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Summary

Movements of animals are important and highly complex processes which influ-

ences the outcome of many large–scale ecological processes. Especially within a

changing world understanding the responses of species to environmental change

is of fundamental importance for effective management and conservation of bio-

diversity and hence to maintain ecosystem services for human well–being like

access to water or pollination. These changes are affecting the distribution of

populations in space and time as well as their resource use. An improved under-

standing of these processes will contribute to a better ecological understanding

and to ensure the survival of populations.

With increasing advances in the technologies of tracking devices and remote

sensing applications we are nowadays able to follow animals within their natural

habitat and evaluate species–environment relationships.

This thesis investigates different aspects of movement patterns on the indi-

vidual level of red and roe deer which are equipped with GPS devices within

the Bohemian Forest. Studying individuals promotes recognition of between–

individual variation in movement patterns and allows for general mechanism to

be identified which are directly affecting the population level.

Although the Bohemian Forest, formed by two national parks, the National

Park Bavarian Forest on the German side and the Šumava National Park on the

Czech side, covers a large area, it does not encompass all occurring processes

within this ecosystem. The administration is responsible to institute appropriate

arrangements to ensure negative impacts to conventional forestry and agricultural

use in the adjoining areas to the borders of the national parks. However this area

can only serve as a summer range for red deer and typically deer would migrate to

lower elevational regions to stay there during winter time. Due to anthropogenic

influences natural migration routes are no longer accessible. Therefore winter

enclosures were established in the national parks where red deer are staying during

the winter time to prevent possible damage to the adjoining economic forests by

e.g. bark stripping.

The processes driving migration patterns of red deer are investigated in a first

step. Little is known about the behaviour of red deer after the opening of the

winter enclosures. After the forage maturation hypothesis, the animals should

follow the phenological gradient of the green–up and hence the emerging food
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resources in spring. The investigation shows that for the majority of the animals

the emerging food resources only partially shape the movement pattern of red

deer after the opening of the winter enclosures and that further factors beside

the chosen spatio–temporal information about the environmental conditions need

to be considered to explain the movement patters, such as memory effects for

resources or threats.

After the release of the winter enclosures deer disperse into the national parks.

Mammals do not tend to move at random, they rather restrict their movements to

particular areas, so called home ranges. They are generally defined as the spatial

expression of all behaviours an animal performs in order to survive and repro-

duce. As home ranges are the fundamental measure of space use by animals and

furthermore link individual movement paths to population dynamics understand-

ing the mechanisms shaping home range size pattern is relevant to understand

patterns of space use, habitat preferences and responses to environmental change.

The variation of home range sizes in red and roe deer was investigated by taking

not only the dominant habitat type into account but also the explicit spatial

configuration of habitat types within the home range. The results show that the

spatial configuration of the landscape is a dominant factor for the explanation

of temporal variation in home range size of red and roe deer. Furthermore the

shape of the relationship between home range size and landscape configuration

depends on a species’ habitat requirements: while roe deer increase their home

range size with increasing landscape patchiness, the relationship is hump–shaped

for red deer.

A critical point in understanding movement patterns of animals is the defini-

tion of resources. While we’re gaining increasingly better data by animal tracking

devices, the way we define our landscape remains the same. Usually landscapes

are defined by the human perception of different land cover types forming cate-

gorical classes (e.g. forest or meadows). However, categorical representations of

the landscape cannot capture within class variability which might occur within

a class, e.g. tree cover variability of small forest gaps within the forest class. A

remote sensing approach, fractional cover, is tested and evaluated for the use in

habitat selection studies of red deer in the Bohemian Forest. These fractional

cover layers provide continuous land cover information per pixel and hence rep-

resent a more differentiated landscape. The application of fractional cover in the

Spatio–temporal movement pattern analysis
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context of spatio–temporal animal movement analysis proofed to be valuable by

providing information of the within land cover class variability. Home ranges

increase with increasing mean values of forest fractional cover and increasing

variation of forest fractional cover.

This thesis investigated different aspects of animal movement pattern and

especially the importance of spatial patterns of resource patches and their repre-

sentation for animal movement studies. The combination of these different infor-

mation sources provide new valuable information for the better understanding of

ecological processes and will increase with improving technical advances.

Spatio–temporal movement pattern analysis





Zusammenfassung

Bewegungsmuster von Tieren sind hochkomplexe Prozesse, die viele großräumige

ökologische Prozesse beeinflussen. Besonders innerhalb einer sich immer schneller

verändernden Welt ist das Verständnis, wie bestimmte Tierarten auf Veränderun-

gen reagieren, von grundlegender Bedeutung für den Naturschutz und zur Erhal-

tung der Biodiversität, sowie für verschiedene Ökosystemleistungen, wie beispiels-

weise dem Zugang zu Wasser oder der Bestäubung von Pflanzen. Bewegungsmus-

ter von Tieren sind grundlegende Prozesse, welche die Verbreitung von Populatio-

nen in Raum und Zeit beschreiben und sind daher ein Schlüsselmechanismus, um

zukünftige Veränderungen zu verstehen. Zudem ist das Verständis der zeitlichen

und räumlich variierenden Ressourcennutzung von großem Interesse für das bessere

Verständnis der Ökosystemfunktionen. Ein besseres Verständnis von Bewegungs-

mustern ermöglicht ausserdem, Naturschutzstrategien effektiver zu gestalten und

so das Überleben von Populationen zu sichern.

Die Entwicklung von GPS–Ortungsgeräten und Fernerkundungsmethoden er-

möglicht es heutzutage, Tiere permanent in ihrem natürlichen Habitat zu verfol-

gen und die Tier–Umwelt–Interaktionen zu analysieren.

In dieser Dissertation werden verschiedene Aspekte der Bewegungsmuster von

Hirschen und Rehen im Böhmerwald auf der Individual–Ebene analysiert. Die

Tiere sind mit GPS–Ortungsgeräten ausgestattet. Die Untersuchung von indi-

viduellen Aspekten innerhalb der Bewegungsmuster fördert das Verständnis über

die Variationen innerhalb der Muster. Auf diese Weise können generelle Mecha-

nismen, welche sich direkt auf die Populationen auswirken, identifiziert werden.

Der Böhmerwald wird durch zwei Nationalparks geformt: dem Nationalpark

Bayerischer Wald auf deutscher Seite und dem Šumava Nationalpark auf tschechi-

scher Seite. Trotz seiner Größe ist es nicht möglich alle vorkommenden Prozesse

innerhalb dieses Ökosystems zu bewahren. Die Verwaltungen der Nationalparks

sind daher in der Pflicht, Schutzmaßnahmen zu etablieren, um die angrenzen-

den ökonomisch genutzten Wälder sowie landwirtschaftlich genutzten Flächen vor

Schaden durch z.B. Tiere zu schützen. Der Böhmerwald kann für die Hirsche nur

als Sommergebiet dienen. Typischerweise würden die Tiere im Herbst zu ihren

Überwinterungsgebieten wandern. Durch anthropogene Einflüsse sind jedoch die

ehemaligen Migrationsrouten unterbrochen. Daher wurden innerhalb der Na-

tionalparks Wintergehege errichtet, in denen die Hirsche überwintern. Dadurch
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sollen mögliche Schäden, durch z.B. Schälungen an den Bäumen, in angrenzenden

Wäldern verhindert werden.

Zunächst werden Prozesse, die die Migrationsmuster der Hirsche nach der

Öffnung der Wintergehege beeinflussen, untersucht. Nach der forage maturation

Hypothese sollten die Tiere dem phänologischen Gradienten der Vegetationsent-

wicklung und daher den neu entstehenden Futterquellen im Frühling folgen.

Die Analysen zeigen, dass für die Mehrheit der Tiere, die zeitlich dynamisch

verfügbaren Ressourcen nur teilweise die Bewegungsmuster nach der Öffnung der

Wintergehege beeinflussen und dass weitere Faktoren neben der gewählten raum–

zeitlichen Information berücksichtigt werden müssen. So ist unter Umständen der

Gedächtniseffekt für Ressourcen oder Gefahren ein wichtiger weiterer erklärender

Faktor.

Nach der Öffnung der Wintergehege, sollten die Tiere diese verlassen und sich

im Park ausbreiten. Säugetiere tendieren nicht dazu, sich zufällig zu bewegen,

stattdessen beschränken sie ihre Bewegungsmuster meist auf ein bestimmtes Ge-

biet, das so genannte Streifgebiet. Faktoren, die die Variationen in den Streifge-

bietsgrößen von Hirschen und Rehen erklären können, wurden hierbei unter-

sucht. Nicht nur das dominante Habitat innerhalb eines Streifgebietes wurde

berücksichtigt, sondern zusätzlich wurde auch die explizite räumliche Konfigura-

tion von Habitattypen innerhalb eines Streifgebietes in die Analysen mit aufgenom-

men. Die Ergebnisse zeigen, dass die räumliche Konfiguration der Landschaft ein

dominanter Faktor ist, der die Variationen der Streifgebietsgröße bei Hirschen

und Rehen erklärt. Darüber hinaus ist die Form der Beziehung zwischen Streifge-

bietsgröße und Landschaftskonfiguration abhängig von den Ansprüchen der Art

an ihr Habitat. Während Rehe ihre Streifgebietsgröße bei steigender Klumpung

der Habitattypen vergrößern, ist das Verhältnis bei Hirschen unimodal.

Des Weiteren wurde das Potential von Umweltinformationen innerhalb von

Landoberflächenklassen zur Erklärung von Bewegungsmustern untersucht. Eine

kategoriale Repräsentation der Landschaft liefert keine Informationen über die

Variabilität innerhalb einer Klasse, z.B. die Variabilität der Kronendecke oder

kleine Lichtungen innerhalb der Klasse Wald. Ein fernerkundlicher Ansatz, frac-

tional cover, welcher kontinuierliche Landbedeckungsinformationen liefert, wurde

für die Analyse der Habitatselektion von Hirschen verwendet. Die kontinuier-

lichen Landbedeckungsinformationen zur Quantifizierung der Landoberflächen-

Spatio–temporal movement pattern analysis
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klassenvariabilität im Kontext von räumlich–zeitlichen Bewegungsmusteranaly-

sen zeigte sich durch die Bereitstellung von Informationen über die Variabilität

innerhalb einer Landbedeckungsklasse als nützlich. Die Größe der Streifgebiete

nimmt mit steigendem Mittelwert, sowie mit steigender Variation des fractional

cover Werts von Wald zu.

In dieser Arbeit wurden verschiedene Aspekte der Bewegungsmuster von Tie-

ren analysiert, insbesondere die Bedeutung von räumlichen Mustern in der Land-

schaft und ihre Repräsentation für Bewegungsmusterstudien. Die Kombination

von Tierbewegungsdaten und Fernerkundungsinformationen liefert wichtige neue

Erkenntnisse für die ökologische Forschung und wird mit zunehmender Verfügbar-

keit weiterer technologischer Fortschritte zunehmend an Bedeutung gewinnen.

Spatio–temporal movement pattern analysis





1
General introduction

Due to human induced changes we are nowadays confronted to a variety of en-

vironmental changes on a global level. This global change is leading besides

others to habitat loss and transformation (DeFries et al., 1999; Wessels et al.,

2004; Alberti, 2005), resource exploitation (Lambin et al., 2003) and biodiversity

loss (Fahrig, 2003; Gaston et al., 2003; Kokko and López-Sepulcre, 2006; Hector

and Bagchi, 2007). Furthermore, this trend is likely to continue in the future

(IPCC, 2013). The increased trend which human–induced changes are causing,

increases the importance of understanding the patterns in biodiversity. Biodiver-

sity influences human well–being through ecosystem services, including access to

water, pollination and regulation of climatic conditions (Dı́az et al., 2006; Car-

dinale et al., 2012; Hadley and Betts, 2012). In the context of biodiversity loss

and global climate change, understanding the mechanism that shape species rich-

ness and composition is crucial for conservation and environmental management

(Loreau et al., 2003; Hirzel and Le Lay, 2008).

Protected areas play a key role in preserving biodiversity (Hannah, 2008;

Townsend et al., 2009) and ecosystem services (Alcaraz-Segura et al., 2009; Kr-

ishnaswamy et al., 2009), still they are restricted by defined borders and are

even sometimes too small to preserve animals during their lifespan (Wilcove and

Wikelski, 2008; Singh and Milner-Gulland, 2011). Hence, for effective manage-

ment strategies, knowledge about the distribution of animals and their movements

across different spatio–temporal scales is essential.
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Animal movement, dispersal and habitat selection are important determinants

of the dynamics and distribution of populations in heterogeneous landscapes and

form a bridge between animal behaviour, landscape ecology and population dy-

namics (Lima and Zollner, 1996). The basis of spatio–temporal dynamics of an-

imal distributions is individual movement (Getz and Saltz, 2008; Nathan et al.,

2008; Mueller and Fagan, 2008) and the most crucial limit to understand why

animals move is to understand what resources they use at a specific time and

place and at different spatial scales (Fryxell et al., 2008; Wittemyer, 2008; Beyer

et al., 2010; Cagnacci et al., 2010; Gaillard et al., 2010; Morales et al., 2010;

Owen-Smith et al., 2010; Smouse et al., 2010)

With technological advances in tracking devices, as well as computational

power and analytical techniques, novel application and statistical methods to

answer questions related to animal movement and space use are feasible to be ad-

dressed, however analysing the factors shaping animal–environmental interaction,

especially resource availability remains still difficult (Beyer et al., 2010; Fieberg

et al., 2010; Wilson et al., 2012; Warton and Aarts, 2013).

Animal movements are central to population ecology because many spatial

processes, like disease spread or metapopulation dynamics, and applications, like

the design of protected areas, depend on the movement behaviour of individuals

(Morales and Ellner, 2002; Kokko and López-Sepulcre, 2006; Patterson et al.,

2008). Recently, the importance of movement ecology has received recognition

and advancements have been made in understanding movement processes and

building up a general framework for movement ecology (Getz and Saltz, 2008;

Nathan et al., 2008; Schick et al., 2008).

The following paragraphs provide a brief overview about the main topics of

this thesis followed by a synopsis of the articles of this thesis. Finally, the remain-

ing and future research challenges will be highlighted at the end of this thesis.

1.1 Animal movement in space and time

A basic question in ecology is to understand the factors and processes shaping the

distribution of species in space and time. The fundamental underlying mechanism

is individual movement as it determinates the dynamics and spatial distribution

of populations in heterogeneous landscapes (Turchin, 1991; Morales et al., 2010).

Spatio–temporal movement pattern analysis
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Almost all organisms have to move at some point during their lives, either under

their own locomotion or transported by physical processes or organic agents. One

of the most noted form of animal movements are large scale migration patterns,

like the wildebeest migration in the Serengeti where millions of animals follow

the rainfall pattern across eastern Tanzania (Bolger et al., 2008; Holdo et al.,

2009) or the long–distance migration of birds, such as storks, following seasonal

resource availabilities (Higuchi, 2012). However, this is a small snapshot of ani-

mal movement or movement pattern. Movements occur on different spatial and

temporal scales and are typically categorized into distinct functional groups rang-

ing from small scale foraging movements (Turchin, 1991; Preisler et al., 2004) to

frequent large scale migration or dispersal (Sawyer and Kauffman, 2011; Bischof

et al., 2012; Middleton et al., 2013; van Moorter et al., 2013). Therefore the term

movement encompasses all possible forms of movement and a general unifying

framework is still under debate (Nathan et al., 2008).

Technological advances in the remote monitoring of animals due to tracking

devices makes it now possible to study animals over long time spans, large areas

and with a high frequency of location points (Tomkiewicz et al., 2010). Nowadays

we are able to quantify accurately where animals go and this allowed researchers

the expansion of the mechanistic approach to the ecology of large animals, with

the direct possibility to relate the animals to its environment and to show the

interaction of animals with their environment (Cooke et al., 2004; Cagnacci et al.,

2010).

Movement is studied by monitoring locations over time. The location points

of animals provide the basic unit of movement paths (individual level) which sum

up to the effects on the population level. Studying the movement of individuals

helps to detect between individual variation in movement patterns, like random

effects or effects by sex or age (Holyoak et al., 2008; Revilla and Wiegand, 2008).

With the evolving technology of sensors for studying animals, progress has

been made in understanding the relationship between landscape and animal move-

ment (Frair et al., 2005; Mueller et al., 2011; Sawyer and Kauffman, 2011; van

Moorter et al., 2013) and the detection of internal behavioural modes (Fryxell

et al., 2008; Nathan et al., 2008; Patterson et al., 2008; Gurarie et al., 2009).

Furthermore the applicability of theoretical concepts of animals movement pat-

terns can now be investigated (Mueller and Fagan, 2008; Schick et al., 2008;

Spatio–temporal movement pattern analysis
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Pedersen et al., 2011; Moorcroft, 2012).

Despite the progress in technology and the development of statistical methods,

comparing animal choices with the availability of resources and to fully under-

stand the movement patterns remains challenging and is still a main focus in

ecology and conservation.

