Agents: This parameter defines the minimum and maximum number of agents
allowed to join a negotiation in a given role (1:1, 1:N, N:1, N:M).

• Sides: The sides parameter specifies which of the involved roles are allowed to post
bids.

47

2. Objectives and Foundations

• Status: The status flag indicates whether the negotiation status, e.g. the currently
winning bid, can be accessed by the negotiating agents or not. This allows for
definition of sealed-bid negotiations.

Based on the shown taxonomy each negotiation protocol type can be defined as a
tuple of the following form: < SP (a, b, c), SC(a, b, c),Med(a, b), S >

For each of the roles present in a negotiation protocol (SP, SC and mediator) the
minimum (a) and maximum (b) number of agents allowed is presented along with a flag
indicating whether this / these agent(s) are allowed to post bids (0 indicating they are
not, 1 indicating they are allowed to). Posting bids is only possible for service providers
and / or service consumers and therefore the third parameter (c) is only present for
these two roles. Finally another flag is given defining whether the current status of the
negotiation (S) is accessible or not, e.g. whether the agents can access the current bid
or not.

English Auction
< SP (1, 1, 0), SC(1, N, 1),Med(0, 1), 1 >
In an English Auction (EA) the price of the good under negotiation steadily increases
until no bidder is willing to pay the next price step. The bidder having bid the last, and
therefore highest, valid bid will get the agreement and win the auction.

An EA always has exactly one seller (SP) and an arbitrary number of buyers (SC).
Depending on the implementation there can be at most one mediator present, if not the
SP also acts as auctioneer and no mediator is needed. In the EA the currently winning
bid is always known to the negotiators, so the status flag is set to 1.

Dutch Auction
< SP (1, 1, 0), SC(1, N, 1),Med(0, 1), 1 >
During a Dutch Auction (DA) the price for the negotiated good is set quite high at
the beginning and then lowered during the auction process. Whenever an agent decides
to buy the product for the currently given price it posts the bid and engages in the
agreement.

Analogous to the EA there is one SP, possibly an indefinite number of SCs and an
optional mediator.

Vickrey / First-price-sealed-bid (FPSB) Auction
< SP (1, 1, 0), SC(1, N, 1),Med(0, 1), 0 >
In a Vickrey or FPSB Auction the negotiators only post one bid each. They do so in a
sealed way, e.g. the other negotiators are not able to access the content of the posted
bids. After a certain event occurs the auction clears and the bid offering the (second)
highest price wins19. Concerning the involved roles and numbers of agents in each role
the Vickrey and FPSB Auctions do not differ from EA / DA protocols. However, in a
Vickrey / FPSB Auction the status is not visible to the agents.

19In a FPSB Auction the bid offering the highest price and in a Vickrey Auction the one offering the
second highest bid wins.

48

2.2. Conceptual Foundations

Reverse English Auction
< SP (1, N, 1), SC(1, 1, 0),Med(0, 1), 1 >
A Reverse English Auction (REA) is basically the same protocol as a regular EA except
that there is only one buyer and many sellers. This way the price for the negotiated
good is steadily decreasing from a starting price. In the end the seller willing to accept
the agreement for the lowest price wins the auction.

Reverse Dutch Auction
< SP (1, N, 1), SC(1, 1, 0),Med(0, 1), 1 >
In a Reverse Dutch Auction (RDA) there is only one buyer and possibly many sellers as
in a REA. Now the product price is simply increased by a certain step in each round.
The first seller accepting the current price step posts a bid and wins the negotiation by
doing so.

Reverse Vickrey / FPSB Auction
< SP (1, N, 1), SC(1, 1, 0),Med(0, 1), 0 >
During a Reverse Vickrey / FPSB Auction protocol each of the N sellers posts one sealed
offer. After a certain event occurs, the best offer, e.g. the one stating the (second) lowest
price will result in an agreement. This differs from a regular Vickrey / FPSB Auction
in having only one buyer and possibly many sellers, respectively.

Call Market
< SP (1, N, 1), SC(1,M, 1),Med(1, 1), 0 >
A Call Market (CM) is characterized as a scenario, consisting of a set of sellers and
buyers posting bids to sell or buy to a central market broker (mediator). This broker
then matches offer and demand messages according to some defined solver algorithm.
This matching regularly takes place after certain intervals of bidding. Each offer sent to
the market instance is sent in a sealed manner, so that the other agents on the market
cannot adapt to posted bids themselves.

Continuous Double Auction (CDA)
< SP (1, N, 1), SC(1,M, 1),Med(1, 1), 1 >
A CDA exhibits the same characteristics as a Call Market except that the posted bids
are submitted visible to all market participants unlike with a Call Market.

Bargaining
< SP (1, 1, 1), SC(1, 1, 1),Med(0, 0), 1 >
In one-on-one bargaining negotiations two agents negotiate by exchanging offers and
counter offers. The agents take turns in posting the bids to one another until one of the
agents is offered an agreement it can accept. Then the respective agent just sends an
accept message back and the agreement is in place. If no agreement can be reached, for
example if the accept intervals for the price of both agents do not overlap, the negotiation

49

2. Objectives and Foundations

Table 2.1.: Negotiation Protocol Types

Protocol Attribute Values

English Auction. < SP (1, 1, 0), SC(1, N, 1),Med(0, 1), 1 >
Dutch Auction < SP (1, 1, 0), SC(1, N, 1),Med(0, 1), 1 >
Vickrey/FPSB Auction < SP (1, 1, 0), SC(1, N, 1),Med(0, 1), 0 >

Reverse English Auction. < SP (1, N, 1), SC(1, 1, 0),Med(0, 1), 1 >
Reverse Dutch Auction < SP (1, N, 1), SC(1, 1, 0),Med(0, 1), 1 >
Reverse Vickrey/FPSB < SP (1, N, 1), SC(1, 1, 0),Med(0, 1), 0 >

Call Market < SP (1, N, 1), SC(1,M, 1),Med(1, 1), 0 >
CDA < SP (1, N, 1), SC(1,M, 1),Med(1, 1), 1 >

One-On-One Barg. < SP (1, 1, 1), SC(1, 1, 1),Med(0, 0), 1 >

is canceled after a certain condition occurs (an example would be a certain number of
offers sent).

As it is the most commonly used approach for SLA definition and negotiation I want
to give a short remark on the protocol proposed in the WS-Agreement (Andrieux et al.
2007) and WS-Agreement Negotiation (Waeldrich et al. 2010) specifications respectively.
The former offers only a very simple protocol in which an initiator can query the available
SLA templates from a responder, chose the one fitting best and create an agreement
offer from it. This is subsequently proposed to the responder node, which in turn can
accept or reject it. No counter offer possibilities are present in this protocol. WS-
Agreement Negotiation extends this model by introducing a new Negotiation Layer,
above the Service and Agreement Layers. This layer comprises Negotiation Factory
and actual negotiation components, allowing the involved parties to create a negotiation
(implemented as a service instance from the factory) and post offers to each other. Given
both parties offer the mentioned negotiation components an actual bargaining protocol,
consisting of offers and counter-offers is possible.

Table 2.1 shows the formal description of the protocol types just identified.

For all of these types a variety of more or less complex sub-types have been devel-
oped, each varying in terms of the sold product, allowed messages or message sequences,
matching algorithms etc. (see for example Bichler 2001; Ermolayev and Keberle 2006; Li,
Giampapa, and Sycara 2003; Smith 1980; Ströbel and Weinhardt 2003; Walsh, Wellman,

50

2.2. Conceptual Foundations

and Ygge 2000; Wurman, Walsh, and Wellman 1998a)20.

Negotiation (Protocol) Description Languages In the past years quite a lot of work
has been done in defining languages and taxonomies for the formal description of nego-
tiation protocols. Since my negotiation framework also builds on a structured protocol
description in order to achieve protocol-generity (see chapter 3), I now give a short
overview on such languages.

Ontology-based languages mostly describe not only the negotiation protocol itself, but
also model the applied strategies (Ermolayev and Keberle 2006) and other potentially
private aspects of the negotiators. In doing so, a set of commonly known ontologies
along with semantic reasoning mechanisms is applied.

Languages based on parameters aim at describing a negotiation protocol by a set of
process attributes and respective values. Due to this very simple approach it is not
surprising that many of the languages found follow that paradigm.

Lomuscio et al. proposed a “Classification Scheme for Negotiation in Electronic Com-
merce” (Lomuscio, Wooldridge, and Jennings 2003). This approach, however, focuses on
pre-negotiation phases and assumes high human interaction rates, contradicting with
the IoS scenario.

Wurman et al. presented a set of auction parameters while developing an Internet-
based “platform for price-based negotiation - the Michigan Internet AuctionBot” (Wur-
man, Wellman, and Walsh 1998, p. 1) . This system was designed to serve as an auction
server for humans as well as for software agents. Unfortunately, the focus is on one sin-
gle negotiated issue: the price. Thus, only auction protocols are supported. The same
authors extended this taxonomy to also cover multidimensional auctions in a follow-up,
much more comprehensive paper (Wurman, Wellman, and Walsh 2001).

The most comprehensive parameter-based description language so far was published
by Ströbel and Weinhardt (2003). The classification scheme presented there covers a very
comprehensive set of negotiation protocols, both from the human-centric and automated
perspective, without stressing technology-related issues or focusing just on a subset of
possible negotiation protocols.

In general, parameter-based approaches are often deemed insufficient for describing
temporal patterns of negotiations, such as the sequence of possible events or actions
(Lochner and Wellman 2004).

Rule-based languages on the other hand, try to tackle this problem by specifying action
rules that prescribe what a negotiating agent has to do under certain conditions. By also
incorporating user-defined variables, such as counters etc., rule-based systems can offer
a high flexibility to the auction designer (Lochner and Wellman 2004). A good example
for such an approach is (Wurman, Wellman, and Walsh 2002).

Finally, state automata can be used to define the behavior of a given service or a
whole system. This concept allows for the definition of internal states and possible state

20A subset of these protocols has also been published by the Foundation for Intelligent Physical Agents
(FIPA) , as part of their protocol library for agent-based communications, which can be found under
http://www.fipa.org/.

51

2. Objectives and Foundations

changes along with optional conditions for such changes as well as triggered events when
entering or leaving a respective state (Martin 2002).

In this thesis, a description language building on parameters, optional rule-elements
as well as state machines is employed. For more details see subsection 3.2.2.

Negotiation Objects

Definition 2.15 The good under negotiation (in the IoS represented by the offered elec-
tronic services and thus SLAs) is commonly referred to as the negotiation object.

Depending on the number of negotiable characteristics, negotiation objects can be
distinguished on a first level into single- and multi-attributive ones (a distinction also
sometimes used for the negotiation processes concerning such products) (Lai et al. 2004).

Single-attributive negotiation objects expose only one negotiable attribute, the price.
Even negotiation objects that are more complex, but only offer one negotiable attribute
are considered single-attributive (with respect to the negotiation they are involved in).
Within the IoS setting such mechanisms could be applied in situations where commodity
services in a standard configuration are traded, only offering the price attribute to be
negotiable.

Accordingly, multi-attributive negotiation objects expose multiple different negotiable
attributes. Apart from the price, such attributes could comprise the date of delivery or
maximum response time etc. For the IoS scenario multi-attributive negotiation processes
deem appropriate, as a SLA regularly comprises several SLOs of which mostly more than
one are negotiable.

In a second dimension, negotiation objects can be distinguished according to whether
they represent a single good (instance of a service in the IoS setting) that is under ne-
gotiation or a whole bundle of such goods. Traditional negotiation taxonomies assume
a single negotiation object (which is single- or multi-attributive respectively). Recent
developments in negotiation research identified two distinct classes of negotiations con-
cerning bundled negotiation objects: combinatorial and multi-unit negotiations.

In combinatorial negotiations bidders “place bids on combinations of items, called
“packages” rather than just individual items” (Cramton, Shoham, and Steinberg 2006,
p. 1). Each negotiation object therefore represents an offer describing the desired bundle
of (potentially quite different) items and the price one offers to pay for it. This is
especially useful when complementaries are present among the items to be sold21.

In multi-unit negotiations on the other hand the negotiation object comprises several
units of the same product to be sold within as a bundle. They differ from combinatorial
negotiations in that the individual units do not differ significantly and are treated inter-
changeably throughout the negotiation. The resulting agreement thus concerns a set of
identical goods that are sold.

As each service in the IoS is referenced individually it therefore defines an individual
item, treated in an own negotiation process. If a combination of individual services or
service units are to be sold as a bundle this will regularly result in them being combined

21Items are complementary if the utility of a set of items succeeds the sum of the individual utilities.

52

2.2. Conceptual Foundations

Environment

Software Agent

effectors

sensors

Agent
Reasoning

Figure 2.7.: Abstract Architecture of a Software Agent (Russell and Norvig 1995, p. 45)

to a higher-order, complex service. Combinatorial and multi-unit negotiations are thus
not appropriate in the anticipated setting and will not be in the primary focus of my
work.

Negotiation Strategies / Participants

When describing the actors within a negotiation process, three types of negotiations can
be distinguished with regard to their level of automation: unsupported, supported and
automated (electronic) negotiations (Bichler, Kersten, and Strecker 2003).

In an unsupported negotiation process humans negotiate about a given good without
any help of an IT system. During a supported negotiation the involved people delegate
some of the negotiation-related task to software components (e.g. creation of a counter-
offer or weighing of different offer alternatives). Finally, a (fully) automated negotiation
depicts the process “involv[ing] software agents that make decisions and control the entire
process, including the specification of offers and concessions, and the final decision about
agreement or disagreement” (Bichler, Kersten, and Strecker 2003, p. 322).

The IoS scenario is characterized by a huge amount of economic transactions as well
as very high interaction rates. Most of the purchased service invocations happen within
the context of a business workflow, most of which are time-critical and therefore show a
tendency to high automation. Workflow engines will need to request, buy and integrate
external services much more rapidly than would ever be possible with human negotiators.
Even accompanied with negotiation support systems, increasing the efficiency of nego-
tiation processes dramatically, such an approach would still not be appropriate within a
setting where possibly thousands of negotiations happen in parallel at a given time and
up to a couple of hundreds would have to be conducted by one particular user. Thus, I

53

2. Objectives and Foundations

deem the application of software agents for negotiations in the IoS mandatory and focus
on these for the remainder of this thesis.

One of the most well-known definitions for a software agent was given in (Jennings
2000, p. 280):

Definition 2.16 “An agent is an encapsulated computer system that is situated in some
environment and that is capable of flexible, autonomous action in that environment in
order to meet its design objectives” (Jennings 2000).

The defining architectural characteristics of an agent are thus that it is situated in
an environment, some aspects of which it can observe with some sensor mechanism and
within which it can undertake some actions, using some effectors at its disposal (Russell
and Norvig 1995, p. 31). Figure 2.7 illustrates this abstract architecture of a software
agent.

In contrast to simple reactive devices, such as passive software demons, agents are
accredited to have the following defining characteristics (see for example (Wooldridge
1997):

• Reactivity

• Proactiveness

• Autonomy

• Social-Ability

Reactivity The claim for reactivity states that a software agent must be capable of
observing its environment (consisting of human users, other simple software components
or even sophisticated peer agents) and “respond in a timely fashion to changes that
occur in it in order to satisfy [its] goals” (Wooldridge 2005, p. 23). In order to do so,
an agent must not only be able to observe and subsequently act within its environment,
but also must be equipped with an internal processing mechanism choosing the action
to be undertaken after a given stimulus occurred.

Proactiveness Software agents are generally supposed to “exhibit goal-directed behav-
ior” (Wooldridge 2005, p. 23). They are assumed to proactively pursue the goals received
from a human user or other software device. In contrast to purely reactive systems a
software agent therefore has to anticipate results of its own actions and assess its options
in the light of its goals. It will thus choose actions that will bring it closer to this goal
over others. Again such a behavior demands some cognitive capabilities (commonly re-
ferred to as strategy) and experience with actions chosen in the past and results received
then.

54

2.3. Related Work

Autonomy Autonomy refers to the way an agent reacts to a stimulus received through
one of its sensors. When being capable of autonomous actions an agent is assumed to not
simply react deterministically to external stimuli, but rather to choose its actions with
respect to the experiences it has made over time (Russell and Norvig 1995). This implies
that agents have a means for remembering past decisions, and respectively taken actions,
and the so induced environmental changes and are capable to incorporate these “learned
coherencies” into their current behavior. Autonomy thus adheres to adaptivity to some
point, as agents are supposed to “be able to operate successfully in a wide variety of en-
vironments, given sufficient time to adapt” (Russell and Norvig 1995, p. 35). Commonly,
such an adaptive behavior is achieved using automated learning algorithms building on
for example genetic algorithms (Goldberg 1989) or neuronal networks (Haykin 1994).

Social-Ability The last aspect pays tribute to the mere vision underlying the software
agent paradigm: decentralization. Software agents are individual nodes, interconnected
with each other and the environment they reside in. Each is trying to reach its individual
goals, which cannot be achieved unilaterally. Consequently the agents interact in order
to jointly reach goals they would not be able to achieve alone.

Without stressing actual implementation techniques for software agents, these four
characteristics already show the potential software agents offer for decentralized set-
tings such as the IoS. Their ability to decentrally coordinate, cooperate and negotiate
(Wooldridge 2005, p. 3) fits excellent with the demanding problem of cross-organizational
service management. Initial works have already been done to port software agent tech-
nologies to this problem domain especially when concerned with the negotiation of service
agreements (see for example Buyya, Abramson, and Venugopal 2005; Eymann, Streit-
berger, and Hudert 2007; Gradwell and Padget 2005).

This concludes the conceptual foundations of my work from both a SLA or service
centric view and a processual view regarding the discovery and negotiation mechanisms,
regularly employed in distributed IS. Building on these fundamental mechanisms, a set of
research project already aims at solving the problem of distributed SLA management and
particularly the electronic discovery and negotiation of such documents. The solutions
derived within these projects therefore represent alternative solutions to a very similar
(or even the same) research problem, to which my approach has to be compared in the
end.

2.3. Related Work

In this section, related research work concerning SLA negotiations in distributed IS is
presented. Each of the identified infrastructure proposals is described in terms of its
overall aims, abstract architecture and, specifically, its SLA discovery and negotiation
mechanisms. Finally, every approach is assessed on the basis of the requirements iden-
tified in section 2.1; a summary of this assessment can be found in table 2.2.

For clarity purposes, I focus on the ones most closely related to my work (e.g. in
terms of similarity of the anticipated scenario to my IoS model) and most prominently

55

2. Objectives and Foundations

perceived in the research community.

Given the variety of different service management infrastructures present today, this
approach is bound to be incomplete. On the other hand it ensures a consistent perspec-
tive on related research as a context for this thesis.

Especially several negotiation frameworks originating in the area of software agents
have been omitted. This is due to the fact that they either do not at all stress the char-
acteristic aspects of SLA-based service management (e.g. the discovery processes, term
restrictions or template-based provisioning), such as (Bartolini, Preist, and Jennings
2005), (Paurobally, Tamma, and Wooldridge 2007), (Jonker, Robu, and Treur 2007) or
(Mobach et al. 2005), or only focus on the definition, deployment and parameterization
of centralized negotiation systems, such as (Ströbel 2001), (Kim and Segev 2005) or the
works of Benyoucef et al. (Benyoucef and Rinderle 2006; Benyoucef and Verrons 2008).

2.3.1. Projects Building on WS-Agreement

AssessGrid

A very prominent project dealing with the usage of SLAs for distributed infrastructures
was AssessGrid22 (“Advanced Risk Assessment & Management for Trustable Grids”,
funded under the European Commission’s (EC) sixth framework programme, contract
number 031772). The project started in April 2006 and ended in March 2009.

Its main goal was to address GC’s “shortcomings related to security, trustworthiness
and dependability” by “develop[ing] and integrat[ing] methods for risk assessment and
management in all Grid layers” (Molderez et al. 2006, p. 12). The lacking support for such
aspects was identified as a key “obstacle[...] of a wide adoption of Grid [...] technologies
in business and society” (quoting the AssessGrid homepage), and therefore addressed
primarily.

Building on four different roles (customer, end-user, brokers and providers (Padgett
et al. 2006)), three “showcase scenarios” were investigated with regard to the discovery
and negotiation of SLAs:

• Single-task scenario: the user directly agrees upon a distinct SLA with a provider
(the broker is only used optionally to retrieve a set of potential providers along
with their risk assessment)

• Workflow scenario with broker as mediator: the user wants to submit a set of jobs
for which the broker retrieves potential providers. After this, the user still has to
agree upon a SLA with each individual provider.

• Workflow scenario with run time-responsible broker: the user submits a whole
workflow to the broker and agrees to one single SLA with it. The broker, on the
other hand, choses one provider for each job in the workflow. It is thus providing
the user “a higher level of service by selecting the service provider to carry out

22http://www.assessgrid.eu

56

2.3. Related Work

each task and managing the relationship with it” (Parkin, Badia, and Martrat
2008, p. 14).

In order to support a holistic risk assessment within all three scenarios, a series of
mechanisms and software components were developed, assisting the user in selecting
a needed service based on its trustworthiness. This results in a “vertically integrated
solution including all planning, monitoring, and risk management methods for the Grid
end-user client, Grid broker, and Grid provider” (Molderez et al. 2006, p. 19).

The consortium regards SLAs as fundamental mechanisms for “all aspects of a business
relationship” (Molderez et al. 2006, p. 12), and thus central to their work.

Across all identified scenarios, the standard WS-Agreement negotiation protocol (An-
drieux et al. 2007) is employed23. Consequently, no possibility of employing different
negotiation protocols is given. Also no explicit publication or discovery mechanisms are
defined (Parkin, Badia, and Martrat 2008, p. 15). This is even the case in brokered ne-
gotiations (here also no assertion is made on how the broker knows the SPs), and thus
represents one of the major drawbacks of the system design. Similarly, some of the sce-
narios demand the broker to take part in the negotiation, although no actually brokered
negotiation protocol, such as an auction, is employed. The broker basically acts as an
information intermediary or is simply negotiating with consumers first and the providers
afterwards. Finally, AssessGrid explicitly aims at human end-users to negotiate with the
service brokers or providers, so no automation of this process with software agents is
considered.

Note: The Highly Predictable Cluster for Internet-Grids (HPC4U) project24 also ba-
sically represents a reference implementation of the WS-Agreement standard in GC.
Hence it exposes the same characteristics as AssessGrid in terms of the requirements
used in this thesis and is thus not presented individually here.

Akogrimo

Running from July 2004 to June 2007, the Akogrimo25 project (“Access to Knowledge
through the Grid in a mobile World”, EC’s sixth framework programme, project ref-
erence 004293), developed a Grid architecture for mobile grid services allowing for the
implementation of “mobile dynamic virtual organizations”(Wesner et al. 2005, p. 13).

Akogrimo proposed a distributed service infrastructure, building on SLAs as a tool
for quality assurance. This was realized as a series of prototype implementation and was
validated in two use cases (eLearning and eHealth (d’Andria et al. 2006)).

As with the AssessGrid project Akogrimo more or less directly uses WS-Agreement
for the negotiation and representation of SLAs26 (Terracina et al. 2007, p. 64), so again

23Parkin et al. claim in (Parkin, Badia, and Martrat 2008, p. 16) that one additional confirm message
(to be sent from the consumer to the provider after having inspected the created SLA) has been
introduced. However, I could not find any comment on that in the official project deliverables.

24http://www.cit.tu-berlin.de/menue/forschung/hpc4u/
25http://www.mobilegrids.org/
26Apparently an additionally accept/reject message was introduced after the completion of the standard

WS-Agreement protocol (d’Andria et al. 2006) and WSLA terms were used additionally within the

57

2. Objectives and Foundations

no interchange of negotiation protocols is possible.

A set of registries is present however, such as the Semantic Service Discovery Service,
for publication and discovery of services and SLAs respectively (Terracina et al. 2007).
I could not exhaustively clarify whether or not software agent technology was used for
discovery and negotiation of SLAs. This is due to the fact that on the one hand the
service discovery and usage is illustrated with a browser-based application and on the
other hand user and service agents are mentioned throughout the project deliverables
(Olmedo et al. 2007). To my comprehension the actual discovery and negotiation of a
service is done via graphical user interfaces, by human users, whereas more low-level
tasks like maintaining presence information and communicating with central registries
is done by more or less sophisticated agents. Finally, the Akogrimo system also employs
(market) brokers, at least assisting the discovery and negotiation processes to some
extent.

BEinGRID

A very generic and end user oriented approach on distributed service infrastructures was
marked by the BEinGRID27 project (“Business Experiments in GRID”). It was funded
by the EC as the largest integrated project in the sixth framework programme and ran
for 42 months until February 2010.

BEinGRID’s main focus was to “demonstrate the business benefits from Grid tech-
nology” (Parkin, Badia, and Martrat 2008, p. 18). For this, it was heavily involved with
end users (the consortium consisted of 95 partners) of Grid technology, focusing on their
respective use cases. As a result, the project covered 18 different business experiments
along with a set of horizontal activities dealing with areas of interest, common to all
experiments, such as the SLA management.

BEinGRID explicitly did not try to design a completely new service infrastructure,
but rather deduct best practice mechanisms and concepts from the experiments done.
Its deliverables comprised common technical requirements, common capabilities (groups
of needed functionalities), design patterns (describing possible implementations of the
common capabilities) and only a relatively small set of software components implement-
ing such ideas (Rosenberg and Juan 2009). These components can then be integrated
using a “plug&play approach” (Dimitrakos 2009, p. 1) to realize at least parts of a service
management infrastructure for a distinct system.

The BEinGRID “SLA Cluster” group was working on a SLA management infras-
tructure as summarized in (Rosenberg and Juan 2009), which was seen as a crucial
component within several of the business experiments. This shows the relevance of re-
liable services and SLA-based service provisioning from a business view. The assertion
is even more convincing, given that the involved end users represented a total of twelve
different business sectors, such as finance or architecture (Parkin, Badia, and Martrat
2008).

SLA documents.
27Original website is offline; most information on this project can nevertheless be found on

http://www.it-tude.com/

58

2.3. Related Work

Throughout the press releases and otherwise published information documents about
BEinGRID, no actual assertion on the usage of software agents as negotiators could be
made. From architectural models the existence of a SLA Negotiator component is at
least mentioned, however its negotiation capabilities, thus whether or not this is just a
graphical user interface or an actual negotiator agent acting autonomously to a certain
degree, are not described sufficiently. Additionally, the consortium admits to not have
defined any publication and discovery mechanisms, although they are considered relevant
in future developments (Rosenberg and Juan 2009).

The developed components build on the WS-Agreement specification with a slightly
more sophisticated negotiation protocol. The SC requests a quote and after receiving it
from the SP can either request a different one or propose the received SLA document
to the SP just with WS-Agreement; the SP then accepts or rejects it accordingly (ba-
sically this represents an iterated WS-Agreement protocol). Although the protocol is a
little more flexible than the traditional WS-Agreement protocol, the chosen approach
still prevents any protocol-generity and even non-negotiable SLA terms as claimed by
requirement R3 are not possible, as this is not explicitly considered in WS-Agreement
up to date.

2.3.2. Approaches Offering Significant Progress Beyond WS-Agreement

BREIN

As one of the first projects, BREIN28 (“Business objective driven reliable and intelligent
Grids for real Business”) tried to employ ideas from the software agent and semantic
web community for distributed service management. It was funded under the contract
number 034556 within the sixth framework programme and ran from September 2006
until August 2009.

BREIN set out to introduce into the grid a “Software as a Service model [...] sup-
porting collaborations among enterprises in a dynamic and flexible way” (Frutos and
Kotsiopoulos 2009, p. 39). Building on two real-world business cases (“airport ground
handling and virtual engineering design simulations” (Taylor et al. 2009, p. 171)) BREIN
explicitly focused on “creating, managing and assessing business-relationships between
a provider of services and their customers” (Parkin, Badia, and Martrat 2008, p, 21).
For this the consortium employed a fundamental architectural principle in which each
business actor is part of a value or supply chain in which it can play both the SC and
SP roles, even at the same time (Taylor et al. 2009). A dynamic set of “business virtual
organizations” (Taylor et al. 2009, p. 175) arises, in which each actor can only observe
and influence a limited area along the overall supply chain.

From this very business-centric view the need for SLA-based service management
arises, and is also reflected in the overall architecture, consisting of workflow, SLA
and resource management, business relationship and underlying messaging frameworks
(BREIN 2010). Herein, a vast number of toolkits and components were developed, im-
plementing the BREIN vision built upon “bipartite agreements”, “virtualization” and

28http://www.gridsforbusiness.eu/

59

2. Objectives and Foundations

flexible “orchestration” of business services (Frutos and Kotsiopoulos 2009, p. 40). Es-
pecially the semantically enhanced SLA templates and respective negotiation features,
stemming from software agent and semantic web concepts, can be seen as a very unique
and innovative feature of BREIN (Kotsiopoulos et al. 2008).

Concerning the publication and discovery of the offered services, BREIN follows an
approach very similar to the one that is applied in this thesis: a set of service and SLA
template descriptions are published at a service discovery registry, where the SCs can
subsequently query the respective documents and select the most appropriate for their
needs29 (Mora et al. 2009). BREIN does not use only one central registry, but even a
P2P-based system of registry nodes, thus following the ideas mentioned in 2.2.2. A very
complex SLA structure is employed throughout the project, combining WS-Agreement
and WSLA concepts and enhancing them with semantic annotations (Parkin, Badia,
and Martrat 2008).

This project represents an important mark in the automation of service management
processes, as it explicitly allows the use of software agents for the actual SLA negotiation
process (Laria et al. 2009). The overall system is divided into a “head body architecture”
(Laria et al. 2009, p. 88), where the head, basically representing the service management
layer, is represented by a Multi-Agent System and the body is the distributed service
system, to be managed by the software agents. The communication between the agents is
realized via standard grid and WS technologies (SOAP, WSDL etc.), thus encapsulating
the management agents from the actual infrastructure (Laria et al. 2009). These agents
negotiate with each other using a newly designed negotiation protocol: the Combinatorial
Contract Net Protocol as is described in (Laria et al. 2009, pp. 95-100), an extension to
the standard FIPA Contract Net Protocol, allowing reverse combinatorial multi-attribute
auctions. Although this protocol is one of the most sophisticated ones found in the
literature, it is still the only one possible, so no protocol-generity, as demanded by
requirement R4, was realized.

Note: The Adaptive Services Grid (ASG) project30 (running from September 2004
through January 2007, funded under the sixth framework programme with the contract
number 004617) and in particular the Adaptive Service Agreement and Process Manage-
ment (ASAPM) sub-project (Chhetri et al. 2007), dealt with a very similar problem. The
primary goal of this project was to “develop [a] reference architecture and a prototypical
implementation for a semantic services platform for adaptive, semantic service discovery,
composition, creation and enactment” (Meyer et al. 2007, p. IV). Assessed on the basis
of the requirements identified in 2.1 it can be seen as congruent to BREIN. Both em-
ploy a Contract-Net-based negotiation protocol, semantic annotations and agent-based
negotiation components. Therefore the ASAPM system is not presented separately here.

29This process is actually a little more complicated, as all relevant documents are semantically enhanced
and these semantic annotations must consequently be evaluated during the service selection. For this,
a set of services, assisting both SCs and SPs, were developed.

30http://asg-platform.org/

60

2.3. Related Work

NextGRID

The NextGRID31 project (“NextGRID: Architecture for Next Generation Grids”) was
again funded under the EC’s sixth framework programme with the project reference
511563 and ran from August 2004 until August 2007.

Its main goal was to “define the architecture of [...] next generation grids”, which are
“economically viable”, allow to integrate “new and existing business models” and whose
security and privacy protecting mechanisms “give confidence to business, consumers and
the public” (Snelling and Anjomshoaa 2007, pp. 1-2). In order to realize this vision, the
project consortium consisted of various stakeholders including Grid users, hardware and
software providers, service infrastructure providers and research organizations (Snelling,
Fisher, and Basermann 2005).

