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Chapter 1

Introduction

Since the discovery of X-ray diffraction by Max von Laue in 1912 [1], this method

became wide-spread among physicists, chemists, materials scientists, geologists, bio-

chemists. The popularity of X-ray diffraction is related to the fact that it provides

the comprehensive information about the crystal structures of materials, which in

turn form the key to understand their physical and chemical properties. Solutions

of crystal structures of DNA [2], proteins [3], ribosome [4] and high-temperature su-

perconductors [5] have initiated breakthroughs in the corresponding scientific fields.

During more than 100 years of X-ray diffraction many developments have been

made to increase the range of available temperatures and pressures at which in

situ diffraction experiments can be performed. So, in order to study the physics of

superconductors an experimentalist has to cool the crystal down, while geologists

may want to compress a mineral and heat it up to model the deep Earth interior

conditions. Up to date, sample environments may vary in a range of 10−3 − 6 · 103

K and 10−12 − 6 · 106 bar [6–8].

This thesis reports on the investigation of low-dimensional systems MOCl (M =

Sc, Ti, V, Cr, Fe) and TiPO4 using single-crystal X-ray diffraction at non-ambient

conditions. Transition metal oxychlorides MOCl are isostructural at ambient condi-

tions. They crystallize in the FeOCl structure type with space group Pmmn. The

structure of MOCl consists of double M–O layers separated from each other by bi-

layers of Cl atoms (Fig. 1.1). Studies of MOCl began with the report of Goldsztaub

on the synthesis and the crystal structure of FeOCl in 1934 [9]. The systematic

investigation of all MOCl systems was performed by Harald Schäfer in the 1950s

[10–13]. He has found a way to produce and isolate pure MOCl compounds using

chemical reactions between metal oxides and chlorides:

2TiCl3 + TiO2 → 2TiOCl + TiCl4, (1.1)
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Figure 1.1: Crystal structure of MOCl at ambient conditions.

M2O3 + MCl3 → 3MOCl, for M = Cr, V, Fe. (1.2)

Later research was devoted to the improvement of synthetic techniques and to

the investigation of magnetic properties of MOCl [14–18]. MOCl appeared to be

good model systems for studies of the dependence of magnetic properties on the

atomic magnetic moments of M3+ within a single structure type. FeOCl, CrOCl

and VOCl reveal long-range antiferromagnetic order below 82.0, 13.5 and 80.3 K

respectively [19–21]. At the same time TiOCl appeared to be different from other

MOCl compounds, and its low-temperature behavior has been understood only in

past ten years (see below). Another interest in MOCl compounds is related to the

fact that their layered structure allows to intercalate various guest species like alkali

metals, organometallic complexes or polymers in the interlayer space [22–28]. These

investigations have been mainly restricted to FeOCl due to high oxidizing power of

Fe3+, which allows charge transfer mechanism of intercalation:

Fe3+ + nG→ Fe3+
1−nFe2+

n + nG+, (1.3)

where G is a guest compound. Nevertheless, there are some studies of intercalated

TiOCl, VOCl and CrOCl as well [18, 26, 29, 30]. Intercalated materials are of a

potential use in lithium ion batteries [28, 31, 32] and may exhibit novel magnetic

and electronic properties [24, 33].
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Chapter 1. Introduction

A renewed interest in pure MOCl appeared immediately after Seidel et al. [34]

have shown that TiOCl undergoes a spin-Peierls transition at a remarkably high

temperature. Furthermore, unlike standard spin-Peierls systems, TiOCl undergoes

two phase transitions: a normal-to-incommensurate transition at Tc2 = 90 K and a

lock-in transition at Tc1 = 67 K towards a dimerized spin-Peierls state. Orbital order

is responsible for the formation of quasi-one-dimensional spin chains in TiOCl. Each

Ti atom is surrounded by four O and two Cl atoms forming a distorted octahedral

environment. In a perfect octahedral environment the crystal field splits degenerate

d orbitals into low-energy t2g triplet and the higher energy eg doublet. As was shown

by Saha-Dasgupta et al. [35], in case of TiOCl, further splitting of the t2g orbitals in

a distorted octahedral environment leads to lower energy dx2−y2 and higher energy

dxz and dyz orbitals (the coordinate system has been chosen as z ‖ a, x ‖ b and

y ‖ c). Therefore, in TiOCl, the degeneracy of the d-orbitals is completely removed,

and the single d-electron of Ti3+ is located in the dx2−y2 orbital. The dx2−y2 orbitals

form linear chains running along the b-axis, linking Ti ions along these chains.

Therefore, the exchange interaction between the electrons on neighboring Ti ions

arises mainly from direct exchange. A detailed analysis of the low-temperature

crystal structures of TiOCl has been performed by Shaz et al. [36] and Schönleber

et al. [37]. Analysis of crystal structures allowed to attribute the origin of the

incommensurate phase between 67 an 90 K to a frustration between spin-Peierls

dimerization and elastic and magnetic interchain couplings.

The peculiar behavior of TiOCl has triggered reinvestigation of low-temperature

phase diagrams of other MOCl compounds. MOCl (M = V, Cr, Fe) have more

than one d-electron, and, hence, have strong magnetic interchain couplings. This

does not allow a spin-Peierls state to develop. Recent temperature-dependent mea-

surements on MOCl have shown that they possess monoclinic lattice distortions

below TN [19–21, 38], and new models of the low-temperature magnetic structures

based on monoclinic symmetry have been developed [21, 39]. It was shown that

anisotropic magnetic interactions, magnetic frustration and strong magneto-elastic

coupling are responsible for a variety of complex magnetically ordered phases at low

temperatures.

TiOCl is a Mott insulator with weak electron localization attributed to high

nearest-neighbor exchange coupling. According to Goodenough [40, 41] an insulator-

metal phase transition occurs when a critical metal-metal distance is reached. For

Ti3+ the critical distance is 3.05 Å [42], and the shortest Ti–Ti distance in TiOCl at

ambient conditions is 3.17 Å. Therefore, it was suggested that TiOCl is close to an

insulator-metal transition and an application of pressure is an ideal tool to trigger
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this transition [43], because it directly affects interatomic distances.

Initial high-pressure transmittance and reflectance measurements suggested that

TiOCl undergoes an insulator-to-metal transition at ∼12 GPa [43]. Later Forthaus

et al. [44] have performed electrical transport measurements and found that TiOCl

does not transform to a metallic state, however there is a substantial change in the

pressure-dependence of the band gap around 13 GPa. This indicated a change in the

electronic structure of TiOCl. At the same time no structural changes were observed

by means of energy-dispersive powder X-ray diffraction. Later Zhang et al. [45] have

performed ab initio calculations and claimed two pressure-induced phase transitions

to occur. The first transition leads to the two-dimensional metallic state with strong

Ti–Ti dimerization. The dimerization is suppressed at the second transition, and

TiOCl becomes a uniform metal.

The structural evidence for the first transition has been obtained by Kuntscher

et al. [46]. Employing powder X-ray diffraction they have found additional reflec-

tions on the diffraction pattern above 15.5 GPa. However, no structural model has

been proposed for the high-pressure phase. Later Blanco-Canosa et al. [47, 48]

proposed that the high-pressure structure is a monoclinic a × 2b × c superstruc-

ture with symmetry P21/m. A Rietveld refinement revealed formation of Ti–Ti

dimers along the b-axis. Although the experiment results are supported by theo-

retical calculations, the accuracy of Rietveld refinement of TiOCl powders is rather

questionable. Indeed, Ebad-Allah et al. [49] interpreted powder X-ray diffraction

pattern of TiOCl in a different way. They suggested that above 15 GPa a mixture

of ambient-pressure Pmmn phase and a monoclinic 2a × 2b × c superstructure ex-

ists. Moreover, Ebad-Allah et al. have found a pronounced anomaly in all lattice

parameters of the 2a× 2b× c superstructure and suggested that a second transition

takes place at 22 GPa. However, no models were proposed for these high-pressure

superstructures.

So, up to now no agreement has been obtained about a possible metallization

of TiOCl at high pressures. Furthermore, no reliable structure models have been

reported for high-pressure phases. The major reason for that is that it is not possible

to produce good TiOCl powders for measurements in diamond anvil cells. Plate-

like crystallites of TiOCl orient themselves to lie flat on the diamond culet, and,

therefore the crystallographic c-axis become parallel to the primary X-ray beam.

With that Rietveld refinements can’t provide reliable results.

Some considerations about high-pressure behavior of TiOCl can be also applied

to other MOCl, which are Mott insulators at ambient conditions and may undergo

insulator-metal transitions at high pressures. Therefore, systematic investigation
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Chapter 1. Introduction

of high-pressure behavior of MOCl is of great interest in order to understand the

interplay between the number of d-electrons on the transition metal atom and phase

diagrams of the compounds. No extensive high-pressure studies have been performed

on MOCl other than on TiOCl so far. A single report is available on high-pressure

behavior of polyaniline-intercalated FeOCl. It was shown that the charge transfer in

polyaniline-intercalated FeOCl can be enhanced through the application of external

pressure [27]. Therefore, studies of MOCl at high pressures may also bear relevance

for the understanding of the stress properties of intercalated MOCl compounds.

The main goal of the work reported in this thesis is the characterization of

the high-pressure phase diagrams of MOCl and the development of models for the

mechanisms of the high-pressure phase transitions. For this purpose single-crystal

X-ray diffraction in diamond anvil cells has been employed.

In Chapter 2 of this thesis a short introduction is given to the methodology of

synchrotron X-ray diffraction experiments at non-ambient conditions.

Chapter 3 focuses on the procedure of processing of high-pressure single-crystal

X-ray diffraction data using the computer program CrysAlisPro [50].

It was believed for many years that on increasing pressure materials should adopt

high-symmetry close-packed structures, however there are now many examples that

complex superstructures or even incommensurately modulated structures may ap-

pear under compression [51]. Analysis of large superstructures is not a trivial task

even if diffraction data are collected at ambient conditions. Additional restrictions

on data completeness implied by the diamond-anvil-cell technique make conventional

analysis of superstructures almost impossible. An elegant solution of this problem is

to use the superspace approach [52]. Within this approach the superstructure may

be interpreted as its basic structure with three-dimensional space group symmetry

and a small unit cell, which is subjected to a periodic deformation. In Chapter 4 it

is shown that the use of the superspace approach may help to overcome problems

of data incompleteness which is inevitable for high-pressure diffraction experiments

in diamond anvil cells, using high-pressure superstructures of FeOCl and CrOCl as

examples.

Chapter 5 of this thesis is dedicated to the high-pressure behavior of FeOCl. Em-

ploying single-crystal X-ray diffraction it was shown that at P ≈ 15 GPa a structural

phase transition takes place. The transition is preceded by an extremely anisotropic

lattice compression. The transition has been additionally investigated by Raman

and Mössbauer spectroscopy techniques. The results of Mössbauer spectroscopy

exclude magnetic order, while Raman spectroscopy indicates that the insulating

behavior is retained at high pressures. The mechanism of the phase transition is
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Figure 1.2: Schematic representation of the structural phase transition in MOCl (repro-

duced from Chapter 6).

related to an optimization of the packing of Cl atoms in the interlayer space and is

not of electronic or magnetic origin. Therefore such transition type may be common

for all MOCl compounds.

Chapter 6 reports the investigation of structural properties of CrOCl at

high pressures. We have found that CrOCl undergoes a sequence of normal-

incommensurate-commensurate phase transitions on compression. The distortions

in the high-pressure structures of CrOCl are similar to those in FeOCl. We have

estimated an empirical rule for the transition in MOCl. The transition occurs when

interlayer Cl· · ·Cl contacts reach the strongly repulsive region of the interatomic

potential at ∼3 Å interatomic separation. At the same time intralayer Cl· · ·Cl

distance along a is determined by the geometry of the poorly compressible M–O

bonds, and in all MOCl this distance is larger than twice Van der Waals radius of

Cl. Therefore, there are voids within the structure, which allow Cl displacements

along a, and are used to prevent a considerable shortening of the interlayer Cl· · ·Cl

distances. Some voids are filled when neighboring Cl atoms move towards each

other. Other voids are filled by Cl atoms of an adjacent slab when atoms neighbor-

ing along a move apart from each other (Fig. 1.2). A lock-in transition towards a

six-fold 3a× b× 2c superstructure has been observed in CrOCl between 51 and 56

GPa. This superstructure coexists with a monoclinic 3a× b× 3c superstructure.

Chapter 7 describes the high-pressure behaviors of ScOCl, TiOCl and VOCl.

In TiOCl an interplay between different structure distortions leads to extremely

complex incommensurately modulated structures. Below 15 GPa enhancement of

quasi-one-dimensional magnetism of TiOCl leads to the formation of the incommen-

surately modulated phase similar to the low-temperature incommensurate phase.

Further increase of pressure leads to a structural phase transition as in FeOCl and

9



Chapter 1. Introduction

Figure 1.3: Crystal structure of TiPO4 at ambient conditions.

in CrOCl, but now there is more than one distortion type: spin-Peierls-like distor-

tion and slab buckling are present simultaneously. The structure model requires

two modulation wave vectors for the description of atomic modulations. The high-

pressure phase diagram of VOCl has been studied up to 50.5 GPa. Between 14.1

and 16.4 GPa it undergoes normal-to-incommensurate transition which is common

for all MOCl. However, further compression leads to a transition to a 3a× 3b× 2c

superstructure. The transition is accompanied by a volume drop, formation of tri-

angular V clusters and interlayer V–Cl bonds. A phase transition in ScOCl towards

a 6a × b × 2c superstructure has been detected at much lower pressure than the

similar transition in other MOCl compounds. This allowed to improve the rule for

the common transition for all MOCl, first described in the Chapter 6. Differences

in high-pressure phase diagrams of MOCl are discussed in the Chapter 7.

Very recently Law et al. [53] have reported on the spin-Peierls state of TiPO4

based on magnetic susceptibility, heat capacity, electron spin resonance and nuclear

magnetic resonance techniques. The crystal structure of TiPO4 at ambient condi-

tions is presented on the Fig. 1.3. The major building blocks are distorted TiO6

octahedra which share edges and build infinite chains along the c direction. These

chains are interconnected by PO4 tetrahedra. Law et al. have found that intrachain

exchange interactions are much larger than interchain interactions. Thus, TiPO4 is a
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quasi-one-dimensional magnetic system and its low-temperature behavior appeared

to be very much alike that of TiOCl. Two phase transitions have been detected at

Tc2 = 111 K and at Tc1 = 74 K. Nevertheless, no structural proof of the spin-Peierls

distortion could be obtained from in-house X-ray diffraction measurements.

Chapter 8 reports on the low-temperature single-crystal X-ray diffraction study

of TiPO4 using synchrotron radiation. A combination of the advantages of syn-

chrotron radiation with advantages of point detector allowed us to detect very weak

satellite reflections, which appear at low temperature and evidence the structural

distortion. Crystal structure of TiPO4 below Tc1 appeared to be a 2a× b× c super-

structure with symmetry Pbnm. The major structural distortion involves forma-

tion of Ti–Ti dimers within quasi-one-dimensional chains. The structure of TiPO4

between Tc1 and Tc2 appeared to be incommensurately modulated. The incommen-

surate phase is ascribed to energetically almost degenerate phases resulting from

a competition and frustration of the spin-Peierls transition due to elastic coupling

between neighboring Ti chains.
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Chapter 2

Experimental techniques

2.1 Sample environment

2.1.1 Closed-cycle He cryostat

For the single-crystal X-ray diffraction measurements at low temperatures (down to

10K) reported in this thesis (Chapter 8), a DE-202G cryostat from APD Cryogenics

Inc. (SHI Cryogenics Group) was used. This cryostat is operated on a pneumatically

driven two-stage Gifford-McMahon cycle [54]. The major components of the closed-

cycle cryostat are the expander, compressor and vacuum shield. The expander (Fig.

2.1), where the refrigeration cycle takes place is connected to a compressor by high-

pressure (supplying) and low-pressure (return) He gas lines. The Gifford-McMahon

cycle consists of four steps [55]:

� The valve disk rotates and opens the high-pressure He gas inlet. The regener-

ators were cooled during the previous cycle, and cool the incoming He gas as

it flows through.

� Pressure differential moves the displacer up, and creates an expansion space

at the heat stations for gas that has passed through regenerators. While

the displacer is moved up, the gas which didn’t pass through regenerators is

partially compressed and pushed into the surge volume.

� The valve disk rotates and opens the low-pressure gas return path. He gas

expands in the expansion volume at the heat stations. This results in cooling

of the heat stations.

� Cold He flows through the regenerating material and removes heat from it.

� As the pressure drops, partially compressed gas leaves the surge volume and

12



2.1. Sample environment

Valve motor

Rotating valve disc

Surge volume

High-pressure
gas inlet

Low-pressure
gas return

First-stage
regenerator

Second-stage
regenerator

First-stage
heat station

Sample

Second-stage
heat station

Displacer

Figure 2.1: Simplified scheme of the closed-cycle He cryostat DE-202G. The figure is

adapted from the user manual [55].

pushes the displacer down. The displacer moves down to its original position,

and the valve closes.

The use of closed-cycle cryostat requires thermal conduction between the sample

and the cold finger of the cryostat. Therefore, a conventional glass fiber support

is not suitable. Instead, a crystal is glued to a carbon fiber that is attached to a

copper pin. This pin is then attached to the second-stage heat station of the cryostat

(Fig. 2.1). In order to prevent the formation of ice around the crystal and to reduce

temperature gradients between the parts of the displacer, two beryllium domes are

used. Vacuum is maintained in the areas between outer and inner domes as well as

between the second stage heat station and the inner dome.

The closed-cycle cryostat has several significant advantages over open-flow He

cryostats. First of all, it does not require continuous He supply. Secondly, it pro-

vides more precise temperature control at low temperatures, and does not suffer

from gas turbulence problems. Among the disadvantages is that X-ray diffraction

measurements suffer from Be diffraction rings, and it is almost impossible to use area

detectors for such measurements. Another problem is that Be domes do not allow to

observe the sample optically. This implies limitations on precise crystal centering,
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Figure 2.2: A principle of DAC construction. The figure is adapted from [57].

.

due to the shrinkage of some parts of the cryostat subjected to low temperatures

(see section 2.2.2). Furthermore, the bulky construction of the cryostat significantly

restricts the movements of the diffractometer axes, and hence, reduces the cover-

age of the reciprocal space. That is a crucial limitation in case of low-symmetry

crystals, while for high-symmetry crystals this limitation mainly reduces the data

redundancy.

2.1.2 Diamond anvil cell

A diamond anvil cell (DAC) is a device used to generate very high static pressures

in the range 0.1–640 GPa [56]. A modern DAC consists of two opposing diamonds,

which are driven towards each other by external force, and compress a sample be-

tween the culets (Fig. 2.2).

According to the most simple definition of pressure (P = F
S

, where F is the

applied normal force, and S is the area, to which the force is applied), there are two

ways of reaching very high pressures. The first option is to increase the applied force,

and the second is to decrease the area, to which the force is applied. The maximum

force that can be applied is restricted by the mechanical strength of diamonds and

seats, therefore in order to achieve extremely high pressures one should apply a

moderate force (usually only several kN [58]) to a small area.

Nowadays diamonds with 500 µm and 250 µm culet diameters are exploited for

routine measurements up to ∼20 and ∼80 GPa respectively. Ultra-high-pressure

experiments require much smaller culet and sample size, that makes it necessary to

use a unique equipment and synchrotron radiation. The highest static pressure in

DACs (640 GPa) was recently achieved by the use of secondary diamond anvils [8].
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Figure 2.3: Comparison between Boehler-Almax (left) and normal-cut diamonds (right).

Figure 2.4: A photo of a BX90 diamond anvil cell.

Two types of diamonds were used for the experiments reported in this thesis.

For single-crystal X-ray diffraction measurements Boehler-Almax type diamonds

[59] were used. The main advantage of this design is a large opening angle of the

DAC (4θ ∼ 80◦), which allows the measurement of single-crystal X-ray diffraction

up to high resolution. For Raman and Mössbauer spectroscopy measurements, a

wide opening angle is not essential, so cheaper normal-cut diamonds may be used

for these techniques (Fig. 2.3). Diamonds were glued by a super glue to the tungsten

carbide seats, and placed into the BX90 diamond anvil cells [60] (Fig. 2.4).
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Chapter 2. Experimental techniques

2.2 Synchrotron radiation X-ray diffraction

All diffraction experiments reported in this thesis were performed with synchrotron

radiation (SR) at beamlines D3 (Doris, DESY, Hamburg, Germany), P02.2 (Petra

III, Hamburg, Germany), ID09A (ESRF, Grenoble, France) and 13IDD (APS, Ar-

gonne, USA). The choice of SR was dictated by its notable advantages over in-house

X-ray sources. First of all, X-rays produced by a synchrotron are several orders of

magnitude brighter than the X-rays from a sealed tube or a rotating anode source.

It is crucial in case of weak diffraction data, typical, for example, for satellite reflec-

tions in incommensurately modulated structures (see Chapter 8) or for high-pressure

experiments which usually require small sample volumes (Chapters 4, 5, 6). Sec-

ondly, SR provides an opportunity to choose a wavelength, that is most suitable

for a certain application. So, for high-pressure diffraction one would prefer harder

X-rays in order to collect more complete data, while for macromolecular crystal-

lography longer wavelengths are used in order to avoid overlaps of diffracted peaks

on the detector. Furthermore, variation of wavelength may be used to minimize

crystal absorbtion and radiation damage. Finally, synchrotron X-ray beams can be

well conditioned. So, a perfect parallel beam as well as a microfocused beam can be

obtained.

2.2.1 High-pressure X-ray diffraction

In a typical high-pressure experiment a specimen in a form of a single crystal or

powder and a pressure sensor are placed inside the hole in the preindented Re gasket,

which was in advance attached to one of the diamonds by plasticine. Then the whole

DAC is placed inside a chamber, which is then filled with Ne to a pressure of about

0.2 GPa. After that the DAC is closed by tightening of four screws, resulting in

initial pressure in the range 1 – 5 GPa [61].

Pressure in the DAC chamber can be determined by several optical and diffrac-

tion methods. One of the most convenient pressure indicator is ruby (Cr - doped

Al2O3). In 1972 Forman et al. [62] have noticed that that the shift of ruby fluores-

cence lines with pressure can be effectively used for rapid pressure determination.

Online ruby fluorescence systems are available at all high-pressure synchrotron sta-

tions and allow monitoring of the pressure without unmounting of the DAC from

the experimental stage during the diffraction experiment. For all pressure measure-

ments employing ruby fluorescence reported in this thesis, we have used the calibra-

tion made by Mao et al. [63] which is implemented in web-based tool available at

http://kantor.50webs.com/ruby.htm.
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2.2. Synchrotron radiation X-ray diffraction

Figure 2.5: A scheme of the diffraction experiment in a diamond anvil cell.

Alternatively, pressure can be determined using the equation of state of Au (was

used for powder XRD in Chapter 5) or Ne [64] (was used as a complementary

pressure indicator at pressures above 15 GPa). In this way the unit-cell volumes

of Au and Ne are determined from X-ray diffraction data, and are used in pressure

calculations.

Among XRD experiments, two types may be distinguished: single-crystal and

powder XRD. The use of powder simplifies the equipment required for the experi-

ment. For example, no DAC rotation is necessary during the data collection. This

increases the stability of the system and allows relatively easy combination of the

DAC technique with bulky laser-heating systems or cryostats for temperature varia-

tion. The result of a powder XRD experiment is a two-dimensional Debye-Scherrer

pattern, which is then integrated to provide a standard intensity versus 2θ (I − 2θ)

profile. These profiles may be suitable for lattice parameters determination and

structure refinement, while ab initio structure solution is not a trivial task. Al-

though there are plenty of studies, where high-pressure structures of materials were

discovered by means of powder XRD, in many cases the interpretation of pow-

der diffraction data is ambiguous. Nevertheless, powder XRD is the convenient

technique for high-pressure studies of materials, exhibiting no phase transitions on

compression. In case good quality single crystals of the material of interest can be

obtained, single-crystal XRD is the method of choice for high-pressure studies. The

resulting diffraction data are three-dimensional and do not suffer from problems

typical for powder data [65].

A typical high-pressure X-ray diffraction experiment is performed as follows:
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Chapter 2. Experimental techniques

Figure 2.6: Typical process of sample centering shown in the projection along the vertical

(z) axis. (a) initial state: gasket hole is away from the primary beam and from the ω

rotation axis. (b) After several scans in the plane perpendicular to the primary beam

direction the gasket hole is aligned with the beam. (c) DAC is rotated around the ω axis.

Two horizontal scans are performed in order to determine the distance between the centers

of the gasket hole at different ω positions. (d) The gasket hole is aligned with the primary

beam and with the ω axis. (e) Second possible initial state: both gasket hole and ω axis

are away from the primary beam. (f) After several scans in the plane perpendicular to

the primary beam direction the gasket hole is aligned with the beam. ω axis is away from

the beam. (g) DAC is rotated around the ω axis. Two horizontal scans are performed

in order to determine the distance between the centers of the gasket hole at different ω

positions. (h) The gasket hole is aligned with the primary beam and with the ω axis. ω

axis is aligned with the beam.
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2.2. Synchrotron radiation X-ray diffraction

� A DAC is placed on the sample positioning stack that has a motor, providing

vertical translation, and two sets of motors providing horizontal translations

above and below the ω rotation motor. The coordinate system is usually

chosen as follows: x is parallel to the primary beam, z is a vertical axis and y

is perpendicular to the xz plane (Fig. 2.5). The lower set of xy motors is used

to bring the ω-axis to the intersection with the primary beam. The upper set

of xy motors is used to bring the sample to the ω-axis.

� The sample is aligned in the X-ray beam by scanning the gasket hole in the

plane normal to the X-ray path (Fig. 2.6). For that a semiconductor X-ray

detector is placed between the DAC and the beamstop. Thus, if the primary

beam coincides with the gasket hole, there will be noticeable intensity coming

out of the DAC, while if the primary beam hits the gasket, it will be almost

completely absorbed. A typical scan is presented in the Fig. 2.7.

Alignment along the X-ray beam direction is performed by scanning the sample

in horizontal direction at two different ω positions (Fig. 2.6(c)). From these

scans the distance between the centers of the gasket hole at different ω positions

(2d) can be calculated. Therefore, the correction that must be applied can be

calculated using the formula ∆xhigh = d/ sinω (subscript ”high” means that

the correction should be applied using the x-translation motor above the ω

motor).

In case the ω axis is initially not aligned with the primary beam (Fig. 2.6(e)),

additional corrections must be applied to bring the ω axis to the primary

beam (Fig. 2.6(f)) using the horizontal motor below the ω-axis. In this case

∆xhigh = d1+d2
2 sinω

, ∆ylow = d2−d1
4 sin2 ω

2

and ∆yhigh = −∆ylow.

� Usually the sample is placed in the center of the gasket hole, so that the

centering of the gasket hole implies the centering of the crystal. If the crystal

is well absorbing, its exact position can be established from the DAC scan

(Fig. 2.7(b)), but for weakly absorbing crystals (like thin platelike crystals of

MOCl (M = Sc, Ti, V, Cr, Fe) studied in this thesis) this procedure doesn’t

work very well (Fig. 2.7(c)). In this case an experimentalist must determine

the offset of the crystal from the center of the gasket hole using an optical

microscope, and then apply this correction after centering of the gasket hole.

� A wide omega scan (∆ω ≈ 40◦) is performed. Diffracted intensities are ana-

lyzed in order to adjust the correct exposure time/filter/primary beam inten-

sity for the data collection.

� Finally, a data collection is performed (Fig. 2.5). A series of frames is collected

19



Chapter 2. Experimental techniques

Figure 2.7: Schematic reproduction of typical DAC scans in the plane perpendicular to

the primary X-ray beam. (a) Empty cell or very weak absorbing crystal. (b) Strong

absorber. (c) Weak absorber.

with typical ∆ω = 0.5 – 1◦ covering the total range of 80◦. In order to increase

the coverage of the reciprocal space a second data set can be collected with

the DAC rotated around the primary beam direction by 90◦.

2.2.2 Low-temperature X-ray diffraction

For low-temperature XRD experiments (Chapter 8) the closed-cycle He cryostat is

mounted on the φ-axis of a four-circle Huber diffractometer equipped with a point

detector. The orientation matrix of the crystal is determined before mounting the

Be domes. For that, an image plate is used to record a two-dimensional image of

the diffracted intensities from a wide φ scan. From this image, χ, ω and 2θ angles of

several strong reflections can be calculated, and the φ angle is then determined from

the wide φ scan at given positions of other angles using a point detector. After the

positions of several strong reflections (usually at low 2θ values) are determined, one

can find the preliminary orientation matrix. Once the orientation matrix is deter-

mined, it is possible to determine the positions of a number of strong reflections at

higher 2θ values and to improve the precision of the orientation matrix and lattice

parameters. Unfortunately, the experimental setup with a bulky cryostat doesn’t

allow to measure each reflection at several positions for precise lattice parameters re-

finement [66]. The next step is the mounting of two beryllium domes on the cryostat

and pumping air out of the system to prevent heat transfer from the atmosphere to

the crystal. After a good vacuum is reached (∼ 10−5 mbar) cooling can be started.

In order to prevent radiation scattered by the Be domes to reach the detector, a

detector collimator is used. It is a tube, that is mounted in front of the detector and

allows to exclusively detect sample peaks (Fig. 2.8). However, at angles 2θ < 13◦,
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2.2. Synchrotron radiation X-ray diffraction

Figure 2.8: A simplified scheme of X-ray diffraction from a crystal and from a Be dome

(only one Be dome is shown). Note that the X-ray beams diffracted from the Be dome

(shown as dashed lines) don’t reach the detector.

there is a significant increase of the background defined by diffraction from beryllium

domes [67]. Another problem arises from the impossibility to center the crystal

optically in the X-ray beam, when the crystal is cooled. The crystal is centered

at ambient conditions when the Be domes are not mounted. Cooling induces the

shrinkage of some parts of copper sample holder adapter and of a copper pin, and

results in the moving the crystal away from the beam. A height correction, therefore,

must be applied based on empirical knowledge from previous experiments.
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Chapter 3

Single-crystal high-pressure X-ray

diffraction: data processing

It is known that X-ray diffraction of crystals loaded in DACs suffers from shadows

imposed by the DAC, strong diamond peaks, secondary diffraction effects (when the

beam diffracted by the diamond hits the gasket), and diffraction from the pressure-

transmitting medium (Fig. 3.1). Therefore, default procedures of data processing

may often fail to produce reliable intensities of Bragg reflections. This chapter

describes general procedures and the theoretical background for the analysis of high-

pressure X-ray diffraction data using the CrysAlisPro software package [50].

3.1 Image formats and their conversion

All high-pressure single-crystal X-ray diffraction data reported in this thesis have

been obtained using synchrotron radiation at ID09A (ESRF, Grenoble, France) or

P02.2 (DESY, PETRAIII, Hamburg, Germany). Single-crystal X-ray diffraction in

DACs at synchrotrons is not standardized with respect to the software for beamline

control as well as to detector systems. So, at ID09A a Mar555 flat panel detector

is exploited, while at P02.2 a Perkin Elmer XRD 1621 flat panel detector is used.

Both detectors are relatively modern and are not commonly used for routine in-

house X-ray diffraction experiments. Therefore, the images they produce are not

directly supported by the available data integration software.

CrysAlisPro is the software package designed for Xcalibur/SuperNova X-ray

systems and allows both instrument control and data analysis for these systems.

With growing popularity of CrysAlisPro many external detector frames formats

were implemented (e.g. Mar, Dectris, Rigaku and Bruker detector images). In
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3.1. Image formats and their conversion

Figure 3.1: Typical X-ray diffraction image from a crystal loaded in a DAC. 1 - Diffrac-

tion line from the pressure-transmitting medium. 2 - diamond reflection 3 - secondary

diffraction from the gasket or DAC body. 4 - beamstop shadow. 5 - region shaded by the

DAC body. 6 - regions of reduced intensity, which appeared due to the ineffective detector

cleaning from extremely overexposed peaks on previous images. 7 - sample diffraction

peak.
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Chapter 3. Data processing

this section, the procedures for the treatment of .mar2560 and .tiff images from the

detectors installed at ID09A and P02.2 will be considered. The principal task is that

the detector local coordinate systems must be appropriately transformed in order to

match the CrysAlisPro conventions for relations between laboratory and detector

coordinate systems. Depending on the geometry of the diffraction experiment this

may require various rotations or reflections of the recorded images.

