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PREFACE

This thesis is the product of a period of four years of mathematical study, research,
and learning, which started in April of 2008 and lasts to the day. Looking back, I can
say that it hasn’t been an easy journey from the first discussions of potential research
problems with my forever dedicated advisor Prof. Dr. Thomas Peternell to putting the
finishing touches to the text. Now, however, I am very happy with what I can offer
you for a read.

There are many people to thank without whom this work could never have come
into existence. First and foremost, I would like to express my cordial thanks to
Thomas Peternell for seeing this project through calmly, professionally, spiritedly,
free-spiritedly, and supportively from beginning to end, for meeting my partly un-
conventional suggestions and ideas in an open-minded and unbiased way, for letting
me force my “bureaucratic” mathematical style upon our work, albeit this meant
compromising on his own original goals, for offering me a position in his group in the
first place and opening so many doors within the mathematical cosmos, for shielding
me from tedious non-research duties and letting our collaboration evolve over time
into a great partnership.

I would like to thank the “Deutsche Forschungsgemeinschaft (DFG)” for financing
the vast majority of my work through the “Forschergruppe 790 – Classification of
Algebraic Surfaces and Compact Complex Manifolds”; the importance of the DFG
as a financier and promoter for the on-going production of wealthy mathematical
research in Germany can by no means be underestimated. Moreover, would I like to
thank the members of the Forschergruppe who constantly invest considerable shares
of their time and energy into keeping our group alive.

I would like to thank Prof. Dr. Georg Schumacher in Marburg who, during the winter
of 2010–2011, very kindly and vigorously conversed with me about a possible L2

cohomology approach towards what have become the results of Chapter 1; unfor-
tunately, these ideas are not part of the final thesis as I could not bring them to a
favorable conclusion. I would like to thank Professor Keiji Oguiso of Osaka University
for explaining several aspects of the theory of irreducible symplectic manifolds to
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me during a summer school in Poland back in 2008 as well as during his stays in
Bayreuth and for always responding to my e-mailed questions since.

I am very much indebted to my “early” teachers of mathematics. Let me mention
two people specifically. Firstly, it was Albrecht Kliem who fostered and inspired me
in a plethora of ways from my first participation at his “Landeswettbewerb Mathe-
matik Bayern” onwards through several years of high school filled with mathematical
competitions and extracurricular mathematical seminars; his encouragement and con-
fidence were (and are) invaluable. Secondly, I am grateful to Prof. Dr. Gerhard Rein, my
first and at the same time most influential university teacher, whose perfect lectures
in real and complex analysis had (and have) a lasting effect on my mathematical style
and thinking, most certainly beyond his own knowledge.

Moving on from the professional to the more personal level, I would like to thank
my dear colleagues Florian Schrack and Tobias Dorsch. I would like to thank both
of you for discussing and debating mathematics with me, for suggesting solutions
and offering advice, and for enduring my pronounced need to molest you with
topics like why I feel that derived categories (among other things) do not exist. Yet,
what is more, I would like to thank you for enduring my pronounced need to chat
non-mathematically, for introducing me to gyokuro and amaranth (respectively), for
making my work days fun, and for being friends rather than mere office mates.

Finally, I would like to thank those four people who make my life worthwhile:
Julia, Malte, Mom, Dad. Jules: even though our ways have parted a certain while ago,
let me put this in present tense and say that “when I’m with you, I am calm, a pearl
in your oyster; head on my chest, a silent smile, a private kind of happiness. You see
giant proclamations are all very well, but our love is louder than words”(1). M: what
we have is unreal—thanks for sticking around all these years! Mom & Dad: your
bringing me up in a spirit of freedom, love, stability, and unconditional support is the
basis for everything. Love, hugs, and kisses to all of you.

April 11, 2012
Bayreuth Tim

(1)To all GuttenPlag sort of people out there: you will find this on Google . . . (told you so)
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INTRODUCTION

Symplectic complex spaces. — Let X be a complex space (resp. a finite type scheme
over the field of complex numbers). Then we say that X is symplectic when X is
normal and there exists a symplectic structure on X. Here, σ is called a symplectic
structure on X when the following assertions hold:

(i) σ is a closed Kähler 2-differential on X over Xreg, i.e., σ is an element of Ω2
X(Xreg)

being sent to zero by the mapping

(d2
X)Xreg : Ω2

X(Xreg) −→ Ω3
X(Xreg).

(ii) The canonical image of σ in Ω2
Xreg

(Xreg) is nondegenerate on Xreg; our preferred
way of formalizing the nondegeneracy, even though uncommon, is to require that the
composition of sheaf maps on Xreg

ΘXreg
// ΘXreg ⊗OXreg

id⊗σ
// ΘXreg ⊗Ω2

Xreg
// Ω1

Xreg ,

where the first and last arrows signify respectively the right tensor unit for the tangent
sheaf on Xreg and the contraction morphism, be an isomorphism.

(iii) For all resolutions of singularities f : X̃ → X, there exists σ̃ ∈ Ω2
X̃
(X̃) such

that we have
f ∗(σ) = σ̃| f−1(Xreg) ∈ Ω2

X̃( f−1(Xreg)).

Conditions (i) and (ii) are the common conditions of closedness and nondegeneracy
which contain, so to speak, the heart of symplecticity. Condition (iii) says that σ

extends to a global 2-differential when pulled back along a resolution of singularities;
this should be seen as a property moderating the nature of the singularities of X.

We modeled our above definition of symplecticity for complex spaces (resp. fi-
nite type C-schemes) after two sources: Firstly, A. Beauville (probably reverting to
[70]) introduced a notion of “symplectic singularities” in [3, Definition 1.1]. In fact,
Beauville’s concept of a symplectic singularity is precisely the localization of our
(global) notion of symplecticity, that is, one says that X has a symplectic singularity at
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p when there exists an open neighborhood U of p in X such that the open subspace
X|U of X is symplectic. Secondly, in [60], Y. Namikawa defines X to be a projective
symplectic variety when X is a normal, projective complex algebraic variety with ra-
tional Gorenstein singularities such that there exists σ ∈ Ω2

X(Xreg) satisfying the
nondegeneracy condition (ii). Moreover, in [61], Namikawa calls X a symplectic variety
when X is a symplectic (in our sense), compact complex space of Kähler type.

In our view, historically, the interest in either one of the mentioned forms of
symplecticity for finite type C-schemes or complex spaces was triggered by the
interest in symplectic complex manifolds, more specifically, the interest in “irreducible
symplectic” complex manifolds. Let us briefly review this notion. For us, a complex
manifold is by definition a smooth complex space. Therefore the already defined
concept of symplecticity applies. Note that in case X is a complex manifold, a
symplectic structure on X is (in particular) a global 2-differential on X, i.e., an element
of Ω2

X(X), since Xreg = X. Besides, when X is a complex manifold, the extension
condition (iii) is fulfilled for any σ ∈ Ω2

X(X), so that one may drop it when working
exclusively with manifolds. Thus our definition of symplecticity recovers the original
definition of symplecticity for complex manifolds established in the 1970s and early
1980s by F. Bogomolov (cf. [6] and [7]) and A. Beauville (cf. [2, “Définition” in § 4]):
a symplectic structure on a complex manifold is nothing but a closed, everywhere
nondegenerate holomorphic 2-form on it. Now following Beauville’s terminology
in loc. cit., Proposition 4, a compact complex manifold of Kähler type is said to be
irreducible symplectic when it is simply connected and there exists, up to scaling, a
unique symplectic structure on it. An easy argument shows that for X of strictly
positive dimension, i.e., dim(X) > 0, the uniqueness condition on the symplectic
structure may be replaced by requiring that

dimC(Ω2
X(X)) = 1.

In our opinion, the most compelling reason for considering irreducible symplectic
manifolds as interesting or special is presented by Beauville’s and Bogomolov’s
decomposition theorem (cf. [2, Théorème 2]), which exhibits irreducible symplectic
manifolds as one of two nontrivial building blocks of compact Kähler manifolds with
vanishing first real Chern class.

Theorem 1 (Beauville-Bogomolov Decomposition). — Let X be a connected, compact,
Kähler type complex manifold such that c1(X)R = 0 in H2(X, R). Then there exists a
unique natural number k and, up to permutation and isomorphism, unique finite (possibly
empty) tuples (Y1, . . . , Yr) and (Z1, . . . , Zs) of simply connected Calabi-Yau manifolds of
dimension ≥ 3 and irreducible symplectic manifolds of dimension ≥ 2, respectively, such that
the universal cover of X is isomorphic to the product

Ck ×
r

∏
i=1

Yi ×
s

∏
j=1

Zj.
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Moreover, there exists a complex torus T and a finite étale cover X′ → X such that

X′ = T ×
r

∏
i=1

Yi ×
s

∏
j=1

Zj.

For the purposes of Theorem 1, a Calabi-Yau manifold is understood to be a compact,
connected complex manifold Y of Kähler type with trivial canonical bundle and
H0(Y′, Ωp

Y′) = 0 for all 0 < p < dim(Y) and all finite étale covers Y′ → Y.
From the moment Theorem 1 had been proven, irreducible symplectic manifolds

became popular objects of study, and so they remain to the day. Possibly the most
striking fact about the on-going research is that the producing of “new” examples
of irreducible symplectic manifolds appears to be the most intractable problem of
all. Let us elaborate a little on this point. It is clear from the start that there exist
no odd dimensional irreducible symplectic manifolds. In the lowest nontrivial di-
mension the picture is very clear, too. A compact, connected complex manifold of
dimension 2 admits, up to scaling, a unique symplectic structure if and only if its
canonical bundle (or sheaf) is trivial. So, the irreducible symplectic manifolds of
dimension 2 are precisely the K3 surfaces. In particular, we see that any two irre-
ducible symplectic manifolds of dimension 2 are diffeomorphic, as a matter of fact,
even deformation equivalent (cf. [46, Theorem 13]). In higher dimensions, our knowl-
edge can be subsumed as follows. For any even natural number n > 2, Beauville
constructs irreducible symplectic manifolds Hn and Kn of dimension n (starting from
a K3 surface and a 2-dimensional torus, respectively) such that b2(Hn) = 23 and
b2(Kn) = 7 (cf. [2]). Due to the discrepancy in the Betti numbers, Hn and Kn are not
homotopically equivalent, whence not homeomorphic, whence not diffeomorphic,
whence not deformation equivalent. Moreover, Hn and Kn are not bimeromorphically
equivalent as two bimeromorphically equivalent compact complex manifolds with
trivial canonical bundles have the same second Betti number. K. O’Grady constructed
in [63] and [64] irreducible symplectic manifolds M10 and M6 of dimensions 10 and
6, respectively, such that b2(M10) ≥ 24 and b2(M6) = 8. It is a standing question
whether there exists an irreducible symplectic manifold (of dimension ≥ 4) which
is not deformation equivalent to any of the mentioned examples. On opposite end,
examples seeming rather scarce, one might ask whether, for any given (even) nat-
ural number n (≥ 4), there are only finitely many classes of irreducible symplectic
manifolds of dimension n modulo deformation equivalence. For these as well as
further questions and conjectures circling around the topic of irreducible symplectic
manifolds, we refer to Beauville’s beautiful “problem list” [4].

Now singular symplectic complex spaces (or else C-schemes) occur naturally in the
constructions of irreducible symplectic manifolds. For instance, when S is a K3 surface
(either in the analytic or the algebraic sense) and r is a natural number (≥ 2), then
the Douady space of 0-dimensional closed subspaces of length r of S (cf. [14]) or the
r-th punctual Hilbert scheme of S (cf. [34]), denoted S[r] or Hilbr

S/C, is an irreducible
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symplectic manifold of dimension 2r by [2, Théorème 3], yielding precisely the H2r

alluded to above. In order to prove this assertion, Beauville utilizes, in loc. cit., the
canonical morphism f : S[r] → S(r), where S(r) stands for the r-th symmetric power
of S. Concretely, he verifies that, for any symplectic structure σ on S, a restriction of
the 2-form

pr∗0(σ) + · · ·+ pr∗r−1(σ)

on the r-fold self-product of S descends to a symplectic structure on the regular
locus of S(r). In addition, one observes that f is a resolution of singularities such
that the pullback along f of the symplectic structure on (S(r))reg admits an extension
to a symplectic structure on all of S[r]. From this we conclude that S(r) is indeed a
nonsmooth symplectic complex space (or else complex algebraic variety). O’Grady’s
constructions in [63] and [64] feature similar natural occurances of singular symplectic
spaces. In [63], for instance, O’Grady considers the moduli space M of rank-2 Gieseker
semistable, torsion-free sheaves with Chern classes c1 = 0 and c2 = 4 on a (suitably)
polarized K3 surface. He shows that M is a projective C-scheme whose regular locus
carries a symplectic structure and manages to construct a resolution of singularities
f : M̃→ M such that the pullback along f of a symplectic structure on Mreg extends
to a symplectic structure on M̃. Therefore, we see that M is a (singular) symplectic
C-scheme.

Motivated by the examples of the previous paragraph, we make the following
observation. When X is a normal complex space (resp. a normal complex algebraic
variety) and f : X̃ → X is a resolution of singularities such that X̃ is a symplectic
manifold, then X is a symplectic complex space (resp. algebraic variety). The proof
is clear. A resolution f like the above is called a symplectic resolution. In the business
of trying to fabricate new irreducible symplectic manifolds, symplectic resolutions,
respectively singular spaces admitting symplectic resolutions, are needless to say
very desirable. Mind, however, that our definition of symplecticity allows for much
more general spaces. In fact, we like to think about symplectic spaces as being spaces
with well-behaved singularities whose regular loci admit symplectic structures. In
the algebraic context the following result due to Namikawa makes this intuition
precise (cf. [61, Theorem 6]): A normal, projective complex algebraic variety X is
symplectic if and only if X has rational Gorenstein singularities and there exists a
nondegenerate (e.g., in the sense of condition (ii) being satisfied) 2-form σ on Xreg.
Putting it differently, on a projective variety the extension condition (iii) and, as a
result, also the closedness condition (i) come for free if we know a priori that the
singularities of our variety are mild. For us, the chief reason for allowing spaces
not resolvable to a symplectic manifold as symplectic spaces lies in the fact that it is
spaces like this which play the role of irreducible symplectic manifolds in conjectural
generalized versions of the Beauville-Bogomolov Decomposition Theorem (cf. e.g.,
[70, Open Problems, § 6], [28]).
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The local Torelli theorem. — The starting point of our research was Namikawa’s
paper [61], and especially Theorem 8 thereof. We felt that in order to study irreducible
symplectic varieties (whatever that was to mean precisely), one had to gain, in the first
place, a thorough understanding of the (local) deformation theory of these varieties.
Trying to write up a rigorous proof for the assertions made in Theorem 8 (3) of
loc. cit.—unfortunately Namikawa only states that the arguments should be similar
to Beauville’s classical ones—, we encountered several problems. Our foremost
problem was the lack of an adequate extension or analogue of Griffiths’s theory of
period mappings for families of compact Kähler manifolds, as developed in [30, II.1],
to either the context of families of (possibly singular) compact Kähler spaces or the
context of (possibly noncompact) Kähler manifolds. When we discovered that N. Katz
and T. Oda construct, in [44], a canonical flat connection on the relative algebraic de
Rham module H n( f ) := Rn f∗(Ω

q
f ) for any smooth morphism of k-schemes f : X → S

with smooth base, k being an arbitrary field and n an integer, we knew we had found
the right angle to tackle our problem. As a matter of fact, by transferring Katz’s and
Oda’s ideas from loc. cit. and [43] to the analytic category, we were able to devise a
theory of period mappings of Hodge-de Rahm type for families of (not necessarily
compact) complex manifolds which, in a sense, constitutes a generalization Griffiths’s
theory. In turn, employing our theory of period mappings, we achieved to prove a
local Torelli theorem for symplectic varieties X which, in opposition to Namikawa’s
[61, Theorem 8 (3)], does not rely on the projectivity nor the Q-factoriality of X. We
rather think that our theorem clearly exhibits the interaction of Q-factoriality with
the topology of the local deformations of a projective symplectic variety.

Let g : Y→ S be a submersive (yet not necessarily proper) morphism of complex
manifolds. Fix integers n and p as well as an element t ∈ S. Assume that the relative
algebraic de Rahm module H n(g) is a vector bundle, i.e., a locally finite free module,
on S which is compatible with base change in the sense that, for all s ∈ S, the de
Rham base change map

φn
g,s : C⊗OS,s

(H n(g))s −→H n(Ys)

is an isomorphism of complex vector spaces. In Chapter 1, we define a map of sheaves
on Stop,

∇n
GM(g) : H n(g) −→ Ω1

S ⊗S H n(g),

going by the name of Gauß-Manin connection, in the very spirit of Katz-Oda [44]. We
observe that the kernel of ∇n

GM(g) makes up a locally constant sheaf of CS-modules
on Stop whose stalks are isomorphic to the n-th de algebraic Rham cohomologies of
the fibers of g via the inclusion H ⊂H n(g) and the de Rham base change maps φn

g,s.
That way, in case S is simply connected, one constructs a period mapping P

p,n
t (g) by

transporting the Hodge filtered pieces FpH n(Ys) ⊂ H n(Ys) to H n(Yt) along the
global sections of H. When we require the relative Hodge filtered piece FpH n(g) to
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be a vector subbundle of H n(g) on S which is compatible with base change (in the
appropriate sense), the period mapping is a holomorphic map

P
p,n
t (g) : S −→ Gr(H n(Yt)),

where Gr(V) denotes the Grassmannian, regarded as a complex space, of a finite
dimensional complex vector space V.

Theorem 2. — Let f : X→ S be a proper, flat morphism of complex spaces such that S is a
complex manifold and, for all s ∈ S, the fiber Xs has rational singularities, is of Kähler type,
and satisfies codim(Sing(Xs),Xs) ≥ 4. Define g : Y→ S to be the restriction of f to the set
of points of X at which f is submersive, and put

I := {(ν, µ) ∈ Z× Z : ν + µ ≤ 2}.

a) For all (p, q) ∈ I, the Hodge module H p,q(g) := Rqg∗(Ω
p
g) is a locally finite free

module on S and compatible with base change.
b) The Frölicher spectral sequence of g degenerates in entries I at sheet 1 in Mod(S).

Now let f and g be as in Theorem 2. Then as a corollary of the theorem, we see
that, for all integers n ≤ 2, the de Rahm module H n(g) is a vector bundle on S and
compatible with base change; moreover, for all integers p, the Hodge filtered piece
FpH n(g) is a vector subbundle of H n(g) on S and compatible with base change.
Thus, in case S is simply connected, the period mappings Pp,n

t (g) are defined for all p
and n as above and all t ∈ S. This enables us to formulate the following local Torelli
theorem for irreducible symplectic spaces.

Theorem 3 (Local Torelli, I). — Let X be a compact, symplectic complex space of Kähler
type such that codim(Sing(X), X) ≥ 4 and dimC(Ω2

X(Xreg)) = 1. Let f : X → S be a
proper, flat morphism of complex spaces and t ∈ S such that X ∼= Xt and f is semi-universal
in t. Assume that S is a simply connected complex manifold and that the fibers of f are of
Kähler type, have rational singularities and singular loci of codimension ≥ 4. Then the period
mapping

P2,2
t (g) : S −→ Gr(H 2(Yt)),

where g : Y→ S denotes the restriction of f to the set of points of X at which f is submersive,
is an immersion in codimension 1 at t.

As the period mapping P2,2
t (g) which arises in Theorem 3 might not be all too

tangible at first sight, we would like to enrich the theorem by drafting a supplement
to it. For that matter, let f : X→ S be just any proper morphism of complex spaces
with fibers of Kähler type (or, more generally, fibers of Fujiki class C ) and simply
connected base. Let n be an integer and suppose that the sheaf Rn f∗(CX) is locally
constant on Stop. Then, for all s0, s1 ∈ S, we obtain an isomorphism of complex vector
spaces

φs0,s1 : Hn(Xs0 , C) −→ Hn(Xs1 , C)
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by passing through the global sections of Rn f∗(CX) and the base change maps

(Rn f∗(CX))s −→ Hn(Xs, C),

which are bijective due to the properness of f . Further on, the cohomologies of the
fibers of f carry mixed Hodge structures by [20, (1.4)] (see also [12], [13]). So, for any
integer p and any t ∈ S, we may define a period mapping

P
p,n
t ( f )MHS : S −→ Gr(Hn(Xt, C)), s 7−→ φs,t[FpHn(Xs)],

where FpHn(Xs) ⊂ Hn(Xs, C) denotes the p-th piece of the Hodge filtration of the
mixed Hodge structure on the cohomology in degree n of Xs.

Observe that in the situation of Theorem 3, the sheaf R2 f∗(CX) on Stop need not be
locally constant; the dimension of H2(Xs, C) might indeed jump when moving from
s = t to a nearby point in S. Therefore generally we cannot speak of P2,2

t ( f )MHS. If,
however, we are lucky and R2 f∗(CX) is a locally constant sheaf on Stop, the following
theorem applies.

Theorem 4 (Local Torelli, II). — Let X be as in Theorem 3. Let f : X→ S be a proper, flat
morphism of complex spaces and t ∈ S such that X ∼= Xt. Assume that S is a simply connected
complex manifold and that the fibers of f are of Kähler type, have rational singularities and
singular loci of codimension ≥ 4. Define g : Y → S as in Theorem 3 and assume that the
tangent map

Tt(P
2,2
t (g)) : TS(t) −→ TGr(H 2(Yt))

(F2H 2(Yt))

is an injection with 1-dimensional cokernel. Moreover, assume that R2 f∗(CX) is a locally
constant sheaf on Stop.

a) The period mapping P := P2,2
t ( f )MHS is a holomorphic map

P : S −→ Gr(H2(Xt, C)).

b) When QXt ⊂ Gr(1, H2(Xt, C)) denotes the zero locus of the Beauville-Bogomolov
form of Xt (see below), then P factors uniquely through a morphism of complex spaces

P : S −→ QXt ,

which is a biholomorphism at t.
c) The mapping

(∗) H2(X, C) −→ H2(Xreg, C)

induced by the inclusion Xreg ⊂ X is a bijection.

In view of Namikawa’s approach towards a local Torelli theorem in [61], it seems
quite remarkable that in Theorem 4 we do not presuppose the morphism of complex
vector spaces (∗) to be an isomorphism, but rather derive this fact as a consequence.
Turning the argument around, we conclude that given a symplectic space X as
in Theorem 3 or Theorem 4 such that H2(X, C) does not agree with H2(Xreg, C)

(dimensionwise), there exists a deformation of X which changes the topology of X.



8 INTRODUCTION

On the other hand, when H2(X, C) and H2(Xreg, C) do agree, Namikawa’s results
in [62] suggest, at least in case X is projective, that any deformation of X is locally
topologically trivial.

The Fujiki relation. — Let X be a compact, connected, and symplectic complex
space such that Ω2

X(Xreg) is 1-dimensional over the field of complex numbers. Then,
generalizing Beauville’s definition in [2, p. 772], we introduce a complex quadratic
form qX on H2(X, C), called the Beauville-Bogomolov form of X, by first passing to a
resolution of singularities X̃ → X and then using the assignment

ã 7−→ r
2

∫
X̃

(
wr−1wr−1 ã2

)
+ (r− 1)

∫
X̃

(
wr−1wr ã

) ∫
X̃

(
wrwr−1 ã

)
for ã ∈ H2(X̃, C), where w ∈ H2(X̃, C) is the class of a closed 2-differential σ̃ ∈ Ω2

X̃
(X̃)

which is normed in the sense that ∫
X̃

wrwr = 1

and r denotes the unique natural number satisfying 2r = dim(X); note that we have
r 6= 0 in consequence.

The following result embodies an extension of A. Fujiki’s classical [21, Theorem
4.7] to the context of singular symplectic spaces.

Theorem 5 (Fujiki Relation). — Let X be a compact, connected, and symplectic complex
space of Kähler type such that dimC(Ω2

X(Xreg)) = 1 and codim(Sing(X), X) ≥ 4. Then,
for all a ∈ H2(X, C), we have ∫

X
a2r =

(
2r
r

)
· (qX(a))r,

where r denotes half the dimension of X.

The validity of Theorem 5 for irreducible symplectic manifolds X has proven a
valuable asset in a number of efforts to deduce further properties of such X, e.g., in
Matsushita’s work on fiber space structures (cf. [53], [54]), so that we hope Theorem 5
presents a fertile ground for further research in the singular realm too.

Organization of the text. — Our work comprises three chapters labeled “1”, “2”,
and “3” as well as two supplementary chapters (or “appendices”) labeled “A” and
“B”. In Chapter 1, we explain our theory of period mappings of Hodge-de Rham
type for families of (not necessarily compact) complex manifolds, which we have
already touched upon above. In Chapter 2, we work out circumstances under which
the Frölicher spectral sequence of a submersive morphism of complex manifolds
g : Y→ S degenerates in specific entries. We address the question of the degeneration
in an entry (p, q) ∈ Z × Z in close conjunction with the question of whether the
corresponding Hodge module H p,q(g) is locally finite free on S and base change
compatible. Note that in Chapter 2, we prove the above Theorem 2, which is essential
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in order to apply the results on period mappings of Chapter 1 to the study of symplec-
tic spaces in Chapter 3. In Chapter 3, we deal with symplectic complex spaces; we
prove the Local Torelli of Theorem 3 together with its add-on, Theorem 4. Moreover,
we establish the Fujiki Relation of Theorem 5.

Chapter A shall lay the foundations for the formulation of unambiguous statements
and rigorous proofs in the bulk of the text (which is made up of Chapters 1, 2, and
3). Thus, in Chapter A, we basically fix terminology and notation; we will not prove
anything there. Note that logically, Chapter A ought to be placed in front of Chapters
1, 2, and 3 rather than after. Nevertheless, have we decided to supply Chapter A as
an appendix so as not to bore readers who want to get right down to business.

In our final Chapter B, we show, for one thing, how to conceptually construct the
various base change maps that are used throughout Chapters 1, 2, and 3; for another,
we apply methods from mixed Hodge theory in order to establish certain properties
of complex spaces with rational singularities. Beware that, as appendices, Chapters A
and B are not really intended to be read through in one go. We rather suggest that the
reader consult the appendices upon wish or need while studying a different part of
the text.

Each of Chapters 1, 2, and 3 is virtually self-contained—neglecting occasional
references to the appendices (and references to outside sources of course); it should
be possible to read any one of these three chapters without having a particular
knowledge of the other two. In fact, the sole logical (meta-)dependence between
Chapters 1, 2, and 3 lies in Chapters 1 and 2 (individually) flowing into Chapter 3.
We have tried to design this logical dependence of Chapter 3 on Chapters 1 and 2 as
sharp-edged and condensed as possible, so that essentially only for the deduction of
the Local Torelli one has to invoke one theorem from each of the latter two chapters.





CHAPTER 1

PERIOD MAPPINGS FOR FAMILIES OF COMPLEX
MANIFOLDS

Consider a family of compact complex manifolds f : X → S, by which we mean
that X and S are complex manifolds and f is a proper, submersive holomorphic
map between them. Then by Ehresmann’s fibration theorem, f : X → S is a locally
topologically trivial family (as a matter of fact, even a locally C ∞ trivial family). In
particular, for any natural number (or else integer) n, we know that Rn f∗(CX) is a
locally constant sheaf on the topological space Stop such that, for any s ∈ S, the “base
change map”

(Rn f∗(CX))s −→ Hn(Xs, C)

is a bijection. Let us assume that the complex manifold S is simply connected. Then
Rn f∗(CX) is yet a constant sheaf on Stop and, for all s ∈ S, the canonical mapping
from the set of global sections (Rn f∗(CX))(S) to the stalk (Rn f∗(CX))s is one-to-one
and onto. Thus by passing through base changes and the set (Rn f∗(CX))(S), we
obtain, for any two elements s0, s1 ∈ S, a bijection

φn
s0,s1

: Hn(Xs0 , C) −→ Hn(Xs1 , C).

Suppose that, for all s ∈ S, the complex manifold Xs is of Kähler type, and fix an
element t ∈ S. We define P

p,n
t , for any natural number (or else integer) p, to be the

unique function on S satisfying

P
p,n
t (s) = φn

s,t[F
pHn(Xs)]

for all s ∈ S, where FpHn(Xs) denotes the p-th piece of the Hodge filtration on n-th
cohomology of Xs and we use, for sake of clarity, square brackets to denote the image
of a certain set under a function. Pp,n

t is called a period mapping for the family f . The
following result is a variant of P. Griffiths’s [30, Theorem (1.1)](1).

(1)The attentive reader will notice that Griffiths’s construction of the period mapping is different from ours,
mainly as he directly employs a C ∞ trivialization Xt × S→ X of f over S; moreover, several conventions
of [30], e.g., regarding cohomology, do not match ours.
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Theorem 1.0.1. — Under the above hypotheses, Pp,n
t is a holomorphic mapping from S to

the Grassmannian Gr(Hn(Xt, C)).

Note that, as we state it, Theorem 1.0.1 comprises the fact that the spaces FpHn(Xs)

are of a constant finite dimension when s varies through S.
We would like to recall another theorem of Griffiths’s which is closely related to

Theorem 1.0.1. To that end, put q := n− p and let

γ : H1(Xt, ΘXt) −→ Hom(Hq(Xt, Ωp
Xt
), Hq+1(Xt, Ωp−1

Xt
))

be the morphism of complex vector spaces which is obtained by means of tensor-hom
adjunction from the composition

H1(Xt, ΘXt)⊗C Hq(Xt, Ωp
Xt
)

^−→ Hq+1(Xt, ΘXt ⊗Xt Ωp
Xt
) −→ Hq+1(Xt, Ωp−1

Xt
)

of the evident cup product morphism and the Hq+1(Xt,−) of the sheaf-theoretic
contraction morphism

ΘXt ⊗Xt Ωp
Xt
−→ Ωp−1

Xt
.

Since Xt is a compact, Kähler complex manifold, the Frölicher spectral sequence of Xt
degenerates at sheet 1 and we have, for any ν ∈ Z, an induced morphism of complex
vector spaces

ψν : FνHn(Xt)/Fν+1Hn(Xt) −→ Hn−ν(Xt, Ων
Xt
),

which is in fact an isomorphism. Define α to be the composition of the quotient
morphism

FpHn(Xt) −→ FpHn(Xt)/Fp+1Hn(Xt)

and ψp. Dually, define β to be the composition of (ψp−1)−1 and the morphism

Fp−1Hn(Xt)/FpHn(Xt) −→ Hn(Xt, C)/FpHn(Xt)

which is obtained from the inclusion Fp−1Hn(Xt) ⊂ Hn(Xt, C) by quotienting out
FpHn(Xt). Further, denote

KS : TS(t) −→ H1(Xt, ΘXt)

the Kodaira-Spencer map for the family f with basepoint t (cf. Notation 1.7.3) and
write

θ : TGr(Hn(Xt ,C))(F
pHn(Xt)) −→ Hom(FpHn(Xt), Hn(Xt, C)/FpHn(Xt))

for the isomorphism which is induced by the canonical open immersion

Hom(FpHn(Xt), E) −→ Gr(Hn(Xt, C))

of complex manifolds, where E is a complex vector subspace of Hn(Xt, C) such that
Hn(Xt, C) = FpHn(Xt)⊕ E (cf. Notation 1.6.19). As an adaptation of [30, Proposition
(1.20) or Theorem (1.22)] we formulate
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Theorem 1.0.2. — Let f : X → S, n, p, and t be as above and define α, β, γ, KS, and θ

accordingly. Then the following diagram commutes in Mod(C):

(1.0.2.1) TS(t)
KS //

Tt(P
p,n
t )

��

H1(Xt, ΘXt)

γ

��

Hom(Hq(Xt, Ωp
Xt
), Hq+1(Xt, Ωp−1

Xt
))

Hom(α,β)

��

TGr(Hn(Xt ,C))(F
pHn(Xt))

θ
// Hom(FpHn(Xt), Hn(Xt, C)/FpHn(Xt))

Now, the objective of this chapter is to state and prove a proposition analoguous to
Theorem 1.0.2—possibly even, in a sense, generalizing Theorem 1.0.2—for families of
not necessarily compact manifolds, i.e., for submersive, yet not necessarily proper,
morphisms of complex manifolds f : X → S. More specifically, we are interested in
submersive morphisms of complex manifolds f : X → S such that the relative alge-
braic de Rham cohomology sheaf H n( f ) (:= Rn f∗(Ω

q
f ) equipped with its canonical

OS-module structure, cf. Notation 1.5.8), for some fixed integer n, is a locally finite
free module on S which is compatible with base change in the sense that, for all s ∈ S,
the de Rham base change map

φn
f ,s : C⊗OS,s

(H n( f ))s −→H n(Xs)

is an isomorphism of complex vector spaces. We observe that the kernel H of the
Gauß-Manin connection

∇n
GM( f ) : H n( f ) −→ Ω1

S ⊗S H n( f ),

which we are going to introduce in the spirit of [44] (cf. Notation 1.5.7), makes up
a locally constant sheaf of CS-modules on Stop whose stalks are isomorphic to the
n-th de Rham cohomologies of the fibers of f via the inclusion H ⊂H n( f ) and the
de Rham base change maps. That way, in case the complex manifold S is simply
connected, we construct, for any integer p and any basepoint t ∈ S, a period mapping
P

p,n
t ( f ) by transporting the Hodge filtered pieces FpH n(Xs) ⊂H n(Xs) to H n(Xt)

along the global sections of H. When we require the relative Hodge filtered piece
FpH n( f ) to be a vector subbundle of H n( f ) on S which is compatible with base
change (in an appropriate sense), the holomorphicity of the period mapping

P
p,n
t ( f ) : S −→ Gr(H n(Xt))

is basically automatic.
Eventually, we find that certain properties that can be expressed exclusively as

degeneration properties for the Frölicher spectral sequences of f and Xt ensure the
possibility to define morphisms α and β such that a diagram similar to the one in
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(1.0.2.1), namely the one in (1.7.8.2), commutes in Mod(C). It is noteworthy that we
do not assume our family f : X → S to be locally topologically (or C ∞) trivial, neither
do we assume Rn f∗(CX) to be a locally constant sheaf (which is compatible with base
change).

Chapter 1 is organized as follows. Our ultimate results are Theorem 1.7.8 as well as
its hopefully more accessible corollary Theorem 1.7.10. The chapter’s sections come
in two groups: the final §§ 1.6 and 1.7 deal with the concept period mappings whereas
the inital §§ 1.1–1.5 don’t. The upshot of §§ 1.1–1.5, besides various constructions
and notation like, for instance, for the Gauß-Manin connection, is Theorem 1.5.13.
Theorem 1.5.13 is in turn a special case of Theorem 1.4.11, whose proof § 1.4 is
consecrated to. §§ 1.1–1.3 are preparatory for § 1.4.

We would like to point out that the overall point of view we are adopting here is
gravely inspired by N. Katz’s and T. Oda’s works [44] and [43], which we admittedly
fancy a lot. Our §§ 1.1–1.5 are actually put together along the very lines of [43, Section
1]. Our view on period mappings and (relative) connections which we present in § 1.6
is inspired by P. Deligne’s lecture notes [11].

1.1. The Λp construction

For the entire section, let X be a commutative ringed space.

In this section we introduce a construction which associates to a right exact triple t
of modules on X, given some integer p, another right exact triple of modules on X
denoted Λp

X(t), cf. Construction 1.1.7. This “Λp construction” will play a central role
within Chapter 1 at least up to (and including) § 1.5.

The Λp construction is closely related to and even essentially based upon the
following notion of a “Koszul filtration” (cf. [43, (1.2.1.2)]).

Construction 1.1.1 (Koszul filtration). — Let p be an integer. Moreover, let α : G →
H be a morphism of modules on X. We define a Z-sequence K by setting, for all i ∈ Z:

(1.1.1.1) Ki :=

{
im
(
∧i,p−i(H) ◦ (∧iα⊗∧p−i idH)

)
, i ≥ 0,

∧pH, i < 0,

where
∧i,p−i(H) : ∧i H ⊗∧p−i H −→ ∧pH

denotes the wedge product morphism. We refer to K as the Koszul filtration in degree
p induced by α on X.

Let us shortly verify that K is indeed a descending filtration of ∧p H by modules on
X. Since Ki obviously is a submodule of ∧p H on X for all integers i, it remains to show
that, for all integers i and j with i ≤ j, we have K j ⊂ Ki. In case i < 0, this is clear as
then, Ki = ∧p H. Similarly, when j > p, we know that K j is the zero submodule of
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∧p H, so that K j ⊂ Ki is evident. We are left with the case where 0 ≤ i ≤ j ≤ p. To
that end, denote φi the composition of the following obvious morphisms in Mod(X):

(1.1.1.2) ⊗(
i︷ ︸︸ ︷

G, . . . , G,

p−i︷ ︸︸ ︷
H, . . . , H) −→ Ti(G)⊗ Tp−i(H) −→ ∧i(G)⊗∧p−i(H)

−→ ∧i(H)⊗∧p−i(H) −→ ∧p(H).

Then Ki = im(φi) since the first and second of the morphisms in (1.1.1.2) are an
isomorphism and an epimorphism in Mod(X), respectively. The same holds for i
replaced by j given that we define φj accordingly. Thus our claim is implied by the
easy to verify identity:

φj = φi ◦ ⊗(idG, . . . , idG︸ ︷︷ ︸
i

, α, . . . , α︸ ︷︷ ︸
j−i

, idH , . . . , idH︸ ︷︷ ︸
p−j

).

Definition 1.1.2. — Let t : G → H → F be a triple of modules on X.
a) We call t left exact (resp. right exact) on X when

0 −→G −→ H −→ F

(resp. G −→ H −→ F −→ 0)

is an exact sequence of modules on X.
b) We call t short exact on X when t is both left exact on X and right exact on X.

The upcomping series of results is preparatory for Construction 1.1.7.

Lemma 1.1.3. — Let p be an integer and t : G → H → F a right exact triple of modules on
X. Then the following sequence, where the first and second arrows are given by ∧1,p−1(H) ◦
(t(0, 1)⊗∧p−1(idH)) and ∧p(t(1, 2)), respectively, is exact in Mod(X):

(1.1.3.1) G⊗∧p−1H −→ ∧p H −→ ∧pF −→ 0.

Proof. — Let x ∈ X be arbitrary. Then there exist isomorphisms of OX,x-modules
rendering commutative in Mod(OX,x) the following diagram, where the top row
is obtained from (1.1.3.1) by applying the stalk-at-x functor and the bottom row is
obtained from tx : Gx → Hx → Fx the same way (1.1.3.1) is obtained from t : G →
H → F:

(G⊗X ∧
p−1
X H)x

//

∼
��

(∧p
X H)x //

∼
��

(∧p
X F)x //

∼
��

0x

∼

��

Gx ⊗OX,x ∧
p−1
OX,x

Hx // ∧p
OX,x

Hx // ∧p
OX,x

Fx // 0

Now the bottom row of the diagram is exact in Mod(OX,x) by [16, Proposition A2.2,
d]. Therefore the top row of the diagram is exact in Mod(OX,x) too, whence the
sequence (1.1.3.1) is exact in Mod(X) given that x was an arbitrary element of (the
set underlying) X.
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Proposition 1.1.4. — Let p be an integer and t : G → H → F a right exact triple
of modules on X. Write K = (Ki)i∈Z for the Koszul filtration in degree p induced by
t(0, 1) : G → H. Then the following sequence is exact in Mod(X):

(1.1.4.1) 0 // K1 ⊂ // ∧pH
∧p(t(1,2))

// ∧pF // 0.

Proof. — By Lemma 1.1.3, the sequence (1.1.3.1) is exact in Mod(X). By the definition
of the Koszul filtration, cf. Construction 1.1.1, the inclusion morphism K1 → ∧p H is
an image in Mod(X) of the morphism

∧1,p−1(H) ◦ (t(0, 1)⊗∧p−1(idH)) : G⊗∧p−1H −→ ∧p H;

note here that ∧1
X equals the identity functor on Mod(X) by definition. Hence our

claim follows.

Corollary 1.1.5. — Let p be an integer and t : G → H → F a right exact triple of modules
on X. Denote K = (Ki)i∈Z the Koszul filtration in degree p induced by t(0, 1) : G → H.

a) There exists one, and only one, ψ rendering commutative in Mod(X) the following
diagram:

(1.1.5.1) ∧p H

��

∧p(t(1,2))
// ∧pF

(∧p H)/K1
ψ

99

b) Let ψ be such that the diagram in (1.1.5.1) commutes in Mod(X). Then ψ is an
isomorphism in Mod(X).

Proof. — Both assertions are immediate consequences of Proposition 1.1.4. In order to
obtain a), exploit the fact that the composition of the inclusion morphism K1 → ∧pH
and ∧p(t(1, 2)) is a zero morphism in Mod(X). In order to obtain b), make use of
the fact that, by the exactness of the sequence (1.1.4.1), ∧p(t(1, 2)) is a cokernel in
Mod(X) of the inclusion morphism K1 → ∧pH.

Proposition 1.1.6. — Let p be an integer and t : G → H → F a right exact triple of
modules on X. Denote K = (Ki)i∈Z the Koszul filtration in degree p induced by t(0, 1) : G →
H.

a) There exists a unique ordered pair (φ0, φ) such that the following diagram commutes
in Mod(X):

(1.1.6.1) H ⊗∧p−1H

∧1,p−1(H)

��

G⊗∧p−1H //

idG ⊗∧p−1(t(1,2))
oo

t(0,1)⊗∧p−1(idH)

φ0

��

G⊗∧p−1F

φ

��

∧p H K1
⊃

oo // K1/K2
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b) Let (φ0, φ) be an ordered pair such that the diagram in (1.1.6.1) commutes in Mod(X).
Then φ is an epimorphism in Mod(X).

Proof. — a). By the definition of the Koszul filtration, cf. Construction 1.1.1, the
inclusion morphism K1 → ∧pH is an image in Mod(X) of the morphism

∧1,p−1(H) ◦ (t(0, 1)⊗∧p−1(idH)) : G⊗∧p−1H −→ ∧p H.

Therefore, there exists one, and only one, morphism φ0 making the left-hand square
of the diagram in (1.1.6.1) commute in Mod(X). By Lemma 1.1.3, we know that the
sequence (1.1.3.1), where we replace p by p− 1 and define the arrows as indicated in
the text of the lemma, is exact in Mod(X). Tensorizing the latter sequence with G on
the left, we obtain yet another exact sequence in Mod(X):

(1.1.6.2) G⊗ (G⊗∧p−2H) −→ G⊗∧p−1H −→ G⊗∧p−1F −→ 0.

The exactness of the sequence (1.1.6.2) implies that the morphism

idG ⊗∧p−1(t(1, 2)) : G⊗∧p−1H −→ G⊗∧p−1F

is a cokernel in Mod(X) of the morphism given by the first arrow in (1.1.6.2). Besides,
the definition of the Koszul filtration implies that the composition

G⊗ (G⊗∧p−2H) −→ G⊗∧p−1H −→ K1

of the first arrow in (1.1.6.2) with φ0 maps into K2 ⊂ K1, whence composing it
further with the quotient morphism K1 → K1/K2 yields a zero morphism in Mod(X).
Thus by the universal property of the cokernel, there exists a unique φ rendering
commutative in Mod(X) the right-hand square in the diagram in (1.1.6.1).

b). Observe that by the commutativity of the left-hand square in (1.1.6.1), φ0 is a
coimage of the morphism

∧1,p−1(H) ◦ (t(0, 1)⊗∧p−1(idH)) : G⊗∧p−1H −→ ∧p H,

whence an epimorphism in Mod(X). Moreover, the quotient morphsim K1 → K1/K2

is an epimorphism in Mod(X). Thus the composition of φ0 and K1 → K1/K2 is an
epimorphism in Mod(X). By the commutativity of the right-hand square in (1.1.6.1),
we see that φ is an epimorphism in Mod(X).

Construction 1.1.7 (Λp construction). — Let p be an integer. Moreover, let t : G →
H → F be a right exact triple of modules on X. Write K = (Ki)i∈Z for the Koszul
filtration in degree p induced by t(0, 1) : G → H on X, cf. Construction 1.1.1. Recall
that K is a filtration of ∧p H by modules on X. We define a functor Λp(t) : 3 →
Mod(X) by setting, in the first place:

(Λp(t))(0) := G⊗∧p−1F (Λp(t))(0, 0) := idG⊗∧p−1F

(Λp(t))(1) := (∧p H)/K2 (Λp(t))(1, 1) := id(∧p H)/K2

(Λp(t))(2) := ∧pF (Λp(t))(2, 2) := id∧p F
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Now let ι and π be the unique morphisms such that the following diagram commutes
in Mod(X):

(1.1.7.1) K2 ⊂ // K1 ⊂ //

��

∧p H

�� ''NNNNNNNNNNN

K1/K2
ι

// (∧p H)/K2
π

// (∧p H)/K1

By Proposition 1.1.6 a), we know that there exists a unique ordered pair (φ0, φ)

rendering commutative in Mod(X) the diagram in (1.1.6.1). Likewise, by Corollary
1.1.5 a), there exists a unique ψ rendering commutative in Mod(X) the diagram in
(1.1.5.1). We complete our definition of Λp(t) by setting:

(Λp(t))(0, 1) := ι ◦ φ, (Λp(t))(1, 2) := ψ ◦ π,

(Λp(t))(0, 2) := (ψ ◦ π) ◦ (ι ◦ φ).

It is a straightforward matter to convince oneself that the so defined Λp(t) is a
functor from 3 to Mod(X), i.e., a triple of modules on X. We claim that Λp(t) is
even a right exact triple of modules on X. To see this, observe that firstly, the bottom
row of the diagram in (1.1.7.1) makes up a short exact triple of modules on X, that
secondly, ψ is an isomorphism in Mod(X) by Corollary 1.1.5 b), and that thirdly, φ is
an epimorphism in Mod(X) by Proposition 1.1.6 b).

Naturally, the construction of Λp(t) depends on the ringed space X. So, whenever
we feel the need to make the reference to the ringed space X within the above
construction visible notationally, we resort to writing Λp

X(t) instead of Λp(t).

We show that the Λp construction is nicely compatible with the restriction to open
subspaces.

Proposition 1.1.8. — Let U be an open subset of X, p an integer, and t : G → H → F a
right exact triple of modules on X. Then t|U : G|U → H|U → F|U is a right exact triple of
modules on X|U and we have (Λp

X(t))|U = Λp
X|U(t|U)(2).

Proof. — The fact that the triple t|U is right exact on X|U is clear since the restriction
functor−|U : Mod(X)→ Mod(X|U) is exact. Denote K = (Ki)i∈Z and K′ = (K′i)i∈Z
the Koszul filtrations in degree p induced by t(0, 1) : G → H and t(0, 1)|U : G|U →
H|U on X and X|U, respectively. Then by the presheaf definitions of the wedge- and
tensor products, we see that Ki|U = K′i for all integers i. Now define ι and π just as in
Construction 1.1.7. Similarly, define ι′ and π′ using K′ instead of K and X|U instead

(2)Note that in order to get a real equality here, as opposed to only a “canonical isomorphism”, one has to
work with the right sheafification functor.
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of X. Then by the presheaf definition of quotient sheaves, we see that the following
diagram commutes in Mod(X|U):

(K1/K2)|U
ι|U

// (K0/K2)|U
π|U

// (K0/K1)|U

K′1/K′2
ι′

// K′0/K′2
π′

// K′0/K′1

Defining φ and ψ just as in Construction 1.1.7 and defining φ′ and ψ′ analogously for
t|U instead of t and X|U instead of X, we deduce that φ|U = φ′ and ψ|U = ψ′. Hence
(Λp

X(t))|U = Λp
X|U(t|U) holds according to the definitions given in Construction

1.1.7.

The remainder of this section is devoted to investigating the Λp construction in the
special case where the given triple t is a split exact triple of modules on X.

Definition 1.1.9. — Let t a triple of modules on X (for the purposes of the definition
X need not necessarily be commutative as a ringed space).

a) The triple t is called split exact on X when t is isomorphic in the category of
triples of modules on X to a triple of the form

B −→ B⊕ A −→ A,

where the first and second arrows stand for the coprojection to the first summand
and projection to the second summand, respectively.

b) φ is called a right splitting of t on X when φ is a morphism of modules on X,
φ : t(2)→ t(1), such that we have t(1, 2) ◦ φ = idt(2) in Mod(X).

Lemma 1.1.10. — Let α : G → H and φ : F → H be morphisms of modules on X and
p ∈ Z. Assume that α⊕ φ : G⊕ F → H is an isomorphism in Mod(X).

a) The morphism⊕
ν∈Z

(
∧ν,p−ν(H) ◦ (∧να⊗∧p−νφ)

)
:
⊕
ν∈Z

(∧νG⊗∧p−νF) −→ ∧pH

is an isomorphism in Mod(X).
b) Let K = (Ki)i∈Z be the Koszul filtration in degree p induced by α. Then, for all integers

i, Ki corresponds to
⊕

ν≥i(∧νG⊗∧p−νF) under the above isomorphism.

Proof. — a). By considering stalks (just like in the proof of Lemma 1.1.3), we find that
it suffices to prove the statement in case where X is an ordinary ring. In that case,
however, the statement follows from [16, Proposition A2.2, c].

b). Let i be an integer. Then for all integers ν ≥ i, the sheaf morphism

∧ν,p−ν(H) ◦ (∧να⊗∧p−νφ) : ∧νG⊗∧p−νF −→ ∧pH
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clearly maps into Ki. Therefore, the direct sum
⊕

ν≥i(∧νG ⊗ ∧p−νF) maps into Ki

under the given isomorphism. Conversely, any section in ∧p H coming from

∧i,p−i(H) ◦ (∧i(α)⊗∧p−i(idH)) : ∧iG⊗∧p−i H −→ ∧pH

comes from
⊕

ν≥i(∧νG⊗∧p−νF) under the given isomorphism as one sees decom-
posing ∧p−i H in the form ⊕

µ≥0
(∧µG⊗∧p−i−µF) ∼= ∧p−i H

according to part a) (with p replaced by p− i).

Proposition 1.1.11. — Let p be an integer and t : G → H → F a right exact triple of
modules on X.

a) Let φ be a right splitting of t on X. Denote by K = (Ki)i∈Z the Koszul filtration
in degree p induced by t(0, 1) : G → H and write κ : ∧p H → (∧pH)/K2 for the evident
quotient morphism. Then the composition

κ ◦ ∧p(φ) : ∧pF −→ (∧p H)/K2

is a right splitting of Λp(t) on X.
b) When t is split exact on X, then Λp(t) is split exact on X.

Proof. — a). By Construction 1.1.7, we see that

(Λp(t))(1, 2) : (∧pH)/K2 −→ ∧pF

is the unique morphism of modules on X which precomposed with the quotient
morphism ∧p H → (∧p H)/K2 yields ∧p(t(1, 2)) : ∧p H → ∧pF. Therefore, we have:

(Λp(t))(1, 2) ◦ (κ ◦ ∧p(φ)) = ∧p(t(1, 2)) ◦ ∧p(φ) = ∧p(t(1, 2) ◦ φ)

= ∧p(idF) = id∧p F .

b). Write K = (Ki)i∈Z for the Koszul filtration in degree p induced by

α := t(0, 1) : G −→ H.

Then by the definition of (Λp(t))(0, 1) in Construction 1.1.7, the following diagram
commutes in Mod(X):

G⊗∧p−1H //

idG ⊗∧p−1(t(1,2))

∧1,p(H)◦(α⊗∧p−1(idH))

��

G⊗∧p−1F

(Λp(t))(0,1)
��

∧pH κ
// (∧p H)/K2

Since t is a split exact triple of modules on X, there exists a right splitting φ of t on X.
Using the commutativity of the diagram, we deduce that

(Λp(t))(0, 1) = κ ◦ ∧1,p(H) ◦ (α⊗∧p−1(φ)).
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Hence, by Lemma 1.1.10, the sheaf map (Λp(t))(0, 1) is injective. Knowing already
that the triple Λp(t) is right exact on X (Construction 1.1.7), we deduce that Λp(t)
is short exact on X. Therefore Λp(t) is split exact on X as by a) there exists a right
splitting of Λp(t) on X.

1.2. Locally split exact triples and their extension classes

For the entire section, let X be a commutative ringed space.

Let p be an integer. In what follows, we are going to examine the Λp construction,
cf. Construction 1.1.7, when applied to locally split exact triples of modules on
X. So, let t be such a triple. Then, as it turns out, Λp(t) is a locally split exact
triple of modules on X, too. Now given that t is in particular a short exact triple of
modules on X, one may consider its extension class, which is an element of Ext1(F, G)

writing t : G → H → F. Similarly, the extension class of Λp(t) is an element of
Ext1(∧pF, G⊗∧p−1F). The decisive result of § 1.2 will be Proposition 1.2.12, which
tells how to obtain the extension class of Λp(t) from the extension class of t by means
of an interior product morphism

ιp(F, G) : Hom(F, G) −→Hom(∧pF, G⊗∧p−1F),

to be defined in the realm of Construction 1.2.11. In order to conveniently describe
this relationship between the extension classes of t and Λp(t), we introduce the device
of “locally split extension classes”, cf. Notation 1.2.3.

First of all, however, let us state local versions of Definition 1.1.9 and Proposition
1.1.11.

Definition 1.2.1. — Let t be a triple of modules on X.

a) t is called locally split exact on X when there exists an open cover U of Xtop such
that, for all U ∈ U, the triple t|U (i.e., the composition of t with the restriction functor
−|U : Mod(X)→ Mod(X|U)) is a split exact triple of modules on X|U.

b) φ is called a local right splitting of t on X when φ is a function whose domain of
definition, call it U, is an open cover of Xtop such that, for all U ∈ U, φ(U) is a right
splitting of t|U on X|U.

Proposition 1.2.2. — Let p be an integer and t : G → H → F a right exact triple of
modules on X.

a) Let φ be a local right splitting of t on X and let φ′ be a function on U := dom(φ) such
that, for all U ∈ U, we have

φ′(U) = κ|U ◦ ∧p(φ(U)) : (∧pF)|U −→ ((∧pH)/K2)|U,

where κ denotes the quotient morphism ∧p H → (∧p H)/K2 and K = (Ki)i∈Z denotes the
Koszul filtration in degree p induced by t(0, 1) : G → H. Then φ′ is a local right splitting of
Λp(t) on X.
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b) When t is locally split exact on X, then Λp(t) is locally split exact on X.

Proof. — a). Let U ∈ U. Then φ(U) is a right splitting of t|U on X|U. Thus by
Proposition 1.1.11 a), we know that

κ′ ◦ ∧p(φ(U)) : ∧p(F|U) −→ (∧p(H|U))/K′2

is a right splitting of Λp
X|U(t|U) on X|U, where κ′ : ∧p(H|U) → (∧p(H|U))/K′2

denotes the quotient morphism and K′ = (K′i)i∈Z the Koszul filtration in degree
p induced by α|U : G|U → H|U. Since (∧pH)|U = ∧p(H|U) and K2|U = K′2, we
have κ|U = κ′. Therefore φ′(U) is a right splitting of Λp

X|U(t|U) on X|U. Given that

Λp
X(t)|U = Λp

X|U(t|U), we deduce that φ′ is a local right splitting of Λp
X(t) on X.

b). Since t is a locally split exact triple of modules on X, there exists an open cover
U of Xtop such that, for all U ∈ U, the triple t|U is split exact on X|U. Therefore,
by Proposition 1.1.11, the triple Λp

X|U(t|U) is split exact on X|U for all U ∈ U. As

(Λp
X(t))|U = Λp

X|U(t|U) for all U ∈ U, we see that Λp
X(t) is a locally split exact triple

of modules on X.

Notation 1.2.3 (Locally split extension class). — Let t : G → H → F be a short ex-
act triple of modules on X with the property that the triple

Hom(F, t) : Hom(F, G) −→Hom(F, H) −→Hom(F, F)

is again a short exact triple of modules on X. Then we write ξX(t) for the image of
the identity sheaf morphism idF : F → F under the composition of mappings

(Hom(F, F))(X)
can−→ H0(X, Hom(F, F)) δ0

−→ H1(X, Hom(F, G)),

where δ0 stands for the 0-th connecting homomorphism for the triple Hom(F, t) with
respect to the right derived functor of Γ(X,−) : Mod(X) → Mod(Z). Note that as
(Hom(F, F))(X) = Hom(F, F), we have idF ∈ (Hom(F, F))(X) so that the above
definition makes indeed sense. We call ξX(t) the locally split extension class of t on X.
As usual, we will write ξ(t) instead of ξX(t) whenever we feel that the reference to
the ringed space X is clear from the individual context.

Remark 1.2.4. — Let t : G → H → F be a locally split exact triple of modules on X.
Then we claim that

Hom(F, t) : Hom(F, G) −→Hom(F, H) −→Hom(F, F)

is a locally split exact triple of modules on X, too. In fact, let φ be a local right splitting
of t on X. Put U := dom(φ). Then, for all U ∈ U, the morphism

Hom(F|U, φ(U)) : Hom(F|U, F|U) −→Hom(F|U, H|U)

is a right splitting of Hom(F|U, t(1, 2)|U) by the “functoriality” of Hom(F|U,−).
Since Hom(F, t(1, 2))|U = Hom(F|U, t(1, 2)|U) for all U ∈ U, the assignment U 7→
Hom(F|U, φ(U)), for U ∈ U, constitutes a local right splitting of Hom(F, t) on X.
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Moreover, since the functor Hom(F,−) : Mod(X)→ Mod(X) is left exact, the triple
Hom(F, t) is left exact on X. In conclusion, we see that the triple Hom(F, t) is indeed
locally split exact on X.

Specifically, Hom(F, t) is a short exact triple of modules on X, which, in view of
Notation 1.2.3, tells us that (gladly) any locally split exact triple of modules on X
possesses a locally split extension class on X.

The following remark will explain briefly how our newly coined notion of locally
split extension classes relates to the customary extension classes for short exact triples
(i.e., short exact sequences) on X. We point out that though interesting, the contents
of Remark 1.2.5 are dispensable for our subsequent exposition.

Remark 1.2.5. — Let t : G → H → F be a short exact triple of modules on X. Recall
that the extension class of t on X is, by definition, the image of the identity sheaf
morphism idF under the composition of mappings

Hom(F, F) can−→ (R0 Hom(F,−))(F) δ′0−→ (R1 Hom(F,−))(G) = Ext1(F, G),

where δ′ = (δ′n)n∈Z stands for the sequence of connecting homomorphisms for the
triple t with respect to the right derived functor of Hom(F,−) : Mod(X)→ Mod(Z).
Observe that the commutative diagram of categories and functors

Mod(X)
H om(F,−)

//

Hom(F,−) %%LLLLLLLLLL
Mod(X)

Γ(X,−)yyrrrrrrrrrr

Mod(Z)

combined with the fact that, for all injective modules I on X, the sheaf Hom(F, I) is a
flasque sheaf on Xtop, whence an acyclic object for the functor Γ(X,−) : Mod(X)→
Mod(Z), induces a sequence τ = (τq)q∈Z of natural transformations

τq : Hq(X,−) ◦Hom(F,−) −→ Extq(F,−)

of functors from Mod(X) to Mod(Z). The sequence τ has the property that when
Hom(F, t) is a short exact triple of modules on X and δ = (δn)n∈Z denotes the
sequence of connecting homomorphisms for the triple Hom(F, t) with respect to the
right derived functor of Γ(X,−) : Mod(X) → Mod(Z), then, for any integer q, the
following diagram commutes in Mod(Z):

Hq(X, Hom(F, F))
τq(F)

//

δq

��

Extq(F, F)

δ′q

��

Hq+1(X, Hom(F, G))
τq+1(G)

// Extq+1(F, G)
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Moreover, the following diagram commutes in Mod(Z):

(Hom(F, F))(X)

can
��

Hom(F, F)

can
��

H0(X, Hom(F, F))
τ0(F)

// Ext0(F, F)

Hence, we see that the locally split extension class ξ(t) of t is mapped to the extension
class of t by the function τ1(G). In addition, by means of general homological algebra
(Grothendieck spectral sequence), one can show that the mapping τ1(G) is one-to-one.
Therefore, ξ(t) is the unique element of H1(X, Hom(F, G)) which is mapped to the
extension class of t by the function τ1(G). We think that this observation justifies our
referring to ξ(t) as the “locally split extension class” of t on X.

The next couple of results are aimed at deriving, for t a locally split exact triple
of modules on X, from a local right splitting of t a Čech representation of the locally
split extension class ξ(t). Since the definition of Čech cohomology tends to vary from
source to source, let us settle once and for all on the following

Conventions 1.2.6. — Let U be an open cover of Xtop and n a natural number. An
n-simplex of U is an ordered (n + 1)-tuple of elements of U, i.e.,

u = (u0, . . . , un) ∈ U× · · · × U,

such that u0 ∩ · · · ∩ un 6= ∅. Note that, by definition, a 0-simplex of U is nothing
but an element of U. When u = (u0, . . . , un) is an n-simplex of U, the intersection
u0 ∩ · · · ∩ un is called the support of u and denoted |u|.

Let F be a sheaf of modules on X. Then a Čech n-cochain of U with coefficients
in F is a function c defined on the set S of n-simplices of U such that, for all u ∈ S,
we have c(u) ∈ F(|u|). We denote Čn

X(U,−) : Mod(X) → Mod(Z) the Čech n-
cochain functor, so that Čn

X(U, F) is the set of Čech n-cochains of U with coefficients
in F equipped with the obvious addition and Z-scalar multiplication. Similarly, we
denote Č q

X(U,−) : Mod(X) → C(Z) the Čech complex functor, so that Č q
(U, F) is

the habitual Čech complex of U with coefficients in F. We write Žn
X(U,−), B̌n

X(U,−),
and Ȟn

X(U,−) for the functors Mod(X)→ Mod(Z) obtained by composing Č q
(U,−)

with the n-cocycle, the n-coboundary, and the n-cohomology functors for complexes
over Mod(Z), respectively. In any of the expressions Č q

X, Čn
X, Žn

X, B̌n
X, and Ȟn

X, we
suppress the subscript “X” whenever we feel that the correct ringed space can be
guessed unambiguously from the context.

In Proposition 1.2.10 as well as in the proof of Proposition 1.2.12, we will make use
of the familiar sequence τ = (τq)q∈Z of natural transformations

τq : Ȟq(U,−) −→ Hq(X,−)
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of functors from Mod(X) to Mod(Z) which are obtained by considering the Čech
resolution functors Č

q
(U,−) : Mod(X)→ C(X) together with Lemma A.6.2; in fact,

the suggested construction yields a natural transformation Č q
(U,−) = Γ(X,−) ◦

Č
q
(U,−) → RΓ(X,−) of functors from Mod(X) to K+(Z), from which one derives

τq, for any q ∈ Z, by applying the q-th cohomology functor Hq : K+(Z)→ Mod(Z).

Construction 1.2.7. — Let t : G → H → F be a short exact triple of modules on X
and φ a local right splitting of t on X. For the time being, fix a 1-simplex u = (u0, u1)

of U := dom(φ). Set v := |u| for better readability. Then calculating in Mod(X|v), we
have:

t(1, 2)|v ◦ (φ(u1)|v− φ(u0)|v) = (t(1, 2)|u1)|v ◦ φ(u1)|v− (t(1, 2)|u0)|v ◦ φ(u0)|v
= (t(1, 2)|u1 ◦ φ(u1))|v− (t(1, 2)|u0 ◦ φ(u0))|v
= idF|u1

|v− idF|u0
|v

= idF|v− idF|v = 0.

Since the triple t is short exact on X, we deduce that t(0, 1)|v : G|v→ H|v is a kernel
of t(1, 2)|v : H|v → F|v in Mod(X|v). So, there exists one, and only one, morphism
c(u) : F|v→ G|v in Mod(X|v) such that

t(0, 1)|v ◦ c(u) = φ(u1)|v− φ(u0)|v.

Abandoning our fixation of u, we define c to be the function on the set of 1-simplices
of U which is given by the assignment u 7→ c(u). We call c the right splitting Čech
1-cochain of (t, φ) on X.

By definition, for all 1-simplices u of U, we know that c(u) is a morphism F||u| →
G||u| of modules on X||u|, i.e., c(u) ∈ (Hom(F, G))(|u|). Thus,

c ∈ Č1
X(U, Hom(F, G)).

In this regard, we define c to be the residue class of c in the quotient module

Č1
X(U, Hom(F, G))/B̌1

X(U, Hom(F, G)).

We call c the right splitting Čech 1-class of (t, φ) on X.

Lemma 1.2.8. — Let t : G → H → F be a short exact triple of modules on X and U an open
cover of Xtop.

a) Let n ∈ N. Then Čn(U, t) is a short exact triple in Mod(Z) if and only if, for all
n-simplices u of U, the mapping t(1, 2)|u| : H(|u|)→ F(|u|) is surjective.

b) Č q
(U, t) is a short exact triple in C(Z) if and only if, for all nonvoid, finite V ⊂ U

such that V := ∩V 6= ∅, the mapping t(1, 2)V : H(V)→ F(V) is surjective.
c) Let φ be a local right splitting of t on X such that U = dom(φ). Then Č q

(U, t) is a
short exact triple in C(Z).
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Proof. — a). We denote S the set of n-simplices of U and write Γ = (Γu)u∈S for the
family of section functors Γu := ΓX(|u|,−) : Mod(X) → Mod(Z). Then Čn(U,−)
equals, by definition, the composition of functors

∏ ◦∏(Γ) : Mod(X) −→ Mod(Z)S −→ Mod(Z),

where ∏(Γ) signifies the “external” product of the family of functors Γ, whereas the
single “∏” symbol signifies the standard product functor for the category Mod(Z).
We formulate a sublemma: Let C be any category of modules and (Mi → Ni → Pi)i∈I
a family of triples in C. Then the triple ∏ Mi → ∏ Ni → ∏ Pi is middle exact in C

if and only if, for all i ∈ I, the triple Mi → Ni → Pi is middle exact C. The proof
of this is clear. Emplying the sublemma in our situation, we obtain that since, for
all u ∈ S, the functor Γu is left exact, the functor Čn(U,−) is left exact, too. Thus
the triple Čn(U, t) is left exact. Hence, the triple Čn(U, t) is short exact if and only if
Čn(U, H)→ Čn(U, F)→ 0 is exact. By the sublemma this is equivalent to saying that
Γu(H) → Γu(F) → 0 is exact for all u ∈ S, but Γu(H) → Γu(F) → 0 is exact if and
only if H(|u|)→ F(|u|) is surjective.

b). A triple of complexes of modules is short exact if and only if, for all integers n,
the triple of modules in degree n is short exact. Since the triple of complexes Č q

(U, t)
is trivial in negative degrees, we see that Č q

(U, t) is a short exact triple in C(Z) if and
only if, for all n ∈ N, the triple Čn(U, t) is short exact in Mod(Z), which by a) is the
case if and only if, for all nonempty, finite subsets V ⊂ U with V := ∩V 6= ∅, the
mapping H(V)→ F(V) is surjective.

c). Let V be a nonvoid, finite subset of U such that V := ∩V 6= ∅. Then there
exists an element U in V. By assumption, φ(U) : F|U → H|U is a morphism of
modules on X|U such that t(1, 2)|U ◦ φ(U) = idF|U . Thus, given that V ⊂ U, we have
t(1, 2)V ◦ φ(U)V = idF(V), which entails that t(1, 2)V : H(V) → F(V) is surjective.
Therefore, Č q

(U, t) is a short exact triple in C(Z) by means of b).

