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ABSTRACT. The study of the characterization of threshold functions within the class
of switching functions is an important problem that goes back at least to the mid—
20th century. Due to different motivations switching and threshold functions have
been investigated in a variety of different mathematical contexts: Boolean or switch-
ing functions, neural networks, hypergraphs, coherent structures, Sperner families,
clutters, secret sharing and simple games or binary voting systems.

The paper revises the state of the art about this significant problem and proposes
some new contributions concerning asummability and invariant asummability, a
refinement of asummability. It also includes several questions and conjectures for
future research whose solution would mean a new breakthrough.
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1. INTRODUCTION

The study of switching functions goes back at least to Dedekind’s 1897 work, in which
he determined the exact number of simple games with four or fewer players. Since that
time these structures have been investigated in a variety of different contexts either theo-
retically [28, 31, 30, 32, 6] in the context of Boolean functions or because of their numerous
applications: neural networks [1], simple games [47, 36, 37, 50], threshold logic [43], hy-
pergraphs [53], coherent structures [52], learning theory [40], complexity theory [3], and
secret sharing [56, 58, 2]. Several books on neural networks have studied these struc-
tures: [48, 54, 57, 51]. To the best of our knowledge the first work linking threshold logic
and simple games is due to Dubey and Shapley [11] and a compact study encompassing
knowledge in both fields is due to Taylor and Zwicker [61].

One of the most fundamental questions in all these areas is to characterize which
monotonic switching functions are weighted threshold. This problem is known in threshold
logic as the linear separability problem. This question has also been posed in other research
fields by using different, but essentially being equivalent, terminologies. Three different
treatments to solve this problem have been considered.

The first consists in studying the consistency of a system of inequalities. Each inequality
is formed by the inner product of two vectors: a non-negative integer vector of weights
which represents the unknown variables and the vector formed by the subtraction of a true
vector minus a false vector. The system is formed by considering all possible subtractions
of true and false vectors. If the switching function is a threshold function then each
inequality must be positive and the system of inequalities is consistent. This quite natural
procedure is hardly a characterization, it is only a translation. A theorem on the existence
of solutions for systems of linear inequalities was given in [8]. Linear programming is also
a useful tool as shown in [5, 39, 19].

The second treatment, very close to the previous one, is a geometric approach based
on the existence of a separating hyperplane that separates true vectors from false vectors.
This procedure is elegant but not very efficient in practice. An use of the geometrical
approach can be found in [12] and [34] for a variant of it.

The third method is an algebraic approach based on some combinatorial features. The
idea behind this approach lies in the consideration of exchanges among vectors and the
possibility to convert some true vectors into false vectors, no matter the number of vectors
involved in these exchanges. The early works of [13] and [9] reexamined for simple games
in [60] are the central point of this work.
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Logic gates, switching functions or Boolean functions can be thought as simple games,
with weighted games playing the role of threshold functions. The class of threshold func-
tions admits a structural characterization, the asummability property, that is both natural
and elegant. It states that a switching function is a threshold function if and only if it sat-
isfies the property of asummability. Some of the deepest results on this subject were done
in the area of threshold logic during the late 1950s and early 1960s by people such as Chow,
Elgot, Gabelman, and Winder, as reported by Hu [35] and Muroga [43]. Some of this work
was anticipated by Isbell [36, 37] in the field of simple games. In the book by Taylor and
Zwicker [61] the authors propose the property of trade-robustness, which is equivalent to
the property of asummability but is more transparent in the voting-theoretic context since
it gives rise to some intuitions—most particularly, the idea of trading players among win-
ning coalitions. Moreover, this trading notion reveals a number of important properties
of simple games. Freixas and Molinero [21] propose a relaxation of trade-robustness for
regular switching functions and called it invariant-trade robustness, which is less costly
because only considers trades with a type of minimal winning coalitions.

For the sake of simplicity, clarity, and for being coherent with the historical performed
studies we start to write the paper in the language of Boolean algebra (very similar to
that of neural networks or threshold logic) and will continue exposing the main results
in the language of simple games. As suggested in [61] some notions, as the concept of
trade robustness, naturally arise in the political or economical context. Tables 1 and 2
contain the main equivalences which are also recalled in one language—that of switching
functions— in the rest of this section.

TABLE 1. Variables and vectors versus players and coalitions.

player or voter

null player

vetoer

coalition

winning coalition

losing coalition

minimal winning coalition
maximal losing coalition
shift-minimal winning coalition

variable or node
irrelevant variable
essential variable

vector

true vector

false vector

minimal true vector
maximal false vector
shift-minimal true vector

TABLE 2. Types of functions versus types of simple games.

switching function
monotonic switching function
threshold function

k-out-of-n switching function
2-monotonic function
k-summable

k-asummable

k-invariant summable
k-invariant asummable

non-monotonic simple game
monotonic simple game
weighted game

symmetric simple game
complete game

not k-trade robust

k-trade robust

not k-invariant trade robust
k-invariant trade robust

Quite recently some variants of the linear separability problem have been studied in
depth in the context of neural networks [4, 15, 14, 20].

Non-monotonic switching functions are more natural in areas such as threshold logic
than they are in simple games. For instance, the XOR function is a switching function
which is not a threshold function. However, the non-monotonicity of the XOR function
prevents it of being interpreted in the context of simple games, since the condition of
monotonicity is inherent in simple games or cooperative games more generally. Through-
out this paper we exclusively deal with monotonic switching functions, or equivalently,
simple games.
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The paper is organized as follows. The basic terminology is recalled in the rest of this
section concluding with the statement of a result dating from the sixties which is the
starting point of our research. Section 2 begins with the exposition of the computational
difficulties of testing the condition of asummability. We continue with the consideration of
regular switching functions and with the exposition of a known characterization for them,
that of swap asummability. We conclude the section by providing a significant refine-
ment of asummability, that of invariant asummability, which constitutes a complementary
test for ascertaining if a given switching function is a threshold function. Equivalent for-
mulations for asummability in the context of simple games are given at the end of this
section.

In section 3 we will turn our attention to symmetries, situations for which at least two
components or players play an equivalent role in the function, i.e., they are substitutes.
Such symmetries allow a compact description that facilitates the computations of the two
previous tests. A parametrization result for classifying all regular functions, or complete
simple games, up to isomorphisms, which will be intensively used in the next sections, is
presented at the end of this section.

The central question in section 4 is whether the condition of 2-invariant asummability,
the minimum requirement for invariant asummability, is sufficient to ensure that a regular
switching function is weighted threshold. The parameters associated to a regular switching
function with such a property are identified.

Section 5 and 6 respectively consider other parameters for which further conditions for
k-invariant asummability and k-asummability (with k& > 2) are sufficient to ensure that
a regular switching function is weighted threshold. Some findings are shown and several
questions and conjectures are proposed for future research. In section 7 we conclude the

paper.

1.1. Terminology and a fundamental result. Let N = {1,2,...,n} denote the finite
set of indices for the variables. A function f : {0,1}" — {0,1} is called a switching
function (or Boolean function). Let = (z1,...,z,) € {0,1}" be a vector. Given two
vectors z,y, we have y < x when y; < z; for every variable ¢ = 1,...,n. A switching
function is monotonic (or positive) if f(y) < f(x) for every pair of vectors z,y such that
y <.

A monotonic switching function is completely determined by its sets of minimal true
vectors: a true vector x € f~1({1}) is minimal if f(y) = 0 for all y € {0,1}" such that
y < x,y # x. Analogously, z € {0,1}" is a false vector if x € f~'({0}) and is mazimal
if moreover f(y) = 1 for all y € {0,1}" such that y > z, y # x. We denote the set of
true vectors of a function as W = f~'({1}) and the set of false vectors of a function as
L = f7'({0}). Analogously, we denote the set of minimal true vectors of a function as
W™ C W, and the set of maximal false vectors of a function as L C L. From now on
we only deal with monotonic switching functions so that the term monotonic is omitted
in what follows.

Given a vector z, let X = {i € N : x; = 1} be a subset of the variables set. There is
a one-to-one correspondence between any vector z and any coalition X.! Some types of
coalitions are now highlighted: X € W if and only if x € W; X € £ if and only if z € L;
X € W™ if and only if z € W™; X € £M if and only if z € L. In terms of simple
games the sets W, £, W™, and LM are respectively the sets of: winning coalitions, losing
coalitions, minimal winning coalitions, and mazimal losing coalitions.

Some special type of variables deserve to be highlighted. Variable i is irrelevant in f if

f(x) = f(y) for all z with z; = 1 and y with y; = { o, ik

0, ifk=1
in fif f(x) =1 implies z; = 1.
Variable ¢ dominates j, denoted by 7 7= j, in a switching function f whenever f(z) =1

. Variable i is essential

ze, ifk#,j
with ; = 0, z; = 1 implies f(y) = 1 where y, = 1, ifk=4 . The dominance
0, ifk=3j

Twe adopt this term taken from the game theory context where players form coalitions with the
purpose of passing proposals or amendments submitted to a vote.
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relation? - is reflexive and transitive, but not necessarily complete. Thus, it is a preorder-
ing. Variables ¢ and j are symmetric in f, denoted ¢ ~ j, if ¢ 7 j and j = 4. Symmetric
variables form an equivalence class and N can be partitioned into equivalence classes of
variables, namely Ni,...,N;. If ¢ 27 j but ¢ ~ j is not true, then ¢ strictly dominates j,
denoted ¢ > j, and they respectively belong to different equivalence classes, N, and Ny in
which k > [ for all kK € N, and [ € Ny, so that we use the notation N, > N,.

