
 

 

 

  

Department of Agroecosystem Research 

Dissertation to attain the academic degree of Doctor of Natural Science 

(Dr. rer. nat.) of the Bayreuth Graduate School for Mathematical and 

Natural Sciences of the University of Bayreuth 

Submitted by  

Bhone Nay-Htoon 

Born 3rd April 1987 in Monywa, Myanmar 

Bayreuth, 2016 



 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

This doctoral thesis was prepared at the department of Agroecosystem research, University of 

Bayreuth from September 2012 to June 2015 and was supervised by Prof. Dr. Christiane 

Werner. 

 

 

This is a full reprint of the dissertation submitted to obtain the academic degree of Doctoral of 

Natural Sciences (Dr. rer. nat.) and approved by the Bayreuth Graduate School of Mathematical 

and Natural Sciences (BayNAT) of the University of Bayreuth. 

 

 

 

Date of submission: July 30, 2015 

Date of defense: January 26, 2016 

 

 

 

 

Acting director: Prof. Dr. Stephan Kümmel 

 

Doctoral Committee: 

 

(1) Prof. Dr. Christiane Werner (1st reviewer) 

(2) Prof. Dr. Christoph Thomas (2nd reviewer) 

(3) Prof. Dr. Thomas Köllner (Chairman) 

(4) Prof. Dr. Gerhard Gebauer 

 



 

 

 

 

 

 

 

 

 

 

 

 

 



Water use efficiency of rainfed and paddy rice ecosystem | Bhone Nay-Htoon 

 

 

  i 

Summary 
 

In the light of increasing pressure on limited fresh water resources, growing population and 

increasing greenhouse gas emission, maximizing crop water use becomes an important topic. 

Rice is a staple food for a large number of peoples and a crop with higher water demand. Water 

use efficiency of rice (Oryza sativa L) was studied from different viewpoints and at different 

spatiotemporal scales, which can markedly influence the information gain on different 

processes. Here, water use efficiency was assessed from a physiological, agronomic or 

ecosystem perspective, as well as at spatiotemporal scales comprising leaf level or ecosystem 

processes. The study sheds light on variations of different definitions and interpretation of 

water use efficiencies.  

The work was carried out in two different rice ecosystems; rainfed rice and paddy rice, in 

Gwangju, South Korea. A variety of techniques were applied in this thesis to study different 

water use efficiency terms: the leaf gas exchange measurement, stable carbon isotope (13C) 

analysis, ecosystem gas exchange measurement (evapotranspiration and net carbon exchange), 

partitioning hourly to day-time evapotranspiration fluxes by stable water isotope (18O) 

approach, as well as partitioning daily to seasonal evapotranspiration (ET) fluxes by model 

simulation.  

Stable water isotope 18O) based ET partitioning showed a significant role of the contribution 

of transpiration fluxes in the total water fluxes of rice ecosystem. Both 18O partitioning and 

partitioning by a modified Penman Monteith ET model (56PM) gave a similar trends of the 

contribution of transpiration to evapotranspiration (T/ET). Water fluxes from rainfed rice were 

mainly dominated by transpiration (T/ET = 0.65), while that of paddy rice was mainly driven 

by evaporation (T/ET = 0.42).  

Comparing the water use efficiency of rainfed and paddy rice at different temporal and spatial 

scales indicated that physiologically defined water use efficiencies (i.e., leaf level intrinsic 

water use efficiency (A/gs) and instantaneous water use efficiency (A/T) cannot represent the 

biomass related water use efficiencies (i.e., WUEc_Abg/Tc and WUEagro). Physiologically defined 

WUEs, which include intrinsic WUE, instantaneous WUE and ecosystem WUE, of rainfed rice 

was higher than that of paddy rice. On the other hand, productivity based WUEs, which include 

biomass production per transpiration and grain yield per transpiration, paddy rice was higher 

than that of rainfed rice. Similar results were obtained when calculating integrated intrinsic 
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water use efficiency based on canopy integrated bulk leaves 13C analysis. Thus, rainfed rice 

was more efficient, transpiring less water per assimilated carbon. On the other hand, 

considering productivity based WUEs, which include biomass production per transpiration and 

grain yield per transpiration, paddy rice was higher than that of rainfed rice, which was also 

reflected in its higher leaf are index (LAI) and slight, though not significant, higher grain yield.  

At larger scales, partitioning the gross fluxes allows to disentangle the determining processes: 

considering total evapotranspirative water loss, which were 42.16 % lower rainfed rice, it had 

higher agronomic water use efficiency (55.42 %), in spite of only slightly lower grain yield 

compared to paddy rice. However, after partitioning the evapotranspiration into productive 

water loss (transpiration) and unproductive water loss (evaporation), transpiration efficiency, 

which is the ratio of grain yield per transpiration, was not different between paddy and rainfed 

rice. Thus, lower agronomic water use efficiency of paddy rice was in concert with its higher 

unproductive water losses. According to the seasonal trends of daily evapotranspiration fluxes, 

most of the unproductive water losses in paddy rice occurred before the crop development stage 

with low canopy cover. After the end of the crop development stage, evapotranspiration fluxes 

in both rainfed and paddy rice were similar, although slightly higher in paddy rice. Thus, 

minimizing the evaporation losses during the early crop growth stages of paddy rice system 

could increase the agronomic water use efficiency of paddy rice.  

From the ecosystem point of view, if ecosystem water use efficiency is defined as the ratio of 

gross primary production to evapotranspiration, rainfed rice also had higher ecosystem water 

use efficiency (61.67 % higher) than paddy rice. Gross primary production is an important 

parameter to access the productivity (i.e., carbon gain), however, carbon loss through the 

ecosystem respiration process should not be neglected. Thus, when the respiratory carbon 

fluxes were taken into account (i.e., net ecosystem carbon exchange), ecosystem water use 

efficiency of both rainfed and paddy rice changed dramatically, pointing the role of ecosystem 

respiratory losses in the definition of ecosystem water use efficiency.  

Comparing the agronomic and ecosystem water use efficiency of rainfed and paddy rice 

showed that rainfed rice had higher agronomic and ecosystem water use efficiency. However, 

higher water use efficiency of rainfed rice ecosystem comes at the expense of a slightly lower 

crop productivity and higher respiratory CO2 loss mainly form the soils, which provides a 

source for  greenhouse gas to the atmosphere. 



Water use efficiency of rainfed and paddy rice ecosystem | Bhone Nay-Htoon 

 

iii 

 

Zusammenfassung 
 

Der Optimierung der Wassernutzung von Nutzpflanzen kommt insbesondere im Hinblick auf 

den steigenden Druck auf bereits begrenzte Frischwasserressourcen, wachsender globaler 

Bevölkerung und zunehmender Treibhausgas Emissionen, eine immer stärkere Bedeutung zu. 

Reis ist ein Grundnahrungsmittel für einen großen Teil der globalen Bevölkerung und weist 

eine vergleichsweise hohe Wassernutzung auf. Die Wassernutzungseffizienz von Reis (Oryza 

sativa L) wurde bereits aus verschiedenen Blickwinkeln und auf unterschiedlichen räumlichen 

und zeitlichen Skalen untersucht, welche erheblichen Einfluss auf die gewonnenen 

Informationen nehmen kann. In dieser Arbeit, wurde die Wassernutzungseffizienz von Reis 

unter physiologischem, agronomischem und ökosystemarem Gesichtspunkt untersucht, zudem 

wurden verschiedene zeitliche und räumliche Skalen, von der Blatt- bis zu Ökosystemebene, 

untersucht. Dabei werden insbesondere die Unterschiede der verschiedenen Definitionen und 

Interpretationen von Wassernutzungseffizienz beleuchtet. 

Die vorliegende Arbeit wurde in Gwangju Süd Korea, in zwei verschiedenen Reis 

Anbausystemen durchgeführt, Nass- sowie Trockenreis (regengespeist). Zur Untersuchung 

unterschiedlicher Wassernutzungseffizienz Definitionen wurden in dieser Studie zahlreiche 

Techniken angewendet: Gaswechselmessungen auf einzelblatt und Bestandesebene zur 

Erhebung der Assimilation, Nettokohlenstoffaustausch sowie Transpiration und 

Evapotranspiration, Analyse stabiler Kohlenstoffisotope (13C) sowie die Auftrennung der 

Evapotranspiration (ET) in Bodenevaporation und Transpiratio von stündlicher bis saisonaler 

Skala mittels stabiler Sauerstoffisotopen Anaylse (18O) und model Simulationen. 

Die Separierung der Evapotranspiration basierend auf stabiler Sauerstoffisotopen Analyse 

ergab eine signifikante Rolle des Transpirationsflusses für die Gesamtwasserabgabe des 

Ökosystems. Weiterhin stimmten beide verwendete Methoden, 18O Partitionierung und 

Modelierung basierend auf dem Pennman Monteith Modell (56PM) weitestgehend überein. 

Insgesamt dominierten im Trockenreis Feld die Wasserverluste über Transpiration (T/ET = 

0.65), während im Nassreis Feld die Bodenevaporation dominierte (T/ET = 0.42). 

Vergleicht an die Wassernutzungseffizienz von Trocken- und Nassreis auf unterschiedlichen 

zeitlichen und räumlichen Skalen, konnte festgestellt werden, dass physiologisch difinierste 

Wassernutzungseffizienzen (z.B. Blatt intrinsische WUE (A/gs) und instantane WUE (A/T) 

nicht mit Biomasse abhängigen WUEs vergleichbar sind (z.B. WUEc_Abg/Tc and WUEagro). 
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Physiologisch definierte WUEs, wie intrinsische WUE, instantane und Ökosystem WUE, waren 

sämtlich höher in Trockenreis verglichen mit Nassreis. Andererseits, konnte Nassreis höhere 

WUEs basierend auf agronomischer Definition aufweisen, wie z.B. Biomasse Produktion pro 

Transpiration oder Kornertrag pro Transpiration. Ähnliche Ergebnisse wurden bei der 

Berechnung Kronen integrierter intrinsischer Wassernutzungseffiizienz basierend auf stabiler 

Kohlenstoffisotopen Analyse (13C)  von Gesamtblattmasse erzielt. Trockenreis war demnach 

effizienter in seiner Wassernutzung, ausgehend von weniger Transpiration pro assimiliertem 

Kohlenstoff, während Nassreis insgesamt einen leicht höheren Ertrag aufwies und 

agronomisch definiert die höhere Effizienz aufwies. 

Auf größerer Skala erlaubt die Auftrennung der Netto Kohlenstoff- und Wasserflüsse ein 

Verständnis der zu Grunde liegenden Prozesse: ausgehend von dem Gesamtwasserverlust des 

Systems (ET), der 42.16 % niedriger war, wies Trockenreis eine deutlich höhere 

Wassernutzungseffizienz als Nassreis auf (55.42 %), trotz des leicht niedrigere Ertrags. 

Betrachtet man allerdings produktive und unproduktive Wasserverluste getrennt, so konnte 

gezeigt werden, dass die Transpirationseffizienz von Nass- und Trockenreis (GPP/T) sich nicht 

voneinander unterscheiden und die niedrigere agronomische Wassernutzungseffizienz auf 

Bestandesebene durch die hohen evaporativen Wasserverluste bedingt wurden. Der Großteil 

des unproduktiven Wasserverlusts im Nassreisfeld erfolgte dem saisonalen 

Evapotranspirationsverlauf zu Folge vor der Hauptwachstumsphase bei niedriger 

Kronendeckung. Im Gegensatz dazu, war die Evapotranspiration im Nass- und Trockenreis 

zum Ende der Vegetationsperiode, bei geschlossener Krone, ähnlich und nur wenig höher im 

Nassreis. Eine Minimierung der Evaporationsverluste während der frühen Entwicklungsphase 

des Nassreissystems könnte demnach zu einem deutlichen Anstieg der agronomischen 

Wassernutzungseffizienz von Nassreis führen. 

Aus ökosystemarer Sichtweise, WUE definiert als GPP/ET, konnte ebenfalls gezeigt werden, 

dass die Wassernutzungseffinzienz höher im Trockenreisfeld war (61.67 % höher). GPP ist ein 

wichtiger Parameter um Produktivität (Kohlenstofffixierung) zu ermitteln, allerdings muss 

dabei bedacht werden, dass auch die Atmung eines Ökosystems nicht vernachlässigt werden 

darf. Bei Einbeziehung der Ökosystem Atmung, WUE=NEE/ET, wies Nassreis eine höhere 

Wassernutzungseffizienz auf, da das Trockenreis Feld deutlich höhere Respirationsflüsse 

zeigte als das Nassreis Feld. Dies zeigt die Bedeutung auch der Ökosystem Atmung für die 

ökosystemisch definierte Wassernutzungseffizienz. 
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Vergleicht man agronomisch und ökosystemare Wassernutzungseffizienz von Trocken- und 

Nassreis, konnte gezeigt werden, dass Trockenreis höhere WUEs nach beiden Definitionen 

aufwies. Dies geht allerdings zu Lasten leicht geringeren Ertrages und höherer 

Respirationsrationsverluste, hautpsächlich durch Bodenatmung, welche eine Rolle für 

Treibhausgasproduktion spielen. 
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end of the day (i-1) 

es - ea vapor pressure deficit of the air 

ET evapotranspiration 

ET0 evapotanspiration of a reference crop, which is a well-managed 
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REW readily evaporable water which is cumulative depth of 

depletion of evaporable water from the soil surface layer at the 

end of stage one 

rl leaf resistance  

Rn net radiation 

Rs solar radiation 

Rsoil soil respiration 
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Definitions of different water use efficiencies 
 

Leaf water use efficiency 

 

Intrinsic water use efficiency (WUEi) 

The ratio of photosynthesis measured as CO2 uptake (A) to stomatal conductance to water (gs) 

is defined as the intrinsic WUE (WUEi) (Osmond et al., 1980). 

 

Instantaneous water use efficiency (inWUE) 

The ratio of photosynthesis measured as CO2 uptake (A) to rate of transpiration (T) is defined 

as the instantaneous WUE (inWUE) (Bierhuizen and Slatyer, 1965).  

 

Agronomic water use efficiency (WUEagro) 

Farmers and agronomists defined the agronomic water use efficiency as the ratio of the yield 

of harvested product to water applied to produce the crop, which could be precipitation and/or 

irrigation. (Condon et al., 2004) modified the agronomic water use efficiency definition by 

considering the physiological definitions (i.e., WUEi or inWUE) and describing grain yield as 

the function of the amount of water used for crop production (i.e., evapotranspiration). Thus, 

WUEagro is also defined as the ratio of grain yield to evapotranspiration and this definition was 

applied in this study. 

 

Ecosystem water use efficiency (WUEeco) 

WUEeco is defined as the ratio of gross primary production (GPP) to evapotranspiration (ET) 

Ecosystem WUE is also defined as the ratio of net ecosystem carbon exchange (NEE) to ET  

(Beer et al., 2009; Kuglitsch et al., 2008). 

 

 



Water use efficiency of rainfed and paddy rice ecosystem | Bhone Nay-Htoon 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 



Water use efficiency of rainfed and paddy rice ecosystem | Bhone Nay-Htoon 

 

1 

 

 

I. Introduction 
 

1.1 Rice production under global change 
 

1.1.1 Rice (Oryza sativa L.) 

 

Rice (Oryza sativa L.) is a staple food for a large number of people and is the single largest 

food source for the poor. It is one of the only two domesticated and widely cultivated species 

of the genus Oryza, tribe Oryzae and family Poaceae and it is domesticated in Asia. However, 

the exact time and place of rice domestication is not clearly documented and has long been 

debated (Fuller et al., 2009; Gross and Zhao, 2014; Li Liu et al., 2007). Tracing the distribution 

of the Asian wild grass (Oryza rufipogon), which is  most closely related to O. sativa, Ganges 

valley of northern India, some regions in China and Southeast Asian regions were roughly 

reported to be the very first places of O. sativa domestication (Huang et al., 2012; Kovach et 

al., 2007; Londo et al., 2006; Molina et al., 2011). Another species, O. glaberrima was 

domesticated in Africa after the Asian rice domestication. O. glaberrima is not as popular as 

O. sativa and has never been a staple food due to its lower grain productivity (Linares, 2002). 

O. sativa is the only commercial and widely cultivated rice on the Earth and is currently 

cultivated in Asia, tropical Latin American and Caribbean regions and Europe (Seck et al., 

2012).  

Rice is produced in a wide range of climatic and geographic locations, from the wettest 

Myanmar’s Arakan coast (5,100 mm of growing season rainfall) to Al Hasa Oasis in Saudi 

Arabia (annual rainfall is less than 100 mm) (Mohanty et al., 2013). Approximately 158 million 

hectares of rice farms in more than a hundred countries produce 700 million tons grain (470 

ton milled rice) annually (GRiSP (Global Rice Science Partnership), 2013). 90 % of rice is 

produced in Asia (Kudo et al., 2014; Yan et al., 2003) while the rest are produced in Africa and 

Latin America. Most of rice production in Asia and Africa are small-scale subsistence 

production systems compared to Latin American countries (GRiSP [Global Rice Science 

Partnership], 2013). Depending on the climatic and geographic locations, rice was produced 

by different crop management practices, especially, water management practices. It is primarily 

grown on the vast areas of flat, low-laying river basins and deltas of Asia, which are flooded 
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at different depths. However, upland rice, rainfed rice and other water saving rice production 

practices can be found in water scarce regions.  

 

 

 

Figure I-1 Rice production area (Source: International Rice Research Institute [IRRI], 2014) 

 

1.1.2 Rice and global change 

 

Intergovernmental Panel on Climate Change [IPCC] projected that the atmospheric CO2 

concentration may increase up to 730 – 1020 ppm by 2100 and the global average temperature 

may rise roughly up to 0.2 C per decade (Meehl and Stocker, 2007). Moreover, change in 

precipitation patterns, especially, higher chance of increasing intense and heavy episodic 

rainfall associated with longer relatively dry periods in between are predicted (Meehl and 

Stocker, 2007). These predicted climatic changes may have significant impacts on crop yield 

via change in crop evapotranspiration, crop growth and development (Lobell and Field, 2007; 

Lobell et al., 2011; Long et al., 2006; Ray et al., 2015). Increase or decrease in rice grain yield 
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under projected climate changes, is region specific and depends a lot on regional precipitation 

and temperature pattern (Iizumi et al., 2011; Ko et al., 2014; Lobell et al., 2011; Peng et al., 

2004; Ray et al., 2015). 

At the same time, it is reported that global average yield improvements of rice are slower (only 

0.9 to 1.6 percent annually) than required rates to satisfy the global demand (Fischer et al., 

2014; Grafton et al., 2015; Ray et al., 2013). According to the projected population growth, the 

current agricultural production system needs to produce 50 % more food to supply the needs 

of projected 9 billion population by 2050 (Alexandratos and Bruinsma, 2012) and thus, needs  

to double the current crop production. Expansion of crop production area and intensive use of 

existing croplands could be an option to increase the crop production (Godfray et al., 2010; 

Ray et al., 2013) although possible environmental impacts such as greenhouse gas emission 

(CH4, N2O) could lead to other challenges.  