Mar555 images (.mar2560)

The Mar555 flat panel detector installed at ID09A produces raw detector images

in .mar2560 format, that have to be converted by the computer program MAR555

into .mar3450 images. The information for the transformation must be given in the

MAR555.cfg file, an example of which is shown here:

# 2560 - Dimension X

# 3072 - Dimension Y

# 3450 - MAR format modifier

# crocl_p6_2 - file name template

# 80 - number of input files

# 1 - starting from number

# 140 - starting angle

# 1 - oscillation size in degrees

Converted images have .mar3450 format supported by CrysAlisPro. The dialog

for quick generation of all necessary files for further data processing can be invoked

from the CrysAlisPro command shell (CMD) by typing mar experimentsetup in the

command line (Fig. 3.2). First, one needs to specify first and last images of the run

being imported. Detector distance, beam origin and wavelength can be modified here

or on further steps. In the Experiment interpretation section choose User settings,

Monochromator/Polarisation: Polarisation= 1, and Image rotation:+90. After

clicking Ok, a list of available experiments appears.

A known bug in the CrysAlisPro importer is that it does not set correctly the

pixel size and the type of image rotation for frames converted by MAR555. So, be-

fore opening the newly created experiment file, one has to modify these parameters

in marip.ini file located in the experiment directory.

PIXELSIZE = 0.139

TYPEOFIMAGEROTATION = 3

After the modification is completed, the experiment can be opened. First step

now is to import instrument model parameters from the .par file of the calibration
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3.1. Image formats and their conversion

Figure 3.2: CrysAlis experiment setup for MAR data collections.

crystal. Type rd p in the shell command window, and select necessary .par file.

Alternatively, the parameters can be defined in CrysAlis RED program options

menu, which is activated by clicking the button Options RED in the CMD.

The MAR555 program transforms .mar2560 images by extending its pixel di-

mensions from 2560 × 3072 to 3450 × 3450 by appending missing pixels with zero

intensities. In order to exclude these dummy pixels from the analysis a command dc

rejectrect x0 y0 xw yw should be used. It defines a rectangle area with coordinates

of the lower left corner (x0, y0) and sides lengths given by xw and yw. This area

will be omitted from the data integration process. An example of such rejection is

given here:

dc rejectrect 0 0 594 3450

dc rejectrect 594 3160 2408 290

dc rejectrect 594 0 2417 283

dc rejectrect 2847 0 603 3450

Perkin Elmer images (.tiff)

The Perkin Elmer XRD 1621 flat panel detector installed at P02.2 produces detector

images in .tiff format, that have to be converted by program P02 Mar Rename into
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Chapter 3. Data processing

Figure 3.3: GUI for .tiff – .esperanto transformation.

.esperanto images. This image format was specially developed to provide a tool

to interface unsupported image formats with CrysAlisPro. A detailed description

of .esperanto format and P02 Mar Rename has been recently given by Rothkirch

et al. [68].

A screenshot of the user interface is given in Fig. 3.3. For the transformation,

the first and the last files of an image series need to be selected as well as an output

directory, starting value for the φ angle and a step width of the scan. In addition,

the tool makes it possible to select the scan direction and detector orientation by

setting the flags counter-clockwise rotation, transpose data or flip vertical, re-

spectively. The Advanced Opt. button offers different settings for modifying the

header information.

Other images formats and options

During the preparation of this chapter a new version of CrysAlisPro (137.37.31) was

released [69]. It contains internal converter from many known (Mar, Sapphire, Saxi,

Dtrek, Dectris) and generic image formats to .esperanto. It can be invoked form the
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3.2. Peak search and indexing

Figure 3.4: Typical appearance of the first or last frames in the data set collected in the

DAC. (a) Fully shaded frame. (b) Frame containing diffraction from the gasket or(and)

the DAC body. (c) Normal frame.

command line by typing dc rit. In the popup window a user can straightforwardly

specify all parameters required for the .esperanto header creation. More information

about dc rit command can be found in Ref. [70].

3.2 Peak search and indexing

Before the peak search procedure, the useful frame range must be determined. Usu-

ally, the data collection is performed in ω range from -40 to 40◦, but very often the

useful range is slightly smaller. So, first frames may contain diffraction from the

DAC body or be completely shaded (Fig. 3.4). Fully shaded frames will not cause

critical problems with unit cell finding if they are included into the peak search pro-

cedure, but they definitely must be excluded during the integration. At the same

time, frames containing lots of diffraction rings may significantly complicate the unit

cell determination. So it is strongly advised not to use such frames during both the

final integration and the peak search procedure.

The peak search procedure is activated by typing ph s in the CMD or from the

lattice wizard menu. In order to locate a peak CrysAlisPro uses two parameters:

threshold value and 7 × 7 average [71]. First, only image pixels with an intensity

higher than the selected threshold are considered for peak localization. If such a

pixel is found a series of neighborhood test are performed. The average intensities

of 3× 3, 5× 5 and 7× 7 pixel areas are computed. The central pixel is considered a

peak if I3×3 > I5×5 > I7×7. Furthermore, I7×7 has to be higher than a user-specified

value, and no pixel in 3 × 3 perimeter may have larger intensity than the central
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Chapter 3. Data processing

pixel.

There are three options for the peak search. Automatic threshold and back-

ground detection, smart peak hunting and traditional peak hunting with user-defined

threshold level and 7× 7 average. It is noticed that automatic threshold and back-

ground detection works well with original Xcalibur data collections and detectors,

while for external images and experiment types it may miss many sample reflections.

It becomes especially crucial, if weak incommensurate peaks are not detected. For

data collected with the Perkin Elmer detector in most of the cases smart peak

hunting works well, while for the Mar555 images it is advised to use the traditional

peak hunting with user-defined parameters.

In order to properly assign indices to each spot on a diffraction image, the ori-

entation of the crystal in space must be known. For that one needs to relate the

diffractometer coordinate system with the axes that define a diffraction pattern for

a given sample. The orientation matrix UB defines the relation between the crystal

vector h = ha∗ + kb∗ + lc∗ and the instrument vector r0:

r0 = UBh. (3.1)

The matrix elements contain information about the unit cell and orientation of the

crystal. The main problem for the indexing is the presence of diamond and pressure

transmitting medium peaks in the peak table. There are different options of the

indexing:

� Automatic indexing taking into account all found peaks.

� Search for a known unit cell taking into account all found peaks.

� Automatic indexing after ”cleaning” of the peak table from diamond and

pressure-transmitting-medium peaks.

� Setting the orientation matrix by hand (e.g. if known from previous pressure

point).

� Manual selection of the unit cell using Ewald Explorer.

The first option usually works well if the sample unit cell has a rather large

volume and if the diffraction data are collected at relatively low pressures, when the

pressure-transmitting medium is not yet crystalline, so that the number of sample

peaks in the peak table is significantly larger than the number of unwanted peaks.

The commands um ttt and um f activate the auto-indexing routine employing

different algorithms for indexing in direct and reciprocal space respectively. It is

claimed that indexing in direct space employing a method described by Duisenberg
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3.2. Peak search and indexing

Figure 3.5: Histograms showing intensity and d-value distributions.

[72] works more reliable in difficult cases like incommensurate crystals, twin lattices,

fragmented crystals or unreliable data.

If automatic indexing failed, but the approximate lattice parameters are known,

there is a possibility to search for the known unit cell using the command um

searchcell. In the popup window a user specifies the lattice parameters, number of

reflections which will be considered at each step of the search. The search is stopped

if more peaks than in the Stop if percentage field are found. The default value

is 90 %, however for high-pressure data this number must be significantly lower

(30-50 %).

If the search for a known cell doesn’t lead to a reasonable result (in case of very

large number of peaks which do not belong to the sample), or the lattice parameters

are not known, a user should try to determine, which peaks belong to diamond or

to pressure-transmitting medium and delete them. First of all, it is reasonable to

inspect the peak table by typing pt e in CMD. Many diamond peaks are usually

overexposed. The peaks may be sorted by intensity and overexposed ones should be

deleted.

A very useful tool for separation of sample peaks from diamond and pressure-

transmitting medium peaks is so-called Ewald Explorer, that can be activated by

typing pt ewald. First of all, histograms showing the distributions of intensities and

d-values should be examined (Fig. 3.5). So a group of very intense reflections in

the upper histogram in the Fig. 3.5 most probably corresponds to diamond peaks,

while numerous peaks at certain d-values (lower histogram on the Fig. 3.5) are often

contributions of the pressure-transmitting medium, which produces numerous and

intense reflections at the same d-values. These reflections can be deleted by dragging
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Figure 3.6: Unit cell search in Old Ewald Explorer.

mouse on the corresponding histograms.

Diamonds in DACs are large single crystals with very large mosaicity, and there-

fore, diamond reflections usually appear on several consecutive frames. Furthermore,

the diamonds are not on the ω-rotation axis, and therefore, parts of one diamond

reflection on adjacent frames may have different apparent 2θ values. Because of this

reason the peak search procedure may assign one diamond reflection to multiple

peaks. This produces arcs in the reciprocal space. Since many peaks constituting

the arcs have different d-values, they are not effectively cleaned using the distribu-

tion histograms, and should be removed by hand. The most convenient option for

this is to use Old Ewald Explorer, that can be launched in a sequence Lattice wis-

ard - Ewald Explorer - Old Ewald Explorer. The reciprocal space can be rotated
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3.2. Peak search and indexing

Figure 3.7: Intensity distribution diagrams typical for incommensurate crystals. Colored

boxes are at the positions of the main reflections.

in a way that one can see the rows of the sample peaks (Fig. 3.6). Then unwanted

peaks (e.g. arcs as in the Fig. 3.6) should be skipped (right mouse button – Mark

selection skip). Peaks flagged skip will not be considered for the unit cell finding.

If the orientation matrix is known from previous pressure point it can be imported

to the current experiment and refined. The command ty u prints the orientation

matrix, and the command um s is used to set the orientation matrix for the current

data set. The matrix can be refined by the command um i.

A very important step is to check the correct selection of the unit cell and

to visualize reciprocal space. In case of a standard data collection an indication

of possible twinning or incommensurate structures is that a noticeable number of

peaks from the peak search procedure can not be indexed. In case of HP data,

lots of unindexed peaks are usually ”rubbish”. So, in case of HP data collection,

it is absolutely necessary to make reconstructions of the reciprocal lattice planes.

The command dc unwarp starts the guided wizard. The first window shows the

current orientation matrix, which will be used for the reconstruction. The dialog in

the second window allows to adjust the number of frames which will be used in the

reconstruction. The layers to be reconstructed are defined in the third window. For

default reconstruction, one should click Generate layers, and input two numbers

in the pop up window: the max order for the generation (e.g. 1) and its resolution

(e.g. 0.8). This will generate a number of hkl planes with h,k,l varying from -1 to

1 (-1kl, 0kl, 1kl, h-1l, h0l, h1l, hk-1, hk0, hk1) at 0.8 Å resolution.

In case if one wants to make nonstandard planes or to use nonstandard options
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Figure 3.8: CrysAlisPro Ewald Explorer.

(e.g. for reconstruction of reciprocal lattice planes with non-integer indices) the

information for the reconstruction should be given manually (command New layer)

The plane is defined by L1, L2 layer vector and O - origin vector. The next dialog

allows to activate the background subtraction. The same values of Re and Fr as for

data integration should be used (see section 3.3).

In the last dialog the appropriate image scale should be defined. The most

suitable scale depends on the detector, exposure time and primary beam intensity,

so one may need to repeat the reconstruction several times. As starting values one

may use 1 for Perkin Elmer images, 50 for Mar555 images and 30 for in-house data

collection using Mar345 image plate detector.

Indexing in case of incommensurate structures

CrysAlisPro can handle diffraction data of incommensurate crystal structures. Ad-

ditional satellite reflections may be found on the reconstructed reciprocal planes or
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3.3. Profile fitting

Figure 3.9: Intensity distribution diagrams typical for incommensurate crystals. Vertical

lines represent the calculated position of satellite reflections of different orders.

by inspecting intensity distribution diagrams projected on the reciprocal average

unit-cell axes (Fig. 3.7)

In Ewald Explorer (Fig. 3.8) press Activate incommensurate peaks and give

initial values for the q-vector components, using the distribution histogram (Fig.

3.9). Press Refine unit cell with satellites and define the maximal order of satellites

mmax, and indexing tolerance crithkl.

3.3 Profile fitting

There are two different procedures for determining the integrated intensities: sum-

mation integration and profile fitting. Summation integration implies adding inten-

sity values for all pixels lying within the area of a spot, and then subtracting the

estimated background contribution. Profile fitting assumes that the spot shape is

known, and the intensity is derived by finding the scale factor that gives the best fit

to the observed spot profile [73]. CrysAlisPro employs a profile fitting method.

The evaluation of integrated intensities of Bragg reflections in CrysAlisPro is

based on the three-dimensional reconstruction of the peak profile. So, the integration

is performed as a function of the area detector coordinates (x, y) and the scanning

direction (ω) [71]. A fundamental requirement for the integration is that it should

distinguish between signal and background. For weak reflections this cannot be

done reliably. The assumption adopted by most data-processing packages is that

33



Chapter 3. Data processing

both weak and strong reflections have the same profile shape models. The profile

shape depends on the following factors:

� path of the reflection through the Ewald sphere;

� angle of incidence of the diffracted beam;

� crystal mosaicity;

� point spread function of the detector;

� beam divergence;

� scan width;

� wavelength split of Kα1 −Kα2.

So, if the profile shapes of the strong peaks are learned, the profile shapes for

weak reflection can be modelled analytically. Unfortunately, the user manual does

not contain information about explicit formulas for the profile fitting algorithm used

in the CrysAlisPro. Nevertheless, the general idea is the following. The reflection

intensity I can be calculated as [73]:

I =

∑
i

(ci − bi)pi/νi∑
i

p2
i /νi

, (3.2)

which minimizes the function:

ψ(I) =
∑
i

(ci − I · pi − bi)2/νi, with normalization condition
∑
i

pi = 1 (3.3)

where bi is the predicted value of the background, ci is the observed intensity in

pixel i, pi is the predicted profile and νi is a variance of ci. The index i represents all

pixels in a profile. Implementations of the method differ usually in the assumptions

about the variances νi [73].

Profile fitting dialog is invoked by a command dc proffit. The parameters for

peak profile fitting should be given in 6 consecutive steps, which are described in

detail below.

Step1 - Orientation matrix

In step 1 the orientation matrix, that will be used for the data reduction, is shown.

Additional information may include q-vectors or twin lattices if relevant. At step 1

it is possible to choose the lattice type in Lattice extinctions field.
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For incommensurate structures in case of a single q-vector, which was previ-

ously refined, it will appear by default in the field Incommensurate structures.

In case of multiple q vectors, one must specify the data reduction options. Select

Other(reduction list) and press the button Generate. The window appears, in

which one can choose the type of data reduction list (hklm, hklmn, hklmno for 1d,

2d, 3d - incommensurate structures respectively). Furthermore, here one should

give the maximal satellite orders and cross q-vector reflections.

It is important, that in case of more than one q-vector, the program doesn’t

respect the standard lattice extinctions. A user must specify them in advance by

using the command dc extinct. For example, the command dc extinct hklmn 1 1

0 0 0 2 1 implies the extinction condition 1 · h+ 1 · k + 0 · l+ 0 ·m+ 0 · n = 2p+ 1

and corresponds to a C-centering of the lattice.

Step2 - Experiment run list

During the step 2 you should specify the frame range which will be considered for

the integration. In general, this range is the same as that used for the peak search

(see section 3.2).

Step3 - Algorithm parameters

The algorithm parameters are adjusted in step 3. Click Edit special pars to enter

the special parameters menu. First of all set the opening angle of the DAC in

Edit DAC angle. For usual BX90 DACs, the value of 38–39◦ is used. In case

of large uncertainties in the orientation matrix, or large strain gradients in the

crystal, you may want to adjust the integration masks in the group Profile fitting.

Press Alt+E to access the hidden parameters. Generally it is recommended to skip

instrument model refinement. This option can be activated in Hidden parameters

menu. Usually, the instrument model is refined precisely based on the standard

crystal with large unit-cell volume. In case of any detector movement, calibration

is repeated.

Step4 - Background evaluation

In the step 4 the background subtraction parameters are defined. There is an option

to choose between two algorithms of background determination. The default one

is the average background, which is claimed to be a better choice for low stable

background and strong data. The so-called smart background algorithm computes

a running average of the background by using adjacent frames. It is the better
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Figure 3.10: Differences in background evaluation algorithms between average background

option with Re=Fr=3 and running average background with frame range = 3. The figure

is adapted from CrysAlisPro manual.

choice for high and fluctuating background and weak data. However this algorithm

is computationally more demanding than the average background algorithm.

In case of high-pressure data, in fact, both options can be used. In CrysAlisPro

the procedure of average background determination is controlled by two parameters:

the evaluation range Re and the repeat frequency Fr. The evaluation range defines

the number of frames which are used to compute a single background image, and the

repeat frequency is the frequency with which the procedure is repeated. By default

values of Re=Fr=25. For high-pressure data these values must usually be signif-

icantly lower. For example, in case of high-pressure data collection of FeOCl (see

chapter 5) using Mar345 detector with more or less stable background, Re=Fr=5

was used.

However, for Perkin Elmer and Mar555 detectors, the use of running average

background is suggested. After selecting ”Smart” background option the Frame

range parameter must be specified. This parameter is always an odd number. So if

it equals 1, only the local background from single frame will be evaluated. Value of

3 means that also adjacent frames will be used for background determination (Fig.

3.10).
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Step5 - Outlier rejection

Although, high-pressure data are usually not very redundant, in case of high-

symmetry structures it is still possible to apply outlier rejection based on the

algorithms reported by Blessing [74]. The identification and rejection of these

outlying intensities is crucial for a satisfactory structure solution and refinement

of high pressure data. This option can be chosen at step5 of the data integration

wizard. Click Use outlier rejection and specify the Laue group. If you are not yet

sure about the correct symmetry don’t use this option. Final analysis of outliers can

be performed using recently implemented options in Jana2006. These procedures

are described in Ref. [75] in detail.

Step6 - Output

At the step6 choose the output file name (use different name for each integration).

In Finalization options you usually may wish to edit only the compound chemical

formula for the further absorption correction, while other options like space group

determination or automatic structure solutions will be done later using external

programs.

3.4 Data finalisation and absorption correction

Generally dc proffit performs completely automatic data reduction including frame

scaling and multiscan absorbtion correction. However, if you would like to adjust

some parameters, to perform numerical absorption correction, or to filter and trun-

cate the data, a data finalization tool is implemented into CrysAlisPro.

First, open Data finalization window by clicking the tab on the left window

panel. Apart from Rint and Rσ statistics this window contains all relevant infor-

mation about data coverage, completeness, detected outliers, absorption correction

model and about all problems and warnings that occurred during the data integra-

tion.

Click on the tab Graphs to visualize frame-by-frame plots for a number of param-

eters. For instance, the common problem for synchrotron data collections is related

to the improper crystal centering. Accordingly, during the ω-scan the crystal may

leave the X-ray beam. This results in the loss of diffracted intensities and can be

detected by the inspection of the scaling coefficients (absscale) plot (Fig. 3.11). So,

if data processing is done immediately after the data collection, the crystal may be

recentered. Otherwise, some first and last frames should be removed.
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Figure 3.11: Frame scaling coefficients plots corresponding to a well centered crystal (left)

and a badly centered crystal (right).

The inspection of Rint-frame number plot may help to detect missed overlaps

of sample and diamond reflections. For instance, the plot on the Fig (3.12) shows

100% Rint at the last frame, and Rint exceeds 20% at the frames 53, 55 and 64. At

the same time we see in the data reduction output, that for resolution shell 0.58-0.54

Å, the Rint is significantly larger than for other shells. Therefore, the overlaps can

most probably be found within the 0.58-0.54 Å shell on the frames 53, 55 and 64,

while the last frame should be removed from the final integration.

Press Refinalize to access the finalization dialog (Fig. 3.13). In the Sample

group edit the chemical formula and the number of formula units in the unit cell (if

it has not been done on the previous stage). In Corrections field choose the type

of the absorbtion correction. Empirical absorption correction is performed by the

SCALE3 ABSPACK program. If you would like to adjust the parameters, press

Manual, and click the button Advanced. Default parameters usually work fine the

high-pressure data, but in case of very weak absorbers, you may want to reduce the

max harmonic order.

3.5 Final integration

Before the final integration one should take care of several things:

� Skip regions shaded by additional equipment (e.g. membrane DAC pipes or

laser heating system holder).

� Define the beamstop mask properly.
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3.5. Final integration

Figure 3.12: Rint plot revealing anomalies at the frames 53, 55 and 64 (top) and corre-

sponding data reduction output (bottom).
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Figure 3.13: CrysAlisPro data finalization dialog.

� Thoroughly search for overlaps between sample reflections and those from

diamond or pressure-transmitting medium.

� Be sure that the set of parameters, used for the final integration is the most

appropriate for the current data.

To skip the shaded region use the command dc rejectrect which was discussed

in section 3.1. To define the beam stop click Options RED in CMD, select the tab

Beam stop and activate Put beam stop overlay on. Adjust beam stop orientation

and dimensions using the tabs in the same window.

To search for reflection overlaps, press the button Overlay spot predictions on

the diffraction image and select Predict peaks from UB. Fig. 3.14 shows the part

of the diffraction image without (on the left) and with (on the right) predicted peak

positions, indicated by crosses. It appeared that one of nine predicted reflections

overlaps with diamond reflection, so it must be rejected. The information about the

indices of this reflection can be obtained by pressing button Information cursor and

moving the cursor to the predicted position. Note all such reflections (fortunately,

there are usually not more than 80 frames to inspect), go to the peak table editing

dialog (command pt e), select these reflections and press the button Reject. Save the

file with rejected reflections. Type dc rejectrfxy to load the rejection file before the

40



3.6. Dealing with several data sets

Figure 3.14: Visual inspection of reflection overlaps. See text for more details.

final integration. Incorrect outlier rejection may significantly influence the quality

of the empirical absorbtion correction and scaling, therefore, should be performed

before the final integration.

In order to choose the best set of algorithm parameters you may use the command

xx proffitloop which will create the script for a number of alternative integrations

starting from the same orientation matrix and instrumental model parameters, but

using different algorithm parameters (e.g. different background evaluation param-

eters, peak integration mask size). The user then may choose the best integration

parameters by inspecting the output files.

3.6 Dealing with several data sets

In order to increase the data completeness the DAC can be rotated by 90◦ around

the primary beam direction. Also, especially in case of incommensurately mod-

ulated structures, the dynamic range of the detector is usually not high enough

to detect weak satellite intensities together with strong main reflections simultane-

ously. Therefore, diffraction data may be collected using different exposure times

or filters. So, in the best case, four data sets are available for each pressure point.

CrysAlisPro doesn’t reliably work with several data sets if they are collected not at

Xcalibur diffractometer. Therefore, each data set has to be integrated individually.

The resulted reflection files can be merged in Jana2006. A scale is determined on

the basis of reflections which are common for the data sets. The user can specify the

I/σ(I) threshold for the reflections which should be used for scale determination.
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By default only reflections with I/σ(I) > 10 are used.

3.7 Conclusions

Nowadays modern crystallographic software can process the standard X-ray diffrac-

tion data set and provide a reliable-quality reflection file in ”one click”. This is not

yet true, however, for high-pressure data, where a user involvement in choosing the

proper integration parameters is much more crucial.
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Chapter 4

Superspace approach to

high-pressure superstructures1

4.1 Introduction

X-ray diffraction in a diamond-anvil cell (DAC) is a powerful tool for studying mate-

rials at high pressures [56, 76]. The application of external pressure leads to various

phenomena including insulator-metal transitions [77, 78], high-spin to low-spin tran-

sitions [79], enhancement of superconductivity [80], and normal-to-incommensurate

phase transitions in elemental metals [51]. A group of phase transitions between a

high-symmetry form, and a low-symmetry distorted form stable at higher pressures

represent a significant part of pressure-induced processes [81–84].

High-pressure X-ray diffraction usually suffers from undesirable diffraction from

diamonds, gasket and pressure-transmitting medium, insufficient data resolution and

low coverage of the reciprocal space. To increase the coverage, several crystals in

different orientations may be placed into a DAC. However sometimes the morphology

of the crystal, e.g. in case of plate-like crystals predefines its orientation. In this

sense, the conventional analysis of complex superstructures may be quite difficult

due to the very small ratio between the number of independent reflections and the

number of refined parameters.

The superspace approach is an established method to describe incommensurate

and commensurate superstructures [52, 85, 86]. Furthermore, in the last years a

number of computer programs were developed for convenient data processing, struc-

1This chapter has been published as M. Bykov, E. Bykova, M. Hanfland, H.-P. Liermann, and

S. van Smaalen. Superspace approach to high-pressure superstructures. High Press. Res. 33, 501

(2013).
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Chapter 4. Superspace approach to high-pressure superstructures

ture solution and refinement. Among them are SUPERFLIP [87], the program for

the structure solution in arbitrary dimensions, JANA2006 computing system for

structure refinements and analysis [88], and EVAL15 integration software [89].

The main idea behind the superspace description is that the superstructure may

be interpreted as its basic structure with three-dimensional space group symmetry

and a small unit cell, which is subjected to a periodic deformation. Modulation

functions are characterized by a wave vector q, whose components are given with

respect to the basis vectors of the reciprocal lattice of the basic structure:

q = σ1a
∗ + σ2b

∗ + σ3c
∗ (4.1)

Commensurate modulations are described by modulation wave vectors with only

rational-valued components. Therefore, an integer N exists, for which Nq is equal

to reciprocal lattice vector of the basic structure.

Within the superspace approach, the position (x) of the atom µ is defined by its

position in the basic structure (x̄) plus a displacement:

x = x̄ + uµ(x̄4), (4.2)

where x̄4 = t + q · x̄, with t being the phase of modulation and uµ(x̄4) is the

modulation function of atom µ. In principle, the only requirement on the modulation

functions is that they are periodic, so that uµ(x̄4) = uµ(x̄4 + 1). However, it is

convenient to represent atomic modulation functions as Fourier series:

uµi (x̄4) =
nmax∑
n=1

Ani (µ) sin(2πnx̄4) +Bn
i (µ) cos(2πnx̄4), (4.3)

for i = x, y, z. Therefore, for the structural analysis in superspace Ani and Bn
i are

the parameters that must be determined along with the atomic coordinates in the

basic structure.

In case of commensurate modulations, the model described in superspace might

need less parameters than the supercell in three-dimensional (3D) space, because it

is usually possible to concentrate on the most important parameters, like low-order

harmonics in the Fourier expansions of the modulation functions, while higher-order

modulation parameters may be not substantial for the distortion. This reduction

in the number of independent parameters is especially important for highly incom-

plete high-pressure data. Despite the obvious usefulness of superspace description

of superstructures, it is rarely applied by high-pressure crystallographers. One of

the few examples is the high-pressure phase of Ga, that seems to be rather complex

at first sight but can be described with a simple distortion of the average structure
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4.2. High-pressure superstructures of MOCl

using 4 modulation parameters instead of the 38 parameters needed when using a

conventional approach [90]. Another method to reduce the number of parameters is

to use symmetry mode analysis and to refine the amplitudes of the most important

modes only. However, especially in case of large superstructures a mode decom-

position may be less efficient [91]. Here we will demonstrate the usefulness of the

superspace approach on the examples of isostructural layered FeOCl and CrOCl,

forming different superstructures above 15 GPa.

4.2 High-pressure superstructures of transition

metal oxychlorides

4.2.1 Experiment preparation and data collection

The use of synchrotron facilities is a preferable choice for any high-pressure X-ray

diffraction experiment. The high-energy of the synchrotron X-ray photons allows

to significantly increase the angular resolution compared to conventional in-house

sources. Small focus size allows to get rid of gasket diffraction and of strain gradients

within the crystal. High intensity reduces data collection times and enables detection

of weak superstructure reflections in case of small distortions.

We have performed single-crystal X-ray diffraction experiments on the high-

pressure phases of FeOCl and CrOCl at beamlines P02.2 (DESY, Hamburg) and

ID09A (ESRF, Grenoble), respectively. The data collection for FeOCl was performed

using a wavelength of 0.29004 Å and a Mar345 image plate detector, while the data

collection for CrOCl was performed using a wavelength of 0.4144 Å and a Mar555

flat panel detector. For both experiments we have used the combination BX90

DACs [60] with Boehler-Almax anvils [59] which provide a large opening angle of

80◦ in 4θ. Such a large X-ray opening is extremely important for single-crystal

X-ray diffraction, in order to increase reciprocal space coverage. Perfect quality

single crystals of FeOCl and CrOCl were loaded in a 125 µm hole of an preindented

rhenium gasket along with ruby spheres for pressure determination [63]. The DACs

were loaded with neon as pressure-transmitting medium using the BGI gas loading

system [61]. For each sample, 80 independent frames in an ω-scan range of -40◦ to

+40◦ were collected (1◦ scanning step size) with an exposure time of one second.
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M

O

Cl

Figure 4.1: Crystal structure of MOCl at ambient conditions.

4.2.2 Indexing and integration of diffraction patterns

FeOCl and CrOCl belong to a group of isostructural layered transition metal oxy-

chlorides, M OCl (M = Ti, V, Cr, Fe), which have recently been investigated due

to their low-dimensional magnetic properties [19–21, 34]. At ambient conditions

MOCl possess the orthorhombic space group Pmmn. Their structure consists of

double M -O layers, separated by Cl bilayers (Figure 4.1). Highly anisotropic com-

pression of these compounds leads to structural instabilities at high pressure and

they undergo a phase transition in the vicinity of 15 GPa, which is accompanied by

an appearance of weak superlattice reflections. The diffraction pattern of FeOCl at

22.7 GPa may be indexed with the orthorhombic lattice as valid for the low-pressure

phase and a modulation wavevector qFe = (1
4
, 0, 1

2
), employing four integers (hklm)

(see Figure 4.2 (a),(b)). The fourfold superstructure features rows of three satel-

lite reflections between main reflections. Thus, reflection (hklm) may be equally

indexed as (h + 1 k l + 2 m − 4), and for a unique indexing, the range of m val-

ues should be restricted to −1, 0, 1, 2. The conventional indexing with three indices

would require a primitive monoclinic unit cell as shown on Figure 4.2(c). Finally,

the structure may be described with a non-standard 4a×b×2c B-centered supercell

(Figure 4.2(d)).

The diffraction pattern of CrOCl at 22.9 GPa is more complex. It can be in-
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Figure 4.2: Different ways of indexing. Shown are reciprocal lattice planes perpendicular to

b*. (a),(b) - Schematic depiction of the diffraction pattern of FeOCl with main and satellite

reflections depicted as black and grey circles respectively, and modulation wavevector

q = 1
4a* + 1

2c*. (c) Indexing by a monoclinic primitive unit cell (d) Indexing with

pseudoorthorhombic non-conventional B-centered 4a× 1b× 2c supercell.

dexed with the unit cell of the basic structure and qCr = (2
7
, 0, 1

2
) or with a 14-fold

orthorhombic supercell (Figure 4.3).

For any commensurately modulated structure, data integration may be per-

formed on the basis of the supercell indexing. Later the supercell–superspace indices

transformation can be performed during data importing into JANA2006. Data in-

tegration and reduction were performed with CrysAlisPro program suite which con-

tains useful features for high-pressure data measured in a DAC [50]. For example,

it is possible to introduce the DAC opening angle for the correct treatment of DAC

shadowing. The built-in explorer of the reciprocal space simplifies the process of

the unit cell finding. Furthermore, CrysAlisPro is compatible with several instru-

ments and detector types. The in-house software, which allows to convert images

to required formats is available at beamlines P02.2 and ID09A. In case of incom-

mensurate structures one can use built-in procedure NADA for the simultaneous

refinement of the orientation matrix and modulation vector [92].