The main architectural principles applied for NextGRID were (Snelling and An-
jomshoaa 2007):

• “Service Level Agreement Dynamics”, where all interactions are done in the context
of an agreed SLA.

• Ease of “Service Construction and Consumption” for implementing a dynamic grid
infrastructure.

• Design of a “minimal service infrastructure” as a technical basis for “all services
operating in [the] NextGRID environment” .

Especially the first principle already shows the importance of SLAs for the NextGRID
system. The designed SLA management infrastructure allows the user to discover Grid
services and respective SLA template documents from service registries and template
repositories. This is done via a specifically designed NextGRID user interface. After
having discovered a service fitting the current need, the user (and its associated Client
Negotiator component) engages in a negotiation with the providers Negotiator Service.
(Hasselmeyer et al. 2007)

In contrast to most of the other research projects employing SLAs, NextGRID does not
build on standard WS-Agreement or WSLA document types, but defined its own SLA
schema. It structures a SLA document into parties, dynamic and (non-negotiable) static
terms (Mitchell and Mckee 2005). This corresponds directly to requirement R3. During
the actual negotiation process the Discrete Offers protocol is employed, a very simple
offer-accept process, during which the consumer requests an offer from the provider and
subsequently accepts or rejects it (Hasselmeyer et al. 2007). It is not possible to change
the applied protocol or even migrate from one protocol to the other during run time.
Finally, although some of the contributors investigate the usage of negotiation brokers
for both SP and SC in (Hasselmeyer et al. 2006a), the developed system does not employ
software agent technology as demanded by requirement R6, but rather focuses on human
users.

31http://www.nextgrid.org/

61

2. Objectives and Foundations

Note: The TrustCOM project (running from February 2004 through January 2007)
resulted in a “framework for trust, security, and contract management for secure, col-
laborative business processing and resource sharing in dynamically-evolving virtual or-
ganizations” (Wilson 2007, p. 4). Concerning the requirements used in this thesis this
project is basically equivalent to NextGRID, so it is again not considered in all detail
here.

2.3.3. Projects Focusing on Economic Aspects

CATNETS

As opposed to the aforementioned projects, CATNETS (“Catallaxy paradigm for decen-
tralized operation of dynamic application networks“)32 did not focus on the management
of SLA documents per se, but rather on the application of economic “market-based re-
source allocation mechanisms in application layer networks such as grids” (Veit et al.
2007, p. 3). It was again funded under the EC’s sixth framework programme under the
contract number 003769 and lasted from September 2004 until August 2007.

The main goal of CATNETS can be summarized as the assessment of market-based
resource allocation mechanisms in massively distributed computing infrastructures. For
this investigation a two-layered market setting was assumed, consisting of a higher-
level Service Market and lower-level Resource Market. The idea behind this vision was
that Basic Services or respective Agents are constructed on the Resource Market by
integrating a distinct set of raw electronic Resources, such as storage or computation.
These Basic Services are subsequently combined on the Service Market to more complex
services or workflows (Schnizler et al. 2005b). Within this scenario setting, two competing
approaches for economic resource management were compared: a central, auction-based
and a decentralized Catallaxy-based (Ardaiz et al. 2006) mechanism.

During the project both a simulation environment for assessing these two approaches
as well as a proof-of-concept prototype (Ardaiz et al. 2007) (however only incorporating
the decentralized mechanism) was developed (Schnizler et al. 2005b). Additionally, a lot
of theoretical research in the area of resource allocation mechanisms, market design and
evaluation of such concepts was done.

Although the agents within the CATNETS system negotiate in a simplified propri-
etary negotiation language the project consortium could show how this language can
be mapped to SLA languages such as WS-Agreement (Schnizler et al. 2005b). Since the
primary focus was on the economic mechanisms this decision is very comprehensible. On
the other hand the CATNETS consortium very thoroughly investigated how an economic
middleware as the CATNETS prototype could be integrated with existing middleware
systems, subsequently acting as a sophisticated resource allocation tool. This effort
primarily built on WS-Agreement, thus reflecting the importance of SLA-based service
provisioning in CATNETS (Joita et al. 2007).

Regarding the identified requirements it can be stated that this project actually inte-
grates software agents for discovery and negotiation of the traded services. This is the

32http://www.catnets.uni-bayreuth.de/

62

2.3. Related Work

case on both markets. Regarding the applied protocol one must distinguish between the
centralized and the decentralized mechanism. The former applied a CDA on the Service
Market (single-attributive goods are traded here) and a multi-attributive combinatorial
exchange on the Resource Market (Schnizler et al. 2005a). The latter always employs the
Alternate Offers Protocol (AO), a one-on-one negotiation approach (Veit et al. 2007).
Similarly, the discovery process also differs in the two market types: In the centralized
approach no actual discovery is mentioned. I assume the agents are parameterized with
the location of the broker, as this setting was only realized in a simulation environment.
The decentralized setting on the other hand employs a broadcast discovery protocol
(Veit et al. 2007).

Note: In terms of the identified requirements the infrastructure proposal described in
(Ouelhadj et al. 2005) is quite similar to the CATNETS system; the only difference is,
that the authors do not mention an actually implemented prototype of their system.

SORMA

SORMA (“Self-Organizing ICT Resource Management”)33, being a follow-up project of
CATNETS, further developed the idea of market-based resource allocation in distributed
infrastructures. It was funded under the sixth framework program, contract number
034286, and lasted from August 2006 until July 2009.

According to one of the first project deliverables, SORMA aimed at “the development
of methods and tools for establishing an efficient market-based allocation for resources in
a more efficient way in order to enable resource accessibility for all users and to increase
user’s satisfaction, profit and productivity” (Matros et al. 2008, p. 8). For this, the project
consortium built on software agents to enable a fully automated and economically sound
service trading process (Matros et al. 2008).

The resulting architecture consists of six different layers (SORMA 2007):

• Grid Application Layer : applications to be run on the resources, purchased over
the SORMA market.

• Intelligent Tool Layer : smaller software components supporting the SCs and SPs
in the trading process (for example the Bid Generator).

• Open Grid Market Layer : mainly economic services, responsible for offer matching
(Trading Management) and SLA handling (Contract Management, SLA Enforce-
ment and Billing) etc.

• Core Market Services: extension services, needed to allow market-based resource
allocation in traditional Grid middlewares (for example transaction logging, market
directory etc.).

• Economically Enhanced Virtualization Middleware: resource-centric interface to
standardized Grid implementations, allowing for resource co-allocation or SLA
management on the basis of an individual resource.

33http://www.sorma-project.org/

63

2. Objectives and Foundations

• Grid Resource Layer : set of services to be traded over the SORMA market.

This logical architecture was subsequently implemented in a proof-of-concept proto-
type employing a CDA-based trading system (SORMA 2009).

Given its economic setting, SORMA explicitly builds on SLAs as a fundamental con-
cept, both defining the relationship between SC and SP as a result of the matching
process, but also as an input for the SLA enforcement and billing system (SORMA
2008). This component subsequently “perform[s] a continuous run time SLA violation
prediction, detection, and reaction that can help prevent SLA violation from occurring”
(SORMA 2008, p. 58).

Following the ideas already proposed during CATNETS, SORMA aims at an eco-
nomically sound resource-allocation based on markets. Although the need for different
negotiation protocols is explicitly stated in (SORMA 2007, p. 9), only a single protocol
(a CDA) was actually implemented in the final prototype system (SORMA 2009, p. 57).
The mentioned possibility of integrating various negotiation protocols via the Market
Exchange Service was apparently not or not sufficiently implemented within the project
(SORMA 2009, p. 50).

On the other hand, SORMA builds on a distributed set of market registries, assist-
ing the SC and SP agents during the discovery and publication processes respectively
(SORMA 2008). Originating in the economic usage scenario underlying SORMA, an
extended SLA description language was created allowing for the definition of technical
and also economic aspects of a service invocation (Borissov et al. 2009). Finally, soft-
ware agents are heavily used during both the discovery and the negotiation of SLAs in
SORMA (Borissov, Neumann, and Weinhardt 2009).

2.3.4. Initial Approaches Towards Protocol-Generity in SLA Negotiations

NegoFAST

Resinas et al. (Resinas, Fernandez, and Corchuelo 2010) very recently defined a com-
prehensive framework for the design and implementation of generic SLA negotiation
components, the NegoFAST framework. For this the authors conducted a comprehen-
sive survey on electronic negotiation systems and subsequently deducted a set of require-
ments, similar to those presented in this thesis. Based on these requirements, a reference
architecture for generic service negotiators was designed, followed by a proof-of-concept
implementation.

The authors claim that their main goal is “to understand the requirements of auto-
mated negotiation systems of service agreements in open environments and to provide
the foundations for developing such systems” (Resinas, Fernandez, and Corchuelo 2010,
p. 2).

The resulting reference architecture comprises four different modules: Protocol Man-
agement (“selection and execution of negotiation protocols” (Resinas, Fernandez, and
Corchuelo 2010, p. 13)), Decision Making (“determin[ing] the behavior of the [...] system]
(Resinas, Fernandez, and Corchuelo 2010, p. 14)), World Modeling (used for “gather[ing],
analys[ing] and manag[ing] useful information to make decisions during a negotiation”

64

2.3. Related Work

(Resinas, Fernandez, and Corchuelo 2010, p. 13)) and Coordination (orchestrating the
other modules during the negotiation process).

These modules subsequently have to be instantiated when implementing a given ne-
gotiation system for a particular setting. By rigorously building on common interfaces
and a generic data model34 the NegoFAST architecture allows for implementing vari-
ous decision making strategies and negotiation protocols, from which system designers
can chose during this instantiation process. The authors even claim their system allows
changing the applied negotiation protocol or decision making component at run time
(Resinas, Fernandez, and Corchuelo 2010).

It is clearly observable that the NegoFAST framework particularly focuses on the
negotiation phase of the service life cycle. No assertions on service discovery and the
application of software agents therein are made. On the other hand a variety of dif-
ferent SLA representation schemes is supported, basically all SLA languages that can
be mapped to the defined generic data model. Similarly, all negotiation protocols that
can be built using the defined negotiation primitives are eligible in the framework. The
authors mention in (Resinas, Fernandez, and Corchuelo 2010) that the negotiation pro-
tocol actually applied is again negotiated beforehand, however no assertion on how this
is done (or most importantly how the respective protocol is described / communicated
to the other party) could be found.

Aneka and GridBus

Another work, very similar to my approach was published by Brandic et al. (2008a). It
was done in the context of the Aneka35 and GridBus36 projects of the Cloud Computing
and Distributed Systems Laboratory, University of Melbourne.

The authors state the problem that most SLA negotiation infrastructures demand a
pre-defined configuration of the participants in terms of applied protocol or negotiated
SLA terms and propose a solution based on a comprehensive meta-negotiation architec-
ture.

This meta-negotiation system builds on a set of meta-negotiation documents, “where
participating parties may express: the pre-requisites to be satisfied for a negotiation [...],
the negotiation protocols and document languages for the specification of SLAs that they
support and conditions for the establishment of an agreement” (Kertesz, Kecskemeti, and
Brandic 2009, p. 29).

Brandic et al. not only defined the overall process for meta-negotiation but also
presented a XML-based language description to be used when constructing respective
documents, as well as a role-based architecture for their system. It comprises a set of
registries, where the documents are published as well as some middleware components
on both SC and SP sides used to parse these documents and load the respective strategy

34Within this data model a set of negotiation primitives (for example accept, rejectNegotiation, rejectPro-
posal, commit, propose or inform) is used as a common basis for all supported negotiation protocols
(Resinas, Fernandez, and Corchuelo 2006).

35http://www.manjrasoft.com/products.html
36http://www.gridbus.org/

65

2. Objectives and Foundations

modules necessary for the negotiation. A proof-of-concept prototype based on the Aneka
GC system and the GridBus resource broker was implemented as an extension to the
infrastructure presented in (Venugopal, Chu, and Buyya 2008).

The Aneka meta-negotiation system builds on a registry-based discovery mechanism
and allows a distinct set of different negotiation protocols to be used subsequently. How-
ever, these protocols are simply referenced by their name, so a common understanding of
the respective protocol is necessary for successful execution. In my thesis, I try to use a
more generic approach, in which only some defined protocol primitives have to be known
(similar to the NegoFAST model) and more complex protocols can be constructed from
these. Brandic et al. also do not mention the usage of software agent technology or the
achieved degree of automation within their work. Also, no market intermediaries are
introduced, as needed for example in a brokered market structure.

SLA@SOI

The most recent project dealing with electronic SLA management in a business context is
SLA@SOI 37(“Empowering the service industry with SLA-aware infrastructures”). It is
funded under the EC’s seventh framework programme under the contract number FP7-
216556, started on 31st of May 2009 and will run through 38 months. The consortium
consists of eleven partners from both industry and academia, the former covering many
significant fields involved in the IoS vision: telecommunications, software development,
business services etc.

According to one of their initial project deliverables, the main goal of SLA@SOI is to
design and implement “a business-ready service-oriented infrastructure empowering the
service economy in a flexible and dependable way” (Theilmann et al. 2009, p. 7). In that,
they develop a framework architecture, supporting the management of both SLAs and
the underlying service infrastructure on either the business, software and infrastructure
level (Theilmann et al. 2010). It comprises software components supporting the overall
service life cycle (see (Theilmann et al. 2010, p. 19) for details), such as SLA Managers
responsible for managing the available SLA templates and negotiation processes building
thereupon, Service Evaluators handling prediction tasks or Service Managers for run
time management of the service instances.

According to (Kotsokalis et al. 2010) and (Lambea et al. 2010), a rule-based protocol
engine is used within each SLA Manager node, allowing for protocol-generic negotiations.
For this, it is configured with a respective description file, to which all involved nego-
tiators agree and subsequently enforces the protocol rules by intercepting all message
exchanges (one SLA Manager is located at both the SP and the SC realm).

The fundamental concepts, applied in SLA@SOI, are very similar to my approach: a
generic negotiation component is employed, and is configured with a protocol description
document as per negotiation it engages in, a registry-based discovery phase is assumed
and the negotiation protocols themselves are described, at least partially, on the basis
of state machines. This fact underlines not only the motivation for my work, but also
the general design idea applied therein (see 3.1 for more details).

37http://sla-at-soi.eu/

66

2.3. Related Work

However, most of the concepts presented in the currently available project deliverables
are in a very preliminary stage and some claims are even still contradictory at this point
in time. The consortium for example states, that the current prototype supports all
“single negotiations (one-to-one, one-to-many and many-to-one)” (Lambea et al. 2009,
p. 51) but state in the very same document that “at the moment, the protocol [they]
decided to use in SLA@SOI is a one-to-one protocol (multi-attribute bilateral protocol)”
(Lambea et al. 2009, p. 53). At the date of publication of this thesis, the actual degree
to which amount the SLA@SOI system fulfills the stated requirements could thus not be
determined. Therefore it is not integrated into table 2.2 and only mentioned here shortly.
When working on distributed SLA management in the future, the results achieved therein
can nonetheless be foreseen to be highly relevant and are recommended for further
investigation.

67

2. Objectives and Foundations

T
ab

le
2.
2
.:
R
el
a
te
d
W
o
rk

R
e
la
te

d
P
ro

je
c
ts

A
ss
e
ss
G
ri
d

/
H
P
C
4
U

A
k
o
g
ri
m

o
B
E
in

G
R
ID

B
R
E
IN

/
A
S
G

-
A
S
A
P
M

N
e
x
tG

R
ID

/
T
ru

st
C
o
m

C
A
T
N
E
T
S

S
O
R
M

A
N
e
g
o
F
A
S
T

A
n
e
k
a

/
G
ri
d
B
u
s

R
e
q
u
ir
e
m

e
n
ts

R
e
g
is
tr
y
-

b
a
se

d
D
is
-

c
o
v
e
ry

P
h
a
se

[R
1
]

?
,

n
o

a
ss
e
r-

ti
o
n

Y
e
s

N
o

Y
e
s

Y
e
s

N
o

Y
e
s

?
,

n
o

a
ss
e
r-

ti
o
n

Y
e
s

S
e
rv

ic
e

M
a
n
a
g
e
-

m
e
n
t

b
a
se

d
o
n

S
L
A
s

o
f

v
a
ry

in
g

C
o
m

p
le
x
it
y

[R
2
]

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

R
e
st
ri
c
ta

b
le

S
L
A

O
ff
e
rs

in
c
l.

n
o
n
-

n
e
g
o
ti
a
b
le

T
e
rm

s
[R

3
]

N
o

N
o

N
o

N
o

Y
e
s

N
o

N
o

?
,

n
o

a
ss
e
r-

ti
o
n

P
a
rt
ly
,
u
sa

g
e

o
f

st
a
n
d
a
rd

S
L
A

la
n
-

g
u
a
g
e
s

w
it
h

a
p
o
ss
ib

il
it
y

to
d
e
fi
n
e

th
e

n
e
g
o
-

ti
a
b
le

te
rm

s
b
e
fo
re

h
a
n
d

P
ro

to
c
o
l-

g
e
n
e
ri
c

S
L
A

n
e
g
o
ti
a
ti
o
n
s

[R
4
]

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
e
s

Y
e
s

M
in

im
a
l

R
e
-

st
ri
c
ti
o
n
s

o
n

th
e

u
se

d
S
e
t

o
f

P
ro

to
c
o
ls

[R
5
]

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

A
u
to

m
a
te

d
,

a
g
e
n
t-
b
a
se

d
se

rv
ic
e

m
a
n
-

a
g
e
m

e
n
t

[R
6
]

N
o

?
,

n
o

a
ss
e
r-

ti
o
n

?
,

n
o

a
ss
e
r-

ti
o
n

Y
e
s

N
o

Y
e
s

Y
e
s

?
,

n
o

a
ss
e
r-

ti
o
n

?
,

n
o

a
ss
e
r-

ti
o
n

M
a
rk

e
t

In
-

te
rm

e
d
ia
ri
e
s

[R
7
]

P
a
rt
ly

(s
e
r-

v
ic
e

b
ro

k
e
r

a
v
a
il
a
b
le
,

a
lt
h
o
u
g
h

n
o

a
c
tu

a
ll
y

b
ro

k
e
re

d
n
e
g
o
ti
a
ti
o
n

p
ro

to
c
o
l

is
e
m

p
lo
y
e
d
)

P
a
rt
ly

(Q
o
S

/
V
ir
tu

a
l

O
rg

a
n
iz
a
-

ti
o
n

b
ro

k
e
rs

a
v
a
il
a
b
le
,

a
lt
h
o
u
g
h

n
o

a
c
tu

a
ll
y

b
ro

k
e
re

d
n
e
g
o
ti
a
ti
o
n

p
ro

to
c
o
l

is
e
m

p
lo
y
e
d
)

N
o

P
a
rt
ly

(i
n
-

te
rm

e
d
ia
ri
e
s

a
re

n
o
t

d
ir
e
c
tl
y

in
-

v
o
lv
e
d

in
th

e
n
e
g
o
ti
a
ti
o
n
)

P
a
rt
ly

(n
o

a
c
tu

a
ll
y

b
ro

k
e
re

d
n
e
g
o
ti
a
ti
o
n

p
ro

to
c
o
l

is
e
m

p
lo
y
e
d
)

P
a
rt
ly

(b
ro

-
k
e
r

a
v
a
il
a
b
le

in
th

e
c
e
n
-

tr
a
li
z
e
d

c
a
se

)

Y
e
s

N
o

N
o

68

2.3. Related Work

The requirements derived in section 2.1 allow for a structured assessment and com-
parison of the identified related research projects. As can be seen in table 2.2 none
of these projects is currently capable of fulfilling all of the stated requirements. The
BabelNEG system, the design of which is presented in the next chapter, aims at closing
that gap. A detailed investigation of its capability to fulfill all posed requirements (and
thus indirectly its comparison with the projects presented above) is given in section 4.2.

After having presented either the conceptual and technical foundations and alternative
approaches to the stated research problem along with a conceptual framework for their
assessment (in terms of the stated requirements) the next two chapters focus on the
actual design and evaluation of the BabelNEG system; my proposed solution to the
stated research problem.

69

3. Design and Development

In this chapter, the central deliverable of this dissertation project, the infrastructure
design, is presented. Due to its complexity it is further structured according to three
well-recognized perspectives on IT-artifacts, which, when used in combination, result in
a comprehensive view on the investigated system: data, interaction and functional per-
spective (Ferstl and Sinz 2008, p. 137)1. This trichotomy also corresponds to the three
already introduced perspectives on (electronic) negotiations: negotiation object (data
perspective, focusing on the documents involved in the negotiation), negotiation proto-
col (interaction perspective, describing the negotiation processes) and decision making
strategy (functional perspective, dealing with the processing of messages and events).

Example instantiations of the developed data structures and agent roles as well as
potential start-up and usage parameters are presented along with the demonstration
and evaluation steps in chapter 4.

3.1. Abstract Design Idea

The basic design idea, underlying this work, is to offer a given good (SLA for an electronic
service in the IoS setting) independently from the way an agreement concerning this
product can be attained (negotiation protocol).

Such an approach has many analogies in real-world settings. Many products sold in
everyday life are sold with different negotiation protocols in different situations. For
example a TV set, displayed at an electronic retailer, implicitly states that the only way
to negotiate about it is to accept the stated price. This protocol thus corresponds to
a classic catalogue pricing model, also called Fixed Price Auction (FPA)2. Then again,
the same TV set, offered over an online auction platform such as eBay3, implies that the
consumers have to outbid each other until a certain deadline occurs. This corresponds
to an EA protocol. eBay could even act as an example for both of these protocols,
since apart from the standard auctions also buy it now -offers are available, which are
equivalent to FPAs. Although the product sold in both cases is exactly the same (a new
TV set of a given type), the negotiation protocols applied are quite different.

1Regularly a fourth, dynamic view concerning the actual processes is used. In this thesis this view is
integrated with the interaction perspective, allowing for the conjoint description of communication
channels, i. e. messages, and the actual processes building on them.

2A FPA is basically a very simple auction protocol in which the price is fixed and each bidder can only
accept the stated value or leave the auction. The first bidder sending the accept message wins the
negotiation, given only one unit of the sold product is available (otherwise the first n bidders receive
one item each, given n units are available).

3http://www.ebay.com/

71

3. Design and Development

The protocol to be used within a given negotiation situation is regularly chosen by
the provider, based on factors like the market context, distribution of providers and
consumers in the particular market or characteristics of the negotiated good itself (such
as expiration dates etc.).

This decoupling of protocol and object allows for a protocol-generity in real-world
negotiation settings. Transferred into the IoS scenario, it implies that a given SLA
(template) under negotiation could be offered with a whole set of different negotiation
protocols at different points in time or on different markets in parallel. This would
ultimately lead to service systems in which the SPs could choose a negotiation protocol
for a distinct SLA negotiation, best fitting the current setting (for example in terms of
market configuration), or even swap the applied protocol due to changes in this setting
respectively4.

The SCs would be able to search for appropriate services in a more detailed way, as
they will be given the opportunity to use the offered protocols as search criteria for a
given service request. Just as well, they could only focus on the service type without
caring about the associated protocol. They would just have to make sure they can
adapt to it afterwards. This can again be observed at the eBay platform, where users
can search for a specific good either with a specific restriction on the applied protocol
(auction or buy-it-now offer) or without one (default case).

In a fully automated scenario, such as the IoS, the negotiation protocol applied for a
given service should not only be decoupled from the actual SLA but must also be made
explicit in terms of its communication rules. The software agents must be able to adapt
to it, solely based on the so defined protocol description.

An analogue mechanism is also used in the real world. In some examples, such as just
accepting the price at a traditional electronic retailer or the possibility to bargain on
the payment conditions for example at a used-car dealer, the protocol used is described
implicitly5. Others, such as the auction protocol used on EBay, is very clearly defined
in terms of its bidding rules6.

The designed infrastructure follows this approach and consequently builds on a con-
ceptual architecture of machine-readable (service) description documents providing the
management agents with exactly the information needed for the protocol adaption pro-
cess.

In the remainder of this section these service description documents are presented
first (data perspective), followed by the protocol components for both the discovery
and negotiation phase, representing the interaction perspective. Finally, the functional
architecture of the overall system is sketched in terms of the internal routines of the

4Allowing SPs to offer a given SLA with different protocols in parallel and on the same market is very
demanding with regard to race conditions in the admission phase, but at the same time it doesn’t
create a valid surplus with regard to the stated research question. Offering a service with different
protocols in parallel is thus assumed out of scope for the proof-of-concept prototype presented in this
thesis.

5In unsupported negotiation settings solely involving humans, implicit protocol rules are sufficient as
the involved negotiators can talk to each other to resolve any misunderstandings.

6See http://pages.ebay.com/help/buy/bidding-overview.html for a detailed description of the eBay auc-
tion mechanism.

72

3.2. Service Description Documents

developed management agents (functional perspective)7.

3.2. Service Description Documents

The set of service description documents to be developed for the prototype infrastructure
needs to allow a) the discovery of an appropriate service or respective SLA (template)
for this service and b) the exhaustive description of the negotiation protocol used to
reach an agreement as needed for an automated adaption. Also, a high reusability is
desirable to minimize redundancies.

To this end three different data structures have been designed:

• Service Type (ST): definition of the functional and non-functional aspects, a given
class of services can offer.

• Extended SLA Template (EST): definition of the QoS guarantees (building on
the non-functional aspects given in the respective ST) as well as the negotiation
protocol offered by a given class of services.

• Service Identificator (SI): identification of an individual service instance along with
links to the respective ST and EST documents associated with it.

Figure 3.1 gives a short overview on these documents and their relations.
The fourth document type, needed for a SLA-centric service management, is the

agreed-upon SLA itself, which is shortly sketched at the end of this subsection along
with the way it can be created building on the three other document types and the
SLOs defined throughout the negotiation process.

All four data structures have been defined on the basis of XML (Bray et al. 2006) and
XML Schema (Thompson et al. 2004), respectively. This technology deemed appropriate
as its distinction between attributes and elements represents an intuitive analogy to the
parameter-based description of service attributes and (negotiation) protocols. It also
serves as a lingua franca in the envisioned service-oriented scenarios, representing the de
facto standard for communication therein8.

3.2.1. Service Type

The basic goal of the ST document is to describe a class of service instances in terms
of their functional capabilities and the non-functional parameters, for example QoS
metrics like throughput or business relevant aspects like price. It therefore follows the
ideas for functional descriptions of electronic services as were present ever since the first
introduction of SO (see for example Bellwood et al. 2004).

7Due to the developed system being a proof-of-concept prototype, error handling apart from semantic
errors related to the discovery and negotiation itself has largely been excluded from this work.

8For clarity reasons only excerpts of the actual XML Schema documents are presented when needed for
the description of the respective data structures. The complete documents can be found in appendix
A.1.

73

3. Design and Development

Service
Description
Layer

Service
Instance
Layer

Service Type
Document

Extended
SLA Templates

Service
Identificator

ID

functional and
non-functional

properties

SLO starting
values

negotiation
protocol

description

Links to:

service type

eSLA template

wsdl

bindings

SLA Context
- SP
- SC

- service type
- wsdl

- template ID

service guarantees

final SLA
Service
Instance

1:N

N:1

N:1

1:1

Figure 3.1.: Document-based Architecture

The functional aspects are primarily used to search for a service, taking into account
the search criteria, received from the user / service requestor. For the subsequent ne-
gotiation process, these parameters play almost no role at all as regularly the functions
offered by a service instance are hard-coded and cannot be altered at run time.

In contrast, the non-functional parameters or rather their actual values are mostly
not hard-coded per se and are the very object of any SLA negotiation. Only the mere
existence of such a parameter (in terms of its parameter id and value domain) has to be
decided upon at design time (to this end, respective internal mechanisms allowing for
run time adjustments have to be implemented), the parameter’s actual value however
varies during run time depending on, for example, the current workload.

An example for this would be the non-functional parameter throughput. At design
time such a parameter has to be considered, in terms of its id, value range and imple-
mented internal routines, capable of measuring the current throughput and predicting
its value depending on current workloads. The incorporation of respective monitoring
and enforcement components offers the management agent the possibility to negotiate
about this metric and subsequently enforce the respective guarantee, as stated in the
SLA, even at run time.

The ST document contains the following elements (see figure 3.2):

• serviceTypeID : ID for this particular ST (needed for references in other service

74

3.2. Service Description Documents

<xsd:complexType name="PropertiesType">
 <xsd:sequence>
 <xsd:element name="domain" type="xsd:String" />
 <xsd:element name="declaration" type="xsd:String"
 minOccurs="0" maxOccurs="1" />
 </xsd:sequence>
 <xsd:attribute name="propertyID" type="xsd:anyURI" />
</xsd:complexType>

<xsd:element name="ServiceType">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="serviceTypeID" type="xsd:anyURI" />
 <xsd:element name="serviceDescription"
 type="xsd:anyType" />
 <xsd:element name="property" type="PropertiesType"
 maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

Figure 3.2.: Excerpt of the ST Schema Definition

description documents). This element should have the form of a Uniform Resource
Identifier (URI) in order to ensure uniqueness in a global setting.

• serviceDescription: definition of the functional aspects of this ST. This could be
realized in the form of a link to a comprehensive UDDI description or even an
in-line description with a proprietary description language9.

• List[property] : list of non-functional properties offered by services of this type.
Each property element consists of a unique name (URI format), a domain such
as Integer or Double and an optional textual description10. In order to achieve
interoperability and, at the same time, semantic integrity such properties should
be defined in an industry-wide ontology.

3.2.2. Extended SLA Template

Most of the present SLA (management) mechanisms for distributed systems incorporate
the possibility to define SLA templates (see for example Andrieux et al. 2007). A SLA
template is basically a partially filled out SLA document, that is offered from the SP to
potential consumers.

A mechanism like this allows the SP to pronounce its willingness to negotiate a SLA
for a given service and gives her the opportunity to define an initial proposal on some of
the SLOs she is willing to offer. This can tremendously increase the speed of convergence

9These service descriptions could also include semantic annotations for individual functionalities as
proposed by for example in (Overhage and Thomas 2005).

10It should be noted, that two different types of domains are present: ordered and not-ordered domains.
The former are value domains, such as Integer or Double, in which the individual values can be
compared using relational operators, such as ≤ or ≥. The latter represent domains, in which the
individual values cannot be compared in such a manner, for example String.

75

3. Design and Development

<xsd:complexType name="NegotiationProtocolType"
 mixed="true">
 <xsd:sequence>
 <xsd:element name="context" type="ContextType" />
 <xsd:element name="negotiationObject"
 type="NegotiationObjectType" />
 <xsd:element name="offerRestrictions"
 type="OfferRestrictionsType"/>
 <xsd:element name="offerAllocationPolicy"
 type="OfferAllocationPolicyType"/>
 <xsd:element name="informationPolicy"
 type="InformationPolicyType"/>
 <xsd:element name="process" type="ProcessType" />
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="SLOType">
 <xsd:sequence>
 <xsd:element name="value" type="xsd:anySimpleType" />
 </xsd:sequence>
 <xsd:attribute name="propertyID" type="xsd:anyURI" />
</xsd:complexType>

(a)

<xsd:complexType name="SLATemplateType">
 <xsd:sequence>
 <xsd:element name="SLO" type="SLOType"
 minOccurs=“0“ maxOccurs=“unbounded“ />
 </xsd:sequence>
</xsd:complexType>

<xsd:element name="ExtendedSLATemplate">
 <xsd:complexType mixed="true">
 <xsd:sequence>
 <xsd:element name="slaTemplateID"
 type="xsd:anyURI" />
 <xsd:element name="slaTemplate"
 type="SLATemplateType" />
 <xsd:element name="negotiationProtocol"
 type="NegotiationProtocolType" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

(b)

Figure 3.3.: Excerpt of the EST Schema Definition

in a negotiation process as the SC already gets an idea of what the SP potentially finds
acceptable and can thus a) identify SPs more quickly with whom she will potentially
never reach an agreement and b) if a compatible template was found, create counter
offers which are more likely to be accepted.