However, water resource availability is another limitation to expand or intensify current 

agricultural production, especially the rice production. Roughly, 90% of global rice production 

area is located in Asia and 80% of it is cultivated under conventional flooded conditions 

(Bhattacharyya et al., 2014; Nie et al., 2012).  Almost 30% of world’s fresh water was 

withdrawn by about 80 million hectares of irrigated rice worldwide (Bouman et al., 2007) and 

most of global rice producing countries are suffering economic (water scarcity due to human, 

institutional and financial capital limited access to water) and physical water scarcity (water 

supply does not meet water demand) (Figure I-2). Along with the fresh water resources 

limitation, conventional flooded rice is also notorious for its high methane (CH4) emission and 

urged for a suitable adaptation measures (Hussain et al., 2014; Kudo et al., 2014; Smith et al., 

2007). Therefore, several water saving rice production techniques are introduced, which also 

aim at adapting and mitigating the CH4 emission (Bouman et al., 2005; Pittelkow et al., 2013; 

Zou et al., 2005).  
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Figure I-2 Physical and economic water scarcity worldwide (Physical Water scarcity: water 

resources development is approaching or has exceeded sustainable limits; Approaching to 

physical water scarcity: these areas will experience physical water scarcity in the near future; 

Economic water scarcity: these areas are suffering water scarcity due to human, financial and 

institutional limitations although natural water resources are abundant relative to water use; 

Little or no water scarcity: Abundant water resources relative to use) (Source: Comprehensive 

Assessment of Water Management in Agriculture, 2007) 

 

 

Among the introduced water saving rice production techniques, aerobic rice (no flooded 

standing water) and alternate wetting and drying (AWD) were reported to have high water 

productivity with less technical complexity (Farooq et al., 2009). Aerobic rice is grown in well 

drained and non-puddled soil with no standing water (Bouman et al., 2005). The production 

and management methods of aerobic rice resembles to that of conventional rainfed upland rice 

or other irrigated but non-flooded upland crops such as maize, barley and wheat. Aerobic rice 

production can save 60 to 90% of water compared to conventional flooded paddy rice but with 

up to 20-30 % yield reduction (Mostafa and Fujimoto, 2014; Tuong and Bouman, 2003) AWD 

can be described as an irrigation management system since it is a rotation of flooded and non-

flooded period. Depending on the frequency, duration and timing of flooding and drying cycles, 

the degree of water stress during the drying period, water productivity and crop yield of AWD 

system varies (Chapagain et al., 2011). However, the decreased crop yield under water limited 

conditions, which could lead to reduced economic profitability, are reported in all of water 

saving rice production systems, although rice is a crop which can be grown under different 
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water availabilities, ranging from flooded to non-flooded (Bouman and Tuong, 2001; 

International Rice Research Institute [IRRI], 2002).  

 



Water use efficiency of rainfed and paddy rice ecosystem | Bhone Nay-Htoon 

 

6 

 

 

Table I-1 Some of the conventional and water saving rice production systems and their crop management practices 

 

Rice system Typical crop management  Geography Water input Water needs Remark 

Paddy rice (Deep water) 
Flooded and needs a special deep 

water rice variety 
Natural wetlands with deep 

water 
Natural flood - Conventional 

Paddy rice (Irrigated) Flooded with irrigated water Almost everywhere rice can 

be planted 
Rain + Irrigation High Conventional 

Paddy rice (Rainfed lowland) Rain water is ponded following the 

land preparation and rice is 

transplanted in the rain water pond. 

Tropical and subtropical 

regions with high intensity 

of rainfall 

Rain water Medium Conventional 

Paddy rice (Alternate Wetting and Drying) Irrigation is supply intermittently 

depending on soil water status and 

crop water demand 

Almost everywhere rice can 

be planted but regions with 

well-functioning irrigation 

facilities 

Rain+ Irrigation Less Water saving 

paddy rice 

Rainfed rice / Aerobic rice No standing flooded water Almost everywhere rice can 

be planted but favorable to 

the regions with high 

intensity of rainfall. 

Rain water Super less Water saving rice 

as well as 

conventional 

practice 
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1.2 Water use efficiency  
 

As defined in most efficiency concepts, water use efficiency (WUE) is a simple balance 

between the gain (kg of biomass produced or unit CO2 assimilated) and the cost (unit water 

transpired to produce the biomass or to assimilated CO2). Along with the increasing pressure 

on limited fresh water resources, growing population and increasing atmospheric CO2 

concentration, plant physiologists, hydrologists, agronomics and ecologists draw attention to 

maximizing crop water use. Thus, WUE is studied at different spatial (from leaf to whole plant 

to farm to ecosystem) and temporal (from minutes to months to crop growing seasons to years) 

scales (Figure I-3) (Blum, 2009; Bouman et al., 2005; Kuglitsch et al., 2008; Pittelkow et al., 

2013; Zou et al., 2005). 

 

 



Water use efficiency of rainfed and paddy rice ecosystem | Bhone Nay-Htoon 

 

8 

 

 

Figure I-3 Water use efficiency at different temporal and spatial scale. WUEi is intrinsic water 

use efficiency; A is photosynthetic CO2 assimilation; gs is stomatal conductance; T is 

transpiration, WUEc is canopy water use efficiency; Ac is canopy photosynthetic CO2 

assimilation; Tc is canopy transpiration; TBM is total dry biomass; Biomass is dried biomass of 

interest; Yield is the yield of biomass of interest, i.e., grain yield in the case of rice; ET is 

evapotranspiration; NEE is net ecosystem CO2 exchange; GPP is gross primary CO2 exchange. 

When a WUE equation is written directly on the dashed line, that WUE equation is commonly 

used to calculate for both temporal and spatial scales directly above and below the dashed line 

(Adapted from Kuglitsch et al., 2008). 

 

 

At leaf scale, WUE is measured as both short and long time scales. Short temporal scale leaf 

WUE measurements can be done by instantaneous gas exchange measurements. Long temporal 

scale measurements can be done by carbon isotope (13C) analysis of the soluble sugar of the 

leaf or the accumulated leaf dry mass. Short temporal scale leaf WUE is estimated by relating 

the rate of photosynthetic CO2 assimilation (A) to either stomatal conductance (gs) or leaf 

transpiration (T) (Bierhuizen and Slatyer, 1965; Farquhar and Richards, 1984; Fischer and 

Turner, 1978; Osmond et al., 1980). The ratio of A to gs is defined as intrinsic WUE (WUEi) 

and the ratio of A to T is defined as instantaneous WUE (inWUE). Long temporal scale leaf 

WUE can be measured by 13C analysis of accumulated dry mass since 13C discrimination 

(13C) of leaf dry mass is determined by the ratio of sub-stomatal CO2 concentration (Ci) and 

atmospheric CO2 concentration (Ca), which is determined relationship between photosynthetic 

CO2 assimilation (A) and stomatal conductance (gs) (Farquhar and Richards, 1984; Farquhar et 

al., 1989; Werner et al., 2011). Among this three leaf WUEs, A/gs and 13C – the intrinsic WUE 

(WUEi) is mostly applied to determine WUE independent to specific environmental conditions. 

Since the regulation of A/gs is genetic dependent but independent to environmental effects such 

as atmospheric evaporative demands, A/gs and 13C is commonly applied in crop varietal 

screening (Bierhuizen and Slatyer, 1965; Condon et al., 2004; Gago et al., 2014; Galmés et al., 

2011; Rizza et al., 2012). On the other hand, inWUE (A/T) is widely applied to access the leaf 

WUE changes under different environmental conditions since T depends on the degree of 

stomatal opening (gs) and leaf to air vapor pressure deficit (VPD). inWUE is used to access the 

time integral (minutes, hours to day) change in leaf WUE, i.e., accumulated carbon gain and 

transpiration water loss during a certain time period ranging from minutes to day (Medrano et 

al., 2012, 2009; Morison et al., 2008; Rizza et al., 2012). Studying A/gs and A/T at the same 
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time under different environmental conditions such as water limited and non-water limited 

condition can help to understand the genetic and environmental controls over crop water use. 

Although many water use efficient crop varieties are screened based on the leaf water use 

efficiency analysis by leaf gas exchange or 13C measurements, it is reported that water use 

efficiency of a certain crop is hard to define based on leaf scale measurements (Blum, 2009, 

2011). The degree of day light interception by different leaves in a canopy varies depending on 

the location of the leaf and thus photosynthetic CO2 assimilation of leaves in a canopy vary 

significantly (Flexas et al., 2010; Medrano et al., 2012). Hence, water use efficiency of leaves 

in a canopy may vary depending on their specific locations in the canopy and higher leaf water 

use efficiency does not necessarily mean higher canopy WUE (WUEc).  

WUEc is the balance of total biomass production or net CO2 assimilation and transpiration water 

loss of the whole plant canopy and it can be estimated as the ratio of daily-integrated canopy 

CO2 assimilation to canopy transpiration. Daily integrated WUEc can be calculated as the ratio 

of chamber measured canopy CO2 assimilation rate to canopy transpiration (Linderson et al., 

2012).  

The main target of agricultural crop production is the final harvestable yield of the biomass of 

interest, i.e., grain in the case of cereals and boll in the case of cotton. Thus, water use efficiency 

of a crop is also measured as the ratio of crop yield to evapotranspiration (Grain yield / ET) and 

is termed agronomic WUE (WUEagro) (Mo et al., 2009; Pereira et al., 2012; Tallec et al., 2013). 

Although leaf and canopy WUE is calculated as the ratio of carbon or biomass gain per 

transpiration, WUEagro often apply evapotranspiration (the sum of water loss by soil 

evaporation and plant transpiration) as well as transpiration as the denominators depending on 

the interest of study (Blum, 2009). 

Improving the crop water use efficiency of a certain agroecosystem by changing crop 

management practices is widely practiced or recommended in many countries with water 

resource limitations. On the other hand, it is also essential to consider the possible ecosystem 

impacts due to the change in agricultural practices since an agroecosystem is a complex 

network of multiple ecosystem components. All of the system components of an agroecosystem 

are linked to each other and a change in one system component could lead to change in another, 

affecting the sustainability of the agroecosystem (Sakai et al., 2004). Even a slight and short 

time fluctuation of flooded water level in a paddy rice field can alter the carbon and water cycle 

over the rice field (Alberto et al., 2009; Kudo et al., 2014; Miyata et al., 2000; Nishimura et al., 
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2015; Thanawong et al., 2014). For the larger spatial and temporal scales, change in crop, 

tillage, cultivation and management practices affects the seasonal change in PAR-albedo, 

evapotranspiration, carbon uptake and sequestration, emissions and net carbon fluxes (Gordon 

et al., 2008; Luo et al., 2010; Pielke et al., 2007; Sakai et al., 2004; West and Marland, 2002). 

Thus, from a minor to major changes in a certain agroecosystem not only affects the crop 

production but also affects the ecosystem functions of the agroecosystem. Therefore, branding 

a crop variety or a crop production practice as a highly water use efficient variety or practices 

based on the water use efficiency quantified according to the genetic, leaf and crop 

physiological performance might not enough for the agroecosystem sustainability. It is also 

important to see the possible ecosystem impacts due to the changes in physiological and 

agronomic water use. 

WUE of cultivated and natural vegetation are also studied at ecosystem scale from an ecological 

point of view. Since plants are playing an important role in balancing ecosystem carbon and 

water cycle through the photosynthesis and transpiration process (Figure I.4), the influence of 

vegetation land cover on global scale ecosystem carbon and water balance is prominent 

(Kuglitsch et al., 2008). Thus, ecosystem WUE (WUEeco) of vegetation is studied as the ratio 

of ecosystem carbon assimilation of the vegetation to evapotranspiration or transpiration. When 

calculating WUEeco, both gross ecosystem carbon exchange (GPP) (i.e., ecosystem carbon 

fluxes excluding respiratory carbon losses) and net ecosystem carbon exchange (NEE) (i.e., 

ecosystem carbon fluxes including respiratory carbon losses) are used as nominators (Beer et 

al., 2009; Dubbert et al., 2014b; Hu et al., 2009; Kuglitsch et al., 2008; Reichstein et al., 2005). 
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Figure I-4 CO2 exchange in a vegetation system. NEE is net ecosystem CO2 exchange which 

is the net flux of respiratory and photosynthetic CO2 exchange; Reco is ecosystem respiration 

which is the net flux of plant and soil respiration; GPP is gross primary production or the 

photosynthetic CO2 assimilation of the vegetation system. 

 

 

1.3 Productive and unproductive water use partitioning evapotranspiration 
 

Plant transpiration is the water used during the photosynthesis process and it is regarded as 

productive water use. On the other hand, soil evaporative water loss, which is not associated to 

biomass production, is regarded as the non-productive water. Therefore, in comparing the water 

use efficiencies of two different rice ecosystems (rainfed and paddy rice), it will be useful to 

compare the productive and unproductive water use of both systems (Agam et al., 2012; Van 

Halsema and Vincent, 2012). Moreover, it will need to partition the unproductive soil 

evaporation and productive plant transpiration. 

Attempts to partition transpiration and evaporation of both agricultural systems and natural 

vegetation systems were done as early as 1959. A good example of simple partitioning 

approaches is eliminating soil evaporation by covering ground surface (Harrold et al., 1959; 
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Peters and Russell, 1959; Shaw, 1959). Model based partitioning (Ritchie, 1972; Shuttleworth 

and Wallace, 1985; Tanner and Jury, 1976), micro-lysimeter based methods (Boast and 

Robertson, 1982; Walker, 1984), Sap flow measurements based partitioning (Čermák et al., 

1973; Cohen et al., 1993; Cohen et al., 1981; Sakuratani, 1981) and the stable water isotope 

based partitioning method (Cuntz et al., 2007; Dubbert et al., 2014b, 2013; Wang and Yakir, 

2000; Yakir and Sternberg, 2000) are popular and advanced partitioning approaches. Each 

approach has their own benefits and drawbacks. Regardless of differences in spatial and 

temporal scales; differences in modelling procedures; partitioning ET by different ET flux 

modelling approaches apply the same energy and/or water balance theories and need similar 

data input. However, stable water isotope (18O) based ET partitioning is a bit different to afore 

mentioned modelling approaches since this approach partition ET based on the distinct isotopic 

composition of transpired water vapor (18OT) to soil evaporated water vapor(18OE). Due to 

its direct partitioning of ET by tracing distinct 18O signals of E and T, it is regarded as a direct 

partitioning method (Kool et al., 2014) 

Many ET partitioning studies were done on agricultural crops and some on natural vegetation 

and over 50 publications were published (Kool et al., 2014). However, there is few on 

partitioning ET fluxes in the rice ecosystems. In this study, 18O isotope based direct 

partitioning method was applied to partition daytime canopy ET fluxes and compared to the 

PM (Monteith, 1965) and FAO 56 dual crop coefficient (56PM) based partitioning methods. 

Stable oxygen isotope (18O) is used as a tracer to trace the water movement in the ecosystem 

because the 18O composition of water in the soil, vegetation and atmosphere are unique to 

each other (Yakir and Sternberg, 2000). 18O of soil evaporated vapor is depleted compared to 

source water, which is rain water in the case of no additional irrigation, at evaporating site due 

to the kinetic and equilibrium fractionations (Allison et al., 1983; Barnes and Allison, 1984, 

1983; Craig and Gordon, 1965) under isotopic unsteady state condition. However, the water 

vapor transpired from leaf is isotopically similar to that of soil water transported by the root, 

as isotopic fractionation does not occur during the root water uptake. Moreover, leaf water is 

mostly at an isotopic steady state due to the rapid turnover of water in the transpired leaf 

(Ehleringer and Dawson, 1992; Wang and Yakir, 2000). On the other hand, the steady state 

conditions (i.e., 18O of transpiration flux is equal to the 18O of xylem/source water) cannot 

be found under the transient atmospheric changes (Yakir and Sternberg, 2000) and non-steady 

state transpiration is depleted in 18O than the source water (Cuntz et al., 2007; Dongmann et 
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al., 1974; Dubbert et al., 2013). Nevertheless, ET can be partitioned by tracing the distinct water 

isotopic composition of soil-evaporated water vapor and plant transpired water vapor (Figure 

I-5).  

 

 

 

Figure I-5 18O values of water pool and fluxes in the Soil-Plant-Atmosphere Continuum. p 

is 18O of precipitation; s is 18O of soil water;  is 18O of ground water; E is 18O of soil 

evaporation; L,b is 18O of bulk leaf water; x is 18O of xylem water; T is 18O of transpiration 

and v is 18O of atmospheric water vapor (Zhang et al., 2010) 
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1.4 Objectives 
 

Water saving rice production techniques are introduced to adapt water scarcity and to mitigate 

methane (CH4) emission (Dijkstra et al., 2012; van Groenigen et al., 2012, 2011; Yao et al., 

2014; Zou et al., 2005). Contrastingly, agricultural land-use changes such as shifting the 

conventional flooded paddy rice cultivation to the water saving rice-farming impacts further 

on the carbon and water exchange of rice ecosystems. (Alberto et al., 2013, 2009; Kudo et al., 

2014; Nishimura et al., 2015, 2008; Pathak et al., 2005; Sakai et al., 2004; Wang et al., 2000; 

Wassmann et al., 2000). Even in conventional paddy rice system, intensity and timing of 

flooding and drainage regulation influences the seasonal carbon and water balance (Alberto et 

al., 2009; Kudo et al., 2014; Miyata et al., 2000; Nishimura et al., 2015; Thanawong et al., 

2014). Although previous studies reported the differences in ecosystem carbon and water 

balance of paddy and rainfed rice (Alberto et al., 2009; Thanawong et al., 2014), quantification 

of the contribution and seasonal dynamics of the productive (plant transpiration and gross 

primary productivity) and unproductive (respiration and soil evaporation) components of 

ecosystem carbon and water exchange is still lacking. However, such information is very 

important to estimate the possible trade-offs of water saving and conventional paddy rice 

productions from the ecosystem and agronomic perspectives. In addition, it is necessary to 

contrast the water use efficiency of rice from different perspectives. Moreover, according to 

the previous works (Blum, 2009, 2011; Condon et al., 2004; Galmés et al., 2011; Huang et al., 

2010; Luo, 2010; Medrano et al., 2015; Tuong and Bhuiyan, 1999; VanLoocke et al., 2012), 

the leaf scale water use efficiency of a certain crop could not represent well to the canopy or 

agronomic water use efficiency. And the variation between agronomic and ecosystem water 

use efficiency of some crops are also described (for example, Tallec et al., 2013 and Zeri et al., 

2013). Therefore, it is hard to define an agronomic practice and an agroecosystem as a water 

use efficient practice or ecosystem based on the results of a certain water use efficiency 

analysis. Thus, this study on water use efficiency of rice by comparing non-flooded rainfed rice 

and conventional flooded paddy rice was carried out with a general aim: to examine the 

spatiotemporal variation of water use efficiency of rainfed and paddy rice ecosystem. 

To fulfill the general aim of this study, the following specific objectives are laid out: 

1. To estimate the daily evapotranspiration of rainfed and paddy rice by integrating the 

Food and Agriculture Organization of the United Nations modified Penman-Monteith 

model (56PM) and high resolution spatial vegetation indexes 
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2. To quantify the productive water use (Transpiration) and unproductive water loss 

(Evaporation) of two different rice ecosystems and identify the role of productive water 

use (Transpiration), unproductive water loss (Evaporation) as well as respiratory carbon 

loss in the definition of ecosystem and agronomic water use efficiencies 

3. To contrast the limitations of widely applied small-scale water use efficiency indicators 

(i.e., leaf and short temporal scales) for the representation of larger spatiotemporal 

scales water use efficiency (i.e., canopy, agronomic, ecosystem and longer temporal 

scales) 

 

1.5 Outline of the thesis 
 

This thesis is organized in eight chapters and water use efficiency of rainfed and paddy rice is 

distinguished at different scales, from the leaf to the ecosystem, from the hourly, daily to crop 

seasonal time scales. Different factors controlling different water use efficiency are also 

identified. Finally, based on the comparison of crop growth and development and water and 

carbon cycling of the rainfed and paddy rice systems, the needs to improve water use efficiency 

of rice in a profitable and sustainable way are highlighted. The organization of each chapters 

is summarized as follow: 

Chapter 1: Introduction 

This chapter introduces the background and context for the thesis. It introduces the rice 

production practices, gives a general overview of water use efficiency concepts and, the 

partitioning of productive and unproductive water use of the crop. 

