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SUMMARY 

Copper (Cu), a transition metal, has the tendency to increase in its 

concentration in freshwater ecosystems over natural levels, due to industrial and 

other anthropogenic sources. In water, copper can exist in dissolved form or 

associated with suspended food particles. Freshwater mussels living at the 

interface of the free-flowing water and the sediment phase can take up copper 

directly from the water or by consumption of lower trophic level organisms laden 

with copper. For mussels, copper is essential at low concentration as cofactor of 

metalloenzymes involved in growth regulation and development, but it may be 

toxic at higher levels by disturbing calcium (Ca) homeostasis. The duck mussel 

Anodonta anatina is a freshwater species found in abundance in limnic and lotic 

European ecosystems and is used as test organism in ecotoxicological studies. 

The potential involvement of Cu in the general decline of many European 

freshwater mussel species is the major motivation for this work. 

This research aims to study the relevance of Cu exposure pathways on its 

uptake, distribution, bioaccumulation, and elimination in the freshwater mussel A. 

anatina and its various potential physiological impacts. The work is started with 

raising Cu-loaded algae using the stable isotope 63Cu as marker for feeding of 

mussels without affecting the nutritional value of the algal food. In these latter 

experiments, mussels are exposed to 63Cu via water or via food to investigate the 

relative importance of Cu uptake to its distribution and accumulation among the 

mussel’s organs. Its consequences on calcium homeostasis, soluble 

carbohydrate and protein levels in various tissues, metallothionein induction, 

glutathione levels, activities of antioxidative enzymes and glutathione reductase, 

and on lipid peroxidation are examined.  

In the algal experiment, Parachlorella kessleri is grown at six 63Cu 

concentrations (0, 5.9, 11.7, 23.5, 47, and 94 µmol L-1) for 4 days, starting from 

day 3. When exposed to Cu at a level of up to 6 µmol L-1, P. kessleri is largely 

unchanged in its nutritional values; so this concentration is used to grow 63Cu-

carrying food for mussel experiment. Concentrations above 6 µmol L-1 decrease 

significantly in the algal growth and alter the other physiological parameters.  

Three groups of 21 mussels each are used, one as control and two for 

exposure,  receiving copper as the stable isotope 63Cu via the water at 0.3 µmol 
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L-1 or via the food (1.5 mg L-1 freeze-dried Cu-loaded algae, equivalent to 0.06 

µmol L-1 Cu) for 24 days, followed by 12 days of depuration. For analysis, three 

mussels each are taken randomly from every group at days 0, 6, 12, 18, 24, 30, 

and 36. The mussels are anaesthetized and hemolymph and extrapallial fluid are 

sampled before the mussels are dissected into gills, mantle, kidney, digestive 

gland, foot, adductors, intestines, and the remainder (gonads, heart, and labial 

palps).  

During copper exposure, the levels of exogenous copper (63Cu) and total Cu 

increase in all body compartments. Uptake via the water leads to higher Cu 

levels than via the food, but in relative terms food uptake is more efficient taking 

the five-fold lower nominal concentration of copper into consideration. Upon 

exposure via the water, the metal is compartmentalized mainly in the mantle, the 

gills, and the digestive gland, upon exposure via the food the major recipients are 

the digestive gland and the intestines. Upon depuration for two weeks, copper is 

quickly but not completely eliminated.  

Simultaneously with increasing Cu levels, Ca levels are increased in all 

body compartments, accompanied by decreases in soluble carbohydrates and 

proteins in the gills, mantle, digestive gland, and kidney. At the same time, Cu 

exposure results in increases in malondialdehyde levels, decreases in 

glutathione levels, strong increases in metallothionein levels, and changes in the 

activities of the antioxidative enzymes superoxide dismutase, catalase, and 

glutathione peroxidise, and of glutathione reductase in the gills, mantle, digestive 

gland, and kidney. During depuration, most parameters tend to normalize but do 

not return to control values. 

In conclusion, the overall pictures suggest that the considerable 

physiological stress elicited by low-level copper exposure may contribute to the 

factors involved in the decline of many European freshwater mussels.  

Keywords: Copper, Parachlorella kessleri, Anodonta anatina, Bioaccumulation, 
Elimination, Ca homeostasis, Carbohydrates, Proteins, Metallothionein, 
Glutathione, Superoxide Dismutase, Catalase, Glutathione Peroxidase, 
Glutathione Reductase, Lipid Peroxidation (Malondialdehyde) 
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ZUSAMMENFASSUNG 

Kupfer (Cu), ein Übergangmetall, hat die Tendenz, in seinen 

Konzentrationen in Süßwasser-Ökosystemen gegenüber natürlichen Werten 

anzusteigen, bedingt durch seine zahlreichen industriellen und elektro-,  bau- 

und agrar-technischen Anwendungen. In Wasser kann Kupfer gelöst in freier 

ionischer Form und in verschiedenen komplexartigen Verbindungen vorliegen, 

und es kann gebunden an suspendiertem Sediment auftreten. 

Süßwassermuscheln, die an der Schnittstelle von frei fließendem Wasser und 

Sediment-Phase leben, können es direkt aus dem Wasser oder durch Verzehr 

von Organismen niedrigerer trophischer Ebenen, die mit Kupfer überladen sind, 

zu sich nehmen. Für Muscheln ist Kupfer in geringer Konzentration als Cofaktor 

von Metalloenzymen zur Regulation des Wachstums und der Entwicklung 

unerlässlich, aber auf hohem Niveau ist Kupfer giftig. Die Teichmuschel 

Anodonta anatina ist eine Süßwasser-Arten, die sich in vielen limnischen und 

fliessenden Europäischen Ökosystemen befindet. Die mögliche Beteiligung von 

Cu am allgemeinen Niedergang vieler europäischer Süßwassermuscheln ist die 

wesentliche Motivation für diese Arbeit.  

Die hier beschriebene Forschungsarbeit zielt darauf ab, einige Aspekte der 

Bedeutung der Cu-Exposition für Aufnahme, Verteilung, Bioakkumulation und 

Elimination in der Süßwassermuschel A. anatina und seine potentiellen patho-

physiologischen Auswirkungen zu untersuchen. Die Arbeit begint mit der 

Aufzucht 63Cu-beladener Algen als Futter für die Muscheln, ohne dass der 

Nährwert der Algen beeinträchtigt wird. In den folgenden Experimenten werden 

Muscheln dem stabilen Isotop 63Cu durch Wasser oder durch die Algen als 

Nahrung ausgesetzt, um die relative Bedeutung der Cu-Aufnahmewege für 

dessen Verteilung und Anreicherung in den Organen der Muschel zu 

untersuchen. Die Auswirkungen auf die Calcium-Homöostase, auf lösliche 

Kohlenhydrate und Protein-Konzentrationen in den verschiedenen Geweben, auf 

die Metallothionein-Induktion und die Höhe der Glutathion-Konzentrationen, auf 

die Aktivitäten der antioxidativen Enzyme und der Glutathion-Reduktase, und auf 

die Lipidperoxidation werden überprüft. 

In einem Vor-Experiment wird Parachlorella kessleri bei sechs Cu-

Konzentrationen (0; 5,9; 11,7; 23,5; 47 und 94 µmol L-1) für 4 Tage kultiviert. Bei 
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einer Cu Konzentration von bis 6 µmol L-1 ist des Wachstum von P. kessleri 

weitgehend unverändert und als 63Cu-tragende Nahrung für das Muschel-

Experiment geeignet. Exposition bei Cu-Konzentrationen über 6 µmol L-1 hat 

offensichtliche Auswirkungen auf das Wachstum und den physiologischen 

Zustand der Algen. 

Drei Gruppen von je 21 Muscheln werden in diesem Muschel-Expositions-

Experiment verwendet. Eine Gruppe dient als Kontrolle, und bei den beiden 

anderen wird das stabile Isotop 63Cu mit dem Wasser bei 0,3 µmol L-1 oder mit 

der Nahrung (1,5 mg L-1 gefriergetrocknete, Cu-beladene Algen, das entspricht 

ca 0,06 µmol L-1 Cu) für 24 Tage gegeben, gefolgt von 12 Tagen 

Ausscheidungsphase. Für die Analysen werden nach dem Zufallsprinzip aus 

jeder Gruppe an den Tagen 0, 6, 12, 18, 24, 30, und 36 drei Muscheln 

entnommen. Die Muscheln werden betäubt und Hämolymphe und Extrapallial-

Flüssigkeit werden isoliert, bevor die Muscheln in Kiemen, Mantel-, Nieren-, 

Verdauungsdrüse-, Fuß-, Adduktoren, Darm und den Rest (Gonaden, Herz und 

labialen Palpen) seziert werden.  

Während der Kupfer-Exposition steigt die Menge des exogenen (63Cu) und 

des gesamten Kupfers in allen Kompartimenten. Die Aufnahme aus dem Wasser 

führt zu einer höheren Cu Konzentrationen als aus der Nahrung, aber dennoch 

ist der letztere Weg in relativer Betrachtung effizienter, wenn man die fünf-fach 

niedrigere nominale Konzentration von Kupfer bedenkt. Das Metall wird bei 

Exposition der Muscheln mit dem Wasser vor allem in den Mantel, die Kiemen 

und die Verdauungsdrüse verteilt, bei Aufnahme über die Nahrung vor allem in 

die Verdauungsdrüse und den Darm. In der Ausscheidungsphase von zwei 

Wochen wird Kupfer schnell aber nicht vollständig eliminiert.  

Mit zunehmenden Cu Konzentrationen steigen die Ca Konzentrationen in 

allen Kompartimenten, begleitet von Rückgängen der löslichen Kohlenhydrate 

und Proteine in den Kiemen, im Mantel, in der Verdauungsdrüse und in der 

Niere. Gleichzeitig führt die Cu Exposition zum Anstieg von Malondialdehyd, zur 

Abnahme von Glutathion, starkem Anstieg der Metallothionein-Konzentrationen, 

und Veränderungen in den Aktivitäten der antioxidativen Enzyme 

Superoxiddismutase, Katalase, und Glutathion-Peroxidase, und der Glutathion-

Reduktase in den Kiemen, im Mantel, in der Verdauungsdrüse und der Niere. 
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Während der Ausscheidungsphase beginnen sich die meisten Parameter zu 

normalisieren, aber nicht vollständig zurück zu Normal-Werten.  

Der durch erhöhte Kupfer-Exposition verursachte erhebliche physiologische 

Stress könnte also einer der Faktoren in der ökotoxikologischen Kausalkette 

sein, die zu den kontinuierlich abnehmenden Populationen einer ganzen Reihe 

von Europäischen Süßwassermuscheln führen. 

Schlüsselwörter: Kupfer, Parachlorella kessleri, Anodonta anatina, 
Bioakkumulation, Ca-Homöostase, Kohlenhydrate, Proteine, Metallothionein, 
Glutathion, Superoxiddismutase, Katalase, Glutathionperoxidase, 
Glutathionreduktase, Lipidperoxidation (Malondialdehyd) 
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1. General Introduction 

1.1. Copper in aquatic ecosystems and its transfer in food chains 

Copper (Cu) is a transition metal having the atomic number 29 and 

belongs – along with silver and gold – to Group IB of the Periodic Table of the 

elements. The metal occurs either in metallic form or in oxidized form in many 

minerals such as cuprite (Cu2O), malachite (Cu2CO3•Cu(OH)2), azurite 

(2CuCO3•Cu(OH)2), chalcopyrite (CuFeS2), chalcocite (Cu2S), and bornite 

(Cu3FeS4). Natural copper consists of an isotopic mixture of 69% 
63Cu and 31% 

65Cu (Momčilović 2004).  

The metal occurs naturally in all aquatic ecosystems. Concentrations of 

copper in non-contaminated freshwater ecosystems range from 0.02 to 0.3 µmol 

L-1 (1 – 20 µg L-1) (Momčilović 2004). In water, copper generally exists in two 

oxidation states, i.e. Cu+ and Cu2+, mostly complexed to organic (e.g. fulvic and 

humic acids) and inorganic ligands (e.g. hydroxide, carbonate, chloride, 

arsenite, and sulfide), with only 5% in the free ionic form. Copper can also be 

associated with suspended particles, and taken up and concentrated by algal 

cells (Abbe and Sanders 1990; Arunakumara and Xuecheng 2008; Cuppett et 

al. 2006; Moore and Ramamoorthy 1984; Pinto et al. 2003).  

The availability of copper at low concentrations is essential for aquatic life. 

Mussels require copper as part of the oxygen-binding site in hemocyanin (Birge 

and Black 1979), as cofactor of cytochrome-c oxidase, tyrosinase, dopamine β-

hydroxylase, alcohol dehydrogenase, prolyl and lysyl oxidase, and in other 

enzymes involved in growth regulation and development (Amiard-Triquet et al. 

2006; Company et al. 2008; Debelius et al. 2009; Viarengo et al. 2002).  

Trace metal uptake by mussels occurs via the gills, the mantle, and the 

digestive tract. Organs serving as the sites for intake exhibit high potentials for 

bioaccumulation.  Hemocytes (blood cells) play an important role in transporting 

metals among the mussels’ organs. In balance with trace metal accumulation, 

mussels may eliminate them from their bodies via renal and intestinal excretion 

and by diapedesis. These overall mechanisms are species-, organ-, and metal-

specific (Deb and Fukushima 1999; Marigómez et al. 2002). 

Mussels take copper up from water, from copper-containing food items, or 

from both. Microalgae as primary producers at the basis of aquatic food chains 
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accumulate copper from water, transferring it to grazing species at the next 

trophic level. This contributes to biomagnification along aquatic food chains. In 

addition, grazing species can take copper up from the water (Connell and 

Sanders 1999; Edding and Tala 1996; Pinto et al. 2003). Bioconcentration 

occurs via uptake and retention of metals from water, across gill membranes or 

other external body surfaces (Kaoud and El-Dahshan 2010). The concentration 

of the metals in the soft tissue or particular organs can be considered as a 

relative measure of ambient concentrations due to the ability of mussels to 

accumulate copper (Kumari and Nair 1992). 

Since the middle of the last century, the continuously increasing 

technological and industrial use of copper has led to globally increased mining 

and translocation of copper from the earth’s crust to the surface and the 

corresponding trend of rising concentrations in all compartments of the 

anthroposphere over natural levels, especially in freshwater ecosystems of 

industrialized and industrializing countries. Metallurgic activities, its use in 

machinery such as electrically propelled locomotives, in the building sector as 

roofing material, for water pipes and kitchenware, for overland high-voltage 

power lines, and in directly dissipative ways of using it as fungicide, algicide, 

and molluskicide, the disposal of copper-containing waste waters, and its 

release and deposition of atmospheric particulate matter from coal combustion 

(Mohammed and Markert 2006; Momčilović 2004), all this has led to a 

continuously increasing Cu-burden of the biosphere. This condition entails 

copper transfer through food chains and its bioconcentration in mussels’ bodies. 

Copper accumulation in cells over the physiological requirements leads to toxic 

effects, depending upon its bioaccumulation beyond the optimum level within 

the respective organism (Nott 1998).  

1.2. Effects of copper on calcium homeostasis and cellular defense 

mechanisms of freshwater mussels 

Calcium (Ca) is an essential macronutrient for mussels. It has an almost 

universal importance for nerve conduction, mussel contraction, as second 

messenger for regulation of carbohydrate metabolism such as controlling the 

activation of glycogenesis, regulation of mitochondrial electron transport, the 

metabolism of carbohydrate intermediates of the tricarboxylic acid cycle, and of 
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almost all aspects of cellular metabolisms and growth (Albert et al. 1994; Sick et 

al. 1979). Moreover, calcium is required by young and adult mussels for shell 

formation (calcification) (Sick et al. 1979). Mussel cells require calcium (Ca) in 

specific limits of cytosolic concentrations (≤ 10-7 M). Calcium homeostasis is 

maintained by extrusion and compartmentalization systems (Viarengo et al. 

1993). In addition, mussels require carbohydrates as main energy source for 

their metabolic processes (Honkoop et al. 1999) and for shell formation (Marie 

et al. 2007; Marin and Luquet 2004). Proteins are also required by mussels for 

catalyzing biochemical reactions, transport and storage of molecules in and out 

or within cells, and have structural and mechanical functions (Albert et al. 1994).  

Exposure of mussels to copper at 0.35 µmol L-1 leads to an interference 

with the systems responsible for maintaining Ca homeostasis in gills, digestive 

gland, and kidney (Santini et al. 2011). This is followed by uncontrolled, 

increased cytosolic Ca concentrations activating various Ca-dependent 

catabolic processes such as phospholipid hydrolysis, protein degradation, and 

DNA fragmentation, ultimately leading to cell death (Viarengo et al. 2002; 

Viarengo 1994). In addition, high copper levels can entail decreased 

carbohydrate levels in gills and mantle (Satyaparameshwar et al. 2006).  

