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Abstract The Guaranteed Service Model (GSM) computes optimal order-points in
multi-echelon inventory control under the assumptions that delivery times can be
guaranteed and the demand is bounded. Our new Stochastic Guaranteed Service
Model (SGSM) with Recourse covers also scenarios that violate these assumptions.
Simulation experiments on real-world data of a large German car manufacturer show
that policies based on the SGSM dominate GSM-policies.
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1 Introduction

We investigate the multi-echelon inventory control problem of a large German auto-
mobile manufacturer. The core of inventory control is to balance cost with service
quality. Two main classes of mathematical models have been established in the lit-
erature: Stochastic service models (SSM) explicitly take into account the distribution
in lead times and demands and account for all actions that have to be made to ful-
fill demands. Guaranteed Service Models (GSM) assume some operational flexibility
outside the model that is not accounted for, and the model itself works with bounded
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demands and bounded lead times instead. The GSM paradigm is motivated by the
fact in most companies individuals have the capability to react to unforeseen events
successfully in many ways, and no model can possibly capture all these reactions
faithfully.

Research on the GSM was initiated by Simpson [17]. In [5] and [12] the investi-
gations were extended to tree structured networks and acyclic networks, respectively.
The first application of the GSM to spare parts distribution networks was carried out
in [11] for the spare parts distribution system of a large German car manufacturer.
Earlier investigations in other application contexts can be found, e.g., in [9,10,13].

The GSM is kind of an indirect model whose decision variables are service times
that each warehouse in the system (called a node) guarantees to its successor nodes.
Thus, in a sense, it computes decisions in the space of event times. These guaranteed
service times have to be transformed into decisions on the time at which a replen-
ishment of a certain quantity has to be ordered at each node. Whenever one of the
wide-spread (but in general suboptimal) base-stock policies (basically: order up to
an stock level S when the stock falls below s) is used, this is easy: Via a bounded-
demand assumption, the guaranteed service times can be transformed into minimum
stock level requirements at the nodes (see, e.g., [5] and [12]).

In [2] base-stock policies are theoretically justified by proving their optimality in
elementary special cases. In many environments, (s,S) policies or the like are pre-
scribed despite their suboptimality because the mechanism is easy to understand.
Then, only the parameters s and S can be chosen. In such environments, the GSM can
be used to determine values for s and S.

Finally, in [12] it has been shown, how the GSM including a determination of or-
der points can (approximately) be solved by a mixed integer linear program (MILP).
This gives the modeler the opportunity to easily add business constraints in the space
of event-times to the GSM without affecting its solvability too much. This model was
used in [11] for the spare parts distribution network that is also considered in this
paper.

The main drawback of the GSM is that it cannot keep control of the usage of
operational flexibility. The problem is that employees can use operational flexibility
(even at no cost) but not beyond a certain capacity. Operational flexibility is used in
the GSM to guarantee bounded lead times and bounded demands. That is, deliver-
ies can be expedited and/or outsourced in emergency cases. Assuming a known joint
distribution for the lead times and demands, one can keep control of the amount of
operational flexibility by prescribing a target service level at the nodes: for example,
if we want that during at least 90 % of the time we can deliver on time and enough
without using operational flexibility, then we can set up the GSM with the 90 % quan-
tile of the lead time/demand distribution as the bounded lead time and demands. Such
target service levels are meaningful at the nodes delivering to end customers (demand
nodes). However, prescribed target service levels at internal nodes are hard to justify.

The questions that remain are therefore: How should one decide on the internal
target service levels? Should there be at all individual target service levels for the
nodes? Do individual quantile-based lead time and demand bounds in a GSM really
guarantee that the target service level is achieved in the demand nodes? In a sense,
the core task of inventory control (balance cost with service quality) is shifted to the
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formal choice of the target service levels whose side-effects and correct real-world
interpretations are not always straight-forward.

One way to avoid the weaknesses of the GSM is to use a model from the SSM
category instead (see, e.g., [16] for the METRIC system, [3] for a survey, and [4] for
a special version of a stochastic service model). However, in SSM adding further re-
strictions, e.g., imposed by the business processes of a company, can render a method
impractical. This is because many algorithms are based on specialized dynamic pro-
gramming algorithms that may fail to apply to a system with additional restrictions.
In contrast to this, adding restrictions to the ILP model of the GSM to a certain extent
does not affect the ILP solution procedure.

To keep the advantages and overcome some of the weaknesses of the GSM, we
have introduced the stochastic guaranteed service model with recourse (SGSM) in
[14] and applied the first basic version of it to the inventory control problem in a
multi-echelon warehouse system of a spare part distributor. The SGSM adds a lead
time and demand sampling component and a recourse component to the GSM. (See
[1] for background on stochastic programming with recourse.) This way, each lead
time and demand scenario that is covered by the sampling component is accounted
for inside the model; in the basic version, generic operational flexibility allowing for
smaller safety stock levels leads to additional recourse costs. The SGSM does not
need any prescribed service level requirements; it yields service levels as a result
of the computation.1 However, estimates for the recourse costs have to be given for
all scenarios where lead times and demands can only be handled with operational
flexibility. Since we need not prescribe the service level requirements, the core task
of inventory control – balancing cost and service quality – is done inside the model.

In this paper, we go beyond the conference presentation [14] in the following
aspects (among others):

– We introduce the new SGSM with a non-trivial complete recourse consisting of
a transportation option besides the penalty cost for unsatisfied demand, i.e., re-
quested parts that cannot be delivered in time.

– We solve the SGSM by a combination of sample average approximation with
state-of-the art scenario reduction techniques. This way, a better coverage of un-
likely but expensive scenarios is achieved without increasing the computation
times in the MILP solver. Our new asymmetric distance function for the asym-
metric scenario reduction takes into account the influence of the scenario reduc-
tion on the result of the optimization. To the best of our knowledge, this is new.

– We present a more comprehensive documentation of extended computational re-
sults, including a new comparison to one representative [4] of the class of stochas-
tic service models that could be implemented to cope with our test data.

In simulations on real data we observe that the new asymmetric scenario reduction
technique is able to improve the approximation quality of the SGSM by a large mar-
gin. Moreover, the SGSM decreases the inventory holding cost and the recourse costs
at the same time compared to the GSM.

1 In fact, service level requirements can be prescribed also in the SGSM by using the original GSM
demand constraints for the nodes for which this is desired, see Section 2.
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It would be interesting from a theoretical point of view to also check perfor-
mances on artificial randomized data. For this work, we focused on the practical
impact in real-world applications, for which randomized data is rarely representative.
We emphasize that, for this reason, our simulation experiments are completely inde-
pendent of the assumptions of the tested models – it rather represents our partner’s
process as closely as possible.

In the following section we introduce the modeling of the GSM and the SGSM
before we theoretically compare them in section 3. We develop methods for scenario
generation and scenario reduction in section 4. After the description of the simulation
method and some computational results in section 5 we end with our conclusions.

2 Modeling

In this section we first give an introduction to the GSM. We use the ILP modeling
approach as in [12]. Then we present the SGSM in two different ways. First, in 2.2
we introduce the SGSM as a two stage stochastic mixed-integer linear program with
simple recourse. Second, in 2.3 we show an extension where the recourse action of
the locations supplying the end customers are modeled as a transportation problem.
We present all models only for diverging networks, i.e., networks in which all nodes
have unique predecessors.

2.1 The Guaranteed-Service-Model

In order to make the paper self-contained, we repeat in this section the known MILP
formulation for the GSM as can be found in the original work in [12]. Since in spare-
part systems, there are large expensive parts stored at small stock levels, the order
points are required to be integral. Notational conventions are taken from [14].

Parameters of the model GSM are:

G directed graph describing the warehouse network
N number of warehouses

N(G) set of nodes i in G

A(G) set of arcs ij in G

D(G) set of leaves in G (warehouses delivering to end-customers)
hi inventory holding cost in location i; positive
Li lead time to location i

s̄out
i given service time for a leaf i ∈ D(G)

Φi(xi) upper bound for the demand in i ∈ N(G)

during the time period xi

Variables of the model GSM are the following for nodes i ∈ N(G):

sin
i service times guaranteed by the predecessors of i
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sout
i service times guaranteed by i for its successors
xi time period that i needs to bridge with its inventory

(i.e., the time between order and delivery
of replenishments from the predecessors of i)

yi order-point in i

The model GSM now reads as follows:

min∑
i∈N(G)

hi yi (1)

sout
i ≤ s̄out

i ∀i ∈ D(G) (2)

sin
i ≥ sout

j ∀ji ∈ A(G) (3)

xi ≥ sin
i − sout

i +Li ∀i ∈ N(G) (4)
yi ≥Φi(xi) ∀i ∈ N(G) (5)

sin
i , sout

i ,xi, yi ≥ 0 ∀i ∈ N(G) (6)
yi ∈ Z ∀i ∈ N(G) (7)

With the well-known multiple-choice modeling of piecewise linear functions, this
non-linear model can approximately be transformed into an MILP (see [12]).

Note that the GSM is a one-stage model although it deals with a multi-stage
decision problem. In a sense, the GSM computes decisions in the space of event
times: how long does it take (at most) after an order at node i has been placed by
node j until the delivery of node i arrives at node j. These one-stage decisions in the
space of event times imply the time xi that has to be bridged with inventory until we
can be sure to receive a replenishment. The necessary safety stocks yi at all nodes i can
then be computed from xi using the maximal demand quantity Φi(xi) during time xi.
These decisions can be considered stationary over time. They are transformed by a
base-stock policy into the multi-stage sequence of decisions for every node, namely,
how much to order given the current stock level.