Special care must be taken for the correct rejection of outlying reflections because

standard procedures that work well for conventional data sets, may fail to recognize

a significant number of outliers in case of high-pressure data. In the last years several
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Figure 4.3: Schematic drawing of the diffraction pattern of CrOCl at 22.9 GPa. Only

selected superlattice reflections are indicated. The indexing with multiples of the modu-

lation wavevector q = 2
7a* + 1

2c* is demonstrated. The right-lower reciprocal unit cell

shows all superlattice reflections of orders m = -6 .. 7. The volume of the superstruc-

ture unit cell is 14 times larger than that of the unit cell of the average structure. The

reciprocal 3D supercell is indicated.

procedures for outlier identification during the structure determination process were

implemented into JANA2006 program [75].

4.2.3 Structure solution and refinement

The first step in the process of the structure solution is the determination of the sym-

metry. Usually, the superspace groups compatible with the symmetry of the data are

proposed by JANA2006. In the present case this leads to two possible superspace

groups: Pmmn(σ101
2
)00s and Pmmn(σ101

2
)000, which in fact are the different set-

tings of Pmnm(01
2
σ3)000 (No. 59.1.10.6)[93, 94]. So, all possibilities must be probed

for the structure solution. For both CrOCl and FeOCl Pmmn(σ101
2
)00s appeared

to be the true superspace symmetry.

The superspace analysis immediately shows that the high-pressure phases of

CrOCl and FeOCl can be obtained as different distorted variants of the ambient-

pressure phase. In principle, when the crystal structure of the non-distorted phase

is known, the ab initio solution of the superstructure is not required, because atomic

coordinates in the parent structure can be used as a starting point for the super-
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Figure 4.4: Superstructures of FeOCl (a) and CrOCl (b) at 23 GPa.

structure refinements. In general, a fourfold superstructure (in case of FeOCl) would

require only up to second-order harmonics for a complete description. However,

non-trivial point symmetry requires higher-order harmonics [52]. Thus, the value of

nmax (see Eq. 4.3) was determined for every atom individually. One must take care

that introduction of higher-order harmonics is justified by a significant drop in the

agreement factors and that their refined values are meaningful.

For a commensurate modulation, one superspace group corresponds to different

3D structures. Accordingly, different sections t = t0 of superspace lead to different

symmetries of the 4a × b × 2c supercell in 3D space. They are Bm, B21/m (both

are b-unique) and Bmm2. The best fit to the diffraction data was achieved using

t0 = 1
16

+ N
4

(N = 0, 1, 2, 3), which corresponds to the centrosymmetric, monoclinic

space group B21/m (No. 11 with standard setting P21/m) [95].

Employing the superspace approach, we consider the basic structure of FeOCl

containing only three independent atoms on the mm2 positions. Symmetry restric-

tions on the modulation functions lead to 14 independent amplitudes resulting in 17

positional parameters to be refined. 19 more parameters were used for the atomic

displacement parameters. As a result, together with scale factor and the twin vol-

ume ratio, 38 parameters have been refined (Table 4.1). At the same time the

conventional refinement in the supercell failed with 62 refinable parameters.

In case of CrOCl the situation is slightly different. The 14-fold superstructure

would allow satellites up to 7th order, however only first and second order satellites

were observed. As a consequence it is impossible to distinguish between incommen-

surate and commensurate modulations, and between structures with different values
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Figure 4.5: t-plot for z-displacement of Cl atom in CrOCl at 22.9 GPa. Filled and opened

circles represent values for commensurate Pcmn and Pmmn models respectively.

of t0. The possible symmetries of superstructures are Pcmn for t0 = 0 + N
14

, Pmmn

for t0 = 1
28

+ N
14

and P21mn for general t-section. According to the structure refine-

ment Pcmn, Pmmn and incommensurate models have the same agreement factors

(Table 4.1). In this case the determination of the true structure and its symmetry

is impossible, but the treatment of the structure as an incommensurate may serve

as a good approximation to the real structure. Thus, there are not just 14 specific

values for e.g. interatomic distances between two atoms, but a range of values with

a minimum, a maximum and an average value. Since atomic modulation functions

include harmonics only up to second order and do not reveal local features, these 14

values perfectly define the curve and cover the same range (Figure 4.5). As a con-

sequence, the crystal-chemical analysis doesn’t suffer much from this uncertainty.

The structure of CrOCl can be described with only 23 structural parameters, while

106 parameters are required for 3D superstructure models.

4.2.4 Crystal-chemical analysis

The superstructures of FeOCl and CrOCl are presented on Figure 4.4. Both struc-

tures reveal the antiphase buckling of M -O bilayers with pronounced variation of

interlayer distances. For the crystal-chemical analysis of superstructures so-called

t-plots may be used. They represent the variation of interatomic distances, bond

angles, bond valences or the values of the modulation functions themselves with the

phase of modulation. Furthermore, it is important to study the correlations between

t-plots of different quantities. Selected t-plots are presented on the Figure 4.6. For

FeOCl structural distortions lead to the formation of the fourfold superstructure

and resulted in the appearance of four crystallographic sites for each atom, thus
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Table 4.1: Structure refinement data.

FeOCl CrOCl

Number of parameters refined 38 23

Rint (obs/all) 5.00/5.15 6.65/6.74

No. of reflections

(measured/unique):

All 966/404 724/231

Main 241/101 140/44

1st order satellites 484/201 331/96

2nd order satellites 241/102 253/91

No. of observed reflections

(all/unique):

All 802/311 549/154

Main 211/84 126/39

1st order satellites 393/155 259/65

2nd order satellites 198/72 164/50

Robs/Rall:

All 5.29/6.95 4.08/5.94

Main 4.00/4.60 3.69/3.94

1st order satellites 6.93/8.68 4.45/6.77

2nd order satellites 5.41/9.68 4.31/8.65

there are four points on the t-plots corresponding to the real structure indicated

by vertical dashed lines. The largest displacements of Fe and O atoms were found

along z (Figure 4.6 (a)). These displacements define the buckling of Fe-O layers. It

could be noticed that the Cl atom perfectly follows the displacements of Fe. The O

atom has comparable displacement amplitudes, but a different phase.

Fe and O atoms don’t possess large displacements along x due to rigidity of the

layers, but the Cl atom is relatively flexible within the interlayer gap (Figure 4.6(b)).

While the magnitudes of atomic displacements are about 1 Å, they are correlated in a

way to prevent very unfavorable short bond lengths (Figure 4.6(c)–(f)). The largest

variation of bond length found is ∼0.08 Å for Fe-O bond along y, which is at its

longer limit at ambient pressure and therefore has more freedom. Exactly the same

considerations are valid for the description of the CrOCl structure (Figure 4.6(g)–

(l)). Actually, the superstructures of FeOCl and CrOCl differ only in the period of

the modulation, but have similar modulation functions and can be described by the
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Figure 4.6: t-plots for selected interatomic distances and atomic displacements for FeOCl

(a)–(f) and for CrOCl (g)–(l). Vertical dashed lines indicate commensurate t-sections. For

further explanations see text.
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same superspace group, since the distortion mechanism is the same.

A detailed study of t-plots of CrOCl and FeOCl towards understanding the

mechanisms of the phase transitions will be given elsewhere.

4.3 Conclusions

We have demonstrated that the application of the superspace approach is useful in

the analysis of high-pressure superstructures. Firstly, it helps to significantly reduce

the number of refined structural parameters and to get a reliable structural model

in cases when conventional structure refinement fails. Secondly, superspace tools

provide an elegant way of crystal-chemical analysis. It is possible to study direct

relations between the parent and distorted phases as well as between distorted phases

with different modulation periods.
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Chapter 5

High-pressure behavior of FeOCl1

5.1 Introduction

The class of isostructural layered compounds M OX (M = Ti, V, Cr, Fe; X =

Cl, Br) has been recently studied for their low-dimensional magnetic properties. It

was shown that the behavior strongly depends on the number of d electrons of the

transition-metal atom. While FeOCl, VOCl and CrOCl exhibit antiferromagnetic

ordering with different types of superstructures at low temperatures [14, 15, 17, 19–

21, 38], TiOCl undergoes two phase transitions forming a spin-Peierls state below

67 K [34, 36, 37].

High-pressure studies on TiOCl and TiOBr have led to the discovery of two

high-pressure phase transitions [43–45, 47, 49, 96–99]. The transition at Pc1 ≈
13–15 GPa is characterized by a sudden decrease of the semiconducting band gap

and the formation of a twofold superstructure [43, 44, 47, 49]. A second pressure-

induced phase transition was predicted by theory and it has been observed through

the occurrence of additional superlattice reflections in X-ray powder diffraction at

pressures above Pc2 ≈ 22 GPa [45, 49]. The origin of these phase transformations

is still under discussion, but it is clear that the natures of low-temperature and

high-pressure phase transitions are different.

FeOCl is a low-dimensional Mott insulator at ambient conditions [100]. The

compound undergoes a paramagnetic-to-antiferromagnetic phase transition at TN =

81 K [14, 15, 17, 19]. The transition is accompanied by a monoclinic distortion of

the orthorhombic lattice and the formation of an incommensurate magnetic super-

1This chapter has been published as M. Bykov, E. Bykova, S. van Smaalen, L. Dubrovinsky, C.

McCammon, V. Prakapenka, and H.-P. Liermann. High-pressure behavior of FeOCl. Phys.Rev.B

88, 014110 (2013).
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5.2. Experiment

structure [19].

Another interest of FeOCl is related to its intercalation properties. Among lay-

ered compounds with a van der Waals gap metal oxyhalides have been widely used

as host lattices [23–27, 101, 102]. Intercalation enables confining guest molecules or

polymer chains in a well-defined environment. The resulting intercalation hybrids

often exhibit novel magnetic and electronic properties. From this point of view,

application of high pressure can provide a controlled method for varying material

properties. Recently it was shown that the charge transfer in polyaniline-intercalated

FeOCl can be enhanced through the application of external pressure [27]. A pressure-

induced increase in conductivity in the FeOCl intercalated compounds could be of

interest for their application as cathode materials. Although such intercalated sys-

tems are intensively studied, there is no information on the behavior of pure FeOCl

under high pressure.

Here we report the discovery of a pressure-induced phase transition of FeOCl

at Pc = 15 ± 1 GPa, which is preceded by extremely anisotropic lattice compres-

sion. X-ray diffraction is used to show that the high-pressure phase is a fourfold

superstructure of the structure below Pc, while its lattice symmetry is reduced from

orthorhombic to monoclinic. The mechanism of the phase transition is related to an

anti-phase buckling of consecutive layers, resulting in regions of increased packing

density of chlorine atoms of single layers and regions with interpenetrating chlorine

layers, similar to soft layered materials [103]. The lowering of the symmetry at the

phase transition is corroborated by Raman and Mössbauer spectroscopy. Further-

more, Mössbauer spectroscopy excludes magnetic order, while Raman spectroscopy

indicates that the insulating behavior is retained at high pressures.

5.2 Experiment

Single crystals of FeOCl were prepared by gas transport from a stoichiometric mix-

ture of FeCl3 (purity 99.99%) and Fe2O3 (purity 99.999%) [10, 19]. Samples for the

Mössbauer experiment (∼ 66.6% enriched in 57Fe) were synthesized using a mixture

of FeCl3 and 57Fe2O3.

Pressure-dependent angle-dispersive powder X-ray diffraction measurements

were carried out at beamline 13ID-D of the Advanced Photon Source (Chicago,

USA) using monochromatic radiation of wavelength 0.3344 Å. The sample was

put into a diamond anvil cell (DAC) with 250 µm diamond culets. A Re gasket

with initial thickness 29 µm and 125 µm hole diameter was used. Ne served as

a pressure-transmitting medium. Pressure was determined by the change of the
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Chapter 5. High-pressure behavior of FeOCl

lattice parameters of Au using the equation of state reported by Fei et al. [64].

Diffraction patterns were collected with a Mar165 CCD detector and integrated

with fit2d [104]. Le-Bail fits were performed with the jana2006 [88] for the

determination of the lattice parameters as a function of pressure.

A single-crystal X-ray diffraction experiment was performed at beamline P02.2

of PETRA III (Hamburg, Germany), employing a wavelength of 0.29004 Å and

pressures of 15.0 and 22.7 GPa. A BX90 DAC [60] with a large opening angle of 4θ

= 80◦ was used together with 250 µm Boehler-Almax diamonds, a Re gasket with

29 µm initial thickness and 130 µm hole, and Ne as a pressure-transmitting medium

[61]. Diffracted intensity was collected on a Mar345 image plate detector and then

processed with the CrysAlisPro software package [50], resulting in integrated in-

tensities for 106 main reflections and 200 first-order satellite reflections (15 GPa

data set), and 101 main reflections, 201 first-order and 102 second-order satellite

reflections (22.7 GPa data set).

Raman scattering experiments were performed with a LabRam spectrometer

(resolution 2 cm−1), equipped with a 15 mW HeNe laser (wavelength 632.8 nm)

and a 50X objective. The pressure was measured by ruby fluorescence [63]. Raman

spectra were measured with the sample in a DAC at 13 selected pressures in the

range 3–38 GPa.
57Fe Mössbauer spectra were recorded at room temperature in transmission mode

on a constant acceleration Mössbauer spectrometer with a nominal 370 MBq 57Co

source in a 12-µm-thick Rh matrix. The velocity scale was calibrated relative to a

25-µm-thick α-Fe foil. Spectra were measured at five selected pressures between 0

and 19.5 GPa. Each spectrum took 4 to 7 days to collect. Peaks were described by

Lorentzian line shapes using the software package mossa [105].

5.3 Results

5.3.1 Powder X-ray diffraction

The powder X-ray diffraction patterns could be indexed according to the orthorhom-

bic FeOCl lattice with space group Pmmn (Fig. 5.1). However, a significant broad-

ening of the diffraction maxima was observed in patterns collected at pressures above

15 GPa. Furthermore, the pressure dependencies of the lattice parameters exhibit

small anomalies at the same pressure, resulting in apparently different compressibil-

ities above and below 15 GPa (Fig. 5.2(c)). Most notable is the very small pressure

dependence of a at high pressures, with a nearly constant value within the range
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Figure 5.1: Powder X-ray diffraction diagram at 4.9 GPa together with the Le Bail fit

and the difference between measured and calculated intensities (lower trace). Vertical bars

show the calculated peak positions.
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Figure 5.2: (a) Pressure dependence of the unit cell volume. (b) Pressure dependence

of normalized lattice parameters in the range 0–15 GPa. Solid curves represent the fits

of Eq. (5.1) to the experimental data. (c) Pressure dependence of the normalized lattice

parameters over the whole pressure range studied.
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Chapter 5. High-pressure behavior of FeOCl

Table 5.1: Linear and volume bulk moduli of FeOCl.

K0 (GPa) K ′0
Volume 36(3) 8.2(8)

a-axis 153(4) 5.3(9)

b-axis 127(6) 4.01

c-axis 13.0(5) 4.9(2)

1 fixed

15–18 GPa.

These effects suggest the occurrence of a phase transition at ∼15 GPa, as it is

confirmed by Raman and Mössbauer spectroscopies and single-crystal X-ray diffrac-

tion (see below). However, the weak anomalies do not constitute proof of a phase

transition by themselves, because non-hydrostatic conditions above 15 GPa for neon

as pressure-transmitting medium [106], might also contribute to apparent anomalies

in pressure-dependent experiments. In addition, the present powder X-ray diffrac-

tion experiments failed to detect the structural changes as observed by single-crystal

X-ray diffraction (Section 5.3.3), mainly due to extremely preferred orientation of

the sample, with the platelike crystallites lying flat on top of the diamonds, resulting

in the c-axis being parallel to the X-ray beam.

The volume-pressure dependence up to 14 GPa was described with a third-order

Birch-Murnaghan equation of state (Fig. 5.2(a)) [107]:

P = 3K0fE(1 + 2fE)
5
2 (1 + 3/2(K ′0 − 4)fE), (5.1)

where fE = [(V/V0)−2/3 − 1]/2. The fit to the data resulted in the bulk modulus

K0 = 36 (3) GPa, zero-pressure volume V0 = 98.3 (4) Å3 and K ′0 = 8.2 (8).1

For the description of linear compressibilities the parametric form of the Birch-

Murnaghan equation of state was used, substituting the cube of the lattice parameter

for the volume [108]. Both the graphical representation (Fig. 5.2(b)) and the bulk

moduli (Table 5.1) indicate an extremely anisotropic compressibility.

5.3.2 Raman spectroscopy

The full representation of the vibrational modes of FeOCl in space group Pmmn is:

Γtot = 3Ag + 2B1u + 3B2g + 2B2u + 3B3g + 2B3u. (5.2)

1Ambient-pressure lattice parameters were taken from Ref. [19], where crystals of FeOCl were

synthesized employing the same technique, equipment and reagents as in the present study.
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(a)

(b)

(c)

Figure 5.3: (a) Pressure dependence of Raman peak shifts of FeOCl. At pressures above

15 GPa, additional peaks were observed (open symbols). (b) Raman spectra at 6.4 GPa

and (c) at 23.0 GPa.

The modes with symmetries Ag, B2g, and B3g are Raman active. Two strong modes

have been observed in the Raman spectra taken at low pressures (Fig. 5.3(b)). They

can be identified with Ag modes according to Ref. [109]. Their Raman shifts grad-

ually increase with pressure up to 15 GPa (Fig. 5.3(a)). Two additional modes are

present in Raman spectra at pressures above 15 GPa (Fig. 5.3(a,c)). This confirms

a phase transition at ∼15 GPa, and it suggests a lowering of crystal symmetry at

the transition, in agreement with the results of single-crystal X-ray diffraction.

The observation of resonance peaks in the Raman spectra indicates that FeOCl is

non-metallic at all pressures. Visual inspection of the sample within the DAC showed

FeOCl to remain transparent, a further indication for the insulating character at all
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Chapter 5. High-pressure behavior of FeOCl

pressures.

5.3.3 Single-crystal X-ray diffraction

Superlattice reflection were observed in the diffraction at both pressures, 15.0

and 22.7 GPa. Most conveniently, the superstructure can described by a non-

conventional B-centered, eightfold 4a× b× 2c pseudo-orthorhombic supercell. Due

to unavoidable incompleteness of the data arising from limitations imposed by

the DAC, the superspace approach [52, 110] can be used to increase the ratio

between the number of unique reflections and the number of refined parameters.

Within this approach the high-pressure structure of FeOCl can be described by the

orthorhombic superspace group Pmmn(σ1, 0,
1
2
)00s (No. 59.1.10.6 with standard

setting Pmnm(0, 1
2
, σ3)000) [93, 94] and commensurate modulation wavevector

q = (1
4
, 0, 1

2
).

The crystal structure is described by the coordinates of the three unique atoms,

µ = Fe, O, Cl, with respect to the orthorhombic basic-structure unit cell, with a(15)

= 3.675(8), b(15) = 3.191(2) and c(15) = 6.803(10) Å at 15 GPa, and a(22.7) =

3.631(2), b(22.7) = 3.170(1) and c(22.7) = 6.551(15) Å at 22.7 GPa. Positions of

the atoms in the superstructure are then obtained as the sum of the basic-structure

position x̄(µ) and values of the modulation functions uµ(x̄4):

x(µ) = x̄(µ) + uµ(x̄4), (5.3)

where x̄4 = t+q · x̄(µ), and the parameter t represents the phase of the modulation.

Displacive modulations of atom µ are described by truncated Fourier series:

uµi (x̄4) =
nmax∑
n=1

Ani (µ) sin(2πnx̄4) +Bn
i (µ) cos(2πnx̄4), (5.4)

for i = x, y, z, with nmax = 1 for 15.0 GPa, and nmax = 3 for 22.7 GPa.

The atomic coordinates of the ambient-pressure Pmmn structure model of FeOCl

were used as starting point for the refinements of the basic structures against main

reflections at both pressures [111]. Subsequently, modulation parameters Ani (µ) and

Bn
i (µ) were given arbitrary but small starting values. Refinement of all parameters

against all reflections exhibited a smooth convergence, eventually leading to good

fits to the diffraction data with Rall = 0.0578, Rmain=0.0443 and Rsat1=0.1053 at

15.0 GPa, and Rall = 0.0529, Rmain=0.0400, Rsat1=0.0693 and Rsat2 = 0.0541 at 22.7

GPa (sat1 and sat2 refer to first- and second-order satellite reflections, respectively).

Different sections t of superspace lead to different symmetries of the 4a× b× 2c

supercell. They are Bm, B21/m (both are b-unique) and Bmm2. The best fit to the
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Figure 5.4: High-pressure Mössbauer spectra of 57Fe measured on FeOCl powder samples

in a DAC.

diffraction data was achieved for t = 1
16

, which corresponds to the centrosymmetric,

monoclinic space group B21/m (No. 11 with standard setting P21/m) [95].

The possible symmetries are the same as those implied by the irreducible repre-

sentation A3 of space group Pmmn at k = (1
4
, 0, 1

2
), which defines the symmetry of

the primary distortion for this phase transition [112]. The necessity of high-order

harmonics (nmax = 3) within the superspace approach means that in addition to the

primary order parameter, secondary order parameters contribute to the structural

distortion at higher pressures without further symmetry breaking.

5.3.4 Mössbauer spectroscopy

The Mössbauer spectra below 15 GPa exhibit a single doublet, which can perfectly

be fitted by a pair of Lorentzian functions (Fig. 5.4). The center shift (CS) of

the Fe3+ doublet is consistent with its octahedral coordination and with previous

studies at ambient conditions [113]. The observed decrease of the CS with pressure
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(a)

(b)

Figure 5.5: Pressure dependence of (a) the CS, and (b) the quadrupole splitting in

Mössbauer spectra.

(Fig. 5.5(a)) is in agreement with the expected increase in s-electron density at

the nucleus. Spectra at pressures above 15 GPa did not show any evidence of

magnetic ordering. However, they cannot be described by a single doublet. Instead,

they show two, partially overlapping doublets with nearly equal CSs and different

quadrupole splittings, indicating the presence of more than one independent Fe site,

in agreement with the model for the superstructure.

5.4 Discussion

5.4.1 Anisotropic compressibility

The large anisotropy of the compressibility is related to the layered crystal structure

of FeOCl. The structure can be described in terms of Fe-O double layers sandwiched

between Cl layers thus forming slabs that are stacked along the crystallographic c

axis [111]. The slabs are formed by sharing O–O and O–Cl edges of the distorted

cis-FeO4Cl2 octahedra and they are connected by weak van der Waals interactions

(Fig. 5.6). The latter directly explain that the compressibility along the c-axis is

several times larger than that along the a and b axes (Fig. 5.2).

A quantitative analysis of the crystal structures shows that the interlayer Cl–Cl
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Fe

O

Cl

Figure 5.6: Basic structure of FeOCl. Layered crystal structure consisting of Fe-O double

layers sandwiched by chlorine layers and separated by van der Waals gaps.

distance at ambient pressure, 3.680 Å, is close to twice the van der Waals radius

of chlorine. The linear compressibility along c is in a good agreement with the

compressibility of molecular Cl2 (K0 = 14.2 (24) GPa) reported by Dusing et al.

[114], and with the linear compressibilities of layered FeCl2 (K0 = 16(3) GPa) and

TiOCl (K0=12(1) GPa) [49, 115]. These similarities show that the linear bulk

moduli of FeOCl (Table 5.1), FeCl2 and TiOCl and the volume bulk modulus of

Cl2 directly represent the compressional behavior of Cl–Cl van der Waals bonds.

Differences between these values arise from differences in the packing of Cl atoms

within the layer, from different partial charges on Cl atoms, and from the rigidity

of layer backbone itself.

The compressibility along a reflects the reduction of Fe–O distances. Since chem-

ical bonds are the least compressible feature of crystal structures, this explain that

a is the most incompressible direction in FeOCl (Table 5.1). On the other hand,

the compressibility along b is related to the contraction of the Fe2OCl quadrangles,

which is achieved through a pressure dependence of Fe–O–Fe and Fe–Cl–Fe bond

angles. Bond angles are generally more soft than bond lengths are.
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Table 5.2: Atomic displacements (Å) from the basic structure positions along a and c

axes at 15.0 and 22.7 GPa.

Atom x-15GPa x-22.7GPa z-15GPa z-22.7GPa

Fe1 0.015 0.026 −0.11 −0.25

Fe2 −0.036 −0.074 −0.05 −0.13

Fe3 −0.015 −0.025 0.11 0.29

Fe4 0.036 0.073 0.05 0.09

O1 0.034 0.036 −0.06 −0.14

O2 −0.014 −0.015 −0.14 −0.33

O3 −0.034 −0.036 0.06 0.14

O4 0.014 0.015 0.14 0.33

Cl1 0.035 0.115 −0.17 −0.25

Cl2 −0.153 −0.407 −0.03 −0.12

Cl3 −0.132 −0.237 0.12 0.33

Cl4 0.250 0.529 0.09 0.04

5.4.2 High-pressure crystal structures

The high-pressure phase of FeOCl contains four crystallographic sites for each atom

(denoted as Fe1–Fe4, Cl1–Cl4 and O1–O4), while the atomic connectivity and co-

ordination numbers remain the same as those of the crystal structure at ambient

conditions. Mössbauer spectra distinguishes only two Fe sites of different quadrupole

splittings (Fig. 5.4). This discrepancy is explained by the details of the superstruc-

tures as defined by the atomic shifts out of the basic Pmmn structure. Iron and

oxygen atoms pairwise have shifts of nearly equal magnitude and opposite direction

(Table 5.2), thus suggesting pairwise similar quadrupole fields at the Fe sites. The

four chlorine atoms all have different shifts that reflect the greater flexibility of these

atoms within the van der Waals gaps.

The superstructures of FeOCl at pressures of 15.0 and 22.7 GPa are compared

to the structure at ambient conditions in Fig. 5.7. The superstructures reveal an

antiphase buckling of the Fe–O bilayers, with a noticeable variation of the interlayer

distances that increases with pressure. Fe and O atoms do not possess large dis-

placements along a due to the rigidity of the Fe–O bonds (Section 5.4.1). However,

the buckling of the layers is clearly represented by in-phase displacements of Fe and

O atoms along c (Table 5.2). It can be related to a variation of the Fe–O–Fe bond

angles (Table 5.3). The compression of FeOCl is mainly determined by a decrease

of the Cl–Cl distances (Table 5.3). Within the high-pressure phase this affects both

interlayer and intralayer distances, as it is governed by the large displacements of

the chlorine atoms (Table 5.2).
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Figure 5.7: (a) Projection along b of the crystal structure of FeOCl at ambient conditions.

(b) Distance (Å) between Fe–O double layers within the ambient phase. Chlorine atoms

are not shown. (c) Projection along b of the high-pressure crystal structure at 15.0 GPa.

(d) Minimum and maximum distances (Å) between Fe–O double layers in the high-pressure

phase at 15 GPa. Chlorine atoms are not shown. (d) Projection along b of high-pressure

crystal structure at 22.7 GPa. (e) Minimum and maximum distances (Å) between Fe–O

double layers in the high-pressure phase at 22.7 GPa. Chlorine atoms are not shown.
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Table 5.3: Selected interatomic distances (Å) and angles (deg). Given are the average

values (Ave), the minimum and maximum values for the high pressure phase at 15.0 and

22.7 GPa as well as distances and angles for the ambient pressure phase (AP).

15 GPa 22.7 GPa AP

Min Max Ave Min Max Ave

Fe-Fe 3.007(14) 3.031(13) 3.018(13) 2.960(20) 3.026(18) 2.993(19) 3.104(1)

Fe-Fe1 3.191(2) 3.191(2) 3.191(2) 3.170(1) 3.170(1) 3.170(1) 3.3046(7)

Fe-O2 1.85(2) 1.92(2) 1.89(2) 1.84(3) 1.92(3) 1.88(3) 1.964(8)

Fe-O1 2.059(14) 2.099(15) 2.079(13) 2.036(13) 2.116(13) 2.067(12) 2.100(10)

Fe-Cl 2.231(19) 2.31(2) 2.277(19) 2.27(2) 2.31(12) 2.28(2) 2.368(7)

Cl-Cl3 2.97(3) 3.06(3) 3.01(3) 2.91(3) 2.89(3) 2.92(3) 3.680(3)

O-Fe-O2 151.5(10) 152.1(10) 151.8(10) 150.1(9) 154.4(11) 152.8(10) 148.35(4)

Fe-O-Fe2 147.6(13) 155.9(13) 151.8(12) 143.5(11) 161.8(11) 152.8(11) 148.35(4)

1 Along b-axis
2 Along a-axis
3 Interlayer distance

Higher pressures lead to a noticeable increase of the amplitudes of atomic dis-

placements, and the regions of layer separation and interpenetration become more

pronounced (Fig. 5.7). One can expect a saturation of the modulation amplitudes at

higher pressures. However, we could not continue single-crystal diffraction studies at

higher pressures, because the crystal was destroyed in our experiment by pressures

higher than 22.7 GPa.

5.4.3 Mechanism of the phase transition

We propose that the driving force of the phase transition is related to the Cl–Cl

interactions. At ambient conditions the interlayer Cl–Cl distances are close to the

sum of their van der Waals radii, while the intralayer Cl–Cl distances are larger,

because they are defined by rigid Fe–O framework. So, FeOCl is to a certain extent

a frustrated system, since an optimal packing of Cl atoms is not realized. Up to Pc,

the packing density of chlorine is increased by a large decrease of interlayer Cl–Cl

distances. The Fe–O framework is much more rigid, so that the intralayer Cl–Cl

van der Waals contacts are hardly affected by pressure. The distortions defining the

superstructure of the high-pressure phase allow an increase of both the interlayer and

intralayer packing density in two ways. Firstly, regions exist of increased intralayer

Cl–Cl distances. This allows for interpenetration of layers and each Cl atom of one

layer is exclusively coordinated to Cl atoms of the neighboring layer. Within the

other regions, the intralayer Cl–Cl distances are decreased, such that their distances
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are optimized. The antiphase buckling of the layers within the high-pressure phase

leads to both types of regions, as it is apparent from Fig 5.7(c)-(f). Thus, initially

soft van der Waals Cl–Cl distances are optimized in such a way that their variation

at high pressures is comparable to the variations of the lengths of the rigid Fe–O

bonds (Table 5.3). This situation is similar to that observed at low temperatures

for soft layered materials (C3H7NH3)2MCl4 with M = Cu, Mn [103].

The proposed mechanism for the high-pressure phase transition of FeOCl is essen-

tially different from the mechanism proposed for TiOCl, where the phase transition

is attributed to spin-Peierls-like interactions between Ti3+, followed by the forma-

tion of superstructures, involving doubling of b and alternation of Ti-Ti distances

[47]. The symmetry of the single filled d orbital of Ti3+ allows exchange interactions

along the Ti chains parallel to b only, and thus is responsible for the formation of

the spin-Peierls state [34, 35]. On the other hand, Fe3+ has five unpaired d-electrons.

The additional electrons enter d-orbitals of different symmetries that are responsible

for strong interchain exchange interactions on the ab plane [113, 116]. Accordingly,

antiferromagnetic order is energetically preferred over the formation of spin-singlet

pairs. The observed 4a × 1b × 2c supercell of FeOCl does not allow for a variation

of Fe–Fe distances along the ribbons parallel to b (Table 5.3), and it thus is in

agreement with the absence of spin-singlet pairs within the high-pressure phase.

The structural phase transition of FeOCl does not bear obvious relations to a

supposed insulator-metal transition. Raman spectroscopy has indicated the insu-

lating character of FeOCl at all pressures. However, the continuous reduction of

Fe–Fe distances and the changes of Fe–O–Fe bond angles certainly may affect the

band structure and may lead to a reduction of a band gap. They do not exclude the

possibility of metallization at even higher pressure than considered in the present

work.

On the other hand, the proposed model of partial interpenetration of chlorine

layers may also contribute to the pressure-induced phase transitions in TiOCl. This

alternative interpretation of the mechanism of the transition in TiOCl may explain

the discrepancies between experimental data on high-pressure behavior of TiOCl

from different sources. In this regard, high-pressure single-crystal X-ray diffraction

of TiOCl would be highly desirable.

5.5 Conclusions

We have discovered a pressure-induced phase transition of FeOCl at Pc = 15±1 GPa.

The phase transition is preceded by an extremely anisotropic lattice compression,
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Chapter 5. High-pressure behavior of FeOCl

which is explained by the gradual collapse of the Van der Waals gap between the

chlorine atoms at the borders of the slabs of this layered compound.

