
Influence of side walls and undulated topography

on viscous gravity–driven film flow

Von der Fakultät für Angewandte Naturwissenschaften
der Universität Bayreuth

zur Erlangung der Würde eines
Doktor-Ingenieurs (Dr.-Ing.)
genehmigte Dissertation

vorgelegt von

Dipl.-Phys. Thilo Pollak
aus

Gummersbach

Erstgutachter: Prof. Dr. rer. nat. N. Aksel
Zweitgutachter: Prof. Dr. V. Bontozoglou
Tag der mündlichen Prüfung: 07. August 2012
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Abstract

While a gravity–driven viscous film flow down an inclined flat plane of infinite extent
can be described by an easy analytical solution, flow problems in nature, like glacier
movements or the liquid film on the human eye are much more complex. Also to optimize a
large number of technical applications, like coating applications or heat exchanger devices,
one has to investigate and understand how different influencing factors, like topological
features on the substrate or a finite width of the system, influence the flow and its stability
isolated from each other.

By introducing a wavy structure to the underlying topography, which could be for
example a model for roughness, new effects emerge in the flow, which cannot be observed
in flows over a flat incline. Eddies can separate from the main flow at the lee side
of the undulation for kinematic reasons, or induced by inertial effects. In biological
systems these eddies are dead water areas, which are cut off from nutrient supply, in
heat exchanger applications their appearance has a strong impact on the convective heat
transport within the liquid. Furthermore, the amplitude of free surface of the liquid
can be amplified immensely when the liquid is in resonance with the undulation of the
underlying topography. In this work we study experimentally as well as numerically the
complex interaction of this resonance phenomenon with the appearing of eddy structures
in the valleys of the undulation and show, that one can suppress flow separation selectively
even at rather high Reynolds numbers when one exploits the resonance phenomenon
specifically.

Another part of this work deals with the question how the presence of side walls and the
contact angle of the liquid there influences the free surface shape of the liquid, the velocity
field and the globally transported volume flux. While an additional no–slip condition at
the wall causes additional friction and leads thus to a lower volume flux, capillary elevation
at the side walls can generate a velocity overshoot in the vicinity of the walls, depending
on the film thickness and the wetting properties of the liquid, which counteracts the
additional friction coming from the walls. An extensive theoretical parameter study,
which is supplemented with experimental data, provides criteria for the first onset of the
velocity overshoot and gives answer to the question when the counteracting influences on
the global volume flux just cancel each other.

An experimental study of the free surface shape of a draining flow shows that this
configuration cannot be described by a series of quasi–steady states, even when a dynamic
contact angle is taken into consideration, although the flow changes only very slowly in
time. Additional time dependent numerical simulations of the draining flow reveal an
indentation of the free surface in the vicinity of the side wall, which could promote film
rupture in technical thin film applications.
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Furthermore, side wall effects play an important role for the physical stability of
the flow. Waves develop at the free surface of a gravity–driven flow and grow while
they are traveling downstream, when a critical volume flux is exceeded. It is shown by
experimental variation of the contact angle, the film thickness and the side wall distance,
that the presence of side walls generates different effects which have competing influences
on the stability of the flow. Capillary elevation leads to a pretensioning of the free surface,
which tends to stabilize the free surface, just as the additional no–slip condition at the wall
does. The emerging of a velocity overshoot in the capillary elevation on the other hand
leads to a destabilization of the flow. In the system studied here the stabilizing influence
of the side walls dominates over the destabilizing influence which is of comparatively short
range, which means that this flow configuration is more stable than the corresponding flow
of infinite extent. However, the results suggest that the destabilizing influences should
dominate over the stabilizing influences in similar flow configurations when the film would
become even thinner. While free surface film flows typically form long waves at first, we
find for this flow configuration, that the type of instability changes from a long–wave
type in the middle of the channel to a short–wave type instability, as it is well known for
boundary layer flows, as the side wall distance is reduced.
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Zusammenfassung

Während sich eine schwerkraftsgetriebene viskose Strömung, die eine unendlich ausge-
dehnte und glatte Ebene hinabfließt, durch eine einfache analytische Lösung beschreiben
lässt, sind die Strömungsprobleme in der Natur, wie zum Beispiel eine Gletscherbewe-
gung oder ein Flüssigkeitsfilm auf dem menschlichen Auge, weitaus komplizierter. Auch
um zahlreiche technische Anwendungen, wie beispielsweise Beschichtungs- oder Wärme-
tauschprozesse, optimieren zu können, müssen Einflussfaktoren, wie das Vorhandensein
einer Struktur auf der Oberfläche des Bodens oder eine endliche Breite des Systems und
deren Einflüsse auf das Strömungsfeld und die physikalische Stabilität der Strömung iso-
liert untersucht und verstanden werden.

Durch das Vorhandensein eines gewellten Untergrundes, der zum Beispiel ein Modell
für Rauheit sein könnte, entstehen neue Effekte in der Strömung, die bei einem glatten
Untergrund nicht beobachtet werden können. Sowohl aus rein kinematischen Gründen,
aber auch durch trägheitsinduzierte Effekte kann die Strömung auf der Windschattenseite
der Bodenstruktur vom Boden ablösen, so dass in den Bodenmulden Rezirkulationsgebie-
te entstehen. In biologischen Systemen stellen diese Regionen Totwassergebiete dar, die
nicht mit Nährstoffen versorgt werden, in Wärmetauscheranwendungen hat ihr Auftre-
ten einen starken Einfluss auf den konvektiven Wärmetransport. Neben dem Entstehen
einer Strömungsablösung kann durch Auftreten von Resonanz zwischen dem gewellten Bo-
den und der Flüssigkeit die Amplitude der freien Flüssigkeitsoberfläche immens verstärkt
werden. In dieser Arbeit wird das komplizierte Zusammenspiel aus Resonanz und dem
Entstehen von Rezirkulationsgebieten in den Bodenmulden sowohl numerisch als auch
experimentell untersucht und es wird gezeigt, dass man durch geschickte Ausnutzung
der Resonanz das Auftreten der Wirbelstrukturen auch bei relativ hohen Reynoldszahlen
gezielt unterbinden kann.

Ein weiterer Teil dieser Dissertation befasst sich mit der Frage, wie sich das Vorhan-
densein von Seitenwänden und der Kontaktwinkel der Flüssigkeit dort auf die Form der
freien Oberfläche, das Geschwindigkeitsfeld und den globalen Volumenstrom auswirkt.
Während eine zusätzliche Haftbedingung an der Wand zu zusätzlicher Reibung und da-
mit zu einem geringeren Volumenstrom führt, kann in Abhängigkeit von Kontaktwinkel
und Filmdicke durch kapillare Anhebung ein Geschwindigkeitsüberschuss in der Nähe der
Seitenwand entstehen, der dem Einfluss der Haftbedingung entgegenwirkt. Eine umfang-
reiche theoretische Parameterstudie, die durch experimentelle Ergebnisse ergänzt wird,
liefert Kriterien für das erste Auftreten eines Geschwindigkeitsüberschusses und beantwor-
tet die Frage, wann sich die entgegenwirkenden Einflüsse auf den globalen Volumenstrom
gerade gegenseitig aufheben.

Die experimentelle Untersuchung der Form der freien Oberfläche einer Drainage-
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strömung zeigt, dass sich diese Strömung auch durch Einführung eines dynamischen Kon-
taktwinkels nicht durch eine Folge quasistatischer Zustände beschreiben lässt, obwohl sie
sich zeitlich nur sehr langsam verändert. Zusätzliche zeitabhängige numerische Simulati-
onen der Drainageströmung offenbaren eine Vertiefung der freien Oberfläche in der Nähe
der Seitenwand, die in technischen Dünnfilmanwendungen einen Abriss des Flüssigkeits-
films hervorrufen könnte.

Darüber hinaus spielen Seitenwandeffekte auch eine entscheidende Rolle für die physi-
kalische Stabilität der Strömung. Auf der freien Oberfläche einer schwerkraftsgetriebenen
Filmströmung bilden sich Wellen aus, die anwachsen, während sie die Ebene hinabflie-
ßen, sobald ein kritischer Volumenstrom überschritten wird. Es wird durch experimentelle
Variation des Kontaktwinkels, der Filmdicke und des Seitenwandabstandes gezeigt, dass
verschiedene Effekte, die durch das Vorhandensein von Seitenwänden auftreten, miteinan-
der konkurrierende Einflüsse auf die Stabilität der Strömung haben. So hat die kapillare
Anhebung eine Vorkrümmung der freien Oberfläche zur Folge, welche zusammen mit der
zusätzlichen Haftbedingung an der Wand zu einer Stabilisierung der Strömung führt. Das
Auftreten eines Geschwindigkeitsüberschusses in der kapillaren Anhebung führt hingegen
zu einer Destabilisierung der Strömung. Bei der hier untersuchten Strömung überwie-
gen die langreichweitigen stabilisierenden Einflüsse den vergleichsweise kurzreichweitigen
destabilisierenden Einfluss der Seitenwand, so dass dieses System insgesamt gegenüber
einer quer zur Hauptströmungsrichtung unendlich ausgedehnten Strömung durch die Sei-
tenwände stabilisiert wird. Die Ergebnisse legen jedoch nahe, dass für ähnliche Strömungs-
konfigurationen, die eine noch geringere Filmdicke aufweisen, der Nettoeinfluss der Seiten-
wand auf die Strömung auch destabilisierend sein könnte. Während sich bei Filmströmun-
gen typischerweise zuerst lange Wellen auf der freien Oberfläche ausbilden, finden wir für
diese Strömung, dass sich durch eine Verringerung des Seitenwandabstandes ein Übergang
von einer Langwelleninstabilität zu einer Kurzwelleninstabilität, wie man sie typischer-
weise von Grenzschichtströmungen kennt, vollzieht.
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Chapter 1

Introduction

Viscous thin film flow configurations can be found in a large number of environmental
systems such as the liquid film on the human eye, the flow on a wetted road or the thin
water film emerging under objects which are sliding over ice, but also in much larger
systems such as glacier movement[1], avalanches[2], lava flows or debris[3]. Furthermore,
it is an interesting flow configuration for many industrial systems like spin– or curtain–
coating applications[4, 5, 6], heat exchangers[7, 8], evaporators, condensers or absorption
and rectification columns. Especially to optimize industrial processes it is essential to un-
derstand the underlying physics in such film flows. Therefore, the number of publications
dealing with viscous gravity–driven thin film flow is numerous and still growing rapidly,
showing a lively interest into this subject.

It was Nusselt[9] who first presented an exact analytical solution of the steady Navier–
Stokes equations for a viscous liquid film flowing down a flat incline of infinite extent. This
strongly idealized solution is often not able to describe the physics in real life applications,
may it be, because the influence of a finite extent of the flow configuration cannot be
neglected, or because the substrate is not perfectly flat. This might be due to spurious
imperfections at surfaces, due to a finite roughness, or due to undulations which have
been added intentionally to the substrate to increase the surface area, as is often useful in
technical applications, for example in heat exchangers. Additionally, the physical stability
of the steady Nusselt solution becomes a concern at higher volume fluxes. One finds, that a
free surface flow is not steady over all volume fluxes or Reynolds numbers, respectively[10,
11]. When a critical value is exceeded, the free surface of the liquid becomes unstable
and waves start to develop from infinitesimal disturbances and travel downstream. When
the volume flux is increased even further complex wave structures emerge[12], before a
transition to a turbulent flow occurs, which is characterized by stochastic behavior[13].

To get insight into the problem of gravity–driven free surface flows over topographies
with undulations of finite amplitude, research on this topic has gained more and more
interest over the last years. However, since the investigation of such systems involves sev-
eral technical difficulties, which are mainly coming from the limited optical accessibility
due to the curved liquid boundaries at the substrate and the free surface, the number of
experimental publications dealing with flows over undulated topographies is still compar-
atively low. Decré and Baret[14] investigated the influence of two–dimensional step–up,
step–down and trench geometries on the free surface shape of thin water films flowing
above it by using phase-stepped interferometry. They found their results to be in good
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Chapter 1. Introduction

agreement with the theoretical results for the Green’s function of the linearized problem
by Hayes et al.[15] who studied the influence of arbitrary small substrate defects on thin
liquid films. Also Kalliadasis et al.[16] studied the influence of various topographical fea-
tures like steps, trenches or mounds on thin viscous liquid films, using lubrication theory.
They found, that the film dynamics is governed by three pertinent parameters, the depth,
the width and the steepness of the feature. Mazouchi and Homsy[17] presented numerical
solutions of the Stokes flow case over step and trench features for different surface ten-
sions. Similar to the results of Aksel [18], who studied the influence of capillarity on a film
flowing over an inclined plane with an edge numerically as well as analytically, they also
found, that capillary forces cause the free surface to develop a ridge before a downwards
edge. Negny et al.[19] studied the influence of a sinusoidally undulation at a vertically
aligned wall on heat and mass transfer in laminar films flowing above it. Wierschem et
al.[20] presented different theoretical perturbation approaches for the limits of thin film
flow over weak undulations, thin film flow over stronger undulated bottom profiles and
for thick films flowing over weak sinusoidal undulations and also compared these calcula-
tions with their experimental data presented in [20] and [21]. However, since real world
problems are never purely two–dimensional more and more authors[22, 23, 24, 25] started
to focus their studies on film flow over three–dimensional undulated topographies, which
was strongly facilitated by the tremendous increase of computational power during the
last years. Very recently the investigation of the so called ”inverse problem”, where not
the free surface of the liquid, but the geometry of the underlying substrate is unknown a
priori, draw much attention due to its excellent technical applicableness.[26, 27, 28, 29, 30]

Pozrikidis[31] presented an extensive numerical parameter study on two–dimensional
free surface Stokes flows along sinusoidally undulated walls at different wave amplitudes,
inclination angles, flow rates and surface tensions. He focused especially on flow reversal,
which appears when a sufficiently thick film flows over strongly corrugated topographies
and established a criterion for the appearance of a flow reversal in the troughs of the
undulation. Such eddies were later shown to act as ”fluidic roller bearings” for the im-
provement of material transport in creeping films.[32] Wierschem et al.[33] studied the
genesis and growth of eddies at very low Reynolds numbers (Re = O(10−5)) experimen-
tally for various wavy topography geometries and mean inclination angles. They found,
that under creeping flow conditions not the Reynolds number is responsible for the cre-
ation of eddy structures, but a critical film height, which depends on the waviness of the
underlying topography, has to be exceeded. Scholle et al.[34] presented an analytical solu-
tion method of the Stokes equations based on complex function theory for arbitrary film
thickness and waviness. They showed that also higher order eddies can be created, which
rotate into the opposite direction of their neighboring eddy, in very steeply undulated
geometries. They carried out detailed parameter studies and found their results to be
in good agreement with experimental data. These so called kinematically induced eddies
appear under Stokes flow conditions and are symmetric as the whole flow field is, because
the Stokes equations are space reversible. The influence of inertia on the eddies created
by strong topography undulations has been studied experimentally by Wierschem and
Aksel[35] and numerically by Scholle et al.[36]. They found, that adding inertia leads to a
growth of the eddies and tends to shift them to the lee side of the undulation. Scholle et
al.[36] found that the tilting of the eddy in the troughs of the undulation is governed by a
local Reynolds number which is associated with the characteristic corrugation length scale
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of the substrate and quantifies the near-field geometric and inertial influences on the flow
structure in the troughs of the undulation. Trifonov[37] carried out numerical analysis of
liquids falling on a vertically aligned undulated wall over a wide range of Reynolds num-
bers and geometries in the integral boundary–layer framework and compared his results
with experiments of Zhao and Cerro[38]. At very high Reynolds numbers (Re = O(100))
he found a region with a non–monotonous growth behavior of the eddy size with increasing
Reynolds number.

