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1. Introduction  

1.1. Plant diseases 

“Plants make up the majority of the earth’s living environment as trees, grass, flowers, etc. 

Directly or indirectly, plants also make up all the food on which humans and all animals 

depend. Plants are the only higher organisms that can convert the energy of sunlight into 

stored, usable chemical energy in carbohydrates, proteins, and fats” (Agrios, 2004). 

“Plant diseases are very important part of plant protection within the system of plant/crop 

production. Diseases can significantly lessen the growth and yield or reduce the utility of a 

plant or plant product.  Healthy plants grow and function to the maximum of their genetic 

potential.  However, plants are considered to be diseased when they are negatively affected by 

a disease-causing agent that lead to interfering with their normal development and 

physiological functions” (Agrios, 2004).      

“Correct diagnosis of the cause of a disease is an essential step in order to construct a 

convenient strategy to manage the plant disease. Usually, the first step includes the 

determination of the probable cause of the disease: whether the disease is caused by an 

infectious agent (pathogen) or environmental factor. Since diseases in plants are caused by 

either non-living (abiotic, non-parasitic, non-infectious, ‘non-pathogenic’) environmental 

factors or living (biotic, parasitic, pathogenic, infectious) agents. On the other hand, plant 

diseases are grouped based on the causal agent involved (deficiency diseases, fungal diseases, 

bacterial diseases, viral diseases, mollicutes diseases, etc.), the plant part affected or the type 

of symptoms” (Agrios, 2004).  

 In general, plant disease is any growth or developmental condition that is not “normal” to that 

plant and can usually diminish its economic or aesthetic value. In many cases, the plant 

pathologists depend on symptoms and signs of the disease for hypothetical diagnosis of 

diseases in plants. The characteristic internal or external alterations showed by the plant in 

reaction to the disease-causing agent are called symptoms.  

Plant pathology is the study of the pathogens and of the environmental factors that cause 

disease in plants, and the methods of preventing or controlling disease and reducing the 

damage it causes. Uncontrolled plant diseases may result in less food and higher food prices, 

or in low-quality food (Agrios, 2004). Over the last decades scientists in molecular plant 

pathology have also established a new set of diagnostic tools and techniques that are used to 
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detect and identify pathogens even when they are present in diminishing small numbers or in 

mixtures with closely related pathogens. Such tools include detection with monoclonal 

antibodies, calculation of percentages of hybridization of their nucleic acids, and 

determination of nucleotide sequences of the nucleic acids of the pathogens. Since the mid-

1980s, decisive DNA fragments, so called DNA probes, complementary to specific segments 

of the nucleic acid of the microorganisms, have been labelled with radioactive isotopes or 

fluorophores and are used extensively for the detection and identification of plant pathogens 

(Agrios, 1997).  

1.2. Phytoplasmas as plant pathogens 

For nearly 70 years after viruses were discovered, many plant diseases were described that 

showed symptoms of general yellowing or reddening of the plant, or of shoots proliferating 

and forming structures that resembled witches brooms respectively. These diseases were 

thought to be caused by viruses, but no viruses could be found in such plants (Agrios, 2004).  

In 1967, Japanese scientists found out those plant pathogens known recently as phytoplasmas 

were the potential causes of plant yellows disease (Doi et al., 1967). After detection of these 

pathogens which lacking cell wall in the phloem tissue of infected plants and the evidence 

presented that these microorganisms, rather than hypothetical, undetectable viruses were the 

causal agents, plant pathologists and entomologists started to re-investigate of many plant 

diseases that previously expected as virus diseases since these causal agents could not be 

cultured in artificial media like the viruses. In the following years, many studies indicated the 

association of these microorganisms that previously named mycoplasma-like organisms with 

many different plant diseases. The methods followed for phytoplasms detection were electron 

microscopy of thin sections of the phloem, and tetracycline treatment of diseased plants as 

described by the Japanese plant pathologists.  

1.3. Definition of phytoplasmas  

Bacteria and mollicutes are prokaryotes. These are single-celled microorganisms whose 

genetic material (DNA) is not bound by membrane and therefore is not organized into a 

nucleus. Their cells consist of cytoplasm containing DNA and small ribosomes (70S). The 

cytoplasm in mollicutes is surrounded by cell membrane only, but in bacteria it is surrounded 

by a cell membrane and a cell wall (Agrios, 2004). Plant mollicutes also grow in the 
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alimentary canal, hemolymph, salivary glands, and intracellularly in various body organs of 

their insect vectors.  

Phytoplasmas (previously termed mycoplasma like organisms) belong to the class Mollicutes. 

They are single-celled plant pathogenic sub-microscopic microorganisms and similar to 

bacteria but much smaller than others (with a diameter less than 1 µm) (Figure.1.1). Since 

they lack cell wall, they can change shape (pleomorphic organisms). Phytoplasmas exist in 

phloem sieve elements in infected plants (Doi et al., 1967; Whitcomb and Tully, 1989) 

(Figure.1.2).  

 

Figure.1.1. Comparison of sizes of some eubacteria. Phytoplasmas (previously termed mycoplasma like 

organisms) belong to the class Mollicutes. They are single-celled plant pathogenic sub-microscopic 

microorganisms and similar to bacteria but much smaller than others (with a diameter less than 1 µm). 

Phytoplasmas have the same size as mycoplasmas. Figure taken from Saskias phytoplasma website, 
http://www.jic.ac.uk/staff/saskia-hogenhout/index.htm.  
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Figure.1.2. Pleomorphic phytoplasmas in sieve tubes. Phytoplasmas multiply in the sieve tubes of phloem and 

circulate through the sieve pores. Figure taken from INRA website http://www.international.inra.fr/research/ 

some_examples/a_national_collection_of_phloem_bacteria.  

Phytoplasmas grow and reproduce only in living host tissue. Therefore, unlike most human 

and animal mycoplasmas, phytoplasma cannot be cultured on artificial nutrient media (cell-

free media), involving the media on which all typical mycoplasmas grow (Lee and Davis, 

1992). This inability has made it difficult to determine the taxonomic status of phytoplasmas 

by the traditional methods applied to cultured prokaryotes. Currently, because the 

development of molecular tools has made it possible to identify the phytoplasma based on the 

nucleotide sequence of the 16S rRNA gene (Gundersen et al., 1994; Lim and Sears, 1989; 

Namba et al., 1993; Sawayanagi et al., 1999; Seemüller et al., 1994), since these 

phytopathogenic mollicutes are uncultivable and experimentally inaccessible in their hosts, 

knowledge of their biological properties is also restricted (Christensen et al., 2005). 

Therefore, the mechanisms by which phytoplasmas cause plant diseases are not well 

understood and make it difficult to develop means to control them. Phytoplasmas, however, 

have been extracted from their host plants and from their vectors in more or less pure form, 

and for most of them antisera, including monoclonal antibodies, have been prepared.  

Specific antibodies, DNA probes, RFLP profiles, and analysis of 16S rRNA genes have 

become extremely useful in the detection and identification of the pathogen in suspected 

hosts, in grouping and classifying the pathogens, and in controlling these diseases through 

production of pathogen-free propagating stock (Agrios, 2004). Recently, moreover, the full 

genomes of some phytoplasmas have been sequenced (Bai et al., 2006; Oshima et al., 2004) 

allowing new insights into their requirements (Christensen et al., 2005).  
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Molecular-based tools, and sensitive detection procedures developed in the past decade have 

permitted great advances in the diagnostics of diseases caused by phytoplasmas and have 

facilitated the characterization of phytoplasmas (Davies and Clark, 1992; Firrao et al., 1996).  

Plants infected with phytoplasmas show many different symptoms involve unseasonal 

yellowing, reddening or discolorations of the leaves, shortening of the internodes with stunted 

growth, smaller leaves, and excessive proliferation of shoots resulting in witch’s broom (a 

dense mass of shoots grows from a single point, with the resulting structure resembling a 

broom or a bird's nest), phyllody (the development of floral parts into leafy structures), 

sterility of flowers, necrosis of the phloem tissues and the general decline and the death of the 

plant (Agrios, 1997; Kirkpatrick, 1992; McCoy et al., 1989). 

 It seems that certain effects are on individual cells, while others are on cell interactions. The 

striking morphological and metabolic changes suggest that toxins might be produced by the 

microorganisms that influence the hormonal balance and interfere with photosynthesis. 

To date, these unique plant pathogens have been associated with diseases in several hundred 

plant species covering a geographic range from temperate to tropical areas and including 

many important food, vegetable and fruit crops; ornamental plants; timber and shade trees 

(McCoy et al., 1989; Sinclair et al., 1994; Lee et al., 2000) (Figure.1.3). Furthermore the list 

of diseases caused by phytoplasmas continues to grow. Phytoplasma, especially sugarcane 

white leaf phytoplasma, are responsible for losses of over 100 million baht (about Australian 

$4.5 million) each year to the sugarcane industry in Thailand (Wongkaew et al. 1997) and in 

India phytoplasma is also emerging as a major problem for sugarcane.  Important plant 

diseases caused by phytoplasmas are aster yellows, apple proliferation, coconut lethal 

yellowing, elm yellows, peach X-disease, big bud diseases of solanaceous plants, and many 

more. 
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Figure.1.3. Phytoplasmas and their diseases are worldwide. Phytoplasmas have been associated with diseases 

in several hundred plant species covering a geographic range from temperate to tropical areas and including 

many important food, vegetable and fruit crops; ornamental plants; timber and shade trees. Figure taken from 

http://plantpathology.ba.ars.usda.gov/pclass/pclass_phytoplasma_spread.html. 

1.4. Transmission and spread of phytoplasmal diseases  

Phytoplasmas are phloem-limited plant pathogens that are invading primarily sieve tube 

elements. Phytoplasmal diseases are spread primarily by sap-sucking insect vectors, most 

commonly leafhoppers but also some psyllids and planthoppers (Weintraub and Beanland, 

2006; Ploaie, 1981) and all these vectors are belonging to the Hemiptera (Rhynchota), which 

are a large and diverse order of exopterygote insects, which occur throughout the world and 

there are more than 60.000 species in around 100 families. The Hemiptera is now divided into 

3 sub-orders: Heteroptera (true bugs), Sternorrhyncha (scaleinsects, aphids, whiteflies, 

psyllids) and Auchenorrhyncha (leafhoppers, planthoppers, cicadas, treehoppers, and 

spittlebugs). 

1.4.1. Host cycle of phytoplasmas 

An insect vector acquires the phytoplasma after feeding on an infected plant for several hours 

or days (acquisition feeding). For 10 - 45 days, the phytoplasma moves through the insect and 

multiplies within specific organs (Ammar and Hogenhout, 2006). After this incubation period 
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the insect is able to transmit the phytoplasma to uninfected plants when it feeds (Murral et al., 

1996). Next, multiplication and spread of phytoplasmas in the host plant is accompanied by 

the appearance of disease symptoms (Figure.1.4). An infected insect will be able to spread 

disease for the rest of its life.  

 

Figure.1.4. Host cycle of phytoplasmas. (Agrios, 1997). 

Phytoplasma diseases tend to occur more often in outdoor planting than in greenhouse, where 

it is easier to detect and control leafhoppers. Phytoplasmas can be spread by vegetative 

propagation through cutting, storage tubers, rhizomes, or bulbs (Lee and Davis, 1992). In 

commercial plantations, infections can be obtained also by grafting. However, phytoplasma 

cannot be transmitted mechanically by inoculation with phytoplasma-containing sap. 

Furthermore, phytoplasmas are not known to be transmitted through seed or pollen. 
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1.4.2. Host Specificity of Phytoplasmas 

Plant host range for a phytoplasma is dependent upon vectors specificity and feeding habits 

(behaviours) (monophagous, oligophagous, and polyphagous) of these vectors. For example, 

North American aster yellows phytoplasmas (16SrI-A,-B) were transmitted experimentally by 

the polyphagous leafhopper Macrosteles fascifrons and other vectors to 191 plant species 

belonging to 42 families (McCoy et al., 1989). Not all vectoring insects can transmit all 

phytoplasmas and there are specific interactions of a particular phytoplasma with its insect 

vector. Some phytoplasmas, such as peach X-disease phytoplasma, may be transmitted by 

several species of leafhoppers; others, such as elm yellows phytoplasma, appear to be 

transmitted by one or only a few species (Lee and Davis, 1992).  

1.5. Phylogenetic position of phytoplasmas 

Phytoplasmas have diverged from gram-positive eubacteria, and belong to the Genus 

phytoplasma within the Class Mollicutes and order Acholeplasmatales (Figure.1.5.). Currently 

the phytoplasma is at candidatus status which is used for bacteria that cannot be cultured. 

 

 

Figure.1.5. Phytoplasmas are firmicutes. A. Phylogenetic relationships of several bacterial clades containing 

bacterial pathogens. B. The 5 phylogenetic groups within the Class Mollicutes. Plant pathogenic/symbiotic 

bacteria are indicated in green. GL, gene loss; WL, loss of cell wall. Figure taken from Saskias phytoplasma 

website, http://www.jic.ac.uk/staff/saskia-hogenhout/index.htm. 
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Recently, phylogenetic analyses based on 16S rRNA and ribosomal protein gene sequences 

have revealed that the uncultured phytoplasmas form a large discrete monophyletic clade 

within the class mollicutes (Gundersen et al., 1994). Phytoplasma taxonomic groups are based 

on differences in the fragment sizes produced by the restriction digest of the 16SrRNA gene 

sequence (RFLP) or by comparison of DNA sequences from 16S/23S spacer regions 

(Hodgetts et al., 2007).  

1.6. Management and control of phytoplasma diseases 

Methods of control vary considerably from one disease to another, depending on the kind of 

pathogen, the host, the interaction of the two, and many other variables (Agrios, 2004). 

Most serious diseases of crop plants appear on a few plants in an area year after year, spread 

rapidly, and are difficult to cure after they have begun to develop. Therefore, almost all 

control methods are aimed at protecting plants from becoming diseased rather than at curing 

them after they have become diseased (Agrios, 2004).  

In controlling phytoplasmal diseases, the primary concern is often prevention rather than 

treatment due there is no known cure for phytoplasmal infections. However, infected plants or 

dormant propagative tissue can be freed of phytoplasma by heat treatment. 

1.6.1. Prevention strategy 

Propagate from seed or from phytoplasma-free plants, that means select propagating material 

from sources known to be free of disease or indexed free of disease. 

Eliminate perennial and biennial weed hosts and eradicate known diseased trees as soon as 

they occur. Therefore, removal of phytoplasma infected plants eliminates sources of infection. 

Therefore, early, fast, specific and sensitive detection and diagnosis of phytoplasmas are very 

important for effective prevention strategies, especially because phytoplasmas may have a 

very long latency period. However, the most promising strategy for avoiding phytoplasma 

disease is the identification or development of resistant plant varieties (Welliver, 1999). In 

order to advance this field of research basic knowledge about the epidemiology, the 

pathogenicity mechanisms of the phytoplasmas, the effects of environmental factors on 

disease and symptom development, and the nature of resistance/tolerance in host plants is 

required 
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1.6.2. Control of insect vectors  

“When the pathogen is introduced or spread by an insect vector, control of the vector is as 

important as and sometimes easier than, the control of the pathogen itself. In the case of 

viruses, phytoplasmas, and fastidious bacteria, however, of which insects are the most 

important spreading agents, insect control has been helpful in controlling the spread of their 

diseases only when it has been carried out in the area and on the plants on which the insects 

overwinter or feed before they enter the crop. Controlling such diseases by killing the insect 

vectors with insecticides after they have arrived at the crop has rare proved sufficient. 

Therefore, in cases where the insect vector is known and the time of its occurrence 

established, insecticide programs may be of value when directed at the vector before it 

becomes established on the plants. Typically, insecticide sprays are of limited value since 

migrating vectors may transmit the phytoplasma before the insecticide kills those” (Agrios, 

2004). 

1.6.3. Management strategy 

Because phytoplasmas lack a cell wall , they are resistant against antibiotics that interact with 

cell wall synthesis like penicillin but other antibiotics with an alternative modes of action like 

tetracyclines  can inhibit their growth (bacteriostatic to phytoplasmas).  Therefore, remission 

of the disease symptoms can be achieved experimentally by injecting the antibiotic 

tetracycline but without continuous use of this antibiotic, disease symptoms will reappear 

again (Davies et al., 1968). In addition, antibiotic treatment is expensive and time-consuming. 

Therefore, the best strategy is to apply an efficient elimination program.  

As a conclusion, the only dynamic way to control phytoplasma infection has been to prevent 

the emergence by guaranty that clean planting material is used, or by quest to find and/or 

breed varieties of crop plants that are resistant or tolerant to the phytoplasma/insect vector. 

 

1.7. Anatomy of phloem cells 

Phloem cells conduct soluble organic material made during photosynthesis in leaves to rest of 

the plant. They are alive at maturity and tend to stain green (with the stain fast green). Phloem 

cells are usually located inside the xylem. The two most common cells in the phloem are the 

companion cells and sieve tube cells.  
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The sieve-tube cells lack a nucleus, have very few vacuoles, but contain other organelles.  The 

sieve tube is an elongated rank of individual cells, called sieve-tube members, arranged end to 

end. The endoplasmic reticulum is concentrated at the lateral walls. Sieve-tube members are 

joined end to end to form a tube that conducts soluble organic food (photosynthates) materials 

throughout the plant. The end walls of these cells have many small pores and are called sieve 

plates and have enlarged plasmodesmata (Esau, 1965). Companion cells retain their nucleus 

and control the adjacent sieve cells (Figure.1.6). 

 

 
Figure.1.6. Diagram of the longitudinal view of phloem cells. This image is from Purves et al., (1992). Life: 

The Science of Biology, 4th Edition. 

1.8. Some phytoplasma diseases of sugarcane 

1.8.1. Sugarcane yellow leaf syndrome 

Yellows diseases have been known since the early 1900s. One such disease, aster yellows, 

was first reported in 1902. Before 1967, its causal agent was thought by plant pathologists to 

be of viral origin because it could not be cultured in artificial media.  

Sugarcane yellow leaf syndrome (YLS), characterized by a yellowing of the midrib and 

lamina, (Figure.1.7), was first reported in the 1960s from East Africa (Rogers, 1969) and later 

from Hawaii (Schenck, 1990), South Africa (Cronje et al., 1998) and Cuba (Arocha et al., 

1999). It is now widely distributed in most sugarcane growing countries from all continents. 

Losses from 30% to over 60% of susceptible varieties have been reported (Schenck et al., 

1997; Comstock et al., 1994; Arocha et al., 2000). Symptoms of YLS have been attributed to 
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many causes, both biotic and a biotic, but the biotic causes are associated with infection by 

luteovirus or by phytoplasmas in Hawaii, Brazil, Australia, South Africa, Cuba, the USA and 

Mauritius. 

Phytoplasmas have been consistently associated with YLS, but latent infections also occur 

(Bailey et al., 1996; Cronje et al., 1998; Arocha, 2000; Aljanabi et al., 2001). 

 

 

 

Figure.1.7. Sugarcane yellow leaf syndrome (YLS). Sugarcane yellow leaf syndrome is characterized by a 

yellowing of the midrib and lamina. Symptoms consist of yellowing leaves with a bright yellow midrib, often 

when the rest of the lamina is still green. This picture was taken from Komor et al., 2010. 

1.8.2. Sugarcane white leaf and sugarcane grassy shoot 

Sugarcane white leaf (SCWL) and sugarcane grassy shoot (SCGS) occur only in the south-

east Asian region and not in the other sugarcane growing areas of the world. Both are caused 

by a single phytoplasma type that is a member of the SCWL group and appears to infect only 

sugarcane. The most characteristic symptoms of SCWL are the presence of leaves with total 

chlorosis, proliferating tillers and pronounced stunting. The leaves are narrower and smaller 

than those of healthy plants (Figure.1.8). SCWL is naturally transmitted by the leafhopper 

Matsumuratettix hiroglyphicus organism Matsumura (Matsumoto et al., 1968). Records on 

mechanically transmission as well as on transmission by aphids have not been confirmed 

(Rishi and Chen, 1989). 
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Sugarcane grassy shoot (SCGS) is one of the most important diseases of sugarcane in India. It 

was first observed in 1949 (Chona, 1958). SCGS has been recorded in most sugarcane- 

growing areas of India and is known to occur also in Thailand (Wongkaew et al., 1997; 

Sdoodee et al., 1999). SCGS disease is characterized by the production of a large number of 

thin, slender, adventitious tillers from the base of the affected stools. This profuse growth 

gives rise to a dense or crowded bunch of tillers bearing pale yellow or chlorotic leaves which 

remain thin, narrow, reduced in size and have a soft texture. The vector(s) responsible for the 

natural spread of SCGS have not been identified. There are reports on transmission of SCGS 

by three different species of aphids as well as by the fulgorid Proutista moesta Westwoo 

(Chona et al., 1960; Edison et al., 1976). However, these reports have not been confirmed 

(Rishi and Chen, 1989). 

 

 Figure.1.8. Sugarcane white leaf (SCWL). SCWL disease is caused by phytoplasma in Thailand. The most 

characteristic symptoms of SCWL are the presence of leaves with total chlorosis, proliferating tillers and 

pronounced stunting. The leaves are narrower and smaller than those of healthy plants. This picture was taken 

from Komor et al., 2010. 

1.9. Detection of sugarcane phytoplasma infections 

Sugarcane phytoplasma infections can be detected by microscopic examination of phloem 

tissue sections stained with the DNA fluorochrome4-6 diamidino-2-phenylindole (DAPI) 

(Seemüller, 1976; Sarindu and Clark, 1993). This procedure is simple, rapid and not much 
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expensive. However it is limited when the phytoplasma population is very low and unevenly 

distributed among the plant host organs, as is often true for sugarcane. 

For detection and identification of sugarcane phytoplasmas, the powerful PCR technology has 

widely been employed in several laboratories. It offers several advantages over other methods 

including versatility, relative simplicity, specificity and high sensitivity. Primers amplifying 

rRNA gene sequences proved most suitable for PCR. It may be performed as one-round PCR 

or by reamplifying the DNA fragments obtained in the first amplification using internal 

primers (nested-PCR). Very often in affected sugarcanes the phytoplasma numbers are so low 

that infections could be identified only through the highly sensitive nested PCR assay (Tran-

Nguyen et al., 2000; Aljanabi et al., 2001). 

1.10. Sugarcane yellow leaf syndrome in Hawaii 

A novel sugarcane disease was observed in Hawaiian sugarcane plantations in the 1990s, 

characterized by a yellowing of the leaf midrib, which was followed by stunted leaf tops and 

yield decline (Schenck, 1990, Lehrer et al., 2009). Similar symptoms were reported shortly 

later from plantations in Brazil, mainland USA and South Africa (Vega et al., 1997; 

Comstock et al., 1994; Bailey et al., 1996).  

The disease was called Yellow leaf syndrome (YLS) and classified in 2000 as a “disease of 

unknown origin” (Lockhart and Cronje, 2000). Research on the nature of the causal agent was 

controversial among plant pathologists. A RNA-virus was isolated from symptomatic plants 

and named Sugarcane yellow leaf virus (SCYLV). It was proposed as the causal agent for 

YLS (Borth et al., 1994; Vega et al., 1997). A survey of YLS-diseased sugarcane plants in 

Africa failed to reveal a close correlation between SCYLV and symptoms, a better correlation 

was seen between the presence of a phytoplasma infection and symptom expression (Cronje et 

al., 1998). The phytoplasma-caused disease was called Leaf yellows (LY) in contrast to the 

virus-caused disease, which is now called Yellow leaf (YL).  

The phytoplasma was named Sugarcane yellow leaf phytoplasma (SCYLP). It was found in 

sugarcane from Australia, South Africa, Cuba, India and Mauritius (Arocha et al., 1999, 

2005a; Cronje et al., 1998; Aljanabi et al., 2001; Gaur et al., 2008), sometimes together with 

SCYLV. Severe sugarcane diseases in South-East Asia and Africa are known to be caused by 

phytoplasma (Marcone, 2002), for example White leaf (Chen and Kusalwong, 2000), Grassy 

shoot (Viswanathan, 2000), Green grassy shoot (Pliansinchai and Prammanee, 2000) and 
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Ramu stunt (Suma and Jones, 2000). Twenty-five different phytoplasma isolates were 

obtained from North Australian sugarcane plants and none of them was closely related to 

White leaf and Grassy shoot, although also none of them could be related to sugarcane disease 

symptoms (Tran-Nguyen et al., 2000).  

Many publications deal with the Sugarcane yellow leaf virus and the associated disease, for 

example its worldwide distribution (Abu Ahmad et al., 2006; Komor et al., 2010), its 

nucleotide sequence (Moonan et al., 2000; Smith et al., 2000), the transmission to the plant 

(Schenck and Lehrer, 2000; Lehrer et al., 2007) and the physiological effects on the infected 

plant (Yan et al., 2009). The virus-caused leaf yellowing syndrome is now accepted as an 

important, worldwide threat for sugar yield (Grisham et al., 2002; Lehrer et al., 2009). Also 

the South African sugar industry, for which originally the phytoplasmas were thought to be 

the main reason for YLS, appears to be predominantly infected by SCYLV and not by 

phytoplasma (Rutherford et al., 2004). However, the YLS-problem is not fully solved yet. 

The Hawaiian sugarcane cultivars were differentiated into so-called susceptible cultivars 

which contain relatively high titres of SCYLV, and resistant cultivars with 100 time’s lower 

virus titres (Zhu et al., 2010). Experiments with infected and virus-free plants of the same 

cultivar indicated that the viral infection led to higher symptom expression and to yield losses 

(Lehrer and Komor, 2008). The picture became less clear, when susceptible cultivars (i. e. 

with high virus-titre) and resistant cultivars (i. e. with low virus titre) were compared. The 

correlation between symptom expression and SCYLV-presence was not strict, some strongly 

infected cultivars exhibited relatively little symptoms and some resistant cultivars showed 

symptoms, although at low intensity (Lehrer and Komor, 2008). Therefore the question arose, 

whether some of the Hawaiian sugarcane cultivars were also infected by Sugarcane yellow 

leaf phytoplasma (SCYLP), thus causing leaf yellowing symptoms independent of or together 

with SCYLV. The simultaneous presence of SCYLV and SCYLP was reported to aggravate 

the leaf yellowing symptom expression in sugarcane (Aljanabi et al., 2001).  

