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Abstract

Facial trauma or congenital malformation of bones of the skull may degrade both
skeletal integrity as well as the esthetic appearance. For the attending surgeon a
prediction of the esthetic outcome of a bone replacement or augmentation implant
insertion is challenging. Therefore, it would be advantageous if we were able to
compute an implant shape from a given desired outcome. This task presents the
main focus of this thesis. Besides the development of a model for the implant shape
design problem, this work is concerned with the efficient solution and optimization
of realistic models. This includes recent material laws for different soft tissue types
as well as complex geometries attained from medical image data.
The implant shape design problem can be described as an optimal control prob-
lem with constraints given by the necessary optimality conditions in polyconvex
hyperelasticity with nonlinear pressure-type boundary conditions. Important theo-
retical results, such as existence of solutions and higher regularity, are currently not
available for such problems. Based on the existence result for polyconvex materials
laws of Ball [15], existence of solutions of the nonconvex optimal control problem is
proven for the case of a simpler Neumann boundary condition.
Due to the “impossible convexity” and the high nonlinearity of hyperelastic mate-
rial laws the numerical solution of the arising problems is difficult. In this regard,
an affine covariant composite step method for nonconvex, equality constrained op-
timization is presented. The corresponding globalization strategy is based on the
affine covariant Newton method for underdetermined systems of Deuflhard [76] and
cubic regularization methods for unconstrained optimization problems [277].
The linear systems arising from the discretization of constrained optimization prob-
lems are described by saddle point matrices. The efficient solution of these equality
systems by conjugate gradient methods for convex and nonconvex problems is dis-
cussed. Moreover, an error estimator that fits into the affine covariant setting is
presented.
The presented composite step method was implemented in the C++ finite element
library Kaskade 7 [114]. The performance of the algorithm is demonstrated on
several examples. Next to simple optimization problems, with admissible set given
through models of linear and nonlinear heat transfer, we give four examples with
nonconvex, hyperelastic constraints.
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Zusammenfassung
Traumata und kongenitale Fehlbildungen der Schädelknochen können sowohl die
Integrität des Skeletts also auch das ästhetische Erscheinungsbild beeinträchtigen.
Für den behandelnden Chirurgen ist die Vorhersage der ästhetischen Folgen des Ein-
satzes eines Knochenersatz- oder Augmentationsimplantats schwierig. Aus diesem
Grund wäre es von Vorteil Implantatformen auf Grundlage eines gewünschten Ergeb-
nisses zu berechnen zu können. Diese Fragestellung steht im Fokus dieser Arbeit.
Neben der Herleitung eines Modells für das Implantatdesignproblem wird die ef-
fiziente numerische Lösung und Optimierung für realistische Problemstellungen be-
handelt. Dazu gehören aktuelle Materialbeschreibungen sowie komplexe Geometrien
welche aus medizinischen Bilddaten gewonnen wurden.
Das Implantatdesignproblem kann als Optimalsteuerungsproblem modelliert wer-
den, mit Nebenbedingungen gegeben durch die notwendigen Optimalitätsbedingun-
gen der polykonvexen Hyperelastizität mit Druckrandbedingungen. Für diese Prob-
leme sind wichtige theoretische Ergebnisse, wie Existenz von Lösungen oder höhere
Regularität, zur Zeit nicht verfügbar. Für den Fall einfacherer Neumannrandbe-
dingungen wird, basierend auf Balls Existenzresultat für polykonvexe Materialge-
setze [15], die Existenz von Lösungen des nichtkonvexen Optimalsteuerungsproblem
gezeigt.
Auf Grund der “unmöglichen Konvexität” und der starken Nichtlinearität hyper-
elastischer Materialgesetze ist die numerische Lösung der auftretenden Probleme
schwierig. Hierfür wird eine affin kovariante “composite step” Methode vorgestellt.
Die zugehörige Globalisierungsstrategie basiert auf dem affin kovariante Newton-
verfahren für unterbestimmte Systeme von Deuflhard [76] und kubischen Regulari-
sierungsmethoden für unbeschränkte Optimierung [277].
Die linearen Gleichungssysteme, welche durch die Diskretisierung des beschränkten
Optimierungsproblems entstehen, werden durch Sattelpunktmatrizen beschrieben.
Die effiziente Lösung dieser Gleichungsysteme mittels konjugierter Gradientenver-
fahren für konvexe und nichtkonvexe Probleme wird diskutiert. Darüber hinaus wird
ein Fehlerschätzer, der in den affin kovarianten Rahmen passt, vorgestellt.
Das vorgestellte “composite step”-Verfahren wurde in der C++-Finite-Elemente-
Bibliothek Kaskade 7 [114] implementiert. Das Verhalten des Algorithmus wird
anhand verschiedener Beispiele demonstriert. Neben einfachen Optimierungsprob-
lemen, deren zulässige Menge wir durch Modelle der linearen und nichtlinearen
Wärmeleitung beschreiben, werden vier Beispiele mit nichtkonvexen, hyperelastis-
chen Nebenbedingungen vorgestellt.
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Introduction
Computer-assisted therapy approaches are a valuable tool for improving quality
and reducing costs of many therapeutic interventions. They offer new possibilities
to physicians regarding education, training, communication with patients and in
preoperative decision-making. Particularly in the field of patient-specific therapies
there lies a high potential.
In this thesis we focus on implant shape design in the facial area where one is mainly
concerned with two requirements. The first is restoration of functionality such as
skeletal integrity. The second is an unobtrusive esthetic outcome, cf. [163, 282].
The latter is particularly difficult to realize manually. The aim of this thesis is to
demonstrate the applicability of modern mathematics in the development of techni-
cal assistance tools that support the attending surgeons in the design of implants.
Currently therapy planning is largely based on general medical guidelines and statis-
tical analysis. Recognizing individual patient-specific information on, amongst oth-
ers, anatomy, physiology, metabolism and considering it for individual treatments
is expected to strongly improve therapeutic outcomes [163, 282].
In order to avoid siloed solutions and redundancies a unified IT-infrastructure, such
as the “Therapy Imaging and Model Management System” (TIMMS), as proposed
by Lemke and Berliner [173] is mandatory. It brings together medical imaging
devices and bio-sensors with modeling and simulation tools, visualization, technical
intervention and validation. This requires the standardization of the information
exchange between a large number of tools, which are partly new in therapy planning.
Until now, such an infrastructure has not yet been put to practice. Nonetheless it
is certainly required in the long-term and serves as a guideline for current research.
Probably the biggest step in this direction was the standardization of medical image
data in the DICOM (Digital Imaging and Communications in Medicine) standard [1].
On its basis several technical assistance tools, in particular regarding patient-specific
surgery planning, have been developed. Their utilization in clinical applications is
termed Image Guided Therapy (IGT). For example, three dimensional visualizations
of bones and soft tissues can facilitate the planning of surgical interventions [93, 71]
and help in the communication with patients.

Workflow in the development of model-based therapies

Model-Based Therapies (MBT) are the consequent extensions of IGT. These are
within the focus of TIMMS and additionally incorporate morphological, functional
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Introduction

and dynamic data to generate a patient-specific model [35, 184]. Researchers from
several different fields are trying to overcome the manifold obstacles that arise in
the development of technical tools assisting in therapy. For the particular case of
surgery planning the most important steps are sketched in Fig. 1.

medical
requirement

segmentation

mathematical
description

numerical
solution

visualization validation

Figure 1.: Workflow for the development of model based therapies.
In the focus of this thesis are the steps that are marked by blue image borders:

the derivation of mathematical models and their numerical solution.

1. A particular medical requirement, that could be solved automatically, must
be identified and specified by the surgeon. In this phase close cooperation
between physicians, biomechanics and applied mathematicians allows to bal-
ance clinical requirements with technical feasibility and to identify possibly
occurring difficulties.

2. For reasonable patient-specific computations accurate descriptions of the con-
sidered geometry are required. Therefore three-dimensional models must be
extracted from medical image data. This is referred to as the segmentation
step. These descriptions should not only permit the separation of bony tissue
from softer biological soft tissue, but also to distinguish the latter according
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to mechanical properties and tissue types. Ideally information on fiber orien-
tation, thickness and structure should also be extracted. These include muscle
fibers as well as fibers embedded in the soft tissue’s ground substance.

3. We shall need mathematical descriptions of the quantities of interest for differ-
ent tissue types, and possibly the relation to their environment. Regarding the
task of implant shape design the mechanical properties are of main interest1.
Their description has to incorporate different types of tissues, depending on
their microstructural characteristics, as well as varying material parameters in
the tissue type itself. Thus a model for the specific medical task needs to be
derived based on the available image data and material descriptions.

4. Methods for the numerical solution of this model need to be developed and
implemented. Due to the geometric complexity of biological soft tissues rela-
tively large problems are prone to arise. Highly efficient nonlinear solvers are
needed for their solution. Moreover, for medical applications, reliability of the
computation is mandatory.

5. In order to allow physicians, and possibly also patients, the interpretation of
the numerical solution interactive visualization tools are required. Preferably
these should allow the physician to modify the proposed solution, thus intro-
ducing his additional knowledge and experience into the planning process.

6. Eventually the most important phase is concerned with the validation of the
models, cf. Lemke and Berliner [173]. This includes the validation of the
models used for the description of the arising subproblems as well as the overall
procedure and the therapeutical outcome after each medical intervention.

The segmentation and visualization steps mainly involve the application of well-
developed mathematical tools. In contrast, the mathematical description of the
quantities of interest and their numerical computation still lead to many open math-
ematical questions. In the context of implant shape design we are concerned with
the deformation of the soft tissue as a consequence of implant insertion. Thus, we
are concerned with the steps third and fourth step of the above depicted workflow.
Before going into more detail the treatment of the other steps is addressed as well
as an overview of previous work on computer assisted facial surgery.

Towards implant shape design

The identification of the design of implant shapes as medical requirement was real-
ized prior to the work on this thesis within the context of the DFG research project
Matheon A17. Regarding segmentation and visualization we rely on the exper-
tise of the research group “Medical Planning” at the Zuse-Institute Berlin. The
identification of bony tissue from computer tomography (CT) data is relatively well

1When implant shapes can be predicted with sufficient accuracy, another important feature is the
growth of soft tissues [264, 288].
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understood. Only in the presence of foreign material, such as bone screws, this is
difficult. The differentiation of soft tissue types evokes the need of additional infor-
mation attained via magnetic resonance tomography (MRT). In an ideal world both
imaging devices would be applied simultaneously.

For the automated segmentation of different soft tissues statistical based methods
are promising, cf. Kainmüller et al. [155, 156]. However, currently the segmentation
of soft tissues is realized with the help of time-consuming manual intervention by
experts [26]. Therefore patient-specific implant design is in general realized during
the operation or preoperatively, either from three-dimensional models of the patients
bone structure [71, 93, 211] or from three-dimensional models only distinguishing
between bones and soft tissue [163]. Consequently the use of segmentation and
visualization tools is mostly restricted to the setting of image guided therapy.

Related work

Recently first steps towards model-based therapy (planning) have been put to prac-
tice [163, 282, 283]. Regarding the prediction of the esthetic outcome of facial
surgeries several approaches have been investigated. Partially these are already ap-
plied to assist in surgery planning [282]. A framework for the whole workflow from
the problem specification by the surgeon over image segmentation and modeling
to the computation of tissue displacements (including different facial expressions)
and visualization has been proposed by Koch [163]. The mechanical behavior of
soft tissues is described either by a mass-spring model or the model from linearized
elasticity, Hooke’s model. The tool-chain proposed by Schmidt et al. [228] follows a
similar direction. There the focus is on assistance in osteotomy, which is the sim-
ulation of cutting and repositioning of bones. Also first attempts to incorporate
nonlinear compressible neo-Hookean models have been realized by means of a ho-
motopy approach. Osteotomy has also been investigated by Zachow [282]. Again
the whole tool-chain from image segmentation to modeling, computation of tissue
displacements and visualization is considered. This approach has been applied in
more than 30 clinical cases [283]. In addition the modeling of facial expressions has
been investigated, cf. Gladilin [108], Gladilin et al. [109]. Tissue growth was incorpo-
rated by Vandewalle et al. [264]. This growth can be triggered by implant insertions
or bone relocations, in particular if the induced strains exceed the physiological
limits [253, 288].

A highly accurate patient-specific model for the whole face has been created by
Barbarino et al. [26], Mazza and Barbarino [183]. Their model includes parts of
the mimic musculature as well as fat and skin tissue which were all described with
nonlinear isotropic models.

From another point of view, not related to biomechanics, the optimization of elastic
materials has recently been investigated in the PhD-thesis of Günnel [120].
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Focus

The proposed tool-chains all focus on the solution of the forward problem of comput-
ing a soft tissue shape corresponding to a particular implant or bone repositioning.
This approach asserts that reasonable implant shapes, that only need slight manual
adjustments, are available. This may not always be the case. Especially in cases of
large congenital deformations or severe traumata in the face, besides restoration of
functionality, the esthetic outcome of an implant insertion is important [163, 282]
but difficult to predict. Due to the complex mechanical behavior of biological soft
tissues the estimation of its deformation is challenging. This is further complicated
in the case of severe traumata. These often occur together with irreversible destruc-
tion of muscle tissue and scarring [59, 65], where both effects significantly alter a
tissues mechanical properties.

The main focus of this thesis is to extend the previous approaches to the solution of
the inverse problem of determining an implant shape from a given desired esthetic
outcome. In addition we aim at incorporating recent state-of-the-art material laws.
These laws must be nonconvex and mostly exhibit complex phenomena such as
anisotropy and exponential growth of the elastic energy.

This requires to solve two bigger subproblems. First a suitable model for the im-
plant shape design problem must be derived. For physically reasonable material
descriptions only weak theoretical results are available [17]. Therefore the deriva-
tion of models may only be realized on a formal basis and rigorous theoretical results
for these models are largely out of reach. Nonetheless, analyzing the problem from
point-wise and function-space perspectives gives insights that help in modeling and
the development of algorithms.

Second we need an algorithm that is able to solve these problems. In particular due
to the complex models for biological soft tissues we need to develop an algorithm
that captures significant parts of the underlying problem structure. For this an affine
covariant composite step method for equality constrained optimization is developed,
with particular focus on PDE-constraints and optimal control problems.

Outline

Regarding the mathematical description of the implant shape design problem we
need some prerequisites from hyperelasticity. The basic setting will be introduced
in Chap. 1. For a deformation ϕ of a domain Ω we denote the local stored energy
density by W . The corresponding elastic energy stored in the material, the strain
energy, is given via

E str(ϕ) =
ˆ

Ω
W (∇ϕ) dµ.
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Then, hyperelastic theory leads to an optimization problem of the form

min
ϕ∈W1,p(Ω;R3),

det(∇ϕ)>0

E(ϕ, g) := E str(ϕ) + Eext(ϕ, g), (1)

where Eext is the energy associated with external forces g. Simple examples illustrate
that the stored energy functionW can not be convex (Sec. 1.1). Thus a more general
setting is required. In order to elegantly introduce the suitable generalized convexity
conditions we follow Pedregal [207, 208] and analyze (1) from the perspective of
Young-measures (Sec. 1.2). While this it not necessary for proving existence of
minimizers of (1), it nicely reveals the roles played by arguments coming from convex
analysis and compactness arguments.
Equipped with a setting for the description of elastic materials a description of the
implant design problem will be presented in Chap. 2. In this context, the implant
can be interpreted as an obstacle to the elastic soft tissue (Sec. 2.1). If the setting is
sufficiently regular the obstacle problem is related to pressure-type boundary condi-
tions (Sec. 2.2). The latter seem to be better accessible numerically and analytically.
However, it is unclear how to exactly incorporate these boundary conditions into the
hyperelastic setting. If we relax the pressure-type boundary conditions to Neumann
boundary conditions and measure the deviation between desired and computed so-
lution with a cost functional J , the task of finding a reasonable shape of an implant
can be formulated as bi-level optimization problem (Sec. 2.3):

min J(ϕ, g) (2)
subject to ϕ ∈ argminψE(ψ, g).

Despite the difficulties with the derivation of analytical results in elasticity theory
existence of optimal solutions for (2) can be shown (Sec. 2.4).
If we want to incorporate pressure-type boundary conditions on Γc ⊂ ∂Ω we have
to replace the constraint by its first order optimality conditions which leads to an
optimization problem with a partial differential equation (PDE) as constraint:

min J(ϕ, g) (3)

subject to ∂

∂ϕ
E str(ϕ, g)v −

ˆ
Γc

gcof(∇ϕ)nv ds = 0 for all v ∈W1,p(Ω;R3).

This formulation has the advantage that insights gained regarding the numerical
solution of PDEs and optimal control problems can be exploited in the development
of algorithms. In the context of optimization algorithms an essential tool are the first
order optimality conditions. We formally derive the Karush-Kuhn-Tucker (KKT)
conditions for (3) and shortly discuss its validity (Sec. 2.5).
The solution of problems of the form (3) is still challenging. First because it is a
(regularized) inverse problem. Second because the constraints from elasticity are
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highly nonlinear. Their particular structure admits only weak theoretical results
which interfere with the rigorous derivation of function space oriented numerical
algorithms.

In Chap. 3 an affine covariant composite step method for the solution of equality
constrained optimization problems is proposed under more regular conditions. To
treat the competing aims of feasibility and optimality the Lagrange-Newton step
is split into normal and tangential step (Sec. 3.1, Sec. 3.2). Globalization is based
on the affine covariant Newton method for underdetermined systems of Deuflhard
[76] and cubic regularization methods for unconstrained optimization problems, as
suggested by Weiser et al. [277] (Sec. 3.3). For this scheme first theoretical results
such as finite termination of the inner loops (Sec. 3.4) and transition to fast local
convergence (Sec. 3.5) are established.

Following the description of our algorithm we turn to its practical realization in
Chap. 4. Concerning the solution of the arising saddle point systems projected pre-
conditioned conjugate gradient methods (PPCG) enjoy several advantageous prop-
erties (Sec. 4.1). In particular termination criteria that fit into the covariant setting
are available, cf. [11, 247]. Moreover conjugate gradient methods yield descent di-
rections, in contrast to other Krylov solvers such as MINRES or GMRES. PPCG
methods are discussed for both convex (Sec. 4.2) and nonconvex (Sec. 4.3) problems.
Furthermore, we introduce a hierarchical error estimator that fits into the chosen
covariant setting (Sec. 4.4) and shortly discuss the approximation of the involved
operators (Sec. 4.5).

Before turning to numerical examples we need specifications of the stored energy
function for the particular tissue types. These are introduced in Chap. 5. state-of-
the-art models are mostly derived within the framework of fiber-reinforced materi-
als (Sec. 5.1). These are used to describe the mechanical behavior of biological soft
tissues with respect to tensile forces (Sec. 5.2). Since most biological soft tissues
are considered to be slightly compressible these models are augmented by suitable
descriptions for volumetric deformations (Sec. 5.3). A particular difficulty in applica-
tions is the determination of patient-specific, spatially localized material parameters
(Sec. 5.4).

In Chap. 6 numerical results for different test problems will be presented. We start
with a simple two-dimensional model of nonlinear heat transfer. Then we will give
two examples of complex anisotropic material laws on simple geometries. Finally
two examples on real patient geometries are presented. The corresponding geo-
metric data does neither contain information on fiber directions, necessary for the
definition of anisotropic models, nor on different material types. For this reason a
homogeneous, isotropic model will be employed in the last two examples.

This thesis closes with a discussion of the most relevant achievements and an out-
line some of the most important open theoretical, algorithmic and biomechanical
questions, as well as some related to the establishment of TIMMS.
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In order to increase the readability of this thesis different parts are, except for few
exceptions, self-contained. The main blocks are the first two chapters, describing
the mathematical framework and the employed model, and the third and fourth
chapter, describing the used algorithm and its realization. The fifth chapter on
biological soft tissues can be roughly understood without further knowledge, but
is easier to understand with some background in elasticity theory. Eventually, to
understand the numerical examples, that are presented in the sixth chapter, all
previous chapters are relevant.

12



1. Elastic materials and the direct
method

Descriptions of biological soft tissues are mostly based on the theory of nonlinear
elasticity. The general setting, which is based on elementary physical considera-
tions, is introduced in Sec. 1.1. It leads to descriptions of elastic deformations ϕ as
minimizers of material specific energy functionals E . These minimizers can not be
unique, thus ruling out strict convexity of E . Therefore, many important questions,
such as well-definedness of the corresponding first order optimality conditions, are
still open, cf. Ball [18, 19]. However, under dead load forces g acting on a measurable
set D ⊂ Ω, resp. D ⊂ ∂Ω, with |D| > 0, existence of minimizers can be shown for a
large class of problems, namely those whose energy functional is given via

E(ϕ) =
ˆ

Ω
W (∇ϕ(x)) dx −

ˆ
D

g(x)ϕ(x) dx,

where the stored energy function W can be written as convex function of the mi-
nors of ∇ϕ. The latter property was introduced in Ball [15] under the name of
polyconvexity. It can be motivated elegantly by the analysis of the optimization
problem

min
ϕ
E(ϕ)

with the direct method of the calculus of variations and parametrized measures.
This will be the content of Sec. 1.2. Eventually, additional conditions under which
the corresponding first order optimality conditions are well defined in W1,∞(Ω) are
discussed in Sec. 1.3.

Conventions. In order to increase readability and to not overload this presentation
with technical details some commonly used conventions are adopted.
• Bold letters indicate a definition, whereas italic letters are used for emphasis.
• The soft tissue volume is denoted by Ω ⊂ R3, which is assumed to be a bounded

domain with Lipschitz boundary.
• The space of all m × n-matrices is denoted by Mm,n and we set Mn := Mn,n.

The space of symmetric n× n-matrices is denoted by Sn and the space of or-
thogonal n×n-matrices by On. The subscript “+” denotes subsets of matrices
with positive determinant, i.e.

Kn
+ := {F ∈ Kn : det(F ) > 0} for K = M,S,O

13



Chapter 1 Elastic materials and the direct method

and
R+ := {t ∈ R : t ≥ 0} .

• When extracting a subsequence out of a sequence {ϕj}j it will also be denoted
by {ϕj}j.

• Vector- and matrix-valued Sobolev spaces W1,p(Ω;Rm), resp. W1,p(Ω;Mm,n),
are written as W1,p(Ω) if the image space can be easily deduced from context
or is not relevant. The same applies for Lebesgue spaces Lp(Ω).
• With W1,p

0 (Ω) we denote all Sobolev spaces that incorporate homogeneous
Dirichlet boundary conditions on a part of the boundary Γd ⊂ ∂Ω with positive
surface measure |Γd| > 0, not only those where Γd = ∂Ω. The case that
Γd denotes only a part of the boundary is of main interest in this thesis.
However, in order to keep focus on the relevant details, in theoretical results
homogeneous Dirichlet boundary conditions are often assumed to hold on the
whole boundary ∂Ω.
• Subscripting of functions with one of its arguments denotes a partial derivative,

i.e. for a function L(x, p) we have Lx(x, p) = ∂
∂x
L(x, p).

1.1. Elasticity

We begin with introducing the basic notation of elasticity in Sec. 1.1.1. In continuum
mechanics external forces and internal stresses are related via the stress principle
of Euler and Cauchy, which is described in Sec. 1.1.2. It admits the formulation
of static equilibrium conditions on the deformed domain Ωdef = ϕ(Ω). In order to
express these equilibrium conditions on the undeformed domain the Piola transform
is introduced in Sec. 1.1.3. Eventually, we need material specific constitutive relations
to relate stresses with underlying deformations. In this thesis, we will focus on
constitutive relations that can be described via an energy density, the stored energy
function, see Sec. 1.1.4.
For a more detailed discussion of the mathematical theory of elastic materials the
books of Ciarlet [56, 57], Holzapfel [135], Pedregal [208] are suggested to the inter-
ested reader. Also of interest are the books of Braess [41], Marsden and Hughes
[181], Ogden [201], Sokolnikoff [239], Truesdell and Noll [261].

1.1.1. Kinematics

The domain Ω ⊂ R3, occupied by a body in an equilibrium state, is called reference
configuration. If forces act on this body it deforms to a new configuration Ωdef,
determined by the deformation

ϕ : Ω 3 x 7→ ϕ(x) = (id + u)(x) ∈ Ωdef,

14



1.1 Elasticity

ϕ

x x
ϕ(x)

Ω Ωdef = ϕ(Ω)

u

Figure 1.1.1.: Deformation of a domain Ω.

see Fig. 1.1.1. The deviation from the identity is the displacement u = ϕ− id.
Next to adequate smoothness assumptions, the deformation ϕ must satisfy the ad-
ditional orientation preservation condition

det(∇ϕ(x)) > 0. (1.1.1)

It rules out deformations that admit local self-penetration and guarantees local
injectivity for sufficiently smooth deformation ϕ. Working in Sobolev spaces this
argumentation is not valid any more. Nonetheless, the requirement that (1.1.1)
holds almost everywhere in Ω will naturally arise in the context of hyperelastic
compressible materials (Sec. 1.1.4).
Remark 1.1. For some materials, we can further restrict the orientation preservation
condition to det(∇ϕ(x)) = 1. In this case we speak of incompressible materials.

An important quantity in elasticity theory is the strain tensor, which describes the
change in the length of line segments with respect to the Euclidean norm. Letting
x, x+ h ∈ Ω we compute with Taylor’s formula for a smooth deformation ϕ

‖ϕ(x+ h)− ϕ(x)‖2 = ‖∇ϕ(x)h‖2 + o(‖h‖2) = hT∇ϕ(x)T∇ϕ(x)h+ o(‖h‖2).

Thus, the change of length in line segments is dominated by the (left) Cauchy-
Green strain tensor1

C(∇ϕ) := ∇ϕT∇ϕ = I +∇uT +∇u+∇uT∇u.

Definition 1.2. The scaled deviation of the Cauchy-Green strain tensor from the
identity

E(∇ϕ) := 1
2(C(∇ϕ)− I) = 1

2(∇uT +∇u+∇uT∇u)

is called strain (tensor).
1As indicated by the naming there also exists a right Cauchy-Green strain tensor given through
∇ϕ∇ϕT . Here, we mostly are concerned with the left Cauchy-green strain tensor. Recall that
if ∇ϕ is unitarily diagonalizable it is normal and thus the left and right Cauchy-Green strain
tensors coincide.
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Chapter 1 Elastic materials and the direct method

In the presence of small displacement gradients we may neglect the nonlinear part
and replace the strain tensor by the symmetric gradient

∇su = 1
2(∇uT +∇u).

In contrast to the nonlinear strain tensor the symmetric gradient is not independent
of the chosen coordinate system, i.e. it is not frame-indifferent, cf. Thm. 1.14. Thus
it is already inadequate for small rotations. In this case the linearized theory yields
non-physical “phantom” stresses [18]. The neglected term 1

2∇u
T∇u is the geomet-

ric nonlinearity and its incorporation is mandatory to derive reasonable models in
the presence of large displacement gradients, regardless of the considered material.
Material specific nonlinear behavior is captured by the constitutive nonlinearity,
which will be introduced in Sec. 1.1.4.

1.1.2. Equilibrium conditions

Before describing further details of elasticity theory we recapitulate the framework
for the description of static equilibria. It admits to relate external forces with the
induced stresses in the material. A basic assumption in mechanics is that all acting
forces can be partitioned into volume and surface forces. Honoring the main pro-
tagonists in the early study of static equilibria in the modern western world, static
equilibria are defined in the stress principle of Euler and Cauchy.

Axiom 1.3 (Stress principle of Euler and Cauchy). Consider a body occupying a
deformed region Ω̄def , subjected to a body force

f : Ωdef → R3

and a surface force
g : Γdef

1 → R3,

where Γdef
1 is some measurable part of the boundary of Ωdef . Then there exists a

vector field
t : Ω̄def × S → R3 S := {x ∈ R3 : |v| = 1}

called Cauchy’s stress vector such that:

1. For any subdomain A ⊆ Ω̄def and at any point x ∈ Γdef
1 ∩ ∂A where the unit

outer normal vector n exists, t(x, n) = g(x) holds.

a) Axiom of force balance: For any subdomain A ⊆ Ω̄def holds
ˆ
A

f(x) dx +
ˆ
∂A

t(x, n) ds = 0 (1.1.2)
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1.1 Elasticity

b) Axiom of moment balance: For any subdomain A ⊆ Ω̄def holdsˆ
A

x× f(x) dx +
ˆ
∂A

x× t(x, n) ds = 0 (1.1.3)

where × denotes the vector/cross product.
As a consequence we get “one of the most important results in continuum mechan-
ics” [56, p. 62], Cauchy’s theorem.
Theorem 1.4 (Cauchy’s theorem). Let the assumptions of Axiom 1.3 hold. Further
assume that t(·, n) ∈ C1(Ωdef ;R3), t(x, ·) ∈ C(S;R3) and f ∈ C(Ωdef ;R3). Then
there exists a symmetric tensor field Tdef ∈ C1(Ωdef ;S3) such that

t(x, n) = Tdef(x)n for all x ∈ Ωdef and n ∈ S, (1.1.4)
div(Tdef(x)) + f(x) = 0 for all x ∈ Ωdef , (1.1.5)

Tdef(x) = T Tdef(x) for all x ∈ Ωdef . (1.1.6)

The tensor Tdef(x) is called Cauchy stress tensor at x ∈ Ωdef .

Proof. See [56, p. 63].

Remark 1.5. Here, the main point is that the stress vector t is linear in its second
argument. Then, using Gauß’ integral formula, (1.1.2) can be written asˆ

A

f(x) dx +
ˆ
∂A

Tdef(x)n ds = 0

⇔
ˆ
A

[
f(x) + div(Tdef(x))

]
dx = 0

Holding for every subdomain A ⊆ Ω̄def this leads to the differential equation (1.1.5).
The symmetry property (1.1.6) follows from (1.1.3).

1.1.3. The Piola transform

The above equilibrium conditions are formulated on the unknown deformed do-
main Ωdef. Thus, we need a mapping that admits the expression of these equilibrium
conditions on the undeformed domain Ω. This mapping and its properties will be
discussed in this subsection.
First, recall the definition of the cofactor matrix from linear algebra.
Definition 1.6. Let A = (aij)i,j=1,...n ∈ Mn, n > 0 be a n × n-matrix and denote
by A#

ij ∈ Mn−1 the matrix that results when deleting the i-th row and j-th column
from A. The scalars (−1)i+j det(A#

ij) are called the cofactors of A. The cofactor
matrix is given by

cof(A) =
(
(−1)i+j det(A#

ij)
)
i,j=1,...,n

.

Its transpose adj(A) = cof(A)T is called adjugate matrix of A.
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Chapter 1 Elastic materials and the direct method

Remark 1.7.
• Denoting the j-th column of a matrix A by Aj, the cofactors are related to

the determinant via Laplace’s formula as

det(A) =
n∑
i=1

aij(−1)i+j det(A#
ij) = ATj cof(A)j,

or in terms of the adjugate matrix, det(A) = adj(A)jAj. The derivative of the
determinant in a direction δA is

det ′(A)δA = cof(A) :δA = tr
(
cof(A)T δA

)
= tr

(
adj(A)δA

)
,

where · : · denotes the scalar product in Mm,n, given through

A :B = tr
(
ATB

)
=

m∑
i=1

n∑
j=1

AijBij.

• If A is invertible, we have the identities

cof(A) = A−T det(A), resp. adj(A) = A−1 det(A).

• The adjugate of the deformation gradient can be interpreted as a local measure
for changes in the area of surfaces [56, 57].

Definition 1.8. The Piola transform PT : Ω̄→M3 of a 3×3-tensor T : Ω̄def →M3

is defined via

PT (x) := det(∇ϕ(x))T (ϕ(x))(∇ϕ(x))−T

= T (ϕ(x))cof(∇ϕ(x)),

for almost every x ∈ Ω̄ and all ϕ ∈ W1,p(Ω), with p > 1, such that ∇ϕ is almost
everywhere invertible.

We summarize the properties that are necessary to transform the relevant quantities.

Theorem 1.9. For the Piola transform PT holds:

1. div
(
PT (x)

)
= det(∇ϕ)div

(
T (ϕ(x))

)
for all x ∈ Ω.

2. PT (x)n ds = T (ϕ(x))ndef dsdef for all x ∈ Ω,
where dsdef and ds are surface elements and ndef as well as n are the unit
outer normals of ∂Ωdef resp. ∂Ω.

3. The surface elements are related via

det(∇ϕ(x))
∣∣∣∇ϕ(x)−Tn

∣∣∣ ds =
∣∣∣cof(∇ϕ(x))n

∣∣∣ ds = dsdef .
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1.1 Elasticity

Proof. See [56, Thm. 1.7-1].

The Piola transform of the Cauchy stress tensor Tdef at some point xϕ = ϕ(x) ∈ Ωdef ,

σ̂(x) := det(∇ϕ(x))Tdef(xϕ)(∇ϕ(x))−T = Tdef(xϕ)cof(∇ϕ(x)) (1.1.7)

is called first Piola-Kirchhoff stress tensor and is, in general, not symmetric. It
may be symmetrized which leads to the second Piola-Kirchhoff stress tensor

Σ̂(x) := det(∇ϕ(x))(∇ϕ(x))−1Tdef(xϕ)(∇ϕ(x))−T = (∇ϕ(x))−1σ̂(x).

Hyperelastic materials, which will be introduced in the next subsection, naturally
lead to the first Piola-Kirchhoff stress tensor. Thus we do not consider the second
and refer the interested reader to [56].

1.1.4. Constitutive equations

The properties given in Cauchy’s theorem are not sufficient for the determination
the occurring stresses in the presence of body and/or surface forces. This is not
surprising since up to now any material specific information is missing. This requires
to relate the deformation with the corresponding stresses. More precisely, for elastic
materials it is assumed that the Cauchy stress tensor only depends on the position
x and the deformation gradient ∇ϕ(x).

Definition 1.10. Amaterial is called elastic if there exists a mapping T̂ : Ω×M3
+ →

S3
+ such that

Tdef(xϕ) = T̂ (x,∇ϕ(x)) for all xϕ = ϕ(x) ∈ Ωdef . (1.1.8)

The mapping T̂ is called the response function of Tdef . The relation (1.1.8) is
called constitutive relation or material law.

Remark 1.11. This definition is a simplifying assumption that facilitates the math-
ematical treatment with existing tools. Deriving effective stress tensors from de-
scriptions of the underlying micro-structure by means of mathematical homoge-
nization will in general lead to more complex relations, possibly involving nonlocal
effects [251]. See also [56, Sec. 3.1] for comments on cases where the above definition
is not adequate and references regarding nonlocal elasticity.

As a consequence we get the existence of a response function for the first Piola-
Kirchhoff stress tensor

σ̂(x) = σ(x,∇ϕ) with σ(x,∇ϕ) = T̂ (x,∇ϕ)cof(∇ϕ).

The explicit dependence on the deformation ϕ in formulations in terms of the re-
sponse function are more expressive than the use of formulations based on the Piola-
Kirchhoff stress tensors. Thus, in the following we only use the response function σ.
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Chapter 1 Elastic materials and the direct method

We further specify the relation between deformation and induced stresses. The sec-
ond law of thermodynamics does not allow us to build a perpetual motion machine.
Therefore, the work in closed processes should be non-negative and lengthy compu-
tations [122, Sec. 28] lead to a characterization of suitable stored energy functions.

Definition 1.12. An elastic material is called hyperelastic if there exists a function
W : Ω̄×M3

+ → R, differentiable in its second argument for each x ∈ Ω̄, such that

σ(x, F ) = ∂W

∂F
(x, F ) for all x ∈ Ω and all F ∈M3

+,

where σ is the response function of the first Piola-Kirchhoff stress tensor. W is an
energy density and called stored energy function.

For hyperelastic materials we also call the relation (x, ϕ) 7→ W (x,∇ϕ(x)) constitu-
tive relation resp. material law, since this mapping uniquely determines (1.1.8).

Theorem 1.13. An elastic material is hyperelastic if and only if the work is non-
negative in closed processes.

Proof. See [122, p. 186].

A particular feature of hyperelastic materials is the fact that in the presence of dead
load forces g the associated deformation ϕg is a minimizer of the energy functional

E(ϕ, g) = E str(ϕ)− Eext(ϕ, g).

For volume or Neumann boundary forces g the corresponding energy functional is
Eext(ϕ, g) =

´
Dg
ϕ(x)g(x) dx, with Dg = Ω, resp. Dg = Γg ⊂ ∂Ω.

The specific form of the stored energy function is further restricted by the assumption
of independence of the chosen coordinate system. As the following theorem shows,
this is equivalent to the requirement that the stored energy function can be expressed
in terms of the Cauchy-Green strain tensor instead of the deformation gradient.

Theorem 1.14. The stored energy function W : Ω̄ × M3
+ → R is called frame-

indifferent if and only if one of the following equivalent conditions holds:

• For all x ∈ Ω̄, all F ∈ M3
+ and all orientation preserving orthogonal matrices

Q ∈ O3
+ holds

W (x,QF ) = W (x, F ).

• There exists a function W̃ : Ω̄× S3
+ → R such that

W (x, F ) = W̃ (x, F TF ) (1.1.9)

for all x ∈ Ω̄ and all F ∈M3
+.
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1.1 Elasticity

Proof. See [56, Thm. 4.2-1].

Remark 1.15.

• In order to get a proper splitting of the arising nonlinearities we call the
nonlinearity of W̃ constitutive nonlinearity. The nonlinearity of W then
comprises both the geometric and the constitutive nonlinearity.
• In order to guarantee frame-indifference, material laws are typically formu-

lated in terms of invariants. For isotropic materials these are the principal
or modified principal invariants (Def. 5.3 and Def. 5.6). Anisotropic material
laws are often similar to isotropic laws, replacing or extending the (modified)
principal invariants by (modified) mixed invariants (Def. 5.9). This strategy is
referred to as isotropization. It is explained in more detail in Chap. 5.

An essential consequence of frame-indifference is the fact that it rules out convex
stored energy functions W . Another requirement that admits an even simpler proof
of the “impossible convexity” of W is related to the limit behavior for “extreme”
strains, i.e. the case that for x ∈ Ω one of the eigenvalues λi = λi(C) i = 1, 2, 3 of the
(left) Cauchy-Green strain tensor C = ∇ϕ(x)T∇ϕ(x) tends to 0 or ∞. W.l.o.g. let
this eigenvalue be λ1 and let λ2, λ3 ∈ [c, d] for constants c > 0 and d <∞. Then we
have the equivalences

λ1 ↘ 0 ⇔ det(∇ϕ(x))↘ 0, (1.1.10)
λ1 →∞ ⇔ ‖∇ϕ(x)‖ → ∞, (1.1.11)
λ1 →∞ ⇔ ‖cof(∇ϕ(x))‖ → ∞, (1.1.12)
λ1 →∞ ⇔ ‖ det(∇ϕ(x))‖ → ∞. (1.1.13)

Assuming that infinite extensions require infinite energy, we deduce from the last
three equivalences the necessity

(‖F‖, ‖cof(F )‖, | det(F )|)→ (∞,∞,∞)⇒ W (x, F )→∞ for x ∈ Ω and F ∈M3
+

as a reasonable condition for large strains. In the sharper form

W (x, F ) ≥ α(‖F‖p + ‖cof(F )‖q + | det(F )|r)− β

with positive constants α > 0, p > 0, q > 0, r > 0 and β ∈ R this assump-
tion also provides the necessary coercivity inequality for the proof of existence of
minimizers (see Thm. 1.42).
Condition (1.1.10) describes vanishing volumes. From a physical point of view it
is reasonable that “an infinite pressure is required in order to annihilate volumes”.
Since infinite pressure yields an infinite stored energy [56, Sec. 4.6, Ex 4.9], this
motivates the condition

lim
det(F )↘0

W (x, F ) =∞, for all x ∈ Ω, (1.1.14)
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Chapter 1 Elastic materials and the direct method

for reasonable stored energy functions. Same as frame-indifference it rules out con-
vexity of W .

Theorem 1.16. Let x ∈ Ω̄ and

W (x, ·): M3
+ → R

be convex. Then:

1. Condition (1.1.14) cannot hold.

Proof. Noting that M3
+ is not convex we denote by Wco : M3 → R∞ any convex

extension of W (x, ·) to the convex hull co(M3
+) = M3. Let I ∈ M3

+ be the unit
matrix and let

A =


1 0 0
0 −1 0
0 0 −1

 ∈M3
+, B =


1 0 0
0 0 0
0 0 0

 /∈M3
+.

As Wco is convex we have

sup
t∈[0,1]

Wco(I + t(A− I)) = max {Wco(I),Wco(A)} <∞.

However, as
lim
t→1/2

I + t(A− I) = B /∈M3
+,

and assuming that W satisfies (1.1.14), we get

lim
t→1/2

Wco(I + t(A− I)) =∞.

Thus (1.1.14) cannot hold.

Remark 1.17. Note that for ϕ ∈W1,p(Ω), p <∞, condition (1.1.14) implies that

E str(ϕ) =
ˆ

Ω
W (x,∇ϕ) dx =∞

on a dense subset of W1,p(Ω).

1.2. The direct method and Young measures

We have identified convex functions as too restrictive to be of use in nonlinear
elasticity. Thus, we need a more general framework in which we seek candidates for
stored energy functions.
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Inserting a traveling wave solution into the linearized equations of motion for an
elastic material, we see that positive wave-speeds can only be guaranteed, if W is
rank-one convex, i.e.

W (λA+ (1− λ)B) ≤ λW (A) + (1− λ)W (B),

for all A,B ∈ M3 such that rank(A − B) ≤ 1, cf. [233]. For twice differentiable
stored energy functions W this is equivalent to the validity Legendre-Hadamard
condition [72]

W ′′(A) (a⊗ b)2 ≥ 0, for all a, b ∈ R3

for A ∈M3.

Remark 1.18. Considering A,B ∈ Mm,n such that A − B = ei ⊗ ej for 1 ≤ i ≤
m, 1 ≤ j ∈ n we recognize that a rank one convex function W : Mm,n ⊇ D → R∞ is
convex in each of its argument’s entries and thus is locally Lipschitz continuous in
int(D) [72, Chap. 2, Thm. 2.3].