Mussels have developed detoxification mechanisms to cope with copper 

challenge. In the cytosol, glutathione (GSH), a tripeptide which contains 

sulfhydryl (SH) groups with strong affinity for copper cations and found in high 

concentrations  (0.2 – 10 mM) (Monostori et al. 2009), can provide a first line of 

defense against increased cytosolic levels of free copper by binding the metal to 

its SH-groups. Increased copper also induces synthesis of metallothioneins 

(MT), specific SH-rich proteins having the capacity to bind copper (Conners and 

Ringwood 2000; Viarengo et al. 2002).Increased cytosolic copper can induce 

oxidative stress because copper may be involved in the formation of reactive 

oxygen species (ROS) by catalyzing the generation of •OH from H2O2 and O2
•- 

through a Haber-Weiss cycle (Lackner 1998; Pinto et al. 2003). During aerobic 

respiration, oxygen is reduced to water through four steps of electron transfer 

resulting in oxygen intermediates which are highly reactive and toxic ROS, i.e. 

the superoxide anion (O2
•-), hydrogen peroxide (H2O2), and the hydroxyl radical 
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(•OH) (Lackner 1998). In healthy aerobic cells, there is a balance between ROS 

production, molecular oxidation, and antioxidant consumption.  

Mussel cells have a wide range of antioxidative enzymes, neutralizing ROS 

and keeping their concentrations at very low levels. Superoxide dismutase 

(SOD), catalase (CAT), and glutathione peroxidase (GPX) represent a group of 

enzymes having antioxidative roles (Isani et al. 2003; Pinto et al. 2003; Viarengo 

et al. 2002). SOD catalyzes the disproportionation of O2
•- to O2 and H2O2, 

whereas CAT and GPX catalyze the production of H2O from the degradation of 

H2O2 and ROOH, respectively. SOD is the cell’s first line of defense against 

ROS because it controls O2
•- which can be a precursor to several other highly 

reactive species (Pinto et al. 2003). If these mechanisms are challenged beyond 

their protective capacities and ROS production rates are higher than the rates of 

its inactivation by antioxidant defense systems, oxidative stress conditions arise. 

In such case, free ROS can react quickly and indiscriminately with biomolecules 

such as lipids, proteins, and nucleic acids, resulting in lipid peroxidation, 

formation of protein carbonyl groups, and DNA strand breaks. Determination of 

lipid peroxidation allows to assess oxidative stress levels in cells (Company et 

al. 2008; Lackner 1998). 

1.3. Freshwater mussels and their status 

Freshwater mussels are invertebrate animals which have two shells 

(bivalve shell) as mirror images of each other, connected by a hinge-like 

ligament. Adult mussels have a variety of sizes, colours, and shapes, depending 

on the species. They are sedentary and inhabit the bottom of freshwater 

ecosystems such as creeks, rivers, streams, ponds, and lakes. They have a 

muscular foot which helps them anchor against strong currents and allows 

limited movements. Mussels are ecologically important in aquatic ecosystems 

comprising a significant proportion of the total standing crop in freshwater 

benthic communities, cycling calcium in lakes, removing suspended detritus and 

cleaning the water, mixing surficial sediments through bioturbation, and serving 

as food for aquatic mammals (Box et al. 2006; Naimo 1995; Nedeau and 

Victoria 2003).  

The family of Unionidae is the most endangered of all aquatic animal 

species. Alterations of mussel habitats potentially influence the survival of the 
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mussels because several stages of the mussels’ life histories such as sperm 

release by adult males into the water column, uptake of sperms by siphoning 

females, fertilization of ovae, release of viable larvae (glochidia) from females, 

and attachment of glochidia to suitable host fish by encystations for 

transformation to free-living juvenile mussels are critical stages which ultimately 

can all contribute to a decreased mussel reproduction and population 

development. Laboratory experiments have shown that the early life stages of 

freshwater mussels are sensitive to many chemicals including copper and 

ammonia (Cope et al. 2008). Due to the importance of mussels in aquatic 

ecosystems, protective and conservative actions are required for maintaining 

healthy mussel populations and for recovering endangered ones by 

investigation of freshwater mussel biology, the preservation of water and 

riparian resources, and the control and/or elimination of threats to these animals 

(Watters et al. 2009). 

1.4. Ecotoxicological studies with Anodonta anatina  

Ecotoxicological investigations concerning the effects of contaminants are 

devoted to reveal at which dose or concentrations they become toxic. 

Investigations on contaminant uptake and elimination rates, distribution among 

mussel tissues and organs, and the relationship between contaminant 

accumulation and biological responses at each level of organization are 

required.  

Anodonta anatina is a freshwater mussel species of the family Unionidae 

which is widely distributed in Europe in a variety of freshwater ecosystems and 

is used for biological monitoring surveys (Mäkelä et al. 1995; Mäkelä and Oikari 

1990). The species has been used for uptake and body distribution studies of 

contaminants such as chlorinated phenolics (Mäkela and Oikari 1990), for 

accumulation and monitoring studies of 2,4,6-trichlorophenol (Englund and 

Heino 1996), pentachorophenol (Mäkela and Oikari 1995), other chlorinated 

phenolics (Mäkelä et al. 1991), 45Ca accumulation (Pynnönen 1991), and 

uptake and cadmium accumulation and depuration (Holwerda et al. 1988). 

Other ecotoxicological studies on contaminant impacts at biochemical and 

physiological levels of A. anatina have been reported, such as the effects of 

copper on Ca-ATPase and carbonic anhydrase (Santini et al. 2011), effects of 
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cadmium on calcium metabolism (Ngo et al. 2011), and effects of crude oil on 

cytogenetic damage (Baršienė et al. 2006).  

1.5. Objectives of the research 

This present research project aims to study the importance of two different 

copper exposure pathways, i.e. via water or food, on uptake, distribution, 

accumulation, and elimination in the freshwater mussel Anodonta anatina, and 

their potential physiological impacts. In order to reveal the effects of copper via 

food, the mussel must be fed by copper-containing algae which have normal 

nutritional value to avoid secondary effects. Therefore, before the actual mussel 

experiments, microalgae Parachlorella kessleri are raised while being exposed 

to various copper concentrations, to find the limit at which the physiological state 

and nutritional value is comparable to non-exposed algae and to be used as 
63Cu-loaded food for the mussels (Publication I). In the following experiments, A. 

anatina are exposed to Cu via water or food. Distribution, bioaccumulation, and 

elimination of the trace metal among the organs of the exposed mussels are 

investigated (Publication II). The effects of elevated copper levels on the levels 

of calcium, soluble carbohydrates and proteins (Publication III), on 

metallothionein induction and glutathione levels, on the activities of antioxidative 

enzymes, and on lipid peroxidation (Publication IV) in various organs and 

tissues are examined.  

1.6. Methodological requirements 

Since mussels contain endogenous copper, the stable isotope 63Cu is used 

as tracer to differentiate between endogenous and exogenous copper. 

According to Croteau et al. (2004), stable isotopes of metals can be used as 

markers to help investigating directional uptake pathways and their 

bioaccumulation and elimination from aqueous and dietary sources. Use of 

inductively-coupled plasma mass spectrometry (ICP-MS) as analytical tool 

allows to determine the isotopes at low concentrations as individual masses. 
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2. Materials and methods 

2.1. Copper experiment with microalgae Parachlorella kessleri  

P. kessleri (SAG Culture Collection, University of Goettingen, Germany) is 

exposed to Cu at various concentrations for 96 hours to find the most suitable 

Cu concentration which does not affect its nutritional values, being used to 

produce 63Cu-loaded algae as food for mussel experiment. Details of copper 

experiments with the algae are described in Publication I.  

2.2. Copper exposure experiment of mussels 

The duck mussel A. anatina can take copper up from water or food, so 

three groups of 21 mussels each are used, one as control and the two other 

groups to be exposed to the stable isotope 63Cu via water or food for 24 days 

followed by 12 days of depuration. Seven samplings of three mussels each 

every sixth days are taken to study the time-dependent Cu accumulation and 

elimination. Copper exposure for 24 days represents a long-term copper 

exposure (Company et al. 2008), while the depuration period of 12 days allows 

to investigate how fast the levels return to control values, reflecting also the half-

life of copper. Details of copper exposure experiments with the mussel are 

described in Publication II.  

During the experiments, total copper and isotopic copper (63Cu and 65Cu) 

are determined in the hemolymph (HML), the extrapallial fluid (EPF), gills, 

mantle, kidney, digestive gland, foot, adductors, intestines, and the collective 

remaining organs, i.e. gonads, heart, and labial palps (GHL) (Publication II). 

Effects of copper on calcium homeostasis, proteins, and carbohydrates are 

studied in all these body compartments. The relationships between copper and 

Ca, carbohydrate, and protein levels respectively, and between calcium and 

proteins are examined in the compartments (Publication III). Effects of copper 

on metallothionein, glutathione, lipid peroxidation, and antioxidative enzymes 

are also examined (Publication IV).   

 

 

 

  



8 

 

2.3. Analytical methods 

2.3.1. Determinations of total Cu, isotopic Cu, and total calcium 

Total Cu and isotopic Cu in lyophilized tissue fractions are determined by 

inductively-coupled plasma mass spectrometry (ICP-MS), total Ca by 

inductively-coupled plasma atomic emission spectroscopy (ICP-AES). 

Determinations and calculations of the concentrations of the elements are 

described in detail in Publications II and III.  

2.3.2. Determinations of carbohydrates and proteins 

Carbohydrates are determined by the phenol-sulfuric acid assay (Masuko 

et al. 2005), proteins by the dye-binding assay (Kruger 1994). Details of the 

determinations are described in Publication III. 

2.3.3. Determination of metallothionein  

Metallothionein (MT) concentrations in the gills, mantle, digestive gland, 

and kidney are determined using the spectrophotometric method described by 

Viarengo et al. (1997) and modified by Verlecar et al. (2008). Details of 

metallothionein determination are described in Publication IV. 

2.3.4. Determinations of glutathione, antioxidative enzyme activities, and lipid 

peroxidation 

Glutathione levels are determined according to Anderson (1985). The 

activities of the antioxidative enzymes catalase, glutathione peroxidase, and 

superoxide dismutase are assayed according to the methods of Rao et al. 

(1996), Paglia and Valentine (1967), and Beauchamp and Fridovich (1971), 

glutathione reductase activities are assayed following the method of Massey 

and William (1965). For lipid peroxidation assay, the method of Buege and Aust 

(1978) is employed. Details of the determinations are described in Publication 

IV. 

2.4. Statistical analysis 

Data of mussel experiments are transformed to log (X+1) units before 

statistical analysis for homogeneity of variance and normality. The variability of 

all parameters with exposure time and copper exposure pathways are tested in 
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each organ by two-way analysis of variance (ANOVA). Details of statistical 

analyses were described in Publications II and III, and Manuscript IV.  

3.  Results 

3.1. Studies of copper effects on the green alga Parachlorella kessleri: 

Producing Cu-loaded algae for feeding experiments 

Exposure of the algae to copper above 6 µmol L-1 leads to increased Cu 

levels in the algae, inhibition of algal growth, and significant alterations of 

biochemical-physiological parameters, strongest effects being observed at 

highest concentration (Publication I, Figure 1, 2, and 3, Table 1). Chlorophyll 

contents and growth rate are the most sensitive indicators. At 5.9 µmol L-1 Cu, 

the observed parameters do not differ significantly from control values.   

3.2.  Studies of different copper exposure pathways on the freshwater 

mussel Anodonta anatina  

3.2.1.  Studies of copper uptake, distribution, bioaccumulation, and elimination 

Mobilization of the stable isotope 63Cu among mussel organs reveals that 

Cu uptake from water occurs via the gills and mantle and from the food via the 

digestive gland (Publication II, Figure 4). Exogenous Cu (63Cu) and total 

(exogenous and endogenous) Cu increase in all body compartments, highest 

levels being observed at day 24. Upon exposure via the water, high total Cu 

levels are found in the gills, mantle, digestive gland, kidney, and GHL while 

upon exposure via the food highest levels are found in the digestive gland and 

kidney (Publication II, Figure 1, 2, 3, and 4). During depuration, total and 

exogenous Cu decrease in all body compartments, except for total Cu in the 

mantle and intestines for which even further increases were observed within the 

first six days of depuration. 

3.2.2.  Studies of copper effects 

3.2.2.1.  Change in Ca levels 

Ca levels in all body compartments increase in parallel to increased Cu 

concentrations, reaching highest levels at day 24 (Publication III, Figure 1 and 

2). Upon depuration, Ca concentrations in the body fluids decline fast, returning 
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to control values within the first six days although Cu levels are still elevated. In 

the organs, Ca levels tend to normalize, although not fully back to controls. 

3.2.2.2.  Changes in carbohydrate and protein levels 

Soluble carbohydrates and soluble proteins decline in all organs upon Cu 

exposure and in parallel to its concentrations, reaching lowest levels at day 24 

(Publication III, Figure 3). When Cu administration is terminated, the levels in 

the studied organs start to increase, although not fully back to control within the 

12 days. 

3.2.2.3. Effects on metallothionein, glutathione, lipid peroxidation, and 

antioxidative enzymes 

Exposure of A. anatina to copper induces increases in metallothionein 

(MT) in all organs, reaching highest levels at day 24 (Publication IV, Figure 1). 

For glutathione (GSH), the levels decrease at similar rates in all organs, 

reaching lowest levels at day 24. Simultaneously with the Cu elimination, MT 

levels decrease in all organs, for GSH being increased slowly. Thiobarbituric 

acid-reactive substances (TBARS) increase strongly upon Cu exposure via the 

water, reaching highest levels at day 24. During depuration, TBARS levels 

decrease slowly.  

Activities of superoxide dismutase (SOD), catalase (CAT), glutathione 

peroxidase (GPX), and glutathione reductase (GR) are expressed in two ways, 

i.e. relative to protein contents and to tissue wet weight. In relation to protein 

contents, all enzyme activities increase reaching highest levels at day 24. 

Strongest effects were found in the digestive gland (Publication IV, Figure 2). In 

terms of tissue wet weight, activities of SOD, GPX, and GR decline in all organs, 

reaching lowest levels at day 24. For CAT, the activities remain unchanged for 

both pathways except for the kidney in which the activity is increased, reaching 

highest level at day 18. During depuration, most parameters tend to normalize 

but do not return to control values. 

4. General discussion 

Declines in chlorophyll contents of P. kessleri upon Cu exposure suggest 

three possibilities, i.e. inhibition of chlorophyll synthesis, increased lipid 
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peroxidation on chloroplast membranes, and degradation of chlorophyll-a 

confirmed by increased pheophytin-a (Sandmann and Böger 1980; Tripathi and 

Gaur 2006). This condition may affect photosynthesis rates, lowering glucose 

synthesis and ultimately resulting in inhibition of algal growth. Decreases in 

carbohydrates and proteins may be a result of increased hydroxyl radical 

formations induced by copper via the Haber-Weiss reaction. The radicals are 

highly reactive, oxidizing, and breaking apart biological macromolecules 

(Nikookar et al. 2005). 

Use of the stable isotope 63Cu can represent exogenous Cudistribution and 

the redistribution of endogenous Cu among body compartments. Redistribution 

of endogenous Cu causes pronounced alterations in total Cu in the organs, 

such as increases in the mantle and intestines upon exposure via the food 

(Publication II, Figure 2, 3, and 4).  

Copper elimination can occur due to the difference in gradient Cu 

concentration between the mussel and APW (Publication II, Figure 2 and 3). 

High Cu level in the kidney indicates that this organ plays an important role in 

elimination. Declines of exogenous 63Cu levels during depuration indicate that 

the isotope is in a relatively easily exchangeable form while the endogenous Cu 

is more tenaciously retained (Publication II, Figure 4).  

Disturbance of Ca homeostasis upon Cu exposure (Publication III, Figure 1 

and 2) can occur due to mobilization of CaCO3 from the shell, most likely due to 

Cu-induced metabolic acidosis (Antunes et al. 2002; Faubel et al. 2008; Lopes-

Lima et al. 2008). Inhibition of Ca extrusion and of intracellular 

compartmentalization systems may be another complication (Pattnaik et al. 

2007; Viarengo et al. 2002; Viarengo et al. 1994). Decreased protein levels 

(Publication III, Figure 3) may be due to increased Ca levels, activating Ca-

dependent catabolic processes such as protein degradation (Viarengo et al. 

1994). A strong decrease of carbohydrate levels is attributed to cell hypoxia 

caused by copper, leading to increased activities of glycolytic enzymes involved 

in anaerobic ATP production (Satyaparameshwar et al. 2006; Martίnez et al. 

2006).  

Increases of MT levels in all observed organs upon Cu exposure 

(Publication IV, Figure 1) confirm the role of MT in copper metabolisms. Strong 

decreases in GSH levels within the first 6 days of exposure indicate that GSH is 
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consumed for early cellular protection against copper and as precursor for MT-

synthesis. In respect to activities of antioxidative enzymes and glutathione 

reductase, since the overall protein synthetic capacity is hampered (Publication 

III, Figure 3), the activities of the enzymes relative to tissue wet weight – and 

thus relative to copper – are depressed. This indicates that the mussels are 

under considerable oxidative stress. Increased TBARS levels as indicator of 

lipid peroxidation confirm the generation of reactive oxygen species upon 

copper exposure.  