So far sugarcane white leaf or sugarcane grassy shoot symptoms had not been reported in 

Hawaiian plantations; however the presence of a low-symptom pathogen such as SCYLP may 

have escaped attention of breeders and growers. There are two reports about phytoplasma 

diseases in Hawaii, one about water cress yellows caused by an Aster yellows type 

phytoplasma and transmitted by an accidentally introduced leaf hopper (Borth et al., 2002; 

2006), the other about a yellows disease of a native tree, Dodonaea viscosa, caused by a 

Western X-disease phytoplasma (Borth et al., 1995).  
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We tested Hawaiian cultivars (and for comparison a few cultivars from Cuba, Egypt and 

Syria) for phytoplasma to reveal whether sugarcane phytoplasma is around in Hawaii and in 

Hawaiian sugarcane plantations. 

The main objectives of this project were to determine the following: 

1. Possible association of phytoplasma(s) infection with YLS symptoms in sugarcane plants, 

using of molecular techniques, namely PCR, for a more accurate determination.  

2. Which type(s) of phytoplasma(s) are associated with YLS symptoms in sugarcane plants 

from Hawaii breeding station, Hawaii plantations, Cuba, Middle East and areas in Thailand?  

3. How does this type(s) compare to other known phytoplasma types by phylogenetic 

analysis? 

4. Could it be that Hawaiian plantations have phytoplasma after hot water treatment? 

5. Can sugarcane aphid (Melanaphis sacchari) transmit the detected phytoplasma to 

sugarcane plants?  

6. Ultrastructural changes of the leave anatomy and cytology by phytoplasma infection and 

cytological location of phytoplasma. 
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2. Material and Methods  

2.1. Material  

Balance (Mettler P1210) 

Centrifuges, Type centrifuge 5403 (Eppendorf) 

Centrifuge, Type Mikro 20 (Hettich)  

Centrifuge, Type UNIVERSAL 32R (Hettich) 

Diamond knife (type 35°, Diatome, Biel, Switzerland) 

Electron microscope, Type ZEISS 902 (Zeiss, Oberkochem)   

Gel Electrophoresis, Type GNA 100 (Pharmacia LKB) 

Gene power supply, type GPS 200/400 (Pharmacia) 

Mini-Vertical Gel Electrophoresis, Type SE 250 and SE 260 (Mighty small II) 

Thermomixer comfort (Eppendorf) 

Thermal cycler, Type PTC- 100 (MJ Research) 

 Thermal cycler, Type Mastercycler personal, with heated lid and 1 personal card, 115 V/60 

Hz (Eppendorf) 

Thermal cycler, type MyiQ qPCR detection system for single-colour experimentation (Bio-

rad) 

Spectrophotometer, Type 650 (Beckman) 

Ultra cut microtome (Leica Microsystems, Wetzlar, Germany) 

Vortexer, Type REAX-1R (Heidolph) 

Heated magnetic stirrer, Type MR 82 (Heidolph) 

Microwave oven, Type KOR- 6115 (Alaska) 

Nanophotometer, Type UV/Vis spectrophotometer (Implen) 

pH-mV-meter , Type  531 (Knick) 

UV-SYSTEME (NTAS) 

2.1.2. Chemicals and Enzymes  

2.1.2.1. Chemicals  

Agarose NEOO (Carl Roth GmbH) 

30% Acrylamide  

10% Ammonium Persulfate  
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BSA (Sigma-Aldrich Chemie Gmbh) 

Chloroform-isaomyl alcohol 

dNTP Set, molecular biology grade ( MBI Fermentas ) 

Ethanol  

Phenol 

Polyvinyl pyrrolidone (PVP) (Sigma-Aldrich Chemie Gmbh) 

2.1.2.2. Enzymes  

Proteinase K (Roch Diagnostics GmbH) 

RNase A (Promega GmbH) 

RasI ( MBI Fermentas ) 

HpaII ( MBI Fermentas ) 

HinfI ( MBI Fermentas ) 

KpnI ( MBI Fermentas ) 

MesI ( MBI Fermentas ) 

Taq DAN Polymerase (MBI Fermentas) 

2.1.3. Buffers, Solutions  

2.1.3.1. Buffer and solutions for DNA extraction   

Table.2.1. Ingredients of CTAB extraction buffer. 

Final concentration Reagents For 100 mL Stock 
2% CTAB 2 g  
2% PVP(MW 40000) 2 g  

1.4 M NaCl 28 ml 5 M 
20 mM EDTA pH 8.0 4 ml 0.5 M, pH 8.0 
100 mM Tris  HCl pH 8.0 10 ml 1 M, pH 8.0 

2% 2-mercaptoethanol 2 ml  

 

The solution was prepared without CTAB, PVP and ß-mercaptoethanol and autoclaved for 20 

min. When needed add 2% CTAB (w/v) , 2% PVP (w/v) and 2% ß-mercaptoethanol and 

heated at 65°C in order to dissolve  CTAB and PVP.  

Phenol: chloroform: isoamyl alcohol (25:24:1) 

Chloroform: Isoamyl alcohol (24:1 v/v) 

Isopropanol 100% 
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5M NaCl 292.2 g/L 

RNase A (Promega GmbH) 

Ethanol 100% 

Ethanol 70% 

TE 1X (10 mM Tris, 1 mM EDTA, pH 8.0) 

2.1.3.2. Buffer for gel electrophoresis  

TBE 10X (108 g  Tris base, 55 g Boric acid, 40 ml 0.5 EDTA, pH 8.0, H2O was added to final 

volume 1Liter.) 

2.1.3.3. Buffer for PCR  

10X Taq Buffer with KCl and 15 mM MgCl2 (100 mM Tris-HCl, pH 8.8, 500 mM KCl, 0.8% 

(v/v) Nonidet P40 and 15 mM MgCl2) 

10X Taq Buffer with (NH4)2So4 and 20 mM MgCl2 (750 mM Tris-HCl, pH 8.8, 200 mM 

(NH4)2SO4 and 0.1% (v/v) Tween 20 and 20 mM MgCl2 

MgCl2 1M (203 g MgCl2.6H2O, add H2O to 1L) 

2.1.3.4. Buffer for restriction enzymes  

10X Buffer Tango (33 mM Tris-acetate, pH 7.9 at 37°C, 10 mM Mg-acetate,  

66 mM K-acetate and 0.1 mg/ml BSA) 

10X Buffer KpnI  (10 mM Tris-HCl, pH 7.5 at 25 c, 10 mM MgCl2, 0.02% Triton X-100 and 

0.1 mg/ml BSA) 

2.1.3.5. Buffer for polyacrylamide gel electrophoresis  

Acrylamide: bisacrylamide (29:1) (% w/v) (29g acrylamide, 1g N,N-methylenebisacrylamide, 

H2O to 100 ml) 

1X TBE electrophoresis buffer (89 mM Tris-borate, 2mM EDTA, pH 8.0) 

TBE is usually made and stored as a 5% stock solution. The pH of the Buffer should be 

approximately (8.3). Polyacrylamide gels are poured and run in 0.5x or 1xTBE at low voltage 

(1-8 V/cm) to prevent denaturation of small fragments of DNA by Joulic heating. Other 

electrophoresis buffers such as 1x TBE can be used, but they are not as good as TBE. 
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10 %( w/v) Ammonium persulfate (ammonium persulfate 1g, H2O to 10 ml). This solution is 

used as a catalyst for the copolymerization of acrylamide and bisacrylamide gels. 

This solution may be stored at 4°C for several weeks.  

TEMED: electrophoresis grade TEMED is available from Bio-Rad, Sigma, and other 

suppliers. This solution is stored at 4°C. 

2.1.4. Kits  

2.1.4.1. Isolation of Nucleic Acids for PCR   

High Pure PCR Template Preparation Kit (Roche Diagnostics GmbH) 

Genomic DNA purification Kit (MBI Fermentas) 

2.1.4.2. Nucleic acids purification  

Agarose Gel DNA Extraction Kit (Roche Diagnostics GmbH) 

High Pure PCR product purification Kit (Roch Diagnostics GmbH) 

2.1.4.3. Q-PCR  

 SensiMix II probe (2X) kit (BIOLINE) 

SsoFast Probes Supermix kit (BIO-RAD) 
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2.1.5. Oligonucleotides  

Table.2.2. Sequences of universal primers used in the amplification of phytoplasma 16S rRNA operon. 

Primer Sequence Reference 
P1 (Forward) 5'-AAGAGTTTGATCCTGGCTCAGGATT-'3 Deng and 

Hiruki (1991) 
P7 (Reverse) 5’-CGTCCTTCATCGGCTCTT-'3 Smart et al . 

(1996) 
P4 (Forward) 5'-GAAGTCTGCAACTCGACTTC-'3 Smart et al . 

(1996) 
R16F2n (Forward) 5'- GAAACGACTGCTAAGACTGG-'3 Lee et al. (1993) 
R16R2 (Reverse) 5'- TGACGGGCGGTGTGTACAAACCCCG-'3 Lee et al. (1993) 
U-1 (Forward) 

SN910601(Forward) 
5'-GTTTGGATCCTGGCTCAGGATT-'3 (Namba et al. 

1993; 
Wongkaew 
et al. 1997) 

MLO-7 (Reverse) 5'-CGTCCTTCATCGGCTCTT-'3 „  
MLO-X (Forward) 5'-GTTAGGTTAAGTCCTAAAACGAGC-'3 “  
MLO-Y (Reverse) 5'-GTGCCAAGGCATCCACTGTATGCC-'3 “  

P1 (Forward) 5'-GTCGTAACAAGGTATCCCTACCGG-'3 “  
P2 (Reverse) 5'- GGTGGGCCTAAATGGACTTGAACC-'3 “  

SN910601(Forward) 5'-GTTTGATCCTGGCTCAGGATT-'3 “  
P6 (Reverse) 5'-CGGTAGGGATACCTTGTTACGACTTA-'3 (Deng & Hiruki, 

1991) 

 

2.1.6. Software for Gene analysis  

The obtained nucleotide sequences were compared with sequences of phytoplasmas and 

acholeplasmas from GenBank using the Blastn program (http://blast.ncbi.nlm.nih.gov). 

BioEdit (http://www.mbio.ncsu.edu/BioEdit/bioedit.html) and MUSCLE software version 3.8 

(Edgar, 2004) were used for sequence comparison and alignment (http://ebi.ac.uk/tools/mas). 

The phylogenetic trees were constructed by maximum liklihood analysis with geneious 

program (http://www.geneious.com) through the PhyML software (http://atqc.lirmm.fr 

/phyml/) (Guindon and Gascuel, 2003). 
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2.2. Methods  

2.2.1. Plant material  

Sugarcane is a member of the family Gramineae and it belongs to the genus Saccharum 

(S.).Saccharum Officinarum was used throughout the present investigations. Cultivars were 

obtained as stem cuttings from different sources and were grown in pots in the greenhouse at 

temperatures between 22°C during night and up to 27°C in the sunny days under greenhouse 

conditions. The dry plants were watered with tap water every day. Sugarcane was propagated 

by planting the single-bud (cutting) pieces in sterilized vermiculite and were placed in the 

climate chamber at 28°C with very high humidity conditions for about 15 days .Next, 

produced plants (seedling plants) were transferred outside the climate chamber into small 

plastic pots each holding soil composed of bark humus, plant humus, peat, pumice stone, 

expanded clay, one plant per pot. When the plants were 70-day old, they were transferred to 

bigger pots, each holding clay soil/vermiculite (1:1). In order to assess the relationship 

between expression of YLS symptoms and the presence of phytoplasmas, leaves were 

collected from all sugarcane varieties grown in pots in greenhouse. 

2.2.2. DNA extraction strategies 

The extraction of DNA from the samples is necessary for the molecular analyses that follow. 

Total nucleic acid, for use as templates in PCR, was extracted from fresh tissue or from frozen 

tissue according to the methods described by Harrison et al., (1994) and also Doyle and Doyle 

(1990) with some modifications. Like many other plant species, sugarcane tissues contain 

high levels of polysaccharides and polyphenolic compounds, which present a major 

contamination problem in the purification of plant DNA. When cells are disrupted these 

cytoplasmic compounds can come into contact with nuclei and other organelles (Loomis, 

1974). 

 (1-2) grams of frozen tissues or fresh tissues were cut into small pieces and ground to a fine 

powder in liquid nitrogen using a pre-chilled mortar and pestle. 

The powdered tissues (up 200-300 mg) were transferred to 1.5 or 2 ml eppendorf microfuge 

tubes then 500 µl CTAB extraction buffer pre-warmed at 65°C to each sample was added .  

The tissues were suspended (wetted) by gentle shaking. 
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The samples were incubated at 65°C for 60 min or more in a water bath or in an incubator 

with occasional gentle mixing with inversion 3-4 times during incubation to dissolve all 

nucleic acids, then allowed cooling for a few min. 

The extracts were then mixed with an equal volume phenol, chloroform, isoamyl alcohol 

(25:24:1) and centrifuged at 10.000 rpm for 10 min. 

The supernatants were transferred to new tubes and an equal volume (500 µl) of chloroform-

isoamyl alcohol was added to each sample and gently mixed for 5 min to form emulation. 

The samples were centrifuged at 14000 rpm for 10 min (long enough to produce a clear 

supernatant). 

The upper aqueous layers (containing the DNA) were carefully transferred to new tubes (with 

avoiding taking up any of the interface material). 

(Optional) RNase step: RNase was added to the aqueous contents of each tube and incubates 

at 37°C for 30 min. 

The samples were re-extracted for second time by using slightly less chloroform-isaomyl 

alcohol (250 µl) (half as much as first time). 

The volumes of extracts were estimated then 2 volume of 100% cold ethanol and one tenth 

volume of 3M sodium acetate (pH = 5.2) or 5M NaCl were added to each sample and mixed 

gently by inverting. 

Total nucleic acids were precipitated after incubation at -20°C for 1hr to overnight. 

The samples were centrifuged at 10000 rpm for 10 min then the alcohol supernatant carefully 

discarded. 

The pellets were washed twice with 70% ethanol, air dried and resuspended in sterile distilled 

water or TE buffer.  

DNA solutions were then stored at -20°C until use. 

After DNA samples are dissolved, 2 µl of each sample were checked on 1% agarose gel in 

order to evaluate template integrity. Next the DNA concentrations were measured 

spectrophotometrically.  

The total nucleic acid was also extracted by using High Pure PCR Template preparation Kit 

(Roche) or by using Genomic DNA purification Kit (MBI Fermentas). 
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2.2.3. Polymerase Chain Reaction (PCR) for the detection of phytoplasmas 

Symptomatology had been one the major criteria for diagnosing the phytoplasma disease 

before molecular-based methods become available. It remains the important clue used for 

preliminary identification of putative phytoplasmal diseases.  

The polymerase chain reaction (PCR) is a rapid procedure for in vitro enzymatic amplification 

of a specific segment of DNA (Donald et al., 2006). PCR has been used during the last years 

for the detection of large number of microorganisms, also including phytoplasmas. Several 

universal primer pairs designed for the amplification of the 16SrRNA gene of phytoplasmas 

were tested. The method found to give consistent results was the nested PCR (Heinrich et al., 

2001; Srivastava et al., 2005). 

2.2.3.1. Definition of Nested PCR  

Nested PCR is a variation of the polymerase chain reaction (PCR), in that two pairs (instead 

of one pair) of PCR primers are used to amplify a fragment. The first pair of PCR primers 

amplifies a fragment similar to a standard PCR. However, a second pair of primers called 

nested primers (as they lie) are nested within the first fragment) bind inside the first PCR 

product fragment to allow amplification of a second PCR product which is shorter than the 

first one (Pérez de Rozas et al., 2008), (Figure.2.1). 
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Figure.2.1. A diagram illustrating of the method of nested PCR. Figure taken From Wikipedia, the free 

encyclopaedia.  

The advantage of nested PCR is that if the wrong PCR fragment was amplified, the 

probability is quite low that the region would be amplified a second time by the second set of 

primers. Thus, nested PCR is a very specific PCR amplification. Furthermore, the double 

amplification in the nested-PCR increases the sensitivity of PCR reaction in 2-3 logarithmic 

units when compared with conventional PCR (Lindqvist, 1999; Marsilio et al., 2005). 

2.2.3.2. Nested PCR Reaction  

Nested PCR requires two sets of primers which are used to amplify a specific DNA fragment 

using two separate runs of PCR. A standard reaction mixture of 25 µl consisted of the 

following: 
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10X Taq buffer  

dNTP mix (200 µM each dNTP) 

Forward and reverse primers (0.4 µM) 

Taq DNA polymerase (5 U/µl) 

Template DNA (100 ng) 

dd H2O to final volume 25 µl 

2.2.3.3. First round of PCR 

Nucleic acid samples were diluted in sterile distilled water to give a final concentration of 100 

ng/ul and in some cases DNA concentrations were not adjusted after extraction, but used as 

isolated, 1 µl of DNA solution was used per reaction tube. 

2.2.3.4. Nested round of PCR 

One micro litre of diluted (1:30 or 1:20) PCR products from the first round was used as the 

template in the second amplification. In most cases first PCR products were used with any 

dilution. The PCRs (30 cycles) were done with an automatic thermal cycler in 25µl reaction 

tubes. Several universal primer pairs, which were previously designed, based on the 

phytoplasma rRNA operon, for the amplification of phytoplasmal DNA were tested 

(Figure.2.2 and Figure.2.3). The method found to give consistent results was the nested PCR. 

However, it was amazing when some primer pairs didn’t work continually and we had to test 

in this case other primer pairs to check if the negative results were false due the primer pairs 

or due the phytoplasmas disappeared from our greenhouse sugarcane plants. Since this 

phenomenon may occur especially in our greenhouse when there are no insect vectors for 

phytoplasmas and the plants reproduce by vegetative propagation therefore, the titre of 

phytoplasma would be lower generation by generation.   

2.2.3.5. Nested-PCR assay (I)  

The primer pair combination used in the first round was P1/P7 while the nested primer pair 

was R16F2n/ R16R2 (Table.2.3).  

Parameters of the PCR assays using external primer pair (P1/P7) were:  denaturation step at 

94°C for 30 s (4 min for the first cycle), annealing for 1.5 min at 55°C and primer extension 

for 1.5 min (10 min in final cycle) at 72°C.  
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Parameters of the PCR assays using internal (nested) primer pair (R16F2n/R16R2) were:  

denaturation step at 94°C for 30 S (4 min for the first cycle), annealing for 1.5 min at 56°C 

and primer extension for 1.5 min (10 min in final cycle) at 72°C. 

Table.2.3. Oligonucleotide primers used for nested-PCR assay I. 

Primer Location Type of PCR 

P1 (Forward)  16S First 

P7 (Reverse)  23S First 

R16F2n (Forward) 16S Nested 

R16R2 (Reverse) 16S Nested 

 

2.2.3.6. Nested-PCR assay (II) 

The primer pairs combinations used in the first and nested rounds of nested-PCR assay (II) are 

indicated in (Table.2.4). 

Parameters of the PCR assays using external primer pair SN910601/P6 were: denaturation 

step at 94°C for 30 s (4 min for the first cycle), annealing for 1 min at 54°C and primer 

extension for 1.5 min (10 min in final cycle) at 72°C.  

Parameters for PCR using internal primer pair R16F2n/R16R2 ,which amplifies 1250bp DNA 

fragment, were: denaturation step at 94°C for 30 s (4 min for the first cycle), annealing for 1 

min at 56°C, and primer extension for 1.5 min (10 min in final cycle) at 72°C. 

Table.2.4. Oligonucleotide primers used for nested-PCR assay II. 

Primer Location Type of PCR 

SN910601 (Forward) 16S First 

P6 (Reverse) 16S First 

R16F2n (Forward) 16S Nested 

R16R2 (Reverse) 16S Nested 

2.2.3.7. Nested-PCR assay (III) 

The primer pairs combinations used in the first and nested rounds of nested-PCR assay (III) 

are indicated in (Table.2.5).  
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The parameters of the PCR assays using external primer pair MLO-X/MLO-Y were: 

denaturation step at 94°C for 30 s (4 min for the first cycle), annealing for 1 min at 58°C and 

primer extension for 1.5 min (10 min in final cycle) at 72°C.  

The parameters for PCR using internal primer pair P1/P2, which amplifies 210 bp DNA 

fragment, were: denaturation step at 94°C for 30 s (4 min for the first cycle), annealing for 45 

s at 62°C, and primer extension for 1 min (10 min in final cycle) at 72°C. 

Table.2.5. Oligonucleotide primers used for PCR assay III. 

Primer Location Type of PCR 

MLO-X (Forward) 16S First 

MLO-Y (Reverse) spacer region (near 23S) First 

P1 (Forward) 16S (near the spacer region) Nested 

P2 (Reverse) "tRNA-Ile" (near the spacer 
region) 

Nested 

 

2.2.3.8. Nested-PCR assay (IV) 

 The primer pairs combinations used in the first and nested rounds of nested-PCR assay (IV) 

are indicated in (Table.2.6).  

Parameters of the PCR assays using external primer pair U-1/ MLO-7 were: denaturation step 

at 94°C for 30 s (4 min for the first cycle), annealing for 1 min at 56°C and primer extension 

for 1.5 min (10 min in final cycle) at 72°C.  

Parameters for PCR using internal primer pair MLO-X/MLO-Y, which amplifies 700bp DNA 

fragment, were: denaturation step at 94°C for 30 s (4 min for the first cycle), annealing for 1 

min at 60°C, and primer extension for 1.5 min (10 min in final cycle) at 72°C. 

 

Table.2.6. Oligonucleotide primers used for PCR assay IV. 

Primer Location Type of PCR 

U-1 (Forward) 16S First 

MLO-7 (Reverse) 23S First 

MLO-X (Forward) 16S Nested 

MLO-Y (Reverse) spacer region (near 23S) Nested 
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Figure.2.2. Diagrammatic representation of location of used primer pairs and expected size of their 

amplified products based on phytoplasma rRNA operon.  

 

 

Figure.2.3. Diagrammatic representation of a phytoplasma rRNA operon and genomic location of primers 

used for phytoplasma detection. 

2.2.4. Agarose Gel Electrophoresis  

PCR products were electrophoresed on 1% agarose gel, stained with ethidium bromide and 

DNA bands visualized using a UV transilluminator 

Agarose gel electrophoresis was used to visualize and isolate DNA molecules following PCR 

amplification. Agarose (1%) was dissolved in TBE buffer by heating in a microwave. 

 After cooling, 1 µ of a 1 mg/ml ethidium bromide solution was added per 50 ml gel and the 

gel was poured. Gels were run at 80-100 V for 1 hour. 

PCR III 

PCR IV 

PCR II 
PCR I 
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2.2.5. Digestion of nested-PCR products  

By RFLP analysis of PCR-amplified 16S rRNA gene, the phytoplasmas detected can be 

differentiated and classified (Lee et al., 1993). The basic technique for detecting RFLPs 

involves fragmenting the samples of DNA or (PCR products) by the restriction enzymes. 

Restriction enzymes recognize specific nucleotide sequences and cleave DNA molecules at a 

position either within or outside their recognition site (Roberts and Kenneth, 1976). These 

enzymes are important tools for numerous applications, including restriction fragment length 

polymorphism (RFLP) analysis of PCR products .The resulting DNA fragments are then 

separated by their length through gel electrophoresis. 

 RFLP analysis of PCR-amplified 16S rRNA gene sequences with a number of restriction 

enzymes was used by Lee et al., (1993) and Schneider et al., (1993) to differentiate various 

phytoplasmas by their distinct RFLP patterns. This procedure proved to be simple, reliable, 

and practical.     

Our nested PCR products were analyzed by single enzyme digestion with different restriction 

endonucleases HpaIII, HinfI, KpnI, MesI and RsaI (MBI Fermentas). 

The reaction mixture (30 µl) consisted of the following: 

Reagents: 

10 µl PCR products 

2 µl 10X recommended buffer for restriction enzyme 

1-2 µl (10-20 u) restriction enzymes 

17 µl water nuclease free  

The reaction mixtures were incubated in the incubator at 37°C for 3-16 h. 

2.2.5.1. Inactivation of restriction enzymes 

Inactivation of restriction enzymes following a digestion reaction is often required for 

downstream applications. Thermal inactivation is a convenient method used to terminate 

enzyme activity. The majority of restriction enzymes can be heat-inactivated at 65°C or 80°C 

in 20 min. Digested products were separated by electrophoresis on 5% polyacrylamide gels. 

Next RFLP patterns were compared with those previously published. 
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2.2.6. Polyacrylamide Gel Electrophoresis  

Nondenaturing polyacrylamide gels are used for the separation and purification of fragments 

of double-stranded DNA. 

2.2.6.1. Steps of operation 

Assembling the apparatus and preparing the gel solution 

Casting the gel  

Loading the samples and running the gel 

2.2.6.2. Special equipment 

The SE 250 Mighty small II is a miniature vertical slab gel unit intended for rapid 

electrophoresis of nucleic acid samples of small volume. 

2.2.6.3. Detection of DNA in polyacrylamide gels by staining  

Unlike agarose gels, polyacrylamide gels cannot be cast in the presence of ethidium bromide 

because the dye inhibits polymerization of the acrylamide. However, ethidium bromide can be 

used to stain the polyacrylamide gel after electrophoresis. In order to detect of DNA the gels 

were gently submerged in the appropriate staining solution. We used just enough staining 

solution to cover the gel completely and the gels were stained for 30 min at room 

temperature.Then the gels were removed from the staining solution and placed on the UV 

transilluminator and photographed. 

2.2.7. Sequencing and phylogenetic analysis of ribosomal DNA 

By direct sequence analysis or RFLP analysis of PCR-amplified products, the phytoplasmas 

detected can be differentiated and classified. Several classification systems have been 

proposed either directly based on sequence analysis or indirectly, by RFLP analysis of PCR-

amplified 16S rRNA gene. 

In order to amplify the 16S/23S spacer region we used P1/P7 for first PCR and P4/P7 for 

second PCR (Smart et al., 1996). P4/P7 PCR product was purified from agarose gels using 

Agarose Gel DNA Extraction Kit (Roche Diagnostics GmbH). The DNA sample was 

sequenced in one direction using P4 primer. Unfortunately, this primer pair didn’t work well 
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for some cultivars. Therefore, we used MLO-X/MLO-Y for first PCR and P1/P2 for nested-

PCR to amplify partially the 16S/23S spacer region. In order to amplify the 16SrRNA we 

used R16F2n/R16R2 for nested PCR. Nested-PCR products were cleaned up using High pure 

PCR products purification Kit (Roche). DNA samples were sequenced in both directions 

using nested primer pairs. 

2.2.7.1. Sample Preparation for Value Read Service in Tubes 

The value read is the service of choice for fast and reliable standard sequencing reactions. 

