

Berechnungen in der Antriebstechnik: Reduktion elastischer Strukturen und Anwendung verschiedener Koppelbedingungen

17. Bayreuther 3D-Konstrukteurstag

Universität Bayreuth, 16.09.2015

D. Billenstein, F. Nützel, C. Glenk, F. Rieg

Einleitung

Reduktion

Substrukturtechnik

Quelle: [9]

Kopplung von Simulationsmethoden

Quelle: [11]

Koppelbedingung

Schraubenvorspannung

Kopplung unterschiedlicher Elemente

Lehrstuhl für Konstruktionslehre und CAD Prof. Dr.-Ing. Frank Rieg

17. Bayreuther Konstrukteurstag, 16.09.2015 D. Billenstein, F. Nützel, C. Glenk, F. Rieg

Inhalt

Reduktion

- 1) Motivation
- 2) Theorie
- 3) Anwendungsbeispiel

Koppelbedingung

- 1) Motivation
- 2) Theorie
- 3) Anwendungsbeispiel

UNIVERSITÄT BAYREUTH

Reduktion Motivation

Wann ist eine Reduktion des FE-Modells sinnvoll?

- Komplexe FEM-Modelle mit vielen Details und Freiheitsgraden
- Einsparen von Rechenzeit bei der Berechnung mehrerer Lastfälle
- Kopplung verschiedener Simulationsmethoden, z.B. FEA und MKS

Arten der FE-Reduktion

- Statische Reduktion
- Dynamische Reduktion

Eigenschaften der statischen Reduktion

- Kein Verlust von Steifigkeitsinformationen
- Exakte Lösung
- Auswahl der Master- und Slave-Knoten im Vorfeld
- Master-Knoten f
 ür Randbedingungen und zur Auswertung
- Wiederherstellung der kondensierten Slave-Knoten

Lehrstuhl für Konstruktionslehre und CAD Prof. Dr.-Ing. Frank Rieg

Theorie – Guyan-Reduktion

positiv definite, symmetrische Matrix

Ziel:
$$K u = F$$
 in reduziertes System überführen

$$\bigcup_{K_{SS}} \begin{pmatrix} K_{SS} & K_{Sm} \\ K_{ms} & K_{mm} \end{pmatrix} \begin{pmatrix} u_{s} \\ u_{m} \end{pmatrix} = \begin{pmatrix} F_{s} \\ F_{m} \end{pmatrix} !$$
 $K_{SS} u_{s} + K_{Sm} u_{m} = 0 \implies u_{s} = -K_{SS}^{-1}K_{Sm} u_{m}$
 $u = \begin{pmatrix} u_{s} \\ u_{m} \end{pmatrix} = \begin{pmatrix} -K_{SS}^{-1}K_{Sm} \\ I \end{pmatrix} u_{m} = Tu_{m}$

$$\implies K u = \begin{pmatrix} K_{SS} & K_{Sm} \\ K_{ms} & K_{mm} \end{pmatrix} \begin{pmatrix} -K_{SS}^{-1}K_{Sm} \\ I \end{pmatrix} u_{m} = K Tu_{m} = F$$

 $K T u_m = F \qquad |*T^T (von links)$

$$\underbrace{T^T K T}_{K_{red}} u_m = \underbrace{T^T F}_{F_m}$$

Quelle: [6]

Lehrstuhl für Konstruktionslehre und CAD Prof. Dr.-Ing. Frank Rieg

Theorie – Einheitsreduktion

Prof. Dr.-Ing. Frank Rieg

Theorie – Einheitsreduktion

D. Billenstein, F. Nützel, C. Glenk, F. Rieg

Anwendungsbeispiel - Kurbelwelle

Kurbelwelle

- Steifigkeitsbasierte Auslegung
- Berechnung mehrerer Kurbelwinkel
- Auswertung der Durchbiegung

Fragen

- Durchbiegung des Kurbelzapfens
- Standard-FEA vs. FEA mit reduziertem Modell

Lehrstuhl für Konstruktionslehre und CAD Prof. Dr.-Ing. Frank Rieg

Ergebnisse – Durchbiegung Kurbelzapfen

Volles FE-Modell

Reduziertes FE-Modell

Vergleich der Berechnungsmethoden

- Übereinstimmung der Verschiebungsergebnisse
- Numerische Schwankung im Bereich < 3 ‰

