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Abstract 

The continuing dissemination of information technology (IT) and information systems (IS), 

which currently manifests and proceeds in terms of digitalization, keeps on revolutionizing 

both, business and society. Along with the undoubted advantages of this development, it also 

yields a lot of challenges. The resulting interconnectedness of humankind, infrastructure, and 

machinery, combined with the increasing dynamics due to a fast-pacing and competitive 

market environment, pushed companies to operate within complex risk structures. These 

structures likewise affect a company’s internal management and its external interaction. In 

terms of a company’s internal management, especially risk associated with IT projects still 

represents a major challenge that has not yet been solved. This particularly becomes relevant, 

as these projects are the source of a company’s progression, and hence crucial to survive in 

today’s market environment. As to the external interaction of a company, particularly the 

increasing interdependence to other companies, in the context of value creation networks, 

yields major challenges. An impact that formerly would have only affected a single company, 

nowadays can spread to assigned companies based on the underlying dependencies. This 

increases a company’s exposure to risk, when being embedded in value creation networks.  

With the above considerations in mind, the comprehensive objective of this doctoral thesis is 

to contribute to the extant body of knowledge in the light of IT-pervaded complex risk 

structures. It provides means to manage and assess especially relevant risks in the subject 

areas of IT projects and value creation networks. Particularly, it investigates IT project 

complexity, which has been considered a major risk for IT project success, and derives a two-

dimensional framework for its assessment that provides conceptual clarity and enables to 

mitigate associated risks (Section II.1). It moreover examines IT project assessment and 

management. Considering the increasing complexity and interdependence of IT project 

environments, it proposes a quantitative, integrated approach for IT project assessment, to 

reduce the risk of wrong IT project appraisals (Section II.2). Moreover, it focuses on risks 

arising during a project’s lifecycle and provides means for a continuous IT project 

management, to ensure the projects’ objectives and corresponding business value (Section 

II.3). Focusing on the increasing interdependence in the subject area of IT projects, it 

examines the coherence between interdependencies and corresponding risks. By applying 

centrality measures to the subject area of IT projects, it enables to determine the most critical 

IT project of a corresponding IT portfolio, based on the projects’ underlying direct and 

indirect dependencies (Section III.1). Investigating risks arising from interdependencies in 



 

terms of a company’s external interaction, it draws on supply networks as one instantiation 

of value creation networks to examine the propagation and extent of impacts of exogenous 

shocks. Consequently, it provides means to assess and manage the resilience of the overall 

supply network and the exposure of each aligned company to dependency related risks 

(Section III.2). Finally, it summarizes the major contributions and indicates starting points 

for further research (Section IV).  
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I Introduction 

I.1 Motivation 

Taking a look at the technological change brought by the accomplishments of IT projects over 

the last decades, it can be constituted that IT nowadays influences almost each service offered 

by any kind of service provider, as well as each product offered by any kind of manufacturing 

company. Indeed, IT “has created a more global, faster and more interconnected world” (Buhl, 

2013, p. 377), and has leveraged its influence not only to any kind of process in economy, but 

is omnipresent in today’s society (vor dem Esche and Hennig-Thurau, 2014). Humankind 

currently is in a stage, in which “the generation of wealth, the exercise of power, and the 

creation of cultural codes came to depend on the technological capacity of societies and 

individuals, with information technologies as the core of this capacity” (Castells, 2010; Hilbert 

and Lopez, 2011, p. 60). Revolutionary IT innovations like the Internet and related 

developments like social media, cloud computing, and e-commerce, as well as mobile phones 

and the consumerization of IT, lead to an age of digitalization (Bojanova, 2014). Nowadays, 

we communicate with digital phones and cell phones, read digital newspapers, purchase via 

digital channels and use social media platforms like Facebook and Twitter to digitally 

document our lives (vor dem Esche and Hennig-Thurau, 2014). However, these few examples 

are only the surface of ubiquitous IT solutions that enable companies and individuals to easily 

acquire, exchange, and generate knowledge, deliverables, and resources. However, besides 

the beneficial side of IT, it can also have negative implications that can be observed every day 

in discussions and reports about data privacy, business failures or even economic crises (Buhl, 

2013). These negative impacts might arise from both, occurring risks as to a company’s 

internal management and its external interaction. 

In terms of a company’s internal management, the challenges of such an increasingly complex, 

dynamic, interdependent, and especially fast pacing environment pushes companies to 

continuous progression as to efficiency and innovation. Progression however implies to 

change current practices. Since change in turn is enabled by projects all along, they 

increasingly gain importance (Watson, 2012). Although, there is no common definition of a 

project in general, most researchers agree that a project is a nonrecurring intent with defined 

objectives, limited resources, and limited time (Lassmann, 2006; Hansen et al., 2015). 

Considering these characteristics, it becomes obvious that change precipitated by projects and 

progression are not necessarily the same. The alignment of the project’s objectives to the 



I Introduction 2 

 

overall objectives of the company is a necessary condition for a project to contribute to a 

company’s progression (Buhl and Meier, 2011). Furthermore, it has been proved an adequate 

means, to draw on so called project management, that composes knowledge, abilities, tools, 

and techniques, to actually accomplish the defined project objectives (Laudon et al., 2010). 

Project management has been used to support the implementation of projects since about 1950 

and has been adapted by several industries like arms, construction, or computer industry in 

subsequent years (Williams, 2005; Kwak and Anbari, 2009; Pellegrinelli, 2011; Turner et al., 

2013). Since the increasing market pace and pressure lead to a growing number and 

importance of projects, the relevance of project management has risen accordingly. 

Nowadays, project management is an integral part of almost each project implementation 

across all industries. To foster existing knowledge and experiences gained in the context of 

project implementation in practice, organizations like the Project Management Institute or the 

German Association for Project Management have been founded (Morris et al., 2006). The 

former one thereof has published the Project Management Body of Knowledge, which 

probably is the most known accumulation of project management practices and provides 

information and methods for almost each field of knowledge in the context of project 

management (Williams, 2005). Complementary, research has yielded several methods to 

support and promote the practical expertise in the different project management knowledge 

fields.  

One of these knowledge fields has been dedicated to risk management, as projects involve a 

high degree of uncertainty and risk (Chapman, 1998; Conroy and Soltan, 1998; Baccarini et 

al., 2004; Marle et al., 2013). Though, what do people mean when they talk about uncertainty 

and risk? Uncertainty and risk generally might exist, when there are manifold outcomes to a 

course of action. In this context, uncertainty is used to describe a state where the probability 

of an outcome is unknown, whereas risk is used if the probability of an outcome is known 

(Bussey, 1978; Merrett and Sykes, 1983; Merna and Al-Thani, 2011). However, there are 

different views on whether the step from uncertainty to risk requires a threat e.g. some kind 

of damage (Kaplan and Garrick, 1981) or whether risk is simply the possible deviation of a 

targeted value, which is a prevalent perspective when it comes to risk quantification and 

measurement (Rothschild and Stiglitz, 1970). In the field of project management, it generally 

is noted that risk can possibly have a positive or a negative impact on a project’s objectives 

(PMI, 2008). Nevertheless, risk mostly is considered to be the “chance of an event occurring 

that is likely to have a negative impact on project objectives” (Baccarini et al., 2004, p. 287). 

Therefore, risk management has been identified to be a crucial means to successfully manage 
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IT projects (Tuman Jr, 1994; Remenyi, 1999). Besides some small differences in 

denominations and delimitation, there is consensus that the risk management process can be 

subdivided into four separate stages: risk identification, risk assessment, risk treatment, and 

risk monitoring (Stoneburner et al., 2002; Hallikas et al., 2004; PMI, 2008). For each of those 

stages, there are plenty of tools and techniques presented in order to support risk management 

(PMI, 2008). Additionally, several authors strive to enrich the existing knowledge base in each 

of the risk management stages by investigations based on exploratory studies, questionnaires, 

interviews, or any other kind of methods (e.g. Wideman, 1992; Whittaker, 1999; Sumner, 

2000; Hallikas et al., 2004; Baccarini et al., 2004; Olsson, 2008; Marle et al., 2013; Keller and 

König, 2014)  

However, despite this profound body of knowledge existing in the area of project 

management, there is still a relatively high percentage of project failures. Projects are 

considered a failure, if they are not accomplished in time or budget, do not deliver the defined 

objectives, or are even canceled before completion (Hartman and Ashrafi, 2002; Tesch et al., 

2007; Al-Ahmad et al., 2009). In recent years, especially IT project failures have drawn great 

attention in practice and research. The miserably failed virtual case file implementation of the 

United States Federal Bureau of Investigation (FBI), which accounted for a $170 million loss 

before it was officially discarded in 2005 (Eggen and Witte, 2006), and the failed 

implementation of an Enterprise Resource Planning (ERP) system that finally lead to the 

insolvency petition of Schiesser (Brück and Schnitzler, 2009), the market leader among the 

German underwear specialists, in 2009, are just two out of several examples. From the specific 

perspective of a single company, IT project failures thus are able to cause devastating 

problems that even can lead to business failure (Flyvbjerg and Budzier, 2011). Generally, 

many studies investigating IT project failures have been published. One of the most quoted 

studies in this context is the yearly published chaos report of Standish Group. This report 

states that about 60% of all IT projects are not completed on-time and on-budget (Standish 

Group, 2013). Another study from the IT Governance Institute states that about 20% of all IT 

investments are terminated before implementation (ITGI, 2011). Furthermore, a study by the 

Project Management Institute shows that in 2011 about 36% of projects fall short on their 

initial business intent and corresponding objectives (PMI, 2012). Given that the worldwide IT 

spending is supposed to reach $ 3.8 trillion in 2015 (van der Meulen and Rivera, 2015), it 

becomes obvious that IT project failures generally cause an enormous global value 

destruction.  
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Extensive studies within this context found that the prevalence of IT project failures is related 

to the lack of appropriate managerial approaches rather than to the information technology per 

se (Jaafari, 2003). Classical project management approaches are not able to cope with the 

accelerated change prevailing in the context of IT projects (Jaafari, 2003). Although IT 

projects are not precisely delimitable from other kinds of projects, they are supposed to feature 

specific characteristics like invisibility, abstractness, complexity, and changeability (Ewusi-

Mensah, 1997; McDonald, 2001; Milosevic et al., 2006; Al-Ahmad et al., 2009) that make 

them additionally complicated to manage. Furthermore, as IT projects are rather accomplished 

within an integrated portfolio of several IT projects, they feature manifold dependencies 

compared to projects that are realized isolated or pairwise (Graves et al., 2003). Therefore, to 

cope with increasing complexity and dynamics as to companies’ internal management, they 

need to assess and manage their IT projects more holistically. Yet, since classical tools of 

project and risk management are considered to be of limited utility in the light of these 

challenges, appropriate means and approaches need to be developed.  

Existing dependence structures are even further intensified, as market pace and competition 

pressure force companies to continuous innovation efforts in order to maintain their 

competitiveness (Keizer and Halman, 2007; Nguyen and Mutum, 2012). Therefore, IT 

projects that formerly would have been accomplished as one big IT solution are subdivided 

into several standalone IT solutions, which however feature more dependencies but are able 

to generate separate customer impacts. These increasing dependencies and associated risks 

pose additional challenges regarding a company’s internal management (Blumberg, 2012). 

Also in terms of a company’s external interaction, they represent a major challenge. Dynamic 

interdependencies that are featured by the interpenetrating dissemination of IT (Buhl, 2013) 

are, among others, causal to negative impacts like supply shortfalls or even economic crises. 

Besides the increasing interdependence, these negative impacts are also fostered by 

globalization, which, combined with an accelerated technical development, led to a fast pacing 

market environment that is continuously driven by competition, specialization, and 

technology (Silvius and Schipper, 2010). This development is even boosted by recent 

aspirations in the context of digitalization that not only intensify classical competition, but 

also yield completely new concurrent business models (Wirtz et al., 2010; Berman, 2012). 

The emerging IT-based network structures, which can be found all over the world across 

different business areas, inherit a great level of risk for the participating companies. Since 

based on the inherent dynamic dependencies of these structures, negative impacts of a 

particular company can spread over the entire network, they do not only increase the risk 
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exposure of a particular company, but can also threaten every other interconnected company 

of the underlying network (Rice and Caniato, 2003; Hallikas et al., 2004). This phenomenon 

is known as systemic risk and although it has already been recognized for instance by Hallikas 

et al. (2004), it especially arose awareness during the financial crisis of 2008/2009 and the 

resulting spread to the real economy. To survive and ensure competitiveness in today’s fast 

pacing market environment, companies need to handle this kind of risk, emerging from 

increasing interdependencies in various business areas. Though, classical tools and 

techniques that were assigned to the different stages of the risk management process are not 

adequately capable to face these challenges.  

However, since “a major challenge for IS research lies in making models and theories that 

were developed in other academic disciplines usable in IS research and practice” (Benaroch 

and Kauffman, 1999, p. 84), there are approaches in other research areas like mathematics, 

informatics, biology, or physics that might be adapted to investigate systemic risk and the 

underlying dependency structures in business environments. In this context for instance 

centrality measures that are based on graph theory are considered as an appropriate means for 

network analysis purposes across different scientific areas (Borgatti and Li, 2009). As a formal 

modelling technique of informatics that features graphical visualizations, also Petri Nets have 

been proven an adequate means to model dynamic systems across different areas of 

application (Wu et al., 2007). Moreover, there are network investigation approaches in physics 

that initially were designed to depict dynamics of loads in specific networks (Motter and Lai, 

2002). However, since these loads can be considered as any kind of quantity, the applicability 

of these approaches is widespread (Moreno et al., 2002). Some approaches belonging to 

aforementioned scientific areas have indeed already been applied to business issues. For 

instance Borgatti and Li (2009) and Kim et al. (2011) use centrality measures to investigate 

supply chain networks. Within the same subject area, for instance Wu et al. (2007) use Petri 

Nets to quantify the risk of disruptions in supply chains. Furthermore, in the context of the 

financial crisis, several authors refer to cascade failure algorithms, which generally use loads 

to simulate cascades of failures in network structures, to finally investigate dependencies and 

resulting systemic risk in banking systems (Nier et al., 2007; Battiston et al., 2012a; Battiston 

et al., 2012b).  

Despite these first attempts to assess systemic risk in business environments, this topic is still 

relatively unexplored. It will take a lot more investigation to enable companies to adequately 

handle the dynamic interdependencies and the resulting systemic risk they are increasingly 

exposed to in various business areas. Therefore, the German Informatics Society (Gesellschaft 



I Introduction 6 

 

für Informatik e.V.) announced the management of systemic risk within IT-braced global 

network structures as a grand challenge for the next years (GI, 2014). Against this background, 

the doctoral thesis at hand focuses on the assessment and management of increasingly IT-

pervaded complex risk structures, to mitigate failures and reduce the resulting global value 

destruction in the age of digitalization.  

I.2 Scope of the Doctoral Thesis 

The outlined development affects several different areas of economy and society. Even though 

the scope of this doctoral thesis is narrowed to the assessment and management of complex 

risk structures in an economic context, there remain various research questions within each of 

the affected economic areas that are not feasible to investigate within a single doctoral thesis. 

Therefore, the scope of this thesis requires further delimitation. Risk assessment and 

management in general refer to several different areas of risk. Hull (2012) for instance 

categorizes risk as follows: credit risk, market risk, operational risk and liquidity risk. 

Moreover, operational risk is considered to encompass IT risk, process risk, personnel risk, 

and exogenous risk (Hull, 2012). Although systemic risk is stated as a separate kind of risk, it 

is not explicitly assigned to one of the aforementioned risk categories. However, since it is 

supposed to most likely fit operational risk in this context, it henceforth is considered 

correspondingly. Since the encompassed kinds of risks are considered to be of special 

relevance against the outlined background, the scope of this doctoral thesis is restricted to 

operational risk. To be more concrete, it selectively examines generic operational risks that 

are supposed to be especially relevant, but difficult to manage and therefore still insufficiently 

covered in the existing risk management body of knowledge. The generic operational risks 

are exemplified by the specific subject areas of IT projects and value creation networks, which 

represent particularly affected areas of the aforementioned development. Figure I.2-a 

illustrates the research context and the research scope to enhance clarity and understandability. 



I Introduction 7 

 

 

Figure I.2-a - Delimitation of research scope 

I.3 Research Context and Objectives 

As mentioned before, this doctoral thesis focuses on particular risks that are supposed to be 

especially relevant as to the increasingly complex, dynamic, and interdepend structures in the 

light of digitalization. Drawing on the subject area of IT projects, it particularly investigates 

operational risk as to complexity and dynamics in the context of IT project evaluation (Section 

II). It furthermore draws on the subject area of IT projects as well as on the subject area of 

value creation networks, to investigate systemic risk as a prevailing phenomenon in an 

increasingly interdependent business environment (Section III). As to the different stages of 

the risk management process, it thus focuses on risk assessment and risk treatment, whereas 

some parts of the presented methods and means might also serve for specific activities of the 

other adjacent steps of this process. Subsequently, this section embeds the aforementioned 

risks in the research context, allocates them to the sub-categories of operational risk where 

possible, and outlines the research objectives. 

Enhancing IT Project Evaluation to Cope with Emerging Risk (Section II) 

Taking a closer look at the subject area of IT projects, Section II strives to enhance IT project 

assessment and management to cope with risks of increasing complexity and dynamics, 

challenging a company’s internal management in the light of digitalization. 

In particular, Section II.1 focuses on IT project complexity that is considered a major risk for 

IT project success (Baccarini, 1996; Xia and Lee, 2004; Parsons-Hann and Liu, 2005; Vidal 
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and Marle, 2008). With the considerations of Section I.1 in mind, increasing complexity of a 

company’s business environment likewise affects a company’s projects as the source of its 

progression. In this context, many studies investigated the prevalence of IT project failure and 

constitute a coherence to the lack of managerial approaches that are able to cope with the 

increasing complexity of IT projects (Jaafari, 2003). However, it is a very vague concept and 

there is no consensus about what is meant when people talk about IT project complexity, 

neither in practice nor in academia (Vidal et al., 2013). Yet, it is most commonly agreed that 

IT project complexity describes the interaction of several different characteristics like 

dependency or diversity. These can either be considered as individual risks or any other kind 

of aspects that somehow complicate the accomplishment of IT projects. Therefore, IT project 

complexity cannot be classified into one specific sub-category of operational risk, but rather 

encompasses different aspects of various operational risk sub-categories. For instance, an 

inappropriate controlling of the projects rollout that increases the projects complexity would 

probably be classified as process risk, while the manifold use of different planning systems 

that also boosts the projects complexity would rather be considered within the sub-category 

of IT risk. This makes IT project complexity difficult but also important to assess. Moreover, 

IT project complexity is prone to human perception (Schlindwein and Ison, 2004). Thus, it is 

controversial whether it can be objectively conceived in general. Nevertheless, the increasing 

complexity of IT projects reinforces the companies need for adequate management 

approaches. In order to conclude on underlying causalities, Section II.1 examines aspects that 

are supposed to somehow relate to IT project complexity in extant literature. Consequently, it 

strives to provide conceptual clarity to the construct of IT project complexity [Objective II.1]. 

Furthermore, it endeavors to mitigate the risk of IT project failures by providing means to 

realize and manage the complexity of IT projects [Objective II.2]. It thus aims to answer the 

following research question: 

 How can complexity in IT projects be assessed with respect to its influencing factors? 

Section II.1 of the doctoral thesis is a slightly modified and improved version of Neumeier 

and Wolf (2015), which has been submitted to an academic journal for publication. 

Considering the increasing complexity and dynamics as challenges to a company’s internal 

management, Section II.2 outlines the necessity for an integrated IT project quantification. 

To decide whether an IT project should be implemented or not, most companies formerly 

especially focused on the project’s cost (e.g. Boehm et al., 2000). Nowadays, since IT has 

become a strategic success factor, most companies start to consider also possible benefits 
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related to an IT project in corresponding investment decisions. However, the consideration of 

benefits in an ex ante business case of an IT project is still rather exception than norm (Buhl, 

2012). One reason might be, that particular in case of IT projects, benefits are especially vague 

and difficult to grasp in monetary units. This additionally is complicated, as benefits are 

usually not realized before the project’s completion (Buhl, 2012). Another reason might be 

that the risk whether an undertaken investment is rewarded with a corresponding return is 

supposed to be quite high in the increasingly complex and dynamic environment of IT projects 

(Denne and Huang, 2003; Melville et al., 2004; Neumeier and Müller, 2015). Therefore, most 

business case calculations are still focusing on expert estimations of future cost, while benefits 

are often not considered adequately (Blumberg et al., 2012). To mitigate the risk of wrong IT 

project appraisals, business case calculations should also consider other project related 

aspects. Existing dependencies or other aspects that might result in an increased project risk 

are oftentimes completely neglected (Zimmermann, 2008), although they are crucial in 

today´s complex and dynamic project environment (Buhl, 2013). Consequently, companies 

need to evaluate their IT projects more holistically. Such an evaluation can be considered as 

part of the project controlling and issues related to the project controlling can be considered 

to belong to the category of process risk. Accordingly, the corresponding risks regarding the 

evaluation of IT projects might be assigned to this sub-category of operational risk. Despite 

the claimed importance of a holistic evaluation of IT projects, there is a lack of appropriate 

methods that likewise consider the relevant project variables, while upholding practical 

applicability (Ward and Daniel, 2006). Thus, Section II.2 strives to provide means for a 

quantitative assessment of benefits of IT projects [Objective II.3]. Moreover, it endeavors to 

develop likewise rigor and practicable means for an integrated quantification of IT projects 

[Objective II.4]. It consequently addresses the following research questions: 

 How can benefits of IT projects practically and quantitatively be assessed for business 

case calculations? 

 How can different aspects of IT projects like cost, benefits, risk, and dependencies can 

be evaluated in an integrated quantification approach, which likewise upholds 

scientific rigor and practicability? 

Section II.2 of the doctoral thesis is equivalent to Beer et al. (2013) that is already published 

in the proceedings of the 11th International Conference on Wirtschaftsinformatik. 

Particularly addressing the increasing dynamics as challenge to a company’s internal 

management, Section II.3 examines the necessity for a continuous IT project steering to 
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ensure the projects’ objectives and corresponding business value. A famous saying by Warren 

Buffett states “Prize is what you pay, value is what you get”. However, especially in the 

context of IT projects, it is not quite sure whether the prize that was paid is rewarded with 

actual value (Melville et al., 2004). As IT projects bear a lot of uncertainty and risk during 

their time of implementation, their ex ante estimated business value, which is represented by 

the defined and anticipated project objectives, is quite uncertain (Müller and Neumeier, 2015). 

This uncertainty even increases with the size of the corresponding IT project. Since large scale 

IT projects take more time for implementation and feature many functionalities, they bear a 

lot of space for changes in the projects’ environment that might lead to changes in the projects 

requirements. These changes in turn can have an impact on the business case of the project, 

since some functionalities might need to be adopted, others need to be added and again others 

need to be discarded (Cheng and Atlee, 2009). However, as it is rule rather than exception to 

evaluate an IT project only once during the planning phase, there is no possibility to reevaluate 

whether the project in its current state is still able to deliver the determined project objectives 

(Buhl, 2012). Consequently, the probability that an IT project fails to deliver its determined 

objectives and corresponding business value is quite high, based on current methods and 

practices. Since the continuous management of IT projects can be considered as part of the 

project controlling as well, the corresponding risks might also be assigned to the sub-category 

of process risk. To mitigate the depicted risks, companies require tools and methods to 

continuously evaluate and monitor the progress of an IT project and to enable the initiation of 

adequate countermeasures when specific business case limits are triggered. Thus, Section II.3 

strives to provide means for a continuous quantitative assessment and management of IT 

projects [Objective II.5], to diminish associated process risks arising during the projects’ 

lifecycle. Consequently, it addresses the following research question: 

 How is it possible to reduce process risks arising during the lifecycle of IT projects?  

Section II.3 of the doctoral thesis is an editorially improved version of Fridgen et al. (2014), 

which is a follow-up on Beer et al. (2013) and is already published in the ACM Transactions 

on Management Information Systems. It extends Beer et al. (2013) by introducing a dynamic 

cash flow perspective and developing a method for continuous project evaluation and steering 

based on the integrated IT project assessment of the preceding research paper (Beer et al. 

2013).   
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Managing Dependencies to Mitigate Systemic Risk (Section III) 

Almost every area of today’s business environment is becoming increasingly interlaced. 

Among others, one major reason is the dissemination of underlying, interconnected IT 

solutions (Buhl and Fridgen, 2009). Consequently, the increasing dependencies between 

different entities yield complex network structures that nowadays can be found on almost each 

level of economic collaboration. Whereas regarding a company’s internal management the 

entities of such a network might be IT projects being dependent due to resource sharing, from 

an external interaction perspective they might be companies that depend on each other due to 

mutual supplier relations. Independent whether these network relations are considered from 

an internal management or an external interaction perspective, they all feature systemic risk 

as they enable an impact on a single entity to spread to the entire network. Therefore, Section 

III concentrates on the mitigation of systemic risk, based on an appropriate assessment and 

management of underlying dependencies.  

Focusing on the increasing interdependence as challenge to a company’s internal 

management, Section III.1 investigates the coherence between dependencies and systemic 

risk in IT project portfolios. IT projects are not accomplished isolated or pairwise, but rather 

within portfolios of several IT projects. Therefore, they feature manifold dependencies in 

comparison (Graves et al., 2003). Some of them relate to a lower level of granularity as they 

refer to single IT assets or resources within one specific IT project. Others are located on a 

higher level of granularity, as they describe relations between different IT projects 

(Wehrmann et al., 2006; Zimmermann, 2008). Moreover, it has to be distinguished between 

direct and indirect dependencies. While some project management techniques at least 

qualitatively account for direct dependencies, indirect dependencies are most commonly not 

pictured adequately or even neglected completely. Thus, it has been recognized that classical 

techniques and methods for project management are not capable to account for the specific 

characteristics of IT projects in this context (Cho and Shaw, 2009). The fact that IT projects 

become increasingly interwoven represents, however, a major challenge for companies all 

over the world (Blumberg, 2012). Due to this development, a failure of a single IT project 

does no longer only influence the project itself, but can also spread to other assigned IT 

projects. This reflects the prevalence of systemic risk in IT portfolios. Therefore, 

dependencies do not only contribute to IT project complexity, but also directly increase the 

risk of IT projects that accordingly needs to be incorporated in the business case calculation 

of each individual IT project (Buhl, 2012). Moreover, a proper consideration of dependencies 

is not only crucial to the success of the corresponding IT projects, but also to the success of 
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the whole IT portfolio and eventually even to a company’s operational business. To mitigate 

the risk of IT project and related business failures, companies seek adequate means to face the 

challenging task of considering dependencies and associated risk more thoroughly. Thus, 

Section III.1 strives to provide means for an appropriate assessment of complex dependency 

structures in IT portfolios, likewise considering direct and indirect dependencies [Objective 

III.1]. Consequently, it addresses the following research question: 

 Can centrality measures be used to assess the criticality of a project to its 

corresponding IT portfolio, based on inherent project dependencies? 

Section III.1 of the doctoral thesis is an enhanced version of Wolf (2015) that is already 

published in the proceedings of the 12th International Conference on Wirtschaftsinformatik. 

Focusing on the increasing external interaction of a company, Section III.2 investigates the 

propagation and the extent of systemic risk in the subject area of value creation networks. 

Since exogenous shocks like earthquakes or floodings have shown the sensitivity of supply 

networks regarding systemic risk in recent years, Section III.2 specifically draws on these 

kinds of value creation networks. Although, entities in supply networks keep multiple 

relationships to other entities on preceding and succeeding supply stages of their network for 

reasons of diversification, these networks are not as resilient as they might appear. 

Globalization, specialization and, outsourcing lead to increasingly complexity (Wagner and 

Neshat, 2010). This development is reinforced by new kinds of outsourcing, enabled by the 

increasing digitalization of business services and processes (König et al., 2013). The resulting 

complexity and opacity of current supply networks hampers companies to determine the 

systemic risk arising from their established entanglements (Fridgen and Zare Garizy, 2015), 

i.e. they are not able to exactly quantify the consequences that an impact on their supply 

network might have to themselves. This also holds true for many other kinds of value creation 

networks. Determining the systemic risk a specific entity of a network is exposed to requires 

both, to quantify the extent of an occurring impact as well as its propagation through the 

network. With these information, an entity is able determine which of its various network 

relations is impacted to which extent. Thus, Section III.2 strives to consider systemic risk by 

providing means to assess the propagation of impacts in complex network structures 

[Objective III.2] and to quantify the impacts’ extent to any assigned entity of the network 

[Objective III.3]. Since these objectives are exemplarily examined using supply networks as 

one instantiation of value creation networks, this section addresses the following research 

questions: 
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 How to illustrate and assess the propagation of impacts in supply networks featuring 

systemic risk? 

 How can impacts of systemic risk in supply networks be quantitatively assessed?  

Section III.2 of the doctoral thesis is a slightly modified version of Fridgen et al. (2015), which 

is an enhanced follow-up on Fridgen et al. (2012), and is already published in the International 

Journal of Production Research. Beyond the prior research (Fridgen et al., 2012) that is 

published in the Proceedings of the 20th European Conference on Information Systems, it 

includes detailed explanations, a detailed modelling description and an evaluation of the 

presented method by statistical means. Section III.2 also contains results of my diploma thesis 

“Exogenous Shocks in Complex Supply Networks – Simulation-Based Evaluation with 

Modular Petri Nets”, which has been submitted to the Faculty of Business and Economics at 

the University of Augsburg in 2012.  

I.4 Individual Contribution to the Included Research Papers 

The six research papers included in this doctoral thesis were compiled in the following 

research settings. The research paper (Neumeier and Wolf, 2015), forming the basis for 

Section II.1, was mutually developed with another co-author. Although, I derived the basic 

idea of this research project, we jointly conceptualized and elaborated the paper’s structure 

and content. Thus, the co-authors contributed equally to the paper’s conception and 

elaboration. However, since I have been the more experienced researcher in this setting, I 

guided the entire paper process. By reviewing relevant literature in the context of IT project 

complexity I had a central role in sorting out inconsistent proceedings and in describing and 

delimitating existing theoretical foundations. Moreover, based on manifestations of IT project 

complexity reported in literature, I particularly was involved to derive antecedents and project 

areas as dimensions of the framework for assessment. I was also responsible for the evaluation 

based on the case-study. However, based on this examination, we jointly synthesized the 

central findings and the final framework. The research paper (Beer et al., 2013), forming the 

basis for Section II.2, was jointly developed in a research team of four researchers. Although 

the basic idea for the paper already existed, we jointly conceptualized and elaborated the 

paper’s structure and content. Thus, I was involved in each part of the research paper. I 

strongly contributed to the written elaboration and the structuring of the whole research paper 

and in particular to the proposed model for monetary quantification of IT projects, including 

the assessment of single benefits and the aggregation of a risk-adjusted project value. 

Furthermore, I especially was involved in the delineation of the applied Action Design 
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Research methodology and the conceptualization of the application example. However, the 

co-authors in total contributed equally to the paper’s emergence. In contrast, the contributions 

to the research paper (Fridgen et al., 2014), forming the basis for Section II.3, were not equally 

distributed. This paper was also developed in a research team of four researchers, whereas the 

co-authors Gilbert Fridgen and Julia Heidemann were the more experienced ones, who had 

already presented the first idea of the paper (Fridgen and Heidemann, 2013) at the Dagstuhl-

Seminar to the computer science community. Building upon this groundwork, we however 

jointly conceptualized and elaborated the paper’s structure and content. Hence, I was involved 

in each part of the research paper. I especially was involved in the conceptualizing and 

elaboration of the Project Success Measurement and the Project Controlling, which are means 

for a continuous project management. Furthermore, I had a core role by deriving and outlining 

the corresponding trigger points for the particular measures. Finally, we jointly synthesized 

the central findings in the beta cycle and the formalization of learning.  