Chapter 2: Materials and Methods 

Theoretical background and descriptions of materials and methods applied in the study are 

summarized in this chapter. Crop growth and development measurement, daily and seasonal 

evapotranspiration estimation and field measurements, partitioning of hourly, daily and 

seasonal evapotranspiration by modelling approach as well as stable water isotope (18O) 

approach and different water use efficiency estimation methods are described detail in this 

chapter. 
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Chapter 3: Environmental condition and crop growth 

This chapter presents the environmental condition of the study area, daily and seasonal crop 

growth and development of rainfed and paddy rice. Crop growth and development of rainfed 

and paddy rice is described in terms of leaf area development, biomass distribution, grain yield 

and physiological factors controlling grain yield (i.e., yield components). Classification of crop 

growth and development stages of rainfed and paddy rice is illustrated in this chapter as well. 

Chapter 4: Model development of evapotranspiration 

Detailed model development and improvement of dual crop coefficient 56PM (Penman 

Monteith model modified by Food and Agriculture Organization of the UN) is explained. The 

focus of this chapter is the development of ET model specifically for rice. The specific 

objective (1) is addressed in this chapter. 

Chapter 5: Partitioning evapotranspiration 

Comparing the water use efficiency of two different rice ecosystems, rainfed and paddy rice 

systems, specifically needs to compare productive and unproductive water use of the systems. 

In this chapter, partitioning evapotranspiration by an energy balance modelling approach, 

which is mostly applied in large scale partitioning studies, and stable water isotope (18O) 

partitioning approach, are compared. Daily contribution of productive water use (transpiration) 

and unproductive water loss (evaporation) to evapotranspiration is estimated for rainfed and 

paddy rice ecosystem. The specific objective (2) is addressed in this chapter. 

Chapter 6: Water use efficiency of rainfed and paddy rice 

As the main focus of this study, leaf, canopy, agronomic and ecosystem water use efficiency 

of rainfed and paddy rice are presented in this chapter. Factors controlling each water use 

efficiency term are explained and the needs to balance agronomic and ecosystem water use 

efficiency are pointed out. Moreover, ecosystem carbon and water exchange trade-offs of the 

rainfed and paddy rice ecosystem is highlighted by partitioning productive and unproductive 

water loss. The role of respiratory carbon loss in ecosystem water use efficiency concept and 

the inclusion of respiratory carbon loss in the calculation of ecosystem water use efficiency 

(i.e., WUEeco = Net Ecosystem CO2 Exchange/Evapotranspiration) is evaluated. The specific 

objective (3) is addressed in this chapter. 
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Chapter 7: Discussion and conclusion 

This chapter is a general discussion and overview of the results presented in the chapters 3, 4, 

5 and 6. Moreover, a list of conclusions in relation to the specific objectives and general aim 

of this thesis is provided in the end of the chapter.
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II. Materials and Methods 
 

2.1 Study site 
 

The study was conducted in the Chonnam National University research farm, (35 10' N, 126 

53' E, alt. 33m), Gwangju, Chonnam province, Republic of Korea (South Korea) (Figure II.1). 

Chonnam province is one of the major rice growing regions of South Korea, which has typical 

East Asian monsoon climate with an annual mean temperature of 13.8C and annual mean 

precipitation of ~1391 mm during the past 30 years (1981–2010) (Choi et al., 2013). More than 

60% of precipitation events occurred during the monsoon season (May to October). Both paddy 

and rainfed rice fields have similar soil properties with loamy texture and pH 6.5. Detailed soil 

properties are indicated in table (II-1). 

 

 

 

Figure II-1 Study site location: (a) Location of Gwangju; (b) Experimental site location in the 

Chonnam National University research farm, Gwangju, South Korea. (35 10' N, 126 53' E, 

alt. 33m). 
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Table II-1 Soil chemical and physical properties of study area, Chonnam National University 

research farm, Gwangju, S. Korea. 

Note: * = Soil pH was analyzed from 1:5, soil:water suspension. ** Cation exchange capacity of soil. 

Values were mean values of six replicates and standard errors in Parentheses. 

 

 

 Rice (Oryza sativa L. subsp. Japonica cv. unkwang) was cultivated as rainfed dryland crop 

and flooded paddy crop. In both rainfed and paddy rice fields, N: P: K fertilizer (11:5:6) were 

applied at a rate of N = 115 kgha-1 (80% as basal dosage and 20% during the tillering stage). P 

fertilizer (62 kgha-1) was applied as a 100% basal dosage. K fertilizer (60 kgha-1) was applied 

as 65% basal dosage and 35% during tillering). Rainfed rice was directly seeded on DOY 107 

while paddy rice was transplanted on DOY 140. Before transplanting, paddy rice was 

germinated on the same date with rainfed rice seeding and raised in the nursery for about four 

weeks (Figure II-2). Both paddy and rainfed rice were planted at 10 cm of inter-plant spacing 

and 30 cm of inter-row spacing, at a seed-density of 50.48 kgha-1. All field management 

practices of paddy rice and fertilizer dosages reflected the practices of farmers in the region. 

Paddy rice field was kept flooded starting from 5 days before transplanting until the heading 

stage (late July). Whenever the water level decreased below 5 cm above the soil surface, paddy 

rice field was regularly irrigated until the heading stage. Under rainfed condition, no additional 

irrigation was applied to natural precipitation. The experiment was conducted in a randomized 

complete block design with three replications. Field measurements campaigns were carried out 

on the days mentioned in table (II-2). 
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Figure II-2 Planting of paddy and rainfed rice: (a) Germination of paddy rice in the nursery 

trays; (b) Ready to be transplanted paddy rice seedlings in the nursery; (c) Manual puddling 

and leveling before the transplanting of paddy rice; (d) Machine transplanting of paddy rice; 

(e) Gap filling in the paddy rice field after the machine transplanting; (f) Single row direct 

seeder used for rainfed rice seeding; (g) direct seeding of rainfed rice; (h) pre-emergence 

herbicide application in the rainfed rice field 

 

 

2.2 Environmental variables 
 

Weather data (global radiation, precipitation, air temperature, relative humidity and wind 

speed) were continuously collected at 2 m height with an automatic weather station every five 

minutes (Automated Weather Station, WS-GP1, Delta-T Devices Ltd., UK) and half hourly 

mean values were logged. Photosynthetic photon flux density (PPFD, LI−190, LI−COR, USA) 

was measured directly above the crop canopy (~20 cm above the canopy and inside the 

chamber). Air temperature (Tair) (at ~20 cm above the canopy) inside the chamber was also 

measured by custom-built temperature sensor. Soil temperature at root zone was manually 

measured along with gas exchange measurements using temperature probes (Conrad, Hirschau, 
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Germany). Soil temperature and volumetric water content (5TE and 10HS, respectively, 

Decagon, Washington, USA) were measured continuously at 5, 10, 20, 30 and 60 cm depth in 

each experiment plot. 15 min averaged data from soil temperature sensors were stored in a 

datalogger (Em 50, Decagon, Washington, USA) and 30 min averaged data from volumetric 

soil water content sensors were stored in a second datalogger (CR1000, Campbell Scientific, 

Logan, UT, USA). 

 

2.3 Crop growth and development 
 

2.3.1 LAI and biomass measurements 

 

Above ground biomass of plants adjacent to vegetation plots were harvested. Leaf area (LA) 

was determined with a Leaf Area Meter (LI−3000A, LI−COR, USA) and leaf area index (LAI) 

was calculated as leaf area per ground area. Total aboveground biomass was collected, dried 

(60 °C, 48 hours) and weighed. Plant height of representative plants was manually measured 

every month. Crop yield of paddy and rainfed rice was estimated based on 1000-grain-weight 

of oven dried (moisture percent of dried grain = ~14%) harvested samples (n=6). 1000-grain- 

weight is regarded as a standard and stable parameter for the yield estimation of crop and is the 

total grain weight of the oven-dried 1000 grains (Yoshida, 1981). To limit the errors and 

variations of yield estimation, 1000-grain-weight is used as a standard parameter for the crops 

with smaller grain sizes such as cereals and 100-grain-weight is used as a standard parameter 

for larger grain sizes such as beans and peas. 
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2.3.2 High resolution remote sensing for NDVI of rice fields 

 

An Unmanned Aerial Vehicle (UAV) equipped with Miniature Multiple Camera Array (Mini 

MCA) (Tetracam, Inc., USA) with 450, 550, 650, 800, 830, and 880 nm bands and 10 cm 

ground resolution at 300 m altitude was used. For radiometric calibration of MCA images, 

calibration targets (black, white and gray) and evaluation points (baresoil, cement, asphalt, 

crop) were set up next to the paddy field. A cropscan instrument (Cropscan Inc., USA.) was 

used to calibrate and evaluate the reflectance data obtained by the UAV system, based on the 

pre-installed reflectance points and calibration plates (Figure II-3).  

 

 

 

Figure II-3 Remote sensing with Unmanned Aerial Vehicle. (a) Miniature Multiple Camera 

Array (Mini MCA) with 450, 550, 650, 800, 830, and 880 nm bands and 10 cm ground 

resolution at 300 m altitude; (b) mini MCA mounted on the UAV; (c and d) real time quality 

control of the remote sensing pictures; (e) Calibration plates (black, gray and white); (f) NDVI 

data sampling points (yellow for rainfed rice and green squares for paddy rice) and remote 

sensing data evaluation points (soil (light orange circle), crop (white circle), cement (gold 

circle) and asphalt (dark orange circle). 
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Remote sensing campaigns were carried out at noon of DOY 172, 192, 206, 220 and 233. 

Remote sensing images were analyzed by ENVI software (Exelis Visual Information Solutions, 

Inc., USA.). Three sampling points for each treatment plots of both rainfed and paddy rice were 

used to calculate the normalized difference vegetation index (NDVI) as: 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
 (2.1) 

 

where NDVI is normalized different vegetation index, NIR is near infrared and Red is red 

wavelengths. 

 

2.3.4 Estimation of daily NDVI, LAI and crop yield 

 

Daily NDVI was estimated by combining measured NDVI data and simulated daily crop growth 

and development of rice by the GRAMI crop growth model (for details see Ko et al., 2015, 

2006; Maas, 1993a; Maas, 1993b). Using the environmental data inputs, GRAMI crop growth 

model simulates daily crop growth by calculating growing degree-days, absorption of incident 

radiation energy by leaf, daily increase in above ground biomass, LAI partitioning from 

produced biomass and crop yield estimation. The model was calibrated and validated against 

measured values of the same rice varieties cultivated in 2010 and 2011. Finally, based on the 

relationship between measured LAI and NDVI, daily NDVI was estimated from the simulated 

LAI.  

 

2.4 Canopy gas exchange measurements 
 

Canopy fluxes were measured on canopy vegetation plots (three replications per treatment) 

where soil collars were permanently installed soon after seeding of rainfed and planting of 

paddy rice. CO2 and H2O fluxes of rainfed rice were measured by a custom built open chamber 

constructed according to Pape et al. (2009) and successfully tested by Dubbert et al. (2013). 

H2O flux was measured by a Cavity Ring-Down Spectrometer (CRDS, Picarro, Santa Clara, 

USA) and CO2 fluxes were measured by a portable Infra-Red Gas Analyzer (LI–820, LI–COR, 
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USA). Both carbon and water fluxes were calculated as differential CO2 or H2O concentration 

(i.e., the CO2 or H2O concentration difference between the air samples taken from the chamber 

inlet and outlet).Air inlet to the chamber was stabilized by a buffer bottle (200 L). Outlet air 

from the chamber was pumped to the analyzers via tubes heated up to 38C to avoid 

condensation.  

Because the heavy weight of the open chamber was hard to handle in paddy soil condition, CO2 

fluxes of paddy rice was measured by custom built closed chambers described by Li et al. 

(2008) and Otieno et al. (2012). CO2 fluxes from both chambers did not differ. H2O fluxes were 

only measured in rainfed rice since open and flow-through chamber type was more suited to 

measure H2O fluxes (Dubbert et al., 2014b, 2013; Pape et al., 2009). Ecosystem respiration 

(Reco) was measured by insulated opaque PVC dark chambers on crop canopy. Soil respiration 

(Rsoil) was measured from bare soil plots next to the vegetation plots. Data were collected from 

6:00 hr. to 18:00 hr. in one and a half hour interval. Fluxes were recorded within 10 minutes of 

placing the chambers on soil collar. Diurnal courses of canopy fluxes were recorded during 

four important crop growth stages, namely; seedling (DOY 140 to 170), tillering (DOY 170 to 

180), heading (DOY 200 to 210) and maturity (DOY 210 to 220). 

 

Gross Primary Production was calculated as: 

 

𝐺𝑃𝑃 = (−𝑁𝐸𝐸) + 𝑅𝑒𝑐𝑜 (2.2) 

 

where GPP is gross primary production, NEE is net ecosystem CO2 exchange and Reco is 

ecosystem respiration. Total daytime fluxes were calculated by integrating hourly carbon and 

water fluxes from 6:00 to 20:00 hr. 

 

2.5 Estimation of evapotranspiration of rice field 
 

Evapotranspiration of rainfed and paddy rice field was estimated with a Penman-Monteith type 

ET model modified by the Food and Agriculture Organization of the UN (56PM model) (Allen 
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et al., 1998). In this study, the 56PM model was modified specifically for rice before the 

estimation of daily ET and was reported detail in Chapter 4: Model development for 

evapotranspiration. 

 

2.6 Estimation of daily carbon exchange of rice field 
 

To study seasonal ecosystem water use efficiency of rainfed and paddy rice, daily ecosystem 

carbon fluxes were estimated. Gross primary production was estimated based on the chamber 

measured canopy light use efficiency, daily NDVI and PAR and estimation is based on the 

Monteith (1972): 

   

𝐺𝑃𝑃 =  𝐿𝑈𝐸 × 𝑓𝑃𝐴𝑅 ×  𝑃𝐴𝑅  (2.3) 

 

where GPP is the gross primary production, LUE is the canopy light use efficiency, PAR is the 

incident photosynthetic active radiation (Glenn et al., 2008; Running et al., 2004) and fPAR is 

the fraction of incident to absorbed PAR. fPAR was calculated by NDVI-fPAR model,  

following Choudhury (1987) and Goward and Huemmrich (1992):  

 

𝑓𝑃𝐴𝑅 =
(𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛)(𝑓𝑃𝐴𝑅𝑚𝑎𝑥−𝑓𝑃𝐴𝑅min )

(𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛)
+ 𝑓𝑃𝐴𝑅𝑚𝑖𝑛 (2.4) 

 

where, fPAR is the fraction of incident to absorbed PAR, NDVI is the normalized vegetation 

index of rice field, NDVImin and NDVImax are minimum and maximum NDVI, fPARmax is 0.95 

while fPARmin is 0.001. 

Light use efficiency (LUE) is the ratio of gross primary production to absorbed PAR (Gitelson 

et al., 2014; Glenn et al., 2008; Monteith, 1972; Running et al., 2004) and thus LUE was 

calculated based on chamber measured GPP and absorbed PAR. Absorbed PAR (aPAR) was 

calculated as the product of NDVI derived fPAR (see equation (2.4)) and incident PAR . 
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Daily ecosystem respiration of rainfed and paddy rice was calculated following (Reichstein et 

al., 2002) as:  

 

𝑅𝑒𝑐𝑜 =  𝑅𝑒𝑐𝑜𝑟𝑒𝑓  × 𝑓(𝑇𝑠𝑜𝑖𝑙) × 𝑔(𝑆𝑊𝐶) (2.5) 

 

where g(SWC) is the saturation function (Bunnell et al., 1977a; 1977b; Reichstein et al., 2002); 

Recoref  is reference ecosystem respiration, f(Tsoil) is the function developed by Lloyd and Taylor, 

(1994) as: 

 

𝑓(𝑇𝑠𝑜𝑖𝑙) = 𝑒
𝐸0(

1

𝑇𝑟𝑒𝑓−𝑇0
−

1

𝑇𝑠𝑜𝑖𝑙−𝑇0
)

 (2.6) 

 

where Tref  and T0 are fixed to 15 and -46 C, respectively, Tsoil is the soil temperature at 5 cm 

depth; E0 is the activation energy and was considered as a free parameter. Simulated CO2 fluxes 

were verified by measured CO2 fluxes. 

 

 

2.7 Partitioning evapotranspiration 
 

2.7.1 Partitioning diurnal ET fluxes by 18O isotopes 

 

Sampling and measurement of source water 18O: 18O rain and 18O soil 

 

Rainwater samples for 18O analysis were collected for every rain events throughout the crop 

growing season and samples were kept frozen in glass vials at -20  C until analysis. Soil 

samples (n=3 per each soil profile) for soil water extraction and 18O analysis were collected 

from 5, 10, 30, and 60 cm soil depth on DOY 172, 182, 192, 202, 205 and 218. Soil samples 

were stored in glass vials, immediately sealed with parafilm and kept frozen at -20 C until soil 
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water extraction. Frozen rain and soil water samples were packed in an insulated shipping box 

with ice packs and were transported from S.Korea to Germany within 24 hours. Soil water 

samples were extracted by cryogenic distillation according to (Dubbert et al., 2013).  Soil water 

samples were kept frozen until 18O analysis.  

18O analysis of rain and soil water samples was performed by CO2 headspace equilibration on 

a Micromass Isoprime IRMS (Isoprime Elementar, Hanau, Germany) with micro gas 

autoampler (Micromass, UK). Water samples were equilibrated by He (5.0) with 5% CO2 (5.0) 

for 24 hours at room temperature. For 18O calculation versus VSMOW, three different 

laboratory standards (light = -19.47 ‰, mean = -9.50 ‰ and heavy = 0.79 ‰) were analyzed 

5 times prior to every batch of 10 water samples. Laboratory standards were regularly 

calibrated against VSMOW, SLAP and GISP water standard (IAEA, Vienna). Analytical 

precision was  0.1 %. 

 

18OET, 18OE and water fluxes measurement 

 

A Cavity Ring-Down Spectrometer (CRDS, Picarro, Santa Clara, USA) was used to measure 

water fluxes and 18O isotopic composition of evaporated vapors from baresoil plots and 

canopy vegetation plots (three replications). All the water flux and 18O measurements were 

carried out in the mentioned plots where soil collars were permanently installed soon after 

seeding of rainfed rice, before the first sampling. The CRDS calibration was done three times 

a day using a standards delivery module and vaporizer (SDM, Picarro, Santa Clara, USA) with 

two laboratory standards that were regularly calibrated against VSMOW and SLAP. 

Measurement precision was <0.2‰. Ambient and sampling air (i.e., outlet air from the 

chamber) were measured alternately until stable values were reached, which was <10 min. 

Finally, 5 min interval values were averaged for the calculation of evaporation (E) and 

evapotranspiration (ET) with the gas exchange equations of (von Caemmerer and Farquhar, 

1981). To control the condensation bias over 18OET fluxes measured during the morning, 

18OET data collected at 12:00, 14:00 and 18:00 hours were used to partition evapotranspiration 

of rice. 

Isotope signatures of evaporation and evapotranspiration were calculated by mass balance: 
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𝛿 𝑂18 =
𝑤𝑜𝑢𝑡𝛿𝑜𝑢𝑡−𝑤𝑖𝑛𝛿𝑖𝑛

𝑤𝑜𝑢𝑡−𝑤𝑖𝑛
   (2.7) 

where wout and win are the H2O concentration at outlet of the chamber and ambient air at the 

inlet of the chamber and out and in are their isotope ratios. 

 

Calculation of 18OE, 18OT and T/ET 

 

Vegetation influences on evaporative water isotope signatures of a vegetation system and 18O 

signatures of bare-soil evaporation is reported to be significantly different to that of the soil 

underneath of vegetation (Dubbert et al., 2013; Wang et al., 2014; D. Yakir and Sternberg, 

2000; Zimmermann et al., 1967). Therefore, 18O signatures measured on bare-soil plot cannot 

represent as the 18O signatures of the soil evaporation of a vegetation system (18OE). Thus, 

oxygen isotope signatures of soil evaporation of canopy plot needs (18OE) to be calculated 

although 18OE was measured on bare-soil plot. 18OE bare-soil plot was only used for the 

validation of calculated 18OE of canopy plot. 18OE of canopy plot was calculated following 

Craig and Gordon (1965): 

 

𝑅𝐸 =
1

𝛼𝑘𝛼+(1−ℎ)
(𝑅𝑒 − 𝛼+ℎ𝑅𝑎)  (2.7.1)  

 

where, RE is the ratio of heavy to light water isotope (18O/16O) of evaporated water vapor and 

Re is the isotope ratio of soil water at the evaporating site, which is the isotope ratio of extracted 

soil water. Ra is the isotope ratio of ambient water vapor. k is the kinetic fractionation factor 

and + is the equilibrium fractionation factor (αk and α+ > 1; Majoube, 1971; Merlivat, 1978). 