For scalar problems, rank-one convexity coincides with convexity and the Legendre-
Hadamard condition reduces to the positive semi-definiteness of the Hessian2. This
is not the case for vectorial problems [72, 271]. In the latter case, accepting realistic
traveling wave solutions as desirable, we seek a generalized convexity property of the
stored energy function that is located somewhere between convexity and rank-one
convexity.
Recall that hyperelastic problems with conservative loads are formulated as mini-
mization problem

ϕ̄ ∈ argminϕ∈ΦE(ϕ, g),
where

E(ϕ, g) = E str(ϕ)− Eext(ϕ, g)
and

Φ :=
{
ϕ ∈W1,p(Ω) : det(∇ϕ) ≥ 0 a.e. in Ω, ϕ = 0 a.e. on Γd

}
is the admissible set. For volume forces the corresponding energy functional is
Eext(ϕ, g) =

´
Ω ϕg dµ, and for Neumann boundary forces Eext(ϕ, g) =

´
Γc
ϕg ds,

with Γc ⊂ ∂Ω.
The strategy of the direct method of the calculus of variations is to take an infimizing
sequence limj→∞ E(ϕj, g) = infψ∈Φ E(ψ, g) and show that we can extract a weakly
convergent subsequence ϕj ⇀ ϕ̄ ∈ Φ such that E(ϕ̄, g) = infψ∈Φ E(ψ, g). For both
volume and boundary forces we have limj→∞ Eext(ϕj, g) = Eext(ϕ̄, g). For this reason
the contribution from Eext is not relevant in the derivation of a mathematical setting
that admits existence of minimizers for the problem

min
ϕ∈Φ
E(ϕ, g).

2For this reason, ellipticity, in the sense that the Legendre-Hadamard condition holds, and V-
ellipticity, in sense of Tröltzsch [259], are sometimes not properly distinguished in literature.
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Chapter 1 Elastic materials and the direct method

Hence, in this section we restrict the discussion to E str. First, we also neglect the
orientation preservation condition det(∇ϕ) > 0 as well as the boundary conditions
and add them as soon as we have identified useful conditions for E str. Therefore we
focus on the problem

min
ϕ∈W1,p(Ω)

E str(ϕ) :=
ˆ

Ω
W (x,∇ϕ(x)) dx. (1.2.1)

Here, we mainly follow Pedregal [207] and start with a theorem that summarizes
the idea behind this approach.

Theorem 1.19. Consider the variational principle

min
ϕ∈A
E str(ϕ)

where
• A is a closed, convex subset of a reflexive Banach space X,
• E str is coercive, i.e.

E(ϕ) ≥ c‖ϕ‖X

for some positive constant c > 0 or

lim
‖ϕ‖X→∞

E(ϕ) =∞,

• E str is lower semicontinuous with respect to the weak topology in X:

E str(ϕ̄) ≤ lim inf E str(ϕj) for ϕj ⇀ ϕ̄.

• there exists at least one ϕ̄ ∈ A with E str(ϕ̄) <∞.
Then E str has at least one minimizer in A.

Proof. See [208, Thm. 1.1].

Thus, the essential point to be analyzed is the weak lower semicontinuity of E . We
neglect the dependence of the stored energy function on the spatial variable and
consider

E str(ϕ) =
ˆ

Ω
W (∇ϕ(x)) dx,

where ϕ ∈W1,p(Ω,Rm) with 1 < p <∞ and

W : Mm,n → R∞ := R ∪ {∞} , n ≥ 1, m ≥ 1

is continuous. The results of this section stay valid if W additionally depends
measurably on the spatial variable x, i.e. ifW is a Carathéodory function. As a first
step to find suitable generalized convexity conditions forW , we need a representation
result for weak limits in L1(Ω).
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Theorem 1.20 (Existence of parametrized measures).
Let Z = Rm or Z = Mm,n and let zj : Ω → Z, j ∈ N be measurable functions that
are bounded in Lp(Ω) with 1 ≤ p <∞, i.e.

sup
j
‖zj‖ ≤ cz

for some positive constant cz. Then there exists a subsequence, again denoted by
{zj}j, and a family of probability measures ν = {νx}x∈Ω, depending measurably on
x, such that for any continuous function

W (λ): Z → R∞

for which the sequence {W (zj(x))}j is weakly convergent in L1(Ω) the weak limit is
given by

W (zj(x)) ⇀ W̄ (x) =
ˆ
Z

W (λ) dνx(λ). (1.2.2)

Proof. See [207, Thm. 6.2]. There a more general version is stated, that also admits
its application in (Sobolev-)Orlicz spaces, cf. [3, 165].

Definition 1.21. Consider the notation of Thm. 1.20.
• The family of probability measures ν is called the associated parametrized
measure of the (sub-)sequence {zj}j.

• If the sequence {zj}j is a sequence of gradients of W1,p-functions, its associ-
ated parametrized measure is called W1,p-parametrized measure orYoung
measure.
• If ν is independent of the spatial variable x it is called homogeneous (W1,p)-
parametrized measure.

In particular, if zj ⇀ z in L1(Ω), then z =
´
Rm λ dνx(λ).

A consequence of Thm. 1.20 is the fact that every bounded sequence in Lp(Ω) with
1 ≤ p <∞ generates a parametrized measure ν. With its help we then can express
the weak limits of superposition operators. Before continuing with the analysis of
(1.2.1), two examples are given that illustrate how measures can be used for the
description of weak limits.

Example 1.22. Consider the function

v0(x) =

1 x ≥ 1
2

0 x < 1
2

on [0, 1]

extended 1-periodically to R and let vj(x) = v0(jx) on (0, 1). Then we have for the
oscillatory sequence vj ⇀ 1

2 := v in Lp(0, 1) for p < ∞, resp. vj ∗
⇀ v in L∞(0, 1).
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The corresponding homogeneous Young measure is ν = 1
2δ0 + 1

2δ1, where δ0, δ1 are
Dirac measures centered at 0, resp. at 1. For continuous functions W the sequence
{W (vj)}j converges weakly in L1(0, 1) to

W̄ =
ˆ
R
λ dν = 1

2 (W (0) +W (1)) .

Note that in general, for a nonlinear function W , we have W̄ 6= W
(

1
2

)
. Thus, one

of the big advantages of using parametrized measures is the fact we can describe
weak limits of nonlinear functions.

Example 1.23. In Thm. 1.20 the sequence {W (zj)j} was assumed to be weakly
convergent in L1(Ω). This assumption will not always be satisfied. Since the space
L1(Ω) is not reflexive we may not be able to extract weakly convergent subsequences
from bounded sequences. The reason is the possible occurrence of concentration
effects.
As a simple example, consider vj(x) = jχ[0,1/j]. Then ‖vj‖L1([0,1]) = 1 for all j and
for g ∈ C ([0, 1]) we getˆ 1

0
vj(x)g(x) dx =

ˆ 1/j

0
jg(x) dx

=
ˆ 1

0
g(j−1x) dx→ g(0) =

ˆ 1

0
g(x)δ0(x) dx.

Thus, {vj}j is not weakly convergent in L1([0, 1]). Instead it converges weakly-star
in the space of regular Borel measures, which is isometrically isomorphic to the dual
space of C ([0, 1]), cf. Thm.A.3. This is referred to as concentration of {vj}j (at
x = 0). Concentration effects are the point that complicate the treatment of models
from nonlinear elasticity.

The elementary operations in the analysis of W1,p-parametrized measures are local-
ization and homogenization, both admitting to extract information from particular
homogeneous W1,p-parametrized measures. Localization is concerned with the focus
on a particular measure νa ⊂ ν for a ∈ Ω, which is a homogeneous W1,p-parametrized
measure, cf. Thm.A.5. In contrast, homogenization is concerned with averaging. In
the scalar case, we get a homogeneous W1,p-parametrized measure ν̄ viaˆ

Rm

W (λ) dν̄(λ) = 1
|Ω|

ˆ
Ω

ˆ
Rm

W (λ) dνx(λ) dx,

where W is continuous and bounded by a polynomial of order p, cf. Thm.A.4. A
similar result for W defined on matrices will be given below, in Lem. 1.28, viaˆ

Mm,n

W (F ) dν̄(F ) = 1
|Ω|

ˆ
Ω
W (∇ϕ(x)) dx.

To keep this presentation short, we do not go into technical details. The interested
reader is referred to [207].
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1.2 The direct method and Young measures

1.2.1. Jensen’s inequality

We know from Tonelli’s theorem (Thm.A.7) that in the scalar case, i.e. the case
when ∇ϕ(x) is vector-valued, weak lower semicontinuity of E is equivalent to the
requirement of a convex integrand W . These are characterized by the classical
Jensen inequality (1.2.3).

Theorem 1.24 (Jensen’s inequality). Let ν be a positive Radon measure over a σ-
algebraM on the set Ω such that ν(Ω) = 1 and let f ∈ L1

ν(Ω), where L1
ν(Ω) denotes

the L1-space with respect to a measure ν. Then every convex function W satisfies
the inequality

W
(ˆ

Ω
f dν

)
≤
ˆ

Ω
W (f) dν. (1.2.3)

Proof. See [208, Thm. 1.2].

In Sec. 1.1.4 we saw that convexity is not admissible in hyperelasticity. Luckily, for
vector-valued functions, and matrix-valued gradients, the convexity requirement can
be relaxed. A decisive role is played by a generalized Jensen inequality, similar to
(1.2.3).
We start with considering weak lower semicontinuity of E str(ϕ) =

´
Ω W (∇ϕ) dµ with

respect to a particular sequence {ϕj}j.

Theorem 1.25. Consider a weakly convergent sequence ϕj ⇀ ϕ in W1,p(Ω,Rm),
with 1 < p < ∞ and m ≥ 1. Let ν = {νx}x∈Ω be its associated W1,p-parametrized
measure such that

∇ϕ(x) =
ˆ
Mm,n

F dνx(F ) a.e. in Ω. (1.2.4)

Let W : Mm,n → R∞ be a continuous function, which is bounded from below. If

lim inf
j→∞

ˆ
Ω
W (∇ϕj(x)) dx <∞, (1.2.5)

then ˆ
A
W (∇ϕ(x)) dx ≤ lim inf

j→∞

ˆ
A
W (∇ϕj(x)) dx, (1.2.6)

for all measurable subsets A ⊂ Ω, if and only if

W (∇ϕ(x)) ≤
ˆ
Mm,n

W (F ) dνx(F ) a.e. in Ω. (1.2.7)

Proof. Inserting (1.2.4) into (1.2.7) yields the generalized Jensen’s inequality

W

(ˆ
Mm,n

F dνx(F )
)
≤
ˆ
Mm,n

W (F ) dνx(F ).
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Chapter 1 Elastic materials and the direct method

Thus, the question of weak lower semicontinuity of E str(ϕ) =
´
AW (∇ϕj(x)) dx is,

in the given setting, equivalent to the question if this generalized Jensen inequality
holds for W .
We first show that (1.2.7) implies (1.2.6). This follows directly using Thm.A.8,
which is Fatou’s lemma in the Young measure context, and (1.2.7)

lim inf
j→∞

ˆ
A
W (∇ϕj(x)) dx ≥

ˆ
A

ˆ
Mm,n

W (F ) dνx(F ) dx

≥
ˆ
A
W (∇ϕ(x)) dx.

For the other direction the interested reader is referred to [207, Thm. 3.1].

Remark 1.26. The above theorem can be extended to functionals that additionally
depend on the state variable,

E str(ϕ) =
ˆ

Ω
W (ϕ(x),∇ϕ(x)) dx,

cf. [207, Thm. 3.2]. From the embedding theorem of Rellich and Kondrachov [102,
Chap. 1, Lem. 1.28] we deduce strong convergence of {ϕj}j. Then the associated
parametrized measure of {(ϕj,∇ϕj)}j is given by

{
δϕ(x) ⊗ νx

}
x∈Ω

, where δϕ(x) de-
notes Dirac’s delta distribution centered at ϕ(x), cf. [207, Sec. 6.6], and the same
steps as above apply.
The question of weak lower semicontinuity of E str(ϕ) =

´
ΩW (∇ϕ(x)) dx with re-

spect to a particular sequence {ϕj}j can be reduced to the point-wise generalized
Jensen inequality (1.2.7), where νx is a homogeneous W1,p-parametrized measure
(Thm.A.5). Consequently weak lower semicontinuity of E with respect to any
weakly convergent sequence in W1,p(Ω) requires

W

(ˆ
Mm,n

F dν(F )
)
≤
ˆ
Mm,n

W (F ) dν(F ) (1.2.8)

for all homogeneous W1,p-parametrized measures ν. This inequality is referred to
as Jensen’s inequality in the sense of Pedregal.
Theorem 1.27. The functional E str(ϕ) =

´
ΩW (∇ϕ(x)) dx is weakly lower semicon-

tinuous in W1,p(Ω), with 1 < p < ∞, if and only if W satisfies Jensen’s inequality
(in the sense of Pedregal), i.e.

W

(ˆ
Mm,n

F dν(F )
)
≤
ˆ
Mm,n

W (F ) dν(F ) (1.2.9)

for all homogeneous W1,p-parametrized measures ν.

Proof. See [207, Thm. 3.3].

From now on we only speak of Jensen’s inequality and suppress the supplement “in
the sense of Pedregal”. If Jensen’s inequality in the sense of Thm. 1.24 is employed
we will refer to it as classical Jensen inequality.
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1.2 The direct method and Young measures

1.2.2. Quasiconvexity

We begin with the motivation of a necessary condition for weak lower semiconti-
nuity or equivalently, the validity of the point-wise condition (1.2.9). We recall a
homogenization result, that will help us in the following. This and the following
results are easier to understand if we assume that G = ∇ϕ̄(x) for some function ϕ̄,
which will later be identified with the weak limit of certain sequences.

Lemma 1.28. Let G ∈ Mm,n, ϕG(x) = Gx in Ω and ϕ ∈ W1,p(Ω) with ϕ − ϕG ∈
W1,p

0 (Ω) and 1 ≤ p ≤ ∞. Then, there exists a bounded sequence {ϕj}j in W1,p(Ω),
with ϕj−ϕG ∈W1,p

0 (Ω) for all j, such that the associated W1,p-parametrized measure
ν̄ is homogeneous and given by

ˆ
Mm,n

W (F ) dν̄(F ) = 1
|Ω|

ˆ
Ω
W (∇ϕ(x)) dx,

where

W ∈ Xp = {W ∈ C(Mm,n) : |W (F )| ≤ const. (1 + |F |p) , for all F ∈Mm,n} .

Proof. See [207, Lem. 8.2].

Consider the notation of Lem. 1.28. A subsequence of {ϕj}j converges weakly to
some element ϕ ∈ W1,p(Ω), with ϕ − ϕG ∈ W1,p

0 (Ω). As ν̄ is homogeneous and ϕ
satisfies the affine boundary values, we have ∇ϕ(x) = G =

´
Mm,n F dν̄(F ) for almost

all x ∈ Ω. Then, Jensen’s inequality (1.2.8) reduces to

W (G) = W

(ˆ
Mm,n

F dν̄(F )
)
≤
ˆ
Mm,n

W (F ) dν̄(F ) = 1
|Ω|

ˆ
Ω
W (∇ϕ(y)) dy.

Consequently, the inequality

W (G) ≤ 1
|Ω|

ˆ
Ω
W (∇ϕ(y)) dy

is a necessary condition for Jensen’s inequality and thus for weak lower semiconti-
nuity of E(ϕ).

Definition 1.29. Let ϕG(x) = Gx for some G ∈Mm,n and all x ∈ Ω. A continuous
function W : Mm,n → R is called (W1,p-)quasiconvex at G, for 1 ≤ p ≤ ∞, if

W (G) ≤ 1
|A|

ˆ
A
W (∇ϕ(x)) dx (1.2.10)

for all ϕ ∈W1,p(Ω) such that ϕ−ϕG ∈W1,p
0 (Ω), and all measurable subsets A ⊆ Ω.

If (1.2.10) holds for all G ∈Mm,n we call W (W1,p-)quasiconvex.
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Chapter 1 Elastic materials and the direct method

Remark 1.30.
• The definition of W1,∞-quasiconvexity corresponds to the original definition

of quasiconvexity by Morrey [194]. The extension of quasiconvexity to W1,p-
spaces has been realized by Ball and Murat in [21], essentially based on results
of Meyers [189] as well as Acerbi and Fusco [2], who derived conditions to
deduce weak lower semicontinuity in W1,p(Ω) from weak∗ lower semicontinuity
in W1,∞(Ω).
• The definitions of quasiconvexity actually only need to hold for one measurable

and bounded domain A ⊆ Ω in order to hold for all measurable and bounded
domains A ⊆ Ω [189, pp. 128-129]. Kristensen [166] showed that purely local
definition of quasiconvexity, only involvingW and a finite number of its partial
derivatives, does not exist. For this reason, quasiconvexity is difficult to verify
for a given function f , in particular in the case that f does not satisfy a stricter
convexity property.
• There exists another definition of quasiconvexity in the fields of mathematical

economics and operations research [70]. This definition describes a different
concept than the one used here.

In the presence of suitable polynomial growth conditions, W1,p-quasiconvexity is
equivalent to W1,∞-quasiconvexity.

Lemma 1.31. For 1 ≤ p <∞, an upper semicontinuous function W satisfying, for
c1 > 0, c2 > 0 and all F ∈Mm,n,

c1 ≤ W (F ) ≤ c2(1 + |F |p),

is W1,p-quasiconvex if and only if it is W1,∞-quasiconvex.

Proof. See Ball and Murat [21, Prop. 2.4] or Pedregal [207, Lem. 8.13].

To get a better idea about the relation of quasiconvexity to the validity of Jensen’s
inequality we consider a weakly convergent sequence ϕj ⇀ ϕ̄ such that W (∇ϕj)
is weakly convergent in L1(Ω) and let G = ∇ϕ̄(x) for some x ∈ Ω. Then the
quasiconvexity condition requires

W (∇ϕ̄(x)) ≤ 1
|Ω|

ˆ
Ω
W (∇ϕj(x)) dx

which implies
W (∇ϕ̄(x)) ≤ lim inf

j→∞

1
|Ω|

ˆ
Ω
W (∇ϕj(x)) dx

and thus yields the desired weak lower semicontinuity. However, in the following we
will see that the assumed weak convergence of W (∇ϕj) in L1(Ω) is not clear a priori
and must be enforced by additional growth conditions which are not compatible
with the hyperelastic setting.
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1.2 The direct method and Young measures

We first step back and recall that at the beginning of this subsection, we saw that
quasiconvexity is a necessary condition for the validity of Jensen’s inequality and
thus weak lower semicontinuity. In general, the converse is not true. More precisely,
(1.2.9) only holds if no concentration effects occur. To this end, let ϕG(x) = Gx
for some G ∈ Mm,n and consider, for 1 ≤ p < ∞ a bounded sequence {ψj}j,
with ψj − ϕG ∈ W1,p

0 (Ω) for all j ∈ N, and associated W1,p-parametrized measure
ν = {νx}x∈Ω. Then, {ψj}j contains a weakly convergent subsequence with weak
limit ϕ(x) =

´
Mm,n F dνx(F ). According to Lem. 1.28 there exists another sequence

{ϕj}j, with ϕj−ϕG ∈W1,p
0 for all j ∈ N, such that the associated W1,p-parametrized

measure ν̄ is homogeneous and given through
ˆ
Mm,n

W (F ) dν̄(F ) = 1
|Ω|

ˆ
Ω
W (∇ϕ(x)) dx.

The weak limit of {ϕj}j is affine and satisfies the same boundary conditions as ϕG.
Consequently we have ϕj ⇀ ϕG and

G =
ˆ
Mm,n

F dν̄(F ). (1.2.11)

Now, we consider a non-negative continuous function W , such that the sequence
{W (∇ϕj)}j is bounded in L1(Ω). Since ϕj − ϕG ∈W1,p

0 (Ω), we get from the W1,p-
quasiconvexity condition that

W (G) ≤ 1
|Ω|

ˆ
Ω
W (∇ϕj(x)) dx

holds for all j. Consequently,

W (G) ≤ lim inf
j→∞

1
|Ω|

ˆ
Ω
W (∇ϕj(x)) dx.

Depending on the behavior of {W (∇ϕj)}j, we have to distinguish two cases. If
{W (∇ϕj)}j does not develop concentrations we can extract a weakly convergent
subsequence W (∇ϕj) ⇀ W̄ in L1(Ω). As the parametrized measure ν̄, that is
generated by {∇ϕj}j, is homogeneous, this limit is constant and can be expressed
via

W̄ =
ˆ
Mm,n

W (F ) dν̄(F ),

cf. Thm. 1.20. With (1.2.11) we get

W

(ˆ
Mm,n

F dν̄(F )
)

= W (G) ≤ lim inf
j→∞

1
|Ω|

ˆ
Ω
W (∇ϕj(x)) dx =

ˆ
Mm,n

W (F ) dν̄(F ),

i.e. Jensen’s inequality holds.
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Chapter 1 Elastic materials and the direct method

In contrast, if the sequence {W (∇ϕj)}j does develop concentrations we get the strict
inequality

lim inf
j→∞

1
|Ω|

ˆ
Ω
W (∇ϕj(x)) dx >

ˆ
Mm,n

W (F ) dν̄(F ).

In order to prove Jensen’s inequality, we would rather need that the limit on the
left hand side is less or equal than the expression on the right hand side. Thus,
in the presence of concentrations, we are not able to infer the validity of Jensen’s
inequality without further restrictions.
To exclude these difficulties with Jensen’s inequality, W1,p-quasiconvexity typically
turns up together with a polynomial growth condition of order p. Then, according
to Lem.A.6, concentrations will not be relevant and {W (∇ϕj)}j converges weakly
in L1(Ω). In contrast, “under no growth assumptions, there are still many open,
delicate issues concerning W1,p-quasiconvexity” Pedregal [207, p. 150].
We summarize the classical existence results for quasiconvex integrands into the
following two theorems.

Theorem 1.32. Let W : Mm,n → R be continuous. The functional E str(ϕ) =´
ΩW (∇ϕ(x)) dx is lower semicontinuous with respect to weak convergence in W1,∞(Ω)
if and only if W is W1,∞-quasiconvex.

Proof. See Pedregal [207, Thm. 3.4].

Theorem 1.33. Let W : Mm,n → R∞ be a continuous function such that for con-
stants c0 ∈ R, c1 > 0 and all F ∈Mm,n

c0 ≤ W (F ) ≤ c1(1 + |F |p),

with 1 < p <∞. Then the functional E(ϕ) =
´

Ω W (∇ϕ(x)) dx is lower semicontinu-
ous with respect to weak convergence of W1,p(Ω) if and only ifW is W1,p-quasiconvex.

Proof. See Ball and Murat [21, Conj. 3.7].

The required polynomial growth condition does not fit into the setting of hyperelas-
ticity. Consider an elastic stored energy function W that satisfies condition (1.1.1)
and a weakly convergent sequence {ϕδ,j}j such that on a subset Aδ ⊂ Ω with
0 < |Aδ| < δ the sequence {det(∇ϕδ,j)}j converges almost everywhere in Aδ to 0.
Then the sequence {W (∇ϕj)}j develops concentrations.. For this reason, the current
understanding of quasiconvexity does not admit its application in hyperelasticity.

1.2.3. Polyconvexity

In the last section we saw that weak lower semicontinuity of quasiconvex energy func-
tionals E str requires a polynomial upper bound. The problem is that we are not able
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1.2 The direct method and Young measures

to guarantee the validity of Jensen’s inequality if we don’t have weak compactness
of {W (∇ϕj)}j. The latter property is enforced with the help of a polynomial growth
condition, which is incompatible with the limit behavior limdet(∇ϕ)↘0W (∇ϕ) =∞.
For this reason, we have to stay closer to a convex setting. From a general perspective
this is discussed in Sec. 1.2.3.1. More specific results for problems in hyperelasticity
are the topic of Sec. 1.2.3.2.

1.2.3.1. The general setting

Recall that in W1,p(Ω) with 1 ≤ p < ∞ growth conditions are not necessary for
convex stored energy functions W , cf. Thm.A.7. In Sec. 1.1.4 we saw that convexity
of W is not admissible. However, we can exploit this observation in the following
way. Let M be a weakly continuous function, i.e. a function that maps weakly
converging sequences ∇ϕj ⇀ ∇ϕ̄ into weakly converging sequences M(∇ϕj) ⇀ M̄ .
If M̄ = M(∇ϕ̄), then we can identify candidates for stored energy functions via

W (ϕ) = V (M(∇ϕ)), (1.2.12)

where V (·) is convex.

To make this more precise we need to identify the weakly continuous functions M
of the deformation gradient ∇ϕ. Keeping in mind the discussion of the last section,
we observe that a necessary requirement for weak continuity of M is that both M
and −M are quasiconvex.

Definition 1.34. A function M : Mm,n → R is called quasiaffine3 if M and −M
are quasiconvex.

Remark 1.35. Quasiaffine functions were considered in the work of John Ball un-
der the name null Lagrangians [15, 20, 72]. For applications in the context of
compensated compactness cf. [251, Cor. 17.2].

Theorem 1.36. Let M : Mm,n → R be quasiaffine. Then the function F 7→ M(F )
is affine in terms of the minors of F .

Proof. For m = n, n ≤ 3 the proof can be found in [15, Thm. 4.1]. For the general
case see [72, Chap. 4, Thm. 1.5].

Since the minors naturally satisfy a polynomial growth condition they are the only
weakly continuous function of the deformation gradient. Thus, we can further specify
condition (1.2.12).

3Or equivalently, rank one affine or polyaffine [72, Chap. 4, Thm. 1.5].

33



Chapter 1 Elastic materials and the direct method

Definition 1.37. A function W : M → R∞ is called polyconvex if there exists a
convex function W : Mτ(m,n) → R∞ such that for all F ∈Mm,n

W (F ) = W(M(F )),

where
M : Mm,n →Mτ(m,n), F 7→ (F, cof2(F ), . . . , cofmin(m,n)(F )),

cofs(F ) is the matrix of all s× s-minors of F and

τ(m,n) =
min(m,n)∑
s=1

m!n!
(s!)2(m− s)!(n− s)! .

The definition of polyconvexity, due to Ball [15], admits to prove the validity of
Jensen’s inequality, as necessary condition for weak lower semicontinuity of E str. We
only have to take care that the minors of the deformation gradient are well-behaved.
In general, this requires that the integration order p satisfies p ≥ r := max(m,n).

Theorem 1.38. Let W : Mm,n → R∞ be polyconvex and p ≥ r := max(m,n). Then
W satisfies Jensen’s inequality for any homogeneous W1,p-parametrized measure.

Proof. Let ν be a homogeneous W1,p-parametrized measure generated by a weakly
convergent sequence {∇ϕj}j ⊂ W1,p(Ω). We denote its first moment by G =´
Mm,n F dν(F ). According to Lem.A.6 we can w.l.o.g. assume that {|∇ϕj|p}j is
equi-integrable. As M(∇ϕj) ⇀ M(G) in Lp/r(Ω) and M(F ) ≤ c1(1 + |F |r), for
some positive constant c1 > 0, we have

M(∇ϕj) ⇀
ˆ
Mm,n

M(F ) dν(F )

from Thm.A.4 and
ˆ
Mm,n

M(F ) dν(F ) = M(G) = M

(ˆ
Mm,n

F dν(F )
)
.

Using the convexity of W we get, with the classical Jensen inequality,
ˆ
Mm,n

W (F ) dν(F ) =
ˆ
Mm,n

W(M(F )) dν(F )

≥ W
(ˆ

Mm,n

M(F ) dν(F )
)

= W(M(G)) = W (G) = W

(ˆ
Mm,n

F dν(F )
)
.
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1.2 The direct method and Young measures

Corollary 1.39. Let W : Mm,n → R∞ be polyconvex and p ≥ r := max(m,n). Then
the functional

E str(ϕ) =
ˆ

Ω
W (∇ϕ(x)) dx

is weakly lower semicontinuous in W1,p(Ω).

Proof. This is a direct consequence of Thm. 1.38 and Thm. 1.27.

We add a suitable coercivity condition to get

Theorem 1.40. Let W : Mm,n → R∞ be non-negative, polyconvex such that for
p ≥ r := max(m,n) the coercivity inequality

c (|F |p − 1) ≤ W (F ), c > 0 (1.2.13)

holds for all F ∈Mm,n. If there exists at least one ϕ0 ∈W1,p(Ω) such that

E str(ϕ0) =
ˆ

Ω
W (∇ϕ0(x)) dx <∞,

then there exists at least one minimizer ϕ̄ of E str.

Proof. From Thm. 1.38 we get that W satisfies inequality (1.2.9). Then weak lower
semicontinuity of

E str(ϕ) =
ˆ

Ω
W (∇ϕ(x)) dx

follows from Thm. 1.27. We take a minimizing sequence {ϕj}j , i.e.

lim
j→∞
E str(ϕj)→ e = inf

ϕ∈W1,p(Ω)
E str(ϕ) <∞.

Thus we can extract a bounded subsequence of {E str(ϕj)}j and, by (1.2.13), also
of {ϕj}j . Possibly again extracting a subsequence, we get ϕj ⇀ ϕ̄ for some ϕ̄ ∈
W1,p(Ω). From the weak lower semicontinuity of E str,

e = lim inf
j→∞

E str(ϕj) ≥ E str(ϕ̄),

we deduce that ϕ̄ is a minimizer of E str.
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Chapter 1 Elastic materials and the direct method

1.2.3.2. Polyconvex hyperelasticity

Having introduced the polyconvex framework, we now turn to its discussion in the
context of hyperelasticity. In this subsection we assume that n = m = 3. Then the
minors of F ∈ M3 are, besides F itself, the entries of the cofactor matrix cof(F )
and det(F ). Hence, a function W : M3 → R∞ is polyconvex if there exists a convex
function W: M3 ×M3 × R→ R∞ such that

W (F ) = W(F, cof(F ), det(F )). (1.2.14)

Here polyconvexity admits a geometric interpretation. For some deformation ϕ
the induced change of infinitesimal length elements is determined by ∇ϕT∇ϕ, the
change of area elements with normal n by cof(∇ϕ)n and the change of volumetric
elements by det(∇ϕ). Thus W is convex in terms of the quantities that determine
the changes of volumes of different codimension.
Recall that for p > 3, Sobolev’s embedding theorem [102, Chap. 2, Thm. 1.2] yields
continuity of the deformations. If we want to describe fracture or cavitation, frequent
phenomena for rubber materials [170], discontinuous solutions in weaker Sobolev
spaces are needed [16]. While these phenomena are not of interest here, many
popular material laws are formulated in W1,2(Ω). For consistency with the models
used in the numerical examples in Chap. 6, we also allow discontinuous deformations.
In order to get an existence result for three-dimensional problems in W1,2(Ω), we
need a refined weak compactness result for the minors of the deformation gradient.
Such a result has been established by Ball [15, Lem. 6.1, Thm. 6.2]. It is based
on the Piola identity, div(cof(∇ϕ)) = 0, which admits to weaken the definition of
det(∇ϕ) to the expansion

det(∇ϕ) =
n∑
j=1

∂ϕk
∂xj

(cof(∇ϕ))kj for k ∈ {1, . . . , n} .

Theorem 1.41. Let p ≥ 2, q ≥ 1 such that 1
s

:= 1
p

+ 1
q
≤ 1 and r ≥ 1. Then the

mapping

W1,p(Ω)× Lq(Ω) 3 (ϕ, cof(ϕ)) 7→ det(∇ϕ) :=
3∑
j=1

∂ϕ1

∂xj
(cof(∇ϕ))1j ∈ Ls(Ω)

is well defined and continuous. Furthermore

ϕj ⇀ ϕ in W1,p(Ω)
cof(∇ϕj) ⇀ H in Lq(Ω)
det(∇ϕj) ⇀ δ in Lr(Ω)

⇒
 H = cof(∇ϕ)
δ = det(∇ϕ).

(1.2.15)

Proof. See [56, Thm. 7.6-1], resp. [15, Lem. 6.1, Thm. 6.2].
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1.2 The direct method and Young measures

Eventually we can establish an existence theorem for polyconvex hyperelasticity.
Besides the relaxation from p ≥ 3 to p ≥ 2 this includes the incorporation of the
orientation preservation condition det(∇ϕ) > 0.
Theorem 1.42. Let W, W be defined as in (1.2.14) and let

W(F, cof(F ), det(F )) ≥ α(‖F‖p + ‖cof(F )‖q + | det(F )|r)− β, (1.2.16)

where α > 0, β ∈ R and p ≥ 2, 1
p

+ 1
q
≤ 1, r ≥ 1. If there exists at least one

element
ϕ0 ∈ Φ0 :=

{
ϕ ∈W1,p

0 (Ω) : det(ϕ) > 0 a.e. in Ω
}

such that El(ϕ0) =
´

Ω W (∇ϕ0) dx − l(ϕ0) < ∞, where l : Φ0 → R is linear and
continuous, then there exist at least one minimizer ϕ̄ of El in Φ0.

Proof. First we integrate equation (1.2.16) over Ω to deduce the necessary coercivity
inequality in Φ0 × Lq(Ω)× Lr(Ω):

El(ϕ) =
ˆ

Ω
W(∇ϕ, cof(∇ϕ), det(∇ϕ)) dx − l(ϕ)

≥ α̃(‖ϕ‖W1,p
0 (Ω) + ‖cof(∇ϕ)‖Lq(Ω) + ‖ det(∇ϕ)‖Lr(Ω) − β̃, (1.2.17)

with α̃ > 0 and β̃ ∈ R. Now consider an infimizing sequence {ϕj}j, i.e.

lim
j→∞
El(ϕj)→ inf

ϕ∈Ω
El(ϕ̄).

From equation (1.2.17) and Thm. 1.41 we infer the existence of a weakly convergent
subsequence

{(∇ϕj, cof(∇ϕj), det(∇ϕj))}j ⇀ (∇ϕ̄, cof(∇ϕ̄), det(∇ϕ̄))

in W1,p
0 (Ω)×Lq(Ω)×Lr(Ω). By definition of weak convergence we get l(ϕj)→ l(ϕ̄).

Consequently, in the following we only have to consider E str. Due to Thm. 1.41,
we still have weak compactness of M and get existence of a minimizer in W1,p

0 (Ω)
analogously to Thm. 1.40.
It remains to establish that the weak limit ϕ̄ is indeed contained in Φ0. First
the transition to strong convergence with Mazur’s lemma (Lem.A.9) gives the exis-
tence of an almost everywhere pointwise convergent subsequence {det(∇ϕj)}j. Thus
det(∇ϕ̄) ≥ 0 almost everywhere in Ω. Now assume that there is a subset A ⊂ Ω
with |A| > 0 such that det(∇ϕ) = 0 almost everywhere in A. Then

∞ =
ˆ
A
W (ϕ̄) dµ =

ˆ
Ω

lim inf
k→∞

W (ϕk(x)) dµ.

Since l is bounded this extends to

∞ = El(ϕ̄) = lim
j→∞
El(ϕj),

which is in contradiction with the assumed existence of at least one element such
that El is finite. Therefore |A| = 0 and ϕ ∈ Φ0 must hold.
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Chapter 1 Elastic materials and the direct method

Remark 1.43.

• The restriction to W1,p
0 (Ω) was done for simplicity. As usual, the above the-

orem can also be applied in the case of mixed boundary conditions, as long
as Dirichlet boundary conditions are subscribed on a measurable part of the
boundary Γd ⊂ ∂Ω with positive surface measure |Γd| > 0. Then the set of
admissible deformations is

Φ :=
{
ϕ ∈W1,p(Ω) : det(ϕ) > 0 a.e. in Ω, ϕ = 0 a.e. on Γd

}
.

• Observing | det(F )| ≤ ‖adj(F )‖‖F‖ we can drop the last summand in (1.2.16).

• For volume forces f or Neumann boundary forces g, defined on Γc, the func-
tional l is given through

l(ϕ) = Eext(ϕ, f) =
ˆ

Ω
ϕf dµ, resp. l(ϕ) = Eext(ϕ, g) =

ˆ
Γc

ϕg ds.

Recall, that the focus of this thesis is on implant shape design. An implant that
occupies a domain Ωrigid can be interpreted as an obstacle to the soft tissue. For
this case we need another variant of the above existence theorem.

Theorem 1.44. Let W, W be defined as in (1.2.14) and let

W(F, cof(F ), det(F )) ≥ α(‖F‖p + ‖cof(F )‖q + | det(F )|r)− β,

where α > 0, β ∈ R and p ≥ 2, 1
p

+ 1
q
≤ 1, r ≥ 1. Let A ⊂ R3 \ Ωrigid be closed. If

there exists at least one element

ϕ0 ∈ ΦA :=
{
ϕ ∈W1,p

0 (Ω) : det(ϕ) > 0 a.e. in Ω and ϕ ∈ A a.e. on Γc
}

such that E str(ϕ0) =
´

Ω W (∇ϕ0) dx <∞, then there exists at least one minimizer ϕ̄
of E str in ΦA.

Proof. The proof is essentially the same as for Thm. 1.42. For this reason we only
consider the additional requirement ϕ(Γc) ∈ A. Let {ϕj}j ⊂ ΦA be an infimizing
sequence and denote its weak limit by ϕ̄. Since the trace operator W1,p(Ω)→ Lp(Γc)
is compact we can extract a subsequence that converges almost everywhere on Γc.
Consequently, as A is closed, we have ϕ̄ ∈ A almost everywhere on Γc.

Remark 1.45. Today the notion of polyconvexity is well established in the biome-
chanics community. Recognizing its relation to the Legendre-Hadamard condition
and its implications [56, Sec. 5.10][161, 162, 185], material laws for all standard
anisotropy classes have been derived [88, 91, 151, 190, 230, 231, 232, 233, 234, 244].
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1.3 First order optimality conditions for a compressible Mooney-Rivlin material

1.3. First order optimality conditions for a
compressible Mooney-Rivlin material

In general, it is not clear whether for a given boundary force g ∈ L2(Γc) a local
minimizer ϕ ∈ Φ of the elastic energy functional E = E str − Eext satisfies the weak
formulation

Eϕ(ϕ, g)h = 0 for all h ∈W1,p(Ω).
In the context of compressible material laws the main difficulties are caused by
the orientation preservation condition det(∇ϕ) > 0. In particular, it implies for
1 ≤ p <∞ that the set

Φ∞ :=
{
ϕ ∈W1,p(Ω) : E str(ϕ) =∞

}
,

is a dense subset of W1,p(Ω) for all p <∞. Thus, differentiability cannot be expected
in spaces weaker than W1,∞(Ω).
To make the discussion concrete we consider a compressible Mooney-Rivlin material
law in R3. This constitutive relation is polyconvex and isotropic. For F ∈ M3 its
stored energy function is given via

W (F ) = α

2 ‖F‖
2 + β

2 ‖cof (F )‖2 + Γ (det (F )) ,

with material parameters α > 0, β > 0 and Γ denoting a volumetric penalty func-
tion. Here we exemplarily consider the penalty function suggested by Murnaghan
[196],

Γ : R+ → R+, t 7→ d

2 t
2 + e

2t
−k,

with material parameters d, e, k > 0. We study its derivatives at nonsingular F ∈
M3

+ in direction δF ∈M3. Using det′(F )δF = adj(F ) :δF = cof(F )T :δF we get for
the first directional derivative

W ′(F )δF = αF :δF + βcof(F ) :cof ′(F )δF + Γ′(det(F ))(cof(F )T :δF ).

The second directional derivative is given via

W ′′(F )(δF1, δF2) = αδF1 :δF2 + βcof ′(F )δF1 : cof ′(F )δF2

+ βcof(F ) :cof ′′(F )(δF1, δF2)
+ Γ′(det(F ))(cof ′(F )T δF T

1 :δF2)
+ Γ′′(det(F ))(cof(F )T :δF1)(cof(F )T :δF2).

The validity of the above pointwise formulae follows, for F ∈M3
+ and δF1, δF2 ∈M3,

directly from the definitions of the cofactor matrix and the determinant. Having
considered properties of W as a nonlinear function of matrices F ∈ M3, we now
turn to its study as superposition operators. In this regard, first consider cof.
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Chapter 1 Elastic materials and the direct method

Lemma 1.46. Let F ∈ Lp(Ω) with 1 ≤ p <∞. Then the mapping

cof ′(F ) : Lq(Ω)→ L1(Ω)

is linear and continuous for p−1 + q−1 ≤ 1. The mapping

cof ′′(F ) : Lq1(Ω)× Lq2(Ω)→ L1(Ω)

is independent of F , bilinear and continuous for q−1
1 + q−1

2 ≤ 1. For N > 2 we have
cof(N) = 0.

Proof. The assertion follows from the observation that cof is a second order poly-
nomial in the entries of F and Hölder’s inequality.

Definition 1.47. Let ϕ ∈W1,p(Ω) with 1 ≤ p ≤ ∞. We call ϕ nondegenerate if
there exists a constant ε > 0, such that

det(∇ϕ) ≥ ε almost everywhere in Ω.

Otherwise, we call ϕ degenerate. In the context of elasticity theory, we will also
call displacements u nondegenerate if ϕ = id + u is nondegenerate.

Suppose there exists a degenerate local minimizer ϕ ∈ Φ, i.e. there exists a sequence

{xk}k ⊂ Ω, xk → x ∈ Ω such that det(∇ϕ(xk))→ 0.

This corresponds to a singularity of the stored energy function at x. This is rea-
sonable if cutting or piercing processes are to be investigated. However, in this case
other effects such as plasticity become dominant and elastic models, that only de-
pend on the deformation gradient are no longer adequate. Regarding the design of
reasonable implant shapes nondegeneracy is a natural assumption.

Lemma 1.48. Assume that F ∈ Lp(Ω) is nondegenerate, cof(F ) ∈ Lq(Ω), and
det(F ) ∈ Lr(Ω), where 1 ≤ p, q, r < ∞. Assume that the integrability indices
si ∈ [1,∞], i = 1, . . . , N, satisfy

N = 1 : s−1
1 ≤ 1−

(
r−1 + q−1

)
N = 2 : s−1

1 + s−1
2 ≤ 1−max

(
r−1 + p−1, 2q−1

)
N = 3 : s−1

1 + s−1
2 + s−1

3 ≤ 1−max
(
r−1, p−1 + q−1, 3q−1

)
.

Then, for δFi ∈ Lsi(Ω) we obtain

dN

(dF )N
Γ(det(F ))(δF1, . . . , δFN) ∈ L1(Ω), N = 1, 2, 3.

Proof. See [179, Lem. 4.2].
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1.3 First order optimality conditions for a compressible Mooney-Rivlin material

Now we turn to the study of derivatives of W .

Lemma 1.49. Assume that F ∈ Lp(Ω) is nondegenerate, cof(F ) ∈ Lq(Ω), and
det(F ) ∈ Lr(Ω), where 1 ≤ p, q, r <∞.

