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Introduction  1 

1 Introduction 

1.1 Natural products and their role in drug and her bicide 

research 

1.1.1 General ideas about drug development  

     Drug development is a very complex field of medicinal chemistry.1 It involves a 

close cooperation of many different scientific fields. Biologists, biochemists and 

synthetic chemists all work together, not only to develop new drugs, but also to 

understand how new substances function. They explore the structure-activity 

relationship of a biologically active compound in order to find new hints on how the 

chemical structure is linked to its effect in a biological system.2 Knowledge gained by 

such experiments lays the foundation for developing new active substances with 

similar or improved potentials against different diseases.  

     In the last decades, combinatorial chemistry has been used to find new 

compounds, which are expected to display physiological effects. The method is 

based upon molecular modelling for constructing entire libraries of such compounds. 

Many examples of combinatorial chemistry and ongoing research in this field have 

been published up to present.3–5 

     Nowadays, both routes can be taken to discover new biologically active 

compounds. The deduction of suitable structures, via a chemical-biological approach 

or computer modelling should lead to new structures with desired biological 

properties.6 

 

 

1.1.2 Impact of natural products on new drugs 

     In general, natural products are chemical compounds, which are produced by a 

living organism, such as an animal, a plant or a microorganism. More precisely, most 

chemists define a natural product as a compound produced as a result of an 

organisms primary or secondary metabolism.7 A medicinal chemist even excludes 

the products produced by the primary metabolism, only to define the non essential 

compounds, which are produced by the secondary metabolism (e.g.: antibiotics and 

pigments) to be called natural products. In many cases these substances are unique 
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to an organism or a group of organisms,8 often influenced by the environment and 

the different challenges faced. It is these multiple and different environments and 

challenges caused by nature, which are responsible for the seemingly endless 

diversity of natural products. This is reflected in the chemical structure, which shows 

the same kind of diversity.  

     The term natural product is often associated with its properties. In many cases, 

newly extracted and purified compounds exhibit one or more pharmacological 

properties.     

     Statistically, many new approved drugs are either related to or inspired by natural 

products. In the last 30 years, approximately 1400 new drugs have been tested and 

introduced on the market.9 30% were based upon a natural product, excluding those 

that mimic certain structures of natural products. Entirely synthetic substances (29%) 

have almost the same impact in that field. In other research fields, such as in 

anticancer research, the contribution of natural products in the development of new 

drugs is even higher reaching up to 43%.9–12 

     These features can be understood, if one looks at the properties and sources of 

natural products. Produced in a natural habitat, nature had them undergo years of 

evolutionary change. Natural products have been altered and optimised to enable 

interaction with other biomolecular targets, such as proteins, nucleic acids and 

carbohydrates. Thus, they are able to naturally interact with receptors, DNA, etc.13 In 

addition, they have taken up a function in living organisms. The chemical structure 

and their biological optimisation of these structures make them lead compounds for 

new drugs,2,13 enabling the scientist to start from an advanced stage in drug 

development. A major drawback of natural products however is that they have not 

been developed to operate in a human body.  

     Predominantly natural products serve as a template for the synthetic chemist.2,13 

As in this thesis, the first aim is the total synthesis of a substance to create enough 

material for further study of its properties. The second aim is the creation of 

analogues of a given compound to explore structure-activity relationships and with 

this knowledge to tune its properties. Concerning drugs this would mean the 

suppression of undesired side effects or the increase of desired activities. 
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1.1.3 Impact of natural products on new herbicides  

     Basically, all the general ideas concerning the development of new drugs also 

apply in the field of herbicide research. Because of the fact that the requirement for 

effective drugs is much higher than for effective herbicides, many known natural 

products have not yet been tested as potential herbicides.14,15 

     Nevertheless, some natural products and their analogues are used as herbicides 

nowadays. Two examples, which are used commercially are shown in figure 1.1.: 

Bialaphos (1), a tripeptide produced by the microbes Streptomyces hygroscopicus 

and Streptomyces viridochromogenes, and its simpler derivative phosphinothricin 

(BASTA®) (2).16 

     Other natural products, isolated from different plants, are 1,4-cineole (3) and its 

analogue cinmethylin (4), which displays similar activity but lower volatility, due to its 

additional benzylether group (figure 1.1).16 

 

 

 

Figure 1.1  Examples for natural product herbicides and respective analogues 

 

      

1.2  Objectives of this project 

     The aim of this project is the total synthesis of different natural products, all 

containing a tetramic acid moiety in one of the synthesis' stages. 

     The primary objective is to synthesise macrocidin A (5), a cyclic tetramic acid, and 

to prepare distinct analogues with varying ring sizes, simplified side chains (6 – 13) 

and a polyether side chain (14) (figure 1.2).  
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Figure 1.2  Structures of macrocidin A (5) and its analogues (6 – 14)  

 

     In addition, the first total synthesis of torrubiellone D (15) should be accomplished. 

It possesses the same tetramic acid core as macrocidin A (5), which derives from the 

natural amino acid L-tyrosine (16) (figure 1.3). 

 

 

 

Figure 1.3  Structure of torrubiellone D (15) and L-tyrosine (16) 

 

     Furthermore, a short and direct route to quinolactacins A2 (17) and B2 (18) should 

be explored (figure 1.4). 

 

 

 

Figure 1.4  Structures of quinolactacins A2 (17) and B2 (18) 
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     Ultimately, different tetramic acid derivatives should be synthesised in order to test 

them as potential inhibitors for the adenylyl cyclase. This project was carried out in 

cooperation with Prof. C. Steegborn's group (biochemistry department). Different 

intermediates of the synthetic routes presented above as well as different structural 

analogues should be prepared on the basis of molecular modelling studies. Figure 

1.5 shows the general structure of these molecules. The general tetramic acid core 

can be modified with different residues at the nitrogen and at C-5 (19). The same 

modifications can be made using the scaffold of a 3-acyltetramic acid, resulting in 

more variation, when looking at the residue R3 (20). 
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Figure 1.5 General structures of potential adenylyl cyclase inhibitors 
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2 Theoretical Part 

2.1 Tetramic acids 

2.1.1 Structure and chemical properties 

     Compounds sharing the common motif of a pyrrolidine-2,4-dione unit (β-keto-

γ-butyrolactam) are called tetramic acids. Numerous reviews about tetramic acids 

have been published, summarising most of the relevant facts about this class of 

compounds.17–21 

     These heterocyclic compounds exist in two tautomeric forms (scheme 2.1) with 

the 2,4-diketo form (19a) usually being the predominant one.18 When comparing the 

tetramic acids to their O-analogues (tetronic acids), observations concluded that for 

the tetronic acids the enolized tautomer (21b) is the favoured one. This is reflected in 

the different acidities of both compounds. In aqueous solution, the tetramic acids are 

usually much weaker acids (pKa = 6.4) than the tetronic acids (pKa = 3.8).19 

 

 

 

Scheme 2.1 Tautomeric forms of tetramic acids (19) and tetronic acids (21) 

 

     The chemical properties of tetramic acids are based upon the stable C–N bond. 

The lactam is immensely stable towards treatment with strong acids and bases, 

therefore leaving a lot of possibilities to modify the tetramic acid core (19). Figure 2.1 

shows that different positions possess unique reactivities. C-3 is prone to react with 

electrophiles or to undergo metallation by certain organometallic bases (e.g. 

n-butyllithium). The latter can for example be exploited to achieve a 3-arylation of 
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tetramic acids. In contrast, C-4 is susceptible to attacks by nucleophiles while O-4 

can be reacted with acylation reagents.18  

 

 

 

Figure 2.1  General reactivity of tetramic acids (19) 

 

     The most important tetramic acid derivatives are the 3-acyltetramic acids. When 

compared with tetramic acids, they show different properties. Their acidity is 

significantly higher with a pKa ranging between 3.0 and 3.5 close to the value of 

tetronic acids.19 This is a result of the complex tautomers, in which 3-acyltetramic 

acids exist. As with tetronic acids the enolized forms are predominant. Nine different 

tautomeric forms are possible, but only four can be observed (22).19,22 To support 

this, highly correlated ab initio and density function calculations were carried out, also 

presenting four preferred structures of equally low energy.23 NMR studies were 

conducted to identify the different forms and to analyse their importance. Scheme 2.2 

shows the equilibrium between these forms.  

 

 

 

Scheme 2.2 Predominant tautomeric forms of 3-acyltetramic acids (22) 
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     There are two different pairs of tautomers, the two internal tautomers a/a' and b/b' 

and the external tautomers a,a'/b,b'. The conversion between the internal tautomers 

occurs so fast that in NMR experiments only average chemical shifts are observed, 

whereas the slower conversion between the external tautomers shows a discernible 

pair of chemical shifts.22,24 Further investigations revealed that from all four 

tautomers, b' is the most favoured one in most of the cases. For compounds with 

R3 = Me and R5 = Bn, iPr, the ratio of the four tautomers is found to be 

a:a':b:b' = 5:15:0:80 (NMR in CDCl3).
25 As with all tetramic acids, the solvent plays an 

important role upon the ratio of tautomers, as well as the substituents at the amide's 

nitrogen. If for example the nitrogen is acetylated, the hydrogen bond formed with the 

amides carbonyl is weakened significantly. In the case where R3 = Pr and R5 = H, 

22a is the predominant tautomer.26,27 

     This always leads to complex NMR spectra, because more than one set of NMR 

signals is observed for a single compound. 

     Another fundamental property of 3-acyltetramic acids is their tendency to chelate 

metals.20 The coordination takes place between the enolic oxygen of the 3-acyl group 

and the carbonyl oxygen either at C-2 or at C-4. Two examples, a cationic platinum 

complex (23) and a neutral zinc complex (24) with different modes of coordination, 

are shown in Figure 2.2. More examples and the biochemical significance of metal 

chelation will be discussed in detail in chapters 2.1.2, and 2.2.4.2. 

 

 

 

Figure 2.2  Metal chelate complexes with tetramic acid ligands 
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2.1.2 Natural occurrence and biological significanc e 

       Tetramic acids can be isolated from many natural sources such as bacteria, 

cyanobacteria, sponges, fungi and all kinds of marine species.19 Their numerous 

occurrences in many different sources suggest that tetramic acid natural products 

play a significant role in biological processes. Their diverse activity spectrum 

encompasses antibiotic, antiviral and antiulcerative properties. They also display 

cytotoxicity, mycotoxicity and tumour inhibition, as well as fungicidal activity.18 As 

mentioned before, nearly all of these compounds belong to the class of 

3-acyltetramic acids. Two examples are shown in figure 2.3. 

     Tenuazonic acid (TA) (25) is perhaps one of the most simplest 3-acyltetramic 

acids, initially isolated from the fungus Alternaria tenuis auct.28 It was studied 

thoroughly to reveal a diverse biological activity ranging from antibiotic activity29 to 

inhibition against various viruses.30 Synthesis was achieved by various routes over 

the years.31,32 Pachydermin (26) is an unusual oxalylated tetramic acid, acquired from 

the New Zealand basidiomycete Chamonixia pachydermis. A degradation product of 

26, missing the 3-acylsubstituent, is the biological active substance, exhibiting 

antibacterial activity against Bacillus subtilis.33 

 

 
 

Figure 2.3  Structures of tenuazonic acid (25) and pachydermin (26) which incorporate the 

tetramic acid motif (blue) 

  

     In many cases, the biological significant 3-acyltetramic acids cannot be isolated in 

their pure forms, but as metal complexes. Their high tendency to chelate metal 

atoms, leads to defined complexes with mono- or divalent metal cations. Two 

examples are shown in figure 2.4. TA (25) and pachydermin (26) were both isolated 

as metal salts. 25 was initially obtained as its magnesium and calcium salt (27, 28).34 
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26, on the other hand, was found to exist as a salt containing sodium and potassium 

as counterions (29) (figure 2.4).33  

      

 

 

Figure 2.4  Isolated metal salts 27 – 29 of TA (25) and pachydermin (26) 

 

     This characteristic of 3-acyltetramic acids inspired many research groups to 

synthesise metal complexes of different tetramic acids in order to tune their biological 

properties and availability. Of 25, complexes with Cu(II), Fe(III) and Ni(II) are known35 

and from various other compounds, even complexes with Zn(II), Ga(III), La(III) and 

Ru(II) have been prepared.36 

     There are other classes of natural occurring tetramic acids that exhibit unique 

structural motifs (figure 2.5). Gallinamide A (30) represents a N-acyl-4-O-alkyl-

tetramic acid, produced by the marine cyanobacteria Schizothrix sp. It acts as an 

irreversible inhibitor of cathepsin L, an important lysosomal endopeptidase,37,38 and 

shows antimalarial activity. It was first synthesised in 2009.39 

     Other unique compounds, recently isolated from the deep-sea-derived fungus 

Cladosporium sphaerospermum 2005-01-E3, are cladosins. The side chain of these 

compounds is connected to the C-3 of the tetramic acid by an enamine functionality. 

Of this group cladosin C (31), which exhibits antiviral activity, is shown.40 Many 

enamine bearing tetramic acid derivatives have recently been synthesised to 

evaluate their biological potential.41  

     Additionally, two representatives of more complex tetramic acids are shown 

above: 32 stands for macrocyclic tetramic acids, whereas 33 represents the class of 

spirotetramic acids. The macrocycle cylindramide (32) was isolated from the marine 
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sponge Halichondria cylindrate and was found to exhibit cytotoxic activity against B16 

melanoma cells.42 A total synthesis was achieved by Laschat et al.43,44 

     Pyrroindomycin A (33) has a complex structure, unprecedented because of a 

macrocycle, which incorporates a spirotetramic acid, and a pyrroloindole group, 

connected by a deoxytrisaccharide bridge.45 The stereochemical structure was 

predicted based upon a viable biochemical pathway46 but no total synthesis has been 

achieved to date, which confirms the suggested structure. 49 was found in the 

extracts of the bacterium Streptomyces rugosporus, and exhibits widespread 

antibacterial activity against Gram-positive bacteria.47  
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Figure 2.5  Structures of gallinamide A (30), cladosin C (31), cylindramide (32) and 

pyrroindomycin A (33), all incorporating the tetramic acid motif (blue) 
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2.1.3 Chemical syntheses - tetramic acids  

2.1.3.1 Meldrum's acid approach 

     In 1987, Jouin et al. discovered a method to synthesise tetramic acids from 

N-protected amino acids (34) by applying Meldrum's acid (2,2-dimethyl-1,3-dioxane-

4,6-dione) (35).48 With the help of condensation reagents, the carboxylic acid is 

activated and coupled to 35, giving adduct 36, which can be isolated. When 36 is 

heated to reflux in ethyl acetate (EtOAc), it decomposes, releasing acetone and CO2 

to give ketene intermediate 37.49 37 is immediately nucleophillically attacked by the 

amino acids nitrogen, to form tetramic acid 38 (scheme 2.3). During this reaction 

sequence no racemisation of the stereocenter occurs, making this method a 

preferred one when stereochemistry is of importance. Originally, Jouin et al. used 

isopropenyl chloroformate (IPCF) as activating reagent for the acid.48 Major 

drawbacks were high costs and the high toxicity of IPCF. Over the years studies to 

discover alternative reagents and reaction conditions were carried out.50,51  

     In 1996, Ma et al. succeeded in using the cheaper N,N'-dicyclohexylcarbodiimide 

(DCC) as a substitute for IPCF.52 In doing so, a new difficulty arose: the separation of 

the desired product from the by-product dicyclohexylurea (DHU).  

 

 

 

Scheme 2.3 Mechanism of the synthesis of tetramic acid 38 using Meldrum's acid (35) according to 

Hosseini et al.53 

 

     Later, in 2006, this problem was addressed by Hosseini et al., who used 

N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC · HCl) instead of 
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DCC. This reagent produces a urea derivative, which can be removed by acidic 

workup at the end of the reaction.53 Therefore this procedure is preferred to date 

(scheme 2.3). 

     The general limitation of the synthesis of tetramic acids with Meldrum's acid lies in 

the fact that only N-protected α-amino carboxylic acids can be reacted in that manner 

to give 38.  

 

 

2.1.3.2 Domino synthesis using keteneylidene(triphe nyl)phos-

phorane 

     In a very mild method to synthesise 4-O-alkyltetramates, the flexible reagent 

keteneylidene(triphenyl)phosphorane (Ph3PCCO)54,55 (39) is used as a means to 

facilitate the ring closure starting from different alkyl esters of α-amino-carboxylic 

acids (40) or their ammonium salts.56 The whole reaction sequence can be carried 

out as a one-pot procedure and no racemisation at C-5 is observed.  

     The reaction can be understood as a domino reaction combining an addition and 

an intramolecular Wittig reaction (scheme 2.4).57  

 

 

 

Scheme 2.4 Synthesis of tetramates (42) from α-aminoesters (40) and Ph3PCCO (39)56 

 

 

     As starting materials, alkyl esters of α-amino-carboxylic acids (40) are used, which 

in a first step undergo an addition to the C-C double bond of 39 to give ester ylide 41. 
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In a second step 41 reacts in an intramolecular Wittig reaction to give tetramate 42. 

42 is converted into the free tetramic acid by the removal of R2. One problem of this 

method is the formation of triphenylphosphine oxide, which can be difficult to remove 

from the product. This can be avoided if polymer-bound Ph3PCCO (39) is used. In 

this case, resulting triphenylphosphine oxide is removed by filtration. The 

methodology of employing 39 to form tetramic acids was frequently used in our 

group.32,57–59 

 

 

2.1.3.3 Tetramic acid synthesis involving SmI 2 

     Another way to synthesise tetramic acids is by implementing a three step 

procedure, starting with chiral tert-butanesulfinyl imides (43),60 which are easily 

prepared by reacting tert-butanesulfinamide with aldehydes or ketones (scheme 

2.6).61 These compounds are known to undergo SmI2 mediated reductive cross-

coupling reactions.62  
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Scheme 2.6 Synthesis of tetramic acids based upon chiral tert-butanesulfinyl imides (43)60 

 

     In this case according to Xu et al., tert-butanesulfinyl imide 44 was reacted with 

alleneoate 45 to give sulfinamide 46 via conjugate addition in a diasteromeric ratio of 
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7:1. By treatment of 46 with HCl in methanol (MeOH), β-methylenyl-γ-lactam 47 was 

obtained and transformed into desired tetramic acid 48 by ozonolysis.60 

 

 

2.1.4 Chemical syntheses – 3-acyltetramic acids  

     Due to the importance of 3-acyltetramic acids in nature, many strategies were 

developed to synthesise them beginning with different starting materials, in order to 

remain as flexible as possible. Owing to their historical relevance and their 

importance for this thesis, three important strategies will be discussed in the following 

chapters. 

 

 

2.1.4.1 Lacey-Dieckmann condensation  

     The first synthesis developed to generate 3-acetyltetramic acids was published in 

195463 and is related to the synthesis of 3-acetyltetronic acids.64 Lacey et al. reported 

a two-step reaction sequence starting from α-amino ester 49, which reacted with 

diketene (50) to give N-acetoacetyl-α-amino ester 51. The following Dieckmann 

cyclisation was initiated by the addition of sodium methoxide (NaOMe) (later, 

potassium tert-butoxide (KOtBu) in tert-butanol was found to be the superior base65) 

and 3-acetyltetramic acid 52 was obtained in a yield of 96% (scheme 2.7).63 

 

 

 

Scheme 2.7 Synthesis of 3-acetyltetramic acids via diketene (50) addition and Dieckmann 

cyclisation63 

 

     Due to its high yields, the Lacey-Dieckmann cyclisation became the most 

commonly used method to synthesise 3-acetyltetramic acids. If an appropriate 

α-amino ester is chosen, various groups can be introduced at C-5. When chiral 

α-amino esters are applied to create chiral products, racemisation at C-5 can be 



16                                                                                Theoretical Part 
 

observed. This major drawback is based upon the highly basic conditions during the 

cyclisation step.66 Because of the use of 50, another problem occurs: only 

3-acetyltetramic acids can be prepared.  

     These problems were dealt with by Ley et al. They aimed to improve the flexibility 

and enantioselectivity of the Lacey-Dieckmann cyclisation (scheme 2.8).67,68  

 

 

 

Scheme 2.8 Preparation of TA (25) according to Ley et al.68 

 

     β-ketothioesters are introduced as substitutes for 50. These are reacted with 

silver(I)trifluoroacetate to give compounds, which are subjected to Dieckmann 

cyclisation conditions to furnish the desired 3-acetyltetramic acids.67 The chance of 

racemisation is reduced by using the milder base tetra-n-butylammonium fluoride 

(TBAF) in tetrahydrofuran (THF) instead of alkoxy bases.68 Scheme 2.8 shows an 

example of the stereoselective synthesis of TA (25) by cyclisation of β-ketoamide 53, 

which was prepared by the reaction of chiral N-methyl-α-amino ester 54 and 

β-ketothioester 55. 

 

 

 

Figure 2.6 Structures of Macrocidin A (5) and Epicoccamide D (56) 
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     The Lacey-Dieckmann cyclisation and its variants were used in natural product 

synthesis, to synthesise macrocidin A (5) (see chapter 2.2.1.2),69 epicoccamide D 

(56)70 (figure 2.6) and other complex 3-acyltetramic acids.43,71 

 

 

2.1.4.2 Direct 3-acylation of tetramic acids using boron 

trifluoride  

     In 1990, Jones et al. experimented with different Lewis acids to facilitate the 

3-acylation of acid chlorides with tetramic acids.72,73 In preliminary studies, boron 

trifluoride diethyl etherate (BF3 · Et2O) and TiCl4 surfaced as the reagents of 

choice.65,72,74 Both approaches yielded the desired 3-acyltetramic acids in small to 

moderate yields of 19 – 70% (BF3 · Et2O showing better results). It was discovered 

that by isolating and purifying the 3-acyltetramic acids' BF2-complexes, which are 

generated first, with subsequent methanolysis the desired products can generally be 

obtained with moderate yields ranging from 41 – 68% over two steps.  

