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Abstract 

 

Sirtuins are a highly conserved family of protein deacylases that are important regulators 

of metabolism, longevity and aged-related diseases. There are seven sirtuin isoforms in mammals 

with different subcellular localization, substrates and biological functions. Three sirtuin 

isoforms, Sirt3-5, are located in the mitochondria and play significant roles in all mitochondrial 

processes. This study investigates the modulations of small molecule compounds on 

mitochondrial sirtuins Sirt3 and Sirt5 using structural characterization as well as biochemical and 

biophysical analysis.  

 

Resveratrol, a polyphenol found in red wine, was reported to activate Sirt1. Testing 

resveratrol and its related compounds including piceatannol, polydatin, 4’-bromo-resveratrol 

against Sirt3 showed an inhibitory effect. Among these compounds, brRESV is the most potent 

Sirt3 inhibitor. Crystal structures of Sirt3 in complex with FdL-1 peptide and 

piceatannol/polydatin showed a direct interaction between the compounds and the peptide 

coumarin ring to induce non-productive substrate binding, thus inhibit the enzyme activity. 

Crystal structures of the complex Sirt3/FdL-1/4’-bromo-resveratrol and Sirt3/ACS2/4’-bromo-

resveratrol revealed two different compound binding sites. Biochemical and binding data 

indicated that the binding site of 4’-bromo-resveratrol in the FdL-1 complex involved in 

inhibition mechanism whereas the compound binding site in the ACS2 complex might imply the 

site for the activation mechanism of resveratrol on Sirt1.  

 

Resveratrol unrelated compounds including SRT1720, a potent synthetic Sirt1 activator, 

and Ex-527, a potent Sirt1 inhibitor, also inhibited Sirt3. In the crystal structure of the complex 

Sirt3/carba-NAD
+
/SRT1720, the compound showed competition with substrate peptide by 

occupying the binding region of acetyl lysine. SRT1720 interacts with NAD
+
 and the binding 

analysis indicated that the NAM moiety of NAD
+
 is essential for SRT1720 binding. The crystal 

structure of Sirt3 in the presence of NAD
+
 and SRT1720 only showed the ADP-ribose part 

implying the hydrolysis of NAD
+
 and the importance of NAM moiety in SRT1720 binding. In 

contrast to the SRT1720 inhibition mechanism, Ex-527 stabilized a closed sirtuin conformation 
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and prevented the product 2'-O-acetyl-ADP-ribose release. Crystal structure of the complex of 

Sirt3/native O-alkylamidate intermediate provided more information about the deacetylation 

reaction. 
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Zusammenfassung 

 

Sirtuine sind eine Familie hochkonservierter Proteindeacylasen, die wichtige Regulatoren 

des Metabolismus, der Lebensdauer und alters-assoziierter Krankheiten sind. Säugetiere besitzen 

sieben Sirtuinisoformen, die sich in ihrer subzellulären Lokalisation, ihren Substraten und 

biologischen Funktionen unterscheiden. Drei Sirtuinisoformen, Sirt3-5, sind mitochondrial 

lokalisiert und spielen eine entscheidende Rolle in allen mitochondrialen Prozessen. Diese Arbeit 

untersucht die Modulation von niedermolekularen Wirkstoffen auf die mitochondrialen Sirtuine 

Sirt3 und Sirt5 mittels struktureller Charakterisierung als auch anhand biochemischer und 

biophysikalischer Analyse. 

 

Über Resveratrol, ein in Rotwein vorkommendes Polyphenol, ist bekannt, dass es Sirt1 

aktiviert. Die Untersuchung von Resveratrol und dessen verwandten Wirkstoffen wie 

Piceatannol, Polydatin, 4´-Bromoresveratrol gegen Sirt3 zeigte eine inhibitorische Wirkung. Von 

diesen Wirkstoffen ist 4´-Bromoresveratrol der stärkste Sirt3-Inhibitor. Kristallstrukturen von 

Sirt3 komplexiert mit dem FdL-1-Peptid und Piceatannol/Polydatin zeigten eine direkte 

Interaktion dieser Wirkstoffe mit dem Coumarinring des Peptids. Dies induziert eine 

unproduktive Substratbindung, die dadurch die Enzymaktivität inhibiert. Kristallstrukturen der 

Sirt3/FdL-1/4’-bromo-resveratrol- und Sirt3/ACS2/4’-bromo-resveratrol-Komplexe offenbarten 

zwei unterschiedliche Wirkstoffbindestellen. Biochemische Daten und Bindungsdaten deuteten 

an, dass die 4’-bromo-resveratrol-Bindestelle im FdL-1-Komplex im Inhibitionsmechanismus 

involviert ist. Die Wirkstoffbindestelle im ACS2-Komplex hingegen könnte die Bindestelle für 

den Aktivierungsmechanismus von Resveratrol gegenüber Sirt1 implizieren. 

 

Wirkstoffe wie SRT1720, ein potenter synthetischer Sirt1-Aktivator, und Ex-527, ein 

potenter Sirt1-Inhibitor, die beide Resveratrol nicht ähneln, inhibierten auch Sirt3. In der 

Komplexstruktur von Sirt3/carba-NAD
+
/SRT1720 kompetierte der Wirkstoff mit dem 

Substratpeptid, indem er die Bindestelle des Acetyllysins besetzt. SRT1720 interagiert mit NAD
+
 

und Bindestudien deuten an, dass die Nikotinamidgruppe des NAD
+
 für die SRT1720-Bindung 



Zusammenfassung 8 

 

essenziell ist. Im Gegensatz zum Inhibitionsmechanismus von SRT1720 stabilisiert Ex-527 die 

geschlossene Sirtuinkonformation und verhinderte dadurch die Freisetzung des Produkts 2´-O-

acetyl-ADP-Ribose. Die Kristallstruktur des Komplexes aus Sirt3/nativem O-alkylamidat-

Intermediats lieferte mehr Information über die Deacetylierungsreaktion. 
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1. Introduction 

1.1. Caloric restriction (CR) and aging 

 Caloric restriction (CR) is a dietary regimen based on low calorie intake up to 40 percent. 

Over 75 years ago, Clive McCay and colleagues first found that rats fed a caloric restricted diet 

live longer than ad libitum (freely fed) (McCay, et al., 1989). Since then, similar observations 

were reported in a variety of species including yeast, fruit flies, worms, etc. (Lin, et al., 2002; 

Masoro, 2005). In addition, many studies found that CR without malnutrition can prevent or 

delay a wide number of chronic diseases, such as cancer, diabetes, autoimmune, respiratory 

disease, Alzheimer disease and Parkinson disease (Cohen, et al., 2009; Longo and Fontana, 

2010; Masoro, 1990) indicating that CR retards aging processes.   

 

1.2. Sirtuins and their roles in CR, aging and human age-related diseases 

Sirtuins are a family of NAD
+
-dependent protein deacetylases conserved throughout 

evolution from archaebacteria to eukaryotes. They are homologs to the yeast Sir2 (silent 

information regulator 2) (Lin, et al., 2000). 

    Sir2 was proven to be required for lifespan extension in yeast by CR (Kaeberlein, et al., 

1999; Lin, et al., 2000). The ability of glucose restriction to extend lifespan was blocked in yeast 

deleting Sir2 gene (Lin, et al., 2000). Since then, many studies focus on Sir2 homologs and their 

relation to aging. Sir2 homolog induces lifespan extension in worms (Wang and Tissenbaum, 

2006) and flies (Rogina and Helfand, 2004). Sirt1 was described as a key role in regulating the 

metabolic response to CR (Cantó and Auwerx, 2009). Sirt3 mediates CR to age-related hearing 

loss, the hallmark of mammalian aging and required for the reduction of oxidative damage 

(Someya, et al., 2010). Sirt6 prolongs lifespan in male mice (Kanfi, et al., 2012) and can be act 

as a tumor suppressor (Lombard and Miller, 2012). 

 Many reports suggested the relation of sirtuins to various age-related diseases such as 

metabolic abnormalities, cancer, neurodegenerative diseases, cardiovascular, etc. (Sebastian, et 
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al., 2012). Sirtuins can control tumorigenesis due to their ability in regulation of genomic 

stability such as Sirt1 modulates cellular stress responses and DNA repair, deacetylates the 

proto-oncogene Myc to prevent transformation (Martinez-Pastor and Mostoslavsky, 2012; Yuan, 

et al., 2009). Some reports suggested that Sirt3 and Sirt6 seem to be tumor suppressors due to 

their ability to destabilize HIF-1α (hypoxia-inducible factor 1-α) through down regulation of 

ROS (reactive oxygen species) and induce apoptosis in cancer cell lines (Sebastian, et al., 2012). 

Sirt1 was described as a protector against neurodegenerative diseases such as Alzheimer disease, 

Parkinson disease and Huntington disease (Arima, et al., 1998; Haass and Selkoe, 2007; Jiang, et 

al., 2012). Sirt2 supports differentiation and migration of some brain cells through deacetylating 

α-tubulin and Par-3 (protease activated receptor 3) (Beirowski, et al., 2011; Li, et al., 2007). 

Moreover, Sirt1 and Sirt7 possess cardiovascular protective properties by deacetylating p53 or 

regulating fatty acid oxidation (Sebastian, et al., 2012). Sirt3 is a regulator of cardiac function by 

reducing cellular ROS or suppressing Akt phosphorylation via AMPK (AMP-activated kinase) 

(Pillai, et al., 2010; Sack, 2011). Sirt6 protect against cardiac hypertrophy by inhibiting NF-κB 

(nuclear factor-κB) or IGF (insulin-like growth factor)-Akt signaling (Sundaresan, et al., 2012; 

Yu, et al., 2012). 

 

1.3. The mammalian sirtuin enzyme family 

1.3.1. Overview of the mammalian sirtuin family: classification, localization and function 

In mammals, there are seven members of the sirtuin family, Sirt1–7 that differ in their 

cellular localization and function (Haigis and Sinclair, 2010; Michan and Sinclair, 2007). The 

seven mammalian sirtuins share a highly conserved catalytic core domain but have differences in 

their N- and C-terminal ends (Frye, 2000) (Figure 1.1).  
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Figure 1.1. Schematic illustration of seven mammalian sirtuins. 

 

Based on phylogenetic analysis, mammalian sirtuins can be divided into four classes. 

Sirt1-3 belong to class I, Sirt4 to class II, Sirt5 to class III and Sirt6, Sirt7 to class IV (Frye, 

2000). Sirt1 is mainly found in the nucleus but also present in the cytosol (Michan and Sinclair, 

2007), Sirt2 in the cytoplasm (North, et al., 2003), Sirt3-5 in mitochondria (Gertz and Steegborn, 

2010), and Sirt6 and Sirt7 in the nucleus (Michishita, et al., 2005).  

Sirt1-3 have robust deacetylation activity, whereas Sirt4 and Sirt6 were reported to be 

ADP-ribosyltransferases (Haigis, et al., 2006; Mao, et al., 2011). Sirt6 can also act as a 

deacetylase (Michishita, et al., 2008). Sirt7 was recently confirmed as a deacetylase due to its 

important role in deacetylation of H3K18Ac (acetylated lysine 18 of histone H3) (Barber, et al., 

2012). Sirt5 was initially reported to deacetylate CPS1 (carbamoyl phosphate synthase 1) 

(Nakagawa, et al., 2009) but recently described as a protein desuccinylase and demalonylase 

(Du, et al., 2011) indicating that sirtuins are a family of deacylases.  

Sirt1 is the most studied mammalian sirtuin isoform which was first described as a 

histone deacetylase (Haigis and Sinclair, 2010) but also has other protein targets such as p53 

which is deacetylated upon DNA damage or oxidative stress (Vaziri, et al., 2001) and forkhead 

transcription factors (FOXO) in lipid and glucose metabolism (Motta, et al., 2004). Sirt2 is a 

tubulin deacetylase (North, et al., 2003). Sirt3-5 play important roles in metabolism, apoptosis 

and intracellular signaling (Verdin, et al., 2010). More details of Sirt3-5 are in the Mitochondrial 
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sirtuins section (see below). Sirt6 is involved in DNA repair (Lombard, 2009), regulates immune 

response that relates to NF-κB targets (Kawahara, et al., 2009; Michishita, et al., 2008) and 

controls TNF (tumor necrosis factors)  production (Van Gool, et al., 2009). Sirt7 is H3K18Ac 

deacetylase that functions in chromatin regulation, cellular transformation programs and tumour 

formation (Barber, et al., 2012).  

 

1.3.2. Mitochondrial sirtuins 

 NAD
+
-dependent protein deacylase is a major enzymatic activity of sirtuins. Proteomic 

studies implied that a large number of mitochondrial proteins are acetylated (Verdin, et al., 

2010). NAD
+
 is an essential electron carrier in various metabolic processes such as energy 

production, fatty acid metabolism, urea cycle, etc., which are integrated by mitochondria. Since 

sirtuins use NAD
+
 as a cosubstrate, Sirt3-5 which have been identified in the mitochondrial 

matrix are directly linked to mitochondrial processes and influence mitochondrial functions 

(Figure 1.2).  