Crystal structures obtained by high-pressure single-crystal X-ray diffraction have

been used to derive a microscopic mechanism of the phase transition. It is proposed

that the high-pressure phase attains a denser packing of the chlorine atoms through

a buckling of the layers. Consecutive layers with antiphase buckling lead to regions

of increased packing density of Cl atoms within single layers and other regions with

increased distances between these Cl atoms, then allowing for interpenetration of

the chlorine layers of neighboring slabs (Fig. 5.7).

Spectroscopic evidence has been obtained, which shows that the high-pressure

phase transition of FeOCl is not related to the development of magnetic order or to

metallization of this material. The mechanism proposed here for the high-pressure

phase transition of FeOCl might also play a role in the high-pressure phase transi-

tions of TiOCl. Understanding the high-pressure behavior of TiOCl would greatly

benefit from high-pressure single-crystal X-ray diffraction experiments.
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Chapter 6

Pressure-induced

normal-incommensurate and

incommensurate-commensurate

phase transitions in CrOCl1

The discovery of high-pressure phases of the elements with unexpectedly complex

guest-host and incommensurate structures [51, 117–120] put an end to the myth,

that atomic arrangements are simplified under high degrees of compression. For

complex compounds systematic studies of incommensurate structures are lacking.

Employing single-crystal X-ray diffraction in a diamond anvil cell we show that lay-

ered CrOCl [20] possesses an incommensurate phase for 16 – 51 GPa and lock-in

phases at higher pressures. Detailed and accurate structural studies reveal that the

complex behavior of CrOCl is governed by non-bonded interactions between chlorine

atoms, with the incommensurability resulting from the competition between opti-

mizing intra- and interlayer Cl–Cl distances and the general trend towards denser

packings. Isostructural FeOCl exhibits the same phase sequence, but with a much

narrower pressure range for its incommensurate phase. Similar high-pressure be-

havior can be expected for other materials containing different chemical bonds or

atomic groups with individual compression behaviors.

In the past decade high-pressure diffraction experiments have uncovered a new

type of behaviour of materials at extreme conditions. Contrary to the expectation

1This chapter has been submitted as M. Bykov, E. Bykova, L. Dubrovinsky, M. Han-

fland, H.-P. Liermann and Sander van Smaalen. Pressure-induced normal-incommensurate and

incommensurate-commensurate phase transitions in CrOCl
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that on increasing pressure materials should approach high-symmetry close-packed

structures, a number of elements possess extraordinary complex incommensurately

modulated or self-hosting composite structures at high pressures [51, 117–119]. The

occurrence of these structures has been rationalized in terms of electronic instabilities

[51, 119, 121]. Generally, incommensurate structures may appear at high pressures

as the result of shifts of the transition temperatures of normal-to-incommensurate

phase transitions towards room temperature. This mechanism leads to similar crys-

tal structures for the high-pressure and low-temperature phases, as it has been found

in charge-density-wave systems [122, 123] and ferroelectrics [124, 125]. Incommen-

surability as an intrinsic high-pressure effect is described here for the first time for

the compound CrOCl.

Isostructural transition metal oxychlorides MOCl (M = Ti, V, Cr, Fe) are of

particular interest, because they form model systems for studies of the dependence

of magnetic properties on the atomic magnetic moments of M3+ within a single

structure type. Anisotropic magnetic interactions, magnetic frustration and strong

magneto-elastic coupling have resulted in a variety of complex magnetically ordered

phases at low temperatures [19–21, 34, 36]. TiOCl undergoes a phase transition

at a pressure of approximately 10–15 GPa towards a twofold superstructure that is

reminiscent of the superstructure of the spin-Peierls phase at low temperatures [47,

49]. A second phase transition takes place at higher pressures [45], but the powder

X-ray diffraction data were of insufficient quality for a structural characterization of

the high-pressure phase [49]. Recently, we have developed a methodology of accurate

single-crystal X-ray diffraction studies of complex oxychlorides structures at high

pressures [126], and demonstrated its efficiency particularly in an investigation of

the fourfold superstructure of FeOCl up to 35 GPa [127].

We have now measured single-crystal X-ray diffraction of CrOCl up to a pressure

of 56 GPa, employing synchrotron radiation at beamline ID09A of the ESRF (on

compression) and at beamline P02.2 of PETRA at DESY (on decompression). Anal-

ysis of these data has provided an accurate description of the pressure dependence

of the crystal structures of CrOCl (Fig. 6.1). The ambient phase with orthorhombic

symmetry Pmmn persists up to 13 GPa. A fit of a Vinet equation of state to the

volumes of the unit-cell resulted in a bulk modulus K0 = 29(2) GPa and its deriva-

tive K ′0 = 9.5(1). The compressibility is highly anisotropic, with a compression

that is much larger in the direction perpendicular to the layers (along c) than in

directions parallel to the layers (within the a, b plane; Fig. 6.2). This feature can

be understood from the crystal structure of MOCl, which is a stacking along the

c-axis of slabs MOCl that are connected through weak Cl· · ·Cl Van der Waals bonds
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Figure 6.1: Crystal structures of CrOCl at different pressures. (a) Ambient-pressure

crystal structure. Perspective view along the b-axis. (b) Approximate 7a × b × 2c su-

perstructure at 16.4 GPa. (c) Approximate 7a × b × 2c superstructure at 30.3 GPa. (d)

3a× b× 2c superstructure at 47.5 GPa as obtained on decompression.
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Chapter 6. High-pressure phase transitions in CrOCl

a b c

Figure 6.2: Pressure dependencies of CrOCl unit-cell volume (a), lattice parameters (b)

and of the σ1 component of the q-vector. Dashed lines indicate rational values 2
7 and 1

3 .

(Fig. 6.1a). Bond energies of the latter possess a much more shallow dependence

on the interatomic distance than those of chemical bonds M–O and M–Cl, and they

are therefore much more compressible (Fig. 6.3). The anisotropic compression of

CrOCl and FeOCl [127] is similar up to 13 GPa and thus supports a common origin

for this behavior.

Evidence for a phase transition occurring between 15.3 and 16.4 GPa is provided

by Raman scattering (Appendix A) and X-ray diffraction. Diffraction patterns con-

tain superlattice reflections at 16.4 GPa and higher pressures. All Bragg reflections

can be indexed on the basis of a unit cell that is closely related to the unit cell of the

lattice at ambient conditions, together with a modulation wave vector q = (σ1, 0,
1
2
).

At pressures below 30 GPa, σ1 is close to the rational number 2
7

= 0.2857 (Fig. 6.2c).

However, the pressure dependence of the σ1 component of the q-vector above 30 GPa

unambiguously demonstrates the incommensurability of the modulation within this

high-pressure phase. The crystal structures were obtained within the superspace ap-

proach through refinements against the measured diffraction data at each pressure

(see Methods and Appendix A).

The occurrence of a normal-to-incommensurate phase transition can be explained

by the collapse of the Van der Waals gap. It was shown for a number of organic and

organometallic compounds, that increasing pressure primarily reduces the lengths of

the weak intermolecular Van der Waals bonds. However, when these distances reach

a lower limit, initially weak interactions approach a strongly repulsive region of the

interatomic potential. A further increase of pressure then induces a phase transition,

which results in a redistribution of these contacts and thus diminishes the free energy

[128]. It was noticed that the lower limit can be estimated as the shortest distance in

ambient-pressure structures, e.g. as they can be found in the Cambridge Structural

Database (CSD)[129, 130]. For inter-molecular Cl· · ·Cl contacts, the three shortest

distances in the CSD (version November 2013) are 2.961 Å (CEBFEV [131]), 3.027
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Figure 6.3: Pressure dependence of the Cl· · ·Cl distances in CrOCl. For pressures above

15 GPa distances are the average distance over the phase t of the modulation. If error

bars are not shown, they are smaller than the size of the symbol.

Å (LENDEP [132]) and 3.028 Å (YUHNIY [133]). Thus, a phase transition may be

expected when interlayer Cl· · ·Cl distances in MOCl reach a limit of about 3.0 Å.

Interlayer Cl· · ·Cl Van der Waals contacts become the shortest Cl· · ·Cl distances

above ∼11 GPa (Fig. 6.3). At 12.95 GPa (the highest pressure below the phase

transition at which diffraction was measured) this distance is 3.069 Å, close to the

limit of 3.0 Å. The observation of a phase transition at 15.9 ± 0.6 GPa thus is in

complete agreement with the behaviour of molecular crystals. It is demonstrated

below, that the incommensurate crystal structure allows for a further compression

of the compound without the need to shorten the Cl· · ·Cl contacts significantly.

Average interlayer Cl· · ·Cl distances are nearly equal at equal pressures for CrOCl

and FeOCl [127] (Table A.7 in Appendix A), while both compounds exhibit phase

transitions at nearly equal pressures. These observations reinforce the conclusion of

a common origin for the high-pressure behavior of these compounds.

Within the MOCl structure type, the intralayer Cl· · ·Cl distance along a is

determined by the geometry of the poorly compressible M–O framework at the

center of each slab. So, at pressures, where the interlayer Cl· · ·Cl distance reaches

the limit of 3 Å, the intralayer Cl· · ·Cl distance along a is, with 3.8 Å, still larger

than twice van der Waals radius of Cl (Fig. 6.3). On the local scale (taking into

account only one pair of neighboring slabs), this space between Cl atoms can be

used in two different ways to achieve a denser packing of Cl atoms. In the first
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A

B

P

Figure 6.4: Schematic representation of regions in the high-pressure phase of MOCl.

Double arrows represent Cl· · ·Cl contacts that have achieved more favorable distances

due to the modulation.

model, the slabs bulge towards each other (region A in Fig. 6.4), resulting in an

increase of the gap between Cl atoms neighboring along a, thus allowing Cl atoms of

neighboring slabs to interpenetrate (Fig. 6.1 b–d), resulting in a denser packing. In

the second model, slabs bend inward (region B in Fig. 6.4), resulting in a reduction

of the space between Cl atoms neighboring along a. However, interlayer Cl· · ·Cl

distances become longer, thus allowing layers to close in, again resulting in a denser

packing.

Because the M–O framework is covered by Cl atoms at both sides, the appearance

of region A on one side will immediately lead to region B on the other side of the

slab (Fig. 6.4). This results in doubling of the unit cell along the c axis which

explains the rational component 1
2

of the modulation wave vector. The accurate

structure models reveal that the incommensurate crystal structures represent an

antiphase buckling of adjacent slabs indeed (Fig. 6.1 b–d). This is represented by

in-phase z-displacements of M, O and Cl atoms belonging to the same slab and

possessing the same x-coordinates in the average structure (see t-plots in Fig. A.4,

Appendix A). The structure models furthermore show that the major part of the

modulation is given by displacements of Cl atoms in the direction of a. These

displacements further the densification of CrOCl by allowing slabs to become closer

to each other. The superspace symmetry of the incommensurate structure does not

allow for atomic displacements along b. This is in agreement with the suggested

mechanism of the phase transition, because the Cl· · ·Cl distances along b are much

smaller than twice the Van der Waals radius of Cl atom, leaving no room for further

decrease. Displacements of Cl atoms are severely restricted by the rigidity of the

M–O and M–Cl bonds. They prevent a single most favorable Cl· · ·Cl distance
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to be achieved for all Cl atoms, thus explaining the incommensurability and the

modulations of varying wavelengths as a function of pressure.

The discovery of the incommensurate phase in CrOCl has triggered us to re-

investigate the high-pressure phase diagram of FeOCl in the vicinity of 15 GPa.

Indeed, incommensurate satellite reflections have now been found in the diffraction

pattern of FeOCl at 15.0 GPa with q = (0.260, 0, 1
2
), while the q-vector is commen-

surate with σ1 = 1
4

at the next measured pressure of 22.7 GPa. The incommensurate

phase of FeOCl exists in a range of pressures of at most a few GPa wide. Different

radii of Fe3+ and Cr3+ lead to different M–O distances, and therefore to a different

packing of Cl atoms, explaining the different periods of the modulations in FeOCl

and CrOCl. Furthermore, the slightly lower transition pressure in FeOCl can be

explained by the smaller cation size of Cr3+ than Fe3+, which makes the CrOCl

slabs more rigid. Therefore, more energy (higher pressure) is required to distort the

Cr–O framework than to distort the Fe–O framework. Rigorous assessment of the

impact of slight differences in ambient-pressure structures, different cation sizes and

different electronic configurations on the observed differences between the q-vectors

and their pressure dependence would require additional experiments on isostructural

compounds.

While the range of incommensurability of FeOCl is small, the intermediate struc-

ture of CrOCl persists up to 51 GPa. Compression from 16.4 to 30.3 GPa is accom-

panied by a gradual increase of modulation amplitudes. At 30.3 GPa the amplitudes

saturate and further compression enhances the σ1 component of the q-vector. Ap-

parently, the initial growth of modulation amplitudes is required to avoid shortening

of interlayer Cl· · ·Cl distances with diminishing of the interlayer spacing. An upper

bound is reached, when unfavorably short intralayer Cl· · ·Cl distances would occur.

At higher pressures the evolution of the structure follows the expected behaviour

of buckled slabs: increase of the σ1 component of the q-vector allows to reduce the

a-axis avoiding the energy-demanding large contraction of Cr–O distances.

At 57.2 GPa (highest pressure achieved) two commensurate phases are found

to coexist in CrOCl. This indicates that two phase transitions take place between

51 and 57.2 GPa. One is a lock-in transition where σ1 jumps to 1
3

and a sixfold,

3a×b×2c superstructure is formed. The second commensurate high-pressure phase

is as threefold superstructure (see Appendix A). The transition is not accompa-

nied by significant changes in molar volume. Therefore, no changes in connectivity

(e.g. appearance of interlayer bonding) are expected. We could not obtain direct

evidence of the exact sequence of phase transitions between 51 and 57.2 GPa. How-

ever, the smaller unit cell of the threefold superstructure may suggest that it is
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developed at higher pressures than the sixfold superstructure of the lock-in phase.

On decompression, the lock-in phase is preserved down to at least 47.5 GPa, with

the commensurate-to-incommensurate transformation taking place between 47.5 and

40.5 GPa. These observations provide evidence for strong first-order character of the

lock-in transition. Furthermore, it supports the idea the threefold superstructure is

the stable phase at the highest pressures.

We have shown that high-pressure behavior of MOCl is governed by strongly non-

bonded inter- and intralayer Cl· · ·Cl contacts. In the vicinity of 15 GPa interlayer

Cl· · ·Cl contacts reach the strongly repulsive region of the interatomic potential

at ∼3 Å interatomic separation. This results in a phase transition towards an in-

commensurately modulated phase by which shorter Cl· · ·Cl distances are avoided.

MOCl are not molecular compounds, where generally there are more degrees of free-

dom regarding the variation of molecular arrangement. Nevertheless, there are voids

within the structure, which allow Cl displacements along a. The rigid framework of

M–O bonds, in turn, implies restrictions on the positions of Cl atoms. Therefore, a

single most favorable configuration cannot be achieved. In CrOCl the high-pressure

structure is incommensurate up to at least 51 GPa. Between 51 and 57 GPa a

lock-in phase transition to a sixfold 3a × b × 2c superstructure takes place, while

at still higher pressures a threefold superstructure is formed. Apparently, there is a

tendency for the simplification of the structure towards higher pressures. The im-

portance of non-bonded interactions described here for the high-pressure behavior of

CrOCl will have implications for the understanding of high-pressure phase diagrams

of other classes of inorganic materials, but it may also bear relevance for the stress

properties of Van der Waals-bonded heterostructures [134].

Methods

Sample preparation. Single crystals of CrOCl were prepared by the gas trans-

port technique using CrCl3 (99.9 %, Alfa) and Cr2O3 (99.997 %, Alfa) as starting

reagents, and using HgCl2 as transport reagent [20]. Single crystals of FeOCl were

prepared by gas transport from a stoichiometric mixture of FeCl3 (99.99 %) and

Fe2O3 (99.999 %) [10, 19]. The high-quality single crystals of CrOCl and FeOCl

along with small ruby spheres were placed inside BX90 diamond anvil cells [60]

equipped with Boehler-Almax diamonds (culet size 250 µm). Ne was used as a

pressure-transmitting medium.

X-ray diffraction. Single-crystal X-ray diffraction experiments were performed

at the beamlines ID09A (ESRF, Grenoble, France) and P02.2 (PetraIII, Hamburg,

Gemany) using monochromatic X-ray radiation of wavelengths 0.414 and 0.290 Å
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respectively. The diffraction data were collected in a sequence of 1◦ oscillations over

a total scan range of 80◦ around the vertical (ω) axis. Diffracted intensities were

collected with Mar555 flat panel and PerkinElmer XRD 1621 detectors.

Data analysis. Lattice parameters, components of the q-vector and integrated

intensities were obtained from the measured images using the computer program

CrysAlisPro. Bragg reflections overlapping with reflections from the diamonds or

the pressure-transmitting medium were excluded from the data integration proce-

dure. Outliers were removed (usually 1–2 per data set) according to procedures

recently implemented in Jana2006 [75].

Crystal structures. Crystal structures were obtained within the superspace

approach using the superspace group Pmmn(σ1, 0,
1
2
)00s. Structure refinements of

the atomic coordinates and modulation amplitudes were performed with the software

Jana2006[135]. They resulted in a good fit to the diffraction data at each pressure.

Further details on structure models are given in the Appendix A.
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Chapter 7

Pressure-induced phase transitions

in MOCl (M = Ti, V, Sc)1

7.1 Introduction

The layered compound TiOCl has become one of the most intensively studied low-

dimensional S = 1
2

systems since the discovery of its unconventional spin-Peierls

transition by Seidel et al. in 2003 [34]. On cooling, TiOCl undergoes a phase

transition at Tc2 = 90 K towards an incommensurately modulated phase, and a

second transition at Tc1 = 67 K towards a a × 2b × c superstructure [36]. The

transitions lead to the formation of Ti3+–Ti3+ singlet dimers along the direction of

quasi-one-dimensional spin chains (along the b-axis). For highly anisotropic systems,

like TiOCl, the application of hydrostatic pressure provides a way of modifying

magnetic intrachain and interchain exchange parameters, and allows to get a broader

understanding of the interplay between different degrees of freedom in these systems.

The high-pressure behavior, and especially high-pressure crystal structures re-

main the biggest mysteries in TiOCl physics. TiOCl is a Mott insulator with weak

electron localization attributed to high nearest-neighbor exchange coupling. There-

fore, it was suggested that TiOCl is close to an insulator-metal transition and an

application of pressure would be an ideal tool to trigger this transition [43]. First

high-pressure transmittance and reflectance measurements suggested that TiOCl

undergoes an insulator-to-metal transition at ∼12 GPa [43]. Later Forthaus et al.

have performed electrical transport measurements [44] and found that TiOCl does

not transform to a metallic state, although there is a substantial change in the pres-

1This chapter is to be submitted as M. Bykov, E. Bykova, L. Dubrovinsky, M. Hanfland, and

S. van Smaalen. Pressure-induced phase transitions in MOCl (M = Sc, V, Ti).

78



7.1. Introduction

sure dependence of the band gap width around 13 GPa. This indicated a change

in the electronic structure of TiOCl. At the same time, no structural changes were

observed by means of energy-dispersive powder X-ray diffraction. Later Zhang et al.

[45] have performed ab initio calculations and claimed two pressure-induced phase

transitions to occur. The first transition leads to the two-dimensional metallic state

with strong Ti–Ti dimerization. The dimerization is suppressed at the second tran-

sition, and TiOCl becomes a uniform metal.

The structural evidence for the first transition has been obtained by Kuntscher

et al. [46]. Employing powder X-ray diffraction they have found additional reflec-

tions on the diffraction pattern above 15.5 GPa. However, no structural model has

been proposed for the high-pressure phase. Later Blanco-Canosa et al. [47, 48] pro-

posed that the high-pressure structure is a monoclinic a×2b×c superstructure with

symmetry P21/m. A Rietveld refinement revealed the formation of Ti–Ti dimers

along the b-axis. Although the refinement results are supported by the theoretical

calculations, the accuracy of Rietveld refinement of TiOCl powders is rather ques-

tionable. Indeed, later Ebad-Allah et al. [49] interpreted powder X-ray diffraction

patterns of TiOCl in a different way. They suggested that above 15 GPa a mixture

of ambient-pressure Pmmn phase and a monoclinic 2a × 2b × c superstructure ex-

ists. Moreover, Ebad-Allah et al. have found a pronounced anomaly in all lattice

parameters of the 2a× 2b× c superstructure and suggested that a second transition

takes place at 22 GPa. However, no models were proposed for these high-pressure

superstructures.

So, up to now no full agreement has been obtained about the possible met-

allization of TiOCl at high pressure. Furthermore, no accurate structure models

are reported for high-pressure structures. A major reason is that it is not possible

to produce good TiOCl powders for measurements in diamond anvil cells (DACs).

Plate-like crystallites of TiOCl orient themselves to lie flat on the diamond culet,

and, therefore, the crystallographic c-axis becomes parallel to the primary X-ray

beam. Due to this extreme preferred orientation, Rietveld refinements can not

provide reliable structure models. A straightforward solution is, therefore, a single-

crystal X-ray diffraction experiment.

Novel developments in the instrumentation for high-pressure crystallography now

make single-crystal X-ray diffraction measurements feasible even above 100 GPa

[136]. Recently, several high-pressure single-crystal X-ray diffraction studies were

performed on isostructural FeOCl and CrOCl compounds [126, 127]. It was shown

that in the vicinity of 15 GPa these compounds undergo a pressure-induced phase

transition related to the optimization of crystal packing rather than to any mag-
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netic or electronic phenomena. Furthermore, it was claimed that similar distortions

may contribute to the high-pressure behavior of TiOCl and other isostructural com-

pounds (e.g. VOCl, ScOCl, InOCl). Here we report the results of single-crystal

X-ray diffraction studies of TiOCl, VOCl and ScOCl. The results resolve a long-

standing mystery of TiOCl and point out similarities and differences in MOCl (M

= Sc, Ti, V, Cr, Fe) phase diagrams.

7.2 Experiment

High-pressure phase diagrams of ScOCl, TiOCl and VOCl were studied by means of

single-crystal X-ray diffraction in diamond anvil cells using synchrotron radiation.

Experimental details are summarized in the Table 7.1.

Table 7.1: Experimental details of high-pressure single-crystal X-ray diffraction studies of

MOCl.

ScOCl TiOCl VOCl

Beamline P02.2 (DESY) ID09A (ESRF) ID09A (ESRF)

Wavelength, Å 0.28995 0.4127 0.4145

Detector Pilatus 300K MAR555 MAR555

Gasket material Re Re Re

Pressure medium Ne Ne Ne

Pressure sensor Ruby Sm:YAG Ruby

Data collection type ω-scans ω-scans ω-scans

∆ω,◦ 0.5 1.0 0.5

ω range, ◦ −40→ 40 −40→ 40 −40→ 40

Pressure was determined using a shift of R1 and Y 1 fluorescence peaks of ruby

and Sm:YAG respectively [63, 137]. Fluorescence of the pressure standard was

measured before and after each data collection, and an average value was considered

to be the pressure for the actual data set. Diffraction data were collected by narrow

ω-scanning with ∆ω = 0.5 − 1.0◦ and an exposure time of 1 s. At some pressure

points the DAC was rotated by 90◦ degrees around the primary beam direction

and a second run was performed, in order to increase data completeness. Data

processing (peak intensities integration, background evaluation, lattice parameters,

space group determination, frame scaling and absorption correction) was done with

the CrysAlisPro software (see Chapter 3). All structure refinements were performed

with Jana2006 crystallographic computing system [135].
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7.3 High-pressure crystal structures

TiOCl

Single-crystal X-ray diffraction data were collected for TiOCl at 7 pressure points.

The ambient-pressure structure with orthorhombic symmetry Pmmn was detected

at P = 0.2 GPa and at P = 3.7 GPa. The structure was refined based on the model

reported by Schäfer et al. [11]. Due to the limitations on data completeness imposed

by the DAC technique, only the atomic displacement parameters of Cl were refined

anisotropically.

At the next pressure point (9 GPa) additional weak reflections appeared on

the diffraction pattern. They could be indexed with an incommensurate q-vector

(σ1, σ2, 0), where σ1 = 0.1016 and σ2 = 0.5109. Based on the diffraction symmetry

and on the analysis of systematic absences the superspace group was found to be

P2/n(σ1, σ2, 0)0s (with standard setting P2/b(σ1, σ2, 0)00, No. 13.1.2.1) [93]. We

denote this phase of TiOCl as TiOCl–II.

The crystal structure in superspace is defined by the coordinates of the atoms

in the basic structure and their displacements. So, the position (x) of the atom

µ can be obtained as a sum of its position in the basic structure (x(µ)) and the

value of the modulation function uµ. Since only first-order satellite reflections were

observed, the modulation was described by first-order harmonic functions:

uµi (x̄4) = Ai(µ) sin(2πx̄4) +Bi(µ) cos(2πx̄4), (7.1)

where i = x, y, z, x4 = t+ q · x̄(µ), t is the phase of the modulation, and Ai and Bi

are the amplitudes of the modulation functions. Due to the symmetry restrictions

on the atomic modulation functions coefficients Ax, Ay and Bz are equal to 0 for

each atom.

The average structure was derived using group-subgroup relations between

Pmmn and P2/n space groups [138]. Modulation amplitudes were refined starting

from small arbitrary values (< 0.01 Å). The same structure was observed for

the next pressure point (11.2 GPa), however, the σ2 component of the q-vector

appeared to be pressure-dependent (see Table B.3 in Appendix B). All refinements

smoothly converged to excellent fits to the diffraction data.

Two kinds of satellite reflections were found on the diffraction pattern above

15 GPa. Some satellites were indexed with q1 = (σ11,
1
2
, 0) as valid for TiOCl-

II, but with a rational component along b∗. Additional satellites were indexed

with q2 = (σ21, 0,
1
2
). These q2 satellites are extremely weak at 15 GPa, however

their intensities rapidly increase with pressure: < I
σ(I)

>main/<
I

σ(I)
>q1/<

I
σ(I)

>q2 =
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10.88/2.81/1.86 at 15.0 GPa and 11.35/2.83/4.06 at 18.1 GPa. No mixed satellites

were observed at positions ±q1 ± q2 at 15 GPa, and only 5 such reflections were

observed at 18.1 GPa.

At 18.1 GPa σ11 = 0.1179 and σ21 = 0.2364. These values are far from any

rational number with fairly low denominator (more or less acceptable rational ap-

proximations are 2
17

= 0.1176 and 4
17

= 0.2353). Therefore, the structure of TiOCl

has been considered as incommensurately modulated at this pressure point.

In case of two q-vectors, the general formula for the modulation functions has

the following form:

uµi (x̄4, x̄5) =
∞∑

n1=0

∞∑
n2=0

An1n2
i (µ) sin[2π(n1x̄4 + n2x̄5)] +Bn1n2

i (µ) cos[2π(n1x̄4 + n2x̄5)],

(7.2)

where x̄4 = t1 + q1 · x̄, x̄5 = t2 + q2 · x̄, i = x, y, z, and the term with n1 = n2 = 0

is excluded from the summation [52]. The maximum values of n1 and n2 for the

refinement were defined by the maximal order of corresponding satellite reflections,

which were observed in the diffraction pattern. At 18.1 GPa n1max = 1 and n2max =

3. Due to the absence of mixed satellites, all terms in which both n1 and n2 are non-

zero are excluded from the summation 7.2. The best fit to the diffraction data was

achieved using the superspace group P2/n(σ11, σ12, 0)0s(σ21, σ22,
1
2
)0s with σ12 = 1

2

and σ22 = 0 (Table B.3 in Appendix B).

At 15 GPa σ11 = 0.1242 ≈ 1
8

and σ21 = 0.2494 ≈ 1
4
, indicating the structure at

this pressure point may be a commensurate 8a×2b×2c superstructure. However, due

to the weakness of q2 satellites and the absence of satellite reflections of higher order,

an unambiguous distinction between commensurate and incommensurate models

was not possible. At the same time, in case of large superstructures, treatment

of the superstructure as incommensurate may serve as a good approximation to

the real structure, and a crystal-chemical analysis does not suffer much from this

ambiguity (see Chapter 4). Therefore, the 15 GPa crystal structure has been treated

as incommensurately modulated. For the structure refinement, the structure model

of TiOCl at 18 GPa (Table B.4 in Appendix B) has been taken with modulated

functions truncated to the first order harmonics. TiOCl phase observed at 15 and

18.1 GPa is denoted as TiOCl-III.

Above 20 GPa, the crystal quality started to decrease rapidly, therefore at higher

pressures only indexing of the diffraction pattern was possible. At 25 GPa the

reciprocal lattice of the basic structure still could be identified. Reconstructed (hkl)

planes with integer k index contain strong satellite reflections which could be indexed

with q = (1
5
, 0, 1

2
). In addition, weaker reflections could be found within (h k+0.5 l)
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7.3. High-pressure crystal structures

Figure 7.1: A scheme of the reciprocal lattice of TiOCl-IV. Main reflections are repre-

sented by large grey circles, and superlattice reflections are represented by small circles.

Lengths relations between reciprocal lattice parameters are not maintained for picture

simplicity. Average I/σ(I) values for reflections with I > 3σ(I) and the total number of

such reflections are given in a form < I/σ(I) >;N .

planes at positions h ± 1
5
n, k + 1

2
, l ± 1

4
, where n = 1, 2 (Fig. 7.1). In fact, all

reflections can be indexed with a single q-vector. However, the choice is not unique.

Each q-vector ( i
5
, j

2
, k

4
), where i 6= 5n, j = 2n + 1, k = 2n + 1, can describe the

diffraction pattern. A convenient choice would be to choose the q-vector in a way

that lower-order satellites are more intense, than the higher-order ones. According

to the data presented in the Fig. 7.1, the best option is q = (1
5
, 1

2
, 1

4
). This phase is

denoted further as TiOCl-IV. Above 25 GPa the crystal was completely destroyed.

VOCl

Single-crystal X-ray diffraction of VOCl was performed at 12 pressure points on

compression from ambient pressure up to 50.5 GPa, and at 7 pressure points on

decompression. The ambient-pressure crystal structure of VOCl is stable up to 14.1

GPa. The structure was refined based on the model reported by Haase et al. [139].

Between 14.1 and 16.3 GPa VOCl undergoes a normal-to-incommensurate phase

transition similar to that found in FeOCl and in CrOCl (Chapters 4, 5, 6). Satellite

reflections can be indexed with q = (σ1, 0,
1
2
), where σ1 amounts to 0.26. The

structure model from incommensurate structure of FeOCl with superspace group
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symmetry Pmmn(σ1, 0,
1
2
)00s was taken as a starting model for the refinement of

the high-pressure structure of VOCl. Atomic modulation functions of each atom

were described as Fourier series truncated to third order:

uµi (x̄4) =
3∑

n=1

Ani (µ) sin(2πnx̄4) +Bn
i (µ) cos(2πnx̄4). (7.3)

This incommensurate phase is denoted as VOCl-II.

Further compression leads to the formation of a 3a × 3b × 2c superstructure

above 20 GPa. In order to describe all superlattice reflections of a 3a× 3b× 2c su-

perstructure, at least two q-vectors are needed. This makes the superspace analysis

rather complex. Furthermore, all possible types of superlattice reflections have been

observed, and some of them appeared to be of comparable intensities with the main

reflections. Hence, the gain in the number of refined parameters for the superspace

description of the superstructure will not be substantial. Therefore, in the current

case a conventional refinement may be a better choice for the structure description.

The superstructure has a monoclinic symmetry P21/c (a - axis unique), and

the crystal is twinned by pseudomerohedry. All structure refinements at pressures

below 38 GPa (including points on decompression) lead to good fits to the data

(Table B.5 in Appendix B). However, attempts to refine crystal structure using the

same P21/c model at pressures above 38 GPa lead to R-factors higher than 0.1, to

non-positive definite atomic displacement tensors and to many correlations between

refined parameters. Analysis of the diffraction pattern revealed that additional

systematic absences appear and correspond to an n-glide perpendicular to the c-

axis (Fig. 7.2). A successful structure solution and refinement has been performed

using the orthorhombic space group Pcmn (Table B.5 in Appendix B). Therefore

there is one more transition in VOCl between 35.4 and 38.0 GPa. The monoclinic

P21/c and orthorhombic Pcmn structures are denoted as VOCl-III and VOCl-IV

respectively.