Proposition 1.2.9. — Let t : G → H → F be a short exact triple of modules on X and
φ a local right splitting of t on X. Put U := dom(φ) and denote by c (resp. c) the right
splitting Čech 1-cochain (resp. right splitting Čech 1-class) of (t, φ) on X. Then the following
assertions hold:

a) The triple Č q
(U, Hom(F, t)) :

(1.2.9.1) Č q
(U, Hom(F, G)) −→ Č q

(U, Hom(F, H)) −→ Č q
(U, Hom(F, F))

is a short exact triple in C(Z).
b) We have c ∈ Ž1(U, Hom(F, G)) and c ∈ Ȟ1(U, Hom(F, G)).
c) When δ = (δn)n∈Z denotes the sequence of connecting homomorphisms associated to the

triple Č q
(U, Hom(F, t)) of complexes over Mod(Z) and e denotes the image of the identity

sheaf map idF under the canonical function (Hom(F, F))(X)→ Ȟ0(U, Hom(F, F)), then
δ0(e) = c.
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Proof. — a). By Remark 1.2.4, the function on U given by the assignment

U 3 U 7−→Hom(F|U, φ(U))

constitutes a local right splitting of Hom(F, t) on X. Moreover, the triple Hom(F, t)
is a short exact triple of modules on X. Thus Č q

(U, Hom(F, t)) is a short exact triple
in C(Z) by Lemma 1.2.8 c).

b). Observe that since φ is a local right splitting of t on X and U = dom(φ), we
have φ ∈ Č0(U, Hom(F, H)). Further on, writing d = (dn)n∈Z for the sequence of
differentials of the complex Č q

(U, Hom(F, H)), the mapping

Č1(U, Hom(F, t(0, 1))) : Č1(Hom(F, G)) −→ Č1(U, Hom(F, H))

sends c to d0(φ) since, for all 1-simplices u = (u0, u1) of U,

(d0(φ))(u) = φ(u1)||u| − φ(u0)||u|

and c(u) is, by definition, the unique morphism F||u| → G||u| such that t(0, 1)||u| ◦
c(u) = φ(u1)||u| − φ(u0)||u|. Writing d′′ = (d′′n)n∈Z for the sequence of differentials
of the complex Č q

(U, Hom(F, G)), we have

Č2(U, Hom(F, t(0, 1))) ◦ d′′1 = d1 ◦ Č1(U, Hom(F, t(0, 1))).

So, since the mapping Č2(U, Hom(F, t(0, 1))) is one-to-one and d1(d0(φ)) = 0, we
see that d′′1(c) = 0, which implies that c ∈ Ž1(U, Hom(F, G)) and, in turn, that
c ∈ Ȟ1(U, Hom(F, G)).

c). Write e for the image of idF under the canonical function (Hom(F, F))(X) →
Č0(U, Hom(F, F)). Then φ is sent to e by the mapping

Č0(U, Hom(F, t(1, 2))) : Č0(U, Hom(F, H)) −→ Č0(U, Hom(F, F))

since, for all U ∈ U, (i.e., for all 0-simplices of U) we have:

Hom(F, t(1, 2))U(φ(U)) = t(1, 2)|U ◦ φ(U) = idF|U = e(U).

Combined with the fact that c is sent to d0(φ) by Č1(U, Hom(F, t(0, 1))), we find that
δ0(e) = c by the elementary definition of connecting homomorphisms for short exact
triples of complexes of modules.

Proposition 1.2.10. — Let t : G → H → F be a short exact triple of modules on X, φ

a local right splitting of t on X, and c the right splitting Čech 1-class of (t, φ) on X. Put
U := dom(φ). Then the canonical mapping

(1.2.10.1) Ȟ1(U, Hom(F, G)) −→ H1(X, Hom(F, G))

sends c to the locally split extension class of t on X.

Proof. — By Proposition 1.2.9 a), the triple Č q
(U, Hom(F, t)) : (1.2.9.1) is a short ex-

act triple in C(Z). So, denote δ = (δn)n∈Z the associated sequence of connecting
homomorphisms. Likewise, denote δ′ = (δ′n)n∈Z the sequence of connecting ho-
momorphisms for the triple Hom(F, t) with respect to the right derived functor of
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the functor Γ(X,−) : Mod(X) → Mod(Z) (note that this makes sense given that
Hom(F, t) is a short exact triple of modules on X, cf. Remark 1.2.4). Then the fol-
lowing diagram commutes in Mod(Z), where the unlabeled arrows stand for the
respective canonical morphisms:

(1.2.10.2) (Hom(F, F))(X)

��

Γ(X, Hom(F, F))

��

Ȟ0(U, Hom(F, F)) //

δ0

��

H0(X, Hom(F, F))

δ′0

��

Ȟ1(U, Hom(F, G)) // H1(X, Hom(F, G))

By Proposition 1.2.9 c), the identity sheaf morphism idF is sent to c by the composition
of the two downwards arrows on the left in (1.2.10.2). Moreover, the identity sheaf
morphism idF is sent to ξ(t) by the composition of the two downwards arrows on the
right in (1.2.10.2), cf. Notation 1.2.3. Therefore, by the commutativity of the diagram
in (1.2.10.2), c is sent to ξ(t) by the canonical mapping (1.2.10.1).

Construction 1.2.11 (Interior product). — Let p be an integer. Moreover, let F and
G be modules on X. We define a morphism of modules on X,

ι
p
X(F, G) : Hom(F, G) −→Hom(∧pF, G⊗∧p−1F),

called interior product morphism in degree p for F and G on X, as follows: When p ≤ 0,
we define ι

p
X(F, G) to be the zero morphism (note that we do not actually have a

choice here). Assume p > 0 now. Let U be an open set of X and φ an element of
(Hom(F, G))(U), i.e., a morphism F|U → G|U of modules on X|U. Then there is one,
and only one, morphism

ψ : (∧pF)|U −→ (G⊗∧p−1F)|U

of modules on X|U such that for all open sets V of X|U and all p-tuples (x0, . . . , xp−1)

of elements of F(V), we have:

ψV(x0 ∧ · · · ∧ xp−1) = ∑
ν<p

(−1)ν−1 · φV(xν)⊗ (x0 ∧ · · · ∧ x̂ν ∧ · · · ∧ xp−1).

We let (ι
p
X(F, G))U be the function on (Hom(F, G))(U) given by the assignment

φ 7→ ψ, where φ varies. We let ι
p
X(F, G) be the function on the set of open sets of

X obtained by varying U. Then, as one readily verifies, ι
p
X(F, G) is a morphism of

modules on X from Hom(F, G) to Hom(∧pF, G ⊗ ∧p−1F). Just as usual, we will
write ιp(F, G) instead of ι

p
X(F, G) whenever we feel the ringed space X is clear from

the context.



1.2. LOCALLY SPLIT EXACT TRIPLES AND THEIR EXTENSION CLASSES 29

Proposition 1.2.12. — Let t : G → H → F be a locally split exact triple of modules on X
and p an integer. Then the function

H1(X, ιp(F, G)) : H1(X, Hom(F, G)) −→ H1(X, Hom(∧pF, G⊗∧p−1F))

sends ξ(t) to ξ(Λp(t)).

Proof. — First of all, we note that since t is a locally split exact triple of modules on X,
the triple t′ := Λp(t) is a locally split exact triple of modules on X by Proposition 1.2.2
b), whence it makes sense to speak of ξ(t′). When p ≤ 0, we know that Hom(∧pF, G⊗
∧p−1F) ∼= 0 in Mod(X) and thus H1(X, Hom(∧pF, G⊗∧p−1F)) ∼= 0 in Mod(Z), so
that our assertion is true in this case. So, from now on, we assume that p is a natural
number different from 0. As t is a locally split exact triple of modules on X, there exists
a local right splitting φ of t on X. Put U := dom(φ). Let c ∈ Č1(U, Hom(F, G)) be the
right splitting Čech 1-cochain associated to (t, φ), cf. Construction 1.2.7, and denote
by K = (Ki)i∈Z the Koszul filtration in degree p induced by α := t(0, 1) : G → H.
Define φ′ to be the unique function on U such that, for all U ∈ U, we have

φ′(U) = κ|U ◦ ∧p(φ(U)) : (∧pF)|U −→ ((∧pH)/K2)|U,

where κ denotes the quotient sheaf morphism ∧pH → (∧p H)/K2. Then φ′ is a local
right splitting of t′ by Proposition 1.2.2 a). Write c′ for the right splitting Čech 1-
cochain associated to (t′, φ′) and abbreviate ι

p
X(F, G) to ι. We claim that c is sent to c′

by the mapping

Č1(U, ι) : Č1(U, Hom(F, G)) −→ Č1(U, Hom(∧pF, G⊗∧p−1F)).

In order to check this, let u = (U0, U1) be a 1-simplex of U and V an open set of X
which is contained in |u| = U0 ∩U1. Observe that when h0, . . . , hp−1 are elements of
H(V) and g0, g1 are elements of G(V) such that h0 = αV(g0) and h1 = αV(g1) (i.e.,
p > 1), we have

(1.2.12.1) κV(h0 ∧ · · · ∧ hp−1) = 0

in ((∧p H)/K2)(V) by the definition of the Koszul filtration. Further, observe that
writing α′ for t′(0, 1) and β for t(1, 2), the following diagram commutes in Mod(X)

by the definition of α′ in the Λp construction:

(1.2.12.2) G⊗∧p−1H //

idG ⊗∧p−1(β)

∧1,p−1(H)◦(α⊗∧p−1(idH))

��

G⊗∧p−1F

α′

��

∧pH κ
// (∧p H)/K2
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Let f0, . . . , fp−1 be elements of F(V). Then, on the one hand, we have:

α′V(c
′(u)V( f0 ∧ · · · ∧ fp−1)) = (α′||u| ◦ c′(u))V( f0 ∧ · · · ∧ fp−1)

= (φ′(U1)||u| − φ′(U0)||u|))V( f0 ∧ · · · ∧ fp−1)

= (φ′(U1)V − φ′(U0)V)( f0 ∧ · · · ∧ fp−1)

= κV
(
φ(U1)V( f0) ∧ · · · ∧ φ(U1)V( fp−1)− φ(U0)V( f0) ∧ · · · ∧ φ(U0)V( fp−1)

)
= κV

((
φ(U0)V( f0) + (φ(U1)V − φ(U0)V)( f0)

)
∧ · · ·

∧
(
φ(U0)V( fp−1) + (φ(U1)V − φ(U0)V)( fp−1)

)
− φ(U0)V( f0) ∧ · · · ∧ φ(U0)V( fp−1)

)
= κV

((
φ(U0)V( f0) + αV(c(u)V( f0))

)
∧ · · ·

∧
(
φ(U0)V( fp−1) + αV(c(u)V( fp−1))

)
− φ(U0)V( f0) ∧ · · · ∧ φ(U0)V( fp−1)

)
(1.2.12.1)

= κV

(
∑
i<p

(−1)i · αV(c(u)V( fi)) ∧ φ(U0)V( f0) ∧ · · ·

∧ ̂φ(U0)V( fi) ∧ · · · ∧ φ(U0)V( fp−1)

)
= (κ ◦ ∧1,p−1(H) ◦ (α⊗ id∧p−1 H))V

(
∑
i<p

(−1)i · c(u)V( fi)⊗ (φ(U0)V( f0) ∧ · · ·

∧ ̂φ(U0)V( fi) ∧ · · · ∧ φ(U0)V( fp−1))

)
(1.2.12.2)

=
(

α′ ◦ (idG ⊗∧p−1 (β))
)

V

(
same as before

)
= α′V

(
∑
i<p

(−1)i · c(u)V( fi)⊗ ( f0 ∧ · · · ∧ f̂i ∧ · · · ∧ fp−1)

)
On the other hand,

(Č1(U, ι)(c))(u) = ι|u|(c(u)),

meaning that:(
(Č1(U, ι)(c))(u)

)
V
( f0 ∧ · · · ∧ fp−1) =

(
ι|u|(c(u))

)
V
( f0 ∧ · · · ∧ fp−1)

= ∑
i<p

(−1)i · (c(u))V( fi)⊗ ( f0 ∧ · · · ∧ f̂i ∧ · · · ∧ fp−1).

Thus, using the the function α′V is injective, we see that (Č1(U, ι)(c))(u) and c′(u)
agree as sheaf morphisms

(∧pF)||u| −→ (G⊗∧p−1F)||u|,



1.3. CONNECTING HOMOMORPHISMS 31

whence as elements of (Hom(∧pF, G⊗∧p−1F))(|u|). In turn, as u was an arbitrary
1-simplex of U,

(1.2.12.3) (Č1(U, ι))(c) = c′

as claimed. Write t′ as t′ : G′ → H′ → F′. Then the following diagram, where the
horizontal arrows altogether stand for the respective canonical morphisms, commutes
in Mod(Z):
(1.2.12.4)

Ž1(U, Hom(F, G)) //

Ž1(U,ι)
��

Ȟ1(U, Hom(F, G)) //

Ȟ1(U,ι)
��

H1(X, Hom(F, G))

H1(X,ι)
��

Ž1(U, Hom(F′, G′)) // Ȟ1(U, Hom(F′, G′)) // H1(X, Hom(F′, G′))

By Proposition 1.2.10, we know that c (resp. c′) is sent to ξ(t) (resp. ξ(t′)) by the
composition of arrows in the upper (resp. lower) row of (1.2.12.4). By (1.2.12.3), we
have (Ž1(U, ι))(c) = c′. Hence, (H1(X, ι))(ξ(t)) = ξ(t′) by the commutativity of
(1.2.12.1).

1.3. Connecting homomorphisms

Let f : X → Y be a morphism of commutative ringed spaces, t a locally split exact
triple of modules on X, and p an integer. In what follows, we intend to employ our
results of § 1.2, Proposition 1.2.12 specifically, in order to interpret the connecting ho-
momorphisms for the triple Λp(t) (which is short exact on X by means of Proposition
1.2.2 b)) with respect to the right derived functor of f∗. The first pivotal outcome
of this section will be Proposition 1.3.9. Observe that Proposition 1.2.12 enters the
proof of Proposition 1.3.9 via Corollary 1.3.3. The ultimate aim of § 1.3 however
is Proposition 1.3.19 which interprets the connecting homomorphisms for Λp(t) in
terms of a “cup and contraction with Kodaira-Spencer class” given the triple t is of
the form

t : f ∗G −→ H −→ F,

where F and G are locally finite free modules on X and Y, respectively. The Kodaira-
Spencer class we use here, see Notation 1.3.17, presents an abstract prototype of what
will later, namely in § 1.5, become the familiar Kodaira-Spencer class.

To begin with, let us introduce a relative version of the notion of a locally split
extension class which we established in § 1.2, Notation 1.2.3.

Notation 1.3.1 (Relative locally split extension class). — Let f : X → Y be a mor-
phism of ringed spaces and t : G → H → F a short exact triple of modules on X such
that the triple

Hom(F, t) = Hom(F,−) ◦ t : Hom(F, G) −→Hom(F, H) −→Hom(F, F)
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is again a short exact triple of modules on X. Write

ε : OY −→ f∗(Hom(F, F))

for the unique morphism of modules on Y sending the 1 of OY(Y) to the identity
sheaf map idF : F → F, which is, as one notes, an element of ( f∗(Hom(F, F))) (Y)
since

( f∗(Hom(F, F)))(Y) = (Hom(F, F))(X) = Hom(F, F).

Then define ξ f (t) to be the composition of the following morphisms of modules on Y:

OY
ε−→ f∗(Hom(F, F)) can−→ R0 f∗(Hom(F, F)) δ0

−→ R1 f∗(Hom(F, G)),

where δ0 denotes the 0-th connecting homomorphism for the triple Hom(F, t) with
respect to the right derived functor of f∗. We call ξ f (t) the relative locally split extension
class of t with respect to f .

Proposition 1.3.2. — Let f : X → Y and g : Y → Z be morphisms of ringed spaces and
t : G → H → F a short exact triple of modules on X such that the triple Hom(F, t) is short
exact on X. Then, setting h := g ◦ f , the following diagram commutes in Mod(Z):

(1.3.2.1) OZ
ξh(t) //

g]

��

R1h∗(Hom(F, G))

BC1

��

g∗(OY) g∗(ξ f (t))
// g∗
(
R1 f∗(Hom(F, G))

)
Proof. — Write ε : OY → f∗(Hom(F, F)) for the unique morphism of modules on
Y sending the 1 of OY(Y) to the identity sheaf map idF : F → F. Similarly, write
ζ : OZ → h∗(Hom(F, F)) for the unique morphism of modules on Z sending the 1 of
OZ(Z) to the identity sheaf map idF. Then, clearly, the following diagram commutes
in Mod(Z):

OZ
ζ

//

g]

��

h∗(Hom(F, F))

g∗OY
g∗(ε)

// g∗ f∗(Hom(F, F))

Denote by δ0 and δ′0 the 0-th connecting homomorphisms for the triple Hom(F, t)
with respect to the derived functors of f∗ and h∗, respectively. Then by the compatibil-
ity of base change morphisms with connecting homomorphisms and the compatibility
of base change morphisms in degree 0 with the natural transformations h∗ → R0h∗
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and f∗ → R0 f∗ of functors from Mod(X) to Mod(Z) and Mod(X) to Mod(Y), respec-
tively, we see that the following diagram commutes in Mod(Z):

h∗(Hom(F, F)) can // R0h∗(Hom(F, F)) δ′0 //

BC0

��

R1h∗(Hom(F, G))

BC1

��

g∗ f∗(Hom(F, F))
g∗(can)

// g∗R0 f∗(Hom(F, F))
g∗(δ0)

// g∗R1 f∗(Hom(F, F))

Now, the commutativity of the diagram in (1.3.2.1) follows readily taking into account
the definitions of ξ f (t) and ξh(t), cf. Notation 1.3.1.

Corollary 1.3.3. — Let f : X → Y be a morphism of commutative ringed spaces, t : G →
H → F a locally split exact triple of modules on X, and p an integer. Set t′ := Λp(t) and
write t′ as t′ : G′ → H′ → F′. Then the following diagram commutes in Mod(Y).

(1.3.3.1) OY
ξ f (t)

xxqqqqqqqqqqq
ξ f (t′)

&&MMMMMMMMMMM

R1 f∗(Hom(F, G))
R1 f∗(ιp(F,G))

// R1 f∗(Hom(F′, G′))

Proof. — Set Z := Z and g := aY : Y → Z. Then h := g ◦ f = aX : X → Z. The
commutativity of the diagram in (1.3.3.1) follows from Proposition 1.3.2 (applied
twice, for t and t′) in conjuction with Proposition 1.2.12.

Many results of this section rely, in their formulation and proof, on the device of
the cup product for derived direct image functors. For that matter, we curtly review
this concept and state several of its properties.

Construction 1.3.4. — Let f : X → Y be a morphism of commutative ringed spaces
and p and q integers. Let F and G be modules on X. Then we denote

^
p,q
f (F, G) : Rp f∗(F)⊗Y Rq f∗(G) −→ Rp+q f∗(F⊗X G)

the cup product in bidegree (p, q) relative f for F and G. For the definition of the cup
product we suggest considering the Godement resolutions α : F → L and β : G → M
of F and G, respectively, on X. Besides, let ρF : F → IF, ρG : G → IG, and ρF⊗G : F⊗
G → IF⊗G be the canonical injective resolutions of F, G, and F ⊗ G, respectively,
on X. Then by Lemma A.6.2, there exists one, and only one, morphism ζ : L → IF
(resp. η : M → IG) in K(X) such that we have ζ ◦ α = ρF (resp. η ◦ β = ρG) in K(X).
Since the Godement resolutions are flasque, whence acyclic for the functor f∗, we
see that Hp( f∗ζ) : Hp( f∗L) → Hp( f∗ IF) and Hq( f∗η) : Hq( f∗M) → Hq( f∗ IG) are
isomorphisms in Mod(Y). Thus we derive an isomorphism

(1.3.4.1) Hp( f∗L)⊗Hq( f∗M) −→ Hp( f∗ IF)⊗Hq( f∗ IG).
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Moreover, since the Godement resolutions are pointwise homotopically trivial, α⊗
β : F⊗ G → L⊗M is a resolution of F⊗ G on X. So, again by Lemma A.6.2, there
exists one, and only one, morphism θ : L⊗M → IF⊗G in K(X) such that we have
θ ◦ (α⊗ β) = ρF⊗G in K(X). Thus by the compatibility of f∗ with the respective tensor
products on X and Y, we obtain the composition

f∗L⊗ f∗M −→ f∗(L⊗M)
f∗θ−→ f∗ IF⊗G

in K+(Y), which in turn yields a composition

(1.3.4.2) Hp( f∗L)⊗Hq( f∗M) −→ Hp+q( f∗L⊗ f∗M) −→ Hp+q( f∗ IF⊗G)

in Mod(Y). Now the composition of the inverse of (1.3.4.1) and (1.3.4.2) is the cup
product ^p,q

f (F, G).
Note that the above construction is principally due to Godement [23, II, 6.6], al-

though Godement retricts himself to applying global section functors (with supports)
instead of the more general direct image functors. Also note that Grothendieck [35,
(12.2.2)] defines his cup product in the relative situation f : X → Y by localizing
Godement’s construction over the base. Of course, our cup product agrees with
Grothendieck’s.

Proposition 1.3.5. — Let f : X → Y be a morphism of commutative ringed spaces and let
p, q, and r be integers.

a) (Naturality) ^p,q
f is a natural transformation

^
p,q
f : (−⊗Y −) ◦ (Rp f∗ × Rq f∗) −→ Rp+q f∗ ◦ (−⊗X −)

of functors from Mod(X)×Mod(X) to Mod(Y).
b) (Connecting homomorphisms) Let t : F′′ → F → F′ be a short exact triple of

modules on X and G a module on X such that t⊗ G : F′′ ⊗ G → F⊗ G → F′ ⊗ G is again
a short exact triple of modules on X. Then the following diagram commutes in Mod(Y):

Rp f∗(F′)⊗ Rq f∗(G)
^p,q(F′ ,G)

//

δp(t)⊗Rq f∗(G)

��

Rp+q f∗(F′ ⊗ G)

δp+q(t⊗G)
��

Rp+1 f∗(F′′)⊗ Rq f∗(G)
^p+1,q(F′′ ,G)

// Rp+q+1 f∗(F′′ ⊗ G)

c) (Units) Let G be a module on X. Then the following diagram commutes in Mod(Y),
where φ denotes the canonical morphism f∗OX → R0 f∗(OX) of sheaves on Ytop:

OY ⊗Y Rq f∗(G)
λY(Rq f∗(G))

//

(φ◦ f ])⊗id
��

Rq f∗(G)

R0 f∗(OX)⊗Y Rq f∗(G)
^0,q(OX ,G)

// Rq f∗(OX ⊗X G)

Rq f∗(λX(G))

OO
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d) (Associativity) Let F, G, and H be modules on X. Then the following diagram
commutes in Mod(Y):

Rp+q f∗(F⊗ G)⊗ Rr f∗(H)
^p+q,r(F⊗G,H)

// Rp+q+r f∗((F⊗ G)⊗ H)

Rp+q+r f∗(αX)
��

(Rp f∗(F)⊗ Rq f∗(G))⊗ Rr f∗(H)

^p+q(F,G)⊗id

OO

αY

��

Rp+q+r f∗(F⊗ (G⊗ H))

Rp f∗(F)⊗ (Rq f∗(G)⊗ Rr f∗(H))
id⊗^q,r(G,H)

// Rp f∗(F)⊗ Rq+r f∗(G⊗ H)

^p,q+r(F,G⊗H)

OO

Proof. — We refrain from giving details here. Instead we refer our reader to Gode-
ment’s summary of properties of the cross product [23, II, 6.5] and note that these
properties carry over to the cup product almost word by word as pointed out in [23,
II, 6.6].

Notation 1.3.6. — Let X be a commutative ringed space. Let F and G be modules on
X. Then we write

εX(F, G) : Hom(F, G)⊗ F −→ G

for the familiar evaluation morphism: when U is an open set of X, φ : F|U → G|U is a
morphism of sheaves of modules on X|U, i.e., an element of (Hom(F, G))(U), and
s ∈ F(U), then

(εX(F, G))U(φ⊗ s) = φU(s).

Varying G, we may view εX(F,−) as a function on the class of modules on X. That
way εX(F,−) is a natural transformation

εX(F,−) : (−⊗ F) ◦Hom(F,−) −→ idMod(X)

of endofunctors on Mod(X). We will write ε instead of εX when we feel that the
ringed space X is clear from the context.

Proposition 1.3.7. — Let f : X → Y be a morphism of commutative ringed spaces, t : G →
H → F a locally split exact triple of modules on X, and q an integer. Then the following
diagram commutes in Mod(Y):

(1.3.7.1) Rq f∗(F)
δq(t)

//

ξ f (t)⊗
��

Rq+1 f∗(G)

R1 f∗(Hom(F, G))⊗ Rq f∗(F) //

^1,q(H om(F,G),F)
Rq+1 f∗(Hom(F, G)⊗ F)

Rq+1 f∗(ε(F,G))

OO
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Proof. — Since t is a locally split exact triple of modules on X, we know that the
triples

Hom(F, t) : Hom(F, G) −→Hom(F, H) −→Hom(F, F)
as well as

Hom(F, t)⊗ F : Hom(F, G)⊗ F −→Hom(F, H)⊗ F −→Hom(F, F)⊗ F

are locally split exact triples of modules on X, cf. Remark 1.2.4. Thus by Proposition
1.3.5 b), the following diagram commutes in Mod(Y):
(1.3.7.2)

R0 f∗(Hom(F, F))⊗ Rq f∗(F)
^0,q(H om(F,F),F)

//

δ0(H om(F,t))⊗Rq f∗(F)
��

Rq f∗(Hom(F, F)⊗ F)

δq(H om(F,t)⊗F)
��

R1 f∗(Hom(F, G))⊗ Rq f∗(F)
^1,q(H om(F,G),F)

// Rq+1 f∗(Hom(F, G)⊗ F)

By the naturality of the evaluation morphism, cf. Notation 1.3.6, the composition
ε(F,−) ◦ t0 (recall that t0 denotes the object function of the functor t) is a morphism

ε(F,−) ◦ t0 : Hom(F, t)⊗ F −→ t

of triples in Mod(X) (i.e., a natural transformation of functors 3 → Mod(X)). In
consequence, by the naturality of δq the following diagram commutes in Mod(Y):

(1.3.7.3) Rq f∗(Hom(F, F)⊗ F)
Rq f∗(ε(F,F))

//

δq(H om(F,t)⊗F)
��

Rq f∗(F)

δq(t)
��

Rq+1 f∗(Hom(F, G)⊗ F)
Rq+1 f∗(ε(F,G))

// Rq+1 f∗(G)

Denote φ the composition

OY −→ f∗(Hom(F, F)) can−−→ R0 f∗(Hom(F, F))

of morphisms in Mod(Y), where the first arrow stands for the unique morphism of
modules on Y which sends the 1 of OY(Y) to the identity sheaf map idF in

( f∗(Hom(F, F))) (Y) = Hom(F, F).

Then from the commutativity of the diagrams in (1.3.7.2) and (1.3.7.3) and the defini-
tion of ξ f (t), cf. Notation 1.3.1, we deduce that

Rq+1 f∗(ε(F, G)) ◦^1,q(Hom(F, G), F) ◦ (ξ f (t)⊗)

= δq(t) ◦ Rq f∗(ε(F, F)) ◦^0,q(Hom(F, F), F) ◦ (φ⊗ Rq f∗(F)) ◦ λ(Rq f∗(F))−1

in Mod(Y). In addition, using Proposition 1.3.5 c), one shows that:

Rq f∗(ε(F, F)) ◦^0,q(Hom(F, F), F) ◦ (φ⊗ Rq f∗(F)) = λ(Rq f∗(F)).

Hence, we see that the diagram in (1.3.7.1) commutes in Mod(Y).
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Notation 1.3.8 (Adjoint interior product). — Let X be a commutative ringed space.
Let p be an integer and F and G modules on X. Then by adjunction between the func-
tors −⊗∧pF and Hom(∧pF,−), both going from Mod(X) to Mod(X), the interior
product

ι
p
X(F, G) : Hom(F, G) −→Hom(∧pF, G⊗∧p−1F)

of Construction 1.2.11 corresponds to a morphism

ι̃
p
X(F, G) : Hom(F, G)⊗∧pF −→ G⊗∧p−1F

of modules on X, which we christen the adjoint interior product in degree p for F and
G on X. Explicitly, this means that ι̃

p
X(F, G) equals the composition

ε(∧pF, G⊗∧p−1F) ◦ (ιp
X(F, G)⊗ id∧p F) :

Hom(F, G)⊗∧pF −→Hom(∧pF, G⊗∧p−1F)⊗∧pF −→ G⊗∧p−1F.

Just as we did with ι
p
X(F, G), among others, we omit the subscript “X” in expressions

like ι̃
p
X(F, G) whenever we feel this is appropriate.

Proposition 1.3.9. — Let f : X → Y be a morphism of commutative ringed spaces, t : G →
H → F a locally split exact triple of modules on X, and p and q integers. Then the following
diagram commutes in Mod(Y):

(1.3.9.1) Rq f∗(∧pF)
δq(Λp(t))

//

ξ f (t)⊗
��

Rq+1 f∗(G⊗∧p−1F)

R1 f∗(Hom(F, G))⊗ Rq f∗(∧pF) //

^1,q(H om(F,G),∧p F)
Rq+1 f∗(Hom(F, G)⊗∧pF)

Rq+1 f∗(ι̃p(F,G))

OO

Proof. — Set t′ := Λp(t) and write t′ as

t′ : G′ −→ H′ −→ F′.

By the definition of ι̃p(F, G) via tensor-hom adjunction, cf. Notation 1.3.8, we know
that

(1.3.9.2) ι̃p(F, G) = ε(F′, G′) ◦ (ιp(F, G)⊗ idF′)

holds in Mod(X). Due to the naturality of the cup product relative f , cf. Propostion
1.3.5 a), the following diagram commutes in Mod(Y):
(1.3.9.3)

R1 f∗(Hom(F, G))⊗Y Rq f∗(F′) //

^1,q(H om(F,G),F′)

R1 f∗(ιp(F,G))⊗Rq f∗(idF′ )
��

Rq+1 f∗(Hom(F, G)⊗X F′)

Rq+1 f∗(ιp(F,G)⊗idF′ )
��

R1 f∗(Hom(F′, G′))⊗Y Rq f∗(F′) //

^1,q(H om(F′ ,G′),F′)
Rq+1 f∗(Hom(F′, G′)⊗X F′)
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Now, by Proposition 1.2.2 we know that since t is a locally split exact triple of modules
on X, also t′ is a locally split exact triple of modules on X. Thus it makes sense to
speak of the relative locally split extension class of t′ with respect to f , cf. Notation
1.3.1. By Corollary 1.3.3, the following diagram commutes in Mod(Y):

(1.3.9.4) OY
ξ f (t)

xxqqqqqqqqqqq
ξ f (t′)

&&MMMMMMMMMMM

R1 f∗(Hom(F, G))
R1 f∗(ιp(F,G))

// R1 f∗(Hom(F′, G′))

By Proposition 1.3.7, this next diagram commutes in Mod(Y):

(1.3.9.5) Rq f∗(F′)
δq(t′)

//

ξ f (t′)⊗
��

Rq+1 f∗(G′)

R1 f∗(Hom(F′, G′))⊗ Rq f∗(F′) //

^1,q(H om(F′ ,G′),F′)
Rq+1 f∗(Hom(F′, G′)⊗ F′)

Rq+1 f∗(ε(F′ ,G′))

OO

All in all, we obtain:

δq(t′)
(1.3.9.5)
= Rq+1 f∗(ε(F′, G′)) ◦^1,q(Hom(F′, G′), F′) ◦ (ξ f (t′)⊗)

(1.3.9.4)
= Rq+1 f∗(ε(F′, G′)) ◦^1,q(Hom(F′, G′), F′)

◦ (R1 f∗(ιp(F, G))⊗ Rq f∗(idF′)) ◦ (ξ f (t)⊗)
(1.3.9.3)
= Rq+1 f∗(ε(F′, G′)) ◦ Rq+1 f∗(ιp(F, G)⊗ idF′)

◦^1,q(Hom(F, G), F′) ◦ (ξ f (t)⊗)
(1.3.9.2)
= Rq+1 f∗(ι̃p(F, G)) ◦^1,q(Hom(F, G), F′) ◦ (ξ f (t)⊗).

This yields precisely the commutativity in Mod(Y) of the diagram in (1.3.9.1).

Notation 1.3.10 (Contraction morphism). — Let X be a commutative ringed space
and F a module on X. We set

γ
p
X(F) := λX(∧p−1F) ◦ ι̃

p
X(F, OX) : F∨ ⊗∧pF −→ ∧p−1F,

where we view OX as a module on X. We call γ
p
X(F) the contraction morphism in

degree p for F on X.

Notation 1.3.11. — Let X be a commutative ringed space. Moreover, let F and G be
modules on X. We define a morphism

µX(F, G) : G⊗ F∨ −→Hom(F, G)
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of modules on X by requiring that, for all open sets U of X, all θ ∈ (F∨)(U), and all
y ∈ G(U), the function (µX(F, G))U send y⊗ θ ∈ (G⊗ F∨)(U) to the composition

ψ ◦ θ : F|U −→ OX |U −→ G|U

of morphisms of modules on X|U, where ψ denotes the unique morphism of modules
on X|U from OX |U to G|U mapping the 1 of (OX |U)(U) to y ∈ G(U). It is an easy
matter to check that one, and only one, such morphism µX(F, G) exists. When the
ringed space X is clear from the context, we shall occasionally write µ instead of µX .

Proposition 1.3.12. — Let X be a commutative ringed space, p an integer, and F and G
modules on X. Then the following diagram commutes in Mod(X):

(G⊗ F∨)⊗∧pF
µ(F,G)⊗id∧p F //

α(G,F∨ ,∧p F)
��

Hom(F, G)⊗∧pF

ι̃p(F,G)

��

G⊗ (F∨ ⊗∧pF)
idG ⊗γp(F)

// G⊗∧p−1F

Proof. — For p ≤ 0 the assertion is clear since G⊗∧p−1F ∼= 0 in Mod(X). So, assume
that p > 0. Then for all open sets U of X, all p-tuples x = (x0, . . . , xp−1) of elements
of F(U), all morphisms θ : F|U → OX |U of modules on X|U, i.e., θ ∈ (F∨)(U),
and all y ∈ G(U), one verifies easily, given the definitions of µ, ι̃p, and γp, that
(y⊗ θ)⊗ (x0 ∧ · · · ∧ xp−1) ∈ ((G⊗ F∨)⊗∧pF)(U) is mapped to one and the same
element of (G⊗∧p−1F)(U) by either of the two paths from the upper left to the lower
right corner in the above diagram. Therefore, the diagram commutes in Mod(X) by
the universal property of the sheaf associated to a presheaf.

Construction 1.3.13 (Projection morphism). — Let n be an integer and f : X → Y a
morphism of commutative ringed spaces. Moreover, let F and G be modules on X
and Y, respectively. Then we define the n-th projection morphism relative f for F and
G, denoted

πn
f (G, F) : G⊗ Rn f∗(F) −→ Rn f∗( f ∗G⊗ F),

to be the morphism of modules on Y which is obtained by first going along the
composition

G −→ f∗( f ∗G)
can−→ R0 f∗( f ∗G),

where the former arrow stands for the familiar adjunction morphism for G with
respect to f , tensorized on the right with the identity of Rn f∗(F) and then applying
the cup product:

^0,n
f ( f ∗G, F) : R0 f∗( f ∗G)⊗ Rn f∗(F) −→ Rn f∗( f ∗G⊗ F).

Observe that this construction is suggested by [35, Proposition (12.2.3)]. Letting F and
G vary, we may view πn

f as a function defined on the class of objects of the product
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category Mod(Y)×Mod(X). That way, it follows essentially from Proposition 1.3.5
a), i.e., the naturality of the cup product, that πn

f is a natural transformation

(−⊗Y −) ◦ (idMod(Y)×Rn f∗) −→ Rn f∗ ◦ (−⊗X −) ◦ ( f ∗ × idMod(X))

of functors from Mod(Y)×Mod(X) to Mod(Y). As usual, we will write πn instead
of πn

f when we think this is appropriate.

Proposition 1.3.14. — Let n be an integer, f : X → Y a morphism of commutative ringed
spaces, F a module on X, and G a locally finite free module on Y. Then the projection
morphism

πn
f (G, F) : G⊗ Rn f∗(F) −→ Rn f∗( f ∗G⊗ F)

is an isomorphism in Mod(Y).

Proof. — See [35, Proposition (12.2.3)].

Proposition 1.3.15. — Let f : X → Y be a morphism of commutative ringed spaces. Let q
and q′ be integers, F and F′ modules on X, and G a module on Y. Then the following diagram
commutes in Mod(Y):

Rq f∗( f ∗G⊗ F)⊗ Rq′ f∗(F′) //

^
q,q′
f ( f ∗G⊗F,F′)

Rq+q′ f∗(( f ∗G⊗ F)⊗ F′)

Rq+q′ f∗(αX( f ∗G,F,F′))
��

(G⊗ Rq f∗(F))⊗ Rq′ f∗(F′)

π
q
f (G,F)⊗id

Rq′ f∗(F′)

OO

αY(G,Rq f∗(F),Rq′ f∗(F′))
��

Rq+q′ f∗( f ∗G⊗ (F⊗ F′))

G⊗ (Rq f∗(F)⊗ Rq′ f∗(F′))
idG ⊗^

q,q′
f (F,F′)

// G⊗ Rq+q′ f∗(F⊗ F′)

π
q+q′
f (G,F⊗F′)

OO

Proof. — This follows with ease from the associativity of the cup product as stated in
Proposition 1.3.5 d).

Construction 1.3.16. — Let C, D, and E be categories and S : C → E and T : D →
E functors. Then, the fibered product of C and D over E with respect to S and T,
customarily ambiguously(!) denoted C×E D, is by definition the subcategory of the
ordinary product category C×D whose class of objects is given by those ordered
pairs (x, y) satisfying Sx = Ty; moreover, for two such ordered pairs (x, y) and
(x′, y′) a morphism (α, β) : (x, y) → (x′, y′) in C ×D is a morphism in C ×E D if
and only if Sα = Tβ. Two easy observations show that, for one, for all objects
(x, y) of C ×E D, the identity id(x,y) : (x, y) → (x, y) in C × D is a morphism in
C×ED and that, for another, for all objects (x, y), (x′, y′), and (x′′, y′′) and morphisms
(α, β) : (x, y) → (x′, y′) and (α′, β′) : (x′, y′) → (x′′, y′′) of C×E D, the composition
(α′, β′) ◦ (α, β) : (x, y)→ (x′′, y′′) in C×D is again a morphism in C×E D.
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We apply the fibered product construction in the following situation: Let f : X → Y
be a morphism of ringed spaces, and consider the functors

f ∗ : Mod(Y) −→ Mod(X) and p0 : Mod(X)3 −→ Mod(X),

where p0 stands for the “projection to 0”, i.e., p0 takes an object t of Mod(X)3 to
t(0) and a morphism α : t → t′ in Mod(X)3 to α(0). Then, define D f to be the
fibered product of Mod(Y) and Mod(X)3 over Mod(X) with respect to f ∗ and p0,
symbolically:

D f := Mod(Y)×Mod(X) Mod(X)3.

Notation 1.3.17 (Kodaira-Spencer class, I). — Let f : X → Y be a morphism of com-
mutative ringed spaces and (G, t) an object of D f such that t is a short exact triple
of modules on X and F := t2 and G are locally finite free modules on X and Y,
respectively. We associate to (G, t) a morphism

ξKS, f (G, t) : OY −→ G⊗ R1 f∗(F∨)

in Mod(Y), which we call, from that time on, the Kodaira-Spencer class relative f of
(G, t). For the definition of ξKS, f (G, t), we remark, to begin with, that since F is a
locally finite free module on X, the triple t is not only short exact, but locally split
exact on X. Thus we may consider its relative locally split extension class with respect
to f :

ξ f (t) : OY −→ R1 f∗(Hom(F, f ∗G)),

cf. Notation 1.3.1. Set

µ := µX(F, f ∗G) : f ∗G⊗ F∨ −→Hom(F, f ∗G),

cf. Notation 1.3.11. Then, again by the local finite freeness of F on X, we know that µ

is an isomorphism in Mod(X). Given that G is a locally finite free module on Y, the
projection morphism

π := π1
f (G, F∨) : G⊗ R1 f∗(F∨) −→ R1 f∗( f ∗G⊗ F∨)

is an isomorphism in Mod(Y) by means of Proposition 1.3.14. Composing, we obtain
an isomorphism in Mod(Y):

R1 f∗(µ) ◦ π : G⊗ R1 f∗(F∨) −→ R1 f∗(Hom(F, f ∗G)).

Therefore, there exists a unique ξKS, f (G, t) rendering commutative in Mod(Y) the
following diagram:

OY
ξKS, f (G,t)

yyrrrrrrrrrr
ξ f (t)

''OOOOOOOOOOOOO

G⊗ R1 f∗(F∨)
R1 f∗(µ)◦π

// R1 f∗(Hom(F, f ∗G))
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Notation 1.3.18 (Cup and contraction, I). — We proceed in the situation of Notation
1.3.17, that is, we assume that a morphism of commutative ringed spaces f : X → Y
as well as an object (G, t) of D f be given such that t is a short exact triple of modules
on X and F := t2 and G are locally finite free modules on X and Y, respectively. Addi-
tionally, let us fix two integers p and q. Then we write γ

p,q
KS, f (G, t) for the composition

of the following morphisms in Mod(Y):

Rq f∗(∧pF)
λ(Rq f∗(∧p F))−1

−−−−−−−−−→ OY ⊗ Rq f∗(∧pF)
ξKS, f (G,t)⊗idRq f∗(∧p F)−−−−−−−−−−−−→ (G⊗ R1 f∗(F∨))⊗ Rq f∗(∧pF)

α(G,R1 f∗(F∨),Rq f∗(∧p F))−−−−−−−−−−−−−−→ G⊗ (R1 f∗(F∨)⊗ Rq f∗(∧pF))

idG ⊗^1,q(F∨ ,∧p F)−−−−−−−−−−−→ G⊗ Rq+1 f∗(F∨ ⊗∧pF)

idG ⊗Rq+1 f∗(γp(F))−−−−−−−−−−−→ G⊗ Rq+1 f∗(∧p−1F).

The resulting morphism of modules on Y,

γ
p,q
KS, f (G, t) : Rq f∗(∧pF) −→ G⊗ Rq+1 f∗(∧p−1F),

goes by the name of cup and contraction with Kodaira-Spencer class in bidegree (p, q)
relative f for (G, t) (the name should be self-explanatory looking at the definition of
γ

p,q
KS, f (G, t) above: first, we tensorize with the Kodaira-Spencer class ξKS, f (G, t), cf.

Notation 1.3.17, then we “cup”, then we “contract”).

Proposition 1.3.19. — Let f : X → Y be a morphism of commutative ringed spaces and
(G, t) an object of D f such that t is a short exact triple of modules on X and F := t2 and G
are locally finite free modules on X and Y, respectively. Moreover, let p and q be integers.
Then we have:

δ
q
f (Λ

p(t)) = π
q+1
f (G,∧p−1F) ◦ γ

p,q
KS, f (G, t).

In other words, the following diagram commutes in Mod(Y):

Rq f∗(∧pF)
δ

q
f (Λ

p(t))
//

γ
p,q
KS, f (G,t)

22
Rq+1 f∗( f ∗G⊗∧p−1F) G⊗ Rq+1 f∗(∧p−1F)

π
q+1
f (G,∧p−1F)

oo

Proof. — Set µ := µX(F, f ∗G), cf. Notation 1.3.11, and consider the diagram in Figure
1, where we have abstained from specifying the cup products ^1,q, the tensor associa-
tivity morphisms αX and αY, as well as the identity morphisms id further. We show
that the subdiagrams labeled 1©– 6© commute in Mod(Y) (this is indeed equivalent to
saying that the diagram commutes in Mod(Y) as such, but we will merely use the
commutativity of the mentioned subdiagrams afterwards). We know that the triple t
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Rq f∗(∧pF)
δq(Λp(t))

//

ξ(t)⊗

��

ξKS(G,t)⊗

((

1©

Rq+1 f∗( f ∗G⊗∧p−1F)

R1 f∗(Hom(F, f ∗G))⊗ Rq f∗(∧pF)
^1,q

//

3©2©

Rq+1 f∗(Hom(F, f ∗G)⊗∧pF)

Rq+1 f∗(ι̃p(F, f ∗G))

OO

4©

R1 f∗( f ∗G⊗ F∨)⊗ Rq f∗(∧pF)
^1,q

//

R1 f∗(µ)⊗Rq f∗(id)

OO

5©

Rq+1 f∗(( f ∗G⊗ F∨)⊗∧pF)

Rq+1 f∗(µ⊗id)

OO

Rq+1 f∗(αX)

��

G⊗ Rq+1 f∗(∧p−1F)

πq+1(G,∧p−1F)

gg

(G⊗ R1 f∗(F∨))⊗ Rq f∗(∧pF)

π1(G,F∨)⊗id

OO

αY

��

Rq+1 f∗( f ∗G⊗ (F∨ ⊗∧pF))

Rq+1 f∗(id⊗γp(F))

gg

6©

G⊗ (R1 f∗(F∨)⊗ Rq f∗(∧pF))
id⊗^1,q

// G⊗ Rq+1 f∗(F∨ ⊗∧pF)

πq+1(G,F∨⊗∧p F)

OO id⊗Rq+1 f∗(γp(F))

EE

FIGURE 1. Diagram for the proof of Proposition 1.3.19.

is locally split exact on X. Hence the commutativity of 1© is implied by Proposition
1.3.9. The commutativity of 2© follows immediately from the definition of the Kodaira-
Spencer class ξKS(G, t), cf. Notation 1.3.17. 3© commutes by the naturality of the cup
product, Proposition 1.3.5 a). The commutativity of 4© follows from Proposition 1.3.12
coupled with the fact that Rq+1 f∗ is a functor from Mod(X) to Mod(Y). 5© commutes
due to Proposition 1.3.15. Last but not least, the commutativity of 6© follows from the
fact that π

q+1
f is a natural transformation

(−⊗Y −) ◦ (idMod(Y)×Rq+1 f∗) −→ Rq+1 f∗ ◦ (−⊗X −) ◦ ( f ∗ × idMod(X))

of functors from Mod(Y)×Mod(X) to Mod(Y), cf. Construction 1.3.13.
Recalling the definition of the cup and contraction with Kodaira-Spencer class, cf.

Notation 1.3.18, we see that the commutativity of 1©– 6© implies that

δq(Λp(t)) = πq+1(G,∧p−1F) ◦ γ
p,q
KS (G, t)

holds in Mod(Y) (go through the subdiagrams one by one in the given order).

1.4. A framework for studying the Gauß-Manin connection

This section makes up the technical heart of Chapter 1. In fact, Theorem 1.5.13 of
the subsequent § 1.5, which turns out to be crucial in view of our aspired study of
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period mappings in § 1.7, is a mere special case of Theorem 1.4.11. One should regard
this section as presenting a framework designed to study, in § 1.5, the traditional
Gauß-Manin connection which is associated to a submersive morphism of complex
spaces with smooth base. The results of section § 1.4 are all based upon Setup 1.4.4.
Let us note that we are well aware of the fact that Setup 1.4.4 might seem odd at first
sight, yet looking at § 1.5, the reader will find that it is just the right thing to consider.

To begin with, we introduce the auxiliary device of what we christened “augmented
triples”.

Notation 1.4.1 (Augmented triples). — Let b : X → X′ be a morphism of ringed
spaces. Temporarily denote D the category of short exact triples of bounded below
complexes of modules on X′; note that D is a full subcategory of (C+(X′))3. Now
consider the following diagram of categories and functors:

(1.4.1.1) C+(X)×C+(X)
b∗×b∗−−−→ C+(X′)×C+(X′)

p2×p0←−−− D,

where p2 signifies the “projection to 2”, i.e., p2(t) = t(2) for all objects t of D and
(p2(t, t′))(α) = α(2) for all morphisms α : t→ t′ in D; p0 signifies the “projection to
0”, which is declared analogously. Now, define Eb to be the fibered product category
over the diagram (1.4.1.1), i.e.,

Eb := (C+(X)×C+(X))×C+(X′)×C+(X′) D,

cf. Construction 1.3.16. We refer to Eb as the category of augmented triples with respect to
b. An object l+ of Eb is called an augmented triple with respect to b. Note an augmented
triple with respect to b can always be written in the form ((K, L), l), where K and L
are bounded below complexes of modules on X and l is a triple of bounded below
complexes of modules on X′ such that l(0) = b∗(L) and l(2) = b∗(K).

In this as well as in the next section we will frequently encounter the situation
where two modules, say F and G, on a ringed space X together with a map α : F → G
of sheaves on Xtop are given, yet α is not a morphism of sheaves of modules on X but
satisfies only a weaker linearity property, e.g., X → C is a complex space and α is not
OX-linear but merely C-linear. For these purposes it will come in handy to establish
the following

Notation 1.4.2. — Let f : X → S be a morphism of ringed spaces. Then we write
Mod(X/ f ) or else Mod(X/S) for the following large category: The class of objects of
Mod(X/ f ) is simply the class of sheaves of modules on X, i.e., the class of objects of
Mod(X). For any ordered pair (F, G) of objects of Mod(X/ f ), α is a morphism from
F to G in Mod(X/ f ) if and only if α is a morphism of sheaves of f−1OS-modules
on Xtop from F to G, where F (resp. G) stands for the sheaf of f−1OS-modules on
Xtop which is obtained from F (resp. G) by relaxing the scalar multiplication via the
morphism f ] : f−1OS → OX of sheaves of rings on Xtop. The identity function of
Mod(X/ f ) sends an object F of Mod(X/ f ) to the identity sheaf map idF on Xtop.
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The composition in Mod(X/ f ) is given by the composition of sheaf maps on Xtop.
Note that Mod(X) is a subcategory of Mod(X/ f ). We omit the verification that the
so defined Mod(X/ f ) is indeed a category.

Note that Mod(X) is a subcategory of Mod(X/ f ). In fact, the classes of objects of
Mod(X) and Mod(X/ f ) agree, yet the hom-sets of Mod(X/ f ) are generally larger
than the corresponding hom-sets of Mod(X).

Defining additions on the hom-sets of Mod(X/ f ) as usual, Mod(X/ f ) becomes an
additive category. Thus we can speak of complexes over Mod(X/ f ). In this regard,
we set C(X/ f ) := C(Mod(X/ f )) and C+(X/ f ) := C+(Mod(X/ f )).

Construction 1.4.3. — Suppose we are given a commutative square in the category
of ringed spaces as follows:

(1.4.3.1) X
b //

f
��

X′

f ′

��

S c
// S′

Assume that btop = idXtop and ctop = idStop . Then the functors b∗ and c∗ are exact. Fix
an integer n, and denote

κn : Rn f ′∗ ◦ b∗ −→ c∗ ◦ Rn f∗

the natural transformation of functors from C+(X) to Mod(S′) which is induced by
the base change (in degree n) associated to the square (1.4.3.1), cf. Construction B.1.8.
Since the functors b∗ and c∗ are exact, we know that, for all F ∈ C+(X), the morphism

κn(F) : Rn f ′∗(b∗(F)) −→ c∗(Rn f∗(F))

is an isomorphism in Mod(S′). That is, κn is a natural equivalence between the
mentioned functors.

Let l+ = ((K, L), l) be an augmented triple with respect to b, i.e., an object of Eb, cf.
Notation 1.4.1. We define δn

+(l+) to be the composition of the following morphisms
of modules on S′:
(1.4.3.2)

c∗(Rn f∗(K))
κn(K)−−−→ Rn f ′∗(b∗(K))

δn
f ′ (l)−−−→ Rn+1 f ′∗(b∗(L))

(κn+1(L))−1

−−−−−−−→ c∗(Rn+1 f∗(L));

note here that l(2) = b∗(K) and l(0) = b∗(L). Then δn
+(l+) is a morphism

δn
+(l+) : Rn f∗(K) −→ Rn+1 f∗(L)

in Mod(S/c), cf. Notation 1.4.2.
Letting l+ vary, we obtain a function δn

+ defined on the class of objects of Eb. We call
δn
+ the n-th augmented connecting homomorphism associated to the square (1.4.3.1). Since
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κn, δn, and (κn+1)−1 are altogether natural transformations (of approriate functors
between appropriate categories), one infers that δn

+ is a natural transformation

δn
+ : Rn f∗ ◦ q0 −→ Rn+1 f∗ ◦ q1

of functors from Eb to Mod(S/c), where q0 (resp. q1) stands for the functor Eb →
C+(X) which is given as the composition of the projection Eb → C+(X)× C+(X)

to the first factor in the representation of Eb as a fibered product followed by the
projection C+(X)×C+(X)→ C+(X) to the first (resp. second) factor.

Next, we describe the basic situation to which any of the upcoming results of this
section will refer.

Setup 1.4.4. — Let f : X → S and g : S → T be two morphisms of commutative
ringed spaces, and put h := g ◦ f . Let (G, t) be an object of D f , cf. Construction 1.3.16,
such that t is a short exact triple of modules on X and F := t2 and G are locally finite
free modules on X and S, respectively. Moreover, let

l : L α−→ M
β−→ K

be a triple in C(X/h) such that K and L are in fact objects of C(X/ f ) (note that C(X/ f )
is a subcategory of C(X/h) since h factors through f in the category of ringed spaces)
and, for all integers p, we have:

(1.4.4.1) lp = Λp
X(t),

where lp stands for the triple in Mod(X/h) obtained by extracting the degree-p part
from the triple of complexes l. Morally, requiring that (1.4.4.1) holds for all integers p
means that the only new information when passing from (G, t) to l lies in the presence
of differentials in the complexes L, M, and K. We would like to impose yet another
condition on the triple l which relates the differentials of K to the differentials of L. In
order to do this conveniently, we need to introduce some pieces of notation first.

As to that, put

X := (Xtop, f−1OS) u := (id|X|, f ] : f−1OS −→ OX)

X′ := (Xtop, f−1g−1OT) b := (id|X|, f−1(g]) : f−1g−1OT −→ f−1OS)

S′ := (Stop, g−1OT) c := (id|S|, g] : g−1OT −→ OS)

and moreover:

f := (| f |, ηOS
: OS −→ ftop∗ f−1OS)

f ′ := (| f |, ηg−1OT
: g−1OT −→ ftop∗ f−1g−1OT),

where we temporarily use η to denote the adjunction morphism for sheaves of sets
on Stop with respect to the morphism of topological spaces ftop. Given the above
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notation, it is easy to verify that the following diagram commutes in the category of
ringed spaces:

(1.4.4.2) X
u //

f
��

X
b //

f
��

X′

f ′

��

S
idS

// S c
// S′

We have btop = id(X)top
and ctop = idStop . For any integer n, we let δn

+ signify the n-th
augmented connecting homomorphism with respect to the right square in (1.4.4.2), cf.
Construction 1.4.3. For any integer n, we denote by δn the ordinary n-th connecting
homomorphism for the derived functor R f∗, viewed either as defined on the class
of short exact triples in Mod(X) or the class of short exact triples in C+(X). For any
integer n, we denote by

κn : Rn f ∗ ◦ u∗ −→ (idS)∗ ◦ Rn f∗ = Rn f∗

the n-th base change natural transformation of functors from C+(X) to Mod(S) which
is associated to the left square in (1.4.4.2).

By K and L we denote the complexes of modules on X which are obtained by
relaxing the module multiplication of the terms of the complexes K and L, respectively,
via the morphism of rings f ] : f−1OS → OX on Xtop. Note that just because we had
required K and L to be objects of C(X/ f ), and not only objects of C(X/h), it is that K
and L are indeed complexes of modules on X, i.e., the differentials are f−1OS-linear.
We define l′ to be the triple of complexes over Mod(X′) which is obtained by relaxing
the module multiplication of any of the terms in the complexes L, M, and K via the
composition of morphisms of rings on Xtop:

f ] ◦ f−1(g]) : f−1g−1(OT) −→ f−1OS −→ OX .

Furthermore, we set l+ := ((K, L), l′). Observe that, for all integers p, since (1.4.4.1)
holds, lp is a short exact triple of modules on X by Proposition 1.2.2 b). Thus l′ is a
short exact triple of complexes of modules on X′. Moreover, any of the complexes L,
M, and K is bounded below. Therefore, the complexes K and L are bounded below
and l′ is a triple of bounded below complexes of modules on X′, whence l+ is an
augmented triple with respect to b, i.e., an object of Eb, cf. Notation 1.4.1.

For any integer p, we denote γp the composition of the following evident mor-
phisms in Mod(X):

f
∗
G⊗X u∗(Kp−1) −→ u∗(u∗ f

∗
G)⊗X u∗(Kp−1)

−→ u∗( f ∗G)⊗X u∗(Kp−1) −→ u∗( f ∗G⊗X Kp−1).
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We write γ to denote the Z-sequence (γp)p∈Z. What we want to assume is that γ is a
morphism of complexes over Mod(X):

γ : f
∗
G⊗X (K[−1]) −→ L.

For any integer p, we define

γ≥p : f
∗
G⊗X ((σ≥p−1K)[−1]) −→ σ≥pL

to be the morphism in C+(X) which is given by γp′ in degree p′ for all p′ ∈ Z≥p and
by the zero morphism in degrees < p. Similarly, for any p ∈ Z, we define

γ=p : f
∗
G⊗X ((σ=p−1K)[−1]) −→ σ=pL

to be the morphism in C+(X) which is given by γp in degree p and the zero morphism
in degrees 6= p.

The following lemma is the key step towards proving Theorem 1.4.11 later.

Lemma 1.4.5. — Suppose we are in the situation of Setup 1.4.4. Then, for all integers n and
p, the diagram in Figure 2 commutes in Mod(S/g).

Proof. — Fix n, p ∈ Z. The commutativity of the diagram in Figure 2 is equivalent to
the commutativity of its subdiagrams 1©– 8©. We treat the subdiagrams case by case.

The subdiagrams 1© and 2© commute for

δn
+ : Rn f∗ ◦ q0 −→ Rn+1 f∗ ◦ q1

is a natural transformation of functors from Eb to Mod(S/c), cf. Construction 1.4.3.
Additionally, one should point out that the projection functors q0 and q1 commute
with the stupid filtration functors σ≥p and σ≤p as well as with the natural transfor-
mations i≥p and j≤p. In particular, we have

q0(σ
≥p(l+)) = σ≥p(q0(l+)) = σ≥pK, q1(σ

≥pl+) = σ≥p(q1(l+)) = σ≥pL,

q0(i≥p(l+)) = i≥p(q0(l+)) = i≥p(K), q1(i≥p(l+)) = i≥p(q1(l+)) = i≥p(L),

q0(σ
=p(l+)) = q0(σ

≤pσ≥p(l+)) = σ≤p(q0(σ
≥p(l+))) = σ≤pσ≥p(q0(l+)) = σ=pK,

q1(σ
=p(l+)) = q1(σ

≤pσ≥p(l+)) = σ≤p(q1(σ
≥p(l+))) = σ≤pσ≥p(q1(l+)) = σ=pL,

q0(j≤p(σ≥pl+)) = j≤p(q0(σ
≥pl+)) = j≤p(σ≥p(q0(l+))) = j≤p(σ≥pK),

and

q1(j≤p(σ≥pl+)) = j≤p(q1(σ
≥pl+)) = j≤p(σ≥p(q1(l+))) = j≤p(σ≥pL).

The commutativity of 3© follows now from the identity

i≥p(L) ◦ γ≥p = γ ◦ ( f
∗

idG ⊗i≥p−1(K)[−1])
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f ∗
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)
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1 ©
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1
f ∗
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)

3 ©
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f ∗
(
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⊗
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)
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1
f ∗
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oo
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⊗
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f ∗
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)
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n f(
G

,K
)

oo
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f ∗
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f ∗
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f ∗
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in Mod(X), which is easily checked degree-wise, and the fact that Rn+1 f ∗ is a functor
going from C+(X) to Mod(S). Similarly, the commutativity of 4© follows from the
identity

j≤p(σ≥p(L)) ◦ γ≥p = γ=p ◦ ( f
∗

idG ⊗j≤p−1(σ≥p−1(K))[−1]).

Here, we note that for all objects F and all morphisms ζ of C+(X), we have

Rn+1 f ∗(F[−1]) = Rn f ∗(F) and Rn+1 f ∗(ζ[−1]) = Rn f ∗(ζ).

The subdiagrams 5© and 6© commute for

πn
f : (−⊗S −) ◦ (idMod(S)×Rn f ∗) −→ Rn f ∗ ◦ (−⊗X −) ◦ ( f

∗ × idC+(X))

is a natural transformation of functors going from Mod(S)× C+(X) to Mod(S), cf.
Construction 1.3.13.

Moving on to subdiagram 7©, we first remark that

Rn−p f∗(Kp) = Rn−p f∗(Kp[0]) = Rn f∗((Kp[0])[−p]) = Rn f∗(σ=pK)

and, in a similar fashion,

Rn−p+1 f∗(Lp) = Rn+1 f∗(σ=pL).

Moreover, σ=pK (resp. σ=pL) is an object of C+(X) and we have u∗(σ=pK) = σ=pK
(resp. u∗(σ=pL) = σ=p(L)). Thus we see that the domains and codomains which are
given for the morphisms κn(σ=pK) and κn+1(σ=pL) in the diagram are the correct
ones. We need some additional notation: Let κ′n and κ′′n denote the n-th base change
natural transformations which are associated to the right square and outer rectangle
of (1.4.4.2), respectively. Furthermore, let δ′n be the n-th connecting homomorphism
associated to f ′. We assert that the following diagram commutes in Mod(S′):

(1.4.5.1) Rn f ′∗(b∗(σ=pK))
κ′′n(σ=pK)

//

δ′n(σ=p l′)

��

κ′n(σ=pK)

((QQQQQQQQQQQQ
c∗(Rn f∗(σ=pK))

c∗(δn(σ=p l))

��

c∗(Rn f ∗(σ
=pK))

c∗(κn(σ=pK))
55llllllllllllll

c∗(δn
+(σ

=p l+))

��

Rn+1 f ′∗(b∗(σ=pL))
κ′′n+1(σ=p L)

//

κ′n+1(σ=p L) ((QQQQQQQQQQQQ
c∗(Rn+1 f∗(σ=pL))

c∗(Rn+1 f ∗(σ
=pL))

c∗(κn+1(σ=p L))

55lllllllllllll

Indeed, the upper and lower triangles in (1.4.5.1) commute due to the functoriality
of the construction of the base change natural transformations κ. The background
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rectangle in (1.4.5.1) commutes due to the compatibility of the base change κ′′ with
connecting homomorphisms noting that

(b ◦ u)∗(σ=pl) = σ=pl′.

The left foreground rectangle (or “parallelogram”) in (1.4.5.1) commutes by the very
definition of the augmented connecting homomorphism δn

+ noting that the triple
underlying σ=pl+ is nothing but σ=pl′, cf. Construction 1.4.3. Now since κ′n(σ=pL) is
a monomorphism—it is in fact even an isomorphism—, we obtain the commutativity
of the right foreground rectangle (or “parallelogram”) of (1.4.5.1). This, in turn,
implies the commutativity of 7© in Mod(S) since the functor c∗ : Mod(S)→ Mod(S′)
is faithful and we have σ=pl = (lp[0])[−p], whence

δn(σ=pl) = δn((lp[0])[−p]) = δn−p(lp[0]) = δn−p(lp).

We are left with 8©. To this end, define

ω : f ∗G⊗ (σ=p−1K) −→ (σ=pL)[1]

to be the morphism in C+(S) which is given by id f ∗G⊗Kp−1 in degree p− 1 (recall that
Lp = f ∗G⊗∧p−1F = f ∗G⊗ Kp−1) and by the zero morphism in degrees 6= p− 1. In
addition, define

ψ : f ∗G⊗ (σ=p−1K) = f
∗
G⊗ u∗(σ=p−1K) −→ u∗( f ∗G⊗ (σ=p−1K))

the obvious base extension morphism in C+(X). We consider the auxiliary diagram
in Figure 3. By the definition of the projection morphism, cf. Construction 1.3.13, we

Rn+1 f ∗(σ
=pL)

κn+1(σ=p L)

��

Rn f ∗( f
∗
G⊗ σ=p−1K)

Rn+1 f ∗(γ
=p)

oo

Rn f ∗(ψ)

uukkkkkkkkkkkkkk
G⊗ Rn f ∗(σ

=p−1K)oo

πn
f
(G,σ=p−1K)

idG ⊗κn(σ=p−1K)

��

Rn f ∗(u∗( f ∗G⊗ σ=p−1K))

Rn f ∗(u∗(ω))
hhQQQQQQQQQQQQQ

κn( f ∗G⊗(σ=p−1K))

��

Rn−p+1 f∗(Lp) G⊗ Rn−p+1 f∗(Kp−1)
π

n−p+1
f (G,Kp−1)

oo

πn
f (G,σ=p−1K)rreeeeeeeeeeeeeeeeeeeeeeeeee

Rn f∗( f ∗G⊗ σ=p−1K)
Rn f∗(ω)

hhRRRRRRRRRRRRR

FIGURE 3. Auxiliary diagram for the proof of Lemma 1.4.5.

have

π
n−p+1
f (G, Kp−1) = Rn−p+1 f∗(ω[p− 1]) ◦ π

n−p+1
f (G, Kp−1[0])

= Rn f∗(ω) ◦ πn
f (G, (Kp−1[0])[−(p− 1)]) = Rn f∗(ω) ◦ πn

f (G, σ=p−1K).
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Hence the bottom triangle of the diagram in Figure 3 commutes. Taking into account
the fact that κn+1(σ=pL) = κn((σ=pL)[1]), we see that the left foreground rectangle
(or “parallelogram”) commutes as

κn : Rn f ∗ ◦ u∗ −→ (idS)∗ ◦ Rn f∗ = Rn f∗

is a natural transformation of functors going from C+(X) to Mod(S). The pentagon
in the right foreground commutes by compatibility of the projection morphisms with
base change. The top triangle commutes since firstly, we have

γ=p[1] = u∗(ω) ◦ ψ,

in C+(X), as is easily checked degree-wise, secondly, Rn f ∗ is a functor going from
C(X) to Mod(S), and thirdly, Rn+1 f ∗(γ

=p) = Rn f ∗(γ
=p[1]). Therefore, we have

established the commutativity of rectangle in the background of Figure 3, which is,
however, nothing but 8©.

In order to proceed further, we need to establish two more pieces of notation.

Notation 1.4.6. — Assume we are in the situation of Setup 1.4.4. Then for all integers
p, we know that

γp : f
∗
G⊗X Kp−1 −→ Lp

is an isomorphism in Mod(X) (note here that Kp−1
= u∗(Kp−1) and Lp

= u∗(Lp) =

u∗( f ∗G⊗∧p−1F) = u∗( f ∗G⊗ Kp−1)). In turn,

γ : f
∗
G⊗X (K[−1]) −→ L

is an isomorphism in C+(X) and, for all integers p,

γ≥p : f
∗
G⊗X ((σ≥p−1K)[−1]) −→ σ≥pL,

γ=p : f
∗
G⊗X ((σ=p−1K)[−1]) −→ σ=pL

are isomorphisms in C+(X). Furthermore, as G is a locally finite free module on S,
Proposition 1.3.14 implies that

πn
f (G,−) : (G⊗−) ◦ Rn f ∗ −→ Rn f ∗ ◦ ( f

∗
G⊗−)

is a natural equivalence of functors from C+(X) to Mod(S) for all integers n. Thus,
for all integers n and p, it makes sense to set:

∇n := (πn
f (G, K))−1 ◦ (Rn+1 f ∗(γ))

−1 ◦ δn
+(l+),(1.4.6.1)

∇≥p,n := (πn
f (G, σ≥p−1K))−1 ◦ (Rn+1 f ∗(γ

≥p))−1 ◦ δn
+(σ

≥pl+),(1.4.6.2)

and

∇=p,n := (πn
f (G, σ=p−1K))−1 ◦ (Rn+1 f ∗(γ

=p))−1 ◦ δn
+(σ

=pl+),(1.4.6.3)
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where we compose in Mod(S/g) = Mod(S/c). Observe that (1.4.6.1), (1.4.6.2), and
(1.4.6.3) correspond to the first, second, and third left-to-right horizontal row of
arrows in the diagram in Figure 2, respectively.