     Giving an example, tetramic acid 57 was acylated with three equivalents of 

α,β-unsaturated acid chloride 58 in BF3 · Et2O to give BF2-complex 59. The free 

3-acyltetramic acid 60 was liberated by heating 59 to reflux in MeOH (scheme 2.9).73 

 

 

 

Scheme 2.9 Direct 3-acylation of tetramic acid 57 with acid chloride 58 and BF3 · Et2O
73 

 

     The method is flexible, allowing the application of various acid chlorides (alkyl, 

alkenyl and aryl acid chlorides) and tetramic acids. Due to the fact that BF2-

complexes of 3-acyltetramic acids are easy to handle and purify,74 the products 

obtained are very pure. Drawbacks are the harsh conditions (heating and BF3 · Et2O 

as solvent) and the three equivalents of acid chloride required. In some cases, the 

acid chloride is not easily accessible and has to be synthesised with great effort.  



18                                                                                Theoretical Part 
 

2.1.4.3 3-Acylation via 4- O-acyltetramic acids and subsequent 

rearrangement  

     3-Acyltetramic acids can also be synthesised by a two-step procedure. A tetramic 

acid (61) is reacted with a carboxylic acid (62) under conditions of a Steglich 

esterification,75 employing an activating agent and an acyl transfer reagent, to 

synthesise a 4-O-acyltetramic acid (63). Several reagents were developed to initiate 

the acyl migration towards desired 3-acyltetramic acid 64 (scheme 2.10). This 

method is a mild alternative to the methods discussed before (chapters 2.1.4.1 and 

2.1.4.2).  

     In 1987, Yoshii et al. used the standard Steglich esterification conditions, 

employing DCC as activating reagent and 4-dimethylaminopyridine (DMAP) as acyl 

transfer reagent. When 4-O-acylation was complete, triethylamine (NEt3) was added 

to facilitate the rearrangement to the 3-acyl compound.76 

     Scheme 2.10 highlights the results and shows the limitation of this method. The 

yields, when using alkyl carboxylic acids are satisfying, although this is not the case 

when α,β-unsaturated carboxylic acids or branched carboxylic acids are used. If the 

branched carboxylic acids inherit a stereocenter in α-position to the carboxyl 

functionality, some degree of racemisation is observed. Furthermore, the residues 

R1, R5 and R' significantly influence the outcome of the reaction.77 Nevertheless, no 

precise prediction on the outcome of new reactions is possible, because the 

underlying mechanism of the acyl shift has not yet been uncovered.  

     Another problem is that carboxylic acids without an α-H (e.g. aromatic carboxylic 

acids) do not undergo acyl migration at all. The methods' flexibility can be expanded 

by the isolation of 4-O-acyltetramic acids 63 and by using other methods to initiate 

and control the acyl migration step. The original one-pot synthesis is often dismissed, 

because 63 can more easily be purified than 64 and the excess DHU can be 

removed more smoothly. Another way to avoid the DHU problem concerning the one-

step procedure is by using EDC · HCl instead of DCC.78 
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Scheme 2.10 Synthesis of various 3-acyltetramic acids (64) using the protocol of Yoshii et al.76  

 

     Yoda et al. circumvented the problem of low yields when using branched 

carboxylic acids by using CaCl2 as an additive for the acyl migration.79 Other metal 

salts were tested but only NaI showed effects similar to CaCl2.
80 They even reported 

stereoselectivity when α-chiral carboxylic acids were used.78–80 It is presumed that 

chelation of the calcium ion with the tetramic acid promotes the 3-acyl 

rearrangement. 

     For example, L-tyrosine derived tetramic acid 65 was reacted with chiral carboxylic 

acid 66 to 4-O-acyl compound 67, rearranged and deprotected to give epicoccarine A 

(68) in a yield of 38% over both steps (scheme 2.11).  

     In addition, 3-acylation with carboxylic acids, lacking an α-H, was achieved by the 

same academic group,80 allowing an even broader application of this method. 

 

C5H7* =
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Scheme 2.11 Stereoselective synthesis of epicoccarine A (68) using the two-step 3-acylation 

strategy presented by Yoda et al.78 

 

     The acyl migration can also be triggered by using acetone cyanohydrin and 

NEt3.
81 This method was studied in detail by Moloney et al.77 It was concluded that 

the efficiency of this procedure strongly depends on the tetramic acid's N-substituent 

(R1) (61) and the residue introduced by the carboxylic acid (R') (62). Even so, it is a 

powerful alternative, especially if aromatic carboxylic acids are used for 3-acylation. 

In this thesis, this fact was exploited for the total synthesis of quinolactacins A2 (17) 

and B2 (18) (chapter 3.3.3). 

 

 
2.1.4.4 Synthesis of 3-enoyl- and 3-polyenoyltetram ic acids  

     As described in the previous chapters, the synthesis of 3-enoyl- and 

3-polyenoyltetramic acids cannot be achieved by standard 3-acylation methodology 

or only in very low yields. Therefore specialised reactions were developed to address 

this problem.82–84  
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2.1.4.4.1 3-Acylation using ketenylidene(triphenyl) phosphorane  

     The same reagent (39) mentioned in chapter 2.1.3.2 for the synthesis of tetramic 

acids can be used to prepare 3-enoyltetramic acids in a two-step procedure. This 

method was used to synthesise ravenic acid (69) for the first time (scheme 2.12).85 In 

the first step of the mechanism Boc-protected tetramic acid 70 protonated 39 and 

then the protonated species of 39 is nucleophillically attacked by the tetramate anion. 

This formal addition produced 3-acylylide 71, which was readily purified. As well 

known, it is stable because of the delocalisation of its electrons.86 In the second step, 

71 was activated to undergo a Wittig reaction with aldehyde 72 by heating it with 

KOtBu. After deprotection with trifluoroacetic acid (TFA), 69 was synthesised in a 

yield of 61% starting from 70.  

 

 

 

Scheme 2.12 Synthesis of ravenic acid (69) by 3-acylation via Ph3PCCO (39) and subsequent Wittig 

olefination85 

 

 

2.1.4.4.2 Specialised Lacey-Dieckmann condensation     

     In general, Lacey-Dieckmann cyclisations generate 3-acyltetramic acids (chapter 

2.1.4.1). This variant uses a β-ketoamide, which is modified to incorporate a 

phosphonate for a subsequent HWE reaction following the Dieckmann cyclisation.87  

     Scheme 2.13 shows an example, starting with glycine methyl ester (73) and 

phosphonate 74 to give modified β-ketoamide 75. 75 was converted to phosphonate 



22                                                                                Theoretical Part 
 

substituted 3-acyltetramic acid 76 via Dieckmann cyclisation. In the next step, a HWE 

reaction was performed, using cyclohexanal (77), yielding enoyltetramic acid 78 in a 

yield of 71%. 

     The method was modified over the years,88 and due to the mild conditions and 

flexibility, used extensively for the synthesis of natural products.89,90 

 

 

 

Scheme 2.13 Lacey-Dieckmann condensation of modified β-ketoamide 75 and subsequent HWE 

reaction 

 

 

2.1.5 Chemical syntheses - special syntheses of tet ramic acid 

derivatives  

2.1.5.1 Polyfunctional tetramic acids synthesised v ia Ugi-

Dieckmann reaction 

     A versatile and combinatorial synthesis of tetramic acid derivatives can be 

achieved by an Ugi reaction and subsequent Dieckmann condensation.91 The 

advantage of the Ugi reaction is that it is a modular multi-component reaction. Many 

different residues can be introduced simultaneously.92  

     The variant of this reaction to synthesise tetramic acids starts with four typical 

components: amine 79, carbonyl compound 80, α-CH acidic carboxylic acid 81 and 

isocyanide 82 (1,1-dimethyl-2-isocyano-ethyl-methylcarbonate) (scheme 2.14). They 

are combined to form the desired Ugi product 83. Similar to the Lacey-Dieckmann 
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cyclisation, the conversion of 83 to tetramic acid 84 is induced by adding a strong 

base. This leads to intermediate 85, which loses 5,5-dimethyl-oxazolidin-2-one (86) 

by a nucleophilic attack of the enolate, in a Dieckmann like cyclisation. Different 

tetramic acid derivatives are obtained using this methodology in low to excellent 

yields.91 
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Scheme 2.14 Modular synthesis of tetramic acid derivatives using an Ugi-Dieckmann multi-

component reaction;91 †4-CH3OC6H4; *(CH2)2OCH3 

 

     Due to its modular nature and the mild conditions applied, this approach is a 

valuable alternative to other synthetic methods. A drawback is that not all residues 

are tolerated. As shown above, the wrong combination of residues leads to a 

significant decrease in yield. Moreover, the stereocenter at C-5 cannot be set. 
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2.1.5.2  Synthesis of N-aryl-3-spirotetramic acids 

     A new synthesis of N-aryl-3-spirotetramic acids using hypervalent iodine (III) 

reagents was published by Mao et al. in 2013.93 

 

 

 

Scheme 2.15 Synthesis of N-aryl-3-spirotetramic acids 92 according to Mao et al.93 

 

     The general reaction sequence shown in scheme 2.15 starts with the use of 

different 1-acetyl-N-aryl carboxamides (87), incorporating either a cyclopropane or a 

cyclopentane moiety. It is important that the aryl component of 87 bears an electron 

withdrawing substituent. The carboxamides 87 are reacted with the hypervalent 

iodine (III) compound bis(tert-butylcarbonyloxy)iodobenzene (88) and propionic acid. 

Under acidic conditions 87 undergoes keto-enol tautomerism to enol 89. Reaction 

with 88 leads to intermediate 90, which, in the next step, forms the tetramic acid core 

structure 91. By deprotonation desired N-aryl-3-spirotetramic acid 92 is obtained.93  

     This reaction is the first example of a synthesis of tetramic acids via metal-free 

intramolecular sp3 C−H amination. It shows that several residues at C-5 can be 

introduced but without the ability to control the stereochemistry. 
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2.2 Projects of the thesis 

2.2.1 Macrocidins A and B  

2.2.1.1  Structure and biological properties 

     Herbicides are important compounds in protecting agricultural crop from pest 

plants and other parasitic plants. Therefore it is essential that a herbicide selectively 

targets a pest plant, without interfering with the desired growth of a crop plant.  

     Some tetramic acid natural products are known to exhibit phytotoxicity and 

therefore could potentially be used as herbicides.94 Two prominent representatives 

are macrocidin A (5) and macrocidin B (93) (figure 2.7). 

 

 

 

Figure 2.7  Structures of macrocidin A (5) and B (93) 

 

     The macrocidins were the first macrocyclic 3-acyltetramic acids to incorporate a 

tyrosine unit. They were isolated from the fungus Phoma macrostoma Montagne by 

Graupner et al. in 2003.95 This fungus causes chlorotic leaf spots and necrosis on 

woody and herbaceous plants and black rot of artichoke leaves. 5 and 93 were 

isolated as major metabolites and their structure was determined by a combination of 

1D- and 2D-NMR spectroscopic and mass spectrometric methods. In the case of 5, 

this was supported by its crystal structure. The stereocenter of the hydroxyl group of 

93 is not yet determined, whereas the coupling constants suggest a synclinal position 

of the respective hydrogen towards the hydrogen, situated at the neighbouring 

tertiary carbon.   

     The purified samples of 5 and 93 were tested for any effects on plants. If the soil 

was treated preemergently with Phoma macrostoma, emerging leaves of a Canada 
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thistle showed strong signs of chlorosis and bleaching. The plant's growth was 

severely impaired. When applying the samples postemergently to other plants, it was 

observed that only broadleaf weeds were gravely affected, partly leading to the 

plants' death, whereas the grass weeds were left completely unharmed. The mode of 

action of these compounds is still unknown, although a unique mode of distribution 

inside the plant has been suggested.95 This selectivity and possible mode of 

distribution make the macrocidins interesting for the beginning of the development of 

new herbicides. 5 and 93 are patented as usable herbicides since 2010.16,96 

     To date, only one total synthesis69 and two partial syntheses97,98 of 5 have been 

achieved (see chapter 2.2.1.2), whereas there has been no publication of a  

synthesis of 93. 

 

 

2.2.1.2  Strategies for the synthesis of macrocidin  A 

     The only total synthesis to date, was published by Suzuki and Pfaltz et al. in 

2010.69 The key steps of this synthesis involved a stereoselective hydrogenation, a 

macrolactamisation and a Lacey-Dieckmann cyclisation to generate the 

3-acyltetramic acid moiety. 
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Scheme 2.16 Synthesis of trisubstituted olefin building block 94 
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     Scheme 2.16 shows the preparation of trisubstituted olefin building block 94, 

incorporating the required epoxide. Propargyl alcohol (95) was transformed into 

compound 96 by copper mediated coupling with allyl bromide and alkine 96 was 

subsequently reduced with lithium aluminium hydride (LiAlH4) to allylic alcohol 97. 

The epoxide of 98 was introduced by asymmetric Katsuki-Sharpless epoxidation 

followed by silyl protection. Hydroboration of 98 to alcohol 99 and Swern oxidation to 

aldehyde 100 was followed by Horner-Wadsworth-Emmons (HWE) reaction to furnish 

olefin 94.  

     The next step, being stereoselective hydrogenation of the trisubstituted olefin 

could not be achieved using substrate 94. Therefore, a detour was necessary 

(scheme 2.17), starting with silyl deprotection to generate 101. The epoxide was 

opened to give 1,3-diol 102 with excellent regioselectivity, before the hydrogenation 

was carried out to give 103 with formidable stereoselectivity (97:3). For this process 

iridium catalyst A was used successfully. In the last step, the epoxide was 

regenerated and 104 was obtained.  

 

 

 

Scheme 2.17 Detour of stereoselective hydrogenation of 94 to 104 

 

     The final reactions (scheme 2.18) of the synthesis involved the coupling of 

building block 104 with tyrosine building block 105 via Mitsunobu reaction to 106.  
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Scheme 2.18 Final steps in the preparation of macrocidin A (5) according to Yoshinari et al.69 

 

     From 106 the Teoc group (2-(trimethylsilyl)ethoxycarbonyl) was removed, to 

prepare the molecule for the subsequent macrolactamisation, which generated 107. 

Lacey-Dieckmann cyclisation furnished 108 and in the last step the PAB group (para-

azidobenzyl) was cleaved applying a two-step procedure. Overall, 5 was synthesised 

in a yield of 15% over 17 steps. 

     Papers on two other partial syntheses have been published to date.97,98  

 

 

 

Scheme 2.19 Retrosynthetic approach to synthesise Nor-macrocidin A (109) according to Ramana 

et al.97 
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     In the first publication of 2006 by Ramana et al.,97 nor-macrocidin A (109), a 

simplified derivative of 5, should have been synthesised (scheme 2.19). The key 

steps of the strategy presented were a Lacey-Dieckmann cyclisation to form the 

tetramic acid and a ring closing metathesis (RCM) to form the macrocycle. The 

epoxide should have been introduced in the last step via epoxidation of macrocycle 

110. Starting from β-ketoamide 111 Ramana et al. investigated whether it would be 

best to first generate the 3-acyltetramic acid and then to close the macrocycle (route 

A) or vice versa (route B), on the way to 110. 

     In general, they concluded that both ways could only be pursued if the amide's 

nitrogen remained unprotected. The critical step of both routes was the synthesis of 

the 3-acyltetramic acid.  

     As a result, both routes were tested with PMB protected β-ketoamide 112, as 

shown in scheme 2.20. Route A was rejected because although 3-acyltetramic acid 

113 was obtained in excellent yields of 91%, only traces of the desired product 114 

were found after the RCM. On the other hand, the synthesis succeeded via route B, 

first generating RCM product 115 (63% yield) and then forming the tetramic acid core 

of 114 (56% yield). However, the final epoxidation step of the E-olefin could not be 

achieved. Only decomposition of the tetramic acid was observed. 
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Scheme 2.20 Attempts to synthesise nor-macrocidin A (109)97 
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     The second partial synthesis was published in 2010 by Barnickel et al.98 The 

synthesis was centred around a macrocyclisation via Williamson etherification. Again, 

Nor-macrocidin A (109) was the target of choice. Herein, two major building blocks 

were utilised, L-tyrosine derived tetramic acid 116 and ω-bromo acid 117 (scheme 

2.21). 

 

 

 

Scheme 2.21 Retrosynthetic approach to synthesise Nor-macrocidin A (109) following Barnickel 

et al.98 

 

     116 was synthesised following standard amino acid and tetramic acid chemistry. 

Boc-protection of the amino group of L-tyrosine99, followed by allyl-protection of the 

phenolic alcohol100 gave the precursor, to form 116 using the Meldrum's acid protocol 

(chapter 2.1.3.1).48  

     The side chain building block 117 was synthesised from ε-caprolactone (118) in 

10 steps (scheme 2.22). In the beginning lactone 118 was opened to the respective 

aldehyde using diisobutylaluminium hydride (DIBAL-H) and was converted to olefin 

119 via Wittig reaction. The alcohol was PMB-protected and the olefin dihydroxylated 

using the Sharpless dihydroxylation protocol to give diol 120. 120 was then protected 

as an acetonide and the ester reduced to alcohol 121, which was converted into 

bromide 122 by mesylation and subsequent bromination. The PMB-protecting group 

was oxidatively removed and the alcohol oxidised to form desired ω-bromo acid 117. 
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Scheme 2.22 Synthesis of side chain building block 117 

 

     The coupling of 116 with 117 was accomplished by 3-acylation using Yoshii 

conditions76 (chapter 2.1.4.3) to generate 3-acyltetramic acid 123 (58% yield) 

(scheme 2.23). To initiate the macrocyclisation, an unprecedented palladium 

mediated tandem deallylation-Williamson etherification reaction was carried out. At 

first, the allyl-protecting group was removed using Pd(PPh3)4, followed by the 

nucleophilic attack of the liberated phenolate on the bromide to form macrocycle 124 

(25% yield). 

 

 

 

Scheme 2.23 3-Acylation and macrocyclisation to 124 
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     Further transformations, such as Boc-deprotection, acetonide cleavage and 

epoxide installation were not achieved. 

     A different approach to synthesise 109 was devised in M.Sc. Benjamin Christen's 

master's thesis, who was part of our group.101 The main difference in his approach 

was that the epoxide was to be introduced after the 3-acylation occured, but before 

executing the macrocyclisation. At this point, the olefin of 125 should either be 

epoxidised directly (e.g. Sharpless,102 Shi103) or dihydroxylated104 and epoxidised in a 

two-step procedure.  

     The respective side chain 126 was prepared over six steps with a yield of 9% 

starting from the known intermediate 119 (scheme 2.24).  

 

 

 

Scheme 2.24 Synthesis of TBS-protected carboxylic acid 126 according to Christen101 

 

     This involved PMB-protection to 127, reduction of the methyl ester moiety to the 

respective alcohol and subsequent TBS-protection to give 128. The sequence was 

concluded by PMB-deprotection to 129 and a two-step oxidation, applying Dess-

Martin-periodinane (DMP)105 and a Pinnick oxidation106,107 to generate 126. 

     In the end the 3-acylation of 126 with tetramic acid 116 could not be accomplished 

(scheme 2.25).  
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Scheme 2.25 Unsuccessful attempt to couple tetramic acid 116 with side chain 126 using the 

protocol of Yoda et al.79 

 

 

2.2.1.3 Comparison of the macrocidins with other ph ytotoxic 

compounds 

     The macrocidins A and B are not the only tetramic acid derivatives that display 

phytotoxic activities.94 Their structural diversity is as interesting as the different 

modes of action. Figure 2.8 shows four tetramic acids known to have an impact on 

biochemical processes within plants. 

     L-Tenuazonic acid (TA) (25) displays an activity spectrum ranging from growth 

inhibition of crop plants, such as rice plant seedlings, mung bean and radish,108 to 

disruption of the metabolism of weed plants such as Striga hermonthica.109 Due to its 

diverse activities, 25 also displays different modes of action such as the inhibition of 

the protein- and nucleic acid synthesis,108 the inhibition of 4-hydroxy-phenylpyruvate 

dioxygenase (HPPD) (an enzyme vital to the catabolism of tyrosine in the cell)110 and 

the interruption of the photosynthetic process by interfering with photosystem II (PS 

II).111  

     The compounds trichosetin (130) and equisetin (131) are structurally related. 

Nevertheless, 130 destroys cell membranes and mitochondria and thereby inhibits 

the growth of a variety of infected plants,112 whereas 131 primarily suppresses 

germination and inhibits growth by causing necrosis, which affects the roots.113 

     A mode similar to 25 is postulated for fischerellin A (132), which also inhibits 

growth by the interaction with PS II, but not in the same manner as 25.114 
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Figure 2.8  Structures of TA (25), trichosetin (130), equisetin (131) and fischerellin A (132) 

 

     If these four examples and their modes of action and selectivities are compared to 

the ones of the macrocidins (chapter 2.2.1.1), it can be concluded that the distinction 

between weed and crop plants is one of the major advantages of the macrocidins. 

Additionally, their unique mode of transportation inside the plant95 makes the 

macrocidins a promising beginning towards developing new herbicides.  