2.2 The Stochastic Guaranteed-Service-Model with Simple Recourse

In this section, we present the simple-recourse version of the SGSM, following [14].
The short-comings of the GSM are addressed by turning the deterministic GSM into
a stochastic model with recourse. Again, the service times are the decision variables.

We first fix our notation for the stochastic data. A lead time/demand distribution
consists of the following:

– A finite sample set Ω = {1,2, . . . , |Ω |} of states ω of the world, encoded by
natural numbers.

– A positive probability for each ω , denoted by pω > 0, inducing a probability
measure PΩ on 2Ω via P(A) = ∑ω∈A pω .
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– For each ω ∈ Ω , a random vector of measurements ξ ω that has the following
components:

ξ
ω =

(
Lω

i ,Ψ
ω

i
)

i∈N(G)
, (8)

where Lω
i ≤ 0 is the lead time in node i in state ω and Ψ ω

i is a function that assigns
to each time interval x a demand Ψ ω

i (x), which denotes the demand presented to
node i in state-of-the-world ω .

We call ξ ω the lead time/demand scenario, or scenario for short, of state ω ∈Ω . The
probability that ξ ω = ξ is equal to ∑ω∈Ω :ξ ω=ξ pω . The induced probability measure
on 2Ξ is denoted by PΞ . The set of all scenarios with positive probabilities is denoted
by Ξ . The complete lead time/demand rate distribution is denoted by (Ξ , p).

We are given a finite lead time/demand distribution (Ξ , p). Whenever a node
misses its “guaranteed” service time, then a recourse action has to be taken that de-
livers the part faster (expediting). Whenever in some state ω of the world a node
cannot deliver any of the demanded parts, a recourse action has to be taken that gets
the missing parts from somewhere else (outsourcing). In contrast to the GSM, where
such actions can be taken tacitly at no cost, in the SGSM operational flexibility is
made explicit in the model such that we can assign a cost to it. The remaining ap-
proximation of the SGSM is that expediting and outsourcing can always be done
by paying a surplus, which leads to a model with simple complete recourse. In the
following, we review the formalization of the SGSM from [14].

Scenario and recourse parameters of the SGSM:

Ω index set of scenarios
pω probability of scenario ω ∈Ω

ti cost to compensate for one time unit of late delivery, non-negative
ci cost to compensate for one piece of unmet demand, non-negative

Lω
i actual lead time to i in scenario ω

Ψ
ω

i (x) actual demand in i,
during time period x in scenario ω

Additional recourse variables of the SGSM:

rω
i recourse variable for missed deadlines in scenario ω;

“how many time units should be compensated at a cost of ti per unit?”
qω

i recourse variable for missing pieces in scenario ω;
“how many pieces should be compensated at a cost of ti per unit?”

The SGSM is modeled by the following MILP:

min∑
i∈N(G)

(
hi yi +∑

ω∈ω

pω(ti rω
i + ci qω

i )
)

(9)

sout
i ≤ s̄out

i ∀i ∈ D(G) (10)
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sin
i ≥ sout

j ∀ji ∈ A(G) (11)

xi + rω
i ≥ sin

i − sout
i +Lω

i ∀i ∈ N(G), ∀ω ∈Ω (12)
yi +qω

i ≥Ψ
ω

i (xi) ∀i ∈ N(G), ∀ω ∈Ω (13)

xi, sin
i , sout

i , rω
i , qω

i ≥ 0 ∀i ∈ N(G), ∀ω ∈Ω (14)
yi, qω

i ∈ Z ∀i ∈ N(G), ∀ω ∈Ω (15)

Here, constraint (12) makes sure that whenever a guaranteed service time cannot be
met, we have to buy rω

i time units of expediting services. Restriction (11) makes
sure that no node can expect to receive a piece faster than its predecessor guarantees.
Condition (10) indicates that each node delivering to end customers fulfills the service
time requirements of the end customer and finally in (13) the reorder point yi plus the
outsourced quantities need to be higher than the demand during time xi at node i, as
given by Ψ ω

i (xi).

Remark 1 If one wants to prescribe a service level requirement in a node, one has
to replace constraints (12) and (13) by the corresponding GSM constraint with the
quantile-based demand function Φi and without recourse variables instead of the
scenario-based demand function Ψ ω

i with recourse variables.

Again, a linearization of Ψ ω
i (xi) can be carried out by the multiple-choice modeling

of piecewise linear functions.
Note that the SGSM is now a two-stage model although we are dealing with

a multi-stage decision problem. We are still working in the space of event times and
obtain safety stock levels yi for all nodes i. All decisions coming out of the SGSM are
considered stationary. However, now we can detect extremal lead time and demand
scenarios for which we need to apply a (simple but costly) recourse action.

In the variant of the SGSM with simple recourse, the second stage is equivalent to
paying a penalty for missing parts and missed deadlines. The model in the following
section contains a non-simple second stage.

2.3 Extension with External Suppliers and Lost Sales

The model with simple recourse from the previous section can be extended by mod-
eling an explicit recourse process. We assume that unmet customer demands are lost.
However, internal orders are backlogged. The locations that deliver parts to the end
customers can order parts from external suppliers to prevent lost sales.

The external suppliers deliver the parts directly to the end customers such that
there is no delay in the delivery. The costs of an order from an external supplier
depends on the distance between the ordering location and the supplier. Of course,
the suppliers do not have unlimited stock such that capacity constraints have to be
taken into account. To concentrate on these recourse actions we assume that the lead
times in the system are fixed. An extension with lead time uncertainties would be
straight-forward.

We need some more notation to model the new situation

J set of external suppliers
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C j capacity of the external supplier j

qω
ji recourse variable for the number of parts that location i orders at supplier j

cji costs for location i to order one part from supplier j

This leads us to the following model:

min∑
i∈N(G)

(
hi yi +∑

ω∈Ω

pω
∑
j∈J

cji qω
ji
)

(16)

sout
i ≤ s̄out

i ∀i ∈ D(G) (17)

sin
i ≥ sout

j ∀ji ∈ A(G) (18)

xi ≥ sin
i − sout

i +Li ∀i ∈ N(G) (19)

yi +∑
j∈J

qω
ji ≥Ψ

ω
i (xi) ∀i ∈ D(G), ∀ω ∈Ω (20)

∑
i∈D(G)

qω
ji ≤C j ∀ j ∈ J, ∀ω ∈Ω (21)

yi ≥Ψ
ω

i (xi) ∀i ∈ N(G)\D(G), ∀ω ∈Ω (22)

xi, sin
i , sout

i , qω
ji ≥ 0 ∀i ∈ N(G), ∀ j ∈ J, ∀ω ∈Ω (23)

yi, qω
ji ∈ Z ∀i ∈ N(G), ∀ω ∈Ω (24)

The constraints (20) and (22) are forcing the reorder points yi to be higher than the
demand during the time that has to be covered. For locations with end customer de-
mand there is the possibility to procure parts from external suppliers. As the suppliers
do not have infinity capacity, constraint (21) must hold.

So far, this model does not have complete recourse. Therefore, we introduce an-
other recourse variable. As before, we enable for every location the possibility to pay
a penalty for a lost sale if it cannot deliver the ordered parts. For instance one can
provide the customer with a replacement vehicle until the spare part can be deliv-
ered and the customer’s car is fixed. The corresponding penalty recourse variable is
denoted by qω

i , as in the first model, and the penalty costs are denoted by ci again.
We obtain a two stage stochastic model with complete recourse:

min∑
i∈N(G)

(
hi yi +∑

ω∈Ω

pω
(
ci qω

i +∑
j∈J

cji qω
ji
))

(25)

sout
i ≤ s̄out

i ∀i ∈ D(G) (26)

sin
i ≥ sout

j ∀ji ∈ A(G) (27)

xi ≥ sin
i − sout

i +Li ∀i ∈ N(G) (28)

yi +qω
i +∑

j∈J
qω

ji ≥Ψ
ω

i (xi) ∀i ∈ D(G), ∀ω ∈Ω (29)

∑
i∈D(G)

qω
ji ≤C j ∀ j ∈ J, ∀ω ∈Ω (30)

yi +qω
i ≥Ψ

ω
i (xi) ∀i ∈ N(G)\D(G), ∀ω ∈Ω (31)

xi, sin
i , sout

i , qω
ji ≥ 0 ∀i ∈ N(G), ∀ j ∈ J, ∀ω ∈Ω (32)
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yi, qω
ji ∈ Z ∀i ∈ N(G), ∀ω ∈Ω (33)

Note, that by using the penalty recourse variables we force complete recourse but
account for failure by some cost. The computational results in Section 5.4 suggest that
the SGSM policies with the tested penalty values dominate GSM-policies in terms of
both inventory and recourse cost, not only total cost. This means, the resulting SGSM
policy, internally using those successful penalty values, will perform better than the
corresponding GSM policies also for any other penalty values.

3 Theoretical Comparison of the SGSM with the GSM

One reason for the superior performance of policies based on the SGSM seems to be
that it generates structurally different optimal solutions. In this section we give some
theoretical evidence for this intuition.

We restrict ourselves to linear demand scenarios. Thus, the stochastic data sim-
plifies to the following: For each ω ∈Ω , the random vector of measurements ξ ω now
has the following components:

ξ
ω =

(
Lω

i ,α
ω
i
)

i∈N(G)
, (34)

where Lω
i ≤ 0 is the lead time in node i in state ω and αω

i > 0 is now the constant
demand rate in node i in state ω .