δ18OT was calculated based on stable water isotope signature of leaf water at the evaporating 

sites (δ18Oe). Following Dongmann et al. (1974) (see also Cuntz et al., 2007; Dubbert et al., 

2014), 18OT was calculated as an iterative solution of the ordinary differential equation for leaf 

water at the evaporating sites in non-steady state (equation 2.7.2). 
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𝑅𝑒 (𝑡 + 𝑑𝑡) =  𝑅𝑐 + (𝑅𝑒(𝑡) −  𝑅𝑐)𝑒
− 

𝑔𝑡𝑤𝑖
𝛼𝑘𝛼+𝑉𝑚

𝑑𝑡
 (2.7.2) 

where, Re (t + dt) is the isotope ratio of leaf water at the evaporating sites at time t + dt, Re(t) 

is the isotope ratio of leaf water at the evaporating sites at time t. gt is total conductance (mol 

m-2 s-1) calculated based on canopy temperature, wi is the humidity in the stomatal cavity, i.e., 

vapor saturation at leaf temperature (mol H2O mol air-1), Vm the mesophyll water volume (mol 

m-2), where gravimetric estimates of lamina water volume were used, k and a+ are the kinetic 

and equilibrium fractionation factors, respectively. Rc is the Craig and Gordon steady-state 

isotope ratio at the evaporating sites, i.e., Eq. (2.7.1) rearranged for Re with the isotope ratio of 

xylem. Rx was estimated by the source water isotopic ratio, i.e., soil water isotopic ratio 

assuming there was no fractionation during soil water uptake.  Finally, the isotopic signature 

of plant transpiration was calculated by using the Craig and Gordon formulation (see Eq. 

(2.7.1)) after assuming Re as the isotopic signature of leaf water at the evaporating sites in the 

non-steady-state. 

After the calculation of 18OE and 18OT of rice canopy, contribution of transpiration to 

evapotranspiration (T/ET = ft) was calculated as: 

 

𝑓𝑡 =
𝛿 𝑂𝐸𝑇−18 𝛿 𝑂𝐸

18

𝛿 𝑂𝑇−18 𝛿 𝑂𝐸
18  (2.7.3) 

 

2.7.2 Daily ET partitioning  

 

Daily ET calculation is explained detail in Chapter 4. To partitioning daily ET to canopy 

transpiration and evaporation, canopy transpiration (T) was calculated by Penman Monteith 

(1965) equation but used the net radiation at the height of the crop canopy (RnsC) instead of net 

solar radiation (Rn).  

 

𝜆𝑇 =  
∆(𝑅𝑛𝑠𝐶−𝐺)+((𝜌𝐶𝑝(𝑒𝑠−𝑒𝑎))/𝑟𝑎

∆+𝛾(1+(
𝑟𝑐
𝑟𝑎

))
  (2.7.4) 
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where T is the canopy transpiration, λ is the latent heat of vaporization of water vapor,  is the 

slope of the saturation vapor pressure temperature relationship, Rn is the net radiation, G is the 

soil heat flux, es-ea is the vapor pressure deficit of the air,  is the mean air density at constant 

pressure, Cp is the specific heat of the air, ra is aerodynamic resistance, rc is the canopy 

resistance which was calculated based on measured leaf resistance and  is the psychrometric 

constant. To estimate RnsC, incoming net radiation (Rn) was partitioned into RnsC (net radiation 

intercepted by crop canopy) and Rnss (residual net radiation reaching the soil surface). Rnss was 

calculated according to Beer’s law (Zhou et al., 2006): 

 

𝑅𝑛𝑠𝑠 = 𝑅𝑛 ∗ exp (−𝐶𝑟𝐿𝐴𝐼) (2.7.5) 

where Cr is the extinction coefficient of the vegetation for net radiation and is in the range of 

0.5 to 0.7; 0.6 was applied in our case (Kelliher et al., 1995; Mo et al., 2004). 

 

2.8 Crop water use efficiency of rice 
 

In the search of profitable water saving rice production practices, the ratio of leaf’s 

photosynthetic carbon assimilation rate to water loss (leaf water use efficiency) is regarded as 

a physiological yardstick to define the water use efficiency of a certain crop. On the other hand, 

for the water use efficiency of the crop under the real field situation, the ratio of biomass 

production per water use (agronomic water use efficiency) is another yardstick to define the 

water use efficiency (Alberto et al., 2013; Luo, 2010; Tuong and Bhuiyan, 1999). Moreover, 

the importance of rice production on global carbon and water cycling process is increasing 

(Kim et al., 2013; Lindner et al., 2015), demonstrating both the agronomical and ecological 

importance of rice worldwide. Therefore, considering water use efficiency from an ecological 

viewpoint (ecosystem water use efficiency (WUEeco) is equally important specifically under 

global climate change scenarios (Tallec et al., 2013; Zeri et al., 2013). To fulfil the aim of this 

study, water use efficiency of rainfed and paddy rice were calculated at leaf, canopy, agronomic 

and ecosystem scales and at short-temporal and long-temporal scales. 
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2.8.1 Leaf water use efficiency 

 

Leaf gas exchange measurement 

 

To calculate leaf water use efficiency, maximum photosynthetic CO2 assimilation (Amax) and 

transpiration (T) of an uppermost fully expanded leaf (at controlled leaf cuvette 

microenvironment at CO2 concentration of 400 μmol mol-1 and PAR of 1500 μmol m-2 s-1) was 

measured at different growth stages by portable gas exchange analyzer (GFS-3000, Heinz Walz 

GmbH, Effeltrich, Germany). Based on measured Amax and T, instantaneous water use 

efficiency (inWUE), which is governed by environmental conditions, was calculated as the 

ratio of Amax to T. Moreover, intrinsic water use efficiency (WUEi) which is a genetically 

defined water use efficiency of a plant and which is widely applied in the selection of higher 

water use efficient crops, was calculated as the ratio of measured maximum assimilation rate 

(Amax) to stomatal conductance (gs). Measurements dates are provided in Table (II-2).  

 

13C analysis and integrated leaf WUE estimation 

 

Development stage integrated leaf WUE was estimated based on 13C analysis of the leaf 

drymass of the whole canopy, i.e., leaves including the leaf sheaths, which was harvested at 

different crop growth stages. 13C discrimination (13C) of leaf drymass is determined by the 

ratio of sub-stomatal CO2 concentration (Ci) and atmospheric CO2 concentration (Ca), which is 

linked to the photosynthetic CO2 assimilation (A) and stomatal conductance (gs) of leaf 

(Farquhar and Richards, 1984; Farquhar et al., 1989). Thus, at the end of every leaf and canopy 

flux measurement campaigns, leaves over the whole canopy were harvested (n=3 to 8) and 

frozen under -20 C until they were freeze-dried by the vacuum freeze drier (SFDSF24, 

Samwon freezing co., Seoul, Korea). Freeze-dried leaf samples of the whole canopy were 

milled and samples were kept in exetainer until bulk leaf 13C was determined by IRMS 

(Isoprime Elementar, Hanau, Germany) with elemental analyzer. 13C Kauri wood (IAEA No. 

298) as laboratory standard and Acetanilide (Carlo Erba Instruments Cod. 338 367 00) as C/N 

concentration laboratory standard were analyzed three times every ~10 samples. Measurements 

of 13C are referenced to Pee Dee Belemnite (PDB). 



Water use efficiency of rainfed and paddy rice ecosystem | Bhone Nay-Htoon 

 

 

32 

 

 

Growth stage integrated intrinsic WUE (WUEi_
13C) of rainfed and paddy rice were determined 

based on stable isotopic discrimination of rice leaves (including the leaf sheaths) (13C). 13C 

was calculated from bulk leaf 13C analyzed from the freeze-dried leaf samples of the whole 

canopy harvested at different crop growth stages throughout the season.  

 

2.8.2 Ecosystem and canopy water use efficiency 

 

WUEeco is defined as the ratio of gross primary production (GPP) to evapotranspiration (ET) 

(equation 2.8.2).  

 

𝑊𝑈𝐸𝐺𝑃𝑃 =
𝐺𝑃𝑃

𝐸𝑇
 (2.8.2) 

 

Ecosystem WUE can also defined as the ratio of net ecosystem carbon exchange (NEE) to ET 

(equation 2.8.3). 

 

𝑊𝑈𝐸𝑁𝐸𝐸 =
𝑁𝐸𝐸

𝐸𝑇
 (2.8.3) 

Although it is reported to include vapor pressure deficit effects on WUE (Beer et al., 2009; 

Dubbert et al., 2014b), there was any VPD effects on WUE during our monsoon 2013 field 

study in S. Korea. WUEeco calculated after including VPD effects and excluding the VPD 

effects were no different (Data not shown). Thus, the VPD effects were excluded in equation 

(2.8.2 and 2.8.3). 

 

2.8.3 Agronomic water use efficiency 

 

Agronomic WUE (WUEagro) is defined as the ratio of biomass production (grain yield) per 

amount of evapotranspiration (ET) (equation 2.8.4). 
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𝑊𝑈𝐸𝑎𝑔𝑟𝑜 =
𝑔𝑟𝑎𝑖𝑛 𝑦𝑖𝑒𝑙𝑑

𝐸𝑇
 (2.8.4) 

 

All different WUE calculations were summarized in the table II-3. 

 

2.9 Statistical Analysis 
 

Two statistical tests were used to evaluate the model performance of daily NDVI, LAI, ET, GPP 

and Reco simulation: i) root mean square error (RMSE, equation 2.8.5) and ii) model efficiency 

(ME, equation 2.8.6) (Nash and Sutcliffe, 1970). 

 

𝑅𝑀𝑆𝐸 =  [
1

𝑁
∑ (𝑆𝑖 − 𝑀𝑖)2𝑛

𝑖=1 ]
1

2⁄
 (2.8.5) 

where, RMSE = root mean square difference, Si = the ith simulated value, Mi = the ith measured 

value, and n = the number of data. 

 

𝑀𝐸 =  1 −
∑ (𝑆𝑖−𝑀𝑖)2𝑛

𝑖=1

∑ (𝑀𝑖−𝑀𝑎𝑣𝑔)2𝑛
𝑖=1

 (2.8.6) 

where, ME = Nseff model efficiency, Si = the ith
 simulated value, Mi = the ith measured value, 

Mavg = the averaged measured value, and n = the number of data.  

 

To test for a relationships between daily average environmental variables (Radiation, Tair, Tsoil, 

VPD, SWC) and measured canopy fluxes (sum of day time NEE, GPP, Reco, ET), a Spearman 

rank order correlation was performed. To compare the water use efficiencies of the rainfed rice 

and paddy rice, the normality of all of WUEs and WUE component data were tested by Shapiro-

Wilk test. When the data is normally distributed, t-test was performed and otherwise, 

Wilcoxon-Mann-Whitney Rank Sum test (a non-parametric ANOVA) was performed. All 

statistical analysis were performed using R statistical software version 3.1.2 (R Core Team, 

2014). 
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Table II-2 Field measurements campaigns carried out in 2013. 
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Table II-3 Different water use efficiency calculation methods applied in this study 
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Table II-4 Different water use efficiency calculation methods applied in this study (Continued) 
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III. Environmental condition and crop growth 
 

3.1 Meteorological conditions of the study site 
 

3.1.1 General meteorological conditions 

 

The weather condition of the study area generally followed the typical East Asian temperate 

monsoon climate system. Annual total rainfall of 1332 mm in 2013 was less compared to 30 

years annual average of 1391 mm (1981-2010) (Choi et al., 2013). There was a dry period with 

almost no rainfall between DOY 190 and 235, which resulted in very low (0.18 m3m-3) 

volumetric soil, water content. However, because of high intensity of some rain events, the 

total precipitation, 972.6 mm of rice growing season (i.e., May to September) was above the 

mean of 30 years total precipitation, 799.2 mm. Daily solar radiation reached its annual 

maximum, 26.9 MJm-2d-1, in May but onward from the end of June, daily solar radiation 

declined, as low as 2.0 MJm-2d-1 in July with 5 (1.8) sunshine hours per day. Mean, minimum 

and maximum air temperature (Tair) during rice growing season were 23.4 C, 13.9 C (May) 

and 28.8 C (August), respectively. The highest daytime relative humidity (RH) was 98.31 %, 

occurring in August and the lowest daytime RH, 51.73 % in May. Minimum and maximum 

wind speed was 0.3 (May) to 2.37 ms-1 (July) (Figure III- 1a, 1b, 1c). 

Under paddy rice condition, water availability was not limited as irrigation was supplied while 

rainfed rice had two significant dry periods due to the lack of precipitation. The first dry period 

was reported in between DOY 190 and 205, during the last stage of panicle initiation (Booting) 

and the second dry period was reported in between 215 and 235, during the flowering stage. 

Both dry periods happened during the critical crop growth stages, which are reported as the 

most susceptible growth stages to water stress. Despite of those two dry period, rainfed rice 

also had enough water supply due to high intensity rain events in monsoon 2013.  

An increase in air temperature (Tair) was reported during the dry period (between DOY 190 

and 235, Figure III-1). Tair during that period was the highest of monsoon rice growing season 

2013. 
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Figure III-1 Meteorological conditions during monsoon 2013. (a) daily averages of wind speed 

(ms-1) and relative humidity (%); (b) daily averages of air temperature (C) and radiation (Mjm-

2d-1); (c) daily total rainfall (mmd-1) and daily average volumetric soil water content at 5cm 

depth (m3m-3). Note: Volumetric soil water content data is not available starting from the day of year 221 as 

the volumetric soil water sensors were uninstalled from the site of study, to ship back to Bayreuth.   
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3.2 Crop growth and development of rainfed and paddy rice 
 

3.2.1 LAI, plant height and biomass development 

 

Both rainfed and paddy rice had similar trends of LAI although rainfed rice showed slightly 

lower LAI from the end of June onwards (Figure III-2, black and white circles). The peak 

growth for both rainfed and paddy rice was in the end of July with a maximum plant height of 

0.80  0.97 m and 0.89  0.66, and LAI of 2.97  1.21 m2m-2and 3.29  0.65 m2m-2, respectively 

(Table 3.1). Seasonal trend of LAI was simulated for the field scale and seasonal LAI was the 

mean LAI of the whole rice field. Thus, variation between mean LAI of the field and   calculated 

based on the biomass harvest was noted. Seasonal LAI and plant height of both paddy and 

rainfed rice differed significantly (LAI: W=101, p < 0.001; plant height: W= 93, p < 0.001; 

n=6). Field measured LAI fitted well to the simulated daily values by GRAMI crop growth 

model (R2 = 0.76 and Nseff ME=0.65).   

 

Table III-1 Measured mean leaf area index and plant height of rainfed and paddy rice (n=6  

SD) 

 

 

Crop growth and development of rice is classified in three stages (International Rice Research 

Institute classification): vegetative, reproductive and maturity stage or four stages (Food and 

Agriculture Organization classification): initial, crop development, mid-season and late season 

stage. Seasonal crop development of rainfed and paddy rice was shown in figure III-2. Both 

rainfed and paddy rice were seeded on the same date but rainfed rice was directly seeded in the 
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field while paddy rice was seeded in the nursery under controlled environment. Germination 

of rainfed rice took almost 20 days while paddy rice took less than 10 days. As the transition 

of initial crop growth stage to crop development stage is classified by the initiation of panicle 

primordium, initial growth stage of paddy rice was 10 days shorter than that of rainfed rice. As 

shown in figure III-2, the biomass development (leaf area and stem elongation) changed rapidly 

during crop development and mid-season stages (in June and July) which resulted a significant 

LAI and biomass weight differences between the start and end of the crop growth stage. Paddy 

rice developed faster than rainfed rice showing earlier panicle initiation, heading and flowering. 

Paddy rice started grain filling at around DOY 210 while rainfed rice grain filled at around 

DOY 215, five days later than paddy rice. Rainfed rice had shorter crop-development and Mid-

Season stage compared to paddy rice (5 days shorter) However, both rainfed and paddy rice 

reached maturity almost at the same time. 
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Figure III-2 Seasonal leaf area index, crop growth and development of (a) rainfed and (b) 

paddy rice. Crop growth stages were classified according to International Rice Research 

Institute (IRRI) and Food and Agricultural Organization (FAO). IRRI classified rice crop 

growth as vegetative, reproductive and maturity stages while FAO classified Initial stage (IS), 

Crop development (CD), Mid-Season (MS) and Late-Season (LS) stages. Numbers above the 

pictures were day of year of photo-shoot. 
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During the late-season stage, on DOY 240, total biomass of rainfed and paddy rice was 

harvested, dried and compared (Figure III.3). Similar to LAI, plant height and crop 

development of rainfed and paddy rice, total dry weight (rainfed rice = 16.62  1.56 tha-1; 

paddy rice = 18.13 1.17 tha-1) was also significantly different (W = 138, p < 0.05). Higher 

total dry weight in paddy rice was mainly due to its significantly higher stem weight (W=94, p 

< 0.05) and slightly higher grain weight (W=26, p = 0.24). Higher root shoot ratio was also 

observed in the rainfed rice (0.28) compared to paddy rice (0.19). 

 

 

Figure III-3 Biomass distribution of rainfed and paddy rice. Biomass sampling was done 

during the late season stage.  (n=3 - 8, SD). 

 

3.2.2 Crop yield and Yield components 

 

Grain yield of rice is defined by genetically fixed physiologic factors, environmental conditions 

and resource use limitation. Crop yield of rice depends on the so-called yield components 

(number of panicles, number of spikelets and percentage of filled-grain and 1000 grain weight) 

which are genetically fixed parameters for a certain rice variety and which govern rice grain 

yield. Yield components of a certain rice variety should not vary significantly except the slight 

variations due to other factors such as microclimatic, resource availability, pest and diseases. 
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All of the yield components and grain yield of rainfed rice were not significantly different 

(Table III-2) as the same rice variety (Unkwang) was planted under rainfed and paddy 

conditions. However, rainfed had slightly higher number of panicle per square meter and 1000-

grain-weight with lower number of spikelet per square meter and filled grain percent. Grain 

yield was also not significantly different but paddy rice was slightly higher than that of rainfed 

rice (only 9.53 % higher).  

 

Table III-2 Statistics for yield components and grain yield of rainfed and paddy rice (n=3 to 8, 

 SD). Wilcoxon-Mann-Whitney Rank Sum test was performed to test the differences between 

rainfed and paddy rice. W and p are test statistics of Wilcoxon-Mann-Whitney Rank Sum test. 

 

 

 

3.3 Summary 
 

Although rainfed rice had longer initial growth stage due to the lower soil temperature (15.31 

to 20.22 C) during the germination period, it flowered and matured within the same period 

with paddy rice. Crop growth and development of rice was rapid in both rainfed and paddy 

condition and LAI of the starting point of a growth stage significantly different to that of end 

of that stage. LAI, plant height and total biomass dry weight of paddy rice was higher than that 

of rainfed rice. Yield components and grain yield of paddy and rainfed rice were not 

significantly different although rainfed rice had 9.53 % lower grain yield compared to paddy 

rice.  