 

 

 

Figure 1.2. Mitochondrial sirtuins and their links to mitochondrial processes. Figure is 

reused with permission from Elsevier Limited (Verdin, et al., 2010).   
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Sirt3 seems to be the major mitochondrial deacetylase since mice lacking Sirt3 showed a 

hyperacetylation of mitochondrial proteins (Lombard, et al., 2007). The mitochondrial protein 

acetylcoenzyme A synthase 2 (ACS2) which converts acetate to acetyl-CoA in the presence of 

ATP is the first identified Sirt3 substrate (Hallows, et al., 2006). Glutamate dehydrogenase 

(GDH) is also Sirt3 substrate since Sirt3 deacetylates and activates GDH activity by 10% 

(Schlicker, et al., 2008). Sirt3 interacts with Complex I of the electron transport chain and 

deacetylates various proteins in this complex (Ahn, et al., 2008). The mitochondrial matrix 

enzyme CPS1 which plays an important role in the rate-limiting step of the urea cycle was 

identified as a Sirt5 substrate (Nakagawa, et al., 2009). Recently, Sirt5 has been determined as a 

major demalonylase and desuccinylase since mice lacking Sirt5 showed hypermalonylation and 

hypersuccinylation (Peng, et al., 2011). Two Sirt5 residues in the catalytic pocket, Tyr102 and 

Arg105, are mandatory for the demalonylase and desuccinylase activities (Du, et al., 2011). 

These two residues are conserved in sirtuin class III of different species (Du, et al., 2011). The 

enzymatic function of Sirt4 remains unclear. So far, Sirt4 has no detectable deacetylase activity 

and weak ADP-ribosyltransferase activity (Ahuja, et al., 2007; Haigis, et al., 2006). 

 

1.3.3. Structure of sirtuins 

Crystal structures of different sirtuin homologs including apo protein or in complex with 

substrates or small molecules have been published. The structure of yeast Hst2 (PDB ID 1Q14) 

(Zhao, et al., 2003) contains the full-length protein whereas the remaining structures show only 

the core domain. The full length yHst2 structure implies the role of N- and C-terminal region of 

sirtuins in the regulation of substrate binding (Zhao, et al., 2003). 

The conserved catalytic core consists of two domains, a large Rossmann-fold domain for 

NAD
+
 binding and a variant small zinc-binding domain that may be involved in substrate 

binding (Sanders, et al., 2010; Sauve, et al., 2006) (Figure 1.3). The Rossmann-fold domain 

consists of six parallel β strands forming a β sheet which is sandwiched between several α 

helices on each side (Min, et al., 2001). The two modules of the zinc-binding domain include 

three β strands forming an antiparallel β sheet and a helical region with three or four helices 
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dependent on the sirtuin member. Four cysteine residues coordinate the zinc ion in a tetrahedral 

conformation to stabilize the structure (Min, et al., 2001). A cleft where catalysis takes place is 

formed between two domains by four linking loops. This region is the most conserved with high 

sequence homology among sirtuin family.  

The largest of these four linking loops, called cosubstrate binding loop, is very dynamic. 

The cosubstrate binding loop is highly flexible when NAD
+
 is not bound and becomes well-

ordered through NAD
+
 binding (Zhao, et al., 2004) indicating that its conformation is dependent 

on the presence of NAD
+
. The NAD

+
 binding site can be divided in three pockets: an adenine 

binding pocket (pocket A), a nicotinamide (NAM) ribose binding pocket (pocket B) and a NAM 

binding pocket (pocket C). Different ligands in NAD
+
 site induce slightly conformational 

changes of the cosubstrate binding loop (Avalos, et al., 2005; Sanders, et al., 2007).    

The acetyl lysine of peptide substrate inserts into a hydrophobic tunnel of the cleft  

between two domains. When comparing the protein conformation with and without peptide 

substrate, peptide binding induces a shift in the linking loop between two domains and brings 

two domains closer together (Cosgrove, et al., 2006). The substrate peptide orientation and 

interaction with protein residues described in different crystal structures strengthen one 

mechanism that different sirtuins discriminate among substrates.  

The NAD
+
 cosubstrate inserts from opposite site with the acetylated substrate into the 

cleft between two domains (Sanders, et al., 2010). The conformation of NAM ribose is variable 

dependent on NAD
+
 analogs, substrate peptides and sirtuin homologs. The density of the ADPR 

part including the adenine ribose and NAM ribose is well defined whereas the NAM moiety is 

almost invisible in different sirtuin structures in the presence of NAD
+
 (Chang, et al., 2002; 

Nguyen, et al., 2013; Pan, et al., 2011) indicating the flexibility of this part or the hydrolysis of 

NAD
+
 during crystallization.  
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Figure 1.3. Overall structure of sirtuins. The catalytic core of human Sirt3 (ribbon) in complex 

with carba-NAD
+
 (stick, orange) and ACS2 peptide (acetyl lysine in stick, yellow) (PDB ID 

4FVT) (Szczepankiewicz, et al., 2012) is shown as a representative. The large Rossmann-fold 

domain is in purple. The small zinc-binding domain that contains Zn
2+

 ion (sphere, yellow) is in 

blue. The loops connecting two domains are in green. The cosubstrate binding loop is 

highlighted in red.   

 

1.3.4. Enzymatic activity of sirtuins 

Although the initial activity of sirtuins was reported as NAD
+
-dependent ADP-

ribosylation (Tanny, et al., 1999), protein deacylation is the most prevalent reaction that sirtuin 

enzymes catalyze. The deacetylation reaction occurs in two continuous stages to generate 

deacetylated protein, NAM and 2’-O-acetyl-ADP-ribose (2’-OAADPr) (Sauve, et al., 2006; 

Tanner, et al., 2000) (Figure 1.4). In the first stage, sirtuins cleave NAD
+
 to produce NAM and 

the nucleophilic addition of the acetyl oxygen to C1’ of the ADP-ribose moiety to form C1’-O-

alkylamidate intermediate (Sauve, 2010). The nucleophilic attack mechanism has been subject to 

debate between SN1 and SN2 type for the cleavage of the glycosidic bond between NAM and the 
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rest of NAD
+
 (Smith and Denu, 2007). NAM can inhibit sirtuins by rebinding to reverse the 

reaction through the base-exchange mechanism (Sauve, et al., 2006). In the second stage, the 

C1’-O-alkylamidate intermediate converts to the bicyclic intermediate by using the conserved 

Histidine as a general base to induce nucleophilic attack of the 2’-OH group of the ribose onto 

the iminium carbon of the O-alkylamidate intermediate. The crystal structure of the bicyclic 

intermediate between thiosuccinyl H3 peptide and NAD
+
 on Sirt5 was recently solved to provide 

an evidence for the mechanism (Zhou, et al., 2012). The bicyclic intermediate is disrupted by a 

base activated water molecule to form deacetylated protein and 2’-O-acetyl-ADP-ribose (Sauve 

and Youn, 2012). Both 2’-O-acetyl-ADP-ribose and 3’-O-acetyl-ADP-ribose exist in equilibrium 

as solution products of sirtuins (Jackson and Denu, 2002). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Mechanism of sirtuin-catalyzed deacetylation. Protein deacetylation reaction with 

two continuous stages catalyzed by sirtuins. Figure is reused with permission from American 

Society for Biochemistry and Molecular Biology (Feldman, et al., 2012).   

Protein Ac-Protein 
 

Stage 1 

Stage 2 
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1.4. Sirtuin modulators 

1.4.1. Activators 

1.4.1.1. Resveratrol 

 CR extends lifespan of a variety of species and delays or prevents many age-related 

diseases. The role of sirtuins in CR-mediated longevity has been proven in several studies (Cantó 

and Auwerx, 2009; Kanfi, et al., 2012; Someya, et al., 2010). Due to the fact that not many 

people would be willing to keep a CR lifestyle, recent studies focus on mimicking CR’s effects, 

especially enhancing the activity of sirtuins by small molecules providing a foundation for drug 

development.  

Howitz and colleagues screened small molecule compounds to identify several activators 

and inhibitors of Sirt1. They reported that two polyphenols, quercetin and piceatannol (Figure 

1.5), can activate Sirt1 activity 5- and 8-fold, respectively. The sirtuin activating compounds 

were called STACs. Subsequently, they screened the polyphenol family and found resveratrol 

(3,4’,5-trihydroxystilbene) (Figure 1.5) as the most potent activator candidate with ~13-fold 

increase in substrate deacetylation of Sirt1 and lower Km of the enzyme for the substrate and 

NAD
+
 (Howitz, et al., 2003). Resveratrol, a natural polyphenol found in red wine and other 

plant-based foods, is able to mimic CR in anti-aging and possess many other benefits such as 

antivirus, anti-inflammation, anti-diabete and cardioprotective effects (S. Mohar, 2012). 

Resveratrol was reported to extend lifespan of different organisms including yeast, worm and fly 

dependent on sirtuin activity (Howitz, et al., 2003; Wood, et al., 2004). This compound can also 

induce lifespan extension in fish but the relation of its effect to sirtuins is unclear (Valenzano, et 

al., 2006). 
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Figure 1.5. Resveratrol and its related compounds. Figures are adapted with permission from 

Blum et al. (Blum, et al., 2011). Copyright (2011) American Chemical Society. 

 

However, the role of resveratrol as a Sirt1 activator has been questioned in some reports. 

Reveratrol effect was initially found with a fluorophore labeled substrate (Howitz, et al., 2003). 

It was later shown that for this substrate, the enhancement of Sirt1 activity by resveratrol 

depends on the fluorophore labeling (Borra, et al., 2005; Kaeberlein, et al., 2005). Resveratrol 

did not activate Sirt1 when using fluorophore-free peptide substrates (Beher, et al., 2009; 

Pacholec, et al., 2010). In addition, the crystal structure of Sirt5 in complex with resveratrol and 

of Sirt3 in complex with piceatannol revealed the direct interaction of the compounds to the 

coumarin tag of the Fluor-de-lys peptide (Gertz, et al., 2012), indicating the fluorophore   

influence in compound binding. In another study, resveratrol induced metabolic changes 

mediated via AMPK rather than Sirt1 (Um, et al., 2010).  

Subsequently, a study found that Sirt1 fluorophore-free substrates containing a 

hydrophobic amino acid residue (Trp, Tyr or Phe) at position +1 or +6 were selectively activated 

by STACs (Hubbard, et al., 2013). In the same report, Glu230 of Sirt1, a conserved residue from 

flies to humans, was identified as the critical residue for Sirt1 activation by STACs. The 

compounds stimulate Sirt1 via allosteric activation mechanism mediated by Glu230 containing 

N-terminal domain of the enzyme. In addition, another study testing many physiological 

deacetylation sites in parallel using peptide arrays showed that substrate sequence determines 
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resveratrol effects (Lakshminarasimhan, et al., 2013). Moreover, there is no evidence of Sirt1 

independent AMPK phosphorylation in STAC-treated cells that goes against a report about 

resveratrol mediated AMPK pathway (Park, et al., 2012). Therefore, sirtuins could be directly 

activated by STACs. 

 

1.4.1.2. Other activators 

 Resveratrol is a natural compound which might have benefits in prevention or treatment 

of age related diseases via sirtuin activation. However, the compound has low bioavailability and 

might not specific for sirtuin target (Alcaín and Villalba, 2009; Pirola and Frojdo, 2008). New 

synthetic sirtuin activators that are much more effective than resveratrol have been developed. 

Milne and colleagues identified resveratrol unrelated activators including SRT1460, SRT1720, 

and SRT2183 (Figure 1.6) that work up to 1000 fold more potently than resveratrol (Milne, et al., 

2007). Among these compounds, SRT1720 is the most effective with EC1.5 = 0.16 µM and 

maximum activation = 781%. This small molecule compound was demonstrated as therapeutics 

for treatment of many diseases such as type 2 diabetes, metabolic disorders, inflammation, etc. 

(Villalba and Alcaín, 2012).  

 

 

 

Figure 1.6. Resveratrol unrelated activators. Figures are adapted with permission from Blum 

et al. (Blum, et al., 2011). Copyright (2011) American Chemical Society. 
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1.4.2. Inhibitors 

While sirtuin activators have mainly been developed for Sirt1, sirtuin inhibitors have 

been studied on different sirtuin members including ySir2 (yeast Sir2), Sir2Tm (Thermotoga 

maritima sirtuin), and mammalian Sirt1, Sirt2, Sirt3 and Sirt5. 

