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Steven R. Weller3 and Karl Worthmann4

Abstract— Motivated by a specific application in electricity
distribution networks, we present a hierarchical model predic-
tive control algorithm for scheduling energy storage devices. We
demonstrate that, for the proposed optimization problem, the
alternating direction method of multipliers can be implemented
in a distributed fashion. Numerical experiments supporting the
theoretical results are provided.

I. INTRODUCTION

A major challenge in decarbonizing of energy generation
is the integration of small-scale renewable generation and
storage devices into existing distribution grids. In this con-
text, the term microgrids is frequently used, see, e.g. [1],
[2], [3], [4], [5]. One example of a microgrid would be
a residential neighborhood with a single point of common
coupling between the neighborhood and the main grid. For
our purposes, each residence in the neighborhood consists
of a residential load, generation (e.g., in the form of solar
photovoltaics), and storage (e.g., in the form of a battery).
We refer to this collection of residential load, generation, and
storage as a Residential Energy System (RES) [6], [7], [8],
[9].

One benefit of an electricity distribution network contain-
ing microgrids is the potential to disconnect a microgrid
from the main distribution network. This is referred to as
islanding, whereby the microgrid maintains normal operation
using only the locally stored energy, energy locally generated
by renewable generation units (photovoltaic panels, wind
power, etc.), and, if present, conventional generators [1].
An important question in this context is whether or not
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microgrids should be operated by a central entity, e.g. a
microgrid operator. While many works suggest decentralized
or distributed approaches to frequency and voltage stabiliza-
tion [10], [11], scheduling of available storage devices, which
is also important for reliable operation of microgrids, is often
done in a centralized fashion [12], [13].

In previous papers [7], [9], we proposed a distributed
model predictive control scheme minimizing variations in
the vertical grid load, i.e. the load transferred at the point
of common coupling. In the present paper, we extend these
results to cover another important issue related to islanded
operation with limited or even no conventional generation. At
the start of and during islanded operation it is vital to know
the maximal allowable time window for which the microgrid
is able to work on its own without any need for conventional
generation or connection to the grid. Herein, we propose an
optimization problem to compute the maximal time interval
(starting from a specific point) for which the microgrid can
be disconnected without experiencing a shortage of energy.

In principle, such an optimization problem could be solved
by a central entity—like the microgrid operator—provided
knowledge on parameters and current state of charge of all
storage devices as well as future net consumption profiles
of each RES in the microgrid. This, however, would lead
to an inflexible and communication intensive setup, since
every change in an RES as well as the network topology
would have to be monitored by the central entity. Moreover,
privacy considerations may prevent the individual RESs
from sharing all this information with a central entity. For
this reason, we propose a hierarchical distributed solution
strategy with limited information exchange based on the
alternating direction method of multipliers (ADMM) [14].

The paper is structured as follows: In Section II the
model of the microgrid is introduced and the problem of
islanded operation is formulated. In Section III the hierar-
chical ADMM algorithm is developed and embedded in a
receding horizon formulation in Section IV. In Section V
we propose an optimization problem returning the maximal
grid disconnection window in the optimal solution. The
paper closes with numerical simulations in Section VII and
conclusions in Section VIII.

II. MODEL AND PROBLEM DESCRIPTION

Firstly, in Subsection II-A, a model for a microgrid of
RESs introduced in [6], [7] is recalled and extended. Sec-
ondly, in Subsection II-B, the general optimization problem,



which will be tackled by means of a distributed setup, is
described.

A. Distributed renewable energy systems
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Fig. 1. Visualization of a microgrid. A number of I ∈ N RESs connected
to the main grid through a point of common coupling. We assume that the
RESs can be disconnected from the main grid.
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Fig. 2. Visualization of Equation (2) for a single RES. The power demand
zi depends on the power consumption and power generation wi and can be
manipulated by charging/discharging the battery.

We consider a network, visualized in Figure 1, of I RESs,
I ∈ N connected to a main grid through the individual power
demand zi, i = 1, . . . , I. We assume that the RESs are
physically decoupled and that the system dynamics of the
i-th RES, i ∈ {1, 2, . . . , I}, is defined as

xi(k + 1) = αixi(k) + T
(
βiu

+
i (k) + u−i (k)

