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Deutsche Zusammenfassung

Das Thema dieser Dissertation ist die modellpradiktive Regelung (MPC) — im Englischen
auch “receding horizon control” genannt. Typischerweise wird diese Methodik eingesetzt,
um ein auf einem unendlichen Zeithorizont gestelltes Optimalsteuerungsproblem appro-
ximativ zu l0sen, beispielsweise um eine gegebene Regelstrecke an einem Arbeitspunkt zu
stabilisieren. Allerdings sind Optimalsteuerungsprobleme mit einem unendlichen Opti-
mierungshorizont im Allgemeinen kaum oder nur mit sehr hohem Rechenaufwand 16sbar.
Deshalb wird der Zeithorizont abgeschnitten und folglich das Ausgangsproblem durch
eines auf einem endlichen Horizont ersetzt. In der modellpradiktiven Regelung werden
die folgenden drei Schritte durchgefiihrt:

> Das Verhalten der Regelstrecke wird, ausgehend von einem Modell und der zuletzt
vorgenommenen Messung, pradiziert, um das Optimalsteuerungsproblem zu l6sen
und damit einhergehend eine Folge von Steuerwerten zu berechnen.

> Das erste Element dieser Folge wird an der Strecke implementiert.

> Der Startzustand des betrachteten Optimalsteuerungsproblems aus dem ersten
Schritt wird aktualisiert. Zudem wird der Optimierungshorizont vorwarts in der
Zeit, verschoben, was den englischen Namen des Verfahrens erklart.

Dieses Vorgehen wird ad infinitum wiederholt. So wird eine Steuerfolge auf dem un-
endlichen Zeithorizont erzeugt. Die modellpradiktive Regelung generiert also eine Folge
von Optimalsteuerungsproblemen mit endlichen Optimierungshorizont, um die gesuchte
Losung zu approximieren.

Insbesondere die Moglichkeit Steuer- und Zustandsbeschrankungen explizit zu bertick-
sichtigen hat in den letzten Jahrzehnten zu verstarktem Interesse an dieser Methodik
gefiihrt. Des Weiteren wéchst die Anzahl der Industrieanwendungen stetig, siehe [33,100].
Ein weiterer Vorteil dieser Losungsstrategie ist die inharente Robustheit eines geschlosse-
nen Regelkreises — zum Beispiel gegeniiber externen Storeinflisssen oder Modellierungs-
fehlern, siehe [102].

Trotz der weiten Verbreitung modellpradiktiver Regelungsverfahren in der Anwendung
ist die zugehorige Stabilitatsanalyse nicht einfach. Die ersten Ansatze basierten auf
(kiinstlichen) Endbedingungen und -kosten, siche [17,66]. Diese durch die theoretische
Analyse motivierten Problemmodifikationen schaffen zusétzliche Einflussmoglichkeiten,
um Stabilitatseigenschaften des geschlossenen Regelkreises zu verbessern. Weil die
industrielle Praxis jedoch weitestgehend auf den Einsatz dieser Hilfsmittel verzichtet,
beschaftigen wir uns mit der so genannten unrestringierten modellpradiktiven Regelung,
die weder Endbedingungen noch Endkosten in die Problemformulierung aufnimmt.
Diesbeziiglich kann der in [39] vorgestellte Ansatz als unser Ausgangspunkt betrachtet
werden. In diesem wird ein Optimierungsproblem konzipiert, um asymptotische Stabilitat
des bzw. Giliteabschitzungen an den mittels modellpradiktiver Regelung geschlossenen
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DEUTSCHE ZUSAMMENFASSUNG

Regelkreis herzuleiten.  Positivitat des zugehorigen Suboptimalitatsgrades ist eine
notwendige und hinreichende Stabilitatsbedingung fiir die Systemklasse, welche eine
vorausgesetzte Kontrollierbarkeitsbedingung erfiillt.

Gliederung und eigener Beitrag

Diese Arbeit ist in fiinf Kapitel gegliedert. Die ersten zwei fiihren in grundlegende
Konzepte sowie die Problemstellung ein. AnschlieBend wird in Abschnitt 3.1 die in [39]
entwickelte Methodik kurz zusammengefasst, welche als Ausgangspunkt fiir das weitere
Vorgehen angesehen werden kann. Danach werden eigene Resultate dargestellt.

Diese Gliederung soll sowohl eine Inhaltsiibersicht bieten als auch den Beitrag der in
dieser Arbeit entwickelten Resultate zu der Analyse unrestringierter modellpradiktiver
Regelungsverfahren erlautern.

1= [m ersten Abschnitt von Kapitel 1 wird das grundlegende Konzept eines Kontroll-
systems eingefiihrt. Dabei wird unter anderem die Zulassigkeit von Kontrollfolgen
behandelt. Zusatzlich wird die optimale Wertefunktion definiert. In Abschnitt 1.2
wird die eingefiihrte Terminologie verwendet, um die wesentlichen Unterschiede eines
geschlossenen Regelkreises im Vergleich zur offenen Regelkette herauszuarbeiten.
So erlaubt der geschlossene Regelkreis beispielsweise auf duflere Storungen oder
Meffehler zu reagieren. In diesem Zusammenhang wird der Begriff der asympto-
tischen Stabilitat bendtigt, um die allgemeine Problemstellung zu definieren. In
den letzten beiden Abschnitten von Kapitel 1 beschéftigen wir uns sowohl mit
Abtast- als auch mit Netzwerksystemen — zwei wichtige Systemklassen, an denen
die Ergebnisse der nichsten Abschnitte demonstriert werden. Dabei wird insbeson-
dere gezeigt, wie von Differentialgleichungen induzierte Systeme als zeitdiskrete Sys-
teme behandelt werden konnen. Zum Abschluss des Kapitels wird der fiir diese
Arbeit wichtige Begriff der Riickkopplung bzgl. mehrerer Abtastintervalle definiert.

1 [n Kapitel 2 wird die modellpradiktive Regelung — eine Methodik um Optimal-
steuerungsprobleme auf unendlichem Zeithorizont approximativ zu lésen — in
ihren verschiedenen Facetten betrachtet. Beginnend mit der modellpradiktiven
Regelung in ihrer einfachsten Form: unrestringiertes MPC. AnschlieBend wird die
gleiche Kontrollstrategie um zusatzliche Endkosten oder -bedingungen erweitert.
Die Berticksichtigung dieser kiinstlich zu den in jedem Iterationsschritt zu losenden
Optimalsteuerungsproblemen hinzugefiigten Komponenten fiithrt zu verbesserten
Stabilitatseigenschaften des MPC Algorithmus. Der dafiir zu zahlende Preis ist die
schwierige Aufgabe, passende Endkosten zu entwerfen. Genau dieser Nachteil ist
der Grund dafiir, dass in der Industrie hauptsachlich unrestringiertes MPC zum
Einsatz kommt. Ein weiterer wichtiger Aspekt ist die Zulassigkeit modellpradiktiver
Regelungsverfahren. Dazu werden die wesentlichen Ideen aus [99] in groben Ziigen
skizziert.

i Am Beginn des folgenden dritten Kapitels wird die in [39] entwickelte Methodik
kurz vorgestellt. Diese erlaubt es, basierend auf einer Kontrollierbarkeitsannahme,
eine relaxierte Lyapunov-Ungleichung sicherzustellen — ein wesentliches Hilfsmittel,
um Stabilitat des geschlossenen Regelkreises nachzuweisen. Dartiber hinaus liefert
der umrissene Ansatz einen Suboptimalitatsindex, der angibt, wie gut die mit MPC
erzielte Regelgiite im Vergleich zur bestmdglichen ist. Im folgenden Abschnitt 3.2

IV
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wird der entsprechende Stabilitatsbeweis auf zeitvariante Kontrollhorizonte verall-
gemeinert, eine kleine Modifikation, die insbesondere im Netzwerkkontext genutzt
werden kann, um nicht vernachléssighare Verzogerungen sowie Paketausfille auszu-
gleichen, siehe [47,48]. Zudem wird sich diese Erweiterung fiir die Herleitung wei-
terer Ergebnisse als hilfreich erweisen.

Um die eingefithrte Methodik anzuwenden, wird die Losung eines linearen Pro-
gramms benotigt, dessen Grofle dem Optimierungshorizont in der modellpradiktiven
Regelung entspricht. In Abschnitt 3.3 wird eine Losungsformel fiir dieses Op-
timierungsproblem hergeleitet, welche einer der Eckpfeiler fiir die folgende Sta-
bilitatsanalyse unrestringierter MPC-Schemata ist. Um die wesentlichen Beweis-
schritte besser darstellen zu konnen, wurden einige technische Details in einen Hilfs-
unterabschnitt ausgegliedert. Anschliefend wird die bereits erwéhnte Losungsformel
genutzt, um zu zeigen, dass MPC das Regelungsproblem auf unendlichem Zeithori-
zont, beliebig gut approximiert — vorausgesetzt der Optimierungshorizont ist hin-
reichend grof}, ein Resultat im Einklang mit [32,120]. Im folgenden Abschnitt wer-
den die bisherigen Ergebnisse anhand der linearen Wellengleichung veranschaulicht.
Insbesondere wird instantane Kontrollierbarkeit rigoros gezeigt. Instantan bedeutet
hier, dass der MPC-Algorithmus mit kleinstmdglichem Optimierungshorizont aus-
geflihrt wird. Dieser Abschnitt basiert auf einer Zusammenarbeit mit Nils Altmiiller,
siehe [4,5].

Die wichtigsten Beitrage von Kapitel 3 sind

w cine analytische Losungsformel fiir das lineare Programm,
w cin Beweis fiir instantane Kontrollierbarkeit der linearen Wellengleichung und

w die Verallgemeinerung des Stabilitdtsbeweises aus [39] auf den Fall zeitvarianter
Kontrollhorizonte.

Einige Resultate dieses Kapitels wurden bereits in [45,46] in einer Vorabversion
veroffentlicht. Jedoch wurden insbesondere die Beweise griindlich iiberarbeitet, um
deren Nachvollziehbarkeit zu erleichtern.

In Kapitel 4 wird eine Sensitivitatsanalyse bzgl. der wichtigsten Parameter durch-
gefiihrt: Optimierungs- und Kontrollhorizont. Insbesondere die Bedeutung des
Letzteren sollte man nicht unterschiatzen. Wir beginnen mit dem Optimierungs-
horizont. Die in Kapitel 3 hergeleitete Formel wird dazu verwendet parameter-
abhangige Stabilitatsgebiete zu berechnen. Dies erlaubt Riickschliisse auf den un-
terschiedlichen Einfluss des Uberschwing- und Abklingverhaltens und folglich auf
den Entwurf geeigneter Stufenkosten fiir MPC, siehe [6,39]. Des Weiteren wird
der minimale stabilisierende Horizont, also der kleinste Optimierungshorizont, der
asymptotische Stabilitdt garantiert, genauer untersucht. In diesem Zusammenhang
wird — fiir passend gewéhlte Kontrollhorizonte — lineares Wachstum bzgl. der
akkumulierten Wachstumsschranken aus der vorausgesetzten Kontrollierbarkeits-
bedingung gezeigt, was einer qualitativen Verbesserung im Vergleich zu den Ab-
schitzungen aus [120] entspricht. Im darauffolgenden Abschnitt betrachten wir
Kontrollhorizonte. Hier werden insbesondere niitzliche Symmetrie- und Monotonie-
eigenschaften gezeigt, welche fiir die Algorithmenentwicklung in Abschnitt 4.4 eine
wichtige Rolle spielen. Abschnitt 4.2 besteht aus zwei Teilen. Im ersten Teil werden
die Ergebnisse zusammengefasst wahrend im zweiten, der die Unterabschnitte 4.2.2
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VI

und 4.2.3 umfasst, die entsprechenden Beweise dargestellt werden. Fiir diese wird
eine ausgefeilte Beweistechnik benotigt.

Abschnitt 4.3 ist in drei eigenstédndige Teile gegliedert. Zuerst beschéftigen wir
uns mit der vorausgesetzten Kontrollierbarkeitsbedingung.  Danach wird ein
Beispiel eines linearen Pendels auf einem Wagen betrachtet. Die durchgefiihrten
numerischen Tests bestatigen unsere theoretischen Resultate bzgl. des Kontrollho-
rizonts. Als drittes Thema werden Endgewichte und ihre Auswirkungen auf den
Suboptimalitdatsgrad behandelt. In Abschnitt 4.4 werden Algorithmen auf Basis der
durchgefiihrten Sensitivitdatsanalyse entwickelt. Weil der Rechenaufwand bei wach-
sendem Optimierungshorizont schnell steigt, wird dieser Parameter typischerweise
als Schliisselgrofie in MPC aufgefasst. Die vorgestellten Algorithmen nutzen das
Konzept des Kontrollhorizonts, um Abschatzungen fiir die garantierte Regelgiite
zu verbessern — ohne den Optimierungshorizont zu verlingern. Zudem wird
der entwickelte Grundalgorithmus weiter ausgefeilt, um ein verbessertes Robust-
heitsverhalten zu erzielen. Um die Vorteile der in diesem Abschnitt entwickelten
Algorithmen besser herauszustreichen, wird das Beispiel des synchronen Generators
eingehend studiert, siehe [28,34,94].

Die Hauptresultate dieses Kapitels sind

w Sensitivitatsanalyse beziiglich des Optimierungshorizonts ~» asymptotische
Abschéatzungen flir den minimalen stabilisierenden Horizont,

w Sensitivitdatsanalyse beziiglich des Kontrollhorizonts ~» Symmetrie- und Mono-
tonieeigenschaften unserer Suboptimalitatsabschatzungen und

w Design zweier Algorithmen basierend auf den theoretischen Resultaten, um
den bendtigten Optimierungshorizont und folglich den Rechenaufwand zu re-
duzieren.

Das letzte Kapitel dieser Dissertationsschrift wird mit einer Fallstudie einer
Reaktions-Diffusions-Gleichung begonnen, um das weitere Vorgehen zu motivieren.
In diesem Zusammenhang wird eine zeitkontinuierliche Version unserer Kontrol-
lierbarkeitsbedingung eingefithrt. Weil aus abgetasteten Differentialgleichungen
abgeleitete zeitdiskrete Regelstrecken ein Kernanwendungsgebiet von MPC sind,
werden Effekte untersucht, die mit der Verwendung feinerer Diskretisierungen
verbunden sind. Hierbei werden neben positiven Auswirkungen auch mogliche
Fallstricke sehr kurzer Abtastraten beleuchtet — sehr schnelle Abtastung kann
erforderlich sein, um wesentliche Eigenschaften des Ausgangssystem auf sein abge-
tastetes Pendant zu {ibertragen. Insbesondere wird gezeigt, dass der Ansatz aus [39]
fiir klassisches MPC in Kombination mit beliebig feiner Diskretisierung nicht an-
wendbar ist. Beliebig feine Diskretisierung entspricht hier einer gegen Null streben-
den Abtastzeit. Des Weiteren wird der Grenzwert dieses Diskretisierungsprozesses
berechnet. Dieser Grenzwert stimmt mit seinem zeitkontinuierlichen Pendant
aus [103,104] tiberein, was klart, wie die Ansétze [39] und [104] zusammenhéngen.

Um die beobachteten Probleme fiir sehr schnelle Abtastung zu beheben, wird eine
Wachstumsbedingung eingefiihrt. Mit Hilfe dieser Bedingung kénnen zum Beispiel
Stetigkeitseigenschaften, wie sie typischerweise fiir Abtastsysteme gelten, in un-
serer Stabilitdtsanalyse berticksichtigt werden. Dazu wird die Methodik aus [39]
um diese Annahme erweitert. AnschlieBend wird gezeigt, dass dieses Vorgehen
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das beobachtete Problem 16st. Zudem werden einfach nachpriifbare Bedingungen
hergeleitet, um diese zusatzliche Voraussetzung zu verifizieren.

In Abschnitt 5.4 werden so genannte akkumulierte Schranken als alternative
Kontrollierbarkeitsannahme eingefiihrt und in unsere Technik zur Bestimmung von
Giiteabschétzungen eingebaut. Diese akkumulierten Schranken stammen aus [120].
Um deren Auswirkungen zu untersuchen, wird das Beispiel der Reaktions-Diffusions-
Gleichung wieder aufgegriffen. Insgesamt fiithrt dieses Vorgehen auf verbesserte
Giiteabschatzungen fiir den mittels MPC geschlossenen Regelkreis. Im abschlieflen-
den Abschnitt wird die in dieser Dissertationsschrift entwickelte Methodik mit
alternativen Ansétzen aus [90] sowie [120] verglichen. Dabei werden insbesondere
Unterscheidungsmerkmale herausgestellt. Die in [90] eingefiihrte Methodik liefert,
falls anwendbar, die besten Abschatzungen. Allerdings ist ihr Anwendungsgebiet
auf lineare endlich-dimensionale Systeme beschrankt und erfordert zusatzliches
Wissen tiber die optimale Wertefunktion — eine restriktive Zusatzbedingung. Die
anderen beiden Ansitze lassen die Behandlung allgemeiner nichtlinearer sowie
unendlich-dimensionaler Systeme inklusive Kontroll- und Zustandsbeschrankungen
zu. Obwohl vergleichbare Annahmen benotigt werden, sind die Giiteabschatzungen
aus [120] haufig deutlich konservativer im Vergleich zu unserem Ansatz, der folglich
iiberlegen erscheint.

Die Hauptbeitrage aus Kapitel 5 sind:

w Untersuchung der aus der Verwendung feinerer Diskretisierungen resultieren-
den Auswirkungen auf unsere Giiteabschétzungen sowie die Berechnung des
Grenzwertes eines entsprechenden Verfeinerungsprozesses.

w Aufstellen einer Wachstumsbedingung, die dazu fiihrt, dass der vorgestellte
Ansatz trotz sehr schneller Abtastung gute Ergebnisse liefert.

w Verwendung akkumulierter Schranken, um unsere Giiteabschatzungen weiter
zu verbessern.

w Vergleich mit anderen Ansétzen.

Statt eines separaten Beispielkapitels werden die hergeleiteten Resultate direkt in ihren
jeweiligen Abschnitten mit Beispielen verbunden, um ihre Aussagen zu veranschaulichen
und so die theoretischen Ergebnisse besser nachvollziehbar zu machen. Einige Resultate
dieser Dissertationsschrift wurden bereits in Vorabversionen verdffentlicht, siehe [6,45-47],
[41,50], [4,5] und [97].
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Summary

In this thesis we are concerned with receding horizon control (RHC), also known as model
predictive control. Typically, this methodology is employed in order to approximately
solve optimal control problems on an infinite time horizon whose goal is to stabilize a
given system at a set point. Since optimal control problems on an infinite time horizon
are, in general, computationally intractable, the original problem is replaced by a problem
on a truncated and, thus, finite time horizon. Receding horizon control proceeds in the
following three steps:

> Based on a model and the most recent known measurement the system behavior is
predicted in order to solve an optimal control problem on a finite time horizon and,
thus, to compute an open loop sequence of control values (or an input function in a
continuous time setting).

> The first element of this sequence (or the first portion of the computed control
function) is implemented at the plant.

> The current state, which corresponds to the initial state of the optimal control
problem considered in the first step, is updated. In addition, the optimization
horizon is shifted forward in time which explains the terminology receding or moving
horizon control.

Repeating the described procedure ad infinitum yields a sequence of control values on
the infinite time horizon. Hence, RHC iteratively generates a sequence of optimal control
problems on a finite time horizon in order to approximate the desired solution.

Due to its ability to explicitly incorporate control and state constraints, this control
technique has attracted considerable attention during the last decades. Furthermore, its
beneficial use in many industrial applications is reported, cf. [33,100]. Besides being a
solution strategy for the introduced class of problems, another advantage, which leads
to an increased interest in RHC, results from generating a closed loop solution which
ensures an inherent robustness with respect to, e.g. external disturbances or modelling
errors, cf. [102].

Despite the widespread use of RHC in applications, the stability analysis is far from
trivial. The first cornerstones in order to deal with this issue employ (artificial) terminal
constraints or costs, cf. [17,66]. These theoretically motivated extensions allow to exert
additional influence in order to enforce stability properties of the RHC closed loop. How-
ever, since the industrial practice hardly takes these stabilizing constraints into account,
we concentrate on the stability behavior of so called unconstrained RHC schemes which
neither incorporate terminal constraints nor costs. To this end, the approach proposed
in [39] is considered as a starting point. Here, an optimization problem is set up in order
to deduce asymptotic stability of and performance bounds for the receding horizon closed
loop. Positivity of the resulting suboptimality degree is a necessary and sufficient stability
condition on the class of systems satisfying an assumed controllability condition.

IX



SUMMARY

Outline and Contribution

This thesis is subdivided into five chapters. The two initial chapters introduce basic
concepts and the problem setting. Then, the ensuing Section 3.1 begins with a short
summary of the methodology proposed in [39] which may be regarded as our starting
point. In the remaining part new results are presented.

The goal of the following outline is twofold: on the one hand a concise overview of the
content is provided. On the other hand the contribution of the results developed in this
thesis to the analysis of unconstrained RHC schemes is explained.

1= In the first section of Chapter 1 the basic concept of control systems is introduced.
Inter alia, attention is paid to admissibility of input sequences. In addition, the
optimal value function is defined. In Section 1.2, using this terminology the main
differences between open and closed loop control are considered. For instance, closed
loop control allows to react to external disturbances or measurement errors. In this
context, the general problem setting is defined for which the notion of asymptotic
stability is required. In the final two sections of Chapter 1 sampled data as well
as networked control systems are dealt with which represent important classes of
control systems and constitute application areas for the results presented in the
ensuing chapters. Here, we explain how to interpret systems governed by differential
equations in our discrete time setting. The chapter is concluded by giving a precise
definition of (multistep) feedback laws which play a decisive role for this thesis.

1= [n chapter 2 we are concerned with RHC — a methodology in order to deal with
optimal control problems on an infinite time horizon — in its various shapes. We
begin with RHC in its simplest version: unconstrained RHC. Subsequently, the
same control strategy extended by additional terminal costs or constraints is con-
sidered. Incorporating these artificial ingredients in the underlying optimal control
problems to be solved in each iteration step equips the receding horizon algorithm
with improved stability properties. However, one has to face the challenging task
of designing appropriate terminal costs which gives reason to the observation that
unconstrained RHC is predominantly used in industries. In order to conclude this
chapter, the main ideas from [99] in order to ensure feasibility of unconstrained RHC
schemes are briefly sketched in Section 2.4.

1z In the ensuing Chapter 3 we begin with a concise survey on the methodology from
[39] which enables us, based on a controllability assumption, to ensure a relaxed
Lyapunov inequality — our main tool in order to conclude stability of the receding
horizon closed loop. Furthermore, this approach yields a suboptimality index which
allows to compare the receding horizon performance with the costs attributed to the
optimal control problem on the infinite time horizon. In the following Section 3.2
the corresponding stability proof is extended to time varying control horizons — a
slight modification which is of particular interest in the networked control setting in
order to compensate for non negligible delays and packet dropouts, cf. [47,48], but
which also turns out to be very beneficial in order to derive further results.

Applying the proposed technique requires to solve a linear program whose dimen-
sion equals the optimization horizon of the receding horizon scheme. In Section 3.3
we derive a solution formula for this optimization problem which forms a corner-
stone for the ensuing results. In order to structure the involved proof more clearly,
some technical details are postponed to an auxiliary subsection which enables us
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to concentrate on the key steps. Then, this formula is used in order to show that
RHC approximates the optimal control on an infinite time horizon for a sufficiently
large horizon arbitrarily well — a result in consonance with [32,120]. In the ensuing
section the presented results are illustrated by means of the linear wave equation.
In particular, instantaneous controllability is shown rigorously, i.e. RHC stabilizes
the system based on the shortest possible optimization horizon. This section is joint
work with Nils Altmiiller, cf. [4,5].

The main contributions of Chapter 3 are

w extension of the stability proof from [39] to time varying control horizons,
w analytical solution formula for the linear program, and

w proof of instantaneous controllability for the linear wave equation.

Preliminary versions of some of the results in this chapter were previously published
in [45,46]. However, the proofs are carefully revised and rearranged in this thesis in
order to facilitate their accessibility.

In Chapter 4, a complete sensitivity analysis is carried out with respect to the most
important parameters in our RHC strategy: the optimization and the control hori-
zon. In particular, the latter turns out to be much more meaningful than it might
appear at first glance. Beginning with the optimization horizon, the formula de-
duced in Chapter 3 is exploited in order to compute parameter depending stability
regions which enables us to draw conclusions on the different impact of the over-
shoot and the decay rate and, thus, on the design of suitable stage costs for RHC,
cf. [6,39]. Furthermore, the minimal stabilizing horizon, i.e. the smallest optimiza-
tion horizon guaranteeing asymptotic stability, is subject to investigation. In this
context, we establish linear growth in terms of the accumulated bound from the
proposed controllability condition with suitably chosen control horizons which im-
proves the estimates from [120] qualitatively. In the subsequent section, we focus on
the control horizon and point out interesting symmetry and monotonicity properties
which pave the way in order to develop algorithms in Section 4.4. This section is
composed of two parts. The first part provides a summary of the results while the
second consisting of Subsections 4.2.2 and 4.2.3 contains the corresponding proofs
which are based on a sophisticated technique.

The ensuing Section 4.3 is subdivided into three independent parts. Firstly, we com-
ment on the supposed controllability condition. Secondly, the linear pendulum on a
cart example is considered. Here, numerical experiments confirm our theoretically
derived results vis-a-vis the control horizon. Thirdly, attention is paid to the impact
of terminal weights in the considered setting. In Section 4.4, algorithms based on
the results of the carried out sensitivity analysis are set up. Since the computational
expenditure grows rapidly for increasing optimization horizon, this parameter is typ-
ically regarded as the key quantity in RHC. The proposed algorithm exploits the
concept of control horizons in order to improve the guaranteed performance without
prolonging the optimization horizon. In addition, a more elaborate version of this
algorithm is introduced in order to enhance robustness. In order to indicate benefits
of the developed algorithms, the example of a synchronous generator is considered
in detail, cf. [28,34,94].

The key results of Chapter 4 are

XI
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w sensitivity analysis with respect to the optimization horizon which yields, e.g.
asymptotic estimates on minimal stabilizing horizons,

w sensitivity analysis with respect to the control horizon showing symmetry and
monotonicity properties of the proposed suboptimality estimates, and

w development of two algorithms which exploit the theoretically deduced results
in order to reduce the optimization horizon and, thus, the computational costs.

1= [n the final chapter of this thesis a case study of a reaction diffusion equation is

XII

carried out first in order to motivate the ensuing investigations. In this context, a
continuous time version of our controllability condition is introduced. Since RHC for
discrete time systems induced by a sampled differential equation is a driving force
behind the proposed analysis, effects linked to employing more accurate discretiza-
tions are analyzed. In particular, we do not only observe positive effects of very fast
sampling — which may be necessary in order to preserve essential features in a sam-
pled data setting, cf. [91] — but also point out possible pitfalls. More precisely, we
rigorously prove that, for classical RHC, the approach from [39] fails for arbitrarily
fine discretizations, i.e. for letting the sampling time tend to zero. Furthermore, the
continuous time limit of a discretization procedure is deduced which coincides with
results derived in [103,104] for a continuous time setting. As a consequence, the
approach originating from [39] is unified with its counterpart based on a continuous
time setting from [104].

In order to overcome the observed drawbacks for very fast sampling, a growth con-
dition is introduced which reflects, e.g. continuity properties typically present in a
sampled data system. Then, we generalize the technique from [39] to this setting
and show that the growth condition is a suitable tool in order to resolve the observed
problem. Furthermore, easily checkable sufficient conditions for guaranteeing this
additional prerequisite are presented.

In Section 5.4, accumulated bounds, which represent an alternative controllability
assumption from [120], are introduced and incorporated in our setting. In order to
investigate their ramifications, the examples of the reaction diffusion equation and
the synchronous generator are considered again. In conclusion, the corresponding
suboptimality estimates are improved. In the final section the methodology devel-
oped in this thesis is compared with alternative approaches from [90] and [120]. In
particular, distinguishing factors are pointed out. The technique proposed in [90]
yields, if applicable, the best results. However, its application is limited to linear
finite dimensional systems and necessitates additional knowledge on the optimal
value function — a restrictive extra condition. The other two methodologies allow
to deal with nonlinear and infinite dimensional systems including state and control
constraints. But although similar assumptions are used, the performance bounds re-
sulting from [120] are often more conservative in comparison to our approach which,
thus, seems to be superior.

The main contributions of Chapter 5 are

w investigation of the impact of using more accurate discretizations,
w derivation of a formula for the limit of an iterative refinement process,

w introduction of a growth condition which resolves problems occurring for very
fast sampling,
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w definition of accumulated bounds in order to generate tighter performance es-
timates, and

w comparison with other approaches

In order to facilitate understanding of the theoretical results, several illustrating examples
are incorporated throughout the text, i.e. we do not present a separate example chapter
but rather interconnect the derived assertions with examples in order to directly demon-
strate their impact. Some results of this thesis were already published in preliminary
versions, cf. [6,45-47], [41,50], [4,5], and [97].
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Chapter 1

Control Systems, Stability, and
Feedback

In this chapter the problem formulation of this thesis is presented. To this end, control
systems, admissible sequences of control values, and an optimal value function are defined
in the first Section 1.1. In the ensuing section the concept of stability, which characterizes
the long-term behavior of systems evolving in time, is introduced. The theory of Lyapunov
which allows to rigorously deduce asymptotic stability is of particular interest in this
context. Furthermore, the basic ideas of closed loop control are presented. Then, in
Sections 1.3 and 1.4 sampled-data and networked control systems are dealt with in order
to motivate our discrete time setting as well as the proposed multistep feedback.

The set of real numbers is denoted by R and the set of integers by Z. Furthermore,
N stands for the natural numbers, i.e. Z~o, as well as Ny for N U {0}, i.e. the set of
non-negative integers. We require the following definition, cf. [106].

Definition 1.1 (Metric space)
A metric space is a set X with a metric or distance function d : X x X — R such that
the following properties are satisfied for all x,y,z € X:

e definiteness, i.e. d(x,y) > 0 and d(z,y) = 0 if and only if v =y,
o symmetry d(z,y) = d(y,z), and

e triangle inequality d(z,z) < d(x,y) + d(y, 2).

1.1 Control Systems and Problem Formulation

In this thesis we are concerned with control systems. The state of a control system evolves
depending on its current state and a control input. This input parameter can be chosen
in order to exert influence on the system. A classical example is the inverted pendulum
on a cart, cf. Figure 1.1 and Section 1.3. Here, the state consists of the angle ® of the
pendulum, the position of the cart and the corresponding velocities. The movement is
determined by the current state and an external force u acting on the cart.

The concept of a control system is formalized in the following definition.

Definition 1.2 (Control system)
Let X and U be metric spaces. A control system is a quadruplet ¥ = (T, X, U, f) consisting
of a time domain T = {Tk |k € No}, T' > 0, a state space X, a set of control values U,
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Figure 1.1: Schematic illustration of the inverted pendulum on a cart, cf. [37].

and a transition map f : Dy — X. The transition map f(-,-) is defined on a subset Dy
of X x U.

The state space X need not satisfy the definition of a linear space, which can be found,
e.g., in [72]. Since control systems are defined forward in time, the time domain T is a
subset of the positive real axis.

In order to investigate the class of control systems, we typically consider models which
capture the dynamical behavior of an underlying process, cf. Section A.2 for a mathe-
matical model of the inverted pendulum on a cart. These models are employed in order
to deduce a suitable transition map. Since the concept of control systems is used in order
to describe dynamics of practically motivated systems, the states and control values are
often restricted. For instance, the set of control values may have to be bounded. The
following definition allows for incorporating constraints in our setting.

Definition 1.3 (State and control constraints)

Let nonempty sets X C X and U C U denote the set of feasible states and controls,
respectively. A sequence u(-) = (u(n))nefon,. . n—1y € UN, N € N, is called admissible for
Ty € X Zf

u(n) e U and  f(zu(n;z0),u(n)) € X holds for alln € {0,1,..., N —1}.
Here, x,(n;xo) is defined recursively by the system dynamics
Tu(n+ 1;x0) := f(zu(n;xo), u(n)) for n € Ny with x,(0; xy) := xo. (1.1)
UN(z9) denotes the set {u(:) € UYN : w(-) is admissible for zo} and a sequence
u(:) = (u(n))nen, € UN is called admissible for vy € X, i.e. u(-) € UP(x), if
(w(n))nefo1,..,N—1} € UN (zq) holds for each N € N.

The abbreviations z(n) = z,(n) = z,(n;zo) are used when the parameters xy and wu(-)
clearly follow from the context. Furthermore, the states z(n), n € Ny, are enumerated
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without stating the scaling factor T resulting from the time domain T explicitly. The set X
characterizes all feasible states, e.g. we may choose X = R" and X = {z € X | h(z) < 0}
for h : R® — R in order to model state constraints. We make the following assumption
which ensures that, for each feasible state xg € X, an admissible sequence of control values
u(+) € U*(xp) exists on the infinite time horizon, cf. [120, Assumption A3].

Assumption 1.4 (Controlled forward invariance)
For each state x € X, let a control value uw € U exist such that f(x,u) € X holds.

Assumption 1.4 is also termed weak forward invariance or viability, cf. [35]. Suppose
that Assumption 1.4 does not hold. Then, the state constraints are violated for a feasible
state o € X for all u € U. Hence, the task of steering the control system with initial
value g is not well-posed.

The sequence of control values u(-) : Ng — U is interpreted as an input, i.e. u(-) is
constructed in order to suitably manipulate the behavior of the system. In this thesis,
our goal is to stabilize a given plant at a desired position which is, in general, specified in
advance. This type of problem is called set point stabilization and fits well to the example
of the inverted pendulum on a cart, in which the upright position is the desired state.
Typically, these particular positions are so called equilibria z* € X C X satisfying

fla*,u*) =" (1.2)

for at least one control value u* € U, cf. [108, Section 5.4]. Trajectories emanating from
an equilibrium z* € X may be balanced at this position by a suitably chosen control
input.

We aim at steering the system to its equilibrium z*, at least asymptotically. If more
than one trajectory converges asymptotically to the desired equilibrium, the transient
behavior of the system may be taken into account in order to assess the quality of the
induced behavior of the system to be controlled, cf. [58, Section 5.5]. To this end, we
define a cost functional which is based on so called stage costs, cf. [7, Subsection 1.6.1].

Definition 1.5 (Cost functional and stage costs)
Let a control system (T, X, U, f) as well as feasible sets X C X and U C U be given.
Then, the cost functional Jo : X x UN — RE U {oo} is defined by

Joo(o,u(-)) = Y Ua(n: o), u(n)) (1.3)

with stage (running) costs € : X x U — R$ U{oc} which are continuous on X x U. Here,
the system dynamics are given by (1.1).

Hence, our goal is to minimize the cost functional (1.3) and to stabilize the consid-
ered control system asymptotically at a given set point z*. In order to state this task
mathematically, these two objectives are coupled by the stage costs. To this end, the
following definition of a comparison function is required, cf. [115, Exercise 7.3.11], [35,39],
and [58, Definition 3.2.1].

Definition 1.6 (K-function)

A continuous function o : Ry — R{ is said to be of class K if «(-) is strictly increasing
and a(0) = 0. If, additionally, the property lim, o a(r) = oo holds, a(-) is said to be of
class Ko.
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We point out that each function a(-) € K is invertible, cf. [70]. The following as-
sumption consists of two parts. The first ensures that staying at the desired equilibrium
x* forever at zero cost is possible. The second, which uses Definition 1.6, incorporates
the stabilization task in the cost functional (1.3) because not tending to * causes infinite
costs.

Assumption 1.7
Let an equilibrium x* exist which satisfies:

(1) uw e U with f(a*,u) = x* and {(z*,u) = 0 exists.

(i1) Koo-functions aq(-), ao(-) exist such that the inequalities

ar(||z||o) < (x) .= inf  l(z,u)= inf L(z,u) < ax(]|z]~) (1.4)

u€el: f(z,u)eX ueU (zo)
hold for each x € X where ||z, = dx(z, z*).

We remark that condition (ii) can be relaxed in various ways, e.g. it could be replaced
by a detectability condition similar to the one used in [32]. However, in order to keep
the presentation technically simple, we work with Assumption 1.7(ii). Moreover, the
equilibrium z* may be replaced by a closed set A at which the system has to be stabilized,
cf. [39].

Typical stage costs are, e.g. £(z,u) := dx(z,z*)* + A dy(u, u*)?. Here, A € R5( denotes
a regularization parameter and dx, dy metrics on X, U, respectively. If the metric space
X exhibits the structure of a linear space [72], the desired equilibrium z* is supposed to
be located at the origin Ox of this space, cf. [38, Remark 2.4].! The contribution of the
regularization parameter A is twofold: firstly, it allows for penalizing the control effort
which is used in order to steer the system in the desired direction. Secondly, in particular
for systems governed by partial differential equations, it implies some regularity for the
corresponding solutions, cf. [119].

Our goal is to find, for a given initial value zy € X, an admissible sequence of control
values u(-) € U>°(x) which minimizes a cost functional of type (1.3). In order to tackle
this task, the optimal value function is defined.

Definition 1.8 (Optimal value function)
Let a control system (T, X, U, f), a set of feasible states X C X, and a set of feasible
control values U C U be given. Then, for a given state vy € X, the optimal value function

Voo (") : X — R U {oo} is defined by

Vo (o) == inf  Joo(zo,u(")) (1.5)

u(-)EU> (o)
with the set of admissible input sequences U (xzq) from Definition 1.3.

Substituting the objective of stabilizing the plant at a set point by tracking a reference
signal is possible. To this end, the stage costs as well as the cost functional have to explic-
itly depend on the time, cf. [107, Section 3.2]. The results of this thesis are generalizable
to this setting, cf. [44].

Let us suppose that the optimal value function is finite for each feasible state, i.e.
Voo(xg) < 00 holds for all zy € X. Otherwise, the considered minimization problem is

LOften we omit the subscript X and write 0 for the origin of the respective (linear) metric space.
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either not feasible or the computed control causes infinite costs and is, thus, not distin-
guishable from an infeasible one. In both cases the optimization problem is not well-posed.
Since Vo (zg) < oo on X implies the existence of an admissible sequence of control values
u(-) € U®(xp) for each zg € X, Assumption 1.4 is ensured.

Summarizing, we want to find an admissible sequence of control values wu(-) which
stabilizes the considered control system with minimal costs. The qualitative goals of
steering the system feasibly and stabilizing it at the desired equilibrium are coupled
with the quantitative objective of minimizing a performance criterion via the optimal
value function V,(-). Since the coupling is done by the stage costs, modelling these
appropriately is an important task.

1.2 Closed Loop Control and Asymptotic Stability

In the previous section the basic problem formulation was given. In order to sketch
the upcoming approach, the following assumption is made in order to avoid technical
difficulties. Assumption 1.9 is used only for illustrative purposes in the first chapter of
this thesis.

Assumption 1.9
For each xqg € X C X, let the infimum in Definition 1.8 be a minimum, i.e. a sequence of
control values uj (-) € U™(xq) satisfies

Joo (20, Uy, (+)) = Veo(20)- (1.6)

Let u} (-) = (u},(n))nen, € U (x0) denote an admissible sequence of control values
depending on the initial value zo € X which satisfies (1.6). The corresponding solution
w“%('; xy) emanating from z; is called open loop trajectory. Since model uncertainties
or disturbances are typically present while applying the sequence of control values v} (-),
the generated trajectory Tu, (+; o) might not be stable - even for arbitrary small pertur-
bations, cf. [36, Example 5.2]. Hence, in order to obtain a solution which compensates
at least for small perturbations, so called closed loop solutions are considered, cf. Figure
1.2.

Applying the first element u}_ (0) of the computed open loop control, yields the equality

oo (20, 105, ( ZMU* n; o), 1wt (n)) = (o, ul, +Zm~m (n; o), %, (n).
n=1

Furthermore, the next state 1 := zy; (1;20) = f(2o,u;,(0)) is determined. Then, the
following optimization problem can be considered:

Minimize Joo(z1,u ZE (xu(n;zy),u(n)) wrt. u(-) € UP(xq).
Let the corresponding solution be denoted by u} (-). Concatenating u} (0) and u} (-)
yields a control sequence u(-) € U®(xy) with u( ) = u} (0) and u(n) = uj, (n — 1) for

n € N. Since v}, (-) satisfies (1.6), Joo (20, uj, () < (xo, (+)) is known. Now, suppose
that the strict inequality Joo (2o, u},(-)) < Joo(wo, %(-)) holds. Then,

oo (0, 0( Z€ za(n; o), u(n))
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Reference Variable to be
signal controlled
9 Controller - Plant > >

x(n+1)=f(x(n),u(n))

Observed
Flow of Information _ quantity

A
y

Figure 1.2: Scheme of open and closed loop control. The distinctive features are drawn
in red: in the closed loop an observed quantity and, thus, information about the current
state is compared with a reference signal, e.g. the distance from the desired equilibrium,
and transmitted to the controller — the control loop is closed. Based on this information
the control signal may be updated. Without integrating this flow of information in the
control loop a reaction to disturbances or modelling errors is not possible.

= g(l’o, a?o +Z€ l‘u* n mu* (1 33'0)), x1<n))

n=0

> o, (0)) + Y Uy, (14 m5w0),uf, (14 1)) = Joo(w0, 1, ()

n=0

is obtained which contradicts the definition of u} (-). As a consequence, the optimal value
function V. (-) satisfies

Vao(0) = Joo(0, Uz (+)) = Joo (o, ()
= (o, u xU(U))JrJ (21, uz, ()
= (w0, uz,(0)) + Vool@1) = £, uz,(0)) + Voo (f (20, 7, (0))).

The fact that u} (-) depends only on the current state z, enables us to define a static
state feedback Fl, : X — U by Fi (o) := u}, (0). Plugging this definition into the last
chain of equalities yields

Vo (x0) = (0, Foo(x0)) + Voo (f (0, Fo(T0)))- (1.7)

Indeed, (1.7) characterizes an optimal feedback value for the optimization problem for a
given state xg € X on the infinite time horizon and allows for an iterative computation
of an optimal sequence of control values. This technique is called dynamic programming,
cf. [113] and [81] for its use as a computational tool. It is based on Bellman’s principle
of optimality which states that tails of optimal trajectories are again optimal, cf. [9].
Reformulating (1.7) provides the Lyapunov equation

Voo (f (20, Foo(0))) = Voo (o) — €0, Foo(20))- (1.8)

In order to illustrate the presented ideas, a simple discrete time control system is consid-
ered, which was introduced in [112] and further investigated in [39,90]. Note that this
example does not exhibit any control or state constraints which makes the analysis much
easier.
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Example 1.10
LetU=U =R, X = X :=R?, and {(z,u) = 27 Qz+u’ Ru be given. Then, U*(zy) = UN
holds for each xo € X = X. The following optimal control problem is considered:

; N T T - . = (1 0 T
u(r-?el%N 2 z(n)" Qx(n) + u(n)” Ru(n) = u(%lel%N 2 x(n) ( 01 ) z(n) + u(n)Tu(n)

subject to the linear dynamics

v(n+1) = Aw(n) + Bu(n) < B ) o(n) + ( ; ) u(n).

For this example, the optimal value function is computable via Vy(zo) = xt Pxo where P
is the unique positive definite solution of the algebraic Riccati equation (ARE)

P=A"PA—- A"PB(B"PB+ R)"'B"PA + Q.
Moreover, Fy(wo) = u} (0) is given by
Foo(zg) = —(B'PB+ R) "' BT PAx,,
cf. [74,90] and [8]. Here, this leads approximately to

Pa ( 5.09839937 3.210349330 )

0.58728054 \
3.21034933 7.406837723 0

and  Fu(zo) ~ ( —1.301110161

Using this feedback, we obtain the closed loop system
z(n+1) = Azx(n) + BF(z(n)) = (A+ BFx)z(n). (1.9)
Hence, for zo = (1 1)T € X, (1.8) corresponds to
16.416 ~ Vio (A + BFs)wo) = Vao(2o) — £(o, Fao(20)) ~ 18.926 — 2.510.
Supposing that a static state feedback map F': X — U satisfying
F(z) €U and f(z,F(z))eX  foralzeX (1.10)

is given, the resulting closed loop trajectory xp(-) = (zp(n))nen, i generated by
zp(n + Lizg) = flrr(nyxo), F(zrp(n;zg))), n € Ny, with xp(0;29) = 2. The
conditions given in (1.10) ensure that the corresponding sequence of control values
F(zp(;m)) = (F(zr(n;xg)))nen, is contained in U®(zq) for zo € X and, thus, admissi-
ble. Hence, assuming that (1.10) holds, system dynamics f: X — X depending solely on
the state can be defined by f(z) := f(z, F(z)). This map f defines a dynamical system,
of. [53,58,117).

Definition 1.11 (Dynamical system)
A dynamical system on X is a triple (X, T, x) which consists of the time domain T := Ny,
the state space X, and a map x : T X X — X such that

o 1(0,20) =z for all zog € X (consistency),

o u(1,x(t,x0)) = x(T + t,20) for all zy € X and t,7 € T (group property).
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The restriction to the time domain Ny is not necessary but fits well for our purposes.
Since the time domain is contained in Ry, (X, T, z) is said to be a semi dynamical system
in some references, cf. [35]. Next, we want to introduce the concept of asymptotic stability
for a dynamical system. To this end, comparison functions 5 € KLy are required, cf. [40].

Definition 1.12 (KL£- and KLy-functions)
A function 3 : RS x Ny — R{ is said to be of class KL if

o for eacht € Ry, B(-,t) : Ry — RY is of class Koo and

o for eachr >0, 3(r,-) : Ng — Ry is decreasing with lim; .. 3(r,t) = 0.
Furthermore, a function 3 : RE x Ny — R{ is said to be of class KLy if

o for eacht € Ry, B(-,t) : Ry — R is of class Koo or 3(-,t) =0 and

e for each r > 0, lim;_, B(r,t) = 0.

Since discrete time systems are dealt with, 3(-,-) from Definition 1.12 is, in contrast
to [58, Definition 3.2.1], defined on R x Ny instead of Ri x Rj. Each §(-,-) € KLy may
be extended to a continuous function on Ry x Ry, e.g. by linear interpolation. Vice versa,
taking a continuous K Ly-function defined on R} x R{ as a starting point allows to define
a corresponding restriction canonically. This mapping is tacitly used in order to avoid
technical details for discrete time systems originating from continuous time ones.

Since each continuous KLy-function 8 : Rf x Rj — RJ can be overbounded by a
function B(, ) € KL, e.g. by setting B(r, t) = sup,s, B(r,7) + e 'r, this can also be done
for functions defined according to Definition 1.12. Two important representatives of class
K Ly-functions ((-, -) are given in the following example.

Example 1.13
The first example is in fact contained in KL C KLy.

e Let an overshoot bound C' > 1 and a decay rate o € (0,1) be given. Then, exponen-
tially decaying functions are defined by

B(r,n) = Co"r. (1.11)

While the second requires the more general class KLy.

o A function B(-,-) : Rf x Ng — R is linear in its first argument and equal to zero
for sufficiently large second arguments if a finite number ng € Ny and a sequence
(Cn)nen, C Ry satisfying ¢, = 0 for all n > ng exist such that

B(r,n)=r-¢,  forallneN, (1.12)

holds. Such a function can be defined by choosing only finitely many elements c,,
n e {0,1,...,710—1}.

Note that each function of the second class of Example 1.13 may be overbounded by
an exponentially decaying one. However, using the larger class KL, allows for employing
tighter bounds in order to estimate the actual behavior of the system, cf. [39].

The following submultiplicativity property will be required in this thesis in order to
characterize the stability behavior of a considered class of systems better

B(r,n+m) < B(6(r,n), m) Vn,meN, and r>0. (1.13)
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For f(r,n + m) = Co™™r < C%c"c™r = C - ¢™(Co™r) = B(B(r,n),m) with C > 1,
Property (1.13) is always satisfied. While it is satisfied for the second class if and only
if ¢pim < cpep holds. If needed, this property can be assumed without loss of generality
by applying Sontag’s KL-Lemma, cf. [115]. Further comments on Ly-functions can be
found in [39, Section 3].

Using class KL-functions (-, ) allows to define asymptotic stability, cf. [44].

Definition 1.14 (Asymptotic stability)

Let a dynamical system (X,Ng,z), a set X C X, and an equilibrium z* be given, i.e.
x(n,x*) = z* forn € Ny. The equilibrium is said to be asymptotically stable on X C X if
a KL-function (3 exists such that, for each x € X, the state trajectory x(n;xg), n € Ny, is
contained in X and, in addition, satisfies the inequality

[#(n; zo)|lar = dx(x(n;20),2") < Bldx (xo;27),n) = B(||zoller,n), n€No.  (1.14)
Definition 1.14 implies two important properties:

e stability (in the sense of Lyapunov), i.e. for any ¢ > 0, 6 = d(¢) > 0 exists such
that z(n;zo) € X and dx(x(n;x0),2*) < €, n € Ny, hold for all z;, € X satisfying
dx(xg,x*) < 6, i.e. trajectories stay arbitrarily close to the equilibrium x* if their
initial state is feasible and located in a sufficiently small neighborhood of x*.

e attraction, i.e. the state trajectory converges to z* since dx(z(n;xg),x*) tends to
zero for n approaching infinity for all zy € X.

Next, the concept of Lyapunov functions, which will be employed in order to conclude
stability of a control system operated in closed loop, is introduced, cf. [44, Definition
2.18]. A Lyapunov function may be seen as an energy norm, i.e. it measures the energy
present in the system. Hence, a Lyapunov inequality ensures a “loss of energy“ and, thus,
characterizes the desired equilibrium as a state of the system at which energy is vanished,
cf. [115, p.348].

Definition 1.15 (Lyapunov function)

Let x* = 0 be an equilibrium point for a dynamical system (X,Ng,z) and X C X be a
subset of the state space. Then, a function V : X — R{ is said to be a Lyapunov function
on X if

o Koo-functions aq(-), as(-) exist such that the following condition holds

a1(f|zolla+) < V(wo) < ao([|zollex)  Vao €X (1.15)

e and, in addition, a K-function W : Ry — Ry ewists such that
V((1;20)) < V(o) = W(V(20))
holds for all zo € X satisfying x(1;zo) € X.
Furthermore, if X = X, then V (-) is called global Lyapunov function.

For instance, the first inequality in Condition (1.15) can be verified for a closed loop
system if the inequalities ay(||z].+) < *(x) < l(z, F(x)) < V(z) < oo hold for all
x € X C X. Here, in contrast to [95,115], continuity of the Lyapunov function V(+) is not
assumed which allows to deal, e.g. with state constraints. Often, even further regularity
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assumptions are imposed on the Lyapunov function V'(-), cf. [21,70,87]. However, in
view of the fact that the considered dynamical systems are generated by a control system
and, thus, the closed loop is based on a static state feedback F': X — U, which may be
discontinuous, these cannot be expected, cf. [20,114].

The main purpose of the following Theorem 1.16 is to illustrate the connection between
a Lyapunov equation (or inequality) and asymptotic stability of the respective closed loop
system, cf. [11, Section V.2] and [78]. For a proof, we refer to [44, Theorem 2.19].

Theorem 1.16

Let x* be an equilibrium point and X C X, z* € X, be a forward invariant set for a
dynamical system (X,No,x). If a function V(-) satisfying the conditions of Definition
1.15 on X emists, the equilibrium x* € X is asymptotically stable.

We like to point out that existence of a Lyapunov function can also be concluded
assuming asymptotic stability in the sense of Defintion 1.14, see, e.g., the construction
carried out in [92, Lemma 4]. The question which assumptions are, in general, needed
in order to ensure existence of a Lyapunov function is adressed in the so called converse
Lyapunov theory, for details we refer to [67,68].

Example 1.10 is considered once more in order to illustrate the results of this section.

Example 1.17
The control system from Ezample 1.10 with static state feedback Fu(-) is considered.
Plugging F(+) into the transition map f(-,-) yields the system dynamics (1.9) for the
closed loop. We verify the conditions of Definition 1.15. Then, Theorem 1.16 is applied
i order to conclude asymptotic stability.

Since the matriz P is positive definite, [36, Lemma 3.9] yields the existence of constants
c1, ¢o € Ryg such that

allz)|? < 2" Pz < o|z|? VzeR.

Since the spectrum o(P) of the linear map P : R* — R? consists of the two eigenvalues
A= 2.841 and \ = 9.664, the constants ¢; :==5/2 < X and ¢y := 10 > X\ may be chosen.
As a consequence, defining aq(r) = 11, as(r) = cor guarantees the validity of

a(||z]) = cr’e < 2Pz = V() < cpx’x = as(||z]]), (1.16)

i.e. the first chain of inequalities needed in Definition 1.15. Setting W (r) = a; ' (r) = c;'r
ensures the second inequality:

V(z) = W(V(z)) v Pr— oy (V(z))

> 2T Pr — ayt(a(]|z]))
= 2Pz —2TQu
> 2" Px — l(z, Fy (7)) (L V(f(z, Fy)),

which is exactly the desired inequality for the dynamical system defined by the correspond-
ing closed loop. Hence, asymptotic stability of the feedback loop with F..(-) is ensured by
Theorem 1.16.

In order to further illustrate the introduced concepts, Inequality (1.14) is shown. Using
the monotonicity of ay(-) and (1.16), we obtain

lz(n; 2o) | < o (V(z(ns20))) < ag (V((n — L@0)) = W(V(a(n — 1320))))

10
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= ;' (1—cHV(z(n — 1;20))
(1= ")V ()

et (1= ey )a([laoll) = e1tea(1 = )" [loll,

IA A

i.e. (1.14) with B(r,n) := Co™, C :=c;'cy, 0 :=1—c;' € (0,1). B(-,-) is of class KL
and ensures exponential stability which implies asymptotic stability, cf. Fxample 1.185.

The KCLo-function ((-,-) represents upper bounds on the distance of the trajectory
(x(n; x0))nen, from the set point x*. The deduced estimate ensures asymptotic stabil-
ity but provides conservative bounds. Since we are going to use the derived KCL-function
B(-,+) in the ensuing chapters, a second, tighter estimate is deduced. To this end, note
that ||z(n; xo)|| = ||(A + BFx)"xo|| holds. The eigenvalues of the matriz (A + BFy,) are
a £+ ib with a =~ 0.34944 and b ~ 0.37519. Hence, a matrixz () exists which represents a
change of coordinates transforming the matriz (A + BFy) to its Jordan canonical form,
i.e.