 

 

2.2.2 Torrubiellone D  

2.2.2.1  Structure and biological properties 

     In 2010, Isaka et al. published a series of novel alkaloids called torrubiellone     

A – D (133 – 135, 15) (figure 2.9).115 These compounds were isolated from the 

fungus Torrubiella sp. BCC 2165 which targets spiders and scale insects.116 In this 

thesis, a total synthesis of the tetramic acid incorporating compound torrubiellone D 

(15) was attempted. As shown in figure 2.9, 15 is a 3-polyenoyltetramic acid that can 

be divided into a tetramic acid part, based upon tyrosine, and a polyunsaturated side 

chain. Both the tyrosine part and the side chain possess a stereocenter, whose 

configuration is still unknown. It is likely that L-tyrosine (16) is used in the construction 

of 15 due to its availability from the chiral pool. 
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     This group of novel alkaloids is quite similar to the class of militarinones, which 

were isolated in 2002117 and 2003.118 Militarinone C (136) in particular resembles 15. 

The tetramic acid part is identical, only the side chain of 136 is more complex. 

 

 

 

Figure 2.9 Structures of torrubiellone A (133), B (134), C (135) and D (15) and militarinone C (136) 

 

     The torrubiellones were not thoroughly tested for their biological potential. 133 

displays weak antimalarial activity and weak activity against cancer cell line NCI-187 

and Varo cells, whereas 15 displays a weak cytotoxicity against the cancer cell line 

KB (IC50 = 44 µM).115 The other two torrubiellones did not show any biological 

activity.  

     Up to date, a total synthesis of 135 has been published (chapter 2.2.2.3).119 The 

tetramic acid part derived from L-tyrosine (16) was successfully synthesised in 

different publications,78,98 but no 3-polyenoyltetramic acid of tyrosine has been 

published to date.  

 

 

2.2.2.2  Proposed biosynthesis  

     It has been postulated that tetramic acid incorporating compound 136 is a 

biosynthetic intermediate towards the other militarinones.118 Therefore it is not hard to 

presume that the same holds true for the torrubiellones, meaning that 15 is also a 
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biosynthetic intermediate on the way to 133 – 135. This biosynthetic transformation is 

comprised of an oxidative ring expansion of tetramic acids to 2-pyridones.120  

 

 

 

Scheme 2.26 Biosynthetis of tyrosine based 3-acyltetramic acids 

 

     The biosynthesis of the tetramic acid intermediates have been studied in detail 

over the last decades (see also chapter 2.2.4.1).121,122 Scheme 2.26 shows that 

either L-phenylalanine (137) or L-tyrosine (16) can be included in the synthesis of 

tyrosine tetramic acids.122 16 can be used directly, whereas 137 has to be converted 

into 16 by a phenylalanine hydroxylase (PAH). Biosynthetic intermediate 138 

(R = connectivity to the respective domain of the involved protein) is coupled with 16 

to form desired tetramic acid 139. From there, 139 can be transformed into 

2-pyridones (like the ones in 133 – 135) by an oxidative ring expansion.120 
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2.2.2.3  Synthetic strategies towards the torrubiel lones  

     Since a total synthesis of 15 does not exist to date, only the syntheses of the 

different parts of 15 are known. In chapter 2.2.1.2, a straight forward synthesis of a 

tetramic acid derived from L-tyrosine (16) is described.98 Another synthesis of a 

similar compound utilised a different protecting group strategy (scheme 2.27),78 but in 

general the synthetic route is identical. L-Tyrosine (16) was protected twice, firstly the 

amine was protected with the Cbz-protecting group and secondly the phenol with the 

TBS-protecting group (tert-butyldimethylsilyl) to give precursor 140, which was 

transformed into the respective tetramic acid applying the Meldrum's acid method. 

Cbz cleavage by palladium catalysed hydrogenation gave tetramic acid 65. 

 

 

 

Scheme 2.27 Exemplary synthesis of L-tyrosine derived tetramic acid 6578 

 

     The side chain of torrubiellone D (15) was synthesised as a part of the total 

synthesis of 135 (scheme 2.28).119 In the first step, the double bond of educt 141 was 

stereoselectively hydrogenated by the use of a specifically optimised iridium catalyst 

(A). In the next step methyl ester 142 was reduced with DIBAL-H and the alcohol 

transformed into aldehyde 143 by TPAP oxidation. The side chain was elongated via 

Takai olefination to give iodoolefin 144. 144 was subjected to a Stille coupling with 

(E)-3-(tributyl-stannyl)-prop-2-en-1-ol to give an allylic alcohol which was oxidised to 

aldehyde 145 with TPAP. 145 was used in the final stages of the synthesis to be 

coupled to the desired core building block by HWE reaction. The same building block 

was used in the synthesis of torrubiellone B (134).123 
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Scheme 2.28 Part of the total synthesis of torrubiellone C119 

 

     In this thesis, the possibility of combining the two methods to develop the first total 

synthesis of torrubiellone D (15) was investigated.  

 

 

2.2.3 Quinolactacins A – D  

2.2.3.1  Structure and biological properties 

     The quinolactacins are a class of compounds isolated from Penicillium sp. EPF-6 

by Nakagawa's group in 2000.124,125 Three different compounds were isolated: 

quinolactacins A (146, 17), B2 (18) and C2 (147). One year later, they discovered 

that quinolactacin A exists in two diastereomeric forms, called quinolactacin A1 (146) 

and A2 (17).126 Both forms were isolated from Penicillium citrinum 90648.  

     In 2006, more members of this family were isolated from the same organism, 

namely quinolactacins B1 (148), C1 (149), D1 (150) and D2 (151).127 

     As shown in figure 2.10 the quinolactacins are closely related because they all 

exhibit the same core structure. A N-methylated quinolone frame fused with a 

pyrollidin-2-one unit that carries different substituents at C-5. In its entirety, the 

unique core structure element can be named pyrrolo[3,4-b]quinolone. The 
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diastereomeric forms 146 and 17 and compounds 147 and 149 possess a sec-butyl 

group at C-5. 147 and 149 contain an additional hydroxyl group in the same position. 

148 and 18 on the other hand show an iso-propyl group and a hydrogen at C-5 and 

150 and 151 display an iso-butyl group and a hydroxyl group, similar to 147 and 149. 

     Studies of the pathway of decomposition of these compounds suggest that only 

quinolactacins A and B are real natural products, whereas C and D are 

decomposition products of the former two.127 

 

 

 

Figure 2.10 Structures of quinolactacins A1 (146), A2 (17), B1 (148), B2 (18) and C1 (149), C2 

(147), D1 (150), D2 (151) 

 

     As for their biological properties, it has been reported that quinolactacins A1 (146) 

and A2 (17) both inhibit acetylcholinesterase,126 which is involved in the signal 

transduction of neurons. This could give access to a treatment of Alzheimer-type 

dementia126 because the deficit of acetylcholine is known to be one cause for this 

illness. It is noteworthy that the inhibitory effect of 17 (IC50 = 19.8 µM) is much higher 

than the effect of 146 (IC50 = 280 µM), only due to its distinct stereochemistry. In 

addition, 17 is proven to inhibit LPS-induced TNF production (LPS = lipopoly-

saccharide, TNF = tumour necrosis factor) of murine macrophages (IC50 = 12.2 µM) 

and macrophage-like J774.1 cells.124 TNF is one factor that causes the endotoxic 

shock syndrome,128 an illness that can be fatal. 
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     The compounds 149, 147 and a racemic mixture of 150 and 151 were evaluated 

concerning their cytotoxicities against the mouse NS-1 cell line. 149 and 147 

displayed moderate cytotoxicities (LD99 = 40 µM) and the racemic mixture (150, 151) 

a high cytotoxicity (LD99 = 7.5 µM).127 Of 148 and 18 no significant biological activities 

were reported. 

     Several total syntheses of the quinolactacins have been published to date,129–132 

and are shown in chapter 2.2.3.3. 

 

 

2.2.3.2  Biosynthesis 

     The first assumption of how the biosynthesis of the quinolactacins might work was 

made in 2001.129 A biomimetic approach to synthesise 17 and 18 lead to suggest that 

nature may take the same route. Scheme 2.29 depicts the retrosynthetical approach 

to generate 17. Intermediate 152 is composed of anthranilic acid (153), acetic acid 

(AcOH) (154) and L-isoleucine methyl ester (155).  

 

 

 

Scheme 2.29  Retrosynthetic approach of a biomimetic synthesis of 17129 

 

     By feeding experiments using 13C labelled D-glucose and other precursor 

molecules Sasaki et al. proposed a different biosynthetic pathway.133 As shown in 

scheme 2.30 anthranilic acid (153) was used as a starting point, being synthesised 

from shikimic acid (156) by the shikimate pathway. It was reacted with 

phosphorylated ribose (157) to form indole compound 158. 158 was transformed into 
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L-tryptophan (159) by condensation with L-serine (160) and catalysis by tryptophan 

synthetase. From there, an oxidative C-C cleavage took place to form intermediate 

161 followed by N-deformylation to give compound 162, known as kynurenine. In the 

next step, 162 was meant to undergo condensation with L-isoleucine (163) to 164 

before cyclisation to quinolone 165 occurred. Oxidative decarboxylation lead to the 

formation of the lactam. To finish the process, the amine was methylated by 

L-methionine (166) as a methyl donor to create 17. 

 

 

 

Scheme 2.30 Biosynthesis of quinolactacin A2 (17)133 
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2.2.3.3  Total syntheses 

     The first quinolactacin synthesised was quinolactacin B2 (18).129 A biomimetic 

approach was chosen (as is shown for quinolactacin A2 (17) in scheme 2.29), using 

anthranilic acid (153), AcOH (154) and L-valine methyl ester (167). 

 

 

 

Scheme 2.31 Total synthesis of quinolactacin B2 (18) by Tatsuta et al.129 

 

     Scheme 2.31 shows the synthetic route, starting with a three step procedure to 

convert 153 into N-methylated and Cbz-protected compound 168. In the next step, 

the carboxylic acid was activated as its thioester analogue 169 and transformed into 

β-ketothioester 170 using tert-butyl thioacetate. Then 167 was added to generate 

β-ketoamide 171, aided by copper(I)iodide and NEt3. To obtain desired product 18, 

the protecting group was removed via hydrogenolysis and a Lacey-Dieckmann 

cyclisation was performed to create 3-acyltetramic acid 172, which was cyclised to 18 

in situ by treating it with silica gel. 18 was obtained in a yield of 15% over nine steps. 
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     The next total syntheses of quinolactacins A1 (146), A2 (17) and B2 (18) were 

accomplished by Zhang et al. (scheme 2.32).130  

 

 

 

Scheme 2.32 Synthetis of quinolactacin A2 (17) according to Zhang et al.130 

 

     In the case of 17, the synthesis began with the condensation of tryptamine (173) 

with (S)-(+)-2-methylbutanal (174) to Schiff base 175. From there an asymmetric 

Pictet-Spengler reaction using chiral auxiliary 176 was carried out to give β-carboline 

177 as the major product (S configuration at C-3) besides its diastereomer (R 

configuration at C-3) in a ratio of 4:1. The auxiliary was cleaved to form an amine, 

which was Boc-protected to give tricycle 178. A modified Winterfeldt oxidation with 

potassium superoxide (KO2) in the presence of 18-crown-6 and DMF created 

quinolone 179. The following methylation of 179 gave the N-methylated compound 

180, which in the last steps was subjected to allylic oxidation and Boc-deprotection. 

17 was obtained in 8% yield over eight steps.   
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     Besides 17, 18 was synthesised accordingly in 16% yield over eight steps. 146 

was synthesised in small quantities, to determine the diastereomeric relationship 

between 146 and 17 (see chapter 2.2.3.4). 

     The third total synthesis was published by Park et al. in 2004.131  The compound 

of interest was quinolactacin A2 (17). The synthesis is shown in scheme 2.33. Boc-

protected L-isoleucine (181) was reacted with 1,1'-carbonyldiimidazole (CDI) to give a 

mixed anhydride, which was reacted in situ with lithio ethyl acetate to yield 

β-ketoester 182.134 The key step of this sequence was the following Friedländer 

annulation of 182 with N-methylisatoic anhydride (183). The resulting 4-oxoquinoline 

184 was Boc-deprotected and the cyclisation to 17 took place spontaneously. 

Overall, 17 was obtained in a yield of 30% over three steps. 

 

 

 

Scheme 2.33 Total synthesis of quinolactacin A2 (17) according to Park et al.131 

 

     The last total synthesis dealt with the synthesis of quinolactacin B2 (18) and was 

published by Shankaraiah et al. in 2008.132 The key steps of this synthesis were a 

Noyori asymmetric hydrogenation, a Bischler-Napieralsky cyclisation and a 

Winterfeldt oxidation (scheme 2.34).  

     The synthesis began with tryptamine (173), which was coupled with isobutyric 

acid (185) using standard Steglich conditions to amide 186. The next step was a 

Bischler-Napieralsky cyclisation to generate imine 187. The stereocenter was 

installed using a hydrogenation catalyst invented by Noyori et al.,135 to give 

compound 188 in good enantioselectivity (> 90%). Boc-protection and Winterfeldt 

oxidation yielded intermediate 189, which was methylated by formylation and 
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reduction. From methylated compound 190, the amide was introduced by anodic 

oxidation followed by a Swern oxidation and desired product 18 was liberated by 

deprotection with ZnBr2 in an overall yield of 32% over ten steps.  

 

 

 

Scheme 2.34 Total synthesis of quinolactacin B2 (18) following Shankaraiah et al.132 

 

 

2.2.3.4  Quinolactacine research in our group 

     In our group, Dipl. Chem. G. Rapp, Dr. C. Jagusch136 and M.Sc. B. Christen101 

dealt with the synthesis of 17 and 18 but remained unsuccessful.  

     Dr. C. Jagusch synthesised unprotected L-isoleucine tetramic acid 191 using 

polymer bound ketenylidene(triphenyl)phosphorane (39).32 3-Acylation was carried 

out after the Jones acylation protocol72,137 but the required acid chloride of 
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N-methylanthranilic acid (192) could not be obtained. 3-Acylation with 192 according 

to Yoshii et al.76 was tested but the rearrangement of 4-O-acylated compound 193 to 

3-acyl compound 194 was not achieved (scheme 2.35).136  

 

 

 

Scheme 2.35 Attempt at the synthesis of 3-acyltetramic acid 194 according to Jagusch136 

 

     In another attempt, M.Sc. B. Christen used the Boc-protected version of 191 as a 

starting point.101 The respective tetramic acid was created by the method of Jouin et 

al. (chapter 2.1.3.1).48 From there, the same approach described in the section 

before was applied, with the same results as before. Only the 4-O-acylated species 

could be found whereas the desired 3-acyltetramic acid could not be isolated. 

Different approaches were attempted in achieving the Fries-rearrangement, including 

the use of NEt3 and multiple Lewis acids. Additionally, one-step procedures were 

applied using CaCl2 according to Yoda et al.79 and the N-heterocylic carben (NHC) 

1,3-dimethyl-1H-imidazole-2-ylidene.138  

 

 

2.2.3.5 Detailed insight into the stereochemistry o f 

quinolactacins 

     The stereochemistry of the quinolactacins has been discussed intensively over the 

last decade, especially the relation between the two diastereomers of quinolactacin 

A1 (146) and A2 (17).  
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     When the first quinolactacins were described in 2000, only quinolactacin A2 (17) 

was isolated124,125 but the stereochemistry was not mentioned. One year later, 

quinolactacin A1 (146) was isolated and described as a diastereomer of 17.126 The 

stereochemistry of both compounds was determined based upon NOESY 

spectroscopy. As a consequence, the stereochemistry of A1 (146*) was described as 

S,R (C-3, C-1') and of A2 (17) as S,S (C-3, C-1'). Figure 2.11 shows quinolactacin A2 

(17) and its possible two diastereomers 146 and 146*.  

 

 

 

Figure 2.11 Structure of quinolactacin A2 (17) and its two possible diastereomeric structures of 

quinolactacin A1 (146, 146*) 

 

     In 2003, Zhang et al. tried to determine the stereochemistry of 17 and 146 by total 

synthesis (see scheme 2.33).130 The stereocenter at C-1' was introduced by using 

pure (S)-(+)-2-methylbutanal (174) and set to be S configured. By choosing the 

appropriate chiral auxiliary, it was presumed that the second stereocenter at C-3 was 

synthetically installed as the S-configuration. The product's spectroscopical data was 

compared to the published data of 17 and found to be identical. In the following, the 

synthesis was repeated by using rac-2-methylbutanal. In doing so, C-1' 

diastereomers were created, which were separated by chiral HPLC. The 1H-NMR 

data of the detected C-1' diastereomer matched the data of 146 published before. 

Therefore, it was concluded that 17 and 146 were C-1' diastereomers of each other 

and the structure was thought to be 146*. 

     In 2004, Park et al. published another stereoselective synthesis of 17 and the data 

was again matched with the published data of 17.131 It was discovered that when 17 

was brought into contact with silica gel, protic solvents or acidic media, it formed its 

C-3 epimer 146. The mechanism for this epimerisation and the ionic intermediate 195 

are shown in scheme 2.36. The diastereomeric mixture was separated by chiral 
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HPLC and the desired diastereomer's spectroscopical data was identical to the 

published values. It was concluded that 17 and 146 must be C-3 diastereomers of 

each other. For the first time, structure 146 was favoured.  

 

 

 

Scheme 2.36 Proposed mechanism for the epimerisation of quinolactacin A2 (17) 

 

     The latter theory was confirmed by Clark et al. in 2006.127 The quinolactacins were 

studied biochemically and it was concluded that both diastereomers are derived from 

L-isoleucine. The involvement of L-allo-isoleucine (required to create the structure of 

146*) was denied. Furthermore, the relationship between all quinolactacins was 

examined. It was discovered that the two quinolactacin C epimers (149/147) can be 

viewed as oxidative decomposition products of the quinolactacins A1 (146) and A2 

(17). Starting from 17, all four compounds were identified after a matter of time, 146 

by epimerisation and 149 and 147 by decomposition of 146 or 17 respectively. This 

relationship indicated that 146 was the correct structure of quinolactacin A1.  

     In summary, the quinolactacin diastereomeric pairs A, B, C and D can most likely 

be regarded as C-3 epimers of each other. 

 

 

2.2.4 Biochemical role of tetramic acids and adenyl yl cyclases  

2.2.4.1  Biosynthesis of tetramic acids 

     Tetramic acids are found in many organisms and display various activities, as 

discussed in chapter 2.1.2. To increase the understanding of these compounds, one 

has to understand their origin, meaning their biosynthesis. 

     Tetramic acids are hybrid secondary metabolites. Two major pathways to produce 

tetramic acid metabolites in nature have so far been discovered.19 The first one being 
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the combination of a polyketide building block and an α-amino acid. The whole 

process was studied in detail in the case of fungal tetramic acids (scheme 2.37).  

 

 

 

Scheme 2.37 Biosynthetic pathway of tetramic acids involving PKS and NRPS19 

 

     The side chain of a 3-acyltetramic acid is prepared by multiple alterations, which is 

carried out by polyketide synthetases (PKS). The enzyme linked intermediate 196 is 

assembled by coupling multiple acetyl-CoA (coenzyme A) (197) units. 196 is joined 

with intermediate 198, an enzyme coupled α-amino acid, by non-ribosomal peptide 

synthetases (NRPS) to compound 199. Another enzymatic domain catalyses a 

Dieckmann-type cyclisation to release 3-acyltetramic acid 200.19,139 

 

 

 

Scheme 2.38 Degradation of 3-oxo-AHLs (201) to respective tetramic acids 202140 

 



50                                                                                Theoretical Part 
 

     The second way tetramic acids are synthesised in nature is by degradation of 

certain compounds called N-acylhomoserine lactones (AHLs), specifically of 3-oxo-

AHLs (201). These substances play an essential role in the process of quorum 

sensing (see chapter 2.2.4.2). Scheme 2.38 depicts the process of AHL degradation. 

The degradation can be viewed as an irreversible, nonenzymatic Claisen-like 

reaction, which leads to 3-acyltetramic acids 202.140 

 

 

2.2.4.2  Quorum sensing - the role of tetramic acid s 

     Quorum sensing is defined as the bacterial cell-to-cell communication using 

chemical signalling molecules.141 These molecules, called autoinducers, have the 

purpose of coordinating actions between a large group of bacterial cells. The whole 

process of quorum sensing encompasses the production, release, detection and 

response to these autoinducers. It even enables communication between 

prokaryotes and eukaryotes.  

     A prominent class of autoinducers, produced by Gram-negative bacteria, are 

AHLs. If one looks at the role of tetramic acids in quorum sensing, the 3-oxo-AHLs 

play a fundamental role. This can be understood because tetramic acids originate 

from 3-oxo-AHLs (see chapter 2.2.4.1).140 The well studied and derived from 3-oxo-

AHL tetramic acid 203, is shown in figure 2.12. 

     203 exhibits bactericidal activity against Gram-positive bacteria but also against its 

Gram-negative parent cells. This activity is based upon the ability to destabilise cell 

walls of target cells (this interaction is attributed to the highly lipophilic side chain of 

203).142,143 In a broader view, this ability prevents competing bacterial cells from 

invading the occupied space. Furthermore, it is suggested that the self-killing effect of 

203 is used to control cell population.144 This knowledge can provide new impulses in 

developing new antibacterial drugs, based upon the structure of 203. 