The research paper (Wolf, 2015), that forms the basis for Section III.1, was developed and 

written entirely on my own. Hence, I conceptualized the paper’s idea and delineated related 

foundations. Furthermore, I conducted the literature research and elaborated requirements to 

transfer centrality measures to IT project portfolios. Moreover, I simulated an exemplarily IT 

project portfolio and analyzed the criticality of the included IT projects. Based on the results, 

I derived implications for further research and practice. The research paper (Fridgen et al., 

2015), forming the basis for Section III.2, as well as the predecessor research paper (Fridgen 

et al., 2012), were developed in the same research setting of three co-authors. Since the former 

one is a follow-up paper on the latter one, the following delimitations of contribution apply 

equally to both research papers. Based on the first idea of the paper that was provided by one 

of the co-authors, I thoroughly examined the existing literature. Furthermore, I examined the 

different specifications of Petri Nets with regard to the research objectives and developed, 

conceptualized, and elaborated the modeling language and procedure, used to investigate the 

research questions. I furthermore implemented a corresponding model in Java and simulated 

an example to evaluate the proposed modeling technique. Within the follow-up paper (Fridgen 

et al., 2015), I also detailed and enhanced the modeling procedure. I moreover conducted 

several simulation runs and tested the derived results by statistical means to indicate first 

implications for practice. As I however was the junior researcher within this research setting, 

the co-authors contributed central ideas, and provided guidance for the elaboration and the 

written formulation. Thus, overall the co-authors contributed equally to the paper’s 

development. 
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II Enhancing IT Project Evaluation to Cope with Emerging 

Risk  

II.1 IT Project Complexity as a Major Risk for IT Project Success1  

Research has shown that the substandard management of complexity is one of the common 

reasons for IT project failure. As such, companies need to strive to improve their management 

of complexity. However, doing so requires a clear and unambiguous understanding of what is 

meant by IT project complexity, which has not yet been addressed in existing literature. In 

this study, we therefore strive to provide conceptual clarity regarding the construct of IT 

project complexity, by considering the causalities of complexity aspects presented in extant 

literature. By doing so, we develop a two-dimensional framework based on generic 

complexity antecedents and context-specific project areas. We test the resulting framework 

against existing literature, by examining whether it is able to cover the manifestations 

presented therein. For a first step, we verify the framework against practice, drawing on an 

expert interview and a case study. We then enhance our framework based on the insights 

gained within the evaluation cycles. The resulting framework will help researchers and 

practitioners understand how complexity can occur in an IT project, as it provides insights 

into what causes complexity and where it is located within an IT project. Furthermore, it 

provides a basis for the further development of appropriate management strategies and 

quantification methods for complexity. 

 Introduction 

Increasing market competition requires a high level of adaptability to rapidly-changing market 

conditions and customer expectations. This forces companies to continuously progress. Since 

projects enable change within a company, they are increasingly important (Watson, 2012). 

However, projects also face a high risk of failure (Matta and Ashkenas, 2003). Projects fail 

when they do not meet their objectives, concerning schedule, budget, or projected outputs. 

The failure of IT projects can cause devastating problems, and even total business failures, for 

companies (Flyvbjerg and Budzier, 2011). With this in mind, managers should aim to manage 

IT projects properly. 

                                            
1 This section is a slightly modified and improved version of Neumeier and Wolf (2015), like outlined in Section 

I.3 and I.4.  
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Although the exact relationship between IT project failure and IT project complexity has not 

yet been sufficiently investigated, it seems clear that complexity contributes to IT project 

failure (Parsons-Hann and Liu, 2005). For example, Vidal and Marle (2008) have found that 

while this relationship needs to be clarified, complexity seems to be one of the main reasons 

for IT project failure. Xia and Lee (2004) argue that one of the reasons for IT project failure 

can be a high level of complexity, as in such cases, there are many different factors that 

influence a project at the technological and organizational levels. Baccarini (1996) states that 

since complexity has an impact on cost, time, and quality, it can hamper the achievement of a 

project’s objectives (Baccarini, 1996; Xia and Lee, 2004). Wallace et al. (2004) empirically 

confirm that complexity risk is one of six risk dimensions that influence the success or failure 

of software projects. A steady general increase in complexity, which has been regularly found 

in past research, reinforces the effects of this problem (Größler et al., 2006). IT projects are 

particularly affected by high levels of complexity, as they need to addresses various 

dependencies within a single project, or between different projects. The prevalence of IT 

project failure has been studied in depth, and has been found to be generally related to a lack 

of managerial approaches for coping with highly-complex projects, rather than to information 

technology per se (Jaafari, 2003). This indicates the need for appropriate means to successfully 

manage IT project complexity. However, IT project complexity is very difficult to understand, 

and there is no academic consensus about what is behind it or how it should be approached 

(Vidal et al., 2013). Therefore, most researchers have only addressed specific aspects that can 

be observed within complex IT projects, and which are thus assumed to somehow relate to IT 

project complexity (Tatikonda and Rosenthal, 2000; Novak and Eppinger, 2001; Größler et 

al., 2006). Accordingly, different categorizations of aspects have been proposed (Baccarini, 

1996; Vidal and Marle, 2008; Vidal et al., 2013). In fact, the explanation of a phenomenon 

like IT project complexity, which is crucial to deriving solutions, often requires an 

investigation of underlying causes (Gregor, 2006), and so a comprehensive and structured 

assessment of IT project complexity, including causalities of observed aspects, is needed. 

Furthermore, the appropriate assessment of IT project complexity may empower companies 

to mitigate their overall risk of IT project failure (Latva-Koivisto, 2001; Größler et al., 2006).  

With the above considerations in mind, we strive to provide conceptual clarity regarding the 

construct of IT project complexity, by considering the causalities of aspects of complexity 

described in existing literature. We thus aim to answer the following research question: 

"How can complexity in IT projects be assessed with respect to its influencing factors?"  
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To do so, we develop a structured and elaborate framework for complexity assessment, which 

relates manifestations of complexity to generic causes and specific areas of occurrence. 

Following Gregor and Hevner (2013), we provide an overview of underlying theoretical 

knowledge. We then explain our research approach and the methodology used. Next, we 

develop our artifact, which is a framework for complexity assessment. We derive hypotheses 

about the causalities of complexity from existing literature, by structuring the aspects of 

complexity identified in literature within a framework. Following the design and evaluation 

cycle, we first evaluate the quality of the derived framework on the basis of manifestations of 

complexity stated in the literature. Based on the results of this evaluation, we then adjust the 

framework. In the next evaluation cycle, we conduct an expert interview with a leading 

strategy consultancy. To further validate the utility of the framework, we also test it through 

a real-world case study. Finally we discuss the framework’s contributions and implications 

for practice and research, its existing limitations, and the outlook for future research. 

 Theoretical Background 

Complexity is a topic that has been discussed in a variety of research fields, including 

philosophy, biology, mathematics, and informatics. Accordingly, understandings of 

complexity tend to vary greatly (Rosen, 1977). We assess the complexity of information 

system (IS) and information technology (IT) projects on a general level and thus rather refrain 

from existing specific definitions of computational complexity (Edmonds, 1995), software 

complexity (Wang and Shao, 2003), or any other complexity that only concentrates on a 

specific sub-area of IS/IT projects. It should also be pointed out that a common agreement on 

a definition of complexity does not exist (Schlindwein and Ison, 2004). Therefore, instead of 

adopting an existing definition of complexity or introducing a new one, we focus on assessing 

complexity in the context of managing IS/IT projects, which we hereafter simply refer to as 

complexity. In the following sections, we examine existing literature in order to clarify what 

is behind complexity and how it can be assessed in a structured and practical way. Thereby, 

we strive to discover causalities of IT project complexity in general.  

II.1.2.1 Subjective vs. Objective Complexity 

When people speak of something as being complex, they use “everyday language to express 

a feeling or impression that [they] dignify with the label complex” (Casti, 1995). Thus, when 

two people talk about complexity in the same case, they will not necessarily be talking about 

the same thing. This is because “like truth, beauty, good and evil, complexity resides […] in 

the eye of the beholder” (Casti, 1995). From a subjective point of view, complexity can be 
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influenced by personal “knowledge, experience, or intelligence” (Größler et al., 2006, p. 255). 

This kind of complexity is the result of a particular perception of a situation by a subjective 

observer (Schlindwein and Ison, 2004), and is described as subjective complexity in this 

research. However, since subjective perceptions are unique to every individual, they do not 

allow for a generally valid independent assessment of complexity (Baccarini, 1996).  

A different perspective is provided by Cilliers and Spurrett (1999), who state that “complex 

systems do have characteristics that are not merely determined by the point of view of the 

observer.” Schlindwein and Ison (2004) also explain that complexity can be “understood as 

an intrinsic property of a certain kind of system, or as occurring in a certain kind of natural 

and social phenomena” (Schlindwein and Ison, 2004, p. 28). This understanding is based on 

the assumption that there is an objective reality that can be independently assessed and is not 

influenced by subjective perception (Schlindwein and Ison, 2004). Although it is probably 

impossible to separate the underlying objective reality from its subjective perception, it should 

be possible to make some conclusions regarding an objective situation by exploring similar 

properties that different subjective observations have in common. In this research, we assume 

that subjective perceptions follow from objectively observable properties. According to Casti 

(1995), complexity, like beauty, is in the eye of the beholder. An example can be used to 

clarify our related approach. In deciding whether to buy a new car, a customer must use 

subjective personal judgement, but that judgment is always based on objective properties, like 

design, features, and price, as well as their relationships to one another. In accordance with 

this perspective, we focus on properties of objective complexity as the basis of subjective 

perceptions.  

II.1.2.2 Complexity Assessment 

Complexity is determined by various circumstances, and is thus very difficult to grasp. Hence, 

related works in existing literature can be considered as assemblages of different observations 

within the context of complexity, rather than detailed and structured assessments or sharp 

definitions. The majority of articles on this topic address influence factors that are supposed 

to somehow relate to complexity, but which are derived from a narrow subjective perception 

of the topic. In adopting a more general perspective, we strive to provide conceptual clarity 

regarding the construct of complexity. Therefore, we introduce a uniform designation and 

distinguish between aspects, characteristics, and manifestations of complexity to facilitate 

comprehension: 
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 The vaguest category, aspects of complexity, refers to any kind of influencing factor 

that is supposed to somehow relate to complexity.  

 Characteristics of complexity are considered to be aspects of complexity that exist 

independently of the specific area of occurrence (i.e., characteristics can be observed 

independently of a specific context).  

 Manifestations of complexity are considered to be aspects that arise from a specific 

area of occurrence (i.e., manifestations can only be observed within a specific context).  

Some approaches to complexity in existing literature focus on specific sub-areas of IS/IT 

projects, like computational complexity (Edmonds, 1995), software complexity (Wang and 

Shao, 2003), or even more specifically, the technological complexity of a source code 

(McCabe, 1976; Misra, 2006). They thus often describe different manifestations of 

complexity. Some attempts have also been made to determine the comprehensive 

characteristics of IT project complexity (Baccarini, 1996; Tatikonda and Rosenthal, 2000; 

Größler et al., 2006). However, the majority of studies address single aspects that are supposed 

to somehow relate to complexity (Baccarini, 1996; Tatikonda and Rosenthal, 2000; Größler 

et al., 2006). Moreover, most studies do not present a comprehensive and systematic structure 

or procedure, and the aspects mentioned are not treated consistently, or in some cases, are 

even contradictory. A few researchers have also proposed different categorizations for 

assessing complexity in a more structured way (Baccarini, 1996; Vidal et al., 2013). Vidal et 

al. (2013), for instance, divide complexity aspects “into four more intuitive groups […], which 

were cited in several of the references” that were examined for their study (Vidal et al., 2013, 

p. 255). Generally, categorizations and other research in the area lacks concrete delimitations 

between complexity aspects, and consequently lacks clarity regarding causalities. The 

hesitation of researchers to state causes for the phenomena that they investigate is a well-

recognized issue in IS research (Bacharach, 1989; Avgerou, 2013). Yet doing so is crucial, 

since the explanation of an investigated phenomenon often requires an examination of the 

underlying causes (Gregor, 2006). Therefore, the contribution of existing research on 

complexity is to provide a list of possible aspects of complexity to be thought of when 

managing an IT project, rather than to provide structured and elaborate guidance on how to 

assess complexity or explain what is concealed within it. An approach that comprehensively 

assesses complexity from a managerial perspective, by providing insights into causalities for 

the genesis of complexity, does not yet exist, to the best of our knowledge. 
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 Research Methodology 

To develop an approach that is able to assess complexity, we follow a Design Science 

Research (DSR) approach, in accordance with Hevner et al. (2004) and Gregor and Hevner 

(2013). To address the problem relevance, we outline the need for an assessment of IT project 

complexity from the point of view of practice and research.  

As discussed, the construct of complexity is still very vague. Although there are many 

publications that present descriptive knowledge of this field (Gregor and Hevner, 2013), there 

is no overall conceptual clarity to the construct of complexity. As few categorizations for the 

assessment of complexity exist, we develop an artifact that provides an improved solution to 

this problem (Gregor and Hevner, 2013). Even though recent research has criticized the 

concept of artifacts (Alter, 2015), we stick to the guidelines of Hevner et al. (2004), since 

theirs is an established procedure for DSR. The artifact is represented by a structured and 

elaborate framework that enables companies to assess IT project complexity, and therewith 

contributes to prescriptive knowledge in this field (Gregor and Hevner, 2013). 

For the artifact’s design, we use design and evaluation cycles to arrive at an improved 

framework for the assessment of complexity, which contributes to theoretical knowledge as 

well as practice. Thus, the final framework has been derived through several iteration steps. 

In the first design phase, we structure the aspects of complexity identified in existing literature 

within a framework, and thus derive hypotheses about the causalities of aspects of complexity. 

Within the first evaluation cycle, the derived framework is evaluated against extant literature 

to check whether it encompasses the manifestations of complexity that are mentioned by other 

researchers. This procedure is carried out in order to evaluate the quality of the concept, and 

to reveal possibilities for adjustment. It furthermore reflects the design as a research process 

principle (Gregor and Hevner, 2013). Based on the findings of the first evaluation cycle, the 

framework is adjusted in order to improve its quality. In the next evaluation cycle, business 

experts are consulted as a first step toward the evaluation of the utility of the framework. The 

feedback gained during interviews is then incorporated into our framework, after critical 

discussion with other researchers. Furthermore, the utility of the framework is tested in a real-

world case study. This demonstrates the applicability of the framework in practice. Although 

we provide a modest first step for concept evaluation, the validity of the derived hypotheses 

about causalities of complexity still requires empirical evidence. As this is not within the scope 

of this elaboration, we encourage other researchers to empirically test and validate our 

hypotheses in their further research. 
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Nevertheless, as we do not only categorize different aspects of complexity, but derive 

hypotheses about related causalities and carry out initial tests on them, our framework 

contributes to prescriptive knowledge in the field of complexity research. It gives researchers 

a structured overview of the topic, and makes the theoretical comprehension of complexity 

possible. Furthermore, the framework enables practitioners to understand the characteristics 

of complexity, and thus facilitates detailed analysis of real-world IT projects. 

 Framework for the Assessment of Complexity 

Based on common properties of findings from existing literature, we create our initial 

framework. As indicated, complexity generally depends on observation contexts and its areas 

of occurrence within an IT project. Thus, areas of occurrence are considered as the first 

dimension of our two-dimensional framework, and are henceforth referred to as project areas. 

A more detailed explanation of the included project areas is given in Section II.1.4.2. To 

indicate how complexity emerges within different project areas, we determine antecedents of 

complexity. Assuming that antecedents evoke manifestations within specific project areas, 

and considering them as our second dimension, we come up with a resulting framework, 

which is supposed to encompass all manifestations evoked by the derived antecedents within 

the included project areas. Hence, we set up a two-dimensional framework based on generic 

antecedents and context-specific project areas, with the former dimension describing what 

causes complexity and the latter describing where complexity is located. This approach is 

illustrated in Figure II.1-a.  

To find the antecedents of complexity, as a first step, we focus on the characteristics of 

complexity that have been documented in existing literature and that are observable 

independently of the observation context. Therefore, Section II.1.4.1 examines the different 

characteristics listed in existing literature and whether they can be considered as antecedents 

of complexity.  
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 Figure II.1-a - Framework for the assessment of project complexity, including dedicated key terms 

II.1.4.1 Determining Antecedents of Complexity  

In existing literature, several aspects are mentioned that can be considered as characteristics 

of complexity, as they are observable independently of specific project areas. However, these 

characteristics mostly appear in studies with diverging and inconsistent definitions of 

complexity. Moreover, the fact that characteristics seem to be comprehensively observable is 

not sufficient to consider them antecedents of complexity. A complexity antecedent should 

influence complexity independently of a specific context, and the extent to which it can do so 

should be independent of the actual point of its assessment. Furthermore, it should be as 

independent as possible from subjective perceptions and should be distinct from other 

antecedents. With this in mind, we use the following criteria to decide whether a complexity 

characteristic within existing literature can be considered a complexity antecedent: 

(a) Objectivity: As our focus is objective complexity, a complexity antecedent should not 

refer to subjective perceptions or cognition, which means it should not depend on human 

abilities like “knowledge, experience or intelligence” (Größler et al., 2006, p. 255). 

(b) Time-independence: What an antecedent is able to influence, in terms of complexity, 

should not depend on the point in time at which it is actually assessed within a project’s 

lifecycle. Its extent of influence should be equal regardless of the phase of a project in 

which complexity is assessed.  

(c) Distinctness: A complexity antecedent should be distinct and easily separable from other 

complexity antecedents, meaning that it is not listed among others (Bailey, 1994). 

Prior literature mentions uncertainty, difficulty, multiplicity, interdependency, and diversity 

as characteristics of complexity. Below, we discuss these six characteristics derived from the 

literature, and examine whether and how they meet the criteria introduced above, and thus 
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whether they can be considered as complexity antecedents in the sense defined by this 

research.  

 Uncertainty is the extent to which a project is subject to potential future changes (Xia and 

Lee, 2004). The dynamics of projects can be described as their variability over time 

(Größler et al., 2006). The probability of varying over time represents the uncertainty of a 

project. Due to the similarity of the definitions of dynamics and uncertainty, we consider 

them as equals. Numerous researchers refer to uncertainty as a characteristic of complexity 

(e.g., Turner and Cochrane, 1993; Jones and Deckro, 1993; Frizelle, 1998; Suh, 1999; 

Williams, 1999; Sivadasan et al., 2002; Xia and Lee, 2004). Uncertainty can be examined 

objectively, as an absence of information exists regardless of the concrete abilities of 

individuals. Thus, uncertainty meets our criterion (a). However, it falls short of criterion 

(b). The uncertainty involved in a project also always declines with the project’s progress 

(for a more detailed explanation, see Boehm’s (1981) cone of uncertainty principle). As 

such, the extent to which uncertainty is able to influence complexity is strongly dependent 

on the point of its assessment within the project lifecycle. Furthermore, opinions vary as 

to whether uncertainty is a characteristic of complexity or should be considered separately. 

Whereas, for instance, Williams (1999) or Xia and Lee (2004) assert that uncertainty is a 

characteristic of complexity, Baccarini (1996), Laufer et al. (1996) and Lindemann et al. 

(2009) consider uncertainty to be a consequence of complexity, or even a separate concept. 

It also falls short of our criterion (c), as uncertainty is not only able to influence specific 

identified antecedents of complexity but is omnipresent in each and every planning 

activity. We hence consider uncertainty to directly influence projects themselves, rather 

than to represent a single aspect of complexity, and consequently suppose it to refer to a 

superior-level characteristic that has to be examined on its own. Furthermore, it is not clear 

that uncertainty determines complexity, as it only represents the possibility that an 

influence might occur in the future. Therefore, it is not considered as an antecedent of 

complexity in our research. 

 Things that are “difficult” can be defined as hard to achieve, comprehend, handle, or 

express (Cardoso, 2005; Edmonds, 1995) and thus difficulty refers to something that is 

“complicated, involved or intricate” (Baccarini, 1996, p. 202). Various authors describe 

difficulty as a characteristic of complexity (e.g., Baccarini, 1996; Edmonds, 1995; Gidado, 

1996; Cardoso, 2005; Closs et al., 2008). Since whether something is hard to comprehend 

strongly depends on subjective perceptions and underlying human abilities like 

knowledge, experience, or intelligence, difficulty does not fulfill our criterion (a). This is 
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confirmed, for instance, by Baccarini (1996), who explains that difficulty, as an 

“interpretation of complexity is in the eyes of the observer” (Baccarini, 1996, p. 202). The 

extent to which difficulty influences complexity does not, however, depend on the time of 

its assessment, and hence difficulty fulfills criterion (b). With regard to the distinctness of 

difficulty from other complexity antecedents, different opinions exist in prior literature. 

Although some authors argue that difficulty is a characteristic of complexity, others claim 

that it is just the result of multiplicity and interrelatedness (Closs et al., 2008). Gove (1964) 

furthermore states that if a project includes many varied project elements, it is difficult to 

understand as a whole. Thus, difficulty cannot be observed distinctly from other 

complexity antecedents and falls short of criterion (c). With this in mind, we consider 

difficulty to be a subjective consequence of several other complexity antecedents, and not 

a separate antecedent in itself.  

 We assume that multiplicity is equivalent to multitude and frequency, and refers to the 

number of project elements that a project involves (e.g., the number of subprojects that a 

project is split into or the number of employees that are involved in a project). Multiplicity 

is considered to be a characteristic of complexity by numerous authors (Williams, 1999; 

Gidado, 1996; Laufer et al., 1996; Milling, 2002; Cardoso, 2005; Größler et al., 2006; 

Closs et al., 2008; Lindemann et al., 2009). As the actual number of project elements is 

not influenced by human perception, multiplicity can be assessed objectively, and hence 

fulfills criterion (a). Furthermore, as quantity is a time-independent measure, the extent to 

which the number of elements is able to influence complexity is independent of the time 

of its assessment within a project’s lifecycle. Therefore, it also fulfills criterion (b). 

Multiplicity can additionally be distinctly separated from other antecedents, and so fulfills 

criterion (c). Since multiplicity thus satisfies all criteria, we consider it to be an antecedent 

of complexity. 

 Interdependency is assumed to be equivalent to connectivity and interrelatedness, and is 

characterized by the relationships and interactions within a project or between different 

projects (e.g., the interdependency of sub-projects or the interaction between the project’s 

organizational elements). Various authors consider interdependency to be a characteristic 

of complexity (e.g., Jones and Deckro, 1993; Baccarini, 1996; Laufer et al., 1996; Gidado, 

1996; Williams, 1999; Milling, 2002; Größler et al., 2006; Closs et al., 2008; Lindemann 

et al., 2009). Interdependencies can be considered objectively, since relations between 

technologies, departments, products, or other elements can be assessed without the 

influence of human abilities. Hence, interdependency fulfills criterion (a). Furthermore, 



II Enhancing IT Project Evaluation to Cope with Emerging Risk 25 

 

the extent to which interdependency is able to influence complexity does not change over 

time. Therefore, it also fulfills criterion (b). Moreover, interdependency can be considered 

distinctly from other antecedents, and thus also fulfills criterion (c). Consequently, since 

interdependency fulfills all criteria, we consider it to be an antecedent of complexity in 

this research. 

 Diversity can be defined as the variety within a project. This implies that a project can 

have different variants of the elements that define it (e.g., differences between subprojects, 

the diversity of the knowledge or cultures of team members). A large number of authors 

regard diversity as a characteristic of complexity (e.g., Jones and Deckro, 1993; Baccarini, 

1996; Laufer et al., 1996; Gidado, 1996; Frizelle, 1998; Sivadasan et al., 2002; Lindemann 

et al., 2009). As the diversity of project elements is quantitatively assessable and therefore 

independent from the perceptions of the observer, it fulfills criterion (a). Moreover, the 

extent to which diversity - whether qualitatively or quantitatively assessed - is able to 

influence a corresponding complexity measure does not depend on the point in time at 

which it is assessed during a project’s lifecycle. Hence, it also fulfills criterion (b). In terms 

of distinctness from other antecedents, it is clear that diversity is related to multiplicity. 

However, diversity addresses a separate issue, and can thus be considered distinctly from 

other antecedents. Consequently, as diversity fulfills criterion (c), we consider it to be an 

antecedent of complexity. 

In conclusion to our investigation of the characteristics and antecedents of complexity,  

Table II.1-a summarizes our results regarding all characteristics derived from existing 

literature, in terms of their adherence to the defined criteria for complexity antecedents. 

Table II.1-a - Complexity characteristics in terms of criteria for complexity antecedents 

Characteristics of complexity Criteria 

Objectivity  Time-independence Distinctness 

Uncertainty   -  -  

Difficulty -    -  

Multiplicity       

Interdependency       

Diversity       

Table II.1-a makes it clear that of the complexity characteristics commonly presented in extant 

literature, only multiplicity, interdependency, and diversity fulfill all criteria for complexity 
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antecedents in this research. As shown in Figure II.1-b, they consequently form the horizontal 

axis of our initial framework. 

 

Figure II.1-b - Horizontal axis of the initial framework: Identified antecedents of complexity 

II.1.4.2 Identification of Project Areas 

To understand the project areas in which manifestations of complexity can arise, and to enable 

the structured allocation of complexity within a project, we divide project organization into 

different project areas, based on existing project management literature. We base our 

delineation of project areas on the work of Westerveld (2003), who proposes an “overall 

framework for the management of projects” (Westerveld, 2003, p. 411) based on the European 

Foundation for Quality Management (EFQM) Excellence Model. The EFQM Excellence 

Model was originally developed in 1989, to recognize organizational excellence in European 

companies. As the EFQM was developed for “traditional, functionally organized, permanent 

organizations” (Westerveld, 2003, p. 411) it cannot be directly used for project-focused 

organizations without adjustments. Thus, Westerveld (2003) introduces six organizational 

areas that represent the areas that project managers can work on to “increase the likelihood of 

achieving a successful outcome of their project” (Westerveld, 2003, p. 412). With this 

categorization, Westerveld (2003) makes it possible to clearly and unambiguously structure 

projects. We adhere to this categorization in setting out the following project areas: 

 Contracting: This area includes the contractual relationships involved in a project. The 

partners within contracts can be, for example, suppliers, subcontractors, customers, or 

external service providers (Belassi and Tukel, 1996). Complexity can arise as a result of 

contractual relationships with any such partners, but also through the interactions of 

different contracting partners. 

 Leadership and team: This area covers the skills and characteristics of the project 

managers and project teams (Belassi and Tukel, 1996). We include all aspects that affect 

the way that a project is led by the project manager, leadership style, and the way tasks 
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and responsibilities are segregated and distributed within a team. We also consider staff 

constellation, working habits, communication skills, and team technical and managerial 

competence, as these play important roles in this area (Belassi and Tukel, 1996).  

 Project management: This area involves the operational control and execution of a project. 

It includes organizational structure, process configurations, and other project-specific 

procedures. Furthermore, it covers all planning and scheduling aspects within a project 

(Belassi and Tukel, 1996), as well as the monitoring of project progress and adjustment of 

possible deviations from a plan (Munns and Bjeirmi, 1996).  

 Resources: This area includes materials and means that are used as sources for a project. 

Since the availability of resources is critical to the success of a project (Belassi and Tukel, 

1996), complexity within this area needs to be properly assessed.  

 Stakeholder management: This area concerns a project’s stakeholders, including top 

management and external parties. The support of top management and the involvement of 

external parties can greatly influence a project and its outcomes (Belassi and Tukel, 1996; 

Munns and Bjeirmi, 1996).  

 Policy and strategy: This area involves project goals, the overall benefits of a project, and 

the means of achieving them. It is long-term-oriented and considers the whole lifecycle of 

a project (Munns and Bjeirmi, 1996). 

Figure II.1-c presents an overview of the project areas that are used as the vertical axis of the 

developed framework.  

 

Figure II.1-c - Vertical axis of the initial framework: Project areas 

 

Project Areas

Project Complexity Framework –

Dimension: Project Areas

Contracting
Project 

management

Leadership and

Team

Resources
Policy and

Strategy

Stakeholder 

management



II Enhancing IT Project Evaluation to Cope with Emerging Risk 28 

 

 Evaluation 

After determining our two dimensions and designing our framework, we test the designed 

artifact through several evaluation cycles, in accordance with Gregor and Hevner (2013). 

First, the framework is evaluated against existing literature, to check the quality of the artifact 

and determine possible areas of adjustment. Based on the resulting findings, the framework is 

adjusted in order to improve its quality. To evaluate the utility of the framework, we also 

consult business experts through an interview. The feedback that we gain is then also 

incorporated into our framework. To demonstrate the applicability of the framework in 

practice, we apply it to a real-world case conducted by a leading business consultancy. 

Although this is a modest first step toward validating our hypothesis regarding complexity 

causalities, we do not provide empirical evidence in this research. Instead, our goal is to 

encourage other researchers to test and validate the causalities within our framework through 

further empirical studies. 

II.1.5.1 Framework Evaluation against Existing Literature 

In the first step, we evaluate the framework against existing literature, and assess whether all 

of the manifestations of complexity described in literature are covered by the framework. 

Table II.1-b provides an overview of all of the manifestations that can be assigned to the 

framework that we have developed. A detailed overview of all manifestation and its sources, 

which are referenced by the values in brackets, can be found in Table VI.1-a in the appendix. 

Our evaluation showed that only 41 of 62 manifestations could be assigned to the derived 

framework (66%), as the other 21 either did not fit one of the three antecedents or could not 

be sorted into a specific project area or even both. Thus, the framework in its initial state 

covers only about two-thirds of the manifestations of complexity mentioned in the context of 

IT project complexity in existing literature.  
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Table II.1-b - Overview of the framework with all assigned drivers 
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In line with the design search process proposed by Hevner et al. (2004) we have aimed to 

improve the framework based on the executed test. Therefore, we analyze whether an 

extension of the dimensions could possibly increase the framework’s coverage of context-

specific manifestations. We examine the manifestations that could not be assigned to the 

framework, in order to determine whether they exhibit the same properties.  

We find that 12 manifestations cannot be assigned to one of the derived complexity 

antecedents. However, the only similarity that could be obtained between these manifestations 

is that four of them address the degree of novelty within a project (objective novelty (1), 

product novelty (34), new products/novelty (40), modifications to existing products (37)). 

Thus, we investigate whether novelty could reasonably be considered a further complexity 

antecedent. Whether an element in a project is novel to a company or not can be determined 

without being influenced by human abilities. Furthermore, the extent to which novelty is able 

to influence complexity does not depend on the point in time of its assessment. Therefore, 

novelty can be evaluated both objectively and time-independently. It is also distinct from other 

identified antecedents of complexity, and hence satisfies our last criterion. We therefore 

extend our initial framework by considering novelty as a separate antecedent of complexity.  

In addition to the manifestations that cannot be assigned to an antecedent of the framework, 

there are 15 manifestations that cannot be assigned to any specific project area. However, 13 

of these have a common property, in that they refer to a resulting product or elements that 

determine the project’s scope. Those aspects could theoretically be assigned to the policy and 

strategy project area, since a project’s output represents its main objective, or at least is 

strongly connected to that objective.  

Since policy and strategy are carried out at the conceptual level and project output involves 

the operative level, it seems reasonable to further break down this project area. Therefore, to 

facilitate the assignment of manifestations to the framework, we divide this project area into 

project scope, which refers to all manifestations that can be assigned to the scope of a project, 

and project objective, which includes the policy and strategy of a project. This not only enables 

a more intuitive assignment of manifestations but also increases the coverage of the 

framework. Table II.1-c gives an overview of the manifestations that can be assigned to the 

framework, after the adjustment of the strategy and policy project area. 
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Table II.1-c - Split of the project area Strategy & Policy 
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Figure II.1-d depicts the final dimensions of the adjusted framework, providing an overview 

of the final framework, including adjustments based on the evaluation against existing 

literature.  

 

Figure II.1-d - Adjusted framework for the assessment of IT project complexity 
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Despite the adjustments, some manifestations that were identified in literature still cannot be 

adequately assigned to the framework. Six manifestations could be assigned to a project area 

but could not be assigned to a complexity antecedent (bargaining power of customers (60) – 

Contracting; nature of organizational subtasks (58), magnitude of organizational subtasks 

(35), overlap of design and construction (61) – Project Management; building type of 

technology (57) – Resources; difficulty of project objectives (6) – Project Objective). Only 

two manifestations that were identified in the literature could not be assigned to an antecedent 

or a project area (level of scientific and technological knowledge required (62), difficulty of 

location for technology (59)). Nevertheless, 87% of the manifestations mentioned in literature 

can be assigned to the revised framework. 

II.1.5.2 Expert Interview  

The purpose of the evaluation in this section is to gather information about the practical 

applicability and utility of our revised framework. In line with Hevner et al. (2004), we have 

developed our framework for the assessment of complexity as an artifact on the basis of 

existing literature concerning IT project complexity and other related fields. After evaluating 

the framework against literature and improving it (Gregor and Hevner, 2013), we conduct 

another design and evaluation cycle together with business experts. In doing so, we strive to 

verify whether the concept is practically useful for the assessment of IT project complexity. 