Q—l(A+BFOO)Q:J:( ¢ b)
—b a
with transformation matriz

L 1 0 N 1 0
@ ”(1.7339 2.9318 and @~ | _g50141 034108 )

Since we are interested in a representation consisting of entries which are real numbers
and, thus, Q € R?>*2, a similarity transformation is performed. The following property of
the matrixz J can be observed:

el = % o) (= )| = va@ Tl
-b a Ty

In addition, ||Q|| =~ 1.1755 and |Q || ~ 3.4464 hold. As a consequence, the inequality

z(n; o)l = 1QQ™ (A + BFy)"xol|
= QR (A+ BF.)QQ ' (A+ BF.)"'QQ x|
< IRIIT"Q ™ xoll < [QII(Va? + 02)"[Q [ [|zo|

holds. Hence, 3(r,n) = Co™r with C = ||Q|Q || ~ 4.0512432 and 0 = Va? +1? ~
0.51271945 can be employed in order to characterize the stability behavior of the considered
closed loop, cf. Figure 1.5.

Since measuring the state x(-) is, in general, not possible, an output y(-) is commonly
incorporated in mathematical system theory, e.g. y(n) = Cz(n) + Du(n) with C' € RP*™,
D € RP*™ for linear control systems with X C R". However, in this thesis observability
of the whole state is assumed, e.g. C' = Id, D = 0 for the inverted pendulum on a cart
example.

1.3 Sampled-Data Systems

In this section sampled-data systems are introduced. These discrete time systems rep-
resent continuous time control systems governed by differential equations in our discrete
time framework. Here, the inverted pendulum on a cart serves as an example.

11
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24

Figure 1.3: Graphical illustration of the optimal value function 2 Px with level set N; =
{r e X:V(z) =2"Px <27}, i€ {-1,0,1,2,3,4} on the left. On the right, ||z(n;zo)||
and ((||zol|,n) are depicted for initial value zo = (1 1)7.

Let a Banach space X and a metric space W be given. Then, control systems generated
by controlled — finite or infinite dimensional — differential equations of type

(1) = (t) = gla(), 0(1) (1.17)

are considered. State and control constraints are modeled by X € X and W C W,
respectively. The function @(-) : Rf — W plays the role of an input.

Our goal is to rewrite this continuous time control system as a discrete time one
according to Definition 1.2. To this end, let a sampling period 7" > 0 be fixed. Then, the
time domain T is set to T'Ny. Furthermore, note that the solution ®(7'; zo, @(-)) at time T
of the differential equation (1.17) is determined by its initial state xy and a control function
a(-) € LY([0,t), W) — provided that a unique solution exists on the interval [0, 7] which
is assumed in this thesis.? Suitable conditions to ensure existence and uniqueness depend
on the system dynamics (1.17), e.g. (local) Lipschitz continuity with respect to the state
for ordinary differential equations, cf. [115, Appendix C.3]. Defining U := L*([0,T), W)
and, consequently, U := £([0,T), W), a discrete time transition map f : X x U — X
can be defined by

f(xo,u) == O(T;z0,u(-)) with a(-)|j0.1) == w. (1.18)

Then, the successor state 1 = f(zo,u) equals the one of the continuous time system at
time 7. A discrete time control value u € U represents a control function on the interval
[0,7"). Since the Lebesgue integral is used, cf. [93], the value of the control function f(-)
at time 7" does not play a role for the solution ®(-;zq,u) = ®(+;zg,a(-)) at time T. The
obtained discrete time system is called sampled-data system and yields snapshots of the
corresponding continuous time system at the sampling instants 0,7, 27, . ... We emphasize
that allowing an arbitrary metric space for the set of control values U is essential for this

2For a definition of £P spaces, 1 < p < 0o, we refer to [61, chapter 1.4].

12
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construction. In addition, since the state space X may be a Banach space, this setting is
applicable to ordinary and partial differential equations. Summarizing, a suitably chosen
sampled-data discrete time control system can be considered instead of its continuous
time counterpart.

We did not give a precise definition of a continuous time control system.?> Nevertheless,
we stress the fact that existence of a solution ®(-; o, @(-)) at time 7" has to be verified
for systems governed by differential equations of type (1.17) and, thus, their discrete time
counterparts.

Remark 1.18

Assumption 1.4 guarantees, for each x € X, existence of a feasible input value such that
the successor state is contained in the feasible set X. This implies, in particular, that
the induced solution emanating from xy € X exists at the next time instant. Iterating
this argument ensures existence of the state trajectory for all times n € Ny. For systems
governed by differential equations and the respective continuous time control systems a
so called non-triviality condition is typically assumed, cf. [115]. This condition merely
ensures the ezistence of a sequence of times (t;)ien, C Rso and a corresponding sequence
of input functions (4;(-))ieny, Wil-) € Li([ti,tiy1), W) such that ®(3 1, ti; xo, u(-)) ea-
ists for each n € Ny. Here, u(-) stands for the concatenation of the control functions
Uo[0,t0), Ur[to, t1), - - ., Un[tn—1,tn). However, e.g. finite escape times are not excluded, cf.
the supplementary Section A.1. Hence, existence of a sequence of time instants satisfying
t; — oo for i tending to infinity cannot be concluded and, thus, existence of solutions is
an issue. One remedy for this problem is indicated in Sections 4.4 and A.1.

In order to illustrate how to deal with a continuous time control system in our discrete
time setting, the inverted pendulum, which was introduced in Section 1.1, is considered.
In Section A.2 the system dynamics of this example are deduced, which shows that the
inverted pendulum example is governed by an ordinary differential equation of type (1.17).

Example 1.19 (Continuous time system)
The inverted pendulum on a cart is considered, cf. Section A.2. Let a discretization
parameter T be given and the vector field g : R* x R — R* be defined by

T3

g(z,u) = M(1x3) [(J 4+ ml?) (Bu — cxyg — mlx3 sinxz) — ml cos x3 (cpry — mygl sin x3)]
Ty

—M(lxg) [ml cos w3 (Bu — cwy — mlx?sinxs) — (M + m) (cpzy — mglsinxs)]

(1.19)

with M(z3) = (M + m)J + Mmi* + m*?sin*22, cf. (A.7). We refer to [76] for a
definition of vector fields. Fxistence and well-posedness of a solution of the corresponding
differential equation follow from [115, chapter C|. Defining the state space X = R* and
W =R, the system dynamics (1.17) are determined by g : X x W — X. Then, setting
U = LY[0,T),W) the discrete time dynamics are, for control input u € U, given by
(1.18).

The inverted pendulum on a cart has two equilibria, the downward and the upright
position. Here, our goal is to stabilize the pendulum at its unstable position, i.e. at the

3A definition can be found in [115].

13



CONTROL SYSTEMS, STABILITY, AND FEEDBACK

upright position, which is located at the origin in our model. Possible choices for the stage
costs £ : X x U — R} are

T T T
Uz, u) = THa:Hz—{—)\/ u(t)? dt and  l(x,u) = / @ (t; 2, u)||? dt—l—)\/ u(t)? dt.
0 0 0

Both stage costs £(-, -) presented in Example 1.19 penalize the control effort. However,
the first choice only takes the states at the time instants 0,7, 27, . . . into account, whereas
the second also accommodates the intersampling behavior of the system, cf. [56]. On the
other hand, evaluating the norm of the trajectory on the interval [0, 7) causes, in general,
additional numerical effort in contrast to the first variant. For sufficiently small sampling
periods T', picking one or the other of these optimization criteria is mainly a matter of
taste in view of continuity properties of the respective solutions. For details, the reader
is referred to [115, Chapter CJ.

Suppose that, for given initial state zo € X C X, a sequence of control values
(uf,(n))nen, € LY([0,7),W) satisfying (1.6) is computed analogously to Section 1.2.
Then, a control function a(-) € L®(RJ, W) can be constructed by concatenating this
sequence uy (-) which may be interpreted as the continuous time counterpart of our
discrete time sequence. In order to generate a closed loop solution, the first portion
t(-)|jo,r) = uj,(0)(-) of this control function which, in combination with the initial value
xo, uniquely determines the next state

r1 = Ly (1;20) = [ (20, uz,(0)) = ST w0, uz, (0)(-)) = (T w0, a(:)| 1))

has to be implemented at the considered plant. However, since this has to be done by a
digital computer, a control input v € £([0,T), W) cannot be used in general — even if
u is admissible. Hence, the class of feasible input signals has to be adjusted in order to
allow for an implementation at the respective plant. In order to keep the presentation
technically simple, we restrict ourselves to piecewise constant control functions. Hence,
the control input can change its value only at the sampling instants, cf. [115, Subsections
1.3 and 2.10).

Definition 1.20 (Sampled-data system with zero order hold)
Let X denote a Banach space and U a metric space. Let a controlled differential equation
of type (1.17) and a sampling period T € R~q be given. Then, the sampled-data system

Yy with zero order hold is the discrete time system Xy = (TNo, X, U, f) with transition
map f: X xU — X defined by

flz,u) = S(T;x,ul(-)) with a(t) =u € U for allt € [0,T).

Furthermore, let X C X and U C U be given. Then, the sequence of control values
(w(n))nefo,...N=1} € UN is admissible for xo € X if (w(n))nefo,...N—1} € UM (z0) holds
and the state trajectory x(n) exists forn € {1,2,...,N}.

Note that admissibility of (u(n)),en, implies existence of the state trajectory for all
positive times. The discrete time n corresponds to the continuous time ¢ = nT', ¢f. Remark
1.18. Detailed introductions in sampled-data systems can be found in [1,18,27]. Zero order
hold implementations of sampled-data systems are widespread in applications. In order to
compute the solution ®(T’; x,u) for a nonlinear ordinary differential equation, numerical
methods, e.g. Runge-Kutta methods, may be employed, cf. [13]. More sophisticated
methods like higher order explicit or implicit Runge-Kutta schemes including step-size

14
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control may also be used, cf. [54,55]. We emphasize that restricting the applied control
functions on a sampling interval to piecewise constant ones may shrink the feasible region
— in particular for large sampling periods. However, since sampled-data systems typically
inherit some continuity properties, sufficiently fast sampling often resolves this problem.

Modelling errors may cause deviations of the considered control system from the ac-
tual behavior of the plant. But even in the unrealistic scenario that no computation
or modelling errors occur, the necessity to approximate computed input signals, e.g. by
zero order hold with sufficiently small sampling periods, leads to further perturbations,
which are not negligible from a practitioner’s point of view. In order to cope with such
perturbations, closed loop control is preferable in comparison to its open loop counterpart.

In the following example the impact of implementing a sampled-data system in a zero
order hold fashion is investigated. In order to separate errors induced by using a zero
order hold control from those resulting from numerical computations, Example 1.19 is
linearized at the origin, i.e. the desired equilibrium. This enables us to solve the resulting
differential equation exactly and, thus, to exclude numerical effects. In addition, the
analysis is simplified by considering the linearized version. Note that the equilibrium
located at the downward position is removed by this linearization. However, we are only
interested in the upright equilibrium.

We start by stating the linearized version of the inverted pendulum on a cart example.

Example 1.21 (Linearized inverted pendulum)
The inverted pendulum on a cart from Example 1.19 is linearized at the origin Ors with

respect to the angle ¢ = —x3. This leads to the linear differential equation
() 0
o d o xe(t) | : | T+mi*)p 4
x(t) = al wm | = Ax(t) + bu(t) with b= 0 eR* (1.20)
w4(t) mlf
matrizc A € R4,
0 1 0 0
g0 —MiH(J +mi?)e My 'm?i%g — My 'mlcp
’ 0 0 0 1 ’
0 — My mle Mg (M +m)mgl —My* (M +m)cp

and constant My := (M + m)J +ml*M, cf. [23, Sections 2 and 3].* The solution of this
ordinary differential equation is given by

t
D(t; 2o, u(-)) = e +/ eA=buy(s) ds, (1.21)
0

cf. [22, chapter 2]. We aim at representing this ordinary differential equation as a sampled-
data system. To this end, a discretization parameter T' € R+ is chosen. Then, proceeding
analogously to Example 1.19 yields a transition map f : X x U — X on T = TNy with
X =R U =LY[0,T),R).

The linearized inverted pendulum describes its nonlinear counterpart very accurately
at the equilibrium. Although the model is restricted to a plane, it is an appropriate

“For sufficiently small values ¢ the approximations sin(z3) ~ x3, cos(xs) ~ 1, sin®(z3) ~ 0, and

232 sin(z3) ~ 0 are used in order to linearize the system at the origin.
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model for small angular deviations because the dynamics can be treated separately for
each coordinate direction, cf. [23, pp. 9 —10]. Hence, we focus on small angular deviations,
e.g. || is not permitted to exceed one degree of arc, cf. [23, p.17].

Example 1.22 (Constraints for Example 1.21)

In order to take into account that the angle is restricted to small values, the state constraint
|lzs(t)|| < ¢ for a sufficiently small constant ¢ € Rso may be imposed on x(t). Hence,
X:=A{z € X :||zs]| < ¢} is chosen as the set of feasible states. Assuming an unbounded
set of feasible controls, e.g. settingW := W = R, allows to arbitrarily influence the angular
velocity x4(-). Hence, for eachxg € X, a control value u,, € U:= L([0,T), W) exists such
that f(zo,uz,) = P(T;2,u,,) € X holds which ensures that the imposed state constraints
can be satisfied. Of course, this cannot be done in the considered practical application,
i.e. the set of admissible control values W will be confined to some real interval, |a,b],
a < 0 < b. However, since the initial value of the angular velocity is located in a small
netghborhood of the origin, the system can be steered such that the original state constraint
lzs()|| < ¢ is satisfied and, in addition, the angular velocity x4(-) remains sufficiently
small. This allows for ensuring feasibility of the system by choosing the control input
appropriately.

The example of the inverted pendulum on a cart is considered once more in order to
investigate the impact of using a zero order hold feedback.

Example 1.23 (Example 1.21 continued)

Let a sampling period T > 0 as well as parameters cp = 0, m = 1,1 =1, g = 9.81,
M =0,J =2, ¢c=1/10, and § = 0.5 be given. The sampled-data system with zero
order hold of the linearized inverted pendulum on a cart model is considered, cf. Fxample
1.21 for a linearized version of the nonlinear pendulum model of Example 1.19. Since
a zero order hold feedback is assumed, the control value may change only at the time
instants 0,T,2T, . ... Hence, the constant control function a(-) = u is identified with the
corresponding control value u. Then, the following linear system dynamics are obtained

z(n+1)=&(T;z(n),u(n)) (2D e Ta(n) + u(n)/o e ds. (1.22)

A feedback control u(n) = Fx(n) is used in order to obtain a closed loop system. Note that
F is a linear map represented by a matriz. Hence, Fx(n) is written instead of F(x(n)).
Plugging this into (1.22) yields the closed loop

z(n+1) =ea(n) + /T e ds - Fa(n) = (eAT + /OT et dsF) z(n).

0

Furthermore, let the following stage costs £ : X x U — R{ be given, cf. Ezample 1.19:

((z,u) = T(2"Qr +u" Ru) = T(x"z + u'vw) = T||z||* + T||ul>.
The cost functional is given by Joo(xo, u(-)) = > 7 o l(zy(n; x0), u(n)). Incorporating the
sampling period T in the stage costs, allows for a comparison of the resulting closed loops
in dependence on the sampling period T because Joo(xg,u(:)) approzimates the integral
Jo” @t zo, u(t)" Qu(t; xo, u(t)) + u(t)" Ru(t) dt. Since using a smaller sampling period
implies the possibility of changing the control value more often, a decrease of the cost
functional 1s expected for smaller sampling periods.
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We point out that constraints are not considered in this example which allows to em-
ploy the matlab routine dlqr in order to solve the corresponding minimization problem.
The abbreviation dlqr stands for discrete linear quadratic requlator. This matlab routine
provides, in addition to a matriz P satisfying Ve (z0) = 2l Py, also a feedback matriz F.
Note that P as well as the feedback law represented by the matriz F' depend on the sampling
period T'. For our numerical computations, the initial value xy = %(1 11 1)7T is picked.
Trajectories for the very small sampling period T = 27 are drawn in Figure 1.4. For
T=27"1i€{1,2,...,16}, convergence to the desired equilibrium, i.e. zr(n;xy) — x* =0
is observed. In order to illustrate this, the norm of the solution on the interval [0,6] is
computed for different sampling periods T, cf. Figure 1.4 b).

Py (01

S b) | |

Figure 1.4: In a) a graphical illustration of the dynamical behavior of the linearized
inverted pendulum on a cart is given (7" = 271%). In b), the norm of sampled-data
systems with zero order hold is illustrated for different sampling periods T'.

Using smaller T' and, thus, evaluating the feedback law more often leads to an improved
behavior. This observation is substantiated by the forth and fifth column of Table 1.1 in
which the Fuclidean and the infinity norm are computed at t = 6. For sampling periods
T < 275 the impact of zero order hold seems to be negligible, cf. Table 1.1. In the second
column of Table 1.1, the optimal value function VLI (xo) is approvimated. The optimal
value function grows for increasing sampling period T. Choosing T too large leads to a
deteriorate dynamical behavior of the resulting closed loop.

As seen in Fxample 1.17, the eigenvalues of the closed loop transition map have to
be determined in order to find suitable parameters C' > 1 (overshoot) and o € (0,1)
(decay rate) of a KKL-function ((-,-) which enables us to show asymptotic stability of the
closed loop. However, in order to assess the solutions based on the different sampling
periods T, only comparing the eigenvalues which are attributed to the respective closed
loop is insufficient. Instead, the eigenvalue is taken to the (T~')-th power, e.g \* for
T = 0.25, cf. the third column of Table 1.1. This scaling of the eigenvalues and, thus,
the corresponding decay rates leads to a measure for the decrease after one time unit, i.e.
T=1 times the sampling period T. Constants for the overshoot bound may be computed
analogously to FExample 1.10.

Using the very small value T = 2719 allows to generate results which can be interpreted
as a reference solution which is not affected by the zero order hold implementation. For this
sampling period, Figure 1.5 shows level sets of the optimal value function Vi (z) = 27 Px
at x3 = x4 = 0 on the left and v1 = x5 = 0 on the right. Taking the range of values
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’ Sampling period T’

w5 Pro | [MA+ BR[| [lar()lesll2 | lzz()le=sll |

1.0000000000000000 | 19.67513368 0.44677011 0.13877609 | 0.10871640
0.5000000000000000 | 10.21853967 0.43498765 0.06912694 | 0.05567655
0.2500000000000000 | 8.34728912 0.43168006 0.05627710 | 0.04564705
0.1250000000000000 | 7.90776081 0.43082527 0.05331032 | 0.04331718
0.0625000000000000 | 7.79907101 0.43060972 0.05258338 | 0.04274543
0.0312500000000000 | 7.77169915 0.43055572 0.05240256 | 0.04260316
0.0156250000000000 | 7.76470700 0.43054221 0.05235741 | 0.04256763
0.0078125000000000 | 7.76288128 0.43053883 0.05234612 | 0.04255875
0.0039062500000000 | 7.76238581 0.43053799 0.05234330 | 0.04255653
0.0019531250000000 | 7.76224241 0.43053778 0.05234260 | 0.04255598
0.0009765625000000 | 7.76219680 0.43053773 0.05234242 | 0.04255584
0.0004882812500000 | 7.76218051 0.43053771 0.05234238 | 0.04255581
0.0002441406250000 | 7.76217400 0.43053771 0.05234237 | 0.04255580
0.0001220703125000 | 7.76217115 0.43053771 0.05234236 | 0.04255580
0.0000610351562500 | 7.76216983 0.43053771 0.05234236 | 0.04255579
0.0000305175781250 | 7.76216919 0.43053771 0.05234236 | 0.04255579
0.0000152587890625 | 7.76216888 0.43053771 0.05234236 | 0.04255579

Table 1.1: Numerical results for the linearized inverted pendulum on a cart in dependence
on the sampling period T for initial value zy = lio(l 1117

into account shows that the optimal value function is much more sensitive with respect to
changes in the angle and its velocity (x3 and x4) than in the position of the cart and its
velocity (z1 and z3). Both plots indicate that the chosen initial value with solely positive
values makes the stabilization problem more difficult.

05 .
=
0.0625
0. . o
~0.5 0 05
XS

Figure 1.5: Level sets of the optimal value function V. (-) for the linearized inverted
pendulum on a cart example for sampling period T' = 2716: on the left the third and forth
component of xy are set to zero, i.e. Vg(xo) for x93 = 294 = 0 is depicted. On the right,
the same is repeated for zg; = 292 = 0.

In order to ensure that the dynamical behavior of a sampled-data system with zero
order hold converges to the one of the continuous time system, sufficiently fast sampling
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and, thus, small sampling periods T are required, cf. [91]. Furthermore, it is possible to
allow for more than one control value per sampling interval, i.e. multirate sampling, cf.
[63,80]. That means the current state is measured, then a sequence of, let’s say m, control
values is computed and applied on the sampling interval, i.e. the first is implemented on
the interval [0,7/m), the second on [T'/m,2T/m) and so forth. Hence, m (possibly
different) control values are implemented during one sampling period.

1.4 Networked Systems and Multistep Feedback

In this section a networked control setting is introduced in order to motivate the definition
of a multistep feedback. This type of a static state feedback will turn out to be helpful
also for other applications, cf. Chapter 4.

Due to lower implementation costs and greater interoperability networked control sys-
tems (NCS) are increasingly used, particularly in the automotive and aeronautical in-
dustries, cf. [47]. The situation of a networked control system shown in Figure 1.6 is
considered. The controller uses a network channel at every time instant n € N in order to
transmit the feedback control value u(n) = p(z(n)) to the actuator. Since, in contrast to,
e.g. [118,122], no particular protocol like round-robin (RR) or try—once-discard (TOD) is
assumed, a packet either arrives unperturbed and with negligible delay over the channel
or is treated as a dropout. A dropout means that the control value sent by the controller
does not arrive at the actuator.

Plant .
Actuator M ()= x(n)u(n)) Sensor
Buffer
Channel |« Controller

Figure 1.6: Scheme of the considered networked control system. The communication
between the controller and the actuator is carried out via a channel. Integrating this
additional element in the control loop may lead to packet dropouts as well as delays.

In order to compensate for dropouts, we add a buffer device in the actuator and adapt
the controller design: at each time instant n, instead of a single control value u(n) =
wu(z(n)) € U, a sequence p(z(n),0), u(x(n),1),..., u(x(n),m* — 1) of control values is
sent. In the actuator, the elements of this sequence are buffered and used until the next
sequence arrives.

In the ideal case when no packet dropouts occur, the actuator applies the control
sequence

p(z(n),0), p(x(n +1),0), w(z(n +2),0), u(z(n + 3),0), ...
If, however, transmission is successful at, e.g. time n and n + 3 but fails at time n+ 1 and
n + 2, the actuator applies

p(x(n),0), p(z(n), 1), p(x(n), 2), p(z(n + 3),0), ...
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In order to formalize this idea, we define a sequence (m;);en, of control horizons, which
counts the time instants between the i-th and the (i + 1)-st successful transmission. For
these sequences the following definitions are introduced.

Definition 1.24

Let a set M C{1,2,...,m*}, m* € N, be given. A sequence of control horizons (m;);en,
1s said to be admissible iof m; € M holds for all i € Ny. For k,n € Ny, the following
expressions are defined:

k-1

o(k) = Zmi (using the convention Zj_:lo =0),
=0

o(n) = max{o(k)|k € No,o(k) < n}.

Here o (k) denotes the k-th successful transmission time while ¢(n) denotes the largest
successful transmission time before or at time instant n. Note that by convention, time
n = 0 coincides with the first successful transmission.

Using this notation, the control sequence applied by the actuator can be expressed as

u(z(o(k)),0),..., pw(x(o(k)), mp — 1), p(z(o(k +1)),0), . ..

in which my, is unknown at time o(k). Note that this notation is a posteriori and only
used in order to analyze the resulting scheme afterward. Although the control loop is not
closed at each sampling instant, measurements are used in order to update the sequence
of control values which allows to react to disturbances or modelling errors. Nevertheless,
in the networked control setting, we aim at closing the loop as often as possible in order
to robustify the closed loop behavior of the considered system. Hence, more than the
first element of the open loop sequence of control values is only implemented if a packet
dropout occurs. Using the precomputed sequence of control values should be favorable in
comparison to using a default control value.

In order to be consistent with the scheme introduced above, the term feedback control
is used in the following general sense.

Definition 1.25
Let m* € N and M C {1,2,...,m*} be given. A multistep feedback law is a map u :

Xx{0,...,m*—1} — U which, for an admissible control horizon sequence (m;);en, C M,
is applied according to the rule z,(0) = xo,
p(n+ 1) = Flaa(n), woa(p()n — o(n). (123)

For details about this setting we refer to [48]. We point out that the concept of
multistep feedbacks will turn out to be beneficial also in a setting without delays and
packet dropouts in order to enhance stability properties of closed loop controlled systems,
cf. Section 4.4.

20



Chapter 2

Receding Horizon Control

In this chapter we present the main idea of receding horizon control (RHC) which is also
called model predictive control (MPC).! Then, we discuss the stability analysis of reced-
ing horizon control schemes with terminal constraints and, if necessary, terminal costs.
Furthermore, a feasibility proof from [90] for unconstrained RHC schemes is sketched. In
this context, unconstrained means that neither terminal constraints nor terminal costs
are added to the basic receding horizon setting.

2.1 Introduction

In the last chapter we dealt with the optimization problem

u()gg}g(%) JOO(ZL’(),’LL()) = HZ_OE(:E“(n’xO)’u(n)) (21>

subject to  x,(n+ 1;20) = f(xu(n;20), u(n)) with x,(0;z0) =20 € X,  (2.2)

U (xg) = {(U(n>>n€N0 Zi?gbigxo) e X

for all n € No} (2.3)

with the convention Vi (xo) = infy()crroo(z) Joo(To; u(-)) = 00 when either the optimal
trajectory causes costs summing up to infinity or the set U = U = U>(zy) of admissible
sequences of control values is empty, i.e. there does not exist a sequence u(-) = (u(n))nen,
of control values satisfying the control constraints u(n) € U, n € Ny, such that the
state constraints x,(n + 1;z9) € X are maintained for all n € Ny. Since Vo (z9) = o0
characterizes the optimal control problem as not well-defined, the following assumption
is made in order to exclude these scenarios from our analysis.

Assumption 2.1
Let V(o) < oo hold for each xy € X.

Assumption 2.1 implies, among others, the existence of a sequence of control values
Uz (+) € U () such that Vo (zo) < Joo(@o; Usg(+)) < 00 holds. Since wuy,(-) € U (xy),
the state constraints x,, (n;7o) € X, n € Ny, are satisfied.

!The terms moving or rolling horizon can also be found in literature.
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Summarizing, our goal is to solve the minimization problem (2.1) - (2.3), i.e. to min-
imize the cost functional subject to the system dynamics and the control and state con-
straints. However, solving problem (2.1) - (2.3) is, in general, intractable because its
solution involves solving a Hamilton-Jacobi difference equation. In particular, this holds
for systems whose dynamics are either nonlinear or defined on a space of infinite dimen-
sion. For example, control systems whose dynamics are governed by partial differential
equations belong to the latter category. Hence, we aim at approximating the desired
solution or, at least, solving the closely related stabilization problem, i.e. looking for a
sequence of control values u(-) € U(xy) which stabilizes the system at the equilibrium
x*. To this end, the desired state has to be characterized appropriately by the stage costs
0(-,-), ie. 0*(x) = min,egy (g £(x,u) = 0 if and only if x = z*, cf. (1.4). If the aforemen-
tioned task may be fulfilled by more than one sequence of control values, we pick some
u(-) € U®(xp) which minimizes the cost functional J(zo;-) or, at least, yields a perfor-
mance which does not deviate too much from the optimal one. To be more precise, our
objective is that the computed control u(-) induces costs J(zo; u(+)) which are bounded
by the optimal costs V. (z¢) multiplied by a certain factor 1/q, i.e.

QIH

Joo (o3 u(+)) < — - Vio (o).
For example, @ = 1/2 means that the costs associated with the chosen control u(-) are
at most twice as much as the optimal ones. The optimal value V. (z¢) coincides with the
minimal costs. Nevertheless more than one control may exist which induces exactly this
amount of costs. Here, we tacitly agree in picking one of these whenever we use the term
optimal control. Furthermore, note that such a sequence of control values, for which the
infimum in the problem formulation is attained, may not exist at all.

Before we tackle the raised questions, the basic ideas of receding horizon control, which
represents a remedy in order to deal with the described problem setting, are presented.
To this end, we consider the auxiliary problem with optimization horizon N € N:

N-1

min In(xo;u U(zy(n;20), u(n 2.4
u()EUN (z) v ; o), uln) (24)
subject to  x,(n + 1;20) = f(zu(n;z0), u(n)) with z,(0;z9) = x¢ € X (2.5)

u(n) e U
xu(n—i—l $0)€X

()= { e,

forOSnSN—l}.(Q.G)

The corresponding optimal value function is given by

Vn(zo) = u(.)eigffV(mo) In(zo;u(:)). (2.7)

Note that this problem differs from problem (2.1) - (2.3): the time horizon is truncated,
i.e. the cost functional evaluates the stage costs only at the first NV time instants. More-
over, the set U™ (), which contains the control and state constraints, is adapted as well,
e.g. the trajectory only has to be feasible until time N. In the next sections additional
terminal constraints and costs are incorporated in this setting in order to ensure feasibil-
ity of the resulting receding horizon closed loop. In this subsection, however, we consider
the conceptually simplest receding horizon approach imposing neither terminal costs nor
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terminal constraints which makes it easier to carve out some of the basic principles of
moving horizon schemes. Furthermore, this scheme is predominant in industrial appli-
cations, cf. [100], which motivates its analysis in the following chapters. For questions
concerning feasibility we refer to Section 2.4.

Already in the last chapter, we indicated how to obtain a closed loop system assuming
being able to compute a sequence of control values which solves the original problem,
i.e. satisfies Joo(xo;u(-)) = Voo(xg) in view of Assumption 1.9. Here, we proceed anal-
ogously with the problem posed on the truncated time horizon, i.e. we solve Problem
(2.4) - (2.6) in order to obtain a sequence of N control values. This sequence may be ex-
tended by concatenation with the sequence which is identically zero. Note that the values
u(N),u(N +1),... do not play a role for the problem on the truncated horizon. Problem
(2.4) - (2.6) is, e.g. for dynamics governed by a nonlinear ordinary differential equation,
a nonlinear optimal control problem. Using the introduced concept of sampled-data sys-
tems with zero order hold and, thus, discretizing the control function wu(-) transforms
this optimal control problem to an optimization problem which is comparatively easy to
solve, cf. [29,84,119]. We point out that this approach involves a prediction of the future
states x,(n; o), n = 1,2,..., N, which motivates the term “predictive” in model predic-
tive control. In addition, the method is based on a model which is employed in order to
predict the trajectory on the interval [0, NT') in dependence on the control u(-). Next,
we implement the first m € {1,..., N — 1} elements of the computed sequence. In order
to streamline the presentation of the main idea, let us set m = 1, i.e. implementing only
the first element of the sequence of control values which may be called “classical” MPC.

This situation is illustrated in Figure 2.1: zy denotes the current state of the state
evolution which is induced by a sampled-data system, cf. Section 1.3. Hence, we use a
(multistep) feedback control according to Definition 1.25, e.g. un(0; o) = u(0) for m = 1,
and implement this at the plant which yields the new initial state xq := x,,, (m; x¢) for the
optimization problem (2.4) - (2.6). Note that z,, (m;z¢) may differ from the predicted
state x,(m;xo), e.g. due to modelling errors. Then, the procedure is repeated, i.e. an
optimization with respect to the optimization horizon N is carried out which, again,
yields our receding horizon feedback, cf. Figure 2.2. This shifting of the optimization
horizon forward in time explains the term “receding horizon”.

Summarizing, we define a multistep feedback law jix .« by picking the first m elements
of the optimal control sequence based on the finite horizon optimal value function Vy(xo).
This course of action is repeated after shifting the horizon. In order to formalize this
concept, the following definition is given.

Definition 2.2

Form > 1 and N > m+1 a multistep MPC feedback law is defined by pun m(zo, n) = u*(n),
where w*(+) is a minimizing control for problem (2.4) - (2.6) with initial value xo. Although
the open loop optimal control u*(-) = uy(-;x0) depends on the initial state xo and the
optimization horizon N, the subscript N and the corresponding initial state xy are often
not listed.

Using this feedback leads to a receding horizon closed loop. Note that the following is
supposed.

Remark 2.3

We assume that there is no model plant mismatch and neglect disturbances. Hence, the ac-
tual state x,,,,(m; xg) coincides with the predicted state x,,(m; o), cf. [26, p.12]. Supposing
this, the resulting closed loop is investigated with respect to so called nominal stability. In
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Figure 2.1: Graphical illustration of the main idea (I/II): the computed control values
and the corresponding predicted trajectory are drawn in blue. In classical MPC the first
control value is implemented as a feedback with respect to the initial state zy. Hence,
Ty (L520) = f(xo, pn(0;20)) = (15 20) is obtained by applying pn(0; z9) = u(0), which
is indicated in red.

order to emphasize this, the term “nomainal closed loop” i1s sometimes used. For robustness
issues we refer to [10], [14, Chapter 8], [85, chapter 8], [109, chapters 9-11], and [12]. In
particular, we emphasize that robustness may get lost by incorporating additional terminal
constraints, cf. [31].

Assumption 1.9, which was used for illustrative purposes, is replaced by the following,
weaker assumption.

Assumption 2.4
Let the infimum of Problem (2.4) - (2.6) be attained, i.e., for each xy € X C X, let a
sequence of control values u*(-) exist such that Jy(zo;u*(-)) = Vy(zo) holds.

Assumption 2.4 ensures that the infimum of the optimal value function (2.7) is a
minimum. In the following, let us suppose that an optimization algorithm is at our
disposal which finds the global minimum. Since the optimizer computes, in general, only
a local minimum, this is, in particular for non-convex optimization problems, no matter
of course.? The motivation for this assumption is mainly to avoid technical details which
distract the reader from the main ideas of the presented methodologies.

2The problem of not being able to provide a global minimum — independently of whether the reason
goes back to being stuck in a local minimum or aborting the computation prematurely in order to reduce
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Figure 2.2: Graphical illustration of the main idea (II/II): the first element is already
implemented, cf. Figure 2.1. The current state is defined as our new initial state and the
optimization problem (2.4) - (2.6) is solved with respect to the new initial state. Note that
the value «'(N —1) has to be computed from scratch whereas the former computed control
values may be a sensible initial guess for the optimization. The resulting control values
may coincide with the ones from the preceding step, cp. «/(0) and «/(1), or differ since
the optimization horizon takes additional states into account, cp. v/(n), n =2,..., N —2.
Hence, the predicted trajectory changes as well.

The following remarkable consequence holds for optimal trajectories.

Remark 2.5

As mentioned in Section 1.2, tails of optimal trajectories are again optimal for the re-
spective optimal control problem. For the problem on a finite time horizon, this reads as
follows: let u*(-) denote a sequence of control values satisfying Jy(zo;u*(+)) = Vn(zo),
then

IN_1 (e (L 0), u (1 4 +)) = Vv (2 (15 20))
holds — the tail u*(1 + -) of the optimal sequence of control values u*(-) is an optimal
control for the problem on the shortened horizon N — 1 with initial value x,«(1;x0), i.e.

the state at the next time instant of the trajectory emanating from xo generated by u*(0),
cf. [44, Corollary 3.16] for a proof.

Furthermore, the following is pointed out for networked control systems.

the computational effort and, thus, the time spend for solving the corresponding optimization problem
— is tackled in [43].
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Remark 2.6

Let us consider the networked control system setting given in Section 1.4. Since in each
MPC optimization step an optimal control sequence is computed, RHC is ideally suited to
implement the compensation strategy based on the proposed multistep feedback, cf. [47,48].

2.2 Terminal Equality Constraints

In this and the following section two techniques are presented which can be used in
order to ensure stability of the resulting receding horizon closed loop. In order to keep
the presentation technically simple, we focus on the case m = 1. However, the results
are easily generalizable to time varying control horizons, i.e. sequences (m;)en, With
m; € M C{1,...,m*} for each i € Ny.

In order to take care of feasibility and stability, one has to keep in mind that problem
(2.4) - (2.6) does not guarantee stability and feasibility for the resulting states of the
receding horizon closed loop — although the optimization problems are feasible at each
time instant. In this chapter we consider two concepts which ensure, if applicable, stability
and feasibility. The first one, which stems back to [66,75], adds an additional terminal
equality constraint to the optimization Problem (2.4) - (2.6), i.e. the set of admissible
controls is modified to

u(n) e U
U =UN(x0) == { (un))neny | Tu(n +1;20) €X for0<n< N—15. (2.8)
Ty(N; ) = x*

The predicted trajectory still has to satisfy the state constraints z,(n + 1;x¢) € X for
n € {0,1,..., N — 1} but, additionally, also the terminal constraint z,(N;z¢) = z*, i.e.
the predicted final state x,(N;xo) has to be the desired equilibrium. Remember that
the corresponding optimal solution is denoted by w*(-) = uX/(-;z0), cf. Definition 2.2.
Using the RHC feedback gy 1(z0,0) leads to the state z,,, (1;z0) € X, cf. Remark
2.3. Since f(a*,u*) = a* holds according to (1.2), defining the sequence of control values
(an(n))nefo,1,..n—13 by Un(n) = uy(n+1;20),n € {0,1,2,..., N=2}, and iy (N—1) = u*
yields an admissible control for the optimization problem consisting of (2.4), (2.5), and
(2.8) with initial value ¢ := x,, ,(1;2). Hence, we obtain

Vn(xg) = zo,un(0;20)) + In_1(xux (1;20), upy (1 + +))
= (o, uy(0520)) + JIn—1(2uy, (15 20), n(-))
= L(wo, un(0520)) + I (2ug, (1; 20), tn ()
> U(xo, un(0;20)) + Vi (zyur, (15 20)).
The third equality holds because .3 (N; 7o) = rg, (N —1; 245, (1;20)) = 2%, W(N—-1) = u*,
and ¢(x*,u*) = 0. Furthermore, @y (-) is admissible for Problem (2.4), (2.5), and (2.8) with

initial value xujv(l; xo) which implies the final inequality. Comparing this inequality with
Equality (1.8) one observes that the structure of the optimization problem incorporating
the terminal equality constraint, in combination with (1.15) for Vy(-) instead of V(-),
implies the validity of a Lyapunov inequality which ensures a decrease in the amount
of a certain minimum quantity oy (||zol|) < €*(z9) < l(xp,u) for all u € U. Note that
validating Vi (z9) < aa(||zo||) is significantly easier in the setting based on a finite time
horizon which exhibits a finite sum in the cost functional Jy(x, ).
In order to illustrate this, Example 1.10 is revisited.
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Example 2.7
The discrete time system from Examples 1.10 and 1.17 is considered. This control system
18 governed by the linear dynamics

v(n+1) = Aw(n) + Bu(n) = ( M ) +(n) + ( ! ) u(n).

In order to apply the receding horizon scheme specified in (2.4), (2.5), and (2.8), one
has to verify that the added terminal equality constraint can be satisfied. Note that this
corresponds to finite time controllability, i.e. asymptotically stabilizable systems with a
KLy-function B(r,n) = rc, in the sense of Remark 1.13. To this end, the first two
iterates z,(1; xg) and x,(2;xo) are calculated in dependence on the initial condition xq :=

($01> $02)T~'

To1 + 1.1%02

z(1l) = Axz(0)+ Bu(0) = ( 11201 + 03 + u(0) ) ,

—0.21$01 + 2.21’02 + 1.1u(0
2(2) = Az(l)+ Bu(l) = ( —2.220; — 0.21202 + u(0) +(u)(1) ) '
The choice u(0) = 21x¢, /110 — 2xg2 tmplies that the first component of x(2) equals zero.
Then, using the control u(l) = 2.2x¢; + 0.21z02 — u(0) = 221z, /110 + 221202/100 sets
the state vector x(2) equal to the desired equilibrium, i.e. the origin. Since this line of
arguments holds for arbitrary initial values xo, an optimization horizon N > 2 allows
for incorporating the terminal equality constraint. Note that this is the shortest possible
horizon in our setting.

Hence, the considered RHC' scheme is used in order to tackle the optimization problem
which was already solved in an optimal fashion, cf. Examples 1.10 and 1.17. Here, we
observe the different behavior of the closed loop in dependence on the optimization horizon,
cf. Figure 2.5.3

Using the comparatively short horizon N = 2 limits the set of feasible controls and, as
a consequence, forces the optimization algorithm to choose a significantly worse control in
view of the overall performance of the resulting RHC' closed loop, cf. Table 2.1.

Note that existence of a feasible initial solution of the considered optimization problem
is tacitly assumed. Then, feasibility is obtained from this so called initial feasibility which
is, since (2.6) is substituted by (2.8), a nontrivial assumption as shown in the following
example.

Example 2.8 (Linear wave equation)

In the following we will change the notation to be consistent with the usual PDE nota-
tion: x € § is the independent space variable while the unknown function y(-,t): Q@ — R
represents the state. We consider the one-dimensional linear wave equation with homo-
geneous Dirichlet boundary condition on the left and Neumann boundary control on the
right boundary

Yir (2, 1) — CYpe(x,t) = 0 on (0, L) x (0, 00) (2.9)
y(0,t) =0 on (0, 00) (2.10)

3We point out that the receding horizon closed loop for optimization horizon N = 2 does, in general,
not render the system to the equilibrium in two steps. Here, this is attributed to the particular structure
of the considered example.
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X0 0{L,2}
x(i0{L2)

Figure 2.3: Illustration of the impact of different optimization horizons for Example 2.7
with initial value xp = (1 1)7. On the left, RHC with terminal equality constraints and
horizon N = 2 is used, whereas on the right, the optimization horizon is increased to
N = 9. The resulting costs decrease significantly by not steering the plant to the desired
equilibrium as fast as possible, cf. Table 2.1. The first component (o) of the depicted
trajectories is drawn in red.

’ N ‘ Joo(To; v (v, 7)) ‘ u(0) ‘ u(1) \
2 31.128166 —1.809091 | 4.219091
3 19.223223 —0.880706 | 2.566194
4 18.931820 —0.710534 | 2.309525
5 18.925980 —0.715834 | 2.295242
6 18.926044 —0.717288 | 2.296095
7 18.925941 —0.714462 | 2.293226
8 18.925938 —0.713791 | 2.292244
9 18.925936 —0.713848 | 2.292351

Table 2.1: The resulting costs for the RHC scheme with terminal equality constraint in
dependence on the optimization horizon N for Example 2.7. For N = 2 the additional
constraint is very restrictive. Moreover, one observes a significant change in the applied
control values.

Yo (L, t) = u(t)
Here ¢ # 0 denotes the propagation speed of the wave. The initial data are given by

y(z,0) = yo(z) and yi(z,0) = yi(z) with (yo,y1) € C([0,L]) x L3([0,L]). The solution
space is given by

X ={y:y e L£20,t;H ([0, L)) with y, € £L*(0,t*; £*([0, L])) Vt* > 0}

and u € L£>(]0,00)). H Q) consists of all measurable functions which are square in-
tegrable and whose weak derivative is also measurable and an element of L*(Q). Note
that the boundary values of this class of functions are well defined by means of the trace
operator, cf. [25,119].

on (0, 00) (2.11)

We aim at steering the system given in Example 2.8 to the origin y = 0 which is an
equilibrium for (2.9) - (2.11). It is well known that this evolution equation is exactly
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controllable for optimization horizons T' > 2L /¢, cf. [125], i.e. for each initial data (yo, 1)
and each desired state y* = (y§,y7) satisfying certain regularity assumptions a control
function w(-) exists such that y(-,2L/c) = y* holds. In particular, the system is finite time
controllable to the origin, i.e. there exists a KLy-function (-, -) according to Definition
1.12 such that

1yCo Ol =yl Dlle2) + 9 Dl e2@) < Bllyolle2@) + (191l e20)5 1)

with the property ((r,t) = 0 for t > 2L/c. Our cost functional is given by

Z_i/o 0(ys(z,nT), ye(x,nT)) d:c+A/0 u(t) dt (2.12)

with

Q(yw('vt)7yt<'>t)) = wl()(yx( ) ) + yt( )/C) +w2()(yx( ) ) - yt( )/C)

Here w; : [0, L] — R, i = 1,2, denote appropriate weight functions.

Remark 2.9

Note that our cost functional consists of two parts. The first is related to the energy of
the system and evaluates the motion to the left and the right boundary separately, e.g.
Yo (1) + yi(+, 1) /c represents the movement to the left boundary. For the special case
w1 = wy = 1 we obtain exactly the enerqy of the system. The second term in (2.12)
penalizes the control effort with weight \ > 0.

Since our results are formulated in a discrete time setting, the continuous time system
given in Example 2.8 is rewriten as

y(n+1) = fy(n), u(n))

with state y(n) := y(-,nT) and control u(n) € U := L>([0,T"), R). This enables us to treat
this partial differential equation as a discrete time system. Note that allowing arbitrary
metric spaces is essential for this choice of U. Here, the discrete time n corresponds to
the continuous time nT". Hence, the running costs are given by

Uy(n),u(n)) := %/0 0(ye(z,nT), ys(x,nT)) dx + /\/0 u(n)(t)? dt (2.13)

with the weight functions wi(-) and ws(+), which still have to be specified. In order to
obtain finite time controllability, we choose the particular control

y(L — ct,nT)
c

1
u(n)(t) = 5 <y$(L —ct,nT) — ) Vte[0,T) (2.14)
which ensures that no reflections occur on the right boundary at which the control is
located. By using this control the solution of (2.9) - (2.11) coincides with the uncontrolled

solution of the wave equation on a semi-infinite interval [0, 00), cf. [4]. The corresponding
solution can be calculated by D’Alembert’s method, cf. [116],

x+ct

1
ylx,t) = 5 [yo(:c + ct) + yo(x — ct)} 20/ y1(s) ds for x> ct,

ct
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1 1 ct+x
ylx,t) = 5 [yo(ct +x) — yolct — x)} + 2_0/ y1(s) ds for x <ct. (2.15)
ct—x

Furthermore, let a sampling period 7" < 2L/c be given. Supposing that the sampling
period is comparatively small seems to be a realistic assumption because it ensures that
the cost functional takes the transient behavior adequately into account. In addition,
the implementation has to be done in a sampled-data fashion. Hence, the chosen control
function u(-) € £>([0,00]) has to be represented appropriately on a sampling interval,
e.g. being constant for zero order hold which is the most frequently used implementation
strategy. Hence, the sampling period has to be set to a sufficiently small value. As
a consequence, a very large optimization horizon N is required in order to satisfy the
terminal equality constraint which is contrary to one of the main advantages of RHC, i.e.
reducing the computational effort significantly. The decisive property of this example,
which is exploited in order to illustrate this drawback of RHC schemes based on terminal
equality constraints, is the finite propagation speed of the waves which leads to the effect
that the entire state can not be influenced arbitrarily fast and, thus, makes this RHC
scheme extremely restrictive.

Remark 2.10

The phenomenon of not being able to steer the system arbitrarily fast to the desired equi-
librium also occurs for many other systems whose control input is restricted by control
constraints and constraints coupling the state and the control. Hence, long optimization
horizons are often required in order to satisfy the additional terminal constraint (2.8).

Summarizing, the RHC scheme incorporating the terminal equality constraint is ap-
plicable for the linear wave equation (2.9) - (2.11) but requires a very large optimization
horizon. In the following chapter, we aim at designing a RHC scheme which provably
solves this example with a significantly shorter horizon N.

Remark 2.11

Note that the feasibility of the terminal state constraint does not depend on the chosen
stage costs and, consequently, the cost functional at all. Moreover, the stated control
indeed steers the system to the desired equilibrium state as fast as possible. Nevertheless,
a horizon of a length of at least 2L/c is needed in order to reach this state for initial data
chosen from an arbitrarily small neighborhood measured, e.g. in the L2-norm.

In particular for nonlinear examples, exact controllability is a restrictive assumption.
For linear infinite dimensional systems, e.g. Example 2.8, this condition may be satisfied,
cf. [71] for further examples. However, the applicability of the respective RHC scheme
remains questionable and often exhibits a poor performance due to unnecessarily large
optimization horizons as will be shown for the linear wave equation below.

2.3 Terminal Inequality Constraints and Costs

Next, we focus on toning down the drawbacks observed in the previous section by using
a more elaborate RHC scheme. This subsection, which is mainly based on [102], weakens
the terminal equality constraint introduced in Subsection 2.2 by using a terminal region
in combination with an additional terminal cost. This is typically chosen as a Lyapunov
function whose purpose is to provide an estimate for the remaining cost to go.
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To this end, a bounded set X; C X containing the desired target state z* is defined
as a terminal region. Additionally, a local (control) Lyapunov function is required, i.e. a
continuous function V; : X; — R satisfying

géig{vf(f(x,u)) +l(z,u): flz,u) € Xy} < Vip(z) VaeXpt (2.16)

Typically, the shape of the terminal region X; resembles a level set {x € X : Vy(z) < ¢},
c € R. of the employed (control) Lyapunov function Vy(-). Hence, the choices of X; and
Vi(+) are coupled.

Note that assuming (2.16) implicitly implies controlled forward invariance of the ter-
minal region X;. The following finite horizon optimization problem is based on the com-
bination of a terminal region and a (control) Lyapunov function:

N-1
min a:, 0(xy(n; x0) + Vi(z (N 2.17
SO oo 0 nZ:O o), u(n)) + Vi(zu(N; z0)) (2.17)
subject to  x,(n+ 1;20) = f(zu(n;z0),u(n)) with z,(0; z9) = ¢ € X, (2.18)
u(n) e U
U= Z/l;]g\;(xo) = ¢ (u(n))neny | Tu(n+1;20) €X for0<n< N -1

z,(N;zo) € Xy
(2.19)

The cost functional was modified by adding the respective (control) Lyapunov function.
Since the domain of Vj(-) consists only of a subset Xy of the feasible set X, one has
to ensure that the final state x,(NV;xy) of the predicted trajectory x,(-;zo) is contained
in Xy. In order to take this requirement into account, the set of admissible sequences
of control values is adjusted, cf. (2.19). Again, as in the previous section, we did not
change the condition z,(n + 1;z0) € X, n € {0,1,..., N — 1} although z,(N;z() € X
is automatically satisfied because of the added constraint z,(N;z¢) € Xy C X. The
system dynamics remain the same as in (2.5). Furthermore, we like to point out that the
corresponding optimal value function for this problem, denoted by V]\J;(JJO), is composed
of the sum of the first N stage costs as well as the (control) Lyapunov function Vy(-). In
order to emphasize that the cost functional also takes the (control) Lyapunov function
V;(+) into account, J4(-,-) is written instead of Jy (-, -).

Let, for given 2y € X, u}(-) = ui(-;x0) be an optimal sequence of control values for
Problem (2.17) - (2.19). Then, the following line of arguments establishes a Lyapunov
inequality, which enables us to deduce — in combination with the usual inequality con-
ditions for Vi (-), cf. (1.15) — asymptotic stability of the resulting closed loop. @ € U is
chosen such that

Vf(f(xuj\, (N§ 330)7 ’ll)) + e(xuj\,(Nv xO)? ﬁ) < Vf(xuj\, (N; xO))

holds. Since validity of (2.16) is assumed, such a control value exists. Let ay(:) be
defined by (u% (1), uy(2),...,ul (N — 1),4). Now, the argumentation is similar to that
of the previous subsection:

N-1

Vi(wo) = D Uy, (n0), iy (n) + V(g (N: 20))

n=0

4Again, we use a minimum in order to keep the presentation technically simple.
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I
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Inequality (2.16) guarantees that f(z.s (N;zo),u) € Xy and, thus, the admissibility of
@(+) which ensures the last inequality. Hence, recursive feasibility of the RHC problem is
a consequence of the assumed initial feasibility. Stability can be deduced by the standard
Lyapunov arguments. As a consequence, initial feasibility in combination with (2.16)
guarantees stability of the receding horizon closed-loop.

The main advantage of this RHC scheme in comparison to the one with terminal
equality constraints is the relaxation of the terminal constraint. Note that the schemes
coincide for X = {z*}, V() = 0. The scheme based on a terminal region and a (control)
Lyapunov function does not require exact controllability to the desired equilibrium.

Remark 2.12

In particular for nonlinear systems, finding a suitable terminal region Xy which is con-
trol forward invariant and satisfies (2.16) is challenging. For systems governed by time
wwvariant ordinary differential equation, a linearization at the set point, i.e. the desired
equilibrium, often allows to compute a locally stabilizing feedback as well as a local (con-
trol) Lyapunov function. Note that (2.16) has to be satisfied for this feedback K : Xy — U,
i.€.

Vi(f(z, K(z))) +l(z, K(2)) < Vi(z) and f(z,K(z)) € X; VaoeX;.

Hence, one looks for a control sequence steering the nonlinear system “sufficiently close”
to *. Once, the trajectory has entered the terminal region Xy, the control input may
be switched to the predefined feedback which ensures the validity of the desired (control)
Lyapunov inequality — this strategy is also termed dual mode, cf. [73, p.8]. Feasibility of
the resulting closed loop is, as already mentioned, ensured by supposing initial feasibility.

In order to illustrate these MPC schemes, the example of the nonlinear inverted pen-
dulum on a cart is considered as a sampled-data system with zero order hold.