• If 0 ≤ s−1
1 ≤ 1− (q−1 + max (r−1, p−1)), then

W ′(F )δF ∈ L1(Ω) for all δF ∈ Ls1(Ω),

is linear and continuous.
• If 0 ≤ s−1

1 + s−1
2 ≤ 1−max (2p−1, r−1 + p−1, 2q−1), then

W ′′(F )(δF1, δF2) ∈ L1(Ω) for all δFi ∈ Lsi(Ω), i = 1, 2,

is bilinear and continuous.
• If 0 ≤ s−1

1 + s−1
2 + s−1

3 ≤ 1−max (r−1, p−1 + q−1, 3q−1) , then

W ′′′(F )(δF1, δF2, δF3) ∈ L1(Ω) for all δFi ∈ Lsi(Ω), i = 1, 2, 3,

is trilinear and continuous.

Proof. See [179, Prop. 4.3].

Finally, we study conditions under which the formal directional derivatives of the
strain energy

E str
ϕ (ϕ)v1 :=

ˆ
Ω
W ′(∇ϕ)∇v dµ, (1.3.1)

E str
ϕϕ(ϕ)(v1, v2) :=

ˆ
Ω
W ′′(∇ϕ)(∇v1,∇v2) dµ, (1.3.2)

E str
ϕϕϕ(ϕ)(v1, v2, v3) :=

ˆ
Ω
W ′′′(∇ϕ)(∇v1,∇v2,∇v3) dµ, (1.3.3)

are well defined. Moreover, we have to verify whether the remainder terms vanish.

Lemma 1.50. Let ϕ = id + u ∈ Φ ∩W1,∞(Ω) be nondegenerate. Then E str is twice
directionally differentiable in W1,∞(Ω). There exists a positive constant cr2 > 0,
such that corresponding remainder term can be estimated by

r2(δϕ) ≤ cr2‖δu‖W1,∞(Ω)‖δu‖2
W1,2(Ω).

Proof. See [179, Prop. 4.5].

With this result we get well-definedness of the necessary optimality conditions in
W1,∞(Ω).
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Chapter 1 Elastic materials and the direct method

Theorem 1.51. Let ϕ = id + u ∈ Φ∩W1,∞(Ω) be a nondegenerate local minimizer
of E str with E str(ϕ) <∞. Then it satisfies the weak formulation

E str
ϕ (ϕ)δϕ = 0 for all δϕ ∈W1,∞(Ω).

If E str
ϕϕ(ϕ) ≥ δ‖δu‖2

W1,2(Ω) with δ > 0, then for sufficiently small u ∈ W1,∞(Ω) and
some constant ε > 0 we have the growth condition

E str(ϕ+ δϕ) ≥ E str(ϕ) + ε‖δϕ‖2
W1,2(Ω).

In particular, ϕ is a W1,∞(Ω)-local minimizer of E str.

Proof. To show that E str
ϕ (ϕ)δϕ = 0, we compute

E str
ϕ (ϕ)(±δϕ) = lim

t→0

E str(ϕ+ tδϕ)− E str(ϕ)
t

≥ 0,

since ϕ is a local minimizer of E str.
Regarding the second assertion, we note that

E str(ϕ+ δϕ)− E str(ϕ) = 1
2E

str
ϕϕ(ϕ)(δϕ)2 + r2(δϕ)

≥ δ

2‖δu‖
2
W1,2(Ω) + r2(δϕ).

Due to Lem. 1.50, we obtain, for ‖δu‖W1,∞(Ω) → 0, the inequality

E str(ϕ+ δϕ)− E str(ϕ) ≥
(
δ

2 − cr2‖δu‖W1,∞(Ω)

)
‖δu‖2

W1,2(Ω) ≥ ε‖δu‖2
W1,2(Ω).

1.4. Summary

Physical considerations yield the framework of hyperelastic material laws. For com-
pressible materials the set of admissible functions is

Φ :=
{
ϕ ∈W1,p(Ω) : det(ϕ) > 0 a.e. in Ω, ϕ = 0 a.e. on Γd

}
.

In this regard, deformations Φ are given as possibly non-unique minimizers of hy-
perelastic energy functionals E(ϕ) = E str(ϕ)− Eext(ϕ, g), i.e.

ϕ ∈ argminψ∈ΦE(ψ),

where Eext describes the action of external forces g and E str(ϕ) =
´

Ω W (∇ϕ) dµ is
the strain energy determined by a material specific stored energy function W . In
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1.4 Summary

particular the orientation preservation condition det(∇ϕ) > 0 – and the correspond-
ing limit behavior limdet(F )↘0W (F ) = ∞ – imposes challenges. It implies that the
singular set

Φ∞ =
{
ϕ ∈W1,p(Ω) : E(∇ϕ) =∞

}
is dense in W1,p(Ω) and consequently E is neither bounded by a polynomial, nor
convex.
Thus, the theoretical treatment of problems in nonlinear elasticity is challenging. In
the chain of generalized convexity conditions

convexity ⇒ polyconvexity ⇒ quasiconvexity ⇒ rank-one convexity,

polyconvexity was identified as reasonable condition. To the current understanding
of quasiconvexity, it requires a polynomial growth condition to prove existence of
minimizers. This is in conflict with the limit behavior ofW . Without such a growth
condition polyconvexity is the only admissible candidate that fits into the setting of
hyperelasticity and admits existence of minimizers. Moreover, polyconvex functions
are sufficiently general to admit the development of complex, realistic models, as
described in Chap. 5.
Another consequence of the orientation preservation condition is the fact that di-
rectional differentiability of E in W1,p(Ω) can not be expected. Excluding the
limit behavior for det(∇ϕ) → ∞ by the restriction of nondegeneracy on ϕ ∈ Φ,
i.e. det(∇ϕ) ≥ ε0 > 0, the associated first order optimality conditions are at least
well-defined in W1,∞(Ω).
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2. A mathematical model for implant
shape design

The last chapter equipped us with a mathematical setting for the treatment of
problems in hyperelasticity. Now we turn to the mathematical description of the
implant shape design problem. We begin with the introduction of the forward prob-
lem in Sec. 2.1. Different formulations, incorporating the influence of the implant as
obstacle or by pressure-type boundary conditions, are discussed in Sec. 2.2. The cor-
responding inverse problem for the determination of an implant shape from a desired
displacement of the skin then is explained in Sec. 2.3. Replacing the pressure-type
boundary conditions by dead load Neumann boundary conditions, which fit into the
hyperelastic setting, a corresponding existence theorem is given in Sec. 2.4. Eventu-
ally, the first order optimality conditions for the chosen model are shortly discussed
in Sec. 2.5.
The content of this chapter has essentially been published in [179].

2.1. The forward problem as obstacle problem

In the following we consider a generic polyconvex, coercive stored energy function
W in R3 with associated functional

E str(ϕ) :=
ˆ

Ω
W (x,∇ϕ(x)) dx,

comprising all involved soft tissue types. Implants and bones are much stiffer than
the soft tissues and are considered to be rigid, such as in [26]. Thus, there is no need
to distinguish between both and we denote their volume by Ωrigid = Ωbone∪Ωimplant.
We further denote the contact surface between elastic and rigid material by

Γc = Ω̄rigid ∩ Ω̄

and the skin surface by
Γo ⊂ ∂Ω.

The remaining part of the boundary is denoted by

Γd = ∂Ω \ (Γc ∪ Γo) .

We begin with the specification of the boundary conditions on Γo and Γd.
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Chapter 2 A mathematical model for implant shape design

• The skin surface is not restricted by external sources. This yields natural,
homogeneous Neumann boundary conditions on Γo.
• Expecting the Green’s function of nonlinear elasticity to vanish quickly, the

soft tissue domain may be restricted to a bounded region in the vicinity of the
implant. This introduces an artificial boundary Γd at the virtual cutting line.
Here, transparent boundary conditions [171] might be imposed. For simplicity,
we just assume the tissue to be fixed on Γd. The Dirichlet boundary conditions
on Γd will be incorporated in the search space

Φ =
{
ϕ ∈W1,p(Ω) : det(∇ϕ) > 0 a.e. in Ω and ϕ = 0 a.e. on Γd

}
.

In the human body bones are often surrounded by skeletal muscle tissue, which is
attached via tendons at its end. Besides this partial fixation the muscle is allowed
to freely glide over the contact surface Γc [255]. We assume that friction on the
contact surface is negligible. Then we can account for the presence of rigid materials
by restricting the set of admissible functions to

ΦΩrigid = {ϕ ∈ Φ : ϕ(x) /∈ Ωrigid a.e. in Ω} .

The arising optimization problem

min
ϕ∈ΦΩrigid

E str(ϕ) (2.1.1)

is an obstacle problem. Existence of solutions for the latter formulation is due to
Thm. 1.44.

2.2. The forward problem and pressure-type boundary
conditions

The obstacle formulation combines a mechanical model for soft tissue with a purely
geometric description for solids. Thus, during computations for the solution of the
non-convex problem (2.1.1) we will retain Ωrigid, but the soft tissue domain ϕk(Ω)
will change in each iteration k. Consequently, to guarantee that ϕk ∈ ΦΩrigid we need
to solve a contact problem at Γc. These are inherently non-smooth [164, 223]. In
addition to the non-convexity of E str this further complicates the numerical solutions
of (2.1.1).
An alternative approach is motivated by a formal theorem, given in [56].

Theorem 2.1. Let Γc, Γd be disjoint relatively open subsets of Γ = ∂Ω such that
|Γ \ {Γc ∪ Γd} | = 0 and |Γd| > 0. For a closed subset A ⊂ R3 \ Ωrigid we define

ΦA = {ϕ ∈ Φ : ϕ(Γc) ⊂ A}
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2.2 The forward problem and pressure-type boundary conditions

as the set of admissible solutions. Then a smooth enough solution ϕ of the mini-
mization problem

min
ϕ∈ΦA

E str(ϕ)

is, at least formally, a solution of the boundary value problem

−div(σ(∇ϕ)) = 0 in Ω, (2.2.1a)
ϕ = 0 on Γd, (2.2.1b)

ϕ(Γc) ⊂ A, (2.2.1c)
σ(∇ϕ(x))n(x) = 0 if x ∈ Γc and ϕ(x) ∈ Å, (2.2.1d)
σ(∇ϕ(x))n(x) = g(x)cof(∇ϕ(x))n(x) if x ∈ Γc and ϕ(x) ∈ ∂A, (2.2.1e)

with g(x) ≤ 0 for all x ∈ Γc.

Proof. As indicated in the statement of the theorem computations for its “proof”
can only be performed on a formal basis [56, Thm. 5.3-1].

For a rigorous proof we would need that ϕ(Γc) and ∂A are smooth, at least where
they are in contact. Moreover application of Green’s and Taylor’s formula on vari-
ations of the stored energy function is, again due to condition (1.1.1), only valid
on a formal level. Heuristically the first point seems to be justifiable, as we expect
reasonable implant shapes to be smooth where they are in contact with soft tissue.
Analytically this is an extremely challenging problem. First the vectorial problem
setting already suggests that we should not expect more than partial regularity.
Secondly, condition (1.1.1) rules out standard and non-standard polynomial growth
conditions, which play an important role in regularity theory [191]. Therefore, avail-
able partial regularity results only focus on polyconvex integrands that do not satisfy
condition (1.1.1), cf. [50, 100, 117, 126].

The boundary condition on Γc can be expressed as boundary condition on the de-
formed boundary ϕ(Γc) :

σϕ(∇ϕ(x))nϕ(ϕ(x)) = 0 if x ∈ Å
σϕ(∇ϕ(x))nϕ(ϕ(x)) = gϕ(ϕ(x))nϕ(ϕ(x)) if x ∈ ∂A (2.2.2)

with gϕ(x) ≤ 0. “The unilateral boundary condition of place on Γc constitutes a
model of contact without friction with the obstacle’s boundaryA. In this respect, the
function gϕ : ϕ(Γc)→ R, which measures the intensity of the contact load, is nothing
but the Kuhn-Tucker multiplier associated with the constraint ϕ(Γc) ⊂ A” [56,
p. 214].

At least formally, we can replace the obstacle condition by the pressure-type bound-
ary condition (2.2.2) on the deformed domain. With this reformulation we avoid the
intrinsic non-smoothness of contact problems. Though, formulating this boundary
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Chapter 2 A mathematical model for implant shape design

condition on the undeformed domain, as in (2.2.1e), we encounter a quadratic non-
linearity in the boundary conditions on Γc, the cofactor matrix cof(∇ϕ(x)). This is
due to the fact that the Piola-transform does not preserve angles.

Consequently these boundary conditions are in general not conservative [15, 46].
This means that, except for simple cases such as piece-wise constant pressure, we
cannot expect existence of an associated energy functional Eext and we can not
incorporate pressure-type forces in the way we incorporate undirected volume or
boundary forces into the hyperelastic setting. At least on the level of first order
optimality conditions we formally get

E str
ϕ (ϕ)h =

ˆ
Γc

gcof(∇ϕ)nh ds for all h ∈W1,p
0 (Ω), (2.2.3)

In Chap. 1 we saw that the left hand side of (2.2.3) is in general not well-defined. Due
to the occurrence of cof(∇ϕ) the same is true for the right hand side if ϕ ∈W1,p(Ω)
with p ≤ 3, i.e. if we do not get continuity of ϕ by the Sobolev embedding theorem.
Though, in our context of implant shape design we expect smooth deformations and
a smooth contact surface Γc. In such a setting equation (2.2.3) indeed describes a
necessary equilibrium condition for the obstacle problem.

Using pressure-type boundary conditions instead of the obstacle formulation has two
advantages. First, we avoid the treatment of a contact problem. Second, (2.2.3) is
the weak formulation of a nonlinear PDE, with non-standard boundary conditions
and we can exploit insights into the numerical treatment of PDE-problems.

2.3. The inverse problem

We now turn to the question of finding an implant shape for a given desired shape,
such as the deformation ϕref of the outer surface Γo. A priori we do not know if any
seemingly reasonable surface shape can indeed be attained. Therefore we search for
deformations ϕ that minimize a cost functional J0(ϕ) which measures the deviation
from the desired deformation ϕref . Since it is not yet clear which measures are used
by humans to quantify abnormalities, or even “beauty”, the choice of adequate
cost functionals is left open. Any weakly lower semicontinuous functional, which is
bounded from below, may be a candidate. Here we take the simplest reasonable
one, the tracking-type functional

J0(ϕ) = 1
2‖ϕ− ϕref‖2

L2(Γo),

resp. its Tikhonov-regularized counterpart

J(ϕ, g) = 1
2‖ϕ− ϕref‖2

L2(Γo) + α

2 ‖g‖
2
L2(Γc),
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2.4 An existence result for dead load forces

where α > 0 denotes the Tikhonov regularization parameter. Since we aim to avoid
a contact problem, we describe the influence of the implant via (2.2.3). This leads
to the optimal control problem

min
(ϕ,g)∈Φ×L2(Γc)

J(ϕ, g) (2.3.1a)

subject to
ˆ

Ω
W ′(∇ϕ) :∇h dµ =

ˆ
Γc

gcof(∇ϕ)nh ds for all h ∈W1,p
0 (Ω).

(2.3.1b)

From an optimal soft tissue deformation ϕ, solving (2.3.1), an implant shape must
be reconstructed. As depicted in Fig. 2.3.1, this can be easily done by filling the gap
between undeformed and deformed contact boundary.
In this formulation, it is straightforward to satisfy additional medical requirements.
For instance, no gaps should occur between soft tissue and implants since voids
tend to be a source of infections. The chosen construction of the implant shape
directly meets this requirement. In contrast, imposing this condition in the obstacle
formulation is quite involved.

ϕ

Γd

Γd

Γo

Γc

Ω

ϕ(Γd)

ϕ(Γd)
ϕ(Γo)

ϕ(Γc)

ϕ(Ω)

gn

Figure 2.3.1.: Cross-section of the reference configuration (left) and the deformed
state due to the normal force gn defining the implant volume in gray (right).

2.4. An existence result for dead load forces

Since the constraints of (2.3.1) are not well-defined we are not able to prove exis-
tence of solutions for this problem. Therefore, we will switch to a simplified setting
and replace the pressure-type boundary condition σn = gcof(∇ϕ)n by one of the
following dead load boundary conditions:

σn = g̃n g̃ : Γc → R (2.4.1)
σn = g g : Γc → R3. (2.4.2)
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Chapter 2 A mathematical model for implant shape design

Both conditions naturally enter linearly into the energy functional and can be aug-
mented by a non-positivity constraint, such as g ≤ 0 in the first and g̃ ≤ 0 in the
second case. This simplification is reasonable if cof(∇ϕ) = cof(I +∇u) ≈ I. From
a practical point of view, one can expect that a solution of the simplified problem

min
(ϕ,g)∈Φ×L2(Γc)

J(ϕ, g)

subject to ϕ ∈ argminψ∈ΦE(ψ, g) := E str(ψ)− Eext(ψ, g)

will yield an implant form that is sub-optimal with respect to the original problem,
but still reasonable.

We begin with a lemma to establish that the minimizing property of deformations
is retained by weak limits of suitable sequences {(ϕj, gj)}j.

Lemma 2.2. Let
E str(ϕ) =

ˆ
Ω
W (x,∇ϕ(x)) dx

be the energy functional associated to a polyconvex stored energy function W, satis-
fying a coercivity condition

W (x,∇ϕ(x)) ≥ α (‖∇ϕ(x)‖p + ‖cof(∇ϕ(x))‖q + | det(∇ϕ(x))|r)− β, (2.4.3)

with α > 0, , β ∈ R, p ≥ 2, 1
p

+ 1
q
≤ 1 and r ≥ 1. Let

Eext(ϕ, g) =
ˆ

Γc

g(x)ϕ(x) dx

be the functional associated with one of the dead load boundary conditions (2.4.1) or
(2.4.2) and let E(ϕ, g) = E str(ϕ)−Eext(ϕ, g). Consider a weakly converging sequence
(ϕj, gj) ⇀ (ϕ̄, ḡ) in Φ× L2(Γc), such that

ϕj ∈ argminψ∈ΦE (ψ, gj) ,

and {E(ϕj, gj)}j is bounded from above. Then

lim
j→∞
E (ϕj, gj) = E (ϕ̄, ḡ) = min

ψ∈Φ
E (ψ, ḡ) .

Proof. First, we show weak lower semicontinuity of E . Weak lower semicontinuity
of E str follows as in Thm. 1.42. The second part Eext is even weakly continuous.
This follows via compactness of the trace mapping W1,p(Ω)→ L2(Γc), which yields
strong convergence ϕj|Γc → ϕ̄|Γc in L2(Γc), and weak convergence gj ⇀ ḡ in L2(Γc).
Altogether, we conclude weak lower semicontinuity of E , i.e.

E(ϕ̄, ḡ) ≤ lim inf
j→∞

E(ϕj, gj).
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2.4 An existence result for dead load forces

Next, by the minimizing property of ϕj we obtain E(ϕj, gj) ≤ E(ϕ̄, gj) and

lim sup
j→∞

E(ϕj, gj) ≤ lim sup
j→∞

E(ϕ̄, gj) = lim
j→∞
E(ϕ̄, gj) = E(ϕ̄, ḡ).

This implies
lim sup
j→∞

E(ϕj, gj) ≤ E(ϕ̄, ḡ) ≤ lim inf
j→∞

E(ϕj, gj)

and thus
lim
j→∞
E(ϕj, gj) = E(ϕ̄, ḡ).

The fact that ϕ̄ is an energy minimizer of E(·, ḡ) follows from the minimizing property
of ϕj and the established convergence result. To this end let ϕ̃ be a minimizer of
E(·, ḡ). Then

E(ϕ̃, ḡ) ≤ E(ϕ̄, ḡ) = lim
j→∞
E(ϕj, gj) ≤ lim

j→∞
E(ϕ̃, gj) = E(ϕ̃, ḡ).

Theorem 2.3. Let J : Φ× L2(Γc)→ R be weakly lower semicontinuous satisfying

J(·, g) ≥ cJ‖g‖kL2(Γc) (2.4.4)

for all g ∈ L2(Γc) and constants cJ > 0, k > 0. Let E , E str, Eext be defined as
in Lem. 2.2. If, for each g ∈ L2(Γc), there exists at least one ϕg ∈ Φ such that
E str(ϕg, g) <∞, then the problem

min
(ϕ,g)∈Φ×L2(Γc)

J(ϕ, g)

subject to ϕ ∈ argminψ∈ΦE(ψ, g) := E str(ψ)− Eext(ψ, g)

has at least one solution.

Proof. We first note that inequality (2.4.3) implies for some constants α̃ > 0 and
β̃ ∈ R

E str(ϕ, g̃) ≥ α̃
(
‖∇ϕ‖pLp(Ω) + ‖cof(∇ϕ)‖qLq(Ω) + ‖ det(∇ϕ)‖rLr(Ω)

)
− β̃. (2.4.5)

According to Thm. 1.38 the functional E str is weakly lower semicontinuous in ϕ.
Since Eext is weakly continuous in its second argument g the same holds for E . Now
let {(ϕj, gj)}j be an infimizing sequence, i.e. with Thm. 1.42,

ϕj ∈ argminψ∈ΦE(ψ, gj)

and
lim
j→∞

J(ϕj, gj) = inf
(ϕ,g)∈Φ×L2(Γc)

J(ϕ, g) <∞.
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Due to (2.4.4) the sequence {gj}j is bounded by some constant Cg, and as L2(Γc)
is reflexive we can extract a weakly convergent subsequence gj ⇀ ḡ in L2(Γc). We
show that we can also extract a weakly converging subsequence from {ϕj}j, using
the linearity of the boundary conditions to prove the boundedness of {ϕj}j.

First note that with w.l.o.g. h ≡ 0 and corresponding minimizer ϕh1

E(ϕj, gj)− E(ϕh, h) ≤ E(ϕh, gj)− E(ϕh, h)

= −
ˆ

Γc

gjϕh ds ≤ ‖gj‖L2(Γc)‖ϕh‖L2(Γc) ≤ Cg‖ϕh‖L2(Γc),

and consequently for all j ∈ N

α̃‖∇ϕj‖pLp(Ω) ≤ E(ϕj, gj) ≤ E(ϕh, h) + Cg‖ϕh‖L2(Γc).

We extract a weakly convergent subsequence ϕj ⇀ ϕ̄ in Φ and get with the weak
lower semicontinuity of J :

J(ϕ̄, ḡ) ≤ lim inf
j→∞

J(ϕj, gj).

Analogously to Thm. 1.42 it follows that ϕ̄ ∈ Φ and according to Lem. 2.2 the weak
limit ϕ̄ is a minimizer of E(·, ḡ).

2.5. Formal first order optimality conditions for the
implant shape design problem

For the development of an optimization algorithm in the next chapter we will need
the first order optimality conditions for the equality constrained optimization prob-
lem

min
(ϕ,g)∈Φ×L2(Γc)

J(ϕ, g)

subject to
ˆ

Ω
W (∇ϕ) : ∇h dµ =

ˆ
Γc

gcof(∇ϕ)nh ds for all h ∈W1,p
0 (Ω).

In the chosen setting, it is not possible to rigorously derive these for the reduced
equality constrained optimization problem. The main problem is the fact that,
due to the orientation preservation condition (1.1.1), the justification of the formal
first order conditions for polyconvex hyperelastic material laws is an open problem,
cf. Ball [17]. In order to get differentiability of the elastic energy functional, we would
need W1,∞ as topological framework. However, due to the difficulties indicated
in Chap. 1, a suitable existence result is not available. Therefore, we proceed in a
formal way.

1Clearly ϕh(x) = x should hold. However, this is not enforced in elasticity theory.
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2.6 Summary

We begin with the formal Lagrangian function

L(ϕ, g, p) = J(ϕ, g) + p (Eϕ (ϕ, g)) .

The corresponding KKT-conditions are
∂

∂ϕ
L(ϕ, g, p) = JΦ(ϕ, g) + p (Eϕϕ(ϕ, g)) = 0,

∂

∂g
L(ϕ, g, p) = Jg(ϕ, g) + p (Eϕg(ϕ, g)) = 0,

∂

∂p
L(ϕ, g, p) = Eϕ(ϕ, g) = 0.

As Eϕ(ϕ, g) is in general not well-defined we cannot expect that the state and adjoint
equation are well-defined. However, if the deformation gradients uniformly stay away
from zero, if they are nondegenerate, the KKT-system is often well-defined in W1,∞,
cf. Sec. 1.3.
Considering our particular choice of boundary conditions and a Tikhonov-regularized,
tracking type cost functional

J(ϕ, g) = 1
2‖ϕ− ϕref‖2

L2(Γo) + α

2 ‖g‖
2
L2(Γc),

with α > 0, we can further specify our optimality conditions to

ϕ− ϕref + p (Eϕϕ(ϕ, g)) = 0, (2.5.1a)
αg + p (gcof(∇ϕ)n) = 0, (2.5.1b)

Eϕ(ϕ, g) = 0. (2.5.1c)

Often (2.5.1b) is used to eliminate the control variable from the optimality system,
cf. [178, 259]. This reduction is not compatible with our algorithmic approach of a
composite step method, which will be introduced in the next chapter.

2.6. Summary

The influence of an implant on a hyperelastic soft tissue can be formulated as an
obstacle problem, which requires the treatment of a contact problem. This can be
avoided if instead of the implant shape we incorporate the pressure-type force gϕnϕ
that is exerted on the soft tissue. The transformation of the corresponding equilib-
rium conditions onto the undeformed domain then leads to a nonlinear boundary
condition gcof(∇ϕ)n with g ≤ 0. In terms of this pressure-type formulation, the
forward problem then is given through

min
ϕ∈Φ
E str(ϕ)

subject to σ(∇ϕ)n = gcof(∇ϕ)n on Γc.
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The corresponding formal first order conditions are given via
ˆ

Ω
W (∇ϕ) : ∇h dµ =

ˆ
Γc

gcof(∇ϕ)nh ds for all h ∈W1,p
0 (Ω).

Regarding the determination of an implant shape, resp. its exerted force g, from a
desired surface shape, leads to the Tikhonov-regularized equality constrained opti-
mization problem

min
(ϕ,g)∈Φ×L2(Γc)

J(ϕ, g) = J0(ϕ) + α

2 ‖g‖
2
L2(Γc)

subject to E str
ϕ (ϕ, g)v −

ˆ
Γc

gcof(∇ϕ)nv ds = 0 for all v ∈W1,p(Ω;R3).

The cost functional J0(ϕ) must be weakly lower semicontinuous. As the quantifi-
cation of esthetics is not well understood we here employ the simple tracking-type
functional J0(ϕ) = 1

2‖ϕ − ϕref‖2
L2(Γo), where ϕref is the given deformation on the

observation surface.
Theoretical results are challenging to attain for this problem. In particular, the non-
linear boundary, live load boundary conditions σ(∇ϕ)n = gcof(∇ϕ)n are difficult
to incorporate. If these are replaced by simpler, dead load boundary conditions of
the form σ(∇ϕ)n = g, resp. σ(∇ϕ)n = gn, we can prove existence of solutions for
the regularized bi-level optimization problem, cf. Thm. 2.3.
For numerical computations we employ the formal first order conditions of the for-
ward problem instead of the optimization problem and solve

min
(ϕ,g)∈Φ×L2(Γc)

J(ϕ, g) := J0(ϕ) + α

2 ‖g‖
2
L2(Γc)

subject to
ˆ

Ω
W (∇ϕ) : ∇h dµ =

ˆ
Γc

gcof(∇ϕ)nh ds for all h ∈W1,p
0 (Ω).

Formally, the corresponding Lagrangian is

L(ϕ, g, p) = J(ϕ, g) +
ˆ

Ω
W (∇ϕ) : ∇p dµ−

ˆ
Γc

gcof(∇ϕ)np ds.

For a tracking-type cost functional the formal first order optimality conditions of
the inverse problem are

ϕ− ϕref + p (Eϕϕ(ϕ, g)) = 0,
αg + p (gcof(∇ϕ)n) = 0,

Eϕ(ϕ, g) = 0.
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3. An affine covariant composite
step method

In this chapter an algorithm for nonlinear equality constrained optimization is pre-
sented. Particular focus is on the efficient solution of optimization problems with
partial differential equations as constraints. These problems are originally posed in
function space and become – after discretization – large scale problems with special
structure, inherited from the infinite dimensional setting. Due to the mentioned dif-
ficulties associated with finite elasticity, a more regular problem setting is considered
in the derivation of the algorithm. In this and the following chapter the usual nota-
tion of optimization and optimal control is used. Note that there is some ambiguity
with elasticity where u denotes the displacement, a state variable, in contrast to its
meaning in optimal control, where it denotes the control. After the introduction
of the algorithm and practical details we turn back to the notation of elasticity.
The content of this chapter has been published in Lubkoll, Schiela and Weiser [180],
except for Sec. 3.5, which extends the results of [180].
To fix the problem setting, let (X, 〈·, ·〉) be a Hilbert space and P a reflexive Banach
space. In this setting, we consider the optimization problem

min
x∈X

f(x)

subject to c(x) = 0,

where f : X → R and c : X → P∗ are twice continuously Fréchet differentiable.
The constraint c : X → P∗ maps into the dual space of P so that it can model a
differential equation in weak form:

c(x) = 0 in P∗ ⇔ c(x)v = 0 for all v ∈ P.

Here we use that P is a reflexive space, expressed a little sloppily by the relation
P = P∗∗. In the context of optimal control it is common to split the variable x into
two parts X = Y × U and x = (y, u), where y denotes the state and u the control.
This splitting comes from the special structure of the equality constraints

c(x) = A(y)−Bu,

where A : Y → P∗ is a nonlinear differential operator with continuous inverse, and
B : U → P∗ a linear, compact operator. Under these structural assumptions, it is
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Chapter 3 An affine covariant composite step method

possible to show existence of minimizers and corresponding optimality conditions
via the implicit function and the closed range theorem, cf. Sec. 3.1 and Sec. 3.2.
As algorithmic approach a composite step method is chosen. This class of methods
is well established in nonlinear optimization. Its way to cope with the double aim
of feasibility and optimality is to split the full Lagrange-Newton step δx into a
normal step δn and a tangential step δt. More precisely, δn will be a minimum norm
Gauss-Newton step for the solution of the underdetermined problem c(x) = 0, and
δt aims to minimize f on the current null space of the linearized constraints. For
globalization both are modified separately.
A couple of variants have been proposed in the literature, cf. [64, Sec. 15.4]. Our
approach resembles the Vardi approach [265] in the sense that normal steps are
computed as damped Newton steps for the underdetermined equation c(x) = 0 and
thus always satisfy νc(x)+c′(x)δn = 0 for some damping factor ν ∈]0, 1]. Compared
to the approach of Byrd-Omojokun [47, 48, 202], where normal steps are computed
as minimizers of ‖c(x)‖ in a trust region, Vardi methods need in addition surjectivity
of c′(x) as a prerequisite for the computation of steps. This is widely considered as
a weakness of this class of methods as a basis for a general purpose solver.
Here, a Vardi-type method is an appropriate choice. Due to the above described
structure of optimal control problems, one can usually exclude the case of non-
surjective c′(x). So the extra assumption imposed by Vardi-type methods is fulfilled.
The space P∗ of residuals c(x) is a dual space, which is often quite irregular and
hard to compute. Therefore, we aim to avoid the computation of norms of residuals.
Instead, an extension, due to Anton Schiela, of the affine covariant Newton methods
for underdetermined problems, as described by Deuflhard [76, Sec. 4.4] is used here.
In fact, if f = const., the proposed composite step algorithm reduces to Deuflhard’s
method. In this context, a Vardi-type damping strategy is the natural result.
Regarding globalization of the tangential step trust region methods are widely
used [64]. From an algorithmic perspective the choice of the trust region parameter
is unsatisfactory, as its determination does not take into account problem specific
information. An alternative is provided by cubic regularization methods, as used in
[53, 54, 226, 277]. More precisely the globalization method used for the tangential
step is motivated by Weiser et al. [277], where the regularization parameter is ex-
pressed in terms of an estimate of an affine invariant, in our context affine covariant,
Lipschitz constant. In the absence of equality constraints, the proposed algorithm
reduces to the cubic regularization method for unconstrained optimization of [277].
In this way, the globalization procedure, described in detail in Sec. 3.3, results in the
following algorithmic behavior: far away from a feasible point priority is given to
come close to a feasible solution. In this phase the method behaves like a damped
Newton method for underdetermined systems. Close to the feasible manifold opti-
mality is stressed, with the restriction that the iterates remain in the Kantorovich
neighborhood of contraction around the feasible set. For this we use parametrized
models for the nonlinearity of the functional and the constraints. Since our model
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for the functional is quadratic, we use a cubic model for the error, while our linear
model for the constraints is augmented by a quadratic model for the error.
In the following sections a practical algorithm is developed along these ideas. Some
preliminary theoretical results, such as finite termination of the “inner loop” (Sec. 3.4)
and fast local convergence (Sec. 3.5) are established. A proof of global convergence
is not in the scope of this thesis, and will certainly require some modifications of
the algorithm. In particular, it is known that affine covariant Newton methods,
although very successful in practice, lack a rigorous proof of global convergence.
Due to affine covariance the evaluation of ‖c(x)‖ and thus the usual globalization
mechanisms are not available.
The functional analytic framework for our algorithms forces us to distinguish pre-
cisely between primal and dual quantities. Emphasis is on the distinction between
the linear functional f ′(x) ∈ X∗ and the gradient ∇f(x) ∈ X. Both are connected
by the Riesz isomorphism M : X → X∗, which maps v ∈ X to the linear functional
〈v, ·〉 ∈ X∗. In nonconvex problems M is usually a non-trivial mapping. Simi-
larly, we use the derivative c′(x) : X → P∗, instead of ∇c(x), which is widely seen
in the literature, but not useful in a functional analytic setting. Concerning ad-
joint mappings, Banach space adjoints are used, i.e. c′(x)∗ : P → X∗ is defined by
(c′(x)∗p)(v) = pc′(x)v = p(c′(x)v). In this context, expressions like c′(x)∗c′(x) are
not well defined, since the range of c′(x) is not related to the domain of c′(x)∗.

3.1. Lagrange multipliers and normal steps

Let us consider a generic equality constrained optimization problem on a Hilbert
space X:

min f(x) (3.1.1a)
subject to c(x) = 0. (3.1.1b)

Since f and c are twice Fréchet differentiable and c′(x∗) is surjective at a stationary
point x∗ we can derive the KKT conditions at x∗. These conditions assert that there
exists a Lagrange multiplier p ∈ P∗∗ = P, such that

Lx(x∗, p)v = f ′(x∗)v + pc′(x∗)v = 0 for all v ∈ X (3.1.2)
c(x∗) = 0. (3.1.3)

Here, (3.1.2) expresses the stationarity condition in ker c′(x∗):

pc′(x∗)v = 0⇒ f ′(x∗)v = 0 for all v ∈ ker c′(x∗). (3.1.4)

Since X is a Hilbert space, equipped with scalar product 〈·, ·〉, we can perform the
splitting

X = ker c′(x∗)⊕ (ker c′(x∗))⊥
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of X into ker c′(x∗) and its orthogonal complement (ker c′(x∗))⊥. Application of this
splitting to (3.1.2) then yields the equivalence

Lx(x∗, p)v = 0 for all v ∈ X ⇔

 f ′(x∗)v= 0 for all v ∈ ker c′(x∗),
(f ′(x∗) + pc′(x∗))w= 0 for all w ∈ (ker c′(x∗))⊥ .

The first condition on the right hand side characterizes stationarity of x∗ and neither
depends on p, nor on the scalar product. In contrast, the second condition

f ′(x∗)w + pc′(x∗)w = 0 for all w ∈ (ker c′(x∗))⊥ , (3.1.5)

depends on both the scalar product 〈·, ·〉 and the Lagrange multiplier p. We will see
that the validity of (3.1.5) has nothing to do with the stationarity of x∗. Instead,
(3.1.5) holds for arbitrary x ∈ X, as long as c′(x) is surjective, and the corresponding
Lagrange multiplier p can be computed by solving the linear system M c′(x)∗

c′(x) 0

v
p

+
f ′(x)

0

 = 0, (3.1.6)

where M : X→ X∗ is a Riesz isomorphism, characterized by (Mv)(w) = 〈v, w〉.

Theorem 3.1. For x ∈ X assume that c′(x) : X → P∗ is bounded and surjective.
Then there is a unique element px ∈ P that solves (3.1.6) and satisfies

f ′(x)w + pxc′(x)w = 0 for all w ∈ (ker c′(x))⊥ . (3.1.7)

Proof. Block operators of the form encountered in (3.1.6) are continuously invertible
(in a Banach space context) as long as c′(x) is bounded and surjective and the
symmetric bilinear form 〈v, w〉 = (Mv)(w) is elliptic on ker (c′(x)) and continuous.
This is the result of the famous Brezzi splitting theorem [41, Thm. 4.3].
Now we test the first row of (3.1.6) with w ∈ (ker c′(x))⊥:

(Mv)(w) + pxc′(x)w + f ′(x)w = 0.

Since w ∈ (ker c′(x))⊥ and v ∈ ker c′(x), by the second row of (3.1.6), we conclude
(Mv)(w) = 0 and thus (3.1.7).

Definition 3.2. We call px, as defined in Thm. 3.1, the Lagrange multiplier of
problem (3.1.1) at x.

Remark 3.3. In the context of the Euclidean scalar product

〈v, w〉2 := vTw for v, w ∈ Rn

the multiplier px minimizes ‖f ′(x)T + c′(x)Tp‖2. For this reason a Lagrangian mul-
tiplier that is computed via (3.1.6) is known as a “least-squares estimate for p”.
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In the next section we will see that our special Lagrange multiplier enjoys a couple
of favorable properties, also far away from an optimal solution. Before, we consider
its relation to the current iterate x and what this means for the Lagrangian function
of (3.1.1).

Lemma 3.4. Let x0 ∈ X and assume that f ′ and c′ depend Lipschitz continuously
on x. Further, assume that c′(x) : X → P∗ is a bounded and surjective linear
operator in an open neighborhood Ũ(x0). Then the Lagrange multiplier px at x is
given as Lipschitz continuous implicit function of x in some neighborhood around
x0, i.e. there exists a neighborhood U(x0) and a constant εc(x0) > 0 such that for
all x ∈ U(x0) holds

‖px − px0‖ ≤ εc(x0)‖x− x0‖.

Proof. Consider (3.1.6), i.e. for some v ∈ ker c′(x)

a(x, p) :=
 M c′(x)∗

c′(x) 0

v
p

+
f ′(x)

0

 = 0,

As c′(x), and consequently c′(x)∗, are bounded linear operators, a is Fréchet differ-
entiable in its second argument. Surjectivity of c′(x) yields bijectivity of

ap(x, p) : P→ R (a)

in Ũ(x0). By assumption, both a and ap are Lipschitz continuous at (x0, p
x0). Thus,

we can apply the implicit function theorem (Thm.A.2) to a : X× P→ R (a) to get
the desired result.

Lagrangian function. Let us discuss our result in terms of the Lagrangian function

L(x, p) := f(x) + pc(x),

where p = px is chosen as in Thm. 3.1. Our result implies that normal steps δn do
not change the Lagrangian function up to first order:

Lx(x, px)δn = f ′(x)δn+ pxc′(x)δn = 0 for all δn ∈ (ker c′(x))⊥ .

Thus, our particular choice of the Lagrange multiplier px makes Lx(x, px) stationary
in (ker c′(x))⊥. In contrast, for tangential steps δt, which are contained in ker c′(x),
the relevant relation is given through

Lx(x, px)δt = f ′(x)δt+ pxc′(x)δt = f ′(x)δt for all δt ∈ ker c′(x).

For the composite step δx = δn+ δt this yields

Lx(x, px)δx = Lx(x, px)(δn+ δt) = f ′(x)δt
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If we look at a second order approximation of L along δx we obtain

L(x+ δx, px) = L(x, px) + f ′(x)δt+ 1
2Lxx(x, p

x)(δx)2 + o(‖δx‖2).

Hence, px only enters in the second order approximation of L. Below, in Sec. 3.2,
we will construct a similar second order model for f , which avoids the well known
Maratos effect [64, 206], i.e. our scheme will asymptotically fade into a Lagrange-
Newton method.

3.2. Composite steps and their consistency

In this section we discuss some properties of composite steps and in particular their
order of consistency, i.e. the asymptotic behavior of the difference between quadratic
models and actual problem. Classically, composite steps are composed from a normal
step δn and a tangential step δt. In our framework we add an additional simplified
normal step δs that also plays the role of a second order correction.
For this purpose we introduce the following notation, which refers to a single step
of our algorithm. Consider a fixed iterate x with Lagrange multiplier px, computed
as in Thm. 3.1. We denote the (damped) normal step by δn ∈ (ker c′(x))⊥ and
the tangential step by δt ∈ ker c′(x). The undamped normal step is denoted by
∆n, so that δn := ν∆n, where ν ∈]0, 1] is a damping factor. A similar notation is
conceivable for tangential steps. However, the computation of their directions and
lengths may also be performed in one step.
The ordinary composite step is given by

δx := δn+ δt, (3.2.1)

and the extended composite step by

δx̄ := δx+ δs.

The contributions to these steps have to fulfill the following equations:

c(x) + c′(x)∆n = 0 undamped normal step (3.2.2a)
c′(x)δt = 0 tangential step (3.2.2b)

[c(x+ δx)− c(x)− c′(x)δx] + c′(x)δs = 0 simplified normal step. (3.2.2c)

Since in general ker c′(x) is non-trivial the steps are not fully determined by (3.2.2).
We use our scalar product to uniquely determine ∆n and δs as minimum norm
corrections. The tangential step will be determined by approximately minimizing a
quadratic model of L on ker c′(x), which corresponds to a quadratic model of f on
the feasible set c(x) = 0.
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3.2 Composite steps and their consistency

3.2.1. Computation of steps via saddle point systems

We begin with the specification of conditions that determine the normal steps ∆n,
the Lagrange multiplier px, tangential steps δt, and the simplified normal step δs.
The roles of the primal variables are illustrated in Fig. 3.2.1.

c(x) = 0

δn

δt

δx δs

δx̄x+ ker c′(x)
x

Figure 3.2.1.: Sketch of a composite step and corresponding
second order corrected step.

3.2.1.1. Normal step

Since ∆n and δs are both supposed to lie in (ker c′(x))⊥ we start with a short general
discussion. First we note that the minimum norm problem

min 1
2〈w,w〉 (3.2.3a)

subject to c′(x)w + g = 0, (3.2.3b)

is equivalent to finding w ∈ (ker c′(x))⊥ such that c′(x)w + g = 0. The optimality
conditions for (3.2.3) motivate the following result.

Lemma 3.5. Suppose that w ∈ X satisfies: M c′(x)∗

c′(x) 0

w
q

+
0
g

 = 0 (3.2.4)

for some g ∈ P∗. Then w ∈ (ker c′(x))⊥.

