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1. Introduction 

1.1 Calorie restriction and lifespan extension 

Calorie restriction or caloric restriction (CR) is a dietary regimen wherein the amount 

of calories consumed is reduced up to 20-40% from the amount consumed ad libitum. 

Lifespan extension by CR was first reported by McCay et. al (McCay et al., 1989) in 1930’s. 

Calorie restricted male rats lived nearly twice as long as their counterparts that were fed with 

an ad libitum diet. This surprising and interesting phenomenon has since been researched 

extensively in various species ranging from the unicellular yeast to worms, flies, fish, mice 

etc. and confirmed that up to 50% increase in lifespan can be achieved by CR (Bordone and 

Guarente, 2005). CR has been linked not only to lifespan extension but also to an overall well 

being of the organism by reducing the incidences of age related ailments such as cancer, 

diabetes and cardiovascular diseases, indicating that maintenance of a disease free state due to 

CR may in turn lead to lifespan extension (Hursting et al., 2001; Lane et al., 1999). 

1.2 Molecular mechanism of lifespan extension by CR 

 Although CR has been linked to lifespan extension for a long time, the molecular 

mechanisms behind the phenomenon are still intensely studied and various theories have been 

proposed. Initial studies on CR aimed at explaining the effect based on a slowing of 

metabolism. These events are coordinated by signaling molecules such as TOR (target of 

rapamycin), AMPK (5′ adenosine monophosphate-activated protein kinase) and Sirtuins. The 

mechanisms proposed to contribute to CR mediated lifespan extension are reduction of 

oxidative damage, improvement of mitochondrial bioenergetics, hormesis, hormonal 

regulation and fatty acid metabolism (Bordone and Guarente, 2005; Koubova and Guarente, 

2003).  

1.3 Sirtuins, CR and aging 

Aging in baker’s yeast Saccharomyces cerevisiae was initially linked to a set of genes 

called Sir1-4 (Sir stands for silent information regulator), which are involved in the silencing 

of chromatin near telomeres. Later, Gottlieb and Esposito (Gottlieb and Esposito, 1989) 

demonstrated that Sir2 is the only gene among the set required for silencing of genes near 

telomeres and also responsible for the silencing of rDNA (ribosomal DNA). It was also shown 

that the regions near the telomeres that underwent silencing by Sir2 contained histones, 

hypoacetylated at the ε-amino group of their lysine side chains, predominantly at the at N-
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terminus (Michan and Sinclair, 2007) and Sir2 was the only gene among the set found to be 

responsible for this observation. When a budding yeast mother cell’s division was followed, 

several characteristic changes were observed including the accumulation of ERC 

(extrachromosomal rDNA circles), which was inversely correlated to lifespan (Sinclair and 

Guarente, 1997). Lin et. al. showed that when yeast were grown on CR media, Sir2 mediated 

reduction in number of ERC was observed and was correlated with lifespan extension, thus 

connecting Sir2 and CR mediated lifespan extension (Lin et al., 2002). They also showed that 

CR enhances the activity of Sir2, most likely by increasing the availability of its co-substrate 

NAD+ (nicotinamide adenine dinucleotide oxidized form) (see below) due to slowing down of 

glycolysis and increase in respiration via the TCA (tri carboxylic acid) cycle. Although CR 

mediated lifespan extension in yeast can also occur independent of Sir2 (Kaeberlein et al., 

2005b) and a silencing independent mechanism can exist for suppressing ERC (Riesen and 

Morgan, 2009), Sir2 and their homologs called Sirtuins (Sir2-ins) in higher organisms appear, 

to contribute to CR mediated lifespan extension. 

Sir2 homologs are present in all kingdoms of life ranging from bacteria to mammals 

and share a conserved catalytic domain and might be involved in more than gene silencing, 

for example in cell cycle progression (Brachmann et al., 1995). Roy Frye (Frye, 1999, 2000) 

later showed that there are seven Sir2 homologs in mammals (Sirt1-7) and grouped them into 

different classes (see below) and also showed that some Sirtuins (such as CobB from E. coli 

(Escherichia coli) and human Sirt2) function as weak NAD+ dependent mono-ADP -ribosyl 

transferases. This activity was also found for yeast Sir2 and is essential for its gene silencing 

role in the chromatin (Tanny et al., 1999). However, several independent groups reported that 

Sir2 and its mammalian homologs (mouse Sirt1 and human Sirt1) have much higher NAD+ 

dependent deacetylase activity  and can deacetylate both histones and other proteins such as 

the transcription factor p53 (Imai et al., 2000; Landry et al., 2000; Vaziri et al., 2001). The 

hallmark of Sirtuins that distinguishes them from other HDAC’s (histone deacetylases) is the 

absolute requirement of NAD+ for their activity. Since Sirtuins can deacetylate proteins other 

than histones, a new protein terminology called PDACs (Lakshminarasimhan and Steegborn, 

2011) has been coined to describe them.  

1.4 Mammalian Sirtuins – Function, classification and localization 

Regulation of cellular functions by amino acid PTMs (post-translational 

modifications) is an efficient and elegant process. In particular lysine, the most frequently 

modified amino acid is involved in several processes ranging from transcription, signaling, 
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protein turnover to disease states (Zhang et al., 2011). Several lysine modifications are known 

till date and more are still being discovered (Du et al., 2011; Zhang et al., 2011). Examples of 

lysine modifications include; acetylation, methylation, biotinylation, ubiquitination, 

sumoylation, propionylation, butyrylation, succinylation, malonylation. Lysine acetylation 

one of the most abundant PTM (next only to phosphorylation) (Khoury et al., 2011), 

expanded our understanding of how protein modifications play a dynamic role in all types of 

cellular functions.  

 Even though Sirtuins were initially thought to function as mono-ADP-ribosyl 

transferases, it is widely accepted that their primary function is lysine deacetylation. Because 

of their unique NAD+ dependence, they have been grouped in a class of their own, HDAC 

Class III. Recent research (Du et al., 2011) has also shown that some isoforms can in fact 

desuccinylate and demalonylate lysine residues in proteins, opening up new exciting avenues 

in this field. Since Sirtuins NAD+ is metabolized during the reaction, it is a co-substrate and 

not a co-factor. The presence of two substrates makes the enzyme very challenging to study in 

terms of understanding its mechanism and regulation, and the requirement for NAD+ also 

makes it a metabolic sensor.  

1.4.1 Classification of mammalian Sirtuins 

 There seven mammalian Sirtuins have different substrate preferences and localization. 

Sirtuins carry a conserved catalytic domain consisting of about 275 residues. This catalytic 

domain is the most conserved part among all the Sirtuins. Based on phylogenetic analysis 

mammalian Sirtuins are grouped into four different classes (I-IV) (Figure 1.1) (Frye, 2000; 

Michan and Sinclair, 2007). Sirt1, 2 and 3 are placed under Class I along with most 

eukaryotic Sirtuins such as the founding member yeast Sir2, HST 1 and 2 from yeast and 

Sir2.1 from Drosophila melanogaster. The Class I is further divided into Ia (Sirt1) and Ib 

(Sirt2 and 3). Sirt4 belongs to Class II along with Sirtuins from bacteria, nematodes, fungus 

and protozoans. Sirt5 is placed in a class of its own (Class III), along with Sirtuins from achea 

and protozoa, implying an early evolution. Sirt6 and 7 belong to class IV, which is further 

subdivided into IVa and IVb, respectively. Other representative members from this family 

include Sirtuins from metazoans and plants. Sirtuins from gram positive bacteria such as 

Thermotoga maritima fall into a unique undetermined class (Class U) and seem to have 

appeared very early in evolution. 
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Figure 1.1: Classification of mammalian Sirtuins. A figure depicting different classes of 
mammalian Sirtuins is shown along with representative members from other kingdoms. C. 
alb, Candida albicans; C. ele, Caenohrabditis elegans; D. mel, Drosophila melanogaster; P. 
fal, Plasmodium falciparum; T. mar, Thermotoga maritima. Figure adapted from Michan and 
Sinclair Biochem. J. 2007 (Michan and Sinclair, 2007). 

1.4.2 Localization of mammalian Sirtuins 

 Mammalian Sirtuins are localized in different compartment of the cells and seem to 

have different substrate specificity. Sirt1 is predominantly in the nucleus, although it has been 

reported to be present in the cytoplasm and also in mitochondria (Aquilano et al., 2010; 

Michan and Sinclair, 2007). Sirt2 is predominantly cytoplasmic (Frye, 1999) (North et al., 

2003). Sirt3, 4 and 5 are mitochondrial and are localized in different compartments of the 

mitochondria (Gertz and Steegborn, 2010). Sirt3 and 4 are present in the mitochondrial matrix 

and Sirt5 can be translocated either to the intermembrane space (IMS) or to the matrix 

(Schlicker et al., 2008). Sirt6 is present in the heterochromatin of the nucleus (Tennen et al., 

2010) and Sirt7 is present in the nucleolus (Figure 1.2). 

 

Figure 1.2: Schematic architecture of seven mammalian Sirtuins. The seven mammalian 
Sirtuins, which fall under different classes contain a conserved catalytic core (shaded 
regions). The N and the C-termini (hatched regions) are more unique for each Sirtuin. 
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1.5 Substrates, function, structure and enzymatic mechanism of Sirtuins 

1.5.1 Substrates of Sirtuins 

 To date there are over 6800 acetylation sites known in mammalian proteins indicating 

the importance of this modification (Choudhary et al., 2009; Kim et al., 2006). Several of 

these acetylations sites are relatively uncharacterized and Sirtuins might serve as a 

deacetylase for several of them. Sirt1, the most studied and the largest member of the family, 

has more than two dozen physiologically relevant substrates identified (Lavu et al., 2008), 

which ranges from histones (H1, H4 etc.), transcription factors (p53, FOXO etc.), eNOS, 

(endothelial nitric oxide synthase), pGC1-α (peroxisome proliferator-activated receptor-g co-

activator 1α). Different Sirtuins can also act on same substrates either at the same lysine 

residue (Sirt1 and Sirt7 can deacetylate Lys382 of p53 (Vakhrusheva et al., 2008)) or at 

different lysine residue in the same protein (Sirt1 can deacetylate Lys1020, 1024 and Sirt2 can 

deacetylate Lys1542 and 1707 respectively in p300 (Black et al., 2008)). These common 

substrates might be either deacetylated in different tissues or cellular compartments or at a 

different time point in the cell cycle.  

The mitochondrial Sirtuins Sirt3, 4 and 5 modify proteins mainly involved in 

metabolism and ETC (electron transport chain). Mice lacking Sirt3 exhibit hyperacetylation 

of many mitochondrial proteins, and confirmed substrates are a growing list of metabolic 

enzymes including GDH (glutamate dehydrogenase), ICDH (isocitrate dehydrogenase) and 

LCAD (long-chain acyl Coenzyme A dehydrogenase) (Hirschey et al., 2010; Schlicker et al., 

2008) and proteins involved in the ETC such as Complex I (Ahn et al., 2008) and Complex II, 

V (Finley et al., 2011). Sirt4 has very few substrates identified so far. Initial studies showed 

that Sirt4 can ADP-ribosylate and inhibit GDH activity (Haigis et al., 2006; 

Lakshminarasimhan and Steegborn, 2011), but results from our lab show Sirt4 is also a 

substrate specific deacetylase (unpublished).  

Sirt6 and Sirt7 are localized in the nucleus and nucleolus, respectively, and very little 

is known about their substrate preferences. Sirt6 was initially shown to auto-ADP-ribosylate 

itself (Liszt et al., 2005), but Pan et. al. (Pan et al., 2011b) showed Sirt6 possesses weak 

deacetylaase activity. Sirt7 interacts with RNAPolymerase I and positively regulates its 

transcription (Ford et al., 2006). Sirt7 can deacetylate FdL-1 peptide substrate and mice 

deficient in Sirt7 gene show increased acetylation levels of p53 at Lys382 and develop 

inflammatory cardiomyopathy (Vakhrusheva et al., 2008) indicating a role for Sirt7 in cardiac 
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function via p53 regulation. Sirt1 has been shown to undergo PTMs leading to increase in 

activity (see below), similarly PTMs could also influence activity of the weak deacetylase 

Sirt4, 5, 6 and 7. 

A list of different mammalians Sirtuins and their substrates/interacting partners are 

listed in Table 1.1. 

 

Table 1.1: A list of mammalian Sirtuins, their function, substrates and interactors. Text 
modified from Lavu et. al (Lavu et al., 2008) with inputs from the following: a (Ford et al., 
2006), b (Liu et al., 2011), c (Black et al., 2008), d (Smith et al., 2008) e (Jin et al., 2008), f 
(Schlicker et al., 2008), g (Ahn et al., 2008), h (Finley et al., 2011), i (Hirschey et al., 2010), j 
(Nakagawa et al., 2009), k (Kawahara et al., 2009), l (Grob et al., 2009). ACS, acetyl-CoA 
synthetase; ANT, ADP/ATP carrier protein; AR, androgen receptor; AROS, active regulator 
of SIRT1; ART, adp-ribosyl transferase; BCL11A, B-cell CLL/lymphoma 11A (zinc finger 
protein); CPS1, caobamoyl phosphate synthetase 1; CTIP2, COUP-TF interacting protein2 
(also known as BCL11B); DAC, deacetylase; DMC, demalonylase; DSC, desuccinylase; 
DBC1, deleted in breast cancer 1; E2F1, E2F transcription factor 1; FOXO, forkhead box 
protein O1; IDE, insulin-degrading enzyme; IRS2, insulin receptor substrate 2; LXR, liver X 
receptor; MCF2, myocyte-specific enhancer factor2; MyoD, myogenic differentiation 1; 
NBS1, Nijmegen breakage syndrome 1; NCOR, nuclear receptor co-repressor; NF-kB, 
nuclear factor-kB; RB, retinoblastoma protein; SUV39H1, suppressor of variegation 3-9 
homolog 1; TAT, trans-activator of transcription; TLE1, transducin-like enhancer of split 1; 
TORC2, transducer of regulated cAMP response element binding protein 2; UBF, upstream 
binding factor; WRN, Werner syndrome protein. 

1.5.2 Role of Sirt1 in cellular functions and disease states 

 Among all the mammalian Sirtuins, human Sirt1 is the best characterized isoform with 

respect to its function. Sirt1 was initially implicated in CR mediated lifespan extension and 

chromatin silencing, but recent data validate its involvement in several processes ranging 
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from cell proliferation, metabolism, mitochondrial biogenesis, fat mobilization, apoptosis, 

cancer, diabetes, neuronal diseases, cell senescence, apoptosis etc. (Figure 1.3).   

After the discovery of Sirt1’s deacetylate activity and its first non-histone substrate 

p53, several labs reported various substrates of Sirt1 which ranges from transcription factors 

to enzymes involved in metabolism (Table 1.1 and Figure 1.3). By deacetylating transcription 

factors such as the FOXO family, NF-κβ, p53, PGC-1α, PPARγ, Sirt1 contributes towards 

fatty acid oxidation, gluconeogenesis, insulin secretion, lipogenesis and several other 

processes. Sirt1 mediated deacetylation of a single substrate can lead to various outcomes 

depending on the cell/tissue type and external stimuli (such as CR or carcinogens). For 

example, deacetylation of PGC-1α by Sirt1 can lead to its upregulation and induce 

mitochondrial biogenesis in hepatocytes, at the same time in skeletal muscles it can induce a 

shift in energy production (by conserving glucose and increasing fatty acid oxidation) (Haigis 

and Sinclair, 2010). The role of Sirt1 in disease of aging such as cancer, diabetes and 

neurological disorders is also an intense field of research, with new studies suggesting its role 

even  in anxiety and depression (Libert et al., 2011). Sirt1’s role in cancer is hotly debated 

with several studies claiming it to an oncogene, whereas others show it is a tumor suppressor 

and much of this has been linked to its ability to deacetylate p53 at Lys382 and repress its 

transactivation potential (Haigis and Sinclair, 2010).  

 

Figure 1.3: Sirt1 affects various cellular events. Sirt1 can deacetylate several proteins in the 
cell and thereby influence various cellular processes ranging from cell proliferation, 
metabolism to diseases. UCP, uncoupling protein; TAF168, TBF (TATA-box binding 
protein)-associated factor I 68. 
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1.5.3 Structural features of Sirtuins 

 The conserved core of all Sirtuins contains similar structural features. As a 

representative, the three dimensional crystal structure of Sir2Tm is shown in Figure 1.4 (Hoff 

et al., 2006). The structure of Sirtuins can be divided into two domains (the large and small 

domain respectively) and a cleft region. The large domain contains the classical Rossmann 

fold (α/β fold), which contributes to the binding of pyridine dinucleotides such as 

NAD+/NADH and NADP+/NADPH. The small domain, which is more unique to each Sirtuin, 

contains a Zinc atom coordinated by four conserved Cysteins. The Zinc atom does not play 

any role in the catalysis as in the case of the classical HDACs, but seems to be required for 

structural stability. The two domains are connected by four loops that arise from the 

Rossmann fold and include a flexible loop called the co-substrate binding loop. Both the 

connection and the position of the small domain with respect to the large domain varies 

among different Sirtuins and is often influenced by the presence of ligands and other small 

molecules which can affect the co-substrate loop. The most interesting and unique feature of 

the Sirtuin structure is present in the cleft between the large and the small domain. The 

substrate and the co-substrate (NAD+) have to bind in the cleft region in a particular 

orientation for catalysis to take place.  

The binding of acetylated peptides to Sirtuins involve β-sheet interactions and 

structural studies suggest that the protein substrate might contain no repetitive secondary 

structure in that region (Sauve et al., 2006). The peptide orientation and backbone interactions 

observed in several crystal structures of Sirtuins augment biochemical data which suggests 

that Sirtuins discriminate between different substrates and on the protein level there might be 

other interactions between Sirtuins (especially the N and C-terminal domains) and its 

substrates that can lead to a substrate specificity. 

The co-substrate NAD+ enters the opposite side of the acetyllysine binding cleft and 

encounters the acetyllysine in between the large and the small domains. The contacts between 

the adenine ring, the ribose ring adjacent to adenine and the Rossmann fold of the Sirtuin are 

well defined and similar to a typical NAD+-protein interaction, but the second ribose moiety, 

the phosphate and the NAM attached to it are free to adopt several conformations and play an 

important role in catalysis mediated by Sirtuins. The presence of acetyllysine in the cleft 

imposes a constrain on the nicotinamide ring of NAD+ and orients it to a particular pocket of 

the Sirtuin called the “C pocket” so that the enzyme mediated catalysis can take place (see 

below) (Sauve et al., 2006).  
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The co-substrate binding loop, which is often times disordered in Sirtuin structures, is 

one of the most conserved regions among Sirtuins (Avalos et al., 2005) and has been shown to 

play an important role in catalysis. The nicotinamide ring of NAD+ while bound in the 

strained conformation makes contacts with the co-substrate binding loop and mutating 

residues in this loop lead to a decrease in the deacetylation activity of the Sirtuin, highlighting 

its importance (Hawse et al., 2008). When there is no NAD+ present, the co-substrate loop 

adopts a relaxed state (open), but switches to an ordered state (closed) when the acetyllysine 

and NAD+ are present in the cleft. 

 

Figure 1.4: Crystal structure of Sirtuins. The catalytic core domain of Sirtuins present 
similar structural features. As a representative, the ribbon diagram of Sir2Tm is shown (PDB 
(protein data bank) id: 2H4F). The small domain also called the Zinc binding domain which 
contains a Zn2+ ion (yellow) is represented as blue ribbon. The large domain which harbors 
the Rossmann fold is colored in cyan. The loops that connect the large and small domains are 
indicated in green. The co-substrate binding loop is shown in magenta. The substrate binding 
cleft is shown bound to a peptide substrate. The NAD+ is bound opposite to the peptide 
substrate in a productive conformation with the nicotinamide ring pointed at the C pocket. 

1.5.4 Catalytic mechanism of Sirtuins 

 Sirtuins have been shown to possess both deacetylase 

(depropionylase/debutyrylase/desuccinylase/demalonylase etc.) and ADP-ribosyl transferase 

activity. The involvement of two substrates and release of three products makes the Sirtuin 
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mechanism both complicated and interesting at the same time.  Several biochemical and 

structural data suggest multiple enzyme/intermediate and enzyme/transition state complexes 

(Hoff et al., 2006; Sanders et al., 2010). The deacetylation is considered as the main function 

of the Sirtuins and the ADP-ribosyl transferase activity (although initially assigned to 

Sirtuins) is often considered as a side reaction or a secondary reaction and the ADP-ribosyl 

transferase mechanism is subject to debate (Sauve, 2010).  

The deacetylation reaction of Sirtuins involves binding of the substrates acetyllysine 

followed by the NAD+ in the cleft region, yielding the deacetylated lysine, OAADPr (2 ′ -O-

acetyl-ADP-ribose) and NAM (nicotinamide). The NAM is released first but the release of 

OAADPr or lysine does not follow a particular order (Hoff et al., 2006). The acetyl group 

attached to the ADPr (ADP-ribose) can exist in equilibrium between the isomers either as 

2′ OAADPr or 3′ OAADPr (Jackson and Denu, 2002; Sauve et al., 2001). 

 Step 1 of the Sirtuin catalyzed deacetylation starts after NAD+ binds in the productive 

conformation following the binding of the acetyllysine (Figure 1.5). In this productive 

conformation, the NAD+ is both destabilized from its ground state and α face of the N-ribose 

is exposed to the carbonyl moiety of the acetyllysine. As the NAM part of the NAD+ is 

dissociated, the carbonyl group of the acetyllysine is drawn towards to the C1′ of the ribose 

ring and attacks it to reversibly form a peptidylimidate intermediate. The exact mechanism 

behind the breakage of the glycosidic bond and the release of NAM is still debatable, with 

several studies suggesting an SN1 type of mechanism and others proposing an SN2 type 

mechanism. At this stage the peptidylimidate intermediate (transitions state) is still vulnerable 

to attack by the released NAM or excess NAM present in the solution via a base-exchange 

reaction and needs to be shielded by the enzyme. This effect occurs at physiological NAM 

concentration making it a physiologically relevant inhibitor of Sirtuins. The presence of 

neighboring residues (step 2) (for example Phe33 in the case of Sir2Tm) in the co-substrate 

binding loop has been shown to play an important role in shielding the positive charge 

developed on the intermediate from water molecules and the NAM (Hoff et al., 2006). In step 

3 of the reaction, the catalytic Histidine acts as a base (His116 in the case of Sir2Tm) and 

abstracts an H+ from either the 2′ or 3′ OH of the ribose and in turn activates the 2′ OH to 

attack the carbonyl of the acetyllysine to form the bicyclic intermediate (step 4). The same 

Histidine then acts as an acid and protonates the imidate intermediate, leading to the 

formation of a cyclic acyl-oxonium ion due to the cleavage of the amide bond (step 5). In the 

next series of steps (steps 6 to 8) an active site water mediated attack can occur on the acyl-
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oxonium ion leading to the release of the deacetylated lysine (Sauve et al., 2001; Smith and 

Denu, 2006), followed by the abstraction of H+ from this intermediate probably by the leaving 

NH2 group of the lysine side chain and resolving of the cyclic intermediate by the 1′ oxygen 

to yield the final substrate 2′OAADPr.  

 

Figure 1.5: Mechanism of Sirtuin catalyzed deacetylation. A schematic representation of 
the steps involved in Sirtuin mediated deacetylation. Figure reproduced with permission from 
Elsevier Ltd. (Hoff et al., 2006). See above text for explanation. 

1.6 Regulation of Sirt1 

 The role Sirt1 plays in various types of cellular process by acting as a regulator makes 

its physiological and pharmacological regulation very interesting. At the physiological level, 

Sirt1 regulation can occur through processes such as; transcription/translation, shuttling 

between nucleus and cytoplasm, interacting partner proteins, PTMs and cellular metabolites 

(NAD+/NADH, NAM). The idea behind modulating the activity of Sirt1 at the 

pharmacological level started as soon as their involvement in lifespan extension was 

discovered, leading to a search for small molecules that can modulate Sirt1.  
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1.6.1 Proteins and PTMs involved in Sirt1 regulation 

 In spite of more than a decade of research on Sirt1, less information is available about 

Sirt1’s regulation compared to its function. To date only three interacting partners (Table 1.1) 

and a handful of PTMs (Table 1.2) are known for Sirt1. Recently, two research groups 

claimed that the N and C-terminal regions of Sirt1 (a feature that distinguishes Sirt1 from its 

isoforms) play a role in regulating its activity, similar to the regulation of Sirt3 (shown in our 

laboratory (Schlicker et al., 2008)) and Sirt6 (Tennen et al., 2010). But the results of Sirt1 

experiments from these groups contradict each other, indicating that a more careful and 

conclusive study is required to understand the protein’s regulation (Kang et al., 2011; Pan et 

al., 2011a).  

At the transcription level, Sirt1 is regulated by at least four transcription factors; p53, 

HIC1 (hypermethylated in cancer 1), C/EBPα (CCAAT-enhancer-binding proteins) and E2F1 

(Satoh et al., 2011). P53 and HIC1 are involved in transcriptional repression of Sirt1 under 

basal conditions, whereas C/EBPα and E2F1 can enhance Sirt1 transcription. Sirt1 translation 

can be regulated by at least one protein (HuR (Hu antigen R) and three microRNAs (miR-34a, 

miR-132, miR-217) by binding to the 3′ UTR (untranslated region) of Sirt1’s mRNA. HuR is 

an mRNA binding protein, which binds to the mRNA of Sirt1 and increases its half-life 

(Abdelmohsen et al., 2007). All three microRNAs were shown to decrease the expression 

level of Sirt1 (Satoh et al., 2011). 

At the protein level, Sirt1 is regulated by at least three proteins; AROS, DBC1 and 

SET7/9 (Table 1.1). AROS, a nuclear protein, can bind to the N-terminus of Sirt1 (114-217) 

and enhance its p53-mediated activity (Kim et al., 2007). DBC1 on the other hand binds to the 

catalytic domain of Sirt1 and inhibits its activity (Kim et al., 2008; Zhao et al., 2008) leading 

to up-regulation of p53 and FOXO3a mediated apoptosis. A recent study showed that the 

methyltransferase SET7/9 also directly interacts with Sirt1 at its N-terminal region (121-295) 

leading to increased acetylation levels of p53, indicating an inhibitory role (Liu et al., 2011). 

Sirt1 PTMs known to date include; sumoylation, phosphorylation and methylation 

(Table 1.2). Sumoylation of Lys734 by SUMO-1 (small ubiquitin-like modifier-1) has been 

shown to activate Sirt1 (Yang et al., 2007b). Studies in our laboratory (see results section) and 

by others (Nasrin et al., 2009) has shown that phosphorylation of Sirt1 also increases its 

activity in a substrate dependent manner, indicating a major role for PTMs in Sirt1’s 

regulation. The kinases responsible for phosphorylation of Sirt1 include; JNK1 (c-Jun N-
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terminal kinase 1), DYRK1A, DYRK3 (dual specificity tyrosine phosphorylation kinase), 

CK2 (casein kinase 2), cyclinB/CdK1 (cell cycle-dependent kinase B) (Ford et al., 2008; Guo 

et al., 2010; Kang et al., 2009; Nasrin et al., 2009; Sasaki et al., 2008; Zschoernig and 

Mahlknecht, 2009). Sirt1 was shown to be methylated in vitro by SET7/9 at Lys 233, 235, 

236 and 238 and was found to have no influence on its activity (Liu et al., 2011), but this type 

of in vitro methylation might have aroused from non-specific activity of SET7/9 and may not 

reflect the true status in the cell. 

 

Table 1.2: PTMs of Sirt1 and their modifying enzymes. S14, S16, S26, S27, S47, S173, 
S535, S538, S539, T554, S569, T719 and S747 were found to be phosphorylated from 
proteomic studies (Beausoleil et al., 2004; Beausoleil et al., 2006; Dephoure et al., 2008; 
Gauci et al., 2009; Gerhart-Hines et al., 2011; Mayya et al., 2009; Olsen et al., 2010). 
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1.6.2 Regulation of Sirt1 by small molecules 

1.6.2.1 Regulation by physiological metabolites 

The two physiologically relevant small molecular regulators of Sirt1 are NAD+ and 

NAM, because of the former’s absolute requirement for Sirt1’s activity and the latter’s ability 

to inhibit the enzyme. The requirement for NAD+ cannot be replaced by NADH or 

NADP+/NADPH. Although the total level of NAD+/NADH in the cell is in the milliMolar 

range, the free NAD+ level in the cell is ~ 300 - 400 µM (Yang et al., 2007a), because the 

majority of NAD+ in the cell is sequestered by proteins involved in metabolic processes such 

as glycolysis and TCA cycle in order to carry out their function. Sirt1’s affinity towards 

NAD+ being rather low (~ 150-170 µM, (Smith et al., 2009)) makes NAD+ an important 

regulator of Sirt1 and the enzyme a metabolic sensor/signaling agent, and the availability of 

NAD+ can influence several cellular events by increasing the activity of Sirt1. For example, 

the availability of NAD+ can help decide the cellular machinery if it is necessary to carry out 

metabolic activities or regulate gene transcription (such as activating Sirt1). NADH has been 

shown to inhibit the activity of Sirtuins but only in the high millimolar range (Schmidt et al., 

2004) which is beyond physiological levels. In spite of this, it is still a matter of debate if it is 

the production of NAD+ (the genes involved in NAD+ biosynthesis) or the ratio of 

NAD+/NADH that regulates the activity of Sirt1 in events such as CR.  

The discovery of NAM as a inhibitor of Sirt1 generated a lot of interest in finding 

small regulators of Sirt1 that mimic NAM (Bitterman et al., 2002). NAM is physiologically 

relevant inhibitor, because it inhibits Sirt1 with an IC50 of <50 µM and the cellular levels of 

NAD range from 11-400 µM. Several structural and biochemical studies have elucidated the 

mechanism behind NAM inhibition (Avalos et al., 2005; Sauve and Schramm, 2003). NAM 

inhibits Sirt1 in a non-competitive manner by binding in the conserved C pocket after 

formation of the alkylimidate, leading to a base exchange reaction reversing intermediate 

formation. 