5.  Conclusions, contributions, and perspectives   

5.1. Conclusions 

Anodonta anatina shows the ability to take up copper as water-dissolved 
63Cu or from 63Cu-loaded algae. Copper is accumulated mainly in the mantle, 

gills, and digestive gland upon exposure via the water, from the food in the 

digestive gland. The digestive gland and the kidney are the main organs for 

accumulation and elimination.  

 At the same time, increased Cu concentrations in the mussels’ organs 

result in pathophysiological consequences, such as alterations of Ca 

homeostasis and decreases of carbohydrates and proteins. Strong induction of 

MT and depletion of GSH confirm their biological roles in response to copper as 

a first line of defense against cell toxic effects. The attempt to activate a second 

line of defense by diverting protein synthetic capacity to antioxidative enzyme 

synthesis is futile, leading to their decline in relation to tissue weight; this 

indicates that the mussel Anodonta anatina is under considerable oxidative 

stress at such environmentally relevant Cu-concentrations. The overall pictures 

indicate that copper may be one of contributory factors in the presently 

observed decline of many European freshwater mussels. 

5.2. Contributions 

This study develops an ecotoxicological model for freshwater ecosystems, 

integrating biological, physical, and chemical factors. In order to study the 

effects of copper on mussels, the model establishes the interactions between 

mussels and dissolved copper, and mussels and Cu-contaminated food in 

representation of Cu transfer via food chains. During exposure, the levels of 

copper, calcium, carbohydrate, protein, metallothionein, glutathione, glutathione 
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reductase, and antioxidative enzymes are examined in the mussels’ organs. 

The results can give information about the potential risks elicited by copper on 

aquatic ecosystems and may offer an early warning tool to evaluate the impact 

of this transition metal on environmental quality.   

5.3. Perspectives 

This study indicates that copper may be one of the factors involved in the 

decline of freshwater mussels including the pearl mussel Margaritifera 

margaritifera. Further parameters such as the effects of copper on calcium 

storage as concretions and DNA damage should be investigated, in order to 

improve the understanding of the underlying mechanisms. In aquatic 

ecosystems, mussel populations are exposed to a mixture of contaminants in 

water and sediments. Further laboratory experiments and field studies are 

necessary to investigate the synergistic and antagonistic effects of such 

contaminants on the biochemical, enzymological, endocrinological, and 

physiological conditions. Finally, the results of the laboratory experiments 

should be applied in selected watersheds to recover mussel populations and be 

used to decide proper policies related to environmental protections and 

biodiversity conservations. 
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Microalgae require several essential metals for optimum growth, which at
elevated concentrations may interfere with biochemical and physiological
processes, one of them being copper (Cu). The aim of this study is to raise
Cu-loaded Parachlorella kessleri as feed for mussels. In order to spike the algae
with Cu without lowering their nutritional quality, it is important to know the
highest Cu-concentration at which the main parameters remain unaffected,
especially in respect to proteins and polysaccharides. The dependence of growth
rate, biomass, chlorophyll-a and -b, pheophytin-a, protein, and polysaccharide
contents on Cu concentrations are determined. The tests show that P. kessleri is
largely unchanged in its nutritional value when exposed to Cu at levels of up to
6mmolL�1. Above 10 mmolL�1, toxic effects become obvious, with chlorophyll
contents and growth rate being the most sensitive indicators.

Keywords: copper; Parachlorella kessleri; growth rate; biomass; chlorophyll-a;
chlorophyll-b; pheophytin-a; proteins; polysaccharides

Introduction

Microalgae are fundamental constituents of food chains in almost all aquatic ecosystems,
serving as food for organisms of the next trophic levels and as source of oxygen for
respiration. For optimum growth, algae require a number of essential metals, some of
which may be toxic above certain levels. A typical example is Cu; usually, it is present in
natural fresh waters at concentrations ranging from 0.02 to 2 nmol L�1 (0.001–0.1 mgL�1)
and in ocean waters from 0.5 to 10 nmolL�1 (0.03–0.6 mgL�1). To cope with its low
availability, algae have mechanisms for active uptake and accumulation (Debelius et al.
2009; Lim et al. 2006; Wright and Welbourn 2002), based upon the strong complexation
with functional thiol groups of the proteins involved in the active uptake of Cu (Levy et al.
2008; Nalimova et al. 2005; Stauber and Florence 1987; Yan and Pan 2002).

Copper is required as a cofactor of enzymes participating in oxygen metabolism and in
redox reactions, e.g., plastocyanin, polyphenol oxidase, superoxide dismutase, ascorbate
oxidase, cytochrome oxidase, lysyl oxidase, and diamine oxidase (Nalimova et al. 2005;
Yilmaz, Is� ik, and Sayin 2005). Mollusks and other invertebrates also require Cu as a
component of hemocyanine; the animals receive it from the water as well as from
Cu-containing food (Amiard-Triquet et al. 2006; Company et al. 2008).
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Due to its use as fungicide, in the building sector as roofing material, for overland high-
voltage power lines, and its presence in municipal and industrial waste waters, Cu
concentrations in rivers, lakes, and estuaries have increased severalfold over natural levels
(Mohammed and Markert 2006; Yilmaz, Is� ik, and Sayin 2005). High concentrations have
been reported in rivers of Japan (1.1–3.5 mmolL�1 (0.07–0.22mgL�1), Pawlik-Skowrońska
and Skowroński 2001), China (Yangtse river 0.2–0.8mmol L�1 (15–50mgL�1), Xu et al.
2000), or Brazil (Jurujuba Sound 0.08–3.3mmol L�1 (5–210mgL�1), Neto, Smith, and
Mc Allister 2000). At such levels, Cu can have toxic effects to producers and consumers on
the various stages of the aquatic food chain. For algae, toxicity thresholds (NOEC, no
observed effect concentration) have been reported (Levy, Stauber, and Jolley 2007) to be in
the range of 0.003–0.14 mmolL�1 (0.2–9 mgL�1), lowest observed effect concentrations
(LOECs) in the range of 0.004–0.63 mmolL�1 (0.3–40 mgL�1), and the 72 h IC50 between
0.009 and 8.3 mmolL�1 (0.6–530 mgL�1), depending on the strain.

The primary toxic effects of Cu on algal cells are altering the rate of deoxyribonucleic
acid (DNA) synthesis, interfering with protein and carbohydrate metabolisms, mitochon-
drial electron transport, and adenosine triphosphate (ATP) production and respiration,
disrupting cell division, and interfering with the uptake of Ca and Mg (Arunakumara and
Xuecheng 2008; Debelius et al. 2009; Markina and Aizdaicher 2006; Pawlik-Skowrońska
and Skowroński 2001; Stauber and Florence 1987; Tripathi and Gaur 2006). In Chlorella
pyrenoidosa, Cu affects growth rates, photosynthesis, and content of chlorophyll-a starting
at concentrations of 4 mmolL�1 (0.25mgL�1), 1.6 mmolL�1 (0.1mgL�1), and
1.6 mmolL�1 (0.1mgL�1), respectively (Wong and Chang 1991). Yan and Pan (2002)
reported the growth of Scenedesmus obliquus, C. pyrenoidosa, and Closterium lunula being
inhibited at concentrations of 0.8, 1.0, and 3.0mmolL�1 (50, 70, and 200 mgL�1),
respectively. In this context, it should be mentioned that under laboratory culture
conditions, the onset of Cu toxicity depends also on initial cell density, composition of the
medium, and physical conditions (Debelius et al. 2009).

The algal species Parachlorella kessleri used in this study is a common food source for
herbivore consumers in freshwater ecosystems. They are easy to culture in the laboratory,
often used in toxicity bioassays for predicting environmental impacts of pollutants, and
known to have a remarkable ability to accumulate metals (Debelius et al. 2009; Kaduková
and Virčı́ková 2005; Mallick 2003). In order to raise Cu-loaded algae for feeding
experiments with mussels, it is important to assess the toxicological and pathophysiolog-
ical threshold of Cu which does not affect significantly the nutritional value of Cu-loaded
algae compared to control algae, especially in respect to protein and carbohydrate
contents. NOECs of Cu, its effects on growth rate and biomass, on chlorophyll-a and -b, in
the formation of pheophytin-a, and on the protein and polysaccharide contents are
determined.

Materials and methods

Glassware and reagents

All glassware is rinsed twice with half-concentrated HNO3 (65%; Sigma–Aldrich, Munich,
Germany), deionized and bidistilled water, and sterilized in an autoclave (Certoclav
CV-EL 18 O, Certoclav Sterilizer GmbH, Traun, Austria) at 120�C for 15min.
Lyophilized glycogen standard (Type VII, Mytilus edulis), Coomassie blue solution,
bovine serum albumin (BSA), and all other chemicals (Sigma–Aldrich) are of analytical
grade. For exposure experiments, a Cu solution is prepared by dissolving

538 A.P. Nugroho and H. Frank

21



0.1 g CuCl2 � 2H2O in bidistilled water in a 100mL volumetric flask yielding a concen-
tration of 5.9 mmolL�1.

Test organism, culture conditions, and toxicity testing

Parachlorella kessleri is obtained from the Culture Collection of Algae (SAG) of the
University of Goettingen, Germany. An algal stock culture is grown axenically in a
sterilized K-medium (Kuhl and Lorenzen 1964), modified by containing the macronutri-
ents KNO3, NaH2PO4 �H2O, Na2HPO4 � 2H2O, MgSO4 � 7H2O at 1.5 times, and CaCl2 at
2.5 times increased concentrations, under omission of Cu2þ and ethylenediaminetetraace-
tic acid (EDTA), and with the pH value lowered to 6.5. The algae are kept suspended by
gentle shaking, maintained at 22� 2�C, and illuminated continuously with fluorescent
tubes at a photon intensity of 48–51mmolm�2 s�1 in 2L Erlenmeyer flasks connected to a
Drechsel gas wash bottle to distribute air and CO2; the latter is filled with potassium
carbonate buffer (2mol L�1 KHCO3/K2CO3, 35/65 v/v).

For toxicity testing, aliquots of the stock culture are added to 1.8 L modified K-medium
in 2L Erlenmeyer flasks to establish an initial cell density of 1–2� 105 cellsmL�1. The
cultures are maintained as described above. At day 3 after inoculation, Cu is added using
the stock solution to establish the following exposure concentrations: 0 (control), 5.9, 11.7,
23.5, 47, and 94 mmolL�1. The algae are grown at these levels for 96 h, i.e., from day 3 to
day 7. Growth is monitored daily and, in the end of the experiment (day 7), biomass,
chlorophyll-a and -b, pheophytin-a, protein, and polysaccharide contents are determined,
as well as Cu accumulation. For all analyses, three aliquots are taken.

Determination of growth and biomass

Growth is followed by measuring optical density. Three 3mL aliquots are taken from each
culture using Pasteur pipettes connected with silicon tubing to 1000mL micropipettors
(Carl Roth, Karlsruhe, Germany) and transferred to polystyrene cuvettes with 1 cm light
path. The optical density is read at a wavelength of 686 nm (OD686) (UVIKON 930
Spectrophotometer, Kontron Instruments, Munich, Germany). The specific growth rate is
calculated according to Mei et al. (2006), taking the rate at the highest Cu concentration as
100% inhibition.

At the end of the experiment, the whole algal culture is centrifuged in six 300mL
centrifugation bottles at 10,000 rpm at 4�C for 10min (Beckman Avanti J25, rotor
JA-16.50). The supernatants are discarded and the algal pellets are washed by
resuspension/centrifugation, once with fresh culture medium and once with phosphate-
buffered saline (PBS). The pellets are combined and the algae are resuspended in 47mL
bidistilled water, transferred to a 50mL polypropylene centrifugation tube of known
weight, and centrifuged again (Beckman Avanti J25, rotor JA-16.50); the supernatant is
discarded, and the fresh weight of the biomass is calculated by subtracting the weight of
the empty tube from the weight of the tube containing the algae. The pellet is frozen at
�80�C, freeze-dried at �40�C for 72 h, and weighed again to yield the dry weight.

Copper determination

For Cu determination, the lyophilized algae are homogenized by acid digestion as follows:
three algal samples of 10mg each are placed in 55mL borosilicate glass tubes, and to each
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tube, 5mL of a mixture (4 : 1) of suprapure concentrated HNO3 and suprapure
concentrated HCl is added. The tubes are kept in an oven at 40�C for 1 h, followed by
95�C for 3 h. The digested samples are diluted with bidistilled water to 10mL and filtered
through a 0.45-mm cellulose syringe filter (Carl Roth). Copper is determined by inductively
coupled plasma mass spectrometry (Agilent 7500ce, Cetac ASX-510, Agilent
Technologies, Waldbronn, Germany) and expressed per kilogram dry weight. Copper
concentration per kilogram wet weight is calculated by multiplying the determined
concentration per dry weight with the ratio of algal wet weight versus dry weight.

Determination of chlorophyll-a, chlorophyll-b, and pheophytin-a contents

Chlorophyll-a and -b and pheophytin-a contents are determined according to the APHA
method (APHA 1992). Lyophilized algae, 3mg each, are suspended in 12mL ice-cold
acetone in 50mL polypropylene centrifugation tubes and sonicated in an ice bath at
20 kHz, acoustic power 50W (Labsonic U tip Sonicator, B. Braun Biotech International,
Melsungen, Germany) for 160 s in eight 20 s periods, allowing equal time for cooling on
ice. The homogenates are kept for 2 h at 4�C in the dark and centrifuged at 2500 rpm at
4�C for 15min. The supernatants, 3mL each, are transferred to 1 cm polystyrene cuvettes,
and the optical densities at 750 and 664 nm (OD750b and OD664b) are read (UVIKON 930
Spectrophotometer, Kontron Instruments); OD664b value should lie between 0.1 and 1.0.
Subsequently, 0.1mL of 0.1mol L�1 HCl is added under gentle agitation, and 90 s later,
the optical densities are read again at 750 nm and, this time, at 665 nm (OD750a and
OD665a). The OD664b/OD665a ratio is calculated, and then chlorophyll-a and pheophytin-a
are determined (APHA 1992):

Chlorophyll-aðmgL�1Þ ¼ 26:7 ðOD664b �OD750bÞ � ðOD665a � ðOD750aÞ½ �

Pheophytin-aðmgL�1Þ ¼ 26:7 1:7ðOD665a � ðOD750aÞ � ðOD664b �OD750bÞ½ �

For determination of chlorophyll-b, 3mL of the supernatant is transferred to a 1 cm
polystyrene cuvette and the optical densities at 750, 664, 647, and 630 nm are read.
Chlorophyll-b is calculated according by the trichromatic method (APHA 1992):

Chlorophyll-bðmgL�1Þ

¼ 21:03ðOD647 �OD750Þ � 5:43ðOD664 �OD750Þ � 2:66ðOD630 �OD750Þ:

Protein and polysaccharide contents

Lyophilized algae, 5mg each, are placed in 2mL Eppendorf tubes, 1mL of PBS is added to
each tube, and the samples are sonicated for 160 s in eight 20 s periods in an ice bath at
20 kHz, acoustic power 50W, allowing equal time for cooling on ice to avoid protein
denaturation. The homogenates are centrifuged at 4�C for 20min at 15,000 rpm (Beckman
Avanti J25, rotor JA-16.50).

The supernatants are used for determination of protein content by the dye-binding
assay (Kruger 1994). Aliquots of 10 mL are filled into 1mL disposable polystyrene cuvettes
and 90 mL of bidistilled water and 1mL of Coomassie blue solution are added. After gentle
but thorough mixing, the samples are kept at room temperature for 15min before
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absorbances are read at 595 nm. Protein concentrations are determined from a calibration
curve obtained with BSA.

Carbohydrate is determined by the phenol–sulfuric acid assay (Masuko et al. 2005).
Aliquots of the supernatants, 50 mL each, are placed in 2mL Eppendorf tubes, and 200 mL
of bidistilled water and 750mL of concentrated sulfuric acid are rapidly added to achieve
complete mixing. Immediately afterward, 150 mL of a solution of 5% phenol in water is
added. After incubation for 5min at 90�C in a static water bath, the tubes are cooled to
room temperature for 5min in another water bath and wiped dry for spectrophotometric
measurement at 490 nm. The concentrations of polysaccharides are determined using a
calibration curve obtained with glycogen standard type VII (Sigma–Aldrich).

Data analysis

The data of all parameters are statistically analyzed by one-way analysis of variance
(ANOVA), followed by the Duncan multiple comparison tests if significant differences are
found. Data are transformed to log units before statistical analysis for homogeneity of
variance and normality. Linear regression analysis is performed for evaluating the
relationships between Cu concentration and physiological and biochemical parameters,
followed by Pearson correlation analysis for testing the strength of linear relationships.

Toxicity is expressed as NOEC, estimated using the Dunnett’s multiple comparison test
after analysis by one-way ANOVA, while IC10 and IC50 values are determined using the
inhibition concentration (ICp) approach (Version 2.0, Norberg-King 1993). Visual
MINTEQ software is used to calculate Cu speciation in relation to pH of algal medium
(Version 3.0, beta version; Gustaffsson 2010).