The internal structure of a SLA template is basically equivalent to an actual SLA
(for a more detailed description of such a document see 3.2.4). The only difference is,
that a set of rules is optionally defined, helping the SC to identify (combinations of)
SLOs that are a) valid and / or b) acceptable by the SP. The WS-Agreement standard
is a good example for this: In this specification the template documents are structurally
equivalent to the actual SLA documents (consisting of a context, SDTs, SRTs, SPTs and
GTs) and additionally a set of Creation Constraints is given, defining how new SLOs
should be created or already stated ones could be altered during negotiation (Andrieux
et al. 2007, pp. 30-33).

For the BabelNEG system the SLA template concept has been extended to also in-
clude a description of the applied negotiation protocol. Since this protocol description is
very closely linked to the SLOs already stated in the template it was considered appro-
priate to integrate it into the same data structure. The other document closely linked to
the protocol description is the ST, as it defines the metrics that can be used within the
negotiated SLOs. This document has been modeled independently in order to increase
reusability as, even in infrastructures without SLA (negotiation) mechanisms, such STs
are employed for simple discovery and binding purposes. The SLA template and the ne-
gotiation protocol on the other hand will not be used independently, as a template cannot
be employed without negotiating it subsequently and a negotiation protocol always has
to be defined upon a negotiation object, i.e. a SLA template.

An EST consequently consists of the following elements (see figure 3.3):

• slaTemplateID : ID for this particular EST.

76

3.2. Service Description Documents

<xsd:simpleType name="AdmissionRestrictionFormType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="open"/>
 <xsd:enumeration value="restricted"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="AdmissionType">
 <xsd:sequence>
 <xsd:element name="admissionRestrictionRule"
 type="xsd:anyType" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="admissionRestrictionForm"
 type="AdmissionRestrictionFormType"/>
</xsd:complexType>

(a)

<xsd:complexType name="RoleContextType" mixed=“true“>
 <xsd:sequence>
 <xsd:element name="maximumNumberOfAgents"
 type="xsd:integer" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="minimumNumberOfAgents"
 type="xsd:integer" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="admissionRestriction"
 type="AdmissionType"/>
 </xsd:sequence>
</xsd:complexType>

(b)

Figure 3.4.: Type Declaration: Role Element

• slaTemplate: potentially empty list of initial SLOs, i.e. guarantee assertions con-
sisting of the name of the metric and the guaranteed value 11.

• negotiationProtocol : a structured description of the applied negotiation protocol12.

Since this protocol description marks one of the core deliverables of this thesis, it is
described in more detail in the following.

Where possible, it builds on simple parameters. If further restrictions concerning the
negotiation process are needed, any desired (external) rule language, such as Jess13,
may be used within some of the language elements. Moreover, the developed language
incorporates state automata concepts when describing the actual protocol steps occurring
in a negotiation.

For clarity reasons the set of negotiation parameters is further subcategorized into
six different perspectives: negotiation context and object, offer restrictions, allocation
and information policy and negotiation process. This structure roughly follows other
negotiation description approaches, such as (Ströbel and Weinhardt 2003) or (Lomuscio,
Wooldridge, and Jennings 2003).

Negotiation Context The negotiation context defines the involved agents and their
permissions and obligations. For this purpose, two role elements are specified for the
subsequent negotiation, one for both SP and SC.

Each of these elements exposes up to three child elements: minimumNumberOfAgents,
maximumNumberOfAgents (both optional) and admissionRestriction.

11The respective parameters and value domains have to be defined in the ST this template relates to.
12This description language does not cover multi-unit negotiations, which deal with the exchange of

multiple units of the same product within one negotiation. Since each service in the IoS can and
has to be unambiguously identified, each service, even if offering the same functionality as other
instances, represents an individual good under negotiation, which has to be treated in a negotiation
of its own.

13http://herzberg.ca.sandia.gov/jess/

77

3. Design and Development

<xsd:simpleType name="ValuesType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="single"/>
 <xsd:enumeration value="multiple"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="NegotiableSLOType">
 <xsd:sequence>
 <xsd:element name="values" type="ValuesType" />
 </xsd:sequence>
 <xsd:attribute name="propertyID" type="xsd:anyURI"/>
</xsd:complexType>

<xsd:complexType name="NegotiationObjectType">
 <xsd:sequence>
 <xsd:element name="negotiableSLO"
 type="NegotiableSLOType" minOccurs="0"
 maxOccurs=“unbounded“ />
 </xsd:sequence>
</xsd:complexType>

Figure 3.5.: Type Declaration: Negotiation Object Element

The optional maximumNumberOfAgents and minimumNumberOfAgents elements de-
fine the maximum and minimum amount of permitted participating agents for that
particular role. The description of a one-on-one bargaining protocol for example, would
thus state a minimum and maximum number of agents for both roles to be 1.

On the other hand an auction protocol, would restrict one side (SPs or SCs) to a
maximum number of one and the other side would possibly not expose any upper bound
of permitted agents.

Some negotiation settings require the joining agents to satisfy some criteria to be
admitted. Such admission restrictions can be specified within the admissionRestriction
element. It consists of an optional element of xsd:anyType (admissionRestrictionRule),
representing a placeholder for arbitrary admission restriction rules expressed in some
external rule language, and one attribute defining whether admission restrictions do
exist at all (admissionRestrictionForm). If open admission is defined here, no admission
restriction rule is specified (the respective element would be omitted). In the restricted
case an admission rule would have to be present.

Negotiation Object After specifying the involved roles and their permissions, the ac-
tual negotiation object has to be defined in terms of the SLOs under negotiation (see
figure 3.5).

Following the common understanding of electronic SLA documents and their internal
structure, this element consists of a (potentially empty) list of negotiableSLO elements14.
Each of these refers to a respective service property as defined in the ST; this link is
created via the property’s ID. Additionally, a child element is present, defining whether
multiple values are allowed to be offered for this SLO or not. Intuitively not all possible

14An empty list would indicate, that no SLO is negotiable, thus defining a FPA protocol.

78

3.2. Service Description Documents

Domain

Ordered Not Ordered

Possible operators for
- single values:

=
- multiple values:

! = (not equal)
[enumeration of values]

< ; < = ; > ; > =

Possible operators for
- single values:

=
- multiple values:

! = (not equal)
[enumeration of values]

Figure 3.6.: Ordered vs. Not Ordered Domains

relational operators used to express multiple values are applicable in every type of domain
(as defined for the respective SLO within the ST). Not-ordered domains only allow �=
or simple enumerations to express multiple possible values. In ordered domains on the
other hand, relations like e.g. <, ≤, > and ≥ are possible.

Offer Restrictions Each negotiation description may optionally define an arbitrary
number of attributeRestriction and / or generalRestriction elements. Each of these
represents a specific restriction on how one particular SLO is to be treated within the
negotiation. If, for example, a negotiation designer wants to specify that for some
particular attribute a new offer always has to succeed the last offer, like in an EA, this
would be achieved with an attributeRestriction regarding this SLO.

Each attributeRestriction element thus contains a propertyID attribute referencing the
SLO it applies to. Additionally, one of three possible restriction classes (modeled as child
elements) can be chosen:

• The progress element defines the direction of a negotiation regarding the referenced
attribute. With this element one can specify whether new offers have to state
higher or lower values for this SLO, compared to the previous offers. Intuitively
the progress-element is only applicable for ordered domains. In addition to the
direction, specified in the progressForm child element, some minimum increment
or decrement may be defined with the delta child element.

• The threshold element defines what is called a reserve value in negotiation theory.
A reserve value is one negotiator’s upper or lower bound of acceptable values for
a particular negotiation attribute. Normally, this construct is only used for the
price, but in this more general approach it can also be applied to all other service
attributes of ordered domains. A negotiation designer could for example specify

79

3. Design and Development

<xsd:simpleType name="ProgressFormType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="ascending"/>
 <xsd:enumeration value="descending"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="ProgressType" mixed=“true“>
 <xsd:sequence>
 <xsd:element name="progressForm"
 type="ProgressFormType"/>
 <xsd:element name="delta" type="xsd:anySimpleType"
 minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="ThresholdType">
 <xsd:choice>
 <xsd:element name="lowerBound"
 type="xsd:anySimpleType"/>
 <xsd:element name="upperBound"
 type="xsd:anySimpleType"/>
 </xsd:choice>
</xsd:complexType>

(a)

<xsd:complexType name="AttributeRestrictionType"
 mixed=“true“>
 <xsd:choice>
 <xsd:element name="progress"
 type="ProgressType"/>
 <xsd:element name="threshold"
 type="ThresholdType"/>
 <xsd:element name="restrictionRule"
 type="xsd:anyType"/>
 </xsd:choice>
<xsd:attribute name="propertyID" type="xsd:anyURI" />
</xsd:complexType>

(b)

Figure 3.7.: Type Declaration: Attribute Restriction Element

that in either case at least 2 GB of memory have to be available for some service;
any value lower than that would not be acceptable.

• Finally, a restrictionRule element of xsd:anyType can be used to express any
attribute-related constraint in addition to thresholds and progress restrictions. In
this element external rule languages may be employed.

Similarly to such free-hand restriction rules relating to exactly one SLO each, more
general restrictions relating to more than one service attribute can be expressed with the
generalRestriction element. This could be used for example, if a negotiation designer
wants to specify that in a new offer at least for one of two different attributes has to be
offered a higher value than in the current offer.

Offer Allocation Policy The offerAllocation element defines the way the clearing of the
negotiation is conducted, that is how the winning offers are identified and transformed
into a valid SLA.

Offer matching can be of forwarded or defined form. In either case a valid agreement
is created by one side receiving an offer and accepting it 15. The only difference lies in
whether the other participants know how the offer allocation is conducted or not. In the
forwarded case the matching algorithm is not explicitly described. The accepting agent
chooses one offer to win without letting the other participants know according to which
rules. In the defined case these rules are given within the protocol description and are
therefore openly available. This way every agent can predict the winning offer before

15Depending on the protocol only one side could be allowed to actively accept an offer. This is defined
in the process element of the protocol description.

80

3.2. Service Description Documents

the actual agreement is posted to the involved parties (this is for example the case in an
EA, where the winning bid is always the one stating the highest price).

The offerAllocation element thus consists of a matchingForm child element specifying
whether defined or forwarded offer matching is applied and an optional child element,
called matchingRule, for the definition of the matching algorithm.

Information Processing Policy The information available during a negotiation can be
divided into two data sets: the negotiationStatus and the pastOffers. The negotiation-
Status is represented by all current offers of all participants allowed to post offers16,
whereas the pastOffers are all offers posted in this negotiation until now (sometimes also
called negotiation history).

To allow for differentiated definitions of accessible negotiation data the information-
Processing element contains a negotiationTransparency and a statusTransparency ele-
ment for the pastOffers and the negotiationStatus respectively. These two elements are
both restricted to one of three possible values: public, protected and none. If public is
stated, the negotiation status as well as the past offers may be queried by all agents; no
restriction is applied to such information requests. Protected transparency denotes that
only SPs and SCs involved in the actual negotiation can do so, whereas none is used if
no data can be queried at all. This way, negotiation designers can specify, for example,
sealed-bid auctions. Additionally, two optional elements defining the respective contents
of past offers and status data (negotiationContent and statusContent) can be present.
Here, an external restriction language, defining exactly which elements of past or cur-
rent offers are visible, would have to be employed (in XML environments this could for
example be XQuery (Boag et al. 2007)).

Negotiation Process After having defined the static aspects of a negotiation, the last
element is dedicated to the actual negotiation process. (Negotiation) protocols are mostly
defined in terms of state machines describing how participants (of a particular role) act
during the actual communication. A state machine is defined as a set of events, a set of
actions, a set of states (from which one is the initial and one or more are final states) and
a transition function defining the action and / or state change a particular participant
undertakes in a given state after a given event occurred (Martin 2002, p. 79).

Investigation of a significant amount of negotiation protocols has shown that while
still actually negotiating the involved parties normally don’t change their states regarded
from the abstraction level of the negotiation protocol17. After having started a negotia-
tion they stay in the NEGOTIATING state just until an agreement is reached (sending
or receiving of an acceptance message), the negotiation is aborted or the participant
didn’t win the negotiation (receiving of a rejection message). Hence, given this language

16It is assumed that each participant can only have one valid offer at a time and newly posted offers
replace older ones.

17Once negotiating they continuously send and accept negotiation messages. Internal sub-states of
the high-level NEGOTIATING state and the change between such do not have any effects on this
behavior within the negotiation protocol.

81

3. Design and Development

is intended only to describe negotiation protocols, no state changes are anticipated be-
fore the final acceptance phase. The process element as described in the following will
thus build on events and actions only. This is arguable, however the element definition
is designed in a way that it can easily be extended to incorporate the existence of several
different states within the negotiation phase as well, if it becomes necessary.

All agents taking part in a negotiation adopt the SC, the SP or the Negotiation
Coordinator (NC) role. A NC is a third party governing the actual bidding process,
such as for example as an auctioneer. Employing these three roles, basically all the
negotiation protocols that were investigated as part of this work can be described.

Next, the events and actions in electronic negotiations are identified. There do exist
internal and external events or actions. As the EST document is intended to describe
a protocol in a way that another agent can adapt to it, only external events or action
are considered. Only those potentially concern the other negotiator, and are thus of
interest during the negotiation process. For all negotiation protocols investigated, the
sets of possible external events and actions could be identified to be equivalent; they are
defined as the set of negotiation messages:

• Call for Bids: This message implements a pull mode within the actual bidding
process. An auctioneer uses this message to ask the negotiators for their current
offers.

• Offer : An offer is used by a negotiator to express its currently acceptable agree-
ment.

• Notification Reject : This message indicates that the receiver did not win the re-
spective negotiation (or the negotiation was aborted)18.

• Notification Accept : Vice versa, an accept message is sent to the winner.

• Still Interested : This message is used whenever a given SLA proposal is offered to
a set of agents and these want to indicate that they are still interested. This is
used in many auction protocols, where the individual bidders are not allowed to
accept an offer, but only to indicate their continuing interest, while the auctioneer
continuously in- / decreases a SLO value until only one interested bidder is left,
the winner of the negotiation.

• Admission: An admission message (only permitted as an event) is used to define
the first protocol step of a pro-active negotiation. Here, the SC does not react on
incoming messages, it rather sends the very first negotiation message, modeled as
a reaction to the admission acknowledgement message.

Employing these messages, the behavior of a SC during the protocol can be defined.
Hence, the process consists of an unrestricted number of protocolStep child elements.

18In the current BabelNEG version this message is assumed to always be a possible action and can thus
also be used by SCs for explicitly leaving a negotiation.

82

3.2. Service Description Documents

<xsd:simpleType name="RoleNameType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="serviceProvider"/>
 <xsd:enumeration value="serviceConsumer"/>
 <xsd:enumeration value="negotiationCoordinator"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="MessageType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="callForBids"/>
 <xsd:enumeration value="offer"/>
 <xsd:enumeration value="still_interested"/>
 <xsd:enumeration value="notification_accept"/>
 <xsd:enumeration value="notification_reject"/>
 <xsd:enumeration value="admission"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="EventActionType" >
 <xsd:sequence>
 <xsd:element name="messageType"
 type="MessageType" />
 </xsd:sequence>
 <xsd:attribute name="from" type="RoleNameType" />
 <xsd:attribute name="to" type="RoleNameType" />
</xsd:complexType>

(a)

<xsd:complexType name="ProtocolStepsType">
 <xsd:sequence>
 <xsd:element name="protocolStep"
 maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="event" type="EventActionType“ />
 <xsd:element name="possibleAction"
 type ="EventActionType" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="ProcessType">
 <xsd:sequence>
 <xsd:element name="serviceConsumer"
 type="ProtocolStepsType"
 minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
</xsd:complexType>

(b)

Figure 3.8.: Type Declaration: Process Element

Each of these defines an event and a list of possibleAction elements, that are possible
for the SC in case the respective event occurs 19.

Both, events and actions, state a particular message (as specified in the MessagesType
element) to be sent or received. For the respective messageType child element, one of
the five different message types listed above can be chosen. As sender (in case an event
is defined) or recipients (in case an action is defined) one of the three possible roles SC,
SP or NC must be stated.

Figure 3.8 shows the respective XML Schema definitions of the process and protocol-
Step elements20.

3.2.3. Service Identificator

Each individual service instance is defined within a respective SI. Such a document
describes where exactly this service can be found (important for the actual binding
process), what its type is and which EST is offered for it. It thus consists of the following
elements:

19A description of the protocol from the NCs and the SPs view is assumed not appropriate since only
SCs are potentially entering new, formerly unknown protocols at run time. A SP, just as a NC is
always implemented for a defined set of protocols and will thus not have the need to adapt at run
time. It would, if necessary, just be re-deployed with a new protocol. Even if an adaption of the
SP is desirable this would probably be implemented by just loading another negotiation strategy
component (strategy pattern (Gamma et al. 1995, p. 315)). This again would not include any generic
protocol adaption as intended for the SC within this thesis.

20Due to their structural similarity one common type definition was created for both event and action
elements.

83

3. Design and Development

• serviceID : ID for this particular SI. This element should again be of the type URI
in order to ensure uniqueness.

• serviceTypeID : link to the description of this service’s type.

• slaTemplateID : link to the EST used for this service.

• wsdlFile: reference to the WSDL file, describing the actual service interface in
terms of operations with input, output parameters and error types as well as its
endpoint reference (EPR), defining where the actual service instance is located.

• negotiationCoordinator and serviceProvider : these two elements represent role
bindings for this service.

3.2.4. Final SLA

An electronic SLA consists of some information on the SP and the SC, the actual service
and its description as well as of a set of guarantees (SLOs) on how the service is to
be delivered21. For this, the scope of such SLOs is considered to be known before a
negotiation and / or can be extracted and interpreted by the negotiators based on each
SLO’s declaration in the ST document.

In the context of this thesis the WS-Agreement standard (Andrieux et al. 2007) has
been used as a reference structure for SLA documents. Thus, the following elements of
an electronic SLA have been identified22:

• slaID : ID of this SLA as used for monitoring purposes. This element can also be
found in the WS-Agreement specification.

• context : context information for this SLA, such as the involved parties (SP, SC),
the IDs of the associated ST and EST documents and the WSDL file. WS-
Agreement also defines a context element with very similar content. However,
the definition of the actual service (ST element in my approach) is only given im-
plicitly in the form of SDT and SPT elements. Similarly the reference of the actual
service EPR is given in terms of the SRTs in WS-Agreement (Andrieux et al. 2007,
p. 20).

• List[SLO] : this element finally contains all the negotiated SLOs making up this
SLA document. In WS-Agreement these elements are presented as GTs.

Given the abovementioned service documents, a concrete SLA document is created by
combining elements of the initial EST, the ST and the SI document. The final SLOs are
based on their definition (ST), the negotiated values during the negotiation and / or their

21It is assumed, that a SLA always concerns only one particular service instance, or more precisely one
particular configuration of one service instance. Contractual guarantees concerning more than one
service are modeled as a SLA over a composite service.

22For each of this elements a short hint on where this can be found in the WS-Agreement specification
is given.

84

3.3. Protocol Design

initial values as stated in the EST. The WSDL file, the involved SP and the employed
EST and ST is derived from the respective elements of the SI. The SC, representing
the second contractual party is also derived during the negotiation or even during the
admission process.

3.3. Protocol Design

In order to support both, the discovery and the negotiation of SLAs, a set of protocol
primitives has been developed, building on the abovementioned data structures. They
are shortly described in the following.

3.3.1. Discovery Phase

The discovery phase basically represents the set of activities ultimately leading to a
situation where potential transaction partners (thus SCs and SPs) know one another
and can start a negotiation process. This means the discovery phase is supposed to
support a given SC to find one or more SI documents fitting the search criteria it received
from a respective user. To this end, the SPs should be able to publish the services they
offer (thus the respective SI documents) in a way that they can be found by potentially
interested SCs.

As a quite common problem in SOC, a mechanism is thus needed that supports the
publication and discovery of electronic documents in a distributed setting. A set of
the most prominent approaches in that area has been discussed in section 2.2.2. As
already elaborated there, the most promising paradigms for the IoS are probably cen-
tral (but potentially replicated) registries in combination with multi- or broadcast-based
messaging protocols or P2P-based infrastructures. The former offer the advantage of
high-performance of the individual registry nodes and the possibility to implement com-
plex retrieval algorithms there, whereas the latter have proven to be very resilient to
node failures.

For my proof-of-concept implementation, a very simple single registry node, which can
be found via a broacast-based discovery protocol, has been chosen. Due to the nature of
such a prototype, technical quality metrics such as robustness (favoring P2P solutions)
are not of primary interest. Therefore, a simple architecture based on a central registry
is more than sufficient for investigating the research question at hand. If in future
versions more elaborate mechanisms become necessary, it would nonetheless be possible
to integrate them respectively, as shortly sketched in section 5.4.

Consequently, a set of protocol primitives along with the respective messages for such
a discovery phase have been developed: The first step for both SP and SC, when pub-
lishing or discovering a given service, is to find a respective registry node. For that
a registryDiscovery message has been defined, containing the ID of the sender agent.
This message is sent via a broadcast in order to find one or more registries for the next
steps. This basically corresponds with the broadcast-based mechanisms described in
section 2.2.2. Subsequently, all registry nodes that received this message answer with an
acknowledgement (ACK) message stating the EPR, where they are located.

85

3. Design and Development

Service Consumer

Request Service

Query ServiceIdentificators

Query unknown ServiceTypes
and SLATemplates

Choose SI

Request admission

NEGOTIATION PHASE

Instantiate GenericNegotiator

Registry

Retrieve SIs and send
results

Retrieve ServiceTypes / SLA
templates and send results

Store documents

Service Provider

Publish Service

Publish SI and if not known
ServiceType and SLATemplate

Wait for admission
requests

NEGOTIATION PHASE

Negotiation Coordinator

Admissi
on

possible

Send admission ACK

Yes

No

Yes

No

Figure 3.9.: Discovery Phase Overview

From now on SP and SC processes differ. A SP, wanting to publish a given SI,
first queries whether the respective ST and EST documents associated with the SI are
already available at the registry (queryServiceTypes and querySLATemplates messages).
In case either of them is still unknown, the SP registers the respective document with the
registry (registerServiceType or registerSLATemplate messages)23. Once both documents
are correctly registered (as confirmed again with ACK messages) the actual SI can be
published (registerServiceIdentificator message).

The SC queries the SI documents available at the registry (or registries in case more
than one was found) using a queryServiceIdentificator message24. After potentially hav-
ing found several fitting SIs the respective EST documents used therein are queried
(querySLATemplates message), if not already known.

Given a list of adequate SIs were found (for which also both ST and EST documents
could be retrieved), the agent chooses one of them and tries to start / join a negotiation.
In order to do so, the SC must pass through an explicit admission process, for which a
central entry point is assumed, the NC. The resulting process consists of a SC requesting
admission to a service negotiation at the NC node, which in turn, answers with an ACK
(SC was admitted) or NACK (SC was rejected) message25. It is therefore required that
the SC inserts its credentials in the joinNegotiation message, so the NC agent can make a

23This is necessary, since respective SCs need both documents when deciding on a SI to negotiate for
and when adapting to the stated protocol.

24In the current prototype system only the ID of a distinct ST can be used as a search criteria. The
query message was however implemented in a way that other, more powerful queries, for example
concerning individual elements of a ST, can be integrated. In that case, the SC would probably first
query the ST documents for ones fitting its search criteria and subsequently query the SIs fitting any
of the found STs.

25NACK is commonly used for messages stating that some request was “not acknowledged”.

86

3.3. Protocol Design

valid decision on whether or not admission can be granted. Figure 3.9 gives an overview
on this discovery approach26.

The availability of a service instance is advertised implicitly in that for a busy service
(the service is running or the SP is currently negotiating for it and joining this negotiation
is not possible) the NC just rejects new admission requests27.

In case of a double auction protocol (CM or CDA), the given SI is posted from the SP
to the NC via an offerToSell message and can subsequently be matched with incoming
offers to buy. After this matching, the service is busy and will not be considered for
future matchings until the offerToSell for this SI is re-posted by the SP agent.

In case of a successful admission the SC and SP now engage in the actual negotiation
process.

3.3.2. Negotiation Phase

Since the main goal of this thesis is to define an infrastructure for protocol-generic
negotiations, no single one negotiation protocol can be identified for this phase. Rather,
a set of negotiation message types along with their respective contents has been defined.
These messages can then be used in a given negotiation process, orchestrated according
to the protocol description in the EST document.

To make sure that as many different negotiation protocols as possible can be mapped
to the defined message set, a thorough literature review has been conducted, basically
creating the minimally necessary superset of messages used in the found protocols defi-
nitions (as listed for example in the FIPA protocol library28).

The result reflects the fundamental characteristic of any negotiation protocol, the fact
that it mainly consists of a process of exchanging offers followed by a final acceptance
or rejection of one of the involved partners. This already implies an offer, an accept
and a reject message type. Additionally, some of the protocols found incorporate pull-
paradigms within the bidding process in that they distribute callForBids messages to
the bidders, which in turn answer with an offer accordingly. Finally, in some cases a
central auctioneer just asks the bidders whether or not they are still interested in the
currently offered agreement, while it constantly changes its offer, just until only one
interested bidder is left, the winner of the negotiation. The identified message set thus
results in the message types already introduced on page 82, except for the admission
message, which is only used there to model pro-active protocols.

Using these message types, a vast variety of different protocols can be designed and
subsequently described in an EST document.

26This figure describes the discovery process from an abstract role-centric view; no assertion on role
adoptions by individual agents are made. A detailed description of this aspect is given on page 89.

27In order to give a rejected SC agent a meaningful reason for its rejection (it could be rejected on the
basis of its credentials or because the service is unavailable at the moment) a comprehensive fault
model should be used, building on a set of standardized fault types.

28www.fipa.org

87

3. Design and Development

Service
Management

Layer

Economy
Sub-Layer

Service
Layer

Market
Sub-Layer

Registries
(RA)

Service Provider and
Consumer Processes

Service Management
Agents
(SP, SC)

Mediators
(NC)

manage

bid
agree
upon

SLA

lookup

invoke

Figure 3.10.: Role-based Architecture

3.4. Architecture Design

3.4.1. Role-based Architecture

The developed prototype infrastructure builds on a defined set of roles, the service man-
agement agents can adopt. These roles are geared towards the discovery and negotiation
protocols just presented.

The two basic roles present in this system are the SC and the SP, representing buyer
and seller agents. Additionally a set of registry services / agents (RA) are needed in
supporting the publication and discovery of service description documents. Even when
other discovery mechanisms are used, the nodes providing a (sub-)set of such documents
can be seen as abstract registries and would thus adopt the respective role. Finally, the
NC role represents mediating agents as already sketched.

Both SP and SC agents mainly offer an interface to one another, allowing them to send
and receive messages related to the discovery and negotiation phases. On a technical
level, such messages are implemented as standard SOAP messages in a service-based
system and are only further distinguished internally. Hence, a simple method for message
reception is implemented in both roles, allowing for role-dependent internal processing

88

3.4. Architecture Design

of the actual messages. Additionally, each of these roles offers one routine to external
users of the infrastructure: A SP agent offers a method for publishing and selling and a
SC one for discovering and purchasing a service on a user’s behalf, respectively.

Due to the fact that it does not have any actual contact with external users, but
is only employed within the service management infrastructure, a RA only offers the
possibility to receive electronic messages. More precisely, only discovery related messages
are eligible as the RA does not take part in any other phases of the life cycle.

Finally, NC agents are responsible for admission of SCs or SPs to and potentially
mediation of a given negotiation. Hence, they offer methods for exchanging respective
messages.

Such a centralized concept seems to contradict the vision of a massively decentralized
IoS at first; however, since there is regularly one NC for each negotiation taking place,
the respective nodes, as a set, already form a much decentralized admission infrastruc-
ture. Additionally, it allows for central management of trust-building mechanisms, such
as security or reputation concepts (Rana et al. 2008; Silaghi, Arenas, and Silva 2007),
in a coherent way across a given negotiation setting. Therefore, a central NC for ev-
ery negotiation was considered an appropriate compromise between decentralism and
consistent security and access management, enabling trusted service marketplaces.

The fact that a NC can also act as an independent broker allows for a set of different
possible relationship configurations between SP and NC nodes:

A One agent acts as both SP and NC.

B Separate agents for SP and NC, the bidding taking place between the SC(s) and
the NC.

C Separate agents adopt the SP and NC roles, the bidding taking place between the
SC(s) and the SP.

In the first case one agent takes over admission (NC) as well as the actual negotiation
(SP). This is the default case, as it reduces the overall amount of necessary messages to
a minimum.

An independent NC, also negotiating with the SC(s), represents a central market
broker (case B). In such a situation SP agents only post their offers to sell a given
service to the NC node, which in turn matches them with requests received by the SC
agents. After a successful matching, both SP and SC, are sent a message containing the
results of this matching process (e.g. achieved agreement, transaction partner etc.).

Similarly, an independent NC agent could also be employed only for the admission
of SCs (case C). The actual bidding would then take place at the SP. Newly admitted
SCs would be simply notified by the NC and integrated into the negotiation by the SP
accordingly (if allowed by the negotiation protocol).

In the following the internal routines of each role, as implemented in the proof-of-
concept prototype, is further detailed. For better visualization UML state diagrams are
given for the more complex SP and SC roles29.

29Comprehensive UML activity diagrams for the different agent roles, describing all internal steps and

89

3. Design and Development

PUBLICATION

DISCOVERY

IDLE BUSY

EXECUTING

publishSI() &
registry known

SI publication
successful

ACK
(registry discovery)

publication
unsuccessful

negotiation
unsuccessful OR
no negotiation
partner found

discovery
unsuccessful

publishSI() &
registry unknown timeout OR

successful
invocation

negotiation
successful

Figure 3.11.: State Diagram: Service Provider

3.4.2. Internal Behavior: Service Provider

A SP agent’s basic purpose is to publish a given service to potential customers and sell
it to them subsequently30. Figure 3.11 depicts the resulting internal behavior in terms
of a state diagram.

After successful startup a SP agent is in the IDLE state, awaiting requests (by human
users or automated users, such as an application hosting engine) to sell a service. Once
such an inquiry has arrived, it checks whether or not a RA agent is already known and
can be used for the publication of the service documents. If not, a registry discovery
step, as already described, takes place.

If the RA is already known or successfully discovered, the SP starts the publication
process (and changes its state accordingly). It first queries the RA for the ST and EST
documents associated with the service to be published. If those are not known until now
it must also register them at the RA respectively.

In both the DISCOVERY and the PUBLICATION state, timeout mechanisms are
employed to ensure robustness of the system. In the developed prototype, in both
cases the SP simply re-tries to discover a RA or to query and optionally submit the ST
and EST documents until it finally succeeds. In future extensions of the system more
elaborated strategies, for example a final abortion of the process after a certain amount
of attempts, are thinkable.

Once the SP could ensure that both the ST and the EST documents are available at
the market registry, the actual SI document is published. After the successful execution
of this step the publication process is finished and the SP moves to the BUSY state, in
which the service is continuously offered and negotiated about. The SP only exits this

control flows, can be found in appendix A.2.
30Within this thesis a SP agent is assumed to only manage one service offering at a time. For each new

service instance a new SP agent is needed.

90

3.4. Architecture Design

state when the service is taken off-line, is re-deployed or executed31.
Whenever a negotiation could be conducted, and was successful, this agent moves to

the EXECUTING state, during which the associated service is invoked by the SC that
won the negotiation before32.
After the execution phase (even if it wasn’t successful and ended with the reaching of

a timeout) the SP returns to the BUSY state and is again free for further negotiations33.
Note that although up to now the first configuration, i.e. one node acting as SP

and NC, was assumed, the diagram above also applies to the other two cases. In these
situations the SP simply does not only publish the service documents to the registry,
but also assigns the respective admission task to a NC agent. If configuration B is
applied a second difference occurs, as the SP does not actually negotiate with the SC(s)
but also delegates this task to the NC; this again happens in the BUSY phase. Hence,
the set of possible states and the associated transitions remains the same for all three
configurations.