1.6.2.2 Regulation by pharmacological small molecules 

Since Sirtuins were linked to CR and lifespan extension, extensive research was 

carried out to find small molecules that can regulate them. Howitz et. al. screened a library of 

NAD+ analogs and plant polyphenols to identify small molecules that can modulate the 

activity of Sirt1 and its homologs. Several inhibitors were identified, but most notably several 

plant derived polyphenols seemed to activate Sirt1 (Howitz et al., 2003). These Sirtuin 
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activating compounds are collectively called STACs (Sirtuin activators). Among polyphenols, 

the most potent activator was resveratrol (Figure 1.6), a flavonoid that is synthesized by 

several plant species including grapes (high amounts can be found in red wine). Resveratrol’s 

structure consists of a stilbene moiety with OH groups on both of the benzyl rings, the most 

stable isomer being trans-resveratrol. Even before the identification of resveratrol’s ability to 

activate Sirt1, it was shown to confer cardiac and neuro-protection through its antioxdiative 

properties (Pervaiz and Holme, 2009). Yeast grown in media supplemented with resveratrol 

showed lifespan extension similar to CR and this effect was directly dependent on 

resveratrol’s ability to activate yeast Sir2 (Howitz et al., 2003). Resveratrol has also been 

shown to mimic anti-aging effects in lower organisms such as Caenorhabditis elegans and 

Drosophila melanogaster in a Sirtuin dependent manner (Wood et al., 2004). Furthermore, 

mice fed with resveratrol show higher mitochondrial content, protection against metabolic 

diseases (Lagouge et al., 2006) and increased survival in a Sirt1 dependent manner (Baur et 

al., 2006). In another screen, several small molecules that do not share any structural 

similarity to polyphenols were also identified, and were shown to be up to 1000 fold more 

potent in activating Sirt1 compared to resveratrol (SRTs (Sirtris) Figure 1.6) (Milne et al., 

2007). In diet induced and genetically obese mice, these compounds were claimed to increase 

insulin sensitivity and lower blood glucose levels, and are currently under preclinical trials to 

treat type 2 diabetes.  

 

Figure 1.6: Representative small molecule activators of Sirt1 (STACs). Figures were 
either created using MarvinSketch or adapted with permission from Blum et. al.(Blum et al., 
2011) Copyright 2011 American Chemical Society. 
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Several small molecule inhibitors of Sirt1 have been identified and characterized over 

the past several years (reviewed by Blum et. al (Blum et al., 2011)), the majority of them are 

based on peptide mimics and NAD+/NAM analogs (Figure 1.7). Some of these inhibitors such 

as Ex-527 (IC50 0.098 µM) and Suramin (IC50 0.3 µM) inhibit Sirt1 in the nanomolar range, 

whereas others such as Sirtinol, Tenovin and Cambinol and their derivatives inhibit in the 

micromolar range. Several of these so called lead compounds were used as analogs to develop 

more potent and bioavailable compounds, but rarely show specificity towards Sirt1. For 

example, Salermide was developed based on the scaffold of Sirtinol and was shown to be 

more potent than its parent compound (IC50 of 43 µM vs123 µM respectively) (Pasco et al., 

2009). Salermide was well tolerated by mice up to 100 µM and caused tumor specific cell 

death in various tissues (Lara et al., 2009), but was also shown to equally inhibit Sirt2 (IC50 

25 µM). Similarly, Tenovin based derivatives were also developed with Tenovin-6 showing 

the best water solubility and potency (IC50 21 µM for Sirt1) and decreased tumor growth by 

increasing the acetylation levels of p53-Lys382. Kinetic studies indicated that Tenovin-6 

inhibits Sirt1 in a non-competitive manner, but it was also shown to inhibit Sirt2 in the 

micromolar range (IC50 10 µM), again leading to lack of selectivity (Lain et al., 2008). 

Cambinol also inhibits Sirt1 and Sirt2 equally and was shown to possess antitumor activity in 

preclinical models, but its analog containing a Bromide in the para position of the phenyl ring 

improved its potency and specificity towards Sirt1 (IC50 of 13 µM vs. >90 µM respectively) 

indicating that subtle changes in the small molecules can lead to isoform specificity (Medda et 

al., 2009). A high throughput screen using 50,000 compounds identified four scaffolds with 

Sirtuin inhibitory activity, out of which one had moderate selectivity for Sirt1 with IC50 ~ 6 

µM (Sanders et al., 2009).  
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Figure 1.7: Representative small molecule inhibitors of Sirt1. Figures were either created 
using MarvinSketch or adapted with permission from Blum et. al.(Blum et al., 2011). 
Copyright 2011 American Chemical Society. 

1.6.3 Mechanism of Sirt1 modulation by small molecules 

1.6.3.1 Mechanism of inhibition 

 The lack of structural information for Sirt1 has hampered mechanism based/structure 

aided drug development, but several biochemical and CADD (computer-aided drug design) 

studies have been performed to develop novel compounds to inhibit Sirt1. Most Sirt1 

inhibitors likely either bind to the acetyllysine binding site (peptide mimics) or to the 

NAD+/NAM binding site to inhibit the enzyme. In the case of peptide based inhibitors, 

competitive inhibitors can easily be made specific based on the Sirtuin’s substrate preference, 

but such inhibitors are difficult to develop into suitable drugs.  Even a single amino acid 

analog of acetyllysine containing a thioacetyllysine (and aniline and benzyloxycarbonyl 

groups attached to the carbonyl and amino groups of the thioacetyllysine) was shown to have 

an inhibitory effect against Sirt1 with an IC50 of 2.7 µM which had 8.5-37 fold selectivity 

over Sirt2 and Sirt3 (Suzuki et al., 2009). The formation of a stable thio-acetyl-ADP-ribose 

conjugate (attack of the thioacetyllysine on the ribose ring of NAD+ which carries the NAM) 

was confirmed by mass spectrometric analysis. The most likely mechanism for such a type of 

inhibition, is the slow substrate turnover due to the formation of a stable thioimidate 

intermediate which blocks the acetyllysine binding cleft and renders the enzyme inactive 

(Smith and Denu, 2007). The mechanism behind NAD+/NAM based inhibition arises either 

from competition between the inhibitor and NAD+ or a mixed type inhibition. Napper et. al 
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synthesized several indole based derivatives which have some similarity to NAM and showed 

that some of these compounds inhibited Sirt1 with a very high potency and specificity 

compared to Sirt2, 3 and 5 (Napper et al., 2005). Based on kinetic analysis they proposed a 

mixed type inhibition and suggested that the inhibitor binds to the C-site after the release of 

NAM and prevents further release of the products; 2OAADPr and deacetylated lysine. 

However, binding site and the inhibition mechanism remain uncertain.  

 Till date the only mechanistically understood Sirtuin inhibitor is suramin, because of 

the availability of its crystal structure in complex with Sirt5 (Schuetz et al., 2007). The 

symmetry of suramin allows it to bind two molecules of Sirt5 at the same time, creating a link 

between them, which in turn leads to dimerization. Suramin makes contacts with several 

residues of the co-substrate binding loop leading to its stabilization. The sulfonyl groups of 

suramin binds to the catalytic core of Sirt5 and mediates majority of the interaction. The 

sulfonyl groups mimic NAM and occupies the C-pocket, thus preventing NAD+ from binding. 

Comparison of Sir2Tm complexed with p53 peptide and NAM (pdb id: 1YC5) and the Sirt5 

structure complexed with suramin, indicates that Ssramin also occupies the acetyllysine 

binding site and extends up to two residues further to the C-terminus of the peptide substrate, 

thus preventing its binding. Furthermore, the sulfonyl groups also occupy the ribose part of 

NAD+ which is attached to NAM. Taken together, this shows that suramin inhibits Sirt5 by 

preventing the binding of both the substrate and co-substrate at the same time. Due to these 

reasons, suramin by itself may lack isoform specificity, because the substrate binding cleft 

and NAD+ binding pocket are very similar among the Sirtuins. Nevertheless, several new 

compounds were synthesized and characterized using the scaffold of suramin and were found 

to be isoform specific based on the small modifications on the sulfonyl rings. For example, 

introduction of aminoanthralic derivatives or small urea like groups in the sulfonyl head of 

suramin lead to Sirt1 specific inhibition with IC50 as low as 93 nM (Trapp et al., 2007), 

indicating that subtle differences existing in the catalytic core of Sirtuins can be exploited to 

discover isoform specific drug targets. 

Kinetic studies using inhibitors identified from high throughput screen suggested non-

competitive or mixed type inhibition relative to both substrate and co-substrate, implying that 

the inhibitor binds in the conserved catalytic domain (Sanders et al., 2009) and therefore may 

not show isoform specificity. In order to develop Sirt1 specific inhibitors, future efforts could 

focus on the termini of Sirt1, because of its uniqueness among the isoforms. 
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1.6.3.2 Mechanism of activation 

The mechanism of Sirtuin activation by polyphenols and STACs is perhaps the most 

intensely debated topic among the Sirtuin research community. Protein/enzyme activation by 

a small molecule is less prevalent compared to inhibition. Examples of small molecules 

activating proteins include; Sirt1, GK (glucokinase), PDK1 (phosphoinositide-dependent 

kinase 1) and p300 (Zorn and Wells, 2010). Since Sirt1 is involved in various cellular events 

it would be beneficial to identity both inhibitors and activators of Sirt1, especially small 

molecules that specifically modulate Sirt1 (among its mammalian isoforms) on a substrate 

specific manner in order to target a particular disease pathway.  

 Initial high-throughput screening assays employed fluorescence based peptides as 

substrates to identify potential Sirtuin modulators, which were then used in other screens as 

well (Howitz et al., 2003; Milne et al., 2007). Based on kinetic studies an activation 

mechanism was proposed where resveratrol and STACs increased substrate affinity (by 

decreasing the Km of the fluorescent peptide) but had no effect on the Vmax. Later, it was 

found that resveratrol activation was dependent on the fluorophore (AMC (7-amino-4-

methylcoumarin)) present on the substrate peptide and when unmodified peptides (in vitro) or 

full length proteins (in vivo) were used as substrates there was no resveratrol dependent 

activation of Sirt1 (Beher et al., 2009; Borra et al., 2005; Kaeberlein et al., 2005a). A 

resveratrol dependent activation mechanism was proposed where the polyphenol binds to and 

induces a conformational change in Sirt1 near the binding area of the coumarin group of the 

fluorophore, leading to better accommodation of the fluorescent peptide by the enzyme.  

Pacholec et al. (Pacholec et al., 2010) showed that the SRT series of compounds (SRT1720, 

SRT2183 and SRT1460) also do not activate Sirt1 when unmodified peptides or full length 

proteins were used as substrates and concluded that these compounds directly interact with the 

fluorophore and formation of a complex between the fluorophore and the compound may lead 

to Sirt1 activation in an “indirect” manner. But in a recent report Dai et. al. (Dai et al., 2010) 

showed that the activation of Sirt1 by STACs depend on the structural features of the peptide 

substrate and proposed an allosteric mechanism for activation of Sirt1 by STACs, where the 

specific features of the substrate peptide plays a role in the activation process and the activator 

may bind to the enzyme-substrate complex. Indeed we find in this thesis that resveratrol can 

directly bind to Sirt1 and that the sequence of deacetylation site decides whether resveratrol 

modulates Sirt1 (activation or inhibition) explaining the previous contradictory reports. 
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1.7 Objectives 

 Sirtuins are a conserved family of proteins found in all domains of life. Sirtuins are 

classified as class III Histone deacetylases and contain a special feature; wherein they 

metabolize NAD+ to deacetylate and or ADP-ribosylate protein residues, thereby acting as 

metabolic sensors. The mammalian Sirtuin (Sirt) family encompasses seven isoforms (Sirt 1-

7), each with a conserved catalytic core consisting of ~275 residues. The N and C-terminal 

extensions and localization in different cellular compartments, differentiate mammalian 

Sirtuins among each other. 

 The human Sirt1 is the largest isoform among all the mammalian Sirtuins and is involved 

in several cellular processes and disease states. Sirt1 also participates in CR mediated lifespan 

extension in lower organisms and several small molecules can modulate its activity. The 

molecular mechanism of Sirt1 modulation by small molecules is still not fully understood, 

primarily due to the unavailability of structural information. Understanding this mechanism 

would allow isoform specific and substrate specific modulation of Sirt1 leading to better 

therapeutic agents for age related diseases. The major focus of this study is structural and 

biochemical characterization of Sirt1, to gain insights into the mechanism of modulation by 

small molecules. In order to achieve this, full length and various constructs of human Sirt1 

were to be cloned, expressed and purified to homogeneity. Crystallization trials should be 

pursued on these pure proteins and their substrate/modulator complexes to understand the 

mechanism of modulation from a structural perspective. Biophysical and biochemical studies 

were to be carried out to analyze the role of N and C-terminal domains of Sirt1 towards its 

activity and modulation by small molecules. Other isoforms of Sirt1 (Sirt2, Sirt3, Sirt5 and 

Sirt7) and the bacterial homolog of Sirt1 from Sir2Tm were to be used as a models systems to 

understand and compare the structure, function and modulation mechanisms of Sirtuins. 
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2. Materials and Methods 

2.1 Materials 

2.1.1 Chemicals, Enzymes and Standards 

All chemicals were purchased from Sigma, Applichem, Serva, Roth or J.T. Baker 

unless stated differently.  Peptides were synthesized by GL Biochem, Shanghai, China. 

Supplemental table S4 lists all the peptides used in this study. DNA modifying enzymes, 

DNA and protein standards were purchased from Serva, Agilent Technologies, Promega, New 

England Biolabs, Bio-Rad and Fermentas. Trypsin, Chymotrypsin, Cyt. c (cytochrome c), 

Glutamate dehydrogenase were purchased from Sigma. 

2.1.2 Bacterial strains 

 All bacterial strains used in this study were derived from E. coli (Escherichia coli) K-

12.  The E. coli strains XL-1 Blue (Stratagene, USA) was used for cloning, plasmid 

propagation and site-directed mutagenesis.  The E. coli strain BL21 Star (DE3) (Invitrogen, 

USA) and Rosetta (DE3) (Merck, Germany) were mostly used for overexpression of 

recombinant proteins. 

The strains have the following genotypes: 

XL1-Blue: recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F´ proAB lacIqZΔM15 Tn10 

(Tetr)]. 

BL21 Star (DE3): F- ompT hsdSB (rB-mB-) gal dcm rne131 (DE3) 

BL21(DE3) pLysS: F – ompT hsdSB(rB– mB–) gal dcm (DE3)pLysS (CamR) 

Rosetta (DE3): F– ompT hsdSB(rB – mB
–) gal dcm lacY1(DE3) pRARE (CamR) 

C43 (DE3): F- ompT hsdSB (rB
- mB

-) gal dcm (DE3) (Kanr), transformed with the F-ATPase 

subunit gene and cured and contains at least one uncharacterized mutation. 

BL21 (DE3) codonPlus RIL: argU (AGA, AGG), ileY (AUA), leuW (CUA) (CamR). 

2.1.3 Plasmids and cDNA constructs 

 Overexpression of recombinant protein in E. coli cells was performed by cloning the 

genes of interest in pET11a, pET15b, pET21a(+) (Merck, Germany), pASK-IBA17 

(BioTAGnology, Germany), pGEX-6P3 (GE Healthcare, USA), pET151/D-TOPO (Life 
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Technologies, USA) and modified pOPIN vectors (Oxford University, UK). Mouse Sirt1 was 

cloned using the mouse cDNA library obtained from DB Biosciences, USA. Full length 

human Sirt1 in pCDNA3.1 vector was a kind gift from Dr. Tony Kouzarides, The Gurdon 

Institute, Cambridge, UK. Human AROS in pCMV-SPORT6 vector was purchased from 

Source BioScience, Germany. All the genes of interest are under the control of T7 promoter. 

2.1.4 Oligonucleotides 

 All oligonucleotides used for cloning and site-directed mutagenesis were purchased 

either from Sigma, USA or Eurofins MWG Operon, Germany. The oligonucleotides were 

HPLC (high performance liquid chromatography) or HPSF (high purity salt free) purified. A 

complete list of oligonucleotides used in this work is listed in supplemental table S1. 

2.1.5 Miscellaneous materials 

        Other materials were purchased from Eppendorf, Hampton Research, Molecular 

Dimensions, Jena Biosciences, Qiagen, Millipore, Star Labs if not stated explicitly. 

2.2 Microbiology methods 

2.2.1 Sterilization 

 Solutions and materials required for sterile bacterial culture were prepared by either 

autoclaving at 121 C for 20 minutes in a Systec DX-150 autoclave (Systec GmbH, Germany) 

or sterile filtered using a 0.22 M membrane filter (Millipore, USA). 

2.2.2 Culturing of E. coli cells 

General procedure 

 E. coli cells were grown either in LB (Luria-Bertani) media which consists of 1% 

(w/v) Tryptone, 0.5% (w/v) Yeast and 1% (w/v) NaCl or in autoinduction media consisting of 

1.2% (w/v) Tryptone, 2.4% (w/v) Yeast extract and 0.5% (v/v) Glycerol autoclaved and 

supplemented with 0.17 M KH2PO4, 0.72 M K2PO4, 0.05% (w/v) glucose and 0.2% (w/v) 

alpha-lactose. LB plates used for platting bacteria also contained 1.5% (w/v) Agarose. Before 

addition of E. coli to the media, appropriate amount of antibiotics were added. The cultures 

were initially grown at 37 ºC by shaking at a speed of 120 RPM (revolutions per minute) and 

then shifted to 22 ºC before induction of the protein of interest. 
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2.2.3 Competent cells 

 Chemically competent E. coli cells were prepared by starting an overnight culture of 

the strain of interest with appropriate antibiotics in sterile SOB (super optimal broth) media 

(For 1 liter: 2 % (w/v) Tryptone, 0.5 % (w/v) Yeast extract, 0.05 % NaCl; autoclave, cool and 

then add filter sterilized: 250 mM KCl, 10 mM MgSO4 and 0.5 mM NaOH). The overnight 

grown cells were transferred to 100 ml SOB media and grown at 37 C by shaking at 180 

RPM until the OD600 (optical density at 600 m) reached 0.5 and then placed on ice for 10 

minutes. The cells were centrifuged at 2500 X g for 10 minutes at 4 C. The supernatant was 

removed and cell pellets were re-suspended in 30 ml of ice cold TB (transformation buffer) 

(10 mM PIPES, 15 mM CaCl2, 250 mM KCl, pH to 6.7 using KOH, then MnCl2 was added to 

a final concentration of 55 mM) and incubated on ice for 10 minutes. The cells were 

centrifuged for 10 minutes at 1000 X g at 4 C and supernatant discarded. The cell pellet was 

re-suspended in 8 ml TB followed by addition of 7 % (v/v) DMSO (DiMethyl SulfOxide) and 

required antibiotics and incubated on ice for 10 minutes. The cells were aliquoted into 50 l, 

snap frozen in liquid Nitrogen and stored at -80 C until required. Competent cells 

transformed using the electroporation method were grown in the same way as described 

above, but after initial centrifugation, the cells were re-suspended in deionized water and 

centrifuged again at 1000 X g for 10 minutes at 4 C followed by re-suspension in 10 % (v/v) 

glycerol and split into 50 l aliquots and snap frozen in liquid Nitrogen before storing them at 

-80 C. 

2.2.4 Transformation of competent cells 

10-50 ng of plasmid DNA was added to 50 l of competent cells and placed on ice for 

30 minutes. For chemically competent cells, the cells were incubated at 42 C for 45 seconds 

(heat shock), followed by 2 minutes on ice, whereas for the electroporation method, the cells 

were placed on a 1 millimeter electroporation cuvette (Serva, Germany) and pulsed with a 

voltage of 2.5 KV using the Bio-Rad Gene Pulser electroporation system (Bio-Rad, USA). 

500 l of LB media was added to the cells and recovered for 1 hr at 37 C followed by either 

platting on LB-Agar plates or transferred to LB media for overnight growth with appropriate 

antibiotics. 

2.2.5 Heterologous overexpression of recombinant proteins 

 Recombinant protein was overexpressed in Rosetta (DE3) E. coli grown in LB media 
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supplemented with the appropriate antibiotics. Initially the cultures were incubated at 37 C 

by shaking (Infors HT, Switzerland), once the OD600 reached 0.5 – 0.7, the temperature was 

decreased to 22 C. Protein overexpression was induced by the addition of IPTG (isopropyl -

D-thiogalactopyranoside) when the OD600 of the cells reach 0.8 – 1.0. The cells were grown at 

22 C overnight and harvested by centrifuging at 5,000 RPM for 20 minutes at 4 C and 

stored at -80 C until required. 

Procedures deviating from the above protocol are: 

Sirt3 

The human Sirt3 construct used in this study comprises amino acids 114-399 and was cloned 

in pET151/D-TOPO vector harboring a His-tag (hexahistidine tag) affinity tag and a TEV 

(tobacco etch virus) protease cleavage site. Sirt3 protein was overexpressed in Rosetta 2 

(DE3) E. coli cells grown in LB media (containing 100 µg/ml Ampicillin and 34 µg/ml 

Chloramphenicol) by the addition of 0.5 mM IPTG at mid log phase followed by overnight 

incubation at 20 °C/150 RPM in a shaker (Infors HT, Switzerland). After overnight protein 

expression, the cells were centrifuged at 5,000 RPM at 4 °C for 20 minutes; cell pellets were 

collected and stored at – 80 °C until required. 

Sirt5 

 The human Sirt5 construct used in this study (provided by Prof. Dr. Clemens 

Steegborn) comprises amino acids 34-302 cloned in pET151/D-TOPO vector harboring a His-

tag tag and a TEV protease cleavage site. Sirt5 protein was overexpressed in Rosetta 2 (DE3) 

E. coli cells grown in LB media (containing 100 µg/ml Ampicillin and 34 µg/ml 

Chloramphenicol) by the addition of 0.5 mM IPTG at mid log phase followed by overnight 

incubation at 20 °C/140 RPM in a shaker (Infors HT, Switzerland). After overnight protein 

expression, the cells were centrifuged at 5,000 RPM at 4 °C for 20 minutes, cell pellets were 

resuspended in lysis buffer containing 50 mM Tris, pH 7.8, 200 mM NaCl, 1:200 PMSF 

(phenylmethanesulfonyl fluoride) and stored at – 80 °C until required. 

Sirt7 

 The human Sirt7 constructs used in this study were cloned, expressed and purified 

(initial steps) at the DPF (Dortmund protein facility), MPI (Max Planck Institute) Dortmund, 

Germany, by Dr. Tim Bergbrede and colleagues. All Sirt7 protein constructs (except the 

insect cell expressed full length Sirt7) were overexpressed in BL21 (DE3) codonPlus RIL E. 
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coli cells grown in Autoinduction media supplemented with 100 µg/ml Ampicillin, initially at 

37 ºC/180 RPM for 4 hours, followed by 20-24 hour incubation at 25°C/180 RPM in a shaker. 

After overnight protein expression, the cells were centrifuged at 6,000 RPM at 4 °C for 20 

minutes, cell pellets were collected and resuspsended in ice cold PBS (phosphate buffered 

saline) buffer followed by an additional spin at 4,500 RPM at 4 ºC for 15 minutes. Cell pellets 

were collected and stored at – 80 °C until required. 

Sir2Tm 

The pET11a plasmid encoding full length Sir2Tm gene was obtained from Addgene, 

USA (Addgene plasmid 25815) and transformed into the E. coli strain BL21 (DE3) pLysS. 

Protein expression was performed as described by Smith et. al. (Smith et al., 2002). E. coli 

cells transformed with pET11a plasmid was grown in glucose enriched M9ZB minimal media 

(containing 34 µg/ml Chloramphenicol) at 37 ºC by shaking in an incubator at 150 PRM until 

the OD600 reached 0.5-0.6, at which point the protein overexpression was induced by the 

addition of 1 mM IPTG and growing the cells for an additional 4-5 hrs. The cells were then 

centrifuged at 5,000 RPM at 4 °C for 20 minutes; cell pellets were collected and stored at – 80 

°C until required. 

AROS 

 AROS gene was cloned into three different types of plasmids: pET15a (containing 

thrombin cleavable His-tag at N-terminus), pGEX-6P-3 (containing Rhino virus 3C cleavable 

GST (glutathione-S-transferase) tag at N-terminus) and a modified vector (obtained from the 

lab of Prof. John Denu at University of Wisoncsin, Madison, USA, containing nicotinamidase 

gene, which was removed and AROS was inserted resulting in hexa-histidin-MBP (maltose-

binding protein)-tag at N-terminus of AROS).  Plasmids encoding AROS gene were 

transformed into the E. coli strain Rosetta 2 (DE3). AROS protein was overexpressed in 

Rosetta 2 (DE3) E. coli cells grown in LB media (containing 100 µg/ml Ampicillin and 34 

µg/ml Chloramphenicol) by the addition of IPTG (0.1 mM for pET15b vector and 1 mM for 

pGEX-6P-3 and modified vector) at mid log phase followed by overnight incubation at 12 

°C/120 RPM in a shaker (Infors HT, Switzerland). After overnight protein expression, the 

cells were centrifuged at 5,000 RPM at 4 °C for 20 minutes; cell pellets were collected and 

stored at – 80 °C until required. 
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2.2.6 Cell lysis 

 Frozen cells were thawed and resuspended in respective lysis buffer and homogenized 

using a pottering devise and passed over a Microfluidizer (Microfluidics, USA) maintained at 

4 C, in order to lyse the cells. The lysed cells were centrifuged at 18,000 RPM for 45 

minutes in a refrigerated Beckman Coulter Avanti J-26XP centrifuge fitted with a JA-30.50 Ti 

rotor (Beckman Coulter, USA) to remove cell debris. 

2.3 Molecular biology methods 

2.3.1 Agarose gel electrophoresis  

 Nucleic acid electrophoreses were performed in a Bio-Rad Sub-cell horizontal gel 

electrophoresis system (Bio-Rad, USA) using 1x TAE (Tris-acetate-EDTA 

(ethylenediaminetetraacetic acid)) as running buffer. Samples and DNA ladder (New England 

Biolabs, USA) mixed with loading buffer (6 mM EDTA, 6 % glycerol and 0.015 % 

bromophenol blue) were electrophorezed on a 1 % (w/v) agarose matrix (made in 1x TAE 

buffer) containing 1 g/ml ethidium bromide. After electrophoresis, the gel was placed under 

UV light for visualization of nucleic acids.  

2.3.2 Gene cloning 

 In order to clone a gene of interest, primers were synthesized that amplify the gene 

from a template using the (polymerase chain reaction) technique (Mullis et al., 1986). A 

typical PCR reaction consisted of the following in a 50 l reaction volume: template DNA 

(10-50 ng), forward and reverse primers (0.5 M each), deoxynucleotide mix (0.2 M of each 

dATP, dCTP, dGTP and dTTP), 4 % (v/v) DMSO, 2 Units of Phusion DNA polymerase 

(Thermo Scientific, USA), 1x Phusion HF buffer (containing a final concentration of 1.5 mM 

MgCl2). The conditions used for PCR were: 1) initial denaturation at 98 C for 30 seconds; 2) 

denaturation at 98 C for 10 seconds, annealing at 62 C for 30 seconds, extension at 72 C 

for 30 seconds; 3) final elongation at 72 C for 10 minutes. Step 2 was repeated 25 times to 

amplify the DNA. The amplified DNA was purified using the Nucleospin Gel and PCR clean-

up kit (Macherey-Nagel, Germany) and visualized by agarose gel electrophoresis.  

The amplified gene/insert and the plasmid/vector in which the gene of interest is to be 

cloned were treated with appropriate restriction enzymes encoded in the primers (of the gene 

of interest) and present in the vector and digested according to the manufacturer’s 

recommendations (typically Fermentas FastDigest Restriction enzymes NdeI and XhoI was 
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used) (Thermo Scientific, USA) followed by agarose gel electrophoresis to visualize and 

purify the restriction enzyme digested insert and vector.   

 The insert was ligated into the vector using a molar ratio of 3:1 (insert : vector) 

followed by addition of T4 DNA ligase (New England Biolabs, USA) and incubation at 16 C 

overnight. 3-5 l of the ligated product was used for the transformation of the plasmid into 50 

l of XL-1 blue competent cells.     

 An alternative to the cloning procedure described above called ligation independent 

cloning was also used (adapted from (Chen et al., 2000)). In this technique the primers were 

designed in such a way that, one part binds to the gene to be amplified and the other part 

binds to the plasmid into which the gene will be inserted. Two rounds of PCR were performed 

during the cloning procedure; the first PCR was same as the one mentioned above, following 

which the gene was purified by electrophoresis. For the second PCR, the gel purified PCR 

product from the first PCR served as the primer (~100-200 ng) and the vector (~100 ng) 

served as the template. The reaction also contained deoxynucleotide mix (0.2 M of each 

dATP, dCTP, dGTP and dTTP), 4 % (v/v) DMSO, 1.25 Units of Pfu Turbo DNA polymerase 

(Agilent Technologies, USA), 1x Cloned Pfu DNA polymerase reaction buffer (20 mM Tris-

HCl (pH 8.8), 2 mM MgSO4, 10 mM KCl, 10 mM (NH4)2SO4, 0.1% Triton X-100, 0.1 

mg/ml nuclease-free BSA). The final volume of the second PCR reaction was 25 l. The 

conditions used for PCR were: 1) initial denaturation at 95 C for 30 seconds; 2) denaturation 

at 95 C for 30 seconds, annealing at 55 C for 1 minute, extension at 68 C for 10 minutes; 

3) final elongation at 72 C for 10 minutes. Step 2 was repeated 18 times to amplify the DNA. 

The PCR product was then treated with 5 Units of DPnI restriction enzyme for 1 hr at 37 C 

to digest the template vector and 1 l of the reaction mixture was transformed into 50 l of 

XL-1 blue competent cells. 

 Colonies obtained after transformation of the ligation/PCR product were screened for 

positive clones using a colony screening PCR (conditions similar to the first PCR described 

above) and the colonies containing the insert were cultured overnight for plasmid isolation, 

followed by a restriction digest analysis to verify the presence of the gene of interest in the 

plasmid. 

 Plasmid isolation from overnight grown E. coli cells was performed using the 

GeneJET plasmid miniprep kit (Thermo Scientific, USA). 
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2.3.3 Site directed mutagenesis 

 Site directed mutagenesis were performed by following the Quick-change mutagenesis 

protocol (Agilent Technologies, USA). The PCR contained the following in a 25 l reaction 

volume: ~ 50 ng of template DNA, 240 M each forward and reverse primers, 0.2 M 

deoxynucleotide mix (equimolar mixture of dATP, dCTP, dGTP and dTTP), 1.25 Units of 

Pfu Turbo DNA polymerase (Agilent Technologies, USA), 1x Cloned Pfu DNA polymerase 

reaction buffer (20 mM Tris-HCl (pH 8.8), 2 mM MgSO4, 10 mM KCl, 10 mM (NH4)2SO4, 

0.1% Triton X-100, 0.1 mg/ml nuclease-free BSA). The conditions used for PCR were: 1) 

initial denaturation at 95 C for 30 seconds; 2) denaturation at 95 C for 30 seconds, 

annealing at 55 C for 1 minute, extension at 68 C for 10 minutes; 3) final elongation at 72 

C for 10 minutes. Step 2 was repeated 18 times to amplify the DNA. The PCR product was 

then treated with 5 Units of DPnI restriction enzyme for 1 hr at 37 C to digest the template 

vector and 1 l of the reaction mixture was transformed into 50 l of XL-1 blue competent 

cells. 