A particular case of switching functions are regular (or 2-monotonic) ones. A switching
function f : {0,1}™ — {0,1} is said to be regular if either ¢ =~ j or j = i for all 4,5 € N.
That is in a non-regular function there always exists a pair of variables i, j such that
neither ¢ - j nor j =~ ¢. Note that if f is regular the equivalence classes of variables are
linearly ordered, i.e., N1 > --- > N;. If, moreover, f has either essential variables or
irrelevant variables, then N; is the set of essential variables, while Ny (with ¢ > 1) is the
set of irrelevant variables.

A particular case of regular switching functions are weighted threshold ones. A mono-
tonic switching function f: {0,1}" — {0,1} is said to be weighted threshold if there exist
n positive integers, called weights, w1, ..., wn € Z>o such that 3" | w;(x; —y:) > 0 for all
vectors x € W and y € L. For a weighted threshold function a positive number ¢t € Z~( can
be inserted between the weights of true and false vectors, i.e., Z;;l wix; >t > Z?:l WilYs
for all z € W and y € L. The weights of true vectors are the numbers w - x for all z € W
where “” denotes the inner product of vectors w = (w1, ..., ws,) and z. Analogously, the
weights of false vectors are the numbers w - y for all y € L.

This definition itself suggests two ways to test whether a switching function is weighted
threshold. The first is based on solving the consistency of a linear system of inequalities
with the weights as unknowns. The second is based on a geometrical approach by trying
to find a hyperplane, >.7 |, wiz; = ¢, with z € {0,1}" and the weights and the threshold
as unknowns such that: Z:.l:l w;x; > t for every true vector x and Z?Zl w;y; < t for every
false vector y. Theorems on the existence of solutions for systems of linear inequalities
go back to the early 1900s. An important related result, mentioned in von Neumann and
Morgenstern [47] p. 138 and extensively treated in [16] p. 31, is the Theorem of the
Alternative.

For these quite direct characterizations of weighted threshold functions there exist some
techniques, see e.g., Muroga [43] for the former one. The third (algebraic) characterization
for which we are concerned in this paper uses a combinatorial treatment, which is very
natural in the game theory context, there called trade robustness.?

Let f be a switching function, if there exist 2k vectors (not necessarily different)

z!, ..., 2" being true vectors and y', ..., y"* being false vectors such that z' + ...+ z* =
y' + ...+ y*, where + denotes the componentwise addition of vectors, then we say that
f is k-summable. If f is not j-summable, for j = 1,..., k, we say that f is k-asummable.

If f is k-asummable for every k > 1 we say that f is asummable.
Independently, Elgot [13] and Chow [9] proved the following characterization of weighted
threshold functions.

Theorem 1.1. ([13, 9]) Let f be a switching function. Then, [ is weighted threshold <
f is asummable.

The proof of the sufficiency of asummability for weightedness follows from an old result
in the theory on linear inequalities. One can find it in Muroga ( [43], p. 192, lemma
7.2.1). Theorem 1.1 actually provides a fairly simple and uniform procedure for showing
that certain functions are not weighted threshold: one produces a sequence of true vectors
and indicates suitable trades of variables among these true vectors to convert all of them
into false vectors.

This result is the starting point of our study. In the next section we introduce some
known and quite recent refinements of Theorem 1.1.

2In game theory it is known as the desirability relation which was introduced for simple games by
Isbell (see [36] as well as [37]) and later on generalized to cooperative games by Maschler and Peleg [41]).

3Indeed, trades among players are very natural in some human activities. Assume a soccer team
who has two outstanding goalkeepers but a weakness in the center-forward position, oppositely another
team has the lack of a good goalkeeper but has two outstanding center-forwards who do not play well
playing together. In this situation it is convenient for both teams to exchange goalkeepers and center
forwards, so that both teams have both positions well covered.
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2. REFINEMENTS OF THE THEOREM BY ELGOT AND CHOW

2.1. Some known upper bounds for testing asummability. A naive checking of
weightedness in Theorem 1.1 is an infinite process in principle. The next theorem shows
that the finiteness of IV allows to transform it into a finite, albeit lengthy, process.

Theorem 2.1. ([4,6]) Let f be a switching function. The following are equivalent,

(7) f is weighted threshold.
(i) f is asummable.

(3i2) f s 22™' _gsummable.

Notice that a naive checking of (iii) is a finite (albeit lengthy) process, 22" in (iii)
can be lowered to 2("72) where |N| = n since, in a switching function of n variables,
(7:}2) is either the maximal size for W™ or an upper bound for it. The potential length

22" from (iii) was lowered to (n + 1)2%"1%2” in [29]. The determination of the true
worst-case order of magnitude in (i¢) is a challenging open problem. So far it is not
known whether the concept of asummability allows a polynomial sized certificate for non-
weightedness. We remark that such a certificate is possible based on the dual of a linear
program implementing the conditions from the notion of weighted threshold function.

Depending on the number of variables it is well-known that each switching function up
to 8 players is either weighted or not 2-asummable. For 9 players one can find a switching
function which is 3-assumable but 4-summable.

Gabelman [27] provides a sequence of switching functions with m? variables, with as
many variables as equivalence classes in N, being (m — 1)-asummable but m-summable
for each positive integer m. So, m-asummability has to be considered at least for m €
Q(y/|N|). This lower bound was increased to {%J for [N| > 9 in Gvodzeva and

Slinko [29]. Again, every equivalence class is a singleton in the used construction of the
respective switching function.

2.2. Regular functions. A particular case of 2-asummability consists of a single swap
of two variables in the two true vectors chosen. We say that f is swap asummable if for
all true vectors z', 2% with =} =1, :vjl =0and 2? =0, x? = 1 for some arbitrary variables
i,j it occurs that: either y' is a true vector or 32 is a true vector, where

xy, ifk#4,j wh, ifk#id,j
yr=4< 0 ifk=31 and yp =< 1, ifk=31
1, ifk=j 0, ifk=j

Note that if vectors ', 22 as defined do not exist, the function f is regular. The interest
of this especial case is due to:

Theorem 2.2. ([59]) Let f be a switching function. Then, f is reqular < f is swap
asummable.

Clearly a weighted threshold function is regular, since w; > w; implies ¢ 2Z j. Thus,
every non-regular function is not weighted threshold. Hence, only the restriction to regular
switching functions makes sense to ascertain whether a given switching function is weighted
threshold. But, Theorem 2.2 still says more: non-regular functions are all swap summable,
i.e., there always exist variables i, j such that after swapping them in two given true vectors
z!', 2% they can be converted into false vectors y' and 3>

Example 2.3. The switching function defined as f(z1, 22,3, 24) = 1 22 VX3 24 is not
regular. Indeed, (1,1,0,0) and (0,0, 1, 1) are true vectors whereas (1,0, 1,0) and (0,1,0,1)
are false vectors. These vectors provide a certificate of swap summability.

For the class of regular switching functions we can find functions being k-asummable
but (k + 1)-summable for k& > 1. Due to the previous result this is not possible for the
class of non-regular switching functions.

A true vector is shift-minimal, denoted x € W?, in a regular function if there exists an
ordering, say (j1,j2,-..,Jn) of the variables such that f(z) = 1 with z;, =1, z;,,, =0



6 JOSEP FREIXAS, MARC FREIXAS, AND SASCHA KURZ

T, if k# i, jira

implies f(y) =0 wherey, =< 0, ifk=y; . Note that the given ordering should
1,  ifk=jist
respect the dominance relation of variables, i.e., j; 22 jit1 foralli=1,...,n — 1.

In a regular function the set of shift-minimal winning coalitions is denoted by W?* and
it suffices to generate the set of all winning coalitions. Indeed, if X is a shift-minimal
winning coalition the coalitions obtained from X by replacing some j € X by some i ¢ X
with ¢ 7~ j are minimal winning coalitions. If additionally some player is added in X
and possibly transformed according to the previous step, then the resulting coalition is
winning but not minimal.

Having all this in mind, the Chow and Elgot result can still be relaxed within the class
of regular functions. In fact, Freixas and Molinero [21] prove that only shift-minimal true
vectors suffice to check whether a switching function is weighted threshold. Indeed, if for a
regular function f, there exist 2k vectors (not necessarily different) z', ..., 2" being shift-
minimal true vectors and y*, . . ., y* being false vectors such that z'+. . 4+z* = y'+.. 4+¢*,
then we say that the regular function f is k-shift summable. If f is not j-shift summable,
for j =1,...,k, we say that f is k-shift asummable. If f is k-shift asummable for every
k > 1 we say that f is shift asummable.