All phase transitions in VOCl appeared to be reversible. Decompression leads

to the transformation towards ambient-pressure Pmmn structure. Reduction of the

crystal quality is responsible for slightly higher R-values for structure refinements

on decompression (Table B.5 in Appendix B).

ScOCl

Weak scattering power of a thin ScOCl crystal (d ∼ 1µm) together with the low

sensitivity of a Pilatus300K detector to the high-energy radiation did not allow to

obtain a sufficient number of reflections for the structure refinements. Nevertheless,
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7.4. Results and discussion

Figure 7.2: Reconstructed (hk0) planes of VOCl at 35.4 and 41.7 GPa.

the appearance of satellite reflections and a monoclinic lattice distortion revealed

a structural phase transition between 4.8 and 8.4 GPa. The lattice parameters

at 8.4 GPa were obtained as: a = 3.821(5), b = 3.481(3), c = 6.92(3) Å, β =

104.5◦,q = (1
6
, 0, 1

2
). Due to the pronounced monoclinic angle β, the superspace

group Pmmn(σ1,0,1
2
)00s does not apply to this structure.

7.4 Results and discussion

TiOCl

The first high-pressure phase of TiOCl (TiOCl-II) appears to be incommensurately

modulated. Its structure is similar to the low-temperature incommensurate phase

between Tc1 = 67 K and Tc2 = 90 K [37] (see Appendix B). Fausti et al. [109]

have pointed out that the transition temperatures are correlated with the ratio

between intrachain and interchain exchange interactions J1 and J2. The intrachain

interaction arises from the direct exchange between Ti3+ ions, while the interchain

interaction is of superexchange nature through oxygen atoms [109, 140]. General

compressional trends in MOCl compounds, and in particular in TiOCl show that

intrachain Ti–Ti distances are much more affected by applied pressure than Ti–O
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distances and Ti–O–Ti angles along a + b. Therefore, J1 strongly increases with

pressure, while J2 is much less pressure-dependent. Such anisotropic behavior leads

to a strong enhancement of the transition temperatures.

None of the previous high-pressure diffraction studies of TiOCl has reported an

incommensurate phase [44, 47–49]. However, Ebad-Allah et al. have reported the

appearance of additional reflections in the powder diffraction diagrams above ∼7

GPa [49]. The diffraction has been interpreted assuming the coexistence of several

high-pressure phases. Nevertheless, taking in account our single-crystal studies, we

can conclude that Ebad-Allah et al. have indeed observed TiOCl-II, but unam-

biguous indexing of their powder diffraction patterns was not achieved. Using the

results of Ebad-Allah et al. we can, therefore, establish a precise transition pressure

of 7 GPa for the TiOCl-I → TiOCl-II transition. This transition pressure is in a

good agreement with the pressure dependence of Tc2 reported by Blanco-Canosa

et al. [48]. According to magnetic susceptibility measurements up to ∼1 GPa,
dTc2
dP

= 33.2 K
GPa

. Therefore, the incommensurate phase can be expected to appear

at ambient temperature at ∼ 6 GPa. The major structural distortion in TiOCl-II

is expressed in a variation of Ti–Ti distances along the b-axis. The modulation

amplitude By[Ti] is ∼3 times larger than at low temperatures and increases with

pressure (Table B.2 in Appendix B).

Further increase of pressure may lead to two phenomena. First of all, reported
dTc1
dP

amounts to 19.1 K
GPa

[48]. Therefore, a lock-in transition to a a × 2b × c

superstructure may be expected around 12 GPa. Secondly, a structural transition,

related to the optimization of packing of Cl atoms, typical for MOCl compounds

can be expected close to ∼ 15 GPa [126, 127].

Our single-crystal X-ray diffraction experiments show that both distortions con-

tribute to the high-pressure crystal structure of TiOCl. Two modulation wave vec-

tors are needed to describe the diffraction pattern of TiOCl above 15 GPa. The first

one (q1 = (σ11,
1
2
, 0)) arises from spin-Peierls-like distortions (pairing of Ti atoms in

dimers along the b - axis). The second (q2 = (σ21, 0,
1
2
)) arises from the buckling of

Ti–O layers and optimization of packing of Cl atoms.

So far, in literature, there is one single-crystal X-ray diffraction study of TiOCl

at high pressure [98]. The experiment has been performed at T = 6 K. Remarkably,

the authors found incommensurate satellite reflections at positions (1.52, 0, 0) and

(2.48,0,0) at P = 13.2 GPa and T = 6 K [98]. The positions of these satellites

are in good agreement with positions of second-order q2-type satellites in TiOCl-

III. In view of an absence of electronic and magnetic contributions to the q2-type

distortion, it is not expected to be much temperature-dependent. Therefore, it is
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likely that Prodi et al. [98] have observed at 6 K similar q2-type distortions as in

TiOCl-III at ambient temperature.

The structure of TiOCl-III is presented in Fig. 7.3. Each Ti chain is dimerized, so

there are two Ti–Ti distances along each chain, but these distances vary from chain

to chain along the direction a. This way of chain distortion is essentially different

from that in TiOCl-II or in the incommensurate low-temperature phase, where all

Ti chains possess equivalent modulations. It is reminiscent of that in TiPO4 [141]

(Chapter 8). This distortion type (however without incommensurate component

along a) was predicted and studied before [45, 47]. However, one can notice a

buckling of Ti–O double layers like in CrOCl and in FeOCl [126, 127]. Therefore,

two inherently different distortions contribute to the high-pressure crystal structure

of TiOCl-III. The q2 distortion has never been taken into account in previous studies

of TiOCl. The q2 distortion is unlikely a reason for substantial changes in electronic

or magnetic structure of TiOCl [126, 127]. It has no effect on Ti–Ti distances

along the direct exchange path (along b) and only slightly affects Ti–O, Ti–Cl and

interchain Ti–Ti distances. It should be noted that despite the fact that q1- and

q2-type distortions are related to entirely different phenomena, the incommensurate

components of the q-vectors seem to be coupled. So, at both pressure points, at

which TiOCl-III phase has been observed, σ21 ≈ 2σ11.

Blanco-Canosa et al. [47] suggested that the spin-Peierls distortion is expected

to be supported by a conventional Peierls distortion since the short Ti–Ti distance

approaches the limit for electron itinerancy. Piñeiro et al. [142] suggest that on

increasing pressure two dimerized high-pressure phases develop: so-called short-

dimerized and long-dimerized structures. The short-dimerized phase corresponds to

a conventional spin-Peierls scenario with small alternation of Ti–Ti distances along

the chains. The long-dimerized phase with strong variations in Ti–Ti distances

occurs due to a spin-Peierls → Peierls crossover. Table 7.2 contains intrachain

Ti–Ti distances in TiOCl at different conditions. Our results show no significant

enhancement of modulation amplitudes of Ti atoms from 10 GPa up to 18 GPa,

but they are significantly larger than at low temperatures. Therefore, spin-Peierls-

Peierls crossover is unlikely to occur at ambient temperature. Of particular interest

would be to study high-pressure behavior of TiOCl at low temperatures.

Intensities of q1 satellites are comparable with those of q2 satellites in TiOCl-III,

while in TiOCl-IV, satellites having half-integer component along b∗ have negligi-

ble intensities (Fig. 7.1). This points that spin-Peierls-like dimerization is almost

suppressed in TiOCl-IV, and the contribution of q2-type distortion increases. The

suppression of dimerization is in agreement with the prediction of Zhang et al. [45].

87



Chapter 7. Pressure-induced phase transitions in MOCl (M = Ti, V, Sc)

Figure 7.3: Incommensurate crystal structure of TiOCl at 18.1 GPa represented as a

fragment of 17a×2b×2c basic-structure unit cells (upper figure). A projection of a single

TiOCl chain along the a-axis with alternating Ti–Ti distances d1 and d2.

However, at the highest pressure point achieved in this study (25 GPa) the dimer-

ization is not fully suppressed. This is revealed by a rational component of the

q-vector along the b-axis σ2 = 1
2
. A complete transformation to a non-dimerized

metallic state can be, therefore, expected at higher pressures.

VOCl

High-pressure behavior of VOCl below 17 GPa didn’t reveal any peculiarities in

comparison with other MOCl compounds. Between 14.1 and 16.3 it undergoes

normal-incommensurate phase transition typical for MOCl in this pressure range.

However, further compression leads to a unique kind of structure. First, at 23.7

GPa a 3a × 3b × 2c superstructure was detected. This is not a typical lock-in

phase, as observed in FeOCl and CrOCl, since it has a tripled b-axis. Another

peculiarity is that the transition is accompanied by a volume drop of ∼ 7%, that

was not observed in other MOCl compounds. Above the transition pressure, the

compressibility of VOCl drastically decreases, which is represented by a change of the
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7.4. Results and discussion

Table 7.2: Intrachain Ti–Ti distances (Å) in TiOCl at different pressures and tempera-

tures. Given are the average (dave), minimal (dmin), maximal (dmax) values and difference

(∆) between dmax and dmin.

Conditions dave dmin dmax ∆

0.0001 GPa, 10 K1 3.3145 3.254(1) 3.429(1) 0.175

0.0001 GPa, 72 K2 3.3417(10) 3.243(2) 3.438(2) 0.195

10.2 GPa, 293 K 3.1848(1) 2.9579(19) 3.4090(19) 0.451

11.8 GPa, 293 K 3.1604(10) 2.8965(19) 3.4187(19) 0.522

15.2 GPa, 293 K3 3.2 2.85(5) 3.55(5) 0.70

15.0 GPa, 293 K 3.134(6) 2.852(10) 3.395(8) 0.543

18.2 GPa, 293 K 3.117(12) 2.829(17) 3.385(17) 0.556

1 Data from Shaz et al. [36].
2 Data from Schönleber et al. [37].
3 Data from Blanco-Canosa et al. [47].

slope of volume-pressure behavior (Fig. 7.4). An analysis of pressure behaviors of the

lattice parameters shows that the volume drop is mostly related to the substantial

reduction of the b-axis, and the change in compressibility defined by the identical

change in the linear compressibility along the c-axis (Fig. 7.5).

The change in compressibility of the c-axis is explained by the appearance of

interlayer V–Cl bonds (Fig. 7.6). So, V atoms located at positions of minimal in-

terlayer distances change coordination from distorted octahedral to distorted face

capped octahedral. For instance, at 23.7 GPa for three V atoms in such coordina-

tion, the V–Cl distances are: (2.372, 2.385, 2.402 Å); (2.310, 2.322, 2.573 Å) and

(2.329, 2.386, 2.453 Å). Such behavior towards increasing of coordination numbers is

in agreement with general expectations about high-pressure trends in crystal struc-

tures. The locking-in of the structure along a and doubling of the c-axis is similar

to the behavior of CrOCl, which forms a lock-in 3a × b × 2c superstructure above

51 GPa. Substantial reduction of b is definitely not favorable for the packing of Cl

atoms, therefore another mechanism is responsible for this transition. The tripli-

cation of the b-axis leads to three alternating V–V distances along this direction

(Fig. 7.6 c). Some V–V distances along b approach the contact distance in V metal,

suggesting the formation of V–V bonds. Taking into account the neighboring chains

we found that each of the V atoms forming dimers along b is also connected to

V atoms belonging to the neighboring chain (along a + b). Therefore triangular V

clusters are formed in VOCl-III (Fig. 7.6 b). Formation of molecular clusters in
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Figure 7.4: Pressure dependence of the unit-cell volume of VOCl. Open symbols cor-

respond to decompression experiment. For pressures above 20 GPa symbols represent

unit-cell volume divided by 18.

Mott insulators usually is referred to as partial Mott transition: so in some parts of

the systems, the interatomic distances are smaller than the critical distance for elec-

tron delocalization, but the distance between the clusters remains large, so there is

no net metallic conductivity [143]. Other examples include trimer clusters in LiVO2

[144], helical dimers in MgTi2O4 [145] and octamers in CuIr2S4 [146].

VOCl-III contains not only clusters of V atoms. One third of the V chains along

the b-axis are only slightly distorted, and these chains do not contain V–V bonds

(Fig. 7.6 b). Pressure-dependence of the intrachain V–V distances is shown in the

Fig. 7.7. Above 20 GPa there are two distinct sets of V–V distances: shorter ones

correspond to the V triangular clusters and longer ones - to the intertrimer distances,

and to the V–V distances along the slightly distorted chains. Interestingly, the non-

clustered V atoms are involved in the interlayer bonding through Cl atoms.

There are no distinct changes in the unit-cell volume and interatomic distances

between orthorhombic VOCl-IV and monoclinic VOCl-III. The transition doesn’t

lead to formation of new clusters or V–V bonds. Overall, the structure becomes more

symmetric: triangular V clusters become isosceles and overall number of distinct V–

V distances decreases.
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7.4. Results and discussion

Figure 7.5: Pressure dependence of the normalized lattice parameters b and c of VOCl.

Open symbols correspond to decompression experiment. For pressures above 20 GPa given

are values of b/3 and c/2.

Relations between high-pressure behaviors of MOCl

MOCl exhibit both similarities and differences in their high-pressure behaviors. All

MOCl undergo similar structural phase transitions which are revealed by the ap-

pearance of satellite reflections. The satellites could be indexed by a modulation

wave vector (σ1, 0,
1
2
). For TiOCl, VOCl, CrOCl and FeOCl the structural transi-

tion leads to the formation of incommensurately modulated structures (expressed

by irrational values of σ1). At higher pressures lock-in transitions take place (Table

7.3, Fig. 7.8).

The mechanism of the normal-incommensurate phase transitions in MOCl in the

vicinity of 15 GPa was discussed in detail in the Chapter 6. Based on the analysis

of crystal structures of CrOCl and FeOCl it was proposed that the transition takes

place when interlayer Cl· · ·Cl distances reach a limit of about 3 Å. Further decrease

of interlayer distance does cost too much energy, and the gain in energy arising from

the redistribution of Cl atoms compensate the elastic energy costs for the distortion

of M–O layers. Apparently, this 3 Å rule is valid for VOCl and TiOCl as well.

Interlayer Cl· · ·Cl distances in VOCl at 14.1 GPa and in TiOCl at 12 GPa are

3.059Å and 3.131 Å respectively.

Nevertheless, the structural phase transition in ScOCl has been observed at

91



Chapter 7. Pressure-induced phase transitions in MOCl (M = Ti, V, Sc)

Figure 7.6: Projections of crystal structure of VOCl-III at 24.8 GPa (a) along the b-axis,

(b) along the c-axis (only V atoms are shown) and (c) along the a-axis.

much lower pressures. Although, an incommensurately modulated phase of ScOCl

has not been detected and structure solution of the 6a×b×2c superstructure was not

successful, a similar form of the modulation wave vector suggests that the distortion

mechanism will be the same as in other MOCl. The interlayer Cl· · ·Cl distances do

not depend much on the transition metal atom, but are defined only by the applied

pressure. Therefore, the critical Cl· · ·Cl distance for ScOCl is larger than the value

of 3 Å, common for other MOCl. This means that the critical Cl· · ·Cl distance may

depend on the rigidity of the M–O slab. As a consequence the critical distance, and,

therefore, the transition pressure will depend on the radius of M3+ (Fig. 7.9). Radii

of Ti3+, V3+, Cr3+ and Fe3+ are more or less close to each other, and, consequently,

M–O slabs stiffnesses, are close to each other. Sc3+, however, has a much larger

radius, much longer Sc–O distances, and much lower transition pressure.

It has been discussed in Chapters 5 and 6 that the normal-incommensurate

92



7.4. Results and discussion

Figure 7.7: Pressure dependence of V–V distances.

transition is not related to changes in electronic or magnetic structures of MOCl.

Therefore, it occurs in each MOCl compound independent of the number of its

d-electrons, dimensionality of magnetic interactions or the width of the band gap.

However these differences are responsible for different behaviors of MOCl apart from

the structural transition. The most prominent example is TiOCl with only one d-

electron on Ti3+. This makes TiOCl a 1D magnetic system, unlike other compounds

VOCl, CrOCl and FeOCl. So, a spin-Peierls distortion, driven by low-dimensional

magnetism of TiOCl, occurs independently of the structural transition.

According to Goodenough [40], a critical internuclear separation Rc exists, for

which the electrons may be considered as localized if the interatomic separation

R > Rc. If R < Rc it may lead to a metallic state. Among considered transition

metals Cr3+ has the smallest Rc, and therefore, CrOCl is further from itinerant

electron limit, and no metallization (CrOCl remains optically transparent) or dis-

tortions along the b-axis were observed. VOCl is much closer to the formation of

V–V homopolar bonds, and it happens above 20 GPa. Till now FeOCl has been

studied up to ∼ 24 GPa by single-crystal X-ray diffraction and up to ∼34 GPa by

powder X-ray diffraction, and no further transitions have been observed (Chapter

5). Nevertheless, a Mott transition may be expected not far from 34 GPa, since

Fe3+–Fe3+ distance is approaching its critical value. Complete understanding of the
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PmmnCrOCl IC

PmmnVOCl IC
3a 3b 2c× ×

monoclinic
3a 3b 2c× ×

orthorhombic

PmmnFeOCl IC
4a b 2c× ×

monoclinic

PmmnTiOCl IC (LT)
IC

(LT+HP)

PmmnScOCl

P (GPa)0 10 20 30 40 50

5a 2b 4c× ×

6a b 2c× ×
monoclinic

3a b 2c - orthorhombic× ×
3a b 3c - monoclinic× ×

IC - incommensurate Pmmn( 0 )00sσ1 ½

P2/n( 0)0sIC(LT) - incommensurate σ σ1 2

½IC(LT+HP) - incommensurate P2/n( (σ σ σ σ11 12 21 220)0s )0s

Figure 7.8: Scheme of pressure-induced phase transitions in MOCl.

Figure 7.9: Phase transition pressures plotted against transition metal cation radius.

Error bars show the pressure range within which, the transition takes place. The errors

come from discrete set of pressure points.
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Table 7.3: Pressures of normal-to-incommensurate (Pc1) and incommensurate-

commensurate (Pc2) phase transitions in MOCl, values of σ components of the modulation

wave vectors q = (σ, 0, 1
2).

ScOCl TiOCl VOCl CrOCl FeOCl

Pc1 (GPa) unknown 13.4± 1.6 15.2± 1.1 15.85± 0.85 14.5 ± 0.5

σ at Pc1 unknown 0.2494 0.2618 0.2869 0.261

Pc2 (GPa) 6.6± 1.81 21.05± 2.95 18.3± 2.0 53.5± 2.5 18.85± 3.85

σ at Pc2
1
6

1
5

1
3

1
3

1
4

1 Pc2 for ScOCl is a pressure of incommensurate-commensurate phase transi-

tion under an assumption that the incommensurate phase was missed in our

experiment.

high-pressure behaviors of MOCl requires theoretical calculations. Of particular in-

terest would be to find a role of orbital order/degeneracy of M3+ d-orbitals in the

stabilization of particular high-pressure structures. Furthermore, new experiments

on ScOCl and on InOCl will give detailed information on normal-incommensurate-

commensurate phase transitions and on the evolution of the lock-in phase without

possible contribution from any electronic or magnetic phenomena.

7.5 Conclusions

We have investigated the high-pressure behaviors of TiOCl, VOCl and ScOCl by

means of single-crystal X-ray diffraction. A common distortion related to the opti-

mization of packing of Cl atoms is found in each MOCl (M = Sc, Ti, V) compound.

The transition pressures depend on the radius of the transition metal atom, which

in turn defines the stiffness of the M–O slab. Apart from that, the high-pressure

behavior of MOCl is correlated with the electronic configuration of the transition

metal atom. Spin-Peierls-like distortions have been found in quasi-one-dimensional

system TiOCl. VOCl undergoes a partial Mott transition with the formation of

triangular V clusters.
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Chapter 8

Spin-Peierls distortions in TiPO4
1

8.1 Introduction

The complex interplay between spin, charge, orbital, and lattice degrees of free-

dom has made low-dimensional quantum spin magnets with strong antiferromag-

netic (AF) spin-exchange coupling prime candidates for studying unusual magnetic

ground states [147, 148]. For instance, a progressive spin-lattice dimerization in

one-dimensional AF Heisenberg chains, which occurs below a critical temperature

and induces a singlet ground state with a magnetic gap, is commonly referred to

as spin-Peierls (SP) transition [149]. Such a transition, first observed in organic

materials [150–152] attracted renewed attention when the first inorganic SP system,

CuGeO3 with Cu2+ spin S =1/2 entities (TSP ∼ 15 K), was discovered about two

decades ago [153]. The critical temperature of SP systems is essentially proportional

to the intrachain spin-exchange interaction, J [154]. The search for systems with

even higher SP transition temperatures focused on systems with one electron occu-

pying the 3d shell, e.g., systems containing Ti3+ cations because the large extension

of their magnetic orbitals provides enhanced orbital overlap between adjacent sites.

In addition, the weak spin-orbit coupling of these cations makes their spin exchange

interactions well described by a Heisenberg Hamiltonian hence enabling comparisons

with standard theory [150, 151, 154].

Recently, the compounds TiOX (X = Cl, Br) have been intensively investigated

due to their unconventional magnetic and structural properties [34–37, 155–158].

Unlike standard SP systems, TiOCl and TiOBr showed two successive phase tran-

1This chapter has been published as M. Bykov, J. Zhang, A. Schonleber, A. Wölfel, S.I. Ali, S.

van Smaalen, R. Glaum, H.-J. Koo, M.-H. Whangbo, P.G. Reuvekamp, J.M. Law, C. Hoch, and

R.K. Kremer. Spin-Peierls distortions in TiPO4. Phys. Rev. B 88, 184420 (2013).
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sitions at remarkably high temperatures. Upon cooling a continuous transition is

observed at 90 K in TiOCl from the room-temperature phase to an incommensu-

rate (IC) phase, which is followed by a first-order lock-in transition at 67 K into a

commensurate SP phase [36, 37, 157–159]. X-ray diffraction studies found a Ti–Ti

dimerization along the ribbon chains, which indicates direct exchange interactions

between spins of neighboring Ti ions [36]. However, due to the two-dimensional

character of the TiOX crystal structure, questions about the strength of the inter-

chain spin-exchange interactions and their involvement in causing two successive

transitions remained unanswered [159].

Based on magnetic susceptibility, heat capacity and nuclear magnetic resonance

(NMR) measurements, Law et al. [53] lately reported an apparently similar SP

scenario with two transitions at Tc1 = 74 K and Tc2 = 111 K for titanium or-

thophosphate, TiPO4, containing Ti3+ cations with a 3d1 electronic configuration.

TiPO4 belongs to the rich family of CrVO4-type oxides, which exhibit a wide range

of different magnetic properties [160–166]. Compared to the TiOX compounds,

TiPO4 exhibits a significantly less complex crystal structure characterized by edge-

sharing TiO6 octahedra forming slightly corrugated TiO2 ribbon chains which are

interconnected by sharing corners with PO4 tetrahedra (Fig. 8.1) [167, 168]. The

high-temperature magnetic susceptibility of TiPO4 follows very well that of a S =

1/2 Heisenberg chain with a remarkably large nearest-neighbor AF spin-exchange

constant of 965 K, about 50% larger than those of the TiOX compounds. DFT cal-

culations indicated the interchain spin-exchange to be less than 2% of the intrachain

interaction and ESR measurements revealed the anisotropy of the g-factor to be of

the order of 1% [169]. Low temperature susceptibility data showed a non-magnetic

singlet ground state [53].

Based on 31P NMR measurements, the low-temperature phase (T < Tc1) was

ascribed to a commensurate phase with a Ti–Ti bond alternation along the Ti

chains, generating two different P positions. In the intermediate phase, the NMR

experiments found a broad asymmetric continuum characteristic for an IC phase

[53].

Here we report the discovery of the low-temperature superstructures of TiPO4 by

means of temperature-dependent X-ray diffraction experiments. Our measurements

provide structural proof for a SP distortion, i.e., a Ti–Ti dimerization along TiO2

ribbon chains parallel to c. In the intermediate phase the crystal structure is IC

and is characterized by a temperature-dependent modulation of the atom positions

with a propagation q-vector along a∗. The complete accurate structural analysis

supported by density functional calculations, allowed to select the most favorable
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Figure 8.1: (a) Room-temperature crystal structure of TiPO4 with Cmcm space group.

(b) Chain of edge-sharing TiO6 octahedra along c. (c) Fragment of the crystal structure

showing interchain connections through PO4 tetrahedral groups.

structural model for the low-temperature phase, and to uncover the origin of the IC

phase.

8.2 Experimental

Temperature-dependent single-crystal X-ray diffraction experiments on a high-

quality single crystal of TiPO4 were carried out using synchrotron and laboratory-

based radiation sources (for more details see Appendix C.2). Systematic q-scans

along all principal reciprocal lattice axes and diagonals at 10 K revealed superstruc-

ture reflections at positions (h + 1
2
, k, l), which can be indexed by a propagation

vector q = (σ1, 0, 0), where σ1 amounts to 1
2
. Several strong superlattice satellite

reflections were selected and their positions and integrated intensities were mea-

sured as a function of temperature. Their indices are independent of temperature

up to 74 K, i.e. σ1 = 1
2
. At Tc1 = 75 K σ1 exhibits a discontinuous jump to

0.527 and increases smoothly to 0.565 up to 110 K. Concomitantly, the satellites

decrease their intensity and finally disappear at 112 K (Fig. 8.2). These results

show that below Tc1 TiPO4 forms a superstructure with a doubling of the room-
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Figure 8.2: (a) Temperature dependence of the normalized intensities of the (2 4 3 -1)

satellite Bragg reflection. The solid curve represents the fit with a critical power law with

a critical temperature of Tc2 = 111.6(3) K and a critical exponent of 0.32(2), consistent

with standard universality classes. (b) Temperature dependence of the σ1 component of

q = (σ1, 0, 0). Errors are smaller than the symbol sizes.

temperature unit cell along a, whereas the crystal structure of the intermediate

phase is incommensurately modulated. The discontinuity in σ1 at Tc1 (Fig. 8.2(b))

indicates a weak first-order character of the phase transition, as is also supported

by thermal hysteresis in the susceptibility and heat capacity measurements [53].

The smooth decrease of the satellite intensities on heating indicates a second-order

phase transition at Tc2. The change of length in dependence on temperature of

an oriented single crystal (length∼1 mm) was followed by cooling and heating

the sample with a miniature capacitance dilatometer (Appendix C.3). Two phase

transitions are also found in the thermal expansion data displayed in Fig. 8.3, then

providing consistent transition temperatures of 74.9 K and 112.5 K, respectively.

The thermal hysteresis of c at Tc1 (see lower inset on Fig. 8.3) without a sharp

discontinuity again manifests the weak first-order nature of this transition. As also

seen in temperature dependent X-ray diffraction data down to 100 K [169], the

length change with decreasing temperature of the lattice is distinctly anisotropic
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Figure 8.3: Relative length change (w. r. t. 295 K) of a single crystal of TiPO4 along

the three crystallographic directions as indicated. The upper inset displays the thermal

expansion coefficients using the same color code. The lower inset magnifies the thermal

hysteresis around the transition to the commensurate low-temperature phase.

and characterized by an expansion upon cooling along a and b perpendicular to

the Ti chains, whereas a contraction of the crystal along the Ti chains (along c)

is observed. Two complete data sets of integrated intensities of Bragg reflections

were collected at 10 K and 82 K, corresponding to the commensurate and the IC

phases, respectively. All observed Bragg reflections could be indexed with respect

to the unit cell of the average structure and a modulation wavevector q, using four

integers (hklm).

This allows the use of the superspace approach for structural analysis, where the

structural parameters are separated into the parameters of the average structure de-

fined by main reflections (m = 0) and the modulation parameters defined by satellite

reflections (m 6= 0) [52]. The latter characterize relatively small displacements of

the atoms, which can be described by a first-order Fourier series for the modulation

functions:

uµi (x̄4) = Ai(µ) sin(2πx̄4) +Bi(µ) cos(2πx̄4), (8.1)
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for i = x, y and z. µ indicates the atom Ti, P, O1 or O2 in the average-structure

unit cell, and x̄4 = t+ q · x̄, where x̄ is the atomic position in the average structure.

The parameter t represents the phase of the modulation.

It should be noted that no high-order satellites (|m| > 1) were observed at 10 K.

The commensurate value of σ1 at 10 K implies that the satellites with |m| = 2

would appear at the positions of the main reflections forbidden by the C-centering

of the lattice. No such reflections were detected during the data collection in the

low-angle region (sin θ/λ < 0.31), and they were excluded for the further full data

collection. No explicit search was performed for the second-order satellites at 82 K

mainly due to the beam time limitations. Furthermore, in the IC phase at 82 K,

reflections with |m| = 1 have < I/σ(I) > equal to 10.9 (compared to 200.8 for main

reflections). Therefore, higher order satellites, if any, are expected to be too weak to

have been observed in our experiment. The intensities of satellite reflections of order

m are approximately proportional to the square of the amplitude of the mth-order

harmonic [52]. The absence of satellites with |m| > 1 implies that the modulation

functions can be successfully described by exclusively first-order harmonics (Eq.

8.1). All structure refinements were performed with standard software (Appendix

C.2).

Both low-temperature structures can be described by the same orthorhom-

bic superspace group Cmcm(σ100)0s0 (No. 63.1.13.8 with standard setting

Amam(00σ3)0s0) [93, 94]. In the description of the lock-in phase as commensu-

rately modulated structure, different sections t = t0 of superspace lead to different

symmetries of the fourfold, 2a× b× c superstructure.1 The best fit to the diffraction

data was obtained for t0 = 1
8
, which corresponds to space group Pbnm for the

superstructure (Fig. 8.4(d)). However, good agreement was also found for t0 = 0,

corresponding to space group Pmnm (Fig. 8.4(b)), and for t0 = 1
16

, corresponding

to the non-centrosymmetric space group P21nm (Fig. 8.4(c)).

8.3 Discussion

The most prominent feature of the Pbnm low-temperature superstructure is a dimer-

ization of the Ti chains with a Ti–Ti bond alternation along c of about 3% (d1 =

3.134(5) and d2 = 3.230(5) Å (see Table C.8)), almost four times larger than that

in CuGeO3 [170].

1Note that the primitive unit cell volume of the low-temperature superstructures is four times

larger than that of the high-temperature Cmcm phase. Therefore we refer these superstructures

to as fourfold.
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Figure 8.4: (a) Single TiO2 chain from the crystal structure of TiPO4. Arrows indicate

the atomic displacements corresponding to the Pbnm structure model for the spin-Peierls

phase at 10 K. (b – d) Projection of the crystal structures at 10 K along [010]. (b) 2a×b×c
supercells with Pmnm symmetry, (c) with P21nm symmetry, (d) with Pbnm symmetry.

(e) Incommensurate phase at 82 K represented by 4a × b × c basic-structure unit cells.

Only Ti atoms are shown. Basic-structure coordinates are x = 0 or 1/2 and z = 0 or 1/2.

For clarity all atomic displacements have been multiplied by 30.
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Table 8.1: Relative energies of the three possible low-temperature structures (T < 75 K)

obtained from DFT + U calculations.

U (eV) Pbnm (meV) P21nm (meV) Pmnm (meV)

2 0 0.43 0.56

3 0 0.43 0.57

Compared to the room-temperature structure, the TiO6 octahedra at 10 K are

slightly more distorted, but they remain compressed with Ti–O distances to apical

oxygen atoms (O1) clearly shorter than distances to equatorial oxygen atoms (O2).

The Ti 3d orbitals are split into eg and t2g orbitals. With a coordinate system chosen

as z ‖ b, x ‖ a, and y ‖ c, the t2g orbitals are further split into dx2−y2 and almost

degenerate dyz and dxz, the latter being higher in energy due to the compression

of the TiO6 octahedra [171]. The structure model thus is in agreement with direct

magnetic exchange between unpaired electrons occupying the dx2−y2 orbitals on Ti3+

atoms neighboring along c. While the displacements of Ti atoms are driven by

SP coupling, the modulations of other atoms follow those of Ti to retain favorable

bonding configurations. The latter is also implied by the negative thermal expansion

along a and b. In the structure model described by the space group Pmnm only Ti

chains in every second layer undergo a dimerization (Fig. 8.4(b)), in disagreement

with the magnetic susceptibility data showing a non-magnetic singlet ground state

below Tc1 [53]. The structure model P21nm (Fig. 8.4(c)) exhibits varying Ti–

Ti dimerizations generating a total of four different P atoms. However, since the

positional parameters of two pairs of P atoms are only marginally different (Section

C.4), this finding is at first hand not inconsistent with the NMR data detecting only

two 31P lines [53].