Bontozoglou and Papapolymeru[39] carried out a linear analysis for small–amplitude
disturbances to study the interplay between the liquids free surface and a sinusoidal un-
dulation at the wall and found a resonance phenomenon which leads to an amplification
of the free surface amplitude. Bontozoglou[40] studied numerically the interplay between
such a free surface amplification and the streamline pattern. He found that flow separa-
tion in the troughs of the undulation can systematically be delayed at Reynolds numbers
of about 200 when the free surface corrugation is roughly in phase with the underlying
geometry, as is the case under resonance conditions. Wierschem and Aksel[41] reported
about experimentally observed standing waves in films flowing over substrates of moderate
waviness when the free surface of the liquid is in resonance with the bottom topography.
Furthermore, they found that the undulation of the topography may cause the liquid to
form hydraulic jumps and complex three–dimensional surface rollers. Wierschem et al.[42]
and Heining et al.[43] studied linear and nonlinear resonance analytically and numerically
and revealed the relevant physical mechanisms, which are similar to resonance known
from classical mechanics. The interaction between the free surface of a liquid and eddies
appearing in the troughs of undulation was studied numerically as well as experimentally
by Wierschem et al.[44]. They report on a strong indentation at the free surface of the
liquid, which can be identified as a hydraulic jump, when the Froude number of the flow is
of the order of one. Furthermore, they show that eddies can systematically be suppressed
at moderate Reynolds numbers under steady or weakly unsteady flow conditions, when
the amplitude of the free surface is amplified by resonance. Nguyen and Bontozoglou[45]
studied flow separation at steeply corrugated walls numerically and compared their results
with independent experiments[33, 41]. They found a critical Reynolds number, which di-
vides the flow into a regime with subcritical and regime with supercritical flow separation.
For very steep corrugations they found both solution branches to coexist.

As the Kapitza family showed with their pioneering experiments[10, 11], not only a
presence of a finite wall corrugation limits the extent of validity of the steady Nusselt
solution[9] for a liquid film flowing down an incline, because the free surface of a liquid
may exhibit travelling waves. Benjamin[46] and Yih[47] found that Nusselt’s solution
is unstable against long–wave perturbations above a critical Reynolds number which de-
pends on the channel inclination angle, only. Above the critical Reynolds number the flow
is called convectively unstable, which means that small perturbations grow while they are
travelling downstream. These findings are supplemented by the experimental work of Liu
et al.[48] and Liu and Gollub[49]. The dynamics of single free surface waves has been
studied experimentally for a free falling vertical film by Chang[12]. Vlachogiannis and
Bontozoglou[50] studied the interaction of solitary waves in films flowing down flat in-
clines using a fluorescence imaging method. More detailed information on the instability
and wave dynamics in films flowing down flat inclines has been compiled by Chang and
Demekhin[51]and Craster and Matar[52].
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Chapter 1. Introduction

The instability of a liquid flowing down sinusoidally undulated inclines, whose wave-
length of undulation is long compared to the film thickness, has been studied analytically
by Wierschem and Aksel[53] by linear stability analysis. Their finding, that the presence
of a long wave undulation of the substrate tends to stabilize the flow was confirmed ex-
perimentally later by Wierschem et al.[21]. Dávalos-Orozco[54, 55] modified the Benney
equation[56], which is a nonlinear evolution equation in the small wavenumber approxi-
mation, to treat flows over smoothly deformed walls and found in the particular case of a
two–dimensional sinusoidal wavy wall a stabilizing influence of the walls, which gains im-
portance with increasing steepness of the undulation. Trifonov[57, 58] applied an integral
boundary layer approach to study the stability of viscous liquids flowing down corrugated
surfaces over a wide range of Kapitza and Reynolds numbers and found that wall cor-
rugations may have a stabilizing as well as a destabilizing influence on the flow. These
findings have been extended and verified by Heining and Aksel[27], D’Alessio et al.[59],
and Heining and Aksel[60] who studied the influence of surface tension and inertia on
the stability of Newtonian and power–law liquids flowing down undulated inclines. The
influence of rectangular bottom geometries on the stability of the flow has been studied
experimentally by Vlachogiannis and Bontozoglou[61] and Argyriadi et al.[62] using a
fluorescence imaging method. They found a remarkable stabilization of the flow at high
Reynolds numbers, which proceeds through the development of a three–dimensional flow
structure.

Since in most technical applications and environmental systems the flow configurations
are bounded by side walls, their influence on the flow structure has to be considered.
Scholle and Aksel[63] considered the effects of the liquid’s capillarity at vertical channel
side walls and presented an exact analytical solution of visco–capillary flow in an inclined
flat channel of finite width. They find their theoretical results, which exhibit a ’velocity
overshoot’, already observed in early experiments by Hopf[64], to be in good agreement
with their experimental data. The velocity overshoot becomes in particular pronounced
in the thin film limit, which was later investigated in detail by Scholle and Aksel[65].
Furthermore, they provide a necessary condition for the flow rate, to avoid a film rupture,
which is of particular interest for coating applications[6]. A detailed discussion on different
competing influences of the side walls on flow rate, the velocity field and the free surface
shape in the case of steady and slowly draining flow is provided by Haas et al.[66]. The
role of side walls for wavefronts travelling in a channel has been studied experimentally
by Leontidis et al.[67]. They find the phase velocity of the waves to be a function of the
side wall distance what causes the wavefronts to exhibit parabolically curved crestlines in
channel flows.

The influence of side walls on the instability of a channel flow has been studied exper-
imentally only and the number of publications on this topic comparatively low due to the
technical difficulties involved. Vlachogiannis et al.[68] studied the influence of a finite and
variable channel width on the primary instability by comparing the free surface heights at
two different streamwise locations by conductance probes in the small wavenumber limit.
They find, that the presence of side walls has a strong stabilizing influence on the flow,
when the channel is narrow and not too steep. This result has been revised by Georgan-
taki et al.[69] who found the Kapitza number to be a crucial parameter for the stabilizing
influence of the side walls. For high Kapitza numbers they found large deviations from
the stability criterion for the two–dimensional film flow. Pollak et al.[70] investigated the

13



side wall distance and contact angle dependence of the stability experimentally. When
the side wall distance is reduced to the order of the capillary length they have observed a
transition of the long–wave type instability, which is typical for film flows, to a short–wave
type instability, which is typical for boundary layer flows. Furthermore, the influence of
capillary elevation and a velocity overshoot near the side walls on the stability of the flow
is investigated.

In the present paper we discuss the impact of a two–dimensional undulation of the
topography on the flow and the effects of side walls on a film flowing down a flat incline.
The paper is structured as follows. In the second Chapter all the experimental systems
and setups, which have been used, are presented. Chapter three deals with the flow
over a two–dimensional sinusoidally undulated topography and the subtle interplay of a
resonance phenomenon at the free surface and eddies appearing in the throughs of the
substrae geometry. Chapter four is divided in two parts and deals with channel flow
down a flat incline which is bounded by side walls. In part one the steady or basic
flow is described analytically and experimentally and detailed parameter studies, like
contact angle and film thickness variations are presented. The second part of Chapter
four focuses on the question how the presence of side walls influences the stability of the
flow. Summarizing conclusions are presented in Chapter five.
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Chapter 2

Experimental systems and setups

2.1 Liquids

Three different silicone oils from Basildon and Elbesil with dynamic viscosities η ranging
from approximately 10 mPas to 1000 mPas, which all showed Newtonian behavior within
the considered shear rate and temperature range have been investigated. The main fluid
properties at the mean measurement temperature T are summarized in Table 2.1. The
density, the dynamic viscosity, the kinematic viscosity and the surface tension are denoted
by ρ, η, ν = η/ρ and σ respectively.

Density measurements have been carried out with a Mohr Westphal balance from
Gottl. Kern & Sohn GmbH with an absolute accuracy of ±0.3 kg/m3. The temperature
of the liquid in the Mohr balance was controlled by a Lauda thermostat type ecoline
RE204.

Measurements of the surface tension σ were done with a Lauda ring–tensiometer type
TE1CA-M whose fluid temperature was controlled by a Lauda thermostat type RC 6 CP.
The resolution of the ring–tensiometer was 0.1 mN/m.

The dynamic viscosity η of the liquids has been measured with different Ubbelohde
viscosimeter capillaries type 501 from Schott. The capillaries were plunged into a wa-
ter bath whose temperature was controlled by a Schott thermostat within an accuracy
of 0.05 ◦C. The precisions of the different viscosimeter capillaries were specified to be
between 0.65% and 0.8%.

All fluid property measurements have been carried out in a temperature interval from
20− 30 ◦C in 1 ◦C steps. The uncertainty of the liquid properties during an experimental
run is essentially determined by the uncertainty of the liquid’s temperature and was thus
calculated from the temperature dependence of the liquid properties.

The temperature of the liquid flowing in the channel was measured downstream of
the region of interest by Ahlborn Mess- und Regelungstechnik GmbH PT-100 and NTC

Manufacturer Name T / [◦C] ρ / [kg/m3] η / [mPas] ν / [mm2/s] σ / [mN/m]

Basildon BC10cs 25 924.3 10.72 11.6 18.9
Basildon BC50 24 950.6 50.0 52.6 19.6
Elbesil B1000 24 969.0 1,076 1,110 20.4

Table 2.1: Liquid properties of the used silicone oils.
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temperature sensors with an accuracy of 0.1 ◦C.

The static contact angle θ at the three–phase contact lines liquid/air/channel side
wall has been measured with a contact angle goniometer from Dataphysics type OCA 20.
All measured contact angles were found to be independent of the temperature within the
measurement error of approximately 2◦ and the temperature range investigated.

2.2 Flow facilities

The experiments have been carried out in two different 170± 1 mm broad channels with
flat bottoms made of aluminum. The side walls of channel 1 were made of Plexiglas® and
channel 2 was featured with side wall clamps which allowed to mount side walls made up
of different materials to vary the contact angle θ at the triple point air/liquid/side wall.

In this work we have limited our contact angle study to the two extreme cases which
are technically possible. Silicone oil, which was the only fluid used throughout all ex-
perimental runs in order to keep all material parameters (see section 2.1), in particular
the surface tension σ, constant, shows nearly perfect wetting characteristics on the vast
majority of substrates. Because of its excellent planarity we chose Plexiglass® as a side
wall material to cover this case. The static contact angle θ of silicone oil with plane
Plexiglass® was measured with a sessile drop method using a static contact angle go-
niometer type OCA 20 from dataphysics to be 8◦ ± 2◦. The second set of side walls was
made up of glass which has been coated with pro.Glass® Clear 105 from nanogate to
enlarge θ to 52◦ ± 2◦ which was the largest contact angle we were able to achieve with
the utilized fluid.

The overall length of channel 1 was about two meters and of channel 2 was about half
a meter. The inclination angle α of both channels could have been varied continuously
between 0◦ and 90◦ and has been determined by a digital protractor with an accuracy
of 0.1 ◦. The spanwise evenness of the channel has been checked by placing a water
level with a display accuracy of 0.1 mm/m perpendicular to the side walls of the channel.
Perpendicularity was assured with a 90 ◦–aluminum angle placed to the side wall.

α

g

x

z

pump

vibration isolating table

liquid
reservoir

inflow
tank

V̇

V̇

V̇

channel

Figure 2.1: Sketch of the flow circuit including the channel which is mounted on a vibration
isolating table and a pump which transports the liquid from a large liquid reservoir to a smaller
inflow tank on top of the channel.

Depending on the desired flow rate q̇ one of two different eccentric pumps from Johstadt
provided a constant adjustable volume flux V̇ = q̇B, with B being the channel width,
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2.3. Tracer particles

from a large liquid reservoir into a smaller inflow tank on top of the channel. Channel 1
was equipped with a pump type AFJ 15.1B which provided a volume flux in the range
of 1 l/min to 10 l/min. Channel 2 was equipped with a smaller pump type AFJ 06B
which provided a volume flux in the range of 0.025 l/min to 1 l/min. Smaller volume
fluxes have been realized by an adjustable bypass in the tube system between the pump
and the channel. From the smaller inflow tank on top of the channel the liquid flows
gravity–driven, down the channel, back into the liquid reservoir to close the flow circuit
as illustrated in in Figure 2.1.

A sinusoidally undulated aluminum inlay, as illustrated in Figure 2.2, consisting of
50 periods with a wavelength λ = 10 mm and an amplitude a = 1 mm covering the
whole width of the channel was inserted directly below the inflow of the channel 1. The
gravitational acceleration is denoted by g, which can be written as g = (g sinα,−g cosα)
in the (x, z)–coordinate system given in Figure 2.2.

α

g

x
z

a

λ

Figure 2.2: Geometry of the two–dimensional undulated inlay.

During all experimental runs the temperature of the liquid was controlled by a TC300
thermostat from Haake via a heat exchanger coil sitting in the large liquid reservoir.

2.3 Tracer particles

We have used two different types of tracer particles. The mean diameter and the density
of Red Fluorescent Polymer Microspheres from Duke Scientifics, which will be called
fluorescent tracer particles in the following, have been specified by the manufacturer to
7µm and 1050 kg/m3, respectively. Additionally we have determined the volume weighted
particle size distribution with a Mastersizer 2000 device from Malvern, which is plotted
in Figure 2.3. The median particle size x50 and the grade of dispersity ξd, which is defined
in[71]

ξd =
x84 − x16

2x50
, (2.1)

of the fluorescent tracer particles have been found to be x50 = 7.122µm and ξd = 0.3058.
The quantities x16, x50 and x84 denote the particle sizes, which are greater than or equal
to 16%, 50% and 84% of all particles, respectively.

The sedimentation speed used of small spheres falling in a viscous liquid can be calcu-
lated to be[72]

used =
2gr2s
9η

(ρs − ρ), (2.2)

where rs and ρs are the radius and the density of the sphere.
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Figure 2.3: Particle size distributions.

The resulting sedimentation speeds of the fluorescent tracer particles used in the three
different silicone oils BC10cs, BC50 and B1000 (see Table 2.1) were 3.2 × 10−4 mm/s,
5.5 × 10−5 mm/s and 2.1 × 10−6 mm/s, respectively. All these sedimentation velocities
are at each case orders of magnitudes smaller than the typical flow velocities measured.
Therefore, the sedimentation distance during one experimental run did not exceed the
particles diameter.

Figure 2.4 shows the emission spectrum of the fluorescent tracer particles dissolved in
silicone oil which has been measured with a Cary Eclipse fluorescence spectrophotometer
from Agilent Technologies at an excitation wavelength of 532 nm.
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Figure 2.4: Emission spectrum of Red Fluorescent Polymer Microspheres from Duke Scientifics in
silicone oil. Wavelength of the excitation light was 532 nm.

The second type of tracer particles was made up of a powder of ZrO2/MgO from Good-
fellow. The mean particle diameter is specified by the manufacturer to be 0.8µm. The
density is specified to be 5700 kg/m3. The measured particle size distribution is plotted
in Figure 2.3. The median particle size and the grade of dispersity have been measured to
be x50 = 0.76µm and ξd = 0.4682. These particles, which will be called scattering tracer
particles in the following, were dissolved in the B1000 silicone oil from Elbesil, which is
described in section 2.1, only. According to equation (2.2) the sedimentation speed used
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of the ZrO2/MgO-particles in this oil was about 1.4 × 10−6 mm/s, which was orders of
magnitudes smaller, than all typical velocities measured. Therefore, the sedimentation
distance during one experimental run did not exceed the particles diameter.

2.4 Experimental setups

2.4.1 Flow rate

Determination of the flow rate q̇, or the Reynolds number Re respectively, was done either
by determining the film thickness d of the liquid flowing over a sufficiently long flat part
in the middle of the channel or by a flow meter which measured the overall volume flux
V̇ through the channel.

Under perfectly stable flow conditions, at low Reynolds numbers, the film thickness
has been measured by a micrometer screw with a needle tip. The micrometer screw was
mounted to the channel in a way, that it pointed perpendicular to the free surface of the
liquid or the bottom of the channel, respectively. By screwing the needle slowly towards
the fluid, the position of the free surface can be detected, when the tip of the needle
contacts the liquid and a capillary elevation forms instantaneously (See Figure 2.5). The
position of the substrate has been determined in a similar fashion by screwing the needle
further down until a small mechanical resistance was sensible. The accuracy of the film
thickness determination is estimated to be better than 10µm.

(a) (b)

Figure 2.5: Illustration of the tip of a needle which is less than 6.5µm above the surface of a flowing
liquid film (a) and just touching it (b) what causes a capillary elevation to form instantaneously.
The width of the needle illustrated is 400µm.

To determine the flow rate q̇ at intermediate Reynolds numbers or under weakly
unsteady flow conditions, the overall average volume flux V̇ through the channel was
measured by an analog flow meter which was installed between the outflow of the channel
and the large liquid reservoir. For each volume flux measurement the averaging time was
at least 600 s to reduce the statistical error of the volume flux measurement to less than
0.1 %.