Lehrstuhl für Konstruktionslehre und CAD Prof. Dr.-Ing. Frank Rieg

Motivation

Lehrstuhl für Konstruktionslehre und CAD Prof. Dr.-Ing. Frank Rieg

17. Bayreuther Konstrukteurstag, 16.09.2015

D. Billenstein, F. Nützel, C. Glenk, F. Rieg

Einbaumöglichkeiten von MFCs

Transformations-Verfahren	Lagrange-Verfahren	Penalty-Verfahren
$[T^T KT][u] = [T^T F]$	$\begin{bmatrix} K & G^T \\ G & 0 \end{bmatrix} \begin{bmatrix} u \\ \lambda \end{bmatrix} = \begin{bmatrix} F \\ 0 \end{bmatrix}$	$[K + P_C][u] = [F]$

Koppelbedingung

Theorie

Arten von Koppelbedingung

- Multi Freedom Constraint (MFC): Imaginäre, masselose Verbindung von zwei oder mehreren Verschiebungskomponenten
 - Weiche Kopplung
 - Starre Kopplung
- Strukturelemente (Balken, Stäbe, ...)

UNIVERSITÄT

Anwendungsbeispiel - Planetenrad

Planetenrad

- Zusammenhang zwischen Verformungsverhalten bzw. Belastungen und Planetenrad und Planetenradlagerung bei dünnen Radkränzen
- Bei direkt gelagerten, dünnwandigen Planeten sind gerade diese gegenseitigen Abhängigkeiten aber nicht mehr vernachlässigbar

Fragen

- Realistische Modellierung der Planetenradlagerung
- Wahl der FE-Randbedingungen
- Verformungsverhalten des Planetenrads

Planetenrad – FE-Modellierungsansätze

FE-Modell Referenz

- Planetenradbolzen wird mitmodelliert
- Festhaltung in der Eingriffslinie
- Kontaktbedingung: Reibungsfrei
- Aufgabe des Drehmoments in der Planetenradbohrung

FE-Modell Kopplung

- Planetenradbolzen wird nicht modelliert
- Festhaltung in der Eingriffslinie
- Übertragung des Drehmoments und Kompensation des Bolzens mittels Koppelbedingungen
- Koppelbedingungen: Weich, Starr

Lehrstuhl für Konstruktionslehre und CAD Prof. Dr.-Ing. Frank Rieg

Vergleich starre Kopplung

Modellierungsvarianten

- Z88: Starre Koppelung
- ABAQUS: MPC Beam, Kinematic Coupling

Fazit

- MPC Beam und Kinematic Coupling (alle Freiheitsgrade verbunden) in Abaqus identisch
- Versteifung der Planetenradbohrung
- Maximale relative Abweichung zwischen der starren Kopplung in Z88 und Abaqus ist betragsmäßig 0,548 %

17. Bayreuther Konstrukteurstag, 16.09.2015 D. Billenstein, F. Nützel, C. Glenk, F. Rieg

UNIVERSITÄT

Vergleich weiche Kopplung

Modellierungsvarianten

- Z88: Weiche Kopplung
- ABAQUS: Continuum Distributing Coupling

Fazit

- Verformung der Planetenradbohrung zulässig (keine Einbringung einer Steifigkeit durch die Kopplung)
- Maximale relative Abweichung zwischen der weichen Kopplung in Z88 und Abaqus ist betragsmäßig 4,924 %

Referenz vs. Kopplung in Z88

Modellierungsvarianten

- Weiche Kopplung
- Starre Kopplung
- Referenz

Fazit

- Weiche Kopplung zu elastisch
- Ideale Biegesteifigkeit der starren Kopplung verhindert Rotation der Verzahnung
- Ideale radiale Steifigkeit der starren Kopplung verhindert Aufweitung der Planetenradbohrung

UNIVERSITÄT

Zusammenfassung

Reduktion

- Drei Reduktionsverfahren in Z88 umgesetzt und validiert
- Schnellere Berechnung mehrerer Lastfälle bei gleicher Ergebnisgüte

Koppelbedingung

- Weiche und starre Kopplung in Z88 umgesetzt und validiert
- Unterschiedliche Methoden der Drehmomentaufbringung

Ausblick

- Untersuchung der Koppelbedingungen zur Verbindung von Struktur- und Kontinuumselementen
- Verbindung der Reduktionssolver mit verschiedenen Koppelbedingungen zur Zusammenführung von Analytik und Numerik