In order to find the relative energies of these three putative low-temperature

structures, density functional theory (DFT) electronic band structure calculations

were carried out by employing the Vienna ab initio simulation package [172–174]

with the projected augmented wave method and the generalized gradient approx-

imation (GGA) for the exchange and the correlation functional [175]. To account

for the electron correlation associated with the Ti 3d state, we performed DFT plus

on-site repulsion (DFT+U) calculations [176] with an effective Ueff = U − J = 2

and 3 eV on Ti. Details of the calculations can be found in Appendix C.1. The

DFT calculations clearly identify the Pbnm model as the structure with minimum

energy (Table 8.1), supporting the results of the structure refinements. The two

other structure models, however, are surprisingly close in energy, with consequences
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for the IC phase (see below).

A peculiarity of TiPO4 is that a dimerization of the Ti chains along c is brought

about by a doubling of the unit cell along a. This feature is explained by the loss of

point symmetry accompanying the loss of translational symmetry, and the fact that

the basic structure already contains two Ti atoms within one period along c. The

IC phase at intermediate temperatures is characterized by an IC modulation along

a as defined by q = (σ1, 0, 0) (Fig. 8.2). In the absence of a non-zero component

along c∗, the Ti chains along c remain dimerized, but chains centered at different x

possess different degrees of dimerization (Fig. 8.4(e)). Some chains appear similarly

dimerized as those in the low-temperature Pbnm structure, while other chains are

more like those in the P21nm or Pmnm low-temperature structures (compare Figs.

8.4(b)–(e)). In this respect the IC structure of TiPO4 is essentially different from

the IC structure of TiOCl. An incommensurate component of the q vector along

the chain direction in TiOCl determines that all chains are identically modulated in

TiOCl, whereas the zero component of the q vector along the chain direction makes

all chains differently dimerized in the IC structure of TiPO4.

Since DFT calculations have revealed that the different models for the low-

temperature crystal structure exhibit only small differences in energy (Table 8.1),

we propose that the IC phase should be considered as a combination of all possible

low-temperature structures. Fluctuations between energetically almost degenerate

structures with different P environments, allow one to understand the very broad
31P NMR continuum in the IC phase spreading out over more than 200 ppm. In the

commensurate phase below Tc1 the NMR spectrum contracts to two very sharp res-

onance lines separated by only ∼ 5 ppm [53]. The dilatometry experiments revealed

a negative thermal expansion perpendicular to the Ti chains, whereas a contraction

of the lattice of significantly larger magnitude is seen along c (Fig. 8.3). These

findings indicate that elastic interactions mediated by the PO4 units have to be

considered between neighboring chains, in addition to the displacements of the Ti

atoms driven by the SP dimerization.

The variation of a structural parameter (e.g. interatomic distances or bond

angles) within the IC structure is given by a t-plot. The latter gives the value of

this parameter as a function of the phase t of the periodic modulation wave [52].

An extended discussion of the t-plots is given in Appendix C.4. Selected t-plots are

presented in Fig. 8.5. Expectedly, the largest variation holds for Ti-Ti intrachain

distances (Fig. 8.5(a)), while the small variation of P–O distances and O–P–O bond

angles in the IC structure (Fig. 8.5(b),(c)) demonstrate that the PO4 tetrahedra

behave to a large extent as rigid units. On the other hand, the apical oxygen atoms of
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Figure 8.5: Selected t-plots for the IC phase at 82 K. Atom labels refer to the Fig. 8.1.

the TiO6 octahedra (O1 in Fig. 8.1) follow and adjust to the SP dimerization of the

Ti atoms, so that Ti–O1 distance variation is very small (Fig. 8.5(d)). Consequently,

the shifts of the apical oxygen atoms will also affect the adjustment of the equatorial

oxygen atoms (O2 atoms in Fig. 8.1) of TiO6 octahedra in neighboring chains. The

competition and frustration of the SP distortion in neighboring Ti chains, mediated

by the elastic coupling by rigid PO4 units, can explain the structural fluctuations in

the IC phase indicated by the NMR experiment.

The proposed IC model also explains the behavior of the magnetic susceptibility

reported in Ref. [53]. The formation of spin-singlets starts below Tc2, and expectedly

results in the drop of the magnetic susceptibility. Between Tc2 and Tc1 χ is defined by

the non-dimerized and slightly dimerized spin chains. As evidenced by the gradual

rise of satellite intensities on further cooling (Fig. 8.2(a)), the modulation ampli-

tudes increase, and, therefore, the number of weakly dimerized chains decreases.

Such chains disappear below Tc1, resulting in almost zero magnetic susceptibility in
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the lock-in phase.

8.4 Conclusions

In conclusion, TiPO4 shows a SP phase below Tc1 = 74 K, that is characterized by

a dimerization of the Ti chains along c. The occurrence of an IC phase extending

up to temperatures significantly above the Tc1 is unexpected within a standard

SP scenario. The IC phase is ascribed to energetically almost degenerate phases

resulting from a competition and frustration of the SP transition due to elastic

coupling between neighboring Ti chains. The transitions between the different phase

involve sizeable lattice anomalies with a contraction of the lattice along the spin

chains whereas perpendicular to the Ti chains an expansion of the lattice is found.
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Summary

This thesis reports on structural studies of low-dimensional systems MOCl (M =

Sc, Ti, V, Cr, Fe) and TiPO4 subjected to non-ambient conditions. Transition

metal oxychlorides MOCl have been investigated at high pressures in diamond anvil

cells by means of single-crystal synchrotron X-ray diffraction and by complemen-

tary techniques including Raman and Mössbauer spectroscopies and powder X-ray

diffraction. The results reveal a plethora of high-pressure phase transitions in MOCl.

A structural analysis allowed to associate the driving forces of the transitions either

with the optimization of crystal packing, with the enhancement of low-dimensional

magnetic properties, or with changes in electronic structures. TiPO4 has been stud-

ied by means of single-crystal X-ray diffraction at low temperatures. A structural

proof of the spin-Peierls transition in this compound has been obtained. Further-

more, a novel incommensurately modulated phase of TiPO4 has been discovered and

characterized.

At ambient conditions the compounds MOCl are isostructural and possess lay-

ered structures, which consist of double layers M–O, separated by Cl bilayers. In

this work, these crystal structures were followed as function of pressure. The com-

mon structure type of MOCl is responsible for the similarities in their high-pressure

behaviors, while the differences are defined by the different electronic configurations

of M3+. So, common structural transitions have been observed in each MOCl com-

pound studied. The transitions are related to the fact that an optimal packing of Cl

atoms is not realized within the ambient-pressure structure type due to the restric-

tions implied by M–O bonds. At elevated pressures the situation is reached where

some Cl· · ·Cl contacts are very short, but others are much longer than the optimal

value (twice van der Waals radius of Cl atom). It is not possible to balance the

Cl packing without the distortion of the M–O slabs. The transition occurs when

the gain in energy arising from the redistribution of Cl atoms compensates the cost
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of elastic energy for distortion of the M–O slabs. A competition between optimal

packing of Cl atoms and restrictions by M–O and M–Cl bonds leads to the incom-

mensurability of the high-pressure structures. The superspace approach has been

employed to describe the high-pressure incommensurate structures of MOCl. The

modulation wave vectors have the form q = σ1a
∗ + 1

2
c∗, where σ1 is an irrational

number, which is specific for each transition metal and may vary with pressure. At

higher pressures incommensurate structures transform to commensurate superstruc-

tures.

As has been mentioned above, the electronic configuration of M3+ is crucial for

the understanding of high-pressure behaviors of MOCl. A single d-electron and

orbital order are responsible for the quasi-one-dimensional nature of magnetic inter-

actions in TiOCl. Application of high pressure to TiOCl enhances the temperature

of spin-Peierls transition in TiOCl and leads to an incommensurately modulated

high-pressure phase, that is similar to the incommensurate low-temperature phase,

stable between 67 and 90 K. Further increase of pressure results in a very complex

incommensurate structure with two modulation wave vectors related to inherently

different distortion mechanisms: spin-Peierls-like (defined by low-dimensional mag-

netism) and optimisation of crystal packing (pure structural transition). At higher

pressures this incommensurate phases transforms to a commensurate 5a × 2b × 4c

superstructure.

V3+, Cr3+ and Fe3+ have more than one d-electron and, therefore, have addi-

tional strong magnetic interchain couplings. This doesn’t allow spin-Peierls state to

develop in VOCl, CrOCl and FeOCl. However, VOCl, CrOCl and FeOCl are Mott

insulators with different critical metal–metal distances Rc for electron delocalization.

Among the considered transition metal cations, Cr3+ has the shortest Rc which has

not been reached in CrOCl up to 57 GPa. Consequently, no Mott transition and

related distortions have been observed. This allowed to investigate the evolution of

the incommensurate and the lock-in phases in a much wider range of pressures than

it was possible in other MOCl compounds. For CrOCl the σ1 component of the

q-vector is pressure-dependent. Between 16.4 and 30.3 GPa it varies slightly, while

above 30.3 GPa it rapidly grows with pressure and jumps to a rational value of 1
3

at

57 GPa. The atomic modulation amplitudes grow significantly up to 30.3 GPa and

stay almost constant at higher pressures.

High-pressure behavior of VOCl has been studied up to 50.5 GPa. Apart from a

structural normal-to-incommensurate phase transition at∼ 15 GPa VOCl undergoes

a partial Mott transition at ∼ 20 GPa with formation of a monoclinic 3a× 3b× 2c

superstructure. The superstructure contains triangular V clusters with homopolar
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V–V bonds within the clusters. This is a rare case of the electronic transition, where

the electron delocalization occurs within some metallic clusters with Rmetal–metal <

Rc, while the distances between the clusters are larger than Rc, so that there is

no net metallic conductivity. At higher pressures the symmetry of the 3a× 3b× 2c

superstructure changes from monoclinic to orthorhombic without substantial atomic

rearrangements.

Single-crystal X-ray diffraction data on FeOCl have been collected at 15.0 and

at 22.7 GPa, where FeOCl adopts an incommensurately modulated structure and

a 4a × b × 2c superstructure respectively. FeOCl has been additionally studied by

means of Mössbauer spectroscopy. It was shown that the structural transition at ∼
15 GPa is not related to changes in magnetic structure of FeOCl.

The spin-Peierls compound TiPO4 has been studied by means of single-crystal

X-ray diffraction in a temperature range from 292 K down to 10 K. On cooling

TiPO4 undergoes two consecutive phase transitions at Tc2 = 111.6(3) K and at Tc1
= 74.5(5) K. It has been found that the low-temperature phase, stable below Tc1, is

characterized by dimerization of the Ti chains. Between Tc1 and Tc2 the structure of

TiPO4 is incommensurately modulated. The incommensurate phase is ascribed to

energetically almost degenerate phases resulting from a competition and frustration

of the spin-Peierls transition due to elastic coupling between neighboring Ti chains.
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Zusammenfassung

Inhalt der vorliegenden Arbeit sind Strukturuntersuchungen an den niedrig-dimen-

sionalen Systemen MOCl (M = Sc, Ti, V, Cr, Fe) und TiPO4 als Funktion

von Druck und Temperatur. Die Übergangsmetalloxichloride MOCl wurden bei

hohen Drücken in Diamantstempelzellen mittels Einkristall-Synchrotron-Rönt-

genstrahlbeugung und den komplementären Methoden Raman- und Mössbauer-

Spektroskopie und Pulver-Röntgenstrahlbeugung gemessen. Als Ergebnis konnte

eine Vielzahl an Phasenumwandlungen von MOCl bei hohen Drücken gefunden

werden. Die Analyse der Kristallstrukturen erlaubte es, als treibende Kraft der

Phasenumwandlungen entweder die Optimierung der Kristallpackung, einhergehend

mit einer Verstärkung der niedrig-dimensionalen magnetischen Eigenschaften, oder

die Änderung in der elektronischen Struktur zu definieren. TiPO4 wurde mit-

tels Einkristall-Röntgenstrahlbeugung bei tiefen Temperaturen gemessen und der

strukturelle Beweis der Spin-Peierls-Umwandlung für diese Verbindung erbracht.

Desweiteren wurde eine neue inkommensurabel modulierte Phase von TiPO4

gefunden und charakterisiert.

Unter Normalbedingungen sind die Verbindungen MOCl isostrukturell und be-

sitzen Schichtstrukturen aus Doppelschichten M–O, die durch Cl-Doppelschichten

voneinander getrennt sind. In dieser Arbeit wurden nun die Strukturen als Funk-

tion des Drucks untersucht. Der gemeinsame Strukturtyp der MOCl-Verbindungen

ist für ihr ähnliches Verhalten bei hohen Drücken verantwortlich, während die Un-

terschiede durch die unterschiedlichen Elektronenkonfigurationen der M3+ erklärt

werden können. Gemeinsame strukturelle Phasenumwandlungen wurden in allen

untersuchten MOCl-Verbindungen gefunden. Die Umwandlungen begründen sich

in der nicht-optimalen Packung der Cl-Atome in der Struktur bei Normaldruck,

die durch die M–O-Bindungen verhindert wird. Bei höheren Drücken kommt es

schließlich dazu, dass die einen Cl· · ·Cl-Kontakte sehr kurz werden, während an-
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dere deutlich länger als der optimale Wert von “zweimal der van der Waals Radius”

der Cl-Atome sind. Da es aber nicht möglich ist, die Cl-Packung auszugleichen, ohne

dabei die M–O-Schichten zu verzerren, tritt die Phasenumwandlung erst auf, wenn

der Energiegewinn, der durch die Umverteilung der Cl-Atome entsteht, die Kosten

der elastischen Energie für die Verzerrung der M–O-Schichten kompensiert. Die

Konkurrenz zwischen optimaler Packung der Cl-Atome und der Beschränkung durch

die M–O- und M–Cl-Bindungen führt zur Inkommensurabilität in den Hochdruck-

strukturen. Die inkommensurablen Hochdruckstrukturen der MOCl-Verbindungen

wurden unter Anwendung der Superraum-Methode beschrieben. Die Modulations-

wellenvektoren können als q = σ1a
∗ + 1

2
c∗ geschrieben werden, wobei σ1 die irra-

tionale Zahl ist, welche für jedes Übergangsmetall charakteristisch ist und sich als

Funktion des Drucks ändern kann. Bei höheren Drücken wandeln sich die inkom-

mensurablen Strukturen in kommensurable Überstrukturen um.

Wie bereits erwähnt, ist die Elektronenkonfiguration der M3+ entscheidend für

das Verständnis des Hochdruckverhaltens der MOCl-Verbindungen. Das einzelne d-

Elektron und Orbital-Ausordnung sind für die quasi-eindimensionale Natur der mag-

netischen Wechselwirkungen in TiOCl verantwortlich. Die Einwirkung hoher Drücke

auf TiOCl führt zu einer Erhöhung der Temperatur der Spin-Peierls-Umwandlung

und zu einer inkommensurabel modulierten Hochdruckphase, die der zwischen 67

und 90 K stabilen inkommensurablen Tieftemperaturphase ähnlich ist. Eine wei-

tere Druckerhöhung resultiert in einer sehr komplexen inkommensurablen Struktur

mit zwei Modulationswellenvektoren, die zwei inhärenten, unterschiedlichen Verzer-

rungsmechanismen zuzuordnen sind: der eine Mechanismus ist Spin-Peierls-ähnlich

(definiert durch den niedrig-dimensionalen Magnetismus), der andere ist die Opti-

mierung der Kristallpackung (eine rein strukturelle Umwandlung). Diese inkom-

mensurable Phase geht dann bei noch höheren Drücken in eine kommensurable

5a× 2b× 4c Überstruktur über.

Da V3+, Cr3+ und Fe3+ mehr als ein d-Elektron besitzen, zeigen sie auch eine

zusätzliche starke Kopplung zwischen den Ketten. Dadurch ist eine Ausformung

des Spin-Peierls-Zustands in VOCl, CrOCl und FeOCl nicht möglich. Jedoch

sind VOCl, CrOCl und FeOCl Mott-Insulatoren mit unterschiedlichen kritischen

Metall–Metall-Abständen Rc für die Elektronen-Delokalisierung. Für die unter-

suchten Übergangsmetallkationen hat Cr3+ den kürzesten Abstand Rc, der durch

Druckerhöhung selbst bei 57 GPa noch nicht erreicht wurde. Als Folge wurden

hier keine Mott-Umwandlung und die damit zusammenhängenden Verzerrungen

beobachtet. Dies erlaubte aber, das Verhalten der inkommensurablen Struktur und

der sogenannten “Lock-in”-Phase in einem größerem Druckbereich zu studieren,
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Chapter 10. Zusammenfassung

was bei den anderen MOCl-Verbindungen nicht möglich war. Für CrOCl ist

die σ1-Komponente des q-Vektors druckabhängig. Zwischen 16.4 und 30.3 GPa

verändert sie sich nur leicht, während sie oberhalb von 30.3 GPa mit zunehmenden

Druck stark und dann bei 57 GPa sprunghaft zum rationalen Wert 1
3

ansteigt. Die

atomaren Modulationsamplituden werden bis 30.3 GPa signifikant größer, bleiben

aber dann bei höheren Drücken nahezu konstant.

Das Hochdruckverhalten von VOCl wurde bis zu einem Druck von 50.5 GPa

untersucht. Abgesehen von der “Normal-zu-inkommensurabel”-Phasenumwandlung

bei ∼ 15 GPa durchläuft VOCl eine partielle Mott-Umwandlung bei ∼ 20 GPa unter

Ausbildung einer monoklinen 3a×3b×2c Überstruktur. Diese Überstruktur enthält

dreieckige V-Cluster mit homopolaren V–V-Bindungen in den Clustern. Dies stellt

einen der wenigen Fälle einer elektronischen Umwandlung dar, bei der die Elek-

tronendelokalisierung innerhalb einiger metallischer Cluster mit RMetall–Metall < Rc

auftritt, während die Abstände zwischen den Clustern größer als Rc sind, wodurch

dann keine resultierende metallische Leitfähigkeit entsteht. Bei höheren Drücken

ändert sich die Symmetrie der 3a × 3b × 2c Überstruktur von monoklin nach or-

thorhombisch, jedoch ohne eine nennenswerte atomare Umgruppierung.

Einkristall-Röntgenstrahlbeugungsdaten wurden für FeOCl bei 15.0 und bei 22.7

GPa gemessen. FeOCl besitzt bei diesen Drücken eine inkommensurabel modulierte

Struktur bzw. eine 4a × b × 2c Überstruktur. Zusätzlich wurde an FeOCl druck-

abhängige Mössbauer-Spektroskopie durchgeführt. Es konnte gezeigt werden, dass

die strukturelle Umwandlung bei ∼ 15 GPa nicht mit Änderungen in der magneti-

schen Struktur von FeOCl zusammenhängt.

Die Spin-Peierls-Verbindung TiPO4 wurde im Temperaturbereich von 292 K

bis 10 K mittels Einkristall-Röntgenstrahlbeugung untersucht. Bei Abkühlung

durchläuft TiPO4 zwei aufeinanderfolgende Phasenumwandlungen bei Tc2 =

111.6(3) K und bei Tc1 = 74.5(5) K. Die Tieftemperaturphase unterhalb Tc1 ist

durch eine Dimerisierung der Ti-Ketten charakterisiert. Zwischen Tc1 und Tc2 ist die

Struktur von TiPO4 inkommensurabel moduliert. Diese inkommensurable Phase ist

energetisch nahezu degenerierten Phasen zugerechnet, die aus der Konkurrenz und

der Frustration der Spin-Peierls-Umwandlung aufgrund der elastischen Kopplung

zwischen benachbarten Ti-Ketten entsteht.
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Appendix A

Pressure-induced

normal-incommensurate and

incommensurate-commensurate

phase transitions in CrOCl

A.1 Details of the experiment and of the data

processing

Single-crystal X-ray diffraction experiments have been performed on crystals loaded

in BX90 diamond anvil cells [60] equipped with Boehler-Almax diamonds [59]. Pres-

sures were obtained from the shifts of the R1 fluorescence line of ruby [63]. The flu-

orescence was measured directly before and immediately after the data collections,

in order to establish the magnitudes of pressure variation during each experiment.

Neon crystallizes at approximately 4.8 GPa [106], but its diffraction peaks become

clearly visible only at 13 GPa. Therefore, the lattice parameter of Ne could be

obtained and was used as an additional pressure indicator [64]. The maximal dif-

ferences between the pressures measured before and after the data collections, and

determined by different methods did not exceed 0.7 GPa.

For Raman spectroscopy experiments a BX90 DAC with standard design di-

amond anvils (250 µm culet size) was used. Raman spectra were measured in

backscattering geometry, employing a Dilor XY Raman spectrometer using an Ar+

ion laser (Coherent Innova 300) with a wavelength of 514.5 nm, and possessing a

spectral resolution of 1 cm−1. The laser power was kept below 2 mW, in order

to avoid laser-heating of the sample. Phonon frequencies were obtained by fitting
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Appendix A. Appendix pressure-induced phase transitions in CrOCl

Pearson VII functions to the experimental peaks.

Integrated intensities of Bragg reflections were obtained from the measured

diffraction images by the software CrysAlisPro. It appeared necessary to convert

the format of the Mar555 images to Mar345 format. Custom-made software avail-

able at beamline ID09A was used for this purpose. Perkin Elmer images in .tif

format were converted to the esperanto image type that is supported by the latest

version of CrysAlisPro [50]. Components of the modulation wave vector were refined

simultaneously with the orientation matrix against the observed positions of the

reflections, using the computer program NADA as implemented in CrysAlisPro [92].

All equation of state fits were performed with EosFit7c [177].

A.2 Details of structure solution and refinement

Structure refinements for the low-pressure phases of CrOCl

CrOCl keeps its ambient-pressure structure up to 14.5 GPa. Crystal structures at

these pressures were successfully refined against each of the eight data sets of X-ray

diffraction data measured at pressures between 0.0001 and 12.95 GPa (Table A.1).

The structure published by Forsberg [178] was used as starting model. Due to the

limited coverage of reciprocal space in the high-pressure diffraction experiments at

the ESRF, it appeared necessary to use a smaller number of independent parameters

in the refinements than the three coordinates and nine atomic displacement param-

eters (ADPs) allowed by symmetry. It was chosen to use isotropic ADPs for Cr and

O, thus reducing the number of ADP parameters from 9 to 5. The Cl atoms can

be expected to possess large and anisotropic displacement amplitudes, because they

form the boundary of the Van der Waals gap. Therefore, Cl was given anisotropic

ADPs. This model leads to a pronounced drop in R-factors and is supported by

a Hamilton test (0.005 significance level), while anisotropic refinement of Cr and

O atoms does not lead to a significant lowering of the agreement factors. Data

obtained upon decompression contained more reflections, which allowed refinement

anisotropic ADPs for all atoms (Table A.2). Larger mosaic spreads at higher pres-

sures reduced the importance of extinction. Therefore, an extinction correction was

not applied at pressures above 7.1 GPa. All refinements smoothly converged to

excellent fits to the diffraction data (Tables A.1 and A.2).
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A.2. Details of structure solution and refinement

Structure refinement of the incommensurate high-pressure

phase of CrOCl

CrOCl is found to undergo a phase transition at a pressure between 15.3 and 16.4

GPa. The phase transition is evidenced by the presence of weak superlattice re-

flections in the diffraction patterns at 16.4 GPa and higher pressures. All observed

Bragg reflections could be indexed on the basis of a unit cell that is closely related to

the unit cell below 14.5 GPa, together with a modulation wave vector q = (σ1, 0,
1
2
).

Analysis of the diffraction symmetry and the reflection conditions revealed two pos-

sible superspace groups: Pmmn(σ1, 0,
1
2
)00s and Pmmn(σ1, 0,

1
2
)000. These groups

are different settings of the superspace group Pmnm(σ1, 0,
1
2
)000 (No. 59.1.10.6)

[93] and can be obtained from each other by a translation of the origin by (001
2
0)

in superspace. The superspace group Pmmn(σ1, 0,
1
2
)00s has been chosen in order

to keep the atomic coordinates in the basic structure close to those in low-pressure

phase structure model. Atomic modulation functions were described by truncated

Fourier series for all the atoms. Up to second-order harmonics were used at all pres-

sures except 16.4 GPa, where second-order satellites were not observed, and therefore

only first-order harmonics could be used. The ambient-pressure structure model was

used as a starting model for the refinements of the basic structure against the main

reflections. Subsequently, small but arbitrary values were given to the modulation

amplitudes. Refinement of all parameters against all reflections resulted in a smooth

convergence and a good fit to the diffraction data at each pressure (Tables A.1 and

A.2).

At pressures below 30 GPa, σ1 is close to the rational number 2
7

= 0.2857. This

value would imply a commensurate modulation that can alternatively be described

as a superstructure with a 14-fold, 7a×b×2c supercell. The superspace group of the

modulated-structure description implies different symmetries of the supercell in de-

pendence on the section t0 of superspace. Possible 3-dimensional (3D) space groups

are Pcmn for t0 = 0 + n
14

, Pmmn for t0 = 1
28

+ n
14

(n = 0, 1, · · · , 13), and P21mn for

other values of t0. In addition to the refinement of the incommensurate structure

model, superstructure models were tested by commensurate superspace refinements

with t0 equal to 0, 1
28

and 0.050508, respectively. Differences between the R-factors

of these four refinements did not exceed 0.01 % (Table A.3). As a consequence, it

is impossible to distinguish between different superstructures and between incom-

mensurate and commensurate modulations, solely on the basis of the refinements.

This ambiguity may be the result of having available only highly incomplete data

sets. Furthermore, the 14-fold superstructure would allow satellites up to the sev-

enth order, but only first- and second-order satellites were observed, which again
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Appendix A. Appendix pressure-induced phase transitions in CrOCl

diminishes the sensitivity of the diffraction to a possible commensurability of the

modulation.

On the other hand, the pressure dependence of the σ1 reveals an incommensurate

modulation for pressures between 30 and 51 GPa, while phase transitions between

16.4 and 51 GPa were not observed. This strongly suggests the incommensurability

of this high-pressure phase of CrOCl. However, a commensurate-to-incommensurate

transition at approximately 30 GPa cannot be entirely excluded on the basis of the

present data.

Structure refinement of the incommensurate high-pressure

phase of FeOCl at 15 GPa

In FeOCl at 15 GPa satellite reflections can be indexed with the q-vector (0.26, 0, 1
2
).

The superspace symmetry and the starting structure model for the refinement are

the same as for CrOCl. Atomic modulation functions were described as first-order

harmonics. Refinement of all parameters against all reflections resulted in a smooth

convergence and a good fit to the diffraction data (Table A.4).

Structure refinement of the commensurate high-pressure

phases of CrOCl

At P = 57.2 GPa the diffraction pattern contains two sets of satellite reflections. One

set can be indexed as a lock-in phase of the incommensurately modulated phase at

lower pressures, employing σ1 = 1
3
. The second set can be indexed with the different

modulation wave vector q2 = (1
3
, 0, 1

3
). On decompression, at P = 47.5 GPa only the

lock-in phase survived. Therefore, the two sets of satellite reflections were treated

as originating in different parts of the crystal. Unfortunately, we were not able to

obtain acceptable fits to the diffraction data at 57.2 GPa. We ascribe this problem

to the limited scattering information contained in the data sets, together with the

fact that main reflections of the two phases overlap with each other. Consequently,

we discuss only main structural features of the second phase, while bond distances,

angles and displacement parameters are not reliable. For the structure solution and

refinement, the second phase was treated as having monoclinic symmetry (space

group P21/m) with a = 6.910, b = 2.8999, c = 9.325 Å, β = 95.86◦ (Table A.5).

The cell transformation a+c,b, 2a−c leads to a 3a× b×3c X-centered monoclinic

supercell with centering vectors (1
3
, 0, 1

3
) and (2

3
, 0, 2

3
). On decompression, at P =

47.5 GPa only the lock-in phase survived. It was described by the same superspace

group and the same basic structure as the incommensurately modulated structure at
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A.2. Details of structure solution and refinement

lower pressures. Refinements of the commensurately modulated structure converged

smoothly to a good fit to the diffraction data (Table A.2). The best fit to the

diffraction data was obtained for the section t0 = 1
12

of superspace (Table A.6).

This structure model corresponds to a superstructure with a sixfold, 3a × b × 2c

supercell with space group Pmmn.

Table A.1: Experimental details on compression of CrOCl at ID09A (ESRF).

0.0001 GPa 2.05 GPa 3.25 GPa

Crystal data

a(Å) 3.8683(1) 3.8461(1) 3.8382(1)

b(Å) 3.1823(4) 3.1618(1) 3.1530(1)

c(Å) 7.726(8) 7.3924(17) 7.2652(19)

V (Å3) 95.14(7) 89.90(2) 87.92(2)

Data collection

No. of reflections:

measured, 164 196 190

independent, 51 62 63

observed (I > 3σ(I)) 51 59 61

Rint (obs/all) 0.0441/0.0441 0.0288/0.0288 0.0310/0.0310

Redundancy 3.216 3.161 3.016

(sin θ/λ)max(Å−1) 0.764 0.783 0.785

Refinement

No. of parameters 10 10 10

RF (obs)/wRF (all) 0.0423/0.0569 0.0272/0.0438 0.0242/0.0390

∆ρmin/∆ρmax(eÅ−3) -0.57/0.59 -0.36/0.27 -0.36/0.39

Continued on next page
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Table A.1 – continued from previous page

5.20 GPa 7.10 GPa 9.05 GPa

Crystal data

a(Å) 3.8272(1) 3.8190(1) 3.8083(1)

b(Å) 3.1403(1) 3.1299(1) 3.1170(1)

c(Å) 7.1203(19) 6.9996(17) 6.889(2)

V (Å3) 85.58(2) 83.67(2) 81.78(2)

Data collection

No. of reflections:

measured, 182 166 192

independent, 60 58 61

observed (I > 3σ(I)) 52 56 46

Rint (obs/all) 0.0322/0.0323 0.0361/0.0361 0.0523/0.0525

Redundancy 3.033 2.862 3.148

(sin θ/λ)max(Å−1) 0.787 0.789 0.787

Refinement

No. of parameters 10 10 9

RF (obs)/wRF (all) 0.0286/0.0374 0.0344/0.0552 0.0327/0.0418

∆ρmin/∆ρmax(eÅ−3) -0.42/0.50 -0.33/0.46 -0.74/0.74

Continued on next page
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A.2. Details of structure solution and refinement

Table A.1 – continued from previous page

10.45 GPa 12.95 GPa

Crystal data

a(Å) 3.8024(1) 3.7978(2)

b(Å) 3.1088(1) 3.1009(2)

c(Å) 6.811(2) 6.703(6)

V (Å3) 80.51(2) 78.94(7)

Data collection

No. of reflections:

measured, 188 158

independent, 61 56

observed (I > 3σ(I)) 50 47

Rint (obs/all) 0.0437/0.0438 0.0250/0.0250

Redundancy 3.082 2.821

(sin θ/λ)max(Å−1) 0.729 0.732

Refinement

No. of parameters 9 9

RF (obs)/wRF (all) 0.0395/0.0459 0.0425/0.0619

∆ρmin/∆ρmax(eÅ−3) -0.5/1.0 -0.55/1.04

Continued on next page
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Table A.1 – continued from previous page

16.4 GPa 23.3 GPa 30.3 GPa

Crystal data

a (Å) 3.7866(3) 3.7698(5) 3.7406(12)

b (Å) 3.0848(3) 3.0669(5) 3.0156(18)

c (Å) 6.564(6) 6.286(8) 6.19(3)

V (Å3) 76.67(7) 72.68(11) 69.8(3)

q-vector (0.2869(5),0,1
2) (0.2835(3),0,1

2) (0.2877(6),0,1
2)

Data collection

No. of reflections:

measured (main/sat1/sat2)1 165/393/0 140/331/253 145/358/305

independent (main/sat1/sat2) 55/106/0 44/96/91 48/101/94

observed (main/sat1/sat2) 46/63/0 39/65/50 43/61/49

Rint (obs/all) 0.0519/0.0523 0.0665/0.0674 0.0560/0.0577

Redundancy 3.466 3.134 3.325

(sin θ/λ)max(Å−1) 0.778 0.784 0.790

Refinement

No. of parameters 17 23 23

RF (obs) (all/main) 0.0420/0.0400 0.0408/0.0369 0.0604/0.0529

RF (obs) (sat1/sat2) 0.0486/– 0.0445/0.0431 0.0638/0.0754

wRF (all) (all/main) 0.0541/0.0524 0.0552/0.0455 0.0734/0.0637

wRF (all) (sat1/sat2) 0.0612/– 0.0617/0.0771 0.0785/0.1119

∆ρmin/∆ρmax(eÅ−3) -0.71/0.75 -0.57/0.51 -0.99/0.79

Continued on next page

1Here and in the following tables notation satn corresponds to nth-order satellites.
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Table A.1 – continued from previous page

40.4 GPa 45.3 GPa 51.0 GPa

Crystal data

a (Å) 3.7323(6) 3.7348(11) 3.726(3)

b (Å) 2.9902(6) 2.9702(18) 2.9574(20)

c (Å) 5.967(7) 5.86(3) 5.87(5)

V (Å3) 66.59(8) 65.0(3) 64.5

q-vector (0.2967(4),0,1
2) (0.3015(5),0,1

2) (0.3120(4),0,1
2)

Data collection

No. of reflections:

measured (main/sat1/sat2) 136/304/238 136/338/287 134/276/256

independent (main/sat1/sat2) 43/90/86 49/92/89 38/81/81

observed (main/sat1/sat2) 36/54/44 39/46/39 34/50/44

Rint (obs/all) 0.0558/0.0573 0.0573/0.0593 0.0458/0.0467

Redundancy 3.178 3.309 3.330

(sin θ/λ)max(Å−1) 0.762 0.774 0.792

Refinement

No. of parameters 23 23 23

RF (obs) (all/main) 0.0582/0.0436 0.0575/0.0534 0.0504/0.0373

RF (obs) (sat1/sat2) 0.0670/0.0855 0.0528/0.0845 0.0496/0.1022

wRF (all) (all/main) 0.0686/0.0493 0.0723/0.0637 0.0563/0.0402

wRF (all) (sat1/sat2) 0.0855/0.1267 0.0766/0.1334 0.0606/0.1467

∆ρmin/∆ρmax(eÅ−3) -0.86/0.87 -0.85/1.07 -1.01/0.81
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Table A.2: Experimental details on decompression of CrOCl at P02.2 (DESY).