When side wall effects are neglected and the flow is steady, the velocity profile of a
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liquid flowing down a flat incline is found to be parabolic[73]

u(z) =
ρg sinα

2η
(2hn − z)z, (2.3)

where z is the cartesian coordinate perpendicular to the bottom and hn is the film thick-
ness of the well known Nusselt solution[9]. Integrating the velocity profile from the bottom
(z = 0) to the free surface of the liquid (z = hn) yields the flow rate of the Nusselt film
flow

q̇ =

∫ hn

0
u(z)dz =

ρg sinαh3n
3η

. (2.4)

Integrating the flow rate q̇ over the channel width B yields the volume flux V̇ .

V̇ = q̇B =
ρg sinαh3nB

3η
. (2.5)

When the influence of side walls on the flow is neglected, the relation between the Reynolds
number Re, the film thickness of a film flowing down a flat channel and the measured
volume flux is in the following given by

Re =
2ushn

3ν
=
ūhn
ν

=
q̇

ν
=

V̇

νB
, (2.6)

where us is the free surface velocity and ū = 2us/3 is the mean flow velocity.

It has to be emphasized, that equations (2.5) and (2.6) are valid, only if the velocity
field u is assumed to be independent of the spanwise y-coordinate, which is only the case
when the impact of the presence of side walls on the flow filed is neglected. When the
influence of side walls on the flow is investigated in chapter 4, this assumption has to be
dropped. A detailed discussion of the relation between the film thickness d, the measured
volume flux V̇ and the Reynolds number Re, when the influence of the presence of side
walls is considered will follow in sections 4.1.2 and 4.1.3.

2.4.2 Detection of the free surface shape

In both flow facilities the shape of the free surface has been measured by illuminating
fluorescent tracer particles, which are described in section 2.3, in the bulk of the liquid
with a laser sheet. The fluorescent light has been detected with a charged–coupled–device
(CCD) camera.

The laser sheet for channel 1 has been produced by a continuous–wave (cw) argon–
Ion (Ar+) Laser from Spectra Physics emitting at a wavelength of 514.5 nm with an
approximate output power of 100 mW (See Figure 2.6). The light sheet was aligned
parallel to the side walls right in the middle of the channel to study the influence of the
undulated bottom on the free surface shape of the liquid flowing above it. The fluorescent
light from the fluorescent tracer particles in the liquid was detected with a JAI CV-M300
8-bit monochrome CCD camera with a resolution of 768x494 pixels, which was inclined by
about 10◦ with respect to the spanwise direction of the channel (See camera (2) in Figures
2.6 and 2.7). The much brighter scattered light from the underlying topography was
blocked by an optical long pass filter with a 50% cut–off wavelength of 550 nm, which was
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mounted on a 60 mm Nikkor micro lens. The cameras field of view covered approximately
2.5 periods of the bottom undulation. This camera setup resulted in a spatial resolution
of about 30µm/pixel. The image was calibrated spatially with a ceramic calibration scale
with a point pattern of 4 pt/mm2.

Liquid with

Laser sheet
514.5 nm

detection
camera

Surface

Inclined
channel

puter
Com−

Argon Ion
Laser

Field

camerafluorescent

Filter

detection

tracers

(2)

(1)

Figure 2.6: Experimental setup for the surface contour detection and the streamline detection in
the troughs of the undulated inlay in channel 1. The eddy size is determined by detecting the path
lines of the fluorescent tracer particles with the horizontal camera (1). The inclined camera (2)
images the light sheet from the airside. The surface contour corresponds to the upper borderline of
the bright sheet as seen by this camera. Reprinted with permission from [44]. ©2010, American
Institute of Physics.
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HHj

Field
detection
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Figure 2.7: Photo of the experimental setup for the surface contour detection and the streamline
detection in the troughs of the undulated inlay in channel 1.

The experimental setup for the free surface detection in channel 2 is sketched in
Figure 2.8. The laser sheet has been aligned perpendicular to the side walls of the channel
and was expanded to illuminate the liquid in a region from the side wall to approximately
50 mm apart from it, to detect the shape of the capillary elevation of the liquid in the
proximity of the side walls. The sheet was produced by a frequency doubled, pulsed
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neodymium-doped yttrium aluminum garnet (Nd:Yag) laser from New wave research type
Solo II 15Hz emitting at a wavelength of 532 nm. The pulse length and energy is specified
to be 6 ns and 100 mJ. An optical device from Cosmicar/Pentax was attached directly to
the laser head to create the light sheet which had a width of approximately 100µm. The
scattered primary light from the bottom was blocked in front of the camera’s lens using
the same long pass filter as described above. The fluorescent light from the fluorescent
tracer particles was detected by a monochrome CCD camera HiSense from Dantec with
a resolution of 1280x1024 and a capturing rate of 8 Hz. The camera was inclined by
about 15 ◦ with respect to the channel inclination as illustrated in Figure 2.8. The spatial
resolution of this camera setup was about 8µm/pixel. Calibration of the image has been
carried out a priori by placing a millimeter scale at the laser sheet position. Camera and
laser have been synchronized by a triggering unit from Dantec.
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Figure 2.8: Measurement setup for the free surface shape detection. Reprinted with permission
from [66]. ©2011, American Institute of Physics.

Capturing images from the liquid as described above resulted in grainy single images,
because the fluorescent tracer particles sit at discrete points when one image is taken.
Therefore, it was necessary to average or superimpose several images to get a uniformly
bright sheet in the image whose upper border corresponds to the free surface contour of
the liquid at the position of the laser sheet. Depending on the case the post–processing
workflow differs slightly. Therefore, a more detailed description about the method of
how the averaging or superimposing of the images was performed will be given where the
corresponding results are presented.

2.4.3 Streamline detection

A detection of the streamline pattern of the liquid in the throughs of the undulated inlay
in channel 1 has been done in a similar way as described by Wierschem et al.[33, 35, 44].
The fluorescent tracer particles and light sheet are identical with the ones described in
subsection 2.3 and 2.4.2. The scattered light from the illuminated particles was detected
with a frame rate of up to 500 Hz depending on the mean flow velocity with a monochrome
high–speed camera CamRecord 600 from Optronics. The camera was aligned perpendic-
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ular to the channel side walls as illustrated in Figures 2.6 and 2.7 (camera (1)). The
streamline patterns have been reconstructed by superposing 2048 single images taken in
one run with the camera’s full resolution of 1280x1024 pixel by taking at each pixel posi-
tion the brightest pixel of all images (see Figure 2.9(b)). The contour and position of the
underlying topography could have been reconstructed in a similar fashion, but by taking
not the brightest but the darkest pixel of all pictures at each pixel position (see Figure
2.9(a)). The bright lines below contour line of the underlying topography in Figure 2.9(b)
came from reflections at the aluminum substrate.

(a) Contour of the underlying topography recon-
structed by taking the darkest pixel of a 2048
series images at each pixel position.

(b) Streamline pattern reconstructed by taking the
brightest pixel of a 2048 images series at each
pixel position.

Figure 2.9: Illustration of the evaluation method for the reconstruction of the shape of the under-
lying topography and the streamline pattern from experimental single image data.

The resulting spatial resolution was about 12µm/pixel. Spatial calibration of the
images has been carried out with help of the ceramic calibration scale as described in
subsection 2.4.2.

2.4.4 Velocity field measurements

Velocity measurements have been done with a Laser-Doppler-Velocimeter (LDV) from
Dantec/Invent. A detailed assessment of the general accuracy of the LDV-measurement
technique when it is applied on film flows is provided by Aksel and Schmidtchen[74]. As
tracer particles a powder of ZrO2/MgO with a mean particle diameter of 0.8µm, which
is described more detailed in section 2.3, was used.

The light source of the LDV–system was a Spectra Physics Argon–Ion (Ar+) Laser
emitting light at three main wavelengths of 476.5 nm, 488 nm and 514.5 nm. A Dantec
FiberFlow beam splitter divided the laser beam into two equally intense beams and cou-
pled the three colors into 6 glass fibre optics. Additionally, a Bragg cell shifted one of
the two laser beams by 40 MHz to higher frequencies before the beams are splitted into
their different wavelengths for two reasons. One, to generate heterodyne detection signals
with a sufficiently high frequency from slow scattering tracer particles and two, to obtain
information about the direction of the flow. Because the LDV system has been used in the
one–dimensional (1D) mode only, all wavelengths except for the most intense (514.5 nm)
were blocked by mechanical shutters.

An optical device (LDV-head) from Dantec with an extra focussing unit crossed the
two remaining working frequency laser beams in an elliptical measurement volume which
was specified to be 25µm× 24µm× 126µm in size.
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The LDV-head was mounted on a X-Y -Z-traverse from Isel to position the LDV–
measurement volume in the liquid flowing down the inclined channel. The plane in which
the two laser beams crossed was always aligned parallel to the inclination plane of the
channel, therefore the measured velocity was identical with the streamwise velocity com-
ponent u. The step width of the traverse is specified to be 12.5µm in X- and Y -direction
and 6.25µm in Z-direction.

2.4.5 Stability measurements

The measurements on the free surface stability of a liquid flowing down a flat channel
of finite width have been carried out in the flow facility of channel 2 which is described
in section 2.2. The inclination angle has been kept constant throughout all stability
measurement runs at 40.8 ± 0.05◦ to provide good comparability to the work of Haas et
al.[66]. As liquid silicone oil Basildon BC50, which is characterized in section 2.1, has
been used. To study the influence of the contact angle θ between the liquid and the side
walls of the channel two different sets of side walls have been used which are described in
section 2.2.

A film flow is called linear convectively unstable at a certain perturbation frequency,
when an infinitesimal small free surface wave of the corresponding wavelength is growing
in size while it is travelling downstream, otherwise, when a wave is damped while it is
travelling downstream the flow is called convectively stable.[75, 76]

Figures 2.10 and 2.11 show the experimental setup, which is similar to the ones de-
scribed by Liu et al.[48], Wierschem et al.[21] and Pollak et al.[70], to study the stability
of the flow configuration described above. An eccentric pump from Johstadt provided an
adjustable constant volume flux V̇ which was perturbed sinusoidally in time by a 169 mm
broad paddle which oscillated, driven by a stepping motor, with an amplitude of about
100µm within the liquid in the small inflow tank on top of the channel. The excitation
frequency fe could have been chosen continuously in the range of 0.8 Hz to more than
10 Hz.

fe

g

α
x′ y′

Laser 1 Laser 2

Camera 1

Camera 2

l2

l1 − l2

Figure 2.10: Sketch of the experimental setup for the free surface stability measurements.
Reprinted with permission from [70]. ©2011, American Institute of Physics.

To detect whether the generated waves grow or decay in size while travelling down-
stream two laser beams generated by two identical cw Helium-Neon (HeNe) lasers from
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Figure 2.11: Photo of the experimental setup for the measurements of the free surface stability.

JDS Uniphase with an output power of 1 mW were alinged parallel and pointed at the
free surface of the liquid. The reflection point of the upper laser (Laser 1 in Figure 2.10)
hit the liquid’s free surface approximately 15 cm below the inflow of the channel, the lower
laser (Laser 2) hit the free surface approximately 10 cm above the outflow of the chan-
nel, to avoid inflow and outflow disturbances. The travel distances l1 and l2 of the laser
beams from their reflection point to the screen were l1 = 167 cm and l2 = 149.5 cm. The
distance ds to the side walls (see Figure 2.12) was variable and could have been adjusted
with an accuracy of about 0.25 mm, which is approximately half of the beam diameter.
The inclination of the laser beams was 8.4 ◦ with respect to the direction of gravity, chosen
in a way that the undisturbed reflected laser beams traveled horizontally to the screen.
According to the additional slope of the liquid’s free surface which is generated by a wave
passing the reflection point of the laser, the laser spot on the screen gets deflected by an
amplitude which is proportional to the wave height.

During each experimental run each of two identical JAI CV-M10BX 8-bit monochrome
CCD cameras with a resolution of 782x582 pixels captured 512 images of one laser spot
on the screen with a rate of 25 frames per second (fps). After applying Gaussian filters to
the images to reduce grain the laser spot position p was determined in each single image
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Figure 2.12: Channel top view illustrating the measurement positions. Reprinted with permission
from [70]. ©2011, American Institute of Physics.

by calculating the center of area of a minimum threshold grey–value area. The threshold
usually was set to 80% of the brightest pixel in each image after the Gaussian filters were
applied.
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Figure 2.13: Recorded positions of both laser spots during an experimental run. ds = 20 mm, fe =
3.2 Hz,Re = 2.301, and θ = 8◦. Reprinted with permission from [70]. ©2011, American Institute
of Physics.

Typical path lines of the resulting laser spot positions pi(t) = (px′,i(t), py′,i(t)), which
have been rescaled with respect to the geometry of the setup, are plotted in Figure 2.13.
The variables x′ and y′ denote the cartesian coordinates of a coordinate system located
on the screen as indicated in Figure 2.10. The elliptical movement of the two laser spots
has always been observed when off–center measurements were made, because the wave
fronts of travelling free surface waves in a channel of finite width are not straight[49, 67].

Figure 2.14 shows a small section of the time dependence of the x′- and y′-components
of the laser spot path lines illustrated in Figure 2.13. The shape of these curves already
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Figure 2.14: Section of the time dependence of the x′- and y′-components of both laser spots during
an experimental run. Signals have been shifted vertically to avoid overlapping. ds = 20 mm, fe =
3.2 Hz,Re = 2.301, and θ = 8◦. Reprinted with permission from [70]. ©2011, American Institute
of Physics.

indicates, that the signal mainly consists of a sinusoidal function with a single frequency
which matches the excitation frequency fe.

To quantify the amplitudes of the laser spot oscillations, fast Fourier transformations
(FFT) have been applied to the signals pi(t). Figures 2.15(a)-2.15(c) show typical absolute
values

p̂i(f) =
√
p̂2x′,i(f) + p̂2y′,i(f)

of the Fourier transformed signals

p̂i(f) =
(
p̂x′,i(f), p̂y′,i(f)

)
=
(
F(px′,i(t),F(py′,i(t))

)
.

One can clearly identify a dominant peak at the fundamental excitation frequency and
one1 much smaller peak at higher order, showing that the signals pi(t) are mainly sinu-
soidal with a fundamental frequency which corresponds to the frequency excited by the
paddle fe as already suspected from Figure 2.14.

To compare the amplitudes of the two laser spots on the screen, and therefore the
amplitudes of the travelling free surface waves at the up- and the downstream point,
the fundamental peak of the Fourier transformed signal p̂(f) is fitted with a Gaussian
function. The height difference of the Gaussian fit functions of the peak from the Fourier
transformed signals from the upper and the lower laser ∆p̂12 is plotted versus the Reynolds
number Re in Figure 2.15(d).

The neutral point at which the free surface waves are neither damped, nor amplified
has been determined by a linear fit of the of the data very close to the neutral point only,
as illustrated in Figure 2.15(d).

To provide comparability of our experimental results to the theory of small pertur-
bations, we estimate the maximal amplitude of the generated free surface waves in the
following. Therefor, we assume that the shape of a travelling free surface wave can be
described by a single sinusoidal function, as proven above. The maximal slope mmax of
such a wave is given by

mmax =
2πA

λw
, (2.7)

1For smaller excitation frequencies also more.
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(d) θ = 52◦, fe = 4.5 Hz, ds = 30 mm

Figure 2.15: Absolute values of the Fourier transformed signals of both lasers at different Reynolds
numbers and their amplitude differences. Each diagram (a-c) shows the spectrum of a single
experimental run. Diagram (d) shows the dependence of ∆p̂12 on the Reynolds number. Reprinted
with permission from [70]. ©2011, American Institute of Physics.

where A and λw are its amplitude and wavelength, respectively. The largest amplitudes
A result from large laser beam deflections which are generated by long waves (see equa-
tion (2.7)). Thus, we approximate the maximal wavelength throughout all our stability
measurement runs by

λmax =
us,max(fmin)

fmin
=

3V̇max(fmin)

2Bhmax(fmin)fmin
=

1√
2fmin

3
√

Remax(fmin)2ν sinαg, (2.8)

with us,max, hmax, fmin, V̇max and Remax beeing the maximal free surface velocity, the
maximal film height, the minimal excitation frequency, the maximal volume flux and
the maximal Reynolds number throughout all experimental stability measurement runs,
respectively. The maximal slope of a travelling wave can also be estimated geometrically
from the amplitude of the deflection of a laser beam δpi on the screen by

mmax ≈ δp1/l1 = δp2/l2. (2.9)

This approximation is reasonable when the impact of the shifting of the reflection point
at the free surface is negligible compared to the impact of the additional slope of the free
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surface on the deflection of the laser beam, which is certainly the case here because of the
long travel distances l1 and l2 of the laser beams. Since the amplitudes δpi on the screen
did never exceed 1 cm at any excitation frequency, we conclude, that the amplitude A of
the generated waves at the free surface did never exceed a value of 52µm.
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Chapter 3

Two–dimensional film flow

3.1 Suppression of eddies

3.1.1 Problem formulation

We consider a steady two–dimensional gravity–driven flow of a Newtonian liquid down
an inclined topography which is sinusoidally undulated in the main flow direction. The
profile of the substrate undulation which is described by

b(x) = a cos(2πx/λ), (3.1)

is illustrated in Figure 3.1, where a is the amplitude and λ the wavelength of the periodic
undulation. The gravitational acceleration g is given by g = g(sinα,− cosα) in the given

x

z

h(x)

b(x)

α

g

Figure 3.1: Viscous film flow down a wavy incline. Reprinted with permission from [44]. ©2010,
American Institute of Physics.