Theorem 2.4. (Freizas and Molinero’s Theorem 4.3 in [21]) Let f be a regular switching
function. Then, f is m-asummable & f is k-shift asummable for some k > m.

As non-regular functions are swap summable, it makes sense to study asummability
only within the class of regular switching functions and inside this class Theorem 2.4
refines Theorem 1.1.

Corollary 2.5. Let f be a regular switching function. Then, f is weighted threshold <
f is shift asummable.

Note the following. First, if a given regular function is m-summable (with m being the
minimum value for summability) but also m-shift summable for some m then some un-
necessary checking is avoided in using shift summability instead of summability, therefore
Corollary 2.5 constitutes a significant simplification with respect to Theorem 1.1. Sec-
ond, if f is m-summable (with m being the minimum value for summability) and k-shift
summable with £ > m and being the minimum value for shift summability, then it is not
clear which of the two tests involves less operations; consequently the two Theorems 1.1
and 2.4 are complementary. Third, if a given regular function is weighted threshold both
processes are lengthy, but again complementary.

Two respective relaxations of Theorems 1.1 and 2.4 can be obtained if the number
of equivalence classes is lower than the number of voters, ie., t < |N|. The idea of
such reformulations consists in grouping several “equivalent” vectors (or coalitions) into a
single coalitional type of vector representing all of them. Before proceeding, we introduce
two real-world examples of simple games (see Taylor and Pacelli [59] for a thorough
presentation of these examples). From now on we will use the standard terminology of
voting for simple games.

Example 2.6. The United Nations Security Council. The voters in this system are the
fifteen countries that make up the Security Council, five of which are called permanent
members whereas the other ten are called non-permanent members. Passage requires a
total of at least nine of the fifteen possible votes, subject to a veto due to a nay vote
from any one of the five permanent members. This example as presented here ignores
abstention. For a treatment of this example considering the possibility of abstention we
refer the reader to [26].

There is a fundamental difference between the permanent and the non-permanent
members in the United Nations Security Council, while members within each of these
groups play equivalent roles. As the equivalence relation ~ partitions the player set N in
1 <t < |N]| equivalence classes Ni,..., N;. We speak of ¢ types of equivalent voters, e.g.,
we have two types of voters in Example 2.6: N is formed by the five permanent members
(vetoers) and N, is formed by the ten non-permanent members.
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Example 2.7. The System to amend the Canadian Constitution. Since 1982, an amend-
ment to the Canadian Constitution can become law only if it is approved by at least
seven of the ten Canadian provinces, subject to the proviso that the approving provinces
have, among them, at least half of Canada’s population. It was first studied in Kilgour
[38]. An old census (in percentages) for the Canadian provinces was: Prince Edward Is-
land (1%), Newfoundland (3%), New Brunswick (3%), Nova Scotia (4%), Manitoba (5%),
Saskatchewan (5%), Alberta (7%), British Columbia (9%), Quebec (29%) and Ontario
(34%).

For example observe that coalitions (from now on we use abridgments to denote the
provinces)

X1 ={PEI,New, Man, Sas, Alb, BC, Que}
and
X2 ={NB,NS, Man, Sas, Alb, BC, Ont}

are minimal winning coalitions because they both have exactly 7 provinces and their total
population surpasses the 50%. Instead, coalitions Y1 = {Man, Sas, Alb, BC, Que, Ont}
and Yo = {PEI, New, NB, NS, Man, Sas, Alb, BC} are both losing because T} does not
have 7 or more members and T» does not reach the 50% of the total Canada’s population.

In example 2.6 we have again two equivalence classes: N; which is formed by the two
big provinces, Ontario and Quebec, and N2 which is formed by the other eight provinces.

2.3. Trade robustness and invariant trade robustness. The notion of asummability
has a natural translation when coalitions are used instead of vectors. This new version is
more natural in game theory and in economic applications because it involves the idea of
trades among coalitions, see [60, 61]. Suppose (N, W) is a simple game. Then a trading
transform is a coalition sequence (X1,..., Xk, Y1,...,Y%) of even length satisfying the
following condition:

Hi:aeXs}=|Hi: a€Y;}| forallae N.

The Xs are called the pre-trade coalitions and the Y's are called the post-trade coalitions.
A k-trade for a simple game (N, W) is a trading transform (Xi,...,X;,Y1,...,Y;) with
j < k. The simple game (N, W) is k-trade robust if there is no trading transform for which
all the Xs are winning in (N,) and all the Y's are losing in (N, W). If (N, W) is k-trade
robust for all k, then (N, W) is said to be trade robust.

Loosely speaking, (N,W) is k-trade robust if a sequence of k or fewer (not necessarily
distinct) winning coalitions can never be rendered losing by a trade.

Trivially, Theorem 1.1 can be reformulated in an equivalent way.

Theorem 2.8. ([60]) Let (N, W) be a simple game. Then, (N, W) is weighted < (N, W)
is trade robust.

Analogously, if we are restricted to complete simple games, equivalent to regular switch-
ing functions, and only allow pre-trades of shift-minimal winning coalitions, then we may
refer to the property of invariant-trade robustness instead of trade robustness and again
Theorem 2.4 can be reformulated in an equivalent way.*

Theorem 2.9. ([21]) Let (N, W) be a complete simple game. Then, (N, W) is weighted
< (N, W) is invariant-trade robust.

As seen in Example 2.7 the trading transform (X1, X2|Y1,Y2) certifies a failure of 2-
invariant-trade robustness and therefore this complete simple game is not weighted. It is
also trivial to see that the simple game described in Example 2.6 is invariant-trade robust
and therefore weighted.

We adopt from now these denominations. In the next sections we will express them in
a more compact form which avoid many computations if the number of the equivalence
classes for the game is lower than the number of players, i.e., t < |N]|.

4The original version of this result was given in the context of simple games first.
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3. SYMMETRIES AND A PARAMETRIZATION OF COMPLETE SIMPLE GAMES

The simple game from Example 2.6 has (140) = 210 minimal winning coalitions, each

consisting of all five permanent members and four arbitrary non-permanent members. The
simple game from Example 2.7 has 112 minimal winning coalitions, 56 of them formed by
one of the two big provinces and six other provinces, and 56 additional ones formed by the
two big provinces and five other provinces. For ¢t < |N| types of voters we can represent
coalitions in a more compact way.

Let (N,W) be a simple game and Ni,...,N: be a partition of the player set into
t equivalence classes of voters. A coalition type (or coalition vector) is a vector 5§ =
(s1,.--,8) € (NU{0})" with 0 < s; < |N;| for all 1 <4 < t. We say that a coalition
S C N has type sifs; = |SNN;| forall 1 <4 <¢. A coalition type 3 is called winning if the
coalitions of that type are winning. Analogously, the notions of minimal winning, shift-
minimal winning, losing, maximal losing and shift-maximal losing are translated similarly
for coalitional types.

So, the simple game from Example 2.6 can be described by the unique minimal winning
coalition type (5,4) which represents all coalitions with 5 permanent members and 4 non-
permanent members. The notion of a trading transform can be transferred to coalitional
types.

3.1. Coalitional types. Let (N,W) be a simple game and Ni,...,N: be a partition
into t equivalence classes of players. A wvectorial trading transform for G is a sequence

(T1,...,%5;Yy,---,Y;) of coalition types of even length such that
J J
(1) lek = Zyi’k forall 1<k <t
=1 =1

The definition of a vectorial trading transform means that for each component 1 < k <
t, the sum of the k" s components coincides with the sum of the k*" s components.

A wectorial m-trade is a vectorial trading transform with j < m such that the T;s are
winning and after trades, as described in 1, convert into ;.

A given m-trade can easily be converted into a vectorial m-trade. The following lemma
shows that the converse is also true.

Lemma 3.1. For each pair of vectors @ = (a1,...,ar) € N2g, b = (b1,...,bs) € Nig
with 22:1 a; = Zle b; and m = max (max; a;, max; b;) there exist two sequences of sets
A, ..., A C{1,...,m} and By,...,Bs C{1,...,m} with |A;| = a;, |Bi| = b; and

Hi:jeA}=Hi:je B}
forallje{l,...,m}.

Proof. W.l.o.g. we assume a; > --- > a, and by > --- > bs. We prove the statement
by induction on o = 22:1 a;. For c =1 we haver = s = a1 = by = m = 1 and can
choose A1 = By = {1} We remark that the statement is also true for o = 0, i.e., where
r=s5=0.

If there exist indices 4,7 with a; = bj, then we can choose A; = {1,...,a;}, B; =
{1,...,b; = a;} and apply the induction hypothesis on (a1,...,a;—1,ait1, ...,ar) and
(bl, ey bj_l, bj+1, cey bs)

In the remaining cases we assume w.l.o.g. a1 = m and by < m. Now let [ be the
maximal index with a; = m. Since >.._, a; =Y ;_, b; we have s > [. So, we can consider
the reduction to (a1 —1,...,a1—1,ai4+1,...,ar) and (b1 —1,...,b;—1,bj41,...,bs), where
we possibly have to remove some zero entries and the maximum entry decreases to m — 1.
Let Af,..., A, Bl,...,B; C {1,...,m — 1} be suitable coalitions (allowing A; = () or
B} = () for the ease of notation). Adding player m to the first [ coalitions in both cases
yields the desired sequences of coalitions. O

The construction in Lemma 3.1 for each equivalence class of voters separately converts
a vectorial m-trade into an m-trade. Also for vectorial m-trades we may assume that the
winning coalition types are minimal winning or that the losing coalition types are maximal
losing. Since the number of coalition types is at most as large as the number of coalitions
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we can computationally benefit from considering vectorial m-trades if the number of types
of voters is less than the number of voters.