The focus of this evaluation is on the adequacy and comprehensibility of the complexity 

antecedents, the applicability of the project areas as holistic and reasonable structures for 

projects, and the practicability and utility of the framework as a whole. 

Therefore, we gather feedback from one of the leading strategy consultancy (referred to in this 

research as SC), which has widespread experience in the field of IS/IT projects within the 

financial sector. Although, we have only consulted one company, we have been able to gain 

valuable insights into the benefits and obstacles involved in our concept, from a practical point 

of view. After the interview we critically discussed all of the feedback received from the 

business expert with other researchers before adjusting the presented framework accordingly. 

Table II.1-d presents an overview of the feedback received on our concept from the interview 

partner: 
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Table II.1-d - Observed obstacles and suggested improvements 

Observed 

benefits of the 

concept 

 Problem relevance: SC confirmed that there is currently a lack of structured 

methods for the analysis of project complexity in practice. Thus, from SC’s 

point of view, it is necessary to find a structure for the assessment of IT 

project complexity, as this is a relevant aspect of daily business.  

 General concept: According to SC, the assessment of complexity with a two-

dimensional framework is a reasonable and useful approach, as it is easily 

applicable in practice. Furthermore, SC noted that the most important 

complexity antecedents from a practical point of view (interdependency and 

multiplicity) are included in our framework. Moreover, SC confirmed that 

diversity is usually not considered in project planning, which often leads to 

problems during the implementation of a project. SC also confirmed that the 

introduced project areas are appropriate for dividing a project into different 

segments. Within this context, SC emphasized that the importance of project 

areas can differ for specific projects, which makes it necessary to specify 

project areas according to the characteristics of the particular project. Since 

the project areas within the presented framework are formulated in a general 

manner, this is made possible, according to SC. 

 Application and utility: SC made it clear that there are two fields of 

application for the framework in practice. While SC confirmed that possible 

reasons for problems within a project are currently only examined after they 

occur, our framework could be used for an ex ante assessment of 

complexity. Consequently, possible causes of failure could be identified 

before a project starts and mitigating actions could be taken in advance. 

Furthermore, the framework could be used as a steering instrument during 

the lifecycle of a project or as a continuous controlling measure that detects 

reasons for failure, like exceeding time or budget. This reflects a valuable 

contribution for practice. 

Observed 

obstacles and 

suggested 

improvements 

 Complexity antecedents: In general, the complexity antecedents correspond 

to reality, according to SC, especially with regard to dependency and 

multiplicity, and also diversity. These represent important factors affecting 

complexity in SC’s daily business. Moreover, SC made it clear that an 

unambiguous distinction between multiplicity and diversity should be 

maintained. SC confirmed that it is possible to understand these distinctions 

clearly in our framework, due to our definitions of complexity antecedents. 

However, SC suggested including examples in the descriptions of every 

complexity antecedent, in order to increase the precision and 

comprehensibility of the concepts. To follow this advice, we integrated 

explanatory examples into the definitions for each complexity antecedent, 

describing how the aspect in question causes complexity in IT projects. 

 

II.1.5.3 Deployment through a Real-World Case Study 

In addition to our expert interview, we have conducted a case study to further evaluate the 

utility of our developed framework. Through it, we apply our framework to a real-world case, 

in order to grasp its complexity and arrive at some initial insights regarding complexity 

reduction possibilities. The case is that of a financial service provider (FSP) for one of the 

world’s leading automotive manufacturers, which launched a program involving projects to 

increase its resilience and efficiency after being hard hit by the financial crisis of 2009/2010. 

Overall, the program comprised eight projects. Two of these were aligned to the business 
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model, three to operations, and another three to regulatory processes. After the program was 

initiated, the increasing complexity of the projects involved induced the FSP to set up a 

separate project for quality assurance. Based on an assessment of the projects’ complexities, 

the quality assurance objectives included ensuring the quality of project deliverables, adhering 

to project schedules, and avoiding project delay and project failures.  

In addressing this situation, we assess the complexity of one of the projects, which was aligned 

with the company’s business model. The project in question was an integration project for the 

pan-European merger of two large fleet management companies, which involved five 

countries and was scheduled for a period of two years. To highlight critical management areas 

and in order to indicate starting points for complexity reduction, we have used our framework 

to carry out a high-level assessment of the complexity of the post-merger integration project. 

In it, we assess the relevance of each complexity antecedent within each project area and 

depict it in a complexity “heat map”, as shown in Figure II.1-e. Relevance is determined based 

on expert judgements of involved project management, using a three-step scale of gradations.  

 

Figure II.1-e - Heat map of IT project complexity 

This structured complexity assessment of the post-merger integration project shows that in 

terms of complexity reduction, the project scope area has a great deal of potential, as do the 

areas of leadership & team, contracting, and project management. Moreover, the assessment 

indicates courses of action for management, as, for instance, complexity induced by a high 

level of diversity in the contracting area could easily be avoided or reduced. Therefore, based 
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on evaluation cycles regarding utility (Gregor and Hevner, 2013), represented by an expert 

interview and a case study deployment, we consider the proposed framework to be a useful 

tool.  

 Implications, Limitations, and Future Research 

As complexity can be one reason for the failure of IS/IT projects, companies should strive for 

a clear and unambiguous understanding of IT project complexity. With this in mind, we 

introduce a concept for the structured assessment of project complexity that is specific to the 

IS/IT project context, with respect to its influencing factors. In line with the research 

guidelines provided by Hevner et al. (2004), we have followed the DSR approach to develop 

our concept as an artifact. We have also improved the artifact by putting it through two design 

and evaluation cycles (Gregor and Hevner, 2013). Thereby, we provide a first step towards 

the design evaluation by evaluating the framework against literature and practice. We initially 

created the framework based on existing literature in the field of IT project complexity. Our 

two defined dimensions address questions of complexity antecedents and areas where 

complexity can occur within an IT project. We assign manifestations of project complexity to 

those dimensions. Based on our first evaluation cycle against extant literature, our initial 

framework has been adjusted to subsequently account for 87% of all identified manifestations. 

The second evaluation cycle takes into account feedback on practice, concerning the usability 

and applicability of the framework, by drawing on an interview with experienced business 

consultancy and a real-world case study. 

Our framework can be equally beneficial for research and practice, as it facilitates 

comprehension of the concealed aspects of complexity. On one hand, the framework can 

contribute to future research by analyzing and structuring existing literature to arrive at 

hypotheses about the causalities of complexity. On the other hand, it can help practitioners 

understand how complexity can occur within an IT project, as the matrix provides insights 

into the antecedents of complexity and where it is located within the different areas of an IT 

project. Additionally, the identification of manifestations from literature can help practitioners 

to understand the complexity within their IT projects, as the manifestations represent a 

reference list of aspects that might influence the complexity of a specific application case. 

Therefore, the framework can be used as an ex ante evaluation tool, to help practitioners 

identify problems and take adequate mitigating actions prior to a project’s implementation. 

Furthermore, it can be used as a project steering instrument, to help determine appropriate 
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strategies for the better management of complexity during a project, and to counteract the risk 

of IT project failure.  

However, the framework is not without limitations. By evaluating the framework against 

literature and real situations, we have ensured its quality and utility in practice. However, the 

validity of the derived hypotheses concerning the causalities of complexity still need to be 

empirically tested. Since this is not within the scope of this elaboration, we encourage other 

researchers to empirically test and validate our hypotheses in further research.  

Overall, our approach provides a framework for assessing project complexity with respect to 

influencing factors, and thus clarifies the construct of IT project complexity. The introduced 

framework sets a foundation for the development of methods for analyzing and managing 

project complexity. As the quantification of complexity antecedents could support project 

complexity management, it might be interesting to examine the complexity antecedents 

described in this elaboration in more detail, in order to find out if and how they can be 

quantified. Furthermore, future research should examine what level of complexity is most 

advantageous.  

Despite its limitations, our study contributes to the current body of prescriptive knowledge 

regarding complexity assessment by offering a clear and unambiguous structure for IT project 

complexity, and thus provides a first approach to the assessment of IT project complexity, 

which can be of help to practitioners as well as researchers. Furthermore, it provides a first 

glance at the causalities of complexity, which have not yet been explored in existing literature. 
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II.2 The Necessity for Integrated IT Project Quantification2 

The probability of IT project failures can be mitigated more successfully when discovered 

early. To support an early detection, transparency regarding a project’s cash flows shall be 

increased. Therefore, an appropriate analysis and calculation of a project’s costs, benefits, 

risks, and interdependencies is inevitable. Until today, however, a method that appropriately 

considers these factors when estimating the ex ante project business case does not yet exist. 

Using the Action Design Research approach, we designed, applied, and tested a practicable 

and integrated method of determining the monetary value of IT projects, to generate 

generalized insights to benefits management. This method was conjointly developed by 

practice and academia, to ensure practical applicability while upholding scientific rigor. 

Furthermore, to support understandability of the method, we provide an application example. 

 Motivation  

Companies continuously increased their IT investments over the last decades. According to 

Gartner (2012) this trend is about to continue. In this context, especially the number and 

complexity of large IT projects is growing. The complexity is intensified by dependencies 

within one or between different projects and processes and is boosted even further by the 

growing number of large projects. Another important influence is the rising uncertainty in an 

increasingly dynamic project management environment. 

Flyvbjerg and Budzier (2011) found that one out of six IT projects causes budget deficits of 

200% on average. In several cases this can even threaten the existence of the assigning 

company. Amongst others, reasons for the failure are IT specific risks concerning project 

evaluation, like for example misjudgment of user acceptance or changing security 

requirements of the new system. Another reason is the lack of recognition of different kinds 

of interdependencies (Wehrmann et al., 2006). However, according to Flyvbjerg and Budzier 

(2011), the continuous measurement and controlling of expected projects benefits seems to be 

positively related to IT project success. Whereas project costs are already measured 

elaborately by several practicable methods like the Constructive Cost Model of Boehm et al. 

(2000), corresponding methods concerning the management of an IT project’s benefits just 

barely exist. Usually, that is because benefits of a project can oftentimes just hardly be 

quantified or transformed into monetary values. Moreover, in most cases benefits are not 

realized until a project has been completed. Therefore, the quantification of benefits in practice 

                                            
2 This section is equivalent to Beer et al. (2013), like outlined in Section I.3 and I.4. 
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is mostly conducted using qualitative and rarely quantitative but especially no monetary 

procedures. In this challenging context, practice demands for an approach incorporating costs, 

benefits, risks, and interdependencies. The use of such an integrated approach, which can be 

embedded in a continuous project controlling to compare the monetary results over time, 

enables a company to detect relevant deviations from target goals. Based on that, 

corresponding control measures can be taken, which reveal the need and allow for corrective 

actions to reduce the probability of IT project failure. 

Therefore, the objective of this research is to introduce an integrated method, which considers 

costs, benefits, risks, and interdependencies and is, beyond that, easily applicable in practice. 

For the development of this method, we decided to use an Action Design Research (ADR) 

approach (Sein et al., 2011). Specific for this research approach is the simultaneous 

development and the evaluation of an (IT) artifact, which is done in mutual cooperation 

between practitioners and researchers. Due to the need of companies to evaluate IT projects 

more holistically and the lack of methods being available and applicable in practice, one of 

the world’s leading strategy consulting companies (in the following referred to as CC) pointed 

out their need for a methodically sound as well as easy to use method of benefit quantification 

for IT projects. Therefore, the Research Center Finance & Information Management (FIM), 

developed an approach to benefits management collaboratively, gathering feedback from 

practice regarding efficacy and applicability of the method on a regular basis and upholding 

scientific rigor. Furthermore, we tested the developed method at an industrial client, namely 

a multinational manufacturing company (in the following referred to as MC), who used the 

method to evaluate benefits of multiple mobile app development projects. The valuable 

feedback of both business partners, CC as well as MC, gave us the opportunity to satisfy the 

criteria of an Action Design Research process and to develop an artifact which fulfills the 

requirements of all stakeholders from business practice and science. 

Figure II.2-a shows the ADR approach based on the depiction in Sein et al. (2011), adjusted 

to our specific project setting. 
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Figure II.2-a - Building, intervention and evaluation scheme in ADR (cf. Sein et al. (2011)) 

Since the objective of ADR is to generate prescriptive design knowledge by developing and 

evaluating an artifact3 in cooperation with business partners, it seems to be the most suitable 

research method for this topic. The ADR approach is divided into four stages: at the first stage, 

which is called Problem Formulation (cf. Section II.2.2), the research problem is motivated 

by input from science and practice, i.e. the need for benefits management as indicated by our 

business partners, combined with the lack of corresponding approaches in science. At the 

second stage Building, Intervention and Evaluation (cf. Section II.2.2), the initial artifact is 

designed, evaluated and improved at the same time by its application through practitioners 

(Alpha-Version loop) and end-users (Beta-Version loop). Reflection and Learning 

representing stage three of the ADR approach matches the first two stages and has the 

objective to reflect and increase the understanding of the artifact. In our case, learning and 

reflection are represented by the feedback of the practitioner and end-user, and can be found 

in Section II.2.3 and in the application example given in Section II.2.4. In the last stage 

Formalization of Learning (cf. Section II.2.5) the artifact should be further improved for more 

generalized concepts, called design principles. 

 Problem Formulation 

As described above, existing approaches to benefits management oftentimes account for 

qualitative factors, only. Some models establish quantification of benefits and sometimes also 

risks, but not on a monetary basis. In the following, we shortly present existing approaches to 

benefits management like they can be found via a thorough analysis of IT project management 

                                            
3 According to Sein et al. (2011), the artifact is a piece of hardware and/or software and hence is referred to as 

IT artifact. Although, we also implemented an IT driven tool for the management of benefits, we focus on the 

methodical approach which has been developed in this paper. 
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literature. Since the scope of this research is specifically on quantitative methods for IT project 

valuation, we focused on these kinds of approaches, although we are aware that lots of 

publications are heading in the direction of benefits management more generally. 

The scoring model (Zangemeister, 1976) firstly identifies all relevant evaluation criteria of a 

specific project. These criteria are weighted by assigning specific scores. The scores indicate 

different levels of importance for decision-makers. Subsequently, a user value is calculated 

by multiplying the criteria by the corresponding weighting and aggregating them to an overall 

value. This allows for a comparison of the different alternatives. In the WARS-Model4 (Ott, 

1993) estimated benefits and costs are subdivided into three categories according to their 

tangibility. Each category is allocated with three levels of realization probabilities resulting in 

separate matrices for benefits and costs. Uncertainty is pictured via the classification into risk 

stages, representing the optimism or pessimism of a decision-maker. To evaluate projects 

more quantitatively, Schumann (1993) introduces a method based on functional chains, taking 

benefits up to the level of monetary values by focusing on the consequences of their effects. 

In this process, benefits are consolidated to categories or allocated to different company levels. 

Andresen et al. (2000) developed a framework to categorize benefits by efficiency, 

effectiveness and performance. In this context ‘efficiency’ is calculated as risk-weighted 

monetary, ‘effectiveness’ as risk-weighted quantitative but non-monetary, and ‘performance’ 

just as a qualitative value with a specific probability of occurrence. Another approach to 

evaluate IT investments, which is described by van Grembergen and De Haes (2005), is the 

Balanced Scorecard. In this approach the relations of cause and effect of qualitative and 

quantitative key figures are described. Two general types of key figures are distinguished: 

performance drivers and output figures. To evaluate a project, the degree of target 

achievement is measured for each key figure. For an ex ante evaluation of IT investments 

Walter and Spitta (2004) use the SMART-Model5. Though, the course of action of this model 

is in analogy to other scoring models, it additionally gives instructions for the application. 

All approaches illustrated above consider benefits and risks to a different extent. However, to 

the best of our knowledge there exists no integrated approach, fulfilling all of the following 

requirements: 

 Benefits of an IT project have to be considered monetarily. 

                                            
4 Economic Efficiency Analysis with Risk Categories (original term in German: Wirtschaftlichkeitsanalyse mit 

Risikostufen) 
5 Simple Multi-Attribute Rating Technique 
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 The risk associated with a project’s benefits has to be considered monetarily. 

 When assessing risk, dependencies between benefits have to be considered. 

 The approach has to be practically applicable requiring a low level of additional 

overhead. 

The requirement of practical applicability leads us to the adoption of several measures 

concerning the operationalization of our approach. We developed these measures on the basis 

of the feedback of our two collaborating business partners, CC and MC. In the following we 

outline these measures as we derive our model. 

 Model: Monetary Quantification of IT Projects 

As mentioned earlier, in today’s IT projects a wide range of project evaluation methods are 

already implemented successfully. Some of them have a strong emphasis on costs, like for 

example the Constructive Cost Model or Function Point Method (Mukhopadhyay et al., 1992). 

To provide a more integrated evaluation method, as a first step, we focus on benefits of IT 

projects considering costs but without examining them in detail. In accordance with our 

business partners, we consequently agreed to the following simplifying assumption: 

Assumption 1: A project’s costs 𝐶 are deterministic and known in advance. 

Hence, we focus on the accurate identification and evaluation of all relevant benefits of an IT 

project. In this context a benefit is considered to be either based on a direct or indirect 

reduction of payouts or on increased revenues. The consideration of non-deterministic costs 

within our model is subject to further research. Before we are able to derive an overall 

integrated project value, we first assess each benefit separately regarding monetary 

contribution and risks. 

II.2.3.1 Assessment of a Single Benefit 

There are quantitative and qualitative benefits of IT projects. Quantitative benefits can directly 

be measured whereas qualitative benefits are difficult to transform into monetary units (Walter 

and Spitta, 2004). To overcome these difficulties and to ensure the mathematical rigor of our 

method, we chose a cash-flow-based approach considering deterministic costs and including 

benefits as random variables. For a rigor application of our model, benefits need to be assigned 

without overlaps. In coordination with our business partner CC in the Alpha-Version-loop of 

the ADR approach, we first assign each benefit to an area in which it occurs, like for example 
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the area of customers or employees, in order to grasp the benefits more holistically and 

identify possible overlaps. 

To estimate the approximate monetary value of the respective benefit, we assume that each 

benefit can be assessed by a monetarization rule. These monetarization rules can finally be 

transferred into equations. Exemplarily, the benefit “cost savings through reduction of training 

times”, is assigned to the area employees. The monetarization rule states increased 

productivity through shortened training times. Finally the equation 𝑐𝑇 ∙ ∆𝑛𝑇 + 𝑐𝐸 ∙ ∆𝑛𝐸 can 

be derived, whereas 𝑐𝑇 represents the hourly rate of a trainer 𝑇, ∆𝑛𝑇 the number of overall 

saved trainer-hours, 𝑐𝐸 the hourly rate of an employee 𝐸 and ∆𝑛𝐸 the number of overall saved 

training-hours for employees. However, this monetarization rule is just a means of support to 

raise the decision-maker`s awareness for the variables influencing the specific benefit. The 

indicated exactness of the calculated value is misleading, as benefits bear uncertainty and risk 

which has not yet been considered in the quantification.  

At this point we received feedback from our collaborative business partner CC, that the 

estimation of exact parameters for a specific benefit is hardly possible for project staff. 

However, market-driven parameters indicate that benefits mostly are normally distributed. 

Based on this input we made the following assumption: 

Assumption 2: The monetary values of benefits are uncertain and can be considered as 

normally distributed random variables �̃�𝑖~𝑁(µ𝑖, 𝜎𝑖). 

The simplifying assumption of a normal distribution for benefits is justifiable, since benefits 

depend on market risks and others, which can cause positive and negative deviations. At the 

same time, a normal distribution is mathematically easy to use and allows for an analytical 

calculation of our objective function as can be seen in Section II.2.3.3. 

In a first attempt, we tried to directly retrieve the distributional parameters from the decision-

makers. Though, CC argued that this approach is not feasible in practice, since these 

parameters are difficult to comprehend. To simplify the estimation of uncertain benefits, we 

hence draw back on an acknowledged procedure of behavioral finance, by using an interval-

based scheme for the evaluation of each benefit, similar to Tversky and Kahneman (1974). 

The practical operationalization of estimating a lower bound 𝑢𝑖 and upper bound 𝑜𝑖 of the 

interval can be done by answering the question: “In which range will the value of the benefit 

be at a specific probability like for example 80%?” (cf. Figure II.2-b). We chose an 80% 

interval according to our business partner’s suggestion. CC argued that an 80% probability is 

easily graspable by project staff members since it is commonly used in practice. 



II Enhancing IT Project Evaluation to Cope with Emerging Risk 43 

 

 

 

Figure II.2-b - Realization-interval of an expected value of a benefit 

Based on assumption 2 we are able to derive the expected value µ𝑖 and the standard deviation 

𝜎𝑖 of a benefit �̃�𝑖. In accordance to Tversky and Kahneman (1974), we assume µ𝑖 to be the 

mean between 𝑢𝑖 and 𝑜𝑖, thus 𝜇𝑖 =
(𝑢𝑖+𝑜𝑖)

2
. We calculate 𝑠𝑖 = 𝑜𝑖 − 

(𝑢𝑖+𝑜𝑖)

2
 as the spread 

between µ𝑖 and the upper and lower bounds respectively. With 𝐹0,1(𝑥) as distribution function 

for the standard-normal distribution and 𝐹(𝑥) as the wanted distribution function with 

�̃�𝑖~𝑁(µ𝑖, 𝜎𝑖) we know: 

𝐹(𝑥) =  𝐹0,1 (
𝑥𝑖 − µ𝑖

𝜎𝑖
) II.2.(1) 

Since it is also known that 𝐹0,1(1,28) ≈ 90%, and in this case 𝑥𝑖 = 𝜇𝑖 + 𝑠𝑖 we can constitute: 

𝑥𝑖−µ𝑖

𝜎𝑖
 = 1,28 ⟹ 𝜎𝑖 = 

𝑥𝑖−µ𝑖

1,28
  ⟹  𝜎𝑖 = 

𝑠𝑖

1,28
 . In order to obtain mathematical rigor, we 

therefore derive the parameters µ𝑖 and 𝜎𝑖 for each benefit �̃�𝑖 from the estimated realization 

interval of the decision-maker. This coherence is also shown in Figure II.2-b. 

After identifying all benefits and calculating their expected values and standard deviations, 

we are now able to aggregate these, in order to derive a distribution of the overall benefits of 

an IT project. 

II.2.3.2 Aggregation of a Risk-Adjusted Project Value 

We determine the overall expected benefit of an IT project 𝐵 by aggregating the expected 

values of each single benefit �̃�𝑖~𝑁(µ𝑖, 𝜎𝑖). 
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𝐵 = ∑µ𝑖 II.2.(2) 

To calculate the overall standard deviation of an IT project 𝑆, we have to account for 

dependencies between benefits which, sometimes react similar e.g. to external influences. For 

example in case of technological innovation multiple benefits might be affected 

simultaneously. To picture this effect, we constitute the following again simplifying 

assumption: 

Assumption 3: Dependencies between benefits are linear. 

Linear dependencies between two benefits �̃�𝑖 and �̃�𝑗 with 𝑖, 𝑗 = 1…𝑛 can be measured by the 

Bravais-Pearson correlation coefficient 𝑝𝑖𝑗. We can calculate the overall standard deviation 

of an IT project 𝑆 by aggregating the standard deviation of the single benefits and their 

respective correlation coefficients. 

𝑆 = √∑∑𝜎𝑖𝜎𝑗𝑝𝑖𝑗 II.2.(3) 

The identification of the correlation coefficients between every pair of benefits is a complex 

task, since a high number of parameters are involved and the context is hard to understand by 

project staff. As the involved practitioners (CC) suggested, we developed an easier approach 

for a gradually and guidelined determination of interdependencies. Firstly, we specified a 

default value, saying all benefits shall be moderately positive correlated. This pre-allocation 

is intelligible because all benefits occur within one project, wherefore they are at least subject 

to some kind of dependencies. In case of exceptions, in which the default setting needs to be 

adapted, corresponding pairs of benefits are identified and alternative correlation values are 

entered. To facilitate this adjustment, the decision-maker is able to select one of five options 

outlined in natural language instead of numerical values for the corresponding correlation of 

two benefits. For example an absolute positive correlation 𝑝𝑖𝑗 = 1, is described by “a high 

value of benefit �̃�𝑖 always corresponds with a high value of benefit �̃�𝑗”. For 𝑖 = 𝑗 the 

correlation coefficient 𝑝𝑖𝑗 = 1.  

Given these values, we can obtain a risk-adjusted project value considering costs, benefits, 

risk, and correlations monetarily. Therefore, we use a preference function which is in line with 

the Bernoulli principle and developed according to established methods of decision theory 

(Bernoulli, 1738; Bernoulli, 1954; von Neumann and Morgenstern, 1947; Markowitz, 1959). 

Similar formal approaches and assumptions for risk-adjusted economic value analysis have 

been derived by (Longley-Cook, 1998) and have been applied in the context of IT numerous 
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times (e.g. Hanink, 1985; Bardhan et al., 2004; Zimmermann et al., 2008; Fogelström et al., 

2010; Fridgen and Mueller, 2011). Therefore we postulate the following assumption: 

Assumption 4: The calculation of the risk-adjusted project value follows the general structure 

𝜙(µ, 𝜎) = µ − 𝛼𝜎2. We define 𝛼 as the parameter of risk aversion and assume that the 

decision-maker is risk-averse (𝛼 > 0). 

The risk-adjusted project value can be interpreted as the certainty equivalent for normally 

distributed random variables and an exponential utility function, and thus as an amount of 

money. The parameter 𝛼 > 0 is a linear transformation of the Arrow-Pratt characterization of 

absolute risk aversion (Arrow, 1971). The higher the value of 𝛼, the more risk-averse is the 

decision-maker. For practitioners the concept of risk aversion is fairly abstract. Therefore, a 

precise determination thereof is very difficult. Again, we considered the input of CC and MC 

and designed a survey to determine a company’s parameter of risk aversion at the executive 

level. Such an approach can also be found in behavioral finance (Sautner et al., 2007). Thereby 

the relevant decision makers are asked multiple questions about their maximum willingness 

to pay for different fictive project settings to determine the risk class, which is afterwards 

assigned to a corresponding value of risk aversion. Since the outline of every question of this 

survey would go beyond the scope of this contribution, we refrain from a detailed description 

and provide an example in Section II.2.3.3. 

For the calculation of the project’s risk-adjusted value we compare deterministic cash 

outflows −𝐶 with the aggregated expected benefits ∑µ𝑖, adjusted by a risk discount 

𝛼 ∑∑𝜎𝑖𝜎𝑗𝑝𝑖𝑗, consisting of the overall standard deviation of an IT project squared and 

weighted by the parameter of risk aversion 𝛼. Hence, we are able to aggregate the risk-

adjusted project value according to the following equation: 

𝜙(µ, 𝜎) = −𝐶 + ∑µ𝑖 − 𝛼 ∑∑𝜎𝑖𝜎𝑗𝑝𝑖𝑗 II.2.(4) 

II.2.3.3 Application Example 

As mentioned earlier, we applied this benefits management approach by using a specifically 

designed IT tool in a multinational manufacturing company (MC). The following example 

illustrates this application in a simplified way with altered and anonymized data. This step 

corresponds to the Beta-Version loop in the ADR approach. 

MC operates primarily in the construction industry and has a sales force, which is distributing 

the company’s products directly at the customers’ sites. Furthermore, the dynamic pricing 
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system of the company arranges different discounts for different customers. When necessary, 

sales representatives request current, customer specific prices through the company´s call 

center directly at the customers’ sites. The company is about to launch a mobile app project 

to facilitate such pricing requests on mobile devices. Therefore, MC wants to calculate the 

project value under the following premises: 

 The observation period is 1 year 

 The risk aversion parameter of the decision-maker was determined to be 0.000031 

 The total costs of the project are 78,300 € for in-house, external, back-end 

development, and support 

 The identified benefits are: 

o Increased customer satisfaction and loyalty 

o Reduced customer call losses 

o Reduced number of false pricing proceedings 

 The correlations between the benefits are all moderately positive 

 

The risk aversion parameter was determined at the executive level, since this parameter is 

valid not just for this single project but for the whole enterprise. We investigated the risk 

aversion parameter, as stated in Section II.2.3.2, by a survey. The following question is part 

of this survey and exemplarily illustrates the kind of questions the decision-makers were 

asked: 

Please state your maximum willingness to pay for a risk-mitigating measure in the context of 

a project with the following characteristics (cf. Figure II.2-c): 

 

 The project has an expected value of 100,000 € 

 The expected value deviates with 80% probability by 30,000 € 

 The execution of the measure reduces the deviation to 20,000 € 
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Figure II.2-c - Reducing the deviation of an expected project value by risk mitigation 

Based on the maximum willingness to pay 𝑧𝑚𝑎𝑥 as outcome of the survey, and the variance 

before and after (𝜎𝑝𝑟𝑖𝑜𝑟
2  and 𝜎𝑎𝑓𝑡𝑒𝑟

2 ) the risk-mitigating measure, the parameter 𝛼 can be 

derived: 

𝛼 = (
𝑧𝑚𝑎𝑥

𝜎𝑝𝑟𝑖𝑜𝑟
2 − 𝜎𝑎𝑓𝑡𝑒𝑟

2 ) II.2.(5) 

After the general parameters of the project setting like observation period, deterministic costs 

and risk attitude have been determined and all benefits have been identified, we were able to 

estimate an interval for each single benefit. 

Benefit 1 is about increased customer satisfaction and loyalty and describes reduced customer 

losses due to the new mobile app. If a sales representative of MC is on the spot at a customer`s 

and needs to make a quick customized price enquiry, he or she can directly use the mobile app 

instead of conferring to the call center. Hence, without the app a longer process for pricing 

requests and longer waiting times would be necessary, which leads to customer dissatisfaction 

and can even result in customer losses. This coherence can be depicted through the equation 

𝑙𝑐 ∙ 𝑣𝑐 with 𝑙𝑐 representing the expected number of customer losses prevented per year, and 𝑣𝑐 

the average customer value. Based on this monetarization rule, the responsible decision-maker 

estimated the 80%-interval for the expected value of benefit 1 to be (210,000;375,000) [€]. 

Benefit 2 is about reduced customer call losses. It represents the revenue that is generated 

through the capability to answer more or even all customer calls. The support center answers 

calls from customers as well as sales representatives. Due to the use of the mobile app, fewer 

sales representatives need to confer regarding pricing request and therefore less capacity is 

tied up at the support center. Consequently, capacity is freed for customer support and 

therefore fewer calls are missed and a higher number of enquiries can be answered. The 

corresponding monetarization rule is 𝑐𝑙 ∙ 𝑣𝑐𝑐 ∙ ∆𝑐𝑙, whereas 𝑐𝑙 is the number of customer calls 
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lost due to higher capacity utilization of the support center in case of pricing requests, 𝑣𝑐𝑐 is 

the average value of a customer’s call and 𝛥𝑐𝑙 the expected reduction of lost customer calls as 

a percentage. For benefit 2 the 80%-interval is (25,000;50,000) [€]. 

The third benefit is the reduced number of false pricing proceedings. When a sales 

representative is at a customer’s site, it is possible that the customer has short-term product 

enquiries. If in that case the representative is not able to confer with the call center, he has no 

current information about the customer specific product prices and is just able to either 

estimate the actual price or make an offer based on outdated information. Consequently, if the 

offered price is lower than the actual one, it comes to revenue losses. Since the mobile app 

enables real-time price enquiries, these revenue losses can be avoided. In this case, we can 

derive 𝑝𝑜 ∙ 𝑣𝑜 ∙ ∆𝑝𝑜 as monetarization rule for benefit 3, whereas 𝑝𝑜 is the average number of 

price overwrites per year, 𝑣𝑜 the average monetary value of a wrong price, and ∆𝑝𝑜 the error 

reduction as a percentage. The resulting 80%-interval for the expected value of benefit 3 is 

(110,000;280,000) [€]. 

The expected values µi are determined by the mean of the corresponding estimated intervals. 

Therefore, µ1 = 292,500 €, µ2 = 37,500 €, and µ3 = 195,000 €. The corresponding standard 

deviations are 𝜎1 = 64,453 €, 𝜎2 = 9,766 €, and 𝜎3 = 66,406 €. Aggregating the expected 

values of the single benefits leads to an expected project value 𝐵 = ∑µ𝑖 of 525,000 € (cf. 

Equation II.2.(2)). Taking the risk measures and a slightly positive correlation of 0.5 between 

all benefits, we calculated a risk discount (cf. Equation II.2.(4)) of 220,369 €. Considering 

overall deterministic costs 𝐶 of 78,300 € we finally got an expected risk-adjusted project value 

𝜙(µ, 𝜎) of 226,331 € (cf. Equation II.2.(4)) for the mobile app project. Since the risk-adjusted 

project value is greater than zero, it increases the business value of MC. Therefore, the mobile 

app project should be launched. 