3.4.3. Internal Behavior: Service Consumer

While the SP is assumed to only manage one service at a time, and has to be re-deployed
if that service changes, the only restriction applying to a SC is that it only interacts
with one SP at a time. Parallel negotiations and executions are thus out of scope for
the prototype system. Due to the race conditions appearing in such settings this was
considered an appropriate approach, especially since concurrent behavior of that kind is
not relevant to the addressed research question.

Nevertheless, a SC can process a whole set of different service requests (as received
from respective users) during its life time. Such requests can even be accepted while the
SC is busy and will be processed once it has finished its current task.

This aspect leads to a more complex state diagram for SC agents, as shown in figure
3.12.

31As, apart from the actual negotiation, all SP agents operate in the same manner, regardless of the
applied protocol, the state diagram explicitly abstracts from the negotiation phase. For this step an
individual negotiation strategy component (defining the applied protocol) is loaded and all negotiation
relevant messages are dispatched to it. This follows the well-known strategy pattern in object oriented
software engineering (Gamma et al. 1995, p. 315).

32No advance reservation mechanisms are considered in this thesis, so the service is considered unavail-
able for new negotiation requests during this phase.

33Depending on the protocol applied, this state could potentially have sub-states, such as IDLE or
AWAITING BIDS. However, since this diagram aims at describing the protocol-independent behavior
of a SP agent I abstracted from this protocol-dependent aspects here.

91

3. Design and Development

ID
LE

D
IS

CO
VE

RY

IN
IT

IA
TI

N
G

_N
EG

O
TI

AT
IO

N

N
EG

O
TI

AT
IN

G

EX
EC

U
TI

N
G

no
 a

pp
ro

pr
ia

te

SI
s

fo
un

d
&

ot

he
r r

eq
ue

st
s

in
 th

e
qu

eu
e

ex
ec

ut
io

n
un

su
cc

es
sf

ul
 &

ot

he
r a

pp
ro

pr
ia

te
 S

Is
 fo

un
d

ad
m

is
si

on

un
su

cc
es

sf
ul

 &
ot

he
r a

pp
ro

pr
ia

te

SI
s

fo
un

d

re
qu

es
tS

er
vi

ce
()

ex
ec

ut
io

n
un

su
cc

es
sf

ul
 &

 n
o

ot
he

r
SI

s
fo

un
d

&
 n

o
ot

he
r r

eq
ue

st
s

in

th
e

qu
eu

e
or ex

ec
ut

io
n

su
cc

es
sf

ul
 &

no

 o
th

er
 re

qu
es

ts
 in

 th
e

qu
eu

e

ne
go

tia
tio

n
un

su
cc

es
sf

ul
 &

no

 o
th

er
 S

I f
ou

nd
 &

ot

he
r r

eq
ue

st
s

in
 th

e
qu

eu
e

ap
pr

op
ria

te
SI

s
fo

un
d

ne
go

tia
tio

n
su

cc
es

sf
ul

ne
go

tia
tio

n
un

su
cc

es
sf

ul
 &

no

 o
th

er
 S

I f
ou

nd
 &

no

 o
th

er
 re

qu
es

ts
 in

 th
e

qu
eu

e

ad
m

is
si

on

su
cc

es
sf

ul

ne
go

tia
tio

n
un

su
cc

es
sf

ul
 &

ot

he
r a

pp
ro

pr
ia

te
 S

Is
 fo

un
d

ad
m

is
si

on
 u

ns
uc

ce
ss

fu
l &

no

 o
th

er
 S

I f
ou

nd
 &

 n
o

ot
he

r r
eq

ue
st

s
in

 th
e

qu
eu

e

no
 a

pp
ro

pr
ia

te
SI

s
fo

un
d

&

no
 o

th
er

 re
qu

es
ts

in
 th

e
qu

eu
e

ex
ec

ut
io

n
un

su
cc

es
sf

ul
 &

 n
o

ot
he

r
SI

s
fo

un
d

&
 o

th
er

 re
qu

es
ts

 in
 th

e
qu

eu
e

or ex
ec

ut
io

n
su

cc
es

sf
ul

 &

ot
he

r r
eq

ue
st

s
in

 th
e

qu
eu

e

ad
m

is
si

on
 u

ns
uc

ce
ss

fu
l &

 n
o

ot
he

r
SI

s
fo

un
d

&
 o

th
er

 re
qu

es
ts

 in
 th

e
qu

eu
e

F
ig
u
re

3.
1
2
.:
S
ta
te

D
ia
g
ra
m
:
S
er
v
ic
e
C
o
n
su
m
er

92

3.4. Architecture Design

The default process for a SC is to receive a service request and move to the DISCOV-
ERY state, during which a set of fitting SI documents are retrieved. After choosing an
appropriate SI the SC agents requests admission to the respective negotiation (INITI-
ATING NEGOTIATION state), joins the negotiation process (NEGOTIATION state)
and finally invokes the service in the EXECUTING state if it could win the negotiation
(see figure 3.1234).

In a more detailed perspective, the SC agent, similarly to the SP, is in the IDLE
state after start-up. After having received the first service request it moves to the
DISCOVERY state and tries to locate a RA (this step has to be undertaken only once,
as the RA is assumed known afterwards). Next, the SC queries the SI documents
available at the RA according to the received search criteria. After having retrieved
some SI documents fitting the query, the SC must retrieve the associated EST and ST
documents. This is again implemented in terms of a query message sent to the RA.

When the discovery timeout occurs the agent checks whether it could retrieve one or
more SIs fitting the search criteria and for which it could retrieve the respective EST
and ST documents in time35. If so, it changes to the INITIATING NEGOTIATION
state and sends an admission request to the NC, stated in the chosen SI36. If no fitting
SI could be found or the respective EST documents could not be retrieved in time, this
request is considered failed. The agents re-starts the discovery process if it has received
another request in the meantime (such requests are simply buffered until they can be
handled) or goes back to IDLE if not.

This principle can be seen all along the process of a SC agent: In case of a failed
attempt to move to the next state (here it could not move from the DISCOVERY to
the INITIATION NEGOTIATION state) it checks its options for another such attempt.
In this case it checks whether or not any other SI was found, which it could request
admission to. Only if no such options are available it moves back to the predecessor
state and checks whether it can start over from there or if even there no other options
are available and so on.

This can be illustrated with the next state change from INITIATION NEGOTIATION
to NEGOTIATION. If the SC was rejected for a given negotiation it will first check
whether there are other SIs it to start a negotiation with. If so, the SC will simply
proceed with the overall process as usual. If no such SIs could be found, it will check
if other service requests have been received in the meantime; this would mean it can
re-start the process in the DISCOVERY state. Only if even this option is not possible,
it will move back to the IDLE state.

Due to the fact that no parallel negotiations are considered, the NEGOTIATION
step differs slightly from this principle, as in case of an unsuccessful negotiation the
SC cannot just proceed with another negotiation process, but has to retract to the

34Due to readability reasons, the registry discovery process, which is analog to the one applied for the
SP, was omitted in this diagram.

35In doing so it also ignores those SIs, which are a) invalid (in that the EST does not fit to the ST) and
b) for which an agreement is not at all possible in terms of the stated SLO restrictions.

36Whenever more than one fitting SI was found, the one to start a negotiation with is chosen randomly
in the prototype system.

93

3. Design and Development

INITIATION NEGOTIATION state and start over from there.
During the EXECUTING state this leads the SC to be able to change to the INITI-

ATION NEGOTIATION, the DISCOVERY or the IDLE state, depending on whether
the invocation was successful or not, whether other SIs were found the agent can start
a new negotiation with or, if not, whether other service requests have been received in
the meantime.

Similarly to the SP, this diagram does not illustrate the actual negotiation phase. The
internal routines enabling a SC to adapt to a given protocol are described separately in
subsection 3.4.6.

3.4.4. Internal Behavior: Registry

The RA node is a placeholder element for any discovery mechanism used in future
versions. It was designed to simply receive register messages and store the corresponding
data into an internal data structure. This is for example used when a SP publishes a
new SI document. Supporting the discovery of service documents, it also offers the
possibility to query the stored SI, EST and ST documents. No complex internal states
are maintained and changed throughout its life time. It simply processes requests to
register or query service documents or answers registryDiscovery messages.

This very basic registry service was considered appropriate due to the fact that the
developed system only acts as a proof-of-concept. Future version will probably replace
it with a more sophisticated registry implementation or even use more decentralized
discovery mechanisms.

3.4.5. Internal Behavior: Negotiation Coordinator

The main task of a NC agent is to handle the admission of SCs to a given negotiation. For
this, it offers the possibility to submit respective messages along with a set of credentials,
as needed for the admission decision.

Additionally, if the negotiation phase is also assigned to the NC (configuration C), it
must also be able to process incoming negotiation messages. Just with configurations
A and B (see page 89) these are simply forwarded to a negotiation strategy component,
which in turn provides the protocol-specific functionality.

Similarly to the RA nodes, a NC thus does not expose complex internal states and
state changes. Admission requests are evaluated and answered based on the received
data and the implicit service availability information, and negotiation related messages
are simply forwarded to the strategy component.

3.4.6. The protocol-generic SC Strategy Component

The strategy subcomponent of an SC agent represents one of the central deliverables of
this thesis, as basically all routines needed for adaption to a new negotiation protocol
are implemented herein.

During the instantiation process for a respective Generic Negotiator (GN) component,
it receives from the SC:

94

3.4. Architecture Design

• the service description documents,

• the ID of the current negotiation,

• a link back to the SC,

• the constraints the user posed on the SLA to be negotiated (e.g. her reservation
values) and

• some additional negotiation parameters, such as timeout or concession values.

As a first step, the GN partitions the stated SLOs into those that are fixed and those
that can be negotiated. The former are simply stored. For each of the latter a new
SLONeg object is created, containing both the initial SLO (property ID and value) and
all additional information that is associated with it (e.g. attributeRestrictions or domain
descriptions). These objects are then again saved and subsequently treated as the first
offer from the negotiation partner.

Next, the SLOConstraint objects initially received from the user are processed, each
of which basically describes the user’s demands on one particular SLO under negotiation
(fixed or negotiable). Following the rationale from above, two types of such constraint
classes are present: EnumerationSLOConstraints or OrderedSLOConstraints, depending
on the value domain of the underlying property37.

Both provide methods for requesting the stated restrictions (e.g. upper or lower
reservation values or concession steps in case of an ordered domain) and simple methods
calculating whether or not a given (received) value fulfills this constraint or, contrarily,
is so far away from any acceptable value that this offer can be regarded as rejectable.
Additionally, they also provide the GN with a method for creating counter offers based
on a received value.

An EnumerationConstraint object basically states a set of acceptable values, based
on which it can decide whether or not a received SLO value is acceptable. Intuitively
received values applying to an EnumerationConstraint are never rejectable, as no as-
sertion can be made whether or not the negotiation partner would accept one of the
demanded values (these values do not expose any relationship from which such an asser-
tion could be deduced). In the current prototype, when creating a counter offer, simply
one acceptable value is randomly chosen and returned38.

Contrarily, an OrderedSLOConstraint defines a range of acceptable values, regularly
only bounded on one side (either a minimum or maximum reservation value is present39).
Consequently an offer is deemed acceptable based on these boundary values. Deciding

37For each constraint received from the user an internal constraint object, representing it, is created
during initialization of the GN.

38In future versions, potentially a list of all acceptable values will be sent in order to assure determinism
of the negotiation.

39It is assumed that a negotiator has a clear preference on a ordered negotiation parameter. She will
therefore accept all values as long as they are higher / lower than her reservation value. A SC will
for example accept a price as long as it is lower that a given reserve value but will not have any lower
boundary for the acceptable values.

95

3. Design and Development

whether or not an offer is rejectable is more complicated, as it differs from one user to
the other.

For the creation of a counter offer, two cases must be distinguished: an offered value
for the respected SLO was already received or not. In the latter case, this agent posts the
first offer for this SLO. Here it simply offers the best value acceptable for the SP (stated
as upper or lower reservation values in the EST) or if such values are not specified it
offers half its own upper reservation value / double its lower reservation value40. In the
former case it just concedes from its lastly posted offer by an amount, specified by the
user for this particular SLO during instantiation (concession step value).

Once all this information was extracted the GN checks whether it has to start the
negotiation (pro-active protocol). If so, two possible actions can be defined: this agent
can be allowed to post an offer or to simply accept all the values stated in the EST
(catalogue pricing model).

Here, a basic principle of the GN becomes obvious: it always seeks to maximize its
profit and thus will always choose some actions over others (if both are allowed). In this
case (pro-active protocol) it will first check, whether an offer is possible, which could
further improve the currently offered agreement. If so, an offer will be sent; if not it will
simply accept the current values, as no negotiation on them is allowed.

The same principle applies throughout the whole negotiation process. Whenever a
negotiation message is dispatched to the GN it checks its options: In case of a reject or
accept message the negotiation is over. It simply processes the result in that it passes
the respective information / reached agreement to the SC agent. In case of a callForBid
message it creates an offer and sends it to the SP agent41. All these possibilities are
straightforward, as they don’t give the GN any option to choose among a set of possible
actions.

When receiving an offer, this could potentially change. If the offer is not completely
rejectable (this is checked by iterating over all involved SLOConstraint objects) and a
counter offer is possible, the GN will always do so. A counter offer is always the best
option, as it potentially increases value of the agreement to be reached for the user.
If this is not possible, the GN will check whether a stillInterested message is allowed,
providing it with the possibility of an ongoing negotiation, even if it cannot actively
influence the changing of the negotiated values. If even this is not possible it will finally
check whether the received offer can be accepted or in the end rejected completely and
do so. This routine gives the GN the possibility to react on incoming messages in a
way that maximizes its further options during the negotiation and in the end potentially
even its utility in terms of the reached agreement.

Summarizing this chapter, a detailed overview on the developed service description
documents, the employed discovery and negotiation protocols and the designed software
agents employed therein has been given. In the next chapter I describe how these
concepts can be instantiated and how the prototype system can be deployed and started.

40These factors are chosen randomly and would be provided by the user in future versions.
41Offer messages are simply created by iterating over each not yet fulfilled constraint object and trig-

gering each to provide a counter offer value, as described before. These values are then combined to
one bundled offer message.

96

3.4. Architecture Design

Also, the results of a demonstration of the prototype’s effectiveness (with regard to the
stated requirements) as well as its efficiency (evaluation step) are given.

97

4. Assessment of the Developed System

After having presented the infrastructure design in the last chapter, the results of its
assessment are presented in the following.

4.1. Prototypical System Implementation

The concepts introduced in chapter 3 have been implemented in a Java-based proof-
of-concept prototype infrastructure, building on the agent-based IoS simulation toolkit
SimIS (König, Hudert, and Eymann 2010). This way a multitude of different config-
urations, even very extreme market situations, can be assessed only focusing on the
negotiation and discovery phases, before the components are ported to a productive IoS
platform dealing with the whole service life cycle.

This toolkit aims at providing researchers with a comprehensive framework for in-
vestigating distributed algorithms or protocols within the context of the IoS. Building
on the generic Recursive Porous Agent Simulation Toolkit (REPAST) (North, Collier,
and Vos 2006), it proposes a two-tiered architecture dividing the overall system into an
Application Layer (AL) and an Infrastructure Layer (IL) (see figure 4.1).

The IL models topological settings of the IoS, whereas the AL represents the actual
set of service management agents and respective services. The fundamental idea is that
all AL agents are linked to a single IL agent each, which represents their server platform.
This infrastructural node deals with message handling and routing issues.

In the AL the actual services of the IoS vision are defined, communicating via the
offered messaging interfaces and routing functionalities offered by the IL1. Each service
(as represented by an AL agent) is implemented as a plain Java class and can therefore
exploit the full potential this programming language offers.

The agent types and messages developed for this prototype have consequently been
implemented as specific AL agents and Java message objects within SimIS. Each of the
management agents (SCs and SPs) is additionally accompanied by a strategy object,
the SCs with the protocol-generic GN component and the SPs with a strategy distinctly
fitting to the offered protocol (as parameterized during startup).

1The message structures and service / agent interfaces, building on them, have been designed equiv-
alently to real-world SOAP messages and WS interfaces. This eases porting the prototype to a
productive infrastructure building on WS technologies (the de facto standard for such infrastructures
as of today) in the future.

99

4. Assessment of the Developed System

Application Layer

Infrastructure Layer

Service Management Agents

Infrastructure Nodes

Figure 4.1.: SimIS Toolkit

4.2. Conceptual Demonstration

As described in 1.3.2, this section assesses the effectiveness of the developed infrastruc-
ture. In this demonstration step the capability of the designed mechanisms and data
structures to fulfill the posed requirements is investigated.

4.2.1. Assessment on the Basis of the Stated Requirements

Recapitulating the requirements stated in 2.1, the following assertions can be made:

R1: Need for market registries The discovery phase in my approach explicitly
builds on a registry role (RA) for publication and discovery of the service description
documents (EST, ST and SI).

R2: Support for SLAs of different complexity as a conceptual basis for the
service management

The ST, EST and SLA documents provide a very generic service (SLA) description
structure. By offering rule-based text elements along with the pre-defined and typed ele-
ments for quantitatively measurable service aspects, a comprehensive service description
can be created. The defined document structures also enable the usage of external, stan-
dard languages for describing service characteristics (for example WSDL when describing
the service interface).

R3: Support for restrictable SLA offerings, including non-negotiable terms.

The separation of offered service parameters (defined in the ST document) and the
assertions on their negotiability as well as their starting values (stated in the EST docu-
ment) directly corresponds to that claim. By defining re-usable ST and EST documents,
a very generic approach for restricting individual SLA parameters (to pre-set values) is
offered.

R4: Support for protocol-generic SLA negotiations

This represents the most fundamental claim made in this thesis. The main goal of my
work is to define mechanisms and data structures allowing for the dynamic creation of
knowledge about and subsequent adaption to a priori unknown protocols for negotiating
electronic SLAs.

Each SC agent, present in the developed infrastructure is accompanied by a protocol-

100

4.2. Conceptual Demonstration

generic negotiation strategy component, the GN. This module is capable of parsing
negotiation protocol descriptions coded within EST documents and subsequently taking
part in the respective negotiation process. No prior knowledge about the protocol to be
executed is necessary for this.

A more detailed proof of feasibility is given in subsection 4.3, underlining the statement
just made.

R5: A priori unrestricted set of possible negotiation protocols

The GN component is capable of adapting to every protocol that can be described
within an EST document. The only restriction posed on the set of possible protocols
is thus the structural restriction of the EST document and the used ontology of SLO
parameters (this is assumed to be defined for the given industry the infrastructure is
used in).

Hence, given the EST document offers a high enough generity for describing different
protocols, this requirement can be assumed fulfilled. In subsection 4.2.2 this expressive-
ness is assessed in more detail.

R6: Software agents acting as negotiators

The system architecture, as implemented in the proof-of-concept prototype, heavily
builds on software agents as instantiations of the defined roles. Such components are
the basic actors in the BabelNEG system.

R7: Need for intermediaries

The developed infrastructure incorporates an explicit intermediary role, used for the
definition of market brokers, the NC.

In summary, the requirements can be considered fulfilled, once the expressiveness of
the EST in describing different negotiation protocols and the GN’s ability to adapt to
such descriptions can be shown. Respective efforts are made in the following.

4.2.2. Conceptual Assessment of the Service Description Documents

The overall goal of the service description documents is to enable the definition of all
negotiation protocols and SLA characteristics commonly used in electronic negotiation
settings. However, there is no exhaustive list of such aspects, upon which the expres-
siveness of the language could be evaluated. Therefore, for both the service / SLA and
protocol description parameters, representative examples must be identified and further
used for demonstration purposes.

The description of an electronic service or SLA document commonly comprises a set of
functional and non-functional characteristics of the respective service instance. A SLA
document additionally specifies some context elements, such as the involved SC and SP.
This basic structure can be found in all relevant standard languages currently in use (see
for example Andrieux et al. 2007; Lamanna, Skene, and Emmerich 2003; Ludwig et al.
2003a).

Therein, the functional properties of a service are described using some interface de-
scription language, such as WSDL, sometimes also augmented with semantic annota-
tions. On the other hand, the non-functional aspects are defined as tuples of QoS metric
definitions and respective values.

101

4. Assessment of the Developed System

<ServiceType>
 <serviceTypeID>
 http://www.abc.com/demandForecasting

 </serviceTypeID>
 <serviceDescription>
 http://www.abc.com/demandForecasting/functionality
 </serviceDescription>
 <property propertyID="sla/price">
 <domain>Double</domain>
 <declaration>http://www.sla.org/ontology/

 price</declaration>
 </property>
 <property propertyID="scm/forecastingAlgorithm">
 <domain>String</domain>
 <declaration>http://www.scm.org/ontology/

 forecastingAlgorithm</declaration>
 </property>
 <property propertyID="sla/allocatedMemory">
 <domain>Double</domain>
 <declaration>http://www.sla.org/ontology/

 allocatedMemory</declaration>
 </property>
</ServiceType>

(a) ST Document

<ServivceIdentificator>
 <serviceID>
 http://www.xyz.com/demandForecasting

 </serviceID>
 <serviceTypeID>
 http://www.scm.com/demandForecasting
 </serviceTypeID>
 <slaTemplateID>
 http://www.slaNeg.com/standardDutchAuctionTemplate
 </slaTemplateID>
 <wsdlFile>
 http://www.xyz.com/demandForecasting/

 forecastingService.wsdl

 </wsdlFile>
 <negotiationCoordinator>
 http://www.xyz.com/demandForecasting/

 dutchAuctionNegotiator

 </negotiationCoordinator>
 <serviceProvider>
 http://www.xyz.com/demandForecasting/

 dutchAuctionNegotiator

 </serviceProvider>
</ServivceIdentificator>

(b) SI Document

Figure 4.2.: Sample Service Description Documents

In the BableNEG system, the characteristics of a service are defined in the ST, the SI
and, after successful negotiation, in the SLA document as presented in section 3.2:

The functional aspects of a service are expressed within the ST and the WSDL file2,
which is referenced in the SI document. The involved parties (before the SLA is signed
only SP and NC are known) are also stated therein. Additionally, the non-functional
aspects a service of a given type exposes, and can thus offer guarantees on, are defined
in the ST document. The actual values of these metrics are not necessarily defined
before the actual negotiation. In contrast, a service mostly only offers the possibility for
defining a guarantee on a particular SLO before the actual SLA negotiation. The actual
value of this guarantee is regularly agreed upon during the negotiation process.

If some of the metrics are already associated with values before a negotiation, this
indicates either a starting value to be argued over subsequently or a fixed characteristic
that cannot be altered for the described service instance (SLO is non-negotiable). Such
initial SLO values are stated in the EST document when defining the negotiation object.

A short demonstration of these aspects is given in figures 4.2(a), 4.2(b) and 4.3, show-
ing example ST, SI and SLA documents, adhering to the schema definitions presented
in section 3.2.

They describe a demand forecasting service, offering three non-functional attributes:
the price, the allocated memory (determining the duration of each forecasting run) and
the used forecasting algorithm itself. The first two are of an ordered domain (Double),
representing US Dollar (USD3) and gigabyte (GB) values respectively, as opposed to

2In traditional SOS, only such a WSDL description (potentially with some semantic extensions, as for
example used in (Overhage and Thomas 2005)) is used.

3The used measure for a SLO is assumed to be pre-defined in the context of the target industry or,
alternatively, specified in the ST document.

102

4.2. Conceptual Demonstration

<SLA>
 <slaID>
 http://sla.org/14294

 </slaID>
 <context>
 <serviceProvider>
 http://www.xyz.com/demandForecasting/

 dutchAuctionNegotiator

 </serviceProvider>
 <serviceConsumer>
 http://www.abc.com/scm/negotiator

 </serviceConsumer>
 <serviceID>
 http://www.xyz.com/demandForecasting

 </serviceID>
 <serviceType>
 http://www.scm.com/demandForecasting

 </serviceType>
 <slaTemplate>
 http://www.slaNeg.com/standardDutchAuctionTemplate

 </slaTemplate>
 <wsdlFile>
 http://www.xyz.com/demandForecasting/

 forecastingService.wsdl

 </wsdlFile>
 </context>
 <SLO propertyID="sla/price">
 <value>1.50</value>
 </SLO>
 <SLO propertyID="scm/forecastingAlgorithm">
 <value>bayesianForecasting</value>
 </SLO>
 <SLO propertyID="sla/allocatedMemory">
 <value>4.0</value>
 </SLO>
</SLA>

Figure 4.3.: Example SLA Document

the third, exposing an unordered domain (String, representing the algorithms name).
Additionally, a WSDL file for this service can be found at “http://www.xyz.com/demand
Forecasting/forecastingService.wsdl”.

After the negotiation, a SLA document was achieved between the SP “http://www.xyz
.com/demandForecasting/dutchAuctionNegotiator” and the SC “http://www.abc.com/
scm/negotiator” defining a price of 1.50 USD. The “bayesianForecasting” algorithm is
to be used and an amount of 4 GB of memory is allocated to this service.

In the following, the documents’ capabilities to describe actual negotiation protocols
are assessed. For this, a representative set of mutually as different as possible protocols4

has been selected. Such an approach cannot claim completeness, however since there
is no comprehensive list of possible protocols, there is no approach able to claim that.
By choosing very different protocols at least a sufficiently generalizable assertion on the
language’s expressiveness can be made.

The protocols chosen for this assessment are an EA, a DA (both 1:N protocols), a
FPA, a CM (M:N protocol)5 and two types of AO protocols (1:1 protocols), one being

4The chosen protocols are mainly based on the FIPA interaction protocol library, being one of the most
commonly used protocol taxonomies for agent-based interactions.

5This protocol follows the M+1 clearing algorithm, presented in (Wurman, Walsh, and Wellman 1998b).

103

4. Assessment of the Developed System

single-attributive and one multi-attributive. In the following, each of these protocols is
presented in terms of a UML sequence diagram and subsequently described in terms of
a respective EST document. As the negotiation object, a service of the type described
in figure 4.2(a) is assumed.

From a protocol perspective, the EA and the DA only differ slightly. In both protocols
the SP (in this case also acting as NC) multi-casts an offer message to the SCs involved
in the negotiation, which in turn answer by expressing whether they are still interested in
the currently offered SLA or not. After an internal timeout the SP in- (EA) or decreases
(DA) the current price value. After this step another round of offer multi-cast and
stillInterested messages takes place. This process stops whenever at most one SC is still
interested in the new offer. This SC then wins the negotiation6. Figure 4.4 depicts this
process. The corresponding EST document for an EA protocol is described in figure
4.57.

In both protocols the configuration of one SP and many SCs is defined within the
context-element. Also, the price is defined as the one negotiable SLO for both protocols.
The actual process can be described by only one protocolStep element8. It states an
incoming offer from the SP as the triggering event and allows the SCs to answer with
a stillInterested message. The price starts at a value of “1.0 USD” and is constantly
increased by “1.0” in each new round9. Finally, both protocols define protected infor-
mation policies, allowing all involved agents to query available negotiation information.

The Fixed Price Auction basically represents a catalogue pricing model, not defining
any multi-round offer exchange. The SC can only accept the offered SLA or reject it
(see figures 4.6).

Accordingly, the EST document for this protocol already states values for the offered
SLA metrics (a price of “10.0 USD”, “4.0 GB” of allocated memory and the forecasting
algorithm “bayesianForecasting”). No negotiable SLOs are defined, reflecting the cata-
logue pricing scheme. This protocol is also pro-active in that the SC has to act directly
after being admitted to the negotiation (by accepting or rejecting the offered SLA). This
is reflected in the process-element as shown in figure 4.710.

The CM is a M:N protocol, where both sides (SC and SP) post an offer or offer-
ToSell to the central broker. The broker then matches an offer to a fitting offerToSell
(according to an internal matching function) and forwards the matching result to the
respective bidders. If no matching could be calculated the respective bidder is sent a
notification reject message.

Similarly to the FPA, the respective EST document defines a pro-active bidding pro-
cess, in which the only possible action for a SC is to post an offer to the broker.

6In case no SC is still interested, the first SC having answered in the last round wins the negotiation.
7The respective DA description would only differ in terms of the progress element (descending instead
of ascending) and it would define a upper instead of a lower bound.

8This is the case since only the SC side of the process must be described and the acceptance of notifi-
cation accept and notification reject messages is assumed to be implicitly possible for any protocol.

9In the DA the price would start for example at “20.0” and would constantly be decreased by “1.0”.
10For clarity reasons only the parts of the EST actually differing from one protocol to another are shown

for the remainder of this section (the differences to the EA are highlighted). For a complete EST,
refer to figure 4.5 for an overview of an EA protocol.

104

4.2. Conceptual Demonstration

Service Consumer:Service Provider:

loop

break

alt

[to the winner]

[to the looser]

[no more bids]

opt

[only still interested buyers remain in the negotiation]

[1,*]

opt

[only still interested buyers remain in the negotiation]

1: offer(startingPrice)

2: timeout

2: outcome

1: increasePrice (English Auction) /
decresePrice (Dutch Auction)

1.1: serviceInvocation

1.1: offer(currentPrice)

1: notification_reject

1: notification_accept

1: stillInterested

1: stillInterested

2.1: payment

Figure 4.4.: Sequence Diagram representing an EA / DA Protocol

Finally, the (multi-attributive) AO protocol is used for bilateral offer exchanges. It
is characterized by both SPs and SCs posting offers to each other. After reception of
such an offer, it is evaluated and, depending on the content, a counter-offer, a notifica-
tion accept or a notification reject message is sent to the opponent. Figure 4.10 shows
this process11.

11Due to clarity reasons, only the accept case was modeled; reject messages are possible in the same
way as the shown accept messages.

105

4. Assessment of the Developed System

<ExtendedSLATemplate>
 <slaTemplateID>englishAuctionTemplate</slaTemplateID>
 <slaTemplate>
 <SLO propertyID="scm/forecastingAlgorithm">
 <value>bayesianForecasting</value>
 </SLO>
 <SLO propertyID="sla/allocatedMemory">
 <value>4.0</value>
 </SLO>
 </slaTemplate>
 <negotiationProtocol>
 <context>
 <serviceProvider>
 <maximumNumberOfAgents>
 1

 </maximumNumberOfAgents>
 <minimumNumberOfAgents>
 1

 </minimumNumberOfAgents>
 <admissionRestriction admissionRestrictionForm="open"/>
 </serviceProvider>
 <serviceConsumer>
 <maximumNumberOfAgents>
 -1

 </maximumNumberOfAgents>
 <minimumNumberOfAgents>
 1

 </minimumNumberOfAgents>
 <admissionRestriction admissionRestrictionForm="open"/>
 </serviceConsumer>
 </context>
 <negotiationObject>
 <negotiableSLO propertyID="sla/price">
 <values>single</values>
 </negotiableSLO>
 </negotiationObject>

(a)

<offerRestrictions>
 <attributeRestriction propertyID="sla/price">
 <threshold>
 <lowerBound>1.0</lowerBound>
 </threshold>
 </attributeRestriction>
 <attributeRestriction propertyID="sla/price">
 <progress>
 <progressForm>ascending</progressForm>
 <delta>1.0</delta>
 </progress>
 </attributeRestriction>
 </offerRestrictions>
 <offerAllocationPolicy matchingForm="forwarded"/>
 <informationPolicy>
 <negotiationTransparency>
 protected

 </negotiationTransparency>
 <negotiationContent>none</negotiationContent>
 <statusTransparency>protected</statusTransparency>
 <statusContent>agent_price</statusContent>
 </informationPolicy>
 <process>
 <serviceConsumer>
 <protocolStep>
 <event from="serviceProvider" to="serviceConsumer">
 <messageType>offer</messageType>
 </event>
 <possibleAction from="serviceConsumer"
 to="serviceProvider">
 <messageType>stillInterested</messageType>
 </possibleAction>
 </protocolStep>
 </serviceConsumer>
 </process>
 </negotiationProtocol>
</ExtendedSLATemplate>

(b)

Figure 4.5.: Sample EST Document for an EA protocol

The only difference between an multi-attributive and a regular AO protocol is that
the former allows for negotiating about more than just a single SLO.