 



 

 

 

 

4 
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IV. Model development for evapotranspiration 
 

4.1. Estimation of evapotranspiration 
 

Evapotranspiration can be estimated by monitoring the exchange of energy/water above the 

vegetated surface (for example, eddy covariance systems, canopy chamber measurements), or 

by means of hydrological balance (Lysimeters, soil water budget) (Kool et al., 2014). Knowing 

the ET of a certain crop, in other words, crop actual water use, can improve irrigation water 

management and reduce unnecessary water loss. Therefore, models estimating ET have been 

developed since the early 1950s.  

Penman (1948) developed the first evaporation model for open water, bare soil and grass. 

Following Penman’s work, Monteith (1965) modified the model by combining crop 

physiological aspects to Penman’s purely physical model (Ziemer, 1979). Since then, Penman 

Monteith (1965)’s so called “one layer PM model” is widely applied to estimate 

evapotranspiration. Following the Penman Monteith (1965), the Food and Agriculture 

Organization developed a simplified Penman Monteith model. The FAO modified Penman 

Monteith model is described detail in the FAO’s irrigation and drainage paper (No. 56) and 

thus the model is called as FAO 56 PM or 56PM and widely applied by agronomists (Allen et 

al., 1998) (Equation 4.1). The 56PM estimates ET based on the reference crop 

evapotranspiration (ET0)  multiplied to the sum of the transpiration coefficient (Kcb) and a 

evaporation coefficient (Ke) of the crop of interest (Alberto et al., 2011, 2014; Allen et al., 

1998; Payero and Irmak, 2013). 

 

𝐸𝑇 = (𝐾𝑐𝑏 + 𝐾𝑒) × 𝐸𝑇0 (4.1) 

 

where ET is the crop evapotranspiration, Kcb is the transpiration coefficient equivalent to the 

ratio of transpiration to potential evapotranspiration, Ke is the evaporation coefficient 

equivalent to the ratio of soil evaporation to potential evapotranspiration, ET0 is the reference 

evapotranspiration. The FAO 56 PM ET model (equation 4.1.) firstly calculate 

evapotranspiration for a well-watered and healthy reference grass or alfalfa crop by applying 

fixed physiological parameters for grass and alfalfa. Thus, evapotranspiration of reference 
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grass or alfalfa is termed as reference crop ET (ET0). Later, ET for the crop of interest is 

estimated multiplying ET0 and the crop coefficient of the crop of interest and its respective 

growth stage. The FAO 56 PM model has two approaches of crop ET estimation: single crop 

coefficient (Kc) approach, in other words, an evapotranspiration coefficient approach and a dual 

crop coefficient (Kcb) approach, where ET coefficient is accounted separately into a 

transpiration coefficient (Kcb) and a soil evaporation coefficient (Ke) (Allen et al., 1998). 

 

4.1.1 Reference crop ET (ET0) 

 

As pointed out above, the reference crop ET (ET0) is the evapotranspiration of a reference crop, 

which is a well-managed and watered grass or alfalfa. ET0 estimation can be done by 

parameterization of the classical Penman - Monteith (1965) model. Models such as Priestley 

and Taylor (1972) (PT) and Makkink (1957) (Mk) simply multiply the microclimatic factors 

with dimensionless empirically derived correlation coefficients. The Mk and PT are ET0 

estimations based on energy budget concept while the 56PM is based on combination of the 

plant physiological and energy budget concepts. The 56PM (Allen et al., 1998) parameterizes 

all crop factors such as canopy resistance or aerodynamic resistance by applying measured 

standard values of the reference crop (grass in this study) following all the calculation steps of 

the classical Penman-Monteith (1965).  

As ET of a certain crop is estimated based on the reference crop ET (ET0), the precision of ET 

estimation depends on how well reference crop ET (ET0) is estimated. Thus, different reference 

crop ET (ET0) models were tested in this study, namely: 1)the 56PM model which is a highest 

data demanding method among the simplified PM type ET models; 2) the Priestley –Taylor 

model (PT) which only needs radiation, temperature and relative humidity, and 3) the 

Makkink’s model (Mk) which also needs the same data as the PT. 

 

Estimation of ET0 by the 56PM model (1998) 

 

Reference crop evapotranspiration of a grass cropped surface was calculated by the 56PM 

model (56PM), which is a modified version of the Penman-Monteith (1965) ET model (Allen 

et al., 1998): 
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𝜆𝐸𝑇0 =  
∆(𝑅𝑛−𝐺)+((𝜌𝐶𝑝(𝑒𝑠−𝑒𝑎))/𝑟𝑎

∆+𝛾(1+(
𝑟𝑐
𝑟𝑎

))
 (4.1.1) 

where ET0 is reference crop evapotranspiration, λ is the latent heat of vaporization of water 

vapor,  is the slope of the saturation vapor pressure temperature relationship, Rn is the net 

radiation, G is the soil heat flux, es-ea is the vapor pressure deficit of the air,  is the mean air 

density at constant pressure, Cp is the specific heat of the air, ra is the aerodynamic resistance, 

rc is the canopy resistance and   is the psychrometric constant.  

The parameterization of the 56PM is done by assuming a reference grass crop of 0.12 m height 

with a canopy resistance of 70 sm-1 and albedo of 0.23. Based on that assumption, aerodynamic 

resistance (ra) to vapor, heat and momentum transfer from the crop canopy at the standardized 

height of 2 m above the crop canopy which is 0.12 m height is calculated. 

 

𝑟𝑎 =
𝑙𝑛(

𝑧𝑚−𝑑

𝑧0𝑚
)(𝑙𝑛(

𝑧ℎ−𝑑

𝑧0ℎ
))

𝑘2𝑢2
=  

208

𝑢2
  (4.1.2) 

 

where ra is aerodynamic resistance (sm-1) at 2 m height, zm is height of wind speed measurement 

(m), zh is height of humidity measurements, zom is roughness length governing the momentum 

transfer (m) which is 0.123h according to Allen (1998), zoh is roughness length governing the 

heat and vapor transfer (m) which is 0.1zom according to (Allen et al., 1998), k is von Karman’s 

constant (0.41) and u2 is wind speed at 2 m height. 

Canopy resistance of grass reference crop is calculated by equation (4.1.3) by assuming a crop 

height of 0.12 m, stomatal resistance of a single leaf of 100 sm-1.  

 

𝑟𝑐 =
𝑟𝑙

𝐿𝐴𝐼𝑎𝑐𝑡𝑖𝑣𝑒
≈ 70 𝑠𝑚−1 (4.1.3) 
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Where rc is canopy resistance (sm-1), rl is resistance of a grass leaf (sm-1) and LAIactive is sunlit 

leaf area index. 

Finally, the parameterized 56PM model to calculate ET0 of grass reference surface (equation 

4.2) can be described as: 

 

𝐸𝑇0 =  
0.408∆(𝑅𝑛−𝐺)+𝛾

900

𝑇+273
𝑢2(𝑒𝑠−𝑒𝑎)

∆+𝛾(1+0.34𝑢2)
  (4.1.4) 

where ET0 is reference crop evapotranspiration,  is the slope of the saturation vapor pressure 

temperature relationship, Rn is the net radiation, G is the soil heat flux which is zero at daily 

ET calculation (Allen 1998), es-ea is the vapor pressure deficit of the air, ra is aerodynamic 

resistance, rc is the canopy resistance and  is the psychrometric constant.  

 

Estimation of ET0 by the Priestley and Taylor’s model (1972) 

 

Limitations of the 56PM ET0 model are the need of multiple climatic data and canopy resistance 

parameterization and better estimation of ET depends on quality and availability of climatic 

data (Allen 2006). Thus, in case of limited climatic data availability, other ET0 models which 

could perform as well as 56PM needs to be tested. The Priestley and Taylor (1972) (PT) 

proposed a reference evapotranspiration model (ET0) which main input parameters are net 

radiation, temperature and relative humidity. 

 

𝐸𝑇0 =  𝛼 ∗
∆ 

∆+𝛾
∗ (𝑅𝑛 − 𝐺)  (4.1.5) 

 

where =1.26, which is empirically determined dimensionless correlation,   is the slope of 

the saturation vapor pressure temperature relationship, Rn is the net radiation, G is the soil heat 

flux and  is the psychrometric constant. The PT model is widely applied in the case of 

unavailability of meteorological variables needed for the 56PM model, such as wind speed 
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Estimation of ET0 by the Makkink’s model (1957) 

 

Reference crop evapotranspiration of a grass cropped surface (ET0) was calculated by the 

Makkink model (Makkink, 1957): 

 

𝐸𝑇0 =  0.61 ∗
∆ 

∆+𝛾
∗

𝑅𝑠

2.45
− 0.12  (4.1.6) 

 

where  is the slope of the saturation vapor pressure temperature relationship, Rs is the solar 

radiation and  is the psychrometric constant.  

 

The 56PM modifications 

 

The tendency of underestimation of the 56PM model has been reported and the fixed rc value 

of 70 sm-1 is considered as a possible reason (Rana et al., 1994; Steduto and Hsiao, 1998; 

Steduto et al., 2003, 1997; Todorovic, 1999; Ventura et al., 1999; Zhao, 2014). Allen et al. ( 

2006) argued to keep using rc = 70 sm-1 for daily ET0 calculations. However, studies on 

irrigated grassland in different locations across the world observed an rc range from 10 to 130 

sm-1 (Katerji and Rana, 2006), highlighting the need of localized and case specific 

parameterization of canopy resistance (rc) as recommended by Monteith, 1965. Thus, the 56PM 

model (equation 4.5) was modified by replacing the recommended rc value (70 sm-1) with 80, 

100 and 120 sm-1. 56PM model modified with new rc values were named as: m56PM80, for the 

56PM model with fixed rc= 80 sm-1; m56PM100 for the 56PM model with fixed rc= 100 and 

m56PM120 for the 56PM model with fixed rc= 120. 

 

Estimation of the ET0 specifically for rice: m56PMmrc 

 

As rice is one of the most economically important crop and a major agroecosystem of global 

land cover, a better ET0 estimation specifically for the rice is needed. In other words, better ET0 
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estimation of well-watered rice is necessary for the better estimation of actual 

evapotranspiration of rice or at least for the better estimate of potential evapotranspiration of 

rice. Thus, instead of the hypothetical parameters for a grass canopy provided by the 56PM, 

measured crop physiological parameters (leaf resistance to water vapor transfer, plant height 

and LAI) for well-irrigated and healthy rice were applied to estimate reference crop 

evapotranspiration of rice. 

 

4.1.2 Performance of different ET0 models 

 

The accurate estimate the reference crop ET (ET0) is the key for the best estimation of actual 

evapotranspiration (ET). Hence, different ET0 estimation methods were compared, evaluated 

to select the best-performed ET0 estimation method. Reference crop ET was estimated by the 

Makkink (1957) (Mk), the Preistley-Taylor (1972) (PT), the FAO 56PM (1998) (56PM), the 

modified 56PM models (m56PM80, m56PM100, m56PM120) and evaluated the best estimate by 

comparing with the m56PMmrc model which estimated reference crop ET of rice while the rest 

estimate that of reference grass. All models (Mk, PT, 56PM, m56PM80, m56PM100, m56PM120 

underestimated ET0 compared to m56PMmrc which used healthy and well-maintained rice as 

reference crop. The Mk performed better than other models (R2=0.63, SE=0.39, p<0.05). Out 

of six different test models, the PT overestimated ET0 compared the 56PM model with 

measured rc (m56PMmrc) (R2=0.53, SE=0.46, p<0.05). For the classical FAO 56 reference ET 

estimation for paddy rice, applying fixed rs value at 120 sm-1 (m56PM120) improved the 

reference ET estimation rather than using the recommended value, 70 sm-1. 
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Table IV-1 Correlation coefficient between conventional reference crop evapotranspiration 

(ET0, grass as reference crop) models and ET0 model modified specifically for rice (healthy, 

well-irrigated rice as reference crop). R2 is determination of coefficients, SE is standard error, 

SD is standard deviation, p (t-test) is level of significant of the test, ET0 ratio is the ratio of rice 

crop ET0 and grass reference crop ET0, and Ranking is model performance ranked according 

to the ratio of m56PMmrc ET0 to other ET0. 

 

 

4.2 Crop coefficients 
 

4.2.1 Basal crop coefficient (Kcb): The FAO recommended Kcb 

 

In the FAO 56 dual crop coefficient approach of Allen et al. (1998), the basal crop coefficient 

or transpiration coefficient (Kcb) is calculated based on seasonal change in vegetation ground 

cover. Estimates of Kcb for several crops including rice is provided as a Kcb curve with four 

growth stages (initial, development, mid-season, and late season) and it is recommended to use 

the estimated Kcb values after specific climatic adjustment:  

 

𝐾𝑐𝑏 = 𝐾𝑐𝑏 (𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑) + [0.04(𝑢2 − 2) − 0.004(𝑅𝐻𝑚𝑖𝑛 − 45)] (
ℎ

3
)

0.3
  (4.2.1) 
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where, Kcb (Recommended) is the recommended Kcb values for rice provided in the FAO irrigation 

and drainage paper 56, u2 is the growing season mean daily wind speed at 2 m height, RHmin is 

the growing season minimum value of RH and h is the growing season mean plant height.  

Although the FAO 56 does not recommend adjusting Kcb for the initial growth stage, initial Kcb 

adjustment was also done in this study because of the use of younger seedlings. Transplanting 

younger seedlings (10 days after the germination), suspected to have lower initial Kcb than 

recommended values which are derived from paddy fields transplanted with seeding at older 

age (between 20 and 30 days after germination).  

 

Table IV-2 The FAO56 recommended basal crop coefficients (Kcb) and adjusted Kcb by climatic 

conditions at the site of study by equation 4.2.1. 

 

 

The FAO 56 recommended developing a Kcb value for the whole period of each growth stage 

as its Kcb value is mean value for the whole growth stage, i.e., Kcb initial is the mean Kcb value 

of the whole initial growth stage. Therefore, the FAO recommended Kcb curve (Basal crop 

coefficient curve) can be developed by a simple integration of the initial, mid-season and late-

season Kcb values in table IV.2. However, as mentioned in section (3.2), LAI development of 

rice within a growth stage was very fast. For example, LAI of paddy rice on DOY 172 and 192, 

which were the start and end of crop development stage, were significantly different. Therefore, 

Kcb of the start and end of crop development stage might significantly different and applying 

mean Kcb value for a certain crop growth stage, especially after the crop development stage 

when canopy development change very first, may not be the best way to estimate the daily crop 

ET. Thus, instead of the recommended Kcb values, a better temporal resolution of basal crop 

coefficient curve needs to be developed. 
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4.2.2 Basal crop coefficient (Kcb): NDVI derived Kcb 

 

A daily basal crop coefficient (Kcb) curve representing the actual crop growth and development 

was developed after following Choudhury (1994). Daily Kcb of the whole rice field was 

calculated based on daily and high resolution NDVI of the whole field: 

 

𝐾𝑐𝑏 = 1 −  [
𝑁𝐷𝑉𝐼𝑚𝑎𝑥− 𝑁𝐷𝑉𝐼

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
]

𝑘′

𝑘′′⁄
 (4.2.2) 

 

where NDVImax, NDVImin and NDVI are vegetation indices for dense canopy, bare soil and 

normal vegetation respectively, k’ is a damping coefficient derived from the correlation of LAI 

and the ratio of canopy transpiration to potential evapotranspiration, k” is a damping coefficient 

derived from correlation of LAI and NDVI.  The relationships between the ratio of unstressed 

transpiration (T) to reference crop evapotranspiration (ET0) and leaf area index (LAI), 

relationships between LAI and vegetation indexes has been shown (Choudhury, 1994; 

Duchemin et al., 2006; Sellers, 1985). Damping coefficient k’ is the coefficient derived by 

exponential correlation of the ratio of calculated daily T to reference ET0 and LAI while 

damping coefficient k” is the coefficient derived by exponential correlation of LAI and NDVI. 

 

4.2.3 Evaporation coefficient: Ke 

 

The evaporation coefficient (Ke) was calculated according to Allen et al. (1998). Ke is maximal 

when the topsoil is wet or flooded and Ke is minimal to zero when the topsoil is dry. The upper 

limit of Kc (Kcmax), an upper limit of evaporation and transpiration from cropped surfaces, need 

to be defined before calculating Ke since the evaporation rate never equaled evapotranspiration 

and Ke needs to be limited by Kcmax.  

 

𝐾𝑐𝑚𝑎𝑥 = 𝑚𝑎𝑥 ({1.2 + [0.04(𝑢2 − 2) − 0.004(𝑅𝐻𝑚𝑖𝑛 − 45)] [
ℎ

3
]

0.3
} , (𝐾𝑐𝑏 + 0.05)) (4.2.3) 
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where Kcmax is the upper limit of evaporation and transpiration from a cropped surface, u2 is the 

wind speed (ms-1), RHmin is the minimum relative humidity and Kcb is the transpiration 

coefficient derived by equation (4.2.2). 

The soil evaporation process is assumed to be controlled by stages: Stage 1: an energy limiting 

stage and Stage 2: a falling-rate stage (Allen et al., 1998; Monteith, 1981; Ritchie, 1972). The 

soil evaporation reduction coefficient (Kr) is 1 when the soil surface is wet; Kr decreases when 

the water content in the topsoil is limiting, and Kr becomes zero when the total evaporable 

water (TEW= maximum amount of water that can be evaporated) in the topsoil is depleted. 

TEW for a complete drying cycle was estimated as: 

 

𝑇𝐸𝑊 = 1000(𝐹𝐶 − 0.5𝑊𝑃) ∗ 𝑍𝑒  (4.2.4) 

 

where TEW is the maximum depth of water that can evaporated from the soil when topsoil is 

completely wet (mm), FC is the soil water content at field capacity (m3m-3), WP is the soil 

water content at wilting point (m3m-3) and Ze is the depth of surface soil layer (0.1 m). Kr for 

paddy rice is fixed at 1 since soil surface is flooded most of the time and soil surface is wet 

even during the drainage period. Kr of rainfed rice was calculated as: 

 

𝐾𝑟 = (𝑇𝐸𝑊 − 𝐷𝑒,𝑖−1)/(𝑇𝐸𝑊 − 𝑅𝐸𝑊) (4.2.5) 

 

where Kr is the soil evaporation reduction coefficient dependent on soil water depletion, De, i-1 

is the cumulative depth of evaporation depletion from topsoil at the end of the day (i-1), TEW 

is the total evaporable water (mm) calculated by equation (4.2.4) and REW is the readily 

evaporable water which is cumulative depth of depletion of evaporable water from the soil 

surface layer at the end of stage one. During stage one drying, Kr is 1 and during stage two 

drying, Kr is 1 when De, i-1 ≤ REW). 
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Finally, the evaporation coefficient (Ke) is calculated as: 

𝐾𝑒 = 𝐾𝑟(𝐾𝑐𝑚𝑎𝑥 − 𝐾𝑐𝑏 ) ≤ 𝐹𝐸𝑊 ∗ 𝐾𝑐𝑚𝑎𝑥 (4.2.6) 

where Ke is the soil evaporation coefficient, Kr is the evaporation reduction coefficient, Kcmax is 

the maximum value of Kc and FEW is the fraction of soil surface exposed and wetted. 

 

4.2.4 Crop coefficients of rainfed and paddy rice 

 

Crop evapotranspiration can be estimated by multiplying the reference crop ET (ET0) to the 

sum of crop transpiration (Kcb) and soil evaporation (Ke) coefficients of the crop of interest. 

Since crop transpiration and soil evaporation strongly link to the status of crop development 

and fraction on ground cover, transpiration and evaporation coefficients of paddy and rainfed 

rice was estimated based on seasonal and spatial NDVI analysis. The basal crop coefficient of 

paddy rice and rainfed rice (Figure IV-1) were not significantly different except during the 

initial crop growth stage (IS) when paddy rice had significantly higher Kcb than rainfed rice 

W=20.2, p ≤ 0.05). Based on 0.5 x 0.5 square meter scale spatial Kcb map, significant spatial 

variation of Kcb was found throughout the crop growing season in rainfed rice (W=21.5, p ≤ 

0.05).  However, in paddy rice, there was no significant spatial variation of Kcb starting from 

Mid-season stage (MS). A significant increase in Kcb was found along with the crop growth 

and development of rice. Leaf area development in both rainfed and paddy rice was fast starting 

from the crop development stage and increase in LAI were significant even within 15 days. 