 Conclusion, Limitations, and Outlook 

Unlike existing methods, which do not consider costs, benefits (especially benefits that are 

hard to quantify), risks and interdependencies between benefits, we introduce an integrated 

and novel method for benefits quantification in IT projects. According to the ADR cycle, we 

designed, applied and tested this method in collaboration with practice using real world data 

for development and constant improvement. Our objective is to generate generalized insights 

to benefits management by means of our artifact. In the context of our collaborative project, 

we identified methods, which can measure different project parameters and meet academic 
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standards and preserve practical applicability. Since these methods can be assigned to 

different kinds of problems, we outline them in the following. 

According to our business partners, the estimation of an accurate value for a benefit is difficult 

in practice. We found that an interval-based scheme according to Tversky and Kahneman 

(1974), which is a method from behavioral science, is a practicable and rigor means to assess 

the value of a project’s benefits. 

Another difficulty in practice is the determination of dependencies between benefits. Hence, 

we developed a simplified procedure, which assumes moderately positive correlations 

between benefits within the same project and provides an intuitive gradual adaption in 

exceptional cases in which there are higher or lower correlations between benefits. This 

procedure therefore meets practical requirements and is compatible with academic concepts. 

Decision-makers in practice are oftentimes incapable of assessing their risk aversion. 

Therefore, we draw on an approach of behavioral finance, by developing a survey 

incorporating different questions inquiring the decision-makers willingness to pay in different 

project settings. This approach enables to derive the value of the decision-makers risk aversion 

by rigor means. 

Finally, the presented method for benefits management constitutes an overall risk-adjusted 

project value of an IT project, which can be used as an important management control figure 

for decisions about and within IT projects and therefore is substantial for an overall value-

based management. 

Besides the introduced ex ante valuation of benefits in a business case, the implementation of 

this method in a continuous IT project controlling can help to identify deviations between the 

ex ante business case and the current project value during the course of a project and can 

therefore indicate needs for actions and support the early detection of IT project failure. The 

development of a continuous project steering and controlling by the means of the proposed 

method is our current work in progress. Moreover, the introduced method for benefits 

management should be further applied and tested in practice with more real world data for 

constant improvement. The application in practice also assists by setting up a knowledge base 

in the field of benefits management. This repetitive course of action leads to further 

improvement and adaptions of our benefits management method. 

Our model, however, required several simplifying assumptions. We assumed the costs of an 

IT project to be deterministic since we focused on the quantification of the benefits. Thus, a 

more detailed examination of stochastic costs of IT projects is subject to further research. For 



II Enhancing IT Project Evaluation to Cope with Emerging Risk 50 

 

the calculation of the risk-adjusted project value we consider the standard deviation as 

measure of risk. This two-sided risk measure scales risk as symmetric deviation of the 

expected value. Likewise, it is conceivable that the model might be adapted to include 

different risk measures like Lower Partial Moments or Value at Risk (VaR). In cooperation 

with our business partners we noticed that especially the VaR is easy to interpret for 

responsible decision-makers. Moreover, we consider linear dependencies between benefits 

only, as we picture them by a Bravais-Pearson correlation coefficient. Yet realistically, 

dependencies between benefits in some cases may also be non-linear. But since this is a 

complex subject and not satisfactorily solved by academia or practice, it is justifiable to work 

with this simplifying assumption of linear dependencies in order to derive first results. 

Furthermore, we assume a moderately positive correlation of benefits by standard, which may 

not realistically reflect the specific dependencies of all benefits, but at least is feasible due to 

the fact that these benefits occur within one and the same project. Also the gradual adaption 

of these dependencies may imply potential for inaccuracy, but is the most appropriate 

procedure in practice according to our business partners. 

Besides the several simplifying assumptions, there are additional limitations of our model. We 

applied the developed approach to a mobile app project and derived valuable results. However, 

since it not yet has been applied to different IT projects, varying in scope and size, we cannot 

consider the approach to be appropriate for miscellaneous IT projects. As this is an important 

issue to practitioners, it is topic to further research and evaluation. Furthermore, we assume 

that it is possible to derive a monetarization rule for each benefit. This is also a limitation, as 

it might be conceivable that there are benefits, which are hard to or even cannot be assessed 

by monetarization rules. 

With the method presented in this research, we are able to derive generalized insights 

regarding the interval-based estimation of benefits, the inquiry of the correlations between 

benefits, and the determination of the risk-aversion parameter. They provide a reliable basis 

for further development. It shall be analyzed for which kind and size of IT projects the 

presented method is suitable. It is conceivable that there are different requirements to the 

application of the method and therefore different results for small, middle or large IT projects 

as well as there might be differences for ERP-, CRM-, or BI-projects. This might be of great 

significance to practitioners as well as to researchers, who should feel encouraged to 

investigate for example the integration of non-deterministic cost, non-linear correlations and 

different kinds of risk measures.  
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II.3 Continuous IT Project Assessment for Value Assurance6 

The probability of IT project failures can be mitigated more successfully when discovered 

early. To support a more insightful management of IT projects, which may also facilitate an 

early detection of IT project failures, transparency regarding a project’s cash flows shall be 

increased. Therefore, an appropriate analysis of a project’s benefits, costs, requirements, their 

respective risks and interdependencies is inevitable. However, to date, in requirements 

engineering only few methods exist that appropriately consider these factors when estimating 

the ex ante project business case. Furthermore, empirical studies reveal that a lot of risk factors 

emerge during the runtime of projects why the ex ante valuation of IT projects even with 

respect to requirements seems insufficient. Therefore, using the Action Design Research 

approach, we design, apply, and evaluate a practicable method for value-based continuous IT 

project steering especially for large-scale IT projects. 

 Introduction 

Companies continuously increased their IT investments over the last decades. Especially the 

number and complexity of large IT projects is growing. The complexity itself is intensified by 

dependencies within one or between different projects and processes and is boosted even 

further by the growing number of large IT projects. Another important influence is the rising 

uncertainty in an increasingly dynamic project management environment. These 

developments have implications for IT projects success. To cope with these challenges, 

requirements engineering (RE) concentrates on design decisions and interventions by 

capturing, sharing, representing, analyzing, negotiating, and prioritizing requirements in 

recent years (Zave, 1997; van Lamsweerde, 2000; Cheng and Atlee, 2009; Jarke et al., 2010). 

Based on the evolution of IT, new opportunities and challenges in the field of RE emerge. 

Jarke et al. (2010) for example state that “the environment in which RE is practiced has 

changed dramatically” and therefore reveal demand for new ways to manage requirements 

(Jarke et al., 2010, p. 470). In that context, modern software development processes and 

especially methods of agile software developments allow for the ongoing verification and 

update of these requirements. 

                                            
6 This section is an editorially improved version of Fridgen et al. (2014), which is a follow-up on Beer et al. 

(2013) [cf. Section II.2]. Like outlined in Section I.3, it extends the integrated IT project assessment of Beer et 

al. (2013) by introducing a dynamic cash flow perspective and developing a method for continuous project 

evaluation and steering. 
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However, despite the scientific achievements in the context of RE, there is still a significant 

portion of IT projects that fail in the way that they run out of time, budget, or do not generate 

the planned value. According to a recent study by the IT Governance Institute about one out 

of five investments into IT is terminated before implementation (ITGI, 2011). A study by the 

Project Management Institute found that despite the fact that organizations increasingly 

applied a variety of means to manage their projects, still 36% of projects did not successfully 

meet their initial objectives or business intent in 2011 (PMI, 2012). Flyvbjerg and Budzier 

(2011) find that on average IT projects overrun their budgets by 27%. The question is why 

companies still fail to achieve the successes initially expected from these IT projects.  

Amongst other reasons, unexpected economic risk factors that emerge during the runtime of 

projects cause budget and time overruns and consequently those high termination rates. Those 

risk factors lead to the late conclusion that – in contrast to prior expectations – anticipated 

results cannot be achieved (ITGI, 2011). In that context, Flyvbjerg and Budzier (2011) found 

for example that the continuous measurement and controlling of expected projects benefits 

(beyond costs) seems to be positively related to IT project success. However, this insight is 

often not considered in practice to date: If requirements are reconsidered during the runtime 

of a project, then typically because of technical or cost reasons (e.g. “which features are 

feasible with the limited budget?”). Financial dependencies between different project parts as 

well as the measurement of expected projects benefits are mostly neglected so far. Moreover, 

there is a lack of methods to compare the current financial project status with the ex ante 

valuation of the IT project (for example regarding the realized benefits). In many situations, 

if companies have decided to make a project once, they continue the project even if financial 

environments have changed.  

While scientific literature on RE and project management methods primarily focuses on 

technical aspects (Jarke et al., 2010) or on the financial ex ante valuation of IT projects (Walter 

and Spitta, 2004; Wehrmann and Zimmermann, 2005), the continuous value-based 

management of IT projects (also with respect to requirements) is mostly neglected so far. In 

order to be able to identify emerging risks during the runtime of projects early and to 

counteract reasonably, processes and methods for a continuous value-based IT project steering 

are necessary, which as of today to the best of our knowledge are missing within scientific 

literature. Thus, based on the first idea presented by Fridgen and Heidemann (2013), the aim 

of this research is to develop a method for a continuous value-based IT project steering 

especially for large-scale systematically assessable IT projects. This approach extends the 

integrated IT project assessment that has been developed in our preceding research project 



II Enhancing IT Project Evaluation to Cope with Emerging Risk 53 

 

(Beer et al., 2013), by introducing a dynamic cash flow perspective and developing a method 

for continuous project evaluation and steering.  

Our approach helps companies in their strive to measure the current success of an IT project 

during its lifecycle, allows them to provide a control mechanism, and to make future-oriented 

decisions.  

 Method 

II.3.2.1 Action Design Research 

For the development of a method for continuous value-based IT project steering, we decided 

to draw on Action Design Research (ADR), a design research method that has been developed 

by Sein et al. (2011). The ADR method is based on different stages as well as corresponding 

principles that guide the research process (Sein et al., 2011). In contrast to other design 

research methods (e.g. March and Smith, 1995; Peffers et al., 2007), ADR does not separate 

and sequence the design of an artifact and its evaluation in a “build and then evaluate” cycle 

(Sein et al., 2011). ADR rather supports ensemble artifacts that “emerge from the contexts of 

both their initial design and continual redesign via organizational use” (Sein et al., 2011, p. 

52). Thus, the simultaneous development and evaluation of an artifact, which is done in mutual 

cooperation between practitioners and researchers, is a specific characteristic of this research 

method. Since the actual perception of a method for continuous value-based IT project 

steering by decision makers and its acceptance in business practice cannot be investigated 

solely driven by theories without actively engaging organizations (Beer et al., 2013), we 

believe that ADR is especially well-suited to our problem because of three reasons. First, ADR 

supports research driven by design theories and inspired by problems from practice (stage 1: 

Problem Formulation) that allows for an organization dominant building, intervention, and 

evaluation of artifacts (stage 2: Building, Intervention, and Evaluation) (Sein et al., 2011). 

Therefore, ADR helps us to structure and guide the initial development of a novel method for 

continuous value-based IT project steering, driven by the need of our business partners and 

the lack of suitable approaches in theory. It furthermore supports the method’s improvement 

by “reciprocal shaping” and “mutually influential roles”, using the expertise of researchers 

and practitioners, and its concurrent evaluation by the promptly use of the new method by 

practitioners (alpha version) and end-users (beta version) within an organizational context. 

Second, as we create a completely novel method, ADR helps to reflect on the design of the 

artifact (“guided emergence”) and to “generate and evolve design principles” that partly might 

have been already derived in stage 1 (stage 3: Reflection and Learning) (Sein et al., 2011). 
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Third, ADR asks for a generalization of outcomes from the “specific-and-unique to generic-

and-abstract” (stage 4: Formalization of Learning) (Sein et al., 2011). Thus, we believe that 

ADR allows us to derive general recommendations that help to further improve project-

steering methods in general.  

II.3.2.2 Research Setting 

In order to avoid IT failures and due to the lack of scientific rigor methods being available 

and especially easy applicable in practice, there is a need of companies for IT project-steering. 

Therefore, we design, apply, and evaluate a practicable method for continuous value-based IT 

project steering in collaboration with one of the world’s leading strategy consulting companies 

(in the following referred to as CC). We were gathering feedback from practice regarding 

efficacy and applicability of the method on a regular basis. Besides the feedback from practice, 

we also continuously took scientific literature into account when designing the method to 

uphold the scientific rigor. In addition, we tested the developed method at an industrial client, 

namely a multinational manufacturing company (in the following referred to as MC), who 

used the method to IT project steering of multiple mobile app development projects. Although 

mobile app projects are rarely large-scale IT projects, we were able to apply and evaluate our 

artifact in this IT project context too. Furthermore, with respect to the evaluation, we were 

able to gather additional qualitative feedback from the CC that applied our method (at least in 

parts) in three more IT projects. It may be argued, that our case study gives back just 

qualitative feedback and insights on our method in a first step. However, according to common 

literature (e.g. Dubé and Paré, 2003) qualitative feedback in case studies (e.g. gathered by 

interviews) is a validated approach, which also brings rigor and flexibility to case studies 

concerning the complex field of IS (Dubé and Paré, 2003). We therefore draw on this approach 

for a first, but indispensable step towards the evaluation of our method.  

In sum, the valuable feedback in different evaluation cycles of both business partners – CC 

(alpha cycle and beta cycle) as well as MC (beta cycle) – gave us the opportunity to satisfy 

the criteria of ADR and to develop an artifact, which fulfills the requirements of all 

stakeholders from business practice and science. Figure II.3-a shows the ADR approach based 

on the depiction in Sein et al. (2011), adjusted to our specific research setting. 
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Figure II.3-a - Building, intervention and evaluation scheme in ADR (cf. Sein et al. 2011) 

The remainder of Section II.3 is organized in accordance with the above mentioned stages. 

We first outline the theoretical foundations and the specific practical need of our research 

(stage 1). Subsequently, we describe the building, intervention, and evaluation that finally led 

to our method for continuous value-based IT project steering (stage 2). Afterwards, we reflect 

on our findings (stage 3) and generalize by deriving design principles for a continuous value-

based IT project steering for decision makers in the context of project management (stage 4). 

Finally, we summarize our results, point out limitations, and suggest areas for further research. 

 Problem Formulation 

The management of large scale IT projects in an increasingly dynamic and complex project 

environment is a challenging task for decision makers in companies [Denne and Huang 2003]. 

Although IT management processes, methods and techniques have improved significantly 

over the last couple of years – in the context of RE methods for agile software development 

allow for example for easily changeable requirements associated with the evaluation of 

potential changes (Ernst et al., 2012) – there are still a high number of “out-of-control tech 

projects” that fail in the way that they run out of time, budget, or do not generate the planned 

value (Flyvbjerg and Budzier, 2011). Flyvbjerg and Budzier (2011) analyzed 1,471 projects 

and found that on average they overrun their budget by 27%  –  and one out of six projects 

even by 200%. Recognizing this risk, there is a specific practical need of companies for 

techniques in order to avoid these IT failures. During different interviews with CC, they 

specified this need for a methodically sound as well as easy to use and practical applicable 

method of a continuous value-based IT project steering for especially large IT projects. Our 

method may be more influencing on large-scale IT projects as in this context complexity and 
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risks are usually higher. Nevertheless, it can be applied to different kinds and sizes of IT 

projects since we draw on a generic approach. But the type and extent of application is subject 

to further research.  

In theory, RE is an acknowledged phase within every IT project’s lifecycle (Pohl, 1994) and 

an important factor for the success of an IT project (Cheng and Atlee, 2009). Thereby RE can 

be seen as a process to identify the purpose, a certain IT project has to fulfill (Nuseibeh and 

Easterbrook, 2000). It is realized by the analysis, documentation, communication, and 

implementation of the IT projects` stakeholders needs, also known as requirements (Nuseibeh 

and Easterbrook, 2000). One of the obstacles of RE is the fact that some of a project’s 

requirements may change during the project’s lifecycle and therefore are hard to manage and 

may lead to increased pay-offs (Nuseibeh and Easterbrook, 2000; Cheng and Atlee, 2009). To 

address changing requirements in the context of software development, Denne and Huang 

(2003) for instance develop an incremental funding methodology that values timely and 

incremental sub-functionalities. Another challenge of RE is to create a strong alignment 

between science and practice, which has become more and more important due to the changing 

economics of RE (Jarke and Lyytinen, 2010). These changing economics of RE can be seen 

in the increasing number of large business and technical systems, which need a more rigorous 

analysis of Return-on-Investment (ROI) (Jarke and Lyytinen, 2010).  

 Building, Intervention, and Evaluation (BIE) 

II.3.4.1 Alpha Cycle 

Based on the results of the problem formulation stage, the ADR team aimed to develop a 

method for a continuous value-based IT project steering. In this context, the objective of this 

research is to derive insights for the quantification and management of a specific project, 

which possibly can be generalized and transferred to other project settings afterwards. The 

BIE stage was initiated by the design of a process for value assurance in IT projects over their 

lifecycle by considering different steps. The initial process is depicted in Figure II.3-b.  



II Enhancing IT Project Evaluation to Cope with Emerging Risk 57 

 

 

Figure II.3-b - Value assurance in requirements engineering process 

We assume the general project objectives to be defined in step 1. In step 2, requirements 𝑟𝑖 

with 𝑖 = 1…𝑛 are derived from these objectives using established methods of RE. 

Requirements can be defined on different levels of granularity. For instance, there may be 

projects in which one requirement`s cash flow and risk, which should be estimated, might be 

on a very fine, detailed and technical level (e.g., two variables need to have a technical 

connection for exchanging integer-type data) or in extreme contrast, there may also be other 

projects, in which the level of requirement might be very functional, abstract and coarse (e.g., 

a new CRM system is needed). When developing our method, we primarily had requirements 

on this coarse level in mind that presumably can be measured by monetary values. However, 

we made sure through input by our business partners and literature (Feather and Cornford, 

2003), that there are ways to handle different levels of granularity. Depending on the 

difficulties to estimate cash flows and risks of requirements of a specific level, it is common 

in practice to subsume few, fine requirements to one coarser requirement and estimate its cash 

flow and risk. There may be some requirements for which the estimation of cash flows and 

requirements may not be possible. But the application of our method and estimation of as 

many project-relevant cash flows and risks of requirements as possible is still better than 

making decisions concerning project steering just based on gut feelings. 

Yet, this research focuses on steps 3 to 5 that basically apply the same quantitative method set 

in different phases of the project. This allows for intertemporal comparability and thus for a 

quantitative analysis of the project course. 

Ex ante Evaluation and Aggregation of Cash Flows (Step 3) 

On the one hand, there are quantitative aspects of each requirement that can be directly 

transformed into cash flows. On the other hand, there are qualitative aspects, which are 

difficult to transform into monetary units (Walter and Spitta, 2004). According to the feedback 

from CC, many approaches applied in business today refrain from quantifying these 
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qualitative aspects as no decision maker dares to name exact numbers for parameters difficult 

to estimate. 

However, our method requires that in step 3 cash flows 𝑐𝑓𝑖𝑡 are initially evaluated for each 

one of the requirements 𝑖 in each period 𝑡 with 𝑡 = 0…𝑇. Note, that we assume that cash 

flows can also be determined for requirements that must be implemented (e.g. due to legal 

requirements). This can be achieved by comparing the IT project to its alternatives (e.g. doing 

a task manually). As stated above, the granularity of requirements can vary. To facilitate the 

quantification it therefore may be easier in some situations to subsume some requirements to 

estimate the respective cash flow on a coarser level, even if a finer level may be more accurate. 

The evaluation of cash flows is then repeated multiple times in step 4 and finally in step 5. In 

the following, we describe how to accomplish this initial evaluation for benefits of 

requirements and describe the adaptations for step 4 and 5. 

Assumption 1: The cash flows are normally distributed random variables 𝑐�̃�𝑖𝑡~𝑁(𝜇𝑖𝑡, 𝜎𝑖𝑡). The 

cash flows are stochastically independent between different periods.  

Normally distributed project cash flows are a common assumption in IT portfolio management 

(Wehrmann and Zimmermann, 2005; Wehrmann et al., 2006; Zimmermann et al., 2008; 

Fridgen and Mueller, 2011). Although our assumption might not picture reality in every case, 

especially projects’ benefits cash flows are often market driven and thus a normal distribution 

seems applicable. Furthermore, the more cash flows or requirements are aggregated, the better 

the central limit theorem and variations thereof will apply. Assuming the cash flows to be 

independent is obviously simplifying means, too. However, as the model could easily be 

adapted to picture intertemporal dependencies between cash flows, this is subject to further 

research.  

Treating cash flows as random variables clearly eases their estimation, as no decision maker 

has to commit to exact values. Their deviation then contributes to the project’s risk, i.e. cash 

flows that are hard to estimate increase the project risk more than cash flows that are easy to 

estimate. In a first attempt, we designed our method so that the distributional parameters 

𝜇𝑖𝑡, 𝜎𝑖𝑡 and the correlation 𝜌𝑖𝑗 would be directly obtained from the decision-makers. Within 

the loops of the alpha cycle, we got the feedback from CC that this approach is hardly feasible 

in practice as (a) decision makers may not have the relevant statistical knowledge available 

and as (b) absolute values of many these parameters (e.g. correlations) are hard to interpret 

even for trained people. To simplify the estimation of these parameters, we hence draw back 

on a basic but acknowledged procedures, which we adapted for our problem setting and which 
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we strive to in further ADR cycles. For instance, in the case of cash flows we draw on 

behavioral economics by using an interval-based scheme for the evaluation of each cash flow 

(please refer to Tversky and Kahneman (1974) for a critical discussion on these estimation 

methods, or for some kind of similar approach refer to Feather and Cornford (2003), who 

estimate for each requirement different criteria in ranges). For a more detailed and elaborate 

description of the following approach for deriving a risk-adjusted project value, please refer 

to Beer et al. (2013). Assuming normally distributed cash flows, we are able to derive expected 

values µ𝑖𝑡 and standard deviations 𝜎𝑖𝑡 for each requirement 𝑟𝑖 in each period 𝑡 from this 

interval.  

Having identified all cash flows 𝑐�̃�𝑖𝑡 and their distribution parameters, and assuming 

stochastical independence between periods (assumption 1), we can then calculate the 

distribution parameters of the net present value 𝑛𝑝�̃�𝑖~𝑁(𝜇𝑖, 𝜎𝑖) for each individual 

requirement based on the interest rate 𝑝: 

𝜇𝑖 = ∑
𝜇𝑖𝑡

(1 + 𝑝)𝑡

𝑇

𝑡=0

 II.3.(1) 

 

𝜎𝑖 = √∑(
𝜎𝑖𝑡

(1 + 𝑝)𝑡
)
2

𝑇

𝑡=0

 II.3.(2) 

Aggregation of a Project Value Considering Risk and Dependencies 

To determine the overall value (business case) of an IT project, we need to aggregate the 𝑛𝑝�̃�𝑖 

of each requirement 𝑟𝑖 to the project’s 𝑁𝑃�̃�~𝑁(𝜇, 𝜎). The project’s overall expected value 

then is depicted by 𝜇. 

𝜇 = ∑𝜇𝑖

𝑛

𝑖=1

 II.3.(3) 

To calculate the overall standard deviation 𝜎 of the IT project, we have to account for 

dependencies between requirements, which sometimes react similar for instance to external 

influences. For example in case of technological innovation multiple requirements and 

therefore cash flows might be affected simultaneously. 
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Assumption 2: The net present values 𝑛𝑝�̃�𝑖 of the requirements 𝑟𝑖 are linearly dependent. Their 

Bravais-Pearson correlation coefficient 𝜌𝑖𝑗 describes the dependencies between requirements 

𝑖, 𝑗.  

The identification of the correlation coefficients between every pair of requirements is a 

complex task, since a high number of elements are involved and the context is hard to 

understand by project staff. As the CC suggested, we developed an easier approach for a 

gradually and guided determination of interdependencies (cf. Beer et al., 2013). We can 

calculate the overall standard deviation 𝜎 of an IT project by aggregating the standard 

deviation of the single requirements and their respective correlation coefficients: 

𝜎 = √∑∑𝜎𝑖𝜎𝑗𝜌𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 II.3.(4) 

Using these parameters, firms can apply various methods of an integrated risk/return 

management (e.g. (Conditional) Value at Risk). Synchronized with the CC, we decided to use 

a risk-adjusted project value as our means for project evaluation, which is in line with the 

Bernoulli principle and developed according to established methods of decision theory 

(Bernoulli, 1738; Bernoulli, 1954; von Neumann and Morgenstern, 1947; Markowitz, 1959). 

Similar formal approaches and assumptions for risk-adjusted economic value analysis have 

been derived by Longley-Cook (1998) and have been applied in the context of IT numerous 

times, for example in Hanink (1985), Bardhan et al. (2004), Zimmermann et al. (2008), 

Fogelström (2010), and Fridgen and Müller (2011).  

Assumption 3: We define 𝛼 as the parameter of risk aversion and assume that the decision-

maker is risk-averse (𝛼 > 0).  

The risk-adjusted project value then is depicted by 𝜙. 

𝜙𝐸𝐴 = 𝜇 − 𝛼𝜎2 II.3.(5) 

The risk-adjusted project value can be interpreted as the certainty equivalent for normally 

distributed random variables and an exponential utility function and thus as an amount of 

money. The parameter 𝛼  is a linear transformation of the Arrow-Pratt characterization of 

absolute risk aversion (Arrow, 1971). The higher the value of 𝛼, the more risk-averse is the 

decision-maker. For practitioners the concept of risk aversion is fairly abstract. Therefore, a 

precise determination thereof is very difficult. Again, we considered the input of the CC and 
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designed a survey to determine a company’s parameter of risk aversion at the executive level. 

Such an approach can also be found in behavioral finance (Sautner et al., 2007). Thereby the 

relevant decision makers are asked multiple questions about their maximum willingness to 

pay for different fictive project settings to determine the risk class, which is afterwards 

assigned to a corresponding value of risk aversion. 

Continuous Business Case (Step 4) 

So far we described the first three steps of the process for value assurance in IT projects 

depicted in Figure II.3-b. Since projects usually endure over a period of time 𝑇, a continuous 

project and business case management is essential for a lasting value assurance. Therefore, 

the main contribution of this research is the design, application and evaluation of a continuous 

IT project steering indicated by step 4 of the described process in Figure II.3-b.  

In step 4, we are at the point in time 0 < �̌� < 𝑇. In �̌�, some requirements 0… 𝑖̌ − 1 might 

already have been fully implemented and generate certain and non-influenceable returns. 

Therefore, their associated cash flows 𝑐𝑓𝑖𝑡 are no more random variables for all 𝑡. For all other 

requirements 𝑖̌ … 𝑛, the past cash flows 𝑐𝑓𝑖𝑡 are realized and thus no more random variables 

for 𝑡 < �̌�. However, for 𝑡 ≥ �̌�, the 𝑐�̃�𝑖𝑡 are still prone to risk and thus random variables. All 

𝑐�̃�𝑖𝑡 need to be reevaluated, as their values or distribution parameters, respectively, might have 

changed. 

We identify two possible means to enable and support the continuous IT project steering: the 

Project Success Measuring measure and the Project Controlling measure. The objective of 

the project success measuring is a comparison of the ex ante business case target value and 

the corresponding actually realized project value. In contrast the project controlling enables 

to validate the ex ante estimated future cash flows from today’s point of view considering 

current information. In the following we will examine these two measures in detail.  

Project Success Measuring 

Project Success Measuring (PSM) can be used in the course of the project lifecycle or as an 

ex-post means to investigate value deviations from the ex ante business case. To ensure 

comparability with the ex ante business case, all cash flows need to be discounted to 𝑡 = 0. 

The project’s expected value is then: 
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As only future cash flows of unfinished requirements are risky, the project’s standard 

deviation is then: 
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 𝑓𝑜𝑟 𝑖 ≥ 𝑖 ̌ II.3.(7) 

We can then calculate  𝜙𝑃𝑆𝑀(�̌�) using Equation II.3.(5). Figure II.3-c illustrates the formally 

described coherences for a better understanding.  

 

Figure II.3-c - Project Success Measuring 

Using PSM within the projects lifespan may enable the identification of deviations between 

planed and actual progression in an early stage of the project. To ease the recognition of 

critical deviations, specific kinds of triggers can be defined in reality. Such triggers include 

for example planed project or benchmark values at specific points in time or any combination 

of these. However, for reasons of simplicity we just examine some of them in the following. 

Additional triggers can be easily defined, though. A natural lower bound for a trigger is the 

ex ante business case 𝜙𝐸𝐴, as one would assume that not all anticipated risks actually occur 

during the project and thus  𝜙𝑃𝑆𝑀(𝑡) > 𝜙𝐸𝐴. This coherence is described in Figure II.3-d.  
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Figure II.3-d - Project Success Measuring: Trigger 1 

As this trigger might give a warning too late, an earlier warning would be triggered when 

 𝜙𝑃𝑆𝑀(𝑡) <  𝜙𝑃𝑆𝑀(𝑡 − 1). This trigger, illustrated in Figure II.3-e, consequently indicates a 

slowdown of the project progression and may sensitize the decision maker for the current 

project situation. 

 

Figure II.3-e - Project Success Measuring: Trigger 2 

In accordance with the CC, we furthermore identified the necessity of a triggering system that 

monitors if a project makes steady progress in terms of realizing value and avoiding risk. 

Similar to the lower part of the cone of uncertainty (Boehm, 1981; Armour, 2008), one would 

expect the project to reach its ex ante expected value at the end of the project. We use a linear 

benchmark that runs between 𝜙𝐸𝐴 and the ex ante expected value 𝜇, shown in Figure II.3-f. 

The question if differently shaped (e.g. convex) benchmarks are more suitable in a project 

setting is subject to further research. 
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Figure II.3-f - Project Success Measuring: Trigger 3 

The information about the current project value, the linear approximation and the respective 

triggers can be used for a continuous management of IT projects. It enables responsible 

decision makers to initiate adequate actions like a reallocation of resources in time and 

therefore mitigates the risk of project failure.  

Project Controlling 

For a rational project steering, PSM is not enough. In fact, it can still make sense to continue 

a project that has a negative project success  𝜙𝑃𝑆𝑀(𝑡). That is because the past cash flows and 

even the non-influenceable future cash flows that are considered in  𝜙𝑃𝑆𝑀(𝑡) need to be treated 

as “sunk” to make the decision on continuing a project. If influenceable future cash flows 

show a positive risk-adjusted net present value, then it is rational to continue the project. As 

in IT projects benefits usually occur late (Buhl, 2012) while big parts of the costs are already 

sunk, oftentimes finishing an unsuccessful project is favorable. 

The Project Controlling (PC) supports the decision maker by deciding whether to continue a 

project or not. It is a future oriented project management measure and can be calculated during 

the projects lifecycle at different points in time. In �̌�, it includes current information about 

already accomplished requirements (seen as sunk costs and requirements) and considers only 

the cash flows that can still be influenced. The net present value (for reasons of simplicity still 

discounted to 0) used for PC then has the following expected value:  
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Its standard deviation equals the one used in PSM. We can then calculate the risk-adjusted 

residual project value  𝜙𝑃𝐶𝑀(�̌�) using Equation II.3.(5). To ease the understandability of the 

formally described coherences, they are illustrated in Figure II.3-g.  

 

Figure II.3-g - Project Controlling 

As already realized cash flows are not considered in the calculation, it is hardly possible to 

compare the risk-adjusted residual project value of different evaluation points. Hence, the 

objective of the PC is to indicate the necessity for project termination or at least safeguarding 

measures, rather than to compare the overall cash flow situation of the project at different 

points in time. This can avoid expensive project failure at the end of the implementation phase. 

Analogous to the PSM, specific triggers in the PC context can ease the recognition of critical 

project situations. However, the following triggers are also in this case just examples and 

additional triggers can easily be defined. A natural lower bound for the trigger in this case is 

a negative risk-adjusted residual project value  𝜙𝑃𝐶𝑀(�̌�) < 0, illustrated in  

Figure II.3-h. 