In the demand forecasting service example this means that in the former price and
allocated memory and in the latter only price are negotiable (see figures 4.11 for an EST
description of the AO protocol12).

These example instantiations provide a good estimation of the expressiveness achieved
with the developed language structure. Consequently, the last remaining aspect that is
to be shown before all stated requirements can be assumed fulfilled is the actual protocol
adaptability based on these documents. This is addressed in the next section.

4.3. Simulative Demonstration of the Prototype’s Effectiveness

For the simulative demonstration of the proof-of-concept prototype (and thus the agents’
capability to adapt to new negotiation protocols) the aforementioned SimIS toolkit is

12The multi-attributive AO protocol would simply state the allocatedMemory as a secondary negotiable
SLO, but would not differ otherwise.

106

4.3. Simulative Demonstration of the Prototype’s Effectiveness

Service Consumer:Service Provider:

alt

[offer is acceptable]

[offer is not acceptable]
1: notification_reject

1: notification_accept

Figure 4.6.: Sequence Diagram representing a FPA Protocol

<ExtendedSLATemplate>
 <slaTemplateID>fixedPriceAuctionTemplate</slaTemplateID>
 <slaTemplate>
 <SLO propertyID="sla/price">
 <value>10.0</value>
 </SLO>
 ...
 </slaTemplate>
 <negotiationProtocol>
 <context>
 ...
 <serviceConsumer>
 <maximumNumberOfAgents>
 1

 </maximumNumberOfAgents>
 <minimumNumberOfAgents>
 1

 </minimumNumberOfAgents>
 <admissionRestriction admissionRestrictionForm="open"/>
 </serviceConsumer>
 </context>
 ...
 <process>
 <serviceConsumer>
 <protocolStep>
 <event from="serviceProvider" to="serviceConsumer">
 <messageType>admission</messageType>
 </event>
 <possibleAction from="serviceConsumer"
 to="serviceProvider">
 <messageType>notification_accept</messageType>
 </possibleAction>
 </protocolStep>
 </serviceConsumer>
 </process>
 </negotiationProtocol>
</ExtendedSLATemplate>

Figure 4.7.: EST Document defining a FPA Protocol

employed. Before detailing the actual simulation settings, some characteristics of the
prototype, stemming from the usage of SimIS, have to be clarified:

REPAST, and thus SimIS, is a time-discrete simulator, hence all computations occur
in distinct action steps, called ticks. On the one hand, this eases the sequencing of
actions in a (although only simulated) massively decentralized setting by avoiding race

107

4. Assessment of the Developed System

Service Consumer:Broker:Service Provider:

break

alt

[to the ones successfully matched to a transaction partner]

[to the ones not matched to a transaction partner]

[matching timeout elapsed]

1: offer

1: notification_accept

1.1: offerToSell

2: notification_reject

2: notification_accept

1: notification_reject

1: offer
1.1: offerToSell

1: notification_accept

2: notification_accept

1: notification_reject

2: notification_reject

Figure 4.8.: Sequence Diagram representing a CM (Double Auction) Protocol

conditions. On the other hand, it inhibits direct investigations of technical performance
metrics, such as response time. Given the nature of a proof-of-concept prototype such
aspects are of minor interest, however, as the feasibility of the approach represents the
main result to be proven. Thus, SimIS was assumed appropriate for the research project
at hand.

In order to at least approximate real-world timing sequences, individual steps through-
out the discovery and negotiation processes have been mapped to a corresponding
amount of ticks, necessary for their completion. Each hop a message traverses from
sender to recipient takes a distinct amount of ticks (depending on the bandwidth as-
sociated with the respective link during parameterization). The reception and internal
interpretation of a message (including the creation of a potential answer message) has
been designed to take exactly one tick.

The internal architecture of the BabelNEG system (building on the SimIS toolkit) has
already been sketched in subsection 4.1. A set of IL, connected with bi-directional links,
represent the topology of server nodes in the IoS setting. Each of these connections is

108

4.3. Simulative Demonstration of the Prototype’s Effectiveness

<ExtendedSLATemplate>
 <slaTemplateID>doubleAuctionTemplate</slaTemplateID>
 <slaTemplate>
 ...
 </slaTemplate>
 <negotiationProtocol>
 <context>
 <serviceProvider>
 <maximumNumberOfAgents>
 -1

 </maximumNumberOfAgents>
 ...
 <admissionRestriction admissionRestrictionForm="open"/>
 </serviceProvider>
 ...
 </context>
 <negotiationObject>
 <negotiableSLO propertyID="sla/price">
 <values>single</values>
 </negotiableSLO>
 </negotiationObject>
 ...
 <process>
 <serviceConsumer>
 <protocolStep>
 <event from="negotiationCoordinator"
 to="serviceConsumer">
 <messageType>admission</messageType>
 </event>
 <possibleAction from="serviceConsumer"
 to="negotiationCoordinator">
 <messageType>offer</messageType>
 </possibleAction>
 </protocolStep>
 </serviceConsumer>
 </process>
 </negotiationProtocol>
</ExtendedSLATemplate>

Figure 4.9.: EST Document defining a CM (Double Auction) Protocol

associated with a logical bandwidth attribute delimiting the amount of data that can
cross this link in a single tick13.

Located on this topology, implemented as AL agents, are the service management
agents mentioned in section 3, SPs, SCs, RAs and NCs. Each SC is accompanied by
one GN component, handling the negotiation processes. Correspondingly, each SP is
accompanied by a strategy component, geared towards the protocol offered by this SP.
This way the adaptability of a SC, and the GN module respectively, to a variety of
different market situations can be assessed.

The SP agent class has been implemented as a generic wrapper of the individual strat-
egy modules, regardless of the supported protocol. It simply passes all messages received
during the negotiation phase to the strategy module, which is protocol-dependent.

In addition to regular SPs a second type is needed that is able to interact with a
broker. Because of the modular nature of the SP agents, this type (called Independent
Service Provider (ISP) in the following) only differs slightly from the regular SP, as it
simply delegates the negotiation-relevant message handling to an external node (the NC)

13Incorporating the time-discrete paradigm, this bandwidth is specified in terms of message elements
per tick.

109

4. Assessment of the Developed System

Service Consumer:Service Provider:

loop

break

alt

[provider accepts]

[consumer accepts]

[bid is accepted]

[1,*]

1: offer

1: notification_accept

1.1.1.1: offer

1.1.1: evaluate proposal

1: evaluate proposal

1.1: offer

1: notification_accept

1: offer

1: evaluate proposal

1.1: offer

1.1.1: evaluate proposal

1: notification_accept

1: notification_accept

1.1.1.1: offer

Figure 4.10.: Sequence Diagram representing an AO / MAO Protocol

instead of the internal strategy module. The just mentioned brokers are finally assumed
to support one distinct auction protocol for one distinct service type each, allowing for
structured broker discovery processes.

The quantity and distribution of all those agents, thus defining the simulation setting,
are specified in a configuration file that is parsed during simulation startup. Additionally,
a second file defines all available ST and EST combinations offered in this market. During
startup the respective agents are instantiated (the SPs, ISPs and NCs are additionally
parameterized with the ST and EST types they support) and located on the topology
as stated in the configuration files. In a second step the service description documents
are generated and passed to the SPs / ISPs for publication14.

In order to allow for random demand generation at the SC agents, all STs available
in the system are additionally stored at a DemandHelper node. During the actual sim-
ulation, each SC, once triggered internally by a timeout mechanism, requests a random
service request from this helper module. This results in a system where only services

14Due to the Java-based implementation these documents are internally represented as Java objects.
However, a parser has been developed capable of creating these objects from respective documents
coded in XML.

110

4.3. Simulative Demonstration of the Prototype’s Effectiveness

<ExtendedSLATemplate>
 <slaTemplateID>alternateOffersTemplate</slaTemplateID>
 <slaTemplate>
 ...
 </slaTemplate>
 <negotiationProtocol>
 <context>
 ...
 <serviceConsumer>
 <maximumNumberOfAgents>
 1

 </maximumNumberOfAgents>
 <minimumNumberOfAgents>
 1

 </minimumNumberOfAgents>
 <admissionRestriction admissionRestrictionForm="open"/>
 </serviceConsumer>
 </context>
 <negotiationObject>
 <negotiableSLO propertyID="sla/price">
 <values>single</values>
 </negotiableSLO>
 </negotiationObject>

(a)

 ...
 <process>
 <serviceConsumer>
 <protocolStep>
 <event from="serviceProvider" to="serviceConsumer">
 <messageType>offer</messageType>
 </event>
 <possibleAction from="serviceConsumer"
 to="serviceProvider">
 <messageType>offer</messageType>
 </possibleAction>
 <possibleAction from="serviceConsumer"
 to="serviceProvider">
 <messageType>notification_accept</messageType>
 </possibleAction>
 </protocolStep>
 </serviceConsumer>
 </process>
 </negotiationProtocol>
</ExtendedSLATemplate>

(b)

Figure 4.11.: Sample EST Document for the AO Protocol

actually present on the market are demanded in the simulated user requests15.

Simulation Parameters and their Usage within the Agents

For each simulation run a set of parameters have to be set: The one global parameter
is the amount of ticks the simulations should run. This delimits the duration of the
experiments. Additionally, there exists a variety of local parameters, applied only within
particular agent classes.

Broker Agent (acting as an independent NC) The broker only has one parameter,
the timeout that defines the time intervals, after which a matching step is conducted
(matchingTimeout)16.

SP / ISP Agent Both SPs and ISPs internally use the following timeout types:

• findRegistryTimeout, used during registry discovery.

• publicationTimeout, used during the publication process.

• executionTimeout, used after the negotiation when the service is actually invoked.

15Since the focus of my work lies on the investigation of the adaptability of the developed agents, requests
for not available service types would not provide any additional value within the simulations. Hence,
they were omitted.

16Due to the time-discrete simulations all timeouts are expressed as an amount of ticks that is discounted
every tick.

111

4. Assessment of the Developed System

• auctionTimeout, used to delimit the time an agent waits for the first joinNegotia-
tion message to arrive before declaring this negotiation attempt to be failed and
start over.

When accompanied with a EA, DA or (multi-attributive) AO strategy, a SP also
needs a timeout delimiting the time it waits for answers from the SCs during a running
negotiation (biddingTimeout) before declaring it to be aborted or starting a new round
(EA and DA).

Finally, the ISP employs two additional timeouts, the findNCTimeout (employed in
the broker discovery) and the negotiationTimeout (delimiting the maximum time the
agent waits for an answer message from the broker).

Apart from the timeouts, a set of parameters defines the way the individual SLOs
offered should be treated during the negotiation.

The estimatedMarketValue defines the valuation an agent assigns to a given SLO. This
value is also used for calculating the starting offers. Depending on the value preference
(stated in the theHigherTheBetter boolean parameter, also given for each SLO) these
starting values are set to double or half the estimatedMarketValue. In an EA for example,
given the estimated market value of the service to be sold is 10 USD, the starting value
would be set to 5 USD.

The marketValueAdoption rate (only given for the price SLO17) defines how an agent
adapts its market valuation of a given service over time. Whenever an agent was not able
to reach an agreement (e.g. when a negotiation was aborted due to elapsing timeouts
or if no mutually acceptable offers could be found), it reduces its valuation for the
negotiated service. This will improve its chances for winning the next negotiation it
engages in. When an agent wins a negotiation, it acts vice versa, trying to get an even
better deal the next time. This very simple learning algorithm provides the simulation
runs with a dynamic element, also preventing single agents from never being able to
reach an agreement, just because of their wrong valuation of a given service.

SPs are also parameterized with a concessionStep value (one per SLO), used in bar-
gaining protocols. This defines the value an agent is willing to concede from its last offer
in order to converge to a mutually acceptable agreement.

Finally, all SPs and ISPs offer a parameter that delimits the distribution of broad-cast
messages, the maximumHops factor.

SC Agent On the other hand, the SC agents define the following timeout parameters:

• discoveryTimeout, delimiting the amount of ticks the SC can take to find a SI
and retrieve the respective EST and ST documents before this request is declared
unsuccessful or a fitting SI is chosen to start the negotiation phase.

• findRegistryTimeout, used during registry discovery.

17Learning is only introduced for the price attribute, as this generates enough dynamic for the simulation
runs and the other SLOs are assumed not to be as dynamically adaptable as the actual valuation of
a service.

112

4.3. Simulative Demonstration of the Prototype’s Effectiveness

• joinNegotiationTimeout, delimiting the time this SC waits for an answer to a join-
Negotiation message.

• executionTimeout, used during the service invocation.

• waitForExecutionTimeout, needed in case of a brokered negotiation (time the SC
waits before trying to invoke the service; this guarantees that the ISP has received
and processed the notification message from the broker in the meantime).

Finally, the SC is also given a marketValueAdoptionRate, concessionStep and reserve
values respectively18 as well as a maximumHops parameter.

Demonstration Metrics

When assessing the results of a simulation run, three distinct metrics are of primary
interest:

• the absolute number of successfully executed negotiations per protocol.

• the minimum and maximum number of successfully executed negotiations per pro-
tocol per SC agent.

• the minimum number of different protocols a SC could successfully take part in.

The first metric describes a global view on the simulation experiment, stating how
many negotiation processes could successfully be finished for each protocol type, present
in the setting (as denoted by a distinct EST).

The second investigates this result on a per-agent basis as it tracks the minimum and
maximum amount of successful negotiations per protocol any one SC in the system could
achieve. This gives a hint on how the successful negotiations were spread over the agent
population.

The final metric shows how diverse the used negotiation protocols were in the view of
the individual agents, stating how many different protocols the agents have been involved
in.

Experiments and Interpretation

Now the results achieved in simulating various market configurations are presented.
During all experiments a total amount of 10 IL agents was employed in a full meshed

network. Since I wanted to investigate the feasibility of run time protocol-generity with
as few side effects as possible, I tried to configure the simulation settings in a way
they resemble a perfect market. A full-meshed topology especially supports the perfect

18These values are provided by the DemandHelper module per request (in form of SLOConstraint
objects). However, all received market valuations are internally overwritten with the current market
valuation for that service type, as learned throughout several negotiations (given the agent has already
accumulated respective knowledge). This way the demand generation is adapted to the experience
the agent has already made.

113

4. Assessment of the Developed System

distribution of market information (as coded within the service description documents)
among the participants. More complex topologies could in the worst case result in some
of the services available not being found and thus negotiated for by the SC agents,
leading to a decrease in the total amount of successful negotiation. Hence, full meshed
topologies were considered appropriate for the research question at hand.

Each of the connections was parameterized with a bandwidth value ensuring that a
complete message of the size used in these experiments traverses one connection in one
tick. The simulation itself was delimited to 20.000 ticks and for all experiments 50 SCs
were present.

The maximumHop value for all agents was constantly set to 5 hops. The timeouts
employed in the respective agent classes were set to the following values:

1. matchingTimeout (NC): 40 ticks

2. findRegistryTimeout (SP, ISP, SC): 10 ticks

3. executionTimeout (SP, ISP, SC): 10 ticks

4. publicationTimeout (SP, ISP): 10 ticks

5. findNCTimeout (ISP): 10 ticks

6. negotiationTimeout (ISP): 50 ticks

7. discoveryTimeout (SC): 30 ticks

8. joinNegotiationTimeout (SC): 10 ticks

9. waitForExecutionTimouet (SC): 5 ticks

10. auctionTimeout (SP): 60 ticks

11. biddingTimeout (SP with EA, DA, AO or MAO): 30 ticks

Throughout the simulation experiments, two SLOs were used, the price and the al-
located memory, representing a qualitative service aspect. Most negotiation protocols
employed are only single-attributive, thus the price would be sufficient. The multi-
attributive AO protocol is the only one also using the second SLO, which was chosen
because it exhibits the contrary preference direction than price: whereas SCs want to
achieve a low price they will potentially try to negotiate a higher memory amount they
can use for their invocations (the preference for SPs is exactly vice versa). This aspect
is reflected in the theHigherTheBetter parameters set for these characteristics at both
SPs / ISPs and SCs. An offer is considered rejectable by a negotiator agent whenever
the value of a respective SLO (price or allocated memory) is smaller than 30% of the
lower or higher than 170% of the upper reservation value.

The starting values are 10 USD for price and 20 GB for allocatedMemory. Due to the
learning algorithm the price value will adapt over time, as already shown. The market-
ValueAdaptionRate was set to 5% (meaning that the valuation will be in-/decreased by

114

4.3. Simulative Demonstration of the Prototype’s Effectiveness

5% of their current value). The concession steps for both SLOs were defined to be 1
USD / GB (SP) and 4 USD / GB (SC), respectively. This reflects the potentially higher
urgency on the SC and thus more hesitant concessions on the SP side.

All just mentioned parameters are fixed throughout all experiments. Given the focus
on adaptability to new protocols, such strategic aspects are of minor interest, once
a reasonable configuration has found. The parameters, which are changed from one
experiment to the other, are now shown along with the achieved results.

Overall, six simulation experiments have been conducted. Each was configured with 50
SCs, 25 SPs / ISPs and 1 RA. For each simulation run the three demonstration metrics
introduced above have been logged and are given as (bar-)graphs in the following.

Only AO: During the first experiment all 25 SPs offered their services over the AO
protocol sketched in subsection 4.2.219.

AO and EA: In a second step only 15 SPs used the AO protocol and the other 10 used
the EA.

AO, EA and DA: During the third experiment 9 SPs offering the AO and either 8
offering the EA and DA were present.

AO, EA, DA and CM: For the fourth run, one additional agent has been introduced,
a broker (NC role). This agent in place, a new configuration of 8 SPs offering the AO,
either 6 offering the EA and DA and an additional 5 ISPs (using the brokered CM) was
set.

AO, EA, DA, CM and FPA: In the next step, 5 SPs of either AO, EA, DA, CM (ISP)
and FPA were present.

AO, EA, DA, CM, FPA and MAO: During the final experiment 5 ISPs and 4 SPs for
each of the other protocols (AO, MAO, EA, DA and FPA) have been configured, again
summing up to 25 just as with all other experimental settings.

The actual values for the result metrics are of secondary significance. Among others,
the specifics of the different protocols (for example the usage of bidding rounds with
pre-defined durations in contrast to continuous offer exchanges), the random selection of
SI documents to start a negotiation with, or the dynamic market valuations determine
how many negotiations of a given type are actually finished.

The main statement to be proven with these experiments is that the GN node is at all
able to adapt to different protocols, only based on their description in the EST documents
(proof-of-concept). Based on the results achieved, this assertion can be approved. With
the described escalation of different negotiation protocol types present throughout the
experiments, each of the newly introduced protocols has successfully been integrated in

19Throughout all simulation experiments the six protocols introduced in subsection 4.2.2 have been used.

115

4. Assessment of the Developed System

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

4

Fixedprice Auctions
Alternate Offers
Multi-attribute Alternate Offers
English Auctions
Dutch Auctions
Double Auctions

(a) Amount of successful Negotiations
per Protocol

FPA AO MAO EA DA DoubleAuction
0

100

200

300

400

500

600

Max #
Min #

(b) Min / Max Amount of successful Ne-
gotiations per Protocol

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Min # of Used Protocol Types
Max # of Used Protocol Types

(c) Range of used Protocol Types

Figure 4.12.: Results of using the following Protocols: AO

the actual market behavior; each protocol type present has been executed by a significant
number of agents.

Given the relatively small setting, it is not surprising, that not all experiments resulted
in every agent having been able to win a negotiation in more than one type of protocol
(again also affected by the random selection of SIs and thus negotiation protocols for
each service request). During the last experiment (investigating a setting with all six
different protocols present) however, each agent could successfully take part in at least
two negotiation protocol types (see figure 4.17(c)).

On the other hand, in each simulation run there exist SC agents that have successfully
taken part in all available protocols. This fact is shown in figures 4.12(c), 4.13(c),
4.14(c), 4.15(c), 4.16(c) and 4.17(c) respectively, where the maximum amount of different
protocol types a single agent has been able to take part in is always the amount of

116

4.4. Evaluation based on Meffert’s Theory on Flexibility

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Fixedprice Auctions
Alternate Offers
Multi-attribute Alternate Offers
English Auctions
Dutch Auctions
Double Auctions

(a) Amount of successful Negotiations
per Protocol

FPA AO MAO EA DA DoubleAuction
0

50

100

150

200

250

Max #
Min #

(b) Min / Max Amount of successful Ne-
gotiations per Protocol

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3

Min # of Used Protocol Types
Max # of Used Protocol Types

(c) Range of used Protocol Types

Figure 4.13.: Results of using the following Protocols: AO and EA

protocols at all present in the market.

Having now shown the adaptability of the GN module to the introduced negotiation
protocols (and respective description documents), the requirements stated for this thesis
can be considered fulfilled and the demonstration step thus completed. The subsequent
evaluation step is described in the next section.

4.4. Evaluation based on Meffert’s Theory on Flexibility

Following the rationale of Hevner et al. (2004) and Peffers et al. (2008) (see section 1.3
for a detailed discussion), the evaluation of a scientific artifact comprises its assessment
with regard to a set of quality aspects.

To this end, Hevner et al. do not distinguish between a demonstration and an eval-

117

4. Assessment of the Developed System

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Fixedprice Auctions
Alternate Offers
Multi-attribute Alternate Offers
English Auctions
Dutch Auctions
Double Auctions

(a) Amount of successful Negotiations
per Protocol

FPA AO MAO EA DA DoubleAuction
0

20

40

60

80

100

120

140

160

Max #
Min #

(b) Min / Max Amount of successful Ne-
gotiations per Protocol

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

Min # of Used Protocol Types
Max # of Used Protocol Types

(c) Range of used Protocol Types

Figure 4.14.: Results of using the following Protocols: AO, EA and DA

uation step; they basically claim the need for a structured assessment of the designed
solution in terms of its effectiveness of solving the research problem, the quality of the
solution and the utility gain achievable by using the respective artifact in the envisioned
problem setting. Peffers et al., on the other hand, distinguish between a basic demon-
stration phase, during which the effectiveness of the designed solution and an actual
evaluation phase during which the quality of this solution is assessed.

In this thesis, I mainly build on the rationale of Peffers et al., as it provides a very
structured assessment framework. However, it also results in some inaccuracies when
actually executed: The authors claim that demonstrating an artifact simply means to
“use [the artifact] in experimentation, simulation, a case study, proof, or other appro-
priate activity” (Peffers et al. 2008, p. 90). All assessments on the basis of measurable
quality metrics as well as comparisons with the stated requirements are assumed to be-

118

4.4. Evaluation based on Meffert’s Theory on Flexibility

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

100

200

300

400

500

600

700

800

900

Fixedprice Auctions
Alternate Offers
Multi-attribute Alternate Offers
English Auctions
Dutch Auctions
Double Auctions

(a) Amount of successful Negotiations
per Protocol

FPA AO MAO EA DA DoubleAuction
0

10

20

30

40

50

60

70

80

Max #
Min #

(b) Min / Max Amount of successful Ne-
gotiations per Protocol

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Min # of Used Protocol Types
Max # of Used Protocol Types

(c) Range of used Protocol Types

Figure 4.15.: Results of using the following Protocols: AO, EA, DA and CM (double
auction)

long to the evaluation phase. In my opinion this contradicts with their initial statement
of evaluation being the means to assess the quality of a designed solution, after having
shown that it solves the stated problem at all (effectiveness) in the demonstration step.

Throughout this thesis, this assertion has been used as a conceptual basis for distin-
guishing which assessment steps are shown in which section (demonstration or evalu-
ation): During the last section the capability of my infrastructure to solve the stated
requirements has been demonstrated. In addition to using the prototype system in a
simulated environment, some quality aspects have also been assessed as a comparison
was made with the stated requirements. All these steps aimed at proving the effective-
ness of the BabelNEG approach. In the following I will consequently elaborate on “how
well [it] supports a solution to the problem” (Peffers et al. 2008, p. 92).

119

4. Assessment of the Developed System

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

100

200

300

400

500

600

700

Fixedprice Auctions
Alternate Offers
Multi-attribute Alternate Offers
English Auctions
Dutch Auctions
Double Auctions

(a) Amount of successful Negotiations
per Protocol

FPA AO MAO EA DA DoubleAuction
0

5

10

15

20

25

30

35

40

45

Max #
Min #

(b) Min / Max Amount of successful Ne-
gotiations per Protocol

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

Min # of Used Protocol Types
Max # of Used Protocol Types

(c) Range of used Protocol Types

Figure 4.16.: Results of using the following Protocols: AO, EA, DA, CM (double auction)
and FPA

A fundamental problem, occurring during the evaluation of a proof-of-concept proto-
type system, is that due to its innovative nature there are no other systems, solving the
same problem, one could directly compare it to. It is by definition the first prototype
aiming at this specific problem. Thus, an evaluation step must build on a unilateral
assessment of the solution’s quality.

To this end, a theory proposed by Meffert (1985) can be employed. In this work, the
author elaborates on flexibility as a fundamental management paradigm20. He identifies
three types of flexibility, with which a company can counter external events, such as
changes in the market or demand structures:

20Flexibility is also often referred to as a distinctive advantage of IT systems building on software agents,
when compared to traditional ones (Kirn 2006).

120

4.4. Evaluation based on Meffert’s Theory on Flexibility

• Processual Flexibility : Speed of action in terms of planning and realization.

• Structural Flexibility : Capability of organizational structures, personnel and man-
agement to adjust to new market situations.

• Activity Flexibility : Set of possible actions making up the room of maneuver for
the company.

For all three types, a high degree of achievement is desirable, as it strengthens the
company’s market position and thus its long term business value. For my work, especially
the last type is of interest, as it describes how many options a given enterprise has when
acting on the market. Transferred to the IoS scenario, and the research problem stated
for this thesis, it refers to the amount of potential transaction partners to be found on the
service market. From a reverse perspective, this type of flexibility quantifies the degree
to which the technological and policy infrastructure of this service market restricts the
involved providers and consumers in their economic behavior.

In the vocabulary of Meffert’s theory, the goal of my dissertation is thus to increase
the activity flexibility of IoS participants, in that it enlarges the set of potential business
partners by reducing restrictions posed by the market infrastructure (particularly on the
applied negotiation protocol)21. To this end, the quality of my infrastructure denotes
the degree to which this activity flexibility could be increased (see figure 4.18).

The theoretical optimum of activity flexibility, regarding the stated research problem,
would thus be that each SP is able to negotiate with every SP potentially present in
the IoS and, consequently, can take part in every possible negotiation protocol22. As
already stated, an exhaustive list of possible negotiation protocols does not exist, so this
optimum remains a theoretical one.

Nevertheless, it provides a reference for assessing the developed system. As already
illustrated, the protocol-generic negotiation strategy is able to process, and adapt to,
all negotiation protocols, that can be described within an EST document. The achieved
activity flexibility is thus dependent on this document’s capability to capture all relevant
information.

A very high quality of expressiveness could be achieved by building on state automata,
a concept widely used to describe communication protocols. The events and actions used
therein have been identified to be the negotiation related messages. After a thorough
literature analysis this set could be proven to be exhaustive for the majority of actually
used negotiation protocols in electronic settings. Up to now, no protocol was found,
which could not be mapped to the identified set of messages. Summarizing, the flexibility
achieved in describing the actual negotiation process can be viewed as significantly high.
If, in the future, new negotiation messages or other types of events become necessary,

21Without my system in place, every SC can only negotiate with the subset of SPs, offering the adequate
negotiation protocol; my system tries to dispose this restriction posed on the selection of transaction
partners.

22This would be the case in unsupported negotiations between humans, where the two negotiators can
talk to each other and resolve all occurring ambiguities regarding the negotiation and agreement
process.

121

4. Assessment of the Developed System

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

100

200

300

400

500

600

Fixedprice Auctions
Alternate Offers
Multi-attribute Alternate Offers
English Auctions
Dutch Auctions
Double Auctions

(a) Amount of successful Negotiations
per Protocol

FPA AO MAO EA DA DoubleAuction
0

5

10

15

20

25

30

35

40

Min #
Max #

(b) Min / Max Amount of successful Ne-
gotiations per Protocol

0 1000 2000 3000 4000 5000 6000 7000 8000
0

1

2

3

4

5

6

7

 Min # of Used Protocol Types
 Max # of Used Protocol Types

(c) Range of used Protocol Types

Figure 4.17.: Results of using the following Protocols: AO, EA, DA, CM (double auc-
tion), FPA and MAO

these could even be integrated into my language quite easily by simply adding them to
the respective EST schema.

The elements within my description language, best suitable for identifying the dis-
tance to the theoretical optimum activity flexibility are the ones for which external rule
languages are needed. These elements represent placeholders for specific restrictions
of the negotiation protocol, which cannot be described with simple parameters. The
very feature of allowing expressive rule languages within these parameters can, however,
lead to incompatibilities between the SPs and SCs whenever the used languages are not
known by both sides. More generally, it can be stated that the developed infrastructure
provides the more flexibility the less external rule languages it employs when describ-
ing a protocol or the more commonly known, and thus understandable, the used rule

122

4.4. Evaluation based on Meffert’s Theory on Flexibility

Achieved Activity Flexibility

Theoretical Optimum
(each SC entering

the market can
negotiate wich all

available SPs)

Amount achieved by current
SLA negotiation systems
(each SC entering the market

can negotiate only with the SPs
offering the appropriate negotiation

protocol)

Amount achieved by
the BabelNEG system

a b

Demonstration: investigation whether a > 0 (a higher activity flexibility could be achieved)
Evaluation: investigation on the amount of b (the smaller the better)

Figure 4.18.: Evaluation based on Meffert’s Activity Flexibility Concept

language is.

The second aspect with a potential to limit the achieved activity flexibility is the
ontology, needed as a conceptual basis for my infrastructure. Only if the agents un-
derstand what SLOs they are negotiating about, they can do so. Thus, the vocabulary
used during the negotiation has a crucial effect on the activity flexibility that can be
reached with my system. Only if a comprehensive ontology of terms is known, or at
least accessible for all participants of the market, a high flexibility can be achieved. The
more comprehensive the underlying ontology is, the higher the achievable flexibility.

Hence, the developed system can be attested a high degree of activity flexibility, and
thus a high quality of the solution with regard to its evaluation, given a restrictive use
of preferably common-use rule languages (or no such use at all) and a comprehensive
system of underlying ontologies.

During the demonstration step a set of six different negotiation protocols of very
differing nature have been employed, none of which needed any external rule expressions
to be described. It can thus be assumed that the first restriction is fulfilled to a very
high degree. Even if needed, a well-known rule language (several of such are in use at
present) would be able to reduce the implied flexibility loss to a minimum.

123

4. Assessment of the Developed System

On the other hand, an industry-wide ontology (or at least one covering a particular
industry domain) can also be assumed to be present, given the many research work
done in that area (see for example W3C’s Semantic Web initiative23, in particular the
ongoing work on the OWL Web Ontology Language24) and the inherent need for a
common vocabulary amongst business partners. Therefore, this second restriction can
also be regarded as insignificant with regard to the achieved flexibility of the BabelNEG
framework.

4.5. Assessment of the Communication Overhead Introduced
by the BabelNEG System

From another perspective, my system could be compared with traditional SLA negotia-
tion systems only offering a single, fixed negotiation protocol. In the light of (Christensen
1997) the BabelNEG system could thus be seen as a disruptive technology, fulfilling the
same functionality than traditional ones (it also allows to electronically negotiate SLAs
with a distinct negotiation protocol), but also offering some additional features (in this
case the possibility to adapt to new protocols at run time).

In comparing it with traditional infrastructures, one would have to measure its per-
formance in a relevant metric. For negotiation systems one such metric is the amount
of communication traffic (negotiation messages) needed until a negotiation is reached.