Results

Growth of P. kessleri is moderate and statistically, non-significantly inhibited (5% relative
to control, p4 0.05) by Cu given between day 3 and day 7 at a concentration of
5.9 mmolL�1. Copper exposures at 11.7, 23.5, 47, and 94 mmolL�1 cause significant
decreases by 27, 34, 87, and 100% (p5 0.05). Inhibition plotted on the probit scale
(Figure 1) shows a linear relationship to Cu concentration with a strong, positive
correlation (r¼ 0.96; p5 0.05). It should be kept in mind that at the pH of the incubation
medium of 6.5, the relative percentage of free Cu2þ is about 89–91% of the nominal
concentration; decrease of pH to 6.3 at the end of exposure may increase the free Cu2þ to
about 95% (Gustaffsson 2010).

Copper exposure at 5.9mmolL�1 results in decrease in chlorophyll-a and -b contents
and in OD664b/OD665a ratio at day 7 (Table 1) though statistically insignificant (p4 0.05).
Reductions in chlorophyll-a and -b (42% and 32%) are found to be significant at
11.7mmolL�1 Cu, for the OD664b/OD665a ratio at 23.5mmolL�1 Cu. At the highest Cu
concentration (94 mmolL�1), chlorophyll-a and -b contents are strongly lowered (97% and
95% relative to control), the OD664b/OD665a ratio moderately. Regression and correlation
analysis show strong, highly negative correlations between Cu exposure concentration and
chlorophyll-a (r¼�0.908; p5 0.01), chlorophyll-b (r¼�0.906; p5 0.01), and OD664b/
OD665a ratio (r¼�0.925; p5 0.01). Pheophytin-a is increased (r¼ 0.912; p5 0.01) even at
the lowest Cu concentration being significantly different from control (44%, p5 0.05). At
the highest Cu concentration, pheophytin-a is increased by 800%. Biomass is reduced by
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15% relative to control (p4 0.05) at 5.9 mmolL�1 Cu; at 11.7mmolL�1 and above,
reductions by 20% and more (p5 0.05) are found.

Exposure of algae to Cu results in strong accumulation of the metal (Figure 2) far
above the natural level, the latter being about 0.01mmol kg�1 wet weight. On day 7 of the
experiment, i.e., after 4 days of Cu exposure at 5.9 mmolL�1, intracellular Cu reaches
2.5mmol kg�1 wet weight, the 410-fold of its concentration in the water. At the higher Cu
exposure concentrations, similar accumulation factors are found, i.e., 280- to 510-fold.

The polysaccharide content is raised by 32% at 5.9 mmolL�1 Cu, the level of protein is
slightly and insignificantly elevated (p4 0.05) (Figure 3). Beyond a Cu exposure level of

Figure 1. Probit plot of growth inhibition (between days 3 and 6) of P. kessleri at different CuCl2
concentrations.
Note: Identical letters indicate that differences are not significant (p4 0.05).

Table 1. Effects of Cu exposure on the contents of chlorophyll-a, pheophytin-a, chlorophyll-b,
on OD664b/OD665a ratio, and on biomass in P. kessleri on day 7, i.e., after 4 days of exposure.

Exposure
CuCl2
(mmolL�1)

Effects

Chlorophyll-a
(mg g�1 dw)

Pheophytin-a
(mg g�1 dw)

Chlorophyll-b
(mg g�1 dw)

OD664b/OD665a

ratio
Biomass
(gL�1)

0 7.6a� 1.31 0.09a� 0.01 1.92a� 0.38 1.67a� 0.01 0.52a� 0.10
5.9 6.7a� 0.73 0.13b� 0.01 1.71a� 0.23 1.63a� 0.02 0.44ab� 0.04
11.7 4.4b� 0.37 0.15b� 0.02 1.30b� 0.05 1.59a� 0.01 0.41b� 0.05
23.5 4.0b� 0.46 0.25c� 0.03 1.00c� 0.04 1.48b� 0.08 0.38b� 0.02
47 0.3c� 0.04 0.71d� 0.05 0.14d� 0.02 1.18c� 0.01 0.30c� 0.01
94 0.2c� 0.04 0.73d� 0.03 0.10d� 0.02 1.13c� 0.06 0.25c� 0.01

Note: Means� standard deviations (n¼ 3). Identical letters indicate that the values are statistically
not different (p4 0.05); dw¼ dry weight.
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Figure 2. Copper accumulation by P. kessleri after 4 days of CuCl2 exposure.
Note: Enrichment factors are given above each column.

Figure 3. Concentration dependences of protein and polysaccharide contents in P. kessleri after 4
days of CuCl2 exposure.
Note: Identical letters indicate that differences in these parameters are not significant (p4 0.05).
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about 10 mmolL�1, the levels of carbohydrates and proteins are declining, the latter to
about 15% of control at the two highest Cu concentrations.

Toxicity of Cu is determined using various endpoints (Table 2). NOEC values based
upon chlorophyll-a and -b and pheophytin-a contents, OD686 at day 7, and inhibition of
growth are 5.9 mmolCuL�1; the NOEC for biomass is 11.7 mmolCuL�1. The toxicity
markers are found to be increasingly sensitive in the following order: biomass and OD686

at day 75 pheophytin-a5 chlorophyll-a, chlorophyll-b, and growth rate. Polysaccharide
and protein contents are obviously not useful as toxicity markers at low Cu-levels
(Figure 3).

Discussion

Decline in chlorophyll-a and -b contents of P. kessleri during exposure to Cu from about
10 mmolL�1 upward suggests inhibited chlorophyll synthesis. With Scenedesmus sp., such
inhibition is found at a Cu concentration as low as 2.5mmolL�1 (Tripathi and Gaur 2006).
According to Sandmann and Böger (1980), decline in chlorophyll content of Scenedesmus
acutus upon exposure to Cu exceeding 10 mmolL�1 is correlated with increased lipid
peroxidation resulting in chloroplast membrane damage. A similar behavior is observed
for the floating macrophyte Ceratophyllum demersum, the chlorophyll contents of which
being reduced by 20% upon Cu exposure at 2 mmolL�1 for 24 h (Devi and Prasad 1998).
In addition, Cu may replace the central Mg2þ ion in chlorophyll and inhibit the synthesis
of �-aminolevulinic acid and protochlorophyllide reductase, the latter two being important
in chlorophyll biosynthesis (Perales-Vela et al. 2007).

Pheophytin-a is a sensitive indicator of toxicant effects on plants. It results from
degradation of chlorophyll-a by replacement of Mg2þ for two protons (Küpper, Küpper,
and Spiller 1998). Bačkor and Váczi (2002) reported that administration of Cu at
4mmol L�1 to lichen photobionts entails increased pheophytinization. According to
APHA (1992), a small change in OD665-value upon acidification reflects high pheophytin-
a contents, also shown by the OD664b/OD665a ratio. When the latter is about 1.0,
pheophytin content is high, while a value of about 1.7 is an indicator of excellent
physiological condition.

Inhibition in growth of P. kessleri is conspicuous at 11.7 mmolL�1 Cu and higher,
similar to other algal species, i.e., 16 mmolL�1 Cu for Spirulina platensis (Nalimova et al.
2005), 10 mmolL�1 Cu for Scenedesmus sp. (Tripathi and Gaur 2006), 7.9 mmolL�1 Cu
for Cylindrotheca fusiformis (Pistocchi et al. 1997), but only 1.5 mmolL�1 Cu for
C. pyrenoidosa 251 (Wong and Chang 1991). Thus, P. kessleri is in respect to growth
similarly sensitive to Cu as other algal species, although some are even more sensitive.
Growth inhibition may be caused by interference with photosynthesis, directly by blocking

Table 2. IC10, IC50, and NOEC values (mmolCuL�1) after 4 days of CuCl2 exposure based on
chlorophyll-a, pheophytin-a, chlorophyll-b, OD686, inhibition of growth, and biomass at day 7.

Chlorophyll-a Pheophytin-a Chlorophyll-b OD686 Growth Biomass

IC10 12.1� 1.1 11.7� 0.6 9.4� 0.6 15.0� 0.4 9.0� 0.5 18� 7
IC50 33.5� 0.5 32.1� 0.3 28.0� 3.0 78.5� 2.5 22.0� 3.0 85� 10
NOEC 5.9 5.9 5.9 5.9 5.9 11.7

Note: Data are expressed as mean � standard deviation for IC10 and IC50.
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the photosynthetic electron transport in photosystem II or indirectly by inhibiting the

biosynthesis of photosynthetic pigments. Inhibition of other anabolic enzymes by binding

to SH groups affecting their catalytic action and/or by disrupting their structural integrity

has been suggested (de Filippis and Pallaghy 1994; Juneau, Berdey, and Popovic 2002;

Küpper et al. 2002), as well as interference with the homeostasis of the electrolyte metals

calcium and magnesium (Arunakumara and Xuecheng 2008; Küpper, Küpper, and Spiller

1998; Pearlmutter and Lembi 1986). This may affect the rate of mitosis which finally

causes poor algal growth. High Cu concentrations may also lead to oxidative stress and

generation of free radicals which damage the cellular machinery (Arunakumara and

Xuecheng 2008; Cid et al. 1995; Fernandes and Henriques 1991; Pawlik-Skowrońska

and Skowroński 2001; Tripathi and Gaur 2006). In Dunaliella salina and Dunaliella

tertiolecta, Cu exposure at 5 mmolL�1 for 24 h results in increased lipid peroxidation of

400% and 195% relative to control, indicating increased hydroxyl radical formation,

presumably by Haber–Weiss reaction. The latter may also be the reason for the

breakdown of polysaccharides and proteins (Nikookar, Moradshahi, and Hosseini 2005)

in P. kessleri above 10 mmolL�1 Cu. Interestingly, proteins and polysaccharides are even

elevated up to about 6–7 mmolL�1 Cu (Figure 3), indicating that P. kessleri is better suited

for raising Cu-loaded feed than other algae, e.g., Scenedesmus sp. which is affected within

48 h at 2.5 mmolL�1 Cu by toxic action on the enzymes responsible for protein biosynthesis

(Tripathi and Gaur 2006). In relation to Cu toxicity, the 96 h IC10 and IC50 values

(Table 2) show differences in the sensitivity of the various endpoints. Chlorophyll loss,

increase in pheophytin-a, and lowered growth rate are the most sensitive indicators. For

P. kessleri, the NOEC for all endpoints, except biomass, is 5.9 mmolL�1 Cu (Table 2). This

is much higher than for D. tertiolecta (0.13 mmolL�1 Cu), Tetraselmis sp. (0.11 mmolL�1

Cu), Nitzschia closterium (0.07 mmolL�1 Cu), Phaeodactylum tricornutum (0.02 mmolL�1

Cu), and Emiliania huxleyi (0.13 mmolL�1 Cu) (Levy, Stauber, and Jolley 2007).
Parachlorella kessleri has high accumulation capacity for Cu (Figure 2), at

5.9 mmolCuL�1 410 times increased over the concentrations in the medium. At

concentrations between 11.7 and 47.0 mmolCuL�1, enrichment factors are slightly

lower, but at the highest Cu concentration, enrichment is further increased. According

to Mallick and Rai (2002) and Markina and Aizdaicher (2006), this non-linear dependence

may be the consequence of Cu-exclusion as defense mechanisms, in combination with the

induction of phytochelatin synthesis and metal sequestration into the nucleus and vacuole

(de Filippis and Pallaghy 1994). For Tetraselmis chuii, Yilmaz, Is� ik, and Sayin (2005) have

reported a 42-fold accumulation at Cu exposure at 4 mmolL�1 for 3 days.
The above experiments show that Cu-loaded micro algae of the species P. kessleri with

acceptable nutritional value for feeding mussels, can be raised up to a Cu-concentration of

about 6 mmolL�1, and they can be recommended, especially as they can accumulate Cu

efficiently (more than 400 times) without significantly affecting photosynthetic parameters

(Figure 2), and even raising their protein and carbohydrate (Figure 3).

Conclusions

Parachlorella kessleri is a species suitable for the preparation of Cu-loaded algal feed if

grown at moderate Cu concentrations of about 6 mmolL�1, resulting in algae well loaded

with Cu and equivalent to controls in respect to protein and polysaccharide contents.

Above a Cu exposure level of 10 mmolL�1, reductions in growth, biomass, chlorophyll-a
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and -b, as well as proteins and polysaccharides are too severe to yield algae which are
suitable as mussel feed.
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Copper (Cu) is present in aquatic ecosystems in dissolved form, associated with
suspended food particles, and as insoluble sulfide in the sediment. Due to its wide
technical use and its presence in municipal and industrial waste waters, levels in
rivers and sediments may be elevated. The aims of this study are to assess
the relative importance of copper uptake by a typical freshwater mussel
(Anodonta anatina), its distribution, accumulation among the mussel organs,
and elimination. Using the stable isotope 63Cu as tracer, the mussels are exposed
via the water (0.3 mmolL�1 Cu) or via the food (1.5mgL�1 Cu-loaded algae,
equivalent to 0.06 mmolL�1 Cu) for 24 days. The levels of exogenous and total Cu
increase in all body compartments. Relative increases are highest in the digestive
gland, followed by mantle and gills. Upon depuration for 12 days, 63Cu is quickly
but not completely eliminated.

Keywords: copper; Anodonta anatina; bioaccumulation; elimination; water;
freshwater bivalve

Introduction

Metals of technical importance are found in the environment at increasing concentrations
resulting from mining and metallurgic activities, due to their wide technical use, or due to
emissions from corrosion and from fossil fuel combustion. Therefore, many metals show
the tendency to increase over natural levels and to accumulate in soil and aquatic
compartments, especially in river sediments. Copper (Cu) is one of them; due to its use as
fungicide, in the building sector as roofing material, for overland high-voltage power lines,
and many other electrotechnical applications it may be present in municipal and industrial
waste waters. Apparently, Cu is also spread in the environment as nonpoint source
pollutant and can attain elevated levels in declining freshwater pearl mussels (Frank and
Gerstmann 2007), sedentary animals living at the interface of free-flowing water and
sediments of mountain streams. In water, copper can exist in dissolved form or associated
with dissolved organic carbon and with suspended food particles (Vinot and Pihan 2005).
In sediments it may be present as insoluble sulfide or dissolved in the interstitial water
(Besser, Ingersoll, and Giesty 1996). Copper is essential to mussels up to 10 mmol kg�1

(0.6mg kg�1) body weight (Julshamn et al. 2001), as part of the oxygen-binding site in
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hemocyanin (Birge and Black 1979) and as cofactor of the prosthetic groups of enzymes
such as of cytochrome-c oxidase, tyrosinase, dopamine �-hydroxylase, alcohol dehydro-
genase, prolyl and lysyl oxidase, or others involved in growth regulation and development
(Amiard-Triquet et al. 2006; Company et al. 2008). At higher concentrations, Cu is toxic to
mussels, resulting in altered calcium (Ca) homeostasis of blood cells (Viarengo et al. 1994);
the 96-hour LC50 for mollusks ranges between 6 and 30 mmolL�1 (0.4–2mgL�1)
(Crompton 1998).

Copper can be taken up by freshwater mussels with the water or the food. The route of
uptake influences the distribution of the metal in the various organs, determines the
dynamics of Cu-bioaccumulation and elimination, and has consequences on the
pathophysiology of copper in the mussels (Croteau and Luoma 2005). In this work,
duck mussels (Anodonta anatina) are used as model species to study the toxicological
relevance of copper uptake via both pathways. The stable isotope 63Cu is used as tracer to
follow its distribution within the mussel and its elimination upon depuration.

Materials and methods

Algal food preparation

Algae (Parachlorella kessleri) are used as food for the mussels and, when grown at a
63Cu-concentration of 5.9mmolL�1 (Nugroho and Frank 2010), for one experimental
group as Cu-exposure source. Algae are grown in modified K-medium (Kuhl and
Lorenzen 1964) for 7 days to produce normal or copper-loaded algae. Freeze-dried normal
and copper-loaded algae contain 0.01mmol kg�1 Cu (0.6mg kg�1 Cu) and 40mmol kg�1

Cu (2.4mg kg�1 Cu) dry weight (dw).

Isotopic Cu stock solution preparation and labware

A 63Cu stock solution (3.1mmol L�1, equivalent to 200mgL�1) is prepared by dissolving
25mg isotopically enriched (99%) 63Cu oxide (Euriso-top, Saarbrücken, Germany) in
1mL suprapur HNO3 (69%, Carl Roth, Karlsruhe, Germany) in a 100 mL glass beaker;
85mL bidistilled water are added, and the pH of the solution is adjusted to 7.0 with
aqueous ammonia (25%, VWR, Darmstadt, Germany). The solution is transferred to a
100 mL polypropylene (PP) volumetric flask which is filled to the mark with bidistilled
water. Glassware and plastic equipments used for analytical purposes are rinsed twice with
half-concentrated HNO3 (65%; Sigma-Aldrich, Munich, Germany), and deionized and
bidistilled water.