3.2. A parametrization of complete simple games. In a complete simple game
(N, W) we have a strict ordering between voters from different equivalence classes. So
we denote by N1 > --- > N; the equivalence classes which form the unique partition of N
where a > b for all a € N; and b € N; with i < j. Let m = (n1,...,n:) where n; = |N;|
foralli=1,...,t. Consider

Am) = {5 (Nu{0o})' :7m >3},

where > stands for the ordinary componentwise ordering, that is, @ > b if and only if aj >
by, for every k = 1,...,t. and also consider the weaker ordering > given by comparison of
partial sums, that is,

k k
@ = bifandonly if Y a; > bifork=1,.,t

i=1 i=1

If @ > b we say that @ dominates b.

The couple (A(®), =) is a distributive lattice and possesses a maximum (respectively,
minimum) element, namely 7 = (n1,...,n:) (resp. 0 = (0, ...,0)). As abbreviations we use
@ > b for the cases where @ > b but @ # b and @ > b for the cases where neither @ > b nor
b=a.

The interpretation of @ > b is as follows. If b is a winning coalitional vector and @ > b,
then also @ is winning. Similarly, if @ is losing then b is losing too for all @ > b.

A winning coalitional vector @ such that b is losing for all @ > b is called shift-minimal
winning. Similarly, a losing coalition type b such that @ is winning for all @ > b are called
shift-maximal losing. Each complete simple game can uniquely described by either its set
of shift-minimal winning coalition types or its set of shift-maximal losing coalition types.

Based on this insight, Carreras and Freixas ([7] pp. 148-150) provided a classification
theorem for complete simple games that allow to enumerate all these games up to iso-
morphism by listing the possible values of certain invariants. Indeed, to each complete
simple game (N, W) one can associate the vector m € N’ as defined above and the list of
shift-minimal winning coalitional vectors: M, = (Mmp,1, Mp,2,...,Mp) for 1 <p < 7.

Recall that two simple games (N, W) and (N’,W') are said to be isomorphic if there
exists a bijective map f : N — N’ such that S € W if only if f(S) € W'.

Theorem 3.2. ([7]) (a) Given a vector m € N' and a matriz M whose rows m, =
(Mmp,1,Mp2,...,mpy) for 1 <p <r satisfy the following properties:

(i) 0<my, <n for 1 <p<r;

(i3) Mp and Mg are not =—comparable if p # q; i.e., My X Mg

(ii1) if t =1, then my1 > 0; if t > 1, then for every k <t there exists some p such that

Mpk > 0, Mp k41 < Nkg1;

and
(iv) M s lexicographically ordered by partial sums, if p < q either mp1 > mg1 or there
exists some k > 1 such that mp r > mqx and mp; = mq,; for h <k.

Then, there exists a complete simple game (N, W) associated to (7, M).
(b) Two complete games (N, W) and (N',W') are isomorphic if and only if m = n’ and
M=M".

The pair (7, M) is referred as the characteristic invariants of game (N,W). The
authors prove that these parameters determine the game in the sense that one is able to
define a unique up to isomorphism complete simple game which possesses these invariants.
The characteristic invariants allow us to count and generate all these games for small
values of n. Other applications of the characteristic invariants are to considerably reduce
the calculus of some solutions, as values or power indices, of the game (see e.g., [24] for the
nucleolus [55]) or to study whether a game admits a representation as a weighted game
by studying the consistency of a system of inequalities as we will see below.
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If matrix M has only one row, i.e. a unique shift-minimal coalitional vector, then the
characteristic invariants reduce to the couple (7,7) with

1 < m1 < m
1 < mp < np—1 if2<k<t—1,
0 < my < me—1,

and where the first subindex in matrix M is omitted. It is said, see [24], that (7, ™) is a
complete simple game with minimum.

We sketch here how to obtain the characteristic invariants (7, M) for the complete
game from winning coalitions and reciprocally.

Given a simple game (N, W), for each coalition S we consider the vector or coalitional
type

5= (SN N1|, ..., |S N Ny|),
in A(m) where N; are the equivalence classes with N1 > ... > N;. The vector @ is
(IN1l, ..., |N¢]). The rows of matrix M are those S such that any S is a shift-minimal
winning coalition in the lattice (A(7), ). Observe that each vector of indices that »—
dominates a row of M corresponds to winning coalitions.

Conversely, given (72, M) the game (NN, W) can be reconstructed, up to isomorphism,
as follows. The cardinality of N is n = 3°/_| n;, the elements of N are denoted by
{1,2,...,n}. The equivalent classes of (N, W) are N1 = {1,...,n1}, No = {n1+1,...,n1+
n2}, and so on.

Each S C N with vector 5 = (]S N Ny, ...,|S N N¢|) is a winning coalition if 5 > m for
some m being a row of M. Hence, the set of winning coalitions is

W={SCN : 3 > myp, wherem,isarow of M}.

Notice that a model 7 is winning if and only if each coalition representative R is winning.
In particular, the shift-minimal winning coalitions are those with a vector being a row of
M. Precisely,
W={SCN:s5=m,forsomep=1,...7}

Analogously, one can define the models of shift-maximal losing coalitions which can be
written as rows in a matrix ) lexicographically ordered, as requested also for M, to
preserve uniqueness. These models are the maximal vectors which are not >-comparable
among them and do not dominate by > any row of M.

Some particular forms of the pair (7, M) reveal the presence of players being either
vetoers or nulls. For instance, if mp; = 0 for all p =1, ..., r the game has n; null players.
If mp1 =mny for all p=1,...,r the game has n; vetoers.

Using the well known fact that any weighted game admits normalized representations,
where ¢ ~ j if and only if w; = wj, we will consider from now on, w = (w1, ..., w:),
the vector of weights to be assigned to the members of each equivalence class. Using
normalized representations a weighted game may be expressed as [g;wi(n1),. .., wi(ne)]
in which repetition of weights is indicated within parentheses and ¢ stands for the quota
or threshold. However, these parentheses will be omitted provided that @ = (n1,...,n:)
is a known vector. A complete simple game, (N, W), is weighted if and only if there
is a vector w = (w1, ..., w), such that w1 > ... > w; > 0, which satisfies the system of
inequalities

(Mp —ag)-w>0 forall p=1,2,...,r, g=1,...,s
where 7 is the number of rows of M, s the number of rows of ), and @y are the rows of
V.

Only for n > 6 there are complete simple games which are not weighted. The following
example is the smallest possible illustration of a complete simple game with minimum,
i.e., with one shift-minimal winning vector, that is not a weighted game. It helps us to
understand better this kind of games, which are extensively used in the next section.

Example 3.3. (1) (Example 2.6 revisited) The characteristic invariants for this ex-
ample are: @ = (5,10) and M = (5 4). Thus,

W = {(5,2) € A(5,10) : z > 4}
W™ = W* = {(5,4)}
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Note also that Y = ( Z 130 whose rows are the shift-maximal coalitional
types. Trivially this game is weighted. In the next section we will show that to
prove this it suffices to verify k-invariant trade robustness, where £ is 2.

(2) (Example 2.7 revisited) The characteristic invariants for this example are: © =

(2,8) and M = (1 6). Thus,
W={(z,y) € A(2,8) :x>1landx+y >T7}
W™ = {(275)5 (176)}
w* = {(1,6)}
2 4
0 8
Note that Example 2.7 is not 2-invariant trade robust since the coalitional type trading

transform < (1,6),(1,6)|(2,4),(0,8) > is a certificate for it. Hence, the game is not
weighted.

Note also that Y = ( > whose rows are the shift-maximal coalitional types.

3.3. Particular parameters of a complete simple game. Two parameters for a com-
plete simple game are significant for our studies: r the number of rows of M or number of
shift-minimal coalitional vectors and ¢ the number of equivalence classes of players in the
game. The conditions that M must fulfill are described in Theorem [7]. The question we
pose here is the following: Are there some values for r and ¢ for which 2-invariant trade
robustness is conclusive? The purpose of the section 4 is to prove that the posed question
has an affirmative answer for either ¢ = 1 or » = 2, while in section 5 we investigate the
remaining cases.