     Another ability of 203 is to complex iron in the bacteria's surroundings nearly as 

efficiently as other bacterial siderophores by increasing the availability of Fe3+ for the 

organism. The mode of complexation is based upon the bidentate chelation of 

3-acyltetramic acids. Owing to the octahedral structure of the Fe(III) complex (204), 

the ratio between metal and ligand equals 1:3 (figure 2.12).144 
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Figure 2.12 Structure of quorum sensing active tetramic acid 203 and its Fe3+ complex 204144 

 

 

2.2.4.3 cAMP, adenylyl cyclases and their connectio n to tetramic 

acids 

     Cyclic adenosine-3',5'-monophosphate (cAMP) (205) is an important second 

messenger - an intracellular compound which triggers specific cellular mechanisms 

(figure 2.13). cAMP is involved in cell-to-cell communication and regulatory effects 

within a cell. It can be found in many organisms and tissues and its structure has 

been conserved through evolution, although its function varies when looking at 

different biological systems.145 

     cAMP is synthesised from adenosine triphosphate (ATP) (206) (scheme 2.39) 

catalysed by adenylyl cyclases (AC). These ACs are a large group of enzymes that 

can be classified into classes I – VI, whereas classes IV – VI are not well-studied. 

The different classes are grouped by specific sequence motifs, found in the active 

sites. Most ACs belong to class III and they are present in all kinds of species and 

organisms.146 
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Scheme 2.39 Transformation of ATP (206) into cAMP (205) catalysed by adenylyl cyclase 

 

     Knowing the exact structure of the active site of class III ACs and the exact 

positioning of the substrate and the products in the active site (X-ray structures),147 

docking studies can be carried out to find new potential AC inhibitors. 

     Recent docking studies show that 3-acyltetramic acids could function as potential 

inhibitors for AC class III. Figure 2.13 shows the pentavalent trigonal bipyramidal 

transition state (277) inside the active site148 at the precise moment when 205 is 

synthesised from 206. In the figure beneath, a potential 3-acyltetramic acid derived 

from tryptophan (208) is shown.  

 

 

 

Figure 2.13 Transition state 207 of the transformation from ATP (206) into cAMP (205) inside the 

active site of AC class III and the structure of possible AC inhibitor 208 
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     The tryptophan part mimics the adenine portion, the tetramic acid core the ribose 

moiety and the 3-acyl side chain the phosphate section of the cAMP transition 

structure. Additionally, 208 is known for its importance as an intermediate in 

biochemical pathways.149–151 

     In this thesis various 3-acyltetramic acids were synthesised and handed in to be 

biochemically evaluated by the group of Prof. Dr. C. Steegborn. The results should 

reveal whether they represent potential AC inhibitors.  
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3 Results and Discussion 

3.1  Contribution to the synthesis of macrocidin A and 

 analogues 

3.1.1 Overview  

     The major part of this thesis consisted of the chemistry towards and around 

macrocidin A (5). This compound (figure 3.1) was found to exhibit herbicidal activity 

and an interesting mode of transportation inside infected plants (see chapter 

2.2.1.1.).95 Based upon the work of B. Barnickel,152 this part aimed for were the 

synthesis of a library of different compounds, all structurally related to 5. The 

motivation was the attempt to generate different analogues and to compare their 

herbicidal activity against the activity of 5 in order to gain insight into the structure-

activity relationship of 5. The different molecules of interest (6 – 14) are shown in 

figure 3.1. 

 

 

 

Figure 3.1  Structures of macrocidin A (5) and its analogues (6 – 14) 

 

     As can be seen above, the analogues of interest (6 – 14) all possess a simplified 

structure, lacking the epoxide in the side chain. It should be investigated whether the 

compounds still exhibit the same biological activity as the parent compound 5. 

Another interesting feature is the size of the macrocycle itself. It can be assumed that 

different sizes of the ring might influence its interaction with the biological target. 

     Therefore, the simplest analogues envisioned are the macrocycles 6 – 9, which do 

possess neither the epoxide nor the stereocenter in the side chain. The ring size is 

varied by the length of the side chain, starting with six carbon atoms (6) up to nine 
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carbon atoms (9). Compound 8 would represent the original ring size, similar to the 

natural product.  

     The second group of macrocidin A analogues (10 – 13) are a bit more complex 

than the group before, yet without the epoxide functionality but bearing a methyl 

group in the side chain. The methyl group should be introduced stereoselectively 

(S-configuration). Again the ring size should be modified to include side chains 

incorporating six (10) to nine (13) carbon atoms. 

     Another analogue (14) possesses a side chain containing two oxygen atoms 

(similar to a crownether). These two oxygens should provide additional centres which 

could interact with metals by chelation besides the standard 3-acyltetramic acids' 

donor atoms.    

     Finally, the total synthesis of 5 should be achieved, based upon the work of 

Barnickel,152 who tried to synthesise nor-macrocidin A (109).98 

 

 

3.1.2 Synthesis of simplified macrocidin A derived 

macrocycles  

3.1.2.1 Retrosynthetic approach  

     Macrocidin A can be retrosynthetically divided into two main fragments: a tetramic 

acid part and a side chain building block (scheme 3.1). The tetramic acid part 209 

forms the core of all derivatives related to macrocidin A (5). It can be prepared from 

L-tyrosine (16), which must be equipped with adequate protecting groups. They are 

selected to be compatible with the remaining transformations, the coupling of 209 

with the side chain and the macrocyclisation.  

     The structural diversity is introduced via the side chain, which has to be designed 

uniquely for each derivative. As for compounds 6 – 9, the required side chains have 

to be less complex (210 – 213) than for compounds 10 – 13 (214 – 217) due to the 

lack of a stereocenter. To simplify matters, all eight side chains should be derived 

from only four dicarboxylic acids, namely adipic acid (218), pimelic acid (219), suberic 

acid (220) and azelaic acid (221). 
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Scheme 3.1 Retrosynthetic approach towards macrocidin A analogues 6 – 13 

 

     An introduction of the α-methyl group at a later stage of the synthesis, should be 

investigated as well (scheme 3.2). The advantage of this route would be that only the 

simple bromo acids 210 – 213 would be needed and that the methyl group could be 

introduced stereoselectively after the 3-acylation of the tetramic acid takes place. A 

way should be found to convert 3-acylated compounds 222 into methylated 

substances 223 before carrying out the macrocyclisation. A drawback of this 

envisioned strategy could turn out to be the handling of compounds 222 and 223, 

due to their high polarity.  
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Scheme 3.2 Alternative retrosynthetic approach based upon late stage stereoselective methylation 

 

 

3.1.2.2 Synthesis of an allyl-protected L-tyrosine derived 

tetramic acid  

     The L-tyrosine derived tetramic acid 116 was prepared according to a procedure 

of Barnickel.152 As protecting groups, the Boc-protecting group was chosen to protect 

the amine of the amino acid and the allyl-protecting group to protect the phenolic 

hydroxyl group, because they should be compatible with the final macrocyclisation.  

     One drawback of this method152 was the generation of DHU, which could not be 

removed entirely. Therefore, the tetramic acid formation was attempted using the 

protocol of Hosseini et al.53, by which DCC is replaced by EDC · HCl (scheme 3.3). 

This procedure worked smoothly and the product obtained was more pure than the 

one received before. 
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Scheme 3.3 Alternative tetramic acid formation using EDC · HCl53 

 

 

3.1.2.3  Synthesis of simple bromo acids  

     From the four bromo acids (210 – 213) needed as precursors for the coupling with 

tetramic acid 116, two were commercially available (210, 212), while the other two 

(211, 213) needed to be synthesised. Scheme 3.4 shows the plan to synthesise 211 

from pimelic acid (219) and 213 from azelaic acid (221). 

 

 

 

Scheme 3.4 Synthetic plan to synthesise bromoacids 211 and 213 

 

     In the first step, the dicarboxylic acids 219 and 221 were transformed into their 

respective monoethyl esters 225 and 226 (scheme 3.5). On account of the low price 

of both 219 and 221, the maximal theoretical yield of 50% when using one equivalent 

of ethanol (EtOH) was not an issue (25% of diethyl ester and 25% of starting material 

were found as side products). The reaction was carried out using standard 

esterification conditions to give the desired monoethyl esters in 45% and 49% yields.  
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     Experiments to increase the yields using Steglich conditions153, modified Steglich 

conditions applying 1-propanephosphonic acid cyclic anhydride (®T3P) as coupling 

reagent154 and a reaction based upon the Garreg-Samuelsson reaction155, using 

imidazole, I2 and triphenylphosphine (PPh3)
156, were not successful.  

 

 

 

Scheme 3.5 Monoesterification of dicarboxylic acids 219 and 221 and selective reduction with 

borane 

 

     The free carboxylic acid functionalities of 225 and 226 were selectively reduced to 

the corresponding alcohols 227 and 228 in good to excellent yields with borane (as 

complex with THF) (scheme 3.5).157,158 By using a syringe pump, the reagent was 

added with 1.5 mL/min at 0 °C. This assured stable and reproducible yields. 

     In the case of 227, the hydroxyl group was brominated to form 229 using 

tetrabromomethane (CBr4) and PPh3 following a standard procedure (scheme 

3.6).159,160 However, the reaction only worked satisfactorily when the reagents were 

added at 0 °C and only when using 1 equivalent of both reagents, despite the use of 

more equivalents of both reagents in most of the literature.161  

     The saponification of the ester to liberate desired bromo acid 211 was tried with 

KOH in methanol.162 The reaction produced multiple products. One may have been 

211, but the main product was identified as an alcohol, resulting from a nucleophilic 

attack of a hydroxide ion on the bromide. Hence, the reaction was dismissed. 

     To circumvent this problem, a one step procedure to transform ester alcohols 227 

and 228 into the desired bromo acids 211 and 213 was employed (scheme 3.6). 227 

and 228 were heated to reflux with 48% hydrogen bromide (HBraq) for 15 min.163 
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Scheme 3.6 Transformation of alcohol esters 227/228 with the goal of synthesising bromo acids 

211/213 

 

     211 was obtained in a yield of 77%, but in the case of 213, the purified product 

was still a mixture of two substances. The 1H-NMR spectrum lead to the conclusion 

that the second compound was lactone 230 (scheme 3.7), formed by esterification of 

hydroxy acid 231. 231 could be an intermediate of the reaction. Purification attempts 

by column chromatography failed, due to the identical polarity of compounds 213 and 

230. In the end, the separation was managed by Kugelrohr distillation. Desired 

bromo acid 213 was obtained in 66% yield.  

 

 

 

Scheme 3.7 Lactonisation of hydroxy acid 231 to 230 as a result of the reaction between 228 and 

HBraq   

 

 

3.1.2.4 Synthesis of L-tyrosine derived 3-acyltetramic acids  

     With all four bromo acids in hand, the next step was the 3-acylation with L-tyrosine 

derived tetramic acid 116. The 3-acylation was performed using the protocol of 

Yoshii et al. (scheme 3.8).76 The 4-O-acylation and the subsequent rearrangement to 

the 3-acyl species were carried out as an one-pot reaction. Bromo acids 210 – 213 

were coupled with tetramic acid 116 using DCC and DMAP to give 4-O-acyl 
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n

n

derivatives 232 – 235 in situ. NEt3 is added to facilitate the rearrangement to furnish 

3-acyl compounds 236 – 239.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3.8 3-Acylation of tetramic acid 116 with different bromo acids following the protocols of 

Yoshii et al. (A),76 Yoda et al. (B)78,79 (with respective yields over two steps) or 

Moloney et al. (C)77  

 

     The reaction gave compounds 236 – 238 in moderate yields ranging between 

20% and 70%. The 1H-NMR spectra of 236 – 238 showed leftover DHU originating 

from the use of DCC. The polarity of the products were similar to the polarity of the 

urea. The separation proved difficult, especially because column chromatography is 

always challenging, due to the affinity of 3-acyltetramic acids towards the metals in 

the silica gel.  

     Therefore, an alternative method by Yoda et al.79 was tried. CaCl2 was added 

during the step of the 4-O-acyl to 3-acyl rearrangement. The reaction worked 

smoothly and the general purity of products 236 – 239 and the milder reaction 

conditions (reaction is carried out at room temperature instead of heating to reflux) 

were convincing, although the yields were not higher than before (scheme 3.8).  

 
A B 

n = 4 65% 69% 

n = 5 20% 48% 

n = 6 70% 88% 

n = 7  -  42% 
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     To further improve the yields and the purity of the 3-acyl compounds, another 

method, presented by Yoda et al. was used, in which DCC was replaced by 

EDC · HCl.78 Additionally the 4-O-acyl compounds were purified before the 

rearrangement was initiated because they could be purified easily by column 

chromatography.  

     Starting from the 4-O-acyl compounds, another way to initiate the rearrangement 

was tried, which is based upon the work of Moloney et al.77 Acetone cyanohydrin was 

used as an additive besides NEt3 (scheme 3.8). The method was a good alternative 

due to the mild reaction conditions and easy purification (acid/base extraction), 

although no yields are presented, because they fluctuated between 40% and 80%. 

 

 

3.1.2.5 Synthesis of simple macrocidin A analogues  

     Once all 3-acyltetramic acids 236 – 239 were prepared, macrocycles 6 – 9 could 

be synthesised. 

     The macrocyclisation was performed by a tandem palladium catalysed allyl-

deprotection and intramolecular Williamson etherification, followed by Boc-

deprotection, according to a procedure of Barnickel et al.98,152 (scheme 3.9). 

     It is noteworthy that either 3-acyltetramic acids 236 – 239 were used as starting 

materials or their respective potassium salts 240 – 243. The potassium salts were 

easier to handle because they are solids, whereas the pure 3-acyltetramic acids are 

thick oily substances.  

     The conversion of the 3-acyltetramic acids into their respective potassium salts 

was achieved by dissolving compounds 236 – 239 in CH2Cl2 and treating them with 

KHCO3aq.
152 The macrocyclisation progressed without problems, with the exception 

of derivative 247, in which case a macrocycle could not be obtained. This might be 

an indication for a maximum ring size, based upon the rigidity of the molecule. These 

findings were supported by Barnickel's results,152 who described that 3-acyltetramic 

acids synthesised with 10-bromodecanoic acid, could not be cyclised.  

     With macrocycles 244 – 246 in hand, the deprotection using TFA was carried out. 

The reaction often lead to a mixture of products. In the case of 245, after two 

attempts, nothing could be found but unidentifiable side products. 
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Scheme 3.9 Synthesis of macrocycles 6 – 9 starting from 3-acyltetramic acids 236 – 239 

 

     Figure 3.2 shows an analytical HPLC spectrum of the crude reaction mixture for 

the deprotection of 244 to macrocycle 6. Three fractions (A – C) were separated by 

preparative HPLC and tested by NMR spectroscopy. Fraction A showed tyrosine 

signals but no signals of the side chain, whereas B seemed to be the allyl-

deprotected compound (perhaps a leftover intermediate before the macrocyclisation 

could take place). Fraction C looked promising, although one methylene group of the 

side chain seemed to be missing. 

 

 
yield 

n = 1 79% 

n = 2 68% 

n = 3 53% 

n = 4  -  

 
yield 

n = 1 36% 

n = 2  -  

n = 3 67% 

n = 4  -  
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Figure 3.2  HPLC spectrum of the crude product from the reaction of 244 with TFA (288 nm, 50% 

MeOH in H2O + 0.1% HCOOH; after 15 min in 10 min up to 100% MeOH) 

 

     Figure 3.3 shows the 1H-NMR spectrum of fraction C. By checking the 2D-NMR, 

spectra it was concluded that the broad multiplet between 2.0 ppm and 2.5 ppm can 

be assigned to the missing methylene group 15. The fact that the corresponding 

integral summed up to 0.78 instead of 2.00 could not be explained. 

Summing up, the spectrum shown in figure 3.3 and a fitting mass spectrometry prove 

that the desired macrocycle 6 was synthesised successfully. 

     One detail worth mentioning is that whilst trying to reproduce the results, only 

once was a different compound isolated with a similar HPLC retention time and 

HRMS produced the correct mass of m/z = 302.1403 ([M]+H+). Additionally, all 

required signals were present in the NMR-spectra. Figure 3.5 compares the 1H-NMR 

spectra of 6 and of the unknown compound.  

     Four distinctive discrepancies were observed. Firstly, the aromatic region of 

macrocycle 6 showed four signals (the two in the middle merge to appear as one), 

revealing that in the closed macrocycle the aromatic hydrogens are not chemically 

equivalent. This was not observed for the unknown compound, giving rise to an open 

structure. This assumption is fortified by the 13C-NMR spectrum, which shows four 

tertiary aromatic signals for 6 and only two for the unknown compound. 

     Secondly, the complex multiplet between 4.10 – 4.33 ppm, assigned to the 

methylene group next to the phenolic oxygen, shifted to a higher field (triplet at 

3.56 ppm). The new shift is similar to the one observed prior to the macrocyclisation 
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Figure 3.3  Comparison of the 1H-NMR spectra of macrocycle 6 (upper spectrum) and an 

unidentified compound (?) (lower spectrum) 

 

     Thirdly, the broad multiplet between 2.07 – 2.32 ppm (assigned to methylene 

group 15) experienced a shift to a lower field and displayed a more complex 

multiplicity. The reason for this behaviour remained unclear. 

     Fourthly, the multiplet assigned to methylene group 13 shifted to a lower field and 

the aliphatic signals of the side chain converged. This supported the assumption that 

the ring was reopened, because the influence of the phenolic oxygen on the shifts of 

the aliphatic protons disappeared.  

 

? 
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Figure 3.4  Theoretical structure of the unknown compound (248), generated by TFA deprotection 

of 244      

 

     Figure 3.4 shows the theoretical structure of a compound, which would match 

most of the spectroscopical and spectrometrical data (248), regardless of how the 

transformation might have occurred. Structure 248 explains most of the 

discrepancies, but in the end, the structure belonging to the unknown compound 

could not be determined. Nevertheless, it is important to consider possible side 

reactions when carrying out the deprotection of the macrocycles with TFA. 

 

 

3.1.2.6 Attempted side chain α-methylation of 3-acyltetramic 

acids  

     The next aim was to synthesise the more complex macrocycles 10 – 13. Starting 

from 3-acyltetramic acids 236 – 239, the direct path would be α-methylation of    

236 – 239.  

     In this case the employment of the SAMP/RAMP methodology was 

considered.164–167 The envisioned process is displayed in scheme 3.10. To be able to 

introduce the methyl group in its (R)-configuration, (S)-1-amino-2-methoxy-

methylpyrrolidine (SAMP) should be employed. The chiral auxiliary should be reacted 

with 236 – 239 to give the corresponding hydrazones, which can be stereoselectively 

methylated to compounds 249 – 252. Afterwards, the auxiliary must be cleaved either 

by ozonolysis or hydrolysis, liberating intermediates 253 – 256, which need to be 

converted into final macrocycles 10 – 13 by palladium-catalysed macrocyclisation 

and Boc-deprotection (see chapter 3.1.2.5). 

     The success of this synthetic plan would depends on a regioselective hydrazone 

formation. Due to the fact that 3-acyltetramic acids incorporate three carbonyl 

functionalities, an assessment whether the hydrazine could form a hydrazone with 
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the desired exocyclic carbonyl group is required. The amide's carbonyl group at C-2 

should not pose problems, whereas some competition might be expected from the 

isolated carbonyl group at C-4. This potential side reaction would have to be avoided 

or suppressed. 

 

 

 

Scheme 3.10 Synthetic plan towards macrocycles 10 – 13 via side chain α-methylated 

3-acyltetramic acid 253 – 256 using SAMP as chiral auxiliary 

      

     In order to check the regioselectivity of the hydrazone formation, experiments 

were conducted using simplified hydrazines 257 – 259 which were reacted with  

236 and 238. Scheme 3.11 sums up the reactions and table 3.1 displays the results. 

 

 

 

Scheme 3.11 Hydrazone formation experiments with 3-acyltetramic acids 236 and 238 
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     In the beginning, phenylhydrazine hydrochloride (257) was used in a standard 

procedure to form hydrazones (exp. 7 – 9).168 In experiments 1, 10 and 11 para-nitro-

phenylhydrazine (258) was used instead of 257.169 It is known to be more reactive 

than 257 and was introduced neatly, without an additive.  

 

Table 3.1  Hydrazone formation experiments with 3-acyltetramic acids 236 and 238 and different 

hydrazones 257 – 259 under different conditions; structure of undesired side product 

26017 

      

 

 

      In another effort, sulphuric acid was added in a catalytic amount to increase the 

rate of condensation. In experiments 2 and 15 no reaction could be observed. 

Experiment 12 yielded a single pure product, which could with high certainty be 

Exp.  educt hydrazine 
eq. 

hydazine 
additive temp. solvent result 

1 236 258 1.1   rfx EtOH  -  

2 236 258 1.1 H
2
SO

4
  rfx EtOH  -  

3 236 259 1.1   rfx MeOH < 3% 

4 236 259 1.1   0° C to rt MeOH 15% 

5 236 259 1.1   0° C to rt EtOH  -  

6 236 259 1.1   rfx p-Xylol decomp. 