Note that we assume that all demand rates are positive. We do this in order to
avoid special cases with limited relevance. We call ξ ω the lead time/demand rate
scenario, or scenario for short, of state ω ∈Ω . As before, the probability that ξ ω = ξ

is equal to ∑ω∈Ω :ξ ω=ξ pω . The set of all scenarios with positive probabilities is again
denoted by Ξ . The complete lead time/demand rate distribution is again denoted by
(Ξ , p).

3.1 Lead-Times/Demand-Rates Induced by a Distribution and a Target Service Level

In order to prepare for a formalization of these considerations, we elaborate in more
detail on the chance-constraint interpretation of the GSM restrictions.

Note first that the conclusions of the GSM (optimality of the inventory decisions
in the real world) are formally only correct if, in the real world, at each node all lead
times and demand rates are bounded by tight choices of Li and αi of the GSM. In that
case, a GSM solution will service all customers in time with minimal inventory.

Since this assumption is not realistic over long time-periods, consider the fol-
lowing chance-constraint interpretation: If at some node i ∈ N(G) the lead time of
demand rate exceeds the choice of the upper bounds Li and αi chosen for the GSM,
then the guaranteed service times computed by the GSM are nevertheless achieved
by unspecified actions outside the model (operational flexibility). We require, how-
ever, that a prescribed fraction of the demand is handled on time inside the model. If
this fraction were set to zero, one would simply shift all demands outside the model,
making the GSM pointless. The positive fraction of demands required to be handled
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inside the model is the target service level mentioned in the introduction. It can in
principle be prescribed for each node. In the following we restrict ourselves to the
case of a global target service level to reduce notational clutter.

In the chance-constraint interpretation, the GSM arises as a (possibly approxima-
tive) deterministic equivalent of the following chance-constraint stochastic program:

min∑
i∈N(G)

hi yi (35)

sout
i ≤ s̄out

i ∀i ∈ D(G) (36)

sin
i ≥ sout

j ∀ji ∈ A(G) (37)

PΩ

[
xi ≥ sin

i − sout
i +Lω

i ∀i ∈ N(G)

yi ≥ α
ω
i xi ∀i ∈ N(G)

]
≥ ntarget (38)

sin
i , sout

i ,xi, yi ≥ 0 ∀i ∈ N(G) (39)
yi ∈ Z ∀i ∈ N(G) (40)

Since joint chance constraints are difficult to handle in general, one hopes that for a
suitable choice of Li and αi the GSM is (close to) a deterministic equivalent of such
a chance-constraint stochastic program.

In the presence of a finite lead time/demand rate distribution we obtain: A solution
to a GSM with lead times Li and demand rates αi satisfies all demands on time in
scenario ξ ω without operational flexibility if the GSM solution is also feasible in
a GSM with lead times Lω

i and demand rates αω
i . This is the case if Lω

i ≤ Li and
αω

i ≤ αi. Thus, in order to achieve a target service level of ntarget ∈ (0,1], the GSM
must choose minimal Li and αi such that we have

PΩ

(
{ω ∈Ω | Lω ≤ Li,α

ω
i ≤ αi ∀i ∈ N(G)}

)
≥ ntarget. (41)

Even for finite general lead time/demand rate distributions Li and αi may not be
uniquely determined by the distribution and the target service level. The GSM may
even produce distinct results for distinct choices.

Example 1 Consider a single-demand-node network with h = 1 and s̄out = 0. Let the
scenario set be Ξ =

(
(L1 = 1,α1 = 2),(L2 = 3,α2 = 1)

)
with probability 1

2 for both.
In order to achieve a target service level of 0.5 tightly, we can either use L = 1, α = 2
or L = 3 and α = 1. The former leads to optimal GSM costs of 2 via x = 1 and y = 2,
while the latter achieves optimal GSM costs of 3 via x = 3 and y = 3.

We can, however, find unique lead time and demand rate bounds if we assume the
following total-order property of the lead time/demand rate distribution:

L1
i ≤ L2

i ≤ ·· · ≤ L|Ω |i and α
1
i ≤ α

2
i ≤ ·· · ≤ α

|Ω |
i ∀i ∈ N(G). (42)

In this case, we can identify a critical scenario ω∗, defined by

ω
∗ := min

{
ω ∈Ω

∣∣ ∑
ω ′≤ω

pω ′ ≥ ntarget}. (43)
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It has the following property: A feasible solution to the GSM with lead times Lω∗
i

and demand rates αω∗
i is feasible for all scenarios ξ ω with ω ≤ ω∗. Thus, with these

choices any feasible solution to the GSM achieves at least the desired target service
level. In an optimal GSM solution, for all i∈N(G) constraints (4) and (5) of the GSM
are binding. Consequently, the choices of Lω∗

i and αω∗
i are unique. In this situation,

we can derive induced lead times and demand rates from a finite lead time/demand
rate distribution and a target service level:

Definition 1 (Induced Lead-Times and Demand Rates) Let (Ξ , p) be a finite lead
time/demand rate distribution with the total-order property (42). Moreover, let ntarget

be a positive target service level that determines a critical scenario ξ ∗ = ξ ω∗ ∈ Ξ .
Then the lead time and the demand rate in node i ∈ N(G) induced by (Ξ , p) and
ntarget are L∗ = Lω∗

i and α∗ = αω∗
i , respectively. Given an SGSM with input data

(Ξ , p), we call the GSM with identical marginal holding costs and induced lead times
and demand rates the GSM induced by the SGSM.

Remark 2 In the case of node-individual target service levels, the chance constraints
are not joint over all nodes, but lead time and demand rate restrictions still need to
hold jointly. (Even prescribing separate target service levels for those is conceivable,
which results in purely individual chance constraints.) It is then sufficient that scenar-
ios can be reordered at each node individually such that lead times and demand rates
are monotonically increasing simultaneously. We then have to keep track of a critical
scenario for each node. The interpretation is that at each node individually at least the
target service level fraction of the demand is handled inside the model. The fraction of
the total demand over all nodes handled inside the model can be much smaller then.
Prescribing more and more target service levels means the need to properly guess
more and more parameter values. The SGSM can be seen as an optimization model
for this task. Note that a total order property (global or local) was only introduced for
a consistent chance-constraint interpretation of the GSM. The SGSM does not need
it.

3.2 Solution Spaces of SGSMs and Induced GSMs

Now that we have related the SGSM input data with the GSM input data via the target
service level, we can perform a tighter comparison between the two.

In the following, let (Ξ , p) be a finite lead time/demand distribution with the total-
order property. For any target service level ntarget we denote the critical scenario by
ξ ∗ = ξ ω∗ . Recall that ω∗ ∈ Ω is minimal such that ∑ω≤ω∗ pω = n∗ ≥ ntarget. Here,
n∗ is the actual service level of the GSM with induced lead times and demand rates.
Moreover, in node i ∈ N(G) let the critical lead time be L∗i = Lω∗

i , and let the critical
demand rate be α∗i = αω∗

i .
The following result tells us, given a finite lead time/demand rate distribution, that

for any target service level in the GSM, the recourse costs of the SGSM can always be
adjusted in such a way that the decisions of the GSM are optimal first-stage decisions
in the SGSM.
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Theorem 1 Let (Ξ , p) be a finite lead time/demand distribution with the total-order
property and positive demands. Let ntarget be a target service level. Moreover, let(
(sin)GSM,(sin)GSM,xGSM,yGSM

)
be optimal for the GSM with induced lead times

L∗i ≥ 0 and demand rates α∗i > 0. Then there are marginal expediting costs ti and
marginal outsourcing costs ci such that for the corresponding SGSM the following
solution induced by the GSM is optimal:

(sin
i )

SGSM = (sin
i )

GSM ∀i ∈ N(G), (44)

(sout
i )SGSM = (sout

i )GSM ∀i ∈ N(G), (45)

xSGSM
i = xGSM

i ∀i ∈ N(G), (46)

ySGSM
i = yGSM

i ∀i ∈ N(G), (47)

(rω
i )

SGSM = max
(
0,Lω

i − xSGSM
i +(sin

i )
SGSM− (sout

i )SGSM) ∀i ∈ N(G), (48)

(qω
i )

SGSM = max
(
0,αω

i xSGSM
i − ySGSM

i
)

∀i ∈ N(G). (49)

The proof is an extension of the proof for the equivalence of independent chance-
constraint programs and two-stage stochastic programs with simple recourse (see,
e.g., [1, Section 3.2]) via optimality conditions. The classic result cannot be applied
directly because our technology matrix depends on the stochastic demand rates. The
details of the rather technical proof are given in appendix A.

Next, we show that there are SGSM solutions that can not be found by solving an
induced GSM.

Theorem 2 There is a single-node warehouse network G, holding costs h, a lead
time/demand-distribution with total-order property, and marginal expediting and out-
sourcing costs t and c, respectively, with the following property: There is no target
service level ntarget such that the induced GSM has an optimal solution that is optimal
for the first stage of the SGSM.