(x, z)-coordinate system, with α beeing the mean inclination angle of the channel. The
position of the liquid’s free surface is denoted by h(x). The film thickness d can easily be
calculated by substracting the bottom contour b(x) from the free surface shape h(x):

d(x) = h(x)− b(x). (3.2)

The Navier–Stokes equations and the continuity equation for incompressible liquids

ρ(u · ∇)u = −∇p+ η∆u + ρg, ∇ · u = 0 (3.3)

32



Chapter 3. Two–dimensional film flow

are rewritten in a dimensionless form by introducing reference quantities. As a character-
istic length we use the film thickness dn of the corresponding flow over a flat incline with
the same flow rate q̇. From the well known Nusselt solution[73] it can be calculated to

dn = 3
√

3νq̇/(g sinα). (3.4)

Consequently, velocities are rescaled with the mean velocity of the corresponding Nusselt
film flow which reads

ūn = q̇/dn = (gd2n sinα)/(3ν). (3.5)

The pressure is rescaled with the dynamic pressure ρū2n. Inserting these scalings into (3.3)
yields a dimensionless formulation of the Navier–Stokes and the continuity equations

Re (ũ · ∇)ũ = −Re∇p̃+ ∆ũ + g̃, ∇ · ũ = 0, (3.6)

with the Reynolds number

Re = ūndn/ν = q̇/ν (3.7)

and the dimensionless gravity vector g̃ = (3,−3 cotα), where a tilde ·̃ denotes a dimension-
less quantity. The shape of the underlying topography is described by the dimensionless
steepness parameter ξ = a/d and the dimensionless wave number k = 2πd/λ.

At the bottom of the topography ỹ = b̃(x̃) = ξ cos(kx̃) the no–slip condition ũ = 0
holds. Because the liquids free surface contour is a streamline the kinematic boundary
condition

dh̃

dx̃
=
ṽ

ũ
(3.8)

has to be fulfilled at ỹ = h̃, where ũ and ṽ are the velocity components in x̃ and ỹ
direction, respectively. The dynamic boundary condition, which takes care of the balance
of stresses at the free surface, has to be fulfilled and reads

n ·T =

(
3Bo−1

k2Re

)
κn (3.9)

when the viscosity of air is neglected. The outer normal unit vector of the free surface
is denoted by n, T is the stress tensor T = −(p̃ − p̃0)I + (1/Re)[∇ũ + (∇ũ)T ], I is the
identity matrix, p0 is the ambient pressure and κ is the curvature of the free surface which
is given by

κ =
1

R
=

d2h
dx2[

1 +
(
dh
dx

)2]3/2 , (3.10)

with R being the radius of curvature of the free surface shape. The inverse Bond number
Bo−1 = 4π2σ/(ρgλ2 sinα) is a measure for the ratio between surface tension stresses and
gravitational stresses. We have now formulated the problem (3.3) with the given bound-
ary conditions in a dimensionless form in a way that it is governed by five independent
dimensionless parameters namely ξ, k, Bo−1, Re and cotα, only.

Additionally, we claim the flow to be periodic as the underlying topography is. There-
fore, we assume the free surface shape, the pressure and the velocity field to be periodic
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3.1. Suppression of eddies

in downstream- (x̃-) direction:

h̃(x̃) = h̃(x̃+ 2π/k) (3.11)

p̃(x̃, ỹ) = p̃(x̃+ 2π/k, ỹ) (3.12)

ũ(x̃, ỹ) = ũ(x̃+ 2π/k, ỹ). (3.13)

With the kinematic (3.8) and the dynamic (3.9) boundary conditions at the free surface
and the no–slip boundary condition at the bottom, the periodic boundary conditions
(3.11)-(3.13) we complete the set of dimensionless field equations (3.6).

The fact that the position of the free surface, and therefore also the domain of solution,
is not known a priori introduces a further degree of freedom, which has to be captured by
a numerical procedure. This has been achieved by implementing an iterative procedure
starting with an initial guess for the free surface shape. In each solution step the Navier–
Stokes equations and the continuity equation (3.6) have been solved together with the
no–slip condition at the substrate u = 0 and the dynamic boundary condition at the
free surface (3.9). The kinematic boundary condition (3.8) cannot be fulfilled yet and
is formally interpreted as a first order differential equation for the unknown free surface
position h̃(x̃). With the new free surface position the iterative procedure is repeated
until the difference between the solution of the previous and the current step is below a
threshold value. Since the flow rate is still arbitrary we claimed a certain flow rate and
therefore a certain Reynolds number to obtain a unique solution.

In each iteration step, the velocities and the pressure are approximated using the
Taylor–Hood element pair with piecewise quadratic velocity approximation and piecewise
linear pressure. The resulting nonlinear equation for the nodal velocity and pressure is
solved with Newton method, which typically converges in four to six iterations.

The numerical procedure described above has been implemented and all numerical
calculations presented in this chapter have been carried out by Christian Heining[44].

3.1.2 Experimental and numerical findings

The experiments have been carried out with Basildon silicone oil BC10cs, which is de-
scribed in section 2.1, flowing over a sinusoidally undulated inlay with an amplitude
a = 1 mm and a wavelength λ = 10 mm placed in channel 1 near its inflow as described
in section 2.2. Measurements have been done at four different inclination angles ranging
from 5 ◦ to 14 ◦. The Reynolds number has been varied between 3 and 63.

Streamline patterns have been recorded experimentally as described in section 2.4.3.
Figure 3.2 shows a comparison of experimentally and numerically observed streamlines at
different flow rates or Reynolds numbers, respectively. The bright sinusoidal line which
is overlaid by a red one corresponds to the substrate geometry. The lines above are the
numerically (green) and experimentally (black & white) determined streamlines. The
uppermost red line corresponds to the numerically determined free surface contour. The
bright lines below the bottom and the inversely bent lines above the free surface are
reflections coming from the substrate or the free surface of the liquid.

We find that the flow shows qualitatively different behavior depending on the flow
rate or the Reynolds number, respectively. When the mean film thickness d is small
compared to the wavelength λ and the amplitude a the flow can locally be well described
by the Nusselt solution with the local inclination angle[21]. Therefore, the liquid flows
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Chapter 3. Two–dimensional film flow

Figure 3.2: Comparison of experimental path lines to numerical streamlines. The images are
rotated by the mean inclination angle of the channel. The volume flux is continuously increased
form a) to d). a) Re = 9: no eddy at low Reynolds numbers. b) Re = 16: increasing inertia
results in the generation of an eddy in the trough of the undulation. c) Re = 31: increasing
inertia further, the eddy vanishes. d) Re = 48: flow separation reappears at even higher Reynolds
numbers. Bottom contour: lower bright sinusoidal line; lines below and inversely bent lines in the
upper part of the images are reflections of the path lines at the bottom and at the free surface.
Channel inclination angle α = 8◦. Reprinted with permission from [44]. ©2010, American
Institute of Physics.

smoothly along the substrate contour when the Reynolds numbers are rather small (See
Figure 3.2a)). When the flow rate is increased the flow begins to separate into a region
where the flow recirculates within the trough of the undulation and into a main flow above
(See Figure 3.2b)). In contrast to the vast majority of systems where an increase of the
influence of inertia leads to a growth of recirculation areas[77], increasing the Reynolds
number in this system leads to diminution of the eddies until they vanish completely as
shown in Figure 3.2c). However, increasing the Reynolds number further, we find a critical
Reynolds number at which the eddies reappear as depicted in Figure 3.2d). Above this
critical Reynolds number the eddies grow monotonously in size with increasing Reynolds
number. All streamline patterns shown in Figure 3.2 correspond to a mean channel
inclination angle α of 8 ◦. Qualitatively similar results have been obtained for other
inclination angles. We remark that closed path lines, the lack of jitter and the excellent
agreement between experiment and numerics indicate that unsteady motion is negligible
and that the periodicity (3.11)-(3.13) and two–dimensionality assumptions made in section
3.1.1 hold.

Detection of the free surface shape of the liquid has been done as described in sec-
tion 2.4.2. Because the fluorescent tracer particles described in section 2.3 sit at discrete
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3.1. Suppression of eddies

points when an image is taken, a single recording resulted in a grainy image of the liquid
(see Figure 3.3(a)). Thus, the evaluation of the free surface shape has been done with an
image, which has been averaged over 50 single images (See Figure 3.3(b)). We note, that
the average film thickness in Figure 3.3 appears much thinner as it is because the image
of the liquid below the free surface (and also of the underlying topography) is strongly
distorted by the curved surface of the liquid.

(a) Single image from surface detection camera (2). (b) Image averaged over 50 single recordings.

Figure 3.3: Illustration of the averaging process for the detection of the free surface shape. The
upper border of the bright sheet in each image corresponds to the contour of the free surface.

As Figure 3.2 indicates not only the flow in the troughs of the undulation shows a
strong Reynolds number dependence but also the free surface shape of the liquid changes
considerably with the Reynolds number. Figure 3.4 provides a comparison of measured
(symbols) and calculated (lines) free surface shapes at different Reynolds numbers for
a mean channel inclination angle α of 8 ◦. The curves are staggered in z-direction to
avoid overlapping. The Reynolds number ranges from 6.6 (lowermost curve) to 56.2
(uppermost curve). At low Reynolds numbers we find the free surface shape to be rather
harmonic and of small amplitude. When Re is increased the free surface rapidly gains in
amplitude, is shifted downstream and exhibits a sharp nonlinear indentation in the trough
which becomes maximal at Re = 31.5 (See red ’x’-symbols in Figure 3.2). Increasing the
Reynolds number just a little further, from Re = 31.5 to Re = 32.1 in Figure 3.2, causes
this indentation to vanish very brusquely resulting in a smooth sinusoidal shape again
(See green ’+’-symbols in Figure 3.2). Further increase of Re shifts the free surface
contour further downstream while its amplitude decreases continuously. Qualitatively
similar results have been obtained for other inclination angles.

Recirculation areas

Based on the experimentally and numerically obtained streamline patterns we have eval-
uated the size of the recirculation areas in the troughs of the undulation. Figure 3.5
shows the eddy area as a function of the Reynolds number at four different mean in-
clination angles α. Except for the steepest inclination angle of 14 ◦ eddies appear with
increasing Reynolds number at a first critical Reynolds number Re1 ≈ 11 which seems
to be independent of the channel inclination angle α. Then the eddy size increases until
it reaches a local maximum and shrinks again until it vanishes completely at a second
critical Reynolds number Re2. Only beyond a third critical Reynolds number Re3 the
eddies reappear and grow monotonously in size with increasing Reynolds number in the
investigated range. While the second critical Reynolds number for the disappearance of
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Figure 3.4: Comparison of experimental and numerical free surface shapes at different Reynolds
numbers. Experimental data are represented by symbols; numerical data are represented by
lines. The free surface positions are shifted perpendicular to the mean flow direction to avoid
overlapping. The vertical position augments with Reynolds number. Channel inclination angle
α = 8 ◦. Reprinted with permission from [44]. ©2010, American Institute of Physics.

the recirculation areas showed a strong channel inclination angle dependence, the critical
Reynolds numbers Re1 and Re3 for the emerging of eddies seemed to be rather indepen-
dent of α in the investigated inclination angle range.
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Figure 3.5: Cross–sectional area of the eddy as a function of the Reynolds number at different
inclination angles. Experimental and numerical data are represented by open and solid symbols,
respectively. At least 40 measurements per inclination angle have been carried out from Re ≈ 6 to
Re ≈ 62 in equidistant steps. Where no eddy was observed, most data points have been blanked
out for clarity. Reprinted with permission from [44]. ©2010, American Institute of Physics.

Thus, we find that eddies which appear at not too steep inclination angles at a critical
Reynolds number Re1 disappear again in an eddy–free window whose extent grows with
increasing α. The window where eddies can be observed between Re1 and Re2 shrinks
accordingly at the expense of the eddy–free window until it vanishes completely for an
inclination angle α = 14 ◦.
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3.1. Suppression of eddies

Free surface shape

Quantitative analysis of the free surface shape data shown in Figure 3.4 has been done by
decomposing them into Fourier series by discrete Fourier transformation (DFT). Figures
3.6-3.8 show the Reynolds number dependence of the amplitudes of the zeroth, the first
and the second Fourier modes for all inclination angles studied.

The zeroth Fourier mode is illustrated in Figure 3.6 and corresponds to the film
height1 h(x) averaged over one period of the bottom contour. At Reynolds numbers
below ≈ 25 and above ≈ 37 we find a monotonous increase of the average film thickness
with increasing volume flux or Reynolds number, respectively for all investigated channel
inclination angles, as it is common for gravity–driven film flows[33, 34, 35]. In the region
at intermediate Reynolds numbers all data sets reveal a spontaneous drop in the average
film thickness with increasing Reynolds number. The position where this drop takes place
shifts with increasing channel inclination to smaller Reynolds numbers.
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Figure 3.6: Mean film thickness averaged over one bottom period as a function of the Reynolds
number at different inclination angles. Experimental and numerical data are represented by sym-
bols and lines, respectively. Reprinted with permission from [44]. ©2010, American Institute of
Physics.

The first harmonic of the Fourier transformed free surface shape corresponds to the
wavelength of the bottom contour. Its amplitude shows a peak which grows and shifts
its position from Re ≈ 35 to Re ≈ 27 to smaller Reynolds numbers when the channel
inclination angle α becomes steeper (See Figure 3.7). The presence of this peak reflects
the fact that the free surface is strong undulated where the first harmonic peaks, but
rather flat for low and for high Reynolds numbers as already illustrated in Figure 3.4.

The amplitude of the second harmonic of the free surface shape characterizes its
nonlinearity. We find that it grows with increasing Reynolds number and reaches a plateau
before it drops discontinuously to a much smaller value and tends rapidly against zero for
large Reynolds numbers, as visible from Figure 3.8. The growth and rapid drop of the
second Fourier mode corresponds to the emerging of the sharp indentation in the troughs
of the free surface shape, as can be seen most clearly from the red line in Figure 3.4, and
the abrupt shape transition to a smooth sinusoidal one as represented exemplarily by the
green line in Figure 3.4. The height of the plateau grows with steeper channel inclinations.

1or film thickness d(x) = h(x) − b(x).
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Figure 3.7: Amplitude of the first harmonic of the free surface shape as a function of the Reynolds
number at different inclination angles. Experimental and numerical data are represented by sym-
bols and lines, respectively. Reprinted with permission from [44]. ©2010, American Institute of
Physics.

In conjunction to the growth, the position of the sharp drop is shifted to smaller Reynolds
numbers with steepening the mean channel inclination. All higher harmonics, which are
not shown here, showed qualitatively the same behavior as the second one but with much
smaller amplitudes.
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Figure 3.8: Amplitude of the second harmonic of the free surface shape as a function of the
Reynolds number at different inclination angles. Experimental and numerical data are represented
by symbols and lines, respectively. Reprinted with permission from [44]. ©2010, American
Institute of Physics.

A comparison of Figures 3.6, 3.7 and 3.8 reveals that the drop of the average film
thickness, the peak position of the first Fourier mode and the drop of the amplitude of
the second Fourier mode seem to coincide at the same Reynolds number for each channel
inclination angle. Figure 3.9 complies the first harmonics for the four investigated inclina-
tion angles. We find that for all investigated channel inclinations the first harmonic peaks,
where the average film thickness drops and the shape of the free surface undergoes a sharp
transition from an anharmonic shape to a smooth sinusoidal one. This position where
a surface shape transition occurs is indicated by the dashed line in each diagram. The
Reynolds number where this transition takes place shifts with steeper channel inclinations
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to smaller Reynolds numbers.
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(a) Channel inclination angle: 5 ◦.
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(b) Channel inclination angle: 8 ◦. Reprinted with
permission from [44]. ©2010, American Insti-
tute of Physics.
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(c) Channel inclination angle: 11 ◦.
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(d) Channel inclination angle: 14 ◦.