)
(1)

zi(k) = wi(k) + u+i (k) + γiu
−
i (k) (2)

with (αi, βi, γi) ∈ [0, 1]3.
The variables zi(k) [kW], representing the power demand

drawn from/supplied to the grid by each RES and given
by Equation (2), depend on the net consumptions wi(k)
[kW], i.e., the power generation of solar photovoltaic panels
minus the energy demand of the residents, and the battery
usage. The dynamics of the battery, Equation (1), are defined
through the state of charge xi(k) in [kWh] and the input
variables u+i (k) and u−i (k) in [kW]. The input u+i (k)
represents the power drawn from the grid to increase the state
of charge of the battery and the power demand zi(k) while
u−i (k) can be used to discharge the battery and decreases the
power demand of the i-th RES. The parameter αi models
losses due to self-discharge, βi and γi model losses due
to energy conversion and T (in hours [h]) represents the

discretization in time. Additionally, the storage device of
each RES is constrained by:

0 ≤ xi(k) ≤ Ci (3a)
ui ≤ u−i (k) ≤ 0 (3b)
0 ≤ u+i (k) ≤ ui (3c)

0 ≤ u−i (k)

ui
+

u+
i (k)

ui
≤ 1 (3d)

If max{βi, γi} < 1 holds, energy can be wasted meaning
that an RES can get rid of an energy surplus by continuously
charging and discharging its battery. Note that this possibility
is limited due to the battery constraint (3d). Additionally,
it is possible to change from charging to discharging (and
vice versa) between consecutive time steps k and k + 1.
Since in this case only a fraction of the time interval of
length T is used for charging and discharging, the upper
and lower bounds for charging and discharging have to
be adapted, which is captured by the constraint (3d). The
dynamics (1)–(2) and the constraints (3) extend the models
introduced in [6], [7]. Similar models of energy networks are
for example described in [15] and [16].

B. Problem formulation

In this section we define the optimization problem which
we will apply later in this paper to the islanded operation of
the microgrid model described in the previous section. For
a given time k and a prediction horizon N ∈ N the notation
z = (zT1 , z

T
2 , . . . , z

T
I )T is defined componentwise by

zi = (zi(k), . . . , zi(k +N − 1))T ;

i.e., z ∈ RNI . Moreover, we use · to denote the average of
a vector, e.g.

z :=
1

I

I∑
i=1

zi, z ∈ RN , (4)

defines the average power demand drawn from the grid.
The same notation is used for the other variables, e.g.
x, w, u+ and u−. 1 denotes the vector of appropriate
dimension with all entries equal to one. I denotes the identity
matrix of appropriate dimension. For fixed initial values
x0i = xi(k) and given net consumptions wi, the variables zi,
i ∈ {1, 2, . . . , I}, are confined to the compact and convex
(polytope) set

Di =

{
zi ∈ RN

∣∣∣∣ ∃ xi,ui satisfying xi(k) = x0i ,
(1) – (3) ∀ j ∈ {k, . . . , k +N − 1}

}
.

Let the cost function F : RNI ×RM → R be of the form

F (z, s) :=

I∑
i=1

fi(zi) + g (z) + h(s)

where fi : RN → R are local cost functions of the individual
RESs, g : RN → R is a cost function chosen by the grid
operator coupling the individual systems, and h : RM →
R is another cost function defined by the grid operator in
the auxiliary variable s ∈ S ⊆ RM , which will be used
to identify the maximal time the RESs can be disconnected



from the grid operator (i.e., the maximal time the microgrid
can be islanded) in Section V. Here, S ⊆ RM is a polytope,
which equals RM≥0 in our application. At every time step k,
we consider a minimization problem of the form

(z?, s?) := argmin
z,s

F (z, s)

s.t. A
∑I
i=1 zi +Bs− b ≤ 0

zi ∈ Di ∀ i ∈ {1, 2, . . . , I}
s ∈ S

(5)

where A ∈ Rm×N , B ∈ RM×m, b ∈ Rm define polyhedral
coupling constraints between the systems and the artificial
variable s. Recall that we have assumed that the RESs
are physically decoupled. Nevertheless, in the minimization
problem (5), the RESs are coupled through the objective
function and the inequality constraints, and hence a cen-
tralized controller is necessary to solve the optimization
problem to compute the individual charging and discharging
strategies. In the following section we will present a method
to rewrite the optimization problem in such a way that
distributed optimization on the local level is possible without
loosing optimality with respect to the original formulation
(5).

III. THE ALTERNATING DIRECTION METHOD OF
MULTIPLIERS

The alternating direction method of multipliers (ADMM)
is an iterative algorithm for solving the optimization problem
(5). In our presentation we focus on a hierarchical form of
the method which is suited to our problem and refer to [14]
and [17] for more general forms of ADMM algorithms and
dual decomposition methods.