Proof The network consists of a single node with holding cost h = 1. Consider the
following data:

Ξ = {ξ 1 = (L1 = 1,α1 = 1),ξ 2 = (L2 = 2,α2 = 2),ξ 3 = (L3 = 3,α3 = 3)},

p(ξ 1) = p(ξ 2) = p(ξ 3) =
1
3
, t = 3, c = 2, s̄out = 0. (50)

Depending on an actual service level of 1
3 , 2

3 , or 1, the corresponding induced GSM
has the following unique optimal solutions with the indicated GSM costs:

(sin = 0,sin = 0,x = 1,y = 1) 7→ 1,

(sin = 0,sin = 0,x = 2,y = 4) 7→ 4,

(sin = 0,sin = 0,x = 3,y = 9) 7→ 9. (51)

The corresponding SGSM solutions with fixed first-stage solutions, the optimal re-
spective recourse values, and their costs read as follows:

(sin = 0,sin = 0,x = 1,y = 1,r1 = 0,q1 = 0,r2 = 1,q1 = 1,r3 = 2,q3 = 2) 7→ 6,
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(sin = 0,sin = 0,x = 2,y = 4,r1 = 0,q1 = 0,r2 = 0,q1 = 0,r3 = 1,q3 = 2) 7→ 19
3
,

(sin = 0,sin = 0,x = 3,y = 9,r1 = 0,q1 = 0,r2 = 0,q1 = 0,r3 = 0,q3 = 0) 7→ 9.
(52)

However, the SGSM has the following solution with a smaller cost:

(sin = 0,sin = 0,x = 1,y = 2,r1 = 0,q1 = 0,r2 = 1,q1 = 0,r3 = 2,q3 = 1) 7→ 17
3
.

(53)

ut

The previous example shows that the first-stage part of an optimal SGSM solution
need not be extremal in the space of first-stage variables restricted by one scenario
only. Since in the example the second scenario equals the average scenario, using the
average scenario does not help the GSM to find the optimal first stage either.

In particular, the set of policies that can be generated by SGSM instances is a
strict superset of the set of policies that can be generated by induced GSM instances.

4 Scenario Generation and Reduction

For an appropriate finite approximation of a realistic distribution of lead times and de-
mands we need enough scenarios to represent every relevant situation at least once. In
subsection 4.1 we review some basics about Sample-Average-Approximation (SAA)
Methods for general finite approximations of probability distributions. The extensive
form of the deterministic equivalent problem grows with an increasing number of
scenarios. Therefore, we employ scenario reduction as described in Subsection 4.2.

4.1 Scenario Generation: The SAA-Method

To approximate the distributions of the stochastic parameters we generate random
numbers according to the assumed distribution. These random numbers build the sce-
narios in the discrete distribution approximating the real distribution of the stochas-
tic parameters. All samples are assigned probabilities proportional to the number
of times they were generated. Sampling techniques like this are quite common in
stochastic programming. See for example [1].

The idea of SAA is to estimate the optimal value function Q(x) of the second
stage of a two-stage stochastic program minx∈X

(
cT x+Q(x)

)
with first-stage vari-

ables x, second stage variables y, and random parameters ξ . This function is origi-
nally defined as

Q(x) = Eξ

[
Q(x,ξ )

]
= Eξ

[
min

yξ∈Y ξ

qT yξ
]
. (54)

Consider a set Ξ of independent, identically distributed samples ξ ∈ Ξ of the random
parameters. Then the following is an unbiased estimator for Q(x):

Q̂(x) =
1
|Ξ |∑

ξ∈Ξ

Q(x,ξ ), (55)
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and the problem
min
x∈X

(
cT x+ Q̂(x)

)
, (56)

which can be solved conceptually much easier than the original problem, yields an
unbiased estimator for the solution of the original problem. Further information about
SAA can be found in [15] for example.

4.2 Scenario Reduction: The Fast Forward Selection

The goal of scenario reduction is to approximate a discrete distribution with many
scenarios by another discrete distribution with significantly fewer scenarios. There
are several methods to achieve this goal, usually based on a metric on the space of all
possible scenarios (see [6–8]).

Let us now sketch the principle of scenario reduction, since we have to make
some choices. The approach to reduce the number of scenarios is based on a distance
between two scenarios denoted by d(ξ 1,ξ 2), a quantity that we have to define. Let Ξ ′

be any subset of Ξ . Then the distance d(ξ ,Ξ ′) of a scenario ξ ∈ Ξ to the subset Ξ ′

is given by d(ξ ,Ξ ′) := minξ ′∈Ξ ′ d(ξ ,ξ ′).
The discrete distribution with scenario set Ξ ′ that approximates Ξ best with re-

spect to the distance d can be obtained in the following way: Add the probability
of all ξ ∈ Ξ \Ξ ′ to the probability of the scenario ξ ′(ξ ) ∈ Ξ ′ that is the closest
scenario in Ξ ′ to ξ with respect to d. In a sense, the scenarios not in Ξ ′ are re-
placed by duplicates of the closest scenarios in Ξ ′. The quality of this approximation
can be quantified by the distance d(Ξ ,Ξ ′) between Ξ and Ξ ′, which is defined as
d(Ξ ,Ξ ′) = ∑ξ∈Ξ pξ d(ξ ,Ξ ′). The smaller the distance, the better the approximation.

The goal of scenario reduction in general is to find a particular subset Ξ ∗ of a
given cardinality such that d(Ξ ,Ξ ∗) is minimal.

The exact scenario reduction problem given any distance function d on scenarios
and a cardinality k can be formulated as the following k-median problem:

min
Ξ ′

{
d(Ξ ,Ξ ′)|Ξ ′ ⊆ Ξ , |Ξ ′|= k

}
. (57)

There are several exact and heuristic approaches to this NP-hard combinatorial op-
timization problem. For scenario reduction, there are special methods available, like
the fast forward selection, one of the heuristics introduced in [6–8].

The fast forward heuristic works as follows (see [6–8] for details). It uses the
fact that, by enumeration in time quadratic in the number of scenarios, we can find
the scenario that yields the best single-scenario approximation. The idea is now as
follows. We sequentially extend the current approximation by one new scenario at a
time such that in each step Ξ has minimal distance to the current scenario set union
the new one.

Assume we already have constructed a subset Ξm−1 consisting of m−1 scenarios,
1≤ m≤ k. Consider the updated distance function

d̄(ξ ,ξm) = min
{

d(ξ ,ξm),d(ξ ,Ξm−1)
}
. (58)
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By construction, we have for all ξ ∈ Ξ

d̄(ξ ,ξm) = d(ξ ,Ξm−1∪{ξm}) . (59)

Thus, the best possible one-element extension of a reduced scenario set with respect
to d is equal to the best possible one-element scenario approximation with respect
to d̄.

Summarized, the fast forward selection works as follows:

begin
Ξ 0 = /0
d̄ = d
for m = 1, . . . ,k do

Choose ξ ∗m ∈ argminξ∈Ξ\Ξm−1
d̄(Ξ ,{ξm})

Ξm = Ξm−1∪ξ ∗m
update(d̄,ξ ∗m)

Ξ ∗ = Ξk
for ξ ∈ Ξ do

Choose ξ ∗(ξ ) ∈ argminξ ∗∈Ξ∗ d(ξ ,ξ ∗)
for ξ ∗ ∈ Ξ ∗ do

p∗
ξ ∗ =

1
|Ξ | +∑ξ∈Ξ\Ξ∗:ξ ∗=ξ ∗(ξ )

1
|Ξ |

return Ξ ∗ and p∗

end

where update(d̄,ξ ∗m) is the following function:

begin
for ξ ∈ Ξ do

for ξ ′ ∈ Ξ do
d̄(ξ ,ξ ′) = min

{
d̄(ξ ,ξ ′), d̄(ξ ,ξ ∗m)

}
end

The approximation of the lead times and demand distributions is split into two parts.
First, a finite number of samples ξ ∈ Ξ is generated according to the assumed dis-
tribution. These samples build a first discrete approximation where every scenario
instance occurs with equal probability pξ = 1/|Ξ |. Second, the resulting discrete dis-
tribution is fed into the fast-forward scenario reduction, i.e., it is approximated by a
discrete distribution over a subset of scenarios of prescribed cardinality, which have,
in general, non-uniform probabilities.

4.3 Symmetric and Asymmetric Distances of Lead-Time/Demand Scenarios

In our computational tests we use two different kinds of distances between two sce-
narios. The distances are defined by first defining component-wise distances for the
lead times and demands of each node, separately. These component-wise distances
can be
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– transformed into a distance between complete scenarios by computing the Eu-
clidean norm of the components’ distances or

– used for a component-wise scenario reduction whenever the lead time/demand
distribution is the product of the components’ distributions (this is what we did in
the simulations in section 5).

The first distance we will refer to as the symmetric distance. For the lead time com-
ponent we define

d(L1
i , L2

i ) = |L1
i −L2

i |. (60)

Since the demand component of a scenario in a node consists of different demand
rates α for every time interval, we have to compare piecewise linear functions. We
assume an equidistant discretization of time (e.g., in weeks) and a piecewise linear
demand (e.g., constant demand rates in each week). Let the time intervals of linearity
be numbered with increasing time by r ∈ R (e.g., week numbers).