The first sirtuin inhibitors are mostly based on substrates and products of the 

deacetylation reaction. NAM inhibits Sir2 activity by rebinding to attack the O-alkylamidate 

intermediate (Sauve and Schramm, 2003). Carba-NAD
+
 is a weak inhibitor of sirtuins (Landry, 

et al., 2000). Thioacetyllysine derived peptides have been described as sirtuin inhibitors by 

hindering the reaction via formation of a stable S-alkylamidate intermediate instead of the native, 

transient O-alkylamidate intermediate (Smith and Denu, 2007). Moreover, the replacement of N-

acetyl group with other groups and chemical modifications of peptide substrate have also 

reported as an approach to develop sirtuin inhibitors (Chen, 2011).        

Besides substrate and product based inhibitors, a variety of small molecule compounds 

have been studied (Blum, et al., 2011; Cen, 2010). Some of these compounds such as 

splitomicin, sirtinol, cambinol (Figure 1.7) have week effects on sirtuins with micromolar range 

of IC50 value. Their derivatives showed improved potency but still moderate isoform selectivity.  

Splitomicin showed a moderate inhibition on Sir2 with an IC50 value of 60 µM (Bedalov, et al., 

2001) but a weak inhibition on Sirt1. HR73, a splitomicin derivative, inhibited Sirt1 with an IC50 

value of less than 5 µM (Pagans, et al., 2005). Sirtinol inhibited both Sir2 and Sirt2 (Grozinger, 

et al., 2001) but its analogs, meta- and para-sirtinol, are more potent (Mai, et al., 2005). 

Cambinol inhibited Sirt1 and Sirt2 with IC50 values of 56 and 59 µM, respectively but showed 

weak inhibition against Sirt5 and no inhibition against Sirt3 (Heltweg, et al., 2006). Phenyl ring 

modifications of cambinol improved potency and selectivity of this compound on Sirt1 and Sirt2 

(Medda, et al., 2009). Other compounds such as Ex-527 and suramin (Figure 1.7) have higher 

effects on sirtuins with nanomolar range of IC50 value. Ex-527, an indole derivative, has high 

selectivity for Sirt1 with an IC50 value of 0.098 µM and lower potency against Sirt2 (IC50 19.6 

µM) and Sirt3 (IC50 48.7 µM) (Solomon, et al., 2006). Suramin, a symmetric polyanionic 

naphthylurea, is a potent inhibitor of many sirtuin isoform including Sirt5 (IC50 22 µM) 

(Schuetz, et al., 2007), Sirt1 (IC50 0.297 µM) and Sirt2 (IC50 1.15 µM) (Trapp, et al., 2007).  
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Among these compounds, the inhibition mechanisms of suramin and Ex-527 on sirtuins 

were revealed based on crystal structures (Gertz, et al., 2013; Schuetz, et al., 2007; Zhao, et al., 

2013). In Sirt5-suramin complex structure, one suramin molecule links two monomers of Sirt5 

together. Suramin inhibits Sirt5 by binding into the B- and C-pockets of the NAD
+
 binding site 

and the substrate binding site (Schuetz, et al., 2007). Ex-527 stabilizes the closed sirtuin 

conformation to prevent product release (Gertz, et al., 2013). 

 

Figure 1.7. Representative sirtuin inhibitors. Figures are adapted with permission from Blum 

et al. (Blum, et al., 2011). Copyright (2011) American Chemical Society. 

 

1.5. Objectives 

 Sirtuins modulation by small molecule compounds could have benefits to treat many 

human age-related diseases such as cancer and neurodegenerative diseases. Resveratrol is a 

natural polyphenol that can mimic CR to activate Sirt1 and has important role in delaying and 

preventing some diseases. SRT1720, a resveratrol unrelated compound, is the most potent 

activator of Sirt1. The molecular mechanisms of these activators on Sirt1 are unclear, especially 

their structural information. So far, all activators have been described only for Sirt1 whereas 

inhibitors have been identified for different sirtuin isoforms. In this study, the mitochondrial 
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sirtuins Sirt3 and Sirt5 are used as models to investigate the regulation of small molecule 

compounds on the sirtuin family. The small molecule compounds used in this study include 

resveratrol and its related compounds with improved solubility due to an additional hydroxyl 

group (piceatannol (3,5,3',4'-tetrahydroxy-trans-stilbene)) or glucose group (polydatin 

(reservatrol-3-β-D-glucoside)) or bromide group (4’-bromo-resveratrol (5-(2-(4-

hydroxyphenyl)vinyl)-1,3-benzenediol)) (Figure 1.5) and resveratrol unrelated compounds 

including SRT1720 (N-(2-(3-(piperazin-1-ylmethyl)imidazo[2,1-b]thiazol-6-

yl)phenyl)quinoxaline-2-carboxamide) and Ex-527 (6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-

carboxamide). To obtain the purpose of this study, crystal structures of Sirt3 and Sirt5 in 

complex with different substrate peptides in the presence of different small molecule compounds 

were solved. In addition, biochemical and biophysical studies were conducted to support the 

regulation mechanisms of small molecule compounds on sirtuins implied by crystal structures. 
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2. Materials and Methods 

2.1. Materials 

2.1.1. Chemicals, peptides and compounds 

 All chemicals were from Sigma, Roth and Applichem if not stated differently. Fluor-de-

lys 1 (FdL-1) peptide was from Enzo Life Science (New York, USA). The fluorophore-free 

peptides listed in Table 2.1 were synthesized and HPLC (high performance liquid 

chromatography) purified by GL Biochem (Shanghai, China). 4’-bromo-resveratrol was from 

Matrix Scientific (Columbia, USA). SRT1720 was from Cayman Chemical (Ann Arbor, USA). 

 

Table 2.1. List of peptides used in this study. 

Peptide Protein Sequence Acetylated 

position 

ACS2 Acetyl-coenzyme A synthetase 2 TRSG(acK)VMRRL Lys642 

p53-short p53  RHK(acK)LMFK Lys382 

p53-long p53 STSRHK(acK)LMFKTE Lys382 

CPS1 Carbamoyl-phosphate synthetase 1 FKRGVL(acK)EYGVKV Lys527 

ME Mutant electron-transferring flavoprotein 

dehydrogenase 

ILTE(acK)YRI Lys153 

ME-long Mutant electron-transferring flavoprotein 

dehydrogenase 

FGILTE(acK)YRIPVP Lys153 

H3 Histone 3  IHA(acK)RVT Lys116 

Lamin-B2 Lamin-B2 YKFTP(acK)YILRA Lys500 

AIF Apoptosis-inducing factor 1 DFRSLE(acK)ISREVK Lys295 

 

2.1.2. Plasmid vectors  

The catalytic core domain gene of zebrafish Sirt5 (zSirt5) (residues 30-298) was cloned 

into the vector pET151/D-TOPO (Life Technologies, USA) coding for His-tag (hexahistidine 

tag) and carrying the resistance marker to ampicillin. The catalytic core domain gene of human 

Sirt3 (hSirt3) (residues 118-399) was cloned into the vector pVFT3S (Sungkyunkwan university, 
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South Korea) coding for His-Trx-tag (hexahistidine-thioredoxin tag) and carrying the resistance 

marker to kanamycin.  

 

2.1.3. Oligonucleotide primers 

 All primers using for cloning or site-directed mutagenesis listed in Table 2.2 were HPLC 

purified or HPSF (high purity salt free) from Sigma, USA or Eurofins MWG Operon, Germany.  

Table 2.2. List of primers used in this study. Restriction sites or stop codon are underlined. 

Positions of mutation labeled as bold and italic. 

Name Sequence 

zSirt5-5’TOPO 5’-CACCACCAGACCAAGCTCGGATTTA-3’ 

zSirt5-3’stop  5’-CTATTCCAGCGCGGGGGGCAA-3’ 

hSirt3-5’BamHI 5’-CTAGCTGGATCCAGTGACAAGGGGAAGCT-3’ 

hSirt3-3’XhoI 5’-GACCCGCTCGAGTCATTTGTCTGGTCCATC-3’ 

R139A_F 5’-GCCAGAGCCTGCCAGGCGGTGGTGGTCATGGTG-3’ 

R139A_R 5’-CACCATGACCACCACCGCCTGGCAGGCTCTGGC-3’ 

M311A_F 5’-GTGGTTGATTTCCCCGCGGCAGATCTGCTGCTC-3’ 

M311A_R 5’-GAGCAGCAGATCTGCCGCGGGGAAATCAACCAC-3’ 

R335A_F 5’-TTGACCGAGGCCGTGGCGAGCTCAGTTCCCCGA-3’ 

R335A_R 5’-TCGGGGAACTGAGCTCGCCACGGCCTCGGTCAA-3’ 

R384A_F 5’-TGGACAGAAGAGATGGCGGACCTTGTGCAGCGG-3’ 

R384A_R 5’-CCGCTGCACAAGGTCCGCCATCTCTTCTGTCCA-3’ 

 

2.1.4. Bacterial strains 

The E. coli strain TOP10 (Life Technologies, USA) was used for cloning, plasmid 

propagation and site-directed mutagenesis.  The E. coli strain Rosetta (DE3) (Merck, Germany) 

was used for overexpression of recombinant proteins.  
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The strains have the following genotypes:  

TOP10: F– mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara leu) 

7697 galU galK rpsL (StrR) endA1 nupG 

Rosetta (DE3): F– ompT hsdSB(rB – mB–) gal dcm lacY1(DE3) pRARE (CamR) 

 

2.2. Methods 

2.2.1. Agarose gel electrophoresis 

Bio-Rad Sub-cell horizontal gel electrophoresis system (Bio-Rad, USA) was used to 

perform nucleic acid electrophoreses with 1x TAE (Tris-acetate-EDTA 

(ethylenediaminetetraacetic acid)) as the running buffer. Samples and DNA maker (New 

England Biolabs, USA) were mixed with loading buffer (6 mM EDTA, 6 % glycerol and 0.015 

% bromophenol blue) before loading on a 1 % (w/v) agarose matrix (in 1x TAE buffer) 

containing 1 µg/ml ethidium bromide. After electrophoresis, the gel was placed under UV light 

for DNA visualization. 

 

2.2.2. Cloning 

The catalytic core domain genes of zSirt5 and hSirt3 were amplified using PCR 

(polymerase chain reaction). 50 µl of a PCR reaction contains the following: 10-50 ng of 

template DNA, 0.5 µM of each primer, 2 Units of DNA polymerase (Thermo Scientific, USA) 

and 1x HF buffer, 0.2 µM of each deoxynucleotide. The PCR program included 1) initial 

denaturation at 95 ºC for 2 minutes; 2) denaturation at 95 ºC for 1 minute, annealing at 60 ºC for 

1 minute, extension at 72 ºC for 1 minute and 3) final elongation at 72 ºC for 10 minutes. Step 2 

was repeated 30 times. The PCR products were visualized and purified using agarose gel 

electrophoresis and gel extraction kit (Qiagen, USA).  

zSirt5 gene was directly mixed with the vector pET151/D-TOPO without using 

restriction enzymes. hSirt3 gene and the vector pVFT3S were treated with restriction enzymes 
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BamHI and XhoI (Thermo Scientific, USA). After visualized and purified using agarose gel 

electrophoresis, hSirt3 gene was ligated into the vector using a molar ratio of 3:1 (gene : vector) 

in the presence of T4 DNA ligase (New England Biolabs, USA) and incubation at 20 ºC 

overnight. 3 µl of the ligated products was used for the transformation of the recombinant 

plasmids into 50 µl of TOP10 competent cells to amplify the plasmids. The mixture was placed 

on ice for 30 minutes, heat shock at 42 ºC for 30 seconds, and then put on ice for 5 minutes. 450 

µl of LB media was added to recover the cells at 37 ºC for 1 hour followed by plating on LB agar 

plates containing appropriate antibiotics and incubated at 37 ºC overnight. Subsequently, the 

plasmids were extracted using plasmid extraction kit (Qiagen, USA). 

 

2.2.3. Site-directed mutagenesis 

50 µl of the PCR reaction for site-directed mutagenesis contains the following: 5-50 ng of 

template DNA, 125 ng of each forward and reverse primers, 0.2 mM deoxynucleotide mix, 1.25 

Units of Pfu Turbo DNA polymerase (Agilent Technologies, USA), 1x cloned Pfu DNA 

polymerase reaction buffer. The PCR program for site-directed mutagenesis was: 1) initial 

denaturation at 95 ºC for 5 minutes; 2) denaturation at 95 ºC for 1 minute, annealing at 55 ºC for 

1 minute, extension at 68 ºC for 10 minutes; 3) final elongation at 68 ºC for 10 minutes. Step 2 

was repeated 18 times. Subsequently, the PCR product was treated with 5 Units of DpnI 

restriction enzyme at 37 ºC for 1 hour to digest the template plasmid vector and 1 µl of the 

reaction mixture was transformed into 50 µl of TOP10 competent cells using the transformation 

protocol as in the Cloning section. 