47.5 GPa 40.5 GPa 28.0 GPa

Crystal data

a (Å) 3.707(3) 3.7404(8) 3.772(2)

b (Å) 2.943(3) 3.0133(8) 3.050(2)

c (Å) 5.91(4) 5.93(1) 6.17(3)

V (Å3) 64.5(4) 66.88(12) 71.0(4)

q-vector (1
3 ,0,1

2) (0.3022(3),0,1
2) (0.2867(2),0,1

2)

Data collection

No. of reflections:

measured (main/sat1/sat2) 296/640/603 291/653/613 277/655/639

independent (main/sat1/sat2) 74/145/144 78/153/149 77/159/161

observed (main/sat1/sat2) 70/85/86 72/94/87 67/97/81

Rint (obs/all) 0.0463/0.0514 0.0417/0.0467 0.0340/0.0423

Redundancy 4.240 4.097 3.957

(sin θ/λ)max(Å−1) 0.986 0.977 0.950

Refinement

No. of parameters 23 23 23

RF (obs) (all/main) 0.0280/0.0213 0.0263/0.0242 0.0306/0.0245

RF (obs) (sat1/sat2) 0.0296/0.0414 0.0234/0.0365 0.0356/0.0384

wRF (all) (all/main) 0.0403/0.0235 0.0360/0.0268 0.0410/0.0260

wRF (all) (sat1/sat2) 0.0503/0.0735 0.0349/0.0717 0.0553/0.0701

∆ρmin/∆ρmax(eÅ−3) -0.71/0.73 -0.63/0.49 -0.63/0.58

Continued on next page
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A.2. Details of structure solution and refinement

Table A.2 – continued from previous page

18.5 GPa 14.5 GPa 5.5 GPa

Crystal data

a (Å) 3.8127(8) 3.8123(13) 3.8268(2)

b (Å) 3.1086(9) 3.1109(11) 3.1429(2)

c (Å) 6.379(11) 6.65(2) 7.212(3)

V (Å3) 75.61(14) 78.9(3) 86.74(4)

q-vector (0.2836(2),0,1
2) — —

Data collection

No. of reflections:

measured (main/sat1/sat2) 312/743/704 359/–/– 436/–/–

independent (main/sat1/sat2) 90/171/170 94/–/– 85/–/–

observed (main/sat1/sat2) 76/92/52 64/–/– 74/–/–

Rint(obs/all) 0.0386/0.0522 0.0266/0.0308 0.0260/0.0272

Redundancy 4.081 3.819 5.129

(sin θ/λ)max(Å−1) 0.963 0.971 0.953

Refinement

No. of parameters 23 14 14

RF (obs) (all/main) 0.0224/0.0179 0.0263/0.0263 0.0165/0.0165

RF (obs) (sat1/sat2) 0.0237/0.0424 –/– –/–

wRF (all) (all/main) 0.0406/0.0215 0.0287/0.0287 0.0209/0.0209

wRF (all) (sat1/sat2) 0.0521/0.1208 –/– –/–

∆ρmin/∆ρmax(eÅ−3) -0.54/0.51 -0.47/0.50 -0.37/0.39

Continued on next page
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Appendix A. Appendix pressure-induced phase transitions in CrOCl

Table A.2 – continued from previous page

0.0001 GPa

Crystal data

a (Å) 3.8601(3)

b (Å) 3.1771(3)

c (Å) 7.708(5)

V (Å3) 94.53(6)

Data collection

No. of reflections:

measured 456

independent 91

observed 78

Rint(obs/all) 0.0675/0.0691

Redundancy 5.011

(sin θ/λ)max(Å−1) 0.940

Refinement

No. of parameters 14

RF (obs)/wRF (all) 0.0302/0.0370

∆ρmin/∆ρmax(eÅ−3 -0.62/0.73
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A.2. Details of structure solution and refinement

Table A.3: R factors of refinements of the high-pressure phase of CrOCl between 16.4

and 30.3 GPa using different models.1

16.4 GPa 23.3 GPa 30.3 GPa 28.0 GPa 18.5 GPa

Incommensurate:

RF (all) 0.0420 0.0481 0.0605 0.0306 0.0224

RF (main) 0.0400 0.0411 0.0529 0.0245 0.0179

RF (sat1) 0.0485 0.0532 0.0641 0.0356 0.0237

RF (sat2) — 0.0649 0.0751 0.0384 0.0424

Commensurate:

t0 = 0

RF (all) 0.0420 0.0481 0.0606 0.0306 0.0223

RF (main) 0.0400 0.0411 0.0527 0.0245 0.0172

RF (sat1) 0.0487 0.0532 0.0643 0.0357 0.0237

RF (sat2) — 0.0648 0.0762 0.0384 0.0422

Commensurate:

t0 = 1
28

RF (all) 0.0420 0.0481 0.0606 0.0305 0.0223

RF (main) 0.0400 0.0411 0.0527 0.0245 0.0172

RF (sat1) 0.0487 0.0531 0.0642 0.0357 0.0237

RF (sat2) — 0.0649 0.0762 0.0383 0.0422

Commensurate:

t0 = 0.050508

RF (all) 0.0420 0.0481 0.0606 0.0305 0.0223

RF (main) 0.0400 0.0411 0.0527 0.0245 0.0172

RF (sat1) 0.0487 0.0531 0.0643 0.0357 0.0237

RF (sat2) — 0.0649 0.0762 0.0383 0.0422

1 Reflections were averaged according to point symmetry 2mm for all refinements.
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Appendix A. Appendix pressure-induced phase transitions in CrOCl

Table A.4: Experimental details on structure refinement of FeOCl at 15 GPa.

Crystal data

a (Å) 3.6615(11)

b (Å) 3.1937(11)

c (Å) 6.780(13)

V (Å3) 79.29(16)

q-vector (0.261, 0, 1
2
)

Space group Pmmn(σ101
2
)00s

Data collection

No. of reflections:

measured (main/sat) 252/503

independent (main/sat) 61/121

observed (main/sat) 50/52

Redundancy 4.148

(sin θ/λ)max(Å
−1) 0.719

Rint(obs/all) 0.0571/0.0615

Refinement

No. of parameters 21

RF (obs) (all/main/sat) 0.0550/0.0549/0.0555

wRF (all) (all/main/sat) 0.0677/0.0626/0.0906

∆ρmin/∆ρmax(eÅ−3) -1.16/0.85
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A.2. Details of structure solution and refinement

Table A.5: Crystal data on CrOCl high-pressure phases observed at 57.2 GPa.

3a× b× 2c 3a× b× 3c

Crystal data

a (Å) 3.6788(13) 6.910(16)

b (Å) 2.8999(9) 2.8950(9)

c (Å) 5.812(18) 9.325(9)

β (◦) 90 95.86(18)

V (Å3) 62.0(2) 185.6(5)

q-vector (1
3
,0,1

2
) –

Space group Pmmn(σ101
2
)00s P21/m

Data collection

No. of reflections:

measured (main/sat1/sat2/sat3) 288/807/744/412 1131/–/–/–

independent (main/sat1/sat2/sat3) 94/199/194/104 538/–/–/–

observed (main/sat1/sat2/sat3) 65/68/65/9 247/–/–

Redundancy 3.814 2.102

(sin θ/λ)max(Å
−1) 1.086 1.093

Rint(obs/all) 22.17/26.98 17.96/19.85

Refinement

No. of parameters 23 28

RF (obs) (all/main) 0.0882/0.0905 0.0807/0.0807

RF (obs) (sat1/sat2/sat3) 0.0955/0.0711/0.0891 –/–/–

wRF (all) (all/main) 0.1333/0.0.1114 0.1153/0.1153

wRF (all) (sat1/sat2/sat3) 0.1397/0.1463/0.3552 –/–/–

∆ρmin/∆ρmax(eÅ−3) -2.79/3.21 -1.95/1.83
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Appendix A. Appendix pressure-induced phase transitions in CrOCl

Table A.6: R factors of refinements of the high-pressure lock-in phase of CrOCl

at 47.5 GPa on decompession using different models.1

t0 = 0, t0 = 1
12

t0 = general Incommensurate

Supercell space group Pcmn Pmmn P21mn —

Rall (I > 3σ(I)) 0.0981 0.0279 0.0344 0.0491

Rmain (I > 3σ(I)) 0.0316 0.0212 0.0216 0.0260

Rsat1 (I > 3σ(I)) 0.0889 0.0297 0.0322 0.0461

Rsat2 (I > 3σ(I)) 0.2658 0.0414 0.0674 0.1071

wRall 0.1191 0.0402 0.0467 0.0610

wRmain 0.0337 0.0233 0.0234 0.0278

wRsat1 0.1117 0.0503 0.0532 0.0645

wRsat2 0.2984 0.0734 0.0979 0.1370

1 Reflections were averaged according to point symmetry 2mm for all refinements.
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A.3. Pressure dependence of the Raman scattering of CrOCl

A.3 Pressure dependence of the Raman scatter-

ing of CrOCl

Raman spectra of CrOCl were recorded at 13 pressure points within the range 5–31

GPa (Fig. A.1). The full representation of the vibrational modes of CrOCl in space

group Pmmn is:

Γtot = 3Ag + 2B1u + 3B2g + 2B2u + 3B3g + 2B3u, (A.1)

where Ag, B2g and B3g are Raman active. At low pressures three strong Raman

5.4 GPa

6.0 GPa

6.6 GPa

8.4 GPa

10.2 GPa

12.1 GPa

15.3 GPa

17.3 GPa

18.0 GPa

19.6 GPa

21.7 GPa

27.3 GPa

31.0 GPa

Raman shift (cm )
-1

Figure A.1: Raman spectra of CrOCl at different pressures. The arrow points at the

strongest additional peak appearing in the course of the phase transition.

active modes are clearly observed (Fig A.1). They can be identified with Ag modes

according to Fausti et al. [109]. The three additional weakly active modes may have

either B2g or B3g symmetry. All Raman peaks gradually shift to higher energies

with pressure (Fig. A.2). Dramatic changes in Raman spectrum are observed in the

pressure region between 15.3 and 17.3 GPa, thus manifesting a phase transition.
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Appendix A. Appendix pressure-induced phase transitions in CrOCl

Figure A.2: Variation of the Raman shift frequencies with applied pressure.

Figure A.3: Average structure of CrOCl. Atomic labeling as used in the Fig. A.4 and in

the Table A.8 is shown.

130



A.4. t-plots of the incommensurately modulated structure of CrOCl

A.4 t-plots of the incommensurately modulated

structure of CrOCl at 23 GPa
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Figure A.4: Selected t-plots of the incommensurately modulated structure of CrOCl at

P = 23.3 GPa. (a) x-displacements of Cr, O and Cl atoms. (b) z-displacements of Cr,

O, Cl atoms. (c) x- and z-displacements of Cl atom; vertical dashed lines are drawn at t

values corresponding to maximal and minimal displacements. (d) Cl· · ·Cl distances. (e)

Cr-O and Cr-Cl distances. (f) O-Cr-O angle.
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Appendix A. Appendix pressure-induced phase transitions in CrOCl

A.5 Tables of interatomic distances and angles

Table A.7: Average interlayer Cl· · ·Cl

distances (Å) in CrOCl and in FeOCl.

Pressure, GPa FeOCl CrOCl

0.0001 3.680(6)1 3.678(8)

15.0 3.06(3)

16.4 3.007(9)

22.7 2.92(3)2

23.3 2.924(8)

1 Data from [111].
2 Data from [127].
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A.5. Tables of interatomic distances and angles

Table A.8: Selected interatomic distances for CrOCl. For pressures above 15 GPa distances

have been averaged over the phase t of the modulation.

Pressure (GPa) Cr1-O1a (Å) Cr1-O1b (Å) Cr1-Cl1 (Å)

0.0001 1.976(4) 2.036(12) 2.316(7)

2.05 1.969(3) 2.012(8) 2.301(5)

3.25 1.956(2) 2.023(8) 2.302(4)

5.20 1.955(3) 2.009(10) 2.281(5)

7.10 1.946(3) 2.013(9) 2.274(4)

9.05 1.941(3) 2.009(11) 2.258(5)

10.45 1.934(3) 2.002(12) 2.262(6)

12.95 1.933(5) 1.988(15) 2.246(7)

16.4 1.921(12) 1.993(11) 2.241(6)

23.3 1.912(5) 1.976(15) 2.220(8)

30.3 1.90(5) 1.95(2) 2.194(12)

40.4 1.886(15) 1.95(2) 2.173(13)

45.3 1.89(5) 1.94(3) 2.140(15)

51.0 1.88(8) 1.95(2) 2.164(11)

Cl1· · ·Cl2 (Å) Cl1· · ·Cl1′ (Å) Cl1· · ·Cl4 (Å)

0.0001 3.8683(1) 3.1823(4) 3.676(8)

2.05 3.8461(1) 3.1618(1) 3.446(6)

3.25 3.8382(1) 3.1530(1) 3.360(5)

5.20 3.8272(1) 3.1403(1) 3.284(6)

7.10 3.8190(1) 3.1299(1) 3.216(5)

9.05 3.8083(1) 3.1170(1) 3.156(6)

10.45 3.8024(1) 3.1088(1) 3.110(6)

12.95 3.7978(2) 3.1009(2) 3.069(7)

16.4 3.79(2) 3.0848(3) 3.007(9)

23.3 3.78(3) 3.0669(5) 2.923(12)

30.3 3.75(1) 3.0156(18) 2.88(4)

40.4 3.74(2) 2.9902(6) 2.800(14)

45.3 3.75(9) 2.9702(18) 2.79(4)

51.0 3.74(16) 2.9574(20) 2.74(6)
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Appendix B

High-pressure behavior of MOCl

(M = Sc, Ti, V)

Relations between TiOCl-II and the low-temperature incom-

mensurate phase

Schönleber et al. have reported the structure model for the incommensurate phase

of TiOCl, stable between 66 and 90 K [37]. It was found that the structure has

P2/n(σ1, σ2, 0)00 symmetry with σ1 = 0.0589 and σ2 = 0.5066 at 72 K. Furthermore,

the structure appeared to be twinned. Therefore, the first order satellite reflections

belonging to different domains appear very close to each other. Consequently, it is

not possible to distinguish, to which domain the observed satellite belongs to. This

brings an ambiguity to the assessment of the correct superspace group. In particular,

the reflection (0001) should be extinct in P2/n(σ1, σ2, 0)0s. Nevertheless, it overlaps

with the reflection (0101̄) of the second domain. The latter reflection is not extinct

in P2/n(σ1, σ2, 0)0s. The situation is opposite if we consider the superspace group

P2/n(σ1, σ2, 0)00. So, in this case, both superspace groups do not contradict the

observed diffraction patterns. In case of TiOCl-II at high pressure, the structure is

not twinned and it was possible to unambiguously determine the correct superspace

group as P2/n(σ1, σ2, 0)0s which differs from that reported by Schönleber et al.

[37]. We have reproduced the refinement of the incommensurate low-temperature

structure of TiOCl using the data, kindly provided by the authors of [37]. It has

been found that the refinement in the superspace group P2/n(σ1, σ2, 0)0s leads to

lower R-values than the refinement in P2/n(σ1, σ2, 0)00 (Table B.1). Therefore, we

suggest that the symmetries of TiOCl-II and the low-temperature incommensurate

structure of TiOCl are the same. The structure models of TiOCl-II at 10.2, 11.8

GPa and at 72 K are compared in the Table B.2.
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Table B.1: Results of the refinements of the low-temperature incommensurate structure

of TiOCl, using the data provided by the authors of [37].

P2/n(σ1, σ2, 0)00 P2/n(σ1, σ2, 0)0s

RF (obs)(main + satellite) 0.0441 0.0438

RF (obs)(main) 0.0394 0.0395

RF (obs)(satellite) 0.0991 0.0947

Table B.2: Comparison of the structure of TiOCl-II at different conditions. Given are the

fractional atomic coordinates and non-zero atomic modulation amplitudes (see Eq. 7.1).

10.2 GPa, 293 K 11.8 GPa, 293 K 1 bar, 72 K

x[Ti]/a 0 0 0

y[Ti]/b 0.5 0.5 0.5

z[Ti]/c 0.1323(5) 0.1334(3) 0.11976(8)

Bx[Ti], Å 0.0264(12) 0.0299(10) 0.0097(19)

By[Ti], Å 0.1129(13) 0.1307(14) 0.0479(14)

Az[Ti], Å -0.036(5) -0.042(4) -0.017(3)

x[O]/a 0 0 0

y[O]/b 0 0 0

z[O]/c -0.0698(16) -0.0718(15) -0.0563(3)

Bx[O], Å -0.009(5) -0.015(4) -0.015(8)

By[O], Å -0.069(5) -0.075(5) -0.032(7)

Az[O], Å -0.076(17) -0.084(14) -0.027(7)

x[Cl]/a 0 0 0

y[Cl]/b 0 0 0

z[Cl]/c 0.3618(7) 0.3667(5) 0.33369(12)

Bx[Cl], Å 0.0035(19) 0.0046(15) -0.001(4)

By[Cl], Å 0.0320(16) 0.0387(16) 0.0151(2)

Az[Cl], Å 0.062(7) 0.082(6) 0.056(3)
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Appendix B. Appendix high-pressure behavior of MOCl (M = Sc, Ti, V)

Table B.3: Experimental details on compression of TiOCl.

0.2 GPa 3.7 GPa

Crystal data

a(Å) 3.7952(3) 3.7653(1)

b(Å) 3.3717(3) 3.2880(1)

c(Å) 8.054(6) 7.621(3)

V (Å3) 103.06(8) 94.35(4)

Space group Pmmn Pmmn

Data collection

No. of reflections:

measured, 205 198

independent, 88 76

observed (I > 3σ(I)) 55 55

Rint (obs/all) 0.0679/0.0705 0.0600/0.0602

Redundancy 2.33 2.605

(sin θ/λ)max(Å−1) 0.793 0.781

Refinement

No. of parameters 11 11

RF (obs),wRF (all) 0.0639/0.0685 0.0310/0.0409

∆ρmin/∆ρmax(eÅ−3) -0.75/0.84 -0.36/0.49

Continued on next page
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Table B.3: continued from previous page

10.2 GPa 11.8 GPa

Crystal data

a (Å) 3.7447(3) 3.740(6)

b (Å) 3.183(4) 3.157(6)

c (Å) 7.326(8) 7.298(14)

γ(◦) 90.0 90.0

V (Å3) 87.30(17) 86.17(30)

Superspace group P2/n(σ1, σ2, 0)0s P2/n(σ1, σ2, 0)0s

q-vector (0.1016(15),0.5109(16),0) (0.1016(16),0.5052(16),0)

Data collection

No. of reflections:

measured (main/sat1)1 183/361 190/361

independent (main/sat1) 87/168 89/166

observed (main/sat1) 67/84 76/135

Rint (obs/all) 0.0324/0.0333 0.0177/0.0178

Redundancy 2.133 2.161

(sin θ/λ)max(Å−1) 0.799 0.817

Refinement

No. of parameters 25 25

RF (obs) (all/main/sat) 0.0417/0.0322/0.0670 0.0539/0.0385/0.0856

wRF (all) (all/main/sat) 0.0538/0.0364/0.1196 0.0646/0.0451/0.1060

∆ρmin/∆ρmax(eÅ−3) -0.43/0.45 -0.54/0.66

Continued on next page

1Here and in the following tables notation satn corresponds to nth-order satellites.
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Appendix B. Appendix high-pressure behavior of MOCl (M = Sc, Ti, V)

Table B.3: continued from previous page

15.0 GPa 18.1 GPa

Crystal data

a (Å) 3.7316(4) 3.729(3)

b (Å) 3.1230(4) 3.106(2)

c (Å) 7.191(9) 6.989(12)

γ(◦) 90.0 90.0

V (Å3) 83.81(10) 80.95(10)

q1 (0.1242(12), 1
2 , 0) (0.1179(6), 1

2 , 0)

q2 (0.2494(12),0, 1
2 ) (0.2364(4),0, 1

2 )

Superspace group P2/n(σ11, σ12, 0)0s(σ21, σ22,
1
2 )0s P2/n(σ11, σ12, 0)0s(σ21, σ22,

1
2 )0s

Data collection

No. of reflections:

Main reflections:

measured 199 168

independent 93 81

observed 59 64

q1 satellites:

measured (1st order) 399 373

independent (1st order) 212 186

observed (1st order) 66 102

q2 satellites:

measured (1storder) 432 365

measured (2nd order) – 323

measured (3rd order) – 278

independent (1storder) 185 169

independent (2nd order) – 152

independent (3rd order) – 150

observed (1storder) 19 101

observed (2nd order) – 75

observed (3rd order) – 31

Rint (obs/all) 0.0835/0.0921 0.0786/0.0844

Redundancy 2.196 1.917

(sin θ/λ)max(Å−1) 0.833 0.821

Continued on next page
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Table B.3: continued from previous page

15.0 GPa 18.1 GPa

Refinement

No. of parameters 26 50

RF (obs)/wRF (all) 0.0932/0.1234 0.0627/0.0793

R-values for main reflections:

RF (obs)/wRF (all) 0.0835/0.1006 0.0518/0.0599

R-values for q1 satellites:

RF (obs)/wRF (all) 0.1065/0.1969 0.0952/0.1294

R-values for q2 satellites:

RF (obs)/wRF (all) (1st order) 0.1628/0.3014 0.0544/0.0785

RF (obs)/wRF (all) (2nd order) –/– 0.0593/0.0884

RF (obs)/wRF (all) (3rd order) –/– 0.0755/0.1438

∆ρmin/∆ρmax(eÅ−3) -1.36/1.13 -0.93/0.96

139



Appendix B. Appendix high-pressure behavior of MOCl (M = Sc, Ti, V)

Table B.4: Structural parameters for the TiOCl-III phase at 18.1 GPa. coordinates are

given with respect to the average unit cell. Modulation amplitudes are recalculated in Å.

Ti O Cl

x/a 0 0 0

y/b 0.5 0 0

z/c 0.1371(5) -0.0763(16) 0.3767(6)

U eq (Å2) 0.011(2) 0.0078(9) 0.012(2)

A10
x 0 0 0

B10
x 0.0273(18) -0.018(7) 0.0002(6)

A10
y 0 0 0

B10
y 0.1362(15) -0.063(5) 0.042(2)

A10
z -0.031(7) -0.075(29) 0.069(17)

B10
z 0 0 0

A01
x 0.0276(5) 0.0081(11) 0.4549(19)

B01
x 0.0600(5) -0.033(3) 0.1856(9)

A01
y 0.0006(11) 0.0004(20) 0.002(3)

B01
y 0.0013(11) -0.0016(20) 0.0006(10)

A01
z -0.247(4) -0.329(16) -0.106(3)

B01
z 0.113(4) -0.081(4) 0.260(6)

A02
x 0.0005(8) 0.001(4) 0.0587(15)

B02
x -0.0006(8) 0.0007(20) 0.0574(14)

A02
y -0.0035(19) -0.011(11) 0.0002(20)

B02
y 0.0041(19) -0.005(5) 0.0002(20)

A02
z -0.008(4) -0.008(8) -0.026(5)

B02
z -0.007(4) 0.016(16) 0.026(5)

A03
x 0.0016(8) -0.005(3) -0.0037(9)

B03
x 0.0004(2) 0.006(3) -0.0085(9)

A03
y -0.002(4) -0.010(8) 0.0036(19)

B03
y -0.0004(4) 0.012(8) 0.008(4)

A03
z -0.0043(15) -0.005(15) 0

B03
z 0.015(5) -0.004(13) 0
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Table B.5: Experimental details on VOCl. Pressure points on decompression are indicated

with asterisk.

0.0001 GPa∗ 4.3 GPa∗ 8.4 GPa

Crystal data

a(Å) 3.7741(2) 3.7502(2) 3.7287(2)

b(Å) 3.3012(2) 3.2635(2) 3.2268(2)

c(Å) 7.937(6) 7.412(6) 7.1435(37)

V (Å3) 98.90(7) 90.71(7) 85.94(4)

Space group Pmmn Pmmn Pmmn

Data collection

No. of reflections:

measured, 203 210 206

independent, 64 60 65

observed (I > 3σ(I)) 56 53 56

Rint (obs/all) 0.0248/0.0249 0.0581/0.0582 0.0579/0.0579

Redundancy 3.172 3.5 3.169

(sin θ/λ)max(Å−1) 0.749 0.759 0.768

Refinement

No. of parameters 7 7 9

RF (obs),wRF (all) 0.1018/0.1404 0.0952/0.1501 0.0590/0.0859

∆ρmin/∆ρmax(eÅ−3) -1.32/1.43 -0.97/1.07

Continued on next page
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Appendix B. Appendix high-pressure behavior of MOCl (M = Sc, Ti, V)

Table B.5: continued from previous page

9.72 GPa 11.85 GPa 13.4 GPa∗

Crystal data

a(Å) 3.7269(3) 3.7184(4) 3.7329(5)

b(Å) 3.2196(3) 3.2017(3) 3.1958(4)

c(Å) 7.080(7) 6.994(8) 6.899(13)

V (Å3) 84.95(9) 83.27(10) 82.30(16)

Space group Pmmn Pmmn Pmmn

Data collection

No. of reflections:

measured, 207 189 169

independent, 64 63 61

observed (I > 3σ(I)) 59 58 52

Rint (obs/all) 0.0244/0.0244 0.0299/0.0300 0.0496/0.0497

Redundancy 3.234 3.0 2.77

(sin θ/λ)max(Å−1) 0.770 0.774 0.745

Refinement

No. of parameters 7 7 7

RF (obs),wRF (all) 0.0837/0.1211 0.0804/0.1244 0.0773/0.1041

∆ρmin/∆ρmax(eÅ−3) -1.3/1.58 1.19/-1.43 -1.3/1.43

Continued on next page
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Table B.5: continued from previous page

14.1 GPa 16.3 GPa 16.8 GPa∗

a (Å) 3.7154(3) 3.7218(5) 3.7394(2)

b (Å) 3.1855(3) 3.1764(5) 3.1654(2)

c (Å) 6.893(6) 6.735(8) 6.671(7)

V (Å3) 81.58(7) 79.62(11) 79.0(1)

(super)space group Pmmn Pmmn(σ1, 0,
1
2 )00s Pmmn(σ1, 0,

1
2 )00s

q-vector — (0.2618(1),0, 1
2 ) (0.2617(3),0, 1

2 )

Data collection

No. of reflections:

measured (main/sat1) 200/– 639/1476 174/401

measured (sat2/sat3) –/– 1308/741 357/420

independent (main/sat1) 61/– 70/125 58/113

independent (sat2/sat3) –/– 122/124 111/113

observed (main/sat1) 58/– 67/99 55/85

observed (sat2/sat3) –/– 84/42 75/30

Rint (obs/all) 0.0519/0.0523 0.1160/0.1164 0.0864/0.0871

Redundancy 3.279 9.522 3.428

(sin θ/λ)max(Å−1) 0.778 0.782 0.764

Refinement

No. of parameters 7 44 41

RF (obs) (all/main) 0.0646/0.0646 0.0433/0.0412 0.0900/0.0818

RF (obs) (sat1/sat2/sat3) –/–/– 0.0365/0.0556/0.0805 0.0912/0.1114/0.1020

wRF (all) (all/main) 0.1138/0.1138 0.0480/0.0484 0.1056/0.0964

wRF (all) (sat1/sat2/sat3) –/–/– 0.0415/0.0549/0.0991 0.1016/0.1449/0.1617

∆ρmin/∆ρmax(eÅ−3) -1.281/1.03 -0.72/0.83 -1.42/1.16

Continued on next page
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Appendix B. Appendix high-pressure behavior of MOCl (M = Sc, Ti, V)

Table B.5: continued from previous page

20.3 GPa∗ 23.7 GPa 24.7 GPa

Crystal data

a(Å) 11.1744(8) 11.0813(8) 11.0496(4)

b(Å) 9.0919(6) 9.0709(6) 8.9893(3)

c(Å) 12.813(9) 12.678(9) 12.716(5)

V (Å3) 1301.8(4) 1274.3(9) 1263.0(5)

α(◦) 90.0 90.0 90.0

Space group P21/c P21/c P21/c

Data collection

No. of reflections:

measured 3255 2811 3270

independent, 1508 1474 1515

observed (I > 3σ(I)) 814 1254 1315

Rint (obs/all) 0.0364/0.0406 0.0550/0.0553 0.0299/0.0303

Redundancy 2.158 1.907 2.158

(sin θ/λ)max(Å−1) 0.789 0.789 0.790

Refinement

No. of parameters 110 110 110

RF (obs)(main + superlattice) 0.0807 0.0674 0.0665

RF (obs)(main) 0.0919 0.0746 0.0708

RF (obs)(superlattice) 0.0789 0.0664 0.0659

wRF (all)(main + superlattice) 0.0969 0.0784 0.0789

wRF (all)(main) 0.1087 0.1121 0.0943

wRF (all)(superlattice) 0.0943 0.0717 0.0764

∆ρmin/∆ρmax(eÅ−3) -1.58/1.38 -1.91/1.70 -1.61/1.25

Continued on next page
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Table B.5: continued from previous page

24.8 GPa∗ 29.9 GPa 35.4 GPa

Crystal data

a(Å) 11.1315(3) 10.9986(2) 10.9569(3)

b(Å) 9.0170(2) 8.8988(2) 8.8396(2)

c(Å) 12.615(4) 12.5663(29) 12.4125(32)

V (Å3) 1266.2(4) 1229.9(3) 1202.2(3)

α(◦) 90.0 90.0 90.0

Space group P21/c P21/c P21/c

Data collection

No. of reflections:

measured, 3251 3093 3052

independent, 1504 1452 1421

observed (I > 3σ(I)) 790 1278 1280

Rint (obs/all) 0.0322/0.0361 0.0323/0.0326 0.0314/0.0316

Redundancy 2.162 2.130 2.148

(sin θ/λ)max(Å−1) 0.787 0.784 0.788

Refinement

No. of parameters 110 110 110

RF (obs)(main + superlattice) 0.0783 0.0747 0.0649

RF (obs)(main) 0.0974 0.0879 0.0778

RF (obs)(superlattice) 0.0754 0.0730 0.0629

wRF (all)(main + superlattice) 0.0928 0.0855 0.0783

wRF (all)(main) 0.1094 0.1085 0.0996

wRF (all)(superlattice) 0.0891 0.0817 0.0744

∆ρmin/∆ρmax(eÅ−3) -1.53/1.44 -2.04/1.42 -1.58/1.21

Continued on next page
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Appendix B. Appendix high-pressure behavior of MOCl (M = Sc, Ti, V)

Table B.5: continued from previous page

38.0 GPa∗ 41.7 GPa 45.3 GPa

Crystal data

a(Å) 10.9243(4) 10.9331(4) 10.9154(6)

b(Å) 8.7832(4) 8.7705(4) 8.7445(5)

c(Å) 12.339(6) 12.217(5) 12.121(7)

V (Å3) 1183.9(6) 1171.5(5) 1157.0(7)

Space group Pcmn Pcmn Pcmn

Data collection

No. of reflections:

measured, 2655 2566 3052

independent, 763 780 1421

observed (I > 3σ(I)) 644 633 1280

Rint (obs/all) 0.0322/0.0325 0.0283/0.0292 0.0314/0.0316

Redundancy 3.48 3.29 2.148

(sin θ/λ)max(Å−1) 0.785 0.782 0.788

Refinement

No. of parameters 112 112 112

RF (obs)(main + superlattice) 0.0368 0.0368 0.0399

RF (obs)(main) 0.0525 0.0488 0.0510

RF (obs)(superlattice) 0.0350 0.0346 0.0381

wRF (all)(main + superlattice) 0.0482 0.0464 0.0516

wRF (all)(main) 0.0717 0.0672 0.0707

wRF (all)(superlattice) 0.0446 0.0422 0.0480

∆ρmin/∆ρmax(eÅ−3) -0.69/0.60 -0.72/0.79 -0.82/0.77

Continued on next page
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Table B.5: continued from previous page

50.5 GPa

Crystal data

a(Å) 10.9081(9)

b(Å) 8.7097(7)

c(Å) 12.005(10)

V (Å3) 1140(1)

Space group Pcmn

Data collection

No. of reflections:

measured, 2809

independent, 768

observed (I > 3σ(I)) 627

Rint (obs/all) 0.0307/0.0313

Redundancy 3.658

(sin θ/λ)max(Å−1) 0.782

Refinement

No. of parameters 112

RF (obs)(main + superlattice) 0.0366

RF (obs)(main) 0.0484

RF (obs)(superlattice) 0.0345

wRF (all)(main + superlattice) 0.0463

wRF (all)(main) 0.0675

wRF (all)(superlattice) 0.0421

∆ρmin/∆ρmax(eÅ−3) -0.72/0.81
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Appendix C

Spin-Peierls distortions in TiPO4

C.1 Electronic Structure Calculations

Density functional theory (DFT) electronic band structure calculations have been

carried out employing the Vienna ab initio simulation package [172–174] with the

projected augmented wave method, and the generalized gradient approximation

(GGA) for the exchange and the correlation functional [175]. To account for the

electron correlation associated with the Ti 3d state, we performed the GGA plus

on-site repulsion (GGA+U) calculations [176] with an effective Ueff = U - J = 2 and

3 eV on Ti. We used a plane-wave cutoff energy of 600 eV, a set of 64k points in the

irreducible Brillouin zone, and the threshold of 10−6 eV for the self-consistent-field

convergence of the total electronic energy.