Anhang

Lehrstuhl für Konstruktionslehre und CAD Prof. Dr.-Ing. Frank Rieg

17. Bayreuther Konstrukteurstag, 16.09.2015 D. Billenstein, F. Nützel, C. Glenk, F. Rieg UNIVERSITÄT BAYREUTH

Exemplarischer Würfel

Konstruktionslehre und CAD Prof. Dr.-Ing. Frank Rieg

D. Billenstein, F. Nützel, C. Glenk, F. Rieg

19

Exemplarischer Würfel

9,28335000E+0	4											
3,81654000E+04	4 9,04405000E+	04							/ 7	00		
1,62041000E+04	4 1,32280000E+	04 3,796760	00E+04							ŎŎ		
-2,42828000E+04	4 -1,73782000E+	04 -1,337050	00E+04 8,79	843000E+04				-	red –			
1,78479000E+04	4 -3,73932000E+	04 1,675720	00E+04 -3,42	935000E+04	9,14938000E+04							
-1,62041000E+04	4 -1,32280000E+	04 -3,796760	00E+04 1,33	705000E+04	-1,67572000E+04	3,79676000E+04						
-3,68203000E+0	4 1,48820000E+	04 1,378110	00E+04 -2,73	888000E+04	3,62527000E+04	-1,37811000E+04	8,79550000E+04					
-2,09212000E+04	4 -2,47202000E+	04 -1,674860	00E+04 3,74	594000E+04	-3,07325000E+04	1,67486000E+04	-3,45316000E+04	8,92894000E+04				
-1,62041000E+0	4 -1,32280000E+	04 -3,796760	00E+04 1,33	705000E+04	-1,67572000E+04	3,79676000E+04	-1,37811000E+04	1,67486000E+04	3,79676000E+04			
-3,17304000E+04	4 -3,56692000E+	04 -1,661470	00E+04 -3,63	126000E+04	-1,98071000E+04	1,66147000E+04	-2,37459000E+04	1,79933000E+04	1,66147000E+04	9,17889000E+04		
-3,50921000E+0	4 -2,83271000E+	04 -1,323660	00E+04 1,42	122000E+04	-2,33681000E+04	1,32366000E+04	-1,66032000E+04	-3,38367000E+04	1,32366000E+04	3,74830000E+04	8,55319000E+04	
1,62041000E+04	4 1,32280000E+	04 3,796760	00E+04 -1,33	705000E+04	1,67572000E+04	-3,79676000E+04	1,37811000E+04	-1,67486000E+04	-3,79676000E+04	-1,66147000E+04	-1,32366000E+04	3,79676000E+04
0.202254.005.0	4											
9,28335169E+0	4	04										
3,81053094E+0	4 9,04405308E+		225.04					- K	Λh			
1,62041410E+0	4 1,32280113E+		32E+04	0422105-04					d And	ZUP		
-2,42828349E+0	+ -1,/3/01/40E+	04 -1,557055	2/E+04 0,/9	0244525+04	0 140276095 04				Ч	•		
1,78478567E+0	4 -3,73931810E+		95E+04 -3,42	934453E+04	9,14937608E+04	2 706757225 04						
2 682020085+0	+ -1,32200113E+	04 - 3, 790737	32E+04 1,33	0070E1E+04	2 625272255 +04	1,27910E09E+04	9 70F 40020F + 04					
-3,08202908E+0	+ 1,40019797E+	04 1,578105	755+04 -2,75	607651E+04	3,02327223E+04	1 67/9607EE+04	2 452154055104	0 02002702E 104				
-2,09211502E+04	+ -2,4/202512E+		73E+04 3,74	292997E+04	- 3,07324343E+04	1,07400075E+04	-3,45515495E+04	0,92093782E+04	2 706757225+04			
-1,02041410E+04	+ -1,32280113E+	04 -3,790737	01E+04 1,00	105527E+04	1 00071220E+04	3,79075752E+04	2 274501715+04	1,07400075E+04	3,79075752E+04	0 179902015-04		
-3,17303912E+0	+ -3,30091/44E+		01E+04 -3,03	12011/E+04	-1,960/1339E+04	1,00140081E+04	-2,37459171E+04	1,79955059E+04	1,00140081E+04	9,178892012+04	9 552190525 04	
-3,50920700E+0	+ -2,03270960E+	04 -1,525059	22E+04 1,42	122203E+04	1 675719055+04	1,32303933E+04	-1,00031527E+04	-3,38300/20E+04	1,52505955E+04	3,74630024E+04	0,00010900E+04	2 706757225+04
1,02041410E+0	+ 1,52260115E+	04 3,790737	522+04 -1,55	703327E+04	1,07371893E+04	-3,79073732E+04	1,378103986+04	-1,07400073E+04	-5,79075752E+04	-1,00140081E+04	-1,525059552+04	3,79073732E+04
	-0,0000182%											
	0,0000801% -	0,0000340%					(K		-K		.)	
	-0,0002528% -0	0,0000857%	0,0000706%	6				red,Z88,1,	j N red	,Abaqus,i,	ן ו	
	-0,0001437%	0,0001451%	-0,0002443%	6 0,000077	75%			17				
	0,0002427%	0,0000491%	0,0000629%	6 0,000159	6% 0,00004289	6	K _{red.Abaaus.i.i}					
	-0,0002528% -(, 0,0000857%	0,00007069	6 -0,000244	13% 0,00006299	6,0000706%				,~,,		
	0.0000250%	, 0.0001362%	0.00029149	6 0.000054	-0.00006219	6.0002914%	0.000079%					
	Diohe	traσc	mäßi	σma	vimale	Ahwoic	hungh	oträgt l	odiglich	0 0188	166%	
	-0.0002528% -0	0000857%	0.0000706%	5 -0 00024/		6 0 0000706%	0.0002914%	0000445%	000706%	0,0100	100/0.	-
	0,000232078	000000778	0 00010170	< _0 000244	23% _0 00017149	6 0,000070078	-0.000721%	0,0000440%	001017% _0.000	1218%		
_	0,000277/0	0,0000719%	0,00013177				0.00021/0 -0			064% 0 00000F	E0/	-
_	0,0000650%		0,00003037				0,0002040%					/ 20
	-0,0002528% -0	0,0000857%	0,00007069	% -0,000244	13% 0,00006295	% 0,0000706%	0,0002914% -0	J,UUUU445% 0,0	000706% 0,0001	1917% 0,000050	3% 0,00007069	• <u></u> 20