Let us remark that the number of complete and weighted games as a function of
|N| up to isomorphisms has been determined for these two parameters. We use below
the notations cg(n,r), cg(n,t), wg(n,r), and wg(n,t) depending on whether we consider
complete or weighted games or parameter r or parameter t. The first exact counting can be
traced back at least to May [42] which establishes the number of symmetric or anonymous
simple games. Each of such games admits [¢;1,1,...,1] as a weighted representation

——

where ¢ € {1,...,n}. Ast =1 implies r = 1 we have cg(n,t =1) = wg(n,t =1) =n.
For r = 1, we have cg(n,r = 1) = 2" — 1 (see [25]) complete simple games with
minimum with n players up to isomorphism and the number of weighted games with
minimum, wg(n,r = 1), is given by
o1, ifn<5
wg(n,r=1) =< n*—6n°+23n% — 18n + 12
12 ’

ifn>6

cf. [18].

For t = 2 we have the nice formula cg(n,t = 2) = F(n + 6) — (n? + 4n + 8) (cf. [23])
where F'(n) are the Fibonacci numbers which constitute a well-known sequence of integer
numbers defined by the following recurrence relation: F(0) = 0, F(1) = 1, and F(n) =
F(n—1)+ F(n — 2) for all n > 1. Quite curiously the addition of trivial voters, as null
voters or vetoers, in complete games with two equivalence classes formed by non-trivial
voters give new larger Fibonacci sequences (cf. [17]). Up to now there is not a known
formula for wg(n,t = 2) although it has been proved in [19] that wg(n,t = 2) < '{—; +4n*.

Concerning general enumeration for simple, complete and weighted games it should be
said that in the successive works by Muroga et al. [45, 44, 46] the number of such games
was determined up to eight voters. Only the numbers of complete and weighted games for
n = 9 voters have been determined since then, cf. [22] for the number of complete games
for n = 9 and cf. [39]for the number of weighted games for n = 9. An asymptotic upper
bound for weighted games is given in [10] and an asymptotic lower bound for complete
games in [49].

4. CASES FOR WHICH THE TEST OF 2-INVARIANT TRADE ROBUSTNESS IS CONCLUSIVE

Note first that each simple game with a unique equivalence class of voters, t = 1, is
anonymous (symmetric), and thus weighted. Non-complete games are not swap robust
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and therefore they are obviously not weighted. Hence, we can limit our study to complete
simple games.

Prior to study them let us consider the null effect on invariant trade robustness of
removing either null or veto players in a given complete simple game.

Since adding and removing null players does not change a coalition from winning to
losing or the other way round, we can state:

Lemma 4.1. Let G be a complete simple game and G’ be the game arising from G by
removing its null players. With this we have that G is m-invariant trade robust if and
only if G’ is m-invariant trade robust.

And a similar result, not as immediate, concerns veto players.

Lemma 4.2. Let G be a complete simple game and G’ be the game arising from G by
removing its veto players. If G' is a simple game, then G is m-invariant trade robust if
and only if G’ is m-invariant trade robust.

Proof. If veto players are present, then each winning coalition of a simple game must
contain all veto players. So, in any m-trade every involved losing coalition must also
contain all veto players. Given a simple game G = (N, W), where ) # V C N is the set
of veto players. If V = N the game G is the unanimity game and therefore weighted.
Otherwise we can consider G’ = (N',W'), where N’ = N\V and N’ D S € W if and only
if SUV € W. If ) € W, then the players in N\V are nulls in G’ and the game is indeed
weighted. Otherwise G’ is a simple game too. If G is complete, then G’ is complete too,
see e.g. [17]. Given an m-trade for G’, we can obtain an m-trade for G by adding V to all
coalitions. For the other direction removing all veto players turns an m-trade for G into
an m-trade for G’. O

4.1. 2-invariant characterization for r = 1.

Theorem 4.3. Each complete simple game G with r = 1 shift-minimal winning coalition
type is either weighted or not 2-invariant trade robust.

Proof. Due to Lemma 4.1 and Lemma 4.2 we can assume that G contains neither nulls
nor vetoers, since also the number of shift-minimal winning coalition types is preserved
by the transformations used in the respective proofs.

For ¢ > 3 types of players let the invariants of G be given by m = (n1,...,n:) and M =
(m1 L. mt), where we abbreviate the unique shift-minimal winning coalitional vector
by m. From the conditions of the general parametrization theorem in [7] we conclude
1<mi <n,0<m<mg—1l,and 1 <m; <ny—1lforalll <i<t Ifm =m
then G contains veto players and if m; = 0 then G contains null players (cf. [17]). So,
we have 1 < m; < n; — 1 for all 1 <14 <t in our situation. We can easily check that
a=(mi—1,ma+1,ms+1,ma,...,my) and b= (m1+1,ma—1,m3 —1,ma4,...,m;) are
losing. Thus, < m,7;@,b > is a 2-trade and G is not 2-invariant trade robust.

For t = 2 types of players let the invariants of G be given by m = (ni,n2) and M =
(m1 mg), where again we abbreviate the unique shift-minimal winning coalitional vector
by m. From the conditions of the general parametrization theorem in [7] we conclude
1 <mi <npand 0 <mg <ng—1. If mi = ny then G contains veto players and if
m¢ = 0 then G contains null players. So, we have 1 < m; <n; —1 for all 1 <4 < 2 in our
situation.

If 2 < mg < na —2, then @ = (m1 — 1,ma +2) and b = (m1 + 1,ma — 2) are losing.
Thus, < m,7;a,b > is a 2-trade and G is not 2-invariant trade robust.

If ma =1 or ma = na — 1, then both games are weighted.

Indeed, if mo = 1, then Y = ( mml 1 0 ), and the weights (w1, w2) = (n2,1) may
1— 2

be assigned to players in each class respectively, so that a quota of m1-wi+w2 = m1-na+1
separates weights of winning and losing coalition types.

If my = mn2 — 1, then Y = ( “ “2 ) where ¢; = min(ni,mi + n2 — 2) and

my — 1 no
c2 = max(my +nz — 2 —ny,0).
Now, we have two subcases to consider:
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If ¢; = n1 a solution is (w1, w2) = (n1 —m1 + 2,1 —my + 1) with quota ¢ = m1 - w1 +
(ng—l)-wQ:m1-(nl—m1—|—2)—|—(n2—1)~(n1—m1+1).

If ¢4 = m1 + n2 — 2 then ¢2 = 0 and a solution is (w1, w2) = (n2,n2 — 1) with quota
qzml-w1+(n2—1)-w2:ml-n2+(n2—1)2. O

So, complete simple games with » = 1 have the property that they are either weighted
or not 2-invariant trade robust. Now we are going to see that this characterization is also
true for ¢t = 2.

4.2. 2-invariant characterization for t = 2. Freixas and Molinero [21] prove that there
is a sequence of complete simple games G, with three types of equivalent voters, i.e., t = 3,
and three types of shift-minimal winning types, i.e., r = 3, such that G,, is m-invariant
trade but not (m + 1)-invariant trade robust for each positive integer m. Moreover, they
state in Conjecture 6.1 of their paper that any complete game with ¢ = 2 types of equally
desirable voters is either weighted or not 2-invariant trade robust. In this subsection we
prove this conjecture. Prior to stating the result let us introduce some characterizations
for weightedness that will be used in the sequel. The definition of a weighted game can
be rewritten to a quota-free variant:

Lemma 4.4. Let (N, W) be a simple game. Then,

(N, W) weighted <= there are n monnegative integers wi, ..., w, such that
2) S w > 3w
i€S ieT

forall S €W and all T € L.

Moreover, we can use a single weight for equivalent players, i.e., a common weight
w; for each voter p € N; where N; is an equivalence class of players according to the
desirability relation. If the game is complete we have a total order among the equivalence
classes, N1 > .-+ > N;. Assume from now on t = 2 so that N3 # @ and N2 # 0 is a
partition of N. By W' we denote the set of winning coalition types and by LY the set of
losing coalition types. For instance, (z,y) € W* means that all coalition S C N such that
|SN Ni| =z and |SN Nz| =y is winning. With this, Lemma 4.4 can be rewritten to:

Lemma 4.5. Let (N, W) be a complete simple game with two types of voters. Then,
(N, W) weighted <= there are two integers w1, w2 > 0 such that

(3) [(ZC,y) - (ml7y/)] : (w17w2) >0
for all (x,y) € W* and all (z',y’) € LY and “” stands here for the inner product.

For the proof of the theorem for ¢ = 2 two special parameters of a complete simple
game will play a key role so that we give even another reformulation of Lemma 4.4:

Lemma 4.6. Let (N, W) be a complete simple game with two types of voters. Then,
(N, W) weighted <= there are two integers w1, w2 > 0 such that

(4) wy > Mwy and wi > Pws,

where ,
T —x

= max
(&) EWY, (a/ y)eLY x>0 Y — Y’

and ,

y—y
= max
(z,)EW?, (2/ y')ELY :a'<x T — X'

fulfill0 < M <1 and P > 1.

Proof. Let (z,y) € W' and (2',3) € £¥. If 2’ > z, then x +y > 2’ + 3, so that
y—y >a —x > 0. Thus, M is well defined and we have 0 < M < 1. Also P is well
defined, since we assume z’ < z in its definition. For » = 2 in matrix M in Theorem 3.2
we conclude the existence of a shift-minimal winning type (a,b) with a > 0 and b < |Na|,
ie, (a—1,b+1) is losing. Thus, we have P > (gb_-:i)__lb) =1

It remains to remark that all inequalities of the definition or weighted game are implied
by the ones in (4). O
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Corollary 4.7. Let (N,W) be a complete simple game with two types of voters. Using
the notation from Lemma 4.6, we have

(5) (N, W) weighted <= MP <1.