 

Figure II.3-h - Project Controlling: Trigger 1 

t
3 42 65 71

Cash flows
Relevant cash flows for

decision making

End of projectValuation pointProject start End of project
benefits

Cash flows (realized)

Cash flows (not yet realized)

t0 2 31 T…

Project progression

Trigger



II Enhancing IT Project Evaluation to Cope with Emerging Risk 66 

 

In terms of value realization and risk avoidance, we again developed a triggering system 

together with the CC that monitors the actual project progress compared to the initial 

estimation. This enables to give earlier warnings than in the case of  𝜙𝑃𝐶𝑀(�̌�) < 0. Therefore, 

we calculate the risk-adjusted residual project value based on the initial assessments of the ex 

ante business case and use it as a benchmark, like depicted in Figure II.3-i. 

 

Figure II.3-i - Project Controlling: Trigger 2 

Similar to the PSM it enables responsible decision makers to initiate adequate actions in time 

and therefore mitigates the risk of project failure. Furthermore, it indicates whether it is more 

reasonable to continue or to terminate the project at a specific point in time. However, it is 

important to understand, that a negative PC not necessarily indicates a project failure: If all 

value-adding requirements have already been implemented and the residual requirements 

provide negative business value, it makes sense to not finish the project. 

Ex-post Measurement of Cash Flow Realizations (Step 5) 

The ex post measurement is necessary to compare the ex ante estimated project values with 

the actual realized ones after the projects lifecycle and to gain valuable insights for upcoming 

projects. To achieve this, the results of the PSM are calculated at the end of the project and 

compared to the ex ante anticipated project value. Furthermore, it allows to associate critical 

environmental incidents occurred during the projects lifecycle to deviations between actual 

and estimated project cash flows. Analyzing this information enables to initiate a process of 

learning to improve the quality of ex ante business case estimations. Furthermore, it enables 

to build up a knowledge base that can support the prediction of a projects progression in the 

context of specific environmental influences. 

II.3.4.2 Beta Cycle 

During the beta cycle, we identified possible improvements for our method for a continuous 

value-based project steering on the basis of experiences in implementing it at the MC and on 

feedback by CC, which was implementing it at several of its clients. 
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The MC applied the method in several small projects with a project volume between 0.3 

million € and 2.0 million €. Thereby, we received two major insights. First, while our 

presented risk-adjusted project value incorporates all relevant information including the 

decision maker’s risk attitude and can be interpreted as a security equivalent, there might still 

be settings where other statistical measures might be more suitable. In the concrete case, the 

decision makers preferred a Value at Risk approach, measuring which project value will be 

exceeded with 80% probability, as this measure could be more easily interpreted and was 

more compatible with existing decision procedures. However, as risk attitude is not part of 

this measure, the comparability of projects and between different points in time is not given 

in general. While this was not conceived to be problematic by MC, as their projects were 

comparatively small, it poses opportunities for further research on how interpretability can be 

improved while ensuring rationality using decision theory. Second, applying the method to 

several small projects revealed a problem of incentives when doing the interval-based 

estimation of values: While costs were estimated in MCs IT department that was also held 

responsible for a realistic estimation, the estimation of the projects’ benefits required the 

involvement of several business units. However, in the given project setting, those units were 

not held responsible for the results and therefore did only put little effort in the estimation 

resulting in very vague answers like “the benefit of this feature will be between 0 and 20,000 € 

with 80% probability”, merely ensuring that they cannot be blamed for project failures 

afterwards. This reinforced existing and opens up areas for further research in incentivizing 

realistic project value and risk estimation. 

In addition, to enhance our beta cycle, we draw on additional qualitative feedback from the 

CC. They adopted different elements of the developed method in three IT projects at a bank, 

insurance company and at an industrial client with an IT project volume sizing from 5 million 

to 150 million €. One of the IT projects used parts of the method to assure and steer an entire 

IT portfolio. Although, the approach has not yet been implemented as a whole at one client, 

we were able to gather valuable feedback from the practitioners with regard to the benefits as 

well as the obstacles of our method. In three independent feedback cycles our business 

partners validated the used principles and proceedings. In that context, we conducted three in-

depth interviews with the project leaders of the three IT projects in September 2013. As 

already stated by Sein et al. (2011) “ADR is useful for open-ended IS research problems that 

require repeated intervention in organizations to establish the in-depth understanding of the 

artifact–context relationship” (Sein et al., 2011, p. 52). To date, we got the following feedback 

regarding our method (cf. Table II.3-a):  
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Table II.3-a - Further feedback from CC projects 

Observed 

benefits of the 

method 

 General proceeding: All interviewed business partners appreciate the general 

proceeding (especially with respect to the ex ante evaluation of the IT project 

requirements and the continuous IT project success measuring and 

controlling) and value the ex ante monetary assessment of cash flows and risks 

with respect to the project requirements. 

 Estimation of the parameters: In most cases they were able to monetize the 

costs and with respect to the benefits the expected savings (one procedure is 

to ask different experts and to average the estimations in order to reduce the 

mistakes); we learned that they (bank and insurance) consider the interval 

based estimation as practicable procedure. 

 Continuous update: They stated that the continuous update of PSM and PC 

supported the management of their projects. 

Observed 

obstacles and 

improvement 

ideas of the 

method  

 Mathematical approach: They consider the method in parts still too 

mathematically challenging and too hard to interpret for average top 

management purposes. To simplify the interpretation, they propose an initial 

estimation of cash flows on a higher granularity (e.g., estimating net present 

values of whole project parts instead of cash flows of individual 

requirements), which is then refined during the project while still staying 

within the same theoretical framework. Another solution would be to have 

specialized employees who are trained in applying the method.  

 Visualization: They suggest an easier visualization of the PSM and PC in form 

of a simple management cockpit.  

 Context of the IT project: According to the CC, the willingness to implement 

a monetary project steering like the proposed one depends on the context of 

the IT project. To give one example, the risk department of a large financial 

institution may be more open to apply it than the manufacturing department 

of a small industrial corporation. 

 

 Formalization of Learning 

Based on our research results and in meaning of ADR, we are able to derive generalized 

insights that can be assigned to different kinds of problems in the context of value assurance 

in IT projects. The first three steps of the process for value assurance in RE (cf. Figure II.3-b) 

focus on identifying and considering all project requirements and their transformation in a 

practicable method for an integrated quantification of IT projects. The challenge of 

maintaining applicability while upholding scientific rigor turned out to be a recurring topic 

throughout the action design research project. The estimation of accurate values for cash 

flows, risk aversion and, dependency parameters, which are necessary for a holistic 

calculation of the overall project value, is according to both our business partners a difficult 

task for project staff in practice. In this context we are able to state following generalizable 

findings: First, The interval-based scheme, a method from behavioral economics being 

discussed by Tversky and Kahneman (1974), is a practicable and rigor means to assess the 

value of a project’s requirements and cash flows. Second, in order to assess a value for the 
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risk aversion of decision-makers, an approach of behavioral finance (cf. Sautner et al., 2007) 

doing a survey containing questions about the decision-makers’ willingness to pay in different 

project settings is advisable. Beyond that, the acceptance of monetary IT project management 

methods seems to depend on various parameters that need to be further examined, e.g. in 

empirical studies. Within our project we identified the following parameters: the complexity 

of the method itself, the company’s size and industry, the projects’ size, the responsible 

division, the involved divisions and top-management support, and the decision makers’ 

analytical education and skills.  

 Conclusion and Limitations 

We introduce a novel integrated approach for a continuous value-based IT project steering for 

large IT projects, which – unlike existing methods – considers costs, cash flows of 

requirements, risks, and interdependencies between requirements comprehensively. 

Therefore, this approach complements existing scientific literature in the context of RE and 

project management methods for the financial ex ante valuation of IT projects. The approach 

was designed, applied and evaluated according to the ADR cycle in collaboration with two 

business partners from practice. In addition, we were able to gather additional qualitative 

feedback from the CC that applied our method (at least in parts) in three more IT projects. In 

the context of our collaborative project, methods were identified, which can measure different 

project parameters and meet academic standards while at the same time preserve practical 

applicability. Furthermore, these methods have to be embedded in a project management 

process to enable the value assurance over the lifecycle of IT projects. As stated in section 

II.3.2, the case study gives back qualitative feedback and insights on our method. Even though 

this is a validate approach in the complex field of IS (Dubé and Paré, 2003) according to 

common literature (e.g. Dubé and Paré, 2003), we hope to draw on quantitative feedback in 

further evaluations in real-life IT projects. In this context, we develop two means to ensure a 

continuous value-based IT project steering: First, the PSM ratio, enabling a comparison of the 

overall cash flow situation of the project at different points in time and therefore an early 

detection of deviations from the ex ante business case. Second, in the context of PC we 

develop the risk-adjusted residual project value, indicating the necessity for project 

termination or at least safeguarding measures. Therefore, our approach supports practitioners 

to measure the success of an IT project during its lifecycle, enables a control mechanism for 

the project progression and eases future-oriented decisions regarding the projects 

continuation, which may also reduce the overall risk of IT project failure. 
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Nevertheless, since our model is based on several assumptions it is not without limitations 

that are described in the following. First, although normally distributed cash flows are a 

common assumption in IT portfolio management (Wehrmann and Zimmermann, 2005; 

Wehrmann et al., 2006; Zimmermann et al., 2008; Fridgen and Mueller, 2011) and can also 

be braced by practical observations, they nevertheless are a restriction to the applicability of 

the model. Second, for the calculation of the risk-adjusted project value, we consider the 

standard deviation as measure of risk. This two-sided risk measure scales risk as symmetric 

deviation of the expected value. Likewise, it is conceivable that the model might be adapted 

to include different risk measures like Lower Partial Moments or Value at Risk (VaR). In 

cooperation with our business partners we noticed that especially the VaR might be easier to 

interpret for decision-makers. Third, we consider linear dependencies between requirements 

only, as we picture them by a Bravais-Pearson correlation coefficient. Yet realistically, 

dependencies between requirements in some cases may also be non-linear or there may be n-

ary dependencies between requirements. But since this is a complex subject and not 

satisfactorily solved by academia or practice, it is justifiable to work with this simplifying 

assumption of linear dependencies in order to derive first results. Beyond these assumptions 

our model has further limitations as follows. Since the developed approach has only been 

applied in depth to mobile app development projects and only in parts to three other large 

scale IT projects, we are yet not able to draw general conclusions about miscellaneous IT 

projects, varying in context, scope, and size. However, the first results derived from 

application in practice indicate that for specific kinds of projects, the approach might have to 

be adjusted in order to reduce complexity of mathematical expense (cf. Beta Cycle). Since 

detailed calculations can be substituted by more vague estimations, this adjustment can be 

easily performed, though. In this case, the resulting lack of mathematical rigor might be 

overcompensated by the increase in practicability. Consequently, the results are worse 

compared to the mathematical rigor procedure but still better compared to isolated, non-

mathematical procedures. As the applicability of this approach in different, varying IT projects 

obviously is an important issue to practitioners, it is topic to further research and evaluation. 

This may also be a helpful input for the desired knowledge base. 

We presented an integrated approach, combining RE and IT project value quantification in a 

continuous value-based IT project steering process. This approach enables to derive 

generalized insights for interval-based estimation, the inquiry of the correlations between 

requirements, and the determination of the risk-aversion parameter. These insights provide a 

first basis for further development as it now shall be analyzed, for which kind and size of IT 
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projects the approach is especially applicable. As already described by Sein et al. (2011), such 

consecutive and sustainable analyzes are parts of the ADR. In this case, they might be of great 

significance to practitioners as well as to researchers. 
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III Managing Dependencies to Mitigate Systemic Risk  

III.1 Dependencies as Root Cause of Systemic Risk7 

Recent technological developments associated with changes in customer expectations have 

required continuous innovation from companies all over the world, thereby driving these 

companies’ IT portfolios towards increasing complexity and interdependency. 

Simultaneously, existing methods of IT portfolio management are not able to cope with this 

interconnectedness of IT projects, and too little research has been performed on appropriate 

risk assessments of dependency structures. By considering such dependency structures as IT 

project networks, we draw on centrality measures to assess the risk associated with inherent 

project dependencies. We examine different kinds of centrality measures, whether and to 

which extent they are able to depict characteristics specific to IT project networks. Based on 

the most appropriate measure, we derive criticality values indicating projects crucial to the IT 

portfolio’s success. These criticality values should empower companies to successfully 

manage their IT portfolio. 

 Introduction 

Information technology (IT) has become a critical success factor in many industries. However, 

despite various planning techniques, there is still a huge number of failed IT projects. In this 

context, the “chaos report” is often quoted, which states that 80% of all IT projects are only 

partly implemented or even fail completely (Standish Group, 2013). Moreover, Flyvberg and 

Budzier (2011) contend that around 16% of IT projects cause on average budget deficits of 

about 200%. A questionnaire by the Radar Group (2012), surveying 560 IT decision makers 

in Scandinavia, concludes that one reason for IT project failure is a lack of transparency 

regarding dependencies. Since IT projects usually are not accomplished in isolation or 

pairwise but rather within an aggregated portfolio of several IT projects, they incorporate 

higher-order dependencies (Graves et al., 2003). This becomes even more relevant, as recent 

technological developments and associated changes in customer expectations force companies 

to continuously come up with innovations (Nguyen and Mutum, 2012). Consequently, IT 

projects which previously would have been developed as one coherent solution, are now split 

into several standalone but interrelated IT services with customer impact, to satisfy the 

continuous demand for innovation. Therefore, IT project portfolios, henceforth simply 

                                            
7 This section is an enhanced version of Wolf (2015), like outlined in Section I.3 and I.4. 
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referred to as IT portfolios, tend to comprise many small projects rather than a few big ones. 

This further heightens the need from praxis for a more detailed assessment of risk due to 

related dependencies.  

 In addition, literature considers the appropriate assessment of dependencies as a crucial risk 

during the project-planning phase (Buhl, 2012). Although Kundisch and Meier (2011b) assert 

that compared to the claimed importance of this topic, relatively little research can be found, 

there are at least some approaches of IT project and portfolio management that tried to 

incorporate dependencies to some extent (Lee and Kim, 2001; Wehrmann et al., 2006; 

Kundisch and Meier, 2011a; Beer et al., 2013). However, existing methods based on classical 

portfolio theory are not sufficient to cope with characteristics specific to IT portfolios (Cho 

and Shaw, 2009). Since the structure of dependencies between projects in an IT portfolio is 

important for the success of each single IT project (Zimmermann, 2008), each single project 

can also be crucial to the overall success of the portfolio. This is known as systemic risk and 

is characteristically based on direct and indirect dependencies within network structures. 

Therefore, we consider IT portfolios as IT project networks, and present a novel approach 

drawing on concepts from sociological research instead of classical portfolio theory. By 

considering projects of an IT portfolio as nodes and dependencies amongst them as arcs, we 

can analyze the corresponding network based on centrality measures, derived from the 

mathematical field of graph theory, and strive to identify the most important node of the 

network (Wasserman and Faust, 1994). Projecting this onto IT portfolios we consequently 

aim to identify the most critical project of the IT project network. Therefore, we set forth the 

following research question:  

“Can centrality measures be used to assess the criticality of a project to its corresponding IT 

portfolio, based on inherent project dependencies?” 

To answer this question, we assess different kinds of common centrality measures and outline 

whether and to which extent they can depict characteristics specific to IT portfolios, in order 

to consider them appropriate. By determining which projects are crucial to the success of the 

overall IT portfolio, the results should empower companies to take appropriate actions (e.g. 

reallocation of dedicated resources) in order to successfully manage their IT portfolio. 

Meredith et al. (1989) proposed a three-stage research cycle for activities in the field of 

operations research. They cluster research into description, explanation and testing phase. Our 

research is located in the explanation stage of this cycle, which is supposed to yield first 

concepts and models from which causal relationships and testable hypotheses can be derived. 
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The remainder of Section III.1 is organized as follows: Section III.1.2 presents a literature 

review of different kinds of dependencies in IT portfolios and their current assessment. 

Section III.1.3 outlines the basic principles of the approach, including preliminary 

considerations and an application example to facilitate comprehensibility and verify 

applicability. Finally, Section III.1.4 summarizes, concludes, and depicts the limitations of the 

approach. 

 Literature Review 

To develop a novel method that properly assesses dependencies and contributes to existing 

literature, it is necessary to know which kinds of dependencies exist in IT portfolios and how 

they are currently appraised. Therefore, a keyword (dependency, interdependency, interaction, 

project, portfolio, information technology, information systems, model, approach, 

quantification, assessment) based search of different data bases (AIS Electronic Library, 

EBSCOhost, EmeraldInsight, ProQuest, ScienceDirect, Wiley) was conducted. Since not each 

database supports the same and/or conjunction of search terms, in some cases the search term 

has been adapted. To account for different methods and approaches assessing dependencies 

in varying disciplines, the search term has to be kept at a generic level. Consequently, the 

resulting set of articles is too large to directly process it. To condense the number of articles 

we stick to the approach of Kundisch and Meier (2011b), including only articles being 

published in the top journals of the Information Systems, Production and Operations 

Management, and Project Management disciplines. Subsequently, the articles’ titles were 

conducted to decide whether an article contributes to the research objective or not. If the title 

did not suffice to decide whether the article properly contributes to the topic, the abstract was 

examined. By analyzing the articles it became apparent, that some of them, despite the initial 

impression, did not properly contribute to the research objective and hence had to be excluded 

afterwards. To complete the search procedure, we did a forward and backward search of 

citations in the set of relevant articles, like recommended by Webster and Watson (2002). 

Based on this investigation we can constitute that in existing IT portfolio literature there are 

different kinds of dependencies connecting two or more projects. While some articles just 

mention certain types of dependencies, others try to introduce whole frameworks, structuring 

different categories of dependencies based on specific characteristics. Like Santhanam and 

Kyparisis (1996), Lee and Kim (2001), Tillquist et al. (2002), or Zuluaga et al. (2007), most 

articles in literature present either some or all of the following dependencies: resource, 

technical, and benefit dependencies. Generally, resource dependencies refer to projects 
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competing for any kind of resources. Technical dependencies most commonly refer to projects 

competing for technical systems or applications (Santhanam and Kyparisis, 1996). However, 

technical systems and applications can also be considered as input resources of a project. 

Therefore, Wehrmann et al. (2006) subdivide resource dependencies into personnel and 

technical dependencies. In contrast, Kundisch and Meier (2011a) introduce a framework 

subdividing resource dependencies into allocation, performance, and sourcing interactions. 

Benefit dependencies are also considered as synergies, and can be realized if the benefit of 

one or more projects increases while being simultaneously implemented with another project. 

One example could be the reuse of code fragments for two similar software development 

projects. For further explanations and differentiations of synergies, refer to Cho and Shaw 

(2009).  

Structuring dependencies by characteristics, Wehrmann et al. (2006) and Zimmermann (2008) 

differentiate between inter-temporal and intra-temporal dependencies. Inter-temporal 

dependencies refer to projects taking place at different points in time; for example, if a project 

is based on a preceding one. Intra-temporal dependencies refer to different projects taking 

place at the same point in time; according to Wehrmann et al. (2006), they involve structural 

dependencies, which refer to projects that are based on the same processes, IT functionalities 

or data, and resource dependencies.  

Determining how and to which extent dependencies between different projects exist is a topic 

most commonly left to expert judgment. For such evaluations, scoring systems are often the 

method of choice (Fischer, 2004; Maheswari and Varghese, 2005; Maheswari et al., 2006). 

However, the processing of resulting values, henceforth considered as dependencies, is 

handled differently. While most models in the context of IT portfolio management incorporate 

dependencies within the risk assessment, there are also some different approaches. Based on 

the differentiation between intra- and inter-temporal dependencies (Wehrmann et al., 2006), 

we therefore subsequently briefly depict how current methods of IT portfolio management 

consider dependencies.  

To account for intra-temporal dependencies, Santhanam and Kyparisis (1996) propose a non-

linear optimization model, considering resource and technical dependencies as auxiliary 

conditions to their objective function of selecting an optimized project portfolio based on fixed 

budgets. Further approaches considering dependencies as auxiliary conditions in an 

optimization model can be found in works by Lee and Kim (2001) and Kundisch and Meier 

(2011a). Considering dependencies in terms of risk, e.g. Butler et al. (1999), Wehrmann et al. 
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(2006), and Beer et al. (2013) refer to portfolio theory (Markowitz, 1952) to determine a risk 

and return optimized IT portfolio. They consider dependencies by correlation coefficients 

based on covariances of the corresponding IT projects. Verhoef (2002) introduced a modified 

discounted cash flow method, which evaluates dependencies implicitly while focusing on cost 

and time risks within the interest rate. Since many of the existing approaches incorporating 

intra-temporal dependencies consider only dependencies between two different projects or 

depict them predominantly by financial restrictions, they partially fall short (Zimmermann et 

al., 2012). Furthermore, some approaches are adopted from financial methods. Therefore, they 

would have to fulfill specific premises (e.g. portfolio theory), which are however not at all or 

only partially applicable in the context of IT portfolios. Other methods again feature a very 

high level of subjectivity (e.g. scoring methods) since they are almost purely based on expert 

estimations.  

Inter-temporal dependencies are most commonly considered based on real option models. In 

this context, many approaches have been proposed (Dos Santos, 1991; Benaroch and 

Kauffman, 1999; Taudes et al., 2000; Bardhan et al., 2004) using either the Black-Scholes 

model or binomial trees. Since these methods are derived from financial option methods and 

have been adapted to real options, they are considered somewhat inappropriate for evaluation 

of inter-temporal dependencies in an IT project portfolio context, due to their underlying 

premises (Emery et al., 1978; Schwartz and Zozaya-Gorostiza, 2003). For a more detailed 

discussion on whether restrictive premises of financial option methods can be adapted to real 

options and whether the models can be appropriately used in this context, please refer to 

(Diepold et al., 2009; Ullrich, 2013). 

Based on the previous examination of current methods for IT portfolio evaluation, we can 

conclude that existing approaches cannot be considered completely appropriate regarding 

incorporation of dependencies prevailing in IT project networks. Besides, the most important 

drawback is, to the best of our knowledge, none of the existent IT portfolio management 

techniques explicitly accounts for transitive dependencies between IT projects. However, an 

assessment of these transitive dependencies is crucial to an appropriate risk assessment in 

network-like structures. 

 Model 

Concepts from the sociological research field of social network analysis have recently been 

applied to several other research areas, such as supply chain management, logistics, and IT 

landscape management, in order to assess risk originating from dependencies within these 
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network structures (Carter et al., 2007; Kim et al., 2011; Simon and Fischbach, 2013). We 

interpret IT portfolios as IT project networks, by considering projects as nodes and 

dependencies amongst them as arcs. Consequently, we can evaluate the adaption of social 

network measures to the research area of IT portfolios by analyzing the appropriateness of 

different centrality measures, in order to assess the risk of the portfolio’s corresponding IT 

project network. Centrality measures strive to identify the most important node of a network 

(Wasserman and Faust, 1994). For IT project networks, we henceforth assume that the 

centrality values of nodes represent criticality values of projects, indicating their importance 

to the success of the corresponding IT portfolio, based on the projects’ dependencies. 

Furthermore, we define the success of an IT portfolio as its accomplishment, time- and budget-

wise. 

III.1.3.1 Modeling IT Portfolios as Networks 

The mere assertion that two projects of an IT portfolio are somehow dependent is not sufficient 

for a company to allocate resources adequately. To do so, the company needs information on 

the direction of this dependency. Therefore, the IT project network of a corresponding IT 

portfolio can be visualized as based on directed arcs. An arc pointing from one project to 

another indicates a dependency of the initiating project (where the arc originates) on the 

project where the arc ends. To assess the criticality of a project, we consequently focus on 

incoming instead of outgoing arcs. Furthermore, dependencies between different projects are 

rarely equally weighted in reality. Ergo, to account for different strengths of dependencies, 

we presuppose the arcs of an IT project network to be weighted. However, the calculation of 

such bilateral dependency weightings does not fall under the scope of this research, as we 

rather focus on how to assess the coherence of these identified dependencies within a network 

environment. We therefore assume that it is possible to quantify any kind of dependencies for 

pairwise combinations of IT projects. The validity of this assumption is borne out in theory, 

as corresponding quantification techniques based on expert judgments and scoring models are 

already used in the field of IT portfolios (Fischer, 2004; Maheswari and Varghese, 2005; 

Maheswari et al., 2006). 

Before we are able to identify crucial projects by deriving criticality values based on the 

projects’ dependencies, we first need to examine whether and which centrality measures are 

appropriate to account for the specific characteristics of IT project networks.  
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III.1.3.2 Requirements to Centrality Measures in IT Project Networks 

Since the only prerequisite for the application of centrality measures is the existence of a 

network composed of nodes and arcs, such measures nowadays are widely applied, although 

most of them were originally introduced in the social network context (Newman, 2010). 

However, like social (Landherr et al., 2010) or supply networks (Kim et al., 2011), IT project 

networks feature specific characteristics that must be considered in order to properly assess 

the projects’ criticality. These characteristics are based on a common understanding of 

dependencies in IT portfolios. We subsequently outline the underlying logical consideration 

and derive some simple and generic requirements which a centrality measure must take into 

account, in order to be considered reasonably applicable in the IT portfolio context and in the 

context of this research. However, the derived requirements can rather be considered as 

minimum requirements than as a comprehensive list, and do not feature any kind of 

prioritization. 

There are centrality measures that have been designed for either directed or undirected 

networks. However, with slight modifications, many of them can be applied to both, directed 

and undirected networks. As explained above, we can visualize IT project networks as 

composed of directed arcs. Consequently, an appropriate centrality measure should account 

for directed relations as stated in the following requirement:  

Requirement (Req.) 1: The measurement accounts for directed relations between projects. 

Furthermore, we consider four influential factors in order to determine the importance of an 

IT project to its corresponding portfolio: The strength of the dependencies (a), the number of 

directly dependent projects (b), the number of indirectly dependent projects (c), and the 

inherent importance of directly and indirectly dependent projects (d).  

Regarding (a), we assume an IT project to be more important if it has strong dependencies to 

other projects, as opposed to the case where these dependencies are weak. By considering the 

arcs of an IT portfolio to represent corresponding dependencies, the strength of dependencies 

can be depicted by weighted arcs. Accordingly, the criticality value should increase with the 

weighting of arcs or rather the strength of dependencies, as stated in the following 

requirement:  

Requirement (Req.) 2: The result of the measurement for a specific project increases with the 

strength of relations to dependent projects. 



III Managing Dependencies to Mitigate Systemic Risk 79 

 

Regarding (b), we expect a project to be more important to its corresponding network if there 

are many other projects in the network that directly depend upon it. For example, a single 

project is more important to its corresponding portfolio if it has five other projects which 

directly depend on it, in contrast with the case where it has just three others directly dependent 

on it. Assuming arcs represent dependency relations, an appropriate measure should hence 

consider that the criticality value of a single project increases with the number of relations 

pointing directly from other projects of the network towards it. This is stated in the following 

requirement: 

Requirement (Req.) 3: The result of the measurement for a specific project increases with the 

number of directly dependent projects. 

Regarding (c), we expect a project to influence the criticality of another project, even though 

it does not directly but rather indirectly depend upon the other project. Extending the example 

from above, a single project that has only three directly dependent projects is not necessarily 

less important than the project which has five directly dependent projects. The importance 

does not solely depend on the number of directly dependent projects, but also on the number 

of indirectly dependent projects. Consequently, an appropriate measure should also consider 

that the criticality of a project increases with an increasing number of indirectly or transitive 

dependent projects, as stated in the following requirement: 

Requirement (Req.) 4: The measurement accounts for transitive dependencies, as the result 

increases with the number of indirectly dependent projects. 

Regarding (d), we additionally expect a project to further influence the importance of another 

project it depends on, if it has a high importance itself. This means that a project with a 

dependent project ranked as important has a higher importance to the network itself, as 

opposed to a project having a relatively unimportant dependent project. Consequently, an 

appropriate measure should also consider that the criticality of a node with a higher criticality 

on its own contributes more to the criticality of another node it is dependent on, rather than a 

node with a lower criticality. This is stated in the following requirement:  

Requirement (Req.) 5: The result of the measurement of a specific project increases with the 

importance of directly and indirectly dependent projects. 

Although there are many different centrality measures, we in a first step will only introduce 

some of the most common ones in the following. In particular we will examine, how and to 

which extent they account for Req. 1-5, and if they can reasonably be applied in the IT project 

network context. 
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III.1.3.3 Examination of Different Centrality Measures 

Closeness centrality is a centrality measure that determines the importance or status of a node 

in a network based on how close a node is to the others in a network (Wasserman and Faust, 

1994). The calculation therefore is based on the summed distances of one node e from all 

other n − 1 nodes of the network. Considering 𝑑(𝑒, 𝑖) to represent the shortest path from node 

𝑒 to any other node 𝑖, the closeness centrality 𝐶𝐶(𝑒) can be calculated (Sabidussi, 1966). 

However, since 𝐶𝐶(𝑒) is dependent on the overall number 𝑛 of nodes in the network, we can 

derive a corresponding standardized 𝐶𝐶
̅̅ ̅(𝑒) (Wasserman and Faust, 1994). Both 𝐶𝐶(𝑒) and 

𝐶𝐶
̅̅ ̅(𝑒) are depicted in the following equation: 

𝐶𝐶(𝑒) =
1

∑ 𝑑(𝑒, 𝑖)𝑛
𝑖=1

 , 𝐶𝐶
̅̅ ̅(𝑒) =

𝑛 − 1

∑ 𝑑(𝑒, 𝑖)𝑛
𝑖=1

    𝑤𝑖𝑡ℎ 𝑖 ≠ 𝑒   III.1.(1) 

This measure is applicable to directed and undirected networks and thus fulfills Req. 1. It also 

accounts for weighted arcs, which in this case represent distances between adjacent nodes. 

Since short distances are advantageous for the purpose of closeness centrality, the 

measurement increases for declining strength of weights and therefore does not fulfill Req. 2. 

Moreover, it falls short on Req. 3-5, since it neither increases with the number nor the 

criticality of directly or indirectly dependent projects.  

Another measure of centrality, determining the status of a node by how often it is located on 

the shortest path between all other pairwise combinations of nodes, is betweenness centrality. 

Assuming 𝑝𝑖𝑗 to be the number of shortest paths connecting any node 𝑖 and 𝑗, and 𝑝𝑖𝑗(𝑒) the 

number of paths containing node 𝑒, the betweenness centrality 𝐶𝐵(𝑒) can be calculated 

(Freeman, 1979). Since also 𝐶𝐵(𝑒) is dependent on the overall number 𝑛 of nodes in the 

network, we can derive a corresponding standardization 𝐶𝐵
̅̅ ̅(𝑒) as well (Wasserman and Faust, 

1994):  

𝐶𝐵(𝑒) = ∑∑
𝑝𝑖𝑗(𝑒)

𝑝𝑖𝑗

𝑛

𝑗=1

 , 𝐶𝐵
̅̅ ̅(𝑒) =

∑ ∑
𝑝𝑖𝑗(𝑒)
𝑝𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1

(𝑛 − 1) ∙ (𝑛 − 2)
2

𝑛

𝑖=1

 III.1.(2) 

𝑤𝑖𝑡ℎ   𝑖 ≠ 𝑒, 𝑗 ≠ 𝑒, 𝑗 < 𝑖  
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Although this measure has been developed specifically for undirected relations, Gould (1987) 

has shown that it can also be used for directed relations based on geodesics between pairs of 

entities. Therefore, it fulfills Req.1. However, this measure considers transitive dependencies 

and thus can be used to analyze which projects are connected over several stages of the IT 

project network, it does not fulfill Req. 3 and 4, as it does not increase with the number of 

transitive or directly dependent projects. It also falls short on Req. 2 and 5, since it does not 

increase for the strength of dependencies or the criticality of dependent projects. 

 Degree centrality can be calculated based on the number of arcs directly connecting one node 

of a network to the others. The existence of connections between nodes in the network is 

depicted in a so-called adjacency matrix, which consequently represents the network structure. 

This adjacency matrix 𝑨 in the simplest case contains binary elements 𝑎𝑖𝑗 with 𝑎𝑖𝑗 = 1 if there 

is a relation between node 𝑖 = 1…𝑛 and node 𝑗 = 1…𝑛 and 𝑎𝑖𝑗 = 0 if not. By considering 

the number of nodes a specific node 𝑒 is linked to, the degree centrality 𝐶𝐷(𝑒) can be 

calculated. To enable comparability for different network sizes, a standardized measure 

 𝐶𝐷
̅̅̅̅ (𝑒) has been proposed similar to closeness and betweenness centrality (Wasserman and 

Faust, 1994; Newman, 2010):  

𝐶𝐷(𝑒) = ∑𝑎𝑖𝑒

𝑛

𝑖=1

 , 𝐶𝐷
̅̅̅̅ (𝑒) =

∑ 𝑎𝑖𝑒
𝑛
𝑖=1

𝑛 − 1
 III.1.(3) 

By distinguishing between in- and out-degree centrality relating to incoming and outgoing 

arcs of a node, this measurement is applicable to directed networks and therefore fulfills for 

Req. 1. Since the measure also increases with the number of directly dependent projects and 

the strength of dependencies, it also fulfills Req. 2 and 3. However, degree centrality does not 

account for transitive dependencies and thus does not fulfill Req. 4. It also falls short on Req. 