 

2.2.4. Expression 

 The recombinant plasmids were transformed into 50 µl of E. coli Rosetta (DE3) 

competent cells for expression. The cells were placed on a 1 millimeter electroporation cuvette 

(Serva, Germany) and pulsed with a voltage of 2.5 kV using the Bio-Rad Gene Pulser 

electroporation system (Bio-Rad, USA). 450 µl of LB media was added to recover the cells at 37 

ºC for 1 hour followed by transferring to LB media containing appropriate antibiotics and 



2. Materials and Methods 27 

 

incubation at 37 ºC by shaking. When the OD600 reached 0.6 – 0.8, the temperature was reduced 

to 15 ºC. IPTG (isopropyl β-D-thiogalactopyranoside) was added into media to induce protein 

expression. The cells were grown at 15 ºC overnight and harvested by centrifugation at 5,000 

RPM for 20 minutes at 4 ºC and stored at -80 ºC. 

 

 

2.2.5. Cell disruption  

Frozen cells were resuspended in an appropriate lysis buffer and disrupted using 

Microfluidizer (Microfluidics, USA) at 4 ºC. The lysed cells were then centrifuged at 18,000 

RPM for 45 minutes in a refrigerated Beckman Coulter Avanti J-26XP centrifuge fitted with a 

JA-30.50 Ti rotor (Beckman Coulter, USA) to remove cell debris. 

 

2.2.6. SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE was performed to analyze the purity and size of proteins. The stacking gel, 

running gel (15% acrylamide), buffers were prepared by following a published protocol 

(Sambrook and Russell, 2001). Protein samples were denatured for 5 minutes at 95 ºC before 

loading on the gel. The Mini-PROTEAN Tetra Cell vertical electrophoresis system (Bio-Rad, 

USA) was used for electrophoresis. After electrophoresis, the gel was rinsed in water, followed 

by a quick soaking in hot Coomassie blue solution (0.025 % (w/v) Coomassie-Briliant Blue R-

250 (Applichem, Germany), 50 % (v/v) methanol, 10 % (v/v) acetic acid). Subsequently, the gel 

was transferred to a destaining solution containing 20 % (v/v) methanol and 12 % (v/v) acetic 

acid. 

 

2.2.7. Purification 

The catalytic core domain of zSirt5 and hSirt3 were purified using similar protocols. The 

fusion proteins were purified by affinity chromatography with TALON resin followed by 

removing the His-tag of zSirt5 or His-Trx-tag of hSirt3 using tobacco etch virus (TEV) protease. 
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To separate tag and protease, the tag-cleaved hSirt3 was resubjected to a TALON column while 

the digested zSirt5 was loaded into a HiTrap SP column. Finally, zSirt5 and hSirt3 were 

subjected to Superose-12 gel filtration column (GE Healthcare, Waukesha, USA), and the 

purified proteins were shock frozen and stored at -80 °C. 

 

2.2.7.1. Affinity chromatography (AC) 

The first step to purify His-tagged hSirt3 and zSirt5 was affinity chromatography. 1 ml 

bed volume of TALON resin was used for every liter of E. coli culture. The resin was washed 

with water followed by equilibration in lysis buffer. The supernatant containing the recombinant 

protein in lysis buffer was incubated with the equilibrated resin at 4 °C for 1 hour. After the 

incubation, the flow through was collected by gravity flow using a glass column (Bio-Rad, 

USA). The column was washed twice with 20 bed volumes of two wash buffers and the protein 

was then eluted with elution buffer. The purity and size of the proteins were analyzed using 

SDS-PAGE. 

Lysis buffer: 50 mM Tris, pH 7.8 for hSirt3 and 8.5 for zSirt5, 200 mM NaCl 

The first wash buffer: 50 mM Tris, pH 7.8 for hSirt3 and 8.5 for zSirt5, 500 mM NaCl 

The second wash buffer: 50 mM Tris, pH 7.8 for hSirt3 and 8.5 for zSirt5, 200 mM NaCl, 5 mM 

Imidazole 

Elution buffer: 50 mM Tris, pH 7.8 for hSirt3 and 8.5 for zSirt5, 200 mM NaCl, 250 mM 

Imidazole 

In the second AC of hSirt3 purification, the protein was eluted using gel filtration buffer.  

 

2.2.7.2. Tag cleavage 

The His-tag of zSirt5 and the His-Trx-tag of hSirt3 were cleaved using TEV protease. 

The purified proteins after AC step were dialyzed in the buffer containing 30 mM HEPES, pH 
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6.5, 50 mM NaCl for zSirt5 and gel filtration buffer for hSirt3 at 4 °C. The ratio of protease : 

protein is 1:20 mg and incubated at 4 °C overnight.  

 

2.2.7.3. Ion exchange chromatography (IEC) 

 IEC was performed using a 1 ml HiTrap SP cation exchange column (GE Healthcare, 

USA) that was equilibrated with buffer A (30 mM HEPES, pH 6.5). After tag cleavage, zSirt5 

was applied on the column. The column was washed with 3 column volumes of buffer A 

followed by elution of the protein using a linear gradient against buffer B (30 mM HEPES, pH 

6.5, 1 M NaCl). Protein fractions were analyzed using SDS-PAGE and then pooled. 

 

 

2.2.7.4. Size exclusion chromatography (SEC) 

Elution samples from the second AC of hSirt3 or from the IEC of zSirt5 purification were 

pooled and concentrated to 1 ml using an Amicon centrifugal concentrator (Millipore, USA) and 

injected to an equilibrated Superose-12 size exclusion column (GE Healthcare, USA) and eluted 

with gel filtration buffer containing 20 mM Tris, pH 7.8 for hSirt3 and 8.5 for zSirt5, 150 mM 

NaCl. Subsequently, the purity of the eluted fractions was assessed using SDS-PAGE before 

appropriate fractions were pooled and concentrated. 

 

2.2.8. Fluorescence-based Flour-de-Lys assay 

Deacetylase activity of sirtuins was tested using a commercial FdL assay kit (Enzo Life 

Sciences, USA) containing the p53-derived FdL-1 substrate peptide RHK(acK) with a C-

terminally attached fluorophore. 50 µl of a reaction mixture consisting of 1.5 µg of sirtuin, 100 

µM FdL-1, 2.5 mM NAD
+
 in the appropriate protein buffer was incubated at 37 °C for 30 

minutes. Subsequently, a developer mixture containing 2 mM NAM and 10 mg/ml trypsin was 

added to the reaction mixture and incubated at room temperature for 45 minutes. Trypsin cleaves 

the coumarin tag from deacetylated FdL-1. Fluorescence was determined at an excitation 

wavelength of 360 nm and an emission wavelength of 460 nm using a FluoDiaT70 microplate 
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reader (Photal Otsuka Electronics, Japan). A blank containing all the components of the assay 

except the enzyme was subtracted.  

 

2.2.9. Enzyme-coupled continuous assay 

The continuous assay was performed using a published protocol (Smith, et al., 2009). 

NAM, one of the products of the deacetylation reaction, is first converted to nicotinic acid and 

ammonia by nicotinamidase. The ammonia is then transferred to α-ketoglutarate via glutamate 

dehydrogenase yielding glutamate, under consumption of NADPH which is measured 

spectrophotometrically at 340 nm and thus proportional to sirtuin activity. 100 µl of a reaction 

mixture contains 2 µM of hSirt3 or 10 µM of zSirt5, 500 µM substrate peptide, 640 µM NAD
+
, 1 

mM DTT, 3.3 mM α-ketoglutarate, 2 µM nicotinamidase, 2 units of bovine GDH and 0.2 mM 

NADPH in a buffer containing 20 mM Na-PO4, pH 7.5. The reaction was performed at room 

temperature for 1 hour and continuously measured using a spectrophotometer (Cary 50, Agilent 

technologies, USA). 

 

2.2.10. Mass spectrometry (MS) 

50 µl of a reaction mixture consisting of 10 μM hSirt3 (in 20 mM Tris pH 7.8, 150 mM 

NaCl) or zSirt5 (in 20 mM Tris pH 8.5, 150 mM NaCl), 0.5 mM ACS2 peptide and 2.5 mM 

NAD
+
 in the presence of different compound concentrations in 2% (v/v) DMSO, or with 2% 

(v/v) DMSO as a control was incubated at 37 °C. The reaction was stopped after different time 

points by adding 0.25% (v/v) trifluoroacetic acid (TFA) followed by dilution to 1 µM peptide in 

0.1% (v/v) formic acid (FA). Subsequently, the solution was filtered to separate the substrate 

peptide from the reaction mixture using 10 kDa cutoff concentrators (Pall Life Sciences, USA). 

Finally, 5 µl of each sample containing the filtered substrate peptide was subjected to nano-LC-

MS/MS analysis as described before (Fischer, et al., 2012). Specific deacetylation activity was 

determined by linear fitting of the time-series experiments. The results were analyzed using 

Xcalibur (Thermo Scientific, USA). 
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2.2.11. Thermal denaturation shift assay 

Protein thermal denaturation assay measures the thermal stability of a target protein and a 

subsequent increase in protein melting temperature due to the binding of a ligand to the protein 

based on the fluorescence change of the dye SYPRO Orange (Life Technologies, USA). 50 µl of 

a sample mixture contains 0.1 mg/ml of protein, 1 µl of 1:10 diluted SYPRO dye, 500 µM 

NAD
+
, compounds or 2% (v/v) DMSO as a control followed by adding 15 µl of mineral oil. The 

temperature was gradually increased from 25 °C to 73 °C using 2 °C intervals. The change in 

fluorescence was measured at an excitation wavelength of 465 nm and an emission wavelength 

of 580 nm using a FluoDiaT70 microplate reader (Photal Otsuka Electronics, Japan). 

 

 

2.2.12. Binding analysis by microscale thermophoresis (MST) 

Binding affinities were measured by microscale thermophoresis (Wienken, et al., 2010) 

with 1 μM hSirt3 in 20 mM Tris pH 7.8, 150 mM NaCl in the presence or absence of different 

concentrations of compounds or ACS2 peptide. Protein and ligands were mixed at room 

temperature and transferred to capillaries for scanning before thermophoresis analysis at 25 ºC 

using the NanoTemper Monolith NT.label-free instrument (NanoTemper Technologies, 

Germany) with the intrinsic protein fluorescence signal (excitation at 280 nm, emission at 360 

nm). The excitation UV-LED power was set to 25% and IR-laser power to 20; 40 and 80%. The 

Kd values were determined through non-linear fitting (1-site equation) of the measured 

thermophoresis values using Prism (Graphpad Software, CA, USA). Each experiment was 

repeated at least twice. 

 

2.2.13. Crystallization and structure determination 

Crystallization trials were performed using a Phoenix robot (Art Robbins, USA) for 

initial screening with a mixture of 0.15 μl of protein and 0.15 μl of reservoir solution on a 96 

well sitting drop plate (Corning, Intelli, Greiner etc. plates) and incubated at 20 °C in a 

Formulatrix imager (Formulatrix Inc., USA). The selected conditions were further optimized 

http://en.wikipedia.org/wiki/Thermal_stability
http://en.wikipedia.org/wiki/Melting_temperature
http://en.wikipedia.org/wiki/Ligand
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manually by mixing 1 μl of protein and 1 μl of reservoir solutions on a 24 well sitting drop 

corning plates and incubation at 20 °C.  

 The X-ray diffraction data were collected at 100 K with an MX-225 CCD detector 

(Rayonix, Evanston, IL, USA) at beam line MX14.1 of the BESSY II electron storage ring 

(Berlin, Germany) (Mueller, et al., 2012). The wavelength was 0.92 Å allowing to observe the 

anomalous diffraction of the Br atom. Diffraction data were processed using XDS (Kabsch, 

2010). Crystal structures were solved by Patterson searches with the program MolRep (Vagin 

and Isupov, 2001) using chain A of the complex hSirt3/FdL-1/PCT (PDB ID 4HD8) (Gertz, et 

al., 2012) as a search model for hSirt3 structures and the complex hSirt5/suramin (PDB ID 

2NYR) (Schuetz, et al., 2007) as a search model for zSirt5 structures. Structure refinement was 

performed using Refmac (Murshudov, et al., 1997), and manual rebuilding was done in Coot 

(Emsley and Cowtan, 2004). Parameter files for 4’-bromo-resveratrol, polydatin and SRT1720 

were generated using ProDrg (Schuttelkopf and van Aalten, 2004). The quality of the refined 

structures was evaluated using Coot and MolProbity (Chen, et al., 2010). The structure figures 

were prepared using Pymol (The PyMOL Molecular Graphics System, Schrödinger, LLC). 