Proof. This follows from the first row of (3.2.4), since

(Mw)(ξ) + q(c′(x)ξ) = 0 for all ξ ∈ X ⇒ (Mw)(ξ) = 0 for all ξ ∈ ker c′(x)
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Chapter 3 An affine covariant composite step method

is equivalent to
w ∈ (ker c′(x))⊥ .

At this point we again stress the fact that the choice of the Hilbert space scalar
product 〈·, ·〉 is crucial and depends on the function space context of the problem.
Consequently, M , the Riesz-isomorphism of X, is usually a non-trivial linear op-
erator. Further, we note that the normal step does not depend on the Lagrange
multiplier px.
We denote the solution of (3.2.4) by

w := c′(x)−g. (3.2.5)

With this notation, we can define the normal step via:

∆n = −c′(x)−c(x)

as the solution of (3.2.4) with g = c(x).

3.2.1.2. Lagrange multiplier

We have already discussed the role of px and that it can be computed via (3.1.6) in
Sec. 3.1. However, instead of computing px via (3.1.6), we obtain it via a correction
δp to the previous multiplier px− , i.e. px = px− + δp, where x− denotes the previous
iterate. Recalling that Lx(x, px−) = f ′(x) + c′(x)∗px− this is achieved by solving M c′(x)∗

c′(x) 0

 w

δp

+
 Lx(x, px−)

0

 = 0.

This formulation has the advantage that its right hand side tends to 0 when x
tends to a local minimizer, which in turn improves numerical stability with respect
to truncation and round-off errors. In exact arithmetic both alternatives yield the
same result px, which therefore only depends on x, but not on previous Lagrange
multiplier estimates.

3.2.1.3. Tangential step

Once we have computed the normal step δn, a prediction ν for its damping factor,
and an adjoint state px we want to compute the tangential step δt. If the quadratic
model

q(δx) := f ′(x)(δx) + 1
2Lxx(x, p

x)(δx)2
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3.2 Composite steps and their consistency

has a minimizer δx̄ in ker c′(x), then we would like to have δt such that

δx := δn+ δt

is an approximation of this minimizer. We call the exact tangential step ∆t :=
δx̄ − δn. If q is nonconvex, δt should at least be a direction of descent. Thus, the
quadratic problem we have to solve (for fixed δn) is

min
δx=δn+δt

q(δx) (3.2.6a)

subject to c′(x)δt = 0. (3.2.6b)

Omitting terms that are independent of δt and adding the term pxc′(x)δt = 0 to the
functional, this is equivalent to

min
δt

(
Lx(x, px) + Lxx(x, px)δn

)
δt+ 1

2Lxx(x, p
x)(δt)2 (3.2.7a)

subject to c′(x)δt = 0. (3.2.7b)

This formulation, which only depends on the Lagrange function and its deriva-
tives, reduces the influence of round-off errors close to the optimal solution, since
Lx(x, p) → 0 for x → x∗ and p → p∗. If Lxx is positive definite on ker c′(x), then
the exact minimizer ∆t of problem (3.2.7) exists, and the corresponding first order
optimality conditions are Lxx(x, px) c′(x)∗

c′(x) 0

 ∆t
∆p

+
 Lx(x, px) + Lxx(x, px)δn

0

 = 0. (3.2.8)

If ν = 1 we have δn = ∆n. If further ∆t solves (3.2.8) exactly, which asymptotically
holds close to the optimal solution, we observe that (∆x,∆p) = (∆n + ∆t,∆p)
satisfies the equations of the full Lagrange-Newton step: Lxx(x, px) c′(x)∗

c′(x) 0

 ∆x
∆p

+
 Lx(x, px)

c(x)

 = 0. (3.2.9)

Thus, ∆p can be interpreted as a Newton update for the Lagrange multiplier respec-
tively as the Lagrange multiplier at x with respect to the scalar product induced by
Lxx(x, px).

3.2.1.4. Simplified normal step

After δx has been computed we can compute the simplified normal step, similar to
the computation of the normal step, via a saddle point problem of the form (3.2.4),
such that

δs := −c′(x)−[c(x+ δx)− c(x)− c′(x)δx]. (3.2.10)
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Chapter 3 An affine covariant composite step method

It follows from Lem. 3.5 that δs ∈ (ker c′(x∗))⊥, and thus

[f ′(x) + pxc′(x)]δs = 0. (3.2.11)

Since the normal step satisfies c′(x)δn + νc(x) = 0, we can derive an alternative
representation of the simplified normal step

δs := −c′(x)−[c(x+ δx)− (1− ν)c(x)].

In the undamped case ν = 1 this relation reads δs = −c′(x)−c(x+ δx), which is the
second step of a simplified Newton method for the equation c(x) = 0, starting at x.
This explains our naming of δs.

3.2.2. Order of consistency

A basic principle of equality constrained sequential quadratic programming (SQP)
is to minimize a quadratic model of the functional subject to a linear model of the
constraints. In this section we will study the order of consistency of these models,
i.e. the order in which our local models approximate the true problem. This will
provide the theoretical basis for the construction of our algorithm. Recalling that
both f and c are twice Fréchet differentiable at x, the following quadratic model is
used to approximate f on ker c′(x):

q(δx) := f(x) + f ′(x)δx+ 1
2Lxx(x, p

x)(δx)2

= f(x) + f ′(x)δx+ 1
2

(
f ′′(x) + 1

2p
xc′′(x)

)
(δx)2. (3.2.12)

The last term, involving c′′(x) takes into account second order information of the
equality constraints. This is necessary to achieve fast local convergence of the un-
damped Lagrange-Newton method. We will show that q(δx) is second order consis-
tent with f(x+δx+δs), but only first order consistent with f(x+δx). The latter is
the reason for the well known Maratos effect, while the first result yields a possible
remedy. For this reason we also refer to the simplified normal step as a second order
correction.

Lemma 3.6. Denote by δx ∈ X an arbitrary perturbation of x ∈ X and by δs the
simplified normal step, determined through (3.2.10). Then we have the following
consistency result:

‖δs‖ = o(‖δx‖), (3.2.13)
f(x+ δx) = q(δx) +O(‖δx‖2), (3.2.14)

f(x+ δx+ δs) = q(δx) + o(‖δx‖2). (3.2.15)
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3.2 Composite steps and their consistency

Proof. Estimate (3.2.13) follows directly from the definition of δs, using differen-
tiability of c and invertibility of c′(x) on (ker c′(x∗))⊥. Next, comparing the Taylor
expansion for f at x with q(δx), we get (3.2.14):

q(δx)− f(x+ δx) = q(δx)−
(
f(x) + f ′(x)δx+ 1

2f
′′(x)(δx)2 + o(‖δx‖2)

)
= 1

2p
xc′′(x)(δx)2 + o(‖δx‖2) = O(‖δx‖2).

Testing the simplified step with px, and using Taylor’s expansion for the equality
constraints we compute

0 = px
(

[c(x+ δx)− c(x)− c′(x)δx] + c′(x)δs
)

= px
(

[c(x) + c′(x)δx+ 1
2c
′′(x)(δx)2 + o(‖δx‖2)− c(x)− c′(x)δx] + c′(x)δs

)
= px

(1
2c
′′(x)(δx)2 + c′(x)δs

)
+ o(‖δx‖2).

With (3.2.11) we obtain

f ′(x)δs = −pxc′(x)δs = 1
2p

xc′′(x)(δx)2 + o(‖δx‖2),

and with (3.2.12)

q(δx) = f(x) + f ′(x)δx+ 1
2f
′′(x)(δx)2 + f ′(x)δs+ o(‖δx‖2). (3.2.16)

Then, subtracting (3.2.16) from the Taylor expansion of f at x in direction δx+ δs,
we compute

f(x+ δx+ δs)− q(δx)

= f(x) + f ′(x)(δx+ δs) + 1
2f
′′(x)(δx+ δs)2 + o(‖δx+ δs‖2)− q(δx)

= 1
2f
′′(x)(δs, 2δx+ δs) + o(‖δx+ δs‖2) + o(‖δx‖2).

Eventually (3.2.13) implies f ′′(x)(δs, 2δx+ δs) = o(‖δx‖2) and thus also the desired
result (3.2.15).

In our interpretation q is not a quadratic model of f on the linearization c′(x)δt = 0
of the feasible set. Rather it takes into account a better, quadratic, approximation
of the true feasible set. To compare q and f we should not evaluate f at x+ δx, but
at a point that is closer to the true feasible set, at the second order corrected point
x+ δx+ δs.
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Chapter 3 An affine covariant composite step method

Quantitative estimates. After these qualitative considerations we discuss con-
ditions under which the above estimates can be quantified more explicitly. Our
conditions are mainly based on affine covariant Lipschitz conditions on Lxx, f ′ and
c′. These estimates provide the motivation for a couple of algorithmic choices in
the following section and are the basis for finite termination and fast local conver-
gence results for our algorithm. Recall that v = c′(x)−r denotes the minimum norm
solution of the problem c′(x)v = r.

Lemma 3.7. For x, δx ∈ X and corresponding simplified Newton step δs ∈ X we
have the identity

f(x+ δx+ δs)− q(δx) = T1 + T2 where

T1 := L(x+ δx, p)− L(x, p)− Lx(x, p)δx−
1
2Lxx(x, p)(δx, δx)

=
ˆ 1

0
(Lx(x+ σδx, p)− Lx(x, p)− Lxx(x, p)σδx) δxdσ

=
ˆ 1

0

ˆ 1

0
(Lxx(x+ τσδx, p)− Lxx(x, p)) (σδx, δx)dτdσ

T2 := f(x+ δx+ δs)− f(x+ δx)− f ′(x)δs

=
ˆ 1

0
(f ′(x+ δx+ σδs)− f ′(x)) δsdσ

=
ˆ 1

0

ˆ 1

0
f ′′(x+ τδx+ τσδs)(δx+ σδs, δs)dτdσ.

Furthermore we have

δs =
ˆ 1

0
c′(x)−(c′(x+ σδx)− c′(x))δxdσ.

Proof. The identities for T1 and T2 follow from the fundamental theorem of calculus.
So it remains to show that

f(x+ δx+ δs)− q(δx) = T1 + T2

Indeed, using the identities −c′(x)δs = c(x + δx) − c(x) − c′(x)δx, and (f ′(x) +
pc′(x))δs = 0 we compute

T1 + q(δx) = L(x+ δx, p)− L(x, p)− Lx(x, p)δx−
1
2Lxx(x, p)(δx, δx) + q(δx)

= f(x+ δx) + (pc(x+ δx)− pc(x)− pc′(x)δx) = f(x+ δx)− pc′(x)δs
= f(x+ δx) + f ′(x)δs = f(x+ δx+ δs)− T2.

The result on δs follows similarly from the fundamental theorem of calculus.
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3.3 The globalization scheme

Theorem 3.8. Assume that there are positive constants ωc, ωf ′, and ωL, such that
for all v, w ∈ X

‖c′(x)−(c′(x+ v)− c′(x))v‖ ≤ ωc‖v‖2, (3.2.17)
|(Lxx(x+ v, p)− Lxx(x, p))(v, v)| ≤ ωL‖v‖3, (3.2.18)

|(f ′(x+ v)− f ′(x))w| ≤ ωf ′‖v‖‖w‖, (3.2.19)

where (x, p) are taken among the iterates. Then for δx ∈ X and corresponding
simplified normal step δs we have the estimates

‖δs‖ ≤ ωc
2 ‖δx‖

2 (3.2.20)

|f(x+ δx+ δs)− q(δx)| ≤ ωL
6 ‖δx‖

3 + ωf ′‖δs‖
(
‖δx‖+ 1

2‖δs‖
)

(3.2.21)

≤
(
ωL
6 + ωf ′ωc

2

(
1 + ωc

4 ‖δx‖
))
‖δx‖3. (3.2.22)

Proof. Setting v = σδx, we get

‖δs‖ =
ˆ 1

0

1
σ
‖c′(x)−(c′(x+ σδx)− c′(x))‖σδxdσ ≤ ωc

2 ‖δx‖
2,

which is (3.2.20). With respect to the Lipschitz constant for Lxx Lem. 3.7 yields

|f(x+ δx+ δs)− q(δx)| ≤ |T1|+ |T2|.

With the assumed affine covariant Lipschitz conditions, we get, again with v = σδx,

|T1| ≤
ˆ 1

0

ˆ 1

0
|Lxx(x+ τσδx, p)− Lxx(x, p)| (σδx, δx)dτdσ

≤ ωL‖δx‖3
ˆ 1

0

ˆ 1

0
τσ2dτdσ = ωL

6 ‖δx‖
3,

Setting v = δx+ σδs and w = δs we further obtain

|T2| ≤
ˆ 1

0
|(f ′(x+ δx+ σδs)− f ′(x)) δs| dσ =

ˆ 1

0
|(f ′(x+ δx+ σδs)− f ′(x)) δs| dσ

≤
ˆ 1

0
ωf ′‖δs‖‖δx+ σδs‖dσ ≤ ωf ′ωc

2 ‖δx‖2
(
‖δx‖+ ωc

4 ‖δx‖
2
)
.

Adding both estimates yields (3.2.21) and, inserting (3.2.20), yields (3.2.22).

3.3. The globalization scheme

The globalization mechanism is a central part of any algorithm for nonlinear prob-
lems. The particular difficulty in equality constrained optimization is the simulta-
neous achievement of the potentially conflicting aims of feasibility and optimality.
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As the determination of the feasible region is the prerequisite for finding an optimal
solution, we attribute priority to feasibility. However, an algorithm that stresses
this property too much is likely to be inefficient in finding an optimal point and may
converge to a non-stationary feasible point. Thus, the main challenge is imposed
by finding a the proper weighing of both aims. Roughly speaking a good algorithm
should work as follows: far away from the feasible region, focus on getting close to
it, close to the feasible region, focus on optimality, but take care to remain close to
the feasible region. To render this vague idea useful we first have to quantify what
close should mean.
Two popular techniques for balancing the conflicting aims are merit functions and
filter methods [96]. Both combine monotonicity requirements on f(x) and ‖c(x)‖ to
achieve ‖c(x)‖ → 0 while minimizing f . However, both approaches are in conflict
with our algorithmic paradigm that residual norms should not enter the algorithm.
Thus, we resort to different ideas, motivated by the affine covariant Newton methods
for nonlinear equations of Deuflhard [76] and by cubic regularization methods [53,
54, 226, 277] for unconstrained optimization. In the context of (simplified) Newton’s
method one can argue that close to the solution means safely within the region of
local convergence, so that we can find a feasible point easily within a few steps of
Newton’s method without damping. In Sec. 3.3.1 this idea is carried over to nonlinear
optimization with equality constraints. Thus, an iterate is considered close to the
feasible set, if a sequence of pure normal steps converges quickly to a feasible point.
To transform this idea into an algorithm, we have to quantify this region, at least by
a rough heuristic estimate. Ways to construct such estimates are among the central
topics in [76]. Here we only give a short motivation and refer to [76] for an in depth
treatment for the case of nonlinear systems of equations.
In addition we need to control nonlinearities in the cost functional. For this, cubic
regularization methods for unconstrained optimization are extended to the con-
strained case in Sec. 3.3.2.

3.3.1. Globalization with respect to feasibility

We begin with a discussion of the part of the damping strategy that deals with the
non-linearity of the equality constraints c(x) = 0. The objective f does not yet
play a role. It is considered in a second damping mechanism, described in the next
subsection. A short sketch of the update-loop is given in Alg. 3.1.
Let us first recall the principal ideas of the affine covariant damping strategy.

Estimating the Newton contraction. Our main tool is the use of simplified New-
ton steps δs, which we already encountered in the last section. If ν = 1, i.e. δn = ∆n,
then

c(x) + c′(x)δx = 0
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3.3 The globalization scheme

Require: initial iterate x, Lipschitz constants [ωc], [ωf ]
1: repeat // NLP loop
2: repeat // step computation loop
3: compute new trial correction δx
4: compute simplified correction δs
5: compute new Lipschitz constants [ωc], [ωf ]
6: until trial correction δx accepted
7: x← x+ δx+ δs
8: until converged

Algorithm 3.1: Outer and inner loop, strongly simplified

and δs satisfies
c(x+ δx) + c′(x)δs = 0.

Thus, δx and δs can be interpreted as the first two steps of a simplified Newton
method for the problem c(ξ) = 0. Consequently, if ‖δs‖ � ‖δx‖ holds, we expect
fast local convergence to a feasible point. Denoting the contraction factor by

Θ(δx) := ‖δs‖
‖δx‖

,

then Θ(δx)� 1 is a good indicator that Newton contraction takes place.
Remark 3.9. In general, if ν < 1, then δx and δs satisfy the equations

c(x) + c′(x)δx = (1− ν)c(x),
c(x+ δx) + c′(x)δs = (1− ν)c(x).

Thus, they form two steps of a simplified Newton method for the relaxed problem

c(ξ) = (1− ν)c(x). (3.3.1)

Again, ‖δs‖ � ‖δx‖ indicates fast local convergence. The solutions of these prob-
lems locally define a path, the Newton path [76, Sec. 3.1.4], resp. in the context of
underdetermined equations, the geodetic Gauss-Newton path [76, Sec. 4.4.2].

Acceptance criterion. The above considerations suggest to accept a trial correc-
tion δx whenever

Θ(δx) := ‖δs‖
‖δx‖

≤ Θacc < 1 (3.3.2)

for a user-provided parameter Θacc. From Lem. 3.6 we know that limδx→0 Θ(δx) = 0
and eventually δx will become acceptable for sufficiently small ν.
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Adjustment of the error model. Along with the acceptance criterion we need
a mechanism to compute acceptable corrections. To this end, we introduce a
parametrized model for the contraction rate Θ,

[Θ] (ξ) := [ωc]
2 ‖ξ‖,

where [ωc] is an estimate from below for the affine covariant Lipschitz constant ωc,
cf. Thm. 3.8. For a trial correction δx, and corresponding second order correction
δs, we use the interpolation condition [Θ] (δx) = Θ(δx), to compute

[ωc] = 2Θ(δx)
‖δx‖

= 2 ‖δs‖
‖δx‖2 , (3.3.3)

If (3.3.2) fails, a new trial correction is computed such that

[Θ] (δx) ≤ Θaim,x, i.e.
[ωc]
2 ‖δx‖ ≤ Θaim,x, (3.3.4)

for another user provided contraction rate Θaim,x < Θacc. We can rewrite (3.3.4) as
trust region constraint (cf. Fig. 3.3.1)

‖δx‖ ≤ rx := 2Θaim,x

[ωc]
. (3.3.5)

Successive updates of [ωc] and δx yield a predictor-corrector loop, that terminates
as soon as (3.3.2) is satisfied. The gap between Θaim,x and Θacc is necessary to
guarantee finite termination, which will be discussed in Sec. 3.4.
As initial iterates for the outer iterations, depicted in Alg. 3.1, we use the estimates
computed in the last iteration, resp. user provided estimates for the initial iteration.

Damping of normal steps. Up to now, this general scheme does not take into
account the splitting δx = δn + δt of the composite step. For this we need some
slight adjustments. The situation is depicted in Fig. 3.3.1.
Recall that the normal step ∆n is compute via (3.2.3) as minimum norm correction
that satisfies c(x)+c′(x)∆n = 0. A damped normal step δn = ν∆n then is computed
under the restriction [Θ] (δn) ≤ Θaim,n ≤ Θaim,x. Thus we compute the damping
factor via

ν := min
{

1, 2Θaim,n

[ωc]‖∆n‖

}
. (3.3.6)

The choice of the user specified contraction rate Θaim,n < Θaim,x leaves some “elbow
space” for the computation of the tangential step δt. Choosing Θaim,n = Θaim,x
would enforce δt = 0 as long as ν < 1. Again we can interpret the restriction (3.3.6)
as trust region constraint (cf. Fig. 3.3.1)

‖δn‖ ≤ rn := 2Θaim,n

[ωc]
.
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ker c′(x)

δt

δn

δx

∆n

rn

rx

x

Figure 3.3.1.: Sketch of a damped composite step and trust regions.

Computation of the composite step. After the normal step δn, the tangential
step will be computed. The latter also must be restricted such that (3.3.5) is fulfilled
for the total step δx. By orthogonality of the tangential and normal step we have

‖δx‖2 = ‖δn‖2 + ‖δt‖2.

Inserting into (3.3.5) and solving for δt we obtain

‖δt‖ ≤

√√√√(2Θaim,x

[ωc]

)2

− ‖δn‖2. (3.3.7)

In the case that δt is chosen from a one-dimensional subspace span {∆t} we obtain
for δt := τ∆t the restriction

τ ≤ τmax :=

√(
2Θaim,x

[ωc]

)2
− ν2‖∆n‖2

‖∆t‖ .

If δt is computed from a higher dimensional subspace (cf. [277]), we have to take
into account (3.3.7) directly as a trust region constraint.

3.3.2. Globalization with respect to optimality

While normal steps aim at feasibility and a criterion measuring the deviation from
the constraint has been introduced, tangential steps are responsible for decrease in
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the cost functional. Therefore we need a criterion that ensures decrease of the cost
functional. Compared to the unconstrained case, the case with constraints contains
additional difficulties.
First, we have to take into account the fact that the normal step may yield increase
in the cost functional. In general, finding a feasible point may require an increase
of the objective, relative to the current infeasible iterate. Thus, we cannot require
decrease in the total step and decrease should only be measured for the tangential
step. Thus, at first sight, a decrease condition of the form

f(x+ δn+ δt) < f(x+ δn) (3.3.8)

seems to be useful.
This leads us to the second difficulty, which arises most likely if acceptable normal
steps are large, relative to the nonlinearity of the functional. Therefore, recall that
tangential steps are computed with the help of a quadratic model at the current iter-
ate x, but they are added to the normal step δn after its computation. For δt getting
smaller and smaller during a globalization loop, (3.3.8) can only be guaranteed, if

f ′(x+ δn)δt < 0. (3.3.9)

However, f ′(x+δn) does not enter the computation of δt, only f ′(x), so if δn is large
there is no reason for (3.3.9) to hold. In this case, we might be forced to completely
reject tangential steps until the iterates are close enough to the constraint.
Due to these two effects the design of a decrease based acceptance criterion is a
delicate matter. Motivated by Weiser et al. [277] and Schiela [226] the proposed
approach is based on cubic regularization. For this we define the cubic model

m[ωf ](δx) = q(δx) + [ωf ]
6 ‖δx‖

3

= f(x) + f ′(x)δx+ 1
2Lxx(x, p)(δx)2 + [ωf ]

6 ‖δx‖
3

(3.3.10)

where [ωf ] is an estimate of the prefactor of the right hand side of (3.2.22). Then,
recalling the trust region constraint (3.3.5), we compute tangential steps as solutions
of the minimization problem

min
δx=δn+δt∈X

m[ωf ](δx)

subject to [ωc]
2 ‖δx‖ ≤ Θaim,x, (3.3.11)

c′(x)δt = 0.

In this model Θaim,x ∈ [Θaim,n,Θacc[ is the contraction rate introduced in (3.3.4).
Thus, tangential steps are computed as minimizers, or at least directional minimiz-
ers, along descent directions of (3.3.10).
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Adjustment of the error model. We start with an extension of the strategy pro-
posed for unconstrained optimization in [226]. Recall the definitions of the quadratic
and cubic models

q(δx) = f(x) + f ′(x)δx+ 1
2Lxx(x, p)(δx)2

and
m[ωf ](δx) := q(δx) + [ωf ]

6 ‖δx‖
3.

In Lem. 3.7 we observed that q(δx) is a quadratic model for f(x+ δx+ δs), but not
for f(x+ δx). Therefore, we estimate [ωf ] via

[ωf ] = 6
‖δx‖3 (f(x+ δx+ δs)− q(δx)) , (3.3.12)

taking into account the restrictions

ρ0[ωf ]old ≤ [ωf ]new ≤ ρ1[ωf ]old,

for 0 < ρ0 < 1 and 1 < ρ1. The first restriction guarantees [ωf ] > 0, a necessary
requirement for being able to determine finite tangential directions in the presence
of non-convexities. The second dampens strong increases in the Lipschitz constant.
This avoids the occurrence of oscillations of [ωf ]. These restrictions can be relaxed
along the lines of [226, Sec. 3.4].

A modified decrease condition. To measure the quality of tangential steps we
estimate the ratio between actual and predicted decrease via

η :=
f(x+ δx+ δs)−m[ωf ](δn)
m[ωf ](δx)−m[ωf ](δn) (3.3.13)

In this way we exclude the possible increase due to the normal step and avoid any
additional function evaluations. Moreover, the denominator is guaranteed to be
negative for ‖δt‖ > 0. Then the natural criterion for acceptance of the tangential
step is

η ≥ η (3.3.14)

for a user-defined lower bound η ∈]0, 1[.

For δn = 0 this reduces to the standard decrease condition, which is widely used in
trust region methods [64], and has been adapted in [226] to a cubic regularization
method in unconstrained optimization. In the latter case, failure of (3.3.14) yields
an increase in [ωf ] at least by a factor of 1 + 1+η

2 [226]. Thus in the absence of
normal steps, repeated failure of the acceptance test yields a quick increase of [ωf ].
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For constrained problems the expected minimal increase depends on the relative
contributions of damped normal resp. tangential step to the composite step, i.e. on
the quantity

ρ = ‖δn‖
‖δx‖

.

More precisely, in Sec. 3.4 we will see that we only can guarantee an increase of [ωf ]
by a factor g(ρ) ∈ [1, 1 + 1+η

2 ]. Thus, if the iterates are not sufficiently close to the
constraint stagnating updates of the Lipschitz constant may occur. In this case, we
should allow our algorithm to first improve feasibility before continuing optimization,
i.e. we should discard the tangential step and accept the step δx = δn. To achieve
this aim we monitor the increase in the Lipschitz constant after failure of (3.3.14).
If

[ωf ]new <
(

1 + ρs
1− η

2

)
[ωf ]old, (3.3.15)

for some algorithmic parameter 0 < ρs < 1, then we accept the normal step but
possibly discard the tangential step. In order to not waste computational resources
we do not discard the tangential step if, for ηmin < η, a relaxed acceptance test

η ≥ ηmin, (3.3.16)

is satisfied.

3.3.3. Avoiding interference of both schemes

The proposed acceptance test and update rules for the Lipschitz constants admit
finite termination of the inner loops as long as not both acceptance criteria are
violated in the same inner loop. If both acceptance criteria are violated, it may
happen that the algorithm starts to cycle in the following scenario:
• i) A step is not acceptable in terms of (3.3.2), so [ωc] is increased, but [ωf ] is

decreased.
• ii) A step is not acceptable in terms of (3.3.14), so [ωf ] is increased, but [ωc]

is decreased.
In order to guarantee that this case cannot occur we additionally ensure monotonic-
ity of the Lipschitz estimates after first failure of the corresponding acceptance test.
For this, we slightly modify our update rules. In each inner loop, whenever
• i) (3.3.2) has failed at least once, we do not allow decrease in [ωc] after failure

of (3.3.14),
• ii) (3.3.14) has failed at least once, we do not allow decrease in [ωf ] after failure

of (3.3.2).
In this way, if both (3.3.2) and (3.3.14) fail, we rule out cycling by strict monotonicity
of the Lipschitz constants. In the more common cases of accepted steps or only one
rejected acceptance criterion this modification is inactive.
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3.3 The globalization scheme

3.3.4. Adjustments for nonlinear elasticity

If the constraint is given in terms of a problem from nonlinear elasticity our chosen
setting is not fully admissible. Using the notation of elasticity, we recall that the
orientation preservation condition

det(∇ϕ) > 0

implies for hyperelastic energy functionals E the density of the set

Φ∞ =
{
ϕ ∈W1,p(Ω) : E(ϕ) =∞

}
in W1,p(Ω). Besides the introduced inconveniences regarding the mathematical the-
ory of nonlinear elasticity, this property may also cause failure of our algorithm.
The reason is that we may compute corrections δϕ such that ϕ + δϕ ∈ Φ∞. Then
the computation of the simplified normal step will fail.
Therefore, we monitor the determinant of the deformation gradient during our com-
putations. If we encounter a violation of the orientation preservation condition, we
decrease both damping factors. Since in this case no information is available to
adjust the Lipschitz constants, we directly adjust the damping factors according to

ν ← ν

2 resp. τ ← τ

2 . (3.3.17)

This reduction is repeated until the admissible domain is reached and we can switch
back to the strategy described before.
In this way we guarantee that the computed iterates are nondegenerate. Thus, the
KKT-systems of Sec. 2.5 are well-defined in W1,∞(Ω). FE-solutions are computed
in the same space and thus are indeed meaningful, despite the lacking regularity of
problems from nonlinear elasticity, cf. Sec. 1.3.

3.3.5. Boundedness of algorithmic parameters

For proving finite termination of the inner loop, we need boundedness of the algo-
rithmic parameters [ωc] and [ωf ]. This is essentially a consequence of Thm. 3.8.

Theorem 3.10. Assume that there are positive constants ωc, ωf ′, and ωL, such that
for all v, w ∈ X

‖c′(x)−(c′(x+ v)− c′(x))v‖ ≤ ωc‖v‖2, (3.3.18)
|(Lxx(x+ v, p)− Lxx(x, p))(v, v)| ≤ ωL‖v‖3, (3.3.19)

|(f ′(x+ v)− f ′(x))w| ≤ ωf ′‖v‖‖w‖, (3.3.20)

where (x, p) are taken among the iterates. Further assume that the computed steps
δx ∈ X are bounded. Then the algorithmic parameters [ωc] and [ωf ] are bounded
from above.
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Proof. Both results follow directly from the update rules and the results of Thm. 3.8.
Boundedness of [ωc] is a consequence of (3.3.3) and (3.2.20) from Thm. 3.8:

[ωc] ≤
2Θ
‖δx‖

= 2‖δs‖
‖δx‖2 = ωc.

Similarly, boundedness of [ωf ] follows from (3.3.12) and (3.2.22) from Thm. 3.8:

[ωf ] ≤
6
‖δx‖3

(
ωL
6 ‖δx‖

3 + ωf ′ωc
2 ‖δx‖3 + ωf ′ω

2
c

8 ‖δx‖4
)

= ωL + 3ωf ′ωc + 3
4ωf

′ω2
c‖δx‖.

3.4. Finite termination of inner loops

Throughout this section we restrict the discussion to one inner loop. In order to
show that it terminates after a finite number of rejected steps we first consider the
acceptance tests for [ωc] and [ωf ] independently. Then we discuss the combination
of both steps using the modification of Sec. 3.3.3.

3.4.1. Finite termination with respect to feasibility

Lemma 3.11. If a trial correction is rejected due to failure of (3.3.2), then [ωc] is
increased at least by the fixed factor Θacc

Θaim,n
> 1. Thus, as long as (3.3.14) does not

fail, the inner loop terminates after a finite number of iterations.

Proof. Using (3.3.5), i. e.

[ωc]old

2 ‖δx‖ ≤ Θaim,x ⇔ 2
‖δx‖

≥ [ωc]old

Θaim,x
,

failure of (3.3.2) yields

[ωc]new = 2Θ(δx)
‖δx‖

>
2Θacc

‖δx‖
≥ Θacc

Θaim,x
[ωc]old.
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3.4.2. Finite termination with respect to optimality

Before stating a similar result for the updates of [ωf ] we summarize some basic
properties of minimizers of the cubic model mω.

Lemma 3.12. A directional minimizer δt of mω satisfies

(f ′(x) + Lxx(x, p)δn)δt ≤ 0 (3.4.1)

and

mω(δx)−mω(δn) = 1
2(f ′(x) + Lxx(x, p)δn)δt+ ω

12
(
2‖δx‖3 − 2‖δn‖3 − 3‖δx‖‖δt‖2

)
≤ ω

12
(
2‖δx‖3 − 2‖δn‖3 − 3‖δx‖‖δt‖2

)
.

(3.4.2)

Proof. From the symmetry of 1
2Lxx(x, p)(δt) + ω

6 ‖δx‖
3 in δt follows

mω(−δt) < mω(δt)

if
(f ′(x) + Lxx(x, p)δn)δt > 0.

Hence a directional minimizer δt satisfies (3.4.1). The Fréchet derivative of the
regularization term is given via

∂

∂δx

(
‖δx‖3

)
δh = 3‖δx‖〈δx, δh〉 (3.4.3)

and thus the first order optimality conditions for mω read

0 = m′ω(δx)δh = (f ′(x) + Lxx(x, p)δn)δh+ Lxx(x, p)δtδh+ ω

2 ‖δx‖〈δx, δh〉. (3.4.4)

If δh ∈ ker c′(x) the derivative of ‖δx‖3 simplifies, due to the orthogonality of ∆t
and ∆n, to

∂

∂δx

(
‖δx‖3

)
δh = 3‖δx‖〈δt, δh〉. (3.4.5)

Inserting m′ω(δt)δt = 0 into the definition of mω yields (3.4.2).

Now it is straightforward to prove

Lemma 3.13. If a trial correction is rejected due to failure of (3.3.14), then either

• ωL is increased at least by the fixed factor 1 + ρs
1−η

2 > 1,
• or the trial correction is accepted, possibly discarding the tangential step.

Thus, as long as (3.3.2) does not fail, the inner loop terminates after a finite number
of iterations.
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Proof. We first estimate the increase in [ωf ].

[ωf ]new ≥ [ωf ] = 6
‖δx‖3

(
f(x+ δx+ δs)− q(δx)

)
= 6
‖δx‖3

(
(f(x+ δx+ δs)−m[ωf ]old(δn)) +m[ωf ]old(δn)− q(δx)

)
= 6
‖δx‖3

(
(η − 1)

(
m[ωf ]old(δn)−m[ωf ]old(δn)

)
+ [ωf ]old

6 ‖δx‖3
)

= 6
‖δx‖3 (η − 1)(m[ωf ]old(δx)−m[ωf ]old(δn)) + [ωf ]old

>
6
‖δx‖3 (1− η)(m[ωf ]old(δn)−m[ωf ]old(δx)) + [ωf ]old

≥ 6
‖δx‖3 (1− η) [ωf ]old

12 (3‖δx‖‖δt‖2 + 2‖δn‖3 − 2‖δx‖3
)

+ [ωf ]old

= 6
‖δx‖3 (1− η) [ωf ]old

12 (3‖δx‖(‖δx‖2 − ‖δn‖2) + 2‖δn‖3 − 2‖δx‖3
)

+ [ωf ]old

= (1− η) [ωf ]old

2 ‖δx‖3

(
‖δx‖3 + ‖δn‖2(2‖δn‖ − 3‖δx‖)

)
+ [ωf ]old

= [ωf ]old
(

1 +
1− η

2

(
1 + ‖δn‖

2(2‖δn‖ − 3‖δx‖)
‖δx‖3

))
.

Setting ρ := ‖δn‖
‖δx‖ we obtain

[ωf ]new

[ωf ]old ≥ g(ρ) := 1 +
1− η

2 (1 + 2ρ3 − 3ρ2), ρ ∈ [0, 1].

The function g is monotonously decreasing on [0, 1] and bounded by its local extrema

1 = g(1) ≤ g(ρ) ≤ g(0) = 1 +
1− η

2 ,

where the case ρ = 0 corresponds to the case of unconstrained optimization, i.e. δn =
0, cf. [226]. The other extreme ρ = 1 describes the case of a vanishing tangential step.
In the latter case we are “far” away from the constraint and thus the computation
of tangential steps may not make sense as the quadratic model is not an adequate
model of the local constrained problem. Thus if 1+2ρ3−3ρ2 < ρs, where 0 < ρs < 1
is the algorithmic parameter from (3.3.15), the desired increase in [ωf ] can not be
guaranteed any more. In this case we either have

[ωf ]new ≥
(

1 + ρs
1− η

2

)
[ωf ]old

or the trial correction is accepted due to (3.3.15), discarding the tangential step
if (3.3.16) holds.
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We could also consider the quantity ρ = ‖δn‖
‖δx‖ to prove increase of [ωf ] by a fixed

factor. A priori it is not clear if δt is reasonable in this case. In particular for simpler
problems we expect that tangential directions are meaningful even for significantly
larger normal steps. For this reason we monitor the estimates [ωf ] instead of ρ.
Then if globalization is required we only reject tangential steps if there is a real
danger of not leaving the inner loop.

3.4.3. Finite termination of the combined scheme

In Lem. 3.11 and Lem. 3.13 we considered the case that only one of the two ac-
ceptance tests fails. If we allow both tests to fail, in the same inner loop, cycling
might occur in the case of alternating failures of the acceptance tests for feasibility
and optimality, see Sec. 3.3.3. For this reason we need the modification proposed in
Sec. 3.3.3 to transfer the above results to the general case.

Theorem 3.14. Assume that the affine covariant Lipschitz conditions (3.2.17)-
(3.2.19) hold. Then the inner loop, as described in Alg. 3.2, terminates after a finite
number of iterations.

Proof. We assume that the inner loop does not terminate finitely and show that this
implies either

[ωc]→∞ (3.4.6)

or
[ωf ]→∞, (3.4.7)

which is not consistent with Thm. 3.10.
If only one of the acceptance criteria (3.3.2) and (3.3.14) fails, we get from Lem. 3.11,
resp. Lem. 3.13, that (3.4.6), resp. (3.4.7), holds. Thus we only have to consider the
case that both criteria fail.
Let k be the first iteration where both criteria have failed before. Due to the
modification of Sec. 3.3.3 none of the estimates for the Lipschitz constants is allowed
to decrease during the following iterations in this inner loop. Then, if the inner loop
does not terminate finitely, one of the two acceptance criteria is violated infinitely
often after the k-th iteration and either (3.4.6) or (3.4.7) holds.

We summarize the acceptance test in Alg. 3.2.
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Require: Lipschitz constants [ωc], [ωf ], search directions ∆n,∆t.
1: Accepted ← false
2: ContractionFailedOnce ← false
3: DecreaseFailedOnce ← false
4: DiscardTangentialStep ← false
5: repeat
6: ν ← ρelbowΘaim,n

[ωc]‖∆n‖
7: τ ← τ ∈ argminτ∈[0,τmax] m[ωf ](τ∆t)
8: if DiscardTangentialStep then
9: δx← νδn
10: else
11: δx← νδn+ τδt
12: δs← via (3.2.10)
13: compute new Lipschitz constants [ωc]new, [ωf ]new via (3.3.3) and (3.3.12)
14: if ContractionFailedOnce then
15: [ωc]← max([ωc], [ωc]new)
16: else
17: [ωc]← [ωc]new

18: if DecreaseFailedOnce then
19: [ωf ]← max([ωf ], [ωf ]new)
20: else
21: [ωf ]← [ωf ]new

22: if (3.3.2) fails then
23: ContractionFailedOnce ← true
24: else
25: if (3.3.14) fails then
26: DecreaseFailedOnce ← true
27: if (3.3.15) fails then
28: DiscardTangentialStep ← true
29: else
30: Accepted ← true
31: until Accepted

Algorithm 3.2: Globalization loop.
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3.5. Transition to fast local convergence

We turn to the transition of our method to local quadratic convergence. Of partic-
ular interest is to show that the Maratos effect does not occur. As usual for local
convergence results, we will assume sufficient smoothness and second order sufficient
optimality conditions (SSC) at a local minimizer x∗. We call x∗ an SSC point.
To keep the discussion concise we do not aim for the most general results, but remain
in a rather simple setting. In particular, we only consider the case that normal
and tangential steps can be computed exactly along Newton directions. This is in
contrast to practical solvers, where at least the tangential steps are computed only
inexactly up to a certain accuracy1. To retain fast local convergence in that setting
an appropriate accuracy matching strategy has to be developed and analyzed. This
is subject to ongoing work.
First, consider the classical, undamped Lagrange-Newton method

(xk+1, pk+1) = (xk, pk)− (∆xk,∆pk) = (xk, pk)− L′′(xk, pk)−1L′(xk, pk).

At an SSC point x∗, the Jacobian matrix L′′(x∗, px∗) is continuously invertible,
and a perturbation argument yields that the same holds true in a neighborhood of
(x∗, px∗). This implies that the undamped Lagrange-Newton method with iterates
(xk, pk) locally converges quadratically towards (x∗, px∗), if, e.g., Lipschitz conditions
like the ones used in Sec. 3.3.5 hold.
We will proof that local quadratic convergence follows for the variant with the adjoint
update (3.1.6)

(xk+1, w) = (xk, pxk)− L′′(xk, pxk)−1L′(xk, pxk) (3.5.1)

that is used here. To this end, it will first be shown that the undamped iteration
locally admits quadratic convergence. Then we extend this result to the globalized
variant.
As a preparatory step we show that small perturbations in p yield perturbations in
the steps that are small relative to the step length.

Lemma 3.15. Assume that Lxx(x, px∗) is positive definite and c′′(x) : X× X→ P∗
is bounded. Let p be a sufficiently small perturbation of px∗. Denote by ∆x∗ the
solution of (3.2.6) with argument (x, px∗) and by ∆x the solution of (3.2.6) with
argument (x, p). Then there is a constant c∗ > 0 such that

‖∆x−∆x∗‖
‖∆x‖ ≤ c∗‖p− px∗‖. (3.5.2)

1The maximal attainable accuracy of the discrete problems is typically significantly bigger than
machine accuracy. Thus also with direct factorizations we cannot assume that we can solve the
arising linear systems exactly or at least up to machine accuracy.
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Proof. By assumption Lxx(x, px∗) is positive definite on ker c′(x), i.e. there exists a
positive constant γ > 0, such that for all v ∈ X we have

γ‖v‖2 ≤ Lxx(x, px∗)(v, v).

Hence, for a close-by Lagrange multiplier p we know that Lxx(x, p) is still positive
definite on ker c′(x). Let ∆x∗ be the solution of (3.2.6) with (x, px∗), and ∆x be the
solution of (3.2.6) with px∗ replaced by p. The corresponding first order optimality
conditions read

0 = f ′(x)v + Lxx(x, px∗)(∆x∗, v) for all v ∈ ker c′(x),

and

0 = f ′(x)v + (Lxx(x, px∗) + (p− px∗)c′′(x))(∆x, v) for all v ∈ ker c′(x).

Subtracting both equations yields

0 = Lxx(x, px∗)(∆x−∆x∗, v) + (p− px∗)c′′(x)(∆x, v).

Inserting v = ∆x−∆x∗ ∈ ker c′(x) (the normal components of the two steps do not
differ) and using positive definiteness, we get

γ‖∆x−∆x∗‖2 ≤ Lxx(x, px∗)(∆x−∆x∗,∆x−∆x∗) = −(p−px∗)c′′(x)(∆x,∆x−∆x∗).