Figure 3.9: Average film thickness and amplitude of the first two Fourier components. The
transition Reynolds number is indicated by the dashed line. The experimental and numerical
data are represented by symbols and lines, respectively.

Figure 3.10 shows a snapshot of a video2, which illustrates the transition of the liquid’s
free surface shape while the Reynolds number has been increased continuously over the
transition Reynolds number from Re ≈ 26 to Re ≈ 34 from two different perspectives at
a fixed channel inclination angle of α = 8 ◦. The main frame depicts a slightly deformed
picture of two and a half periods of the free surface shape. The main flow direction in
the main frame is from right to left. Starting from low Reynolds numbers (Re ≈ 26) we
find a free surface shape with sharp indentations which grow with Reynolds number. The
position of the sharp indentation shifts slightly downstream while it is getting sharper
until the transition Reynolds number (Re ≈ 32) is reached. Here the sharp indentation
disappears and the free surface shape changes very abruptly into a smooth sinusoidal
one. A further increase of the Reynolds number causes the amplitude of the free surface
undulation to diminish continuously.

The inset in the lower right corner shows the flow over the whole channel width from
above. The green line in the middle of the inset corresponds to the laser sheet produced
by the Ar+-laser described in section 2.4.2. The main flow direction there is from up

2Video available at http://www.tms.uni-bayreuth.de/videos/surfaces.mp4
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Chapter 3. Two–dimensional film flow

to down. At low and high Reynolds numbers, far away from the transition Reynolds
number, we find a uniform shape of the free surface over the whole channel width and
length. When the transition Reynolds number is approached from low Reynolds numbers
particular regions near the side walls appear which seem to differ qualitatively in surface
shape from the rest of the film flow in the middle of the channel. The size of these regions
grows with increasing Reynolds number until they cover the whole channel, except for the
very near wall regions, when the transition Reynolds number is reached. We identify these
regions as regions where the surface shape transition from sharp with a strong indentation
to a smooth sinusoidal shape has already taken place. We attribute this effect to locally
higher flow rates q̇ there due to side wall effects. In the very vicinity of the side walls the
free surface transition occurs later due to the additional drag coming from the side walls
which leads to locally lower flow rates.

Figure 3.10: Snapshot of a video which illustrates the free surface shape transition at an interme-
diate Reynolds number. Main flow direction in the main frame is from right to left, in the smaller
frame in the lower right corner from up to down. The Reynolds number is increased during the
video continuously from Re ≈ 26 to Re ≈ 34. Channel inclination angle α = 8 ◦. Video available
at URL: http://www.tms.uni-bayreuth.de/videos/surfaces.mp4

We have to note, that the unsteady motion of the free surface, which can be seen in
the video, was much weaker but still present under experimental conditions just below
the transition Reynolds number. To quantify its impact on the data of the average film
thickness and the first two Fourier modes we have carried out a statistical analysis with
1000 images exemplarily for a channel inclination of 8 ◦. Because single images were to
grainy to evaluate (see section 2.4.2), each of the 1000 images was created using a running
average filter over ten single images. The standard deviation of the calculated Fourier
components never exceeded 3.5% which corresponds approximately to the symbol size in
Figures 3.6-3.9. Thus, we omit the error bars here. The averaging over 10 single images
corresponds to an averaging over 400 ms. This leads to a loss of information regarding
very high frequency unsteady motion. Furthermore we observed three–dimensional free
surface structures close to the side–walls, as can be seen from video 3.10.

Nevertheless, we state, that the experimental free surface shape data are overall well
described by the numerical results, confirming that the assumptions made in section
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3.1. Suppression of eddies

3.1.1 of a fully developed, purely two–dimensional and steady flow are well met by the
experiment. The systematic discrepancies between experimental and numerical data in
the average film thickness which can be identified in the Figures 3.6, 3.9(b) and 3.9(c)
are apparently due to a misplacement of the ceramic calibration scale perpendicular to
the mean flow direction. An effect of this misplacement on higher Fourier components
can safely be ruled out. The difference in the plateau of the amplitudes of the second
Fourier mode between experiment and numerics is caused by the weak unsteady motion,
which is particularly noticeable in the experiment, when the transition Reynolds number
is approached from low Reynolds numbers. Because every image had to be averaged over
multiple single images the weak jitter of the free surface caused a washing out of sharp
indentations which results in an amplitude of the second Fourier component which is
systematically too small as can be seen from Figures 3.8 and 3.9.

3.1.3 Physical interpretation and discussion

To characterize this transition we carry out a numerical analysis of the dependence of the
local Froude number on the downstream x-coordinate over one bottom period. The Froude
number is defined as the ratio of a characteristic velocity to a gravitational wave velocity.
In particular, we calculate the local Froude number as Fr(x) = uloc(x)(d(x)g cosα)−1/2,
where uloc(x) denotes the local free surface velocity as a function of the downstream
coordinate. Figure 3.11 illustrates the local Froude number dependence from the dimen-
sionless downstream coordinate kx for different Reynolds numbers and a fixed channel
inclination angle of α = 8 ◦. The Reynolds number ranges from Re = 5 (lowermost line)
to Re = 47.5 (uppermost line).
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Figure 3.11: Spatial dependence of the local Froude number at different Reynolds numbers. Crests
of the topography are at 0 and 2π. The Reynolds number increases continuously from the lowest to
the uppermost line. Below transition, the Froude number changes from subcritical to supercritical;
beyond transition it remains supercritical. Channel inclination angle α = 8 ◦. Reprinted with
permission from [44]. ©2010, American Institute of Physics.

We find that the Froude number persists globally subcritical (Fr < 1) for low Reynolds
numbers below 7 and globally supercritical (Fr > 1) for high Reynolds numbers above
32. In between we observe a jump of the Froude number which undergoes a transition
from supercritical to subcritical with increasing the dimensionless downstream coordinate
kx. The amplitude of this jump grows with increasing Reynolds number to its maximal
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size at Re = 30 (red dashed line) until its size decreases rapidly beyond the transition at
Re = 32.5 (green dot–dashed line).

The coexistence of sub- and supercritical regions within one flow configuration is typi-
cal for hydraulic jumps as reported by Wierschem et al.[41] for a similar flow configuration
over an undulated substrate geometry or by Bohr et al.[78, 79] and Bush et al.[80] for
a circular hydraulic jump generated by a vertical fluid jet on a horizontal plate. Thus,
we conclude, that the flow configuration in the intermediate Reynolds number regime
between Re = 7 and Re = 32 can be treated as a hydraulic jump which constantly grows
with increasing Reynolds number until it vanishes abruptly at the transition Reynolds
number. Evaluation of the local Froude number at other inclination angles did not show
any qualitative deviations from the behavior observed for α = 8 ◦.

The question arises whether the non–monotonous growth and disappearance behavior
of the eddy size shown in Figure 3.5 is somehow related to the free surface of the liquid.
Figure 3.12 depicts the border positions Re2 and Re3 of the eddy free windows from Fig-
ure 3.5 for the studied inclinations angles together with the transition Reynolds number.
We find that the transition Reynolds number, where the amplitude of the first Fourier
component peaks, all other Fourier components change their amplitude discontinuously
and the hydraulic jump suddenly disappears, always fits well within the middle of the
eddy free window. While this transition Reynolds number shifts to smaller values when
the channel inclination angle is increased the eddy free window seems to move with it.

4 6 8 10 12 14
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Figure 3.12: Comparison of the position of the free surface shape transition and the eddy–free
window position at different channel inclinations. Experimental data are represented by open
symbols; numerical data are represented by solid symbols. Reprinted with permission from [44].
©2010, American Institute of Physics.

The Reynolds number where first eddies appear Re1 (see Figure 3.5) is independent of
the inclination angle α, because the eddy suppressing influence of the free surface shape
is not strong enough at such low Reynolds numbers when the channel inclination angle is
below 11 ◦. Only for the steepest channel inclination angle investigated, the first Fourier
component of the free surface contour is sufficiently strong down to Re = Re1, what
causes the first eddy window between Re1 and Re2 to vanish completely.
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3.1. Suppression of eddies

3.1.4 Conclusions

We have studied the appearance and disappearance of eddies in the troughs of an undu-
lated topography and the free surface shape of the liquid flowing above it. We find that
eddies which first appear at rather low Reynolds number can vanish when the Reynolds
number is increased. Within an interval, where no eddy is observed the free surface shape
undergoes a sharp transition from harmonic to anharmonic and a hydraulic jump which
has been established continuously with increasing inertia disappears abruptly.

We have shown, that these eddies are systematically suppressed by the shape of the
free surface at rather high Reynolds numbers. Obviously the presence or absence of an
hydraulic jump and the amplitude of the higher harmonics in the free surface shape do
not play a role for the disappearance of the eddies since they are suppressed below the
transition Reynolds number as well as above it. We account the amplitude of the first
Fourier component responsible for the suppression of the recirculation areas. When the
amplitude of the free surface is large, enough inertia is adjusted for the liquid flowing
downhill to penetrate deeply into the troughs of the substrate undulation to break up the
eddy structures.

Trifonov[37] also found numerically a disappearance of eddies as illustrated in Figure
3.13 for Reynolds numbers between 130 and 290 in low viscosity flows over a vertically
aligned (α = 90◦) undulated wall. The critical Reynolds Rec number for the onset of free
surface waves in a flow down an inclined channel is given by Rec = (5/6) cotα[46, 47].
Inserting α = 90◦ for films flowing down a vertically aligned wall we find that no linearly
stable flow configuration is possible. Therefore, especially flows down a vertically aligned
wall at high Reynolds numbers, like the system studied by Trifonov[37], are supposed to
be highly unsteady[12]. Bontozoglou[40] has calculated the minimum wall steepness for
separation as a function of the Reynolds number for water flowing down a channel inclined
by α = 60◦ with respect to the horizontal. He also found a Reynolds number region at
Re ∼ 200 at which eddies disappear when the liquid is in resonance with the moderately
undulated wall. The groups of Bontozoglou and Aksel showed that an amplification of
the free surface amplitude by means of a resonance phenomenon can be achieved at much
lower Reynolds numbers[41, 42, 43]. We have chosen the above studied system in a way
that the Reynolds numbers at which resonance takes place were expected to become
minimal.[42, 43] Thus, we were able to study resonant suppression of eddies in a near
steady regime in real experiments.

With this work we directly continue work going on on creating and manipulating of
kinematically and/or inertially induced eddies in films.[36] When inertia can be neglected
eddies are generated kinematically and sit symmetric in the vallies of the undulation,
because the field equations degenerate and become space reversible, unless the boundaries
of the liquid do not break the symmetry of the system. The (dimensionless) size of such
kinematically induced eddies depends on the geometry parameters like steepness ξ and
wavenumber k of the undulation only. Inertially induced eddies are usually asymmetric
in film flows and grow monotonously in size when the influence of inertia is increased,
be it in film flows over undulated topographies, or for example in bulk flows past a
cylinder[77, 81, 82]. Here we show experimentally, as well as numerically, that the eddies
can also be diminished in size and even be suppressed completely with increasing Reynolds
number under steady, or weakly unsteady flow conditions.
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Chapter 3. Two–dimensional film flow

Figure 3.13: Numerically observed streamline patterns by Trifonov[37] for a flow down an undu-
lated, vertically aligned wall (α = 90◦). At small Reynolds numbers the eddy grows with increasing
Reynolds number, then diminishes in size and disappears at Re = 200 before it reappears at even
higher Reynolds numbers. Reprinted with permission from [37]. License number 2834701468864.
©1999, Elsevier.

A selective suppression of eddies is of major interest for industrial applications since
it can open up new optimized process windows in case when a detachment of the flow
undesired. In heat exchanger applications, for example, a detachment of the flow over a
corrugated surface would lead to a strong impact on the convective rate of heat transport.
In environmental systems, particles within a recirculation area are cut off from the rest
of the flow and thus also from potentially necessary nutrient substances. Different from
applying external forces to the flow, generating a strong fundamental harmonic of the free
surface just by exciting resonance seems to be a good framework in general, to suppress
eddies in gravity–driven film flows over undulated topography.
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Chapter 4

Three–dimensional film flow

4.1 Basic flow

4.1.1 Governing equations

We consider a steady gravity–driven film flow down a flat channel of finite width B
which is inclined by an angle α with respect to the horizontal as illustrated in Figure 4.1.
The geometry of the flow configuration is defined by the channel width B, the contact
angle between the liquid and the channel side wall θ, the film thickness in the middle of
the channel H and the resulting position of the free surface h(y). The capillary elevation
height just at the side wall is denoted by ∆h. For infinite long channels the in- and outflow
effects are negligible and the flow can be assumed to be unidirectional u = u(y, z)êx. The
orientation of the (x, y, z)–coordinate system is defined by the unit vectors êx, êy and êz
and its point of origin lies just on the surface of the substrate in the middle of the channel
as illustrated in Figure 4.1.

Inserting this assumption into the steady Navier–Stokes equations and the continuity
equation

(u · ∇)u = −1

ρ
∇p+ g + ν∇2u, ∇ · u = 0, (4.1)

leads to

0 = η

(
∂2u

∂y2
+
∂2u

∂z2

)
+ ρg sinα, (4.2)

0 = −∂p
∂y
, (4.3)

0 = −∂p
∂z
− ρg cosα (4.4)

and a continuity equation which fulfilled in a trivial way by the kinematic assumption.
The non–linear terms on the left hand side in the steady Navier–Stokes equations (4.1)
disappear because the unidirectional flow field u does depend on the y- and on the z-
coordinate only.

The no–slip boundary conditions at the bottom (z = 0) and the side walls (y = ±B/2)
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(b) Cross–sectional view

Figure 4.1: Channel geometry illustrating side wall effects on the flow and the orientation and po-
sition of the (x, y, z)–coordinate system. Reprinted with permission from [66]. ©2011, American
Institute of Physics.

read

u(y, z = 0) = 0, (4.5)

u(y = ±B/2, z) = 0. (4.6)

The no penetration condition at the rigid walls is trivially fulfilled because the flow has
been postulated to be unidirectional. Additionally to the boundary conditions at the
walls a kinematic boundary condition at the free surface

n · u
∣∣∣
z=h(y)

= 0 (4.7)

basically demands the free surface contour to be a streamline, or in other words liquid
particles must not leave the free surface. When the viscosity of air is neglected the dynamic
boundary condition, which takes care of the balance of stresses at the free surface, reads[

(p− p0)−
σ

R

]
n = T · n

∣∣∣
z=h(y)

, (4.8)

with the stress tensor

T = Tij = η

(
∂ui
∂xj

+
∂uj
∂xi

)
(4.9)

and the outer unit normal vector

n =
∇h
‖∇h‖

=
êz − ∂h

∂y êy√
1 +

(
∂h
∂y

)2 . (4.10)
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4.1. Basic flow

The pressure of the surrounding air is denoted by p0. The curvature of the free surface κ
which is the inverse radius of curvature of the free surface R can be calculated to

κ =
1

R
= ∇ · n = − d

dy

∂h
∂y√

1 +
(
∂h
∂y

)2 = −
∂2h
∂y2[

1 +
(
∂h
∂y

)2]3/2 . (4.11)

Inserting (4.10) and (4.11) into the dynamic boundary condition (4.8) leads to two com-
ponents of the dynamic boundary condition normal and tangential to the free surface

(p− p0)
∣∣∣
z=h(y)

= −σ d

dy

∂h
∂y√

1 +
(
∂h
∂y

)2 , (4.12)

∂u

∂z

∣∣∣
z=h(y)

=
∂u

∂y

∂h

∂y
. (4.13)

Dimensionless formulation

To reformulate the problem in a dimensionless form we have to find some reference quan-
tities for scaling. We take the free surface velocity

ur =
ρg sinαH2

2η
(4.14)

from the well known Nusselt solution [73] as a reference for all velocities. Hydrostatic
pressure is taken as a reference for the pressure

pr = ρg cosα. (4.15)