A. The basic ADMM formulation and convergence results

To obtain a hierarchical algorithm, we introduce the vari-
ables ai ∈ RN (i = 1, . . . , I), a = (aT1 ,a

T
2 , . . . ,a

T
I )T , and

rewrite the minimization problem (5) in the form

(z?,a?, s?) := argmin
z,a,s

I∑
i=1

fi(zi) + g (a) + h(s)

s.t. (a, s) ∈ P
zi ∈ Di ∀ i ∈ {1, 2, . . . , I}
zi − ai = 0 ∀ i ∈ {1, 2, . . . , I}

where the polytope P is defined as

P =

{
(a, s) ∈ RN × RM

∣∣∣∣ I ·Aa +Bs− b ≤ 0
s ∈ S

}
. (6)

Observe that the optimization problem implicitly contains
the constraints a = 1

I
∑I
i=1 ai. To simplify the notation,

this constraint is not given in the problem formulation. The
augmented Lagrangian Lρ(z,a, s, λ) of the minimization
problem is given by

I∑
i=1

fi(zi) + g (a) + h(s) +
ρ

2
‖z− a‖2 +

I∑
i=1

λTi (zi − ai).

for Lagrange multipliers

λ = (λT1 , λ
T
2 , . . . , λ

T
I )T ∈ RIN

and a positive constant ρ ∈ R>0. For ρ = 0, we obtain the
usual definition of the Lagrangian.

The idea of ADMM is to iteratively find a solution of
the minimization problem (5) by repeatedly performing the
following sequence of update steps:

z`+1
i := argmin

zi∈Di

Lρ
(
z,a`, s`, λ`

)
(7a)

(a`+1, s`+1) := argmin
(a,s)∈P

Lρ
(
z`+1,a, s, λ`

)
(7b)

λ`+1 := λ` + ρ
(
z`+1 − a`+1

)
(7c)

for ` ∈ N. Convergence of the sequence (z`,a`, s`, λ`)`∈N
can be shown under certain convexity assumptions on the
objective function F . We use the assumptions and results
given in [14, Chapter 3.2] which are directly applicable to
the objective function proposed in the following section.

Assumption 3.1: Suppose that the following holds:
(i) The (extended-real-valued) functions fi, i = 1, . . . , I,

g and h are closed, proper, and convex.
(ii) The unaugmented Lagrangian L0 has a saddle point,

i.e., there exists (z?,a?, s?, λ?) such that

L0(z?,a?, s?, λ) ≤ L0(z?,a?, s?, λ?)

≤ L0(z,a, s, λ?)

holds for all λ ∈ RIN and (z,a, s) ∈ (RNI)2 × RM .
Remark 3.2: One class of problems satisfying Assump-

tion 3.1 are convex functions subject to nonempty, convex,
and compact constraints. Since convex functions attain their
minimum on compact sets, there exists a (possibly non
unique) primal optimal solution (z?,a?, s?). This implies the
existence of an optimal dual solution λ? satisfying the saddle
point condition (ii). For the results showing these properties
we refer to [18, Appendix C].

Theorem 3.3: If Assumption 3.1 holds, the iterates of (7)
satisfy the following convergence properties:
(i) The residuals r` := z`−a` converge to zero for `→∞.

(ii) The sequence (F (z`, s`))`∈N converges to the optimal
value F ? of Problem (5) for `→∞.

(iii) The dual variables λ` converge to the optimal dual point
λ? for `→∞.

A proof of this result, which is sufficient for our application,
is given in [14, Appendix A]. For a more detailed analysis
of the convergence properties of the ADMM scheme (7) we
refer to the references in [14].

B. Simplification of the ADMM formulation

The ADMM algorithm (7) can be solved in a distributed
manner because Equation (7a) splits into I separable opti-
mization problems

z`+1
i = argmin

zi∈Di

fi(zi) +
ρ

2
‖zi − ai‖2 + λTi (zi − ai) ,

which can be solved in parallel by every RES individually.
The optimization problem (7b) cannot be separated due to



the coupling in the function g. However, it is possible to
make the number of unknowns in this problem independent
of the number of RESs I by using the average variables
a ∈ RN instead of a ∈ RIN . In order to show this, we first
rewrite the minimization problem (7b) as

(a`+1, s`+1) = argmin
(a,s)∈P

Lρ
(
z`+1,a, s, λ`

)
= argmin

(a,s)∈P
g (a) + h(s) +

ρ

2

∥∥∥z`+1 − a
∥∥∥2 + I∑

i=1

λ`
T

i (z`+1
i − ai)

= argmin
(a,s)∈P

g (a) + h(s) +

I∑
i=1

ρ

2

∥∥∥z`+1
i − ai

∥∥∥2 + λ`
T

i (z`+1
i − ai)