We still need an additional technical lemma.

Lemma 4.8. Let s,u € Ryo and t,v € Rxo. Ift > v and 7 > 7, then we have ;= > 1.

Proof. From $ > = we sequentially conclude vs > ut and st —ut > st —wvs. Dividing both
sides by (t — v)t yields the stated inequality. O

Let us finally prove the result of this subsection, which was previously stated as Con-
jecture 6.1 in [21, page 1507].

Theorem 4.9. Let G = (N, W) be a complete simple game with two types of wvoters.
Then, G is weighted if and only if G is 2-invariant trade robust.

Proof. The direct part is immediate since G being weighted implies G satisfies m-invariant
trade robustness for all m > 1. For the other part we start by proving that if G is a
complete simple game with ¢ = 2 types of voters and G is 2-invariant trade robust, then
it is 2-trade robust.

Let ((a1,b1), (a2, b2); (u1,v1), (uz,v2)) be a 2-trade of G such that (a1,b1) and (a2, b2)
are minimal winning. If both coalition types are shift-minimal, we have finished. In the
remaining cases we construct a 2-trade with one shift-minimal winning coalition type more
than before. W.l.o.g. we assume that (a1, b1) is not shift-minimal, so that we consider the
shift to (a1 — 1,b1 +1). If u1 > 1 and vi < na — 1 then we can replace (u1,v1) by the
losing coalitional vector (u1 —1,v1 +1). By symmetry the same is true for (uz,v2). Thus,
for the cases, where we can not shift one of the losing vectors, we have

(U1=0\/’U1=n2)/\(U2=O\/’l)2=’nz).

(1) u1 =0, uz =0:
Since u1 +u2 = a1 +az we have a1 = a2 = 0. Since (0, b1), (0,b2) are winning and
(0,v1), (0,v2) are losing, we have min(b1,b2) > max(v1,v2), which contradicts
b1 + b2 = v1 + va.
(2) V1 = N2, V2 = N2:
Since b1 + by = v1 + v2 we have by = by = na. Since (a1,n2), (az,n2) are
winning and (u1,n2), (u2,n2) are losing, we have min(a1,a2) > max(u1,us2),
which contradicts a1 + a2 = u1 + usa.
(3) u1 =0, v2 =mn:
Since u1 4+ u2 = a1 + a2 we have az < uz. Comparing the winning coalitional
vector (az, b2) with the losing vector (uz,n2), yields ba > mq, which is not possible.
(4) uz =0, v1 =mn:
Similar to case (3).
Thus, a shift of one of the losing vectors is always possible, if not both winning vectors
are shift-minimal.
According to Theorem 2.8 it remains to prove that for ¢ = 2 it is not possible for G to
be 2-trade robust but not weighted.
Let (a,b) and (a’,b") be two winning vectors, (c,d) and (c’,d’) be two losing vectors
such that
c—a d-v
b d and P:r_cl,
where we assume that the vectors are chosen in such a way that both ¢ — a and d’' — b’
are minimized. We remark ' — ¢ >0,d —b >0,b—d > 0 and ¢ —a > 0. The latter
inequality can be strengthened to ¢ — a > 0, since ¢ — a implies M = 0 and MP < 1,
which is a contradiction to the non-weightedness of G.
Corollary 4.7 implies M P > 1, so that
c—a _a—-¢
(7) bfdzd’fb/'
With this, we have only the following three cases:

(6) M=
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(a) c—a>d —candb—d<d -V.
(b) c—a>d —candb—d>d —V.
(c) c—a<d —¢.
If c—a=a — ¢ then we have b —d < d — b’ according to Inequality (7), i.e., we are in
case (a). If c —a > a’ — ¢’ then either case (a) or case (b) applies. The remaining cases
are summarized in (c).
(a) Since c+ ¢ >a+a’ and d+d > b+ b, we can delete convenient units of some
coordinates of (c,d) and (c’,d’) to obtain two well-defined losing vectors satisfying
(c”,d") < (c,d) and (¢”,d") < (¢',d') with ¢’ +c" = a+a’ and d”"+d"" = b+¥'.
Thus,
<(a’ b)7 (a/’ b/); (C//7 d//)7 (c///7 d///)>
certificates a failure of 2-trade robustness.
(b) Consider (¢’,d")=(a+a" —c,b+b —d). Sincea’ —¢ >0andc—a>d — ¢
we have a < ¢’ < c. Sinceb—d >d —b and d — b > 0 we have d < d” < b.
Thus, (¢”,d"”) is a well-defined coalition type. Assuming that (¢, d”) is winning,

we obtain
>0 >0
1" e ’ ’
c—c" c—a—(a —¢) Lemga‘l»s c—a _ ..
d’—d  b—d—(d —V) - b—d
>0 >0

using b —d > d’ — V' and Inequality (7). Since ¢ — ¢’ < ¢ — a we have either a
contradiction to the maximality of M or the minimality of ¢ — a. Thus, (¢”,d")
has to be losing and

((a,b), (a,0); (', d), (", d"))
certificates a failure of 2-trade robustness.

(c) With ¢ —a < a’ — ¢ Inequality (7) implies d' —b" > b — d. Consider (a”,b") =
(c+cd —a,d+d —b). Sincec—a>0and c—a<a —c wehave ¢ <a” <ad
Since d — b > b—d and b—d > 0 we have b’ < b” < d’. Thus, (a’,b") is a
well-defined coalition type. Assuming that (a”,b”) is losing, we obtain

>0 >0

% d/ _ b/ _ (b _ d) Lemma 4.8 d —bv
> =P

a—a  d—c—(c—a) - a —c
~—— ~—~—
>0 >0
using ¢ — a < @’ — ¢ and Inequality (7). Since b’ — b < d’ — V' we have either a
contradiction to the maximality of P or the minimality of d’ — b’. Thus, (a”,b")
has to be winning and

((a,0), (a”,0"); (c,d), (¢, d))

certificates a failure of 2-trade robustness. O

Let us have a look at Example 2.7 again. We have already observed that this game is not
weighted. Nevertheless it can be represented as the intersection [7;1,1,1,1,1,1,1,1,1,1]N
[12;6,6,1,1,1,1,1,1,1,1], i.e., there are only two types of provinces — the large ones,
Ontario and Quebec, and the small ones, see [23]. Indeed the game is complete and the
minimal winning vectors are given by (2,5) and (1,6). The maximal losing vectors are
given by (2,4), (1,5), and (0,8), so that we have M = § and P = 3. These values
are uniquely attained by the coalition types (1,6), (2,5) and (2,4), (0,8). Thus we are
in case (c) of the proof of Theorem 4.9 and determine the winning coalitional vector
(a”,b") = (1,6). Indeed

((1,6),(1,6);(2,4),(0,8))
certificates a failure of 2-trade robustness. We remark that our previous argument for non-
weightedness was exactly of this form and that the coalition type (1,6) is shift-minimal.
Let’s finally conclude this subsection by recalling that for Theorem 4.9 establishes that a
complete game is weighted if and only it is 2-invariant trade robust, property that requires
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fewer computations than 2-trade robustness, which was proved in [33] to be sufficient for
testing weightedness.

5. FURTHER INVARIANT TRADE CHARACTERIZATIONS

We have seen in the previous section that complete simple games with either ¢ = 2 or
r = 1 have the property that they are either weighted or not 2-invariant trade robust.

For other combinations of r and ¢ it is interesting to ascertain which is the maximum
integer m such that m-invariant trade robustness for the given game with parameters r
and t guarantees that it is weighted. Note first that ¢ = 1 implies » = 1 so that the pairs
(r,t) = (r,1) for r > 1 are not feasible. The results in the previous section allow us to
conclude that for (r,t) = (1,¢) with ¢ arbitrary or for (r,t) = (r,2) with r arbitrary such
an m is given by 2.

The existence of a sequence of games being m-invariant trade robust but not (m + 1)-
invariant trade robust is proven for m > 4 by using complete games with parameters
(r,t) = (3,3) in [21]. We wonder what is happening for the remaining cases.

Consider first the smallest case: (r,t) = (2, 3).

Lemma 5.1. For m > 3 the sequence of complete simple games uniquely characterized

by m = (2,m,m) and./\/l:(2 0 1

11 m—1 ) s (m — 1)-invariant trade robust but not

m-invariant trade robust.

Proof. For brevity we set wq = (2,0,1) and we = (1,1,m — 1). The maximal losing
coalition types are given by 1 = (2,0,0), l» = (1,0,m), I3 = (1,1,m — 2), and 4 =
(0,m,m). Since m -we =1-11 + (m —2)-la + 1-l4, the game is not m-invariant trade
robust.

Now assume that there are non-negative integers a, b, ¢, d, e, f with a+b=d+e+f >0
and

a~w1—|—b-w2§c~l1+d~lg+e-lg+f~l4.