.  
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3. Results 

3.1. Sirt3 studies 

3.1.1. Sirt3 purification 

hSirt3 purification was first performed using the published protocol with the vector 

pET21b coding for a His-tag (Jin, et al., 2009) but the solubility and purity of the expressed 

protein were very low. pVFT3S, a vector coding for a His-Trx-tag, was then used to improve 

protein solubility. The hSirt3 purification protocol in this study was illustrated by a diagram in 

figure 3.1A. After the first AC step, the highly expressed proteins with the size of ~60 and ~45 

kDa were collected. The hSirt3 construct (118-399) is ~31 kDa and the His-Trx-tag is ~14 kDa 

indicating that the second band (~45 kDa) is the target protein. MS analysis was used to identify 

the protein shown in the first band (~60 kDa) and found that it was an E. coli chaperon. After 

TEV protease incubation and the second AC, the His-Trx-tag was removed but the E. coli 

chaperon had not yet separated. After SEC, the last step of purification, the purified hSirt3 was 

obtained in the fractions B3 – B10 shown in the second peak of SEC profile with the purity ≥ 

95%, the E. coli chaperon was eluted in the fractions A4 – A8 shown in the first peak (Figure 

3.1B). The yield of purification was 8-10 mg of the purified protein per 12 liters of the expressed 

media.  
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Figure 3.1. Human Sirt3 purification. (A) Four steps of hSirt3 purification. (B) Step 4: SEC, 

hSirt3 and E. Coli chaperon were separated. Fractions B3-B10 (green box) were pooled for 

further studies. B.L, before loading. 
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3.1.2. Resveratrol and its related compounds 

3.1.2.1. Resveratrol and its related compounds are hSirt3 inhibitors  

The FdL assay was performed to investigate the effects of resveratrol (RESV) and its 

related compounds including piceatannol (PCT), polydatin (PD) and 4’-bromo-resveratrol 

(brRESV) on hSirt3. The protein is weakly inhibited by RESV, PCT and PD (Figure 3.2A). 

brRESV showed a much more potent effect and inhibited hSirt3 activity almost completely at 0.2 

mM compound concentration (Figure 3.2A). In comparison to human Sirt1 (hSirt1), the same 

inhibition effect of 0.2 mM brRESV but ~17-fold activation by 0.2 mM RESV was observed 

(Figure 3.2B). 

 

 
 

Figure 3.2. FdL assay. (A) Inhibition of hSirt3 activity by resveratrol-related compounds at 0.2 

mM and 1 mM compound concentration. (B) 0.2 mM RESV activates whereas brRESV inhibits 

hSirt1. Activities were normalized to the control in the absence of compound. Error bars 

represent standard errors of two independent measurements. 

 

 

The FdL substrate peptide is attached with a fluorophore that can interact with small 

molecules, potentially leading to artificial effects on sirtuin activity (Borra, et al., 2004; Gertz, et 

al., 2012; Pacholec, et al., 2010). Therefore, a MS-based assay and ACS2 peptide, the acetylated 
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peptide derived from a physiological Sirt3 substrate, were used to confirm and quantify hSirt3 

inhibition by brRESV. A dose-response experiment at 500 µM ACS2 peptide yielded an IC50 

value of 143.0 ± 3.6 µM (Figure 3.3). This result confirms that inhibition by brRESV applies to 

non-modified peptides.  

 

Figure 3.3. IC50 determination of brRESV on hSirt3 against 500 µM ACS2 peptide using 

MS. Error bars represent standard errors of linear fits to time series experiments. 

 

3.1.2.2. Crystallization trials of hSirt3 in complex with resveratrol related compounds  

To determine the inhibition mechanisms of resveratrol related compounds on hSirt3, 

different complexes of the protein with FdL-1 or ACS2 peptide and compounds in the presence 

or absence of NAD
+
 were crystallized (Table 3.1) and crystals were obtained in different 

morphologies. The complex hSirt3/FdL-1/PCT, hSirt3/FdL-1/PD and hSirt3/FdL-1/brRESV 

form rod-shaped crystals, the crystals of the complex hSirt3/ACS2 and hSirt3/ACS2/ NAD
+
/ 

brRESV have plate shapes and crystals of the complex hSirt3/ACS2/brRESV are in diamond 

shapes (Figure 3.4). Especially, Sirt3 crystals in the presence of ACS2 peptide and brRESV were 
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obtained in 30 different conditions of the screening core suite JCSG I – IV with the same 

morphology (Figure 3.5). 

Table 3.1. Crystallization trials of hSirt3 complexes  

Crystallization trials Number of crystal conditions 

hS3 + FdL-1 + PCT/PD/brRESV 1 

hS3 + NAD
+
 + brRESV 0 

hS3 + ACS2 + brRESV 30 

hS3 + ACS2 + NAD
+
 + brRESV 1 

 

 

 

 

Figure 3.4. Crystals of different hSirt3 complexes with FdL-1 or ACS2 peptide and 

resveratrol related compounds in the presence or absence of NAD
+
. The compound labeled 

as italic was not found in the structures. 
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Figure 3.5. hSirt3 crystals in the presence of ACS2 peptide and brRESV were obtained in 

30 different conditions with the same morphology. Three conditions were zoomed in as 

representative.  

 

3.1.2.3. Crystal structures and inhibition mechanisms of hSirt3 in complex with resveratrol 

related compounds 

3.1.2.3.1. hSirt3 in complex with FdL-1 peptide and piceatannol/polydatin 

In the crystal structures of the complex hSirt3/FdL-1/PCT and hSirt3/FdL-1/PD, the 

compounds locate next to the coumarin ring of FdL-1 peptide (Figure 3.6A). The crystal contact 

was formed by the interaction between two fluorophores of FdL-1 peptide molecules that belong 

to two symmetry-related monomers (Figure 3.6B,C). PCT and PD bind to the protein at the same 

site and directly interact with FdL-1 peptide to induce non-productive substrate binding, thus 

inhibits hSirt3 activity (Gertz, et al., 2012).  
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Figure 3.6. Crystal structure of hSirt3 in complex with PCT/PD and FdL-1 peptide. (A) 

Overall structures of the complex hSirt3/FdL-1/PCT and hSirt3/FdL-1/PD. PCT is shown in 

stick-yellow, PD in stick-green. FdL-1 peptides of two complexes are in stick and in the same 

color as the corresponding compound. (B, C) The interface with the neighboring symmetry-

related monomer: Two FdL-1 peptides form π-stacking interactions and two PCT/PD molecules 

overlay each other. Omit Fo-Fc difference density is contoured at 3.0σ. The symmetry-related 

monomer is in grey. 

 

3.1.2.3.2. hSirt3 in complex with FdL-1 peptide and 4’-bromo-resveratrol 

In the hSirt3/FdL-1/brRESV complex structure, the compound was found in the active 

site (Figure 3.7) and different from the PCT/PD binding site.  
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Figure 3.7. Crystal structure of hSirt3 in complex with brRESV and FdL-1 peptide. (A) 

Overall structure of hSirt3/FdL-1/brRESV complex. The dashed line indicates a loop not defined 

by electron density. (B) FdL-1 peptide and brRESV ligands of hSirt3, overlaid with omit Fo-Fc 

difference density (2.5 σ; green) and anomalous density (5 σ; magenta) showing the positions of 

Br and Zn
2+

. (C) 2Fo-Fc electron density (1 σ; blue) of FdL-1 peptide and brRESV in hSirt3/ 

FdL-1/brRESV complex. 

 

A closer look at the compound binding site (Figure 3.8) shows that the A-ring hydroxyl 

groups of brRESV form hydrogen bonds with Asn229 and Asp231 of hSirt3. Furthermore, 

residues Ile230, Leu199, and Ile154 form a hydrophobic patch for A-ring binding, and Phe157, 

Leu195, and Phe180 a hydrophobic cleft for accommodating the B-ring. This cleft extends in a 

hydrophobic pocket (formed by Ile179, Leu173, and Tyr171) for binding the bromine atom, and 

Arg158 and Pro176 form a lid shielding this pocket from solvent.  
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Figure 3.8. Closer view on the brRESV binding site showing interacting residues. Hydrogen 

bonds are indicated by dashed lines. 

 

 

Superposition of the crystal structure of the complex hSirt3/FdL-1/brRESV and Sir2Tm 

in complex with p53 peptide and NAD
+
 (Hoff, et al., 2006) reveals that brRESV occupies part of 

the NAD
+
 binding pocket (Figure 3.9), thus prevents the C-pocket insertion of the NAD

+
 

nicotinamide moiety necessary for catalysis. 

 

Figure 3.9. Superposition of the hSirt3/FdL-1/brRESV structure with a Sir2Tm/p53/NAD
+
 

complex (PDB ID 2H4F) (Hoff, et al., 2006). FdL-1 peptide and brRESV are in pink, p53 

peptide and NAD
+
 are in green. The protein part of the Sir2Tm/p53/NAD

+
 complex is omitted 

for clarity. 
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The overall hSirt3 and FdL1-peptide conformations in the superposition of the brRESV 

complex with hSirt3 bound to FdL-1 and other resveratrol-related compounds, PCT/PD, are 

identical (Figure 3.10). However, FdL-1 peptide conformations are different, in particular the 

fluorophore orientation. PCT/PD interact extensively with the FdL-1 fluorophore to induce non-

productive peptide binding (Gertz, et al., 2012) whereas brRESV does not directly contact this 

substrate peptide but blocks productive NAD
+
 binding. 

 

Figure 3.10. Superposition of the hSirt3/FdL-1/brRESV with the hSirt3/FdL-1/PCT 

complex. PCT is shown in stick-yellow, brRESV in stick-pink. FdL-1 peptides of two complexes 

are in stick and in the same color as the corresponding compound. 

 

To test for competition between brRESV and FdL-1 peptide, IC50 values for brRESV 

inhibition of hSirt3 were determined at three different concentrations of FdL-1 peptide (50, 100, 
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and 200 µM). The IC50 value obtained were ~100 µM for all three peptide concentrations (Figure 

3.11), indicating that the inhibitor brRESV does not compete against FdL-1. 

 

Figure 3.11. IC50 determination for brRESV inhibition of hSirt3 at 50, 100, and 200 M 

FdL-1 substrate peptide. 

 

We also investigated the competition between brRESV and NAD
+
 for hSirt3 binding. 

The binding affinity of brRESV to the apo protein was 7.6 ± 0.9 µM, and the Kd increased to 

higher than 50 µM in the presence of 2 mM NAD
+
 (Figure 3.12). The results reveal that brRESV 

competes with NAD
+
 for binding to hSirt3, supporting the conclusion that the internal brRESV 

binding site is the one relevant for inhibition of hSirt3 activity.  

 

Figure 3.12. Binding affinity of brRESV to hSirt3 in the presence or absence of 2 mM 

NAD
+
. 
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3.1.2.3.3. hSirt3 in complex with ACS2 peptide and 4’-bromo-resveratrol 

In the complex structure hSirt3/ACS2/brRESV, the compound molecule was found at the 

bottom of the Rossmann-fold domain, interacting with Arg139, Met331, and Arg335 (Figure 

3.13). In this exposed position, the compound interacts only through its A-ring with this shallow 

hSirt3 pocket, and the bromo-containing aromatic ring points towards the symmetry-related 

monomer in the crystal lattice. 

 

Figure 3.13. Crystal structure of hSirt3 in complex with brRESV and ACS2 substrate 

peptide. (A) Overall structure of hSirt3/ACS2/brRESV complex. A missing loop is indicated by 

a dashed line. (B) 2Fo-Fc electron density (1 σ; blue) of ACS2 peptide in hSirt3/ACS2/brRESV 

complex. (C) brRESV ligand of hSirt3, overlaid with omit Fo-Fc difference density (2.5 σ; green) 

and anomalous density (5 σ; magenta) showing the position of Br and surrounding residues 

important for compound binding. Residues from the symmetry-related monomer are labeled with 

a star. (D) 2Fo-Fc electron density (1 σ; blue) of brRESV in hSirt3/ACS2/brRESV complex. 



3. Results 45 

 

The superposition of the hSirt3/brRESV complexes with FdL-1 and ACS2 peptide, 

respectively, reveals that the inhibitor cannot bind at the catalytic pocket when the ACS2 peptide 

is bound, since it would clash with the C-terminal part of this substrate peptide (Figure 3.14).  

 

 

 

Figure 3.14. Superposition of the hSirt3/ACS2/brRESV structure with the hSirt3/FdL-

1/brRESV complex. FdL-1 peptide and brRESV are in pink, ACS2 peptide is in cyan. Phe157 

of the hSirt3/ACS2/brRESV and hSirt3/FdL-1/brRESV complex are shown in cyan and pink, 

respectively. 