Organisms

About 70 duck mussels (A. anatina) (ZOO-Erlebnis Online Shop, Grossefehn, Germany)
with shell lengths of 10–12 cm and weights of 100–200 g are brought to the laboratory in
pond water. The mussels are brushed with dilute KMnO4 solution (0.1mgL�1), rinsed with
tap water, and placed in 38L aerated tap water in 45 -L glass aquaria at dim light for 7 days.
During this period they are not fed; every day, half of the water is exchanged. Then the
mussels are marked, weighed, and the shell lengths are measured. They are fed with freeze-
dried Cu-free algae, 1.0mgL�1 per day, and acclimatized for further 7 days to laboratory
conditions at a temperature of 17� 1�C with a photoperiod of 12 h light per day, a photon
flux of 13–19mmolm�2 s�1, in 38L artificial pond water (APW) at pH 7.0� 0.3
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(Ngo, Gerstmann, and Frank 2011) in 45 -L glass aquaria covered with transparent
polypropylene lids. The aquaria are equipped with inner bio-filters and stainless steel
aeration tubes. Eight kilograms glass beads are used as substrate. Two-third of the water is
exchanged every two days; a complete change is conducted on every sixth day.

Experimental design

Of these mussels, 63 are selected to match in size and divided into three groups consisting
of 21 mussels each. They are placed in three 45L aquaria containing 38L artificial pond
water (APW). Two-third of the water is exchanged every second day; a complete change is
conducted on every sixth days. A control group (1) is kept in APW. Another group (2) is
exposed to 0.3mmolL�1 (20mgL�1) 63Cu in the water using the 63Cu stock solution; after
each water change, the concentration is re-adjusted by adding appropriate volumes of the
stock solution. A third group (3) receives daily 1.5mgL�1 freeze-dried 63Cu-loaded algae
for 24 days, equivalent to a nominal copper concentration of 0.06mmolL�1 (3.6 mgL�1).

The mussels in the control and the exposure groups are fed with algae in amounts
adjusted to their actual number. For 18 mussels, 1.5mgL�1 of freeze-dried Cu-free
(groups 1 and 2) or 63Cu-loaded algae (group 3) are given per day. When the number of
mussels is less than 18, 1.0mgL�1 of freeze-dried Cu-free or 63Cu-loaded algae are given
daily (Ngo, Gerstmann, and Frank 2011) corresponding to a nominal concentration of
0.04mmolL�1 (group 3). On day 24, the six mussels remaining in each group are
transferred to APW-filled aquaria for 12 days of depuration, fed with 1.0mgL�1 of freeze-
dried Cu-free algae per day.

Actual Cu concentrations in the water including the suspended algae in each group are
determined every second day. On the control group, Cu concentrations in the APW during
experiment are below detection limit. For the experiment involving Cu exposure via the
water, after exchange of water the concentration is adjusted to 0.32� 0.006 mmolL�1,
which falls to 0.03� 0.01mmolL�1 within the next 2 days. By the food pathway (group 3),
the nominal Cu concentration in the beginning and after each water exchange is
0.07� 0.01 mmolL�1, falling to below detection limit within the next 2 days.

For sampling, three mussels of each group are taken for analysis at days 0, 6, 12, 18,
and 24 (exposure), and at days 30 and 36 (depuration). The mussels are anaesthetized with
an aqueous 2-phenoxyethanol solution (4mLL�1) for 30min. Hemolymph (HML) and
extrapallial fluid (EPF) are withdrawn using 5 mL syringes with 0.55� 25mm needles
(B. Braun, Melsungen, Germany), transferred into 2-mL microtubes, and kept at �80�C.
The mussels are dissected on ice into gills, mantle, kidney, digestive gland, foot, adductors,
and intestines; the remainder is collected in a combined sample (GHL), i.e., gonads, heart,
and labial palps. The tissues are washed twice with bidistilled water, dried using filter
paper, placed in 15mL polypropylene (PP) tubes of known weights, weighed to obtain the
wet weights (ww), and lyophilized. After lyophilization, the tubes are weighed again
for dry weights (dw). Tissue fractions and body fluids of the nine mussels taken at
day 0 are used to calculate the respective percentages relative to the total weight of
soft body (twsb).

Metal analyses

Each lyophilized tissue fraction of about 10–100mg is placed in a 55mL borosilicate
glass tubes. 5mL of a mixture (4þ 1) of suprapure concentrated HNO3
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(65%, Merck, Darmstadt, Germany) and suprapure concentrated HCl (30%, Merck,
Darmstadt, Germany) are added to each tube. The tubes are kept in an oven at 40�C for
1 h and at 95�C for 3 h. The digested samples are diluted with bidistilled water to 10mL
and filtered through 0.45 mm cellulose syringe filters (Carl Roth, Karlsruhe, Germany).
For the determination of Cu in HML and EPF, 0.4–1mL of each are acidified with 0.5mL
suprapure concentrated HNO3 in PP tubes, diluted to 10mL with bidistilled water, and
filtered through 0.45 mm cellulose syringe filters. Total Cu and its isotopes 63Cu and 65Cu
are determined by inductively-coupled plasma mass spectrometry (ICP-MS, Agilent
7500ce, Cetac ASX-510, Agilent Technologies, Waldbronn, Germany). The detection
limits for total Cu is 0.02 mmolL�1 for isotopic Cu 0.01 mmolL�1.

Total copper in each tissue fraction is calculated in mmol kg�1 ww by multiplying the
analytical data with the ratio of ww versus dw. The concentration of exogenous copper
C63Cu is calculated as C63Cu – 2.34�C65Cu, the concentration of endogenous copper as
3.33�C65Cu, considering the natural relative abundances of 69% 63Cu and 31% 65Cu. For
body fluids, the Cu concentrations are given in mmolL�1. Total and exogenous Cu-pools
in the tissue fractions and body fluids are calculated in mmol kg�1 twsb by multiplying the
concentration data with the weight fraction of the respective organ or body fluid.

Statistical data analyses

Data are transformed to log units before statistical analysis for homogeneity of variance
and normality. The data for total Cu are statistically evaluated by two-way analysis of
variance (ANOVA) considering exposure time and Cu exposure pathways as independent
variables; if significant differences are found, those between exposure times are tested by
the Dunnett multiple comparison tests, between exposure pathways and controls using the
Duncan multiple comparison tests. To assess the differences in exogenous Cu between
exposure pathways, the independent t-test is performed.

Results

Exposure of A. anatina to Cu via the water results in rapid increases (Figure 1) of the
concentrations of total Cu (solid lines) in the hemolymph (HML) and the extrapallial fluid
(EPF) within the first 12 days, followed by slower increases until concentrations of
0.38mmolL�1 are reached at day 24, about the 2.5-fold of control level. From the food,
increases are more moderate, reaching about 0.25mmolL�1, the 1.7-fold of controls. In
respect to exogenous Cu, the concentrations in both body fluids (dotted lines) increase
similarly upon exposure via the water and the food within the first 6 days although the
nominal concentration per liter water volume in food is considerably lower. Later on,
exposure via the water entails faster uptake, especially in the HML between days 6–12 to
reach 0.14 mmolL�1, continuing until 0.17mmolL�1 at day 24. Overall, increases during
the first days are faster for the EPF than for the HML.

Within the 12 days of depuration, total Cu concentrations decline rapidly in EPF and
in HML, in HML of animals having received the metal by the water pathway to about
50% over control; when having been exposed via the food, the Cu concentrations decline
almost fully back to control values. For exogenous Cu, the concentrations in the HML
and EPF of water- and food-exposed animals decline in similar relative rates. At the end of
the depuration, the fraction of exogenous Cu, i.e., the excess of 63Cu over the natural
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abundance of this isotope, represents between 10% (food pathway) and up to 30% (water
pathway) of total copper.

In the organ and tissue fractions (Figures 2 and 3), concentrations of endogenous Cu at
day 0 are highest in the kidney and the digestive gland (63 and 58 mmol kg�1 ww). In the
other organs, initial Cu levels are much lower, i.e., in mantle, intestines (both 15 mmol kg�1

ww), gills, and foot (both 12 mmol kg�1 ww). The mixed fraction of the gonads, heart, and
labial palps (GHL) (20mmol kg�1 ww) shows a fairly high initial copper level although
nothing can be said about the distribution between the tissues contained in it. The
adductors have the lowest concentration (7 mmol kg�1 ww), but this is still much higher
than in HML and EPF (Figure 1, 0.17 mmolL�1).

The development of the total copper concentrations is quite diverse for the various
tissues/organs over time (Figures 2 and 3; solid lines) in relative and absolute terms. Upon
uptake via the water, strongest relative increases are seen for the gills, the mantle, and the
digestive gland, especially within the first 6 days. When 63Cu is administered via the food,
an almost equal increase of 63Cu as via water is found for the digestive gland, although its
nominal initial concentration is only a fifth of the concentration in the water in dissolved
form. For other organs, uptake from food leads to moderate rise in the mantle, kidney,
intestines, and GHL, almost none in the gills, adductors, and foot. In the digestive gland,
highest concentrations, i.e., 120–140mmol kg�1, are reached within 24 days irrespective of
exposure pathway. For other organs, exposure via water results in peak concentrations in
the gills of 75 mmol kg�1 (6.5�fold relative to control), 70 mmol kg�1 in the mantle
(4.2-fold), and 70 mmol kg�1 in the mixed fraction GHL (3.5–fold); moderate to low
relative increases are seen in the foot, intestines, adductors, and kidney (2.8-, 1.7-, 1.6-, and
1.4-fold). Upon depuration, Cu concentrations fall immediately and strongly in most

Figure 1. Concentrations of total (solid lines; ˙¼ via water, #¼ via food; N¼ control) and
exogenous (dotted lines; �¼ via water, h¼ via food) Cu in hemolymph (HML) and extrapallial fluid
(EPF) of A. anatina during exposure (days (d) 0–24) and depuration (days 24–36). Significant
differences in comparison to control within each group are indicated by o. The same letters indicate
that differences of Cu concentrations are not significant among groups at each time sampling (day)
while the different letter indicate p50.05. Significant differences between concentrations of
exogenous Cu via food or water are indicated by þ.
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organs, except for the mantle and the intestines; for these even further increases are
observed within the first 6 days of depuration.

In respect to exogenous 63Cu (Figures 2 and 3; dotted lines), exposure to 63Cu via water
leads to rapid increases in the gills, mantle, digestive gland, and GHL within the first 6
days. In some organs, i.e., digestive gland, gills, and mantle, the increases continue until
day 24 to reach a maxima of about 50 mmol kg�1 ww. Exogenous copper in the kidney,

Figure 2. Concentrations of total (solid lines; ˙¼ via water, #¼ via food; N¼ control) and
exogenous (dotted lines; �¼ via water, h¼ via food) Cu in the gills, mantle, digestive gland, and
kidney of A. anatina during Cu exposure via water and food and during depuration. Significant
differences in comparison to control within each group are indicated by o. The same letters indicate
that differences of Cu concentrations are not significant among groups at each time sampling
(day (d)) while the different letter indicate p50.05. Significant differences between concentrations of
exogenous Cu via food or water are indicated by þ. Total and exogenous Cu are calculated by
multiplication of the analytical data with the ratio of dry weight versus wet weight.
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foot, intestines, and GHL shows maximum concentrations at day 12, followed by declines
until the end of exposure. Via the food, exogenous 63Cu initially increases in the digestive
gland as fast as via the water, followed by slight further increase to reach a maximum of
20 mmol kg�1 ww on day 24. In the gills, mantle, adductors, and foot, after slight increases
during the first 12 days of exposure, exogenous Cu remains relatively unchanged until the
end of the experiment.

During depuration, in the gills, mantle, and digestive gland, the levels of exogenous
copper drops within the first 6 days by 85, 70, and 60%. For animals having received the
metal via food, similar patterns of decrease are observed for the kidney and GHL, only the
levels being lower, i.e. about a third.

The isotope ratios of 63Cu/65Cu and its deviation from the natural ratio (2.33) are also
monitored (Figure 4). Complementary to Figures 2 and 3, this allows to follow the
movement of exogenous Cu within the body. When 63Cu is administered via water, the
relative abundance of 63Cu in the body fluids HML and EPF rise up to 4.0 at day 12, then
remain constant. Upon depuration, the ratio declines to about 3.0. In the kidney, GHL,
foot, and intestines, peaks of 63Cu are reached at day 12, while in the adductors, digestive
gland, mantle, and gills, maximum isotope ratios are found at the end of exposure at day
24. During depuration, the relative abundance of 63Cu in all organs declines, but not

Figure 3. Concentrations of total (solid lines; ˙¼ via water, #¼ via food; N¼ control) and
exogenous (dotted lines; �¼ via water, h¼ via food) Cu in the GHL (gonads, heart, and labial
palps), intestines, foot, and adductors of A. anatina during Cu exposure via water and food and
during depuration. Significant differences in comparison to control within each group are indicated
by o. The same letters indicate that differences of Cu concentrations are not significant among
groups at each time sampling (day (d)) while the different letter indicate P50.05. Significant
differences between concentrations of exogenous Cu via food or water are indicated by þ. Total and
exogenous Cu are calculated by multiplication of the analytical data with the ratio of dry weight
versus wet weight.
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totally back to the natural ratio remaining about 25–45% higher than before exposure.
When 63Cu is administered via food, the increase in the isotope ratio is pronounced for the
digestive gland, while all the organs show only small increases.

Calculating the Cu-pools in the body compartments gives interesting insights (Figure 5).
AlthoughHMLand EPF together constitute about 70% (33� 5%and 37� 4%) of the total
soft body volume (Figure 5, A), both are insignificant as Cu-pools. Themantle, the gills, and
the intestines are the largest solid organs; together they represent about 18% (6.4� 0.5,
5.9� 0.6, and 5.4� 0.8%) twsb. Smaller body fractions are the adductors (2.9� 0.2% twsb),
the digestive gland (2.8� 0.3% twsb), the foot (2.2� 0.4% twsb), the mixed fraction GHL
(3.9� 0.6% twsb), and the kidney (0.5� 0.06% twsb). In the beginning (Figure 5, B), the
total pool of Cu (endogenous Cu) is about 6 mmol kg�1 twsb, the largest being in the
digestive gland, followed by the mantle, gills, intestines, and GHL (Figure 5, B). Upon
exposure via water (W), the total Cu-pools increases, continuing until day 24 to reach a
maximum of 25 mmol kg�1 twsb, i.e., the four-fold of the initial pool size; uptake via the food
(F) entails a total Cu-pool of only 9 mmol kg�1 twsb at day 24, i.e., slightly less than double
the control, the largest pool being in the digestive gland. The exogenous 63Cu-pool increases
in parallel to total Cu-pool upon exposure via the water, reaching a maximum of about
12 mmol kg�1 twsb at day 24. For the food pathway, it increases only slightly, the maximum
level being at about 1.5 mmol kg�1 twsb (Figure 5, C). During the 12 days of depuration, all
the pools are rapidly emptied, particularly the gills. The mantle and the digestive gland
retain the Cu-pools relatively long (as also reflected in Figures 2 and 3), in the latter most
tenaciously. Similar patterns are found for exogenous Cu.

Discussion

The experiments show that 63Cu is highly available to A. anatina (Figures 2 and 3, a and
b), both in water-dissolved form or from 63Cu-loaded algae. Calculation of Cu speciation

Figure 4. Isotope ratio of 63Cu/65Cu in organs and body fluids of A. anatina during exposure to
63Cu via water (˙) or food (#), and following depuration (GHL¼ gonads, heart, and labial palps).
The relative increases of 63Cu in percent over the natural ratio upon exposure via water are given
for day (d) 36.
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in artificial pond water (APW) at a pH of 7.0 and at 17�C shows that the metal is
completely in the free Cu2þ ionic form, ready for uptake (Gustaffsson 2010). By the food
pathway, the low nominal Cu concentration in the APW may be the main factor
responsible for the low Cu accumulation in the mussel in absolute terms, but in relative
terms it is obviously even more efficient.

During the 24 days of water-borne Cu exposure, exogenous 63Cu levels in the organs
increase differently, strongest in the gills to represent about 70% of total Cu (Figures 2
and 3, a and b). There is evidence of mobilization and re-distribution of endogenous Cu
among the organs derived from the time pattern of the 63Cu/65Cu isotope ratio (Figure 4).
The ratios are highest in the gills, mantle, and digestive gland (both pathways) at the sixth
day of exposure, showing that the exogenous 63Cu is initially taken up into these organs.
The peaks of highest ratios at day 12 in the kidney, GHL, foot, and intestines indicate that
these organs first receive fairly high amounts of exogenous Cu but – as the exposure
continues – become recipients of endogenous copper mobilized from the other organs,
presumably mobilized by exogenous 63Cu. Later, exogenous and mobilized endogenous
Cu is mainly stored in the digestive gland, gills, adductors, and mantle, the latter serving as
transient recipient even beyond the exposure phase. The observation of copper being
particularly strongly retained in the mantle is noteworthy as it is one of the most important
organs for regulating the calcium household and for building the protective shell of the
bivalve (Lopes-Lima et al. 2008).