1.2 The home range concept

Mammals do not tend to move at random, they rather restrict their movements

to particular areas, that are much smaller than one might expect from observed

levels of mobility, without showing a territorial behaviour. This phenomenon

underlies the concept of an animals home range. Home ranges are generally

defined as the spatial expression of all behaviours an animal performs in order to

survive and reproduce (Burt, 1943). The home range is the fundamental measure

of space use by animals. As a result understanding the mechanism shaping home

range pattern is crucial to understand patterns of space use, habitat preferences

and responses to environmental change.

Understanding why home range size varies between and within species re-

mains a fundamental issue in ecological research (McLoughlin and Ferguson, 2000;

Börger et al., 2008; van Beest et al., 2011). The home range size characterizes

the interplay between an animal and its environment. Here, the determinants of

home range size can be internal or external. Different studies have shown that

home range size may e.g. depend on body size (Harestad and Bunnel, 1979; Swi-

hart et al., 1988; Mysterud et al., 2001), forage availability (Tufto et al., 1996) or

intra- (Riley and Dood, 1984) and interspecific competition (Loft et al., 1993).

The manner in which animals select home ranges and exploit resources within

a home range is still not clear, especially the intraspecific variation is not well

understood (van Beest et al., 2011).

1.3 The role of landscape

Linking movements of animals to the underlying landscape is critical to identify

factors shaping animals spatial pattern and behaviour (Lima and Zollner, 1996).

Especially the relationship between landscape dynamics and movement is par-

Spatio–temporal movement pattern analysis
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ticularly important to large and mobile animals were a high temporal variability

of food resources can be critical. Generally the availability and distribution of

food resources are recognized as a dominant factor shaping movement pattern.

Hence landscape information have to be translated into species specific resource

functions which requires a profound understanding of their ecology.

To map habitat over a large area and to gain a realistic representation of

the landscape under study is often difficult. With different remote sensing tech-

niques we are nowadays able to map detailed land cover classes which can be

related to habitat, biophysical properties (e.g. plant productivity) and natural

and human–induced changes within and across landscapes (change detection)

(Kerr and Ostrovsky, 2003; Turner et al., 2003).

A common approach in ecology is to use land cover classification of a defined

area. Land cover maps are commonly created by classifying remotely sensed

imagery, whereas the most general distinction is that of supervised versus unsu-

pervised classifications (Jensen, 1996). The former requires training data from

known land cover type, which are used to calibrate a classification algorithm. Un-

supervised methods use numerical algorithms to exhaustively cluster the image

into spectrally similar groups of pixels (Lu and Weng, 2007). These land cover

classifications are commonly used and can be converted to a proxy of habitat

cover. The combination of different time–steps allows to retrieve changes in land

cover distributions and such land cover change analysis are applied frequently

(Townsend et al., 2009). The resulting land cover information can be applied

in land cover area estimates for e.g. forest cover and loss as well as for further

analysis of the landscape such as spatial attributes of the land cover. Spatial

attributes encompasses heterogeneity of a landscape, connectivity or configura-

tion of habitat patches and a variety of different indices exist for characterizing

different landscape features (McGarigal et al., 2009). The analysis of the spatial

arrangement of land cover patches is important to explain species distribution.

The spatial characteristics can influence species abundances (Pearson, 1993) or

dispersal routes (Baguette and Dyck, 2007) due to the size or isolation of frag-

ments within the landscape.

Furthermore, temporal environmental information do provide valuable ecolog-

ical information to explain changes in animal distribution or movement. A variety

of remote sensing data sets exist which provide temporal information about the

Spatio–temporal movement pattern analysis
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landscape condition. These remote sensing approaches allow to derive phenology

through signals of photosynthetic activity of the vegetation, based on vegetation

indices. These information have been proven to be valuable for ecological re-

search, due to the fact that seasonal changes in vegetation strongly influences

animal distributions and dynamics (Pettorelli et al., 2005).

The amount of remote sensing data sets is steadily increasing as well as the

amount of freely available data. Please see table 1.1 for a concise list of remote

sensing sensors. New sensors such as the active sensor Sentinel–1 or the multi-

spectral sensor Sentinel–2 will be able to provide ecologically relevant data in the

future.
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Table 1.1: A selection of satellite sensors with applications often used in ecological studies and
environmental modelling.

Sensor
Spatial
resolution

Spectral
resolution

Ecological
variable

Application
examples

AVHRR 1 km V/NIR land cover, Box et al. (1989),
microwave land cover change, Iverson et al. (1994),

phenology, Shimabukuro et al. (1994),
vegetation indices DeFries et al. (1995),

Adams et al. (1995),
Lambin (1996),
Hostert et al. (2003),
Wessels et al. (2004),
Mueller et al. (2008),
Middleton et al. (2013)

Landsat 30 m V/NIR land cover, Byrne et al. (1980),
TM/ETM+ SWIR land cover change, Boroski et al. (1996),

phenology, Cain et al. (1997),
vegetation indices Elmore and Mustard (2000),

Olthof and Fraser (2007),
Forester et al. (2007),
Schneider et al. (2009)

MODIS 250 m V/NIR land cover, Friedl et al. (2002),
- 1 km SWIR, TIR phenology, Huete et al. (2002),

vegetation indices Lobell and Asner (2004),
Pettorelli et al. (2005),
Beck et al. (2006),
Bro-Jø rgensen et al. (2008),
Sawyer and Kauffman (2011),
Hayes et al. (2008)

AVHRR = Advanced Very High-Resolution Radiometer

ETM+ = Landsat Enhanced Thematic Mapper Plus

MODIS = Moderate-resolution Imaging Spectroradiometer

SWIR = short-wave infrared

TIR = thermal infrared

TM = TM Landsat Thematic Mapper

V/NIR = visible/near-infrared.
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16 GENERAL INTRODUCTION

1.4 Focus of my work

This thesis combines different approaches in analysing animal movement pattern

and aims to enhance the understanding of the space use of animals. Moreover it

aims to include different remote sensing based landscape information for analysing

animal movement data.

The studies have been conducted within the National Parks Bavarian Forest

(Germany) and Šumava (Czech Republic). Red deer (Cervus elaphus) and roe

deer (Capreolus capreolus) were equipped with GPS–collars. Both species were

investigated concerning their movement ecology, whereas the focus lies on the

movement pattern of red deer.

This thesis starts by analysing the processes driving migration patterns of red

deer (chapter 2), followed by investigating individual levels of movement in rela-

tion to the spatial configuration of the landscape (chapter 3). Impacts of within

land cover class heterogeneity on animal movement pattern is analysed in chapter

4. Challenges and future perspectives are outlined and discussed in chapter 5.

The research was conducted in the National Park Bavarian Forest, Germany and

the adjoining Šumava National Park in the Czech Republic, forming together

the Greater Bohemian Forest Ecosystem, the largest protected area in Central

Europe. Although the national parks cover a large area, they cannot encom-

pass all occurring processes within this ecosystem. Adjoining to the borders of

the national parks are areas with economic interests, like commercial forests or

agriculture. Therefore the administration is responsible to institute appropriate

arrangements to ensure negative impacts to conventional forestry and agricultural

use. Within the borders of the national parks nature is left to its own means and

natural processes are allowed to take their course. This is especially visible in the

large areas which have been affected by bark beetle outbreaks since the 90s, leav-

ing an area of 5,600 ha converted to regeneration areas with standing and lying

dead wood and new young vegetation stands. To ensure the health of the adjoin-

ing forest, management in the border regions of the national parks takes place

to prevent bark beetle outbreaks in economic forests. Besides the management

of “pest species” a major issues is the management of red deer in the national

parks. Red deer is known to damage trees by bark stripping in winter when food
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resources are scarce and the adjoining economic forests need to be prevented from

possible damages. The Bohemian Forest can only serve as a summer range for red

deer and typically deer would migrate to lower elevational regions to stay there

during winter time. Due to anthropogenic influences natural migration routes are

no longer accessible. Therefore winter enclosures were established in the national

parks were red deer are staying during the winter time.

In chapter 2 the behaviour of red deer after the opening of the winter enclo-

sures is investigated. Here, a remotely sensed vegetation index, the Normalized

Difference Vegetation Index (NDVI) is used as a proxy for vegetation productiv-

ity and phenology to analyse if deer track the spring green–up after the opening

of the winter enclosures, as would be expected. Furthermore the management

of the opening dates of the winter enclosures can be matched with the start of

season of the vegetation period and management strategies can be evaluated.

After the release of the winter enclosures deer distribute in the national parks

and the individuals form home ranges. As home ranges link individual movement

paths to population dynamics understanding why and how home range sizes vary

between and among species is a fundamental issue in ecology. While most studies

investigate the variation in home range size with relation to the dominant habitat

type, I additionally take the habitat configuration into account, and extent the

analyses in home range size variation in chapter 3 by taking the explicit spatial

configuration of habitat types within the home range into account. The results

show that the spatial configuration of the landscape is the dominant factor ex-

plaining variation in home range size of red and roe deer. Furthermore the shape

of the relationship between home range size and landscape configuration depends

on a species’ habitat requirements: while roe deer increase their home range size

with increasing landscape patchiness, the relationship is hump–shaped for red

deer and the results are robust at all tested spatio–temporal scales.

A critical point in understanding movement patterns of animals is the re-

source use, the definition of resources respectively. GPS location points provide

fine–scale datasets between animals and habitat and the technology of sensors

improved over the last years. While we’re gaining always better data from an-

imals the way we define our landscape remains the same. Usually landscapes

are split into categories defined by the human perception of different land cover

types (e.g. forest or meadows). Depending on the system the data was generated
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we can have a very high spatial resolution. Still a categorical representation of

the landscape remains artificial as it cannot capture the spatial variability that

usually occurs in the landscape within each category, e.g. tree cover variability or

small forest gaps within the forest class. In chapter 4 a remote sensing approach

is tested and evaluated for the use in habitat selection studies. These fractional

cover provide continuous land cover information per pixel and hence represent a

more distinguished landscape. Previous attributes associated with different land

cover types (e.g. dense forest) can now be tested and validated. I investigated

the use of the fractional cover approach for the analysis of habitat selection of red

deer in the Bohemian Forest by analysing the variation of home range sizes with

respect to continuous forest fractional cover. In this study, I include the landscape

as continuous variable which provides more details for habitat selection regarding

fine scale variation.

Spatio–temporal movement pattern analysis



REFERENCES 19

References

Adams, J., D. Sabol, V. Kapos, R. A. Filho, D. A. Roberts, M. O. Smith and
A. R. Gillespie (1995). Classification of multispectral images based on fractions
of endmembers: Application to land-cover change in the Brazilian Amazon.
Remote Sensing of Environment , 52:137–154.

Alberti, M. (2005). The Effects of Urban Patterns on Ecosystem Function. In-
ternational Regional Science Review , 28:168–192.

Alcaraz-Segura, D., J. Cabello, J. M. Paruelo and M. Delibes (2009). Use of
descriptors of ecosystem functioning for monitoring a national park network:
a remote sensing approach. Environmental Management , 43:38–48.

Baguette, M. and H. Dyck (2007). Landscape connectivity and animal behav-
ior: functional grain as a key determinant for dispersal. Landscape Ecology ,
22:1117–1129.

Beck, P., C. Atzberger, K. Hogda, B. Johansen and A. Skidmore (2006). Improved
monitoring of vegetation dynamics at very high latitudes: A new method using
MODIS NDVI. Remote Sensing of Environment , 100:321–334.

Beyer, H. L., D. T. Haydon, J. M. Morales, J. L. Frair, M. Hebblewhite,
M. Mitchell and J. Matthiopoulos (2010). The interpretation of habitat prefer-
ence metrics under use-availability designs. Philosophical Transactions of the
Royal Society of London. Series B, Biological sciences , 365:2245–54.

Bischof, R., L. E. Loe, E. L. Meisingset, B. Zimmermann, B. Van Moorter and
A. Mysterud (2012). A migratory northern ungulate in the pursuit of spring:
jumping or surfing the green wave? The American Naturalist , 180:407–24.

Bolger, D. T., W. D. Newmark, T. A. Morrison and D. F. Doak (2008). The need
for integrative approaches to understand and conserve migratory ungulates.
Ecology Letters , 11:63–77.

Börger, L., B. D. Dalziel and J. M. Fryxell (2008). Are there general mechanisms
of animal home range behaviour? A review and prospects for future research.
Ecology Letters , 11:637–650.

Boroski, B., R. Barrett, I. Timossi and J. Kie (1996). Modelling habitat suitabil-
ity for black-tailed deer (Odocoileus hemionus columbianus) in heterogeneous
landscapes. Forest Ecology and Management , 88:157–165.

Box, E., B. N. Holben and V. Kalb (1989). Accuracy of the AVHRR Vegeta-
tion Index as a predictor of biomass, primary productivity and net CO2 flux.
Vegetation, 80:71–89.

Spatio–temporal movement pattern analysis



20 REFERENCES

Bro-Jørgensen, J., M. E. Brown and N. Pettorelli (2008). Using the satellite-
derived normalized difference vegetation index (NDVI) to explain ranging pat-
terns in a lek-breeding antelope: the importance of scale. Oecologia, 158:177–
82.

Burt, W. (1943). Territoriality and home range concepts as applied to mammals.
Journal of Mammalogy , 24:346–352.

Byrne, G. F., P. F. Crapper and K. Mayo (1980). Monitoring land-cover change by
principal component analysis of multitemporal landsat data. Remote Sensing
of Environment , 10:175–184.

Cagnacci, F., L. Boitani, R. A. Powell and M. S. Boyce (2010). Animal ecology
meets GPS-based radiotelemetry: a perfect storm of opportunities and chal-
lenges. Philosophical Transactions of the Royal Society of London. Series B,
Biological sciences , 365:2157–62.

Cain, D. H., K. Riitters and K. Orvis (1997). A multi-scale analysis of landscape
statistics. Ecology ,12:199–212.

Cardinale, B. J., J. E. Duffy, A. Gonzalez, D. U. Hooper, C. Perrings, P. Venail,
A. Narwani, G. M. Mace, D. Tilman, D. A. Wardle, A. P. Kinzig, G. C. Daily,
M. Loreau, J. B. Grace, A. Larigauderie, D. S. Sirvastava and S. Naeem (2012).
Biodiversity loss and its impact on humanity. Nature, 486:59–67.

Cooke, S. J., S. G. Hinch, M. Wikelski, R. D. Andrews, L. J. Kuchel, T. G.
Wolcott and P. J. Butler (2004). Biotelemetry: a mechanistic approach to
ecology. Trends in Ecology and Evolution, 19:334–43.

DeFries, R., M. Hansen and J. Townshen (1995). Global discrimination of land
cover types from metrics derived from AVHRR pathfinder data. Remote Sens-
ing of Environment , 54:209–222.

DeFries, R. S., C. B. Field, I. Fung, G. J. Collatz and L. Bounoua (1999). Com-
bining satellite data and biogeochemical models to estimate global effects of
human-induced land cover change on carbon emissions and primary productiv-
ity. Global Biogeochemical Cycles , 13:803–815.

Dı́az, S., J. Fargione, F. S. C. Iii and D. Tilman (2006). Biodiversity Loss Threat-
ens Human Well-Being. Public Library of Science Biology , 4:1300–1305.

Elmore, A. and J. Mustard (2000). Quantifying vegetation change in semiarid
environments: precision and accuracy of spectral mixture analysis and the nor-
malized difference vegetation index. Remote Sensing of Environment , 73:87–
102.

Spatio–temporal movement pattern analysis



REFERENCES 21

Fahrig, L. (2003). Effects of Habitat Fragmentation on Biodiversity. Annual
Review of Ecology, Evolution, and Systematics , 34:487–515.

Fieberg, J., J. Matthiopoulos, M. Hebblewhite, M. S. Boyce and J. L. Frair
(2010). Correlation and studies of habitat selection: problem, red herring or
opportunity? Philosophical Transactions of the Royal Society of London. Series
B, Biological sciences , 365:2233–2244.

Forester, J., A. Ives, M. G. Turner, D. Anderson, D. Fortin, H. Beyer, D. Smith
and M. Boyce (2007). State-space models link elk movement patterns to land-
scape characteristics in Yellowstone National Park. Ecological Monographs ,
77:285–299.

Frair, J. L., E. H. Merrill, D. R. Visscher, D. Fortin, H. L. Beyer and J. M. Morales
(2005). Scales of movement by elk (Cervus elaphus) in response to heterogeneity
in forage resources and predation risk. Landscape Ecology , 20:273–287.

Friedl, M., D. McIver, J. Hodges, X. Zhang, D. Muchoney, A. Strahler, C. Wood-
cock, S. Gopal, A. Schneider, A. Cooper, A. Baccini, F. Gao and C. Schaaf
(2002). Global land cover mapping from MODIS: algorithms and early results.
Remote Sensing of Environment , 83:287–302.

Fryxell, J. M., M. Hazell, L. Börger, B. D. Dalziel, D. T. Haydon, J. M. Morales,
T. McIntosh and R. C. Rosatte (2008). Multiple movement modes by large her-
bivores at multiple spatiotemporal scales. Proceedings of the National Academy
of Sciences of the United States of America, 105:19114–19119.