 

brRESV in the complex structure with hSirt3/ACS2-peptide does not show many 

interactions with hSirt3, rendering it a less likely inhibition site. Figure 3.15 illustrates the 

hydrogen bonds between brRESV with Arg139, Met331 (backbone), and Arg335 and 

additionally with Arg384 of the symmetry-related monomer. 
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Figure 3. 15. Closer view on the brRESV binding site in the hSirt3/ACS2/brRESV complex 

showing interacting residues. Hydrogen bonds are indicated by dashed lines and residues of the 

next symmetry-related monomer are labeled with a star. 

 

To test whether the surface site occupied by brRESV in its hSirt3/ACS2 complex is 

relevant for inhibition, the role of the interacting residues R139, M331, R335, and R384 were 

tested by site-directed mutagenesis to alanine. Microscale thermophoresis (MST) results indicate 

that the hSirt3-R335A variant has a slightly reduced binding affinity for the compound compared 

to wildtype hSirt3 (Figure 3.16A), but the change was not statistically significant. The hSirt3 

variants R384A, R139A, and M331A showed no change in the affinity for the compound. 

Moreover, we performed activity assays with 500 µM ACS2 as peptide substrate and in presence 

of brRESV (at its IC50 concentration, 140 µM) to examine the effects on the activity of the 

mutant proteins. The screening indicated that the activity of hSirt3 R335A is slightly higher than 

for the other mutants and the wildtype protein (data not shown). The IC50 value of brRESV on 

the R335A variant activity was then determined. Figure 3.16B shows only a small shift for the 

brRESV inhibition curves between wildtype protein and the R335A variant, resulting in IC50 

values of 143.0 ± 3.6 and 179.2 ± 12.3 µM, respectively. Therefore, the position of brRESV in 

the complex structure hSirt3/ACS2/brRESV seems not to be primarily responsible for the 

inhibitory effect of the compound on hSirt3. 
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Figure 3.16. (A) Affinity measurements for binding of brRESV to hSirt3 wildtype as well as 

R335A and R384A variants. Error bars represent standard errors of two independent 

measurements. (B) IC50 determination of brRESV on wildtype hSirt3 or the R335A variant 

against 500 µM ACS2 peptide using MS. Error bars represent standard errors of linear fits to 

time series experiments. 

 

To test for brRESV competition with ACS2 peptide, MS assays were performed to 

determine Km and Vmax values for the peptide at different compound concentrations. The result 

shows that the higher the brRESV concentration, the more the Km for substrate peptide increases, 

or affinity for substrate decreases, while the Vmax is not altered, indicating competitive inhibition 

(Figure 3.17).  
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Figure 3.17. brRESV inhibition of hSirt3 with ACS2 peptide as a substrate. brRESV 

concentrations of 0, 50, and 150 µM resulted in Km values for substrate peptide of 31.3 ± 9.0, 

48.6 ± 7.5, and 253.3 ± 52.9 µM, respectively, while the Vmax is roughly constant at ~50 nmol 

mg
-1

 min
-1

. Error bars represent standard errors of linear fits to time series experiments. 

 

This competition was confirmed through binding data from MST measurements. ACS2 

peptide bound to apo hSirt3 with a Kd value of 64.4 ± 9.1 µM. In presence of 50 µM brRESV, 

the Kd value increased to more than 200 µM (Figure 3.18A). Consistently, binding affinity of 

brRESV to the apo protein was 7.6 ± 0.9  µM, and the Kd increased to higher than 37 µM in the 

presence of 500 µM ACS2 peptide (Figure 3.18B). Thus, brRESV inhibits hSirt3 through 

binding competition with ACS2 peptide substrate.  

 

Figure 3.18. (A) Binding affinity of ACS2 peptide to hSirt3 in the presence or absence of 50 µM 

brRESV. (B) Binding affinity of brRESV to hSirt3 in the presence or absence of 500 µM ACS2 

peptide. Error bars represent standard errors of two independent measurements. 
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3.1.3. Resveratrol unrelated compounds 

3.1.3.1. SRT1720 

The effect of SRT1720 on hSirt3 was investigated using FdL-1 and ACS2 peptide. The 

FdL assay indicates that 20 µM SRT1720 inhibits 92% hSirt3 activity but activates hSirt1  

activity to 1.6 fold and has no effect on human Sirt2 (hSirt2) (Figure 3.19).  

 

 

Figure 3.19. Effects of 20 µM SRT1720 on hSirt1, hSirt2 and hSirt3 in the FdL assay. 

Activities were normalized to the control in the absence of compounds. Error bars represent 

standard errors of two independent measurements.  

 

MS was used to examine the effect of the compound on ACS2, the fluorophore-free 

peptide. The IC50 value of SRT1720 on hSirt3 is 11 ± 1 M for ACS2 peptide (Figure 3.20). 

 

Figure 3.20. IC50 determination of SRT1720 on hSirt3 against 500 µM ACS2 peptide using 

MS. Error bars represent standard errors of linear fits to time series experiments. 
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Since SRT1720 was reported as a noncompetitive inhibitor of hSirt3 against NAD
+
 (Jin, 

et al., 2009), hSirt3 in complex with the compound was crystallized in the presence or absence of 

NAD
+
. Crystals were observed in many conditions with different morphologies (Figure 3.21). 

Crystals of the complex hSirt3/NAD
+
 were further soaked with SRT1720 at different time points.  

 

 

Figure 3.21. Crystals of hSirt3 in complex with NAD
+ 

in the presence or absence of SRT1720. 

Since the compound was not found in the structures, it was labeled as italic.  
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In both cases, hSirt3/NAD
+
 soaking or co-crystallizing with SRT1720, the structures only 

showed the ADPR moiety of NAD
+
 and no density for the compound (Figure 3.22). This might 

indicate that NAD
+
 was hydrolyzed during crystallization that was mentioned in the Introduction 

section. 

 

Figure 3.22. Active site of the hSirt3/ADPR complex. 2Fo-Fc electron density of ADPR is 

contoured at 1.0σ. The cosubstrate binding loop is shown in purple. 

 

 

To prevent the hydrolysis of NAD
+
 during crystallization, we used inert carba-NAD

+ 

(Szczepankiewicz, et al., 2012). This NAD
+
 analog is stable in crystallization conditions due to 

its ability to prevent the NAM displacement reactions. The replacement indeed resulted the 

crystal structure of a Sirt3/carba-NAD
+
/SRT1720 complex. The quinoxaline ring of SRT1720 

interacts with NAM moiety of carba-NAD
+
 and Phe157 of the cobsubstrate binding loop through 

π-stacking interaction (Figure 3.23). This observation explains the absence of the compound in 

Sirt3/NAD
+
 complex structure when using unstable NAD

+
 and indicates the role of NAD

+
, in 

particular NAM moiety, for the compound binding. Superposition of the complex hSirt3/carba-

NAD
+
/SRT1720 with hSirt3/ACS2/carba-NAD

+
 (PDB ID 4FVT) (Szczepankiewicz, et al., 2012) 

reveals that the piperazine group and part of the connected imidazothiazole system of SRT1720 

occupy the binding region of acetyl lysine (Figure 3.24); thus confirm the inhibition mechanism 

competitive with substrate peptide (Jin, et al., 2009). Due to the compound binding, the 
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cosubstrate binding loop was shifted and Phe157 was re-orientated whereas the carba-NAD
+
 

conformation was almost unchanged (Figure 3.24).  

 

Figure 3.23. Active site of the hSirt3/carba-NAD
+
/SRT1720 complex. 2Fo-Fc electron density 

of carba-NAD
+
 and SRT1720 is contoured at 1.0σ. The cosubstrate binding loop is shown in red, 

SRT1720 in orange and carba-NAD
+
 in yellow.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24. Superposition of the complex hSirt3/carba-NAD
+
/SRT1720 with 

hSirt3/ACS2/carba-NAD
+
 (green, PDB ID 4FVT) (Szczepankiewicz, et al., 2012). 
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To confirm the critical role of the NAM moiety of NAD
+
 for the compound binding, the 

stability of hSirt3 towards thermal denaturation was measured using thermal shift assay (TSA) 

(Figure 3.25). In the presence of 50 µM SRT1720, the half-point of the hSirt3 melting transition 

(Tm) value increased from less than 324 K of the DMSO control to more than 326 K. The Tm 

value increased to more than 327 K when adding 500 µM NAD
+
 in the presence of 50 µM 

SRT1720. The measurements imply that SRT1720 supports the hSirt3 stabilization and NAD
+ 

supports the compound binding. 

 

 

Figure 3.25. hSirt3 stability TSA test in presence or absence of 50 µM SRT1720 and/or 500 

µM NAD
+
.  (A) Transition curves. The lines shown are nonlinear fits for a two state transition. 

(B) Melting temperatures. Error bars represent standard errors of nonlinear fits. 

 

 

The stability measurements of SRT1720 to hSirt3 are consistent with the binding data 

using microscale thermophoresis (MST) (Figure 3.26). The Kd value for the affinity of SRT1720 

to hSirt3 is 7.5 ± 1.3 µM. In the presence of 500 µM NAD
+
, the Kd value decreased to 2.6 ± 0.3 

µM. When adding 500 µM ADPR instead, the Kd value is 7.8 ± 1.3 µM indicating that ADPR 

does not support the compound binding but NAD
+
 with additional NAM moiety in comparison 

to ADPR provides a positive effect. The results of binding and stability measurements strengthen 

the conclusion of the contribution of NAD
+
, in particular its NAM moiety, in compound binding. 
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Figure 3.26. Binding affinity of SRT1720 to hSirt3 in the presence or absence of 500 µM 

NAD
+
 or ADPR. Error bars represent standard errors of two independent measurements. 

 

3.1.3.2. Ex-527 

Ex527 was reported as a potent inhibitor of hSirt1 with the IC50 value of approximately 

0.1 M (Solomon, et al., 2006). It has much lower potency against hSirt3 with IC50 about 50 M. 

In this study, hSirt3 was used as a model to understand the inhibition of this compound on 

sirtuins. In the crystal structure of the complex hSirt3/NAD
+
/Ex-527, Ex-527 binds to hSirt3 at C 

pocket (Figure 3.27). When using ADPR instead, the compound can also bind to hSirt3 at the 

same site (Gertz, et al., 2013) indicating that the compound binds to the protein when the 

cosubstrate binding pocket is occupied either by NAD
+
 or the product 2’-O-acetyl-ADP-ribose. 
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Figure 3.27. Active site of the hSirt3/ NAD
+
/Ex-527 complex. 2Fo-Fc electron density of 

NAD
+
 and Ex-527 is contoured at 1.0σ. 

 

To examine whether Ex-527 can bind to hSirt3 during the step of forming O-

alkylamidate intermediate, the crystal of hSirt3/ACS2 was soaked with NAD
+
 and Ex-527 in 80 

minutes. The obtained structure showed very clear native O-alkylamidate intermediate state of 

the reaction but density for Ex-527 was not found (Figure 3.28). In comparison to the S-

alkylamidate intermediate, the ribose moiety of the native O-alkylamidate intermediate has a 

different conformation (Figure 3.29). In combination with inhibition kinetics and binding 

analysis, the inhibition mechanism of Ex-527 on sirtuins was revealed to be that the compound 

stabilizes the closed enzyme conformation of the complex with 2’-O-acetyl-ADP-ribose, thus 

prevents product release (Gertz, et al., 2013).  
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Figure 3.28. Active site of the hSirt3/ O-alkylamidate intermediate complex. 2Fo-Fc electron 

density of the intermediate is contoured at 1.0σ.  

 

 

 

Figure 3.29. Superposition of the hSirt3/ O-alkylamidate intermediate complex with hSirt3/S-

alkylamidate intermediate complex (pink, PDB ID 3GLT) (Jin, et al., 2009). 
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3.2. Sirt5 studies 

3.2.1. Sirt5 purification 

 In a previous study, human Sirt5 (hSirt5) purification yielded high amount of the purified 

protein (Gertz, et al., 2012). However, crystallization trials resulted in twinned crystals and low 

occupancy of ligands. Therefore, zSirt5, an orthologue of hSirt5 was used in this study to 

overcome the issue. The zSirt5 purification protocol in this study was illustrated by a diagram in 

figure 3.30A. After the AC step, the highly expressed protein with the size of ~32 kDa was 

collected. The zSirt5 construct (30-298) is ~31 kDa and the His-tag is ~1 kDa. After TEV 

protease incubation and cation exchange, the His-tag was removed and zSirt5 was eluted in the 

fractions of the first peak with a small remaining contamination. After SEC, the last step of 

purification, the purified zSirt5 was obtained in the fractions B5 – B12 with the purity ≥ 95% 

(Figure 3.30B). The yield of purification was 6 mg of the purified protein per 12 liters of the 

expressed media.  
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Figure 3.30. Zebrafish Sirt5 purification. (A) Four steps of zSirt5 purification. (B) Step 4: 

SEC, contamination was separated, purified zSirt5 including fractions B5-B12 (green box) was 

pooled for further studies. B.L, before loading. 
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3.2.2. Resveratrol and its related compounds are zSirt5 activators on FdL-1 peptide 

Similar to Sirt3 study, the FdL assay was performed to investigate the effects of RESV 

and its related compounds including PCT, PD and brRESV on zSirt5. Among these compounds, 

1 mM RESV can activates zSirt5 up to 12-fold, thus becomes the most potent activator of the 

enzyme (Figue 3.31). PCT, PD and brRESV slightly activate zSirt5 with nearly 3-fold in the 

presence of 0.2 mM and 6-fold in the presence of 1 mM compound concentration, except 

brRESV.  