2.3.4 DNA sequencing 

 All the cloned genes and point mutants were sequenced in order to verify that no 

undesirable mutations happened using either LGC Genomics, Germany, Eurofins MWG 

Operon, Germany or DNA sequencing facility at the Ruhr University, Bochum, Germany. 

2.4 Biochemical methods 

2.4.1 Determination of protein concentration 

 Protein concentration was determined using two spectrophotometric methods. In the 

first method, the Bradford dye (Bio-Rad, USA) was used to determine the concentration of 

the protein using a calorimetric assay. 1-10 l of protein was added to 200 l of the dye, made 

up to 1000 l and incubated for two minutes before measuring the absorbance at 595 nm on a 

Cary 50 UV-Vis spectrophotometer (Agilent Technologies, USA) that was already blanked 

with the dye alone. The concentration was then calculated using the following equation: 

Protein concentration (mg/ml) = ((37.4*A595)-0.74)*total volume (l))/(sample volume 

(l)*1000).  

The value obtained using the above equation is multiplied by a correction factor (0.6 for full 

length human Sirt1) to yield the actual concentration of the protein. 
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 In the second spectrophotometric method, a UV scan from 350 – 200 nm was 

performed on the protein sample using a Cary 50 UV-Vis spectrophotometer (Agilent 

Technologies, USA) after performing a blank with the buffer and the A280 was used to 

calculate the concentration of protein according to the Beer-Lambert law as follows: 

Protein concentration (mg/ml) = (A280/(ε280*path length))*dilution factor 

The path length is 1 cm and the theoretical extinction coefficient (ε280) value at 1 mg/ml for a 

particular protein is obtained from the Expasy’s protparam server 

(http://web.expasy.org/protparam/). For full length human Sirt1 with N-terminal 6x His-tag 

the ε280 at 1 mg/ml is 0.547 (45840 M-1 cm-1). 

2.4.2 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) 

 The purity and size of protein samples were accessed using SDS-PAGE containing the 

Tris-glycine discontinuous buffer system adapted from Laemmli (Laemmli, 1970). The 

percentage of acrylamide in separating gel ranged from 12 – 15 %. The stacking gel, running 

gel, running buffer and SDS loading buffer were prepared according to Sambrook, J., and 

Russell, D. W., (Molecular cloning: A Laboratory manual, third edition). Protein samples 

were denatured by boiling for 5 minutes at 95 C before loading on the gel. The SDS loading 

buffer contained ß-mercapto ethanol to ensure a reducing atmosphere. The Mini-PROTEAN 

Tetra Cell vertical electrophoresis system (Bio-Rad, USA) was used for electrophoresis, at a 

constant voltage of 150 volts. After electrophoresis, the gel was rinsed in water, followed by 

few seconds of soaking in hot Coomassiee blue solution (0.025 % (w/v) Coomassiee-Briliant 

Blue R-250 (Applichem, Germany), 50 % (v/v) methanol, 10 % (v/v) acetic acid). The gel 

was then transferred to a destaining solution containing 20 % (v/v) methanol and 12 % (v/v) 

acetic acid. 

2.4.3 Blue-native polyacrylamide gel electrophoresis (BN-PAGE) 

 To analyze the oligomeric state of Sirtuins, BN-PAGE (blue-native polyacrylamide gel 

electrophoresis) was performed according to the protocol of Schaegger (Schaegger, 1991). BN-

PAGE was performed using a Hoefer Mighty Small apparatus (GE Healthcare, USA) at a 

constant voltage of 150 V for the first 15 minutes and then at 250 V until the end. The 

samples were prepared by mixing them with 10 % (v/v) glycerol followed by centrifugation 

for 10 minutes at 13,200 RPM in a refrigerated Eppendorf microfuge (Eppendorf, Germany). 

Molecular weight markers were purchased from Serva, Germany. The gel consisted of three 
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layers with different percentage of acrylamide in each of them. The composition of the gels 

and the buffers are as follows: 

Top layer: 50 mM Bis-Tris/HCl, pH 7.0, 200 mM ε-aminocaproic acid, 0.1 % (v/v) TEMED, 

1 % (w/v) ammomium pesulfate, 5 % acrylamide/bisacrylamide (37.5:1). 

Middle layer: 50 mM Bis-Tris/HCl, pH 7.0, 200 mM ε-aminocaproic acid, 10 % (v/v) 

glycerol, 0.5 % (v/v) TEMED, 0.5 % (w/v) ammomium pesulfate, 10 % 

acrylamide/bisacrylamide (37.5:1). 

Bottom layer: 50 mM Bis-Tris/HCl, pH 7.0, 200 mM ε-aminocaproic acid, 20 % (v/v) 

glycerol, 0.25 % (v/v) TEMED, 0.25 % (w/v) ammomium pesulfate, 14 % 

acrylamide/bisacrylamide (37.5:1). 

Anode buffer: 50 mM Bis-Tris/HCl, pH 7.0, 50 mM Tricine, 0.02 % (w/v) Coomassiee 

BrilliantBlue G-250 (Serva, Germany). 

Cathode buffer: 50 mM Bis-Tris/HCl, pH 7.0, 

2.4.4 Purification of recombinant proteins 

2.4.4.1 Affinity chromatography 

 Purification of recombinant proteins containing His-tag was performed using TALON 

resin (Clontech, USA). The His-tag was used on majority of the proteins including Sirt1, 

Sirt2, Sirt3, Sirt5, Sirt7 and AROS. AROS with GST tag was purified using Glutathione 

sepharose resin (GE Healthcare, USA). Proteins with His-MBP fusion tag were purified using 

TALON or Ni-NTA resin. Full length Sirt1 (wild-type and H363A mutant) containing Strep 

tag were purified using the Strep-Tactin sepharose resin (IBA, Germany). For every liter of E. 

coli culture, 1 ml bed volume of resin was used. Prior to usage, the resin was washed twice 

with water, followed by equilibration in lysis buffer. The cleared E. coli supernatant 

containing the recombinant protein in lysis buffer was incubated with the resin at 4 C for 1 hr 

by stirring for efficient binding of the protein to the resin. After the incubation, the flow-

through was collected by gravity flow using a glass column (Bio-Rad, USA) and the resin was 

incubated for 30 minutes at 4 C with 20 g/ml (bed volume) of bovine RNase A and 10 

g/ml of bovine DNase in 25 mM Tris, pH 7.5, 20 mM NaCl, 5 mM MgCl2, 0.2 mM PMSF 

to remove nucleic acids binding to the protein of interest. After incubation, the flow-through 

was collected and the column washed with 20 bed volumes of wash buffer and then eluted 
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with elution buffer (buffer compositions see below). The samples were run on SDS-PAGE to 

access the size and purity before performing additional purification steps. 

TALON resin: 

Lysis buffer: 50 mM Tris, pH 7.5, 300 mM NaCl, 0.2 mM PMSF (for AROS and Sirt1 

229to516 10 mM Imidazole was added in the lysis buffer). 

Wash buffer: 50 mM Tris, pH 7.5, 300 mM NaCl, 0.2 mM PMSF, 10 mM Imidazole (for 

AROS and Sirt1 229to516 15 mM Imidazole was added). 

Elution buffer: 50 mM Tris, pH 7.5, 300 mM NaCl, 0.2 mM PMSF, 150 mM Imidazole 

GST resin: 

Lysis and wash buffer: 50 mM Tris, pH 7.5, 300 mM NaCl, 0.2 mM PMSF. 

Elution buffer: 50 mM Tris, pH 7.5, 300 mM NaCl, 0.2 mM PMSF, 10 mM Glutathione. 

Strep-Tactin resin:  

Lysis and wash buffers: 100 mM Tris·Cl, 150 mM NaCl, 1 mM EDTA, pH 8, 0.2 mM PMSF. 

Elution buffer: 100 mM Tris·Cl, 150 mM NaCl, 1 mM EDTA, 2.5 mM desthiobiotin, pH 8, 

0.2 mM PMSF. 

2.4.4.2 Size exclusion chromatography 

 Elution samples from the affinity chromatography were pooled, concentrated using an 

Amicon centrifugal concentrator (Millipore, USA) to 5 ml and applied on to a preequilibrated 

Superdex200 16/60 size exclusion column (GE Healthcare, USA) and eluted with 25 mM 

HEPES, pH 7.5, 100 mM KCl, 2 mM DTT (dithiothreitol), 0.1 mM PMSF, 0.5 mM EDTA. 

For analytical purposes a Superose12 GL300 column was also used with the same buffer as 

mentioned above but without PMSF and EDTA. Following chromatography, the samples 

were run on SDS-PAGE to access their purity; appropriate fractions were pooled and 

concentrated.  

2.4.4.3 Ion exchange chromatography 

 Ion exchange chromatography was performed using the 1 ml HiTrap Q HP anion 

exchange column (GE Healthcare, USA) that was preequlibrated with buffer A (25 mM 

HEPES, pH 7.5, 100 mM KCl, 2 mM DTT, 0.1 mM PMSF, 0.5 mM EDTA). The samples 
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from SEC (size exclusion chromatography) were concentrated to 5 ml and applied on the ion 

exchange column at a very low flow rate of 0.05 ml/minute. The column was washed with 2 

column volumes of buffer A followed by elution of the bound protein using a linear gradient 

against buffer B (buffer A containing total 500 mM KCl). Appropriate fractions were pooled 

after accessing their purity using SDS-PAGE, desalted in storage buffer (25 mM HEPES, pH 

7.5, 100 mM KCl, 2 mM DTT), concentrated, flash frozen in liquid Nitrogen and stored at -80 

C until required. 

2.4.5 Cleavage of affinity tags 

 Affinity tags or fusion proteins were cleaved using proteases that recognize sequences 

present between the tags and the protein of interest. The affinity purified proteins were 

dialyzed in 25 mM HEPES, pH 7.5, 100 mM KCl, 2 mM DTT at 4 C and concentration 

determined before adding proteases. Thrombin protease (GE Healthcare, USA) was added at 

1 Unit/mg of recombinant protein and incubated overnight at 4 C. TEV (tobacco etch virus) 

protease and PreScission (human rhinovirus 3C protease) were added at a ratio of 1:20 mg of 

recombinant protein and incubated overnight at 4 C. Following overnight incubation with the 

required proteases, the samples were passed over the same affinity columns over which they 

were initially purified in order to remove the uncleaved protein and the protease (TEV and 

PreScission contain His-tag and GST tag respectively). Thrombin protease was separated 

from the protein of interest by passing it over benzamidine sepharoase resin.  

Procedures deviating from the above protocol are: 

Sirt3 

 The cells containing overexpressed Sirt3 were resuspended in 50 mM HEPES, pH 7.5, 

300 mM NaCl, 10 mM Imidazole, 1 mM TCEP (tris(2-carboxyethyl)phosphine), lysed and 

affinity purified using TALON resin as mentioned above (except for the addition of 

nucleases). The purified protein was dialyzed in 25 mM HEPES, pH 7.5, 100 mM KCl, 2 mM 

DTT for 3 hours (except for the addition of nucleases) at 4 °C followed by addition of TEV 

protease (1 mg of TEV protease per 20 mg of affinity purified Sirt3) and stored at 4 °C 

overnight for cleavage of the affinity tag. The following day, the sample was passed through 

His-Select Nickel affinity resin (Sigma, USA) to remove uncleaved protein and the TEV 

protease (contains His-tag at the C-terminus), concentrated to 1 ml and applied on a 

Superose12 size exclusion column (GE Healthcare, USA) equilibrated in dialysis buffer, to 
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separate Sirt3 from aggregates and other contaminants. Sirt3 containing samples were pooled, 

concentrated, snap frozen in liquid N2 and stored at -80 °C until needed.  

Sirt5 

 The cells containing overexpressed Sirt5 were thawed, lysed and affinity purified using 

TALON resin as mentioned above (except for the addition of nucleases) with the following 

wash and elution buffers: wash buffer = 50 mM Tris, pH 7.8, 200 mM NaCl, 20 mM 

Imidazole and elution buffer = 50 mM Tris, pH 7.8, 200 mM NaCl, 150 mM Imidazole. The 

purified protein was concentrated and desalted in 20 mM Tris, pH 7.8, 200 mM NaCl, 1 mM 

DTT using a NAP column (GE Healthcare, USA) followed by addition of TEV protease (1 

mg of TEV protease per 20 mg of affinity purified Sirt5) and stored at 4 °C overnight for 

cleavage of the affinity tag. The following day, the sample was passed through Nickel affinity 

resin (Qiagen, USA) to remove uncleaved protein and the TEV protease (contains His-tag at 

the C-terminus), concentrated to 1 ml and applied on a Superose12 size exclusion column (GE 

Healthcare, USA) equilibrated in desalting buffer, to separate Sirt5 from aggregates and other 

contaminants. Sirt5 containing samples were pooled, concentrated, snap frozen in liquid N2 

and stored at -80 °C until needed. 

Sirt7 

  The cells containing overexpressed Sirt7 were resuspended in lysis buffer (50 mM 

HEPES, pH 8.0, 300 mM NaCl, 20 mM Imidazole, 1 mM TCEP), lysed and applied on to a 5 

ml HisTrap FF resin (GE Healthcare, USA) connected to an AKTAXPress HPLC (Hi-

Performance Liquid Chromatography) system (GE Healthcare, USA). After washing the 

column with 20 column volumes of wash buffer (lysis buffer containing 30 mM Imidazole), 

the column was equilibrated with 5 column volumes of cleavage buffer (50 mM HEPES, pH 

8.0, 150 mM NaCl, 1 mM TCEP), followed by addition of 0.7 column volumes of respective 

protease and incubation for 5 hours. The tag-less protein was then washed out of the column 

using wash buffer. The largest peak (based on area) was collected (maximum 13 ml) and 

passed over 26/60 Superdex size exclusion column (GE Healthcare, USA) equilibrated in 25 

mM HEPES, pH 7.5, 40 mM NaCl, 1 mM TCEP, to separate Sirt7 from aggregates and other 

contaminants. Sirt7 containing samples were pooled, concentrated, snap frozen in liquid N2 

and stored at -80 °C until needed. 
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Sir2Tm 

 Purification of Sr2Tm was performed as described by Smith et. al. (Smith et al., 2002) 

with few modifications. The E. coli containing overexpressed Sir2Tm were lysed (as 

mentioned above) in 50 mM Tris pH 7.5, 100 mM NaCl, 1 mM EDTA, 5 mM DTT and the 

inclusion bodies containing overexpressed Sir2Tm were isolated by multiple centrifugation 

and washing steps as described by Smith et. al. and solubilized in 50 mM Tris, pH 8.0, 4M 

Urea, 100 mM NaCl, 5 mM DTT, 25 µM ZnCl2 by rocking over night at 4 ºC. The solubilized 

protein was diluted to 1 mg/ml and dialyzed for 3 hours at 4 ºC in 50 mM Tris, pH 8.0, 100 

mM NaCl, 5 mM DTT, 25 µM ZnCl2 in order to refold it followed by another 3 hour dialysis 

in Buffer A (40 mM Tris, pH 8.0, 5 mM DTT, 25 µM ZnCl2). The protein was bound to 

HiTrapQ HP anion exchange column (GE Healthcare, USA) in Buffer A and eluted in a 

gradient to buffer A supplemented with 1M NaCl at a flow rate of 0.3 ml/min. The eluted 

fractions were analyzed by SDS-PAGE and fractions containing Sir2Tm were pooled (~28.7 

% B), concentrated to 1 ml and applied to a Superose12 size exclusion column (GE 

Healthcare, USA) equilibrated in 20 mM HEPES, pH 8.0, 150 mM NaCl, 5 mM DTT in order 

to remove further contaminations and aggregated proteins. Sir2Tm containing samples were 

pooled, concentrated to 10 mg/ml, snap frozen in liquid N2 and stored at -80 °C until needed.  

AROS 

 AROS containing His-tag and His-MBP-tag was purified similar to Sirt1. AROS 

containing GST-tag was affinity purified using Glutathione resin similar to other AROS 

constructs with the following lysis, wash and elution buffers: lysis buffer = 50 mM Tris, pH 

7.5, 150 mM NaCl, 0.2 mM PMSF, wash buffer = 50 mM Tris, pH 7.5, 150 mM NaCl, 5 mM 

DTT and elution buffer = 50 mM Tris, pH 8.0, 1500 mM NaCl, 5 mM DTT, 20 mM reduced 

L-Glutathione. 

 Soulbilization and purification of AROS from E. coli pellets were preformed as follows: 

the lysates resulting from sonication were centrifuged at 18,000 RPM for 45 minutes at 4 º C. 

The resulting pellet was solubilized in 50 mM Tris, pH 7.5, 300 mM NaCl, 10 mM Imidazole 

and 6M Guanidin hydrochloride by stirring at room temperature for ~ 30 minutes. The sample 

was then centrifuged at 18,000 RPM for 45 minutes at 20 ºC; supernatant was removed and 

incubated with TALON resin for 1 hour at room temperature. The mixture was then applied to 

a column and the flow through was collected. The protein was refolded in a stepwise manner 

by washing with 5 column volumes each of buffer1 (50 mM Tris, pH 7.5, 300 mM NaCl, 20 
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mM Imidazole, 8 M Urea), buffer2 (buffer1 containing 4 M Urea), buffer3 (buffer1 

containing 2 M Urea), buffer4 (buffer1 containing 1 M Urea) and finally with buffer5 (buffer1 

without Urea). This was followed by elution buffer (50 mM Tris, pH 7.5, 300 mM NaCl, 150 

mM Imidazole). The eluted protein was concentrated to 1 ml and applied on to a Superose12 

column which was equilibrated in 25 mM HEPES, pH 7.5, 100 mM KCl, 2 mM DTT and 

fractions corresponding to AROS were collected. 

2.4.6 Fluorescence based peptide deacetylation assay 

 A fluorescently labeled peptide called Fluor de Lys1 (FdL-1) based on the sequence of 

p53 with acetylation at Lys382 (RHKK[ac]-coumarin) (Enzo Life Sciences, USA) was used 

as a substrate in deacetylation assays. The principle behind the assay is the ability of the 

Sirtuin to deacetylate the fluorescent peptide in the presence of the co-substrate NAD+, 

following which the addition of Trypsin cleaves the fluorescent tag (coumarin) leading to an 

increase in the fluorescence. The assay was performed by addition of 1 g of Sirtuin, 100 M 

FdL-1, 1 mM NAD+ in the assay buffer (50 mM Tris, pH 8.0, 137 mM NaCl, 2.7 mM KCl, 1 

mM MgCl2, 1 mg/ml BSA (bovine serum albumin) followed by incubation for 30 minutes at 

37 C. After the incubation, a developer mixture containing 2 mM NAM , 10 mg/ml Trypsin 

was added to the reaction mixture and incubated for 45 minutes at room temperature, after 

which the fluorescence was measured on a FluoDiaT70 microplate reader (Photal Otsuka 

Electronics, Japan) using an excitation wavelength of 360 nm and an emission wavelength of 

460 nm. A reaction mixture containing all the components of the assay sans the enzyme was 

used as a blank and subtracted from the samples containing the enzyme. While testing for 

potential Sirtuin activators, the concentration of the substrate (FdL-1) and the co-substrate 

(NAD+) was kept at 25 M and 25/50 M respectively.  

 For Sirt3, the substrate used was Fluor de Lys2 (FdL-2) which is based on the 

sequence of p53 peptide 317-320 (QPKK[ac]-coumarin)  (Enzo Life Sciences, USA), because 

the deacetylation efficiency was higher when compared to the FdL-1 peptide substrate. 

2.4.7 Enzyme-linked immunosorbent assay (ELISA) 

 Deacetylation of Glutamate dehydrogenase (GDH) by Sirt3 and Cyt. c by Sirt5 was 

carried out using ELISA as described in Schlicker et. al., (Schlicker et al., 2008). 10 g of 

Cyt. c or mitochondrial GDH (both from Sigma, USA) was dissolved in 100 l of TBS (Tris 

buffered saline; 50 mM Tris, pH 7.4, 150 mM NaCl) and incubated at 4 C overnight in a 96 

well microtiter plate (Beckton and Dickenson, USA).  The plates were washed with TBST 
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(TBS buffer containing 0.1 % Tween-20) and incubated with blocking buffer (TBST 

containing 3 % skimmed milk) for 2 hrs at room temperature. The plates were again washed 

with TBST, followed by TBS. 10 g of Sirt5 or Sirt3 was added to the plates with varying 

concentrations of NAD+ and incubated at 37 C for 30 minutes followed by washing with 

TBST and TBS. Anti acetyl lysine antibody (Stressgen, USA) at a ratio of 1:1000 were then 

added to the plates and incubated for 2 hrs at room temperature and washed with TBST. A 

secondary antibody (Sigma, USA) raised against rabbit IgG conjugated with horse radish 

peroxidase was added at a dilution of 1:2000 and incubated for 2 hrs at room temperature and 

washed thoroughly with TBST. The peroxidase substrate TMB (3,3’-5,5’-

tetramethylbenzidin) (Sigma, USA) was added at a concentration of 1.5 mg/ml to the plates 

and incubated for 3 minutes before stopping the reaction with  1M H2SO4. The reaction was 

quantified calorimetrically at a wavelength of 450 nm using an EL800 Microplate reader 

(BioTek, USA).  

2.4.8 Continuous assay for deacetylation based on coupled enzymes 

A continuous deacetylation assay for Sirtuins recently described by Smith et. al., 

(Smith et al., 2009) based on the principle of a coupled assay was also used to monitor the 

deacetylation activity of Sirtuins. In this assay, one of the reaction product NAM, serves as a 

substrate for a downstream enzyme Nicotinamidase, which converts it to NH3, which in turn 

is used by GDH in the presence of NADPH and -ketoglutarate to produce L-glutamate and 

NADP+. The decrease in absorbance at 340 nm due to the consumption of NADPH (340 = 

6.22 mM-1 cm-1) is monitored continuously over time using a spectrophotometer (Cary 50, 

Agilent technologies, USA). A typical reaction mixture consisted of 1 M Sirutin, 1 mM 

peptide substrate, 1 mM NAD+, 1 mM DTT, 3.3 mM -ketoglutarate, 2 M tag cleaved 

Nicotinamidase (Salmonella enterica), 2 units of bovine GDH or 0.3 units of proteus GDH 

and 0.2 mM NADPH in 20 mM Na-PO4, pH 7.5 in a total volume of 100 l. The reaction was 

performed at 25 C using a Peltier temperature controller device. All components but for the 

Sirtuin was added initially and the reaction was monitored for 5 minutes after blanking to 

establish a base line followed by the addition of Sirtuin. 

2.4.9 Limited proteolysis of proteins 

 In order to identify potential stable constructs of Sirt1 for crystallization, a limited 

proteolysis approach was performed. Roughly 10 g of protein was incubated with 0.1 g of 

protease (Trypsin, Chymotrypsin or Subtilisin) for 30 minutes at 4 C or at room temperature, 
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followed by quenching with hot SDS loading buffer (maintained at 80 C) and run on SDS-

PAGE. The Coomassiee stained and de-stained gel was transferred to a PVDF 

(polyvinylidene fluoride) membrane, the most prominent band was cut and sent for N-

terminal sequencing. (Toplab, Germany). 

2.4.10 Thermal denaturation shift assay 

 Protein thermal denaturation was followed by exploiting the change in the 

fluorescence of the dye SYPRO Orange (Life Technologies, USA), which upon binding to 

hydrophobic (unfolded) parts of the protein increases its intrinsic fluorescence. 3 g of total 

protein was taken in a 96 well microtiter plate (Bio-Rad, USA), 1 l of 1to10 diluted SYPRO 

dye was added to it and made up to 50 l using different buffers followed by 15 l of mineral 

oil. The buffers used were 50 mM each of sodium citrate (pH 4.0 and 5.0), MES (2-(N-

Morpholino)EthaneSulfonic acid) (pH 6.0), HEPES (pH 7.0), Tris (pH 8.0) and CAPSO (N-

cyclohexyl-3-aminopropanesulfonic acid) (pH 9.0) and the salt concentrations were 0, 50, 200 

and 500 mM KCl. The temperature was gradually increased from 25 C to 73 C in 2 C 

intervals. The change in fluorescence was followed using a FluoDiaT70 microplate reader 

(Photal Otsuka Electronics, Japan) using an excitation wavelength of 465 nm and an emission 

wavelength of 580 nm.  

2.4.11 Microscale thermophoresis 

 Binding measurements were performed using the principle of microscale 

thermophoresis on a NanoTemper Monolith NT.115 instrument (NanoTemper Technologies 

GmbH, Germany). 20 µM protein was dialyzed against 100 mM ammonium carbonate 

((NH4)2CO3), pH 8.3 for 3 hours at 4 °C and mixed with NT-647 fluorescent dye at a ratio of 

1:1 in a total volume of 250 µl and incubated at room temperature for 30 minutes in the dark. 

The unreacted dye was removed from the protein by applying the sample on a gel filtration 

column (NAP column, GE Healthcare, USA) that was pre-equilibrated in 25 mM HEPES, pH 

7.5, 100 mM KCl, 2 mM DTT. The labeling efficiency was monitored spectrophotometrically 

by calculating the concentration of protein and dye using their respective extinction 

coefficients (the extinction coefficient of NT-647 dye is 250000 M-1 cm-1 at 650 nm and the 

extinction coefficient of human Sirt1 at 280 nM is 45840 M-1 cm-1). An alternative label 

called FITC (fluorescein isothiocyanate) was also used with the same procedure, except for 

changes in the pH of the buffer (100 mM (Na)2CO3, pH 9.3), the ratio of protein to dye (1:2) 

and incubation time (1 hr at room temperature in the dark). The extinction coefficient of FITC 
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dye is 73,000 M-1 cm-1 at 495 nM in pH 9.3 buffer and the extension coefficient of Sir2Tm is 

13410 M-1 cm-1 at 280 nM. The elution buffer for Sir2Tm was 20 mM HEPES, pH 7.5, 150 

mM NaCl. Typical ratios between protein and dye were ~ 1:1 (NT-647) and ~ 1:1.66 (FITC). 

200 nM of the labeled protein or 1 µM of the label free protein were mixed with different 

concentrations of the ligands to be titrated and loaded on thin glass capillaries for analysis. 

Microscale thermophoresis of the protein sample was followed after applying a definite 

amount of heat on the sample using an infrared laser and following the fluorescence 

simultaneously, since it is coupled to the laser path using an infrared dichroic mirror and 

focused on the sample through the same objective. Analysis of the results were performed 

using GraFit (Erithacus Software Limited, UK).  

2.4.12 Analytical ultracentrifugation 

 AUC (analytical ultracentrifugation) experiments were performed at Hannover 

medical school with the help of Dr. Ute Curth. Briefly, different concentration of Sirt1 

samples were prepared in 25 mM HEPES, pH 7.5, 100 mM KCl, 0.5 mM DTT buffer and 

centrifuged at 40,000 RPM on a Beckman Optima XL-A ultracentrifuge fitted with An-50 Ti 

rotors that was maintained at 20 ºC. Concentration profiles were measured with the UV-

absorption scanning optics at a wavelength of 280 nm. The measured concentration profiles 

were evaluated using the program SEDFIT (Peter, 2000) which transformed them into 

diffusion corrected sedimentation coefficient c(s) distributions.  

2.5 Mass spectrometry 

2.5.1 Mass spectrometry based deacetylation assay 

 A novel MS (mass spectrometry) based assay was developed to assay Sirtuins. 100 to 

250 nM Sirtuin was incubated with 5 to 50 M substrate peptide and 50 M NAD+ in 25 mM 

HEPES, pH 7.5, at 37 C. After the required time was reached, an aliquot was withdrawn and 

quenched with equal volume of 0.1 % (v/v) FA (formic acid), centrifuged using a 10 kDa cut 

off centrifugal concentrator (Pall Life Sciences, USA) and 5 to 10 l of the filtrate applied to 

a LC-ESI-MS (LTQ XL mass spectrometer, Thermo Scientific, USA) coupled to an HPLC 

(Shimadzu, USA). The samples were loaded over a Kromasil 100 C18 5 µm pre-column 

(Higgins Analytical, USA) followed by a reverse phase C18 column at a flow rate of 300 

nl/min. The acetylated and deacetylated peptides were separated using a linear gradient from 

0 % to 45 % buffer B within 30 min (buffer A: 0.1 % TFA (trifluoroacetic acid), 0.02 % 

HFBA (heptafluorobutyric acid); buffer B: 70 % ACN (acetonitrile), 0.1 % TFA, 0.02 % 
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HFBA. The results were analyzed using Xcalibur software package (Thermo Scientific, 

USA). 

2.5.2 Analysis of protein samples from polyacrylamide gels using tryptic digest 

A mass spectrometry based tryptic digest approach was followed to identify a protein of 

interest from a mixture. Protein samples were resolved on SDS-PAGE and the protein band to 

be analyzed was cut from the gel and destained by first adding 100 µl of 50 % (v/v) methanol 

for few seconds followed by 100 µl of 12.5 mM NH4HCO3-50 % (v/v) ACN) mixture and 

incubation at 37 °C for 20 minutes on an Eppendorf shaker (Eppendorf, Germany) at a speed 

of 300 RPM. The gel pieces were dried on a speed-vac (Vacuum Concentrator, BA-VC-300H, 

Helmut Saru Laborbedarf, Germany) at 55 °C until the samples were completely dry. 10 µl 

Trypsin (12.5 ng/µl in 25 mM NH4HCO3, pH 8.0) was added to the samples and incubated at 

room temperature for 10 minutes followed by the addition of 10 µl NH4HCO3, pH 8. The 

samples were incubated at 37 °C overnight for complete digestion of the protein into peptides. 

Following incubation the supernatant was saved and 10 µl of 50 % (v/v) ACN-0.5 % (v/v) 

TFA mixture was added to the gel pieces and sonicated for 20 minutes on a sonifying bath 

after which the supernatant was pooled with the supernatant from overnight incubation. The 

samples were again subjected to speed-vac at 55 °C and the peptides were resolved in 20 µl of 

0.1 % FA. The peptides were then applied over a Kromasil 100 C18 5 µm pre-column 

(Higgins Analytical, USA) followed by a reverse phase C18 column at a flow rate of 300 

nl/min. The acetylated and deacetylated peptides were separated using a linear gradient from 

0 % to 45 % buffer B within 30 min (buffer A: 0.1 % FA, buffer B: 70 % ACN, 0.1 % FA). 

The results were analyzed using Xcalibur software package (Thermo Scientific, USA). 