We introduce a generalized capillary length L

L =

√
2σ

ρg cosα
, (4.16)

which takes care of a reduced gravitational acceleration perpendicular to the channel
due to its inclination α and serves as a reference for all lengths to resolve effects within
the capillary elevation. In the following all quantities which are labeled by a ·̃ denote
dimensionless variables which are scaled with the above reference quantities. Furthermore,
we define a dimensionless capillary range l

l =
L

B/2
=

2L

B
. (4.17)

Applying the above scalings to the Navier–Stokes equations and the boundary conditions
lead to a dimensionless formulation of the system in the following form. The Navier–
Stokes equations read:

0 =
∂2ũ

∂ỹ2
+
∂2ũ

∂z̃2
+ 2, (4.18)

0 = −∂p̃
∂ỹ
, (4.19)

0 = −∂p̃
∂z̃
− 1. (4.20)
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Chapter 4. Three–dimensional film flow

The no–slip boundary conditions at the bottom and the side walls changes to

ũ(ỹ, z̃ = 0) = 0, (4.21)

ũ(ỹ = ±1/l, z̃) = 0 (4.22)

and the tangential and normal components of the dynamic boundary condition now read

∂ũ

∂z̃

∣∣∣
z̃=h̃(ỹ)

=
∂ũ

∂ỹ

dh̃

dỹ
, (4.23)

(p̃− p̃0)
∣∣∣
z̃=h̃(ỹ)

= −1

2

d

dỹ

∂h̃
∂ỹ√

1 +
(
∂h̃
∂ỹ

)2 . (4.24)

Free surface shape

We introduce an additional boundary condition taking care of the contact angle θ between
the liquid and the side wall

∂h̃

∂ỹ

∣∣∣
ỹ=±1/l

= ± cot θ (4.25)

and a decomposition of the free surface shape h̃(ỹ) into a constant part which is equal to
the film height in the middle of the channel H̃ and a part ζ depending on ỹ which takes
care of the capillary elevation in the vicinity of the side wall

h̃(ỹ) = H̃ + ζ(ỹ). (4.26)

Evaluating ζ at ỹ = ±1/l by inserting the boundary condition (4.25) into (4.24) leads to
the capillary elevation height depicted in Figure 4.1(b) [66]

∆h̃ = ζ(ỹ = ±1/l) =
√

1− sin θ. (4.27)

The free surface shape can be obtained by integration of equation (4.24) as described in
detail by Scholle and Aksel[63] or Haas et al.[66]. With the abbreviation

G(x) := x− 1

2
√

2
ln

(√
2 + x√
2− x

)
, (4.28)

the function for the film elevation ζ(ỹ) can be written down in an implicit form

ỹ(ζ) = h̃−1(ζ) =

−1/l +
[
G
(√

1 + sin θ
)
−G

(√
2− ζ2

)]
ỹ ∈ [−1/l, 0],

1/l −
[
G
(√

1 + sin θ
)
−G

(√
2− ζ2

)]
ỹ ∈ [0, 1/l].

(4.29)

Velocity field

The velocity field can be described by the following ansatz which is a solution of equation
(4.18) and already fulfills the no-slip boundary conditions at the side walls

ũ =
4

l2

∑
n∈N+

[
Dnelcnz̃ + Ene−lcnz̃ − (−1)n

c3n

]
cos(lcnỹ), (4.30)
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cn =

(
n− 1

2

)
π. (4.31)

The additional no-slip condition at the substrate (4.21) leads to n equations for the vector
elements Dn and En

Dn + En =
(−1)n

c3n
. (4.32)

Inserting the ansatz for the velocity field (4.30) into the tangential part of the dynamic
boundary condition (4.23) leads to an infinite system of algebraic equations for the coef-
ficients Dn ∑

n∈N+

GnmDn = dm, (4.33)

with the matrix elements

Gnm =

∫ 1/l

−1/l
2 cosh(lcnh̃(ỹ)) sin(lcnỹ) sin(lcmỹ)dỹ (4.34)

and the vector elements

dm =
∑
n∈N+

∫ 1/l

−1/l

[
(−1)n

c3n

(
e−lcnh̃(ỹ) + lcnh̃(ỹ)

)]
sin(lcnỹ) sin(lcmỹ)dỹ

− l

cm

∑
n∈N+

∫ 1/l

−1/l

(−1)nh̃(ỹ)

cn
[cos(lcnỹ) cos(lcmỹ)] dỹ. (4.35)

The coefficients Dn and En have been calculated using MATLAB® [83] truncating the
infinite system of algebraic equations to a certain order N ∈ N+. The accuracy of the
power series expansion has been assured by the demand Dn, En < 10−6.[66]

The theoretical derivation and the implementation of the procedure of solution de-
scribed above has been done and all theoretical results presented in this chapter have
been calculated by André Haas[66].

4.1.2 Flow type classification

Depending on the magnitude of the capillary elevation compared to the film height H
and the channel width B it is useful to distinguish different flow types as illustrated
in Figure 4.2. For a channel of infinite extent the flow configuration is equivalent the
two–dimensional case and the solution of the velocity field equals the well known Nusselt
solution. In this case we define the Reynolds number as

Re(a) = Re2D =
usH

ν
. (4.36)

Because the free surface velocity of a Nusselt film flow can easily be calculated to

us =
g sinαH2

2ν
, (4.37)

the Reynolds number can also be expressed as a function of the film height H

Re2D =
g sinαH3

2ν2
. (4.38)
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(a) Infinite broad channel or slip condition at the
side walls (equals the 2D case).

(b) No capillary elevation at the side walls (θ = 90◦

or ∆h� H)

(c) (θ < 90◦ and ∆h ∼ H) (d) Capillary corner flow (θ < 90◦ and ∆h� H)

Figure 4.2: Cross sectional velocity profiles of different channel flow types. The velocity is color
coded: blue corresponds to slow and red corresponds to fast. Reprinted with permission from [66].
©2011, American Institute of Physics.

As soon as side walls are introduced the liquid in the vicinity of the side wall gets de-
celerated due to the additional no–slip condition at the boundary. Now, the free surface
velocity is not independent of the crosswise coordinate y anymore and it is useful to define
the Reynolds number in terms of the corresponding volume flux V̇

Re(b) =
3

2Bν

∫ f(y)

0

∫ B/2

−B/2
u(y, z)dydz =

3V̇

2Bν
< Re2D. (4.39)

Compared to the scenario depicted in Figure 4.2(a) less liquid is transported due to the
additional drag at the side walls. Therefore, the Reynolds number of a film in this case
is alway smaller than the Reynolds number of a two–dimensional film of the same film
thickness H.

When H is decreased, the contact angle θ between the liquid and the side wall becomes
an important factor. The influence of capillarity leads to a capillary elevation of the liquid,
when θ is smaller than 90◦. Due to this locally thicker film a velocity overshoot close to
the side walls may show up when the additional film thickness wins over the additional
drag coming from the no–slip condition at the side walls (see Figure 4.2(c)). In the
limit of vanishingly thin films (H → 0) the flow degenerates to a capillary corner flow
as depicted in Figure 4.2(d). Now most of the liquid is transported close to the side
walls in the capillary elevation and the Reynolds number is obviously larger than in the
two–dimensional case

Re(d) =
3V̇

2Bν
> Re2D → 0, H → 0. (4.40)

When the contact angle between the liquid and the side wall is larger than 90◦ the cap-
illary elevation ∆h becomes negative and no velocity overshoot can be observed. There-
fore, we restrict our studies without loss of generality to liquids with wetting properties
only.

4.1.3 Flow rate study

Since the presence of side walls and the resulting capillary elevation has a significant
impact on the flow rate, a study on the important parameters is to be carried out. The
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4.1. Basic flow

volume flux of a two–dimensional case V̇2D which is illustrated in Figure 4.2(a) is taken
as a reference.

Figure 4.3 illustrates the inequality (4.39) for two different capillary ranges, one match-
ing the experimental setup (l = 0.028) and one referring to the capillary range of a nar-
rower (and/or steeper) channel (l = 0.1). When no capillary elevation is present, as
depicted in Figure 4.2(b) the additional drag at the side walls leads to an overall decrease
of the transported liquid depending on the dimensionless film height H̃ and the capillary
range l. The amount of missing volume flux increases with decreasing channel width B
and increasing dimensionless film height H̃. Both an increasing dimensionless film height
and a narrowing of the channel lead to an increase of the relative part of the side wall area
which results in a stronger impact of the side wall presence on the volume flux. There-
fore, especially for narrow channels and film thicknesses which are large compared to the
capillary length L the influence of the side walls on the volume flux cannot be neglected.

0.9
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0 0.2 0.4 0.6 0.8 1

H̃

V̇
θ
=
9
0
◦
/V̇

2
D

l = 0.028
l = 0.1

Figure 4.3: Decrease of the volume flux due to the additional no–slip condition at the side walls
(without capillarity), as it is depicted in Figure 4.2(b), compared to the two–dimensional case,
which is depicted in Figure 4.2(a). Reprinted with permission from [66]. ©2011, American
Institute of Physics.

In the case depicted in Figure 4.2(c) it is not possible to make a similar general
statement on the Reynolds number or the volume flux like in the equations (4.39) or
(4.40), because both effets of one an additional drag coming from the side wall and two
a velocity overshoot have a competing influence of the same order on the flow rate as
illustrated in Figure 4.4.

Figure 4.5 compares the amount of transported liquid when a capillary elevation due
to the presence of side walls is considered with the two–dimensional case. The contact
angles θ are chosen to fit the experimental setup as described in section 2.2. For small film
thickness H̃ the influence of the capillary elevation and the resulting velocity overshoot
becomes the most important transport mechanism. The ratio of V̇ /V̇2D becomes larger
than one and even diverges for H̃ → 0 because V̇2D then also tends to zero. For constant
film height H̃ the presence of a capillary elevation becomes obviously more important for
narrower channels or larger capillary ranges l (see Figure 4.5(a)). Remember, that the
two–dimensional case is equal to the case l → 0. The influence of the capillary range on
the volume flux increases with decreasing film height. One finds an explicit transition film
height denoted by h̃t, which is independent of the capillary length, where the influences of
the velocity overshoot due to capillary elevation and the influence of the no–slip condition
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u

umax

us,m

Figure 4.4: Free surface velocity profile in flow direction showing velocity overshoot and defect
compared to the plane flow with the same film height. Reprinted with permission from [70].
©2011, American Institute of Physics.[70]

at the wall on the normalized volume flux V̇ /V̇2D just cancel each other.
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(a) Variation of the capillary range l at fixed con-
tact angle θ = 8◦.
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(b) Variation of the contact angle θ at fixed capil-
lary range l = 0.1.

Figure 4.5: Influence of capillary effects at the side walls on the normalized volume flux. Reprinted
with permission from [66]. ©2011, American Institute of Physics.

The impact of the contact angle θ on the volume flux is illustrated in Figure 4.5(b).
Similar to the capillary range in Figure 4.5(a) also the influence of the contact angle on
the volume flux is small for film heights H̃ of the order of one but gains in importance
the thinner the liquid film gets. One finds that smaller contact angles lead to a larger
velocity overshoot and therefore to a larger volume flux. The transition film height h̃t is
not independent of the contact angle.

For large H̃ the ratio of V̇ /V̇2D becomes smaller than one because the influence of
capillarity on the velocity field looses importance. The volume flux V̇ tends to V̇θ=90◦ for
H̃ →∞ which is always smaller than V̇2D as depicted in Figure 4.3.

Figure 4.6 shows the dependence of the transition film height h̃t on the contact angle θ.
For a contact angle of θ = 90◦ no capillary elevation is present and thus no velocity
overshoot can be observed. Equality of the volume flux of the 2D case V̇2D and the volume
flux V̇ can only be reached, when also the drag influence of the side wall tends to zero which
is only the case in the limit h̃ → 0. Decreasing the contact angle leads to a monotonous
increase of the transition film thickness to finite values below one. Under perfect wetting
conditions (θ = 0◦) the transition film height reaches a value of approximately h̃t ≈ 0.92.

To summarize: Treating a channel of finite width as two–dimensional always leads to
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Figure 4.6: Dependence of the transition film thickness h̃t on the contact angle θ. Reprinted with
permission from [66]. ©2011, American Institute of Physics.

an overestimation of the volume flux (or the Reynolds number) when the film thickness H
is larger than the generalized capillary length L (or above the red curve in Figure 4.6)
due to the additional drag coming from the side walls. This discrepancy becomes large
especially for narrow channels. When the film thickness is small or of the same order as the
generalized capillary length the presence of a capillary elevation gains in importance one
has to take the contact angle θ into account. The effect of a resulting velocity overshoot
competes with the additional drag at the side wall. For thin films and small contact
angles (below the red curve in Figure 4.6) treating the film as two–dimensional leads to
an underestimation of the volume flux.

4.1.4 Velocity field

Figure 4.7 shows a comparison of the theoretical and measured velocity profiles for three
films of different heights H and two different static contact angles θ. As liquid Elbesil
silicone oil B1000 which is described in section 2.1 was used. For each flow configuration
the side wall distance ds dependence of the velocity profiles was measured by a Laser
Doppler Velocimeter described in section 2.4.4 at three different measurement heights
Hm.

The error bars of the measured data denote the root mean square error of the mean
value of all detected velocity signals in each measurement volume. Because the number
of evaluable counts per time decreases with the speed of the liquid in the measurement
volume, the measurement time has been adopted to the flow velocity to get reasonable
signal to noise ratios especially in near wall regions. Additionally, more points have been
recorded in the vicinity of the wall to resolve the velocity overshoot.

The overall agreement between the measured data and the calculated values for the
flow velocities is excellent. The small deviations which never exceed the root mean square
error bars are in the most cases of statistically nature. Systematic discrepancies such as in
Figure 4.7(a) can be explained by errors in determining the distance between the channel
bottom and the measurement volume Hm or in determining the film height in the middle
of the channel H.

For large side wall distances the measured and calculated velocity profile corresponds
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(f) H = 2.204 mm, θ = 52◦.

Figure 4.7: Comparison of measured (points) and calculated (lines) velocity profiles for different
film heights H, measurement heights Hm and contact angles θ. Reprinted with permission from
[66]. ©2011, American Institute of Physics.

to the Nusselt solution. In the near wall region a velocity overshoot is observed whose
magnitude, quantified by the ratio of the highest velocity umax and the surface velocity in
the middle of the channel us,m, depends strongly on the film thickness H and the contact
angle θ.

Figure 4.8(a) shows the dependence of the magnitude of the velocity overshoot on
the film thickness H̃ for both contact angles θ measured. For thick films the ratio of
umax/us,m tends to one, meaning that no velocity overshoot can be observed. When the
film thickness H̃ is approximately 0.5 or less the magnitude of the velocity overshoot
becomes considerable and depends on the contact angle θ as also shown in Figure 4.7. As
the film thickness is decreased further the velocity overshoot diverges, because the free
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4.1. Basic flow

surface velocity in the middle of the channel tends to zero. The flow then degenerates to
a capillary corner flow as illustrated in Figure 4.2(d).
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Figure 4.8: Influence of the film thickness on the velocity overshoot. Reprinted with permission
from [66]. ©2011, American Institute of Physics.

Not only the magnitude of the velocity overshoot but also its location depends on the
film height h̃ as well as on the contact angle θ. Figure 4.8(b) shows film height dependence
of the ỹ-position ỹmax where the largest free surface velocity umax is located. An increase
of the film height leads to a shift of the maximum free surface velocity towards the middle
of the channel until the velocity overshoot disappears and the maximal velocity is located
in the middle of the channel at ỹ = 0. The critical film thickness at which the velocity
overshoot disappears, labeled in Figure 4.8(b) by h̃c, shifts with increasing contact angle
θ to smaller values.

Both the position and the magnitude of the velocity overshoot depend on the contact
angle θ and the film height H. Therefore, we introduce a combined dimensionless param-
eter r which can be attributed to a certain shape of the free surface velocity profile and
depends on the dimensionless capillary elevation height ∆h̃(θ) and the dimensionless film
height H̃ in the form of[66]

r =
∆h̃(θ)c1

H̃c2
. (4.41)

The free parameters c1 and c2 were obtained by fitting the results of additional simulations:
c1 = 0.0435 ± 0.002 and c2 = 0.9814 ± 0.0176.[66] With these parameters inserted in
equation (4.41) all experimental setups with the same parameter r show the same behavior
for the velocity overshoot. Thus, we can now find a critical ratio rc for the onset of
a velocity overshoot to rc = 0.733 ± 0.002. Inserting rc into the equation (4.27) for
the capillary elevation height leads to an empirical threshold for the onset of a velocity
overshoot in terms of a critical film thickness

h̃c = r−1/c2c (1− sin θ)c1/(2c2) (4.42)

which is illustrated in Figure 4.9.
The critical film thickness h̃c is larger than transition film thickness h̃t (compare

Figures 4.6 and 4.9), because h̃c describes the film thickness where a velocity overshoot
just emerges. The magnitude of the velocity will not become sufficiently strong to balance
the no–slip condition at the until the film height is decreased further to the transition
film height h̃t which, therefore, has always to be smaller than h̃c.
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Figure 4.9: Dependence of the critical film thickness h̃c on the contact angle θ. Reprinted with
permission from [66]. ©2011, American Institute of Physics.