When comparing my system with one exclusively using one distinct protocol, the
discovery and negotiation phases are best compared separately:

During the negotiation phase the amount of sent messages heavily depends on the
protocol applied and the strategies of the involved negotiators. An AO protocol between
two agents with very small concession steps could for example last quite long (many
messages would have to be exchanged until a both agents have conceded to an agreement
acceptable for both). Contrarily, two agents being matched by the broker in a CM would
in total produce exactly four messages (both would have sent an offer / offerToSell and
received a notification message).

To this end, let Nprsr be the amount of messages needed to reach an agreement in a
reference SLA negotiation system r, configured with a protocol pr and set of employed
strategies sr. Consequently Npbsb denotes the amount of necessary messages within the
BabelNEG system (employing protocol pb and strategies sb).

If one would now configure the BabelNEG system with the same negotiation proto-
col p as the infrastructure it is compared to and equip the involved agents with the
exact same strategies s in both systems, BabeLNEG would perfectly mimic the other
system with regard to the negotiation phase. Given the EST document can capture
all communication-relevant aspects of the applied protocol (which was demonstrated in
section 4.2), the involved agents would use the same communication procedures as in
the reference system. When also equipped with the same strategies (the second parame-
ter influencing the produced communication traffic) the exact same amount of messages

23http://www.w3.org/standards/semanticweb/
24http://www.w3.org/standards/techs/owl

124

4.5. Assessment of the Communication Overhead Introduced by the BabelNEG System

would be needed in a given negotiation.
More formally: pr = pb

∧
sr = sb ⇒ Nprsr = Npbsb .

During the discovery phase on the other hand, my system introduces additional com-
munication traffic, as the agents need to look up the various description documents,
which would possibly not be mandatory in a system employing only a single protocol.

In order to quantify this communication overhead, let Dr be the number of messages
needed for a SC in the reference system to locate a given service instance, to start a
negotiation with. On the other hand Db denotes the amount of messages produced
within BabelNEG for the same task. For both Systems I will now conduct an analysis
of both the best and worst case scenario25.

The best case for the reference system denotes a situation, in which a service instance
of the requested type is already known to the requesting SC. In that case it directly
contacts this instance and starts a negotiation. Drb (denoting the amount of messages
needed during the discovery phase in the reference system in the best case scenario) is
thus 0. In the worst case on the other hand, the SC only knows the service type of which
an actual instance is needed. To retrieve such an instance a request message is sent to
the registry, which in turn answers with a respective result message. Thus, the amount
of discovery messages produced in the worst case Drw is 2.
Within the BabelNEG, the best possible scenario occurs similarly whenever the SC

already knows a SI along with its respective EST document. In this case it can also
simply contact the SP stated in the SI and start a negotiation with it. Thus, Dbb = 0;
exactly like with the reference system.

In the worst case however, the SC within BabelNEG does only know the ST for which
it requests an actual instance; no EST is known beforehand. In the current system
implementation an initial request is sent to the registry in such a case, requesting SIs
fitting the searched type. After that, the SC requests the EST document for each of
the such returned SIs, choses one and starts a negotiation with it. Given there are n
SIs known at the registry (and all of them are consequently mentioned to the SC by the
registry) this means that 2 ∗n messages are produced; a request and a response message
for all SIs found. Incorporating the first communication with the registry (concerning the
available SIs) this results in a total amount or communication traffic of Dbw = 2 ∗n+2.
During an average discovery process this number would regularly be lower since the

agents store retrieved EST documents and will thus already know some of the needed
ESTs for in the future retrieved SIs. Also there are several potential optimization steps,
such as sequentially requesting ESTs instead of in parallel or requesting several ESTs
within one message; these mechanisms would be incorporated in the system once it
matures from a proof-of-concept to an actual software product for everyday use.

Given the average amount of messages needed in most of the negotiation protocols
(especially in AO and EA / DA protocols) and the very low probability of the sketched
worst case occurring (most of the time at least one of the ST or EST documents would

25For this analysis I assume that a registry node is already known to the requesting agent (the traffic
produced during registry discovery would depend on the applied discovery architecture, which is
orthogonal to the analysis done now). Also I assume that at least one service instance of the requested
type is available and open for negotiation.

125

4. Assessment of the Developed System

already be known to the requesting SC), the communication overhead implied by my
system can be assumed marginal when compared to the drastically increased activity
flexibility.

In this chapter the BabelNEG system (a prototype implementation of the mechanisms
presented in chapter 3) has been assessed with regard to its effectiveness and efficiency.
First, its Java-based implementation in the context of the SimIS toolkit has been shown.
After that the capability of the developed description documents to capture all relevant
service aspects in a machine processable way has been demonstrated. In order to provide
assertions on whether BabelNEG is able to fulfill all stated requirements a comprehensive
conceptual and simulative demonstration has been conducted, the results of which have
been shown in sections 4.2 and 4.3. The chapter closes with an investigation of the
efficiency of the proposed solution, based on the limitations of the developed description
documents and the communication overhead introduced by BabelNEG.

Summarizing the results, the developed prototype has been able to fulfill all require-
ments stated in section 2.1. The quality of the proposed solution is also considerably
high, as shown in the light of Meffert’s flexibility theory. In the remaining chapter I
provide a summary of the results achieved and some remarks on future work and ways
to implement the developed ideas into a commercial software product.

126

5. Lessons Learned and Future Steps

5.1. Summary and high-level Interpretation of Results

During my dissertation project I developed a novel service infrastructure for the struc-
tured discovery and protocol-generic negotiation of electronic SLA documents.

The need for such an artifact has been deduced from a detailed scenario analysis,
extrapolating past and current developments in distributed computing. This step has
resulted in a conceptual model for the future IoS, acting as the problem domain for
the remainder of my work. Based on economic theory, the need for both negotiation
processes as such and the possibility to adapt to different protocols at run time has been
inferred.

After having motivated my work that way, the research process applied throughout
this project has been defined. A DS method has been chosen, due to the research
question at hand. In that, I followed the methodological guidelines proposed by Hevner
et al. (2004), Peffers et al. (2008) as well as Gregor and Jones (2007); them being the
most influential works on DS research methodologies as of today.

Following these guidelines, the requirements for my prototype, being deduced from the
scenario model and underlying theories, have been identified. These claims are further
used as criteria for the assessment of my system.

I have subsequently discussed conceptual foundations for my work, comprising the-
oretical principles for the design, formulation, discovery, negotiation and subsequent
usage of (electronic) SLAs, especially focusing on distributed infrastructures of elec-
tronic services. Related research efforts, targeting the research problem, as stated for
my dissertation, have been identified next and subsequently described with special focus
on their potential to solve the stated problem. This has been assessed by comparing
each individual project with the identified requirements.

In chapter 3, the actual infrastructure design, thus the proposed solution to the stated
research problem, has been presented. The underlying idea is to decouple the good to
be sold (the SLA) from the negotiation protocol, thus enabling a SP to apply different
negotiation protocols for the same service over time (by simply creating new combi-
nations of SLA and protocol). On the other hand, for the SC side a protocol-generic
negotiation component has been designed, capable of adapting to different protocols, as
offered by the SPs. The conceptual copula between these two sides are a set of structured
service description documents, defining not only the service-relevant functional and non-
functional parameters, but also the applied negotiation protocol in a machine-readable
way.

Throughout the last chapter, a thorough assessment of the infrastructure design has
been done, including the actual implementation of the developed mechanisms and data

127

5. Lessons Learned and Future Steps

structures in a Java-based simulation environment, the conceptual demonstration of the
system’s effectiveness (with regard to the stated requirements) as well as a simulative
demonstration step proving the adaptability of the SC agents.

Based on these assessment steps the following results can be stated:

• The expressiveness of the designed data structures could be shown on the basis of
a set of representative negotiation protocols originating in scientific literature.

• During the simulation runs the developed service agents have been able to adapt
to formerly unknown negotiation protocols, just by parsing these protocol descrip-
tions.

Hence, the developed system is able to fulfill the stated requirements, thus proving its
effectiveness to solve the stated research problem.

5.2. Critical Reflection on the Applied Research Method

As with every research project, my dissertation has several points which could be crit-
icized methodically. The first is probably the fact that I set out to solve a scientific
problem not actually present currently; the scenario anticipated is not yet existent. This
inevitably leads to uncertainties regarding the deduced research problem and ultimately
the motivation of my work in general.

Nevertheless, many innovative artifacts face this same problem: they anticipate future
scenarios towards which they are geared and aim at solving the problems occurring
therein. The designers can only try to, as accurately as possible, make a prediction on
how the future will probably look like and base their work on this scenario. I followed this
exact procedure. What I hope makes my prediction valid, is its conceptual grounding in
ongoing trends within the distributed computing discipline, as can be witnessed in both
academia and industry today.

However, there is still a chance that the future Internet will not look exactly like the
IoS setting sketched in section 1.1.1. In that case, hopefully at least some aspects of my
scenario model will be true (which is quite reasonable to assume), potentially leading to
only minor losses in the utility gained by my infrastructure or consequently minor needs
for changes to it.

The second point, which could be criticized is the assessment of the developed arti-
fact. The demonstration of the effectiveness of the developed description language and
respective documents cannot claim completeness. It was based on a set of different
protocols that were chosen due to a mutually as high as possible dissimilarity. For a
complete demonstration this assessment would have to be done for all possible negoti-
ation protocols used today. Unfortunately, there is no such exhaustive list, as already
stated. The conceptual demonstration as present now could potentially increase its claim
on completeness by gathering negotiation protocols from all current and future service
infrastructures (originating in industry and research) and investigate the language’s ex-
pressiveness with those. In my work, a reasonable amount of (research) projects and

128

5.3. From Prototype to Product

protocols proposed in scientific literature has been used; paying tribute to the time
constraints a dissertation project poses. A more comprehensive evaluation will have to
take place over the next years, in which the developed infrastructure is hopefully used
extensively.

On the other hand, simulation as a tool for the demonstration of a proof-of-concept
prototype is arguable. The underlying model and simulation tools always only “simulate”
some real-world setting without a proof that they do it correctly. This is enough for
a proof of feasibility, as aimed at with this thesis. More sophisticated assertions on
technical quality metrics, such as scalability or robustness, demand an actual, physically
distributed prototype system. Only then, a reliable assessment of the technical quality
of the developed infrastructure can be made.

Finally, my dissertation project suffers from it being as innovative as it is. No other
infrastructure solves the exact same problem stated for my work, thus resulting in a
lack of alternatives the BabelNEG system could be directly compared to. As of today
the one promising candidate for such a direct competitor project is SLA@SOI1, which is
currently work in progress. Once finished it would be interesting to compare it with my
infrastructure, especially with regard to the expressiveness of the protocol descriptions
and thus the resulting activity flexibility achieved by both.

5.3. From Prototype to Product

On an organizational level, a necessary precondition for an application of my ideas is
for a respective company’s IS to follow the SO paradigm. Only when strictly building
on loosely coupled, fine-granular IT services, buying, negotiating about, combining and
re-selling such computational functionalities is reasonable.

Additionally, the economic strategies applied in the market behavior of the manage-
ment agents must be defined. A detailed specification of concession step values, reserve
prices etc. is needed for each agent and potentially even each service to be sold / pur-
chased.

With regard to the binding of automatically negotiated “contracts”, a juristical frame-
work (e.g. in terms of a framework contract governing a consortium of involved business
partners) is needed as a common ground for all actors on the electronic market. Given
such a foundation is present, the negotiation agents can be regarded as representatives of
their host organizations, enabling them to bindingly act in the resulting service economy.

The vocabulary used in the SLAs and service description documents must be un-
derstandable for all market participants for an automated economy to work. Thus, a
ontology of service concepts (such as quality metrics or functional descriptions) must
be defined, as already stated in the last chapters. It should cover all market-relevant
information concepts along with the respective semantics of such concepts.

On a technical level, some fundamental infrastructure components are needed within
the company IS to successfully integrate with my system: A graphical user interface
(for requesting or selling services on the market manually) or an equivalently extended

1http://sla-at-soi.eu/

129

5. Lessons Learned and Future Steps

orchestration engine (for doing so automatically) are needed as links between the tradi-
tional service infrastructures and the BabelNEG system.

Also, a distributed infrastructure of market brokers and discovery nodes is needed to
assure a stable service economy. These nodes could either be maintained by the SC and
SP companies or by third party intermediaries. Similarly, a technical security system is
indispensable, especially for transactions in a business context.

Given these preconditions are met within the participating companies and general
market infrastructure, the negotiation infrastructure described in chapter 3, and the
resulting prototypical implementation as has been assessed in chapter 4, can be directly
integrated with the currently used company ISs. For this, the defined management agents
and respective strategy modules must be implemented and granted access to both the
internal service instances (for guarantee enforcement and monitoring purposes) and the
external communication channels (including security and discovery system).

For a comprehensive service management infrastructure, software components sup-
porting the other phases of the life cycle (apart from discovery and negotiation) are of
course also needed.

Given these conditions are met the BabelNEG system can provide significant economic
advantages for both individual companies and the digital service economy as a whole.

It drastically reduces entry barriers of the IoS, especially from the SC’s point of view,
as respective enterprises can easily implement SC agents instantly capable of interacting
with all possible SPs present in the service economy. There is no need to implement
different negotiator agents for different service markets (and thus negotiation protocols).
In some cases this would be too costly or inefficient, requesting from the SC company to
choose the protocols respective agents are implemented for. Given the high dynamic of
the IoS setting, the decision about such a self-restriction to a subset of the available SPs
as potential transaction partners is not only a highly complex task, but could also likely
render itself wrong over time. With the BabelNEG system in place, no such decision
has to be made and SCs can flexibly adapt to new SPs and negotiation protocols.

This is especially interesting for small and medium sized companies acting on niche
markets. They generally do not have the funds to constantly re-evaluate their decisions
on potential markets to engage in and to re-design their negotiation components. Nev-
ertheless they can deliberately profit from an IoS scenario as enabled by the BabelNEG
infrastructure, as it allows them to purchase needed services (even on very short notice)
and concentrate the majority of their in-house investments on their core business instead.

The BabelNEG system can also lead to completely new service products to be created
very quickly by combining individual basic services purchased over the IoS. No risky
investments on in-house IT infrastructures have to be made for such a new offering, but
the providing company can “try out” the market success at first with external services
before deciding to internally providing them in case of success.

Given the BabelNEG system is in place, SPs can also easily adjust the employed
negotiation protocols to changes in the market configuration or their offered services.
Once introduced and described within a respective EST document, they can be sure to
assume SCs able to interpret it and engage in respective negotiations subsequently.

On the economy’s point of view, the BabelNEG system enables a set of new business

130

5.4. Future Work

models to emerge within the IoS, such as market makers, trusted third parties or even
providers of best practice negotiation strategies on demand. Given the much higher
amount of compatible agents in a IoS setting based on BabelNEG, there is a much higher
possibility of exploiting economies of scale from such businesses. This is especially the
case in a digital setting, since a respective service, once implemented, produces almost
no incremental costs in case the amount of users increases, but contrarily a very high
amount of marginal gains.

5.4. Future Work

Given the dynamic IoS setting, an ever changing application scenario can be foreseen for
the BabelNEG infrastructure. In this last section, I will shortly sketch what adaptions
/ extensions to the current system design could be introduced in order to increase its
overall adaptability to such new application settings.

The most fundamental dynamics, which can be anticipated for the future IoS, are a
changing set of services and service metrics; especially in case of an ongoing trend to
automate individual business functionalities and the emergence of juristical foundations
for cross-organizational automated service transactions. This development can already
be captured in the current system architecture, as it only affects the service vocabulary
used within the negotiations. The actual agent roles, messages and negotiation protocols
in general do not differ just because the negotiated metrics change.

Similarly, optimization of negotiation strategies with regard to a) individual nego-
tiation protocols or even b) when introducing strategies optimized for a whole set of
different protocols (which would be favored by a protocol-generic approach as presented
in this thesis) does not affect the system architecture and communication mechanisms
designed therein.

If more sophisticated negotiation protocols emerge, an extension of the description
documents proposed in this thesis could become necessary. A potential adjustment, in-
creasing their expressiveness, could be the introduction of sub-states within the negotia-
tion process. This would result in an altered process-element within the EST document;
not only the incoming event will determine the possible actions, but rather a tuple of in-
coming event and current state. This results in a direct equivalence to the state machine
paradigm.

Apart from these dynamics of the underlying scenario, some fundamental extensions
could be introduced, increasing the general efficiency of BabelNEG:

The first potential extension would be the introduction of a dedicated Information
Service role, responsible for distributing negotiation-relevant data2. Which data can
be accessed can already be described within the EST document and in the current
infrastructure proposal the NC is assumed to distribute such information. However, a
comprehensive support for information distribution, potentially allowing for protocols,

2In the current prototype, this aspect was considered out of scope, as the primary goal was to investigate
the adaptability of the SCs to new protocols.

131

5. Lessons Learned and Future Steps

in which the negotiating agents have to actively request some information, on e.g. the
current highest bid during their negotiation behavior, is still to be designed.

Also, a publish / subscribe system could be another interesting extension to my system.
It could build on the already used query data structure (used for querying SIs, ESTs or
STs from the RA at the moment) and would allow a SC agent to post the need for a
service of a given type (and / or offering a given protocol) whenever no such service could
be found right away. To this end, it would define the search criteria, create a respective
query object and post this interest to a RA. Whenever a SI fitting the stated query is
published at the RA, a notification message is sent to the respective SC, indicating that
an instance of the required service is finally available on the market.

In order to assure timeliness of the stored interests a lease-based mechanism could be
employed. Each interest, registered with the RA, must be renewed after certain time
intervals. Whenever a lease is not renewed in time the respective interest is deleted from
the publish / subscribe infrastructure.

A minor extension to the current system could also allow for the integration of reverse
negotiations (and thus eventually for protocol-generity, or the need for such, at the SP
side). Instead of publishing SI documents, representing a service offered by a SP, the
SC agents could offer an extended SI document representing a demand for a service, the
respective SC currently needs. This demand document would exhibit the same internal
structure as an SI. However, no link to a WSDL document would be present, as the
actual service implementation fulfilling this demand (if any of such is ever found), is not
known at publication time. Additionally, the EST to be applied for this demand is only
optional. If existent it denotes that the service to be found must not only fit the stated
ST but also adhere to the stated EST (i.e. a distinct protocol is requested), if not, only
the type of the service is specified as a criteria in the demand.

Especially the discovery architecture is very basic in the current version of the sys-
tem. This is due to the already mentioned pragmatic reasons. Future versions should
incorporate a more sophisticated and thus more robust and scalable discovery mecha-
nism than a single registry node. The most promising approach for this is probably a
P2P-based architecture, given such systems excel in scalability and resilience to node
failures (especially structured ones).

One idea to integrate the current prototype with a P2P-based discovery architecture is
to introduce a DHT which connects all registry nodes and in which all service description
documents are stored. Whenever a service request is submitted to a registry node
(node within the DHT ring), the respective documents are retrieved and returned to the
requestor.

A new RA can simply join this system by discovering a DHT node already present
(broadcast discovery) and then join the DHT ring as a neighbor of this node. Internally,
this results in the re-distribution of the stored data and routing information. In contrast,
the absence of a RA (which has left the DHT) is directly noticed by its neighbor, which
then triggers the re-arrangement of the DHT data accordingly (this represents a standard
mechanism for DHTs).

All of these extensions could help to increase the efficiency and overall functionality
of the developed system. Nevertheless, the prototype as currently available already

132

5.4. Future Work

demonstrates the feasibility of automated protocol-generity in SLA negotiations, which
was the primary goal of this thesis.

133

A. Appendices

A.1. Service Description Schema Documents

A.1.1. Service Type Document

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
3 <xsd:schema xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”
4 targetNamespace=” ht tp : //xml . SLANeg . org /schema/SLANeg”
5 xmlns=” ht tp : //xml . SLANeg . org /schema/SLANeg”
6 elementFormDefault=” q u a l i f i e d ”>
7

8 <xsd:complexType name=”Propert iesType ”>
9 <xsd : s equence>

10 <!−− va lue domain o f the proper ty −−>
11 <xsd :e l ement name=”domain” type=” x sd : S t r i n g ” />
12

13 <!−− d e s c r i p t i o n o f the metric ’ s semant ics −−>
14 <xsd :e l ement name=” de c l a r a t i o n ” type=” x sd : S t r i n g ”

minOccurs=”0” maxOccurs=”1” />
15 </ xsd : s equence>
16

17 <!−− metr ic i d e n t i f i e r as un i que l y de f ined in an indus t ry−
wide on to logy −−>

18 <x s d : a t t r i b u t e name=”propertyID” type=”xsd:anyURI” />
19 </xsd:complexType>
20

21 <!−− d e f i n e s the f u n c t i o n a l i t y o f a c l a s s o f s e r v i c e s −−>
22 <xsd :e l ement name=”ServiceType ”>
23 <xsd:complexType>
24 <xsd : s equence>
25 <!−− q u a l i f i e d name o f the s e r v i c e type −−>
26 <xsd :e l ement name=” serviceTypeID” type=”xsd:anyURI

” />
27

28 <!−− UDDI− l i k e d e s c r i p t i o n o f the s e r v i c e type (
URL or in−l i n e d e s c r i p t i o n) −−>

29 <xsd :e l ement name=” s e r v i c eDe s c r i p t i o n ” type=”
xsd:anyType” />

30

31 <!−− non−f u n c t i o n a l s e r v i c e p r o p e r t i e s −−>
32 <xsd :e l ement name=”property ” type=”Propert iesType ”

maxOccurs=”unbounded” />
33 </ xsd : s equence>
34 </xsd:complexType>
35 </ xsd :e l ement>

135

A. Appendices

36 </xsd:schema>

136

A.1. Service Description Schema Documents

A.1.2. Extended SLA Template Document

1 ?<?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <xsd:schema xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”
3 xmlns =” ht tp : //xml . SLANeg . org /schema/SLANeg”
4 targetNamespace=” ht tp : //xml . SLANeg . org /schema/SLANeg”
5 elementFormDefault=” q u a l i f i e d ”>
6

7 <!−− SLA templa te −−>
8 <xsd:complexType name=”SLATemplateType”>
9 <xsd : s equence>

10 <xsd :e l ement name=”SLO” type=”SLOType” minOccurs=”0”
maxOccurs=”unbounded”/>

11 </ xsd : s equence>
12 </xsd:complexType>
13

14 <xsd:complexType name=”SLOType”>
15 <xsd : s equence>
16 <!−− (i n i t i a l) va lue f o r t h i s SLO −−>
17 <xsd :e l ement name=”value ” type=”xsd:anySimpleType” />
18 </ xsd : s equence>
19

20 <!−− ID o f the s e r v i c e proper ty t h i s SLO i s de f ined upon (
o r i g i n a t e s in the r e s p e c t i v e ServiceType) −−>

21 <x s d : a t t r i b u t e name=”propertyID” type=”xsd:anyURI” />
22 </xsd:complexType>
23

24 <!−− nego t i a t i on p ro t o co l d e s c r i p t i o n −−>
25 <xsd:s impleType name=”AdmissionRestrictionFormType”>
26 <x s d : r e s t r i c t i o n base=” x s d : s t r i n g ”>
27 <xsd:enumerat ion value=”open”/>
28 <xsd:enumerat ion value=” r e s t r i c t e d ”/>
29 </ x s d : r e s t r i c t i o n>
30 </ xsd:s impleType>
31

32 <xsd:complexType name=”AdmissionType”>
33 <xsd : s equence>
34 <!−− t h i s e lement i s p re sen t i f r e s t r i c t e d admission i s

de f ined−−>
35 <xsd :e l ement name=” admi s s i onRes t r i c t i onRu l e ” type=”

xsd:anyType” minOccurs=”0” maxOccurs=”1”/>
36 </ xsd : s equence>
37

38 <x s d : a t t r i b u t e name=” admiss ionRestr ic t ionForm” type=”
AdmissionRestrictionFormType”/>

39 </xsd:complexType>
40

41 <xsd:complexType name=”RoleContextType” mixed=” true ”>
42 <xsd : s equence>
43 <xsd :e l ement name=”maximumNumberOfAgents” type=”

x s d : i n t e g e r ” minOccurs=”0” maxOccurs=”1”/>
44

45 <xsd :e l ement name=”minimumNumberOfAgents” type=”
x s d : i n t e g e r ” minOccurs=”0” maxOccurs=”1”/>

137

A. Appendices

46

47 <xsd :e l ement name=” admi s s i onRe s t r i c t i on ” type=”
AdmissionType”/>

48 </ xsd : s equence>
49 </xsd:complexType>
50

51 <xsd:complexType name=”ContextType”>
52 <xsd : s equence>
53 <xsd :e l ement name=” s e r v i c eP rov i d e r ” type=”

RoleContextType”/>
54

55 <xsd :e l ement name=” serviceConsumer ” type=”
RoleContextType”/>

56 </ xsd : s equence>
57 </xsd:complexType>
58

59 <xsd:s impleType name=”ValuesType”>
60 <x s d : r e s t r i c t i o n base=” x s d : s t r i n g ”>
61 <xsd:enumerat ion value=” s i n g l e ”/>
62 <xsd:enumerat ion value=”mul t ip l e ”/>
63 </ x s d : r e s t r i c t i o n>
64 </ xsd:s impleType>
65

66 <xsd:complexType name=”NegotiableSLOType”>
67 <xsd : s equence>
68 <xsd :e l ement name=” va lue s ” type=”ValuesType” />
69 </ xsd : s equence>
70

71 <!−− ID of the s e r v i c e proper ty the SLO i s de f ined upon −−
>

72 <x s d : a t t r i b u t e name=”propertyID” type=”xsd:anyURI” />
73 </xsd:complexType>
74

75 <xsd:complexType name=”Negotiat ionObjectType ”>
76 <xsd : s equence>
77 <xsd :e l ement name=”negotiableSLO” type=”

NegotiableSLOType” minOccurs=”0” maxOccurs=”
unbounded” />

78 </ xsd : s equence>
79 </xsd:complexType>
80

81 <xsd:s impleType name=”ProgressFormType”>
82 <x s d : r e s t r i c t i o n base=” x s d : s t r i n g ”>
83 <xsd:enumerat ion value=” ascending ”/>
84 <xsd:enumerat ion value=”descending ”/>
85 </ x s d : r e s t r i c t i o n>
86 </ xsd:s impleType>
87

88 <xsd:complexType name=”ProgressType” mixed=” true ”>
89 <xsd : s equence>
90 <xsd :e l ement name=”progressForm” type=”

ProgressFormType”/>
91

92 <xsd :e l ement name=” de l t a ” type=”xsd:anySimpleType”

138

A.1. Service Description Schema Documents

minOccurs=”0” maxOccurs=”1”/>
93 </ xsd : s equence>
94 </xsd:complexType>
95

96 <xsd:complexType name=”ThresholdType”>
97 <x sd : cho i c e>
98 <xsd :e l ement name=”lowerBound” type=”xsd:anySimpleType

”/>
99

100 <xsd :e l ement name=”upperBound” type=”xsd:anySimpleType
”/>

101 </ x sd : cho i c e>
102 </xsd:complexType>
103

104 <xsd:complexType name=”Att r ibuteRes t r i c t i onType ” mixed=” true ”>
105 <x sd : cho i c e>
106 <xsd :e l ement name=” prog r e s s ” type=”ProgressType”/>
107

108 <xsd :e l ement name=” thre sho ld ” type=”ThresholdType”/>
109

110 <xsd :e l ement name=” r e s t r i c t i o nRu l e ” type=”xsd:anyType”
/>

111 </ x sd : cho i c e>
112

113 <!−− s e r v i c e proper ty t h i s r e s t r i c t i o n a p p l i e s to −−>
114 <x s d : a t t r i b u t e name=”propertyID” type=”xsd:anyURI” />
115 </xsd:complexType>
116

117 <xsd:complexType name=”Of f e rRes t r i c t i on sType ” mixed=” true ”>
118 <xsd : s equence>
119 <xsd :e l ement name=” a t t r i b u t eR e s t r i c t i o n ” type=”

Att r ibuteRes t r i c t i onType ” minOccurs=”0” maxOccurs=”
unbounded”/>

120

121 <xsd :e l ement name=” g en e r a lR e s t r i c t i o n ” type=”
xsd:anyType” minOccurs=”0” maxOccurs=”unbounded”/>

122 </ xsd : s equence>
123 </xsd:complexType>
124

125 <xsd:s impleType name=”MatchingFormType”>
126 <x s d : r e s t r i c t i o n base=” x s d : s t r i n g ”>
127 <xsd:enumerat ion value=” forwarded ”/>
128 <xsd:enumerat ion value=” de f ined ”/>
129 </ x s d : r e s t r i c t i o n>
130 </ xsd:s impleType>
131

132 <xsd:complexType name=”Of f e rA l l oca t i onPo l i cyType ”>
133 <xsd : s equence>
134 <!−− t h i s e lement i s p re sen t i f d e f i ned matching i s

s p e c i f i e d−−>
135 <xsd :e l ement name=”matchingRule” type=”xsd:anyType”

minOccurs=”0” maxOccurs=”1”/>
136 </ xsd : s equence>
137

139

A. Appendices

138 <x s d : a t t r i b u t e name=”matchingForm” type=”MatchingFormType”
/>

139 </xsd:complexType>
140

141 <xsd:s impleType name=”TransparencyType”>
142 <x s d : r e s t r i c t i o n base=” x s d : s t r i n g ”>
143 <xsd:enumerat ion value=” pub l i c ”/>
144 <xsd:enumerat ion value=” protec t ed ”/>
145 <xsd:enumerat ion value=”none”/>
146 </ x s d : r e s t r i c t i o n>
147 </ xsd:s impleType>
148

149 <xsd:complexType name=” InformationPol icyType ” mixed=” true ”>
150 <xsd : s equence>
151 <xsd :e l ement name=” negot iat ionTransparency ” type=”

TransparencyType”/>
152

153 <!−− t h i s e lement i s p re sen t i f negot ia t ionTransparency
i s not s e t to none−−>

154 <xsd :e l ement name=” negot ia t ionContent ” type=”
xsd:anyType” minOccurs=”0” maxOccurs=”1”/>

155

156 <xsd:e l ement name=” statusTransparency ” type=”
TransparencyType”/>

157

158 <!−− t h i s e lement i s p re sen t i f s ta tusTransparency i s
not s e t to none−−>

159 <xsd :e l ement name=” statusContent ” type=”xsd:anyType”
minOccurs=”0” maxOccurs=”1”/>

160 </ xsd : s equence>
161 </xsd:complexType>
162

163 <xsd:s impleType name=”RoleNameType”>
164 <!−− r o l e a b s t r a c t i o n needed f o r r e u s a b i l i t y o f the p ro t o co l

d e s c r i p t i o n s −−>
165 <x s d : r e s t r i c t i o n base=” x s d : s t r i n g ”>
166 <xsd:enumerat ion value=” s e r v i c eP rov i d e r ”/>
167 <xsd:enumerat ion value=” serviceConsumer ”/>
168 <xsd:enumerat ion value=” negot i a t i onCoord ina to r ”/>
169 </ x s d : r e s t r i c t i o n>
170 </ xsd:s impleType>
171

172 <xsd:s impleType name=”MessageType”>
173 <x s d : r e s t r i c t i o n base=” x s d : s t r i n g ”>
174 <xsd:enumerat ion value=” ca l lFo rB id s ”/>
175 <xsd:enumerat ion value=” o f f e r ”/>
176 <xsd:enumerat ion value=” s t i l l i n t e r e s t e d ”/>
177 <xsd:enumerat ion value=” n o t i f i c a t i o n a c c e p t ”/>
178 <xsd:enumerat ion value=” n o t i f i c a t i o n r e j e c t ”/>
179 <xsd:enumerat ion value=” admiss ion ”/>
180 </ x s d : r e s t r i c t i o n>
181 </ xsd:s impleType>
182

183 <xsd:complexType name=”EventActionType” >

140

A.1. Service Description Schema Documents

184 <xsd : s equence>
185 <xsd :e l ement name=”messageType” type=”MessageType” />
186 </ xsd : s equence>
187

188 <!−− message r e c e i v i n g even t s −−>
189 <x s d : a t t r i b u t e name=”from” type=”RoleNameType” />
190