Taking norms, we obtain

γ‖∆x−∆x∗‖2 ≤ ‖p− px∗‖‖c′′(x)‖‖∆x‖‖∆x−∆x∗‖,

which yields, with c∗ := γ−1‖c′′(x)‖, the desired inequality
‖∆x−∆x∗‖
‖∆x‖ ≤ c∗‖p− px∗‖.

Theorem 3.16. Assume that the Lipschitz conditions (3.2.17),(3.2.18), and (3.2.19)
hold in a neighborhood of x∗ ∈ X. Then, the iteration (3.5.1) locally admits quadratic
convergence.

Proof. For a pair z = (x, p) let us introduce the notation x := z1 to access the
primal component of z. For given (x, px), we denote the next Newton iterate by
(x+, p+). Since our update for px is not p+, but px+ , computed via (3.1.6), we
would like to estimate ‖x+−x∗‖ in terms of ‖x−x∗‖, namely we have to show that
‖x+ − x∗‖ = O(‖x− x∗‖2). Using the Newton step, we compute

x+ − x∗ = (x+ − x) + (x− x∗) = ∆x− (x− x∗)
= −

[
Lxx (x, px)−1 Lx (x, px)

]
1

+ [x− x∗, 0]1
= −

[
Lxx (x, px)−1 Lx (x, px)− Lxx (x, px∗)−1 Lx (x, px∗)

]
1

(3.5.3)

−
[
Lxx (x, px∗)−1 [Lx (x, px∗)− Lx (x∗, px∗) + Lxx (x, px∗) (x− x∗, 0)]

]
1

(3.5.4)
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From Lem. 3.15 and Lem. 3.4 we get∥∥∥[Lxx(x, px)−1Lx(x, px)− Lxx(x, px∗)−1Lx(x, px∗)
]

1

∥∥∥ ≤ c∗‖∆x‖‖px − px∗‖
≤ c∗εc(x)‖∆x‖‖x− x∗‖.

The second part (3.5.4) can be estimated via the fundamental theorem of calculus
and the affine covariant Lipschitz condition∥∥∥Lxx(x, px)−1 (Lxx(y, q)v − Lxx(z, q)v)

∥∥∥ ≤ ωL‖y − z‖‖v‖,

where x, y, z, v ∈ X and p, q ∈ P.∥∥∥[Lxx(x, px∗)−1[Lx(x, px∗)− Lx(x∗, px∗) + Lxx(x, px∗)(x− x∗, 0)]
]

1

∥∥∥
=
∥∥∥∥∥
[ˆ 1

0
Lxx(x, px∗)−1[Lxx(x+ t(x∗ − x), px∗)(x∗ − x, 0)− Lxx(x, px∗)(x∗ − x, 0)] dt

]
1

∥∥∥∥∥
≤
ˆ 1

0

∥∥∥[Lxx(x, px∗)−1[Lxx(x+ t(x∗ − x), px∗)(x∗ − x, 0)− Lxx(x, px∗)(x∗ − x, 0)]
]

1

∥∥∥ dt

≤
ˆ 1

0
tωL‖x∗ − x‖2 dt = ωL

2 ‖x∗ − x‖
2.

Combining both estimates we get

‖x+ − x∗‖ ≤ c∗εc(x)‖∆x‖‖x− x∗‖+ ωL
2 ‖x∗ − x‖

2.

Next, we split ‖∆x‖ = ‖x+ − x‖ ≤ ‖x+ − x∗‖+ ‖x− x∗‖ and compute

‖x+ − x∗‖ ≤ c∗εc(x)‖x+ − x∗‖‖x− x∗‖+ c∗εc(x)‖x− x∗‖2 + ωL
2 ‖x∗ − x‖

2.

If c∗εc(x)‖x− x∗‖ ≤ ε < 1, this yields

‖x+ − x∗‖(1− ε) ≤
(
c∗εc(x) + ωL

2

)
‖x− x∗‖2.

Let us now study the influence of our globalization scheme close to an SSC point. For
simplicity, we assume that close to the minimizer, where Lxx is positive definite on
ker c′(x), tangential steps are computed in direction of the minimizer ∆t of (3.2.7).
Then we have δt = τ∆t, where τ ∈]0, 1] is a damping factor, computed by solving
(3.3.10) in the affine subspace δn + span {∆t}. Thus, our damped composite step
δx and the full Lagrange-Newton step ∆x are related via

δx = δn+ δt = ν∆n+ τ∆t,
∆x = ∆n+ ∆t.

By orthogonality of ∆n and ∆t, as well as ν, τ ∈]0, 1], this implies ‖δx‖ ≤ ‖∆x‖.
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Chapter 3 An affine covariant composite step method

Theorem 3.17. Assume that xk converges to the SSC point x∗. Further assume
that the Lipschitz conditions (3.2.17),(3.2.18), and (3.2.19) hold in a neighborhood
of x∗. Then the globalized scheme admits local quadratic convergence.

Proof. We have to show that our globalized scheme merges into the Lagrange-
Newton method. First, we show that as xk → x∗ the corresponding damping factors
νk and τk tend to 1. By our assumptions, the algorithmic parameters [ωc] and [ωf ]
remain bounded along xk, while δxk → 0 and ∆xk → 0. Thus, from (3.3.6) we get
for k sufficiently large that νk = 1.
Next, we show that τk → 1. Using the minimizing property of δxk along the direction
∆tk and inserting h = ∆tk into (3.4.4) we obtain

0 = m′[ωf ](δxk)∆tk

= (f ′(xk) + Lxx(xk, pk)δnk)∆tk + Lxx(xk, pk)(δtk,∆tk) + [ωf ]
2 ‖δxk‖〈δxk,∆tk〉

= (f ′(xk) + Lxx(xk, pk)δnk)∆tk + τk

(
Lxx(xk, pk)(∆tk,∆tk) + [ωf ]

2 ‖δxk‖ ‖∆tk‖
2
)
.

A similar equation holds for the full tangential step ∆tk, which minimizes mω for
ω = 0:

0 = m′0(δxk)∆tk = (f ′(xk) + Lxx(xk, pk)δnk)∆tk + Lxx(xk, pk)(∆tk,∆tk)
= (f ′(xk) + Lxx(xk, pk)δnk)∆tk + Lxx(xk, pk)(∆tk,∆tk).

Subtracting both equations and solving for τk yields

τk = Lxx(xk, pk)(∆tk,∆tk)
Lxx(xk, pk)(∆tk,∆tk) + [ωf ]

2 ‖δxk‖〈∆tk,∆tk〉
.

Since Lxx is positive definite near x∗, i.e. there exists a positive constant γ such that

γ‖v‖2 ≤ Lxx(x, p∗)(v, v)xx for all v ∈ X.

With [ωf ]‖δxk‖ → 0 we get

(1− τk) ≤
[ωf ]‖δxk‖〈∆tk,∆tk〉

2Lxx(xk, pk)(∆tk,∆tk)

≤ [ωf ]
2γ ‖δxk‖

≤ [ωf ]
2γ ‖∆xk‖.

Recalling that ν = 1 after a finite number of steps, this yields

‖∆xk − δxk‖ = (1− τk) ‖∆tk‖ ≤
[ωf ]
2γ ‖∆xk‖

2 .
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3.5 Transition to fast local convergence

Further, with the Lipschitz continuity of c′, the definition of the second order cor-
rection (3.2.10) yields

‖δsk‖ ≤ const. ‖∆xk‖2 .

Consequently, the computed steps quadratically approach the full Lagrange-Newton
steps and the iteration inherits local quadratic convergence from the latter.
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4. Computation of steps for optimal
control problems

Up to here we described our composite step method mainly from the perspective of
nonlinear optimization. Now we turn to the practical computation of steps in the
context of optimal control problems.
In this section we assume that, by some Galerkin-type discretization, our infinite
dimensional problem has been reduced to a finite dimensional one. Then, after
choosing bases for the spaces X and P, which induces dual bases for X∗ and P∗,
the linear operators are represented by matrices and their adjoints by transpose
matrices. The application of a linear functional l ∈ X∗ to an element x ∈ X can
be written in terms of their coefficient vectors as lTx. The introduction as well as
Sec. 4.2 and Sec. 4.3 have been published in Lubkoll, Schiela and Weiser [180].
To capture the structure of optimal control problems we split the primal variable
into state and control, x = (y, u)T , where X = Y × U with y ∈ Y and u ∈ U. We
consider a problem of the form

min
x=(y,u)

f(x)

subject to c(x) = A′(y)−Bu = 0,

where A′(·) is continuously invertible and B is linear. To simplify notation we will
consider a fixed iterate x0 = (y0, u0) with corresponding Lagrange multiplier p0 and
let A = A′(y0) and L = L(y0, u0, p0).
Then, the saddle point matrices that occur in the computation of normal and tan-
gential step read

Hn =


My AT

Mu −BT

AT −B

 , Ht =


Lyy Lyu AT

Luy Luu −BT

AT −B

 .
In the following we only consider right hand sides of the form (ry, ru, 0)T . Such a right
hand side occurs in the computation of the tangential step and adjoint correction.
For (simplified) normal steps this is not the case. Instead they satisfy, for some right
hand side r = (0, 0, rp)T , the system

Hnz = r.
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Chapter 4 Computation of steps for optimal control problems

Equivalently, we can compute z = z0 + z̃, with z0 = (A−1rp, 0, 0)T and z̃ ∈ ker c′(x0)
determined by

Hnz̃ = r −Hnz0 =


−MyA

−1rp

0
0

 .
Thus we can w.l.o.g. restrict the discussion to constraints c′(x0) = 0. This admits to
exploit the fact that the restriction of the search space to ker c′(x0) yields a convex
unconstrained optimization problem for problems involving Hn. Conjugate gradient
methods (CG) that contain this restriction, projected preconditioned conjugate gra-
dient methods (PPCG), are introduced in Sec. 4.1. Then different strategies for the
computation of the normal step, resp. adjoint state or second order correction, are
discussed in Sec. 4.2. We will restrict the discussion to the computation of z̃, since
the same strategy will be applied for the computation of the adjoint state and the
second order correction, the latter in a similar affine space as in the computation of
the normal step.
Remark 4.1. We could also apply the Bramble-Pasciak conjugate gradient method [42]
and its variants [229, 245], which employ an indefinite preconditioner Q and a non-
standard inner product 〈·, ·〉H such that the preconditioned matrix Q−1H is sym-
metric and positive definite in the particular inner product. In the chosen setting,
this approach is less effective, as it offers less possibilities for the reuse of assembled,
and possibly processed, data in the computation of the tangential step.

Regarding the computation of the tangential step, we will also incorporate the re-
striction to ker c′(x0) with the help of constraint preconditioners. However, since
Lxx is in general not positive definite on ker c′(x0) we shall need conjugate gradient
methods for nonconvex problems. These are discussed in Sec. 4.3.
For an adaptive version of the affine covariant composite step method we introduce
a hierarchical error estimator in Sec. 4.4. In the course of the algorithm we repeat-
edly have to solve equations involving the differential operators A′(y0), (A′(y0))∗,
Mu and Luu(y0, u0, p0). To do this efficiently we shortly introduce the employed
approximation schemes in Sec. 4.5.

4.1. Projected preconditioned conjugate gradients

In the following, consider the solution of the linear saddle point system

Hnz = r

and denote the blocks of Hn as follows:

Hn =
M CT

C 0

 , (4.1.1)

88



4.1 Projected preconditioned conjugate gradients

Require: initial iterate x, set r = Hx− r, g = Q−1r and d = −g.
1: repeat
2: σ ← rTg
3: α← σ/dTHd
4: x← x+ αd
5: r ← r + αHd
6: g ← Q−1r
7: β ← rTg/σ
8: d← −g + βd
9: until convergent

Algorithm 4.1: Preconditioned conjugate gradient method.

where the components of the vectors are denoted by z = (x, λ)T and r = (rx, 0)T .
Thus, C plays the role of c′(x) = (A′(y0), −B) and M is the Riesz isomorphism of
X. In order to apply a conjugate gradient method (Alg. 4.1), we have to project the
primal search directions q = (qx, qλ)T to kerC.
This projection may be realized explicitly via computation of a basis b1, . . . , bn−m
of kerC. Setting Z = [b1, . . . , bn−m] a conjugate gradient method can be applied to
the reduced, positive definite system ZTMZ. However, the explicit computation of
a basis of kerC is challenging, even more if we want a sparse basis with minimal
number of entries, which turns out to be NP-hard [61].
More promising, for the class of problems we have in mind, is the implicit null space
computation via constraint preconditioners which are of the form

Qsc =
M̃ CT

C 0

 , (4.1.2)

where M̃ is a preconditioner forM and is assumed to be symmetric positive definite
on kerC. Thus M̃ induces a scalar product 〈·, ·〉M̃ on kerC. Computation of z =
Q−1
sc r (with z = (x, λ)T ) for an element r = (rx, 0)T then is equivalent to solving the

projected gradient problem

min rTx x+ 1
2〈x, x〉M̃

subject to Cx = 0,

with Lagrangian multiplier λ. We see that this restricts the x-component of the
search directions, at least in exact arithmetic, to kerC. In particular, if M is
positive definite on kerC, the CG method only “sees” a positive definite part of H.
Conjugate gradient methods that employ constraint preconditioners are known as
projected preconditioned conjugate gradient methods (PPCG).
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Chapter 4 Computation of steps for optimal control problems

Interpreting the application of the constraint preconditioner as restriction of the
search space yields the PPCG method in expanded form (Alg. 4.2). This variant is
rather unstable with respect to round-off errors, thus leading to search directions
that contain significant contributions from (kerC)⊥. The reason is, that this variant
updates the primal component (the x-component) of the iteration vector only, but
does not change the dual component p. The latter only converges to zero if the
minimizer of

1
2x

TMx+ rTx x

is already contained in kerC. This is easily seen from the first order necessary
condition

rx −Mx̄ = CT λ̄.

Consequently, the residual Mx− rx does, in general, not tend to 0 during the CG-
iteration. Instead it converges to an element in R(CT ) = (kerC)⊥, i.e.

x→ 0 and λ→ λ̄.

Denoting the exact primal solution by x̄ and the condition number of C by κ(C),
the relative projection error in the application of the constraint preconditioner can
be estimated by, cf. [115],

‖x̄− x‖
‖x̄‖

≤ const.κ2(C)‖λ‖
‖x‖

.

If λ 6= 0, significant round-off and extinction errors are expected for x → 0. To
reduce this effect iterative refinement as well as a residual update strategy have
been proposed in [115]. The latter consists of replacing, in each iteration, the primal
residual x with x− CT q, where q is a solution of

min
v
‖rx − CTv‖2,

which reduces the ratio ‖λ‖‖x‖ .

The residual update strategy cures the previously neglected influence of the dual
variable. Thus, it is not expected to require such an update when working on the
full saddle point system Hz = r ( Alg. 4.3). In this case the ordinary residual update
of the CG method is

r ← r − αHd.

Considering primal and dual residual separately we getrx
rλ

←
rx − αMdx − αCTdλ

rλ − αCTdx

 .
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4.1 Projected preconditioned conjugate gradients

Require: initial iterate x satisfying Cx = 0, set rx = Mx − rx, r = (rx, 0),
g = primal component of Q−1

sc r and d = −g.
1: repeat
2: σ ← rTx g
3: α← σ/dTMd
4: x← x+ αd
5: rx ← rx + αMd
6: r ← (rx, 0)
7: g ← primal component of Q−1

sc r
8: β ← rTx g/σ
9: d← −g + βd
10: until convergent

Algorithm 4.2: Projected preconditioned conjugate gradient method in
expanded form.

The first row contains a term corresponding to an update of the primal residual in
the expanded form by αC∗dp where dp is a solution of

min
v
‖rx − αCTv‖2

2.

Thus, a local residual update is implicitly contained when working on the full system.
Nonetheless iterative refinement or carefully chosen explicit recomputation of the
residuals may be required if the conjugate gradient method converges slowly or
convergence is delayed, cf. [177].

Require: initial iterate z = (x, p) satisfying Cx = 0, set r = Hz − r, g = Q−1
sc r

and d = −g.
1: repeat
2: σ ← rTg
3: α← σ/dTHd
4: z ← z + αd
5: r ← r + αHd
6: g ← Q−1

sc r
7: β ← rTg/σ
8: d← −g + βd
9: until convergent

Algorithm 4.3: Projected preconditioned conjugate gradient method,
all-at-once form.
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Chapter 4 Computation of steps for optimal control problems

Besides the projection property, the preconditioner should cluster the eigenvalues of
H in order to accelerate convergence. The spectrum of constraint preconditioners of
the form (4.1.2) has been analyzed in [157]. In our notation their main results read
Theorem 4.2. Denote the preconditioned matrix by P = Q−1

sc H. Then P has
1. the eigenvalue 1 with multiplicity 2m,
2. n−m eigenvalues which are defined by the generalized eigenvalue problem

ZTMZy = λZTM̃Zy, y ∈ Rn−m, (4.1.3)
where Z denotes the projection on kerC. Let k ≤ n − m be the number of
distinct eigenvalues of the generalized eigenvalue problem. The Krylov space
K(P , d) is, for any right hand side d, at most of dimension k + 2.

Proof. See [157, Thm. 2.1 and Thm. 3.7]. For the case of a non-vanishing lower
right block cf. [85].

For a more detailed discussion of solution methods for saddle point matrices the
interested reader is referred to the survey [34] as well as the references summarized
in [229].

4.2. Computation of (simplified) normal steps and
adjoint updates

Saddle point systems of the form
Hnz = r, (4.2.1)

where the components of the vectors are denoted by z = (x, λ)T and r = (rx, 0)T ,
occur in the computation of the normal step ∆n, the simplified normal step δs
and in the computation of the adjoint state p. Depending on size and structure
of the problem, different possibilities arise for its solutions. Recall that the saddle
point matrix Hn corresponds to a strictly convex, equality constrained optimization
problem and is invertible.

Problems of moderate size. If the problem size is moderate, the solution of (4.2.1)
can be computed using a direct factorization of the saddle point matrix. The pos-
sibly high computational costs for the computation of the factorization are at least
partially amortized by the multiple possibilities for its reuse. Besides the computa-
tion of p and δs this includes its application as a constraint preconditioner in the
computation of the tangential step.
This works fine for moderately sized, stationary optimal control problems, usually
in two spatial dimensions. However, for larger problems, such as time-dependent
optimal control or larger three dimensional problems, sparse direct factorizations
become prohibitively expensive, both in time and memory consumption.
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4.2 Computation of (simplified) normal steps and adjoint updates

Low dimensional control space. Let us consider the case that the space of controls
is of low dimension (say, a couple of tens) and that A = A′(y0) can be factorized by a
sparse direct solver. In this case it is possible to use a Schur-complement approach
in order to solve (3.2.4) by factorization of A and a couple of back-solves. This
can be interpreted as a direct solution of the system (4.2.1) with a special pivoting
strategy, often not recognized by standard sparse solvers.

For this, consider the following block permutation of our system:


Mu 0 −BT

0 My AT

−B A 0



δnu

δny

q

+ r = 0. (4.2.2)

The right lower 2x2 block

K =
 My AT

A 0


is block triangular with invertible diagonal blocks, and thus is invertible by essen-
tially inverting A and AT . With that we can build a Schur complement with respect
to Mu:

S = Mu −W ∗K−1W, (4.2.3)

where W is defined as

W : U→ Φ∗ × P∗ via W :=
 0
−B

 .
This strategy can be applied to fairly well resolved elliptic problems in two and three
spatial dimensions. For a successful application of this approach we refer to [81],
where an optimization problem from hyperthermia treatment was solved. There,
the control consisted of 23 input parameters for the microwave antennas built into
the hyperthermia applicator.

High dimensional control space. If neither direct factorizations nor the Schur
complement reduction are applicable we have to use iterative solvers. In this regard
we will employ the a PPCG method. We consider a constraint preconditioner of the
form

Qsc =


M̃y 0 AT

0 M̃u −BT

AT −B

 .
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Chapter 4 Computation of steps for optimal control problems

The particular choice of M̃ affects both the convergence rate of the PPCG method
and the computational effort for applying the preconditioner. A reasonable choice
is the block triangular constraint preconditioner

Qsc =


0 0 AT

0 Mu −BT

A −B

 , i.e. M̃ =
 0 0

0 Mu

 . (4.2.4)

Note that M̃ is spectrally equivalent to M on ker c′(x0), since

〈u, u〉U ≤ 〈x, x〉Y×U = 〈y, y〉Y + 〈u, u〉U
= 〈A−1Bu,A−1Bu〉Y + 〈u, u〉U ≤ (1 + ‖A−1B‖2

U→Y)〈u, u〉U.

Often Mu is a scaled mass matrix and A an elliptic operator. For these efficient
approximation schemes, that will be introduced in Sec. 4.5, are available. Note
however, that since the constraint preconditioner has to project onto ker c′(x0) we
need highly accurate representations of A and, for symmetry reasons, also of AT .

4.3. Computation of tangential steps

The standard PPCG method admits the solution of saddle point problems of the
form (4.1.1) as long as M is positive definite on ker c′(x0). Now we discuss the
solution of

Htz = r,

where Lxx is in general not positive definite on ker c′(x0). In this case the conjugate
gradient method is not directly applicable and must be modified. We will continue
using the previously introduced notation, but mention that this section applies not
only to constrained problems, but also to unconstrained ones.

Truncated conjugate gradient method. The most popular approach in this con-
text is the truncated conjugate gradient method (TCG, Alg. 4.4), which terminates
as soon as a direction of non-positive curvature is found. The used search directions
span a subspace on which Ht is positive definite and no further modification of stan-
dard CG implementations are required. Working as long as possible on the original
problem this approach seems to be quite effective in finding its way out of non-
convexities, see Tab. 4.1. But we also observe that occasionally the TCG method
does not lead us back into convex domains, at least not in a reasonable number of
iterations. Here the problem is that the algorithm runs into a non-convexity which
lead to termination of the TCG method after only few iterations. Thus only a very
small subspace of the search space is covered and the computed direction may only
very roughly lead us back into regions where the problem is convex. A popular
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4.3 Computation of tangential steps

Require: initial iterate x, set r = Hx− r, g = Q−1r and d = −g.
1: repeat
2: if dTHd < 0 do
3: terminate
4: σ ← rTg
5: α← σ/dTHd
6: x← x+ αd
7: r ← r + αHd
8: g ← Q−1r
9: β ← rTg/σ

10: d← −g + βd
11: until convergent

Algorithm 4.4: Truncated conjugate gradient method (TCG).

approach to improve the behavior of the TCG method is to also include the search
direction for which the problem is nonconvex. This is motivated by the fact that
this search direction still is a descent direction. However, in this case, the step size
parameter α yields a local maximum of the energy norm. Therefore this last search
direction is added “blindly” and may or may not increase the performance of the
TCG method. The implementation used in this thesis incorporates this “blind” step.

Regularized conjugate gradient method. An alternative strategy is to modify
H by adding multiples of the preconditioner Q. For some regularization parameter
θ ≥ 0 such that H + θQ is positive definite we can solve equations involving this
regularized operator with a CG method. We refer to this strategy as regularized
conjugate gradient method (RCG, Alg. 4.5).

Since a preconditioner is in general not given explicitly, but rather as an algorithm,
it may not possible to directly compute the application of Q to a search direction d.
However, starting from the observation that in the first CG iteration

q = Qd = −r

holds, we can update the quantity q = Qd, similar to the computation of the search
directions d in the classical CG method, via

q ← −r + βq.

Lemma 4.3. Consider the notation of Alg. 4.5, augmented by subscripts for the it-
erations numbers. Let q0 = r0−Hx0 and denote the sequence of generated conjugate
search directions by {dk}k=1,..., the sequence of residuals by {rk}k=1,... and the se-
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Require: initial iterate x, set r = Hx − r, θ = 0, g = Q-1r, d = −g and
q = Qd = −r.

1: repeat
2: z ← dTHd+ θdT q
3: if z < 0 do
4: increase θ
5: restart
6: σ ← rTg
7: α← σ/z
8: x← x+ αp
9: r ← r + α(Hd+ θq)
10: g ← Q−1r
11: β ← rTg/σ
12: d← −g + βd
13: q ← −r + βq
14: until convergent

Algorithm 4.5: Regularized conjugate gradient method (RCG).

quence of generated H-orthogonalization constants by {βk}k=1,.... Then the sequence
{qk}k=1,... generated via

qk = −rk + βkqk−1

satisfies

qk = Qdk.

Proof. For the initial iterate we have by definition q0 = −r0 = Qd0. Let us assume
that qk = Qdk. Then

dk+1 = −gk+1 + βdk

and

qk+1 = −rk+1 + βkqk = −Qgk+1 + βkQdk = Q(−gk+1 + βdk) = Qdk+1.

Consequently, our regularization only requires few additional arithmetic operations.
The additional quantity q = Qd may be required anyway, e.g. for termination cri-
teria based on the Q-norm [133, 247]. We will not employ such a norm here. When
considering the inexact solution of normal steps, the use of this norm may be ad-
vantageous, as it admits a proper matching of the inaccuracies.
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4.3 Computation of tangential steps

For the choice of the regularization parameter θ, which, as usual, should be as
small as possible and as big as necessary, we choose a simple heuristic. Starting the
computation with θ = 0 we discard the computed iterates as soon as we encounter a
direction d of non-positive curvature dTHd < 0 and update for some constant cd > 1
the regularization parameter θ according to

θnew = θ + δθ with δθ = cd
|dT (H + θP )d|

dTPd
θ = min{max{θnew, cθθ}, c̄θθ},

with 1 < cθ < c̄θ such that the generated sequence of regularization parameters is
strictly increasing each time a direction of non-positive curvature is encountered.
The restriction θ ≤ c̄θθold is introduced as the update of θ according to δθ may
be very large. From a purely theoretic perspective this is just what is required to
guarantee convexity of the problem. In practice such large updates are not desirable.
The reason is that high accuracy requirements are only imposed if we expect to be
close to the solution. Far from it, where typically nonconvexities are encountered,
the relative accuracy requirement δ0 on the tangential direction will be low. Thus,
instead of regularizing such that we can guarantee convexity of H + θQ on the
space spanned by the considered search directions, we rather aim at staying as close
as possible to H, while increasing the subspace where H + θQ is convex until the
accuracy requirement are met.
After the update of θ we have to restart the CG iteration. One might assume that
the previously computed solution could serve as new starting value. However, this
is not the case, as even mild regularizations significantly alter the system matrix.
Due to this restart the application of RCG is more expensive than one application
of TCG, but for difficult problems this additional cost is often outweighed by a
significantly reduced number of outer iterations.
We refer to Tab. 4.1 for a comparison of outer iteration numbers for different param-
eters. In all our computations we chose cθ = 2 and c̄θ = 10. We observe that the
RCG method behaves more robustly than TCG, but occasionally it requires more
outer iterations.
Remark 4.4.
• Note the analogy of the RCG method to hessian modification methods. We

stress, however, that we do not add multiples of the identity matrix to the
hessian, but rather add implicitly multiples of our preconditioner. Thus, we
capture more of the underlying problem structure.
• The RCG method seems to be of particular interest if H + θQ can be related

to a physical model similar to H. This is the case in our numerical example
problems from nonlinear elasticity where we use a simplified material model
for preconditioning. Then we may interpret H + θQ as the linearization of a
model that corresponds to a more rigid material than the original one. Solu-
tions of this problem enjoy better regularity properties compared to solutions
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that have been computed by the TCG method. Even if such an interpreta-
tion is not admissible the RCG method seems, in the presence of reasonable
preconditioners, to be more robust than the TCG method.

Require: initial iterate x, set r = Hx − r, g = Q−1r, θ = 0, d = −g and
q = Qd = −r.

1: repeat
2: z ← dTHd+ θdT q
3: if z < 0 do
4: if minimal decrease achieved do
5: terminate
6: else
7: increase θ
8: restart
9: σ ← rTg
10: α← σ/z
11: x← x+ αd
12: r ← r + α(Hd+ θq)
13: g ← Q−1r
14: β ← rTg/σ
15: d← −g + βd
16: q ← −r + βq
17: until convergent

Algorithm 4.6: Hybrid conjugate gradient method (HCG).

Hybrid conjugate gradient method. We saw that TCG performs quite well except
in the case that it runs into non-convexities early. Therefore, if we were able to make
a reasonable choice when to prefer regularization and when to prefer truncation, then
we would expect better performance of our composite step algorithm.
A suitable argument exists, if we take into account the fact we want to compute a
tangential direction for our composite algorithm. It is well acknowledged that far
from a local minimum we do not need to compute iterates, in our case tangential
directions, overly accurate [76, 79]. Thus in this case we only need a moderate
relative decrease δ = δmin in the quantity underlying the used termination criterion
of the employed Krylov solver. Only close to the solution, when some algorithmic
quantities indicate fast local convergence, we adjust the accuracy requirements until
it meets the desired relative accuracy δ = εtol of the outer iteration. This is explained
in more detail at the end of this section.
As a consequence of the low accuracy that is imposed far from local minima only
a small part of the actual problem structure is observable in the outer iteration.
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4.3 Computation of tangential steps

Thus, indicators for fast local convergence may be too optimistic and may yield
“false positives”. In order to detect these, we will incorporate TCG as a fallback
mechanism for RCG.

This means that we use RCG as default method. However, if a nonconvexity is
encountered and additionally we observe a relative decrease of δmin or better, then
we truncate. Regularization may have happened before truncation and thus we
do not use a plain TCG method here, but apply the TCG approach to RCG. For
consistency with [180] this combined (hybrid) method is called HCG (, Alg. 4.6)1.

With HCG we can significantly reduce the computational costs when encountering
such “false positives”. Even more important, since we have to regularize less and thus
stay closer to the original problem this admits to significantly reduce the number of
required outer iterations, see Tab. 4.1. Thus, HCG performs like RCG would if we
had a better indicator for fast local convergence.

Note that, when having to choose one of the conjugate gradient methods for non-
convex problems, Tab. 4.1 does not tell the full truth. Without additional structure
we can never say which method should be expected to perform better. Thus, despite
the attained promising results, the blind choice of one of the algorithms as black-box
solvers for nonconvex problems is not recommended.

Alg. TCG RCG HCG

d c 102 103 104 102 103 104 102 103 104

10−5 † 27 34 177 24 17 12 35 16
10−4 24 34 29 21 36 17 24 22 14
10−3 28 17 14 19 17 15 12 25 14
10−2 10 19 16 18 14 18 13 18 17
10−1 8 17 19 8 24 21 8 20 18

1 7 11 14 8 12 20 8 12 17

Table 4.1.: Required iterations for an example problem of nonlinear heat transfer
(Sec. 6.1) for different parameters c and d on a fixed uniform grid with

hmax = 2−7, α = 10−6 (†: not convergent within 500 iterations).

Termination criterion. It is well known that the widely used termination criteria
for the dual norm of the preconditioned residual only yields a useful termination
criterion in the case that κ(Q−1H) ≈ 1, i.e. if the preconditioner Q approximates H

1Calling this approach TRCG (for truncated regularized conjugate gradient method) is more
intuitive and probably a better name.
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very well, which we can not expect here. Instead, as already observed in the origi-
nal paper of Hestenes and Stiefel [133], termination criteria for conjugate gradient
methods should rely on the provable decrease of the energy error, or often better
the relative energy error. Based on representation formulae given in [133] estimators
for the absolute energy error ‖x− xk‖H and the relative energy error ‖x−xk‖H

‖x‖H
have

been proposed in [11] resp. [247]. As all of the above presented conjugate gradient
methods only work on subspaces where the, possibly regularized, problem is con-
vex we can use the same termination criteria for non-convex problems. To control
the algebraic errors we employ the estimate for the relative energy error proposed
in [247]. Exploiting only local H-orthogonality the proposed estimate

ρj,d = ρ̃j,d
ξj+d

(4.3.1)

with ξj+d = ρ̃0,j+d + rTx0 + rT0 x0 and

ρ̃j,d =
j+d−1∑
i=j

αir
T
i gi

is numerically stable. All quantities are available during computation, the only
drawback lying in the fact that we need to perform j + d iterations, for some look-
ahead parameter d, in order to estimate the relative energy error in the j-th step.
As the conjugate gradient method guarantees descent in the energy norm in each
iteration,

‖x− xj+d‖H < ‖x− xj‖H ,

we accept the last iterate xj+d if the estimate for ‖x−xj‖H

‖x‖H
is accepted.

In our computations we add another termination criterion to this estimate. This
is required for the case that ‖x‖H ≈ εmax, where εmax is the maximal attainable
accuracy of the linear system. Then, we cannot expect that the above termination
criterion works. Therefore, we additionally terminate the CG iteration if the step
length becomes negligible compared to the size of the current iterate, i.e. if

‖q‖H ≤ εmax ‖x‖H .

Alternatively we may also add a criterion for the absolute energy error to achieve fast
termination of the CG iteration for right hand sides that correspond to vanishing
right hand sides plus numerical noise.

Accuracy matching. Far from the solution it does not make much sense to spend
significant effort in the computation of highly accurate tangential directions. There-
fore, following [76, Sec. 2.3.3] we content ourselves with a minimal relative accuracy
of δ0 = 0.25. This guarantees that at least the leading two binary digits of the
computed solution are correct. Though, close to the solution we should increase the
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prescribed accuracy in order to profit from the local quadratic convergence of the
Newton-Lagrange scheme. For constrained optimization problems this is not at all a
trivial issue and under current investigation. Here we employ a heuristic argument.
We decide being close to the solution if in the last, say k-th, step
• no damping occurred,
• no direction of non-positive curvature was encountered in the computation of

the tangential direction,
• the estimate of the Kantorovich quantity satisfies hk = [ωc]‖δxk‖ < 1.

In this case, we set the desired relative accuracy in the (k + 1)-st step to

δk+1 = min {δ0, [ωf ]‖δxk‖} ,

cf. [77, 78, 277].
The above choice δ0 = 0.25 implies that our algorithm will often overlook the pres-
ence of directions of negative curvature. To illustrate the differences between the
different conjugate gradient methods in dealing with non-convexities, we employed
δ0 = 10−3 in the computations for Tab. 4.1. The look-ahead parameter is chosen
to be d = 10 and the maximal attainable accuracy to εmax = 10−11. In the hybrid
method, truncation is accepted as soon as at least the two most important digits
are captured, i.e. if the relative energy error is decreased by a factor of 0.25. This
is consistent with the introduced accuracy requirement.

4.4. Error estimation

In this section an error estimator for an adaptive version of the proposed composite
step method is described. Error estimators for the discretization error in optimal
control problems are based on strategies that have been applied to PDE problems.
We shortly introduce some popular error estimation strategies for the simpler case of
an elliptic PDE in Sec. 4.4.1 and discuss their applicability in the context of implant
shape design. Then we turn to the description of an error estimator for the proposed
affine covariant composite step method in Sec. 4.4.2.

4.4.1. Error estimation strategies

For the reliable computation of solutions to PDEs, here written in operator form

Ax = b in X∗,

we have to control the approximation error ε̃h = ‖x− x̃h‖ between the exact solution
x and x̃h, the computed solution in a finite dimensional subspace Xh ⊂ X. Let xh
be the exact solution in Xh. Exploiting Galerkin orthogonality, the approximation
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error can be decomposed into algebraic error δh = ‖xh− x̃h‖ and discretization error
εh = ‖x− xh‖, i.e.

ε̃2h = ε2h + δ2
h. (4.4.1)

This suggests that algebraic and discretization error should be in balance, a prin-
ciple that is commonly followed in the derivation of error estimators. In practice
neither x nor xh are available. To get a computable estimate of the discretization
error we concentrate on strategies that use x̃h as approximation of xh and a better
approximation x̂ for the solution x. This yields an estimate for εh via [εh] = ‖x̂−x̃h‖.
Remark 4.5. As both x̂ and x̃h are affected by algebraic errors the above splitting
is not valid for computable quantities [12, 246]. Here, we assume that the error
is dominated by the discretization error and neglect this issue. In a more detailed
investigation of error estimators for optimal control problems this point should be
taken into account.

The computation of x̂ is in general too expensive to be realized with high accuracy.
For this reason we are in general not in a position to accurately estimate the dis-
cretization error and a proper balancing of error sources is not possible. Instead one
tries to achieve one of the following goals, cf. [31],

• either minimize the required number of degrees of freedom to guarantee a
desired (relative) discretization accuracy,

• or minimize the (relative) discretization error for a given bound on the number
of degrees of freedom.

Besides the fact that the first strategy may only be roughly be realized, due to the
lack of accuracy in the discretization error, we may encounter the case that the
desired (relative) discretization accuracy is chosen too small. Then we might exceed
the available computational resources. These are known a priori, in contrast to the
achievable (relative) accuracy. For this reason, at least for accurate computations
on complex geometries, the only reasonable strategy is the second one.

In general the discretization error is not uniformly distributed on the computational
domain. Instead, the error may be concentrated at problem specific features such as
corner singularities or boundary layers [66, 67, 116]. For this reason, the estimate
[εh] needs to be localized to admit efficient local mesh refinement. Here, localization
to the cells {T} of the spatial discretization is straightforward via [εh(T )] = ‖(x̂ −
x̃h)χT‖, where χT is the indicator function of T , i.e.

χT (x) =

1 if x ∈ T
0 else

.

Some desirable properties of error estimators are collected in the following definition.

Definition 4.6. An error estimator [εh] is called
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• reliable if there exists a constant κ1 ≥ 1 such that

εh ≤ κ1 [εh] ,

• efficient if there exists a constant κ2 ≥ 1 such that

[εh] ≤ κ2εh,

• asymptotically exact if it is reliable and efficient and

lim
h→0

κi = 1 for i = 1, 2.

Remark 4.7. Reliability and efficiency may be comprised in

1
κ1
εh ≤ [εh] ≤ κ2εh.

The product κ1κ2 ≥ 1 is called efficiency range of the estimator. Both reliability
and efficiency are properties that are satisfied by most error estimators for PDEs,
at least up to higher order terms. In contrast, asymptotic exactness only is of value
in theoretical considerations. In practice, for efficiency requirements, we can neither
afford to generate grids that would admit to speak of asymptotic behavior nor to
compute error estimates sufficiently accurate to guarantee this property. In scientific
computing we are rather interested in estimators that are efficient to evaluate and
are sufficiently accurate in the transient phase.

For the computation of x̂ different strategies have been proposed. Averaging er-
ror estimators, also called gradient recovery error estimators are motivated by the
observation that, in the case of smooth solutions, discrete stresses or fluxes x̃h are
significantly less smooth than its continuous counterpart x. Thus,

‖x− A(xh)‖ � ‖x− xh‖,

where A is a projector into a smoother space. This suggests to base error estimators
on the quantity [εh] = ‖A(xh) − xh‖, i.e. x̂ = A(xh). The simplicity of these error
estimators is appealing. However, if the true stress or flux exhibits discontinuities,
the performance of averaging error estimators can be poor [203]. Since the implant
shape design problem is concerned with different soft tissue types such discontinuities
can arise at interior tissue interfaces. Therefore the assumptions of averaging error
estimators are not satisfied in our setting and we do not consider this strategy any
further. For details, the interested reader is referred to the books [5, 79] as well as
to the publications of Carstensen [51, 52].

An alternative to averaging error estimators are hierarchical error estimators. These
directly compute an approximation xh̄ of x in a larger subspace Xh̄, satisfying Xh ⊂
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Xh̄ ⊂ X. If Xh̄ is sufficiently large to capture significant parts of the discretization
error, i.e. if the saturation assumption

εh̄ ≤ βεh, with 0 < β < 1,

holds, then accurate computation and localization of the error is to be expected.
This inequality holds as long as oscillations in the right hand side of the operator
equation in X are small [86].
As a disadvantage, this direct approach is computationally expensive. The increased
computational cost for the computation of the error [eh] = xh̄−xh can be significantly
reduced if Xh̄ is constructed as a hierarchical extension from Xh, i.e. Xh̄ = Xh ⊕
Xe [80, 289]. Then [eh] = xh̄−xh ∈ Xe = Xh̄ \Xh is only computed in the extension
space.
Regarding the energy error in elliptic PDEs the prototype of a hierarchical error
estimator is the DLY estimator [80]. Using the hierarchical decomposition Xh̄ =
Xh ⊕ Xe the discretized system in Xh̄ is given through Ahh Aeh

Ahe Aee

 ηh

ηe

 =
 bh

be

 .
The upper right block Aeh is assumed to be negligible, i.e. ηh ≈ xh

2. Then, the
above system is block triangular and we can compute the error estimate [eh] = ηe
from the defect equation in Xe

Aee [eh] = be − Ahexh.

Solving this equation in Xe is still expensive. Thus, to further reduce the computa-
tional costs, the operator Aee is typically replaced by its lumped matrix Âee, which
only contains the diagonal of Aee. As is to be expected for elliptic PDEs, this does
not affect efficiency and reliability but asymptotic exactness is lost [79, Sec. 6.1.4].
Thus we compute an estimate [eh] from the equation

Âee [eh] = be − Ahexh, (4.4.2)

and localize it via [εh(T )] = ‖ [eh]χT‖.
Remark 4.8. For sake of completeness we also mention residual based error estima-
tors, which are the among the first proposed error estimators. Theoretically these
are better understood than other a posteriori error estimators. However, in general
these only provide a coarse global upper bound on the energy error. Moreover, they
do not fit into an affine covariant algorithmic setting, where we avoid the evaluation

2This is supported by the gradient recovery result of Ovall [204]. However, this result relies on
asymptotic exactness of the estimated function values and may not be valid for real world
applications.
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of residuals. We do not go into detail and refer the interested reader to the books
of Ainsworth and Oden [5], Babuška et al. [14], Brenner and Scott [44], Deuflhard
andWeiser [79], Verfürth [268]. We also suggest the report [127], where efficiency and
reliability have been shown for a residual based error estimator without assuming
that Galerkin orthogonality holds. Instead the authors exploit spectral equivalence
of the BPX preconditioner [43] to estimate the W−1,2-norm of the discrete residuals.

The above mentioned error estimation strategies all focus on the estimation of the
(energy) error. In practical applications, this is not always the quantity of interest.
Considering a more general setting for error measurement a duality-based method,
the dual weighted residual method (DWR), cf. Bangerth and Rannacher [24], has
been developed. There the discretization error is considered with respect to its
influence on a functional J that measures the error in a specific quantity of interest.
The essential idea behind this approach is the observation that solutions to a dual
problem can be used to describe the actual influence of the primal residuals on
the error in the quantity of interest J . For this we need approximations of the
primal solution x as well as the corresponding Lagrange multiplier p. These are
mostly computed using an averaging or a hierarchical extension approach. Using
averaging strategies this method has been applied to a wide range of problems [30,
29]. Not directly obvious this approach incorporates a measure for the deviation
from Galerkin orthogonality [12]. However, due its complicated setting several gaps
remain to be filled [24] regarding rigorous theoretical backing.