Notation 1.4.7. — Assume we are in the situation of Setup 1.4.4 (even though for
our immediate concerns it would suffice that an arbitrary morphism f : X → S of
commutative ringed spaces as well as an object K of C+(X) be given). For integers n
and p we set:

Fp,n := im(Rn f ∗(i
≥pK) : Rn f ∗(σ

≥pK) −→ Rn f ∗(K));

moreover, we write
ιn(p) : Fp,n −→ Rn f ∗(K)

for the corresponding inclusion morphism of sheaves on Stop, and we write λn(p) for
the unique morphism such that the following diagram commutes in Mod(S):

Rn f ∗(σ
≥pK)

Rn f ∗(i
≥pK)

//

λn(p)
%%

Rn f ∗(K)

Fp,n
ιn(p)

::uuuuuuuuu

For all n ∈ Z, the sequence (Fp,n)p∈Z clearly constitutes a descending sequence of
submodules of Rn f ∗(K) on S. In more formal terms one may express this observation
by saying that, for all integers n, p, p′ such that p ≤ p′, there exists a unique morphism
ιn(p, p′) in Mod(S) such that the following diagram commutes in Mod(S):

Rn f ∗(K)

Fp,n

ιn(p)
::vvvvvvvvv

Fp′ ,n

ιn(p′)
ddIIIIIIIII

ιn(p,p′)
oo

Proposition 1.4.8. — Suppose we are in the situation of Setup 1.4.4. Let n and p be
integers. Then there exists one, and only one, ζ such that the following diagram commutes in
Mod(S/g):

(1.4.8.1) Rn f ∗(K)
∇n

// G⊗ Rn f ∗(K)

Fp,n
ζ

//

ιn(p)

OO

G⊗ Fp−1,n

idG ⊗ιn(p−1)

OO

Proof. — Comparing (1.4.6.1) and (1.4.6.2) with the diagram in Figure 2, we find that
Lemma 1.4.5 implies the following identity in Mod(S/g):

(1.4.8.2) ∇n ◦ Rn f ∗(i
≥pK) = (idG ⊗Rn f ∗(i

≥p−1K)) ◦ ∇≥p,n.
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Now since G is a locally finite free and hence flat module on S, the functor G ⊗
− : Mod(S) → Mod(S) is exact and thus, in particular, transforms images into
images. Specifically, idG ⊗ιn(p− 1) is an image in Mod(S) of idG ⊗Rn f ∗(i

≥p−1K).
This in mind, our claim follows readily from (1.4.8.2).

Proposition 1.4.9. — Suppose we are in the situation of Setup 1.4.4. Let n and p be integers
and let ζ be such that the diagram in (1.4.8.1) commutes in Mod(S/g). Then there exists
one, and only one, ζ rendering commutative in Mod(S/g) the following diagram:

(1.4.9.1) Fp,n ζ
//

coker(ιn(p,p+1))
��

G⊗ Fp−1,n

idG ⊗ coker(ιn(p−1,p))
��

Fp,n/Fp+1,n
ζ

// G⊗ (Fp−1,n/Fp,n)

Proof. — By Proposition 1.4.8, there exists ζ ′ such that the upper foreground trape-
zoid in the following diagram commutes in Mod(S/g):

(1.4.9.2) Rn f ∗(K)
∇n

// G⊗ Rn f ∗(K)

Fp+1,n
ζ ′

//

ιn(p+1)

@@�����������

ιn(p,p+1)
��

??????????? G⊗ Fp,n

idG ⊗ιn(p)

bbEEEEEEEEEEEE

idG ⊗ιn(p−1,p)
||xxxxxxxxxxxx

Fp,n
ζ

//

ιn(p)

OO

G⊗ Fp−1,n

idG ⊗ιn(p−1)

OO

We claim that the diagram in (1.4.9.2) commutes in Mod(S/g) as such. In fact, the
left and right triangles commute by the very definitions of ιn(p, p + 1) and ιn(p−
1, p), respectively. The background square commutes by our assumption on ζ, cf.
(1.4.8.1). The lower trapezoid commutes as a consequence of the already established
commutativities taking into account that idG ⊗ιn(p− 1) is a monomorphism, which
is due to the flatness of G. Using the commutativity of the lower trapezoid in (1.4.9.2),
we obtain:

((idG ⊗ coker(ιn(p− 1, p))) ◦ ζ) ◦ ιn(p, p + 1)

= (idG ⊗ coker(ιn(p− 1, p))) ◦ (idG ⊗ιn(p− 1, p)) ◦ ζ ′ = 0.

Hence, there exists one, and only one, ζ rendering the diagram in (1.4.9.1) commuta-
tive in Mod(S/g).

Proposition 1.4.10. — Suppose we are in the situation of Setup 1.4.4. Let n and p be
integers and ζ and ζ morphisms such that the diagrams (1.4.8.1) and (1.4.9.1) commute
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in Mod(S/g). Moreover, let ψp and ψp−1 morphisms such that the following diagram
commutes in Mod(S) for ν = p, p− 1:

(1.4.10.1) Fν,n

coker(ιn(ν,ν+1))
��

Rn f ∗(σ
≥νK)

λn(ν)
oo

Rn f ∗(j≤ν(σ≥νK))
��

Fν,n/Fν+1,n
ψν

// Rn f ∗(σ
=νK)

Then the following diagram commutes in Mod(S/g):

(1.4.10.2) Fp,n/Fp+1,n
ζ

//

ψp

��

G⊗ (Fp−1,n/Fp,n)

idG ⊗ψp−1

��

Rn f ∗(σ
=pK)

∇=p,n
// G⊗ Rn f ∗(σ

=p−1K)

Proof. — We proceed in three steps. In each step we derive the commutativity of a
certain square-shaped (or maybe better “trapezoid-shaped”) diagram by means of a
“prism diagram argument”. To begin with, consider the following diagram (“prism”):

(1.4.10.3) Rn f ∗(K)
∇n

// G⊗ Rn f ∗(K)

Fp,n ζ
//

ιn(p)

??~~~~~~~~~~~
G⊗ Fp−1,n

idG ⊗ιn(p−1)

eeKKKKKKKKKKKKKK

Rn f ∗(σ
≥pK)

∇≥p,n
//

Rn f ∗(i
≥pK)

OO

λn(p)

__@@@@@@@@@@@

G⊗ Rn f ∗(σ
≥p−1K)

idG ⊗λn(p−1)

99ssssssssssssss

idG ⊗Rn f ∗(i
≥p−1K)

OO

The above diagram is, in fact, commutative: the left and right triangles commute
according to the definitions of λn(p) and λn(p− 1), respectively; the back square
(or rectangle) commutes due to Lemma 1.4.5; the upper trapezoid commutes by our
assumption on ζ, cf. (1.4.8.1); therefore, the lower trapezoid commutes, too, taking
into account that idG ⊗ιn(p− 1) is a monomorphism, which is due to the fact that G
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is a flat module on S. Next, we claim that the diagram

(1.4.10.4) Rn f ∗(σ
≥pK) ∇≥p,n

//

Rn f ∗(j≤p(σ≥pK))

��

λn(p)

��~~~~~~~~~~~
G⊗ Rn f ∗(σ

≥p−1K)

idG ⊗λn(p−1)

%%KKKKKKKKKKKKKK

idG ⊗Rn f ∗(j≤p−1(σ≥p−1K))

��

Fp,n ζ
//

φp

��
@@@@@@@@@@@ G⊗ Fp−1,n

idG ⊗φp−1

yyssssssssssssss

Rn f ∗(σ
=pK)

∇=p,n
// G⊗ Rn f ∗(σ

=p−1K)

commutes in Mod(S/g). The left and right triangles commute according to the
definitions of φp and φp−1, respectively. The back square commutes by means of
Lemma 1.4.5. The upper trapezoid commutes by the commutativity of the lower
trapezoid in the preceding diagram (1.4.10.3). Therefore, the lower trapezoid of
the diagram in (1.4.10.4) commutes taking into account the fact that λn(p) is an
epimorphism. Finally, we deduce the commutativity of:

(1.4.10.5) Fp,n ζ
//

φp

��

coker(ιn(p,p+1))

||yyyyyyyyyyyyy
G⊗ Fp−1,n

idG ⊗ coker(ιn(p,p−1))

&&MMMMMMMMMMMMMMM

idG ⊗φp−1

��

Fp,n/Fp+1,n
ζ

//

ψp

""EEEEEEEEEEEE G⊗ Fp−1,n/Fp,n

idG ⊗ψp−1

xxrrrrrrrrrrrrrrr

Rn f ∗(σ
=pK)

∇=p,n
// G⊗ Rn f ∗(σ

=p−1K)

Here, the left and right triangles commute by the definitions of ψp and ψp−1, respec-
tively. The back square commutes by the commutativity of the lower trapezoid of
the preceding diagram in (1.4.10.4). The upper trapezoid of the diagram in (1.4.10.5)
commutes by our assumption on ζ, cf. (1.4.9.1). Therefore, the lower trapezoid, which
is nothing but (1.4.10.2), commutes taking into account the fact that coker(ιn(p, p+ 1))
is an epimorphism.

Theorem 1.4.11. — Suppose we are in the situation of Setup 1.4.4. Let n and p be inte-
gers and ζ and ζ morphisms such that the diagrams (1.4.8.1) and (1.4.10.2) commute in
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Mod(S/g). Moreover, let ψp and ψp−1 be morphisms such that the diagram (1.4.10.1) com-
mutes in Mod(S) for ν = p, p− 1. Then the following diagram commutes in Mod(S/g):

(1.4.11.1) Fp,n/Fp+1,n
ζ

//

κn(σ=pK)◦ψp

��

G⊗ (Fp−1,n/Fp,n)

idG ⊗(κn(σ=p−1K)◦ψp−1)
��

Rn−p f∗(∧pF)
γ

p,n−p
KS, f (G,t)

// G⊗ Rn−p+1 f∗(∧p−1F)

Proof. — By Proposition 1.4.10, we know that the diagram (1.4.10.2) commutes in
Mod(S/g), i.e.,

(idG ⊗ψp−1) ◦ ζ = ∇=p,n ◦ ψp.

We know too that

κn : Rn f ∗ ◦ u∗ −→ (idS)∗ ◦ Rn f∗ = Rn f∗

is a natural equivalence functors going from C+(X) to Mod(S). Proposition 1.3.14
implies that π

n−p+1
f (G, Kp−1) is an isomorphism in Mod(S). Hence by Lemma 1.4.5,

specifically the commutativity of subdiagram 8© of the diagram in Figure 2, we have:

(idG ⊗κn(σ=p−1K)) ◦ ∇=p,n = (π
n−p+1
f (G, Kp−1))−1 ◦ δn−p(lp) ◦ κn(σ=p(K)).

By Proposition 1.3.19, the following identity holds in Mod(S) recalling that Kp−1 =

∧p−1F and lp = Λp
X(t):

γ
p,n−p
KS, f (G, t) = (π

n−p+1
f (G, Kp−1))−1 ◦ δn−p(lp).

Summing up, we obtain a chain of equalities:(
idG ⊗ (κn(σ=p−1K) ◦ ψp−1)

)
◦ ζ

= (idG ⊗κn(σ=p−1K)) ◦ (idG ⊗ψp−1) ◦ ζ

= (idG ⊗κn(σ=p−1K)) ◦ ∇=p,n ◦ ψp

= (π
n−p+1
f (G, Kp−1))−1 ◦ δn−p(lp) ◦ κn(σ=p(K)) ◦ ψp

= γ
p,n−p
KS, f (G, t) ◦ (κn(σ=pK) ◦ ψp),

which is precisely what we needed to prove.

1.5. The Gauß-Manin connection

In what follows, we are basically applying the results that we have established in
the preceding section in a more concrete situation. Our predominant goal here is to
prove Theorem 1.5.13, which corresponds to Theorem 1.4.11 of § 1.4.
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Notation 1.5.1. — Let ( f , g) be a composable pair of morphisms of complex spaces,
i.e., an ordered pair of morphisms such that codomain of f equals the domain of g.
Put h := g ◦ f . Then we denote Ω1( f , g) the triple of modules on X,

(1.5.1.1) f ∗Ω1
g

α−→ Ω1
h

β−→ Ω1
f ,

which we have associated to ( f , g) according to [33, Section 2]. We call Ω1( f , g) the
triple of 1-differentials associated to ( f , g). Note that the ordered pair (Ω1

g, Ω1( f , g)) is
an object of D f , cf. Construction 1.3.16.

By [33, Corollaire 4.5] we know that Ω1( f , g) is a right exact triple of modules on
X. Moreover, by [33, Remarque 4.6], Ω1( f , g) is a short exact triple of modules on X
whenever the morphism f is submersive.

Notation 1.5.2 (Kodaira-Spencer class, II). — Let ( f , g) be a composable pair of sub-
mersive morphisms of complex spaces. Write f : X → S. Then (Ω1

g, Ω1( f , g)) is an
object of D f such that Ω1( f , g) is a short exact triple of modules on X. Besides,
(Ω1( f , g))(2) = Ω1

f and Ω1
g are locally finite free modules on X and S, respectively.

Therefore it makes sense to define

(1.5.2.1) ξKS( f , g) := ξKS, f (Ω
1
g, Ω1( f , g)),

where the right hand side is understood in the sense of Notation 1.3.17. Observe that
by definition ξKS( f , g) is a morphism

ξKS( f , g) : OS −→ Ω1
g ⊗S R1 f∗(Θ f )

of modules on S. Furthermore, we set ξKS( f ) := ξKS( f , aS), where aS : S → C
denotes the canonical morphism of complex spaces. We call ξKS( f , g) (resp. ξKS( f ))
the Kodaira-Spencer class of ( f , g) (resp. f ).

Fixing in addition to ( f , g) two integers p and q, we define

(1.5.2.2) γ
p,q
KS ( f , g) := γ

p,q
KS, f (Ω

1
g, Ω1( f , g)),

where we interpret the right hand side in the sense of Notation 1.3.18. Thus, γ
p,q
KS ( f , g)

is a morphism

γ
p,q
KS ( f , g) : Rq f∗(Ω

p
f ) −→ Ω1

g ⊗S Rq+1 f∗(Ω
p−1
f )

of modules on S, which we call the cup and contraction with Kodaira-Spencer class in
bidegree (p, q) for ( f , g). As a special case, we set γ

p,q
KS ( f ) := γ

p,q
KS ( f , aS) and call this

the cup and contraction with Kodaira-Spencer class in bidegree (p, q) for f .

Proposition 1.5.3. — Let ( f , g) be a composable pair of submersive morphisms of complex
spaces and p and q integers. Then the following identity holds in Mod(S), where S :=
cod( f ):

δ
q
f

(
Λp(Ω1( f , g))

)
= π

q+1
f (Ω1

g, Ωp−1
f ) ◦ γ

p,q
KS ( f , g).
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Proof. — Apply Proposition 1.3.19 to the morphism of ringed spaces f and the object
(Ω1

g, Ω1( f , g)) of D f .

Notation 1.5.4. — Let f : X → S be a morphism of complex spaces (or else a mor-
phism of ringed spaces). We recall here a notational device that we had established
implicitly already in § 1.4. Namely, we define a morphism of ringed spaces f : X → S
by setting X := (Xtop, f−1OS) and f := (| f |, ηOS

: OS → ftop∗ f−1OS), where ηOS

denotes the evident adjunction morphism.

Construction 1.5.5. — Let f : X → S and g : S→ T be morphisms of complex spaces.
Set h := g ◦ f . We intend to construct a functor

Ω q
( f , g) : 3 −→ C+(X/h),

i.e., a triple of bounded below complexes over Mod(X/h), which we call the triple
of de Rham complexes associated to ( f , g). In order to simplify notation, we shorten
Ω q

( f , g) to Ω q in what follows. To begin with, we define the object function of the
functor Ω q. Recall the set of objects of the category 3 is the set 3 = {0, 1, 2}. We define
Ω q

(0) to be the unique complex over Mod(X/ f ) such that, for all integers p, firstly,
we have

(Ω q
(0))p = f ∗Ω1

g ⊗X Ωp−1
f

and, secondly, the following diagram commutes in Mod(X):

f
∗
Ω1

g ⊗X Ωp−1
f

id f ∗Ω1
g
⊗dp−1

f
//

γp

��

f
∗
Ω1

g ⊗X Ωp
f

γp+1

��

u∗( f ∗Ω1
g ⊗X Ωp−1

f )
dp

Ω
q
(0)

// u∗( f ∗Ω1
g ⊗X Ωp

f )

Here, u : X → X stands for the morphism of ringed spaces which is given by id|X| and
f ] : f−1OS → OX , and, for any integer ν, γν signifies the composition of the following
morphisms in Mod(X):

f
∗
Ω1

g ⊗X Ων−1
f −→ u∗(u∗ f

∗
Ω1

g)⊗X u∗(Ων−1
f )

−→ u∗(u∗ f
∗
Ω1

g ⊗X Ων−1
f ) −→ u∗( f ∗Ω1

g ⊗X Ων−1
f ).

Notice that we have Ων−1
f = u∗(Ων−1

f ). In order to define Ω q
(1), denote Kp =

(Kp,i)i∈Z the Koszul filtration in degree p which is induced by

Ω1( f , g)|2 : f ∗Ω1
g −→ Ω1

h,

cf. Construction 1.1.1. Then, for all integers p and i, one easily verifies that the
differential dp

h of the complex Ω q
h maps Kp,i into Kp+1,i. Thus we may dipose of a
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quotient complex:
Ω q

(1) := Ω q
h/K q,2.

Finally we set:
Ω q

(2) := Ω q
f .

Moving on to the morphism function of Ω q, we define, for all ordered pairs (x, y) of
objects of 3, i.e., all (x, y) ∈ 3× 3, Ω q

(x, y) to be the unique function on hom3(x, y)
which assigns to all morphisms a : x → y in 3 the Z-sequence

p 7−→
(

Λp
X(Ω

1( f , g))
)
(x, y).

To verify that the so defined Ω q is a functor from 3 to C+(X/h), essentially one has
to check that Ω q

(0, 1) (resp. Ω q
(1, 2)) constitutes a morphism Ω q

(0)→ Ω q
(1) (resp.

Ω q
(1) → Ω q

(2)) of complexes over Mod(X/h). This amounts to checking that the
morphisms defined by the Λp construction commute with the differentials of the
respective complexes Ω q

(x), for x ∈ 3, introduced here. In case of Ω q
(1, 2) the desired

commutativity is rather clear since the wedge powers of the morphism

(Ω1( f , g))(1, 2) : Ω1
h −→ Ω1

f

form a morphism Ω q
h → Ω q

f of complexes over Mod(X/h). In case of Ω q
(0, 1) the

compatibility is harder to establish as the definition of (Λp(t))(0, 1), for some right
exact triple t of modules on X, is more involved, cf. Construction 1.1.7. Nonetheless,
we dare omit this tedious task.

Remark 1.5.6. — Let f : X → S and g : S→ T be submersive morphisms of complex
spaces. By abuse of notation we write f and g also for the morphisms of ringed
spaces obtained from f and g, respectively, by applying the forgetful functor from
the category of complex spaces to the category of ringed spaces. Set G := Ω1

g and
t := Ω1( f , g), cf. Notation 1.5.1. Then (G, t) clearly is an object of D f , cf. Construction
1.3.16. As f is a submersive morphism of complex spaces, t(2) = Ω1

f is a locally finite
free module on X and t is a short exact triple of modules on X. Since g is a submersive
morphism of complex spaces, G is a locally finite free module on S. Further on, set
l := Ω q

( f , g), cf. Construction 1.5.5. Then l : L → M → K is a triple in C+(X/h),
where h := g ◦ f , such that K and L are objects of C+(X/ f ). Moreover, for all integers
p, we have lp = Λp

X(t), where lp stands for the triple in Mod(X/h) which is obtained
by extracting the degree-p part from the triple of complexes l. Define γ, f : X → S, K,
and L just as in Setup 1.4.4. Then γ is a morphism in C+(X),

γ : f
∗
G⊗X (K[−1]) −→ L,

by the very definition of the differentials of the complex L = l(0) = (Ω q
( f , g))(0), cf.

Construction 1.5.5. Summing up, we see that with the morphisms of ringed spaces f
and g, with (G, t), and with l, we are in the situation of Setup 1.4.4.
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Notation 1.5.7 (Gauß-Manin connection). — a) Let ( f , g) a composable pair of
submersive morphisms of complex spaces and n an integer. Then we set:

∇n
GM( f , g) := ∇n,

where ∇n on the right hand side is given by (1.4.6.1) and G, t, and l are defined
precisely as in Remark 1.5.6. Note that we may use the “∇n” from Notation 1.4.6
since we are in the situation of Setup 1.4.4 as pointed out in Remark 1.5.6. We call
∇n

GM( f , g) the n-th Gauß-Manin connection of ( f , g).
b) Let f : X → S be a submersive morphism of complex spaces such that the

complex space S is smooth. Let n be an integer. Then we set:

∇n
GM( f ) := ∇n

GM( f , aS),

where aS : S → C denotes the unique morphism of complex spaces from S to the
distinguished one-point complex space. Observe that it makes sense to employ the
terminology “∇n

GM( f , g)” of part a) since given that the complex space S is smooth,
the morphism of complex spaces aS is submersive. We call ∇n

GM( f ) the n-th Gauß-
Manin connection of f .

Notation 1.5.8 (Algebraic de Rham module). — Let f be a morphism of complex
spaces. Let n be an integer. Then we put:

H n( f ) := Rn f ∗(Ω
q
f ).

We call H n( f ) the n-th algebraic de Rham module of f .

Notation 1.5.9. — Let f : X → S be a morphism of complex spaces and n an integer.
Then for any integer p we set:

FpH n( f ) := im(Rn f ∗(i
≥pΩ

q
f ) : Rn f ∗(σ

≥pΩ
q
f ) −→ Rn f ∗(Ω

q
f ))

in the sense that FpH n( f ) is a submodule of H n( f ) on S; moreover, we write

ιnf (p) : FpH n( f ) −→H n( f )

for the corresponding inclusion morphism of sheaves on Stop (note that H n( f ) =
Rn f ∗(Ω

q
f ) according to Notation 1.5.8). Further on, for any integer p, we denote by

λn
f (p) the unique morphism such that the following diagram commutes in Mod(S):

Rn f ∗(σ
≥pΩ

q
f )

Rn f ∗(i
≥pΩ

q
f )

//

λn
f (p)

%%

Rn f ∗(Ω
q
f )

FpH n( f )
ιnf (p)

::uuuuuuuuu

Obviously, the sequence (FpH n( f ))p∈Z makes up a descending sequence of submod-
ules of H n( f ) on S. In more formal terms we may express this observation by saying
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that, for all integers p, p′ such that p ≤ p′, there exists a unique morphism ιnf (p, p′)
such that the following diagram commutes in Mod(S):

H n( f )

FpH n( f )

ιnf (p)
;;wwwwwwwww

Fp′H n( f )

ιnf (p′)
ccGGGGGGGGG

ιnf (p,p′)
oo

Proposition 1.5.10. — Let n and p be integers and ( f , g) a composable pair of submersive
morphisms of complex spaces. Then there exists one, and only one, ordered pair (ζ, ζ) such
that abbreviating F∗H n( f ) to F∗, the following diagram commutes in Mod(S/g), where
S := dom(g):

(1.5.10.1) H n( f )
∇n

GM( f ,g)
// Ω1

g ⊗H n( f )

Fp ζ
//

ιnf (p)

OO

coker(ιnf (p,p+1))

��

Ω1
g ⊗ Fp−1

idΩ1
g
⊗ιnf (p−1)

OO

idΩ1
g
⊗ coker(ιnf (p−1,p))

��

Fp/Fp+1
ζ

// Ω1
g ⊗ (Fp−1/Fp)

Proof. — Set G := Ω1
g, t := Ω1( f , g), and l := Ω q

( f , g) and write f and g also for
the morphisms of ringed spaces obtained from f and g, respectively, by applying
the forgetful functor from the category of complex spaces to the category of ringed
spaces. Then according to Remark 1.5.6, we are in the situation of Setup 1.4.4. Thus
our assertion is implied by Proposition 1.4.8 and Proposition 1.4.9.

Notation 1.5.11. — Let ( f , g) be a composable pair of submersive morphisms of
complex spaces. Then for any integers n and p we set:

∇p,n
GM( f , g) := ζ,

where (ζ, ζ) is the unique ordered pair such that the diagram (1.5.10.1) commutes in
Mod(S/g), where we set S := dom(g) and abbreviated F∗H n( f ) to F∗, cf. Proposi-
tion 1.5.10.

Notation 1.5.12 (Hodge module). — Let f be a morphism of complex spaces and p
and q integers. Then we put:

H p,q( f ) := Rq f∗(Ω
p
f ).

We call H p,q( f ) the Hodge module in bidegree (p, q) of f .
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Theorem 1.5.13. — Let n and p be integers and ( f , g) a composable pair of submersive mor-
phisms of complex spaces. Let ψp and ψp−1 be morphisms in Mod(S), where S := dom(g),
such that abbreviating F∗H n( f ) to F∗, the following diagram commutes in Mod(S) for
ν = p, p− 1:

(1.5.13.1) Rn f ∗(σ
≥νΩ

q
f )

λn
f (ν)

//

Rn f ∗(j≤ν(σ≥νΩ
q
f ))

��

Fν

coker(ιnf (ν,ν+1))

��

Rn f ∗(σ
=νΩ

q
f ) Fν/Fν+1

ψν
oo

Then the following diagram commutes in Mod(S):

(1.5.13.2) Fp/Fp+1
∇p,n

GM( f ,g)
//

κn
f (σ

=pΩ
q
f )◦ψ

p

��

Ω1
g ⊗ (Fp−1/Fp)

idΩ1
g
⊗(κn

f (σ
=p−1Ω

q
f )◦ψ

p−1)

��

H p,n−p( f )
γ

p,n−p
KS ( f ,g)

// Ω1
g ⊗H p−1,n−p+1( f )

Proof. — Set G := Ω1
g, t := Ω1( f , g), and l := Ω q

( f , g), and write f and g also for
the morphisms of ringed spaces obtained from f and g, respectively, by applying
the forgetful functor from the category of complex spaces to the category of ringed
spaces. Then according to Remark 1.5.6, we are in the situation of Setup 1.4.4. By
Proposition 1.5.10 there exists an ordered pair (ζ, ζ) such that the diagram (1.5.10.1)
commutes in Mod(S/g). Therefore, Theorem 1.4.11 implies that the diagram in
(1.5.13.2) commutes in Mod(S) since ∇p,n

GM( f , g) = ζ by Notation 1.5.11.

1.6. Generalities on period mappings

This and the next section are devoted to the study of certain “period mappings”.
The common basis for any sort of period mapping that we consider in our exposition
is captured by Construction 1.6.3. Observe that we like the point of view of defining
period mappings in the situation where a representation

ρ : Π(X) −→ Mod(A)

of the fundamental groupoid of some topological space X is given (A being some
ring), as opposed to the situation where an A-local system on X, i.e., a certain locally
constant sheaf of AX-modules on X, is given. The reason for this is of technical
nature: When working with local systems in the sense of sheaves, one is bound
to use the stalks of the given sheaf as reference spaces for the period mappings.
When working with representations of the fundamental groupoid on the other hand,
one has the liberty of choosing these reference spaces freely (freely meaning up to
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isomorphism of course). The more familiar setting of working with local systems
becomes a special case of the representation setting by means of Construction 1.6.4
and Remark 1.6.5. Eventually, we are interested predominantly in “holomorphic
period mappings” arising from Construction 1.6.11, where the local system comes
about as the module of horizontal sections associated to a flat vector bundle. Lemma
1.6.20 will give a preliminary, conceptual interpretation of the tangent morphism of
such a period mapping. This interpretation will be exploited in the subsequent § 1.7
in order to derive the concluding theorems of Chapter 1 from Theorem 1.5.13.

Notation 1.6.1. — Let X be a topological space. Then we denote by Π(X) the funda-
mental groupoid of X, cf. [56, Chapter 2, § 5] for instance.

Definition 1.6.2. — Let A be a ring and G a groupoid (or just any category for that
matter).

a) We say that ρ is an A-representation of G when ρ is a functor from G to Mod(A).
b) Let ρ be an A-representation of G. Then F is called an A-distribution in ρ when

F is a function whose domain of definition equals dom(ρ0) (which in turn equals
G0, i.e., the set of objects of the category G) such that, for all s ∈ dom(ρ0), F(s) is an
A-submodule of ρ0(s).

Construction 1.6.3. — Let A be a ring, S a simply connected topological space, ρ

an A-representation of Π(S), F an A-distribution in ρ, and t ∈ S. Since S is simply
connected, we know that for all s ∈ S there exists a unique morphism as,t from s to
t in Π(S), i.e., as,t is the unique element of (Π(S))1(s, t). We define PA

t (S, ρ, F) to be
the unique function on |S| such that, for all s ∈ S, we have:

(PA
t (S, ρ, F))(s) = ((ρ1(s, t))(as,t)) [F(t)],

where we use square brackets to emphasize that we are referring to the image of a set
under a given function. PA

t (S, ρ, F) is called the A-period mapping on S with basepoint
t associated to ρ and F.

Construction 1.6.4. — Let A be a ring and X a connected topological space. Let F be
a constant sheaf of AX-modules on X. We define a functor

ρ : Π(X) −→ Mod(A)

as follows: In the first place, we let ρ0 be the unique function on (Π(X))0 (= |X|)
such that, for all x ∈ X, we have:

ρ0(x) = Fx,

where the stalk Fx is understood to be equipped with its canonical A-module structure.
In the second place, we observe that, for all x ∈ X, the evident function

θx : F(X) −→ Fx
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is a bijection since F is a constant sheaf on X and the topological space X is connected.
For all ordered pairs (x, y) of elements of |X|, we define ρ1(x, y) to be the constant
function on Π(X)1(x, y) with value θy ◦ (θx)−1, i.e., for all morphisms a : x → y in
Π(X), we have:

(ρ1(x, y))(a) = θy ◦ (θx)
−1.

Finally, set ρ := (ρ0, ρ1). It is an easy matter to verify that the so defined ρ is actually
a functor from Π(X) to Mod(A).

Remark 1.6.5. — Construction 1.6.4 is in fact a special case of a construction which
allows to associate—given a ring A and an arbitrary topological space X—to a locally
constant sheaf F of AX-modules on X an A-representation ρ of the fundamental
groupoid of X. We briefly sketch how this can be achieved: The object function of ρ is
defined just as before, that is, we set ρ0(x) := Fx for all x ∈ X. However, the morphism
function of ρ is harder to define when F is not a constant sheaf but only a locally
constant sheaf on X. Let x, y ∈ X and a ∈ Π(X)1(x, y). Let γ ∈ a, i.e., γ : I → X is
a path in X representing a, where I stands for the unit interval topologized by the
Euclidean topology of R. Then γ∗F is a constant sheaf on I. Therefore, one obtains a
mapping (γ∗F)0 → (γ∗F)1 in the same fashion as in Construction 1.6.4 by passing
through the set of global sections of γ∗F on I. Working in the canonical bijections
(γ∗F)0 → Fx and (γ∗F)1 → Fy, we arrive at a function Fx → Fy. After checking
that the latter function Fx → Fy is independent of the choice γ in a, we may define
(ρ1(x, y))(a) accordingly. As the reader might imagine, verifying that (ρ1(x, y))(a)
is independent of γ is a little tedious, hence we omit it. Next, one has to verify
that the ρ defined here is a functor from Π(X) to Mod(A), which again turns out
to be a little less obvious than in the “baby case” of Construction 1.6.4. Finally, one
should convince oneself that in case F is a constant sheaf on X and X is a connected
topological space the ρ defined here agrees with the ρ of Construction 1.6.4.

Definition 1.6.6. — Let S be a complex space and H a module on S.

a) Let g : S→ T be a morphism of complex spaces. Then ∇ is called a g-connection
on H when ∇ is a morphism in Mod(S/g)

∇ : H −→ Ω1
g ⊗S H

such that for all open sets U of S, all λ ∈ OS(U), and all σ ∈ H (U) Leibniz’s rule
holds:

∇U(λ · σ) = (dg)U(λ)⊗ σ + λ · ∇U(σ).

b) ∇ is called an S-connection on H when ∇ is a aS-connection on H in the sense
of part a), where aS : S→ C denotes the unique morphism of complex spaces from S
to the distinguished one-point complex space.
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Notation 1.6.7 (Module of horizontal sections). — Let g : S → T be a morphism
of complex spaces, H a module on S, and ∇ a g-connection on H . Put S′ :=
(Stop, g−1OT) and let

c : S −→ S′

be the morphism of ringed spaces given by:

(id|S|, g] : g−1OT −→ OS).

Then∇ is a morphism of modules on S′ from c∗(H ) to c∗(Ω1
g ⊗S H ). Thus it makes

sense to set:

Horg(H ,∇) := kerS′(∇ : c∗(H ) −→ c∗(Ω1
g ⊗S H )).

Note that by definition Horg(H ,∇) is a module on S′. We call Horg(H ,∇) the mod-
ule of horizontal sections of (H ,∇) relative g. When instead of g : S→ T merely a single
complex space S is given and ∇ is an S-connection on H , we set HorS(H ,∇) :=
HoraS(H ,∇), where the right hand side is understood in the already defined sense.
HorS(H ,∇) is then called the module of horizontal sections of (H ,∇) on S.

Definition 1.6.8. — Let g : S→ T be a morphism of complex spaces, H a module on
S, and∇ a g-connection on H . Let p be a natural number. Then there exists a unique
morphism

∇p : Ωp
g ⊗H −→ Ωp+1

g ⊗H

in Mod(S/g) such that for all open sets U of S, all α ∈ Ωp
g(U), and all σ ∈H (U), we

have:
(∇p)U(α⊗ σ) = (dp

g)U(α)⊗ σ + (−1)pΛU(α⊗∇U(σ)),

where Λ stands for the composition of the following morphisms in Mod(S):

Ωp
g ⊗ (Ω1

g ⊗H ) −→ (Ωp
g ⊗Ω1

g)⊗H −→ Ωp+1
g ⊗H .

The existence of ∇p is in fact not completely obvious, cf. [11, 2.10], yet we take it for
granted here. We say that ∇ is flat (as a g-connection on H ) when the composition

∇1 ◦ ∇ : H −→ Ω2
g ⊗H

is the zero morphism in Mod(S/g).

Definition 1.6.9. — Let S be a complex space.

a) By a vector bundle on S we understand a locally finite free module on S.
b) A flat vector bundle on S is an ordered pair (H ,∇) such that H is a vector

bundle on S and ∇ is a flat S-connection on H .
c) Let H be a vector bundle on S. Then F is a vector subbundle of H on S when

F is a locally finite free submodule of H on S such that for all s ∈ S the function

ι(s) : F (s) −→H (s)

is one-to-one, where ι : F →H denotes the inclusion morphism.
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Proposition 1.6.10. — Let S be a complex manifold and (H ,∇) a flat vector bundle on S.
Then:

a) H := HorS(H ,∇) is a C-local system on Stop.
b) The sheaf map

OS ⊗CS H −→ OS ⊗CS H −→H

induced by the inclusion H ⊂ H and the OS-scalar multiplication of H is an isomorphism
of modules on S.

Proof. — This is implied by [11, Théorème 2.17].

Construction 1.6.11. — Let S be a simply connected complex manifold, (H ,∇) a
flat vector bundle on S, F a submodule of H on S, and t ∈ S. Put H := HorS(H ,∇).
Then by Proposition 1.6.10, H is a locally constant sheaf of CS-modules on Stop. As the
topological space Stop is simply connected, H is even a constant sheaf of CS-modules
on Stop. Thus by means of Construction 1.6.4, we obtain a C-representation ρ of Π(S):

ρ : Π(S) −→ Mod(C).

Now for all s ∈ S, we set H (s) := C⊗OS,s
Hs (considered a C-module) and let

ψs : Hs −→H (s)

denote the evident morphism of C-modules. We define a new functor

ρ′ : Π(S) −→ Mod(C)

by composing ρ with the family (ψs)s∈S; explicitly, that is, we set

ρ′0(s) := H (s)

for all s ∈ S and

(ρ′1(x, y))(a) := ψy ◦ (ρ1(x, y))(a) ◦ (ψx)
−1

for all x, y ∈ S and all morphisms a : x → y in Π(S). One checks without effort that
the so declared ρ′ is in fact a functor from Π(S) to Mod(C). Next, define F to be the
unique function on |S| such that, for all s ∈ S, we have

F(s) = im(ι(s) : F (s) −→H (s)),

where F (s) := C⊗OS,s
Fs and ι(s) stands for the morphism derived from the inclu-

sion morphism F →H . Then clearly F is a C-distribution in ρ′, cf. Definition 1.6.2
b). Therefore it makes sense to set:

Pt(S, (H ,∇), F ) := PC
t (Stop, ρ′, F)

where the right hand side is to be understood in the sense of Construction 1.6.3.
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Notation 1.6.12 (Grassmannians). — Let V be a finite dimensional C-vector space.
Then by Gr(V) we denote the Grassmannian of V regarded as a complex space. Let us
elaborate a little on this terminology. First of all, set-theoretically Gr(V) is plainly the
set of all C-vector subspaces of V, i.e.,

|Gr(V)| = {W : W is a C-linear subset of V}.

Note that, in contrast to us, many authors only look at subspaces W of V which are
of a certain prescribed dimension d. Second of all, a topology as well as a complex
structure (in the sense of the theory of complex manifolds, i.e., via charts) is defined
on |Gr(V)| by means of [71, Proposition 10.5]. Lastly, we transform the thus obtained
object into a complex space by means of the standard procedure: OGr(V) is the sheaf
of holomorphic functions; the morphism of ringed spaces Gr(V)→ C is the canonical
one.

Proposition 1.6.13. — Let S be a simply connected complex manifold, (H ,∇) a flat vector
bundle on S, F a vector subbundle of H on S, and t ∈ S. Then P := Pt(S, (H ,∇), F ) is
a holomorphic map from S to Gr(H (t)).

Proof. — Set H := HorS(H ,∇). Then H is a C-local system on S by Proposition
1.6.10 a). Since S is simply connected, there exists thus a natural number r as well
as an isomorphism (CS)

⊕r → H of CS-modules on Stop. Denote by e = (e0, . . . , er−1)

the thereby induced ordered C-basis of H(S). Let s0 be an arbitrary element of S.
Then, as F is a locally finite free module on S, there exist an open neighborhood U of
s0 in S, a natural number d, as well as an isomorphism

φ : (OS|U)⊕d −→ F |U

of modules on S|U. Denote, for any j ∈ d, by σj the image of the j-th unit vector in
((OS|U)⊕d)(U) = (OS(U))⊕d under the function φU . Then exploiting the fact that by
Proposition 1.6.10 b) the canonical sheaf map

OS ⊗CS H −→H

is an isomorphism of modules on S, we see that there exists an r× d-matrix λ = (λij)

with values in OS(U) such that, for all j ∈ d, we have:

σj = ∑
i∈r

λij · (ei|U),

where we add and multiply in the OS(U)-module H (U). Clearly, for all s ∈ U,
the d-tuple (σ0(s), . . . , σd−1(s)) makes up an ordered C-basis for F (s). Since F is a
vector subbundle of H on S, we know that, for all s ∈ S, the map

ι(s) : F (s) −→H (s)
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is one-to-one, where ι : F → H stands for the inclusion morphism. Thus, for all
s ∈ U, the d-tuple given by the association

j 7−→∑
i∈r

λij(s) · ei(s)

constitutes a C-basis of

F(s) := im(ι(s) : F (s) −→H (s)).

Define:

L : U −→ Cr×d, L(s) = (λij(s))i∈r,j∈c.

Then, for all s ∈ U, the columns of the matrix L(s) are linearly independent. In
particular, without loss of generality, we may assume that the matrix L(s0)|d× d is
invertible. Since the functions s 7→ λij(s) are altogether continuous (from U to C), the
set U′ of elements s of U such that L(s)|d× d is invertible, is an open neighborhood
of s0 in S. We set:

L′ : U′ −→ Cr×d, L′(s) = L(s) · (L(s)|d× d)−1.

Then, for all s ∈ U′, P(s) is the linear span in H (t) of the following elements:

ej(t) + ∑
d≤i<r

(L′(s))ij · ei(t),

where j varies through d. In other words, setting c := r− d and

L′′ : U′ −→ Cc×d, (L′′(s))ij = (L′(s))i+d,j,

and letting h signify the mapping which associates to a matrix M ∈ Cc×d the linear
span in H (t) of the elements

ej(t) + ∑
i<c

Mij · ei+d(t),

where j varies through d, the following diagram commutes in Set:

U′

L′′

}}zzzzzzzz
P|U′

$$IIIIIIIIII

Cc×d
h

// Gr(H (t))

Since the tuple (e0(t), . . . , er−1(t)) forms a C-basis of H (t), we see that h is one-to-one
and h−1 composed with the canonical function Cc×d → Ccd is a holomorphic chart
on the Grassmannian Gr(H (t)), cf. Notation 1.6.12. Moreover, the components of
L′′ are holomorphic functions on S|U′. This shows that P|U′ is a holomorphic map
from S|U′ to Gr(H (t)). Since s0 was an arbitrary element of S, we infer that P is a
holomorphic map from S to Gr(H (t)).
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Notation 1.6.14. — Let S be a simply connected complex manifold, (H ,∇) a flat
vector bundle on S, F a vector subbundle of H on S, and t ∈ S. Then Proposition
1.6.13 implies that Pt(S, (H ,∇), F ) is a holomorphic map from S to Gr(H (t)).
Therefore, since the complex space S is reduced, there exists one, and only one,
morphism of complex spaces

P+ : S −→ Gr(H (t))

such that the function underlying P+ is precisely Pt(S, (H ,∇), F ). We agree on
setting:

Pt(S, (H ,∇), F ) := P+.

Observe that in view of Construction 1.6.11 this notation is slightly ambiguous. In
fact, now Pt(S, (H ,∇), F ) may refer to a morphism of complex spaces as well as
to the function underlying this morphism of complex spaces. Nonetheless, we are
confident that this ambiguity will not irritate our readers.

Construction 1.6.15. — Let S be a complex space and t ∈ S. Moreover, let F and H
be two modules on S. We intend to fabricate a mapping

AS,t(F, H) : HomS(F, Ω1
S ⊗ H) −→ HomC(TS(t), Hom(F(t), H(t))).

For that matter, let
φ : F −→ Ω1

S ⊗ H

be a morphism of modules on S. Then we obtain a morphism

ΘS ⊗ F −→ H

as the composition:

ΘS ⊗ F −→ ΘS ⊗ (Ω1
S ⊗ H) −→ (ΘS ⊗Ω1

S)⊗ H −→ OS ⊗ H −→ H.

By means of tensor-hom adjunction on S (with respect to the modules ΘS, F, and H)
the latter morphism corresponds to a morphism

ΘS −→Hom(F, H).

Now evaluating at t and composing with the canonical map

(Hom(F, H))(t) −→ Hom(F(t), H(t))

yields a morphism in Mod(C):

ΘS(t) −→ Hom(F(t), H(t)).

Finally, precomposing with the inverse of the canonical isomorphism

ΘS(t) −→ TS(t),

we end up with a morphism

TS(t) −→ Hom(F(t), H(t))
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in Mod(C), which we define to be the image of φ under AS,t(F, H). That way we
obtain our desired function AS,t(F, H). Observing that AS,t(F, H) is a set, we may let
(F, H) vary and view AS,t itself as a function defined on the class of ordered pairs of
modules on S.

Proposition 1.6.16. — Let S be a complex space and t ∈ S. Then AS,t is a natural transfor-
mation of functors from Mod(S)op ×Mod(S) to Set:

AS,t : HomS(−, Ω1
S ⊗−) −→ HomC(TS(t), Hom(−(t),−(t))).

Proof. — One needs to verify that the individual steps applied in Construction 1.6.15
are altogether natural transformations of appropriate functors from Mod(S)op ×
Mod(S) to Set. We dare omit the details here.

Remark 1.6.17. — We would like to give a more down-to-earth interpretation of
Proposition 1.6.16. So, let S be a complex space and t ∈ S. Let (F, H) and (F′, H′) be
two ordered pairs of modules on S and let

(α, γ) : (F, H) −→ (F′, H′)

be a morphism in Mod(S)op×Mod(S), i.e., α : F′ → F and γ : H → H′ are morphisms
in Mod(S). Moreover, let φ and φ′ be such that the following diagram commutes in
Mod(S):

F
φ

// Ω1
S ⊗ H

idΩ1
S
⊗γ

��

F′
φ′

//

α

OO

Ω1
S ⊗ H′

Then φ′ is the image of φ under the function:

HomS(α, idΩ1
S
⊗γ) : HomS(F, Ω1

S ⊗ H) −→ HomS(F′, Ω1
S ⊗ H′).

Therefore, by Proposition 1.6.16, (AS,t(F′, H′))(φ′) is the image of (AS,t(F, H))(φ)

under the function:

HomC(TS(t), Hom(α(t), γ(t))) :

HomC(TS(t), Hom(F(t), H(t))) −→ HomC(TS(t), Hom(F′(t), H′(t))),

which translates as the commutativity in Mod(C) of the following diagram:

TS(t)
(AS,t(F,H))(φ)

yyrrrrrrrrrr
(AS,t(F′ ,H′))(φ′)

&&LLLLLLLLLL

Hom(F(t), H(t))
Hom(α(t),γ(t))

// Hom(F′(t), H′(t))

This line of reasoning will be exploited heavily in the proof of Proposition 1.7.7 in the
subsequent § 1.7.
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Proposition 1.6.18. — Let S be a complex space, ι : F →H a morphism of modules on S,
and ∇ an S-connection on H . Then

(1.6.18.1) ∇ι := (idΩ1
S
⊗ coker(ι)) ◦ ∇ ◦ ι

is a morphism

∇ι : F −→ Ω1
S ⊗ (H /F )

in Mod(S).

Proof. — A priori ∇ι is a morphism from F to Ω1
S ⊗ (H /F ) in Mod(S/C). That

∇ι is a morphism in Mod(S) is equivalent to saying that it is compatible with the OS-
scalar multiplications of F and Ω1

S ⊗ (H /F ). Let U be an open set of S, σ ∈ F (U),
and λ ∈ OS(U). Then we have:

(∇ ◦ ι)U(λ · σ) = ∇U(λ · ιU(σ)) = dU(λ)⊗ ιU(σ) + λ · ∇U(ιU(σ)),

where d is short for the differential d0
S : OS → Ω1

S. Thus,

(∇ι)U(λ · σ) = λ · (∇ι)U(σ),

which proves our claim.

Notation 1.6.19. — Let V be a finite dimensional C-vector space and F a C-linear
subset of V, i.e., F ∈ Gr(V). Then we write

θ(V, F) : TGr(V)(F) −→ Hom(F, V/F)

for the function which is introduced in [71, Lemme 10.7]. Let us briefly indicate
how one defines θ(V, F). For that matter, be E a C-vector subspace of V such that
V = F⊕ E. Then one has a morphism of complex spaces

gE : Hom(F, E) −→ Gr(V)

such that gE sends a homomorphism α : F → E to the image of the function α′ : F → V,
α′(x) := x + α(x). In fact, gE is an open immersion which maps the 0 of Hom(F, E)
to F in Gr(V). Hence, the tangential map

T0(gE) : THom(F,E)(0) −→ TGr(V)(F)

is an isomorphism in Mod(C). Moreover, we have a canonical isomorphism

THom(F,E)(0) −→ Hom(F, E)

as well as the morphism

Hom(F, E) −→ Hom(F, V/F)

which is induced by the restriction of the quotient mapping V → V/F to E.
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Lemma 1.6.20. — Let S be a simply connected complex manifold, (H ,∇) a flat vector
bundle on S, F a vector subbundle of H on S, and t ∈ S. Set

P := Pt(S, (H ,∇), F )

and define ∇ι by (1.6.18.1), where ι : F → H denotes the inclusion morphism. Moreover,
set

F(t) := im(ι(t) : F (t) −→H (t))

and write

σ : F (t) −→ F(t)

τ : H (t)/F(t) −→ (H /F )(t)

for the obvious mappings. Then σ and τ are isomorphisms in Mod(C) and the following
diagram commutes in Mod(C):

(1.6.20.1) TS(t)
AS,t(F ,H /F )(∇ι)

//

Tt(P)
��

Hom(F (t), (H /F )(t))

TGr(H (t))(F(t))
θ(H (t),F(t))

// Hom(F(t), H (t)/F(t))

Hom(σ,τ)

OO

Proof. — The fact that σ and τ are isomorphisms is pretty obvious: since F is a vector
subbundle of H on S, σ is injective; σ is surjective by the definition of F(t). τ is an
isomorphism since both H (t)→ H (t)/F(t) and H (t)→ (H /F )(t) are cokernels
in Mod(C) of ι(t) : F (t)→H (t) taking into account particularly the right exactness
of the evaluation functor “−(t)”.

Set H := HorS(H ,∇). Then by the same method as in the proof of Proposition
1.6.13 we deduce that there exist an ordered C-basis e′ = (e′0, . . . , e′r−1) for H(S), an
open neighborhood U of t in S, as well as a c× d-matrix λ′ with values in OS(U) such
that the tuple

α = (α0, . . . , αd−1)

with
αj = e′j|U + ∑

i<c
λ′ij · (e′d+i|U)

for all j ∈ d, where we add in multiply within the OS(U)-module H (U), trivializes
the module F on S over U, i.e., the unique morphism (OS|U)⊕d → F |U of modules
on S|U which sends the standard basis of (OS(U))⊕d to α is an isomorphism. Define
a c-tuple e and a d-tuple f by setting

ei := e′d+i,

f j := e′j + ∑
i<c

λ′ij(t) · e′d+i
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for all i ∈ c and j ∈ d, respectively. Moreover, define a c× d-matrix λ by setting for
(i, j) ∈ c× d:

λij := λ′ij − λ′ij(t).

Then the concatenated tuple

( f0, . . . , fd−1, e0, . . . , ec−1)

is an ordered C-basis for H(S), and

αj = f j|U + ∑
i<c

λij · (ei|U)

for all j ∈ d. Thus, for all s ∈ U, P(s) equals the C-linear span of the elements

f j(t) + ∑
i<c

λij(s) · ei(t),

j ranging through d, in H (t). Specifically, as λij(t) = 0 for all (i, j) ∈ c× d, we see
that F(t) equals the C-linear span of f0(t), . . . , fd−1(t) in H (t). Define E to be the
C-linear span of e0(t), . . . , ec−1(t) in H (t). Let

g : Hom(F(t), E) −→ Gr(H (t))

be the morphism of complex spaces which sends an element φ ∈ Hom(F(t), E) to the
range of the homomorphism idF(t) +φ : F(t)→H (t). Let

P : S|U −→ Hom(F(t), E)

be the morphism of complex spaces which sends s to the homomorphism F(t)→ E
which is represented by the c× d-matrix

(i, j) 7−→ λij(s)

with respect to the bases ( f0(t), . . . , fd−1(t)) and (e0(t), . . . , ec−1(t)) of F(t) and E,
respectively. Then the following diagram commutes in the category of complex
spaces:

S|U
P|U

//

P !!BBBBBBBB
Gr(H (t))

Hom(F(t), E)

g

::uuuuuuuuu

Let v be an arbitrary element of TS(t). Then by the explicit description of P, we see
that the image of v under the composition

can ◦ Tt(P) : TS(t) −→ THom(F(t),E)(0) −→ Hom(F(t), E)

is represented by the matrix

(1.6.20.2) c× d 3 (i, j) 7−→ v y (dS)U(λij)
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with respect to the bases ( f0(t), . . . , fd−1(t)) and (e0(t), . . . , ec−1(t)), where, for any
ω ∈ Ω1

S(U),
v y ω := v(ω(t))

(note that v is a linear functional v : Ω1
S(t) = C⊗OS,s

Ω1
S,s → C). By the definition of

θ(−,−) in Notation 1.6.19, when π : H (t) → H (t)/F(t) denotes the residue class
mapping, the following diagram commutes in Mod(C):

THom(F(t),E)(0)
can //

T0(g)
��

Hom(F(t), E)

Hom(idF(t),π|E)
��

TGr(H (t))(F(t))
θ(H (t),F(t))

// Hom(F(t), H (t)/F(t))

Hence, the image of v under the composition

θ(H (t), F(t)) ◦ Tt(P)

is represented by the matrix (1.6.20.2) with respect to the bases ( f0(t), . . . , fd−1(t))
and (π(e0(t)), . . . , π(ec−1(t))). On the other hand, we have for all j ∈ d:

∇U(αj) = ∑
i<c

(dS)U(λij)⊗ (ei|U),

whence
(∇ι)U(αj) = ∑

i<c
(dS)U(λij)⊗ ei,

where ei denotes the image of ei|U under the mapping H (U) → (H /F )(U). Put
A := AS,t(F , H /F )(∇ι). Then by Contruction 1.6.15, we have:

Av(αj(t)) = ∑
i<c

(v y (dS)U(λij)) · ei(t).

Evidently, for all j ∈ d, the mapping ι(t) : F (t) → H (t) sends αj(t) (evaluation in
F ) to

αj(t) = f j(t) + ∑
i<c

λij(t) · ei(t) = f j(t)

(evaluation in H ); thus σ(αj(t)) = f j(t). Likewise, for all i ∈ c, the mapping
(coker ι)(t) : H (t) → (H /F )(t) sends ei(t) to ei(t); thus τ(π(ei(t))) = ei(t). This
proves the commutativity of (1.6.20.1).

1.7. Period mappings of Hodge-de Rham type

After the ground laying work of the previous § , we are now in the position to
analyze period mappings of “Hodge-de Rham type”; the concept will be made precise
in the realm of Notation 1.7.2 b) below. As a preparation we need the following result.

Proposition 1.7.1. — Let n be an integer.
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a) Let ( f , g) be a composable pair of submersive morphisms of complex spaces. Then
∇n

GM( f , g) is a flat g-connection on H n( f ).
b) Let f : X → S be a submersive morphism of complex spaces such that S is a complex

manifold. Then ∇n
GM( f ) is a flat S-connection on H n( f ).

Proof. — Clearly, assertion b) follows from assertion a) letting g = aS. For the
verification of Leibniz’s rule and the flatness condition for connections we refer our
reader to [44, Section 2].

Notation 1.7.2. — Let f : X → S be a submersive morphism of complex spaces such
that S is a simply connected complex manifold. Let n and p be integers and t ∈ S.
Assume that H n( f ) is a locally finite free module on S and FpH n( f ) is a vector
subbundle of H n( f ) on S.

a) We put:

(1.7.2.1) P
′p,n
t ( f ) := Pt(S, (H n( f ),∇n

GM( f )), FpH n( f )),

where the right hand side is to be interpreted in the sense of Construction 1.6.11. Note
that (1.7.2.1) makes sense in particular because by Proposition 1.7.1 b) ∇n

GM( f ) is a
flat S-connection on H n( f ), whence (H n( f ),∇n

GM( f )) is a flat vector bundle on S.
Note that by means of Proposition 1.6.13 we may regard P

′p,n
t ( f ) as a morphism of

complex spaces:

P
′p,n
t ( f ) : S −→ Gr((H n( f ))(t)).

b) Assume that for all s ∈ S the base change maps

φn
f ,s : (H n( f ))(s) −→H n(Xs)

φ
p,n
f ,s : (FpH n( f ))(s) −→ FpH n(Xs)

are isomorphisms in Mod(C). Write

ρ′ : Π(S) −→ Mod(C)

for the C-representation of the fundamental groupoid of S which is defined for
(H ,∇) := (H n( f ),∇n

GM( f )) in Construction 1.6.11. Let

ρ : Π(S) −→ Mod(C)

be the functor which is obtained by “composing” ρ′ with the family of isomorphisms
φ := (φn

f ,s)s∈S. Define F to be the unique function on S such that, for all s ∈ S, we
have:

F(s) = FpH n(Xs).

Then clearly F is a C-distribution in ρ. We set:

P
p,n
t ( f ) := PC

t (S, ρ, F),
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cf. Construction 1.6.3. Note that φ is an isomorphism of functors from Π(S) to Mod(C)

from ρ′ to ρ. Moreover, when F′ denotes the unique function on S such that, for all
s ∈ S, we have

F′(s) = im((ιnf (p))(s) : (FpH n( f ))(s) −→ (H n( f ))(s)),

then
φn

f ,s[F
′(s)] = F(s)

for all s ∈ S. Therefore the following diagram commutes in Set:

S
P
′p,n
t ( f )

xxqqqqqqqqqqqq
P

p,n
t ( f )

%%KKKKKKKKKKK

Gr((H n( f ))(t))
Gr(φn

f ,t)
// Gr(H n(Xt))

Since P
′p,n
t ( f ) is a holomorphic map from S to Gr((H n( f ))(t)) by Proposition 1.6.13

and Gr(φn
f ,t) is an isomorphism of complex spaces (as φn

f ,t is an isomorphisms of

C-vector spaces), we may view P
p,n
t ( f ) as a morphism of complex spaces from S to

Gr(H n(Xt)). We call Pp,n
t ( f ) the (Hodge-de Rham) period mapping in bidegree (p, n) of

f with basepoint t.

Next, we introduce the classical concept of Kodaira-Spencer maps. Our definition
shows how to construct these maps out of the Kodaira-Spencer class given by Notation
1.5.2 and Notation 1.3.17. As an auxiliary means, we also introduce “Kodaira-Spencer
maps without base change”.

Notation 1.7.3 (Kodaira-Spencer maps). — Let f : X → S be a submersive mor-
phism of complex spaces such that S is a complex manifold. Then, by means of
Notation 1.5.2, we may speak of the Kodaira-Spencer class of f , written ξKS( f ), which
is a morphism

ξKS( f ) : OS −→ Ω1
S ⊗ R1 f∗(Θ f )

of modules on S. We write KS f for the composition of the following morphisms in
Mod(S):

ΘS
ρ(ΘS)

−1

−−−−→ ΘS ⊗OS
idΘS

⊗ξKS( f )
−−−−−−−→ ΘS ⊗ (Ω1

S ⊗ R1 f∗(Θ f ))

α(ΘS ,Ω1
S ,R1 f∗(Θ f ))

−1

−−−−−−−−−−−−→ (ΘS ⊗Ω1
S)⊗ R1 f∗(Θ f )

γ1(Ω1
S)⊗idR1 f∗(Θ f )−−−−−−−−−−−→ OS ⊗ R1 f∗(Θ f )

λ(R1 f∗(Θ f ))−−−−−−−→ R1 f∗(Θ f ).

Let t ∈ S. Then define

KS′f ,t : TS(t) −→ (R1 f∗(Θ f ))(t)
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to be the composition of the inverse of the canonical isomorphism ΘS(t) → TS(t)
with KS f (t) : ΘS(t) → (R1 f∗(Θ f ))(t). We call KS′f ,t the Kodaira-Spencer map without
base change of f at t. Furthermore, define

KS f ,t : TS(t) −→ H1(Xt, ΘXt)

to be the composition of KS′f ,t with the evident base change morphism:

β1
f ,t : (R1 f∗(Θ f ))(t) −→ H1(Xt, ΘXt).

We call KS f ,t the Kodaira-Spencer map of f at t.

Notation 1.7.4 (Cup and contraction, II). — Let f : X → S be an arbitrary morphism
of complex spaces. Let p and q be integers. We define

γ
p,q
f : R1 f∗(Θ f )⊗H p,q( f ) −→H p−1,q+1( f )

to be the composition in Mod(S) of the cup product morphism

^
1,q
f (Θ f , Ωp

f ) : R1 f∗(Θ f )⊗ Rq f∗(Ω
p
f ) −→ Rq+1 f∗(Θ f ⊗Ωp

f )

and the Rq+1 f∗(−) of the contraction morphism:

γ
p
X(Ω

1
f ) : Θ f ⊗Ωp

f −→ Ωp−1
f ,

cf. Notation 1.3.10. γ
p,q
f is called the cup and contraction in bidegree (p, q) for f . As a

shorthand, we write γ
p,q
X for γ

p,q
aX .

By means of tensor-hom adjunction on S (with respect to the modules R1 f∗(Θ f ),
H p,q( f ), and H p−1,q+1( f )), the morphism γ

p,q
f corresponds to a morphism

R1 f∗(Θ f ) −→HomS(H
p,q( f ), H p−1,q+1( f ))

in Mod(S). Let t ∈ S. Then evaluating the latter morphism at t and composing the
result in Mod(C) with the canonical morphism

(HomS(H
p,q( f ), H p−1,q+1( f )))(t) −→ Hom

(
(H p,q( f ))(t), (H p−1,q+1( f ))(t)

)
,

yields:

γ
′p,q
f ,t : (R1 f∗(Θ f ))(t) −→ Hom

(
(H p,q( f ))(t), (H p−1,q+1( f ))(t)

)
.

We refer to γ
′p,q
f ,t as the cup and contraction without base change in bidegree (p, q) of f at

t.

The following two easy lemmata pave the way for the first essential statement of
§ 1.7, which is Proposition 1.7.7.
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Lemma 1.7.5. — Let f : X → S be a submersive morphism of complex spaces such that S is
a complex manifold. Let p and q be integers and t ∈ S. Then the following identity holds in
Mod(C):

(1.7.5.1) AS,t(H
p,q( f ), H p−1,q+1( f ))(γp,q

KS ( f )) = γ
′p,q
f ,t ◦KS′f ,t.

Proof. — We argue in several steps. To begin with, observe that the following diagram
commutes in Mod(S):

ΘS ⊗H p,q( f )
KS f⊗id

wwooooooooooo
γ

p,q
KS ( f )

%%KKKKKKKKKK

R1 f∗(Θ f )⊗H p,q( f )
γ

p,q
f

// H p−1,q+1( f )

Thus, by the naturality of tensor-hom adjunction, the next diagram commutes in
Mod(S), too:

ΘS
KS f

���������

''NNNNNNNNNNNN

R1 f∗(Θ f ) // Hom(H p,q( f ), H p−1,q+1( f ))

From this we deduce by means of evaluation at t that the diagram

ΘS(t)
KS f (t)

||zzzzzzzz

))RRRRRRRRRRRRRRR

(R1 f∗(Θ f ))(t)
γ
′p,q
f ,t

// Hom((H p,q( f ))(t), (H p−1,q+1( f ))(t))

commutes in Mod(C). Plugging in the inverse of the canonical isomorphism

ΘS(t) −→ TS(t)

and taking into account the definitions of AS,t and KS′f ,t, we deduce the validity of
(1.7.5.1).

Lemma 1.7.6. — Let n and p be integers and f : X → S be a submersive morphism of
complex spaces such that S is a complex manifold. Put H := H n( f ) and, for any integer ν,
F ν := FνH n( f ). Denote by

ι : F p−1/F p −→H /F p

the morphism in Mod(S) obtained from ιnf (p− 1) : F p−1 → H by quotienting out F p.
Moreover, set:

∇ι := (idΩ1
S
⊗ coker(ιnf (p))) ◦ ∇n

GM( f ) ◦ ιnf (p).
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Then the following diagram commutes in Mod(S):

(1.7.6.1) F p ∇ι //

coker(ιnf (p,p+1))

��

Ω1
S ⊗H /F p

F p/F p+1
∇p,n

GM( f )
// Ω1

S ⊗F p−1/F p

idΩ1
S
⊗ι

OO

Proof. — By Proposition 1.5.10, there exists an ordered pair (ζ, ζ) of morphisms in
Mod(S/C) such that the following two identities hold in Mod(S/C):

∇n
GM( f ) ◦ ιnf (p) = (idΩ1

S
⊗ιnf (p− 1)) ◦ ζ,(

idΩ1
S
⊗ coker

(
ιnf (p− 1, p)

))
◦ ζ = ζ ◦ coker(ιnf (p, p + 1)).

From this we deduce:

∇ι =
(

idΩ1
S
⊗ coker

(
ιnf (p)

))
◦ ∇n

GM( f ) ◦ ιnf (p)

=
(

idΩ1
S
⊗ coker

(
ιnf (p)

))
◦ (idΩ1

S
⊗ιnf (p− 1)) ◦ ζ

=
(

idΩ1
S
⊗
(

coker(ιnf (p)) ◦ ιnf (p− 1)
))
◦ ζ

=
(

idΩ1
S
⊗
(

ι ◦ coker(ιnf (p− 1, p))
))
◦ ζ

= (idΩ1
S
⊗ι) ◦

(
idΩ1

S
⊗ coker

(
ιnf (p− 1, p)

))
◦ ζ

= (idΩ1
S
⊗ι) ◦ ζ ◦ coker(ιnf (p, p + 1)).

Taking into account that ∇p,n
GM( f ) = ζ by Notation 1.5.11, we are finished.

Proposition 1.7.7. — Let f : X → S be a submersive morphism of complex spaces such
that S is a simply connected complex manifold. Let n and p be integers and t ∈ S. In addition,
let ψp and ψp−1 be such that the following diagram commutes in Mod(S) for ν = p, p− 1:

(1.7.7.1) Rn f ∗(σ
≥νΩ

q
f )

λn
f (ν)

//

Rn f ∗(j≤ν(σ≥νΩ
q
f ))

��

FνH n( f )

coker(ιnf (ν,ν+1))

��

Rn f ∗(σ
=νΩ

q
f ) FνH n( f )/Fν+1H n( f )

ψν
oo

Let ωp−1 be a left inverse of ψp−1 in Mod(S). Assume that H n( f ) is a locally finite free
module on S and FpH n( f ) is a vector subbundle of H n( f ) on S. Put

α′ := κn
f (σ

=pΩ q
f ) ◦ ψp ◦ coker(ιnf (p, p + 1)),

β′ := (ιnf (p− 1)/FpH n( f )) ◦ωp−1 ◦ (κn
f (σ

=p−1Ω q
f ))
−1.
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Moreover, set

F′(t) := im((ιnf (p))(t) : (FpH n( f ))(t) −→ (H n( f ))(t))

and write

σ : (FpH n( f ))(t) −→ F′(t),

τ : (H n( f ))(t)/F′(t) −→ (H n( f )/FpH n( f ))(t)

for the evident morphisms. Then σ and τ are isomorphisms in Mod(C) and the following
diagram commutes in Mod(C):

(1.7.7.2) TS(t)
KS′f ,t

//

Tt(P
′p,n
t ( f ))

��

(R1 f∗(Θ f ))(t)

γ
′p,n−p
f ,t

��

Hom((H p,n−p( f ))(t), (H p−1,n−p+1( f ))(t))

Hom(α′(t)◦σ−1,τ−1◦β′(t))
��

TGr((H n( f ))(t))(F′(t)) //

θ((H n( f ))(t),F′(t))
Hom(F′(t), (H n( f ))(t)/F′(t))

Proof. — Introduce the following notational shorthands:

H := H n( f ), θ := θ(H (t), F′(t)),

F ∗ := F∗H n( f ).

Furthermore, set:

∇ι := (idΩ1
S
⊗ coker(ιnf (p))) ◦ ∇n

GM( f ) ◦ ιnf (p).

Then by Lemma 1.6.20, σ and τ are isomorphisms in Mod(C) and the following
diagram commutes in Mod(C):

TS(t)
AS,t(F

p ,H /F p)(∇ι)
//

Tt(P
′p,n
t ( f ))

��

Hom(F p(t), (H /F p)(t))

Hom(σ−1,τ−1)

��

TGr(H (t))(F′(t))
θ

// Hom(F′(t), H (t)/F′(t))

By Lemma 1.7.6, setting

ι := ιnf (p− 1)/F p : F p−1/F p −→H /F p,

the diagram in (1.7.6.1) commutes in Mod(S). Therefore, with

ι := coker(ιnf (p, p + 1)) : F p −→ F p/F p+1

we have according to Remark 1.6.17:

AS,t(F
p, H /F p)(∇ι) = Hom(ι(t), ι(t)) ◦AS,t(F

p/F p+1, F p−1/F p)(∇p,n
GM( f )).
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Hence the following diagram commutes in Mod(C):

TS(t) //

AS,t(F
p/F p+1,F p−1/F p)(∇p,n

GM( f ))

Tt(P
′p,n
t ( f ))

��

Hom((F p/F p+1)(t), (F p−1/F p)(t))

Hom(ι(t)◦σ−1,τ−1◦ι(t))
��

TGr(H (t))(F′(t))
θ

// Hom(F′(t), (H n( f ))(t)/F′(t))

By Theorem 1.5.13, the following diagram commutes in Mod(S):

F p/F p+1
∇p,n

GM( f )
//

κn
f (σ

=pΩ
q
f )◦ψ

p

��

Ω1
S ⊗F p−1/F p

idΩ1
S
⊗(κn

f (σ
=p−1Ω

q
f )◦ψ

p−1)

��

H p,n−p
γ

p,n−p
KS ( f )

// Ω1
S ⊗H p−1,n−p+1

Thus making use of Remark 1.6.17 again, we obtain:

AS,t(F
p/F p+1, F p−1/F p)(∇p,n

GM( f ))

= Hom
(
(κn

f (σ
=pΩ q

f ) ◦ ψp)(t), (ωp−1 ◦ (κn
f (σ

=p−1Ω q
f ))
−1)(t)

)
◦AS,t(H

p,n−p, H p−1,n−p+1)(γ
p,n−p
KS ( f )).