191 <!−− message sending ac t i on s −−>
192 <x s d : a t t r i b u t e name=” to ” type=”RoleNameType” />
193 </xsd:complexType>
194

195 <xsd:complexType name=”ProtocolStepsType ”>
196 <xsd : s equence>
197 <xsd :e l ement name=” protoco lS t ep ” maxOccurs=”

unbounded”>
198

199 <xsd:complexType>
200 <xsd : s equence>
201 <xsd :e l ement name=” event ” type=”

EventActionType” minOccurs=”0” />
202

203 <xsd :e l ement name=” po s s i b l eAc t i on ”
type =”EventActionType” maxOccurs=”
unbounded”/>

204 </ xsd : s equence>
205 </xsd:complexType>
206 </ xsd :e l ement>
207 </ xsd : s equence>
208 </xsd:complexType>
209

210 <xsd:complexType name=”ProcessType”>
211 <xsd : s equence>
212 <xsd :e l ement name=” serviceConsumer ” type=”

ProtocolStepsType ” minOccurs=”0” maxOccurs=”
unbounded” />

213 </ xsd : s equence>
214 </xsd:complexType>
215

216 <xsd:complexType name=”Negot iat ionProtoco lType ” mixed=” true ”>
217 <xsd : s equence>
218 <xsd :e l ement name=” context ” type=”ContextType” />
219

220 <xsd :e l ement name=” nego t i a t i onObjec t ” type=”
Negotiat ionObjectType ” />

221

222 <xsd :e l ement name=” o f f e r R e s t r i c t i o n s ” type=”
Of f e rRes t r i c t i on sType ”/>

223

224 <xsd :e l ement name=” o f f e rA l l o c a t i o nPo l i c y ” type=”
Of f e rA l l oca t i onPo l i cyType ”/>

225

226 <xsd :e l ement name=” in fo rmat i onPo l i cy ” type=”
InformationPol icyType ”/>

227

141

A. Appendices

228 <xsd :e l ement name=” proce s s ” type=”ProcessType” />
229 </ xsd : s equence>
230 </xsd:complexType>
231

232 <!−− d e f i n e s the a v a i l a b l e non−f u n c t i o na l a spec t s o f a s e r v i c s
and how to ne go t i a t e about them −−>

233 <xsd :e l ement name=”ExtendedSLATemplate”>
234 <xsd:complexType mixed=” true ”>
235 <xsd : s equence>
236 <!−− q u a l i f i e d name o f t h i s ex tended SLA templa te

−−>
237 <xsd :e l ement name=”slaTemplateID” type=”xsd:anyURI

” />
238

239 <!−− s e t o f i n i t i a l s e r v i c e l e v e l o b j e c t i v e s −−>
240 <xsd :e l ement name=” slaTemplate ” type=”

SLATemplateType” />
241

242 <!−− nego t i a t i on p ro t o co l d e s c r i p t i o n −−>
243 <xsd :e l ement name=” nego t i a t i onPro t o co l ” type=”

Negot iat ionProtoco lType ” />
244 </ xsd : s equence>
245 </xsd:complexType>
246 </ xsd :e l ement>
247 </xsd:schema>

142

A.1. Service Description Schema Documents

A.1.3. Service Identificator Document

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <xsd:schema xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”
3 targetNamespace=” ht tp : //xml . SLANeg . org /schema/SLANeg”
4 xmlns=” ht tp : //xml . SLANeg . org /schema/SLANeg”
5 elementFormDefault=” q u a l i f i e d ”>
6

7 <!−− i d e n t i f i e s and d e s c r i b e s a g iven s e r v i c e by r e f e r i n g to
the r e s p e c t i v e d e s c r i p t i o n documents −−>

8 <xsd :e l ement name=” S e r v i c e I d e n t i f i c a t o r ”>
9 <xsd:complexType mixed=” true ”>

10 <xsd : s equence>
11 <!−− q u a l i f i e d name o f the s e r v i c e in s tance −−>
12 <xsd :e l ement name=” se rv i c e ID ” type=”xsd:anyURI”/>
13

14 <!−− l i n k to the s e r v i c e ’ s type −−>
15 <xsd :e l ement name=” serviceTypeID” type=”xsd:anyURI

”/>
16

17 <!−− l i n k to the extended SLA templa te o f f e r e d f o r
t h i s s e r v i c e −−>

18 <xsd :e l ement name=”slaTemplateID” type=”xsd:anyURI
”/>

19

20 <!−− l i n k to the WSDL f i l e app l i e d f o r t h i s
s e r v i c e f o r subsequent invoca t i on −−>

21 <xsd :e l ement name=”wsd lF i l e ” type=”xsd:anyURI”/>
22

23 <!−− l i n k to the n e go t i a t i on coord ina tor −−>
24 <xsd :e l ement name=” negot i a t i onCoord ina to r ” type=”

xsd:anyURI” />
25

26 <!−− l i n k to the s e r v i c e prov ide r (l i n k to the
s e r v i c e consumer would be necessary in r e v e r s e
n e g o t i a t i o n s −−>

27 <xsd :e l ement name=” s e r v i c eP rov i d e r ” type=”
xsd:anyURI” />

28 </ xsd : s equence>
29 </xsd:complexType>
30 </ xsd :e l ement>
31 </xsd:schema>

143

A. Appendices

A.2. Activity Diagrams of the Service Management Agents

A.2.1. Service Consumer

Save request

State = idle?

Continue current
course of action

Registry known?

Set state to discovery

Other queries
in the queue?

Request for a serviceSet state to idle

Save found SIs

Indicate for each of the SIs
whether ServiceType and

SLATemplate are already known

Save ServiceType
to the known types

Save SLATemplate
to the known templates

Update knowledge
on found SIs

Update knowledge
on found SIs

Move SI to list of
not found services

Move service to
list of successfully
invoked services

<OR>

[Try] Discover Registry

Successful?

[Try] Query ServiceIdentificators

Successful?

[Try] Query unknown
ServiceTypes

[Try] Query unknown
SLATemplates

Successful? Successful?

yes

no

no

yes

yes
noyes

yes

no

yes

no

no

yes

no

no

no

Figure A.1.: Activity Diagram: SC (part1)

144

A.2. Activity Diagrams of the Service Management Agents

Set state to initiating_negotiation

Chose SI for starting a negotiation

[Try] Join Negotiation

Join successful

Initiate Negotiation
Sub-Component

NEGOTIATION PHASE

Other SIs found
for the current

query?

Negotiation
successful?

Delete all SIs with unknown
STs or SLATemplates

<OR>

Set state to executing

Set state to negotiating

[Try] Invocate Service

Execution
successful?

SIs with known
ST and SLATemplate

remaining?

yes

no

yes

no

yes

yes

no

Figure A.2.: Activity Diagram: SC (part2)

145

A. Appendices

A.2.2. Service Provider

Registry known?

Save publication request

Set state to discovery

«structured»
Affirm that service description

documents are known

Set state to busy

Set state to publication

NEGOTIATION PHASE

Negotiation successful?

Set state to executing

Publication request

[Try] Discover Registry

Successful?

[Try] ServiceIdentificator Registration

Successful?

EXECUTION PHASE

no

yes

no

yes

yes

no

no

yes

Figure A.3.: Activity Diagram: SP

146

A.2. Activity Diagrams of the Service Management Agents

A.2.3. Sub-diagram (SP): Affirming that Service Description Documents
are Known at the Registry

QuerySLATemplates

«target»
Registry

QueryServiceTypes

«target»
Registry

ServiceType query resultseSLATemplate query results

ServiceType known?

Set ServiceType
as known

Set eSLATemplate
as known

eSLATemplate known? [Try] Template Registration

Successful?

[Try] Type Registration

Successful?

no

yes yes

no

no no

yes

yes

Figure A.4.: Sub-diagram for the SP: Affirmation that EST and ST Documents are
known at the Registry

147

Bibliography

Aberer, Karl and Manfred Hauswirth (2002). An Overview on Peer-to-Peer Information
Systems. last checked: 2011-05-03. url: http://citeseer.ist.psu.edu/viewdoc/
summary?doi=10.1.1.19.681.

Andrieux, Alain et al. (2007). Web Services Agreement (WS-Agreement) Specification,
Version 03/2007. last checked: 2011-05-03. Open Grid Forum (OGF). url: http:
//www.ogf.org/documents/GFD.107.pdf.

Ardaiz, Oscar et al. (2006). “The Catallaxy Approach for Decentralized Economic-based
Allocation in Grid Resource and Service Markets”. In: Journal of Applied Intelligence
25.2, pp. 131–145. issn: 0924-669X. doi: http://dx.doi.org/10.1007/s10489-
006-9650-9.

Ardaiz, Oscar et al. (2007). Third Year Report of WP3: Proof-of-Concept Prototype.
Project Deliverable. ISSN: 1864-9300, last checked: 2011-05-03. CATNETS Consor-
tium. url: http://opus.ub.uni-bayreuth.de/volltexte/2007/372/.

BREIN (2010). Publishable final Activity Report. Project Deliverable. last checked: 2011-
05-03. BREIN Consortium. url: http://www.eu-brein.com/index.php?option=
com_docman&task=doc_download&gid=86.

Balakrishnan, Hari et al. (2003). Looking up Data in P2P Systems. last checked: 2011-
05-04. url: http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.
9709.

Barros, Alistair, Marlon Dumas, and Peter Bruza (2005). The Move to Web Service
Ecosystems. BPTrends Newsletter, 3(3). last checked: 2011-05-04. url: http://www.
bptrends.com/publicationfiles/12-05-WP-WebServiceEcosystems-Barros-

Dumas.pdf.
Bartolini, C., C. Preist, and N. R. Jennings (2005). “A Software Framework for Au-

tomated Negotiation”. In: Proceedings of the Conference on Software Engineering
for Multi-Agent Systems III: Research Issues and Practical Applications (SELMAS
2004). Ed. by R. Choren et al. Lecture Notes on Computer Science. Springer Pub-
lishing, pp. 213–235.

Beatty, John et al. (2005).Web Services Dynamic Discovery (WS-Discovery). last checked:
2011-05-04. BEA Systems, Canon, Intel, Microsoft Cooperation and webMethods.
url: http://specs.xmlsoap.org/ws/2005/04/discovery/ws-discovery.pdf.

Begin, Marc-Elian (2008). An EGEE Comparative Study: Grids and Clouds, Evolution or
Revolution? presented at OGF 23, June 1. - 6. 2008, Barcelona, Spain. last checked:
2011-05-04. url: http://www.sixsq.com/internal/events/cloud-vs-grid-
comparative-study.

Bellwood, Tom et al. (2004). Universal Description, Discovery and Integration v3.0.2.
Standard. last checked: 2011-05-04. OASIS UDDI Specification Technical Commit-

149

Bibliography

tee. url: http://www.oasis-open.org/committees/uddi-spec/doc/spec/v3/
uddi-v3.0.2-20041019.htm.

Benyoucef, Morad and Stefanie Rinderle (2006). “Modeling e-Negotiation Processes for
a Service Oriented Architecture”. In: Group Decision and Negotiation 15.5, pp. 449–
467. doi: 10.1007/s10726-006-9038-6.

Benyoucef, Morad and Marie-Helene Verrons (2008). “Configurable e-Negotiation Sys-
tems for large scale and transparent Decision Making”. In: Group Decision and
Negotiation 17.3, pp. 211–224. doi: 10.1007/s10726-007-9073-y.

Berger, Thomas (2005). “Konzeption und Management von Service-Level-Agreements
für IT-Dienstleistungen”. last checked: 2011-05-04. PhD thesis. Technical University
of Darmstadt. url: http://tuprints.ulb.tu-darmstadt.de/570/.

Bichler, Martin (2001). The Future of eMarkets - Multi-Dimensional Market Mecha-
nisms. Cambridge: Cambridge University Press.

Bichler, Martin and Jayant R. Kalagnanam (2006). “Software Frameworks for Advanced
Procurement Auction Markets”. In: Communications of the ACM 49.12. doi: http:
//doi.acm.org/10.1145/1183236.1183239.

Bichler, Martin, Gregory Kersten, and Stefan Strecker (2003). “Towards a Structured De-
sign of Electronic Negotiations”. In: Group Decision and Negotiation 12.4, pp. 311–
335.

Blau, Benjamin, Jochen Stösser, and Carsten Block (2008). “How to trade Electronic
Services? – Current Status and Open Questions”. In: Proceedings of the Conference
on Group Decision and Negotiation 2008, Coimbra, Portugal, June 17th - 20th.

Blau, Benjamin et al. (2009). “Service Value Networks”. In: Proceedings of the 2009 IEEE
Conference on Commerce and Enterprise Computing (CEC ’09), Washington, DC,
USA. IEEE Computer Society, pp. 194–201. isbn: 978-0-7695-3755-9. doi: http:
//dx.doi.org/10.1109/CEC.2009.64.

Block, Carsten and Dirk Neumann (2008). “A Decision Support System for Choos-
ing Market Mechanisms in e-Procurement”. In: Negotiation, Auctions and Market
Engineering, Lecture Notes in Business Information Processing 2, pp. 44–57. doi:
http://dx.doi.org/10.1007/978-3-540-77554-6_3.

Boag, Scott et al. (2007). XQuery 1.0: An XML Query Language. Recommendation. last
checked: 2011-05-04. World Wide Web Consortium (W3C). url: http://www.w3.
org/TR/xquery/.

Boehm, B. (1986). “A Spiral Model of Software Development and Enhancement”. In:
SIGSOFT Software Engineering Notes 11.4, pp. 14–24. issn: 0163-5948. doi: http:
//doi.acm.org/10.1145/12944.12948.

Boehmann, T. and H. Krcmar (2004). “Grundlagen und Entwicklungstrends im IT-
Servicemanagement”. In: HMD - Praxis der Wirtschaftsinformatik 237. last checked:
2011-05-05, pp. 7–21. url: http://hmd.dpunkt.de/237/01.php.

Booth, D. et al. (2004). Web Services Architecture. Standard. last checked: 2011-05-04.
World Wide Web Consortium. url: http://www.w3.org/TR/ws-arch/.

Borissov, Nikolay, Dirk Neumann, and Christof Weinhardt (2009). “Automated bidding
in Computational Markets: An Application in Market-based Allocation of Comput-

150

Bibliography

ing Services”. In: Journal of Autonomous Agents and Multi-Agent Systems 21.2,
pp. 115–142. doi: 10.1007/s10458-009-9112-y.

Borissov, Nikolay et al. (2009). “Message Protocols for Provisioning and Usage of Com-
puting Services”. In: Proceedings of the 6th International Workshop on Grid Eco-
nomics and Business Models 2009 (GECON 09). Ed. by Jörn Altmann, Rajkumar
Buyya, and Omer F. Rana. Vol. 5745/2009. Lecture Notes in Computer Science,
pp. 160–170.

Brandic, Ivona et al. (2008a). “Towards a Meta-Negotiation Architecture for SLA-Aware
Grid Services”. In: Proceedings of the Workshop on Service-Oriented Engineering
and Optimizations 2008. In conjunction with International Conference on High Per-
formance Computing 2008 (HiPC2008), Bangalore, India.

Brandic, Ivona et al. (2008b). Towards a Meta-Negotiation Architecture for SLA-aware
Grid Services. Technical Report. last checked: 2011-05-03. University of Melbourne.
url: http://www.gridbus.org/reports/meta-negotiation2008.pdf.

Bray, Tim et al. (2006). Extensible Markup Language (XML) 1.0 (Fourth Edition). last
checked: 2011-05-04. World Wide Web Consortium (W3C). url: http://www.w3.
org/TR/2006/REC-xml-20060816.

Bucher, Tobias, Christian Riege, and Jan Saat (2008). “Evaluation in der gestaltungsori-
entierten Wirtschaftsinformatik - Systematisierung nach Erkenntnisziel und Gestal-
tungsziel”. In: Proceedings of the Multikonferenz Wirtschaftsinformatik 2008 (MKWI
2008), Munich, 26.-28. Februar 2008. Vol. 120. Arbeitsberichte des Instituts für
Wirtschaftsinformatik, Wilhelms-University Münster. ISSN 1438-3985, pp. 69–86.

Bui, Tung, Alexandre Gachet, and Hans-Juergen Sebastian (2006). “Web Services for
Negotiation and Bargaining in Electronic Markets: Design Requirements, Proof-of-
Concepts, and Potential Applications to e-Procurement”. In: Group Decision and
Negotiation 15.5, pp. 469–490. doi: 10.1007/s10726-006-9039-5.

Buyya, Rajkumar, David Abramson, and Srikumar Venugopal (2005). “The Grid Econ-
omy”. In: Proceedings of the IEEE 93, pp. 698–714.

Buyya, Rajkumar et al. (2009). “Cloud Computing and Emerging IT Platforms: Vi-
sion, Hype, and Reality for Delivering Computing as the 5th Utility”. In: Future
Generation Computer Systems 25.6, pp. 599 –616. issn: 0167-739X. doi: http:
//dx.doi.org/10.1016/j.future.2008.12.001.

Chakravorty, R. et al. (2003). Dynamic SLA-based QoS Control for Third Generation
Wireless Networks: The CADENUS Extension. last checked: 2011-05-04. url: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.2357.

Chhetri, Mohan Baruwal et al. (2007). “ASAPM - An Agent-Based Framework for Adap-
tive Management of Composite Service Lifecycle”. In: Proceedings of the IEEE /
WIC / ACM International Conferences on Web Intelligence and Intelligent Agent
Technology - Workshops, 2007, pp. 444–448.

Christensen, Clayton M. (1997). The Innovator’s Dilemma – When Technologies Cause
Great Firms to Fail. Boston, Massachusetts: Harvard Business School Press, p. 225.
isbn: 978-0875845852.

Cramton, Peter, Yoav Shoham, and Richard Steinberg (2006). “Introduction to Combi-
natorial Auctions”. In: Combinatorial Auctions, pp. 1–14.

151

Bibliography

Dan, Asit, Heiko Ludwig, and Giovanni Pacifici (2003). Web Service Differentiation with
Service Level Agreements. last checked: 2011-05-04. url: http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.58.4338.

Detken, Kai-Oliver (2004). “Service Discovery - Automatisches Auffinden mobiler Dien-
ste”. In: NET 6, pp. 34–36.

Dimitrakos, Theo (2009). Integration of Technical Results of the BEinGRID project.
Project White Paper. last checked: 2011-05-03. BEinGRID Consortium. url: http:
//www.it-tude.com/bigpicture.html.

Dubin, Robert (1978). Theory Building, Revised Edition. English. Free Press, London.
Ermolayev, Vadim and Natalya Keberle (2006). “A Generic Ontology of Rational Nego-

tiation”. In: Proceedings of the 5th International Conference on Information Systems
Technology and their Applications (ISTA), pp. 51–65.

Eymann, Torsten, Werner Streitberger, and Sebastian Hudert (2007). “CATNETS -
Open Market Approaches for Self-Organizing Grid Resource Allocation”. In: Pro-
ceedings of the 4th International Workshop on Grid Economics and Business Mod-
els (GECON 2007), Rennes, France. Ed. by J. Altmann D.J. Veit. Lecture Notes
in Computer Science (LNCS) 4685. Springer Publishers, Berlin, pp. 176–181. doi:
http://dx.doi.org/10.1007/978-3-540-74430-6.

Ferstl, Otto K. and Elmar J. Sinz (2008). Grundlagen der Wirtschaftsinformatik. 6.
Edition. ISBN: 978-3-486-58755-5. Oldenbourg Verlag München.

Foster, I. et al. (2002a). The Physiology of the Grid: An Open Grid Services Architecture
for Distributed Systems Integration. Open Grid Service Infrastructure WG, Global
Grid Forum. last checked: 2011-05-04. url: http://www.globus.org/alliance/
publications/papers/ogsa.pdf.

Foster, Ian (2002). What is the Grid? A Three Point Checklist. last checked: 2011-05-04.
url: http://dlib.cs.odu.edu/WhatIsTheGrid.pdf.

Foster, Ian (2005). “Service-Oriented Science”. In: Science 308.5723, pp. 814–817. doi:
10.1126/science.1110411. eprint: http://www.sciencemag.org/cgi/reprint/
308/5723/814.pdf.

Foster, Ian and Carl Kesselman, eds. (2004). The Grid: Blueprint for a New Computing
Infrastructure, 2nd Edition. Morgan Kaufmann Publishers.

Foster, Ian, Carl Kesselman, and Steven Tuecke (2001). “The Anatomy of the Grid: En-
abling Scalable Virtual Organizations”. In: International Journal of Supercomputer
Applications 15, pp. 200–222. doi: http://dx.doi.org/10.1177%2f109434200101
500302.

Foster, Ian et al. (2002b). “Grid Services for Distributed System Integration”. In: Com-
puter 35.6, pp. 37–46. issn: 0018-9162. doi: http://dx.doi.org/10.1109/MC.
2002.1009167.

Frutos, Henar Munoz and Ioannis Kotsiopoulos (2009). “BREIN: Business Objective
Driven Reliable and Intelligent Grids for real Business”. In: International Journal of
Interoperability in Business Information Systems 3.1. ISSN: 1862-6378, pp. 39–41.

Gamma, Erich et al. (1995). Design Patterns - Elements of Resuable Object-Oriented
Software. Addison-Wesley Publishing.

152

Bibliography

Glass, Robert L., V. Ramesh, and Iris Vessey (2004). “An Analysis of Research in Com-
puting Disciplines”. In: Communications of the ACM, Issue on Wireless Sensor
Networks 47.6. ISSN:0001-0782, pp. 89–94. doi: http://dx.doi.org/10.1145/
990680.990686.

Goldberg, David (1989).Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley.

Goo, Jahyun, Rajiv Kishore, and H. R. Rao (2009). “The Role of Service Level Agree-
ments in Relational Management of Information Technology Outsourcing: An Em-
pirical Study”. In: MIS Quarterly 33.1. last checked: 2011-05-05, pp. 119–145. url:
http://www.acsu.buffalo.edu/~rkishore/papers/Goo-MISQ-33-1-2009.pdf.

Gradwell, Peter and Julian Padget (2005). “Markets vs Auctions: Approaches to Dis-
tributed Combinatorial Resource Scheduling”. In: Multiagent and Grid Systems 1.
last checked: 2011-05-05, pp. 251–262. url: http://portal.acm.org/citation.
cfm?id=1233712.

Gregor, Shirley and David Jones (2007). “The Anatomy of a Design Theory”. In: Journal
of the Association for Information Systems 8.5. ISSN: 1536-9323, pp. 312–335.

Gudgin, Martin et al. (2007). SOAP Version 1.2 Part 1: Messaging Framework (Second
Edition). World Wide Web Consortium (W3C). url: http://www.w3.org/TR/
2007/REC-soap12-part1-20070427.

Hartmann, Stephan (1996). “The World as a Process: Simulations in the Natural and
Social Sciences”. In: Modelling and Simulaton in the Social Sciences from the Phi-
losophy of Science Point of View. Ed. by Rainer Hegselmann, Ulrich Mueller, and
Klaus G. Troitzsch. last checked: 2011-05-04. Dordrecht: Kluwer Academic Publish-
ers, pp. 77–100. url: http://philsci-archive.pitt.edu/archive/00002412/
01/Simulations.pdf.

Hasselmeyer, Peer (2005). “On Service Discovery Process Types”. In: Proceedings of the
3rd International Conference on Service Oriented Computing (ICSOC05).

Hasselmeyer, Peer et al. (2006a). “Towards Autonomous Brokered SLA Negotiation”. In:
Exploiting the Knowledge Economy: Issues, Applications, Case Studies (eChallenges
2006), Barcelona, Spain 3. ISBN 978-1-58603-682-9, pp. 44–51.

Hasselmeyer, Peer et al. (2006b). “Towards SLA-Supported Resource Management”. In:
High Performance Computing and Communications. Vol. 208/2006. Lecture Notes
in Computer Science (LNCS). last checked: 2011-05-04, pp. 743–752. url: http:
//www.springerlink.com/content/n756m230705t66g3/.

Hasselmeyer, Peer et al. (2007). “Implementing an SLA Negotiation Framework”. In:
Proceedings of the eChallenges Conference (e-2007).

Haykin, Simon (1994). Neural Networks: A Comprehensive Foundation. Upper Saddle
River, NJ, USA: Prentice Hall PTR. isbn: 0023527617.

Hevner, Alan R. et al. (2004). “Design Science in Information Systems Research”. In:
MIS Quarterly 28.1, pp. 75–105.

Hudert, Sebastian (2006). A Proposal for a Web Services Agreement Negotiation Proto-
col Framework. Bamberger Beitraege zur Wirtschaftsinformatik und Angewandten
Informatik 69. last checked: 2011-05-03. University of Bamberg. url: https://www.
opus-bayern.de/uni-bamberg/frontdoor.php?source_opus=323.

153

Bibliography

Hudert, Sebastian (2009). “A Protocol-generic Infrastructure for Electronic SLA Nego-
tiations in the Internet of Services”. In: Proceedings of the Doctoral Consortium,
co-located with the 9th International Conference Wirtschaftsinformatik 2009, Febru-
ary 23 - 24 2009, Vienna, Austria. Ed. by Torsten Eymann. Vol. 40. Bayreuther
Arbeitspapiere zur Wirtschaftsinformatik.

Hudert, Sebastian (2010). “From Service Markets to Service Economies - An Infras-
tructure for Protocol-generic SLA Negotiations”. In: Grids and Service-Oriented
Architectures for Service Level Agreements (Proceedings of the Dagstuhl Seminar
on Grids and Service-Oriented Architectures for Service Level Agreements). Ed. by
Philipp Wieder, Ramin Yahyapour, and Wolfgang Ziegler. Vol. 1. ISBN: 978-1-4419-
7319-1. Springer, pp. 145–156.

Hudert, Sebastian and Torsten Eymann (2010). “Coping with Global Information Sys-
tems - Requirements for a Flexible SLA Discovery and Negotiation Infrastructure for
the Future Internet of Services”. In: Proceedings of the Multikonferenz Wirtschaftsin-
formatik 2010. Göttingen, 23th - 25th February 2010. Ed. by Matthias Schumann
et al. Univ.-Verl. Göttingen; Niedersächsische Staats-und Universitätsbibliothek.

Hudert, Sebastian and Torsten Eymann (2011a). “A protocol-generic Infrastructure for
electronic SLA Negotiations in the Internet of Services”. In: Proceedings of the Fall
2010 Future SOC Lab Day. Ed. by Christoph Meinel et al. Vol. 42. ISBN 978-3-
86956-114-1.

Hudert, Sebastian and Torsten Eymann (2011b). “The BabelNEG System - A proto-
type Infrastructure for protocol-generic SLA Negotiations”. In: Proceedings of the
10th International Conference on Wirtschaftsinformatik (WI 2011), 16th - 18th of
February, Zurich, Switzerland. Ed. by Abraham Bernstein and Gerhard Schwabe,
pp. 704–713.

Hudert, Sebastian, Heiko Ludwig, and Guido Wirtz (2006). A Negotiation Protocol
Framework for WS-Agreement. Research Report RC24094. last checked: 2011-05-03.
IBM. url: http://domino.research.ibm.com/library/cyberdig.nsf/papers/
2F154C6C066AF94F8525721B0056C019/\$File/rc24094.pdf.

Hudert, Sebastian, Heiko Ludwig, and Guido Wirtz (2007). “A Negotiation Proto-
col Framework for WS-Agreement”. In: Proceedings of the 15.TTG/GI Fachtagung
Kommunikation in Verteilten Systemen (KIVS 07), February 26th to March 2nd,
2007, Bern, Switzerland.

Hudert, Sebastian, Heiko Ludwig, and Guido Wirtz (2008). “Negotiating Service Levels
– A Generic Negotiation Framework for WS-Agreement”. In: Proceedings of the
20th International Conference on Software Engineering and Knowledge Engineering
(SEKE08), 2008, Redwood City, San Francisco Bay, USA, pp. 587–592.

Hudert, Sebastian, Heiko Ludwig, and Guido Wirtz (2009). “Negotiating SLAs - An
Approach for a Generic Negotiation Framework for WS-Agreement”. In: Journal of
Grid Computing 7.2. ISSN: 1570-7873 (Print) 1572-9814 (Online), pp. 225–246. doi:
10.1007/s10723-009-9118-3.

Hudert, Sebastian, Christoph Niemann, and Torsten Eymann (2010). “On Computer
Simulation as a Component in Information Systems Research”. In: Global Perspec-
tives on Design Science Research (Proceedings of the DESRIST 2010, St. Gallen,

154

Bibliography

Switzerland). Vol. 6105/2010. Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, pp. 167–179. doi: 10.1007/978-3-642-13335-0.

Hudert, Sebastian et al. (2009). “A Negotiation Protocol Description Language for Au-
tomated Service Level Agreement Negotiations”. In: Proceedings of the 11th IEEE
Conference on Commerce and Enterprise Computing (CEC 09), Vienna, Austria.
url: http://portal.acm.org/citation.cfm?id=1603226.

Hung, Patrick C. K., Haifei Li, and Jun-Jang Jeng (2004). “WS-Negotiation: An Overview
of Research Issues”. In: Proceedings of the Proceedings of the 37th Annual Hawaii
International Conference on System Sciences (HICSS’04). IEEE Computer Society,
p. 10033.2. isbn: 0-7695-2056-1.

IT Governance Institute (2007). COBIT 4.1. ISBN: 1933284722. ISACA.
Jennings, N. R. et al. (2001). “Automated Negotiation: Prospects, Methods and Chal-

lenges”. In: Group Decision and Negotiation 10.2, pp. 199–215.
Jennings, Nicholas R. (2000). “On Agent-based Software Engineering”. In: Artificial

Intelligence 177.2, pp. 277–296. doi: http://dx.doi.org/10.1016/S0004-3702(9
9)00107-1.

Joita, L. et al. (2007). “Service Level Agreements in Catallaxy-Based Grid Markets”.
In: Proceedings of the Usage of Service Level Agreements in Grids Workshop, in
conjunction with The 8th IEEE International Conference on Grid Computing (Grid
2007), Austin, Texas, USA.

Jonker, Catholijn M., Valentin Robu, and Jan Treur (2007). “An Agent Architecture
for Multi-attribute Negotiation using Incomplete Preference Information”. In: Au-
tonomous Agents and Multi-Agent Systems 15.2, pp. 221–252. issn: 1387-2532. doi:
http://dx.doi.org/10.1007/s10458-006-9009-y.

Karaenke, Paul and Stefan Kirn (2007). “Service Level Agreements: An Evaluation from
a Business Application Perspective”. In: Proceedings of the eChallenges 2007 Con-
ference, Den Haag, Niederlande, pp. 104–111.

Karten, Naomi (2003). How to establish Service Level Agreements. Naomi Karten Asso-
ciates.

Kelaskar, M. et al. (2002). “A Study of Discovery Mechanisms for Peer-to-Peer Ap-
plications”. In: Proceedings of the 2 nd IEEE/ACM International Symposium on
Cluster Computing and the Grid Workshop on Global and Peer-to-Peer on Large
Scale Distributed Systems, pp. 444–445.

Keller, Alexander and Heiko Ludwig (2003). “The WSLA Framework: Specifying and
Monitoring Service Level Agreements for Web Services”. In: Journal of Network and
Systems Management 11.1, pp. 57–81. issn: 1064-7570. doi: http://dx.doi.org/
10.1023/A:1022445108617.

Keller, Alexander et al. (2002a). “Managing Dynamic Services: A Contract Based Ap-
proach to a Conceptual Architecture”. In: In Proceedings of the 8th IEEE/IFIP
Network Operations and Management Symposium (NOMS). IEEE Press, pp. 513–
528.

Keller, Alexander et al. (2002b). “Managing Dynamic Services: A Contract Based Ap-
proach to a Conceptual Architecture”. In: Proceedings of the 8th IEEE/IFIP Net-
work Operations and Management Symposium (NOMS). IEEE Press, pp. 513–528.