5 since it does not increase with the importance of dependent projects.  

In order to account for the phenomenon that more interconnected nodes contribute more 

strongly to the status of nodes to which they are adjacent, other centrality measures such as 

the eigenvector centrality have been developed (Bonacich and Lloyd, 2001). Assuming 𝒗 =

(𝑣1, … , 𝑣𝑛)𝑇 to be an eigenvector for the maximum eigenvalue 𝜆𝑚𝑎𝑥(𝑨) of the adjacency 

matrix 𝑨, the eigenvector centrality 𝐶𝐸(𝑒) for a node 𝑒 is defined as follows (Bonacich and 

Lloyd, 2001): 
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𝐶𝐸(𝑒) = 𝑣𝑒 =
1

𝜆𝑚𝑎𝑥(𝑨)
∙ ∑𝑎𝑗𝑒 ∙ 𝑣𝑗

𝑛

𝑗=1

 III.1.(4) 

With 𝑨𝑇 being the transposed matrix of the adjacency matrix 𝑨, the respective matrix 

representation of Equation III.1.(4) can be derived:  

𝑨𝑇𝒙 = 𝒙 III.1.(5) 

Eigenvector centrality quantifies to which extent nodes are related to others within the same 

network (Bonacich and Lloyd, 2001). For each node that depends upon another, it weights the 

corresponding binary value in the adjacency matrix 𝑨 by the eigenvector centrality of the 

dependent one. When this concept is applied to IT project networks, the binary value, 

indicating whether a project 𝑖 is dependent on another project 𝑗, is weighted by the criticality 

value of project 𝑗. Since this measure has been developed for directed networks, it fulfills Req. 

1. It also fulfills Req. 2, since it increases with the strength of dependencies. By calculating 

eigenvector centrality for a specific node, the value theoretically also increases with the 

number of directly and indirectly dependent nodes, as well as with their criticality. However, 

as the status of a node is solely influenced by its relations to other nodes, this method has a 

major drawback: If a node has no incoming relations from others, its status equals 0 and it 

therefore does not contribute to the importance of other nodes (Bonacich and Lloyd, 2001). 

Therefore, this measure in fact fulfills Req. 5, but falls short on Req. 3-4.  

To account for this drawback, eigenvector centrality has been further enhanced and some 

derivatives have evolved. One of these derivatives introduced by Bonacich and Lloyd (2001), 

is alpha centrality: 

𝒙 = (𝑰−∝∗ 𝑨𝑇)−1 ∗ 𝒆 III.1.(6) 

This centrality measure overcomes the mentioned drawback of eigenvector centrality by 

assigning an exogenous status to each node of the network. In Equation III.1.(6) this 

exogenous status is represented by the vector 𝒆. This vector theoretically enables the ability 

to account for influences like project budged, which determine the exogenous status of 

different nodes to different extents. However, as the assessment of a project´s exogenous 

status is not in scope of this elaboration but rather a topic for further research, we stick to the 

work of Bonacich and Lloyd (2001), who exemplarily considered 𝒆 as a vector of ones. 

Consequently, the initial (exogenous) status of each node of the network is set to 1, 
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independent of its relations to other nodes. The remaining elements of the equation are the 

identity matrix 𝑰, the transposed adjacency matrix 𝑨𝑇 and the scalar ∝ > 0, representing a 

ratio for the relative relations between the exogenous (assigned) and endogenous (inherent) 

status of the nodes. Consequently, if ∝ is close to its lower boundary 0, the corresponding 

centrality values are close to the exogenous status of the nodes. In contrast, if ∝ is close to its 

upper boundary 
1

𝜆𝑚𝑎𝑥(𝑨)
, where 𝜆𝑚𝑎𝑥(𝑨) represents the maximum eigenvalue of 𝑨, the 

corresponding centrality values are almost exclusively based on the endogenous status, or 

rather on the network or relation structure. 

Since this measurement in contrast to eigenvector centrality indeed increases with the number 

of each directly and indirectly dependent node, it not only accounts for Req. 1, 2, and 5, but 

also for Req. 3 and 4. Moreover, it features the possibility of including exogenous influences 

like project size or volume. Therefore, we consider this measure as appropriate for the 

criticality assessment of projects in the sense of this research. Table III.1-a summarized the 

results regarding the appropriateness of the five requirements for all examined centrality 

measures in this section.  

Table III.1-a - Examination of centrality measures - Summary 

Centrality Measure Req. 1 Req. 2 Req. 3 Req. 4 Req. 5 

Closeness Centrality   -  -  -  -  

Betweenness Centrality   -  -  -  -  

Degree Centrality       -  -  

Eigenvector Centrality     -  -    

Alpha Centrality           

 

III.1.3.4 How to Assess Critical Projects based on Alpha Centrality 

Presuming that dependencies between IT projects can be quantified, and considering these to 

equal network alike structures, alpha centrality allows the derivation of an interpretable 

criticality value indicating an individual project’s importance to the overall success of the IT 

project network. In doing so, it not only accounts for direct dependencies, like the number of 

directly dependent projects, but also for indirect or transitive dependencies. To facilitate the 

comprehensibility and illustrate the suitability of alpha centrality in an IT portfolio context, 

this section briefly introduces the basic principles of the measurement using the three simple 

topology examples shown in Figure III.1-a.  
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Figure III.1-a - Examples of simple IT project network topologies 

Alpha centrality uses an 𝑛 × 𝑛 adjacency matrix 𝑨 whose elements 𝑎𝑖𝑗 with 𝑖, 𝑗 = 1…𝑛 

represent the connections of the network and consequently the projects’ dependencies. 

Considering arcs as unweighted, each element 𝑎𝑖𝑗 represents a binary value indicating whether 

project 𝑖 is directly dependent on project 𝑗 or rather whether 𝑖 contributes to the criticality of 

𝑗. In the case of weighted arcs, each element 𝑎𝑖𝑗 represents the weight of the corresponding 

dependency relation between 𝑖 and 𝑗. 

In the following, the binary adjacency matrices of example A and B are depicted, as well as 

the weighted adjacency matrix of example C. 

𝑨𝐴 =

[
 
 
 
 
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0]

 
 
 
 

      𝑨𝐵 =

[
 
 
 
 
0 0 0 0 1
1 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0]

 
 
 
 

     𝑨𝐶 =

[
 
 
 
 
0 0 0 0 1
5 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0]

 
 
 
 

 

In example A, project 1, 2, 3, and 4 depend on project 5. Consequently, one would assume the 

latter as most important, or rather most critical to the success of the overall IT portfolio, and 

therefore to account for the highest alpha centrality value. Assuming 𝒆 = [1, 1, 1, 1, 1] to be a 

vector of ones and based on the corresponding adjacency matrix 𝑨𝐴, we can calculate the 

alpha centrality vector 𝒙𝑇 = [1, 1, 1, 1, (1 + 4 ∝)] according to III.1.(6). This vector verifies 

the presumed result.  

In contrast to example A, project 2 additionally is dependent on project 1 in example B. In 

this case, one would expect a direct increase in importance of project 1 and an indirect increase 

in importance of project 5, as the status of project 1 increases and therefore contributes more 

to the status of project 5. The corresponding alpha centrality vector 𝒙𝑇 = [(1+∝), 1, 1, 1, (1 +

4 ∝ +∝2)] is in line with the expectations.  

While examples A and B implicitly assume equal intensities of the existing dependencies, 

example 3 includes different intensities represented by weighted arcs. Representing the logical 

1 2

4 3

5

1 2

4 3

5

1 2

4 3

5

Example B:Example A: Example C:

1 1

1 1

5



III Managing Dependencies to Mitigate Systemic Risk 85 

 

weighted extension of the one in example B, the alpha centrality vector of this example is 

𝒙𝑇 = [(1 + 5 ∝), 1, 1, 1, (1 + 4 ∝ +5 ∝2)].  

III.1.3.5 Application Example 

To demonstrate how this procedure can be used in practice, we illustrate the application with 

an example. Since we were not yet able to gather corresponding data, the intensities of project 

dependencies are assumed in this example. However, the other circumstances are based on 

real world observations. In our case, the company incorporates an in-house IT provider that 

recently changed its software development process from the waterfall model to a release-

oriented model. As a result, its current IT portfolio includes some projects that actually are 

sub-projects of an ensemble, which due to innovation pressure has been subdivided into 

several standalone projects. Hence, the portfolio features a high level of dependencies, and 

overall includes 15 projects, ranging from small infrastructure to big software development 

projects, all of which must be implemented within the next five years. In this context, the 

company faces the question of how to allocate its limited resources in order to accomplish the 

portfolio on time and under budget. Therefore, a risk analysis shall be conducted in order to 

identify the projects most critical to the IT portfolio, due to its inherent dependencies. To do 

so, the company first needs to identify and quantify the dependencies between the projects; 

this is usually accomplished based on interviews with the IT portfolio manager and other 

experts from the project management office (PMO). In this example, the resulting values have 

been normalized to range from 0 to 1, and the corresponding dependency structure of the 

portfolio is shown in Figure III.1-b.  

Based on this dependency structure, we derived an adjacency matrix 𝑨 denoting whether and 

to which extent the projects are related to each other. Each element 𝑎𝑖𝑗 > 0 of this 𝑛 × 𝑛 

matrix indicates that project 𝑖 is dependent on project 𝑗. For the calculation of an alpha 

centrality value based on III.1.(6), we assumed the vector 𝒆 to be a vector of ones. Since we 

rather wanted to examine the criticality of projects based on their dependency structure than 

on their exogenous status, the scalar ∝ has been set to its upper boundary value 
1

𝜆𝑚𝑎𝑥(𝑨)
, with 

𝜆𝑚𝑎𝑥(𝑨) = 0,8243. Based on III.1.(6) we were able to derive criticality values for each 

project, listed in Table III.1-b.  

Thus, the most critical projects in descending order are projects 4, 8, 3, 15, 14, 12, 11, 7. This 

is logical, since project 8 that at a first glance seems to be the most critical one, as it receives 

many relations from other also critical projects (3, 7, 11, 12, 14, 15), is dependent on project 

4. Therefore, project 4 is even more critical than project 8. In this example project 4 is 
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considered to be a small infrastructure project of low volume whereas project 8 represented a 

software platform project with a huge volume. 

Table III.1-b - Example results 

 

Figure III.1-b - Example: Dependencies of an IT portfolio  

Although this is just a very simple example, it illustrates the importance of dependency 

assessment quite well, as e.g. an allocation of resources based solely on project volume, as 

well as an inaccurate assessment of dependencies, would probably have led to a failure with 

regard to time or budget of the IT portfolio. 

 Summary, Conclusion, and Limitations 

The increasing demand for continuous innovations forces companies all over the world to 

assemble IT portfolios containing a high level of dependencies, while lacking appropriate 

methods to manage these dependence structures, as traditional methods rather focus on cost 

and benefits than on the accurate assessment of direct and indirect dependencies. In order to 

empower companies to cope with the challenging task of successfully managing their IT 

portfolios, we explicitly focus on the assessment of the inherent dependency structure and 

derived a new procedure to assess the criticality of projects based on their dependencies. We 

therefore consider IT portfolios as IT project networks and draw on graph theory, as it is an 

approved means for the assessment of dependencies in network alike structures. In particular, 

we illustrate specific characteristics of IT project networks and evaluate different centrality 

measures regarding their appropriate applicability in this context. In doing so, alpha centrality 
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was revealed as being a valuable approach in determining risk assessment of IT portfolios. It 

not only accounts for direct but also transitive dependencies, and shows that more critical 

projects contribute more strongly to the criticality of other projects they depend on. We depict 

the suitability of this measure based on its basic principles, and consequently propose an alpha 

centrality based assessment of dependencies to identify projects crucial to the success of the 

overall IT portfolio. To facilitate the comprehensibility and to verify the proposed procedure, 

we examine an exemplary IT project network based on its dependencies. The plausible results 

of the example application indicate that the proposed procedure is appropriate to analyze the 

dependencies between IT projects, and to assess their criticality to the overall portfolio’s 

success. It furthermore highlights the practical implications of empowering companies to 

properly assess direct and indirect dependencies in their portfolio, as both common methods 

in practice as well as an inaccurate assessment of dependencies can lead to ill-considered 

decisions. Furthermore, the results especially emphasize that consideration of transitive 

dependencies is crucial for an appropriate risk analysis of IT project networks. 

However, this approach is not without limitations and provides topics for further research. 

Referring to the three-stage cycle for research activities of Meredith et al. (1989), we were not 

yet able to proceed from the explanation to the testing stage based on a real-world example, 

despite various efforts to gather data. We are currently in communication with a large IT 

consulting company in order to get data for the evaluation of a real-world example, which will 

lead to further research. Moreover, we do not explicitly consider different kinds of 

dependencies; however, this is considered acceptable as a first step, and the differentiation 

between various kinds of dependencies is a topic for a follow-up research. Furthermore, this 

approach explicitly assumes that for a pairwise combination of IT projects, any kind of 

dependency can be quantified. Although, there are already some approaches quantifying 

different kinds of dependencies, further research should be encouraged to investigate 

appropriate measures in this respect. By assigning an initial status to each node of the network, 

independent of the networks dependency structure, this approach accounts for exogenous 

influences to the project’s importance. Since determination of these exogenous influences is 

not in scope of this elaboration, they are assumed to be equally strong. However, exogenous 

influences, such as project budget or mandatory requirements, can determine a project’s 

importance to different extent in the real world. Therefore, continuing research is required to 

include these kind of influences in a comprehensive risk assessment of IT project networks. 
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III.2 Assessing the Propagation and Impact of Systemic Risk8 

Global supply networks that can be considered as interlaced supply chains are shaping existing 

economic structures. These supply networks are creating a high level of complexity. 

Simultaneously, the perceived number of exogenous shocks such as natural disasters is 

increasing. These exogenous shocks can directly or indirectly impact the participating 

companies of a supply network, which can also threaten the network as a whole. However, 

the complexity and opacity of today’s supply networks inhibit an accurate prediction and 

quantification of such impacts. Therefore, companies are unable to develop adequate 

safeguards, while existing mechanisms are insufficient. The objective of this study is to model, 

analyze, and quantify the impacts of exogenous shocks on supply networks. Therefore, we 

use a Petri Net-based approach, which enables a simulation of different supply network 

constellations, to assess the vulnerability to exogenous shocks. Furthermore, we include a 

detailed description of modeling and evaluation of the presented method. For an exemplary 

supply network, we simulate different intensities of an exogenous shock combined with 

different safety stocks of the entities. Statistical tests are conducted to verify the results. We 

thereby illustrate the results that could be yielded from a real-world application.  

 Introduction 

Global supply networks are shaping the economic structures today (Christopher and Lee, 

2004). Such supply networks can be considered as interlaced supply chains (Harland, 1996; 

Lamming et al., 2000). These structures are building up a high level of complexity and inherit 

many advantages (e.g., more flexibility in supplier decisions) (Blackhurst et al., 2005) as well 

as risks for the participating companies. The emerging dynamic interdependencies not only 

increase one company’s exposure to risk (Hallikas et al., 2004) but can also threaten the entire 

network (Rice and Caniato, 2003). This phenomenon is known as systemic risk. The financial 

crisis of 2008/2009, when the collapse of few financial institutions spread over the entire 

network of financial systems and the real economy, is only one example. Supply networks are 

also becoming increasingly vulnerable to the impacts of exogenous shocks (Wagner and 

Neshat, 2010). As of 14 November 2011, the Bangkok Post listed on its website that in the 

first half of 2011, Thailand accounted for about 45% of the worldwide hard disk drive (HDD) 

supply in the first half of 2011. The widespread flooding in Thailand in October/November 

2011 directly impacted almost 30% of this capacity. Hence, as of 8 November 2011, iSuppli 

                                            
8 This section is a slightly modified version of Fridgen et al. (2015), like outlined in Section I.3  

and I.4. 
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listed on its website that the affected companies all over the world experienced shortages in 

the HDD supply. Such natural disasters as well as other stochastic events like economic crises 

or resource shortages are considered as exogenous shocks in the context of this research. These 

incidents are able to affect the miscellaneous entities of a supply network in a positive or 

negative manner. An exogenous shock that directly impacts at least one entity, can indirectly 

influence other entities due to its propagation through the supply network. In case of 

competing entities, a direct negative impact on one entity can even lead to indirect positive 

influences on others. Hence, even if a company is not directly impacted by an exogenous 

shock, it may be threatened existentially due to the network structure.  

In order to diversify the risk of disruptions as far as possible, many manufacturers keep 

contractual relationships with different suppliers (Babich et al., 2007). Suppliers in the context 

of this research are considered to be either resource suppliers or manufacturers of intermediate 

products in the different upstream stages of the supply network. Nevertheless, the complexity 

and complementing direct and indirect dependencies of these suppliers can lead to disruptions 

of the entire supply network even despite a perceived diversification in the preceding stages 

(Buldyrev et al., 2010; Friesz et al., 2011). Also from a geographical perspective, global 

supply networks are often not as diversified as they might seem. Some levels of supply 

networks, e.g. the production of specific components, can be very concentrated in several 

industrial sectors. For instance, as of 21 October 2011, ZEIT-online listed on its website that, 

for instance, manufacturers focusing on the same industry niches are usually located in the 

same area as the necessary infrastructure and know-how are in place. Besides the already 

mentioned examples of concentration, namely, HDD production in Thailand and high tech 

industry in Silicon Valley, ZEIT-online furthermore listed on its website that another example 

is the exclusive production of synthetic resin in the north of Japan, accounting for about 90% 

of the global supply. Also, geographical circumstances like the natural occurrence of resources 

can be a reason for the convergence, as for instance, 97% of the global supply of rare earth 

metals is mined from China (Lewis et al., 2011). A natural disaster in such an area could not 

only affect the supply networks of a specific industrial branch but also the entire economy. 

Indeed, the flooding of Thailand and the big earthquake in Japan in the March of 2011 showed 

how fragile global supply networks are to such disruptions. For instance, as of 12 November 

2011, iSuppli listed on its website that after the earthquake in Japan, when many 

manufacturers recognized the need for missing machinery parts, they were not able to 

immediately identify the responsible company due to the lack of information on the upstream 

suppliers.  
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Meredith et al. (1989) proposed a three stage cycle for research activities in operations 

research. They cluster research into description, explanation, and testing phase. In this spirit 

our research is located in the explanation stage of this cycle. This stage is supposed to yield 

first concepts and models from which causal relationships and testable hypotheses can be 

derived. This research supports the information evaluation process in order to draw 

conclusions on the structure and condition of supply networks. We introduce a feasible 

approach that enables the simulation of different compositions of supply networks impacted 

by distinctive exogenous shocks. These compositions can be quantitatively evaluated to 

reduce weaknesses and bottlenecks. Furthermore, the approach visualizes different entities, 

their linkages, and the network structure. The results should empower companies to take 

adequate actions in order to stabilize their supply networks (not exclusively) against 

exogenous shocks. For simplification, we assume all necessary information to be available. 

This work is a revised and enhanced follow up on Fridgen et al. (2012), which has been 

published at the 20th European Conference on Information Systems. Beyond the existing 

publication, it includes detailed explanations, a detailed modeling description, and an 

evaluation of the presented method by statistical means.  

The remainder of Section III.2 is organized as follows. Section III.2.2 presents the literature 

review. Section III.2.3 specifies the language and characteristics of the model that form the 

basis for the analysis of supply networks. In Section III.2.4, we describe the modeling 

procedure. Section III.2.5 illustrates a simulation-based analysis of an exemplary supply 

network. Section III.2.6 summarizes and concludes the study.  

 Literature Review 

Managers tend to handle the impacts of shocks on supply networks as one-time events rather 

than an inadequacy in the supply network structure (Levy, 1995). Even if shocks are one-time 

events, they nevertheless can threaten the existence of a company and are able to uncover the 

structural weaknesses of supply networks.  

In the following literature review, we will first give a brief overview of the literature regarding 

shocks in general. Afterwards, we will focus on shocks, risk, and uncertainty in the context of 

supply networks. The modeling of shocks on supply networks leads us to the different 

application areas of Petri Net variants.  

Regarding shocks in general, Dow (2000) emphasizes that besides the propagation 

mechanisms, the origin of shocks is also important as internal firm factors and other 
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ascendancies can amplify the small shocks into bigger shocks, spreading over the entire 

system. Shocks on complex networks and systems with memory are discussed by Sornette et 

al. (2004) and Sornette and Helmstetter (2003), distinguishing between endogenous and 

exogenous shocks. Demirgüç-Kunt and Detragiache (2005), Claessens et al. (2010), Campello 

et al. (2010), and Cetorelli and Goldberg (2011) discuss exogenous shocks as a cause for 

systemic bank distress. Considering shocks in the context of systemic risk, Buldyrev et al. 

(2010) discuss shocks as a trigger for a cascade of failures in interdependent networks. 

One exemplarily category for interdepend networks being exposed to shocks are supply 

networks. Since they inherit various uncertainties, Blackhurst et al. (2004) describe potential 

methodologies to model uncertainty in supply chains, and suggest a network-based approach 

to retain important information. Moreover, Prater (2005) provides a framework for different 

types of uncertainties that impact the supply networks. Vidal and Goetschalckx (2000) handle 

uncertainties in logistic systems by developing mixed integer models (MIP), which are also 

used by Tsiakis et al. (2001). Focusing on uncertainty as the root cause for disruption, Trkman 

and McCormack (2009) suggest a framework for the assessment of supplier risk. A 

methodology to assess operational and accidental risks in process industry projects is 

presented by Sharratt and Choong (2002). Blackhurst et al. (2008b) introduce a multi-criteria 

scoring procedure to assess and monitor supplier risk in the automotive industry. Hallikas et 

al. (2002) illustrate a risk analysis for production networks, whereas Harland et al. (2003) 

focus on the influence of complexity, globalization, and outsourcing on risk and its changing 

location in the supply network. Regarding disruption risk management in supply networks, 

Kleindorfer and Saad (2005) provide a conceptual framework reflecting the activities of risk 

assessment and mitigation. Lu et al. (2011) consider product substitution to mitigate 

disruptions in supply chains. Wagner and Bode (2008) classify disruptions by different 

sources based on the distinction between materialization inside or outside the supply chain. 

Nair et al. (2009) use cellular automata to simulate and examine cooperation and defection 

patterns in supply networks, as well as underlying decisions and incentive schemes. They 

highlight and prove the importance of managing interdependencies among firms in supply 

networks to reduce risk. Hallikas et al. (2004), furthermore, notice that the accumulation of 

dependencies between companies leads to an increased exposure to risk. Considering supply 

networks topologies as another root cause for disruption risk, Nair and Vidal (2011), Peng et 

al. (2011), and Zhao et al. (2011) use varying metrics to examine supply network topologies 

and their resilience regarding disruptions. Kim et al. (2011) apply key social network analysis 

metrics on supply networks in order to identify and evaluate central nodes. Mizgier et al. 
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(2013) propose and evaluate different centrality measures regarding advantages and 

disadvantages to identify bottlenecks in supply networks. In order to measure the impact of 

risk and disruptions on supply network performance, Mizgier et al. (2012) study the 

performance of supply chain networks based on their collective dynamics. Moreover, Friesz 

et al. (2011) explore a supply network based on a complex dynamic Nash game, considering 

disruptions and the related risk and uncertainty by variance. Cigolini et al. (2011) introduce a 

simulation meta-model as decision support system to improve supply chain performance. In 

order to quantify the propagation of disruptions in supply chains, Wu et al. (2007) were the 

first to develop a Disruption Analysis Network (DA_NET) approach based on Petri Nets, 

which enables the adherence of different attributes, like stock or cost, to state and event nodes. 

Based on these considerations, Zegordi and Davarzani (2012) proposed a colored Petri Net 

(CPN)-approach, extending the one of Wu et al. (2007) by considering dependencies between 

different disruptions. 

Besides the numerous extensions and modifications of Petri Nets, there has been an extensive 

discussion on their application areas. In this regard, many articles have been published on the 

production and manufacturing processes of Petri Nets models. For example, Dubois and 

Stecke (1983) use Petri Nets to analyze control problems of production systems and Silva and 

Valette (1990) constitute the usage of Petri Nets to support the production area in general. In 

the last few years, Petri Nets have also been successfully applied to model and analyze supply 

chains. For example, Dong and Chen (2001) analyze manufacturing supply chains based on 

object-oriented Petri Nets. Using stochastic Petri Nets (SPN), Arns et al. (2002) propose a 

performance analysis for supply chain models. Desrochers et al. (2003) use complex-valued 

tokens to increase the descriptive abilities of ordinary Petri Nets to model supply chains. Fung 

et al. (2003) develop an XML-supported modular Petri Net-based approach to denote the 

workflow in supply chains. Blackhurst et al. (2004) reflect uncertainty in supply chains using 

a Petri Net-based model. Furthermore, Blackhurst et al. (2008a) use a hierarchical Petri Net 

extension to discover and predict supply chain conflicts. Considering a scattered supply 

network, Dotoli and Fanti (2005) suggest a generalized SPN approach to model the 

management of distributed manufacturing systems (DMS). . 

To investigate in and derive insights from complex systems of interrelated entities in dynamic 

environments, many frameworks and theories with different labels have been published. One 

of these, is the principle of Complex Adaptive Systems that represent networks of multiple 

interacting entities exhibiting adaptive actions to endogenous and exogenous environmental 

changes (Choi et al., 2001). Since supply networks have increasingly developed to complex 
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systems being shaped by dynamic interactions between autonomous entities over the last 

decades, the principles of Complex Adaptive Systems have been adopted on the context of 

complex dynamic supply networks (Pathak et al., 2007). Based upon this, many 

methodological enhancements like agent-based-modeling, cellular automata, or system 

dynamics have been derived (Pathak et al., 2007), of which especially agent-based-modeling 

has attracted a lot of attention in recent years. This approach aims to answer the question how 

the collective behavior of a system arises from interactions among autonomous agents 

(Mizgier et al., 2012) and therefore is considered as an appropriate methodology to model and 

simulate supply networks. Although there are many ways to investigate such questions 

regarding the behavior of dynamic systems and interactions, simulation has been successfully 

proofed in this context (Gupta, 1997; van der Zee and van der Vorst, 2005). Kleijnen and 

Smits (2003) distinguish four kinds of simulation methods: spreadsheet simulation, business 

games, system dynamics and discrete-event dynamic systems simulation. Since the objective 

of this research is to visualize and quantify the impacts and propagation of exogenous shocks, 

which are rather discrete events, we stick to the discrete-event dynamic system simulation. 

One possible method in this context is an approach based on Petri Nets. Due to its 

mathematical foundation and graphical visualization, Petri Net-based methodologies have 

been shown to be an appropriate tool for modeling dynamic systems (Wu et al., 2007). In this 

research we use a modified and enhanced Petri Net-based approach of Wu et al. (2007), 

introducing a modular Petri Net concept where each module represents one entity or agent of 

a supply network. Based on these modifications we again consider different interacting 

entities in a complex system, each being represented by its own underlying Petri Net. 

Therefore, in our opinion, the presented approach can be considered as an agent-based-

modeling-approach in the sense of Bonabeau (2002).  

Though different Petri Net variants and their application areas have been intensively 

discussed, there has been little research on using Petri Nets to analyze and simulate the impact 

of exogenous shocks on supply networks. This research field remains relatively untouched to 

the best of our knowledge. Therefore, we introduce an approach to visualize, simulate, and 

analyze the impact and propagation of exogenous shocks on supply networks. Our model 

extends the valuable DA_NET approach of Wu et al. (2007), which enables the quantification 

of disruptions on straightforward supply chains. Since the modeling of supply network 

characteristics, stochastic elements, and the dynamic simulation of multiple order cycles 

require some additional features, we need to modify DA_NET approach, though. Comparing 

the proposed method to other previously published models, Cigolini et al. (2011) for instance, 
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provide an object-oriented simulation meta-model to improve supply chain performance. 

They consider single-product supply chains only, and materials and orders can only be 

exchanged between two actors belonging to adjacent supply chains. Our approach in contrast 

rather aims to visualize and quantify the impact and the propagation of exogenous shocks on 

the single entities of a complex supply network than supply chain performance. It furthermore 

enables the handling of various (upstream-)products and supports interactions among agents 

belonging to non-adjacent stages of the supply chain.  

Rossi and Pero (2012) provide a timed attributed Petri Net-based approach, identifying and 

assessing risky events in supply chains on an operational level. They use Petri Nets to create 

a model of the supply chain. Afterwards, they use the coverability graph of this Petri Net to 

identify the transition sequences causing disruptions. Moreover, based on the number of 

disruptions caused by specific transition sequences, they assess the underlying risky events by 

statistical means and derive tested statements regarding their relative importance. In contrast, 

we examine the impact and propagation of specific exogenous shocks instead of investigating 

endogenous risky events based on transition sequences. Moreover, we do not focus just on the 

operational level but consider shocks taking place on different risk levels of logistic networks. 

In our experience, when facing an exogenous shocks like natural disasters on their supply 

network, the information of interest for a single company is to exactly quantify the 

consequential impact rather than to measure the overall network performance. Therefore, in 

contrast to previously published models, our method focuses on the quantification and 

propagation of shock impacts on any entity in a supply network, independently of the shocks’ 

occurrence or the entities’ position at the stream of the supply network. Moreover, the 

developed method provides the possibility to measure the impact of an exogenous shock in 

various terms like the number or length of disruptions or the change in prices. Furthermore, 

based on the proposed approach, simulations of various shocks on different supply network 

constellations can be performed to examine different supply network topologies regarding 

weaknesses and bottlenecks. However, to test and evaluate the method in a first step, we 

examine and simulate one exemplary supply network using statistical means to conclude about 

the plausibility of examination results. 

 Modeling Language 

We assume that supply networks are characterized by flows of order and material between the 

participating companies. These companies are referred to as different entities of the network 

in the following study. Wu et al. (2007) contemplated an unidirectional flow of material and 
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goods in a supply chain. In addition, we consider recurring bidirectional flows of materials 

and orders in a dynamic environment of miscellaneous entities. These flows can represent 

different supply chains. Therefore, we use the expression supply network. To establish a 

circular flow situation with Petri Net elements (a general description of Petri Nets can be 

found by Murata (1989)), the operation represented by a transition needs to transfer a specific 

number of units from its input to its output place. Wu et al. (2007) perform a one-time 

calculation of the supply chain output to get information on the effects of disruption on its 

outcome. Therefore, the DA_NET approach calculates values for the output places of a 

specific fired transition only. Thus, the result of one calculation step in DA_NET is a matrix 

denoting just the attributes of the output places. Consequently, for Wu et al. (2007) it was not 

necessary to save the information on the attributes of the input places after the adjacent 

transition was fired. Within our approach, this information becomes compulsory when 

simulating multiple order cycles, as each succeeding cycle needs the information on the 

modified input values after the preceding cycles. Besides, each place has to be considered for 

a general idea of the network condition. 

Generally, Petri Nets enable the simulation of different states of a system by converting the 

network into a mathematical equation (van der Aalst et al., 2000). As the basic elements of 

classical Petri Nets (Petri, 1962) are not sufficient to model complex types of nets, we apply 

some existing extensions thereby fulfilling the following requirements:  

(1) Contemplating specific characteristics of miscellaneous materials. 

(2) Reflecting different input/output ratios for different production operations. 

(3) Handling stochastic events.  

(4) Featuring capacity restrictions. 

(5) Including timing aspects.  

(6) Involving modularization to tackle complexity.  

As similar requirements have been aroused for different application areas, appropriate Petri 

Net enhancements have already been developed (Drees et al., 1987). Regarding requirement 

(1), a development of the last decades was the transformation to so called high-level Petri 

Nets, featuring several types of tokens, each able to carry complex information (Jensen, 1991). 