We conclude

(8) 2a+b < 2c+d+e,
(9) b < e+m-f, and
(10) a+(m—-1)-b < (m-—1)-(d+e+f).

Assuming f = 0, we conclude b < e from Inequality (9), so that we have a > ¢+ d due to
a+b=d+ e+ f. Inequality (8) then yields a = ¢, b = e, and d = 0. By inserting this
into Inequality (10), we conclude ¢ = e = 0, which contradicts d + e + f > 0. Thus, we
have f > 1.

Inequality (8) yields ¢ > a+ f > 1. Assuming b < d + e + f we conclude a > ¢ from
a+b=d+ e+ f, which is a contradiction to ¢ > a4+ f and f > 1. Thus, we have
b>d+e+ f+1.

Inequality (10) yields
so that d+ f > m — 1. Since ¢ > 1, we have c+d + e+ f > m, ie., the game is
m — 1-invariant trade robust. O

We remark that the smallest complete simple game with ¢ = 3, r = 2 being 3-
invariant trade robust, but not 4-invariant trade robust, is given by 7 = (2,2,3) and M =
( i (1) g ), as already observed in [21]. A certificate for a failure of 4-invariant trade
robustness is given by (w1, w1, ws,w2;l1, 11,1, l2), where w1 = (2,1,0), we = (1,0, 3),
li = (2,0,1), and I = (0,2,3). The smallest complete simple game with ¢ = 3, r = 2
being 4-invariant trade robust, but not 5-invariant trade robust, is attained by Lemma 5.1
for m = 5.
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Lemma 5.2. For m > 3 the sequence of complete simple games uniquely characterized by

2 1 0

_ 2 0 2 ) ) .

n=(2,m,m) and M = 1 0 m is m-invariant trade robust but not (m+1)-
0 m m-—1

invariant trade robust.

Proof. For brevity we set w1 = (2,1,0), we = (2,0,2), ws = (1,0,m), and ws = (0, m, m—
1). The maximal losing coalition types are given by l1 = (2,0,1), l2 = (1,0,m — 1), I3 =
(1,1,m—3),1s = (0,m,m—2), and ls = (0,m—1,m). Since (m—1)-w1+2-w3 = m-l1+1-Is,
the game is not (m + 1)-invariant trade robust.

Now assume that there are non-negative integers a1, az, as, a4, b1, b2, b3, bsa, and bs with
2?21 a; = Z?:l b; > 0 and

4 5
(12) k=Y ai-w <Y bi-li
i=1 i=1

It suffices to consider the cases where k < m. We conclude

(13) 2a1 +2a2 + a3 < 2by + bg + b3,
(14) ai +mag < bz + m(bg + bs) — b5, and
5
(15) 2ap + mag + (m — ag < by + (m —1)(D b;) — 2b3 — by + bs.

=2

Let us first assume a4 = 0. Using Inequality (12) and Inequality (13) we obtain

(16) az > by + bz + 2by + 2bs.

Inserting this into Inequality (15) yields after rearranging

(17) 2az + ba + 3bs + (m + 2)bs + mbs < by.

Since k < m, we have by = b5 = 0. (For k = m + 1 we have the solution b, = m,

bo=b3=0b4=0,b5s =1,a1 =m—1, a3 = 2, and a2 = a4 = 0.) With this, Inequality (14)
simplifies to bs > a1 and Inequality (15) simplifies to b1+ (m—1)ba+(m—3)bs > 2a2+mas.
Twice the first plus the second inequality gives

(18) b1 + (m — 1)b2 =+ (m — 1)b3 > 2a1 + 2a2 + mas.

Inserting Inequality (12) yields

(19) —b1 + (m — 3)(b2 + bg) > (m — 3)0,3 + as.

Using Inequality (16) we conclude az = b1 = 0. Using Inequality (16) again, we conclude
ba = bs = 0, which is a contradiction to k = b1 + ba + b3 + bs + bs > 0. Thus, we have
a4 > 1 in all cases.

2m — 2 times Inequality (13) plus twice Inequality (14) plus Inequality (15) minus
3m — 2 times Inequality (12) yields

ma1 + maz + bz + bz +as < (m — 1)bs.

Since a4 > 1 and b1 € Z>o, we have by > 1.
3m — 4 times Inequality (13) plus 4 times Inequality (14) plus twice Inequality (15)
minus 6m — 4 times Inequality (12) yields
mag > 2a4 + 2b1 + (m — 2)ba + (m — 2)bs.
Since a4,b1 > 1 and a3 € Z>o, we have az > 1.
m — 3 times Inequality (13) plus Inequality (14) plus Inequality (15) minus 2m — 2
times Inequality (12) yields

(20) a2+%+a4§————+b5.

Since a3, by > 1 and bs € Z>o, we have bs > 2.
k = a1 + a2 + a3z + as < m plus m times Inequality (13) plus Inequality (15) minus
2m + 1 times Inequality (12) yields

(21) 2a2 — (m + 1)0,4 < —2bs — 4bs — (m -+ 3)b4 — (m -+ 1)b5 —+ m.

Since bs > 2 and a4 € Z>0, we have aq > 2.
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From Inequality (20) and az, b2, b3 > 0 we conclude bs > %2 + a4, so that bs > a4 + 1
due to az > 1 and bs € Z>o. From Inequality (21) and ag,b2,bs,bs > 0 we conclude
(m+1)as > (m+1)bs—m. Inserting bs > a4+1 finally yields the contradiction (m+1)as >
(m+1)as + 1. O

‘We remark that the proof of Lemma 5.2 looks rather technical and complicated at first
sight. However, the underlying idea is very simple. We have to show that the parametric
ILP given by inequalities (12)-(15) and 9 non-negative integer variables a1, ..., a4,b1,...,bs
has a minimum value of m 4 1 for the target function a1 + a2 + as + a4. By relaxing the
integrality conditions we obtain a corresponding linear program. Minimizing a suitable
variable yields a fractional lower bound that can be rounded up. The corresponding dual
multipliers are used to conclude the respective lower bounds directly.

Conjecture 5.3. For eachr > 5, i.e. at least 5 coalitional types of shift-minimal winning
coalitions, there exists a sequence (Gr,),,~5 of complete simple games, such that Gy, is
m-invariant trade robust but not (m + 1)-invariant trade robust.

Lemma 5.4. Let G = (m, M) be a complete simple game with t types of voters and r
shift-minimal winning coalition types, being m-invariant trade robust, but not (m + 1)-
invariant trade robust for some m > 1. Then, there exists a complete simple game G’ with
t + 1 types of voters and r shift-minimal winning coalition types, which is m-invariant
trade robust, but not (m + 1)-invariant trade robust.

Proof. Let m',...,m" denote the rows of M. If G contains nulls, i.e., if m¢ = 0 for all
1 <¢<r, weset ffzg = 771}, my =1, Ml =0, ?i]-_: ny, ne = 2, and N1 = 7 for all
1<j<t-1,1<4<r. Otherwise we set m; = mj, m; = 1, n; = 0y, and g1 = 2 for
all 1<j<t 1<i<r.

With this, we choose G’ = (7, M'), where M’ is composed of the r rows m', ..., Mm".
We can easily check that G’ is indeed weighted. Let I = (l1,...,l:+1) be a losing coalitional
vector in G’. If G contains no nulls, then (I, ...,l;) is a losing vector in G. Otherwise,
(l1,...,lt—1,lt41) is a losing coalitional vector in G. Thus, a possible certificate for the
failure of m-invariant trade robustness for G’ could be converted into a certificate for the
failure of m-invariant trade robustness for G by deleting the (¢ — 1)th or ¢th column of
the corresponding vectors — a contradiction. Similarly, we can convert a certificate for
the failure of (m + 1)-invariant trade robustness for G into a certificate for the failure of
(m+1)-invariant trade robustness for G’ by inserting ones into the (¢ —1)th or ¢th column
of the corresponding vectors. O

The same proof is literally valid in the case of trade robustness:

Lemma 5.5. Let G = (m, M) be a complete simple game with t types of voters and r
shift-minimal winning coalition types, being m-trade robust, but not (m + 1)-trade robust
for some m > 1. Then, there exists a complete simple game G’ with t + 1 types of voters
and r shift-minimal winning coalition types, which is m-trade robust, but not (m+1)-trade
robust.

With these results at hand we may prove that larger classes of games according to
parameters r and ¢ never reduce the largest failures of invariant-trade robustness. Table 3
summarizes the invariant trade robust test to be used for a game to determine whether
this is weighted. Looking at this table we conclude that 2-invariant trade robustness is
conclusive exactly for the cases determined in Section 4 (conjectured values are printed in
bold face), while for others there is no combination of r and ¢ for which some m > 2 be
enough to ensure that the game is weighted.