Gaillard, J.-M., M. Hebblewhite, A. Loison, M. Fuller, R. Powell, M. Basille and
B. Van Moorter (2010). Habitat-performance relationships: finding the right
metric at a given spatial scale. Philosophical Transactions of the Royal Society
of London. Series B, Biological sciences , 365:2255–65.

Gaston, K. J., T. M. Blackburn and K. K. Goldewijk (2003). Habitat conversion
and global avian biodiversity loss. Proceedings of the Royal Society B , 270:1293–
1300.

Getz, W. M. and D. Saltz (2008). A framework for generating and analyzing
movement paths on ecological landscapes. Proceedings of the National Academy
of Sciences of the United States of America, 105:19066–19071.

Gurarie, E., R. D. Andrews and K. L. Laidre (2009). A novel method for identify-
ing behavioural changes in animal movement data. Ecology Letters , 12:395–408.

Hadley, A. S. and M. G. Betts (2012). The effects of landscape fragmentation on
pollination dynamics: absence of evidence not evidence of absence. Biological
Reviews , 87:526–544.

Spatio–temporal movement pattern analysis



22 REFERENCES

Hannah, L. (2008). Protected areas and climate change. Annals of the New York
Academy of Sciences , 1134:201–212.

Harestad, A. and F. Bunnel (1979). Home range and body weight - a reevaluation.
Ecology , 60:389–402.

Hayes, D. J., W. B. Cohen, S. a. Sader and D. E. Irwin (2008). Estimating
proportional change in forest cover as a continuous variable from multi-year
MODIS data. Remote Sensing of Environment , 112:735–749.

Hector, A. and R. Bagchi (2007). Biodiversity and ecosystem multifunctionality.
Nature, 448:188–190.

Higuchi, H. (2012). Bird migration and the conservation of the global environ-
ment. Journal of Ornithology , 153:3–14.

Hirzel, A. and G. Le Lay (2008). Habitat suitability modelling and niche theory.
Journal of Applied Ecology , 45:1372–1381.

Holdo, R. M., R. D. Holt and J. M. Fryxell (2009). Opposing rainfall and plant
nutritional gradients best explain the wildebeest migration in the Serengeti.
The American Naturalist , 173:431–445.

Holyoak, M., R. Casagrandi, R. Nathan, E. Revilla and O. Spiegel (2008). Trends
and missing parts in the study of movement ecology. Proceedings of the National
Academy of Sciences of the United States of America, 105:19060–19065.
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2
Migration pattern of red deer in the

Bohemian Forest

Abstract

Resource availability within landscapes varies across space and time. Movements

of animals are partly a response to these changes. In temperate regions the sea-

sonal landscape changes lead to migration patterns between summer and winter

ranges. The primary mechanism driving migration is here the selection of high–

quality foraging areas.

Remote sensing can measure landscapes status and changes over vast areas

and across time. The Normalized Difference Vegetation Index (NDVI), pro-

vides relevant information on plant phenology and productivity to explain the

behavioural response of animals to seasonal patterns.

In this study we investigated the migration pattern of red deer in the Bo-

hemian Forest. Due to anthropogenic landscape modification the natural mi-

gration route outside the boundaries of the national park are limited. Therefore,

winter enclosures within the national park were established and animals stay there

during winter time. We examined the behaviour of red deer after the opening of

the winter enclosures related to the phenology and therefore NDVI patterns.

The remotely sensed spatio–temporal landscape attribute provided by the

NDVI explains only partially the behavioural pattern of red deer after the open-

ing of the winter enclosures. Further factors beside the chosen spatio–temporal

information about environmental conditions need to be considered to explain the

movement patterns of red deer such as memory effects for resources or threats.
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2.1 Introduction

Animal movements are the primary behavioural response to spatio–temporal het-

erogeneity in resource availability (Boone et al., 2006). Movements can be split

into different behavioural responses, e.g. small scale foraging movements or large

scale migration movements. Typically ungulates living in temperate regions move

between summer and winter ranges, i.e. from lower to higher elevational ranges

(Georgii, 1981; Mysterud, 1999). The selection of high–quality forage is thought

to be the primary mechanism driving ungulate migration (Fryxell and Sinclair,

1988; Sawyer and Kauffman, 2011) and forage plants are most nutritious to un-

gulates at the onset of the growing season when they are highly digestible (Albon

and Langvatn, 1992; Mysterud et al., 2011; Cagnacci et al., 2011). A variety

of studies report that ungulates follow the emerging plant phenology in spring

(Hebblewhite et al., 2008; Sawyer and Kauffman, 2011; Fryxell and Avgar, 2012;

Christianson et al., 2013). This phenology can be retrieved over large scales

through remote sensing. Over the last decades, the remotely sensed Normal-

ized Difference Vegetation Index (NDVI) gained popularity and has frequently

and successfully been employed to interpret animal characteristics in relation to

vegetation properties (Pettorelli et al., 2005b, 2011). The NDVI provides infor-

mation on vegetation productivity and phenology over different temporal and

spatial scales and has been widely used in recent ecological studies as a proxy

for vegetation productivity and phenology (Kerr and Ostrovsky, 2003; Pettorelli

et al., 2005b; Boone et al., 2006; Hebblewhite et al., 2008; Hamel et al., 2009). In

general, deer did track phenological green–up through parts of the growing sea-

son by making adjustment in habitat use. Recently Bischof et al. (2012) analysed

the behavioural response of migratory red deer to plant phenology and detected

different behavioural modes to follow the spring green up, referred to as “surfing”

i.e. migrating smoothly along with the leading edge of plant phenology and there-

fore exploit continuously forage at a high nutritional levels, and “jumping”, i.e.

shorter quickly habitat adjustments in order to attempt maximization in access

to high forage quality at each range, with all stages in between.

Deer–browse interactions usually cause numerous conflicts between forestry

management, deer management and natural conservation. In our study area, the

Bohemian Forest, the overall management concept within the National Park is the
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protection of unaltered natural processes but management is limited to the area of

the National Park and forces an arbitrary management in winter months for red

deer to prevent impacts in adjoining economic forests. Therefore so called winter

enclosures were established within the National Park in the 1970s and 1990s were

red deer are fed and stay during winter time. Winter enclosure poses a serious

interference with the natural behaviour patterns of red deer as natural migration

is stopped as formerly migration routes are interrupted due to settlements and

roads. Nevertheless after the opening of the winter enclosures red deer should

resume migration behaviour according to the forage maturation hypothesis and

select areas with high forage quality (Hebblewhite et al., 2008).

We investigate in this study the migration pattern of red deer in the Greater

Bohemian Forest. Furthermore the direct behavioural response of red deer to the

opening of the winter enclosures will be analysed and the overall management

strategy is evaluated. As a rule of thumb the winter enclosures are opened by the

staff of the national park after snow melt when the surrounding of the enclosures

show a clear sign of emerging vegetation. So far, there are no studies about the

behaviour of red deer after opening and it is assumed that the animals leave the

enclosures immediately after opening.

As previous studies showed a clear pattern of deer following the plant phenol-

ogy (Sawyer and Kauffman, 2011; Bischof et al., 2012; Christianson et al., 2013),

we expect red deer in our study area to move to forage rich habitat and follow the

green–up immediately after release of the winter enclosures. As the enclosures

are opened when vegetation is visible emerging and therefore the vegetation pe-

riod already started, we hypothesize the animals to “jump along the green wave”

(sensu Bischof et al. (2012)). Furthermore, as the dates of the opening of the en-

closures are available we can track the behaviour of the animals in fine steps. We

hypothesize that the animals leave the enclosures immediately after the opening.

Therefore a strong directionality of the movement steps of the single individuals

should be visible, following the green up. In addition to the behavioural responses

of deer the management strategy of the timing of the opening of the enclosures

is evaluated by using the start of season derived from the NDVI.

Additionally data from three animals not staying in enclosures during winter

is available. Although this sample size is rather small, the animals can give insight

in the behaviour of the animals during winter time. Unlike the animals within
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the enclosures, these animals are not fed, therefore we expect a strong behaviour

following the green up.

2.2 Material and methods

2.2.1 Study area

This study was conducted in Central Europe in the Bohemian Forest, an area be-

longing to two national parks: the Bavarian Forest National Park on the German

side of the border (240 km2) and the Šumava National Park on the Czech side

of the border (640 km2). These protected areas are embedded within the Bavar-

ian Forest Nature Park (3070 km2) and the Šumava Landscape Protection Area

(1000 km2). In its entirety, the area is known as the Bohemian Forest Ecosys-

tem. The area is mountainous, with a variation in elevation between 600 and

1450 m.a.s.l. The mean annual temperature varies between 3◦C and 6.5◦C along

higher elevation and ridges. The mean annual precipitation is between 830 and

2230 mm. Within the park, three major forest types exists: above 1100 m are

sub–alpine spruce forests with Norway Spruce (Picea abies L.) and some Moun-

tain Ash (Sorbus aucuparia L.), on the slopes, between 600 and 1100 m altitude,

are mixed montane forests with Norway Spruce, White Fir (Abies alba MILL.),

European Beech (Fagus sylvatica L.), and Sycamore Maple (Acer pseudoplatanus

L.). In the valley bottoms, spruce forests with Norway Spruce, Mountain Ash,

and birches (Betula pendula ROTH. and Betula pubescens EHRH.) (Fischer et al.,

2013). Since the mid–1990s, the forests of the national park have been affected

by massive proliferation of the spruce bark beetle (Ips typographus). By 2007,

this had resulted in the death of mature spruce stands over an area amounting

to 5,600 ha (Müller et al., 2008; Lausch et al., 2013).

2.2.2 Deer management in the national park

The goal of the Bavarian Forest National Park is to leave nature to its own

means and to ensure that natural processes will be allowed to take their course.

This includes that wild animal populations should not be affected by human

activity. While it is possible to protect animals with small territories within the

limits of the national park, large animals with large space requirements cannot
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be preserved in the National Park alone. This is especially true for animals

that undertake seasonal migrations. For red deer the National Parks Bavarian

Forest and Šumava can only serve as a summer range. In winter, when snow

accumulates up to three meters, animals migrate to lower elevations and outside

the park boundaries in areas with private and state forest (Heurich et al., 2011).

Forests and agricultural properties that adjoin the National Parks are managed

for economic gain and therefore the National Park administration is determined

to institute appropriate arrangements to ensure negative impacts to conventional

forestry and agricultural use, e.g. by browsing or bark stripping of deer. In order

to compensate for the effect that red deer is no longer able to follow its migration

route to their natural winter habitat and to prevent damage in the adjoining

economic used forests, so called “winter enclosures” encompassing 50–60 ha were

established in the 1970s and 1990s (Gerner et al., 2011). A total of 17 enclosures

are located within the National Parks, four on the German site and thirteen on

the Czech site (figure 2.1). In fall the animals are rounded up into the gates

and are kept there and fed until the new vegetation period starts. As a rule of

thumb, the gates of the enclosures are opened after snow melt when first leafs in

the surrounding of the enclosures are visible. The majority of red deer spend the

winter in these enclosures where the animals receive daily supplemental feeding.

2.2.3 Deer data and opening dates of winter enclosures

From 2002–2011 red deer were caught during winter, after procedure approved

by the national ethical board. Red deer were captured and marked with GPS

collars (Vectronic Aerospace, Berlin, Germany) in box traps with side windows

after they were lured in with food. No immobilization was necessary. A second

approach was to tranquilize deer by dart gun on sides where they were attracted

by food (Heurich, 2011).

We collared 79 red deer (39 male, 40 female). Eight individuals were collared

two or more times over the single years. Three collared individuals overwintered

outside the enclosures in 2006 (two females, one male). The most common sam-

pling design was to mark red deer in late winter and retrieve the collars after

a year by collar drop-off or recapturing, allowing the collars to be used on new

individuals. Data was screened for position errors beforehand. We classified the

samples from the multiple collared animals over the single years as independent.
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Figure 2.1: Location of the winter enclosures (black, indicated with numbers) within the Na-
tional Parks Bavarian Forest (darkgray) and Šumava (white). White locations withing the National
Park Bavarian Forest indicate settlements. Projection: WGS84 UTM Zone 33N. Winter enclosures:
(1) Beranky, (2) Frantikov, (3) Kohout́ı, (4) Obencńıles, (5) U Herciana, (6) Bøezová Lada, (7)
Hejhal, (8) Planýrka, (9) Rokyta, (10) Wastl, (11) Zadńı Chalupy, (12) Étyøka, (13) Epiéàk, (14)
Ahornschachten, (15) Buchenau, (16) Neuhüttenwiese, (17) Riedlhäng.
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We took a random sample for animals with sequences of short time intervals

(e.g. location point taken every 15 min) to ensure that the locations have a

constant interval of one hour. The median spatial accuracy of the GPS locations

was 16.5 m (Stache et al., 2012).

For four winter enclosure the exact opening dates over the different years are

available (Appendix, table 1). All other enclosures were opened as wel but no

opening date was recorded hence these data sets cannot be used to analyse the

detailed behaviour of red deer when the gates are opened. All enclosures with

known opening dates are located within the National Park Bavarian Forest 2.1.

We extracted for the available dates of each enclosure the animals in the respective

enclosures and encountered 28 animals (15 male, 13, female) that are tracked and

can be related to known opening dates. The behaviour of these individuals can

therefore be analysed in detail concerning the impact of greening in relation to

the opening of the enclosures.

For the animals within the enclosure with known dates of the opening, the

movement paths are analysed to gain fine grained knowledge of the behaviour

of red deer after opening of the winter enclosures. It is hypothesized that the

animals are leaving the enclosures immediately after the opening and are follow-

ing the maximum greenness with a directed movement path. Therefore a strong

directionality of the turning angels of the movement path should be visible. We

calculate the turning angles of the movement path of the individuals and con-

nected them to the green–up to evaluate the direction of the animals and to

analyse if these animals follow the maximum greenness.

2.2.4 Relating deer movement to plant phenology using

NDVI estimates

For retrieving photosynthetic activity we applied the Normalized Difference Veg-

etation Index (NDVI) which is the most abundantly used and established in

ecological research (Pettorelli et al., 2005a, 2011). The NDVI is a spectral in-

dex calculated from earth surface reflectance patterns in the red (RED) and

near–infrared (NIR) regions of the electromagnetic spectrum (NDVI = (NIR –

RED) / (NIR + RED); Reed et al. 1994; Myneni et al. 1995) and enhances the

detection of plant properties (Tucker, 1979). In this study the MODIS NDVI
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product (MOD13Q1, 250 m spatial resolution, 16–day composites) were acquired

for the years 2002 to 2011. TIMESAT (Jönsson and Eklundh, 2002, 2004) was

used for the pre–processing of the time series. Temporal smoothing was applied

using the Savitzky–Golay filter and the extraction of the phenological parameter

Start of Season (SOS). The date of the SOS was estimated for every enclosure

separately to capture spatial heterogeneity and therefore variances of phenology

within the study area.

Hamel et al. (2009) found in their analyses that the steepest part of the annual

NDVI curve was positively correlated with the timing of peak faecal crude protein.

Therefore herbivores have access to maximum forage quality prior to maximum

NDVI (peak green–up) when new vegetation growth steepens the slope of the

annual NDVI curve. We calculated the slopes between every composite and ex-

tracted the date of the steepest slope and hence the time of maximum forage

quality, further referred to as maximum greenness, by extracting the values from

each GPS location point. The derived remote sensing time–series data set was

then linked to animal movement tracks using corresponding dates. The maxi-

mum greenness of the vegetation period of each animal movement location point

was calculated in order to test if the animals follow the green–up in the vegeta-

tion period. As areas with rocks and bare soil distort the maximum greenness

calculation these pixel were removed beforehand.

All analysis are performed in R 2.15.2 (R Development Core Team, 2011).

2.3 Results

The behaviour of the animals leaving the enclosures with known opening dates

and their response to the green up was analysed in a first step (n = 28). We ex-

pected the animals to leave the enclosures immediately but the analyses revealed

a different behaviour. After the opening of the enclosures the animals tend to

leave the enclosures at the night of the same day or early next morning, but

are revisiting the same enclosure the next day and the days after (figure 2.2).

There is no time pattern detectable for the revisiting events (e.g. staying during

afternoon within the enclosure and leaving during the night) and the distance

between revisiting events is variable (figure 2.3). Analysing the directionality,

hence a directed movement path, no pattern is visible (figure 2.4), hence these
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animals are not following the green–up. By analysing the duration of revisiting

events, it becomes clear that all animals establish a home range where the enclo-

sures are encompassed. Furthermore 16 (n = 28) animals are staying in the same

enclosure the next winter and two animals stay in another enclosure during the

next winter. The remaining ten animals are not collared until the next winter.