C.2 X-ray diffraction

Laboratory-based signle-crystal X-ray diffraction was performed on a selected high-

quality single crystal using a Marresearch MAR345dtb image-plate diffractometer

with MoKα radiation from rotating anode. The software CrysAlisPro [50] was used

to extract lattice parameters and integrated intensities of Bragg reflections from the

measured images.

Synchrotron-based single-crystal X-ray diffraction was performed at the beam-

line D3 of Hasylab (DESY, Hamburg). A high-quality single crystal has been glued

to a carbon fiber that was placed into the closed-cycle helium cryostat mounted on a

four-circle Huber diffractometer, equipped with a scintillation detector. Diffraction

data were measured at selected temperatures between 10 K and room tempera-

ture. Two complete data sets were collected at 10 K and 82 K corresponding to the
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C.3. Thermal Expansion

commensurate and the incommensurate phases. Integrated intensities of the Bragg

reflections were measured by ω-scans up to a resolution of sin(θ)/λ = 0.7 Å−1. A

monochromatic X-ray beam with wavelength of 0.5600 Å was used for the data

collection at 10 K and for all temperature-dependent measurements. The data col-

lection at 82 K was performed with radiation of wavelength of 0.5608 Å. Structure

refinements were performed with jana2006 computer program [88]. The tempera-

ture dependence of the incommensurate modulation wavevector was determined by

q-scans along a∗ and by determination of fractional h indices of centered satellite

reflections from the orientation matrix.

C.3 Thermal Expansion

A crystal of TiPO4 of dimension ∼ 1.5 × 1 × 1 mm3 was selected and oriented by

neutron Laue backscattering. Subsequently parallel faces perpendicular to the three

crystallographic directions were polished. The length change versus temperature and

magnetic field was measured with a miniature capacitance dilatometer calibrated

against Cu and Ag standard samples [179].
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Appendix C. Appendix spin-Peierls distortions in TiPO4

C.4 Crystal Structures

Crystal structure at room temperature

The following Tables C.1 - C.3 contain the detalis of the data collection and structure

refinement details of the laboratory based experiments.

Table C.1: Crystal data and data collection details of the room-temperature phase of TiPO4.

Empirical formula TiPO4

Molar weight (g·mol−1) 142.85

Temperature (K) 292.0(2)

Calculated density (g·cm−3) 3.5616

Radiation, Wavelength (Å) Mo-Kα, 0.71073

Absorption coefficient (mm−1) 3.605

Data collection mode φ scans, 0 ≤ φ ≤ 360◦, ∆φ = 1◦

Space group Cmcm

a (Å) 5.3009(1)

b (Å) 7.9116(2)

c (Å) 6.3502(1)

V (Å3) 266.32(1)

Z 4

θ range for data collection (◦) 4.6 to 39.5

Coverage at θmax (%) 86.70

Limiting indices −9 ≤ h ≤ 9; −11 ≤ k ≤ 11; −11 ≤ l ≤ 11

Measured/independent reflections 2880/404

Independent reflections with I > 3σ(I) 377

Rint (obs/all) 0.0225/0.0226

Redundancy 7.129

Robs/Rall 0.0186/0.0205

wRobs/wRall 0.0307/0.0309

Parameters refined 22

Min./max res. electron density (e·Å−3) -0.34/0.41

R is defined as Σ||Fo|−|Fc||
Σ|Fo| ; weighting scheme (σ2(F ) + (0.01F )2)−1
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C.4. Crystal Structures

Table C.2: Fractional coordinates and anisotropic displacement parameters (Å2) of the

atoms in TiPO4 at room temperature.

atom x/a y/b z/c U11 U22 U33 U12 U13 U23

Ti1 0 0 0 0.00455(17) 0.0043(2) 0.00523(17) 0 0 0.00024(9)

P1 0.5 0.14995(6) 0.25 0.0036(2) 0.0043(3) 0.0043(2) 0 0 0

O1 0.5 0.25707(14) 0.05144(16) 0.0067(5) 0.0066(5) 0.0078(4) 0 0 0.0026(3)

O2 0.25936(19) 0.03733(13) 0.25 0.0045(4) 0.0060(4) 0.0064(4) -0.0012(3) 0 0

Table C.3: Selected geometric parameters for the room-temperature phase of TiPO4.

Atoms Distance (Å) Atoms Distance (Å)

Ti1—Ti1i 3.1751(1) Ti1—O2v 2.1208(7)

Ti1—Ti1ii 3.1751(1) Ti1—O2vi 2.1208(7)

Ti1—O1iii 1.9495(11) P1—O1vii 1.5192(11)

Ti1—O1iv 1.9495(11) P1—O1 1.5192(11)

Ti1—O2 2.1208(7) P1—O2 1.5560(11)

Ti1—O2i 2.1208(7) P1—O2vii 1.5560(11)

Atoms Angle (◦) Atoms Angle (◦)

Ti1i—Ti1—Ti1ii 180.0 O2—Ti1—O2v 80.82(3)

O1iii—Ti1—O1iv 180.0 O2—Ti1—O2vi 99.18(3)

O1iii—Ti1—O2 90.68(4) O2i—Ti1—O2v 99.18(3)

O1iii—Ti1—O2i 89.32(4) O2i—Ti1—O2vi 80.80(3)

O1iii—Ti1—O2v 90.68(4) O2v—Ti1—O2vi 180.0

O1iii—Ti1—O2vi 89.32(4) O1—P1—O1vii 112.19(7)

O1iv—Ti1—O2 89.32(4) O1—P1—O2 108.63(3)

O1iv—Ti1—O2i 90.68(4) O1—P1—O2vii 108.63(3)

O1iv—Ti1—O2v 89.32(4) O1vii —P1—O2 108.63(3)

O1iv—Ti1—O2vi 90.68(4) O1vii —P1—O2vii 108.63(3)

O2—Ti1—O2i 180.0 O2—P1—O2vii 110.13(6)

Symmetry codes: (i) − x,−y, z − 1
2 ; (ii) − x,−y, z + 1

2 ; (iii) x − 1
2 , y −

1
2 , z; (iv) x − 1

2 ,−y + 1
2 ,−z; (v) − x, y,−z + 1

2 ; (vi) x,−y,−z; (vii) − x +

1, y,−z + 1
2
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Appendix C. Appendix spin-Peierls distortions in TiPO4

Low-temperature crystal structures

The following tables (C.4-C.10) summarize data collection and structure refinement

details at low temperatures as well as selected interatomic distances and angles

for the possible low-temperature (10 K) models and the for incommensurate phase

determined from the data collected at 82 K.

152



C.4. Crystal Structures

Table C.4: Crystal data and data collection details of the low-temperature phases of

TiPO4.

Lock-in phase Incommensurate phase

Empirical formula TiPO4 TiPO4

Molar weight (g·mol−1) 142.85 142.85

Crystal size, mm3 0.1× 0.08× 0.06 0.1× 0.08× 0.06

Temperature (K) 10.0(3) 82.00(3)

Calculated density (g·cm−3) 3.4945 3.4953

Wavelength (Å) 0.5600 0.5608

Absorption coefficient (mm−1) 1.768 1.807

Data collection mode ω scans ω scans

Superspace group Cmcm(σ100)0s0 Cmcm(σ100)0s0

q-vector (1
2
, 0, 0) (0.547, 0, 0)

a (Å) 5.345(3) 5.340(4)

b (Å) 7.981(6) 7.979(7)

c (Å) 6.364(5) 6.369(8)

V (Å3) 271.48(33) 271.37(50)

F(000) 276.0 276.0

Z 4 4

θ range for data collection (◦) 2.5 to 23.05 2.5 to 24.80

Coverage at θmax (%) 72.76 81.28

Limiting indices −7 ≤ h ≤ 5 −7 ≤ h ≤ 5

−5 ≤ k ≤ 11 −5 ≤ k ≤ 11

−4 ≤ l ≤ 8 −4 ≤ l ≤ 8

−1 ≤ m ≤ 1 −1 ≤ m ≤ 1

Main reflections 769 851

Independent main reflections 246 228

Main reflections with I > 3σ(I) 717 835

Independent main reflections with I > 3σ(I) 219 220

Satellite reflections 903 988

Independent satellite reflections 386 419

Satellite reflections with I > 3σ(I) 563 493

Independent satellite reflections with I > 3σ(I) 247 214

Rint (obs/all) 0.0102/0.0103 0.0138/0.0139

Redundancy 2.646 2.842

Parameters refined 33 33
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Appendix C. Appendix spin-Peierls distortions in TiPO4

Table C.5: Details of the TiPO4 structure refinement in superspace. Given are the agree-

ment factors for three possible models at 10K and for the incommensurately modulated

phase (IC) at 82K.

Pbnm Pmnm P21nm IC

Rall(I > 3σ(I)) 0.0289 0.0289 0.0289 0.0302

Rmain(I > 3σ(I)) 0.0273 0.0272 0.0272 0.0287

Rsat(I > 3σ(I)) 0.0517 0.0519 0.0518 0.0573

wRall(I > 3σ(I)) 0.0580 0.0581 0.0580 0.0624

wRmain(I > 3σ(I)) 0.0599 0.0599 0.0599 0.0644

wRsat(I > 3σ(I)) 0.0507 0.0508 0.0508 0.0512

Rall (all data) 0.0345 0.0349 0.0349 0.0395

Rmain(all data) 0.0287 0.0290 0.0290 0.0294

Rsat (all data) 0.1078 0.1080 0.1079 0.1941

wRall (all data) 0.0590 0.0590 0.0590 0.0632

wRmain(all data) 0.0604 0.0604 0.0604 0.0644

wRsat (all data) 0.0536 0.0538 0.0537 0.0565

R is defined as Σ||Fo|−|Fc||
Σ|Fo| ; weighting scheme (σ2(F ) +

(0.01F )2)−1
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C.4. Crystal Structures

Table C.6: Structural parameters for the commensurate phase of TiPO4 at 10K. Co-

ordinates are given with respect to the average unit cell. Modulation amplitudes are

recalculated in Å. Refinement was performed with t0 = 1
8 , corresponding to the Pbnm

symmetry of the 2a× b× c supercell.

Ti1 P1 O1 O2

x/a 0 0.5 0.5 0.2591(2)

y/b 0 0.1505(7) 0.25669(14) 0.03703(13)

z/c 0 0.25 0.05079(19) 0.25

U11 (Å2) 0.0045(4) 0.0041(4) 0.0049(5) 0.0034(6)

U22 (Å2) 0.0044(4) 0.0053(4) 0.0056(6) 0.0094(5)

U33 (Å2) 0.0053(4) 0.0051(4) 0.0076(6) 0.0071(6)

U12 (Å2) 0 0 0 -0.0008(4)

U13 (Å2) 0 0 0 0

U23 (Å2) -0.00015(11) 0 -0.0007(5) 0

Ax (Å) 0 0 0 -0.0147(7)

Bx (Å) 0 0.0215(4) 0.0103(7) 0.0152(7)

Ay (Å) 0.0037(3) 0.0106(4) 0.0078(7) 0.0099(8)

By (Å) 0 0 0 0.0031(7)

Az (Å) -0.0339(2) 0 -0.0025(8) 0

Bz (Å) 0 0 0 0
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Appendix C. Appendix spin-Peierls distortions in TiPO4

Table C.7: Structural parameters for the incommensurate phase of TiPO4 at 82K. Co-

ordinates are given with respect to the average unit cell. Modulation amplitudes are

recalculated in Å.

Ti1 P1 O1 O2

x/a 0 0.5 0.5 0.2591(2)

y/b 0 0.14984(7) 0.25654(15) 0.03697(15)

z/c 0 0.25 0.05215(19) 0.25

U11 (Å2) 0.0041(4) 0.0036(4) 0.0062(6) 0.0038(7)

U22 (Å2) 0.0036(4) 0.0042(4) 0.0062(6) 0.0053(5)

U33 (Å2) 0.0057(4) 0.0040(4) 0.0035(6) 0.0075(7)

U12 (Å2) 0 0 0 -0.0006(4)

U13 (Å2) 0 0 0 0

U23 (Å2) -0.00071(12) 0 0.006(5) 0

Ax (Å) 0 0 0 -0.0123(8)

Bx (Å) 0 0.0166(4) 0.0078(8) 0.0117(8)

Ay (Å) 0.0039(4) 0.0094(5) 0.0065(8) 0.0078(8)

By (Å) 0 0 0 0.0030(8)

Az (Å) -0.0274(2) 0 -0.0016(9) 0

Bz (Å) 0 0 0 0
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C.4. Crystal Structures
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Table C.9: Structural parameters for three LT models of TiPO4 obtained from the super-

space refinement. Coordinates are given with respect to the 2a× b× c supercell.

atom x/a y/b z/c U11 (Å2) U22 (Å2) U33 (Å2) U12 (Å2) U13 (Å2) U23 (Å2)

(b) Pbnm model. Inversion center at (000)

Ti1 0.125 0.25033(4) 0.99624(4) 0.0045(4) 0.0044(4) 0.0053(4) 0 0 -0.00015(11)

P1 0.12642(7) 0.90108(7) 0.25 0.0041(4) 0.0053(4) 0.0051(4) 0 0 0

P2 0.62358(7) 0.89921(7) 0.25 0.0041(4) 0.0053(4) 0.0051(4) 0 0 0

O11 0.37568(6) 0.99400(14) 0.94894(19) 0.0049(5) 0.0056(6) 0.0076(6) 0 0 -0.0007(5)

O12 0.87432(6) 0.99262(14) 0.94949(19) 0.0049(5) 0.0056(6) 0.0076(6) 0 0 -0.0007(5)

O21 0.25313(11) 0.28826(14) 0.25 0.0034(6) 0.0094(5) 0.0071(6) -0.0008(4) 0 0

O22 0.75595(11) 0.28580(14) 0.25 0.0034(6) 0.0094(5) 0.0071(6) -0.0008(4) 0 0

O23 0.50316(11) 0.78661(14) 0.25 0.0034(6) 0.0094(5) 0.0071(6) -0.0008(4) 0 0

O24 0.00592(11) 0.7874(14) 0.25 0.0034(6) 0.0094(5) 0.0071(6) -0.0008(4) 0 0

(a) Pmnm model. Inversion center at (000)

Ti1 0 0 0 0.0045(4) 0.0044(4) 0.0052(4) 0 0 -0.00015(11)

Ti2 0.25 0.50046(4) 0.99466(4) 0.0045(4) 0.0044(4) 0.0052(4) 0 0 -0.00015(11)

P1 0.00201(7) 0.65016(7) 0.25 0.0041(4) 0.0053(4) 0.0051(4) 0 0 0

P2 0.25 0.15148(7) 0.25 0.0041(4) 0.0053(4) 0.0051(4) 0 0 0

P3 0.75 0.14884(7) 0.25 0.0041(4) 0.0053(4) 0.0051(4) 0 0 0

O11 0.25 0.74429(14) 0.94882(19) 0.0049(5) 0.0056(6) 0.0076(6) 0 0 -0.0007(5)

O12 0.75 0.74233(14) 0.94960(19) 0.0049(5) 0.0056(6) 0.0076(6) 0 0 -0.0007(5)

O13 0.50096(7) 0.24331(14) 0.94921(19) 0.0049(5) 0.0056(6) 0.0076(6) 0 0 -0.0007(5)

O21 0.12952(11) 0.03819(14) 0.25 0.0034(6) 0.0094(5) 0.0071(6) -0.0008(4) 0 0

O22 0.62956(11) 0.03587(14) 0.25 0.0034(6) 0.0094(5) 0.0071(6) -0.0008(4) 0 0

O23 0.37757(11) 0.53760(14) 0.25 0.0034(6) 0.0094(5) 0.0071(6) -0.0008(4) 0 0

O24 0.88152(11) 0.53646(14) 0.25 0.0034(6) 0.0094(5) 0.0071(6) -0.0008(4) 0 0

(b) P21nm model.

Ti1 0 0.00018(4) 0.24796(4) 0.0045(4) 0.0044(4) 0.0053(4) 0 0 -0.00015(11)

Ti2 0.25 0.50043(4) 0.24507(4) 0.0045(4) 0.0044(4) 0.0051(4) 0 0 -0.00015(11)

P1 0.00186(7) 0.65065(7) 0.5 0.0041(4) 0.0053(4) 0.0051(4) 0 0 0

P2 0.49815(7) 0.64964(7) 0.5 0.0041(4) 0.0053(4) 0.0051(4) 0 0 0

P3 0.24923(7) 0.15137(7) 0.5 0.0041(4) 0.0053(4) 0.0051(4) 0 0 0

P4 0.75077(7) 0.14893(7) 0.5 0.0041(4) 0.0053(4) 0.0053(4) 0 0 0

O11 0.25037(6) 0.74421(14) 0.19885(19) 0.0049(5) 0.0056(6) 0.0076(6) 0 0 -0.0007(5)

O12 0.74963(6) 0.74241(14) 0.19957(19) 0.0049(5) 0.0056(6) 0.0076(6) 0 0 -0.0007(5)

O13 0.50089(6) 0.24294(14) 0.19936(19) 0.0049(5) 0.0056(6) 0.0076(6) 0 0 -0.0007(5)

O14 0.99911(6) 0.24368(14) 0.19906(19) 0.0049(5) 0.0056(6) 0.0076(6) 0 0 -0.0007(5)

O21 0.12877(11) 0.03833(14) 0.5 0.0034(6) 0.0094(5) 0.0071(6) -0.0008(4) 0 0

O22 0.63032(11) 0.03573(14) 0.5 0.0034(6) 0.0094(5) 0.0071(6) -0.0008(4) 0 0

O23 0.86972(11) 0.96211(14) 0 0.0034(6) 0.0094(5) 0.0071(6) -0.0008(4) 0 0

O24 0.37120(11) 0.96383(14) 0 0.0034(6) 0.0094(5) 0.0071(6) -0.0008(4) 0 0

O25 0.37772(11) 0.53711(14) 0.5 0.0034(6) 0.0094(5) 0.0071(6) -0.0008(4) 0 0

O26 0.88136(11) 0.53695(14) 0.5 0.0034(6) 0.0094(5) 0.0071(6) -0.0008(4) 0 0

O27 0.11863(11) 0.46395(14) 0 0.0034(6) 0.0094(5) 0.0071(6) -0.0008(4) 0 0

O28 0.62229(11) 0.46199(14) 0 0.0034(6) 0.0094(5) 0.0071(6) -0.0008(4) 0 0

Atoms O1x and O2x correspond to apical and equatorial oxygen atoms respectively
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C.4. Crystal Structures

Table C.10: Selected interatomic distances and angles for the Pbnm model of the

low temperature phase at 10 K.

Atoms Distance (Å) Atoms Distance (Å)

Ti1—Ti1i 3.134(5) P1—O12ix 1.5269(19)

Ti1—Ti1ii 3.230(5) P1—O12x 1.5269(19)

Ti1—O11iii 1.968(3) P1—O21xi 1.5711(10)

Ti1—O12iv 1.969(3) P1—O24xii 1.5753(10)

Ti1—O21v 2.139(2) P2—O11ix 1.5261(19)

Ti1—O22vi 2.121(2) P2—O11x 1.5261(19)

Ti1—O23vii 2.137(2) P2—O22xiii 1.5740(10)

Ti1—O24viii 2.122(2) P2—O23 1.5698(10)

Atoms Angle (◦) Atoms Angle (◦)

Ti1i—Ti1—Ti1ii 180.0 O22vi—Ti1—O24viii 82.55(5)

O11iii—Ti1—O12iv 178.6967(14) O23vii—Ti1—O24viii 98.89(5)

O11iii—Ti1—O21v 88.737(16) O12ix—P1—O12x 112.49(6)

O11iii—Ti1—O22vi 91.362(16) O12ix—P1—O21xi 108.83(2)

O11iii—Ti1—O23vii 88.814(16) O12ix—P1—O24xii 108.40(2)

O11iii—Ti1—O24viii 91.434(16) O12x—P1—O21xi 108.83(2)

O12iv—Ti1—O21v 90.262(18) O12x—P1—O24xii 108.40(2)

O12iv—Ti1—O22vi 89.617(17) O21xi—P1—O24xii 109.88(5)

O12iv—Ti1—O23vii 90.185(17) O11ix—P2—O11x 112.10(6)

O12iv—Ti1—O24viii 89.546(18) O11ix—P2—O22xiii 108.48(2)

O21v—Ti1—O24vi 98.89(5) O11ix—P2—O23 108.90(2)

O21v—Ti1—O23vii 79.68(5) O11x—P2—O22xiii 108.48(2)

O21v—Ti1—O24viii 178.5483(2) O11x—P2—O23 108.90(2)

O22vi—Ti1—O23vii 178.5474(2) O22xiii—P2—O23 109.97(5)

Symmetry codes: (i) x, y,−z + 3
2 ; (ii) x, y,−z + 5

2 ; (iii) − x + 1
2 , y −

1
2 , z; (iv) −

x + 1,−y + 1,−z + 2; (v) x, y, z + 1; (vi) x − 1
2 ,−y + 1

2 ,−z + 1; (vii) − x + 1
2 , y −

1
2 ,−z+ 3

2 ; (viii) − x+ 1,−y+ 1, z+ 1
2 ; (ix) − x+ 1,−y+ 2, z− 1

2 ; (x) − x+ 1,−y+

2,−z + 1; (xi) − x+ 1
2 , y + 1

2 ,−z + 1
2 ; (xii) x− 1, y, z; (xiii) − x+ 3

2 , y + 1
2 ,−z + 1

2
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Appendix C. Appendix spin-Peierls distortions in TiPO4

t-plots

For the analysis of the low-temperature structures we use t-plots (Fig. C.1), where

atomic displacements, interatomic distances and angles can be directly compared,

and correlations between them can be studied [52].

First, consider a Ti1a atom at (0,0,0) in the basic structure (Fig. C.1(a)). Within

the superspace description its z coordinate is defined as z = z̄+Az sin(2π(t+qx̄)) =

Az sin(2πt). Atom Ti1b is generated from Ti1a by the reflection in the mz plane at

(x, y, 1
4
). Therefore, its z-coordinate can be calculated as z(Ti1b) = 0.5−Az sin(2πt).

Displacements of neighboring Ti atoms along y are in-phase (and very small) and,

therefore, they do not influence the intrachain Ti-Ti distances. The Ti1a-Ti1b

distance is then defined by the equation:

d(Ti1a–Ti1b) = (0.5− 2Az sin(2πt)) · c. (C.1)

The second nearest neighboring Ti atom along the chain (Ti1b′) is generated by the

reflection of Ti1a in the mz plane at (x, y,−1
4
). Thus:

d(Ti1a–Ti1b′) = (0.5 + 2Az sin(2πt)) · c. (C.2)

Results of similar calculations for atoms Ti1c-Ti1e are summarized in the Table C.11.

One can notice that Ti chains separated by the C center of the basic structure (atoms

Ti1c–Ti1d vs Ti1a–Ti1b in Fig. C.1(a)) are π
2

out of phase for the low-temperature

phase, while Ti chains separated by one translation along a (atoms Ti1e–Ti1f vs

Ti1a–Ti1b in Fig. C.1(a)) are π out of phase (Fig. C.1(b), Table C.11).

These commensurate phase relations lead to the dependence of the 3D structural

model on the t-sections of the superspace. At t = 0, only Ti1c–Ti1d chains are

dimerized, while Ti1a–Ti1b and Ti1e-Ti1f chains remain uniform. This arrangement

correspond to the Pmnm symmetry of a 2a× b× c supercell. At t = 1
8

all chains are

dimerized with alternating Ti–Ti intrachain distances equal to (0.5±
√

2Az) · c. The

t-plot for the commensurate phase is presented on the Fig.C.1(b). Vertical dashed

lines are drown at t = 1
8

+ N
4

(N = 0, 1, 2, 3) all leading to equivalent 3D structural

models (with Pbnm symmetry) different only in their origin. The model with t = 1
16

corresponds to the P21nm symmetry of the 2a × b × c supercell. It contains two

types of Ti–Ti chains with different degrees of dimerization (Table C.11).

The incommensurate value of the σ1 component of the modulation wavevector

q leads to different phase relations. Thus, the curves on Fig. C.1 (c) don’t inter-

sect exactly at t = 1
8

+ N
4

. Furthermore, the phase shift different from π can be
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C.4. Crystal Structures

Table C.11: Ti–Ti distances as functions of the modulation amplitude (t) and σ1 compo-

nent of the modulation wavevector q. Distances are given related to the lattice parameter

c.

Distance General formula σ1 = 1
2
, t = 0 σ1 = 1

2
, t = 1

8
σ1 = 1

2
, t = 1

16
σ1 = 0.547

Ti1a–Ti1b 0.5− 2Az sin(2πt) 0.5 0.5−
√

2Az 0.5− 0.38Az 0.5− 2Az sin(2πt)

Ti1a–Ti1b′ 0.5 + 2Az sin(2πt) 0.5 0.5 +
√

2Az 0.5 + 0.38Az 0.5 + 2Az sin(2πt)

Ti1c–Ti1d 0.5− 2Az sin(2π(t+ 1
2
σ1)) 0.5− 2Az 0.5−

√
2Az 0.5− 1.85Az 0.5− 2Az sin(2π(t+ 0.2735))

Ti1c–Ti1d′ 0.5 + 2Az sin(2π(t+ 1
2
σ1)) 0.5 + 2Az 0.5 +

√
2Az 0.5 + 1.85Az 0.5 + 2Az sin(2π(t+ 0.2735))

Ti1e–Ti1f 0.5− 2Az sin(2π(t+ σ1)) 0.5 0.5 +
√

2Az 0.5 + 0.38Az 0.5− 2Az sin(2π(t+ 0.547))

Ti1e–Ti1f′ 0.5 + 2Az sin(2π(t+ σ1)) 0.5 0.5−
√

2Az 0.5− 0.38Az 0.5 + 2Az sin(2π(t+ 0.547))

seen on Fig.C.1(d). Remaining t-plots (Fig. C.1(e)-(k)) show the variation of se-

lected interatomic distances, bond angles and atomic displacements with the phase

of modulation for the incommensurately modulated phase at 82K.

Several important structural features should be pointed out, besides the variation

of Ti–Ti distances. The lack of significant variation of Ti–O and P–O bond lengths

indicate that P and O atoms follow the modulation of the Ti atoms through elastic

coupling. First of all, x-displacements of O2 atoms are perfectly correlated with

z-displacements of the adjacent Ti atoms (Fig. C.1(i)). Since PO4 tetrahedra reveal

high rigidity (Fig. C.1(j),(k)), the modulations of P1 and O1 atoms are in-phase with

those of the O2 atoms (Fig. C.1(h),(i)). Consequently, it explains the preference of

the antiphase dimerization of Ti1a–Ti1b and Ti1e–Ti1f chains, since it minimizes

the internal strain of the structure.
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Figure C.1: (a) Fragment of the structure, showing the interchain connections through

PO4 tetrahedra. (b) t-plot of Ti–Ti distances for the low-temperature phase at 10 K.

Vertical dashed lines indicate t = 1
8 + N

4 (c)–(k) Selected t-plots of interatomic distances,

angles and atomic displacements for the IC phase at 82K. See text for explanation.
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13. Schäfer, H. & Wartenpfuhl, F. Das Chrom (III)-oxydchlorid CrOCl. Z. Anorg.

Allg. Chem. 308, 282–289 (1961).

14. Grant, R. W. Magnetic strucrure of FeOCl. J. Appl. Phys. 42, 1619–1620

(1971).
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160. Glaum, R., Reehuis, M., Stüßer, N., Kaiser, U. & Reinauer, F. Neutron

Diffraction Study of the Nuclear and Magnetic Structure of the CrVO4 Type

Phosphates TiPO4 and VPO4. J. Solid State Chem. 126, 15–21 (1996).

161. Wright, J. P., Attfield, J. P., David, W. I. F. & Forsyth, J. B. High-resolution

powder neutron diffraction study of helimagnetic order in CrP1−xVxO4 solid

solutions. Phys. Rev. B 62, 992–997 (2000).

162. Attfield, J. P., Battle, P. D. & Cheetham, A. K. The spiral magnetic structure

of β-chromium(III) orthophosphate (β-CrPO4). J. Solid State Chem. 57, 357–

361 (1985).

163. Battle, P. D., Gibb, T. C., Hu, G., Munro, D. C. & Attfield, J. P. The magnetic

properties of the high pressure phase of ferric phosphate, FePO4-II. J. Solid

State Chem. 65, 343–350 (1986).
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