It is highly automated to allow rapid processing of plasmids or PCR products. We used 1.5 ml 

tubes (no additional sealing with Parafilm) for samples and primers and we used one tube per 

sequencing reaction. The DNA samples (purified PCR products) were dissolved in the elution 

buffer (10 mM Tris-HCl, pH 8.5) and the concentrations of these purified PCR products were 

adjusted to get the final concentration 10 ng/µl or 2 ng/µl in a minimum volume of 15 µl and 

the required primer concentrations were 2 pmol/µl with minimum total volume 15 µl. The 

DNA samples (purified PCR products) were direct-sequenced in an ABI 3730XL automated 

sequencer using the sequencing service of Eurofins MWG Operon Ebersberg, Germany 

(http://www.eurofinsdna.com/). Next, sequences were compared with others in GenBank 

database using BLAST program.The sequence data were deposited in GenBank. 

 2.2.8. Hot water treatment  

“When a pathogen is excluded from the propagating material (seed, tubers, bulbs, nursery 

stock, grafts, and cuttings) of host, it is often possible to grow the host free of that pathogen 

for the rest of its life” (Agrios, 2004).Vegetative propagating material free of pathogens that 

are systemically distributed throughout the plants (viruses, viroids, and phytoplasmas) is 

obtained from mother plants that had been tested and shown to be free of the particular 

pathogen or pathogens. Furthermore, the new plants must be grown in pathogen- and vector-

free soil and then be protected from airborne vectors.  

Phytoplasma may be transmitted by the propagation of scions and or cutting collected from 

diseased plant. Therefore, in vegetatively propagated crops like sugarcane; phytoplasma can 

be readily spread to new locations through infected stem cutting if suitable precautions are not 

taken. These precautions include cold- and hot water treatment and tissue culture (Parmessur 

et al., 2002).  
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A hot water treatment is an effective method for the control of number of plants pests and 

diseases (plant pathogens) including phytoplasmas.  

Hot water treatment (HWT) has been proposed since 1966 by Caudwell at 30°C for 72 h in 

order to cure dormant woody plant material from phytoplasmas. Afterward other works 

showed the effectiveness of the treatment against these pathogens (Lherminier et al., 1990; 

Tassart-Subirats et al., 2003). However, (HWT) must be carefully applied because may 

interfere with the vitality of plant material. Thus, (HWT) of dormant canes or plants aims at 

phytoplasma elimination without any alteration in their vegetative development capacity. In 

addition the treatment demonstrates a positive effect of sanitation against several bacterial 

diseases, pests and insects (including eggs) which may be present on plant material. 

2.2.8.1. Preparation of the plant material prior to the hot water treatment 

Infected plants or dormant propagative organs can be totally freed of phytoplasmas by heat 

treatment. Infected plants are kept in growth chambers at 30°C to 37°C for several days, 

weeks, or months; but dormant organs are immersed in hot water (Agrios, 2004). 

Soaking induces a thermal shock susceptible of modifying the physiological state of the plant 

material (breaking of bud dormancy, inducing storage losses). Therefore, in order to prevent a 

poor vegetative development, the plant material should be thermally prepared to the treatment 

by storage for 12 to 48 hours at room temperature in a humid and aerated chamber. 

Furthermore, the temperature after immersion and the treatment duration should be respected 

and after treatment, the plant material should be left to set back to room temperature (avoid 

direct contact with cold water). 

2.2.9. Sugarcane aphid transmission test 

2.2.9.1. Insect rearing 

Melanaphis Sacchari (Sugarcane aphid) insects were provided from Hawaii Island. 

Colonies of Melanaphis Sacchari were established on phytoplasma-infected sugarcane plants.  

2.2.9.2. Plant material 

All test plants raised from single-eye setts that had received cold- and hot-water treatment or 

hot-water treatment were negative (phytoplasma free) when tested by nPCR prior to being 
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used in transmission studies and all plants with typical symptoms of YLS that were used as 

source plants for the acquisition-access feeds were previously tested positive for phytoplasma.  

2.2.9.3. Transmission tests 

Phytoplasma-infected sugarcane plants were transferred to cage and the insects were given 

acquisition-access feeding on this fresh sugarcane leaves. After 45 days, (acquisition period 

and latency period), phytoplasma-free plant were transferred into the cage for inoculation 

feeding and these plants were kept for about 3 months after inoculation and then tested for 

phytoplasma infection. The transmission tests were repeated twice. 

2.2.10. Q-PCR (real-time PCR) assay 

Most universal as well as specific phytoplasma diagnostic protocols rely on nested PCR, 

which, although extremely sensitive, is also time-consuming and poses risks in terms of carry-

over contamination between the two rounds of amplification (Weintraub and Jones, 2010).  

Despite the development of protocols which overcome most the difficulties of phytoplasma 

diagnosis, the detection of these pathogens is still quite laborious. Q-PCR offers the 

opportunity to detect these pathogens in a sensitive and specific manner, bypassing all post-

PCR manipulations. Therefore, direct qPCR has recently replaced the traditional PCR in 

efforts to increase the speed and sensitivity of detection and to improve techniques for mass 

screening (Weintraub and Jones, 2010). During a qPCR run, accumulation of newly generated 

amplicons is monitored at each cycle by fluorescent detection methods. The amount of 

fluorescence, monitored at each amplification cycle, is proportional to the log of 

concentration of the PCR target, and for this reason qPCR is also a powerful technique for the 

quantification of specific DNA.  

2.2.10.1. Methods of monitoring DNA amplification in qPCR 

The first method is fluorescent dyes (e.g. SYBR Green I).This double-stranded DNA binding 

dye emits a strong fluorescent signal when binding to double-stranded DNA. Therfore, during 

each subsequent PCR cycle more fluorescence signal will be detected (Figure.2.4). The main 

disadvantage of using a dye such as this is the lack of specificity. Therefore, wide 

optimization is required in this method. SYBR® Green I dye chemistry is not supported for 

plus/minus assays such as diagnosis of phytoplasmas. 
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Figure.2.4. Diagram illustrating of SYBR Green during PCR amplification. Figure taken from BIO-RAD 

gene expression getaway. 

The second method is fluorescent probes including hydrolysis (TaqMan) probes.  

In this method, the hydrolysis probe is labelled with a quencher fluorochrome, which absorbs 

the fluorescence of the reporter fluorochrome as long as the probe is intact. However, upon 

amplification of the target sequence, the hydrolysis probe is displaced and subsequently 

hydrolyzed by the Taq polymerase. This results in the separation of the reporter and quencher 

fluorochrome and consequently the fluorescence of the reporter fluorochrome becomes 

detectable (Figure.2.5). During each consecutive PCR cycle this fluorescence will increase 

due of the progressive and exponential accumulation of free reporter fluorochromes.  
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Figure.2.5. Diagram illustrating of TaqMan probe chemistry mechanism. Figure taken from BIO-RAD gene 

expression  getaway. 

The main advantages of using TaqMan probes include high specificity, a high signal-to-noise 

ratio, and the ability to perform multiplex reactions. Specific amplification of target sequences 

is directed by custom designed primers and probes. The first degree of specificity is achieved 

by the combination of amplification primer sequences. An additional degree of specificity 

results from a probe that hybridizes to a region of nucleic acid sequence that identifies the 

microbe of interest. Therefore, TaqMan probes are the most commonly used ones for the 

diagnosis of phytoplasmas. 

2.2.10.2. Detection of phytoplasma based on TaqMan qPCR assays 

Q-PCR assays were performed in optical 96-well plates with optical adhesive covers using a 

Bio-Rad iCycler thermal cycler (My iQ Optical Module) in a total volume of 50 µl or 20 µl, 

including 5 µl or 2 µl respectively of DNA extracts (concentrations were 100 to 200 ng/µl) 

and TaqMan core reagents consisting of SensiMix II probe (2X) kit (BIOLINE) or SsoFast 

Probes Supermix kit (BIO-RAD).  All primers were used at a final concentration of 400 nM 

and all probes at a final concentration of 100 nM. All primers and probes, which previously 

designed (Christensen et al., 2004) (Table 2.7 and Figure.2.6), were synthesized by Eurofins 

MWG /operon (Ebersberg, Germany), and all probes were lablelled at the 5́end with the 

fluorescent dye 6-carboxyfluorescein (FAM) as reporter and at 3́ end with 6-

tetramethylrhodamine (TAMRA) as fluorescent quencher.  Each sample was tested in 

triplicate and negative controls containing nuclease-free water in the place of DNA were 

included in all runs in order to test possible contamination. In additions, phytoplasma-infected 
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periwinkle and phytoplasma-infected sugarcane KK34 were used as positive controls for both 

phytoplasma assay and plant assay. The thermal cycling conditions were 10 min at 95°C for 

one cycle as initial activation ; followed by 40 cycles each one consisting of two-step; 15 s  

for denaturation at 95°C and 1 min at 60°C for annealing and extension.  

Table.2.7. Sequence of primers and probes used for detection of phytoplasma and plant DNA (Christensen 

et al., 2004). 

Primer 
or probe 

Phytoplasma 16S rRNA gene Plant 18S rRNA gene 

Forward 
primer 

5'-CGTACGCAAGTATGAAACTTAAAGGA-
'3 

5'-GACTACGTCCCTGCCCTTTG-'3 

Probe 5'-TGACGGGACTCCGCACAAGCG-'3 5'-ACACACCGCCCGTCGCTCC-'3 
Reverse 
primer 

5'-TCTTCGAATTAAACAACATGATCCA-'3 5'-AACACTTCACCGGACCATTCA-
'3 

 

 

 

Figure.2.6. Diagrammatic representation of genomic location of qPCR primers and probe used for 

phytoplasma detection. 

  

2.2.11. Transmission Electron Microscopy (TEM) 

To demonstrate phytoplasmas directly the magnification and resolution of an electron 

microscope is required, due phytoplasmas are minute and lacking a defined shape. Preparation 

of thin sectioned resin-embedded samples and observations them by TEM enable both the 

revealing of the phytoplasma in the vascular tissues and studying the histological changes of 

the affected plants.  
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2.2.11.1. Preparation of thin sections 

The resin used for embedding was similar to the one described by Spurr (1969). 

Small pieces of leaf midribs of infected and healthy plants were fixed in 2% glutaraldehyde in 

0.05 M phosphate buffer at 4°C overnight and then washed three times for 20 min in 0.05 M 

phosphate buffer. Tissues were then post-fixed in 2% osmium tetroxide (OsO4) in 0.05 M 

phosphate buffer at 4°C for overnight and then washed three times for 20 min in ddH2O. 

Tissues were then dehydrated in a graded acetone series (25, 50, 70, 96, and 100%) and 

infiltrated in Spurr's low viscosity embedding medium (Spurr/ETOH 100%) as following: 

1 part spurr to 3 parts ETOH for overnight 

1 part spurr to 1 part ETOH for overnight 

3 parts spurr to 1 part ETOH for overnight 

100% spurr for overnight 

Next polymerization as following: 

40°C for 4 hours  

50°C for 3 days  

Ultrathin 60 nm sections were then cut with a diamond knife (type 35⁰, Diatome, Biel, 

Switzerland) on a Leica UCT ultra cut microtome (Leica Microsystems, Wetzlar, Germany). 

Sections were post-stained for 10-15 min with 2 % Uranlylacetate in H2O and for 8 min in 

lead citrate (Reynolds, 1963). Samples were examined in a ZEISS 902 (Zeiss, Oberkochem) 

electron microscope operated at 80 kV.  Micrographs were taken using an Erlangshen 

ES500W CCD camera 1350 x 1050 pixel (Gatan, Peasanton CA) and Gatan Digital 

Micrograph software (Version 1.70.16). 
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3. Results 

3.1. Establishment of the test for phytoplasma 

“The polymerase chain reaction (PCR) incorporating mollicute-specific oligonucleotide 

primers derived from rRNA sequences made selective amplification of near full-length 

phytoplasma 16S rRNA genes from mixtures with host plant DNA possible. By its simplicity 

of application and superior sensitivity, PCR quickly became established as the method of 

choice for detection and diagnosis of phytoplasma diseases” (Mishra, 2004). Moreover, 

serology and DNA tests have been developed for diagnosis of phytoplasma diseases in 

sugarcane (Ratana, 2001; Srivastava et al., 2003). Of these techniques, PCR testing was found 

to be the most sensitive and reliable. 

3.1.1. PCR for detection of phytoplasma  

Because a single round of PCR was not able to detect low-titer phytoplasma infection, a 

second round of PCR was necessary. A nested PCR approach is often needed for detection of 

phytoplasmas (Schneider and Gibb, 1997) when they occur at low levels or are distributed 

unevenly in their plant hosts (Goodwin et al., 1994; Andersen et al., 1998). Poor amplification 

of target DNA by direct PCR is sometimes attributed to inhibitors present in host plant tissues 

(Cheung et al., 1993; Schneider and Gibb, 1997).  Therefore the technique of nested PCR had 

been developed (Snounou et al., 1993; Kirkpatrick et al., 1994; Heinrich et al., 2001) in which 

a phytoplasma-specific stretch of 16S rRNA gene is amplified with primers in a first round, 

and then an internal part of this amplicon is amplified further in a second round with primers 

binding specifically to internal sequences of the first-round amplicon. Thus only the true 

positives which were generated by the first round are further multiplied, not however possible 

false positives.  

In our lab, samples of DNA from phytoplasma-infected periwinkle (obtained from Dr. 

Seemüller, Dossenheim, Germany, and from Dr. Bertaccini, Bologna, Italy) were used as 

positive controls, whereas first round amplicon and second round amplicon of water control 

samples (instead of extracted DNA) were used as negative controls. The separation of the 

second round amplicons on agarose gels showed a clear band at the expected size of 1.2 kbp 

for the positive control using the primer pairs combination (P1/P7 and R16F2n/R16R2), and 

no bands for the water controls (Figure.3.1).  
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In another experiment, DNA of the positive control was diluted by increasing quantities of 

DNA which had been extracted from sugarcane leaves of plants which were known to be 

phytoplasma-free. The purpose was to test, whether compounds from sugarcane leaves may 

possibly inhibit the amplification of phytoplasma 16S rRNA gene. The sugarcane extract by 

itself did not give an amplicon. The positive control sample always yielded a positive signal, 

even when diluted up to 40-fold by sugarcane DNA, the 50-fold dilution with sugarcane DNA 

did not give an amplicon anymore (Figure.3.1). 

 
 

Figure.3.1. Nested PCR-products of positive and negative controls and of a positive control, which was 

mixed with increasing amounts of sugarcane DNA. The positive control (pos. c.) was a sample of American 

aster yellows phytoplasma grown in periwinkle (obtained from Dr. Bertaccini, Bologna). The water control 1+2 

was with water instead of DNA in the first PCR round and further amplified in the second PCR round. Water 

control 2 contained water instead of first round amplicon. The sugarcane DNA was from Egyptian cultivar (Ph-

8013) which had been shown to be phytoplasma-free (sugarcane c.) using the primer pairs combination (P1/P7 

and R16F2n/R16R2). The marker (M) was DNA GeneRuler 100 bp plus (MBI Fermentas). The arrows point to 

the phytoplasma-specific band of 1.2 kbp. 

Though PCR analysis is routine technique for phytoplasma detection, it’s still meeting some 

difficulties, at least with some primers: several primer pairs and their combination are 

recommended (Heinrich et al., 2001). In our lab, PCR assay was carried out with different 

primer pairs combination. To amplify region that includes the 16S rRNA gene, the spacer 

region and the start of 23S rRNA gene of the phytoplasma genome. Therefore, each sugarcane 
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sample was investigated for phytoplasma by using four nested-PCR assays which were 

numbering as following: (I), (II), (III) and (IV). The primer pairs and their sequences which 

used in each assay were mentioned at material and methods chapter.  

3.1.2. Sources of sugarcane samples 

Sugarcane samples, which were investigated in our lab, were obtained from different areas 

and different dates. Some of them were obtained as stem cuttings and grown in the 

greenhouse while others were harvested and conserved as air-dried leaves. Most of them are 

showing sugarcane yellow leaf syndrome symptoms whereas others were symptomless 

(Table.3.1).  

Table.3.1. Original sources of sugarcane samples. Most of sugarcane samples were obtained from Hawaiian 

Islands while others from Thailand. In addition, some sugarcane samples were taken from Cuba and Middle East 

area including Egypt and Syria. Some of them were obtained as stem cuttings and grown in the greenhouse 

whereas others were collected and conserved as air-dried leaves.  

Original source Location Date of getting 
sugarcane samples 

 

Type of sugarcane 
sample 

Hawaii Breeding station of 
HARC in Maunawili 

2003 Stem cuttings 

Hawaii Plantations 
(Maui and Kauai) 

2009 Sun-dried leaves 

Hawaii Former plantation 
fields (Maui, Kauai 

and Hawaii) 

2009 Sun-dried leaves 

Hawaii Breeding station of 
HARC in Maunawili 

2010 Sun-dried leaves 

Hawaii Close to former 
plantation fields in 

Hawaii 

2011 Sun-dried leaves 

Hawaii Breeding station of 
HARC in Maunawili 

2011 Sun-dried leaves 

Hawaii plantation 
(Maui) 

2011 Sun-dried leaves 

Thailand Farmer fields 
(Bang Phra) 

2010 Sun-dried leaves 

Thailand Breeding station 
(Khon Kean) 

2010 Sun-dried leaves 

Thailand Farmer fields 
(Suphan Buri) 

2011 Sun-dried leaves 

Cuba Breeding station 2005 Stem cuttings 
Egypt Breeding station  2008 Stem cuttings 
Syria Farmer fields 

(Baniyas) 
2008 Stem cuttings 
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3.2. Phytoplasma in sugarcane in Hawaii, Cuba, Egypt and Syria  

Six sugarcane cultivars from Hawaii were obtained in 2003 as stem cuttings from the 

breeding station of HARC in Maunawili, Oahu , three SCYLV-susceptible cultivars (H87-

4094, H73-6110, H65-7052) and three SCYLV-resistant cultivars (H78-7750, H78-4153, 

H87-4319). 

These stem cuttings were grown in greenhouse of university of Bayreuth. In addition, 

cultivars from Cuba were obtained from Dr. Ortega, Habana, in 2005 also as stem cuttings 

and grown beside Hawaiian samples. Cultivars from Egypt were obtained as stem cuttings 

from the University of Gizah in 2008. The cultivar from Syria was obtained as stem cuttings 

in 2008 from a farmer´s field near Baniyas. The question was as the following: Are these 

obtained sugarcane samples infected with phytoplasma? 

3.2.1. Phytoplasma detection by nested-PCR assay (I) and identification by RFLP 

DNA was extracted from source leaves and tested for phytoplasma by nested-PCR assay (I) 

with primer pairs (P1/P7 and R16F2n/R16R2) in 2008. All cultivars contained phytoplasma 

showing an amplicon at 1.2 kbp, although apparently at different titres, for example H73-

6110, a strongly SCYLV-infected cultivar, had only a low SCYLP-titre (Figure.3.2). The 

Cuban cultivars (C10-5173, CP43-62, JA60-5) and one cultivar from Egypt (G84-47) was 

also infected by phytoplasma, although apparently at a low titre, not however the cultivar Gt-

954 and Ph-8013 from Egypt and the plant from Syria (Figure.3.3). The results with cv. Gt-

954, Ph-8013 and the Syrian cultivar thus were an important negative control, showing that 

there is no DNA sequence in the sugarcane genome which gives a false positive signal with 

this primer pair.  
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Figure.3.2. Phytoplasma in Hawaiian and Cuban sugarcane cultivars. DNA prepared from leaves of the 

indicated cultivars was tested with primers P1/P7 and R16F2n/R16R2. The positive control (pos. c1) was 

phytoplasma aster yellows from periwinkle obtained from Dr. Seemüller, Dossenheim, pos.c2 was phytoplasma 

aster yellows from periwinkle obtained from Dr. Bertaccini, Bologna. The water control 1+2 was with water 

instead of DNA in the first PCR round and further amplified in the second PCR round. The marker M1 is DNA 

ladder FastRuler Middle range (MBI Fermentas, fragment sizes: 4, 2, 1, 0.5 kbp).The arrows point to the 

phytoplasma-specific band of 1.2 kbp. 

 

 

Figure.3.3. Phytoplasma in Egyptian and Syrian sugarcane cultivars. DNA prepared from leaves of the 

indicated cultivars was tested with primers P1/P7 and R16F2n/R16R2. Re-amplification of aliquot of first PCR 

water control with nested primer combination is in lane W. The marker M2 DNA GeneRuler 1kb (MBI 

Fermentas). The arrows point to the phytoplasma-specific band of 1.2 kbp. 

G84-47 Gt-954 Ph-8013 Syrian cv. M2 W 
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Restriction fragment analysis had been successfully applied to differentiate between the 

phytoplasma strains (Kirkpatrick et al., 1994; Lee et al., 1998; Valiunas et al., 2007).  

The amplicons of the second round of PCR (I) were subjected to three restriction enzymes 

which were diagnostic for the phytoplasma strains. The obtained RFLP patterns were 

compared with those previously published by Lee et al., 1998. The restriction patterns 

identified the phytoplasma from Hawaiian cultivars and from one Cuban cultivar as belonging 

to the Aster yellows phytoplasma “Ca. Phytoplasma asteris” , whereas the phytoplasma from 

the Cuban cultivar CP4362, which originally had been bred in Canal Point, Florida and from 

JA605, belonged to the Western X-disease phytoplasma “Ca. Phytoplasma pruni” . However, 

a second profile was clearly visible in the gel in some Hawaiian sugarcane cultivars that 

indicate to the possible presence of phytoplasmas related to rice yellow dwarf group (16SrXI), 

“ Ca. Phytoplasma oryzae”  (Figure.3.4 and Table.3.2). 

 

a 
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Figure.3.4. Restriction fragment analysis of PCR products from Hawaiian and Cuban sugarcane cultivars 

containing phytoplasma. The nested-PCR products were amplified with primers R16F2n/R16R2 following 

digestion with RsaI (a), HpaII (b) or KpnI (c) and separated on 5% polyacrylamide. The positive controls (Aster 

yellows and Western X-disease) were used as references. The black arrows indicate to second profile which 

reveals possible presence of rice yellow dwarf (16SrXI) phytoplasmas as mixed infection .The marker (M) is 

Mass Ruler DNA Ladder, low range (MBI Fermentas), fragment sizes 1031, 900, 800, 700, 600, 500, 400, 300, 

200, 100, and 80 bp. 

 

 

 

 

b 

c 
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Table.3.2. Results of nested-PCR assay (I) and identification of phytoplasmas based on RFLP analyses. 

Two phytoplasmas were identified in mixed infection in some Hawaiian sugarcane cultivars: one related to aster 

yellows group (16SrI) while the other tentatively related to rice yellow dwarf group (16SrXI). +, phytoplasma 

detected. 

Sugarcane varieties Original source Detection of 
phytoplasma in 2008 
based on PCR assay 

(I) 

Phytoplasma group 
based on RFLP 

analyses of 16S rRNA 
gene 

H87- 40 94 Hawaii + Aster yellows 

C10- 51 73 Cuba + Aster yellows 

H78- 77 50 Hawaii + Aster yellows and rice 
yellow dwarf 

Cp- 43 62 Florida + X-disease 

H78- 41 53 Hawaii + Aster yellows and rice 
yellow dwarf 

H73- 61 10 Hawaii + Aster yellows and rice 
yellow dwarf 

H65- 70 52 Hawaii + Aster yellows and rice 
yellow dwarf 

JA- 60 5 Cuba + X-disease 

H87- 43 19 Hawaii + Aster yellows and rice 
yellow dwarf 

H87- 40 94 VF Hawaii + Aster yellows 

 

3.2.2. Phytoplasma detection by nested-PCR assay (II) and identification by RFLP  

Oligonucleotide primers used for nested-PCR assay (II) were (SN910601/P6) for first-PCR 

and (R16F2n/R16R2) for nested-PCR. Hawaiian, Egyptian and Syrian sugarcane samples 

grown in greenhouse were tested by this PCR assay. According to this analyse four Hawaiian 

cultivars, two Egyptian cultivars and Syrian cultivar were negative for phytoplasma 

(Figure.3.5, Table.3.3 and 3.4).  
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Figure.3.5. Nested-PCR assay (II) products (1.2kb) amplified with primers (SN910601/P6, 

R16F2n/R16R2). (a): Hawaiian sugarcane samples grown in greenhouse. (b): Egyptian and Syrian sugarcane 

samples. The marker M was GeneRuler 100 bp plus (MBI Fermentas). The arrows point to the phytoplasma-

specific band of 1.2 kb. According to this analysis two Hawaiian sugarcane cultivars H78-4153 and H87-4319 

and one Egyptian cultivar G8447 were positive for phytoplasmas.  

Products of nested-PCR assay (II) were analyzed by RFLP analysis using single enzyme 

digestion with restriction endonucleases (HpaII and MseI). The obtained RFLP patterns were 

compared with those previously published by Lee et al., 1998. According to this digestion the 

Hawaiian cultivars H78-4153 and H87-4319 contain phytoplasmas fall in aster yellows group 

(Figure.3.6; a and Table.3.3) whereas Egyptian cultivar G8447 infected with phytoplasma 

belongs to rice yellow dwarf group (Figure.3.6; b and Table.3.4). However, further RFLP 

analysis is required to differentiate if this phytoplasma belongs to sugarcane white leaf strain 

(SCWL) or sugarcane grassy shoot one (SCGS).  

 

 

1,2kb 

G8447 M Ph8013 GT549 Syria

1,2kb 

4153 7052 4319 6110 7750 4094 M 

a 

b b 

a 
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3.2.3. Phytoplasma detection by nested-PCR assay (III)  

Oligonucleotide primers used for nested-PCR assay III were (MLO-X/MLO-Y) for first-PCR 

and (P1/P2) for nested-PCR. According to this analyse all Hawaiian cultivars, one Egyptian 

(G8447) and Syrian cultivar were positive for the presence of phytoplasma but not the other 

two Egyptian cultivars (Figure.3.7, Table.3.3 and 3.4).  