The whole data set of single individuals within enclosures (n = 89) was anal-

ysed concerning a pattern following the green up. The definition of animals

leaving the enclosures was defined as at least 20 relocations in a row outside

an enclosure (using the date of the first relocation of this sequence). A pat-

tern that individuals follow the green–up was detected in five animals (total

n = 89) after the opening of the winter enclosures (figure 2.5). We can split the

behavioural response of these 5 individuals in three categories:“surfing the green

wave” (n = 1,sensu Bischof et al. (2012), figure 2.5 A) and “jumping” (n=4, sensu

Bischof et al. (2012)). The response of the “jumping” animals varies between

staying in front of the maximum greenness (figure 2.5 B) and staying behind

the maximum greenness (figure 2.5 C). All other animals (n = 84) are making no

habitat adjustment in order to follow the maximum green-up (figure 2.6).

Furthermore the management of the deer population within the National

Parks was evaluated. The enclosures were opened by the staff of the National Park

roughly when the area adjacent to the enclosures show a clear sign of emerging

vegetation. The analysis shows that for the majority of enclosures the gates where

opened after the SOS derived by remote sensing data, hence most of the animals

can only leave the enclosures long after the estimated start of season (SOS, figure

2.7). Across all years (2002–2011) only some enclosures where opened before the

SOS, which allowed 18 individuals (19.57 %, n = 89) to leave the enclosures prior

to the SOS with a range of 72 to 2 days prior to SOS. 74 animals are leaving the

enclosures after the start of season in the vegetation period, with 7 individuals

within 7 days after SOS (total range: 1–73 days).

Analysing animal movement patterns of individuals not staying inside the

enclosure over winter (n = 3) showed contrary to our expectations, no movement

pattern following the green–up (figure 2.8).
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Figure 2.2: The daily behaviour of one animal after the opening of the winter enclosure is shown.
The sequence of plots starts with the day of the opening of the winter enclosure. Gray circles mark
GPS location points, black polygon is the winter enclosure. Days are counted after the day of year
(julian date). Projection: WGS84 UTM Zone 33N; animal: ID: 460/229 04, male; winter enclosure
“Neuhüttenwiese”; opening date: 2004-05-07 (julian day 128).
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Figure 2.3: Overview of the behaviour of four exemplary red deer leaving the same winter en-
closure, shown for 10 consecutive days after the opening date of the enclosure (winter enclosure
“Neuhüttenwiese”; opening date: 2004-05-07 (julian day 128)). Animal locations points are drawn
in gray. Darker shades of gray indicate 2 or more overlapping location points. The points are drawn
with their distance to the border of the enclosure, whereas the black vertical line marks the border.
Hence location points left of the vertical black line are location points within the enclosure, right
handed location points are locations point were animals are outside the enclosure, drawn with their
distance to to the border of the enclosure. The dashed line connects the points with their temporal
stamp (top left: animal ID: 460/229 04, male; top right: animal ID: 494/294 04, male; bottom
left: animal ID:624/ 04, female; bottom right: animal ID: 411/211 04, female). Please note the
different x-axis in the bottom right plot.
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Figure 2.4: Rose diagram of circular frequency of the turning angles (in degrees) of one animal
leaving the winter enclosure shown for consecutive days (julian date), beginning with the day of the
opening of the winter enclosure (animal ID: 08-6 08, female; winter enclosure “Riedeläng”; opening
date: 2008-04-30). Within the analysis no directionality was detectable, resulting in no clear trend
of the turning angles .
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Figure 2.5: Migration pat-
tern of maximum greenness
experienced by five red deer
after opening of winter en-
closures. Plots show the re-
lationship between the date
of maximum greenness at a
given location and the date at
which that location was occu-
pied during migration (black
and dark grey points). The
thick grey line marks the max-
imum greenness and points
on that line correspond to lo-
cations at the time of the
maximum greenness. Dashed
lines mark the start of season
(SOS). (A) an animal tracking
the green–up from late May
until late June (ID = 08-6 08;
female; n = 2649, leaving en-
closure 3 days prior to SOS).
(B) and (C) are showing an-
imals tracking the green–up
by rapid adjustment whereas
in (B) the animals are stay-
ing ahead of the maximum
greenness (black: ID = 06-
7 06; female; n = 3581; leav-
ing enclosure 28 days prior to
SOS; grey: ID = 06-8 06; fe-
male; n = 3366; leaving en-
closure 19 days prior to SOS;
both animals have the same
SOS), and the animals in
(C) are tracking the maximum
greenness by staying behind
the green–up (black: ID = 05-
8 05; male; n=1948; leav-
ing enclosure 58 days prior to
SOS; grey: ID = 307/307 07;
male; n = 1426; leaving enclo-
sure 9 days after SOS)
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Figure 2.6: In order to evaluate the movement behaviour of red deer after the release of the winter
enclosures the GPS locations were related to the maximum green up in a buffer around of 2000 m
around the GPS location point and the difference in days to the maximum green up was calculated.
For graphical display, location points of individual red deer were smoothed with a loess function and
represented with a gray line (n=84) in relation to the distance to the maximum greenness calculated
as the differences in days (black line). If animals track the phenology their location points (translated
in julian days) should accompany the maximum greenness, here the black horizontal line.
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Figure 2.7: Overview of the release dates of red deer out of the winter enclosure within the study
area. For each year of the study period the Start of Season of the vegetation period for the single
enclosures was detected using MODIS NDVI time–series. Enclosures are opened by the staff of
the National Park when the adjacent area shows a clear sign of emerging vegetation. The Start
of season is here set to day zero (dashed line). The difference in days when an animal leaves the
winter enclosures is shown here whereas every black point marks an individual (n = 89).
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Figure 2.8: Overview of the relationship between the date (in julian days) of maximum greenness
(gray) at a given location and the date at which that location was occupied by three free ranging
red deer that did not stay in enclosures during winter time (dashed: ID: 14/14 06, female, n=5253;
dotted: ID: 05-2 06, male, n=1783; solid: ID: 15/15 06, female, n=5602). For a clearer graphical
representation the location points of the animals are represented with a loess function and points
are not drawn. If animals follow the maximum green up, their location points should be near to the
slope, representing the maximum greenness

Spatio–temporal movement pattern analysis



2.4. Discussion 45

2.4 Discussion

This study examines the behaviour of red deer after the opening of winter enclo-

sures as well as the timing of the opening. Typically ungulates living in temper-

ate regions move between summer and winter ranges (Georgii, 1981; Mysterud,

1999). The National Park Bohemian Forest can only serve as a summer range for

red deer. It is surrounded by economic forests and natural migration routes are

interrupted by settlements. To prevent damage to the adjoining forest, winter

enclosures are established were red deer stay during winter time. Nevertheless, as

forage plants are most nutritious to ungulates at the onset of the growing season

(Albon and Langvatn, 1992; Mysterud et al., 2011; Cagnacci et al., 2011), deer

should respond to the green–up after release. Furthermore a variety of studies

report that ungulates follow the emerging plant phenology in spring (Hebblewhite

et al., 2008; Sawyer and Kauffman, 2011; Fryxell and Avgar, 2012; Christianson

et al., 2013). So far, there are no studies about the behaviour of red deer after

opening.

We expected red deer to follow green–up immediately after release of the win-

ter enclosures. For 28 animals the exact opening dates of the winter enclosures

are available and their behaviour was analysed in detail. Contrary to our expec-

tation, deer did not leave the enclosures immediately, they rather stayed within

the enclosures until nightfall or next morning. This could be due to recognition

time of the gates being open (and stopped feeding) and due to the activity be-

haviour of deer in the study area, using open areas for feeding during the night

and resting in forests during the day (Stache et al., 2012). Therefore with dawn,

with rising forage activity, deer move out of the enclosures. Unexpectedly, deer

revisited the enclosures the following days and weeks, whereby no time pattern

(e.g. only during day or night) and no relationship to the green–up was detected.

Furthermore, the animals established home ranges encompassing the enclosure

they stayed during winter and return to the same enclosure the next winter.

For the overall data set a pattern following the maximum greenness after

the release of the winter enclosures was detected in n 5 of 89 animals. Here

both events occurred – leaving the enclosure before and after the start of season.

Animals benefit from pursuing the maximum greenness as they have access to

younger rapidly growing plants, rather than older plants which have indigestible
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ingredients, such as secondary compounds (Langvatn and Hanley, 1993). Still

we detected a pattern only in a minority of the animals. The study area is

characterised by long winters. Snow cover lasts or 7–8 months at the higher

elevations and for 5–6 months in the valleys. After snow melt we see a rapid rise

in the NDVI values in our study area and thus a fast emergence of vegetation.

Winters with extended periods of snow cover often result in later springs with

more rapid green–up (Dye and Tucker, 2003; Christianson et al., 2013). As a

result, after the release of the enclosures, animals have quickly access to good

forage, as the vegetation develops fast. This is suppressing migration behaviour

on a scale we can detect.

Therefore the spatial scale of MODIS might be an issue even though it has

been successfully used in other studies investigating the migration pattern along a

phenological gradient (Bischof et al., 2012; Christianson et al., 2013; van Moorter

et al., 2013), but these study areas encompass serveral 100 km2 and are far larger

than the Greater Bohemian Forest. Using a time–series with a higher spatial

resolution might especially be valuable for heterogeneous areas e.g. using Rapid-

Eye (Franke and Menz, 2007), Landsat 8 (Lulla et al., 2013) or the forthcoming

Sentinel (Berger et al., 2012) and might result in more ecological meaningful re-

sults for this study region. However all mentioned sensors will have problems to

provide continuous time–series for deriving ecological relevant phenological mea-

surements (Bradley et al., 2007). Nevertheless a combination of different sources

with comparable data sets might provide a meaningful phenological time–series

on a ecological more appropriate spatial scale for this study area.

Additionally, the importance of memory has recently been recognized (Van

Moorter et al., 2009; Gautestad and Mysterud, 2010; Gautestad et al., 2013).

Mammals have the capacity to utilize spatial information in a cognitive map and

are able to revisit sites even after a long period (Wolf et al., 2009; Gautestad,

2011). The cognitive map provides a capacity for short and long term memory

(Gautestad, 2011). We can see from animals which are collared over two or more

years that these animals move back to previously established home ranges after

the release of the enclosures. The behaviour is memory related and the green-up

plays here a secondary role. A study by Fickel et al. (2012) analysing the be-

haviour of red deer, after the border between Germany and former Czechoslovakia

was removed, showed that deer did not cross the border immediately. Red deer
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live in matrilinear systems and the behaviour of migration routes and feedings

sites is passed on (Guinness et al., 1979; Mysterud et al., 2004). The genotypic

panmixis was re-established 20 years (roughly three generations in red deer) after

the removal of the iron curtain (Coulson et al., 1998) and gene flow was predom-

inantly realised by stag dispersal, while does showed stronger philopatry (Fickel

et al., 2012). Additionally to this long term memory, it is likely that deer are

conditioned to the winter enclosure sites over the last decades as deer are migrat-

ing into the enclosures without any force. It is likely that deer have learned to

migrate to the enclosures and that this has lead to a behavioural change, as deer

can expect there save supplementary feeding.

We expected to find a clear pattern in following the maximum greenness within

the three animals not staying within the winter enclosures as winter condition can

be very harsh and food is limited. Surprisingly we did not detect a behavioural

pattern in the free ranging animals regarding the maximum greenness. Two an-

imals established home ranges near the border of the National Parks and are

overlapping with adjoining forests. It is likely that these animals receive supple-

mental feeding during winter from hunters in areas adjoining the National Park.

Eventually, this supplemental feeding is suppressing typical migration patterns

as food is not the primary limiting resource.

Although national parks can cover a large area, they are still restricted by

boundaries. If they cannot function as a complete annual habitat for, e.g. mi-

grating large ungulates, the park administration has to initiate arrangements

to prevent negative impacts in adjoining areas. Therefore seventeen winter en-

closures were established in the Bohemian Forest to hinder deer migration in

winter time outside of the National Park and to prevent damage to adjoining

economic forestry. As the enclosures pose a serious interference with the natu-

ral behaviour patterns of red deer the park administration discussed the closing

of the enclosures with affected stakeholders within an decision–making–process,

but the communication process failed (for a detailed discussion see Gerner et al.

(2011)). In addition to the complete closing of the enclosures a more appropriate

management can be designed with small steps within these restrictions. We re-

lated the opening dates of the winter enclosures to the estimated start of season

of the vegetation period. Through all years, most of the animals can leave the

enclosures far after the start of season of the vegetation period. Opening the
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enclosures much earlier would ensure that the animals can leave with the start

of the vegetation period. Furthermore, the data shows that not all animals are

leaving immediately and are revisiting or are staying nearby the enclosures in

the first days. In order to avoid human-wildlife conflicts an alternative approach

would be to leave the enclosures open but still feed the animals at the feeding

sites within the enclosures to keep the animals within the borders of the National

Park.

2.5 Conclusion

In this study we used the NDVI Index to evaluate the management strategies

in the Greater Bohemian Forest and investigated the behaviour of red deer after

opening of the winter enclosures. While the future of the management in the

National Parks is a highly debated issue and the positions are hardened, the

NDVI shows nevertheless that within the strict guidelines it is possible to modify

the management strategies more naturally by open the enclosures far earlier to

let the animals follow the emerging vegetation period and to led them move to

their previously established home range sizes. Furthermore due to the geographic

region and hence the climatic conditions the vegetation period emerges very fast

leading to only a short phase where possible behavioural adaption can be detected.

Overall the majority of deer did not show a migration pattern and we see a

more important role of memory, leading the animals to previous established home

ranges, than of limited food resource.
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Appendix

Opening dates of winter enclosures

TABLE 1: Table of winter enclosures with known opening and closing dates.

All four listed winter enclosures are located within the National Park Bavarian

Forest.

enclsoure opening date closing date
Ahornschachten 2003-05-07 2002-12-19

2004-05-03 2003-12-18
2005-05-13 2004-12-20
2006-05-15 2005-11-23
2007-04-30 2007-01-03
2008-04-21 2007-11-15
2010-05-17 2009-12-15

Buchenau 2003-05-06 2002-12-03
2005-05-12 2004-11-09
2006-05-15 2005-11-14
2007-04-18 2006-12-29
2008-04-23 2007-11-12

Neuhüttenwiese 2003-05-07 2002-10-13
2004-05-07 2003-10-07
2005-05-05 NA
2006-05-12 2005-11-14
2007-04-20 2006-11-03
2008-04-28 2007-10-22
2009-04-26 2008-11-17
2010-04-27 2009-10-15

Riedlhäng 2003-05-10 2002-12-09
2004-05-12 2003-12-07
2005-05-03 2004-12-14
2007-04-17 2006-12-11
2008-04-30 2007-11-01
2009-04-28 2008-11-24
2010-04-29 2009-10-16

Spatio–temporal movement pattern analysis





3
Landscape configuration is a major

determinant of home range size

variation

Abstract

Most animals restrain their movement activities to familiar areas. Although un-

derstanding both establishment and shifts of such home ranges is highly relevant

for basic science and conservation, pinpointing the factors that shape the dynam-

ics of home ranges remains a challenge. Evidently home ranges are influenced by

the underlying landscape. Landscape composition, i.e. the fraction of different

land cover types, has recently been shown to affect home range size. Yet, the

explicit spatial configuration of the landscape, a factor which is known to be of

central importance in spatial ecology, is not taken into account by most studies.

We quantify the effect of landscape configuration on summer home range sizes

across multiple spatio-temporal scales using GPS data from two behaviourally

distinct ungulate species, red (Cervus elaphus) and roe deer (Capreolus capreo-

lus), in the Bavarian Forest National Park, Germany. We show that the spatial

configuration of the landscape is the dominant factor explaining home range size.