Error estimation for optimal control problems. The extension of most of the
strategies for error estimation in the PDE context to nonconvex optimal control
problems is yet unclear. First, for these problems no energy norm exists to measure
the error. Second, often it is a priori not clear how the quantity of interest should
sensibly be chosen. Third, the coupling between the different variables complicates
the attainment of theoretical results, such as reliability or efficiency. Therefore,
these are harder to obtain than in the case of one variable. In particular, available
results are typically based on relatively strong assumptions, such as convergence of
the discrete solutions to the infinite dimensional solution [219].
The DWR method has been extended to elliptic optimal control problems in [29,
30] and, additionally incorporating inequality constraints on the control variable,
in [269]. Both approaches consider the cost functional J as quantity of interest.
Then the accuracy of the discretization of the constraint is only considered with
respect to its influence on the cost functional. Thus, admissibility of the iterates
can only be guaranteed “in a very weak sense, possibly insufficient for the particular
application” [30, p. 2]. To treat this issue one can combine the DWR approach with
classical energy error estimation techniques for the PDE-constraint [30].
Another reasonable strategy is to base error estimates on the underlying (local)
KKT-systems. Thus, one might choose to estimate the error in the state equation,
the adjoint equation and possibly the variational equation. In academic examples,
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the latter typically arises from a Tikhonov-regularized tracking type cost functional
and is of minor interest. In contrast, both, the state and adjoint equation, contain
significant information on the energy error in the primal variables. Treating both
equations independently the whole machinery for error estimation in PDEs can
be used. This idea has been pursued in [287], using averaging error estimators.
There, also the consequences of inexact step computation, such as loss of Galerkin
orthogonality, was investigated. Residual based error estimators, targeting at the
error in the cost functional, have been proposed for optimal control problems with
state and/or control constraints in [33, 219].

4.4.2. A hierarchical error estimator

We introduce a hierarchical error estimator for the Lagrange-Newton step δx in
terms of the norm that is used in the composite step method. For nonlinear prob-
lems it is widely acknowledged that error estimation only is meaningful close to the
exact solution x. Before turning to the practical realization of a hierarchical error
estimator we discuss the question when error estimation is performed and how it
should be interpreted. For this mainly two strategies are followed. In text books we
most often encounter the sequential strategy

SOLVE ESTIMATE MARK/REFINE.
First, on a fixed grid, the discretized nonlinear problem is solved. The error of
the nonlinear problem is estimated and the mesh is refined accordingly. Then, the
solution process restarts, taking the previously computed solution as initial guess.
Amongst others, this approach is followed in [29, 30, 33, 219, 269]. In this regard,
it is usually assumed that the current discrete solution xh is sufficiently close to
x such that nonlinearities can be neglected in the error estimation procedure. For
strongly nonlinear problems or coarse spatial discretization this assumption is in
general not valid. In these cases one either has to consider the nonlinearities during
error estimation or resort to other strategies.

An alternative is provided from the perspective of quasilinearization. Instead of
estimating the error of the full nonlinear problem, we can estimate the error of the
linearized problems, i.e. the error in the Lagrange-Newton steps. This admits the
computation of meaningful error estimates without any need to justify the neglect
of nonlinear contributions. Another advantage of this approach is the observation
that we can start error estimation as soon as we observe that local convergence sets
in. In this way we try to avoid the inefficient reduction of algebraic errors, when
the discretization error is dominating, cf. [76, Sec. 8.3]. In contrast to the sequential
strategy, this strategy requires to integrate error estimation into the optimization
algorithm.

106



4.4 Error estimation

Here, we follow this integrated approach. Similar to the criteria used to control the
relative accuracy of the tangential steps, we allow mesh refinement if
• no damping occurred,
• no direction of non-positive curvature was encountered in the computation of

the tangential direction.
Since we only perform mesh refinement in the case that undamped steps are accepted
and the tangential solver terminates without encountering nonconvexities, the step
δx satisfies at some iterate (yk, uk, pk) in Xh the local KKT-system

Lyy Lyu A∗

Luy Luu B∗

A B



δy

δu

q

 =


ry

ru

rp

 , (4.4.3)

with A = A′(yk), L = L(yk, uk, pk) and right hand sides ry = −Ly, ru = −Lu,
rp = −c. Conceptually, a suitable hierarchical error estimator requires the solution
of this in a hierarchically extended ansatz space

Xh̄ = Xh ⊕ Xe = {Yh × Uh × Ph} ⊕ {Ye × Ue × Pe} .

The solution of this system is far too expensive to be of use in practice. Therefore, in
order to efficiently compute an error indicator (ey, eu) the system (4.4.3) is simplified
to block triangular form. This simplification requires to break the coupling between
the different variables. How this should be done is not well understood. Here, we
employ a heuristic that is motivated by the implant shape design problem. In this
regard, we want to detect errors in the state variable which are caused by lack of
precision in the control.
We start with estimating the error ey = (ehy , eey) in the state equation in Yh⊕Ye. In
order to incorporate information on the cost functional, this is propagated through
the adjoint equation in Ph ⊕ Pe to estimate the corresponding dual variable q =
(qh, qe). Eventually the error in the control eu = (ehu, eeu) is estimated by inserting
the error contributions from both variables into the variational equation in Uh⊗Ue.
Let us state this more precisely. We compute an estimate [ey] for the error ey =
(ehy , eey) from the defect state equation: Ahh Aeh

Ahe Aee

 ehy

eey

+
 Bhh Beh

Bhe Bee

 ehu

eeu

 =
 rhp − Ahhδy −Bhhδu

rep − Aheδy −Bheδu

 .
At this point, the error in the control variable is not available and will be neglected,
setting ehu = 0 and eeu = 0. Then the natural candidate for estimating the error
in the state variable is the DLY estimator (4.4.2). Thus, we assume that for the
estimates

[
eey
]
and

[
ehy
]
we have

Aeh
[
eey
]

= 0⇔
[
ehy
]

= 0.
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This yields for the error indicator in the extension space

Âee
[
eey
]

= rep − Aheδy −Bheδu,

where Âee is the lumped matrix of Aee.
To incorporate information from the cost functional we propagate the state error
through the adjoint equation Lhhyy Lehyy

Lheyy Leeyy

 ehy

eey

+
 Lhhyu Lehyu
Lheyu Leeyu

 ehu

eeu

+
 (A∗) hh (A∗)eh

(A∗)he (A∗)ee

 qh

qe


=
 rhy − Lhhyy δy − Lhhyuδu
rey − Lheyyδy − Lheyuδu

 .
Again we neglect the contributions from the control variable, setting ehu = 0 and
eeu = 0. Then, inserting the estimates

[
ehy
]

= 0 and
[
eey
]
for the error in the state

variable, we get (A∗) hh (A∗)eh

(A∗)he (A∗)ee

 qh

qe

 =
 rhy − Lhhyy δy − Lhhyuδu− Lehyy

[
eey
]

rey − Lheyyδy − Lheyuδu− Leeyy
[
eey
]
 .

Due to the summand Lehyy
[
eey
]
6= 0 in the right hand side we can not assume that

qh coincides with the dual variable q of (4.4.3). Consequently, the consideration of
the defect equation alone may neglect significant parts of the error in the adjoint
equation. Still, for the efficient computation of estimates

[
qh
]
and [qe] we have to

simplify the adjoint equation in the extended space Ph⊕Pe to block triangular form.
At this point it is not clear whether (A∗) eh or (A∗) he should be neglected. Here we
retain the upper right block (A∗) eh. This is motivated by the idea that long-distance
error transport can not be captured in the extension space. However, there is no
strong argument for this choice and a better understanding of the consequences
of the neglect of one of the off-diagonal blocks is desirable. Again replacing the
differential operator (A∗)ee by its lumped form (Â∗)ee we get (A∗) hh (A∗) eh

(Â∗)ee

 [
qh
]

[qe]

 =
 rhy − Lhhyy δy − Lhhyuδu− Lehyy

[
eey
]

rey − Lheyyδy − Lheyuδu− Leeyy
[
eey
]
 .

Eventually, we propagate the error through the variational equation Lhhuy Lehuy
Lheuy Leeuy

 ehy

eey

+
 Lhhuu Lehuu
Lheuu Leeuu

 ehu

eeu

+
 (B∗) hh (B∗)eh

(B∗)he (B∗)ee

 qh

qe


=
 rhu − Lhhuyδy − Lhhuuδu
reu − Lheuyδy − Lheuuδu

 .
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Recall that in Uh ⊕ Ue the operator Luu yields a scaled mass matrix. Except for
the scaling, we do not expect a large influence from this equation. In particular no
long-distance transport phenomena will occur. Again it is not clear whether neglect
of Lehuu or Lheuu should be preferred. For the same reason as in the case of the adjoint
equation we neglect the lower right part Lheuu. Again replacing the operator in Ue by
its lumped form L̂eeuu, we get Lhhuu Lehuu

L̂eeuu

 [
ehu
]

[eeu]


=
 rhu − Lhhuyδy − Lhhuuδu− Lehuy

[
eey
]
− (B∗)hh

[
qh
]
− (B∗)eh [qe]

reu − Lheuyδy − Lheuuδu− Leeuy
[
eey
]
− (B∗)he

[
qh
]
− (B∗)ee [qe]

 .
The error is measured in the norm used in the composite step method:

[εh] = ‖
([
ehy
]

+
[
eey
]
,
[
ehu
]

+ [eeu]
)
‖ = ‖

([
eey
]
,
[
ehu
]

+ [eeu]
)
‖.

Localization is straightforward via

[εh(T )] = ‖
([
eey
]
,
[
ehu
]

+ [eeu]
)
χT‖,

where χT is the indicator function of the grid cell T .
We will use this estimator in an adaptive version of the affine covariant composite
step method. There we will measure the error in the Newton step if the local
problems appear to be convex and no damping is required. As marking strategy the
error equilibration strategy is the method of choice [79, p. 229]. Thus we mark all
grid cells T for which the indicator satisfies

[εh(T )] ≥ 1
n

[εh] ,

where n is the number of grid cells. The practical behavior of the derived error
estimator is illustrated in Chap. 6.

4.5. Approximation of operators

In large scale problems the evaluation of the block triangular constraint precondi-
tioner and the error estimator requires the solution of state, adjoint and variational
equation. Depending on the structure of the involved operators different approxima-
tion schemes are favorable. In the variational equation we need to invert the scaled
mass matrix Luu, which is discussed in Sec. 4.5.1. The treatment of the differential
operators A and A∗, occurring in the state and the adjoint equations, is addressed
in Sec. 4.5.2.
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4.5.1. Approximation of the mass matrix

All three, the state constraint preconditioner for the normal step, the inexact state
constraint preconditioner for the tangential step as well as the error indicator, involve
the solution of the discretized variational equation

αMu = b = ru −BTp,

where M is a mass matrix. In all three cases we will employ the Chebyshev semi-
iteration [222, 110, 177, 95], named by Varga [266], as a polynomial preconditioner
Qn(M). It is based on the Chebyshev polynomials

Ck(x) = cos(k arccos(x)), x ∈ [−1, 1],

which can be implicitly computed by the three-term recurrence

C0(x) = 1, C1(x) = x, Ck+1(x) = 2xCk(x)− Ck−1(x) k > 0. (4.5.1)

The scaled Chebyshev polynomials pk(x) = Ck(x)
Ck(0) are the unique solutions to the

minimization problem
min
ϕ∈Πk
ϕ(0)=0

max
x∈[−1,1]

|ϕ(x)|, (4.5.2)

and thus are the optimal polynomials pk of order k with respect to the condition
number of pk(A)A [177, 222]. This motivates, for an equation Au = b, the defini-
tion of a three-term recurrence, the Chebyshev semi-iteration, here with explicitly
updated residuals [124].

Require: given u0 and positive constants a, b, set u−1 = 0, r−1 = 0, r0 =
b− Au0, β0 = − b2

2a and γ0 = −a.
1: for k = 0, . . . do
2: βk−1 ←

(
b
2

)2 1
γk−1

if k ≥ 2
3: γk ← −(a+ βk) if k ≥ 1
4: uk+1 ← − 1

γk
(rk + axk + βkxk−1)

5: rk+1 ← b− Auk+1

Algorithm 4.7: Chebyshev semi-iteration.

Realizing a fixed point iteration we need that the spectrum of A is contained in
[a− b, a+ b]. In particular for efficient application of the Chebyshev semi-iteration
good estimates for spectral bounds λmin and λmax are required. For the case of a
mass matrix that is preconditioned by a one-step Jacobi preconditioner, sufficiently
good estimates for the spectral bounds have been obtained for many discretiza-
tions [273]. In this case, the Chebyshev semi-iteration provides a cheap and efficient
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iterative solver and, if employed with a fixed number of iterations, it realizes a linear
preconditioner.
Linearity of preconditioners is an important property. First because this is what we
employ in theoretical considerations. Second, if nonlinear preconditioners such as a
CG method – even with a fixed number of steps – are used as preconditioners for
Krylov solvers this can significantly reduce their performance. This issue is nicely
illustrated in [274].

4.5.2. Approximation of the stiffness matrix

Regarding the discretizations of the differential operators, occurring in the con-
straint and the adjoint equation, hierarchical multigrid solvers and preconditioners
are among the most promising methods for adaptive algorithms. The two main
reasons are the h-independent convergence rate and linear complexity with respect
to the number of unknowns. Both properties are not only provable, but also can be
verified for reasonable implementations of multigrid algorithms [260].
These mainly exploit the observation that the classification of high- and low-frequency
error components in finite element (FE)-computations is dependent on the resolu-
tion of the spatial domain. High-frequency errors on a fine grid are not captured
on coarser grids. In contrast low-frequency errors on fine grids may appear high-
frequency on coarser ones, whereas smooth error components essentially can be
represented on significantly coarser grids.
In order to exploit this insight, multigrid solvers use cheap smoothers, such as
damped Jacobi- or Gauss-Seidel-iterations [79], to eliminate high-frequency error
components. Repeated application on grid with different spatial resolution then
admits to significantly reduce the oscillatory components of the algebraic error.
Eventually on the coarsest grid the remaining error can be eliminated by a direct
solver.
To express this formally we consider the operator equation Au = b in X∗ and a
sequence of hierarchical grids, resp. nested FE-spaces

S0 ⊂ · · · ⊂ Sj ⊂ X

with corresponding projected differential operators Ak = A|Sk
. We denote the pro-

jection operators by Ikk−1 : Sk−1 → Sk and the corresponding restriction operators
by Ik−1

k : Sk → Sk−1. The essential ingredients of the multigrid method are captured
in Alg. 4.8.
For adequate choices of the algorithmic parameters, ν1 applications of the smoother
eliminate the high-frequency error components in Sk. Then, the remaining error is
projected to a coarser grid and eliminated there. Assuming that the remaining error
is “smooth” with respect to Sk we expect relatively small loss due to restriction and
interpolation operators. After the computation of the coarse grid correction one
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Chapter 4 Computation of steps for optimal control problems

Require: given smoothing parameters ν1, ν2, grid level k, operator Ak and right
hand side bk, initial value uk.

1: mgCycle:
2: if k = 0 do
3: use direct solver to solve A0δu0 = b0
4: u0 ← u0 + δu0
5: else do
6: apply ν1 steps of a smoother to the system Akuk = bk
7: compute the restriction of the residual to the coarse space rk−1 ← Ik−1

k rk =
Ik−1
k (bk − Akuk)

8: compute Ak−1 = Ikk−1AkI
k−1
k , set δuk−1 = 0

9: apply mgCycle(ν1, ν2, k − 1, Ak−1, rk−1, δuk−1)
10: correct the fine grid solution uk ← uk + Ikk−1δuk−1
11: apply ν2 steps of a smoother to the system Akuk = bk

Algorithm 4.8: Two-grid correction scheme.

further applies a smoother ν2 times to eliminate possibly remaining high-frequency
error contributions. On the coarsest grid a direct solver can be employed to compute
a highly accurate coarse grid correction. Alg. 4.9 is essentially the V-cycle multigrid
method. For the realization of a linear solver, that can satisfy prescribed accu-
racy requirements, we repeatedly apply the above algorithm on the defect equation.
See Briggs et al. [45], Trottenberg et al. [260] for more details and the W-cycle as
well as the full multigrid (FMG) scheme. Same as the Chebyshev semi-iteration the
multigrid method provides a linear preconditioner if employed with a fixed number
of iterations.

Require: given smoothing parameters ν1, ν2, operator A and right hand side b.
1: while convergence test failed do
2: set r ← b− Au and δu = 0
3: apply mgCycle(ν1, ν2, 0, A, r, δu)
4: set u← u+ δu

Algorithm 4.9: V-cycle multigrid method.

On optimized academic examples multigrid solvers are extremely fast. This is il-
lustrated in Tab. 4.2 where the iteration numbers are given for a simple example of
linear heat transfer on the unit cube, with right hand side f = 1. On real-world
problems, where already small and coarse geometries may contain larger numbers
of degrees of freedoms in a linear finite element space, their performance is less out-
standing, but still impressive. This is illustrated in Tab. 4.3 for equations of linear
elasticity with the same right hand side. On the left of this table the iterations
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4.5 Approximation of operators

numbers and computational time on the unit cube are given. On the right we give
the corresponding numbers on the geometry used in Sec. 6.2.2.1. Thus, we will have
to apply several V-cycles to get a reasonable preconditioner for our KKT-systems.
If used to approximate the differential operators in the constraint preconditioner
(4.2.4) we even need to actually solve the constraint and adjoint equation. For
these reason the repeated application of multigrid solvers and preconditioners for
problems in constraint preconditioners for PPCG methods still is quite expensive.

Laplace (2D, unit cube) Laplace (3D, unit cube)
dof #iter. time dof #iter. time
545 7 2.2 ms 369 8 2.6 ms
8 321 7 32 ms 2 465 9 21 ms
33 025 7 0.13 s 17 985 10 0.18 s
131 585 7 0.59 s 137 345 10 1.7 s
2 099 201 7 11 s 1 073 409 11 16 s

Table 4.2.: Computation times for simple test problems (rel. acc.: 10−9,
smoothing steps: 10).

Linearized elasticity (unit cube) Linearized elasticity (real world geometry)
dof #iter. time dof #iter. time

53 955 43 3.6 s 213 687 25 18 s
412 035 49 35 s 1 523 604 48 4.4 min
3 220 227 53 5 min 11 461 518 72 49 min

Table 4.3.: Computation times for simple test problems from linearized elasticity
(both 3D, rel. acc.: 10−9, smoothing steps: 10, resp. 20 for the second problem)

We note that in the context of pressure-type boundary conditions the lower left
and upper right block in the KKT-system not only contain the differential operator
Wϕϕ, but also non-symmetric contributions from the Piola-transformed pressure-
type boundary conditions gcof(∇ϕ)n. Moreover, due to the polyconvexity of the
stored energy function, the corresponding differential operator may not be elliptic.
Consequently, in our setting, the application of multigrid solvers and preconditioners
is not backed by a solid theoretical basis. However, in our computations they seemed
to work well.
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Chapter 4 Computation of steps for optimal control problems

4.6. Summary

Let us summarize the step computations within the different settings. For the
computations of δn, px and δs we can always assume positive definiteness of M on
ker c′(x), and thus unique solvability of the corresponding system. For moderately
sized problems, or a low dimensional control space, the solution can be found by
direct elimination methods. Otherwise a PPCG method, i.e. a conjugate gradient
method combined with a constraint preconditioner, can be used.
The situation is different for tangential steps δt. As Lxx is in general indefinite we
have to use one of the modifications from Sec. 4.3, the HCG method, to compute
descent directions for the cost functional. The restriction to ker c′(x) is again in-
corporated with the help of a constraint preconditioner. For problems of moderate
size or low dimensional control space we can reuse the direct factorization which
was computed for the determination of the normal step as preconditioner. If this
approach is not admissible we will use the same block triangular preconditioner

Qsc =


0 0 AT

0 Mu −BT

A −B


as in the computation of the normal step. To efficiently evaluate this preconditioner
we have to efficiently solve the state, variational and adjoint equation. For this we
replace the inversion of both A and AT by a multigrid solver. Since the constraint
preconditioner has to project onto ker c′(x0), and in the absence of further analysis,
it is necessary to solve the arising systems A′(y0)δny = rp +Bδnu to high accuracy.
Relaxing this condition on Qsc is subject to ongoing work. In contrast M−1

u can
be replaced by a fixed number of Chebyshev semi-iterations [110, 124, 274], which
needs not to be overly accurate. The required spectral bounds for the Chebyshev
semi-iterations for the preconditioned matrix QjacMu, where Qjac represents one step
of the Jacobi iteration, are taken from [273].
For the purpose of error estimation and adaptive mesh refinement in an affine co-
variant setting, a hierarchical estimator for the error of the primal variables in
the Lagrange-Newton step was proposed. Both the block triangular preconditioner
and the error indicator require the solution of equations involving the mass matrix
resp. the differential operators of the state and adjoint equation. For the first again
the Chebyshev semi-iteration is employed, whereas the differential operators are
treated with multigrid preconditioners (25 V-cycles and 20 pre- and post-smoothing
steps).
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5. Mechanical behavior of biological
soft tissues

In the last chapters a model for the description of the implant shape design problem
and an algorithm for its solution have been presented. It leaves to specify de-
scriptions for the occurring soft tissue types. In literature often models of linearized
elasticity are employed. This is on the one hand due to their simple formulation that
are straightforward to implement efficiently. On the other hand realistic models are
challenging for numerical solvers. Thus, in order to perform relevant computations,
we need to understand state-of-the-art models for biological soft tissues.
Compared with industrially manufactured materials, biological soft tissues exhibit
a far more complex mechanical behavior. This includes anisotropy [168], thermo-
and viscoelastic behavior [220, 280] as well as complex metabolic interactions [99,
135, 136, 139, 147, 255] and self-regulating mechanisms such as tissue growth [212,
253, 288].
Due to the various different observed phenomena, general accurate mathematical
descriptions of the mechanical properties of biological soft tissues are not avail-
able. Nonetheless in the described setting of polyconvex hyperelasticity reasonable
descriptions of the static mechanical behavior have been proposed for many soft
tissue types. These descriptions are mainly based on phenomenological continuum
models1.
In most biological soft tissues the mechanical properties are essentially determined
through the properties of the extracellular matrix (ECM) between the cells. The
ECM itself mainly consists of ground substance, connecting the cells and its chemical
processes, and of three different fiber types (elastic, collagen and reticulin fibers).
• Elastic fibers mainly consist of elastin surrounded by fibrillin and are respon-

sible for the tensile elastic properties of a tissue, i.e. the ability to return to
its initial configuration when being stretched and then released.

1In the context of modeling it is often distinguished between three different approaches. Con-
tinuum models are derived from general considerations on the macroscopic material structure.
Phenomenological models rely on the fitting of heuristically chosen expressions to experimental
data. Structural models use probabilistic descriptions of insights in the microscopic material
structure for the description of macroscopic properties. We will that state-of-the-art models
for biological soft tissues are in general based on a combination of all three of the mentioned
strategies. Insight in a tissue’s micro-structure and functional properties are extensively used
to derive structural models and as guidance for the development of phenomenological models,
both incorporating basic requirements from continuum mechanics.
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Chapter 5 Mechanical behavior of biological soft tissues

• Collagen fibers, often occurring as parallely aligned bundles, can sustain large
tensile forces thus giving strength to biological tissues. “Its importance to man
may be compared to the importance of steel to our civilization [...]” Fung [99,
p. 251].

• Reticulin fibers consist of collagen surrounded by a glycoprotein and form nets
from fine collagen bundles. Similar to collagen fibers they are responsible for
the ability to sustain forces in many tissues such as blood vessels or smooth
muscle tissue.

The presence of elastic and collagen fibers is illustrated in Fig. 5.1 for the case of
subcutaneous tissue such as found in the papillary dermis, a deeper layer of skin
tissue.

Eventually muscles themselves are assembled in a fibrous structure. Fibers largely
determine the tensile mechanical behavior of biological soft tissues. Under compres-
sion they buckle and do not contribute directly to the mechanical response [136].
But they contribute indirectly, due to their influence on the permeability of liquids.
This indirect relation is usually neglected in biomechanical models.

Figure 5.1.: Fiber structure of subcutaneous tissue.

We begin with the introduction of general strategies for the description of constitu-
tive relations in the hyperelastic setting and the commonly used setting for fiber-
reinforced materials in Sec. 5.1. Then, specifications for the behavior of different
tissue types with respect to tensile (Sec. 5.2) and compressive forces (Sec. 5.3) are
discussed. Eventually we shortly address the attainment of patient-specific material
parameters in Sec. 5.4.
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5.1 Modeling framework

5.1. Modeling framework

In order to reduce the complexity in the development of constitutive laws for biolog-
ical soft tissues it is commonly assumed that the polyconvex stored energy function
W can be split into independent contributions2. Most of these splittings are of the
form

W = Wt +Wc, (5.1.1)

where Wt describes the behavior with respect to isochoric (volume-preserving) de-
formations , and Wc the behavior with respect to purely volumetric deformations.
The latter is assumed to be isotropic, whereas

Wt = Wt,iso +Wt,aniso, (5.1.2)

can be split into isotropic and anisotropic contributions Wt,iso, resp. Wt,aniso. The
stored energy function Wt,aniso describes the influence of fibers. Models of this form
are called fiber-reinforced models. Since fibers buckle under compression they are
considered to be relevant only in the presence of tensile forces. The contrary holds
for liquids that are dominate the elastic behavior under compressive forces. In
biomechanical models, the splitting (5.1.1) often corresponds to different models for
the description of tension and compression experiments.

5.1.1. Isotropic materials

Isotropic materials do not contain any directional information on a macroscopic
level.

Definition 5.1. A response function T̂ : Ω̄ ×M3
+ → S3 is isotropic at x ∈ Ω̄ if it

satisfies
T̂ (x, FQ) = T̂ (x, F ) for all F ∈M3

+ and all Q ∈ O3
+.

We call an elastic material isotropic if the response function of the corresponding
stress tensor is isotropic at every x ∈ Ω̄.

Isotropy implies that we can express the stress tensor in terms of the strain tensor
instead of the deformation gradient.

Theorem 5.2. A response function T̂ : Ω̄ ×M3
+ → S3 is isotropic at x ∈ Ω̄ if and

only if there exists a mapping T̃ (x, ·) : S3
+ → S3 such that for all F ∈M3

+ holds

T̂ (x, F ) = T̃ (x, FF T ).
2In fact all common splittings do not yield independent contributions. In particular for complex
models it is rather unclear how the interaction between the different summands affects the
overall model.
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Proof. See Ciarlet [56, Thm. 3.4-1].

Incorporating also the property of frame-indifference admits to specify the form of
stress tensors for isotropic materials. First recall the invariants of a matrix.

Definition 5.3. Let A ∈ M3 with eigenvalues λi, i = 1, 2, 3. Then its principal
invariants ιA = (ι1, ι2, ι3) are

ι1 = tr(A) = λ1 + λ2 + λ3,

ι2 = 1
2
(
tr(A)2 − tr(A2)

)
= tr(cof(A))
= λ1λ2 + λ2λ3 + λ3λ1,

ι3 = det(A) = λ1λ2λ3.

Remark 5.4. If A = F TF ∈ S3
+, for F ∈ M3

+, is a left Cauchy-Green strain tensor,
then its eigenvalues are also called principal stretches [201]. The corresponding
invariants ι1, ι2 and ι3 are called principal strain invariants. Note that in this
case we have

ι3 = det(A) = det(F TF ) = det(F )2.

Thus for some deformation ϕ and F = ∇ϕ, the third principal strain invariant
describes volume changes.

Next to the famous existence result of Ball [15], which is not restricted to isotropic
materials, the Rivlin-Ericksen theorem is the most important theorem in the theory
of isotropic elasticity.

Theorem 5.5 (Rivlin-Ericksen). A mapping T̂ : M3
+ → S3 satisfies

T̂ (QF ) = QT̂ (F )QT and T̂ (FQ) = T̂ (F ) (5.1.3)

for all F ∈M3
+ and all Q ∈ O3

+, if and only if for all F ∈M3
+ holds

T̂ (F ) = T̃ (FF T ),

where T̃ : S3
+ → S3 is of the form

T̃ (C) = f0(ιC)I + f1(ιC)C + f2(ιC)C2,

and fi, i = 1, 2, 3 are real-valued functions of the principal strain invariants
ιC = (ι1, ι2, ι3) of the strain tensor C = F TF ∈ S3

+.

Proof. See [56, Thm. 3.6-1]. Note that no regularity assumptions on T̃ are required.
Instead symmetry of the strain and stress tensors, the axiom of frame-indifference
as well as the assumption of isotropy (5.1.3) yield simultaneous diagonalizability of
C and T̃ (C) as essential tool in the proof of the Rivlin-Ericksen theorem.
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The Rivlin-Ericksen theorem tells us that for hyperelastic materials the stress tensor,
and consequently the stored energy function W , can be written in terms of the
principal strain invariants. Since the invariant ι3 describes volume changes the
splitting(5.1.1) is mostly assumed to be of the form

W = Wt(ι1, ι2) +Wc(ι3).

However, the first and second principal strain invariant are not isochoric. For this
reason first expressions for the influence of the shear parts of the first and second
principal invariant on the volumetric part had already been derived in [209]. How-
ever, for sake of simplicity, it is commonly assumed that Wc only depends on the
third strain invariant.

For a proper splitting into isochoric and volumetric contributions Penn [210] intro-
duced a modified set of invariants ῑC .

Definition 5.6. Let A ∈ M3 with eigenvalues λi, i = 1, 2, 3. Then its modified
principal invariants ῑA = (ῑ1, ῑ2, ῑ3) are

ῑ1 = ι1ι
− 1

3
3 ,

ῑ2 = ι2ι
− 2

3
3 ,

ῑ3 = ι3.

Remark 5.7. Since we can recover the principal invariants from the modified principal
invariants we may also use the latter in the Rivlin-Ericksen theorem.

Penn then investigated models of the form

W = Winc(ῑ1, ῑ2) +Wvol(ῑ3).

Assuming constant compressibility, Penn concluded that for large strains the relation
between volume changes and stresses is no more physically reasonable and rejected
this approach. Similar results in numerical experiments have been presented in [90].

Nonetheless this strategy is appealing as it facilitates the interpretation of the contri-
butions of tensile and compressive responses and its fitting to experimental results,
and is widely used [128, 135, 140, 137]. Moreover, premature rejection of the splitting
based on modified invariants is challenged by Hartmann and Neff [128]. Stressing
the fact that actually the interplay of complex nonlinear models for applied tensile
and compressive forces is not well understood, an expression for the volumetric part
is proposed that does not admit the previously observed deficiencies, see Sec. 5.3.

The isotropic parts of the models presented in Sec. 5.2 and Sec. 5.3 will all be of the
form

W = Wt(ι1, ι2) +Wc(ι3) resp. W = Wt(ῑ1, ῑ2) +Wc(ῑ3),
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depending of the employed set of invariants. The fact that the model based on the
principal invariants does not properly separate isochoric and volumetric contribu-
tions is often neglected in the modeling process. In many cases this is not a problem
since the subsequent fitting to measurement data may at least partially correct these
inaccuracies in the modeling process.
Remark 5.8.
• Another idea was followed in the development of Ogden’s models, cf. Ogden

[199, 200, 201]. These are expressed in terms of the principal stretches, the
eigenvalues of the strain tensor. The most popular Ogden-type models, the
neo-Hookean and the Mooney-Rivlin material law, can also be expressed in
terms of the principal strain invariants. Models which do not allow a formu-
lation in terms of its invariants require the additional solution of eigenvalue
problems and thus are not widely used.
• An interesting alternative approach was followed in Criscione et al. [68, 69].

There, use of the “K-invariants”, based on the Hencky, “true”, strain tensor
ln(∇ΦT∇Φ) and orthogonality requirements, was proposed. The use of orthog-
onal, physically meaningful, invariants admits the construction of constitutive
relations that are more robust with respect to measurement errors than for-
mulations based on (modified) principal invariants. Yet further examinations
have to reveal merits and shortcomings of this approach.

5.1.2. Fiber-reinforced materials

The presence of fibers leads to anisotropic mechanical behavior of biological soft
tissues. In view of the splitting

Wt = Wt,iso +Wt,aniso,

these properties are incorporated into hyperelastic models by augmenting an isotropic
model with an anisotropic one.
The standard strategy for the derivation of anisotropic model is isotropization. In
order to incorporate directional information we need a projection of the strain tensor
onto the fiber direction v ∈ R3, |v| = 1. For d ∈ R3 the orthogonal projection on
span(v) is given through

v (v, d) = v
(
vTd

)
= (v ⊗ v) d,

where (·, ·) denotes the Euclidean scalar product in R3 and ⊗ the Kronecker product.
Thus, the projection is characterized by the structural tensor

M := v ⊗ v. (5.1.4)

This tensor must be incorporated in the definition of strain invariants that describe
anisotropic materials. This leads to a new set of invariants.
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Definition 5.9. Let A ∈ M3 and M ∈ S3. The corresponding mixed invariants
are

ι4 = tr(AM),
ι5 = tr(A2M),
ι6 = tr(AM2).

Remark 5.10.
• For a detailed discussion of these and more matrix invariants in the context

of biomechanical modeling we refer to [88] and the references therein.
• Same as for the principal invariants we can define modified mixed invariants

via

ῑ4 = ι4ι
− 1

3
3 ,

ῑ5 = ι5ι
− 2

3
3 ,

ῑ6 = ι6ι
− 1

3
3 .

• The definition applies for the more general setting M ∈ S3 . Here, we are only
interested in structural tensors M of the form given in (5.1.4). Then we have

M2 =
(
vvT

) (
vvT

)
= v

(
vTv

)
︸ ︷︷ ︸

=1

vT = vvT = M. (5.1.5)

In particular this implies that ι4 = ι6.

For the description of anisotropic materials we can use the same models as for
isotropic materials, just replacing the (modified) principal invariants by (modified)
mixed invariants, i.e.

Waniso = Waniso(ι4, ι5, ι6).

In this way we restrict the strain invariants to particular fiber directions. For more
complex patterns of the embedded fibers Waniso = ∑

fiberWaniso,fiber is composed of
independent models for each fiber direction.
The mixed invariants admit geometric interpretations. Considering the deformation
gradient F = ∇ϕ, the corresponding strain tensor C = F TF , we get for the first
mixed invariant

ι4(C) = tr(CM) = tr(F TFvvT )
= 〈F TFv, v〉 = ‖Fv‖2. (5.1.6)

Thus, the first mixed invariant ι4 locally measures the change of fiber length associ-
ated with a deformation. Due to its simple interpretation it is the mixed invariant
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that is used in most proposed anisotropic constitutive relations that are based on a
reinforcement model.

For the second invariant we get

ι5(C) = tr(C2M) = 〈C2v, v〉 = ‖Cv‖2. (5.1.7)

Its interpretation is less obvious. It incorporates the fiber stretch, reaction to shear
deformations as well as the deformations of surface area elements normal to the fiber
direction, cf. Merodio [185].

Remark 5.11.

• Fiber reinforcements can be further refined. As fibers buckle under compres-
sion we may include a linear dependance on χι4≥1. Additionally fibers are in
general not exactly aligned along specific directions. This can be incorporated
using statistical descriptions of fiber dispersion [9, 104, 137].

• In our framework the chosen stored energy functions are always required
to be polyconvex. Thus they are also rank-one convex, implying that the
Legendre-Hadamard condition holds and the corresponding acoustic tensor is
elliptic [233].
If material failure is of interest, loss of ellipticity can be related to the on-
set of fiber failure or instabilities. If fiber reinforcements only depend on the
first mixed invariant ι4, measuring the change in fiber length, we intuitively
may relate the onset of loss of ellipticity with the failure mechanism of fiber
kinking [153, 187, 188] if ι4 < 1, i.e. if fibers are compressed. If ι4 > 1 the
corresponding failure mechanism is de-bonding of fibers. Reinforcements de-
pending on the second mixed invariant ι5 additionally admit the description
of more complex failure mechanisms such as fiber splitting and matrix failure.
These failure mechanisms and corresponding conditions on the stored energy
functions are discussed in more detail in [186].

5.2. Elastic response with respect to isochoric
deformations

Having roughly specified the setting in which most models for biological soft tissues
are formulated we now turn to specifications for different soft tissue types. In view of
the splitting (5.1.1) we begin with the description of constitutive relations concerning
tensile forces. A prominent role is played by proteins, in particular elastin and
collagen, which are shortly introduced in Sec. 5.2.1. Largely based on descriptions
for the influence of these proteins on the mechanical behavior, recent complex models
for adipose, skin and muscle tissue are described in Sec. 5.2.2.
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5.2 Elastic response with respect to isochoric deformations

5.2.1. Proteins

Proteins are a subclass of polymers, macromolecules which are built from monomeric
amino acids containing carbon, oxygen, hydrogen, nitrogen and possibly also sulfur.
Their polymeric structure explains the close relationship between biomechanics and
rubber elasticity [123, 147], which is reflected in state-of-the-art models for tissues
consisting essentially of one of these proteins as well as the success of models de-
rived from statistical mechanics such as the neo-Hookean [216] and Arruda-Boyce
model [13]. They play an essential role in most processes in the human body [255].
In the context of this thesis their structural properties are of main interest and will
be discussed for the most relevant proteins, elastin and collagen. More precisely we
consider tissues that mainly consist of one of the proteins instead of the proteins
themselves.

Figure 5.2.1.: Tension-radius responses of human iliac arteries.
control: untreated

collagen-digested: soft tissue behavior dominated by elastin
elastin-digested: soft tissue behavior dominated by collagen

Exemplarily for human soft tissue, a tension-radius curve for human iliac arteries
is depicted in Fig. 5.2.1. This curve, here called control exhibits a J-curve shape,
a shape that is observed for most biological soft tissues [137]. Removing the colla-
gen content with formic acid, the collagen-digested curve is measured. We observe
that in the absence of collagen a roughly linear tension-radius curve with small
Young moduli occurs. In contrast, when removing elastin with the help of trypsin, a
steeper J-curve is observed. The mechanical behavior of this elastin-digested tissue
is dominated by the collagen content.
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Mathematical descriptions for both cases of collagen- and elastin-digested tissues
will be derived using statistical mechanics and educated guesses based on histologi-
cal insights. Certainly the development of adequate mathematical homogenization
methods [251] would both be challenging and highly desirable for further refinement
and justification of biomechanical models. A similar direction is followed in Böl and
Reese [38], where the authors examine the derivation of macroscopic descriptions
based on finite element studies of the underlying microscopic structure.

5.2.1.1. Elastin

Elastin is the most “linearly” elastic protein occurring in the ECM, particularly in
high concentrations in arteries and veins, which must exhibit strong elastic proper-
ties in order to smoothen the pulsatory blood flow [112]. Its fundamental building
block is the protein tropoelastin, the most elastic of all known proteins, which can
be stretched to eight times its resting molecular length and recoils without dam-
age [278]. In human soft tissues it occurs as elastic fibers and is responsible for
the elastic behavior, i.e. for the returning of soft tissue to its prior position if de-
formed and then released. In this function it often undergoes millions of load cycles
without showing noteworthy fatigue [112, 118]. From a practical point of view it is
responsible for the smoothness of the skin and the elasticity of various parts of the
human body such as arteries and lung parenchyma [99]. Compared to other pro-
teins it exhibits the smallest visco-elastic and plastic behavior and merely behaves
like a rubbery material. Nonetheless, at smaller strain levels than in collagen, visco-
elastic “strain softening”, also known as “Mullins effect” [82], must be considered for
time dependent soft tissue models and in the interpretation of experimental data.
The production of elastin is turned off at puberty. In [112] more effects such as
dependency on hydration, the time dependent strain rate (i.e. less elastic behavior
at frequencies f � 1 Hz) and thermal agitation are addressed. In the same work
the long lifetime of elastin, whose half-life is around the order of lifespan of the
organism [49, 278], is confirmed in fatigue experiments.
The rubbery behavior of elastin fibers motivated the examination of a Mooney-
Rivlin [193, 215] and a neo-Hookean [216] material law

WneoHooke = c0(ι1 − 3) = c0
(
‖∇ϕ‖2 − 3

)
with c0 > 0, (5.2.1)

by Gundiah et al. [118]. For a successful application of the neo-Hookean material
law in the description of the elastin contribution in arteries see also [137, 275].
Motivated by further experiments and histological observations on the fiber structure
the orthotropic model

Worthotropic = c0(ι1 − 3) + c1(ι4 − 1)2 + c2(ι6 − 1)2 with ci > 0 for i = 0, 1, 2,

was suggested in Gundiah et al. [119]. Recall that for structural tensors associated
with fiber directions the invariants ι4 and ι6 coincide. However, for consistency with
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5.2 Elastic response with respect to isochoric deformations

the cited literature we use both invariants. In the above model these invariants
are assumed to refer to different fiber directions. This admits to model complex
two-dimensional patterns of elastic fibers.
A special case of this material law,

Wtransverse = µ0

2 (ι1 − 3) + c1(ι6 − 1)2 with µ0 > 0 and c1 > 0,

was used by Weisbecker et al. [276] in experiments on the human thoracic aorta,
confirming that the accurate description of the non-collageneous matrix requires
anisotropic stress-strain relationships. In the case of the aorta, the elastin fibers
are assumed to be aligned in circumferential direction thus leading to a transversely
isotropic stress-strain relationships.

5.2.1.2. Collagen

Figure 5.2.2.: Collagen triple helix.

Applied loads in biological soft tissues are mainly carried by collagen. It is the
protein with the biggest weight contribution in mammalian soft tissues and the
main load carrying element in most tissues. Therefore collagen and its distribu-
tion in the ECM play a prominent role in biomechanics. Collagen molecules are
organized in triple-helical conformations (see Fig. 5.2.2), the tropocollagen. Most
types of collagen assemble their molecules in cross-striated fibrils with diameters in
the range 20− 40nm. Bundles of these fibrils form collagen fibers with a thickness
between 0.2µm and 12µm. In contrast to elastin, these fibers contain crystalline
regions, leading to an increase in the fibers ability to sustain tensile forces and
more pronounced anisotropic behavior. For sake of shortness, we do not distinguish
the different types of collagen and other attained structures. Instead we refer the
interested reader to Fung [99], Holzapfel [137] as well as Shoulders and Raines [237].
Mostly collagen fibers are arranged in wavy-like structures of different complexity.
Tissues that take up unidirectional tensile forces, such as tendons or joint ligaments,
exhibit roughly parallely arranged fibers, which are less regular in joint ligaments.
The deviation from perfectly regular structures has an important influence on the
materials stress-strain relationship [137, 267]. More complex fiber structures are
observed in the skin, with a complex three-dimensional network with predominant
fiber directions in a rhombic structure parallel to the surface, similar to the structure
in blood vessels [99, 137, 138, 235].
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Chapter 5 Mechanical behavior of biological soft tissues

Occurring in almost pure form in rat tail tendons, constitutive relations for pure
collagen have been proposed in [129, 241]. However, the rigorous derivation of a
macroscopic material law from the behavior of the collagen fibers is difficult and
could, to date, not be realized. Instead, recognizing that the collageneous fibers are
much stiffer than elastic fibers and the ground substance, the macroscopic behavior
of collageneous tissues is explained by the partial recruitment of collagen fibers.
This is illustrated in Fig. 5.2.3, distinguishing between three different phases. After
the third phase fibers break. This is sometimes referred to as fourth phase. In
most cases it is excluded from the modeling process and post-processing or state
constraints must guarantee that computed states do not enter this phase.