 

 

Figure 3.31. Activation of zSirt5 activity on FdL-1 peptide by resveratrol-related 

compounds at 0.2 mM and 1 mM compound concentration. Activities were normalized to the 

control in the absence of compound. Error bars represent standard errors of two independent 

measurements. 

 

 

To prevent the artificial effect of FdL-1 peptide as mentioned in the Sirt3 study section, 

several fluorophore-free acetylated peptides were screened to find potent peptide substrates for 

zSirt5 using continuous assay. Among chosen peptides, p53 peptide is the most potent substrate 

of zSirt5 but not CPS1, the acetylated peptide derived from the physiological mammalian Sirt5 

substrate (Figure 3.32). Lamin_B2 peptide is also a potent zSirt5 peptide substrate but has low 

solubility due to its rich hydrophobic residues. ME peptide has the similar linear of NADPH 
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consumption as CPS1 peptide indicating that it is also a zSirt5 substrate (Figure 3.32). ME and 

p53 peptide were chosen for further study. The regulations of resveratrol related compounds on 

these peptides were examined using MS. However, these compounds did not show significant 

effects (weak or unclear activation or inhibition) on the peptides (Figure 3.33).  

 

Figure 3.32. zSirt5 substrates were identified using continuous assays 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.33. Insignificant effects of resveratrol related compounds on zSirt5 using MS. (A) 

p53 peptide. (B) ME peptide with 0.2 mM of each compound. Error bars represent standard 

errors of linear fits to time series experiments. 
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3.2.3. Crystallization trials and crystal structures of zSirt5 in complex with peptide 

substrates in the presence of resveratrol  

Since RESV is the most potent activator of zSirt5 in comparison to its related 

compounds, it was used for crystallization study to determine the activation mechanism on the 

enzyme. Different crystallization trials including zSirt5 in the presence or absence of peptide 

substrate and RESV were setup. The diamond crystals were obtained from the condition 

containing the mixture of zSirt5 and RESV in comparison with no crystal when using DMSO as 

a control (Figure 3.34). The compound thus seems to be important for crystal growing. The 

crystals of the complex zSirt5/FdL-1 in the presence of RESV are in rod shape with a nice 

packing (Figure 3.34). However, the diffractions of these crystals are quite weak and the best 

data set is only 3.2 Å. The complex zSirt5/ME in the presence of RESV has very big rod crystals 

(Figure 3.34) and their diffractions are up to 2 Å. The complex zSirt5/p53 in the presence of 

RESV formed long stick crystals (Figure 3.34).  

 

Figure 3.34. Crystals of different zSirt5 complexes with FdL-1 or p53 or ME peptide in the 

presence of RESV. Since the compound was not found in the structures, it was labeled as italic.  
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 Similar to other sirtuin/peptide complexes, ME or p53 peptide binds to the cleft between 

the Rossmann-fold and zinc-binding domain of zSirt5 and the acetyl lysine binds into a 

hydrophobic tunnel pointing toward the catalytic residue His158 (Figure 3.35). No density fits to 

RESV implying the compound could not bind or bound with very low occupancy that could not 

be observed, consistent with the lack of an effect in activity assays with these peptides. 

Superposition of the complex zSirt5/ME/RESV and zSirt5/p53/RESV indicates that the protein 

has the same conformation in both structures (data not shown). 

 

 

 

Figure 3.35. Active site of complex structures. (A) zSirt5/p53/RESV complex and (B) 

zSirt5/ME/RESV complex. Omit Fo-Fc difference density is contoured at 3.0σ.  

 

zSirt5 was crystallized in the presence of RESV but the obtained structure only showed 

the apo enzyme. The asymmetric unit of the apo-zSirt5 has four monomers whereas the complex 

zSirt5/FdL-1/RESV contains five zSirt5 monomers and the electron density of FdL-1 was found 

in only one monomer (Figure 3.36). RESV was included in the solution but not present in the 

structures. The protein packing may be caused by the unspecific binding between monomers 

including disulfide bonds formed by the residues Cys278.  
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Figure 3.36. (A) Superposition of apo-zSirt5 (salmon pink) and the zSirt5/FdL-1/RESV complex 

(cyan), the density of the compound was not found. The asymmetric unit of apo structure is 

tetramer and of the zSirt5/FdL-1/RESV is pentamer but only one monomer contains FdL-1 

peptide. zSirt5 is shown in cartoon, Zn
2+

 as a sphere and the peptide is in stick representation. 

(B) Active site of the monomer containing FdL-1 peptide. 2Fo-Fc electron density of FdL-1 

peptide is contoured at 1.0σ. 

 

Superposition of the FdL-1-containing monomer and apo monomer reveals two positions 

of conformation change: the loop 250 – 260 and the loop 277 – 284 (Figure 3.37). The loop 250 

– 260 is peptide-binding loop, thus it moves closer to the peptide when the peptides bind to the 

protein. The loop 277 – 284 is on the surface of monomer contacts. Figure 3.38 shows the crystal 

contact of FdL-1 containing monomer of the zSirt5/FdL-1/RESV complex. The peptide is close 

to the loop 277 – 284 of the next symmetry-related monomer indicating that the loop 

conformation is also influenced by the presence of the peptide. The overall conformations of the 

complex zSirt5/FdL-1/RESV and zSirt5/ME/RESV are almost identical except a slight difference 

in the loop 277-284 (Figure 3.39). This may cause by different sequences and lengths of the 

peptides. Therefore, the loop 277-284 conformation is very flexible and depends on the presence, 

sequence and length of peptides.  
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Figure 3.37. Superposition of apo-zSirt5 (salmon pink) and the FdL-1 containing zSirt5 

monomer (cyan) with the positions of conformation changes showed in black boxes: loop 

250-260 and loop 277-284.  

 

 

 

Figure 3.38. Crystal contact of the zSirt5/FdL-1/RESV complex. The symmetry-related 

monomer is shown in grey. The FdL-1 peptide and the loop 277-284 of the complex is in dark 

blue and of the symmetry-related monomer is in grey-black. 
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Figure 3.39. Superposition of the complex zSirt5/FdL-1/RESV (cyan) and zSirt5/ME/RESV 

(yellow). zSirt5 is shown in cartoon, Zn
2+

 as a sphere and the peptide is in stick representation.  
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4. Discussion 

4.1. Sirt3 studies 

4.1.1. Resveratrol and its related compounds 

Resveratrol and its related compounds are hSirt3 inhibitors with brRESV as the most 

potent candidate. Unlike PCT or PD which directly interact with the FdL-1 fluorophore for the 

inhibition effect, brRESV in the FdL-1 complex occupies a part of the C pocket where the NAM 

moiety of NAD
+
 binds to initialize the reaction and where NAM can bind to an alkylimidate 

complex (Sauve, et al., 2006) for the reverse reaction. In comparison to the Sir2Tm/NAM 

complex structure (Avalos, et al., 2005), the 1-OH group of the brRESV A-ring plays a role like 

the NAM carboxamide group, which also interacts with the conserved Asp101 in Sir2Tm 

(Asp231 in hSirt3) (Figure 4.1). A novel binding site for the 4’-bromo-reveratrol B-ring in 

hSirt3/FdL-1 complex provides a base to develop a new class of sirtuin inhibitors.  

 

 

 

Figure 4.1. Superposition of the complex hSirt3/FdL-1/brRESV with Sir2Tm/p53/NAM 

(PDB ID 1YC5) (Avalos, et al., 2005). Dashed lines indicate hydrogen bonds of the brRESV A-

ring hydroxyl groups and of the NAM carboxamide group to protein residues. brRESV is shown 

in pink and NAM in yellow. The protein part of the Sir2Tm/p53/NAM complex is omitted for 

clarity. Sir2Tm residues are labeled with a star. 
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Superposition of the complex hSirt3/ACS2/brRESV and hSirt3/FdL-1/brRESV reveals 

that a loop of a symmetry related monomer in the FdL-1 complex prevents the compound to bind 

to this allosteric site (Figure 4.2). RESV was reported as the most potent natural small molecule 

activator on Sirt1 and its orthologs (Howitz, et al., 2003). An activation mechanism of this 

compound on Sirt1 has not been successfully investigated due to the lacking of a Sirt1/RESV 

complex structure. Superposition of the hSirt3/ACS2/brRESV complex with a hSirt1 model 

indicates that the N-terminal extension could contribute to the external brRESV binding site. The 

residue Glu230 that is essential for Sirt1 activation (Hubbard, et al., 2013) is located next to this 

binding site, thus it might be the allosteric activation site in hSirt1 (Figure 4.3).  

 

 

 

Figure 4.2. Analysis of crystal contacts. Superposition of the complex hSirt3/ACS2/brRESV 

(blue) and hSirt3/FdL-1/brRESV (pink and grey). brRESV of the ACS2 complex (cyan) clashes 

with the substrate binding loop of the symmetry related monomer (grey) of the FdL-1 complex. 

brRESV of the symmetry related FdL-1 complex is shown in pink and labeled with a star. 
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Figure 4.3. Superposition of the complex hSirt3/ACS2/brRESV with a homology model of 

hSirt1. brRESV (cyan) of hSirt3 (blue) is close to the putative position of Glu230 of hSirt1 

(magenta and orange, respectively) suggesting the involvement of the compound binding site to 

an allosteric hSirt1 activation mechanism. hSirt1 N- and C-terminus and Glu230 are labeled with 

a star. A missing hSirt3 loop is indicated by a dashed line.  

 

4.1.2. Resveratrol unrelated compounds 

SRT1720 was known as a potent synthetic activator on Sirt1 with a much higher effect 

than RESV (Milne, et al., 2007). SRT1720 inhibits hSirt3 with high potency and isoform 

selectivity. Although it showed competitive inhibition with substrate peptide and uncompetitive 

with NAD
+
 using kinetic analysis (Jin, et al., 2009), the lacking of a complex structure with 

details about the binding site prevents full understanding of the inhibition mechanism. The 

hSirt3/carba-NAD
+
/SRT1720 complex structure in this study reveals the molecular inhibition 
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mechanism of the compound. Consistent with the kinetic study (Jin, et al., 2009), the compound 

interacts with NAM moiety of NAD
+
 and Phe157 of the cosubstrate binding loop to form π-

stacking sandwich and interferes substrate peptide by occupying a part of acetyl lysine. Further 

improvements to obtain more effective inhibitor can be developed from the novel binding site of 

SRT1720. It can be strengthening either the π-stacking interaction or substrate peptide 

competition. Based on the inhibition mechanism of Ex-527 (Gertz, et al., 2013) and the binding 

site of SRT1720 in hSirt3 complex structure, an activation mechanism of SRT1720 on Sirt1 can 

be speculated. SRT1720 would clash with the acetyl ribose moiety of the product (Figure 4.4) 

indicating that the compound might bind to Sirt1 after product formation and support product 

release. 

 

 

Figure 4.4. Superposition of the complex hSirt3/carba-NAD
+
/SRT1720 with 

hSirt3/OAcADPR/Ex-527 (PDB ID 4BVH) (Gertz, et al., 2013). SRT1720 (orange) would 

clash with the product 2’-O-acetyl-ADP-risbose (green). Carba-NAD
+
 and Ex-527 were omitted 

for clarity.  

 

The inhibitor Ex-527 has high selectivity for Sirt1 and lower potency on other isoforms 

(Solomon, et al., 2006). Ex-527 binds to sirtuins at the C pocket but extends in a different 

direction in comparison to the internal binding site of brRESV in the FdL-1 complex (Figure 

4.5). The Ex-527 molecule extends perpendicular to its carbamide in a hydrophobic pocket close 
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to the acetyl-Lys binding site whereas brRESV extends toward a pocket close to the enzyme’s 

surface. The crystal structure of the complex hSirt3/NAD
+
/Ex-527 and hSirt1/NAD

+
/Ex-527 

(Zhao, et al., 2013) indicate that the compound can interact with the ribose and NAM moiety of 

NAD
+
, force NAD

+
 to bind in non-productive conformation and thus affects the peptide binding. 