2.6 Crystallography and structure determination 

2.6.1 Crystallization trials of human Sirt1 

Crystallization trials were performed either manually or using a Phoenix robot (Art 

Robbins, USA). Manual crystallization trials were setup by mixing equal volumes of protein 

and reservoir solutions (typically 1 µl + 1 µl) on a 96 well sitting drop corning plates and 

incubation at 18 °C. While using the robot 0.1 µl protein mixture and 0.1 µl reservoir solution 

was mixed on a 96 well sitting drop plate (Corning, Intelli, Greiner etc. plates) and incubated 

at 18 °C in a formulatrix imager (Formulatrix Inc., USA).  
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2.6.2 Crystallization of Thermotoga maritima Sirtuin (Sir2Tm) 

 Initial crystallization screens for Sir2Tm were performed using the sitting drop vapor 

diffusion method using a Phoenix robot (Art Robbins, USA). The crystallization plates used 

were 96 well/3 drop from either MRC or Greiner (Jena Biosciences, Germany). Each drop 

contained 0.15 µl protein sample and 0.15 µl reservoir. Drop A contained 9.71 mg/ml Sir2Tm 

and 1.5 mM Ex-527, Drop B contained ~9.71 mg/ml Sir2Tm, 1.5 mM Ex-527 and 1 mM p53 

acetylated peptide, Drop C contained 9.71 mg/ml, 1.5 mM Ex-527, 1 mM p53 acetylated 

peptide and 1mM ADPr. The reservoir contained 75 µl of solution from the Qiagen JCSG 

Core suite I-IV (Qiagen, USA). The trays were stored in a Formulatrix imaging system 

(Formulatrix, USA) at 20 ºC and imaged at regular intervals. 

2.6.3 Collection and analysis of X-ray diffraction data of Sir2Tm crystals 

 X-ray diffraction data were collected at 100 K at BESSY beamline 14.1 (Helmholtz 

Centre, Berlin, Germany) using an MX-225 CCD detector (Rayonix, USA) at a wavelength of 

0.92 Å. Diffraction data were integrated, scaled and merged using XDS (X-ray detector 

software) (Kabsch, 2010).  

2.6.4 Molecular replacement of Sir2Tm crystal structures 

The structure of Sir2Tm in complex with the ligand mix and modulator was solved 

through Patterson searches with PHASER (McCoy et al., 2007), using a 

Sir2Tm/peptide/nicotinamide complex (PDB ID 1YC5) as a search model after removing all 

the water molecules, p53 peptide and NAM.  

2.6.5 Refinement, model building and structure validation of Sir2Tm complex structures 

The structure of the protein complex was refined using REFMAC’s restrained 

refinement feature (Murshudov et al., 1997) and PHENIX’s phenix.refine refinement feature 

(Adams et al., 2010) and models manually rebuilt in COOT (Emsley et al., 2010), with 5% of 

the reflections excluded from refinement for Rfree calculation (Brunger, 1992). Individual 

isotropic Debye-Waller factors were refined, and solvent molecules were added at a later 

stage of model refinement. Parameter files for Ex-527/Ex-243 (modulator) and the reaction 

intermediate were created using MarvinSketch (Version number: 5.6, ChemAxon 

(http://www.chemaxon.com)) and ProDrg (Schuttelkopf and van Aalten, 2004) software. 

Final model quality was assessed using MolProbity (Chen et al., 2010b) and validation tools 
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in COOT. Figures were generated using CCP4mg molecular-graphics software (McNicholas 

et al., 2011). 

2.6.6 Homology modeling of human Sirt1 

 A homology model for the catalytic domain of human Sirt1 (residues 214-497) was 

generated using the crystal structure of Sirt2 (residues 34-356, PDB code 1J8F) as template. 

The amino acid sequences of Sirt1 and Sirt2 were aligned using ClustalW2 software (Larkin 

et al., 2007), edited manually and Sirt1 structure was modeled using Modeller version 9.8 

using standard parameters (Eswar et al., 2006)  (http://salilab.org/modeller/). 
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3. Results 

3.1 Studies on Sirt1 

3.1.1 Recombinant expression and purification of Sirt1 

 Human Sirt1 (Sirt1) is the largest member among the mammalian Sirtuins with 

extensions at both N and C-terminus (Figure 3.1). Sirt1 was one of the first mammalian 

isoform to be studied extensively, yet the roles of residues at the termini are unclear and a 

crystal structure of Sirt1 is not yet available. To gain further insights into the domain 

architecture of Sirt1 and solve the crystal structure of Sirt1 several constructs of human Sirt1 

and its mouse homolog (mSirt1) were generated and tested for expression, purification, and 

biochemical and crystallization trials. Table 3.1 lists Sirt1 constructs with different affinity 

tags and proteases required for tag cleavage. Protein expression was observed in all the 

constructs but protein solubility was affected when the catalytic domain alone was expressed. 

For example mSirt1 catalytic core constructs 222-483 (human equivalent 230-491) and 206-

508 (human equivalent 214-516) were expressed in high amounts but with poor solubility. 

Several attempts to increase protein solubility during overexpression by altering growth 

conditions such as temperature, media, concentration of IPTG and various 

refolding/solubilization strategies such as in-column refolding, re-folding by step wise 

dialysis and in the presence of Zinc, co-substrate (NAD+)  resulted in no soluble protein. It is 

interesting to note that when similar constructs were cloned form human Sirt1 (225-527 and 

245-510) soluble proteins are obtained, but they were impure and unstable leading to 

degradation after affinity purification. Possible reasons for this behavior could be due to slight 

variations in amino acid composition between the mouse and human which may contribute to 

proper protein folding and solubility. In order to avoid solubility issues, latter constructs were 

cloned with MBP at the N-terminus, as MBP has been shown to increase protein 

overexpression and solubility in E. coli. 
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Figure 3.1: Domain architecture of human Sirt1. Cartoon representation of Sirt1 showing 
various binding sites and residues involved in post-translational modifications. Pot. RNA 
binding = potential/predicted RNA binding motif, Pot. DNA binding = potential/predicted 
DNA binding motif, # = sumoylation, H363 = catalytic residue, * = phosphorylation. The 
dotted black lines just connect the domains and are not part of the protein. 

Construct Vector Tag Protease 
cleavage 

site 
 hSirt1 FL pASKIBA17plus N-terminal Strep TEV 

 hSirt1 FL pET15b  N-terminal Hexa-Histidine Thrombin 

 hSirt1 FL modified pET15b N-terminal Hexa-Histidine TEV 

hSirt1 FL H363A pASKIBA17plus N-terminal Strep TEV 

hSirt1 FL T530D pET15b  N-terminal Hexa-Histidine Thrombin 

hSirt1 MAD+82-747+LRSGC at 
end 

pET21a(+) C-terminal Hexa-Histitine None 

hSirt1 1-664 pET15b  N-terminal Hexa-Histidine Thrombin 

hSirt1 129-747 pET15b  N-terminal Hexa-Histidine Thrombin 

hSirt1 181-747 pET15b  N-terminal Hexa-Histidine Thrombin 

hSirt1 214-747  pET21a(+) C-terminal Hexa-Histitide None 

hSirt1 214-747 pET15b  N-terminal Hexa-Histidine Thrombin 

hSirt1 217-747 pET15b  N-terminal Hexa-Histidine Thrombin 

hSirt1 214-747 A313V pET21a(+) C-terminal Hexa-Histitide None 

hSirt1 MAD+82-664 pET15b  N-terminal Hexa-Histidine Thrombin 

hSirt1 183-664 pET15b  N-terminal Hexa-Histidine Thrombin 

hSirt1 183-664 pET21a(+) C-terminal Hexa-Histitide None 

hSirt1 183-664 T530D pET15b  N-terminal Hexa-Histidine Thrombin 

hSirt1 183-516 modified pOPIN N-terminal Hexa-Histidine-MBP TEV 

hSirt1 214-664 pET21a(+) C-terminal Hexa-Histitide None 

hSirt1 214-664 pET15b  N-terminal Hexa-Histidine Thrombin 

hSirt1 214-664 EEK-AAA 576-
578 

pET15b  N-terminal Hexa-Histidine Thrombin 

hSirt1 225-747 pET15b  N-terminal Hexa-Histidine Thrombin 

hSirt1 225-664 pET21a(+) C-terminal Hexa-Histitide None 

hSirt1 225-664 pET15b  N-terminal Hexa-Histidine Thrombin 

hSirt1 225-664 T530D pET15b  N-terminal Hexa-Histidine Thrombin 

hSirt1 225-664 A313V pET21a(+) C-terminal Hexa-Histitide None 
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hSirt1 225-664 H363A pET15b  N-terminal Hexa-Histidine Thrombin 

hSirt1 225-664 EEK-AAA 576-
578 

pET15b  N-terminal Hexa-Histidine Thrombin 

hSirt1 225-527 pET15b  N-terminal Hexa-Histidine Thrombin 

hSirt1 229-516 modified pOPIN N-terminal Hexa-Histidine-MBP TEV 

hSirt1 245-510  pET15b  N-terminal Hexa-Histidine Thrombin 

mSirt1 206-737 pET15b  N-terminal Hexa-Histidine Thrombin 

mSirt1 206-737 pET21a(+) C-terminal Hexa-Histitide None 

mSirt1 206-508 pET15b  N-terminal Hexa-Histidine Thrombin 

mSirt1 206-508 pET21a(+) C-terminal Hexa-Histitide None 

mSirt1 222-483 pET15b  N-terminal Hexa-Histidine Thrombin 

mSirt1 222-483 pET21a(+) C-terminal Hexa-Histitide None 

Table 3.1: A list of constructs (with their affinity tag and proteases for tag cleavage) used in 
the expression and purification of different Sirt1 variants. hSirt1 and mSirt1 stand for human 
and mouse, Sirt1 respectively and FL stands for full length. 

 Expression and purification of Sirt1 constructs were performed as mentioned in the 

methods section. Several purification strategies were tested in order to optimize the 

purification process, because the purity of Sirt1 after the affinity step is at best ~70 % as 

judged by SDS-PAGE (Figure 3.2a). Addition of detergents such as Tween-20 and Triton, 

NAD+ (co-substrate) and stabilizers (glycerol, ethylene glycol) did not result in an increase in 

purity. Initially, affinity purified Sirt1 was loaded on an anion exchange column (calculated pI 

of Sirt1 = 4.55) to separate the contaminants, but a major part of Sirt1 was not bound and was 

found in the flow through fractions along with E. coli proteins. SEC profiles of ion exchange 

purified Sirt1 indicated an aggregated state (elution in void volume) with reduced activity. To 

overcome this problem, affinity purified Sirt1 was purified over a gel filtration column 

followed by a very slow AEC (anion exchange chromatography) step. Since several E. coli 

contaminants are still present with Sirt1, all the buffers contained protease inhibitors to avoid 

degradation. The ion exchange purified Sirt1 was analyzed by SDS-PAGE and found to be ≥ 

90 % pure (Figure 3.2a). To confirm that purified Sirt1 is folded properly, a CD (circular 

dichroism) spectum of the protein was recorded, which shows secondary structural features 

(Figure 3.2b).  Estimation of secondary structure content using a theoretically derived spectra 

from the K2D3 program  (http://www.ogic.ca/projects/k2d3/) (Louis-Jeune et al., 2012) 

indicates Sirt1 may be composed of ~10.5 % α helical content, ~ 22.5 % of β strand content, 

and the rest formed of coil/turn/other. 
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Figure 3.2: Purification and secondary structure analysis of Sirt1. A) 10 % (w/v) SDS 
polyacrylamide gel showing the purity of full length Sirt1 after AC (Affinity 
Chromatography), SEC (Size Exclusion Chromatography) and AEC (Anion Exchange 
Chromatography). Although Sirt1’s molecular weight is ~82 kDa, it runs at ~ 110 kDa in 
SDS-PAGE, due to the high amount of positive charge. B) CD spectra of 9.5 µM full length 
Sirt1 collected at 15 ºC, pH = 7.5. Mean residue molar ellipticity [ϴ] is plotted against 
wavelength in nm. Sirt1 has proper secondary structure with ~ 10.5 % α-helix and ~ 22.5 % β-
strand content as determined using the K2D3 program. 

Spectrophotometric analysis of affinity purified Sirt1 revealed an unusually high 

absorbance at 260 nm compared to 280 nm (high A260/A280 ratio) (Figure 3.3a), an indication 

for nucleic acid contamination, because SEC and AEC purified Sirt1 behaves as expected. 

Further analysis of the fractions using agarose gel electrophoresis revealed high amounts of 

nucleic acids in the elute fractions (Figure 3.3b). Incubation of these fractions with DNase 

lead to a moderate decrease in the amount of nucleic acids, whereas incubation with RNase 

lead to almost complete loss of nucleic acids. These results indicate that Sirt1 co-purifies with 

nucleic acids, in particular RNA (Figure 3.3b). Inclusion of either DNase or RNase or both 

during the purification process resulted a decrease in absorbance at 260 nm only when RNase 

was present (Figure 3.3a). To avoid nucleotide contamination, further Sirt1 affinity 

purification steps included DNase and RNase treatment.  
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Figure 3.3: Sirt1 appears to co-purify with nucleotides. A) Spectroscopic analysis of 
different fractions of affinity purified Sirt1 indicates high A260/A280 ratio for control sample, 
whereas samples treated with nucleases shows a decrease in the ratio. (A260/A280 ratios are 
control: ~1.08, with DNase: ~1.06, with RNase: ~0.68, with DNase+RNase: ~ 0.70). B) 1 % 
(w/v) agarose gel electrophoresis of Sirt1 in the presence of nucleases indicates a decrease in 
nucleic acid content when Sirt1 was incubated with bovine DNase (moderate decrease) or 
bovine RNase A (complete loss). Sirt1 was incubated with Subtilisin to investigate if loss of 
Sirt1 leads to a shift in the migration of nucleic acids. ~ 6.25 µg Sirt1 was incubated with 
0.625 ng Subtilisin (10000 fold less), 0.25 µg DNase or 0.5 µg RNase for 15 minutes at 37 ºC 
and loaded on the gel. 

To further investigate if Sirt1 binds to nucleotides, the protein was incubated with 

either DNA or RNA and resolved on an agarose gel. Figure 3.4a shows a representative gel 

where the mobility of dsDNA (double stranded DNA) was not affected by the presence of 

Sirt1, possibly indicating a lack of direct interaction between the two. Similar experiments to 

identify interactions between Sirt1 and RNA proved unsuccessful. We also tested the 

influence of nucleic acids on the activity of Sirt1, by performing activity assays in the 

presence and absence of nucleic acids (Figure 3.4b). The assays revealed that Sirt1’s activity 

is not influenced in the presence of either DNA or RNA. It remains to be clarified why Sirt1 

seems to strongly associate with RNA when expressed in E. coli. 
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Figure 3.4: Nucleotides neither interact with Sirt1 nor influence its activity. A) Mobility 
shift assay performed on 1 % (w/v) agarose gel shows no shift of dsDNA (296 base pairs) in 
the presence of Sirt1. 1X control = 45 ng DNA. The ratio indicates the amount of excess Sirt1 
added over DNA. 1 mM NAD+ was added separately to access its influence on Sirt1. The lack 
of shift in the migration of dsDNA indicates no binding with Sirt1.  B)  The activity of 1 µg 
Sirt1 with 100 µM FdL-1 peptide and 1 mM NAD+ was measured with PCR amplified 
dsDNA (1467 base pairs, 1:0.3 ratio of Sirt1:DNA) or tRNA fro E. coli (~ 75 base pairs, 1:10 
ratio of Sirt1:RNA).  

3.1.2 Investigating the role of termini in the oligomerization of Sirt1 

 Mammalian Sirtuins (Sirt2-Sirt7) and other Sirtuins have so far been reported as 

monomers (Finnin et al., 2001; Schlicker et al., 2011; Schlicker et al., 2008; Schuetz et al., 

2007) except for the yeast homolog Hst2, which was reported as trimer in both solution and 

crystal structure and the N-terminus was shown to be involved in trimer formation (Zhao et 

al., 2003). SEC profile of flag-tagged Sirt1 overexpressed and purified from HeLa cells 

suggested trimerization with an apparent molecular weight of ~ 350 kDa (Vaquero et al., 

2004). We performed gel filtration analysis on the full length and deletion constructs of Sirt1 

to analyze which domain(s) might be responsible for oligomerization. SEC profiles of full 

length, N-terminal and C-terminal deletion constructs indicated a higher order oligomer like 

behavior (similar to HeLa cells purified Sirt1), whereas constructs lacking both termini 

behaved as lower order oligomers (Figure 3.5). The apparent sizes seen on SEC could be a 

result of oligomerization or an extended shape of full length Sirt1 and its constructs. BN-

PAGE on various Sirt1 constructs showed results similar to size exclusion profiles for full 

length and 214to747 constructs but the 1to664 and 214to664 constructs were seen as a smear 

on the gel despite repeated attempts, leading to a lack of clear understanding on the nature of 
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oligomerization (Figure 3.6). If full length Sirt1 indeed is a trimer or higher order oligomer, it 

should have a molecular weight of at least ~ 240 kDa or above and therefore might be a good 

candidate for EM (Electron Microscopy) studies. Cryo EM studies on full length Sirt1 (Figure 

3.7a) indicates it to be a monomer, however this could have also resulted due to dilution 

during sample preparation. We therefore used AUC to analyze the oligomerization of Sirt1, 

because AUC is insensitive to molecular shape. Figure 3.7b shows the results of 

sedimentation velocity AUC runs performed on different Sirt1 constructs. Under the 

conditions tested, all Sirt1 samples seem to behave as monomers in AUC experiments.  

      

Figure 3.5: SEC indicates oligomerization of Sirt1. A) SEC elution profiles of different 
Sirt1 constructs: normalized absorbance (at 280 nm) is plotted against elution volume. B) A 
plot of Logarithm of SEC standards against elution volume. Comparing the elution volume of 
Sirt1 constructs to that of the standards indicate oligomeric behavior for all Sirt1 except for 
the catalytic core construct. FL = full length. Apparent molecular weights based on SEC 
standards: FL – 230 kDa (trimer), 1to664 – 158.7 kDa (dimer), 214to747 – 95.3 kDa, 
214to664 – 90.9 kDa, 225to664 – 77.2 kDa (the molecular weights of the later three 
constructs corresponds in between monomer and dimer) and 229to516 – 33.4 kDa 
(monomer). 



3. Results   49

 

 

Figure 3.6: BN-PAGE Analysis of Sirt1 indicates oligomerization. Left panel: A cartoon 
representation of Sirt1 constructs used in probing the domain involvement in oligomerization 
of Sirt1. Right panel: BN-PAGE analysis of different Sirt1 constructs along with protein 
markers indicate an oligomerization profile for Sirt1 constructs similar to SEC. 10 µg of each 
marker proteins were loaded in the gel along with 27 µg FL (full length), 30 µg 1to664, 27 µg 
214to747, 32 µg 214to664 Sirt1 constructs respectively  

 

Figure 3.7: EM and AUC analysis indicates Sirt1 to be monomeric. A) Sirt1 at a 
concentration of ~10 µg/ml was negatively stained with Uranyl formate, adsorbed on grids 
and observed under a JOEL-1400 electron microscope at a magnification of 50,000. Full 
length Sirt1 can be visualized as small tiny particles which are globular and homogenous 
indicating monomeric behavior. EM image analysis was performed at MPI-Dortmund in the 
lab of Dr. Stefan Raunser. B) A representative plot of continuous c(s) distribution against 
sedimentation coefficient (corrected for water at 20 ºC) from sedimentation velocity AUC 
runs of Sirt1 constructs indicate a clustering at around sedimentation coefficient value of ~ 
3.1-3.9 S implying a monomeric behavior for all the constructs. All runs were performed at 20 
ºC and 40,000 RPM and the protein concentration was monitored at 280 nm. 
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3.1.3 The catalytic domain of Sirt1 is sufficient for activation by polyphenols 

 Resveratrol was one of the first small molecules identified that can activate Sirt1. The 

unique N-terminus of Sirt1 was reported to be essential for the activating effect of resveratrol 

(Milne et al., 2007), but other studies have shown that resveratrol can also activate yeast Sir2, 

whose N-terminal domain is unrelated to its human counterpart (Howitz et al., 2003). To 

further investigate the regions responsible for Sirt1 activation by resveratrol, we assessed the 

activity of full length Sirt1 and the deletion constructs in the presence and absence of 

resveratrol using the fluorogenic substrate peptide FdL-1 employing both the fluorescence as 

well as MS based assays (Figure 3.8). The assay revealed various basal activities for different 

constructs (Figure 3.9), but stimulation by resveratrol was observed in each construct 

including the shortest one comprised of just the catalytic domain. To verify if this activation 

can also be achieved by piceatannol (another naturally occurring polyphenol very similar to 

resveratrol in structure) we performed the same assay in the presence of piceatannol. Indeed 

as expected activation by piceatannol also required only the catalytic domain (Figure 3.10). 

Comparison of activation relative to basal level in both resveratrol and piceatannol indicates 

that all constructs can be stimulated in a similar manner, even though their basal activity 

differs. To test if the difference in basal activity is in part due to the stability of the constructs, 

we performed thermal shift denaturation assays. In a thermal shift assay, the protein is diluted 

in a variety of buffer and salt conditions and a fluorescent dye is added to it. Protein unfolding 

is monitored by recording the increase in fluorescence (the dye binds to hydrophobic parts of 

the protein) with gradual raise in temperature, which is then fitted to an equation, to obtain the 

half-transition point, Tm (Temperature of Melting). Figure 3.11 shows representative thermal 

shift curves of different Sirt1 constructs. With the exception of full length Sirt1, melting 

curves with more than one transition were obtained, so that no Tm values could be obtained 

with the standard two-state model, However, it appears that all the constructs have similar 

stability, suggesting a role for the termini in modulating the activity of Sirt1 (see discussion 

section).  
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Figure 3.8: Catalytic domain is sufficient for activation by resveratrol. A) Full length 
(FL) Sirt1 along with different truncation constructs were used in the fluorescence assay 
containing FdL-1 peptide substrate, NAD+ and 100 µM Resveratrol (R) . B) The same assay 
was performed with FL (full length) and the catalytic construct 225to664 and analyzed by 
MS. In both the cases activation by resveratrol can be observed even for the shortest construct 
which contains only the catalytic domain. Control samples contained 1 % (v/v) DMSO and 
the assay was performed at 37 ºC. 

 

Figure 3.9: The activity of Sirt1 appears to be regulated by its termini. ~ 200 nM each 
Sirt1 construct was used in the FdL-1 substrate based fluorescence assay. The basal activity of 
Sirt1 appears to be dependent on the termini, as the construct containing only the catalytic 
core domain has lower activity compared to the full length protein (FL = full length). 
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Figure 3.10: Piceatannol can also activate the catalytic core of Sirt1. Similar to resveratrol 
100 µM Piceatannol (P) is also able to activate Sirt1 comprising only the catalytic domain. 
The FdL-1 substrate was used in the fluorescence based assay. (FL = full length). 

 

Figure 3.11: Thermal denaturation shift assay on different Sirt1 constructs. 
Representative thermal shift curves of four different Sirt1 constructs comprising either FL 
(full length), lacking N or C-terminus or both indicate an unusual transition state for the 
proteins. Nevertheless, all the protein samples appear to have similar stabilities. Fitting the 
curve for FL using a two state transition reveals a Tm close to ~ 47 ºC.      
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3.1.4 Identification of novel peptide substrates for Sirt1  

 Over 6800 acetylation sites have been identified in mammalian proteome, presenting 

an excellent opportunity to perform substrate profiling on mammalian Sirtuins to identify 

novel isoform specific substrates as well as their substrate sequence preferences. In 

collaboration with Dr. Mike Schutkowski’s laboratory at University of Halle, Germany, we 

established a chip-based array system that can be used to characterize isoform specific 

substrate preferences of different mammalian Sirtuins (Rauh et. al. manuscript in preparation). 

Roughly 6800 acetylated peptides comprising six residues N and C-terminal from the 

acetylation sites were synthesized and spotted on a chip to create an array (herein referred to 

as acetylome chip) similar to the one described by Schutkowski et. al. (Schutkowski et al., 

2004). To identify novel substrate peptides for Sirt1, the protein was mixed with NAD+ and 

incubated on the acetylome chip. As a control, we incubated a chip with only buffer and 

NAD+ or Sirt1 catalytic mutant H363A and NAD+. The deacetylation efficiency of Sirt1 was 

analyzed by employing an ELISA type method as shown in figure 3.12. Several new potential 

substrates were identified for Sirt1 such as Lys12 of HMG-B1 (High Mobility Group B1), 

Lys628 of TFIID (Transcription initiation factor TFIID subunit 3) to name a few. 

 

Figure 3.12. Schematic representation of the principle behind the acetylome-chip assay. 
The chip containing several acetylated peptides is first incubated with Sirt1, NAD+ and 
modulators. This is followed by incubation with anti-acetyllysine antibody and a fluorophore 
labeled secondary antibody. Efficient deacetylation by Sirt1 will lead to a decrease in 
fluorescence, which is compared with a buffer control. Figure kindly provided by Dr. David 
Rauh, University of Halle, Germany. 

 To ensure that substrate peptides identified using the array are also efficiently 

deacetylated in solution, we tested several peptides using the continuous assay (Figure 3.13). 

As expected, peptides were deacetylated by Sirt1 in solution with varying degree. Kinetic 

characterization of H3-Lys116 using the continuous assay resulted in similar kinetic values 
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compared to p53-Lys382 peptide, a widely used substrate peptide of Sirt1 (Figure 3.14). If 

Lys116 and Lys12 of full length H3 and HMG-B1 proteins, respectively, are accessible to 

Sirt1 they will be deacetylated, indicating that deacetylated lysine residues from array 

experiments serve as excellent candidates to test if they serve as, physiological Sirt1 

substrates. 

 

Figure 3.13. Novel substrates for human Sirt1. A continuous assay was performed using 1 
µM Sirt1, 0.64 mM respective peptides and 1 mM NAD+. The decrease in absorbance at 340 
nM was followed over time in a 96 well plate reader. The absorbance of a control (without 
peptide substrate) was subtracted from each peptide value and plotted over time. The known 
Sirt1 substrate site p53-K382 peptide was used as a positive control and AATase-K159 
(Aspartate aminotransferase 2) which was not deacetylated on the array as a negative control. 

  

Figure 3.14: Michaelis-Menten plot of Sirt1 kinetics. A hyperbolic representation of the 
kinetics of catalysis of Sirt1 using p53-Lys382 peptide (A) and H3-Lys116 peptide (B) shows 
that the kinetic properties of H3 peptide identified from the acetylome-array is similar to the 
commonly used p53 peptide.   



3. Results   55

 

3.1.5 Sirt1 modulation by resveratrol is sequence specific 

 The mechanism of Sirt1 activation by resveratrol has been subjected to extensive 

debate (see section 1.6.3.2 above). Since different substrates were used in these assays leading 

to different outcomes, we wondered whether resveratrol activation depended on the sequence 

of the substrate. Our chip-based array serves as a perfect system to test this, as it contains a 

vast pool of substrates. The experiment was performed by incubating the chip with Sirt1, 

NAD+ and with or without resveratrol to identify peptides that showed differences in 

deacetylation efficiency in the presence of resveratrol. Figure 3.15 shows a general trend of 

the activity of Sirt1 in the presence of resveratrol. The polyphenol appears to modulate the 

activty of Sirt1 in a substrate dependent manner, as both activation and inhibition were 

oberved, but a majority of the substrates were unaffected or only mildly affected. To validate 

the array results in solution, we tested representative candidates using MS based assay, as 

resveratrol interferes with spectrophotometric assays. As expected, resveratrol modulated the 

activity of Sirt1 depending on the sequence of the substrate peptide (Figure 3.16). For 

example, HMG-B1-Lys12 (KKPRGK[ac]MSSY) deacetylation showed no change in Sirt1 

activity in the presence of resveratrol, whereas SF38-Lys23 (PQYLVEK[ac]IIRTRI) showed 

roughly four fold activation and H3-Lys116 (IHAK[ac]RVT) showed two fold inhibition. 

Although only few representative substrates were tested in solution, the array results which 

included several thousand peptides, indicates that Sirt1 modulation by resveratrol depends on 

the sequence of the substrate. 

Figure 3.15: Acetylome-chip array reveales novel substrate-modulator pairs. A semi log 
plot showing the ratio of peptide deacetylation with respect to control (without the modulator) 
against the peptide number. Majority of the peptides show deacetylation similar to controls 
(ratio close to 1). Ratio below 1 represents activation whereas ratio above 1 represents 
inhibiton. A) Assay performed in the presence of resveratrol. B) Assay performed in the 
presence of SRT1720.     



3. Results   56

 

Figure 3.16: Resveratrol can modulate 
Sirt1 in a substrate dependent manner. 
The activity of Sirt1 in the absence (gray 
bars) and presence (silver bars) of 200 µM 
Resveratrol was measured using MS based 
assay. A) In the presence of H3-Lys116 
peptide resveratrol inhibits Sirt1. B) 
Resveratrol has no effect in the presence of 
HMG-B1-Lys12 peptide, whereas C) 
resveratrol activates Sirt1 in the presence of 
SF38-Lys23 peptide. 200 – 300 nM Sirt1 was 
used in the assays with 50 µM NAD+ and 50 
µM H3-Lys116, HMG-B1-Lys12 and 5 µM 
SF38-Lys23 peptides respectively. 

3.1.6 Effect of polyphenol unrelated small molecules on Sirt1 

 Sirt1 activation by small molecules other than polyphenols such as resveratrol, 

piceatannol etc. has been reported. Few examples include SRT series (SRT1720, SRT2383 

etc.) (Milne et al., 2007) and thyroid hormones (Engel and Mahlknecht, 2008). SRT1720, 

which was shown to be 1,000 fold more potent than resveratrol in stimulating Sirt1 using a 

modified peptide, showed no strong effect, neither in the FdL-1 assay nor in the continuous 

assay using unmodified p53 as substrate (Figure 3.17), consistent with a previous study 

(Pacholec et al., 2010) (Pacholec et al., 2010). This discrepancy could again depend on the 

substrate-modulator pair similar to resveratrol, i.e. the modulatory effect of SRT1720 could 

also depend on the substrate used and therefore we tested SRT1720 also on the acetylome 

chip. Figure 3.15 shows that similar to resveratrol, SRT1720 also modulates Sirt1 in a 

substrate sequence dependent manner on the acetylome-chip array. 
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Figure 3.17: Effect of SRT1720 on Sirt1. A) A fluorescence assay in the presence of ~ 200 
nM Sirt1, 25 µM each FdL-1 peptide and 25 µM NAD+ indicates a weak inhibition in activity 
of Sirt1 in the presence of 1 µM SRT1720. B) A continuous assay in the presence of 10 µM 
Sirt1, 100 µM p53-Lys382 peptide and 100 µM NAD+ also indicates no change in the activity 
of Sirt1 compared to DMSO control.   