Furthermore, we find that the shape of the relationship between home range size

and landscape configuration depends on a species’ habitat requirements: while

roe deer decrease their home range size with increasing landscape patchiness, the

relationship is hump-shaped for red deer. Our results are robust at all tested

spatio-temporal scales.
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3.1 Introduction

With increasing human wildlife conflicts it is necessary to understand and predict

the changes of wildlife behaviour in general and specifically of animal movement

patterns (Wilcove and Wikelski, 2008). Such conflicts can be due to the growing

human populations or to changing landscapes as a consequence of anthropogenic

land use like agriculture or natural changes like fires or bark beetles. A correct

interpretation of the causes of animal movement and dispersal is pivotal for un-

derstanding habitat selection and more generally the diversity and distribution

of species (Chave et al., 2002). Most animals do not move randomly through a

landscape (Nathan et al., 2008; Gautestad and Mysterud, 2010; Fronhofer et al.,

2013) and restrain their movement activities to familiar areas. While central

place foragers, such as bees or ants, return to their nest after a foraging bout

(Wakefield et al., 2014) and territorial animals, such as some felids, defend well

defined landscape stretches (Valeix et al., 2012), a large majority of animals use

familiar areas without defending them (Burt, 1943). The latter behaviour leads

to the establishment of home ranges, which are generally defined as the spatial

expression of all behaviours an animal performs in order to survive and reproduce

(Burt, 1943). As home ranges link individual movement paths to dispersal and

(meta-)population dynamics (Hanski and Gilpin, 1998; Fronhofer et al., 2012)un-

derstanding why and how home range sizes vary between and among species is

a fundamental issue in ecology. While theory still struggles to explain the emer-

gence of home ranges (Börger et al., 2008) the availability of large movement

data sets allows us to formulate some testable hypotheses. Progress in GPS-

sensor technology and satellite techniques makes it possible to track animals over

long time spans with high temporal and spatial resolution and to analyse their

habitat requirements and movement paths (Tomkiewicz et al., 2010; Thiebault

and Tremblay, 2013). Early analyses have shown that home range size depends

on different variables. Generally home range size was shown to decrease with

decreasing body size (Swihart et al., 1988) and forage availability (Tufto et al.,

1996). Also increasing intraspecific competition leads to smaller home range sizes

(Riley and Dood, 1984) while interspecific competition leads to increasing home

range sizes (Loft et al., 1993) see van van Beest et al. (2011) for a more complete

list). Besides these factors it is well known that the spatial arrangement of differ-
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ent habitat types can influence the distribution of large mammals (Clutton-Brock

et al., 1987) as this will influence movement trajectories. Previous studies focused

only on large spatio-temporal scales like, landscape scale as spatial scale and sea-

sonal scale as temporal scale (Kie et al., 2002; Säıd et al., 2005; Walter et al., 2009;

Quinn et al., 2013), yet smaller scales might also be relevant, depending on the

degree and scale of landscape heterogeneity. In addition, mechanisms that affect

variation in home range size may differ depending on the temporal and spatial

scale under investigation (van Beest et al., 2011). Animals move in order to find

resources such as food, shelter or mating partners. In a spatially structured land-

scape one single habitat patch regularly not always satisfies all these needs at the

same time. Typically for ungulates in temperate regions a forage-rich habitats

providing high quality food are more exposed, while closed habitats provide cover

resulting in a trade-off in habitat choice (Godvik et al., 2009). A large number

of studies have shown that the landscape is an essential determinant of home

range size and dynamics in ungulates. Yet, these studies typically only took the

dominant habitat type within a home range into account. For example, the land-

scape composition was included only as the fraction of meadow or forest within

the home range (Frair et al., 2005; Börger et al., 2006b; Rivrud et al., 2010).

However, natural landscapes are heterogeneous in the spatial arrangement of re-

sources, as these are often autocorrelated and form resource clusters or patches

of varying size and density (see figure 1). We illustrate the extent to which the

appearance of a landscape may differ depending on the arrangement of habitats

by two artificial landscapes, derived from our true natural landscape. In both

cases the fraction of land cover types is kept constant but arranged randomly in

space (figure 1B) or ordered (figure 1C). These different landscape configurations

will likely affect home range size. Specifically, home ranges in a randomized land-

scape may be expected to become much smaller, as a large number of different

land cover types can be found on a much smaller scale. On the other hand, an

artificially ordered landscape would lead to longer movement paths, e.g. when

an animal needs to reach the land cover type “meadow” after having been in

“deciduous forest”, for example, and therefore needs to cross a block of “mixed

forest”. It is only recently that the explicit spatial configuration of habitat types,

the arrangement of all land cover types within the home range, and the size of

these patches is taken into account in the study of home range sizes (e.g. (Moor-
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croft et al., 2006; Moorcroft, 2012). We here analyse the relationship between the

spatially explicit landscape configuration and home range size for two sympatric

ungulates, red and roe deer. Since the explicit spatial configuration of land cover

types will affect the movement path of an animal searching for food or shelter we

hypothesized that the spatial configuration is a central determinant of home range

size. More specifically we expected larger home ranges in aggregated landscapes,

because larger distances have to be covered regularly in order to utilize resources

(food, shelter, etc.) that can be found in different land cover types. Red and

roe deer differ in their habitat requirements and behaviour. Red deer are widely

roaming animals with a broad spectrum of possible food sources (Gebert and

Verheyden-Tixier, 2001). They rely on open habitats for food supply as well as

on covered areas for refuge (Hebblewhite et al., 2008). As the habitat demands a

variety of different resource patches and furthermore red deer easily moves across

wide areas we expect a high impact of the landscape configuration. Roe deer on

the other hand are smaller, with typically smaller home ranges (Radeloff et al.,

1999) and with very selective foraging preferences. As they rely more on highly

digestible food items, such as fruits, seeds or sprouting shoots (Demment and Van

Soest, 1985), the effect of the land cover types should be more pronounced than

for red deer. Nevertheless the spatial configuration should play an important role,

as it determines the spatial arrangement of the patches.

3.2 Materials and methods

3.2.1 Study area

The study was conducted in the Bavarian Forest National Park which is situated

in south-eastern Germany along the border to the Czech Republic (49◦ 3′ 19′′N,

13◦ 12′ 9′′ E). The National Park covers an area of 240 km2. Adjacent to the park,

on the Czech side of the border, lies the Šumava National Park with an area of

640 km2. These protected areas are embedded within the Bavarian Forest Nature

Park (3070 km2) and the Šumava Landscape Protection Area (1000 km2). In its

entirety, the area is known as the Bohemian Forest Ecosystem. The area is moun-

tainous, with a variation in elevation between 600 and 1450 m.a.s.l. The mean

annual temperature varies between 3◦C and 6.5◦C along higher elevation and
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Figure 3.1: (A) Example of a home range shown with the trajectory (connected points, red triangle
refers to the start of the trajectory and the blue square to the end) of a red deer (individual
668 668 07, female, calculated with the fixed kernel method (90% isopleth) on 286 location points
in the month September, projection: WGS84 UTM Zone 33N) in the Bavarian Forest National Park.
A land cover map with seven categories is shown in the background. “Regeneration area” are land
stretches that have suffered from massive bark beetle outbreaks during the 90s, “anthropogenic
areas” comprise cities, roads, railways and “other types” refers to water and peat bogs. (B) The
same landscape with a randomized spatial configuration but the same fraction of land cover types.
(C) The same landscape with a blocked spatial configuration but the same fraction of land cover
types. These two artificial landscapes illustrate strongly spatial configuration of a landscape can
vary for the same composition.
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ridges. The mean annual precipitation is between 830 and 2230 mm. Within the

park, three major forest types exists: above 1100 m are sub-alpine spruce forests

with Norway Spruce (Picea abies L.) and some Mountain Ash (Sorbus aucuparia

L.), on the slopes, between 600 and 1100 m altitude, are mixed montane forests

with Norway Spruce, White Fir (Abies alba MILL.), European Beech (Fagus syl-

vatica L.), and Sycamore Maple (Acer pseudoplatanus L.). In the valley bottoms,

spruce forests with Norway Spruce, Mountain Ash, and birches (Betula pendula

ROTH. and Betula pubescens EHRH.) (Fischer et al., 2013). Since the mid-1990s,

the forests of the national park have been affected by massive proliferation of the

spruce bark beetle (Ips typographus). By 2007, this had resulted in the death of

mature spruce stands over an area amounting to 5,600 ha (Lausch et al., 2013),

leading to areas which regenerate naturally and go through different successional

phases. Today these areas are characterized by shrubby vegetation of spruce and

mountain ash.

3.2.2 Deer data

Red deer were caught during winter in the years 2002-2009. Animals were cap-

tured and marked with GPS collars (Vectronic Aerospace, Berlin, Germany) in

box traps with side windows after they were lured in with food. Here no immo-

bilization was necessary. A second approach was to tranquillize deer by dart gun

on sites where they were attracted by food. We collared 14 male and 18 red deer

individuals. Four individuals were collared two or more times over the duration of

the study. Roe deer were captured during the winter months (October to March)

in the years 2005-2010 using wooden box traps. A total of 40 roe deer (24 male,

16 female) were collared, with five animals collared two or more times over the

years of the study. The most common sampling design was to mark roe and

red deer in late winter and retrieve the collars after a year by collar drop–off or

recapturing, allowing the collars to be used on new individuals.Animal handling

was performed in compliance with German laws and regulations. We restrict our

analysis for both species to summer home ranges only. We checked the data be-

fore the statistical analysis and removed spatial and temporal outliers. Temporal

outliers were locations points which were less than sixty apart and spatial outliers

were removed by visual inspection of the data. This leads to a removal of 19% of

the raw data for red deer and 16% for roe deer. We used only the summer months
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(May-October; red deer stay in enclosures during winter time) for the analysis

and only if the calculated home ranges had at least 95% overlap with the land

cover map. Further, we classified the samples from the multiple collared animals

over the single years as independent. We took a random sample for animals with

sequences of short time intervals (e.g. location point taken every 15 min) to en-

sure that the locations have an interval of one hour. The elapsed time between

locations for each animal averaged 157.57 min for red deer and 365.77 min for roe

deer with an overall position acquisition rate of 72.8% and a median accuracy of

16.5 m (Stache et al., 2012).

3.2.3 Home range estimation

Home ranges were estimated with a commonly used approach, the fixed kernel

method (Worton, 1989) using the reference method for the smoothing factor h

(Kernohan et al., 2001). We used three different home range isopleths (50 %,

70 %, 90 %) to spatial behaviour at different scales. In addition, all home ranges

were estimated on three temporal scales: weekly, biweekly and monthly. We

only estimated home ranges for individuals with at least six relocations for the

temporal scale under study and restricted our analyses to summer months.

3.2.4 Land cover types and environmental data

To characterise the landscape in our study area we considered five land cover

types: “coniferous forest”, “deciduous forest”, “mixed forest”, “meadow” and

“regeneration areas”, i.e. areas containing mature trees killed by bark beetles

and showing now regrowing vegetation, characterized by a shrubby appearance.

Anthropogenic areas (e.g. roads) and water bodies were not taken into account

as they cover only a negligible area within the study area. The land cover classi-

fication was derived through digitalization from aerial images from the year 2008.

In order to take into account the rapid forest dynamics due to bark beetle out-

breaks, we update the land cover classification for every year of the study. As a

measure of the landscape’s spatial configuration we calculated different landscape

indices within a given home range (McGarigal et al., 2002). As the calculation of

the landscape indices require a raster, we converted the land cover classification

into grid with a resolution of 5 m. We quantify the landscape configuration as
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the percentage of like adjacencies (PLADJ) as this index could be shown to be

most scale-independent (see Supplementary Material for details). In the follow-

ing we will refer to this index as configuration index. Furthermore, we estimated

the mean elevation of the home ranges using ASTER GDEM (resolution: 30 m;

http://asterweb.jpl.nasa.gov/gdem.asp).

3.2.5 Statistical Methods

To investigate the influence of different land cover types and the landscape con-

figuration on home range sizes, we used linear mixed models (R version 3.0.2, (R

Development Core Team, 2013), package “nlme”, (Pinheiro et al., 2013) on the

log transformed home range areas (km2) and included spatio-temporal autocor-

relation structures following the framework proposed by Börger et al. (2006b).We

used the year of measurement nested in individuals (ID) as a random effect, as

individuals were sampled repeatedly in subsequent years. After inspection for co-

linearity we removed the variables “mixed forest” and “elevation” for the red deer

data set as both variables showed a Pearson correlation index > 0.7 with “regen-

eration area” and “configuration index”. For the roe deer data we only removed

“mixed forest” as it showed a correlation with elevation (Pearson correlation in-

dex > 0.7). We first selected the best autocorrelation structure using AIC on the

full models and subsequently simplified our models using ANOVA as described

in Crawley (2013). To evaluate the importance of landscape configuration for

the model fit, we compared the best models and analogous models without the

landscape configuration using an R2 measure calculated as 1–exp(-(2/N * δ L))

with N as the sample size and δ L as the difference between the log–likelihood

of the model of interest and the log-likelihood of the null model. We repeated

the analysis steps for the three definitions of home range size and for the three

definitions of temporal scale.
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3.3 Results

3.3.1 The role of landscape configuration

Home range sizes varied across all spatio–temporal scales, especially for red deer

(table 1, Appendix). The fixed effects of the most parsimonious models explained

between 0.19–0.37 R2 (table 3.1) for red deer and 0.12-0.15 R2 (3.2) for roe deer

across scales. Landscape configuration was the key determinant of home range

sizes for both species. Especially for red deer the variance explained through the

configuration index was high across all scales (0.13-0.21 ∆ R2, table 3.1). In the

roe deer data set the configuration index played a major role but its impact varied

across scales (0.02-0.10 ∆ R2) and was highest at the 50 % kernel weekly scale

(table 3.2). Especially at the monthly scale the configuration index was exceed

by the land cover type “meadow”.

Table 3.1: The ∆ R2 values are shown retained from the mixed model with the best correlation
structure calculated for all temporal (monthly, biweekly and weekly) and all spatial scales (90 %,
70 % and 50 % isopleths) for red deer with ID and nested year as random structure. The variable
configuration was fitted as quadratic term.

Time-

scale

Kernel

size
correlation variables

relation-

ship

t–

value

p–

value
∆ R2

monthly 50 temporal coniferous positive 3.47 <0.001 0.05

deciduous positive 4.63 <0.001 0.08

configuration linear 5.29 <0.001
0.13

configuration quadratic -4.23 <0.001

70 spatial coniferous positive 4.42 <0.001 0.07

deciduous positive 5.86 <0.001 0.12

configuration linear 6.82 <0.001
0.18

configuration quadratic -5.48 <0.001

90 none coniferous positive 5.71 <0.001 0.10

deciduous positive 5.33 <0.001 0.09

configuration linear 7.28 <0.001
0.17

configuration quadratic -5.98 <0.001

Continued on next page
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biweekly 50 temporal deciduous positive 1.93 0.05 0.01

meadows negative -2.16 0.03 0.01

regeneration negative -3.93 0.001 0.03

configuration linear 7.89 <0.001
0.16

configuration quadratic -6.22 <0.001

70 temporal deciduous positive 4.46 0.05 0.01

meadows negative -2.16 0.003 0.02

regeneration negative -3.93 <0.001 0.04

configuration linear 9.55 <0.001
0.19

configuration quadratic -8.38 <0.001

90 spatial meadows negative -2.16 0.03 0.01

regeneration negative -5.10 <0.001 0.05

configuration linear 10.42 <0.001
0.21

configuration quadratic -9.01 <0.001

weekly 50 temporal deciduous positive 2.28 0.005 0.01

meadows negative -2.39 0.02 0.01

regeneration negative -5.85 <0.001 0.04

configuration linear 8.44 <0.001
0.13

configuration quadratic -6.46 <0.001

70 temporal deciduous positive 3.06 0.002 0.01

meadows negative -3.37 <0.001 0.01

regeneration negative -6.05 <0.001 0.04

configuration linear 11.80 <0.001
0.16

configuration quadratic -9.84 <0.001

90 temporal meadows negative -4.45 <0.001 0.02

regeneration negative -8.66 <0.001 0.07

configuration linear 12.05 <0.001
0.15

configuration quadratic -10.32 <0.001
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Table 3.2: The ∆ R2 values are shown retained from the mixed model with the best correlation
structure calculated for all temporal (monthly, biweekly and weekly) and all spatial scales (90 %,
70 % and 50 % isopleths) for roe deer with ID and nested year as random structure.

Time-

scale

Kernel

size
correlation variables

relation-

ship

t–

value

p–

value
∆ R2

monthly 50 temporal meadows negative -3.91 <0.001 0.06

configuration positive 3.00 0.004 0.04

sex male > female 2.82 0.008 0.03

70 spatial coniferous positive 2.55 0.01 0.02

deciduous positive 2.62 0.01 0.03

meadows negative -2.96 0.003 0.03

configuration positive 2.33 0.02 0.02

sex male > female 2.71 0.01 0.02

90 spatial coniferous positive 3.36 0.001 0.04

deciduous positive 2.01 0.05 0.01

meadows negative -4.05 <0.001 0.05

sex male > female 2.39 0.02 0.02

biweekly 50 temporal meadows negative -5.93 <0.001 0.05

regeneration negative -2.40 0.02 0.01

configuration positive 6.58 <0.001 0.07

elevation positive 2.37 0.02 0.01

sex male > female 3.18 0.003 0.01

70 spatial coniferous positive 2.23 0.02 0.01

deciduous positive 2.91 0.004 0.01

meadows negative -3.84 <0.001 0.02

configuration positive 6.89 <0.001 0.07

sex male > female 2.82 0.007 0.01

90 spatial deciduous positive 2.03 0.04 0.01

meadows negative -4.86 <0.001 0.03

configuration positive 7.32 <0.001 0.08

sex male > female 2.56 0.01 0.01

Continued on next page
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weekly 50 temporal coniferous positive 3.72 <0.001 0.01

deciduous positive 3.85 <0.001 0.01

meadows negative -5.41 <0.001 0.02

configuration positive 11.29 <0.001 0.10

elevation positive 3.60 <0.001 0.01

sex male > female 2.78 0.009 0.005

70 temporal coniferous positive 4.10 <0.001 0.01

deciduous positive 4.48 <0.001 0.02

meadows negative -5.85 <0.001 0.03

configuration positive 10.46 <0.001 0.08

elevation positive 2.95 0.003 0.01

sex male > female 2.40 0.02 0.004

90 spatial coniferous positive 3.41 <0.001 0.01

deciduous positive 3.14 0.002 0.01

meadows negative -8.74 <0.001 0.08

configuration positive 2.93 0.003 0.01

sex male > female 2.88 0.007 0.01

3.3.2 Landscape configuration explains home range size

The configuration index showed a high explanatory value for the variation in

home range size of both study species. In red deer, the relationship was hump-

shaped with largest home range sizes at intermediate patch aggregation, while

roe deer continuously increased their home range size as patches became more

aggregated (figure 2).
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Figure 3.2: Home range size (log km2) for red deer (A, B) and roe deer (C, D) as a function of
patch aggregation. Home ranges are calculated on 50 % monthly scale and 50 % weekly scale on
each individual home range. The models revealed a different effect of the sexes, therefore the male
(black, triangle) and female (grey, points) are presented separately. In red deer, filled points show
home ranges with less than 50 % land cover type “regeneration area” within the home range and
unfilled points show home ranges with 50 % and more than 50 % “regeneration areas” within the
home range. In roe deer, filled triangles show male home ranges sizes with less than 25 % land cover
type “meadow” within the home range and unfilled triangles show home ranges with 25 % or more
land cover type “meadow” within the home range. The same holds for females, the symbols here
are coded as points. Lines show model fit and points true values. Red deer: monthly: n = 210,
weekly: n = 753; male roe deer: monthly: n = 112, weekly: n = 483; female roe deer: monthly:
n = 99, weekly: n = 448.
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3.3.3 Land cover type

In red deer the land cover types “regeneration area” and “meadow” played a

secondary role at the biweekly and weekly scale, while “coniferous forest” and

“deciduous forest” were more important at the monthly scale. Generally, “re-

generation area” and “meadow” lead to smaller home ranges, while “coniferous

forest” and “deciduous forest” lead to larger home ranges. In roe deer “meadow”

had an impact across scales and lead to smaller home ranges. The land cover

types “coniferous forest” and “deciduous forest” showed a positive effect across

scales but without clear pattern.