Lehrstuhl für Konstruktionslehre und CAD Prof. Dr.-Ing. Frank Rieg 17. Bayreuther Konstrukteurstag, 16.09.2015

D. Billenstein, F. Nützel, C. Glenk, F. Rieg

Theorie – Starre Kopplung

Lehrstuhl für Konstruktionslehre und CAD Prof. Dr.-Ing. Frank Rieg

17. Bayreuther Konstrukteurstag, 16.09.2015 D. Billenstein, F. Nützel, C. Glenk, F. Rieg

UNIVERSITÄT BAYREUTH

Theorie – Starre Kopplung (Herleitung)

Drehung eines Punktes um einen anderen Punkt $x_1^S = x_0^S + (x_0^S - x_0^M) \cos \theta_z^M - (y_0^S - y_0^M) \sin \theta_z^M$ $y_1^S = y_0^S + (x_0^S - x_0^M) \sin \theta_z^M + (y_0^S - y_0^M) \cos \theta_z^M$

Kleinwinkelnäherung: $|\theta^M_z| \ll 1$

$$u_{x,rot}^{S} = (x_{1}^{S} - x_{0}^{S}) = -\theta_{z}^{M} \underbrace{(y_{0}^{S} - y_{0}^{M})}_{d_{x}}$$
$$u_{y,rot}^{S} = (y_{1}^{S} - y_{0}^{S}) = \theta_{z}^{M} \underbrace{(x_{0}^{S} - x_{0}^{M})}_{d_{x}}$$

Lehrstuhl für Konstruktionslehre und CAD Prof. Dr.-Ing. Frank Rieg

17. Bayreuther Konstrukteurstag, 16.09.2015 D. Billenstein, F. Nützel, C. Glenk, F. Rieg

Theorie – Weiche Kopplung

Quelle: [1]

Lehrstuhl für Konstruktionslehre und CAD Prof. Dr.-Ing. Frank Rieg

17. Bayreuther Konstrukteurstag, 16.09.2015 D. Billenstein, F. Nützel, C. Glenk, F. Rieg

Theorie – Weiche Kopplung (Herleitung)

Kräftegleichgewicht:

$$\begin{pmatrix} u_x^M + \overline{d}_z \theta_y^M - \overline{d}_y \theta_z^M - \sum_{i=1}^N \frac{\omega^i}{W_T} u_x^i \end{pmatrix} = 0 \\ \begin{pmatrix} u_y^M - \overline{d}_z \theta_x^M + \overline{d}_x \theta_z^M - \sum_{i=1}^N \frac{\omega^i}{W_T} u_y^i \end{pmatrix} = 0 \\ \begin{pmatrix} u_z^M + \overline{d}_y \theta_x^M - \overline{d}_x \theta_y^M - \sum_{i=1}^N \frac{\omega^i}{W_T} u_z^i \end{pmatrix} = 0 \end{cases}$$