Hence, this next diagram commutes in Mod(C):

TS(t) //

AS,t(H
p,n−p ,H p−1,n−p+1)(γ

p,n−p
KS ( f ))

Tt(P
′p,n
t ( f ))

��

Hom(H p,n−p(t), H p−1,n−p+1(t))

Hom(α(t)◦σ−1,τ−1◦β(t))
��

TGr(H (t))(F′(t))
θ

// Hom(F′(t), (H n( f ))(t)/F′(t))

Employing Lemma 1.7.5, we infer the commutativity of (1.7.7.2).

The next result is a variant of the previous Proposition 1.7.7 incorporating base
changes.

Theorem 1.7.8. — Let f : X → S be a submersive morphism of complex spaces such that
S is a simply connected complex manifold. Let n and p be integers and t ∈ S. Let ψ

p
Xt

and

ψ
p−1
Xt

be such that the following diagram commutes in Mod(C) for ν = p, p− 1:

(1.7.8.1) RnaXt∗(σ
≥νΩ

q
Xt)

λn
Xt
(ν)

//

RnaXt ∗(j≤ν(σ≥νΩ
q

Xt ))

��

FνH n(Xt)

coker(ιnXt
(ν,ν+1))

��

RnaXt∗(σ
=νΩ

q
Xt) FνH n(Xt)/Fν+1H n(Xt)

ψν
Xt

oo
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Let ω
p−1
Xt

be a left inverse of ψ
p−1
Xt

in Mod(C). Assume that H n( f ) is a locally finite free
module on S, FpH n( f ) is a vector subbundle of H n( f ) on S, and the base change morphisms

φn
f ,s : (H n( f ))(s) −→H n(Xs),

φ
p,n
f ,s : (FpH n( f ))(s) −→ FpH n(Xs)

are isomorphisms in Mod(C) for all s ∈ S. Assume that there exist ψp, ψp−1, and ωp−1

such that firstly, the diagram in (1.7.7.1) commutes in Mod(S) for ν = p, p− 1 and secondly,
ωp−1 is a left inverse of ψp−1 in Mod(S). Moreover, assume that the Hodge base change map

β
p,n−p
f ,t : (H p,n−p( f ))(t) −→H p,n−p(Xt)

is an isomorphism in Mod(C). Then, setting

α := κn
Xt
(σ=pΩ q

Xt
) ◦ ψ

p
Xt
◦ coker(ιnXt

(p, p + 1)),

β := (ιnXt
(p− 1)/FpH n(Xt)) ◦ω

p−1
Xt
◦ (κn

Xt
(σ=p−1Ω q

Xt
))−1,

the following diagram commutes in Mod(C):

(1.7.8.2) TS(t)
KS f ,t

//

Tt(P
p,n
t ( f ))

��

H1(Xt, ΘXt)

γ
p,n−p
Xt

��

Hom(H p,n−p(Xt), H p−1,n−p+1(Xt))

Hom(α,β)
��

TGr(H n(Xt))(F
pH n(Xt)) //

θ(H n(Xt),FpH n(Xt))

Hom(FpH n(Xt), H n(Xt)/FpH n(Xt))

Proof. — We set

φ := φn
f ,t : (H n( f ))(t) −→H n(Xt).

Then by Notation 1.7.2, the following diagram commutes in the category of complex
spaces:

S
P
′p,n
t ( f )

xxqqqqqqqqqqqq
P

p,n
t ( f )

%%KKKKKKKKKKK

Gr((H n( f ))(t))
Gr(φ)

// Gr(H n(Xt))

In consequence, letting

F′(t) := im((ιnf (p))(t) : (FpH n( f ))(t) −→ (H n( f ))(t)),
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the following diagram commutes in Mod(C):

(1.7.8.3) Tt(S)
Tt(P

′p,n
t ( f ))

xxpppppppppp
Tt(P

p,n
t ( f ))

''OOOOOOOOOOOO

TGr((H n( f ))(t))(F′(t))
TF′(t)(Gr(φ))

// TGr(H n(Xt))(F
pH n(Xt))

Note that
(Gr(φ))(F′(t)) = φ[F′(t)] = FpH n(Xt)

due to the commutativity of

(FpH n( f ))(t)
φ

p,n
f ,t

//

(ιnf (p))(t)
��

FpH n(Xt)

ιnXt
(p)

��

(H n( f ))(t)
φ

// H n(Xt)

in Mod(C) and the fact that φ
p,n
f ,t is an isomorphism. So, when we denote by

φ : (H n( f ))(t)/F′(t) −→H n(Xt)/FpH n(Xt)

the morphism which is induced by φ the obvious way, the following diagram com-
mutes in Mod(C) by means of the the naturality of θ(−,−), cf. Notation 1.6.19:
(1.7.8.4)

TGr((H n( f ))(t))(F′(t))
TF′(t)(Gr(φ))

//

θ((H n( f ))(t),F′(t))
��

TGr(H n(Xt))(F
pH n(Xt))

θ(H n(Xt),FpH n(Xt))

��

Hom(F′(t), (H n( f ))(t)/F′(t)) //

Hom((φ|F′(t))−1,φ)

Hom(FpH n(Xt), H n(Xt)/FpH n(Xt))

Define

α′ := κn
f (σ

=pΩ q
f ) ◦ ψp ◦ coker(ιnf (p, p + 1)),

β′ := (ιnf (p− 1)/FpH n( f )) ◦ωp−1 ◦ (κn
f (σ

=p−1Ω q
f ))
−1

and introduce the evident morphisms:

σ : (FpH n( f ))(t) −→ F′(t),

τ : (H n( f ))(t)/F′(t) −→ (H n( f )/FpH n( f ))(t).

Then by Proposition 1.7.7, σ and τ are isomorphisms in Mod(C) and the diagram in
(1.7.7.2) commutes in Mod(C). Let

φ1 : (H n( f )/FpH n( f ))(t) −→H n(Xt)/FpH n(Xt)
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be the morphism which is naturally induced by φ—similar to φ above—using the fact
that (

coker(ιnf (p))
)
(t) : (H n( f ))(t) −→ (H n( f )/FpH n( f ))(t)

is a cokernel for (ιnf (p))(t) in Mod(C) as the evaluation functor “−(t)” is a right exact
functor from Mod(S) to Mod(C). Then it is a straightforward matter to verify these
identities:

φ
p,n
f ,t = (φ|F′(t)) ◦ σ,

φ = φ1 ◦ τ.
(1.7.8.5)

Moreover, comparing α′ and α and setting q := n− p, we see that this next diagram
commutes in Mod(C):

(1.7.8.6) (FpH n( f ))(t)
φ

p,n
f ,t

//

α′(t)
��

FpH n(Xt)

α

��

(H p,q( f ))(t)
β

p,q
f ,t

// H p,q(Xt)

Similarly, comparing β′ and β, we see that

(1.7.8.7) (H p−1,q+1( f ))(t)
β

p−1,q+1
f ,t

//

β′(t)
��

H p−1,q+1(Xt)

β

��

(H n( f )/FpH n( f ))(t)
φ1

// H n(Xt)/FpH n(Xt)

commutes in Mod(C). Let us write

β1
f ,t : (R1 f∗(Θ f ))(t) −→ H1(Xt, ΘXt)

for the evident base change morphism. Then, since the cup product morphisms
^1,q as well as the contraction morphisms γp are compatible with base change, the
following diagram commutes in Mod(C):

(R1 f∗(Θ f )⊗S H p,q( f ))(t)
γ

p,q
f (t)

//

can
��

(H p−1,q+1( f ))(t)

β
p−1,q+1
f ,t

��

(R1 f∗(Θ f ))(t)⊗C (H p,q( f ))(t)

β1
f ,t⊗β

p,q
f ,t

��

H1(Xt, ΘXt)⊗C H p,q(Xt)
γ

p,q
Xt

// H p−1,q+1(Xt)
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Therefore, given that β
p,q
f ,t is an isomorphism by assumption, the following diagram

commutes in Mod(C) also:
(1.7.8.8)

(R1 f∗(Θ f ))(t)
β1

f ,t
//

γ
′p,q
f ,t

��

H1(Xt, ΘXt)

γ
p,q
Xt

��

Hom((H p,q( f ))(t), (H p−1,q+1( f ))(t)) //

Hom((β
p,q
f ,t )
−1,βp−1,q+1

f ,t )

Hom(H p,q(Xt), H p−1,q+1(Xt))

According to the definition of the Kodaira-Spencer map KS f ,t in Notation 1.7.3, the
following diagram commutes in Mod(C):

(1.7.8.9) Tt(S)
KS′f ,t

zzuuuuuuuuu KS f ,t

##GGGGGGGGG

(R1 f∗(Θ f ))(t)
β1

f ,t

// H1(Xt, ΘXt)

Taking all our previous considerations into account, we obtain:

θ(H n(Xt), FpH n(Xt)) ◦ Tt(P
p,n
t ( f ))

(1.7.8.3)
= θ(H n(Xt), FpH n(Xt)) ◦ TF′(t)(Gr(φ)) ◦ Tt(P

′p,n
t ( f ))

(1.7.8.4)
= Hom((φ|F′(t))−1, φ) ◦ θ((H n( f ))(t), F′(t)) ◦ Tt(P

′p,n
t ( f ))

(1.7.7.2)
= Hom((φ|F′(t))−1, φ) ◦Hom(α′(t) ◦ σ−1, τ−1 ◦ β′(t)) ◦ γ

′p,n−p
f ,t ◦KS′f ,t

(1.7.8.5)
= Hom(α′(t) ◦ (φp,n

f ,t )
−1, φ1 ◦ β′(t)) ◦ γ

′p,n−p
f ,t ◦KS′f ,t

(1.7.8.6)
(1.7.8.7)
= Hom(α, β) ◦Hom((β

p,q
f ,t )
−1, β

p−1,q+1
f ,t ) ◦ γ

′p,q
f ,t ◦KS′f ,t

(1.7.8.8)
= Hom(α, β) ◦ γ

p,q
Xt
◦ β1

f ,t ◦KS′f ,t

(1.7.8.9)
= Hom(α, β) ◦ γ

p,n−p
Xt

◦KS f ,t,

which implies precisely the commutativity of (1.7.8.2).

When it comes to applying Theorem 1.7.8, one is faced with the problem of deciding
whether there exist morphisms ψν (resp. ψν

Xt
) rendering commutative in Mod(S) (resp.

Mod(C)) the diagram in (1.7.7.1) (resp. (1.7.8.1)). Let us formulate two (hopefully)
tangible criteria.

Proposition 1.7.9. — Let n and ν be integers and f : X → S an arbitrary morphism of
complex spaces. Denote by E the Frölicher spectral sequence of f .
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a) The following are equivalent:
(i) E degenerates from behind in (ν, n− ν) at sheet 1 in Mod(S);
(ii) there exists ψν rendering commutative in Mod(S) the diagram in (1.7.7.1).

b) The following are equivalent:
(i) E degenerates in (ν, n− ν) at sheet 1 in Mod(S);
(ii) there exists an isomorphism ψν rendering commutative in Mod(S) the diagram in

(1.7.7.1).

Proof. — The above statements are special cases of standard interpretations of the
degeneration of a spectral sequence associated to a filtered complex. We refer our
readers to Deligne’s treatment [12, § 1].

Theorem 1.7.10. — Let n be an integer and f : X → S a submersive morphism of complex
spaces such that S is a simply connected complex manifold. Assume that:

(i) the Frölicher spectral sequence of f degenerates in entries

I := {(p, q) ∈ Z× Z : p + q = n}

at sheet 1 in Mod(S);
(ii) for all (p, q) ∈ I, H p,q( f ) is a locally finite free module on S;
(iii) for all s ∈ S, the Frölicher spectral sequence of Xs degenerates in entries I at sheet 1

in Mod(C);
(iv) for all s ∈ S and all (p, q) ∈ I, the Hodge base change map

β
p,q
f ,s : (H p,q( f ))(s) −→H p,q(Xs)

is an isomorphism in Mod(C).

Let t ∈ S. Then there exists a sequence (ψ̃ν)ν∈Z of isomorphisms in Mod(C),

ψ̃ν : FνH n(Xt)/Fν+1H n(Xt) −→H ν,n−ν(Xt),

such that, for all p ∈ Z, the diagram in (1.7.8.2) commutes in Mod(C), where we set:

α := ψ̃p ◦ coker(ιnXt
(p, p + 1)),

β := (ιnXt
(p− 1)/FpH n(Xt)) ◦ (ψ̃p−1)−1.

(1.7.10.1)

Proof. — By assumption (i) we know using Proposition 1.7.9 that, for all integers
ν, there exists one, and only one, ψν such that the diagram in (1.7.7.1) commutes in
Mod(S) (note that the uniqueness of ψν follows from the fact that both λn

f (ν) and
coker(ιnf (ν, ν + 1)), and whence their composition, are epimorphisms in Mod(S));
moreover, ψν is an isomorphism. Further on, for all integers ν,

κn
f (σ

=νΩ q
f ) : Rn f ∗(σ

=νΩ
q
f ) −→ Rn f∗(σ=νΩ q

f ) = Rn−p f∗(Ω
p
f )

is an isomorphism. Thus for all ν ∈ Z, there exists an isomorphism

FνH n( f )/Fν+1H n( f ) −→H ν,n−ν( f )



88 CHAPTER 1. PERIOD MAPPINGS FOR FAMILIES OF COMPLEX MANIFOLDS

in Mod(S). Now since, for all ν ∈ Z≥n+1, FνH n( f ) is a zero module on S and in
particular locally finite free, we conclude by descending induction on ν starting at
ν = n + 1 that, for all ν ∈ Z, FνH n( f ) is a locally finite free module on S; along the
way we make use of (ii). Specifically, since F0H n( f ) = H n( f ), we see that H n( f ) is
a locally finite free module, i.e., in the terminology of Definition 1.6.9, a vector bundle,
on S. Furthermore, for all integers µ and ν such that µ ≤ ν, there exists a short exact
sequence

0 −→ Fµ/Fν −→ Fµ−1/Fν −→ Fµ−1/Fµ −→ 0,
where we write F∗ as a shorthand for F∗H n( f ). Therefore, we see, using descending
induction on µ, that for all integers ν and all integers µ such that µ ≤ ν the quotient
Fµ/Fν is a locally finite free module on S. Specifically, we see that for all integers ν,
the quotient H n( f )/FνH n( f ) is a locally finite free module on S. Thus we conclude
that, for all integers ν, FνH n( f ) is a vector subbundle of H n( f ) on S.

For the time being, fix an arbitrary element s of S. Then by assumption (iii) and
Proposition 1.7.9 we deduce that, for all integers ν, there exists a (unique) isomorphism
ψν

Xs
such that the diagram in (1.7.8.1), where we replace t by s, commutes in Mod(C).

As base change commutes with taking stupid filtrations, the following diagram has
exact rows and commutes in Mod(C) for all integers ν:

0 // Fν(s)
(ιnf (ν−1,ν))(s)

//

φν,n
f ,s

��

Fν−1(s) //

φν−1,n
f ,s

��

H ν,n−ν(s) //

β
ν,n−p
f ,s

��

0

0 // FνH n(Xs)
ιnXs (ν−1,ν)

// Fν−1H n(Xs) // H ν,n−ν(Xs) // 0

Therefore, using a descending induction on ν starting at ν = n + 1 together with
assumption (iv) and the “short five lemma”, we infer that, for all ν ∈ Z, the base
change map φν,n

f ,s is an isomorphism in Mod(C). Specifically, since φ0,n
f ,s = φn

f ,s, we see
that the de Rham base change map φn

f ,s is an isomorphism in Mod(C).

Abandon the fixation of s and define a Z-sequence ψ̃ by putting, for any ν ∈ Z:

ψ̃ν := κn
Xt
(σ=νΩ q

Xt
) ◦ ψν

Xt
.

Let p be an integer. Then defining α and β according to (1.7.10.1), the commutativity
of the diagram in (1.7.8.2) is implied by Theorem 1.7.8.



CHAPTER 2

DEGENERATION OF THE FRÖLICHER SPECTRAL SEQUENCE

Later, in Chpater 3, we would like to make use of Theorem 1.7.10 in order to
establish a local Torelli theorem for certain compact, symplectic complex spaces of
Kähler type, cf. Theorem 3.4.4. The basic idea in the application of Theorem 1.7.10
thereby is the following. Consider a family of compact complex spaces over a smooth
base, i.e., a proper, flat morphism of complex spaces f : X → S such that S is a
complex manifold. Wanting to talk about period mappings, we assume additionally
that the space S be simply connected, although this assumption is not essential for
the problems of Chapter 2. Now define g : Y → S to be the “submersive share” of f ,
by which we mean that Y is the open complex subspace of X induced on set of points
of X in which the morphism f is submersive and g is the composition of the inclusion
Y → X and f . Then g is certainly a submersive morphism of complex spaces with
smooth and simply connected base, so that we might think of applying Theorem
1.7.10 to g (in place of f , as in the formulation of the theorem) and an integer n. This
leads us to the task of determining circumstances, in terms of f and n, under which
the following assertions hold—observe that these correspond to conditions (i)–(iv) of
Theorem 1.7.10:

a) the Frölicher spectral sequence of g degenerates in entries

I := {(p, q) ∈ Z× Z : p + q = n}

at sheet 1 in Mod(S);
b) for all (p, q) ∈ I, the Hodge module H p,q(g) is a locally finite free module on S;
c) for all s ∈ S, the Frölicher spectral sequence of Ys degenerates in entries I at

sheet 1 in Mod(C);
d) for all s ∈ S and all (p, q) ∈ I, the Hodge base change map

β
p,q
g,s : (H p,q(g))(s) −→H p,q(Ys)

is an isomorphism in Mod(C).
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In view of assertion c), we remind the reader of a result of T. Ohsawa (cf. [65,
Theorem 1]):

Theorem 2.0.1. — Let X be a compact, pure dimensional complex space of Kähler type and
A a closed analytic subset of X such that Sing(X) ⊂ A. Then the Frölicher spectral sequence
of X \ A degenerates in entries

{(p, q) ∈ Z× Z : p + q + 2 ≤ codim(A, X)}
at sheet 1 in Mod(C).

So, suppose that the fibers of f are altogether pure dimensional (e.g., normal
and connected) and of Kähler type. Then Theorem 2.0.1 guarantees the validity of
assertion c) when we have

(∗) n + 2 ≤ codim(Sing(Xs), Xs) for all s ∈ S;

note that due to the flatness of f , we know that, for all s ∈ S, the complex spaces Ys
and (Xs)reg = Xs \ Sing(Xs) are isomorphic. Inspired by this observation, we pose
the following

Question 2.0.2. — Let f and n be as above; in particular, we assume that (∗) holds.
Define g to be the submersive share of f . Which of the assertions b), d), and a) are
then fulfilled?

We put forward another question, which is wider in scope.

Question 2.0.3. — Let f : X → S be a proper (and flat) morphism of complex spaces
(such that S is a complex manifold), A a closed analytic subset of X such that the
restriction g : Y := X \ A→ S of f is submersive, n an integer such that

n + 2 ≤ codim(A ∩ Xs, Xs) for all s ∈ S.

Assume that f is
(i) locally equidimensional, i.e., the function x 7→ dimx(X f (x)) is locally constant

on X, and
(ii) weakly Kähler (cf. [5, (5.1)]).
Do assertions b), d), and a) hold then?

Our goal in this chapter is to give several positive answers in the direction of
Question 2.0.3 and Question 2.0.2—unfortunately we do not manage to answer either
of the proposed questions in its entirety.

In § 2.1, we investigate the coherence of the Hodge modules H p,q(g) by means
of standard techniques of local cohomology as a first step towards the local finite
freeness stated in b). In § 2.2, we study the degeneration behavior of the Frölicher
spectral sequence when passing from one infinitesimal neighborhood of a fiber of
g : Y → S to the next. In § 2.3, we invoke a comparison theorem between formal and
ordinary higher direct image sheaves due to C. Bănică and O. Stănăşilă (cf. [9]) in
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order to establish b) and d). Finally, in § 2.4, we draw conclusions for the degeneration
of the the Frölicher spectral sequence of g.

2.1. Coherence of direct image sheaves

Notation 2.1.1 (Depth). — Let A be a commutative ring, I an ideal of A, and M an
A-module. Then we define:

(2.1.1.1) profA(I, M) := sup{n ∈ N : (∀N ∈ T)(∀i ∈ n)Exti
A(N, M) = 0},

where T denotes the class of all finite type A-modules for which there exists a natural
number m such that ImN = 0. Note that the set in (2.1.1.1) over which the supremum
is taken certainly contains 0, whence is nonempty. profA(I, M) is called the I-depth of
M over A.

When A is a commutative local ring, we define:

profA(M) := profA(m(A), M).

Let X be an analytic space (or else a commutative locally ringed space). Let x be an
element of the set underlying X and F a module on X. Then we set:

profX,x(F) := profOX,x
(Fx).

Proposition 2.1.2. — Let A be a commutative ring and I an ideal of A.
a) For all A-modules M and M′, we have:

profA(I, M⊕M′) = min(profA(I, M), profA(I, M′)).

b) For all A-modules M and all r ∈ N, we have profA(I, M⊕r) = profA(I, M).

Proof. — Follows from the fact that, for all A-modules N and all i ∈ N (resp. i ∈ Z),
Exti

A(N,−) is an additive functor from Mod(A) to Mod(A) hence commutes with
the formation of finite sums.

Notation 2.1.3. — Let X be a complex space (or else a commutative locally ringed
space), F a module on X, and m an integer. Then we define:

Sm(X, F) := {x ∈ X : profX,x(F) ≤ m}.

Sm(X, F) is called the m-th singular set of F on X.

Notation 2.1.4 (Sheaves of local cohomology). — Let X be a topological space (re-
spectively a ringed space or complex space), A a closed subset of X. We denote

ΓA(X,−) : Ab(X) −→ Ab(X) (resp. Mod(X) −→ Mod(X))

the sheaf of sections on X with supports in A functor. That is, for any abelian sheaf
(resp. sheaf of modules) F on X, we define ΓA(X, F) to be the abelian subsheaf
(resp. subsheaf of modules) of F on X such that, for all open subsets U of X, the
set (ΓA(X, F))(U) comprises precisely those elements of F(U) which are sent to the
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zero of F(U \ A) by the restriction mapping F(U)→ F(U \ A). Note that the functor
ΓA(X,−) is additive as well as left-exact. For any integer n we write

Hn
A(X,−) : Ab(X) −→ Ab(X) (resp. Mod(X) −→ Mod(X))

for the n-th right derived functor of ΓA(X,−), cf. § A.6.

Proposition 2.1.5. — Let X be a topological space (resp. a ringed space or complex space),
A a closed subset of X. Write i : X \ A→ X for the inclusion morphism. Then, for all abelian
sheaves (resp. sheaves of modules) F on X, there exists an exact sequence in Ab(X) (resp.
Mod(X)),

0 −→ H0
A(X, F) −→ F −→ R0i∗(i∗(F)) −→ H1

A(X, F) −→ 0,

and, for all integers q ≥ 1, we have

Rqi∗(i∗(F)) ∼= Hq+1
A (X, F).

Proof. — The topological space case is [9, Chapter II, Corollary 1.10]; the ringed space
case is proven along the very same lines.

Lemma 2.1.6. — Let X be a commutative ringed space.
a) For all morphisms φ : F → G in Mod(X) such that F and G are coherent on X, both

ker(φ) and coker(φ) are coherent on X.
b) For all short exact sequences

0 −→ F −→ G −→ H −→ 0

in Mod(X), when F and H are coherent on X, then G is coherent on X.

Proof. — See [69, I, § 2, Théorème 1 and Théorème 2].

Corollary 2.1.7. — Let X be a ringed space, A a closed subset of X, and F a coherent module
on X. Then, for all n ∈ Z, the following are equivalent:

(i) For all q ∈ Z such that q ≤ n, the module Rqi∗(i∗(F)) is coherent on X.
(ii) For all q ∈ Z such that q ≤ n + 1, the module Hq

A(X, F) is coherent on X.

Proof. — This is clear from Proposition 2.1.5 and Lemma 2.1.6.

Theorem 2.1.8. — Let X be a complex space, A a closed analytic subset of X, and F a
coherent module on X. Denote i : X \ A→ X the inclusion morphism. Then, for all natural
numbers n, the following are equivalent:

(i) For all integers k, we have

(2.1.8.1) dim(A ∩ Sk+n+1(X \ A, i∗(F))) ≤ k,

where the bar refers to taking the closure in Xtop. Note that imposing (2.1.8.1) hold for all
integers k < 0 is equivalent to requiring that

A ∩ Sn(X \ A, i∗(F)) = ∅.
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(ii) For all q ∈ N (or q ∈ Z) such that q ≤ n, the module Hq
A(X, F) is coherent on X.

Proof. — This is [9, Chapter II, Theorem 4.1].

Proposition 2.1.9. — Let X be a locally pure dimensional complex space, A a closed analytic
subset of X, and F a coherent module on X. Assume that,

(2.1.9.1) for all x ∈ X \ A, profX,x(F) = dimx(X).

Denote by i the inclusion morphism of complex spaces from X \ A to X. Then, for all q ∈ Z
such that q + 2 ≤ codim(A, X), the module Rqi∗(i∗(F)) is coherent on X.

Proof. — Assume that X is pure dimensional. When A = ∅, the morphism i is the
identity on X, hence we have R0i∗(i∗(F)) ∼= F and Rqi∗(i∗(F)) ∼= 0 for all integers
q 6= 0 in Mod(X). Thus, for all integers q, the module Rqi∗(i∗(F)) is coherent on X.

Now assume that A 6= ∅ and put n := codim(A, X)− 1. Write Sm as a shorthand
for Sm(X \ A, i∗(F)). For all x ∈ X \ A, we have:

profX\A,x(i
∗(F)) = profX,x(F) = dimx(X) = dim(X).

Therefore, Sm = ∅ for all integers m such that m < dim(X). Let k be an arbitrary
integer. When dim(A) ≤ k, then

dim(A ∩ Sk+n+1) ≤ dim(A) ≤ k.

For all x ∈ A, we have

dimx(A) = dimx(X)− codimx(A, X) ≤ dim(X)− codim(A, X),

which implies that
dim(A) ≤ dim(X)− codim(A, X).

In turn, when k < dim(A), we have

k + n + 1 = k + codim(A, X) < dim(X),

whence Sk+n+1 = ∅. Thus, A ∩ Sk+n+1 = ∅ and so again,

dim(A ∩ Sk+n+1) ≤ k.

We see that assertion (i) of Theorem 2.1.8 holds. Hence by Theorem 2.1.8, assertion
(ii) holds too, so that, for all integers q with q ≤ n, the module Hq

A(X, F) is a coherent
module on X. Corollary 2.1.7 implies that, for all integers q with q + 2 ≤ codim(A, X),
i.e., q ≤ n− 1, the module Rqi∗(i∗(F)) is coherent on X.

Abandon the assumption that X is pure dimensional. Let q be an integer such
that q + 2 ≤ codim(A, X). Let x ∈ X be any point. Then, since X is locally pure
dimensional, there exists an open neighborhood U of x in X such that the open
complex subspace of X induced on U is pure dimensional. Put Y := X|U, B := A∩U,
and G := F|U. By what we have already proven, and the fact that

q + 2 ≤ codim(A, X) ≤ codim(B, Y),



94 CHAPTER 2. DEGENERATION OF THE FRÖLICHER SPECTRAL SEQUENCE

we infer that Rq j∗(j∗(G)) is coherent on Y, where j stands for the canonical morphism
from Y \ B to Y. Since Rqi∗(i∗(F))|U is isomorphic to Rq j∗(j∗(G)) in Mod(Y), we see
that Rqi∗(i∗(F)) is coherent on X in x. As x was an arbitrary point of X, the module
Rqi∗(i∗(F)) is coherent on X.

Corollary 2.1.10. — Let X be a locally pure dimensional complex space, A a closed analytic
subset of X, and F a coherent module on X. Assume that X is Cohen-Macaulay in X \ A
and F is locally finite free on X in X \ A. Then Rqi∗(i∗(F)) is a coherent module on X for all
integers q satisfying q + 2 ≤ codim(A, X), where i denotes the canonical immersion from
X \ A to X.

Proof. — Let x ∈ X \ A. As F is locally finite free on X in x, there exists a natural
number r such that Fx is isomorphic to (OX,x)

⊕r in the category of OX,x-modules,
hence using Proposition 2.1.2, we obtain:

profX,x(F) = profOX,x
(Fx) = profOX,x

((OX,x)
⊕r) = profOX,x

(OX,x)

= dim(OX,x) = dimx(X).

As x was an arbitrary element of X \ A, we see that (2.1.9.1) holds. Thus our claim
follows readily from Proposition 2.1.9.

Theorem 2.1.11 (Grauert’s direct image theorem). — Let f : X → S be a proper mor-
phism of complex spaces. Then, for all coherent modules F on X and all integers q, the module
Rq f∗(F) is coherent on S.

Proof. — This is [24, “Hauptsatz I”, p. 59]. See also [9, Chapter III, Theorem 2.1] as
well as [26, Chapter III, § 4] and references there.

Proposition 2.1.12. — Let f : X → S and g : Y → X be morphisms of complex spaces. Let
G be a module on Y and n an integer. Put h := f ◦ g. Suppose that f is proper and, for
all integers q ≤ n, the module Rqg∗(G) is coherent on X. Then, for all integers k ≤ n, the
module Rkh∗(G) is coherent on S.

Proof. — We employ the following fact: There exists a spectral sequence E with
values in Mod(S) such that:

(i) for all p, q ∈ Z, Ep,q
2
∼= Rp f∗(Rqg∗(G));

(ii) for all k ∈ Z, there exists a filtration F on Rkh∗(G) such that F0 = Rkh∗(G),
Fk+1 ∼= 0, and for all p ∈ Z there exists r ∈ N≥2 such that Fp/Fp+1 ∼= Ep,k−p

r .
Given E, we claim: For all r ∈ N≥2 and all p, q ∈ Z, Ep,q

r is coherent on S when any
of the following conditions is satisfied:

a) p + q ≤ n;
b) there exists ∆ ∈ N≥1 such that p + q = n + ∆, and

(2.1.12.1) q ≤ n−
(

min(∆,r−1)

∑
ν=2

(r− ν)

)
,
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where the sum appearing on the right hand side in (2.1.12.1) is defined to equal 0 in
case min(∆, r− 1) < 2.

The claim is proven by means of induction. By Theorem 2.1.11 and property (i) we
know that, for all p, q ∈ Z such that q ≤ n or p < 0, Ep,q

2 is coherent on S; note that in
case p < 0, (i) implies that Ep,q

2
∼= 0. Let p, q ∈ Z be arbitrary. When p + q ≤ n, then

either p < 0 or q ≤ n. On the contrary, when there exists ∆ ∈ N≥1 such that (2.1.12.1)
holds for r = 2, then q ≤ n as the value of the sum in (2.1.12.1) is always ≥ 0. Hence
our claim holds in case r = 2.

Now let r ∈ N≥2 and assume that, for all p, q ∈ Z, when either a) or b) holds, then
Ep,q

r is coherent on S. Since E is a spectral sequence, we know that for all p, q ∈ Z,

Ep,q
r+1
∼= H( Ep−r,q+r−1

r
dp−r,q+r−1

r // Ep,q
r

dp,q
r // Ep+r,q−r+1

r ).

In particular, Lemma 2.1.6 implies that, for all p, q ∈ Z, when Ep−r,q+r−1
r , Ep,q

r , and
Ep+r,q−r+1

r are coherent on S, then Ep,q
r+1 is coherent on S. Let p, q ∈ Z be arbitrary.

When p + q ≤ n− 1, then

(p− r) + (p + r− 1) ≤ p + q ≤ (p + r) + (q− r + 1) = p + q + 1 ≤ n

so that Ep−r,q+r−1
r , Ep,q

r , and Ep+r,q−r+1
r are coherent on S and consequently Ep,q

r+1
is coherent on S by means of the preceding argument. Assume that p + q = n.
In case p < 0, Ep,q

r ∼= 0, whence Ep,q
r+1
∼= 0; in particular, Ep,q

r+1 is coherent on S.

When p ≥ 0, in addition to Ep−r,q+r−1
r and Ep,q

r , Ep+r,q−r+1
r is coherent on S since

(p + r) + (q− r + 1) = p + q + 1 = n + 1 and q− r + 1 ≤ q ≤ n which means that
(2.1.12.1) holds for ∆ = 1. So, Ep,q

r+1 is coherent on S. Assume that there exists ∆ ∈ N
such that p + q = n + ∆, and ∆ ≥ 1, and:

q ≤ n−
(

min(∆,(r+1)−1)

∑
ν=2

((r + 1)− ν)

)
.

When ∆ = 1,

(p− r) + (q + r− 1) = p + q− 1 = n + ∆− 1 = n,

whence Ep−r,q+r−1
r is coherent on S. When ∆ ≥ 2, we have (p− r) + (q + r− 1) =

n + ∆′ with ∆′ := ∆− 1. Moreover, ∆′ ≥ 1 and

q + r− 1 ≤ n−
(

min(∆,r)−1

∑
ν=1

(r− ν)

)
+ (r− 1) = n−

(
min(∆′ ,r−1)

∑
ν=2

(r− ν)

)
,

whence again, Ep−r,q+r−1
r is coherent on S. Similarly, as p + q = n + ∆, and ∆ ≥ 1,

and

q ≤ n−
(

min(∆,r)

∑
ν=2

(r + 1− ν)

)
≤ n−

(
min(∆,r−1)

∑
ν=2

(r− ν)

)
,
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Ep,q
r is coherent on S. Finally, as firstly (p + r) + (q− r + 1) = p + q + 1 = n + ∆′′,

where ∆′′ := ∆ + 1, secondly ∆′′ ≥ 1, and thirdly, setting m := min(∆, r),

q− r + 1 ≤ n−
(

m−1

∑
ν=1

(r− ν)

)
− (r− 1) ≤ n−

m+1

∑
ν=2

(r− ν)

≤ n−
(

min(∆′′ ,r−1)

∑
ν=2

(r− ν)

)
,

Ep+r,q−r+1
r is coherent on S. Therefore, Ep,q

r+1 is coherent on S. This finishes the proof
of the claim.

Now let k ∈ Z such that k ≤ n. Let F be a filtration of Rkh∗(G) as in (ii). We claim
that, for all p ∈ Z≤k+1, Fp is coherent on S. Indeed, Fk+1 is isomorphic to zero in
Mod(S), whence coherent on S. Let p ∈ Z≥k such that Fp+1 is coherent on S. Then
there exists r ∈ N≥2 such that Fp/Fp+1 ∼= Ep,k−p

r . Thus there exists an exact sequence

0 −→ Fp+1 −→ Fp −→ Ep,k−p
r −→ 0

in Mod(S). As p + (k− p) = k ≤ n, Ep,k−p
r is coherent on S by our preliminary claim.

In turn by Lemma 2.1.6, Fp is coherent on S.

Notation 2.1.13. — Let f : X → S be a morphism of complex spaces.

a) We set
Sing( f ) := {x ∈ X : f is not submersive in x}

and call Sing( f ) the singular locus of f . Note that one has to regard f as an absolute
morphism in An in order to obtain a clean notation, cf. § A.2.

b) Evidently, Sing( f ) is a closed subset of X. Hence X \ Sing( f ) is an open complex
subspace of X. The composition of the canonical morphism X \ Sing( f )→ X and f
will be referred to as the submersive share of f .

Proposition 2.1.14. — Let f : X → S be a proper morphism of complex spaces and A a
closed analytic subset of X such that Sing( f ) ⊂ A. Suppose that S is Cohen-Macaulay and
X is locally pure dimensional. Denote g the restriction of f to X \ A. Then, for all integers
p and q such that q + 2 ≤ codim(A, X), the Hodge module H p,q(g) := Rqg∗(Ω

p
g) is a

coherent module on S.

Proof. — In case A = ∅, g = f , hence H p,q(g) is coherent on S for all integers p
and q by Theorem 2.1.11 as f is proper and Ωp

f is coherent on X. So, assume that
A 6= ∅. Let p ∈ Z be arbitrary and put n := codim(A, X)− 2, which makes sense
now given codim(A, X) ∈ N. Write i for the canonical immersion from X \ A to
X. Since, for all x ∈ X \ A, f is submersive in x and S is nonsingular (resp. Cohen-
Macaulay) in f (x), we see that X is nonsingular (resp. Cohen-Macaulay) in X \ A.
Moreover, Ωp

f is coherent on X and locally finite free on X in X \ A. Thus by Corollary

2.1.10, Rqi∗(i∗(Ω
p
f )) is coherent on X for all integers q such that q ≤ n. As i∗(Ωp

f ) is
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isomorphic to Ωp
g in Mod(Y), it follows that Rqi∗(Ω

p
g) is coherent on X for all integers

q such that q ≤ n. Therefore, our claim is implied by Proposition 2.1.12.

2.2. Infinitesimal neighborhoods

In this section we will consider a morphism of complex spaces f : X → S together
with a distinguished “basepoint” t ∈ S. Most of the time, we shall assume f to be
submersive in the points of f−1({t}). We are interested in the degeneration behavior
of the Frölicher spectral sequence for the infinitesimal neighborhoods of the morphism
f with respect to the closed analytic subsets f−1({t}) and {t} of X and S, respectively.
Our main result, namely Theorem 2.2.9, of which we have found no account in the
literature, asserts that if the Frölicher spectral sequence of the zeroth infinitesimal
neighborhood of f degenerates in entries of a certain total degree n ∈ Z, then the
Frölicher spectral sequence of any infinitesimal neighborhood of f degenerates in
entries of total degree n. The proof of Theorem 2.2.9 proceeds by induction on the
order of the infinitesimal neighborhood, which is why we call this technique the
“infinitesimal lifting of degeneration”.

Setup 2.2.1. — Let f : X → S be a morphism of complex spaces and t ∈ S. We set
S′ := {t} and X′ := f−1(S′) (set-theoretically, for now) and write I and J for the
ideals of X′ and S′ on X and S, respectively. For any natural number m, we define Xm
(resp. Sm) to be the m-th infinitesimal neighborhood of X′ (resp. S′) in X (resp. S), so
that Xm (resp. Sm) is the closed complex subspace of X (resp. S) defined by the ideal
I m+1 (resp. J m+1), cf. [26, p. 32]. We write im : Xm → X (resp. bm : Sm → S) for the
so induced canonical morphism of complex spaces. Moreover, we let fm : Xm → Sm
signify the unique morphism of complex spaces satisfying f ◦ im = bm ◦ fm, that is,
making the diagram

(2.2.1.1) Xm
im //

fm
��

X

f
��

Sm bm

// S

commute in the category of complex spaces.
When l is a natural number such that l ≤ m, then we denote il,m : Xl → Xm the

unique morphism of complex spaces satisfying im ◦ il,m = il . Similarly, we denote
bl,m : Sl → Sm the unique morphism of complex spaces which satisfies bm ◦ bl,m = bl .
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Given this notation, it follows that the diagram

(2.2.1.2) Xl
il,m

//

fl
��

Xm

fm

��

Sl bl,m

// Sm

commutes in the category of complex spaces.
When l and m are as above and n, p, and q are integers, we denote by

φn
m : H n( fm) −→H n( f ), φn

l,m : H n( fm) −→H n( fl),

φ
p,n
m : FpH n( fm) −→ FpH n( f ), φ

p,n
l,m : FpH n( fm) −→ FpH n( fl),

β
p,q
m : H p,q( fm) −→H p,q( f ), β

p,q
l,m : H p,q( fm) −→H p,q( fl)

the de Rham base change maps in degree n, the filtered de Rham base change maps
in bidegree (p, n), and the Hodge base change maps in bidegree (p, q) associated
respectively to the commutative squares in (2.2.1.1) and (2.2.1.2), cf. § B.1.

In order to prove Theorem 2.2.9, we observe in the first place that the algebraic
de Rham modules H n( fm) (n ∈ Z, m ∈ N) of our infinitesimal neighborhoods
fm : Xm → Sm (here we speak in terms of Setup 2.2.1) are altogether free and “com-
patible with base change”. Note that even though one actually gains information
about the algebraic de Rham modules H n( fm) as a corollary of Theorem 2.2.9, it is
crucial to establish their mentioned properties a priori. The key is the following sort
of “universal coefficient theorem”/“topological base change theorem”.

Lemma 2.2.2. — Let f : X → S be a morphism of topological spaces and θ : B → A a
morphism of commutative sheaves of rings on S. Let

f A : (X, f ∗A) −→ (S, A) (resp. f B : (X, f ∗B) −→ (S, B))

be the morphism of ringed spaces given by f and the adjunction morphism A→ f∗ f ∗A (resp.
B→ f∗ f ∗B). Moreover, let

u : (X, f ∗A) −→ (X, f ∗B) (resp. w : (S, A) −→ (S, B))

be the morphism of ringed spaces given by id|X| and f ∗(θ) (resp. id|S| and θ). Then the
following diagram commutes in the category of ringed spaces:

(2.2.2.1) (X, f ∗A)
u //

f A

��

(X, f ∗B)

f B

��

(S, A) w
// (S, B)
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Furthermore, when θ makes A into a locally finite free B-module on S, then, for all integers n,
the morphism

βn : w∗(Rn f B
∗ ( f ∗B)) −→ Rn f A

∗ ( f ∗A)

which is obtained from f ∗(θ) : f ∗B→ f ∗A by means of Construction B.1.4 with respect to
the square in (2.2.2.1) is an isomorphism of A-modules on S.

Proof. — It is clear that the diagram in (2.2.2.1) commutes in the category of commu-
tative ringed spaces. Now fix an integer n. Consider the n-th projection morphism
relative f B, denoted πn

f B , which is a natural transformation between certain func-
tors going from Mod(S, B)×Mod(X, f ∗B) to Mod(S, B), cf. Construction 1.3.13. By
Proposition 1.3.14, we know that, for all f ∗B-modules F on X, the projection mor-
phism

πn
f B(A, F) : A⊗(S,B) Rn f B

∗ (F) −→ Rn f B
∗ (( f B)∗A⊗(X, f ∗B) F)

is an isomorphism of B-modules on S given that A is a locally finite free module on
(S, B). Therefore, writing

ρ : ( f B)∗A⊗(X, f ∗B) f ∗B = f ∗A⊗(X, f ∗B) f ∗B −→ f ∗A

for the canonical isomorphism of modules on (X, f ∗B) (which is nothing but the right
tensor unit for f ∗A on (X, f ∗B)), we see that

Rn f B
∗ (ρ) ◦ πn

f B(A, f ∗B) : A⊗(S,B) Rn f B
∗ ( f ∗B) −→ Rn f B

∗ ( f ∗A)

is an isomorphism of modules on (S, B), too. Composing the latter morphism further
with the base change

Rn f B
∗ ( f ∗A) −→ w∗(Rn f A

∗ ( f ∗A))

yields yet another isomorphism of modules on (S, B),

A⊗(S,B) Rn f B
∗ ( f ∗B) −→ w∗(Rn f A

∗ ( f ∗A)),

which can be seen to equal w∗(βn) (we omit the verification of this very last assertion).
Since the functor w∗ : Mod(S, A) → Mod(S, B) is faithful, we deduce that βn is an
isomorphism of modules on (S, A).

Proposition 2.2.3. — Let f : X → S be a morphism of complex spaces and t ∈ S such that
f is submersive in f−1({t}). Adopt the notation of Setup 2.2.1 and let n and m be an integer
and a natural number, respectively.

a) The module H n( fm) is free on Sm.
b) For all l ∈ N such that l ≤ m, the de Rham base change map

φn
l,m : b∗l,m(H

n( fm)) −→H n( fl)

is an isomorphism in Mod(Sl).
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Proof. — a) By abuse of notation, we write X′ (resp. S′) for the topological space
induced on X′ (resp. S′) by Xtop (resp. Stop). We write f ′ : X′ → S′ for the correspond-
ing morphism of topological spaces. Fix some natural number k. We set B := CS′

and Ak := OSk and write θk : B → Ak for the morphism of sheaves of rings on S′

which is induced by the structural morphism Sk → C of the complex space Sk. Define
morphisms of ringed spaces

f ′Ak : (X′, f ′∗Ak) −→ (S′, Ak), f ′B : (X′, f ′∗B) −→ (S′, B),

uk : (X′, f ′∗Ak) −→ (X′, f ′∗B), wk : (S′, Ak) −→ (S′, B)

just as in Lemma 2.2.2 (for f ′ : X′ → S′ in place of f : X → S and θk : B→ Ak in place
of θ : B→ A). Observe that f ′ = ( fk)top and thus f ′∗ = f−1

k and f ′Ak = fk. Therefore,
by Lemma 2.2.2, as θk makes Ak into a finite free B-module on S′, there exists an
isomorphism

βk : w∗k (R
n f ′B∗ ( f ′∗B)) −→ Rn f ′Ak∗ ( f ′∗Ak) = Rn fk∗( f−1

k OSk )

of Ak-modules on S′. Since the morphism of complex spaces f : X → S is submersive
in f−1({t}), we see that the morphism of complex spaces fk : Xk → Sk is submersive.
In consequence, the canonical morphism f−1

k OSk → Ω
q
fk

in K+(Xk) is a quasiisomor-
phism. Hence the induced morphism

Rn fk∗( f−1
k OSk ) −→ Rn fk∗(Ω

q
fk
) = H n( fk)

is an isomorphism in Mod(Sk). Since Rn f ′B∗ ( f ′∗B) is clearly free on (S′, B), whence
w∗k (R

n f ′B∗ ( f ′∗B)) is free on (S′, Ak), this shows that H n( fk) is free on Sk.
b) Let l ∈ N such that l ≤ m. Define

il,m : (X′, f ′∗Al) −→ (X′, f ′∗Am)

to be the morphism of ringed spaces given by idX′ and the image of the canonical
morphism Am → Al of sheaves of rings on S′ under the functor f ′∗. Then evidently,
the diagram

(2.2.3.1) (X′, f ′∗Al)
il,m

//

fl
��

(X′, f ′∗Am)
um //

fm
��

(X′, f ′∗B)

f ′B

��

(S′, Al) bl,m

// (S′, Am) wm
// (S′, B)

commutes in the category of ringed spaces, and we have

um ◦ il,m = ul and wm ◦ bl,m = wl .

Define
βl,m : b∗l,m(R

n fm∗( f−1
m OSm)) −→ Rn fl∗( f−1

l OSl )

to be the base change in degree n with respect to the left-hand square in (2.2.3.1)
induced by the canonical morphism f ′∗Am → f ′∗Al of sheaves on X′, cf. Construction
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B.1.4. Then, by the associativity of base changes, the following diagram commutes in
Mod(Sl):

b∗l,m(w
∗
m(Rn f ′B∗ ( f ′∗B))) ∼ //

b∗l,m(βm)

��

w∗l (R
n f ′B∗ ( f ′∗B))

βl
��

b∗l,m(R
n fm∗( f−1

m OSm)) βl,m

// Rn fl∗( f−1
l OSl )

Since βl and βm are isomorphisms (by Lemma 2.2.2, see above), it follows that βl,m is
an isomorphism. By the functoriality of the morphisms f−1OS → Ω

q
f in terms of f ,

we know that the following diagram of complexes of modules commutes:

f−1
m OSm

//

��

f−1
l OSl

��

Ω
q
fm

// Ω
q
fl

Therefore, due to the functoriality of Construction B.1.8 (with respect to a fixed
square), the following diagram commutes in Mod(Sl):

b∗l,m(R
n fm∗( f−1

m OSm))
βl,m

//

∼
��

Rn fl∗( f−1
l OSl )

∼
��

b∗l,m(R
n fm∗(Ω

q
fm))

// Rn fl∗(Ω
q
fl
)

Here, the lower horizontal arrow is, by definition, nothing but the de Rham base
change map

φn
l,m : b∗l,m(H

n( fm)) −→H n( fl),

which we hence see to be an isomorphism.

The upcoming series of results paves the way for the proof of Theorem 2.2.9.
Proposition 2.2.4 and Lemma 2.2.5 are rather general (we include them here for lack
of good references), whereas Proposition 2.2.6 and Lemma 2.2.7 are more specific
and adapted to our Setup 2.2.1 of infinitesimal neighborhoods. Lemma 2.2.8 recalls a
result which is closely related to Nakayama’s Lemma.

Proposition 2.2.4. — Let X be a commutative ringed space, I an ideal on X, and m a
natural number. Then, for all locally finite free modules F on X, the canonical morphism of
sheaves

(2.2.4.1) Im/Im+1 ⊗X F −→ ImF/Im+1F

is an isomorphism in Mod(X) (or else in Mod(Xtop, OX/I) adjusting the scalar multiplica-
tions of the modules in (2.2.4.1) appropriately).
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Proof. — Frist of all, one observes that the associations

F 7−→ Im/Im+1 ⊗X F and F 7−→ ImF/Im+1F,

where F runs through the modules on X, are the object functions of certain addi-
tive functors from Mod(X) to Mod(X) (or else Mod(X) to Mod(Xtop, OX/I)). The
morphism (2.2.4.1) may be defined for all modules F on X and as such makes up
a natural transformation between the mentioned functors. When F = OX, (2.2.4.1)
clearly is an isomorphism in Mod(X) (or else Mod(Xtop, OX/I)). Thus, by means
of “abstract nonsense”, (2.2.4.1) is an isomorphism for all finite free modules F on X.
When F is only locally finite free on X, one concludes by restricting X, I, and F to
open subsets U of X over which F is finite free; this works as (2.2.4.1) is in the obvious
way compatible with restriction to open subspaces.

Lemma 2.2.5. — Let

(2.2.5.1) Y
u //

g
��

X

f
��

T w
// S

be a pullback square in the category of commutative ringed spaces such that f is flat in
points coming from u and w] : w−1OS → OT is a surjective morphism of sheaves of rings
on Ttop. Denote I (resp. J ) the ideal sheaf which is the kernel of the morphism of rings
u] : u−1OX → OY on Ytop (resp. w] : w−1OS → OT on Ttop). Then, for all m ∈ N, the
canonical morphism

(2.2.5.2) (u−1OX/I )⊗(Ytop,g−1(w−1OS/J )) g−1(J m/J m+1) −→ I m/I m+1

is an isomorphism of u−1OX/I -modules on Ytop.

Proof. — We formulate a sublemma. Let

B
θ //

φ

��

B′

φ′

��

A η
// A′

be a pushout square in the category of commutative rings such that θ : B → B′

is surjective and φ makes A into a flat B-module. Denote I (resp. J) the kernel of
η : A→ A′ (resp. θ : B→ B′). Then, for all m ∈ N, the canonical map

A/I ⊗B/J Jm/Jm+1 −→ Im/Im+1

is a bijection. This assertion can be proven by verifying inductively that, for all m ∈ N,
the canonical mappings A⊗B Jm → Im and A⊗B (Jm/Jm+1)→ Im/Im+1 are bijective;
we omit the details.
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In order to prove the actual lemma, let y be an arbitrary element of Y and m a
natural number. Then the image of the morphism (2.2.5.2) under the stalk-at-y functor
on Ytop is easily seen to be isomorphic, over the canonical isomorphism of rings
(u−1OX/I )y → OX,x/I, to the canonical map

(2.2.5.3) OX,x/I ⊗OS,s/J Jm/Jm+1 −→ Im/Im+1,

where x := u(y), t := g(y), s := f (x) = w(t), and I (resp. J) denotes the kernel
of u]

y : OX,x → OY,y (resp. w]
t : OS,s → OT,t). Now since the diagram in (2.2.5.1) is a

pullback square in the category of commutative ringed spaces, we know that

OS,s
w]

t //

f ]x
��

OT,t

g]y
��

OX,x
u]

y

// OY,y

is a pushout square in the category of commutative rings. Therefore, the map (2.2.5.3)
is bijective according to the sublemma. As y ∈ Y was arbitrary, we conclude that
(2.2.5.2) is an isomorphism of sheaves on Ytop.

Proposition 2.2.6. — Assume we are in the situation of Setup 2.2.1. Let F′ be a locally
finite free module on (X′, i∗OX). Assume that f is flat along f−1({t}) and denote by H the
Hilbert function of the local ring OS,t. Define I to be the ideal on (X′, i∗OX) which is given
as the kernel of the morphism

(i0)] : i∗OX = i−1
0 OX −→ OX0

of sheaves of rings on X′ = (X0)top. Then, for all m ∈ N, we have

ImF′/Im+1F′ ∼= (F′/IF′)⊕H(m)

as (i∗OX)/I-modules on X′.

Proof. — Let m be a natural number. As F′ is a locally finite free module on the ringed
space (X′, i∗OX), the canonical morphism

Im/Im+1 ⊗(X′ ,i∗OX)
F′ −→ ImF′/Im+1F′

of (i∗OX)/I-modules on X′ is an isomorphism by Proposition 2.2.4. Set

b := (b0)top : S′ = (S0)top −→ Stop

and define J to be the ideal on (S′, b∗OS) which is the kernel of the morphism

(b0)
] : b∗OS = b−1

0 OS −→ OS0 .

Then by Proposition 2.2.5, since f was assumed to be flat in f−1({t}), the canonical
morphism

(2.2.6.1) (i∗OX/I)⊗(X′ , f ′∗(b∗OS/J)) f ′∗(Jm/Jm+1) −→ Im/Im+1
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is an isomorphism of i∗OX/I-modules on X′. Since the local (or “idealized”) rings
(b∗OS, J) and (OS,t,m) are isomorphic, Jm/Jm+1 is isomorphic to (b∗OS/J)⊕H(m) as a
module on (S′, b∗OS/J). Therefore, by means of the isomorphism (2.2.6.1), Im/Im+1

is isomorphic to (i∗OX/I)⊕H(m) as a module on (X′, i∗OX/I). This in turn implies
that we have

Im/Im+1 ⊗(X′ ,i∗OX)
F′ ∼= ((i∗OX/I)⊗(X′ ,i∗OX)

F′)⊕H(m) ∼= (F′/IF′)⊕H(m)

in the category of i∗OX/I-modules on X′.

Lemma 2.2.7. — Assume we are in the situation of Setup 2.2.1 with f submersive in
f−1({t}). Denote by H the Hilbert function of the local ring OS,t. Then, for all p, q ∈ Z and
all m ∈ N, there exists α

p,q
m such that

(2.2.7.1) (H p,q( f0))
⊕H(m+1) α

p,q
m // H p,q( fm+1)

β
p,q
m,m+1

// H p,q( fm)

is an exact sequence in Mod(Sm+1), where the first and the last of the modules in (2.2.7.1)
need to be regarded as modules on Sm+1 via the canonical morphisms of rings OSm+1 → OS0

and OSm+1 → OSm on S′, respectively.

Proof. — Let p, q ∈ Z and m ∈ N. Moreover, let k ∈ N. Then the diagram

(2.2.7.2) Xk
ik //

fk
��

X

f
��

Sk bk

// S

commutes in the category of complex spaces, cf. Setup 2.2.1, and thus induces a
morphism i∗k (Ω

p
f ) → Ωp

fk
of modules on Xk, which is nothing but the i∗k -ik∗-adjoint

of the usual pullback of p-differentials Ωp
f → ik∗(Ω

p
fk
). Since (2.2.7.2) is a pull-

back square, the mentioned morphism i∗k (Ω
p
f ) → Ωp

fk
is, in fact, an isomorphism

in Mod(Xk). Now define I as in Proposition 2.2.6. Then (ik)
] : i∗OX → OXk factors

uniquely through the quotient morphism i∗OX → (i∗OX)/Ik+1 to yield an isomor-
phism (i∗OX)/Ik+1 → OSk of rings on X′. In turn, we obtain an isomorphism of
sheaves on X′,

((i∗OX)/Ik+1)⊗(X′ ,i∗OX)
i∗(Ωp

f ) −→ OXk ⊗(X′ ,i∗OX)
i∗(Ωp

f ) = i∗k (Ω
p
f ).

Precomposing with the canonical morphism

F′/Ik+1F′ −→ (i∗OX/Ik+1)⊗(X′ ,i∗OX)
F′

of i∗OX/Ik+1-modules on X′ for F′ := i∗(Ωp
f ) and composing with the already men-

tioned i∗k (Ω
p
f )→ Ωp

fk
, we arrive at an isomorphism of modules on X′,

αk : F′/Ik+1F′ −→ Ωp
fk

,
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over the isomorphism of rings i∗OX/Ik+1 → OXk .
Since f is submersive in f−1({t}) = X′, the module Ωp

f is locally finite free on
X in X′. Consequently, F′ is a locally finite free module on (X′, i∗OX). Hence by
Proposition 2.2.6, there exists an isomorphism

ψ : (F′/IF′)⊕H(m+1) −→ Im+1F′/Im+2F′

of i∗OX/I-modules on X′. Consider the following sequence of morphisms of sheaves
on X′:

(Ωp
f0
)⊕H(m+1) (α−1

0 )⊕H(m+1)

−−−−−−−→ (F′/IF′)⊕H(m+1) ψ−→ Im+1F′/Im+2F′

−→ F′/Im+2F′
αm+1−−→ Ωp

fm+1
,

(2.2.7.3)

where the unlabeled arrow stands for the morphism obtained from the inclusion
morphism Im+1F′ → F′ by quotienting out Im+2F′. Then, when Ωp

f0
is regarded as an

OXm+1-module on X′ via the canonical morphism of sheaves of rings OXm+1 → OX0 ,
the composition of sheaf maps (2.2.7.3) is a morphism of sheaves of OXm+1-modules
on X′. This is due to the fact that the following diagram of canonical morphisms of
sheaves of rings on X′ commutes:

i∗OX/Im+2 //

��

OXm+1

��

i∗OX/I // OX0

We define α
p,q
m to be the composition of the following sheaf maps on S′:

(H p,q( f0))
⊕H(m+1) = (Rq f0∗(Ω

p
f0
))⊕H(m+1) −→ Rq f0∗((Ω

p
f0
)⊕H(m+1))

−→ Rq fm+1∗((Ω
p
f0
)⊕H(m+1)) −→ Rq fm+1∗(Ω

p
fm+1

),

where the last arrow signifies the image of the composition (2.2.7.3) under the functor
Rq fm+1∗ (viewed as a functor from Mod(Xm+1) to Mod(Sm+1)).

We show that, given this definition of α
p,q
m , the sequence (2.2.7.1) constitutes an

exact sequence in Mod(Sm+1). For that matter, consider the pullback of p-differentials
Ωp

fm+1
→ Ωp

fm
associated to the square in (2.2.1.2) with l and m replaced by m and

m + 1, respectively. Then the following diagram commutes in Mod(Xm+1):

(2.2.7.4) F′/Im+2F′ //

αm+1
��

F′/Im+1F′

αm
��

Ωp
fm+1

// Ωp
fm

In addition, the following sequence is exact in Mod(Xm+1):

0 −→ Im+1F′/Im+2F′ −→ F′/Im+2F′ −→ F′/Im+1F′ −→ 0.
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Thus, as the diagram in (2.2.7.4) commutes in Mod(Xm+1), the vertical arrows being
isomorphisms, the sequence

0 −→ Im+1F′/Im+2F′ −→ Ωp
fm+1
−→ Ωp

fm
−→ 0,

where the second arrow denotes the composition of the canonical morphism

Im+1F′/Im+2F′ −→ F′/Im+2F′

and αm+1, is exact in Mod(Xm+1). Therefore, applying the functor Rq fm+1∗, we obtain
an exact sequence in Mod(Sm+1),

(2.2.7.5) Rq fm+1∗(Im+1F′/Im+2F′) −→H p,q( fm+1) −→ Rq fm+1∗(Ω
p
fm
).

Now by the definition of α
p,q
m , there exists an isomorphism

(H p,q( f0))
⊕H(m+1) −→ Rq fm+1∗(Im+1F′/Im+2F′)

of modules on Sm+1 such that α
p,q
m equals the composition of it and the first arrow in

(2.2.7.5). Likewise, by the definition of the Hodge base change map, there exists an
isomorphism

Rq fm+1∗(Ω
p
fm
) −→H p,q( fm)

(over bm,m+1) such that β
p,q
m,m+1 equals the composition of the second arrow in (2.2.7.5)

and this. Hence the sequence (2.2.7.1) is exact.

Lemma 2.2.8. — Let A be a commutative local ring with maximal ideal m. Let E be a finite,
projective A-module, r a natural number, and x an r-tuple of elements of E such that κ ◦ x is
an ordered A/m-basis for E/mE, where κ : E→ E/mE denotes the residue class map. Then
x is an ordered A-basis for E.

Proof. — See [48, Chapter X, Theorem 4.4].

Theorem 2.2.9. — Let f : X → S be a morphism of complex spaces and t ∈ S such that f is
submersive in f−1({t}). Adopt the notation of Setup 2.2.1. Let n be an integer and write Dn
for the n-diagonal in Z× Z. Assume that the Frölicher spectral sequence of X0 degenerates in
entries Dn at sheet 1 in Mod(C) and that, for all (p, q) ∈ Dn, the module H p,q(X0) is of
finite type over C. Set

hp,q := dimC(H
p,q(X0)) and bp := dimC(FpH n(X0)).

Then, for all p ∈ Z, we have

(2.2.9.1) bp =
n

∑
ν=p

hν,n−ν.

Moreover, for all m ∈ N, the following assertions hold:

am) The Frölicher spectral sequence of fm degenerates in Dn at sheet 1 in Mod(Sm).
bm) For all p ∈ Z, the modules H p,n−p( fm) and FpH n( fm) are free of ranks hp,n−p

and bp on Sm, respectively.
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cm) For all p ∈ Z and all l ∈ N such that l ≤ m, the base change maps

β
p,n−p
l,m : b∗l,m(H

p,n−p( fm)) −→H p,n−p( fl)

and
φ

p,n
l,m : b∗l,m(F

pH n( fm)) −→ FpH n( fl)

are isomorphisms in Mod(Sl).

Proof. — Let p be an integer. When p ≥ n + 1, we have FpH n(X0) ∼= 0 in Mod(C)

and thus bp = 0, so that (2.2.9.1) holds. For arbitrary p, (2.2.9.1) now follows by
means of descending induction on p (starting at p = n + 1) exploiting the fact that
FpH n(X0)/Fp+1H n(X0) is isomorphic to H p,n−p(X0) in Mod(C) since the Frölicher
spectral sequence of X0 degenerates in (p, n− p) at sheet 1 in Mod(C).

In order to prove the second part of the theorem, we use induction on m. Denote C
the distinguished terminal complex space and aX0 (resp. aS0 ) the unique morphism of
complex spaces from X0 (resp. S0) to C. Then the following diagram commutes in
An, the horizontal arrows being isomorphisms:

Hence the Frölicher spectral sequence of aX0 , which is by definition the Frölicher
spectral sequence of X0, is isomorphic to the Frölicher spectral sequence of f0 (over
aS0 ). So, as the Frölicher spectral sequence of X0 degenerates in entries Dn at sheet 1 in
Mod(C) by hypothesis, the Frölicher spectral sequence of f0 degenerates in entries Dn
at sheet 1 in Mod(S0). This is a0). By the functoriality of the conceptions ‘H p,q’ and
‘FpH n’, we see that, for all integers p and q, the module H p,q(X0) (resp. FpH n(X0))
is isomorphic to H p,q( f0) (resp. FpH n( f0)) over aS0 . Thus for all integers p, the
module H p,n−p( f0) (resp. FpH n( f0)) is free of rank hp,n−p (resp. bp) on S0, which
proves b0). Assertion c0) is trivially fulfilled since l ∈ N together with l ≤ 0 implies
that l = 0; moreover, we have i0,0 = idX0 and b0,0 = idS0 , whence, for all p ∈ Z, by
the functoriality of the base changes, β

p,n−p
0,0 and φ

p,n
0,0 are the identities on H p,n−p( f0)

and FpH n( f0) in Mod(S0), respectively.
Now, let m ∈ N be arbitrary and assume that am), bm), and cm) hold. For the time

being, fix (p, q) ∈ Dn. Denote by H the Hilbert function of the local ring OS,t. Then
by Lemma 2.2.7, there exists a morphism of modules on Sm+1,

α
p,q
m : (H p,q( f0))

⊕H(m+1) −→H p,q( fm+1),

such that the three-term sequence (2.2.7.1) is exact in Mod(Sm+1). By hypothesis bm),
H p,q( fm) is isomorphic to (OSm)

⊕hp,q
in Mod(Sm). Therefore, H p,q( fm) is of finite

type over C and we have:

dimC(H
p,q( fm)) = hp,q · dimC(OSm).

Moreover, since aS0 : S0 → C is an isomorphism, a0) yields:

dimC(H
p,q( f0)) = dimS0(H

p,q( f0)) = hp,q.
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The exactness of the sequence (2.2.7.1) implies that H p,q( fm+1) is of finite type over
C with

dimC(H
p,q( fm+1)) ≤ H(m + 1) · hp,q + hp,q · dimC(OSm)

= hp,q · (H(m + 1) + dimC(OSm)) = hp,q · dimC(OSm+1);

(2.2.9.2)

here we made use of the fact that, for all natural numbers k, firstly, OSk is isomorphic
to OS,t/mk+1 as a C-algebra and secondly, dimC(OS,t/mk+1) = ∑k

ν=0 H(ν).
Let E denote the Frölicher spectral sequence of fm+1 and dr the differential of Er.

Then Ep,q
1 is isomorphic to H p,q( fm+1) in Mod(Sm+1). In particular, we see that Ep,q

1
is of finite type over C. Using induction, we deduce that Ep,q

r is of finite type over C
for all r ∈ N≥1. Moreover, for all r ∈ N≥1, we have

dimC(Ep,q
r+1) ≤ dimC(Ep,q

r )

with equality holding if and only if both dp−r,q+r−1
r and dp,q

r are zero morphisms.
Now write F = (Fν)ν∈Z for the Hodge filtration on the algebraic de Rham module
H n( fm+1), so that for all ν ∈ Z we have Fν = FνH n( fm+1). Then by the definition
of the Frölicher spectral sequence, there exists r ∈ N≥1 (take, e.g., r = max(1, q + 2))
such that Ep,q

r ∼= Fp/Fp+1 in Mod(Sm+1) and E degenerates in (p, q) at sheet r in
Mod(Sm+1). Hence we conclude that

(2.2.9.3) dimC(Fp/Fp+1) ≤ dimC(H
p,q( fm+1))

with equality holding if and only if E degenerates in (p, q) at sheet 1 in Mod(Sm+1).
We abandon our fixation of (p, q). By Proposition 2.2.3 a), H n( fm+1) is a finite

free module on Sm+1 of rank dimC(H
n(X0)). Since H n(X0) = F0H n(X0), we have

dimC(H
n(X0)) = b0. Thus,

dimC(H
n( fm+1)) = b0 · dimC(OSm+1).

Besides, since F is a filtration on H n( fm+1) (by modules on Sm+1) satisfying Fn+1 = 0
as well as F0 = H n( fm+1), we have:

dimC(H
n( fm+1)) =

n

∑
p=0

dimC(Fp/Fp+1).