7 238 257 1.0 NaOAc rt MeOH  -  

8 238 257 1.0 NaOAc rfx MeOH  -  

9 238 257 1.5 NaOAc rfx MeOH  -  

10 238 258 1.0   rfx EtOH < 3% 

11 238 258 1.0   rfx CH
2
Cl

2
   -  

12 238 258 1.1 H
2
SO

4
  rfx EtOH 260 

13 238 258 1.1   0° C to rt EtOH  -  

14 238 259 1.1   0° C to rt EtOH  -  

15 238 259 1.1 H
2
SO

4
  0° C to rt EtOH  -  

16 238 259 1.1   0° C to rt MeOH 24% 
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identified as a condensation product (260) of the desired product with the 4-carbonyl 

group.17 Furthermore, it was considered that there may have been a sterical problem 

involved when using aromatic hydrazines. This lead to the substitution of 258 with a 

smaller and simpler hydrazine, N,N-dimethylhydrazine (259),169 but no product was 

obtained. Additionally, the solvent and the reaction temperature were varied but no 

satisfying result was generated. 

     In summary, this approach was abandoned and another strategy had to be 

developed. 

 

 

3.1.2.7 Synthesis of α-methylated bromo acids from dicarboxylic 

acids  

     On account of the failed attempt of a late stage α-methylation of 3-acyltetramic 

acids 236 – 239 (chapter 3.1.2.6), the α-methylation needed to be performed before 

the 3-acylation. This means that the methyl group had to be incorporated into the 

bromo acids (214 – 217). This strategy seemed unlikely, due to the fact that 

racemisation at the α-carbon was reported to have occurred when using 3-acylation 

conditions by Yoshii et al.77,79 Yoda et al. circumvented this problem by adding CaCl2 

as an additive to retain the stereochemistry of the bromo acids employed.78–80 

     After thinking about a way to synthesise 214 – 217, the way to synthesise bromo 

acids 211 and 213 came back into focus (chapter 3.1.2.3). In general, the synthetic 

route could be adapted to become the basis for the synthesis of 214 – 217 (scheme 

3.12). 

     Starting from dicarboxylic acids 218 – 221 monesterification and reduction of 

carboxylic acid should be carried out to form 261, 227, 262 and 228 as shown in 

chapter 3.1.2.3. Deviating from the former strategy the alcohol should be protected 

and the carboxylic acid liberated to 263 – 266. The Evans auxiliary should be 

attached and the methylation performed (267 – 270) before auxiliary cleavage, 

deprotection and bromination of the liberated alcohol should then furnish desired 

products 214 – 217. 
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Scheme 3.12 Synthetic route towards α-methylated bromo acids 214 – 217 starting from dicarboxylic 

acids 218 – 221 

   

     The first task was to synthesise monoethyl esters 271 and 272 from adipic acid 

(218) and suberic acid (220) by following the instructions outlined in chapter 3.1.2.3. 

The same held true for the borane reduction to alcohols 261 and 262 (scheme 

3.13).157,158 The only difference was that the esterification was carried out in THF 

instead of CH2Cl2. The yields were similar to the ones observed when synthesising 

alcohol esters 227 and 228.  

 

 

 

Scheme 3.13 Synthesis of alcohols 261 and 262 by monoesterification and borane reduction 

 

     As possible protecting groups for the alcohol the 2-tetrahydropyranyl (THP) group 

and the tert-butyldimethylsilyl (TBS) protecting group were taken into consideration. 

Both should remain stable under the basic conditions, applied in the next steps.  

     Both strategies were pursued to investigate whether one route was superior 

(scheme 3.14). The THP-protection was carried out, following a standard procedure. 

The alcohol was treated with 3,4-dihydro-2H-pyran (DHP) in CH2Cl2 with a catalytic 

amount of para-toluenesulfonic acid (p-TosOH).170 The yield and purity of products 
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273 – 276 were not satisfying. Therefore an alternate protocol was tried by 

substituting p-TosOH with pyridinium para-toluenesulfonate (PPTS).171 The reaction 

worked in good to excellent yields and for many cases products 273 – 276 can be 

used in further experiments without further purification (scheme 3.14). The TBS-

protection of the same alcohols was carried out using imidazole and TBSCl in 

dimethylformamide (DMF).172 The reaction worked efficiently and gave protected 

esters 277 – 280 in good yields (scheme 3.14).  

 

 
 

n 
R = THP (A)           

(yield) 
R = TBS (B)           

(yield) 
n 

R = THP           
(yield) 

R = TBS           
(yield) 

5 86% (273) 86% (277) 5 80% (281) 51% (285) 

6 82% (274) 90% (278) 6 45% (282) 75% (286) 

7 86% (275) 88% (279) 7 69% (283) 71% (287) 

8 95% (276) 93% (280) 8 52% (284) 92% (288) 
 

Scheme 3.14 THP- (A)171 and TBS-protection (B)172 to 273 – 280 and subsequent saponification173 

to acids 281 – 288 

 

     With all these protected esters in hand (273 – 280), the next objective was the 

saponification of the ester moiety. Therefore, different base/solvent mixtures were 

tested, ranging from KOH in MeOH,162 NaOH in MeOH,174 LiOH in THF/H2O
173 and 

NEt3 in acetonitrile (MeCN).175 It could be concluded that each method lead to the 

desired products, but the last two methods provided the highest yields of 281 – 288. 

Another problem with all of these methods was their reproducibility. High fluctuations 

in yield and purity were observed. The most stable reactions were achieved when 

using the LiOH protocol (scheme 3.14).  

     Having created the eight carboxylic acids 281 – 288, the Evans auxiliary 

(R)-4-benzyl-2-oxazolidinone (289) was to be attached by using standard 

methodology.176 Oxalyl chloride should be applied to generate the respective acid 
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chlorides, which should be added to a flask charged with 289 and n-butyllithium 

(nBuLi).  

     However, no products were isolated when using THP-protected carboxylic acids 

281 – 284 and only small amounts of product were found when working with TBS-

protected carboxylic acids 285 – 288. It is known that during the process of the acid 

chloride generation by oxalyl chloride, HCl is formed as a by-product. Most likely both 

acid labile protecting groups were cleaved and the reaction was ruined. Due to the 

high lability of the THP-protection group, the THP-route was abandoned henceforth. 

     To circumvent the problem of the HCl formation, alternative strategies to attach 

289 to the carboxylic acids were tried. This involved the use of DCC and DMAP in a 

Steglich-type reaction to form the acyl carbamate177 or the use of pivaloyl chloride to 

form a mixed anhydride, to which, in a one-pot procedure, 289 along with NEt3 and 

dry LiCl is added.178,179 The first method left the protecting groups untouched, 

however purification proved difficult because of leftover DHU. The second approach 

worked, producing high and reproducible yields of 290 – 293 (scheme 3.15). 
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Scheme 3.15  Mild coupling of 289 with carboxylic acids 285 – 288 and stereoselective methylation 

to compounds 294 – 297 

 

     The methylation of compounds 290 – 293 was performed according to literature 

(scheme 3.15).178,179 The two diastereomers were separated by column 

chromatography using flash silica gel. Although the diasteromeric separation worked 

perfectly, the diastereomeric ratio of the reaction was calculated based upon GC 

analysis of the crude mixture of 296. Two separate experiments showed that the 

diastereomeric excess (de) of the reaction of 292 to 296 was 94%. 
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     Following the initial strategy the auxiliary was removed to form 298 – 301 by a 

standard procedure with LiOH/H2O2.
180,181 The results are summarised in scheme 

3.16 showing that the yields of the reaction were not as high as stated in literature. 

Reasons for this might be the instability of the product during the harsh work up or 

during purification. 

     The next experiments involved the TBS-deprotection of compounds 298 – 301. 

Three different approaches were tried. The methods employed used 1% HCl in 

EtOH,182  boron trifluoride etherate (BF3 · Et2O) in MeCN183,184 and tetra-n-butyl-

ammonium fluoride (TBAF) in THF.185,186 The second method was superior to the 

other two, although only irreproducible yields ranging from 15% to 60%, were 

achieved (scheme 3.30). As a side reaction, lactonisation of the desired products 

302 – 305 was observed and the pure products were prone to lactonisation and 

decomposition, even if stored at low temperatures.  

 

 

 

Scheme 3.16 Abandoned route via compounds 298 – 301 and synthetic pathway starting from 

α-methylated compounds 294 – 297 leading to α-methylated bromo acids 214 – 217 

 

     To avoid the polar intermediates 302 – 305, the synthetic plan was altered 

(scheme 3.16). Instead of removing the auxiliary, the TBS-protecting group should be 

removed first, followed by the bromination of the hydroxyl group. The removal of the 

auxiliary should conclude the reaction sequence. 
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     The deprotection of the TBS-protecting group was carried out using TBAF185,186 or 

1% HCl in EtOH (scheme 3.16).182 The first method gave better results when 

synthesising 307 and 308 and the second method when applied to the synthesis of 

309. 306 had not yet been synthesised.  

     Having access to deprotected compounds 307 – 309, the bromination of the free 

hydroxyl group was conducted, employing an Appel reaction to give 311 – 313 in 

good yields (scheme 3.16).187 

     The conclusion of the synthesis was the oxidative removal of the Evans auxiliary, 

as shown before in this chapter.180,181,188 The reaction was carried out to give 215 

and 216, but the yields reported in literature were not achieved. Again, this gave rise 

to a high instability of 215 and 216 during work up and purification (scheme 3.16).  

     Nevertheless, the synthesis was completed in the case of 215 and 216. The 

yields, starting from dicarboxylic acids 219 and 220, are 6% and 9% respectively over 

nine steps. 

     The synthesis of 214 and 217 remained unfinished and the 3-acylation of tetramic 

acid 116 with 215 and 216 was not carried out in the course of this thesis.  

 

 

3.1.3 Attempt at the synthesis of a crown ether inc orporating 

analogue based upon macrocidin A  

3.1.3.1 Motivation  

     Looking at the macrocyclic derivatives 6 – 13, it can be noted that all of them 

represent simplified versions of the parent compound macrocidin A (5). The next 

target substance of this thesis depicts a different kind of macrocidin A analogue. The 

side chain of the natural product should be substituted by a crown ether side chain, 

leading to structure 14 (figure 3.5).  

     A large part of the work presented in this chapter is based upon B.Sc. Hendrik 

Hessefort's research for his bachelor's thesis.189 The idea resulted from a DFG 

cooperation with the group of Prof. Dr. S. Laschat (University of Stuttgart). 

     The general motivation for synthesising 14 was to study its capabilities to chelate 

metals compared to 5. The complexation of different metals is a significant property 

of natural 3-acyltetramic acids, which allows them to unfold their various effects in 

biological systems (see chapters 2.1.1, 2.1.2 and 2.2.4.2). In addition to the standard 
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"outer complexation" at the 3-acyl functionality of 5 (314), 14 possesses two 

additional donor atoms in the side chain. This might lead to a whole new type of 

coordination. The hypothetical metal complexes 315 – 317, illustrated in figure 3.5, 

should exhibit different coordination patterns, including an "inner complexation" within 

the molecule. Furthermore, the new structural possibilities (complexation of different 

metal cations at the same time or the incorporation of the aromatic ring as potential 

ligand) might have an impact on the biological properties of the substance. An 

evaluation of the compounds' chemical and biological properties could prove to be 

interesting.  

 

 

 

Figure 3.5  Structure of macrocidin A crown ether analogue 14 and hypothetical coordination 

patterns (315 – 317) in comparison to the coordination pattern of macrocidin A (314); 

n = 1 – 3, m = 1 – 3, M = metal  
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3.1.3.2 Attempted synthesis of a polyether analogue  of 

macrocidin A  

     The retrosynthetic approach was similar to the ones discussed in the previous 

chapters. Macrocycle 14 could be hypothetically split into two major fragments: the 

tetramic acid fragment 116 and a polyether side chain 318 (scheme 3.17). 318 

contains a leaving group and a carboxylic acid functionality and should be derived 

from the cheap and commercially available precursor triethylene glycol (TEG) (319). 

     Without any alterations, the synthesis of 116 starting from L-tyrosine (16) was 

adopted from the synthesis performed in chapter 3.1.2.2. The Boc- and allyl-

protecting groups of 116 should be suitable for the synthesis of 14.  

     Due to experience in polyether chemistry of our DFG-cooperation group from 

Stuttgart (Prof. Dr. S. Laschat), the tosyl group was considered as a potent leaving 

group (scheme 3.17). The monotosylated alcohol 320 should be oxidised to 

respective carboxylic acid 318 and the transformation to 14 should be achieved by 

3-acylation of tetramic acid 116 with 318 to 321 and subsequent macrocyclisation 

and deprotection. 

  

      

 

Scheme 3.17 Synthetic plan starting from TEG (319) to generate polyether macrocycle 14 

 

     The first task was the synthesis of polyether side chain 318. The first step is the 

monotosylation of TEG (319), which was carried out by following a protocol from 

Ouchi et al.190 Only 26% of desired compound 320 and 38% of bisprotected 
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compound were obtained (scheme 3.18). Furthermore, intended oxidation of 320 to 

318 by pyridinium dichromate (PDC)191 afforded no desired product. In traces, the 

ester of 320 and 318 was identified (322) (scheme 3.18), whereas mostly 

decomposition was detected. 

 

 

 

Scheme 3.18 Monotosylation of TEG (319)190 and attempted PDC oxidation191 

 

     On account of the low yields and the instability of intermediate 320, an alternative 

side chain (323) was proposed (scheme 3.19), containing a bromide instead of the 

labile tosyl-group. Desymmetrisation of TEG (319) should be carried out by mono-

TBS-protection to 324. Oxidation of 324 to carboxylic acid 325 should be followed by 

TBS-deprotection and bromination of alcohol 326 to give polyether bromo acid 323. 

 

 

 

Scheme 3.19 Strategy to synthesise polyether bromo acid 323 

 

     The alternative pathway began with the mono-TBS-protection. Three different 

protocols were tried: firstly, nBuLi was employed as a base192 together with TBSCl 

and secondly, imidazole172 was used; thirdly, the reaction was conducted in pyridine 

with a high excess of TEG (319) and catalytic quantities of DMAP.193 All three ways 

furnished very pure products with the second method producing the highest yield 

(54%) (scheme 3.20). 

     The next step was the oxidation of alcohol 324 to carboxylic acid 325. At first the 

direct oxidation using PDC191 was tried again, leading to the same negative result as 
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before. Then a two-step approach was attempted (scheme 3.20). The transformation 

of 324 into aldehyde 327 was achieved by PCC oxidation,194,195 but the subsequent 

oxidation of 327 to 325 was not successful. Neither PDC nor a Pinnick oxidation106,107 

produced 325. In the end, a one step oxidation, using sodium chlorite, sodium 

hypochlorite and (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO)196 generated 

desired intermediate 325 (scheme 3.20). The most important feature of this reaction 

is that it had to be carried out at a pH of 6.7 (phosphate buffer) to be most effective. 

 

 

 

Scheme 3.20 Mono-TBS-protection of TEG (319)172 and one- and two-step oxidation attempts to 

synthesise carboxylic acid 325 from alcohol 324 

 

     With protected carboxylic acid 325 in hand, four procedures were tested to 

achieve silyl-deprotecting to furnish 326 (scheme 3.21). As reagents TBAF,197 HF in 

pyridine,198 BF3 · Et2O in MeCN199 and 1% HCl in EtOH were used.200 Either no 

product was obtained because of complete decomposition or the very polar product 

could not be extracted from the aqueous phases during work up.  

     In order to circumvent the labile and polar intermediate 326, a detour was 

suggested (scheme 3.21), based upon the idea of reducing the compounds polarity. 

Therefore, in the beginning, the free carboxylic acid functionality should be 

transformed into an ester (328). Then the TBS-protecting group should be cleaved to 

liberate the alcohol, which should be brominated to compound 329. Saponification 

should finally lead to 323. 
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Scheme 3.21 Attempts to deprotect 325 and proposed detour to synthesise bromo acid 323  

  

     Three different esters were selected to reduce the polarity of 325: an ethyl ester 

(330), a phenyl ester (331) and a benzyl ester (332). The three esters 330 – 332 

were prepared under Steglich conditions, using DCC and DMAP.75 Due to the 

mediocre yields, another protocol was tested by substituting DCC with EDC · HCl 

(scheme 3.22).201 This lead to higher yields and purer products.  

     Again, the TBS-deprotection was performed, using TBAF197 or 1% HCl in EtOH182 

as reagents. No products were detected using TBAF, but the reaction employing HCl 

furnished the desired alcohols 333 and 335 in good yields, with the exception of 334, 

which was not obtained (scheme 3.22). The phenyl ester proved to be unstable 

under these conditions and the respective route was abandoned. 

 

 

 

Scheme 3.22 Esterification of 325 using EDC · HCl201 and TBS-deprotection experiments182 
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     The conversion of alcohols 333 and 335 into respective bromo compounds 336 

and 337 was achieved by an Appel reaction with CBr4 and PPh3 in excellent yields 

(scheme 3.23).187 A reaction to transform 333 and 335 to bromo acid 323 in a one-

pot reaction by applying triphenylphosphine dibromide (PPh3Br2) and zinc bromide 

(catalytically)202 had to be discarded. 

 

 

 

Scheme 3.23 Appel reaction to transform alcohols 333 and 335 into bromides 336 and 337  

 

     To finalise the side chain, the ester had to be cleaved without harming the 

bromide (scheme 3.23). In the case of the benzyl ester 337, hydrogenolysis was 

chosen, but the results were not promising. Concentrating on the ethyl ester 

compound 336, a mild, lithium mediated ester hydrolysis employing NEt3 and LiBr 

was tested.175 The experiment not only gave desired bromo acid 323 in a yield of 

98% but also furnished 323 from benzyl ester 337 in a yield of 84% (scheme 3.23).  

     Next, side chain 323 and tetramic acid building block 116 were coupled (scheme 

3.24) by a 3-acylation procedure from Yoda et al.78 323 and 116 were reacted with 

EDC · HCl and DMAP to form the 4-O-acyltetramic acid. The rearrangement towards 

3-acyl compound 338 was initiated in a one-pot procedure by adding NEt3, DMAP 

and CaCl2. According to the crude NMR spectra, the reaction worked but the 

purification of 338 was not achieved. Crystallisation and preparative HPLC were 

unsuccessful: the latter most likely because the formic acid in the HPLC solvent 

(essential when working with 3-acyltetramic acids) caused the decomposition of the 

side chain. Column chromatography produced no better results.  

     No solution to this problem was found during the course of this thesis. Different 

strategies could be attempted. Firstly, the 4-O-acyl intermediate could be purified 

before initiating the rearrangement, which will hopefully lead to a cleaner 

3-acyltetramic acid 337. Secondly, the crude product of 338 could be converted into 

its respective BF2-complex by subjecting it to BF3 · Et2O. These complexes are more 

easy to handle and should present a potential purification possibility.58,137,203 Another 
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more direct pathway suggests the transformation of the crude product of 338 into 

respective macrocycle 339 without purification, followed by Boc-deprotection. 

Purification should be performed on desired product 14. 

 

 

 

Scheme 3.24 3-Acylation of tetramic acid 116 with polyether side chain 323 according to Yoda et 

al.78 and missing steps towards macrocycle 14 

  

     Initial experiments showed that neither the BF2-complex nor the closed 

macrocycle could be detected with certainty. In the end, the purification of 338 and 

the synthesis of the desired macrocycle 14 remained unfinished, due to the lack of 

time and material.       

 

 

3.1.4 Attempt at the total synthesis of macrocidin A 

3.1.4.1 Previous work  

     In chapter 2.2.1.2 a synthesis of nor-macrocidin A (109) is shown,98 depicting the 

work done prior to this work. In this thesis the main goal was to synthesise 

macrocidin A (5), which incorporates an additional stereocenter in comparison to 109. 



82                                                                                Results and Discussion 
 

     If one looks at the syntheses of 109, the introduction of the epoxide was not 

achieved. As shown in literature,97 the epoxide could not be installed when the 

macrocycle possessed an olefin. Therefore, the synthesis of Barnickel et al.,98 shown 

in schemes 2.22 and 2.23, focused on introducing the stereocenters for the epoxide 

in an early stage of the synthesis via Sharpless dihydroxylation. Nevertheless, 109 

was not obtained. The last attempt to synthesise 109 was made by M.Sc. Benjamin 

Christen,101 who failed to facilitate the epoxidation of 3-acyltetramic acid 125, which 

incorporated an olefin as a part of the 3-acyl side chain, because 125 could not be 

synthesised (scheme 2.25). 

      

 

3.1.4.2 Plan to synthesise macrocidin A  

     The challenge to synthesise 20 involved the stereoselective installation of the 

epoxide and the stereoselective incorporation of the methyl group in the side chain. 

To achieve both goals, the former strategies should be merged with the synthetic 

routes employed for the generation of the macrocidin A analogues 10 – 13 in chapter 

3.1.2.7.  

 

 

 

Scheme 3.25 Synthetic plan to synthesise macrocidin A (5) by using side chain 340 
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     When looking at the epoxide, the last possibility that remains unexplored is the 

introduction of the epoxide prior to the 3-acylation. Concerning the introduction of the 

methyl group, the Evans auxiliary strategy should be applied once more. The 

required building block 340 is shown in the synthetic plan in scheme 3.25. 

     3-Acylation according to Yoda et al.79 should lead to compound 341 (the 

stereochemistry of the sidechain should be preserved) and the liberation of the 

hydroxyl group and the bromination should give molecule 342. The last steps should 

involve the Pd-catalysed macrocyclisation followed by Boc-deprotection. 

     Scheme 3.26 shows the synthetic plan to synthesise side chain 340. Well known 

compound 119152,204 should be oxidised and reacted with Evans auxiliary 289 to form 

343. From there, stereoselective methylation and reduction of the methyl ester should 

give allylic alcohol 344. To generate intermediate 345, either the auxiliary could be 

cleaved followed by stereoselective epoxidation or vice versa. Most likely, the alcohol 

functionality should be protected before proceeding to the 3-acylation. 