Thus, NDVI and Kcb of both paddy and rainfed rice differ significantly within ~15 growing 

days highlighting the needs of Kcb curve for rice with better temporal resolution than the FAO 

recommended 3 growing stage average Kcb curve (Table IV-2). Moreover, the FAO 

recommended Kcb for initial stage of rice was significantly higher than NDVI derived Kcb while 

the FAO recommended Kcb for Late-season stage was significantly lower than that of NDVI 

(W=20.01, p < 0.05). However, the FAO recommended Kcb and NDVI derived Kcb for the mid-

season were not significantly different. 
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Figure IV-1 NDVI derived basal crop coefficient (Kcb) of paddy and rainfed rice at different 

crop growth stages: (a) rainfed rice; (b) paddy rice; 0.5 x 0.5 m2 ground resolution. 

 

(a) 

(b) 
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The daily evaporation coefficients (Ke) of paddy and rainfed rice are presented in figure (IV-

2). Ke of paddy rice was higher during the early growth stages where the field was flooded and 

crop cover (LAI, Kcb) was minimal. Ke of paddy rice gradually decrease along with increased 

in crop cover (LAI, Kcb) and reached to the lowest Ke starting from late season stage where 

flooded water was drained. However, Ke of paddy was always higher than that of rainfed rice. 

Ke of rainfed rice was mainly governed by available soil moisture. Sharp increases in Ke of 

rainfed rice followed each rain events and a significant increase in Ke after rain events showed 

even under the flooded condition.  

 

Figure IV-2 Daily crop coefficients of paddy and rainfed rice: (a) Transpiration coefficient or 

basal crop coefficient, Kcb; (b) Evaporation coefficient, Ke. 



Water use efficiency of rainfed and paddy rice ecosystem | Bhone Nay-Htoon 

 

 

57 

 

4.3 Evapotranspiration estimation by three different models 
 

Daily crop ET of rainfed and paddy rice was estimated by radiation driven methods (the Mk 

and the PT models) and combination methods (the 56PM model and modifications). Estimated 

crop ET by different models was compared with chamber measured crop ET (Table IV-2, 

Figure IV-3). The 56PM model which used the measured growth stage average leaf resistance 

of rice in combination with NDVI derived basal crop coefficient (m56PMmrc+Kcb_NDVI) 

performed the best (R2=0.95, p< 0.05, RMSE = 0.10, NSeff ME = 0.76, CV (RMSE) = 0.08). 

The original 56PM (56PM with canopy conductance of 70 sm-1) model in combination with 

both FAO recommended Kcb values and NDVI derived Kcb values performed better than PT and 

Mk (Table 4.3). However, applying fixed canopy conductance 80, 100 and 120 sm-1 (m56PM80, 

m56PM100, m56PM120) instead of the FAO 56 recommended 70 sm-1 showed better model 

performance with higher modelling efficiency. Among the compared different ET models; two 

radiation based models and one Penman type combination model, the PM type models 

performed better than radiation based models of the Makkink 1957 and the Priestley-Taylor 

1972. However, in the case of limited meteorological data availability to perform 56PM ET0 

model, radiation based Makkink, 1957 (Mk) in combination with the FAO 56 recommended 

Kcb values would be an option to estimate crop evapotranspiration as it performed better (R2 = 

0.70, p < 0.05, RMSE = 0.21, ME (Nseff) = -1.76, CV (RMSE) = 0.17) than another radiation 

based model, Priestley-Taylor (the PT, 1972).  
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Figure IV-3 Comparison of measured ET versus estimated ET by different estimation methods. 

(n=6). The models used for panel a-h are provided in table 4.3, together with statistics. 
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Table IV-3 Comparison of different crop ET estimation methods. Mk, PT, 56PM, m56PM80, 

m56PM100, m56PM120 are conventional reference crop ET (ET0, grass as reference crop) 

estimation methods while m56PMmrc is reference crop ET of rice (ET0, healthy and well-

watered rice as reference crop). Kcb_FAO is the FAO recommended hypothetical basal crop 

coefficients (Provided in section (4.2.1), Table (4.2) while Kcb_NDVI is NDVI derived basal crop 

coefficient. R2 is determination of coefficients, RMSE is root mean square error, p (t-test) is 

level of significant of the test, CV (RMSE) is coefficient of variation determined by RMSE, ME 

(Nseff) is model efficiency and Score is the score of model performance ranked based on ME 

and R2. 
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4.4 Summary 
 

According to this study, reference crop ET (ET0) estimation for a specific crop rather than grass 

performed better for the crop ET estimation. Grass reference crop (ET0) estimated by fixing the 

canopy resistance at 100 and 120 sm-1 could be applied in the estimation of crop ET of rice 

when crop specific parameters to calculate the canopy conductance of rice is not available. 

Especially for rice and other agricultural crops, when environmental data to calculate ET0 by 

the 56PM method are not available, the Mk method is recommended as it performed better than 

the PT. The FAO recommended basal crop coefficient for rice did not represent well to the 

paddy rice cultivated in this study. Recommended Kcb value for initial stage was higher than 

NDVI derived daily Kcb while recommended Kcb value for late season stage was lower than 

NDVI derived Kcb highlighting the need to develop crop and regional specific Kcb curves with 

better temporal resolutions. For the better ET estimation, NDVI derived basal crop coefficient 

(Kcb) should be used in combination with crop specific modifications of the reference crop ET 

(ET0) estimations. Otherwise, the use of Kcb derived from NDVI showed almost no different to 

the use of the FAO recommended Kcb values.  
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V. Partitioning evapotranspiration 
 

5.1 Partitioning seasonal ET by modeling approach 
 

To compare the seasonal crop water use of rainfed and paddy rice, it is necessary to partition 

soil evaporation and plant transpiration in both rainfed and paddy rice. Therefore, 

evapotranspiration of rainfed and paddy rice was partitioned by estimating daily crop 

evapotranspiration (Chapter 4) and canopy transpiration. 

 

5.1.1 Estimation of daily canopy transpiration  

 

Daily canopy transpiration (Tc) of paddy and rainfed rice was estimated by the FAO 56 dual 

crop coefficient approach (Kcb x ET0, details in the chapter 4) and PM approach (see details in 

the chapter 2, section 2.7.2). The FAO 56 dual crop approach showed a similar trend to the PM 

based estimation (Figure V-1). Therefore, from this point onwards, Tc estimated by the FAO 

56 dual crop coefficient approach was used to partition the simulated daily ET fluxes. 

 

 

Figure V-1 Canopy transpiration of rainfed and paddy rice modelled by the original PM 

(Monteith 1956) (net radiation intercepted by canopy as radiation input) and the FAO 56 dual 

crop coefficient (Kcb x ET0) (Allen, 1998). 
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5.1.2 Partitioning daily evapotranspiration 

 

Seasonal variation of daily crop ET of paddy and rainfed rice is shown in Figure (V-2). Daily 

crop ET was simulated by the 56PMmrc and NDVI derived Kcb model (details in chapter 4) while 

daily transpiration (T) was also derived by the FAO 56 dual crop coefficient approach. In the 

monsoon season 2013, daily crop ET of rainfed rice ranged from 0.34 mmd-1 to 2.18 mmd-1. 

Crop ET of both rainfed and paddy rice reached its peak on DOY 220 (Mid-season stage) and 

declined onward. Daily average and growing season total ETs of rainfed rice were 1.21  0.47 

mmd-1 and 138.75 mmseason-1. Compare to rainfed rice, paddy rice had significantly higher 

crop ET since from the initial crop growth stage throughout the entire growing season (W=15, 

p ≤ 0.05). In paddy rice, peak ET was found during the initial stage when there was lowest crop 

canopy development. Maximum and minimum crop ETs of paddy rice were 4.20 mmd-1 and 

0.62 mmd-1 respectively. Average and crop season total ETs of paddy rice were 1.96  0.76 

mmd-1 and 239.88 mmseason-1 (Figure V.2). Evapotranspiration (ET) of paddy rice was 42.16 

% higher than that of rainfed rice. However, there was no difference between crop season total 

canopy transpiration (T) although T of paddy rice was 11.02 % higher than that of rainfed rice. 

Transpiration of both rainfed and paddy followed a similar seasonal trend. Along with the 

increased ground cover area as the result of seasonal crop canopy development (LAI), canopy 

transpiration (T) was lower than evaporation (E) during the initial crop growth stage when the 

plants were small until the mid of crop development stage (around DOY 180). Later on, E 

declined and T increased to its maximum of 1.79 mmd-1 for rainfed rice and 1.63 for paddy rice 

on DOY 223, which was a dry and clear sky day. Although paddy rice had lower maximum T 

compared to rainfed rice, total T of paddy was 11.02 % higher than that of rainfed rice. Lower 

T of paddy on a certain day, especially on the days under high air temperature and clear sky 

condition, was probably due to the higher E as E can reduce T by regulating micro-climate as 

reported by the studies of Agam et al. (2012), Leuning et al. (1994) and Tolk et al. (1995). 
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Figure V-2 Daily evapotranspiration (black line), canopy transpiration (green dashed line) and 

evaporation (blue dotted line) of rainfed rice (a) and paddy rice (b). (n=3, SD) 
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Minimum crop ET of both paddy and rainfed rice occurred on rainy days with low radiation, 

low atmospheric VPD and low Tair and Tsoil. On the other hand, crop ET peaks of rainfed and 

paddy rice were reported on different day of years. Crop ET peak of rainfed rice was reported 

on DOY 223 when Tair and Tsoil were the highest. However, crop ET peak of paddy rice was 

reported on DOY 145, a day with highest atmospheric VPD (1.55 kPa) and high radiation 

(23.42 Mjm-2d-1). Based on the analysis of relationship between chamber measured crop ET 

and environmental variables, evapotranspiration of rainfed rice was mainly driven by the Tair, 

Tsoil and VPD (Spearman’s  = 0.65, 0.57, 0.47, respectively, p ≤ 0.01) while that of paddy rice 

was driven by the radiation and VPD (Spearman’s  = 0.87, 0.67, respectively, p ≤ 0.01).   

Daily contribution of transpiration to evapotranspiration (T/ET) of rainfed and paddy rice was 

calculated based on the simulated daily T and ET. T/ET of both rainfed and paddy rice steadily 

increased with the increasing canopy density (LAI). T/ET of rainfed rice had a negative 

relationship to soil water content (SWC) (R2=0.49) while that of paddy had no significant 

relationship to SWC. When SWC decreased below 0.30 m3m-3 in rainfed and 0.4 m3m-3 in paddy 

rice, SWC was no longer the main determining factor driving T/ET. Instead, VPD and radiation 

were the factors driving T/ET (Spearman’s  = 0.72, respectively, p ≤ 0.01). The water fluxes 

from rainfed rice was mainly dominated by transpiration (T/ET = 0.65) while that of paddy rice 

was mainly driven by evaporation (T/ET = 0.42). When soil water content (SWC) declined 

below field capacity, T contributed 80 to 90% of H2O flux in rainfed rice.
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Table V-1 Environmental variables controlling crop evapotranspiration of rainfed rice. Spearman rank order correlation was performed by using 

chamber measured ET and environmental variables. 
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Table V-2 Factors controlling crop evapotranspiration of paddy rice. Spearman rank order correlation was performed by using chamber measured 

ET and environmental variables. 



Water use efficiency of rainfed and paddy rice ecosystem | Bhone Nay-Htoon 

 

 

67 

 

5.2 Partitioning daytime ET by 18OET approach 
 

After partitioning the daily ET of rainfed and paddy rice by model simulation (Section 5.1 of 

this chapter), the measured daytime ET fluxes were also partitioned to analyze the short-term 

changes of the ET. The stable water isotope (18O) approach was applied for the daytime ET 

fluxes partitioning. 

 

5.2.1 18O of precipitation 

 

Average 18O precipitation (18ORF) varied from -4.27 ‰ to -10.68 ‰. The highest and lowest 

stable oxygen isotope values (18O) of precipitation were measured in May (the beginning of 

Monsoon season) and August, respectively, following the regional patterns (Kim and Nakai, 

1988; Lee et al., 2013, 2003, 2007; Lee and Kim, 2007). 18O composition of precipitation 

decreased (more negative) from DOY 169 onward (Figure V-3a, blue circles). 18O soil water 

followed the patterns of precipitation (Figure V-3a) pointing that precipitation was the only 

source of soil water. 
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Figure V-3 Daily precipitation (dark blue bars), 18O of rainwater (light blue cycle) and 

extracted soil water (white triangle), (n=3 - 8, mean values  SD) (b) Daytime VPD (dotted 

line) and soil water content (thick blue line). 

 

5.2.2 Volumetric soil water content, soil temperature and 18O of soil water 

 

Due to the influence of precipitation, which was the only water source, and fluctuation of 

evaporative demand, the oxygen isotopic composition in the soil differed with the soil profile 

depth as well as the sampling date. 18O composition between 10 and 30 cm depths generally 

reflected the isotopic composition of precipitation (~ -7 to -8 ‰) (Figure V-3a). At 5 cm depth, 

18O of soil water (18Os) was enriched compared to lower soil profile and the most enriched 

18Os (-6.03  1.28) was found on DOY 192 (Figure V-4).  

At the beginning of the growing season, volumetric soil water content (SWC) of different soil 

profile depths were similar (Figure V-4). However, following the rain events, SWC was 

increased (up to 0.31 m3m-3at 5 cm depth and 0.45 m3m-3 at lower soil profile depths) 
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significantly. Soil temperature (Tsoil) was always highest in the upper soil layer (27.5 7 to 28.82 

C at 5 cm depth) although DOY 205 had a rather low Tsoil (25.67 C) (Figure V-4). 
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Figure V-4 Profile of volumetric soil water content at different depths, 5, 10, 30, 60 cm (SWC, 

dotted line with blue circle, n=3, mean values  SD), soil temperature (T soil, dashed line with 

red circle, n=3, mean values  SD and soil 18O (18Os, black line with black circle, n=3, mean 

values  SD) of rainfed rice field on DOY 172, 182, 192, 202, 205 and 218. 
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5.2.3 Measured 18OET, modelling 18OE, 18OT and partitioning ET 

 

Throughout the crop season, measured ET of crop canopy was highest during midday and the 

peak midday ET of 2.89  0.11 mmolm-2s-1 was occurred on DOY 192. During the dry period, 

the peak midday ET was significantly lower than the values of other measured days (1.26  

0.05 at 12:00 hour of DOY 202). After the dry period followed by a heavy rain event, peak ET 

increased up to 2.86  0.36 mmolm-2s-1 again on DOY 218 and it was found during the midday 

as before the dry period. Measured 18OET of rainfed rice crop canopy ranged from -21.85  

6.79 ‰ to -10.07 0.25 ‰, throughout the monsoon 2013 (Figure V-6 a, e, i, m, q and u). 

The isotope signatures of soil evaporation (18OE) and plant transpiration (18OT) influenced 

the isotope signatures of evapotranspiration (18OET). Based on 18OE of crop plot and 18OT of 

plant, contributions of plant transpirations to evaporations (ft) can be predicted. Therefore, 

18OE of canopy was modelled based on Craig and Gordon model (Figure V-6 b, f, j, n, r, v, 

black straight line). The model was validated with CRDS measured bare soil 18OE. Measured 

18O signatures of bare soil evaporation (18OE) were between -9.56 ‰ to -20.40 ‰ and thus 

18OE was highly depleted compared to soil 18O (18Os) and rain 18O. Modelled bare soil 

18OE fitted well to measured bare soil 18OE (R2= 0.74, Figure V-5). Calculated 18OE of crop 

plot was between -23.88 ‰ and -33.31 ‰, which is more depleted compare to bare soil 18OE. 
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Figure V-5 CRDS based measured 18O of the soil evaporation of baresoil plot evaporation, 

18OE against modelled 18OE. 18OE measurements were carried out on DOY 177, 193, 199, 

207, and 220, at 12:00, 14:00 and 18:00 hours. Modeled 18OE was calculated based on 

measured 18O of soil water at 5 cm (18Os), measured 18O of ambient air (18Oa), soil 

temperature at 5 cm, air temperature, relative humidity and soil water content data of the day 

and time of interest. 

 

18OT was also calculated by the non-steady state model (Figure V-6 b, f, j, n, r, v, dashed line) 

(See Chapter 1, section 1.3 for the explanation of the stable isotopic steady and non-steady 

state). 18OT calculated at non-steady state ranged from -7.20 ‰ to -9.38 ‰ throughout the 

crop season. Water resident time was calculated by equation 2.3.2 as bulk leaf water (Vm) 

divided by the one-way water flux out of the leaf (gtwwi) which gave the water resident time 

less than 30 minutes). 18OT was mostly the same as that of source water at root zone (18Os of 

the soil depth between 10 cm and 30 cm).  

Contribution of transpiration to evapotranspiration (ft) was calculated based on calculated 

18OE and 18OT of crop plot (Figure V-6 c, g, k, o, s, w). ft of rainfed rice canopy showed a 

clear diurnal pattern, ranging the values from 0.28 to 0.88. ft was always higher than 0.50 

throughout the crop season except on DOY 205, which was a cloudy and humid day. The 

highest ft was found on DOY 182 at 12:00 hour and DOY 202 at 18:00 hour, which were 

extremely dry days with higher Tair under clear sky. On DOY 182, ft was higher throughout the 

whole day, which highlight the higher transpiration compare to soil evaporation loss (Figure 

V-6 h).  
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Figure V-6 CRDS based measured ET, 18OET (a,e,i,m,q,u, white cycle = 18OET, blue diamond 

= ET, n=3, mean values  SD), modeled 18OE and 18OT (b,f,j,n,r,v, black line = 18OE, dashed 

line = 18OT), diurnal contribution of T to ET (ft) (c,g,k,o,s,w). Each panel represents to day of 

year 172, 182, 192, 202, 205 and 218 respectively. 
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5.3 Comparing and PM derived fraction of T to ET (T/ET) 
 

Fractions of T to ET of rainfed rice were calculated based on 56PM model based daily ET and 

T fluxes and compared with the daytime average ft derived from 18O ET partitioning (See 

section 2.7.1 for detail calculation procedure). T/ET calculated by the 56PM approach showed 

a similar trend to that of 18O approach (Figure V-7) (R2= 0.53; Nseff ME = 0.52). However, 

the absolute value of T/ET calculated based on d18O approach and 56PM modeling cannot be 

expected to be identical or similar because the 18O T/ET was the mean value of the only three 

measuring points of a day while 56PM modeled T/ET was the daily values. For example, on 

DOY 205 and 218, T/ET (18O) was significantly lower than that of 56PM, given the fact that 

T/ET (18O) was the mean of the three measurement points of the day, while T/ET (56PM) was 

the daily value. Nevertheless, although the T/ET (18O) on DOY 205 was lower than 0.5 (i.e., 

crop transpiration contributed less than 50% of evapotranspiration), T/ET derived by both 

approaches showed that crop transpiration shared more than 50% of evapotranspiration of 

rainfed rice fields in terms of crop season total, as well as, during the vegetative growth stages 

and reproductive stages (DOY 170 onward).  

 

 

Figure V-7 T/ET of rainfed rice derived by stable water isotope approach (dark green circles) 

and 56PM approach (line). T/ET (d18O) was the average ft calculated for 12:00, 14:00 and 
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18:00 hour of the respective day (n=3  SD, be noted that the value is the mean of 3 different 

measurement times of the day) while T/ET (56PM) was the daily T/ET.  

 

5.4 Summary 
 

Stable water isotope based ET partitioning was applied to rainfed rice and compared with the 

56PM based partitioning approach applied to the same rainfed rice. The 56PM based 

partitioning performed well (R2= 0.53; Nseff ME = 0.52) to see the seasonal crop water use 

and water losses.  