= argmin
(a,s)∈P

g (a) + h(s) +
ρ

2

I∑
i=1

∥∥∥∥λ`iρ + z`+1
i − ai

∥∥∥∥2 . (8)

We then require the following lemma.
Lemma 3.4: For c,yi ∈ RN (i = 1, . . . , I) the minimizer

of { I∑
i=1

‖vi − yi‖

∣∣∣∣∣vi ∈ RN ,
1

I

I∑
i=1

vi = c

}
is given by vi = yi + c − y for all i ∈ {1, . . . , I} where
y = (1/I)

∑I
i=1 yi.

Proof: For yi = 0 for all i ∈ {1, . . . , I} the triangular
inequality implies

‖I · c‖ = min
vi,

1
I
∑I

i=1 vi=c

∥∥∥∥∥
I∑
i=1

vi

∥∥∥∥∥
≤ min

vi,
1
I
∑I

i=1 vi=c

I∑
i=1

‖vi‖

and equality is obtained for vi = c/I for all i ∈ {1, . . . , I}.
For the general case we use the coordinate transformation
ṽi = vi − yi. Then the equality constraint reads

1

I

I∑
i=1

ṽi =
1

I

I∑
i=1

vi −
1

I

I∑
i=1

yi = c− y

which shows the assertion.
Applying this result to the minimization problem (8) and

fixing the variables (a, s), we see that the optimal solution
satisfies

λ
`

ρ
+ z`+1 − a =

λ`i
ρ

+ z`+1
i − ai (9)

for all i ∈ {1, . . . , I} according to Lemma 3.4 with the
definition λ = 1

I
∑I
i=1 λi. Hence the minimization problem

(8) is equivalent to

min g (a) + h(s) + ρ
2

∑I
i=1

∥∥∥λ`

ρ + z`+1 − a
∥∥∥2

s.t. (a, s) ∈ P
(10)

where the number of optimization variables is independent
of the number of RESs.

Additionally, it can be shown that λi = λj holds for
all i, j ∈ {1, . . . , I} after the first iteration and hence, the
Lagrange multiplier λ ∈ RNI can be replaced by a Lagrange

multiplier λ ∈ RN . The update of the Lagrange multipliers
in Equation (7c) simplifies to

λ`+1
i = λ`i + ρ

(
z`+1
i − a`+1

i

)
= λ

`
+ ρ(z`+1 − a),

i.e., λ`+1
i = λ`+1

j for all i, j ∈ {1, . . . , I}. Hence also the
update of the dual variables is independent of the number of
RESs.

With these considerations, which follow the arguments
given in [14, Chapter 7.3], the updates of Equation (7b) and
(7c) reduce to the minimization problem

argmin
(a,s)∈P

g (a) + h(s) +
ρ · I

2

∥∥∥∥∥λ
`

ρ
+ z`+1 − a

∥∥∥∥∥
2

and the update

λ
`+1

= λ
`

+ ρ(z`+1 − a`+1).

The update (7a) of the variables zi of the individual RESs
given by the solution of the minimization problem

argmin
zi∈Di

fi(zi) +
ρ

2

∥∥∥∥∥zi +
λ
`

ρ
− a`i

∥∥∥∥∥
2

involves the variable ai which differs for all i ∈ {1, . . . , I}
and hence has to be transmitted to every RES individually.
To avoid the need to communicate individual ai’s, define

Π` :=
λ
`

ρ
+ z` − a`.

Then Equation (9) can be rewritten in the form

λ`i
ρ
− a`i = −z`i +

λ
`

ρ
+ z`+1 − a` = −z`i + Π`.

If the variable Π` is known by the individual systems then
the update z`+1

i can be computed by

argmin
zi∈Di

fi(zi) +
ρ

2

∥∥zi − z`i + Π`
∥∥2 (11)

without the knowledge of individual variables specific to
RES i.

C. The hierarchical distributed optimization algorithm
Algorithm 1 summarizes the ideas of this section and splits

the ADMM iterates in tasks which can be carried out by the
individual RESs in parallel and tasks which have to be done
by the central entity or the grid operator, respectively.

Algorithm 1 provides several properties beneficial for our
application including:
• Only the parameter Π is transmitted to the RESs and not

the energy demand zi. Hence privacy of data between
the individual RESs is maintained.

• The number of unknowns in the optimization problem
of the grid operator is independent of the number of
RESs.

• The RESs do not need to know the objective functions
g and h defined by the central entity. This allows the
grid operator to modify the objective function without
communicating this to the RESs.