However, a previous study indicated that the compound is an uncompetitive inhibitor of Sirt1 

against both peptide substrate and NAD
+
 (Napper, et al., 2005). Based on competition 

experiments on the base exchange activity observed after intermediate formation, it was 

suggested to bind after binding of both substrates, and possibly to act by preventing the release 

of one or both of the products, 2’-O-acetyl-ADP-ribose and the acetylated peptide (Napper, et al., 

2005). Moreover, the uncompetitive inhibition behavior in kinetic experiments was confirmed in 

our lab; thus the hSirt3/NAD
+
/Ex-527 complex structure appears not to be relevant for the 

inhibition mechanism. Our study reveals that Ex-527 inhibits sirtuins by binding to the product 

2'-O-acetyl-ADP-ribose complex to prevent product release. The complex hSirt3/OAADPr/Ex-

527 explains the kinetics mentioned above. In addition, we confirmed that the compound binds 

to the enzyme after intermediate formation and one product molecule per enzyme molecule is 

formed before inhibition. 

 

 

 

Figure 4.5. Superposition of the complex hSirt3/FdL-1/brRESV with hSirt3/OAcADPR/Ex-

527 (PDB ID 4BVH) (Gertz, et al., 2013). Both brRESV (pink) and Ex-527 (green) occupy the 

C-site but extend in different directions. 
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4.2. Sirt5 studies 

An effort to investigate the activation mechanism of RESV on zSirt5 has not been 

successful. The compound was not found in crystal structures of zSirt5 complex that might due 

to its low solubility. However, the study obtained different zSirt5 structures including the apo 

structure and the protein in complex with different peptide substrates. Therefore, it provides 

structural models for further study on screening and investigating the regulation of other small 

molecule compounds with higher solubility, potency and selectivity on zSirt5. 
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Appendix 

 

Appendix A: A list of crystallization conditions of diffraction quality crystals. The ligand 

labeled as italic was not found in structures. 

Complex Condition of Diffraction-quality Xtals  Initial 

screening Salt Buffer Precipitant 

hSirt3/ACS2  1 M 

Ammonium 

sulfate 

0.1 M BisTris pH 

5.5 

1% (w/v) 

PEG 3350 

JCSG+  

2.38 

0.2 M 

Ammonium 

sulfate 

0.1 M BisTris pH 

5.5 

25% (w/v) 

PEG 3350 

JCSG+  

2.43 

hSirt3/FdL-1/PCT 0.2 M 

Sodium 

chloride 

0.1 M HEPES pH 

7.0 

10% (v/v) 

Isopropanol 

JCSG+  2.3 

hSirt3/FdL-1/brRESV 0.2 M 

Sodium 

chloride 

0.1 M HEPES pH 

7.0 

10% (v/v) 

Isopropanol 

JCSG+  2.3 

hSirt3/ACS2/brRESV 0.25 M 

Ammonium 

sulfate 

0.1 M BisTris pH 

6.0 – 6.6 

21% (w/v) 

PEG 3350 

JCSG+  

2.43 

And many 

other 

conditions 

hSirt3/ACS2/NAD
+
/brRESV  0.1 M MES pH 

6.0 

40% 

(v/v)PEG 

400; 5% 

(w/v)PEG 

3000 

JCSGIII 61 

hSirt3/ NAD
+
  0.1 M MES pH 

6.0 

40% 

(v/v)PEG 

400; 5% 

(w/v)PEG 

3000 

JCSGIII 61 

 0.1M MES pH 6.0  

 

30% (v/v) 

PEG 600; 

5% (w/v) 

PEG 1000; 

JCSGIV 71 
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10% (v/v) 

glycerol 

hSirt3/ NAD
+
/SRT1720  0.1M MES pH 6.0 40% 

(v/v)PEG 

400; 5% 

(w/v)PEG 

3000 

JCSGIII 61 

 0.1M MES pH 6.0  

 

30% (v/v) 

PEG 600; 

5% (w/v) 

PEG 1000; 

10% (v/v) 

glycerol 

JCSGIV 71 

hSirt3/ carba-

NAD
+
/SRT1720 

0.2 M 

Sodium 

fluoride 

 20% (w/v) 

PEG 3350 

JCSGII 29 

hSirt3/ NAD
+
/Ex-527 0.2 M 

Ammonium 

nitrate 

 20% (w/v) 

PEG 3350 

JCSG+  

1.27 

zSirt5/p53/RESV  0.2M tri-Lithium 

citrate 

14% (w/v) 

PEG 3350 

JCSGI  9 

zSirt5/ME/RESV  0.2M tri-Lithium 

citrate 

20% (w/v) 

PEG 3350 

JCSGI  9 

zSirt5/FdL-1/RESV  0.15 M 

Sodium 

citrate 

0.1 M 

BisTrisPropane 

pH 6.5 

20% (w/v) 

PEG 3350 

PACT  71 

zSirt5/RESV  0.1 M Sodium 

cacodylate pH 6.5 

1 M tri-

Sodium 

citrate 

JCSG+  2.1 
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Appendix B: Tables Table I. Data collection and refinement statistics 

 hSirt3/FdL-1/ 

4’-bromo-resveratrol 

hSirt3/ACS2/ 

4’-bromo-resveratrol 

Space group R32 P21212 

Unit cell constants a = b= 114.8 Å, c = 123.7 Å a =  52.6 Å, b =  159.7 Å, c = 34.7 Å 

Resolution (Å) 46.1 – 2.2 37.4 – 2.0 

Unique reflections 30849 37699 

<I / σ> (outermost shell) 16.1 (2.9) 11.5 (2.0) 

Completeness (outermost shell) (%) 99.9 (100) 98.6 (99.0) 

Rmeas
(a) 

(outermost shell) (%)
 

7.8 (58.6) 6.5 (57) 

Total number of reflections used 15293 19508 

Number of atoms in asymmetric unit 

   Protein  

   Ligands  

   Water 

 

2068 

95 

136 

 

2070 

79 

127 

R.m.s. deviations: 

   Bond length (Å)  

   Bond angles (º) 

 

0.02 

2.1 

 

0.02 

1.8 

Average B factor (Å
2
) 

   Protein  

   Peptide  

   4’-bromo-resveratrol  

   Zinc ions  

 

38.0 

44.5 

65.9 

24.4 

 

41.4 

46.5 

33.9 

42.5 

Final Rcryst/Rfree 
(b)(c) 

(%) 17.6/23.2 20.8/26.4 
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 hSirt3/ACS2  

 

hSirt3/FdL-1/Piceatannol hSirt3/FdL-1/Polydatin 

 

Space group 

 

C2221 

 

R32 

 

R32 

Unit cell constants a = 77.4 Å,  

b = 128.9 Å  

c = 76.9 Å  

 

a = b= 114.6 Å, 

c = 123.7 Å 

 

a = b= 114.6 Å, 

c = 123.9 Å 

 

Resolution (Å) 33.8 - 2.35 38.7– 2.3 35.9 - 2.3 

Unique reflections 16333 14069 12434 

<I / σ> 15.38 (3.14) 19.95 (4.26) 16.84 (3.88) 

Completeness  

(outermost shell) (%) 

99.6 (99.6) 99.9 (99.9) 99.9 (99.7) 

Rmeas
(a) 

(outermost shell) 

(%) 

9.2 (58.5) 9.1 (52.7) 10.1 (56.7) 

 

Total reflections Used 

Final Rcryst/Rfree 
(b)(c) 

(%) 

15516 

16.4/21.7 

13365 

17.4/24.1 

 

13318 

17.4/22.2 

R.m.s. deviations: 

  bond length (Å) 

  bond angles (°) 

        

 

0.017 

1.92 

 

 

 

0.015 

1.87 

 

 

 

 

0.015 

1.88 

 

 

    



Appendix 87 

 

 hSirt3/ADPR hSirt3/carba-NAD
+
/SRT1720 

 

Space group 

 

P21212 

 

C2 

Unit cell constants a = 63.9 Å, b= 66.7 Å, c = 66.9 Å 

β = 90º 

a =  227.8 Å, b =  246.1 Å,  

c = 127.3 Å, β = 123.9º 

Resolution (Å) 47.2 – 1.3 45.8 – 3.25 

Unique reflections 69702 91148 

<I / σ> (outermost shell) 15.1 (1.2) 9.3 (1.1) 

Completeness (outermost shell) (%) 98.4 (96.8) 99.4 (99.6) 

Rmeas
(a) 

(outermost shell) (%)
 

8.8 (136.2) 14.4 (144.0) 

Protein chains in asymmetric unit  

No. of amino acids 

No. of protein atoms  

No. of ligand atoms 

No. of waters  

No. of solvent atoms (except water)  

No. of metals  

1 

272 

2489 

41 

266 

20 

2 

12 

3275 

25548 

936 

0 

24 

12 

R.m.s. deviations: 

   Bond length (Å)  

   Bond angles (º) 

 

0.02 

2.3 

 

0.02 

2.4 

Average B factor (Å
2
) 

   Protein  

   Ligands  

   Water 

 

 

20.4 

15.0 

37.9 

 

 

20.0 

86.2 

--- 

Final Rcryst/Rfree 
(b)(c) 

(%) 13.8/17.9 22.7/24.7 
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 hSirt3/NAD
+
/Ex-527 hSirt3/native intermediate 

 

Space group 

 

P21212 

 

C2221 

Unit cell constants a = 60.9 Å, b= 63.4 Å, c = 66.4 Å a =  78.0 Å, b =  131.3 Å, c = 76.5 Å 

Resolution (Å) 45.8 – 2.0 38.2 – 2.5 

Unique reflections 17814 12915 

<I / σ> (outermost shell) 15.6 (2.9) 20.8 (3.8) 

Completeness (outermost shell) (%) 99.3 (95.4) 92.4 (93.9) 

Rmeas
(a) 

(outermost shell) (%)
 

11.0 (64.7) 7.2 (52.3) 

No. of amino acids 

No. of protein atoms  

No. of  intermediate atoms 

No. of ligand atoms 

No. of waters  

No. of solvent atoms (except water)  

No. of metals  

270 

2183 

0 

97 

123 

18 

1 

273 

2144 

101 

0 

57 

63 

1 

R.m.s. deviations: 

   Bond length (Å)  

   Bond angles (º) 

 

0.02 

2.0 

 

0.02 

1.9 

Average B factor (Å
2
) 

   Protein  

   Intermediate 

   Ligands include Zn 

   Water 

 

20.0 

 

16.7 

25.0 

 

 

41.2 

53.5 

28.3 

39.6 

Final Rcryst/Rfree 
(b)(c) 

(%) 16.3/20.9 18.2/24.8 
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 zSirt5/ME/Resveratrol zSirt5/p53/Resveratrol 

 

Space group 

 

I222 

 

C222 

Unit cell constants a = 56.9 Å,  

b = 77.6 Å  

c = 139.4 Å  

 

a = 84.5 Å, 

b =  105.4 Å, 

c =  65.9 Å 

Resolution (Å) 19.93 – 2.0 46.6 – 2.45 

Unique reflections 21218 11155 

<I / σ> 20.70 (4.20) 15.75 (3.6) 

Completeness  

(outermost shell) (%) 

99.7 (100) 99.9 (99.9) 

Rmeas
(a) 

(outermost shell) (%) 4.8 (33.9) 

 

 

9.7 (53.2) 

 

 

Total reflections Used 

Current Rcryst/Rfree 
(b)(c) 

(%) 

20157 

20.6/27.5 

41463 

20.2/27.7 

R.m.s. deviations: 

  bond length (Å) 

  bond angles (°) 

        

 

0.018 

1.93 

 

 

0.013 

1.60 
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 zSirt5/FdL-1/Resveratrol zSirt5/Resveratrol 

 

Space group 

 

I222 

 

R32 

Unit cell constants a = 146.6 Å,  

b = 148.1 Å  

c = 248.8 Å 

 

a = b= 230.8 Å, 

c = 167.0 Å 

 

Resolution (Å) 19.9 – 3.2 46.2 - 2.6 

Unique reflections 44932 52309 

<I / σ> 13.35 (3.38) 22.62 (4.18) 

Completeness  

(outermost shell) (%) 

99.8 (99.8) 100 (100) 

Rmeas
(a) 

(outermost shell) (%) 12.0 (52.8) 7.5 (51.1) 

 

 

Total reflections Used 

Current  Rcryst/Rfree 
(b)(c) 

(%) 

42685 

18.3/24.2 

 

49693 

18.5/24.6 

R.m.s. deviations: 

  bond length (Å) 

  bond angles (°) 

        

 

0.016 

2.13 

 

0.016 

1.90 
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(a)  
Rmeas = 



 


h

h

i

ih

n

i

ihh

h h

h

n
I

II
n

n h

,

,ˆ
1

  

with  
hn

i

ih

h

h I
n

I ,
1ˆ

 

 

(b)
 Rcryst =


 

obs

calcobs

F

FF
; obsF  is the observed and calcF  the calculated structure factor 

amplitude. 

 (c) 
Rfree was calculated from 5% of measured reflections omitted from refinement. 
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