 

 

MseI MseI HpaII  

H87-4319 H87-4319 H78-4153 H78-4153 

HpaI
I  

M M M 

G8447 G8447 

HpaI
I

MseI 

M M 

a 

b 

a a 

b 
Figure.3.6. RFLP profiles of nested-PCR assay (II) 

products. These products amplified with primer pair 

(SN910601/P6, R16F2n/R16R2) of Hawaiian sugarcane 

samples (a) and Egyptian sugarcane samples (b) grown in 

greenhouse following single enzyme digestion with (HpaII 

and MseI) and separation on 2% agarose gel. The marker M 

was GeneRuler 100 bp plus (MBI Fermentas). According to 

this digestion the Hawaiian cultivars H78-4153 and H87-

4319 contain phytoplasmas fall in aster yellows group while 

in Egyptian cultivar G8447 falls in rice yellow dwarf group. 
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Figure.3.7. Nested-PCR assay (III) products (0.2kb) amplified with primer pair (MLO-X/MLO-Y, P1/P2). 

(a): Hawaiian sugarcane samples. (b): Egyptian sugarcane samples. (c): Syrian sugarcane sample grown in 

greenhouse. Re-amplification of aliquots of first PCR water controls with nested primer combination are in lanes 

W. The marker M was GeneRuler 100 bp plus (MBI Fermentas).The arrows point to the phytoplasma-specific 

band of 0. 2 kb. 

3.2.4. Phytoplasma detection by nested-PCR assay (IV) and identification by RFLP  

Oligonucleotide primers used for nested-PCR assay IV were (U-1/MLO-7) for first-PCR and 

(MLO-X/MLO-Y) for nested-PCR. According to these data the primers used in this assay 

could not detect phytoplasmal DNA present in all Hawaiian cultivars which were positive for 

phytoplasma as mentioned above (Table.3.3). Phytoplasmal DNA in Syrian and one Egyptian 

cultivar (G8447) was detected with this primer pair (Figure.3.8 and Table.3.4) 

 

210bp 

4153 7052 4319 6110 7750 4094 

0,2kb 

G8447

0,2kb 

Syrian M M Ph801Gt549 W W W W 

a 

b c 

M W W 
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Figure.3.8. Nested-PCR assay (IV) products. Products (0.7kb) were amplified with primers (U-1/MLO-7, 

MLO-X/MLO-Y) obtained from Egyptian (Gt549, Ph8013 and G8447) and Syrian (Syr) sugarcane samples 

grown in greenhouse. Re-amplification of aliquot of first PCR water control with nested primer combination is in 

lane W. The marker M was GeneRuler 100 bp plus (MBI Fermentas). 

Products of nested-PCR assay (IV ) were analyzed by RFLP using single enzyme digestion 

with restriction endonucleas (HinfI). Rely on this RFLP analysis, phytoplasma strain of 

sugarcane white leaf (SCWL) can be differentiated from phytoplasma strain of sugarcane 

grassy shoot (SCGS) within the rice yellow dwarf group. The obtained RFLP patterns were 

compared with those previously published by Hanboonsong et al., 2002. According to this 

digestion the Egyptian cultivar (G8447) infected with phytoplasma strain of sugarcane grassy 

shoot (SCGS) but Syrian cultivar contains non-identified phytoplasma strain within the rice 

yellow dwarf group as indicated by DNA sequencing analysis (Figure.3.9 and Table.3.4).  

 

                                                                                

0,7kb 

G8447 

0,7kb 

Syr

G8447 Syr 

M M 

M M 

Gt549 W W Ph8013 

0.5 kb 

0.3 kb 

0.4 kb 

0.2 kb 

0.5 kb 

Figure.3.9. RFLP profiles of nested-PCR assay 

(IV) products. Products (0.7kb) amplified with 

primers (U-1/MLO-7, MLO-X/MLO-Y) of 

Egyptian (G8447) and Syrian (Syr) sugarcane 

samples following single enzyme digestion with 

(HinfI). The marker M was GeneRuler 100 bp 

plus (MBI Fermentas). Arrowheads indicate to 

non-specific bands. According to this digestion 

the Egyptian cultivar (G8447) infected with 

phytoplasma strain of sugarcane grassy shoot 

(SCGS) whereas Syrian one contents non-

identified phytoplasma strain. 



 Results 

51 
 

             

Table.3.3. Phytoplasma in Hawaiian sugarcane samples. Results of phytoplasma detection based on nested-

PCR assays (II), (III) and (IV) of Hawaiian sugarcane samples grown in greenhouse and identification them 

based on RFLP analyses of nested-PCR assay (II) using single enzyme digestion with (HpaII and MseI). 

+,phytoplasma detected; -, phytoplasma not detected.  

Sugarcane 
cultivar 

phytoplasma 
detection 
based on 

PCR assay 
(II) 

Phytoplasma 
group based 
on  RFLP of 
PCR assay 

(II) 

phytoplasma 
detection 
based on 

PCR assay 
(III) 

phytoplasma 
detection 
based on 

PCR assay 
(IV) 

H65-7052 - - + - 
H73-6110 - - + - 
H78-4153 + Aster yellows + - 
H78-7750 - - + - 
H87-4094 - - + - 
H87-4319 + Aster yellows + - 

 

 

 

 

 

 

Figure.3.10. DNA amplified by nested-

PCR with primers U-1/MLO-7 then 

primers MLO-X/MLO-Y and digested 

with HinfI. 1, phytoplasma from insect 

vector; 2, sugarcane white leaf; 3, 

sugarcane grassy shoot; 4, bermuda grass 

white leaf; 5, brachiaria grass white leaf; 6, 

crowfoot grass white leaf; M, 100 bp 

ladder. (Figure taken and adapted from 

Hanboonsong et al., 2002). 

 

M  M  1 2 3 4 5 6 

1.5 kb 

1.0 kb 

0.5 kb 

0.3 kb 
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Table.3.4. Phytoplasma in Egyptian and Syrian sugarcane samples. Results of phytoplasma detection based 

on nested-PCR assays (II), (III) and (IV) of Egyptian and Syrian sugarcane samples grown in greenhouse and 

identification them based on RFLP analysis of nested-PCR assay (II) using single enzyme digestion with (HpaII 

and MseI). And RFLP analysis of nested-PCR assay (IV) using single enzyme digestion with (HinfI) to 

differentiate rice yellow dwarf group to strains. +, phytoplasma detected; -, phytoplasma not detected.  

Sugarcane 
cultivar 

phytoplasma 
detection 
based on 

PCR assay 
(II) 

Phytoplasma 
group based 
on RFLP of 
PCR assay 
(II) using 

(HpaII and 
MseI) 

 

phytoplasma 
detection 
based on 

PCR assay 
(III) 

phytoplasma 
detection 
based on 

PCR assay 
(IV) 

Phytoplasma 
strain based 
on RFLP of  
PCR assay 
(IV)using 
(HinfI) 

 

Gt549 (Egypt) - - - - - 
G8447(Egypt) + Rice yellow 

dwarf 
+ + Grassy shoot 

Ph8013(Egypt) - - - - - 
Unknown 

cultivar (Syria) 
- - + + unknown 

 

3.3. Phytoplasma in sugarcane in Hawaiian plantations (2009) 

As shown above, plants which were obtained from the Hawaiian breeding station were 

infected by phytoplasma of the Aster yellows and Rice yellow dwarf types. The plantations 

obtained the cultivars from the breeding station, followed by several cycles of field testing 

and multiplication. The question was whether the field plants also contained phytoplasma. 

Ratooning is not practiced in Hawaiian sugar industry; therefore the cultivars had been 

subjected to successive hot water treatments at each planting in the seed cane field and at each 

planting in the crop fields. However, different temperature regimes and durations are used for 

the hot water treatment, for example the HC&S plantation uses 50°C for 2 h for the seedcane 

field setts, and 52°C for 20 min for the crop field setts. According to our data, the latter may 

be too short to eliminate possible phytoplasma infection. Furthermore, it is unknown how 

much de novo infection occurred by phytoplasma vectors, e.g. leaf and plant hoppers, which 

are plenty in plantation fields. More than hundred plant hopper species have been described 

from the Hawaiian Islands (Asche, 1997), most of them endemic. Their potential to serve as 

phytoplasma vectors is unknown, however at least one leaf hopper species in Hawaii is known 

to transmit phytoplasma to water cress (Borth et al., 2006). Source leaves were collected from 

plantations from two islands (G&R in Kauai and HC&S in Maui). All samples were from 

cultivar H65-7052, a cultivar which is infected by SCYLV and expresses highly variable 
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grades of YLS-symptoms. Symptomatic plants with yellow midribs may be found next to 

perfectly green plants without any obvious differences in soil and climate conditions. 

Therefore the possibility was envisaged that the symptomatic plants may contain phytoplasma 

in addition to SCYLV, either by insufficient thermotherapy or by de novo infection. Leaves 

from young plants and from adult plants of up to 20 months of age were tested. According to 

our investigation most of them contained phytoplasma (Table.3.5). 

Plant material from the plantations had been sun-dried and later oven-dried to remove 

possible residual humidity. The intactness of the DNA was tested with the cytochrome 

oxidase (COX) gene as positive control. The primers for COX were COX-1 (5`- CCG GCG 

ATG ATA GGT GGA -`3) as forward primer and COX-2 (5`- GCC AGT ACC GGA AGT 

GA -`3) as reverse primer (the sequences were kindly provided by Dr. J. Hodgetts, 

Nottingham, UK). The PCR program was 95°C 4 min, (95°C 45 sec, 55°C 45 sec, 72°C 80 

sec) x 30 cycles, 72°C 10 min. This generates an amplicon of approximately 400bp. 

Figure.3.11 shows that the control gene was clearly amplified from the DNA preparation of 

the dried leaves. There was plenty amplicon of the correct size, therefore the absence of the 

phytoplasma amplicon in some samples from the plantations cannot be accounted to 

destruction of DNA during the drying process. 

            

 

 

400bp 

Figure.3.11. Amplification of the cytochrome oxidase 

(COX) sequence of DNA from dried leaves. To test 

whether the drying had destroyed too much DNA, the 

extracted DNA was also tested for cytochrome oxidase 

(COX) as control gene. DNA was extracted from 

sugarcane leaves and amplified by PCR to yield a 400 bp 

amplicon, which was separated on 1% agarose. The 

samples K1-1 to K1-3 from Kauai plantation, both air-

dried and then oven-dried. The positive control (pos.c.) 

was from air-dried sugarcane leaves. The marker (M) 

was DNA GeneRuler 100 bp plus (MBI Fermentas). The 

arrow points to the COX-specific band of 400 bp.  
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3.3.1. Phytoplasma detection and identification  

Four nested-PCR assays (I), (II), (III) and (IV) were used to investigate the phytoplasma in 

sugarcane samples from Hawaiian plantation. However, no products were obtained except in 

PCR assay (III). The sequencing of some products showed the presence of rice yellow dwarf 

phytoplasma (Figure.3.12 and Table.3.5). 

 

                          

Figure.3.12. Phytoplasma in Kaui and Maui plantations sugarcane samples. Nested-PCR assay (III) 

products (0,2 kb) amplified with primers (MLO-X/MLO-Y, P1/P2). The samples M1 to M8 were from Maui and 

K1-1 to K1-5 from Kaui.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M1 M8 M7 M2 M3 M4 

210 bp 

K1-1 K1-2 K1-3 K1-4 K1-5 M 

0.2kb 
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Table.3.5. Phytoplasma in Hawaiian plantations sugarcane samples (2009). Results of phytoplasma 

detection based on nested-PCR assays (I), (II), (III) and (IV) of sugarcane samples obtained from Hawaiian 

plantations as sun-dried leaves and identification them based on DNA sequencing analysis of nested-PCR assay 

(III) using the nested primer pair (P1/P2). According to the DNA sequencing analysis these sugarcane samples 

contain rice yellow dwarf phytoplasmas. +, phytoplasma detected; -, phytoplasma not detected. These samples 

were collected from plants of cultivar H65-7052.The samples (K1-1 to K1-5) from Kauai were collected from 

G&R plantation (4-5 km west of Olokele) while the samples (M1 to M8) from Maui were from HC&S plantation 

(fields 702, 500, 608 and 809, all south-east of Puunene). In each case 3 leaf samples from 3 different plants 

were tested. 

 

Location, 
age of plant 

Leaf condition phytoplasma 
detection based 
on PCR assay 

(I), (II) and (IV) 

phytoplasma 
detection based 

on 
PCR assay 

(III) 

Phytoplasma 
group based on 

DNA 
sequencing of 

PCR assay (III) 
(P1/P2) 

Kauai 
(H65-7052) 

    

3 months 
K1-1 

Green leaves - -  

13 months 
K1-2 

Green leaves - -  

“ 
K1-3 

YLS 
symptomatic 

- -  

23 months 
K1-4 

Green leaves - + 
 

Rice yellow 
dwarf 

“ 
K1-5 

YLS 
symptomatic 

- + 
 

Rice yellow 
dwarf 

Maui 
(H65-7052) 

    

4 weeks  
M1 

Green leaves - + Rice yellow 
dwarf 

3 months  
M2 

Green leaves - + Rice yellow 
dwarf 

9 months  
M3 

Green leaves - + Rice yellow 
dwarf 

“          
M4 

YLS 
symptomatic 

- + Rice yellow 
dwarf 

20 months 
M7 

Green leaves - + 
 

Rice yellow 
dwarf 

“            
M8 

YLS 
symptomatic 

- + Rice yellow 
dwarf 

 

3.4. Phytoplasma in sugarcane in Hawaiian former plantation fields (2009) 

Many Hawaiian sugarcane plantations went out of business in the past decades, but some 

sugarcane plants survived in the former sugarcane fields up to now due to the tropical climate 

and the perennial growth mode of sugarcane. These plants were standing on their places in the 

wild, in some cases since more than 30 years without replanting and thermotherapy (Komor et 
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al. 2010) and they may have become infected by phytoplasma in case that the appropriate 

insect vectors were present. Samples of the uppermost fully unfolded leaves of plants found in 

former plantation fields were collected, sun-dried and tested for phytoplasma. 

3.4.1. Phytoplasma detection and identification  

The extracted DNA from these samples gave amplification only with primer pairs of PCR 

assay (III). The obtained amplicons were sequenced in order to identify the phytoplasma 

(Figure.3.13 and Table.3.6). 

 

 

                

Figure.3.13. phytoplasma in former Hawaiian plantations sugarcane samples (2009). Nested-PCR assay 

(III) products (0,2kb) amplified with primers (MLO-X/MLO-Y, P1/P2). The samples M10 to M13 were from 

Maui plantation, H1 to H4 were from Hawaii plantation, K2 to K5 from Kauai, all as air-dried and then oven-

dried. Re-amplification of aliquots of first PCR water controls with nested primer combinations are in lanes W. 

The marker (M) was DNA GeneRuler 100 bp plus (MBI Fermentas).  
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210 bp 
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Table.3.6. Phytoplasma in sugarcane samples from  former  Hawaiian plantations (2009). Results of 

phytoplasma detection based on nested-PCR assays and identification based on DNA sequencing of nested-PCR 

assay (III) using P1/P2. +, phytoplasma detected; -, phytoplasma not detected. The samples (H1 to H4) were 

from Hawaii while the samples (M10 to M13) were from Maui and the samples (K2 to K5) were from Kauai.  

 

Island and 
collection site 

phytoplasma detection 
based on PCR assay 

(I), (II) and (IV) 

phytoplasma detection 
based on PCR assay 

(III) 

Phytoplasma group 
based on DNA 

sequencing of PCR 
assay (III) 
(P1/P2) 

Hawaii    
H1 - + Aster yellows 
H2 - + Aster yellows 
H3 - + Aster yellows 
H4 - + Aster yellows 

Maui (H65-7052)    
M10 - +  
M11 - + Rice yellow dwarf 
M12 - + Rice yellow dwarf 
M13 - + Rice yellow dwarf 

Kauai (H65-7052)    
K2 - + Aster yellows 
K3 - + Aster yellows 
K4 - +  
K5 - +  

 

3.5. Phytoplasma in sugarcane in Hawaiian breeding station (2010) 

Six sugarcane cultivars from Hawaiian breeding station of HARC in Maunawili, Oahu were 

sent from Dr. Zhu in 2010 as sun-dried leaves in order to test for phytoplasmas. 

3.5.1. Phytoplasma detection and identification  

Only the primers of PCR assay (III) amplified DNA in these sugarcane cultivars. However, 

the obtained bands were very weak, therefore; only two of them were sequenced (Figure.3.14 

and Table.3.7).  

 

 

0,2kb 

4153 7052 4319 6110 7750 4094 M W 

Figure.3.14. phytoplasma in Hawaiian 

breeding station sugarcane samples (2010). 

Nested-PCR assay (III) products (0.2kb) 

amplified with primers (MLO-X/MLO-Y, 

P1/P2) obtained from Hawaiian sugarcane 

breeding station (2010) as air-dried samples. Re-

amplification of aliquot of first PCR water 

control with nested primer combination is in 

lane W. The marker (M) was DNA GeneRuler 

100 bp plus (MBI Fermentas). 
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Table.3.7. Phytoplasma in sugarcane plants from Hawaiian (Maunawili, HARC) breeding station (2010). 

Results of phytoplasma detection based on nested-PCR assays and identification by DNA sequencing of nested-

PCR assay (III) using P1/P2. +, phytoplasma detected; -, phytoplasma not detected.  

Sample name phytoplasma 
detection based on 

n-PCR assay 
(I)& (II)& (IV) 

phytoplasma 
detection based on 

n-PCR assay 
(III) 

Phytoplasma 
group based on 

DNA sequencing 
(P1/P2) 

H65-7052 - + Rice yellow dwarf 
H73-6110 - + Aster yellows 
H78-7750 - +  
H78-4153 - +  
H87-4094 - +  
H87-4319 - +  

 

 

3.6. Phytoplasma in sugarcane in Hawaiian breeding station and plantations (2011) 

In February 2011, sugarcane leaf samples were harvested from different areas in Hawaiian 

Islands including plantation HC&S, Maui and Maunawili breeding station. Then, these 

sugarcane samples were sun-dried in order to test the presence of phytoplasm in our lab. Most 

of these samples were taken from sugarcane plants are showing sugarcane yellow leaf 

syndrome symptoms (Figure.3.15). 

3.6.1. Phytoplasma in sugarcane in Hawaiian plantation  

These plantations obtained the cultivars from the breeding station of HARC in Maunawili, 

Oahu, followed by several cycles of field testing and multiplication. The question was if 

phytoplasmas can be responsible for YLS in this plantation field and if there is significant 

correlation between the presence of phytoplasma and showing sugarcane yellow leaf 

syndrome since some samples were strongly or slightly symptomatic while others 

asymptomatic. Samples from uppermost fully unfolded source leaves from plants of different 

cultivars were collected in the plantation fields and sun-dried. The samples from Maui were 

from HC&S plantation (fields 702, 500, 608 and 809, all south-east of Puunene). In each case 

3 leaf samples from 3 different plants were tested. 
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3.6.1.1. Phytoplasma detection and identification 

DNA was extracted from source leaves and each sugarcane sample was investigated for the 

presence of phytoplasma by using four nested-PCR assays (I), (II), (III) and (IV) with 

different primer pair combinations as was clarified before. Only nested-PCR assay (III) gave 

positive reactions. Our results showed that symptomatic and non- symptomatic plants contain 

phytoplasma ((Figure.3.16 and Table.3.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

B 

C 

Figure.3.15. Sugarcane leaves 

showing symptoms of infection 

with yellow leaf syndrome (A) and 

(B), compared with an uninfected 

green leaf (C). Sugarcane yellow 

leaf syndrome symptoms are caused 

by several agents including 

phytoplasma.  
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Table.3.8. Phytoplasma in sugarcane plants from Hawaiian HC&S plantation of Maui island, close to 

Puunene (2011). Results of phytoplasma detection based on nested-PCR assays and identification based on 

DNA sequencing of products of nested-PCR assay (III) using P1/P2. According to the DNA sequencing analysis 

the sugarcane samples contain rice yellow dwarf phytoplasma. +, phytoplasma detected; -, phytoplasma not 

detected. 

Order of 
Sugarcane 
varieties 

Sugarcane 
cultivar and Leaf 

condition 

phytoplasma 
detection based 

on 
PCR assay 

(I), (II), (IV) 

phytoplasma 
detection based 

on 
PCR assay 

(III) 

Phytoplasma 
group based on 

DNA 
sequencing 

(P1/P2) 
1 H65-7052, 

 6 months 
Non-

symptomatic 

 - +  

2 H65-7052,  
6 months 

symptomatic 

 -  -  - 

3 H73-3567,  
4 months 

Non-
symptomatic 

 -  -  - 

4 H87-4319, 
 9 months 

Non-
symptomatic 

 - + Rice yellow 
dwarf 

5 H87-4319, 
 9 months 
slightly-

symptomatic 

 - +  

6 H86-3792,  
6 months 

Non-
symptomatic 

 - + Rice yellow 
dwarf 

7 H87-5794,  
9 months 

Non-
symptomatic 

 - + Rice yellow 
dwarf 

 

 

   

210bp 

1 2 3 4 5 6 7 M 

Figure.3.16. Phytoplasma in Hawaiian 

HC&S plantation of Maui island, close to 

Puunene (2011). Nested-PCR assay (III) 

products (0.2kb) amplified with primers 

(MLO-X/MLO-Y, P1/P2) of sugarcane 

samples obtained from Hawaiian plantation 

HC&S, Maui, close to Puunene; (2011) as 

sun-dried leaves. The marker (M) was DNA 

GeneRuler 100 bp plus (MBI Fermentas). 
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3.6.2. Phytoplasma in sugarcane in Hawaiian breeding station (2011) 

Samples from uppermost fully unfolded source leaves from 10 cultivars of sugarcane plants 

were collected from HARC breeding station in Maunawili (fields A, B and P which are 

widely distant from each other) and sun-dried for phytoplasma investgation. Names of these 

sugarcane cultivars are indicated in (Table.3.9). These cultivars were previously tested for 

sugarcane yellow leaf virus (SCYLV) by Lehrer et al., 2001.The results of this test are 

indicated in (Table.3.11). 

3.6.2.1. Phytoplasma detection by nested-PCR assay (II) and identification 

DNA was extracted and tested for phytoplasma by nested-PCR assay (II). Most of these 

sugarcane cultivars produced an amplicon at 1.2 kbp, although apparently at different titres 

(Figure.3.17). Products of nested-PCR assay (II) were digested with restriction endonucleases 

(HpaII and MseI). The obtained RFLP patterns were compared with those previously 

published by Lee et al., 1998. According to this digestion these Hawaiian sugarcane samples 

contain phytoplasmas fall in rice yellow dwarf group (Figure.3.18 and Table.3.9). However, 

further RFLP analysis is required to differentiate if this phytoplasma belongs to sugarcane 

white leaf strain (SCWL) or sugarcane grassy shoot one (SCGS) as mentioned before. 
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Table.3.9. Phytoplasma in Hawaiian (Maunawili, HARC) breeding station sugarcane samples (2011). 

Results of phytoplasma detection based on nested-PCR assay (II) and identification based on RFLP analysis 

using single enzyme digestion with HpaII and MseI. Sample numbers indicate to the order of samples in next 

figures (3.17) and (3.18). +, phytoplasma detected; -, phytoplasma not detected. 

Samples number Samples name phytoplasma detection 
based on 

PCR assay 
(II) 

Phytoplasma group 
based on RFLP 

with HpaII and MseI 

1 H87-4094 field A11 +  

2 H78-3567  “ + Rice yellow dwarf 

3 H87-4319 “ +  

4 H65-7052 “ +  

5 H50-7209 “ + Rice yellow dwarf 

6 H78-4153 “ + Rice yellow dwarf 

7 H77-4643 “ + Rice yellow dwarf 

8 H73-6110, field A22 +  

9 H32-8560, field B31   

10 H78-7750, field B62 +  

11 H87-4319 “ + Rice yellow dwarf 

12 H78-3606 “ - - 

13 H77-4643, field 
P11a 

+  

14 H78-3606, field P11 - - 

15 H50-7209, field P12 - - 

16 H87-4319 “ +  

17 H65-7052 “ - - 

18 H78-7750 “ +  

19 H73-6110, field P13 +  
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Figure.3.17. Phytoplasma detection in sugarcane samples from Hawaiian (Maunawili, HARC) breeding 

station (2011). Nested-PCR assay (II) products (1.2kb) amplified with primers (SN910601/P6, R16F2n/R16R2). 

Samples numbers and names are indicated in table (3.9) above. Re-amplification of aliquots of first PCR water 

controls with nested primer combinations are in lanes W. The marker (M) was DNA GeneRuler 100 bp plus 

(MBI Fermentas). 

 

           

Figure.3.18. Phytoplasma identification in sugarcane samples from Hawaiian (Maunawili, HARC) 

breeding station (2011). RFLP profiles of nested-PCR assay (II) products (1.2kb) amplified with primers 

(SN910601/P6, R16F2n/R16R2) following single enzyme digestion with HpaII (a) and MseI (b). The marker M 

was GeneRuler 100 bp plus (MBI Fermentas). 

3.6.2.2. Phytoplasma detection by nested-PCR assay (III) and (IV) and identification  

According to PCR assay (III) results most of these sugarcane cultivars were positive for 

phytoplasma (Figure.3.19). This is also true for PCR assay (IV) (Figure.3.20). Products of 

PCR assay (IV) were digested with restriction endonuclease (HinfI). According to this 

digestion these Hawaiian sugarcane samples contain phytoplasma strain of sugarcane white 

leaf (SCWL) (Figure.3.21 and Table.3.10).  

 

1,2kb 

3567 7209 4153 4643 6110 M M 4319 

1 2 3 4 5 6 7 10 8 11 12 13 14 15 16 17 18 19 W W W W 

3567 M 7209 4153 4643 
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Table.3.10. Phytoplasma in sugarcane samples from Hawaiian (Maunawili, HARC) breeding station 

(2011). Results of phytoplasma detection based on nested-PCR assays (III) and (IV) and identification based on 

RFLP analysis of (IV) products using single enzyme digestion with (HinfI). Sample numbers indicate to the 

order of samples in next figures (3.19 and 3.20).  +, phytoplasma detected; -, phytoplasma not detected. 