Taking all of the above into account, we obtain:

b0 · dimC(OSm+1) = dimC(H
n( fm+1)) =

n

∑
p=0

dimC(Fp/Fp+1)

≤
n

∑
p=0

dimC(H
p,n−p( fm+1)) ≤

n

∑
p=0

(hp,n−p · dimC(OSm+1))

=

(
n

∑
p=0

hp,n−p

)
· dimC(OSm+1)

(2.2.9.1)
= b0 · dimC(OSm+1).

(2.2.9.4)
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By the antisymmetry of ‘≤’, equality holds everywhere in (2.2.9.4). By the strict
monotony of finite sums, it follows that, for all (p, q) ∈ Dn with 0 ≤ p ≤ n, we have
equality in (2.2.9.3); yet this is possible only if E degenerates in (p, q) at sheet 1 in
Mod(Sm+1). Observing that, for all (p, q) ∈ Dn with p < 0 or n < p, E degenerates in
(p, q) at sheet 1 in Mod(Sm+1) as, in that case, Ep,q

1
∼= H p,q( fm+1) ∼= 0 in Mod(Sm+1),

we see we have proven am+1).
As we have equality everywhere in (2.2.9.4), we deduce that, for all (p, q) ∈ Dn,

we have equality in (2.2.9.2); note that when p < 0 or n < p, this is clear a priori.
Equality in (2.2.9.2), however, is possible only if (2.2.7.1) constitutes a short exact
triple in Mod(C) (or equivalently, in Mod(Sm+1)). We claim that, for all p ∈ Z, the
base change map

φ
p,n
m,m+1 : FpH n( fm+1) −→ FpH n( fm)

is an epimorphism in Mod(Sm+1). When p ≥ n + 1, this is obvious since then,
FpH n( fm) ∼= 0. Now let p ∈ Z be arbitrary and assume that φ

p+1,n
m,m+1 is an epimor-

phism. By am) we know that the Frölicher spectral sequence of fm degenerates in
(p, n− p) at sheet 1 in Mod(Sm), whence by Proposition 1.7.9 a) there exists one, and
only one, ψ

p
m such that the following diagram commutes in Mod(Sm) (concerning

notation, we refer the reader to Chapter 1):

(2.2.9.5) Rn fm∗(σ
≥pΩ

q
fm)

//

Rn fm∗(j≤p(σ≥pΩ
q
fm ))

λn
fm
(p)

��

Rn fm∗(σ
=pΩ

q
fm)

κn
fm
(σ=pΩ

q
fm )

��

FpH n( fm)
ψ

p
m

// H p,n−p( fm)

Furthermore, Proposition 1.7.9 b) tells that ψ
p
m is isomorphic to the quotient morphism

FpH n( fm) −→ FpH n( fm)/Fp+1H n( fm)

(note that in the above diagram κn
fm
(σ=pΩ q

fm
) is an isomorphism). Similarly, by means

of am+1), we dispose of a morphism ψ
p
m+1. Since any of the solid arrows in (2.2.9.5)

is compatible with base change (in the obvious sense), one infers that the following
diagram commutes in Mod(Sm+1), the rows being exact:

0 // Fp+1H n( fm+1)
⊂ //

φ
p+1,n
m,m+1

��

FpH n( fm+1)
ψ

p
m+1

//

φ
p,n
m,m+1

��

H p,q( fm+1) //

β
p,q
m,m+1

��

0

0 // Fp+1H n( fm) ⊂
// FpH n( fm)

ψ
p
m

// H p,q( fm) // 0

Here φ
p+1,n
m,m+1 is an epimorphism by assumption, and β

p,q
m,m+1 is an epimorphism as

(2.2.7.1) is a short exact triple. Hence the Five Lemma implies that φ
p,n
m,m+1 is an
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epimorphism. Thus, our claim follows by descending induction on p starting at, e.g.,
p = n + 1.

By cm), for all integers p, the morphism

φ
p,n
0,m : FpH n( fm) −→ FpH n( f0)

is an epimorphism in Mod(Sm). By the associativity of the base change construction
we have, for all integers p:

φ
p,n
0,m+1 = φ

p,n
0,m ◦ φ

p,n
m,m+1.

So, we see that φ
p,n
0,m+1 is an epimorphism in Mod(Sm+1) for all p ∈ Z. Since the ring

OS0 is a field—in fact, the structural map C → OS0 is bijective—and the numbers
hn,0, hn−1,1, . . . , h0,n are altogether finite, there exists an ordered OS0-basis (equiva-
lently, C-basis) e = (eν)ν∈b0 for H n( f0) such that, for all p ∈ N with p ≤ n, the
restricted tuple e|bp = (e0, . . . , ebp−1) makes up an OS0-basis for FpH n( f0). By the
surjectivity of the maps φ

p,n
0,m+1 (for varying p), there exists a b0-tuple x = (xν) of

elements of H n( fm+1) such that, for all p ∈ N with p ≤ n and all ν ∈ bp, we have
xν ∈ Fp and φn

0,m+1(xν) = eν. As pointed out before, H n( fm+1) is a finite free OSm+1 -
module (by Proposition 2.2.3 a)). Write m for the unique maximal ideal of OSm+1 and
denote by

φ
n
0,m+1 : H n( fm+1)/mH n( fm+1) −→H n( f0)

the unique map which factors

φn
0,m+1 : H n( fm+1) −→H n( f0)

through the evident residue map. Then by Proposition 2.2.3 b), φ
n
0,m+1 is an isomor-

phism of modules over the isomorphism of rings OSm+1 /m→ OS0 which is induced
by the canonical map OSm+1 → OS0 , i.e., by b0,m+1 : S0 → Sm+1. In particular, since
the tuple x = (xν) of residue classes obtained from x is sent to e by φ

n
0,m+1, we see

that x constitutes an OSm+1 /m-basis for H n( fm+1)/mH n( fm+1). Hence by Lemma
2.2.8, x constitutes an OSm+1-basis for H n( fm+1). In consequence, the tuple x, and
whence any restriction of it, is linearly independent over OSm+1 . Thus for all integers
p, there exists an injective morphism

(OSm+1)
⊕bp −→ FpH n( fm+1)

of OSm+1-modules. From am+1) we deduce, using a descending induction on p ∈
Z≤n+1 as before, that

dimC(FpH n( fm+1)) =
n

∑
ν=p

dimC(H
ν,n−ν( fm+1))
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for all p ∈ Z. We already noted that, for all (p, q) ∈ Dn, equality holds in (2.2.9.2). As
a result, we obtain:

dimC(FpH n( fm+1)) =
n

∑
ν=p

(hν,n−ν · dimC(OSm+1)) = dimC((OSm+1)
⊕bp

)

for all integers p. It follows that, for all p ∈ Z, any injective morphism of OSm+1-
modules (or yet merely C-modules) from (OSm+1)

⊕bp
to Fp is indeed bijective. We

deduce that, for all integers p, the module Fp is free of rank bp on Sm+1. Furthermore,
for all p ∈ Z, Fp equals the OSm+1-span of x0, . . . , xbp−1 in H n( fm+1). Consequently,
for all p ∈ Z, the module Fp/Fp+1 is free of rank bp − bp+1 = hp,n−p on Sm+1. As
Fp/Fp+1 ∼= H p,n−p( fm+1) in Mod(Sm+1) according to am+1), this proves bm+1).

It remains to prove cm+1). Let p be an arbitrary integer. Put q := n− p. Then, as
already established above, the Hodge base change map

β
p,q
m,m+1 : b∗m,m+1(H

p,q( fm+1)) −→H p,q( fm)

is surjective. Since by bm+1), the module H p,q( fm+1) is free of rank hp,q on Sm+1, we
see that b∗m,m+1(H

p,q( fm+1)) is free of rank hp,q on Sm. By bm), the module H p,q( fm)

is free of rank hp,q on Sm, too. Therefore, the surjection β
p,q
m,m+1 is in fact a bijection.

Analogously, one shows that the filtered de Rham base change map

φ
p,n
m,m+1 : b∗m,m+1(F

pH n( fm+1)) −→ FpH n( fm)

is an isomorphism in Mod(Sm). So, we have proven cm+1) in case l = m. In case
l = m+ 1 the assertion is trivial. In case l < m, the assertion follows from the assertion
for l = m combined with cm) and the associativity of base changes.

2.3. Formal completions of complex spaces

Setup 2.3.1. — Let f : X → S be a morphism of complex spaces, I and J finite type
ideals on X and S, respectively, such that f ] : OS → f∗(OX) maps J into f∗(I ). Let
q be an integer. Let F be a module on X. For any natural number m set

F(m) := F/I m+1F

and write
αm : F −→ F(m)

for the evident quotient morphism. For natural numbers l and m such that l ≤ m,
denote

αlm : F(m) −→ F(l)

the unique morphism such that αl = αlm ◦ αm. Note that the data of the F(m)’s and
the αlm’s makes up an inverse system of modules on X; more formally, this data can
be collected into a functor Nop → Mod(X), which we refer to as α.

Set
G := Rq f∗(F)
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and define G(m), βm, βlm, and β in analogy to F(m), αm, αlm, and α above. Observe
that, for all natural numbers m, the morphism

Rq f∗(αm) : Rq f∗(F) −→ Rq f∗(F(m))

factors uniquely through a morphism

τm : G(m) = Rq f∗(F)/J m+1Rq f∗(F) −→ Rq f∗(F(m))

(via βm : G → G(m)). Moreover, observe that the sequence τ = (τm)m∈N constitutes a
morphism of functors from Nop to Mod(S),

τ : β −→ Rq f∗ ◦ α,

which in turn induces a morphism

(2.3.1.1) lim(τ) : lim(β) −→ lim(Rq f∗ ◦ α).

Theorem 2.3.2. — In the situation of Setup 2.3.1 assume that S is a complex manifold, f is
submersive, J is the ideal of a point t ∈ S, I is the ideal of f−1({t}) ⊂ X, and F is locally
finite free on X. Furthermore, assume that Rq f∗(F) and Rq+1 f∗(F) are coherent on S. Then
the morphism (2.3.1.1) is an isomorphism.

Proof. — This follows from [9, VI, Theorem 4.1 (i)] using a small modification of
loc. cit., VI, Proposition 4.2. Note that the morphism (2.3.1.1) is introduced on p. 218
in loc. cit. and denoted φq.

Lemma 2.3.3. — For all Noetherian commutative local rings A, the canonical morphism of
rings A→ Â makes Â into a faithfully flat A-module.

Proof. — Put I := m(A). As A is local, I is the only maximal ideal of A and conse-
quently the Jacobson radical of A equals I. In particular, I is a subset of the Jacobson
radical of A. Hence we are finished taking into account that (1) implies (3) in [52,
Theorem 8.14]. Note that “ring” means commutative ring in loc. cit.

Proposition 2.3.4. — Let φ : A→ B be a morphism of commutative rings making B into a
faithfully flat A-module. Then, for all A-modules M, M is flat over A if and only if B⊗A M
is flat over B.

Proof. — See [52, Exercises to § 7, 7.1].

Lemma 2.3.5. — Let A be a Noetherian commutative local ring and M a finitely generated
A-module. Then M is (finite) free over A if and only if Â⊗A M is (finite) free over Â.

Proof. — Clearly, when M is free over A, then M is finite free over A and thus
Â⊗A M is finite free over Â since the tensor product distributes over direct sums and
Â⊗A A ∼= Â as Â-modules.

Conversely, assume that N := Â⊗A M is free over Â. Then N is certainly flat over
Â. By Lemma 2.3.3, the canonical morphism of rings A→ Â makes Â into a faithfully
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flat A-module. Thus by Proposition 2.3.4, the fact that N is flat over Â implies that M
is flat over A. Therefore, since M is a finitely presented A-module, M is projective
over A. Since A is local, M is free over A.

Lemma 2.3.6. — Let F be a functor from Nop to the category of modules. For k, l, m ∈ N
such that l ≤ m, write F0(k) = (Ak, Mk) and F1(m, l) = (θl,m, φl,m). Assume that, for all
k ∈ N, the ring Ak is commutative local and the module Mk is finite free over Ak. Moreover,
assume that, for all l, m ∈ N with l ≤ m, θl,m is a surjection from Am onto Al mapping
the unique maximal ideal of Am into the unique maximal ideal of Al and the morphism of
Al-modules Al ⊗Am Mm → Ml induced by φl,m is an isomorphism.

a) The limit (A∞, M∞) of F with respect to Nop and the category of modules is finite free.
b) For all l ∈ N, the morphism of Al-modules Al ⊗A∞ M∞ → Ml induced by the

canonical projections A∞ → Al and M∞ → Ml is an isomorphism.

Proof. — By hypothesis there exists r ∈ N as well as an r-tuple e(0) with values
in M0 such that e(0) is an ordered A0-basis of M0. As for all l ∈ N, φl,l+1 is a
surjection from Ml+1 onto Ml , there exists, for all i ∈ r, a function ei with domain
of definition N such that ei(0) = (e(0))i and, for all k ∈ N, ei(k) ∈ Mk, and, for all
l ∈ N, φl,l+1(ei(l + 1)) = ei(l). It follows that, for all i ∈ r, ei ∈ M∞. We claim
that the r-tuple e given by the ei, i ∈ r, is an ordered A∞-basis for M∞. As an
intermediate step we show that, for all k ∈ N, the r-tuple e(k) given by the ei(k),
i ∈ r, is an ordered Ak-basis for Mk. In fact, by hypothesis, φ0,k factors to yield an
isomorphism of modules from Mk/m(Ak)Mk to M0/m(A0)M0 over the isomorphism
of rings Ak/m(Ak) → A0/m(A0) induced by θ0,k. As e(0) is a basis for M0 over A0,
the residue class tuple e(0) is a basis for M0/m(A0)M0 over A0/m(A0). Therefore,
the residue class tuple e(k) of e(k) is a basis for Mk/m(Ak)Mk over Ak/m(Ak). Thus
e(k) is a basis for Mk over Ak by Lemma 2.2.8.

Now let x ∈ M∞ be arbitrary. Then, for all k ∈ N, x(k) ∈ Mk, hence there
exists a unique vector λ(k) ∈ (Ak)

r such that ∑i∈r(λ
(k))iei(k) = x(k). Therefore, for

all l, m ∈ N with l ≤ m and all i ∈ r, we have θl,m((λ
(m))i) = (λ(l))i. Thus, for

all i ∈ r, the function λi given by λi(k) = (λ(k))i is an element of A∞. Moreover,
∑i∈r λiei = x. Hence the tuple e generates M∞ over A∞. Apart from that, assume we
have given an element λ ∈ (A∞)r such that ∑i∈r λiei = 0 in M∞. Then, for all k ∈ N,
∑i∈r λi(k)ei(k) = 0 in Mk, whence λi(k) = 0 in Ak for all k ∈ N and i ∈ r. That is, for
all i ∈ r, λi = 0 in A∞. So we have proven a).

Let l ∈ N. In order to prove b), it suffices to note that as the ei, i ∈ r, make up
an A∞-basis for M∞, the elements 1⊗ ei make up an Al-basis for Al ⊗A∞ M∞. In
addition, the canonical morphism Al ⊗A∞ M∞ → Ml maps, for all i ∈ r, 1⊗ ei to
ei(l) = (e(l))i and the tuple e(l) is an Al-basis for Ml , cf. above.
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Proposition 2.3.7. — Let f : X → S be a submersive morphism of complex spaces with
smooth base, t ∈ S, p and q integers. We adopt the notation of Setup 2.2.1. Moreover, we set
n := p + q and write Dn for the n-diagonal in Z× Z. Assume that

(i) the Frölicher spectral sequence of X0 degenerates in Dn at sheet 1 in Mod(C);
(ii) for all (ν, µ) ∈ Dn, the module H ν,µ(X0) is of finite type over C;
(iii) both H p,q( f ) and H p,q+1( f ) are coherent modules on S.

Then the following assertions hold:

a) H p,q( f ) is locally finite free on S in t.
b) For all m ∈ N, the Hodge base change map

(2.3.7.1) β
p,q
m : b∗m(H

p,q( f )) −→H p,q( fm)

is an isomorphism in Mod(Sm).

Proof. — a). Set F := Ωp
f . Consider the inverse system of modules given by

Rq fm∗(i
∗
m(F)) −→ Rq fl∗(i

∗
l (F))

for natural numbers l and m with l ≤ m. By Theorem 2.2.9 and Lemma 2.3.6, we
know that the limit of this inverse system is a finite free ÔS,t-module (of rank equal
to the dimension of H p,q(X0) over C). By Theorem 2.3.2, the latter limit is, in the
category of ÔS,t-modules, isomorphic to the completion of the stalk

(Rq f∗(F))t = (H p,q( f ))t

with respect to the maximal ideal of OS,t, and as the stalk (H p,q( f ))t is of finite type
over OS,t, its completion is isomorphic to

ÔS,t ⊗OS,t
(H p,q( f ))t.

Thus by Lemma 2.3.5, we see that (H p,q( f ))t is a finite free module over OS,t. Since
H p,q( f ) is coherent on S by assumption, we deduce that H p,q( f ) is locally finite free
on S in t.

b). Let m be a natural number. Then the following diagram commutes:

limk
(
b∗k (R

q f∗(F))
) ∼ //

pr

��

limk
(
Rq fk∗(i

∗
k (F))

)
pr

��

b∗m(Rq f∗(F))
BC

// Rq fm∗(i
∗
m(F))

Tensoring the morphism in the upper row with OSm over ÔS,t, the vertical maps
become isomorphisms. Thus the arrow in the lower row is an isomorphism. Hence
the Hodge base change map (2.3.7.1) is an isomorphism too.
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2.4. Compactifiable submersive morphisms

Theorem 2.4.1 (Ohsawa’s criterion). — Let X be a compact, locally pure dimensional
complex space of Kähler type and A a closed analytic subset of X such that Sing(X) ⊂ A.
Then the Frölicher spectral sequence of X \ A degenerates in entries

I := {(p, q) ∈ Z× Z : p + q + 2 ≤ codim(A, X)}

at sheet 1 in Mod(C). Moreover, for all (p, q) ∈ I, we have

H p,q(X \ A) ∼= H q,p(X \ A)

in Mod(C).

Proof. — When X is pure dimensional, the assertions follow from [65, Theorem 1].
When X is only locally pure dimensional, X has finitely many connected components
X0, . . . , Xb−1. For all ν < b, we know that Xν is pure dimensional, so that the Frölicher
spectral sequence of Yν := Xν \ (A∩Xν) degenerates in entries I at sheet 1. Therefore,
since the Frölicher spectral sequence of X \ A is isomorphic to the direct sum of the
Frölicher spectral sequences of the Yν, wheres ν ranges through b, it degenerates in
entries I at sheet 1 also. Similarly, the Hodge symmetry is traced back to the pure
dimensional case.

Question 2.4.2. — Let X and A be as in Theorem 2.4.1, n an integer such that

n + 2 ≤ codim(A, X).

Does the filtration (FpH n(X \ A))p∈Z on H n(X \ A) coincide with the Hodge filtra-
tion of the mixed Hodge structure of n-th cohomology associated to the compactifica-
tion X \ A→ X in the spirit of Deligne and Fujiki (cf. [20, 12, 13])?

Proposition 2.4.3. — Let f : X → S be a flat morphism of complex spaces with locally pure
dimensional base S. Then the following are equivalent:

(i) f is locally equidimensional.
(ii) X is locally pure dimensional.

Proof. — Since the morphism f is flat, Theorem 3.3.11 tells that

(2.4.3.1) dimx(X) = dimx(X f (x)) + dim f (x)(S)

for all x ∈ X. By assumption, the complex space S is locally pure dimensional so that
the function given by the assignment

s 7−→ dims(S)

is locally constant on S. Thus by the continuity of f , the function given by the
assignment

x 7−→ dim f (x)(S)
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is a locally constant function on X. Therefore, by (2.4.3.1) we see that dimx(X f (x))

is a locally constant function of x on X if and only if dimx(X) is a locally constant
function of x on X. This implies that (i) holds if and only if (ii) holds.

Proposition 2.4.4. — Let f : X → Y be a morphism of complex spaces and p ∈ X. Then

dimp(X)− dimp(X f (p)) ≤ dim f (p)(S).

Proof. — See [18, 3.9, Proposition (∗)].

Definition 2.4.5. — Let f : X → S be a morphism of complex spaces and A a closed
analytic subset of X. Then we define:

(2.4.5.1) codim(A, f ) := inf{codim(A ∩ |Xs|, Xs) : s ∈ S},

where Xs denotes the fiber of f over s. We call codim(A, f ) the relative codimension of
A with respect to f . Note that the set in (2.4.5.1) over which the infimum is taken is
a subset of N ∪ {ω}. We agree on taking the infimum with respect to the canonical
(strict) partial order on N ∪ {ω} given by the ∈-relation.

Proposition 2.4.6. — Let f : X → S be a morphism of complex spaces, A a closed analytic
subset of X.

a) For all p ∈ A, when f is flat in p, we have

codimp(A ∩ |X f (p)|, X f (p)) ≤ codimp(A, X).

b) When f is flat, we have

codim(A, f ) ≤ codim(A, X).

Proof. — a). Let p ∈ A and assume that f is flat in p. Put t := f (p). Then we have

dimp(Xt) + dimt(S) = dimp(X)

by Theorem 3.3.11. By abuse of notation we denote A also the closed analytic subspace
of X induced on A. Write i : A→ X for the corresponding inclusion morphism and
set g := f ◦ i. Then Proposition 2.4.4, applied to g, implies that

dimp(A)− dimp(At) ≤ dimt(S).

On the whole, we obtain:

codimp(A ∩ |Xt|, Xt) = dimp(Xt)− dimp(At)

≤ (dimp(X)− dimt(S)) + (dimt(S)− dimp(A))

= codimp(A, X).

Note that implicitly we have used that the closed complex subspace of Xt induced on
A ∩ |Xt| is canonically isomorphic to At, which is by definition the closed complex
subspace of A induced on g−1({t}).
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b). Noticing that

codim(A, f ) = inf{codimp(A ∩ X f (p), X f (p)) : p ∈ A},

the desired inequality follows immediately from part a).

Proposition 2.4.7. — Let f : X → S be a proper, flat morphism of complex spaces, A a
closed analytic subset of X such that Sing( f ) ⊂ A, and t ∈ S. Assume that S is smooth, f
is locally equidimensional, and Xt is of Kähler type. Define g to be the composition of the
canonical morphism Y := X \ A → X and f . Then, for all ordered pairs of integers (p, q)
such that

(2.4.7.1) p + q + 2 ≤ c := codim(A, f ),

yet not (p, q + 2) = (0, c), the following assertions hold:

a) The module H p,q(g) is locally finite free on S in t.
b) The Hodge base change map

(H p,q(g))(t) −→H p,q(Yt)

is an isomorphism in Mod(C).

Proof. — Let (p, q) be an ordered pair of integers as above. When p < 0, assertions a)
and b) are trivially fulfilled. So, assume that both p ≥ 0. We claim that

(2.4.7.2) (q + 1) + 2 ≤ c = codim(A, f ).

Indeed, when p = 0, we have q + 2 ≤ c by (2.4.7.1), but also q + 2 6= c, so that
q + 2 < c. When p > 0, (2.4.7.2) follows directly from (2.4.7.1).

Using (2.4.7.2) in conjunction with Proposition 2.4.6 b), we obtain:

q + 2 ≤ (q + 1) + 2 ≤ codim(A, X).

Moreover, by Proposition 2.4.3, the complex space X is locally pure dimensional.
Thus by Proposition 2.1.14, we see that H p,q+1(g) and H p,q(g) are coherent modules
on S.

Next, we claim that, for all integers ν and µ such that ν + µ = p + q, the Hodge
module H ν,µ(Yt) is of finite type over C. When ν < 0, this is clear. When ν ≥ 0, we
have

µ + 2 ≤ ν + µ + 2 = p + q + 2 ≤ c ≤ codim(A ∩ |Xt|, Xt).

In addition, the complex space Xt is compact and locally pure dimensional. Thus
H ν,µ(Xt \ (A ∩ |Xt|)) is of finite type over C by Proposition 2.1.14, whence H ν,µ(Yt)

is of finite type over C given that

Yt ∼= Xt \ (A ∩ |Xt|)

as complex spaces.
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Theorem 2.4.1 implies that for all integers ν and µ such that ν + µ = p + q the
Frölicher spectral sequence of Yt degenerates in (ν, µ) at sheet 1. Therefore, we deduce
a) and b) from a) and b) of Proposition 2.3.7, respectively.

Question 2.4.8. — Let f , A, and t be as in Proposition 2.4.7. Define g and c accord-
ingly, and assume that A ∩ |Xt| 6= ∅ (which implies that c ∈ N). Do a) and b) of
Proposition 2.4.7 hold for (p, q) = (0, c− 2)?

Proposition 2.4.9. — Let X be a Cohen-Macaulay complex space, A a closed analytic subset
of X, F a locally finite free module on X.

a) For all integers q such that q + 1 ≤ codim(A, X), we have Hq
A(X, F) ∼= 0.

b) Denote j : X \ A→ X the inclusion morphism. When 2 ≤ codim(A, X), the canoni-
cal morphism

(2.4.9.1) F −→ R0 j∗(j∗(F))

of modules on X is an isomorphism. Moreover, for all integers q 6= 0 such that q + 2 ≤
codim(A, X), we have Rq j∗(j∗(F)) ∼= 0.

Proof. — a). When q is an integer such that q + 1 ≤ codim(A, X), then we have

q + 1 + dimx(A) ≤ dimx(X) = dim(OX,x) = profX,x(F)

for all x ∈ A. Thus Hq
A(X, F) ∼= 0 by [9, II, Theorem 3.6, (b) ⇒ (c)]; see also II,

Corollary 3.9 in loc. cit.
b). When 2 ≤ codim(A, X), we deduce that H0

A(X, F) ∼= 0 and H1
A(X, F) ∼= 0 from

part a). Besides, by Proposition 2.1.5, there exists an exact sequence

0 −→ H0
A(X, F) −→ F can−−→ R0 j∗(j∗(F)) −→ H1

A(X, F) −→ 0

of sheaves of modules on X. Thus the canonical morphism (2.4.9.1) is an isomorphism.
Let q be an integer 6= 0 such that q + 2 ≤ codim(A, X). When q < 0, we have

Rq j∗(j∗(F)) ∼= 0 in Mod(X) trivially. When q > 0, we have

Rq j∗(j∗(F)) ∼= Hq+1
A (X, F)

according to Proposition 2.1.5, yet Hq+1
A (X, F) ∼= 0 by means of a).

Proposition 2.4.10. — Let f : X → S be a morphism of complex spaces, A a closed analytic
subset of X and F a locally finite free module on X. Assume that X is Cohen-Macaulay.
Denote j : X \ A → X the inclusion morphism and set g := f ◦ j. Then, for all integers q
such that q + 2 ≤ codim(A, X), the canonical morphism

(2.4.10.1) Rq f∗(F) −→ Rqg∗(j∗(F))

of modules on S is an isomorphism.
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Proof. — Let q be an integer as above. When q < 0, our assertion is clear. So assume
that q ≥ 0. Denote E the Grothendieck spectral sequence associated to the triple

Mod(X \ A)
j∗

// Mod(X)
f∗

// Mod(S)

of categories and functors and the object j∗(F) of Mod(X \ A). Then, for all integers
ν and µ, we have

Eν,µ
2
∼= Rν f∗(Rµ j∗(j∗(F))).

In particular, Proposition 2.4.9 b) implies that Eν,µ
2
∼= 0 whenever µ 6= 0 and µ + 2 ≤

codim(A, X). Of course, we also have Eν,µ
2
∼= 0 whenever ν < 0. Therefore, E

degenerates in entries of total degree q at sheet 1, and the edge morphism

Rq f∗(R0 j∗(j∗(F))) −→ Rq( f∗ ◦ j∗)(j∗(F))

is an isomorphism in Mod(S). Now f∗ ◦ j∗ = g∗, and the edge morphism is the
canonical one, so that the canonical morphism (2.4.10.1) factors through the edge
morphism via the morphism

Rq f∗(F) −→ Rq f∗(R0 j∗(j∗(F)))

which is obtained from (2.4.9.1) by applying the functor Rq f∗. By Proposition 2.4.9 b),
the morphism (2.4.9.1) is an isomorphism in Mod(X) since

2 ≤ q + 2 ≤ codim(A, X).

Hence we conclude that (2.4.10.1) is an isomorphism in Mod(S).

Proposition 2.4.11. — Let f : X → S be a proper, flat morphism of complex spaces and
t ∈ S such that Xt is a reduced complex space. Then the module R0 f∗(OX) is locally finite
free on S in t and the base change map

C⊗OS,t
(R0 f∗(OX))t −→ H0(Xt, OXt)

is an isomorphism of complex vector spaces.

Proof. — See [9, III, Proposition 3.12].

Proposition 2.4.12. — Let f : X → S be a proper, flat morphism of complex spaces and A
a closed analytic subset of X such that Sing( f ) ⊂ A. Assume that S is smooth and the fibers
of f are Cohen-Macaulay and of Kähler type. Define g to be the composition of the canonical
morphism Y := X \ A→ X and f . Then for all integers p and q such that

(2.4.12.1) p + q + 2 ≤ c := codim(A, f )

the following assertions hold:
a) The module H p,q(g) is locally finite free on S.
b) For all s ∈ S, the Hodge base change map

(H p,q(g))(s) −→H p,q(Ys)

is an isomorphism in Mod(C).
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Proof. — Let p and q be integers satisfying (2.4.12.1). When p < 0 or q < 0, assertions
a) and b) are trivially fulfilled. So, assume that both p and q are ≥ 0. Then,

2 ≤ p + q + 2 ≤ codim(A, f ) ≤ codim(A, X) ≤ codim(Sing(X), X),

where we have used that
Sing(X) ⊂ Sing( f ) ⊂ A.

Moreover, given that f : X → S is flat and fiberwise Cohen-Macaulay with a smooth
base S, the complex space X is Cohen-Macaulay. Thus X is normal, whence locally
pure dimensional by Proposition 3.3.13. By Proposition 2.4.3, the morphism f is
locally equidimensional. Therefore, as long as (p, q + 2) 6= (0, c), assertions a) and b)
are implied by the corresponding assertions of Proposition 2.4.7.

Now assume that (p, q + 2) = (0, c) (and still q ≥ 0). We claim that Rq f∗(OX)

is locally finite free on S and compatible with base change. In case q = 0, this
follows from Proposition 2.4.11. So, be q > 0. Let s ∈ S be arbitrary. Then Xs is a
Cohen-Macaulay complex space and A ∩ |Xs| is a closed analytic subset of Xs such
that

q + 2 ≤ codim(A, f ) ≤ codim(A ∩ |Xs|, Xs).

Hence by Proposition 2.4.10 (applied to aXs : Xs → C), the canonical morphism

Hq(Xs, OXs) −→ Hq(Ys, OYs) = H 0,q(Ys)

is an isomorphism in Mod(C). By Theorem 2.4.1, we have:

H 0,q(Ys) ∼= H q,0(Ys).

By what we have already proven, the module H q,0(g) is locally finite free on S and
compatible with base change, so that, in particular, (abandoning our fixation of s) the
function

s 7−→ dimC(H
q,0(Ys))

is locally constant on S. As a consequence, the function

s 7−→ dimC(Hq(Xs, OXs))

is a locally constant function on S too, so that Grauert’s continuity theorem yields our
claim.

We allow q = 0 again. By Proposition 2.4.10, the canonical morphism

Rq f∗(OX) −→ Rqg∗(OY)

is an isomorphism in Mod(S). Therefore Rqg∗(OY) = H p,q(g) is locally finite free on
S. Furthermore, by the functoriality of base changes, the diagram

(Rq f∗(OX))(s)
∼ //

BC
��

(Rqg∗(OY))(s)

BC
��

Hq(Xs, OXs) ∼
// Hq(Ys, OYs)
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commutes in the category of complex vector spaces for all s ∈ S. As the left base
change in the diagram is an isomorphism, the right one is as well.

Theorem 2.4.13. — Let f : X → S be a proper, flat morphism of complex spaces and A a
closed analytic subset of X such that Sing( f ) ⊂ A. Assume that S is smooth and the fibers
of f are Cohen-Macaulay as well as of Kähler type. Define g to be the composition of the
inclusion Y := X \ A→ X and f and denote E the Frölicher spectral sequence of g.

a) E degenerates from behind in entries

I := {(p, q) ∈ Z× Z : p + q + 2 ≤ codim(A, f )}
at sheet 1 in Mod(S).

b) E degenerates in entries I at sheet 1 in Mod(S) if and only if either A = ∅ or A 6= ∅
and the canonical morphism

(2.4.13.1) H n(g) −→H 0,n(g)

of modules on S, where we set n := codim(A, f )− 2, is an epimorphism.

Proof. — a). Let (p, q) ∈ I and put n := p + q. When n < 0, we know that Ep,q
1
∼= 0

in Mod(S) so that E certainly degenerates in (p, q) at sheet 1. So, we assume n ≥ 0.
Define K to be the kernel of the morphism of modules on S,

Rng∗(i≥pΩ q
g) : Rng∗(σ≥pΩ q

g) −→ Rng∗(Ω
q

g).

Let t ∈ S be arbitrary. Adopt the notation of Setup 2.2.1 for infinitesimal neighbor-
hoods (for g : Y → S in place of f : X → S). Fix a natural number m and write Km for
the kernel of the morphism

Rngm∗(i
≥pΩ q

gm) : Rngm∗(σ
≥pΩ q

gm) −→ Rngm∗(Ω
q

gm)

of modules on Sm. Then by the functoriality of base change maps the diagram

b∗m(Rng∗(σ≥pΩ q
g)) //

BC
��

b∗m(Rng∗(Ω
q

g))

BC
��

Rngm∗(σ
≥pΩ q

gm)
// Rngm∗(Ω

q
gm)

commutes in Mod(Sm). Thus, there exists one, and only one, αm rendering commuta-
tive in Mod(Sm) the following diagram:

b∗m(K)
b∗m(⊂)

//

αm

��

b∗m(Rng∗(σ≥pΩ q
g))

BC
��

Km ⊂
// Rngm∗(σ

≥pΩ q
gm)

By Theorem 2.4.1, the Frölicher spectral sequence of Y0 = Yt degenerates in entries
of total degree n at sheet 1, so that the Frölicher spectral sequence of Ym degenerates
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in entries of total degree n at sheet 1 by means of Theorem 2.2.9 am). In particular,
the Frölicher spectral sequence of Ym degenerates from behind in (p, q) at sheet 1.
Therefore, by Proposition 1.7.9 a), there exists ψm such that the diagram

Rngm∗(σ
≥pΩ q

gm)
//

((PPPPPPPPPPPP
Rngm∗(σ

=pΩ q
gm)

FpH n(gm)

ψm

66

commutes in Mod(Sm). Thus the composition of the two arrows in the bottom row of
the following diagram is zero:

(2.4.13.2) b∗m(K) //

αm

��

b∗m(Rng∗(σ≥pΩ q
g)) //

BC
��

b∗m(Rng∗(σ=pΩ q
g))

BC
��

Km // Rngm∗(σ
≥pΩ q

gm)
// Rngm∗(σ

=pΩ q
gm)

By Proposition 2.3.7 b), the Hodge base change map which is the rightmost vertical
arrow in the diagram in (2.4.13.2) is an isomorphism. Moreover, by the functoriality
of base change maps and the definition of αm, the diagram in (2.4.13.2) commutes.
In consequence, we see that the composition of the two arrows in the top row of
(2.4.13.2) equals zero. Since m was an arbitrary natural naumber, we deduce that the
composition of stalk maps

Kt −→ (Rng∗(σ≥pΩ q
g))t −→ (Rng∗(σ=pΩ q

g))t

equals zero. As t was an arbitrary element of S, we deduce further that the composi-
tion

K −→ Rng∗(σ≥pΩ q
g) −→ Rng∗(σ=pΩ q

g)

of morphisms of sheaves of modules on S equals zero. Thus there exists ψ such that
the diagram

Rng∗(σ≥pΩ q
g) //

''OOOOOOOOOOO
Rng∗(σ=pΩ q

g)

FpH n(g)
ψ

77

commutes in Mod(S) and, in turn, Proposition 1.7.9 a) tells that the Frölicher spectral
sequence of g degenerates from behind in (p, q) at sheet 1.

b). Not that by a), the spectral sequence E certainly degenerates in entries

{(p, q) ∈ Z× Z : p + q + 3 ≤ codim(A, f )}

at sheet 1. Therefore, our assertions holds in case A = ∅. In case A 6= ∅, our assertion
follows readily from Proposition 1.7.9 b).
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Proposition 2.4.14. — Let f : X → S and A be as in Theorem 2.4.13. Define g : Y → S
accordingly. Assume that A 6= ∅ and put n := codim(A, f )− 2. Moreover, assume that,
for all s ∈ S, the canonical mapping

(2.4.14.1) Hn(Xs, C) −→H 0,n(Xs)

is a surjection. Then the canonical morphism (2.4.13.1) is an epimorphism in Mod(S).

Proof. — Let s ∈ S be arbitrary. As f is proper, the base change map

(Rn f∗(CX))s −→ Hn(Xs, C)

is a bijection. By assumption, the canonical map (2.4.14.1) is a surjection. As Xs is
Cohen-Macaulay and As := A ∩ |Xs| is a closed analytic subset of Xs such that

n + 2 = codim(A, f ) ≤ codim(As, Xs),

the morphism
H 0,n(Xs) −→H 0,n(Xs \ As)

induced by the inclusion Xs \ As → Xs of complex spaces is a bijection. Now the
morphism Ys → Xs of complex spaces which is induced on fibers over s by the
inclusion Y → X is isomorphic to Xs \ As → Xs in the overcategory An/Xs , hence by
the functoriality of H 0,n, the morphism

H 0,n(Xs) −→H 0,n(Ys)

induced by Ys → Xs is a bijection. Combining these results, one infers that the
composition of functions

(2.4.14.2) (Rn f∗(CX))s −→ Hn(Xs, C) −→H 0,n(Xs) −→H 0,n(Ys)

is a surjection.
The diagram

(2.4.14.3) (Rn f∗(CX))s //

��

(Rng∗(CY))s //

��

(H n(g))(s)

��

xx

Hn(Xs, C) //

��

Hn(Ys, C) //

��

H n(Ys)

wwnnnnnnnnnnnn

H 0,n(Xs) // H 0,n(Ys) (H 0,n(g))(s)oo

commutes in Mod(C) by the functoriality of the various base changes appearing
in it. By the commutativity of the diagram in (2.4.14.3) and the surjectivity of the
composition (2.4.14.2), we deduce that the composition

(H n(g))(s) −→ (H 0,n(g))(s) −→H 0,n(Ys)

is a surjection. As the base change map

(H 0,n(g))(s) −→H 0,n(Ys)



124 CHAPTER 2. DEGENERATION OF THE FRÖLICHER SPECTRAL SEQUENCE

is a bijection by Proposition 2.4.12 b), we see that

(H n(g))(s) −→ (H 0,n(g))(s)

is a surjection. By Proposition 2.4.12 a), the module (H 0,n(g))s is finite free over OS,s,
whence Nakayama’s lemma tells that

(H n(g))s −→ (H 0,n(g))s

is a surjection. Taking into account that while conducting this argument, s was an
arbitrary point of S, we conclude that the canonical morphism (2.4.13.1) of sheaves of
modules on S is an epimorphism.

Corollary 2.4.15. — Let f : X → S be a proper, flat morphism of complex spaces such that
S is smooth and the fibers of f have rational singularities, are of Kähler type, and have singular
loci of codimension ≥ 4. Define g : Y → S to be the submersive share of f (cf. Notation
2.1.13). Set

I := {(ν, µ) ∈ Z× Z : ν + µ ≤ 2}.
a) For all (p, q) ∈ I, the module H p,q(g) is locally finite free on S.
b) For all (p, q) ∈ I and all s ∈ S, the Hodge base change map

(2.4.15.1) (H p,q(g))(s) −→H p,q(Ys)

is an isomorphism in Mod(C).
c) The Frölicher spectral sequence of g degenerates in entries I at sheet 1 in Mod(S).

Proof. — Set A := Sing( f ). Then A is a closed analytic subset of X which contains
Sing( f ). Moreover, according to Notation 2.1.13, we have Y = X \ A and g equals the
composition of the canonical morphism Y → X and f . Since any complex space which
has rational singularities is Cohen-Macaulay, the fibers of f are Cohen-Macaulay. Let
(p, q) ∈ I. Then

p + q + 2 ≤ 4 ≤ codim(A, f ).
Thus by Proposition 2.4.12, the Hodge module H p,q(g) is locally finite free on S and,
for all s ∈ S, the Hodge base change map (2.4.15.1) is an isomorphism in Mod(C). As
(p, q) was an arbitrary element of I, this proves a) and b).

For proving c), we distinguish two cases: Firstly, suppose that codim(A, f ) ≥ 5.
Then clearly

I ⊂ {(p, q) ∈ Z× Z : p + q + 3 ≤ codim(A, f )}.
So, c) is implied by a) of Theorem 2.4.13. Secondly, suppose that codim(A, f ) < 5.
Then as codim(A, f ) ≥ 4, we have codim(A, f ) = 4. In particular, A 6= ∅. For all
s ∈ S the complex space Xs has rational singularities, whence the canonical mapping

H2(Xs, C) −→H 0,2(Xs)

is a surjection. Therefore, c) is implied by Proposition 2.4.14 in conjunction with b) of
Theorem 2.4.13.



CHAPTER 3

SYMPLECTIC COMPLEX SPACES

In this chapter we study symplectic complex spaces. The main results are Theorem
3.4.4 (Local Torelli) and Theorem 3.5.11 (Fujiki Relation).

In § 3.1, we define what we mean by a symplectic complex space; moreover, we
establish certain fundamental properties of such spaces. In § 3.2, we generalize the
notion of the Beauville-Bogomolov form, which has proven a pivotal tool in the
study of irreducible symplectic manifolds, to the context of compact, connected,
symplectic complex spaces X whose Ω2

X(Xreg) is 1-dimensional over the field of
complex numbers. § 3.3 is consecrated to the (local) deformation theory of compact,
Kähler, symplectic complex spaces whose singular loci have codimension ≥ 4. In
§ 3.4, we derive our version of a local Torelli theorem for symplectic complex spaces as
well as several corollaries thereof. Eventually, in § 3.5, we prove that compact, Kähler,
symplectic complex spaces X with 1-dimensional Ω2

X(Xreg) and singular locus of
codimension ≥ 4 satisfy the Fujiki relation.

3.1. Symplectic structures on complex spaces

We intend to define a notion of symplecticity for complex spaces. Our definition
(cf. Definition 3.1.12 below) is inspired by Y. Namikawa’s notions of a “projective
symplectic variety” and a “symplectic variety” in [60] and [61], respectively (note that
the two definitions differ slightly), as well as by A. Beauville’s notion of “symplectic
singularities”, cf. [3, Definition 1.1]. These concepts rely themselves on the concept of
symplectic structures on complex manifolds. For the origins of symplectic structures
on complex manifolds, we refer our readers to the works [6] and [7] of F. Bogomolov,
where the term “Hamiltonian” is used instead of “symplectic”, as well as to Beauville’s
[2, “Définition” in § 4].

In Definition 3.1.8, we coin the new term of a “generically symplectic structure” on
a complex manifold—not with the intention of specifically studying the geometry
of spaces possessing these structures, but merely as a tool to define and study the
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Beauville-Bogomolov form for (possibly nonsmooth) complex spaces in § 3.2. Further-
more, we introduce notions of “symplectic classes”, which seem new in the literature
too. Apart from giving definitions, we state several easy or well-known consequences
of the fact that a complex space is symplectic. Proposition 3.1.17 (mildness of sin-
gularities) and Proposition 3.1.21 (purity of the mixed Hodge structure H2(X)) are
of particular importance and fundamental for the theory developed in subsequent
sections.

Let us point out that our view on symplectic structures is purely algebraic in the
sense that, to begin with, our candidates for symplectic structures are elements of
the sheaf of Kähler 2-differentials on a complex space. That way, our ideas and
terminology may be translated effortlessly into the framework of, say, (relative)
schemes, even though we refrain from realizing this translation here. We start by
defining nondegeneracy for a global 2-differential on a complex manifold. The
definition might appear a little unusual, yet we like it for its algebraic nature.

Definition 3.1.1 (Nondegeneracy). — Let X be a complex manifold and σ ∈ Ω2
X(X).

Define φ to be the composition of the following morphisms in Mod(X):

(3.1.1.1) ΘX −→ ΘX ⊗OX
id⊗σ−−−→ ΘX ⊗Ω2

X −→ Ω1
X .

Here, the first and last arrows stand for the inverse of the right tensor unit for ΘX on
X and the contraction morphism γ2

X(Ω
1
X), cf. Notation 1.3.10, respectively, and

σ : OX −→ Ω2
X

denotes, by abuse of notation, the unique morphism of modules on X sending the 1
of OX(X) to the actual σ ∈ Ω2

X(X).

a) Let p ∈ X. Then σ is called nondegenerate on X at p when φ is an isomorphism
of modules on X at p, i.e., when there exists an open neighborhood U of p in X such
that i∗(φ) is an isomorphism in Mod(X|U), where i : X|U → X denotes the evident
inclusion morphism.

b) σ is called nondegenerate on X when σ is nondegenerate on X at p for all p ∈ X.
c) σ is called generically nondegenerate on X when there exists a thin subset A of X

such that σ is nondegenerate on X at p for all p ∈ X \ A.

Observe that allowing X to be an arbitrary complex space in Definition 3.1.1 would
not cause any problems. However, as we do not see whether the thereby obtained
more general concept possesses intriguing meaning—especially at the singular points
of X—, we desisted from admitting the further generality.

Remarks 3.1.2. — Let X and σ be as in Definition 3.1.1. Define φ accordingly.

a) By general sheaf theory, we see that σ is nondegenerate on X if and only if

φ : ΘX −→ Ω1
X

is an isomorphism in Mod(X).
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b) Let p ∈ X. Then σ is nondegenerate on X at p if and only if there exists an
open neighbohood U of p in X such that the image of σ under the canonical mapping
Ω2

X(X)→ Ω2
X|U(U) is nondegenerate on X|U.

c) Define
D := {p ∈ X : σ is not nondegenerate on X at p}

to be the degeneracy locus of σ on X. Then D is a closed analytic subset of X. Moreover,
σ is generically nondegenerate on X if and only if D is thin in X; σ is nondegenerate
on X if and only if D = ∅.

We briefly digress in order to establish, for later use, a typical characterization of
the nondegeneracy of a Kähler 2-differential σ on a complex manifold X employing
the wedge powers of σ, cf. Proposition 3.1.7. The quick reader may well skip this
discussion and head on to Definition 3.1.8 immediately.

Proposition 3.1.3. — Let X be a complex manifold, σ ∈ Ω2
X(X), and p ∈ X. Let n be a

natural number and z : U → Cn an n-dimensional (holomorphic) chart on X at p. Then the
following are equivalent:

(i) σ is nondegenerate on X at p;
(ii) φp : ΘX,p → Ω1

X,p is an isomorphism in Mod(OX,p), where φ denotes the composi-
tion (3.1.1.1) in Mod(X) (just as in Definition 3.1.1);

(iii) when A is the unique alternating n× n-matrix with values in the ring OX(U) such
that

σ|U = ∑
i<j

Aij · dzi ∧ dzj,

then A(p) ∈ GLn(C), where A(p) denotes the composition of A with the evaluation of
sections in OX over U at p.

Proof. — (i) implies (ii) since for any open neighborhood V of p in X the stalk-at-
p functor Mod(X) → Mod(OX,p) on X factors over i∗ : Mod(X) → Mod(X|V),
where i : X|V → X denotes the obvious inclusion morphism. That (ii) implies (i) is
due to the fact that ΘX and Ω1

X both are coherent modules on X. Now let A be a
matrix as in (iii). Then, essentially by the definition of the contraction morphism, the
matrix associated with the morphism of OX(U)-modules φ(U) : ΘX(U) → Ω1

X(U)

relative to the bases (∂z0 , . . . , ∂zn−1) and (dz0, . . . , dzn−1) is the transpose A> of A.
Thus the matrix associated with the morphism of OX,p-modules φp : ΘX,p → Ω1

X,p

relative to the bases ((∂z0)p, . . . , (∂zn−1)p) and ((dz0)p, . . . , (dzn−1)p) is (A>)p, by
which we mean the matrix of germs of A>. Hence we have (ii) if and only if (A>)p ∈
GLn(OX,p). Yet (A>)p ∈ GLn(OX,p) if and only if (A>)(p) ∈ GLn(C) if and only if
A(p) ∈ GLn(C), the latter equivalence being true for (A>)(p) = (A(p))>.

Corollary 3.1.4. — Let X be a complex manifold, σ ∈ Ω2
X(X), and p ∈ X such that σ is

nondegenerate on X at p. Then dimp(X) is even.
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Proof. — Set n := dimp(X). Then there exists an n-dimensional holomorphic chart
z : U → Cn on X at p. There exists an alternating n × n-matrix A with values in
the ring OX(U) such that σ|U = ∑i<j Aij · dzi ∧ dzj. By Proposition 3.1.3, as σ is
nondegenerate on X at p, we have A(p) ∈ GLn(C). Yet the existence of an invertible,
alternating complex n× n-matrix implies that n is even (see, e.g., [48, XV, Theorem
8.1]).

Remark 3.1.5 (Pfaffians). — Let R be a commutative ring. We define the R-Pfaffian
PfR as a function on the set of alternating (quadratic) matrices of arbitrary size over
R; the function PfR is to take values in R. Concretely, when A is an alternating n× n-
matrix over R, where n is some natural number, we set PfR(A) := 0 in case n is odd;
in case n is even, we set

PfR(A) := ∑
π∈Π

sgn(π)Aπ(0),π(1)Aπ(2),π(3) · . . . · Aπ(n−2),π(n−1),

where Π denotes the set of all permutations π of n such that we have

π(0) < π(1), π(2) < π(3), . . . , π(n− 2) < π(n− 1)

and
π(0) < π(2) < · · · < π(n− 2).

The R-Pfaffian enjoys property that, for any alternating n× n-matrix over R, we have
(cf. e.g., [59]):

(3.1.5.1) detR(A) = (PfR(A))2.

Proposition 3.1.6. — Let R be a commutative ring, r ∈ N, M an R-module, v an ordered
R-basis of length 2r for M, and A an alternating 2r × 2r-matrix with values in R. Set
σ := ∑i<j Aij · vi ∧ vj.

a) We have σ∧r = r! PfR(A) · v0 ∧ · · · ∧ v2r−1.
b) Assume that R is a field of characteristic zero. Then the following are equivalent:

(i) A ∈ GL2r(R);
(ii) σ∧r 6= 0 in ∧2r

R (M).

Proof. — We omit the calculation leading to assertion a). As to b): When A ∈ GL2r(R),
we have detR(A) 6= 0, hence PfR(A) 6= 0 by (3.1.5.1). Thus as char(R) = 0, we have
r! PfR(A) 6= 0, so that (ii) follows from a). Conversely, when (ii) holds, a) implies that
PfR(A) 6= 0. Thus detR(A) 6= 0 by (3.1.5.1), which implies (i).

Proposition 3.1.7. — Let X be a complex manifold, σ ∈ Ω2
X(X), p ∈ X, and r ∈ N such

that dimp(X) = 2r. Then the following are equivalent:
(i) σ is nondegenerate on X at p;
(ii) (σ∧r)(p) 6= 0 in the complex vector space (Ω2r

X )(p);
(iii) (σ′∧r)(p) 6= 0 in ∧2r

C (T∗C,p(X)), where σ′ denotes the image of σ under the canonical
mapping Ω2

X(X)→ A2,0(X) and the wedge power is calculated in A∗(X, C).
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Proof. — There exists a 2r-dimensional holomorphic chart z on X at p. Set U :=
dom(z) and let A be the unique alternating 2r × 2r-matrix over OX(U) such that
σ|U = ∑i<j Aij · dzi ∧ dzj. Then σ′(p) = ∑i<j Aij(p) · dzi(p) ∧ dzj(p). Thus by
Proposition 3.1.6, we have (σ′(p))∧r 6= 0 in ∧2r

C (T∗C,p(X)) if and only if A(p) ∈
GL2r(C). As (σ′∧r)(p) = (σ′(p))∧r, Proposition 3.1.3 implies that (i) and (iii) are
equivalent. Now let λ ∈ OX(U) such that σ∧r|U = λ · dz0 ∧ · · · ∧ dz2r−1. Then (ii)
holds if and only if λ(p) 6= 0. Yet σ′∧r|U = [λ] · dz0 ∧ · · · ∧ dz2r−1. Therefore, (iii)
holds if and only if [λ](p) 6= 0. Since [λ](p) = λ(p) per definitionem, (ii) and (iii) are
equivalent and we are finished.

Definition 3.1.8 (Symplecticity I). — Let X be a complex manifold.

a) σ is called a (generically) symplectic structure on X when σ ∈ Ω2
X(X) such that σ

is (generically) nondegenerate on X and d2
X : Ω2

X → Ω3
X sends σ to the zero of Ω3

X(X).
b) X is called (generically) symplectic when there exists σ such that σ is a (generically)

symplectic structure on X.
c) w is called (generically) symplectic class on X when there exists a (generically)

symplectic structure σ on X such that w is the class of σ in H2(X, C); note that it makes
sense to speak of “the class of σ in H2(X, C)” given that σ is a closed 2-differential on
X by a).

Remark 3.1.9. — For us, an interesting feature of the class of generically symplectic
complex manifolds—as opposed to the (strictly smaller) class of symplectic complex
manifolds—is presented by the fact that the former is stable under modifications,
precisely: When W and X are complex manifolds, f : W → X is a modification, and
σ is a generically symplectic structure on X, then the image of σ under the pullback
of Kähler differentials Ω2

X(X) → Ω2
W(W) which is induced by f is a generically

symplectic structure on W. The proof is straightforward. In consequence, when
f : W → X is a modification such that W is smooth and X is a generically symplectic
complex manifold, then W is a generically symplectic complex manifold too.

In order to define what a symplectic structure on a complex space is (cf. Definition
3.1.12 below) we need to talk about extensions of Kähler 2-differentials defined over
the regular locus of some complex space with respect to resolutions of singularities.
As we will encounter the phenomenon of extension of differentials more often than
once, let us introduce the following convention of speech right away.

Definition 3.1.10. — Let f : W → X be a resolution of singularities, p ∈ N, and
β ∈ Ωp

X(Xreg). Then α is called an extension as p-differential of β with respect to f
when α ∈ Ωp

W(W) such that the restriction of α to f−1(Xreg) within the presheaf Ωp
W

equals the image of β under the pullback of p-differentials mapping Ωp
X(Xreg) →

Ωp
W( f−1(Xreg)) induced by f .
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As the case where p = 2 is of primary—maybe even exclusive—interest for us, we
agree on using the word “extension” as a synonym for “extension as 2-differential” in
the above construction.

Proposition 3.1.11. — Let X be a complex space, p ∈ N, and β ∈ Ωp
X(Xreg).

a) Let f : W → X be a resolution of singularities and α and α′ extensions as p-differentials
of β with respect to f . Then α = α′.

b) When X is a reduced complex space, the following are equivalent:
(i) there exists a resolution of singularities f0 : W0 → X and α0 such that α0 is an

extension as p-differential of β with respect to f0;
(ii) for all resolutions of singularities f : W → X there exists α such that α is an

extension as p-differential of β with respect to f .

Proof. — a). Since f is a resolution of singularities, W \ f−1(Xreg) is a closed thin
subset of W, and W is a complex manifold. Hence the restriction mapping Ωp

W(W)→
Ωp

W( f−1(Xreg)) is one-to-one. As both α and α′ restrict to the pullback of β along f ,
cf. Definition 3.1.10, we obtain α = α′.

b). Assume (i). Let f : W → X be a resolution of singularities. Then there exists
a complex manifold V as well as proper modifications g0 : V → W0 and g : V → W
such that f0 ◦ g0 = f ◦ g =: h. Since g is a proper modification between complex
manifolds, the pullback function g∗ : Ωp

W(W)→ Ωp
V(V) is a bijection. Define α to be

the inverse image under g∗ of the image of α0 under the function Ωp
W0

(W0)→ Ωp
V(V).

Then it is easily verified that α restricts to the pullback of β under f within the
presheaf Ωp

W . In fact, this is true on V so that it suffices to note that the function
Ωp

W( f−1(Xreg)) → Ωp
V(h

−1(Xreg)) is injective. Therefore α is an extension as p-
differential of β with respect to f , and we have proven (ii). Conversely, when one
assumes (ii), (i) follows instantly; one simply has note that there exists a resolution of
singularities f0 : W0 → X since X is a reduced complex space.

Definition 3.1.12 (Symplecticity II). — Let X be a complex space.

a) σ is called a symplectic structure on X when σ ∈ Ω2
X(Xreg) such that:

(i) The image of σ under the pullback function Ω2
X(Xreg) → Ω2

Xreg
(Xreg) in-

duced by the canonical morphism of complex spaces Xreg → X is a symplectic
structure on Xreg in the sense of Definition 3.1.8.

(ii) For all resolutions of singularities f : W → X, there exists ρ such that ρ is an
extension as 2-differential of σ with respect to f .
b) X is called symplectic when X is normal and there exists σ such that σ is a

symplectic structure on X.

Proposition 3.1.13. — Let X be a symplectic complex space and f : W → X a resolution of
singularities. Then:
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a) When σ is a symplectic structure on X and ρ an extension as 2-differential of σ with
respect to f , then ρ is a generically symplectic structure on W. In particular, d2

W : Ω2
W → Ω3

W
sends ρ to the zero of Ω3

W(W).
b) W is a generically symplectic complex manifold.

Proof. — a). Let σ and ρ be as proposed. Then ρ ∈ Ω2
W(W) by Definition 3.1.10. As

f is a resolution of singularities, there exist closed thin subsets A and B of W and
X, respectively, such that f induces an isomorphism W \ A → X \ B. As W \ A is a
complex manifold, we have X \ B ⊂ Xreg. Hence the pullback of σ along the inclusion
morphism X \ B→ X is nondegenerate on X \ B, and therefore, for all p ∈W \ A, ρ is
nondegenerate on W at p. By Definition 3.1.1 c), ρ generically nondegenerate on W. As
ρ is an extension as 2-differential of σ with respect to f , the restriction of ρ to f−1(Xreg)

within the presheaf Ω2
W equals the pullback of σ along f . As σ is a symplectic structure

on X, we have (d2
X)Xreg(σ) = 0 in Ω3

X(Xreg). Thus (d2
W) f−1(Xreg)

(ρ| f−1(Xreg)) = 0 in

Ω3
W( f−1(Xreg)). As W \ f−1(Xreg) ⊂ A, we see that W \ f−1(Xreg) is thin in W. In

consequence, the restriction mapping Ω3
W(W)→ Ω3

W( f−1(Xreg)) is certainly one-to-
one. So, (d2

W)W(ρ) = 0 in Ω3
W(W). By Definition 3.1.8 a), ρ is a generically symplectic

structure on W.
b). As X is a symplectic complex space, there exists a symplectic structure σ on

X. By (ii) of Definition 3.1.12 a), there exists an extension as 2-differential ρ of σ with
respect to f . Now by a), ρ is a generically symplectic structure on W. Hence W is a
generically symplectic complex manifold by Definition 3.1.8 b).

Proposition 3.1.14. — Let X be a symplectic complex space.

a) Let p ∈ X. Then dimp(X) is an even natural number.
b) When X is nonempty and finite dimensional, then dim(X) is an even natural number.

Proof. — a). As X is symplectic, X is normal, whence locally pure dimensional by
Proposition 3.3.13. So, there exists a neighbohood U of p in X such that, for all x ∈ U,
we have dimx(X) = dimp(X). As X is reduced, there exists q ∈ U ∩ Xreg. Since
X is symplectic, there exists a symplectic structure σ on X. By Definition 3.1.12 a),
the pullback of σ to Xreg is a symplectic structure on Xreg in the sense of Definition
3.1.8 a). Specifically, by Corollary 3.1.4, dimq(Xreg) is an even natural number. Since
dimq(Xreg) = dimq(X) = dimp(X), we obtain our claim.

b). When X is nonempty and of finite dimension, there exists p ∈ X such that
dimp(X) = dim(X). Hence dim(X) is an even natural number by a).

We would like to get a somewhat better understanding of conditions (i) and (ii)
of Definition 3.1.12 a) for an element σ of Ω2

X(Xreg) to be a symplectic structure on a
complex space X. Concerning condition (ii), we recall below a result of H. Flenner on
the existence of extensions of p-differentials with respect to resolutions of singularities
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which in turn yields a criterion for condition (ii) of Definition 3.1.12 a) to come for
free.

Theorem 3.1.15. — Let X be a normal complex space, f : W → X a resolution of singulari-
ties, p ∈ N such that p + 1 < codim(Sing(X), X), and β ∈ Ωp

X(Xreg). Then there exists
α such that α is an extension as p-differential of β with respect to f .

Proof. — This follows from [19, Theorem] by working locally on X.

Corollary 3.1.16. — Let X be a normal complex space and σ ∈ Ω2
X(Xreg). Assume that

codim(Sing(X), X) ≥ 4. Then condition (ii) of Definition 3.1.12 a) holds.

Proof. — The assertion is an immediate consequence of Theorem 3.1.15 taking into
account that 2 + 1 < 4 ≤ codim(Sing(X), X).

The upshot of Corollary 3.1.16 is that for normal complex spaces X with singular
loci of codimension ≥ 4, symplectic structures on X are nothing but symplectic
structures (in the sense of Definition 3.1.8) on the regular locus Xreg of X via the
canonical mapping Ω2

X(Xreg)→ Ω2
Xreg

(Xreg), which is of course a bijection.
Quite generally, when the singularities of a complex space are “mild”, one might

expect p-differentials to extend with respect to resolutions of singularities. In Theorem
3.1.15 the mildness of the singularities of the complex space X comes (next to the
normality of X) from the codimension of the singular locus. We would like to hint at
another form of mildness of singularities which plays a role in the theory of symplectic
spaces due to works of A. Beauville and Y. Namikawa.

Proposition 3.1.17. — Let X be a symplectic complex space. Then X is Gorenstein and has
rational singularities.

Proof. — This follows from [3, Proposition 1.3].

Inspired by Proposition 3.1.17 one might ask the following:

Question 3.1.18. — Let X be a Gorenstein complex space which has rational singu-
larities. Is it true then that, for all σ ∈ Ω2

X(Xreg) (resp. all σ ∈ Ω2
X(Xreg) such that

(i) of Definition 3.1.12 a) holds) and all resolutions of singularities f : W → X, there
exists an extension of σ with respect to f ?

If the answer to (any of the two versions of) Question 3.1.18 were positive, a
complex space X would be symplectic if and only if it was Gorenstein, had ratio-
nal singularities, and Xreg was a symplectic complex manifold. As it turns out, Y.
Namikawa was able to give a partial (positive) answer to Question 3.1.18, namely:

Theorem 3.1.19. — Let X be a projective, Gorenstein complex space having rational singu-
larities, f : W → X a resolution of singularities, and σ ∈ Ω2

X(Xreg). Then there exists an
extension as 2-differential of σ with respect to f .
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Proof. — This is a consequence of [61, Theorem 4].

We move on to the investigation of condition (i) of Definition 3.1.12 a). Looking at
Definition 3.1.8 a), we see that symplecticity is made up of two components, namely
nondegeneracy and closedness. We observe that for spaces of Fujiki class C for which
extension of 2-differentials holds the closedness part is automatic.

Proposition 3.1.20. — Let X be a complex space of Fujiki class C and σ ∈ Ω2
X(Xreg).

Assume that condition (ii) of Definition 3.1.12 a) holds (for X and σ). Then σ is sent to the
zero of Ω3

X(Xreg) by the differential d2
X : Ω2

X → Ω3
X .

Proof. — As X is of Fujiki class C , there exists a proper modification f : W → X
such that W is a compact complex manifold of Kähler type. As condition (ii) of
Definition 3.1.12 a) holds, there exists ρ ∈ Ω2

W(W) restricting to the pullback σ′ of
σ within the presheaf Ω2

W . As W is a compact complex manifold of Kähler type,
(d2

W)W(ρ) = 0 in Ω3
W(W). Hence, (d2

W) f−1(Xreg)
(σ′) = 0 in Ω3

W( f−1(Xreg)). As
the pulling back of differential forms commutes with the respective algebraic de
Rham differentials, we see that (d2

X)Xreg(σ) is mapped to 0 by the pullback function
Ω3

X(Xreg) → Ω3
W( f−1(Xreg)). As the latter function is one-to-one, we infer that

(d2
X)Xreg(σ) = 0 in Ω3

X(Xreg).

Proposition 3.1.21. — Let X be a symplectic complex space of Fujiki class C . Then the
mixed Hodge structure H2(X) is pure of weight 2. In particular, we have

(3.1.21.1) H2(X, C) = H0,2(X)⊕H1,1(X)⊕H2,0(X),

where Hp,q(X) := FpH2(X) ∩ FqH2(X).

Proof. — By Proposition 3.1.17, X has rational singularities. Therefore, the mixed
Hodge structure H2(X) is pure of weight 2 by Corollary B.2.5. (3.1.21.1) is a formal
consequence of the purity of the mixed Hodge structure H2(X) given that H2(X)C =

H2(X, C) (by definition of H2(X)).

When X is a (generically) symplectic complex manifold, every (generically) sym-
plectic structure on X gives naturally rise to an element of H2(X, C) (via de Rham
cohomology). Such an element is what we have decided on calling a “(generically)
symplectic class”, cf. Definition 3.1.8 c). Hence, when X is a symplectic complex space,
every symplectic structure σ on X gives naturally rise to an element of H2(Xreg, C)

since σ is mapped to a symplectic structure on the complex manifold Xreg by the
evident function Ω2

X(Xreg)→ Ω2
Xreg

(Xreg). However, this is somewhat unsatisfactory
as, for reasons that will become clear in § 3.2, we would like σ to already correspond
to an element in H2(X, C) rather than only to an element in H2(Xreg, C)—in the sense
that any element of H2(X, C) automatically procures an element of H2(Xreg, C) via
the function

i∗ : H2(X, C) −→ H2(Xreg, C)
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which is induced by the inclusion i : Xreg → X. A priori it is not clear whether there
exists (a unique) w such that w is sent to the class of σ in H2(Xreg, C) by i∗. This
observation motivates:

Definition 3.1.22 (Symplectic classes). — Let X be a symplectic complex space.

a) Let σ be a symplectic structure on X. w is called symplectic class of σ on X when,
for all resolutions of singularities f : W → X, the function

f ∗ : H2(X, C) −→ H2(W, C)

induced by f maps w to the class of the extension of σ with respect to f . Observe
that it makes sense to speak about “the class of the extension of σ” here since by
Proposition 3.1.13 we have (d2

W)W(ρ) = 0 in Ω3
W(W) when ρ denotes the extension

of σ with respect to f .
b) w is called symplectic class on X when there exists a symplectic structure σ on X

such that w is the symplectic class of σ on X.

Proposition 3.1.23. — Let X be a symplectic complex space and σ a symplectic structure
on X. Then, for all w, the following are equivalent:

(i) w is a symplectic class of σ on X;
(ii) there exists a resolution of singularities f : W → X such that f ∗(w) is the class of an

extension of σ with respect to f .

Proof. — Since the complex space X is reduced, there exists a resolution of singulari-
ties f : W → X. Hence (i) implies (ii). Now suppose that (ii) holds. Let f ′ : W ′ → X
be a resolution of singularities. Then there exist a complex space V as well as two
morphisms of complex spaces g : V → W and g′ : V → W ′ such that g and g′ both
are resolutions of singularities and f ◦ g = f ′ ◦ g′ =: h. By assumption there exists
a closed global 2-differential ρ on W such that f ∗(w) is the class of ρ and ρ is an
extension of σ with respect to f . Hence the image π of ρ under the canonical function
Ω2

W(W) → Ω2
V(V) is an extension of σ with respect to h. Similarly, as σ is a sym-

plectic structure on X, there exists ρ′ such that ρ′ is an extension of σ with respect
to f ′. By Proposition 3.1.13, ρ′ is closed. Moreover, the image π′ of ρ′ under the
canonical mapping Ω2

W ′(W
′)→ Ω2

V(V) is an extension of σ with respect to h. As h is
a resolution of singularities, we see that π = π′. Denoting by v, v′, and u the class of
ρ, ρ′, and π, respectively, we obtain:

g′∗( f ′∗(w)) = ( f ′ ◦ g′)∗(w) = ( f ◦ g)∗(w) = g∗( f ∗(w)) = g∗(v) = u = g′∗(v′).