3.4 Discussion

Most empirical studies on home range dynamics and size, especially within un-

gulates, take into account vegetation, i.e. the fraction of land cover types but

not the explicit spatial configuration of a landscape (Börger et al., 2006a; Rivrud

et al., 2010; van Beest et al., 2011). So far, studies which include landscape

heterogeneity are analysing the impact on large scales. For example Kie et al.

(2002) analysed female mule deer in North America at the landscape scale with a

multiple regression model, using buffers around home ranges centres and seasonal

95 % adaptive kernels on a landscape resolution of 50 x 50 cell grid. At the largest

spatial scale the landscape analysis extended the home range scale. They found

similar results at these scales (larger home ranges in aggregated landscapes) but

restricted their analysis to landscape indices only. Similarly Quinn et al. (2013)

analysed home range sizes of white-tailed deer in North America on an annual and

seasonal temporal scale using different landscape metrics and linear regressions

and found similar results, decreasing home range size with increasing patchiness of

the landscape. The present study shows the effect of the landscape’s spatial con-

figuration on individual variation in home range sizes on different spatio-temporal

scales for two sympatric ungulate species, red deer and roe deer including individ-

ual variation with the use of mixed effect models. The temporal scales range from

monthly to weekly and the spatial scale from 90 % to 50 % kernel isopleths and

compare therefore a wide range of behavioural habitat selections of the animals.

Moreover, we see different responses within the two species and our results are

constant over the different spatio–temporal scales. Furthermore we quantify the
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effect of the landscape configuration but are including also further parameters.

We demonstrate that by including landscape configuration, predictions of home

range size can be significantly improved (table 1, table 2). This finding can be

explained by comparing the artificially ordered landscape in figure 1 C with the

random landscape in figure 1 B: if we consider an animal located in a patch of

“deciduous forest” that aims to reach a “meadow” patch in order to forage, it

needs to cross a large block of “mixed forest” to reach its goal. The same animal

will reach its goal with a much shorter movement path in a very fine grained

landscape (figure 1 B). Real landscapes contain a mixture of patches differing in

size and habitat type and an animal will establish a home range according to

its needs in the context of the underlying landscape. Hence the home range will

contain patches that provide resources according to the needs of the animal (e.g.

food or shelter) as well as patches it needs to traverse when switching between

different activity modes. As a consequence, home range size is heavily influenced

by the spatial configuration of a landscape.

3.4.1 The role of landscape configuration

The results of our study are consistent with this short verbal model. As patch

aggregation increases home range size generally increases as well because animals

typically have two contrasting needs: (1) to find forage resources and (2) to find

shelter. As described above these needs are often connected to different habitats

which may even change over time forcing an animal to move between different re-

source patches. Yet, the differences in habitat preference of our study organisms

lead to different relationships for the two species. While roe deer show a positive

linear relationship with patch aggregation, this relationship is hump-shaped for

red deer. Red and roe deer differ in their habitat requirements and behaviour:

red deer are widely roaming animals and intermediate feeders that consume both,

high and poor-quality food (Hofmann, 1989; Clauss et al., 2009). In our study

area very large patches are typically “regeneration areas”, i.e. land stretches

that have suffered from massive bark beetle outbreaks during the 90s. These

outbreaks affected an area of approximately 5,600 ha especially in the subalpine

regions, leading to sunny openings (Lausch et al., 2011). After a first succession

phase the characteristics of these areas provide exceptionally good habitat for red

deer, as these areas show high grass cover and with lying dead wood and regrowing

Spatio–temporal movement pattern analysis



70
LANDSCAPE CONFIGURATION IS A MAJOR DETERMINANT OF HOME RANGE SIZE

VARIATION

vegetation the food supply is diverse and furthermore at the same time these veg-

etation characteristics provide next to abundant food supply good shelter for the

animals and furthermore both are occurring at small spatial scales. This leads to

shorter movement paths and smaller home ranges, an effect that is highly visible

in our study and responsible for the hump-shaped relationship depicted in figure

2. Roe deer, on the contrary, show characteristically smaller movement radii, are

very selective feeders and only consume highly digestible forage (Barančeková

et al., 2009; Mueller et al., 2013). As a consequence the fraction of habitat types

containing valuable food resources for roe deer (e.g. “meadow”) increases the

quality of our model. As shown in figure 2 larger amounts of valuable resources

within the landscape (“regeneration areas” for red deer, “meadow” for roe deer)

significantly decrease the size of a home range. While for red deer such valuable

resources occur especially in large “regeneration areas”, which leads to the hump-

shaped relationship shown in figure 2, meadows can be found all along the patch

aggregation axis (open symbols in figure 2 C and D). Roe deer that have a high

amount of “meadow” in their home range typically have smaller home ranges, as

open symbols in figure 2 occur especially in the lower parts of the graph. We

chose to use the most common estimator for home range size calculation to have

a basis for comparison to other studies. While the best home range estimate

is under discussion and new methods are continuously proposed (Hemson et al.,

2005; Kie et al., 2010; Kranstauber et al., 2012), we expect our results to be

robust against the choice of a particular estimator of home range size, since we

focused on core areas of home range activity.

3.5 Concluding remarks

Although home ranges have been studied extensively for quite some time, it is only

recently that the importance of the underlying landscape configuration has been

recognized (Kie et al., 2002; Moorcroft et al., 2006; Walter et al., 2009; Moorcroft,

2012; Quinn et al., 2013). An increasing number of studies could show that the

fraction of different habitats present in a landscape at least partially explain home

range size (Frair et al., 2005; Börger et al., 2006b; Rivrud et al., 2010). Yet,

it is intuitively clear that the spatial configuration of land cover types should

determine home range size too, as these external conditions define the actual
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distances animals have to cover in order to satisfy different needs. Here, we have

shown that the spatial configuration of the landscape is one the most important

factors explaining home range size for two exemplary deer species. Our results

were robust at all tested spatio-temporal scales.
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Säıd, S., J.-M. Gaillard, P. Duncan, N. Guillon, N. Guillon, S. Servanty, M. Pel-
lerin, K. Lefeuvre, C. Martin and G. Van Laere (2005). Ecological correlates
of home-range size in spring-summer for female roe deer (Capreolus capreolus)
in a deciduous woodland. Journal of Zoology , 267:301–308.
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Appendix

Area dependencies of landscape indices

Buffers around 90 % kernel home range centres (monthly scale, n = 214) from

the red deer data set were drawn from 500 m to 7000 m in 500 m steps. We

then calculated six landscape indices for each buffer circle (area–weighted mean

patch area (AREA AM), contagion (CONTAG), percentage of like adjacencies

(PLADJ), landscape division index (DIVISION), effective mesh size (MESH),

aggregation index (AI)). Afterwards we ran a mixed model to check for size

dependencies of the indices. In total 13.42 % of calculated buffers were excluded

from further analyses as they contained more than 5 % missing values in land

cover data.

The analysis of the area–dependency of the landscape indices revealed a high

size–dependency of the metrics AREA AM, DIVISION and MESH, hence these

indices were excluded from further analyses. Additionally the indices CONTAG,

PLADJ and AI were highly correlated with each other (Pearson’s correlation

Index > 0.8). The PLADJ index accounts not only for patch size but also on

patch shape (McGarigal et al., 2002), and furthermore shows the least dependency

on area (figure 3.3), so we choose this index for all further analysis. Note that

the indices AI and CONTAG show essentially the same results. The software

tools R version 3.0.2 (R Development Core Team, 2013), GRASS 6.4.1 (Grass

Development Team, 2012) and FRAGSTATS v3 (McGarigal et al., 2002) were

used for the analyses.
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Figure 3.3: Overview of the size dependencies of six calculated landscape metrics analysed with
a mixed model. Buffer index values belonging to the same home range centre point are connected
with a line. The explanatory value (expl.dev( %)) of the size dependency for each landscape index
is drawn within the plot.
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Home range size of red and roe deer across spatio–temporal

scales

TABLE 1: Summary statistics of male and female red (A) and roe deer (B)

home range sizes (km2) across spatio–temporal scales (N = Number of samples

included in home range estimation). Home ranges were estimated with the fixed

kernel method using the reference method for the smoothing factor h (Worton,

1989; Kernohan et al., 2001). The software R version 3.0.2 using the package

“adehabitatHR” was used for the analysis (R Development Core Team, 2013;

Calenge, 2006).

A Red deer (Cervus elaphus) – males Number of animals = 14

Kernelsize

Timescale 90% 70% 50%

monthly Number of GPS–location: mean = 218, range = 70–403

Mean (range) 11.05 (0.58–89.62) 5.60 (0.32–37.47) 3.00 (0.17–20-91)

N 93 94 95

biweekly Number of GPS–location: mean = 58, range = 6–165

Mean (range) 7.73 (0.43–103.98) 4.15 (0.16–51.25) 2.28 (0.08–26.53)

N 179 181 183

weekly Number of GPS–location: mean = 58, range = 6–165

Mean (range) 6.75 (0.07–190.85) 3.51 (0.03–93.34) 1.91 (0.02–47.40)

N 338 340 342

Continued on next page
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Red deer (Cervus elaphus) – females Number of animals = 18

Kernelsize

Timescale 90% 70% 50%

monthly Number of GPS–location for home range estimation: mean = 233, range = 82–383

Mean (range) 4.14 (0.27–15.22) 2.04 (0.14–8.62) 1.11 (0.07–5.26)

N 115 115 115

biweekly Number of GPS–location for home range estimation: mean = 54, range = 11–136

Mean (range) 4.06 (0.07–32.81) 1.99 (0.04–13.33) 1.07 (0.02–7.00)

N 221 221 221

weekly Number of GPS–location for home range estimation: mean = 54, range = 11–136

Mean (range) 3.84 (0.07–67.08) 1.94 (0.04–34.90) 1.07 (0.02–18.81)

N 411 411 411

B Roe deer (Capreolus capreolus) – males Number of animals = 24

Kernelsize

Timescale 90% 70% 50%

monthly Number of GPS–location for home range estimation: mean = 146, range = 67–366

Mean (range) 1.96 (0.18–8.94) 1.07 (0.05–4.30) 0.61 (0.03–2.17)

N 108 111 112

biweekly Number of GPS–location for home range estimation: mean = 93, range = 34–250

Mean (range) 1.99 (0.005–11.37) 1.10 (0.002–6.35) 0.64 (0.001–3.68)

N 247 253 258

weekly Number of GPS–location for home range estimation: mean = 70, range = 17–195

Mean (range) 2.10 (0.005–40.21) 1.16 (0.002–17.05) 0.67 (0.001–9.09)

N 465 473 483

Roe deer (Capreolus capreolus) – females Number of animals = 16

Kernelsize

Timescale 90% 70% 50%

monthly Number of GPS–location for home range estimation: mean = 199, range = 77–565

Mean (range) 1.30 (0.03–11.19) 0.62 (0.01–4.11) 0.34 (0.01–2.24)

N 97 99 99

biweekly Number of GPS–location for home range estimation: mean = 102, range = 35–261

Mean (range) 1.15 (0.01–13.44) 0.58 (0.01–6.81) 0.32 (0.004–3.69)

N 225 228 228

biweekly Number of GPS–location for home range estimation: mean = 62, range = 15–135

Mean (range) 1.04 (0.01–22.09) 0.56 (0.006–11.56) 0.32 (0.003–6.23)

N 441 451 448
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Table of random effects for mixed models on all spatio–

temporal scales for red and roe deer

TABLE 2: Table of random effects and standard deviation (SD) of the linear mixed

models for all spatio–temporal scales for both species, red (A) and roe deer (B). All

models were fitted with ID as random effect. Additionally as the data samples are

taken over different years, the models were additionally fitted with year as a nested

variable within ID.

A Red deer (Cervus elaphus)

Kernel size

Timescale 90% 70% 50%

monthly
random effect 0.37 0.31 0.27

SD 0.61 0.56 0.52

biweekly
random effect 0.28 0.17 0.16

SD 0.53 0.41 0.40

weekly
random effect 0.34 0.27 0.22

SD 0.69 0.59 0.56

B Roe deer (Capreolus capreolus)

Kernel size

Timescale 90% 70% 50%

monthly
random effect 0.21 0.24 0.21

SD 0.45 0.57 0.52

biweekly
random effect 0.25 0.28 0.27

SD 0.62 0.71 0.70

weekly
random effect 0.24 0.53 0.47

SD 0.67 0.99 0.88
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Tables of the mixed models with different correlation struc-

ture for all spatio–temporal scales for red and roe deer

We checked for spatial and temporal correlation structure using the full model. Follow-

ing the approach of ? we specified the spatial correlation structure with the geographic

coordinates of the home range centres and used a vector for the temporal autocorrela-

tion specifying the time variable. Afterwards we compared the models using the Akaike

Information Criterion (AIC) to obtain the best model.

TABLE 3: Table of the reddeer data set fitted with a mixed effect model with

different correlation structure. The best models are indiciated in bold format.

Timescale Kernel size correlation structure AIC

monthly 50 none 522.66

spatial 524.59

temporal 521.67

70 none 495.07

spatial 494.17

temporal 495.43

90 none 475.20

spatial 477.20

temporal 475.57

biweekly 50 none 1026.01

spatial 1015.45

temporal 990.48

70 none 996.59

spatial 975.01

temporal 953.66

90 none 990.69

spatial 939.42

temporal 945.14

Continued on next page

Spatio–temporal movement pattern analysis



APPENDIX 83

weekly 50 none 1845.95

spatial 1827.49

temporal 1769.49

70 none 1775.74

spatial 1758.22

temporal 1698.13

90 none 1743.23

spatial 1669.97

temporal 1655.84

TABLE 4: Table of the roedeer data set fitted with a mixed effect model with

different correlation structure. The best models are indiciated in bold format.

Timescale Kernel size correlation structure AIC

monthly 50 none 546.09

spatial 543.32

temporal 540.08

70 none 528.94

spatial 521.09

temporal 522.88

90 none 490.06

spatial 455.61

temporal 482.55

biweekly 50 none 1204.29

spatial 1205.73

temporal 1185.11

70 none 1188.40

spatial 1138.01

temporal 1158.22

90 none 1133.32

spatial 1057.91

temporal 1103.70

Continued on next page
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weekly 50 none 2394.76

spatial 2375.51

temporal 2324.86

70 none 2260.48

spatial 2262.48

temporal 2177.32

90 none 1950.43

spatial 1882.14

temporal 1913.11
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4
Adding structure to land cover –

using fractional cover to study

animal habitat use

Abstract

Linking animal movements to landscape features is critical to identify factors that shape

the spatial behaviour of animals. Habitat selection is led by behavioural decisions

and is shaped by the environment, therefore the landscape is crucial for the analysis.

Land cover classification based on ground survey and remote sensing data sets are an

established approach to define landscapes for habitat selection analysis.

We investigate an approach for analysing habitat use using continuous land cover

information and spatial metrics. This approach uses a continuous representation of

the landscape using percentage cover of a chosen land cover type instead of discrete

classes. This approach, fractional cover, captures spatial heterogeneity within classes

and is therefore capable to provide a more distinct representation of the landscape.