4.1.5 Free surface shape

Steady flow

The steady solution for the free surface shape h̃ of a liquid flowing down an inclined
channel with side walls and a contact angle θ there given in an implicit form by equation
(4.29) is illustrated in Figure 4.10.

The experimental setup for the correspondent measurement technique is described in
section 2.4.2. To get a uniformly bright light sheet from the fluorescent particles in the
liquid we have superimposed five single images in the case of steady flow.

Since we were not able to determine the position of the side wall with the desired
accuracy from the images, because only fluorescent light was detected by the camera, a
single paramater fit with freedom in the y-direction was performed to match the experi-
mental data set with the theory. We have restricted our measurements to the near wall
region ds . 3L to increase the resolution in the capillary elevation. For side wall distances
ds > 3L the surface shape of all contact angles, including the flat case of θ = 90◦, basically
coincides. For both measured contact angles θ the calculated and detected free surface
shape shows perfect agreement.
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Figure 4.10: Theoretical and experimental shape of the free surface in the vicinity of the side wall.
Reprinted with permission from [66]. ©2011, American Institute of Physics.
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Draining flow

Next, the question whether equation (4.29) is capable of describing flows with a slowly
decreasing film height is addressed. Here, we want to investigate the case of a draining
flow, which is of major interest in nature and engineering processes. We simulate the
draining flow process by switching off the pump. The initial film height H in the middle
of the channel was 2.5 mm. During the draining the free surface shape of the liquid was
recorded in the vicinity of the side wall with a capturing rate of 8 Hz. The position of
the free surface was determined from the upper edge of the bright sheet in each averaged
image obtained from a moving average of 5 single images.

Figure 4.11 shows a comparison of the free surface shape of the steady flow before
switching off the pump and for the draining flow 13.3 s after switching off the pump. The
data sets have been shifted vertically to coincide at the side wall distance ds = 0 position.
It directly becomes obvious, that the free surface shape of a draining flow is not identical
with the steady flow case. During the draining flow one observes for both contact angles
an increase of the capillary elevation height ∆h. The change of ∆h from the steady
case to the draining case is more significant for the system with the larger static contact
angle. This suggests to describe the shape of the dynamic case by introducing a new free
parameter the dynamic or receding contact angle θd < θ which replaces θ in equation
(4.25).
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Figure 4.11: Comparison of the steady free surface shape with the free surface shape of the draining
flow 13.3 s after switching off the pump. Reprinted with permission from [66]. ©2011, American
Institute of Physics.

Figure 4.12 shows the evolution of film height in the middle of the channel and in the
vicinity of the side walls. In the middle of the channel only one data set is plotted for both
contact angle systems, because it did not show any significant contact angle dependence.
The free-surface position in the near–wall region is more noisy for two reasons. One,
the fact, that more particles are passing the laser sheet per time interval in the middle
of the channel than in the very near–wall region because the particles are faster there,
which results in a better ensemble averaging. Two, the spatial averaging in the middle of
the channel has ben done with 150 pixels and at the side walls averaging was done with
15 pixels only, because the film height h(y) does not show a strong y-dependence in the
middle of the channel in contrast to the near wall region.
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Figure 4.12: Evolution of the free surface position in the middle of the channel (blue) and of the
near wall region (red and green) after switching off the pump.

From Figure 4.12 we can find, that the film height in the middle of the channel drops
faster at the beginning of the draining process than in the near wall region. Especially,
the system with coated side-walls shows a distinctive lag in time. Therefore, the capillary
elevation height starts to increase and a new dynamic contact angle θd is build up.

However, even if a variation of the contact angle is allowed, equation (4.29) is still
not capable to describe the experimental data of the draining flow case as quasi steady
states, even though the settling speed is some orders of magnitudes smaller than the
flow velocities in x-direction. Also the corresponding Reynolds number for the settling
defined as Res = wH/ν, where w is the velocity in z-direction, is only of the order of
10−4. Hence we conclude, that in addition to the local effect of a dynamic contact angle
there must exist another (global) effect which is responsible for the free surface shape
deformation.[66]

To identify the reason for this dynamic free surface shape deformation, additional
numerical simulations, modeling the experimental setup of a draining channel flow, of
the time dependent three–dimensional Navier–Stokes equations have been carried out by
André Haas as described detailed in [66] with the open source CFD (computational fluid
dynamics) code OpenFOAM[84]. The contact angles have been kept constant at θ = 8◦

and θ = 52◦. Figure 4.13 shows the free surface shapes at four subsequent time steps.
To aid comparison, the curves have been shifted in z–direction, in a way, that the triple
point liquid/air/side wall coincides with the steady case (t = 0). Since the major interest
lies on the free surface shape in the vicinity of the side wall, and to aid comparison with
Figure 4.11, subviews in Figure 4.13 show the free surface shapes in the near wall region,
only.

In contrast to the experiments the capillary elevation ∆h diminishes with time, be-
cause no dynamic contact angle θd ≤ θ at the side wall has been taken into account in
the numerical simulations. In the vicinity of the side wall an indentation is formed, which
becomes more and more pronounced, as time advances. This indentation is a result of
the velocity overshoot in the capillary elevation, which causes a faster drain there.

This result is similar to the findings of Aksel[18] who found experimentally an inden-
tation of the liquid’s free surface at the side walls near to the outflow edge of an inclined

59



4.1. Basic flow

0 20 40 60 80

        0 [s]
      15 [s]
      30 [s]
      50 [s]t =
t =
t =
t =

d  [mm]

S
u
rf

ac
e 

sh
ap

e

0 5

s

(a) θ = 8◦

0 20 40 60 80

        0 [s]
      15 [s]
      30 [s]
      50 [s]t =
t =
t =
t =

d [mm]

S
u
rf

ac
e 

sh
ap

e

0 5

s

(b) θ = 52◦

Figure 4.13: Numerical simulations of the free surface shape of a draining flow over one half of the
channel 0 ≤ ds ≤ B/2. The inlaid subviews to show the local impact on the free surface shape in
the proximity of the side walls. [66]

channel. In both cases, at an outflow edge and in the draining case, one finds an interplay
between two different radii of curvature one in the yz–plane and one in the xz–plane
which causes this complex free surface shape.

Based on experimental and numerical results two different effects on the free surface
shape coming from the side walls have been identified, which are not included in equation
(4.29). Due to the faster drain near the side walls an indentation of the surface shape
develops, which grows as time advances, because the liquid film becomes thinner, and the
velocity overshoot becomes more and more pronounced (See Figure 4.8(a)). Additionally,
a dynamic contact angle is formed, which is smaller than the static contact angle. Thus,
the capillary elevation in the draining case is larger, than the capillary elevation under
steady flow conditions.

4.1.6 Conclusions

The influence of side walls and the contact angle of the liquid there on the velocity profile
and flow rates has been studied theoretically as well as experimentally. We find that the
influence of side walls is twofold. On the one hand, the additional no–slip condition at
the side wall leads to additional drag. On the other hand, capillarity leads, under wetting
conditions, to an elevation of the liquid and thus to a locally thicker film. Depending
on the contact angle between the liquid and the side wall θ and the dimensionless film
thickness H̃ this elevation may lead to a velocity overshoot in the vicinity of the side
walls.

Both effects also contribute oppositional to the overall flow rate. We find, that treating
a channel flow bounded by side walls as two–dimensional might lead to an under– as well
as to an overestimation of the flow rate. For vanishingly thin films obviously most liquid
is transported close to the side walls of the channel, which means, that neglecting the
three–dimensionality of the flow would lead to an underestimation of the flow rate. When
the film thickness is large compared to the capillary elevation the drag influence of the
side walls wins over the influence of the capillary elevation on the flow rate and neglecting
the influence of side walls would lead to an overestimation of the flow rate. We have
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Chapter 4. Three–dimensional film flow

presented the contact angle dependence of a dimensionless transition film height h̃t(θ)
where the influences of both effects on the flow rate just cancel each other.

The influence of side walls on the free surface shape has been investigated, one, for
the steady case and two, for a slowly draining flow. We have found, that the influence
of the side wall presence is observable only at distances of the order of the generalized
capillary length. In the slowly draining case we have found deviations of the free surface
shape from the steady case, which cannot be described by means of a dynamic contact
angle which is smaller than the static contact angle. Thus, we conclude, that such a
slowly draining flow cannot be modeled by a series of quasi–steady states, although the
settling speed of the draining flow is many orders of magnitudes smaller than the mean
flow velocity. Numerical simulations of the draining flow case revealed an indentation of
the free surface near the side wall, which might promote film rupture in industrial thin
film applications.

Many industrial processes deal with the problem of thin liquid films and the side
wall effects involved due to the finite width of the apparatus. In coating applications for
example one usually cuts away the near–wall region of the coated substrate because of its
nonuniform thickness[6]. With this work we provide tools to optimize the flow rate and
contact angle settings in terms of an economic utilization of the coating substance and
an optimal uniformity of the coating thickness.

61



4.2. Stability near the side walls

4.2 Stability near the side walls

4.2.1 Results

The primary convective instability of a free surface channel flow with side walls, which
is characterized in section 4.1, has been studied experimentally as described in section
2.4.5. The studied liquid was Silicone oil BC50 from Basildon (see section 2.1).

Figure 4.14 shows the neutral stability curves for two different contact angles θ and
six different distances from the side wall. Lines between the measured points are linear
interpolations to guide the eye. The dashed line corresponds to the neutral stability curve
for the plane flow of infinite extend. The side wall distances ds of the measurement points
range from 85 mm, which corresponds to the channel center, to 5 mm. A further reduction
of the side wall distance was not possible due to the strong curvature of the free surface in
the vicinity of the side wall. For side wall distances below 5 mm the laser beams became
too strong distorted at the reflection point on the free surface. The excitation frequency
fe was varied between ∼ 1.8 Hz and ∼ 6.5 Hz. A slower excitation typically resulted in
very strong peaks of higher harmonics of the fundamental excitation frequency in the
Fourier transformed measurement signals (see Figures 2.15(a), 2.15(b) and 2.15(c)). The
highest recordable frequency was limited by the capturing rate of the cameras.[85]

In the studied system the dimensionless film height H̃ = H/L was always close to
one. Therefore, the influences of the retarding no–slip condition at the side walls and
of the velocity overhoot on the volume flux, illustrated in Figure 4.4, almost cancel each
other (see Figure 4.5(a)). The resulting difference between the Reynolds number of a
two–dimensional flow defined as Re2D = usHν

−1 and the Reynolds number of the three
dimensional flow defined as Re = 3V̇ /(2νB) is less than 1%. Hence we have measured
the film height in the middle of the channel H with a micrometer screw as described in
section 2.4.1 to determine the Reynolds number and omit the distinction between Re2D
and Re in the following.
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Figure 4.14: Neutral stability curves for different side wall distances ds and contact angles θ. The
dashed line indicates the neutral stability curve for a channel of infinite extent B →∞. Reprinted
with permission from [70]. ©2011, American Institute of Physics.

In the middle of the channel the longest waves turn out to be the most unstable ones
as it is the case in absence of side walls[46, 47]. However, quantitatively we find the
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studied system to be more stable in the middle of the channel than the two–dimensional
case, especially at high excitation frequencies. The neutral curve in the middle of the
channel shows no contact angle dependence.

Vlachogiannis et al. [68] and Georgantaki et al. [69] studied the influence of a fi-
nite channel width on the stability of the flow at different inclination angles and fluids
properties at very low excitation frequency (fe = 0.167 Hz). They also found the flow to
be more stable under the presence of side walls, but only if the Kapitza number Ka is
sufficiently high (see Figure 4.15). The Kapitza number is defined as Ka = σ/(ρg1/3ν4/3)
and represents the ratio of capillary stresses to viscous stresses. It is a dimensionless
material property only and does not depend on flow properties. They found the ratio
R∗ = Rec/Rec,2D to depend only on the channel width and on the Kapitza number, but
not on the channel inclination or material properties like for example the surface tension σ.

When the Kapitza number is of the order of one or smaller they found no influence
of the channel width on the stability of the flow when the channel was at least 100 mm
broad. Although all our measurements were done at a Kapitza number of approximately
five we found a strong stabilizing influence of the side walls on the flow which is not in
line with the data shown in Figure 4.15. Yet, we suppose that these findings are not in
conflict with each other, because an extrapolation of our data shown in Figure 4.14 yields
that it might coincide with the two–dimensional case at the limit of very low frequency
fe → 0 as proposed by the work of Georgantaki et al. [69].

(a) Ratio R∗ as a function of Ka for several incli-
nation angles, fluids and channel widths. The
dimension of the given surface tension is mN/m.
The upper curve corresponds to a channel width
of B = 100 mm. The lower curve corresponds to
a channel width of B = 250 mm.

(b) Ratio R∗ as a function of Ka for several channel
widths B, α = 3◦.

Figure 4.15: Ratio R∗ as a function of Ka. Reprinted with permission from [69]. ©2011, American
Physical Society. URL: http://pre.aps.org/abstract/PRE/v84/i2/e026325

In the vicinity of the side walls all our measurements showed a further stabilization
of the flow compared to the data from the center–line measurements. Furthermore, the
contact angle θ, which did not play a role in the middle of the channel, gains in importance
when the side wall distance ds is reduced. Measurements done in the channel with the
coated glass side walls (θ = 52 ◦) show neutral curves which are significantly shifted

63

http://pre.aps.org/abstract/PRE/v84/i2/e026325
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to lower Reynolds numbers than the measurements done in the channel with untreated
Plexiglas® side walls (θ = 8 ◦). We account two effects for this phenomenon. One, the
smaller contact angle causes a larger capillary elevation height ∆h (see e.g. Figure 4.10
or equation (4.27)) and thus to a larger contact area between the liquid and the retarding
side wall. Two, when a finite surface tension of the liquid is considered, the smaller
contact angle leads to a stronger curvature and therefore to a stronger pretensioning of
the free surface in the vicinity of the side wall which hinders free surface waves to develop
and thus tends to stabilize the flow.

We find a remarkable range of the contact angle influence on the stability of the flow.
At a side wall distance of 10 mm, which is about four times the capillary length L or the
film height H, the difference between the neutral curves at θ = 8 ◦ and θ = 52 ◦ is up to
25%. Even up to a side wall distance of 40 mm, which is about 17 times the capillary
length L or the film height H, the difference between the neutral curves at θ = 8 ◦ and
θ = 52 ◦ is still more than 7%.

Additionally, the shape of the neutral curves changes when the side wall distance is
decreased. In the middle of the channel we observe the longest waves to become initially
unstable as predicted by Benjamin[46] and Yih[47] for the two–dimensional case. For side
wall distances of 10 mm in the case of uncoated side walls and 20 mm in the case of coated
side walls the type of the instability changes from a long–wave type to a short–wave type
instability in the investigated frequency range. This type of instability is well known for
boundary layer flows as observed experimentally by Schubauer and Skramstad[86] for a
plate which is aligned parallel to a plane flow. This configuration was later described
in detail by Schlichting and Gertsen[87]. The mechanisms for the instability are quite
different because in the present work an instability of a free surface near a side wall and
not the instability of a bulk is investigated. Typical critical Reynolds numbers found for
this bulk instability in a boundary layer are about two orders of magnitude larger than
for the free surface flow investigated here[87]. However the similarity of the shape of the
neutral curves close to the side wall suggests to treat the near wall region as a capillary
boundary layer with a range of four to eight times the capillary length L.

Other gravity–driven free surface flows showing a short–wave instability are described
in a two–dimensional theoretical framework by D’Alessio et al.[59] for Newtonian liquids
at very high inverse Bond numbers, which means that capillary forces dominate over
gravity, or by Heining and Aksel[60] for power–law liquids flowing down a sinusoidally
undulated incline.