Example 2.13
Our goal is to stabilize the nonlinear inverted pendulum on a cart at the origin, i.e. our
desired equilibrium. In order to apply RHC based on additional terminal costs, a lo-
cal (control) Lyapunov function has to be specified. To this end, the Lyapunov function
Vi(z) = 2T Pz, which was calculated for the linearized model in Example 1.23, is employed.
The stage costs and parameters are also taken from this example in order to ensure con-
sistency with V;(-). The terminal region Xy is implicitly defined by {x € R* : 27 Pz < c}.
For sufficiently small parameter ¢ € R<q, these choices heuristically ensure the desired
Lyapunov Inequality (2.16). This claim is substantiated by our numerical results, below.
Let the initial value T = (0.1 0.1 0.1 0.1)T, the sampling parameter T = 0.0625, and
the terminal region X; = {x € R* : Vy(z) < 0.1} be given. The predicted trajectories
are computed by means of the MATLAB routine odelb which is an implicit Runge-Kutta
method with step size control. Since a constrained nonlinear minimization problem is dealt
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Figure 2.4: Trajectories generated by receding horizon control for various optimization
horizons N with initial value zo = 0.1-(1,1,1,1)T.

with, the routine fmincon is used in order to solve the involved optimization problems. The
resulting trajectories are depicted in Figure 2.4.

Our numerical computations show that N = T is the smallest optimization horizon
which allows for an initially feasible trajectory, i.e. computing a sequence of N con-
trol values such that z,(N;zo) € {x € R" : 27 Pz < ¢} holds. However, this leads to
J7(xg) = 1628.51369. We point out that the contribution of the additional terminal cost
1s limited to ¢ = 0.1 and, thus, negligible. Rather, the large value of the cost functional
has to be ascribed to the terminal constraint x.,(N;xo) € Xy whose satisfaction demands a
comparatively large control effort. The actual costs of the corresponding receding horizon
closed loop sum up to 870.6461.5 Increasing the optimization horizon, which implicitly
enlarges the feasible set of the optimization, significantly reduces the costs associated with
the first 128 steps, cf. Figure 2.5.

For the chosen initial condition, the static state feedback computed for the linearized
version may also be used in order to stabilize the system, however, without taking the
terminal constraint into account. In doing so, costs amounting to 60.7659 are produced.
RHC' outperforms this feedback only for a sufficiently large optimization horizon, e.qg.
N = 20. Hence, using a terminal region has a stabilizing effect but may shrink the
set U = UN(zg) of admissible controls u(-) and, as a consequence, may cause higher
costs. At the extreme, U equals the empty set and the optimization problem (2.17) -
(2.19) becomes infeasible, e.g. N < 6. For larger horizons, the impact of incorporating a
terminal constraint in U s reduced, which results in an enlarged set U and lower costs on
the infinite horizon. Note that RHC with smaller optimization horizons steers the closed
loop trajectory, in general, faster into the terminal region Xy, cf. Table 2.2. The optimal
value function VA’;() decreases strictly along the receding horizon closed loop solution in
our numerical computations, cf. Figure 2.5.° The desired Lyapunov inequality is, however,
only satisfied for the first steps of the RHC' solution due to our heuristic choice of the

terminal cost Vi(-).

The purpose of the incorporated local (control) Lyapunov function is to appropriately

®The closed loop costs are only measured on the interval [0, 8] instead of [0,00). However, at t = 8
the state is already very close to the desired set point such that this truncation of the time horizon does

not distort the numerical results.
5This claim does not hold for the trajectory generated by the static state feedback for N < 32.
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N

7

10

12

16

24

30

32

40

64

time ¢t

1.125

1.5625

1.9375

2.8750

2.6875

3.0000

3.0625

3.8125

5.4375

Table 2.2: Time elapsed until the terminal constraint, i.e. x,,(t) € Xy, is, depending on
the optimization horizon N, satisfied.

10*

Vi@
/

|| - - -N=7 ~ -
N=10 T~
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—N=32
—N=40
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. . . . . . . . . . . . . . . . .
10 15 20 25 30 35 40 45 50 55 60 0 1 2 3 4 5 6 7 8
Optimization horizon N t

Figure 2.5: On the left, the overall costs J% and Vi () depending on the optimiza-
tion horizon N are drawn in blue and red, respectively. The costs associated with the
precomputed feedback are indicated by the dashed line. On the right, the difference
Vjé(:vm (n+1)) — V]\];(xw(n)) is illustrated for various optimization horizons N.

estimate the cost to go, i.e. to give an upper bound for the remaining costs which are
needed in order to render the system asymptotically stable. Often, such a Lyapunov
function, which has to satisfy Inequality (2.16), is constructed by a linearization at the
desired set point, cf. Example 2.13. As a consequence, the terminal region X; has to
be chosen sufficiently small which makes the terminal constraint x,(N;z,) € X; more
restrictive. Finding a (control) Lyapunov function such that Inequality (2.16) is satisfied
globally, i.e. for all x € X, allows to neglect the terminal constraint entirely. However,
this is, in particular for systems governed by nonlinear ordinary or partial differential
equations, a challenging task and, in general, not possible.

Summarizing, a large domain of attraction requires, in general, a large optimization
horizon N in RHC schemes with terminal constraints. Furthermore, for each initial con-
dition z( € X, an initially feasible solution of (2.17) - (2.19), i.e. a trajectory emanating
from xy and reaching the terminal region after at most N time steps, has to be found.
Hence, the presumably most difficult problem has to be tackled at the beginning. On the
other hand, feasibility and stability of the receding horizon closed loop are guaranteed.
In conclusion, finding a terminal region equipped with an appropriate local (control) Lya-
punov function and ensuring initial feasibility is demanding and often too restrictive from
a practical point of view, cf. [100] — although these prerequisites are already easier to ver-
ify compared to the terminal equality constraints from the previous section. In addition,
MPC with terminal constraints may give asymptotic stability without any robustness, as
shown in [31]. Hence, we shift our focus to unconstrained RHC schemes.
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2.4 Feasibility

In Sections 2.2 and 2.3 constraints were introduced whose satisfaction guarantees feasi-
bility and stability of the respective RHC schemes. However, finding an initially feasible
trajectory and, if terminal costs are used, designing a suitable (control) Lyapunov func-
tion, which is used in order to estimate the cost to go, is challenging. Furthermore, these
approaches may render initial conditions infeasible for horizons N for which RHC schemes
without terminal constraints and costs stabilize the system. The linear wave equation is
such an example in which the finite propagation speed prevents the system from reaching
a neighborhood of the origin fast whereas so called unconstrained RHC fulfills the pro-
posed task of stabilizing the system even for extremely short optimization horizons NV,
cf. [62].

In this thesis we are concerned mainly with the stability analysis for unconstrained
RHC. However, since these schemes do not guarantee feasibility of the resulting RHC
closed loop right from the beginning, the system may become infeasible although a Lya-
punov inequality was satisfied for the truncated optimal value function V() in each of
the preceding steps. The phenomenon of not being able to detect feasibility problems on
time, is often termed short-sightedness of the receding horizon closed loop, cf. [2, p.178§]
and [44, Example 8.1]. In order to ensure feasibility, Assumption 1.4 is supposed which
fits in well with our standard assumption that the optimal value function is finite for each
state xo of the feasible set X.

Here, a sketch of a feasibility proof from [99] is presented which outlines a way to
encounter the feasibility problem without Assumption 1.4. We point out that the main
idea of rendering a level set of the value function Vi () invariant with respect to the em-
ployed receding horizon strategy is also used in order to ensure feasibility for an example
considered in Section 4.4. Since the examples which are investigated for infinite dimen-
sional systems do not exhibit tight state constraints, we restrict ourselves mainly to finite
dimensional systems. Nevertheless, we emphasize that the concepts presented in this sec-
tion can not be transferred to infinite dimensional systems because some conclusions can
not be drawn analogously. For example the unit sphere is bounded and closed but not
compact in £2(R,R"), cf. [119] and [110, Corollary 4.5]. Furthermore, we like to point
out that [99] only deals with systems governed by linear dynamics. The ideas, however,
may be generalized to the nonlinear setting. More elaborate techniques in order to ensure
feasibility of unconstrained RHC schemes are discussed, e.g. in [44].

A necessary condition for feasibility of unconstrained RHC with optimization horizon
N is feasibility on the infinite horizon which is characterized by a finite value of the
respective optimal value function V. (z¢). Hence, the first step towards a feasibility
analysis is taking a closer look at this set. The linear setting is considered, i.e. system
dynamics z(n+ 1) = Axz(n) + Bu(n) with a controllable pair [A, B] and constraints given
by Ex + Fu < 1. Neglecting the constraints, assuming that [A, B] is a controllable pair
implies that every xq € R" is exactly controllable to the origin in a finite number of
steps which is less or equal the dimension n € N of the state space, cf. [58] for a precise
definition. However, due to the constraint which may model simple box constraints for
the control input and, thus, excluding unsaturated controls, this does not hold for the
whole space. Hence, we define the set Iy = {0} and the sets

Iti1 = {2z € R" : Ju such that Az + Bu € [, and Ex + Fu < ¢ }.

Thus, I; contains all points which may be steered to the origin in one step without
violating the imposed constraints. Moreover, [}, C I 1 due to the construction. Defining
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the set I, := UZO:() I, we obtain the following result.

Theorem 2.14

Let the pair [A, B] be controllable and (0,0) be an interior point of the constraint set
{(z,u) € R* x R™ : Ex + Bu < ¢}. Furthermore, let the stage costs satisfy {(x,u) >
a(||z|) for a Keo-function o : Rf — R{, e.g. 27 Qx + u' Ru with positive definite matriz
@ and positive semi-definite matriz R. Then the following equivalence holds:

xg € oo <= V() < 00.

The main ideas of the proof are sketched. Then, possibilities in order to generalize
Theorem 2.14 to the nonlinear setting are indicated and briefly discussed in Remark 2.15.

Supposing xg € I, ensures the existence of an index K such that zy € Ix. Conse-
quently, the definition of the set Ix allows us to construct a sequence of control values
(u(k))kefo,1,..., k13 which feasibly steers the system from g € Ix to Iy. Hence, V() is
bounded by S5 0(x,(n; 20), u(n)) < co.

Let g ¢ I be given. Since [A, B] is controllable and (0,0) € R™ x R™ is an interior
point of the constraint set, deadbeat control may be carried out. To be more precise,
every state contained in a sufficiently small neighborhood of the origin may be steered
to the origin in at most n steps. Let Bs(0) C R", § € Ry, denote a ball with radius §
completely contained in this neighborhood. Hence, since xy ¢ I, there does not exist
a sequence of control values steering o into Bs(0). As a consequence, for each feasible
(u(n))nen, the estimate €(x,(n;zo),u(n)) > al||ry(n;zo)l]) > a(d/2) > 0 holds for all
n € No. Hence, Joo(zo,u(-)) = >0y l(zu(n;zo),u(n)) > > a(d/2) = oo for every
feasible (u(n))nen,-

Remark 2.15

Deadbeat control is a restrictive assumption in the nonlinear setting, cp. RHC with ter-
minal equality constraints in Section 2.2. Hence, this prerequisite should be weakened,
e.g. assuming the existence of a neighborhood of the desired equilibrium such that each
point contained in this set is stabilizable inducing finite costs. This seems to be a reason-
able option in order to generalize the proposed characterization of the feasible set for the
problem on an infinite time horizon to a nonlinear setting. Furthermore, we emphasize
that RHC with additional terminal constraints and costs requires a similar, even stronger
assumption anyway, cp. Inequality (2.16).

We continue with the main result concerning feasibility from [99].

Theorem 2.16

Let the assumptions of Theorem 2.1/ be satisfied and a parameter p € R<q be given. The
p sub-level set S, of Vo (+) is defined by {x € R™ : Vo(x) < pu}. Then, an optimization
horizon N' € Nxo exists such that S, is an invariant set under any RHC feedback resulting
from the optimization problem (2.4) — (2.6) with horizon N > N'.

The proof, which can be found in [99, Appendix], consists of two parts and relies
essentially on the monotonicity of the value function Vi () with respect to the optimization
horizon length N. To be more precise, Vy(+) has to be monotonically increasing in N —
a characteristic which is automatically fulfilled for unconstrained RHC, cf. Section 2.1.

We start by two auxiliary claims in order to prepare the ground for the actual proof.

o Let 3 € (0, 1) be chosen such that {x € R" : a(||z]|) < 5} € S,. Then, the following
calculation shows that x,, (1;x¢) € S, holds for all 7y € Sg and N € N>o:

2 Vao(0) 2 V(o) = Vivoa(@uy (120)) 2 (2 (1520)) 2 af[|zuy (15 20)])-
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o Let the set W be defined by {z € R" : a(||z||) < p}. Then, z,,(1;20) € W N I
holds for all zy € S, and sufficiently large horizons N. Note that x,,(1;2) € I
guarantees Voo (z,, (1;20)) < 0o.

Repeating the computation used in order to establish the previous assertion with
substituted by p yields z,, (1;29) € W. In order to show z,, (1;2¢) € I, a line of
arguments similar to the proof of Theorem 2.14 is employed: initially, for x ¢ I, a
lower bound for the stage costs is established in order to derive a contradiction for
sufficiently large N, cf. [99, Lemma 12| for details.

Taking the first assertion into account allows us to focus on states z € S,\S3 in order to
prove Theorem 2.16. Suppose that a horizon length N’ satisfying the claim of Theorem
2.16 does not exist. Then, for each j € N, a horizon length IV; > j and a state xé € S,\5s
exist such that muNj(l;x{)) e W\S, ¢ W. Since W is compact, (a:MNj(l;xé))jeN has a
convergent subsequence (Zy)gen = (xwy_k (1;x6k))keN, (Jk)ken C N with jrq > j for all
k € N, with &, — i for k tending to infinity.

If Zo is not contained in Iy, Vi(Zo) = oo holds. Otherwise, Vo (To) =
limg oo Voo (Zx) > p is ensured by the second assertion in view of Theorem 2.14.
Combining these assertions, yields V(%) > p. Hence, for every e > 0, a horizon length
N exists such that

VN(ZToo) > 11— /4. (2.20)

Next, we prove co > Vy(Zs) by contradiction. To this end, suppose that Z,, is not
feasible for the optimization problem (2.4) - (2.6) with horizon length N. The constraints
specify a bounded set for any N’, cf. [99, Lemma 10], which is shrinking for larger N.
Hence, V(%) = oo implies the existence of an open neighborhood of Z., which is not
feasible for all N' > N — a contradiction to the convergence T — I, for k — oo.

Choose ¢ = infes,\55 @([|70]]) < infupes,\s; £*(v0). Then, N € N exists such that
(2.20) with co > Viy(Zs) holds. Since Viy(-) is continuous, picking N;, > N large enough
ensures

Vi, (85) = Vi, (5, (L)) > Vi, (L)) > = 2/2. (2.21)

Hence, we obtain the following inequality which leads to a contradiction and completes
the proof of Theorem 2.167

P Vi, (o) = 0, (0)) + Vi, 1 (2, (i)
> 0 al) + Vi, (L) 2 = /2= i+ /2

The main ideas of this proof are generalizable to the nonlinear setting. However,
generalizing this feasibility result to the infinite dimensional setting may cause additional
(technical) problems, e.g. compactness of the set W can not be expected. Instead one
has to use the concept of weak sequential compactness, cf. [79, Section 10.2], and, as
a consequence, only obtains a weakly convergent subsequence. Note that the different
compactness terms are equivalent for normed spaces, cf. [106, Eberlein-Smulian Theorem)],
and that, e.g. the unit sphere is weakly sequentially compact in every reflexive space,
cf. [106, Theorem 2.8.2]. Again, we refer to [44] for more elaborate results with respect
to feasibility, in particular for a generalization to the nonlinear case.

"The first equality is flawed in [99]. Since using the optimization horizon Nj + 1 leads, in general, not
to .y, (15 zk) as the next state.
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We like to point out that a standard assumption for stability results in RHC is the
relation of the function a4 (-) € K and the stage costs via (1.4). Hence, the prerequisites
of Theorems 2.14 and 2.16 are not too restrictive.

Summarizing, RHC with either terminal constraints or costs ensures feasibility a priori
but at the expense of assuming an initially feasible solution — independently of whether
feasibility issues play a role or not. Using unconstrained RHC may lead to feasibility
problems, in particular for short optimization horizons N due to its “short sightedness”,
cf. [2, p.178]. On the other hand, neglecting terminal constraints enlarges the set of
admissible controls significantly and, thus, may improve the closed loop performance.

In this thesis, however, we do not focus on feasibility issues. This motivates Assumption
1.4, which may be weakened. Assumption 1.4 ensures, for each initial value zy € X, the
existence of a sequence of control values which satisfies the constraints. Nevertheless,
RHC may cause infinite costs in the long run.
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Chapter 3

Stability and Suboptimality of RHC
Schemes

In this thesis we are concerned with receding horizon schemes which incorporate neither
terminal constraints nor additional terminal costs. These schemes exhibit a decisive ad-
vantage in contrast to their counterparts which take terminal costs or constraints into
account: the optimal value function Vi () increases, for each feasible initial value xy € X
monotonically in the optimization horizon N — an inherent monotonicity property which
allows us to exploit Lyapunov type inequalities in order to estimate, in addition to con-
cluding stability, the performance of the resulting RHC closed loop.

Assumption 2.1 ensures boundedness of V(-) on X which is a necessary condition for
well-posedness of the optimal control problem on the infinite time horizon because oth-
erwise either the constraints are inevitably violated or the stage costs are not summable.
The latter indicates that the cost functional does not provide a suitable criterion for sta-
bilizing the system at the desired equilibrium and is, thus, inadequately designed. Hence,
the monotonically increasing sequence (Vi (xg))nen~, is bounded from above by Vi (zo).

In Section 3.1 a relaxed Lyapunov inequality is introduced which forms the core of
our stability and suboptimality results. Based on a controllability condition and Bell-
man’s principle of optimality, a nonlinear program is deduced which gives us a sufficient
condition in order to validate this Lyapunov inequality. In the ensuing section our main
stability theorem is presented. In Section 3.3 the proposed optimization problem is solved
for an important subclass, which provides an easily checkable stability and performance
criterion. Then, the introduced methodology is demonstrated. To this end, our key as-
sumption, i.e. Assumption 3.2, is verified for the linear wave equation which allows to
ensure instantaneous controllability for this hyperbolic partial differential equation rigor-
ously.

3.1 Relaxed Lyapunov Inequality

In Section 1.4 networked control systems were introduced and the notation of a multistep
feedback law p: X' x {0,1,...,m* — 1} — U with m* € N was specified. Using a receding
horizon controller based on optimization problem (2.4) — (2.6) yields a sequence of N
input values for a given initial value xy. Since we intend to employ these values in order
to construct the feedback law py (-, ), the condition m* < N — 1 has to be satisfied. The
parameter m* determines the maximal number of control values which may be applied
before the optimization problem has to be solved again in order to update — based on a
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measurement of the current state — the sequence of control values. Hence, m* limits the
maximal time the system may stay in open loop. Whereas the set M C {1,2,...,m*} from
Definition 1.25 mainly places some flexibility at our disposal, which might be convenient
for the networked control setting, e.g. the network topology may force us only to use
odd numbers of elements of the computed sequence of control values due to transmission
specifications. Nevertheless, one may think of M = {1,2,...,m* — 1} in the sequel.

Let an admissible control horizon sequence (m;);en, be given. Then, using the notation
from Definition 1.24, the corresponding costs on the infinite time interval are given by

VLT (20) 1= Y Uw(n), plz,(p(n),n — p(n))).

Our approach relies on the following result from relaxed dynamic programming [83,101],
which is a generalization of [39, Proposition 2.4].

Proposition 3.1

Let a multistep feedback law i : X x {0,1,...,m* =1} = U, a set M C {1,2,...,m*},
and a function VX — R be given. Suppose that, for each xo € X, the solution
zi(-) = xa(5w0) with x5(0) = xg satisfies xp(n; o) € X, n € {0,1,...,N — 1}, and

m—1

V(zo) > V(za(m)) + o> lxa(k), fi(zo, k)  VmeM (3.1)

k=0

for some o € (0,1]. Then, for all xy € X and all admissible sequences (m;);en, of control
horizons, the estimate

Vi (z0) < aVR2m) (20) < V(o) (3.2)
holds.

Proof: Consider o € X and the trajectory (1) = @, (-;%0) generated by the
closed loop system using the multistep feedback fi(-,-) associated with (m;);en,. Since
zp(n;xp(o(k);xg)) € X, ne{0,1,...,N — 1}, implies z;(c(k + 1);20), (3.1) yields

o(k+1)—1

a Z i(za(e(n),n — o(n))) < V(wp(o (k) = V(wa(o(k +1)))

for all £ € Ny. Summing over the transmission times o(k), k =0,1,... k*, yields

o(k*)—1 o —1 o(k+1)—

a » Uza(n), ilza(p(n),n—p(n) = a Z Z ), fi(za(p(n)), n — o(n)))
n=0 = n=c(k)

< ‘7(1’(0)) = V(a(o(k")) < V((0).
For k* — oo this shows that V (z) is an upper bound for a2 m) (xo). Since the definition

of the optimal value function V.. (-) ensures the first inequality in (3.2) directly, this
completes the proof.

0
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Our goal consists of establishing (3.1) for V(-) = Vy(-) and the corresponding RHC
controller fi(+,-) = pun(+,-). Then, using the monotonicity of Viy(-) in NV yields

OzVoléN’(mi)(mo) < V(o) < Vie(o),

which guarantees that the RHC closed loop produces at most 1/a as much costs as the
optimal feedback on the infinite time horizon, i.e. a suboptimality estimate.

Our key ingredient in order to deduce (3.1) is the following controllability assumption
from [39]. The relation between Assumption 3.2 and other controllability conditions, e.g.
the one used in [32], is discussed in Section 5.5, below.

Assumption 3.2
Let a function ((-,-) € KLy be given. Suppose that, for each xy € X, an admissible control
function ug, () € U = U®(z) C UM emxists, which satisfies

Uy, (1), Ugy () < B (20), 1) for all n € No. (3.3)

Important representatives of class KLy-functions lead to exponential or finite time
controllability, cf. Remark 1.13. In addition to Assumption 3.2, the useful property
(1.13) is assumed which ensures that any sequence of the form A, = (r,n), r > 0, fulfills
Aam < B(An,m), cf. Section 1.2.

Assumption 3.2 is verified for the discrete time system from Example 1.10 in order
to illustrate the meaning of Condition (3.3). In particular, the example shows that the
involved sequence of control values u,, € U = U (xy) does not need to be optimal.

Example 3.3
Example 1.10 is considered. The stage costs are given by

l(z,u) = 2"Qz +u" Ru = 2" ( 01

1 0
> r+ulu=|z)? + [jul

In Example 1.17 we derived the estimate ||x(n; xo)|| < Co™||xol| for the static state feedback
BF,,. Hence, using the feedback BF,, applied to the current state yields

Uz(n),u(n)) = llz(m)|*+ [|BFcz(n)|® < (1+ | BFG|*)z(n)]?
< (L4 | BF|*)C%0™ ||xo||* = C5™0* (o)
with C = (1 + || BFx||?)C?, & := 02, i.e. exponential controllability with respect to the
stage costs or, equivalently, Assumption 3.2 with B(r,n) = C&™ - r. Note that the KL-
function (8 is linear in its first argument.

Alternatively, one may show that this example is finite time controllable, cf. Example
2.7. In view of these results, we obtain

0(z(0),u(0)) = |lzol® + || ( 21/110 —2 ) zo||* < 60941/12100 - £*(z0) < 5.04 - £* (o),

2 2
1 1.1 T T
((z(1),u(l)) = H( L1011 1 ) < zg; ) + H( 221/110 2.21) ( xz; )
< 15677961/1210000 - £*(20) < 12.96 - £*(p).

Hence, 3(r,0) = co-r, B(r,1) = ¢ -7, and B(r,n) = 0 for n € Nsg with ¢g = 5.04 and
cl = 12.96.
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Remark 3.4

Analogously to the previous example, Assumption 3.2 can be shown for Example 1.23.
Further examples are given below. Note that asymptotic stability of the closed loop usually
implies Assumption 3.2. Since designing ((-,-) appropriately may be beneficial in order to

verify Assumption 3.2, incorporating the stage costs weakens our controllability condition,
cf. Subsection 4.5.1.

In order to ease notation, we define

= i B(r,n) (3.4)

for any » > 0 and any N € Ns;. A consequence of Assumption 3.2 and Bellman’s
principle of optimality, i.e. Vy(z) = min,ey{l(z,u) + Vy_1(f(x,u))}, is the following
lemma from [39].

Lemma 3.5

Suppose that Assumption 3.2 holds. Let zo € X and an optimal control u*(-) for the finite
horizon optimal control problem (2.4) — (2.6) with optimization horizon N > 2 be given.

Then, for each m =1,..., N — 1, the following inequalities hold:
Vn(zo) < Bn(l*(0)), (3.5)
In-j(zu (), w"(G+7)) < By—j(((zus(5)), j=1,...,.N=2 (3.6)
Vn(zus(m)) < Jj(@u(m),w*(m+-)) + By—j(I" (2o (m + j))),
7=0,...,N—m—1. (3.7)

The inequalities stated in Lemma 3.5 are based on the fact that tails of optimal trajec-
tories are again optimal. For instance in (3.7), Estimate (3.3) is used after following the
respective optimal trajectory emanating from x,«(m) for j steps. Summarizing, Lemma
3.5 links the cost attributed to some time instant with quantities deduced from optimality
and Assumption 3.2.

Next, we provide a constructive approach in order to compute « in (3.1) for systems
satisfying Assumption 3.2. Note that (3.1) depends only on mg and not on the remainder
of the control horizon sequence. This enables us to perform the computation separately
for each control horizon m and, consequently, allows for determining the desired « for
time varying control horizons by minimizing with respect to the obtained values for all
admissible m. To this end, we consider arbitrary values Ag, ..., Ay_1,7 > 0 and start by
deriving necessary conditions under which these values coincide with an optimal sequence
l(zy+(n),u*(n)) and an optimal value Vi (z,+(m)), respectively.

Proposition 3.6

Suppose that Assumption 3.2 holds and consider N > 2, m € {1,...,N — 1}, a sequence
A >0, n=0,...,N —1, and a value v > 0. Consider ro € X and assume that a
minimizing control u*(-) € U for (2.4) — (2.6) exists such that A, equals {(z,(n),u*(n))
for alln € {0,...,N —1}. Then

N-1

> A< Byoi(M), k=0,...,N -2 (3.8)
n=k
holds true. If, in addition, v = Vi (xu«(m)) holds, we have
j—1
V<Y Mg+ ByojNjgm), G=0,... . N—m—1. (3.9)
n=0

42



RELAXED LYAPUNOV INEQUALITY

Proof: If the stated conditions hold, then A, and v meet the inequalities in Lemma 3.5,
which is exactly (3.8) and (3.9).

O

Using this proposition a sufficient condition for suboptimality of the RHC feedback law
UN.m is given in the following Theorem from [39].

Theorem 3.7
Consider 3 € KLy, N > 2, m € {1,...,N — 1}, and assume that all sequences \, > 0,
n=20,...,N —1 and values v > 0 fulfilling (3.8), (3.9) satisfy the inequality

N-1 m—1
Z)\n—yzaz/\n (3.10)
n=0 n=0

for some o € (0,1]. Then, for each optimal control problem (2.4) - (2.6) satisfying
Assumption 3.2, the assumptions of Proposition 3.1 are satisfied for the multistep MPC
feedback law iy (-, -). In particular, the inequality

aVio(z) < aVENm(z) < Vy(x)
holds for all x € X.

In view of Theorem 3.7, the value « can be interpreted as a performance bound which
indicates how good the receding horizon strategy approximates the infinite horizon cost.
In the remainder of this section we present an optimization based approach for computing
a. To this end, consider the following optimization problem.

Problem 3.8
Let B(-,-) € KLy, N > 2, and m € {1,...,N — 1} be given. Compute

N-1
Zn:(] Ap —V
A VT2 DD

subject to the constraints (3.8), (3.9), and Ao, ..., Any_1,v > 0.

The following is a corollary from Theorem 3.7.

Corollary 3.9

Consider 3(-,-) € KLy, N > 2, and m € {1,..., N —1} and assume that Problem 3.8 has
an optimal value o € (0,1]. Then, for each optimal control problem given by (3.8), (3.9)
satisfying Assumption 3.2 the assumptions of Theorem 3.7 are satisfied and, consequently,
the corresponding assertions hold.

The considered setting can be extended to the setting including an additional weight
w > 1 on the final term, i.e. altering our finite time cost functional by adding (w —
1)¢(zy(N —1),u(IN—1)). Note that the original form of the functional Jy (-, -) is obtained
by setting w = 1. All results in this section remain valid if the statements are suitably
adapted. In particular, (2.4) and (3.4) become

=
N

In(zg,u) = l(zy(n),u(n)) + wl(x, (N —1),u(N — 1))

3
I
o
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=2

By(r) = g B(r,n) +wB(r, N —1). (3.11)

n

I
=)

Problem 3.8 is changed to the following optimization problem.

Problem 3.10
Let 5(-,-) € KLy, N € Nsg, and m € {1,2,...,N — 1} be given. Compute

Zg:_oz An +FwWAN_1 —V

ANy = /\07“.171;11571’1/ ST
N-2
subject to Z A+ wAn_1 < By_g(Ak), k=0,...,N—2 (3.12)
n=~k
j—1
V<Y Augm + Byoj(Njgm), 5=0,...,N—m—1 (3.13)
n=0

and )\0,...,)\]\771,1/ > 0.

Remark 3.11

Note that incorporating an additional weight on the final term may cancel out the men-
tioned monotonicity of Vy(-) with respect to the optimization horizon N. As a conse-
quence, Vn(xo) > Voo(xg) is not excluded. Hence, the interpretation of the computed index
AN as a performance index becomes more difficult. For example, although Corollary 5.9
implies VAN (20) < 1/a% Vi (o), the conclusion VENm) () < 1/ 1 Voo (0) may
be wrong.

3.2 Asymptotic Stability

In this section, which extends [39, Section 5] to time varying control horizons, it is shown
how the performance bound a = af ,, can be used in order to conclude asymptotic
stability of the receding horizon closed loop. Assumption 1.7 ensures global asymptotic
stability of * under the optimal feedback for the infinite horizon problem, provided 5(r, -)
is summable. The results of this section are generalizable to stage costs whose level set
L:={r € X:3Ju € Uwith f(z,u) € X satisfying {(z,u) = 0} = {z € X : *(x) = 0}
consists not only of a desired set point z*. Furthermore, the condition (ii) of Assumption
1.7 can be relaxed in various ways, cf. [39].
Our main stability result is formulated in the following theorem.

Theorem 3.12

Consider B(-,-) € KLy, m* > 1, N > m*+1, and a set M C {1,...,m*} and suppose that
Assumptions 5.2 and 1.7 are satisfied. Furthermore, assume that o* := ming,ep{af;,, } >
0 where o, denotes the optimal value of Problem 3.10. Then, the multistep RHC feed-
back law pinm=(+,+), which is based on the optimal control problem consisting of (2.4) —
(2.6), asymptotically stabilizes the equilibrium x* for all admissible control horizon se-
quences (Mm;)ien, - In addition, the function Vy(-) is a Lyapunov function at the transmis-
sion times o(k) in the sense that

VN (@uy e (0 (R +1))) S Vi (2py 0 (0(R))) = @ Vi (T, (0(F))) (3.14)
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holds for all k € Ny and xy € X.

Proof: From (1.4) and Lemma 3.5 we immediately obtain the inequality
ar([|z]lzr) < Vv(x) < Bu(aa(l|lzl)). (3.15)

Note that By o ap is again a Ko—function. The stated Lyapunov Inequality (3.14) fol-
lows immediately from the definition of o* and (3.8) which holds according to Corol-
lary 3.9 for all m € M. Again, using (1.4) we obtain V,,(z) > ai(||x].+) and thus a
standard construction, see e.g. [91], yields a L—function p(-,-) for which the inequality
VN Ty e (0(K))) < p(Vin(), k) < p(VN(x), [0(k)/m*]) holds. In addition, using the def-
inition of pn e, for p = 1,...,my, — 1, k € Ny, and abbreviating x(n) = z,, .(n) we
obtain
o(k+1)—1

Vn(z(o(k)+p) < Y La(n), prme(x(o(n),n = o(n)) + Vi (@(o(k + 1))
n=c(k)+p
o(k+1)-1

< Y ey (x(e(n),n = @(n) + V-myip(z(o(k + 1))
n=o (k)
< Vn(z(o(k))) +wWn(z(o(k+1))) < (1+w)Vn(z(o(k)))

where (3.14) was used in the last inequality. Hence, the estimate

VN (@ e (0)) < (14 w)p(Viv (@), Lp(n) /m”])

is obtained which implies

or (Vv (@py,,,e (1))
a (1 +w)p(Viv(@), Lp(n)/m*]))
ar (L +w)p(By(ea(l|z]la)), L(n —m*)/m*]))

105 e () [

VANVARVAN

and thus asymptotic stability with £-function 3 given by

Blr,n) = a; (1 +w)p(B (as(r)), L(n — m*)/m?])) +re ™.
O

Remark 3.13 (i) For the “classical” RHC case m* =1 and ((-,-) satisfying (1.13) it
is shown in [39, Theorem 5.3] that the criterion from Theorem 3.12 is tight in the
sense that if a* < 0 holds then a control system, which satisfies Assumption 3.2 but
which is not stabilized by the RHC scheme, exists. We conjecture that this assertion
remains valid for m* > 2.

(i) Note that, in Theorem 3.12, we use a criterion for arbitrary but fired m € M in order
to conclude asymptotic stability for time varying (m;)ien, € M. This is possible
since our proof yields Vy as a common Lyapunov function, cf. also [82, Section
2.1.2].
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3.3 Linear Program

The goal of this section is to solve Problem 3.8 or its extended version, i.e. Problem 3.10,
which allows for an additional final weight. While this is an optimization problem of much
lower complexity than the original RHC optimization problem (2.4) - (2.6), still, it is in
general nonlinear. However, it becomes a linear program if 5(r,n) and, thus, By(r) from
(3.4) and (3.11) is linear in r, cf. Example 3.3.

Lemma 3.14
Let ((r,t) be linear in its first argument. Then Problem 3.10 yields the same optimal
value oy, as

subject to the (now linear) constraints (3.12), (3.13) with By(k) from (3.11) and

m—1
Moy s A1, v >0, Z)\nzl. (3.16)
n=0

For a proof we refer to [39, Remark 4.3 and Lemma 4.6], observing that this proof is
easily extendable to w > 1. The following remark comments on the assumed linearity of
the KCLy-function 3(-,-).

Remark 3.15

A KLo-function 3(-,-) : Ry x Ng, which is linear in its first argument, may be written
as B(r,n) = rc, for a suitably chosen sequence (cy)nen, C Ry. Hence, we obtain the
following for (3.11):

N-2 N-2
By(r) = Z B(r,n) +wB(r,N —1) =r- (Z Cn —i—chl) :
n=0 n=0
In order to exploit this representation, we define
N-2
N = By(r)/r = Z Cn + WeN_1. (3.17)
n=0

We point out that Assumption 3.2 implies cq > 1 for KLy-functions which are linear in
their first argument. Moreover, we assume without loss of generality that ¢, = 0 for an
arbitrary index n implies c¢,; = 0 for all i € N since ¢, = 0 in combination with (3.3)
ensures that the respective trajectory has already reached the desired equilibrium exactly
at time n.

The following lemma is based on the observation that the optimum of the optimization
problem posed in Lemma 3.14 satisfies Inequality (3.13), j = N — m — 1, with equality.
Using this fact and the condition Z;nz_ol A = 1 allows to rewrite the optimization problem
to be solved.

Proposition 3.16
Let ((-,-) be linear in its first argument and let v be defined according to (3.17). Then
the optimal value of Problem 3.10 equals the optimal value of the optimization problem

m/\in I — (Yma1 —w) An_1
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subject to X = (Aq,..., )\N_l)T > 0 componentwise and the linear constraints

m—1 N-2

nyZ)\n+Z>\n+w )\N,1 S "}/N—l (318)
n=1 n=m

N-2

D d—vei Atw Ay <0 (= 1,....N-2) (3.19)

n=j

N-2

Z An = IN—jtm Aj + Ymy1Av-1 < 0 (j= m,...,N—=2). (3.20)

n=j

Proof: We proceed from the linear optimization problem stated in Lemma 3.14 and
show that Inequality (3.13), j = N —m — 1, is active in the optimum, i.e. (3.13) is an
equality in the optimum for j = N — m — 1. To this end, we assume the opposite and
deduce a contradiction.

Suppose Ay_1 > 0. Since (3.13) is not active and due to the continuity of B, 11 (Ax_1) =
Ymi1An—1 With respect to Ay_1, this allows for reducing the value of Ay_; without vio-
lating (3.13), j = N —m — 1. As a consequence, the objective function decreases strictly
whereas all other constraints remain valid — a contradiction to the assumed optimality.
Hence, Axy_1 = 0. Then, since Ay_3 < Bi2(Av_2) = Yma2An—_2 (3.12), K = N — 2, holds
trivially and the validity of (3.13), j = N —m — 1 ensures (3.13), j = N —m — 2. This
allows us to derive Ay_o = 0 analogously to Ay_; = 0. Iterative application of this line
of arguments provides \,, = ... = Ay_2 = Ay_1 = 0. But then the right hand side of
(3.13), 7 = N —m — 1, sums up to zero which — in combination with v > 0 — leads to the
claimed contradiction.

Hence, we treat (3.13), j = N —m — 1, as an equality constraint. In conjunction with
the non-negativity conditions imposed on A,,,...,Ay_1 this ensures v > 0. We point
out that the special case yn — 1 = 0 leads to Ay = A3 = ... = Ay via (3.12), k = 0,
and v = 0 via (3.13), j = N —m — 1, and, thus, to af,, = 1. This is also reflected
by the optimization problem formulated in Proposition 3.16. Thus, we assume w.l.o.g.
vnv —1 >0, cf. Remark 3.15. As a consequence, (3.12), k = 0, in combination with the
linearity of By(-) guarantees Ao > 0 for all feasible points.

Next, we utilize (3.16) and (3.13), j = N —m — 1, in order to eliminate v and Ag from
the considered optimization problem. Using these equalities and the definition of 7,1,
the objective function from Lemma 3.14 is converted into the desired form. Furthermore,
(3.16) provides the equivalence of (3.12), kK = 0, and (3.18). Taking (3.13), j = N—m—1,

into account yields
N-2

Z A+ Ymt1AN—1 — IN=j A <0

n=m-+j
for (3.13), j =0,..., N —m — 2. Shifting the control variable j shows the equivalence to
(3.20), j = m, ..., N — 2. Paraphrasing (3.12) provides (3.19) for k=1,..., N — 2.
0

Before we proceed, we formulate Problem 3.17 by dropping Inequalities (3.19), j =
m,...,N — 2. The solution of this relaxed (optimization) problem paves the way for
dealing with Problem 3.10: suppose that the KLy-function 5(-,-) from Assumption 3.2
fulfills Property (1.13). Then, the optimum of Problem 3.17 is also feasible for Problem
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3.10. Otherwise, its optimal value can still be used as a lower bound for the suboptimality
degree of the receding horizon closed loop.

Problem 3.17

Minimize 1 — (Ymi1 — w) An_1 subject to X = (A1,..., Ay_1)T > 0 componentwise and
AN < b, where

ap a aN-2 W v — 1

d1 1 1 bl 0

A= 0 dy : and b= :

Lo .1 by_s 0

0 0 dy—2 bn—2 0
with

YN forg<m w forj<m 1—9n—; forj<m
aj: bj: dj—

1  otherwise Vmi1 Otherwise - 1 —YN_jtm otherwise

Theorem 3.18

Let G(-,-) € KLy from Assumption 3.2 be linear in its first argument and satisfy (1.13).
Then the optimal value o = af;,,, of Problem 3.10 for given optimization horizon N,
control horizon m, and weight w on the final term satisfies af;,, = 1 if and only if
W > Yme1- Otherwise, we get

N N

(Ymy1—w) I (=1 I (n—1)

i=m-+2 i=N—m+1

w
AN = 1

(I =t T ee-0) (2= [ i-1)

i=m+1 i=m+2 i=N—m+1 i=N—m-+1

Proof: We showed that the linear optimization problem stated in Proposition 3.16 yields
the same optimal value as Problem 3.10 for ICLy-functions which are linear in their first
argument. Technically, this is posed as a minimization problem. Taking the restriction
An_1 > 0 into account, leads to the question, whether the coefficient of Ay_; in the
objective function is positive or not. As a consequence, the aim is either minimizing or
maximizing Ay_;. In the first case, i.e. v,,1 —w < 0, choosing A\ = ... = Ay_1 =0
solves the considered task and provides af;,, = 1.

Hence, we suppose A, 41 —w > 0. In order to prove the assertion, i.e. the stated
formula, we solve the relaxed Problem 3.17 and show that its optimum is also feasible for
the original problem, i.e. Problem 3.10.

The linear system of equations A\ = b with A and b from Problem 3.17 is satisfied
at the optimum — a crucial property which is shown by Lemma 3.22. This allows us
to deduce expressions for Ay_s, Ay_3,...,A; depending (only) on Ay_;. Inserting the
obtained terms into A;\ = b; allows for solving this equation with respect to variable
An_1. Plugging this expression for Ay_; into the objective function of the optimization
problem in consideration, yields Formula (3.18).

Suppose N —m > 2. Then Anx_;, 7 =2,3,...,N —m is given by

AN_j = . “AN_T- 3.22
Y H;‘?:;iw(% —1) M ( )
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We show this claim by induction over j = 2,3,..., N —m. For 7 = 2, the assertion follows
directly from Ay_1\ = by_1 = 0. Thus, we continue with the induction step using Lemma
3.21 with m+2, m+j—1 instead of m, M. Using —dn_; = —(1 = yN_(N—j)4+m) = Ym+j—1
and b,,—j = Y41 yields

Yt 1 AN—1 + 300 Av
TYm+j — 1

e [T 00— D) + 200 (T w I (n = 1)

o m+j : )\Nfl

Hi:m+2 (,71 - 1)
st [T (= 1) + S0 (T e I (= D))

)\N—j =

— “AN-1
HZ”T#,H(% 1)
RSN | HAET
= o *AN—1-
Il Jrr;i+2(% 1)
Suppose m > 2. Then A\,,_;, 7 =1,2,...,m — 1 is given by
HN Nm—i—j 11 % N—m
/\m—j = N %rn mt (U)\N—l + Z )\N—i . (323)
Hz’:Nj?;ZJrl(%' -1) i=2

We show (3.23) by induction over j = 1,2,...,m — 1. For an index j chosen from the
specified range, —d,,—; = YN—m+; — 1 and b,,_; = w hold. Hence, considering A,,\ =
b,, = 0 provides the assertion for j = 1. Using Lemma 3.21 with N —m +1, N —m +j
instead of m, M, we perform the induction step in order to show the assertion:

a))\N,1 + Zfi;m )\Nfi + Zz;ll Am—

Am—i =
’ (f)/meJrj - 1)
N-m+j—1 N-m+i—1 N-m-+j—1
T o0+ (
I.A. i=N—-m+1

kJI%kNH(%—lo N—m
=N-—-m+ =N-—-m-+i1+

me - w)\N_l—i- E )\N—z’>
Hi:N—trz-‘rl(% —-1) ( i=2

N—m+j—1 N—m+j—1 i—-1  N-m+j-1

o+ 50 (T o) o

i=N—m+ i=N—-m+1 \k=N-m+1 k=i+1 (w/\N—1+ Z )\N_Z)
i=2

N—m-+j
Hi:Njn«ZH(’Yi —1)

N—m+j—1 N—m

(3.32) Hz N—m+1 Vi

= Nem w/\N_l + )\N—i> .
[Tien :»JLH(’VZ 1) ( @2;

Before we proceed, we further investigate the second factor of (3.23). Again, Lemma 3.21
with m + 2, N instead of m, M is of helpful:

322) —-m m—i—] 1’}/
Z AN—j FwWAN_T = Z m+zj mtl C AN—1 + WAN_
z m+2(fyl 1)

N—m m 1 N
Zj:Q (Hz J%H Vi Hm+j+1(%‘ - 1))

Hi:m+2(%’ —1)

AN-1
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Ym+1 Zg =m42 <Hz —m+2 Vi vaﬂ (Vi — 1))
Hﬁ\;m—m(f}/i - 1)
N

w ]I (%‘—1)+7m+1( ﬁ Yi — ﬁ (%'—1)>

(332)  i=mt2 i=m42 i=m+2
_ N
Hi:m—l—Z (7@ - ]‘)

N N

. Hi=m+1 Yi — (7m+1 - w) Hi:erl (% - 1)

= ~ Av_1. (3.24)
Hi:m+2(%’ —1)

Now, we prepared the ground in order to extract an explicit expression for Ay_; from

A1)\ =b; = vy — 1 by applying (3.23). To this end, we consider the left hand side of this
equation, i.e.

AN-1

“AN-1

m -2 m— N—m
AN = Z i+ Z A WANT =N D Amoit D Avoj+wAva
N m+j— 1’7 N—m
-2 WNZ o szj mil 41 (mN_l + 1] AN_j) . (3.25)
= Z N— m+1(7® 1) =2

The first factor of the left hand side is rewritten by means of Lemma 3.21 applied with
N —m+1, N — 1 instead of m, M:

m—1 (FyN—m+j—1 N-1
zNNmJ;f_s_ll Yi TN Zj:l (Hz’:N—:ZH Vi Hi:N—m+j+1(% - 1))
PYNZ DG +1 = N-1 +1
z N— m+1(’7 —1) Hi:N—m+1(%’ —1)
N-1
TN ZJ =N-m+1 (Hz N—m+1 i Hi:jﬂ(”Vi - 1))
- N-1 +1

Hz’:N—mH(% - 1)
(3.32) IN <H£\Svlfm+1 Vi — Hf\i;\flfm%»l(% - 1))
B LN (= 1)
Hf\imeH Vi T Hi]\ime+1(% —1)

= — — . 3.26
Hi]i;\fl—m—i-l (vi—1) ( )

Hence, inserting (3.24) and (3.26) into (3.25) and solving A; A = vy — 1 with respect to
An_1 yields

+1

N— N
(yw—1) Hi:NI—mH(%’ —1) Hi:m+2 (vi—1)
N N N N :
Hi:N—m—H Yi — Hi:N—mﬂ(%‘ —1) Hi:m+1 Y = (Ymy1 — w) Hi:m+1(% —1)

Taking this expression for Ay_; into account shows that the optimal value of Problem
3.17 is given by (3.21).

However, the assertion claims this to be the optimal value of Problem 3.10 as well. In
order to prove this, it is sufficient to show that the optimum of Problem 3.17 satisfies
(3.19), 7 = m,..., N — 2. As a consequence, it solves the optimization problem stated
in Proposition 3.16 which is equivalent to Problem 3.10. As a byproduct, this covers the
necessity of the previously considered condition 7,41 —w < 0 in order to obtain oy, = 1.

AN-1 =
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To this end, we perform a pairwise comparison of (3.20) and (3.19) for j € {m, ..., N—
2} in order to show that the constraints given by (3.19), j = m, ..., N —2, are dispensable.
Since

(Ymt+1 — W)AN—1 = (WN—jtm — IN=j) A jg=m,...,N =2 (3.27)
ensures
N-2 N-2
Z AN — YN—jAj +wAN_1 < Z AN = YN—jtmAj T Vme1AN-1,
n=j n=j

it suffices to establish (3.27) for the obtained optimum in order to show the assertion.
(3.22) characterizes the components A;, j = m,..., N — 2, in the optimum of Problem
3.17 by means of the equation

N—j+m N—j+m—1
( H (’Yz‘—l)>)\j:7m+1< H %>)\N17 j=m,...,N —=2.

Using this representation of A; which (only) depends on Ay_; (3.27) is equivalent to

N—j+m N—j+m—1
(Ymt1 — w) H (vi = 1) = (W —jtm — IN-j) H Vi jg=m,...,N=2.
i=m-+2 i=m-+1

Since the left hand side of this expression is equal to

N—j+m—1 N—j+m—1 N—j+m—2
(Ym41—w) H (vi—D)(co—1)+(ym+1—w) H (vi—1) Z Cn + WEN—jtm—1]
i=m+2 i=m-+2 n=1

(co—1) >0, and (YW—jim — YN—j) = Dot o + WCN—jm—1 — WCN—j—1, applying
Lemma 3.23 with £ = 1 completes the proof.

Remark 3.19

FEven if Property (1.13) is not satisfied, the proof of Theorem 3.18 shows that Formula
(3.21) provides the optimal value of the relaxed Problem 3.17 and, thus, a lower bound
for Problem 3.10. Suppose that Assumption 3.2 is satisfied with a ICLy-function which is
linear in its first argument. Then, the af;,,-value of Theorem 3.18 may still be used as a
lower bound for the suboptimality degree of the receding horizon closed loop.

Theorem 3.18 allows us to easily compute performance bounds which are needed in Theo-
rem 3.12 in order to prove stability provided (-, -) is known. However, even if 3(-, -) is not
known exactly, we can deduce valuable information. The following corollary is obtained
by a careful analysis of the fraction in (3.21).

Corollary 3.20

Let m and w > 1 be given. Then, for each summable KLo-function B(-,-) which is
linear in its first argument, i.e. By(r) = r -y and limy_ . yn < 00, the convergence
limy o0 @R, — 1 holds.
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Proof: Without loss of generality we assume v,,.1 —w > 0. Otherwise Theorem 3.18
yields the assertion for all N > m + 1. Hence, we have to show that the subtrahend of
the difference in formula (3.21) converges to zero as the optimization horizon N tends to
infinity. To this end, the considered term is divided into the factors

(i =) 1 (=) d S
<i:1n]_j[+1% — (Ymy1 —w) i:ﬁw(% - 1)) h (iNlj__V[mH% — iNlj__V[mH(% - 1)) |

(3.28)
Since (3(r,n) is linear in its first and summable with respect to its second argument,
(7v)Nens, is a Cauchy sequence. Hence, an index N = N (¢) exists such that w ) > v ¢, <
€ < 1 and, thus,

Vv —(wW=1Dey_; <7<y —(w—1)cy_1+e<yy+e for all i > N
holds. For N > N + m, this implies

N
vi—1
i:Nl:[m-H( ) < m(yy +¢—1)
i o - omhy—(w—1eya—(w — (w—=1ey +e—1)]
I v II (n-1)
i=N—m-+1 i=N—m+1
_ Inte— 1 <o
1—¢

which ensures the boundedness of the second quotient in (3.28) for sufficiently large op-
timization horizons N. Hence, showing that the first quotient in (3.28) convergences to
zero for N tending to infinity completes the proof. To this end, for N > N, we consider
the respective reciprocal

N N N N
IT % (ma—w) Il (v—1) IT v H i
i=m-+1 i=m+2 o i=m-+1 . i=N+1 1
N - N N
(Yms1—w) T[T (—1) (Ymar—w) IT (v—=1) II (u—1)
i=m+2 i=m+2 i=N+1

) N-N
> 1. —1.
W= (Ww—1eyq+e—1

Since the term in brackets is strictly greater than one, the deduced lower bound grows
unboundedly for N approaching infinity. Hence, the first quotient in (3.28) converges to
zero for N — oo which shows the assertion.

0

In particular, Corollary 3.20 ensures, for sufficiently large optimization horizons N, that
the assumptions of Theorem 3.12 hold and, thus, asymptotic stability of the RHC closed
loop.

Next, the linear finite dimensional system with quadratic cost function from Examples
1.17, 1.10, 2.7, and 3.3 is considered in order to illustrate the methodology introduced
in this chapter. Note that no constraints are present in this example. In particular, the
role played by the involved KLy-functions (-, ) in our controllability Assumption 3.2 is
investigated:
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e Using exponential controllability according to Example 3.3, i.e. a KLy-function
B(r,n) = Co" with C' ~ 49.85805 and o ~ 0.26288 (3.29)

of type (1.11), provides N = 284 for m = 1. Allowing for larger control horizons
reduces this estimate to N = 94 for m = 40, cf. Section 4.2 for details on imple-
menting more than only the first element of the receding horizon control sequence.

e In contrast to that, already the easily deduced finite time controllability, i.e. a KCLq-
function of type (1.12) given by

co = 5.04, ¢ = 12.96, and ¢, = 0 for n > 1 (3.30)

improves the results obtained from Theorem 3.18 significantly, i.e. N =52 (m = 1)
and N = 25 (m = 10), respectively.

These KLy-functions were deduced in order to demonstrate the general verifiability of
Assumption 3.2 based on asymptotic stability in terms of the used norm. Here, we aim at
constructing a KCLy-function which characterizes the stability behavior of the considered
system better and, thus, implies tighter performance bounds. To this end, the known
feedback F' provided by Example 1.10 is employed in order estimate coefficients c,,, n € Ny,
of a KLy-function (-, -) satisfying Assumption 3.2 and Property (1.13):

U(x(n;xo), BFz(n;z0)) = ||(A+ BF)"xo|* + | BF(A+ BF)"x]?
< (I(A+BF)"||* + |BF(A+ BF)"|[*)||oll*
= (I(A+BF)"| +||BF(A+ BF)"||*)t* (x0)-

Hence, Estimate (3.3) holds with CLy-function
Blr,n)=cy-r with ¢, 1= [[(A+ BF)"||> + |BF(A+ BF)"||?, n € Ny, (3.31)

cf. Table 3.1 for numerically computed values. Using this Ly-function in order to apply
Theorem 3.18 yields oy, > 0 for N = 28 (m = 1) and N = 16 (m = 8), respectively.
Hence, the performance estimates are considerably improved in contrast to those based
on the KLy-functions 5(-, ) from (3.29) and (3.30) which shows that the involved bounds
cn, N € Ny, play an important role for the quality of the horizon estimates. Note that
Property (1.13) is not needed in order to deduce suboptimality bounds but ensures that
the proposed formula represents the optimal value of Problem 3.8, cf. Remark 3.19.

In order to verify (1.13), the inequality ¢,¢,, > ¢,1.m has to be ensured for all n, m € Ny.
Since ¢y > 1 holds, this corresponds to checking ¢,_jc; > ¢,, j = 1,2,...,n — 1, for
each n € Ny. Now, we benefit from computing the horizon estimates first: since solely
coefficients ¢,, n < N, are required in Problem 3.8, Property (1.13) has only to be verified
for n < 28 — a condition which is satisfied. We point out that the derived function (-, -)
is not monotonically decreasing and, thus, does not belong to class KL, cf. Table 3.1.