In the body fluids, the isotope ratio remains relatively constant at about 4.0 during
days 12–24, reflecting the roles of HML and EPF as transitory exchange and transport
compartments, being small as pools (Figure 5). Upon depuration the isotope ratios tend to
fall strongly, indicating that a large fraction of exogenous 63Cu remains in a relatively
easily exchangeable form while the endogenous Cu is more tenaciously retained.

Figure 5. A: Percentages of total weight of soft body (twsb) (EPF¼ extrapallial fluid;
HML¼ hemolymph; GHL¼ gonads, heart, and labial palps), and B: total and C: exogenous
Cu-pools (right ordinate) in A. anatina during Cu exposure via food (F) or water (W) and during
depuration. Significant differences in comparison to control (day (d) 0) within each group (water¼ o;
food¼ *), and between Cu exposure via food and water are indicated by þ. The total Cu-pools in the
body fractions are calculated by multiplication of the concentration data (Figure 2) with the
respective percentages.
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Nevertheless, at the end of the depuration, the relative abundance of 63Cu taken up via the
water pathway is between 25% and 45% higher than in the beginning in various body
compartments, indicating that about a third of the functional Cu pool has been exchanged
for exogenous 63Cu.

Distribution of Cu in the mussel’s body allows to assess the relative importance of the
various copper pools (Figure 6). From the water it is mainly compartmentalized into the
mantle (30%), the gills (24%), and the digestive gland (22%), altogether three quarters of
the total Cu-pool. The former two organs have large surface areas and interact directly
with the water coming into mantle cavity during filtration (Marigómez et al. 2002); the
digestive gland is the major receiving organ for the hemolymph pathway. The mantle has a
high secretor epithelium lined with acid mucopolysaccharides for digestion of trapped
small particles (Machado 2011). By the food pathway, the digestive gland and the
intestines are the major Cu-recipients. In addition, the former organ secretes high amount
of digestive mucus to facilitate Cu storage (Machado 2011). High Cu levels in GHL
suggest a role of the heart as ion recipient and its close anatomical relation to the intestines
and the kidney (Gosling 2003; Machado 2011).

Figure 6. Scheme illustrating the distribution of the total Cu burden (Cu-pools) among the body
fractions (EPF¼ extrapallial fluid; HML¼ hemolymph; GHL¼ gonads, heart, and labial palps;
LP¼ labial palps; F¼ feces; U¼ urine) of A. anatina after exposure to Cu via water (a. black arrow
(routes to the heart) and grey arrow (routes from the heart to the other organs) or food (b. white
arrow (routes to the heart) and grey/heavy-lined (routes from the heart to the other organs)) (per kg
of total weight of soft body). White/heavy-lined arrows show the routes of both Cu exposure
pathways. The figure is adopted from Marigómez et al. (2002).
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In relation to the organ pools of A. anatina, the size of the respective volumes is not
directly related to Cu burden (Figure 5, A, B, and C). Binding to specific compounds and
compartmentalization within the organs, and physiological and metabolic functions of the
organs may play some roles (Otchere 2003). In any case, the organs which serve as
the primary sites for uptake, i.e., gills, mantle, and digestive gland, tend to concentrate the
copper.

During depuration, Cu is eliminated fairly fast from the body (Figures 2 and 3, a and b),
due to the large differences in gradient Cu concentration between the mussel and APW.Han
et al. (1993) reported that the initial rapid elimination can be caused by desorption of loosely
bound, unassimilated copper, whereas slower elimination reflects the loss from pools
(endogenous Cu) where copper is more tightly bound to tissue components. Rapid
elimination is also observed in the gills and digestive gland of the marine clam R. decussatus
within the first 10 days of depuration (Serafim and Bebianno 2009). In respect to Cu
elimination from the digestive gland, the level inA. anatina drops to about 60% over control
within 6 days (Figures 2 and 3, a). A similar pattern is observed in the marine mussels
Mytilus galloprovincialis exposed to Cu at 0.63mmol L�1 (40mg L�1) via water for 3 days
(Viarengo et al. 1981). This confirms that the digestive gland is the main organ for metal
elimination in bivalves (Marigómez et al. 2002). According to Marigómez et al. (2002), the
release of metals from mussel body can occur via the digestive tract as a component of feces
or via the kidney together with excretory concretions as a component of urine (Figure 6).

Copper accumulation in A. anatina during exposure via water or food represents two
different processes, i.e., bioconcentration (water) and biomagnification (food). Calculation
of the bioconcentration and biomagnification levels allows to assess the relative importance
of exposure via water or food. Bioconcentration can be expressed as enrichment factor (EF),
i.e., the ratio of the concentration of exogenous Cu kg�1 twsb (Figure 5, C) to the
concentration in the water. Biomagnification is normally assessed as transfer factor (TF).
The enrichment factor in the mussel at the end of the exposure (day 24) is about 43, by the
food pathway a TF of 25 is reached (Cu concentration in the APW-added algal food is
equivalent to 0.06 mmolL�1, exogenous Cu-pools in the mussel¼ 1.5mmol kg�1 twsb;
Figure 5, C). Thus, exposure via water is more effective from this point of view. In respect to
biomagnification, the TF is lower than the EF for algae which is about 400-fold (Nugroho
and Frank 2010), indicating only weak biomagnification of copper along the food chain
from the algae to the mussel. Overall, distribution and accumulation of copper inA. anatina
are the results of exposure time, exposure pathways, and physiological functions of the
respective organs. Food uptake is more efficient taking the five-fold lower nominal
concentration of copper in these experiments into consideration.

These experiments will help understand the risks associated with copper exposure of
freshwater mussels. Copper accumulation may promote the situation of metabolic acidosis
leading to the dissolution of CaCO3 deposits, inducing the increase of Ca concentration in
the EPF (Antunes et al. 2002; Faubel et al. 2008; Lopes-Lima et al. 2008). Interference
with Ca homeostasis by the inhibition of Ca-ATPase by Cu (Santini et al. 2011) may lead
to physiological stress. These factors together with the involvement of copper in the
formation of reactive oxygen species (Company et al. 2008) may be a contributory factor
in the overall Europe-wide observed decline of freshwater bivalves.

Conclusions

Exposure of A. anatina to Cu via the water or via the food leads to enrichment of the
transition metal in the mussel. Copper is mainly stored in the digestive gland, gills,

1848 A.P. Nugroho and H. Frank

42



and mantle. The digestive gland and the kidney are the main organs for accumulation and
elimination, although the latter represents only a small Cu-pool. Distribution and accu-
mulation of copper are the results of exposure time, exposure pathways, and physiological
functions of organ. Upon depuration, A. anatina eliminates Cu from the body quickly but
not completely. Elevated exposure to the transition metal is suggested to be a main stress
factor responsible for reduced viability of fresh water mussel populations.
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Exposure of the European freshwater mussel Anodonta anatina to Cu via water
(0.3 mmolL�1 63Cu) or via food (63Cu-loaded algae, equivalent to 0.06 mmolL�1)
for 24 days results in increased Ca concentrations in all body compartments, in
time pattern and extent following the uptake of Cu. This is accompanied by
decrease in protein and carbohydrate levels. During the subsequent 12 days of
depuration, Cu is quickly eliminated and Ca, protein, and carbohydrate levels
tend to normalize, although not fully back to controls.

Keywords: copper;Anodonta anatina; calciumhomeostasis; carbohydrates; proteins

Introduction

Copper is one of the trace metals which occurs naturally in freshwater ecosystems at
concentrations ranging from 0.02 to 2 nmol L�1 (0.001–0.1 mgL�1) (Wright and Welbourn
2002). In freshwater ecosystems, elevated Cu levels can occur due to mining and
metallurgic activities, use of copper as fungicide, disposal of copper-containing waste
waters, deposition of atmospheric particulate matter from coal combustion, and many
other sources. In rivers and lakes, copper can exist in dissolved form or associated with
dissolved organic carbon and suspended food particles (Vinot and Pihan 2005), in
sediments as insoluble sulfides or in solution in the interstitial water, depending upon the
sediment oxygen status (Besser, Ingersoll, and Giesy 1996).

Duck mussels (Anodonta anatina) live at the interface of the free-flowing water and the
sediment phase of many lentic and lotic freshwater ecosystems. As filter feeders, they are
known to accumulate metals due their close contact to sediments and low rate of Cu-
elimination (Streit and Winter 1993). Metal accumulation in mussels can reflect the
pollution status over long time periods, making them useful for biomonitoring.

Copper is known to be essential for mussels at about 10 mmol kg�1 (0.6mgkg�1) body
weight, being part of the active sites of some metalloenzymes and serving as oxygen
binding principle in hemocyanin, the respiratory pigment in the hemolymph of mollusks
(Birge and Black 1979; Demayo and Taylor 1981; Julshamn et al. 2001). When the mussels
filter water, Cu present in dissolved form will enter the mantle cavity reaching all
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water-contacted body parts to be absorbed into the body via the gills and mantle. When
Cu is associated with algal food and suspended particulate matter, it is taken up via the
mouth into the digestive tract. Both pathways lead to Cu accumulation in various body
compartments (Nugroho and Frank 2011b).

Freshwater mussels require calcium (Ca) for shell formation and for regulation of
physiological processes, transporting Ca actively into their body (Lopes-Lima et al. 2008).
Cells must maintain specific cytosolic Ca levels (Ca homeostasis) in relation to its almost
universal importance for nerve conduction, muscle contraction, as second messenger for
regulation of carbohydrate metabolism, and of almost all aspects of cellular metabolisms
and growth (Albert et al. 1994). Carbohydrates are important nutrients required by the
mussels as a main source of energy for their metabolic processes (Honkoop et al. 1999) and
in shell formation (Marin and Luquet 2004; Marie et al. 2007). Proteins play important
roles in biological processes such as catalyzing biochemical reactions, transport and
storage of molecules in and out or within cells, and have structural and mechanical
functions (Albert et al. 1994). Excess copper in cytosol can lead to biochemical and
physiological alterations, such as interference with calcium (Ca) homeostasis and increase
in carbohydrate and protein catabolisms (Viarengo et al. 1994; Viant et al. 2002). Santini
et al. (2011) reported that toxic effects become obvious at a Cu-concentration of
0.35mmolL�1 in the water. These alterations are biological responses of fundamental
importance for their health and population development. In this particular study, the
concentrations of Ca, soluble carbohydrates, and soluble proteins upon Cu exposure via
water or food in the organs and body fluids of A. anatina have been followed.

Materials and methods

Chemicals and labware

Concentrated HNO3 (69%) and concentrated HCl (30%) are of suprapur grade (Merck,
Darmstadt, Germany). Other chemicals, i.e., ethylenediamine tetraacetic acid (EDTA),
dithiothreitol (DTT), phenylmethylsulfonyl fluoride (PMSF) (Carl Roth, Karlsruhe,
Germany), Bradford solution, bovine serum albumin (BSA), and glycogen standard type
VII (Sigma-Aldrich, Munich, Germany) have been used in the highest purity that is
commercially available. Cleaning of labware and preparation of the Cu stock solution are
described in a previous publication (Nugroho and Frank 2011b).

Animal and experimental design

About 70 duck mussels (Anodonta anatina) (ZOO-Erlebnis Online Shop, Grossefehn,
Germany) with shell lengths of 10–12 cm and weights of 100–200 g were brought to the
laboratory in pond water. Mussel handling, acclimatization, and experimental design are
described in detail in a previous publication (Nugroho and Frank 2011b) as well as algal
food preparation (Nugroho and Frank 2011a). Briefly, the mussels were divided into three
groups consisting of 21 mussels each. The first group was kept in artificial pond water
(APW), the second one was exposed to 0.3 mmolL�1 (20 mgL�1) 63Cu in the water, and the
third group received daily 1.5mgL�1 freeze-dried 63Cu-loaded algae (40mmol kg�1 Cu dry
weight) for 24 days, equivalent to a nominal copper concentration of 0.06 mmolL�1

(3.6 mgL�1).
For sampling, three mussels of each group were taken for analysis at days 0, 6, 12, 18,

and 24 (exposure), and at days 30 and 36 (depuration). Hemolymph (HML) and
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extrapallial fluid (EPF) were sampled before the mussels were dissected on ice into gills,
mantle, kidney, digestive gland, foot, adductors, and intestines; the remainder, i.e., gonads,
heart, and labial palps, was collected in one sample (GHL). Aliquots of about 5–10mg of
each tissue fraction were placed in 2 mL microtubes of known weights for carbohydrate
and protein determinations and frozen to �80�C for further analysis. The remaining
samples were placed in 15mL polypropylene (PP) tubes of known weights and are
lyophilized.

Calcium determination

Each lyophilized tissue fraction, weight between 10 and 100mg, was placed in a 55mL
borosilicate glass tube. Five mL of a mixture (4þ 1) of concentrated HNO3 and
concentrated HCl were added to each tube. The tubes were kept in an oven at 40�C for 1 h
and at 95�C for 3 h. The digested samples were diluted with bi-distilled water to 10mL and
filtered through 0.45 mm cellulose syringe filters (Carl Roth, Karlsruhe, Germany).

For the determination of Ca in HML and EPF, 1mL each was acidified with 0.5mL
concentrated HNO3 in a 15mL polypropylene (PP) tube, diluted to 10mL with bidistilled
water, and filtered through a 0.45 mm cellulose syringe filter. Ca was determined by
inductively-coupled plasma atomic emission spectroscopy (ICP-AES) (Varian, Vista-Pro
Radial) with a detection limit of 50 mgL�1 using a calibration curve obtained with a Ca
standard solution (1000mgL�1; Merck, Darmstadt, Germany). Calcium concentrations in
tissue fractions were calculated in mmol kg�1 wet weight (ww) by multiplying the
analytical data with the ratio of dry tissue weight versus wet tissue weight. For body fluids,
the analytical data are given in mmol L�1.

Copper determination

Copper in lyophilized tissues was determined by inductively-coupled plasma
mass spectrometry (ICP-MS). Details have been described previously (Nugroho and
Frank 2011b).

Protein and carbohydrate determinations

The frozen tissue samples were thawed and each sample was immediately mixed with
1mL50mmolL�1 phosphate buffer, pH 7.4, containing 1mmol L�1 EDTA, 1mmol L�1

DTT, 0.15mol L�1 KCl, and 0.01% (w/v) PMSF. The tissues were homogenized in an ice
bath with 12 strokes of a tip sonicator at 20 kHz, acoustic power 50W (Labsonic U tip
sonicator, B. Braun Biotech International, Melsungen, Germany). The homogenates were
centrifuged at 4�C for 30min at 10,000� g (Heraeus Multifuge 1L-R, Thermo Scientific,
Osterode, Germany). For determination of soluble proteins by the dye-binding assay
(Kruger 1994), aliquots of 10 mL were pipetted into the wells (240 mL) of a 96-well
polystyrene microplate and 90 mL bi-distilled water and 100mL Coomassie blue solution
were added. The samples were kept at room temperature for 15min. Absorbances of the
samples were read at 595 nm with a microplate reader (Biotek Synergy HT, Bad
Friedrichshall, Germany). The concentrations were determined using bovine serum
albumin for calibration.

For determination of soluble carbohydrates by the phenol–sulfuric acid assay (Masuko
et al. 2005), 10 mL of the supernatants were pipetted into the wells of a 96-well polystyrene

Toxicological & Environmental Chemistry 101

47



microplate, and 40 mL bidistilled water and 150 mL concentrated sulfuric acid were added
rapidly to achieve maximum mixing. Immediately afterwards, 30 mL of a solution of 5%
phenol in bi-distilled water were added. After incubation for 5min at 90�C in a static water
bath, the microplate was cooled to room temperature for 5min in a water bath and wiped
dry for absorbance measurement at 490 nm. The concentrations were determined using a
calibration curve obtained with glycogen standard type VII (Sigma-Aldrich, Munich,
Germany).

Statistical data analyses

Data were transformed to log units before statistical analysis for homogeneity of variance
and normality. The data for total Ca were statistically analyzed by two-way analysis of
variance (ANOVA) considering exposure time or Cu exposure pathways as independent
variables; if significant differences were found, those between exposure times were tested
by the Dunnett multiple comparison test, and between exposure pathways and controls
using the Duncan multiple comparison test. Linear regression analysis was performed for
evaluating the relationships between Cu and Ca concentrations, carbohydrates, and
proteins respectively, followed by Pearson correlation analysis for testing the strength of
linear relationships.