We will use a discount parameter ∆ that depends on the length of the linear pieces
of the demand. The motivation is as follows: Since any forecasting error has conse-
quences for the complete remaining time, its influence is smaller if the error occurs
later. In our experiments we used ∆ = 2 for a time discretization in months. The order
Ψ 1

i (xi) >Ψ 2
i (xi) depends on the xi, since Ψ ω

i (xi) is piecewise linear. We separately
compare the demand rates αω,r on the different domains of linearity and assign a
weigth to each difference. The higher r, the further in the future the demand rate is
realized, and differences for high values of r get a lower weight in the total distance
calculation than the ones at the beginning of the forecast period. This way, scenarios
that only differ in later time intervals are considered closer than scenarios that differ
in earlier time intervals. We formally define the distance between demand Ψ 1

i and Ψ 2
i

of two scenarios 1 and 2 as

d(Ψ 1
i ,Ψ

2
i ) =

R−1

∑
r=0

∣∣∣∣∣α1,r
i −α

2,r
i

∆ r

∣∣∣∣∣ , (61)

where α
ω,r
i denotes the demand rate during time interval with index r (e.g., during

the rth week) in scenario ξ ω .
There is another option that leads to asymmetric distances. The idea is to antic-

ipate that the approximation is constructed for the use in a stochastic optimization
problem. Thus, we would like to find the approximation that yields the least change
in the result of the optimization. To decide which scenario is more important for
optimization, we need some information about the costs that occur in case of stock-
holding and in case of stock out. We have this information given as parameter hi,
costs for holding one piece in stock, and ci costs for having a stockout of one piece.

This way, we can define the asymmetric distance between the lead time compo-
nents of two scenarios as

d(L1
i , L2

i ) = |L1
i −L2

i |
ci

hi
if L1

i > L2
i , (62)

d(L1
i , L2

i ) = |L1
i −L2

i |
hi

ci
otherwise. (63)
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The definition of asymmetric distance between the demand components of two
scenarios is based on the same idea. We define the following asymmetric distance
between the demand components of scenarios:

d(Ψ 1
i ,Ψ

2
i ) =

R−1

∑
r=0

∣∣∣∣∣α1,r
i −α

2,r
i

∆ r

∣∣∣∣∣ ci

hi
if α

1,0
i > α

2,0
i , (64)

d(Ψ 2
i ,Ψ

1
i ) =

R−1

∑
r=0

∣∣∣∣∣α1,r
i −α

2,r
i

∆ r

∣∣∣∣∣ hi

ci
otherwise. (65)

The distance between complete scenarios ξ 1 and ξ 2, in both the symmetric and
asymmetric case, can now be defined as

d(ξ 1,ξ 2) =

√
∑

i∈N(G)

(
d(L1

i ,L
2
i )

2 +d(Ψ 1
i ,Ψ

2
i )

2
)
. (66)

Alternatively, if the components are stochastically independent, we can perform sce-
nario reduction component-wise. This way, a complete scenario in the reduced sce-
nario set is a combination of scenario components from the reduced sets of scenario
components.

The asymmetric reduction does not necessarily approximate the distribution itself
as faithfully as the reduction technique based on symmetric distances. We get a bias
in our approximation that depends on the fraction of hi and ci. It will be shown in the
next section that this biased reduction is indeed a better approximation to the solution
of the optimization problems because it takes into account the cost of a decision in a
certain scenario. To the best of our knowledge, this is not a standard method in the
Stochastic Programming literature. Although we have not yet any further evidence
beyond the problem studied in this paper, we conjecture that objective-aware scenario
reduction might be worth a try in other contexts, too.

5 Simulation Experiments on Real Data

We performed comprehensive computational tests on real-world data from our part-
ner. All computational results report costs incurred by a method in a discrete-time
simulation.

5.1 Discretization of Time

The SGSM can only take finite discrete distributions of lead times and demands.
Moreover, all scenarios of the demand distributions must be represented by piecewise
linear approximations in order to obtain an MILP formulation for the SGSM.

Our partner forecasts the demand for one month. The data includes the expected
total demand in the current month, the expected total demand in the coming month
and so on. Thus, a straight-forward approach would be to approximate the demand
linearly during one month. However: If we simply assume linearity of the demand
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during one month, then the rough discretization of time into months leads to demand
scenarios with too little variation over time.

We can, of course, choose a finer discretization of time in weeks or days. The
finer the discretization is, the more realistic the demand function becomes. In order
to get a feeling for this influence, we generated random numbers representing the
demand over one month or one week. Figure 1 shows an example of differences in
the scenarios for discretization in months and in weeks.
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time(weeks)

Scenario 1
Scenario 2
Scenario 3
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Fig. 1 Different demand scenarios with discretization of time in month (dashed lines) and in weeks (solid
lines)

A problem arises if the discretization of time becomes too small. The shorter
the linear pieces in the demand functions, the more variables and constraints in the
resulting MILP. This is the reason why the results in section 5.4 are all based on
discretization in months or weeks. In our simulations, the discretization in days did
not lead to substantial savings compared to the one in weeks. (Our simulation itself
does not linearize the demand.)

Besides the time discretization, the number of scenarios included in the model
is the other quantity that is critical for the mere size and therefore to the computing



The Stochastic Guaranteed Service Model with Recourse 19

time of the SGSM. Therefore, we checked the effectivity of the scenario reduction
methods in our tests.

5.2 Setup of the Simulation Experiments

We implemented a discrete-time simulation system with independent uniformly dis-
tributed random lead times and Poisson distributed demands at all nodes in order
to compare the approximated expected long-term dynamic costs incurred by various
(s,S)-policies. The policies only differ in the method to compute s for each node.

We investigated two things:

1. How do the parameter settings for scenario generation and scenario reduction
influence the long-term cost in the simulation?

2. How does the SGSM with good parameter settings compare with competing al-
gorithms to optimize safety stock?

For the solution of the SGSM we used Sample Average Approximation (SAA)
with subsequent scenario reduction according to the old and new techniques Sec-
tion 4.1 with discount parameters ∆ = 2 and ∆ = 1.25 for a time discretization in
months and weeks, respectively. In order to assess the best parameter settings of our
scenario reduction, we computed the simulation results for various sizes of sampled
and reduced scenario sets (see Section 4.2). The GSM was parameterized by the target
service level: we investigated GSM with service levels that are frequently required at
our partner’s: 90 % and 96 %. These are denoted by GSM(90%) and GSM(96%). The
decentralized policies DEZ(90%) and DEZ(96%) for the service levels of 90% and
96%, respectively, served as a benchmark for policies ignoring the network effects: In
these models each location tries to reach the given service level target independently
at the smallest cost.

All results reported in Section 5.4 refer to the average long-term cost returned
from the respective ten simulation runs for a method under consideration. Since none
of the methods is based on an exact model of the dynamic development of the sys-
tem, each method produces individual systematic errors in the prediction of the long-
term costs as soon as the environment does not satisfy all the respective assumptions.
Therefore, we chose to make all cost comparisons in a common simulation environ-
ment rather than in one of the safety-stock models. We chose a simulation environ-
ment that matches the real situation at our partner’s as closely as possible. This way
we could assess best the real-world impact of the different model approximations and
the different computational approximations made in the various methods to compute
safety stocks.

All calculations were carried out on a standard PC (CPU: Intel(R) Core(TM) 2
Quad CPU Q9559 @ 2.83 GHz, Mem: 8GB RAM) using ubuntu 4.4.3.

5.3 Test Data

The data used in the simulation is a real-world data set from our partner. The ware-
house network is a star-shaped two-echelon spare parts distribution system. It has one
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master warehouse (no. 0) and seven warehouses (nos. 1–7) for end customer service.
The model SGSM is not restricted to this special structure; it can be applied to any
acyclic network structure by straightforward modifications.

For our tests we used the same benchmark data set (inventory costs and demand
intensities for 1127 spare parts) as in [14]. We used cost coefficients from cost esti-
mates of our partner for inventory cost and the piece-based so-called “non-sales” cost,
that determine the recourse cost coefficients. Since these cost coefficients depend on
the part, there are too many of them to be listed here.

We used a simulation horizon of 25 months. The end-customer demands were
Poisson distributed. The intensities were estimated from historical data. The lead
times were uniformly distributed in an interval from 80 % through 120 % around
the expected value. The scenario sets were generated as products of independently
sampled lead-time and demand scenarios over all nodes. Each policy was confronted
with identical sets of lead time and demand samples. Inventory was always controlled
by an (s,S)-policy. The values for s were chosen by the models under consideration.
Demands had to be fulfilled (backorders with higher priority) whenever possible.
Depending on the experiment, unmet demand was backlogged or considered lost.
The order quantity was taken from our partner data. Our simulation did not allow for
faster delivery than the service times computed by the models.

Because of the limited complexity of the network topology, all instances could be
solved in less than an hour for the benchmark assortment of 1127 parts by the MILP
solver gurobi 3.0 (set to an optimality gap of five percent). More accuracy made
computations slower but did not gain much with respect to the long-term cost of the
resulting policy.

5.4 Computational Results

We first tested the SGSM with many different cardinalities of generated and reduced
scenario sets between 1 and 1000, the range in which computations times were vi-
able.2 Table 1 shows a small selection of the results that show the effectiveness of
the reduction methods. The results presented in this table are the average long-term
costs of ten simulation runs. The safety stocks were determined by the SGSM, where
“n→ k” indicates that at each node n lead time and n demand scenarios were gener-
ated and reduced to k lead time and k demand scenarios. The lead times and demands
were identical in all the simulations.