Sample 

number 

Sample 
name 

Phytoplasma 
detection based on 

PCR assay 
(III) 

Phytoplasma 
detection based on 

PCR assay 
(IV) 

Phytoplasma 
strain based on 

RFLP with 
(HinfI ) 

1 H87-4094 
field A11 

+ + Sugarcane white 
leaf 

2 H78-3567  + + “ 

3 H87-4319 + + “ 

4 H65-7052 + + “ 

5 H50-7209 + + “ 

6 H78-4153 + + “ 

7 H77-4643 - + “ 

8 H73-6110 
field A22 

+ + “ 

9 H32-8560 
field B31 

 -  -  - 

10 H78-7750 
field B62 

+ + “ 

11 H87-4319 - - - 

12 H78-3606 + + “ 

13 H77-4643 
field P11a 

+ + “ 

14 H78-3606 
field P11 

+ + “ 

15 H50-7209 
field P12 

- + - 

16 H87-4319 + - “ 

17 H65-7052 - + - 

18 H78-7750 + + “ 

19 H73-6110 + + “ 
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Figure.3.19. Phytoplasma detection in sugarcane samples from  Hawaiian (Maunawili, HARC) breeding 

station sugarcane samples (2011). Nested-PCR assay (III) products (0.2kb) amplified with primers (MLO-

X/MLO-Y, P1/P2). Samples numbers and names are indicated in (Table.3.10). Re-amplification of aliquots of 

first PCR water controls with nested primer combination is in lanes W. The marker (M) was DNA GeneRuler 

100 bp plus (MBI Fermentas). 

 

  

 

Figure.3.20. Phytoplasma detection in sugarcane samples from Hawaiian (Maunawili, HARC) breeding 

station (2011). Nested-PCR assay (IV) products (0.7kb) amplified with primers (U-1/MLO-7, MLO-X/MLO-Y). 

Samples numbers and names are indicated in (Table.3.10). Re-amplification of aliquots of first PCR water 

controls with nested primer combination is in lanes W. The marker (M) was DNA GeneRuler 100 bp plus (MBI 

Fermentas). 

 

 

 

 

 

 

0,7kb 

210bp 
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Figure.3.21. Phytoplasma identification in sugarcane samples from Hawaiian (Maunawili, HARC) 

breeding station (2011).  RFLP profiles of nested-PCR assay (IV) products (0.7kb) amplified with primers (U-

1/MLO-7, MLO-X/MLO-Y) following single enzyme digestion with (HinfI ). The marker M was GeneRuler 100 

bp plus (MBI Fermentas). RFLP patterns were compared with those previously published by Hanboonsong et 

al., 2002. 

Table.3.11. Presence of SCYLV in sugarcane cultivars in the HARC breeding station in 2001 and presence 

of phytoplasma in these cultivars which collected in (2011). SCYLV was assayed by tissue blot immunoassay 

but the presence of phytoplasma was tested by nested-PCR. 

sugarcane cultivars 
 

SCYLV detection based on 
Tissue blot immunoassay 

phytoplasma detection based 
on nested-PCR assay 

H87-4094 + + 
H78-3567 + + 
H87-4319 + + 
H65-7052 + + 
H50-7209 + + 
H78-4153  - + 
H77-4643 + + 
H73-6110 + + 
H78-7750  - + 
H78-3606 + + 

 

 

 

 

0,5 

4319 7209 3567 7052 4094 4643 4153 6110 7750 3606 4643 7209 7052 7750 6110 M 

0,3 

0,1 

Kb 
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3.6.3. Phytoplasma in sugarcane in different areas close to former plantations  

Original sources of these sugarcane samples are indicated in (Table.3.12). All these collected 

sugarcane samples should show whether sugarcane plants in the neighborhood of water cress 

farming have phytoplasma. Except the sample from garden of  Dr. Lehrer and samples from 

Akaka Falls (300 m and 200 m elevation) should show whether phytoplasma may be 

responsible for YLS, since the virus titre was absent or low. 

3.6.3.1. Phytoplasma detection and identification 

The extracted DNA from these samples gave amplification with primer pairs of PCR assay 

(III) and (IV). The obtained amplicons were sequenced and digested with restriction 

endonuclease (HinfI). According to this digestion one sugarcane cultivar contains sugarcane 

white leaf phytoplasma strain whereas other cultivar infected with un-identified strain within 

rice yellow dwarf group (Figure.3.23; b and Table.3.12). 
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Table.3.12. Phytoplasma in Hawaiian sugarcane samples from different sources close to former 

plantations (2011). Results of phytoplasma detection based on nested-PCR assays and identification them based 

DNA sequencing and RFLP analysis of (IV) products using single enzyme digestion with (HinfI). Sample 

numbers indicate to the order of samples in next figures (3.22 and 3.23). +, phytoplasma detected; -, 

phytoplasma not detected. 

Sample 

number 

Sample 

name 

phytoplasma 
detection based 

on 
PCR assay 

(II) 

phytoplasma 
detection based 

on 
PCR assay 

(III) 

phytoplasma 
detection based 

on 
PCR assay 

(IV) 

Phytoplasma 
strain based 

on RFLP with 
(HinfI) 

1 Virus-free 
from. 
Lehrer 

- + 
Rice yellow 

dwarf 

+ Unknown  

2 Honomu, 
Stable 

Camp Rd 

- + 
Rice yellow 

dwarf 

+ Sugarcane 
white leaf 

3 Honomu, 
Akaka 

Falls Rd 

- + 
Rice yellow 

dwarf 

- - 

4 Honomu, 
Akaka 

Falls Rd 

- + 
Rice yellow 

dwarf 

+ 

 

 

5 Akaka 
Falls, 
300m 

elevation 

- + 
Rice yellow 

dwarf 

- - 

6 “ , 
200m 

elevation 

- - - - 

7 Kukui 
Camp 

- + 
Rice yellow 

dwarf 

-  

8 Keanae, 
Hana Rd., 
close to 

Taro 

- + 
Rice yellow 

dwarf 

-  
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Figure.3.22. Phytoplasma detection in Hawaiian sugarcane samples from different sources close to former 

plantations (2011). Nested-PCR assay (III) products (0.2kb) of sugarcane samples obtained from different 

sources close to former plantations as sun-dried leaves. Samples numbers and names are indicated in 

(Table.3.12). Re-amplification of aliquots of first PCR water controls with nested primer combinations are in 

lanes W. The marker (M) was DNA GeneRuler 100 bp plus (MBI Fermentas). 

 

 

Figure.3.23. Phytoplasma in Hawaiian sugarcane samples from different sources close to former 

plantations (2011). (a): Nested-PCR assay (IV) products (0.7kb) sugarcane samples obtained from different 

sources close to former plantations in (2011) as sun-dried leaves. Samples numbers and names are indicated in 

table 11. Re-amplification of aliquots of first PCR water controls with nested primer combination is in lanes W. 

The marker (M) was DNA GeneRuler 100 bp plus (MBI Fermentas). (b): RFLP profiles of nested-PCR assay 

(IV) products following single enzyme digestion with (HinfI ). RFLP patterns were compared with those 

previously published by Hanboonsong et al., 2002. 

3.6.4. Phytoplasma in grass weeds in Sumida water cress farm 

Further surveys should be done in order to check whether sugarcane plants which are growing 

close to water cress fields contain the water cress-typical phytoplasma. However, Sumida 

watercress field in Pearlridge had phytoplasma-infected water cress 10 years ago and these 

plants had been eliminated. Furthermore, currently there are no sugarcane plants nearby this 

field. However, some of perennial grasses (some of them are wild relatives of sugarcane such 

as (Miscanthus Sp.) are still present nearby this field which may be reservoir of phytoplasma. 

Therefore, perennial grasses were collected from Sumida water cress field and were brought 

0,2kb 

0,7kb

2 1 2 3 4 5 6 7 8 M W W W 

1 2 3 4 5 6 7 8 M W W 

1 

a b 

M 
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to our lab in order to test whether these perennial grasses are infected with phytoplasma. 

According to our investigation, however, these grasses are not infected with phytoplasma 

(Table.3.13). 

Table.3.13. Outline the detection of phytoplasmas; in samples were obtained from grass weeds from 

Sumida water cress farm in pearlidge; based on nested-PCR assays.  

Grasses sample PCR assay(II) PCR assay (III) PCR assay (IV) 
Paspalum 

coniugatum 
-  -  - 

Cyperus 
rotundus 

 -  -  - 

Panicum 
maximum 

 -  -  - 

Miscanthus Sp.  -  -  - 

 

3.7. Phytoplasma in sugarcane in Thailand (2010 – 2011) 

Sugarcane white leaf (SCWL) is one of the most destructive sugarcane diseases in Thailand. It 

was first observed in 1954 in the Lumpang province in the northern part of Thailand 

(Mangelsdorf, 1962). Only four years later, SCWL was discovered in Taiwan (Ling, 1962). 

Sugarcane white leaf (SCWL) and sugarcane grassy shoot (SCGS) have been associated with 

distinct phytoplasma strains within the rice yellow dwarf taxonomic group (16SrXI), 

“Candidatus Phytoplasma oryzae”  that causes rice yellow dwarf disease (Marcone et al., 

2004, Ariyarathna et al., 2007). SCWL phytoplasma appears to be more closely related to 

SCGS phytoplasma than to phytoplasmas causing white leaf symptoms in some grasses. 

Furthermore, SCWL and SCGS phytoplasmas could be differentiated by RFLP analysis of 

rRNA gene using suitable restriction endonucleases (Marcone, 2002).   

3.7.1. Phytoplasma in sugarcane in Bang Phra and Khon Kean provinces (2010) 

In October 2010, sugarcane leaf samples were harvested from Bang Phra and Khon Kean 

(KK) provinces in Thailand including farmer fields (F) and breeding stations (S). Then, these 

sugarcane samples were sun-dried and were brought to our lab in order to investigate for 

phytoplasma. These samples were taken from sugarcane plants are showing different diseases 

symptoms including sugarcane white leaf syndrome symptoms (Figure.3.24). Names of these 

sugarcane samples and their diseases symptoms are indicated in (Table.3.14). 
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Figure.3.24. Sugarcane leaves samples from Thailand. These leaves were collected from farmer fields (F) and 

breeding station (S) in province of Bang Phra in Thailand and used for phytoplasma investigation. Bleaching 

leaves at the right side show sugarcane white leaf symptoms whereas the red one in the middle shows the rust 

disease symptoms beside it at the left hand leaf shows yellow spots. Two stunted leaves are at the left side of 

bleaching leaves while the last two leaves at the left side are infected with curly spindle disease.  

3.7.1.1. Phytoplasma detection and identification 

The extracted DNA from these samples gave amplification with primer pairs of PCR assay 

(III) and (IV) (Figure.3.25 and.3.26). Products of assay (IV) were digested with restriction 

endonuclease (HinfI). According to this digestion phytoplasma infected-sugarcane samples 

contain sugarcane white leaf phytoplasma strain (Figure.3.27 and Table.3.14). 
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Table.3.14. Phytoplasmas in sugarcane samples from provinces of Bang Phra and Khon Kean in Thailand 

in 2010; based on nested-PCR assays. Samples (F1 to F8) were from farmer fields in province of Bang Phra 

while the samples (S1 to S13) were from breeding station also in province of Bang Phra. Samples (KK1 to 

KK38) were from province of Khon Kean.  

 

Sugarcane 
sample 

Desiease   
Symptoms 

PCR assay 
(III) 

PCR assay 
(IV) 

Phytoplasma 
strains based on 

RFLP with (HinfI ) 
F1 White fly + + Sugarcane white 

leaf 
F2 Leaf spot + + “ 
F3 rust + + “ 
F4 Yellow spot + + “ 
F5 Mosaic virus + + “ 
F6 Curly spindle + + “ 
F7 Stunted leaf + + “ 
F8 White leaf + + “ 
S1 Spotted mosaic - -  
S2 Spotted mosaic + + Unknown 
S3  - -  
S4 rust - + Unknown 
S5 rust - + Unknown 
S6  - -  
S7  - -  
S8  - -  
S9  + -  
S10 Streak mosaic + + Sugarcane white 

leaf 
S11 Streak mosaic + + Unknown 
S12 Streak mosaic - -  
S13 Streak mosaic - -  
KK1  + + Sugarcane white 

leaf 
KK2 Mosaic + + “ 
KK3 Grassy shoot + + “ 
KK4 Yellow midrib + + “ 
KK11 Yellow midrib + -  
KK12 Leaf scalel + + “ 
KK13 Erianthus cross 

yellow midrib 
+ -  

KK14 mosaic + + “ 
KK17 mosaic + + “ 
KK18 Erianthus + -  
KK20 mosaic + + “ 
KK21 Spot - -  
KK32 white leaf + + “ 
KK33 white leaf + + “ 
KK34 white leaf + + “ 
KK35 Stripe + + “ 
KK36 Stripe + + “ 
KK37 Yellow midrib + + “ 
KK38 Yellow midrib + + “ 
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Figure.3.25; a, b and c. Phytoplasma detection in Thia sugarcane samples from  Bang Phra and Khon 

Kean. Nested-PCR assay (III) products (0.2kb) of sugarcane samples obtained from farmer fields (F1 to F8) and 

breeding station (S9 to S11) in Bang Phra and Khon Kean (KK1 to KK38) as sun-dried leaves. Samples numbers 

and names are indicated in (Table 3.14). Re-amplification of aliquots of first PCR water controls with nested 

primer combinations are in lanes W. The marker (M) was DNA GeneRuler 100 bp plus (MBI Fermentas). 

 

210 bp 

F1 F2 F3 F7 F6 F5 F4 F8 M W W 

210 bp 

Kk1 2 4 3 11 12 13 14 17 M 
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0,2kb 
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Figure.3.26; a, b, c and d. Phytoplasma detection in Thia sugarcane samples from  Bang Phra and Khon 

Kean. Nested-PCR assay (IV) products (0.7kb) of sugarcane samples obtained from farmer fields (F1 to F8) and 

breeding station (S10 to S11) in Bang Phra and Khon Kean (KK1 to KK38) as sun-dried leaves. Samples 

numbers and names are indicated in (Table 3.14). Re-amplification of aliquots of first PCR water controls with 

nested primer combination is in lanes W. The marker (M) was DNA GeneRuler 100 bp plus (MBI Fermentas). 

 

 

 

 

 

 

 

 

 

 

0,7kb 
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2 13 
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Figure.3.27; a, b, c and d. Phytoplasma identification in Thia sugarcane samples from  Bang Phra and 

Khon Kean. RFLP profiles of nested-PCR assay (IV) products (0.7kb) of sugarcane samples obtained from 

farmer fields (F3 to F8) and breeding station (S2 to S11) in Bang Phra and Khon Kean (KK1 to KK35) as sun-

dried leaves following single enzyme digestion with (HinfI). The marker M was GeneRuler 100 bp plus (MBI 

Fermentas). 

3.7.2. Phytoplasma in sugarcane in Suphan Buri province (2011) 

Sugarcane samples were sent from farmer fields in province of Suphan Buri as sun-dried 

leaves. Four samples were taken from sugarcane plants showing yellow leaf syndrome 

symptoms and one sample was taken from plant shows sugarcane grassy shoot symptoms.  

3.7.2.1. Phytoplasma detection and identification 

The extracted DNA from these samples gave amplification only with primer pairs of PCR 

assay (III). Some products of this assay were sequenced for the identification (Figure.3.28 and 

Table.3.15). 

F4 F3 F5 F7 F6 F8 M 
M M Kk1 Kk3 Kk14 Kk32 Kk35 

M S10 S11 Kk2 Kk20 S2 S4 S5 M M 

a b 

c d 

0.5 kb 

0.2 kb 

0.5 kb 

0.2 kb 

0.5 kb 

0.2 kb 
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Table.3.15. Outlines of phytoplasmas in Thai sugarcane samples from Suphan Buri. 

Sugarcane sample phytoplasma 
detection based on 

PCR assay 
(III) 

phytoplasma 
detection based on 

PCR assay 
(IV) 

Phytoplasma group 
based on DNA 

sequencing 
(P1/P2) 

1 + - Rice yellow dwarf 

2 + - „ 

3 + - " 

4 + - " 

Graasy shoot + - " 

 

 

        

3.8. Establishment of TaqMan qPCR assay as another test for phytoplasma 

Most universal as well as specific phytoplasma diagnostic protocols rely on nested PCR, 

which, although extremely sensitive, is also time-consuming and possess risks in terms of 

carry-over contamination between the two rounds of amplification (Weintraub and Jones, 

2010). Recently, direct qPCR has replaced the traditional PCR in efforts to increase the speed 

and sensitivity of detection and to improve techniques for mass screening (Weintraub and 

Jones, 2010).  

3.8.1. Performance characteristics of qPCR 

Performance characteristics which include efficiency, limit of detection and sensitivity of 

amplicons were determined by amplifying three separately prepared sets of dilution series of 

three standard samples in water which include 1- phytoplasma-infected periwinkle 

1 2 3 4 M 
M W 

Grassy 

shoot 

0,2kb 

a b 

Figure.3.28; a and b. Phytoplasma in Thia 

sugarcane samples from Suphan Buri. 

Nested-PCR assay (III) products (0.2kb)) of 

sugarcane samples obtained from farmer 

fields in Suphan Buri as sun-dried leaves. 

Samples numbers and names are indicated in 

(Table.3.15). Re-amplification of aliquot of 

first PCR water control with nested primer 

combination is in lane W. The marker (M) 

was DNA GeneRuler 100 bp plus (MBI 

Fermentas). 
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(phytoplasmal DNA) 2- phytoplasma-infected sugarcane (phytoplasmal DNA) 3-

phytoplasma-free sugarcane (plant DNA). Since the copy number of target genes in the 

standard samples is unknown, the standard curves are helpful for the evaluation of PCR 

efficiency and sensitivity, but not for absolute quantification.    

3.8.1.1. Efficiency Measurement 

 In this study, efficiency (E) values were measured using the Ct slope method. This method 

involves generating a dilution series of the target template and determining the Ct value for 

each dilution. A plot of Ct versus log DNA concentration is constructed (Figures.3.29, 30 and 

31). Amplification efficiency was calculated from the slope of this graph using the equation: 

Ex = 10^ (-1/slope) – 1. The effect of efficiency is exponentially dependent on cycle number. 

If E=1, amplicon quantity is duplicated every cycle. If E=0.8 amplicon quantity is only 

duplicated every 1. 2 cycle. The squared regression coefficient after the linear regression (R²) 

was also determined (Table.3.16 and 17). 
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Figure.3.29. A: Standard curve. Standard curve determined at six concentration levels (ranging from 10^0 to 

10^-5) using 10-fold dilution series of the reference sample (phytoplasma-infected periwinkle). The threshold 

numbers of PCR cycles (CT value; means of triplicates) are plotted against the dilution (log scale).B: Log- view 

of standard curve chart. Threshold; is an arbitrary level of fluorescence chosen on the basis of the baseline 

variability. Ct;  is defined as the fractional PCR cycle number at which the reporter fluorescence is greater than 

the threshold.∆Rn; is an increment of fluorescent signal at each time point. The ∆Rn values are plotted versus 

the cycle number.  
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Figure.3.30. A: Standard curve. Standard curve determined at six concentration levels (ranging from 10^0 to 

10^-5) using 10-fold dilution series of the reference sample (phytoplasma-infected sugarcane). The threshold 

numbers of PCR cycles (CT value; means of triplicates) are plotted against the dilution (log scale). B: Log- view 

of standard curve chart. ∆Rn; is an increment of fluorescent signal at each time point. The ∆Rn values are 

plotted versus the cycle number 
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 Figure.3.31. A: Standard curve. Standard curve determined at six concentration levels (ranging from 10^0 to 

10^-5) using 10-fold dilution series of the phytoplasma-free sugarcane plant sample. The threshold numbers of 

PCR cycles (CT   value; means of triplicates) are plotted against the dilution (log scale). B: Log- view of 

standard curve chart. ∆Rn; is an increment of fluorescent signal at each time point. The ∆Rn values are plotted 

versus the cycle number 
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3.8.1.2. Artificial samples to test sensitivity of qPCR assay 

Performance characteristics were also evaluated for the serial dilution of phytoplasma-

infected sugarcane (phytoplasmal DNA) mixed with sugarcane DNA, instead of water, 

isolated from phytoplasma-free sugarcane leaves to imitate real infected sugarcane samples. 

Thus, PCR sensitivity was evaluated for potential effects of host-material inhibition. This un-

infected sugarcane material had already been tested and confirmed to be phytoplasma-free 

sugarcane. Artificial samples imitating infected sugarcane samples were prepared by serial 

dilutions of phytoplasma-infected sugarcane DNA mixed with phytoplasma-free sugarcane 

DNA. A plot of Ct versus log DNA concentration is also constructed as above (Figure.3.32). 
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Figure.3.32. A: Standard curve. Standard curve determined at six concentration levels (ranging from 10⁰ to 

10 ⁵̄) using 10-fold dilution series of the phytoplasma-infected sugarcane (phytoplasmal DNA) mixed with 

sugarcane DNA to imitate real sugarcane samples. The threshold cycle numbers (CT value; means of triplicates) 

are plotted against the dilution (log scale). B: Log-view of standard curve chart. ∆Rn; is an increment of 

fluorescent signal at each time point. The ∆Rn values are plotted versus the cycle number. 
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Table.3.16. Performance characteristics of qPCR assay. Performance characteristics measured for three 

standard samples used in this study in water dilutions which include phytoplasma-infected periwinkle 

(phytoplasmal DNA), phytoplasma-infected sugarcane (phytoplasmal DNA) and phytoplasma-free sugarcane 

(sugarcane plant DNA) and measured also for one standard sample which is phytoplasma-infected sugarcane 

(phytoplasmal DNA) but in sugarcane plant DNA dilutions (approximately 200 ng of genomic DNA per reaction 

in undiluted samples). 

target 
template 

 

amplicon slope R 
squared 

range of 
detection 

dynamic 
range 

PCR 
efficiency 

(%) 

limit of 
detection 

phytoplasma 
infected 

periwinkle 

16S 
rRNA  

)water(  

-3.5008 0.9994 1-10⁻⁵ 1-10⁻⁵ 90.5% 32.90 

phytoplasma 
infected 

sugarcane 

16S 
rRNA  

)water(  

-3.4483 0.9996 1-10⁻⁵ 1-10⁻⁵ 94.9% 30.31 

phytoplasma 
infected 

sugarcane 

16S 
rRNA 
plant) 

)DNA  

-3.7381 0.9905 1-10⁻⁵ 1-10⁻⁴ 86 % 26.54 

phytoplasma 
free  

sugarcane  

18S 
rRNA 

)water(  

-3.647 0.9971 1-10⁻⁵ 1-10⁻⁵ 87% 26.41 

 

Table.3.17. Q-PCR results from 10-fold dilution series of the reference samples which diluted in water or 

in healthy host plant DNA. CT is a threshold cycle number of qPCR assay.  

reference 
sample 

type of 
dilution 

 

CT 
mean 
value 
10⁰ 

dilution 
 

CT mean 
value 
10⁻¹ 

dilution 
 

CT mean 
value 
10⁻² 

dilution 
 

CT mean 
value 
10⁻³ 

dilution 
 

CT mean 
value 
10⁻⁴ 

dilution 

CT mean 
value 
10⁻⁵ 

dilution 
 

phytoplasma 
infected 

periwinkle 

water 15.49 19.22 22.75 26.27 29.79 32.90 

phytoplasma 
infected 

sugarcane 

water 13.14 16.40 19.78 23.11 26.80 30.31 

phytoplasma 
infected 

sugarcane 

host 
plant 
DNA 

12.72 15.86 18.95 22.39 26.54 33.96 

phytoplasma 
free  

sugarcane  

water 08.35 11.92 14.82 19.59 22.68 26.41 

 

3.8.2. Q-PCR results of the sugarcane samples from different sources  

The legend for all next tables is as the following:  CT is a threshold cycle number of qPCR 

assay. ND, phytoplasma not detected, i.e. above the maximum CT value of 40 cycles. 
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Table.3.18. Q-PCR results of the Hawaiian sugarcane samples grown in greenhouse. 

Sample CT mean value 
(phytoplasma  16S assay) 

CT mean value 
(plant  18S assay) 

H65-7052 34.93 11.95 
H78-7750 35.30 12.82 
H87-4094 ND 11.01 
H87-4319 ND 11.75 

Positive control 14.93 10.04 
Water control ND ND 

 

Table.3.19. Q-PCR results of the Egyptian and Syrian sugarcane samples. 

Sample CT mean value 
(phytoplasma  16S assay 

CT mean value 
(plant  18S assay) 

Gt549 ND 10.42 
G8447 ND 09.96 

Syrian cultivar ND 11.55 
Positive control 14.65 11.47 
Water control ND ND 

 

Table.3.20. Q-PCR results of the Hawaiian plantations sugarcane samples (2009). The samples (K1-2 to 

K1-5) were collected from G&R plantation in Kauai (4-5 km west of Olokele) while the samples (H1 and H3) 

were from former plantations in Hawaii and the sample (M11) was from former plantation in Maui. 

Sample CT mean value 
(phytoplasma  16S assay) 

CT mean value 
(plant  18S assay) 

K1-2 32.25 09.37 
K1-3 ND 08.95 
K1-4 ND 09.93 
K1-5 29.77 10.98 
H1 ND 10.26 
H3 ND 09.17 

M11 ND 13.34 
Positive control 14.93 10.04 
Water control ND ND 
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Table.3.21. Q-PCR results of the Hawaiian breeding station sugarcane samples (2010). 

Sample CT mean value 
(phytoplasma  16S assay) 

CT mean value 
(plant  18S assay) 

7052 ND 08.28 
6110 ND 08.64 
4094 ND 08.98 

Positive control 14.93 10.04 
Water control ND ND 

 

Table.3.22. Q-PCR results of the Hawaiian grass weeds from Sumida watercress farm (2011). 

Sample CT mean value 

(phytoplasma  16S assay) 

CT mean value 

(plant  18S assay) 

Paspalum coniugatum ND 08.54 

Cyperus rotundus ND 10.68 

Panicum maximum ND 08.26 

Miscanthus Sp. ND 10.42 

Positive control 13.34 08.88 

Water control ND ND 

 

Table.3.23. Q-PCR results of the Hawaiian sugarcane samples from HC&S plantation in Maui island, 

close to Puunene (2011). 

Sample CT mean value 
(phytoplasma  16S assay) 

CT mean value 
(plant  18S assay) 

H65-7052, 6 months 
Non-symptomatic 

ND 09.04 

H65-7052, 6 months 
symptomatic 

ND 10.53 

H73-3567, 4 months 
Non-symptomatic 

33.19 08.15 

H87-4319, 9 months 
Non-symptomatic 

34.51 07.86 

H87-4319, 9 months 
slightly-symptomatic 

ND 11.24 

H86-3792, 6 months 
Non-symptomatic 

33.10 10.74 

H87-5794, 9 months 
Non-symptomatic 

32.83 08.14 

Positive control 11.95 08.21 
Water control ND ND 
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Table.3.24. Q-PCR results of the Hawaiian sugarcane samples from HARC in Maunawili (2011). 