We also tested thyroid hormones T2 (3,5-diiodo-L-thyronine), T3 (3,3',5-triiodo-L-

thyronine) and T4 (3,5,3',5'-tetraiodo-L-thyronine). However, they also had no effect on Sirt1 

at physiologically relevant levels with FdL-1 substrate. Only at physiologically irrelevant high 

concentrations (0.5 – 1 mM), T3 showed an inhibitory effect (Figure 3.18).  
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Figure 3.18: Influence of Thyroid hormones on the 
activity of Sirt1. A) A fluorescence based assay was 
performed by incubating ~ 100 nM Sirt1, 25 µM FdL-
1 substrate, 25 µM NAD+ and 10 µM T2 or T3. B) ~ 
200 nM Sirt1 was incubated with 100 µM FdL-1, 1000 
µM NAD+ and 500 µM T4. C). ~ 200 nM Sirt1 was 
incubated with 100 µM FdL-1, 1000 µM NAD+ and 
various concentrations of T3. No change in the activity 
of Sirt1 was observed in the presence of T2, T3 (A) or 
T4 (B). Only at high concentration T3 inhibits Sirt1. 
  

 

Recently, our lab identified Sirt2 specific inhibitors based on virtual docking of 

compound library on known mammalian Sirtuin structures (Schlicker et al., 2011). Two 

compounds from the screen namely; Compounds CSC8 and CSC13 showed micromolar 

potency for Sirt2 with an IC50 of 4.8 ± 0.5 µM for compound CSC8 and 9.7 ± 1.5 µM for 

compound CSC13 respectively. In order to investigate the effect of these compounds on Sirt1, 

we assayed the activity of Sirt1 in the presence of 100 µM CSC8 and CSC13 respectively 

using the Fdl-1 substrate peptide (Figure 3.19). The compounds had only a weak inhibitory 

effect on Sirt1, indicating they are indeed specific for Sirt2 and could also serve as lead 

compounds for developing Sirt2 specific drugs. 

 

 

 

 

 

 

 

 

Figure 3.19: Effects of Sirt2 docking on the activity of Sirt1. Compounds that specifically 
inhibit Sirt2 were tested on Sirt1 and found to have weak or no inhibitory effect. FdL-1 assay 
was performed with 100 µM substrate, 500 µM NAD+, ~ 200 nM Sirt1 and 100 µM 
Compound CSC8 or CSC13 respectively. 2 mM NAM was used as a positive control to show 
inhibition. 
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3.1.7 Resveratrol can directly bind to Sirt1 

 Initial binding studies between small molecule modulators of Sirt1 and fluorogenic 

substrate peptides indicated direct interaction between the small molecule and the peptide 

fluorophore (Pacholec et al., 2010), implying Sirt1 activation to be an artifact of substrate 

modification. Later Dai et. al (Dai et al., 2010) reported that some small molecules can also 

interact directly with Sirt1 and the interaction between modified peptides and small molecules 

depend on the substrate-modulator pair. Along the same lines, we also tested if resveratrol can 

directly bind to Sirt1. Microscale thermophoresis studies indicate that resveratrol indeed binds 

to Sirt1 and the presence of unmodified peptides does not have an effect on this interaction 

(Figure 3.20). The poor solubility of resveratrol in aqueous buffer makes it difficult to 

quantify the binding. Nevertheless resveratrol appears to bind to Sirt1 with a Kd in the range 

of 100 µM.  

 

Figure 3.20: Resveratrol interacts directly with Sirt1. 200 nM NT-647 labeled Sirt1 was 
mixed with various compounds and titrated against resveratrol. The binding was analyzed 
using microscale thermophoresis. H3-Lys116 was used at a concentration of 500 µM. The 
thermophoresis obtained with 40 % LASER power was used for analysis from all the 
measurements. Although a Kd cannot be determined since saturation is not reached, a clear 
binding can be observed between Sirt1 and resveratrol. 

3.1.8 Crystallization trials of Sirt1 

 In addition to biochemical characterizations, structural studies were pursued to solve 

the crystal structure of Sirt1. Several Sirt1 constructs were purified followed by crystallization 

trials using various commercially available kits and at different protein concentration and 
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temperature, but no diffraction quality crystals were obtained. Supplemental table S2 lists the 

various constructs of Sirt1 used in the crystallization along with their concentration and 

crystallization conditions. The full length Sirt1 protein yielded precipitates in conditions with 

low pH, but did not result in crystals. Since crystallization prediction servers XtalPred 

(http://ffas.burnham.org/XtalPred-cgi/xtal.pl) (Slabinski et al., 2007) and PHYRE (Protein 

Homology/analogY Recognition Engine) (http://www.sbg.bio.ic.ac.uk/~phyre/) (Kelley and 

Sternberg, 2009) suggested full length Sirt1 may possess unstructured and extended 

conformation at its termini, we also tried crystallization of shorter constructs including only 

the catalytic domain. Several mutational studies were also pursued to enhance the 

crystallizability of Sirt1. One approach used was the mutation of residues that are likely to 

enhance the crystallizability of Sirt1 via generation of crystal contacts by SER (surface 

entropy reduction) as described by Derewenda (Derewenda, 2004). This idea is based on the 

targeted mutagenesis of surface patches that contain residues with large flexible side chains, 

where exchanging them for smaller side chain containing amino acids leads to an increase in 

probability of protein crystallization. Sirt1 construct 225to664 with SER mutation 576-578 

EEK-AAA was used in crystallization trials. Several conditions yielded leads such as 

precipitation, potential showers of micro crystals, phase separation. When a protein crystal 

staining dye (Jena Bioscience, Germany) was used to test if the micro crystals were indeed 

from protein, the crystals imbibed the dye indicating genuine protein crystals (Figure 3.21). 

When optimization trials were setup based on this condition, the crystals were not 

reproducible.  

PTMs in protein can often lead to changes in their conformation leading to their 

crystallization. Sirt1 has been shown to possess several modifications. In fact, Sirt1 

phosphorylation has been shown to increase its activity (Section 1.6.1 and table 1.2). We 

mutated Thr530 of Sirt1 to Asp to mimic phosphorylation and overexpresed the protein in E. 

coli followed by purification to perform activity as well as crystallization studies. Similar to 

reported results (Nasrin et al., 2009), Sirt1 Thr530Asp mutant appears to be more active than 

the wildtype (Figure 3.22). Sirt1 constructs carrying the Thr530Asp mutation were used in 

crystallization trials with commercially available kits, alternative reservoir strategies 

(Newman, 2005), in the presence of modulators but resulted in no diffraction quality crystals. 

Crystallization trials using Trypsin and chymotrypsin (with various Sirt1 to protease ratio) 

were pursued in order to identify stable in situ protein constructs that are more amenable for 

crystallization, but resulted in no crystals. 
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Fgire 3.21: Crystallization of Sirt1. A representative picture of potential Sirt1 crystals 
stained with a red dye. The concentration of dye in the crystal could indicate potential protein 
crystal. The crystallization conditions are: hSirt1 225-664 SER mutant at a concentration of 
10 mg/ml, 300 mM citric acid and 40 % (v/v) MPD ((±)-2-Methyl-2,4-pentanediol).  

 

 

Figure 3.22: Phosphorylation mimic of Sirt1 may regulate its activity. ~ 200 nM full 
length WT (wildtype) and Thr530Asp Sirt1 were incubated with 100 µM FdL-1 substrate and 
1 mM NAD+. A twofold higher activity can be observed for the mutant compared to wildtype 
Sirt1. 

3.1.9 Studies on AROS  

 Human AROS is a small nuclear protein (15.4 kDa), shown to activate human Sirt1 by 

interacting with its N-terminus (residues 114to217) (Kim et al., 2007). To date there are no 

biochemical or structural studies that characterize the Sirt1 interaction with AROS. In order to 

understand how AROS regulates Sirt1 function, we attempted overexpression and purification 

of AROS in E. coli. AROS containing an N-terminal hexa histidine tag was overexpressed in 

high yield, but was mostly insoluble (Figure 3.23A). Several attempts were made to increase 

the solubility of AROS, without success. Attempts to solubilize the protein from inclusion 

bodies using guanidine hydrochloride followed by on-column refolding and affinity 

purification were successful and yielded pure protein which elutes as a single peak in SEC 
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with an apparent molecular weight corresponding to that of a monomer (Figure 3.23 B) and a 

CD spectrum indicates that it possesses secondary structure (Figure 3.23C). When FdL-1 

based fluorescence assay was performed using AROS and Sirt1 a very mild decrease in Sirt1 

activity was observed (Figure 3.24A). To purify AROS in its native form, we created 

constructs harboring GST and MBP on the N-terminus of AROS respectively. Although GST-

tagged AROS was more soluble than His-tagged AROS, purification was not possible as the 

GST tag did not bind to Glutathione resin. MBP-tagged AROS was soluble and easily 

purified with roughly 60 % purity (Figure 3.23A), but efforts to cleave the MBP tag or further 

purification of the protein resulted in almost complete precipitation of AROS. Nevertheless 

MBP-tagged AROS was used in FdL-1 assay to investigate the modulation of Sirt1. Although 

not statistically significant, the results show a mild inhibition of Sirt1 (Figure 3.24B).  

  

 

 

 

 

 

 

 

Figure 3.23: Purification and secondary 
structure analysis of AROS. A) 15 % SDS 
polyacrylamide gel showing the expression and 
purity of His-tagged AROS (indicated with a star) 
and a 12 % SDS polyacrylamide gel showing the 
purify of MBP-AROS (hexagon) after affinity 
chromatography. B) The SEC profile of refolded 
AROS indicates an apparent monomeric behavior. 
The inset shows the purity of refolded AROS on a 
15 % SDS polyacrylamide gel. C) The CD 
spectrum of refolded AROS indicates presence of 
secondary structure.  
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Figure 3.24: Influence of AROS on the activity of Sirt1. The influence of refolded AROS 
protein on the activity of ~ 200 nM Sirt1 was analyzed using 100 µM FdL-1 peptide, 1000 
µM NAD+ and 1:1 or 1:10 molar excess of AROS. B) The same assay performed in the 
presence of 20 fold molar excess of MBP tagged AROS with 50 µM FdL-1 substrate, 1000 
µM NAD+ and ~ 200 nM Sirt1. Under the conditions tested, AROS seems to weakly inhibit 
Sirt1, but further investigation is required to confirm this result.   
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3.2 Studies on the role of Zinc in Sirt3 

The human Sirt3 protein cloning, expression and purification procedures were 

performed as mentioned in sections 2.2.5, 2.2.6 and 2.4.4 respectively. Slight modifications 

adopted for Sirt3 are detailed explicitly. The purity of the protein was ≥ 95 % and the yield 

was ~ 3 mg/liter of E. coli culture. Figure 3.25 shows the purity of Sirt3 visualized on an 

SDS-PAGE. The enzyme showed activity in assays (see below) indicating a well folded and 

active protein. 

 

 

Figure 3.25: Purification of Sirt 3. 15 % (w/v) SDS polyacrylamide gel 
showing the purity of tag cleaved Sirt3 (114-399) after size exclusion 
chromatography.  

 

 

 

 To understand the role of Zinc in the structure and function of mammalian Sirtuins, 

Sirt3 was used as a model because of its ease of purification, activity, and availability of 

crystal structured. Sirt3, like all other mammalian Sirtuins studies so far contains four 

conserved Cysteines (256, 259, 280 and 283) (supplemental figure S2), which coordinate a 

Zinc ion. To probe the role of Zinc, site directed mutagenesis studies were pursued by 

mutating the Cysteines that coordinate the Zinc ion (C259A or C259/280A). The mutant 

proteins were overexpressed in E. coli Rosetta 2 (DE3) cells similar to the wildtype protein. 

Protein overexpression was observed, but attempts to purify either the single or the double 

mutant proved futile, because the proteins were found in the insoluble fraction (Figure 3.26). 

Inclusion of ZnCl2 (10 µM) either in the purification buffer or while overexpressing the 

protein also did not yield soluble protein. These expression studies indicate that the mutant 

proteins appear not to fold properly or to be unstable. 
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Figure 3.26: Purification of Sirt3 Cysteine mutants. A 
representative 12 % (w/v) SDS polyacrylamide gel showing the 
presence of Sirt 3 Cysteine mutant (C259A) in the pellet. 

 

 

 

 Since mutational studies proved unsuccessful in obtaining soluble protein, the 

wildtype protein was used to probe the role of Zinc. Sirt3 was incubated with EDTA at 4 ºC 

for 30 minutes, followed by centrifugation for 5 minutes at 14,000 RPM at 4 ºC and assayed 

using the commercially available fluorescence based assay kit as mentioned in section 2.4.6. 

As shown in Figure 3.27a, the treatment of EDTA did not affect the activity of Sirt3, 

indicating either a strong affinity between Zinc and Sirt3 or a lack of function for Zinc. On the 

other hand, incubation of Sirt3 with 200 µM 1,10-phenanthroline immediately precipitated the 

protein leading to a complete loss of activity as shown in Figure 3.27b. Thus, Zinc is essential 

for stability of Sirt3. 

 

 

 

 

 

 

 

 

 

 

Figure 3.27: Zinc is essential for the stability and activity of Sirt3. The fluorescence assay 
was used to measure the activity of Sirt3, using 100 µM FdL-2 peptide substrate (QPKK[ac]-
coumarin) and 1 mM NAD+. A) 1 µg of Sirt3 was incubated with either buffer or 2 mM 
EDTA for 30 minutes on ice and centrifuged before performing the assay. B) Sirt3 was 
incubated with buffer or with 200 µM O-phenanthroline and centrifuged before performing 
the assay. 
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3.3 Studies on Sirt5 

 The human Sirt5 protein cloning, expression and purification procedures were performed 

as mentioned in sections 2.2.5, 2.2.6 and 2.4.4 respectively. Slight modifications adopted for 

Sirt5 are detailed explicitly. The purity of the protein was ≥ 95 % and the yield was ~ 15 

mg/liter of E. coli culture. Figure 3.28 shows the purity of Sirt5 visualized on an SDS-PAGE. 

The enzyme showed activity in several assays (see below) indicating a well folded and active 

protein. 

 

 

Figure 3.28: Purification of Sirt 5. 15 % (w/v) SDS polyacrylamide gel 
showing the purity of tag cleaved Sirt5 (34-302) after size exclusion 
chromatography. 

 

 

 

3.3.1 Influence of NAD+ on the activity of Sirt5 

 The human Sirt5, which is localized in the mitochondria, is poorly characterized in 

terms of substrates and regulators compared to its isoforms and to date only one in vivo 

substrate (CPS1) is known. Our lab had previously identified that Cyt c, can be deacetylated 

in vitro by Sirt5 in an ELISA (Schlicker et al., 2008). In general, Sirt5 seems to behave as a 

weak deacetylase compared to other Sirtuins when fluorogenic peptides or Cyt. c are used as 

substrates (Schlicker et al., 2008). In order to identify if Sirt5’s activity is dependent on its co-

substrate NAD+ an ELISA was performed in the presence of increasing amounts of NAD+ and 

10 µg of Cyt c. As shown in Figure 3.29, the deacetylase activity of Sirt5 increased 

dramatically with increasing concentration of NAD+ until 10 mM, leading to a ~ 200 % 

increase in activity. 
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Figure 3.29: Sirt5 appears to require higher amounts of NAD+ for its deacetylase 
activity. An ELISA was performed with 10 µg Cyt. c as substrate and 10 µg Sirt5 and 
increasing amounts of NAD+. A decrease in absorbance indicates an increase in the ability of 
Sirt5 to deacetylate the substrate Cyt. c. The activity of Sirt5 increased linearly until 10 mM 
NAD+, beyond which no increase was seen. 

3.3.2 Sirt5 appears to be insensitive to Nicotinamide inhibition 

 NAM, one of the products of Sirtuin catalyzed deacetylation is a potent physiological 

inhibitor (IC50 in the micro molar range) of several Sirtuins including Sirt1 and Sirt3. In order 

to identify if NAM can also inhibit Sirt5 an ELISA was performed using 10 µg Cyt. c and 5 

mM NAD+ (Figure 3.30). Even in the presence of 10 mM NAM, the activity of Sirt5 was not 

affected, indicating that Sirt5 might possess unique features in the NAM binding pocket (“C 

pocket”) that renders it insensitive to inhibition by NAM (Avalos et al., 2005; Sauve and 

Schramm, 2003).  
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Figure 3.30: Sirt5 appears to be insensitive to NAM. An ELISA was performed with 10 µg 
of Sirt5 and 10 µg Cyt. c, 5 mM NAD+ as substrates. Increasing amounts of NAM were added 
to test its ability to inhibit Sirt5. Even at 10 mM concentration, NAM did not inhibit Sirt5.   

 In order to identify the reason behind Sirt5’s insensitivity towards NAM, a point 

mutant (Thr69Asp) was generated based on sequence alignment of Sirtuin homologs 

(supplemental figure S2). All mammalian Sirtuins except Sirt5 contain Asp in the flexible co-

substrate binding loop, which takes part in NAM binding (Avalos et al., 2005). The Thr69Asp 

mutant protein showed less activity compared to the wildtype and did not sensitize Sirt5 to 

NAM (Figure 3.31), indicating that other molecular differences should be responsible for the 

unique NAM insensitivity of human Sirt5. 
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Figure 3.31: Thr69Asp mutation impairs the activity of Sirt5. An ELISA was performed 
with 10 µg of Sirt5T69D and 10 µg Cyt. c, 5 mM NAD+ as substrates. The activity of the 
mutant enzyme was impaired when compared to the wild type (Figure 3.30) and addition of 
NAM had no effect on its activity. 
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3.4 Studies on Sirt7 

3.4.1 Expression and purification of Sirt7 

  Cloning, expression and purification procedures of human Sirt7 constructs (Table 3.2) 

were performed as mentioned in sections 2.2.5, 2.2.6 and 2.4.4 respectively. Slight 

modifications adopted for Sirt7 are detailed explicitly. The different proteases used to cleave 

affinity tags are listed in table 3.2. The purity of the eluted samples were ≥ 90 % as judged by 

capillary electrophoresis (Caliper Life Sciences, USA) or SDS-PAGE A representative gel 

showing different constructs of Sirt7 is shown in Figure 3.32. Typical yields of Sirt7 

constructs overexpressed in E. coli were ~1 -3 mg/liter media. 

 

Table 3.2: Table representing the constructs of Sirt7 used in this study. The 
cloning, expression and initial purification steps were performed at the DPF. 

 

Figure 3.32: Purification of Sir7. 12 % (w/v) SDS polyacrylamide gel showing the purity of 
various constructs of Sirt7 (indicated on top) after size exclusion chromatography. 
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3.4.2 Effect of various buffers and salts on the stability of Sirt7 

 Sirt7 construct 81-356 was used to perform thermal denaturation shift assay in order to 

identify optimal buffer and salt conditions for crystallization trials. Sirt7 seems to be more 

stable in basic pH and presence of at least 50 mM salt enhances its stability. Figure 3.33 

shows a representative buffer (pH 8.0) and salt range for Sirt7. Starting from pH 7 until pH 9, 

almost all the buffers stabilized the protein in the presence of increasing amounts of salt (up to 

500 mM KCl). The Tm ranged between ~ 40 to 42 ºC. Even though the highest Tm (~ 42 ºC) 

was observed when 500 mM salt was used, the buffer condition chose for subsequent 

experiments was 25 mM HEPES, pH 8.0 and 150 mM KCl, because high amount of salts can 

interfere with the crystallization process. 

 

Figure 3.33: Optimization of buffer conditions for Sirt7 81-356. Representative thermal 
denaturation shift assay of Sirt7 81-356. The increase in the fluorescence of the dye (AFU) is 
plotted against the temperature (º C). The buffer used was 50 mM HEPES, pH 8.0, with 0, 50, 
200 and 500 mM KCl. The fitting of the curve to a two state transition yielded Tm in the 
range of 40 to 42 º C as indicated. 

3.4.3 Identification of new Sirt7 constructs for crystallization 

 For crystallization trials, an additional purification step was performed for the 81-356 

Sirt7 construct. The protein (calculated pI = 8.89) was bound to HiTrapSP cation exchange 

column (GE Healthcare, USA) in Buffer A (25 mM HEPES, pH 8.0, 100 mM KCl, 2 mM 

DTT) and eluted in a gradient to buffer A supplemented with 400 mM KCl (buffer B). A very 

low flow rate of 0.05 ml/min was used to ensure better purity of Sirt7. While analyzing the 
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eluted fractions by SDS-PAGE an additional protein band was observed below the expected 

Sirt7 81-356 construct. The majority of the desired protein eluted at 45.4 % B, and the 

majority of the 2nd specie at 39.2 % B (Figures 3.34 a and b). It is possible that the protein was 

degraded during the slow ion exchange process leading to a more stable fragment. In order to 

identify the new specie, one of the bands was extracted from the gel and tryptic digest 

followed by MS analysis (Figure 3.35) was performed to identify peptides covered by the new 

specie. Since this method does not ensure the exact N and C-terminus, another gel band was 

transferred to a PVDF membrane and sent for N-terminal sequencing analysis (section 2.4.9). 

The N-terminal sequencing and the tryptic digest results identified that the new fragment 

started at Thr127 and continued at least until Arg348 (Figure 3.35). 

 

   

Figure 3.34: Cation exchange chromatography of Sirt7 81-356. A) Chromatography 
elution profile showing two prominent peaks at 39.2 % and 45.2 % of Buffer B respectively. 
Representative fractions C8, C12, D3, D5 and D10 are indicated below the peaks.  B) 
Analysis of elution fractions by SDS-PAGE indicates that the peak eluting at 39.2 % B 
contains the majority of the low molecular weight protein (degradation product). Fraction 
numbers are indicated on top of the gel. 
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Figure 3.35: Identification of Sirt7 degradation product using MS. Screen shot of the 
Tryptic digest of the lower band from SDS PAGE followed by MS (43.84 % sequence 
coverage) showing the identified peptides in green. The proteolyzed Sirt7 contains at least 
Arg348 at the C terminus. 

3.4.4 Crystallization trials of Sirt7 

 Several crystallization trials were pursued to solve the structure of Sirt7. Supplemental 

table S3 lists the constructs of Sirt7, crystallization screens and conditions that were used in 

the trials. Crystallization trials were also set up using the in situ proteolysis method containing 

different proteases along with Sirt7 in order to identify stable protein parts that are more 

amenable to form crystals. A number of conditions yielded precipitate or phase separations 

that were quite promising and revealed a tendency for the protein to precipitate at acidic pH, 

nevertheless no diffraction quality crystals were obtained. 

3.4.5 PTMs influence the activity of Sirt7 

 Initial activity studies on Sirt7 constructs overexpressed in E. coli using the FdL-1 or 

FdL-2 substrate peptides showed weak or no deacetylase activity (Figure 3.36). Since 

Vakhrusheva et. al. (Vakhrusheva et al., 2008) were able to show Sirt7 dependent 

deacetyaltion activity on the FdL-1 substrate peptide, but did not reveal the source of Sirt7 

protein, we hypothesized that Sirt7 may require PTM for its activity. To this end, we used 

Sirt7 overexpressed in insect cells (full length Sirt7 with a 6xHis-MBP tag was expressed in 

insect cells (High Five) and purified at the DPF) against the FdL peptide substrates and 

observed (Figure 3.36) better deacetylation activity, which supports our hypothesis that PTMs 

play a role in Sirt7’s activity. To identify the type of PTM and the residue modified in Sirt7 

which leads to its higher activity, the insect cell expressed full length Sirt7 was resolved on an 

SDS gel and the band corresponding to the protein was isolated, followed by tryptic digest 

and MS analysis (Section 2.5.2). Analysis of the MS peaks against the Sirt7 sequence using 

the SEQUEST algorithm identified that at least Thr224 was phosphorylated (Figure 3.37). 

 To probe further the role of phosphorylation on Sirt7’s activity, a Threonine to 

Aspartate (T224D) point mutant was generated in Sirt7 (full length and 81-356 constructs) by 

site directed mutagenesis (Section 2.3.3). The constructs were sequence verified and 

transformed in E. coli to overexpress the mutant proteins. In spite of several attempts with 

different conditions, there was no overexpression of T224D Sirt7 protein constructs in E. coli.  
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Figure 3.36: Sirt7 activity is influenced by PTM. The FdL fluorescence assay was used to 
measure the activity of Sirt7, using either FdL-1 or FdL-2 substrate peptide and NAD+. 1 µg 
of Sirt7 was incubated with 100 µM peptide and 2 mM NAD+. FL_Insect represents Sirt7 
overexpressed and purified from insect cells. The other Sirt7 constructs were overexpressed 
and purified from E. coli cells. 

 

Figure 3.37: Sirt7 is phosphorylated at Thr224. MBP tagged Sirt7 overexpressed in insect 
cells was resolved on SDS gels, followed by tryptic digest and MS analysis. The table and 
screen shot (from the Proteome Discoverer software package) indicates that Sirt7 is 
phosphorylated at Thr224. For clarification purposes only the peptide containing Thr224 is 
shown in the table. The peptides identified are shaded in green and Thr224 is highlighted with 
a red box. 
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3.4.6 Investigating the modulation of Sirt7 by resveratrol and nicotinamide 

 Sirtuin isoforms are differently regulated by small molecules. In order to understand 

the regulation of Sirt7 by small molecules, we tested the full length Sirt7 expressed in both E. 

coli and insect cells for their modulation by resveratrol and NAM, widely used activator and 

inhibitor of Sirtuins respectively. Sirt7 activity was tested using the fluorogenic peptide FdL-1 

as substrate. In our assays, neither resveratrol nor NAM modulated the activity of Sirt7 

(Figure 3.38), indicating that Sirt7 might be resveratrol insensitive or have unusual substrate 

requirements for modulation by resveratrol (see Sirt1 results section 3.1.5) and is also 

insensitive to NAM under the conditions tested, similar to Sirt5. 

 

Figure 3.38: Sirt7 is insensitive to modulation by resveratrol and NAM in the FdL assay. 
The activity of 0.9 µg Sirt7 with 100 µM FdL-1 peptide and 1 mM NAD+ was measured with 
100 µM resveratrol or 2 mM NAM. 0.5 % DMSO was included as solvent control. Sirt7 
insect represents full length Sirt7 overexpressed and purified from insect cells and Sirt7 E. 
coli represents full length Sirt7 overexpressed and purified from E. coli cells. 
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3.5 Studies on Sir2Tm 

3.5.1 Investigating the oligomerization behavior of Sir2Tm 

 Expression and purification of Sir2Tm was performed as mentioned in sections 2.2.5, 

2.2.6 and 2.4.4 respectively. During purification, the SEC profile of pure Sir2Tm showed a 

single peak eluting at 13.72 ml (Figure 3.39a), corresponding to ~ 26 kDa in agreement with 

Sir2Tm’s monomer molecular weight of ~ 27.5 kDa. SDS-PAGE analysis of SEC fractions 

revealed two bands; a major specie at ~ 27.5 kDa and a minor one at almost twice the 

molecular weight (~ 48 kDa) (Figure 3.39b). Tryptic digest followed by MS analysis of the 

two bands revealed that both are in fact Sir2Tm without additional modifications. This 

prompted us to supplement all the buffers with 5 mM DTT (deviating from Smith et. al.’s 

protocol), because we suspected dimer formation due to oxidation of Cysteines present in 

Sir2Tm. SDS-PAGE analysis of the sample supplemented with high amounts of reducing 

agents (Figure 3.40a), shifted the equilibrium towards monomer, whereas BN-PAGE (Figure 

3.40b) revealed that Sir2Tm runs at ~ 45 kDa. Based on these results, it can be concluded that 

the unusual behavior of Sir2Tm seen in PAGE analysis pertains to the conditions used in 

resolving the protein, but in solution Sir2Tm seems to behave as a monomer and is not 

affected in either in its activity or ability to crystallize. 

 

Figure 3.39: Purification of Sir2Tm. A) Size exclusion chromatography profile of full 
length Sir2Tm. The elution volume corresponds to monomer molecular weight of ~ 27.5 kDa. 
The inset shows a plot of standards (log10 molecular weight versus volume (ml) in gray circles 
and the elution volume of Sir2Tm in black square. B) Analysis of gel filtration purified 
Sir2Tm on a 14 % (w/v) SDS gel shows two bands. The lower band corresponds to a 
monomer molecular weight of ~ 27.5 kDa and the upper band corresponds to ~ 48 kDa (close 
to the size of a dimer).                                                                      
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Figure 3.40: Sir2Tm exhibits oligomer like behavior in PAGE. A) 10 µg of full length 
Sir2Tm containing different amounts of reducatants resolved on a 14 % SDS-gel. B) BN-
PAGE analysis of different amounts of full length Sir2Tm indicates the protein to have a 
molecular weight of ~ 45 KDa. 

3.5.2 Identification of substrate-modulator pairs for Sir2Tm 

 Understanding the mechanism of Sirt1 modulation by small molecules has been 

hampered by the lack of its crystal structure. Sir2Tm shares ~57 % sequence similarity with 

the catalytic domain of Sirt1 (Figure S1), can be modulated similarly to Sirt1 (see Ex-527 

section below) and is more amenable for crystallization. Due to these reasons, Sir2Tm was 

chosen as a model system to structurally characterize the modulation of Sirt1 by small 

molecules. 

 Continuous assay was used to identify the substrate preference of Sir2Tm using well 

known peptide substrates of Sirt1. As shown in figure 3.41, Sir2Tm has a slight preference 

among the different substrates tested, with p53lg and HMG-B1 showing the highest and 

lowest activity respectively. HMG-B1 is still an interesting candidate for screening 

experiments, because it can reveal potential small molecule activators of Sir2Tm. 
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Figure 3.41: Sir2Tm preferentially deacetylates substrate peptides. A continuous assay 
was performed using 1 µM Sir2Tm, 1mM of each peptide substrate and 2 mM NAD+. The 
decrease in absorbance at 340 nM was followed over time in a 96 well plate reader. The 
absorbance of a control (without peptide substrate) was subtracted from each peptide value, 
normalized and plotted over time. (p53lg = p53 long), (p53sh = p53 short). 

When Sir2Tm was assayed in the presence of resveratrol using the FdL-1 substrate 

peptide, no activation was observed (Figure 3.42a), whereas the same substrate-modulator 

pair was able to activate Sirt1 (Figure 3.8, section 3.1.3). MS based assays, using polydatin 

(glycosylated form of resveratrol with increased solubility in aqueous solutions) and 

unmodified peptide substrates, p53sh (p53 short), p53lg (p53 long) and H3, also showed no 

change in the activity of Sir2Tm (Figure 3.42b). These results seem to indicate that activation 

by resveratrol and other polyphenols might have different substrate requirements. 
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Figure 3.42: Sir2Tm modulation by polyphenols. A) The activity of 1 µg Sir2Tm with 100 
µM FdL-1 peptide and 200 µM NAD+ was measured with 100 µM resveratrol. B) 3.5 µg 
Sir2Tm was incubated with 500 µM respective peptides, 1 mM NAD+ and 100 µM PD 
(PolyDatin) for 15 minutes at 37 ºC and quenched with 0.05 % (v/v) FA and analyzed by MS. 
2 % (v/v) DMSO was present in all the samples. p53sh peptide was analyzed only once. 