 

 

 

Scheme 3.26 Synthetic plan towards side chain 340 

    

 

3.1.4.3 First attempts to synthesise the macrocidin  A side chain  

     The synthetic route started with the oxidation of building block 119. First 

experiments were carried out using PDC as a reagent,191,205,206 but the results were 

similar to the ones described before (chapter 3.1.3.2, scheme 3.18). As the major 

product, the ester of 119 with desired product 346 was detected. To suppress the 

esterification KOAc was tested as an additive to counteract the acidity of PDC. When 
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4.4 equivalents of PDC and 3.5 equivalents of KOAc were used, 346 was obtained in 

a yield of 72% (scheme 3.27).  

 

 

 

Scheme 3.27 Optimised reaction condition for the oxidation of 119 towards carboxylic acid 346 and 

coupling of 346 with Evans auxiliary 289 according to Yadav et al.178,179 

 

     With carboxylic acid 346 in hand, 343 was synthesised in a yield of 78% using the 

same mild procedure shown in chapter 3.1.2.7.178,179 

     The next stage of the synthesis should be the stereoselective methylation of 343 

to compound 347,178,179 but no product was found (scheme 3.28). The main isolated 

product, showed a mass of 327 g/mol. An explanation could be an intramolecular 

cyclisation to 348 as a result of an attack of enolate 349 on the methyl ester (scheme 

3.66). Reducing the time of deprotonation from 1 h to 5 min proved to be ineffective. 

 

 

 

Scheme 3.28  Attempted methylation of 343 and hypothetical side reaction 
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     After encountering this obstacle, the original synthetic pathway was altered. If the 

methyl ester is not stable under methylation conditions, it should be removed prior to 

the methylation. Therefore, 343 should be reduced to the respective allylic alcohol. 

After the protection of the free alcohol, methylation should be attempted. Due to the 

fact, that the auxiliary might be unstable under reductive conditions, mild reduction 

methods were considered: a cerium mediated Luche reduction with sodium 

borohydride (NaBH4)
207,208 and a reduction with a zirconium borohydride piperazine 

complex.209 None of these experiments yielded the desired allylic alcohol, because 

the auxiliary did not survive the transformation (scheme 3.29). Only 119 and diol 350 

were found. As a last resort, a two-step reaction, incorporating saponification of the 

methyl ester and subsequent borane reduction, was suggested, but without success. 

Ultimately the complete pathway had to be abandoned. 

 

 

 

Scheme 3.29 Unsuccessful trials to reduce 343 without harming the auxiliary207,209,210 

      

 

3.1.4.4 Attempt to synthesise the macrocidin A side  chain via 

allylic oxidation  

     Due to the fact that the problems encountered were based upon the ester moiety 

in 119, the next strategy encompassed the introduction of the allylic alcohol at a later 

stage of the synthesis.  

     While synthesising of penicillenol C1 in our group,211 the stereoselective 

methylation, using Evans auxiliary 289, was applied to synthesise compound 351 

(scheme 3.30). This was achieved in two steps, starting from unsaturated acid 352. 

Concerning our target 340, 351 should be subjected either to a selenium dioxide 

(SeO2) mediated allylic oxidation,212–214 followed by an auxiliary cleavage or vice 

versa. This should give intermediate 353, which could be converted into 340 in a few 

more steps.  



86                                                                                Results and Discussion 
 

     To check whether the allylic oxidation would work in our case, two separate 

reactions were tried. Employing literature procedures, 352 and intermediate 354 were 

subjected to allylic oxidation conditions but without success (Scheme 3.30). No 

reaction to proposed products 355 or 356 was observed. Therefore, this plan was 

also dismissed.  

      

 

 

Scheme 3.30 Synthetic plan to synthesise 340 via allylic alcohol 353 applying a SeO2 mediated 

allylic oxidation strategy212–214 based upon the work of Kempf et al.211 and 

unsuccessful experiments to convert 352 or 354 into allylic alcohols 355 or 356 

 

 

3.1.4.5 Modified strategy to synthesise the macroci din A side 

chain  

     The next strategy was a combination of the strategies of Barnickel152 and 

Christen.101 In order to circumvent the problems with the methyl ester during 

stereoselective methylation, the new strategy should involve straight forward 

protecting group chemistry. Scheme 3.31 outlines this process, starting with 
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compound 119. The alcohol should be protected and the methyl ester reduced to 

allylic alcohol 357. From there, 357 should be reacted with a protecting group 

orthogonal to the first one to give 358. Then, the first alcohol should be deprotected 

and oxidised to carboxylic acid 359. Again the Evans auxiliary should be used to 

introduce the methyl group in two steps and to yield 360.  

 

 

 

Scheme 3.31 Synthetic plan to synthesise intermediate side chain 360 

 

     The selection of the right protecting groups was essential for the success of this 

route. Therefore, two parallel pathways were pursued, with two different protecting 

group patterns. 

     In the beginning, alcohol 119 was protected by applying the THP- or the TBS-

protecting group (scheme 3.32).172  

 

 

 

Scheme 3.32 THP- (A) and TBS-protection (B) of 119, subsequent DIBAL-H reduction and Ac-

protection of allylic alcohols 363 and 364215 
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     Well known literature procedures gave desired compounds 361171 and 362, before 

both were reduced to the respective allylic alcohols 363 and 364 using 

DIBAL-H152,216. For the protection of liberated allylic alcohols 363 and 364, the acetyl 

(Ac) group was chosen, because it should be stable under THP- and TBS-cleavage 

conditions. The protection to 365 and 366 proceeded as planned using acetic 

anhydride (Ac2O) and DMAP in pyridine (scheme 3.32).215 

     The following steps involved the removal of the THP-/TBS-protecting group to 

form 367 and the oxidation of the liberated alcohol to carboxylic acid 368. Standard 

THP-deprotection conditions employing p-TosOH in MeOH217 gave two products in a 

ratio of 1:1. By NMR-spectroscopy, one was identified as desired product 367 and 

the other as its cis isomer. Somehow, the reaction conditions triggered the 

isomerisation of the double bond. Finally, clean THP-deprotection was achieved by 

reaction with AcOH in THF and H2O (scheme 3.33).170 In parallel experiments, TBS-

compound 366 was deprotected using TBAF to synthesise 367 (scheme 3.33).184 

 

 

 

Scheme 3.33 Generation of alcohol 367 via THP- (A) and TBS-deprotection (B) of 365 and 366 

respectively170,184 and two-step oxidation of 367 to carboxylic acid 368107,195 

 

     The next task was the transformation of the liberated alcohol moiety of 367 into 

carboxylic acid 368 by oxidation. Once again, the one-step procedure applying PDC 

produced negative results, giving a mixture of the respective aldehyde and acid 368 

in low yields. However, the two-step procedure succeeded in preparing 368 in 

mediocre yields of 50% over two steps (scheme 3.33). PCC oxidation195 furnished 

the respective aldehyde and Pinnick oxidation106,107 carboxylic acid 368.  

     Then, the same procedure as before was applied to facilitate the reaction between 

368 and Evans auxiliary 289,178,179 generating product 369 in a superb yield of 95% 

(scheme 3.34). With 369 in hand, the stereoselective methylation was conducted as 
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before (scheme 3.34).178,179 Although methylated compound 370 was isolated, next 

to a large amount of unreacted educt, only low stereoinduction was detected. In 

addition, Ac-deprotected compound was isolated, giving rise to the fact that the Ac-

group was too labile.  

 

 

 

Scheme 3.34 Coupling of Evans auxiliary 289 with Ac-protected compound 368178,179 and 

stereoselective methylation attempt of 369 

 

     Due to the presumption that the instability of the Ac-protecting group could exhibit 

a disrupting effect on the stereoselective methylation, a new protecting group 

strategy was developed. The PMB-protecting group should be used instead of the 

Ac-group. It should not be susceptible to a nucleophilic attack by the enolate involved 

in the methylation process.  

     For this reason, the whole sequence was replicated using the PMB-protecting 

group (scheme 3.35). Starting from compound 364, two methods for the PMB-

protection were tested. The first one applied para-methoxybenzyl chloride (PMBCl) 

with NaH and catalytic amounts of tetrabutylammonium iodide (TBAI)218 and the 

second one PMB-trichloroacetimidate and PPTS.219 The latter proved superior in 

producing 371, because of the high yields and easy purification. 

     From there the next four steps were performed according to the same protocols 

presented before (scheme 3.35). TBS-deprotection184 of 371 to 372 was followed by 

a two-step oxidation via aldehyde 373 to carboxylic acid 374. In this case the 

oxidation to aldehyde 373 was conducted by rapid Swern oxidation220 due to the 
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higher crude yields (96%). The coupling of 374 with Evans auxiliary 289 lead to 

precursor 375. 

     Next, the stereoselective methylation was tested using standard conditions.178,179 

Scheme 3.35 shows that the synthesis of 376 worked according to plan. From GC 

measurements the de of the reaction was calculated to be 88% and as a by-product 

about 20% of unreacted starting material was reisolated.  

 

 

 

Scheme 3.35 Preparation of side chain 375, incorporating the PMB-protecting group, for the 

subsequent stereoselective methylation  

 

 

3.1.4.6  Outlook  

     The main question that remains to be addressed is when to introduce the epoxide. 

The finalisation of the side chain should incorporate PMB-deprotection to liberate 

allylic alcohol 344 to achieve good enantioselectivity when performing the 

epoxidation. Then, either the epoxidation should be carried out followed by oxidative 

auxiliary cleavage or vice versa to give intermediate 345 (scheme 3.26). After 

Protection of the alcohol and 3-acylation with tetramic acid 116 should give 341 (see 

chapter 3.1.4.2, scheme 3.25). The last steps to synthesise macrocidin A (5) would 
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involve bromination of the liberated allylic alcohol to 342, Pd-mediated macro-

cyclisation and deprotection.  

 

 

3.2 Contributions to the synthesis of torrubiellone  D 

3.2.1 Overview  

     The second part of this thesis dealt with the synthesis of torrubiellone D (15), a 

polyenoyl tetramic acid that has not been totally synthesised to date. It exhibits 

biological activity and is a member of an entire torrubiellone family (see chapter 

2.2.2).115 Figure 3.6 illustrates its structure which is comprised of a tetramic acid part 

(blue), derived from tyrosine, not unlike the one that can be found in macrocidin A (5) 

and a polyunsaturated side chain (red).  

 

 

 

Figure 3.6 Structure of torrubiellone D (15) 

 

     The work presented in the following chapters was carried out in close cooperation 

with M.Sc. Julia Stöckl221 and B.Sc. Sebastian Bruckner222 during the course of their 

bachelor's theses. 

 

 

3.2.2 Retrosynthetic approach  

     Torrubiellone D (15) was split into two main fragments (scheme 3.36). The first 

one being L-tyrosine tetramic acid fragment 377 which was similar to the one 

synthesised for macrocidin A (5).  

     The second fragment was bisunsaturated aldehyde 378, which should be coupled 

to the tetramic acid core by Wittig reaction. Aldehyde 378 should be derived from two 
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smaller intermediates, 379 and 380, again combined by Wittig reaction. As shown in 

scheme 3.36, a racemic approach should be attempted, because the configuration of 

the stereocenter of the side chain is not known. 

 

 

 

Scheme 3.36 Retrosynthetic approach to assemble torrubiellone D (15) from fragments 16, 379 and 

380 

 

     There are known syntheses for fragments 379223,224 and 380.192,225 If the synthesis 

works as planned, a stereoselective synthesis of 380 should allow the generation of 

15 in a stereoselective manner. 

 

 

3.2.3 Synthesis of the tetramic acid part  

     The tetramic acid part for the total synthesis of torrubiellone D (15) was similar to 

the one used for the synthesis of macrocidin A (5) and its analogues 6 – 14.  

     The only difference was the protecting group of the phenolic hydroxyl group. 

Instead of applying the allyl-protecting group, the TBS-protecting group was utilised 

(scheme 3.37), because the side chain fragment should also contain a TBS-
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protecting group (chapter 3.2.4). After the coupling of both major fragments it should 

be possible to execute a global deprotection. 

     At first, Boc-protected L-tyrosine (381) was TBS-protected to give 382. The 

reaction was carried out as a two-step procedure.226 This involves the protection of 

the phenolic hydroxyl functionality and the carboxylic acid moiety and the subsequent 

hydrolysis of the undesired silyl ester with K2CO3 besides the silyl ether. Then, 

tetramic acid 383 was formed using EDC · HCl, DMAP and Meldrum's acid (35).53 

Starting from 381, the complete sequence to 383 was achieved in a total yield of 39% 

(scheme 3.37). 

 

 
 

Scheme 3.37 Synthesis of tetramic acid 383 as a building block for the total synthesis of 

torrubiellone D (15)      

 

 

3.2.4 Synthesis of the side chain  

3.2.4.1  Synthetic plans to generate the side chain  

     As referred to in the last chapter, the TBS-protecting group was chosen as the 

preferred protecting group during the synthesis of 15. Therefore it was once again 

used for the synthesis of desired side chain 384. 

     384 is comprised of two smaller fragments 379 and 385, which were synthesised 

separately (scheme 3.38 and 3.39). C4-fragment 379 should be synthesised in three 

steps starting from ethyl 4-bromocrotonate (386) (scheme 3.38). The sequence 

should start by reduction of 386 to respective aldehyde 387. The next two steps 

would involve the generation of phosphonium bromide 388 and the deprotonation of 

388 to target ylide 379, according to literature procedures.223,224 
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Scheme 3.38 Synthetic plan to synthesise C4-fragment 379 

 

     The second fragment required for the synthesis of side chain 384 was branched 

compound 385. 385 should be derived from commercially available diethyl 

ethylmalonate (389) (scheme 3.39). First of all, 389 should be reduced to 

symmetrical diol 390, before one hydroxyl group should be TBS-protected to give 

391. From this stage on, the work should be continued with a racemic mixture of 391 

for the rest of the synthesis. Final oxidation to aldehyde 385 should precede the 

coupling of fragment 379 with fragment 385 by Wittig reaction to complete the 

synthesis of side chain 384. 

 

 
 

Scheme 3.39 Synthetic plan to synthesise building block 385 and combination with 379 to construct 

complete side chain 384 

 

 

3.2.4.2 Synthesis of two different C4-fragments  

     Two different C4-fragments were synthesised. In addition to originally proposed 

side chain 379, alternative building block 392 was prepared to be more flexible in the 

following reactions.  
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     The sequence to synthesise 379 started with commercially available ethyl 

4-bromocrotonate (386). In the beginning, the possibility of reducing the ethyl ester of 

386 to aldehyde 387 was tested (scheme 3.40).227 DIBAL-H was used as the 

reducing agent.152,216 Simultaneously, two products were detected: desired aldehyde 

387 and allylic alcohol 393. Since the overreduction of 386 to 393 could not be 

avoided, 386 was entirely transformed into alcohol 393 and oxidised from there by 

applying PCC, to desired compound 387 (scheme 3.40).194,195 387 was very labile 

when exposed to air and easily decomposed, which made the determination of the 

exact yield more complicated. 

 

 

 

Scheme 3.40 Selective transformation of ethyl ester 386 to aldehyde 387 in a two-step reduction/ 

oxidation sequence152,195,216 and finalisation of the synthesis of unsaturated C4-

fragment 379223,224,228 

 

     With aldehyde 387 in hand, the two-step conversion into ylide 379 was 

undertaken (scheme 3.40). As described in literature,223,224,228 387 was reacted with 

PPh3 in benzene to give phosphonium bromide 388, which displayed a similar 

instability as observed for aldehyde 387. Therefore, the deprotonation to ylide 379 

was performed without delay upon treatment with 1M NaOH. Ylide 379 was obtained 

as a deep red solid in a yield of approximately 75%.  

     To avoid isolation and purification of unstable intermediates 393 and 387, the 

whole sequence starting from 386 to give 379 was carried out in quick succession 

under argon atmosphere. 379 was produced in a yield of 30% over four steps. 
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     As a safeguard, unsaturated compound 392 was synthesised directly from 386 by 

reaction with PPh3 (scheme 3.41).229,230 392 has such a high stability, that the 

deprotonation to form the ylide should be carried out in situ, prior to the Wittig 

reaction. 

 

 

 

Scheme 3.41 Formation of phosphonium bromide 392 from ethyl 4-bromocrotonate (386)229,230 

 

     In the end, two potential coupling partners were generated (379 and 392), which 

could be reacted with fragment 385 in a Wittig reaction to either form unsaturated 

building block 384 or a precursor that in turn could be transformed into 384 in two 

steps. The coupling experiments are presented in chapter 3.2.4.4.   

 

 

3.2.4.3 Synthesis of the racemic aldehyde fragment  

     The synthesis of second building block 385 for the creation of building block 384 

started with diethyl ethylmalonate (389) according to a literature procedure192. The 

first step was a simple reduction of both ethyl esters functionalities to respective diol 

390. Different methods to achieve the reduction, either by using lithium aluminium 

hydride (LiAlH4)
192,231 or NaBH4,

232 were found but none produced 390 in yields 

higher than 12%. It was discovered that the reasons for this were the low boiling point 

of 390 and its low solubility in low boiling solvents. In the end, the yields reported in 

literature, were reproduced by the use of LiAlH4 and a continuous extraction 

apparatus for five days (scheme 3.42).231  

     The next step to desired aldehyde 385 was the mono-TBS-protection of diol 390. 

Statistically, only a maximum yield of 50% of 391 was to be expected. Three different 

alternatives were tried, employing imidazole at room temperature172, nBuLi at 

−78 °C192 and sodium hydride (NaH) at room temperature.233 Together with TBSCl, 

imidazole generated desired mono-protected compound 391 in 22% yield. The 
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experiment with nBuLi showed the best results with 88% yield (scheme 3.42) and the 

last one with NaH gave 391 in a yield of 76%. Again, after work up, the evaporation 

of the solvents used was performed gently because of the high volatility of 391. 

 

 

 

Scheme 3.42 Synthetic route towards aldehyde 385 by reduction of 389 to diol 390,231 mono-TBS-

protection192 and oxidation of alcohol 391192,234; picture of a continuous extraction 

apparatus for solvents with a higher density than water 

 

     Continuing with 391, the oxidation to corresponding aldehyde 385 was the last 

step to conclude the synthesis of the building block. Different methods were screened 

to determine the optimal procedure. In the beginning, a PCC oxidation was 

tested194,195 but no desired product could be isolated due to complete decomposition 

of 391. The same negative result was achieved when using tetrapropylammonium 

perruthenate (TPAP)235,236 and N-methylmorpholine-N-oxide (NMO) as oxidant and 

co-oxidant.  Positive results were provided by applying either Swern oxidation 

conditions (oxalyl chloride, dimethylsulfoxide (DMSO) and NEt3)
192,234 or DMP as an 

oxidant.105. The Swern oxidation turned out to be superior and generated 385 in a 

yield of 85% instead of only 50% when DMP was utilised.  

     In the end 385 was constructed in an overall yield of 72% over three steps and 

was available for the combination via Wittig reaction with 379 or 392.   
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3.2.4.4 Synthesis of the aldehyde side chain  

     With ylide 379 and aldehyde 385 in hand, the synthesis of unsaturated aldehyde 

building block 384 was undertaken. Both fragments were subjected to standard Wittig 

conditions. The reaction was carried out according to Rodriguez et al.237 who also 

used 379 as a means of introducing a C4 fragment (scheme 3.43), but no product 

could be isolated. Neither the change from CH2Cl2 to THF as a solvent nor the 

increase in reaction temperature gave desired product 384. Another method was 

tried, carrying out the reaction in a mixture of H2O and THF but without success.238  

     Alternatively, the olefination was repeated with second C4 building block 392 

instead of 379 (scheme 3.43). Phosphonium bromide 392 was transformed into the 

corresponding ylide in situ by the use of KOtBu. In a second step, aldehyde 385 was 

added.230 Although both educts were consumed in the course of the reaction desired 

product 394 was only isolated in a yield of 3%. Alterations of the reaction 

conditions225 did not improve the result. 

 

 

 

Scheme 3.43 Unsuccessful Wittig olefinations of ylide 379 or alternative C4 fragment 392 and 

aldehyde 385225,230,237,238 

 

     At this stage, the reason for the failure of the Wittig reaction was examined to 

determine the cause of the problems. Therefore, a series of control experiments were 

carried out to check whether one of the fragments 379, 392 or 385 was responsible 

for the disappointing results.  

     379 and 392 were reacted with commercially available hexanal in the same 

manner as described before and 385 was combined with model ylide  
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Ph3P=CHCOOMe (scheme 3.44). The results showed that the problems could be 

traced back to both C4 fragments. The olefinations to products 395 and 396 were not 

achieved, whereas the Wittig reaction to form 397 worked well. 

 

 

 

Scheme 3.44 Model reactions of the different fragments 379, 392 and 385 to determine their 

reactivity under Wittig reaction conditions 

 

     All facts combined, it was necessary to think of an alternative strategy to 

synthesise side chain 384. 