Given that the function g′∗ : H2(W ′, C) → H2(V, C) is one-to-one, we infer that
f ′∗(w) = v′. As f ′ was an arbitrary resolution of singularities of X, this shows that w
is a symplectic class of σ on X, i.e., (i).

Remark 3.1.24. — Let X be a symplectic complex space, w a symplectic class on X,
and f : W → X a resolution of singularities. Then f ∗(w) is a generically symplectic
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class on W. This is because by Definition 3.1.22 there exists a symplectic structure σ

on X such that f ∗(w) is the class of ρ on W, ρ denoting the extension of σ with respect
to f , and by Proposition 3.1.13, ρ is a generically symplectic structure on W.

Proposition 3.1.25. — Let X be a symplectic complex space of Fujiki class C .

a) For all symplectic structures σ on X there exists one, and only one, w such that w is a
symplectic class of σ on X.

b) There exists w which is a symplectic class on X.

Proof. — a). Let σ be a symplectic structure on X. There exists a resolution of
singularities f : W → X. As σ is symplectic structure on X, there exists ρ such that
ρ is an extension of σ with respect to f , cf. Definition 3.1.12 a), condition (ii). By
Proposition 3.1.13, ρ is a closed Kähler 2-differential on W. Define v to be the class of
ρ. Then v ∈ F2H2(W); note that W is of Fujiki class C so that it makes sense to speak
of F2H2(W) in the first place. By Proposition 3.1.17, the complex space X has rational
singularities. Thus by Proposition B.2.6, the function

f ∗ : H2(X, C) −→ H2(W, C)

induces a bijection

f ∗|F2H2(X) : F2H2(X) −→ F2H2(W).

In particular, there exists w such that f ∗(w) = v. Therefore, employing Proposition
3.1.23, we see that w is a symplectic class of σ on X. To see that w is unique, let w′ be
another symplectic class of σ on X. Then f ∗(w′) = v since the extension of σ with
respect to f is unique. From this it follows that w′ = w as, by Proposition B.2.4, the
function f ∗ is one-to-one.

b). As X is symplectic, there exists a symplectic structure on X, whence the
assertion is a consequence of a).

3.2. The Beauville-Bogomolov form

In [2, p. 772], A. Beauville introduced a certain complex quadratic form on the com-
plex vector space H2(X, C), where X is an irreducible symplectic complex manifold.
This quadratic form is nowadays customarily called the Beauville-Bogomolov form of
X (cf. [37, Abschnitt 1.9] for instance). In what follows, we generalize the concept of
the Beauville-Bogomolov form in two directions, namely that of compact, connected

(i) generically symplectic complex manifolds and
(ii) symplectic complex spaces,

where the symplectic structures are, in both cases, unique up to scaling. We would
like to point out that throughout Chapter 3 we aim to study potentially singular
symplectic complex spaces. In that respect, we view the concept of generically
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symplectic complex manifolds, and thus generalization (i) above, as an auxiliary tool.
We will not revisit the notion of “generic symplecticity” in later sections.

Notation 3.2.1. — Let (X, w) be an ordered pair such that X is a compact, irreducible
reduced complex space of strictly positive, even dimension and w is an element of
H2(X, C). Then we write q(X,w) for the unique function from H2(X, C) to C such that,
for all a ∈ H2(X, C), we have(1):

(3.2.1.1) q(X,w)(a) :=
r
2

∫
X

(
wr−1wr−1a2

)
+ (r− 1)

∫
X

(
wr−1wra

) ∫
X

(
wrwr−1a

)
,

where r denotes the unique natural number such that 2r = dim(X).

Remark 3.2.2. — Let (X, w) be as in Notation 3.2.1 and µ a complex number of
absolute value 1, i.e., |µ|2 = µµ = 1. Then q(X,µw) = q(X,w) as our readers will readily
deduce from formula (3.2.1.1).

Lemma 3.2.3. — Let n be an even natural number, X a pure n-dimensional complex mani-
fold, and α ∈ An,0

c (X). Then the complex number I :=
∫

X(α ∧ α) is real and ≥ 0, and we
have I = 0 if and only if α is the trivial differential n-form on X.

Proof. — As n is even, there is a natural number r such that 2r = n. Let z : U → Cn

be a (holomorphic) chart on X. Then there exists a C ∞ function f : U → C such that

α|U = f · dz1 ∧ · · · ∧ dzn.

Therefore:

(α ∧ α)|U = f f · dz1 ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ dzn

= | f |2(−1)
n(n−1)

2 · (dz1 ∧ dz1) ∧ · · · ∧ (dzn ∧ dzn)

= | f |2(−1)
n(n−1)

2
1

(−2i)n · (dx1 ∧ dy1) ∧ · · · ∧ (dxn ∧ dyn)

= | f |2 1
4r · (dx1 ∧ dy1) ∧ · · · ∧ (dxn ∧ dyn),

where zi = (xi, yi) for i = 1, . . . , n. This calculation shows that the 2n-form α ∧ α is
real and nonnegative (with respect to the canonical orientation of X) at every point of
X. Hence I is real and ≥ 0.

Assume that I = 0. Then α ∧ α has to be trivial at each point of X (otherwise α ∧ α

would be strictly positive on a nonempty open subset of X, which would imply I > 0).
By the above calculation, α ∧ α is trivial at a point of X (if and) only if α is trivial at
that point. So, I = 0 implies that α is trivial. On the other hand, clearly, when α is
trivial, then I = 0.

(1)We slightly deviate from Beauville’s original formula by writing wr−1wr−1 instead of (ww)r−1, cf. [2,
p. 772], as we feel this is more natural to work with in calculations.
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Proposition 3.2.4. — Let X be a nonempty, compact, connected complex manifold and w a
generically symplectic class on X. Then the complex number

∫
X (wrwr), where r denotes half

the dimension of X, is real and strictly positive.

Proof. — As w is a generically symplectic class on X, there exists a generically sym-
plectic structure σ on X such that w is the class of σ (see Definition 3.1.8). Abusing no-
tation, we symbolize the image of σ under the canonical mapping Ω2

X(X)→ A2,0(X)

again by σ. Set n := dim(X) and α := σ∧r. Then α ∈ A2r,0(X) = An,0
c (X), and α is not

the trivial n-form on X as σ is generically nondegenerate on X, cf. Proposition 3.1.7.
Moreover, n is even and X is pure n-dimensional (specifically as X is connected). Thus
applying Lemma 3.2.3, we see that

∫
X(α ∧ α) > 0. By the definition of the integral on

cohomology, ∫
X
(wrwr) =

∫
X
(α ∧ α)

since wrwr is clearly the class of α ∧ α in H2n(X, C).

Definition 3.2.5 (Normed classes, I). — Let X be a nonempty, compact, connected
complex manifold. w is called normed generically symplectic class on X when w is a
generically symplectic class on X such that∫

X
wrwr = 1,

where r denotes half the dimension of X.

Remark 3.2.6. — Let X be a nonempty, compact, connected, generically symplectic
complex manifold. Then, according to Definition 3.1.8, there exists a generically
symplectic structure σ0 on X. Let w0 be the class of σ0. Then w0 is a generically
symplectic class on X, and, by Proposition 3.2.4, the complex number I :=

∫
X
(
wr

0w0
r),

where r := 1/2 dim(X), is real an strictly positive. Denote by λ the ordinary (positive)
2r-th real root of I. Set w := λ−1w0. Then w is the class of a generically symplectic
structure on X, namely of λ−1σ0, and we have:∫

X
wrwr =

∫
X
(λ−1w0)

r(λ−1w0)
r =

∫
X
(λ−1w0)

r(λ−1w0)
r = (λ2r)−1

∫
X

wr
0w0

r

= I−1 I = 1.

The upshot is that, for all X as above, there exists a normed generically symplectic
class on X. In fact, we can always rescale a given generically symplectic class (by a
strictly positive real number) to procure a normed generically symplectic class.

Definition 3.2.7 (Beauville-Bogomolov form, I). — Let X be a compact, connected,
generically symplectic complex manifold such that dimC(Ω2

X(X)) = 1. We claim
there exists a unique function

q : H2(X, C) −→ C
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such that, for all normed generically symplectic classes w on X, we have

q(X,w) = q.

Note that the expression “q(X,w)” makes sense here since X is a compact, connected
complex manifold whose dimension is a strictly positive, even natural number and
w ∈ H2(X, C), cf. Notation 3.2.1.

In fact, by Remark 3.2.6, there exists a normed generically symplectic class w1 on X.
Obviously, q(X,w1)

is a function from H2(X, C) to C. Let w be any normed generically
symplectic class on X. Then there is a generically symplectic structure σ on X such
that w is the class of σ. Besides, there is a generically symplectic structure σ1 on X
such that w1 is the class of σ1. Now as dimC(Ω2

X(X)) = 1, the dimension of X is
strictly positive so that σ1 6= 0 in Ω2

X(X). Thus σ1 generates Ω2
X(X) as a complex

vector space. In particular, there exists a complex number µ such that σ = µσ1. It
follows that w = µw1 and in turn, setting r := 1/2 dim(X),

|µ|2r = |µ|2r
∫

X
wr

1w1
r =

∫
X
(µw1)

r(µw1)
r =

∫
X

wrwr = 1.

As 2r is a natural number 6= 0, we infer that |µ| = 1. Thus

q(X,w) = q(X,µw1)
= q(X,w1)

.

This proves, on the one hand, the existence of q. On the other hand, the uniqueness of
q is evident by the fact that there exists a normed generically symplectic class w1 on
X (any q has to agree with q(X,w1)

).
In what follows, we refer to the unique q satisfying the condition stated above

as the Beauville-Bogomolov form of X. The Beauville-Bogomolov form of X will be
denoted qX .

Lemma 3.2.8. — Let n be a natural number and f : W → X a proper modification such that
W and X are reduced complex spaces of pure dimension n. Then we have

(3.2.8.1)
∫

W
f ∗(c) =

∫
X

c

for all c ∈ H2n
c (X, C), where

f ∗ : H2n
c (X, C) −→ H2n

c (W, C)

signifies the morphism induced by f on complex cohomology with support.

Proof. — Since f : W → X is a proper modification, there exist thin, closed analytic
subsets A and B of W and X, respectively, such that f induces an isomorphism of
complex spaces

W \ A −→ X \ B

by restriction. Define

X′ := X \ (B ∪ Sing(X)) and W ′ := W|( f−1(X′) \ A),



3.2. THE BEAUVILLE-BOGOMOLOV FORM 139

write
i : W ′ −→W and j : X′ −→ X

for the canonical morphisms and

f ′ : W ′ −→ X′

for the restriction of f . Then the diagram

W ′
i //

f ′

��

W

f
��

X′ j
// X

commutes in the category of complex spaces, whence the diagram

H2n
c (X′, C)

j∗
//

f ′∗

��

H2n
c (X, C)

f ∗

��

H2n
c (W ′, C)

i∗
// H2n

c (W, C)

commutes in the category of complex vector spaces. Observe that X′ ⊂ Xreg. So, j∗
factors as follows:

H2n
c (X′, C)

(j0)∗−−→ H2n
c (Xreg, C)

(j1)∗−−→ H2n
c (X, C).

Realizing the pushforward morphism

(j0)∗ : H2n
c (X′, C) −→ H2n

c (Xreg, C)

as well as the integrals on X′ and Xreg by means of C ∞ differential 2n-forms (via de
Rham’s theorem), we obtain that∫

X′
c′ =

∫
Xreg

(j0)∗(c′) =
∫

X
(j1)∗((j0)∗(c′)) =

∫
X

j∗(c′)

for all c′ ∈ H2n
c (X′, C). Similarly, we have∫

W ′
b′ =

∫
W

i∗(b′)

for all b′ ∈ H2n
c (W ′, C). Furthermore, we have∫

W ′
f ′∗(c′) =

∫
X′

c′

for all c′ ∈ H2n
c (X′, C) since f ′ is an isomorphism. By the long exact sequence in

complex cohomology with compact support, we see that there exists an exact sequence
of complex vector spaces

H2n
c (X′, C)

j∗−→ H2n
c (X, C) −→ H2n

c (B ∪ Sing(X), C).
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Since X is reduced and pure dimensional and B is thin in X, we have

dim(B ∪ Sing(X)) < dim(X) = n

and thus
H2n

c (B ∪ Sing(X), C) ∼= 0.

Now let c ∈ H2n
c (X, C). Then there exists an element c′ of H2n

c (X′, C) such that
j∗(c′) = c, and we deduce (3.2.8.1) from the already established identities.

Proposition 3.2.9. — Let X be a nonempty, compact, connected, generically symplectic
complex manifold and f : X′ → X a proper modification such that X′ is a complex manifold.

a) X′ is a nonempty, compact, connected, generically symplectic complex manifold.
b) When w is a normed generically symplectic class on X, then f ∗(w) is a normed

generically symplectic class on W.
c) When dimC(Ω2

X(X)) = 1, then dimC(Ω2
X′(X′)) = 1, and we have

qX = qX′ ◦ f ∗,

where
f ∗ : H2(X, C) −→ H2(X′, C)

signifies the morphism induced by f on second complex cohomology.

Proof. — a). Clearly, X′ is nonempty, compact, and connected. X′ is generically
symplectic by means of Remark 3.1.9.

b). Let w be a normed generically symplectic class on X. Then f ∗(w) is a generically
symplectic class on X′ by Remark 3.1.9. f ∗(w) is a normed generically symplectic
class on X′ since by Lemma 3.2.8 we have:∫

X′
f ∗(w)r( f ∗(w))r =

∫
X′

f ∗(wrwr) =
∫

X
wrwr = 1.

c). As f is a proper modification between complex manifolds, the pullback of
Kähler differentials

Ω2
X(X) −→ Ω2

X′(X′)

induced by f furnishes an isomorphism of complex vector spaces. Specifically, when
dimC(Ω2

X(X)) = 1, then dimC(Ω2
X′(X′)) = 1.

Looking at formula (3.2.1.1), Lemma 3.2.8 implies that, for any w ∈ H2(X, C), we
have

q(X,w) = q(X′ , f ∗(w)) ◦ f ∗;

observe that f ∗ is compatible with the respective multiplications and conjugations on
H∗(X, C) and H∗(X′, C) and that dim(X′) = dim(X). By Remark 3.2.6, there exists a
normed generically symplectic class w on X. Thus we deduce

qX = q(X,w) = q(X′ , f ∗(w)) ◦ f ∗ = qX′ ◦ f ∗

from b) recalling Definition 3.2.7.
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Proposition 3.2.10. — Let X be a (compact, connected) symplectic complex space such that
dimC(Ω2

X(Xreg)) = 1. Then, for all resolutions of singularities f : W → X, the space W is
a (compact, connected) generically symplectic complex manifold with Ω2

W(W) of dimension 1
over the field of complex numbers.

Proof. — Let f : W → X be a resolution of singularities. Then W is a generically
symplectic complex manifold according to Proposition 3.1.13. The restriction mapping
Ω2

W(W)→ Ω2
W( f−1(Xreg)) is surely one-to-one. The pullback function Ω2

X(Xreg)→
Ω2

W( f−1(Xreg)) is a bijection. As the complex space X is symplectic, there exists a
symplectic structure σ on X. Since Ω2

X(Xreg) is 1-dimensional, σ generates Ω2
X(Xreg)

as a complex vector space. Thus as σ has an extension ρ with respect to f , we see that
the restriction mapping Ω2

W(W) → Ω2
W( f−1(Xreg)) is, in addition to being one-to-

one, onto. Therefore we have dimC(Ω2
W(W)) = 1. Of course, when X is compact and

connected, W is compact and conected.

Definition 3.2.11 (Beauville-Bogomolov form, II). — Let X be a compact, and con-
nected, and symplectic complex space such that dimC(Ω2

X(Xreg)) = 1. We claim
there exists a unique function

q : H2(X, C) −→ C

such that, for all resolutions of singularities f : W → X, we have

q = qW ◦ f ∗,

where
f ∗ : H2(X, C) −→ H2(W, C)

signifies the pullback function induced by f (or better, ftop) on second complex coho-
mology. Note that it makes sense to write “qW” above as by Proposition 3.2.10, for all
resolutions of singularities f : W → X, the space W is a compact, connected, generi-
cally symplectic complex manifold with 1-dimensional Ω2

W(W), whence Definition
3.2.7 tells what is to be understood by the Beauville-Bogomolov form of W.

As there exists a resolution of singularities f : W → X, we see that q is uniquely
determined. Now for the existence of q it suffices to show that for any two resolutions
of singularities f : W → X and f ′ : W ′ → X, we have

qW ◦ f ∗ = qW ′ ◦ ( f ′)∗.

Given such f and f ′, there exist a complex manifold V as well as proper modifications
g : V → W and g′ : V → W ′ such that the following diagram commutes in the
category of complex spaces:

V
g

//

g′

��

W

f
��

W ′
f ′

// X



142 CHAPTER 3. SYMPLECTIC COMPLEX SPACES

Therefore, by Proposition 3.2.9 c), we have:

qW ◦ f ∗ = qV ◦ g∗ ◦ f ∗ = qV ◦ (g′)∗ ◦ ( f ′)∗ = qW ′ ◦ ( f ′)∗.

The unique q satisfying the condition stated above will be called the Beauville-
Bogomolov form of X. We denote the Beauville-Bogomolov form of X by qX .

Remark 3.2.12 (Ambiguity). — In case X is a compact, connected, symplectic com-
plex manifold with 1-dimensional Ω2

X(X) both Definition 3.2.7 and Definition 3.2.11
are applicable in order to tell what the Beauville-Bogomolov form of X is. Gladly,
employing Proposition 3.2.9, one infers that the Beauville-Bogomolov form of X in
the sense of Definition 3.2.7 satisfies the condition given for q in Definition 3.2.11,
hence is the Beauville-Bogomolov form of X in the sense of Definition 3.2.11.

Our philosophy in defining the Beauville-Bogomolov form on possibly singular
complex spaces X (cf. Definition 3.2.11) is to make use of the Beauville-Bogomolov
form for generically symplectic complex manifolds (cf. Definition 3.2.7) together with
a resolution of singularities.

An alternative approach might be to employ the formula (3.2.1.1) directly on X
rather than first passing to a resolution. Then, of course, for w we should plug a
(suitably normed) symplectic class on X into (3.2.1.1). Unfortunately, as we have
already noticed in § 3.1, it is not clear whether on a given arbitrary compact, symplectic
complex space X, there exists one (and only one) symplectic class for every symplectic
structure σ on X (cf. Proposition 3.1.25). Therefore we cannot pursue this alternative
in general. However, if we are lucky and there do exist symplectic classes on X,
calculating the Beauville-Bogomolov form on X is as good as calculating it on a
resolution. We briefly explain the details.

Definition 3.2.13 (Normed classes, II). — Let X be a nonempty, compact, and con-
nected, and symplectic complex space. Then w is called normed symplectic class on X
when w is a symplectic class on X, cf. Definition 3.1.22, and we have∫

X
wrwr = 1,

where r is short for half the dimension of X.

Proposition 3.2.14. — Let X be a nonempty, compact, connected, and symplectic complex
space, w a normed symplectic class on X, and f : W → X a resolution of singularities. Then
f ∗(w) is a normed generically symplectic class on W.

Proof. — By Remark 3.1.24, f ∗(w) is a generically symplectic class on W. Moreover,
W is a nonempty, compact, connected complex manifold. Set r := 1/2 dim(W). Then
by means of Lemma 3.2.8, we obtain:∫

W
( f ∗(w))r( f ∗(w))r =

∫
W

f ∗(wrwr) =
∫

X
wrwr = 1.
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The very last equality holds since w is a normed symplectic class on X and we have
1/2 dim(X) = 1/2 dim(W) = r.

Proposition 3.2.15. — Let X be a compact, connected, symplectic complex space such that
dimC(Ω2

X(Xreg)) = 1. Let w be a normed symplectic class on X. Then qX = q(X,w).

Proof. — There exists a resolution of singularities f : X̃ → X. Set w̃ := f ∗(w). By
Definition 3.2.11, we have qX = qX̃ ◦ f ∗. By Definition 3.2.7, we have qX̃ = q(X̃,w̃) since

by Proposition 3.2.14, w̃ is a normed generically symplectic class on X̃. Employing
Lemma 3.2.8 (three times) as well as the fact that dim(X) = dim(X̃), one easily
deduces q(X,w) = q(X̃,w̃) ◦ f ∗ from (3.2.1.1). So, qX = q(X,w).

Having introduced the notion of a Beauville-Bogomolov form for two (overlapping)
classes of complex spaces, we are now going to establish, essentially in Proposition
3.2.16 and Proposition 3.2.18 below, two formulae for qX . These formulae are classi-
cally due to Beauville, cf. [2, Théorème 5, Démostration be (b)]; the proofs are pretty
much straightforward.

An essential point is that we require the complex spaces in question to be of Fujiki
class C so that their cohomologies carry mixed Hodge structures.

Proposition 3.2.16. — Let X be a compact, connected, and generically symplectic complex
manifold of Fujiki class C such that Ω2

X(X) is 1-dimensional over C. Let w be a normed
generically symplectic class on X, c ∈ H1,1(X), and λ, λ′ ∈ C. Then, setting

a := λw + c + λ′w,

where we calculate in H2(X, C), and setting r := 1/2 dim(X), we have:

(3.2.16.1) qX(a) =
r
2

∫
X

(
wr−1wr−1c2

)
+ λλ′.

Proof. — As w is the class of a (closed) holomorphic 2-form on X, we have w ∈
F2H2(X) by the definition of the Hodge structure H2(X). Thus, for all d ∈ F1H2(X),
we have wrd ∈ F2r+1H2r+2(X) by the compatibility of the Hodge filtrations with the
cup product on H∗(X, C). Since 2r + 1 > 2r = dim(X), we know that F2r+1H2r+2(X)

is the trivial vector subspace of H2r+2(X, C). Hence, wrd = 0 in H∗(X, C) for all
d ∈ F1H2(X). It follows that wrd′ = 0 in H∗(X, C) for all d′ ∈ F1H2(X). In particular,
we have

wr+1 = wr+1 = wrc = wrc = 0

in H∗(X, C) as w ∈ F1H2(X), and c ∈ F1H2(X) ∩ F1H2(X).
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Note that the subring H2∗(X, C) of H∗(X, C) is commutative. Exploiting the above
vanishings, we obtain:

wr−1wra = wr−1wr(λw + c + λ′w)

= (wr−1wr)(λw) + (wr−1wr)c + (wr−1wr)(λ′w)

= λwrwr + wr−1(wrc) + λ′wr−1wr+1

= λwrwr.

That is,

(3.2.16.2)
∫

X

(
wr−1wra

)
=
∫

X
(λwrwr) = λ

∫
X
(wrwr) = λ1 = λ,

specifically since
∫

X wrwr = 1 given that w is a normed generically symplectic class
on X (cf. Definition 3.2.5). Likewise, one shows that

(3.2.16.3)
∫

X

(
wrwr−1a

)
= λ′.

Further on, we calculate:

wr−1wr−1a2 = wr−1wr−1(λw + c + λ′w)2

= wr−1wr−1
(
(λw)2 + c2 + (λ′w)2 + 2(λw)b + 2(λw)(λ′w) + 2c(λ′w)

)
= λ2(wr+1wr−1) + wr−1wr−1c2 + λ′2(wr−1wr+1) + 2λ((wrc)wr−1)

+ 2λλ′(wrwr) + 2λ′(wr−1wrc)

= wr−1wr−1c2 + 2λλ′(wrwr).

That is:
(3.2.16.4)∫

X
wr−1wr−1a2 =

∫
X

(
wr−1wr−1c2 + 2λλ′(wrwr)

)
=
∫

X

(
wr−1wr−1c2

)
+ 2λλ′.

By the definition of the Beauville-Bogomolov form of X (cf. Definition 3.2.7), we
have qX(a) = q(X,w)(a). So, plugging identities (3.2.16.2), (3.2.16.3), and (3.2.16.4)
into formula (3.2.1.1), we infer:

qX(a) =
r
2

(∫
X

(
wr−1wr−1c2

)
+ 2λλ′

)
+ (1− r)λλ′ =

r
2

∫
X

(
wr−1wr−1c2

)
+ λλ′,

which is nothing but (3.2.16.1).

Corollary 3.2.17. — Let X be a compact, connected, symplectic complex space of Fujiki
class C such that Ω2

X(Xreg) is of dimension 1 over the field of complex numbers. Let w a
normed symplectic class on X, c ∈ H1,1(X), and λ, λ′ ∈ C. Define a and r as before. Then
(3.2.16.1) holds.

Proof. — There exists a resolution of singularities f : X̃ → X. By Proposition 3.2.10,
X̃ is a compact, connected, generically symplectic complex manifold with Ω2

X̃
(X̃)
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of dimension 1 over the field of complex numbers. As X is of Fujiki class C , X̃ is
of Fujiki class C . Set w̃ := f ∗(w) and c̃ := f ∗(c). Then w̃ is a normed generically
symplectic class on X̃, and c̃ ∈ H1,1(X̃) since f ∗ respects the Hodge filtrations. By
Definition 3.2.11, we have qX = qX̃ ◦ f ∗. Thus as 1/2 dim(X̃) = 1/2 dim(X) = r, we
obtain, invoking Proposition 3.2.16 in particular:

qX(a) = qX̃( f ∗(a)) = qX̃( f ∗(λw + c + λ′w)) = qX̃(λw̃ + c̃ + λ′w̃)

=
r
2

∫
X̃

(
w̃r−1w̃

r−1
c̃2
)
+ λλ′ =

r
2

∫
X

(
wr−1wr−1c2

)
+ λλ′;

for the very last equality we use Lemma 3.2.8 and the fact that

f ∗(wr−1wr−1c2) = w̃r−1w̃
r−1

c̃2.

Evidently, we have established (3.2.16.1).

Proposition 3.2.18. — Let X and w be as in Proposition 3.2.16. Furthermore, let a ∈
H2(X, C) and λ ∈ C such that a(2,0) = λw. Then, setting r := 1/2 dim(X), the following
identity holds:

(3.2.18.1)
∫

X

(
ar+1wr−1

)
= (r + 1)λr−1qX(a).

Proof. — We know that w generates F2H2(X) as a C-vector space. Hence w generates
F2H2(X) as a C-vector space. Thus there exists a complex number λ′ such that
a(0,2) = λ′w. Setting b := a(1,1), we have a = λw + b + λ′w. As the subring H2∗(X, C)

of H∗(X, C) is commutative, we may calculate as follows employing the “trinomial
formula”:

ar+1wr−1 = (λw + b + λ′w)r+1wr−1(3.2.18.2)

= ∑
(i,j,k)∈N3

i+j+k=r+1

(
r + 1
i, j, k

)
(λw)ibj(λ′w)kwr−1.

Since the product on H∗(X, C) is “filtered” with respect to the Hodge filtrations on
the graded pieces, we have

wr+1 = bwr = b3wr−1 = wr+1 = wrb = 0

in H∗(X, C). Therefore, wibjwk+r−1 = 0 in H∗(X, C) for all (i, j, k) ∈ N3 such that
either k > 1, or k = 1 and j > 0, or k = 0 and j > 2. Moreover, when (i, j) ∈ N2 such
that i + j = r + 1 and j < 2, we have wibj = 0 in H∗(X, C). Thus from (3.2.18.2) we
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deduce:

ar+1wr−1 =

(
r + 1

r− 1, 2, 0

)
(λw)r−1b2wr−1 +

(
r + 1
r, 0, 1

)
(λw)r(λ′w)wr−1

=
r(r + 1)

2
λr−1wr−1wr−1b2 + (r + 1)λrλ′wrwr

= (r + 1)λr−1
( r

2
(wr−1wr−1b2) + λλ′(wrwr)

)
.

So,∫
X

(
ar+1wr−1

)
= (r + 1)λr−1

(
r
2

∫
X

(
wr−1wr−1b2

)
+ λλ′

)
= (r + 1)λr−1qX(a),

where we eventually plug in
∫

X (wrwr) = 1 as well as (3.2.16.1).

Corollary 3.2.19. — Let X be a compact, connected, symplectic complex space of Fujiki
class C such that dimC(Ω2

X(Xreg)) = 1. Furthermore, let w be a normed symplectic class
on X, a ∈ H2(X, C), and λ ∈ C such that a(2,0) = λw. Then, setting r := 1/2 dim(X),
(3.2.18.1) holds.

Proof. — There exists a resolution of singularities f : X̃ → X. Put w̃ := f ∗(w) and
ã := f ∗(a), where f ∗ denotes the pullback on second complex cohomology induced
by f . As f ∗ preserves Hodge types, we have

ã(2,0) = f ∗(a(2,0)) = f ∗(λw) = λw̃.

Moreover, X̃ is a compact, connected complex manifold of Fujiki class C with Ω2
X̃
(X̃)

of dimension 1 over the field of complex number and, according to Remark 3.1.24,
w̃ is a normed generically symplectic class on X̃. Thus as r = 1/2 dim(X̃) we obtain,
using Lemma 3.2.8 and Proposition 3.2.18:∫

X

(
ar+1wr−1

)
=
∫

X̃

(
ãr+1w̃

r−1
)
= (r + 1)λr−1qX̃(ã) = (r + 1)λr−1qX(a).

Observe that the very last equality holds by definition of the Beauville-Bogomolov
form on X (cf. Definition 3.2.11).

Remark 3.2.20 (Quadratic forms). — We review the definition of a quadratic form
on a module, cf. e.g., [45, (2.1) Definition a)]: Let R be a ring and M an R-module.
Then q is called an R-quadratic form on M when q is a function from M to R such that:

(i) for all λ ∈ R and all x ∈ M, we have q(λ · x) = λ2 · q(x);
(ii) there exists an R-bilinear form b on M such that, for all x, y ∈ M, we have

(3.2.20.1) q(x + y) = q(x) + q(y) + b(x, y).

In case R equals the ring of complex numbers (resp. real numbers, resp. rational
numbers, resp. integers), we use the term complex (resp. real, resp. rational, resp.
integral) quadratic form as a synonym for the term “R-quadratic form”.
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Observe that when 2 6= 0 in R and 2 is not a zero divisor in R, then, for all functions
q : M→ R, (ii) implies (i) above, i.e., q is an R-quadratic form on M if and only if (ii)
is satisfied.

Given an R-quadratic form q on M, there is one, and only one, R-bilinear form b on
M such that (3.2.20.1) holds for all x, y ∈ M. We call this so uniquely determined b the
R-bilinear form on M associated to q. Note that the bilinear form b is always symmetric.
When R is a field and M is a finite dimensional R-vector space, we have, for any
R-bilinear form b on M, a well-defined concept of an R-rank of b on M given, for
instance, as the R-rank of any matrix associated with b relative to an ordered R-basis
of M. In this context, we define the R-rank of q on M as the R-rank of b on M, where b
is the R-bilinear form on M associated to q.

Proposition 3.2.21. — a) Let (X, w) be as in Notation 3.2.1. Then q(X,w) is a complex
quadratic form on H2(X, C).

b) Let X be a compact, connected, generically symplectic complex manifold such that
Ω2

X(X) is 1-dimensional. Then qX is a complex quadratic form on H2(X, C).
c) Let X be a compact, connected, symplectic complex space such that Ω2

X(Xreg) is 1-
dimensional. Then qX is a complex quadratic form on H2(X, C).

Proof. — a). Denote by r the unique natural number such that dim(X) = 2r. Then
r 6= 0 since dim(X) > 0. Define

s : H2(X, C)×H2(X, C) −→ C

to be the function given by:

s(a, b) := r
∫

X

(
wr−1wr−1ab

)
+ (r− 1)

(∫
X

(
wr−1wra

) ∫
X

(
wrwr−1b

)
+
∫

X

(
wr−1wrb

) ∫
X

(
wrwr−1a

))
.

Then s surely is a C-bilinear form on H2(X, C), and, for all a, b ∈ H2(X, C), we have

q(X,w)(a + b) = q(X,w)(a) + q(X,w)(b) + s(a, b)

as one easily verifies looking at (3.2.1.1). Hence q(X,w) is a complex quadratic form on
H2(X, C) according to Remark 3.2.20.

b). There exists a normed generically symplectic class w on X by Remark 3.2.6.
Now by Definition 3.2.11, we have qX = q(X,w). Thus qX is a complex quadratic form
on H2(X, C) by a).

c). There exists a resolution of singularities f : W → X. By Proposition 3.2.10,
W is a compact, connected, generically symplectic complex manifold with Ω2

W(W)

of dimension 1 over the field of complex numbers. By Definition 3.2.11, we have
qX = qW ◦ f ∗. So, qX is a complex quadratic form on H2(X, C) since qW is a complex
quadratic form on H2(W, C) by b) and f ∗ is a homomorphism of complex vector
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spaces from H2(X, C) to H2(W, C) (it is a general fact that quadratic forms pull back
to quadratic form under module homomorphisms).

Proposition 3.2.22. — Let X be a compact, connected, symplectic complex space such that
Ω2

X(Xreg) is of dimension 1 over C. Let w be a normed symplectic class on X and denote by
b the C-bilinear form on H2(X, C) associated to qX (cf. Remark 3.2.20).

a) Setting r := 1/2 dim(X), we have, for all c, d ∈ H1,1(X) and all λ, λ′, µ, µ′ ∈ C:

(3.2.22.1) b(λw + c + λ′w, µw + d + µ′w) = r
∫

X

(
wr−1wr−1cd

)
+ (λµ′ + µλ′).

b) w and w are perpendicular to H1,1(X) in (H2(X, C), qX).
c) b(w, w) = b(w, w) = 0 and b(w, w) = b(w, w) = 1.

Proof. — Assertion a) is an immediate consequence of Corollary 3.2.17 (applied three
times) and the fact that, for all x, y ∈ H2(X, C), we have

b(x, y) = qX(x + y)− qX(x)− qX(y).

Both b) and c) are immediate corollaries of a).

Definition 3.2.23 (Beauville-Bogomolov quadric). — Let X be a compact, and con-
nected, and symplectic complex space satisfying dimC(Ω2

X(Xreg)) = 1. We set

QX := {p ∈ P(H2(X, C)) : (∀c ∈ p)qX(c) = 0}

and call QX the Beauville-Bogomolov quadric of X.
Since X is compact, H2(X, C) is a finite dimensional complex vector space, so

that we may view P(H2(X, C)) as a complex space. Obviously, as qX is a complex
quadratic form on H2(X, C) by Proposition 3.2.21 c), QX is a closed analytic subset
of P(H2(X, C)). We abuse notation and signify the closed complex subspace of
P(H2(X, C)) induced on QX again by QX. Besides, the latter QX (complex space)
will go by the name of Beauville-Bogomolov quadric of X too. We hope this ambivalent
terminology will not irritate our readers.

In order to prove in § 3.5 that certain—consult Theorem 3.5.11 for the precise
statement—compact, connected, symplectic complex spaces of Kähler type satisfy
the so-called “Fujiki relation” (cf. Definition 3.5.1), we need to know a priori that, for
these X, the Beauville-Bogomolov quadric QX is an irreducible closed analytic subset
of P(H2(X, C)) (strictly speaking, the irreducibility of QX is exploited in the proof of
Lemma 3.5.7). Hence, we set out to investigate the rank of the quadratic form qX .

Proposition 3.2.24. — Let (V, g, I) = ((V, g), I) be a finite dimensional real inner product
space endowed with a compatible (i.e., orthogonal) almost complex structure I. Let p and q be
natural numbers such that

k := p + q ≤ n := 1/2 dimR(V).
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Denote ω the complexified fundamental form of (V, g, I). Then, for all primitive forms α of
type (p, q) on V, we have

(3.2.24.1) ip−q(−1)
k(k−1)

2 · α ∧ α ∧ωn−k ≥ 0

in ∧2n
C (VC)

∨ with equality holding if and only if α is the trivial k-form on VC.

Proof. — See [38, Corollary 1.2.36].

Proposition 3.2.25. — Let X be a compact, connected, symplectic complex space of Kähler
type such that dimC(Ω2

X(Xreg)) = 1, and let c be the image of a Kähler class on X under
the canonical mapping H2(X, R)→ H2(X, C). Then we have qX(c) > 0 (in the sense that
qX(c) is in particular real).

Proof. — There exists a resolution of singularities f : W → X. In particular, there
are thin closed subsets A and B of W and X respectively such that f induces by
restriction an isomorphism of complex spaces W \ A→ X \ B. Since c is (the image
in H2(X, C) of) a Kähler class on X, there exists ω ∈ A1,1(W) such that ω is a de
Rham representative of f ∗(c) and the restriction of ω (as a differential 2-form) to
W \ A is (the complexification of) a Kähler form on W \ A. We know there exists a
normed generically symplectic class v on W. Thus there exists a generically symplectic
structure ρ on W such that v is the class of ρ. Denote the image of ρ under the canonical
mapping Ω2

W(W) → A2,0(W) again by ρ. Set r := 1/2 dim(W) and α := ρ∧(r−1)

(calculated in A∗(W, C)). Then α is a differential form of type (2r − 2, 0) on W,
whence in particular a primitive form. Thus by Proposition 3.2.24, we see that the
differential 2n-form α ∧ α ∧ω∧2 on W is, for all p ∈W \ A, strictly positive in p. As
W \ A is a nonempty, open, and dense subset of W, it follows that∫

W
α ∧ α ∧ω∧2 > 0.

Now obviously, α ∧ α ∧ω∧2 is a de Rham representative of vr−1vr−1( f ∗(c))2. Since
f ∗(c) ∈ H1,1(W), we obtain by means of Definition 3.2.11 and Proposition 3.2.16:

qX(c) = qW( f ∗(c)) =
r
2

∫
W

vr−1vr−1( f ∗(c))2 =
r
2

∫
W

α ∧ α ∧ω∧2 > 0.

Yet this was just our claim.

Corollary 3.2.26. — Let X be as in Proposition 3.2.25. Then:
a) The C-rank of the quadratic form qX on H2(X, C) is at least 3.
b) QX is an irreducible closed analytic subset of P(H2(X, C)).

Proof. — There exists a normed symplectic class w on X. Moreover, as X is of Kähler
type, there exists a Kähler class on X; denote by c the image of this Kähler class
under the canonical mapping H2(X, R)→ H2(X, C). Set V := c⊥ ∩H1,1(X), where
c⊥ signifies the orthogonal complement of c in (H2(X, C), qX), and let v be an ordered
C-basis of V. We claim that the tuple b obtained by concatenating (w, w, c) and v is
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an ordered C-basis of H2(X, C). This is because w is a basis for H2,0(X), w is a basis
for H0,2(X) = H2,0(X), c is a basis for Cc (i.e., c 6= 0), and we have H1,1(X) = Cc⊕V
(since qX(c) 6= 0) as well as

H2(X, C) = H2,0(X)⊕H0,2(X)⊕H1,1(X).

Let b be the C-bilinear form on H2(X, C) associated to qX . As

(H2,0(X) + H0,2(X)) ⊥ H1,1(X),

the matrix M associated with b relative to the basis b looks as follows:

0 1 0 0 · · · 0
1 0 0 0 · · · 0
0 0 2qX(c) 0 · · · 0
0 0 0 ∗ · · · ∗
...

...
...

...
. . .

...
0 0 0 ∗ · · · ∗


Clearly, taking into account that 2qX(c) 6= 0, the C-rank of M, which equals (by
definition) the rank of the C-bilinear form b on H2(X, C), is ≥ 3. This proves a).

Assertion b) follows from a) by means of the general fact that given a finite dimen-
sional complex vector space V and a C-quadratic form q of rank ≥ 3 on V, the zero
set defined by q in P(V) is an irreducible closed analytic subset of P(V).

3.3. Deformation theory of symplectic complex spaces

In what follows, we prove that the quality of a complex space to be connected,
symplectic, of Kähler type, and with a singular locus of codimension not deceeding
4 is stable under small proper and flat deformation, cf. Theorem 3.3.17 as well as
Corollary 3.3.19. This result is originally due to Y. Namikawa, cf. [61, Theorem
7’]. We include its proof here for two reasons: Firstly, we felt that several points of
Namikawa’s exposition loc. cit., in particular the essence of what we are going to say
in Lemma 3.3.16, were not quite so clear. Secondly, the proof blends in nicely with the
remainder of our presentation. Observe that Theorem 3.3.17 used in conjunction with
the likewise crucial Theorem 3.3.18, which we recall below, makes up a key ingredient
for proving, in § 3.5, that the Fujiki relation holds for compact, connected, symplectic
complex spaces X with 1-dimensional Ω2

X(Xreg) and a singular locus of codimension
≥ 4 (cf. Theorem 3.5.11).

Before delving into the stability of symplecticity for complex spaces, we need to
review some preliminary stability results. We start by making a general

Definition 3.3.1 (Stability under deformation). — To speak about “stability” of cer-
tain properties of complex spaces (or similar geometrical objects) under deformation
is pretty much folklore in the field. To the day we have, however, not seen a rigorous
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definition of the concept of stability in the literature. Therefore we move forward and
suggest a definition—mainly for conceptual purposes.

To that end, let C be a class (preferrably, yet not necessarily, a subclass of the class
of complex spaces or the class of compact complex spaces). Then we say that C is
stable under small proper and flat deformation when, for all proper and flat morphisms of
complex spaces f : X → S and all t ∈ S such that Xt ∈ C, there exists a neighborhood
V of t in S such that Xs ∈ C for all s ∈ V. Similarly, when φ = φ(v) is a property (i.e.,
φ is a formula in the language of set theory with one free variable v), we say that φ is
stable under small proper and flat deformation if the class {v : φ(v)} is so.

In the same spirit, one may define a local variant of the notion of stability: Given
a class C (resp. a property φ = φ(v0, v1)) we say that C (resp. φ) is stable under small
flat deformation when, for all flat morphisms of complex spaces f : X → S and all
p ∈ X such that (X f (p), p) ∈ C (resp. such that φ(X f (p), p) holds), there exists a
neighborhood U of p in X such that (X f (x), x) ∈ C (resp. such that φ(X f (x), x) holds)
for all x ∈ U.

Remark 3.3.2. — Let C be any class (imagine C to be a subclass of the class of pointed
complex spaces), and define C′ to be the class containing precisely the complex spaces
X such that, for all p ∈ |X|, we have (X, p) ∈ C. Speaking in terms of properties, this
means that C reflects a local or pointwise property φ of a complex space whereas C′

stands for property that a complex space satisfies φ at each of its points. Assume that
C is stable under small flat deformation. Then it is easy to see that C′ is stable under
small proper and flat deformation.

Here goes an overview of classical stable properties.

Theorem 3.3.3. — For a complex space X and p ∈ X, let φ = φ(X, p) signify one of the
following properties:

(i) X is reduced in p.
(ii) X is normal in p.
(iii) X is Cohen-Macaulay in p.
(iv) X is Gorenstein in p.
(v) X has a rational singularity in p.

Then φ is stable under small flat deformation.

Proof. — Cases (i) and (ii) can be deduced from [29, Thm. 1.101 (2)] by first passing
respectively to the reduction or normalization of the base of the deformation in
question. Case (iii) follows from [9, V, Theorem 2.8]. Case (iv) follows from case
(iii) by considering the relative dualizing sheaf. Case (v) is treated by transferring
R. Elkik’s proof of [17, Théorème 4] to the analytic category (Elkik proves the same
assertion for finite type k-schemes, where k is a field of characteristic zero).
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Corollary 3.3.4. — For a complex space X, let φ = φ(X) denote one of the following
properties:

(i) X is reduced.
(ii) X is normal.
(iii) X is Cohen-Macaulay.
(iv) X is Gorenstein.
(v) X has rational singularities.

Then φ is stable under small proper and flat deformation.

Proof. — This is immediate from Theorem 3.3.3 and the local to global principle
outlined in Remark 3.3.2.

We move on to a property which is more delicate as concerns stability, namely that
of “Kählerity” of a complex space. In general, small proper and flat deformations of
complex spaces of Kähler type need not be of Kähler type, even if one assumes them
to be, for instance, normal in addition (cf. [58, Section 2]). Yet, we have the following
result due to B. Moishezon and J. Bingener.

Theorem 3.3.5. — Let f : X → S be a proper, flat morphism of complex spaces and t ∈ S.
Assume that Xt is of Kähler type and that the function

(3.3.5.1) H2(Xt, R) −→ H2(Xt, OXt)

induced by the canonical sheaf map RXt → OXt on Xt is a surjection. Then f is weakly
Kähler at t, i.e., there exists an open neighborhood V of t in S such that fV is weakly Kähler.

Proof. — This is a consequence of [5, Theorem (6.3)]. As a matter of fact, the precise
statement is given in the introduction of loc. cit. on p. 506.

Corollary 3.3.6. — a) Let f : X → S be a proper and flat morphism of complex spaces
and t ∈ S such that Xt is of Kähler type and has rational singularities. Then there exists an
open neighborhood V of t in S such that Xs is of Kähler type for all s ∈ V.

b) The class of Kähler complex spaces with rational singularities is stable under small
proper and flat deformation.

Proof. — a). As Xt is a compact complex space of Kähler type having rational singu-
larities, the canonical mapping (3.3.5.1) is a surjection by Proposition B.2.7. Hence by
Theorem 3.3.5, there exists an open neighborhood V of t in S such that the morphism
fV : XV → S|V is weakly Kähler. In consequence, for all s ∈ V, the complex space
(XV)s is Kähler; thus Xs is Kähler as we have (XV)s ∼= Xs in An.

Assertion b) follows from a) coupled with case (v) of Corollary 3.3.4.

Next, we discuss the property that codimension of the singular locus of a complex
space does not drop below a given fixed number.
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Notation 3.3.7. — Let c ∈ N ∪ {ω}. We introduce the follwing classes:

Cc :=
{
(X, p) :

(X, p) is a pointed complex space such that
c ≤ codimp(Sing(X), X)

}
.

C′c := {X : X is a complex space such that c ≤ codim(Sing(X), X)}.

Note that C′c is the “globalization” of Cc in the sense of Remark 3.3.2, i.e., for any
complex space X, we have X ∈ C′c if and only if, for all p ∈ X, we have (X, p) ∈ Cc.

We ask whether the class Cc (resp. C′c) is stable under small flat deformation (resp.
small proper and flat deformation). In fact, we will briefly sketch how to deduce that
the intersection of Cc with the class of normal pointed complex spaces is stable under
small flat deformation.

Proposition 3.3.8. — For all morphisms of complex spaces f : X → Y and all p ∈ X there
exists a neighborhood U of p in X such that, for all x ∈ U, we have

dimx(X f (x)) ≤ dimp(X f (p)).

Proof. — See [18, Proposition in 3.4].

Definition 3.3.9 (Equidimensionality). — Let f : X → Y be a morphism of complex
spaces.

a) Let p ∈ X. We say that f is locally equidimensional in p when there exists a
neighbohood U of p in X such that, for all x ∈ U, we have

dimx(X f (x)) = dimp(X f (p)).

b) We say that f is locally equidimensional when f is locally equidimensional in p
for all p ∈ X.

Proposition 3.3.10. — Let f : X → S be a morphism of complex spaces, A a closed analytic
subset of X, and p ∈ X. Suppose that f is locally equidimensional in p. Then there exists a
neighborhood U of p in X such that, for all x ∈ U, we have:

(3.3.10.1) codimp(A ∩ |X f (p)|, X f (p)) ≤ codimx(A ∩ |X f (x)|, X f (x)).

Proof. — When p /∈ A, we put U := |X| \ A. Then U is open in X and p ∈ U. More-
over, for all x ∈ U, we have A∩ |X f (x)| = ∅ and thus codimx(A∩ |X f (x)|, X f (x)) = ω.
Hence, for all x ∈ U, (3.3.10.1) holds.

Now, assume that p ∈ A. Denote by Y the closed complex subspace of X induced
on A; denote by i : Y → X the corresponding inclusion morphism. Set g := f ◦ i. By
Proposition 3.3.8 (applied to g), there is a neighborhood V of p in Y such that, for all
y ∈ V, we have

dimy(Yg(y)) ≤ dimp(Yg(p)).



154 CHAPTER 3. SYMPLECTIC COMPLEX SPACES

By the definition of the subspace topology, there exists a neighborhood Ṽ of p in X
such that Ṽ ∩ A ⊂ V. As f is locally equidimensional in p, there exists a neighborhood
U′ of p in X such that, for all x ∈ U′, we have

dimx(X f (x)) = dimp(X f (p)),

cf. Definition 3.3.9. Set U := U′ ∩ Ṽ. Then U is a neighborhood of p in X and, for all
x ∈ U ∩ A, we have:

codimp(A ∩ |X f (p)|, X f (p)) = dimp(X f (p))− dimp(Yg(p))

≤ dimx(X f (x))− dimx(Yg(x)) = codimx(A ∩ |X f (x)|, X f (x)),

where we use that, for all s ∈ S, the complex subspace of Xs induced on A ∩ |Xs| is
isomorphic in An to the complex subspace of Y induced on |Ys|. For all x ∈ U \ A,
(3.3.10.1) holds since A ∩ |X f (x)| = ∅ and thus codimx(A ∩ |X f (x)|, X f (x)) = ω.

Looking at Proposition 3.3.10, we wish to find criteria for a (possibly flat) morphism
of complex spaces to be locally equidimensional in a certain point of its source space.
We content ourselves with treating the case where fiber passing through the given
point is normal.

Theorem 3.3.11. — Let f : X → Y be a morphism of complex spaces and p ∈ X. Assume
that f is flat in p. Then:

(3.3.11.1) dimp(X) = dimp(X f (p)) + dim f (p)(Y).

Proof. — See [18, Lemma in 3.19].

Theorem 3.3.12. — Let f : X → Y be a flat morphism of complex spaces and p ∈ X. When
X f (p) and Y are normal (resp. reduced) in p and f (p), respectively, then X is normal (resp.
reduced) in p.

Proof. — See [29, Thm. 1.101 (2)].

Proposition 3.3.13. — Let X be a complex space and p ∈ X. When X is normal in p, then
X is pure dimensional at p.

Proof. — See [27, Kapitel 6, § 4, Abschnitt 2].

Proposition 3.3.14. — Let f : X → S be a flat morphism of complex spaces and p ∈
X. Assume that X f (p) and S are normal in p and f (p), respectively. Then f is locally
equidimensional in p.

Proof. — By Proposition 3.3.13, S is pure dimensional at f (p), i.e., there exists a
neighborhood V of f (p) in S such that, for all s ∈ V, we have dims(S) = dim f (p)(S).
By Theorem 3.3.12, X is normal in p, whence again by means of Proposition 3.3.13, X
is pure dimensional at p. Accordingly, there exists a neighborhood U′ of p in X such
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that, for all x ∈ U′, dimx(X) = dimp(X). Set U := f−1(V) ∩U′. Then clearly, U is a
neighborhood of p in X. Moreover, by Theorem 3.3.11, we have for all x ∈ U:

dimx(X f (x)) = dimx(X)− dim f (x)(S) = dimp(X)− dim f (p)(S) = dimp(X f (p)).

In consequence, f is locally equidimensional in p, cf. Definition 3.3.9.

Corollary 3.3.15. — a) Let f : X → S be a flat morphism of complex spaces and p ∈ X.
Suppose that X f (p) and S are normal in p and f (p), respectively. Then there exists a
neighborhood U of p in X such that, for all x ∈ U, we have:

(3.3.15.1) codimp(Sing(X f (p)), X f (p)) ≤ codimx(Sing(X f (x)), X f (x)).

b) For all c ∈ N ∪ {ω}, the class {(X, p) ∈ Cc : (X, p) is normal} is stable under small
flat deformation.

c) For all c ∈ N ∪ {ω}, the class {X ∈ C′c : X is normal} is stable under small proper
and flat deformation.

Proof. — a). Set A := Sing( f ). Then A is a closed analytic subset of X. By Proposition
3.3.14, f is locally equidimensional in p. Therefore, by Proposition 3.3.10, there exists
a neighborhood U of p in X such that, for all x ∈ U, (3.3.10.1) holds. Due to the
flatness of f , we have A ∩ |Xs| = Sing(Xs) for all s ∈ S. Thus, for all x ∈ U, we have
(3.3.15.1).

b). This is an immediate consequence of a), at least in case the base space of the
deformation is normal in its basepoint. For arbitrary (i.e., not necessarily normal)
base spaces the result traced back to the result for normal base spaces by pulling
the deformation back along the normalization of the base space. We refrain from
explaining the details of this argument as we will apply the result only in case the
base of the deformation is normal.

c). This follows from b) by means of Remark 3.3.2.

The remainder of § 3.3 deals with stability of symplecticity.

Lemma 3.3.16. — Let f : X → S be a proper, flat morphism of complex spaces with normal
(or else Cohen-Macaulay) base and normal, Gorenstein fibers, let t ∈ S and σ ∈ Ω2

f (U),
where

U := |X| \ Sing( f ).

For any s ∈ S, denote is : Xs → X the inclusion of the f -fiber over s, denote

φs : Ω2
f −→ is∗(Ω2

Xs
)

the pullback of 2-differentials induced by is, and set

σs := (φs)U(σ) ∈ Ω2
Xs
((Xs)reg).

Assume that σt is nondegenerate on (Xt)reg. Then there exists a neighborhood V of t in S
such that σs is nondegenerate on (Xs)reg for all s ∈ V.
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Proof. — Let us assume that the space X is connected and Xt 6= ∅—the general
case can be traced back easily to this special case by restricting f to the connected
components of X having nonempty intersection with f−1({t}). Since Xt 6= ∅ and Xt
is normal, there exists p0 ∈ (Xt)reg. Furthermore, since σt is nondegenerate on (Xt)reg

at p0, there exists a natural number r such that dimp0(Xt) = 2r by Corollary 3.1.4.
Obviously, the spaces X and S are locally pure dimensional so that the morphism f is
locally equidimensional by Proposition 2.4.3. For X is connected, the morphism f is
yet equidimensional, and we have

dimx(X f (x)) = dimp0(X f (p0)
) = 2r

for all x ∈ X. Denote ω f the relative dualizing sheaf for f . Then since the morphism f
is submersive in U with fibers pure of dimension 2r, we have a canonical isomorphism

ψ : ω f |U −→ Ω2r
f |U

of modules on X|U. Set A := Sing( f ). Then A is a closed analytic subset of X, and
due to the flatness of f we have

Sing(Xs) = A ∩ |Xs|

for all s ∈ S. As the fibers of f are normal, we obtain

2 ≤ codim(Sing(Xs), Xs) = codim(A ∩ |Xs|, Xs)

for all s ∈ S and thus
2 ≤ codim(A, f ) ≤ codim(A, X)

by Proposition 2.4.6 b). Since the fibers of f are Gorenstein, we know that ω f is locally
free of rank 1 on X (cf. e.g., [10, Theorem 3.5.1]). So, by Riemann’s extension theorem,
the restriction map

ω f (X) −→ ω f (X \ A) = ω f (U)

is bijective. In particular, there exists one (and only one) α ∈ ω f (X) which restricts to
σ∧r ∈ Ω2r

f (U) via ψU : ω f (U)→ Ω2r
f (U).

Let s ∈ S and p ∈ (Xs)reg. Then, by Proposition 3.1.7, σs is nondegenerate on
(Xs)reg at p if and only if we have (σ∧r

s )(p) 6= 0 in

Ω2r
Xs
(p) := C⊗OXs ,p Ω2r

Xs ,p.

The pullback of differentials
Ω2r

f −→ is∗(Ω2r
Xs
)

induces an isomorphism

OXs ,p ⊗OX,p Ω2r
f ,p −→ Ω2r

Xs ,p,

whence an isomorphism

C⊗OX,p Ω2r
f ,p −→ C⊗OXs ,p Ω2r

Xs ,p,
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under which (σ∧r)(p) is mapped to (σ∧r
s )(p). Moreover, ψ gives rise to an isomor-

phism
ψ(p) : ω f (p) −→ Ω2r

f (p)

which sends α(p) to (σ∧r)(p). In conclusion, we see that σs is nondegenerate on
(Xs)reg at p if and only if α(p) 6= 0 in ω f (p).

Set
Z := {x ∈ X : α(x) = 0 in ω f (x)}.

Then as σt is nondegenerate on (Xt)reg by assumption, we have Z ∩ (Xt)reg = ∅. In
other words, setting Zt := Z ∩ |Xt|, we have Zt ⊂ Sing(Xt). So, for all p ∈ Zt,

2 ≤ codim(Sing(Xt), Xt) ≤ codimp(Sing(Xt), Xt) ≤ codimp(Zt, Xt).

Clearly, Zt is the zero locus of the image of α under the canonical mapping

ω f (X) −→ (i∗t (ω f ))(Xt)

in the module i∗t (ω f ) on Xt. As ω f is locally free of rank 1 on X, we see that i∗t (ω f ) is
locally free of rank 1 on Xt. Hence, for all p ∈ Zt, we have

codimp(Zt, Xt) ≤ 1.

Therefore, Zt = ∅. This implies that |Xt| ⊂ |X| \ Z. As Z is a closed subset of X,
we infer, exploiting the properness of f , that there exists a neighborhood V of t in S
such that f−1(V) ⊂ |X| \ Z. From what we have noticed earlier, it follows that σs is
nondegenerate on Xs for all s ∈ V.

Theorem 3.3.17. — Let f : X → S be a proper, flat morphism of complex spaces with
smooth base and t ∈ S. Assume that Xt is symplectic, Kähler, and in C′4. Then there exists a
neighborhood V of t in S such that Xs is symplectic, Kähler, and in C′4 for all s ∈ V.

Proof. — As the space Xt is symplectic, we know that Xt is Gorenstein and has
rational singularities by Proposition 3.1.17. By Theorem 3.3.3 cases (ii) and (iv),
Corollary 3.3.6 a), and Corollary 3.3.15 c) there exists an open neighborhood V′ of t
in S such that Xs is normal, Gorenstein, Kähler, and in C′4 for all s ∈ V′. Therefore,
without loss of generality, we may assume that the fibers of f are altogether normal,
Gorenstein, Kähler, and in C′4 to begin with.

Set A := Sing( f ) and define g : Y → S to be the composition of the inclusion
Y := X \ A→ X and f . Then due to the flatness of f , we have

A ∩ |Xs| = Sing(Xs)

for all s ∈ S and thus
(2 + 0) + 2 = 4 ≤ codim(A, f ).

Therefore, by Proposition 2.4.7, the module H 2,0(g) is a locally finite free on S in t
and the base change map

(3.3.17.1) C⊗OS,t
(H 2,0(g))t −→H 2,0(Yt)
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is an isomorphism of complex vector spaces.
Since Xt is symplectic, there exists a symplectic structure σt on Xt. By the surjectiv-

ity of the base change map (3.3.17.1), there exists an open neighborhood V′′ of t in S
and an element σ ∈ Ω2

f ( f−1(V′′) \ A) such that σ is mapped to σt by the pullback of
Kähler 2-differentials

Ω2
f −→ it∗(Ω2

Xt
)

induced by the inclusion it : Xt → X. By passing from f : X → S to

fV′′ : X| f−1(V′′) −→ S|V′′

we may assume, again without loss of generality, that σ ∈ Ω2
f (|X| \ A).

By Lemma 3.3.16, there exists a neighborhood V of t in S such that σs, which is to
be defined as in the formulation of the lemma, is nondegenerate on (Xs)reg for all
s ∈ V. Let s ∈ V. Then by Proposition 3.1.16, we know that, for all resolutions of
singularities h : W → Xs, there exists ρ such that ρ is an extension as 2-differential
of σs with respect to h, i.e., condition (ii) of Definition 3.1.12 a) holds (for Xs and
σs in place of X and σ, respectively). Since Xs is a reduced, compact, and Kähler
complex space, Xs is of Fujiki class C so that Proposition 3.1.20 implies that σs induces
a closed 2-differential on (Xs)reg. Thus σs is a symplectic structure on Xs and Xs is
symplectic.

Theorem 3.3.18. — Let f : X → S be a proper, flat morphism of complex spaces and t ∈ S
such that f is semi-universal in t and Xt is a symplectic complex space of Kähler type such
that codim(Sing(Xt), Xt) ≥ 4. Then the complex space S is smooth at t.

Proof. — In case the complex space Xt is projective, the statement follows from [60,
Theorem (2.5)]. However, the proof given loc. cit. remains valid without requiring Xt
to be projective by means of Theorem 2.4.1.

Corollary 3.3.19. — The class

C :=
{

X :
X is a symplectic, Kähler complex space such that
codim(Sing(X), X) ≥ 4

}
is stable under small proper and flat deformation.

Proof. — Let f : X→ S be a proper, flat morphism of complex spaces and t ∈ S such
that Xt ∈ C. Then by Theorem 3.5.10, there exists a proper, flat morphism f ′ : X′ → S′

and an element t′ ∈ S′ such that Xt ∼= X′t′ and f ′ is semi-universal in t′. By Theorem
3.3.18, the complex space S′ is smooth at t′. In consequence, by Theorem 3.3.17,
there exists an open neighborhood V′ of t′ in S′ such that, for all s ∈ V′, we have
X′s ∈ C. Without loss of generality, we may assume that X′s ∈ C for all s ∈ S′. By
the semi-universality of f ′ in t′, there exists an open neighborhood V of t in S and
morphisms of complex spaces

b : S|V −→ S′ and i : XV −→ X′



3.4. THE LOCAL TORELLI THEOREM 159

such that b(t) = t′ and

XV
i //

fV
��

X′

f ′

��

S|V
b

// S′

is a pullback square in the category of complex spaces. In particular, for all s ∈ V, the
morphism i induces an isomorphism Xs ∼= X′s, whence Xs ∈ C.

3.4. The local Torelli theorem

First and foremost, we state and prove here our version of a local Torelli theorem for
compact, connected, symplectic complex spaces X of Kähler type such that Ω2

X(Xreg)

is 1-dimensional and the codimension of the singular locus of X is ≥ 4 (cf. Theorem
3.4.4). Note that Y. Namikawa has proposed a local Torelli theorem for a slightly
smaller class of spaces in [61, Theorem 8]. Our statement is more general in the
following respects: Firstly, our spaces need neither be projective nor Q-factorial (or
similar, in the nonprojective case). Secondly, we do not require H1(X, OX) to be trivial.
Moreover, we feel that we are after all the first to prove a local Torelli type statement
in the context of singular symplectic complex spaces since, in loc. cit., Namikawa
contents himself with referring to Beauville’s work [2] as a proof for the decisive point
(3) of his theorem.

Beauville’s proof of the local Torelli theorem for irreducible symplectic manifolds
certainly provides the basis for our line of reasoning below. Nonetheless, we would
like to point out that in guise of Theorem 1.7.10 and Corollary 2.4.15, the upshots of
our entire Chapters 1 and 2 enter the proof of Theorem 3.4.4.

Proposition 3.4.1. — Let X be a Cohen-Macaulay complex space and A a closed analytic
subset of X such that Sing(X) ⊂ A and codim(A, X) ≥ 3. Put Y := X \ A. Then the
evident restriction mapping

Ext1(Ω1
X , OX) −→ Ext1(Ω1

Y, OY)

is bijective.

Proof. — This follows from the analytic counterpart of [47, Lemma (12.5.6)].

Corollary 3.4.2. — Let f : X → S be a proper, flat morphism of complex spaces, A a closed
analytic subset of X such that Sing( f ) ⊂ A, and t ∈ S. Assume that S is smooth, f is
semi-universal in t, Xt is Cohen-Macaulay, and codim(A ∩ |Xt|, Xt) ≥ 3. Set Y := X \ A,
and define g to be the composition of the inclusion Y → X and f . Then the Kodaira-Spencer
map of g at t,

(3.4.2.1) KSg,t : TS(t) −→ H1(Yt, ΘYt)
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(cf. Notation 1.7.3), is an isomorphism of complex vector spaces.

Proof. — Denote T1
Xt

the first (co-)tangent cohomology of Xt and

(3.4.2.2) D f ,t : TS(t) −→ T1
Xt

the “Kodaira-Spencer map” for f in t (cf. [66], [67], [39]). The construction of this
generalized Kodaira-Spencer map is functorial so that the inclusion Y → X gives rise
to a commutative diagram of complex vector spaces

TS(t)
D f ,t

}}zzzzzzzz Dg,t

!!CCCCCCCC

T1
Xt

// T1
Yt

where the lower horizontal arrow is the morphism induced on (co-)tangent cohomol-
ogy by Yt → Xt.

Since the complex spaces Xt and Yt are reduced, the canonical maps

Ext1(Ω1
Xt

, OXt) −→ T1
Xt

,

Ext1(Ω1
Yt

, OYt) −→ T1
Yt

are isomorphisms (cf. e.g., [68, (III.3.1), (iv) and (v)]). Moreover, the following diagram
commutes:

Ext1(Ω1
Xt

, OXt)
//

��

T1
Xt

��

Ext1(Ω1
Yt

, OYt)
// T1

Yt

Since the morphism f : X → S is semi-universal in t, the Kodaira-Spencer map
(3.4.2.2) is a bijection. Therefore, by Proposition 3.4.1 and the commutativity of
the above diagrams we see that Dg,t is an isomorphism. However, through the
composition of canonical maps

Ext1(Ω1
Yt

, OYt) −→ Ext1(OYt , ΘYt) −→ H1(Yt, ΘYt)

the morphism Dg,t is isomorphic to the ordinary Kodaira-Spencer map (3.4.2.1),
whence (3.4.2.1) is an isomorphism as claimed.

Lemma 3.4.3. — Let X be a symplectic complex manifold. Then the (adjoint) cup and
contraction

γ := γ2,0
X : H1(X, ΘX) −→ Hom(H 2,0(X), H 1,1(X))

(cf. Notation 1.7.4) is injective. Moreover, when H 2,0(X) is 1-dimensional over the field of
complex numbers, then γ is an isomorphism.
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Proof. — Let c be an element of H1(X, ΘX) such that γ(c) = 0. Observe that, by
definition, γ arises from the “ordinary” cup and contraction

γ′ : H1(X, ΘX)⊗C H0(X, Ω2
X) −→ H1(X, Ω1

X)

through tensor-hom adjunction over C (cf. Notation 1.7.4). In particular, for all
d ∈ H0(X, Ω2

X), we have

γ′(c⊗ d) = (γ(c))(d) = 0.

As X is a symplectic complex manifold, there exists a symplectic structure σ on X
(cf. Definition 3.1.8). Denote s the image of σ under the canonical map

Ω2
X(X) −→ H0(X, Ω2

X).

Moreover, denote φ the composition

ΘX −→ ΘX ⊗X OX
id⊗σ−−−→ ΘX ⊗X Ω2

X −→ Ω1
X

of morphisms of modules on X, where the first arrow stands for the inverse of the
right tensor unit for ΘX on X, the σ stands, by abuse of notation, for the unique
morphism OX → Ω2

X of modules on X which sends the 1 of OX(X) to the actual σ,
and the last arrows stands for the sheaf-theoretic contraction morphism (cf. Notation
1.3.10)

γ2
X(Ω

1
X) : ΘX ⊗X Ω2

X −→ Ω1
X .

Then, since σ is nondegenerate on X,

φ : ΘX −→ Ω1
X

is an isomorphism of modules on X (cf. Remarks 3.1.2 a)), whence

H1(X, φ) : H1(X, ΘX) −→ H1(X, Ω1
X)

is an isomorphism of complex vector spaces by functoriality. By the definition of the
cup product, we have

(H1(X, φ))(c) = γ′(c⊗ s).