Genrich and Lautenbach (1979) introduce predicate/transition-nets (Pr/T-nets). In order to 

handle technical problems by applying the method of place-invariants to the Pr/T-nets, Jensen 

(1981) develops a Colored Petri Net (CPN) approach by introducing different colors for 

different kinds of tokens (Jensen, 1987). Extending CPN with time, van der Aalst (1993) 
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presents the interval timed CPNs. In terms of practicality, Kristensen et al. (1998) present their 

practitioner’s guide to CPN. Lakos (1995) enhances CPN in order to include object-oriented 

concepts. This approach is called Object Petri Nets. Another method is the DA_NET approach 

of Wu et al. (2007), wherein attributes are attached to place and transition nodes instead of 

moving colored tokens through the network. Regarding requirement (2) and (4), weights are 

added to the initial arcs and capacity constraints are added to the initial places (Murata, 1989). 

Regarding requirement (3), Molloy (1982) uses SPNs for the purpose of performance analysis 

whereas Marsan et al. (1984) present the general SPN approach in order to evaluate system 

performance. Furthermore, Marsan (1990) gives an introduction to SPNs in general. 

Regarding requirement (5), adding time features to the original Petri Net modeling language 

has been a major research area (Berthomieu and Diaz, 1991). In this regard, for example, 

Ramchandani (1974) develops a timed Petri Net approach by associating a lead-time with 

each transition. Merlin (1974) and Merlin and Farber (1976) present time Petri Nets, in which 

a lower time bound 𝑎 and an upper time bound 𝑏 is associated with each transition. Regarding 

requirement (6), Dotoli and Fanti (2005) consider a modular Petri Net approach to be an 

appropriate methodology to model DMS. Based on the concepts of the modular Petri Net 

markup language, Kindler and Petrucci (2009) formalize a minimal version of modular high-

level Petri Nets. 

Our approach uses weighted arcs to reflect the variety of material quantities and order 

volumes. It uses places with capacity constraints to depict limited capabilities and resources. 

Furthermore, transitions associated with firing conditions are used to govern the firing 

process. To fulfill the requirement of representing distinctive characteristics of order and 

material flows, we stick to the approach of Wu et al. (2007) by attaching attributes to place 

and transition nodes. Regarding time features, this elaboration sticks to the flexible approach 

of time Petri Nets. It considers stochastic elements by enabling a random distribution function 

for firing the transitions with 𝑎 ≠ 𝑏 and 𝑏 ≠ 0. Furthermore, it considers consumer demand 

to be stochastic.  

An advantage of Petri Nets is the possibility of an intuitive graphical depiction. Furthermore, 

the scalability and flexibility offer a great area of application. The major advantage of Petri 

Nets, however, is their mathematical basis, which allows to break them down to specific 

subnets and analyze each subnet separately. The concrete mathematical system of the 

approach used in this research is outlined in the following. 
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III.2.3.1 Mathematical System 

The following mathematical definitions enable the quantitative modeling of the supply 

network and are basic principles for the simulation results at the end of this research. The 

parameters used and corresponding descriptions are illustrated in Table VI.2-a in the 

appendix. Each Petri Net is composed of places, transitions, and arcs. Transitions are 

activities, which change the attributes of their adjacent places. There are 𝑛 transitions 𝑡𝑗 with 

𝑗 = 1…𝑛 and 𝑚 places 𝑝𝑖 with 𝑖 = 1…𝑚, each having specific properties. Besides, there are 

arcs connecting the places and transitions. We consider every transition 𝑡𝑗 and every place 𝑝𝑖 

to have defined attributes 𝑑𝑙𝑗 with 𝑙 = 1…𝐿 and 𝑐𝑘𝑖 with 𝑘 = 1…𝐾 respectively. Hence, each 

transition 𝑡𝑗 has an attribute set 𝑫𝑗 = [𝑑1𝑗, 𝑑2𝑗, … , 𝑑𝐿𝑗]. The attribute set 𝑪𝑘 =

[𝑐𝑘1, 𝑐𝑘2, … , 𝑐𝑘𝑚] denotes the value of one specific attribute 𝑐𝑘 for each place 𝑝𝑖. For multiple 

attributes 𝑐𝑘, this consequently leads to a 𝐾 ×  𝑚 - matrix 𝑪 where each column represents 

the attributes of one place.  

𝑪 = [

𝑐11 ⋯ 𝑐1𝑚

⋮ ⋱ ⋮
𝑐𝐾1 ⋯ 𝑐𝐾𝑚

] 

Next, we derive a 𝑚 ×  𝑛 - matrix 𝒁𝑘 for each attribute 𝑐𝑘, which depicts the modification of 

the underlying attribute caused by transition 𝑡𝑗 for each place 𝑝𝑖. This modification is depicted 

as numeric value, which, for instance, can be derived from a function 𝑓𝑗(𝑐𝑘𝑖, 𝑑𝑙𝑗) relating the 

attributes 𝑐𝑘𝑖 of the places with the attributes 𝑑𝑙𝑗 of the transitions.  

𝒁𝑘 = [

𝑧11 ⋯ 𝑧1𝑛

⋮ ⋱ ⋮
𝑧𝑚1 ⋯ 𝑧𝑚𝑛

] 

Each transition 𝑡𝑗 has a decision logic 𝐸𝑗, which decides whether a transition is fired or not. It 

can be denoted as 𝐸𝑗  = IF (constraint) THEN (consequence). 

Arcs can be divided into two subsets. The subset consisting of arcs pointing from places 𝑃 to 

transitions 𝑇 is defined as 𝑃 ×  𝑇 → 𝑁 and denoted by 𝑃𝑟𝑒(𝑝𝑖, 𝑡𝑗). The other subset, which 

consists of arcs pointing from transitions to places, is defined as 𝑇 ×  𝑃 → 𝑁 and denoted as 

𝑃𝑜𝑠𝑡(𝑡𝑗 , 𝑝𝑖). The binary variables 𝑃𝑟𝑒(𝑝𝑖, 𝑡𝑗) and 𝑃𝑜𝑠𝑡(𝑡𝑗, 𝑝𝑖) equal 1, if there exists a specific 

arc between 𝑡𝑗 and 𝑝𝑖, otherwise they equal 0. The input places of a transition 𝑡𝑗 are identified 
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by monitoring the values of 𝑃𝑟𝑒(𝑝𝑖, 𝑡𝑗) in an 𝑚 ×  𝑛 - input matrix 𝑰, while the output places 

are obtained in a 𝑚 ×  𝑛 - output matrix 𝑶 containing all 𝑃𝑜𝑠𝑡(𝑡𝑗, 𝑝𝑖). 

𝑰 = [
𝑃𝑟𝑒(𝑝1, 𝑡1) ⋯ 𝑃𝑟𝑒(𝑝1, 𝑡𝑛)

⋮ ⋱ ⋮
𝑃𝑟𝑒(𝑝𝑚, 𝑡1) ⋯ 𝑃𝑟𝑒(𝑝𝑚, 𝑡𝑛)

]           𝑶 = [
𝑃𝑜𝑠𝑡(𝑡1, 𝑝1) ⋯ 𝑃𝑜𝑠𝑡(𝑡𝑛, 𝑝1)

⋮ ⋱ ⋮
𝑃𝑜𝑠𝑡(𝑡1, 𝑝𝑚) ⋯ 𝑃𝑜𝑠𝑡(𝑡𝑛, 𝑝𝑚)

] 

The relations between places and transitions are already identified by the modifications of the 

matrices 𝒁𝑘. Hence, to identify input and output places, it would be sufficient to compose just 

the input matrix 𝑰, as modified places which are not monitored in 𝑰 can be considered as output 

places of the corresponding transition. However, for the sake of operationalization and 

completeness, we set up matrix 𝑶.  

As we consider a network of material and order flows, we contemplate places to be marked, 

if the quantity of their underlying (material/order) is larger than zero. In this case, places 

contain exactly one token. Hence, we obtain a binary marking vector 𝑴ℎ =

[𝑀ℎ(𝑝1),𝑀
ℎ(𝑝2), … ,𝑀ℎ(𝑝𝑚)] with ℎ ∈ 𝑁0 that shows which place 𝑝𝑖=1,…,𝑚 contains a token 

and which remains empty for each stage ℎ of the marking process. It can be derived from the 

attribute matrix 𝑪 or rather from the specific attribute set 𝑪𝑘 = [𝑐𝑘1, 𝑐𝑘2, … , 𝑐𝑘𝑚] representing 

the attribute quantity. Based on this attribute set, 𝑀ℎ(𝑝𝑖) is set to 1 if 𝑐𝑘𝑖 > 0 and to 0 if 𝑐𝑘𝑖 =

0. The firing vector 𝑩ℎ = [𝑏1
ℎ, 𝑏2

ℎ, … , 𝑏𝑛
ℎ] of binary variables 𝑏𝑗

ℎ ∈ {0; 1} indicates whether a 

transition 𝑡𝑗 is fired at stage ℎ of a marking process. To calculate the firing vector 𝑩ℎ, firstly, 

we need to sum up the values of each column of the input matrix 𝑰 and denote them into a 

separate sum row vector 𝒀. Secondly, a vector 𝑽ℎ for each stage ℎ is derived according to the 

operation: 𝑽ℎ = 𝑴ℎ ∙ 𝑰. Finally, each element of 𝒀 is compared with the equivalent element 

of 𝑽ℎ at the same point of the vector. If the element of 𝒀 equals the element of 𝑽ℎ, the 

corresponding digit of 𝑩ℎ is set to 1, otherwise it is set to 0. However, whether and how a 

transition 𝑡𝑗 is fired, additionally depends on the firing logic 𝐸𝑗. 

The functional algorithm 𝐹(𝑪𝑘, 𝒁𝑘 , 𝑩) is a matrix operation, which defines how the firing of 

activated transitions affects the initial attribute sets of the different places. For each attribute, 

we calculate an update of the attribute set 𝑪𝑘, which denotes the values of the attribute after 

the changeover from stage ℎ to stage ℎ + 1 for each place, by using the following equation 

with (𝑪𝑘
ℎ)𝑇 and (𝑩ℎ)𝑇 as the transposed vectors of 𝑪𝑘

ℎ and 𝑩ℎ: 

(𝑪𝑘
ℎ+1)𝑇 = 𝐹(𝑪𝑘, 𝒁𝑘, 𝑩) = (𝑪𝑘

ℎ)𝑇 + 𝒁𝑘
ℎ ∙ (𝑩ℎ)𝑇 III.2.(1) 
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For each stage ℎ + 1, we can derive the updated marking vector 𝑴ℎ+1 from the updated 

attribute set 𝑪𝑘
ℎ+1. Extending this coherence to a finite number of stages 𝐻 ∈ 𝑁0, we derive 

the equation: 

(𝑪𝑘
𝐻)𝑇 = 𝐹(𝑪𝑘, 𝒁𝑘, 𝑩) = (𝑪𝑘

0)𝑇 + ∑ 𝒁𝑘
ℎ ∙ (𝑩ℎ)𝑇

𝐻−1

ℎ=0

 III.2.(2) 

III.2.3.2 Modularization of Petri Nets 

The major disadvantage, and hence, the reason for the rarity of Petri Nets in practical 

applications, is the rising complexity when trying to model large supply networks (Murata, 

1989). To reduce this complexity and enable an intuitive modeling of supply networks, we 

consider them as a composition of different modules representing the distinctive entities of 

the real-world network. The use of a limited number of standardized modules neither 

constricts the applicability nor the performance of Petri Nets; however, it increases their 

transparency (Kindler and Petrucci, 2009). Therefore, we propose a modularization of the 

Petri Net in analogy to Dotoli and Fanti (2005), to facilitate the analysis of the overall network 

and theoretically enable the examination of each single module. We extend the modules 

identified by Dotoli and Fanti (2005), as we consider them to be connected through order and 

material flows of standardized goods via interfaces located on the modules’ borderlines. 

Incoming and outgoing orders are depicted as interfaces on the top and the bottom, while 

interfaces on the left and right hand side, respectively, represent material inflow and material 

outflow. The interfaces are determined by their positioning on the borderlines or corners of 

the modules. Different interfaces on the same borderline can represent orders or material 

concerning different kinds of goods or different suppliers/customers. The plaid input 

interfaces in the left upper corner of the modules enable the impact of exogenous shocks. 

Figure III.2-a illustrates the structure of a module and its interfaces.  
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Figure III.2-a - Structure of a module 

Modules can be aligned by connecting the output interface of one module with the 

corresponding input interface of another. This modularization is expandable to an arbitrary 

number of interfaces. However, this requires an adaption of the Petri Net structures inside the 

module.  

Each module represents its own stand-alone Petri Net. Its conversion into a mathematical 

equation is based on the same mechanisms as described in Section III.2.3.1 above. Each input 

interface of module 𝑥 has a corresponding output interface of an aligned module 𝑦, having the 

same attribute values. In an integrated modular Petri Net, these places have to be considered 

as one place 𝑝𝑖 with 𝑪𝑖 = [𝑐1𝑖, 𝑐2𝑖, … , 𝑐𝐾𝑖].  

 Modeling Procedure 

We assume that a supply network can be modeled using four kinds of modules representing 

the real-world entities, namely resource suppliers, manufacturers, retailers, and logistic 

service providers (LSPs) (cf. Dotoli and Fanti, 2005). In reality, different kinds of entities can 

be involved in a supply network, but for reasons of simplicity we stick to these four kinds of 

entities and the respective modules. Though, additional modules can be easily defined. Each 

module represents the complete Petri Net of its corresponding entity. The modules, their 

interfaces, and the Petri Net structures inside the modules can be modeled flexibly, according 

to the desired complexity level and requirements of the user. Figures III.2-b – III.2-e illustrate 

the four exemplary modules with their interfaces, although for reasons of simplicity, in a very 

ingenuous way.  

Generally, we constitute that places are bearings of specific underlyings like orders or 

materials, and transitions are activities representing specific steps of the value creation 

process. Places and transitions have specific attributes. The presence of a token allocates the 
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corresponding values of the attributes (the arrival of a delivery on a storage place is the 

assignment of values to its exemplary attributes, quantity and cost). In order to enable a 

transition, a token on the input place has to represent the availability of the underlying and 

therefore, a quantity larger than zero. The exact value of the underlying’s quantity can be 

considered as an attribute (stock) of the accordant place. A transition is enabled if all input 

places store a token. The firing of an enabled transition additionally depends on the decision 

logic and can change the attributes of the aligned places. It reduces the stock of its input places 

and increases the stock of its output places. In contrast to classical Petri Nets, where the firing 

of a transition automatically removes tokens from input places, the respective token in our 

model is removed only if the stock of the corresponding place equals zero.  

The resource supplier has a finite amount of available resources. After receiving an order, the 

resource supplier mines and processes an appropriate volume of resources according to the 

amount available. If required, additional restrictions like a specific capability of the mining 

machines can easily be added. 

In Figure III.2-b, the transition inside the module is enabled by the presence of tokens on the 

three input places 1-3. Place 3 represents a natural repository and stores a token if resources 

are available. The order input interface (Place 2) stores a token if orders from customers are 

in place. The shock interface (Place 1) represents an arbitrary, compulsory input factor (e.g. 

mining facility) for the firing of the transition, which can be impacted by the shock. The firing 

of the transition creates a token on the material output interface (Place 4), which activates the 

attributes by assigning corresponding values. At the same time, the attributes of the input 

places are modified accordingly. If an aligned place of the transition already stores a token, 

the firing of the transition equals an update of the attributes, as the initial attribute set 𝑪𝑘
ℎ of 

stage ℎ = 0 is replaced by the new attribute set 𝑪𝑘
ℎ+1 of stage ℎ + 1 = 1. The new values of 

these attributes are calculated by the functional algorithm, which aligns the initial attribute set 

𝑪𝑘
ℎ of the places with the modifications 𝒁𝑘

ℎ triggered by the transition. The values of the 

modification can be based on a corresponding function 𝑓𝑗(𝑐𝑘𝑖, 𝑑𝑙𝑗), which depicts how the 

transition with its attribute set 𝑫𝑗 modifies the initial attribute set 𝑪𝑘
ℎ of the places. If the 

available resources are not sufficient to cope with the volume of incoming orders, the values 

of the output place are adjusted according to the availability of resources. 
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Figure III.2-b - Module: Resource Supplier 

The manufacturer receives orders from its customers and orders the required amount of input 

material from its suppliers. After the required material is available, the manufacturer 

assembles and processes the products according to its customers’ orders. Manufacturers can 

have specific stocks of input material. 

In Figure III.2-c, transition I, representing the order handling, is enabled by the arrival of a 

token and the respective order on the order input interface (Place 2). The firing of this 

transition creates tokens, accordingly, on the order administration place (Place 3) and the order 

output interface (Place 6). Simultaneously, it accordingly modifies the attributes of place 2. 

Transition II is enabled by the presence of tokens on place 3, the shock interface (Place 1) and 

the material input interface (Place 4). As described above, the order administration place stores 

a token after the first transition is fired. The shock interface represents an arbitrary, 

compulsory input factor (e.g. production facility) for the firing of the second transition. Place 

4 stores a token as soon as the upstream entity gets a token on its material output interface. 

The firing of the second transition, representing the manufacturing process, creates a token on 

the material output interface (Place 5). Accordingly, it modifies the attributes of places 5, 4, 

and 3. If the material on place 4 at one period is not sufficient to cope with the volume of 

orders on place 3, the transition sets the values according to the maximum available material 

under adherence of the transition’s attributes. 
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Figure III.2-c - Module: Manufacturer 

The LSP is an intermediary that processes goods from one entity of the network to another. 

For the processing, we assume capacity as a representative restriction, for example, the 

availability of only a limited number of containers for the transport.  

In Figure III.2-d, the transition inside the module is enabled by the presence of tokens at the 

three input places. Place 2, representing the capacity restriction, stores a token if transportation 

resources, like containers, are available. Assuming that the LSP has been assigned by a 

resource supplier or a manufacturer, the material input interface (Place 3) stores a token 

according to the material output interface of the prior company on the upstream. The shock 

interface (Place1) represents an arbitrary, compulsory input factor (e.g. means of transport) 

for the firing of the transition. The firing of the transition, representing the transportation 

process, creates a token on the material output interface (Place 4) and analogously reduces the 

values of place 3. If the LSP is not capable to deliver the entire amount of material at once, an 

amount according to the existing capabilities is delivered. 
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Figure III.2-d - Module: LSP 

The retailer orders goods from its suppliers and sells them to its customers. The stock of goods 

is depleted each period. The order volumes are based on the customer demand and hence, the 

retailer is considered to be the end-user of our network. 

In Figure III.2-e, the transition inside the module is enabled if the shock interface (Place 1) 

and the material input interface (Place 2) contain a token. The shock interface represents an 

arbitrary, compulsory input factor (e.g., selling equipment) for the firing of the transition. The 

place 2 stores a token as soon as the prior entity on the upstream gets a token on its material 

output interface. The firing of the transition creates a token on the order output interface (Place 

3) whereas it modifies the attributes of the place 2 accordingly.  

 

Figure III.2-e - Module: Retailer 

Shocks generally have the ability to affect any transition inside the module. To indicate such 

an exogenous shock in a supply network, we define a fifth correspondent module.  

The shock module shown in Figure III.2-f is characterized by a shock source (Place 1), which 

enables the transition inside to fire, and a shock output interface (Place 2), which is able to 
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connect to the shock input interfaces of the other modules. Different output interfaces in the 

right upper corner of the module represent different shock impacts. In terms of tokens and 

attributes, firing the transition has the following effect: The initial values from place 2 and 

place 1 are modified. As place 2 stores a token initially, the firing of the transition updates the 

attributes of the shock output place and the respective shock input place of the affected 

(connected) module. This, consequently, changes the module’s behavior. Firing another 

token, which relocates the places attributes to the initial values, can restore the original 

behavior to the pre-shock state. 

 

Figure III.2-f - Module: Exogenous Shock 

 

 Simulation-Based Analysis of Shock Impacts 

Our modular Petri Net approach can be used for a wide range of possible applications. One 

possible application is the analysis of the stability of supply networks to the exogenous shocks, 

in the context of delivery dropouts. The exemplary supply network shown in Figure III.2-g 

consists of a manufacturer with three supply stages B, C, and D on the upstream, connected 

directly or through LSPs. Supplier C usually receives the ordered goods via ship (LSP1) from 

the resource supplier D. There is a more expensive possibility of an air freight delivery by 

another service provider (LSP2), which is activated only if LSP1 is disabled. In this initial 

setting an exogenous shock (e.g. prolonged stays in the harbor) occurs, impacting LSP1 by a 

delay in the delivery time of its shipment. 
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Figure III.2-g - Supply network and shock, illustrated with a modular Petri Net 

Considering the quantity of material and orders as the only attribute of interest for this simple 

example, we simulated this network based on the following assumptions:  

 The resource supplier has unlimited resources and unlimited mining capacity.  

 LSPs have unlimited transportation capabilities. 

 Manufacturers have unlimited storage capacities, but limited processing capabilities. 

 Each Manufacturer has a predefined target safety stock based on the delivery time of 

its supplier. 

 The volume of each order is linked to a specific lot size.  

 The stochastic customer demand is represented by the outgoing order of the retailer. 

 The retailer has no safety stock and thus, its bearing is depleted in each period. 

Based on these assumptions and the chosen parameter setting, we did a sensitivity analysis 

and suggest that the model is robust. A description of the parameters we used for the 

simulation including justifications for the chosen parameter values and corresponding 

robustness checks are shown in Table VI.2-b in the appendix.  

We are aware that this simple example does not inherit all the customs obtained in the area of 

supply chain and operations management. We are especially aware that existing batch or order 

size and safety stock calculation methods with their specific restrictions, like service levels 

(α, β, γ), are not considered. As the objective of this example is to verify the viability of the 

presented mathematical Petri Net approach rather than describing an accurate real world 

setting, we consider these facilitations as acceptable, as a first step.  

Furthermore, we assume a Gaussian distribution for the retailers order. Since we provide a 

simulation based approach, other distributions can easily be assumed, though. Each of the 
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defined Petri Net modules represents the logical behavior of a corresponding real world entity. 

Therefore, the presented approach can also be considered as a simulation meta-model, 

connecting the corresponding Petri Nets of various real world entities of a supply network. 

The numerous advantages of simulation based approaches in the context of real world systems 

have already been described by Cigolini and Rossi (2004).  

In each period of the simulated supply network setting shown in Figure III.2-g, the retailer 

orders a stochastic amount of goods and material. Consequently, the manufacturers check one 

after the other if their stock of material is sufficient to cope with the incoming orders. They 

just order appropriate amounts of material from their suppliers if their own available stock 

drops below the defined safety stock. However, even if the stock drops below the safety stock, 

they keep the production on until their bearing is empty. Resource supplier and LSP, on the 

other hand, check if their resources and capacities are sufficient to process the volume of 

incoming orders. Each state of the Petri Net represents one period in time. Hence, in this 

example the time until ordered goods arrive in the bearing of the ordering entity is normally 

two periods. Consequently, the safety stock of the manufacturers depends on the time span 

between order and delivery, as well as on the average customer’s demand. The bearings of 

retailer and manufacturers, in the following referred to as bearing A, B and C, are represented 

by the interfaces on the left border of the modules.  

Taken this initial setting, we simulated 1000 periods of transient and 19000 periods of shock 

phase within each simulation run. Simulation runs have been performed for different delays 

in delivery (shock intensities).  

We can obtain different system characteristics using this method e.g. for the stock of material. 

Figure III.2-h shows the material stock of the manufacturers exemplarily for 1000 periods 

from period 800 to 1800. The exogenous shock (e.g. prolonged stays in the harbor) strikes 

once at period 1000 resulting in a continuous delay of delivery. We assumed a delay of 35 

periods with the above-mentioned bearing and process capabilities of the manufacturers. 
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Figure III.2-h - Development of the material stock in case of shock impact 

Looking at dropout 1, all manufacturers face periods without delivery, as their stock reserves 

were not capable to compensate the delayed shipment. We distinguish between disruption and 

dropouts as follows. Single periods without delivery are defined as disruptions. Dropouts on 

the other hand are considered to be intervals of more than two disruptions in a row. After some 

periods without delivery, the delayed ship with the outstanding material arrives, resulting in 

an instant replenishment of bearing C, as the ship has been loaded continuously during the 

layover in the harbor. According to the accumulated orders and capability restrictions, 

manufacturer C processes the received goods to manufacturer B and manufacturer B processes 

them to manufacturer A. Consequently, the replenishment of the bearings of manufacturers B 

and A is also delayed. Due to lot sizes, manufacturers order even more material than necessary 

to accomplish their customers’ orders. Hence, each manufacturer is building up additional 

stock. After all outstanding orders have been delivered, the manufacturers (starting with A) 

process incoming orders by reducing their stock until it drops below the level of their safety 

stock. Then, they again start ordering goods from their suppliers. Therefore, the stock of 
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manufacturer B will not be reduced until the stock of manufacturer A is below the safety stock 

level, and the stock of manufacturer C will not be reduced until the stock of manufacturer B 

is below the level of safety stock. If the stock of manufacturer C is again insufficient to 

compensate the amount of incoming orders during the continuing delay of shipment, it again 

results in periods without delivery, indicated by dropout 2. 

Another characteristic that can be obtained from our exemplary supply network is the bullwhip 

effect, shown in Figure III.2-i. The bullwhip effect is a real-world phenomenon of supply 

networks, which describes the increasing volatility of orders as moving up the supply chain 

(Nikolic et al., 2004). Among others, one reason for the bullwhip effect is the variation in lot 

sizes in the different stages of the upstream. We take the relative standard deviation to account 

for the varying extent of 𝜇, which is due to the different input ratios and lot sizes of the 

manufacturers on the upstream. For our exemplary network, we find a relative standard 

deviation 𝜎/𝜇 of 0.903 for manufacturer A, 1.492 for manufacturer B, and 1.830 for 

manufacturer C. We consider this as an indicator for the appropriateness of our methodology.  

 

Figure III.2-i - Illustration of the bullwhip effect: Order volumes relative to its mean values 
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Monitoring the retailer’s stock, we are able to draw further conclusions for our exemplary 

network. Figure III.2-j shows the coherence between delivery dropouts at the retailers end and 

different shock intensities.  

 

Figure III.2-j - Number of dropouts 

The results indicate that based on the presence of a shock impact or rather, a delay in delivery, 

an increase in shock intensity leads to a decline in the number of dropouts. Intuitively, this 

seems implausible but it becomes clearer when we compare the permanence of such delivery 

dropouts. In this regard, Figure III.2-k shows the coherence between the permanence of 

delivery dropouts and shock intensities.  

 

Figure III.2-k - Permanence of dropouts 

Thus, the results indicate that the permanence of delivery dropouts increases with an increase 

in the shock intensity. The increase in shock intensity, therefore, leads to two opposite effects: 

a decline in the number and an increase in the permanence of delivery dropouts. To balance 

these two opposite effects, we contemplate the overall number of disruptions in relation to the 

different shock intensities depicted in Figure III.2-l. Additionally, we simulate different safety 

stocks to analyze the relation between stock reserve and shock impact, as an increase in the 
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stock reserves seems to be the most practical measure to cope with a failure of delivery. We 

increase the initial safety stock of the manufacturer at stage C of the network, in steps of 25%, 

from 100% to 300%. For each safety stock we repeat the simulation from above while 

measuring the retailer’s stock. 

 

Figure III.2-l - Overall number of disruptions for different levels of safety stocks 

We hypothetically expect that an increased safety stock reduces the number and the 

permanence of dropouts, and leads to a decline in the number of disruptions. Furthermore, we 

expect that the beneficial effect of continuously increasing the safety stock declines with the 

extent of the safety stock.  

The results of the simulation indicate that the overall number of disruptions increases with an 

increase in the delay in delivery. Moreover, it is implied that an increased safety stock leads 

to a decline in the number of disruptions. In this regard, Figure III.2-m shows that the overall 

number of disruptions indeed declines with an increase in the safety stock. 

 

Figure III.2-m - Overall number of disruptions depending on different levels of safety stock, 

illustrated for several shock intensities 
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This is valid for all shock intensities, although the relative benefit from increasing the safety 

stock seems higher at lower shock intensities. Comparing this result with a corresponding cost 

function would enable the manufacturer to calculate an optimum safety stock.  

We test the hypothesis (H1) that an increased safety stock leads to a decline in the number of 

disruptions by statistical means. A regression analysis leads to inefficient results, as the 

simulation bears auto-correlated residuals. Therefore, we do an approximated two-sample 

Gauss-Test. For an increasing safety stock, we compare the consecutive pairs of values, 

exemplarily, for a delay of seven periods. The results listed in Table VI.2-c in the appendix 

significantly confirm hypothesis H1 for the available data. The convexity of the lines in Figure 

III.2-m, moreover, indicates that the benefit from the increase in safety stock declines with 

the safety stock’s extent. We constitute this as hypothesis (H2). We do the same test as for 

H1, considering the difference in the number of disruptions between 100% and 125% safety 

stock as µ1, the difference between 125% and 150% as µ2 and so on. Though, in this case the 

results (appendix – Table VI.2-c) are just partially significant, so we cannot significantly 

confirm the hypothesis H2.  

Nevertheless, in order to reduce the number of disruptions at the retailers end, it might be 

more effective to convince multiple companies on the upstream to increase their safety stock 

than exceedingly pushing up just one company’s safety stock. We constitute the hypothesis 

that increasing the safety stock of manufacturers A, B and C by 100% leads to a lower 

expected value of disruptions (𝜇1) than increasing the safety stock of manufacturer A by 300% 

(𝜇2). In this regard, we exemplarily do an approximated two-sample Gauss-Test for a delay 

of seven periods and a sample of 31 observations. The results shown in Table VI.2-d in the 

appendix confirm our hypothesis (𝜇1 < 𝜇2). For our exemplary supply network we, 

consequently, can constitute that increasing the safety stock of manufacturer A, B and C by 

100% leads to less disruptions at the retailers end than increasing the safety stock of 

manufacturer A by 300%.  

We already confirmed the hypothesis (H1) that increasing the safety stock of one manufacturer 

(C) reduces the overall number of disruptions at the retailers end. Yet it is unclear how an 

increased safety stock influences the two opposite effects from above in detail. Therefore, we 

illustrated the number and the permanence of dropouts depending on the different levels of 

safety stock. The results shown in Figure III.2-n indicate that an increased safety stock reduces 

the number of dropouts. 



III Managing Dependencies to Mitigate Systemic Risk 113 

 

 

Figure III.2-n - Number of dropouts depending on different levels of safety stock, illustrated for 

several shock intensities 

Here it is peculiar that line one (Delay: 7) intersects line two (Delay: 14), which is explained 

as follows: The initial safety stock is considered to be two periods of an average order, and an 

increased safety stock leads to a declining permanence of dropouts. If the initial safety stock 

of two periods is increased by 300%, it leads to a stock that, on average, is able to buffer a 

dropout with a permanence of six periods. At a high level of safety stock (e.g. 300%) and low 

shock intensity (e.g. Delay: 7), former dropouts, hence, become disruptions. Consequently, 

the gradient of the line is much higher for a delay of seven periods than a delay of 14 periods, 

resulting in an intersection. While Figure III.2-n shows that an increased safety stock reduces 

the number of dropouts, the results of Figure III.2-o imply that an increased safety stock also 

reduces the permanence of dropouts. Both observations are independent of the specific shock 

intensity. Though, in both cases the gradient of the regression line implies that for less 

intensive shocks an increased safety stock leads to a slow decline in permanence, but a fast 

decline in the number of dropouts. In order to consolidate these conjectures, we constitute the 

following hypotheses: The number of dropouts declines with an increase in the safety stock 

(H3); the permanence of dropouts declines with an increased safety stock (H4). We test these 

hypotheses H3 and H4 analogously to hypothesis H1 and can significantly confirm them for 

the available data. The corresponding test results are listed in Table VI.2-c in the appendix. 
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Figure III.2-o - Permanence of dropouts depending on different levels of safety stock, illustrated for 

several shock intensities 

Assuming, that the cost of a dropout is directly proportional to its permanence, it could be of 

interest to know which loss will just be exceeded with a specific level of probability in a 

specified time interval. In this regard, we calculated a dropout-quantile that depicts which 

permanence of dropouts will just exceed in 1% of all cases of our simulation. Figure III.2-p 

shows these ratios for all simulated safety stock and shock intensities.  

 

Figure III.2-p - Dropout-quantiles depending on different delays in delivery, illustrated for several 

safety stocks 

Besides smaller variations due to the underlying stochastic variable, we find that an increased 

safety stock leads independent of the intensity of shock to a declining dropout-quantile. 

However, it seems remarkable that the decrease in the dropout-quantile is disproportionately 

low compared to the increase in the safety stock. This arouses the question whether increasing 

the safety stock is the appropriate action to reduce the loss and the respective permanence of 

disruptions. However, such questions are topic for further research.  