Results

Exposure of A. anatina to water-dissolved Cu at a concentration of 0.3mmolL�1 or to
copper contained in the algal food at a nominal concentration of 0.06mmolL�1 for 24 days
induced time-dependent increases of Cu levels in all organs and body fluids, as shown
previously (Nugroho and Frank 2011b). Concurrently, the calcium (Ca) concentrations
were becoming elevated (Figures 1 and 2). In HML and EPF (Figure 1), at day 24 they
reached maxima of about the 1.5-fold of control. Upon Cu-exposure via the food, Ca

Figure 1. Concentrations of Ca (right ordinate, dotted lines; S¼ upon exposure via water,
h¼ upon exposure via food, D¼ control) and Cu (left ordinate, solid lines; ^¼ via water, #¼ via
food; N¼ control) in hemolymph (HML) and extrapallial fluid (EPF) of A. anatina during Cu
exposure (E) and depuration (D). Significant differences in comparison to control within each group
are indicated by o. Similar letters indicate that differences of Ca concentrations are not significant
among groups at each time sampling (day, d) while different letters indicate p5 0.05.
Concentrations of copper are the same as in Nugroho and Frank (2011b).
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increases were more moderate due to the lower Cu-intake, i.e., about the 1.2-fold of

control at day 24. Ca levels in HML and EPF were correlated to total Cu concentration (r-

food (HML)¼ 0.85, r-water (HML)¼ 0.90, r-food (EPF)¼ 0.61, r-water (EPF)¼ 0.73;

p5 0.05). Upon depuration, Ca concentrations in the body fluids declined fast, returning

to control values during the first six days although Cu was still elevated.
In the other organs and tissues (Figure 2), highest Ca concentrations at day 0 were

found in the mantle (90mmol kg�1 ww), the gills, the digestive gland, the mixed fraction

containing gonads, heart, and labial palps (GHL) (all about 80mmol kg�1 ww), and in the

intestines (70mmol kg�1ww); much lower were the Ca-levels in the kidney, the adductors

(both 20mmol kg�1ww), and the foot (10mmol kg�1ww). Upon Cu exposure via water or

food, Ca levels increased in all organs except for the adductors. Highest Ca levels were

found in the gills, mantle, and digestive gland upon exposure via the water, reaching about

140–160mmol kg�1ww (2-fold control) at day 24, highest relative increase being found in

the kidney (4-fold, 80mmol kg�1ww). For GHL and the intestines, maximum Ca levels
were at 110 (1.3-fold of control) and 100 (1.4-fold) mmol kg�1ww, respectively. In the

foot, Ca reached about the 4-fold (40mmol kg�1ww) of control at day 24 upon Cu-

exposure via the water. When Cu-exposure took place via the food with its nominally

lower Cu-levels per liter APW, Ca concentrations in the digestive gland, the intestines, the

Figure 2. Concentrations of Ca (right ordinate, dotted lines; S¼ upon exposure via water,
h¼ upon exposure via food, D¼ control) and Cu (left ordinate, solid lines; ^¼ via water, #¼ via
food; N¼ control) in the various organs of A. anatina during Cu exposure (E) and depuration (D)
(GHL¼ gonads/heart/labial palps). Significant differences in comparison to control within each
group are indicated by o. Similar letters indicate that differences of Ca concentrations are not
significant among groups at each time sampling (day, d) while different letters indicate p5 0.05.
Concentration of Ca is calculated by multiplication of the analytical data with the ratio of dry weight
versus wet weight. Concentrations of copper are the same as in Nugroho and Frank (2011b).
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kidney, and the GHL increased almost equally as in the animals having received Cu via the
water. In the adductors, Ca levels remained almost unchanged, as also found for Cu. In the
gills, mantle, digestive gland, and kidney upon exposure via the water or the food, Ca
concentrations were strongly and positively correlated to the Cu levels in the respective
organs (r4 0.7; p5 0.05).

Upon depuration, Ca levels declined slowly, except for the kidney with fast elimination
of excessive Ca. Upon the 12 days of depuration, Ca in the kidney, adductors, intestines,
and GHL returned almost fully back to control values while in the gills, mantle, digestive
gland, and foot the Ca levels declined to about 20–70% above control values.

Soluble carbohydrates and proteins in all organs were lowered upon Cu exposure and
in parallel to its concentrations (Figure 3), strongest effects being observed when Cu was
supplied via the water. Carbohydrate levels decreased drastically until the end of exposure
with water-dissolved Cu, i.e. by 80% (gills) and 70% (kidney). Exposure to food-contained
Cu had moderate effects except for the digestive gland and the kidney; these two organs
showed only little differences between the two exposure pathways. For all other solid
organs (not shown in Figure 3), soluble carbohydrates were decreased by 5–10%.
Carbohydrates in HML and EPF at day 24 were lowered by only 5–10% upon Cu
exposure via the food, the effects again being slightly stronger when Cu was taken up from
the water (8–12%). Correlation analyses confirmed strong negative relationships between
Cu and carbohydrate (r4�0.6; p5 0.05) in the gills, mantle (water pathway), digestive
gland, and kidney (both pathways).

Figure 3. Contents of soluble carbohydrates and proteins (N¼ control; #¼ via food; ^¼ via water)
in the gills, mantle, digestive gland, and kidney of A. anatina during Cu exposure (E) and
depuration (D). Significant differences in comparison to control within each group are indicated
by o. Similar letters indicate that differences of Ca concentrations are not significant among groups
at each time sampling (day, d) while different letters indicate p5 0.05.
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Soluble proteins in the gills, mantle, digestive gland, and kidney declined to between
20% and 45% of control levels at day 24. For the digestive gland and the kidney, the
effects were almost equal for both exposure pathways while for the gills and the mantle
great differences were found. Soluble protein levels in all other tissue compartments were
decreased by not more than 5–10% (not shown in Figure 3). In the HML and EPF, levels
of soluble proteins at day 24 were lowered by only 5–10% (HML: 550� 40mgL�1; EPF:
390� 40mgL�1; n¼ 3) for both pathways. Significant relationships of Cu and Ca with
soluble protein levels (r4�0.6; p5 0.05) existed in the gills, mantle (water pathway),
digestive gland, and kidney (both pathways). Upon depuration, soluble carbohydrate and
protein levels in the studied organs started to increase, although not fully back to control
within the 12 days.

Discussion

Exposure of A. anatina to copper via water or food causes increases of Ca levels in all body
compartments, by the water pathway being stronger than via the food pathway.
Nevertheless, when considering the nominally five-fold lower Cu concentration contrib-
uted by the algal suspension in the APW, the effects of the latter exposure pathway on the
digestive gland and the kidney are surprisingly strong. Increase of Ca in all organs
(Figure 2) suggests that Cu not only affects the enzymes regulating the internal Ca balance
but also the overall Ca burden is strongly increased; such a flooding of the organism with
excess Ca, mainly of the gills, mantle, and digestive gland, can only result from
mobilization of CaCO3 from the shell, most likely due to Cu-induced metabolic acidosis
(Antunes et al. 2002; Faubel et al. 2008; Lopes-Lima et al. 2008). This is confirmed by the
increase of Ca in the EPF between days 6 and 24. Interference of Cu with Ca homeostasis
by affecting the mechanisms of Ca extrusion across cellular membranes may be another
complication (Viarengo et al. 1994; Viarengo, Burlando, and Bolognesi 2002; Pattnaik,
Chainy, and Jena 2007). Increase of Ca in the HML has also been reported by Viarengo
(1994) for exposure of Mytilus edulis to Cu at 0.5–2mmolL�1.

A strong decrease of carbohydrate levels in A. anatina upon Cu exposure indicates that
this is another sensitive toxicological endpoint associated with the disturbance of Ca
homeostasis. A similar pattern is found in the gills and mantle of the freshwater mussel
Lamellindens marginalis under copper stress at 2 mmolL�1 (133mgL�1) for 3 days. This has
been attributed to cell hypoxia (Satyaparameshwar, Reddy, and Kumar 2006) leading to
increased activities of glycolytic enzymes involved in anaerobic ATP production (Martı́nez
et al. 2006). Further decrease observed between days 12 and 24 (Figure 3) suggests that at
lower carbohydrate levels gluconeogenesis is stimulated.

Strong correlation between increased Ca and low protein levels illustrate the key role of
the electrolyte as intracellular signaling factor. According to Viarengo et al. (1994),
elevated cytosolic Ca levels activated protein degradation. Decrease in protein levels was
also found in the freshwater mussel Anodonta woodiana after exposure of Cu at
0.9 mmolL�1 (0.06mgL�1) for 4 weeks (Kurnia, Purwanto, and Mahajoeno 2010). Similar
to our findings, only minor effects on the soluble protein levels in HML and EPF were
observed with the freshwater mussel Anodonta cygnea upon exposure to CuSO4 at
10�6molL�1 for 1 month (Moura, Vilarinho, and Machado 2000).

Overall, Cu exposure at environmentally relevant levels leads to increased Ca levels in
all body compartments of A. anatina, indicating that Cu interferes with Ca homeostasis.
Dissolution of Ca from the shell upon Cu-induced metabolic acidosis (Antunes et al. 2002;

Toxicological & Environmental Chemistry 105

51



Lopes-Lima et al. 2008) and distribution of the electrolyte throughout the other body
compartments are likely to contribute to its elevated levels. This can lead to the activation
of Ca-dependent catabolic processes such as lipid hydrolysis, DNA fragmentation, and
protein degradation, ultimately leading to cell death (Viarengo et al. 1994). Decreased
carbohydrate and protein levels, being strongly inversely correlated to Ca levels, suggest
that the mussels may not have sufficient energy and essential nutrients for normal
reproduction, growth, and development. At the same time, carbohydrates and proteins are
important components of the organic matrix which controls CaCO3 polymorphism, size,
and shape of the crystallites (Marin and Luquet 2004). These strong pathophysiological
responses to environment-like levels of Cu may be one of the many factors involved in the
presently observed decline of many European freshwater bivalves, including the freshwater
pearl mussel Margaritifera margaritifera (Bauer 1986).

Conclusions

Copper exposure results in increases of Ca levels in all body compartments, accompanied
by decreases in the levels of soluble proteins and carbohydrates. These effects may result in
disturbance of mussel’s reproduction, growth and development, and shell formation,
leading to population decline.
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Copper is an essential element to all animals. At elevated concentrations, it is
toxic and can participate in the formation of reactive oxygen species, leading to
cellular damage. In this study, the ecotoxicological relevance of copper was
investigated with freshwater mussels, Anodonta anatina. When the mussels were
exposed to copper at environmentally realistic concentrations, either via the water
(0.3 mmolL�1 Cu) or fed with Cu-loaded algae (equivalent to 0.06mmolL�1 Cu),
the level of thiobarbituric acid-reactive substances rose and glutathione
decreased. This was associated with the induction of metallothionein and,
relative to total protein, of glutathione reductase and the antioxidative enzymes
superoxide dismutase, catalase, and glutathione peroxidase. But, since the overall
protein-synthetic capacity was hampered by the copper insult, the activities of the
enzymes relative to tissue weight and copper concentrations were depressed.
During depuration, most parameters started to normalize although not returning
to control values within 12 days.

Keywords: copper; Anodonta anatina; thiobarbituric acid-reactive substances;
glutathione; metallothionein; antioxidative enzymes

Introduction

Metals are brought to the earth’s surface by mining for a multitude of agricultural,
industrial, and technological applications. One of the technologically important metals is
copper (Cu), used for electrical power installations and in the building sector, as animal
feed additive or fungicide, as part of machineries, vehicles, electric appliances, and in many
other consumer products. During its use, it is released by corrosion and/or abrasion,
mobilized as particulate matter and dry or wet deposited, to some extent ending up in the
sediments of freshwater ecosystems (Smolders et al. 2003). In non-contaminated
freshwater ecosystems, its concentrations range from 0.02 to 0.3 mmolL�1 (1–20 mgL�1)
(Momčilović 2004). Close to mining activities, aquatic copper pollution can reach levels of
up to 30 mmolL�1 (1.7mgL�1) (Smolders et al. 2003).

Mussels live at the interface of free-flowing waters and sediments and may be
chronically exposed to copper for long time periods or intermittently at fluctuating levels,
depending upon temporary hydrological conditions and extent of sediment oxygenation
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(Bhaduri et al. 2000; Poot, Gillissen, and Koelmans 2007). Copper is an essential element
of their circulatory oxygen carrier hemocyanin (Momčilović 2004) and plays a role as
cofactor of a number of enzymes such as cytochrome oxidase, superoxide dismutase
(SOD), alcohol dehydrogenase, dopamine hydroxylase, tyrosinase, and lysyl oxidase
(Serafim and Bebianno 2009). However, at excessive concentrations copper can participate
in the formation of reactive oxygen species (ROS) through a Haber–Weiss cycle,
producing hydroxyl radicals (�OH) from hydrogen peroxide (H2O2) and superoxide (O�2 )
(Bigot et al. 2011; Company et al. 2008). ROS may cause cellular damage by lipid
peroxidation when the antioxidative defense systems of aquatic animals are overwhelmed,
leading to inactivation of membrane enzymes, destruction of proteins (Remmer et al.
1989), and changes in the DNA structure (Company et al. 2008; Lackner 1998; Serafim
and Bebianno 2009).

Mussels can cope with moderately elevated copper in various ways (Serafim and
Bebianno 2009). In the cytosol, glutathione (GSH) and metallothionein (MT), the latter a
family of cysteine-rich proteins (Ivanković et al. 2010), provide protection against
increased concentrations through binding the copper ions to the thiol groups of their
cysteine residues (Company et al 2008; Freedman, Ciriolo, and Peisach 1989). Other
strategies against copper-induced oxidative toxicity is the induction of enzymes such as
SOD, catalase (CAT), glutathione peroxidase (GPX), and glutathione reductase (GR)
(Isani et al. 2003).

Copper has been observed in high concentrations in the tissue of freshwater pearl
mussels Margaritifera margaritifera (Frank and Gerstmann 2007) and other European
freshwater mussel species (Tallandini et al. 1986). Their populations are strongly affected
Europe-wide and some are threatened with extinction (Cuttelod, Seddon, and Neubert
2011). Understanding the potential involvement of Cu in this phenomenon is the major
motivation for this study.

In this work, Anodonta anatina is used as model species. In previous publications,
it has been shown that A. anatina can accumulate copper from the water or by feeding
on copper-containing algae (Nugroho and Frank 2011b). This article focuses on the
effects of copper on MT and GSH and on antioxidative enzymes as response to
oxidative stress, signaled by increased levels of thiobarbituric acid-reactive substances
(TBARS).

Materials and methods

Chemicals

Isotopically enriched (99%) 63Cu oxide (Euriso-top, Saarbrücken, Germany) was used.
Concentrated HNO3 (69%) and concentrated HCl (30%) were of suprapure grade (Merck,
Darmstadt, Germany); other chemicals (Carl Roth, Karlsruhe, Germany; Sigma-Aldrich,
Munich, Germany) were of analytical grade. Cleaning of labware and preparation of
the Cu2þ stock solution are described in a previous publication (Nugroho and
Frank 2011b).

Animals and experimental design

Seventy duck mussels (A. anatina) (ZOO-Erlebnis Online Shop, Grossefehn, Germany)
with shell lengths of 10–12 cm and weights between 100 and 200 g were brought to the
laboratory in pond water. Mussel handling, acclimatization, and experimental design
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(Nugroho and Frank 2011b) as well as the preparation of normal and Cu-loaded algae
have been described earlier (Nugroho and Frank 2011a). The mussels were divided into
three groups consisting of 21 mussels each. The first group was kept in artificial pond
water (APW); the second one was exposed to 0.3 mmolL�1 (20mgL�1) 63Cu2þ in the water;
the third group received daily 1.5mgL�1 freeze-dried 63Cu-loaded algae (40mmol 63Cu
per kg dry weight) for 24 days, equivalent to a nominal concentration of 0.06 mmol
(3.6 mgL�1) 63Cu per liter APW.

For sampling, three mussels of each group were taken for analysis at days 0, 6, 12, 18,
and 24 (exposure), and at days 30 and 36 (depuration). The mussels’ soft bodies were
dissected on ice into gills, mantle, kidney, and digestive gland. Two aliquots of every tissue
fraction, about 5–10mg each, were placed in separate 2-mL microtubes of known weight.
The first aliquot was used for the determination of MT and the second one for the
determination of TBARS, GSH, enzyme activities, and proteins. All microtubes were kept
in a freezer at �80�C until further analysis. The remainders of the tissues were placed in
15-mL polypropylene (PP) tubes of known weights and were lyophilized for copper
determination.

Analytical methods

Sample preparation

Frozen tissue samples in microtubes were thawed and immediately mixed with 500 mL
sucrose (0.5mol L�1)/Tris-HCl (20mmol L�1; pH 8.6) buffer, to which leupeptine
(6 mmolL�1) and phenylmethanesulfonylfluoride (PMSF) (0.5mmol L�1) were added as
anti proteolytic agents and �-mercaptoethanol (0.01%) as reducing agent. The mixtures
were sonicated in an ice bath with 12 strokes of a sonicator (Labsonic U tip sonicator, B.
Braun Biotech International, Melsungen, Germany) at 20 kHz, acoustic power 50W. The
homogenates were centrifuged at 4�C for 30min at 10,000� g (Heraeus Multifuge 1L-R,
Thermo Scientific, Osterode, Germany). Supernatants were used for MT determination.