 

 

3.2.4.5 Alternative strategies to synthesise the el ongated 

aldehyde side chain  

     Due to the fact that the Wittig reaction to form side chain 384 had to be 

abandoned, two alternative strategies were devised. The first approach should 

involve a Horner-Wadsworth-Emmons reaction (HWE) instead of a Wittig olefination 

(scheme 3.45). Instead of using an ylide, phosphonate 398 should be employed to 

produce intermediate 394, which should be reduced and selectively oxidised to give 

desired aldehyde 384.  
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Scheme 3.45 First alternative route to generate side chain 384 employing the HWE olefination 

 

     The second method should be comprised of a step by step elongation of aldehyde 

385 by two consecutive Wittig reaction, reduction and oxidation sequences (scheme 

3.46). Using the simple ylide Ph3P=CHCOOMe the first sequence should give 

intermediate 399 and the second should yield desired product 384. This route is 

based upon a pathway described by Irlapati et al.225 

 

 

 

Scheme 3.46 Stepwise elongation of 385 applying two consecutive three reaction sequences 

 

     Starting with the first approach, the initial task was the synthesis of phosphonate 

398 by an Arbuzov reaction of ethyl 4-bromocrotonate (386) with triethyl phosphite 

(P(OEt)3).
239,240 The reaction gave desired phosphonate 398 in 85% yield (scheme 

3.47). The following step was the execution of the HWE olefination of phosphonate 

398 and aldehyde 385. The first experiments used LiHMDS as a base to activate the 

phosphonate,239 but only a yield of 10% of 394 was achieved. The substitution of 

LiHMDS by NaHMDS or KHMDS241 could not improve the results. Then, another 

procedure utilising the non-nucleophilic 1,8-diazabicycloundec-7-ene (DBU) as a 

base and LiCl as an additive was tested (scheme 3.47).242 The reproducibility turned 

out to be a problem, but the yields now ranged from 25 – 38% and enough material 

of 394 could be produced to continue along the envisioned route.  
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Scheme 3.47 First pathway to synthesise aldehyde 384 by Arbuzov reaction239,240, HWE reaction242, 

DIBAL-H reduction and Swern oxidation225 

 

     From there, the next two steps were well described in literature.123,225,243 First a 

DIBAL-H reduction lead to allylic alcohol 400, which was subsequently transformed 

into desired aldehyde 384 by Swern oxidation (scheme 3.47). 384 was obtained in a 

yield of 48% over two steps.   

     In summary the synthesis of desired aldehyde 384 by the first alternative route 

was managed in four steps, starting from ethyl 4-bromocrotonate (386) in an overall 

yield of 15%. 

     The second alternative pathway to synthesise aldehyde 384 was a step by step 

elongation (scheme 3.48),225 similar to the last two steps of the HWE sequence. 

Building block 385 underwent a Wittig reaction with stabilised ylide Ph3P=CHCOOMe 

to form compound 397. Methyl ester 397 was reduced with DIBAL-H to allylic alcohol 

401216 and instead of a two-step Swern oxidation/Wittig reaction sequence with the 

same ylide as before, a one step procedure was carried out. In situ oxidation of 401 

to the corresponding aldehyde was accomplished by employing manganese(IV)oxide 

(MnO2). Ph3P=CHCOOMe was subsequently added to initiate the Wittig olefination to 

402.244 Methyl ester 402 is isolated in a mediocre yield of 47%. An additional DIBAL-

H reduction, followed by Dess-Martin oxidation245 produced desired product 384 in 

82% yield over the last two steps. 

     Summing up the details of this second route, another way to synthesise aldehyde 

side chain 384 was accomplished. The sequence involved five steps and furnished 

384 in a yield of 27% starting from aldehyde building block 385.  
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Scheme 3.48 Step by step elongation sequence to synthesise aldehyde 384 from 385 

 

     When comparing both alternatives, the HWE route contained less steps but the 

total yield was higher when the step by step elongation route was performed.  

     With fragments 383 (tetramic acid) and 384 (aldehyde) in hand, the next step 

towards the total synthesis of 15 can be attempted. 

 

 

3.2.5 Attempts at the combination of tetramic acid and side 

chain   

     Finally the coupling of tetramic acid fragment 383 with unsaturated aldehyde 384 

could be attempted. Previous work in our group suggested that a coupling of tetramic 

acid 383 with aldehyde 384 should be possible by carrying out the 3-acylation with 

ketenylidene(triphenyl)phosphorane (39).85  

     Scheme 3.49 shows the planned coupling of tetramic acid 383 with aldehyde 

fragment 384.  Betaine structure 403/acylylide  should be formed by reaction of 383 

with 39 before Wittig olefination with aldehyde 384 should produce precursor 404, 

which represents a mixture of diastereomers. This might offer an opportunity to 

separate the diastereomers by column chromatography or preparative HPLC. 

     According to established protocol,85,203,246 phosphorane 39 was reacted with 

tetramic acid 383. 
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Scheme 3.49 Synthetic plan to form torrubiellone D precursor 404 according to Schlenk et al.85 

 

     Reaction control by 31P-NMR showed the formation of ylide 403 (figure 3.7).  

 
Ph3PCCO_2608.012.esp

35 30 25 20 15 10 5 0
Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 In
te

ns
ity

 
AK-II-168-crude Toluol.031.esp

35 30 25 20 15 10 5 0
Chemical Shift (ppm)

-0.05

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

N
or

m
al

iz
ed

 In
te

ns
ity

 

 

Figure 3.7  31P-NMR spectra of phosphorane 39 (upper) and ylide/betaine 403 in toluene (lower) 
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     The signal of 39 can be found at 5.5 ppm, the most prominent signal of 403 at 

15.2 ppm represents the ylidal structure. 22.4 ppm belongs to the betaine structure of 

403 and the signal at 24.6 ppm shows some triphenylphosphine oxide, a 

decomposition product from 39 (a small amount of 403 was isolated, in order to be 

tested biochemically (chapter 3.4.3); isolation was accomplished by solvent 

evaporation of the reaction mixture).  

     During the next step, compound 403 was treated with KOtBu and aldehyde 384. 
31P-NMR showed that the ylide and betaine signals vanished and a signal at 

24.1 ppm could be observed, which was attributed to the presence of 

triphenylphosphine oxide (figure 3.8). 
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Figure 3.8  31P-NMR spectrum of the reaction control after the intended Wittig olefination of 403 

with aldehyde 384 

 

     After work up however, no product could be isolated. Although the crude 1H-NMR 

spectrum gave rise to the formation of desired coupling product 404, after multiple 

purification attempts no traces of 404 were found. Neither purification as described by 

Schlenk et al.85 using an ion exchange column nor purification by standard column 

chromatography was successful.  

     It is known that compounds with cumulated double bonds are prone to 

decomposition when exposed to different light sources. Therefore, the reaction was 

run in the dark and the whole purification process (ion exchange column and column 

chromatography) was repeated with columns that were covered with aluminium foil 

but the results remained the same.  
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3.2.6 Outlook   

     Due to the fact that the desired coupling product 404 could not be isolated from 

the crude reaction mixture, new means of purification will have to be tried. First of all 

a RP column chromatography should be carried out by trying different solvent 

systems with methanol or acetonitrile with and without formic acid as an additive. A 

treatment of the crude product with TFA, to remove the Boc- and presumably the 

TBS-protecting groups should also be taken into consideration. Purification of the 

natural product itself (15) could be accomplished. 

     If all these approaches fail, an alternative method of coupling aldehyde 384 with 

tetramic acid fragment 383 will have to be found. One possibility is illustrated in 

scheme 3.50. It should be based upon work done by Tan et al.247 and instead of 

applying a Wittig olefination, a HWE reaction should be used for the coupling. 

3-Acylation of 383 should lead to precursor 405, which is transformed to 

phosphonate 406. 406 can undergoe a HWE reaction with 384 to give desired 

compound 404. A drawback might be that if the problem of isolating 404 is based 

upon purification, the same problems as before might arise again. In that case, an 

approach via Lacey-Dieckmann cyclisation could prove to be more promising. 

 

 

 

Scheme 3.50 Alternative pathway to synthesise torrubiellone D precursor 404 from tetramic acid 383 

and aldehyde 384247 

 



106                                                                                Results and Discussion 
 

3.3 Synthesis of quinolactacin A2 and contributions  to the 

synthesis of  quinolactacin B2 

3.3.1 Overview  

     Quinolactacins A2 (17) and B2 (18) are both members of a larger quinolactacin 

family (chapter 2.2.3.1).124–132 17 and 18 are, unlike most of the targets presented in 

this thesis, no tetramic acids (figure 3.9). However, the synthetic strategies utilised 

tetramic acid chemistry to generate 17 and 18. The different side chains of 17 and 18 

should be introduced either by L-isoleucine (163) or by L-valine (407) respectively.  

      

 

 

Figure 3.9  Structures of quinolactacins A2 (17) and B2 (18) and their biological precursors 163 

and 407 

 

 

3.3.2 Retrosynthetic analysis  

     The attempt to synthesise the quinolactacins using tetramic acid chemistry was 

ongoing for years prior to this thesis. The motivation was to find a short, efficient and 

atom economic alternative to the syntheses known to date.129–132 With the exception 

of one synthesis131 all others were comprised of a minimum of eight steps and in 

many cases complex and expensive auxiliaries or catalysts were used to install the 

stereocenters.  

     Based upon the work of Abe et al.,81 Yoda et al.80 and Moloney et al.77 a new 

strategy was envisioned to generate 17 and 18. The pyrrolo[3,4-b]quinolone core is 

planned to be generated in the last step from 3-acyltetramic acids 194 or 408. Both 

should be formed by 3-acylation of N-methylanthranilic acid (192) with corresponding 

tetramic acids 191 or 409. The tetramic acids themselves should be derived from the 

respective essential amino acids 163 or 407 from the chiral pool by using Meldrum's 
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acid (35) (chapter 2.1.3.1) (scheme 3.51).48 Due to the fact, that a similar approach 

by Christen101 failed when protected tetramic acids were used, it is of importance to 

carry out the following route with the deprotected derivatives 191 and 409. 

 

 

 

Scheme 3.51 Retrosynthetic approach to synthesise quinolactacins A2 (17) and B2 (18) 

 

 

3.3.3 Synthesis of quinolactacins A2 and quinolacta cin B2 

precursors     

     The synthetic sequence commenced with Boc-protection of L-isoleucine (163) and 

L-valine (407) to compounds 181 and 410.99,152 By using EDC · HCl instead of DCC, 

the syntheses of tetramic acids 411 and 412 with Meldrum's acid (35) were 

improved.53 The Boc-protecting group was cleaved during the next reaction by 

exposure of 411 and 412 to TFA to give desired products 191 and 409. The products 

were crystallised to yield 191 and 409 as glittering white solids in yields of 72% and 

60% respectively over three steps (scheme 3.52).  
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Scheme 3.52 Synthesis of L-isoleucine and L-valine derived tetramic acids 191 and 409 according to 

Hosseini et al.53 

 

     To prove the validity of the new strategy, the following steps were carried out only 

with tetramic acid 191. 4-O-Acylation of 191 with N-methylanthranilic acid (192) was 

achieved following the procedure of Yoda et al. (scheme 3.53).78  

 

 

 

Scheme 3.53 Synthesis of quinolactacin A2 (17) using tetramic acid 191 and N-methylanthranilic 

acid (192)77,78 
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     The purification at this stage of the synthesis was crucial for the rest of the 

synthesis. Compound 193 is still unpolar enough to be purified by silica gel column 

chromatography and the outcome of the following steps depended upon the purity of 

4-O-acyl precursor 193. 

     The critical steps of this synthesis were the following acyl rearrangement to form 

3-acyltetramic acid 194 and the subsequent cyclisation towards natural product 17. 

For the initiation of the rearrangement acetone cyanohydrin was used in combination 

with NEt3 (scheme 3.53).77 

     The reaction is monitored closely by analytical HPLC (figure 3.10). After 4 h still 

much starting material (tR = 34 min) and two products (tR = 10 min; tR = 11 min) were 

observed. When looking at the spectrum 2 h later, only the second product signal 

grew stronger, although there was still starting material to be seen. After 47 h, the 

spectrum remained unchanged. Despite leftover starting material, the crude product 

was purified by preparative HPLC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Analytical HPLC spectra after 4 h (top left), 6 h (top right), 30 h (bottom left) and 47 h 

(bottom right) of the formation of natural product 17 from 4-O-acyltetramic acid 193 

 

     The two products were separated and analysed. The NMR-spectra of the small 

peak (10 min) showed that it belonged to 3-acyltetramic acid 194. The second 
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substance (11 min) was identified as the desired natural product 17. An explanation 

was that 3-acyltetramic acid 194 underwent spontaneous cyclisation to 17. 

     The published values of the physiochemical and spectral properties of 17 were 

compared with literature.125 The appearance (white powder), the Rf value (0.75 (obs.) 

vs. 0.73 (pub.) in CHCl3/MeOH 4:1), the decomposition point (256 °C (obs.) vs. 

262 °C (pub.)) and the IR spectroscopical data matched the published values. Mass 

spectrometry confirmed the desired mass of 270 g/mol. The specific rotation was the 

only value, which did not match. Literature claims the value to be +17.9° (c = 0.13) 

when measured in DMSO.127,130,131 The value found for the synthesised compound 

when measured in DMSO is −17.1° (c = 0.2). This observation could not be 

explained due to the fact that both stereocenters were not introduced chemically but 

were set by commercially available L-isoleucine (163). Furthermore, if one of the 

reactions carried out would have caused a stereocenter to collapse, racemisation 

would have been expected. At this point, a complete inversion of the specific rotation 

was seen, which could not be understood when looking at the reactions involved in 

the synthesis, which are mostly known from literature. That only left the 

rearrangement as the cause of the mismatched stereochemistry.  

     The only thing that might have happened was the epimerisation at C-3, which was 

described in detail (chapter 2.2.3.5).127 This would cause 17 to epimerise to 

quinolactacin A1 (146) (scheme 2.36), but this would not explain the mismatched 

specific rotation. The specific rotation of 146 is reported to be +10.8° (c = 0.39)131 

and +30.3° (c = 0.16),127 both in DMSO. Both values did not match the negative 

value observed for the synthesised product. In addition, the chemical shifts in the 

NMR spectra of 146126 differ in some important points from the shifts of 17, making 

the assumption that 146 was synthesised instead of 17 all the more implausible. 

Moreover, a mixture of both epimers should result in signal doubling in NMR and 

should also be detected in the analytical HPLC.  

     Table 3.2 shows the published 1H- and 13C-NMR values of 17 compared to the 

ones observed.  
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Table 3.2  Comparison of the 1H (300 MHz) and 13C (75 MHz) NMR chemical shifts of 

quinolactacin A2 (17) in DMSO-d6
125 

 

 

 

 
1
H-NMR (δ)  

13
C-NMR (δ) 

        observed published   observed published 

1     1 168.4 168.3 

2-NH 8.13 (1H) 8.17 (1H) 2-NH     

3 4.82 (1H) 4.84 (1H) 3 58.9 58.9 

3a     3a 164.2 164.0 

4a     4a 141.2 141.2 

5 7.82 – 7.83 (1H) 7.83 (1H) 5 117.1 117.0 

6 7.79 – 7.82 (1H) 7.81 (1H) 6 132.5 132.4 

7 7.45 – 7.51 (1H) 7.48 (1H) 7 124.3 124.2 

8 8.23 – 8.27 (1H) 8.26 (1H) 8 125.8 125.8 

8a     8a 128.1 128.0 

9     9 171.5 171.5 

9a     9a 110.4 110.3 

4-Me 3.84 (3H) 3.86 (3H) 4-Me 36.1 36.0 

3-OH     3-OH     

1' 2.18 (1H) 2.19 (1H) 1' 35.8 35.7 

2' 0.71 – 0.95 (2H) 0.83 (1H) 2' 20.8 20.8 

 
  0.88 (1H) 

 
    

3' 0.65 (3H) 0.65 (3H) 3' 11.5 11.4 

1'-Me 1.13 (3H) 1.14 (3H) 1'-Me 17.6 17.5 
  

 

     The whole rearrangement/cyclisation reaction was repeated and after purification 

by preparative HPLC the isolated product was analysed by analytical HPLC again, 

showing a single peak. After dissolving the product in methanol and storing it for one 

week, the analytical process was repeated using the standard C-18 column and a 

chiral HPLC column. Two peaks were detected (figure 3.11), acknowledging that 

epimerisation takes place after prolonged exposure to protic solvents.  
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     The only possibilities remaining were the complete conversion of both 

stereocenters or the conversion of the stereocenter in the side chain. Both scenarios 

were not very likely. Whereas the hydrogen at C-3 is quite acidic and might be prone 

to racemisation, the hydrogen at C-1' is not. 

 

 

 

Figure 3.11 HPLC chromatogram of synthesised compound 17 on a chiral analytical HPLC column 

after prolonged exposure in methanol (15% MeCN, after 20 min in 10 min to 100% 

MeCN) 

 

     In order to validate the results, a second way to synthesise 17 was suggested. 

The alternative pathway (scheme 3.54) was inspired by the total synthesis of 

quinolactacide, a compound related to the quinolactacins.81,248 Instead of using 

N-methylanthranilic acid (192), ortho-nitrobenzoic acid (413) was employed. The 

process should be carried out via 4-O-acylation to 414 and by initiation of the 

rearrangement with acetone cyanohydrin to form 415. Thereafter, the nitro compound 

should be reduced by hydrogenation to amine 416, which should cyclise to 

quinolactacin A2 precursor 417. Subsequent methylation of enamine 417 should 

generate 17. 

     To realise this strategy, 413 had to be synthesised. Two different approaches 

known from literature were performed. The first one was a KMnO4 oxidation of ortho-

nitrotoluene in H2O,249 which gave 413 in yields up to 30%. The second method was 

an oxidation of ortho-nitrobenzaldehyde, employing oxone® (potassium peroxomono-

sulfate) as an oxidant.250 413 was produced in a yield of 82%. 
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Scheme 3.54 Alternative sequence to synthesise quinolactacin A2 (17) using ortho-nitrobenzoic acid 

(413) instead of N-methylanthranilic acid (192) 

 

     With 413 in hand, the 4-O-acylation was undertaken, utilising the same procedure 

as before (scheme 3.55). 4-O-Acyltetramic acid 414 was obtained after careful 

purification in a yield of 80%. The next step was the Fries-rearrangement of 414 to 

3-acyltetramic acid 415 with acetone cyanohydrin (scheme 3.55). The same 

procedure as before77 was employed and target molecule 415 was isolated in a yield 

of 64%. Purification was carried out by RP column chromatography and confirmed by 

HPLC. 
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Scheme 3.55 4-O-Acylation of L-isoleucine derived tetramic acid 191 with ortho-nitrobenzoic acid 

(413)78 and subsequent rearrangement to 3-acyl compound 41577 

 

     The reductive hydrogenation of the nitro-group in 415 to amine 416 was 

monitored closely by analytical HPLC, due to the fact that the cyclisation to 417 could 

have occurred spontaneously. As a catalyst palladium on charcoal (10%) was used 

(scheme 3.56).81  

 

 

 

 

 

 

 

 

 

Scheme 3.56 Palladium catalysed hydrogenation of 3-acyltetramic acid 415 and spontaneous 

cyclisation to quinolactacin A2 precursor 41781 and analytical HPLC spectra (288 nm, 

40% MeOH, after 20 min in 10 min to 100% MeOH) of the reaction after 2.5 h (left) 

and 14 h (right) 
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     It was observed, that there was still starting material left after 2.5 h (scheme 3.56). 

After 14 h the reaction was terminated because analytical HPLC showed one major 

product. NMR spectroscopy revealed that the isolated solid represented the cyclised 

form 417. No traces of intermediate 3-acyl compound 416 were found. 

     The last step to finish the synthesis of 17 was the methylation of the enamine in 

417. This transformation had to be achieved selectively next to the amide moiety. 

Another problem which needed to be addressed was the possibility of a side 

reaction, discussed by Zhang et al. during their synthesis of quinolactacin B2 (18).130 

Besides desired product 18, the O-methylated product was isolated when the 

methylation was carried out using potassium carbonate (K2CO3) and methyl iodide 

(MeI). Shankaraiah et al. performed the same methylation with NaHMDS and MeI in 

yields above 90% without mentioning the existence of a side product.132 

     Scheme 3.57 shows desired product 17 and undesired side product 418. The 

reason for the existence of the side product is mesomeric structure 419b and the 

driving force of this side reaction is the installation of another aromatic ring. 

 

 

 

Scheme 3.57 Possible products when trying to methylate 417 by the use of base and a methylating 

agent 

 

     To circumvent this problem a reductive amination reaction was suggested. 

Possible reagents to facilitate this reaction should be cyanoborohydride (NaBH3CN) 

or sodium triacetoxyborohydride (NaBH(OCOCH3)3). Following a well described 
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procedure,251,252 precursor 417 was reacted with paraformaldehyde and 

NaBH(OCOCH3)3 but no reaction could be witnessed. The change of solvent from 

DMF to DMSO remained ineffective. However, when the temperature was raised 

from room temperature to 80 °C, a reaction was observed (scheme 3.58). 

 

 

 

Scheme 3.58 Trials for the methylation of 501 using different reagents and the structure hypothetical 

products 

 

     Analytical HPLC showed many products (figure 3.12), from which five can be 

thought of in advance (17, methylated aromatic compound 418, methylated amide 

420, dimethylated compound 421 and dimethylated aromatic compound 422) 

(scheme 3.58). No selectivity for one single product was observed. The reaction was 

set aside, although some possibilities like the use of other formaldehyde sources (in 

situ generated formaldehyde, formalin solution, trioxane) could still be explored.  