We emphasize that optimality of the control sequence u,,(-) is not assumed — a key
feature of our approach which simplifies the verification of Assumption 3.2 significantly.
This allowed us to employ knowledge on the solution of the algebraic Riccati equation in
order to deduce (3.31) and, thus, to tighten the horizon estimates, cf. Section 5.5.1. In
Section 5.5.1 this example is considered again and the results are compared with other
approaches which can be also used in order to estimate the required horizon length in
RHC.
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| N | B(-,-) from (3.29) | B(-,-) from (3.30) | B(-,-) from (3.31) |
0 49.85804850 5.04 3.037786080
1 13.10674606 12.96 2.186783379
2 3.445517772 0.00 2.790245748
3 0.905762015 0.00 0.392116897
4 0.238107850 0.00 0.015203185
) 0.062594089 0.00 0.031327420
6 0.016454812 0.00 0.013169022
7 0.004325662 0.00 0.001422866
8 0.001137135 0.00 0.000105178
9 0.000298932 0.00 0.000179462
10 0.000078584 0.00 0.000059880

Table 3.1: Coefficients of several KLy-functions (-, -) satisfying Assumption 3.2 for Ex-
ample 1.17.

3.3.1 Auxiliary Results

In this subsection three lemmata are deduced which are used in order to prove Theorem
3.18. The technical Lemma 3.21 is applied several times in the proof of Theorem 3.18
as well as needed as a preliminary result in order to prove the Lemma 3.22. Lemma
3.22 characterizes the optimal solution of Problem 3.17 which is crucial in order to show
Formula (3.21). In conclusion, we present Lemma 3.23 which is based on (1.13).

Lemma 3.21
Let m,M € 7Z with M > m — 1 and constants v; € R, i = m,m + 1,..., M be given.
Furthermore, the conventions H:'an =1 and Z:an = 0 are used. Then, the following

formula holds: |
H%‘ZH(%—I)%-Z(H Vk H ('Yk_l)). (3.32)

Proof: We carry out an induction over M in order to prove (3.32). Since we have agreed
on the conventions with respect to the empty product and empty sum, the assertion holds
for M = m — 1. Hence, we proceed with the induction step:

ﬁl(vi—l) = (7M+1—1)li_/[[(%-—1)
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The following lemma mainly argues with the signs of the respective coefficients of the
matrix A and the vector b. The condition 7,,,1 — w is only used in order to ensure that

e by >0,d; <0forie{1,2,...,N—2} and that
e the optimization objective consists of maximizing Ay_1.

Furthermore, we point out that we take the assumptions discussed in Remark 3.15 with
respect to the sequence (¢, )nen, into account in order to conclude the following lemma.
Note that these are based on the linearity of 3(-,-) € KLy in its first argument.

Lemma 3.22
Let Vi1 = Z;n;ol Cn + wey, be strictly greater than w. Then the optimal solution A of
Problem 3.17 satisfies AN =0, X > 0 componentwise.

Proof: 7,11 > w implies that the coefficient of Ay_; in the objective function is
negative. As a consequence, maximizing Ay_; subject to given constraints provides
the optimum of Problem 3.17, which is denoted by A* = (A},...,A\y_;). In order to
prove the assertion, we assume the existence of an index k € {1,..., N — 1} such that
A\ = 22:11 A N5 < by and deduce a contradiction.

We begin with the case k = 1 and define ¢ == yy — 1 — SN 2@\ — wAy, >
0, i.e. ¢ corresponds to the slack in the first inequality, 0 := —max;—,  n_2d;, and
B = max;—;__n-_20;. Note that 7,41 > w ensures 6 > 0 in view of Remark 3.15 for
B(-,+) € KLy which is linear in its first argument. Now, we choose £ > 0 such that

(')"le

1 5 N—-2—1
Elw+p Z alL <e.
Then, we increase Ay_; by € and \;, i = 1,..., N — 2, by £8(1 + §)V27¢/§N"17¢ The
choice of £ ensures the validity of the first inequality. Since inequality j € {2,..., N —1}
holds for A\* the following computation shows that it is still satisfied for the modified

Ai, ©=1,..., N —1. Here, we use Lemma 3.21 withm =0, M = N—-2—jand v, =1+
forie {mm+1,... ., M}:

N—-2

(1+5N1] 1+5N21 ~
dj1E0——N— SN—J Z T gN-1 +E0j—1
1=j
L+ S
< [5ﬂ ON—J Z 5N12 +6
éﬁ N2]

s |~ D ()T 5N—1—j] (332
=0

However, this contradicts the assumed optimality of A*. Thus, the first inequality holds
with equality and £ > 1 which implies A\;_; > 0. This allows us to reduce A\;_; without
violating the non-negativity condition imposed on this variable. As a consequence, the
first inequality is not active any more while all other inequalities remain valid. Hence,
repeating the above argumentation w.r.t. k = 1 leads, again, to a contradiction and, thus,
proves AN = b.
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It remains to show that A\ > 0 for all i« € {1,2,...,N — 1}. Suppose A\; = 0 for
k € {1,...,N — 2}. Then, the (k + 1)-st inequality implies \f = 0 for i € {k,k +
1,...,N — 1}. Since the k-th inequality is satisfied with equality, we obtain A\;_; = 0.
Iterative application of this argument shows A* = 0. However, since 7,41 > w and
Remark 3.15 ensure b; = vy — 1 > 0, this contradicts A4 \* = by. Hence, A* > 0 holds
componentwise which completes the proof.

O

The following lemma is only needed for k = 1. However, we state the result for all £ € Ny
since this simplifies the induction step significantly. This trick is the main reason for
presenting this technical assertion in a separate lemma.

Lemma 3.23
Let N € Nyg, me {1,...,N =2}, and w > 1 be given. Furthermore, let 7;, i € N>g, be
defined as Z;_:QO Cn +wci_1, cp. Proposition 3.16. In addition, let the coefficients c,, n €

Ny, satisfy (1.13) and use the convention HmH =1. Then, forj =N —-2,N —3,...,m,

m—+2
N—j+m—1 N—j+m+k—-3
(7m+1 - w) H (%‘ - 1) E Cn + WCN—jtmtk—2
i=m+2 n=~k

N—j+m—1 N—j+m+k—3
— H Vi [ Z Cn + WCN_jymik—2 — ch-j+k;—2] > 0 VkeN.

i=m+1 n=N—j+k—2

Proof: We carry out an induction with respect to j. The induction start, j = N — 2,
follows for arbitrary k£ € N from

n=~k

m+k—1 m+k—1
(Vg1 — w) [ Z Cp + WCm+k] — Ym+1 [ Z Cp + WCmtk — wck]
n==k
m+k—1 m—1 (1.13)
= WCeLYmal — W Z Cn+ Wepar| =w (cren — Cnak) +w(CkCm — Cmak)| > 0.

n=~k

n=0

In order to perform the induction step from j+1 ~» j we rewrite the considered inequality
for arbitrary but fixed k € N:

N—j+m—2 N—j+m+k—-3
(Ym+1 — w) H (vi = 1) |exYN—jtm—1 — E Cn — WCN—jtm+k—2
i=m-+2 n=k
N—j+m—2 N—j+m+k—3 ]
+ YN—jrm—1| (Ym+1 — w) H (vi — 1) E Cp + WCN_jpmik—2
1=m-+2 n=k+1 J

N—j+m—2 N—j+m+k—3 T
— H Vi E Cn + WCN—jtmtk—2 — WCN—j+k—2 > 0.
i=m+1 n=N—j+k—2 i

The positivity of this expression, which consists of two summands, follows from (1.13)
and the induction assumption for 7 + 1 and k£ + 1.

0
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3.4. INSTANTANEOUS CONTROL OF THE LINEAR WAVE EQUATION

3.4 Instantaneous Control of the Linear Wave Equa-
tion

In the previous section an analytical formula was deduced which provides the optimal value
of Problem 3.8. The key assumption needed in order to apply the respective Theorem
3.18 is the controllability condition introduced in Section 3.1. In this section, Assumption
3.2 is deduced for the linear wave equation which allows to conclude asymptotic stability
of the receding horizon closed loop.

The one dimensional linear wave equation with Dirichlet boundary condition and Neu-
mann boundary control is considered, see (2.9) - (2.11). In Example 2.8 we tackled the
task of stabilizing this hyperbolic partial differential equation at its unique equilibrium,
i.e. the origin, by receding horizon control incorporating a terminal equality constraint.
However, the finite propagation speed implied the need for an extremely long optimiza-
tion horizon in order to satisfy the stabilizing terminal constraint and, thus, to ensure
feasibility as well as stability in a sampled-data setting with sampling period T' < 2L/c,
cf. Section 2.2. We emphasize that preserving stability properties of a continuous time
system typically requires sufficiently fast sampling, cf. [91]. For further results related to
terminal constraints or terminal costs for infinite dimensional systems, we refer to [64].

Here, in contrast to Section 2.2, unconstrained RHC is used. Rationale for this ap-
proach are provided by numerical results: the linear wave equation is not only stabilizable
but also performs well using RHC with the shortest feasible optimization horizon N = 2,
also termed instantaneous control, cf. [62].! Our contribution to this problem is the com-
plete theoretical analysis. In particular, we employ Theorem 3.18 in order to prove the
observed stability rigorously for suitably chosen stage costs. Exploiting the derived for-
mula allows us to establish this even for the combination of small sampling periods and
RHC applied with the shortest feasible optimization horizon.

3.4.1 Constructing Suitable Stage Costs

In Example 2.8 the mathematical problem formulation and the corresponding solution
space were already introduced. In addition, this continuous time system was rewritten as
a discrete time one and the rough shape of appropriate stage costs was defined, cf. (2.13).
Note that the function (-, -) was not exactly specified, which opens up a certain degree
of freedom in order to design the stage costs suitably. Our goal is to steer the system to
the origin, which is the unique equilibrium. To this end, we consider the cost functional

In(y(-,0),u(-)) = 2%/0 0(Yz(x,nT), ye(x,nT)) dx + )\/0 u(t)? dt

which equals its continuous time counterpart (2.12). Since our methodology depends on
(3.1), i.e. the relaxed Lyapunov inequality, suitable stage costs, which allow for estab-
lishing this estimate, have to be constructed. To this end, (2.9) - (2.11) is numerically
investigated with parameters L = ¢ = 1, A\ = 1072, and sampling time T = 0.025. Let

n literature, the term “instantaneous control” is also used in a different manner. In [59,60] instanta-
neous control means that the optimization routine — which is employed in order to compute a sequence
of control values u(-) = (u(n))nefo,1,2,..., N1} satisfying Jn(zo,u(-)) = Vi (x0) — is stopped prematurely
in order to reduce the computational effort.
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the initial data be specified by

+2z — 0.5 for x € (0.25,0.5]
Yo(z) = ¢ —2x+ 1.5 for x € (0.5,0.75]
0 otherwise

and y1(xz) = 0. In order to solve the finite horizon optimal control problems, the spa-
tial domain is discretized with discretization parameter Ax = 0.001. Furthermore, the
canonical weight functions w; = wy = 1 are chosen, i.e. o(-,-) is set to o(y.(+,t), ye(-, 1)) =
Yo (-, 1)% + (y¢(-, 1) /c)?, which corresponds to measuring the energy of the system at each
multiple of the given time parameter 7T'.

Our numerical computations indicate that receding horizon control stabilizes these
initial data with this energy based stage costs. Since we aim at employing a relaxed
Lyapunov inequality, the respective optimal value function Vi (-) is depicted, cf. the
dashed line in Figure 3.1. Here, Vi (+) has plateaus, i.e. areas on which it exhibits constant
values. Hence, the cost functional which is based solely on the energy of the system does
not provide a strict decrease for the chosen initial data. As a consequence, Vi (-) does not
satisfy (3.1), i.e. our key requisite, along the corresponding trajectory. Hence, although
the system is asymptotically stable, Vy(-) can not be employed as a Lyapunov function
in order to conclude this.

In the observed problem the finite propagation speed of the waves comes into effect.
Since the energy of the chosen initial data is located in the middle of our domain 2 it can
not be reduced by means of our boundary control during the first few sampling intervals
and, in particular, up to time 7. This explains why it is impossible to maintain a strict
decrease on this time interval. As a remedy, we redesign the stage costs based on the
prototype

Q(y33<'7t)7 yt('vt)) = wl(')(yx('7t) + (yt<'7t)/c>>2 + w2(')(yac("t) - (yt('v t)/C))27

i.e. we split up the energy into two parts. The one weighted by w;(+) represents the waves
traveling to the left boundary, whereas the other takes the movement towards the right
boundary, at which our control is located, into account, see also Remark 2.9. Using the
weight functions

wi(r) =1+L+x and  wo(x):=1+L—=x (3.33)

allows us to employ our cost functional for the desired purpose, i.e. for deducing asymp-
totic stability. The functions w; : [0, L] — Ry, i = 1,2, weigh the distance to the right
boundary taking the direction of movement into consideration, i.e. they measure the time
which has to pass until the respective portion of energy can be influenced. Figure 3.1 which
depicts the optimal value function V5(-) along the closed loop trajectories for w; = wy = 1,
i.e. the classical energy norm (dashed line), in comparison to its counterpart based on the
weight functions defined above (solid line) puts it in a nutshell. Clearly, each of these two
curves is monotonically decreasing, yet only the one corresponding to (3.33) is strictly
decreasing.

3.4.2 Verifying Assumption 3.2 and Closed Loop Stability

The goal of this subsection is to deduce stability of the closed loop resulting from instanta-
neous control, i.e. receding horizon control with optimization horizon N = 2. To this end,
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v,

Figure 3.1: Comparison of the optimal value function Va(-) for stage costs ¢(-,-) based
on different weight functions. The dashed curve corresponds to the energy norm, i.e.
w1 = wy = 1. Whereas the continuous curve is constructed according to (3.33) and, thus,
assesses the distance to the right boundary at which our control comes into effect.

the proposed controllability condition from Assumption 3.2 based on a KLy-function of
type (1.11) is verified. In particular, an appropriate overshoot bound C' and a decay rate
o is determined in the following proposition such that Theorem 3.18 ensures the relaxed
Lyapunov inequality and, thus, the key assumption of our stability theorem. This allows
us to conclude stability of the resulting receding horizon closed loop, i.e. guaranteeing
that the RHC feedback steers the system asymptotically to its equilibrium.

Proposition 3.24

Consider the linear wave equation given by (2.9) - (2.11) with sampling period T' < L/c.
Let the stage costs L(-,-) be defined according to (2.13) using the weight functions from
(3.33). Then, the control function u*(-) from (2.14) ensures exponential controllability, i.e.
Assumption 3.2 based on a KCLy-function of type (1.11) with overshoot bound C' = (1+\/c)
and decay rate 0 =1 — ¢T'/(1 + 2L).

Proof: Before we start by the main part, the solution corresponding to the particular
control function w*(-) from (2.14) is characterized in a preliminary step. To be more
precise, we claim that the respective solution is given by (2.15) and, thus, coincides
with the uncontrolled one of the linear wave equation on the semi-infinite interval [0, c0).
Hence, employing u*(-) avoids reflections on the right boundary at which the Neumann
boundary control takes effect. This noticeably simplifies the calculations involved in the
rest of the proof.

In order to prove this identity, we have to show that (2.15) satisfies both the initial and
the boundary conditions. The former follows directly by an easy computation whereas
the latter is ensured by

y1(L — ct)
c

_ y(L —ct,0)
c

} _1 [ML —et,0) = u(0)

1
be(Lt) = 5 [uh(L = et) - ;

for L > ct. Replacing L —ct by ct — L yields the assertion for ¢t > L. Iterative application
of this argument shows the assertion on [0,¢7T") for all i € N.

99



STABILITY AND SUBOPTIMALITY OF RHC SCHEMES

We continue with estimating the overshoot constant C' from (3.3) for the stage costs
based on the specified weight functions. To this end, we show that the control effort
caused by u*(-) is bounded by a certain portion of the costs induced by the current state.
Using w;(z) > 1,4 = 1,2, for all € [0, L] yields

T B ) . )
é/ {yz(L —ct,nT) — yt(L—ct,nT)} dt = A [yz(% nT) — y(z,nT) e
0 —

4 c dc Ji_or c

< Ae- O (y(nT))
and, thus, provides
((y(n),u(n)) < (1+ A/c) (y(nT)) = CC(y(nT)).

Hence, it remains to establish ¢*(y(i + 1)) < o £*(y(¢)) which is, in turn, equivalent
to (*(y(i)) — *(y(i + 1)) > (1 — 0)f*(y(7)). The decisive tools in order to verify this
inequality are the particular control u*(n) from (2.14) and the resulting evolution of the
state according to the proven formula. In order to make the ensuing computations easier
to follow, the derivatives of y(z,t) from (2.15) are stated, i.e.

Yoz, t) = 5oz +ct) +yp(x —et)] + 5 [y (z + ct) —ya(x — ct)] for x> ct
o 5 wolct + ) + yolet — o)) + 3 [ya(ct + ) + yi(ct — )] forz <t
yi(z,t) = slole +ct) —yo(z —ct)] + 5 [(z + ct) +yu(x —ct)] for x> ct ‘
’ Slypct + ) — yh(ct — )] + 5 [t +2) —yi(ct — )] for z < ct

Since o(+, ) is composed of two summands, the respective parts are treated separately.
Splitting up the integral from (2.13) and using the calculated derivatives of (2.15) on their
respective domains yields

/ Cin(a) el T) ¢ M]d

C

— /chul(x) [y(’)(cTer)Jerder/chl(x) {yg(erCT)jLM 2d$

c T c

- / el = ) (@) + @)/ da

for the term in £*(-) containing w; (-). Note that we employed yj(z) = y1(z) = 0 for z > L
in order to deduce the last equality. Repeating the line of arguments for the other part
and taking ws(cT — x) = wy(z — ¢T') into account, provides

| @) il — i )/ o
= /chg(x) [ (cT — 2)+y1 (T — x) /] da + /T wy(a) [yh(x — ¢T) —yy(x — ¢T) /) da

- / " (e — o) () + v () d + / " a4 D) () — 1 () d.

Combining these equalities leads to

#y(1)) = / e (. T), (2, T)) de
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L—cT

= /0 wi (2 —T) [?/6(56)+y1(x)/0]2dw+/0 wa( +T) [yo(@) = yi(z) /] da.

Subtracting this expression from ¢*(y(0)) and taking wy (z—cT) = wy(x) =T, wa(x+cT) =
wa(x) — T, the non-negativity of wy(-) on [L — T, L) as well as the boundedness of w;(-),
i € {1,2}, on Q into account, allows for deducing the estimate

(y(0)).

Rearranging this inequality, taking account of o = 1—¢T'/(142L), and iteratively applying
the resulting estimate, completes the proof.

(y(0) — (y(1) = T / h(0) + a2/ + [yp(a) — yla) /e e =

O

Remark 3.25
The decrease reflected by the decay rate o depends only on the chosen weight functions.
In addition, an energy loss occurs with amount

| walat Dlila) = mla)/ef da

—cT

which represents the energy which is removed by means of the boundary control.

In order to prove Proposition 3.24, the fact that the control sequence in (3.3) does not
have to be optimal is extensively used — a key feature of our approach which allowed
us to employ a particular control function in order to simplify the involved computations
significantly.

Indeed, Proposition 3.24 ensures exponential controllability in terms of the running
costs and, thus, paves the way in order to apply our main stability theorem and, thus, to
conclude asymptotic stability of the RHC closed loop with optimization horizon N = 2.

Theorem 3.26
Let the assumptions of Proposition 3.2/ be satisfied. Furthermore, let the sampling period
T satisfy
(24+4L) A
> —.
c(c+ )
Then, the receding horizon closed loop with prediction horizon N = 2, i.e. instantaneous
control, is asymptotically stable.

(3.34)

Proof: Exponential controllability in terms of the stage costs can be ensured by Propo-
sition 3.24, i.e. Assumption 3.2 based on a KLy-function of type (1.11) with overshoot
C = (1+ A/c) and decay rate 0 = 1 — ¢T'/(1 + 2L). Since we consider instantaneous
control, i.e. N =2, Formula (3.21) simplifies to

a=my; =1—(C(1+0)—1)%

In order to deduce the desired relaxed Lyapunov inequality from Theorem 3.18, we require
a > 0 which is, in turn, equivalent to 2 > C(1+0). Hence, inserting C' and o and solving
the resulting inequality for T leads exactly to Condition (3.34) in order to establish a > 0.

It remains to show (1.4) and, thus, Assumption 1.7. Then, Theorem 3.12 can be
employed in order to conclude the assertion. To this end, we define the metric d(yy, y2) =
0*(y1 — y2) which is well defined in view of (2.10), i.e. the Dirichlet boundary condition,
cf. [119, Section 2.3]. Hence, choosing the KCo-functions ay(r) = as(r) = r ensures (1.4)
and, as a consequence, completes the proof.
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O

Using the parameters L = ¢ = 1, Estimate 3.34 yields the condition 7" > 6A/(1 + \).
Hence, the sampling interval has to be sufficiently large in order to allow for compen-
sating the control effort which is reflected by the overshoot bound C. Taking the weight
A = 1073 into account, which penalizes the control effort, leads to " > 6/1001 = 0.005994.
Consequently, stability of the receding horizon closed loop is ensured for 7" = 0.006, which
shows that the needed optimization horizon of length 27" = 0.012 is very short in com-

parison to 2L/c = 2, i.e. the optimization horizon required for finite time controllability,
cf. [52].

3.4.3 Numerical Results

The example of the linear wave equation from Subsection 3.4.1 is considered again. We
observed that using stage costs based on the “classical” energy does not allow to employ
V5(+) as a Lyapunov function which satisfies a relaxed Lyapunov inequality of type (3.1)
with @ > 0. In contrast to that, employing the weight functions defined in (3.33) resolves
this problem and, thus, enables us to conclude asymptotic stability of the RHC closed
loop. However, the deduced decay rate o seems to be pessimistic at first glance because it
only reflects the weight functions but not the additional energy loss according to Remark
3.25. In this subsection we show that the estimate for the decay rate o, which was deduced
in the previous subsection, is tight.

To this end, the corresponding values for the given initial data are computed. In order
to visualize our theoretically calculated estimate, a horizontal line is drawn at 1 — 7'/3
on the left hand side of Figure 3.2. The values calculated for the classical energy are
arbitrarily close to one and exceed our estimated bound. Contrary to this, the values
corresponding to the stage costs which incorporate (3.33) are smaller than but arbitrarily
close to 1 —T'/3, which confirms our theoretical results. Hence, a further improvement of
the deduced estimate is not possible.
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Figure 3.2: The corresponding values for the decay rate ¢ with respect to the classical
(o) and the weighted energy (3.33, x) are depicted. Furthermore, a horizontal line is
drawn at 1 — 7'/3 in order to indicate our theoretically deduced bound. On the right,
the solution trajectory for the instantaneous controlled wave equation, i.e. RHC with the
shortest feasible optimization horizon (N = 2), is visualized for the initial data given in
Subsection 3.4.1.
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The solution trajectory of the instantaneous controlled wave equation is depicted in
Figure 3.2 on the right. Indeed, it even coincides with the solution trajectory correspond-
ing to an optimization horizon of length 2L/c¢ = 2, which is needed in order to show
finite time controllability. Hence, model predictive control with N = 2 performs very well
for the stabilization task in consideration. The overall computing time for solving the
instantaneous control problem on the time interval [0, 2] is less than one second — even
for a fine spatial discretization, cf. [3].

The analysis of this subsection shows that instantaneous controllability of the one
dimensional linear wave equation given by (2.9) - (2.11) can be rigorously proven by The-
orem 3.18. Numerical results indicate that RHC also works well for the two dimensional
wave equation. Hence, one of our future goals may be to deduce appropriate estimates
for this setting as well. Furthermore, we like to point out that RHC based on the “classi-
cal” energy also performs well. Hence, a generalization of the proposed technique, which
allows for dealing with sampling intervals which may neither improve nor deteriorate the
reference quantity Viy(-), is desirable.

Summarizing, Assumption 3.2 is not merely an abstract condition. Rather, in con-
nection with Formula (3.21) it can be used for analyzing differences in the receding
horizon closed loop performance for different stage costs (-, ) and, thus, for develop-
ing design guidelines for selecting good running costs (-, -). This was also carried out, for
instance, for a semi-linear parabolic PDE with distributed and boundary control in [5, 6]
(see also [39] for a preliminary study).

63






Chapter 4
Sensitivity Analysis

We focus on discrete time systems which satisfy Assumption 3.2 with a KLy-function
linear in its first argument. For this class, the nonlinear optimization Problem 3.8 (or its
counterpart Problem 3.10 which includes an additional weight on the final term in the
respective cost functional) becomes a linear program, cf. Lemma 3.14. Based on this
observation, we deduced an explicit formula characterizing the corresponding optimal
value oy, which depends on the optimization horizon N € Ns,, the control horizon
m € {1,2,..., N — 1}, and the terminal weight w > 1, c¢f. Theorem 3.18. The receding
horizon algorithm yields, in each iteration, a sequence of N control values. The control
horizon determines the number of elements of this sequence to be implemented at the
plant before the RHC problem is solved again. In this chapter, a sensitivity analysis is
carried out with respect to these parameters:

e In Section 3.3 we showed that a positive af;,, is obtained for sufficiently long opti-
mization horizon N which allows — under mild technical conditions, cf. Theorem
3.12 — to conclude asymptotic stability of the receding horizon closed loop. In
Section 4.1 the impact of the optimization horizon N is further investigated. In
particular, we aim at deducing asymptotic bounds on the required horizon length
N in dependence of a given KLy-function (-, -). In this context the term minimal
stabilizing horizon is introduced which denotes the smallest horizon N such that
Theorem 3.18 guarantees a positive performance index ag,,. In addition, results
concerning the different influence of the overshoot and the decay rate for exponen-
tially controllable systems are given.

e In the subsequent Section 4.2 the influence of the control horizon m is considered.
In particular, Formula (3.21) is exploited in order to establish symmetry and mono-
tonicity properties which show that asymptotic stability of the receding horizon
closed loop with time varying control horizons holds under the same conditions as
for classical RHC. This result is not only essential in order to deal with networked
control systems but also forms the core of the algorithms in the ensuing section.

In Section 4.4 two algorithms are designed — based on the sensitivity analysis carried out
in the preceding sections. The first algorithm allows to significantly reduce the required
optimization horizon length N in order to ensure a desired closed loop performance by
employing control horizons m > 1. The second, further developed algorithm deals with
the loss of robustness resulting from staying in open loop for longer periods of time while
maintaining the stability guarantees of its predecessor.
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4.1 Influence of the Optimization Horizon

Corollary 3.20 ensures, for sufficiently large optimization horizon N, asymptotic stability
— a result which was already shown in [32] under similar conditions (see also [65] for
an analogous result in continuous time). Additionally, Corollary 3.20 generalizes this
assertion to arbitrary, but fixed control horizons m. Using the same argumentation as in
the proof of Theorem 3.12 allows to conclude asymptotic stability for time varying control
horizons (m;)ien, € M C {1,2,...,m*} for an arbitrary, but fixed number m* € N.
Combining the inequality aj,, V™™ (-) < Vy(-) from Theorem 3.7 and the inequality
Vn(+) < Vo(+), which is ensured by the monotonicity of Vy(-) for w = 1, implies that the
infinite horizon cost Vas"™(-) converges to the optimal value Va,(-).

In this section, suppose that a control horizon m € N and a terminal weight w > 1
are given. A detailed sensitivity analysis is carried out in order to investigate the impact
of the optimization horizon N. We are, in particular, interested in so called stabilizing
horizons, i.e. optimization horizons N guaranteeing a3, > 0, and, thus, stability. In this
context, two questions are tackled:

(1) Let an optimization horizon N be given. Which class KLy-functions f3(-,-) can be
employed in Assumption 3.2 in order to conclude af;,, > 0 via Theorem 3.187

Here, f(-,-) is assumed to be of type (1.11), i.e. B(r,n) = Co™r. Furthermore, we
want to elaborate design guidelines. To this end, the interplay of the overshoot C'
and the decay rate o is taken into account.

(2) Let Assumption 3.2 be satisfied with a K Ly-function linear in its first argument and
7 be defined as the accumulated bound > 77 B(r,n)/r = > 7 ¢, from the con-
trollability condition (3.3). How does the minimal optimization horizon N ensuring
stability via Theorem 3.18 depend on this quantity ~?

Here, our main emphasis is put on the asymptotic growth of the minimal stabilizing
horizon with respect to 7. We point out that Formula (3.21) enables us to prove
numerical observations from [39] rigorously.

In order to answer the first question, all parameter combinations (C, o) implying a non-
negative suboptimality index af,, and, thus, stability for a given optimization horizon
N are calculated , cf. Figure 4.1.1

As expected, the stability region grows with increasing optimization horizon N. The-
orem 3.18 allows us to quantify the observed enlargement, e.g. doubling N = 2 increases
the considered area by 129.4 percent. Furthermore, we observe that for a given decay rate
o there always exists an overshoot C' such that stability is guaranteed. Indeed, Theorem
3.18 enables us to prove this. To this end, we deal with the special case C' = 1 which
yields a significantly simpler expression for o ..

Proposition 4.1

Assume exponential controllability without overshoot, i.e. Assumption 3.2 with a KLg-
function of type (1.11) with C' = 1. Then, the optimal value of;,, of Problem 8.10 is
equal to min{1, 1 — (1 + ow — w)o™ "'} and strictly positive, i.e. o, > 0.

!The idea of visualizing the parameter dependent stability regions in this way goes back to [121].
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N=16 . <0

Figure 4.1: Illustration of the stability region guaranteed by Theorem 3.18 for various
optimization horizons N given a CL-function (-, -) of type (1.11) for RHC with m = 1.

Proof: Defining the auxiliary quantity 7 := 1 4+ ow — w, we obtain

_o(l—na"?) n(l—ao™)

1_7701'—1
= 'm — W =
1—0o ) Ym+1 1—o

Vi ; vi — 1

l1—-0
Hence, the necessary and sufficient condition (7,11 — w) < 0 from Theorem 3.18 holds if
and only if the condition 1 < 0 is satisfied — an equivalence which is reflected by taking
the minimum. It remains to consider > 0 which ensures that a%,, is given by (3.21).
As a preparatory result, each of the two factors occurring in the respective denominator
is investigated separately, i.e.

il al A Y al o(l—no=?)
[ - I e-n = I - 1 e
, A , 1—0 , 1—0
i=N—-m+1 i=N—m+1 1=N—m+1 1=N—m+1
B 1_770.N—1_(1_T]0.N—m—1)0.m ﬂ 1_770.1'—2
N 1—0 , 1—0
i=N—m+2
I o ﬂ 1—not2
 1l-0 1—0
i=N—m-+2
and, repeating the same line of arguments,
N N N »
1— 770.me71 1— ,'70.172
H ’Vi_(?/m-l—l_w)‘n (%—1)2?"1_[ 1_5
i=m+1 1=m+1 i=m+2
Inserting these expressions into Formula (3.21) yields
1—o™ N o(1-noi=2 N o(l1—noi=2
w . n(1,U ) Hi:m+2 % Hz’:N—m+1 %
aN7m — 1 -

1—noN-m-1 HN 1-noi—2 1—g™ | HN 1—noi—2
1-0o i=m+2 1-0o 1-o i=N-m+2 1-0o
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n(1-0™) _N-m—17TN 1-noi=2 _m7TN 1-not—2
_ o 1=, 0 Hi:m—i—Z 1—0 o Hi:N—m—H l-c 1 — UN_l
- 1—g™ | HN 1—noi—2 HN 1—noi—2 - n :
l1—0o i=m+2 1l-o i=N-m+1 1—0¢
O
Remark 4.2

Note that the optimal value o ,, i.e. the solution of Problem 3.10, does not depend on
the control horizon m for C' = 1. Consequently, the control horizon m does not play a
role for this special case.

Proposition 4.1 states that we always obtain a strictly positive value a5, for C'= 1.
Due to continuity of the involved expressions this remains true for C' = 1+« for sufficiently
small €. Hence, for any decay rate o € (0,1) and sufficiently small C = C(o) > 1
(depending on N, m and w) af,, > 0 is obtained. Recall that a positive performance
index o, is the key ingredient in Theorem 3.12 in order to deduce asymptotic stability.
However, this property does not hold if we exchange the roles of ¢ and C, i.e. for a given
overshoot C' > 1 stability cannot in general be concluded for a sufficiently small decay
rate o > 0, cf. Figure 4.1.

Next, the interplay of the optimization horizon N and v = >~ ¢, is studied in order
to adress question number (2). We aim at determining the asymptotic growth rate of
the minimal optimization horizon N guaranteeing stability for a given parameter v. To
this end, we assume finite time controllability in one step, i.e. Assumption 3.2 using a
K Ly-function of type (1.12) defined by ¢y = v and ¢, = 0 for all n € N>;. For given
v, this represents, as will be seen in the proof of Theorem 4.4, the worst case over all
K Ly-functions (-, -) which are linear in their first arguments — at least for the setting
without an additional terminal weight, i.e. w = 1. This fact will be of particular use in
order to prove Theorem 4.4. Note that for this problem the additional condition (1.13)
is automatically satisfied (since (3.3) ensures ¢q > 1). Hence, Theorem 3.18 characterizes
the optimal value of Problem 3.10 exactly.

We focus on m = 1, i.e. the smallest possible control horizon, and m = | N/2|, i.e. the
control horizon implying — at least in the exponentially controllable and the finite time
controllable in a maximum of two steps case the largest af;,, value, cf. Section 4.2 below.

Corollary 4.3

Let w > 1 be given and Assumption 3.2 hold with 3(r,n) =r - ¢y, co =~ and ¢; = 0 for
i € N, i.e. finite time controllability in one step. Furthermore, let the minimal stabilizing
horizon be defined as

N(v) := min{N € Ns, : AN = 0 for oy, given by (3.21) based on 3(r,n)},

i.e. the smallest optimization horizon N guaranteeing that the solution oy, of the linear
program given by Problem 3.10 is positive. Then, N(y) behaves,

o form =1, asymptotically like vIn-y, i.e. lim, o % =1, and

o for m = |N/2|, asymptotically like 2In2 -, i.e. lim, % =
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Proof: Since Corollary 4.3 deals with the asymptotic behavior with respect to -, let
be strictly greater than w > 1. Furthermore, note that, for finite time controllability in
one step, v; = 7 holds for all 7 € N>, independently of the chosen terminal weight. Hence,
Formula (3.21) yields

o =1 (Y —w)(y =DV
Nm — —m —m— m m)’
’ (V= (v —w)(y = DY) (v = (v = D)™
For m = 1, we require a positive optimal value of Problem 3.10 in order to ensure stability.

i.e.
o 1. =W =D" AT (e =D
N1 = - = - 5 =
’ W=y —wy =DV AN —(y—w)(y - DN
This inequality holds if and only if the nominator is positive. Since the logarithm is

monotonically increasing, this is, after dividing by ~, equivalent to

(4.1)

In(y — w)
N >2 =: .
= Iny —In(y—1) o)
We show that f(7) tends to v In~ asymptotically. To this end, we consider
In(y — > ~1
y—oo yIny J—ooy 11171 y—oo  In7y oo Iny—In(y—1) -0  ~2
=0 =1

where we have used 'Hopital’s rule, cf. [124, Subsection 5.4.4]. Clearly, rounding up the
derived expression for the optimization horizon N does not change the obtained result.
For m > 1, (4.1) and, thus, Theorem 3.18 yields af,, > 0 if and only if

AN ATy = 1) 4 (v —w)(y = DY

Hence, for m = |N/2| we obtain analogously the following lower bounds for the opti-
mization horizon N:

. 21n (%) /(Iny —1In(y — 1)) for even N
B <1n (27;“)> +1In (?1")) /(Iny —In(y—1)) for odd N

Again in consideration of L’Hopital’s rule, the investigated expression exhibits asymptot-
ically a behavior like 2In2 - . Since the obtained approximation 21n2 -~ holds for both
estimates corresponding to even and odd numbers N for m = | N/2], the assertion holds.

O

Figure 4.2 illustrates the resulting horizon lengths for given +. We like to point out that
these estimates coincide with the numerical results derived in [39, Section 6].?

Corollary 4.3 deals with the asymptotic growth rate of the minimal stabilizing hori-
zon N for arbitrary, but fixed terminal weight w > 1. We point out that, for finite
time controllability in one step, 7;, ¢ € N>, is independent of w. Hence, the sequence
(7i)iens, is also for w > 1 non-decreasing — a property which is important for the proof
of the following theorem but cannot be assumed for arbitrary KLo-functions satisfying
Yoo oCn = and (1.13). Theorem 4.4 shows that the estimates from Corollary 4.3 carry
over to arbitrary KLy-functions for w = 1. The assertion for m = 1 was also deduced
in [120] based on similar assumptions.

2Indeed, we determined precisely the constant 21n2 for the linear growth estimate in contrast to the
numerically observed factor V2.
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Figure 4.2: Minimal stabilizing optimization horizons for one step finite time controlla-
bility for m = 1 and m = | N/2] in comparison with their asymptotic approximations.

Theorem 4.4

Let Assumption 3.2 be satisfied with a IKCLo-function linear in its first argument, w = 1,
and define v = Y cn. Then, the asymptotic growth rate of the minimal stabilizing
horizon N is bounded by yIn~y and 2In2 -~ for m =1 and m = | N/2], respectively.

Proof: In order to show the assertion, take a closer look at Problem 3.8. Here, (-, ")
from Assumption 3.2 is incorporated in the upper bounds of the constraints. Hence,
using finite time controllability in one step relaxes the constraints and, thus, enlarges the
feasible set for the posed minimization problem in contrast to every other KLy-function
summing up to . Hence, Theorem 4.4 is a direct consequence of Corollary 4.3.

O

Summarizing, the derived estimates provide upper bounds on the growth rate of the min-
imal stabilizing horizon, e.g. for ¢ =~ = C> 7 o™ with C > 1, o € (0,1). Moreover,
for m = | N/2|, Theorem 4.4 exhibits a linear bound. Hence, the corresponding growth
rate is linear or even slower. Furthermore, note that the additional property (1.13) is not
needed in order to establish Theorem 4.4, c¢f. Remark 3.19.

In order to conclude this section, the following remark is given which deals with the
setting based on a fixed v but allows to vary the terminal weight w.

Remark 4.5

Let Assumption 3.2 be satisfied with a KLg-function of type (1.12) given by co := =
and ¢; = 0, 1 € N. Then, choosing the terminal weight large enough always implies
Ymy1 —w =7 —w < 0 and, as a consequence, af,, = 1. This observation reflects an
important property of finite time controllable systems: typically, the optimization horizon
has to be sufficiently large in order to ensure that it is preferable to overcome the obstacle
despite the needed control effort represented by co = . This dilemma can be resolved by
putting more emphasis on the final state of the prediction horizon.
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4.2 Characteristics Depending on the Control Hori-
zon

Delays and packet dropouts, which typically occur for networked control systems, moti-
vated the introduction of multistep feedback laws, cf. Definition 1.25. Based on these
preliminary considerations Theorem 3.12 was formulated for time varying control horizons
(M3)ien,- In order to check the conditions of Theorem 3.12, appropriate solutions af; .,
1 € Ny, of Problem 3.10 are needed. At first glance, the conditions of this theorem appear
to be more demanding for time varying than for fixed control horizon. However, in this
section — based on our standard Assumption 3.2 with a KLp-function which exhibits
linearity in its first argument — we prove that the conditions coincide with those for
m = 1 for a large subclass of such KLy-functions including exponentially decaying ones.
Summarizing, the described problem of time varying control horizons is resolved.

To this end, we carry out a sensitivity analysis with respect to the control horizon
m which determines the number of elements of our computed sequence of control values
to be implemented at the plant. Particularly, we establish symmetry and monotonicity
properties of af,, which may be counter-intuitive, e.g. increasing the control horizon
in the interval [1,|N/2|] C N improves the performance bounds from Theorem 3.12.
This coincides with our observation from the previous section that the upper bounds
from Theorem 4.4, which connect the needed control effort on the infinite horizon to the
minimal stabilizing horizon length, grow only linearly for m = | N/2] instead of super-
linearly (vyIn+) for m = 1. Furthermore, we deduce a symmetry property which enables
us to handle control horizons m € {|{N/2] +1,...,N —2, N — 1}. Combining this with
the derived monotonicity, enables us to show our main result in this section, namely, that
stability for RHC control for time varying control horizons via our main tool Theorem
3.18 can be guaranteed under the same conditions as for m = 1. The results which are
derived in this section form the basis for the algorithm developed in Section 4.4 which
allows for significantly reducing the optimization horizon N and, thus, demonstrates the
practical use of these theoretical results.

This section is subdivided into two parts. We start, after providing some insight into
our motivation, with the main results which are discussed directly afterward. In the
following subsections the corresponding proofs, which are rather technical, are presented.
Here, we like to point out the elaborate technique thought up in order to deal with the
exponentially controllable case.

4.2.1 Presenting the Results

We begin by looking at Figure 4.3 which depicts performance bounds o, for control
horizons m € {1,2,..., N — 1} for an exponentially decaying function 3 : Ry x Ny — R,

B(r,n)=Co™-r  with C' =2 and o = 0.625, (4.2)
and a KLo-function ((+,-) characterizing finite time controllability defined by

co=1,¢1=5/4,c0=3/2,¢c3=5/4,c4=1/2,¢c5 =1/4, c¢ =1/16, and ¢, =0, n € N>7.

(4.3)
Note that the latter, which is a KLy-function of type (1.12) satisfying (1.13), is not
monotonically decreasing. These examples exhibit the key features with respect to the
corresponding suboptimality indices.
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Figure 4.3: In a) the performance bounds oy, , m = 1,2,...,8, from Theorem 3.18 are

illustrated for KLy-functions given by (4.2, *) and (4.3, o). Whereas in b) a terminal
weight was added, i.e. (w = 5/4, x) and (w = 2, ©) for the exponentially controllable (4.2)
and (w = 2, o) for the finite time controllability case (4.3).

In Figure 4.3 a) two properties can be observed for the setting without an additional
weight on the final term:

e monotonicity, i.e. increasing the control horizon in the interval [1,2,...,|N/2]] im-
proves the optimal value ay,, of Problem 3.8, and

e symmetry, i.e. oz]l\am = oz}vjN_m, m = 1,2,...,|N/2|, holds for the computed sub-
optimality estimates.

The interplay of these two properties ensures a}m < Oz}v’m for each m € {1,2,...,N —1}.
This observation will be essential for the proof of Theorem 4.8. Using terminal weights
w > 1 leads — at least in this example — to a further improvement of the guaranteed
stability behavior. But instead of symmetry, Figure 4.3 b) exhibits a%,, < af y_ .,
m=12...,|N/2].

Before continuing our study, we state the corresponding results concerning symmetry
and monotonicity properties of the optimal value af;,, of Problem 3.10 with respect to the
control horizon m. The following two propositions — which are proven in Subsections 4.2.2
and 4.2.3 — do not only pave the way to answer the encountered question for networked
control systems and prepare the ground in order to develop an algorithm in Section 4.4
but are also interesting in their own rights.

Proposition 4.6

Let B(-,-) € KLy from Assumption 3.2 be either of type (1.11) or of type (1.12) with
cn = 0 for n > 3 satisfying (1.13). Then, for N € N>y and w > 1, af;,,, from Theorem
3.18 satisfies the symmetric bound

oS < a% v or me{l,2,...,|N/2|}.
Nm N,N—m f {77 7L

Proposition 4.7
Suppose (-, -) € KLy from Assumption 3.2 to be either of type (1.11) with terminal weight
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we {1} U[1/(1 —0),00) or of type (1.12) with ¢, = 0 for n > 2 and arbitrary w > 1.
Then, for N € Nx>a, af,,, from Theorem 3.18 fulfills

ANl = O for  me{l,...,|[N/2| —1}.

Using the symmetric bound from Proposition 4.6 and the monotonicity property from
Proposition 4.7 the following noteworthy consequence for our stabilization problem can
be concluded.

Theorem 4.8

Let B(-,) € KLy from Assumption 3.2 be either of type (1.11) with terminal weight
we {1} U[1/(1 —0a),00) or of type (1.12) with ¢, = 0 for n > 2 and arbitrary w > 1.
Then, for each N > 2, the stability criterion from Theorem 3.12 is satisfied form* = N—1
if and only if it is satisfied for m* = 1.

Proof: Proposition 4.6 and 4.7 imply a%,,, > af, for all m € M C {1,2,...,N — 1}
which yields the assertion.

O

In other words, for exponentially controllable systems without or with sufficiently large
terminal weight and for systems which are finite time controllable in at most two steps,
we obtain stability for our proposed networked MPC scheme under exactly the same
conditions as for MPC with m* = 1. In this context we recall once again that for m* =1
the stability condition of Theorem 3.12 is tight, cf. Remark 3.13.

Similar to our course of action in Section 4.1, we investigate the stability region for
exponentially controllable systems with respect to their stage costs, i.e. the set of all
parameter combinations of overshoot C' > 1 and decay rate o € (0,1) such that stability
of the underlying discrete time systems is guaranteed by Theorem 3.18.

The investigation of the stability region for exponentially controllable systems in terms
of their stage costs is continued. The stability region contains all parameter combinations
of overshoot C' > 1 and decay rate ¢ € (0,1) such that stability of the underlying
discrete time systems is guaranteed by Theorem 3.18. Here, the focus is shifted from
the optimization horizon N, cf. Section 4.1, to the control horizon m. For simplicity of
exposition, the case w = 1 without an additional weight on the final term is considered.
Having in mind the proposed results, in particular Proposition 4.6 which holds with
equality for w = 1, cf. Corollary 4.10, only control horizons m € {1,...,|N/2]} have to
be dealt with. For instance, Figure 4.4 shows the stability regions for N =7 and N = 11,
respectively.

Apparently, increasing the control horizon enlarges the stability region, e.g. allows for
larger overshoots C' for given decay rates o. This observation confirms our theoretical
results, i.e. the monotonicity property claimed in Proposition 4.7 is reflected. In addition,
the growth of the stability region can be quantified, e.g. for optimization horizon N = 7:
the area containing feasible (C, o) pairs is scaled up by 21 (m = 2) and 30 (m = 3) percent.
For longer optimization horizons (N = 11) increasing the control horizon enhances the
attainable gain even further, e.g. m = 2 and m = 5 enlarge the stability region by 23 and
48 percent, respectively.

In contrast to the exponentially controllable case, restrictions have to be imposed on
class KLy-functions satisfying (1.12) in Theorem 4.8 — although (1.13) is satisfied. Still,
we expended the effort to give a complete characterization referring to this setting, cf.
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Figure 4.4: Tllustration of parameter combinations (C, o) which ensure stability by The-
orem 3.18 depending on the control horizon m for optimization horizons N = 7 and
N =11, respectively.

Propositions 4.6 and 4.7 as well as Subsections 4.2.2 and 4.2.3. The reason for putting so
much emphasis on this is given in the following example.

Example 4.9

Consider the KLy-function (1(-,-) of type (1.12) defined by co = 5/2,¢1 = 2,9 =
3/2, ¢35 = 32/25,¢c4 = 1,¢5 = 1/2,¢6 = 1/8, and ¢; = 0 for all i € N>;. An upper
bound is constructed by choosing C' =5/2 and o = 4/5, i.e. a KL-function B5(-,-) of type
(1.11), cf. Figure 4.5 on the right. Although this seems to be a good approximation, the
corresponding optimal values o, . of Problem 3.10 are significantly worse, cf. Figure 4.5
on the left. For instance, using the upper bound [s(-,-), stability can not be guaranteed
for control horizons m € {2,3,4,12,13,14} while a}\ﬂm > 0 holds for Bi(-,-).

0.6 2.5
0.41
0.2 27
e TR R
0 ¥ — %
2 '/4 6 8§ 10 K14 154 S
-0.24 £ mn \
/ \ Cn
%16, m -0.4 / \
K \ 1
0671 \
| |
-0.8 Iv \ 0.5 o
104 ! !
I | o
1.29) \ 0 T T ®
: 1 2 3 4 5 6 7 8
U )

Figure 4.5: On the left a comparison of the optimal values 04%67, of Problem 3.8 for KL,-
functions of type (1.11,0) and (1.12,%) is illustrated. On the right we depict the corre-
sponding KLy-functions.

Hence, it is in general favorable to work with a KLy-function ensuring finite time
controllability in contrast to using an upper bound provided by an estimated KL-function
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of type (1.11). This conclusion is substantiated by the fact that positivity of the respective
estimates is easily checkable by means of Theorem 3.18. Furthermore, we like to point
out that even for ICLy-functions that do not satisfy the assumptions of Theorem 4.8, the
assertions with respect to symmetry and monotonicity often hold, cf. Figure 4.5.

4.2.2 Symmetry Analysis

In this subsection we carry out a complete symmetry analysis of the optimal value a%,,
of Problem 3.10 characterized by Theorem 3.18 with respect to the control horizon m.
In particular, Proposition 4.6 is proven. Moreover, for w = 1, a stronger version of the
respective result is shown which, in addition, holds without imposing any restrictions on
the KCLy-functions from Assumption 3.2 except linearity in their first arguments.

Corollary 4.10
Let B(-,-) € KLy from Assumption 3.2 be linear in its first argument and satisfy (1.13).
Then, for N € N>q, the optimal value an,, = Oé}v,m of Problem 3.8 satisfies

QNm = ON,N-m for m=1,2,...,N—1.

Proof: Since (3.3) implies ¢y > 1 for 3(-,-) linear in its first argument 7,41 > w =1
holds. Hence, the assertion follows immediately from (3.21).

O

This corollary proves Proposition 4.6 for w = 1. We point out that symmetry holds, i.e.
the symmetric bound is tight for w = 1. Hence, it remains to show Proposition 4.6, i.e.
the symmetric bound af; ,, < o y_,, for terminal weights w > 1. At first, KLo-functions
representing finite time controllability are dealt with, cf. Lemma 4.11. Furthermore, a
generalization including K Lo-functions of type (1.12) not satisfying the assumptions of
Lemma 4.11 is not possible, cf. Remark 4.12.

Lemma 4.11
Suppose B(-,-) from Assumption 3.2 to be of type (1.12) satisfying (1.13). In addition, let
cn =0 for alln € Ns3. Then, for N € N>y and w > 1, the optimal value of Problem 3.10

fulfills
AN N-m — O =0 for me{keN:k<N-—k}, (4.4)

i.e. the assertion of Proposition 4.6.

Proof: The proof is based on Theorem 3.18. We have to distinguish whether the respec-
tive necessary and sufficient condition 7,41 —w < 0 for af;,,, = 1 holds or not. We begin
with supposing that it is satisfied and show that it implies yy_,,+1 —w < 0 which ensures
AN N_m = 1 = AR, Since Y41 is defined as Z?;OI ¢p + wey, this conclusion holds for
m > 2. For m = 1, we obtain 7,41 —w = ¢y + c;w —w < 0 and, as a consequence,

YNem+1 —w < g+ +cow—w+cw—cw
(1.13)

< e+ aw—w)+ci(c+aw—w) <0.

Hence, showing (4.4) for 7,11 —w > 0 completes the proof. Since Corollary 4.10 shows the
assertion for w = 1 we restrict ourselves to w > 1. Without loss of generality we assume
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YN-m+1—w > 0 since otherwise ay; _,, = 1 and, thus, the assertion holds. Consequently,
showing the desired inequality using the expressions given by Formula (3.21) covers the
assertion. Hence, o y_,,, — aR,,, = 0 is equivalent to the following inequality in which
the index ¢ is omitted in the product symbols:

N -
(YV-m+1 = 1) (Y1 —w [ I %—Owvem—w) [ (i =1 ] [H Vi — H vi—1)
N—m+1 N—-—m-+2 m—+1 m-+1 ]
N N N 1
> (YW—m+1—w)(Ym+1—1) [H Vi — (Ymt1 —w) H(% - 1)] [ H Vi — H(% —1)|.
m+1 m+2 N—m+1 N—-—m+1 |
Rearranging these terms and dividing by (w — 1) HiN:N_m+1 ~v; > 0 leads to
N N N
(YN =1 —w H vio T i D+ —v—mi) [] %= Omr—w) ] (ui—1) > 0.
i=m-+1 i=N—m-+1 i=m-+1 i=m-+1

(4.5)
We like to point out that, so far, no assumptions were made on the Ly-function 5(-,-)
except linearity in its first argument and (1.13). Hence, (4.5) also holds for (-, ) of type
(1.11). The following cases are distinguished with respect to the control horizon m:

e m > 2: since Y,ui1 = YN_m+1 holds, (4.5) is equivalent to the following inequality
which ensures (4.4):

N N—m
(7m+1 - w) H H Vi — H Yi — 1) 2 0.
i:N7m+1 i=m-+1 i=m-+1

e m = 2: since Y,11 = ¢o + ¢1 + wey and Yy_pp1 = Zi:o ¢n, hold by definition, the

equalities (Vi1 — YN-mi1) = (w— 1) and (Y1 —w) = (w—1)ca + (VN1 — W)
are obtained. Using these equalities for the corresponding terms in (4.5) provides

Oéu]<f,N7m Z Oéu]</,m‘
e m=1: let N > 2. Otherwise, i.e. N = 2, the equality m+1 = N —m+1 and, thus,

Ymi1 = YN—m+1 hold which allows to repeat the argumentation used for m > 2.
Since Ymy1 = ¢o + wep and N —m + 1= N hold for m = 1, (4.5) is equivalent to

N-1 N

0 < [ =Dl =)+ (2 = | [T % = e =) [T i = 1)

=3 =2

N-1
= [w(%—w—l)w]%n% (2 —w) (e =D =1 [ (v
1=3

1=3

We start by showing that the term in square brackets is positive. To this end,
considering the case 75 — w — 1 < 0 is sufficient. Taking (1.13) into account yields

Wwre—w—-—1)+w > (g+a+cdwcn+ew—w—-1)+w
= (co—1)(co+cw—w+c1) + Gw(co + cyw — w) > 0.

Hence, showing that the coefficient of Hf\;gl ~; is greater than or equal to the coef-
ficient of [, (v; — 1) ensures (4.4) and, thus, completes the proof:

Iv(re —w—=1)+wle — (2 —w) (2 — (v — 1)
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= T(r—1) —whny—1)
> (co+wer)(co+wey — 1) —w(co + ¢ +weg — 1)

(1.13)
= W —c)+(co— 1) (Y —w+cw) > 0.