Thus (H1(X, φ))(c) = 0, and, in consequence, c = 0. This proves the injectivity of γ.
Suppose that H 2,0(X) is 1-dimensional and let

f ∈ Hom(H 2,0(X), H 1,1(X))

be an arbitrary element. By the surjectivity of H1(X, φ), there exists c ∈ H1(X, ΘX)

such that
(γ(c))(s) = (H1(X, φ))(c) = f (s).

As H 2,0(X) is nontrivial, we have dim(X) > 0, whence s 6= 0 in H 2,0(X). Accord-
ingly, as H 2,0(X) is 1-dimensional, s generates H 2,0(X) over C. Thus γ(c) = f ,
which proves that γ is surjective.
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Theorem 3.4.4 (Local Torelli). — Let f : X → S be a proper, flat morphism of complex
spaces such that S is simply connected and smooth and the fibers of f have rational singulari-
ties, are of Kähler type, and have singular loci of codimension ≥ 4. Furthermore, let t ∈ S
such that f is semi-universal in t and Xt is symplectic and connected with Ω2

Xt
((Xt)reg) of

dimension 1 over the field of complex numbers. Define g : Y → S to be the submersive share
of f . Then the period mapping

P2,2
t (g) : S −→ Gr(H 2(Yt))

(cf. Notation 1.7.2 b) is well-defined and the tangent map

(3.4.4.1) Tt(P
2,2
t (g)) : TS(t) −→ TGr(H 2(Yt))

(F2H 2(Yt))

is an injection with 1-dimensional cokernel.

Proof. — By Corollary 2.4.15, we know that the Frölicher spectral sequence of g
degenerates in entries

I := {(ν, µ) ∈ Z× Z : ν + µ = 2}

at sheet 1 in Mod(S); moreover, for all (p, q) ∈ I, the Hodge module H p,q(g) is
locally finite free on S and compatible with base change in the sense that, for all s ∈ S,
the Hodge base change map

β
p,q
g,s : (H p,q(g))(s) −→H p,q(Ys)

is an isomorphism of complex vector spaces. Let s ∈ S. Then as Xs has rational
singularities, Xs is normal, whence locally pure dimensional according to Proposition
3.3.13. Thus, by Theorem 2.4.1, the Frölicher spectral sequence of Xs \ Sing(Xs)

degenerates in entries I at sheet 1 in Mod(C). Since the morphism f is flat, the
inclusion Y → X induces an isormophism of complex spaces

Ys −→ Xs \ Sing(Xs).

Therefore, the Frölicher spectral sequence of Ys degenerates in entries I at sheet 1 in
Mod(C).

By Theorem 1.7.10 (applied to g in place of f and n = 2), the period mapping
P2,2

t (g) is well-defined (this is implicit in the theorem) and there exists a sequence
ψ̃ = (ψ̃ν)ν∈Z such that firstly, for all ν ∈ Z,

ψ̃ν : FνH 2(Yt)/Fν+1H 2(Yt) −→H ν,2−ν(Yt)

is an isomorphism in Mod(C) and secondly, setting

α := ψ̃2 ◦ coker(ι2Yt
(2, 3)) : F2H 2(Yt) −→H 2,0(Yt),

β := (ι2Yt
(1)/F2H 2(Yt)) ◦ (ψ̃1)−1 : H 1,1(Yt) −→H 2(Yt)/F2H 2(Yt),
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the following diagram commutes in Mod(C):

(3.4.4.2) TS(t)
KSg,t

//

Tt(P
2,2
t (g))

��

H1(Yt, ΘYt)

γ2,0
Yt

��

Hom(H 2,0(Yt), H 1,1(Yt))

Hom(α,β)
��

TGr(H 2(Yt))
(F2H 2(Yt)) //

θ(H 2(Yt),F2H 2(Yt))

Hom(F2H 2(Yt), H 2(Yt)/F2H 2(Yt))

commutes in Mod(C) (for the definition of θ, see Notation 1.6.19).
Since Xt has rational singularities, Xt is Cohen-Macaulay. Put A := Sing( f ). Then

clearly A is a closed analytic subset of X and, due to the flatness of f , we have
A ∩ |Xt| = Sing(Xt), whence

3 < 4 ≤ codim(Sing(Xt), Xt) = codim(A ∩ |Xt|, Xt).

Applying Corollary 3.4.2, we see that the Kodaira-Spencer map

KSg,t : TS(t) −→ H1(Yt, ΘYt)

is an isomorphism in Mod(C). As Xt is a symplectic complex space, (Xt)reg is a
symplectic complex manifold. As Ω2

Xt
((Xt)reg) is a 1-dimensional complex vector

space, Ω2
(Xt)reg

((Xt)reg) is a 1-dimensional complex vector space. Since Yt ∼= (Xt)reg

(cf. above), the same assertions hold for Yt instead of (Xt)reg. Therefore, by Lemma
3.4.3, the cup and contraction

γ2,0
Yt

: H1(Yt, ΘYt) −→ Hom(H 2,0(Yt), H 1,1(Yt))

is an isomorphism in Mod(C). Since F3H 2(Yt) ∼= 0, we know that the cokernel of
the inclusion

ι2Yt
(2, 3) : F3H 2(Yt) −→ F2H 2(Yt)

is an isomorphism. Thus, α is an isomorphism. The morphism θ in (3.4.4.2) is an
isomorphism anyway. By the definition of β, β is certainly injective. So, Hom(α, β) is
injective, and exploiting the commutativity of (3.4.4.2), we conclude that the tangent
map (3.4.4.1) is injective.

Moreover, the dimension of the cokernel of the injection (3.4.4.1) equals the dimen-
sion of the cokernel of the injection Hom(α, β), which in turn equals the dimension of
the cokernel of β since H 2,0(Yt), and likewise F2H 2(Yt), is 1-dimensional. Now the
cokernel of β is obviously isomorphic to H 2(Yt)/F1H 2(Yt), and via ψ̃0, i.e., by the
degeneration of the Frölicher spectral sequence of Yt in entry (0, 2) at sheet 1, we have

H 2(Yt)/F1H 2(Yt) ∼= H 0,2(Yt).
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According to Theorem 2.4.1, we have

H 0,2(Yt) ∼= H 2,0(Yt).

Thus, we deduce that the cokernel of the tangent map (3.4.4.1) is 1-dimensional.

Reviewing the statement of Theorem 3.4.4, we would like to draw our reader’s
attention to the fact that the period mapping P := P2,2

t (g) depends exclusively on the
submersive share g of the original family f . Note that the submersive share g of f is
nothing but the family of regular loci of the fibers of f . Further on, note that the local
system with respect to which P is defined assigns to a point s in S in principle the
second complex cohomology H2((Xs)reg, C) of (Xs)reg. Thus P encompasses Hodge
theoretic information of the (Xs)reg, not however a priori of the Xs themselves.

The upcoming series of results is aimed at sheding a little light on the relationship
between X and Xreg, for X a compact symplectic complex space of Kähler type, in
terms of Hodge structures on second cohomologies. We also discuss ramifications
of this relationship for the deformations theory of X. To begin with, we introduce
terminology capturing the variation of mixed Hodge structure in a family of spaces
of Fujiki class C .

Construction 3.4.5. — Let f : X → S be a morphism of topological spaces, A a ring,
n an integer. Our aim is to construct, given that f satisfies certain conditions (cf.
below), an A-representation of the fundamental groupoid of S which parametrizes
the A-valued cohomology modules in degree n of the fibers of f .

Recall that we denote
f A : (X, AX) −→ (S, AS)

the canonical morphism of ringed spaces derived from f . Moreover, set

Hn( f , A) := Rn( f A)∗(AX).

Thus Hn( f , A) is a sheaf of AS-modules on S. Assume that Hn( f , A) is a locally
constant sheaf on S. Then by means of Remark 1.6.5, the sheaf Hn( f , A) induces an
A-representation

ρ′ : Π(S) −→ Mod(A).

Assume that, for all s ∈ S, the evident base change map

βs : (Hn( f , A))s −→ Hn(Xs, A)

is a bijection. Then define

ρn( f , A) : Π(S) −→ Mod(A)

to be the unique functor such that, for all s ∈ S, we have

(ρn( f , A))0(s) = Hn(Xs, A)

and, for all (s, t) ∈ S× S and all morphisms a : s→ t in Π(S), we have

((ρn( f , A))1(s, t)) (a) = βt ◦ ((ρ′)1(s, t))(a) ◦ (βs)
−1.
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As a matter of fact, it would be more accurate to simply define ρ0 and ρ1 as indicated
above, then set ρn( f , A) := (ρ0, ρ1) and assert that the so defined ρ is a functor from
Π(S) to Mod(S).

When f : X → S is not a morphism of topological spaces but a morphism of
complex spaces (resp. a morphism of ringed spaces), we agree on writing ρn( f , A) for
ρn( ftop, A) in case this makes sense.

Definition 3.4.6 (Period mappings for MHS). — Let f : X → S be a proper mor-
phism of complex spaces such that Xs is of Fujiki class C for all s ∈ S. Let n and p be
integers. We define FpHn( f ) to be the unique function on |S| such that, for all s ∈ |S|,
we have

(FpHn( f ))(s) = FpHn(Xs).

We call FpHn( f ) the system of Hodge filtered pieces in degree p on n-th cohomology associ-
ated to f .

Assume further that Stop is simply connected and Hn( f , C) is a locally constant
sheaf on Stop. Then, for any t ∈ S, we set (cf. Construction 1.6.3):

P
p,n
t ( f )MHS := PC

t (Stop, ρn( f , C), FpHn( f )).

Note that this definition makes sense. In fact, ρn( f , C) is a well-defined complex
representation of Π(Stop) and FpHn( f ) is a complex distribution in ρ := ρn( f , C) as
clearly, (FpHn( f ))(s) = FpHn(Xs) is a complex vector subspace of ρ0(s) = Hn(Xs, C)

for all s ∈ S.

Lemma 3.4.7. — Let X be a complex space of Fujiki class C having rational singularities
and satisfying 4 ≤ codim(Sing(X), X).

a) The mapping
j∗ : H2(X, C) −→ H2(Xreg, C)

induced by the inclusion morphism j : Xreg → X is one-to-one.
b) The composition

H2(X, C) −→ H2(Xreg, C) −→H 2(Xreg)

restricts to a bijection
F2H2(X) −→ F2H 2(Xreg).

Proof. — a). Let f : W → X be a resolution of singularities such that the exceptional
locus E of f is a simple normal crossing divisor in W and f induces by restriction an
isomorphism

f ′ : W \ E −→ Xreg

of complex spaces. Then, by Proposition B.2.4, since X has rational singularities, we
know that f induces a one-to-one map

f ∗ : H2(X, C) −→ H2(W, C)
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on complex cohomology. Denote

i : W \ E −→W,

i′ : (W, ∅) −→ (W, W \ E)

the respective inclusion morphisms. Then the sequence

H2(W, W \ E; C)
i′∗ // H2(W, C)

i∗ // H2(W \ E, C)

is exact in Mod(C). Thus the kernel of i∗ is precisely the C-linear span of the funda-
mental cohomology classes [Eν] of the irreducible components Eν of E. So, since

f ∗[H2(X, C)] ∩ C〈[Eν]〉 = {0},
we see that

( f ◦ i)∗ = i∗ ◦ f ∗ : H2(X, C) −→ H2(W \ E, C)

is one-to-one. Therefore, j∗ is one-to-one taking into account that f ′ furnishes an
isomorphism f ◦ i→ j in the overcategory An/X .

b). By Proposition B.2.6, we know that

f ∗|F2H2(X) : F2H2(X) −→ F2H2(W)

is a bijection. By the functoriality of base change maps, we know that the following
diagram, where the vertical arrows denote the respective inclusions, commutes in
Mod(C):

(3.4.7.1) F2H 2(W) //

��

F2H 2(W \ E)

��

H 2(W) // H 2(W \ E)

Let p ∈ {1, 2} and c ∈H p,0(W \ E). Then by Theorem 3.1.15, there exists one, and
only one, element b ∈H p,0(W) such that b is sent to c by the restriction mapping

H p,0(W) −→H p,0(W \ E).

Since W is a complex manifold of Fujiki class C , the Frölicher spectral sequene of
W degenerates at sheet 1, whence, specifically, b corresponds to a closed Kähler p-
differential on W. In consequence, c corresponds to a closed Kähler p-differential
on W \ E. Varying c and p, we deduce that the Frölicher spectral sequence of W \ E
degenerates in entries (2, 0) at sheet 1. Thus, there exist isomorphisms such that the
diagram

F2H 2(W) //

∼
��

F2H 2(W \ E)

∼
��

H 2,0(W) // H 2,0(W \ E)

commutes in Mod(C).
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As we have already noticed, the Hodge base change

H 2,0(W) −→H 2,0(W \ E)

is an isomorphism. Thus from the commutativity of the diagram in (3.4.7.1) we
deduce that the composition of morphisms

H2(W, C) −→H 2(W) −→H 2(W \ E)

restricts to an isomorphism

F2H2(W) −→ F2H 2(W \ E);

note here that by the definition of the Hodge structure H2(W), the Hodge filtered
piece F2H2(W) is the inverse image of F2H 2(W) under the canonical map

H2(W, C) −→H 2(W).

Finally, we observe that since f ′ : W \W → Xreg is an isomorphism of complex
spaces, f ′ induces an isomorphism

f ′∗ : F2H 2(Xreg) −→ F2H 2(W \ E)

of complex vector spaces. Thus the commutativity in Mod(C) of the diagram

H2(X, C) //

f ∗

��

H2(Xreg, C) //

f ′∗

��

H 2(Xreg)

f ′∗

��

H2(W, C) // H2(W \ E, C) // H 2(W \W)

yields our claim.

Proposition 3.4.8. — Let f : X → S be a proper, flat morphism of complex spaces such that
S is smooth and simply connected, H2( f , C) is a locally constant sheaf on Stop, and the fibers
of f have rational singularities, are of Kähler type, and have singular loci of codimension
≥ 4. Furthermore, let t ∈ S. Define f ′ : X′ → S to be the submersive share of f , set
P := P2,2

t ( f )MHS and P′ := P2,2
t ( f ′), and denote

φt : H2(Xt, C) −→ H2(X′t, C) −→H 2(X′t)

the composition of canonical mappings. Then, for all s ∈ S, we have

P′(s) = φt[P(s)].

Proof. — Set ρ := ρ2( f , C) (cf. Construction 3.4.5); note that this makes sense as
H2( f , C) is a locally constant sheaf on Stop and f is proper. By Proposition 2.4.15 a)
and c), the algebraic de Rahm module H 2( f ′) is locally finite free on S. Let H′ be the
module of horizontal sections of

∇2
GM( f ′) : H 2( f ′) −→ Ω1

S ⊗S H 2( f ′)

on S (cf. Notations 1.5.7 and 1.6.7). Then by Proposition 1.7.1 b) and Proposition
1.6.10 a), H′ is a locally constant sheaf on S. Define ρ′′ to be C-representation of Π(S)
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associated H′ (cf. Construction 1.6.4 and Remark 1.6.5). For any s ∈ S, define β′s to be
the composition of the following morphisms

(H′)s −→ (H 2( f ′))s −→ (H 2( f ′))(s) −→H 2(X′s)

in Mod(C), where the first arrow stands for the stalk-at-s morphism on Stop associated
to the inclusion morphism H′ →H 2( f ′), the second arrow is the evident “quotient
morphism”, and the third arrow stands for the de Rham base change in degree 2 for
f ′ at s. Define (ρ′)0 to be the function on |S| given by the assignment

s 7−→H 2(X′s).

Define (ρ′)1 to be the unique function on |S| × |S| such that, for all (r, s) ∈ |S| × |S|,
(ρ′)1(r, s) is the unique function on (Π(S))1(r, s) satisfying, for all a ∈ (Π(S))1(r, s):

((ρ′)1(r, s))(a) = β′s ◦ ((ρ′′)1(r, s))(a) ◦ (β′r)
−1.

Set ρ′ := ((ρ′)0, (ρ′)1). Then ρ′ is functor from Π(S) to Mod(C).
Define ψ to be the composition

H2( f , C) −→ H2( f ′, C) −→ H′

of morphisms of sheaves of CS-modules on S, where the first arrow signifies the
evident base change map and the second arrow denotes the unique morphism from
H2( f ′, C) to H′ which factors the canonical morphism H2( f ′, C)→H 2( f ′) through
the inclusion H′ →H 2( f ′). Let φ = (φs)s∈S be the family of morphisms

φs : H2(Xs, C) −→ H2(X′s, C) −→H 2(X′s);

note that this fits with the notation “φt” introduced in the statement of the proposition.
Then by the functoriality of base change maps, the following diagram commutes in
Mod(C) for all s ∈ S:

(H2( f , C))s
ψs

//

βs
��

(H′)s

β′s
��

H2(Xs, C)
φs

// H 2((X′)s)

In consequence,
φ : ρ −→ ρ′

is a natural transformation of functors from Π(S) to Mod(C). Thus employing
Lemma 3.4.7, we see that, for all s ∈ S, letting a stand for the unique element of
(Π(S))1(s, t), we have

φt[P(s)] = φt[ρ1(s, t)(a)[F2H2(Xs)]] = (φt ◦ ρ1(s, t)(a))[F2H2(Xs)]

= (ρ′1(s, t)(a) ◦ φs)[F2H2(Xs)] = ρ′1(s, t)(a)[φs[F2H2(Xs)]]

= ρ′1(s, t)(a)[F2H 2(X′s)] = P′(s),

which is what had to be proven.
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Corollary 3.4.9. — Let f and t be as in Proposition 3.4.8. Then there exists a unique
morphism of complex spaces

P+ : S −→ G := Gr(H2(Xt, C))

such that the underlying function of P+ is precisely P := P2,2
t ( f )MHS; in particular, P is a

holomorphic mapping from S to G. Moreover, the diagram

S
P+

yysssssssssss
P′

%%JJJJJJJJJJ

Gr(H2(Xt, C))
(φt)∗

// Gr(H 2(X′t))

where f ′, P′ and φt have the same meaning as in Proposition 3.4.8 and (φt)∗ := Gr(φt),
commutes in the category of complex spaces.

Proof. — By Proposition 3.4.8, we know that |P′| = |(φt)∗| ◦ P (in the plain set-
theoretic sense) since, for all l ∈ Gr(H2(Xt, C)), we have |(φt)∗|(l) = φt[l] by the
definition of (φt)∗. Therefore, P′(S) ⊂ (φt)∗[G]. As φt is a monomorphism of complex
vector spaces, (φt)∗ is a closed embedding of complex spaces. Hence, given that the
complex space S is reduced (for it is smooth by assumption), there exists a morphism
of complex spaces P+ : S→ G such that (φt)∗ ◦ P+ = P′. From this we obtain

|(φt)∗| ◦ |P+| = |P′| = |(φt)∗| ◦ P,

which implies |P+| = P as |(φt)∗| is a one-to-one function. This proves the existence
of P+.

When P+
1 is another morphism of complex spaces from S to G such that |P+

1 | = P,
we have |P+

1 | = |P+| and thus P+
1 = P+ by the reducedness of S. This shows the

uniqueness of P+.

Proposition 3.4.10. — Let f : X → S be a proper, flat morphism of complex spaces and
t ∈ S such that Xt is connected and symplectic, Ω2

Xt
((Xt)reg) is 1-dimensional, S is simply

connected, H2( f , C) is a locally constant sheaf on S, and f is fiberwise of Fujiki class C .

a) When P := P2,2
t ( f )MHS is a continuous mapping from S to G1 := Gr(1, H2(Xt, C)),

there exists a neighborhood V of t in S such that P(V) ⊂ QXt .
b) When S is smooth and P is a holomorphic mapping from S to G1, we have P(S) ⊂ QXt .

Proof. — a). Let r be half the dimension of Xt. As Xt is nonempty, connected,
symplectic, and of Fujiki class C , there exists a normed symplectic class w on Xt (cf.
Proposition 3.1.25 and Definition 3.2.13). We know that w is a nonzero element of
F2H2(Xt). Since P has image lying in the Grassmannian of 1-dimensional subspaces
of H2(Xt, C) and P(t) = F2H2(Xt), we see that F2H2(Xt) is 1-dimensional, whence
generated by w. By Proposition 3.1.21, we have:

H2(Xt, C) = H0,2(Xt)⊕H1,1(Xt)⊕H2,0(Xt).
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Define E to be the hyperplane in G1 which is spanned by H0,2(Xt)⊕H1,1(Xt). More-
over, put V := P−1(G1 \ E).

Let s ∈ V be arbitrary. Since F2H2(Xs) is 1-dimensional, there exists a nonzero
element v ∈ F2H2(Xs). As H := H2( f , C) is a locally constant sheaf on S and S is
simply connected, the stalk map H(S)→ Hs is one-to-one and onto. As f is proper,
the base change map Hs → H2(Xs, C) is one-to-one and onto, too. Thus there exists
a unique γ ∈ H(S) which is sent to v by the composition of the latter two functions.
Write a for the image of γ in H2(Xt, C). Then, by the definition of P, we have

P(s) = Ca ⊂ H2(Xt, C).

Thus, by the definition of QXt (cf. Definition 3.2.23), we have P(s) ∈ QXt if and only
if qXt(a) = 0.

According to the Hodge decomposition on H2(Xt, C), there exist complex numbers
λ and λ′ as well as an element b ∈ H1,1(Xt) such that

a = λw + b + λ′w.

By Proposition 3.2.18, the following identity holds:

(3.4.10.1)
∫

Xt
(ar+1wr−1) = (r + 1)λr−1qXt(a).

Denote δ the unique lift of w with respect to the function H(S)→ H2(Xt, C). Denote
c the image of δ under H(S) → H2(Xs, C). As dim(Xs) = 2r (due to the flatness of
f ) and v ∈ F2H2(Xs), we see that vr+1 = 0 in H∗(Xs, C). In consequence, we have
vr+1cr−1 = 0 in H∗(Xs, C). As the mapping

(H∗( f , C))(S) −→ H∗(Xs, C)

is a morphism of rings, it sends γr+1δr−1 to vr+1cr−1. Therefore, as

(H4r( f , C))(S) −→ H4r(Xs, C)

is one-to-one, we see that γr+1δr−1 = 0 in (H∗( f , C))(S). But then, ar+1wr−1 = 0 in
H∗(Xt, C) as this is the image of γr+1δr−1 under

(H∗( f , C))(S) −→ H∗(Xt, C).

Thus the left hand side of equation (3.4.10.1) equals zero. As P(s) = Ca /∈ E, we have
λ 6= 0. So, we obtain qXt(a) = 0, whence P(s) ∈ QXt . As s was an arbitrary element
of V, we deduce P(V) ⊂ QXt .

b). We apply a) and conclude by means of the Identitätssatz for holomorphic
functions.

Theorem 3.4.11 (Local Torelli, II). — Let f : X → S be a proper, flat morphism of com-
plex spaces such that S is smooth and simply connected and the fibers of f have rational
singularities, are of Kähler type, and have singular loci of codimension ≥ 4. Furthermore, let
t ∈ S and suppose that Xt is connected and symplectic with Ω2

Xt
((Xt)reg) of dimension 1
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over C. Define g : Y → S to be the submersive share of f , set P′ := P2,2
t (g), and assume that

the tangent map
Tt(P

′) : TS(t) −→ TGr(H 2(Yt))
(F2H 2(Yt))

is an injection with 1-dimensional cokernel. Moreover, assume that H2( f , C) is a locally
constant sheaf on Stop, and set P := P2,2

t ( f )MHS.

a) There exists one, and only one, morphism of complex spaces

P+ : S −→ G := Gr(H2(Xt, C))

such that |P+| = P.
b) There exists one, and only one, morphism of complex spaces

P : S −→ QXt

such that j ◦ P = P+, where j : QXt → G denotes the inclusion morphism.
c) P is locally biholomorphic at t.
d) The tangent map

Tt(P
+) : TS(t) −→ TG(F2H2(Xt))

is an injection with 1-dimensional cokernel.
e) The mapping

H2(Xt, C) −→ H2((Xt)reg, C)

induced by the inclusion (Xt)reg → Xt is a bijection.

Proof. — Assertion a) is an immediate consequence of Corollary 3.4.9.
Let us write φt for the composition of the following canonical morphisms in

Mod(C):
H2(Xt, C) −→ H2(Yt, C)

∼−→H 2(Yt).

Then by Lemma 3.4.7 a), noting that, due to the flatness of f , the morphism it : Yt → Xt
induces an isomorphism Yt → (Xt)reg, we infer that φt is a monomorphism of complex
vector spaces. Denote

(φt)∗ : G = Gr(H2(Xt, C)) −→ Gr(H 2(Yt)) =: G′.

the induced morphism of Grassmannians. By Corollary 3.4.9, we have P′ = (φt)∗ ◦P+.
Since by assumption Ω2

Xt
((Xt)reg) is of dimension 1 over C, we see that F2H 2(Yt)

is of dimension 1 over C. Thus the range of P′ is a subset of the Grassmannian of
lines in H 2(Yt). In consequence, the range of P+ is a subset of the Grassmannian G1
of lines in H2(Xt, C), whence P = |P+| is a holomorphic map from S to G1. As the
fibers of f are compact, reduced, and of Kähler type, the fibers of f are of Fujiki class
C . Therefore, by Proposition 3.4.10, we have assertion b).

From b), we deduce that P′ = (φt)∗ ◦ j ◦ P. Thus by the functoriality of tangent
maps, we obtain:

Tt(P
′) = TP(t)((φt)∗) ◦ TP(t)(j) ◦ Tt(P).
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By assumption, Tt(P′) is a monomorphism with cokernel of dimension 1. Therefore,
Tt(P) is certainly a monomorphism. Besides, TP(t)(j) and TP(t)((φt)∗) are monomor-
phisms since j and (φt)∗ are closed immersions. Since the quadric QXt is smooth
at P(t) = P(t), the cokernel of TP(t)(j) has dimension 1. Thus both Tt(P) and
TP(t)((φt)∗) are isomorphisms. Since S is smooth at t, we deduce c).

As
Tt(P

+) = TP(t)(j) ◦ Tt(P),

we see that Tt(P) is an injection with 1-dimensional cokernel, which proves d).
Furthermore, TP(t)((φt)∗) is an isomorphism (if and) only if φt is an isomorphism.

Therefore, as H2(Yt, C)→H 2(Yt) is an isomorphism anyway, we see that

i∗t : H2(Xt, C) −→ H2(Yt, C)

is an isomorphism. As we have already pointed out, the morphism it is isomorphic to
the inclusion morphism (Xt)reg → Xt in the overcategory An/Xt , whence we deduce
e) by means of the functoriality of H2(−, C).

3.5. The Fujiki relation

Let X be a nonempty, compact, irreducible reduced complex space. Then n :=
dim(X) is a natural number, and we may define a function tX on H2(X, C) by means
of the assignment

a 7→
∫

X
an.

The Fujiki relation reveals how, in case X is symplectic and with Ω2
X(Xreg) of complex

dimension 1, the Beauville-Bogomolov form of X (cf. Definition 3.2.11) relates to the
function tX . We will introduce some appropriate rigorous terminology in Definition
3.5.1 below. Note that the fact that any irreducible symplectic complex manifold
satisfies the Fujiki relation is due to A. Fujiki (cf. [21]), hence the name. The main
result of this section is Theorem 3.5.11 which generalizes Fujiki’s result to a wider
class of certain, possibly nonsmooth, symplectic complex spaces.

Let us mention that D. Matsushita has advertised a result similar to ours in form
of [55, Theorem 1.2]. However, we feel that several points of Matsushita’s line of
reasoning in loc. cit. are much harder to establish than his exposition makes the
reader believe. In addition to, the proof of [55, Theorem 1.2] does unfortunately rely
on Y. Namikawa’s [61, Theorem 8], which we reprehend as explained at the very
beginning of § 3.4. We emphasize that we do not think that Matsushita’s intermediate
conclusions are wrong; on the contrary, we reckon that his argument can be amended
by occasionally invoking techniques of [62]. Anyhow, our Theorem 3.5.11 is stronger
than Matsushita’s in the respect that we do not require our space in question to be
projective, nor do we require it to be Q-factorial (or similar).
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Definition 3.5.1. — Let X be a compact, connected, symplectic complex space such
that Ω2

X(Xreg) is of dimension 1 over the field of complex numbers. We say that X
satisfies the Fujiki relation when, for all a ∈ H2(X, C), we have:

(3.5.1.1)
∫

X
a2r =

(
2r
r

)
(qX(a))r,

where r := 1/2 dim(X).

Proposition 3.5.2. — Let X be a compact, connected, symplectic complex space of Kähler
type such that Ω2

X(Xreg) is of dimension 1 over C. Then the following are equivalent:

(i) X satisfies the Fujiki relation.
(ii) There exists λ ∈ C∗ such that, for all a ∈ H2(X, C),

∫
X a2r = λ(qX(a))r, where

r := 1/2 dim(X).
(iii) QX = {l ∈ Gr(1, H2(X, C)) : (∀v ∈ l)vdim(X) = 0 in H∗(X, C)}.

Proof. — (i) implies (iii). On the one hand, let l ∈ QX . Then l ∈ Gr(1, H2(X, C)) and
qX(v) = 0 for all v ∈ l. As X satisfies the Fujiki relation, it follows that

∫
X v2r = 0

for all v ∈ l (note that r 6= 0), cf. Definition 3.5.1. Thus vdim(X) = v2r = 0 in H∗(X, C)

since as X is a compact, irreducible reduced complex space of dimension 2r, the
function ∫

X
: H2 dim(X)(X, C) −→ C

is one-to-one. On the other hand, when l ∈ Gr(1, H2(X, C)) is an element such that,
for all v ∈ l, vdim(X) = 0 in H∗(X, C), we have

∫
X v2r = 0 and hence qX(v) = 0 for all

v ∈ l by means of (3.5.1.1).
(iii) implies (ii). As X is compact, H2(X, C) is finite dimensional. Thus there exists

d ∈ N as well as a C-linear isomorphism φ : Cd → H2(X, C). Furthermore, there
exist complex polynomials f and g in d variables such that fC(x) = qX(φ(x)) and
gC(x) =

∫
X(φ(x))dim(X) for all x ∈ Cd, where fC and gC denote the polynomial

functions on Cd associated to f and g, respectively. Clearly, f and g are homogeneous
of degrees 2 and dim(X), respectively. By (iii), we have Z( f ) = Z(g) as, for all v ∈
H2(X, C), vdim(X) = 0 in H∗(X, C) if and only if

∫
X vdim(X) = 0. Thus

√
( f ) =

√
(g)

by elemetary algebraic geometry, whence f j = hg. By Corollary 3.2.26, f is irreducible
in the polynomial ring. Therefore, there exists λ ∈ C∗ and i such that g = λ f i. By
comparison of degrees, i = r. Thus, for all x ∈ Cd, we have

gC(x) = (λ f r)C(x) = λ( fC(x))r.

Plugging in φ−1, we obtain (ii).
(ii) implies (i). As X is a compact, reduced complex space of Kähler type, X is

of Fujiki class C . Hence, X being in addition symplectic, there exists a normed
symplectic class w on X by Proposition 3.1.25, Lemma 3.2.8, Proposition 3.2.14, and
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Proposition 3.2.4. By Corollary 3.2.17, we have qX(w + w) = 1. There exists a
resolution of singularities f : X̃ → X. Set w̃ := f ∗(w). Then

f ∗((w + w)2r) = ( f ∗(w + w))2r = (w̃ + w̃)2r.

By Proposition 3.2.14, w̃ is a normed generically symplectic class on X̃. In particular,
w̃ is the class of a global 2-differential on X̃. Thus we have w̃i = 0 in H∗(X̃, C) for all

i ∈ N such that i > r and likewise w̃
j
= 0 for all j ∈ N such that j > r. In consequence,

since the subring H2∗(X̃, C) of H∗(X̃, C) is commutative, calculating with the aid of
the binomial formula yields:

(w̃ + w̃)2r =
2r

∑
j=0

(
2r
j

)
w̃2r−jw̃

j
=

(
2r
r

)
w̃rw̃

r

in H∗(X̃, C). Applying Lemma 3.2.8, we obtain (recall that w̃ is normed on X̃):∫
X
(w + w)2r =

∫
X̃
(w̃ + w̃)2r =

(
2r
r

) ∫
X̃

w̃rw̃
r
=

(
2r
r

)
.

Now,

λ = λ(qX(w + w))r =
∫

X
(w + w)2r =

(
2r
r

)
.

In turn, for all a ∈ H2(X, C), (3.5.1.1) holds, which then implies (i).

Lemma 3.5.3. — Let V be a finite dimensional complex vector space, Q a quadric in P(V),
and p ∈ P(V) \ Q. Denote Gp the set of all lines in P(V) passing through p. Then there
exist a hyperplane H in P(V) and a quadric Q′ in H such that p /∈ H, rk(Q′) = rk(Q)− 1,
and

(3.5.3.1)
⋃
{L ∈ Gp : |L ∩Q| 6= 2} = K,

where K denotes the cone in P(V) with base Q′ and vertex p.

Proof. — As p ∈ P(V) \ Q, we have Q 6= P(V). Thus dimC(V) ≥ 2. Put N :=
dimC(V)− 1. We fix a coordinate system in P(V), i.e., an ordered C-basis of V, such
that p = [1 : 0 : · · · : 0]. Let f ∈ C[X0, . . . , XN ] be homogeneous of degree 2 such that:

Q = {x ∈ P(V) : f (x) = 0}.

There are a0, . . . , aN ∈ C and bij ∈ C, (i, j) ∈ {0, . . . , N}2, i < j, such that:

f = a0X2
0 + · · ·+ aN X2

N + 2 ∑
0≤i<j≤N

bijXiXj

in C[X0, . . . , XN ]. We define H := {x ∈ P(V) : x0 = 0} and
(3.5.3.2)

f ′ := (b2
01 − a0a1)X2

1 + · · ·+ (b2
0N − a0aN)X2

N + 2 ∑
1≤i<j≤N

(b0ib0j − a0bij)XiXj
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in C[X1, . . . , XN ]. Further, we set Q′ := {x ∈ H : f ′(x) = 0}. Clearly, H is a
hyperplane in P(V), Q′ is a quadric in H, and p /∈ H. We claim that, for all q ∈ H, the
cardinality of pq ∩Q is different from 2 if and only if q ∈ Q′.

For that matter, let q ∈ H be an arbitrary element. Set L := pq. Let (0, q1, . . . , qN)

be a representative of q (written in our fixed basis of V). Then (1, 0, . . . , 0) and
(0, q1, . . . , qN) make up a coordinate system in l. The coordinates corresponding to
the points p and q will be denoted by Y0 and Y1, respectively. Thus the point [y0 : y1]

of L equals the point [y0 : y1q1 : · · · : y1qN ] of P(V). That is, in coordinates of L, the
set L ∩Q is the zero set of the polynomial

g = f (Y0, q1Y1, . . . , qNY1)

= a0Y2
0 +

N

∑
i=1

ai(qiY1)
2 + 2

N

∑
j=1

b0jY0(qjY1) + 2 ∑
1≤i<j≤N

bij(qiY1)(qjY1)

= a0Y2
0 +

(
2

N

∑
j=1

b0jqj

)
Y0Y1 +

(
N

∑
i=1

aiq2
i + 2 ∑

1≤i<j≤N
bijqiqj

)
Y2

1

in C[Y0, Y1](2). Hence, we have |L ∩ Q| 6= 2 if and only if the discriminant of g
vanishes, in symbols:

(3.5.3.3)

(
N

∑
j=1

b0jqj

)2

− a0

(
N

∑
i=1

aiq2
i + 2 ∑

1≤i<j≤N
bijqiqj

)
= 0.

Recalling (3.5.3.2), we see that the left hand side of (3.5.3.3) equals f ′(q1, . . . , qN).
Therefore, we have established our claim.

Let us deduce (3.5.3.1) from the claim. K is to denote the cone in P(V) with base
Q′ and vertex p, as in the formulation of the lemma. Let L ∈ Gp such that |L∩Q| 6= 2.
There exists q ∈ H such that L = pq. The claim implies q ∈ Q′. Thus L ⊂ K. For the
other inclusion let x ∈ K be arbitrary. By definition of the cone K, there exists q ∈ Q′

such that x ∈ pq, whence |pq ∩Q| 6= 2 again by the claim. Therefore, x is contained
in the left hand side of (3.5.3.1).

It remains to show that rk( f ′) = rk( f )− 1. Denote by A and A′ the symmetric
coefficient matrices associated to f and f ′, respectively. The rows of A are numbered
starting with 0. When first multiplying each of the rows 1 to N of A by −a0 and then
adding, for i = 1, . . . , N, b0i-times the 0-th row to the i-th row, one obtains the matrix

B :=
(

a0 b0∗
0 A′

)
.

As p = [1 : 0 : · · · : 0] 6= Q, we have a0 6= 0. In consequence, rk(A) = rk(B),
and rk(B) = rk(A′) + 1. Noting that rk( f ) = rk(A) and rk( f ′) = rk(A)′, we are
finished.
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Corollary 3.5.4. — Let V be a finite dimensional complex vector space, Q a quadric of rank
≥ 2 in P(V), and p ∈ P(V) \ Q. Then there exists a nonempty, Zariski-open subset U of
P(V) such that p /∈ U and, for all q ∈ U, we have |L ∩Q| = 2, where L denotes the line in
P(V) joining p and q.

Proof. — By Lemma 3.5.3 there exist a hyperplane H in P(V) and a quadric Q′ in H
such that p /∈ H, rk(Q′) = rk(Q)− 1, and (3.5.3.1) holds, where Gp and K stand for
the set of all lines in P(V) passing through p and the cone with base Q′ and apex p,
respectively. Set U := P(V) \ K. Then as K is an algebraic set in P(V), U is Zariski-
open in P(V). Since rk(Q) ≥ 2 by assumption, we have rk(Q′) = rk(Q)− 1 ≥ 1,
whence H \ Q′ 6= ∅. Thus U 6= ∅ as H \ Q′ ⊂ U. Since Q′ 6= ∅, p ∈ K; thus p /∈ U.
Now let q be an arbitrary element of U. Let L be the line in P(V) joining p and q. Then
if |L ∩Q| 6= 2, we would have L ⊂ K by (3.5.3.1) and therefore q ∈ K, which is clearly
not the case looking at the definition of U. In conclusion, |L ∩Q| = 2.

Lemma 3.5.5. — Let A be a commutative C-algebra, V a finite dimensional C-vector sub-
space of A, r ∈ N \ {0}, and Q a quadric of rank ≥ 2 in P(V). Assume that there exists
c ∈ V such that c2r 6= 0 in A. Moreover, assume that

Q ⊂ R := {p ∈ P(V) : (∀x ∈ p)xr+1 = 0 in A}.

Then we have:

Q = R = S := {p ∈ P(V) : (∀x ∈ p)x2r = 0 in A}.

Proof. — Obviously we have Q ⊂ R ⊂ S since r + 1 ≤ 2r (thus for all x ∈ A, xr+1 = 0
in A implies x2r = 0 in A). Hence, it suffices to show that S ⊂ Q. For that matter, let p
be an arbitrary element of S. Assume that p is not an element of Q. Then by Corollary
3.5.4, there exists a nonempty, Zariski-open subset U of P(V) such that p /∈ U and,
for all q ∈ U, one has |L ∩Q| = 2, where L stands for the line in P(V) joining p and q.
Observe that S is an algebraic set in P(V). Since there exists c ∈ V such that c2r 6= 0 in
A, P(V) \ S 6= ∅. Thus U \ S 6= ∅ and there exists q ∈ U \ S. Denote the line in P(V)

joining p and q by L. Then |L ∩ Q| = 2, i.e., there exist p′ and q′ such that p′ 6= q′

and L ∩Q = {p′, q′}. Since Q ⊂ R, we have p′, q′ ∈ R, whence there exist x ∈ p′ and
y ∈ q′ such that xr+1 = yr+1 = 0 in A. As the multiplication of A is commutative, we
infer using the binomial theorem that, for all λ, µ ∈ C:

(3.5.5.1) (λx + µy)2r =
2r

∑
j=0

(
2r
j

)
(λx)2r−j(µy)j =

(
2r
r

)
(λrµr)xryr.

Let v ∈ p and w ∈ q. Since x and y span the line L, there are λ, µ, λ1, µ1 ∈ C such
that v = λx + µy and w = λ1x + µ1y. Since q /∈ S, we have w2r 6= 0 in A. Therefore,
substituting λ1 and µ1 for λ and µ, respectively, in (3.5.5.1), we see that xryr 6= 0 in A.
As p ∈ S, we have v2r = 0. Thus now, (3.5.5.1) yields that λrµr = 0. In turn, λ = 0
and consequently p = q′ or else µ = 0 and consequently p = p′. Either way, p ∈ Q.
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This argument shows that indeed, for all p ∈ S, we have p ∈ Q. In other words,
S ⊂ Q, quod erat demonstrandum.

Proposition 3.5.6. — Let X be a compact, connected, symplectic complex space of Kähler
type such that Ω2

X(Xreg) is of dimension 1 over C. Assume that

(3.5.6.1) QX ⊂ {l ∈ Gr(1, H2(X, C)) : (∀v ∈ l)vr+1 = 0 in H∗(X, C)},

where r := 1/2 dim(X). Then X satisfies the Fujiki relation.

Proof. — Define A to be the complex subalgebra H2∗(X, C) of H∗(X, C) and V to be
the C-submodule of A which is given by the canonical image of H2(X, C) in A. Then
A is a commutative C-algebra and V is a finite dimensional C-submodule of A (as X
is compact). Evidently, r is a natural number different from 0. Set

Q := {p ∈ P(V) : (∀x ∈ p)qX(ψ(x)) = 0},

where ψ denotes the inverse function of the canonical isomorphism H2(X, C)→ V.
Then Q is a quadric of rank ≥ 2 in P(V) by Corollary 3.2.26. By Proposition 3.1.25,
there exists a symplectic class w on X. We identify w with its image in V. As in the
proof of Proposition 3.5.2, we calculate in A (or H∗(X, C)):

(w + w)2r =

(
2r
r

)
wrwr.

By Proposition 3.2.4,
∫

X wrwr > 0; in particular, (w + w)2r 6= 0 in A. By (3.5.6.1), we
see that

Q ⊂ {p ∈ P(V) : (∀x ∈ p)xr+1 = 0 in A}.
Hence by Lemma 3.5.5,

Q = {p ∈ P(V) : (∀x ∈ p)x2r = 0 in A}.

This implies that (iii) of Proposition 3.5.2 holds. Applying Proposition 3.5.2, one infers
that X satisfies the Fujiki relation.

Lemma 3.5.7. — Let f : X → S be a proper, equidimensional morphism of complex spaces
and t ∈ S such that Xt is connected and symplectic, Ω2

Xt
((Xt)reg) is of dimension 1 over

the field of complex numbers, S is simply connected, and the fibers of f are of Fujiki class C .
Moreover, assume that, for all i ∈ N, the sheaf Hi( f , C) (cf. (A.3.11)) is locally constant on
Stop. Set P := P2,2

t ( f )MHS. Suppose that the mapping

P : S −→ G := Gr(1, H2(Xt, C))

is holomorphic and there exists a neighborhood W of P(t) in G such that

QXt ∩W ⊂ P(S).

Then Xt satisfies the Fujiki relation.
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Proof. — Define r to be the unique natural number such that 2r = dim(Xt). Further
on, introduce the following notation, where we exponentiate in the ring H∗(Xt, C),
into which H2(Xt, C) embeds canonically, and the “0” shall be considered the zero
element of the ring H∗(Xt, C):

Rt := {l ∈ |G| : (∀v ∈ l)vr+1 = 0},
St := {l ∈ |G| : (∀v ∈ l)v2r = 0}.

As f is locally topologically trivial at t and the topological space Stop is locally con-
nected, there exists a connected open neighborhood V of t in Stop such that the sheaf
H∗( f , C) is constant on Stop over V. In particular, for all s ∈ V, the canonical maps

(H∗( f , C))(V) −→ (H∗( f , C))s

are bijective.
Let now s ∈ V be arbitrary and v ∈ P(s). Put ρ := ρ2( f , C). Since Stop is simply

connected, there exists a unique element a in (Π(Stop))1(s, t). Put φs,t := (ρ1(s, t))(a)
and recall that thus

φs,t : H2(Xs, C) −→ H2(Xt, C)

is an isomorphism of complex vector spaces. Therefore, there exists a unique element
u ∈ H2(Xs, C) such that φs,t(u) = v; note that P(s) ⊂ H2(Xt, C), whence v ∈
H2(Xt, C). By the definition of P2,2

t ( f )MHS, we have

P(s) = φs,t[F2H2(Xs)],

which tells us that u ∈ F2H2(Xs). Since f is equidimensional, we have dim(Xs) =

dim(Xt) = 2r. Consequently, we have ur+1 = 0 in H∗(Xs, C) since the cohomological
cup product is filtered with respect to the Hodge filtrations on the cohomology of Xs.
As the morphism f is proper, the base change map

(H2( f , C))t −→ H2(Xt, C)

is a bijection. Therefore, there exists one, and only one, γ ∈ (H2( f , C))(V) which is
sent to v by the composition of functions:

(3.5.7.1) (H2( f , C))(V) −→ (H2( f , C))t −→ H2(Xt, C).

By the definition of ρ2( f , C), we know that γ is sent to u by the composition of
functions (3.5.7.1), where we replace t by s. Clearly, the following diagram of sets and
functions commutes:

(3.5.7.2) (H2( f , C))(V) //

��

(H2( f , C))s //

��

H2(Xs, C)

��

(H∗( f , C))(V) // (H∗( f , C))s // H∗(Xs, C)

Thus the canonical image of γ in (H∗( f , C))(V) is mapped to the canonical image of
u in H∗(Xs, C) by the composition of the two functions in the bottom row of (3.5.7.2).
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In addition, the composition of the two functions in the bottom row of (3.5.7.2) is a
morphism of rings from (H∗( f , C))(V) to H∗(Xs, C). Thus the composition of the two
functions in the bottom row of (3.5.7.2) sends γr+1 to ur+1, where γ and u denote the
canonical images of γ and u in (H∗( f , C))(V) and H∗(Xs, C), respectively. Employing
the fact that the composition of the two functions in the bottom row of (3.5.7.2) is
one-to-one (it is a bijection actually), we further infer that γr+1 = 0 in (H∗( f , C))(V).
Playing the same game as before with t in place of s, we see that γr+1 is sent to vr+1

by the composition of functions

(H∗( f , C))(V) −→ (H∗( f , C))t −→ H∗(Xt, C),

whence vr+1 = 0 in H∗(Xt, C). As v was an arbitrary element of P(s) and s was an
arbitrary element of V, we obtain that P(V) ⊂ Rt.

As P : S → G is a holomorphic mapping, S is a smooth and connected complex
space, Rt is a closed analytic subset of G, and V is an open subset of S, the identity
theorem for holomorphic mappings yields P(S) ⊂ Rt. We know there exists an
open neighborhood W of P(t) in G such that QXt ∩W ⊂ P(S). In consequence,
QXt ∩W ⊂ Rt. As P(t) ∈ QXt , we know that QXt ∩W is nonempty. Thus since QXt

is an irreducible closed analytic subset of G and Rt is a closed analytic subset of G,
we have QXt ⊂ Rt. Consulting Proposition 3.5.6, it follows that Xt satisfies the Fujiki
relation.

Definition 3.5.8. — a) Let f : E→ B be a morphism of topological spaces and b ∈
B. f is said to be a (topological) fiber bundle at t when there exist an open neighborhood
V of b in B, a topological space F, and a homeomorphism

h : X| f−1(V) −→ (B|V)× F

such that f = pr0 ◦h, where pr0 denotes the projection to B|V.
b) Let f : X → S be a morphism of ringed spaces (or else complex spaces) and

t ∈ S. Then f is said to be locally topologically trivial at t when ftop : Xtop → Stop is a
fiber bundle at t.

Lemma 3.5.9. — Let f : X → S be a proper, flat morphism of complex spaces and t ∈ S such
that Xt is connected and symplectic, Ω2

Xt
((Xt)reg) is of dimension 1 over the field of complex

numbers, S is smooth and simply connected, and the fibers of f have rational singularities, are
of Kähler type, and have singular loci of codimension ≥ 4. Denote g : Y → S the submersive
share of f and set P′ := P2,2

t (g). Assume that the tangent map

Tt(P
′) : TS(t) −→ TGr(H 2(Yt))

(F2H 2(Yt))

is an injection with 1-dimensional cokernel and f is locally topologically trivial at t. Then Xt
satisfies the Fujiki relation.
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Proof. — As S is smooth (at t) and f is locally topologically trivial at t, there ex-
ists an open neighborhood V of t in S such that S|V is isomorphic to the d-dimen-
sional complex unit ball for some d ∈ N and ( fV)top is isomorphic to the projection
(S|V)top× F → (S|V)top for some topological space F. This last condition implies that,
for all i ∈ N, the sheaf Hi( fV , C) is a constant sheaf on S|V. Moreover, fV : XV → S|V
is a proper, flat morphism of complex spaces, S|V is smooth and simply connected,
and the fibers of fV have rational singularities, are of Kähler type, and have singular
loci of codimension ≥ 4; (XV)t is connected and symplectic and

dimC

(
Ω2

(XV)t
(((XV)t)reg)

)
= 1.

Let gV : YV → S|V be the submersive share of fV and set P′V := P2,2
t (gV). Let

it : (YV)t → Yt be the canonical morphism of complex spaces, which is induced by
the fact that YV is an open complex subspace of Y. Write

i∗t : H 2(Yt) −→H 2((YV)t)

for the associated morphism taking algebraic de Rham cohomology. As it is an
isomorphism of complex spaces, i∗t is an isomorphism in Mod(C). Hence, i∗t gives
rise to an isomorphism of complex spaces

Gr(H 2(Yt)) −→ Gr(H 2((YV)t))

that we sloppily denote i∗t , too. Given this notation we find that

P′V = i∗t ◦ P′|V.

Thus as Tt(P′) is an injection with 1-dimensional cokernel, Tt(P′V) is an injection with
1-dimensional cokernel. Define P := P2,2

t ( fV)MHS in the sense of

P : S|V −→ G := Gr(H2((XV)t, C))

being a morphism of complex spaces. Then by Theorem 3.4.11, there exists a mor-
phism of complex spaces P : S|V → Q(XV)t

such that P = i ◦ P, where i denotes the
inclusion morphism Q(XV)t

→ G, and P is biholomorphic at t. In particular, there
exist open neighborhoods V′ of t in S|V and W ′ of P(t) in Q(XV)t

such that P induces
an isomorphism from (S|V)|V′ to Q(XV)t

|W ′. Specifically, we have P(V′) = W ′.
Since (Q(XV)t

)top is a topological subspace of Gtop, there exists an open subset W of
Gtop such that W ′ = Q(XV)t

∩W. Therefore, exploiting the fact that P and P agree
set-theoretically, W is an open neighborhood of P(t) in Gtop and

Q(XV)t
∩W = P(V′) ⊂ P(S).

Now from Lemma 3.5.7 (applied to fV and t), we infer that (XV)t satisfies the Fujiki
relation. As (XV)t ∼= Xt in An, we deduce that Xt satisfies the Fujiki relation.
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Theorem 3.5.10. — For all compact complex spaces X there exist a proper, flat morphism
of complex spaces f : X → S and t ∈ S such that X ∼= Xt in An and the morphism f is
semi-universal in t and complete in s for all s ∈ S.

Proof. — The statement is proven as “Hauptsatz” in [25, § 5](2).

Theorem 3.5.11. — Let X be a compact, connected, symplectic complex space of Kähler type
such that dimC(Ω2

X(Xreg)) = 1 and codim(Sing(X), X) ≥ 4. Then X satisfies the Fujiki
relation.

Proof. — By Theorem 3.5.10, as X is compact complex space, there exist a proper, flat
morphism of complex spaces f0 : X0 → S0 and t ∈ S0 such that f0 is semi-universal in
t and X ∼= (X0)t in An. By Theorem 3.3.18, the complex space S0 is smooth at t. By
Corollary 3.3.19 (or else Theorem 3.3.17), there exists a neighborhood V0 of t in S0 such
that, for all s ∈ V0, the complex space (X0)s is connected, symplectic, of Kähler type,
and with codimension of its singular locus not deceeding 4. By the smoothness of S0
at t, there exists an open neighborhood V′0 of t in S0 such that V′0 ⊂ V0 and S0|V′0 is
isomorphic in An to some complex unit disk. Define f1 : X1 → S1 to be the morphism
of complex spaces obtained from f0 by shrinking the base to V′0. Then by Theorem
3.4.4, the tangent map Tt(P′1) is an injection with cokernel of dimension 1, where
P′1 := P2,2

t (g1) and g1 denotes the submersive share of f1. Since P′1 is a morphism
between two complex manifolds, there exists an open neighborhood V1 of t in S1 such
that Ts(P′1) is an injection with cokernel of dimension 1 for all s ∈ V1. Let V′1 be an
open neighborhood of t in S1 such that V′1 ⊂ V1 and S1|V′1 is isomorphic in An to
some complex unit disk, and define f : X→ S to be the morphism of complex spaces
obtained from f1 by shrinking the base to V′1.

Define g : Y → S to be the submersive share of f and set P′ := P2,2
t (g). Then g

equals the morphism obtained from g1 by shrinking the base to V′1. In consequence,
P′ is isomorphic to P′1|V′1 as an arrow under S = S1|V′1 in An. In particular, for all
s ∈ |S| = V′1, as Ts(P′1) is an injection with cokernel of dimension 1, the map Ts(P′1|V′1)
is an injection with cokernel of dimension 1, hence Ts(P′) is an injection with cokernel
of dimension 1. Note that P2,2

s (g) is isomorphic to P2,2
t (g) as an arrow under S in

An for all s ∈ S. Thus, Ts(P
2,2
s (g)) is an injection with cokernel of dimension 1 for

all s ∈ S. Note that on account of Proposition 3.1.17, for all s ∈ S, as the complex
space Xs ∼= (X0)s is symplectic, Xs has rational singularities. Therefore, by Corollary
2.4.15, the module H 2,0(g) is locally finite free on S and, for all s ∈ S, the Hodge base
change

(H 2,0(g))(s) −→H 2,0(Ys)

(2)One should note that in [25] Grauert calls “versell” what we call “semi-universal”; for the modern
reader this might be confusing given that today people use the (English) word “versal” as a synonym for
“complete”, which is a condition strictly weaker than that of semi-universality. So, Grauert’s (German)
“versell” is not equivalent to but strictly stronger than the contemporary (English) “versal”.
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is an isomorphism in Mod(C). Observe that, for all s ∈ S, we have Ys ∼= (Xs)reg due
to the flatness of f ; thus:

H 2,0(Ys) ∼= H 2,0((Xs)reg) ∼= Ω2
(Xs)reg

((Xs)reg) ∼= Ω2
Xs
((Xs)reg)

in Mod(C). Since S is connected and Ω2
Xt
((Xt)reg) is 1-dimensional (given Xt ∼=

(X0)t ∼= X), we infer that the module H 2,0(g) is locally free of rank 1 on S and that,
for all s ∈ S, the complex vector space Ω2

Xs
((Xs)reg) is 1-dimensional. By stratification

theory and Thom’s First Isotopy Lemma, for f being proper, there exists a connected
open subset T of S such that t ∈ T and f is locally topologically trivial at s for all
s ∈ T. Employing Lemma 3.5.9, we obtain that, for all s ∈ T, the space Xs satisfies the
Fujiki relation.

Now let a ∈ H2(Xt, C). Since f is proper, the base change map

(H2( f , C))t −→ H2(Xt, C)

is a surjection (a bijection, in fact). Therefore, there exists a connected open neighbor-
hood V of t in S and ã ∈ (H2( f , C))(V) such that ã is sent to a by the composition of
canonical functions

(3.5.11.1) (H2( f , C))(V) −→ (H2( f , C))t −→ H2(Xt, C).

As t ∈ T and the topological space Stop is first-countable at t, there exists an N-indexed
sequence (sα) of elements of T ∩V such that (sα) converges to t in Stop. When s ∈ V,
let us write as for the image of ã under the composition of functions (3.5.11.1), where
we replace t by s. Set r := 1/2 dim(Xt) (which makes sense as the complex space Xt is
nonempty, connected, and symplectic) and define:

φ := {(s,
∫
Xs
(as)

2r) : s ∈ V} and ψ := {(s, qXs(as)) : s ∈ V}.

Then φ is a locally constant function from Stop|V to C. In particular, we have
lim(φ(sα)) = φ(t). In a separate proof below we show that lim(ψ(sα)) = ψ(t).
For all α ∈ N, since sα ∈ T, the space Xsα satisfies the Fujiki relation and thus, since
1/2 dim(Xsα) = 1/2 dim(Xt) = r, we have:

φ(sα) =

(
2r
r

)
(ψ(sα))

r.

Accordingly, remarking that by the definition of at we have a = at, we obtain:∫
Xt

a2r =
∫
Xt
(at)

2r = φ(t) = lim(φ(sα)) = lim
((

2r
r

)
(ψ(sα))

r
)

(3.5.11.2)

=

(
2r
r

)
(ψ(t))r =

(
2r
r

)
(qXt(at))

r =

(
2r
r

)
(qXt(a))r.

As in the deduction of (3.5.11.2) a was an arbitrary element of H2(Xt, C), we see that
Xt satisfies the Fujiki relation. In consequence, as X ∼= (X0)t ∼= Xt in An, we see that
X satisfies the Fujiki relation.
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Proof that lim(ψ(sα)) = ψ(t). — Assume that a = 0 in H2(Xt, C). Then we have
(ã)t = 0 in the stalk (H2( f , C))t. Thus there exists an open neighborhood W of t in
S such that W ⊂ V and ã restricts to the zero element of (H2( f , C))(W) within the
presheaf H2( f , C). This implies that, for all s ∈W, we have as = 0 in H2(Xs, C) and
consequently qXs(as) = 0. Therefore clearly, lim(ψ(sα)) = ψ(t).

Now, assume that a 6= 0 in H2(Xt, C). Then there exists k ∈ N>0 as well as a k-tuple
b such that b is an ordered C-basis for H2(Xt, C) and b0 = a. For any s ∈ S, denote by
is the inclusion morphism complex spaces (Xs)reg → Xs and set i∗s := H2(is, C). Since
i∗t is injective, there exists l ∈ N with k ≤ l and an l-tuple b′ such that b′ is an ordered
C-basis for H2((Xt)reg, C) and b′|k = i∗t ◦ b. Define H′ to be the module of horizontal
sections of ∇2

GM(g). By Proposition 1.6.10, H′ is a locally constant sheaf on S. Since S
is simply connected, H′ is a constant sheaf on S and the stalk map H′(S)→ (H′)t is
a bijection. Therefore, there exists a unique l-tuple v of elements of H′(S) which is
pushed forward to b′ by the composition of evident functions:

(3.5.11.3) H′(S) −→ (H′)t −→ b∗t (H
2(g)) −→H 2((Xt)reg) −→ H2((Xt)reg, C).

By Corollary 2.4.15, we have H 2,0(g) ∼= F2H 2(g) in Mod(S). Thus as the module
H 2,0(g) is locally free of rank 1 on S, the module F2H 2(g) is locally free of rank 1
on S, and as S is contractible, we even have OS ∼= F2H 2(g) in Mod(S). Since v is an
ordered OS(S)-basis for (H 2(g))(S), we may write the image of 1 ∈ OS(S) under the
composition

OS −→ F2H 2(g) −→H 2(g)

as ∑i∈l λivi for some l-tuple λ with values in OS(S). For the time being, fix some s ∈ S.
Define b′s to be the pushforward of v under the composition of functions (3.5.11.3),
where one replaces t by s. Set:

v′s := λ0(s)(b′s)0 + · · ·+ λl−1(s)(b′s)l−1.

Then v′s is a symplectic class on (Xs)reg. Hence there exists one, and only one, vs ∈
H2(Xs, C) such that i∗s (vs) = v′s; moreover, vs is a symplectic class on Xs. Therefore,
Is :=

∫
Xs

vr
svs

r > 0 (note that 1/2 dim(Xs) = r since dim(Xs) = dim(Xt)). Assume
that s ∈ T. Then i∗s is an isomorphism of C-vector spaces; thus there exists one,
and only one, l-tuple bs of elements of H2(Xs, C) such that i∗s ◦ bs = b′s. We have
vs = ∑i∈l λi(s)(bs)i. Therefore,

Is = ∑
ν,ν′∈Nl

|ν|=|ν′ |=r

(
r
ν

)(
r
ν′

)
(λ(s))ν(λ(s))ν′

∫
Xs
(bs)

ν(bs)
ν′ .

Since, for any i ∈ l, the (bs)i’s are induced by a section in H2( f , C) over T, we know
that, for any ν, ν′ ∈ Nl , the function assigning

∫
Xs
(bs)ν(bs)ν′ to s ∈ T, is locally

constant on S; as T is a connected open subset of S, the latter functions are even
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constant. As T 6= ∅, there exists, for all ν, ν′ ∈ Nl , a unique complex number Cν,ν′

such that, for all s ∈ T, we have
∫
Xs
(bs)ν(bs)ν′ = Cν,ν′ .

Since b is a basis for H2(Xt, C), we may write vt as linear combination of the (bi),
i ∈ k. Applying i∗t to this linear combination, comparing with the definition of v′t and
noting that b′t = b′, we see that

vt = λ0(t)b0 + · · ·+ λk−1(t)bk−1

and that
λk(t) = · · · = λl−1(t) = 0.

Since the base change map

(H2( f , C))t −→ H2(Xt, C)

is a surjection (indeed, it is even a bijection), there exists a connected open neighbor-
hood W of t in S as well as a k-tuple u of elements of (H2( f , C))(W) such that the
pushforward of u under the composition of functions

(3.5.11.4) (H2( f , C))(W) −→ (H2( f , C))t −→ H2(Xt, C)

equals b. Since t ∈ T, there exists s∗ ∈ W ∩ T. It is an easy matter to verify that
composing u with the composition of functions (3.5.11.4), where one replaces t by s∗,
we obtain bs∗ |k. Therefore, for any ζ, η ∈ Nk such that |ζ|+ |η| = 2r, we have:∫

Xt
bζb

η
=
∫
Xs∗

(bs∗ |k)ζ(bs∗ |k)η =
∫
Xs∗

(bs∗)
ζ(bs∗)

η = Cζ,η .

Thus:

It = ∑
ν,ν′∈Nk

|ν|=|ν′ |=r

(
r
ν

)(
r
ν′

)
(λ(t))ν(λ(t))ν′Cν,ν′ .

For any i ∈ l, the function assigning λi(s) to s ∈ S, is a holomorphic function on S;
in particular, it is a continuous function from Stop to C, and lim(λi(sα)) = λi(t). In
consequence, we see that:

lim(Isα) = ∑
ν,ν′∈Nl

|ν|=|ν′ |=r

(
r
ν

)(
r
ν′

)
(λ(t))ν(λ(t))ν′Cν,ν′

= ∑
ν,ν′∈Nk

|ν|=|ν′ |=r

(
r
ν

)(
r
ν′

)
(λ(t))ν(λ(t))ν′Cν,ν′ = It.

Now, for any s ∈ S, set ws := ( 2r
√

Is)−1vs in H2(Xs, C). Then clearly, for all s ∈ S,
ws is a normed symplectic class on Xs. Define µ to be the unique function on S which
sends s ∈ S to the l-tuple µs such that, for all i ∈ l, we have:

(µs)i = ( 2r
√

Is)
−1λi(s).
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Then, for all s ∈ T,

ws = (µs)0(bs)0 + · · ·+ (µs)l−1(bs)l−1,

and

wt = (µt)0b0 + · · ·+ (µt)k−1bk−1.

Since a = b0 and V is a connected open subset of S, it is easy to verify that, for all
s ∈ V ∩ T, we have as = (bs)0. Hence, applying Proposition 3.2.15, we infer that, for
all s ∈ V ∩ T:

qXs(as) =
r
2

∫
Xs

wr−1
s ws

r−1a2
s + (1− r)

∫
Xs

wr−1
s ws

ras

∫
Xs

wr
sws

r−1as

=
r
2 ∑

ν,ν′∈Nl

|ν|=|ν′ |=r−1

(
r− 1

ν

)(
r− 1

ν′

)
(µs)

ν(µs)
ν′Cν+(2,0,...,0),ν′

+ (1− r)

 ∑
ν,ν′∈Nl

|ν|=r−1,|ν′ |=r

(
r− 1

ν

)(
r
ν′

)
(µs)

ν(µs)
ν′Cν+(1,0,...,0),ν′



·

 ∑
ν,ν′∈Nl

|ν|=r,|ν′ |=r−1

(
r
ν

)(
r− 1

ν′

)
(µs)

ν(µs)
ν′Cν+(1,0,...,0),ν′


Therefore, since we have lim(µsα) = µt:

lim(qXsα
(asα)) =

r
2 ∑

ν,ν′∈Nl

|ν|=|ν′ |=r−1

(
r− 1

ν

)(
r− 1

ν′

)
(µt)

ν(µt)
ν′Cν+(2,0,...,0),ν′

+ (1− r)

 ∑
ν,ν′∈Nl

|ν|=r−1,|ν′ |=r

(
r− 1

ν

)(
r
ν′

)
(µt)

ν(µt)
ν′Cν+(1,0,...,0),ν′



·

 ∑
ν,ν′∈Nl

|ν|=r,|ν′ |=r−1

(
r
ν

)(
r− 1

ν′

)
(µt)

ν(µt)
ν′Cν+(1,0,...,0),ν′


=

r
2 ∑

ν,ν′∈Nk

|ν|=|ν′ |=r−1

(
r− 1

ν

)(
r− 1

ν′

)
(µt)

ν(µt)
ν′Cν+(2,0,...,0),ν′
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+ (1− r)

 ∑
ν,ν′∈Nk

|ν|=r−1,|ν′ |=r

(
r− 1

ν

)(
r
ν′

)
(µt)

ν(µt)
ν′Cν+(1,0,...,0),ν′



·

 ∑
ν,ν′∈Nk

|ν|=r,|ν′ |=r−1

(
r
ν

)(
r− 1

ν′

)
(µt)

ν(µt)
ν′Cν+(1,0,...,0),ν′


= qXt(at).

This shows that lim(ψ(sα)) = ψ(t).



APPENDIX A

FOUNDATIONS AND CONVENTIONS

This appendix serves the purpose of increasing the rigor, the consistency, and the
comprehensibility of the bulk of our text, i.e., of Chapters 1, 2, and 3. More concretely,
in what follows, we will lay out certain conventions of speech, certain notational
conventions, as well as certain conventions concerning the axiomatic foundations.

Disclaimer: We do not intend to explain (in a textbook sort of way) any of the
concepts that we are going to address in the subsequent. Quite on the contrary, will
we assume the reader’s familiarity with the mentioned concepts so that we merely
clarify our points of view. For instance, when, in the realm of Definition A.2.1, we
define what a category is, our intention is not to explain the notion of a category to
a reader who has not heard of what a category is beforehand; rather would we like
to tell the reader who is familiar with the concept of categories which of the various
possible definitions (a single collection of morphisms versus a collection of hom-sets,
small versus large, etc.) we adopt.

A.1. Set Theory

A.1.1. Our exposition is formally based upon the Zermelo-Fraenkel axiomatic set
theory with axiom of choice, “ZFC” (cf. e.g., [41, Chapter I.1]). All statements we
make can be formulated in ZFC. All of our proofs can be executed in ZFC.

A.1.2. Note that occasionally we do work with classes. For instance, do we consider
the large categories Mod(X) of modules on a given ringed space X or the large
category An of complex analytic spaces. We feel that our reader has two choices of
how to deal with the occurrences of these concepts: The first possibility is to strictly
stick to ZFC and interpret classes not as objects of the theory but as metaobjects, i.e., at
each occurrence of a class, the reader replaces the class by a formula in the language of
ZFC which describes the class. The second possibility would be to use a conservative
extension of ZFC, such as the von Neumann-Bernay-Gödel set theory (NBG), which
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can deal with classes as an additional type of the theory, as an overall foundation
for our text. This second approach has the advantage that classes can be quantified
over, so that, for instance, “for all (large) abelian categories the five lemma holds” or
“for all (large) abelian categories C, D, and E, all functors f : C → D and g : D → E,
and all objects X of C such that (. . . ) there exists a Grothendieck spectral sequence”
become valid statements. Some sources we refer to make (implicitly or explicitly) use
of statements where classes are quantified over.