 Ex-527 is a potent isoform specific inhibitor of Sirt1, with IC50 in the nM range 

((Napper et al., 2005), see below). When Ex-527 was tested against Sir2Tm using the FdL-1 

substrate, inhibiton was observed (Figure 3.43a). In order to avoid fluorogenic peptide 

substrates which can often give rise to artifacts, we also performed the same assay using 

unmodified H3 peptide. As shown in Figure 3.43b, Sir2Tm was completely inhibited by 100 

µM Ex-527, identifying a good substrate-modulator pair for further characterization.  

   

Figure 3.43: Ex-527 inhibits Sir2Tm using unmodified peptide substrates. A) 1 µg 
Sir2Tm was mixed with 25 µM FdL-1 substrate and 200 µM NAD+ and incubated with 
various amounts of Ex-527 for 30 minutes at 37 ºC. B) 3.5 µg of Sir2Tm was mixed with 500 
µM H3 peptide, 1 mM NAD+ and 100 µM Ex-527 and incubated at 37 ºC for various time 
points and quenched with 0.05 % (v/v) FA followed by MS analysis. In the control samples a 
time dependent deacetylation can be seen, whereas the protein sample containing Ex-527 
were inactive. Control samples contained 1 % (v/v) DMSO. 

3.5.3 Ex-527 is a potent inhibitor of Sir2Tm 

 To characterize Sir2Tm and Sirt1 inhibition by Ex-527, a dose response study was 

performed using unmodified peptide substrates. Since Ex-527 does not absorb at 340 nM, 

continuous assay was used to determine the IC50 values. As shown in figure 3.44, Ex-527 

inhibits both Sir2Tm and Sirt1 in the nanomolar range. The IC50 values are 390 nM ± 170 nM 

and 470 ± 20 nM for Sir2Tm and Sirt1 respectively. The IC50 value for Sir1 is higher in 

comparison to Napper et. al. who reported a value of 100 nM (Napper et al., 2005), the 
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difference may arise due to the peptide substrates used in the assay, becuase Napper et. al 

used the artificial FdL-1 substrate, whereas we used an unmodified substrate peptide based on 

the C-terminus of p53 containing acetylated Lys382. 

Figure 3.44: Ex-527 is a potent inhibitor of Sir2Tm and Sirt1. A) 15 µg Sir2Tm was 
mixed with 500 µM H3 peptide, 1 mM NAD+ and various amounts of Ex-527 and activity 
was measured using the continuous assay. B) 12.6 µg human Sirt1 was mixed with 500 µM 
p53sh peptide, 1 mM NAD+ and activity was measured using the continuous assay.The IC50 
values are 390 nM ± 170 nM and 470 ± 20 nM for Sir2Tm and Sirt1 respectively. 

3.5.4 Ex-527 appears to require both the substrates to bind Sir2Tm 

 The exact mechanism of Sirtuin inhibiton by Ex-527 is still unclear. Kinetic studies on 

Sirt1 showed that Ex-527 most likely inhibits in a non-competitive manner, which includes 

both substrates. To investigate the binding between Sir2Tm and Ex-527 and understand how 

the presence of substrates affects binding, microscale thermophoresis measurements were 

performed. No binding was observed when Ex-527 was titrated against the apoenzyme, in the 

presence of NAD+, acetylated peptide or ADPr plus acetylated peptide (Figure 3.45). This 

clearly indicates that Ex-527 does not bind to Sir2Tm when only one of the substrate is 

present or even in the presence of substrate peptide and a product mimic. Next we tried 

binding measurements after incubating the enzyme with both substrates (acetylated H3 

peptide and NAD+). This time binding was seen, with an affinity in the micromolar range (Kd 

= 24.5 ± 6.3 µM). Since this strategy can lead to a complex mixture of events, as the reaction 

can proceed before the enzyme-substrate mixture encounters the inhibitor, we performed the 

same experiment using H3 peptide containing a thioacetyllysine. Thioacetyllysine (where the 

carbonyl oxygen of the acetyl group is replaced by a sulfur) has been shown to be a potent 

inhibitor of Sirtuins, because the s-alkylimidate intermediate formed after the release of NAM 

stalls the enzymatic reaction due to slow turnover and was in fact trapped in the crystals of 
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Sirtuins (Hawse et al., 2008; Jin et al., 2009; Smith and Denu, 2007). Binding of Ex-527 to 

Sir2Tm-substrate mixture was also seen in the presence of thioacetyllysine peptide with a Kd 

of 11.5 ± 2.5 µM, showing further that both the substrates or the product(s) are most likely 

required for efficient binding of Ex-527 to Sir2Tm.  

 

Figure 3.45: Ex-527 binds to Sir2Tm only in the presence of both substrates. 200 nM 
FITC labeled Sir2Tm was mixed with various compounds and titrated against Ex-527. The 
binding was analyzed using microscale thermophoresis. 500 µM peptide, 1 mM NAD+, 1 mM 
ADPr were used in the reaction. The reaction containing Sir2Tm, peptide and NAD+ was 
incubated for 10 minutes at room temperature before adding corresponding amounts of Ex-
527. The thermophoresis obtained with 17 % LASER power was used for analysis from all 
the measurements.  

3.5.5 Sir2Tm - Crystallization and cryoprotection 

 To structurally elucidate the binding and mechanism of Sir2Tm inhibition by Ex-527, 

several crystallization screens were pursued as mentioned in section 2.6.2. Crystals were 

formed in many conditions as soon as 24 hours after setup and were continuously monitored 

for growth. The drops with Sir2Tm, peptide and Ex-527 were the most promising and out of 

several conditions which yielded crystals; four best conditions were selected and grid screens 

were setup. Figure 3.46 shows representative conditions and the appearances of the crystals 
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which were used for further optimization. It is interesting to note that Sir2Tm did not 

crystallize in the apoenzyme form and attempts to reproduce Sir2Tm crystals using published 

conditions proved futile. 

 

Figure 3.46: Crystallization of Sir2Tm. Representative crystals and conditions of Sir2Tm in 
the presence of Ex-527 and peptide substrates. A) 1M tri-sodium citrate, 0.1 M CHES (N-
Cyclohexyl-2-aminoethanesulfonic acid), pH 9.5. B) 20 % (w/v) PEG (PolyEthylene Glycol) 
6000, 0.1 M BICINE (2-(Bis(2-hydroxyethyl)amino)acetic acid), pH 8.5. C) 20 % (w/v) PEG 
3350, 0.2 M di-sodium hydrogen phosphate. D) 25 % (w/v) PEG 4000, 0.1 M Tris, pH 8.5, 50 
mM Li2SO4. 

Among the four conditions that were used in optimization process, the best looking 

crystals grew in 25 % (w/v) PEG 4000, 100 mM Tris, pH 8.5, 50 mM Li2SO4. The crystal 

trays were set up using the sitting drop vapor diffusion method by mixing 1.5 µl sample and 

1.5 µl reservoir and incubated at 18 ºC. The sample mixture contained ~9.6 mg/ml Sirt2Tm, 1 

mM H3 acetylated/thioacetylated peptide and 1.5 mM Ex-527. The peptide substrates used in 

the crystallization process was changed from p53 to H3-Lys116/thioacetylated H3-Lys116 

peptide (thio-H3) in most setups, as H3-Lys116 peptide was used in other biophysical and 

kinetic studies. Long rod shaped crystals of Sir2Tm complex crystals appeared overnight and 

grew to a size of at least 200 µm in one of the dimension. Figure 3.46 shows crystal pictures 

of Sir2Tm grown in the presence of thioacetyllysine containing H3-Lys116 peptide and Ex-

527.  

 Crystals of Sir2Tm were cryoprotected by supplementing the reservoir with 25 % (v/v) 
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ethylene glycol, 1 mM corresponding H3-Lys116 peptide and 1.5 mM Ex-527. After solving 

the crystal structure, we observed density only for the peptide (see below), therefore a 

cryotrapping strategy was employed where the crystals were transferred to the cryoprotectant 

followed by addition of 1 mM ß-NAD+ to the solution containing the crystal and incubated for 

two minutes before flash freezing in liquid N2. In the case of thioacetyllysine condition, the 

soaking was carried on for 5 minutes. As soon as the NAD+ was added, the crystals 

containing acetylated H3-Lys peptide started disintegrating to small needles and were fully 

dissolved around four minutes, whereas for the thioacetyllysine-H3-Lys116 peptide the 

crystals started dissolving only after roughly 3 to 4 minutes and were fully dissolved around 9 

to 10 minutes, perhaps due to the stalling of the enzymatic reaction by the thioalkylimidate 

intermediate. Therefore the crystals were frozen at 1, 2, 3 and 4 minute time intervals for 

acetyllysine peptide and for 5, 8 and 9 minutes for the thioacetyllysine peptide. Since the 

alkylimidate/thioalkylimidate intermediate is formed between the peptide and NAD+, the 

structural rearrangements happening during the reaction and especially during the release of 

products may disrupt the crystal as time progresses, leading to their deterioration.  

3.5.6 Data collection 

 Diffraction data collection was performed as mentioned in section 2.6.3. All the 

crystals were rotated at an oscillation range of 1º and was exposed to X-rays at different time 

intervals: 4 sec exposure and 120 images were collected with starting angle of 80 for 

Sir2Tm/H3-Lys116, 6 sec exposure and 110 images were collected with starting angle of 150 

for Sir2Tm/ligand mix + Ex-527 and 5 sec exposure and 100 images were collected with starting 

angle of 90 for Sir2Tm/thio-H3-Lys116. The unit cell constants, data collection and processing 

statistics are listed in Table 3.3. The crystals diffracted at 1.72 (Sir2Tm + H3-Lys116), 1.90 

(Sir2Tm/ligand mix + Ex-527) and 2.8 (Sir2Tm + Thio-H3-Lys116) Å respectively. The unit 

cell constants (Table 3.3) differed slightly between the two structures, which could have 

arisen due to changes in the crystal packing during cryotrapping. 
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Crystal Sir2Tm/H3-Lys116 
Sir2Tm/ p53 ligand 

mix + Ex-527 
Sir2Tm/H3-thio-

Lys116 

Space group P212121 P212121 P212121 

Unit cell 
constants 

a = 58.1 Å, b = 61.3 
Å, c = 75.7 Å 

a = 46.8 Å, b = 59.9 Å, 
c = 109.0  Å  

a = 45.3 Å, b = 58.2 Å, c 
= 105.8 Å  

Resolution (Å) 47.6 - 1.72 46.8  - 1.9 19.6 – 2.8  

Unique 
reflections 

29180 24821 7264  

<I>/<σ(I)> (a) 18.0 (2.8) 20.7 (3.5)  10.8/(2.3) 

Completeness (a)
 

(%) 
99.3 (99.5) 99.8 (100)  99.3 (99.9)  

Rmerge (%) (a)(b) 4.9 (57.3) 5.3 (41.4)   13.1 (68.3) 

Rmeas (%) (a)(c) 5.5 (64.2) 6 (46.9)  15 (78.5) 

(a) Numbers in parentheses are for the outermost shell. 

(b) Rmerge = Σ (I - <I>)/ ΣI; I is the intensity of an individual measurement and <I> the 
corresponding mean value. 

(c) Rmeas = Σ[N/(N-1)]1/2 (I - <I>)/ ΣI; I is the intensity of an individual measurement and  <I> 
the corresponding mean value. N indicates multiplicity and [N/(N-1)]1/2 the correction factor 
for multiplicity. 

Table 3.3: Data collection and processing statistics for crystals of Sir2Tm 

3.5.7 Structure solution, refinement and modeling 

Structures were solved through Patterson searches as mentioned in section 2.6.4. The 

Patterson search yielded a unique solution with an RFZ (Rotation Function Z-score) of 22.2 

and TFZ (Translation Function Z-score) of 30.4 for Sir2Tm/H3-Lys116 structure, RFZ of 26.6 

and TFZ of 37.7 for Sir2Tm/ligand mix + Ex-527 and an RFZ of 20.4 and 29.3 for Sir2Tm /H3-

Thio-Lys116 respectively. The high RFZ and TFZ indicate an unambiguous correct solution for 

all the structures.  

The overall refinement of all the structures seem to proceed satisfactorily and the Rcryst 

and Rfree values converged well during refinement and stays at a reasonable percentage 

appropriate for the resolution (Table 3.4). In the case of Sir2Tm/H3-thio-Lys116, the 

difference between Rcryst and Rfree seems to be more than that observed for the other two 

structures, this could be due to the movement of the protein molecule in the presence of 

substrates or intermediate. Figures 3.47 shows a representative Ramachandran plot (φ and ψ 

backbone dihedral angles) of one of the solved structures. There were 99.2 %, 98.9 % and 
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98.4 % of residues in the favored region, 0.8 %, 1.1 % and 1.6 % in the allowed region and 

none in the forbidden region for the H3-Lys116, ligand mix+Ex-527 and H3-thio-Lys116 

bound structures respectively, indicating an excellent agreement with stereochemical 

parameters observed for structures with similar resolution. The residues 35-40 had no electron 

density for the H3-Lys116, 37-43 for ligand mix + Ex-527 and 34-44 for the H3-thio-Lys116 

bound structures respectively and therefore were not modeled. This is very much in 

agreement with majority of the crystal structures of Sir2Tm available in the PDB (protein data 

bank) and indicates that these residues, which are part of the co-substrate binding loop are 

flexible and actively participate in catalysis. 

Crystal Sir2Tm/H3-Lys116 Sir2Tm/ ligand mix + 
Ex-527 

Sir2Tm/H3-
thio-Lys116

Refinement 
resolution (Å) 

30.6 - 1.7 40.3 - 1.9 19.6 – 2.8 

Total reflections used 29177 24820 6896 

Protein atoms 1893 1872 1845 

Solvent atoms 
modeled 

141 206 63 

R.m.s.d. bond 
lengths (Å) 

0.01 0.02 0.01 

R.m.s.d. Bond angles 
(°) 

1.3 2.3 1.6 

Average B-factor 
(Å2) 

26.5 25.7 35.5 

Final Rcryst / Rfree (%) 
(a)(b)

19.49/22.69 18.00/22.71 18.67/27.08 

 

(a) R-factor = Σ||Fobs| - |Fcalc|/ Σ|Fobs|, |Fobs| is the observed and |Fcalc| the calculated structure 
factor amplitude. 

(b) Rfree was calculated from 5 % of measured reflections omitted from refinement. 

Table 3.4: Refinement statistics for structures of Sir2Tm 
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Figure 3.47: Representative Ramachandran plot of Sir2Tm crystal structures. 
Ramachandran plot of Sir2Tm + H3-Lys116 peptide structure. There are 99.8 % and 0.2 % 
residues in the favored and allowed regions respectively. 

3.5.8 Analysis of crystal structures of Sir2Tm 

 Initial attempts to co-crystallize Ex-527 and Sir2Tm in the presence of peptide 

substrate resulted in a structure containing only the peptide substrate (Figure 3.48), indicating 

that Ex-527 binding to Sir2Tm requires either both the substrates or products, similar to our 

solution studies.  
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Figure 3.48: Structure of Sir2Tm co-crystallized with peptide substrate and Ex-527. The 
active site of Sir2Tm crystal structure, co-crystallized in the presence of peptide substrate and 
Ex-527 shows density only for the substrate, indicating that binding of the inhibitor may occur 
only in the presence of both the substrates or products. The catalytic Histidine (His 116) and 
phenylalanine (Phe33) which is part of the co-substrate binding loop are shown in magenta. 
The 2Fo-Fc electron density is contoured at 1σ.    

We then tried soaking experiments where the cryoprotectant solution contained both 

the substrates (peptide and NAD+). Initial attempts to model only the substrates (acetyllysine 

and NAD+) or Ex-527 and products (lysine and OAADPR) or the intermediate and Ex-527 

resulted in residual electron densities around the active sites where the ligands bind (Figure 

3.49a). Crystal structure of the human Sirt3 in complex with Ex-527 solved in our laboratory 

(unpublished results) has clearly identified the binding site for the inhibitor. Based on this 

information it could be verified that Ex-527 binds to the same pocket in Sir2Tm, because 

placing the inhibitor at the same site results in electron density that is interpretable (Figure 

3.49 A) whereas refinement of the structure without the presence of the inhibitor results in 

positive difference density that cannot be explained otherwise (Figure 3.49 b). Refinement of 

the structure in the presence of intermediate and Ex-527 (Figure 3.49 c) results in clashes, due 

to the close proximity between the methyl group of the acetyllysine and the part of Ex-527 

that bears the chloride. Nevertheless, there seems to be continuous density between the 

acetyllysine and the ribose ring of NAD+, suggesting that a minor fraction of the structure 

contains the intermediate, but the clash suggests that it is likely not at the same time as when 

the inhibitor is present in the active site of Sir2Tm. Attempts are currently being made to 

account for all the observed electron density using a mixture of ligands (inhibitor, substrates 

or products or intermediate) and carrying out a refinement so that the sum of occupancy of all 
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the ligands is less than or greater than one and avoiding Van der Waals repulsions between 

different ligands. This can perhaps offer better information regarding the contents of the 

active site. 

 

 

Figure 3.49: Sir2Tm complex crystal structure appears to contain a mixture of ligands. 
A) Refinement with products (LYS and OAM (OAADPr) indicates incomplete fit for 
OAADPr and clashes between the amino group of Lys and acetyl group of OAADPr. 

 

 

 

 

B) Refinement with the substrates (acetyllysine (ALY) and NAD+) indicates an incomplete fit 
for the NAM part of NAD+ and a clear positive difference density (green) for Ex-527 near the 
“C-pocket”. 
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C) Refinement with the alklyimidate intermediate (INT) (40 % occupancy) and Ex-527 35 % 
occupancy), gives rise to clashes between the two, indicating that they may not be present at 
the same time in the active site. 2Fo-Fc (blue) maps are contoured at 1σ and Fo-Fc maps are 
contoured at ±3σ. 

When crystals grown in the presence of H3-thio-Lys116 peptide and Ex-527 were 

soaked with NAD+ to form the more stable thioalkylimidate intermediate, good electron 

density was observed for the thioacetyllysine and some residual density was observed for the 

intermediate or the NAD+ (Figure 3.50a). Refinement of the structure with varying 

occupancies for the substrate and the intermediate, seem to indicate that the catalytic site 

might be occupied with 60 % of the substrate and 40 % of the intermediate, nevertheless no 

density was observed for Ex-527 (Figure 3.50b). This combined with the observation for the 

acetyllysine substrate and NAD+ soak indicates that the inhibitor and the intermediate may not 

be present in the active site at the same time, but the closure of the co-substrate binding loop 

and or the product might be required for efficient binding of the inhibitor to Sir2Tm.   
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Figure 3.50: Crystal structure of Sir2Tm and thioacetyllysine. A) Refinement of the 
crystal structure of Sir2Tm soaked with thioacetyllysine peptide, Ex-527 and NAD+ indicates 
well defined density for the substrate (TLY) and additional density that may correspond to the 
intermediate. B) Refinement of the structure with 60 % occupancy for the substrate (TLY) 
and a 40 % occupancy for the intermediate (FZN) indicates that the crystal contains mostly 
substrate and a small fraction of either the intermediate or NAD+. No density was observed 
for the inhibitor. The 2Fo-Fc maps (blue) were contoured at 1σ and Fo-Fc maps (green = 
positive and red = negative) were contoured at ±3σ. 
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3.5.9 EX-527 appears to bind to the “C-pocket” of Sir2Tm   

 Structural comparison between Sir2Tm partially bound to Ex-527 and 

intermediate/products and Sir2Tm bound to the peptide alone show very little difference 

between the two with a Cα RMSD (Root Mean Square Deviation) of 0.4 Å (Figure 3.51), 

indicating that the protein does not undergo major conformational changes in the presence of 

the inhibitor. Even though the inhibitor is present with less than full occupancy, certain 

conclusions can still be drawn about the binding of the inhibitor. The major differences exist 

in the co-substrate binding loop. The peptide and ADPR part of NAD+ are bound in the 

substrate binding cleft between the Zinc binding domain and the Rossmann fold domain as 

seen in other substrate boundSir2Tm structures available in the PDB (2H4F and 2H4H) (Hoff 

et al., 2006). 

Figure 3.51: Binding of Ex-527 to Sir2Tm does not disrupt its overall structure. An 
overlay of crystal structures of Sir2Tm bound to ligand mix/Ex-527 (blue) (1.9 Å) and H3-
Lys116 peptide (red) (1.72 Å) indicates overall similarity between the two. The blowup shows 
the co-substrate binding loop and residues that differ most between the two structures. 

 The inhibitor Ex-527 appears to bind to the so called C-pocket of Sir2Tm where the 

NAM of the NAD+ ring was shown to bind (Hoff et al., 2006). The cyclohexene ring and the 

carboxamide part of Ex-527 bind in the C-pocket with the carbxamide group oriented in the 

same direction as the carboxamide of NAM, as shown in figure 3.52. A series of hydrogen 

bond and Van der Waals interactions occurs between Ex-527 and the protein. The 

carboxamide part of Ex-527 interacts with residues Ile30, Met71, Asn99, Ile100 and Asp101, 
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the carbazol (B-ring) and the aromatic benzene ring (containing the Chlorine and termed A-

ring) are nestled in a pocket mainly containing hydrophobic residues Phe48, Ile159, Val160 

and Hil116 (the catalytic residue) and Gln98. The Chlorine of the A-ring is very close to and 

can potentially interact with Phe48, Ile159 and Val160, although the angle between the 

Chloride and the carbonyl oxygen of Val160 (~97 º) might not be suitable for a halogen bond 

interaction (Metrangolo et al., 2008). The A-ring and the B-ring occupy the hydrophobic 

pocket that extends deep into the protein and henceforth will be called as ECP (“Extended C 

Pocket”). As mentioned above, the binding needs Sir2Tm in the “closed conformation”, 

because only in this conformation, the co-substrate loop moves closer to Ex-527, leading to 

contact between Phe33 (which is part of the co-substrate loop) and the B-ring of Ex-527. 

Since the inhibitor needs either the reaction intermediate or the products to bind Sir2Tm, it is 

also possible that the inhibitor interacts with the ADPr part of the intermediate/product, these 

interactions cannot be verified in the current structures described here, but studies are in 

progress to obtain better structural information regarding the binding and interactions of Ex-

527. 

 

 

Figure 3.52: Ex-527 may interact with several residues of Sir2Tm. Ex-527 (represented as 
ball and stick) forms hydrogen bonds (black dashed lines) with few residues of Sir2Tm and a 
water molecule (shown as red balls) located near the binding pocket. The Phenylalanine (Phe 
33) which forms part of the co-substrate loop is close to Ex-527 and may be involved in 
orienting the inhibitor towards the ECP. The catalytic Histidine (His 116) is also indicated. 
The A, B and C rings are indicated in magenta. 
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4. Discussion 

 Reversible lysine (de)acetylation, first described for histone proteins, is now known to 

be a widespread post-translational modification, with over 6800 known mammalian 

acetylation sites in different proteins and still counting making the proteins involved in these 

modifications all the more important to characterize. Although Histone deacetylases were the 

first set of enzymes discovered to deacetylate lysine residues, the identification of Sirtuins as 

PDACs created a paradigm shift, because Sirtuins require NAD+ as a co-substrate to 

deacetylate lysine residues and this coupling has been proposed to link changes in cellular 

energy levels to deacetylation activity of Sirtuins, which would indicate them as metabolic 

sensors (Schlicker et al., 2008).  

4.1 Purification and domain architecture of Sirt1 

 To analyze the role of N and C-terminal domains of Sirt1 towards its activity and 

structure, we expressed and purified several constructs of Sirt1 containing different regions. 

Human Sirt1 can be overexpressed abundantly in a stable and active form in a prokaryotic 

system such as E.coli without major problems such as host toxicity, insolubility or a need for 

PTMs, although it is interesting to note that mouse Sirt1 can only be expressed in Rosetta 2 

(DE3) E. coli strain which contains tRNAs for rare codons, implying codon bias specifically 

in the mouse Sirt1 gene. The purification of Sirt1 turns out to be difficult when compared to 

other Sirtuins and required several purification and optimization strategies. Concentration of 

Sirt1 before complete purification (that is prior to SEC) leads to aggregation with a decrease 

in activity. This problem was overcome by employing a strategy where the affinity purified 

protein was concentrated minimally and loaded to an SEC column to remove E. coli 

contaminants and aggregates. It is possible that concentration of Sirt1 prior to SEC leads to 

aggregation due to the exposure of hydrophobic parts of the protein that can interact with E. 

coli proteins. CD analysis on full length Sirt1 indicates that the protein possesses secondary 

structure, but the amount of repetitive secondary elements (α-helices and β-strands) is higher 

than what is normally observed, example for other Sirtuins. The presence of 

unstructured/flexible parts most likely stems from the N and C-terminus of Sirt1 as indicated 

by disorder prediction programs (XtalPred and PHYRE), which are shown to be involved in 

binding to partner proteins and regulate its activity (Kang et al., 2011; Kim et al., 2007; Kim 

et al., 2008; Pan et al., 2011a). The presence of such flexible regions is likely the reason for 

the apparent oligomeric behavior of Sirt1 in SEC, as unstructured regions can often lead to 

extended shape for proteins and influence their migration in SEC. This is also supported by 
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our sedimentation velocity centrifugation and EM analysis where Sirt1 seems to behave as a 

monomer in the physiologically relevant concentrations. Moreover, the construct comprising 

only of the catalytic core (229to516) behaves as a monomer in SEC (Figure 3.5 above), 

providing further evidence that unstructured regions of Sirt1 at the N and C-terminus are 

responsible for apparent differences seen between SEC and AUC experiments.  Similar to our 

findings Pan et. al. (Pan et al., 2011a)  recently reported that a Sirt1 construct containing the 

catalytic core (160-665) behaves as a monomer. We thus conclude that Sirt1 is most likely a 

monomer in solution. 

 The observation that nucleic acids co-purify with Sirt1 during the affinity purification 

step and the fact that Sirt1 is predominantly localized to the nucleus make it tempting to 

speculate on an interaction between Sirt1 and nucleic acids. Programs that predict binding 

interactions between protein and RNA/DNA such as BindN (http://bioinfo.ggc.org/bindn/) 

and DP-Bind (http://lcg.rit.albany.edu/dp-bind/) in fact suggest potential binding at the N-

terminus, especially for RNA with residues Lys233, Arg234 and Lys237 of Sirt1. ChIP 

(chromatin immunoprecipitation) assays show Sirt1 to be co-localized at the promoter region 

of several genes, indicating the possibility of interaction between Sirt1 and DNA, although 

this localization can also be due to protein/protein interactions. Sirt1, for example is known to 

deacetylate several transcription factors and histones. Our in vitro studies confirm that RNA is 

dominant in the co-purified nucleic acid mixture. Since we were not able to observe any direct 

binding when pure Sirt1 was incubated with either RNA or DNA, and no change in activity of 

Sirt1 in the presence of nucleic acids was observed, it is possible that the co-purification was 

either an artifact or other E. coli contaminants present along with Sirt1 bind to nucleic acids. 

However, we might have also not tested the right type of RNA, and further thorough studies      

with the co-purified nucleic acids will have to reveal whether Sirt1 binds RNA. 

4.2 Sirt1 modulation by resveratrol 

 Using the different Sirt1 constructs, we were also able to show that the catalytic 

domain of Sirt1 is sufficient for its activation by polyphenols such as resveratrol and 

piceatannol, in contrast to a previous report claiming involvement of the N-terminus (Milne et 

al., 2007). One possible explanation for these two different results could be due to the overall 

activity and stability of the different protein samples used. Our assays suggest that the activity 

of Sirt1 is higher in presence of the termini, similar to a recent report by Pan et. al (Pan et al., 

2011a) and Milne et. al. report (Milne et al., 2007). The basal activity seems to correlate, 

however, with the stability of these constructs (Milne et. al. and our data) indicating that the 
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termini are primarily important for Sirt1 stability. Nevertheless, all the constructs were 

equally activatable by resveratrol implying that the catalytic domain of Sirt1 is sufficient for 

its activation and the N-terminus might indirectly support resveratrol activation by stabilizing 

Sirt1. 

   Activation of protein or enzymatic function due to small molecules is uncommon 

compared to inhibition. When Sirt1 was found to be stimulated by resveratrol, it opened up an 

exciting opportunity for therapy. The ability of resveratrol to activate Sirt1 has been well 

documented (Howitz et al., 2003; Wood et al., 2004), but the mechanism and relevance has 

been questioned due to conflicting reports.  

Sirt1 activation by resveratrol was shown to require a fluorophore modification of the 

substrate on the C-terminus and no activation was observed when a native peptide substrate 

was used (Beher et al., 2009; Borra et al., 2005; Kaeberlein et al., 2005a; Pacholec et al., 

2010). We were also able to show that resveratrol binds directly to Sirt1, which suggests that 

the mechanism of resveratrol modulation should also involve the protein. Our findings show 

that the modulating effects of resveratrol is indeed substrate specific; it does not require, 

however, a fluorophore modification but rather depends on the local substrate sequence. This 

also explains data not only from previous activity assays (Kaeberlein et al., 2005a) but also 

the observation that resveratrol imparts positive effects in Ceanorhabditis elegans in a Sir2 

dependent manner, which is overlapping but not identical to yeast Sir2 effects (Viswanathan 

et al., 2005). This leads to the conclusion that in order to analyze resveratrol specific 

modulation of Sirt1 it is important to consider the effects based on the substrate used, i.e. the 

effect depends on the substrate-modulator pair. This conclusion can be generalized for any 

small molecule employing the same binding site/modulation mechanism and we indeed find a 

similar trend in the case of the resveratrol unrelated  small molecule SRT1720, which was 

also shown to both activate, inhibit or not affect Sirt1 (Dai et al., 2010; Milne et al., 2007; 

Pacholec et al., 2010). It is interesting to note that array results based on SRT1720 yielded 

substrate-modulator pairs that were different from the resveratrol results, clearly showing that 

each compound has its own set of compatible substrate sequence for activation. Our results 

form a basis for further studies mediated towards clarifying which of the identified resveratrol 

sensitive sites contribute to its in vivo effect. 