0

Remark 4.12

Note that Lemma 4.11 does not hold if ¢, # 0 for some n > 3. Consider, e.g. co =1, ¢; =
3/2,c0=2/3,¢c5=1and c, =0 form > 4. For N =5 and m = 2 the necessary and
sufficient condition Y1 —w < 0 for af, = 1 is satisfied for w > 15/2. However, the
inequality YN_—mi1 — w = Zizo ¢ > 0 holds and implies a5 3 <1 = af,.

In the sense of Remark 4.12 the assumptions of Lemma 4.11 cannot be relaxed. Hence,
the deduced results hold only for a subset of the class of finite time controllable systems
satisfying (1.13).

In order to complete the proof of Proposition 4.6 we have to deal with K Ly-functions of
type (1.11) which characterize, via Assumption 3.2, exponentially controllable systems. In
contrast to KLy-functions of type (1.12) we do not have to impose further restrictions on
this subclass of KLy-functions. We begin our analysis with the special case v,,11 —w < 0,
i.e. the necessary and sufficient condition from Theorem 3.18 for af;,,, = 1. This condition
not only guarantees the preservation of the symmetry property stated in Corollary 4.10
but even ensures af, - = 1 forallm € {m+1,...,N — 1}.

Lemma 4.13

Let the KLy-function [((-,-) from Assumption 3.2 be of type (1.11). Then, for N € Nsq
and w > 1, the inequality ymi1 —w < 0 dmplies of 5 =1, m € {m,m +1,...,N — 1},
for o, 5 from Theorem 3.18.

Proof: In view of Theorem 3.18 it is sufficient to show 41 —w < 0 form € {m+1, m+
2,...,N—1} in order to conclude the assertion. Since 7,11 —w = 2?:_01 Cn—(1—cp)w <0,
¢m = Co™ < 1 holds. Hence, v,,.1 < w is equivalent to

c & C(1—om)
> . "= 1.
Y ST Com ;“ A—o)1-Com)

Using this inequality in order to estimate the terminal weight w yields

C(l—o™(1—-Co™ C(1—0o™(1~—Co™)

Va1l —w <

(1-0)1-Com)  (1—0)(1—Co™m)
B o™+ Co™ — o™ — Co™ (C —1)(c™ —o™)
= (1—0)(1—Com) = (1—0)(1—Co™) <0

for m > m. Thus, the necessary and sufficient condition from Theorem 3.18 is satisfied
which completes the proof.

O

In order to complete the proof of Proposition 4.6 we require the following auxiliary lemma
which is an essential tool not only in this section but also in the ensuing one. Originally,
the technical Lemma 4.14 was elaborated in order to prove the monotonicity property
described by Figure 4.3 and precisely stated in Proposition 4.7 for w = 1.
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Lemma 4.14
Let p: R — R be a monic polynomial® of degree k > 1, k € N, such that

a) all k roots z1, 2o, . . ., 2k, are real, exactly one of them is strictly negative, and at most
one is equal to zero,

b) the root of the (k—1)** derivative p*=1 : R — R is strictly smaller than —c/k with
c € Ry and

c) p(2) = ZF"1(Z + ¢) for some Z > max{zy,..., 2}

Then, the polynomial p(-) satisfies

p(z) > 2"z 4+ ¢) forall  z>2Z. (4.6)

Proof: We prove the assertion via induction with respect to the degree k of the poly-
nomial p(+). For k = 2 the polynomial can be written as

p(z)=(z—a)(z+b)=2"+2(b—a)—ab  with b>0 and a > 0.

Since the assumptions of Lemma 4.14 ensure that the root (a —b)/2 of the first derivative
is strictly smaller than —c/2, a+ ¢ < b holds. Furthermore, we deduce zZ2(b—a —c¢) —ab =
0 from p(Z) = 2% + ¢z. Combining the obtained conditions on the coefficients of the
polynomial yields p(z) — z(z +¢) = z(b—a—c¢) —ab > 0 for z > Z, i.e. (4.6).

Next, we carry out the induction step from k£ to £ + 1. Suppose p : R — R to be a
polynomial of degree k+1 which satisfies the assumptions of Lemma 4.14 with k+1 instead
of k. Note that this — in view of Rolle’s theorem, cf. [77, Theorem 3.1] — guarantees that
all derivatives of p(-) have only strictly positive roots (counted with multiplicities) except
for exactly one strictly negative one. Using the definition 2 := max{zy,..., zx41} € (0, 2)
yields p(z9) = 0 < p(2) = 2¥(Z + ¢). Thus, there exists Z € ]z, Z| such that

P e (ZJr ke ) (4.7)

E+1

holds. We define the monic polynomial ¢ : R — R via ¢(-) := p/(-)/(k + 1) and denote
its maximal positive root, which is located in the interval (0, 2], by z*. Bearing this
definition and (4.7) in mind, the intermediate value theorem, cf. [77, p.218], implies that
there exists 2 €]2*, z[ such that ¢(2) = 2*~1(2 + k’ffl) Moreover, note that the condition
with respect to the (k — 1)* derivative remains unchanged and, thus, satisfied because
of our adaptation of ¢ and ¢(-). Hence, we are able to apply the induction assumption
to the polynomial ¢(-) in order to deduce q(z) > 2*7(z + kk—fl) for all z > 2 and, as a
consequence, p'(z) > (2F(z + ¢)) for z > Z (2 > z > 2) which allows us to conclude the

assertion.

0

Proposition 4.1 in combination with Lemmata 4.13 and 4.14 enables us to carry out a
complete symmetry analysis of the optimal value of Problem 3.10 for KLy-functions of
type (1.11). Since the part of Proposition 4.6 dealing with §(-,-) € KLy of type (1.12) is
covered by Lemma 4.11 this completes the respective proof.

3A monic polynomial p(-) of degree k € N with solely real roots z1,z2s,...,2; may be written as

Hle(z = 2i).
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Lemma 4.15
Let the KLy-function B(-,-) from Assumption 3.2 be of type (1.11). Then, for N € Nx3

andm € N such that m < N—m, the assertion of Proposition 4.0, i.e. a%; y_,, — R, = 0,
holds.

Proof: Since Lemma 4.13 covers the assertion for 7,,,1 — w < 0, the line of arguments
used in the proof of Lemma 4.11 can be repeated in order show that proving Inequality
(4.5) implies the assertion, i.e. we only have to deal with (3.21) in order to establish the
symmetric bound and may carry out the first few conversions analogously to those of
Lemma 4.11.

Let the control horizon m € N be given. Our goal is to prove the assertion by an
induction with respect to the optimization horizon N. In the beginning of the induction,
the optimization horizon N is chosen as small as possible, i.e. N = 2m + 1. Then,
N —m =m+ 1 holds and (4.5) can be simplified to

N N

0 < [7m+1(7m+2 —w) = (Ym+1 = @) (Y41 — 1)} I Gi= D+ st = ms2)vms [ %
i=m-+2 i=m-+2

which is, in turn, equivalent to

v —1
0< [t Oz = Y1)+ Gns =) [T 2= = G = )y (48)

Before proceeding, we define n := 1 4+ ow — w. Furthermore, note that n < 0 implies
Ymt+2 — Ymt+1 = 01 < 0. Then, since Hfimﬁ(%’ — 1)/ € (0,1), Inequality (4.8) holds
for n < 0. Hence, it remains to consider (4.8) for the case n > 0. Here, we aim at applying
Lemma 4.14 in order to establish this inequality. To this end, we require

i—2 . 4 , .
, 1 -0t 4 wott —wol 1 —nott
=C>Y o"+wCo ' =C- —C. —— (4.9)
—~ 1l—0o 1—0o

and, as a consequence,

Vi Vi

In addition, using the representation of v; and 7,40 — Yme1 = ™7 yields

1—o™
7m+1(7m+2 - 7m+1) + (P)/erl - w) _ 0—2 (CQ + C(l—an) ;w)

Y41 (Ymt2 = Ymt1) ot

2
with £ := (201mn> + onf;ﬁ:?nn)- Overall, plugging the obtained expressions into (4.8)

provides

(st (st ML ) e

i=m+2 =:q(C)

(.

'

=:p(C)
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Since n € (0,1), the polynomial p(C) has clearly m + 1 strictly positive roots and exactly
one negative root. Hence, in order to apply Lemma 4.14, we have to verify the second and
third assumption with ¢ = 0. Since Proposition 4.1 yields p(1) = ¢(1) or, in the notation
of Lemma 4.14, Z = 1, we have to show that the positive root —1/(20™n) + /€ is located
in the interval (0,1), i.e. /€ < 1+ 1/(20™n) or, equivalently,

w(l—o) <1 1

omn(l —omn) o)

which holds since (1 —o™) + c"n(1 —c™n) > 0. Thus, it remains to ensure condition b)
of Lemma 4.14 with respect to the (m+1)** derivative. To this end, we calculate p™+1 ()

PMC) = (m+2)! C + (m + 1)! (L_ Z 1_—0>,

i—1
omn o 1 —o0v"1n

and show that the only root of this polynomial of degree one is strictly negative. In order
to determine the sign of this root, it is sufficient to consider

N N 1

1 1 1
— —(1- > —(1- S —

1—o™p—m(l—0)o™y
o™ (1 —o™*n)

(1-o0) =
1 _ m 0.
> L gmTin) ;a mo™ | >

Hence, Lemma 4.14 applied with ¢ = 0 and Z = 1 ensures (4.8) and, thus, Lemma 4.15
for N = 2m + 1, i.e. the induction start is carried out. In order to complete the proof we
have to perform the induction step.

Suppose that the assertion holds for N > 2m + 1. Again, (4.5) is taken as our starting
point. Hence, we have to show

N—m+1 N+1 N+1 N+1
(v-mio=w) [T %+ T[] = D+Omir—mv-ms2) [] %=Omi—w) [ (v=1) > 0.
i=m+1 i=N—m+2 i=m-+1 i=m-+1

Using the induction assumption for (7,11 — w) HN (vi — 1), reducing the resulting

i=m-+1
expression by Hﬁ;ﬁl v;, and combining the summands which have the factor Hf\i Nema1 Vi

or [T+ (i — 1), respectively, yields

i=N—m+2
N+1
0 < [iemnOvomiz =) = (v —@)wv-min = D] T Gi=1)
e -~ ’z:me+2
=YN-m+1(IN—m+2=IN—m+1)+ (YN —m+1—w)

N

+ [7N+1<7m+1 — YN-m+2) = (W41 = D) (Y1 — ’YmeJrl)] IT »
e -~ J’L:me+1

=YN+1(VN—m+1=IN—m+2)+(Ym+1—YN=m+1)

Since (Y1 — WW-mt1) = C(0™ =) (=n)/(1 = o) and Yn—m+2 = YN-ms1 = Co "
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are implied by (4.9), this inequality may be rewritten as*

N+1 m —-m N
CoN-m . > N=m —(U il )77 C j
[/VN—m-i-l o 77+(/7N—m+1 _w)} H(,yl - ]') Z |IN+10 n+ 1 — H Vi-
N—m+2 ’ i=N—m+1
(4.10)

Analogously to the induction start, the case n < 0 is dealt with separately: since the
second and forth summand already have the desired signs, showing

vN—mHCUN‘m(—??)[ II » 11 (%—1)]20

i=N—m+2 i=N—m-+2

yields (4.10) for n < 0. Consequently, n > 0 is supposed from now on. Note that
n=1-w(l—0) < 1holds. Reducing (4.10) by oV "™nvyy,1/C and HfiN_mH(%'/C’)
leads to

N _
(”YNmHCQ i IN-m+1 — W ) Yir1 — 1 > oml <C+ o™ — gl ) ‘
i=N—m+1 N )

YN+1 oN=my YN /C vi/C oN-m(1 — oV
::;?C) =:q(C)

Note that both polynomials have degree m + 2 and the coefficients of C™*2 are equal to
one, i.e. are monic. We aim at applying Lemma 4.14 in order to conclude this inequality
and, thus, the assertion. To this end, we begin by determining the exact location of the
respective roots of p(-) and ¢(+). The polynomial ¢(-) has exactly one strictly negative root
located at — (o™ — o¥=™)/((1 — no™)a¥ ™). Next, we consider p(-) and, in particular,
the factor (41 —1)/(7:/C), i =N —m+1,N —m+2,..., N, more closely. Using (4.9)
provides

Yigr—1 Cl—o'n)—(1—-0) 1—o0'y o l—0o
v/C 1—o0"1p 11—ty 1—oin)’

i.e. a polynomial of degree one whose root is located at (1—o)/(1—0'n), i.e. in the interval

(0,1) for eachi € {N —m+1,N —m+2,..., N}. The first factor of p(-) still needs to

be investigated. Here, extracting the factor yn_,,11/vn+1, which does not depend on C,
and using (4.9), yields

1—0N_m77(02+ C w(l—o) )

1—o0Npy -

O—men (1 _ Umen)O—men

Setting this expression equal to zero and solving the resulting equation provides the two
remaining roots of p(-)

1 1 2 w(l — o)
(o .- , 411
20N \/(%Nmn) A= ey @1
a positive and a negative one. Summarizing, p(C) may be represented by p(C) =
H?:{Q(C’ — z;) where z;, ¢ = 1,2,...,m + 2, denote the determined roots. Moreover,

Proposition 4.1 yields p(1) = ¢(1). Hence, we have to verify that the positive root from

4In fact, this inequality is flawed in [45], i.e. the divisor (1 — o) is missing. Nevertheless, the train of
thoughts used in order to prove the assertion remains substantially the same.
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(4.11) is strictly smaller than one and, thus, contained in the interval (0, 1). To this end,
the equivalent inequality

R N 1 2 . w(l — o)
20N_m77 QO.N—mn (1 _ UN—mn)JN—mn

is squared which leads to

w(l—o0) 1 1+ oN"my
N—m N—m < 1+ N—m = N—m
(I — oN=mp)oN=mp aN=mp oN=my

or, equivalently,
wl—0)<(1+e¥ ™1 -y =1—2N-m2,

Since n > 0, taking the definition of 7 into account shows that the respective root is
located in the interval (0,1) and, as a consequence, that the third condition of Lemma
4.14 is satisfied with Z = 1. Hence, the second condition has to be verified in order to
apply Lemma 4.14 and deduce that (4.10) holds for C' > 1, which completes the proof.
We calculate the (m + 1) derivative of p(C') and ¢(C)

gmt(C) = (m+1) ((m +2)C + (f‘fnajvg)a_]@m) )

l1—0

p M) = (m+1)! ((m +2)C + L Z ) -

N—m i
o 1—0
n i=N—m+1 n

We have to show that the root of p™*1) is strictly smaller than its counterpart of ¢(™+")
divided by m + 2 (the degree of the polynomial p(+)), i.e.

m+ 2 (o™ — ogN=m) al l—o0
— > 2 E —. 4.12
oN=mp (1 —oNp)oN-m (m + >i=N—m+1 L —o'n (4.12)

Since (1 —oin) ! < (1 - i = N—-m+1,N—m+2,...,N, it is sufficient to
establish

N

m+ 2 o™ — ghN-m 1—0 m(m+2)(1—o

+2 ( - ) S~ (m+2) Z i _m( )_( )
O'N m,r} (]_ _ O'N m+177)0'N m Ao 1 — O'N m+1n 1 — O'N m+1,r]

or, equivalently,
(m42)(1 — V") — (6™ — V™) > m(m +2)(1 — o)™ ™

in order to deduce (4.12). Since (1 -V "™ p)— (6™ -V ™) > (1—0)(c™ —oN")p
holds, this is ensured by

1— O,N—m—H

N—-m>m
(m+1) ( ?7) > (m+1) Z o" g m(m + 2)a™ .
l1—o0
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4.2.3 Monotonicity Properties

Looking at Figure 4.3, one observes — aside from the symmetric bound — a certain mono-
tonicity property, i.e. a monotone growth of the performance bounds a3, characterizing
the optimal value of Problem 3.10 until the control horizon reaches about half the length
of the optimization horizon. This feature is precisely stated in Proposition 4.7. The goal
of this subsection is to prove this result. Combining the respective assertion with the
symmetric bound derived in the preceding subsection, enables us to deduce Theorem 4.8.
This theorem, which is based on Theorem 3.18, ensures that using time varying control
horizons does not cause additional difficulties in order to verify the assumptions of The-
orem 3.12 — at least for a large and important subclass of ICLy-functions linear in their
first arguments. For example, time varying horizons are required in networked control
systems in order to compensate non-negligible delays or packet dropouts.

The symmetry analysis which was carried out in Subsection 4.2.2 exhibits an especially
nice structure for the setting without an additional weight on the final term in the receding
horizon cost functional, cf. Corollary 4.10. Furthermore, the restrictions on the class
of finite time controllable systems are necessary only for terminal weights w > 1, cf.
Lemma 4.11 and Remark 4.12. In contrast to that, these limitations (indeed, even slightly
tighter ones) are necessary for the monotonicity properties dealt with in this subsection
— independently of whether a terminal weight is involved or not. Hence, in order to
benefit from these theoretical results as demonstrated by Theorem 4.8 and the algorithms
to be developed in Section 4.4 there is no escape from these modifications. The necessity
of taking these restrictions into account is shown by the following counterexample.

Example 4.16
Let the controllability behavior of a discrete time system be characterized via Assumption
3.2 based on one of the following KLo-functions of type (1.12):

o B1(-,-) is defined by cy = 1.24, ¢ = 1.14, ¢co = 1.04, and ¢; =0 for i € Nx3,

o O5(-,:) is given byco=1,¢1 =12, co =11, c3=1.1,c4 =12, c5 =1, ¢g = 0.75,
cr = 0.25, and ¢; = 0 otherwise.

Note that both functions satisfy (1.13). Furthermore, [31(-,+) is monotonically decreasing
in its second argument. The corresponding optimal values of Problem 3.8 depicted in Fig.
4.6 show that neither for y(,-,-) nor for Ba(-,-) the desired monotonicity property

ah7m+12ak7m for m=1,2...,|N/2—-1]

18 obtained.

Example 4.16 demonstrates that the desired monotonicity property does not hold for
arbitrary KLg-functions f(-,-) of type (1.12). The remaining part of this subsection
deals with subclasses of KLy-functions meeting the assumptions of Proposition 4.7. It
is arranged as follows: initially, KLo-functions of type (1.12) are addressed. Then, for
exponentially controllable systems, “sufficiently” large terminal weights are treated sep-
arately before we turn our attention to the most delicate situation, i.e. w = 1. Here, we
also indicate problems occurring in extending Proposition 4.7 and, thus, Theorem 4.8 to
arbitrary w > 1.

As seen in the previous example, our results can not be generalized to (-, -) describing
finite time controllability in more than two steps. Hence, the following lemma gives a
complete analysis for ICLy-functions of type (1.12).
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Figure 4.6: On the left, a visualization of ay,,, m € {1,2,3} for £i(-,-) from Example
4.16 with terminal weights w = 1 (o) and w = 1.01 (x) is shown. On the right, ag,,,
m = 1,2,...,8. for fBs(-,-) of the same example with w = 1 (%) and w = 4/3 (o) is
illustrated.

Lemma 4.17

Let Assumption 3.2 be satisfied with a KCLo-function 3(-,-) of type (1.12) with ¢, =0 for
all n € N>o, 1.e. finite time controllability in at most two steps. Then, for N € N>y, af,,,
from Theorem 3.18 satisfies

Nyt — Oy >0 for  me{l,2,...,[N/2] - 1}. (4.13)

Proof: Since ¢, = 0 for n > 2 ensures 7,11 > 7; for all i@ € N>3, the necessary and
sufficient condition 7,41 —w < 0 for af,,, = 1 implies its validity for every control horizon
larger or equal to m and, thus, in particular v,,,2 —w < 0 holds. Hence, let 7,41 —w >0
hold. This allows for plugging (3.21) in (4.13) in order to show the assertion which is, as
a consequence, equivalent to

[ N N 17 N N
1 =) ez = D| [T %= Omsz=) [T i =D | 1T %= 1] (- 1)]
Li=m—+2 i=m+3 J Li=N-m i=N—m
r N N 1T N N
> (Ymr2—@)w-m=D| [[ %= =) [T i =D|| T »— II - 1)]~
Li=m+1 i=m-+2 4 Li=N—m+1 i=N-—-m+1

Note that for the considered subclass of KLy-functions of type (1.12) 73 = v; holds for
all © € N>3. Consequently, we define v := ~v3 = «;, © € N>3. Furthermore, taking
N —m > m+ 2 > 3 into account allows us to reduce (4.14) by the factor (y — 1) and
leads to

N N—m N—m
wOmi=7) [T "= =1+ (=) =1y | TT7 = - [T(r- 1)] >0,
i=m-+2 i=m-+2 i=m+3

which shows the desired inequality and, thus, completes the proof.

0

Next, we aim at deducing the desired monotonicity property assuming exponential con-
trollability. To this end, we make a distinction with respect to the terminal weight w. We
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begin with “sufficiently large” ones or, to be more precise, those satisfying w > (1 —o)~ 1.

Note that this condition is always achievable but may be demanding for decay rates o
close to one.

Lemma 4.18
Let Assumption 3.2 hold with a KKLy-function of type (1.11). Furthermore, let the terminal

weight w be chosen such that n := 1+ ocw —w < 0. Then, for N € N>, the assertion
from Proposition 4.7, i.e. (4.13) holds.

Proof: Taking the assertion of Lemma 4.13 into account, it suffices to establish (4.14)
in order to deduce (4.13), i.e. a% 1y — 0%, = 0, m € {1,2,...,[N/2] — 1}. Since
2m + 2 < N, expanding the terms in (4.13) and combining them appropriately yields

N—m N
—a H Yook | @+ (i =) (Y2~ 1 ] (=1 [ = (omi1=0) =) [ [ (1) 2 0
i=m+2 i=N—m+1 i=m+2 i=m+2
(4.15)
with
a = —[WYyN-m(Ym+1 = Ymt2) + Yms1(Ymaz — Yv—m) + W(YN=m — Ym+1)]
49 Cn

= [(C’ — Dwo™ + oV w1 — Cne™) + Ympr (6™ — ON_m_l)] <0.
-0

Hence, the term

N-m N N

—a H %‘[ H Vi — H (%‘—1)]
i=m+2  Li=N—m+1 i=N—m-+1

from (4.15) as well as the difference of the two remaining summands in this inequality is

positive which ensures (4.15) and, consequently, completes the proof.

O

In order to prove the assertion of Proposition 4.7 for w = 1, let a control horizon m
be given. Then, an induction with respect to the optimization horizon N is carried out.
The assertion af;,,.; > a%,, has to be shown for m € {1,2,...,[N/2] — 1}. Hence,
N = 2m + 2 is the smallest optimization horizon for given m.

The proof is divided into two parts: the induction assumption, i.e. N = 2m+2, is dealt
with separately in the following lemma. The induction step is carried out afterward in
Lemma 4.20. Splitting up the proof is motivated by the restrictions on the terminal weight
w in Proposition 4.7. Lemma 4.19 covers arbitrary terminal weights, i.e. w € [1, (1—0)71)
while the induction step is only shown for w = 1. This approach allows to indicate
problems occurring for terminal weights w € (1, (1—0)~!). We conjecture that Proposition
4.7 holds independently of the chosen terminal weight. Furthermore, we point out that
the induction is carried out with respect to the optimization horizon N. Proceeding the
other way round, i.e. an induction vis-a-vis the control horizon m, has not proven to be
fruitful.

Lemma 4.19
Let Assumption 3.2 be satisfied with a KLo-function of type (1.11). Furthermore, let the
terminal weight w be chosen such that n := 1+ ow —w > 0. Then, for m € N and
N = 2m + 2, (4.14) holds for the optimal value af;,, of Problem 3.10 which is given by
Theorem 3.18.

1

®Note that Lemma 4.18 covers the assertion for w > (1—0)71, i.e. “sufficiently large” terminal weights.
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Proof: Since Lemma 4.13 covers the assertion for 7,11 —w < 0, the inequality 7,41 —
w > 0 is assumed. Hence, showing (4.15) is sufficient in order to show the assertion.
Taking into account N —m —1 = m+1, the term «a introduced in this inequality simplifies
to Co™nw(Ym+e — 1). Hence, reducing (4.15) by (Yms2 — 1) leads to

N N
[Camnwvmw + w(Ymt1 — w)] II (i =1 = Compwrmes ]

i=m+3 1=m+3

Using the representation of 7,, 1o given by (4.9) and N —m—2 = m, proceeding analogously
to the proof of Lemma 4.15 yields

o 1—o0™p - w(l —o) ﬂ O_l——a > omt?
omn(l — om+in) omn(l —omtin) i=m+3 L=o™n/) = =:q(C) |

J/

-

=:p(C)

We aim at applying Lemma 4.14 in order to establish this inequality. Since Proposition
4.1 ensures a point of intersection at C' = 1 which is supposed to play the part of Z in the
third assumption of Lemma 4.14, the positive roots of the monic polynomial p(-) : R — R
have to be located in [0,1). Structurally, p(-) consists of two factors. Here, the factor
| R +3lC—(1—0)/(1—0""'n)] represents a polynomial of degree m which is decomposed
in linear factors and, thus, exhibits m real roots located in the open interval (0, 1). Next,
we determine the roots of the other factor involved in the definition of p(-) by completing

the square:

(1—0™p) £ /(1 —0mn)? +dw(l — o)omn(l — o™*1n)

C=— ,
20mn<1 _ Uerln)

i.e. one strictly positive and one strictly negative root. Hence, we complete our assertion
with respect to the roots of p(-) by showing that the positive root of this factor is strictly
less than one or, equivalently,

(1 =0y +20"n(1 — o™ 'n))? > (1 — ™) + dw(l — 0)a™n(1 — ™ 1n).

Cancelling out the summand (1 — ¢™n)?, reducing the resulting expression by 40™p
(1 — o™Tn), and using the definition of 1 leads to

o™l — ™M) + (1 — o™y) —w(l — o) = (1 — *y) > 0.

Consequently, it remains to establish the second condition of Lemma 4.14 which deals
with the (m + 1)* derivatives of the polynomials p(-) and ¢(-). To this end, we calculate

pmt(C) = (m+2)!C+(m+1)!< Lo - XN: 1_—0>

omn(1 — om+y) et 1—oi1p

Since ¢™*Y(.) has its respective root at the origin, we have to prove that the root of
p™ D (C) is strictly negative. For this purpose, it suffices to establish

N

1—0™n l—0o
— — > 0.
O'mT/(l _ Um+177) Z 1— o-z—l,,7

i=m+3
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Taking N —m — 2 = m into account, this is ensured by

m+1 )

1=o™ ZU +wa™ > mao™ >namz 1_011

1l—0
i=m+3

Hence, all assumptions of Lemma 4.14 are satisfied which enables us to conclude the
assertion.

O

Lemma 4.19, which is used as induction start for the proof of the following lemma, holds
for w € [1, (1 — o)1), i.e. for all terminal weights not covered by Lemma 4.18. In contrast
to that, w = 1 is assumed in the induction step, which is carried out in the proof of Lemma
4.18. However, this restriction is not imposed in the beginning of the induction step in
order indicate and briefly discuss problems of extending Lemma 4.20 to terminal weights
w € (1,(1 — o)71). Furthermore, we like to point out that Lemma 4.14 was originally
designed for the following induction step.

Lemma 4.20

Let the KCLy-function ((-,-) from Assumption 3.2 be of type (1.11) and w = 1. Then,
for N € Nxy, the optimal value o, = ay,, of Problem 3.8 exhibits the monotonicity
property given by Proposition 4.7, i.e. 0% .11 — %, =0 form € {1,... [N/2] —1}.

Proof: Repeating the line of arguments used in Lemma 4.18 yields that it is sufficient to
establish (4.15). Let a control horizon m be given. Then, the preceding lemma covers the
assertion for the smallest possible choice of the optimization horizon N — our induction
assumption. Hence, carrying out the induction step proves the claim.

Suppose that (4.15), i.e

N N
(7m+1_w>(’7m+2_w) H(%_l) < —a H%+ [a+(7m+1 ’Vm+2 } H Vi H Yi— )7
i=m+2 i=m+2 i=m+2 i=N-—-m+1

holds for N > 2m + 2. The term a is given by®

a = YN-m(WYmt2 — WYmt1 + Yms1 — W) — ’Ym+1(’¥m+2 —w).

Our goal is to show this inequality for N + 1, i.e. the induction step N ~» N + 1. To this
end, we require the definition

@ := YN+1-m(WYmt2 = WYmt1 + Vg1 — W) = Ym1(Ymt2 — w),

i.e. N is substituted by N + 1 and, thus, yy_» by 7n_m+1 in a. Then — using the
induction assumption — the desired inequality is ensured by

N
(’YN—H - 1) —a H Vi + [(I + (’Ym-i-l ) Tm+2 — 1 } Hf)/z H Yi — 1)
i=m-+2 i=m+2 i=N-—-m+1
N+1 N—-m+1 N+1
< —a [[w+ {a+ (Ym+1 — w)( ’ym+2—1] I J[-v.
i=m+2 i=m+2 i=N-—-m+2

6Note that, in comparison to the proof of Lemma 4.18, we rearranged only the considered term.
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Since N —m > m + 2, dividing this inequality by Hl mao Vi and taking
a+t (Yme1 —w)(Ymr2 — 1) = (W-mr1 — D(WYma2 — WY1 + Y1 — w),
at (Ymr = @) (Ymi2 = 1) = (vem  — D(@Yms2 = Wmt1 + Ymr1 — w),
into account, leads to
N+1 N
(WYmt2—wWYm+1HYms1—w )[WN m1— (YN=m— H ) > [&’YNH—G(VNH—U I
1=N— 1=N—m+1

Dividing this inequality by (wymi2 — WY¥m+1 + Yms1 — w) and using (4.9) yields

N+1 ( _ w N+1
(OUN_m_lT]—i-l)H(%—l)Z |:CO_N—m—1n+ YN-m i TYm+1Vm+2 :| H%
Nt i1 WINPT = WYt Yma—w) |

Since n = 1 4+ ow — w > 0 is assumed, the divisor is positive. The quotient consisting of
the numerator 7,41 (Vm+2 —w) and the denominator vy 1 (WYmia — WYmt1 + Yme1 — w) is
the most difficult to handle. Here, the factor 7,,+1/vn+1 does not contain the overshoot
C and, thus, only contributes a constant. The other factor, however, has a polynomial of
degree one in the denominator — exactly this prevents the applicability of Lemma 4.14
for we (1,(1 —o)™).

On the contrary, for terminal weight w = 1, (WYmi2 — WYmi1 + Ymr1 — W) = (Yma2 — 1)
holds. Hence, the considered factor cancels out with (7,410 — w) = (Yma2 — 1). Taking
n = o into account and reducing the inequality in consideration by o~ provides

m+1 O.N—m

p(C) = (C+ o= V=) ]ﬁl (C— 11__5) > omH <C+ (1“_ UN+1)0N—m> —: 4(C).

i=N—-m+1

A straightforward application of Lemma 4.14 ensures this inequality and, thus, allows
for concluding the assertion. Proposition 4.1 yields the point of intersection at C' = 1,
i.e. p(1) = ¢q(1). Furthermore, note that p(-) has exactly one negative root and m + 1
strictly positive roots which are located in the open interval (0,1). Additionally, ¢ can
be represented as C™(C + ¢) with ¢ > 0. Hence, the only condition which has to be
verified is the one with respect to the (m + 1)* derivative. To this end, we calculate

N+1

pI(C) = (m +2)IC + (m + 1)) (fw‘m) - 2 11__5> ‘

i=N—m+1

Consequently, it suffices to establish the following inequality in order to complete the

proof:
NA+1 1—o O.m+1 _ O.N—m

1—ghN—m - >
g Z 1— gt (1 —oN+1)

i=N—-m+1

Since (1 — o) < (1—o¥ ™) foralli € {N—m+1,N—m+2,...,N+ 1}, this is
ensured by

1 —ogmtl m NE_H: 1
o Z n m N—-m _ _N—-m
1-0 n=0 7z otz e -7 N LT i
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4.3 Further Results

This section contains miscellaneous results. We begin with commenting on Assumption
3.2 which may seem to be restrictive at first glance. However, since this condition is
formulated in terms of the stage costs, it turns out that even systems which are only
asymptotically but not exponentially stable satisfy Assumption 3.2 with a L-function
of type (1.11) and, thus, exhibit the desired linearity feature exploited in order to de-
duce the formula presented in Theorem 3.18. In particular, the results of this and the
previous chapter are applicable. Secondly, we deal with the impact of incorporating an
additional terminal weight in our setting which significantly complicated deriving results
on symmetry and monotonicity. Then, in order to conclude this section, the example of
the linearized inverted pendulum on a cart is considered. Here, theoretically observed
but presumably astonishing properties like the monotonicity in the control horizon are
numerically resembled. This motivates the construction of algorithms which employ these
properties in the following Section 4.4.

4.3.1 Comments on Assumption 3.2

Assuming linearity of the KL-function (-, ) from Assumption 3.2 in its first argument
seems to be a demanding condition. However, since the stage costs can be used as a design
parameter, cf., e.g. [39, Section 7] and [6], this even includes systems which are only
asymptotically controllable. For instance, the stage costs were manipulated to respect
homogeneity in order to get similar properties for systems that are not exponentially
stabilizable in [32].

In order to further substantiate this claim, the control system defined by z(n + 1) =
x(n) + u(n)x(n)® is considered which corresponds to the Euler approximation of the
differential equation #(t) = w(t)z(t)® with time step T = 1. Furthermore, the control
U = [—1, 1] and state constraints X = (—1,1) C R are set.” This system is asymptotically
stabilizable with control function u(-) = —1, i.e. x(n+ 1) = xz(n) — x(n)?. But, taking the
constraints into account, it is not exponentially stabilizable. In order to show the claimed
exponentially controllability in terms of the continuous stage costs, we define

((x(n),u(n)) := {

1

e =07 for [|z(n)| € X\{0},
0 for x = 0.

Note that ¢*(x) = ¢(x,u) holds for all admissible control values u because the control
effort is not penalized. The KL-function §(r,n) = e "r of type (1.11) with parameters
C =1 and o = e~ ! is chosen. Hence, we have to show the inequality

lz(n+1),u(n+1)) =20 +1)) = H(zn)(1—2x(n)?) <e o (x(n))

which is, in turn, equivalent to
_ 1 _2e(n)’41 1
F(z(n+1)) =e 22020 < e 2m?2 =e le” 202 = gl*(z(n))

Using 1 > 1 —3x(n)* +22(n)% = 22(n)*(1 —x(n)?)*+ (1 —z(n)?)? > 0 for z € X = (0, 1)
ensures this inequality and, thus, inductively implies exponential controllability in terms
of £(-,+). Summarizing, designing the stage costs ¢(-,-) suitably allows for verifying the
needed assumptions in order to apply the deduced results, even for systems which are not
exponentially controllable with respect to their norm.

"The state and control restrictions are necessary to preserve the characteristics of the continuous time
system for the Euler approximation.
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4.3.2 Cost Functional Incorporating a Terminal Weight

In order to evaluate the benefit attributed to using an additional weight on the final term
in our receding horizon cost functional (2.4), the special case that the coefficient ¢, of
the KLy-function contained in Assumption 3.2 is strictly smaller than one is considered
first: since ¢, < 1, the necessary and sufficient condition ~,,,; —w < 0 of Theorem 3.18
for an,, = 1 and, thus, stability can always be ensured by choosing the terminal weight
w sufficiently large in this case. We point out that the probability of being able to fulfill
this condition increases, in general, with longer control horizons, e.g. for Ly-functions
of type (1.11).

However, without this condition being satisfied, analyzing effects resulting from includ-
ing a terminal weight is much more subtle. Hence, we begin our investigation by looking
at the following example which demonstrates the typical positive effects of adding weight
on the final term.

Example 4.21
Let Assumption 3.2 hold based on KLy-function B(-,-) of type (1.12) given by

co=1,c1=3/2, ca =39/20, c3 =7/5, and ¢; =0 for all i € Nsy4,

i.e. finite time controllability. Since Property (1.13) is satisfied, Theorem 3.18 can be ap-
plied in order to deduce suboptimality bounds. The resulting values o, for optimization
horizon N = 7, control horizons m € {1,2,...,6}, and w = 1 (no terminal weight) as
well as w = 3/2 are illustrated in Figure 4.7 a).

At first, note that the symmetric bound as well as the monotonicity property of Lemmata
4.11 and 4.17 hold — although the respective assumptions are violated since cs3, ¢4 are not
equal to zero. The interplay of these two properties and the terminal weight w = 3/2
implies our stability condition o7, > 0 and, thus, asymptotic stability for the receding
horizon closed loop for m = 4.8 Note that this is not the case for w = 1.

The next example points out a possible pitfall of large w.

Example 4.22

As in the previous example, we assume finite time controllability, i.e. Assumption 3.2 with
a KLo-function of type (1.12) given by co =1, ¢y = 3/2, ca =2/3, c3 =1, and ¢; =0 for
all i € Ns4. Note that these coefficients guarantee (1.13). In Figure 4.7 b) the respective
performance bounds are depicted for optimization horizon N = 5 with several terminal
weights.

Although increasing w seems to improve, in general, the guaranteed stability behavior
significantly, an additional weight on the final term — chosen too big — may even invalidate
our stability criterion for m = 1. However, in this example shifting to a larger control
horizon compensates this drawback.

In conclusion, using terminal weights typically improves the values provided by Theo-
rem 3.18, and, thus, simplifies the verification of asymptotic stability. However, we stress
the fact that the performance interpretation of the resulting suboptimality indices does
not hold for w > 1 since Vy(-) < Vio(+) crucially relies on w = 1. Furthermore, we em-
phasize once more that Theorem 3.18 allows for easily calculating the optimal values of
Problem 3.10.

8We point out that the condition 7,11 —w < 0 is not satisfied.
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0.8

0.6 1

0.2

a) b) "

Figure 4.7: In a) the suboptimality bounds %, from Theorem 3.18 are visualized for
Example 4.21 for w = 1 (¢) and w = 3/2 (o) and control horizons m € {1,2,...,6}. In
b), the same is done for Example 4.22 with w € {1,3.5,27.5} (o, *, ©).

4.3.3 Example: Linear Inverted Pendulum

The key assumption needed in order to deduce asymptotic stability or performance bounds
on the receding horizon closed loop in Theorem 3.12 is a relaxed Lyapunov inequality of
type (3.1). In this subsection such a Lyapunov inequality is checked numerically for the
linearized inverted pendulum on a cart, cf. Examples 1.21 and 1.23. Then, the computed
performance bounds are compared with theoretical results from Theorem 4.8, which deals
with symmetric bounds and monotonicity properties of the deduced suboptimality esti-
mates from Theorem 3.18 with respect to the control horizon m.

Since we aim at verifying a relaxed Lyapunov inequality for each state contained in the
feasible set X, a grid G on [—0.375,0.375]* is considered which is uniformly partitioned
in each coordinate direction and consists of 16* = 65536 points. To be more precise, the
grid points

i, ininis = (—0.375, —0.375, —0.375, —0.375)" + (iyh, ish, ish, ish)"

i; € {0,1,...,15} for each j € {1,2,3,4} and stepsize h = 0.05 are used. For each grid
point xy € G, the receding horizon Problem (2.4) - (2.6) with optimization horizon N = 25
is solved in order to obtain a sequence of open loop control values u*(0; zg), u*(1; xg), . . .,
u*(N — 1;z¢) satisfying Jy(zo, u*(+;20)) = Vi(zo). Doing so yields, as a by-product,
the trajectory z,»(n; xo) and the corresponding stage costs €(z,»(n; xo), u*(n; zg)) for n =
0,1,..., N —1. Then, the following loop is carried out with respect to the control horizon
me{1,2,....N —1}:

e Solve the RHC problem (2.4) - (2.6) in order to obtain Vi (z,»(m;x)), i.e. evaluate

Vi () at 2« (m; xg) and

e compute the suboptimality index a,,(m) depending on the current grid point
and the control horizon parameter m, i.e.

(M) = Viv(o) = Vi (- (m; 20))

Sy U@ (n; 30), u (1 o))
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In Figure 4.8, we marked a,,(m), m € {1,2,..., N — 1}, for each grid point xy € G. The
minima a(m) := ming eg{az,(m)}, m € {1,2,..., N — 1}, are connected by the dashed
black line. Additionally, we drew a red line in order to indicate whether a(m) > 0 and,
thus, a relaxed Lyapunov inequality holds for receding horizon control with optimization

horizon N and control horizon m.
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Figure 4.8: Illustration of the numerical computation of the suboptimality index ay,, =
a}\,’m from Assumption 3.2 for optimization horizon N = 25. For m € {3,4,...,12} the
relaxed Lyapunov inequality (3.1), i.e. our key condition in order to deduce asymptotic

stability, holds.

The key assumption a(m) > 0 of our main stability Theorem 3.12 is observed for m €
{3,4,...,12}. For every other control horizon, in particular for m = 1 which corresponds
to classical receding horizon control, at least one grid point exists which does not satisfy
a relaxed Lyapunov inequality and, consequently, is linked with a negative suboptimality
bound o, (m). While the RHC trajectory may still converge to the origin and exhibit a
satisfactory performance, our stability criterion is violated and, thus, stability cannot be
ensured anymore.

In the numerical computations, exact symmetry and a maximum at | N/2| = 12 are not
present. However, the shape of a(m), m = 1,2,..., N—1, resembles the one expected from
our derived theoretical results. In particular, increasing the control horizon improves the
suboptimality bounds. Here, the best performance specification is guaranteed for m = 6.
Indeed, many grid point does not satisfy a Lyapunov inequality for m = 1. In contrast to
that, a slight increase to m = 3 ensures stability on the whole grid. These observations

play a vital role in developing the algorithm in the ensuing section.

4.4 Algorithms

In Subsection 4.2 qualitative characteristics of the obtained stability bounds oy, are
derived with respect to the control horizon m, i.e. symmetric bounds and monotonicity
properties, which can be exploited according to Theorem 4.8. However, from a practi-
tioner’s point of view, the most interesting question remains whether a desired perfor-
mance specification @ > 0 is ensured or not, i.e. whether the inequality a%;,, > @ and,
thus, the desired stability behavior of the receding horizon closed loop holds. Hence, our
goal is to deduce conditions implying a sufficiently large optimal value af;,, of Problem
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3.10 based on a given KLg-function (-, ). To this end, choosing the optimization horizon
N sufficiently large provides an option, cf. Corollary 3.20. On the other hand, the com-
putational cost needed in order to solve the optimal control Problem (2.4) - (2.6) in each
receding horizon step grows rapidly with increasing optimization horizon N. In contrast
to this, changing the control horizon length m does not affect the finite horizon opti-
mization problem. The symmetry and monotonicity results from our theoretical analysis
encourage us to pursue this strategy. Hence, we aim at developing an algorithm which
enables us to ensure an a priori specified performance bound using the control horizon m
as an tuning parameter in order to reduce the required horizon length N.

In order to illustrate this idea, Example 1.10, for which Assumption 3.2 was deduced
in Section 3.3, is considered. Exploiting the corresponding KLy-function 5(-,-), Formula
(3.21) yields N = 28 as the minimal horizon length ensuring asymptotic stability, cf.
Figure 4.9. Using larger control horizons m leads to N = 16 (m = 6) and, thus, to a
much smaller optimization horizon, cf. Figure 4.9.

-0,5

-1,5

Figure 4.9: On the left, the performance bounds agg,,, m € {1,2,...,15}, are depicted
for Example 1.10. The optimization horizon N = 16 in combination with m = 6 ensures
asymptotic stability of the respective RHC closed loop . In contrast to that, RHC with
m = 1 requires a significantly longer optimization horizon N = 28 for 04]1\,’1 > 0.

Implementing more than only the first element of the resulting sequence of control
values postpones the next time instant at which a solution of the updated optimization
problem (2.4) - (2.6) has to be found. We point out that this does, in general, not reduce
the computational effort because the optimization routine typically solves an auxiliary
optimization problem at each time instant in order to get a good initial guess for the
successor state. Otherwise, numerical problems are encountered for large control horizons
m, cf. [95]. Furthermore, the resulting closed loop stays in open loop for longer periods
of time which may affect its robustness, cf. [86]. In conclusion, our goal is to combine the
benefits from both perspectives, i.e. using the tighter estimates for longer control horizons
while avoiding the loss of robustness. To this end, we proceed in two steps: firstly, we
introduce a very simple algorithm which puts the deduced theoretical results directly into
practice. Secondly, we employ a more elaborated version which aims at robustifying the
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previously presented algorithm. A synchronous generator model is considered in order to
illustrate the resulting benefits.

4.4.1 Basic Algorithm

For Example 1.10, Theorem 3.18 ensures asymptotic stability for each state xy of the entire
feasible set X for optimization horizon N > 28 and control horizon m = 1. Furthermore,
the assertion of Theorem 3.18 is only strict for the whole class of systems satisfying the
assumed controllability condition, cf. Remark 3.13. Hence, for a particular system and a
given initial condition, the corresponding estimates on the required horizon length may
be conservative. In addition, the parameter combination (N, m) = (16,6) guarantees our
stability criterion a}vjm > 0, cf. Figure 4.9. The introduced concept of multistep feedbacks
allows to employ, depending on the current state, different control horizons. Furthermore,
Theorem 3.12 yields Viy(-) as a common Lyapunov function assuming a relaxed Lyapunov
inequality. Hence, we aim at maintaining this Lyapunov criterion along the trajectory
emanating from xz for (N,m) = (16,1) and employing more than one element of the
computed sequence of control values only if needed. The construction of the following
algorithm is motivated by this approach: using the enhanced estimates for larger m > 1
but not staying in open loop if that is not necessary in order to improve the robustness
of the receding horizon closed loop.

Summarizing, ensuring a relaxed Lyapunov inequality for each point contained in the
receding horizon trajectory is sufficient. In order to take this into account, Proposition
3.1 is adapted using the terminology of Definition 1.24, cf. [42]. The elementary proof
follows the line of argumentation used in order to prove Proposition 3.1, cf. [97].

Proposition 4.23

Let a performance bound @ € (0, 1], an initial value zo € X, m* € N, a multistep feedback
law i : X x{0,1,...,m*—=1} — U according to Definition 1.25, a set M C {1,2...,m*},
and a control horizon sequence (m;)ien, € M be given and define o(-) accordingly to
Definition 1.24. Furthermore, suppose the existence of a function VX — Ry such
that the corresponding solution x;(-) with x;(0) = xzz(0(0)) = x¢ satisfies xz(o(k)) € X,
ke N, and

V(zp(o(k) = Vaa(olk+ 1) +a Y laaln;za(o(k), filn, 2a(o (k) (4.16)

for all k € Ny. Then, the following estimate holds:

oo mp—1

VET I (zo) = ) Y Uaa(msza(o(k)), in, za(o(k)))

= Y Uzp(n), flza(e(n),n — o)) < V(zo)/a.

Proposition 4.23 ensures suboptimality for the trajectory emanating from x, and
steered by the chosen feedback.

Now, the announced algorithm is presented. During runtime of the algorithm a list &
is constructed which contains the switching times o(k), k € Ny. To this end, we make
use of the programming notation back which allows for fast access to the last element
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of a list.” If (4.16) cannot be ensured for the chosen optimization horizon N, an “exit
strategy” is required, cf. Remark 4.25. Furthermore, a stopping criterion may be added.
If none is implemented, the algorithm runs forever which fits in with many control task.
We point out that the desired relaxed Lyapunov inequality may be violated due to numer-
ical effects in a small neighborhood of the equilibrium a*, cf. [44] for results concerning
practical asymptotic stability, which may motivate a criterion ||z, (c(k)) —2*|| < e with
a sufficiently small € > 0 for numerical experiments.

Algorithm 4.24
Let an initial state xy € X, a list S = (0), an optimization horizon N € Ns,, and a

performance specification @ € [0, 1) be given.
Set £ = 0. Do

(1) Set j =0, compute pn (-, 2,y (0(k))) and Vy(z,,(o(k))). Do

(a) Set j =7+ 1, compute Vy(x,y (7 xuy (0(k)))).
(b) Compute the maximal « satisfying (4.16) with a, Vy(-), and pn(-,-) instead
of @, V(-), and fi(-,-), i.e.

Vi (2uy (0(k))) = Vv (@ (G5 2y (0 (F))))

o= = (4.17)
Zn:o g(zﬂN (TL; Luy (U(k)))v MN(na Tun (U(k))))
for z,, (o(k)) # «* and a = 1 otherwise.
(¢) If @ > a@: Set my, = j and goto (2)
(d) If j = N: use “exit strategy”.
while o < @
(2) For j=1,...,my do
Implement pn(j —1,2,,(c(k))) at the plant.
(3) Set S := (S, back(S) +my), k =k + 1, goto (1)
while stopping criterion not satisfied.
Remark 4.25
Algorithm 4.24 checks in step (1)(d) whether the relaxed Lyapunov inequality is satisfied
for at least one control horizon m € {1,2,..., N — 1} for the given optimization horizon

N. If this verification fails, an “exit strateqy” has to be used:

e From a practitioner’s point of view one option is to print a warning, e.q. “solution
may diverge”, setting my = 1, and continuing with step (2) of the algorithm, cf. [97].
Then, however, one has to hope, fingers crossed, that everything will turn out to be
good in the end, although the desired stability criterion is violated.

o [f, in addition to asymptotic stability, a performance bound & > 0 is checked, let
& denote the mazimal value o obtained in (4.17). In case & > 0 holds, a warning
may be issued that the desired specification @ is not maintained and the performance

9The command back(S) returns the last element s,, of the list S = (sg, 1,52, ., Sn)-
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bound may be lowered to &. Then, Proposition 4.23 still allows for guaranteeing the
reduced bound & but cannot be employed in order to conclude the original perfor-
mance idex & any longer.

In this thesis, the optimization horizon N is chosen such that condition (1)(c) is ensured
for at least one control horizon m by our suboptimality analysis and, thus, (1)(d) is
excluded a priori.

Another approach is outlined in [30]: suppose that o in (4.17) is strictly greater than
the desired performance bound @. Then, a positive slack variable

[y

s 7= V(@ (0 (R) =Viv (245 (7 2y (0 (R)))) @ y Uy (15 25 (0 (K))), vy (12, 245 (0 (K))))

(4.18)
is introduced and added to the numerator of the right hand side in (4.17) in the next
iteration of the algorithm. As a consequence « is increased and, thus, condition (1)(c) is
weakened.'® This feature can be easily incorporated in our algorithm and may lead to an
improvement, cf. [97]. However, a violation in the first iteration of Algorithm 4.24 cannot
be dealt with.

This methodology can be extended such that a negative slack and, thus, a violation of the
desired Lyapunov inequality, is allowed. Then, the algorithm may be modified in order to
compensate, if possible, such violations in terms of stability or performance a posteriori,

cf. [96].

As pointed out in Remark 4.25 we want to exclude step (1)(d). Hence, the algorithm
ensures the desired performance a priori — a distinguishing feature in comparison to
algorithms which do only verify a suboptimality estimate a posteriori but may run into a
dead-end.

I
o

Remark 4.26

The introduced list S represents a possibility to implement the sequence (o(k))ken,. The
current time instant is accessible fast via back(S). In addition, the corresponding state
(uy (0(K)))ken, may be added to the list S, whose entries then consist of two elements.
We emphasize that V(-) is employed as a Lyapunov function at x,,(c(k)), cf. Remark
3.13 (ii). Another option is to remove the list S and use only the current state x. Then,
neither the time instances o(k), k € Ny, nor the corresponding states x,, (o(k)), k € Ny,
are saved in order to reduce memory usage.

At first glance, Algorithm 4.24 seems to increase the effort needed in each receding
horizon step. However, the a priori computation of Vi (-) at the next switching time cor-
responds exactly to the evaluation of this function at the ensuing time instant, which has
to be done anyway in order to solve the optimal control problem posed in the receding hori-
zon formulation. Hence, the proposed algorithm only produces additional computational
cost if needed. In particular, since Algorithm 4.24 allows us to reduce the optimization
horizon N significantly and the computational effort grows rapidly with respect to N,
this expenditure is, in the majority of cases, more than compensated, cf. [97].

In order to demonstrate benefits of Algorithm 4.24, our investigation of Example 1.10
is carried on. Based on the KLy-function (3(-,-) from (3.31) the minimal optimization
horizon N ensuring a desired performance specification is determined, cf. Table 4.1.

107f 5 was already introduced in a preceding step, the right hand side of (4.18) corresponds to the
change of s. Then, s represents the accumulated slack.
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For instance, asymptotic stability is ensured for optimization horizon N = 16 instead of
N = 28 (m = 1). Hence, for @ = 0, using the developed algorithm with optimization
horizon N = 16 guarantees that no exit strategy is required. Since the desired relaxed
Lyapunov inequality holds for RHC with horizon N > 5, the algorithm does not employ
m > 1, cf. [90] and Section 5.5.1 below.

RHC with m =1 | allowing for m > 1
a N N | m
0 28 16 6
0.25 31 17 8
0.5 35 20 7
2/3 39 23 8
0.8 45 26 11
10/11 53 33 11
100/101 77 53 21

Table 4.1: Minimal stabilizing horizon for RHC with m = 1 and for RHC with suitably
chosen control horizon m € {1,2,..., N — 1} for the suboptimality bounds Oéjlv,m from
Theorem 3.18 based on Assumption 3.2 with KLy-function g(-,-) from (3.31).

Hence, the strategy exhibited in the algorithm leads to classical RHC safeguarded
by our theoretical results because the estimate deduced via Problem 3.8 provides only
conservative bounds for this particular example. However, in many practical and more
challenging applications m > 1 is indeed a necessary condition which may seem to be
counter-intuitive. In this connection we emphasize that the relaxed Lyapunov inequality
is checked less often and, thus, weakened by employing larger control horizons: ensuring
the inequality

VN (@uy (k1)) < Vn(Zpy,, (0 +F) +@lpy, (0 4+ F), ivm(Tuy (0 4 K), 0)),

in each step k € {0,1,...,m — 1} implies the desired criterion

—_

m—

VN(x#N,m (TL + m)) < VN(x#N,m (n)> +a Z g(xﬂN,m (n + k)? MN,m(x#N,m (n + k)? 0))
k=0

after m steps. But this implication does not hold the other way round which explains why
using larger control horizons may ensure the desired criterion independently of whether
this is accompanied by an actual performance improvement or not.