Figure 5.2.3.: Schematic drawing of a tensile stress-strain curve and the
associated collagen fiber morphology.

• In phase I the collagen fibers are wavy and crimped. At this stage the me-
chanical behavior with respect to tensile stresses is dominated by the ground
substance and possibly stretching of elastic fibers. The tissue behaves like an
almost isotropic rubbery material with low Young moduli. Thus in this phase
small applied loads induce relatively large deformations. The stress-strain
relationship in this phase is roughly linear.

• In phase II collagen fibers start to contribute to the stress-strain relationship.
With increasing load the fibers align along the directions of applied loads.
They elongate, begin to uncrimp and take up forces.

• Eventually in phase III the collagen fibers straighten, now dominating the me-
chanical response of the soft tissue. In this phase the stress-strain relationship
is, similar to models for tendon, roughly linear, but with significantly higher
Young moduli as in phase I.
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5.2 Elastic response with respect to isochoric deformations

Today’s state-of-the-art models for tissues that exhibit a “J-curve” stress-strain re-
lationship, as in Fig. 5.2.3, are mostly based on Fung’s model, first described in [97].
Starting from the observation that in rabbit mesentery, exposed to tensile stresses,
Young’s moduli at different stress levels do not deviate much from a linear relation-
ship, Fung proposed the approximations

∂σ

∂C
= aσ with a > 0

and
∂σ

∂C
= aσ(1− bσ) with a > 0 and b ∈ R.

Both lead to a stored energy function involving the exponential function. Extensions
of the one dimensional considerations in Fung [97] to fully three dimensional models
and different structures of the underlying fiber networks can, amongst others, be
found in [22, 23, 99, 137, 138, 140, 141, 276]. These laws, which are called Fung-
elastic, take the form

WFung(F ) = c(ι4, ι5, ι6) exp(q(ι4, ι5, ι6)), (5.2.2)

for some, often quadratic, function q and structural tensor M = v ⊗ v with |v| = 1,
that describes projections on the fiber orientation [137].
Models of this type are suitable if the collagen fibers are essentially aligned. If
significant fiber dispersion is encountered this effect must also be included in the
model, mostly in terms of a fiber density ρfiber, which provides a weighing between
a principal and mixed invariant. This strategy has been pursued in Gasser et al.
[104], where the formal dependencies are expressed as

WFung(F ) = c(ρfiber, ι1, . . . , ι6) exp(q(ρfiber, ι1, . . . , ι6)). (5.2.3)

As in discussed in Sec. 5.1 we may replace the principal and mixed invariants by its
modified counterparts.
Remark 5.12.
• The patient-specific determination of the fiber density and other material pa-

rameters is challenging. First attempts for the determination of the parameters
for the model proposed in [104] from in vitro image data have recently been
investigated by Annaidh et al. [9].
• As they do not satisfy a polynomial growth condition, Fung-elastic material

laws seem not to fit to classical operator theory in Sobolev spaces. Similar
material laws are one of the reasons for the investigation of operator equations
and Galerkin schemes in Sobolev-Orlicz spaces [113, 165]. The latter admit
non-polynomial growth, at the expense of a more involved convergence theory
and weak limits that may no more be contained in the search space. However,
in practice reasonable Fung-elastic material laws are polyconvex and satisfy
the polyconvex coercivity condition of Ball [15]. Thus existence results still
follows from Thm. 1.42 and Thm. 1.44.
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Chapter 5 Mechanical behavior of biological soft tissues

5.2.2. Human soft tissues

We now turn to the description of the tensile elastic response for the most important
soft tissue types in the human face. These are adipose, skin and muscle tissue. Bones
are considered as solids and attached tendons as well as ligaments are neglected.
We also neglect small irregularities in the tissues such as hair follicles, small hair
muscles, nerves or blood vessels. Since the presented proteins play a prominent role
in the determination of biological soft tissue’s mechanical properties the descriptions
presented in Sec. 5.2.1 will often appear as building blocks.

5.2.2.1. Adipose tissue

Figure 5.2.4.: Electron micrograph scan of porcine adipose tissue.

Adipose tissue is a loose connective tissue mainly consisting of adipocytes, the fat
cells, which are embedded in the extracellular matrix. The ECM contains two colla-
geneous structures, the reinforced basement membrane, a collagen mesh surrounding
each adipocyte, and the interlobular septa, a network of long fibrous collagen bun-
dles (see Fig. 5.2.4 and Fig. 5.2.5).
Despite its relevance, not only in plastic and reconstructive surgery [94, 167, 240], but
also in forensics [145] and the understanding of the consequences of obesity [134, 263],
the development of biomechanical models for (white) adipose tissue only started
recently [6, 62, 63, 106, 240]3. Bi- and triaxial experiments in Sommer et al. [240]

3Different types of adipose tissue are distinguished. Heat producing brown adipose tissue is mainly
encountered in hibernating animals and mammal foetuses [255] and will not be considered here.
Human adults mainly possess white adipose tissue with different structures depending on its
desired functionality. As omental adipose tissue, which encloses the organs, it seems mainly
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5.2 Elastic response with respect to isochoric deformations

revealed the anisotropic behavior of fat tissue. Thus, strongly exploiting previous
insights from the study of other soft tissues, mainly the arterial wall, a non-trivial
anisotropic model has been proposed in [240].

Figure 5.2.5.: Sketch of a lobule of adipose tissue.

Considering the assembly of adipocytes and its enclosing reinforced basement mem-
brane as closed cell foam [63, 167, 240] a reasonable model for its contribution is
given by a neo-Hookean material law

Wcells = c

2(ι1 − 3) with c > 0.

The interlobular septa with its oriented collagen bundles can be described in the
form of a Fung-elastic material via

Wsepta = k1

k2

(
exp(k2[κι1 + (1− 3κ)ι4 − 1]2)− 1

)
,

where k1 is a stress-like parameter, k2 is a dimensionless parameter and 0 ≤ κ ≤ 1
3

describes the fiber dispersion, cf. [240]. The mechanical response of adipose tissue
with respect to tensile forces thus is given by

Wadipose = Wcells +Wsepta.

As most of the volume is occupied by the adipocytes, see Fig. 5.2.4, water inside fat
tissue can only move very slowly. Therefore it exhibits only very small compress-
ibility and often is modeled using incompressible material laws [240].

to be responsible for the protection of the inner organs [6]. In contrast, subcutaneous adipose
tissue is located under the skin and additionally takes the task of fat storage and acts as
thermal insulator. Eventually, white adipose tissue plays a “wide-ranging role in metabolic
regulation and physiological homeostasis, far beyond the simple paradigm of fat storage” [256]
(see also [160, 257, 263, 272]).
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5.2.2.2. Skin tissue

Figure 5.2.6.: Photomicrograph and diagram of a portion of the skin.

Human skin is a complex multi-layered soft tissue, cf. Fig. 5.2.6. The outer layers
are comprised in the epidermis. Its main constituent are hydrophobic cells that
contain an abundant amount of keratin, the keratinocytes. In direct contact with
the environment is the stratum corneum. It protects the body from environmen-
tal influences such as heat, physical injuries, microbes or ultraviolet light [174].
Largely consisting of dead keratinocytes, it is relatively stiff and admits only small
extension [105]. It occurs wrinkled, unfolds under tensile forces and only plays a
minor role in the mechanical properties of skin tissue [105, 238]. Below, we may
find the stratum lucidum. It only exists in the thick skin at the soles of our feet,
the fingertips and the palm of hands and consists of some layers of flat, dead ker-
atinocytes. The transition between living and dead keratinocytes happens in the
following stratum granulosum. Expansibility of epidermis is mainly attributed to
the stratum spinosum. Eventually the deepest layer of the epidermis is the stratum
basale. Its most popular task is the production of new keratinocytes for the other
four layers [255].
The second large part of the skin is the dermis. Forces exerted on the epidermis are
transferred via the dermal-epidermal junction to the papillary dermis, the outer layer
of the dermis. The adherence between the layers is enforced by cones reaching into
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the papillary dermis, cf. Fig. 5.2.6. The latter contains a small and loose distribution
of collagen and elastin fibers which are mainly oriented perpendicular to the dermal-
epidermal junction. It connects the latter with the reticular dermis, the main load
carrying constituent of the skin. It can be extended by roughly 25% under tensile
forces [105], and due to its capacity to displace its ground substance it can be
strongly compressed. Observed anisotropic properties of mammal skin tissue [10,
89, 238, 243] are attributed to a complex three dimensional network in this layer,
mainly consisting of collagen [32] and partly of elastin fibers [205].
To the knowledge of the author a fiber reinforced model for skin tissue has not yet
been published. Several others have been proposed, mainly based on phenomeno-
logical (membrane-)models. For a review of suggested models the interested reader
is referred to [281].
One of the more recent models, suggested in Bischoff et al. [36], is based on statis-
tical mechanics. It is similar to the neo-Hookean model which we use for isotropic
contributions of elastin and adipocytes. Aiming at the incorporation of material
stiffening at large strains, the Gaussian statistics for the neo-Hookean model are re-
placed by an 8-chain model using Langevin chain statistics. This yields the isotropic
Arruda-Boyce model [13]

WArruda−Boyce = NkΘ
√
n
(
βchainλchain +

√
n ln

( βchain

sinh(βchain)
))
, (5.2.4)

βchain = l−1
(λchain√

n

)
, λchain = 1√

3
√
ι1, (5.2.5)

where, according to the reinterpretation in [36], N is the collagen’s free fiber length,
n the collagen fiber density, k is Boltzmann’s constant, Θ = 298K is the absolute
environmental temperature and l(x) = coth(x) − 1

x
is the Langevin function. An

advantage of this model is the implicit incorporation of exponential stiffening of
collagen fibers within the inverse of the Langevin function l−1. With this approach
displacement-stress curves for various experimental results were reproduced, includ-
ing in vitro experimental data on rat tissue in [32] as well as scar tissue and data
from in vivo experiments [36]. A similar approach is used in Tepole et al. [253] for
the investigation of models for skin expansion and strain-triggered tissue growth.
The investigations in the PhD-thesis of Hendriks [132] suggest that the in vivo treat-
ment of the skin as one layer is not sufficient to adequately reproduce experimental
data. Instead a model with two layers is suggested, one for the reticular dermis
and one comprising the papillary dermis, the dermal-epidermal junction and the
epidermis. For small strains the author determines Young’s moduli for both layers,
which is reported to be roughly of a factor of 103 bigger in the reticular dermis than
in the comprised remaining layers. However, two-layer models require fine spatial
resolutions. Since already single-layer volumetric models of the skin lead to a very
large problems [26, 183], these more accurate two-layer models are challenging to
incorporate efficiently in finite element computations.
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5.2.2.3. Muscle tissue

Muscle tissue differs significantly from other biological soft tissues due to its ability
to generate stresses by contraction and the induced changes in the tissues geometry
and mechanical properties [249]. Three different muscle types are distinguished.
• Smooth muscles occur in various parts of the body, such as the skin or blood

vessels, and can not be controlled voluntarily [99, Chap. 11]. In mechanical
models for skin tissue these are in general neglected [36, 105].
• In contrast, striated skeletal muscles can be controlled voluntarily but also may

contract unvoluntarily. Occupying a major part of animal bodies, they are
“the prime mover of animal locomotion” [99, p. 392]. They can be stimulated
at high frequencies in which case they retain maximal tension. This state is
referred to as tetanized. The understanding of their passive and active behavior
is of great interest, amongst others in sports and medical sciences [39, 75, 101,
103, 107, 236].
• A special case of striated muscles are heart muscles [99, Chap. 10]. Due to

their specific task they can neither tetanize nor be controlled voluntarily.
Here, we focus on striated skeletal muscles. For details about cardiac and smooth
muscles we refer the interested reader to Fung [99]. Skeletal muscles, with focus on
medical relevance, are also nicely introduced by Oatis [198].
As depicted in Fig. 5.2.7, skeletal muscle is made of aligned bundles of muscle fibers,
the muscle fasciculi. Each of these fibers consists of several hundred up to several
thousand myofibrils. These are organized in repeated structures, the sarcomeres.
Adjacent sarcomeres as well as myofibrils are connected by the zwischenscheibe (Z-
disc). The contraction of muscles is realized by the proteins actin and myosin which
are located in the sarcomere. Actin filaments are directly attached to the Z-disc,
whereas myosin filaments are located in the center of the sarcomere. The myosin fil-
aments are held in place by titin, one of the largest proteins in the human body [125].
During muscle contraction cross-bridges between myosin and actin filaments displace
the actin filaments toward the center of the sarcomere [111, 143, 258, 284, 285]. This
is illustrated in Fig. 5.2.8. In this thesis, we focus on static models. Regarding the
active behavior of muscles the interested reader is referred to the recent publications
[121, 130, 217, 218].
The contributors to the passive elastic behavior of skeletal muscles are not yet fully
revealed. It is assumed that stretching of cross-links, stretching of proteins and
the deformation of the connective tissue [101] as well as active contractibility of
intramuscular connective tissue [227] play important roles in the transmission of
forces, cf. [146, 192]. The presence of muscle fibers suggests that a transversely
isotropic description with fiber direction perpendicular to the plane of symmetry
is promising. This assumption is confirmed in [195]. In [40] a relatively simple
incompressible and viscoelastic Ogden-type material law has been applied to describe
the passive mechanical properties of skeletal muscle under compression transversely
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Figure 5.2.7.: Structure of skeletal muscles.

to the muscle fiber directions. Full transversely isotropic models for muscle tissue
have already been used for the modeling of the tibialis anterior muscle of a rat in [107]
and for the modeling of passive cardiac tissue in Humphrey and Yin [148, 149].
Their model has been extended to the description of active and passive components
of skeletal muscles in Martins et al. [182]. Using the common decomposition into
isotropic and fiber-related contributions

Wmuscle = Wiso +Wfiber,

the tensile response of their model is specified through

Wiso = c
(

exp[b(ῑ1 − 3]− 1
)
,

Wfiber = A
(

exp[a(ῑ5 − 1)2]− 1
)
,

with modified strain invariants as defined in Sec. 5.1. In our numerical experiments
we will use a similar model. Only the volumetric model Wvol = 1

D
(√ι3 − 1)2 will be

replaced by a more reasonable one. Eventually, we mention the successful application
of models incorporating the muscle fibers using chain statistics in Böl [37].
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Figure 5.2.8.: Sketch of relaxed and contracted sarcomere.

5.3. Elastic response with respect to volumetric
deformations

The models which were presented above for the description of the mechanical reac-
tion with respect to applied tensile forces exploit significant insights into the tissue’s
micro-structure. In contrast, the description of the reaction to compressive forces is
solely based on elementary physical requirements, such as the limit behavior

Wc(F )→∞ for det(F )↘ 0, resp. det(F )→∞.

Various different models have been proposed for the case that Wc only depends
on the third principal strain invariant, for an overview cf. Doll and Schweizerhof
[84], Hartmann and Neff [128]. Focusing on the forward problem, sometimes even
violations of the few requirements on Wc are tolerated. For slightly compressible
materials the simple quadratic model

Wc(∇ϕ) = c0(det(∇ϕ)− 1)2, c0 > 0 (5.3.1)
has been successfully applied [84, 128, 144, 182], despite the fact that it does not
satisfy

lim
det(F )↘0

Wc(F )→∞.

This is justified due to relatively big constants c0 implying ι3 ≈ 1 for reasonable
applied forces. In the context of inverse problems we do not know a priori which of
the admissible forces will be chosen. Therefore Wc must satisfy (1.1.14).
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Unfortunately it is not possible to reproduce this limit experimentally to verify the
validity of a chosen model4. Therefore, from a modeling point of view, beyond the
range of experimental verification any derived stored energy function lacks justifi-
cation. For small values of ι3, we better interpret Wc as barrier function, similar
as in interior point methods [197, 224, 225], guaranteeing that iterates stay in the
admissible set Φ.
Models that are reasonable in both cases, det(∇ϕ) → 0 and det(∇ϕ) → ∞, are
mostly constructed as sum of two models Wc,1,Wc,2 satisfying

lim
det(∇ϕ)→0

Wc,1(∇ϕ) <∞ and lim
det(∇ϕ)→∞

Wc,1(∇ϕ) =∞,

resp.
lim

det(∇ϕ)→0
Wc,2(∇ϕ) =∞ and lim

det(∇ϕ)→∞
Wc,2(∇ϕ) <∞.

Again the interaction between both summands is not well understood and motivated
rather heuristically.
Nonetheless, there exist some results which help in the choice of models. For the
compressive part Wc,2 a widely used choice is

Wc,2(∇ϕ) = −2c1 log(det(∇ϕ))

= −2c1 log
(√

det(∇ϕT∇ϕ)
)

= −c1 log(det(C)) = −c1 log(ι3),

where C = C(∇ϕ) = ∇ϕT∇ϕ is the Cauchy-Green strain tensor, ι3 the third
principal strain invariant and c1 > 0. As has been shown in [56, 58] this allows for

Wc,1(∇ϕ) = c0(det(∇ϕ)2 − 1) = c0(ι3 − 1)

to choose constants c0 > 0 and c1 > 0 such that for ϕ→ id an Ogden-type material
law approaches the description of the (constitutively) linearized theory of elasticity.
Moreover the function

Sn+ 3 C 7→ − log(det(C)) ∈ R
is convex [248]. Thus the above choice of Wc,2 guarantees monotonicity of the
volumetric stress-strain relationship, if considered independently of other models.
Recently this has been generalized.
Theorem 5.13. Let f ∈ C2(R+). Then the function

f ◦ det : Sn+ → R, A 7→ f(det(A))

is convex if and only if

f ′′(s) + n− 1
ns

f ′(s) ≥ 0 and f ′(s) ≤ 0 for all s ∈ R+. (5.3.2)

4The lack of deeper insights in the development of models for the compressive part is empha-
sized by the fact that all proposed models, regardless whether they satisfy the elementary
requirements from Sec. 1.1.4 or not, can be nicely fitted to experimental data.
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Proof. See [172].

Besides the logarithmic example given above, this is satisfied for all functions f(s) =
s−k, k > 0. Thus, also for the second summand of the model proposed in [128],

Wc(∇ϕ) = c0

50(det(∇ϕ)5 + det(∇ϕ)−5 − 2) with c0 > 0.

Remark 5.14. Note that, as a direct consequence of the reasonable propertyW ′
c(id) =

0, the combination of this model with an Ogden-type material law does not approach
the descriptions of linearized elasticity for ϕ → id, cf. the computations in [56, pp.
186].

5.4. In vivo material parameters

In the first sections of this chapter models for different soft tissue types were in-
troduced. As nice illustrated by the reported measurements in [240], the material
parameters for these models vary strongly between individuals. Some of the influ-
encing factors are rather general such as dependencies on the age, gender and the
gender-specific differences in the natural aging process [4, 32, 150, 142]. Others are
more individual such as nutrition, short- and long-term environmental circumstances
as well as changes in metabolism [99, 139]. As a consequence of these effects, which
accumulate during life time, the use of “averaged” material parameters severely
degrades the quality of computational results.
Instead patient-specific parameters are mandatory, but difficult to attain. The com-
plicated, and at most superficially understood, chemical and mechanical interaction
between the constituents of biological soft tissue induces significant differences be-
tween in vivo and in vitro experiments. In [105, 212] skin samples are reported to
admit in vitro twice the maximal stretch observed in vivo. Therefore results from
in vitro experiments must be handled with care.
In the recent years the development of new experiments for measuring the relevant
quantities, such as stresses and strains, in vivo received increased interest. Many
soft tissues types can be distinguished by their different optical scattering proper-
ties. Thus, measuring the interference patterns of scattered light (speckle tracking),
time-dependent strain rates can be measured in vivo up to some millimeters depths
with a resolution of 1-10µm [176]. The corresponding imaging technique for the
in vivo measurement of stress-strain relationships is optical coherence elastogra-
phy (OCE) [159, 176, 250]. On the one hand this admits non-invasive detection of
tissue irregularities such as tumors or, using intravascular (catheter-based) OCE,
aneurysms [158, 250]. On the other hand, assuming that reasonable constitutive
laws are available, this technique offers the potential to access the corresponding
patient-specific in vivo material parameters. Regarding skin tissue this approach
has recently been investigated in [175] and, using the material model from [104] for

136



5.4 In vivo material parameters

arterial walls, in [9]. In the latter publication focus was on the determination of
fiber directions.

Often in OCE the required stress fields are applied on the skin. Better control
of the stress field, and thus the quality of the measured stress-strain relationship,
is expected for volume forces. In this regard greatest potential is attributed to
acoustomotive OCE which uses acoustic three dimensional radiation forces, cf. [154].
Also promising with respect to experimental setups is the magnetomotive OCE,
where magnetic nanoparticles are introduced into the tissue.

Besides the difficulties in measuring in vivo strains or stresses, the reliable determi-
nation of these quantities is further complicated by various properties of biological
soft tissues which we ignored so far. Any attempt to give a complete list of influ-
encing factors certainly will fail. Instead we only comment on some effects which
seem to play major roles and refer the interested reader to [99].

As mentioned earlier, the fluid content of biological soft tissues leads to viscoelastic
behavior [99, 106, 220, 238, 252]. One of the phenomena attributed to the viscoelas-
tic nature of soft tissues is the Mullins effect, i.e. strain dependent softening of the
tissue, and its induced anisotropy [213]. As a consequence of the Mullins effect bio-
logical soft tissues exhibit varying stress-strain curves during cyclic loading. On one
side there is a hysteresis loop, following different stress-strain curves during loading
and unloading. Therefore different material parameters have to be determined for
loading and unloading phases. In engineering literature biological soft tissues are
also called pseudo-elastic to emphasize the point that elastic material laws do not
describe a tissue’s mechanical behavior. Only under certain fixed conditions these
laws are meaningful.

Moreover each loading, resp. unloading, curve varies in cyclic loading. This variation
is strongest in the first loading loop and becomes negligible after several loops. In
the biomechanics community this issue is addressed by tissue preconditioning, i.e. by
monitoring the response to cyclic loads and postponing the measurement of stresses
and stretches until the curves repeat.

The presence of residual stresses and prestrain should be taken into account in the
development of accurate models [87]. These are believed to be generated by elastin
fibers which are stretched during development, whereas collagen and smooth muscle
cells, due to their shorter life time, do not contribute to this matter [49, 270]. In
arteries the residual stresses seem to be responsible to homogenize the stress distri-
bution in the arterial walls [98], similar to prestrain and residual stresses in pavilion-
roof constructions. Considering the influence of prestrain and residual stresses in
mitral leaflets, inconsistencies between experimental data, measured ex vivo, and in
vivo simulations could be explained in [212]. As aging entails degradation of elastin
residual stresses are in general smaller in comparable tissues of older people.
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5.5. Summary

Having an idea of the modeling of biological soft tissues we turn to the choice of
constitutive relations for our numerical experiments. In this regard we have to
keep in mind that chosen models should admit efficient implementations of the
stored energy function and its first three derivatives. This is challenging for models
based on chain statistics, such as the skin model of Bischoff et al. [36]. Even if
the inverse of the Langevin function is replaced by a cheaper approximation, such
as proposed in [60, 152], the complex derivatives and possibly non-negligible costs
for the computation of the logarithm and the hyperbolic sine do not easily admit
efficient implementations, even with the advanced function generation framework
used in the numerical experiments in the next chapter. For this reason, we do
not consider these models in our experiments and focus on fiber-reinforced models,
which provide the basis for most state-of-the-art models.
For the description of muscle tissue a modified version of the model of Martins et al.
[182] will be employed. It combines isotropic and anisotropic exponential stiffening.
The unphysical quadratic volumetric penalty term is replaced by the model proposed
in [128]. Setting

j = det(∇ϕ) =
√

det(C),
we get

Wmuscle = c
(

exp[b(ῑ1 − 3]− 1
)

+ d
(

exp[a(ῑ5 − 1)2]− 1
)

+ c0

50(j5 + j−5 − 2).

A similar model, proposed by Sommer et al. [240], is the basis for the description
of adipose tissue. It consists of a polynomial part for the isotropic contribution of
the adipocytes. The collagen septa is modeled in terms of an exponential Fung-
type model that incorporates a simple model for fiber dispersion. In contrast to
the assumed incompressibility in [240], we again use a compressible model with the
same volumetric penalty as in the muscle model:

Wadipose = c

2(ι1 − 3) + k1

k2

(
exp(k2[κι1 + (1− 3κ)ι4 − 1]2)− 1

)
+ c0

50(j5 + j−5 − 2).

Regarding skin tissue, to the knowledge of the author, no fiber-reinforced model
has yet been proposed. Having ruled out models based on chain statistics, in our
numerical examples we use a simpler model, proposed by Hendriks [132]. Using the
same volumetric penalty as for muscle and adipose tissue, it takes the form of a
compressible extended Mooney-Rivlin law:

Wskin = c10 (ι1 − 3) + c01 (ι1 − 3) (ι2 − 3) + c0

50
(
j5 + j−5 − 2

)
.

The models for muscle and adipose tissue were chosen as they represent state-of-the-
art understanding of the mechanical properties of the underlying tissues. Regarding
skin tissue, up to date, less involved models were proposed.
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5.5 Summary

Regarding the specification of material parameters we rely on reported data from
literature for our numerical experiments. For real patient-specific computations the
individual and spatially localized determination of in vivo material parameters is
necessary.
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6. Numerical Results

We now turn to experiments that demonstrate the behavior of the proposed affine
covariant composite step method and the derived model for implant shape design.
First we consider a two-dimensional example of control of nonlinear heat transfer
on the unit square. This example is used to explain the behavior of our composite
step method and to test its robustness.

Then we turn to problems in implant shape design. Obtaining the required patient-
specific material parameters and fiber orientations for fiber-reinforced models on
complex geometries is difficult. Therefore, on real world geometries, we have to
rely on simpler, isotropic models. In this regard, we split the numerical examples
for elastic materials into two groups, each containing two examples. First we use
state-of-the-art material laws on simple geometries, where we can define initial fiber
orientations manually. Then we present two examples on real patient geometries
using an isotropic, compressible Mooney-Rivlin model.

In all examples the algorithmic contraction parameters from Sec. 3.3 are

Θacc = 0.75, Θaim,x = 0.5 and Θaim,n = 0.25.

Regarding the minimal required accuracy in the computation of tangential step we
set δ0 = 0.25 to capture at least the two most significant binary digits. If not
specified otherwise we use the hybrid conjugate gradient method (HCG) for the
computation of tangential steps. Truncation is accepted if the relative energy error
is smaller than δ0. All appearing function spaces are discretized using linear finite
elements.

There will be a slight deviation from the presented algorithmic setting. Instead of
a fixed norm ‖ · ‖M , local norms ‖ · ‖M(xk) will be employed in each iteration.

The computations were performed with the help of the finite-element toolbox
Kaskade 7 [114], which is based on the Dune-framework [27, 28]. For direct solvers
we use the factorizations provided by Umfpack [73, 74] and, for multigrid solvers,
Mumps [7, 8]. For visualization ParaView [131] was used in the first examples.
In the last two examples, which require some more involved post-processing for the
visualization of implant shapes, Zibamira [242] was employed.
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Chapter 6 Numerical Results

6.1. Nonlinear heat transfer

In our first example we consider an optimal control problem in two dimensions with
distributed control and observation on the unit square Ω = [0, 1]2. We denote the
unknown heat distribution by y ∈ Y := W1,2(Ω) and the control by u ∈ U := L2(Ω).
The cost functional is a Tikhonov-regularized tracking type functional

J(y, u) = 1
2‖y − yref‖2

L2(Ω) + α

2 ‖u‖
2
L2(Ω). (6.1.1)

The constraints are given by a simple nonlinear model of heat transfer, which we
consider in its weak formulation

c(y, u)v :=
ˆ

Ω
κ(y)(∇y,∇v) dµ− 〈u, v〉L2(Ω),

for some test function v ∈W1,2(Ω) and

κ(y) = c‖y‖2
L2(Ω) + d

where (·, ·) denotes the Euclidean scalar product. With the nonnegative parameters
c and d we can modify the influence of the nonlinear part and the distance to a
singular problem. Thus, we can use these parameters to adjust the difficulty of our
problem and test the robustness of our algorithm.
The corresponding optimal control problem was analyzed in [55]. There it was shown
that y ∈ C(Ω) for all u ∈ L2(Ω) which implies boundedness of κ(y). Thus our choice
of W1,2(Ω) as search space for the heat distribution is admissible.
The desired solution, which is illustrated in Fig. 6.1.1, is given by

yref(x) = 8(1− x0)x0(1− x1)x1 for x = (x0, x1)T ∈ Ω.

The corresponding Lagrangian then is

L(y, u, p) = J(y, u) + c(y, u)p.

Recall, that the choice of the scalar product on Y × U influences the direction of
the normal step and thus affects the number of required outer iterations of our
algorithm. In order to at least partially capture some part of the structure of the
Lagrangian, we use local scalar products of the form

〈(z0, v0), (z1, v1)〉M(yk) = 〈z0, z1〉My(yk) + 〈v0, v1〉Mu

with
〈z0, z1〉My(yk) =

ˆ
Ω
κ(yk)(∇z0,∇z1) dµ+ 〈z0, z1〉L2(Ω),

and
〈v0, v1〉Mu = α〈v0, v1〉L2(Ω).
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6.1 Nonlinear heat transfer

Figure 6.1.1.: Reference solution.

Since Luu(y, u, p)v0v1 = 〈v0, v1〉Mu , application of the this inner product as pre-
conditioner renders the PPCG-method independent of the Tikhonov regularization
parameter α. Using the same discretization for state, control and adjoint state,
with n degrees of freedoms for each, we get from Thm. 4.2 that at least 2n of the 3n
eigenvalues of the preconditioned matrix for the tangential step cluster at 1.

For this example, and the following ones on error estimation, a direct factorization
was used for the computation of (simplified) normal steps, adjoint corrections and
in preconditioning the system that determines the tangential step.

Alg. HCG RCG

d c 1 101 102 103 104 105 1 101 102 103 104 105

10−5 5 6 17 20 14 16 5 9 22 19 28 24
10−4 5 6 13 28 22 12 5 8 22 57 17 14
10−3 4 6 17 23 17 16 5 8 15 24 15 15
10−2 4 6 13 15 17 19 6 8 14 20 17 18
10−1 4 6 10 19 21 19 6 8 13 24 20 20

1 5 6 9 14 23 18 7 8 11 14 16 17

Table 6.1.: Required iterations for different parameters c and d on a fixed
uniform grid with hmax = 2−7, and α = 10−6.

In Tab. 6.1 iteration numbers for various choices of the model parameters are given
for α = 10−6 and both the regularized and the hybrid conjugate gradient method.
Iteration numbers differ slightly from the ones of Tab. 4.1. This is mainly due to
the different minimal required accuracy in the computations of the tangential steps,
which is here given by δ0 = 0.25, whereas, in order to highlight the behavior of the
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different conjugate gradient methods in the presence of nonconvexities, δ0 = 10−3

was chosen in the computations for Tab. 4.1.
We observe that for the simplest problems (c = 1, d ≤ 10−4) both methods do not
differ. In this case our algorithm does not encounter nonconvexities and all conjugate
gradient methods for nonconvex problems coincide. For slightly more complicated
problems (c ≤ 10) truncation reduces the number of required iterations of the outer
loop. In average this stays true if we further increase the parameter c that controls
the nonlinear part. However, there also exist cases where RCG performs a bit better
than HCG, such as for c = 104 and d = 10−4 or d = 1.

(a) Computed state. (b) Computed control.

Figure 6.1.2.: State and control for an example of control of nonlinear heat
transfer.

In Fig. 6.1.2 computed control and solution are exemplarily given for

c = 103, d = 10−1, α = 10−6 and εtol = 10−6.

In Fig. 6.1.3(b) we see an adaptively refined grid, that was generated from the coarse
grid in Fig. 6.1.3(a). Since the spatial resolution is far below the printer resolution
the fully refined grid is not displayed. As explained in Sec. 4.4, the estimator aims at
an accurate resolution of the control variable. This can be observed from Fig. 6.1.2,
where we see that the grid refinement leads to discretizations that nicely captures
local features of the control variable, whereas the boundary layer of the state variable
plays a subordinate role and is not fully resolved.
Algorithmic parameters are plotted in Fig. 6.1.4. Grid refinement, marked by orange
triangles, occurs in the iterations 4-6, 8-14, 16-21. Then the maximal number of
vertices nmax = 50 000, allowed in the fine grid, is exceeded and no further refinement
is allowed. The mesh is refined from 5 vertices (15 degrees of freedom) to 66 623
vertices (199 869 degrees of freedom).
The chosen example is highly nonlinear and several adaptive refinement steps are
required to capture the problem structure. On the coarse grid the strong decrease
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6.1 Nonlinear heat transfer

(a) Initial grid. (b) Adaptively refined grid (7621 vertices).

Figure 6.1.3.: Initial and refined grid.

of the [ωf ] indicates that the algorithm makes fast progress to an optimal solution.
Following the mesh refinements in the iterations four to six a large tangential di-
rection is computed in the seventh iteration. This is related to both, the newly
discovered problem structure on the fine mesh, and unreliability of the computed
tangential direction since we are too far from the feasible region. For this reason in
this step the tangential step is strongly damped such that feasibility can be restored
first and the value of the cost functional f(xk) = J(yk, uk) increases. Also in the
following steps both mesh refinement and the normal steps lead to further increase
in f . After the mesh refinement ends we observe on the one hand a strong increase
in [ωf ] indicating that we are far from having attained optimality on the fine grid.
On the other hand, since feasibility is now violated only due to the presence of tan-
gential steps but no more as a consequence of mesh refinement, we see that there
is a sudden drop in the size of the normal steps. The chosen example problem is
already relatively complicated and about 20 further steps are required to get suffi-
ciently close to an optimal solution on the fine grid. These last iterations are costly.
In contrast the computational costs for the previous steps, that were computed on
significantly coarser grids, are negligible.

How challenging this problem is for our algorithm can be estimated from the shape
of the curve in Fig. 6.1.4(d)1. On the fine mesh the semi-logarithmic plot is concave.
Only slow progress towards the optimal function value is made until the region of
local convergence is reached in iteration 41.

1The plot in Fig. 6.1.4(d) illustrates the absolute difference between the cost function value at the
iterates and the final value of the cost functional, the latter serving as an approximation of the
optimal value. Therefore, this plot stops one iteration before the last.
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(c) Damping factors. (d) Cost functional.

(a) Lipschitz constants. (b) Composition of steps.

Figure 6.1.4.: Algorithmic behavior for c = 1 000, d = 0.1, α = 10−6, εtol = 10−6

and computation of the normal step with a direct factorization.
Iterations in which refinement occurs are marked by orange triangles.

The tangential steps have to be damped at several points, in the first iterations, after
mesh refinement and shortly before reaching the region of fast local convergence. In
contrast, damping of the normal step is not required. This is in accordance with
the reasoning in Chap. 3, where we designed our algorithm such that the computed
iterates stay in the Kantorovich region of local contraction of the constraint.

Observe that in the last two iterations the normal steps stagnate at a length of
approximately 10−13. This indicates that the maximal attainable accuracy in the
computation of the normal step is of the same size and we should not expect to
be able to achieve a higher relative accuracy (except for the case of vanishing right
hand sides, such as in the first iteration).

In Fig. 6.1.5 algorithmic parameters are plotted for the same example, but replacing
the direct factorization in the computation of the normal step with a PPCG method,
as described in Sec. 4.2, where we require a relative accuracy of 10−6. This effects the
computation of all parts of the possibly second order corrected composite step. In
particular we will apply a block triangular constraint preconditioner, as discussed in
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6.1 Nonlinear heat transfer

(c) Damping factors. (d) Cost functional.

(a) Lipschitz constants. (b) Composition of steps.

Figure 6.1.5.: Algorithmic behavior for c = 1 000, d = 0.1, α = 10−6, εtol = 10−6

and computation of the normal steps with a PPCG method.
Iterations in which refinement occurs are marked by orange triangles.

Sec. 4.1 and Sec. 4.6, in the computation of (simplified) normal step, adjoint variable
and tangential step.

The algorithmic behavior is similar to the case where we use a direct factorization.
Most sensitive is the estimate [ωf ], which starts to increase significantly earlier than
in the previous case.

Error estimation

For testing the proposed error estimator simple linear problems are used. We begin
with the above introduced example on a square geometry Ω = [0, 1]2 with distributed
observation and control. Let c = 0 and d = 1, which corresponds to the linear model
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of heat transfer. We assume homogeneous Dirichlet boundary conditions on ∂Ω and
consider the problem

min J(y, u)

subject to
ˆ

Ω
(∇y,∇v) dµ =

ˆ
Ω
uv dµ for all v ∈W1,2(Ω),

with α = 10−6 and J as defined above in (6.1.1). We begin with a coarse criss-cross
triangulation consisting of four triangles and five vertices, at the corners and the
center of Ω.
In Fig. 6.1.6 the estimated error is compared with the real error. Since the latter
is not easily available analytically we use the solution on an adequate finer grid.
For this we use the adaptively refined grid, refine it three times uniformly and
compute the solution on the thus generated grid. In Sec. 4.4.2 it was explained that
error estimates are in general not suitable for balancing error contributions. This is
confirmed in Fig. 6.1.6. Quantitatively the error estimates differ significantly from
the real error. For this example it underestimates the real error by roughly a factor
of 10. However, qualitatively it largely captures the discretization error which is
efficiently reduced on the refined meshes.

Figure 6.1.6.: Comparison of estimated and true error
for a quadratic constrained optimization problem.

To illustrate the influence of corner singularities on the local mesh resolution we
consider two examples of boundary control on a T-shaped domain

Ω =
{
x ∈ R2 : |x0| ≤ 1 and 0 ≤ x1 ≤ 2

}
∪
{
x ∈ R2 : |x0| ≤ 2 and 2 ≤ x1 ≤ 3

}
.

Both examples consider the problem

min J(y, u) = 1
2‖y − yref‖2

L2(Γo) + α

2 ‖u‖
2
L2(Γc)

subject to
ˆ

Ω
(∇y,∇v) + yv dµ =

ˆ
Γc

uv ds for all v ∈W1,2(Ω),
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6.1 Nonlinear heat transfer

with α = 0.01, but with different observation boundaries. The control boundary is
given through

Γc =
{
x ∈ R2 : x1 = 0

}
.

In the first example the observation is located on the opposite side of Ω on

Γo =
{
x ∈ R2 : x1 = 3

}
.

The reference solution is given by

yref(x) = 1− |x|2 for x ∈ Γo.

(a) Initial grid (orange: observation boundary,
dark gray: control boundary).

(b) Computed state on the adaptively refined
grid.

Figure 6.1.7.: Initial grid and computed solution for a problem of boundary
control.

The coarse grid for this problem is given in Fig. 6.1.7(a) and the corresponding
state on the adaptively refined grid in Fig. 6.1.7(b). Since the control is located on
a part of the boundary, marked in dark gray in Fig. 6.1.7(a), the grid is strongly
refined near this control boundary. Increased mesh refinement also occurs near the
intruding corners, where lower regularity than in convex domains is expected [116].
Moreover, we observe stronger mesh refinement in triangles whose longest edge is in
y-direction. This is a grid-dependent effect that occurs since state and control are
almost constant in x-direction.
In the second example the observation boundary coincides with the control bound-
ary, i.e. Γo = Γc. The reference solution is again chosen to be

yref(x) = 1− |x|2 for x ∈ Γo.

The coarse grid for this problem is given in Fig. 6.1.8(a) and the corresponding state
on the adaptively refined grid in Fig. 6.1.8(b). Since control and observation are
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located on the same part of the boundary, the grid is mainly refined in its vicinity.
On the control boundary refinement is strongest at the corners and in the center,
the regions where the curvature of control and observation are largest. For the
same reasons as in the last example grid dependent effects can be observed. In this
example the state is almost vanishing near the intruding corners. Thus no corner
singularities occur and there is no need to increase the spatial resolution in their
vicinity.

(a) Initial grid (orange: control and
observation boundary).

(b) Computed state on the adaptively refined
grid.

Figure 6.1.8.: Initial grid and computed solution.
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6.2 Examples from biomechanics

6.2. Examples from biomechanics

Now we present some examples related to the problem of implant shape design. The
coarse segmentations, that were provided for real-world geometries, neither contain
information on different tissue types nor on directional properties such as fiber di-
rections which are necessary to define anisotropic constitutive relations. Therefore,
we provide numerical examples involving state-of-the-art anisotropic material laws
only on simple geometries where we can analytically define fiber directions. For
geometries attained from medical image data we have to content ourselves with a
single isotropic material law.

In all computations we consider a Tikhonov-regularized tracking type cost functional

J(ϕ, g) = 1
2‖ϕ− ϕref‖2

L2(Γo) + α

2 ‖g‖
2
L2(Γc)

as cost functional and a pressure-type boundary control (see Sec. 2.2), i.e. nonlinear
boundary conditions of the form

σ(∇ϕ)n = gcof(∇ϕ)n on Γc.

The observation is located on a part of the domain’s boundary Γo ⊂ ∂Ω. Since
the corresponding control constraint was never violated in any of the experiments,
performed during the work on this thesis, the additional requirement g ≤ 0 was
neglected in the computations.

In particular for complex Fung-type material laws a maximal attainable accuracy of
εmax � 10−16 was observed in the solution of the linear saddle point systems. Thus,
the maximal attainable accuracy in all computations was set to εmax = 10−9. Recall
that the material laws are expressed in terms of the corresponding strain invariants,
i.e. the principal invariants of the Cauchy-Green strain tensor C(∇ϕ) = ∇ϕT∇ϕ,
while the unknown in our computations will be the deformation ϕ.

6.2.1. State-of-the-art material laws on simple geometries

In this subsection we work on the simple geometry

Ω = [−1, 1]× [−1, 1]× [−0.25, 0.25].