Evapotranspiration (ET) of paddy rice was 42.16 % higher than that of rainfed rice (F=29.7, p 

≤ 0.01). However, there was no significant difference between total seasonal canopy 

transpiration (T) although T of paddy rice was 11.02 % higher than that of rainfed rice (F = 

0.23, p = 0.55). Evapotranspiration of rainfed rice was mainly driven by Tair, Tsoil and VPD 

(Spearman’s  = 0.65, 0.57, 0.47, respectively, p ≤ 0.01) while that of paddy rice was driven 

by radiation and VPD (Spearman’s  = 0.87, 0.67, respectively, p ≤ 0.01).  H2O fluxes from 

rainfed rice was mainly dominated by transpiration (T/ET = 0.65) while that of paddy rice was 

mainly driven by evaporation (T/ET = 0.42). Under the water limited condition, when soil water 

content was lower than field capacity (< 0.30 m3m-3), T contributed 80 to 90% of H2O flux in 

rainfed rice.  
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VI. Water use efficiency of rainfed and paddy rice 
 

Water use efficiency (WUE) of several rice production practices, rice varieties have been 

studied and many WUE improvement approaches were introduced (Bouman and Tuong, 2001; 

Bouman et al., 1994; Tuong et al., 2005). However, some studies mainly focused on the WUE 

improvement from the genetic and crop physiological point of view by studying and comparing 

genetic and physiological controls over leaf and plant WUE (Blum, 2009; Condon et al., 2004; 

Rebetzke et al., 2008a). Some studies directly focused on the grain yield improvement per 

irrigation or field water use (Bouman and Tuong, 2001; International Rice Research Institute 

[IRRI], 2002). On the other hand, attempting to improve the water use of rice production 

system, which is an important agroecosystem and which shared significant areas of global 

vegetation cover, may affect regional ecosystem water cycling process. Since plants link global 

water and carbon cycle through the photosynthesis and transpiration process, changes in 

regional water cycle could also affect carbon cycle ( Kuglitsch et al., 2008), understanding 

changes in WUEs at different temporal and spatial scales is essential to improve WUE of rice 

ecosystems in a balance and sustainable way. Therefore, comparison of the leaf, canopy and 

ecosystem water use efficiency of rainfed and paddy are reported detail in this section. 

 

6.1. Water use efficiency from the physiological point of view 
 

6.1.1 Short term Leaf water use efficiency (WUEl) 

 

Intrinsic WUE (WUEi = Amax/gs) of the fully expanded flag leaves (the uppermost) of both 

rainfed and paddy rice measured under fixed environmental conditions (microenvironment 

CO2 400 μmol mol-1 and PAR 1500 μmol m-2 s-1) were not significantly different (n=12 to 16, 

W = 94, p = 0.22, Table VI-2) but slightly higher in rainfed rice.  

 



Water use efficiency of rainfed and paddy rice ecosystem | Bhone Nay-Htoon 

 

 

77 

 

 

 

Figure VI-1 Instantaneous water use efficiency (inWUE) of rainfed and paddy rice (n=3 to 6 

 SD for each growth stages). The instantaneous water use efficiency was calculated as the 

ratio of maximum assimilation to transpiration (Amax/T). Amax was the maximum assimilation 

and T was the transpiration of the uppermost rice leaf. Both Amax and T were measured under 

1500 molm-2s-1 PAR and 400 molmol-1 CO2 and Amax (black for paddy and white for rainfed 

rice) and T (straight line for paddy and dashed line for rainfed rice) were provided in the small 

panel. 

 

 

Leaf WUE is coupled by two physiological factors, CO2 assimilation rate and stomatal 

conductance to water (gs) in the case of intrinsic WUE (WUEi). In the case of instantaneous 

WUE (inWUE), leaf WUE is controlled by not only the physiological factors (A and gs) but also 

the environmental factors (especially VPD). Significantly higher inWUE was observed in the 

rainfed rice (W= 110, p < 0.05, Figure VI.1) except the initial growth stage. Overall crop 
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growth season mean Amax measured at the uppermost leaves of rainfed rice was not significantly 

different to that of paddy rice (W= 94, p = 0.22, n=12  SD, Figure VI-1, Table VI-2). In 

addition, crop growth season mean T of both rainfed and paddy rice measured at the uppermost 

leaves were not significantly different (W=125, p = 0.20, n=12  SD, Figure VI-1, Table VI-

1). However, Amax of the rainfed rice at the late season stage was significantly higher than that 

of paddy rice (W=32, p < 0.05, n=4  SD, Figure VI-1) while during the rest of crop growth 

stages, it was slightly but not significantly higher than paddy rice (W=65, p = 0.32, n = 4 to 12, 

Figure VI.1). According to the multivariate correlation analysis, inWUE of the rainfed and 

paddy rice was strongly correlated to T (negative correlation, Spearman  = -0.52, p < 0.01, 

data not shown) and Vcmax/gs, which is the ratio of maximum carboxylation capacity to stomatal 

conductance (positive correlation, Spearman  = 0.62, p < 0.01, Figure VI-2 c). Moreover, 

comparing either the overall growth season mean stomatal conductance (gs) or measured at a 

specific crop growth stage showed a significantly higher leaf scale gs of the paddy rice (W=76, 

p < 0.05, n= 4 to 12  SD, Table VI-1). Thus, the higher leaf scale instantaneous WUE (inWUE) 

of rainfed rice was due to its efficient stomatal regulation to maximize the carbon assimilation 

per water use (Vcmax/gs). 
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Figure VI-2 Correlations between (a) Maximum assimilation (Amax) and stomatal conductance 

to H2O (gs) of rainfed (black circles) and paddy rice (white circles) measured at the uppermost 

flag leaves under the controlled environment 1500 molm-2s-1 PAR, 400 PPM CO2; (b) 

Maximum assimilation (Amax) and Transpiration (T) of rainfed (black circles) and paddy rice 

(white circles) leaves; (c) Instantaneous WUE (inWUE) and Vcmax/gs. All the measurements 

were done during Initial, Crop development, Mid-season and Late season stages. 

  

 

 

6.1.2 Integrated leaf water use efficiency  

 

To determine the integrated water use efficiency differences of rainfed and paddy rice over the 

time of leaf development, growth stage integrated intrinsic water use efficiency (WUEi) and 

instantaneous water use efficiency (inWUE) were calculated based on the 13C stable isotope 

discrimination (13C) of the aboveground biomass samples collected from the entire canopy 
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(See the chapter 2, table II-3 for the detail WUEi calculation from 13C). 13C isotope 

discrimination (13C) showed a clear and similar seasonal trend (Figure VI-3b) which also 

followed along with the precipitation water input (Figure VI-3a). Although the same rice 

variety was cultivated as rainfed and paddy rice, flooded paddy rice discriminated more against 

the 13C compared to the water limited rainfed rice (t= -7.23, p < 0.01, n= 3 to 12, Figure VI-

3 b). The higher 13C discrimination of the paddy rice was in accordance with the higher 

stomatal conductance (gs) of the paddy rice measured at the uppermost leaf and under the 

controlled chamber conditions (Figure VI-1). 
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Figure VI-3 13C carbon isotope discrimination (13C) of rainfed and paddy rice above ground 

biomass harvested at different growth stages: (a) 13C discrimination of rainfed rice (white 

circle) and paddy rice (black circle) correlated to the sum of the precipitation recorded within 

10 days before the leaf biomass harvest (b) 13C of rainfed rice (white circle) and paddy rice 

(black circle) followed the same seasonal trend although rainfed rice had lower carbon isotope 

discrimination (n=3 - 12,  SD). 

 

 

Growth stage integrated intrinsic WUE (WUEi-
13C) and instantaneous WUE (inWUE-

13C) of 

rainfed and paddy rice were calculated based on 13C isotope discrimination (13C) calculated 

based on measured 13C of bulk leaf biomass of the whole plant canopy of the rainfed and 

paddy rice harvested at each specific growth stages. 

Integrated leaf water use efficiencies (integrated over the time of leaf development and the 

whole canopy); WUEi-
13C and inWUE

13C of rainfed and paddy rice were significantly different 

(WUEi-
13C: n=3 - 12, t=8.42, p < 0.05; inWUE

13C: n=3 to 12, t=9.14, p < 0.05). Temporal and 

canopy integrated intrinsic water use efficiency of (WUEi-
13C) of the rainfed rice was 

significantly higher than that of paddy rice (Figure VI-4; olive color bars for rainfed rice and 

dark green color bars for paddy rice). For the instantaneous water use efficiency (inWUE), 

temporal and canopy integrated inWUE (inWUE
13C; Figure VI-4; white bars for rainfed and 

black bars for paddy rice) showed a similar result to that of short term inWUE (Section 6.1.1). 

inWUE
13C of the rainfed rice was higher than that of paddy rice (Figure VI-4) which is in line 

with Figure VI-1, rainfed rice with higher carbon assimilation per water use. 
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Figure VI-4 Growth stage integrated intrinsic water use efficiency (WUEi-
13C, light green for 

rainfed and dark green for paddy rice) and instantaneous water use efficiency (inWUE
13C, 

white for rainfed and black for paddy rice). Growth stage integrated WUEi was calculated 

based on measured 13C isotope values of bulk leaves harvested at different growth stages. 

Growth stage integrated inWUE was calculated by multiplying the 13C derived integrated 

WUEi with growth stage average atmospheric VPD (n=3 to12  SD) 

 

 

6.1.3 Integrated canopy water use efficiency (WUEc-intg) 

 

To consider the aspects of productivity, canopy WUE was calculated based on above ground 

biomass production per water use (WUEc-Abg/Tc), as the ratio of the ratio of dry weight of the 

above ground biomass harvested at a specific growth stage to the integrated daily canopy 

transpiration of the same growth stage. WUEc-intg of paddy rice was significantly higher than 

that of rainfed rice (n=12, W=44.00, p < 0.05). Thus, canopy WUE of paddy rice calculated 
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based on the above ground biomass production per water use (transpiration) was higher than 

that of rainfed rice. 

As explained in the chapter (3), paddy rice performed better in terms of crop growth and 

development with higher LAI, higher stem biomass and slightly higher grain yield. On the other 

hand, rainfed rice reached higher leaf water use efficiency (inWUE) based on gas exchange 

analysis (Figure VI-1) and integrated leaf WUE (WUEi-
13C and inWUE

13C) calculated based 

on 13C discrimination (Figure VI-6) clearly indicating that the causes at the expense of lower 

gs and productivity.  

 

 

 

Figure VI-5 Growth stage integrated canopy water use efficiency (WUEc- Abg/Tc) of rainfed 

rice (white) and paddy rice (black); n=3 - 6  SD. WUEc- Abg/Tc was calculated as the ratio of 

dry weight of above ground biomass harvested at a specific growth stage to the integrated 

daily canopy transpiration of the same growth stage. 
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6.2 Agronomic water use efficiency 
 

As pointed out in section 6.1.3, paddy rice could produce more above ground biomass per 

transpiration water use compare to that of rainfed rice. Hence, paddy rice was more productive 

than rainfed rice in terms of biomass production per transpiration. However, since the final 

targeted product of rice production is the grain yield and not the carbon gain nor total biomass 

gain, water use efficiency of both rice production systems were also calculated as the ratio of 

grain yield to evapotranspiration, i.e., agronomic water use efficiency (WUEagro). Moreover, 

field scale transpiration use efficiency (TE) of two systems were also compared to evaluate the 

impacts of evaporative water loss over WUEagro. 

WUEagro of rainfed rice was significantly higher than that of paddy rice (n=12, W=36, p < 0.05, 

Figure VI-6) due to its significantly lower season total crop evapotranspiration (42.16 %) with 

only 9.53 % lower grain yield. However, after excluding the evaporative loss, transpiration use 

efficiency (TE) of paddy was a bit higher but not statistically different to that of rainfed rice 

(n=12, W=23, p = 0.48, Figure VI-6). This indicates that higher WUEagro of rainfed rice was 

only due to its lower evaporative water losses. Paddy rice with higher WUEc_Abg/Tc, TE and 

slightly higher grain yield was more productive in terms of carbon assimilation per 

transpiration use but had higher evaporative water losses. 
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Figure VI-6 Agronomic water use efficiency (WUEagro= Grain yield/ET) and transpiration use 

efficiency (TE = Grain yield/T) of rainfed and paddy rice. Both T and ET were calculated as 

the sum of daily T, and ET of the whole crop season (i.e., 120 days) (n= 12,  SD) 

 

6.3 Ecosystem water use efficiency  
 

After studying the carbon and water exchange in the rainfed and paddy rice ecosystems, the 

ecosystem water use efficiency (WUEeco) of rainfed and paddy rice were also compared. 

 

6.3.1 Carbon and water exchange in rainfed and paddy rice 

 

To investigate the role of carbon and water exchange on WUEeco we measured canopy gas 

exchange (NEE, GPP, Reco and ET) at different growth stages. For the seasonal trend, daily 

NEE, GPP, Reco and ET were simulated and validated against the chamber measured fluxes, 

showing a good agreement between measured and modelled data (NEE: ME=0.86, RMSE= 
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0.58, R2= 0.86; GPP: ME=0.95, RMSE=0.63, R2=0.99; Reco: ME= 0.72, RMSE= 0.51, R2= 

0.75; ET: ME=0.82, RMSE=0.13, R2=0.97). Rainfed and paddy rice systems showed 

significantly different water and carbon fluxes (n=12, W=54.00, p ≤ 0.05; Figure VI.9). 

Evapotranspiration (ET) of paddy rice was 42.16 % higher than that of rainfed rice (See detail 

in the chapter 4). However, there was no significant difference between canopy transpiration 

(T) although T of paddy rice was 11.02 % higher than that of rainfed rice  

Growing season total gross primary production (GPP = sum of simulated daily GPP during 

monsoon rice growing season 2013) of paddy and rainfed rice were not significantly different. 

However, paddy rice had significantly lower ecosystem respiration (Reco) in both, chamber 

measured and simulated daily Reco, hence net ecosystem exchange (NEE) was higher in paddy 

rice (Figure VI.7). Growing season total ecosystem respiratory carbon loss in rainfed rice was 

48.65 % of the gross carbon fluxes while paddy rice ecosystem respiratory carbon loss was 

only 33.77 % of the gross fluxes. Both measured and simulated Reco of rainfed and paddy rice 

was strongly correlated to Tair and Tsoil (Spearman’s  = 0.74, 0.80, respectively for paddy; 

Spearman’s  = 0.74, 0.80, respectively for rainfed, p ≤ 0.01). According to dark chamber 

measured soil and plant respiration, Reco of paddy rice was dominated by plant respiration (Rpt) 

while Reco of rainfed rice was mainly dominated by soil respiration (Rsoil). Therefore, higher 

respiratory carbon loss of rainfed rice system was clearly due to its higher soil respiration. 
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Figure VI-7 Daily carbon fluxes of paddy and rainfed rice: (a) rainfed rice; (b) paddy rice 

(simulated gross primary production, blue line; measured gross primary production, white 

circle; simulated ecosystem respiration, red dashed-line; measured ecosystem respiration, 

white triangle; simulated net ecosystem exchange, black dotted line; chamber measured net 

ecosystem exchange, black circle); n=3  SD. 

 

 

6.3.2 Ecosystem water use efficiency of rainfed and paddy rice 

 

Rainfed rice had higher ecosystem water use efficiency (WUEeco = GPP/ET) than paddy rice 

(Figure VI.8). Interestingly, after excluding the differences in evaporative water loss (i.e., 
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GPP/T), there was no significant difference between paddy and rainfed rice (n=12, W=44.00, 

p = 0.39, data not shown). Thus, lower GPP/ET of paddy rice was mainly due to its higher 

evaporative losses and not because of its ecosystem productivity.  

Moreover, if the differences in ecosystem respiratory carbon losses of paddy and rainfed rice 

(i.e., ecosystem water use efficiency as the balance of net ecosystem carbon and water fluxes 

(NEE/ET), NEE/ET of both paddy and rainfed were not different to each other (n=12, W=62.50, 

p = 0.58). No different in NEE/ET of rainfed and paddy rice systems revealed the dominant 

role of higher respiratory carbon losses in rainfed rice ecosystem carbon exchange and 

ecosystem water use efficiency. Similarly, the effect of evaporation was excluded from net 

ecosystem water fluxes (i.e., NEE/T), paddy significantly had higher water use (n=12, W = 

13.00, p ≤ 0.05), pointing the dominant impacts of evaporative losses over NEE/ET. These 

results clearly show that ecosystem water use efficiency was not simply a ratio of GPP to ET 

but the effects of respiratory carbon loss and evaporative water loss over WUEeco should also 

be considered in the calculation of WUEeco. 

  

Figure VI-8 Comparing ecosystem water use efficiency of rainfed and paddy rice to highlight 

the importance of evaporation and ecosystem respiration in the definition of WUEeco; n=12  

SD  
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Table VI-1 Summary statistics of the components of different spatiotemporal water use 

efficiencies of rainfed and paddy rice. Wilcoxon-Mann-Whitney Rank Sum test was performed 

to compare different WUE components of rainfed and paddy rice. All of the values except the 

values labeled as “Field scale” and “Growing Season” are the overall crop growth season 

means. Values labeled as “Field scale” and “Growing Season” are the integrated values over 

the growing season. 

 

Note:  * 13C was calculated based on the biomass harvested at different crop growth stages. 

 ** Above ground biomass (Abg) was harvested at different crop growth stages. ET and T were daily-integrated values for the 

same crop growth stages of the harvested biomass 

 *** Statistical test was not done for the growing season totals, which were simulated.  
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Table VI-2  Comparison of different spatiotemporal water use efficiencies of rainfed and paddy 

rice. Wilcoxon-Mann-Whitney Rank Sum test was performed to compare different WUEs of 

rainfed and paddy rice. 

 

Note:  * 13C was calculated based on the biomass harvested at different crop growth stages. 

 ** Above ground biomass (Abg) was harvested at different crop growth stages. ET and T were daily- 

integrated values for the same crop growth stages of the harvested biomass.  

 *** Statistical test was not done for the growing season totals, which were simulated.  
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6.4 Summary 
 

Comparing the water use efficiency of rainfed and paddy rice at different temporal and spatial 

scales indicates that both intrinsic (A/gs) and instantaneous (A/T) water use efficiency of the 

uppermost leaves of both rainfed and paddy rice cannot represent the biomass related water use 

efficiencies (i.e., WUEc_Abg/Tc and WUEagro).  

Rainfed rice was water use efficient compared to paddy rice, in terms of WUEagro (Grain 

yield/ET) and WUEeco (GPP/ET). However, if the higher evaporative losses of paddy rice and 

the higher respiratory losses of rainfed rice systems were taken into account, ecosystem and 

agronomic water use efficiency of both systems were almost the same. 

 

 

 

 

 

 



Water use efficiency of rainfed and paddy rice ecosystem | Bhone Nay-Htoon 

 

 

 

 

7 



Water use efficiency of rainfed and paddy rice ecosystem | Bhone Nay-Htoon 

 

 

92 

 

VII. Discussion and outlook  
 

7.1 Evapotranspiration estimation methods  
 

Among the several models to estimate ET developed since the 1950s, the FAO modified 

Penman-Monteith crop ET model (56PM) performed the best after combing with field 

measured basic leaf physiological parameters and remotely sensed NDVI data. 