In order to investigate the proposed algorithm more thoroughly, we consider the fol-
lowing nonlinear example from [28], which was also examined in [34], numerically.

Example 4.27 (Synchronous generator)
The system dynamics are given by

To(t) = —biws(t)sinzy(t) — boxa(t) + P
t3(t) = bycosxyi(t) — byxs(t) + E + u(t)

with parameters by = 34.29, by = 0.0, b3 = 0.149, by = 0.3341, P = 28.22, and E =
0.2405. Choosing E = 0.2405 matches a stressed and, thus, more challenging, operating
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condition, cf. [28, Subsection 6.1]. This example is reformulated in a sampled-data fashion
in order to fit into our discrete time setting. Let ®(-;x0,U) denote the solution operator
of the differential equation with initial value xq and piecewise constant control function
a(-) : [0,T) — U, i.e. u(t) =u € U fort € [0,T). Hence, the state space is given by
X :=R3 and the control value space U may be identified with R. Control constraints may
be easily integrated by adapting U appropriately.

For this example, our goal is to steer the system to its stable equilibrium z* =~
(1.124603730, 0.0, 0.9122974248)T. In particular, also its unstable counterpart, i.e. the
equilibrium 7 = (1.170838231,0.0,0.8934977016)7, has to be rendered to z*, cf. [94].
Receding horizon control is employed for the system constructed with sampling period
T = 0.05 and running costs

T
e = [ et n) - P+ Mao)|Pdeor
0
@) = T(le(0s,@) = 2|+ Aa()2) = T (o = 22 + Aljul?)

with A = 1073, In addition, the physically motivated state constraints from [28] are taken
into account, i.e.
X::{x€R3:O§x1<7r/2 and ngg}.

Let the desired performance bound @y := 0 be specified. Since Assumption 3.2 has to
hold on a set of feasible states xy € X, level sets

L; = {ao : V() = inf > li(xu(n),u(n)) < 0.0196} (4.19)

of V() C X for optimization horizon N = 6 are considered. Hence, ensuring our relaxed
Lyapunov inequality for each point contained in a level set £;, i € {1,2}, guarantees to
be, after implementing the first m control values, again in this set, i.e. the level sets L;,
i € {1,2}, are receding horizon invariant and, thus, the state constraints are satisfied at
each transmission instant o(k), k € Ny.

For our numerical investigation, a grid G contained in the cube

[z — 0.25, 27 + 0.25] x [—1,1] x [25 — 0.75,25 + 0.75] C X

is built up with discretization accuracy 0.05 in each coordinate direction. After removing
the desired set point x*, this set consists of 11 -41-31 — 1 = 13980 grid points. The
intersection of this grid G and the level set £;, ¢ € {1,2}, is a subset of the introduced
cube, cf. Figure 4.10.

Then, we compute, for each zo € G N L;, i € {0,1}, the corresponding suboptimality
index a1(x0) and distinguish whether ag; > @ is satisfied or not. If this check fails,
the control horizon m is increased and the respective performance bound is computed.
Indeed, for each considered initial state, a control horizon m € {1,2,3,4,5} exists such
that ogm(20) > @ and, thus, Js(x,,,. (M, 20)) € L;, i € {0,1} holds. Repeating this line
of arguments iteratively shows that the proposed algorithm may be applied without an
exit strategy in order to conclude the desired stability behavior.!

HSince the relaxed Lyapunov inequality is ensured only at each grid point and not necessarily for each
point contained in the respective level set £;, i € {0, 1}, the argumentation is not rigorous. Nevertheless,
the stated claim is confirmed by our numerical computations.
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Figure 4.10: Illustration of the level sets £y (left) and £, (right) from (4.19) by means of
the corresponding convex hulls. £y contains 3091 grid points, whereas £, consists of only
1758. The drawn convex hulls represent 23.1% (Ly) and 12.9% (L) of the volume of the
cube, respectively.

For ¢+ = 0, i.e. incorporating the stage costs based on the deviation from x* measured
along the resulting trajectory, 10 grid points are obtained for which m > 1 is necessary in
order to ensure the relaxed Lyapunov inequality for optimization horizon N = 6, cf. Table
4.2. We point out that, for m = 1, three of these points even require an optimization
horizon N = 9 in order to exhibit the desired performance bound. Hence, allowing for
larger control horizons reduces the optimization horizon significantly. Furthermore, the
third tabulated point is not stabilized for N = 5, m € {1,2,3,4}.1? A further reduction of
the optimization horizon is, thus, not possible without incorporating an “exit strategy”.

lo(-,-) from (4.19) 6m Minimal N:
grid point zg m=1 ‘ m =2 ‘ m=3 ani >«

4+0.9246 | -0.1500 | +0.9123 | -0.0300 | -0.0236 | +0.0230
+0.9246 | -0.1000 | +0.9123 | -0.0730 | -0.0096 | +0.0420
+0.9246 | -0.1000 | +0.9623 | -0.0819 | -0.0440 | +0.0103
+0.9246 | -0.0500 | +0.9123 | -0.0115 | +0.0657 -
+0.9246 | -0.0500 | +0.9623 | -0.0807 | -0.0034 | +0.0455
+0.9246 | -0.0500 | +1.0123 | -0.0294 | -0.0122 | +0.0294
+0.9746 | -0.1000 | +0.9123 | -0.0305 | -0.0133 | +0.0299
+0.9746 | -0.0500 | +0.9123 | -0.0355 | +0.0335 -
+0.9746 | -0.0500 | +0.9623 | -0.0597 | -0.0214 | +0.0240
+1.0246 | -0.0500 | +0.9123 | -0.0410 | +0.0018 -

0 00 00 00 J © ~J © ©

Table 4.2: Grid points from L, violating ag; > @ = 0. For each of these points m €
{1,2,3} exists such that g, > @ holds. For m = 1, the optimization horizon has to be
increased to N = 9 in order to ensure the desired performance specification.

Similar results are obtained for ¢;(-,-), cf. Table 4.3. Again, an optimization horizon
of N = 9 turns out to be the minimal stabilizing horizon for RHC with m = 1 in order

12Two point not contained in Table 4.2 also require an optimization horizon N > 5.
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to satisfy the proposed performance specification. Furthermore, we point out that even
control horizon m = 4 is required in order to ensure the suboptimality bound. The second
and sixth point tabulated in Table 4.3 are not stabilizable for N = 5.13

Note that the generated trajectories may leave the level set. The algorithm applied
with @ = 0 ensures a decrease only at the transmission times. However, since the level
set is located in the interior of the cube which also exhibits a safety margin away from
the boundary of the set of feasible states X as well as the small sampling time in com-
bination with continuity properties of the considered system a violation of the imposed
state constraints seems to be highly unlikely.

ly(-,-) from (4.19) Q6m Minimal N:
grid point xg m=1 m =2 m=23 ‘ m =4 ay) >«
+0.9246 | -0.0500 | +0.9123 | -0.0594 | +0.0069 - - 8
+0.9246 | -0.0500 | +0.9623 | -0.1063 | -0.0624 | -0.0006 | +0.0377 9
+0.9246 | +0.0000 | +0.9123 | -0.0309 | +0.1110 - - 8
+0.9246 | +0.0000 | +0.9623 | -0.1036 | +0.0190 - - 9
+0.9746 | -0.0500 | +0.9123 | -0.0231 | -0.0034 | +0.0451 - 7
+0.9746 | -0.0500 | +0.9623 | -0.0213 | -0.0465 | -0.0092 | 4+0.0260 7
+0.9746 | +0.0000 | +0.9123 | -0.0195 | +0.1080 - - 7
+0.9746 | +0.0000 | +0.9623 | -0.0606 | +0.0106 - - 8
+1.0246 | +0.0000 | +0.9123 | -0.0096 | +0.1047 - - 7
+1.0746 | +0.0000 | +0.9123 | -0.0011 | +0.1012 - - 7

Table 4.3: Grid points from £; violating the performance specification ag; > @ = 0. The
smallest optimization horizon N guaranteeing oy, > @ for each grid point is N = 9.

Concluding, Algorithm 4.24 allows to reduce the optimization horizon significantly, i.e.
N = 6 instead of N = 9 for @ = 0. Similar effects are observable for other performance
bounds, e.g. @ = 1/3. Here, applying the proposed algorithm enables us to ensure the
desired Lyapunov inequality for N = 13 instead of N = 16 for classical RHC for ¢4(-,-)
(or N =12 instead of N = 15 for {y(,-)). Hence, employing larger control horizons is not
only favorable from a theoretical point of view but may also be exploited in practice.

4.4.2 Advanced Algorithm

Although employing m > 1 is not needed very often along the closed loop trajectory, it
may, nevertheless, be harmful in terms of robustness. Hence, we aim at developing the
proposed algorithm further in order to avoid staying in open loop longer than necessary.
Here, since ay; < @ may occur, step 1 of Algorithm 4.24 seems to be inevitable. But
we do not know whether the computed sequence of control values is superior to receding
horizon control with m = 1. Indeed, also classical RHC may satisfy the performance
specification after m steps. Hence, the main idea consists of examining whether the loop
can be closed or not without violating the imposed performance specification. Exactly
this issue is tackled by the following algorithm.

13Two point which are not listed in Table 4.3 also violate our stability criterion for N = 5, i.e. an,m < 0
forme {1,2,...,N — 1}.
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Algorithm 4.28
Let an initial state zp € X, a list S = (0), an optimization horizon N € Ns,, and a
performance specification @ € [0, 1) be given.

Set £k =10. Do

(1) Carry out step (1) from Algorithm 4.24 in order to obtain

o Vn(zuy(o(k))),
o un(j,xuy(0(k))), j=0,1,...,my —1 with my > 1

such that

Vi (0(k)) = Vit (mgs 2 (oK) 20
S5 g (0 2 (), (s (0 ()

(2) Set j =0 and define ay(n) = un(n,z,,(0(k))), n=0,1,...,m; — 1. Do

(a) Set j=7+1

(b) Implement uy(j — 1) at the plant ~ Z(j) := fL‘uN(j z,y(0(k))).
(c) If j < my: compute pn(-,2(j)) and Vy (., (mr — 7:2(j))). Check whether
Vil (o) = Vil (m — 333() .
oo L (n), an(n) + X250 (Iw(n—],fﬁ(])),uw( n—3,2(j))
(4.21)

holds. In case it does: exchange the remaining tail of 4, i.e.
. _ un(n) n<j
' {uN(n —5,2(j)) nzj
while 7 < my
(3) Set S := (S, back(S) +my), k:=k+ 1, goto (1)

while stopping criteria not satisfied.

In Algorithm 4.24 we ensured the relaxed Lyapunov inequality — the key element of
our approach. However, guaranteeing (4.20) may require the implementation of more
than only the first element of the computed sequence of control values piy(n, z,, (0(k))),
n=20,1,...,N — 1, i.e. staying in open loop for a longer period of time. Algorithm 4.28
proposes a strategy to close the resulting control loop more often. In this context, we
have to distinguish between switching instances, which coincide with the transmission
times, cf. Section 1.4, and time instances not contained in the sequence (o(k))gen,-
According to Definition 1.24, the existence of such sampling instances implies an element
my = o(k + 1) —o(k) > 1. Here, we decouple the update times, i.e. the sampling
instants at which the sequence of control values to be implemented is modified, and the
transmission times, i.e. sampling instances at which the relaxed Lyapunov inequality has
to hold. This leads to the question, which condition allows us to update the sequence of
control values more often and, thus, robustifies the control loop. To this end, Algorithm
4.28 employs (4.21) which ensures that the sequence assembled from the previously used
and the newly computed one also satisfies the relaxed Lyapunov inequality. To be more
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precise, the condition checks whether a sequence for which we have ensured that the
relaxed Lyapunov inequality holds at the next transmission time may be updated at
a sampling instant preceding that time instant. The candidate is concatenated by the
sequence of which at least one control value was implemented at the plant and the sequence
resulting from applying RHC at the current time instant. If the concatenated sequence
also satisfies the relaxed Lyapunov inequality at the forthcoming transmission instant,
the old sequence is replaced by the newly computed one in order to improve robustness
by closing the control loop once more.

Indeed, for trajectories emanating from the points violating the desired Lyapunov
inequality for optimization horizon N = 6 for the synchronous generator this condition is
fulfilled each time. Hence, Algorithm 4.28 indeed performs classical RHC but ensures —
a priori — asymptotic stability. Here, verifying the relaxed Lyapunov inequality for larger
control horizons enabled us to check our stability criterion in advance. Although (4.21)
holds for these trajectories there is no guarantee that it always does, i.e. only being able
to stick, if necessary, to a computed control sequence for more than one sampling instant
yields the desired stability guarantee. Hence, Algorithm 4.28 robustifies the applied RHC
strategy. Furthermore, it smoothes the resulting trajectories, cf. Figures 4.11 and 4.12.
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Figure 4.11: Trajectories emanating from the crucial points from Table 4.3 computed
with the basic (on the left) and the advanced algorithm (on the right) based on the stage
costs £1(+, ). The more elaborated Algorithm 4.28 updates each time and, thus, smoothes
the corresponding trajectories, cf. also Figure 4.12.

In order to conclude this subsection we comment on some effects observed for the
considered example. To this end, we focus on the interval between o(0) and o(1).

e For stage costs ¢1(-,-), the performance estimate is improved by Algorithm 4.28 for
cach update, i.e. the left hand side of (4.21) is larger than the one from (4.20).
While the corresponding change in the optimal value function is non-monotone.

e For stage costs ly(+,-), the last update, e.g. the second for m = 3, deteriorates the
performance estimate whereas the preceding one contributes positively. Summing
up these effects yields increased suboptimality bounds for m = 3 and decreased
estimates for m = 2. The optimal value function evaluated at the next transmission
time increases by updating.

Hence, the main benefit of applying the advanced version of the proposed algorithm is the
concomitant robustification. The overall performance of the receding horizon closed loop
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is investigated in [96]. Next, the control values actually implemented at the plant during
runtime of Algorithm 4.28 are considered. The next control value to be applied after
updating the sequence of control values decreases in norm for each point from Tables
4.2 and 4.3, c¢f. Table 4.4 for a typical course. For another update criterion, which is
preferable from a computational point of view, we refer to [97].

| L a0) [ a() [ a@) [ a®) | a@) | aBG) | a6) | a(m) [ a®B) |

z(0) | +0.755 | 4+0.596 | +0.110 | -0.318 | -0.775 | -0.000 — — —
z(1) — +0.458 | +0.257 | -0.014 | -0.336 | -0.762 | -0.000 — —
z(2) — — +0.121 | +0.131 | -0.038 | -0.330 | -0.747 | -0.000 —
z(3) — — — -0.004 | +0.104 | -0.036 | -0.322 | -0.735 | -0.000

Table 4.4: Computed sequences of control values at state z(j), j = 0,1, 2, 3, for the second
point from Table 4.3. An update is carried out at each sampling instant. The applied
control values are written in red.

Our focus was put on the control horizon. In particular, we pointed out that the
theoretically deduced results with respect to symmetry and monotonicity properties may
be exploited in such a way that a positive impact not only on networked control systems
but also on RHC in general is attainable. In particular, the proposed algorithms represent
a methodology to reduce the optimization horizon N which predominantly determines
the computational effort associated with solving the optimal control problem in each
receding horizon step. Furthermore, the more elaborated Algorithm 4.28 ensures that
the robustness properties of RHC are preserved. We emphasize once more that both
algorithms verify the desired performance estimates a priori.

— . . . . . , - . . . . . . .
70.05 0.1 0.15 0.2 0.25 0.3 0.35 0.05 0.1 0.15 0.2 0.25 0.3 0.35
time t time t

Figure 4.12: The x5 component of the trajectories which are generated by Algorithm 4.24
(solid line) and Algorithm 4.28 (dashed-dotted line) and emanate from the second, forth,
sixth, and seventh point from Table 4.2 (¢y(-,-), on the left) and Table 4.3 (¢(-,-), on the
right), are drawn. By construction the trajectories cannot deviate up to the first sampling
instant T = 0.05.

103






Chapter 5

Sampled-Data Systems and Growth
Condition

In Chapter 3 we deduced our key results in order to ensure asymptotic stability and, in
addition, gave estimates on the performance of the receding horizon closed loop provided
Assumption 3.2 holds. Furthermore, in Section 1.3, sampled-data systems were introduced
in order to incorporate systems originally defined continuously in time in our discrete time
setting. Typically, sampled-data systems are induced by an ordinary or partial differential
equation and, thus, the corresponding control input, which is actually implemented at the
plant, has to be specified on the entire sampling interval. Allowing for arbitrary metric
spaces in the definition of the admissible set of control values enables us to deal with
this fact. However, our standing Assumption 3.2 imposes bounds only at the sampling
instances which fits well to the discrete time setting but may not fully reflect the stability
behavior of a sampled-data system, cf. the following example of a reaction diffusion
equation taken from [5].

Example 5.1 (Semi-linear reaction diffusion equation)

In this example we change the notation to be consistent with the usual PDE notation:
x € Q C R? is the independent space variable while the unknown function y(-,t) : @ — R
denotes the state. Let the open and connected set ) be a Lipschitz-domain in order to
ensure well-posedness of the following semi-linear parabolic partial differential equation
(PDE), cf. [119, Subsection 2.2.2]. We consider a reaction diffusion equation

y(x,t) =0 on 0 x (0,00) (5.2)
with homogeneous Dirichlet boundary conditions, initial data y(z,0) = yo, distributed

control u(-,t) : Q@ — R, and continuously differentiable non-linearity f : R — R. In
addition, let f(0) = 0 in order to ensure that the origin is an equilibrium. For existence
and regularity results we refer to [16].

Before we continue our investigation of Example 5.1, we present the following theo-
rem concerning the local stability behavior of the uncontrolled version of this semi-linear
parabolic equation which is proven in [16].

Theorem 5.2
For each v € (0, \1 + f'(0)), a constant R = R(7y) exists such that for all yo € Co(§2) with
llvoll < R the solution y(-,t) of (5.1), (5.2) with u(-,t) =0 for allt € [0,00) satisfies

lyC. 0l < Mllyolle™ vt =>0. (5-3)
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Here, Ay = M\ () denotes the smallest eigenvalue of the differential operator —A in
Hy(9).

The constant M from (5.3) is independent of v and the given initial state yy. Indeed,
it depends only on the used norm, e.g. M = 1 for || - ||;2(q). Furthermore, the origin is
unstable for A\; < —f/(0), cf. [16] for details. In the ensuing example, we show that Theo-
rem 5.2 allows us to establish a continuous time counterpart to our standing Assumption
3.2. We point out that the following line of arguments is crucially based on the fact that
we do not require optimality of the involved control law.

Example 5.3 (Chaffee-Infante equation)
An important representative of the class of reaction diffusion equations considered in Ex-
ample 5.1 is the one dimensional Chaffee-Infante equation

yt(xv t) - yccm(l" t) + u(y(x, t) - y(ZL‘, t)3) + u(‘ra t)v (54)

ie. f(y) = —ply —y®). For domain Q = (0,1), parameter y = 11 and the initial data
y(z,0) = 0.2sin(mz), the origin is unstable because \; = 7 < 11 = —f'(0) holds, cf.
Figure 5.1.
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Figure 5.1: Solution of the uncontrolled Chaffee-Infante equation (5.4) with x4 = 11 and
initial condition y(z,0) = 0.2 sin(7x).

Our goal is to stabilize the system governed by Equations (5.1) and (5.2) to the origin
by RHC. In addition, we want to give explicit estimates for minimal stabilizing horizons.
To this end, this evolution equation is interpreted as a discrete time system, cf. Section
1.8, and the standard L?-cost functional

U(y(n), u(n)) = ly(,nT)l[72(0) + Allul nT)I2 )

15 used. Emistence results for the solution of this optimal control problem can be found
in [89]. At this moment, Theorem 5.2 is applied in order to establish the (exponential)
controllability condition given in Assumption 3.2. Then, Theorems 3.18 and 3.12 are
used in order to conclude stability and to guarantee performance bounds. However, we
make a small detour which turns out to be fruitful in order to deduce tighter suboptimal-
ity estimates for this example. Doing so motivates the further analysis in this chapter.
Nevertheless, the main ideas remain completely the same as in [5].
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In order to deduce exponential controllability in terms of the running costs, the feedback

control u(z,t) = —Ky(x,t) with a real constant K is chosen. Then, Theorem 5.1 is
applied with F(y) := f(y) + Ky in order to obtain
Cly( ) =y D)l[La ) < MPe 0 (yo()) (5:5)
with v = A\ + f'(0) + K. Furthermore, we get
Uy(0),ul8) = Ny OllTa@) + Mul, )l

= (DL + ARy (1)l 72 = (1+ A (y(-, 1)),

Combining this equation with (5.5) yields exponential controllability in terms of the stage
costs, i.e.

Uy(1),ul 1) = (L+AK?) £ (y (- 1)) < Ce "0 (yo (")) (5.6)

with overshoot C := (1 + AK?)M? and decay rate y = 2vy. Indeed, (3.3) is ensured for
each t € Ry and not only at the sampling instants, i.e. (5.6) represents a continuous time
counterpart to (3.3). Of course, we may return to the discrete time version, i.e. interpret
y(-,nT) as the n'™ state y(n) for sampling period T. Then, we conclude

((y(n),u(n)) < Co™*(y(0))  VneN

with overshoot C' := (1 + AK*)M?, decay rate o = e 7, and v = M\ + f'(0) + K.
Note that only the decay rate o was adapted. Here, we like to point out the ambiguous
role of the constant K. Picking larger values for K leads to faster decay but also to an
increased overshoot. Hence, there is a trade-off between advantages and disadvantages.
At this point, having an explicit formula for the optimal value of Problem 3.8 turns out to
be extremely beneficial because it allows to easily solve the following optimization problem
i order to choose K appropriately.

Problem 5.4
Minimize the optimization horizon N subject to N>y, K € R and

y=M+f0)+K=nm*-11+K >0,
(o = DITs( = 1)

oz]lm =1- >0 with
Hi 2 — Hl 2(vi—1)
i1 i1
Y%i=CY 0" =(1+AK)M>> (e7")", ie{2,3,...,N}.
n=0 n=0

This is a mized integer problem. The maximal 0411\/,1 with respect to the parameter K is
computed for given optimization horizon N, cf. Figure 5.2. Here, we use the reqularization
parameter A = 0.01 and the sampling period T = 0.01. Note that the choice of K influences
the resulting estimates only on the overshoot C' and the decay rate o in Assumption 3.2,
but does not appear in the actual receding horizon algorithm. Taking a closer look at
the corresponding optimal values for K provides interesting information on its own. For
example, the optimization horizon has to be sufficiently large in order to ensure that fast
decay, which is implied by choosing K large, is preferable to small overshoot bounds.
Further results linked with the choice K in this example are given in Remark 5.5.
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Figure 5.2: On the left we depict the maximal achievable oy, for a given optimization
horizon N. According to this, the minimal stabilizing horizon, i.e. the smallest N ensuring
asymptotic stability, is obtained for N = 10. On the right, the corresponding optimal
choices for the parameter K are illustrated.

In this ezample, Theorem 3.18 guarantees a (strictly) positive optimal value of Problem
3.8 for optimization horizon N = 10, cf. Figure 5.2. In addition, since ||y(-,t)||%2(m =
*(y(-,t)) holds, Assumption 1.7 is satisfied for ai(r) = ao(r) = r? for the discrete as
well as for the continuous time setting. Indeed, using Theorem 5.2, even enables us to
easily deduce the estimate cas(||yoll2) = c€*(yo) > V(yo) for a suitably chosen constant
¢ € Roo, cf. [5, Proof of Theorem 3]. Hence, Theorem 8.12 is applicable and, thus, ensures
asymptotic stability for the RHC' feedback with optimization horizon N = 10.

Before proceeding with a comparison of theoretical results and numerical experiments
for the considered example, we state the following remark which is based on Example 5.3
but makes an important contribution to the sensitivity analysis carried out in Chapter 4.

Remark 5.5
We look at the optimal values of Problem 3.8 obtained in Example 5.3 for N = 2,3,4 in
detail, cf. Table 5.1.

| Horizon N | Value ajy, | Parameter K |

2 —0.0518 1.1304
3 —0.0485 1.1304
4 —0.0489 1.1304

Table 5.1: Optimal values a}v’l of Problem 3.8 resulting from Example 5.3 for N = 2, 3, 4.

Since the optimal parameter K does not change on this interval, the overshoot C' and
the decay rate o incorporated in Assumption 3.2 and, consequently, in the calculation
of O‘JIV,I do not change for N = 2,3,4. However, counter-intuitively the corresponding
values are not monotonically increasing. Hence, we conclude that the optimal values of
Problem 3.8 and, thus, Problem 3.10 are not monotonically increasing with respect to the
optimization horizon N which fills a gap in our sensitivity analysis.

We continue with a comparison of the obtained estimate with numerical computations.
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Example 5.6

In Figure 5.3 one observes that receding horizon control with optimization horizon N = 4
and spatial discretization parameter Ax = 0.01 stabilizes the system. For larger opti-
mization horizons, e.qg. N = 8, the stabilization is achieved much faster, i.e. the receding
horizon algorithm exhibits a superior performance. Numerically, N = 2 turns out to be

the “minimal stabilizing horizon”.! Here, we emphasize that the numerical experiment

W)

Figure 5.3: Receding horizon trajectories for optimization horizon N = 4 (left) and N = 8
(right).

18 based on a single initial condition. In contrast to that, our theoretical estimates hold
for a set of initial conditions. This explains why the deduced estimates for the minimal
stabilizing horizon seem to be, in general, conservative for a concrete example. The second
reason may be the estimate from Theorem 5.2 used in (5.5) which is, in general, conser-
vative. Choosing a more elaborate control function instead of our simple feedback control
may tighten the deduced results.

Remark 5.7

Since, for optimization horizon N =7 and control horizon m = 3, Formula (3.21) yields
a =0.0020 > 0 (K = 2.3223), employing Algorithm 4.2/ reduces the optimization horizon
significantly and, thus, tightens the deduced estimate. Indeed, the numerical verification
of the relazed Lyapunov inequality never fails for this example. Hence, 4.24 applies “clas-
sical” receding horizon control.?

Remark 5.8

In [6, 39] the reaction diffusion equation from Ezample 5.1 is extended to a reaction ad-
vection diffusion equation. In these references, it was shown how the developed theory
from Chapter 3 can be applied in order to derive design guidelines for the running costs
which allow for reducing the optimization horizon in the control strategy. In contrast to
the heuristic arguments in these references, we deduced rigorous estimates on the required
horizon length.

!Note that the numerical computations deviate from [5]. In particular, the required optimization
horizon in order to stabilize the system by RHC is determined more carefully and, thus, corrected.

2As a consequence, the numerical results of Algorithm 4.24 and 4.28 coincide for this particular
example.
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Besides being a nice application of our methodology deduced in Chapter 3, the previous
examples exhibit a continuous time counterpart to Assumption 3.2 satisfied with 3(-,-) €
KL of type (1.11).

Assumption 5.9

Let a function 8 : R xRy — RY be given by B(r,t) = r-Ce ™+ with overshoot C > 1 and
decay rate p > 0 and consider a continuous time system governed by x(t) = f(x(t),a(t))
for all t € [0,00). Suppose that, for each xo € X, an admissible control function i, :

Ry — U ewists such that
U(D(t; o, ), u(t)) < Ce 0 (o) holds for all t > 0, (5.7)
i.e. exponential controllability in terms of the stage costs holds.?

Clearly, Assumption 5.9 implies Assumption 3.2 with suitably adapted discrete time
decay rate 0 = e #T cf. Theorem 5.12 below. Hence, for a chosen (discretization)
parameter T', Inequality (5.7) is reflected at time instants 0,7, 27, .... Consequently, for
a fraction T'/k, k € N>o, of the parameter 7', Inequality (5.7) is taken into account at k
times as many time instants. What effects does such a refinement of the (discretization)
parameter 1" have on our performance bounds? Intuitively, we expect that the behavior
of a continuous time system is characterized more precisely. This question is tackled in
the first section of this chapter. And does repeating this refinement iteratively improve
our suboptimality estimates? An alternative approach based on a purely continuous time
setting is given in [104]. Here, we show that the results coincide in the limit, cf. Section
5.2. Furthermore, a problem connected with applying Theorem 3.18 for arbitrarily fast
sampling is observed.

In the ensuing Section 5.3, a growth condition is introduced which does not only tighten
our suboptimality estimates but also solves the problem observed for very fast sampling by
reflecting, e.g. continuity properties of an underlying continuous time system. In order to
incorporate this additional assumption in our setting, the concept of equivalent sequences
is used. These equivalent sequences turn out to be the key ingredient in order to generalize
the methodology of Chapter 3 to a weaker controllability assumption in Section 5.4 which
is also used in [120]. In order to conclude this thesis, our results are compared to those
from [90,120].

5.1 Discretization and Sampled-Data Systems

The example of the reaction diffusion equation considered in Examples 5.1, 5.3, and 5.6
motivated the extension of Assumption 3.2 to its continuous time counterpart Assump-
tion 5.9. Since the continuous time version implies the discrete one for an arbitrary
sampling period T' (and suitably adapted spaces X and U of feasible states and controls,
respectively) with adjusted decay rates ¢ = e #T, implications of using this assumption
at additional time instants on our suboptimality estimate from Theorem 3.18 are investi-
gated. To this end, the following definition is needed.

Definition 5.10
Suppose that Assumption 5.9 is satisfied with overshoot C > 1 and decay rate p > 0.

3A control function 4, : RT — U is admissible if and only if the corresponding solution ®(-; g, )
satisfies ®(¢; zo, @) € X for each ¢ > 0.
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Let a sampling period T" > 0 and a discrete time optimization horizon N € Nso be
giwen which determines the corresponding continuous time optimization horizon of length
[0, NT'). Furthermore, let a sequence (k;);jen, C N be given. We distinguish between the
following two cases.

e A constant continuous time control horizon. Let m € {1,2,...,N — 1} be given.
Then the elements of the discretization sequence (D;);en, are defined by the quadru-
plets

(T3, Nj,05,m;) = (kT kN, e ™5 T Jm). (5.8)

o A constant discrete time control horizon m;, = m = 1. Then, the elements of the
discretization sequence (D;)jen, are defined by the triples

(T3, Ny 05) = (k; T, kyN, e 7). (5.9)

T; denotes the sampling period for the j-th discretization. While N; and o; represent the
discrete time optimization horizon and the corresponding decay rate, respectively, which
have to be suitably adapted in order to keep their continuous time counterparts unchanged,
e.g. NT = N,T} holds for each j € Ny and, thus, the continuous time optimization horizon
is constant. The control horizon is either adapted as well, cf. (5.8), or kept constant which
implies that the continuous time control horizon changes depending on the discretization
parameter k;. If kj11 = nk; holds with n € Nxo, the (j + 1)-th discretization is called a
refinement of the j-th discretization and, thus, a more accurate or finer discretization.

We point out that the continuous time optimization horizon remains constant inde-
pendently of whether (5.8) or (5.9) is chosen in order to deal with the control horizon. In
order to illustrate Definition 5.10, the following example is given which seems to be the
prototype of a discretization and, thus, will be investigated in detail in this section.

Example 5.11

Let T >0, N € Nso, C > 1, and o < 0 be given. Then, the sequence (k;)jen, € N of
discretization parameters defined by k1 = 2k; and ko = 1 is chosen. Hence, the sampling
period T is halved and the discrete time optimization horizon N is doubled in each refine-
ment step. This leads to the sequence (D;)jen, = (Tj, Nj, 0j)jen, = (27T, 29N, 02 7) jen, -
Figure 5.4 illustrates the resulting tighter bounds on the stability behavior of the underlying
system.

The construction described in Example 5.11 iteratively leads to more accurate dis-
cretizations and, thus, reflects Assumption 5.9 in the discrete time setting via Assumption
3.2 better after each refinement step. We are interested in the resulting effects on our
suboptimality estimates. The investigation is subdivided into two parts:

e on the one hand, also the control horizon is adjusted which corresponds to m; := 2/m
in Example 5.11, cf. (5.8). This yields — as intuitively expected — improved
performance bounds.

e on the other hand, the control horizon is fixed, cf. (5.9). In practical applications
sampled-data systems often use piecewise constant control functions. Hence, in
general, sufficiently fast sampling is required in order to preserve stability properties
for the sampled-data system, cf. [91]. Here, possible pitfalls in this setting are
pointed out.
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Optimization horizon N Optimization horizon N

Figure 5.4: The continuous curve on the left depicts the bounds induced by Assumption
5.9 with overshoot C' = 2, decay rate u = In(2), and sampling period 7" = 1. The blue line
indicates the implied bounds taken into account by Assumption 3.2 with o = e7#T = 1/2
(¢). On the right, we added the respective bounds for a more accurate discretization

corresponding to (7%, Ny, 02) = (0.25, 20, f/g) (black line).

In order to be able to apply Formula (3.21) for a given discretization parameter k € N,
the definition of ~; from Theorem 3.18 is combined with the setting given in this section.

Theorem 5.12

Let Assumption 5.9 be satisfied with decay rate > 0 and overshoot C' > 1. In addition, let
an optimization horizon N € Nso, a control horizonm € {1,2,..., N—1}, and a sampling
period T > 0 be given. Furthermore, we define o := e T € (0,1), Bp(r,n) :=1r-C¥c",
and

i—1 '
n_ Cl—o'*
Vi = Zr - Br(r,n) CZO (") = %. (5.10)

Then, for each k € N, Assumption 3.2 holds for By(r,n), i.e. a KL-function of type
(1.11) with overshoot C' and decay rate /o. Furthermore, the optimal value cgy gm(k)
of the corresponding optimization problem (Py), i.e. Problem 3.8 based on Bi(-,-) with
optimization horizon kN and control horizon km, is given by Formula (3.21) based on
Vik instead of vy, i.e.

kN N
N km (k) = 1— i1 (i = 1) . Iizhv—myr (i — 1)
iz Vide = i (iw=1) TLiZhv—mye1 vide = Lickov—my1 (i —=1)

(5.11)

Proof: For k = 1 verifying Assumption 3.2 and showing (5.11) follows directly from
Assumption 5.9. For k € N>, we adapt the sampling period, i.e. Ty, := T'/k. Hence, the
corresponding decay rate e *7/* equals /o and, thus, the assertion is ensured by taking
the introduced notation into account.

112



DISCRETIZATION AND SAMPLED-DATA SYSTEMS

O

Note that (5.10) has to be interpreted in the sense that +;; does not depend on the
first argument of Gi(r,n). Indeed, 7, may have been defined directly by the expression
given by the right hand side of (5.10) but using the involved KL-function emphasizes its
original background, cf. Remark 3.15. Furthermore, the additional index k in (5.10) and
the additional argument & in (5.11) clearly indicate the involved discretization parameter.

Theorem 5.12 allows us to begin our study of more accurate discretizations. To this
end, the continuous time optimization and control horizon are fixed.

Proposition 5.13

Let the assumptions of Theorem 5.12 be satisfied. Furthermore, we define o, v x, and (Py)
according to Theorem 5.12. Then, for the sequence (k;)jen, with k; := 27, the optimal
values ag,nk;m(k;) of (Pr,) satisfy

QNm = QkoN,kom (Ko) and o N em (k) < Qg m v (K1) < 1—0™ Vj € Ny,

(5.12)
i.e. using an iterative refinement as specified by (k;)jen, of the control and the optimization
horizon ensures monotonically increasing suboptimality estimates.

Proof: The proof is subdivided into two parts. Firstly, we show the monotonicity of
the sequence (a,nk,m(k;))jen,- In the second portion of the proof we deduce the upper
bound which is independent of the index j.

Let k be an element of (k) en,. Then, using the representation given by (5.11) yields

-1

kN ' -1 kN '
akvam(k)zl_[ H L_ll H _ ik 1

i1 Tk T 1 i—k(N—m)+1 ok T 1
Hence, taking k;41 = 2k; into account, it is sufficient to establish
kN

H Yik < ﬁ ( V2i,2k V2i—1,2k ): Qﬁv Vi, 2k

1= A T S
i—kot1 Yik i—kot1 V2i,2k V2i—1,2k i=2kot1 V2i.k

for o € {m, N —m}. Since the products of either side of the inequality sign consist of the
same number of factors, showing the desired inequality componentwise, i.e.

'7i,k('72i,2k - 1)(722‘—1,214; - 1) < Y2i,2k 72i—1,2k(%’,k; - 1)

or, equivalently, Yo; ok Y2i—1.2k < Vik(V2i26 + Y2i—1,2¢ — 1), suffices. Note that the con-
crete value of o does not play a role. In order to verify this inequality, we establish
Yoiok Voi-1.2k < Vik (72006 + Y2i—1.2k — C) reduced by C?, i.e. bearing (5.10) in mind

1 1 — 1 1
l—02% 1—02% l1—0% 1 —o02%

l—of 1—o5% < 1—ot (1—(7;—#1—0251 —1+J21k)
which is, in turn, equivalent to

2i—1

[(1_0%)_(1_(7%)] (1-o'F)< (1o

|

.

Jo% —o

b

).
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2i—1

Since the left and the right hand side of this inequality are equal to o2 (1—g 28 )(1—0 2= ),
this turns out to be an equality. Indeed, strict growth is shown with respect to i for C' > 1.
For C' = 1, the value is constant.

It remains to establish the upper bound stated in (5.12). To this end, we require the
estimate

uahl kN kN i
H Vik CEI H Yik  (5.10) H l—ot  1-0V

e — 1 ik — B oy L (]~ go)gN-e’
i=ko+1 ik 1 i=ko+1 ik ¢ i—kot1 (1 — 0 & )O'k (1 o )O’

which is independent of the chosen k. Then, combining this bound with the above repre-
sentation of the optimal value agn km (k) provides

1—oN ! 1—oV -
k
w1 (ot 1) (G 1)

o (1_O.m)o.N7m (1_0.N7m)0.m :1_O_N7
1 —oghN-m 1—om

i.e. the desired upper bound which is tight for C' = 1.

O

In Proposition 5.13 we adapted both the control and the optimization horizon. Hence,
refining the discretization and, thus, increasing the discrete time optimization horizon in
order to keep the continuous one constant also implied that the discrete time control hori-
zon grows, which is manageable because of our multistep feedback approach introduced
in Section 1.4. Indeed, Proposition 5.13 ensures enhanced performance estimates.

Example 5.14

We consider the reaction diffusion equation from FExamples 5.1, 5.3, and 5.6 and investi-
gate effects of an iterative refinement. To this end, the sequence (27);en, of discretization
parameters is employed, cf. FExample 5.11 and Figure 5.4. As shown in Figure 5.5, the
first refinement step allows to decrease the minimal stabilizing horizon by one for m =1,
i.e. ayg > 0 holds for N =9 instead of N = 10, cf. Figure 5.2. Carrying out a second
refinement step yields any > 0 for N = 8. A further reduction is not possible, cf. Section
5.2 below. The improvement associated to the respective refinement step seems to decline
such that the first refinement steps should seem to be the most important ones. Employing
larger control horizons, i.e. m > 1 in combination with a more accurate discretization
does not allow for using smaller optimization horizons N in comparison to the previously
derived results, cf. Remark 5.7. Nevertheless, enhanced estimates are obtained.

Hence, the question arises whether similar results are obtainable for classical RHC, i.e.
m = 1. This corresponds to shortening the continuous time control horizon, re-optimizing
more often and, thus, robustifying the resulting closed loop. However, in Chapter 4 we
observed that using longer control horizons improves the deduced suboptimality estimates,
cf. Theorem 4.8. Here, it turns out that iterating the refinement process too often causes
negative suboptimality bounds and, thus, makes our estimates useless, cf. Figure 5.6.

This claim is shown in Theorem 5.15. In order to proof this theorem, we need Lemma
5.20 which is based on results concerning the Gamma I'(-) as well as the Beta B(,-)
function, i.e. the functional equation of the Gamma function, a formula which allows
for a transition from the one to the other, and, in particular, a more sophisticated result
which goes back to Binet. However, since this integral part of the following proof is rather
technical, it is postponed until Subsection 5.1.1 in order to streamline the presentation.
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Figure 5.5: Impact of using more accurate discretizations for the reaction diffusion equa-
tion. For classical RHC one refinement step decreases the required optimization horizon
to N = 9. The second refinement step leads to a further improvement (N = 8). On the
right, one observes improved estimates also for control horizon m = 3. Here, the minimal
stabilizing horizon N, however, remains the same.
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Figure 5.6: The assertion of Theorem 5.15 is illustrated for N =8, C' = 2, and ¢ = 0.5:
for arbitrarily fast sampling — which corresponds to using a very fine discretization — our
suboptimality estimates become negative for m = 1. Hence, neither asymptotic stability
nor a performance bound is ensured.

Theorem 5.15

Let the assumptions of Theorem 5.12 be satisfied. Furthermore, we define o, i x, and (Py)
according to Theorem 5.12. Then, for C > 1 and the sequence (k;);en, with k; := 27, the
corresponding sequence of optimal values (ax,n,1(k;))jen, diverges to minus infinity, i.e.

kN
. (ijNij - 1) Hz;Q (%}kj - 1) .
ag (k) =1~ N , — —00 for j — oo.

kN
Hi:2 Yik; — HiLQ (%‘,kj - 1)
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Proof: Since HZ 9 Yik; = Hfizgv(%k] — 1) > 0 holds, the assertion follows from

kN
1 Vi k;

0<
YNy — L 2 Vi — 1

—0  for j — 0. (5.13)

In order to deal with (5.13), we first prove the auxiliary inequalities

v -
! < Lo and ik
Ve;Nj; — 1 Cy i Yiky — 1

< Cp(2Y€) (5.14)

with Cy = o N[N, 2= and Cy := C(1 — ") — 1+ 0. Note that the constants
Co and Cy do not depend on k;. The first inequality is directly ensured by using (5.10)
because o < gl/ki and, thus, the denominator of the right hand side is smaller while the
nominators are the same. In order to establish the second claim in (5.14), we require the
auxiliary estimate

Vi C (1 —a/k)(C =1+ ol/h) C iC

=1 C—150V6 (C—1+o/R)—Cab = =150k -1 1

which is equivalent to i Co'/*i (1—o'/ki) < (C—1+0/*)(1—0"/*) fori € {2,3,... k;N}.
Dividing this inequality by (1 — o'/%5), splitting up the resulting left hand side into the
two factors Co'/% and i 0~V/% and applying the estimates Co'/% < (C'—1+0'/*%) and
o0k < SN gn/ky = (1 — il 1) /(1 — o'/*3) ensures (5.15). In addition, we require
another preliminary result, i.e.

C kN
—-N/C
(m) S g / , (5.16)

in order to conclude (5.14). Taking the (k;N)-th root, (5.16) is equivalent to Co'/*i©) <
(C — 1+ o'/%). Since /% € (0,1), defining f(z) := C — Cz'/¢ — 1 + 2 and showing
f(z) > 0 for all = € [0, 1] guarantees the desired inequality. Since f(0) = C —1 > 0 and
f(1) = 0, verifying that f() is monotonically decreasing suffices. However, this is ensured
because f(-) is continuous on the interval [0, 1], continuously differentiable on (0, 1), and
fi(x) =1~ (o"/k)=(C=D/C <0 for all z € (0, 1).

Hence, bearing in mind that the factor C'/(C' — 1+ /%) is independent of the control
variable 7, taking (5.15) and (5.16) into account, using k; = 27, and applying Lemma 5.20
yields

k;N 5 20N i j—1 2vtIN iC

ik —N/C H o 1/CNi
[ <o e ] _COH( I )<Co<2 )
i Vik; — 1 i=2 iC -1 v=0 \i=2"N-+1 iC -1

for j € Ny, i.e. (5.14). Now, showing (2/¢)I(1 — ¢'/*5) — 0 as j approaches infinity is

sufficient in order to complete the proof. For this purpose, we define n; := (21/¢)7 (1—g'/%7)

and show that the quotient 7;,,/n; converges to 21/¢/2 for j — oo:
I YR T 21/

_ J=0 51/C
n; 1 — gl/29 o (1 _ 0.1/2(j+1))(1 + 01/2(j+1)> - 1+ g1/20+D — 2 /2'

Hence, there exists j* such that the considered quotient 7;41/n; is less or equal 6§ :=
(2 +2Y¢) /4 < 1 for all j > j*, i.e. the quotient is bounded from above by 2Y/¢/2 + ¢
with & := (2 — 2/¢) /4 > 0. This implies the convergence of 2'/¢(1 — ¢'/%) to zero for j
approaching infinity, i.e. (5.13) and, thus, the assertion.
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Often, solutions of a control system generated by a differential equation are continuous
which can be exploited, e.g. in order to preserve stability for the corresponding sampled-
data system by sufficiently fast sampling, cf. [91]. Inherent properties like the mentioned
continuity yield, in particular for (sufficiently) small intervals, tighter bounds on the
transient behavior of the considered system than those provided by our controllability
Assumption 3.2. However, they are not taken into account in the derivation of Problem 3.8
and, thus, in the suboptimality estimates from Theorem 3.18. Hence, a growth condition
is incorporated in our setting in order to reflect, e.g. continuity properties in the deduced
performance bounds. The combination of our controllability assumption and a growth
condition will resolve the problem resulting from Theorem 5.15 for very fine discretization
and m = 1, cf. Section 5.3. Furthermore, the growth condition to be introduced will allow
to tighten our performance bounds, cf. Section 5.4.

5.1.1 Auxiliary Results for the Proof of Theorem 5.15

In this subsection, the auxiliary Lemma 5.20 is presented which is needed in order to show
the second inequality of (5.14), i.e.

kN

- Yik;

< Co(21°Y (5.17)
iy Tik; —

and, thus, Theorem 5.15. The proof of this lemma is, as already indicated in Section 5.1,
essentially based on a result going back to Binet which provides a suitable series expansion
of the beta function B(-, ), cf. Lemma 5.19.

Furthermore, two alternative proofs of (5.17) and, thus, Theorem 5.15 for the special
case C' = 2 are presented afterward which are interesting from a mathematical point of
view. In both approaches a representation of the analytic function f(z) = cos(z), which
is given in Lemma 5.21, is applied:

e in the first proof the assertion of Lemma 5.20 is deduced without applying Lemma
5.19 which allows to avoid the use of the Beta function B(-,-) entirely.

e While in the second, elementary proof (5.17) is shown independently of the auxiliary
Lemmata 5.19 and 5.20. In particular, neither the Beta B(-,-) nor the Gamma
function I'(+) are employed.

At first, the Gamma I'(-) and the beta function B(-,-) are defined. Then, some basic
properties of these two functions are given.

Definition 5.16
Let x, y € R.y. Then, we define the Eulerian integrals of first and second kind by

1 00
B(z,y) = / "1 =) tat and [(x):= / t" et dt.
0 0

B(-,-) is known as the Beta function, I'(-) is called Gamma function.

Remark 5.17
The Gamma function T'(+) is well-defined on |0,00), cf. [88, Theorem 6.4.1]. In addition,

ra=1 and  T'(z+1) =2T(2) (5.18)
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hold, cf. [88, Theorem 6.4.4]. This identity is said to be the functional equation of the
Gamma function T'(+) and also known as the reduction formula or the difference equation,
cf. [123, p.237]. For non-negative integers n € N, the Gamma function I'(-) represents
the factorial, i.e. T'(n+1) = n! as well. However, (5.18) holds for arbitrary real numbers.

Remark 5.18
The Beta function B(-,-) is well-defined on ]0,00)x]0,00), cf. [124, p.437] and connected
to the Gamma function I'(-) via the formula

B(z,y) = =——=, (5.19)

cf. [124, p-442].
Lemma 5.19
Let p >0, p+ s> 0. Then the following equation holds for the Beta function B(-,-)

B(p,p) s(s—=1) | s(s—1(s—2)(s—3)
25 <1+2(2p+1) Ty I ) @13 +)

B(p,p+s) =

Proof: We prove only the special case s = 2. For s # 2 we refer to [123, p.262]. Using
(5.18) and (5.19) yields

I'prp+2) pe+DTEIME)  ,Cp+1)+1 1 2(2-1)
Bp.p+2) = T2p+2)  2p@p+ )02y ° 2+l —2_2(1 2(2p+1))

and, thus, the assertion.

O

Bearing these preliminary results in mind allows for tackling Lemma 5.20 which paves the
way in order to prove Theorem 5.15.

Lemma 5.20
Let N € Nso, C > 1, and v € N be given. Then, we get
2vTIN )
1C
<2VC = {2
H C -1 V2
i=2"N+1

Proof: In the following, the functional equation (5.18) of the Gamma function I'(-),
its interplay with the Beta function B(-,-) via (5.19) and Lemma (5.19) applied with
s=(C—-1)/C €10,1) and p = 2"N are used in order to rewrite the term to be estimated

-1

QVﬁN iC QﬁN i (VTN ( 2”111[N , 1)
pu— p— ’l/ —_ —
. . s l v '
i=2VN+1 iC -1 i=2VN+1 t—7e (2 N)' i=2"N+1 ¢

TN +1) TE'N+1-74)

L2*N+1) T@@HN+1-13)
B(2"N,2"N + 1)

B(2VN,2"N +1)

_ gi/c 1—1-8(8_1) s(s—=1)(s —2)(s —3) Y
22p+1) 2-4-(2p+1)-(2p+3)

Since s € [0, 1), the term in brackets is less or equal to one. Hence, the desired inequality
is obtained.
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For the special case C' = 2, Lemma 5.19 can be replaced by the following lemma
from [123, § 7.5] which allows us to establish Lemma 5.20 and, thus, to conclude the
assertion of Theorem 5.15 without employing the Beta function B(-, ).

Lemma 5.21

Let f : R — R be an analytic function having simple zeros at each element of the sequence
(a;)ien C R\{0} which satisfies lim,_, |a,| = co. Furthermore, there exists a sequence
of circles (Cp)men satisfying the conditions described in [123, § 7.4]. Then, f(z) may be
written as an infinite product of the form

£(2) = F(0)el" @10 H Kl _ _> ez/an} |
Lemma 5.21 is, e.g. applicable for sin(z)/z, cf. [123, p.137].
Proof: [Alternative proof of Lemma 5.20 for C' = 2| Using C' = 2 and proceeding
analogously to the proof of Lemma 5.20 yields
vHIN

I 2i  T@FN+1) T(2N+3)
2i—1  TD@@N+1) TN+ 3)

1=2VN+1

Next, we require the duplication formula
22710 () (2 +1/2) = V7 T(22) (5.20)

which holds for the Gamma function I'(+) according to [123, p.240] and goes back to Legen-
dre.* Using the identity given by (5.20) for z = 2“N + 1 in the first and for z = 2"*'N + 1
in the second equation, leads to

NG
I'(2vN +1) ) 22 (2'N+3)~1D(2+1N + 1)
F(Q”'HN + 1)3 42”+1N
T(2/N + 1)2T(27#2N + 1) 42N
N (2VFLN)L (VLN (29N
(2N (2“N)! (2vF2N)!

r*N+1) T@'N+3)  (TEHN+1)
(22N +1) T(HN+1)

— 4%

Using the definition of the factorial, enables us to expand this expression as a product

oy 2NN INL R 4(2n)3 (2n — 1)
C@N)I@N)RN) T n2an (40— 1) (4n - 2) (4n - 3)

4(2n —1)?
H(4n —1)(4n —3)

I
I E

Since each factor of this product is strictly greater than one, this term is strictly mono-
tonically increasing in v. In addition, we are interested in deducing an uniformly upper

“4Indeed, (5.20) may be concluded as a corollary of the multiplication-theorem of Gauss, cf. [123, p.240].
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bound, i.e. an estimate which does not depend on v. Hence, our goal consists of calculating
the following infinite product

T a@n-12 X (dn-2) )
g<4n—1><4n—3><HF (Hl— 2)2) S (521

Applying Lemma 5.21 to f(z) = cos(z) yields (the respective assumptions may easily be
checked)

cos(2) = cos(0)e—sn(0)z/ cos(0) I B I 1 SR DY/ C B0
(Z) ( )6 nr_‘[l 7r(n o %) € 7{_(% _ n) €

:ﬁ(“ﬁ)'

n=1

Plugging 7/4 in this representation of cos(-) ensures, since cos(7/4)~" = /2 = 21/ the
desired estimate for C' = 2.

O

In order to conclude this subsection, an elementary proof of (5.17) and, thus, Theorem
5.15 is, again for the special case C' = 2, given, which does not make use of the Gamma
['(+) or the Beta function B(-,-). In particular, positivity of an auxiliary function is shown
by using arguments with respect to its derivatives — presenting the respective technique
further motivates including the following lemma. In order to avoid technical difficulties
we stick to the notation introduced in Theorem 5.15 and the respective proof.

Lemma 5.22

Let N € Ny, C =2, 0 € (0,1), and the sequence (kj)jen, C N with k; := 27 be given.
In addition, let v; be given by (5.10) and Cy be defined as o=N/? HZ 2 Gt ’ . Then, the
following inequality holds

kjN

% < Co(2?) = Cpv? . (5.22)
=9 /R

Proof: Since 20%/% = 201/2kig(2i=1/2ki < (1 4 gV/ki)g(2=1/2k; holds, the factors of the
product from the left hand side of (5.22) can be rewritten as
Yk,  2(1—g'k) 2(1 — o¥/ki)
Yig; — 1 - (1+ Ul/kj) — 9gilki — (1+ O1/k;j)(1 _ O-(2i—1)/2kj)'

Hence, taking C' = 2 into account, we obtain analogously to the proof of (5.16)

21N 2IN

/}/ij N2 1— O-i/kj
H =0 H 1 — o@D/ (5.23)
i Tik; =2

The remaining portion of this proof is subdivided into two parts:

e Firstly, the estimate

20N ; N ; N

1—o 1-o' 2
—N/2 _ —N/2 ~N/2 .
4 H 1 _oeinz 2 H — 150 g 51 Co (5.24)

i=2 g L —0'2

is shown which covers the assertion for j = 0.
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e Secondly, the growth bound

PN ; 21N ,
1 — O"L/kj+1 1 — O.z/kj
H (1 _ O-(2i—1)/2kj+1) /H (m) <V2. (5.25)
2

=2 i=

is deduced which ensures that incrementing the index j in (5.23) leads at most to
a multiplication of the estimate for j by a factor of v/2. Combining this growth
bound with the estimate for j = 0 in order to estimate the term on the right hand
of (5.23) implies the assertion.