Based on our observation that the catalytic core of Sirt1 is sufficient for its modulation 

by resveratrol, it is tempting to speculate that resveratrol might influence other Sirtuin 

isoforms as well, which could again depend on the substrate-modulator pair. Human Sirt1 is 



4. Discussion   96

 

implicated in several diseases such as cancer, diabetes, neuronal disorders (Haigis and 

Sinclair, 2010), making it an attractive drug target. Small molecules modulators of Sirt1 are in 

clinical trials to treat type 2 diabetes (Milne et al., 2007), even though their exact mechanism 

of action is still debated. We were able to show that resveratrol modulates the activity of Sirt1 

in a substrate sequence specific manner. Although resveratrol and Sirt1 interaction has been 

extensively studied both in vitro and in vivo, it is a poor choice as a drug, because of its low 

solubility and bioavailability. The array experiments described here will allow us in testing 

and identifying different compounds that are not only more potent and specific to Sirt1 but 

also possess better pharmacological properties. This type of substrate-modulator pair could 

serve as excellent tools for Sirt1 specific drug development that preferentially targets 

particular Sirt1 modulated system such as histones and chromatin or a disease state which 

involves Sirt1.   

4.3 Crystallization of Sirt1 

 Structure aided drug discovery efforts, which have been used successfully for 

identifying lead compounds for several proteins including Sirt2 (Schlicker et al., 2011), are 

hampered in the case of Sirt1 by the unavailability of structural information. In spite of 

several crystallization attempts, diffraction quality crystals of Sirt1 were not obtained. Due to 

high flexibility in the N and C terminal domain regions of Sirt1, efforts to solve the crystal 

structure of Sirt1 should focus further on the catalytic core with variable N and C-terminal 

extensions which might be more amenable for crystallization, an approach started in this 

thesis. Although structural information obtained from this type of construct would not 

highlight the unique features of Sirt1, it could still be used to gain valuable insights on how 

small molecules bind to its catalytic core and modulate its activity. Further efforts to obtain 

the crystal structure of full length Sirt1 could focus on overexpression and purification from 

insect/mammalian cells, because some PTMs occur only in eukaryotic cells and this may 

make the protein more amenable for crystallization. Also, physiological partner proteins of 

Sirt1 binding to the termini and stabilizing them could be used to co-crystallize Sirt1, as tried 

here with AROS. Co-crystallization attempts in the presence of non-physiological partner 

proteins, such as DARPins (Designed Ankyrin Repeat Proteins) (Huber et al., 2007) or 

complexes with substrate-modulator pairs can also be attempted, which may “lock” the 

protein in a stable conformation leading to crystals. Nevertheless, our homology model of 

Sirt1 can at least be used to analyze the residues involved in substrate binding (via 

electrostatic surface potential) to understand its substrate preferences. Moreover, other Sirt1 
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homologs such as Sir2Tm, which are easy to purify and crystallize can serve as Sirt1 models 

and aid in structure based drug discovery efforts as demonstrated by our Ex-527 study. 

4.4 Zinc is essential for the structural stability and activity of Sirtuins 

 Sirtuins contain a Zn2+ ion coordinated typically by four Cysteine residues. The Zinc 

binding domain of Sirtuins is part of the conserved catalytic core but varies among the 

Sirtuins in detail, both at the structural and sequence level. Unlike other HDACs, Sirtuins do 

not use Zinc for catalysis. Zinc in Sirtuins either is required for their structural stability or 

function in an indirect way. Our studies indicate that Sirt3 has an absolute requirement for 

Zinc for its stability. The insolubility of the Cysteine mutants indicates that the Zinc ion is 

most likely required during protein folding and plays an important role in the structure of 

Sirt3. EDTA has a high affinity towards Zinc (Kd ~ 10-16 M) and can easily strip Zinc from 

Zinc binding motifs in transcription factors (Kd of ~ 10-9-10-11 M) (Nyborg and Peersen, 

2004). In our experiments, up to 2 mM EDTA was not able to affect the function (and thereby 

stability) of Sirt3 whereas 1,10-phenanthroline (a even more potent Zinc chelator) readily 

precipitated the protein, indicating an unusually high affinity for Zinc among the Sirtuins in 

comparison to other Zinc binding proteins. In a recent study Chen et. al (Chen et al., 2010a) 

also reported that Sirt1 retained activity even in the presence of 10 mM EDTA, corroborating 

our findings. It is interesting to note that the Cysteine to Serine mutants of Sirt1 were stable 

during expression and were bound to Zinc even after purification, but were inactive (Chen et 

al., 2010a). Based on these results it is tempting to speculate that Zinc binding might be 

influenced by the termini of Sirtuins (highly variable among Sirtuins) and the Zinc binding 

domain may also participate in events such as protein-protein interactions thereby 

contributing to isoform specificity among Sirtuins. 

4.5 Sirt5 requires unusually high amount of NAD+ for its deacetylase activity 

Mammalian Sirtuins are localized in different organelles of the cell and deacetylate a 

variety of proteins. In spite of this, there are very few substrates identified for the 

mitochondrial isoform Sirt5. Sirt5 knockout mice did not show a clear phenotype compared to 

their control littermates, whereas Sirt3 knockout mice showed remarkable hyperacetylation of 

mitochondrial proteins (Lombard et al., 2007). A plausible reason for this finding could be 

that under normal conditions, the basal activity of Sirt5 might be much lower compared to its 

mitochondrial homolog, Sirt3 and therefore a Sirt5 knockout mouse may not show 

hyperacetylation. Based on our findings that high amounts of NAD+ is required for decent 
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Sirt5 activity, it is tempting to speculate that Sirt5’s deacetylation activity may be coupled to 

the amount of NAD+ present in the mitochondria at a given time. Normal levels of NAD+ in 

the mitochondria has been estimated to be ~ 250 µM, at which time there is high levels of 

deacetylation by Sirt3, whereas Sirt5 dependent deacetylation may be negligible in 

comparison. In the case of stress (CR, apoptosis, etc.) there is a chance for NAD+ levels to 

rise, thus leading to increased deacetylation levels also due to Sirt5. Although the 

physiological levels of NAD+ will never reach the high levels reported here, the apparent 

affinity between NAD+ and Sirtuins in the presence of substrate protein is lower in general, 

indicating that NAD+ could act as a metabolic sensor and lead to physiological changes in the 

mitochondria in a Sirt5 dependent manner. An alternative explanation for the high amounts of 

NAD+ required for Sirt5’s activity could be due to the technical limitations of the assay itself 

(ELISA and Fluorescence based assays), since a more refined MS based assay (Fisher et. al. 

manuscript submitted to chemical biology) indicated that NAD+ in fact has better binding 

affinity for Sirt5 (~ 0.2 mM) in the presence of peptide substrate. It is also possible that the 

apparent affinity of NAD+ towards Sirt5 may also be influenced by the protein/peptide 

substrate used in the assay. Recently Du et. al. (Du et al., 2011) reported that Sirt5 is a 

desuccinylase and a demalonylase and exhibits robust activity towards succinylated and 

malonylated lysine residues and Sirt5 deletion mice exhibited increased levels of 

succinylation in CPS1. It was concluded that the architecture of Sirt5 in the acyl pocket 

confers this type of activity to the enzyme. It would still be interesting to know if during 

extreme cellular conditions, whether NAD+ levels can rise or certain PTM events can occur 

that can increase the affinity between Sirt5 and its substrates (acetyllysine and NAD+), thus 

leading to increased Sirt5 dependent deacetylation.  

4.6 Sirt5 is a NAM insensitive deacetylase among the Sirtuin family 

 NAM is a known physiological inhibitor of Sirtuins. Our results show that Sirt5 

appears to be insensitive to NAM at physiological levels (now confirmed in our group with 

the more sensitive MS assay (Fischer et. al. manuscript submitted)), indicating that NAM can 

regulate Sirtuins in an isoform specific manner, as different Sirtuins respond differently to 

NAM. This isoform specific regulation by NAM could also be related to the localization of 

Sirtuins, as the nucleolar Sirt7 also seems to be insensitivie to NAM, indicating that 

regulation between different Sirtuin classes can occur naturally, which could prove beneficial 

at various times during the cell cycle and could also be influenced by external events such as 

stress, pathogen attack etc. The highly conserved Asp residue among mammalian Sirtuins 
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which is part of the co-substrate binding loop is replaced by a Thr in the case of Sirt5. 

Mutating this Thr to Asp (T69D) seems to decrease the deacetylase activity of Sirt5, but still 

confer insensitivity towards NAM, indicating that the overall NAD+ binding loop and the 

NAM binding pocket (or orientation of NAM) are involved in the regulation by NAM. In 

conclusion, this lack of inhibition by NAM could very well be an interesting mechanism of 

mitochondrial regulation and can guide towards developing Sirt3 specific small molecule 

therapeutics towards acetylated protein substrates that does not affect Sirt5 dependent 

deacetylation.  

4.7 Expression, purification and crystallization of Sirt7 

 In order to investigate the structure and function of Sirt7, several constructs of Sirt7 

were cloned, expressed and purified. The majority of the process was performed at DPF in 

collaboration with Dr. Tim Bergbrede and colleagues using high-throughput technologies in a 

semi-automated fashion. The overall purity and yield of different Sirt7 constructs were quite 

satisfactory. In order to identify the best buffer and salt conditions for further studies on Sirt7, 

thermal denaturation shift assays were performed using varying buffer and salt conditions. 

The assay revealed that Sirt7 is more stable at a basic pH and with a salt concentration of at 

least 50 mM. Due to the basic nature of Sirt7 (calculated pI ~ 8.9 or above), a cation exchange 

chromatography was used for further purification from E. coli proteins, yielding Sirt7 with 

higher purity that was used in crystallization trials. An additional protein specie obtained after 

ion exchange chromatography was analyzed using MS and N-terminal sequencing and 

identified as a degradation/proteolysis product. The new N-terminus starts just before the α3 

helix of the typical secondary structure topology of Sirtuins (supplemental figure S2), which 

is already located inside the conserved catalytic core. In order to overcome stability issues, 

based on the sequence alignment and bioinformatic predictions several new constructs were 

planned which consisted of residues 98-338, 98-342 and 98-356. Although several 

crystallization trials were pursued to solve the crystal structure of Sirt7, no diffraction quality 

crystals were obtained. Several new constructs and crystallization trials were planned to 

crystallize Sirt7, but so far without success. This could indicate that Sirt7 requires additional 

factors such as PTMs, interaction protein partners, substrates/products or small molecule 

regulators to make it more amenable for crystallization.  
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4.8 Sirt7 Phosphorylation at Thr224 increases its activity 

 Among all the mammalian Sirtuins, Sirt7 is perhaps the least characterized isoform in 

terms of structure, substrate preference and regulation. Sirt7 overexpressed in E. coli shows 

weak deacetylase activity against FdL substrates when compared to Sirt1 for example, 

whereas when insect cell overexpressed Sirt7 was used, better deacetylation was observed 

with FdL substrates, this could indicate that Sirt7 is different to other human Sirtuins in a way 

that expression of properly folded, active Sirt7 requires eukaryotic expression systems. 

However, it might also indicate that PTMs might play a role in the activity of Sirt7. In fact it 

has been shown that Sirt7 is phosphorylated by the CDK1-cyclin B pathway, although the 

exact residue phosphorylated was not identified (Grob et al., 2009). Our MS results on the 

insect cell overexpressed Sirt7 shows that Thr224 is indeed phosphorylated, to our knowledge 

this is the first time a phosphorylation/PTM site has been identified for Sirt7. Threonine to 

Aspartate mutation is an established procedure used to mimic phosphorylation state due to 

structural similarities between Aspartate and phosphorylated Threonine. Our attempts to 

express T224D mutants in E. coli to investigate whether the mutants conferred activity to 

Sirt7 resulted in no protein expression. This could possibly indicate that the phosphorylation 

mimic imparts better activity to Sirt7 resulting in toxicity to E. coli and therefore leading to 

protein degradation immediately during expression. In conclusion, we have shown that the 

activity of Sirt7 is influenced by PTMs and new strategies are being planned to crystallize 

Sirt7. 

4.9 Sir2Tm as a model system for studying mammalian Sirt1 

 Mammalian Sirtuins play crucial roles in various processes ranging from cellular 

housekeeping to disease states (Haigis and Sinclair, 2010; Lavu et al., 2008). Structural 

elucidation of all the seven mammalian Sirtuins would be very useful in finding drugs targets 

that can selectively modulate each Sirtuin, leading to a targeted approach towards diseases 

caused by a particular isoform. The lack of structural information on mammalian Sirtuins; 

Sirt1, Sirt4 and Sirt7 presents a challenge on the rational level, towards identifying and 

characterizing small molecules that target only these isoforms and modulates them against 

specific substrates. In spite of this, there are several small molecule modulators available for 

Sirt1 (Blum et al., 2011) with low specificity and potency (baring a few) compared to already 

marketed therapeutics, thus necessitating better drug targets. To overcome the lack of 

structural information on Sirt1, we have used Sir2Tm as a model system for its structural 

characterization due to its ease of purification and crystallizability. Numerous crystal 
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structures of Sir2Tm are available in the PDB and are in fact used as model systems for 

studying the catalytic mechanisms and regulation of Sirtuins (Avalos et al., 2005; Avalos et 

al., 2004; Hoff et al., 2006). Until the structure of Sirt1 is available, it would be beneficial to 

structurally characterize Sir2Tm with small molecules that can modulate both Sirt1 and 

Sir2Tm equally. 

4.10 Mechanism of Sirtuin inhibition by Ex-527 

 The crystal structures of Sir2Tm bound partially to Ex-527 and thioacetyllysine offers 

possible mechanistic insights into the inhibition of Sirtuins by Ex-527. The catalytic 

mechanism of Sirtuins involves the formation of the alkylimidate intermediate and the release 

of NAM. The overall structure of Sir2Tm bound to Ex-527/alkylimidate is similar to the 

structure with both the substrates bound (PDB id H4F (Hoff et al., 2006), except for the co-

substrate binding loop. The Phe33 which plays a role in formation of the alkylimidate 

intermediate and shields the intermediate from attack by NAM, is present in the closed 

conformation in both the structures. Despite this, there is a striking difference in the 

orientation of the phenyl ring. The phenyl ring of Sir2Tm bound to Ex-527 is almost 

perpendicular (~ 94 º) to the phenyl ring of 2H4F (Figure 4.1) and is displaced by ~ 2.2 Å 

away from the phenyl ring of 2H4F structure, towards the direction of the C-pocket. This 

could be due to the fact that the NAM moiety of NAD+ is no longer present near the phenyl 

ring to offer steric hindrance. Since the cyclohexene ring of EX-527 is buried more deeper 

into the C-pocket, it may provide more freedom for the phenyl ring to move into such a 

position. Thus the stabilization of the inhibitor could in part be due to the closure of the co-

substrate binding loop and the movement of Phe33 leading to a trapped inhibitor which 

prevents product release thereby rendering the enzyme inactive. Although the structure 

presented here does not have full occupancy for the inhibitor, the crystal structure of Sirt3 in 

complex with the inhibitor clearly shows that the inhibitor is bound to the same site in both 

the proteins, thereby allowing us to make reasonable conclusions regarding the inhibitor 

binding site in Sir2Tm. Because the inhibitor is close to the substrate or product molecules 

(close proximity between the A and B rings of Ex-527 and methyl group of acetyllysine and 

ribose ring) it is also possible that there is not enough room in the active site for the release of 

the products or reentry of fresh substrates, making the enzyme inactive. We have also shown 

that there exist another mechanism by which Ex-527 can inhibit Sirtuins where the IC50 is in 

the micromolar range (example 60 µM for Sirt3) using Sirt3 as a model system. In this case, 

Ex-527 binds to the same exact ECP as in the case of Sir2Tm, but the NAD+ is positioned in a 
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different conformation, where the NAM moiety of NAD+ is pointing towards the acetyllysine 

binding cleft and thereby prevents the binding of the protein/peptide substrate. In the case of 

Sirt3 also, the co-substrate binding loop is in the close conformation, which most likely 

prevents the exit of the inhibitor. 

 

Figure 4.1: Structural comparison of the active sites of Sir2Tm in the presence and 
absence of Ex-527. An overlay of Sir2Tm structures bound partially to Ex-527 and peptide 
substrate/NAD+ (PDB id: 2H4F) indicates that the overall architecture of Sir2Tm active site 
remains unchanged when Ex-527 is bound. In both the structures the co-substrate loops exist 
in the closed conformation. The major difference lies in phenyl ring of Phe33. In the presence 
of Ex-527 the phenyl ring moves 2.2 Å away and is almost perpendicular to Phe33 without 
Ex-527. The phenyl ring also contacts Ex-527. The residues corresponding to Ex-527 bound 
structure are represented as gray cylinders and residues corresponding to 2H4F are 
represented as green cylinders. Aly stands for acetyllysine.  

4.11 Selectivity of Ex-527 towards Sirtuins 

 The residues involved in binding of Ex-527 to Sir2Tm are very similar in Sirt1 and 

other mammalian isoforms (Supplemental figure S1). In spite of this, Ex-527 selectively 

inhibits Sirtuin isoforms. Sirt1 and Sir2Tm are very well inhibited by Ex-527 (IC50 in the 

nanomolar range) whereas Sirt3 and Sirt5 show moderate and no inhibition respectively. The 

crystal structures of Ex-527 bound to Sir2Tm and Sirt3 indicate that the inhibitor binds to the 

same pocket of the protein (the ECP) and is the vicinity of similar residues, with one 

exception being the Met71 of Sir2Tm which contacts the cyclohexene ring that bears the 
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carboxamide (C-ring) where as the Sirt3 equivalent residue is Leu199. This still does not 

explain the selectivity of Ex-527 towards Sirt2Tm/Sirt1 and Sirt3 since Sirt1 also does not 

contain a Met (instead it contains Ile) at this site, moreover the residues surrounding Met71 in 

Sir2Tm is part of a helix that connects the Zinc binding domain and the Rossmann domain 

and a similar architecture exists in both Sirt1 and Sirt3. A possible explanation for the 

selectivity of Ex-527 towards Sirtuins could arise because of the co-substrate binding loop, as 

it appear to be required for binding and docking of the inhibitor at the ECP. Although this 

loop is conserved among all the Sirtuins, subtle differences existing between the neighboring 

residues surrounding this loop, and dynamics of this loop may influence EX-527 binding to 

the protein. In Sirt5, the Arg105 which is part of the loop was shown to confer partial 

insensitivity for Sirt5 towards NAM (Fisher et. al. submitted), interestingly Sirt5 is also 

insensitive to EX-527. Along these same lines, it would also be interesting to test if other 

NAM insensitive Sirtuins, such as Sirt7 is insensitive to EX-527. Another possible 

explanation towards isoform selectivity for Ex-527 inhibition could be due to the subtle 

differences on residues surrounding the ECP, as small changes in the length, size, charge of 

the residues etc. can alter the bonding and geometry of binding (Figure 4.2). 

 

Figure 4.2: Comparison of residues surrounding Ex-527 from different Sirtuin isoforms. 
Superposition of Sirtuins from different isoforms on Sir2Tm bound to alkylimidate or Ex-527 
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indicates an overall similarity between the binding site residues, yet subtle differences exist 
among the isoforms. Residues that differ among the isoforms are labeled in their respective 
colors. 

4.12 Insights for drug development 

 Despite the availability of structural information from various Sirtuin homologs, the 

only crystal structure available that shows binding of a pharmacologically active small 

molecule to a Sirtuin is that of Sirt5 bound to Suramin (PDB id 2NYR (Schuetz et al., 2007). 

Ex-527 is one of the best characterized small molecule inhibitor of Sirtuins with high potency 

and selectivity. Our structural analysis on Sir2Tm shows binding details of Ex-527 to a 

Sirtuin at atomic level. Our structural and biophysical characterizations reveal Ex527’s 

binding site and a probable mechanism of inhibition. Since Sir2Tm is inhibited similar to 

Sirt1, we conclude that they may share a similar mechanism of inhibition by Ex-527. Our 

results confirm the speculations of Napper et. al. (Napper et al., 2005), who proposed based 

on kinetic studies, that Ex-527 binds to Sirtuin near the C-pocket which accommodates NAM 

released after the formation of the alkylimidate intermediate. Ex-527 binds to the hydrophobic 

core of the protein which extends beyond the C-pocket which we call the ECP, but is 

incompatible with intermediate, which could indicate that product dissociation is inhibited. 

Sirt2 has been shown to be selectively inhibited by AGK2 in the sub-micromolar level 

(Outeiro et al., 2007). The authors proposed an inhibition mechanism which involved the 

ECP, therefore we also call compounds such as Ex-527 which binds to ECP as ECS 

(Extended C-Site inhibitors). The ECP serves as an excellent scaffold for identifying potential 

isoform selective Sirtuin inhibitors, due to the subtle differences existing between Sirtuins in 

and around this pocket. Similar to our studies on Sirt2 (Schlicker et al., 2011), the ECP can be 

exploited to perform docking calculations on Sirtuins whose structure is available, in order to 

screen for novel selective inhibitors. Our method of cryotrapping the inhibitor during freezing 

the protein crystal can also be adopted as a general strategy for structural elucidation of other 

Sirtuin modulators, because similar to Ex-527 other small molecules might also need the 

enzyme in the intermediate or product complex form for efficient binding. Our results also 

allow us to use EX-527 as a handle and synthesize more potent, soluble and isoform specific 

inhibitors of Sirtuins, which can serve as potential therapeutics. It would also be useful to 

synthesize Sirtuin inhibitors which can be targeted to a particular organelle such as 

mitochondria or nucleus for selective inhibition of different isoforms (Rajendran et al., 2010).  
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4.13 Outlook 

 The studies performed using differ Sirtuins offer various interesting conclusions and 

exciting further avenues for research. The predominantly nuclear isoform Sirt1 is the largest 

member among the mammalian Sirtuins and offers plenty of potential for further 

characterization. It would be interesting to investigate if the sequence specific ability of 

resveratrol to modulate the activity of Sirt1 at the peptide level could be seen in the protein 

level and finally in vivo. The acetylome-chip array we established provides an excellent 

platform to test new Sirt1 modulators that may be both physiologically and pharmacologically 

relevant. Even though the physiologically relevant thyroid hormones showed no modulation 

on Sirt1, it would still be interesting to test them on the array, because similar to resveratrol its 

modulation of Sirt1 may also depend on the substrate sequence. Various attempts to 

crystallize Sirt1 should be pursued. For example, preparation of complexes either with 

physiologically relevant partner proteins or non-physiological interacting partners such as 

DARPins, could be used in crystallization attempts and newly identified substrate-modulator 

pairs can be used in crystallization trials. Structural information can offer valuable insights 

into the architecture of Sirt1 and help us identify how the protein differs from its isoform, 

especially at the termini. It would also be interesting to map the Sirt1 residues involved in 

resveratrol binding, for example through MS based H/D exchange studies followed by 

mutational studies on the identified residues to access acces their influence on resveratrol 

binding. 

One of the most important step in understanding the function and regulation of Sirt7 is 

to obtain its crystal structure. Various strategies can be pursued to crystallize Sirt7. Since 

phosphorylation has been identified to play a role in Sirt7’s activity, it would be interesting to 

overexpress and purify phosphorylation mimics from E. coli and use it for crystallization 

trials, because it is well known that phosphorylation can alter the structure of a protein and 

this might lead to a more stable form of Sirt7 leading to crystallization. Alternatively, Sirt7 

overexpressed and purified from eukaryotic expression systems such as insect cells or 

mammalian cells can also be used in crystallization trials. Identification of better peptide 

substrates and modulators of Sirt7 using the acetylome chip (similar to Sirt1) may reveal 

substrate preferences and substrate/modulator pairs for Sir7, which could be used to further 

characterize and crystallize Sirt7. Similar to Sirt5, which was recently shown to possess 

desuccinylase and demalonylase activity, it is possible that Sirt7 also has preference for a 

different substrate type, which could explain its poor deacetylase activity. Identifying such 
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new substrate types for Sirt7 would also be interesting. 

 Ex-527 binding to Sirtuins characterized in this study can be further pursued using 

several structural and biochemical experiments. Co-crystallization or soaking experiments of 

Sir2Tm in the presence of products would offer further information regarding the conditions 

necessary for binding of Ex-527 to Sir2Tm. Small molecules identified from docking 

calculations performed using the ECP scaffold of Sir2Tm or Sirt3 as template can be 

validated on Sirt1 to identify better inhibitors in terms of selectivity, physical and chemical 

property. Investigating the role of the co-substrate binding loop through mutational studies 

may also offer explanations as to the selectivity of Ex-527 towards Sirtuins which can then be 

exploited for better therapeutics. 
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5. Abstract 

 Sirtuins are NAD+ dependent protein deacetylases involved in regulation of 

metabolism, age related diseases and are suggested to mediate lifespan extending effects of 

calorie restriction. Mammals contain seven Sirtuin isoforms with various cellular localizations 

and substrate preferences. 

 This work focuses on the structural and biochemical characterization of several 

mammalian Sirtuin isoforms, with main emphasis on the largest member of the family, Sirt1. 

Analysis of various Sirt1 constructs using analytical ultracentrifugation and electron 

microscopy techniques identified it to be a monomer, similar to other mammalian isoforms. 

Comparison of activity between different Sirt1 constructs indicates that the termini might be 

involved in regulating the protein’s activity. It could be shown that the catalytic domain of 

Sirt1 is sufficient for its activation by the lifespan extending polyphenol resveratrol and that 

resveratrol can directly bind to Sirt1. Using a peptide array harboring all known mammalian 

acetylation sites several novel substrates for Sirt1 were identified and shown that resveratrol 

and other small molecules can modulate Sirt1 dependent deacetylation of substrate peptides 

and that the effect is specific for the sequence of the substrate site. This finding reveals 

exciting possibilities for the development of new modulators targeting only specific substrates 

of Sirt1. These compounds can further be used in analyzing the functions of Sirtuins in vivo 

and can also serve as attractive leads for developing Sirt1 specific drugs.  

 Studies on the mitochondrial isoform Sirt3 revealed that Zinc is essential for the 

structural integrity of Sirtuins. Investigations on Sirt5, also a mitochondrial Sirtuin appears to 

indicate that it is insensitive to nicotinamide (a physiological inhibitor of Sirtuins). Studies on 

the nucleolar isoform Sirt7 identified Thr224 to be phosphorylated, and play a role in the 

enzyme’s activity. 

The thermotoga maritima Sirtuin Sir2Tm was used as a model system for structural 

characterization of Sirt1. The crystal structure of Sir2Tm in complex with Ex-527, a potent 

Sirt1 inhibitor was solved, which combined with biophysical studies offers information about 

Ex-527 binding and inhibition. Close contacts between Ex-527 and some form of ADP-ribose, 

possibly the product O-acetyl-ADP-ribose (which is not yet fully verified) in the closed 

enzyme conformation prevent the release of products, thereby stalling the enzymatic reaction. 

These results offer insights into the isoform specific inhibition of Sirtuins by Ex-527 and 

provide information for further improvement of Sirt1 specific inhibitors.
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6. Zusammenfassung 

Sirtuine sind NAD+- abhängige Proteindeacetylasen, die an Stoffwechselregulation und der 

Entstehung altersbedingter Krankheiten beteiligt sind; zudem wird angenommen, dass sie  die 

lebensdauerverlängernde Wirkung von „caloric restriction“ vermitteln. Bei Säugetieren 

kommen sieben Sirtuin Isoformen vor, die sich in ihren zellulären Lokalisierungen und 

Substratpräferenzen unterscheiden. 

Diese Arbeit richtet ist fokussiert auf die strukturelle und biochemische Charakterisierung 

verschiedener Sirtuin-Isoformen aus Säugern, mit Schwerpunkt auf Sirt1, dem größtem 

Mitglied der Sirtuinfamilie. Die Analyse verschiedener Sirt1-Konstrukte mittels analytischer 

Ultrazentrifugation und Elektronenmikroskopie zeigte, dass Sirt1 als Monomer vorliegt, 

ähnlich wie die anderen Isoformen aus Säugern. Ein Vergleich der Aktivitäten der 

verschiedenen Sirt1-Konstrukte weist darauf hin, dass die Termini an der Regulierung der 

Proteinaktivität beteiligt sein könnten. Es konnte gezeigt werden, dass die katalytische 

Domäne von Sirt1 ausreicht für die Aktivierung durch das lebensdauerverlängernde 

Polyphenol Resveratrol  und dass Resveratrol direkt an Sirt1 binden kann. Unter Verwendung 

eines Peptidarrays, der alle bekannten Acetylierungsstellen aus Säugerproteinen beinhaltet, 

wurden mehrere neue Substrate für Sirt1 identifiziert und es konnte gezeigt werden, dass 

Resveratrol und andere Kleinmoleküle die Sirt1-abhängige Deacetylierung von 

Substratpeptiden modulieren können, und zwar in Abhängigkeit von der Substratsequenz. 

Dieses Ergebnis eröffnet außergewöhnliche Möglichkeiten für die Entwicklung neuer 

Modulatoren, die nur die Deacetylierung einiger der Sirt1-Substrate beeinflussen. Diese 

Verbindungen können dann für die Funktionsanalyse von Sirtuinen in vivo genutzt werden, 

und sie können als vielversprechende Leitstrukturen für die Entwicklung hochspezifischer 

Sirt1-Wirkstoffen dienen. 

Studien an der mitochondrialen Isoform Sirt3 zeigen, dass Zink für die strukturelle Integrität 

der Enzyme notwendig ist. Untersuchungen an Sirt5, ebenso ein mitochondriales Sirtuin, 

scheinen darauf hinzuweisen, dass es unempfindlich ist gegen Nicotinamid (ein 

physiologischer Sirtuin Inhibitor). Untersuchungen an der nukleolaren Isoform Sirt7 

identifizieren eine Phosphorylierung an Thr224, die die Enzymaktivität zu beeinflussen 

scheint.  

Das Thermotoga maritima Sirtuin Sir2Tm wurde als Modellsystem für die strukturelle 

Charakterisierung von Sirt1 verwendet. Die Kristallstruktur von Sir2Tm in Komplex mit Ex-
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527, einem potenten Sirt1 Inhibitor, wurde gelöst. In Verbindung mit biophysikalischen 

Untersuchungen ergaben sich daraus Erkenntnisse zu Bindung und Inhibitionsmechanismus 

von Ex-527. Eine räumlich enge Nachbarschaft zwischen Ex-527 und einer Form von ADP-

Ribose, möglicherweise dem Produkt O-acetyl-ADP-Ribose (noch nicht vollständig 

verifiziert) in der geschlossenen Enzymkonformation verhindert die Produktfreisetzung und 

stoppt dadurch die enzymatische Reaktion. Diese Ergebnisse bieten Einsichten in die Isoform-

spezifische Hemmung von Sirtuinen durch Ex-527 und liefern Information für die weitere 

Verbesserung von Sirt1-spezifischen Inhibitoren. 
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8. Appendix 

Table S1: A list of primers used in this study along with their start and stop positions and restriction enzymes that recognize them. 