Algorithm 1 Hierarchical distributed optimization algorithm
Phase 1 (RES i, i ∈ NI): Receive Π`.
• Solve the minimization problem

z`+1
i := argmin

zi∈Di

fi(zi) +
ρ

2

∥∥zi − z`i + Π`
∥∥2

and send z`+1
i to the central entity.

Phase 2 (Central Entity): Receive z`+1
i , i = 1, 2, . . . , I.

• Compute the average z`+1 = 1
I
∑I
i=1 z

`+1
i .

• Solve the minimization problem

(a`+1, s`+1) = argmin
(a,s)∈P

(
g (a) + h(s)

+ρ·I
2

∥∥∥z`+1 − a + λ
`

ρ

∥∥∥2 ).
• Update the Lagrange multiplier

λ
`+1

= λ
`

+ ρ
(
z`+1 − a`+1

)
.

• Compute and broadcast

Π`+1 = z`+1 − a`+1 +
λ
`+1

ρ
.

Increment the iteration counter `.

IV. RECEDING HORIZON CONTROL

The final point in the preceding list is of particular
interest when Algorithm 1 is embedded in a receding horizon
scheme described in Algorithm 2, since it allows the grid
operator to change the objective function at every time step
k without changing the network or communication structure
and without changing the optimization problem on the local
level. Moreover, the grid operator does not need to react
to changes in the local system dynamics (1) and (2) or to
changes in the constraints (3).

Algorithm 2 Distributed model predictive control
1) Initialization:

RES i, (i ∈ NI):
• Measure the initial state of charge of the battery
xi(k) = x0i and predict the net consumption wi

Central Entity:
• Define the objective functions g and h.

2) Distributed optimization: Apply Algorithm 1 to com-
pute the solutions u+?

i and u−?i for i = 1, . . . , I.
3) Apply u+?

i (k) and u−?i (k) for i = 1, . . . , I and
increment the time index k

V. ISLANDED OPERATION OF A MICROGRID

In this section, we set up an optimal control problem which
serves two purposes: when solved once at time k, its solution
tells us the number of time steps k̄ ∈ N0 the grid can be
operated in islanded mode after a given time instant k +
k?, k? ∈ N0. When solved iteratively within Algorithm 2,

it yields the control strategy for keeping the microgrid in
islanded mode from k + k? to k + k? + k̄.

We have the following two distinct applications in mind.
• k? ≥ 1: A scheduled disconnection from the grid for

an a priori specified time window.
• k? = 0: An unscheduled disconnection.

The main difference between the two cases is that in the
first scenario the microgrid can specifically prepare itself
in advance by charging the batteries until time k + k?,
neglecting (possibly conflicting) other objectives. Despite
these differences, both settings can be handled with the
proposed methodology by adequately adapting the objective
function and the constraints in Algorithm 1, which shows
the flexibility of our approach.

The possibility of disconnecting the grid at time k? is
equivalent to the existence of zi ∈ Di (for i ∈ {1, . . . , I})
such that 1

I
∑I
i=1 zi(k

?) ≤ 0 is satisfied, i.e., the overall
power demand is less or equal to zero at time k?. To find
the maximal consecutive number of time steps from k? to
k? + q? (q? ≥ 0) such that 1

I
∑I
i=1 zi(k

? + q) ≤ 0 holds
for all q ∈ {0, . . . , q?} we define the following minimization
problem.

Definition 5.1: For a given time index k? ∈ {0, . . . , N −
1}, set M = N − k? and define the grid disconnection
problem as

(a?, s?) ∈ argmin
(a,s)∈Ps

h(s)

where

Ps =

(a, s) ∈ RN × RM
∣∣∣∣∣∣
(

0 IM
)
a− s ≤ 0

a = 1
I
∑I
i=1 zi

s ∈ S = RM≥0, zi ∈ Di

 .

(12)

and the objective function h : RM≥0 → R is defined as

h(s) =

M∑
q=1

(M + 1− q)κ · s(q)

for a positive constant κ > 0.
We will show, that the number of leading zeros of a pos-

sibly non-unique optimal solution s? provides the maximal
disconnection time if the weighting factor κ > 0 is chosen
appropriately. Observe that the objective function h is linear
and places a heavier penalty on the smaller indices of s.

To give an illustrative motivation for choice of the objec-
tive function and the choice of κ, we assume that, for all
i ∈ {1, . . . , I}, αi = 1 before we prove the general case in
Theorem 5.2.