Sample CT mean value 
(phytoplasma  16S assay) 

CT mean value 
(plant  18S assay) 

H87-4094 field A11 ND 10.05 
H78-3567  “ ND 10.20 
H87-4319 “ 36.75 08.96 
H65-7052 “ ND 08.60 
H50-7209 “ ND 08.80 
H78-4153 “ 37.47 09.13 
H77-4643 “ 37.29 08.60 

H73-6110, field A22 ND 09.67 
H32-8560, field B31   
H78-7750, field B62 ND 09.90 
H87-4319 “ ND 09.31 
H78-3606 “ ND 10.34 

H77-4643, field P11a ND 08.92 
H78-3606, field P11 ND 10.84 
H50-7209, field P12 ND 09.38 
H87-4319 “ ND 10.75 
H65-7052 “ ND 09.12 
H78-7750 “ 36.42 07.96 

H73-6110, field P13 33.98 11.59 
Positive control 11.43 08.21 
Water control ND ND 

 

Table.3.25. Q-PCR results of the Hawaiian plantations sugarcane samples from different sources close to 

former plantations (2011). 

Sample CT mean value 
(phytoplasma  16S assay) 

CT mean value 
(plant  18S assay) 

Virus-free from Dr. 
Lehrer 

ND 08.55 

Honomu, Stable Camp 
Rd 

ND 09.31 

Honomu, Akaka Falls Rd ND 09.06 
Honomu, Akaka Falls Rd ND 08.89 

Akaka Falls, 300m 
elevation 

ND 09.00 

“ , 200m elevation ND 08.82 
Kukui Camp ND 09.58 

Keanae, Hana Rd., close 
to Taro 

ND 08.59 

Positive control 12.87 08.66 
Water control ND ND 
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Table.3.26. Q-PCR results of the Thai sugarcane samples from Bang Phra and Khon Kean provinces 

(2010). Samples (F1 to F8) were from farmer fields in province of Bang Phra while the samples (S1 to S13) were 

from breeding station also in province of Bang Phra. Samples (KK1 to KK38) were from province of Khon 

Kean. 

Sample CT mean value 
(phytoplasma  16S assay) 

CT mean value 
(plant  18S assay) 

F1 23.86 10.50 
F2 29.10 10.02 
F3 24.11 13.66 
F4 17.36 11.12 
F5 17.98 12.30 
F6 ND 10.97 
F7 ND 12.07 
F8 17.34 13.28 
S1 ND 10.46 
S2 ND 10.84 
S3 ND 11.55 
S4 ND 10.70 
S5 ND 11.96 
S10 ND 11.79 
KK1 17.70 10.05 
KK2 ND 12.42 
KK3 18.78 10.50 
KK4 21.04 12.20 
KK11 31.98 12.87 
KK12 ND 08.75 
KK13 ND 08.09 
KK14 25.58 11.27 
KK17 ND 11.05 
KK18 ND 11.41 
KK20 ND 12.37 
KK32 26.87 11.70 
KK34 17.74 11.17 
KK35 ND 11.08 
KK36 ND 10.82 
KK37 ND 10.63 
KK38 34.83 12.18 

AAY (positive control) 17.34 14.05 
Water control ND ND 

 

Table.3.27. Q-PCR results of the Thai sugarcane samples from Suphan Buri province. 

Sample CT mean value 
(phytoplasma  16S assay) 

CT mean value 
(plant  18S assay) 

1 ND 10.33 
2 ND 10.36 
3 ND 14.27 
4 ND 10.89 

Grassy shoot 16.98 07.82 
positive control 14.65 12.24 
Water control ND ND 
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The Ct values differed considerably among samples in the phytoplasma assay, while Ct values 

obtained in the plant assay were different slightly. This result indicated that phytoplasma titer 

was variable.  

3.8.3. Distribution of phytoplasma in sugarcane  

Q-PCR assay of phytoplasma 16S DNA was used to determine the distribution of the 

phytoplasma within infected sugarcane plant. The relative distribution of sugarcane white leaf 

phytoplasma in different parts of the plant was quantified using the comparative Ct method. 

Three leaf samples of phytoplasma infected sugarcane including white, variegated and green; 

and root samples were analysed (Figure.3.33). The phytoplasma was detected in all tested 

organs including leaves and roots. It seems there is correlation between titer of phytoplasma 

and symptoms expression where the titer of phytoplasma in white leaf was higher than 

variegated and green leaves. Lower Ct values correspond to higher initial quantities of 

phytoplasma DNA template (Table.3.28).  

Table.3.28. Q-PCR results of the distribution of the phytoplasma in sugarcane plant. CT is a threshold 

cycle number of qPCR assay. +,phytoplasma detected. 

Sugarcane sample CT mean value 
(16S) 

Phytoplasma 
 

CT mean value 
(18S) 

Sugarcane 

Phytoplasma 
detection 

White leaf 11.56 08.31 + 
Variegated leaf 12.97 08.76 + 

Green leaf 14.02 08.79 + 
Root 12.28 08. 82 + 
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Figure.3.33. A: Thai sugarcane plant infected with sugarcane white leaf phytoplasma where some leaves are 

totally bleaching whereas others are variegated and some green leaves also exists. This picture was taken three 

months post germination comparison with non-infected sugarcane plants in (B). 

3.9. Phylogenetic analysis of the phytoplasma strains in sugarcane 

Restriction fragment analysis had been successfully applied to differentiate between the 

phytoplasma strains (Kirkpatrick et al., 1994; Lee et al., 1998; Valiunas et al., 2007). The 

products of the second round PCR were subjected to restriction enzymes which were 

diagnostic for the phytoplasma strains. The restriction patterns identified the phytoplasma 

from Hawaiian cultivars and from one Cuban cultivar as belonging to the Aster yellows 

phytoplasma, whereas the phytoplasma from the Cuban cultivar CP4362, which originally had 

been bred in Canal Point, Florida and from JA605, belonged to the Western X-disease 

phytoplasma (Figure.3.4 and Table. 3.2). This classification was supported by sequence 

comparison.  

The complete sequence of R16F2n/R16R2-amplified fragments was determined for three 

different sugarcane cultivars which are infected by three different phytoplasma isolates, two 

cultivars are from Cuba and one from Egypt (Figure.3.34). The complete sequence of 

16S/23S intergenic spacer region was determined for one Hawaiian sugarcane cultivar using 

the primer pair P4/P7 (Figure.3.34). The partial sequence of 16S/23S intergenic spacer region 

was also determined for other two Hawaiian sugarcane cultivar and for one cultivar from 

Thailand using the primer pair P1/P2 (Figure.3.34).  

A B 
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Figure.3.34. Diagrammatic representation of genomic location of primers used for DNA sequencing. 

The obtained nucleotide sequences were compared with sequences of phytoplasmas and 

acholeplasmas from GenBank using the BLASTN program. Multiple alignments of near-full-

length 16S rRNA gene sequences from 22 phytoplasma and one Acholeplasma species and 

multiple alignments of 16S/23S intergenic spacer region from 13 phytoplasma and two 

Acholeplasma species were examined using MUSCLE software. Phylogenetic trees of both 

sequence parts were constructed to reveal the position of the isolated phytoplasma strains 

from Hawaiian, Cuban, Egyptian and Thai sugarcane, relative to phytoplasma strains which 

had been isolated from sugarcane and other plants. Figure.3.35 presents the two phylogenetic 

trees that were constructed by maximum likelihood estimation with geneious program through 

the PhyML software (Guindon and Gascuel, 2003). Bootstrap analysis was performed 1.000 

times to evaluate branch supports in a sound statistical framework. 

The phytoplasma isolate (HM804282) from Cuban sugarcane cultivar Ja605 clustered 

together with other strains of X-disease group, among them already reported sugarcane 

yellows phytoplasma strain found in South Africa (AF056095) with a bootstrap value of 48.7 

and shared 99% sequence identity (Figure.3.35 and Table.3.29). Other Cuban sugarcane 

cultivar C10-5173 was infected with phytoplasma strain (HQ116553) clustered to the aster 

yellows group, closely together with sugarcane yellows phytoplasma from Brazil (EU423900) 

and maize bushy stunt phytoplasma from Colombia (HQ530152) with a bootstrap value of 

49.6 and shared 99% sequence identity (Figure.3.35 and Table.3.29). 

 Egyptian sugarcane cultivar G8447 contains phytoplasma strain (JN223446) clustered to the 

rice yellow dwarf group, closely together with sorghum grassy shoot phytoplasma from 

Australia (AF509324) with a bootstrap value of 81.1 and shared 99% sequence identity 

(Figure.3.35  and Table.3.29). 
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The phylogenetic tree of the 16S/23S spacer region contained less phytoplasma entries in 

GenBank. The Hawaiian sugarcane phytoplasma isolate (HQ116554) from cultivar H84-4094 

and another Hawaiian sugarcane phytoplasma isolate (JN223447) from unknown cultivar 

obtained from Hawaiian former plantations as a different original source clustered to the aster 

yellows group, closely together with water cress yellows from Hawaii (AY665676) and 

Russian potato purple top phytoplasma (EU333399) with a bootstrap value of 69.6 and shared 

99% sequence identity (Figure.3.35 and Table.3.29).  

Hawaiian sugarcane phytoplasma isolate (JN223448) from cultivar H78-7750 which obtained 

from Hawaiian breeding station of HARC in Maunawili, Oahu clustered to the rice yellow 

dwarf group, closely together with sugarcane white leaf phytoplasma from Taiwan 

(AY139874) with a bootstrap value of 86.6 and shared 98% sequence identity (Figure.3.35 

and Table.3.29).  

Thai sugarcane phytoplasma isolate (HQ917068) from unknown sugarcane cultivar obtained 

from province of Khon kaen clustered to the rice yellow dwarf group, closely together with 

sugarcane white leaf phytoplasma from Myanmar (AB646271) with a bootstrap value of 64.2 

and shared 100% sequence identity (Figure.3.35 and Table.3.29). 
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Table.3.29. Phytoplasma strains and their GenBank accession numbers used in this study for the 

phylogenetic trees (Figure.3.35). 16S rRNA gene and 16S/23S intergenic spacer region sequences of 

phytoplasmas determined in this study are in bold. Phytoplasma strains of monocotyledonous plants and strains 

which showed close sequence similarity to the Hawaiian, Cuban, Egyptian and Thai sugarcane phytoplasma 

were selected for construction of the trees. The sequences from Acholeplasma axanthum and Acholeplasma 

palmae were used as out groups. 

Phylogenetic tree of 16S rRNA  (a) 
Accession number Phytoplasma strain Group 

AF056095 Sugarcane yellows phytoplasma type I 
(South Africa) 

X-disease 

AF411592 Erigeron witches'-broom phytoplasma Ash yellows 
AF509324 Sorghum grassy shoot phytoplasma 

variant I (Australia) 
Rice Yellow Dwarf 

AF498307 Coconut lethal yellowing phytoplasma Coconut lethal 
yellowing 

AJ550984 Bermuda grass white leaf phytoplasma 
(Southern Italy) 

Bermuda white leaf 

AM261831 Sugarcane grassy shoot phytoplasma 
(India) 

Rice Yellow Dwarf 

AY197652 Spartium witches'-broom phytoplasma Apple proliferation 
AY736374 Napier grass stunt phytoplasma 

(Kenya) 
 

Rice Yellow Dwarf 

EF413055 Sorghum verticilliflorum phytoplasma 
(Mauritius) 

X-disease 

EF413056 Sugarcane yellows phytoplasma clone 
SC245 (Mauritius) 

X-disease 

EU294011 Malaysia Bermuda grass white leaf 
phytoplasma 

Bermuda white leaf 

EU423900 Sugarcane yellows phytoplasma type I 
(Brasil) 

Aster yellows 

FM208260 Sugarcane white leaf (Thailand) Rice Yellow Dwarf 
GQ336993 Kidney bean little leaf phytoplasma 

clone Z16 16S 
Peanut WB 

 
GQ850122 Coconut root wilt phytoplasma isolate 

RD3 (India) 
Rice Yellow Dwarf 

GU565959 Candidatus Phytoplasma pyri isolate 
932801 

Apple proliferation 

HM804282 Sugarcane Ja60-5 yellow leaf (Cuba) X-disease 
HQ116553 Sugarcane C1051-73 yellow leaf 

(Cuba) 
Aster yellows 

HQ530152 Maize bushy stunt phytoplasma strain 
MBSColombia (Colombia) 

Aster yellows 

HQ589200 Milkweed yellows phytoplasma strain 
MWI(USA) 

X-disease 

JF508514 Sesame phyllody phytoplasma strain 
Seph2 

Peanut WB 
 

JN223446 Sugarcane grassy shoot phytoplasma 
(Egypt) 

Rice Yellow Dwarf 

NR_029152 Acholeplasma palmae strain J233 Out group 
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Phylogenetic tree of 16S/23S intergenic spacer region (b) 
Accession number Phytoplasma strain Group 

AB243298 Sugarcane grassy shoot phytoplasma 
(India) 

 

Rice Yellow Dwarf 

AB646271 Sugarcane white leaf phytoplasma 
(Myanmar) 

 

Rice Yellow Dwarf 

AF434989 Texas Phoenix palm phytoplasma Coconut lethal 
yellowing 

AY139874 Sugarcane white leaf phytoplasma 
(Taiwan) 

Rice Yellow Dwarf 

AY665676 Aster yellows phytoplasma 
“Watercress” (Hawaii) 

Aster yellows 

DQ004923 Acholeplasma palmae Out group 
DQ400425 Acholeplasma axanthum Out group 
EU294011 Malaysia Bermuda grass white leaf 

phytoplasma 
Bermuda white leaf 

EU333399 Russian potato purple top 
phytoplasma (Russia) 

 

Aster yellows 

FN562932 Candidatus Phytoplasma vitis Elm yellows 
 

HQ116554 Hawaiian sugarcane H87-4094 
yellow leaf phytoplasma 

Aster yellows 

HQ589192 'Psammotettix cephalotes' flower 
stunt phytoplasma 

Rice Yellow Dwarf 

HQ917068 Sugarcane white leaf phytoplasma 
(Thailand) 

Rice Yellow Dwarf 

JN223447 Hawaiian sugarcane Phytoplasma Aster yellows 
JN223448 Sugarcane white leaf phytoplasma 

(Hawaii) 
Rice Yellow Dwarf 
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a 

Rice yellow dwarf 

X-disease 

Aster yellows 
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Figure.3.35. Position of the phytoplasma strains from Hawaiian, Cuban, Egyptian and Thai sugarcane in 

a phylogenetic tree together with other phytoplasma isolates (Table.3.29). a: Phylogenetic tree constructed 

using 16S rRNA sequences from 22 phytoplasma and one Acholeplasma species, b: Phylogenetic tree 

constructed using  16S/23S spacer sequences from 13 phytoplasma and two Acholeplasma species. Bar 

represents phylogenetic distance of 2%. Numbers on branches are confidence percentage obtained from 1.000 

bootstrap replicates. 

 

 

 

 

 

 

b 
Rice yellow dwarf 

Aster yellows 
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3.10. Hot water treatment in order to get phytoplasma free sugarcane plant  

Hot water treatment had been proposed as a cure for phytoplasma in dormant woody plant 

material (Edison and Ramakrishnan, 1972; Caudwell et al., 1997), because phytoplasmas have 

only limited heat tolerance.  

Treatment of infected sugarcane stalks with moderately high temperatures such as 50°C for 2 

h were reported to successfully eliminate grassy shoot disease and white leaf phytoplasma 

from stem material. Hot water treatment of stem cuttings together with immersion in a 

fungicide solution is a routine practice in Hawaiian sugarcane plantations to prevent fungal rot 

of planted seed pieces. The question was which temperature regimes and which incubation 

durations are needed to eliminate SCYLP from sugarcane stems and whether the routine hot 

water-treatment against fungi had unintentionally also cured from phytoplasma.  

One-eye stem cuttings were immersed in hot water of defined temperature and for defined 

period, then planted in sterile soil in pots and kept in insect-tight mesh cages for germination 

and growth. Indeed, incubation of seed pieces at 50°C for 30 min or longer was sufficient to 

eliminate phytoplasma (Table.3.30), irrespective whether it was from Aster yellows or from 

Western X-disease type. The incubation in hot water for 3 h had a detrimental effect on seed 

piece viability unless the hot water treatment was preceded by 10°C incubation for 48h, a 

procedure routinely used in the Australian and Cuban sugar industry.  

3.10.1. Hot water treatment according to Australian recipe  

Two sugarcane cultivars (H65-70 52 and H78-77 50) were used as material in the hot water 

treatments. Stalks were cut into single-eye sets and treated by immersion for 48 h in cold 

water (10°C) followed by 3h in hot water (50°C). Next, setts were planted in sterile soil and 

placed in mesh cage to protect them against insects. Subsequently, these plants which rose 

from these cuttings were tested for the presence of phytoplasma after 2 and 6 months and one 

year post germination (Figure.3.36). 
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Figure.3.36. Nested PCR results of the test plants, which received cold and hot-water treatment after 2 

months post germination. Lane (1) contains PCR product obtained from untreated sugarcane (without hot water 

treatment) (H65- 70 52). Lane (2) contains PCR product obtained from untreated sugarcane (H78- 77 50). Lane 

(3) test plant (H65- 70 52) after cold- and hot-water treatment (Australian recipe). Lane (4) test plant (H78- 77 

50) after cold- and hot-water treatment (Australian recipe). Re-amplification of aliquot of first PCR water control 

with nested primer combination is in lane (5). DNA ladder is FastRuler Middle Range (MBI Fermentas). 

 

 

Figure.3.37. Nested-PCR results of test plants, which received cold and hot-water treatment after 6 

months (a) and 1 year (b) post germination. Lane (1) treated plant (H65-70 52); lane (2) treated plant (H78- 

77 50); lane (3) is positive control; re-amplification of aliquots of first PCR water control with nested primer 

combination are in lanes (4-5); lane (M) GeneRuler DNA ladder (MBI Fermentans). 

3.10.2. Hot water treatment with various duration  

These tests were carried out in order to investigate what is the minimum immersion time at 

50°C can eliminate the phytoplasma in infected sugarcane plants. Furthermore, in these tests 

we didn’t soak the cuttings in cold water at 10°C before hot water treatment in order to check 

the influence of lacking of cold water treatment on the vegetative development. Thus, the 

1 2 3 4 5 M 1 2 3 4 5 M

1 2 3 4 5 M 

a b 
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cuttings from cultivar (H78-77 50) were treated by immersion directly in hot water at 50° C 

for 30 min, 1h, 2h and 3h. For each treatment, three replicates were tested (Figure.3.38 and 

Figure.3.39).  

 

 

Figure.3.38. Nested-PCR results of test plants; which received hot water treatment at 50 ̊̊ ̊̊C with various 

duration after 2 months post germination. Lanes (1-4) treated plants (H78-77 50) with various duration; re-

amplification of aliquots of first PCR water controls with nested primer combinations are in lanes (5-6); lane (7) 

positive control. Lane 8, GeneRuler 100pb plus DNA ladder (MBI Fermentans). 

Note: tested plants which were treated at 50°C for 3h had a very poor vegetative development 

and later died. 

 

Figure.3.39. Nested-PCR results of test plants; which received hot water treatment at 50 ̊̊ ̊̊C with various 

duration after 6 months post germination. lanes (1-3) test plants (H78-77 50) with various duration (30 

min,1h, 2h); lane (4) positive control; re-amplification of aliquots of first PCR water controls with nested primer 

combination are in lanes (5-6-7); lane (8) GeneRuler 100pb plus DNA ladder (MBI Fermentans). 

 

30 min 1h 2h 3h W-con W-con P-con M 

1,2kb 

1,2kb 

1 2 3 4 5 6 7 8 

1 2 3 4 5 6 7 8 
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Table.3.30. Effect of hot water treatment on phytoplasma elimination of cultivars H65-7052 and H78-77 

50 according to the indicated temperature regime. The data are from 3 replicates of each treatment. 

Treatment Time of testing after treatment Presence of 
phytoplasma 

50°C, 30 min 2 months and 6 months + 
50°C, 1 h 2 months and 6 months - 
50°C, 2 h 2 months and 6 months - 
50°C, 3 h 2 months, no viable plants after 6 months - 

48 h 10°C, then 3 h 50°C 2 months, 6 months and 1 year - 

3.11. Insecticide treatment of phytoplasma-infected sugarcane plant 

We wanted to test if the insecticide treatment of phytoplasma-infected sugarcane plant may 

reduce the titer of phytoplasma or not. Therefore, three white leaf phytoplasma-infected 

sugarcane plants were treated with Confidor as a systematic insecticide. One untreated plant 

was used as control. Q-PCR assay of phytoplasma 16S rRNA gene was used to determine the 

phytoplasma infection level within infected sugarcane plants. The relative concentration of 

sugarcane white leaf phytoplasma in three different treated plants and one non-treated plant 

was quantified three months post treatment using the comparative Ct method. Based on Ct 

mean values of qPCR, the insecticide treatment has no effects on the phytoplasma infection 

level (Table.3.31). 

Table.3.31. Q-PCR results of the insecticide treatment of phytoplasma-infected sugarcane plants. Three 

sugarcane white leaf phytoplasma-infected plants were treated with Confidor as a systematic insecticide. One 

untreated plant was used as control. The relative quantification was carried out three months post-treatment and 

Ct mean values of qPCR revealed that the insecticide treatment can not reduce the titer of phytoplasma. 

 

Sugarcane 
sample 

Ct mean 
value (16S) 

Pre-treatment 

Ct mean value 
(16S) 
Post-

treatment 

Ct mean 
value (18S) 

Pre-
treatment 

Ct mean value 
(18S) 

post-treatment 

Insecticide 
treated plant 1 

12.98 12.84 07.83 07.71 

Insecticide 
treated plant 2 

12.13 12.09 07.70 07.91 

Insecticide 
treated plant 3 

11.32 12.23 07.97 07.52 

Untreated 
plant (control) 

12.06 12.27 08.38 08.31 
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3.12. Transmission test with sugarcane aphid (Melanaphis sacchari) 

Phytoplasmas are phloem-limited; therefore, only phloem-feeding insects can potentially 

acquire and transmit the pathogen.Thus far, however, there has been no report of phytoplasma 

or spiroplasma transmission by a phloem-feeding aphid; the reasons for lack of transmission 

by aphids are not known (Mishra, 2004).  

Aphids (Melanaphis sacchari) were collected in Hawaii and were brought to our lab as alive 

insects and then were established in a mesh cage on sugarcane plants in a climate chamber. 

Phytoplasma-infected sugarcane plants were transferred to a cage together with the aphids. 

After 45 days of acquisition and latency period, phytoplasma–free plants were transferred into 

the same cage for inoculation feeding and these plants were kept there for 3 months 

(Figure.3.40). Our tests showed that these aphids are able to acquire the phytoplasmas but 

they do not serve as phytoplasma vectors.  

 

 

Figure.3.40. Phytoplasma in sugarcane source plants (containing phytoplasma), in aphids (Melanaphis 

sacchari) and in sugarcane target plants (infested by phytoplasma-infected M. sacchari).The phytoplasma-

infected plants (cv. H65-7052) were infested with aphids for 45 days (acquisition-feeding). The aphids were 

tested for phytoplasma and then transferred to target plants (cvs. H65-7052 and H78-7750). The target plants had 

previously been made phytoplasma-free by cold and hot water treatment. The target plants were tested 3 months 

after inoculation with phytoplasma-infected aphids. The negative control is the phytoplasma-free cv. Ph-8013. 

The marker M1 was GeneRuler 100 bp plus (MBI Fermentas), the marker M2 was GeneRuler DNA ladder Mix 

(MBI Fermentas) on right gel. The arrows point to the phytoplasma-specific band of 1.2 kbp. 
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3.13. Transmission electron microscopy for cytological location of phytoplasma 

For many phytoplasma species it is known that the infection is mainly located in sieve 

elements of phloem cells, to which phytoplasmas are introduced by phloem-feeding 

homopteran insects, mainly leafhoppers and planthoppers (Weintraub and Beanland, 2006). 

Using transmission electron microscopy we want to show if also for sugarcane white leaf 

phytoplasma “Ca .Phytoplasma oryzae” the infection is mainly restricted to phloem sieve 

elements or if other cell types are infected as well. Since, a few phloem parenchyma cells 

adjacent to sieve tubes are occasionally also invaded by phytoplasma (Christensen et al., 

2005). For sugarcane known for the high cytoplasmic sucrose contents this could be also the 

case. Secondly we wanted to study the ultrastructural effects of the infection of phytoplasma.  

3.13.1. Anatomy of leaf phloem tissue 

The vascular tissue including xylem and phloem are found within the veins of the leaf. 

Phloem cells are usually located next to the xylem which made mainly from vessel elements 

and parenchyma cells. The two most common cells in the phloem are the companion cells and 

sieve tube cells; (Figure.3.41). 

Phloem is made from columns of parenchyma cells. Each parenchyma cell is adapted to form 

a sieve element .Columns of sieve elements join together to form sieve tubes. The cross walls 

between successive cells (sieve elements) become perforated forming sieve plates. As the 

sieve elements mature they loose several plant cell organelles – the nucleus, ribosomes and 

Golgi body degenerate. This allows materials to pass through them more easily. Sieve 

elements have a thin cell wall, cell membrane, and may be plastids and the lumen is filled 

with sap.  

Each sieve element has at least one companion cell next to it. Companion cells have the 

normal plant cell structure with extra ribosomes and mitochondria. Companion cells are 

linked to the sieve elements by numerous plasmodesmata. As might be expected, it is 

companion cells that enable the sieve element to stay alive. 

The outer layer of the vein is made of cells called bundle sheath cells, and they create a circle 

around the xylem and the phloem. They form a protective covering on leaf veins, and consist 

of one or more cell layers, usually parenchyma. Loosely arranged mesophyll cells lay between 

the bundle sheath and the leaf surface; (Figure.3.41). Bundle sheath and mesophyll cells are 
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packed with chloroplasts, and this is where the dark reactions of photosynthesis are actually 

occurring. The air spaces between the cells allow for gas exchange. 

 

 

Figure.3.41. Ultrathin section of green leaf of uninfected sugarcane (control).This ultrathin section shows 

structure of phloem, xylem, bundle sheath, and mesophyll cells. Phloem is made from sieve cells (S), companion 

cells (CC), and parenchyma cells (PC), while vessel elements (VE) are the main components of xylem tissue. 