$$\begin{aligned} &\overline{e}_{yz}\theta_x^M - \overline{d}_z u_y^M + \overline{d}_y u_z^M + \frac{1}{W_T} \sum_{i=1}^N \omega^i \, d_z^i u_y^i - \frac{1}{W_T} \sum_{i=1}^N \omega^i \, d_y^i u_z^i = 0 \\ &\overline{e}_{zx}\theta_y^M + \overline{d}_z u_x^M - \overline{d}_x u_z^M - \frac{1}{W_T} \sum_{i=1}^N \omega^i \, d_z^i u_x^i + \frac{1}{W_T} \sum_{i=1}^N \omega^i \, d_x^i u_z^i = 0 \\ &\overline{e}_{xy}\theta_z^M - \overline{d}_y u_x^M + \overline{d}_x u_y^M + \frac{1}{W_T} \sum_{i=1}^N \omega^i \, d_y^i u_x^i - \frac{1}{W_T} \sum_{i=1}^N \omega^i \, d_x^i u_y^i = 0 \end{aligned}$$

$$mit W_T = \sum_{i=1}^N \omega^i$$

$$\overline{d}_x = \frac{1}{W_T} \sum_{i=1}^N \omega^i \, d_x^i, \qquad \overline{d}_y = \frac{1}{W_T} \sum_{i=1}^N \omega^i \, d_y^i, \qquad \overline{d}_z = \frac{1}{W_T} \sum_{i=1}^N \omega^i \, d_z^i$$

$$d_x^i = x^i - x^M \qquad d_y^i = y^i - y^M \qquad d_z^i = z^i - z^M$$

$$\overline{e}_{xy} = \frac{1}{W_T} \sum_{i=1}^N \omega^i r_{xy}^{i^2}, \qquad \overline{e}_{yz} = \frac{1}{W_T} \sum_{i=1}^N \omega^i r_{yz}^{i^2}, \qquad \overline{e}_{zx} = \frac{1}{W_T} \sum_{i=1}^N \omega^i r_{zx}^{i^2}$$

Quelle: [1]

Lehrstuhl für Konstruktionslehre und CAD Prof. Dr.-Ing. Frank Rieg

17. Bayreuther Konstrukteurstag, 16.09.2015 D. Billenstein, F. Nützel, C. Glenk, F. Rieg

Theorie – Weiche Kopplung (Herleitung)

Quelle: [1]

Lehrstuhl für Konstruktionslehre und CAD Prof. Dr.-Ing. Frank Rieg

17. Bayreuther Konstrukteurstag, 16.09.2015 D. Billenstein, F. Nützel, C. Glenk, F. Rieg

Literatur

- [1] Case, B.: MYSTRAN User Reference Manual (2011). URL: http://www.mystran.com/Executable/MYSTRAN-Users-Manual.pdf (Abgerufen am 02.09.2015).
- [2] Perlemuter, A.V.; Slivker, V.I.: Numerical Structural Analysis. 1. Aufl., Springer-Verlag, Berlin, 2003.
- [3] Felippa, C.A.: Introduction to Finite Element Methods (21.08.2015). Department of Aerospace Engineering Sciences, University of Colorado. URL: http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/ (Abgerufen am 02.09.2015).
- [4] Nasdala, L.: FEM-Formelsammlung: Statik und Dynamik. 2. Aufl., Vieweg+Teubner Verlag, Wiesbaden, 2012.
- [5] Wissmann, J.; Sarnes, K.-D.: Finite Elemente in der Strukturmechanik. 1. Aufl., Springer-Verlag, Berlin, 2006.
- [6] Qu, Z.-Q.; Model Order Reduction Techniques with Applications in Finite Element Analysis. 1. Aufl., Springer-Verlag, London, 2004.
- [7] Cheung, Y.K.; Lo, S.H.; Leung, A.Y.T.: Finite Element Implementation. 1. Aufl., Blackwell Science Ltd, Oxford, 1996.
- [8] Rieg, F.; Hackenschmidt, R.; Alber-Laukant, B.: Finite Elemente Analyse für Ingenieure (Grundlagen und praktische Anwendungen mit Z88Aurora). 5. Aufl., Carl Hanser Verlag, München, 2014.

UNIVERSITÄT

Literatur

- [9] CADFEM GmbH: CADFEM-WikiPLUS Substrukturtechnik (2013). URL: http://www.esocaet.com/wikiplus/index.php/Substrukturtechnik (Abgerufen am 06.09.2015).
- [10] Vogel Antriebstechnik GmbH: Planetengetriebe Funktionsbeschreibung. URL: http://www.vogel-antriebe.de/de/produkte/spielarme-planetengetriebe/planetengetriebefunktion/ (Abgerufen am 06.09.2015).
- [11] FVA GmbH: FVA-Forschungsvorhaben 711.

UNIVERSITÄT