The variation in home range sizes is analysed using fractional cover and spatial metrics

in conjunction with mixed effect models on red deer position data in the Bohemian

Forest, compared over multiple spatio–temporal scales.

We analysed forest fractional cover and a texture metric within each home range

showing that variance of fractional cover values and texture explain much of variation

in home range sizes. The results show a hump–shaped relationship, leading to smaller

home ranges when forest fractional cover is very homogeneous or highly heterogeneous,

while intermediate stages lead to larger home ranges.

The application of continuous land cover information in conjunction with spatial

metrics proved to be valuable for the explanation of home–range sizes of red deer.
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4.1 Introduction

Habitat use of animals is assumed to be mainly driven by forage availability and is

a complex hierarchical process of behavioural responses and choices (Gaillard et al.,

2010). Individuals choose habitat that maximizes resources (e.g. food or shelter) and

conditions necessary for survival and reproduction (Richard et al., 2011), whereas these

resources are influenced by temporal and spatial variations of the landscape (Gustafson,

1998). Habitat selection is led by behavioural decisions and is shaped by the environ-

ment, leading to the observed habitat use (Johnson, 1980).

A large majority of animals use certain areas without showing a territorial be-

haviour, referred to as home range. In contrast to territories, a home range has no

defended borders (Burt, 1943). Home ranges are generally defined as the spatial ex-

pression of all behaviours an animal performs in order to survive and reproduce (Burt,

1943). Since home ranges link individual movement paths to dispersal and popula-

tion dynamics, understanding why and how home range sizes vary between and among

species is a fundamental issue in ecology. The current and prospective availability of

large movement data sets and remotely sensed environmental information will allow

further detailed analysis (Wikelski et al., 2007). Progress in GPS–sensor receiver tech-

nology and satellite telemetry makes it possible to track animals over long time spans

with high temporal and spatial resolution and to analyse their habitat requirements

and movement paths (Tomkiewicz et al., 2010).

By studying variation in home range size and identifying the factors involved in

such variation, we can identify how habitat influence individual’s habitat use (Richard

et al., 2011) and therefore the variation in home ranges. A number of factors have been

addressed for shaping variation in home range sizes, these include the environmental

productivity and the heterogeneity of the landscape (Boyce et al., 2003; Nilsen et al.,

2005; Säıd et al., 2009). Especially the availability of forage is a main driver shaping

home range sizes (Tufto et al., 1996). A common trade–off often faced by many large

mammals takes places when open habitats provide the best forage, while closed habitats

provide shelter against predators and this may vary with different spatio–temporal

scales (Godvik et al., 2009).

Typically in habitat use studies the landscape is represented with a categorical

habitat map usually derived from a classification (Torres et al., 2012; Massé and Côté,

2012), while in other studies the landscape is represented only by the dominant habitat

type (Börger et al., 2006b; Rivrud et al., 2010). A variety of land cover classifications

are routinely produced using remotely sensed data such as MODIS and AVHRR (Friedl

et al., 2002).
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However, the way the landscape is defined is crucial for the analysis of habitat use.

In many studies the landscape is defined in land cover categories, containing classes

such as “meadows”, “forest” and “agriculture” (Börger et al., 2006b; Torres et al., 2012)

and it is common sense that different needs of an animal corresponds to different land

cover types, for example “forest” as areas for shelter and therefore resting or hiding

sites, and “meadows” as areas for forage sites (Godvik et al., 2009).

However, landscapes rarely contain sharp borders between cover types although that

is how they are portrayed using a classical land cover classification approach. Moreover

information about spatial variation within a a–priori defined land cover class is not

provided when using a classification. A forest might vary spatially due to different age

classes of the trees or small tree fall gaps which increase spatial heterogeneity. This

within land cover variation is not captured by categorical maps.

Therefore we use a continuous land cover approach such as fractional cover for

the inclusion of spatial variation within classes for our analyses. Fractional cover is a

multiscale analysis combined with spatial prediction. This method is related to spectral

unmixing methods (Asner and Heidebrecht, 2002). The fractional cover image are

typically created using a higher resolution land cover classification image to calculate

fractional cover training data for lower resolution imagery. For each pixel of the coarse

resolution image the percentage coverage for each land cover class within the high

resolution is calculated and used for a spatial prediction of the land cover percentages.

The percentage cover for the chosen land cover types per pixel of the coarse resolution

image is provided as result.

With this approach a continuous land cover classification can be derived which

captures the spatial structure in a fine scale manner and this provides a more realistic

and more ecologically meaningful representation of the landscape. Global maps with

similar approaches of percentage coverage already exist such as MODIS or AVHRR

(DeFries et al., 2000; DiMiceli et al., 2011) however only at a coarse spatial resolution

and not validated in the study area.

Furthermore in many habitat use studies forests have structural attributes like

“dense forest” or “light forest” with corresponding functional effects, such as light

forest with plentiful food resources due to an established understory as enough sunlight

can reach the forest floor. However, these structural attributes are often not validated

and instead they are implicitly assumed (Debeljak et al., 2001). With the fractional

cover approach these structural attributes can be addressed clearly.

In this study, we investigate the potential of continuous land cover information for

habitat use of red deer in the Bohemian Forest. As habitat use leads to differing home
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range sizes, we investigate the potential of continuous land cover information and its

spatial representation for the explanation of their variation in size. We hypothesize

larger home ranges with increasing forest cover due to lower density of food resources.

We test our hypothesis on different spatial (90 %, 70 % and 50 % isopleths) and temporal

scales (monthly, biweekly and weekly) to account for temporal and spatial differences.

4.2 Materials and Methods

4.2.1 Study area

The study area is located in Central Europe in the Bohemian Forest, an area belong-

ing to two national parks: the Bavarian Forest National Park on the German side of

the border (240 km2) and the Šumava National Park on the Czech Republic side of

the border (640 km2). These protected areas are embedded within the Bavarian For-

est Nature Park (3070 km2) and the Šumava Landscape Protection Area (1000 km2).

In its entirety, the area is known as the Bohemian Forest Ecosystem. The area is

mountainous, with a variation in elevation between 600 and 1450 m.a.s.l.. The mean

annual temperature varies between 3◦C and 6.5◦C along higher elevation and ridges.

The mean annual precipitation is between 830 and 2230 mm. Within the park, three

major forest types exists: above 1100 m: sub–alpine spruce forests with Norway Spruce

(Picea abies L.) and some Mountain Ash (Sorbus aucuparia L.), on the slopes, between

600 and 1100 m elevation, are mixed montane forests with Norway Spruce, White Fir

(Abies alba MILL.), European Beech (Fagus sylvatica L.), and Sycamore Maple (Acer

pseudoplatanus L.). In the valley bottoms, spruce forests with Norway Spruce, Moun-

tain Ash, and birches (Betula pendula ROTH. and Betula pubescens EHRH.) (Fischer

et al., 2013). Since the mid–1990s, the forests of the national park have been affected

by massive proliferation of the spruce bark beetle (Ips typographus). By 2007, this

had resulted in the death of mature spruce stands over an area amounting to 5,600 ha

(Müller et al., 2008; Lausch et al., 2013).

4.2.2 Red deer data

From 2002–2011 red deer were caught during winter, using a procedure approved by the

Government of Upper Bavaria, Germany. Red deer were captured and fitted with GPS

collars (Vectronic Aerospace, Berlin, Germany) in box traps with side windows after

they were lured in with food. Here no immobilization was necessary. A second approach

was to tranquillize deer by dart gun where they were attracted by food (Heurich, 2011).
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We collared 80 deer (39 male, 41 female). Ten individuals were collared two or more

times. As animals spend the winter in enclosures, we restricted the analysis temporally

from May to the end of September. The most common protocol was to mark red deer

in late winter and retrieve the collars after a year by collar drop–off or recapturing,

allowing the collars to be used on new individuals. We removed spatial and temporal

false fixes (i.e. locations taken only a few seconds apart) beforehand. We defined the

samples from the multiple collared animals over the single year as independent. As the

schedule of the collars are adjusted to take a location every 15 min for one day of the

week we took a random sample of animals with sequences of short time intervals to

ensure that all locations have a minimum interval of one hour. The median accuracy

of the GPS locations was 16.5 m (Stache et al., 2012).

4.2.3 Home range estimation

Home ranges were estimated with a commonly used approach, the fixed kernel method

(Worton, 1989; Calenge, 2006) using the reference method for the smoothing factor h

(Kernohan et al., 2001). We used three different home range definitions to include a

spatial scale and to investigate the effect on the core area (50 % kernel) and a wider

range (70 % kernel, 90 % kernel). In addition, all home range definitions were esti-

mated on three temporal scales: monthly, biweekly and weekly. We only estimated

home ranges for individuals with at least ten locations for a given temporal scale, after

removing spatial and temporal outliers (Börger et al., 2006a).

4.2.4 Representation of the landscape

For the calculation of fractional cover a high resolution classified image was derived from

aerial images and was used for training. The classified image contained 26 categories

(different forest types such as coniferous, deciduous and mixed forest, and age classes

such as mature, medium, young). Due to used spatial and spectral resolution we

grouped those classes to three major categories in order to be able to discriminate

them appropriately: forest (containing all forest types and age classes), open areas (e.g.

meadows, regeneration areas, clear cut areas) and others (e.g. water, rocks, roads). To

create our training data the fractional cover of each class within 30 m Landsat pixels

was calculated. The resulting percent cover values for a particular class were used

as response variables to train a random forest (RF) regression model (Breiman, 2001).

Random forest uses an ensemble of decision trees (in our case regression trees) to model

non-linear relations among response variables (Hansen et al., 2002, 2003; Hayes et al.,
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2008). The resulting RF model was then used to predict percent cover for the cover type

being modelled on a Landsat image using pixel spectral values as predictor variables.

The number of regression trees used in the random forest model was 1000, the number

of predictors tried on each split was set to the algorithm’s default value (number of

Landsat image bands/3). An unbiased accuracy assessment is provided by RF using

“Out Of Bag” statistics calculated from a random selection of 1/3 of the training data

(Breiman, 2001). Three cloud free Landsat 5 scenes (path 192, row 26) with bands

1–5 from 2006 (July 15th, October 19th) and 2009 (September 9th) were used for the

fractional cover analysis. The three predicted vegetation layers complement each other

and sum up to 100 %. The class “others” contains only small values in our study

area, therefore the major part of the values are split between “forest” and “grassland”.

Since both layers complement each other we included only the class “forest” in our

analysis. Figure 4.1 shows the categorical map and the fractional cover layers “forest”

and “grassland” for the whole study area (upper panels). An enlarged display of a

section shows how the formerly categorical representation of the landscape is now split

up in continuous values (middle panels). The lower panels show the representation of

the categorical values within the fractional cover values in a histogram. The discrete

classes are represented by very high cover values within the study area (appendix, figure

3 for a figure of the observed vs. predicted values of the regression model).

We extracted all fractional cover values of the forest class within the home ranges

and calculated mean, standard deviation and variance. In addition to fractional cover

we chose to also calculate texture measures for each home range. Texture metrics

were developed by Haralick et al. (1973) and capture habitat structure which can be

quantified using the variability of pixel values in a given area. Second–order texture

measures are calculated from the gray–level co–occurrence matrix (GLCM) and account

for spatial arrangement of pixel values. Haralick et al. (1973) presented a variety of

different texture metrics, however he states that these metrics are highly correlated

and can be difficult to interpret. To ensure that the chosen texture metric is not size

dependent we calculated buffers from 500 to 7000 m in 500 m steps around the home

range centres of the 90 % kernel isopleths and analysed all texture metrics with regard

to their size dependency. We calculated texture measures using all pixel values within

the home range. A moving window was used to calculate the texture metric for every

pixel relative to its direct neighbours (eight pixels around a centre pixel). We then

averaged the resulting texture values to obtain one value for the home range to fit into

the mixed model design. We chose to use the texture metric “contrast”, as it shows

the least size dependency (see appendix, figure 1) and is easy to interpret as a measure
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of local variation in the image and therefore an indicator of landscape heterogeneity.

Throughout the remaining text we will refer to the contrast metric as a texture metric

or simply as texture.

We choose to use standard deviation of the forest fractional cover calculated within

a home range as a measure for variability and the mean forest fractional cover as

an estimate of overall forest fractional cover within each home range. Since variables

standard deviation and variance show high collinearity (Dormann et al., 2013), variance

is not considered in the analysis. For simplicity we will refer to the standard deviation

as variation of fractional cover values.

Furthermore we estimated the mean elevation of the home ranges using the 30 m

ASTER Global Digital Elevation Map (GDEM) (http://asterweb.jpl.nasa.gov/gdem.asp).

The chosen variables showed no correlation with each other (Pearson’s correlation

with the threshold as set to 0.7, - 0.7 respectively).

4.2.5 Statistical analysis

To investigate the influence of forest fractional cover and texture on home range sizes,

we used linear mixed models (Bates et al., 2011) on the log transformed home range

areas (km2). Afterwards we ran a backfit on the t–values to derive the essential variables

(Tremblay and Ransijn, 2011). Preliminary analysis showed that the variables texture

and elevation have a hump–shaped relationship with home range size in the red deer

data and we therefore used a quadratic fit in the models.

Following the framework of Zuur et al. (2009) for mixed effect models, we first

identified the best structure for the random effect term. We fitted random intercepts for

each individual (ID), different sexes and the year the locations were sampled, using the

full model with respect to fixed effects terms and using the REML criterion for fitting.

We started with the full random term and then simplified the model. Afterwards we

compared the models with an ANOVA and the best model was evaluated with the

Akaike Information Criterion (AIC). For variable selection, models were fitted with a

maximum likelihood criterion. We considered as fixed effects the mean value of the

fractional cover layer forest within a home range, the standard deviation of fractional

cover values within a home range, the texture metric contrast and elevation. The final

models where fitted using the REML criterion. We derived minimal adequate models by

backward stepwise selection using a t–value of 2 as a threshold for inclusion (Tremblay

and Ransijn, 2011). We repeated the analysis for the three definitions of home range

size and for the three definitions of temporal scale.

We used the software tool R version 3.0.1 (R Development Core Team, 2013) for all

Spatio–temporal movement pattern analysis



94
ADDING STRUCTURE TO LAND COVER – USING FRACTIONAL COVER TO STUDY

ANIMAL HABITAT USE

380000 400000 42000053
90

00
0

54
10

00
0

54
30

00
0

54
50

00
0

categorical map

Easting

N
or

th
in

g

forest
grassland

380000 400000 42000053
90

00
0

54
10

00
0

54
30

00
0

54
50

00
0

forest fractional cover

Easting

N
or

th
in

g

0

20

40

60

80

100

380000 400000 42000053
90

00
0

54
10

00
0

54
30

00
0

54
50

00
0

grassland fractional cover

Easting

N
or

th
in

g

0

20

40

60

80

100

Easting

N
or

th
in

g

389600 390000 390400

54
19

60
0

54
20

00
0

54
20

40
0

Easting

N
or

th
in

g

389600 390000 390400

54
19

60
0

54
20

00
0

54
20

40
0

Easting

N
or

th
in

g

389600 390000 390400

54
19

60
0

54
20

00
0

54
20

40
0

forest grassland

F
re

qu
en

cy

0e+00

2e+05

4e+05

6e+05

8e+05

categorical map forest fractional cover

F
re

qu
en

cy

0 20 40 60 80 100

0e
+

00
2e

+
05

4e
+

05

grassland fractional cover

F
re

qu
en

cy

0 20 40 60 80 100

0
10

00
0

30
00

0
50

00
0

Figure 4.1: Overview of the landcover and fractional cover values within the study area. The upper
panels show the distribution of the categorical (left hand side) and continuous fractional cover values
(middel and right hand panel). The second row shows a zoom–in for better representation and the
last row shows the distribution of the values for the whole study area.
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analysis. The package “adehabitatHR” (Calenge, 2006) was used for the kernel calcu-

lations, “raster” (Hijmans, 2013), “EBImage” (Pau et al., 2013) and “randomForest”

(Liaw and Wiener, 2002) for creation of the environmental variables and “lmer” (Bates

et al., 2011) and “LMERConvenienceFunctions” (Tremblay and Ransijn, 2011) were

used for the statistical analyses.

4.3 Results

The fractional cover approach allows a differentiation of variations within land cover

types, compared to categorical classes. The spatial heterogeneity of within class varia-

tion is captured by this approach. The fit of the random forest regression model for the

forest layer was 70.15%. The diversity of fractional cover values within the home range

level can be seen in figure 4.2. As outlined in figure 4.1, the corresponding categorical

values are represented by the very high percentage values within the fractional Cover

approach.

Home ranges of red deer show a high variation in size in our study area (appendix,

table 1). We analysed the variation of home range sizes with a mixed model, using mean

and standard deviation of the forest fractional cover, as well as the variable elevation

and a texture metric. The main random effect in all models was the individual effect

(variable ID) with an explained deviance of 0.26–0.38 % (appendix, table 3). The fixed

effects of the most parsimonious models explained between 26.88 % and 30.88 % of the

observed variation in home range size for red deer across the different spatio–temporal

scales (appendix, table 2).