We point out that we do not presuppose any sort of universe axiom like e.g., the
existence of Grothendieck universes. Mind that, even though many authors in modern
algebraic geometry seem to have forgotten about this, the standard construction of a
(bounded) derived category fails for arbitrary large abelian categories since hom-sets,
and not even hom-classes, do exist. Therefore, we cannot (and won’t) talk about the
D+ of Mod(X), for instance. Yet, we do fine without it.

A.1.3. In our set theoretic notation (like

{x : φ(x)}, ⊂, ×, dom, ran, XY, inf, sup,

etc.) and terminology (like “function”, “domain”, “range”, etc.) we follow [41].
Occasionally, we will use the words mapping and map as synonyms for the word
function. When f is a function and A is any set, we will occasionally write the
image of A under f with square brackets instead of round brackets for sake of better
readability in formulas that already contain several round brackets, i.e., we write f [A]

instead of f (A). The inverse image of A under f will be written f−1(A) as opposed
to Jech’s suggestion of f−1(A) in loc. cit.

A.1.4. We denote N the set of natural numbers. N is, by definition, the least nonzero
limit ordinal [41, Part I, Definition 2.13]. Equivalently, N is the smallest inductive
set, which is in turn nothing but the intersection of the class of inductive sets. The
elements of N are also called finite ordinals. For the first finite ordinals we have

0 = ∅, 1 = 0∪ {0}, 2 = 1∪ {1}, 3 = 2∪ {2}, . . .

In that respect, we note that for ordinal numbers, the <-relation coincides (by defini-
tion) with the ∈-relation.

Sometimes, when we would like to stress the interpretation of N as the first infinite
ordinal number, we will write ω instead of N. For instance, when a nonempty complex
space X is not of finite dimension, we have dim(X) = ω; frequently, authors write
this statement as dim(X) = ∞ or dim(X) = +∞, which is of course not language
immanent.

A.1.5. By an ordered pair we mean a Kuratowski pair; this is written (x, y). We define
(ordered) triples, quadruples, etc. by iteration of Kuratowski pairs, i.e.,

(a, b, c) := ((a, b), c), (a, b, c, d) := ((a, b, c), d), . . .
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In contrast, when r is a set (e.g., a natural number, cf. above), an r-tuple is nothing
but a function with domain of definition equal to r; in this context we occasionally
use the words family or sequence as synonyms for the word tuple. Note that we obtain
the competing notions of “2-tuple” versus “ordered pair”, “3-tuple” versus “ordered
triple”, etc.

A.1.6. Sometimes, especially when working with “large” categories and functors (cf.
§ A.2), one is in need of notions of ordered pairs, triples, quadruples, etc. for classes
rather than for sets. Let I be any class or set. Then an I-tuple of classes or I-family of
classes or I-tuple in the class sense is a class F with the property that every element of F
can be written in the form (i, x), where i is an element of I. When F is an I-tuple of
classes and i ∈ I, then the i(-th) component of F is defined to be the class

Fi := {x : (i, x) ∈ F}.

Now we use the words ordered pair, triple, quadruple, etc. of classes as synonyms for a
2-tuple, 3-tuple, 4-tuple, etc. of classes, respectively. Mind the differences between the
notions of an ordered pair (in the ordinary sense), a 2-tuple (in the ordinary sense),
and a 2-tuple in the class sense.

A.1.7. We use the symbols Z, Q, R, and C to denote the set of integers, the set of rational
numbers, the set of real numbers, and the set of complex numbers, respectively, where we
follow the constructions given in [15].

As is customary, we freely interpret any one of the canonical injections

N −→ Z −→ Q −→ R −→ C

as an actual inclusion.
By abuse of notation, we denote Z, Q, R, and C also the ring of integers, the field of

rational numbers, the field of real numbers, and the field of complex numbers, respectively.

A.2. Categories

Our primary view on categories is the one which uses a family of hom-sets (cf. [42,
Definition 1.2.1], [49, Section 1.1.1]).

Definition A.2.1. — A set (resp. class) C is a category when there exist sets (resp.
classes) O, H, I, and V such that the following assertions hold:

a) C = (O, H, I, V) (where the ordered quadruple possibly needs to be interpreted
in the class sense).

b) H is a function on O×O.
c) I is a function on O such that, for all x ∈ O, we have I(x) ∈ H(x, x).
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d) V is a function on O×O×O such that, for all (x, y, z) ∈ O×O×O, V(x, y, z)
is a function

V(x, y, z) : H(y, z)× H(x, y) −→ H(x, z).

e) (Units) For all x, y ∈ O and all f ∈ H(x, y), we have:

(V(x, x, y))( f , I(x)) = f ,

(V(x, y, y))(I(y), f ) = f .

f) (Associativity) For all x, y, z, w ∈ O and all

(h, g, f ) ∈ H(z, w)× H(y, z)× H(x, y),

we have:

(V(x, y, w))
(
(V(y, z, w))(h, g), f

)
= (V(x, z, w))

(
h, (V(x, y, z))(g, f )

)
.

From time to time, when we would like to stress the fact that a given category is either
a set or a class, we use the following terminology: By a small category we always mean
a set C which is a category; by a large category we mean a class—which might or might
not be a set—C which is a category.

A.2.2. When C is a category, then the four components C0, C1, C2, and C3 are well-
defined. Occasionally, we use the alternative denominations

ob(C) := C0, idC := C2,

homC := C1, ◦C := C3.

ob(C) is called the set (resp. class) of objects of C. homC is called the family of hom-sets of
C. idC and ◦C are called the identity function and composition function of C, respectively.

Sometimes we write sloppily x ∈ C instead of x ∈ C0. Sometimes we write sloppily
C(x, y) instead of C1(x, y). When we feel that confusion is unlikely to arise, we might
omit the index referring to C in the expressions homC, idC, and ◦C. We use the
customary infix notation

g ◦ f := g ◦C f := (◦C(x, y, z))(g, f ).

We say that x is an object of/in C when x ∈ C0. We say that f is a morphism from x to
y in C when x and y are objects of C and f ∈ C1(x, y). Sometimes we paraphrase the
latter statement by writing that “ f : x → y is a morphism in C”.

A.2.3. The language of diagrams. — Very frequently throughout the text we will
paraphrase certain (set-theoretic, categorical, or algebraic) statements by saying that a
“diagram commutes” in a given category. We exemplify this by looking at the picture
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(or “diagram”):

(A.2.3.1) x
f

//

g
��

y

g′

��

x′
f ′

// y′

Note that we do not formalize what a diagram is. Rather, we content ourselves with
saying that a diagram is a picture (like (A.2.3.1), resembling a directed graph), in
which one should be able to recognize a finite number of vertices as well as a finite
number of directed edges (or arrows) which are drawn between the vertices, i.e., for
each arrow in the picture, it should be clear which of the vertices is the starting point
and which of the vertices is the end point of the arrow. At each of the vertices in the
picture we draw a symbolic expression corresponding to a term in our usual language.
The arrows may or may not be labeled by similar symbolic expressions.

Let C be a category (class or set). Then we say that the diagram (A.2.3.1) commutes
in C when the following assertions hold:

a) x, y, x′, y′ are objects of C.
b) We have f ∈ C1(x, y), g ∈ C1(x, x′), g′ ∈ C1(y, y′), and f ′ ∈ C1(x′, y′).
c) We have

(◦C(x, y, y′))(g′, f ) = (◦C(x, x′, y′))( f ′, g).

From this we hope it is clear how to translate the phrase “the diagram . . . commutes
in C” into a valid formula of our set theoretic language for an arbitrary diagrammatic
picture in place of the dots. Notice that the above assertions a) and b) correspond
respectively to the facts that (the labels at) the vertices of the diagram are objects
of C and that, for every ordered pair of vertices of the diagram, every (label at an)
arrow drawn between the given vertices is a matching morphism in C. So to speak,
assertions a) and b) taken together say that the picture (A.2.3.1) is a diagram in C. The
final assertion c) says that the diagram is actually commutative in C.

Observe that, strictly speaking, the phrase “the diagram . . . commutes in C” makes
sense only if all the arrows in the given diagram are actually labeled. Therefore, when
we say the phrase referring to a diagram with some arrows unlabeled, we ask our
readers to kindly guess the missing arrow labels from the individual context. Usually,
in this regard, an unlabeled arrow corresponds to some sort of canonical morphism.
At times, we will stress this point by labeling the arrow with a “can”.

Sometimes the concrete arrow labels (or corresponding morphisms) rendering a
given diagram commutative in a category are irrelevant. In these cases we use the
phrase “there exists a commutative diagram . . . in C”. For instance, when we say there
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exists a commutative diagram

x //

f

&&y // z

in C, we mean that there exist f ′ and f ′′ such that the diagram

x
f ′

//

f

&&y
f ′′

// z

commutes in C (in particular, we see that x, y, and z need to be objects of C and f ′

needs to be an element of C1(x, y), etc.).
In some cases, where we want to draw attention to specific arrows in a diagram—

mostly this happens when we assert that the morphisms corresponding to the arrows
exist or exist in a unique way—, we print these arrows dotted as in:

x
f

// y

Statementwise, the dotted style of an arrow has no impact whatsoever.
Occasionally, instead of an ordinary arrow we will draw a stylized, elongated

equality sign as, e.g., in:
x y

These “equality sign arrows” go without label. Then, to the interpretation of the
discussed commutativity statements, we have to add the requirement that x = y;
moreover, in order to check the actual commutativity of the diagram (cf. assertion
c) above), one simply merges (successively) any two vertices in the diagram which
are connected by an equality sign arrow into a single vertex until one ends up with
an equality sign free diagram. As an alternative, one replaces each occurrence of
an equality sign arrow with an ordinary arrow, choosing the direction at will, and
attaches the label idC(∗) to it, where ∗ is to be replaced by the label at the chosen
starting point. So, the previous diagram becomes either

x
idC(x)

// y or x yidC(y)
oo

Last but not least, we occasionally draw “∼” signs at arrows in diagrams (possibly
in addition to already existing labels), like, for instance, in:

x
f
∼ // y

In these cases, we add the requirement that f be an isomorphism from x to y in C to
the interpretation of any commutativity statement.

A.2.4. We use the following notation for the “standard categories”, where the respec-
tive rigorous definitions are to be modeled after Definition A.2.1:
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Set the category of sets
Top the category of topological spaces
Sp the category of ringed spaces
An the category of complex analytic spaces

A.2.5. Let (X,≤) be a preordered set. Put C0 := X, let

C1 : X× X −→ {0, 1}

be the unique function such that, for all x, y ∈ X, we have C1(x, y) = 1 if and only if
x ≤ y; let idC := X× {0}, and let

◦C : X× X× X −→ {0, (1× 1)× 1}

be the unique function such that, for all x, y, z ∈ X, we have ◦C(x, y, z) = (1× 1)× 1
if and only if x ≤ y and y ≤ z. Then C = (C0, C1, idC, ◦C) is a small category, which
we call the preorder category associated to (X,≤).

Let r be a natural number (or, more generally, any ordinal number). Then the
∈-relation induces a preorder on r, so that we obtain a canonical preorder category
whose set of objects is simply r from the preceding construction. For the natural
numbers 0, 1, 2, 3, etc. we denote the so associated preorder categories by 0, 1, 2, 3,
etc.

A.2.6. When C is a category, we denote Cop the opposite category of C.

A.2.7. In the spirit of Definition A.2.1, when C and D are categories (both either
classes or sets), for us, a functor from C to D is formally an ordered pair F = (F0, F1)

(possibly in the class sense), where

F0 : C0 −→ D0

is a function and F1 is a function defined on C0 × C0 = dom(C1) such that, for all
(x, y) ∈ C0 × C0,

F1(x, y) : C1(x, y) −→ D1(F0(x), F0(y))

is a function such that the well-known compatibilities with the identities and compo-
sitions of C and D are fulfilled. We will also use the notation

F : C −→ D

for the fact that F is a functor from C to D.
When F is a functor from C to D, we denote the uniquely determined components

of F by F0 and F1, respectively. We call F0 the object function of F. We call F1 the
morphism function of F or the family of morphism functions of F.

Most of the time, we will sloppily write F(x) instead of F0(x) and F(x, y) instead
of F1(x, y). When x and y are objects of C and f : x → y is a morphism in C, i.e.,
f ∈ C1(x, y), we will sloppily write F( f ) instead of (F(x, y))( f ). When x and y are
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objects of C such that there exists a unique morphism f : x → y in C, we will sloppily
write F(x, y) instead of (F(x, y))( f ).

A.2.8. Let C and D be two categories. Let F and G be two functors from C to D. Then
α is a natural transformation of functors from C to D from F to G when α is a function on
C0 such that, for all x, y ∈ C0 and all f ∈ C1(x, y), the following diagram commutes
in C:

F0(x)
α(x)

//

(F1(x,y))( f )
��

G0(x)

(G1(x,y))( f )
��

F0(y)
α(y)

// G0(y)

In particular, for all x ∈ C0, we need to have

α(x) ∈ D1(F0(x), G0(x)).

We will also write “α : F → G is a natural transformation of functors from C to D” for the
fact that α is a natural transformation of functors from C to D from F to G.

When C is a small category, any functor from C to D is a set; moreover, for two
fixed functors F and G, any natural transformation of functors from C to D from F to
G is a set and the class of all natural transformations of functors from C to D from
F to G is a set, too. Thus we can consider the functor category, denoted Fun(C, D) or
DC (we are confident that the reader can model the precise definition of the functor
category after Definition A.2.1 himself).

A.2.9. Let C be a category. Then the functor category C3 = Fun(3, C) is called the
category of triples in C. A triple in C is an object of C3, i.e., a functor

t : 3 −→ C.

Sometimes we will write a triple t in C in the form t : x → y → z; by this we mean
that t(0) = x, t(1) = y, and t(2) = z.

A.2.10. The absolute view. — The alternative to our definition of a category is the
definition with a single set or class of morphisms together with a domain function and
a codomain function (cf. e.g., [51]); we call this the “absolute view”. It is a standard
technique to switch from our point of view to the absolute view. Namely, given a
category C, one defines the set (or class) of absolute morphisms of C to be

{(x, f , y) : x, y ∈ C0 and f ∈ C1(x, y)}.

The domain function and the codomain function are the obvious ones. We call a triple
(x, f , y) as above an absolute morphism in C.
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Throughout our text, the trick of switching to the absolute view will be ubiquitous.
Let us illustrate this with two prototypical examples. For one, consider two topologi-
cal spaces X and Y as well as a continuous map, i.e., morphism of topological spaces,
f : X → Y. To this situation we have associated a direct image functor

f∗ : Sh(X) −→ Sh(Y).

Consequently, when F is a sheaf (of sets) on X, we denote f∗(F) the direct image
sheaf under f . The catch is that the notation f∗(F) (or f∗ alone) is abusive since f∗(F)
certainly depends on the topology of Y, which is, however, implied neither by f nor
by F. The solution to this problem lies in switching to the absolute view: instead
of regarding f as a mere function between the sets underlying X and Y, we regard
f as a triple (X, f , Y). Then the notation for the direct image functor is certainly
justified—in fact, the ∗ symbol can itself be seen as a “metafunctor” from the category
of topological spaces Top to the metacategory of all (possibly large) categories.

For another, let X and Y be two complex spaces and f : X → Y a morphism of
complex spaces, so that f is, by the naive definition, an ordered pair (ψ, θ) such that
ψ is a continuous map between the topological spaces underlying X and Y and θ

is a certain morphism of sheaves on Y. Then one considers the associated sheaf of
Kähler 1-differentials, denoted Ω1

X/Y or Ω1
f . Both notations are obviously abusive as

the first one lacks the reference to f , whereas the second one lacks the reference to X
and Y. However, the latter notation Ω1

f can be amended by regarding f as absolute
morphism, i.e., we regard f as (X, f , Y) and are fine.

A.3. Ringed spaces

A.3.1. Let X be a topological space. Then we write |X| for the underlying set of X.
We write Sh(X) for the category of sheaves of sets on X and Ab(X) for the category
of abelian sheaves on X.

A.3.2. Let Y be another topological space and f : X → Y a continuous function. Then,
viewing f as an absolute morphism in Top (cf. § A.2), we dispose of the direct image
functor

f∗ : Sh(X) −→ Sh(Y)
the usual way. For the inverse image functor

f ∗ : Sh(Y) −→ Sh(X)

we follow the convention that when G is a sheaf of sets on Y, its inverse image sheaf
f ∗(G) is the sheaf on X associated to the presheaf F′ on X given by

F′(U) = colim
(
G ↓ f (U)

)
for all open subsets U of X, where we denote

G ↓ f (U) : Op(Y)op ↓ f (U) −→ Set
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the restriction of the functor G to the full subcategory of Op(Y)op induced on the set
of open subsets V of Y satisfying f (U) ⊂ V, together with the canonical maps

F′(U, U′) : F′(U) −→ F′(U′)

induced by the colimits for all open subsets U and U′ of X such that U′ ⊂ U. Notice
that when U is an open subset of X such that f (U) is open in Y, then f (U) is a
terminal object in the category on which G ↓ f (U) is defined, so that we have

colim(G ↓ f (U)) = G( f (U)).

In particular, when the morphism f : X → Y is open, then f ∗(G) is the sheafification
on X of the composition of functors

Op(X)op f op
// Op(Y)op G // Set ;

in case the latter composition already is a sheaf on X (e.g., when f : X → Y is
isomorphic to the inclusion of an open subspace), the process of sheafification is
furthermore obsolete. When B is a subset of Y, we write G|B for f ∗(G), where
f : Y|B→ Y denotes the inclusion morphism.

For abelian sheaves we obtain the functors

f∗ : Ab(X) −→ Ab(Y),

f ∗ : Ab(Y) −→ Ab(X),

which are defined so that they commute with the forgetful functors to the categories
of sheaves of sets on X and Y, respectively. The very same way, we obtain direct and
inverse image functors f∗ and f ∗ for sheaves of rings.

A.3.3. Let X be a ringed space (cf. [31, chap. 0, (4.1.1)]). Then we denote Xtop and OX
the underlying topological space and the structure sheaf of X, respectively. We set
|X| := |Xtop|.

When Y is another ringed space and f : X → Y is a morphism of ringed spaces
viewed as an absolute morphism in the category of ringed spaces, we write

ftop : Xtop −→ Ytop

for the induced (absolute) morphism in the category of topological spaces. We agree
on writing f∗ as a shorthand for any of the direct image functors ( ftop)∗ introduced
above (for sheaves of sets, abelian sheaves, and sheaves of rings). In contrast, we
write f−1 for any of the introduced inverse image functors ( ftop)∗.

We write
f ] : OY −→ f∗(OX)

for the morphism of sheaves of rings on Ytop coming about with f . By abuse of
notation, occasionally, we also write

f ] : f−1(OY) −→ OX
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for the morphism of sheaves of rings on Xtop derived from the previous f ] by means
of adjunction between the functors f−1 and f∗.

A.3.4. By a module on X or sheaf of modules on X we mean a sheaf of left OX-modules
on Xtop. By a submodule of . . . on X or a subsheaf of modules of . . . on X we mean a
subsheaf of OX-modules of . . . on Xtop. By an ideal on X or sheaf of ideals on X we mean
a sheaf of left OX-ideals on Xtop. Analogously, we speak of a morphism of modules on
X or a morphism of sheaves of modules on X in place of a morphism of sheaves of left
OX-modules on Xtop.

A.3.5. We denote Mod(X) the category of modules on X and

Γ(X,−) : Mod(X) −→ Mod(Z)

the global section functor for X. Note that some authors choose Mod(OX(X)) as their
target for the global section functor, which, though richer in algebraic structure, seems
functorially less apt to our taste (cf. below). We denote

f∗ : Mod(X) −→ Mod(Y),

f ∗ : Mod(Y) −→ Mod(X)

the direct and inverse image functors for modules, respectively. Thereby, our generic
choice for the inverse image functor is

f ∗(G) := OX ⊗ f−1(OY)
f−1(G).

Under special circumstances, however, tensoring with OX seems superfluous. Con-
creteley, in case f ] : f−1(OY) → OX is an isomorphism of sheaves of rings on Xtop,
we set

f ∗(G) := f−1(G),

where we only change the module structure from f−1(OY) to OX by means of the
inverse of the isomorphism f ].

A.3.6. We denote HomX the sheaf hom or internal hom on X, which we regard as a
functor

HomX : Mod(X)op ×Mod(X) −→ Mod(X).

Moreover, we set

HomX := Γ(X,−) ◦HomX : Mod(X)op ×Mod(X) −→ Mod(Z).
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A.3.7. For the moment, assume that the ringed space X be commutative. Then, we
denote ⊗X the tensor product on X. Note that people usually tend to signify the tensor
product on a ringed space X by ⊗OX (cf. e.g., [31, chap. 0, § 4]), which we feel is bad
as the topological space Xtop certainly enters the contruction of the tensor product. Of
course, one might argue that the sheaf OX actually determines the topological space
Xtop, yet, nonetheless, the notation ⊗X is shorter as well as more comprehensive. We
regard ⊗X as functor

⊗X : Mod(X)×Mod(X) −→ Mod(X),

though we will mostly write the tensor product “infix” as is customary. Observe that
in principle for any set I, one may define a tensor product

⊗X : (Mod(X))I −→ Mod(X)

for I-families of modules on X; here we agree on suppressing the indexing set I in the
notation.

A.3.8. For any natural number n, we denote

Tn
X : Mod(X) −→ Mod(X),

∧n
X : Mod(X) −→ Mod(X)

the n-th tensor power and n-th wedge power functors on X, respectively, which are de-
fined by sheafifying the corresponding ordinary linear algebra concepts. Specifically,
as for any commutative ring A and any (left) A-module M, we set

T0
A(M) := ∧0

A(M) := A,

T1
A(M) := ∧1

A(M) := M,

we obtain that T0
X and ∧0

X both equal the constant functor with value OX (viewed
as a module on X) and T1

X and ∧1
X both equal the identity functor on Mod(X). We

extend the tensor and wedge power operators to negative powers by defining Tn
X and

∧n
X to be the constant functor with value the distinguished zero module on X for all

integers n < 0.

A.3.9. We like the idea of unifying the view on rings and ringed spaces, that is to
say, we will freely regard any ring A as a ringed space by defining Atop to be the
distinguished one-point topological space (i.e., |Atop| = 1 = {0} = {∅} with its uniquely
determined topology) and defining OA by

OA(∅) := 1 = {0},
OA(1) := A,

where the ring structure and the restriction maps of OA are the obvious ones. Specif-
ically, we will denote Z, Q, R, and C also ringed spaces obtained from the rings Z,
Q, R, and C by the described construction. Furthermore, when A is a given ring,
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we may convert any A-module (in the ordinary sense) to a sheaf of modules on (the
ringed space) A. Conversely, when X is a one-point ringed space (that is to say, the
underlying set is in bijection with the set 1), we pass to an ordinary ring by consider-
ing OX(X); modules on X can be converted to OX(X)-modules also by taking global
sections on X. Observing that standard constructions and properties (like forming
quotients, direct sums, tensor products, speaking of submodules, etc.) are invariant
under this translation machinery, we are at liberty to switch perspectives at will.

A.3.10. The ringed space Z is terminal in the category of ringed spaces so that for all
ringed spaces X there exists a unique morphism of ringed spaces

aX : X −→ Z,

which we will mostly view as an absolute morphism in the category. Note that the
induced direct image functor

(aX)∗ : Mod(X) −→ Mod(Z)

corresponds to the global section functor Γ(X,−) up to viewing Z as an ordinary ring
or a ringed space. Due to the terminality of Z, we see that for all morphisms of ringed
spaces f : X → Y, the diagram

X
f

//

aX
��

??????? Y

aY
���������

Z

commutes in the category of ringed spaces. Thus we obtain

(aX)∗ = (aY)∗ ◦ f∗

or else
Γ(X,−) = Γ(Y,−) ◦ f∗.

A.3.11. Let X be a topological space, A a ring. Then we denote AX the constant sheaf
of rings with value A on X. We obtain a ringed space by setting XA := (X, AX). Every
morphism f : X → Y of topological spaces gives rise to a morphism of ringed spaces

f A : XA −→ YA.

In fact, these constructions yield a functor

−A : Top −→ Sp.

Moreover, we have a global section functor

ΓA(X,−) : Mod(XA) −→ Mod(A).

For any integer n, we define the n-th cohomology of X with values in A by

Hn(X, A) := Rn(ΓA(X,−))(AX),
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cf. § A.6. Note that viewing A as a ringed space, the global section functor ΓA(X,−)
corresponds to the direct image functor ( f A)∗ when f : X → Y denotes the unique
morphism of topological spaces from X to the distinguished one-point topological
space. In this regard, occasionally, we will use the (admittedly awkward) notation

Hn( f , A) := Rn( f A)∗(AX).

A.4. Complex spaces

A.4.1. By a complex analytic space we understand an object of the overcategory Sp/C—
without imposing any topological restrictions—which is locally isomorphic (in the
category Sp/C) to a complex analytic model space (cf. [32, Définition 2.1]). We reserve
the term complex space for a complex analytic space whose underlying topological
space is Hausdorff (cf. [26, chap. I, § 3], [24, § 1, Definition 2]).

Note the following subtlety: most authors formally take complex (analytic) spaces
to be “C-ringed” or “C-algebraized” spaces, which are topological spaces equipped
with a sheaf of C-algebras. However, our convention is to work exclusively with
sheaves of rings, i.e., with ringed spaces, so that we express the C-algebraized nature
of a ringed space X by giving a morphism of ringed spaces X → C.

A.4.2. We denote An the large category of complex analytic spaces, which is, in fact, the
full subcategory of the category Sp/C whose class of objects comprises precisely all
complex analytic space. The category complex spaces is a full subcategory of An for
which we do not dispose of a separate name.

A.4.3. When X is a complex analytic space, then X can be written uniquely as an
ordered pair (Y, f ), where Y is a ringed space and f : Y → C is a morphism of ringed
spaces. We call Y the underlying ringed space of X and f the structural morphism of X.
We follow the convention that when X denotes a complex analytic space, we denote
the underlying ringed space of X by X also. The structural morphism of an analytic
space X will be denoted aX .

A.4.4. Observe that the ordered pair consisting of the ringed space C together with
the identity morphism C→ C of ringed spaces is a complex space, which we call the
distinguished one-point complex space. By abuse of notation, we denote the distinguished
one-point complex space by C. Notice that C is a terminal object of An. Besides,
notice that for all complex analytic spaces X, the structural morphism aX is the unique
morphism from X to C in An.

A.4.5. Let f : X → S be a morphism in An (viewed in the absolute sense). Let p ∈ X.
Then we say that f is submersive in p when, locally around p, f is isomorphic to a
product with fiber an open complex analytic subspace of Cn for some natural number
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n (cf. [18, (2.18)]). f is called submersive when, for all x ∈ X, the morphism f is
submersive in x.

We say X is smooth in or at p when there exists an open neighborhood U of p in X
such that the open complex analytic subspace of X induced on U is isomorphic to an
open complex analytic subspace of Cn for some natural number n. X is called smooth
when X is smooth in all of its points.

By a complex manifold we mean a smooth complex space.

A.4.6. Let f : X → S be a morphism in An (viewed in the absolute sense). Then we
write Ω1

f or (less frequently) Ω1
X/S for the sheaf of (relative) (Kähler) 1-differentials for

f (cf. [33, § 2, p. 8]; note also the scheme theoretic analogue [36, (16.3.1)]). For any
natural number (or else integer) p, we set

Ωp
f := ∧p

X(Ω
1
f ).

Since ∧1
X is the identity functor on Mod(X), there is no contradiction. Moreover, we

denote
dp

f : Ωp
f −→ Ωp+1

f

the canonical differential sheaf map. We denote Ω q
f the complex of Kähler differentials

for f , i.e.:

Ω q
f :=

(
(Ωp

f )p∈Z, (dp
f )p∈Z

)
.

Beware that Ω q
f is not a complex of modules on X, even though Ωp

f is a module on X

for all p ∈ Z (the problem is that the differentials dp
f are not OX-linear).

We write Ωp
X , and Ω q

X , and dp
X for Ωp

aX , and Ω q
aX

, and dp
aX , respectively.

A.4.7. Any commutative square

(A.4.7.1) X′
u //

f ′

��

X

f
��

S′ w
// S

in the category of complex analytic spaces induces a morphism

φ1 : Ω1
f −→ u∗(Ω1

f ′)

of sheaves of modules on X (cf. [33, § 2]), which we call the pullback of (relative) (Kähler)
1-differentials associated to the square in (A.4.7.1). The latter morphism induces in
turn, for any integer p, a morphism

φp : Ωp
f −→ u∗(Ω

p
f ′)

of modules on X, which we call the pullback of p-differentials associated to (A.4.7.1).
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The pullbacks of differentials are functorial in the following sense. Let

(A.4.7.2) X′′
u′ //

f ′′

��

X′

f ′

��

S′′
w′

// S′

another commutative square in An. Denote

φ′p : Ωp
f ′ −→ u′∗(Ω

p
f ′′)

the pullback of p-differentials associated to (A.4.7.2). Then the composition

u∗(φ′p) ◦ φp : Ωp
f −→ u∗(u′∗(Ω

p
f ′′)) = (u ◦ u′)∗(Ω

p
f ′′)

equals the pullback of p-differentials associated to the square obtained by composing
(A.4.7.2) and (A.4.7.1) horizontally.

A.4.8. When f : X → S is a morphism of complex analytic spaces, we denote Θ f or
ΘX/S the (relative) tangent sheaf of f , i.e.,

Θ f := HomX(Ω1
f , OX).

Moreover, we set ΘX := ΘaX .

A.4.9. Let X be a complex analytic space, F a module on X, and p ∈ X. Observe that
there exists a unique morphism i : C → X of complex analytic spaces which sends
the unique element 0 ∈ |C| to p. Occasionally, we will use the notation

F(p) := i∗(F) ∼= C⊗OX,p Fp.

A.4.10. When X is a complex analytic space and p ∈ X, we define

TX(p) := HomC(Ω1
X(p), C)

to be the tangent space of X in p. When f : X → Y is a morphism in An, we write

Tp( f ) : TX(p) −→ TY( f (p))

for the tangent map for f in p.

A.4.11. We write dimp(X) for the dimension of X in p. As usual, we set

dim(X) := sup{dimx(X) : x ∈ X},
where we agree to take the supremum with respect to the set

Ẑ := {−ω} ∪ Z ∪ {ω}
equipped with its canonical ordering so that we have −ω ≤ a and a ≤ ω for all a ∈ Ẑ.
Specifically, we obtain

dim(∅) = −ω ≤ a
for all integers a.
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A.4.12. By a resolution of singularities we mean a proper modification f : W → X of
complex spaces such that W is a complex manifold.

A.4.13. Mixed Hodge structures. — We feel that, over Deligne’s original [12, Défi-
nition (2.3.1)], it has certain technical advantages to define a mixed Hodge structure to
be an ordered septuple

(A.4.13.1) H = (HZ, HQ, W, α, HC, F, β)

such that HZ, HQ, and HC are finite type Z-, Q-, and C-modules, respectively, W is a
finite increasing filtration of HQ by rational vector subspaces, F is a finite decreasing
filtration of HC by complex vector subspaces, and α : HZ → HQ and β : HQ → HC are
mappings inducing isomorphisms Q⊗Z HZ → HQ and C⊗Q HQ → HC, respectively,
such that the triple (WC, F, F) is a triple of “opposed” filtrations on HC by complex
vector subspaces (cf. loc. cit.).

The gist is that Deligne’s definition forces the Q-vector space HQ to be Q⊗Z HZ
just as it forces the C-vector space HC to be C⊗Z HZ, whereas our definition grants
us some freedom there.

When H is a mixed Hodge structure (A.4.13.1), we set

FpH := Fp, Fp H := Fp, Wi H := Wi

for all integers p and i.
We will make use of Fujiki’s idea (cf. [20, (1.4)]) that Deligne’s construction of a

mixed Hodge theory for complex algebraic varieties in [12, 13] carries over naturally
to the category of complex spaces X endowed with a compactification X ⊂ X∗ such
that X∗ is of class C ; the morphisms in this category are morphisms f : X → Y of
complex spaces extending to meromorphic maps X∗ → Y∗ between the respective
given compactifications. Concretely, when X is as above an n is an integer, we denote
Hn(X) the mixed Hodge structure of cohomology in degree n of X. In view of (A.4.13.1),
we have

Hn(X)Z = Hn(X, Z), Hn(X)Q = Hn(X, Q), Hn(X)C = Hn(X, C);

the mappings α and β are induced respectively by the canonical injections Z → Q
and Q→ C.

A.5. Spectral sequences

A.5.1. In our understanding of spectral sequences, we basically follow [57, Definition
2.2]. Let C be a (possibly large) abelian category. Then E is a spectral sequence (with
values) in C when E = (Er) is a sequence indexed over N≥r0 for some natural number
r0 such that, for all r ∈ N≥r0 , Er is a differential bigraded object of C with differential
of bidegree (r, 1− r) such that one has

Hp,q(Er) ∼= Ep,q
r+1
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in C for all (p, q) ∈ Z× Z.
Note that many authors tend to incorporate additional data into a spectral sequence,

like, for instance, a choice of isomorphisms

φ
p,q
r : Hp,q(Er) −→ Ep,q

r+1

in C (cf. e.g., [22, III.7.3], [72, Definition 5.2.1], [50, XI.1]), which makes sense of course
only if C is equipped with a canonical (co-)homology functor H. For our purposes,
however, the incorporating of additional data is unnecessary.

Definition A.5.2 (Degeneration). — Let C be an abelian category, E a spectral se-
quence with values in C. Denote r0 the starting term of E, i.e., the smallest element of
the domain of definition of the sequence E, and let r1 be a natural number ≥ r0.

a) Let (p, q) ∈ Z× Z. Then we say that E degenerates from behind (resp. forwards) in
(the entry) (p, q) at sheet r1 in C when, for all natural numbers r ≥ r1, the differential
dp−r,q+r−1

r (resp. dp,q
r ) equals the zero morphism from Ep−r,q+r−1

r to Ep,q
r (resp. from

Ep,q
r to Ep+r,q−r+1

r ) in C. We say that E degenerates in (the entry) (p, q) at sheet r1 in C
when E degenerates both from behind and forwards in (p, q) at sheet r1 in C.

b) Let I be a subset of Z× Z. Then we say that E degenerates (resp. degenerates from
behind, resp. degenerates forwards) in entries I at sheet r1 in C when, for all (p, q) ∈ I, the
spectral sequence E degenerates (resp. degenerates from behind, resp. degenerates
forwards) in the entry (p, q) at sheet r1 in C.

A.6. Derived functors

We refrain from considering derived categories as we refrain from anticipating any
sort of universe axiom (cf. § A.1). Nevertheless, we would like to talk about derived
functors. Let us outline the conventions that we follow throughout the text in this
regard.

A.6.1. Let X be an arbitrary ringed space. Moreover, let F be an object of C+(X).
We will make use of the device of fabricating a canonical injective resolution of F on X
(here, by a resolution we simply mean a quasi-isomorphism to another complex of
modules on X). First of all, we refer to [8, Chapter II, 3.5], where it is explained how
to construct for a given sheaf of modules on X, i.e., a sheaf of OX-modules on Xtop,
call it G, a canonical monomorphism

α : G −→ I

to an injective sheaf of modules on X. As a matter of fact, in loc. cit., it is further
explained how to construct a canonical injective resolution (in the naive sense, i.e.,
not working with quasi-isomorphisms of complexes) for G. However, as we would
like to work strictly with complexes, we do the following:
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As the complex F is bounded below, we know there exists an integer m such that
Fi ∼= 0 in Mod(X) for all integers i < m. When the complex F is completely trivial (i.e.,
when Fi ∼= 0 holds for all integers i), then we define I to be the canonical zero complex
of modules on X and ρ : F → I to be the unique morphism of complexes. When F
is not entirely trivial, we choose m maximal with the mentioned property. For all
integers i < m, we define Ii to be the canonical zero module on X and ρi : Fi → Ii to be
the zero morphism. From i = m onwards, we define Ii together with the differential
di−1 : Ii → Ii+1 and the morphism ρi : Fi → Ii by the inductive procedure layed out
in the proof of [40, I, Theorem 6.1], where we plug in our canonical monomorphism
to an injective module at the appropriate stage. That way, we obtain a bounded below
complex I of injective modules on X together with a morphism

ρ : F −→ I

of complexes of modules on X which is a quasi-isomorphism of complexes of modules
on X.

The so defined ρ (viewed as an absolute morphism in C+(X)), as well as its
canonical image in K+(X), are called the canonical injective resolution of F of X.

Lemma A.6.2. — Let C be an abelian category, γ : F → G a quasi-isomorphism in K(C),
and I a bounded below complex of injective objects of C. Then, for all morphisms α : F → I
in K(C), there exists one, and only one, morphism β : G → I in K(C) such that we have
β ◦ γ = α, i.e., such that the diagram

F
γ

//

α
��

???????? G

β

��

I

commutes in K(C). Equivalently, the function

homK(C)(γ, I) : homK(C)(G, I) −→ homK(C)(F, I)

is a bijection.

Proof. — The equivalence of the two statements is clear. For the proof of any one of
them, see [40, I, Theorem 6.2].

A.6.3. With the help of Lemma A.6.2, we construct an injective resolution functor on X,

I : K+(X) −→ K+(X),

together with a natural transformation

ρ : idK+(X) −→ I
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of endofunctors on K+(X) as follows: As to the object function of I, for a given
object F of K+(X), we define I(F) to be the canonical injective resolution of F on X as
constructed above. We define

ρ(F) : F −→ I(F)

to be the corresponding resolving morphism. As to the family of morphism functions
of I, when F and G are objects of K+(X) and α : F → G is a morphism, Lemma A.6.2
implies that there exists a unique β such that the diagram

F
ρ(F)

//

α

��

I(F)

β

��

G
ρ(G)

// I(G)

commutes in K+(X) (or equivalently, in K(X)). We set

(I(F, G))(α) := β.

A.6.4. Let X and Y be ringed spaces (resp. complex spaces),

T : Mod(X) −→ Mod(Y)

an additive functor. Then we define the (bounded below) right derived functor of T with
respect to X and Y as the composition of functors

K+(X)
I // K+(X)

K+(T)
// K+(Y) ,

where I denotes the injective resolution functor on X. As is customary, we denote
the right derived functor of T by R(T) or RT (even though one better incorporate the
references to X and Y into the notation and write something like RX,Y(T); moreover,
writing R+(T) instead of R(T) would probably be more conceptual).

A.6.5. Composing the natural transformation ρ : id→ I with the functor

K+(T) : K+(X) −→ K+(Y),

we obtain a natural transformation

K+(T) ◦ ρ : K+(T) −→ R(T)

of functors from K+(X) to K+(Y).

A.6.6. Precomposing R(T) with the (composition of) canonical morphism(s)(
Mod(X) −→

)
C+(X) −→ K+(X),

we establish two variants of the right derived functor of T that will go under the same
denomination of R(T).
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A.6.7. Furthermore, for any integer n, we define

Rn(T) := Hn ◦ R(T) : K+(X) −→ Mod(Y),

where
Hn : K+(Y) −→ Mod(Y)

denotes the evident cohomology in degree n functor on Y. Just as before, we fabricate
the two variants

Rn(T) : C+(X) −→ Mod(Y),

Rn(T) : Mod(X) −→ Mod(Y)

which go by the same denomination.

A.6.8. In the situation of (A.6.4), one may define, for any integer n, a connecting
homomorphism in degree n, denoted δn

T or simply δn, which we would like to view as
a function defined either on the class of short exact triples in C+(X) or the class of
short exact triples in Mod(X) without making a notational distinction.





APPENDIX B

TOOLS

B.1. Base change maps

Construction B.1.1. — Let X, Y, and Z be ringed spaces and

S : Mod(X) −→ Mod(Y),

T : Mod(Y) −→ Mod(Z)

additive functors. Define the bounded below right derived functors RS, RT, and
R(T ◦ S) as explained in (A.6.4). Then we dispose of a natural transformation

(B.1.1.1) φ : R(T ◦ S) −→ RT ◦ RS

of functors from K+(X) to K+(Z). The definition is in fact straightforward. Denote
IX and IY the canonical injective resolution functors on X and Y, respectively, as given
in (A.6.3); moreover, denote

ρY : idK+(Y) −→ IY

the accompanying resolving natural transformation on Y. Then set

φ := (T ◦ ρY) ◦ (S ◦ IX) : (T ◦ idK+(Y)) ◦ (S ◦ IX) −→ (T ◦ IY) ◦ (S ◦ IX),

where we compose natural transformations of functors with functors the obvious
way. Observe that we thus obtain a natural transformation (B.1.1.1) since

R(T ◦ S) = (T ◦ S) ◦ IX = (T ◦ idK+(Y)) ◦ (S ◦ IX)

and

RT ◦ RS = (T ◦ IY) ◦ (S ◦ IX)

by the definition of the derived functors.

The following proposition is a variant of either [42, Proposition 13.3.13] or [22,
III.7.1].
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Proposition B.1.2. — In the situation of Construction B.1.1, assume that the functor T is
left exact and S takes injective modules on X to right T-acyclic modules on Y. Then (B.1.1.1)
is a natural quasi-equivalence of functors from K+(X) to K+(Z).

Proof. — This follows from the general fact that when A and I are bounded below
complexes of right T-acyclic and injective modules on Y, respectively, and ρ : A→ I
is a quasi-isomorphism of complexes of modules on Y, then

T(ρ) : T(A) −→ T(I)

is a quasi-isomorphism of complexes of modules on Z.

Construction B.1.3. — Let X and S be ringed spaces,

T : Mod(X) −→ Mod(Y)

a left exact additive functor, n an integer. Let F be a complex of modules on X.
Denote Zn(F) ⊂ Fn and Zn(TF) ⊂ TFn the null spaces of the differential maps
dn

F : Fn → Fn+1 and dn
TF : TFn → TFn+1 of the complexes F and TF, respectively.

Then due to the universal property of kernels, there exists one, and only one, α such
that the diagram

T Zn(F) α //

T(⊂)
!!CCCCCCCC

Zn(TF)

⊂
}}||||||||

TFn

commutes in Mod(Y). Moreover, since the functor T is left exact, α is an isomorphism.
Thus by the universal property of cokernels, there exists one, and only one, β(F) such
that the diagram

Zn(TF)
πn

TF //

α−1

��

Hn(TF)

β(F)
��

T Zn(F)
Tπn

F

// THn(F)

commutes in Mod(Y), where πn
F and πn

TF denote the respective quotient morphisms
to cohomology. An easy argument shows that the family β = (β(F))F constitutes a
natural transformation

β : Hn ◦ T −→ T ◦Hn

of functors from K(X) to Mod(Y). Denote β+ the restriction of β to K+(X).
Denote IX the canonical injective resolution functor on X (A.6.3) and

ρX : idK+(X) −→ IX

the accompanying resolving natural transformation. We know that ρX is a natural
quasi-equivalence of endofunctors on K+(X), so that

Hn ◦ ρX : Hn −→ Hn ◦ IX
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is a natural equivalence of functors from K+(X) to Mod(X). In turn, we obtain a
natural transformation

γ := (β+ ∗ IX) ◦ (T ∗ (Hn ∗ ρX)
−1) : RnT = Hn ◦ T ◦ IX −→ T ◦Hn

of functors from K+(X) to Mod(Y), where we have denoted the horizontal composi-
tion of a natural transformation an a functor by “∗” in order to distinguish it from the
vertical composition “◦” of natural transformations.

Construction B.1.4. — We fix a commutative square in the category of ringed spaces
Sp:

(B.1.4.1) X′
u //

f ′

��

X

f
��

S′ w
// S

Let n be an integer. Let F and F′ be bounded below complexes of modules on X
and X′, respectively. Finally, let α : F → F′ be a u-morphism of complexes modules
modulo homotopy, i.e., a morphism F → u∗(F′) in K+(X), where, as usual, we agree
on writing u∗ instead of K+(u∗).

Denote
τ : u∗ −→ Ru∗

the natural transformation of functors from K+(X′) to K+(X) which comes about
with the construction of the right derived functor as explained in § A.6. Composing α

with τ(F′) in K+(X) yields a morphism

F −→ Ru∗(F′)

in K+(X). Applying the functor R f∗, we obtain a morphism

R f∗(F) −→ R f∗(Ru∗(F′))

in K+(S). Let

φ : R( f∗ ◦ u∗) −→ R f∗ ◦ Ru∗,

ψ : R(w∗ ◦ f ′∗) −→ Rw∗ ◦ R f ′∗

be the natural transformations of functors from K+(X′) to K+(S) which are associated
to the triples of categories and functors

Mod(X′)
u∗ // Mod(X)

f∗
// Mod(S) ,

Mod(X′)
f ′∗ // Mod(S′)

w∗ // Mod(S) ,

respectively, by means of Construction B.1.1. Since

f∗ ◦ u∗ = ( f ◦ u)∗ = (w ◦ f ′)∗ = w∗ ◦ f ′∗,
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we obtain the following diagram of morphisms in K+(S):

R f∗(Ru∗(F′)) R( f∗u∗)(F′)
φ(F′)

oo R(w∗ f ′∗)(F′)
ψ(F′)

// Rw∗(R f ′∗(F′))

By Proposition B.1.2, we know that φ(F′) is a quasi-isomorphism of complexes of
modules on S. In particular,

Hn(φ(F′)) : HnR( f∗u∗)(F′) −→ HnR f∗(Ru∗(F′))

is an isomorphism in Mod(S); write Hn(φ(F′))−1 for its inverse. Then we have the
following composition of morphisms in Mod(S):
(B.1.4.2)

Hn(ψ(F′)) ◦Hn(φ(F′))−1 ◦ Rn f∗(τ(F′) ◦ α) : Rn f∗(F) −→ HnRw∗(R f ′∗(F′)).

Let

γ : Hn ◦ Rw∗ −→ w∗ ◦Hn

be the natural transformation of functors from K+(S′) to Mod(S) given by Construc-
tion B.1.3. Then composing the morphisms (B.1.4.2) and γ(R f ′∗(F′)) in Mod(S), we
arrive at a morphism

βn : Rn f∗(F) −→ w∗(Rn f ′∗(F′))

in Mod(S), i.e., at a w-morphism of modules Rn f∗(F)→ Rn f ′∗(F′).

Proposition B.1.5. — In the situation of Construction B.1.4, assume that X′ = X, S′ = S,
f ′ = f , u = idX, and w = idS. Then α : F → F′ is an ordinary morphism in K+(X) and
we have

βn = Rn f∗(α) : Rn f∗(F) −→ Rn f∗(F′).

Proof. — Omitted.

Proposition B.1.6 (Functoriality, I). — Let

(B.1.6.1) X′′
u′ //

f ′′

��

X′
u //

f ′

��

X

f
��

S′′
w′

// S′ w
// S

be a commutative diagram in the category of ringed spaces and n an integer. Let F, F′, and F′′

be objects of K+(X), K+(X′), and K+(X′′), respectively. Let α : F → F′ and α′ : F′ → F′′

be a u- and u′-morphism of modules, respectively. Write α′′ for the composition α and α′, i.e.,
set

α′′ := u∗(α′) ◦ α
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in K+(X), and note that consequently α′′ is a (uu′)-morphism of modules F → F′′. Denote

βn : Rn f∗(F) −→ w∗(Rn f ′∗(F′)),

β′n : Rn f ′∗(F′) −→ w′∗(R
n f ′′∗ (F′′)),

β′′n : Rn f∗(F) −→ (ww′)∗(Rn f ′′∗ (F′′))

the morphisms in Mod(S), Mod(S′), and Mod(S) associated to α, α′, and α′′ with respect
to the right, left, and outer subsquares of the diagram in (B.1.6.1), respectively, by means of
Construction B.1.4. Then β′′n is the composition of βn and β′n in the sense that we have

β′′n = w∗(β′n) ◦ βn

in Mod(S).

Proof. — Omitted.

Proposition B.1.7 (Functoriality, II). — Let (B.1.4.1) be a commutative square in the
category of ringed spaces, n an integer. Let F, G ∈ K+(X) and F′, G′ ∈ K+(X′), let
α : F → F′ and γ : G → G′ be u-morphisms of complexes of modules modulo homotopy, and
let φ : F → G and φ′ : F′ → G′ be morphisms in K+(X) and K+(X′), respectively, such
that the diagram

F
α //

φ

��

u∗(F′)

φ′

��

G γ
// u∗(G′)

commutes in K+(X). Denote

βn : Rn f∗(F) −→ w∗(Rn f ′∗(F′)),

δn : Rn f∗(G) −→ w∗(Rn f ′∗(G
′))

the morphisms in Mod(S) obtained from α and β, respectively, by means of Construction
B.1.4. Then the following diagram commutes in Mod(S):

Rn f∗(F)
βn

//

Rn f∗(φ)
��

w∗(Rn f ′∗(F′))

w∗(Rn f ′∗(φ′))
��

Rn f∗(G)
δn

// w∗(Rn f ′∗(G′))

Proof. — This is an immediate consequence of Propositions B.1.5 and B.1.6.

The following construction shows how to derive the classical base change maps
for higher direct image sheaves (cf. e.g., [1, XII (4.2)]) from Construction B.1.4.
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Construction B.1.8 (Base change maps). — Assume we are given a commutative
square (B.1.4.1) in the category of ringed spaces as well as an integer n. Let F be a
bounded below complex of modules on X. Then the unit of the adjunction between
the functors u∗ and u∗ yields a u-morphism

α : F −→ u∗(F)

of complexes of modules modulo homotopy. Applying Construction B.1.4, we obtain
in turn a w-morphism of modules

βn : Rn f∗(F) −→ Rn f ′∗(u
∗(F)),

which yields a morphism of modules on S′,

β̃n(F) : w∗(Rn f∗(F)) −→ Rn f ′∗(u
∗(F)),

by means of adjunction between the functors w∗ and w∗.
We claim that the family β̃n := (β̃n(F))F constitutes a natural transformation

β̃n : w∗ ◦ Rn f∗ −→ Rn f ′∗ ◦ u∗

of functors from K+(X) to Mod(S′). For that matter, let G be another bounded below
complex of modules on X and φ : F → G a morphism in K+(X). Denote

γ : G −→ u∗(G)

the u-morphism of complexes of modules modulo homotopy given by the unit of
the adjunction between the functors u∗ and u∗. Then, due to the naturality of the
adjunction unit, the diagram

F
α //

φ

��

u∗u∗(F)

u∗u∗(φ)
��

G γ
// u∗u∗(G)

commutes in the category of modules on X. Thus by means Proposition B.1.7, taking
into account the naturality of the adjunction between the functors w∗ and w∗, we see
that the diagram

w∗(Rn f∗(F))
β̃n(F)

//

w∗(Rn f∗(φ))
��

Rn f ′∗(u∗(F))

Rn f ′∗(u∗(φ))
��

w∗(Rn f∗(G))
β̃n(G)

// Rn f ′∗(u∗(G))

commutes in the category of modules on S′.
We call β̃n the base change natural transformation in degree n associated to the square

(B.1.4.1). If you prefer the term “morphism of functors” over the term “natural
transformation”, you might want to call β̃n the base change morphism in degree n
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associated to (B.1.4.1), yet we reserve the term base change morphism in degree n for
F associated to (B.1.4.1) for the individual β̃n(F); we also say base change map in the
latter context.

Construction B.1.9 (Hodge base change). — Assume we are given a commutative
square

(B.1.9.1) X′
u //

f ′

��

X

f
��

S′ w
// S

in the category of complex spaces An. Let p and q be integers. As explained in § A.4,
the square (B.1.9.1) induces a pullback of relative Kähler p-differentials, which is a
u-morphism of modules

αp : Ωp
f −→ Ωp

f ′ .

By means of Construction B.1.4, viewing (B.1.9.1) as a square in the category of ringed
spaces, the morphism αp induces a w-morphism of modules

(B.1.9.2) βp,q : Rq f∗(Ω
p
f ) −→ Rq f ′∗(Ω

p
f ′).

We call βp,q the Hodge base change in bidegree (p, q) associated to (B.1.9.1). By slight
abuse of terminology, we call the morphism

β̃p,q : w∗(Rq f∗(Ω
p
f )) −→ Rq f ′∗(Ω

p
f ′)

of modules on S′ which is obtained from βp,q by means of adjunction between the
functors w∗ and w∗ also the Hodge base change in bidegree (p, q) associated to (B.1.9.1);
probably, one should better call it the “adjoint Hodge base change” or similar instead.

Proposition B.1.10. — Let

(B.1.10.1) X′′
u′ //

f ′′

��

X′
u //

f ′

��

X

f
��

S′′
w′

// S′ w
// S

be a commutative diagram in the category of complex spaces and p and q integers. Denote
βp,q, β′p,q, and β′′p,q the Hodge base changes in bidegree (p, q) associated to the right, left,
and outer subsquares of the diagram in (B.1.10.1), respectively. Then β′′p,q is the composition
of βp,q and β′p,q, i.e., we have:

β′′p,q = w∗(β′p,q) ◦ βp,q.
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Proof. — Denote αp, α′p, and α′′p the pullbacks of p-differentials associated to the
right, left, and outer subsquares of the diagram in (B.1.10.1), respectively. Then we
have

α′′p = u∗(α′p) ◦ αp

(cf. § A.4). Thus the claim follows from Proposition B.1.6.

Construction B.1.11. — Let f : X → S be a morphism of ringed spaces (viewed in
the absolute sense, cf. § A.2). Define

X := (Xtop, f−1(OS))

and
f := ( f , η(OS) : OS −→ f∗ f−1(OS)),

where η denotes the natural transformation of adjunction between the functors f−1

and f∗ for sheaves of rings. Then X is a ringed space and

f : X −→ S

is a morphism of ringed spaces.
Assume that we are given a commutative square

X′
u //

f ′

��

X

f
��

S′ w
// S

of ringed spaces. Define
f ′ : X′ −→ S′

for f ′ as we have defined f for f . Moreover, define

u := (u, θ : f−1OS −→ u∗ f ′−1(OS′)),

where θ is obtained from the composition

OS
w]

// w∗(OS′)
w∗(η′(OS′ )) // w∗ f ′∗ f ′−1(OS′) f∗u∗ f ′−1(OS′)

by means of adjunction between the functors f−1 and f∗; here, η′ denotes the natural
transformation associated to the adjunction between the functors f ′−1 and f ′∗. Then
the following diagram commutes in the category of ringed spaces:

(B.1.11.1) X′
u //

f ′

��

X

f
��

S′ w
// S

In fact, the described construction may be interpreted as an endofunctor

Sp2 −→ Sp2



B.1. BASE CHANGE MAPS 217

on the arrow category of the category of ringed spaces Sp. As one will notice, the
latter endofunctor features the property of commutating with the functor

pr1 : Sp2 −→ Sp

which projects to the target of an arrow.

Construction B.1.12 (De Rham base change). — Assume we are given a commuta-
tive square (B.1.9.1) in the category of complex spaces, which we equally view as a
commutative square in the category of ringed spaces. Then Construction B.1.11 yields
the commutative square of ringed spaces (B.1.11.1). According to § A.4, the pullback
of Kähler differentials associated to the square of complex spaces (B.1.9.1) gives rise
to a u-morphism of complexes of modules

α : Ω
q
f −→ Ω

q
f ′ .

Let n be an integer. Then Construction B.1.4 yields a w-morphism of modules

βn : Rn f ∗(Ω
q
f ) −→ Rn f ′∗(Ω

q
f ′),

which we call the de Rahm base change in degree n associated to (B.1.9.1). By slight
abuse of terminology, we call the morphism

β̃n : w∗(Rn f ∗(Ω
q
f )) −→ Rn f ′∗(Ω

q
f ′)

of modules on S′ which is obtained from βn by means of adjunction between the
functors w∗ and w∗ the de Rahm base change in degree n associated to (B.1.9.1), too (cf.
Construction B.1.9).

Proposition B.1.13. — Let (B.1.10.1) be a commutative diagram in the category of complex
spaces, n an integer. Denote βn, β′n, and β′′n the de Rahm base changes in degree n associated
to the right, left, and outer subsquares of the diagram in (B.1.10.1), respectively. Then β′′n is
the composition of βn and β′n, i.e., we have:

β′′n = w∗(β′n) ◦ βn.

Proof. — First of all, by the functoriality of Construction B.1.11, we see that the
diagram

X′′
u′ //

f ′′

��

X′
u //

f ′

��

X

f
��

S′′
w′

// S′ w
// S

commutes in the category of ringed spaces. Denote α, α′, and α′′ the pullbacks of
differentials associated to the right, left, and outer subsquares of the diagram in
(B.1.10.1), respectively. Then we have

α′′ = u∗(α′) ◦ α

(cf. § A.4). Thus our claim follows from Proposition B.1.6.
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Proposition B.1.14. — In the situation of Construction B.1.12, let p be another integer.
Then the de Rahm base change βn restricts to a w-morphism of modules

βp,n : FpH n( f ) −→ FpH n( f ′).

Recall here from Notation 1.5.9 that we have

FpH n( f ) ⊂H n( f ) = Rn f ∗(Ω
q
f ),

and likewise for f ′ in place of f .

Proof. — This follows from Proposition B.1.7 by considering the commutative dia-
gram

σ≥pΩ
q
f

σ≥pα //

i≥p(Ω
q
f )

��

σ≥pΩ
q
f ′

i≥p(Ω
q
f ′ )

��

Ω
q
f α

// Ω
q
f ′

of modules. We omit the details.

B.2. Hodge theory of rational singularities

Below we review a couple of Hodge theoretic properties of complex spaces with
rational singularities. The following lemma, which is a variation on the theme of [60,
Lemma (1.2)], will be fundamental.

Lemma B.2.1. — Let X be a complex space having a rational singularity at p ∈ X and let
f : W → X be a resolution of singularities such that E := f−1(p) is a complex space of Fujiki
class C whose underlying set is a simple normal crossing divisor in W. Then we have

gr0
F(H

n(E)) := F0Hn(E)/F1Hn(E) ∼= 0

for all natural numbers n > 0.

Proof. — Fix a natural number n > 0. By stratification theory, there exists an open
neighborhood U of E in W such that E is a deformation retract of U. Thus, by means
of shrinking the base of f around p, we may assume that the complex space X is Stein
and has rational singularities and that the function

i∗ : Hn(W, C) −→ Hn(E, C)

induced by the inclusion i : E→W is a surjection.
Denote F = (Fp)p∈Z the filtration on Hn(W, C) induced by the stupid filtration

of the algebraic de Rham complex Ω q
W via the canonical isomorphism Hn(W, C)→

Hn(W, Ω q
W). Then the morphism i∗ is filtered with respect to F and the Hodge

filtration (FpHn(E))p∈Z of the mixed Hodge structure Hn(E). In particular, i∗ induces
a surjective mapping

F0/F1 −→ F0Hn(E)/F1Hn(E).
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Looking at the Frölicher spectral sequence of W, we see that there exists a monomor-
phism

F0/F1 −→ Hn(W, OW),

yet
Hn(W, OW) ∼= Hn(X, OX) ∼= 0

since X is Stein and has rational singularities, whence we conclude that F0/F1 ∼= 0
and thus gr0

F(H
n(E)) ∼= 0.

Corollary B.2.2. — Under the hypotheses of Lemma B.2.1, we have H1(E, C) ∼= 0.

Proof. — By Lemma B.2.1, we know that

gr0
F(H

1(E)) ∼= 0.

Thus grW
0 (H1(E)) is certainly trivial—and so is grW

1 (H1(E)) as a result of Hodge
symmetry. The remaining weights (i.e., those in Z \ {0, 1}) of the mixed Hodge
structure H1(E) are trivial from the start, hence our claim.

Proposition B.2.3. — Let X be a complex space having rational singularities, f : W → X
a resolution of singularities. Then we have R1 f∗(CW) ∼= 0.

Proof. — Let p ∈ X be arbitrary. Since the morphism f is proper, we have

(R1 f∗(CW))p ∼= H1(Wp, C),

so that it suffices to show that H1(Wp, C) ∼= 0. Since any resolution of singularities of
X can be dominated by a projective one, we may assume that f is projective from the
start. We know there exists a projective embedded resolution g : W ′ →W for Wp such
that g−1(Wp) =: E is a simple normal crossing divisor in W ′. Thus, by Corollary B.2.2
(applied to f ′ := f ◦ g in place of f ), we have H1(E, C) ∼= 0. As the Leray spectral
sequence for g|E : E→Wp implies that the pullback function

H1(Wp, C) −→ H1(E, C)

is one-to-one, we deduce that H1(Wp, C) ∼= 0.

Proposition B.2.4. — Let X be a complex space having rational singularities, f : W → X
a resolution of singularities. Then the function

(B.2.4.1) f ∗ : H2(X, C) −→ H2(W, C)

is one-to-one.

Proof. — Denote E the Grothendieck spectral sequence (or, more specifically, the
Leray spectral sequence) associated to the triple

Mod(W, CW)
f∗

// Mod(X, CX)
Γ(X,−)

// Mod(C)
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of categories and functors. Then, since we have R1 f∗(CW) ∼= 0 by Proposition B.2.3,
the spectral sequence E degenerates in entry (2, 0) at sheet 2 in Mod(C), whence the
canonical map

(B.2.4.2) H2(X, f∗CW) −→ H2(W, CW)

is one-to-one. As the function (B.2.4.1) factors through (B.2.4.2) via the H2(X,−) of
the canonical isomorphism CX → f∗CW of sheaves on Xtop, we deduce that (B.2.4.1)
is one-to-one.

Corollary B.2.5. — Let X be a complex space of Fujiki class C having rational singularities.
Then the mixed Hodge structure H2(X) is pure of weight 2.

Proof. — Let f : W → X be a projective resolution of singularities. Then by Proposi-
tion B.2.4, the pullback

f ∗ : H2(X, Q) −→ H2(W, Q)

is a monomorphism of Q-vector spaces. Note that f ∗ is filtered with respect to the
weight filtrations (WnH2(X))n∈Z and (WnH2(W))n∈Z of the mixed Hodge structures
H2(X) and H2(W), respectively, i.e., we have

f ∗[WnH2(X)] ⊂WnH2(W)

for all integers n. Since W is a complex manifold, we know that

WnH2(W) =

{
{0} for all n < 2,

H2(W, Q) for all n ≥ 2.

Thus, using the injectivity of f ∗, we deduce that

WnH2(X) = {0}

for all integers n < 2. Since f ∗ is even strictly compatible with the weight filtrations,
we further deduce that

f ∗[W2H2(X)] = f ∗[H2(X, Q)] ∩W2H2(W) = f ∗[H2(X, Q)],

whence

W2H2(X) = W3H2(X) = W4H2(X) = · · · = H2(X, Q).

Thus the mixed Hodge structure H2(X) is pure of weight 2.

Proposition B.2.6. — Let X be a complex space of Fujiki class C having rational singulari-
ties, f : W → X a resolution of singularities. Then the pullback function (B.2.4.1) restricts to
a bijection

(B.2.6.1) f ∗|F2H2(X) : F2H2(X) −→ F2H2(W).
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Proof. — First of all, we know that the pullback (B.2.4.1) is filtered with respect to the
Hodge filtrations (FpH2(X))p∈Z and (FpH2(W))p∈Z of the mixed Hodge structures
H2(X) and H2(W), respectively, so that f ∗ certainly restricts to yield a function
(B.2.6.1). According to Proposition B.2.4, the function (B.2.6.1) is injective. It remains
to show that (B.2.6.1) is surjective. For that matter, let c be an arbitrary element of
F2H2(W). We claim that c is sent to zero by the canonical morphism

α : H2(W, C) −→ H0(X, R2 f∗(CW)).

So, fix an element p ∈ X. Let g : W ′ →W be an embedded resolution of Wp ⊂W
such that E := g−1(Wp) is a simple normal crossing divisor in W ′. Then, Lemma B.2.1
implies that gr0

F(H
2(E)) ∼= 0. Given that grW

n (H2(E)) ∼= 0 for all n > 2, we deduce
that

F2H2(E) ∼= 0

exploiting the Hodge symmetry of the weight-2 Hodge structure grW
2 (H2(E)). Since

the composition of mappings

H2(W, C) −→ H2(Wp, C) −→ H2(E, C)

is filtered with respect to the Hodge filtrations of the mixed Hodge structures H2(W)

and H2(E), respectively, it sends c to zero. As W has rational singularities, Proposition
B.2.3 implies that R1g∗(CW ′) ∼= 0. In consequence, the pullback mapping

H2(Wp, C) −→ H2(E, C)

is one-to-one, whence c is sent to zero by the restriction

H2(W, C) −→ H2(Wp, C)

already. Since the morphism f is proper, the topological base change

(R2 f∗(CW))p −→ H2(Wp, C)

is a bijection (and in particular one-to-one), so that the canonical image of α(c) in the
stalk (R2 f∗(CW))p vanishes. As p ∈ X was arbitrary, we see that α(c) = 0.

Now, since R1 f∗(CW) ∼= 0 by Proposition B.2.3, the Leray spectral sequence for f
yields that

H2(X, C)
f ∗

// H2(W, C)
α // H0(X, R2 f∗(CW))

is an exact sequence of complex vector spaces. Hence, there exists an element d ∈
H2(X, C) such that f ∗(d) = c. Accordingly, since f ∗ is strictly compatible with the
Hodge filtrations, there exists an element d′ ∈ F2H2(X) such that f ∗(d′) = c (in fact,
we have d = d′ as f ∗ is one-to-one). This proves the surjectivity of (B.2.6.1).

Proposition B.2.7. — Let X be a complex space of Fujiki class C having rational singulari-
ties. Then the mapping

(B.2.7.1) H2(X, R) −→ H2(X, OX)
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which is induced by the canonical morphism RX → OX of sheaves on Xtop is a surjection.

Proof. — Let f : W → X be a resolution of singularities. Then (essentially by Proposi-
tion B.1.7) the diagram

(B.2.7.2) H2(X, C)
f ∗

//

β

��

H2(W, C)

α

��

H2(X, OX) f ∗
// H2(W, OW)

commutes in the category of complex vector spaces, where α and β are induced by
the structural sheaf maps CW → OW and CX → OX, respectively. Restricting the
domains of definition of the functions corresponding to the vertical arrows in (B.2.7.2),
we obtain the following diagram, which commutes in the category of complex vector
spaces too:

(B.2.7.3) F2H2(X)
f ∗

//

β′

��

F2H2(W)

α′

��

H2(X, OX) f ∗
// H2(W, OW)

By Proposition B.2.6, the upper horizontal arrow in (B.2.7.3) is an isomorphism. Since
W is a complex manifold, α′ is an isomorphism by classical Hodge theory. The lower
horizontal arrow in (B.2.7.3) is an isomorphism since the complex space X has rational
singularities. Thus, β′ is an isomorphism by the commutativity of the diagram in
(B.2.7.3).

Furthermore, we have

F1H2(X) ⊂ ker(β)

since, for all c ∈ F1H2(X), we certainly have f ∗(c) ∈ F1H2(W), whence α( f ∗(c)) =
0 looking at the Frölicher spectral sequence of W; therefore β(c) = 0 due to the
injectivity of

f ∗ : H2(X, OX) −→ H2(W, OW).

Now, be d ∈ H2(X, OX) arbitrary. Then there exists an element c ∈ F2H2(X) such
that β(c) = β′(c) = d. Since c ∈ F2H2(X) and F2H2(X) ⊂ F1H2(X), we deduce that

β(c + c) = d.

Clearly, c + c is real in H2(X, C), i.e., there exists an element c′ ∈ H2(X, R) which is
mapped to c + c by the function

H2(X, R) −→ H2(X, C)
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induced by the canonical sheaf map RX → CX on Xtop. In consequence, c′ is mapped
to d by the function (B.2.7.1). This shows that the function (B.2.7.1) is a surjection as d
was an arbitrary element of H2(X, OX).
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