For the determination of TBARS, GSH, enzyme activities, and proteins, frozen tissue
samples of 5–10mg were thawed and immediately mixed with 500 mL phosphate buffer
(50mmol L�1; pH 7.4) containing 150mmol L�1 KCl, 1mmol L�1 ethylenediaminetetra-
acetic acid (EDTA), 1mmol L�1 dithiothreitol (DTT), and 0.01% (w/v) PMSF. The
samples were homogenized in an ice bath with 12 strokes of a sonicator at 20 kHz, acoustic
power 50W, and centrifuged at 4�C for 30min at 10,000� g. The supernatants were used
for analysis.

Total copper

Total copper in lyophilized tissues and freeze-dried algal food, and – every second day –
the actual copper concentrations in APW were determined by inductively-coupled plasma
mass spectrometry. Details have been described previously (Nugroho and Frank 2011b).

Lipid peroxidation

Lipid peroxidation was determined following the method of Buege and Aust (1978) by
measuring TBARS, expressed as malondialdehyde (MDA) equivalents. Absorbances of
samples were read at 535 nm with a microplate reader (Biotek Synergy HT, Bad
Friedrichshall, Germany). TBARS levels were estimated using a standard curve obtained
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with 1,1,3,3-tetramethoxypropane (99%; VWR, Darmstadt, Germany) as stable precursor

of MDA and expressed as mmol kg�1 tissue wet weight (tww).

Glutathione

GSH was determined according to Anderson (1985). Absorbances of samples were
measured at 412 nm with a microplate reader. The GSH content was estimated using a

standard curve obtained with reduced GSH and expressed as mmol kg�1 tww.

Metallothioneins

MT concentrations were determined by the spectrophotometric method of Viarengo et al.

(1997) modified by Verlecar, Jena, and Chainy (2008). Absorbances of samples were read
at 412 nm with a microplate reader. The MT content was determined using GSH (Carl

Roth, Karlsruhe, Germany) as standard, assuming that 1 mmol GSH is equivalent to

0.055 mmol MT. Concentrations of MT were expressed as mmol kg�1 tww.

Enzyme activities

SOD activities were determined by the procedure of Beauchamp and Fridovich (1971),
based on the inhibition of nitrotetrazolium blue reduction and measuring sample

absorbances at 560 nm. CAT activities were assayed spectrophotometrically according to

Rao, Paliyath, and Ormrod (1996) by monitoring the decrease in the absorbance of H2O2

at 240 nm. GPX activities were determined according to Paglia and Valentine (1967) and

GR activities according to Massey and William (1965) in the presence of GSSG, in both

cases following the rate of NADPH oxidation at 340 nm. Absorbances were measured with
a microplate reader; enzyme activities were calculated in units per milligram protein and

per gram tww.

Proteins

Proteins were determined by the dye-binding assay (Kruger 1994). Absorbances of the
samples were read at 595 nm with a microplate reader. The concentrations were

determined using BSA (�96%; Sigma-Aldrich, Munich, Germany) for calibration.

Statistical data analyses

The variability of the observed parameters and of total Cu concentration in the different

organs were tested by two-way analysis of variance (ANOVA) considering exposure time

and copper exposure pathways as independent variables, followed by the Duncan multiple
comparison tests ( p< 0.05) if significant differences were found. Data were transformed to

log(Xþ 1) units before statistical analysis for the homogeneity of variance and normality.

Linear regression analysis was performed for evaluating the relationship between Cu
concentration and the observed parameters, followed by Pearson correlation analysis for

testing the strength of linear relationship.
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Figure 1. Concentrations of copper (a), TBARS (b), GSH (c), and MT (d) in the gills, mantle,
digestive gland, and kidney of A. anatina during Cu exposure (E) and depuration (D) (^¼ exposure
via water, g¼ exposure via food, m¼ control). Significant differences in comparison to controls
within each group are indicated by �. Same letters indicate that differences among groups are not
significant at each time of sampling (day, d) while different letters indicate p< 0.05 (n¼ 3).
Concentrations of copper were taken from a previous publication (Nugroho and Frank 2011b).
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Results

Copper concentrations in all organs increased during exposure (Figure 1a, taken from the

previous publication Nugroho and Frank 2011b). When Cu was administered via the

water, the levels started to rise instantaneously, reaching a maximum of up to 6.5-fold of

controls at day 24. From the food, Cu increased in the digestive gland to a similarly high

level, but in the gills and mantle it was much lower; for the kidney uptake was moderate.

Upon depuration, Cu was quickly but not completely eliminated, especially not from the

mantle and the digestive gland.
Initial TBARS levels (Figure 1b) were highest in the gills and the digestive gland,

i.e., about 60 mmol kg�1 tww; in the mantle and the kidney they were between 25 and

40 mmol kg�1 tww. Upon Cu exposure via the water, TBARS rose significantly within the

first six days, except for the kidney. At day 24, highest levels in relative terms were reached

in the mantle (about double of control), in absolute terms in the gills and digestive gland

(100mmol kg�1 tww); in the kidney, TBARS were elevated by about 60%. Upon Cu

exposure via the food, the effects on the digestive gland and the kidney were almost equally

strong as for exposure via the water, while in the gills and the mantle the slightly increased

levels were not significantly different from controls ( p> 0.05). Correlation analyses

between copper and TBARS confirmed strong relationships in all organs (r> 0.6;

p< 0.05), except for the kidney. During depuration, the concentrations decreased slowly,

the levels after 12 days of depuration being only slightly lower than in the beginning of

depuration.
Initial levels of GSH (Figure 1c) were highest in the gills and the kidney, i.e., about

3.0mmol kg�1 tww, somewhat lower in the mantle, i.e., about 2.5mmol kg�1 tww, and

lowest in the digestive gland, i.e., 1.6mmol kg�1 tww. Upon Cu uptake, GSH started to

decrease within the first 6 days at similar relative rates in all organs, reaching lowest levels

at day 24, especially when Cu-exposure took place via the water. In the mantle GSH

decreased by about 40%, in the other organs between 20 (digestive gland and kidney) and

30% (gills) at day 24. Upon depuration, GSH-levels tended to increase but remained lower

than in controls, even after 12 days.
Initial MT levels (Figure 1d) ranged from 1.5 (kidney) to 3.0 (gills) mmol kg�1 tww.

Upon Cu exposure via the water, MT increased in parallel to Cu, being significantly

different from control on day 12 and later. Highest MT levels were reached on day 24,

i.e., MT was increased by 300% from control in the digestive gland, 200% in the gills and

mantle, and 100% in the kidney. Upon Cu-exposure via the food, MT increased in the

digestive gland and the kidney almost to the same degree, while in the gills and the mantle

MT levels were only slightly elevated. Correlation analyses between copper and MT

confirmed their strong relation in all organs (r> 0.6; p< 0.05). Upon depuration and

simultaneous with Cu elimination, MT decreased strongly in the gills, the digestive gland,

and the kidney within the first 6 days; in the mantle, MT remained high, parallel to the

slow elimination of Cu.
The antioxidative enzymes are presented in Figure 2 in two ways, i.e., relative to

protein contents (open symbols, left ordinate) and to tissue wet weight (tww) (filled

symbols, right ordinate). SOD (Figure 2a) had the highest initial activity in the kidney,

i.e., about 9 units (U) per mg protein (120 U per g tww), for the other organs ranging from

3 to 5 U per mg protein (20–40 U per g tww). For CAT (Figure 2b), the initial levels were

similar for all four organs at about 5 U per mg protein (65 U per g tww). GPX (Figure 2c)

was initially highest in the kidney, i.e., about 0.04 U per mg protein (0.5 U per g tww), in
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Figure 2. SOD (a), CAT (b), GPX (c), and GR (d) activities in the gills, mantle, digestive gland, and
kidney of A. anatina during Cu exposure (E) and depuration (D) in units (U) per mg protein (left
ordinate;S¼ upon exposure via water, h¼ upon exposure via food, 4¼ control) and in units per g
tissue wet weight (tww) (right ordinate; ^¼ exposure via water, g¼ exposure via food,
m¼ control). Significant differences in comparison to controls within each group are indicated by
�. Same letters indicate that differences among groups are not significant at each time of sampling
(day, d) while different letters indicate p< 0.05 (n¼ 3).
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the other organs at about 0.03 U per mg protein (0.25 U per g tww), taking the differences
in protein contents among the organs into account (Nugroho and Frank 2012).

Upon Cu exposure via the water, the activities of the three enzymes relative to protein
contents increased in all organs. CAT and GPX reached highest levels at day 24 in the
digestive gland, the former being increased by 250% from control, the latter about double;
SOD behaved similarly. Upon Cu-uptake from the food, the activities of all three enzymes
in the digestive gland and the kidney increased almost equally as when exposed via the
water, while in the gills and mantle only small effects were seen. Correlation analysis
showed highly significant correlations (r> 0.6; p< 0.05) between the enzymes and copper
in the gills and mantle (water pathway), and the digestive gland and kidney (water and
food pathways). During depuration, the activities decreased, especially of SOD and CAT
in the digestive gland, although not returning to control values until the end of depuration.

Relative to tissue wet weight, however, SOD and GPX activities decreased. This was
strongest for SOD (Figure 2a) in the kidney, i.e., to about 50% of control at day 24, and
for GPX in the mantle (40 % of control) and the digestive gland (50 % of control). Uptake
of Cu from the food resulted in decreases in the digestive gland and kidney similar to
uptake via the water, while in the gills and the mantle SOD and GPX remained at control
levels. CAT activities were largely unchanged, except for the kidney in which it was
doubled. During depuration, SOD and GPX activities increased in all organs, but not fully
back to control values.

Initial GR levels (Figure 2d) relative to protein contents were highest in the digestive
gland (0.1 U per mg protein), in the other organs being only a third (0.03 U per mg
protein). Upon aqueous Cu exposure, increases were strong for the digestive gland and the
gills; for the mantle and kidney they were moderate (�50%), but in all cases correlated to
copper (r> 0.6; p< 0.05). Relative to wet weight, the GR activities declined upon Cu
exposure via the water, strongest in the digestive gland to reach about 30% of control at
day 24, in the other organs about 70%. Upon Cu exposure via the food, GR activities in
the digestive gland were similarly depressed as via the water, in the gills and mantle they
remained at control levels. During depuration, GR began to normalize although not fully
back to control levels.

Discussion

As shown previously (Nugroho and Frank 2011b), uptake of Cu from the water
(Figure 1a) led to a general and fast rise of its concentrations in all tissues and organs,
while upon Cu-uptake with the food primarily the digestive gland and the intestines (not
shown) were burdened.

In respect to lipid peroxidation, increased TBARS reflect the damage to biological
membranes by ROS as a consequence of excess Cu (Company et al. 2008). The initial
TBARS levels found in the digestive gland of A. anatina (7.0 nmolmg�1 protein) were
about 7–10-fold higher than those reported by Sabatini et al. (2011) for the freshwater
mussel Diplodon chilensis (0.7 nmolmg�1 protein) and by Bouskill et al. (2006) for the
zebra mussel Dreissena polymorpha (1.0 nmolmg�1 protein). Parallel to the accumulation
of copper, TBARS rose by 60–70% in all organs when the metal was taken up by the water
pathway, while by the food pathway the effect was focused on the digestive gland; the
latter has also been reported by Sabatini et al. (2011), although they used algae with a Cu-
contamination level about 800 times higher than in our case and a different feeding
schedule. Other researchers reported an increase in TBARS by about 100% in the whole
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tissue (2.0 nmolmg�1 protein) of D. polymorpha upon exposure to water-dissolved Cu at
1.6 mmolL�1 (100mgL�1) for 7 days (Bouskill et al. 2006), i.e., at a Cu-concentration
about 5-fold higher than in this study. For A. anatina, increases by about 50%, e.g., in the
digestive gland, were observed within the same period of exposure.

Consumption of GSH can occur due to its role as a metal-complexing agent, and as an
antioxidant and scavenger of reactive intermediates of lipid peroxidation (Canesi et al.
1999; Lackner 1998). The initial GSH-levels in the gills (300 nmolmg�1 protein) and the
digestive gland (170 nmolmg�1 protein) of A. anatina were about 2–4-fold lower than in
the same organs of the swollen river mussel Unio tumidus (500 and 600 nmolmg�1 protein)
(Doyote et al. 1997). Copper exposure was associated with the depletion of GSH by about
20–40% in all organs of A. anatina, irrespective of exposure pathway. Although upon
copper uptake via the food TBARS were predominantly increased in the digestive gland,
GSH was lowered in all organs. This suggests a generalized, systemic mobilization and
exchange of GSH between organs. For comparison, when U. tumidus was exposed to
water-dissolved Cu (Doyotte et al. 1997) at about twice the concentration (0.5 mmolL�1,
30 mgL�1) used in our study, GSH in the gills and the digestive gland was lowered by
about 15% within 3 days, comparable to the 20–25% we have observed with A. anatina
after 6 days of exposure. The same authors have emphasized that the depletion was
associated with decreased GR activities, similarly as we have observed with A. anatina
(Figure 2d).

Binding of copper to MT is a detoxification process and meant to control its
intracellular levels (Company et al. 2008; Serafim and Bebianno 2009). Initial MT levels in
the gills and mantle of A. anatina (2–3mmol kg�1 tww) were about 6–9-fold lower than that
reported for the whole soft tissue of D. polymorpha (about 18 mmol kg�1 tww; Ivanković
et al. 2010). In parallel to Cu uptake, MT levels were induced in all organs via both
exposure pathways, showing dose–response relationships. The increase in molar concen-
trations of MT in the gills, mantle, and kidney of A. anatina (Figure 1d) were largely
sufficient to complex the extra copper, considering a binding ratio of 12 (Adam et al. 2010;
Eisler 1993); for the digestive gland, however, this ratio of extra Cu versus newly
synthesized MT tended to be higher, especially upon Cu-exposure via the food pathway. In
view of the fact that MT may additionally serve as an antioxidant, the induction of MT is
rather limited and may constitute a considerable physiological challenge. Copper exposure
induced an increase of MT by 10% in the whole soft tissue of D. polymorpha (20mmol kg�1

ww; Ivanković et al. 2010) upon exposure to water-dissolved Cu at 0.5 mmolL�1

(30 mgL�1) for 7 days, i.e., at a concentration about 1.5-fold higher than our study. Within
the same period of exposure, the increases were slight lower than all organs of exposed
A. anatina (20–30%). Bouskill et al. (2006) also reported a 10% increase of MT in the
whole tissue (500 mgmg�1 protein) of D. polymorpha but exposed for 7 days to
1.6 mmolL�1 (100 mgL�1) Cu in water, i.e., more than 5-fold higher than in this study.
In field studies, MT in the gills of the giant floater Pyganodon grandis correlated positively
with elevated Cu concentrations (Bonneris et al. 2005; Perceval et al. 2006). A similar study
also showed a positive relationship between Cu and MT in the soft tissue of D. polymorpha
found in the St Lawrence River, Canada (de Lafontaine et al. 2000).

Relative to protein contents, the major antioxidative enzymes were induced during
copper exposure (Figure 2), SOD, and CAT in the digestive gland by 60% and 240%,
respectively. Sabatini et al. (2011) reported the induction of SOD and CAT activities by
only about 50% relative to protein in the digestive gland of D. chilensis after 4–5 weeks of
exposure via food to much higher Cu concentration (equivalent to 50 mmolL�1). However,
relative to tissue wet weight – and thus relative to copper – the activities of SOD, GPX,
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and GR were depressed, especially in the digestive gland (GPX by 30%, GR by 45 % after
6 days of exposure), since the overall protein-synthetic capacity was hampered (Nugroho
and Frank 2012). Doyotte et al. (1997) also reported the decrease of GPX and
GR activities in the digestive gland (by 15 and 30%) of U. tumidus exposed for 3 days to
water-dissolved Cu at 0.5mmolL�1 (30mgL�1), twice the concentration used in this study.

Overall, Cu-exposure of A. anatina obviously entailed considerable oxidative stress,
depression of GSH, induction of MT, and perturbations in the activities of GR and the
antioxidative enzymes. Exposure to Cu via the water affected all organs including the gills
and mantle, by the food being mainly the digestive gland. Taking into account that in these
experiments the nominal concentration of copper contained in the food was fairly low
relative to the copper concentration in the water, exposure via the food and the impact on
the digestive gland was particularly strong, the centrally important organ for digestion,
catabolism, and uptake of nutrients and electrolytes such as Ca2þ. In conjunction with the
effects on the kidney and the mantle lasting beyond the actual exposure, and together with
the derangements of calcium homeostasis and of carbohydrate and protein metabolism
(Nugroho and Frank 2012), the exposure to copper at moderately elevated environmen-
tally realistic levels has profound pathobiochemical consequences.

Conclusions

Overall, mussels are under considerable oxidative stress when exposed to Cu-concentra-
tions moderately elevated above natural conditions. Utilization of GSH and induction of
MT constitute a first line of defense. The activation of a second line by induction of
antioxidative enzymes is rather inefficient as protein-synthetic capacities are strongly
affected. All this evidence suggests that copper at fairly low levels can affect the vitality of
mussels at all life stages, making it likely to contribute to the population declines of
European freshwater bivalves.
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Massey, V., and C.H. Williams. 1965. On the reaction mechanism of yeast glutathione reductase.

The Journal of Biological Chemistry 240: 4470–81.
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