In words, if one wishes to study the class of complete games with a given pair (r,t)
then 2-invariant trade robustness is a very powerful tool to check weightedness for ¢t < 2
and 7 = 1, but for the rest of combinations (r,t) we need to look at trade-robustness,
which is the purpose of the next section.
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TABLE 3. W: weighted; —: not possible; 2-I-T-R: either weighted or
not 2-invariant trade robust; oco-I-T-R: there are games being not m-
invariant trade robust for all m; NW: not a weighted game; conjectured
values in bold face.

rlt— ] 1 2 3 1
1 W [2-LT-R | 2-T-R | 2--T-R NW
2 21-T-R | 0o-I-T-R | co-I-T-R | oo-I-T-R
3 2I-T-R | 0o-I-T-R | co-I-T-R | oo-I-T-R
4 2I-T-R | 0o-I-T-R | oo-I-T-R | oo-I-T-R
2-I-T-R | 00-I-T-R | 0o-I-T-R. | co-I-T-R.

6. FURTHER TRADE CHARACTERIZATIONS

It is well known that all simple games with up to 3 voters are weighted while there
are non-weighted simple games for n > 4 voters. Restricting the class of simple games to
swap robust simple games, i.e. complete simple games, one can state that up to 5 voters
each such game is weighted while for n > 6 voters there are non-weighted complete simple
games. Going over to 2-invariant trade robustness does not help too much. As shown in
[21], precisely 3 of the 60 non-weighted complete simple games with n = 6 voters are 2-
invariant trade robust but not 3-invariant trade robust. For the classical trade robustness
the same authors have shown that all 2-trade robust complete simple games with up to
seven voters are weighted. By an exhaustive enumeration we have shown that the same
statement is true for n = 8 voters, i.e., there are exactly 2730164 weighted games and
the remaining 13445 024 complete simple games are not 2-trade robust. As shown in [29],
there are complete simple games with n = 9 voters, which are 3-trade robust but not
4-trade robust. The corresponding example, belonging to a parametric family, consists of
nine different types of players, i.e., no two players are equivalent.

If the number ¢ of types of players is restricted we can obtain tighter weighted char-
acterizations. For ¢ = 1 the games are always weighted and for ¢ = 2 weightedness is
equivalent with 2-trade robustness (or 2-invariant trade robustness for complete simple
games). Based on this characterization one can computationally determine the number of
complete simple games with two types of voters which are either weighted, i.e. 2-invariant
trade robust, or not weighted, i.e. not 2-invariant trade robust. In [23] this calculation
was executed for n < 40 voters. It turns out that the fraction of non 2-invariant trade
robust complete simple games quickly tends to 1. An exact, easy-to-evaluate, and ex-
ponentially growing formula for the number of complete simple games with two types of
voters is proven in [23, 39]. From the upper bound n°/15 + 4n?, see [19], for the number
of weighted games with two types of voters, we can conclude that this is generally true.
We remark that it is not too hard to compute the number of 2-invariant trade robust
complete simple games with ¢t = 2 for n < 200, see [17], so that we abstain from giving a
larger table.

For ¢t = 3 types of voters we have checked by an exhaustive enumeration that up to
n = 10 voters each complete simple game is either weighted or not 2-trade robust. For

n = 11 voters we have the four examples given by 7 = (3,3,5), M1 = <2 2 3), My =

1 2 5
3 3 0 3 0 0
1 1 2 3 0 4 2 0 2 .
<0 1 4), M3 = 9 3 a2l and My = 0 3 1l which are all 2-trade robust but
0 3 5 0 0 b5

not 3-trade robust. This resolves an open problem from [21]. We have computationally
checked all complete simple games with three types of voters, i.e. t = 3, and up to 15 voters,
i.e. [N| < 15, see Table 6. It seems that the number of games which are 2-trade robust
but not 3-trade robust grows rather slowly. Indeed, up to 15 players every 3-trade robust
such game is weighted.

For t = 4 types and n = 9 voters there are several complete simple games which are
2-trade robust but not 3-trade robust, e.g. the one given by 7 = (1,2,3,3) and M =
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TABLE 4. Classification of complete simple games with three types of
up to 15 voters. Parameters: size (n), number of complete simple games
(#CG), number of weighted simple games (# WG), number of non 2-
trade robust complete simple games (#N-2T), number of non 3-trade,
but 2-trade, robust complete simple games (#N-3T).

n #CG # WG #N-2T #N-3T
3 0 0 0 0
4 6 6 0 0
5 50 50 0 0
6 262 256 6 0
7 1114 976 138 0
8 4278 3112 1166 0
9 15769 8710 7059 0

10 58147 22084 36063 0

11 221089 51665 169420 4

12 886411 113211 773186 14

13 3806475 234649 3571788 38

14 17681979 463872 17218019 88

15 89337562 879989 88457385 188

16 492188528 1610011 490578137 380

17 2959459154 2852050 2956606348 756

1
0
0 For ¢t = 4 and n = 10 there are already 120 complete simple games
0
0

O~ =N O
W= N O
N O = O

[N]

which are 2-trade robust but not 3-trade robust.

The next cases to look at, are t = 3 and r = 2. For both cases we have already
presented examples which are 2-trade robust but not 3-trade robust. Still we found no
example which is 3-trade robust but not 4-trade robust.

Question 6.1. s every 3-trade robust complete simple game with t = 3 types of voters
weighted?

Question 6.2. Is every 3-trade robust complete simple game with r = 2 shift-minimal
winning coalition types weighted?

As a first step into the direction of these two questions, we have looked at the inter-
section of both classes, i.e., complete simple games with ¢ = 3 and r = 2. The game
corresponding to the previously presented matrices M1 and M2 for n = 11 voters are of
this type and can be generalized:

Lemma 6.3. For each k1, k2, k3,1 € N the games uniquely characterized by 71 = (n1, n2,n3),

_ nl—(l+1) ng — 1 ng—(l—l—Q) . .
M1—(n172(l+1) ne — 1 s , where n1 = 3+ k1 + 21, no = 3 + ko,
l+1 1 [+2

n3:5+k3+21, andﬁgz(nl,n2,5+2l), Moy = ( 0 1 2(l+2)

) are 2-trade robust
but not 3-trade robust.

We skip the easy but somewhat technical and lengthy proof. Having the nice parametriza-
tion at hand, we can easily state the corresponding generating function

11 1 1 2z -2)
’ ((1 —oP(l-ah) | Q-2 —x4>) T (- ap(1—at)

counting the number of such examples, i.e., asymptotically there are g—z + O(n2) such
games.

Conjecture 6.4. All 3-trade robust complete simple games with t = 3 and r = 2 are
weighted. Additionally, the 2-trade robust but not 3-trade robust games are exactly those
from Lemma 6.3.

By an exhaustive enumeration we have checked Conjecture 6.4 up to n = 20 voters.

From the previous results it is not clear whether a small number of types or shift-
minimal winning coalition types allows to restrict the check of m-trade robustness to a
finite m.
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Question 6.5. For which values of t does a sequence Gy of complete simple games with
t types of voters exist such that Gy is k-trade robust but not (k + 1)-trade robust for all
k>2?

Question 6.6. For which values of r does a sequence Gy, of complete simple games with r
shift-minimal winning coalition types exist such that Gy is k-trade robust but not (k+ 1)-
trade robust for all k > 27

Any progress concerning answers for either the conjecture or the questions posed would
be of interest.

In Table 5 we combine the results from Section 4 with the questions of this section.
For » = 2 or t = 3 we have not found any example being 3-trade robust but not weighted,
but this should be checked formally and become conjectures for future work (in Table 5
it appears in black).

TABLE 5. W: weighted; —: not possible; 2-I-T-R: either weighted or not
2-invariant trade robust; 3-T-R for small values of n all games are either
weighted or not 3-trade robust — still a conjecture; NW: not a weighted
game; 7: it is not known if some m > 2 suffices to assert that m-trade
robustness implies weighted.

rit—] 1 2 3 1 .
1 W | 2I-T-R | 2I-'T-R | 2I-T-R | NW
2 - | 2I-T-R | 3-T-R | 3-T-R | 3-T-R
3 - | 2I-T-R | 3-T-R ? ?
4 - | 2I'T-R | 3-T-R ? ?
- | 2I-T-R | 3-T-R ? ?

7. CONCLUSION

This paper looks at the characterization of threshold functions within the class of
switching functions. We have tried to gather results and efforts that have taken place in
different areas of study. The new results presented in this paper have been exposed in
the simple game terminology since some significant advances have been held in this area
in the last two decades. To study the main problem we have restricted ourselves to the
class of regular functions since non-regular functions are swap summable and therefore
not threshold functions.

For regular functions the test of asummability can be computationally relaxed to in-
variant asummability. The strongest condition for invariant asummability, 2-invariant
asummability, is conclusive for deciding if a given regular function is a threshold func-
tion if the regular function has either a unique coalitional type of shift-minimal winning
true vectors or two types of components—two equivalence classes—. Larger values for
the number of shift-minimal winning true vectors or for the number of equivalence classes
show that the tests of asummability and invariant asummability are complementary. We
have found some conspicuous examples of non-threshold functions being k-asummable (or
k’-invariant asummable for some k' > k) but k + 1-summable (or k' 4 1-invariant summa-
ble). We have incorporated a number of open questions in hopes of others taking up the
challenges that we have left where over.

7.1. Acknowledgements. The research of the first author is partially supported by
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