In order to ensure (5.24), we prove
f@)=1-2iz" 24+ 2i—1)2*>0 Ve (0,1) (5.26)
for i € {2,3,..., N}, which implies, since o € (0,1), the inequality
(1—0)/(1—0"2) <2i/(2i — 1) (5.27)

for i € {2,3,...,N}. Since f(0) =1, f(1) = 0, and f € C*([0,1]) showing f'(z) < 0,
i=2,3,...,N, for z € (0,1) implies f(z) > 0 for all z € [0, 1]:

Fl(a) =22 [i(20 — 1)V — 2i(i — 1/2)] <™ 2[i(2i — 1) = 2i(i = 1/2)] =0 Yz € (0,1).

Hence, it remains to verify the claimed growth property (5.25) in order conclude the
assertion, i.e. for j € Ny,

2i+1IN 1— O’i/kj+1 2N 1_ O-i/kj
,11 (1 - 0‘(22'1)/2]€j+1) /11 <1 _ O.(Zil)/ij)

1 — g2/(kjt1) PN (1 — g?/ki+1)(1 — gPi=D/kin) (1 — g2i=1D/2ks)
1 — o3/@kjr) L1 o@i=D/2ki41)(1 — g@i=3)/2ksi1) (1 — gi/ks)

1=

kj+1=2k;

1 — g2/(kj+1) 1 — o@i=1)/kj1)2
— (1-0 S -»
1 — g3/(2kj41) : (1-— 0(41—1)/2k3+1)(1 — 0(42—3)/2k]+1)

Using (5.26) for i = 2 and x = o'/*+1 € (0, 1) ensures, in analogy to (5.27) with o'/ki+1
instead of o, (1 — o2/ (k1) /(1 — g%/ k1)) < 4/3 = (v —2)%/[(4v —2)? — 1] for v = 1. As
a preliminary goal, we want to establish this inequality also for the other factors involved
in the product in consideration, i.e.

(1— g(2i—1)/kj+1)2
(1-— g(4i—1)/2k]’+1)(1 — g(4i—3)/2kj+1)

(4i — 2)?
(4i —2)2—1

< foric {2,3,...,22N}. (5.28)

Using 2k; 11 = k;4+2 and substituting (2 — 1) by v, (5.28) is equivalent to
1 _ 4V20_(21/—1)/k:j+2 + 2(41/2 _ 1)0_2V/k:j+2 _ 41/20_(2V+1)/kj+2 + 0_4V/kj+2 Z O

for v = 3,5,...,27"IN — 1. Instead of deducing this inequality directly, we subtract
the positive term 202=1/ki+2(1 — g/ki+2)4 from the left hand side and prove that the
resulting expression, i.e.

1 — 2oV ki L 9% — 1)g"/kint — 2gWH D ki o g2/ ki for v € N>3,  (5.29)
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is still positive. Note that the range of feasible indices v is extended. For v = 3, (5.29)
equals (1—o/*i+1)0 4 6g1/ks+1 (1 —gt/ki+1)4 which covers the assertion. In order to conclude
the assertion for v € N.3, (5.29) is shown to be monotonically increasing with respect
to v. To this end, (5.29) is subtracted from the respective expression for v + 1 and the
resulting expression is reduced by o ~1/ki+1. Then, since o'/%+1 € (0, 1), verifying the
inequality

flx) =v* =3 +2v— 1o+ 32 +4v)2® — (v +1)*2° — 2" +2"P >0  Vazeo1],

v € Nsg, for the polynomial f : R — R, f € C*(R), ensures the claimed monotonicity
and, thus, positivity of (5.29) which implies (5.28). Since f(0) = v* > 0 and f(1) = 0,
showing f'(z) < 0 for all x € [0, 1] suffices. For this purpose, we calculate

fliz) = —[B*+2v—1]+[60* + 8]z —3(v+1)*2* — (v + 1)a” + (v + 3)2" 2,
fA) = [62+8] —6(v+ 1)z —v+ 12" + (v+2)(v + 3)z" ",
() —6(v+1)? = (v—1Dv(v+ 12" 2+ (v+1)(v+2)(v + 3)2",
FO) = vl Dl + 2+ 3 — (v — 2 — D)

Taking f’(0) < 0 and f’(1) = 0 into account enables us to repeat the above line of
argumentation. Hence, it remains to establish f®(xz) > 0 for all z € [0,1]. Since
f@(0) > 0 and f@(1) = 0 hold, applying this argument once more shows that the
condition f®(z) < 0 for all # € [0, 1] is sufficient in order to ensure the desired inequality.

However, establishing this claim requires a sophisticated argument. The sign of the
fourth derivative f(*)(-) is determined in the interval [0,1] which evolves like the one of
(v+2)(v+3)2? — (v —2)(v — 1). Hence, f*(.) is negative on [0, 7] and strictly positive
for x € (z,1] with Z := \/[(v —2)(v — 1)]/[(v + 2)(v + 3)] € (0,1) which guarantees in
combination with f&(0) < 0 and (1) = 0 the assertion for v € Nx3.

Collecting the deduced inequalities yields the following estimate. Since the right hand
side coincides with the one from (5.21), the proof is completed by using the representation
of f(x) = cos(z) provided by the Euler product formula given in Lemma 5.21 analogously

1 — g2/ (ki) 2N (1— 0(21*1)/’%“)2 < H (4i —2)* -1
1 — g3/(2kjs1) : (1 — gWi=D/2kj11) (1 — g(4i=3)/2kj 1) — (4i — 2)?

1=

=1

(i)

cos(m/4)~t = V2.

5.2 Continuous Time Counterpart

This section continues the investigation of using more accurate discretizations, cf. Defi-
nition 5.10. To this end, also the discrete time control horizon is adapted and, thus, the
discretization sequence (D;);en, is given by (5.8), cf. also Proposition 5.13 in which an
iterative refinement process was carried out. Here, the limit of this refinement process is
calculated, cf. (5.30). Indeed, (5.30) is independent of the exact shape of the employed
sequence of discretization parameters (k) en,. This limit, which represents a performance
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bound reflecting Assumption 5.9 for all £ > 0, may be rewritten, cf. (5.31), and, thus,
coincides with a suboptimality estimate from [104] in the exponentially controllable case.?
The methodology introduced in [104] and further developed [103] is based on Assumption
5.9 and composes a linear program analogously to Section 3.1 — however, based on a
solely continuous time setting.® Solving this continuous time linear program (LP) yields
the corresponding performance bound given in (5.31), cf. Figure 5.7.7 Although [103,104]
are dealing with finite dimensional spaces, a generalization to time-delay systems was
already carried out, cf. [105].

Assumption 3.2 Problem 3.8 Theorem 3.18
forall T €(0,) : > JSor allT €(0,) ® > foraliT €(0,0)
Discretization Theorem 5.22
Definition 5.9 -0
[97,98]

Assumption 5.8 ° Continuous time LP e———» Performance bound
- o (5.30) = (5.31)

Figure 5.7: Schematic illustration of the assertion of Theorem 5.23

Hence, the contribution of Theorem 5.23 is twofold: on the one hand the limit of the
discretization process from Definition 5.10 is provided which can be approximated by em-
ploying a sufficiently fine discretization. On the other hand, Theorem 5.23 clarifies the
connection between the continuous time approach from [104] and the previously intro-
duced discrete time one from [39] by proving that the suboptimality estimates coincide in
the limit for discretization parameter T' — 0.

Theorem 5.23

Let Assumption 5.9 be satisfied with decay rate p > 0 and overshoot C > 1. In addition,
let an optimization horizon N € Nso, a control horizon m € {1,2,...,N — 1} and a
sampling period T > 0 be given and define o := e " € (0,1) and ;. according to (5.10).
Then, for every sequence (k;)jen, C N satisfying k; — oo for j — oo, we get

(2)"° (=5) ,
O‘ijvkjm(kj) — 1= (1;%N)1/C B (t_glm)l/() ' (1;%1\7)1/0 B (1;%1L—nm)1/0 for j — o0,
(5.30)

°Indeed, improved estimates from [103] are needed in order to show (5.31). We thank the authors
for sending us this paper in a preliminary stage. In particular, we like to point out that knowing the
expected limit facilitated its proof.

®Note that Section 3.1 only summarizes results from [39].

"More precisely, (5.31) is shown to be the solution of a relaxed problem in [103,104] and, thus, only to
be a lower bound on the optimal value of the continuous time LP, cp. the connection between Problems
3.8 and 3.17. Theorem 5.23 shows that this lower bound also solves the original continuous time problem
in the exponentially controllable case.

123
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or, introducing the abbreviations 6 :== mT and Y := NT for the continuous time control
and optimization horizon, respectively,

1/c _ 1/C
g Nk m (k) ey 1-— (6“6 — 1) . (BM(T V- 1)
EARLI LN (eNT . 1)1/C . (el“; . 1)1/0 (eHT . 1)1/0 . (eﬂ(’r*‘s) . 1)1/0
(5.31)

for the corresponding sequence (ax,nx,m(k;))jen of optimal values of the suitably adapted
Problems 3.8 given by (5.11).

Proof: Taking account of (5.11), the subtrahend of (au;n;m(k;j))jen consists of two
factors. For k € (k;),en,, the first of these is rewritten as

EN EN -1
Hi:km+1(%‘,k —1) - H Vik 1

EN EN = ] .
Hi:km+1 Yik — Hi:km+1(%‘,k - 1) ik

Considering the limit of the right hand side w.r.t. j and applying Lemma 5.26, yields

(5.32)

i=km-+1

. 1 .
lim - Hfj],:[jm_,'_l(zi’]]j; — 1) _ [(1;?\]N)1/C - 1] _ (1;_2)1/0 |
j=oo Hiik]-m+1 Vik; — Hiikjmﬂ(%,kj —1) (—1;Zm)1/c (—1;%N)1/C - (—iim)l/c

(5.33)

Repeating this argument for the second factor of the subtrahend and combining the result
with (5.33) shows (5.30). In order to complete the proof, we have to establish equality of
the right hand sides of (5.30) and (5.31). Using the definitions of o and ¢ we obtain

1—gm 1/C 1_6—umT 1/c 1_6—;46 1/C
(=) -(=) ()

Hence, taking the definition of T into account, repeating this argumentation and plugging
the resulting expressions in (5.30) allows for concluding the assertion.

O

Remark 5.24

A sequence (kj)jen, C N of discretization parameters satisfying that k;ji1 is a multiple
of kj and kjy1 > k; corresponds to an iterative refinement process. For instance, let
us define k; := 27 which implies ki1 = 2k;. Then, Proposition 5.13 ensures that the
performance bounds (uk;nkm(kj))nen, are increasing in j while Theorem 5.23 yields the
respective limit, cf. Figure 5.8.

5.2.1 Auxiliary Results

The goal of this subsection is to deduce Lemma 5.26 which plays an important role in
the proof of Theorem 5.23. To this end, the technical auxiliary Lemma 5.25 is required,
whose proof is based on a simple Taylor series expansion.

Lemma 5.25

Let a parameter s € (0,1) and a real constant ¢ be given such that ¢ — 1+ s > 0 holds.
Then, for each sequence (n;);en, C N satisfying n; — oo for i approaching infinity, we get
the convergence

Bl ni
(1 + %) — (3_1)% for v — oo.

c—(1—sm
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-0,1 1

-0,2

-0,3 1024 |

,0,4_

o]
-
o
o0

10

Figure 5.8: The figure on the left depicts the monotone convergence of the sequence of
suboptimality estimates (v, nk,m(k;j))jen, for k;j =27 to the limit computed in Theorem
5.23. Indeed, one observes that the discrete time estimates approximate their continuous
time counterpart already after very few refinements astonishingly well. This observation
is supported by the illustration drawn on the right which presents the deviations from the
theoretically obtained upper bound: the error decays exponentially in the iteration index
7. Here, the parameters N =4, m =1, T =1, and ¢ = 0.5 were chosen.

Proof: We define the function f: R<; — R

and calculate its first derivative

—clns-e*ns

(C _ (1 _ 61’1115))2'

We point out that the norm of the second derivative f”(-) is uniformly bounded on the
interval [0, 1], i.e. a constant M € (0, 00) exists such that sup,¢o 1 |f”(x)] < M holds. In
addition, f(0) =0 and f’(0) = —(Ins)/c hold. Hence, for each element n € (n;);en, using
the Taylor series expansion of f(1/n) at x = 0, cf. [77, chapter XIII], yields the existence
of a real number &, € (0,1/n) satisfying

@ ( ns "
f(1/n) = £(0) Z( ) 7O _ _hs fQEfQ”). (5.34)

f'(x) =

cn

Since &, € (0,1/n) C (0,1], | f"(&,)] < M independently of n. Moreover, for an arbitrarily
chosen constant ¢ > 0 and sufficiently large n (Which holds for all n; € (n;)jeny with
sufficiently large control index i), (14 f(0)/n)" < (¥ 4-¢ holds because (14 f'(0) /n;)™ —
el'© € [1,00) for i tending to infinity. These preliminary considerations enable us to
deduce the following estimate which is essential in order to conclude the assertion. Since
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1+ 1f(0) > 1, we get

— (1 FON (1 EN
o< () (+50) (58
(Y 1 =1)(n=2)-(n—j+1) FON" (1Y
- () seeneee ) )
7j=1 2,1 -~ _
= (1+17(0) <u
< (B )

Taking this into account and carrying out a binomial expansion, cf. [77, p.466], we obtain

(14 F/m)™ %2 (4 p(0) /) +Z(”)( RAC) >) (f’;fjl)) E0)

Ty

’ 1
In view of the definition of f(-), e/'(© = e~(n9)/e = (s71)< completes the proof.

The next lemma is the cornerstone needed in order to prove Theorem 5.23.

Lemma 5.26

Leto € (0,1), C > 1, N€N>2, andm € {1,2,..., N —1} be given and define oy, := /0.
Then, for v, = C’Zn 0 0r and a sequence (k;)jen, C N satisfying kj — oo for j tending
to infinity, the following convergence holds

RN 1_gN\©

H e A (O'(Nm) : > for j — oo. (5.35)
iy 1 Yok — 1 L—om
- J

Proof: In order to establish the desired convergence, we introduce a discretization pa-
rameter 1 € N>y which is chosen arbitrarily but fixed. Furthermore, we only permit
sequences (kj)jen, C N with k; — oo for j tending to infinity such that a sequence
(k: )jen, C N exists which satlsﬁes kj = ,uk; for sufficiently large j, cf. Remark 5.27. This
ensures, in particular, that k;/p € N holds for sufficiently large index j. Let k£ denote
such a sufficiently large element k;. Then, we rewrite the term in consideration

Nk Vi N-1 (v+Dk 1 N-1 k 1_0_%
11 -1l (1+%,k—1):H H<1+C[1—avd] )

i=mk+1 Vik 1 v=m i=vk+1 v=m i=1 —1+ot
N-1 p=1 k/p 1— a%
- 14 — 3 (5.36)
v=m =0 i=1 ( C[l—UVJFEUE] — 1+O‘k>

Since the denominator of the involved factors, i.e. C'(1 — O'V+é0'%) — (1 —ot), is (strictly)

greater than C(1—0”)—(1—0) > (C—1)(1—0) and, thus, (strictly) positive, reducing the
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respective denominators increases the corresponding fractions, i.e. leads to an estimate
from above. Bearing this in mind, yields the following chain of inequalities

1 1 1
1—0o%* 1—o0% 1—o0%
1+ +1 1 S 1+ i < 1+ l 1
Cll—o" W] —140* Cll—o""ior]—140 Cll—o" ] —1+0*
(5.37)
for i € {1,2,...,k/u}. Note that the lower and upper estimate does not depend on the
control index i which motivates, for v € {m,m+1,...,N —1} and [ € {0,1,...,u — 1},

the definitions
k/p 1 1 ﬁ
_ 1—o0% 1—o0%
g.k) = {1+ i L =1t e ) o
i=1 0[1—0' “j|—1+0'k 0[1—0' ”]—1+0k

/s 1—o% 1—o%
g (k) = 1+ =1+
_V’l() g( C’[l—a”+l+;t1}—1+ailc> ( C1- +}—1+mlq>

Carrying out the transformation k; = u/;j, ie. kj/p = /;j, for sufficiently large control
indices j enables us to apply Lemma 5.25 with s := ¢'/# and ¢ := C[1—o"*/#] > 1 —0" >
1 —s (u>1)tog,,(-) which provides

T~
==

= |

i 1 1 —
Bt 5 () = () = ()T

Analogously, the convergence g (k: ) — (0 u) GG =: g7, for j approaching infin-
ity follows. Note that these formulas confirm 0 < 95, <G < 0o. We emphasize that g* oy
as well as g;, depend explicitly on p — although thls is not reflected by the respectlve
notation. We continue our examination of the auxiliary approximations. To this end, we

define

N—-1 p—1 N—
G(p) == lim Gu1(kj) and = lim

Jj—00 Jj—0o0

H
ki
L

I
()
IQ

=m I

N
I
3
~
I
o
<

Note that the above computations ensure that G(u) and G(u) are located in the open
interval (0,00). Clearly, choosing a larger discretization parameter p refines the approx-
imation. Hence, G(u) is monotonically decreasing and G(u) monotonically increasing
with respect to the discretization accuracy u. Since G(u) < G(u) holds, this guaran-
tees both existence of the respective limits for u approaching infinity and the inequality
lim,, 00 G(11) < lim, o G(11). Indeed, this inequality turns out to be an equality:

= — -1 ;. _ _ — i —r 1,1
GG _ 7 1 s Gua(ki) (T () T
llmj_)oo g,/’l(k]) v=m 1=0 (O'ii) C[l—oVi(l+l>N] (O'_i) C(IEUN>

This allows for drawing conclusions on the limit of the left hand side of (5.35). For pu
tending to infinity, each of the two introduced approximations converges to the same finite
limit. Hence, it remains to verify that the expression specified in the right hand side of
(5.35) equals the limit of the approximations.
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To this end, we exploit the specific form of the limits g}, and ¢* .. In particular, Lemma
) Zu,l
5.25 provides

C +l/u e 1 - Ul/kj

—% o 1—o?

@) = ()T e (1 )
kj/u

c —s 1 — gl/ki
* _ _1\ TR
<2y,z> - (U ) a }HEO H (1 + 1 — git+D)/p — 1 4+ gl/lcg') '

This allows for elaborating the following chain of inequalities, which resembles the struc-
ture of (5.37). Again, we use k € (k;);en, for a sufficiently large control index j in order
to avoid technical difficulties

k/n 1/k k/u 1/k K/ 1/k
1—0 1—0 1—0
H (1 + ol/k _ 0u+(z+1)/u> = 11 (1 + ol/k _ O-V-i-l/uo-z’/k) < L1 (1 + ol/k _ O—V—‘rl/,u,) :

i=1 i=

However, in contrast to (5.37), we are able to deal with the term representing the core of
this expression using an argument similar to those applied to telescoping series

k/u 1 gl/k k/n 1 — gvti/ngilk oy 1 — gvH+D)/p
H <1 * ol/k — a”+l/uai/k> - H ol/k(1 = gvii/ngi=D)/F) =0 T v

Hence, using these preliminary considerations yields
1
N—1 p-1 ppELl T N-1 i1t N &
11—0 z 1 —ovtt]e 1—-0o]° —
< — -1 — —(N—m) < .
_VHmH[ —_m] Hm[ e e N 1)

Since G(1) < lim, oo G(1) = lim,, o G(1) < G(p), the respective limits coincide with the
deduced bound. Summarizing these computations provide

1 — oV _ 1 —ogNE
T j—oo

l—om| p—oo= imkym1 Vzk — p—00

and, thus, concludes (5.35), i.e. the assertion.

The following remark justifies the simplification which was made in the proof of Lemma
5.26 in order to streamline the presentation.

Remark 5.27

In the proof of Lemma 5.206, the sequence (kj)jen, C N was chosen such that the condi-
tion k;/p € N holds for sufficiently large index j which can be assumed for an iterative
refinement process without loss of generality. We emphasize that this assumption is not
necessary in order to prove Lemma 5.26 but allows the reader to concentrate on the es-
sential steps without being distracted by technical details. If this condition is violated, the
switching index p* := k mod p is defined. Then, the product

p=1 k/up 1_0%
(e s )

C’[l—a+ﬁaﬂ —1+4+0

=
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from (5.36) is replaced by

pr—=1 [k/p] 1— 0% p—1 |k/p] 1— J%
1+ . 1+ ,
H H( C[l—a”ﬂiaﬂ—l—l—allc) 1;[ 1}( C[1—o"" —1—|—alle)

. —
=0 =1 l=p* Hak]

i.e., the involved factors are distributed such that the number of factors is either |k/u]
or [k/p] and the total number of factors is equal to k. The following chain of inequali-
ties remains unchanged, only the corresponding index range has to be adapted to the set
{1,2,....[k/ul}. The upper index of the product in the definitions of g,,(k) and g (k)
depends on whether or not the index | is contained in [0, u* — 1] for the considered ar-
gument k. However, since we are only interested in the limit for k approaching infinity,
this distinction does not play a role: looking at the proof of Lemma 5.25 shows that the
assertion also holds for a sequence (n;)ien, C Ry satisfying n; — oo, if the exponent is,
for each index i, randomly substituted by either |n;| or [n;|. The remaining part of the
proof of Lemma 5.26 does not require further modifications.

5.3 Growth Condition

Although the estimate stated in Theorem 3.18 is strict for the whole class of systems sat-
isfying the assumed controllability condition, cf. Remark 3.13 (i), it may be conservative
for subsets of this class. For instance, for sampled-data systems governed by an ordinary
differential equation %(t) = g(x(t), @(t)) the difference between x(n + 1) and x(n) is usu-
ally of order O(T') — a continuity property which is not reflected in Assumption 3.2 and,
thus, in the optimization problem characterizing our suboptimality bounds. Neglecting
this specific characteristic leads to very pessimistic estimates for sampling periods T" tend-
ing to zero, cf. Theorem 5.15. In order to exploit the mentioned continuity properties,
the following growth condition is introduced.

Assumption 5.28 (Growth Condition)
For each xy € X there exists an admissible control function u,, € U = U™ (xq) satisfying

U@y, (n), Uz () < L™ (20) Vn € Np. (5.38)
Here L > 1 denotes the growth bound which typically depends on the sampling period T .
This section is subdivided into two parts:

e Firstly, the growth condition Assumption 5.28 is incorporated in Problem 3.8 and
Theorem 3.18 is generalized accordingly. The impact on our performance bounds is
investigated for an analytical example.

e Secondly, in Subsection 5.3.4, Assumption 5.28 will be verified for sampled-data
systems governed by ordinary differential equations. In particular, estimates on
the involved growth bound L are deduced which depend explicitly on the sampling
period T and, thus, allow for a refinement process analogously to Section 5.1. We
show that Assumption 5.28 provides remedy for the problem which occurred for very
fast sampling: in Section 5.1 an iterative refinement process was carried out without
adapting the discrete time control horizon m = 1. The corresponding sequence of
suboptimality estimates diverged to minus infinity and, thus, was not applicable in
order to guarantee a performance bound or stability. The introduced growth bound
counteracts this phenomenon, cf. Theorem 5.37 and the ensuing comments.
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5.3.1 Exponential Controllability

At first, the exponentially controllable case without an additional terminal weight is
considered, i.e. Assumption 3.2 is supposed to hold with a ICLy-function of type (1.11).
To this end, ~; is defined as

i—1 i—1 . .
Cl—o") 1-1L"
%:nm{c-EaﬂE H}=HM{ g_;%l_L}. (5.30)
n=0 n=0

Definition (5.39) reflects both, i.e. the exponential controllability and the growth condi-
tion. Hence, being able to satisfy Assumption 5.28 and, thus, using (5.39) instead of (3.17)
yields tighter bounds on the stage costs in Problem 3.8 and, thus, allows to characterize
the behavior of the system to be investigated better, cf. Figure 5.9.

Figure 5.9: Visualization of the bounds induced by our controllability assumption (dashed-
dotted line) and our growth condition (solid line) for C' = 3, o0 = 3/5, and L = 5/4. The
minimum is marked with solid circles.

Although the observation pointed out in the following lemma does not seem to be

exceptionally remarkable, Lemma 5.29 is very useful in order to prove Theorems 5.31 and
5.37.

Lemma 5.29 (Switching index)
Let Assumptions 3.2 and 5.28 based on a KLy-function of type (1.11) with overshoot
C > 1, decay rate o € (0,1), and growth constant L > 1 hold. If the condition

1+ L<C(l+o0) (5.40)
is satisfied, exactly one switching index 1* € N> exists such that
Sy Lt S CE o fori <,
7F{C§$ﬂ< S Lt fori > i,

If Condition (5.40) is violated, no such switching index i* € Nso exists.
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Proof: If Condition (5.40) is violated, 72 = C(1 4 o) holds which implies
L">L>C+Co—-1>Co>Co" for n € N>o

and, thus, Z:;lo L"<c Z;;lo o". Hence, no switching index exists.
Suppose that Condition (5.40) is satisfied. Then, v = 1 + L holds. For each index i
satisfying the inequality i > C'/(1 — o)

o'} 1—1
L">Y 1=i>C/(l-0)=C) ¢">C> o"
n=0 n=0

holds. Hence, v; = C' '\ o™ for each i > C/(1 — o) which implies the existence of a

switching index. Let i* € Ns, denote the smallest switching index. Then, L™ > Co®" and,
thus, L' > Co* for all i > ¢* hold, i.e. the increments L’ are larger than their counterparts
Co® for i > i* which shows that no further switching index exists and, thus, that the
assertion holds.

O

For instance, the switching index * equals 4 for the parameters C' = 3, ¢ = 0.6, and
L =1.25, cf. Figure 5.9. In order to generalize Theorem 3.18 to the setting incorporating
the growth condition, the following definition is required.

Definition 5.30 (Equivalent sequence or equivalent CLy-function)
Let (%')2'6sz C R>q be a monotone sequence and define v, := 1. Then, for given optimi-
zation horizon N > Nso, a KLy-function 8 : Ry x Ng — R of type (1.12) given by

co=1, Cn = Ynt1 — T, n € {1,2,...,N — 1}, and cp =0 (5.41)
is called equivalent sequence or equivalent KCLo-function for (7Vi)iens.,-

Equation (5.39), Lemma 5.29, and Definition 5.30 enable us to extend Theorem 3.18
to the setting incorporating the growth condition. Indeed, except for adapting ~;, ¢+ =
2,3,..., N, Theorem 3.18 maintains exactly its shape.

Theorem 5.31

Let Assumption 3.2 with KLg-function of type (1.11) and Assumption 5.28 hold. Further-
more, let an optimization horizon N € N>y and a control horizon m € {1,2,...,N — 1}
be given. Then, the optimal value o, = a}v’m of Problem 3.8 with ~;, i € {2,3,...,N},
defined according to (5.39) is given by Formula (3.21).

Proof: If Condition (5.40) is not satisfied, the growth condition does not change ~;,
i €{2,3,..., N} and the assertion is ensured by Theorem 3.18. Hence, Condition (5.40)
is assumed which implies exactly one switching index 7* € N>o.

Note that the sequence (7;)ien., satisfies the assumptions of Definition 5.30. Since
the values c,, n > N, do not contribute to 7;, i = 2,3,..., N, Condition (3.3) from
Assumption 3.2 is not needed for n > N in order to deduce Problem 3.8 and, consequently,
Theorem 3.18, cf. [51]. Hence, using the equivalent KLy-function from Definition 5.30 and,
thus, setting ¢, = 0 for all n > N does not change Problem 3.8 in the setting without an
additional terminal weight. As a consequence, our goal is to ensure Condition (1.13) for
cn,mn=0,1,...,N—1, from (5.41) which is sufficient in order to guarantee that Theorem
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3.18 provides the optimal value of Problem 3.8 with v;, 7 € {2,3,..., N}, from (5.39) and,
thus, the assertion.

An equivalent KCLy-function is constructed for the given optimization horizon N. If
the switching index ¢* satisfies i* > N, ¢,, = L™ holds for all n < N and ¢, = 0 otherwise
which corresponds to a KLy-function of type (1.12) satisfying (1.13). Hence, the assertion
is ensured by Theorem 3.18. Consequently, ¢* < N is assumed. Taking Lemma 5.29, its
proof, and (5.41) into account yields

5 ,ne{01,...,i*—1},
Cp = CZ:;O o 22;61 Lt n=1i,
Co™ ,ne{tr+1,i"+2,...,N}.

In order to show ¢, 1 < ¢,cpm, three cases are distinguished. Since ¢y = 1 holds, n,m > 0
can be assumed.

e n+m < *: Since max{n,m} < n+ m holds, ¢,, = L"™™ = L"L™ = ¢,y 18
implied.

e n+m = i*: Since n,m > 0 holds, ¢;» < L™t = L"L™ = ¢,c,, is ensured by the
definition of the switching index ¢*.

e n+m > i*: Taking the proof of Lemma 5.29 into account leads to the inequality
ciry; = Co™ I < L7+ for all j € N. Hence, n* := max{n, m} > i* can be assumed.
Furthermore, m* := min{n, m} is defined. Taking the definition of the switching
index i* into account yields ¢;» > Co® and, thus, ¢,» > Co™ . Combining this
inequality with ¢« > 0™ implies ¢yim = Cprgmr = C™ T < CpeCpr = CnCp, 1.6
the assertion.

Hence, Condition (1.13) is ensured for the equivalent sequence of Definition 5.30 which
completes the proof.

O

Theorem 5.31 generalizes the key result given in Theorem 3.18 to the setting incorporating
the growth condition which allows for reflecting continuity properties of a considered
system. The proof of this theorem shows that one may easily check whether Theorem 3.18
is applicable in order to determine the optimal value of Problem 3.8 by constructing an
equivalent KLy-function of type (1.12) and verifying Condition (1.13). This application of
finite time controllability allows us to transfer the results with respect to KLy-functions of
type (1.12) satisfying (1.13) deduced in the previous chapters to exponentially controllable
ones which gives further reason for the performed, complete symmetry and monotonicity
analysis for this setting. Furthermore, the construction of equivalent sequences is not only
a theoretical concept but may be used in order to incorporate further estimates in our
controllability assumption. This will be shown in the ensuing Section 5.4 in detail.
An alternative proof of Theorem 5.31 is given in Subsection 5.3.5.

5.3.2 Finite Time Controllability

The contribution of this subsection is twofold. On the one hand, the counterpart to
Theorem 5.31 is established for control systems satisfying Assumption 3.2 based on a
K Lo-function of type (1.12) with ¢g > 1, ¢ > ¢, and ¢, = 0 for all n € N3, i.e. finite
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time controllability in at most three steps such that (1.13) holds. On the other hand,
we show that a further generalization to arbitrary KLy-functions satisfying (1.13) is not
possible and comment on a remedy which works in a majority of cases. An example
dealing with finite time controllability will be investigated in the ensuing subsection.

We begin with extending our results concerning the growth condition to an important
subclass of finite time controllable systems.

Theorem 5.32

Let Assumption 3.2 based on a KCLy-function of type (1.12) satisfying (1.13) with ¢, =0
for all n € Ns3 and the growth condition, i.e. Assumption 5.28, hold. Furthermore, let
an optimization horizon N € Nso and a control horizon m € {1,2,...,N — 1} be given.
Then, the optimal value ay ., = ay,, of Problem 3.8 with ;, i € {2,3,..., N—1}, defined
according to (5.39) is given by Formula (3.18).

Proof: Since the setting without incorporating an additional weight w on the final term
in the receding horizon cost Functional (2.4) is considered, the distribution of v, on ¢
and ¢; does not play a role. Hence, cg = 1 and ¢; = 75 — 1 can be assumed because this
choice maximizes the range in which ¢, has to be located according to (1.13) (co < ).
Furthermore, let, without loss of generality, 75 = 1 + L < ¢g + ¢; hold. Otherwise, the
growth condition has no impact on v;, ¢ = 2,3,..., N—1, and, as a consequence, Theorem
3.18 ensures the assertion.

Then, since ¢,, = 0 for n € N>3, exactly one switching index ¢* € N>, exists such that

[Tl s e foris<i

oA e < L L ford > it
holds, cf. Lemma 5.29. This enables us to define an equivalent KCLy-function of type
(1.12) which exhibits precisely the same ~;, i = 2,3,..., N, ie. ¢, := L" for n < * —1,
Ci» = Yix41 —Vir, and ¢, = 0 for n > i*. Hence, verifying (1.13) for the respective sequence
(Cn)nen, and applying Theorem 3.18 completes the proof. However, since ¢ < L" holds,
(1.13) is guaranteed.

O

We continue with the mentioned negative result, which shows that the assertion of the
previous theorem is strict with respect to the class of KLy-functions considered.

Example 5.33

Let the KLy-function B(-,-) of type (1.12) be defined by co = 1, ¢; := 10, ¢ := 10,
c3 = 100, and ¢, = 0 for all n € N>4. Note that ((-,-) exhibits linearity in its first
argument and satisfies (1.13). Furthermore, let Assumption 3.2 with ((-,-) and the growth
condition with growth bound L =5 hold. Then, we obtain

’}/2:1—{—[1 = 6< 11:CO+61,
Y3 = Cp+ C1 + C2 = 21< 31:1+L+L27
’}/4:CO+C1+CQ—|—63:121<156:1+L+L2+L3,

and v; = v4 for i > 5. We want to establish Theorem 5.31 for optimization horizon
N =5 and m = 1. To this end, we construct the equivalent KLo-function of type (1.12)
according to Definition 5.30 which is given by ¢y := 1, ¢y := 5, co := 15, c3 := 100, and

133



SAMPLED-DATA SYSTEMS AND GROWTH CONDITION

¢, =0 for n € N>y But, since cica = 75 < 100 = ¢3 holds, Condition (1.13) is violated.
Hence, an assumption of Theorem 3.18 is not satisfied and, thus, this theorem cannot be
applied in order to conclude that the optimal value of Problem 3.8 is given by Formula
(3.21).

In order to further investigate this issue, the alternative proof of Theorem 5.31 is
considered, cf. Section 5.3.5 below. This proof shows that Condition (5.48) has to be
satisfied, i.e.

5 5—j
(Vooj = D [J(vi =) = oy =) [[ =0 forj=12.3
i=2 i=2

Evaluating the left hand side yields 1.440.000 (j = 1), —600 (j = 2), and 10 (j7 = 3).
Hence, this condition is violated for 7 = 2. Consequently, the solution of the original
Problem 3.8 and its relaxed counterpart Problem 3.17 do not coincide.

In conclusion, Condition (5.48) has to be checked in order to decide which constraints
have to be taken into account in the corresponding optimization Problem 3.8. We point
out that Theorem 3.18 nevertheless provides valuable information because the respective
formula may still be used as a lower bound for the suboptimality index of Problem 3.8.

In order to conclude this subsection, another example violating (1.13) and (5.48) for
N =6 and m = 1 is given in Figure 5.10. In particular, this example which is based on a
non monotone KLy-function satisfying (1.13) exhibits more than one switching index 7*,
cf. Lemma 5.29.

Figure 5.10: Visualization of the bounds induced by Assumption 3.2 (dash-dotted line)
and the growth condition (solid line) for ¢ = 1, ¢; =4, ca =8, ¢35 = 5, ¢4 = 10, ¢5 = 40,
c; = 0 for ¢ € N>g, and growth bound L = 2. The minimum is marked with a solid circle
each time.

5.3.3 Analytical Example

Here, we focus on quantitative effects caused by incorporating Assumption 5.28 in Problem
3.10 and, thus, in our suboptimality analysis. Since the overshoot C' has been proven to be
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the decisive parameter in this context, cf. Section 4.1 and [39, section 6], we investigate its
sensitivity to changes in the growth bound L. To this end, we fix the decay rate o = 0.7.
Then, our goal is to determine the maximal overshoot C' which allows to guarantee our
stability condition ay; > 0 for the whole class of systems satisfying Assumption 3.2 for
a given optimization horizon N. Table 5.2 shows results for two extremal values of L, i.e.
completely neglecting our growth condition in comparison to incorporating it with growth
constant L = 1.

| N | C such that ay1 >0 (L = 00) | C such that ay,; >0 (L =1) | increase (%) |

4 1.4028 1.5790 12.56
6 1.6130 2.0397 26.45
8 1.8189 2.5462 39.98
12 2.2208 3.6489 64.30
16 2.6081 4.8128 84.53
24 3.3409 7.1938 115.33

Table 5.2: In this table we give the maximal overshoot C such that the optimal value
an,1 of Problem 3.8 is ensured to be positive in dependence on the optimization horizon
N for the setting with and without our growth condition. We chose L = 1 in order to
determine the maximal increase realizable by Assumption 5.28.

Figure 5.11 illustrates that using Assumption 5.28 allows for significantly larger values
for C'. Furthermore, this figure shows that these findings remain basically the same for
suboptimality estimates ay; > @ > 0, i.e. if we aim at ensuring certain performance
specifications for our receding horizon feedback. Hence, Assumption 5.28 allows us to
calculate tighter bounds and, thus, characterizes the behavior of the closed loop more
accurately. In particular, we like to point out the curve for N = 8 in Figure 5.11. Here,
the kink marks the upper boundary of the range into which incorporating the growth
condition contributes positively to posing the optimization problem and, thus, to deducing
stability margins.

The next example demonstrates the interplay between the growth condition and ter-
minal weights. To this end, the following proposition is needed.

Proposition 5.34

Let Assumption 3.2 based on a KLy-function of type (1.12) satisfying (1.13) with ¢, =0
for all n € N>y and the growth condition, i.e. Assumption 5.28, hold. Furthermore,
let an optimization horizon N € Nso, a control horizon m € {1,2,...,N — 1}, and a
terminal weight w > 1 be given. Then, the optimal value of;,, of Problem 5.8 with ~;,
i€{2,3,...,N — 1}, defined according to (5.39) is given by Formula (3.18).

Proof: Without loss of generality, 1 + wL < C + wCo is assumed. Otherwise the
growth condition does not change v;, i € {2,3,..., N}, and, thus, Problem 3.8. Then,
an equivalent ICLy-function can be constructed such that ~;, i € {2,3,..., N}, remain
unchanged in comparison to those resulting from Assumptions 3.2 and 5.28. Since ¢, = 0,
n € N>o, the assertion can be concluded analogously to the proof of Theorem 5.32.
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3.0

Figure 5.11: Illustration of the corresponding maximal feasible overshoot C' which ensures
asymptotic stability in dependence on the growth bound L. The larger the optimization
horizon N, the larger are the resulting bounds. The solid line stands for N =8, N = 10
is represented by the dashed line, and the dash-dotted line illustrates the interplay of the
considered parameters for N = 12.

In order to simplify the following calculations, we focus on RHC with m = 1. Neglecting
the growth condition leads to 75 = ¢y + wey and v; = ¢y + ¢; for all © > 3. Hence, for
optimization horizon N > 3, Theorem 3.18 yields

as; = (eotwe)(l4+w—c—cqw)/w,
[1Yo v — (o — w) TTieq (i — D
N N
[Tz — (2 —w) [T;25(vi — 1)
N>z (Co+wer)(co+ )V — (e +wey —w)(co + ¢ — N2 (e + 1)
(co +wer)(eo +c1)N=2 — (co +wey —w)(cg + ¢ — 1)N2

We choose ¢y := 3 and ¢; := 2 and determine the minimal horizon which guarantees our
stability condition af; > 0 for an appropriately chosen final weight w. This is, in turn,
equivalent to

(co +wer)(eo+c1)V 72 > (cg +wey —w)(co+ ¢ — N2

for N > 3 and not possible for N = 2 because ¢y > 1, ¢; > 1, and ¢y + ¢; > 2. Inserting
the coefficients ¢y, ¢; in the considered inequality yields the necessary condition

12 4+ 4w
3+ 2w

N23—|—ln< >/ln (Z) >3+ 1n2/In(5/4) ~ 6.106 for all w > 1.
Hence, the minimal stabilizing horizon resulting from Theorem 3.18 has to necessarily
satisfy N > 7. Without adding a final weight we obtain N > 9, cf. Figure 5.12 on the
left.

Furthermore, the deduced inequality allows us to calculate the minimal additional
weight on the final term needed in order to reduce this bound on the optimization horizon
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Figure 5.12: Investigation of the influence of incorporating an additional weight on the
final term in (2.4) on the minimal stabilizing horizon length N. On the right, the impact
of our growth condition on this example is depicted, in addition.

N. Let N be equal to 7. Then, using a final weight w > 1197/226 ~ 5.296 leads to
a7, > 0 and, thus, ensures that the desired relaxed Lyapunov inequality follows from
Theorem 3.18, cf. Table 5.3. As already mentioned, guaranteeing stability via Theorem
3.18 is not possible for smaller N.

minimal w such that o, >0
N | without growth condition \ with growth condition
3 - - 15/2 7.500
4 - - 55/14 3.929
5 - - 195/86 2.267
6 - - 545/516 1.056
71 1197/226 5.296 1 1.000
8| 971/718 1.352 1 1.000
9 1 1.000 1 1.000

Table 5.3: The table shows the final weights needed in order to ensure oy, from Theorem
3.18 based on Assumption 3.2 with KLy-function of type (1.12) given by ¢q := 3, ¢; := 2,
and ¢; = 0 for all ¢ € N>y in its first two columns, which contain the exact and the
approximated values for w. N = 7 has turned out to be the minimal stabilizing horizon.
Taking, in addition, Assumption 5.28 into account and, thus, using Theorem 5.31 allows
for guaranteeing stability for significantly smaller optimization horizons NN, e.g. choosing
the final weight w = 7.5 allows us to reduce the horizon to N = 3, cf. the third and forth
column.

We continue with incorporating our growth condition in the considered setting. To
this end, suppose that Assumption 5.28 holds with growth bound L = 1.2. Since the
assertion of Theorem 5.32 also holds for finite time controllability in at most two steps in
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combination with terminal weights, a minimal optimization horizon guaranteeing o, ; > 0
can be computed by Formula (3.21) with v;, i € {2,3,..., N} from (5.39), i.e.

Yo =1+ 1.2w, v3 = min{5, 2.2 + 1.44w}, and vi =5 fori >4,

cf. the third and forth column of Table 5.3. Hence, stability of the resulting receding
horizon closed loop is ensured for optimization horizons N < 7. In particular, for w > 7.5,
using N = 3 is sufficient in order to conclude stability. Summarizing, we see that using
the growth condition leads to significantly better suboptimality estimates.

5.3.4 Growth Condition and Discretizations

In the introduction of this section the growth condition Assumption 5.28 was motivated by
continuity properties of sampled-data systems governed by ordinary differential equations

z(t) = g(x(t),a(t)) with  2(0) = x

with sampling period 7" > 0. In this subsection Assumption 5.28 is verified for this class
of systems. In particular, for given sampling period T', estimates on the growth bound L
are deduced. This allows to analyze the impact of our growth condition on an iterative
refinement process, cf. Section 5.1. Theorem 5.15 showed that arbitrarily fast sampling
leads to negative and, thus, useless performance bounds ay,, = ay,, form =1 —a
problem which can be resolved by taking the growth condition into account.

In order to avoid technical difficulties, state constraints are not considered in this
subsection, i.e. X = X = R". Furthermore, the control constraints are modeled by a
compact connected set W C R™ containing the origin in its interior. Hence, the space
U of control values for the discrete time system is the set {a(-) € £1([0,T), W)} and
each element v € U is admissible — independently of the given state. Then, w.l.o.g.,
g(z*,0) = 0 and {(z*,0y) = 0 are assumed. Here Oy denotes the £([0,T"), W)-function
satisfying @(t) = 0 for all £ € [0,T). The following two types of stage costs £ : X xU — R
are considered:

(1) stage costs which evaluate state and control separately, i.e.
Ux,u) =Tl |z — x*||) + Cu(u) (5.42)

with continuous functions ¢, : Ry — RJ and ¢, : U — RJ. Furthermore, let £,(-)
satisfy the property

le(ar) < a,(r) for all @ € R>; with d € Ry. (5.43)

Since solely the initial state is taken into account, the computation of ¢*(xg) corre-
sponds to minimizing the control effort. Taking ¢(z*, 0y) = 0 into account leads to
¢,(0y) = 0 and, thus, implies ¢*(zq) = ¢(zo,0y) — an important property for the
upcoming investigation.

(2) stage costs which are defined by
T T
Uz, u) = / lo(t; z, @) — z*||*dt + )\/ \|@(t)||dt. (5.44)
0 0
with u = a(-)|jo,r). The state trajectory, which is influenced by the chosen control

value u, on the whole sampling interval is considered. Hence, in contrast to (1),
0*(xo) < £(zo,0p) is not excluded and ¢*(zg) = Vi(z0) has to be computed.
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The standard assumption in order to guarantee existence and uniqueness of the solution
®(-;z, @) is a Lipschitz condition with Lipschitz constant L, > 0 on g(-, -) with respect to
its first argument, i.e.

llg(z1,u) — g(xa, u)|| < Lg|lwy — 22| for all z; € X, 7 € {1, 2}, (5.45)

cf. [77, chapter XIV, §3].8

Our first goal in this subsection is to deduce Assumption 5.28 for stage cost (-, -) given
in (1). Since ¢*(zg) = ¢(xg,0y) holds, i.e. the minimum is attained in u = Oy, @ = 0 is
defined. Then, taking (5.45) and g(z*,0) = 0 into account, using the triangle inequality
yields

¢
[(t; w0, u) —2*|| < ||170—=T*||+/ |9(®(s;20,1),0) — g(x*,0)|| ds
0
t
< on—x*H—i-/ Ly||®(s; z0, @) — x*]||ds.
0

Hence, using Gronwall’s inequality implies the estimate
1®(t: 2o, @) — 2*|| < e"o'[|lag — 2],
cf. [19], which enables us to conclude

U@ (nT; mo, 0), u()|prmanry) = Tl(||P(nT;0,0) — 2™[|) + fu(@()prm)m))
(5.43)
< T |zg — 2*|| + 0 = L"0*(x0)

with L := e®LdT

Remark 5.35

The growth bound L = e*sT converges to one as the sampling period T tends to zero.
Hence, for sufficiently fast sampling and C' > 1, Condition (5.40) is ensured which implies
that ~; from (5.39) coincides with Z;_:lo L™ — at least for small i, cf. Figure 5.9. In
conclusion, the introduced growth condition provides tighter estimates for the behavior
of the considered system and, thus, compensates conservatism caused by the overshoot
constant C' for exponentially controllable systems.

Remark 5.35 points out a key observation which explains why our growth condition
will resolve problems occurring for fast sampling — independently of the exact growth
bound L, cf. Theorem 5.37.

For instance, the growth condition is ensured for cost functions with f,(r) := Zf:o e
with coefficients ¢; > 0 and exponents d; € R.g, ¢« = 0,1,...,k, as well as arbitrary
functions f, : U — R{ with f(Oy) = 0. This includes cost functions which are not
differentiable at the origin, e.g. by choosing ¢y = 1 and ey = 1/2. Furthermore, note that
the involved norm || - || with respect to the state was not specified. Hence, employing an
arbitrary positive definite weighting matrix @ in order to define, e.g. {(x,u) = TaxTQx +
¢, (u) is possible. A typical representative of cost functions of type (5.42) satisfying (5.43)
is

d;

T
U, u) = T|lz|* + A/ la@)|* dt = T|* + AT u]*
0

8Here, global Lipschitz continuity is assumed in order to avoid technical difficulties. The results of
this subsection can be deduced for local Lipschitz continuity analogously.
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with regularization parameter A > 0.

Next, we want to establish the growth condition for cost functions of type (2). Here,
a control value satisfying ¢(zg, u*) = ¢*(xo) is denoted by u*. Existence of u* is ensured
by Assumption 2.4. In contrast to that, uniqueness of u* is not required. Note that,
in general, u* # 0 holds. Here, the sequence of control values (u(n))nen, defined by
u(0) = u* and u(n) = Oy, n € N is employed which is, in general, not optimal. The first
element of this sequence has to be chosen in this manner, since otherwise a verification of
Assumption 5.28 for n = 0 is impossible.

Here, sampled-data systems with zero order hold are considered, cf. Definition 1.20.
The following proposition may be, however, analogously shown without the zero order
hold assumption. But using zero order hold allows to calculate some integrals exactly
and, thus, to deduce smaller growth bounds L. The characteristic property L — 1 for
sampling periods 7" tending to zero does not depend on the zero order hold assumption.

Proposition 5.36

Let a sampled-data system with zero order hold induced by the ordinary differential equa-
tion &(t) = g(x(t),u(t)) and a sampling period T > 0 be given. In addition, suppose
that g(-,-) satisfies the Lipschitz condition (5.45) with Lipschitz constants L, and L, with
respect to its first and second argument, respectively. Furthermore, let the cost function
0: X xU — R{ be given by (5.44) and ((xg, u*) = £*(xg) hold. Then, the growth condition,
i.e. Assumption 5.28 is satisfied with L := max{cs, ¢,} with

ce = €2L9T + eLgTLuLg_1<€LgT o 1)7
1 [[2LyT el — 3e2loT 4 4elo™ — 1 LyTebsT — el 41
Cu = A + i
2L,T LT

Proof: The following calculation is carried out in order to apply a more sophisticated
version of Gronwall’s inequality which takes the impact of the chosen control into account.
Using the triangle inequality and the Lipschitz condition of g(-,-) in its first argument
yields

[B(t; o, 1) — 27| < ||l“o—$*||+/ lg(z”, a(s)) + g(P(s; 2o, @), u(s)) — g(a™, u(s))|| ds

< ||xo—x||+/ lg(a*, a(s))l ds + L, / |®(s; 20, @) — 2% ds.

Defining K := L, as well as the functions f(t) := ||P(¢;z0,a) — 2*| € C([0,a],Ry) and
g(t) == ||lxo — z*|| + f(f |g(x*,a(s))|| ds € C([0,a],Ry) for a sufficiently large a > 0, allows
to apply [57, Corollary 1 of Theorem 1.5.7] providing

10(t: 20, @) — 2| = £(8) < glt) + Ly / =) g(s) ds.
0

Suppose that @(-) is constant on the interval [0,%), i.e. 4(s) = u for all s € [0,¢). Then,
fg llg(x*, u(s))|| ds equals t ||g(«*,u)||. Since g(-,-) fulfills the Lipschitz condition w.r.t. its
second argument, we obtain ||g(z*, a)|| = ||g(z*,a) — g(z*,0) +0|| < L,||u||. Taking these
computations, f(f ebs(t=9) ds = (elst —1)/L,, and fot seboll=9) ds = (ebot —tL, —1)/L2 into
account yields

t
|D(t; 29, i) — ]| < ||x0—x*||+tLuu+Lg/ 00 [y — o) + sLylal] ds
0
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= |lazg — 2*|| et + LuLg_l(eL-‘?t — 1)||al|- (5.46)

Having completed these preliminary calculations, the sequence of control values u,, =
(u(n))nen, to be applied is defined by u(0) = u* and u(n) = 0 for n € N. Here, since (-) :
Ry — U is constant on each sampling period, i.e. a(t) = u(n) for all t € [nT, (n+ 1)T),
u(n) = 0 has to be interpreted as u(t) = 0 for all t € [nT,(n + 1)T). Now, we focus
on deducing an estimate for ((z., (1),u(1)) = l(z,, (1),0) = f:,%T llo(t; 2o, w) — x*]|? dt.
Using Gronwall’s-inequality (5.46), at first with @ = 0 and, then, with @ = u* yields

T
U, (1) u(1)) = /I@@+tmﬂ%ﬂﬂ
0
T
< / 62L9t||<IJ(T;xO,ﬂ)—x*||2dt
0
T
:(/enﬂéﬁ—uémmﬂLMH~D—ﬁWﬁ
0

. 2
< / o2Lat [eLg(T—t)Hq)(t;xO, u) — x| + LuLg_l(eLg(T_t) - 1)||U*||} dt.
0

Using the Cauchy-Schwarz inequality 2||ip(t; xo, @) — x*||[|u*]| < ||¢(¢; zo, @) — z*]|* + || w*])?
in order to resolve the term in brackets and, then, applying
T 2L,T 2L,T LyT
/ (eLgT B eLgt)th _ 7 2L, Te* st — 3e* 9 + deto’ — 1 and
0 2L, T

/T(eLgT B eLgt)dt _ 7 LgT@LgT — eLgT + 1
) L,T ’

leads to
T
L L —1/,L L - *
ra, (D (1) < [ [0 4 bl L T = )] [t 0,0 -
LT —1/ LyT Lyt 272/ L, _ _Lgt\2| 1, *|[2
+% LoL; (b — ebot) 4 L2L-2(e e)pmnﬁ

T T
< max{cs, ¢} (/ |®(t; 20, @) — o*||*dt + )x/ ||u*\|2dt> :
0 0

Since e*lsT < ¢, < max{cs, c,} = L and u(n) = 0 for all n € N, this ensures
U@y (n),u(n)) = (24, (n),0) < L (w0, (1), u(1)) < L™ (20)

and, thus, the growth condition for cost functions defined according to (5.44), i.e. the
assertion.

O

The convergence of the growth bound L to one for " — 0 is ensured by Proposition
5.36.2 Hence, the growth bound is close to one for sufficiently fast sampling. Assuming
the Lipschitz condition for g(-,-) in its second argument is, e.g. for control affine systems,
automatically satisfied and typically not a restrictive assumption. Furthermore, note that

9 Applying I’'Hépital’s rule shows that ¢, — 1 for T tending to zero, cf. [124, Subsection 5.4.4].
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using the sequence of control values specified in Proposition 5.36 has led to an improved
growth constant in contrast to the earlier version of this result published in [50].

Summarizing, Assumption 5.28 is ensured for sampled-data systems governed by or-
dinary differential equations. The deduced estimates are in particular useful for small
sampling periods.

Next, infinite dimensional systems are considered. This is motivated by sampled-data
systems induced by partial differential equations with linear operators which allow for
a wide range of applications, cf. Section 3.4 and the Chaffee-Infante equation from the
introduction of this chapter. Typically, these operators are — in contrast to the finite
dimensional case — unbounded, cf. [98].