At intermediate side wall distances the neutral curves neither show the character of
a typical long–wave instability nor the typical short–wave instability. In this transition
region we observe, that the neutral curves have an inflection point in the investigated
frequency range. The size of the transition region seems to be larger for smaller contact
angles θ.

Figure 4.16 shows the side wall distance dependence of the neutral points for both
investigated contact angles and two different excitation frequencies. Because the mea-
surements were done at slightly different excitation frequencies the data shown in Figure
4.14 have been interpolated linearly to provide comparability. In the middle of the chan-
nel we do not observe a contact angle dependence as a comparison of the Figures 4.14(a)
and 4.14(b) already revealed. Reducing ds leads at first to a monotonous increase of the
Reynolds number at which free surface waves are neither damped, nor amplified while
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travelling downstream, which means, that the flow is getting more and more stable due
to the retarding influence of the side wall and the pretensioning of the free surface coming
into play. Especially at low excitation frequency fe we observe the large amplitude and
range of the contact angle influence.
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Figure 4.16: Side wall distance dependence of the neutral points at two different contact angles θ
and excitation frequencies fe. Reprinted with permission from [70]. ©2011, American Institute
of Physics.

However, this monotonous behavior is broken very close to the side wall, although the
stabilizing effects of the side wall should be strongest here. This can also be seen in Figure
4.14: Especially in the case of uncoated side walls the neutral curve for ds = 5 mm is left of
the neutral curve for ds = 10 mm over the whole investigated excitation frequency range.
Obviously another (competing) effect, namely the presence of a velocity overshoot, gains
in importance there. When the film thickness is smaller than the critical film thickness
hc, which is about ∼ 1.3L for small contact angles θ, not only the film thickness in the
vicinity of the side wall is larger than the film thickness in the middle of the channel H,
but also a velocity overshoot is observed due to the capillary elevation (see section 4.1).
Both, the higher film thickness as well as the higher velocity at the free surface cause
the local Reynolds number Reloc(ds) = h(ds)us(ds)/ν to exceed the (global) Reynolds
number Re = 3V̇ /(2νB) at some ds (See Figure 4.17). In those regions the onset of
waves at the free surface is promoted and the flow tends to be more unstable. Due to the
more pronounced velocity overshoot and capillary elevation for smaller contact angles the
magnitude of the local Reynolds number overshoot is larger for θ = 8 ◦. That explains
why the peaks in the side wall distance dependence of the neutral points in Figure 4.16
are more pronounced for θ = 8 ◦ than for θ = 52 ◦. Compared to the stabilizing effects,
the destabilizing influence of the local Reynolds number overshoot seems to be of a much
shorter range.

4.2.2 Conclusions

We have shown that the neutral curve for the onset on a primary instability in gravity–
driven free surface flows depends strongly on the distance to the side wall of the channel.
In the studied system the flow in the vicinity of the side wall was always more stable
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Figure 4.17: Sketch of the side wall distance dependence of the local Reynolds number Reloc when
a velocity overshoot is present.

than the flow in the middle of the channel. A direct consequence is, that a flow may be
unstable at some regions, but shows other regions where the free surface waves coming
from the unstable regions are damped at the same time. Of course a flow has to be
treated as unstable as soon as first surface waves appear somewhere for most applications.
Nevertheless, we found that a coexistence of stable and unstable regions is possible, which
is important to understand the influence of the side walls on the instability of the flow
and the underlying mechanisms responsible.[70]

In the middle of the channel we observe a long–wave type instability as found by
Benjamin[46] and Yih[47] for a purely two–dimensional flow. When the distance to the
side wall is reduced the instability undergoes a transition from the long–wave type to a
short–wave type as it is typical for boundary layer flows[86, 87].

Georgantaki et al.[69] restricted their studies on the influence of the channel width on
the instability of film flow to the limit of very long waves. They find the ratio R∗, which
is the critical Reynolds number normalized with the critical Reynolds number of a film
flowing down a plane of infinite extent, to be a function of the channel width and the
Kapitza number. Since we have shown, that the most unstable wave may also have a finite
wavelength in near wall regions, we propose that a excitation frequency variation has to
be carried out to determine the ratio R∗ properly for all channel widths and Kapitza
numbers.

One has to consider different competing effects of the side walls on the instability
of the free surface, some tend to stabilize and some tend to destabilize the flow. The
additional no slip condition at the wall and the pretensioning of the free surface due to
capillary elevation tend to stabilize the flow. These effects are more pronounced when the
contact angle between the liquid and the side wall θ is small. For thin films the capillary
elevation leads to a velocity overshoot at the free surface and thus to an overshoot of the
local Reynolds number which promotes the onset of free surface waves.

Compared to the effects which tend to stabilize the flow, which are still significant up
to side wall distances of 17L, the influence of the local Reynolds number overshoot on the
stability of the free surface seems to be of rather short range.

Also the magnitude of the impact of the Reynolds number overshoot in the vicinity
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of the side wall is clearly of minor importance compared to the stabilizing effects for
the investigated flow configuration. But we remark that a further reduction of the film
height will amplify the magnitude of the Reynolds number overshoot until its influence
might overcome the stabilizing effects. Therefore, we speculate that there should exist a
critical film height h′c at which a flow initially becomes unstable close to the side walls
before the Reynolds number in the middle of the channel reaches the classical result of
Rec = (5/4) cotα. This would imply that a film of thickness h < h′c which is confined by
side walls initially becomes unstable at a smaller Reynolds number than a channel flow of
infinite extent (B →∞) with the same film thickness h. To prove this assumption that the
presence of side walls have an overall destabilizing influence on very thin gravity–driven
film flows further experiments have to be carried out.
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Chapter 5

Conclusions and outlook

In the present work we study viscous gravity–driven film flow down an inclined channel
numerically, analytically and experimentally. Particular focus lies on the influence of a
periodic two–dimensional sinusoidally undulated topography on the flow and the appear-
ance and disappearance of eddies in the valleys of the undulation. The corresponding
results are presented in chapter 3. Chapter 4 deals with the question how the presence of
side walls and different contact angles between the liquid and the side wall influences the
flow structure, the overall volume flux and the physical stability of the flow. The main
findings are summarized in the following.

First, we consider numerically and experimentally a steady flow down an inclined pe-
riodic two–dimensional sinusoidally undulated topography. We find, that the free surface
undergoes a sharp transition from a strongly anharmonic shape with a strong indentation
just above the valleys of the undulation to a smooth harmonic shape as the Reynolds num-
ber is increased above a transition Reynolds number. At this transition Reynolds number
a hydraulic jump which has been established continuously with increasing Reynolds num-
ber disappears abruptly because the flow changes its type from a sub- to a supercritical
flow in terms of the Froude number. Furthermore, we find that eddies, which are formed
with increasing Reynolds number in the valleys of the underlying undulation, disappear
again just in the vicinity of the transition Reynolds number. However, the eddies are
suppressed when the hydraulic jump is present below the transition Reynolds number as
well as above it. Hence, we conclude, that not the transition itself is responsible for the
suppression of the eddy structures, but an amplification of the free surface amplitude,
which comes along with the transition and is well known as a resonance phenomenon in
literature.

Such systematic suppression of eddies is of particular relevance to open up new opti-
mized process windows for many industrial applications where their formation is desired
or undesired, depending on the purpose, since they have significant influence on macro-
scopic system properties. In heat exchanger applications for example the formation of
such eddy structures has a major impact on the convective heat transport in the liquid
while they lead to drag reduction, which might be useful for bearings or any kind of
material transport. In environmental systems particles captured in the recirculating flow
are cut off from subsequent delivery of potentially necessary nutrient substances and so
is the wall which is in contact with the eddy. The possibility to generate or destroy eddy
formations in the valleys of an undulation just by damping or exciting resonance seems
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to be a good framework in general, different from applying external forces to the system.

In the second part of the present work the influence of side walls and the contact
angle between the liquid there on the velocity profile and the flow rates has been studied
experimentally and theoretically. In the case of a wetting liquid a capillary elevation is
formed at the side walls, which may lead to a velocity overshoot in the vicinity of the
wall. While this velocity overshoot leads to an increase of the transported liquid in the
channel an additional no–slip condition at the side walls has a contrary influence on the
flow rate. Here, a criterion for the first onset of a velocity overshoot is presented, as
well as a criterion where the influences of the velocity overshoot and of the additional
no–slip condition on the overall volume flux just cancel each other. As long as they do
not cancel each other, neglecting the three–dimensionality of the flow would lead to an
over– or underestimation of the flow rate, what becomes especially important in the case
of a very thin film, where most liquid is transported in the capillary corner of the channel.

In addition to the steady flow case findings for the case of a slowly draining flow
are presented. Experiments show, that the free surface shape of the liquid can not be
modeled by a series of quasi–steady states, even if a dynamic contact angle is taken into
consideration, although the settling speed of the liquid is orders of magnitude smaller than
the mean flow velocity. Time dependent numerical simulations of the slowly draining flow
case revealed an indentation of the free surface near the side walls, which might promote
film rupture in industrial thin film applications.

Finally, we investigate experimentally the influence of the presence of side walls on the
primary instability of the free surface of the flow and find, that the neutral stability curve
shows a strong dependence on the distance to the side wall and on the wetting properties
of the liquid. In the middle of the channel, far away from the side walls, we observe a
long–wave type instability of the free surface, which is independent of the contact angle
between the liquid and the side wall. However, when the side wall distance is reduced the
type of the instability changes to a short–wave type instability, as it is well known from
boundary layer flows at much higher Reynolds numbers, and shows a strong contact angle
dependence. We find, that one has to consider different competing effects of the side walls
on the stability of the flow. The pretensioning of the free surface due to the capillary
elevation and the additional no–slip boundary condition at the side wall tend to stabilize
the flow and are sensible up to large side wall distances of about 17 times the generalized
capillary length. The formation of a velocity overshoot in the capillary elevation, on the
contrary, tends to destabilize the flow, because the local Reynolds number in the near wall
region can exceed the (global) Reynolds number of the channel flow. However, compared
to the stabilizing effects coming from the side wall the destabilizing effect of the side walls
seems to be of rather short range and plays a minor part only for the investigated flow
configuration. Thus, the presence of side walls leads to an overall stabilization of the
system studied here. Nevertheless, we speculate that for even thinner films the increasing
magnitude of the velocity overshoot might cause the destabilizing effect to win over the
stabilizing effects, which would implicate that very thin films bounded by side walls would
be more unstable than the corresponding films of infinite extent.

In industrial applications which deal with very thin films like curtain coating processes
for example, one would like to optimize the process in terms of a fast processing and
an effective exploitation of the coating material. Since side walls lead to a nonuniform
coating at the edges one usually cuts the edges of the coated material away to get a
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uniformly coated result. Here, we show that especially in thin films most of the material
is transported just where edges are located when the contact angle of the liquid at the side
wall is below 90◦. The speed of processing in industrial applications is often limited by
the stability of the flow, which is also strongly affected by the side walls and the wetting
properties of the liquid. Therefore, we suggest that the contact angle should be considered
for the design of such devices since it holds some relevant potential for optimization in
coating and other thin film applications.

To summarize, the present work deals with the influence of a corrugated topography
and of side walls on film flows. Nevertheless, several aspects concerning the stability of
gravity–driven film flows remain open questions. Since our experiments on the influence
of the side wall on the stability of the flow were restricted to side wall distances of 5 mm,
we suggest a full numerical study of the Navier–Stokes equations involving extensive pa-
rameter studies especially for the case of very thin films to get a closer look into the liquid
near the side wall and thus a better understanding of the underlying physics. However,
we remark, that the computational effort for such simulations will quickly become a key
issue, since for the investigation of convective instability it is necessary to simulate rather
large domains which are fully three–dimensional and time dependent on a rather precise
mesh to resolve capillary effects properly. In addition to the question how side walls influ-
ence the flows’ stability, the flow over substrates with finite corrugations has been studied
by several authors over the last years theoretically as well as experimentally. However,
the question how a formation of eddies in steep substrate undulations might influence
the stability of the flow is very interesting but still open and is worth to be addressed in
future works.
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List of symbols

(x, y, z) spatial coordinates
(x̃, ỹ, z̃) dimensionless spatial coordinates
(êx, êy, êz) unit vectors in x-, y- and z-direction
(X,Y, Z) spatial coordinates in the reference frame of the traverse
(x′, y′, z′) spatial coordinates in the reference frame of the screen
(u, v, w) velocity components in x-, y- and z-direction
(ũ, ṽ, w̃) dimensionless velocity components in x-, y- and z-direction
u velocity vector
t time
ρ, ν, η, σ fluid properties: density, kinematic viscosity,

dynamic viscosity and surface tension
n outer normal unit vector
T stress tensor
I identity matrix
g, g̃ dimensional and dimensionless acceleration of gravity
g, g̃ dimensional and dimensionless gravity vector
p, p̃ dimensional and dimensionless pressure
p0, p̃0 dimensional and dimensionless ambient pressure
a, λ amplitude and wavelength of the channel undulation
α channel inclination angle
B channel width

b, b̃ dimensional and dimensionless contour of the channel topography
l1, l2 laser beam travel distances

h, h̃ dimensional and dimensionless position of the free surface

d, d̃ dimensional and dimensionless film thickness
hn, dn Nusselt film thickness

H, H̃ dimensional and dimensionless film height in the middle of the
channel

Hm measurement height
us free surface velocity
us,m free surface velocity in the middle of the channel
umax maximal free surface velocity
ū mean flow velocity
ūn mean velocity of a Nusselt film flow
uloc local free surface velocity
ymax y-location of the maximal free surface velocity
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Re (global) Reynolds number
Re2D,Re(a) Reynolds number for an infinite broad channel

Re(b) Reynolds number of a flow with side walls without

capillary elevation
Re(d) Reynolds number of the capillary corner flow

Reloc local Reynolds number
Res Reynolds number for the settling of a draining film
Rec critical Reynolds number
Rec,2D critical Reynolds number for a plane channel of infinite extent
Re1,Re2,Re3 Reynolds numbers where an eddy appears or disappears
R∗ normalized critical Reynolds number
Ka Kapitza number
Bo Bond number
Fr Froude number

q̇, V̇ flow rate, volume flux

V̇2D volume flux of a two dimensional flow without side–walls

V̇θ=90◦ volume flux of a flow with side–walls but without
capillary elevation

θ static contact angle between liquid and side–walls
θd dynamic contact angle between liquid and side–walls
T temperature
used sedimentation speed
rs, ρs sphere radius and density
f frequency
fe excitation frequency
fmin minimal excitation frequency

V̇max maximal volume flux
Remax maximal Reynolds number
hmax maximal film thickness
λmax maximal wavelength
us,max maximal free surface velocity
ds side–wall distance
pi(t), i ∈ {1, 2} laser spot positions of laser 1 and laser 2
pi(t), i ∈ {1, 2} absolute values of the laser spot positions of laser 1 and laser 2
px′,i, py′,i, i ∈ {1, 2} x′- and y′-positions of laser 1 and laser 2
p̂i(f), i ∈ {1, 2} Fourier transformed laser spot positions of laser 1 and laser 2
p̂i(f), i ∈ {1, 2} absolute values of the Fourier transformed laser spot positions

of laser 1 and laser 2
p̂x′,i, p̂y′,i, i ∈ {1, 2} Fourier transformed x′- and y′-positions of laser 1 and laser 2
δpi, i ∈ {1, 2} deflection of laser 1 and laser 2 on the screen
∆p̂12 difference of peak heights of the signals p̂1 and p̂2
∆h,∆h̃ dimensional and dimensionless height of the capillary elevation

at the side–walls
ζ(y) capillary film elevation
L, l capillary length, capillary range
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h̃t, h̃c dimensionless transition film thickness, dimensionless critical
film thickness

h′c critical film height
r combined dimensionless parameter
rc critical ratio
κ curvature of the free surface
R radius of curvature of the free surface
ξ dimensionless steepness parameter
k dimensionless wave number
pr reference pressure
c1, c2 fit parameters
mmax maximal slope of a travelling free surface wave
A amplitude of a travelling free surface wave
λw wavelength of a travelling free surface wave
Dn integration constants
cn Fourier coefficient constants for particular solution of the

velocity field
dm inhomogeneity of the set of algebraic equations
En integration constants
Gnm matrix for set of algebraic equations
ξd grade of dispersity of the particle size distribution
x50 median particle size
x16, x84 particle sizes
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und effektives wissenschaftliches Arbeiten überhaupt erst ermöglicht wurde. Weiterhin
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