Since the weighting parameters in the objective function h
are positive, the constraint s ∈ RM≥0 implies a(k? − 1 +
q) = s(q) for all optimal s? with a(k? − 1 + q) ≥ 0,
q ∈ {1, . . . ,M}. For simplicity, consider an isolated (power)
exchange between s(q1) and s(q2) (q1 < q2) of a feasible
solution s. Due to the linear system dynamics, reducing s(q1)
by γiε leads to an increase of s(q2) by εβ−1i in the case that
losses have maximal impact. This is for example the case



if a(k? − 1 + q1) = s(q1) and a(k? − 1 + q2) = s(q2)
and a(k?−1+q1) can only be decreased by using a smaller
u−i (k?−1+q1) by at least one RES i (i.e., discharge ε more
from the battery at time k? − 1 + q1) and simultaneously
increase u+i (k? − 1 + q2) (i.e., charge ε more at time
k? − 1 + q2). Charging more at time k? − 1 + q2 could for
example be necessary to prevent that the battery constraints
(3a) are violated at time steps k?−1+q for q > q2. Moreover,
these considerations show, that decreasing s(q1) by γiε can
always be compensated by maximally increasing s(q2) by
ε/βi.

If this power exchange results in a new feasible s̃ with

s̃(q1) = s(q1)− γiε and s̃(q2) = s(q2) + ε/βi

and s̃(q) = s(q) for all q /∈ {q1, q2}, and since q1 < q2 by
assumption, κ has to be chosen such that the value of the
objective function decreases, i.e., h(s̃) < h(s) holds. Hence
we obtain the estimate

0 > h(s̃)− h(s)

= −(M + 1− q1)κγiε+ (M + 1− q2)κε/βi (13)

or equivalently

γi · βi >
(
M + 1− q2
M + 1− q1

)κ
.

Since this inequality has to hold for arbitrary q1 < q2,
q1, q2 ∈ {1, . . . ,M} the estimate

γi · βi >
(
M − 1

M

)κ
>

(
M + 1− q2
M + 1− q1

)κ
has to be satisfied which leads to the condition

κ >
log(γ · β)

log
(
M−1
M

) .
That this condition indeed suffices is rigorously shown in the
following theorem.

Theorem 5.2: Consider the grid disconnection problem
defined in Definition 5.1. For an arbitrary optimal solution
(a?, s?) ∈ Ps and an arbitrary feasible solution (a], s]) ∈
Ps, we define q?, q] ∈ {1, . . . ,M + 1} as the maximal
indices such that, for all q < q?, s?(q) = 0 and, for
all q < q], s](q) = 0. Let β := mini=1,...,I{βi} and
γ := mini=1,...,I{γi} define the maximal losses of the
battery models.

If κ is chosen such that

κ > log (β · γ)
/

log

(
M − 1

M

)
(14)

then q? ≥ q] holds, i.e., the grid can be disconnected for at
most q? − 1 time steps.

Proof: Assume that αi = 1 and let (a?, s?) ∈ P be an
optimal solution of the minimization problem with κ chosen
according to Equation (14). Let q? denote the first entry of
s? which is unequal to zero, i.e., we have s?(q) = 0 for all
q < q? and s?(q?) > 0. (In the case s? = 0, the statement of
the theorem is trivially satisfied, and hence we can assume
that q? ≤M .)

Assume there exists a feasible solution (a], s]) ∈ Ps such
that s](q) = 0 holds for all q < q] and q? < q]. We will show
that the existence of (a], s]) contradicts the optimality of
(a?, s?). Additionally, we assume without loss of generality
that a?(k?−1+q) = s?(q) and a](k?−1+q) = s](q) holds
for all q with a?(k? − 1 + q) ≥ 0 and a](k? − 1 + q) ≥ 0,
respectively.

Since s](q?) = 0 and s?(q?) = a(k? − 1 + q?) > 0 there
is an index i ∈ {1, . . . , I} such that u+?i (k? − 1 + q?) > 0
or u−i (k?−1+q?) > ui, i.e., one of the constraints (3b) and
(3c) is not active and it is possible to decrease u+?i (k?−1+
q?) and/or u−i (k? − 1 + q?) to reduce z?i (k

? − 1 + q?) and
consequently also a(k? − 1 + q?) and s?(q?). If we reduce
u−?i (k? − 1 + q?) by ε > 0, i.e.,

ũ−?i (k? − 1 + q?) := u−?i (k? − 1 + q?)− ε (15)

then the state xi decreases to

x̃?i (k
? − 1 + q) := x−?i (k? − 1 + q)− ε (16)

for all q > q?. If x−?i (k?+q) > 0 for all q > q? then u−?i (k−
1 + q?) can be changed without violating the constraints (3)
and the variable s?(q?) can be reduced by γi · ε/I which
contradicts the optimality. The same argument applies if it
is possible to change u+?i (k? − 1 + q?).