In order to establish Assumption 5.28 for this setting we choose @ = 0. Then [98,
Theorem 1.2.2] provides the estimate

ISl < Me*t,  0<t<oo

with w > 0, M > 1 for the Cyp-semigroup S(-) whose infinitesimal generator is the linear
operator corresponding to the considered PDE. For the corresponding sampled-data sys-
tem with sampling period 7' > 0 and cost function g||z||* 4+ Alju||?, this yields Assumption
5.28 with M?e?*T. Note that this constant does not necessarily converge to one for a sam-
pling period tending to zero, cf. [24, Example 5.7 (iii), p.40]. Nevertheless, the resulting
growth condition may tighten the estimate from Theorem 3.18.

In Chapter 4 and Sections 5.1, 5.2 Theorem 3.18 was exploited in order to investigate
the performance bounds deduced in Section 3.1. The performed analysis has proven to be
fruitful in order to recognize patterns which, e.g., motivated the development of enhanced
algorithms, cf. Section 4.4. However, for receding horizon control with m = 1 a problem
with very fast sampling was observed, cf. Theorem 5.15. In the following theorem, we
demonstrate that the growth condition resolves this problem, cf. Figure 5.13.

Theorem 5.37

Let Assumption 3.2 with ICL-function of type (1.11) and parameters C' =2, ¢ = 0.5 and
Assumption 5.28 with growth bound L = 2 be satisfied. Furthermore, let the optimiza-
tion horizon N = 8 and the discretization sequence (k;)jen,, kj = 27, be given. Then,
combining (5.10) and (5.39) in order to define 7, appropriately, i.e.

i—1 i—1 . .
' " n ‘ (1 = i/k 1 — Lz/k
Vik 1= mln{C’Z(al/k) , Z(Ll/k) } :mm{ i—cj/k ), 1—Ll/k}’

the corresponding sequence (cu;n1(k;))jen, of optimal values satisfies
ki N

(’yk?jN7k?j - 1) H’Li2 <7i,k’j - 1)
kN Ty N

122 i, — I1iZ2 (viw, — 1)

1.e. Theorem 5.31 ensures a positive performance index for arbitrary fast sampling with
m =1 and, thus, enables us to apply our results in the sampled-data setting.

Oéijjl(k’j) =1- >0, VEke No, (547)

Proof: At first, we show that the switching index 7 from Lemma 5.29, which depends
on the discretization parameter j, fulfills 75 = k; + 1. Since (o'/k3)=t = L'/*5 holds for
all j € Ny, we obtain Lr/kig=@G=1=m/ki — p/kipki=m)/ki — [, = C' forn = 0,. .., k; and,
thus, ColG—1=™M/% — [n/ki Taking this equation into account yields C Z:f:ol ok =
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Figure 5.13: The figure on the left illustrates the sequence of suboptimality estimates
(o, n,1(K;5))jen, corresponding to the discretization sequence (k;)jen,, kj := 27, cf. Theo-
rems 5.15 and 5.31. The blue line (o) corresponds to the one depicted in Figure 5.6 which
is assigned to the setting based solely on our controllability condition Assumption 3.2.
In contrast to that, the other trajectory (¢) takes the growth condition Assumption 5.28
with growth constant L = 2 into account. On the right we visualized exactly the same
situation, however, in dependence on the sampling period 7.

C Zf?: gk — 5™ 1 and the assertion is, consequently, verified for i;. Hence,
(5.47) is equivalent to

k;jN—1 k; N ki N kiN
Vk; N k; H% k; H% k; H%‘,k‘j > Vk; N k; H(%’,kj— = Vk;N,k; H % kj— H % kj—1)~
1= z *+1 =2 =2 1= z *+1

Dividing this inequality by Vi, v ,, inserting the definition of v; depending on the switching
index ¢}, and noting that the divisors (LYks — 1)’; ~! may be canceled out, yields

>k

El RN -1 i/k; i kN . |
H(Ll/kj—l) H M > HLl/kj(L(ifl)/kj_1> H O(l - O'/kﬂ) — (1 — o-l/kj).

1—ol/ki 1 — ol/ks
i=2 i=it+1 i=2 i=it+1

Plugging in C' = 2 and using the estimate 1 — 2075 + gk < (1 + o'/k5)(1 — o/k3),
establishing the following inequality suffices in order to ensure the assertion

ki N—1 , ki N
1 1-a' i+ '
i= 7/‘ Z:Z]-
In consideration of (L'/% —1)/(1—o'/%) = LY% = 0='/% and % = k; 41, this condition
is transformable to
ky N
(LL'% — et 1]

i=kj+2

2 N
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which, in turn, using the estimates (1 — o) < 1 and k;N — i = Thkj — 1> 6k, LC = 4,
may be ensured by proving

9 6k; 9 6k,
I V0 A = >
(2 o J) (1+0-1/k7j) > (1+01/kj> > 4.

To this end, showing the second inequality for 7 = 0 and deducing monotonicity of
(2/(1 + Jl/kf))kj with respect to j completes the proof. Firstly, we deal with j = 0. Here,
kj =27 =1 implies (2/(1 + al/kj))ﬁ’“j = (4/3)% = 4(4/3)(4*/3%) > 4(4/3) > 4 and, thus,

ensures the assertion. Taking k;;1 = 2k; into account, establishing

2 2 S 2
1+ Vol/ki ) — 1+ol/k

or, equivalently, 2 + 20'/% > (1 +Vol/ki)? = 1 + 2V o'/ki + o/%i is sufficient in order to
verify the claimed monotonicity. Hence, completing the square provides the assertion.

O

Arbitrarily fast sampling and, thus, employing a very fine discretization led, as observed
in Figure 5.6 and rigorously proven in Theorem 5.15, to negative suboptimality bounds.
Theorem 5.37 ensures positive performance estimates and, consequently, resolves this
problem by incorporating the introduced growth condition Assumption 5.28 — but only
for very special parameters.

Indeed, Theorem 5.15 shows that the sequence of suboptimality estimates correspond-
ing to an iterative refinement process decreases unboundedly. Hence, the assertion of
Theorem 5.37 consists of two parts: firstly the existence of a lower bound is ensured and,
secondly, positivity of this bound is shown. In order to further investigate this issue, Fig-
ure 5.14 is considered which depicts performance bounds for very large growth bounds L.
All curves reflecting the growth condition exhibit a lower bound but whether a positive
suboptimality index and, thus, stability can be ensured depends on the chosen parameters
— like in the setting solely based on our controllability Assumption 3.2.

5.3.5 Alternative Proof of Theorem 5.31

The presented proof of Theorem 5.31 is essentially based on the construction of an equiva-
lent K Ly-function according to Definition 5.30. A generalization of this proof technique to
the setting with a terminal weight w > 1 seems to be difficult. To this end, the following
proof, which generalizes the technique employed in order to prove Theorem 3.18 to ~;,
i €{2,3,...,N} defined by (5.39), may be helpful.

Proof: [Alternative proof of Theorem 5.31] The starting point of this proof is the same
as the one of Theorem 3.18 except for the changed definition of ~;, + = 2,3,..., N.
This modification does not affect the part of the corresponding proof in which (3.21)
is established as optimal value of the relaxed Problem 3.17. However, we still have to
validate the counterpart to (3.27), i.e. the same inequality based on the adapted definition
of ~;, in order to ensure that (3.21) yields the solution of Problem 3.8. Repeating the
arguments applied to (3.27) in the proof of Theorem 3.18 shows that checking the following
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Figure 5.14: The figures illustrate sequences of suboptlmahty estlmates (ar;n1(Kj))jen,
corresponding to the discretization sequence (k;)jen,, kj := 27, cf. Theorems 5.15 and
5.31. The blue line corresponds to the setting without the growth condition. The other
curves are obtained by using the growth bounds L = 2 (red, ¢), L = 2% = 256 (magenta,
o), L = 216 = 65536 (cyan, ), and L = 232 = 4294967296 (black, o).

inequalities is sufficient

N—j+m—1 N—j+m—1
(”Yijer —1) H (vi—1) > (yw- jm — ’Yij) H Yi, j=mm+1,...,N —2.
i=m+1 i=m+1

(5.48)
To this end, YN_jim = CZ ”m Yo" is assumed. Otherwise, the involved ;, i €
{2,3,. N—j+m—1} may be defined by ¢, := L™, n € {0,1,...,N —j+m — 2}.
Since these coefficients satisfy Condition (1.13) the respective inequality in (5.48) can be
concluded analogously to the one in the proof of Theorem 3.18.

In the following yy_; = C ZN J=1 o™ is assumed. The case yy_; = ZnN 7 L7 will be
dealt with afterward. Using the representations of YN_jtm and yn_ - yields IN—jpm — 1 =
(C—1)+ O NTT om as well as Y _jym —Yv—; = CoN 7 S " ™. Taking this into
account allows us to rewrite (5.48) as

N—j+m—1 —j+m—1 N—j+m—1 m—1 N—j+m—1
-1 [] v-n+c Z o [ - =" 0" ] wl| >0
i=m+1 i=m+1 n=0 i=m+1

Clearly, the first summand is positive. Hence, showing positivity of the term in square
brackets suffices in order to deduce the desired assertion. We point out that the corre-
sponding inequality resembles the one dealt with in Lemma 3.23. However, we do not
know whether ~; is given by our controllability assumption or the growth condition for
ie{m+1m+2,...,N—j+m—1} — except for yy_;. Hence, the respective steps of
the proof need to be redone for this our setting. An induction with respect to j is carried
out. The induction start j = N — 2 is implied by
m+1 m—1

Zo (Ymg1 — 1) — o? o" 7m+1—0~min{0ia",iL"}—aia”ZO.
n=0 n=0 n=0

n=
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The induction step is performed from j+1 ~~ j. For this purpose, the factor (yy_;+m—1—

1) Zg:_l] =1 g1 of the minuend is decomposed in order to rewrite the inequality to be

established as

i N—j+m—1 N—(j+1)+m—1
oW -jima— Yy, O II (-1
L n=1 i=m-+1
[N—(j+1)4+m—-1  N—(j+1)+m—1 N—(j+1)+m—1
+ Z o™ H (v — 1) -G+ Z o™ H Yi| o YN—j+m—-1 > 0.
n=1 i=m+1 i=m+1

Since (5.39) ensures positivity for the term contained in the first bracket, applying the
induction assumption to the second yields the assertion and, thus, guarantees (5.48) for
oy = O o,

In order to complete the proof, The more complicated case yy_; = Zg OJ n <
CY NI om s considered.  Since yy_jim = C’ZN pmelgn < SIS the
sw1tch1ng index ¢* defined in Lemma 5.29 satisfies i* < N — 7+ m. Hence, taking

N—j+m—1 N—j+m—1
IN-— ]+m—C Z a" <ZL”+C Z
n=i*+1

into account yields that the inequality

N—j+m—1 max{i*,k} N—j+m—1+k max{i*,N—j+k—1} N—j+m—1+k —j+m—1
[[ei-D] Y rm+C > o= > L'+cC > o" H%
i=m+1 n=1+k n=max{i*,k}+1 n=N—j+k n=max{i*,N—j+k—1}+1 | i=m+1
(5.49)

for £ = 0 is a sufficient condition for the desired inequality. However, in order to deal
with technical difficulties to be encountered in the upcoming induction, our goal is to
show (5.49) for all & € Ny. Again, we perform an induction starting with j = N — 2, i.e.

max{i*,k} m+1+k max{i* k+1} M1k
| Y e Y oY e Y sl
n=1+k n=max{* k}+1 n=2+k n=max{i*,k+1}+1

If £ > i* this inequality simplifies to Co'™(y,,41 — Y0 0™) > 0 which is satisfied in
view of (5.39). Otherwise, i.e. for k < i*, the inequality above is implied by

m+1+k *—1 m+k
LYk, 1 — ZL”+C > o >L<L7m+1—[ZL”+CZJ )
n=1+k n=i*+1 n=*

Let Y1 = C Yo ;o™ hold. Then, applying o* < L* for the second subtrahend and
Z::;kl L = L* Z::;Ol*k L < LkC Z::;Okk o™ for the first, ensures this inequality. Oth-
erwise, i.e. if Y1 = Doy L™ holds, using Co’ ™" < LU*" for n € {0,1,...,m + k}
provides the assertion.

In order to complete the proof, the induction step is carried out from j + 1 ~ j. To
this end, the left hand side of (5.49) is considered. Leaving the factor Hf\i—nﬁf‘ 2y —1)
aside allows for rewriting the remaining term as

max{i*,k+1} N—j+m—1+k max{i*,k} N—j+m—1+k
n n n
YN—jtm—1 E L"+C E o' [+ | CrirYN—jrm—1 — E L"+C E
n=1+(k+1) n=max{i* k+1}+1 n=1+k n=max{i* k}+1
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with ¢« = LM for k < ¢* and ¢+ = Co*™! otherwise. Since the ignored factor
Hz]\i:n]ﬂn _2(%‘ —1) is positive, positivity of the second summand can be shown analogously

to the induction start. Hence, it remains to show that the difference of the first summand

multiplied with Hf\:nfilm 72(% — 1) and the subtrahend of (5.49) is positive. To this end,

dividing the respective inequality by yn_;4+m—1 we have to establish

N—(j+1)+m—1 max{i* k+1} N—j+m—1+k max{i* ,N—j+k—1} N—j+m—1+k
Mienm) Sre S ols ™5 e T8 o
i=m+1 n=1+(k+1) n=max{i* k+1}+1 n=N—j+k n=max{i* N—j+k—1}+1

Noting that k—j = (k+1) — (5 +1) enables us to apply the induction assumption applied
for K+ 1 and j + 1 and, thus, to conclude the assertion.

O

5.4 Accumulated Bounds

In the last section the growth condition Assumption 5.28 was introduced and incorpo-
rated in Problem 3.8 by appropriately modifying the definition of ~;, ¢+ = 2,3,...,N. In
order to solve the corresponding optimization problem, Theorem 3.18 was generalized,
cf. Theorems 5.31 and 5.32. To this end, the concept of equivalent KLy-functions was
employed which exploits that only the accumulated bounds ~;, ¢ = 2,3,..., N, resulting
from Assumptions 3.2 and 5.28 are used while the exact shape of the sequences (¢, )nen,
and (L"),en, does not play a role, cf. Definition 5.30.'° Hence, the controllability and the
growth condition may be replaced by the following weaker assumption taken from [120].

Assumption 5.38
Let a monotone, bounded sequence (M;)ien., and an upper bound M € [1,00) exist such
that 1 < M; < M holds and, for each xy € X, the following inequality is satisfied

Vi(xo) < Mil*(zo) for all i € N. (5.50)

Note that supposing linearity of the KLq-function (-, -) from our controllability Con-
dition 3.2 in its first argument fits well to the structure of this assumption. In [120]
Assumption 5.38 is formulated with a function o : X — R{ which has to satisfy the
condition o(z) < l(z,u) for all x € X and v € U. Hence, £*(-) is the maximal feasible
function o(-) and, thus, allows to employ smaller elements M;, i € N>, in comparison
to other choices. Furthermore, since N = 2 corresponds to the smallest possible op-
timization horizon in our setting, the smallest index of the sequence (M;);en., is two.
The upper bound M corresponds to our assumption that the sequence (c,)ney, from our
controllability condition is summable. The supposed monotonicity results directly from
unconstrained receding horizon control and reflects that the optimal value function Vy(+)
is monotone in the optimization horizon N.

Supposing Assumption 3.2 based on a CLy-function 3(-,-) linear in its first argument
enables us to easily construct a sequence (M;);en., satisfying Assumption 5.38. For in-
stance, this can be done by the definitions B

i—1 i—1

Miiz%zzcn or Mi::%‘:ZCUn:

n=0 n=0

C(1—o")
(1-o0)

ONote that, for 7o € X, existence of an admissible sequence (u,(n))nen, of control values satisfying
Condition (3.3) cannot be guaranteed for such an equivalent Lo-function.
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in the exponentially controllable case, cf. [120, Section V]. The other way round, the con-
cept of equivalent KLy-functions can be employed in order to obtain a sequence (¢;,)nen,
from (M,;);en.,, cf. Definition 5.30. Then, Property (1.13) may be checked in order to
decide whether the estimate from Theorem 3.18 characterizes the optimal value of the
corresponding optimization Problem 3.8 exactly or provides a lower bound.

In summary, also Assumption 5.38 implies the presented results. Based on Assump-
tions 3.2 and 5.28, which were rigorously verified for, e.g., the linear wave equation in
Section 3.4 or the reaction diffusion equation considered in the introduction of this chap-
ter, suitable bounds v;, i = 2,3,..., N, can easily be computed. Using Assumption 5.38
yields improved performance estimates resulting from Theorem 3.18 as shown below for
the reaction diffusion equation and the example of the synchronous generator, cf. Sub-
sections 5.4.1 and 5.4.2. First a theoretical example is investigated in order to illustrate
the technique to be applied.

A discrete time system whose dynamics are given in Figure 5.15 is considered.

Figure 5.15: The system dynamics of a theoretical example are illustrated. z* = 0 is the
desired equilibrium whereas x, is an expensive state with respect to the stage costs given
by (5.51).

The stage costs depending on the current state and the applied control are given by

1+i forx € {x, 9, 23},
Uz, u;) == ¢ 100+ for z = zo, (5.51)
0+ forx=0.

Consequently, the system to be investigated is finite time controllable. We want to deduce
a sequence (¢, )nen, satisfying Assumption 3.2. To this end, x3 is considered first for which
choosing u,,(0) = us minimizes v = ¢y +¢;. Then, Tuy, (n;x3) = x*, n > 1, is ensured by
Uz (N) = ug, n € N, without creating further costs. As a consequence, ¢y > 3 is required.
For x5, the choice ., (0) = ug, (1) = ug ensures ¢y < 3 and minimizes ¢; (¢; = 1 instead
of ¢; > 3). However, then ¢y > 100 follows and, thus, the minimal stabilizing horizon N
is at least 453 for m = 1 or 144 for m = | N/2]."! Hence, avoiding x., seems to be clearly

1 For the horizon estimates the sequence co =3, ¢; =1, co = 100, and ¢,, =0, n € N>3 was used. The
asymptotic estimates on the minimal required horizon length from Section 4.1 are «vIny = 483 for m =1
and 21In(2) - v = 144 for m = | N/2] (for ¢g = 104 and ¢, = 0, n € N, the minimal stabilizing horizon is
482 for m = 1).
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favorable in view of (5.51). Furthermore, staying in the state z,, longer than necessary
is not useful. Suitable sequences (¢, (z¢))nen,, To € {21, T2, T3, Too, 0}, satisfying

U2y, (1, Uy (n)) < cn(w0)l*(20) (5.52)

are given in Table 5.4. In order to guarantee Assumption 3.2, the sequence defined by
Ci i= MAXg)e{0,m00,21,22,23) Ci(T0), 1.6. ¢ = ¢1 = ¢ = 3 and ¢, = 0 for n € N3, has to
be employed which yields 75 = 6 and 7, = 9, ¢ € N>3. Applying Theorem 3.18 yields
N = 20 and, taking Algorithms 4.24 and 4.28 and, thus, larger control horizons m > 1
into account, N = 12.

(20|« [afe]a]

1 1 11310
T 1 31010
x3 3 01010
Too | 102101 0] O
0 0 010]0

Table 5.4: Sequences (¢, (o) )nen, depending on the initial state xy are deduced for a theo-
retical example which are used in order to illustrate the ramifications of using Assumption
5.38 instead of Assumption 3.2 in order to compute suboptimality bounds.

In contrast to that, Assumption 5.38 is satisfied with My = 4 and M; = 5, © € N3,
cf. Table 5.4. The equivalent sequence is defined by ¢ =3, ¢1 =1, =1, and ¢, =0
for all n € Nsj and satisfies Property (1.13), cf. (5.41). Employing Theorem 3.18 in
order to compute the respective performance bounds yields N =8 (or N =7 for m > 1)
as minimal stabilizing horizon — a significant improvement in comparison to the prior
estimates.

In order to fathom out this observation, a closer look is taken at the involved accumu-
lated bounds. Denoting the accumulated bounds from Assumptions 3.2 with ~; and their
counterparts from the newly introduced Assumption 5.38 with M; leads to

i1 i1 i—1
= Cn = max ¢, (zg) > max cn(o) = M.
Vi Z n zoEX n( O) = zoex n( O) %
n=0 n=0 n=0
Hence, using Assumption 5.38 allows for maximizing the accumulated bounds instead of
accumulating the maximized bounds.

5.4.1 Reaction Diffusion Equation: Impact of Assumption 5.38

In this subsection, first Assumption 5.38 is verified for the example of the reaction diffusion
equation which was considered in the introduction of this chapter. Then, Theorem 3.18
is employed in order to compute suboptimality estimates ay,, = a}\,’m based on the
corresponding equivalent sequence, cf. (5.41).

In the mixed integer optimization Problem 5.4 the formula

i—1 i—1
¥i=CY o= (1+AK)M>Y (e")",  ie{23,... N} (5.53)
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was used. Then, for each optimization horizon N, the involved feedback gain K was
suitably chosen in order to maximize the performance bound O‘}V,l‘ However, for each ~;,
i € {2,3,..., N}, the same parameter K was used. Here, each M; = 7, is minimized
with respect to K individually. Then, for each optimization horizon N, Theorem 3.18
is applied with the resulting 7;, 7 € {2,3,..., N}, in order to compute ay ,, cf. Figure
5.16 on the left. The minimal stabilizing horizon decreases to N = 7 from N = 10. The
minimal horizon ensuring oy, > 0.5 is reduced to N = 19 — in contrast to N = 25.
Combining this approach with the discretization technique from Section 5.1 even reduces
the minimal stabilizing horizon to N = 6.

20

Vi

Figure 5.16: Impact of the growth condition on our suboptimality estimates for the re-
action diffusion equation. On the left the performance bounds oy, are illustrated for
the (7i)ien., shown on the right. The red curves correspond to the equivalent sequence
induced by Assumption 5.38, the others are based on the optimal choice of the feedback
gain K for given horizon N (N = 10 is marked with ¢, N = 25 with o).

Summarizing, using Assumption 3.2 for different parameters K led to improved ac-
cumulated bounds ~;, : = 2,3,..., N. Then, an equivalent sequence was constructed in
order to apply Theorem 3.18 and, thus, to deduce tighter performance estimates. To
this end, the observation that only ~v;, © = 2,3,..., N, are used in Problem 3.8 is essen-
tial. Hence, guaranteeing Assumption 5.38 is sufficient — although this was done by first
ensuring Assumption 3.2 depending on the feedback gain K.

5.4.2 Synchronous Generator: A Case Study

In Section 4.4 Example 4.27 was investigated numerically for sampling period 7" = 0.05 in
order to illustrate the proposed Algorithms 4.24 and 4.28. Here, this example is considered
again. We want to determine a sequence (¢, )nen, € Ry numerically such that, for each
state zo from a given set, a control u,, () exists satisfying Condition (3.3)

U2y, (n), Uz (1)) < cnl(20) = Cp mi[[rjl Uz, u) for all n € Ny. (5.54)
ue

Since the proposed methodology in order to estimate the required optimization horizon
length becomes, in general, more conservative for large sets, level sets £;, © € {0,1}, of
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the optimal value function given by (4.19) are considered. The corresponding stage costs
l;(-,-) take — in addition to the control effort — either the whole trajectory or only its
states at the sampling instants into account, cf. Section 4.4. Again, the level sets are
intersected with a grid G defined on the cube

[z} — 0.25, 2% + 0.25] x [=1,1] x [z} — 0.75, 2% + 0.75] C X.

To this end, an equidistant discretization is used in each coordinate direction with
stepsize Az = 0.05. This construction yields 13981 grid points.'> For each grid point
xg € L;NG, 1 € {0,1}, ¢*(zg) as well as the first 80 RHC steps are computed. The
latter generates a trajectory xﬂﬁ,l(-) and, thus, allows to evaluate the stage costs
g, (n), 15, (052 (), n=0,1,...,80 along the closed loop trajectory. Hence, a
sequence (¢, (o) )nenynio,s0 can be defined by

() = o, (), 15710 x”mm))), n=0,1,...,80. (5.55)
(o)
Taking the maximum with respect to z, i.e. setting ¢, = maxy,er,ng cn(T0), yields a
sequence (¢, )nen, satisfying Condition (5.54). Then, Formula (3.21) provides a lower
bound for the suboptimality index ay,, depending on the optimization and the control
horizon.

Note that (5.54) is not checked rigorously because the maximization in order to compute
¢, was performed only on £; NG instead of the whole level set £;, i € {0,1}. However,
our numerical experiments confirm that the used grid is sufficiently fine in order to allow
for a reliable estimate. _

The procedure is repeated for various optimization horizons N, i.e.

N €{6,8,10,...,24} for flo(-,-) and N €{10,12,14,...,28} for {(;(-,")

in order to enhance the deduced performance bounds.'®> Subsequently, we check whether
the respective suboptimality estimates are improved or not which is facilitated by Formula
(3.21). The resulting horizon estimates for selected suboptimality bounds @ are given in
Table 5.5 and Figure 5.17.

The improvement for larger control horizons m is significant which, once more, shows
the advantages of employing Algorithms 4.24 and 4.28 which only use m > 1 if necessary.
This observation fits well to Corollary 4.3 and Theorem 4.4, i.e. to the fact that the
asymptotic growth of the minimal stabilizing horizon declines from yIn~ for m =1 to a
linear one for m = [ N/2].

Comparing these theoretically calculated bounds with the numerical results from Sec-
tion 4.4 shows that the deduced estimates are conservative. In this context, we emphasize
that the quality of the derived performance estimates crucially depends on the provided
controllability and growth bounds. Hence, our goal is to deduce tighter estimates by using
Assumption 5.38. To this end, the sequences (¢ (xg))nen, with o € GN L;, 7 € {0,1},
are used once more. Each of these sequences is converted to a sequence (M (xg))ien-.,

12Gince the zero sequence is admissible for 2y = x*, the equilibrium point is not treated separately —
in contrast to Section 4.4.

13The optimization horizon which is used in RHC in order to generate coefficient sequences
(en(®0))neny = (¢ (%0))nen, in (5.55) and, thus, the sequence (¢u)nen, = (¢ Jnen, is denoted by N.

Based on this sequence performance bounds oy, (V) are computed by applying Theorem 3.18 depending
on the horizon length N.
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{L‘()E[:ng, fg(',') Xo Gﬁlﬂg, 61(',')
o m=1 \m:L/QJ m=1 \m:L/ZJ
0 41 (14) 25 (12) 58 (20) 30 (14)
1/5 47 (14) 30 (14) 63 (22) 34 (18)
1/3 52 (16) 33 (16) 68 (24) 38 (22)
1/2 59 (18) 38 (22) 75 (26) 42 (28)

Table 5.5: RHC performance estimates for the synchronous generator based on Theorem
3.18 and a numerically computed sequence (¢, )nen, = () )nen, satisfying (5.54) are given.
The respective horizon N is denoted in brackets.

051 0.5

Suboptimality degree o
Suboptimality degree o

-0.5 / L L L L L L L L L L -0.5 d L L L L L
15 20 25 30 35 40 45 50 55 60 65 70 20 30 40 50 60 70 80
Optimization horizon N Optimization horizon N

Figure 5.17: Numerically computed suboptimality bounds for the synchronous generator
deduced from Theorem 3.18 supposing Assumption 3.2 in dependence on different stage
costs (lo(+,-) on the left and ¢;(-,-) on the right). The horizontal lines are located at 0,
0.2, 0.33, and 0.5. The solid blue line marks the results concerning m = 1 whereas the
other stands for m = | N/2].

by Miﬁ(aco) =yt cﬁ(xo). In contrast to the approach based on Assumption 3.2, now

n=0"n
a sequence is constructed which reflects the best estimates depending on the state zg, i.e.

M;(xo) = min Miﬁ(:co) for RHC based on #y(-, -),
Ne{ 6, 8,10,...,24}
M;(zg) = min Miﬁ(xo) for RHC based on ¢;(-, -).

Ne{10,12,14,...,28}

Then, the maximum is taken with respect to xo which yields M; := max,,egne; Mi(2o),
j € {0,1}. For the considered example, in doing so the suboptimality estimates from
Theorem 3.18 are significantly improved, in particular for RHC with m = 1, c¢f. Table
5.6.

In conclusion, using Assumption 5.38 leads to better performance bounds which shows
that the accumulated bounds are the decisive ingredient in order to deduce good subop-
timality estimates.
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xo € LoNG, 60(',‘) xo € L1 NG, 61(',')
m=1 m = |N/2| m=1 m = |N/2|
a N ‘ AN N ‘ AN N ‘ AN N ‘ AN
0 32 09 24 1 44 14 27 3
1/5 37 10 28 2 49 14 31 3
1/3 41 11 31 2 93 15 34 4
1/2 48 11 36 2 59 16 39 3

Table 5.6: Minimal horizon N such that a performance bound ay,, > @ is ensured by
Theorem 3.18 applied with a numerically computed sequence (7;);en., satisfying Assump-
tion 5.38 for the synchronous generator. In addition, the improvement AN in comparison
with estimates deduced from Assumption 3.2 is shown, cf. Table 5.5.

5.5 Comparison with Other Approaches

In this section Assumption 5.38 is supposed to be given with a sequence (M;)ien., =
(7i)ien-, which is determined either analytically or numerically. Then, the performance
bounds from Theorem 3.18, which are based on the methodology from [39] introduced in
Section 3.1, are compared with their counterparts from two other approaches [90, 120].
All three approaches have in common that Vi (-) is employed as a Lyapunov function.
Since the technique presented in [90] is restricted to linear finite dimensional systems, an
example suitable for this setting is considered, cf. Subsection 5.5.1. Afterward, we return
to the nonlinear example of the synchronous generator in order to further investigate the
other approaches, cf. Subsection 5.5.2. At first the methodologies [90, 120] are briefly
sketched.

The technique from [90], which is developed by V. Nevisti¢ and J. Primbs, is limited to
linear finite dimensional systems governed by z(n + 1) = Az(n) + Bu(n) with quadratic
stage costs {(z,u) = 7 Qx + u” Ru with positive definite matrices Q, R.!* The goal of
this approach is to employ the cost functional Vi (-) as a Lyapunov function and, thus,
to ensure Vi (x,, (k;z0)) — Va(zuy (K + 1;20)) > 0 for © # 2* = 0. The main idea is to
rewrite this inequality by means of Bellman’s principle of optimality, i.e.

VN(‘I.U'N (k7 IO)) - VN(‘I.U'N (k + 1; l‘o)) (556>
= Uwpy (k;m0), un (Tpuy (k5 20),0)) + [Vvo1(Tpuy (K + 1520)) — Vv (@ (k + 1520))].

Then, the optimization horizon is chosen sufficiently large in order to ensure that the
difference contained in the second line is negligibly small compared to the stage costs
evaluated at time instant k. In particular, a methodology in order to estimate the required
horizon length is proposed.

Let Py denote the solution of the Riccati difference equation (RDE) and P its counter-
part of the algebraic Riccati equation (ARE), cf. Examples 1.23 and 1.10, which satisfy
Py >Py_1>PFP =@ >0for N Nand Py — P for N tending to infinity.'> In
addition, let Ay and Ay be the largest and the smallest eigenvalue of Py, respectively.

Tn [90, Section 5] the authors state that their approach is “based on the ideas found in [112] for
non-quadratic finite horizon based receding horizon control” which clarifies the relation of these two
references.

15Note that terminal costs are not taken into account.
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Then, we obtain 0 < ;) < Ay < Ay < X and, for each z, € R”,
Xollzolls < €*(x0) = Vi(wo) < g5 Qxo +ul (0)Ru(0)  Yu(0) € R™

Defining 0y := min{f : 6Py > Py} yields limy ... 0y = 1, cf. [90, Proposition 5.2,
and, thus, Viyii(z) > Vy(z) > #VN_H(ZB). These preliminary considerations enable us
to state the main result, cf. [90, Theorems 5.1 and 5.2].

Theorem 5.39

Let the pair [A, B] be controllable. Furthermore, let the optimization horizon N be such
that Ay — (On—1 — 1)Ax > 0 holds. Then, RHC stabilizes the system governed by the
linear dynamics x(n + 1) = Az(n) + Bu(n) with stage costs {(z,u) = z7Qz + u' Ru,
Q, R positive definite. The cost functional Viy(-) is a Lyapunov function for the receding
horizon closed loop satisfying

Ay — (On_1 — DX
V(2 (k+1;20)) < (1—_0 <N_1 JAN

Ay ) Vi (@ (ks 20)) =2 onViv(@uy (ks 20)).

Moreover, the performance on the infinite horizon is bounded by

On_1 — 1) ON
1—on

gﬁ(ﬂfw(l@;wo%uzv(fcw(k;wo),0)) < (1 + ( > Vi(wo).  (5.57)

On_1

Proof: Taking account of the estimate
On-1 VN (T (K3 20)) 2 On-aVivo1(2puy (k4 1520)) = Viv (@ (K + 15 20))
and Equality (5.56) allows to deduce the following inequality

VN(xﬂN(k; xO)) _VN(x,uN(k‘i‘l;xO)) > €<xHN<k; 370)7 ILLN(EHN<]€; SUO),O)) - (eNfl_l)VN(x#N(k;xO))
> (A= (Ox-1=1)AN) [y (50 |3

> (2O =D ),

AN
Then, using the definition of gy shows the first of the two claimed estimates. In order to
deduce the second, the following bound for the stage cost is established

g(‘rﬂN (k; ‘770)7 Upy (‘rﬂN (k; $0), 0)) = VN(‘rﬂN (k; 1;0)) - VNfl(xuN (k + 1; xO))
< Vil (k) — D ZeeE 2 Ti0)

Rewriting the subtrahend of the difference on the right hand side as

V(2 (k4 1;20))
On_1

9]\]_1 -1

= Vn(x,y(k+ 1;20)) — V(2 (k4 1;20))

On-1

enables us to proceed analogously to the proof of Proposition 3.1, i.e.

Zg(xm\f(k;xﬁ)?UMN(QI#N(k;xO)’0)) < VN($0) + %ZVN(x#Nuf"i_ 1;$0))
k=0 N k=0

Ov-1—1
(1 + LQNZQI;V) Viv(zo)

On-1 —~

Onv_1—1 on )
= 1+ Vi (zo).
< On-1 1—on w(wo)

IN
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O

Since the positive definiteness of ) implies Ao > 0, the convergence of f to one for N

approaching infinity, and the uniform boundedness of the sequence (\;);en,, the following
condition is always satisfied for sufficiently large optimization horizons N

o — (On-1 — 1)Ax > 0. (5.58)

Inequality (5.57) yields a suboptimality estimate. Here, since Vi (zg) < Vi (zo) holds for
unconstrained RHC, the respective performance index is given by the inverse of the term
in brackets in front of Vy(x), i.e.

On_1—1 ON -
=1
o ( +< On-1 )1—QN>

and, thus, RHC performs “within a specified tolerance of the optimal infinite horizon
policy”, cf. [90, Section 5]. The convergence Oy — 1 for N — oo implies that this bound
tends to one — an assertion which is also guaranteed by Corollary 3.20.

In order to apply Theorem 5.39, Condition (5.58) has to be verified. In the described
linear setting without control or state constraints, the matrices Fy, Py_1, and Py can
be computed by solving the RDE for finite V. Hence, the eigenvalues Ao, v, and, since
Py is invertible, 8_; can be determined. This raises the question whether Condition
(5.58) can also be ensured in a more general setting solely based on Assumption 5.387
Here, the maximal eigenvalue ); corresponds to v; and ), is provided the Ku-function
from (1.4). However, estimating 6y_; is more difficult. Using Assumption 5.38 and the
inherent monotonicity of Vy(-) for unconstrained RHC leads to

Vi (zo) < ynl*(x0) < ynVi—1(zo). (5.59)

Since vy does, in general, not converge to one, this estimate is too coarse in order to be
applied in Theorem 5.39. In conclusion, Condition (5.58) seems to be too restrictive in
order to extend this approach to a more general setting which, e.g., includes constraints.

The second methodology, which is designed by S. E. Tuna, M. J. Messina, and A. R.
Teel and was introduced in [120], is based on Assumption 5.38 formulated with a function
o : X — RJ which we replace — as in the preceding section — by ¢* : X — RJ. In
addition, the following assumption is needed in order to apply this approach.'6

Assumption 5.40
Let v > 0 be given and define g(x) := (*(x) = min,ey (zg) (z,u). Then, for each o € X
there exists u € U such that f(xg,u) € X and the following inequality holds

C(f(xo,u)) + (xo,u) = g(f(zo,u)) + l(xg,u) < (1 + K)g(xg) = (1 + K)(x0).

This choice of the function g : X — R allows to easily compare the suboptimality
bounds from Problem 3.8 with those obtained in [120] because our cost functional Vi(+)
may be rewritten as

i

Vn(zo) = %1612141 JIn(zo,u) =min Y {l(z,(n),u(n)) = min : Uxy(n),u(n))+0(x,(N—1))

ueU ueU
n=0

i
o

16This assumption is similar to the first part of [49, Assumption 4.2].
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by Bellman’s principle of optimality. Hence, the optimization horizon N from [120] corre-
sponds to N +1 in our setting.!” Since terminal weights are not considered in this section,
k > 0 is given by ¢; = 72 — 1 from the equivalent sequence corresponding to (7;)ien-,
from Assumption 5.38.!% Based on Assumptions 5.38 and 5.40 the estimate B

Vn(f (2, pv(x)) = V(@) < =(1 = n(N)l(z, pn(z))  withn(N) = r H

(5.60)
which can be interpreted as a relaxed Lyapunov inequality with a = 1 — n(N), is shown,
cf. [120, Theorem 1]. To this end, a similar approach to the one from Section 3.1 is
pursued. However, only Inequalities (3.5) and (3.6), j = 1,2,..., N — 2, are used.

Theorem 3.18 showed that the solution of Problem 3.8, which additionally takes the
Inequalities (3.7), j = 0,1,..., N —m — 1, into account, coincides with its counterpart
from the relaxed Problem 3.17 — assuming Condition (1.13). This “relaxed” Problem
is, for m = 1, based on (3.5) and (3.7), j = 0,1,..., N — 2, but does not reflect (3.6),
j=1,2,...,N — 2. The proof of Theorem 3.18 shows that these inequalities represent
the tighter bounds in order to estimate the desired performance index a}m. Hence, we
expect that the performance estimates resulting from Problem 3.8 are better than their
counterparts from [120].

5.5.1 A Linear Finite Dimensional Example

In order to illustrate and compare the techniques mentioned in the introduction of this
section, the linear finite dimensional system with quadratic cost function from Examples
1.10, 1.17, 2.7, and 3.3 is considered. In particular, we are interested in the performance
loss of RHC compared to the infinite horizon optimal solution. For the approach in [90]
the performance loss is given by (0n_1 — 1)on/(0n—1(1 — o)) which corresponds to a
suboptimality estimate with relaxation parameter 1/a — 1 for the other two settings.
Employing the approach from [90] provides the parameters shown in Table 5.7 and, thus,
ensures stability for N > 5 .19

’ N ‘ On_1 ‘ Ay ‘ Ao — (On_1 — DAy ‘ Performance
3 2.0681 +6.6038 —6.0534 -
4 1.3330 8.7401 —1.9106 -
5 1.0741 9.3781 +0.3048 2.0548
6 1.0214 9.5784 +0.7954 0.2310
7 1.0068 9.6437 +0.9341 0.0633
8 1.0017 9.6593 +0.9840 0.0146

Table 5.7: Performance estimates according to Theorem 5.39 from [90, Table 1].

The computed maximal eigenvalues \;, 1 = 2,3, ..., N, are used as accumulated bounds
Vi, 1 =2,3,..., N, in Assumption 5.38. The parameter s in Assumption 5.40 is approx-
imately 2.21. Then, the minimal stabilizing horizon decreases from N = 25 for the

17This explains the index N — 1 in the definition of n(N) in (5.60).

8Otherwise, g(x) := wl*(x) is a suitable definition.

YNote that our notation deviates from the one used in [90], i.e. the cost functional Vi (-) used in the
reference sums up from n = 0 to N instead of N — 1, cf. (2.4). Hence, the cited results are adapted with
respect to this.
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approach based on (5.60) to N = 12 for m = 1 and N = 6 for m = |[N/2] for our
approach to N = 5 for the methodology from [90], cf. Figure 5.18.%° Taking a look at
the corresponding equivalent KLy-function shows that ¢; > 1 holds for i € {1,2,3}. We
emphasize that the performance bounds get worse for N < 4 for increasing optimiza-
tion horizons N. Hence, ¢, < 1 seems to be the appropriate criterion in order to decide
whether prolonging the horizon contributes positively or not.

1— - =0 —_-.15-0 O *AE « 0= a8 wfnnn
] ." ‘-El'n o e"e_*w
. - aad

Figure 5.18: Comparison of the different approaches in order to estimate the required
length of the optimization horizon for the example considered in Subsection 5.5.1. The
blue curves correspond to [120], the dotted black one to [90]. The other two represent the
performance bounds from Theorem 3.18 for m =1 and m = | N/2]|

In conclusion, when dealing with linear finite dimensional systems whose Riccati dif-
ference equations are solvable with a tenable expenditure the methodology from [90] is
superior. However, the additional Condition (5.58) is required which seems to be too

restrictive for most applications — in particular nonlinear ones or systems with input
or state constraints. The other approaches use only the information aggregated in the
respective bounds v;, ¢ = 2,3,..., N. Hence, their assumptions are less demanding and

significantly easier to verify, especially for nonlinear or infinite dimensional problems which
are not covered by the methodology from [90]. This is due to the fact that the employed
bounds in Assumption 5.38 do not have to be optimal.

5.5.2 Synchronous Generator

In this subsection the nonlinear example of the synchronous generator is considered in
order to compare the suboptimality estimates from Problem 3.8 with those given in [120].

20Even for k = 1, a horizon length of N = 18 is obtained by the technique from [120].

157



SAMPLED-DATA SYSTEMS AND GROWTH CONDITION

To this end, the accumulated bounds M; = ~;, i = 2,3,..., N, from Subsection 5.4.2 are
employed. In order to estimate s from Assumption 5.40, we compute
Va(xo) mingey (£(zo, u) + *(f (20, u)))

- 1= a -1
woetand\e 0 (o) soeLinG\a* ~(20)

K =

which yields k = 1.29963597 or k = 2.12788813 for (y(-,-) and ¢;(-,-), respectively. This
leads to the estimates given in Table 5.8 and, thus, shows that the performance bounds
computed in Subsection 5.4.2 are significantly tighter.

x9g € LoNG, go(',') xo € L1NG, El(',')
~ = 1.20963597 pop— = 212788313 v =1
a N |AN| N [AN| N [AN| N _[AN
0 51 19 45 13 70 26 53 09
1/5 56 19 50 13 76 27 58 09
1/3 60 19 54 13 80 27 62 09
1/2 66 18 61 13 87 28 69 10

Table 5.8: Minimal horizon N such that a performance bound (1—n(N)) > @ is ensured by
Formula (5.60) from [120] for the synchronous generator based on a numerically computed
sequence (M;)ien, = (7i)ien,- In addition, the needed prolongation of the optimization
horizon N in comparison to the estimates resulting from our approach is given by AN,

cf. Table 5.6.

For the reaction diffusion equation the suboptimality estimate 1 — n(N) from (5.60)
yields the minimal stabilizing horizon N = 8 instead of N = 7 for the technique applied in
Subsection 5.4.1. Furthermore, only a marginal improvement of the performance bounds
can be observed for the examples considered in [120]. However, for these examples the
inequality max,en, ¢, < 1 holds for the equivalent sequence (c¢,)nen, from Definition
5.30.2! In contrast to that, the sequence corresponding to the linear example from the
previous Subsection 5.5.1 exhibits ¢g = 1, ¢; = 2.21, ¢o ~ 3.3938, ¢4 ~ 2.1364, and
¢, < 1 for n > 5 and, thus, larger increments for the sequence (M;);>2 = (7i)i>2. Here, a
considerable reduction in terms of the required horizon length was obtained by applying
Theorem 3.18 in comparison to [120].

In conclusion, the methodology developed in this thesis, which is based on [39], yields
significantly better estimates than the prior approach from [120] and, thus, turns out to
be superior. In addition, the technique presented in [120] does not allow for larger control
horizons — a concept which led to a further improvement in view of Algorithms 4.24 and
4.28. Additionally, the concept of a multistep feedback was essential for the discretization
carried out in Sections 5.1 and 5.2.

21For the reaction diffusion equation, this maximum is bounded by 1.0128.

158



Appendix A

Supplementary Results

This chapter is composed of two independent sections which exhibit a supplementary
nature to this thesis. Section A.1 is concerned with the phenomenon of finite escape
times and its ramifications on constructing a discrete time system from a continuous time
one which is governed by a differential equation. In the ensuing section a model of the
inverted pendulum on a cart is derived which serves as one of our main examples in order
to explain the basic ideas of receding horizon control and the developed theory which
can be employed in order to deduce asymptotic stability of the resulting receding horizon
closed loop.

A.1 Finite Escape Times

In Section 1.3 continuous time systems governed by differential equations

2(t) = g(x(t), a(t)),

were represented in our discrete time setting. Here, the meaning of Remark 1.18,; in
which attention was paid to existence of solutions, is explained in more detail. To be
more precise, the phenomenon of finite escape times is dealt with. In order to avoid
technical difficulties, we focus on systems with a finite dimensional state space X C R™.

Since time invariant differential equations are considered, being at time instant ¢ = 0
and initial state x( is assumed without loss of generality. In addition, the control input is
removed by plugging in a feedback p: X — U, which corresponds to the most frequently
employed approach in this thesis. Hence, the resulting dynamical system generated by
the system dynamics @(t) = g(z(t), u(z(t))) = g(x(t)) is considered. Let a parameter
T € R be given and construct a discrete time system according to (1.18), i.e. the next
state is given as the solution of the differential equation at time 7" with initial condition
®(0;29) = zo. Consequently, existence of the solution at time 7" has to be ensured.
However, theorems concerned with existence typically guarantee this only on an interval
0,8] and require continuity of g and, thus, implicitly of the involved control function.!
Here, § might be very small, cf. [70, Theorem 3.1 and p. 92]. Then, trying to extend
the solution, i.e. applying the same theorem again, provides existence on [d,ds] and, by
concatenating the obtained trajectories, a solution on [0, ds]. Iterating this continuation
process yields a sequence (0;);en with 07 := § and, thus, existence of the solution ®(-; x¢)
at time ;47 = Z?:o ti, ti == 0;41 — 03, 09 := 0, but not necessarily at time 7. For

'We refer to [115] for details concerning details related to discontinuous control functions.
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example, t; := 270FIT leads to Y ooyt; = 0.5T7 < T. In order to illustrate this, we
consider [70, Example 3.3], i.e. 2(t) = —x(t)? with zq := —1. Albeit the right hand side
is locally Lipschitz for all z € R, the unique solution z(¢) = (¢t — 1)~! only exists on [0, 1)
and “explodes” at time ¢ = 1, i.e. leaves any compact set. This explains the terminology
finite escape time. We point out that this is closely linked to nonlinearity — at least in
a finite dimensional state space.

In order to tackle this problem one may impose more regularity on the right hand side,
e.g. a global Lipschitz condition, cf. [70, Theorem 3.2]. However, even simple systems like
the considered example do not exhibit this. Hence, another remedy is proposed, which fits
well to our receding horizon control strategy, centered at a (relaxed) Lyapunov inequality,
cf. Section 3.1. To this end, we state the following theorem for time varying ordinary
differential equations from [70]. Allowing for a time varying right hand side enables us
to employ this theorem for controlled system: for a given control function u(-) one may

rewrite Z(t) = f(x(t),u(t)) as @(t) = f(t, z(t)).

Theorem A.1

Let an ordinary differential equation &(t) = f(t,x(t)), x(to) = xo be given. Furthermore,
suppose that the right hand side is piecewise continuous in t and locally Lipschitz for all
t>tyginxinadomain X C X =R". Let L C X be compact and, in addition, for xqg € L
every solution (-5 xo,to) is contained in L, i.e., U5y, ®(t;w0,t0) € L. Then, existence
of a unique solution is quaranteed for all t > t,.

Typically, we follow the path preordained by Theorem A.1 in order to ensure existence
and uniqueness, cf. Section 4.4: for given optimization horizon N, a level set of the optimal
value function Vy(+) is determined. Then, a relaxed Lyapunov inequality is deduced for
Vn(+) and a € [0, 1] which ensures that the state is, again, contained in this level set after
implementing m control signals. Iterative application of this line of arguments allows to
conclude existence and uniqueness and, thus, to exclude finite escape times.

Note that the setting of control systems allows to pick a control from the set of admis-
sible input signals. Existence and uniqueness have only to be verified for this particular
control input — an additional degree of freedom. The assumption of Theorem A.1 that the
chosen control is at least piecewise continuous seems not to impose severe restrictions —
particularly from a practitioner’s point of view. Furthermore, note that this phenomenon,
which is typical for nonlinear systems, is excluded for linear finite dimensional differential
equations.

Another phenomenon occurring for nonlinear finite dimensional systems are multiple
isolated equilibrium points, cf. the synchronous generator example from Section 4.4. Here,
we emphasize that both equilibrium points are contained in the considered level set.

A.2 Inverted Pendulum

In this section a model for the inverted pendulum on a cart is motivated and derived,
which can be done in various ways. In [15, pp.703-710] this is done exemplarily in order
to illustrate the control of an unstable mechanical system. To this end, the process
is subdivided into three stages: the physical model, the equations of motion, and the
dynamic behaviour of the inverted pendulum which is termed stick balancer. In particular,
the emphasis is put on the second and third stage, e.g. the equations of motion are
deduced in three steps. First, the geometry of the physical model is taken into account
using D’Alembert’s method, then the force equilibrium is calculated, and in the third
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step the physical force-geometry relations are incorporated. In the third stage a Laplace
transform of the equations of motions is carried out, cf. [111] for details on the Laplace
transform. The resulting algebraic expressions are manipulated in order to obtain transfer
and response functions which can be used to study the so called natural characteristics.
However, since the analysis is based on transfer and response functions the study is
confined to small angles in order to allow for linearizing and, as a consequence, for applying
the Laplace transform.

In contrast to that, we aim at deriving a nonlinear model. To this end, we rely on the
approach given in [58, pp.13-27] which is based on mechanics. In contrast to the model
presented in [111], viscous friction at the pivot is incorporated. Simplified models can be
found, e.g. in [69,115]. In this approach translational mechanical systems with rotational
elements are considered. In a preliminary stage the dynamics of the cart (trolley) and the
pendulum are deduced separately. The cart is treated as a point mass M which is located
at r(t) and accelerated by a driving force Su(t). Here the parameter [ denotes a constant
which transforms the control variable u, e.g. a voltage, into a force. Moreover, we allow
for viscous friction ¢r(t) between the wheels and the rails, whose influence is assumed to
be proportial to the speed of the cart and neglect drag friction as well as the friction in
the wheel bearings. Hence, we obtain the equation

Mi(t) = Bu(t) — ci(t) + H(t). (A.1)

H (t) stands for the horizontal component of the contact force. The vertical forces on the
cart are assumed to be in balance. Furthermore, a rest position is fixed at r = 0 as the
set point.

Since our goal is to steer the pendulum to the upright position, the position of the
pendulum is measured by the angular displacement ¢ of the line joining its centre of mass
with the pivot from the upward vertical. ¢ is measured, in contrast to [58], in a clockwise
direction. Taking results from [74] into account, free-body diagrams are used for each
element in order to deduce the desired model. Let (z(t),y(t)) denote the coordinates of
the centre of mass at time ¢t. Then the following equations describe the planar motion of
the pendulum

mi(t) = m 0 (1) + Lsn(o(0)

= mit(t) + ml@(t) cos(p(t)) — mip(t)?*sin(p(t)) = —H(t), (A.2)
mi(t) =m % (l cos gp(t))
— —mlp(t) sin(p(t) — mlp(t)? cos(p(t)) = V(£) — mg. (A3)

Taking account of viscous friction, the pendulum rotates about a pivot point which is
mounted on a cart. The equation

Jp = 1sin(p(t))V(t) + Lcos(p(t))H(t) — cpp(t) (A.4)

determines the rotational movement of the pendulum. Here J denotes the moment of
inertia of the pendulum. Inserting (A.2), (A.3) into (A.1) and (A.4) yields

(J +mil*)@(t) = mglsin(p(t)) — mi cos(p(t))F(t) — cpp(t), (A.5)
(M +m)i(t) = Bu(t) — cir(t) — milcos(p(t))@(t) + milp(t)? sin(p(t)). (A.6)
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We solve these equations for #(t), ¢(t). To this end, (A.5) is plugged into (A.6) which
provides

(M + n)(J +ml?)i(t) = (J +ml®) (Bu(t) — ci(t) + mlp(t)* sin(p(t)))
— mi cos(p(t)) (mglsin(p(t)) — ml cos(p(t))i(t) — cpp(t)) .

Dropping the time variable, this equation is equivalent to
M ()it = (J 4+ ml?) (Bu — i + mlg*sin(p)) — mi cos(p) (mglsin(p) — cp)

with M(p) = [(M +m)J + Mmi*+ m?*sin*(p)]. Consequently, using the derived
equation for (A.6) yields

M ()¢ =mlcos(p) (cr — Bu — mlp*sin(p)) — (M +m) (cpp — mglsin(y)) .
Substituting ¢ by —0, i.e. sin(p) = —sin(f), p = —6, and $ = —6, in order to orientate

the considered system in a mathematically positive way, i.e. measured in an anti-clockwise
direction, leads to

M(0)i = (J + ml?) (ﬁu — ¢ — mlf? sin(@)) — ml cos(0) <0p9 — mgl sin(Q)) ,
M (0)6 = ml cos(h) (ﬁu — o — mlé? sin(G)) — (M +m) <0p9 —mgl sin(é’)) :

Note that these equations coincide with [58, p.26, eq.(26)]. Defining z;(t) := r(¢) and
x3(t) := 0(t) yields the system of first order ordinary differential equations

Ty = m [(J 4+ ml?) (Bu — cxy — mizg sin(zs)) — ml cos(xs) (cpry — mglsin(zs))]

.%.'3 = T4

To = M(la: ] [ml cos(z3) (Bu — cxy — mixisin(zs)) — (M + m) (cpzs — mglsin(zs))] .
3

(A7)
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