Although, this small simulation was just an exemplary application of the presented approach, 

it nevertheless presented some interesting economical indications. As the relative benefit of 
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increasing the safety stock declines with the intensity of shock, an increased safety stock might 

not be the most effective action to reduce the number of disruptions in case of an intensive 

shock. Besides, the benefit of increasing the safety stock declines with the extent of safety 

stock. Hence, it seems less effective to excessively increase the safety stock of one company 

compared to increasing the safety stock of several companies on the upstream on average. To 

reduce the number of disruptions at the retailer’s end, thus, it might be better for a 

manufacturer to support his suppliers on the upstream by increasing their storage capacities 

than increasing just his own storage capacity. Also from an economical point of view, the 

allocated increase in multiple inventories seems more reasonable, as the excessive increase of 

one company’s inventory usually becomes progressively expensive with the inventory’s 

extent.  

 Summary, Conclusion, and Limitations 

Although the impacts of exogenous shocks on global supply networks are hard to predict, the 

incidences in the last few years show the necessity for research in this area. We develop a 

modular Petri Net approach based on a modification and enhancement of the DA_NET 

approach of Wu et al. (2007) to quantify and simulate the impacts of exogenous shocks on 

supply networks and to gain information on the network’s behavior and stability. Furthermore, 

we present a modularization of Petri Nets to facilitate the analysis and depiction of complex 

supply networks. We define a standardized module structure and identify five different 

modules to model complex supply networks on a high-level of abstraction. In order to verify 

the presented approach, we finally design, simulate, and analyze exemplary supply networks. 

The presented approach provides the possibility to visualize and analyze different supply 

networks and their dynamics as well as impacts of different exogenous shocks. It even gives 

insights, in which specific attributes of the participating entities are affected to which extent. 

The modularization facilitates the flexible composition of supply networks in order to identify 

the most appropriate structure theoretically. In order to validate the introduced method, we 

furthermore simulate different intensities of a specific exogenous shock impacting an 

exemplary supply network. The plausible results of this simulation process indicate that the 

presented method is appropriate for the analysis of such networks. The flexibility and 

scalability of the introduced method enables its implementation in various industry sectors. 

However, this approach is not without limitation. With reference to the three stage cycle for 

research activities in operations research of Meredith et al. (1989), we were not yet able to 

proceed from the explanation to the testing stage based on a real world example, despite 
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various efforts to gather data. One possible reason could be the kind of data required for the 

model. Today, companies are oftentimes not able to provide information about their supply 

network on this granularity level since it is not available to them. This again might be due to 

data privacy issues between the companies of a supply network. However, there are also some 

industries where this kind of information is compulsory to some extent for legal reasons e.g. 

in the pharmaceutical industry, food industry, etc. or where companies are already trying to 

gather this information for risk mitigation reasons e.g. in the automotive industry. Therefore, 

future research should not only feel encouraged to investigate and test the presented method 

based on real world data, but also to explore novel data sharing methods, which enable the 

exchange of specific data without infringing the data sovereignty of the cooperation 

companies. As supply networks are becoming increasingly complex and opaque, the 

application of high-performing Information Systems (IS) is necessary to handle, route and 

process the huge amount of critical information compulsory for the analyses of such networks. 

Such IS, moreover, could contain predefined and standardized modules, which can be 

composed to different supply networks, mutually managed by the purchase and risk 

management department. Consequently, scenario analysis could be accomplished in order to 

identify weaknesses of the different network compositions.  

Therefore, if research is continued in this area, it should investigate appropriate integrated 

systems to enable and facilitate the analysis of complex supply networks. Hence, research 

could induce a stabilizing effect on the otherwise unstable and endangered parts of our 

economy. 
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IV Summary and Future Research 

In the following sections, the key findings of this doctoral thesis are summarized (Section 

IV.1) and potential starting points for future research are presented (Section IV.2). 

IV.1 Summary 

With all its consequences, the ubiquitous deployment of IT solution in the age of digitalization 

keeps on revolutionizing business and society. The resulting increasingly complex, dynamic, 

and interdependent structures, still bear major challenges for companies regarding both, their 

internal management and their external interaction. To assert their market position in the age 

of digitalization, companies need to address these challenges by assessing and managing the 

accordingly emerging risks. Therefore, the main objective of this doctoral thesis was to 

contribute to the extant risk management body of knowledge, focusing on specific risks that 

arise as to the outlined challenges in the light of digitalization. Investigating operational risks 

as to a company’s internal management, Section II particularly focused on the assessment and 

management of risks related to the increasing complexity and dynamics of IT projects as 

drivers for digital progress. Examining systemic risk arising from increasing interdependence, 

Section III focused likewise on companies’ challenges as to internal management and external 

interaction by using the exemplarily subject areas of IT projects and value creation networks. 

It particularly investigated the criticality of IT projects to their overall IT portfolio, as well as 

the propagation and extent of systemic risk in supply networks. In the following, the key 

findings and major contributions of each section are outlined consecutively.  

Section II.1 investigated the complexity of IT projects, which is supposed to be one major risk 

in the context of IT project failures. Since neither practice nor research outlined a coherent 

picture about what is concealed within IT project complexity, this section provided conceptual 

clarity regarding the construct of IT project complexity, by examining and outlining the 

causalities of aspects that are supposed to somehow relate to the complexity of IT projects in 

extant literature [Objective II.1]. Establishing a foundation to grasp and manage IT project 

complexity, this section moreover proposed a two-dimensional framework based on generic 

antecedents and context-specific project areas, with the former dimension describing what 

causes complexity and the latter describing where complexity is located [Objective II.2]. 

Consequently, it enables a clear and unambiguous understanding of what is meant by IT 

project complexity and enables researcher and practitioners to assess and manage IT project 

complexity and associated risks more properly, based on the introduced framework.  
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Sections II.2 and II.3 examined the assessment and management of specific risks related to IT 

projects, which among others originate from the increasing complexity, dynamics, and 

interdependence of the projects’ environment. Focusing on the ex ante investment decision of 

an IT project, which usually is based on a business case calculation, Section II.2 on one hand 

examined the assessment of IT projects’ benefits, since they are not properly considered in 

extant evaluation methods. In doing so, it suggested monetarization rules to quantify even 

vague and difficult to grasp benefits of IT projects in a quantitative manner [Objective II.3]. 

On the other hand, it investigated the integration of multiple relevant aspects for IT project 

evaluation, since most existing methods primarily focus on cost. Therefore, it developed an 

integrated quantification approach for IT projects, considering not only cost, but also benefits, 

risk, and dependencies [Objective II.4]. In doing so, it aggregated benefits of IT projects based 

on the assumption of a normal distribution and utilized portfolio theory of Markowitz (1952) 

as well as a preference function to comprehensively consider cost, benefits, risk, and 

dependencies in an integrated risk-adjusted project value. Thereby, it also considers the level 

of a decision maker’s risk aversion, which is derived by an approach of behavioral finance. 

To ensure practicability, this approach has been jointly developed by research and practice. 

Consequently, it enables companies to evaluate their IT projects more holistically and reduces 

the risk of misjudgments regarding investment decisions, which might also lead to an overall 

decrease in the number of IT project failures.  

Addressing the increasing dynamics of the projects’ environment, Section II.3 focused on the 

continuous quantitative management of IT projects. It enhanced the integrated ex ante 

evaluation approach provided in Section II.2, to address the risks arising from changing 

circumstances during a projects lifecycle. Therefore, it introduced a differentiation between 

uncertain estimated cash flows, like prevalent in an ex ante business case calculation, and 

definite accomplished cash flows that become certain with the projects’ progression. 

Thereupon, it developed two measures for continuous project monitoring and project steering, 

with the former measure enabling decisions based on the comparison between estimated and 

actual project progression and the latter enabling decisions based on an expected residual IT 

project value. Along with triggers that have been defined for both measures, this approach 

enables a continuous assessment and management of IT projects during their lifecycle 

[Objective II.5]. To meet the needs for a likewise rigor and practicable method, also this 

approach has been jointly developed by research and practice. Consequently, it empowers 

companies to measure the current progression of an IT project, provides control mechanisms 

for project deviations as well as project continuation, and mitigates the risks arising from 
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changing circumstances in the project’s environment, by enabling to initiate timely 

countermeasures.  

Representing the link between the specific subject area of IT projects, being used to illustrate 

a company’s challenges as to internal management, and the more generic subject area of value 

creation networks, being used to depict a company’s challenges as to external interaction, 

Section III particularly focused on dependencies and associated systemic risk. Considering IT 

project portfolios as IT project networks, with nodes representing projects and arcs 

representing dependencies amongst them, Section III.1 investigated the coherence between 

dependencies and systemic risk, taking a company’s internal management perspective. In 

doing so, it outlined different kinds of existing dependencies as well as current corresponding 

assessment methods. In this context it has been found, that existing methods for dependency 

assessment are not able to consider different dependencies properly. Especially indirect 

dependencies are mostly neglected. This section hence adapted centrality measures, which are 

based on graph theory and are considered as an appropriate means for network analysis, to the 

subject area of IT projects. It examined different centrality measures whether they are 

appropriate to account for the different dependencies within IT portfolios. Moreover, it 

provided an alpha-centrality-based approach to appropriately assess direct and indirect 

dependencies of IT portfolios [Objective III.1]. Indicating the criticality of an IT project to its 

corresponding IT portfolio, this approach enables companies to manage the risk arising from 

the underlying dependency structure, by allocating limited resources more effectively.  

Drawing on supply networks as one instantiation of value creation networks, Section III.2 

investigated systemic risk by taking a company’s external interaction perspective. To be more 

concrete, it examined the propagation of systemic risk over several periods of time and several 

stages in supply networks, which have been shown to be increasingly prone to systemic risk 

by recent occurrences like earthquakes and floodings. In particular, it provided a modular Petri 

Net approach to illustrate and simulate the propagation of exogenous shock impacts on supply 

networks [Objective III.2]. Considering the network structure, its characteristics at a specific 

point in time, and the intensity of an exogenous shock, this approach furthermore enables to 

quantify an impact’s extent to any assigned entity of the network [Objective III.3]. Based on 

the definition of five standardized Petri Net modules for specific types of entities, it also 

simplifies the analyses and depiction of complex supply networks on a high level of 

abstraction. Moreover, to verify the provided approach, it outlines, simulates and analyzes an 

exemplary supply network. Consequently, the developed modular Petri net approach enables 

to visualize and analyze different network structures, their dynamic, and their exposure to 
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systemic risk. It allows to assign different attributes to the networks entities and gives insights 

in the extent to which these attributes are prone to risk. Moreover, the modularization enabling 

the flexible compositions of different network topologies, theoretically facilitates to determine 

the most appropriate or resilient network structure. 

This doctoral thesis finally contributed to the extant risk management body of knowledge by 

providing insights and means to assess and manage risks associated with IT projects and value 

creation networks, arising from the increasing complexity, dynamics and interdependence 

driven by digitalization. Although it investigated some likewise important and difficult to 

handle risks, this doctoral thesis only covered a fractional part of all risks emerging in this 

context. It therefore can only be considered as a modest first step to a comprehensive 

assessment and management of these emerging risks. Since this is a huge research area that 

will preoccupy research for several years, it encompasses many different research topics in 

several risk and subject areas (cf. Section I.2). Also within the risk and subject areas that have 

been considered in this doctoral thesis, there are plenty of research topics that remain 

untouched besides the particularly investigated ones. For instance, the assessment of systemic 

risk in IT penetrated network structures based on load networks or similarly related methods 

from other scientific areas would be an interesting topic to examine in this context. Finally, 

also the specific risk investigations of this doctoral thesis yielded topics for further research 

that are outlined in the following section. 

IV.2 Future Research 

Based on the limitations of means and approaches proposed in this doctoral thesis, 

continuative questions emerge that might serve as a basis for further research.  

Section II, which strives to enhance IT project assessment to cope with increasing complexity 

and dynamics, provides the following starting points for further research:  

Since IT project complexity is supposed to be one major risk leading to IT project failures, 

Section II.1 proposed a two-dimensional framework to assess IT project complexity based on 

its antecedents and the project area of its occurrence. Although, this framework provides a 

first modest step towards a clear and unambiguous assessment of IT project complexity and 

its antecedents, it does not empirically prove evidence about whether the antecedents, that 

have been derived by literature and verified by practice, actually are significantly causal for 

IT project complexity. Therefore, the significance of the stated antecedents for IT project 

complexity should be examined in depth. Furthermore, since the proposed framework has 
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only been applied to one real world case study so far, further applications to different real 

world cases should be performed, to further verify the frameworks usability.  

Dealing with an integrated ex ante quantification approach for IT projects, considering cost, 

benefits, risk, and dependencies, Section II.2 used the standard deviation as a measure of risk. 

It consequently assumed risk as symmetric deviation from an expected value. This might not 

picture reality in every case. Furthermore, the feedback gathered from practice indicated that 

other risk measures like the Value at Risk might be easier to comprehend. Therefore, different 

means for the consideration of risk in an integrated approach seem to be an interesting topic 

for further research. Moreover, this approach assumed cost of IT projects to be deterministic. 

Hence, further research might enhance the provided integrated approach for IT project 

evaluation by investigating means to additionally consider stochastic cost. 

Extending the integrating quantification approach of Section II.2, Section II.3 provided a 

dynamic approach to mitigate the risk arising during a projects lifecycle. In doing so, it 

assumed the project’s cash flows to be normally distributed. Although, assuming a normal 

distribution for cash flows of IT projects is a common procedure, it might be valuable to 

investigate whether and how different distributions of cash flows can be considered within the 

presented approach. Furthermore, since this approach only considers direct dependencies 

based on an Bravais-Pearson correlation coefficient, it could be an interesting topic to not only 

investigate how to account for also indirect dependencies (cf. Section III.1), but to develop 

means that are able to account for direct as well as indirect dependencies within an integrated 

quantification approach for IT projects and portfolios. 

Section III endeavored to assess and manage systemic risk emerging from underlying 

dependency structures. In this context, the following starting points for further research can 

be denoted:  

Focusing on an in depth analysis of direct and indirect dependencies that enable systemic risk 

and have generally been identified as a major risk in the context of IT projects and portfolios, 

Section III.1 proposed and outlined the idea to assess the criticality of IT projects based on 

alpha-centrality. Like almost any other approach to dependency assessment, also this 

approach is based on expert estimations regarding the strength of dependencies between two 

or more IT projects. Hence, further research should be accomplished to enhance these current 

estimation procedures. Alpha-centrality generally enables to account for external influences 

by a separate vector. So far, the presented approach however widely neglected this vector for 

reasons of simplicity. Therefore, further research should feel encouraged to investigate the 
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possibilities of alpha-centrality for additionally considering external influences like project 

size or regulatory importance, while assessing the criticality of IT projects based on the 

inherent dependencies. Since this section only provides the first idea of using centrality 

measures to investigate dependencies of IT project portfolios, it does not explicitly 

differentiate between different kinds of dependencies. Therefore, further research should 

strive to consider and integrate different kinds of dependencies within a centrality-based 

approach. Since the presented approach has only be verified by on example case so far, the 

application in real-world settings by further research would ensure its validity and might yield 

further starting points for improvement. 

Section III.2 provides means to assess the dynamic aspects of systemic risk, i.e. the 

propagation of impacts in network structures and the resulting damage to the networks entities. 

It used a modular stochastic Petri Net approach to model and simulate an exemplar supply 

network. In doing so, it presupposed the network structure, representing the underlying 

dependencies of the network, to be known. As networks are becoming increasingly complex 

and opaque, this probably not pictures reality. Future research hence should feel encouraged, 

to investigate new ways and methods to increase transparency of network structures. Due to 

the lack of information regarding the structure of real world supply networks, the proposed 

approach could not yet be applied in practice. Therefore, once new ways towards increased 

transparency of network structure have been found, further research should strive to proof the 

practical validity of the proposed approach by applying it to different real world settings.  

Summarizing, this doctoral thesis examined different research questions regarding complex 

risk structures in the light of digitalization. Therefore, it contributed to the existing body of 

knowledge by introducing different methods and techniques for risk assessment and 

management in the investigated subject areas. However, due to the fast pacing environment 

and ongoing developments in the context of IT projects and value creation networks, the 

proposed methods and techniques might prospectively require enhancement and adjustment 

to serve as rigor means for future risk management. Nevertheless, it is desirable that the 

provided means might be a first modest step to mitigate the risk that particularly complex 

structures are increasingly prone to in the current age of digitalization. 
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VI Appendix 

VI.1 Section II.1  

Table VI.1-a - Identified manifestations of complexity and their sources 

ID Specific Aspects Author 

1 objective novelty (Tatikonda and Rosenthal, 2000) 

2 breadth of product program (Größler et al., 2006) 

3 interdependency  

between outsourcing partners  

(Fridgen and Müller, 2011) 

4 interrelationships between the activities in a schedule (Nassar and Hegab, 2006) 

5 quantity of organizational subtasks  (Tatikonda and Rosenthal, 2000) 

6 difficulty of the project objectives  

7 diversity of technologies (Meyer and Utterback, 1995) 

8 diversity of customers (Größler et al., 2006) 

9 diversity of inputs (Baccarini, 1996) 

10 diversity of outputs (Baccarini, 1996) 

11 diversity of parts in the work flow (Gidado, 1996) 

12 diversity of products (Größler et al., 2006) 

13 diversity of tasks/actions regarding technology (Baccarini, 1996) 

14 diversity of tasks/actions regarding territory (Baccarini, 1996) 

15 diversity of tasks/actions regarding time (Baccarini, 1996) 

16 diversity of team members regarding location (Baccarini, 1996) 

17 diversity of team members regarding specialist field (Baccarini, 1996) 

18 diversity of team members regarding time (Baccarini, 1996) 

19 extent of interactions required to manage components (Novak and Eppinger, 2001) 

20 interaction between the project organisational elements (Baccarini, 1996; Vidal et al., 2013) 

21 interdependencies within a network of tasks (Baccarini, 1996) 

22 interdependency between inputs (Baccarini, 1996) 

23 interdependency between operations (Baccarini, 1996) 

24 interdependency between parts in the work flow (Gidado, 1996) 

25 interdependency between subprojects (Lindemann et al., 2009) 

26 interdependency between tasks (Baccarini, 1996) 

27 interdependency between teams (Baccarini, 1996) 

28 interdependency between technologies (Baccarini, 1996) 

29 interdependency between work packages (Vidal et al., 2007) 
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30 interdependency of technological elements (transitions, 

interfaces, data structures,…) 

(Cardoso, 2005) 

31 specification interdependence (Vidal et al., 2013) 

32 length of feedback loops (Lindemann et al., 2009) 

33 length of product life cycle (Größler et al., 2006) 

34 product novelty (Novak and Eppinger, 2001) 

35 magnitude of organizational subtasks (Tatikonda and Rosenthal, 2000) 

36 number of technological elements (transitions, interfaces, 

data structures,…) 

(Cardoso, 2005) 

37 modifications to existing products (Clift and Vandenbosch, 1999) 

38 number of tasks/actions (Baccarini, 1996) 

39 nature of subtask interactions (Tatikonda and Rosenthal, 2000) 

40 new-to-the-world products (Clift and Vandenbosch, 1999) 

41 number of communication paths (Aladwani, 2002) 

42 number of customers (Größler et al., 2006) 

43 number of different technologies (Meyer and Utterback, 1995) 

44 number of employees (Gidado, 1996) 

45 number of levels in hierarchical structure (Baccarini, 1996) 

46 number of inputs (Baccarini, 1996) 

47 number of organizational units (Baccarini, 1996) 

48 number of outputs (Baccarini, 1996) 

49 number of parts in the work flow (Gidado, 1996) 

50 number of process types (Größler et al., 2006) 

51 number of product components (Novak and Eppinger, 2001) 

52 number of specialities involved on a project 

(subcontractor, trades) 

(Baccarini, 1996) 

53 number of stakeholders (Vidal et al., 2013) 

54 geographic location of stakeholders (and their mutual 

disaffection) 

(Vidal et al., 2013) 

55 variety of the interests of stakeholders (Vidal et al., 2013) 

56 team cooperation and communication (Vidal et al., 2013) 

57 building type of technology (Baccarini, 1996) 

58 nature of organizational subtasks (Tatikonda and Rosenthal, 2000) 

59 difficulty of location for technology (Baccarini, 1996) 

60 bargaining power of customers (Größler et al., 2006) 

61 overlap of design and construction (Baccarini, 1996) 

62 level of scientific and technological knowledge required (Gidado, 1996) 
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VI.2 Section III.2 

Table VI.2-a - Model parameters and corresponding descriptions 

Parameters Description 

𝒕𝒋 Transitions nodes 𝑗 = 1…𝑛 

𝒑𝒊 Place nodes 𝑖 = 1…𝑚 

𝑫𝒋 = [𝒅𝟏𝒋, 𝒅𝟐𝒋, … , 𝒅𝑳𝒋] 
Attribute set of each transition 𝑡𝑗: 

𝑑𝑙𝑗 with 𝑙 = 1…𝐿 

𝑪𝒌 = [𝒄𝒌𝟏, 𝒄𝒌𝟐, … , 𝒄𝒌𝒎] 
Attribute set of each place 𝑝𝑖:  

𝑐𝑘𝑖 with 𝑘 = 1…𝐾 

𝑪 = [

𝒄𝟏𝟏 ⋯ 𝒄𝟏𝒎

⋮ ⋱ ⋮
𝒄𝑲𝟏 ⋯ 𝒄𝑲𝒎

] 
Attributes of place nodes 

𝒁𝒌 = [

𝒛𝟏𝟏 ⋯ 𝒛𝟏𝒏

⋮ ⋱ ⋮
𝒛𝒎𝟏 ⋯ 𝒛𝒎𝒏

] 

Matrix 𝒁𝑘 denoting modifications of the 

underlying attribute 𝑐𝑘 caused by transition 

𝑡𝑗 for each place 𝑝𝑖 

𝒇𝒋(𝒄𝒌𝒊, 𝒅𝒍𝒋) 

Function 𝑓𝑗(𝑐𝑘𝑖, 𝑑𝑙𝑗) relating the attributes 

𝑐𝑘𝑖 of the places with the attributes 𝑑𝑙𝑗 of 

the transitions 

𝑬𝒋 

Decision logic 𝐸𝑗, which decides whether a 

transition 𝑡𝑗 is fired or not: 

𝐸𝑗  = IF (constraint) THEN (consequence). 

𝑰 = [
𝑷𝒓𝒆(𝒑𝟏, 𝒕𝟏) ⋯ 𝑷𝒓𝒆(𝒑𝟏, 𝒕𝒏)

⋮ ⋱ ⋮
𝑷𝒓𝒆(𝒑𝒎, 𝒕𝟏) ⋯ 𝑷𝒓𝒆(𝒑𝒎, 𝒕𝒏)

] 

Input matrix depicting arcs pointing from 

transitions to places, denoted as 𝑃𝑟𝑒(𝑝𝑖 , 𝑡𝑗) 

∈ {0; 1} 

𝑶 = [
𝑷𝒐𝒔𝒕(𝒕𝟏, 𝒑𝟏) ⋯ 𝑷𝒐𝒔𝒕(𝒕𝒏, 𝒑𝟏)

⋮ ⋱ ⋮
𝑷𝒐𝒔𝒕(𝒕𝟏, 𝒑𝒎) ⋯ 𝑷𝒐𝒔𝒕(𝒕𝒏, 𝒑𝒎)

] 

Output matrix depicting arcs pointing from 

places to transitions, denoted as 

𝑃𝑜𝑠𝑡(𝑡𝑗 , 𝑝𝑖) ∈ {0; 1} 

𝑴𝒉 = [𝑴𝒉(𝒑𝟏),𝑴
𝒉(𝒑𝟐),… ,𝑴𝒉(𝒑𝒎)] 

Marking vector at stage ℎ ∈ 𝑁0 with 

𝑀ℎ(𝑝𝑖) ∈ {0; 1} 

𝑩𝒉 = [𝒃𝟏
𝒉, 𝒃𝟐

𝒉, … , 𝒃𝒏
𝒉] 

Firing vector with 𝑏𝑗
ℎ ∈ {0; 1} indicates 

whether a transition 𝑡𝑗 is fired at stage ℎ  

𝑽𝒉 = 𝑴𝒉 ∙ 𝑰 Support vector  

𝒀 
Vector containing the sum of each column 

of the input matrix 𝑰 

𝑭(𝑪𝒌, 𝒁𝒌, 𝑩) 

Functional algorithm defining how the 

firing of activated transitions affects the 

initial attribute sets of the different places 
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Table VI.2-b - Simulation parameters, corresponding descriptions, and justifications 

Parameter: Description and justification of initial parameter values: 

 

Storage 

capacity  

 

Description: The storage capacity represents the maximum volume of commodities 

that can be stored by a specific entity in the supply network.  

Since storage and warehouse optimization are not objective of our research, we 

considered the storage capacity of all entities to be infinite without loss of 

generality. Various storage capacities can easily be assigned to specific entities, 

though.  

 

 

Processing 

capacity  

 

Description: The processing capacity represents the maximum volume of 

commodities that can be processed (e.g. mined, conveyed, manufactured, etc.) by 

a specific entity in the supply network in one period. 

For convenience, the processing capacities of the resource supplier, the retailer 

and the logistic service provider has been assumed infinite. The processing 

capacities of manufacturer A, B, and C have been made-up to be 2500, 6500 and 

35000. These values have been chosen randomly and can easily be adjusted. 

Assuming the processing capacity not to restrict the order and delivery volume 

under normal conditions (without shock impact), it just influences the velocity of 

the bearing replenishment.  

To analyze the robustness of our model, we increased all processing capacities of 

the manufacturers by 10% resulting in a decrease of disruptions at the retailer’s 

end of about 1%. Since these 1% also could derive from the stochastic variation 

of the retailers order, we consider the model as relatively robust regarding changes 

of processing capacity.  

 

 

Input/ 

output  

ratio 

 

Description: The input/output ratio represents the ratio of input to output goods 

or commodities being processed by a specific entity in the supply network. It 

determines the number on input units that have to be available (in one place) in 

order to accomplish a specific activity (transition). 

The input/output ratios of manufacturer A, B, and C have been made-up to be 2:1, 

3:1 and 4:1. As indicated by the different input/output rations of the manufacturers 

in our exemplary network, it can be easily adjusted and specifically set for each 

entity of the network. It determines the number of input units that have to be 

available (in one input place) in order to accomplish a specific activity (transition) 

and produce a specific output (in one output place). Therefore, it is closely 

connected to the safety stock of the manufacturers.  

To check the robustness of the model, we increased the input/output ratios of all 

manufacturers by 100% and assumed a corresponding safety stock (cf. the safety 

stock calculation below). As expected, a likewise increase of both parameters does 

not influence the number of disruptions at the retailer’s end significantly.  

 

 

Stochastic 

demand 

 

Description: The stochastic demand is the volume of commodities used by the final 

consumer of the network in one period.  

The stochastic demand of the retailer is based on a normal distribution with  

µ = 100 and σ = 50. Since we measure the disruptions at the retailer’s end, which 

should be based on exogenous shocks rather than on endogenous network 
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properties, we had to ensure order volumes > 0. Therefore, the distribution has 

been cut at µ ± 90. Consequently, values < 10 are set to 10 and values > 190 are 

set to 190, which leads to a mean value of 110.  

Increasing the safety stock by 10% (µ=110 and σ = 55) lead to a mean value of 

about 115 and an increased in disruptions at the retailer’s end of about 4.8%. 

However, this increase is just plausible, since in this example, the safety stock of 

the manufacturers is closely linked to the order volumes. Increasing the retailer’s 

demand - that equals the order placed by manufacturer A - without similarly 

increasing the safety stock leads to a higher number of disruptions.  

 

 

Safety  

stock 

 

Description: The safety stock represents the minimum volume of commodities that 

is held available in the bearing of a specific entity of the supply network. 

In our exemplary supply network only the manufacturers were considered to have 

a bearing and therefore a safety stock. The delivery time between the 

manufacturers A and B alike B and C is assumed to be 2 periods. The average 

volume of ordered goods by the retailer is 110. Therefore, the safety stock of 

manufacturer A is calculated by multiplying the number of periods with the 

average volume of ordered commodities and the input/output ratio and is 

consequently set to 2*110*2=440. According to the input/output ratio of 

manufacturer A, the average ordered volume of commodities for manufacturer B 

equals 2*110=220. Therefore its safety stock is 2*220*3=1320. As the delivery 

time between manufacturer and the resource supplier is considered to be 3 periods, 

the safety stock of manufacturer C is 3*660*4=7929. We chose these safety stocks 

since we wanted to measure the number of disruptions at the retailers end based 

on the impact of exogenous shocks rather than from the stochastic order volume 

of the retailer. Assuming normal conditions (without shock impact) and a 

deterministic demand of 110, the chosen safety stocks are the minimal ones to run 

the exemplarily simulation setting without disruptions. Any other safety stock 

values can be set up, though. 

 

 

Table VI.2-c - Test results for hypothesis H1 – H4. 

  Expected value (μ) Variance (σ2) Test statistic 

Sample 1 Sample 2 Sample 1 Sample 2 

H1 𝜇125 < 𝜇100 1507,419 1737,355 409,318 402,437 -44,934*** 

𝜇150 < 𝜇125 1308,710 1507,419 404,413 409,318 -38,785*** 

𝜇175 < 𝜇150 1125,065 1308,710 391,196 404,413 -36,250*** 

𝜇200 < 𝜇175 983,194 1125,065 334,361 391,196 -29,325*** 

𝜇225 < 𝜇200 838,903 983,194 262,624 334,361 -32,880*** 

𝜇250 < 𝜇225 699,323 838,903 436,959 262,624 -29,382*** 

𝜇275 < 𝜇250 588,387 699,323 477,045 436,959 -20,430*** 

𝜇300 < 𝜇275 481,032 588,387 432,299 477,045 -19,822*** 
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H2 𝜇2 < 𝜇1 198,710 229,935 1003,013 904,796 -3,980*** 

𝜇3 < 𝜇2 183,645 198,710 680,437 1003,013 -2,044* 

𝜇4 < 𝜇3 141,871 183,645 818,516 680,437 -6,008*** 

𝜇5 < 𝜇4 144,290 141,871 605,613 818,516 0,357 

𝜇6 < 𝜇5 139,581 144,290 860,385 605,613 -0,685 

𝜇7 < 𝜇6 110,935 139,581 833,529 860,385 -3,875*** 

𝜇8 < 𝜇7 107,355 110,935 915,103 833,529 -0,477 

H3 𝜇100 < 𝜇125 320,903 368,323 21,690 34,092 -35,350*** 

𝜇125 < 𝜇150 280,226 320,903 40,781 21,690 -28,655*** 

𝜇150 < 𝜇175 240,290 280,226 44,480 40,781 -24,081*** 

𝜇175 < 𝜇200 207,290 240,290 60,146 44,480 -17,963*** 

𝜇200 < 𝜇225 173,548 207,290 41,789 60,146 -18,608*** 

𝜇225 < 𝜇250 139,613 173,548 58,912 41,789 -18,829*** 

𝜇250 < 𝜇275 113,419 139,613 73,252 58,912 -12,686*** 

𝜇275 < 𝜇300 87,000 113,419 38,200 73,252 -13,933*** 

H4 𝜇100 < 𝜇125 4,408 4,527 0,006 0,003 -6,960*** 

𝜇125 < 𝜇150 4,257 4,408 0,006 0,006 -7,770*** 

𝜇150 < 𝜇175 4,113 4,257 0,005 0,006 -7,527*** 

𝜇175 < 𝜇200 4,034 4,113 0,005 0,005 -4,436*** 

𝜇200 < 𝜇225 3,901 4,034 0,005 0,005 -7,551*** 

𝜇225 < 𝜇250 3,780 3,901 0,007 0,005 -6,072*** 

𝜇250 < 𝜇275 3,673 3,780 0,006 0,007 -5,246*** 

𝜇275 < 𝜇300 3,605 3,673 0,005 0,006 -3,639*** 

 ***significant at the 0.001 level (critical value: -3,2905) 

**significant at the 0.01 level (critical value: -2.5758) 

*significant at the 0.05 level (critical value: -1.9600)  

 

 

Table VI.2-d - Results of the approximate two-sample Gauss-Test 

Expected value (μ) Variance (σ2) t-statistic Critical  

t-value 
Sample 1 Sample 2 Sample 1 Sample 2 

193.355 310.581 340.770 2623.052 -11.989* 3.319 

*significant at the 0.001 level 



 

 