Hence, we can assume, that it is only possible to change
u−?i (k? − 1 + q?) (or u+?i (k? − 1 + q?), respectively) by
simultaneously changing u−?i (q) (or u+?i (q)) at a time q <
k? − 1 + q? or q > k? − 1 + q?. Note that one of these
options needs to be possible due to the existence of the
solution (a], s]) and since the constraints of the systems are
decoupled, one can concentrate on one RES only.

If it is possible to increase x?i (q) by increasing u−?i (q)
(or u+?i (q) increasing) at time steps q < k? − 1 + q?

without increasing s?(q) for all q < k? − 1 + q? (i.e., there
exist time steps q < k? − 1 + q? such that a?(q) can be
increased without changing s?) then this strategy increases in
particularly x?i (k

?−1+q?). Hence, it is possible to decrease
u+?i (k?− 1 + q?) or u−?i (k?− 1 + q?) without violating the
constraints x?i (q) ≥ for q > k? − 1 + q?, i.e., s?(q?) can be
reduced which violates the optimality of s?.

If the strategy (15) leads to x−?i (k?−1+q) < 0 for some
q > q?, again a contradiction to optimality can be derived
based on the estimate (13) and the choice of κ by decreasing
s?(q?) and increasing s?(q) for q > q?. Hence, (a], s]) ∈ Ps
does not exist, which completes the proof for αi = 1.

Assume that αi < 1, for at least one i ∈ {1, . . . , I}. The
strategy of reducing s(q?) by increasing a?(q) for q < q? is
applicable in the same way as in the case αi = 1. Moreover,
if s(q?) can be decreased using the idea of Equation (16) and
simultaneously increasing s(q) for q > q?, then the amount
of energy which is lost due to self discharge for q > q?

decreases (i.e., the corresponding u+?i (k?−1+q?) or u?i (k
?−

1+q?) can be decreased more before x+?i (k?−1+q)−ε = 0
becomes active) which increases the amount s(q?) can be
reduced.

It has been shown in Theorem 5.2 that an optimal pair
(a?, s?) provides the maximal disconnection time if κ is



chosen such that Condition (14) holds. However, for very
large M , large values of κ are required, which lead to a
numerically unstable scaling of the cost function h. Never-
theless, if a maximal disconnection time can be estimated,
the presented approach can be easily generalized such that κ
remains reasonably sized, e.g. the maintenance work requires
at most eight hours of the 24 hours within the prediction
horizon N . Moreover, numerical experiments indicate that
κ = 1 works well even if Condition (14) is violated.

Remark 5.3: If no losses are considered, i.e., β = γ = 0,
then any value κ > 0 can be used in the objective function
h. For the values M = 48 and β = γ = 0.95 we obtain
κ > 4.88 from Condition (14).

Remark 5.4: If the maximal duration of the islanded mode
is a priori specified, the constraints

(
0 IM 0

)
a−s ≤ 0

can be used instead of
(

0 IM
)
a − s ≤ 0 to obtain a

smaller value M and, hence, a smaller κ.
Remark 5.5: Since the objective function is convex and

defined on a convex and compact set (compactness of S can
be easily enforced), Assumptions 3.1 hold and convergence
of Algorithm 1 can be concluded from Theorem 3.3.

VI. OTHER PERFORMANCE MEASURES

In Section V, we concentrated on operation of a microgrid
in islanded mode. However, the grid operator may also be in-
terested in reducing consumption peaks. The introduced cost
function allows to combine this objective with the previously
presented operation in islanded mode. To this end, we use
the degrees of freedom regarding the choice of the objective
function and the constraints to optimize a so called peak-
to-peak performance metric and, then, couple it with the
islanded mode. Furthermore, the goals of the individual RESs
can be taken into account by suitably choosing the local
objective functions fi and the corresponding constraints Di,
i ∈ {1, 2, . . . , I}.

A. Peak-to-peak performance

If the microgrid is operated in a ‘normal’ mode, i.e.,
no outage is expected and no maintenance is scheduled,
as argued in [7] and [9] it is beneficial to minimize the
fluctuations in the energy demand and to penalize the devi-
ation from a given reference value, for example the average
power demand ζ = 1

IN
∑I
i=1 1

T zi. Hence, a penalty from
a given reference for the next k? ∈ {0, . . . , N − 1} time
steps can be realized using the cost function gk?(a) =∑k?−1
j=0

(
a(j)− ζ

)2
.