The quality of estimated ET by the 56PM depends largely on the quality of reference crop ET 

(ET0) estimates (Cruz-Blanco et al., 2014; López-Urrea et al., 2006): the estimation ET0 for a 

specific crop of interest rather than the grass reference crop performed better ET estimation of 

that crop (Chapter 4 of this study). Application of field measured leaf resistance of the crop of 

interest in the calculation of canopy resistance of the ET0 model enhanced the ET estimates 

since canopy resistance is important in controlling ET, especially in the rice crops (Sakuratani 

and Horie, 1985). However, field measurements of leaf resistance will be hard to do for a larger 

scale. In this case, the original FAO 56 reference ET estimation method can be used by applying 

a fixed canopy resistance (rc) at 120 sm-1 for rice, rather than using the recommended value, 

70 sm-1. This finding is in accordance with the findings of previous studies in rice and other 

agricultural crops (Lecina et al., 2003; Todorovic, 1999; Zhao, 2014). However, this rc value 

of 120sm-1 is recommended only for the rice crop. For other crops, it is recommended to use 

the published canopy resistances of the crop of interest cultivated in a similar climatic zone or 

to measure the leaf resistance in the peak of the crop growing season and use it as an input 

parameter. •  

A drawback of ET0 estimation by the 56PM method is its high demands on environmental data 

(Pereira and Pruitt, 2004; Todorovic et al., 2013). Daily and consecutive inputs for all of the 

required environmental data may not be available for some regions and under certain 

conditions. In those cases, Makkink (1957)’s ET0 estimation method could be a good 

alternative to 56PM. Comparing different ET0 estimation methods with the 56PM and the 

modified 56PM of this study showed that Makkink (1957) method was a good alternative to 

the 56PM, especially for rice and agricultural crops. 

The 56PM model needs to multiply the estimated reference crop ET with crop coefficients 

(Kcb). Allen et al. (1998) suggested adjusting the provided crop coefficients according to the 

climatic condition of the area of interest. However, in some cases it does not work even after 
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the climatic adjustment since Kcb is not only affected by the climatic conditions but also by 

nutrients, soil water availability, pest and diseases, atypical plant stands, etc. (Hunsaker et al., 

2005). Other studies and this study proved that even after the climatic adjustment, the 56PM 

recommended Kcb value for rice could not represent the actual crop growth very well and leads 

to over and underestimation of ET (Figure IV.3; Bausch and Neale, 1987; Bausch, 1995; 

Choudhury et al., 2013; Hunsaker, 1999). 

The reason could be that the provided Kcb value for rice crop was taken from the study on 

conventional rice crop, which plant height, leaf area index, and above ground biomass are 

superior to the high yielding rice variety used in this study. Most of the provided crop 

coefficients in Allen et al. (1998) are mainly based on published literatures before and during 

that time period of the 56PM model development and the provided Kcb values may not represent 

the modern high yielding varieties well. Applying the Kcb derived from high resolution NDVI 

of rice field delivered better ET estimates (Figure IV.3, Glenn et al., 2010; Hunsaker et al., 

2003; Kamble et al., 2013). The performance of ET estimation will be improved if both NDVI 

derived Kcb and canopy resistance modification of 56PM model are applied together.  

Previous studies pointed the weakness of the 56PM type models. Gonzalez-Dugo et al. (2009) 

compared a satellite NDVI based 56PM type model and a thermal based surface energy balance 

model. Their works reported that the satellite NDVI based 56PM type model could not represent 

the actual crop condition due to the over and under estimation of crop coefficients if there is 

not a reliable data set of rainfall distribution, reference evapotranspiration and soil moisture 

distribution data over the whole spatial area of interest. However, the use of Unmanned Aerial 

Vehicle (UAV) derived NDVI instead of satellite derived NDVI can provide high resolution 

NDVI data which can represent the actual crop growth condition (this study, Gago et al., 2014; 

Ko et al., 2015) and can provide a reliable crop ET estimates. Thus, the 56PM type models in 

combination with UAV derived NDVI data can still be a good choice for the agricultural crops, 

especially, in the sense of precision agriculture.  

This study is in line with the review comments of Pereira et al. (2014) on the past and future 

of the 56PM type models. The need to expend the database of crop coefficients for the new 

crop varieties is reported practically by comparing the 56PM provided Kcb value for rice and 

the remotely sensed actual Kcb value of high yielding new variety of rice (Chapter 4, Section 

4.2.1 and 4.2.2). Moreover, this study also proved the needs to develop more sophisticated Kcb 

curve than the typical four stages Kcb curve (initial, crop development, mid-season and late 
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season) so that the crop coefficients could represent the dynamics and correct estimates of crop 

growth stages. 

 

7.2 Partitioning Evapotranspiration  
 

Partitioning daily soil evaporation and plant transpiration fluxes by the 56PM model was along 

with the partitioning results of 18O stable isotopic ET partitioning. 18O isotopic partitioning 

method is regarded as direct partitioning approach due to its way of partitioning water fluxes 

after tracing distinct 18O isotopic signals of the soil evaporation and plant transpiration and a 

useful approach for large scale ET partitioning (Dubbert et al., 2013; Kool et al., 2014). On the 

other hand, due to the needs of timely crop management such as weeding, irrigation, 

fertilization, chamber-measured 18O based ET partitioning which needs the permanent 

installation of soil collars, soil moisture sensors, etc. is still challenging for the large-scale 

agricultural studies in real agro-ecosystems. However, calibrating and validating the 

partitioning results of the 56PM dual crop model with the 18O based partitioning output carried 

out together in a small scale experimental field and apply the model in the real world would be 

appropriate.  

The growing season average T/ET of paddy rice in this study is in accordance with the findings 

of Maruyama and Kuwagata (2010), Sakuratani and Horie (1985) and Wei et al. (2015). T/ET 

of rainfed rice is scares except the work of Alberto et al. (2014) and T/ET of this study is 

significantly lower than their findings. Crop seasonal average ET of this study is lower than 

most of previous works on rice ecosystem listed in table (VII-1) except the ET of S. Korean 

paddy rice system reported by Zhao (2014) .The lower crop season average ET value of this 

study and Zhao (2014) may be due to the regional microclimatic differences and crop 

physiological differences. This study was done under the typical S. Korean monsoon with 

frequent cloudy days while the other studies were done avoiding most of the monsoon period 

(table VII-1). Moreover, the two Korean paddy rice study with reported lower ET used the 

Japonica rice variety and physiological development of the rice used in this study and the rest 

was significantly different as the LAI of this study was the lowest (Figure III- 2, chapter 3) 

compared to others. Never the less, general ET and T/ET trends of this study followed the 

previous reports and are almost the same as the one reported by Zhao (2014). 
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Table VII-1 Partitioning evapotranspiration of rainfed and paddy rice by different methods 

Note: M-lys = micro lysimeter; Pan = Pan evaporation; EC= eddy covariance; 56PM = Penman-Monteith model modified by the FAO of the UN; 

18O = 18O stable isotope partitioning 

No Publication Crop Irrigation Study site 

Partitioning 

method E/ET T/ET 
ET 

(mmd-1) 
LAI 

(mm-2) 
Planting 

Time 

Crop 

cycle 

(Days) ET  E T 

1 

Sakuratani 

and Horie 

(1985) 

Paddy Rice 

(Indica) 
Flooded Japan M-lys Pan  Pan 0.52 0.48 3.98 4.60 May ~130 

2 

Maruyama 

and Kuwagata 

(2010) 

Paddy Rice 

(Indica) 
Flooded Japan 

two source model 

(Kondo and Watababe, 

1992) 

0.57 0.43 3.78 4.60 April ~130 

3 
Hossen et al 

(2012) 

Paddy Rice 

(Indica type Boro 

rice)  

Flooded 

Bangladesh EC 

Empirical 

equation 

dependent on 

LAI 

0.30 0.70 3.33 5.90 March ~ 100 

Rainfed rice 

(Indica type 

Aman rice) 

Rainfed (Total rainfall, 

552.80 mm, no 

irrigation) 

0.36 0.64 2.93 4.60 September ~ 100 

4 
Alberto et al 

(2011; 2014) 

Paddy Rice 

(Indica type) 
Flooded 

The 

Philippines 
EC and 56PM 

N/A N/A 4.29 6.65 June 120 

Rainfed Rice 

(Indica type) 

Sprinkler irrigation 

(645.9 mm Sprinkler 

irrigation + 251.9 mm 

rainfall = 897.8 mm) 

0.44 0.56 3.81 4.65 January 120 

5 Zhao (2014) 
Paddy Rice 

(Japonica type) 
Flooded S. Korea 

EC and empirical 

equation dependent on 

LAI 

0.62 0.38 2.00 5.80 May 120 

6 
Wei et al 

(2015) 

Paddy Rice 

(Indica type) 
Flooded Japan   0.20 0.80 N/A 4.50 May ~150 

7 This study  

Paddy Rice 

(Indica type) 
Flooded S. Korea 56PM 0.60 0.40 2.00 3.78 April 120 

Rainfed Rice 

(Japonica type) 

Rainfed (Total rainfall, 

658.2 mm, no 

additional irrigation) 

S. Korea  and 56PM 0.35 0.65 1.16 2.69 April 120 
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Similar to the seasonal trends, daytime water fluxes over the rainfed rice field were also 

dominated by the transpiration. ft (T/ET calculated based on 18O) of rainfed rice fluctuated 

throughout the day  but within in the ranged of previous studies, 0.3 to 0.8 (Cavanaugh et al., 

2011; Dubbert et al., 2014b, 2013; Wang et al., 2010; Williams et al., 2004). Although 18O 

based partitioning gave the similar results to simulated daily partitioning approach, 18O 

approach gave the robust daytime E and T fluxes and the T/ET variation throughout the day, 

which support the daily simulation results. Based on the experience of this study, 18O approach 

can perform better if the condensation could be controlled completely in the case of higher 

humidity condition and if the soil water 18O at 0 to 3 cm depth (as recommended by Dubbert 

et al., 2013) is available and if the leaf water 18O is measured in the field. Nevertheless, this 

study provide a sketch of 18O values of source water (rain) and fluxes in the soil-plant-

atmosphere continuum of the rainfed rice field cultivated in monsoon 2013 in S. Korea. Figure 

(VII-1) showed the role of crop transpiration fluxes in terms of regional water vapor 

contribution, which is in accordance with other reports (for example, Jasechko et al., 2013; 

Shichun et al., 2010; Wang et al., 2014). 
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Figure VII-1 18O values of source water (rain) and fluxes in the Soil-Plant-Atmosphere 

Continuum of the rainfed rice field. rain is 18O of precipitation; soil is 18O of soil 

water; E is 18O of soil evaporation; 18OL is 18O of bulk leaf water; T is 18O of 

transpiration and v is 18O of atmospheric water vapor 

 

 

7.3 Water use efficiency concepts  
 

Based on the different WUEs of the rice measured by different concepts and at different 

temporal, spatial scales (Figure VII-2), WUEs can be grouped into two: physiological process 

based WUEs and productivity based WUEs. Physiologically defined WUEs, which include 

intrinsic WUE, instantaneous WUE and ecosystem WUE, of rainfed rice was higher than that 

of paddy rice. On the other hand, productivity based WUEs, which include biomass production 

per transpiration and grain yield per transpiration, paddy rice was higher than that of rainfed 

rice. Based on the theories and published data sets, Blum (2011, 2009, 2005) pointed the misuse 

of intrinsic WUE (A/gs) and instantaneous WUE (A/T) in the selection of higher water use 

efficient crop varieties. Tomás et al. (2012) also proved in vineyards that plant water use 

variability could not be described based on leaf WUE analysis. Moreover, as a proxy of the 

intrinsic WUE, 13C isotope discrimination (13C) is widely applied in the selection high water 

use efficient crop varieties (for example, Condon et al., 2004). The relationship between 13C 

and biomass production and crop yield are often reported for various crops (Cregg and Zhang, 

2000; Farquhar et al., 1989; Hall et al., 1994; Monneveux et al., 2007, 2006; Saranga et al., 

2004; Sayre et al., 1995; Specht et al., 2001). However, 13C, crop yield and agronomic WUE 

do not seem to have a clear relationship since previous studies ranged from no relationship to 

the positive and negative relationships. On the other hand, time integrated intrinsic WUE (A/T) 

calculated by incorporating the bulk leaf 13C and atmospheric VPD, (Figure VI-6) could 

mimic the larger spatial scale WUEs including the canopy WUE and agronomic WUE. But, as 

reported by Rebetzke et al. (2008a, 2008b) and Sayre et al. (1995), those relationship could be 

biased by crop phenology, plant height, etc. Thus, care is needed to apply 13C and leaf WUE 

as an indicator in the selection of higher agronomic or plant WUE since plant and agronomic 

WUE depends both crop ecophysiology and environmental variations.  
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Figure VII-2 Spatial and temporal variation of the different WUEs of rainfed and paddy rice 

 

Definition of ecosystem water use efficiency (WUEeco) 

 

As expected, WUEeco and WUEagro (GPP/ET and Yield/ET) of rainfed was higher compared to 

paddy rice (Adekoya et al., 2014; Alberto et al., 2009; Thanawong et al., 2014; Figure VII.4), 

however a different picture emerged when considering the productive water use and respiratory 

losses. Generally, WUEeco defined as the ratio of gross primary production to 
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evapotranspiration (WUEeco = GPP/ET), has been estimated for different ecosystems ranging 

from grasslands to cultivated vegetation without considering the influence of respiratory carbon 

losses (Reco) (Beer et al., 2009; Reichstein et al., 2002). Although, this yields information on 

the water use efficiency of plants to fix carbon at the stand level, considering ecosystem 

respiration losses is crucial to gain an ecosystem perspective (Dubbert et al., 2014b; Huang et 

al., 2010; Scott et al., 2006; Tallec et al., 2013; Zeri et al., 2013). Partitioning carbon and water 

fluxes in paddy and rainfed rice revealed the strong influence of Reco over WUEeco. 

Accordingly, higher GPP/ET in rainfed rice ecosystem was due to higher Reco since rainfed rice 

had similar GPP to paddy rice but lower net ecosystem fluxes (NEE). Thus, accounting for this 

difference by considering net ecosystem exchange (NEE/ET) gave a comparable water use 

efficiencies of both rice production systems. 

 

7.4 More crop per drops  
 

Agricultural production worldwide is highly sensitive to the water scarcity and at the same time 

accounting for 70 % of the freshwater withdrawals. Increasing heat and drought stress predicted 

by climate change scenarios may thus strongly impact on the carbon cycling and, hence, the 

crop productivity, and strongly alter the hydrological cycle, threatening sustainability of current 

agroecosystems (FAO, 2012; Blanco et al., 2014). Rice production is one of the most water 

consuming crops and the rice production has huge impacts on the global and regional carbon 

and water cycling processes (Adekoya et al., 2014; Kim et al., 2013; Lindner et al., 2015). One 

of the objectives of this study was to compare the carbon and water fluxes between the 

conventional paddy and water saving rainfed rice, analyzing the distinct contributions of 

unproductive water losses from soil evaporation and respiratory carbon losses to net ecosystem 

carbon and water exchange. Quantifying the impact of these distinct irrigation treatments is 
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specifically important to find an optimal balance between low evaporative and respiratory 

losses for a sustainable rice production. In the following these trade-offs will be discussed in 

respect to water use efficiency of the two different rice management systems.  

Comparing the paddy and rainfed system under the same climate condition revealed different 

carbon exchange process of water saving dryland rice and conventional paddy rice clearly 

(Figure VII-3).  

 

 

 

Figure VII-3 Seasonal carbon and water balance of paddy and rainfed rice. Measured and 

simulated daily gross primary production (GPP), net ecosystem exchange (NEE), ecosystem 

respiration (Reco), evapotranspiration (ET), transpiration (T) and grain yields were used in this 

schematic representation. All flux data and grain yield are mean values (flux data: n=3  SD; 

grain yield: n=6  SD). Crop growing season was 120 days (sowing to harvest). 
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Rainfed rice production had higher Reco (34.88 % higher than paddy) due to its higher soil 

respiration (see also Alberto et al., 2009; Miyata et al., 2000; Thanawong et al., 2014). On the 

other hand, paddy rice had higher evaporative water loss, which is regarded as the unproductive 

water loss. Nevertheless, minimizing the evaporative loss of paddy rice as much as possible, in 

other words, replacing the conventional paddy rice systems with the water saving and higher 

water use efficient rice systems, needs to be carefully evaluated. The paddy rice system is the 

conventional rice production system which can be found in most of the global rice production 

area (International Rice Research Institute [IRRI], 2002; Seck et al., 2012; Tuong et al., 2005). 

If most of the paddy system was converted to water saving production system, significantly 

reduced evaporation per unit production area can raise a question on possible global or regional 

water cycle changes although it may save the unproductive water losses (Fitzjarrald et al., 2008; 

Sakai et al., 2004; Zhao et al., 2008). Since the global water and carbon fluxes are coupled by 

the vegetation, impacts on the water cycle could lead to impacts on the global carbon balance 

(Hu et al., 2008; Istanbulluoglu et al., 2012; Tian et al., 2011; Williams and Albertson, 2005; 

Wolf et al., 2011). 

Along with the respiratory carbon loss, the unproductive water loss (evaporation; E) 

considerably affects the water use of rice production. Evaporation (E) influences T by 

influencing the canopy microclimate (canopy temperature and VPD) which indirectly 

influences the T/ET, water use, crop growth and yield (Alberto et al., 2009; Balwinder-Singh 

et al., 2014; Leuning et al., 1994). Because of the maximization of carbon gain per water use 

along with the available water, the productive water use efficiency (GPP/T and Yield/T) of 

paddy and rainfed rice were almost equal, which means both rice systems had a similar 

productive water use efficiency and variations in agronomic and ecosystem WUEs were related 

to the unproductive water losses (i.e., evaporation). The major differences of the amount of 

evaporation of rainfed and paddy rice occurred before the canopy closure (i.e., until DOY 200 
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and at the mid of crop development stage). By contrast, the contribution of evaporation to the 

water fluxes was relatively similar in both production systems, from the end of tillering stage 

onwards (DOY 200 and onward, Figure V.5), when the crop canopy was dense. Overall, the 

higher WUEagro of rainfed rice was in concert with significantly reduced evaporation but also 

a slightly decreased grain yield compared to paddy rice. 

According to the water scarcity projections based on the socioeconomic assumptions, 

population density per capita income, climate change scenarios and mitigation options, the 

frequency of extreme droughts may increase in many regions (Eastern China, India, Western 

Europe and Middle East) (Arnell and Lloyd-Hughes, 2013; Hejazi et al., 2014), highlighting 

the change in global hydrologic cycle. Moreover, global annual yield increase rate (current rate 

= 2.4%) of major agricultural crops (especially, rice, maize, wheat, soybean) should be doubled 

to meet the projected food demand by 2050 (Alexandratos and Bruinsma, 2012; Ray et al., 

2013; Mutayya, et al., 2014). Hence, a choice between the trade-off of paddy rice production 

with high evaporative losses and methane emissions and rainfed rice with increased respiratory 

losses and possible impact on grain yield (though this was not significant in this study; Nay-

Htoon et al., 2013; Tuong and Bouman, 2003, Figure III), depends largely on the regional 

water availability and precipitation regime. Moreover, the greenhouse gas balance of 

conventional flooded rice system is still unclear since CH4 and N2O emission not only depend 

on the amount of flooding but also on other factors such as climatic conditions, crop growth, 

atmospheric CO2 concentration (Alberto et al., 2014; Wassmann et al., 2000; Groenigen et al., 

2011, 2012; Dijkstra et al., 2012), source and rate of fertilizer applied (Berger et al., 2013), 

inorganic and organic carbon substrate availability for denitrifying bacteria, oxygen availability 

and bacterial activity (Seo et al., 2013). Traditional flooded paddy rice has high CH4 and low 

N2O emissions while non-flooded rainfed rice shows low CH4 but high N2O emissions (Weller 
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et al., 2014) together with high respiratory CO2 release, all being relevant greenhouse gases 

(Xiao et al., 2005). 

Under the environmental conditions at the present study location in S. Korea, with abundant 

monsoon rainfall, the high water consumption of paddy rice presents much less of a concern 

than high respiratory losses. However, in different climates, such as the Mediterranean, Africa 

or Middle East, producing rice in a more sustainable management regime considering its 

impact on the regional hydrological may well outweigh slight impacts on grain yield and higher 

respiratory losses.  
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