The outer layer of the vein is made of cells called bundle sheath cells (BC), and they create a circle around the 

xylem and the phloem. Loosely arranged mesophyll cells (MC) lay between the bundle sheath and the leaf 

surface. Bundle sheath and mesophyll cells are packed with plastids (P). Bar = 5 µm.   

3.13.2. Localization of phytoplasma infection 

Our transmission electron microscopic studies revealed the presence of sugarcane white leaf 

phytoplasma ”Ca. Phytoplasma oryzae” of regular shape and size in phloem sieve tubes of 

diseased sugarcane leaves including white; (Figure.3.42. A), variegated; (Figure.3.42. B), and 

green leaves; (Figure.3.42. C). Phytoplasmas were observed in mature and immature phloem 

sieve tubes. However, no sugarcane white leaf phytoplasmas are present in green leaf of 

uninfected sugarcane; (Figure.3.42. D), where the vacuoles and cytoplasm are fused to a so 

called mictoplasm (Esau et al., 1965). Most of the organelles are absent, only typical round 
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shaped sieve elements plastids are present. Sieve element plastids show the typical phenotype 

with christae inclusions which are common for poaeceae (arrow Figure.3.42. D). Surrounding 

companion cells are phytoplasma-free in both infected (Figure.3.42. A, B and C) and 

uninfected plants (Figure.3.42. D).  

No phytoplasma could be found in cells adjacent to the sieve elements including companion 

cells and phloem parenchyma in both infected (Figure.3.43. A, B and C) and uninfected plants 

(Figure.3.43.D). However, different organelles are present especially mitochondria. 

Mitochondria have a similar size to phytoplasma but could be clearly distinguished due to the 

presence of christae of the inner mitochondrial membrane ((Figure.3.42 and 43. A-D), 

arrows). Ultrathin sections show that bundle sheath and mesophyll tissues are also 

phytoplasma-free; (Figure.3.44).  

 In all cases, further electron microscopic studies should be carried out using immune-

labelling on both light and electron microscopic level for phytoplasma specific proteins to 

exclude the presence of phytoplasma in companion cells. Due to the cytoplasma density a 

clear answer of the pathogen presence is not possible as in (Figure.3.42. B).  
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Figure.3.42. Comparison between phloem sieve elements of white, variegated and green leaves of white 

leaf phytoplasma-infected sugarcane. A: white leaf phenotype of sugarcane white leaf phytoplasma infection, 

where phytoplasmas are clearly visible in sieve elements (arrow). B: variegated leaf phenotype of sugarcane 

white leaf phytoplasma infection. Phytoplasmas are obvious present in sieve elements in increased numbers in 

comparison with white leaf (arrow). C: green leaf phenotype of sugarcane white leaf phytoplasma infection. 

Phytoplasmas are more abundant in some sieve elements than others (arrow). D: green leaf of uninfected 

sugarcane plant where it is used as control plant for comparison. It is obvious that no phytoplasma is present in 

sieve elements. Infected and uninfected leaves show the typical sieve anatomy. Vacuoles and cytoplasm are 

fused to a so called mictoplasm (Esau et al., 1965). Most of the organelles are absent, only typical round shaped 

sieve elements plastids are present. Sieve element plastids show the typical phenotype with crystal inclusions 

which are common for poaeceae (arrow Fig. 53 D). Sieve tube (S), companion cell (CC), parenchyma cell (PC). 

Bar = 2 µm.  
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Figure.3.43. Comparison between phloem companion cells of phytoplasma infected and uninfected 

sugarcane. A: white leaf phenotype of phytoplasma-infected sugarcane where surrounding companion cell of 

sieve elements contains different organelles including vacuoles and mitochondria but they don’t show any 

phytoplasma. B: variegated leaf phenotype of phytoplasma-infected sugarcane show typical companion cells 

connected to each other by plasmodesmata. Despite of these companion cells surround sieve element which 

contain phytoplasmas but these cells are phytoplasma-free. C: green leaf phenotype of phytoplasma infection 

where companion cell is also lack phytoplasma. D: green leaf of uninfected sugarcane which used as control and 

show partially one companion cell surrounds  phytoplasma-free sieve element .Mitochondria have a similar size 

to phytoplasma but could be clearly distinguished due to the presence of Crystal of the inner mitochondrial 

membrane. Sieve tube (S), Companion cell (CC), vacuoles (V), plastid (P). Bar = 1 µm.  
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Figure.3.44. Ultrathin sections of bundle sheath and mesophyll tissues of phytoplasma-infected sugarcane. 

A and B: variegated leaf phenotype of phytoplasma-infected sugarcane show that phytoplasmas are absent in the 

bundle sheath tissues. C and D: mesophyll tissues of variegated leaf phenotype of phytoplasma-infected 

sugarcane are also phytoplasma-free. Parenchyma cells (PC), (A), (C) bar = 5 µm. (B), (D) bar = 2 µm. 

3.13.3. Phytoplasma size and shape 

Size of the phytoplasma bodies varied from 200 nm to 800 nm (0.2 µm to 0.8 µm) in 

diameter. Our transmission electron microscopic studies of white leaf phytoplasma-infected 

sugarcane leaf showed spherical bodies which were bounded by a poorly defined membrane; 

(Figure.3.45). Sieve tubes filled with numerous phytoplasmas were seen particularly in 

variegated leaves of diseased sugarcane; (Figure.3.46). 
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Figure.3.45. Transmission electron micrograph of typical membrane-bound phytoplasma bodies which 

present in sieve tube and contain resembling DNA in sieve tube of white leaf phytoplasma-infected 

sugarcane leaf. Sieve tube (S), phytoplasma (P). Bar = 0.2 µm. 

 

Figure.3.46. Ultrathin sections of phloem tissue of phytoplasma-infected sugarcane. A: Ultrathin section in 

variegated leaf phenotype shows that phytoplasmas (arrows) fill a phloem sieve element with a large number 

which is approximately more than 100 phytoplasma cells in one sieve tube. Phytoplasmas block the downward 

translocation photosynthates and passing through a sieve-plate pore lined with callose. B: higher magnification 

of the same last ultrathin section. Sieve cell (S), companion cell (CC), parenchyma cell (PC), sieve plate (sp), 

plastid (P), callose (CA). (A): bar = 2µm. (B): bar = 1µm. 
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3.13.4. Ultrastructural changes of the phytoplasma infection on leave anatomy  

Several ultrastructural changes were observed on ultrathin sections of the vascular tissues of 

affected sugarcane plants under transmission electron microscope (TEM). Paranchymatic 

cells of bundle sheath and mesophyll tissue of affected leaves showed some alterations 

comparing to uninfected leaves. In these cells accumulations of starch granules and 

plastoglobuli were observed in white leaf phytoplasma-infected sugarcane comparing to 

control uninfected one; (Figure.3.47). Our electron microscopic studies are in agreement with 

literature where phytoplasma infections led to a significant increase of starch in source leaves 

(Lepka et al. 1999). These data are consistent with ultrastructural observations reporting 

starch accumulation in chloroplasts associated with a severe disorganization of thylakoids and 

a reduction in chlorophyll content (Musetti, 2006).  

 

Figure.3.47. Ultrastructural comparison between paranchymatic bundle sheath cells of infected and 

uninfected sugarcane. A: variegated leaf phenotype of phytoplasma-infected sugarcane, where ultrastructural 

observations indicate accumulation of starch granules (arrows) and plastoglobuli (head arrow) in chloroplasts of 

bundle sheath cells of infected sugarcane. B: green leaf of uninfected sugarcane where it is used as control plant 

for comparison. It is clearly that accumulation of starch granules (arrows) in chloroplasts of bundle sheath cells 

is less than infected sugarcane. In addition, plastoglobuli are not accumulated in uninfected sugarcane. 

Parenchyma cell (PC), plastid (P), nucleus (N), vacuoles (V). Bar = 2µm. 



 Results 

109 
 

 

Figure.3.48. Comparison between chloroplasts structure of mesophyll cells in infected and uninfected 

sugarcane. A:  variegated leaf of phytoplasma-infected sugarcane where an increase of plastoglobuli number and 

size in disorganized chloroplasts was found in mesophyll paranchymatic cells. B: green leaf of uninfected 

sugarcane which used as control, where mesophyll paranchymatic cells contain normal chloroplast with lower 

formation of plastoglobuli in comparison with infected sugarcane. Plastid (P), plastoglobuli (arrows). Bar = 1µm.  
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4. Discussion  

4.1. Establishment of the test for phytoplasma 

Yellow leaf syndrome (YLS) of sugarcane has been associated with several biotic and abiotic 

causes during the past four decades. Lute viruses and phytoplasmas are two types of plant 

pathogens that are typified as causing symptoms of yellowing in their hosts (Jones, 2002). It is 

hardly surprising that in sugarcane the pathogen cannot be distinguished by symptoms alone 

(Cronje et al., 1998; Arocha et al., 1999).  

In the present study we have employed molecular-based tools for detection and identification 

of the putative causal agent of yellow leaf syndrome and report for the first time the presence 

of phytoplasma in Hawaiian sugarcane cultivars. The exceptional sensitivity of PCR offers 

many advantages for detection of plant pathogens (Herson and French, 1993). Application of 

this technique for detection and investigation of phytoplasmas seems particularly appropriate 

due to the small size of these plant pathogens and inability to culture them in vitro.  

4.1.1. Efficiency of PCR amplification 

Phytoplasma diagnostics and phylogenetics have historically been based on the 16S rRNA 

gene and the 16-23S rRNA spacer region because of the availability of universal primers for 

this region (Hodgetts and Dickinson, 2010). Numerous PCR primer combinations have been 

designed for diagnostics and phylogenetics. However, diagnostics based on these primers can 

be problematic, with occasional false positives, particularly through amplification of any 

bacillus spp. that might be present in a plant sample (Harrison et al., 2002). However, based 

on our investigation we never found bacillus spp. in sugarcane plant samples which was 

confirmed by RFLP analysis and DNA sequencing of nested-PCR products.  

Though PCR is a routine technique for phytoplasma detection, there still meet some 

difficulties, at least with some primers which in some cases can induce dimmers, bands of non 

specific sizes. In these cases, false positive results can be expected. Two types of control were 

therefore routinely applied in each PCR run to test possible generation of false positive 

amplicons. One was the implementation of water control to test the generation of primer 

dimmers. However, in our hands, nested-PCR with all primer combinations used didn’t 

amplify products from water used as template. The other control experiment was with 

sugarcane DNA from sugarcane plants which were phytoplasma-free, namely plants from 
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Egypt (Gt549, Ph8013) and plants which had undergone hot water treatment. These 

preparations did not give a phytoplasma-specific amplicon which indicated that the sugarcane 

DNA does not contain nucleotide sequences which bind to the phytoplasma-specific primers.  

In contrast, in many cases the same phytoplasma-infected sugarcane samples amplified with 

some primer pairs never reacted with other primer pairs, despite the fact that the used primers 

were universal. In the case of no visible products were obtained from phytoplasma positive 

samples, a higher dilution of DNA is used to dilute the plant inhibitors which may exist. 

However, these phytoplasma positive samples have shown false negative results after dilution 

too. It seems that in the case of phytoplasma positive samples, the primers preferentially 

amplified phytoplasma sequence of expected size. For example, (P1/P7, R16F2n/R16R2) and 

(R16mF2/R16mR1, R16F2n/R16R2) have been widely used for the detection of phytoplasma 

and are probably the most thoroughly investigated. They detect all strains of phytoplasmas 

whereas the DNA of non-infected plants does not react. Many phytoplasma positive samples 

were false negatives with these assays. Therefore, each sugarcane sample was investigated for 

phytoplasma by different nested-PCR assays (I), (II), (III)  and (IV)  with different primer pair 

combinations. Our tests have showen significant differences in the results of the PCR assays 

due of some weak or no amplification using particular primer combinations. According to our 

tests the primer pairs used for nested-PCR assay III, (MLO-X/MLO-Y) and (P1/P2), which 

amplified 16S-23S rRNA spacer region, was demonstrated to be the most reliable one to 

detect the phytoplasma in sugarcane plants due to the high efficiency of PCR amplification, 

high annealing temperature and low or no non-specific bands; in addition to the high 

sensitivity of these primer pairs where yielded standard products visualized in bands of a 

strong intensity. Our analysis demonstrated difficulties with the detection ability of 

phytoplasma in sugarcane plants. In order to explain the different result patterns obtained with 

particular primer combinations, a subliminal amount of template DNA, a presence of PCR-

inhibiting substances in DNA preparations and sequential variability of primer target sites can 

be taken into account (Skrzeczkowski et al., 2001; Heinrich et al., 2001). For example, use of 

the 16S-23S rRNA spacer region in our investigation was more reliable than 16S rRNA gene 

region. It was more powerful than the 16S rRNA gene because it yielded standard products 

visualized in bands of a strong intensity as mentioned above. 

As a consequence, in the case of critical samples, different primer pair combinations and also 

sequencing should be used for elucidation of phytoplasma presence (Franova, 2011). 
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4.1.2. Carry-over contamination problems  

The ability of the PCR to amplify minute amounts of template has the disadvantage that small 

quantities of contaminating DNA may be a problem for some applications like pathogens 

detection. In general, the titre of phytoplasma in sugarcane plants is very low and the standard 

method is nested PCR, which enhances the sensitivity of the test by two successive rounds of 

amplification. It is a very sensitive method and the risk of false positive signals is high. Two 

types of water control were therefore routinely applied to test for possible generation of false 

positive amplicons. One was the implementation of water control, where water was included 

in the first PCR-round instead of DNA from sugarcane leaves and then the hypothetical 

amplicon was transferred to the second PCR-round. In parallel the second PCR-round was 

also performed with water instead of the first-round amplicon and several water controls were 

used in each PCR round. On the other hand, it is important to have a designated clean area for 

setting up PCR reactions from which other DNA samples, especially PCR products, are 

excluded. 

4.1.3. Q-PCR (real-time PCR) 

Performance characteristics of used qPCR assay were determined by amplifying three 

separately prepared sets of dilution series of three standard samples in water. All systems gave 

good values as far as R², Ct, efficiency, limit of detection and sensitivity of amplicons which 

showed a broad dynamic range (five log orders of magnitude). 

These parameters were also evaluated for the artificial samples that imitate infected sugarcane 

samples. The calibration curve of these artificial samples was very important to check 

sensitivity of real- time PCR assay and to explain the false negative results of qPCR for most 

our sugarcane samples. The irregular signals at the sixth dilution of artificial samples look 

similar to the signals of experimental sugarcane samples (Figure 4.1). It is most likely that at 

sixth concentration level (10¯⁵), using a 10-fold dilution series of the phytoplasma-infected 

sugarcane (phytoplasmal DNA) mixed with sugarcane DNA to imitate real sugarcane 

samples, the titer of phytoplasmal DNA is very low. It could be that sugarcane samples, 

which contain low titer of phytoplasmas cannot be detected sensitively by this direct qPCR 

assay due to the influence of host-material and that may be true for the sugarcane plants 

which show yellow leaf syndrome and contain low titer of phytoplasma.  
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Figure.4.1. A: Log- view of standard curve chart. Standard curve determined at six concentration levels 

(ranging from 10⁰ to 10 ⁵̄) using 10-fold dilution series of the phytoplasma-infected sugarcane (phytoplasmal 

DNA) mixed with sugarcane DNA to imitate real sugarcane samples. Threshold; is an arbitrary level of 

fluorescence chosen on the basis of the baseline variability. Ct;  is defined as the fractional PCR cycle number at 

which the reporter fluorescence is greater than the threshold.∆Rn; is an increment of fluorescent signal at each 

time point. The ∆Rn values are plotted versus the cycle number.  B: Log- view of amplification chart of qPCR 

results.  

On the other hand, it is essential that the nucleic acid is sufficiently pure for qPCR analysis. 

Template contamination (i.e., protein, carbohydrates or organic solvents) can have a huge 

impact on assay reliability and reproducibility. We used high pure PCR template preparation 

kit. Then the template DNA quality was determined by Nanophotometer. Since, diagnosis of 

pathogen in the plants including sugarcane is often hampered by the presence of PCR 

inhibitors such as polyphenolics, polysaccharides and other molecules that may produce false-

negative results even sometimes from heavily infected samples (Weintraub and Jones, 2010). 

To prove that the absence of a signal is not due to such causes, protocols for control 

amplification and detection of the host plant DNA have been developed such as 18S rRNA 

gene (Christensen et al., 2004).  

According to our plant 18S rRNA gene analysis, however, sugarcane samples were 

sufficiently pure for qPCR analysis. It appears that PCR inhibitors can hamper diagnosis of 

phytoplasma only when phytoplasmas exist in very low titer as most of our sugarcane 

samples. 

 

Amplification chart 
Amplification chart 

A 
B 

PCR cycle number 

Threshold 

Ct 

∆ Rn 

PCR cycle number 

∆ Rn 

Plant DNA 

phytoplasma  DNA 

Signals of sixth dilution  



 Discussion 

114 
 

Our analysis of field-collected sugarcane samples showed significantly higher diagnostic 

sensitivity of conventional nested-PCR in comparison to direct qPCR assay by revealing most 

false negative PCR results. Most samples that were detected as phytoplasma-negative by 

qPCR were shown to be positive by nested-PCR. It is most likely that this qPCR assay can 

detect the phytoplasma only in heavily infected sugarcane samples which are showing strong 

symptoms like sugarcane white leaf and sugarcane grassy shoot. On the other hand, the 

primer pair and probe which were used in this qPCR assay can theoretically anneal to 

nucleotide sequences of the phytoplasma strains which infect our experimental sugarcane 

samples (Figure.4.2). It is more likely that the false negative results are attributed to the level 

of phytoplasma infection than to the phytoplasma strain differences.  

TAAAGACCTTTTTCGGAAGGTATGCTTAAAGAGGGGCTTGCGGCACATTAGTTAGTTGGTAGGGTAAAGGCCT

ACCAAGACTATGATGTGTAGCTGGACTGAGAGGTTGAACAGCCACATTGGGACTGAGACACGGCCCAAACTCC

TACGGGAGGCAGCAGTAGGGAATTTTCGGCAATGGAGGAAACTCTGACCGAGCAACGCCGCGTGAACGATGA

AGTATTTCGGTATGTAAAGTTCTTTTATTGAAGAAGAAAAAATAGTGGAAA AACTATCTTGACGCTATTCAATG

AATAAGCCCCGGCAAACTATGTGCCAGCAGCCGCGGTAATACATAGGGGGCAAGCGTTATCCGGAATTATTGG

GCGTAAAGGGTGCGTAGGCGGTTTAATAAGTCTATAGTTTAATTTCAGTGCTTAACACTGTTCTGCTATAGAAA

CTATTAAACTGGAGTGAGATAGAGGCAAGTGGAATTCCATGTGTAGCGGTAAAATGCGTAAATATATGGAGGA

ACACCAGAGGCGTAGGCGGCTTGCTGGGTCTTTACTGACGCTGAGGCACGAAAGCGTGGGGAGCAAACAGGA

TTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTACTAAGTGTCGGGGTTACTCGGTACTGAAGTTAACA

CATTAAGTACTCCGCCTGAGTAGTACGTACGCAAGTATGAAACTTAAAGGAATTGACGGGACTCCGCACAAGC

GGTGGATCATGTTGTTTAATTCGAAGATACACGAAAAACCTTACCAGGTCTTGACATACTCTGCAAAGCTATAG

CAATATAGTGGAGGTTATCAGGGATACAGGTGGTGGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTAGGTT

AAGTCCTAAAACGAGCGCAACCCTTGTCACTAGTTGCCAGCATGTTATGATGGGCACTTTAGTGAGACTGCCA

ATGAAAAATTGGAGGAAGGTGAGGATCACGTCAAATCATCATGCCCCTTATGATCTGGGCTACAAACGTGATA

CAATGGCTGTTACAAAGAGTAGCTGAAACGCAAGTTAATAGCCAATCTCATAAAAACAGTCTCAGTTCGGATT

GAAGTCTGCAACTCGACTTCATGAAGTTGGAATCGCTAGTAATCGCGAAT 

Figure.4.2. Binding sites of qPCR primers and probe on the nucleotide of partial 16S rRNA gene sequence 

of SCGS phytoplasma infects Egyptian sugarcane cultivar (G8447). This sample was detected as 

phytoplasma-negative by qPCR but shown to be positive by nested-PCR. Binding site of forward primer is 

marked with yellow colour; binding site of reverse primer is marked with green colour, whereas binding site of 

probe is marked with blue colour. 

In all cases, other qPCR assays may be carried out using primers and probes designed based 

on the other regions like 23S rRNA gene or designed based on the different gene (non-

ribosomal) like tuf gene in order to test if other direct qPCR assays can detect the 

phytoplasma in sugarcane plants better and therefore, more reliable. As mentioned above our 

results based on nested-PCR assays demonstrated also difficulties with the detection of 
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phytoplasma in sugarcane plants where significant differences in results of nested-PCR assays 

occurred using particular primer combinations. 

4.2. Phytoplasma detection and identification by RFLP analysis  

Restriction fragment length polymorphism (RFLP) analysis of PCR-amplified rRNA gene is 

the preferred method to identify and differentiate phytoplasmas within primary phylogenetic 

groups that were established by 16S rRNA gene sequence analysis. This straightforward 

method was introduced into phytoplasmology by Lee et al., (1998); Schneider et al., (1993).  

The comprehensive classification scheme, combined with illustrative RFLP patterns 

characteristic of each distinct group and subgroup, continues to provide a simple, reliable and 

practical means to identify unknown phytoplasmas without the need to sequence the 16S 

rRNA gene. 

4.2.1. Phytoplasma types in Hawaiian and Cuban sugarcane  

DNA from sugarcane cultivars, which had been obtained from the Hawaiian breeding station 

(2003) and a Cuban station (2005), gave an amplicon which was similar in size and in 

restriction fragment pattern to positive controls from phytoplasma-infected periwinkle. Two 

types of phytoplasma were identified in these cultivars; two Cuban cultivars contained X-

disease phytoplasma "Ca. Phytoplasma pruni", whereas the 6 Hawaiian cultivars and one 

Cuban cultivar contained the Aster yellows phytoplasma "Ca. Phytoplasma asteris" 

(Figure.3.4 and Table.3.2). In addition, faint bands were also identified in some Hawaiian 

cultivars and suggested a mixed population of phytoplasma in sugarcane white leaf disease 

(Figure.3.4). The most likely explanation for the banding pattern of PCR amplified DNA from 

sugarcane white leaf (SCWL) is dual infections by different phytoplasma groups.  

 Multiple phytoplasma infection based on an analysis of the banding pattern of restriction 

enzyme-digested PCR products has been reported in sesame plants (Nakashima et al., 1996) 

and grapevines (Bianco et al., 1993).  

Further surveys were carried out in order to show how widespread phytoplasma may be in 

plants from previous sugarcane fields and whether there are fluctuations of the phytoplasma 

infection in the breeding station due to pesticide treatments. Therefore, sugarcane samples 

were collected from Hawaiian plantations in 2009 and 2011 and from breeding station in 2010 

and 2011 and conserved as dried leaves samples. Our investigations revealed that there are 
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two types of phytoplasmas: Sugarcane white leaf phytoplasma as predominant group and aster 

yellows group.  

It is not immediately obvious why this diversity of phytoplasmas exists in Hawaiian 

sugarcane, despite the case of diversity of phytoplasmas in northern Australian sugarcane was 

previously reported (Tran-Nguyen et al., 2000). On the other hand, closely related 

phytoplasmas have been reported to induce different phenotypic symptoms and different types 

of phytoplasmas to induce similar symptoms (Davis et al., 1998; Firrao et al., 2005). It could 

be the later is the case of Hawaiian phytoplasma infected-sugarcane. 

Aster yellows (16SrI) phytoplasmas are an example of one of the most diverse phytoplasmas 

known to date. Aster yellow phytoplasma: originally described in aster (Asteraceae family), 

this phytoplasma infects herbaceous plants in over forty families, including vegetables, 

ornamentals and weeds. Aster yellows phytoplasma type in sugarcane had already been 

reported in Cuban sugarcane as well as X-disease phytoplasma (Arocha et al., 1999).  

The only phytoplasma infection found in Hawaii so far was the infection of water cress by an 

Aster yellows type phytoplasma (Borth et al., 2002) and of Dodonea by a Western-X-disease 

phytoplasma (Borth et al., 1995). No phytoplasma in Hawaiian sugarcane was reported so far. 

The close relationship between the phytoplasma strain found by us in Hawaiian sugarcane and 

the one reported in water cress from Hawaii poses the question, whether there had been a 

transfection from water cress to sugarcane, although according to literature the specificity of 

phytoplasmas and of their vectors excludes transfection from dicots to grasses. The specificity 

even differentiates between different grass species including sugarcane (Tran Nguyen et al., 

2000; Wongkaew et al., 1997). The Hawaiian sugarcane breeding station (from where the 

plants in the Bayreuth green house had been obtained) never had water cress fields in their 

proximity. Furthermore many phytoplasma strains from very different hosts show close 

similarity to the Hawaiian SCYLP, so that the similarity to water cress phytoplasma may not 

imply that the strains are transmissible between these different hosts.  

We wanted to do more surveys in order to check whether sugarcane plants, which grow close 

to water cress fields, contain the water cress-typical phytoplasma, but phytoplasma-infected 

water cress plants were not available; due to the reason that all phytoplasma-infected water 

cress plants had already been eliminated. For example, the Sumida water cress field had 

phytoplasma-infected water cress 10 years ago and these plants had been eliminated. 

Furthermore, currently there are no sugarcane plants nearby this field. Some of perennial 
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grasses (some of them are wild relatives of sugarcane such as Miscanthus Sp.) still exist 

nearby this field which may be a reservoir of phytoplasma. According to our investigation, 

these plants are not infected with phytoplasma. 

It is also not immediately obvious how sugarcane white leaf (SCWL) phytoplasma exists in 

Hawaiian sugarcane, but it suggests that there is active insect transmission occurring either 

within the Hawaiian Islands or from outside the Hawaiian Islands. Since, phytoplasma 

diseases of sugarcane including sugarcane white leaf (SCWL) and sugarcane grassy shoot 

(SCGS) have been reported to cause substantial losses in the sugarcane crop all over Asia 

(Chona et al., 1960; Chen, 1974; Rishi and Chen, 1989) and the chance of their transmission 

to other geographical regions seems to be high, given the large phytoplasma reservoir already 

revealed, the propensity of new phytoplasma strains to evolve (Lee et al., 2000) and the 

ability of leafhoppers, the most common insect vectors of phytoplasma, to migrate long 

distances (Wongkaew, 1999; Viswanathan, 2000) and switch to new host plants (Purcell, 

1985).   