We can see an enormous reduction in the total costs by applying the reduction
techniques introduced in section 4. In the case of generating only three scenarios we
observe a very high variability in the costs over the ten simulation runs. During ten
simulations, the minimal total costs were 16379, and the maximal total costs were
33546. Applying the symmetric/asymmetric reduction technique the minimal total

2 In practice, before implementing a safety-stock computation based on the SGSM, it seems advisable to
test an increasing number of scenarios (generated and reduced) until simulation results do not significantly
change anymore or until the computation times become prohibitive. We know of no method that would
allow an a-priori estimation of the number of scenarios necessary for an SGSM instance to guarantee a
prescribed optimality gap compared to the SGSM instance with the underlying (non-finite) distributions.
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Table 1 Results of the SGSM with different scenario reduction techniques

Reduction Inventory Cost Recourse Cost Total Costs
SGSM( 3→ 3), months, no 1273 20958 22183
SGSM(50→ 3), months, sym 1368 5799 7168
SGSM(50→ 3), months, asym 1487 1877 3364
SGSM(50→ 50), months, no 1660 1528 3188

costs were 6622/3246 and the maximal total costs were 7606/3546, respectively.
The costs occurring in the single simulation runs are listed in appendix B.

These results show that applying scenario reduction leads to a much lower vari-
ability in the costs because also scenarios with small probability are taken into ac-
count. We can see that the results for the asymmetric reduction are quite close to
those where all the fifty generated scenarios are included in the model.

Table 2 includes the service levels in the different locations during the first of the
ten simulation runs.

Table 2 Comparison of service levels (%)

Warehouse no 3→ 3 symmetric 50→ 3 asymmetric 50→ 3 asym no 50→ 50
0 75.4 85.4 73.1 88.9
1 92.4 94.4 95.6 96.8
2 92.5 94.1 95.3 96.3
3 92.1 94.2 95.2 97.0
4 92.0 94.1 95.1 96.2
5 93.0 94.8 96.6 97.5
6 92.0 94.0 96.1 96.3
7 92.9 95.0 95.9 97.0

The service levels in table 2 show the differences between the symmetric and the
(new) asymmetric reduction technique. The asymmetric technique takes into account
that for many parts the quotient hi/ci is greater for the leaf warehouses than for the
master warehouse. Therefore, for the symmetric technique we get a higher service
level at the master warehouse (no. 0), but lower service levels at the warehouses
(nos. 1–7).

Simulating the situation modeled in the SGSM with simple recourse leads to the
results listed in table 3.

This table includes the average costs over ten simulation runs of the different
approaches. Here we calculated the order points s using all the different methods and
ran the simulation ten times with different lead times and demands. For all different
approaches the lead times and demands in the simulations were identical.

The results for the decentralized method are worse than the results when the order
points are calculated by the GSM. Using one of the listed SGSM approaches leads to
a cost reduction of 30% and more. Again, the asymmetric scenario reduction domi-
nates the symmetric one. Another important aspect to notice is that the results using
a discretization of time in weeks are remarkably better than results using a discretiza-
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Table 3 Results of simulation with uniformly distributed lead times and Poisson distributed demands

Model Inventory Cost Recourse Cost Total Cost
(1) DEZ(90%) 2512 2012 4525
(2) DEZ(96%) 2987 1019 4006
(3) GSM(90%) 2497 1832 4329
(4) GSM(96%) 2983 963 3946
(5) SGSM(50), months 1555 1474 3029
(6) SGSM(200→ 50), months, sym 1561 1498 3058
(7) SGSM(200→ 50), months, asym 1690 1282 2972
(8) SGSM(200→ 1), months 1466 1410 2876
(9) SGSM(200→ 50), weeks, sym 1867 893 2761

(10) SGSM(200→ 50), weeks, asym 1884 808 2692

tion in month. Results for each of the ten simulation runs for Model (4) and (10) can
be found in appendix B.

In Method (8) a special heuristic is applied (different from the fast forward reduc-
tion) that tries to find a critical scenario for the lead time and the demand for every
location. This shows that much of the problem’s structure can be encoded into a sin-
gle scenario. This heuristic works properly for the discretization in months and may
be extended to finer discretization. This is work in progress.

The resulting service levels for the different methods in the first simulations are
shown in table 4.

Table 4 Comparison of service levels (%)

Warehouse (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
0 94.1 96.0 94.2 96.3 78.9 89.7 90.0 71.3 92.4 89.8
1 97.6 98.5 97.7 98.4 96.7 96.8 96.9 96.8 97.2 97.3
2 97.1 98.0 97.1 97.9 96.4 96.6 96.7 96.6 96.9 96.9
3 97.4 98.3 97.5 98.3 96.7 97.0 97.0 97.0 97.6 97.8
4 97.4 98.1 97.4 98.1 96.5 96.5 96.6 96.4 96.8 96.8
5 98.4 99.1 98.4 99.1 97.4 97.5 97.5 97.2 97.8 97.7
6 97.1 98.0 97.1 98.1 96.5 96.7 96.7 96.1 96.7 96.7
7 97.4 98.3 97.4 98.2 97.2 97.3 97.5 97.5 97.6 97.7

The differences in the service levels of the symmetric and the asymmetric reduc-
tion are no longer substantial. The reason is that now the number of scenarios in the
set Ξ ∗ is much higher; thus, both approaches lead to a good approximation of the
distribution and its impact on resulting service levels.

As table 3 shows, the differences in the resulting costs are still remarkable. This is
due to more scenarios in the more relevant parts of the distribution in the asymmetric
reduction (high lead times and demands if hi/ci is low and vice versa).

The results of simulations of the SGSM with external suppliers from which miss-
ing parts can be ordered and lost sales (introduced in subsection 2.3) are listed in
Table 5:

The simulation works different to the one applied in Tables 1–4. Here the demand
that cannot be delivered immediately from the warehouses (nos. 1–7) to the end cus-
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Table 5 Results of simulation with external suppliers

Method Inventory costs Recourse Costs Total Costs
(1) DEZ(90%) 2295 1314 3609
(2) DEZ(96%) 2472 1131 3602
(3) GSM(90%) 2268 1311 3580
(4) GSM(96%) 2451 1121 3573
(5) SGSM(100→ 100), weeks 2295 793 3088
(6) SGSM(200→ 50), weeks, sym 2272 868 3140
(7) SGSM(200→ 50), weeks, asym 2230 689 2920
(8) SGSM(300→ 75), weeks, sym 2384 859 3243
(9) SGSM(300→ 75), weeks, asym 2230 608 2838

tomers is lost. If the warehouses have not enough stock to deliver the ordered parts,
there is the possibility to buy these parts from an external supplier. This recourse ac-
tion causes costs depending on the distance between the warehouse and the external
supplier. The supplier himself has limited stock so that the warehouses are not able
to order any amount from them. If a demand at a warehouse can be neither delivered
from stock nor ordered from an external supplier, the demand is lost.

Internal orders (from a warehouse to the master warehouse) are still backlogged,
and the master warehouse delivers the demand as soon as possible to the ordering
warehouse. The ordering costs and the capacities of the external suppliers are not
included in the data of our partner, so we had to set them artificially.

As we can see in the results of Table 5, the decentralized model and the GSM per-
form much better in the case with only one kind of uncertainty (demand uncertainty)
than in the case of both lead time and demand uncertainty. The SGSM still outper-
forms the deterministic models achieving 10–20% of cost savings. Table 6 show the
resulting service levels of the different methods.

Table 6 Comparison of service levels (%)

Warehouse (1) (2) (3) (4) (5) (6) (7) (8) (9)
0 84.9 87.2 85.0 87.6 88.2 88.2 88.0 88.7 88.8
1 94.2 94.3 94.2 94.3 94.5 94.5 94.6 94.6 94.6
2 94.1 94.1 94.0 94.1 94.3 94.3 94.3 94.3 94.4
3 94.4 94.5 94.4 94.5 94.7 94.7 94.7 94.7 94.7
4 93.9 94.0 93.9 94.0 94.1 94.1 94.1 94.2 94.2
5 94.3 94.5 94.3 94.5 94.7 94.8 94.8 94.8 94.8
6 93.6 94.0 93.6 93.9 94.0 94.0 94.0 94.0 94.0
7 94.1 94.2 94.1 94.3 94.4 94.5 94.4 94.5 94.5

Here the service levels of the SGSM approaches are very similar to those of the
decentralized model and the GSM, both with a prescribed service level of 96%. The
costs in table 5 tell us that the SGSM treats different parts differently, while the GSM
and the decentralized model cover 96% of the demand for every part, no matter what
the costs hi and cji are. This is the reason why the order points calculated by the
SGSM can lead to lower inventory costs and recourse costs at the same time.
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Last we want to compare our model to a model that was introduced by Doǧru,
de Kok and van Houtum, see [4]. In the following we will refer to this model as
DoKoHo. In the simulation we need to apply fix lead times as this is one assumption
of the DoKoHo model. We simulate a situation that fits to the DoKoHo assumptions
where demand is backlogged and there are penalty costs if a location is not able to
deliver as demanded.

Table 7 shows the results of the simulation for the GSM, the SGSM, and DoKoHo.
There are some different parameter settings for DoKoHo where the penalty costs used
in the model are multiplied by a factor (γ). The DoKoHo model outperforms the GSM
but causes higher costs than the SGSM. The simulation of the different models lead
to the service levels that are shown in table 8.