B. Combination of cost functions

As already argued, the grid operator can change the
objective function in every MPC iteration without notifying
the RESs. Consider the minimization problem of the grid
operator

min
(a,s)∈Ps

η · gk?(a) + ν · h(s) s.t.
(

0 I
)
a− s ≤ 0

with positive weights η, ν ∈ R>0. In this setting the
deviation from the average is minimized until the point of

disconnection k? is reached, and the function h makes sure
the length of the disconnection time is optimized.

Remark 6.1: Note that the maximal disconnection time
according to Theorem 5.2 can only be guaranteed for η = 0.
Hence η has to be chosen appropriately to keep the focus on
the islanded mode.

VII. NUMERICAL EXPERIMENTS

In this section we visualize the results obtained by Al-
gorithm 1 and Algorithm 2. We consider a setting of 300
RESs using the constants Ci = 4[kWh], −ui = ui = 0.9,
(αi, βi, γi) = (0.96, 0.94, 0.98) and x0i = 2[kWh] for i =
1, . . . , 300. Moreover we use a discretization of T = 0.5[h]
and a prediction horizon N = 48. The parameter ρ in
the ADMM formulation is set to ρ = 10. To indicate the
disconnection time, we use the notation hk? instead of h.
The sequences (wi(k))k∈N for i = 1, . . . , 300 are taken from
a dataset provided by the Australian electricity distribution
company Ausgrid. For a detailed analysis of the dataset see
[19].

A. Results of Algorithm 1

In Figure 3 the solutions of Algorithm 1 using the objec-
tive functions

F (z, s) = ηp · g24

(
1

I

I∑
i=1

zi

)
+
I
20
· h24(s) (17)

with η1 = 0 and η2 = 103 are visualized. For the objective
function h24 we use κ = 2.5 which satisfies the condition
given in Theorem 5.2. Recall that the subscript 24 indicates
a planned disconnection from k∗ = 24 (i.e., after 12 hours).
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Fig. 3. Visualization of the variable s and the average values x, z,
and u for a single minimization problem with different weights. The
microgrid is disconnected after 12 hours and can stay islanded for 5 hours.
Additionally, the uncontrolled power demand without storage devices is
shown for comparison.

For the given initial state and parameters, the grid can be
disconnected for 5 hours. In the case η 6= 0, additionally
the vertical grid load is minimized in the first 12 hours.
Observe that at the time the microgrid must be reconnected,



the average state of charge of the batteries is still at 50%.
Hence, the requirement that the microgrid be reconnected is
not due to a shortage of locally stored energy, but rather due
to the maximal discharging rate being too small to satisfy
the microgrid demand.

B. Closed-loop simulation of Algorithm 2

In Figure 4 the closed loop performance of the receding
horizon Algorithm 2 is visualized. The grid operator wants
to disconnect the grid after 48 time steps. Hence, the peak-
to-peak variation is penalized and the disconnection time is
maximized.

After 24 hours the grid is disconnected and stays discon-
nected for 14 time steps. After the RESs are connected again,
the simulation is continued by minimizing the deviation from
the average using the function g48. As already pointed out,
since only the cost function of the grid operator changes in
this process, the RESs do not need to change anything on
the local level.

For the closed loop simulation the weights η = 10 and
ν = I/20 are used and κ is set to κ = 1. Even though
κ = 1 does not satisfy condition (14) of Theorem 5.2, the
maximal disconnection time is returned, which shows, that
condition (14) is very conservative in our application.
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Fig. 4. Visualization of the average values x, z, and u for a simulation of
50 hours. During the first 24 hours, the deviation with respect to the average
demand is penalized and the maximal disconnection time is computed.
Afterwards, the microgrid is disconnected for 14 time steps (7 hours) before
again the deviation from the average is penalized. The controlled power
demand (blue) can be compared with the uncontrolled power demand (cyan)
in the second graph.

VIII. CONCLUSIONS

In this paper we presented a hierarchical distributed opti-
mization algorithm based on the alternating direction method
of multipliers and designed for the control of a microgrid
coordinated by a grid operator. We have shown how the
flexibility in the objective function can be used to design
an objective function to compute the maximal time interval
that the microgrid can be operated in an islanded mode. The
theoretical results are visualized by numerical simulations.

Future research will concentrate on the design of addi-
tional objective functions focusing on different objectives of
the grid operator. Additionally we will investigate the speed
of convergence of the distributed optimization algorithm
especially in the context of model predictive control using
warm-start techniques.
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