Another possibility is that sugarcane white leaf phytoplasma already existed in mother plant 

cuttings which were obtained from Asia before they were propagated for use on Hawaiian 

Islands. Since, Hawaiian sugarcane phytoplasma isolate (JN223448) from cultivar H78-7750 

,which was obtained from Hawaiian breeding station, clustered to (SCWL) phytoplasma 

closely together with (SCWL) phytoplasma from Taiwan (AY139874) with a bootstrap value 

of 86.6 and shared 98% sequence identity (Table.3.29 and Figure.3.35.b). This is the first 

report indicating an association of sugarcane white leaf (SCWL) phytoplasma strain with 

sugarcane plants showing yellow leaf syndrome symptoms.  

4.2.2. Phytoplasma types in Thai sugarcane 

Sugarcane (Saccharum sp. and hybrids) is affected by two lethal phytoplasmal diseases, i.e., 

sugarcane grassy shoot (SCGS) and sugarcane white leaf (SCWL) (Rao et al., 2005). SCGS 

disease has been reported to occur in India, Bangladesh, Malaysia, Nepal and Pakistan 

whereas SCWL is predominant in Taiwan, Sri Lanka and Thailand (Rao et al., 2005). They 

are caused by SCGS and SCWL phytoplasmas, respectively. These two phytoplasmas belong 

to rice yellow dwarf group "Ca. Phytoplasma oryzae" also named sugarcane white leaf 

(SCWL) group (Jung et al., 2003; Marcone et al., 2004). 
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Our analysis showed that Thai sugarcane (unknown cultivar) from province of Khon kaen 

contains phytoplasma isolate (HQ917068) clustered to the rice yellow dwarf group, closely 

together with sugarcane white leaf phytoplasma from Myanmar  (AB646271) with a bootstrap 

value of 64.2 and shared 100% sequence identity (Table.3.29 and Figure.3.35.b).  

Our results showed that other Thai sugarcane plant samples from province of Suphan Buri 

contain also SCWL phytoplasma. However, these plants showed yellow leaf syndrome 

symptoms but not white leaf symptoms (Figure.1.7) and that is also true for many Hawaiian 

sugarcane plants where yellow leaf syndrome symptoms are associated with SCWL 

phytoplasma type as mentioned before. 

Based on these results, SCWL phytoplasma may be associated with sugarcane plants showing 

yellow leaf syndrome symptoms. In fact, it is well known that SCWL phytoplasma is 

responsible for sugarcane white leaf disease symptoms but association of SCWL phytoplasma 

type with sugarcane yellow leaf syndrome symptoms was not previously documented. It could 

be that these phytoplasmas cause yellow leaf syndrome symptoms when they exist in low titer 

as in the case of Hawaiian sugarcane and Thai sugarcane from province of Suphan Buri. On 

the other hand, SCWL phytolasma belongs to rice yellow dwarf group and this type of 

phytoplasma causes the yellowing of the infected rice. 

4.2.3. Phytoplasma types in Egyptian and Syrian sugarcane 

According to RFLP profiles of HinfI restriction enzyme, Egyptian sugarcane cultivar G8447 

contains phytoplasma, which belongs to the rice yellow dwarf group and strain of sugarcane 

grassy shoot.  

Nucleotide sequence analysis of 16S rRNA genes revealed that sugarcane grassy shoot 

(SCGS) phytoplasma is very closely related to the sugarcane white leaf (SCWL) agent and 

sharing a sequence similarity more than 98%. However, strains of SCGS phytoplasma for 

which the full-length 16S rRNA gene sequences are available from GenBanks, lack the HinfI 

restriction site, which is present in the 16S rRNA gene sequences of strains SCWL agent 

(Govind et al., 2007). Therefore, the SCGS phytoplasma can be distinguished from the SCWL 

agent using RFLP analysis with HinfI restriction endonuclease (Hanboonsong et al., 2002; 

Marcone et al., 2004). In contrast, at the 16S–23S rRNA gene spacer sequence level, SCWL 

and SCGS phytoplasma isolates are identical or nearly identical. Therefore, 16S–23S rRNA 

gene spacer sequence is a less significant taxonomic tool than 16S rRNA gene sequence. 
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To our knowledge, this is the first report about the presence of SCGS phytoplasma in 

Egyptian sugarcane cultivar. The geographical distribution of grassy shoot (GS) includes 

countries such as Bangladesh, India, Iran, Malaysia, Myanmar, Nepal, Pakistan, Sri Lanka, 

Sudan and Thailand (Viswanathan, 2000). 

Association of phytoplasma with streak yellows on date palm in Egypt was documented for 

the first time in 2005 (Ammar et al., 2005). In addition, occurrence of phytoplasma diseases in 

Egypt was reported in periwinkle and was identified as members of aster yellow phytoplasma 

group (Omar et al., 2008). No phytoplasma in Egyptian sugarcane was documented so far.  

According to DNA sequence analyses of nested-PCR products of Syrian sugarcane cultivar 

using P1/P2 primer pair, this plant contains phytoplasma, which falls into the rice yellow 

dwarf (SCWL) group. However, rely on RFLP profiles with restriction endonucleas (HinfI) 

this Syrian sugarcane cultivar contains non-identified phytoplasma strain (Figure.3.9 and 

3.10).Therefore, other DNA sequence analyses using other primer pairs are required in order 

to identify this phytoplasma isolate. This is also true for some Thai sugarcane cultivars from 

province of Bang Phra which contains the same non-identified phytoplasma strain too. 

Apple proliferation phytoplasma, which infects apple trees, was reported in south Syria. Also 

two types of phytoplasmas were identified in mixed infection in grapevine in Syria: one 

related to stolbur (16SrXII) and the other tentatively related to clover proliferation group 

(16SrVI) (Contaldo et al., 2011) but no phytoplasma in Syrian sugarcane was reported before. 

As a consequence, our results are in agreement with those described in Australia, South 

Africa, Cuba and Mauritius (Vega et al., 1997; Cronje et al., 1998; Arocha et al.1999; 

Aljanabi et al., 2001) where phytoplasmas have been associated with YLS of sugarcane 

plants. Moreover, sugarcane yellow leaf syndrome (SCYLS) disease, which has been reported 

from several African countries, Cuba and Australia was associated with distinctly different 

phytoplasmas which are not specific pathogens. They include members of the X-disease, faba 

bean phyllody, aster yellows and SCWL groups which are known to infect a wide range of 

wild and cultivated plants and have low insect vector specificity (Marcone, 2002).  
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4.3. Identification of the phytoplasma strains in sugarcane by phylogentic analysis 

Due to the inability to cultivate phytolasmas in cell-free media, molecular analyses of 

conserved gene sequences have become rational means for phytoplasma taxonomy and 

classification. Use of DNA sequences to build up phylogenetic trees is widespread and 

recognized as a valid approach for identifying taxonomic relationships between organisms 

(Hodgetts and Dickinson, 2010).  

Following decisions for phytoplasma taxonomy taken by the Phytoplasma Working Team 

during the 13th International Organization of Mycoplasmology held in Fukuoka, Japan (14 to 

19 July 2000) in general, a strain can be described as a new “Candidatus Phytoplasma 

species” if its 16S rRNA gene sequence has less than 97.5% identity to any previously 

described “Candidatus Phytoplasma species.”  

A BLAST search for the 16S rRNA gene sequences reported in this study showed that they 

shared 99 to 100% sequence identity with those of other phytoplasmas in the aster yellows, X-

disease and rice yellow dwarf groups. This confirmed that the detected phytoplasmas belong 

to these groups of ‘Candidatus phytoplasma’. For example, Egyptian sugarcane cultivar 

G8447 contains phytoplasma strain (JN223446) clustered to the rice yellow dwarf group, 

closely together with sorghum grassy shoot phytoplasma from Australia (AF509324) with a 

bootstrap value of 81.1 and shared 99% sequence identity (Table.3.29 and Figure.3.35.a). 

Furthermore, it was previously reported that the more distantly related to SCGS agent, is the 

sorghum grassy shoot (SGS) (Rao et al., 2007). Therefore, the Egyptian sugarcane cultivar 

G8447 contains phytoplasma strain (JN223446) belongs to the rice yellow dwarf group 

‘Candidatus phytoplasma oryzae’ and this strain cannot  be described as a new “Candidatus 

Phytoplasma species” due of its 16S rRNA gene sequence has more than 97.5% identity to 

any previously described “Candidatus Phytoplasma species.”. That is also true for 

phytoplasma isolate (HM804282) from Cuban sugarcane cultivar Ja605 clustered together 

with other strains of X-disease group, among them already reported sugarcane yellows 

phytoplasma strain found in South Africa (AF056095) with a bootstrap value of 48.7 and 

shared 99% sequence identity (Table.3.29 and Figure.3.35.a). Therefore, the Cuban sugarcane 

cultivar Ja605 contains phytoplasma strain (HM804282) belongs to the X-disease group 

‘Candidatus phytoplasma pruni’ and can’t be described as a new “Candidatus Phytoplasma 

species”.  

Other Cuban sugarcane cultivar C10-5173 was infected with phytoplasma strain (HQ116553) 

clustered to the aster yellows group, closely together with sugarcane yellows phytoplasma 
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from Brazil (EU423900) and maize bushy stunt phytoplasma from Colombia (HQ530152) 

with a bootstrap value of 49.6 and shared 99% sequence identity (Table.3.29 and 

Figure.3.35.a). Therefore, the Cuban sugarcane cultivar C10-5173 contains phytoplasma 

strain (HQ116553) belongs to the Aster yellows group ‘Candidatus phytoplasma asteris’ and 

this strain can’t be also described as a new “Candidatus Phytoplasma species”. 

4.4. Hot water treatment in order to get phytoplasma free plant  

When a pathogen is excluded from the propagating material of a host, it is often possible to 

grow the host free of that pathogen for the rest of its life (Aslam, 2001).  

Hot water treatment has been proposed to cure dormant woody plant material from 

phytoplasmas. While tissue culture techniques are routinely used for virus eradication; few 

reports have been published on their potentiality in phytoplasma elimination (Dai et al., 1997; 

Parmessur et al., 2002; Chalak et al., 2005). The effectiveness of the method is based on the 

fact that dormant plant organs can withstand higher temperatures than those their respective 

pathogens can survive for a given time (Agrios, 2004).   

The first aim of our hot water treatment was to get negative control (phytoplasma-free plant) 

Therefore, we used an Australian recipe (Arocha, 2005b), as long duration treatment (48 h in 

cold water (10°C), followed by 3h in hot water (50°C)).The cuttings (approx. 30 mm average 

diameter) were kept in cold water before the hot water treatment was applied.  

It seems that, immersion at 50°C for 30 min was not effective to eliminate the phytoplasma 

totally from the cuttings but it could be effective in smaller diameters. Furthermore, it could 

be that also depends on the titer of phytoplasmas in the plant material. 

Our tests showed that the appropriate hot water treatment, which recommended for 

phytoplasma elimination, is immersion at 50°C for at least 60 min. Furthermore, our tests 

showed that the plant material (cuttings) should be thermally prepared to the treatment by 

storage for 48 hours at 10°C in order to prevent a poor vegetative development especially for 

long duration treatment at 50°C for 3 hours. Due it could be that this treatment could lead to 

high mortality rates. 

The hot water treatment which is practiced by the Hawaiian plantations for their seed cane 

fields (3 h at 50°C) is sufficient to eliminate phytoplasma, whereas the duration of the hot 

water treatment for seed pieces which are planted in the fields (20 min at 52°C) may be at the 

margin of successful bacteria elimination. 
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Therefore field plants were tested for phytoplasma with emphasis on the comparison of green 

plants with YLS-symptomatic plants, standing side-by-side. Our results showed that these 

field plants were in the case of a mostly phytoplasma-infected and it seems that there is no 

clear association between phytoplasma and symptoms due to some green sugarcane plants 

were also positive for phytoplasma. Asymptomatic sugarcane was frequently phytoplasma-

positive; this has also been reported by other workers (Cronje et al., 1998a).  

One explanation for the poor correlation between phytoplasma and symptoms is that some 

phytoplasmas can exist in plants without ever causing disease or having only a minor impact, 

as is the case for ash yellows in velvet ash (Sinclair et al., 1994) and phytoplasmas in alders 

(Lederer and Seemuller, 1991), apricots (Kirkpatrick et al., 1990) and almonds (Uyemoto et 

al., 1992). Such associations suggest that the host plant is either tolerant or resistant to 

phytoplasma infection. 

4.5. Transmission test with sugarcane aphid 

Our tests showed that the sugarcane aphids (Melanaphis sacchari) are able to acquire the 

phytoplasmas because DNA extracted from these insects produced an expected size of nested-

PCR product. In addition, DNA sequencing of these PCR products confirmed that. Our tests 

showed that these sugarcane aphids are able to acquire the phytoplasmas but they are unable 

to transmit the phytoplasmas into the sugarcane plants because all target plants (phytoplasma-

free plants) were negative for phytoplasma infection after three months post inoculation.  

In fact, many aphids, whiteflies and mealy bugs are phloem-feeders on plant species infected 

with phytoplasmas, but so far none of them has been found to be a vector of phytoplasmas. 

Recently, apple aphids were found to be positive in PCR assays for apple proliferation 

phytoplasmas and were suspected to be vectors, but the results of transmission experiments 

seem to exclude this possibility (Cainelli et al., 2007). A phloem-feeding habit is thus 

necessary but insufficient for phytoplasma transmission.  

It was an expected result that sugarcane aphids are unable to transmit the phytoplasmas 

(SCYP) because thus far, there has been no report of phytoplasma or spiroplasma 

transmission by a phloem-feeding aphid. The reasons for lack of transmission by aphids are 

not known. Sites of mollicute attachment to insect tissues and other pathogen-insect 

interactions can be cited in a general sense to explain transmission specificities. But what 

molecular mechanisms, that are present in leafhoppers and presumably absent in aphids, 
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account for the differences in mollicute transmission between these major insect groups? 

(Mishra, 2004). As a consequence, interestingly, aphids apparently do not serve as 

phytoplasma vectors.  

4.6. Transmission electron microscopy for cytological location of phytoplasma 

Phytoplasmas are transferred with saliva of infected insect vectors into the pierced sieve 

element, from which they spread systemically in the plant using the continuous sieve tube 

system due they are pleiomorfic and sufficiently small to pass freely through sieve pores. 

Our transmission electron microscopic studies revealed the presence of sugarcane white leaf 

phytoplasma only in phloem sieve tubes of diseased sugarcane leaves but not in cells adjacent 

to the sieve elements including companion cells and phloem parenchyma, although in many 

cases the phytoplasmas have been reliably documented in companion cells and phloem 

parenchyma cells by electron microscopy, as well as in sieve elements (Siller et al., 1987). 

Several ultrastructural changes were observed under transmission electron microscope 

(TEM). Parenchymatic cells of bundle sheath and mesophyll tissue of infected leaves showed 

some alterations compared to uninfected leaves. In these cells accumulations of starch 

granules and plastoglobuli were observed in white leaf phytoplasma-infected sugarcane 

compared to uninfected control (Figure.3.47). Our electron microscopic studies are in 

agreement with literature, where phytoplasma infections led to a significant increase of starch 

in source leaves (Lepka et al., 1999). These data are consistent with ultrastructural 

observations reporting starch accumulation in chloroplasts associated with a severe 

disorganization of thylakoids and a reduction in chlorophyll content (Musetti, 2006) due to 

the decrease of both Chl a and Chl b in leaves. “A decrease in photosynthetic pigments has 

been observed in maize plants infected with maize bushy stunt (Junqueira et al., 2004), apples 

infected with apple proliferation and grapevine infected with the bois noir phytoplasma. This 

is probably the result of enhanced chlorophyllase activity in infected leaves (Bertamini et al., 

2002b) and it has been suggested that phytoplasmas have a role in the inhibition of 

chlorophyll biosynthesis in plant host leaves (Bertamini et al., 2002a).”  

“ The descent of photosynthesis is the result of phytoplasma infection on photosynthetic 

electron transport and enzymatic activities, due to the loss of several thylakoid membrane 

proteins and to the reduction of leaf soluble proteins. These changes are similar to those 

induced by leaf ageing, so an interference of phytoplasmas with plant hormones that regulate 

senescence processes in leaf tissues could be hypothesized. In all kinds of diseases in which 
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there is destruction of leaf tissue like sugarcane white leaf phytoplasma, photosynthesis is 

reduced because the photosynthetic surface of the plant is lessened. Most viruses, mollicute 

diseases induce varying degrees of chlorosis and stunting. In the majority of such diseases, the 

photosynthesis of infected plants is reduced greatly. In diseases caused by phytoplasmas, 

bacteria exist and reproduce in the phloem sieve tubes, thereby interfering with the downward 

translocation of nutrients” (Musetti, 2006).  

An increase plastoglobuli number and size in disorganized chloroplasts was found in 

mesophyll paranchymatic cells of variegated leaf of white leaf phytoplasma-infected 

sugarcane compared to green leaf of uninfected sugarcane which was used as control 

(Figure.3.48). It is known that characteristics of plastids in senescent cells include reduced 

size, rounded shape and larger plastoglobuli (Thomson and Platt-Aloia, 1987; Biswal and 

Biswal, 1988; Noode´n, 1988).  

As a consequence, the phytoplasma diseases are complex and their progress is also highly 

variable and depends on many factors including the state of the host plants, the pathogen and 

its different biotypes, the tendency for mutation, the presence and dynamics of the vectors, the 

titer of the phytoplasma, the environmental conditions as well as the agronomical practices 

being used (Ciancio and Mukerji, 2008).  
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5. Summary 

The Yellow leaf syndrome (YLS) had been first detected and described in Hawaiian 

sugarcane plantations. The polerovirus Sugarcane yellow leaf virus was identified as a causal 

agent of the syndrome; however there was no strict correlation between the degree of 

symptom expression and the virus titre. Therefore several surveys on breeding station 

sugarcane plants in Hawaiian Islands were done for Sugarcane yellow leaf phytoplasma 

(SCYLP), a bacterium which had been hypothesized to be also a causal agent of YLS.  

Two types of phytoplasmas were found in Hawaiian sugarcane cultivars mainly sugarcane 

white leaf phytoplasma (SCWL) which is a member in rice yellow dwarf group, in addition to 

aster yellows group. This was also true for sugarcane plants from Hawaiian plantations, which 

routinely use hot water-treatment for the seed cane cuttings.  

Sugarcane samples were obtained also from other countries including Cuba, Egypt, Syria and 

Thailand where sugarcane plants are also showing symptoms of yellowing or whiting. Aster 

yellows and X-disease phytoplasmas were found in Cuban cultivars whereas one sugarcane 

cultivar from Egypt contains grassy shoot phytoplasma that is a member in rice yellow dwarf 

group, but the other two Egyptian ones were phytoplasma-free. Syrian sugarcane was infected 

by phytoplasma that identified preliminary in rice yellow dwarf group. To our knowledge, this 

is the first report for the detection and identification of phytoplasma in sugarcane plants from 

Hawaii, Egypt and Syria. Our investigation on Thai sugarcane plants was in agreement with 

previous literature where sugarcane white leaf (SCWL) phytoplasma is associated with white 

leaf disease (Nakashima et al., 1994; Wongkaew et al., 1997). 

Q-PCR (real-time PCR) offers the opportunity to detect the phytoplasma in a sensitive, 

specific and quick manner, but that is not true for sugarcane plants with a very low titer of 

phytoplasma. Therefore, nested-PCR is better than qPCR for low titer phytoplasma detection 

and that is true for sugarcane yellow leaf phytoplasma disease. A BLAST search for the 16S 

rRNA gene sequences reported in this study showed that they shared 99 to 100% sequence 

identity with those of other phytoplasmas in the Aster yellows, X-disease and Rice yellow 

dwarf groups. However, no one of these identified strains can be described as a new 

“Candidatus Phytoplasma species”.  On the other hand, Hawaiian sugarcane cultivar H78-

7750 as a representative of Hawaiian breeding station sugarcane contains phytoplasma 

clustered to strain sugarcane white leaf (SCWL) phytoplasma, closely together with sugarcane 
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white leaf phytoplasma from Taiwan (AY139874). It is possible to explain the occurrence of 

(SCWL) phytoplasma in Hawaiian Islands, by insect vectors or by infected stem cuttings 

which were obtained from other countries. Thai sugarcane contains phytoplasma isolate 

closely together with sugarcane white leaf phytoplasma from Myanmar.  

The transmission electron microscopic (TEM) studies revealed the presence of sugarcane 

white leaf phytoplasma only in phloem sieve tubes of diseased sugarcane leaves but not in 

adjacent cells to the sieve elements including companion cells and phloem parenchyma as 

well. According to ultrastructural observations under TEM, parenchymatic cells of bundle 

sheath and mesophyll tissue of affected leaves showed some alterations including 

accumulations of starch granules, increase plastoglobuli number and size in disorganized 

chloroplasts.  

Insect vectors of phytoplasmas are phloem feeders. Thus far, none of aphid species has been 

found to be a vector of phytoplasmas. Our tests showed also that black sugarcane aphids 

(Melanaphis Sacchari) were unable to transmit the phytoplasmas from infected sugarcane into 

the phytoplasma-free one. Hot water treatment has been proposed to cure plant material from 

phytoplasmas. Our tests showed that the appropriate hot water treatment, which recommended 

for phytoplasma elimination, is immersion of the sugarcane stem cuttings at 50°C for 60 min.  
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6. Zusammenfassung 

Das Yellow Leaf Syndrom (YLS) bei Zuckerrohr wurde zuerst in Plantagen Hawaiis entdeckt 

und von dort beschrieben. Das Polerovirus Sugarcane Yellow Leaf Virus konnte als 

verursachendes Agens des Syndroms identifiziert werden, jedoch gab es keinen strikten 

Zusammenhang zwischen der Intensität der Symptome und dem Virustiter. Deshalb wurden 

Analysen an Zuckerrohrpflanzen aus der hawaiianischen Zuchtstation durchgeführt, um die 

Pflanzen auf Sugarcane yellow leaf phytoplasma (SCYLP) zu testen, einem Bakterium, das 

ebenfalls als möglicher Auslöser von YLS vermutet wurde. 

Zwei Typen von Phytoplasma wurden in den hawaiianischen Zuckerrohrkultivaren entdeckt, 

nämlich Sugarcane White Leaf Phytoplasma (SCWL), ein Stamm der Rice Yellow Dwarf 

Gruppe, und ein Stamm der Aster Yellows Gruppe. Dies galt auch für Zuckerrohrpflanzen aus 

hawaiianischen Plantagen, obwohl bei diesen routinemäßig eine Heißwasser-Behandlung 

ihrer Setzlinge, welche Phytoplasma eliminieren könnte, durchgeführt wird. 

Proben von Zuckerrohrpflanzen anderer Länder (Kuba, Ägypten, Syrien und Thailand), in 

denen Pflanzen mit Vergilbungs- oder Bleichungssymptomen festgestellt werden, konnten 

ebenfalls getestet. Aster Yellows und X-Disease Phytoplasmen fand man in kubanischen 

Kultivaren, während ein ägyptisches Kultivar Grassy Shoot Phytoplasma (ebenfalls ein 

Stamm der Rice Yellow Dwarf Gruppe) enthielt. Zwei andere Kultivare aus Ägypten waren 

phytoplasmafrei. Auch das syrische Zuckerrohr war von einem Phytoplasma der Rice Yellow 

Dwarf Gruppe infiziert. Unseres Wissens sind das die ersten Nachweise von Phytoplasma in 

Zuckerrohr aus Hawaii, Ägypten und Syrien. Die Analysen an thailändischen Pflanzen 

bestätigten publizierte Ergebnisse, dass mit Sugarcane White Leaf (SCWL) Phytoplasma 

infizierte Pflanzen mit White Leaf Disease in Zusammenhang stehen (Nakashima et al., 1994; 

Wongkaew et al., 1997). 

Q-PCR (real-time PCR) gilt als empfindliche, spezifische und rasche Methode um 

Phytoplasma in Pflanzenmaterial zu messen, dies erwies sich aber offensichtlich nicht für 

Zuckerrohr mit niedrigem Phytoplasma-Titer. Deshalb wurde nested-PCR als die sensitivere 

Methode, um Phytoplasma-Infektion niedrigen Titers bei Zuckerrohr festzustellen, 

angewandt. Ein BLAST-search zeigte, dass die 16S rRNA der gefundenen Phytoplasma-

Stämme 99-100% Sequenzidentität mit Phytoplasmen der Aster Yellows, X-Disease und Rice 

Yellow Dwarf Gruppen aufweisen, sodass keiner davon als neue “Candidatus phytoplasma 
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Art” beschrieben werden kann. Das Phytoplasma aus dem kommerziellen hawaiianischen 

Kultivar H78-7750 gruppierte sich in Sugarcane White Leaf Phytoplasma (SCWLP) ein, 

zusammen mit einem Stamm aus Taiwan. Es erscheint also möglich, dass über Insekten als 

Vektoren oder infizierte Setzlinge Phytoplasma aus Taiwan nach Hawaii kam oder 

umgekehrt. Das thailändische Phytoplasma steht am nächsten dem White Leaf Phytoplasma 

aus Myanmar.  

Gewebeschnitte im Transmissions-Elektronenmikroskop (TEM) zeigten, dass Phytoplasma 

ausschließlich in den Siebröhren der Leitbündel zu finden ist, nicht in Geleitzellen, 

Phloemparenchym oder anderen Blattzellen. Die normalerweise grünen Gewebe der 

infizierten Blätter (Bündelscheide und Mesophyll) zeigten starke zytologische Veränderungen 

wie Akkumulation von Stärkekörnern, eine große Anzahl von Plastoglobuli und 

desorganisierte Strukturen in Chloroplasten.  

Vektoren für Phytoplasma sind Phloemsauger, jedoch wurde bisher keine Blattlaus als Vektor 

nachgewiesen. Es konnte gezeigt werden, dass die schwarze Zuckerrohrlaus Melanaphis 

sacchari, die der wichtigste Vektor für Sugarcane Yellow Leaf Virus ist, Phytoplasma nicht 

übertragen kann. Heißwasser-Behandlung war als Methode zum Abtöten von Phytoplasma in 

Pflanzenteilen beschrieben worden. Dies konnte bestätigt werden und eine 60-minütige 

Behandlung in 50° heißem Wasser kann für die Eliminierung von Phytoplasma in 

Zuckerrohrsetzlingen empfohlen werden. 
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