Table 7 Results of simulation with Poisson distributed demand and fix lead time

Model Inventory Cost Recourse Cost Total Cost
(1) DoKoHo (γ = 1) 1451 2511 3961
(2) DoKoHo (γ = 5) 1817 1535 3352
(3) DoKoHo (γ = 10) 1955 1387 3342
(4) GSM 96% 1835 1980 3815
(5) SGSM 300→ 75, weeks, asym 1058 1630 2688

Table 8 Comparison of service levels (%)

Warehouse (1) (2) (3) (4) (5)
0 48.0 53.7 55.4 91.9 83.3
1 96.8 98.7 99.0 98.1 97.4
2 96.4 98.4 98.6 97.8 97.1
3 96.6 98.7 98.9 97.9 97.4
4 96.3 98.2 98.4 97.6 96.5
5 97.0 98.9 99.1 98.7 97.6
6 96.7 98.1 98.2 97.8 96.6
7 96.6 98.5 98.7 97.9 97.5

The reason for the very low service levels at the master warehouse using the
DoKoHo model compared to the ones using GSM or SGSM can be explained easily.
In the DoKoHo model there are no explicit service times guaranteed to the succes-
sors. But the lower performance of the master warehouse is considered when the
successor’s safety stock is calculated. In the simulation we use a service time of zero
for this case thus the delivery of master warehouse is often late. As all penalty costs
at the master warehouse are zero in the simulation, this does not affect the costs that
we get applying the DoKoHo models.
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6 Conclusion

We have provided additional evidence that the Stochastic Guaranteed Service Model
(SGSM), stochastic programming version of the Guaranteed Service Model (GSM),
first introduced in [14], induces policies that outperform other policies for the com-
putation of safety stock levels in a multi-echelon spare part distribution system of a
large German car manufacturer. Moreover, we enhanced the simple-recourse SGSM
by a recourse model that covers outsourcing in a more appropriate fashion by a trans-
portation problem.

In order to take advantage of the SGSM, we could show in our simulations that
the stochasticity needs to be captured by sufficiently large sample sizes: in our ex-
ample we generated 200 scenarios most of the time and reduced them to 50 applying
modified scenario reduction techniques. The resulting MILP models could be solved
straight-forwardly in our example.

The SGSM makes some assumptions that are only approximations of reality
(complete recourse, piecewise linear demand, exogenous lead time and demand dis-
tributions in internal nodes). However, our simulation was not restricted by these
assumptions; it only checked the resulting policies, no matter what they assumed,
and accounted for all the occurring costs. And in this quite realistic simulation exper-
iment, the policies calculated with the SGSM performed extremely well. One reason
for this is that the SGSM can have structurally different optimal solutions than the
GSM: not all optimal SGSM solutions are extreme in the space of variables of the
GSM. Thus the SGSM sometimes finds solutions that the GSM can never provide,
no matter which target service level. And such solutions dominated the GSM solu-
tions in our simulations.
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A Proof of Theorem 1

We repeat the theorem here for convenience.

Theorem 1 Let (Ξ , p) be a finite lead time/demand distribution with the total-order property and positive
demands. Let ntarget be a target service level. Moreover, let

(
(sin)GSM,(sin)GSM,xGSM,yGSM) be optimal

for the GSM with induced lead times L∗i ≥ 0 and demand rates α∗i > 0. Then there are marginal expediting
costs ti and marginal outsourcing costs ci such that for the corresponding SGSM the following solution
induced by the GSM is optimal:

(sin
i )

SGSM = (sin
i )

GSM ∀i ∈ N(G), (67)

(sout
i )SGSM = (sout

i )GSM ∀i ∈ N(G), (68)

xSGSM
i = xGSM

i ∀i ∈ N(G), (69)

ySGSM
i = yGSM

i ∀i ∈ N(G), (70)

(rω
i )

SGSM = max
(
0,Lω

i − xSGSM
i +(sin

i )
SGSM− (sout

i )SGSM) ∀i ∈ N(G), (71)

(qω
i )

SGSM = max
(
0,αω

i xSGSM
i − ySGSM

i
)

∀i ∈ N(G). (72)

Proof We prove the assertion by constructing marginal expediting and outsourcing costs from the com-
plementary slackness condition of a primal-dual optimal solution to the GSM. From this, we construct a
primal-dual solution to the corresponding SGSM that satisfies complementary slackness condition of the
SGSM.

We first list the GSM and its dual DGSM with the assumptions of this section (no integrality con-
straints, constant demand rates), where all variables appear on the left-hand side and all constants on the
right-hand side. With this, the GSM reads as follows:

min∑
i∈N(G)

hiyi (73)

−sout
i ≥−s̄out

i ∀i ∈ D(G), (74)

sin
j − sout

i ≥ 0 ∀ij ∈ A(G), (75)

−sin
i + sout

i + xi ≥ L∗i ∀i ∈ N(G), (76)

−α
∗
i xi + yi ≥ 0 ∀i ∈ N(G), (77)

sin
i , sout

i , xi, yi ≥ 0 ∀i ∈ N(G). (78)

With dual variables πi, ρij, σi, and τi corresponding in that order to the four sets of restrictions, the dual
DGSM of the GSM, with restrictions ordered according to sin

i , sout
i , xi, yi reads as follows:

max∑
i∈D(G)

(−s̄out
i )πi +∑

i∈N(G)

L∗i σi (79)
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∑
j:ji∈A(G)

ρji −σi ≤ 0 ∀i ∈ N(G), (80)

−πi−∑
j:ij∈A(G)

ρij +σi ≤ 0 ∀i ∈ N(G), (81)

σi−α
∗
i τi ≤ 0 ∀i ∈ N(G), (82)

τi ≤ hi ∀i ∈ N(G), (83)

πi, ρij, σi, τi ≥ 0 ∀i ∈ N(G),

∀ij ∈ A(G). (84)

From this we derive the optimality conditions via complementary slackness in primal-dual pairs of feasible
solutions:

πi
(
−sout

i + s̄out
i
)
= 0 ∀i ∈ D(G), (85)

ρij
(
sin

j − sout
i
)
= 0 ∀ij ∈ A(G), (86)

σi
(
xi− sin

i + sout
i −L∗i

)
= 0 ∀i ∈ N(G), (87)

τi
(
−α
∗
i xi + yi

)
= 0 ∀i ∈ N(G), (88)

sin
i
(
∑

j:ji∈A(G)

ρji−σi
)
= 0 ∀i ∈ N(G), (89)

sout
i
(
−πi−∑

j:ij∈A(G)

ρij +σi
)
= 0 ∀i ∈ N(G), (90)

xi
(
σi−α

∗
i τi
)
= 0 ∀i ∈ N(G), (91)

yi
(
τi−hi

)
= 0 ∀i ∈ N(G). (92)

Next we do the same for the SGSM. The primal reads as follows:

min ∑
i∈N(G)

hiyi +∑
ω∈Ω

i∈N(G)

(
pω tirω

i + pω ciqω
i
)

(93)

−sout
i ≥−s̄out

i ∀i ∈ D(G), (94)

sin
j − sout

i ≥ 0 ∀ij ∈ A(G), (95)

−sin
i + sout

i + xi + rω
i ≥ L∗i ∀i ∈ N(G),

∀ω ∈Ω , (96)

−α
ω
i xi + yi +qω

i ≥ 0 ∀i ∈ N(G),

∀ω ∈Ω , (97)

sin
i , sout

i , xi, yi, rω
i , qω

i ≥ 0 ∀i ∈ N(G), (98)

∀ω ∈Ω . (99)

With dual variables πi, ρij, σω
i , and τω

i corresponding in that order to the four sets of restrictions, the dual
DSGSM of the SGSM, with restrictions ordered according to sin

i , sout
i , xi, yi, rω

i , qω
i , reads as follows:

max∑
i∈D(G)

(−s̄out
i )πi +∑

i∈N(G)

L∗i σ
ω
i (100)

∑
j:ji∈A(G)

ρji −∑
ω∈Ω

σ
ω
i ≤ 0 ∀i ∈ N(G), (101)

−πi−∑
j:ij∈A(G)

ρij +∑
ω∈Ω

σ
ω
i ≤ 0 ∀i ∈ N(G), (102)

∑
ω∈Ω

σ
ω
i −∑

ω∈Ω

α
ω
i τ

ω
i ≤ 0 ∀i ∈ N(G), (103)

∑
ω∈Ω

τ
ω
i ≤ hi ∀i ∈ N(G), (104)

σ
ω
i ≤ pω ti ∀i ∈ N(G), (105)
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∀ω ∈Ω , (106)

τ
ω
i ≤ pω ci ∀i ∈ N(G), (107)

∀ω ∈Ω , (108)

πi, ρij, σ
ω
i , τ

ω
i ≥ 0 ∀i ∈ N(G),

∀ij ∈ A(G),

∀ω ∈Ω . (109)

The resulting optimality conditions for the SGSM are as follows:

πi
(
−sout

i + s̄out
i
)
= 0 ∀i ∈ D(G), (110)

ρij
(
sin

j − sout
i
)
= 0 ∀ij ∈ A(G), (111)

σ
ω
i
(
xi− sin

i + sout
i + rω

i −Lω
i
)
= 0 ∀i ∈ N(G),ω ∈Ω , (112)

τ
ω
i
(
−α

ω
i xi + yi +qω

i
)
= 0 ∀i ∈ N(G),ω ∈Ω , (113)

sin
i
(
∑

j:ji∈A(G)

ρji−∑
ω∈Ω

σ
ω
i
)
= 0 ∀i ∈ N(G), (114)

sout
i
(
−πi−∑

j:ij∈A(G)

ρij +∑
ω∈Ω

σ
ω
i
)
= 0 ∀i ∈ N(G), (115)

xi
(
∑

ω∈Ω

σ
ω
i −∑

ω∈Ω

α
ω
i τ

ω
i
)
= 0 ∀i ∈ N(G), (116)

yi
(
∑

ω∈Ω

τ
ω
i −hi

)
= 0 ∀i ∈ N(G), (117)

rω
i
(
σ

ω
i − pω ti

)
= 0 ∀i ∈ N(G),ω ∈Ω , (118)

qω
i
(
τ

ω
i − pω ci

)
= 0 ∀i ∈ N(G),ω ∈Ω . (119)