In all models the texture metric showed the highest explained deviance (7.98 %–

14.72 %) across scales and was the dominant variable explaining variation in home

range size with a hump–shaped relationship (figure 4.3, appendix, table 2). However,

this hump–shaped relationship was only pronounced at the monthly time scale, whereas

in the biweekly and weekly time scale this relationship changed to a negative linear re-

lationship. The texture metric can be interpreted as an index for spatial heterogeneity

in a given area. Hence, at larger temporal scales very homogeneous and very hetero-

geneous landscapes are leading to small home ranges, while at smaller temporal scales

only very heterogeneous landscapes lead to small home ranges.

Furthermore the variation of forest fractional cover (the standard variation) within

a home range contributes significantly with an explained deviance of 7.22–11.59 % and

a positive relationship, leading to larger home ranges where the variation of forest

fractional cover values is higher (figure 4.3).
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Additionally the mean showed a positive effect (5.48–7.12 % explained deviance),

with no effect on the monthly time scale kernel 50 % isopleth (appendix, figure 2 A).

Elevation had a hump–shaped effect on home range size and showed a low explana-

tory value of 0.35 %–6.02 % (appendix, figure 2 B).
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Figure 4.2: Representation of the landscape for one home range with both approaches, the cat-
egorical and the continuous fractional cover. The lower panels show the distribution of the values
within the home range for each approach.
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Figure 4.3: Plot of log–transformed home range sizes (km2) for red deer in relation to (A) the
standard deviation of the forest fractional cover values within each home range and (B) the texture
measure calculated within each home range. Home ranges were calculated with the kernel method
and the smoothing factor h. Estimates are given for the 90 % and 50 % kernels and the weekly and
monthly time scale. Lines show predicted values and points raw residuals.
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4.4 Discussion

Many studies of habitat use and home range variation consider the landscape as a

categorical map with defined and clearly separated patches (Torres et al., 2012; Massé

and Côté, 2012). This study investigates the use of continuous land cover information,

fractional cover, to analyse the within land cover class variation of home ranges over

different spatial and temporal scales for red deer in the Bohemian Forest. We demon-

strate that small scale variations represented by continuous landscape data provide

important information for modelling habitat use.

Red deer as a mixed feeder (Albon and Langvatn, 1992) has the ability to digest a

broad spectrum of food items and benefits from forest edges and from the food supply

of younger forest stands which show a low forest canopy cover and therefore have a

pronounced understory, as sunlight can reach the ground. Mean forest fractional cover

shows a positive relationship with home range size meaning that a higher proportion of

dense forest will lead to larger home ranges. Whereas in forest patches with less crown

cover and therefore more heterogeneous structure, food resources are more abundant

which leads to smaller home ranges. This result is in support with other studies (Owen-

Smith et al., 2010; van Beest et al., 2011; Massé and Côté, 2012). Mean forest fractional

cover is a rather unsuitable derivative, as it averages all pixels within the home range.

Nevertheless it shows a significant explanatory value and gives an overview of the overall

forest structure within the home range.

The standard deviation of forest fractional cover values captures the variability of

values within a home range. High values indicate a wide spectrum of forest fractional

cover and therefore a more heterogeneous landscape while small values indicate a more

homogeneous landscape within the home range. Tufto et al. (1996) have shown, that

female roe deer adjust the size of their home range in response to food supply. In

accordance to this study red deer home range sizes increase in our study area with

increasing standard deviation and therefore with more heterogeneous forest fractional

cover, leading to a higher amount of unfavourable forest habitat within the home range.

The explanatory deviance is largest for the texture metric and also consistent over

all spatio–temporal scales with a hump–shaped relationship at larger time scales. Low

values of the texture metric correspond to high heterogeneity within the home range,

while high values of the texture metric correspond to landscapes which have large

aggregated patches. This relationship was detected in a previous study (Bevanda et al.,

2014) and can be explained by the characteristics of the National Parks. Bark beetle

outbreaks in the 90ies affected an area of approximately 5,600 ha especially in the

subalpine regions, leading to sunny openings and large regeneration areas characterized
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by high grass cover, lying dead wood and regrowing vegetation (Müller et al., 2008).

These areas appear very homogeneous when calculated with a texture metric but offer

good habitat for deer, as different resources are provided in a small area, leading to

small home ranges, as both requirements, food and cover, are fulfilled at the same spot.

Furthermore a heterogeneous landscape, providing many different resources, leads to

small home ranges as all the resources needed can be reached within a small distance.

The hump–shaped effect flattens in the biweekly and weekly time scale and can only

be described with a negative linear trend. However, a pattern towards hump–shaped

distribution can be seen (figure 3 B). This result shows that the temporal scale needs

to be accounted for when analysing home ranges as they are likely to change not based

on ecological patterns only but on the time scale of the study. The time period of the

study is restricted to the summer months, therefore the resource cover can be regarded

as static, i.e. not highly changing over the time, while the resource food is dynamic

and depleting. Therefore food supply is the main force shaping home range size during

summer. When large patches of dense forest occur within the home range, the texture

value will increase. These areas provide shelter against predators, but provide only little

food resources. Therefore, as food resources are regarded to be a main force shaping

home range size, home ranges will increase in size with the inclusion of large patches of

dense forest (intermediate values of texture). Furthermore, these regeneration areas are

located at higher altitude and are therefore explaining the effect of elevation, reflecting

the importance of bark beetle areas in this study. Like the regeneration areas, elevation

shows a hump–shaped fit leading to smaller home ranges where important resources

are abundant (Anderson et al., 2005).

It is known that other factors, like body mass, age, reproductive status or climatic

parameters like temperature or rainfall have an effect on home range size (please see

van Beest et al. (2011) for a more complete list) and it is likely, that by including these

parameters, the explanatory value of the models could be increased. However, the best

method to estimate home ranges is under debate. While we used at least 10 relocation

points (Börger et al., 2006a) to estimate our home ranges other studies suggest at least

20 relocation points (Kernohan et al., 2001).

The choice of environmental parameters is important for habitat use modelling.

Using classified land cover requires clear definitions of the land cover types but def-

initions often vary between different maps making them difficult to compare (Herold

et al., 2008). Moreover do these classes need to reflect the ecological requirements. An

increased discrimination of different land cover types is often helpful to better describe

a landscape but an increase in the number of land cover classes often results in lower
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per–class accuracy. Using alternative information such as continuous cover can help to

improve how a landscape is represented in a model. Applying remote sensing time–

series data can be valuable to further discriminate land cover types and hence allow

more fractional cover classes if distinct temporal signature exist for the different tar-

geted land cover types. Applying continuous land cover information for environmental

analysis provides detailed information about ecotones and within land cover variation.

This research illustrates that fractional cover mapping has potential benefits for ecolog-

ical research by avoiding categorical values or sharp, most often artificial, boundaries

in the landscape. However, the fractional cover approach requires more analytical steps

including spatial prediction models and might therefore be potentially biased by the

model used.

4.5 Conclusion

The study demonstrates that continuous land cover information can provide valuable

information about spatial within class variation as well as gradual vegetation changes,

a feature that is not available when using discrete classes. This is especially relevant in

movement ecology where a continuous representation of the landscape might be more

ecological appropriate. However, to evaluate the added value of the fractional cover ap-

proach with regard to land cover classification or biophysical parameter further analysis

are needed. Fractional cover mapping of different land cover types adds information,

critical to ecological studies, beyond what traditional land cover categorical mapping

can offer. As the synergy between remote sensing and ecology increases improved pro-

cessing and analysis methods will continue to be developed which will have a positive

impact on ecological research. These benefits will be especially important with the

growing interest in spatio–temporal movement pattern.
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Appendix

Overview of size dependency of the texture metrics

FIGURE 1: Overview of the sizes dependencies of the texture metrics established by

Haralick et al. (1973) analysed with a mixed model Zuur et al. (2009); R Development

Core Team (2013); Bates et al. (2011); Tremblay and Ransijn (2011). Buffers around

90 % kernel home range centres (monthly scale) were drawn from 500 m to 7000 m in

500 m steps around the home range centre for the red deer data set. Buffer index

values belonging to the same home range centre point are connected with a line. The

explanatory value (expl.dev(%)) of the size dependency for each landscape index is

drawn within the plot.
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Overiew of red deer home range sizes across spatio–temporal

scales

TABLE 1: Summary statistics of red deer home range sizes (km2) across spatio–

temporal scales. N = Number of samples included in home range estimation.

Red deer (Cervus elaphus)

Kernelsize

Timescale 90% 70% 50%

monthly

Mean (range) 9.14 (0.21–142.90) 4.87 (0.10–130.55) 2.60 (0.05–73.76)

N 456 458 458

biweekly

Mean (range) 7.15 (0.05–133.41) 3.77 (0.02–90.50) 2.06 (0.01–42.29)

N 1063 1065 1065

weekly

Mean (range) 5.78 (0.03–122.84) 3.07 (0.01–115.26) 1.76 (0.01–128.03)

N 2009 2011 2012
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APPENDIX 111

Overview of random effect values

TABLE 3: Table of random effects and standard deviation (SD) of linear mixed models

for all spatio–temporal scales for the red deer data set.

Red deer (Cervus elaphus)

Kernel size

Timescale 90% 70% 50%

monthly
random effect 0.28 0.26 0.28

SD 0.52 0.51 0.53

biweekly
random effect 0.32 0.28 0.38

SD 0.57 0.54 0.53

weekly
random effect 0.38 0.34 0.30

SD 0.61 0.58 0.55

Spatio–temporal movement pattern analysis



112 APPENDIX

Plot of elevation and mean forest fractional cover values

within home ranges across spatio–temporal scales

FIGURE 2: Plot of log–transformed home range sizes (km2) for red deer in relation

to (A) the mean values of the forest fractional cover values within each home range

and (B) the altitude of the home range centres. Home ranges were calculated with the

kernel method and the smoothing factor h. Estimates are given for the 90 %, 70 % and

50 % kernels and the weekly, biweekly and monthly time scale. Lines show predicted

values and points raw residuals.
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Plot of observed and predicted values of the forest frac-

tional cover regression model

FIGURE 3: This plot shows the fit of the observed vs. predicted values of the forest

fractional cover regression model.
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5
Challenges and perspective

The topic of animal movement is a fast developing discipline, not at least because of

the recent progress in technology of GPS and remote sensing techniques. Based on

these recent developments, advances in movement ecology could been observed. The

application of remote sensing data for ecological research is well established and lead

to new findings. The combination of actual spatio–temporal information of animal

movement and the linkages to the corresponding environmental attributes allows new

insights into ecological patterns. However an unifying framework how to combine and

implement these new information into ecological and conservation research has yet to

be established.

New opportunities which arise through these new technical opportunities are enor-

mous. Constant improvements of the weight of the devices are made, allowing to collar

smaller animals, such as small songbirds (Bridge et al., 2011). In combination with

an improved battery consumption, which is so far one limiting factor to track animals

across their whole life, it will be possible to analyse the spatio–temporal movement of

animals across different development stages. Different behavioural patterns and hence

movement and species–environment interaction will then be possible to be analysed in

more detail. Moreover physiological parameters, like body temperature, and activity

data, will be collected for a wide range of species, which will give more insight into the

behaviour of animals (Löttker et al., 2009; Durner et al., 2011). Hence these technical

developments will allow to map the entire life of an animal and will give crucial insights

into their ecology.

Parallel to these emerging technologies also the computational development ad-

vanced and new statistical methods are developed. These new methods are now, with

respect to home range size analysis, not only addressing the spatial arrangement of

points but also allow to take the time sequence into account, thus characterizing a
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home range more accurately (Benhamou, 2011; Kranstauber et al., 2012).

To analyse the behaviour of animals a representation of the landscape is essential.

Remote sensing is already and will become even more an invaluable tool for ecological

research. Free data access is increasingly available and is not hampering its scientific use

any more. Large areas can now be mapped with a higher spatial and temporal resolution

and in combination with field data it is providing valuable environmental information.

Moreover a variety of spatial and temporal resolution are available allowing to address

spatial scaling issues or mapping single trees (Wu, 2004; Hirschmugl et al., 2007). Also

near–real time land cover monitoring will increasingly be available, such as disturbance

monitoring (Verbesselt et al., 2012). Moreover new remote sensing developments such

as hyperspectral and LiDAR data might be available globally and open new avenues to

analyse land cover attributes, such a vertical vegetation structure (Müller and Brandl,

2009; Bässler et al., 2010; Mücher et al., 2013). Remote sensing data is successfully

applied in a variety of ecological research, such as the analysis of species-environment

interaction (Naidoo et al., 2012) or modelling species distribution (Wilson et al., 2013;

Rocchini, 2013).

However with these new technologies which are advancing continuously also new

challenges for ecological application need to be addressed. Tracking devices sample at

pre–defined intervals which is just an approximation of the actual animal movement.

Even though these devices are developed to allow increasingly shorter intervals which

might lead to a higher accuracy it also comes with disadvantages of larger data sets

and an emerging need to rethink the ecological accuracy of animal tracking devices in

conjunction with remote sensing data. Both data come with an intrinsic error margin,

both with a spatial inaccuracy as well as a spectral approximation of the land surface

conditions by remote sensing data. The ecological application of these new techniques

will soon lead to a needed discussion of ecological relevance. However the enormous

added value of these new techniques are without question, however the ecological ade-

quate application needs to be addressed.

Environmental information are commonly extracted from land cover classifications.

However these classifications are not primarily created with respect to ecological re-

quirements but based on a human perception of the landscape. For instance forest

definitions vary between land cover classifications such as GlobCover, IGBP or Corine

and various authors aimed to combine these global classification legends (Herold et al.,

2008). Additionally the validation of these data sets are still a challenge (Defourny

et al., 2007) and are also partly politically important (see FAO forest report, (FAO,

2012)). These commonly used land cover classes are rarely providing an ecological
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adequate representation of the respective habitat for the studied species. However

ecologists are using the available remote sensing data developed for generic purposes

for ecological research. Moreover indices such as Vegetation Indices or biophysical pa-

rameters such as LAI or fPAR are highly relevant for ecological research as well, but

all data sets are just an approximation of the condition on the ground. Remote sensing

data are impacted by a variety of factors such as the atmosphere as well as technical

limits or the comparability between sensors. These challenges need to be understood

by ecologists in order to be able to interpret the provided data adequately.

Despite these remaining challenges and obstacles remote sensing has already proven

to be valuable and is and will provide future opportunities for ecological research In or-

der to ensure a sound implementation of these increasingly used techniques in ecological

research several interdisciplinary developments are needed.

Within the field of animal movement the role of a cognitive map and the role

of memory is highly relevant to increase our understanding of movement paths and

hence the emergence of home ranges (Van Moorter et al., 2009; Spencer, 2012). The

implementation of such factors will play a key role in further development of techniques

analysing animal movement data. Also the development of new remote sensing data

sets as well as sensors specifically designed to meet ecological needs is crucial for a

sustainable use of these techniques. Moreover an active participation of ecologists in

the improvement of data sets such as tracking devices is highly needed to ensure its

adequacy. The tracking interval is an important factor and should not only be defined

by technical possibilities but also by ecological needs.

Interdisciplinary discussions and joint projects will lead to an improved application

and future development of these new techniques in ecology and conservation.
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P. Hartl, R. Kays, J. F. Kelly, W. D. Robinson and M. Wikelski (2011). Technology

on the Move : Recent and Forthcoming Innovations for Tracking Migratory Birds.

BioScience, 61:689–698.

Defourny, P., C. Vancutsem, P. Bicheron, C. Brockmann, F. Nino, L. Schouten and

M. Leroy (2007). GLOBCOVER: a 300 m global land cover product for 2005 using

ENVISAT MERIS time series. Proceedings of ISPRS Commission VII Mid-Term

Symposium: Remote Sensing: from Pixels to Processes, 8–11.

Durner, G. M., J. P. Whiteman, H. J. Harlow, S. C. Amstrup, E. Regehr, V. and

M. Ben-David (2011). Consequences of long-distance swimming and travel over

deep-water pack ice for a female polar bear during a year of extreme ice retreat.

Polar Biology , 34:975–984.

FAO (2012). State of the World’s Forests 2012. Technical report, Rome, Italy.

Herold, M., P. Mayaux, C. E. Woodcock, A. Baccini and C. Schmullius (2008). Some

challenges in global land cover mapping: An assessment of agreement and accuracy

in existing 1 km datasets. Remote Sensing of Environment , 112:2538–2556.

Hirschmugl, M., M. Ofner, J. Raggam and M. Schardt (2007). Single tree detection in

very high resolution remote sensing data. Remote Sensing of Environment , 110:533–

544.

Kranstauber, B., R. Kays, S. D. Lapoint, M. Wikelski and K. Safi (2012). A dynamic

Brownian bridge movement model to estimate utilization distributions for heteroge-

neous animal movement. Journal of Animal Ecology , 81:738–746.
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Appendix – R-Code

The R–code for the different analysing steps can be accessed on the supplied CD.
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