Name Position Stop codon 
Restriction 

site 
Sequence 

hsirt1_225_ndei_f 225 NA NdeI CGG CCG CGC CAT ATG ATT AAT ATC CTT TCA GAA CCA CC 

hsirt1_664_Nostop_xhoi_r 664 No XhoI GCA AGC GCG CTC GAG GTC ATC TTC AGA GTC TGA ATA TAC 

hsirt1_225_ndei_new_f 225 NA NdeI CAG CTG CGC CAT ATG ATT AAT ATC CTT TCA GAA CCA CC 

hsirt1_664_xhoi_new_r 664 No XhoI GCA ATC GCG CTC GAG GTC ATC TTC AGA GTC TGA ATA TAC 

hsirt1_225_quick_chng_f 225 NA NdeI GA AAT AAT TTT GTT TAA CTT TAA GAA GGA GAT ATA CAT ATGATT 

hsirt1_664_quick_chng_r 664 No XhoI CGG ATC TCA GTG GTG GTG GTG GTG GTG CTC GAG GTC ATC TTC AGA 

flsirt1_sdm_xhoi_f   NA   GAT GGT CCC GGC CTG GAG CGG AGC CCG 

flsirt1_sdm_xhoi_r   NA   CGG GCT CCG CTC CAG GCC GGG ACC ATC 

hsirt1_f1_ndei_f 1 NA NdeI CAG ATC ATA CAT ATG GCG GAC GAG GCG 

hsirt1_f1_xhoi_Nostop_r 747 No XhoI GCA ATC GCG CTC GAG TGA TTT GTT TGA TGG 

hsirt1_int 101 NA   GGA GAC AAT GGG CCG GGC CTG CAG GGC 

hsirt1_f1_xhoi_r 747 Yes XhoI GCA GTC GCG CTC GAG CTA TGA TTT GTT TGA TGG 

hsirt1_v313a_revert_f   NA   CCA TTC TTC AAG TTT GCA AAG GAA ATA TAT CC 

hsirt1_v313a_revert_r       GG ATA TAT TTC CTT TGC AAA CTT GAA GAA TGG 

sirt1_576-578_eek_aaa_f       CA AAA GGT TGT ATG GCA GCA GCA CCA CAG GAA GTA C 

sirt1_576-578_eek_aaa_r       G TAC TTC CTG TGG TGC TGC TGC CAT ACA ACC TTT TG 

hsirt1_664_stop_xhoi_r 664 Yes XhoI GCA AGC GCT CTC GAG TCA GTC ATC TTC AGA GTC 

hsirt1_fl_ehei_f 1 NA EheI GTT AAA GGC GCC ATG GCG GAC GAG GCG 

hsirt1_214_lic_pET15b_f 214 NA NdeI CAC AGC AGC GGC CTG GTG CCG CGC GGC AGC CAT 

hsirt1_225_lic_pET15b_f 225 NA NdeI CAC AGC AGC GGC CTG GTG CCG CGC GGC AGC CAT ATG ATT AAT ATC 

hsirt1_214_lic_pET21a_f 214 NA NdeI GA AAT AAT TTT GTT TAA CTT TAA GAA GGA GAT ATA CAT ATG GAG 

hsirt1_664_lic_pET15b_r 664 Yes XhoI CTT TCG GGC TTT GTT AGC AGC CGG ATC CTC GAG TTA GTC ATC TTC 

hsirt1_1_lic_pET15b_f 1 NA NdeI CAC AGC AGC GGC CTG GTG CCG CGC GGC AGC CAT ATG GCG GAC GAG 

hsirt1_747_lic_pET15b_r 747 Yes XhoI CTT TCG GGC TTT GTT AGC AGC CGG ATC CTC GAG CTA TGA TTT GTT 

hsirt1_1_lic_pET21a_f 1 NA NdeI GA AAT AAT TTT GTT TAA CTT TAA GAA GGA GAT ATA CAT ATG GCG 
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hsirt1_747_lic_pET21a_r 747 No XhoI CGG ATC TCA GTG GTG GTG GTG GTG GTG CTC GAG TGA TTT GTT TGA 

hsirt1_183_lic_pET15b_f 183 NA NdeI CAC AGC AGC GGC CTG GTG CCG CGC GGC AGC CAT ATG GGT CCA TAT 

hsirt1_183_lic_pET21a_f 183 NA NdeI GA AAT AAT TTT GTT TAA CTT TAA GAA GGA GAT ATA CAT ATG GGT 

hsirt1_229_ndei_for 229 NA NdeI CAG GCG CAT ATG TCA GAA CCA CCA AAA AGG 

hsirt1_516_xhoi_rev 516 Yes XhoI GAC CAC CTC GAG TCA TCG TGG AGG TTT TTC 

hsirt1_h363a_f   NA   GG ATA ATT CAG TGT GCT GGT TCC TTT GCA AC 

hsirt1_h363a_r   NA   GT TGC AAA GGA ACC AGC ACA CTG AAT TAT CC 

hsirt1_t530d_f   NA   GAG TTG CCA CCC GAC CCT CTT CAT GTT TC 

hsirt1_t530d_r   NA   GA AAC ATG AAG AGG GTC GGG TGG CAA CTC 

hsirt1_245_lic_pET15b_f 245 NA NdeI CAC AGC AGC GGC CTG GTG CCG CGC GGC AGC CAT ATG GAT GCT GTG 

hsirt1_510_lic_pET15b_r 510 Yes XhoI CTT TCG GGC TTT GTT AGC AGC CGG ATC CTC GAG TTA AAT TTC TGA 

hS1_129_licp15F 129 NA NdeI CAC AGC AGC GGC CTG GTG CCG CGC GGC AGC CAT ATG GGC GAG GAG 

hS1_181_licp15F 181 NA NdeI CAC AGC AGC GGC CTG GTG CCG CGC GGC AGC CAT ATG CGG ATA GGT 

hS1_217_licp15F 217 NA NdeI CAC AGC AGC GGC CTG GTG CCG CGC GGC AGC CAT ATG GAT ATG ACA 

hs1_527_licp15R 527 Yes XhoI CTT TCG GGC TTT GTT AGC AGC CGG ATC CTC GAG CTA CAA CTC TGA 

hsirt1_p15_tevF 1 NA NdeI CAT CAT CAT CAC AGC AGC GGC GAA AAC CTG TAT TTT CAG GGA CAT 

hsirt1_p15_tevR   NA NdeI CGC CTC GTC CGC CAT ATG TCC CTG AAA ATA CAG GTT TTC GCC GCT 

msirt1_ndei_fl_f 1 NA NdeI CAT ATA TAC CAT ATG GCG GAC GAG GTG GCG 

msirt1_xhoi_fl_f 1 NA XhoI CAT ATA TAC CTC GAG ATG GCG GAC GAG GTG  

msirt1_sali_fl_f 1 NA SalI CAT ATA TAC GTC GAC ATG GCG GAC GAG GTG 

msirt1_xhoi_fl_r 737 Yes XhoI GCA GTC GCG CTC GAG TTA TGA TTT GTC TGA TGG 

msirt1_xhoi_fl_Nostop_r 737 No XhoI GCA GTC GCG CTC GAG TGA TTT GTC TGA TGG 

msirt1_206_ndei_f 206 NA NdeI CAG CTG CGC CAT ATG GAG CTG GAT GAT ATG 

msirt1_508_xhoi_r 508 Yes XhoI GCA ATC GCG CTC GAG TTA GCG TGG AGG TTT TTC 

msirt1_222_ndei_f 222 NA NdeI CAG CTG CGA CAT ATG GAA CCA CCA AAG CGG 

msirt1_483_xhoi_r 483 Yes XhoI GCA GTC GCG CTC GAG TTA ATG ACA CAA CTC 

msirt1_522_xhoi_r 522 Yes XhoI GTA GAT GCG CTC GAG TTA TGT TGG TGG CAA CTC 

msirt1_483_Nostop_xhoi_ 483 No XhoI GCA GTC GCG CTC GAG ATG ACA CAA CTC  

msirt1_508_Nostop_xhoi_ 508 No XhoI GCA ATC GCG CTC GAG GCG TGG AGG TTT TTC 

msirt1_ndei_fl_new_f 1 NA NdeI CAT ATA TAC CAT ATG GCG GAC GAG GTG GCG CTC GCC CTT CAG 

msirt1_xhoi_fl_new_r 737 Yes XhoI GCA GTC GCG CTC GAG TTA TGA TTT GTC TGA TGG ATA GTT TAC 



8. Appendix          120

 

aros_1_lic_pET15b_f 1 NA NdeI CAC AGC AGC GGC CTG GTG CCG CGC GGC AGC CAT ATG TCC GCC GCC 

aros_136_lic_pET15b_r 136 Yes XhoI CTT TCG GGC TTT GTT AGC AGC CGG ATC CTC GAG CTA GCT GCC GAA 

aros_1_pGEX_f 1 NA BamHI GTT CCG CGT GGA TCC ATG TCC GCC GCC CTG CTG 

aros_1_kpnI_f 1 NA KpnI GTT AAT TAT GGT ACC ATG TCC GCC GCC CTG CTG 

aros136HindIII_r 136 Yes HindIII GCTGGACTGAAGCTTCTAGCTGCCGAAGTATTCCTGCTG 

hsirt3C259Afor   NA   TGC CAC CTG CAC AGT CGC ACA AAG ACC CTT CCC AG 

hsirt3C259Arev   NA   CTG GGA AGG GTC TTT GTG CGA CTG TGC AGG TGG CA 

hsirt3C280Afor   NA   AGA CAG GGT TCC CCG CGC ACC GGT CTG CAC CGG CGT TGT 

hsirt3C280Arev   NA   ACA ACG CCG GTG CAG ACC GGT GCG CGG GGA ACC CTG TCT 

fwd_pOPIN   NA   TACGACTCACTATAGGGGAATTGTG 

rev_pOPIN   NA   GATCGATCTCAGTGGTATTTGTG 

hSirt7_T224D_f   NA   CAGACAGGCCGGGACTGCCACAAG 

hSirt7_T224D_r   NA   CTTGTGGCAGTCCCGGCCTGTCTG 

 

Table S2: Crystallization trials of Sirt1. The table shows various constructs of Sirt1 (both human and mouse) used in the crystallization process 
along with the conditions. The construct 82-664 contains Met, Ala and Asp before the N-terminus, a result of cloning artifact. 

Sirt1 
Construct 

Protein 
concentration 

Screen Temperature (° C) Sample 
volume (ul)

Method Comments 

 Full length   9 Microlytic capillary tray 18  capillary /manual setting  

 Full length 9 JCSG  (Molecuar 
Dimensions)     

18 1 Sitting drop/Manual  

 Full length 5 Index Screen  (Hampton) 18 1 Sitting drop/Manual  

 Full length 5 Index Screen  (Hampton) 18 1 Sitting drop/Manual Tag cleaved 

Full length 4.6 JCSG      (Molecuar 
Dimensions)  

18 1 Sitting drop/Manual Protein + 1 mM p53 + 1 mM PCT + 1 mM 
ADPr 

Full length 4.6 JCSG      (Molecuar 
Dimensions) 

4 1 Sitting drop/Manual Protein + 1 mM p53 + 1 mM PCT + 1 mM 
ADPr

Full length 8 Additive screen (Hampton) 18 1 Sitting drop/Manual Protein+ 1 mM p53 + 1 mM NADH 
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Full length 10 JCSG      (Molecuar 
Dimensions) 

18 1 Sitting drop/Manual Protein + 1 mM p53 + 1 mM ADPr + 100 µM 
SRT1720

Full length 10 PACT (Molecuar 
Dimensions) 

18 1 Sitting drop/Manual Protein + 1 mM p53 + 1 mM ADPr + 100 µM 
SRT1720 

Full length 10 JCSG Core I (Qiagen) 18 1 Sitting drop/Manual  

Full length 8 JCSG Core I (Qiagen) 18 1 Sitting drop/Manual  In situ Proteolysis with 1000:1 
Chymotrypsin

Full length 8 JCSG Core I (Qiagen) 18 1 Sitting drop/Manual  In situ Proteolysis with 1000:1 Trypsin 

Full length 5 JCSG Core I (Qiagen) 20 0.5 Sitting drop/Manual Protein + 1 mM H3  + 500 µM Resveratrol 

Full length 5 JCSG Core I (Qiagen) 20 0.5 Sitting drop/Manual Protein+ 1 mM H3 + 500 µM Resveratrol 

1-664 5 Pentaethyritol (Jena 
Biosciences)

18 1 Sitting drop/Manual  

1-664 5 JCSG      (Molecuar 
Dimensions)  

18 1 Sitting drop/Manual  

1-664 5 Microlytic capillary tray 18  capillary /manual setting  

1-664 4.7 Pentaethyritol (Jena 
Biosciences)

18 1 Sitting drop/Manual Protein + 1 mM Resveratrol + 3 mM ADPr + 
1 mM p53

1-664 4.7 Pentaethyritol (Jena 
Biosciences) 

18 1 Sitting drop/Manual Protein + 1 mMNADH + 1 mM p53 

1-664 4.7 JCSG      (Molecuar 
Dimensions) 

18 1 Sitting drop/Manual Protein + 1 mMp53 + 3 mM ADPr + 1 mM 
Piceatannol

1-664 4.7 JCSG      (Molecuar 
Dimensions) 

18 1 Sitting drop/Manual Prtoein + 1 mM p53 + 1 mM NADH 

1-664 5 Structure Screen (Molecuar 
Dimensions)  

18 1 Sitting drop/Manual  

1-664 5 PEG Ion (Hampton) 18 1 Sitting drop/Manual  

1-664 5 JCSG Core I (Qiagen) 18 1 Sitting drop/Manual  

1-664 5 JCSG Core I (Qiagen) 18 1 Sitting drop/Robot  In situ Proteolysis with 10000:1 Trypsin 

1-664 10 JCSG Core IV (Qiagen) 20 0.1 Sitting drop/Robot Protein + 1 mM NAD 
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1-664 10 JCSG Core IV (Qiagen) 20 0.1 Sitting drop/Robot Protein + 1 mM EthenoNAD 

1-664 10 JCSG Core IV (Qiagen) 20 0.1 Sitting drop/Robot Protein + 1 mM EthenoNAD + 1mM p53 

82-664 10 Pentaethyritol (Jena 
Biosciences) 

18 1 Sitting drop/Manual  

82-664 10 JCSG Core I (Qiagen) 18 1 Sitting drop/Manual  

82-664 4.3 JCSG Core II (Qiagen) 20 0.1 Sitting drop/Robot 

3 different Drop sizes: A). 0.1 µl + 0.1 µl 
drop ; B). 0.1 µl + 0.15 µl drop; C). 0.15 µl + 

0.15 µl drop 

82-664 4.3 JCSG Core III (Qiagen) 20 0.1 Sitting drop/Robot 

3 different Drop sizes: A). 0.1 µl + 0.1 µl 
drop ; B). 0.1 µl + 0.15 µl drop; C).0.15 µl + 

0.15 µl drop 

82-664 4.3 JCSG Core IV (Qiagen) 20 0.1 Sitting drop/Robot 

3 different Drop sizes: A). 0.1 µl  + 0.1 µl  
drop ; B). 0.1 µl l + 0.15 µl l drop; C).0.15 µl  

+ 0.15 µl drop 
82-664 5 JCSG Core I (Qiagen) 20 0.5 Sitting drop/Manual Protein + 1 mM H3 + 500 µM Resveratrol 

82-664 5 JCSG Core I (Qiagen) 20 0.5 Sitting drop/Manual Protein + 1 mM H3 + 500 µM Resveratrol 

129-747 6 JCSG Core I (Qiagen) 20 0.1 Sitting drop/Robot  

129-747 6 JCSG Core  II (Qiagen) 20 0.1 Sitting drop/Robot  

129-747 6 JCSG Core III (Qiagen) 20 0.1 Sitting drop/Robot  

129-747 6 JCSG Core IV (Qiagen) 20 0.1 Sitting drop/Robot  

181-747 6.6 JCSG Core I (Qiagen) 20 0.1 Sitting drop/Robot  

181-747 6.6 JCSG CoreI II (Qiagen) 20 0.1 Sitting drop/Robot  

181-747 6.6 JCSG Core III (Qiagen) 20 0.1 Sitting drop/Robot  

181-747 6.6 JCSG Core IV (Qiagen) 20 0.1 Sitting drop/Robot  
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225-747 6.3 JCSG Core I (Qiagen) 20 0.1 Sitting drop/Robot 
A). Protein alone; B). Protein + 1 mM p53 + 
1 mM ADPr ; C). Protien  + 50 µM Ex527 + 

1 mM p53 + 1 mM ADPr

225-747 6.3 JCSG CoreI II (Qiagen) 20 0.1 Sitting drop/Robot 

A). protein alone; B). Protein + 1 mM p53 + 
1 mM ADPr ; C). Protein +50 µM Ex527 + 1 

mM p53 + 1 mM ADPr 

225-747 6.3 JCSG Core III (Qiagen) 20 0.1 Sitting drop/Robot 

A). protein alone; B). Protein + 1 mM p53 + 
1 mM ADPr ; C). Protein +50 µM Ex527 + 1 

mM p53 + 1 mM ADPr 

225-747 6.3 JCSG Core IV (Qiagen) 20 0.1 Sitting drop/Robot 
A). protein alone; B). Protein + 1 mM p53 + 
1 mM ADPr ; C). Protein +50 µM Ex527 + 1 

mM p53 + 1 mM ADPr 
183-664 5 JCSG CoreI I (Qiagen) 18 1 Sitting drop/Manual  

183-664 4.8 JCSG + (Molecular 
Dimensions)

20 0.1 Sitting drop/Robot Protein+ 1 mM H3 + 1 mM ADPr + 500 µM 
Resveratrol

183-664 4.8 
JCSG + (Molecular 

Dimensions) 20 0.1 Sitting drop/Robot 
Protein +1 mM NAM + 1 mM H3 + 1 mM 

ADPr  + 500 µM Resveratrol 

183-664 
T530D 

5 JCSG Core I (Qiagen) 20 0.1 Sitting drop/Robot 
A). Protein alone   B).Protein  + 1 mM H3  

C). Protein + 1 mM H3 + 500 µM Resveratrol 

183-664 
T530D 

5 JCSG CoreI II (Qiagen) 20 0.1 Sitting drop/Robot 
A). Protein alone   B).Protein  + 1 mM H3  

C). Protein + 1 mM H3 + 500 µM Resveratrol 

183-664 
T530D 

5 JCSG Core III (Qiagen) 20 0.1 Sitting drop/Robot 
A). Protein alone   B).Protein  + 1 mM H3  

C). Protein + 1 mM H3 + 500 µM Resveratrol 

183-664 
T530D 

5 JCSG Core IV (Qiagen) 20 0.1 Sitting drop/Robot A). Protein alone   B).Protein  + 1 mM H3  
C). Protein + 1 mM H3 + 500 µM Resveratrol 

183-664 
T530D 5 

JCSG Core I (Qiagen) with  
Alternative reservoir 50% 

PEG 3350 
20 0.1 Sitting drop/Robot 

A). Protein alone   B).Protein  + 1 mM H3  
C). Protein + 1 mM H3 + 500 µM Resveratrol 

HSIRT 1 
183-664 
T530D  

5 
JCSG Core II (Qiagen) with  
Alternative reservoir 50% 

PEG 3350

20 0.1 Sitting drop/Robot 
A). Protein alone   B).Protein  + 1 mM H3  

C). Protein + 1 mM H3 + 500 µM Resveratrol 

183-664 
T530D 5 

JCSG Core III (Qiagen) 
with  Alternative reservoir 

50% PEG 3350 
20 0.1 Sitting drop/Robot 

A). Protein alone   B).Protein  + 1 mM H3  
C). Protein + 1 mM H3 + 500 µM Resveratrol 



8. Appendix          124

 

183-664 
T530D 5 

JCSG Core IV (Qiagen) 
with  Alternative reservoir 

50% PEG 3350 
20 0.1 Sitting drop/Robot 

A). Protein alone   B).Protein  + 1 mM H3  
C). Protein + 1 mM H3 + 500 µM Resveratrol 

214-664 5 Pentaethyritol (Jena 
Biosciences)

18 1 Sitting drop/Manual  

214-664 6.7 Structure Screen (Molecular 
Dimensions) 

18 1 Sitting drop/Manual  

214-664 6.7 PEG Ion Hampton 18 1 Sitting drop/Manual  

225-664 4.86 Structure Screen (Molecualr 
Dimensions)

18 0.125 Sitting drop/Robot 3 drops:1st hSirt1+p53 paptide, 2nd 
hSirt1+NAD, 3rd hSirt1+p53+ADPr

225-664 15 Pact (Molecualr 
Dimensions) 

18 1 Sitting drop/Manual  

225-664 15 Index Hampton  18 0.125 Sitting drop/Robot A) protein alone, B) Protein + NAD, C) 
Protein + ADR and p53 

225-664 15 PEG Ion (Hampton) 18 0.125 Sitting drop/Robot A) Protein + 20 % (v/v) DMSO, B) Protein + 
NAD, C) Protein + ADPr and p53

225-664 15 Structure Screen (Molecualr 
Dimensions) 

18 0.125 Sitting drop/Robot A) Protein + 20 % (v/v) DMSO, B) 
Methylated protein, C) Protein + 

225-664 15 PEG Ion (Hampton) 18 0.125 Sitting drop/Robot 3 drops:Protein + 20 % (v/v) DMSO, B) 
Methylated protein, C) Protein + 

225-664 10 

Pact I (Molecualr 
Dimensions)  with 

Alternative reservoir 1.5 M 
NaCl 

18 0.7 Sitting drop/Manual  

225-664 5 

Pact II (Molecualr 
Dimensions)  with  

Alternative reservoir 1.5 M 
NaCl 

18 0.7 Sitting drop/Manual  

225-664 10 Microlytic capillary tray 18  New capillary manual 
setting

Greiner Microfluidic diffusion chips 

225-664 10 Structure (Molecualr 
Dimensions)

18 0.7 Sitting drop/Manual  In situ Proteolysis with 1000:1 Trypsin 

225-664 10 Structure (Molecualr 
Dimensions) 

18 0.7 Sitting drop/Manual  In situ Proteolysis with 1000:1 Trypsin 

225-664 10 JCSG (Molecular 
Dimensions)

18 1 Sitting drop/Manual  

225-664 10 Crystal HARP (molecular 
Dimensions)

18 23 µl total 
protein

capillary/manual Capillary Diffusion Principle 



8. Appendix          125

 

225-664 
H363A 

5 JCSG (Molecular 
Dimensions)

18 1 Sitting drop/Manual Catalytic Histidine mutant 

225-664 10 Microlytic capillary tray 18  New capillary manual 
setting 

Catalytic Histidine mutant 

225-664 
H363A 

5 PACT I  (Molecular 
Dimensions) 

18 1 Sitting drop/Manual Catalytic Histidine mutant 

225-664 
H363A 

5 PACT II  (Molecular 
Dimensions)

18 1 Sitting drop/Manual Catalytic Histidine mutant 

225-664 
H363A 

5 PEG Ion (Hampton) 18 1 Sitting drop/Manual Catalytic Histidine mutant 

225-664 SER 10 Pentaethyritol (Jena 
Biosciences) 

18 1 Sitting drop/Manual SER= Surface Entropy Reduction mutant 
EEK-AAA (574-578) 

225-664 SER 10 JCSG (Molecular 
Dimensions)

18 1 Sitting drop/Manual SER= Surface Entropy Reduction mutant 
EEK-AAA (574-578)

225-664 SER 5 JCSG Core II (Qiagen) 18 1 Sitting drop/Manual SER= Surface Entropy Reduction mutant 
EEK-AAA (574-578)

225-664 10 JCSG Core I (Qiagen) 20 0.1 Sitting drop/Robot Trypsinized protein 

225-664 10 JCSG Core I (Qiagen) 20 0.1 Sitting drop/Robot Trypsinized protein + 1 mM H3  + 1 mM 
ADPr

225-664 10 JCSG Core I (Qiagen) 20 0.1 Sitting drop/Robot Trypsinized protein + 1 mM H3  + 1 mM 
ADPr + 200 µM Resveratrol

225-664 
H363A 

5 JCSG Core II (Qiagen) 18 1 Sitting drop/Robot Catalytic Histidine mutant 

225-664 
H363A 

4.7 JCSG Core II (Qiagen) 20 0.1 Sitting drop/Robot Catalytic Histidine mutant  +1 mM p53 + 2 
mM ADPr

225-664 
H363A 

4.7 JCSG Core II (Qiagen) 20 0.1 Sitting drop/Robot Catalytic Histidine mutant   +1 mM p53 + 2 
mM NAD

225-664 
H363A 

4.7 JCSG Core II (Qiagen) 20 0.1 Sitting drop/Robot Catalytic Histidine mutant   +1 mM p53 + 2 
mM NAD + 500 µM Resveratrol 

225-664 
H363A 

4.7 JCSG Core III (Qiagen) 20 0.1 Sitting drop/Robot Catalytic Histidine mutant  +1 mM p53 + 2 
mM ADPr

225-664 
H363A 

4.7 JCSG Core III (Qiagen) 20 0.1 Sitting drop/Robot Catalytic Histidine mutant  +1 mM p53 + 2 
mM NAD

225-664 
H363A 

4.7 JCSG Core III (Qiagen) 20 0.1 Sitting drop/Robot Catalytic Histidine mutant  +1 mM p53 + 2 
mM NAD + 500 µM Resveratrol 

225-664 SER 5 JCSG Core I (Qiagen) 20  0.1 Phoenix Robot SER= Surface Entropy Reduction mutant 
EEK-AAA (574-578)
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225-664 SER 5 JCSG Core I (Qiagen) 20 0.1 Phoenix Robot SER= Surface Entropy Reduction mutant 
EEK-AAA (574-578)

225-664 SER 5 JCSG Core III (Qiagen) 20 0.1 Phoenix Robot SER= Surface Entropy Reduction mutant 
EEK-AAA (574-578) 

225-664 SER 5 JCSG Core IV (Qiagen) 20  0.1 Phoenix Robot SER= Surface Entropy Reduction mutant 
EEK-AAA (574-578) 

229-516 5 JCSG  (Molecular 
Dimensions)

20 0.1 Sitting drop/Robot Tag cleaved 

229-516 5 JCSG  (Molecular 
Dimensions)

20 0.1 Sitting drop/Robot Protein + 1mM p53  

229-516 5 JCSG I Core (Qiagen) 20 0.5 Sitting drop/Manual  

229-516 5 JCSG II Core (Qiagen) 20 0.5 Sitting drop/Manual  

229-516 5 JCSG I Core (Qiagen) 20 0.5 Sitting drop/Manual Protein + 1.5 mM Ex527 + 0.5 mM p53 +2 
mM NAD

229-516 5 JCSG II Core (Qiagen) 20 0.5 Sitting drop/Manual Protein+ 1.5 mM Ex527 + 0.5 mM p53 +2 
mM NAD 

229-516 5 JCSG III Core (Qiagen) 20 0.5 Sitting drop/Manual Protein 

229-516 5 JCSG III Core (Qiagen) 20 0.5 Sitting drop/Manual Protein + 1.5 mM Ex527 + 0.5 mM p53 + 2 
mM NAD

 206-737 20 Index (Hampton) 18 1 Sitting drop/Manual Mouse Sirt1 

 206-737 20 Structure (Molecular 
Dimensions)

18 1 Sitting drop/Manual Mouse Sirt1 

206-737 10 Structure (Molecular 
Dimensions)

18 0.125 Sitting drop/Robot A) Mouse Sirt1 +1 mM p53, B) Protein + 
NAD, C) Protein +ADPr and p53

206-737 10 PEG Ion (Hampton) 18 0.125 Sitting drop/Robot A) Mouse Sirt1 + p53, Protein + NAD, 
Protein + ADPr and + p53 
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Table S3: Crystallization trials of Sirt7. The table shows various constructs of Sirt7 used in the crystallization process along with the conditions. 

Sirt7 
Construct 

Protein 
concentration 

(mg/ml) 
Screen 

Temperature 
(° C) 

Sample 
volume (µl) Method Comments 

Full length 5 JCSG Core 20 0.1 Sitting drop/Robot   

14-367 9.2 JCSG Core 20 0.1 Sitting drop/Robot   

14-367 9.2 JCSG+ 18 0.7 Sitting drop/ Manual   

14-367 9.2 JCSG Core 20 0.1 Sitting drop/ Robot   

14-367 9.2 JCSG Core 20 0.1 Sitting drop/ Robot In situ proteolysis with 1/10000th Trypsin 

14-367 9.2 JCSG Core 20 0.1 Sitting drop/ Robot In situ proteolysis with 1/10000th Chymotrypsin 

59-356 5 JCSG Core 20 0.1 Sitting drop/Robot   

81-356 4.7 Pact1&2 18 1 Sitting drop/ Manual   

81-356 4.7 JCSG Core 18 1 Sitting drop/ Manual   

81-356 6.8 JCSG Core 18 1 Sitting drop/ Manual After CEC 

81-356 6.8 JCSG Core 18 1 Sitting drop/ Manual In situ proteolysis with 1/1000th Trypsin 

81-356 6.8 JCSG Core 18 1 Sitting drop/ Manual In situ proteolysis with 1/1000th Chymotrypsin 

81-356 6.8 JCSG Core 18 1 Sitting drop/ Manual In situ proteolysis with 1/10000th Subtilisin 

 

Table S4: List of peptides and their sequence used in this work. The Thio-H3 = thioacetyllysine.  

Peptide name Protein name Sequence Acetylated 
p53sh (p53 short) p53 RHKK[Ac]LMFK Lys382 

p53lg (p53 long) p53 STSRHKK[ac]LMFKTE Lys382 

H3 Histone 3 IHAK[ac]RVT Lys116 
Thio-H3 Histone 3 IHAK[thio-ac]RVT Lys116 

HMG-B1 High Mobility Group B1 KKPRGK[ac]MSSY Lys12 

SF38A Pre-mRNA-splicing factor 38A PQYLVEK[Ac]IIRTRI Lys23 

TFIID Transcription initiation factor TFIID subunit 3 DREKGKK[Ac]DKDKRE Lys628 
Ku70 Ku70 TKRK[Ac]HDN Lys544 
AATase Aspartate aminotransferase 2 VFLPK[ac]PTWG Lys159 
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Figure S1: Sequence alignment of human Sirt1 catalytic domain (214-497) (Hs_Sirt1) and Sir2Tm (Tm_Sir2) with secondary structure elements 
from Sir2Tm. The alignment was created using BioEdit (Hall, 1999). 
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Figure S2: Multiple sequence alignment of all the seven human Sirtuin isoforms. The secondary structure elements correspond to the structure of 
Sirt2 (1J8F). The numbering corresponds to Sirt1. The catalytic Histidine (indicated as green star), Cysteines coordinating Zn2+ (green triangles) and 
the Thr69 of Sirt5 (green hexagon) are indicated on top of the residues. The alignment was created using BioEdit (Hall, 1999). 
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