Consider now a primal-dual pair of optimal solutions to the GSM and DGSM, respectively, with target
service level ntarget > 0 and actual service level n∗ > 0, denoted by(

xGSM,yGSM,(sin)GSM,(sin)GSM), (
π

GSM,ρGSM,σGSM,τGSM). (120)

Case 1: n∗ = 1. In this case, the lead times and demand rates in all scenarios are bounded by L∗i and α∗i ,
respectively. We claim that for all ci >

hi
pω∗ and ti > α∗i ci the given SGSM solution is optimal. We show

first, that the SGSM optimality conditions imply that rω
i = 0 and qω

i = 0 for all ω ∈Ω and all i ∈ N(G).
Indeed: Assume, for the sake of contradiction, that there is an optimal solution to the SGSM/DSGSM

with qω
i > 0. Then, by the total-order property, qω∗

i > 0. Equation (119) implies τω
i = pω∗ci. Therefore,

we have
∑

ω∈Ω

τ
ω
i ≥ τ

ω∗
i = pω∗ci > hi, (121)

which contradicts the feasibility of τω∗
i in DSGSM. Thus, qω

i = 0 for all ω ∈Ω .
Assume next, for the sake of contradiction, that there is an optimal solution to the SGSM/DSGSM

with rω
i > 0. Again, this implies that rω∗

i > 0. Then equation (118), α∗i ≥ αω
i , and the feasibility of τω

i in
DSGSM imply the following:

∑
ω∈Ω

σ
ω
i −∑

ω∈Ω

α
ω
i τ

ω
i ≥ σ

ω∗
i −∑

ω∈Ω

α
ω
i τ

ω
i (122)

≥ pω∗ ti−α
∗
i ∑
ω∈Ω

τ
ω
i (123)

≥ pω∗ ti−α
∗
i hi (124)

> pω∗
α
∗
i

hi

pω∗ −α
∗
i hi (125)

= 0, (126)

which this time contradicts the feasibility of σω∗
i in DSGSM.
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Thus, in the SGSM with the given marginal costs for expediting and outsourcing, expediting and
outsourcing quantities rω

i and qω
i , respectively, can be fixed to zero. The resulting SGSM is identical to

the GSM. Hence, the SGSM solution from the assertion, whose first-stage part equals an optimal GSM
solution, is optimal.
Case 2: 0 < n∗ < 1. As an abbreviation for the following, we define

n̄ := ∑
ω>ω∗

pω = 1−n∗ > 0 and ᾱi := ∑
ω>ω∗

α
ω
i pω > 0. (127)

Define marginal costs for expediting and outsourcing as follows:

ci :=
τGSM

n̄
and ti :=

ᾱi

n̄
ci. (128)

Note that the definition of ci corresponds to the standard penalty to model chance constraints with stochas-
tic right-hand side, whereas the definition of ti is different because we have to keep under control the
stochastic coefficient αω

i in front of xi.
The SGSM solution from the assertion of the theorem is obviously feasible for the SGSM. We claim

that the following is a solution to the DSGM, which together with the given SGSM solution satisfies the
optimality conditions for the SGSM:

π
SGSM
i :=

ᾱi

α∗i n̄
π

GSM
i ∀i ∈ N(G), (129)

ρ
SGSM
ij :=

ᾱi

α∗i n̄
ρ

GSM
ij ∀i ∈ N(G), (130)

(σω
i )SGSM :=

{
0 if ω ≤ ω∗,

pω ti if ω > ω∗;
∀i ∈ N(G), (131)

(τω
i )SGSM :=

{
0 if ω ≤ ω∗,

pω ci if ω > ω∗;
∀i ∈ N(G). (132)

Since (σω
i )SGSM and (τω

i )SGSM are only positive for ω > ω∗, the validity of the SGSM optimality equa-
tions (112) and (113) follows from the definitions of (rω

i )
SGSM and (qω

i )
SGSM and the validity of the GSM

optimality equations (87) and (88).
The validity of the SGSM optimality equations (118) and (119) follows directly from the definitions

of (σω
i )SGSM and (τω

i )SGSM.
Furthermore, we have

∑
ω∈Ω

(τω
i )SGSM = ∑

ω>ω∗
(τω

i )SGSM = ∑
ω>ω∗

pω ci = ∑
ω>ω∗

pω τGSM

n̄
= τ

GSM. (133)

Thus, since ySGSM
i = yGSM

i , the validity of all the remaining SGSM optimality equations (117) containing
∑ω∈Ω (τω

i )SGSM follows from the validity of the corresponding GSM optimality equations (92) with τGSM
i .

Moreover:
∑

ω∈Ω

(σω
i )SGSM = ∑

ω>ω∗
(σω

i )SGSM = ∑
ω>ω∗

pω ti = n̄ti = ᾱici = ∑
ω>ω∗

α
ω
i (τω

i )SGSM. (134)

This proves the validity of the SGSM optimality equations (116).
On the other hand, for all i ∈ N(G):

∑
ω∈Ω

(σω
i )SGSM = ᾱici = ᾱi

n̄
n̄

ci =
ᾱi

n̄
(n̄ci) =

ᾱi

n̄
τ

GSM
i =

ᾱi

α∗i n̄
σ

GSM
i . (135)

Moreover, recall that for all i ∈ N(G) we have defined:

π
SGSM
i =

ᾱi

α∗i n̄
π

GSM
i (136)

ρ
SGSM
ij =

ᾱi

α∗i n̄
ρ

GSM
ij . (137)
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Now, scale by ᾱi
α∗i n̄ > 0 the optimal GSM solutions in the homogeneous GSM optimality equations (89)

and (90) as well as (85), (86) and (87). In the resulting valid equations, using (135), (136), and (137),
substitute α

α∗i n̄ σGSM
i by ∑ω∈Ω (σω

i )SGSM, ᾱi
α∗i n̄ πGSM

i by πSGSM
i , and ᾱi

α∗i n̄ ρGSM
ij by ρSGSM

ij . The resulting
valid equations are exactly the corresponding SGSM optimality equations with the SGSM/DSGSM values
that we have defined. Therefore, the SGSM optimality equations (114) and (115) as well as (110), (111)
and (112) are satisfied for the given DSGSM solution. Analogously, we can show that the given solution
to the DSGSM is feasible for the DSGSM. Consequently, the asserted SGSM solution is optimal. ut

B Results of the Individual Simulation Runs

In this section we show some of the numerical results in detail. The average costs of the ten simulation
runs listed here are given in tables 1 and 3. The tables 9–12 include the results that lead to the average costs
of table 2. Tables 13 and 14 include the results for the single runs of GSM 96% (4) and SGSM 200→ 50,
weeks, asym (10) of table 3.

Table 9 No reduction (3→ 3)

Run Inventory Costs Recourse Costs Total Costs
1 1262 20905 22167
2 1228 17573 18801
3 1238 22342 23580
4 1294 19942 21237
5 1311 21047 22358
6 1257 20861 22118
7 1326 15529 16379
8 1262 20905 22167
9 1242 32304 33546

10 1311 18170 19481
Average 127312731273 209582095820958 221832218322183

Table 10 Symmetric reduction (50→ 3)

Run Inventory Costs Recourse Costs Total Costs
1 1344 5886 7230
2 1375 6232 7606
3 1357 5264 6622
4 1358 5693 7052
5 1378 6038 7415
6 1357 5469 6826
7 1376 5947 7323
8 1401 5516 6917
9 1358 5828 7187

10 1379 6118 749
Average 136813681368 579957995799 716871687168
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Table 11 Asymmetric reduction (50→ 3)

Run Inventory Costs Recourse Costs Total Costs
1 1486 1981 3467
2 1478 1768 3246
3 1477 1833 3310
4 1509 1744 3252
5 1510 1861 3371
6 1475 1866 3341
7 1502 1889 3391
8 1496 1910 3406
9 1481 1827 3307

10 1458 2089 3546
Average 148714871487 187718771877 336433643364

Table 12 No Reduction (50→ 50)

Run Inventory Costs Recourse Costs Total Costs
1 1651 1532 3182
2 1657 1392 3049
3 1655 1520 3175
4 1652 1512 3164
5 1660 1511 3171
6 1658 1577 3235
7 1664 1561 3226
8 1673 1509 3182
9 1670 1525 3195

10 1655 1642 3297
Average 166016601660 152815281528 318831883188

Table 13 GSM with a prescribed service level of 96%

Run Inventory Costs Recourse Costs Total Costs
1 2977 954 3931
2 2985 957 3942
3 2982 1017 3999
4 2988 945 3934
5 2983 1086 4069
6 2993 914 3907
7 2998 881 3879
8 2975 963 3938
9 2972 928 3899

10 2978 985 3964
Average 298329832983 963963963 394639463946
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Table 14 SGSM(200→ 3) asymmetric reduction with time discretization in weeks

Run Inventory Costs Recourse Costs Total Costs
1 1870 794 2664
2 1895 743 2637
3 1892 834 2727
4 1875 764 2639
5 1876 997 2873
6 1884 772 2656
7 1880 812 2692
8 1894 809 2703
9 1885 768 2653

10 1890 788 2678
Average 188418841884 808808808 269226922692