155

Bibliography

Kersten, Gregory E., Ka Pong Law, and Stefan Strecker (2004). A Software Platform for
Multiprotocol E-Negotiations. Research Paper INR04/04. last checked: 2011-05-03.
InterNeg. url: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.61.6777&rep=rep1&type=pdf.

Kersten, Gregory E. and Sunil J. Noronha (1999). “WWW-based Negotiation Support:
Design, Implementation, and Use”. In: Decision Support Systems 25.2, pp. 135–154.
issn: 0167-9236. doi: http://dx.doi.org/10.1016/S0167-9236(99)00012-3.

Kertesz, Attila, Gabor Kecskemeti, and Ivona Brandic (2009). “An SLA-based Resource
Virtualization Approach for On-demand Service Provision”. In: Proceedings of the
3rd International Workshop on Virtualization Technologies in Distributed Comput-
ing (VTDC ’09), New York, NY, USA. Barcelona, Spain: ACM, pp. 27–34. isbn:
978-1-60558-580-2. doi: http://doi.acm.org/10.1145/1555336.1555341.

Kim, Jin Baek and Arie Segev (2005). “A Web Services-enabled Marketplace Archi-
tecture for Negotiation Process Management”. In: Decision Support Systems 40.1,
pp. 71–87. issn: 0167-9236. doi: http://dx.doi.org/10.1016/j.dss.2004.04.
005.

Kirn, S. (2006). “Multiagent Engineering - Theory and Applications in Enterprises”. In:
ed. by S. Kirn et al. ISBN: 3-540-31406-7. Springer. Chap. Flexibility of Multiagent
Systems, pp. 53–69.

Klemperer, Paul (1999). “Auction Theory: A Guide to The Literature”. In: Journal of
Economic Surveys 13.3, pp. 227–287.

König, Stefan, Sebastian Hudert, and Torsten Eymann (2010). “Socio-Economic Mecha-
nisms to Coordinate the Internet of Services – the Simulation Environment SimIS”.
In: Journal of Artificial Societies and Social Simulation (JASSS) 13.2. url: http:
//jasss.soc.surrey.ac.uk/13/2/6.html.

Kotsiopoulos, Ioannis et al. (2008). “Using Semantic Technologies to Improve Negotia-
tion of Service Level Agreements”. In: Collaboration and the Knowledge Economy:
Issues, Applications, Case Studies (Proceedings of the eChallenges’08, Stockholm,
Sweden). Ed. by Paul Cunningham and Miriam Cunningham. ISBN 978-1-58603-
924-0. IOS Press.

Kotsokalis, Costas et al. (2010). SLA@SOI Deliverable D.A5a - Foundations for SLA
Management. Project Deliverable. last checked: 2011-05-03. SLA@SOI Consortium.
url: http://sla-at-soi.eu/results/deliverables/.

Lai, Guoming et al. (2004). Literature Review on Multi-attribute Negotiations. Research
Report CMU-RI-TR-04-66. last checked: 2011-05-03. Carnegie Mellon University,
Robotics Institute. url: http://www.ri.cmu.edu/publication_view.html?pub_
id=4868.

Lamanna, Davide D., James Skene, and Wolfgang Emmerich (2003). “SLAng: A Lan-
guage for Defining Service Level Agreements”. In: Proceedings of the The Ninth
IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03),
Washington, DC, USA. IEEE Computer Society. isbn: 0769519105.

Lambea, Juan et al. (2009). SLA@SOI Deliverable D.A2a - Business SLA Management.
Projcet Deliverable. last checked: 2011-05-03. SLA@SOI Consortium. url: http:
//sla-at-soi.eu/results/deliverables/.

156

Bibliography

Lambea, Juan et al. (2010). SLA@SOI Deliverable D.A2a - Business SLA Management
(full lifecycle). Project Deliverable. last checked: 2011-05-03. SLA@SOI Consortium.
url: http://sla-at-soi.eu/results/deliverables/.

Laria, G. et al. (2009). BREIN Deliverable D 4.1.3 v2 - Final BREIN Architecture.
Project Deliverable. last checked: 2011-05-03. BREIN Consortium. url: http://
www.eu-brein.com/index.php?option=com_docman&task=doc_download&gid=

63.
Leff, Avraham et al. (2003). “Service-level Agreements and Commercial Grids”. In: IEEE

Internet Computing 7.4, pp. 44–50. doi: 10.1109/MIC.2003.1215659.
Li, Cuihong, Joseph Giampapa, and Katia Sycara (2003). A Review of Research on

Bilateral Negotiations. Technical Report CMU-RI-TR-03-41. last checked: 2011-05-
03. Carnegie Mellon University, Robotics Institute. url: http://www.cs.cmu.edu/
\~softagents/papers/negotiation_lit.pdf.

Lochner, Kevin M. and Michael P. Wellman (2004). “Rule-Based Specification of Auction
Mechanisms”. In: Third International Joint Conference on Autonomous Agents and
Multi-Agent Systems, pp. 818–825.

Lomuscio, Alessio R., Michael Wooldridge, and Nicholas R. Jennings (2003). “A Classi-
fication Scheme for Negotiation in Electronic Commerce”. In: Group Decision and
Negotiation 12.1, pp. 31–56.

Ludwig, Andre et al. (2006). “A Framework for Automated Negotiation of Service Level
Agreements in Services Grids”. In: Lecture Notes in Computer Science, Proceed-
ings of the Workshop on Web Service Choreography and Orchestration for Business
Process Management, 2006. Vol. 3812/2006.

Ludwig, Heiko et al. (2003a). “A Service Level Agreement Language for Dynamic Elec-
tronic Services”. In: Journal of Electronic Commerce Research 3, pp. 43–59. doi:
http://dx.doi.org/10.1023/A:1021525310424.

Ludwig, Heiko et al. (2003b). Web Service Level Agreement (WSLA): Language Speci-
fication Version 1.0. Research Report 1.0. last checked: 2011-05-03. IBM Research.
url: http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf.

Ludwig, Heiko et al. (2005). “Template-based Automated Service Provisioning - Sup-
porting the Agreement-Driven Service Life-Cycle”. In: Lecture Notes in Computer
Science - Proceedings of the International Conference on Service Oriented Comput-
ing (ICSOC2005). Vol. 3826/2005, pp. 283–295.

Mantar, Haci et al. (2006). “A Bandwidth-Broker Based Inter-domain SLA Negotiation”.
In: Autonomic Management of Mobile Multimedia Services. Ed. by Ahmed Helmy et
al. Vol. 4267. Lecture Notes in Computer Science. last checked: 2011-05-04. Springer
Berlin / Heidelberg, pp. 134–140. url: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.61.6580&rep=rep1&type=pdf.

March, Salvatore T. and Gerald F. Smith (1995). “Design and Natural Science Research
on Information Technology”. In: Decision Support Systems 15.4, pp. 251–266. doi:
10.1016/0167-9236(94)00041-2.

Martin, John C. (2002). Introduction to Languages and the Theory of Computation.
Third Edition. ISBN: 978-0072322002. McGraw-Hill Science/Engineering/Math.

157

Bibliography

Masche, Philipp, Paul Mckee, and Bryce Mitchell (2006). “The Increasing Role of Service
Level Agreements in B2B Systems”. In: Proceedings of the International Conference
on Web Information Systems, Setubal, pp. 473–478.

Matros, Raimund et al. (2008). SORMA Deliverable 1.1a: Requirements Description.
Project Deliverable. last checked: 2011-05-03. SORMA Consortium. url: http://
www.im.uni-karlsruhe.de/sorma/deliverables.htm.

Mayerl, Christian et al. (2005). “Methode für das Design von SLA-fähigen IT-Services”.
In: Proceedings of Kommunikation in Verteilten Systemen (KiVS2005), Kaiser-
slautern, Germany.

Meffert, Heribert (1985). “Größere Flexibilität als Unternehmungskonzept”. In: Schmalen-
bachs Zeitschrift für betriebswirtschaftliche Forschung (ZfbF) 37.2. (german), pp. 121–
137.

Meyer, Bertrand (1992). “Applying ”Design by Contract””. In: Computer 25.10, pp. 40–
51. issn: 0018-9162. doi: http://dx.doi.org/10.1109/2.161279.

Meyer, Harald et al. (2007). ASG Deliverable 6.V-1: Reference Architecture: Require-
ments, Current Efforts and Design. Project Deliverable. last checked: 2011-05-03.
ASG Consortium. url: http://asg-platform.org/cgi-bin/twiki/view/Public/
PublicDeliverables.

Mitchell, Bryce and Paul Mckee (2005). “SLAs A Key Commercial Tool”. In: Proceedings
of eChallenges 2005, Ljubljana, Slovenia.

Mobach, D. G. A. et al. (2005). “A Two-Tiered Model of Negotiation based on Web
Service Agreements”. In: Proceedings of the Third European Workshop on Multi-
Agent Systems (EUMAS’05), pp. 202–213.

Molderez, Jean-Francois et al. (2006). AssessGrid Deliverable 1.1: Requirements Anal-
ysis. Project Deliverable. last checked: 2011-05-03. AssessGrid Consortium. url:
http://www.assessgrid.eu/index.php?id=318.

Mora, Juan et al. (2009). BREIN Deliverable D5.3.4 - Usage Patterns and Best Practice.
Project Deliverable. last checked: 2011-05-03. BREIN Consortium. url: http://
www.eu-brein.com/index.php?option=com_docman&task=cat_view&gid=39&

Itemid=31.
Neumann, Dir et al. (2003). “Applying the Montreal Taxonomy to State of the Art E-

Negotiation Systems”. In: Group Decision and Negotiation 12.4. ISSN: 0926-2644
(Print) 1572-9907 (Online), pp. 287–310. doi: 10.1023/A:1024871921144.

Neumann, Dirk, Jochen Stösser, and Christof Weinhardt (2007). “Bridging the Grid
Adoption Gap - Developing a Roadmap for Trading Grids”. In: Proceedings of the
20th Bled eConference, Bled, Slovenia, 4th - 6th of June. ISBN: 978-961-232-204-5.

Neumann, Dirk et al. (2008). “A Framework for Commercial Grids - Economic and
Technical Challenges”. In: Journal of Grid Computing 6.3. ISSN: 1570-7873, pp. 325–
347. doi: 10.1007/s10723-008-9105-0.

North, Michael J., Nicholson T. Collier, and Jerry R. Vos (2006). “Experiences Creating
Three Implementations of the Repast Agent Modeling Toolkit”. In: ACM Transac-
tions on Modeling and Computer Simulation 16.1, pp. 1–25. issn: 1049-3301. doi:
http://doi.acm.org/10.1145/1122012.1122013.

158

Bibliography

Object Constraint Language (2010). last checked: 2011-05-04. Object Management Group
(OMG). url: http://www.omg.org/spec/OCL/2.2/PDF/.

Office of Government Commerce (2007). Service Strategy Book. ISBN: 9780113310456.
TSO (The Stationery Office).

Olmedo, Vicente et al. (2007). Akogrimo Deliverable D4.2.4 - Consolidated Integrated
Services Design and Implementation Report. Project Deliverable. last checked: 2011-
05-03. Akogrimo Consortium. url: http://www.akogrimo.org/modules235a.
html?name=UpDownload&req=viewdownload&cid=5.

Ouelhadj, D. et al. (2005). “A Multi-agent Infrastructure and a Service Level agreement
Negotiation Protocol for Robust Scheduling in Grid Computing”. In: Advances in
Grid Computing 3470/2005, pp. 651–660.

Overhage, Sven and Peter Thomas (2005). “WS-Specification: Ein Spezifikationsrahmen
zur Beschreibung von Web-Services auf Basis des UDDI-Standards”. In: Proceed-
ings of the Wirtschaftsinformatik 2005, Bamberg. Ed. by Sven Eckert und Tilman
Isselhorst Otto K. Ferstl Elmar J. Sinz. ISBN: 978-3-7908-1574-0, pp. 1539–1558.

Padgett, James, Karim Djemame, and Peter Dew (2005). “Grid Service Level Agree-
ments Combining Resource Reservation and Predictive Run-time Adaption”. In:
4th UK e-Science All Hands Meeting (AHM’05).

Padgett, James et al. (2006). AssessGrid Deliverable 1.3: System Architecture Specifica-
tion and Developed Scenarios. Project Deliverable. last checked: 2011-05-03. Assess-
Grid Consortium. url: http://www.assessgrid.eu/index.php?id=318.

Papazoglou, Michael P. and D. Georgakopoulos (2003). “Service-Oriented Computing”.
In: Communications of the ACM 46.10, pp. 25–28.

Paprzycki, Marcin et al. (2004). “Implementing Agents Capable of Dynamic Negotia-
tion”. In: Proceedings of the Conference on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC04), Timioara, Romania. Mirton Press, pp. 369–380.

Parkin, Michael, Rosa M. Badia, and Josep Martrat (2008). A Comparison of SLA Use
in Six of the European Commissions FP6 Projects. Technical Report TR-0129. last
checked: 2011-05-03. CoreGRID. url: http://www.coregrid.net/mambo/images/
stories/TechnicalReports/tr-0129.pdf.

Paurobally, Shamimabi, Valentina Tamma, and Michael Wooldridge (2007). “A Frame-
work for Web Service Negotiation”. In: ACM Transactions on Autonomous and
Adaptive Systems 2.4, p. 14. issn: 1556-4665. doi: http://doi.acm.org/10.1145/
1293731.1293734.

Peffers, Ken et al. (2008). “A Design Science Research Methodology for Information
Systems Research”. In: Journal of Management Information Systems 24.3, pp. 45–
77. doi: http://dx.doi.org/10.2753/MIS0742-1222240302.

Popper, Karl Raimund (2002). The Logic of Scientific Discovery. Taylor & Francis. isbn:
978-0415278447.

Pruitt, Dean G. (1981). Negotiation Behavior. Academic Press, New York.
Rana, Omer et al. (2008). “Monitoring and Reputation Mechanisms for Service Level

Agreements”. In: Proceedings of the 5th international workshop on Grid Economics
and Business Models (GECON ’08). Berlin, Heidelberg: Springer-Verlag, pp. 125–

159

Bibliography

139. isbn: 978-3-540-85484-5. doi: http://dx.doi.org/10.1007/978-3-540-
85485-2_10.

Resinas, Manuel, Pablo Fernandez, and Rafael Corchuelo (2006). “A Conceptual Frame-
work for Automated Negotiation Systems”. In: Proceedings of the 7th International
Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2006),
pp. 1250–1258. doi: 10.1007/11875581_148.

Resinas, Manuel, Pablo Fernandez, and Rafael Corchuelo (2010). “Automatic Service
Agreement Negotiators in Open Commerce Environments”. In: International Jour-
nal of Electronic Cornmerce 14.3, pp. 93–128.

Rolli, Daniel et al. (2006). “A Descriptive Auction Language”. In: Electronic Markets
16.1, pp. 51–62. doi: 10.1080/10196780500491436.

Rosenberg, Igor and Ana Juan (2009). White Paper: Integrating an SLA Architecture
based on Components. Project White Paper. last checked: 2011-05-03. BEinGRID
Consortium. url: http://www.it-tude.com/slawhitepaper.html.

Royce, W. (1987). “Managing the Development of Large Software Systems: Concepts and
Techniques”. In: Proceedings of the 9th international conference on Software Engi-
neering (ICSE ’87), Los Alamitos, CA, USA. Monterey, California, United States:
IEEE Computer Society Press, pp. 328–338. isbn: 0-89791-216-0.

Ruggaber, Rainer (2007). “Internet of Services SAP Research Vision”. In: Proceedings of
the 16th IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE ’07), Washington, DC, USA. IEEE Computer
Society, p. 3. isbn: 0-7695-2879-1. doi: http://dx.doi.org/10.1109/WETICE.
2007.152.

Russell, Stuart and Peter Norvig (1995). Artificial Intelligence - A Modern Approach.
Ed. by Stuart Russell and Peter Norvig. Prentice Hall, Upper Saddle River, New
Jersey.

SORMA (2007). SORMA Deliverable 1.2: Framework for Self-Organizing Resource Man-
agement. Project Deliverable. last checked: 2011-05-03. SORMA Consortium. url:
http://www.im.uni-karlsruhe.de/sorma/deliverables.htm.

SORMA (2008). SORMA Deliverable 2.2: Final Specification and Design Documentation
of the SORMA Components. Project Deliverable. last checked: 2011-05-03. SORMA
Consortium. url: http://www.im.uni-karlsruhe.de/sorma/deliverables.htm.

SORMA (2009). SORMA Deliverable 5.2: Economic Middleware and Grid Operating
System Extensions. Project Deliverable. last checked: 2011-05-03. SORMA Consor-
tium. url: http://www.im.uni-karlsruhe.de/sorma/deliverables.htm.

Schaaf, Thomas (2008). “IT-gestütztes Service-Level-Management - Anforderungen und
Spezifikation einer Managementarchitektur”. last checked: 2011-05-04. PhD thesis.
Ludwig-Maximilians-University Munich. url: http://edoc.ub.uni-muenchen.de/
9534/.

Scheithauer, Gregor and Matthias Winkler (2008). A Service Description Framework
for Service Ecosystems. Bamberger Beitraege zur Wirtschaftsinformatik und Ange-
wandten Informatik 78. last checked: 2011-05-03. University of Bamberg. url: http:
//www.opus-bayern.de/uni-bamberg/volltexte/2009/173/.

160

Bibliography

Schnizler, Björn et al. (2005a). Environmental Analysis for Application Layer Networks.
Project Deliverable. last checked: 2011-05-03. CATNETS Consortium. url: http:
//www.catnets.uni-bayreuth.de/index.php?id=13.

Schnizler, Björn et al. (2005b). First Year Report of WP1: Theoretical and Computational
Basis. Project Deliverable. last checked: 2011-05-03. CATNESTS Consortium. url:
http://www.catnets.uni-bayreuth.de/index.php?id=13.

Schopf, Jennifer M. and Bill Nitzberg (2002). “Grids: The top ten questions”. In: Sci-
entific Programming 10 (2). last checked: 2011-05-04, pp. 103–111. issn: 1058-9244.

Schroth, Christoph and Till Janner (2007). “Web 2.0 and SOA: Converging Concepts
Enabling the Internet of Services”. In: IT Professional 9.3, pp. 36–41. issn: 1520-
9202. doi: http://doi.ieeecomputersociety.org/10.1109/MITP.2007.60.

Seidel, Jan et al. (2007). Using SLA for Resource Management and Scheduling - A
Survey. Technical Report TR-0096. last checked: 2011-05-03. CoreGRID. url: http:
//www.coregrid.net/mambo/images/stories/TechnicalReports/tr-0096.pdf.

Silaghi, Gheorghe Cosmin, Alvaro E. Arenas, and Luis Moura Silva (2007). Reputation-
based Trust Management Systems and their Applicability to Grids. Technical Report
TR-0064. last checked: 2011-05-03. CoreGrid. url: http://www.coregrid.net/
mambo/images/stories/TechnicalReports/tr-0064.pdf.

Simon, Herbert Alexander (1996). The Sciences of the Artificial. Cambridge, Massachusetts:
MIT Press. isbn: 978-0-262-69191-8.

Skene, J., D. Lamanna, and W. Emmerich (2004). “Precise Service Level Agreements”.
In: Proceedings of the 26th International Conference on Software Engineering, Ed-
inburgh, United Kingdom. IEEE Computer Society Press, pp. 179–188.

Smith, Adam (1976). An Inquiry into the Nature and Causes of the Wealth of Nations.
Ed. by R. H. Campbell, A. S. Skinner, and W. B. Todd. First published 1776. Oxford
University Press.

Smith, R. G. (1980). “The Contract Net Protocol: High-Level Communication and Con-
trol in a Distributed Problem Solver”. In: IEEE Transactions on Computers 29.12,
pp. 1104–1113. issn: 0018-9340. doi: http://doi.ieeecomputersociety.org/10.
1109/TC.1980.1675516.

Snelling, D. and A. Anjomshoaa (2007). NextGRID Architectural Concepts. Technical
Report. last checked: 2011-05-03. NextGRID. url: http://eprints.ecs.soton.
ac.uk/17602/1/09.pdf.

Snelling, Dave, Mike Fisher, and Achim Basermann (2005). An Introduction to the
NextGRID Vision and Achievements V1.0. Technical Report. last checked: 2011-
05-03. NextGRID. url: http://www.nextgrid.org/download/publications/
NextGRID_Architecture_White_Paper.pdf.

Srinivasan, Latha and Jem Teadwell (2005). An Overview of Service-oriented Architec-
ture, Web Services and Grid Computing. Technical Report. last checked: 2011-05-
03. HP Software Global Business Unit. url: http://h71028.www7.hp.com/ERC/
downloads/SOA-Grid-HP-WhitePaper.pdf.

Steinmetz, Ralf and Klaus Wehrle (2004). “Peer-to-Peer-Networking & -Computing”.
In: Informatik - Spektrum 27.1, pp. 51–54. doi: 10.1007/s00287-003-0362-9.

161

Bibliography

Stoica, Ion et al. (2001). “Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications”. In: Proceedings of the 2001 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, New York, NY, USA.
San Diego, California, United States: ACM, pp. 149–160. isbn: 1-58113-411-8. doi:
http://doi.acm.org/10.1145/383059.383071.

Ströbel, M. (2001).Design of Roles and Protocols for Electronic Negotiations. last checked:
2011-05-04. url: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.
1.24.7302.

Ströbel, Michael (2000a). “Effects of Electronic Markets on Negotiation Processes”. In:
Proceedings of the 8th European Conference on Information Systems. Vol. 1, pp. 445–
452.

Ströbel, Michael (2000b). “On Auctions as the Negotiation Paradigm of Electronic Mar-
kets”. In: Electronic Markets 10.1, pp. 39–44. doi: 10.1080/10196780050033962.

Ströbel, Michael and Christof Weinhardt (2003). “The Montreal Taxonomy for Elec-
tronic Negotiations”. In: Group Decision and Negotiation 12.2, pp. 143–164.

Strecker, Stefan et al. (2006). “Electronic negotiation systems: The Invite prototype”. In:
Multikonferenz Wirtschaftsinformatik 2006. Gesellschaft für Informatik e.V. Berlin:
GITO, pp. 315–331.

Streitberger, Werner et al. (2008). “On the Simulation of Grid Market Coordination
Approaches”. In: Journal of Grid Computing, Special Issue on Grid Economics and
Business Models 6.3. ISSN: 1570-7873 (Print) 1572-9814 (Online), pp. 349–366. doi:
http://dx.doi.org/10.1007/s10723-007-9092-6.

Tamma, V., M. Wooldridge, and I. Dickinson (2002). An Ontology for Automated Ne-
gotiation. last checked: 2011-05-04. url: http://www.computer.org/portal/web/
csdl/doi/10.1109/SNPD.2007.27.

Taylor, Steve et al. (2009). “Business Collaborations in Grids: The BREIN Architectural
Principals and VO Model”. In: Proceedings of the 6th International Workshop on
Grid Economics and Business Models (GECON ’09). Berlin, Heidelberg: Springer-
Verlag, pp. 171–181. isbn: 978-3-642-03863-1. doi: http://dx.doi.org/10.1007/
978-3-642-03864-8_14.

Terracina, Annalisa et al. (2007). Akogrimo Deliverable 4.3.4 - Consolidated Report on
the Implementation of the Infrastructure Services Layer. Project Deliverable. last
checked: 2011-05-03. Akogrimo Consortium. url: http://www.akogrimo.org/

modules235a.html?name=UpDownload&req=viewdownload&cid=5.
Theilmann, Wolfgang et al. (2009). SLA@SOII Deliverable D.A1a - Framework Archi-

tecture. Project Deliverable. last checked: 2011-05-03. SLA@SOI Consortium. url:
http://sla-at-soi.eu/results/deliverables/.

Theilmann, Wolfgang et al. (2010). SLA@SOI Deliverable D.A1a - Framework architec-
ture (full lifecycle). Project Deliverable. last checked: 2011-05-03. SLA@SOI Con-
sortium. url: http://sla-at-soi.eu/results/deliverables/.

Theseus (2009). TEXO – Business Webs im Internet der Dienste. last checked: 2011-05-
04, (german). url: http://theseus-programm.de/anwendungsszenarien/texo/
default.aspx.

162

Bibliography

Thompson, Henry S. et al. (2004). XML Schema Part 1: Structures, Second Edition. last
checked: 2011-05-04. World Wide Web Consortium (W3C). url: http://www.w3.
org/TR/2004/REC-xmlschema-1-20041028.

Tosic, Vladimir, Kruti Patel, and Bernard Pagurek (2002). “WSOL - Web Service Offer-
ings Language”. In: Lecture Notes in Computer Science 2512/2002. ISSN 0302-9743,
pp. 57–67.

Tosic, Vladimir et al. (2002). “Web Service Offerings Language (WSOL) andWeb Service
Composition Management (WSCM)”. In: Proceedings of the Object- Oriented Web
Services Workshop at the Conference on Object-Oriented Programming, Systems,
Languages & Applications 2002 (OOPSLA 2002), Seattle, USA.

Tosic, Vladimir et al. (2004). “Web Service Offerings Infrastructure (WSOI) - a man-
agement infrastructure for XML Web services”. In: Proceedings of the Network Op-
erations and Management Symposium (NOMS 2004). Vol. 1, pp. 817–830.

Treadwell, J. (2007). Open Grid Services Architecture, Glossary of Terms, Version 1.6.
Information Document. last checked: 2011-05-04. Open Grid Forum. url: http:
//www.ogf.org/documents/GFD.120.pdf.

Unified Modelling Language (UML) 2.0 (2005). Object Management Group. url: http:
//www.omg.org/spec/UML/.

Veit, Daniel et al. (2007). Third Year Report of WP 1: Theoretical and Computational
Basis. Project Deliverable. last checked: 2011-05-03. CATNETS Consortium. url:
http://www.catnets.uni-bayreuth.de/index.php?id=13.

Venugopal, Srikumar, Xingchen Chu, and Rajkumar Buyya (2008). “A Negotiation
Mechanism for Advance Resource Reservations Using the Alternate Offers Protocol”.
In: Proceedings of the 16th International Workshop on Quality of Service (IWQoS
2008), pp. 40–49. doi: 10.1109/IWQOS.2008.10.

Waeldrich, Oliver et al. (2010). “WS-Agreement Negotiation”. In: last checked: 2010-
10-05. url: https://forge.gridforum.org/sf/docman/do/downloadDocument/
projects.graap-wg/docman.root.current_drafts.ws_agreement_negotiation_

specifi/doc16041/1.
Walls, Joseph G., George R. Widmeyer, and Omar A. El Sawy (1992). “Building an

Information System Design Theory for Vigilant EIS”. In: Information Systems Re-
search 3.1, pp. 36–59. doi: 10.1287/isre.3.1.36. eprint: http://isr.journal.
informs.org/cgi/reprint/3/1/36.pdf.

Walsh, William E., Michael P. Wellman, and Fredrik Ygge (2000). “Combinatorial Auc-
tions for Supply Chain Formation”. In: Proceedings of the 2nd ACM Conference
on Electronic Commerce (EC ’00). New York, NY, USA: ACM, pp. 260–269. isbn:
1-58113-272-7. doi: http://doi.acm.org/10.1145/352871.352900.

Wesner, Stefan et al. (2005). Akogrimo Deliverable 2.2.1 Volume 1 – The Socio-Economic
Environment. Project Deliverable. last checked: 2011-05-03. Akogrimo Consortium.
url: http://www.akogrimo.org/modules235a.html?name=UpDownload&req=
viewdownload&cid=5.

Westerinen, A. et al. (2001). Terminology for Policy-Based Management. Request for
Comments. last checked: 2011-05-04. Internet Engineering Task Force (IETF). url:
http://www.ietf.org/rfc/rfc3198.txt.

163

Bibliography

Wettig, Steffen and Eberhard Zehendner (2004). “A Legal Analysis of Human and Elec-
tronic Agents”. In: Artificial Intelligence and Law 12.1, pp. 111–135. issn: 0924-8463.
doi: http://dx.doi.org/10.1007/s10506-004-0815-8.

Wilde, Thomas and Thomas Hess (2007). “Forschungsmethoden der Wirtschaftsinfor-
matik - Eine empirische Untersuchung”. In: Wirtschaftsinformatik 49.4, pp. 280–
287.

Wilson, Michael (2007). TrustCoM Project Final Report. Project Deliverable. last checked:
2011-05-03. TrustCoM Consortium. url: http://epubs.cclrc.ac.uk/bitstream/
5109/trustcom-finalreport_en.pdf.

Wooldridge, M. (1997). “Agent-based Software Engineering”. In: IEEE Proceedings Soft-
ware Engineering 144.1, pp. 26–37. doi: http://dx.doi.org/10.1049/ip-sen:
19971026.

Wooldridge, Michael J. (2005). An Introduction to MultiAgent Systems. Chichester: John
Wiley & Sons, Ltd.

Wurman, P., W.Walsh, and M.Wellman (1998a). Flexible Double Auctions for Electronic
Commerce: Theory and Implementation. last checked: 2011-05-04. url: http://
citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.1798.

Wurman, Peter R., William E. Walsh, and Michael P. Wellman (1998b). “Flexible Dou-
ble Auctions for Electronic Commerce: Theory and Implementation”. In: Decision
Support Systems 24, pp. 17–24.

Wurman, Peter R., Michael P. Wellman, and William E. Walsh (1998). “The Michi-
gan Internet AuctionBot: A Configurable Auction Server for Human and Software
Agents”. In: Second International Conference on Autonomous Agents (Agents’98).

Wurman, Peter R., Michael P. Wellman, and William E. Walsh (2001). “A Parametriza-
tion of the Auction Design Space”. In: Games and Economic Behavior 35.1-2,
pp. 304–338.

Wurman, Peter R., Michael P. Wellman, and William E. Walsh (2002). “Specifying Rules
for Electronic Auctions”. In: AI Magazine 23, p. 2002.

Ziegler, Wolfgang et al. (2008). Considerations for negotiation and monitoring of Service
Level Agreements. Technical Report TR-0167. last checked: 2011-05-03. CoreGRID.
url: http://www.coregrid.net/mambo/images/stories/TechnicalReports/
tr-0167.pdf.

d’Andria, Francesco et al. (2006). “Exploiting the Knowledge Economy”. In: ed. by Paul
Cunningham and Miriam Cunningham. IOS Press. Chap. An Enhanced Strategy for
SLA Management in the Business Context of New Mobile Dynamic VO.

164

Curriculum Vitae

Personal Information

09/2005 - 01/2006 Sebastian Hudert
Preuschwitzer Str. 23
95445 Bayreuth

Email: sebastian.hudert@gmail.com

Diplom-Wirtschaftsinformatiker (Univ.)
Born on March 3rd 1981 in Schweinfurt, Germany
Marital status: unmarried
Nationality: German

Vita

since 11/2006 Research and Teaching Assistant and PhD Candidate, De-
partment of Information Systems Management (BWL VII), Prof.
Dr. Torsten Eymann, University of Bayreuth

10/2001 - 09/2006 Academic Studies in Information Systems (Diploma, equiv-
alent to a Master’s Degree) at the Otto-Friedrich University Bam-
berg

09/2005 - 01/2006 Exchange semester at the Dublin City University, Dublin, Ire-
land

09/2000 - 07/2001 Civilian Service at the Kolping Educational Center Schweinfurt

06/2000 School Leaving Examination (Abitur) at the Walther Ra-
thenau Gymnasium Schweinfurt

Bayreuth, October 25, 2011

165

ISSN

Visions of the next-generation Internet of
Services are driven by digital resources traded on
a global scope. For the resulting economic
setting, automated on-line techniques for
handling services and resources themselves, for
advertising and discovering as well as for the
on-the-fly negotiation of proper terms for their
use are needed. Hence, a flexible infrastructure
for the respective management of services and
associated service level agreements is mandatory.

This thesis presents the results of my dissertation
project. They comprise a service infrastructure,
able to support the structured discovery and
protocol-generic negotiation of electronic service
level agreements (SLAs) and thus services
themselves.

1864-9300