We consider two different combinations of material laws presented in Chap. 5. Re-
quiring not only the stored energy function, but also its first, second and third
derivative, the manual implementation of these material laws is highly error prone.
For this reason a template-based automatic function generation toolbox has been
added to Kaskade 7. With its help we can easily generate material laws of arbi-
trary complexity as well as their first three derivatives. Using template programming

151



Chapter 6 Numerical Results

techniques2 instead of virtual inheritance or tree structures [262] allows the C++-
compiler to generate highly optimized code, thus admitting efficient evaluations in
the assembly process.
In the following two examples we use the scalar products

〈v, w〉Mu
=
ˆ

Γc

vw ds in U

and
〈v, w〉My

=
ˆ

Ω
∇v :∇w + vw dx in Φ.

In both examples we require a relative accuracy of εtol = 10−3. On

Γd =
{
x ∈ R3 : max

i∈{0,1}
|xi| = 1

}

we assume homogeneous Dirichlet boundary conditions.

6.2.1.1. Skin and adipose tissue

(a) Initial grid. (b) Adaptively refined grid.

Figure 6.2.1.: Initial and final grid.
Green: skin tissue. Cyan: adipose tissue.

In our first example we combine a model for adipose tissue (Sec. 5.2.2.1) with one
for skin tissue (Sec. 5.2.2.2). As illustrated in Fig. 6.2.1, there is a thicker layer of
adipose tissue (cyan)

Ωadipose := {x ∈ Ω : −0.25 ≤ x2 ≤ 0.15}
2In particular SFINAE-based techniques (substitution failure is not an error) admit to remove
computational overhead that can not be eliminated by the compiler, such as addition or mul-
tiplication with zeros that are known at compile-time.
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6.2 Examples from biomechanics

and a thinner layer of skin tissue (green)

Ωskin := {x ∈ Ω : 0.15 < x2 ≤ 0.25} .

For adipose tissue we employ the material law proposed in Sommer et al. [240],
augmented by the penalty function of Hartmann and Neff [128] to enforce small
compressibility. Then, with

j = det(∇ϕ) = √ι3,

the stored energy function is given by

Wadipose := c

2(ι1 − 3) + k1

k2

(
exp(k2[κι1 + (1− 3κ)ι4 − 1]2)− 1

)
+ d

50
(
j5 + j−5 − 2

)
.

From [240, Table 2] we take the mean material parameters of the considered speci-
mens,

c = 0.3 kPa, κ = 0.09, k1 = 0.8 kPa, k2 = 47.3,

and for the penalty function we heuristically set d = 10 kPa. We assume that the
fiber directions of the interlobular septa, which are incorporated in the model via
the first mixed invariant ι4, are initially aligned along the z-axes.

As discussed in Sec. 5.5, we will use the extended Mooney-Rivlin law proposed in
Hendriks [132] for the description of the skin. Again it is augmented by the same
penalty function to account for compressibility. This yields the stored energy func-
tion

Wskin := c10 (ι1 − 3) + c01 (ι1 − 3) (ι2 − 3) + e
(
j5 + j−5 − 2

)
.

The material parameters of the corresponding incompressible model for human der-
mis in vivo are taken from [281],

c10 = 9.4 kPa and c01 = 82 kPa.

For the volumetric part we again use the choice e = 10 kPa. We let a pressure-type
control act on the control boundary

Γc =
{
x ∈ R3 : x2 = −0.25

}
.

On the observation boundary

Γo =
{
x ∈ R3 : x2 = 0.25

}
we define a reference displacement in z-direction, see Fig. 6.2.2(b), via

uref,z(x) = 1
2(1− x2

0)(1− x2
1).

153



Chapter 6 Numerical Results

This induces a reference deformation

ϕref(x) =


x0

x1

x2 + uref,z(x)

 .

In this setting the control essentially compresses the fibers that are aligned along
the z-axes. Thus these buckle and their contribution to the mechanical response is
negligible. Since the model for adipose tissue incorporates fiber dispersion still a part
of the fibers is expected to yield relevant contributions. The Tikhonov regularization
parameter is set to α = 10−2.

(a) Computed deformation. (b) Reference deformation.

Figure 6.2.2.: Deformations of the reference configuration for
an example for adipose and skin tissue.

The corresponding computed solution is given in Fig. 6.2.2(a). This example is rel-
atively complex. This can be observed from the algorithmic quantities that are
plotted in Fig. 6.2.3 as well as the large number of required steps. The strong non-
linearity of the constraint and the Lagrangian become manifest in large estimates
for the Lipschitz constants (Fig. 6.2.3(a)). Consequently only small steps in tan-
gential direction are allowed. This can be observed from Fig. 6.2.3(c) where we see
the damping factors ν and τ for the normal resp. tangential step. In the first 17
iterations the tangential steps are strongly damped, such that feasibility can be re-
stored by the normal steps. We observe from Fig. 6.2.3(b) that in this phase the
tangential step, which the algorithm would like to take, is significantly bigger than
the normal step and is reduced only slowly. In contrast to the previous example of
control of nonlinear heat transfer we have to dampen the normal step. In the first
iteration this is a consequence of the fact that the employed models do not yield
an equilibrium of forces for ϕ = id. For such models our algorithm needs its first
iteration(s) to get a more reasonable “initial” iterate. Secondly the normal steps
are dampened after mesh refinement. In this case it can not be guaranteed that the
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(c) Damping factors. (d) Cost functional.

(a) Lipschitz constants. (b) Composition of steps.

Figure 6.2.3.: Algorithmic behavior for a two-phase model composed of adipose
and skin tissue. Orange triangles on the horizontal axes indicate mesh

refinement.

normal steps stay in the Kantorovich region of the constraint since a priori we do
not know how far our iterates are from this region on the refined mesh.

In iteration 19 the algorithm seems to reach the region of local convergence. The
grid is refined in this iteration. After further three iterations, during which [ωf ]
is rapidly reduced to its lower bound 10−15, again undamped steps are accepted
and the grid is refined again. As this problem contains complex nonlinearities our
algorithm needs again some iterations to recover and eventually reaches the region
of fast local convergence in iteration 29.

Same as in the given example of nonlinear heat transfer we observe that the logarith-
mic plot of the deviation of the cost functional f(x) = J(ϕ, g) from the optimal value
f(x̄) = J(ϕ̄, ḡ) is rather concave, except for the iterations after grid refinement3.

3The plot in Fig. 6.2.13(d) illustrates the absolute difference between the cost function value at
the iterates and the final value of the cost functional, the latter serving as an approximation of
the optimal value. Therefore, this plot stops one iteration before the last.
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In this example we set the upper bound of allowed vertices to nv,max = 25 000. The
grid was refined from 1 844 vertices (11 285 degrees of freedom) to 40 194 vertices
(245 705 degrees of freedom). We observe that the skin tissue requires a significantly
higher resolution than the adipose tissue, see Fig. 6.2.1(b).
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6.2.1.2. Adipose and muscle tissue

(a) Initial grid. (b) Adaptively refined grid.

Figure 6.2.4.: Initial and final grid.
Green: skin tissue. Cyan: adipose tissue.

In the second example we again consider the model of Sommer et al. [240] for the
description of the adipose tissue (Sec. 5.2.2.1) and retain the initial fiber direction
of the interlobular septa. We employ two layers of same thickness. As illustrated in
Fig. 6.2.4, the adipose tissue (cyan) is located in

Ωadipose = {x ∈ Ω : 0 ≤ x2 ≤ 0.25}

and the muscle tissue (green) in

Ωskin = {x ∈ Ω : −0.25 ≤ x2 < 0} .

For the description of muscular tissue (Sec. 5.2.2.3) we use the model of Martins
et al. [182]. We replace their model for the volumetric part by the physically more
reasonable model of Hartmann and Neff [128],

Wvol(ι3) = cvol

50
(
j5 + j−5 − 2

)
,

where again
j = det(∇ϕ) = √ι3.

This yields the model

Wmuscle = c (exp (b(ῑ1 − 3))− 1) + A
(
exp

(
a(ῑ6 − 1)2

)
− 1

)
+ cvol

50
(
j5 + j−5 − 2

)
,

with cvol = 10 kPa and the remaining material constants chosen as in [182, Ex. 3.1],

c = 0.387 kPa, b = 23.46, A = 0.584 kPa and a = 12.43.
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The muscle fibers are assumed to be initially aligned along the x-axes. We let a
pressure-type control act on

Γc =
{
x ∈ R3 : x2 = −0.25

}
.

On the observation boundary

Γo =
{
x ∈ R3 : x2 = 0.25

}
we define the reference displacement, see Fig. 6.2.5(b), via

uref,z(x) = 1
2(1− x2

1)(1− x2
2),

resp.

ϕref(x) =


x0

x1

x2 + uref,z(x)

 .

The Tikhonov regularization parameter is set to α = 10−4.

(a) Computed deformation. (b) Reference deformation.

Figure 6.2.5.: Deformations of the reference configuration for
an example for adipose and muscle tissue.

Againt the control essentially compresses the fibers in the adipose tissue that are
aligned along the z-axes. Thus these buckle and their contribution to the mechanical
response is negligible. Since the model for adipose tissue incorporates fiber dispersion
still a part of the fibers is expected to yield relevant contributions.
The model of the muscle tissue requires larger forces to deform, compared to the
models of skin or adipose tissue. This is a consequence of both, the exponential
isotropic contribution and the exponential contribution for the fibers. As these are
initially aligned along the x-axes, they take up a considerable amount of the exerted
forces.
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The computed solution for this example is given in Fig. 6.2.5(a). Here, the grid is
refinement at several parts. At the observation boundary increased uniform refine-
ment occurs, see Fig. 6.2.5(a). On the control boundary we observe anisotropic mesh
refinement, which is strongest near the Dirichlet boundary, where the muscle fibers
are assumed to be attached (see Fig. 6.2.6(a)). Eventually, in Fig. 6.2.6(b) we also
observe increased mesh refinement at the interior contact surface between muscle
and adipose tissue. There discontinuous gradients are expected due to the different
models for the tissue types.

(a) Control boundary, muscle fiber direction
indicated by orange arrow.

(b) Inner boundary between muscle and
adipose tissue.

Figure 6.2.6.: Mesh refinement at parts of the inner and outer boundary.

The material laws in this example are more challenging than in the previous one. In
the algorithmic parameters this is reflected by big values of [ωf ] and correspondingly
strong damping of the tangential steps, in particular in the first iterations and after
mesh refinement. Observe that in the tangential step in the ninth iteration is too
optimistic and the following normal step is damped. Thus, to guarantee that we stay
in the Kantorovich region of the constraints, at least in the case that no refinement
occurs, we would have to choose stricter contraction parameters Θacc, Θaim,x and
Θaim,n. Following this too optimistic tangential step priority is attributed to restore
feasibility. Thus the tangential steps are again strongly damped for some steps and
the cost functional value increases slightly. Then the mesh is refined for the first
time. As to be expected after mesh refinement feasibility must be restored again
and larger normal steps occur as well as damping of the normal step in iteration 18.
Observe that the estimate [ωf ] still decreases until the same iteration 18 and directly
after increases rapidly. In Sec. 3.3.2 and Sec. 3.4 we described that our estimates for
the decrease in the cost functional may not be reliable in the case of large normal
steps, since we evaluate f ′(x) instead of the required quantity f ′(x + δn). For this
reason in cases where our algorithm takes large normal steps to restore feasibility,
such as in iterations 17 and 18, the estimates for [ωf ] may be misleading. However,
as soon as the normal steps become smaller we get again reasonable estimates. After
the second refinement step this effect does not occur. There [ωf ] directly increases
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(c) Damping factors. (d) Cost functional.

(a) Lipschitz constants. (b) Composition of steps.

Figure 6.2.7.: Algorithmic behavior for a two-phase model for adipose and
muscle tissue. Orange triangles on the horizontal axes indicate mesh refinement.

strongly and the tangential steps are strongly damped. While feasibility is restored
the cost functional strongly increases in the next iterations4. Again we observe,
except after mesh refinement, a rather concave shape of the absolute deviation of
the function value from the optimal value. In the remaining iterations the algorithm
reaches its region local convergence and terminates after 42 iterations. The strongly
oscillating damping factors for the tangential step in these last steps indicate that
the tangential damping factors are chosen too optimistic. A more regular behavior,
can be attained by stricter choices for the algorithmic contraction parameters.
In this example the mesh is refined from initially 851 vertices (5 251 degrees of
freedom) to 29 134 vertices (175 822 degrees of freedom), where mesh refinement
was switched off after exceedance of nv,max = 25 000.

4The plot in Fig. 6.2.7(d) illustrates the absolute difference between the cost function value at the
iterates and the final value of the cost functional, the latter serving as an approximation of the
optimal value. Therefore, this plot stops one iteration before the last.
Here Fig. 6.2.7(d) is a bit misleading since before mesh refinement the cost functional was

underestimated. Thus the decrease in iterations 25-28 is actually an increase in the function
value.
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6.2.2. Isotropic models on real-world geometries

Our last examples are concerned with the computation of implants in the context of
real patient data. We consider two cases of augmentation implants on the zygomatic
bone resp. the mandible.
For both examples we will model the soft tissue using a compressible Mooney-Rivlin
material law of the form

W (∇ϕ) = a0‖∇ϕ‖2 + a1‖cof(∇ϕ)‖2 + a2 det(∇ϕ)2 − a3 log(det(∇ϕ)),

where we determine the parameters a0, . . . , a3 such that near ϕ = id our model
approximates the descriptions of linearized elasticity with material parameters

EL = 1, νL = 0.45,

i.e.
a0 = 0.08625, a1 = 0.08625, a2 = 0.68875, a3 = 1.895.

The parameter EL is Young’s modulus and νL the Poisson ratio. They are related
to the Lamé constants via

λL = νLEL
(1 + νL)(1− 2νL) and µL = EL

2(1 + νL) .

The choice EL = 1 is no restriction since it results from the simple rescaling

g → E−1g and α→ E2α.

Again we employ the Tikhonov regularized tracking-type cost functional

J(ϕ, u) = 1
2‖ϕ− ϕref‖2

L2(Γo) + α

2 ‖g‖
2
L2(Γc),

with α = 0.05.
For the definition of the norm we use the symmetric and positive definite part of the
second derivative of a St.Venant-Kirchhoff material law, i.e. we define local inner
products in W1,2(Ω) via

〈v, w〉M(ϕk) =
ˆ

Ω
(λLtr (E ′(∇uk)∇v) tr (E ′(∇uk)∇w)

+2µL (E ′(∇uk)∇v : E ′(∇uk)∇w)) dµ,

where
E(∇v) = 1

2 (∇v +∇v∗ +∇v∗∇v)

is the strain tensor and uk = ϕk − id.
In the following all figures are generated with ZIBAMIRA [242].
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6.2.2.1. An implant at the zygomatic bone

(a) Computational domain. (b) Undeformed soft tissue.

(c) Reference. (d) Reference surface. Differences to the
undeformed surface are shaded.

Figure 6.2.8.: An implant on the zygomatic bone.

We begin with the task of computing an augmentation implant at the zygomatic
bone (Fig. 6.2.8(c)) from a desired shape ϕref as illustrated in Fig. 6.2.8(d). Thus the
skin surface determines the observation boundary Γo, whereas the control boundary
Γc is given by the contact surface between soft tissues and bones. The computa-
tional domain and the undeformed skin surface are illustrated in the first row of
Fig. 6.2.8. On the artificial soft tissue boundary Γd, where it was virtually cut from
its surrounding tissue, we impose homogeneous Dirichlet boundary conditions. Here,
transparent boundary conditions would also be reasonable.

For the attainment of a prescribed deformation ϕref on Γo an implant shape Ωrigid was
estimated (Fig. 6.2.8(c)). To compute the corresponding deformation of the forward
problem with our model we need again a formulation in terms of the pressure exerted
by the implant. For this we consider both observation and control on Γc. Then we
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let a pressure-type boundary condition act on Γc such that the normal displacement
on Γc lies on the implant boundary ∂Ωrigid, i.e. we solve the problem

min
(ϕ,g)∈Φ×L2(Γc)

1
2‖ϕ− ϕref,0‖2

L2(Γc) + α

2 ‖g‖
2
L2(Γc) (6.2.1a)

subject to E str
ϕ (ϕ, g)v −

ˆ
Γc

gcof(∇ϕ)nv ds = 0 (6.2.1b)

ϕref,0 = zn for z ∈ argmaxtx+ tn a.e. on Γc. (6.2.1c)

Denoting with ϕ0 a solution of this problem, we let ϕref = ϕ0|Γc . This is illustrated
in the second row of Fig. 6.2.8.

(a) Computed implant. (b) Computed (blue) and reference (orange)
implant.

Figure 6.2.9.: Comparison of implants on the zygomatic bone.

In Fig. 6.2.9(a) the computed implant is shown and a comparison of both reference
and computed implant in Fig. 6.2.9(b). Differences between both implant shapes
are not visible.

The post-processing step for the visualization of implant shapes with Zibamira
requires the projection of the unstructured onto Cartesian grids. This leads to a
less regular boundary of the contact surface between implant and bone than on the
unstructured grid. This can best be observed at the upper part of the implant.

Our choice of material parameters guarantees that the undeformed state is in equi-
librium5. Thus, starting with ϕ = id, we begin feasible and the first normal step
vanishes. Since the soft tissue between bone and skin surface is relatively thin this
example is not too hard to solve. Computations on the coarse grid, as presented
in [180], do not require globalization. Incorporating mesh refinement globalization

5As seen in the last examples, this is often not the case for more involved constitutive laws.
These are typically considered useful if an equilibrium state not to far from the undeformed
state exists. This is not related to pre- or residual stresses, where this behavior is to be expected.
Instead, this is a deficiency of these models.
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(c) Damping factors. (d) Cost functional.

(a) Lipschitz constants. (b) Composition of steps.

Figure 6.2.10.: Algorithmic behavior for the computation of an implant at the
zygomatic bone.

is only required for the tangential steps, mainly after the mesh refinement in itera-
tions two and three. In these two iterations the mesh is refined from initially 10 924
vertices (70 674 degrees of freedom) to 104 638 vertices (640 695 degrees of freedom).
Then the upper bound on the number of vertices nv,max = 100 000 is exceeded and
no further refinement is allowed. From Fig. 6.2.10(b) we see that only directly after
mesh refinement the composite step is dominated by the normal step. In all other
iterations only small corrections are required to restore feasibility and the tangential
step essentially determines the composite step. The semi-logarithmic plot of the de-
viation of the values of the cost functional from the optimal value on the refined grid
in Fig. 6.2.10(d)6 is, except for the first iterations after mesh refinement, of convex
shape. Our algorithm is able to make fast progress towards optimality in the first
iterations. When mesh refinement occurs, feasibility must be restored first, and the
cost functional values stagnate in iterations four and five. In the following iterations

6The plot in Fig. 6.2.10(d) illustrates the absolute difference between the cost function value at
the iterates and the final value of the cost functional, the latter serving as an approximation of
the optimal value. Therefore, this plot stops one iteration before the last.
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a roughly linear decrease is observed. This change from strict convexity to linearity
indicates that the resolution of the coarse mesh was not fine enough to capture the
complexity of the considered problem.
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6.2.2.2. An implant at the mandible

(a) Computational domain. (b) Undeformed soft tissue.

(c) Reference. (d) Reference surface.

Figure 6.2.11.: An implant on the mandible.

Finally, our last example is concerned with an augmentation implant at the mandible.
Again, the soft tissue is described by a compressible Mooney-Rivlin material law,
with the same material parameters as in the last example. The computational do-
main and the undeformed skin surface are given in the first row of Fig. 6.2.11. An
estimated implant is inserted and the corresponding deformation is computed by
solving (6.2.1). Reference implant and the corresponding skin surface are illustrated
in the second row of Fig. 6.2.11. Differences in the position of points on the skin
surface are difficult to observe. Rather differences in the surface normals and cor-
respondingly, differences in shading, are visible. This might be an interesting point
regarding “esthetic” cost functionals.

On the left side of Fig. 6.2.12 the computed implant is given. On the right both,
reference and computed implant, are shown. Differences between both implant
shapes are not visible. We observe a jagged implant boundary in both reference and
computed implant. These spikes are not part of the solution but artifacts of the
post-processing with Zibamira, which projects the unstructured grid to a uniform
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(a) Computed implant. (b) Computed (blue) and reference (orange)
implant.

Figure 6.2.12.: Comparison of implants on the mandible.

grid of moderate accuracy. Since in this example the implant is thinner than the
one in the previous example, this effect is more pronounced here.
Due to the thicker soft tissue surrounding the implant this problem is slightly
more difficult than the previously presented one. This can be first observed from
Fig. 6.2.13(b) and (d). In Fig. 6.2.13(b) we observe that the composite step δx is
almost of the same length as the tangential step δt. Moreover, the logarithmic plot
of the cost functional still is roughly convex (Fig. 6.2.13(d)).
Same as in the last example our choice of material parameters guarantees that the
undeformed state is in equilibrium. Thus, starting with ϕ = id, we begin feasible and
the first normal step vanishes. In the sixth iteration undamped steps are accepted
and the mesh is refined from 14 825 vertices (92 655 degrees of freedom) to 37 294
vertices (229 373 degrees of freedom). Due to the thickness of the soft tissue only a
small number of faces on the skin surface is refined. On the refined mesh the iterates
are no more in the region of local convergence. In Fig. 6.2.13(b) we see that a large
normal step is required to retrieve feasibility. With increasing damping factor τ for
the tangential step the newly encountered problem structure on the refined mesh also
affects the estimate [ωf ]. In the ninth iteration the damped normal step is relatively
large and significantly larger than the damped tangential step (Fig. 6.2.13(c)). Thus
we observe an increase in the cost functional value in this iteration (Fig. 6.2.13(d))7.
Same as in the previous example in most iterations the composite step is dominated
by the tangential direction, only in the three iterations after mesh refinement the
normal step has a larger influence.

7The plot in Fig. 6.2.13(d) illustrates the absolute difference between the cost function value at
the iterates and the final value of the cost functional, the latter serving as an approximation of
the optimal value. Therefore, this plot stops one iteration before the last.
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(c) Damping factors. (d) Cost functional.

(a) Lipschitz constants. (b) Composition of steps.

Figure 6.2.13.: Algorithmic behavior for the computation of an implant at the
mandible.
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Conclusion
In the course of this thesis a model for the implant shape design problem has been
developed. The influence of the implant on the surrounding soft tissue naturally
yields an obstacle problem in polyconvex hyperelasticity. Solving such a problem
numerically involves the treatment of a challenging contact problem. In order to
avoid this, the geometric model of the implant as obstacle was replaced by a me-
chanical model, wherein its influence is incorporated indirectly in terms of the force
exerted on the surrounding soft tissue. This leads to a formulation with a nonlin-
ear pressure-type boundary condition and the implant shape design problem can be
described as a nonconvex equality constrained optimization problem

min
(ϕ,g)∈Φ×L2(Γc)

J(ϕ, g) = J0(ϕ) + α

2 ‖g‖
2
L2(Γc)

subject to E str
ϕ (ϕ, g)v −

ˆ
Γc

gcof(∇ϕ)nv ds = 0 for all v ∈W1,p
0 (Ω;R3).

with g ≤ 0. Analytical results are difficult to attain in this setting. The nonlinear
pressure-type boundary condition does not admit a potential and thus the incorpo-
ration into the hyperelastic setting is intricate. Slightly simplifying the pressure-type
to Neumann boundary conditions, existence of solutions of the corresponding bi-level
optimization problem was established in Thm. 2.3.
For computations based on this model an affine covariant composite step method
was proposed. Its way to cope with the double aim of feasibility and optimality is to
split the full Lagrange-Newton step δx into a normal step δn and a tangential step
δt. Inspired by the affine covariant Newton method for underdetermined systems
of Deuflhard [76], the normal step is computed as a minimum norm correction
with respect to a suitable norm. The tangential step aims at the minimization
of the cost functional in the kernel of the linearized constraints. In this regard, the
cubic regularization method, as employed in Weiser et al. [277] and Schiela [226], is
extended to equality constrained optimization problems. A simplified Newton step
takes the role of a second order correction and helps us to avoid the Maratos effect.
Eventually, the globalization mechanism was adapted to the particular requirements
of elasticity theory, namely validity of the orientation preservation condition

det(∇ϕ(x)) > 0 a.e. in Ω.

For a practical realization of the composite step method, several strategies have been
proposed. The computation of the (simplified) normal step and the adjoint correc-
tion is equivalent to finding the solution to strictly convex constrained optimization
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problems. Thus, these quantities are uniquely determined and – depending on the
problem structure – direct factorizations or projected preconditioned conjugate gra-
dient methods (PPCG) are adequate.

The computation of the tangential step involves the solution of a nonconvex opti-
mization problem. In this context, a regularized conjugate gradient method (RCG)
was found to be more robust, but also more expensive, than the truncated conju-
gate gradient method (TCG). In order to profit from both, the increase robustness
of RCG and the performance of TCG both approaches were combined in a hybrid
method (HCG). This hybrid method can be interpreted as a safeguarding mechanism
for the detection of fast local convergence by algorithmic quantities.

We stress that there is no structure for nonconvex problems and each of the discussed
conjugate gradient methods for nonconvex problems may outperform the others for
suitable problems or even lead to failure of the outer iteration. Thus, it would be of
interest to identify classes of nonconvex problems for which regularization or trunca-
tion works particularly well. A candidate may be given through strictly polyconvex
problems. These contain a strictly convex part for the deformation gradient, that
can be used as preconditioner, and may admit meaningful interpretations of the
regularized problem.

Error estimation for adaptive mesh refinement was considered in the affine covari-
ant framework. Based on a hierarchical extension of the ansatz space, the error
in the primal variables of the Lagrange-Newton step is estimated in terms of the
employed norm. For efficient estimation of the discretization error the underlying
KKT-system is simplified to (perturbed) block-triangular form. The choice which
blocks to eliminate was motivated by the implant shape design problem, more pre-
cisely by the question of determining the influence of the resolution of the implant
shape on the computed deformation. The generated meshes for our examples seem
to be reasonable. If this is indeed the case is a question that cannot be answered
easily. The problem is that we would need a detailed understanding of the rele-
vance of the discretization accuracy of the constraint, the cost functional and their
interplay.

Moreover, we shortly discussed state-of-the-art models for the most relevant tissues,
skin, adipose and muscle tissue. These are non-convex and often exhibit anisotropy
and exponential growth of the elastic energy. The incorporation of these models in
numerical experiments yields further challenges for numerical solvers.

In the presented numerical examples it was demonstrated that the proposed algo-
rithm is able to cope with both state-of-the-art fiber-reinforced models and complex
geometries. It extends previous attempts to simulate therapeutic outcomes [163,
282], wherein only simple material models have been employed. To the knowledge
of this author the question of how to predict an implant shape, based on a desired
therapeutic outcome, has not been considered before.
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Open questions

The applicability of the developed model and algorithm requires further validation.
This involves the need to answer several open questions in different fields of research.
In the following, the most relevant for the task of implant shape design are shortly
addressed.

Selection of open theoretical questions. The mathematical understanding of
elastic problems is limited. For a non-exhaustive but more detailed discussion of
open problems, the interested reader is referred to Ball [17, 19].

1. The orientation preservation condition

det(∇ϕ) > 0

and the associated limit behavior of the stored energy function

lim
det(F )↘0

W (F ) =∞

lead to analytical difficulties. The set{
ϕ ∈W1,p(Ω) : E str(ϕ) =

ˆ
Ω
W (∇ϕ) dµ =∞

}

is dense in W1,p(Ω), for p <∞, which implies that the energy functional E is
not differentiable in W1,p(Ω). Thus, well-posedness of the formal first order
conditions cannot be proven. However, as discussed exemplarily for a Mooney-
Rivlin material law in Sec. 1.3, well-posedness can be expected in finite element
spaces, at least if our algorithm guarantees nondegeneracy of the iterates. A
better understanding of this issue is desirable.

2. The incorporation of the implant, either directly as obstacle, or indirectly via
pressure-type boundary conditions, is not trivial. Considering the implant as
an obstacle requires the treatment of a contact problem. This is not only
challenging numerically, but also theoretical results are hard to attain and a
better understanding of these problems is desirable.
Other challenges arise in the analytical treatment of the pressure-type bound-
ary conditions. Besides the fact that these are only formally related to the ob-
stacle problem, these boundary conditions change when the boundary changes.
Thus, they are non-conservative. An existence result including pressure-type
boundary conditions certainly is of interest.

Selection of open algorithmic questions. The affine covariant composite step
method leaves space for improvement.
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1. The inexact computation of the different algorithmic quantities requires a thor-
ough investigation, as it influences our algorithm at various points.
a) First we have to make sure that the estimates of the Lipschitz constants

are at most slightly affected. Close to the solution the relative accuracies
in the computation of the different quantities should admit at least linear
convergence.

b) Due to the inexact step computation orthogonality relations, such as
Galerkin orthogonality and the orthogonality between normal and tan-
gential step, do not hold any more. This should be taken into account in
the derivation of error estimators to properly separate discretization and
algebraic errors, cf. [12, 127].

c) Currently major parts of the computation time of the inexact solvers are
spent in the preconditioners, more specifically in the application of the
multigrid solvers. Therefore, one could replace the multigrid solvers by
suitable multigrid preconditioners, that asymptotically approach multi-
grid solvers. If this can be realized on a sound theoretical basis, we
expect a significant increase in the performance of the proposed compos-
ite step method. However, in the chosen affine covariant setting this is
challenging, since in multigrid methods the termination criterion is based
on suitable decrease of the residuals.

2. The complexity of realistic geometries imposes challenges regarding efficiency.
In order to accurately resolve the complex geometries, occurring in medical
applications, large number of degrees of freedom are necessary. To efficiently
cope with these geometries, new mesh refinement and coarsening strategies
must be developed. Standard mesh refinement strategies, such as the red-
green refinement for simplicial meshes [25], do not alter the covered domain.
Requiring an adequate representation of the computational domain already
on the coarse grid, the efficiency of adaptive algorithms can only be partially
exploited. We are so far lacking a balanced mesh coarsening and refinement
strategy that admits to recover the geometry obtained from the segmentation
of medical image data during refinement. However, convergence of such a
refinement scheme in three dimensions is a delicate matter, even more if grid
regularity should be retained. In addition this requires adjustments of error
estimators to take into account the additional geometric information.

3. The proposed error estimator nicely fits into the affine covariant setting. How-
ever, error estimation for optimal control problems is largely motivated by
heuristic arguments and a better theoretical and practical understanding is
needed.

4. The usual problem with affine covariance is of interest here. We would like to
have a rigorous proof of convergence. Due to the well-known difficulties with
cycling [76] in affine covariant Newton methods for PDEs such an existence
proof will need some adjustments of the proposed algorithm.
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Selection of open questions in biomechanics. Despite the impressive progress
since the emergence of the scientific field of biomechanics in the middle of the last
century, the understanding of biological processes in the human body still is largely
shaded in mystery.

1. One of the big challenges is the determination of patient-specific local mate-
rial parameters. It is well known that the mechanical properties of biological
soft tissues changes due to “extrinsic” aging, related to hostile environmental
conditions, and natural “intrinsic” aging [4, 99, 150]. This is only one of the
reason for the fact that material parameters have to be determined individu-
ally and spatially localized. Thus we need measurement techniques that are
capable of attaining in vivo localized information for different tissue types.
Previous attempts to estimate material parameters typically tried to compute
them from the gray-scale values of the medical image data [163]. This proce-
dure is limited in its accuracy and not able to determine the multiple different
parameters of complex material laws.
For superficial structures, such as the skin or artery walls accessed via catheters,
optical coherence elastography (OCE) [158, 159, 175, 176, 250], which distin-
guishes different tissues by their optical scattering properties, has recently
been successfully applied [158, 175]. However this technique can not be used
for deeper tissues such as adipose or skeletal muscle tissue.

2. Regarding the long term prediction of the outcome of medical interventions,
we have to better understand tissue growth [169, 264, 288]. Due to altered
loading conditions and transfer of forces the insertion of implants may trigger
tissue growth [83, 212, 253, 288]. As a first step it is important to understand
under which conditions implants lead to growth that has a significant influence
on the long-term esthetic outcome. Secondly, further understanding of the
growth process itself may help in the design of implants and the prediction of
therapeutical results.

Selection of general open questions. Eventually, we need a unified framework for
the incorporation of simulation and optimization algorithms in clinical applications.
In this regard, the realization of a model for TIMMS is a crucial step.

1. Validation of the computed implants and stress distributions with data from
real surgical interventions is necessary. Besides the obvious need of verifying
the outcome of any significant therapeutical validation, this might allow to
optimize the complicated descriptions for biological soft tissues.

2. Standardization must be in the center of such an attempt, in particular, stan-
dardization of interfaces is mandatory. It helps to avoid waste of resources
in siloed solutions. Moreover, unified interfaces strongly simplify validation
processes and interdisciplinary cooperation.

For most of the remaining open questions the ways to their solution are well-known
to the experts in the respective fields. These can be solved with reasonable effort
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in few years. The highly accurate determination of anisotropic in vivo material
parameters is expected to require more time, as adequate technical equipment must
be developed and produced.
In the last decades significant progress was made in many directions. The achieve-
ments in the calculus of variations in the second half of the 20th century did yield
a reasonable setting for the description of elastic material through the property of
polyconvexity. In the same time span both progress in mathematics and, more im-
portant, the development of new imaging and measurement techniques did admit the
development of increasingly accurate descriptions for biological soft tissues by the
biomechanics community. Today highly accurate, mathematically tractable models
for many biological soft tissue types exist. As demonstrated in this thesis, modern
algorithmic techniques admit solutions to the problems arising in the application of
these models.
Due to valuable contributions from many fields of research, instead of asking the
question, whether the accurate computational design of implants is possible, we are
at the point to ask when a suitable software will be available in clinical practice.
With the concentrated effort of experts in the involved fields this can certainly be
realized within few years.
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A. Functional analysis and the
calculus of variations

Definition A.1. Let T be a metric space.

• For compact T we denote by C(T ) = C(T, ‖ · ‖∞) the Banach space of contin-
uous functions on T endowed with the supremum norm

‖v‖∞ := sup
x∈T
|v(x)|.

• We denote by M(T ) the Banach space of regular Borel measures endowed with
the norm of total variation

‖ν‖tv := sup
Z∈Z(T )

∑
E∈Z
|ν(E)|,

where Z(T ) is the set of all finite, pairwise disjoint decompositions of T into
measurable subsets.

Theorem A.2. (Implicit function theorem)

Let X,Y,Z be Banach spaces, (x0, y0) ∈ X× Y and let F : U(x0, y0) ⊆ X× Y→ Z
be defined on an open neighborhood U(x0, y0) and F (x0, y0) = 0. Further, assume
that

• F is Fréchet differentiable in its second argument,
• Fy : Y→ Z is bijective and continuous in U(x0, y0),
• and, at (x0, y0), the function F is Lipschitz-continuous in its first argument

and continuous in its second.

Then,
1. for every x ∈ Br0(x0), there exist a positive numbers r0 and r such that there

is exactly one element y(x) ∈ Y, satisfying ‖y(x)−y0‖ ≤ r and F (x, y(x)) = 0,
2. and y(·) is Lipschitz continuous.

Proof. From the implicit function theorem of Hildebrandt and Graves [286, Thm. 4.B],
we get that 1. holds and y(·) is continuous. Leaves to show that y(·) is Lipschitz
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continuous. For sake of shortness not the whole proof of the implicit function theo-
rem is repeated here. Instead we begin, for x ∈ Br0(x0), with the inequality, cf. [286,
Prop. 1.2] with k = 1

2 ,

‖y(x1)− y(x0)‖ ≤ 2 ‖T (x1)y(x0)− T (x0)y(x0)‖ ,

where
T (x)y = y − Fy(x0, y0)−1F (x, y).

Then,

‖y(x1)− y(x0)‖ ≤ 2 ‖T (x1)y(x0)− T (x0)y(x0)‖
= 2

∥∥∥Fy(x0, y0)−1 (F (x1, y(x0)− F (x0, y(x0))
∥∥∥

≤ 2
∥∥∥Fy(x0, y0)−1

∥∥∥LF ‖x1 − x0‖ .

Thus, y(·) is Lipschitz continuous at x0.

Theorem A.3. (Riesz representation theorem)
Let K be a compact metric (or topological) linear space. Then C(K)∗ is isometrically
isomorphic to M(K) under the mapping

T :M(K)→ C(K)∗, (Tν)(f) =
ˆ
K

f dν.

Proof. See [279, Thm. II.2.5].

Theorem A.4. Let {uj}j be a bounded sequence in W1,p(Ω) with 1 ≤ p ≤ ∞ and
affine boundary values given by uF = Fx, F ∈Mm,n. Denote the associated gradient
parametrized measure by ν = {νx}x∈Ω. Then there exists another bounded sequence
{vj}j with the same boundary values such that the associated gradient parametrized
measure ν̄ is homogeneous an

〈ν̄, ϕ〉 = 1
|Ω|

ˆ
Ω

ˆ
Rm

ϕ(λ) dνx(λ) dx,

for any ϕ ∈ C0(Rm).

Proof. See [207, Thm. 8.1].
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Theorem A.5. Consider a sequence {uj}j, bounded in W1,p(Ω) with 1 ≤ p ≤ ∞
and its associated W1,p-parametrized measure ν = {νx}x∈Ω. Let

Fa =
ˆ
Mm,n

A dνa(A)

and ua(x) = Fax for a ∈ Ω. Then, there exists, for almost all a ∈ Ω, a bounded
sequence

{
waj
}
j
in W1,p(Ω) such that waj−ua ∈W1,p

0 (Ω), for all j, and the associated
W1,p-parametrized measure is νa.

Proof. See [207, Thm. 8.4].

Lemma A.6. Let {vj}j be a bounded sequence in W1,p(Ω) with 1 ≤ p < ∞. Then
there always exists another sequence {uj}j of Lipschitz functions such that {|uj|p}j
is equiintegrable and the sequences of gradients possess the same underlying W1,p-
parametrized measure.

Proof. See [207, Lem. 8.15].

Theorem A.7 (Tonelli). Let Ω be a domain in Rn and m ≥ 1. For functions
u : Ω→ Rm and continuous f : Rm → R̄ define the nonlinear function

F(u) :=
ˆ

Ω
f
(
u(x)

)
dx

Then the function F is weakly lower semi-continuous on Lp(Ω) with 1 < p <∞ and
weak-star lower semi-continuous on L∞(Ω) if and only if u 7→ f(u) is convex.

Proof. For a sketch of the proof see [214, Thm. 10.16]. For the complete proof see
[92, Thm. 1] or [181, Box 4.1].

Theorem A.8. Let {zj}j ⊂Mm,n be sequence of measurable functions with associ-
ated parametrized measure ν = {νx}x∈Ω. Then

lim inf
j→∞

ˆ
E

Ψ(x, zj(x)) dx ≥
ˆ
E

ˆ
Mm,n

Ψ(x, λ) dνx(λ) dx,

for every non-negative Carathéodory function Ψ and every measurable subset E⊂ Ω.

Proof. Analogous to [207, Thm. 6.11].

Lemma A.9 (Lemma of Mazur).
Let X be a metrizable locally convex space and {xj}j a weakly convergent sequence
xj ⇀ x ∈ X. Then there is a sequence {yj}j with corresponding index sets

Kj ⊂ Z, |Kj| <∞, argmink∈Kj
≥ j,
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such that for all j ∈ N

yj =
∑
k∈Kj

αjkxk,
∑
k∈Kj

αjk = 1, αjk ≥ 0, Kj ⊂ Z, |Kj| <∞,

i.e. yj is a finite convex combination of elements of {xj}j, and

yj → x.

Proof. See [221, Thm. 3.13].
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Nomenclature

Abbreviations

CG Conjugate Gradient Method

CT Computer Tomography

DICOM Digital Imaging and Communications in Medicine

DLY Deuflhard, Leinen, Yserentant (Error Estimator)

DWR Dual Weighted Residual Method

ECM Extracellular Matrix

FE Finite Element

FMG Full Multigrid Scheme

GMRES Generalized Minimal Residual Method

HCG Hybrid Conjugate Gradient Method

IGT Image Guided Therapy

KKT Karush-Kuhn-Tucker (Conditions)

MBT Model Based Therapy

MINRES Minimal Residual Method

MRT Magnetic Resonance Tomography

OCE Optical Coherence Elastography

PDE Partial Differential Equation

PPCG Projected Preconditioned Conjugate Gradient Method

PPCG Projected Preconditioned Conjugate Gradient Method

RCG Regularized Conjugate Gradient Method
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SQP Sequential Quadratic Programming

SSC Second Order Sufficient Optimality Condition

TCG Truncated Conjugate Gradient Method

TIMMS Therapy Imaging and Model Management System
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Notation

Φ Set of Admissible Deformations

co Convex Hull

ϕ Deformation

u Displacement (Elasticity) / Control (Optimal Control)

C Left Cauchy-Green Strain Tensor

E Strain Tensor

∇s Linearized Strain Tensor (Symmetric Gradient)

I Unit Matrix

Eext Energy Functional Associated with External Forces

E str Strain Energy Functional

E (Full) Energy Functional

W Stored Energy Function

id Identity

χ Indicator Function

L Lagrange Function

ds Surface Measure

λL, µL Lamé Constants

νL Poisson Ratio

EL Young’s Modulus

Mm,n Space of m× n-Matrices

Mn Space of n× n-Matrices

Mn
+ Set of Orientation-Preserving Square Matrices

Sn Space of Symmetric n× n-Matrices

Sn+ Set of Symmetric Orientation-Preserving n× n-Matrices
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On Set of Orthogonal n× n-Matrices

On
+ Set of Orthogonal Orientation Preserving n× n-Matrices

µ Lebesgue Measure

σ First Piola-Kirchhoff Stress Tensor

Σ Second Piola-Kirchhoff Stress Tensor

PT Piola Transform of a Tensor T

Q Preconditioner

ι1, ι2, ι3 Principal Strain Invariants

ι4, ι5, ι6 Mixed Strain Invariants

ῑ1, ῑ2, ῑ3 Modified Principal Strain Invariants

ῑ4, ῑ5, ῑ6 Modified Mixed Strain Invariants

R(f) Range of f

R Space of Real Numbers

R+ Set of Nonnegative Real Numbers

Πk Space of Polynomials of Order k

C(Ω) Space of Continuous Functions

Lpν(Ω) Lebesgue Space with Respect to Measure ν

Lp(Ω) Lebesgue Space

W1,p(Ω) Sobolev Space

Tdef Cauchy stress tensor

tr Trace of a Matrix

adj Adjugate Matrix

cof Cofactor Matrix

det Determinant
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