     In a second attempt, trimethylsilyldiazomethane253 was employed to initiate direct 

methylation of the enamine, but no reaction was observed. The same negative result 

was found when a step by step approach was applied. The plan was to carry out the 

formylation of the enamine with the help of Ac2O and formic acid. Subsequent 

reduction by the use of NaBH4 should yield desired product 17. 
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Figure 3.12 Analytical HPLC spectrum (288 nm, 40% MeOH, after 20 min in 10 min to 100% 

MeOH) of the unselective reaction of 417 with sodium triacetoxyborohydride and 

paraformaldehyde 

 

     As a last resort, the simple method of Zhang et al. was used (scheme 3.59).130 

After 1 h, analytical HPLC showed one major product peak besides educt 417, 

belonging to a product which possessed the anticipated retention time of 11 min 

(scheme 3.59). After 5 h nearly all of 417 was consumed. Analytical HPLC of the 

purified substance displayed one single peak. In the end, desired product 17 was 

isolated in a yield of 82%. 

 

 

 

 

 

 

 

 

 

Scheme 3.59 Finalisation of the second route towards quinolactacin A2 (17) by selective 

methylation130 and analytical HPLC spectra (288 nm, 40% MeOH, after 20 min in 

10 min to 100% MeOH) of the reaction mixture after 1 h (left) and 5 h (right)  
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     To be able to compare the substance isolated when following the first route with 

the one synthesised by the second route, the analytics were repeated. NMR spectra, 

decomposition point, Rf value, IR spectra and mass spectra were identical. The 

interesting fact was the value of the specific rotation. As before the value is −17.1° 

(c = 0.2) in DMSO. On the one hand, the result was satisfying because it confirms 

that in both cases the same product was produced. However, on the other hand the 

wrong specific rotation suggested that in both cases the wrong product was 

synthesised. To dispel all remaining doubts the melting point and specific rotation of 

L-isoleucine (163) was checked. Both values match the published ones. Additionally, 

the specific rotations were measured at two separate polarimeters. The mystery of 

the wrong specific rotation remains unsolved. 

     Both procedures described in the last section for the synthesis of 17 were then 

applied to the generation of 18. It should be interesting to check the specific rotation 

of 18, because it contains one less stereocenter.  

     As a starting point, L-valine (407) was used. The synthesis of tetramic acid 409 is 

shown in scheme 3.111. From there, 4-O-acylations with N-methylanthranilic acid 

(192) and ortho-nitrobenzoic acid (413) were carried out (scheme 3.60), but only nitro 

compound 423 could be isolated in a yield of 79%.  

     The last compound prepared in the course of this thesis was the 3-acyltetramic 

424 by Fries-rearrangement from 423 (scheme 3.60). Again acetone cyanohydrin 

paired with NEt3 was used to facilitate the acyl shift and product 424 was isolated in 

60% yield. 
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Scheme 3.60 4-O-Acylation experiments of tetramic acid 409 with ortho-nitrobenzoic acid (413) and 

synthesis of 3-acyltetramic acid 424 via acyl rearrangement  
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3.3.4 Conclusion and outlook  

     In general, the synthesis of quinolactacin A2 (17) was accomplished by two 

separate synthetical pathways. The only piece that remained unsolved was the value 

of the specific rotation. Most of the sources of error were investigated, without 

success. The mystery remains as to why the value was the complete reverse, instead 

of a different value, as should be the case when racemisation of a stereocenter 

would have occurred. The error had to be located at the stereocenter of the side 

chain, because the change in the stereochemical configuration at C-3 was ruled out. 

Furthermore, it cannot be ruled out, that the value of the specific rotation presented in 

literature is incorrect. The way to determine the exact stereochemistry would be by 

X-ray crystallography, but to date crystallisation efforts remain in vain. 

     And yet, the synthesis should be repeated using L-alloisoleucine (425) instead of 

L-isoleucine (163) so as to compare the generated optical rotation value (figure 3.13). 

 

 

 

 

Figure 3.13 Comparison of the structures of L-isoleucine (163) and L-alloisoleucine (425) 

 

     It remains to be seen whether the synthesis of quinolactacin B2 (18) will 

demonstrate the same problems due to the application of the same chemical 

transformations. If the value of the specific rotation should fit, it can be assumed that 

there is a problem with the side chain stereocenter of 17 during the reaction with 

acetone cyanohydrin, since all other steps are well described in literature.  

     Therefore, the remaining challenges are the repetition of the synthetic route and 

the finalisation of the syntheses of 18 (scheme 3.61) and the comparison of the 

analytical parameters of the synthesised compounds to the published ones. 
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Scheme 3.61 Remaining steps of the two separate routes towards quinolactacin B2 (18) 

 

     Generally speaking, it has to be emphasised that the basis of the successful 

synthesis of 17 and 18 was the use of unprotected tetramic acids 191 and 409. All 

attempts to achieve the synthesis using Boc-protected derivatives 411 and 412 

failed. This information could prove valuable when planning new total syntheses of 

compounds incorporating a tetramic acid moiety. It could indeed be used to alter the 

synthetic strategies towards macrocidin A (5) and torrubiellone D (15).  

 

 

3.4 Synthesis of potential adenylyl cyclase inhibit ors 

3.4.1 Overview and synthetical objective  

     The last part of the thesis focused on the synthesis of possible inhibitors for the 

enzyme adenylyl cyclase. The enzyme is required to synthesise cyclic adenosine-

3',5'-monophosphate (cAMP) (205), which plays an important role as a second 

messenger in cell-to-cell communication and regulates different processes within the 

cell (chapter 2.2.4.3).145  

     Computational studies revealed that L-tryptophan derived 3-acyltetramic acid 208 

might act as a potential inhibitor for the adenylyl cyclase. In addition it is known that 

tetramic and tetronic acids were found to exhibit an inhibitory effect upon 

undecaprenyl pyrophosphate synthase (UPPS)254 and phosphatases255 by occupying 
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the phosphate binding site. Therefore, it should be investigated whether a similar 

mode of action can be identified when working with cyclases, such as the human 

soluble adenylyl cyclase.  

     The first objective of this biochemical project was the synthesis of 208 and to 

subject it to biochemical testing. The biochemical testing was carried out by Dr. S. 

Kleinbölting of Prof. C. Steegborn's group (biochemistry department). The second 

part of this project was comprised of the generation of more compounds, which could 

present potential candidates for the adenylyl cyclase inhibition. 

 

 

3.4.2 Synthesis of a L-tryptophan derived 3-acyltetramic acid  

     The first approach to synthesise potential inhibitor 208 was planned as done 

before by tetramic acid generation via Meldrum's acid (35)48 and subsequent 

3-acylation with the respective acid (scheme 3.62).76,79,80 The sequence should start 

from commercially available Boc-L-tryptophan (427). 427 should be transformed into 

the corresponding tetramic acid 428 and subsequent 3-acylation and Boc-

deprotection should give target molecule 208. Whether standard tetramic acid 

chemistry can be performed without any interference of the enamine moiety present 

in the side chain of 427 still requires exploration.  

 

 

 

Scheme 3.62 Synthetic plan to form potential inhibitor 208 starting from Boc-L-tryptophan (427) 

 

     The first step of the synthetic route was the formation of the tetramic acid core by 

applying the protocol of Jouin et al.48 using Meldrum's acid (35), DCC and DMAP. No 

definable product could be isolated. The same discouraging result was obtained 

when, instead of DCC and DMAP, the condensation agent T3P® is used.154  
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     It was suggested that the free enamine might disrupt the desired reaction. 

Experiments to protect the moiety by introducing either an allyl-256 or a fluorenyl-

methyloxycarbonyl-protecting group257 (Fmoc) were unsuccessful.  

      As an alternative, commercially available formylated compound 429 was 

envisioned to serve as the new educt for the synthesis of corresponding tetramic acid 

430. The tetramic acid synthesis was achieved in a yield of 75% (scheme 3.63).  

     The next step involved the 3-acetylation of tetramic acid 430. The first attempt 

was made employing AcOH and following the Yoda protocol.79 Desired product 431 

could not be obtained. Therefore, an alternative acetylation method was tested, 

utilising ketenylidene(triphenyl)phosphorane (39) to introduce the required 3-acetyl 

substituent (scheme 3.63).203,246  

 

 

 

Scheme 3.63 Tetramic acid synthesis starting from formyl-protected compound 429, 3-acetylation 

attempts of 430 and the one-pot synthesis of target molecule 20879,203,246 

 

     Tetramic acid 430 was reacted with 39 and resulting ylide 432 was hydrolysed by 

the addition of NaOH in a one-pot procedure. In fact, the anticipated product 431 was 

not obtained. Instead, target molecule 208 was isolated. The basic hydrolysis of ylide 
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432 and the acidic work up, using hydrogen bromide (HBr), did not only liberate the 

3-acetyl moiety but also lead to a global Boc- and formyl-deprotection. After 

purification by preparative HPLC, the compound was ready to be used in biochemical 

experiments.   

     The biochemical evaluation by the group of Prof. C. Steegborn, did not display 

any relevant inhibitory effect of 208 (figure 3.14).258 In order to measure the 

magnitude of the inhibitory effect of 208, an adenylyl cyclase activity assay is 

performed.259 A buffered solution of the cyclase was incubated with the test 

substance and ATP at 37 °C. The reaction was then terminated by flash freezing the 

mixture in liquid nitrogen before the protein was denatured and the remaining 

solution analysed by HPLC. The amount of generated cAMP was recorded and 

compared to the amount of cAMP generated in a control sample, without test 

substance 208. With these values the relative activity of the adenylyl cyclase was 

calculated. As shown in figure 3.20, the relative activity of the protein still amounts to 

almost  80%. This means that the inhibitory effect of tetramic acid 208 is only minimal 

with respect to the high concentration (100 µM), which was used. 

 

 

 

Figure 3.14 Relative activity (%) of adenylyl cyclase in the absence (DMSO) or presence of 

tetramic acid 208 (100 µM) and in the presence of ATP (5 mM); the amount of 

generated cAMP measured by HPLC was calculated in respect to DMSO-treated 

controls set to 100% +- standard deviation. 
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3.4.3 Synthesis of an extended substance library  

     After these results, a broader approach was suggested. Due to the lack of 

fundamental knowledge as to which chemical moiety might be responsible for a 

potential inhibition of the enzyme, different substances were discussed, which should 

be tested in further experiments. 

     Different classes of tetramic acids were thought of, with varying substituents at the 

positions 1, 3 and 5 of the tetramic acid core. Figure 3.15 shows the ten candidates, 

which should be synthesised and biochemically evaluated.  

 

 

 

Figure 3.15 Library of substances for biological evaluation as potential cAMP cyclase inhibitor 
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     In the first row, three tetramic acids are shown, without any substituent at C-3. 433 

should be derived from L-phenylalanine (137), whereas 116 and 383 should be 

derived from L-tyrosine (16). The second row consists of 3-acetyltetramic acids, 

derived from the same two amino acids (434 – 436). The last four molecules 

illustrated should represent a miscellaneous mixture of different structural features, 

namely: a 3-acyltetramic acid bearing an unpolar 3-acyl chain (238), an acetylylide at 

C-3 (403), a 4-O-acyltetramic acid (193) and a macrocyclic compound (6). 

     From the ten compounds displayed in figure 3.21, six were already synthesised in 

the course of this thesis (116: chapter 3.1.2.2; 383: chapter 3.2.3; 238: chapter 

3.1.2.4; 403: chapter 3.2.5 (intermediate on the way to 404); 193: chapter 3.3.3; 6: 

chapter 3.1.2.5). This means that only L-phenylalanine derived compounds 433 and 

434 and L-tyrosine derived substances 435 and 436 needed to be synthesised. 

     At first, the synthesis of 433 and 434 was undertaken. The sequence started 

without problems, transforming amino acid 137 into its corresponding Boc-protected 

compound 437.152,260 The generation of tetramic acid 438 was achieved by applying 

EDC · HCl, DMAP and Meldrum's acid (35).53 Over both steps a yield of 73% was 

obtained (scheme 3.64).  

 

 

 

Scheme 3.64 Two-step sequence to transform L-phenylalanine (137) into respective Boc-protected 

tetramic acid 43853,152,260 

 

     Crystallisation of 438 produced crystals, which were measured by X-ray 

crystallography. The result is shown in figure 3.16. Few crystal structures of amino 

acid derived tetramic acids are known. Its crystal system can be described as simple 

orthorhombic.   
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Figure 3.16 Molecular structure of N-(tert-butoxycarbonyl)-(5S)-(5-benzyl)-pyrrolidine-2,4-dione 

(438) as ellipsoid representations showing the atomic numbering schemes (H-atoms 

omitted). Selected bond lengths [Å] and angles [°]: O2—C4 1.341, O4—C2 1.238, 

N1—C1 1.411, N1—C2 1.381, N1—C5 1.462, C2—C3 1.456, C3—C4 1.332, C4—C5 

1.497; O2—C4—C5 117.9, O4—C2—N1 125.3, O4—C2—C3 127.7, N1—C5—C6 

113.9, C2—N1—C5 111.7, C3—C4—O2 130.1, C4—C3—C2 108.5, C4—C5—C6 

113.4. 

 

     After that, the synthetic pathways deviated. To generate unprotected tetramic acid 

433, 438 was subjected to TFA in CH2Cl2 (scheme 3.65).53 By crystallisation the 

product was obtained in a yield of 66%.  

 

 

 

Scheme 3.65 Transformation of Boc-protected tetramic acid 438 either into deprotected tetramic 

acid 43353 or into deprotected 3-acetyltetramic acid 434203,246 
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     In contrast, to produce 3-acetylated product 434, 438 was reacted with 

phosphorane 55 and the resulting ylide was hydrolysed.203,246 Acidic work up with 

HBr and preparative HPLC gave desired compound 434 in a yield of 39% (scheme 

3.65). 

     The last two substances that were prepared for the biochemical evaluation are 

L-tyrosine derived compounds 435 and 436. Both compounds were prepared from 

parent compound 116 (scheme 3.66).  

 

 

 

Scheme 3.66 Synthesis of target molecules 435203,246 and 436261 starting from L-tyrosine derived 

tetramic acid 116 

 

     According to the procedures shown before, 116 was subjected to phosphorane 

39, the resulting ylide hydrolysed and the Boc-protecting group cleaved in an one-pot 

procedure to give 435 in a yield of 27%.203,246 The allyl-deprotection was carried out 

utilising tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4) and K2CO3.
152,261 

Desired product 436 was obtained in a yield of 70% (scheme 3.66). 

     With all ten substances in hand, the biochemical evaluation was performed. The 

results generated by Dr. S. Kleinbölting from Prof. C. Steegborn's group, including 

the results with tryptophan derived compound 208, were disillusioning. Figure 3.17 

illustrates the results.258 Most of the compounds showed no significant activity. Only 

compounds 403 and 193 displayed slight activity. Furthermore, the interaction of ylide 

403 could simply be a result of ionic interactions between the substrate and the 

enzyme. Interestingly, the only 4-O-acyltetramic acid 193 showed more activity than 

all the other tetramic acids and 3-acyltetramic acids. 
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Figure 3.17 Relative activity (%) of adenylyl cyclase in the absence (

presence of various 

amount of generated cAMP 

treated controls set to 100% +

compounds 403 

 

 

3.4.4 Conclusions 
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4 Summary 

     This thesis was divided into four major parts. The first three parts were dedicated 

to the syntheses of macrocidin A (5) and related analogues (6 – 14), to the synthesis 

of torrubiellone D (15) and to the syntheses of quinolactacin A2 (17) and B2 (18). The 

last part involved the synthesis of potential adenylyl cyclase inhibitors and their 

biochemical evaluation. 

     The main tasks of this thesis revolved around the natural product macrocidin A (5) 

and its analogues (6 – 14) (figure 4.1).95  

 

 

 

Figure 4.1  Structures of macrocidin A (5) and macrocidin A derived target molecules 6 – 14 

 

     From the four different side chains (210 – 213) required to synthesise 6 – 9, two 

(211 and 213) were synthesised in three steps (esterification, borane reduction and 

HBr mediated bromination and ester hydrolysis) (scheme 4.1), whereas the others 

(210 and 212) were commercially available.  

     Literature known L-tyrosine derived tetramic acid 11698,152 was coupled to side 

chains 210 – 213 by applying 3-acylation condition of Yoshii et al.76 and Yoda et al.79 

Macroetherification via palladium catalysis98,152 and subsequent deprotection 

provided 6 and 8 over two steps. The synthesis of 7 and 9 is yet to be completed. 
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Scheme 4.1 Synthesis of analogues 6 – 9; reagents and conditions: (i) EtOH, H2SO4, CH2Cl2, rfx, 

14 h; (ii) BH3 · THF, THF, −20 °C to rt, 14 h; (iii) 48% HBraq, rfx, 15 min; (iv) a) DCC, 

DMAP, CH2Cl2, 0 °C to rt, 1.5 h; b) NEt3, CaCl2, rt, 14 h; (v) Pd(PPh3)4 cat., K2CO3, 

THF/MeOH, rfx, 48 h; (vi) TFA, CH2Cl2, rt, 15 min. 

 

     The second group of macrocidin A derivatives (10 – 13) possessed the original 

methyl group in the side chain, which was introduced stereoselectively during the 

synthesis of the variable side chains. The synthesis of these side chains (214 – 217), 

especially the stereoselective introduction of the methyl group was studied 

thoroughly. 

     Scheme 4.2 summarises the nine step procedure from dicarboxylic acids       

218 – 221 towards the desired side chains 214 – 217.  

     It included the desymmetrisation of 218 – 221 to TBS-protected esters 277 – 280 

via esterification, borane reduction and TBS-protection. Saponification, stereo-

selective methylation using Evans auxiliary 289, transformation of the TBS-protected 

alcohol into the bromide and auxiliary cleavage finalised the sequence.  

     The route was completely established and optimised, although it was only carried 

out to the final stage for compounds 215 and 216. Furthermore, the syntheses of 

target macrocycles 10 – 13 are still pending. 
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Scheme 4.2 Synthesis of α-methylated bromo acids 214 – 217; reagents and conditions: (i) EtOH, 

H2SO4, CH2Cl2, rfx, 14 h; (ii) BH3 · THF, THF, −20 °C to rt, 14 h; (iii) imidazole, TBSCl, 

DMF, 0 °C to rt, 14 h; (iv) LiOH, THF/H2O, 0 °C to rt, 14 h; (v) a) PivCl, NEt3, THF, 

−20 °C, 1 h; b) (R)-4-benzyloxazolidinone (289), LiCl, −20 °C to rt, 3 h; (vi) a) 

NaHMDS, THF, −78 °C, 1 h; b) MeI, −78 °C to rt, 5 h; (vii) I) TBAF, THF, 0 °C to rt, 

3 h; II) 1% HCl in EtOH, rt, 5 min; viii) CBr4, PPh3, CH2Cl2, rt, 1 h; ix) LiOH, H2O2, 

THF/H2O, 0 °C, 1 h. 

 

     The third macrocidin A (5) inspired target molecule was a crownether analogue 

(14). Again, the synthesis of required side chain 323 was accomplished (scheme 

4.3), but only initial experiments were carried out to produce macrocycle 14.  

     The appropriate side chain was synthesised in six steps, starting with a mono-

TBS-protection of triethylene glycol (319) followed by a TEMPO oxidation and 

esterification of the generated carboxylic acid to ethyl ester 330 or benzyl ester 332. 

Liberation of the remaining alcohol, bromination and hydrolysis of the respective 

ester finally generated desired side chain 323 over six steps. During the course of 

this synthesis many problems concerning the work up and handling of the very polar 

and unstable polyethers were solved. 
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Scheme 4.3 Preparation of polyether side chain 323; reagents and conditions: (i) imidazole, TBSCl, 

DMF, 0 °C to rt, 2.5 h; (ii) NaClO2, TEMPO, NaOCl, Na2HPO4, NaH2PO4, MeCN, 

35 °C, 14 h; (iii) ROH, EDC · HCl, DMAP, CH2Cl2, 0 °C to rt, 14 h; (iv) 1% HCl in 

EtOH, rt, 45 min; (v) CBr4, PPh3, CH2Cl2, rt, 1 – 3 h; (vi) NEt3, LiBr, MeCN/H2O, rt, 

14 h. 

 

     Another task was generating a side chain which should be used to synthesise 

macrocidin A (5). Many setbacks were encountered before arriving at a promising 

route (scheme 4.4).  

     It began with standard TBS-protection of known intermediate 119, DIBAL-H 

reduction of the methyl ester and PMB-protection of the allylic alcohol to 371. 

Subsequent TBS cleavage and stepwise oxidation to carboxylic acid 374 was then 

succeeded by Evans auxiliary (289) mediated stereoselective methylation to 376 

scheme 4.4). In the future, the work presented, could lead to a way to introduce the 

epoxide stereoselectively and to ultimately synthesise 5.  

 

 

 

Scheme 4.4 Partial side chain synthesis for the total synthesis of macrocidin A (5); reagents and 

conditions: (i) imidazole, TBSCl, DMF, 0 °C to rt, 14 h; (ii) DIBAL-H, CH2Cl2, −78 °C, 

30 min; (iii) PMB-trichloroacetimidate, PPTS, CH2Cl2, rt, 23 h; (iv) TBAF, THF, rt, 2 h; 

(v) a) oxalyl chloride, DMSO, CH2Cl2, −78 °C, 15 min; b) NEt3, −78 °C to rt, 30 min; 

(vi) NaClO2, NaH2PO4, 2-methyl-2-butene, THF/H2O/tBuOH, rt, 2 h; (vii) a) PivCl, NEt3, 

THF, −20 °C, 1 h; b) (R)-4-benzyloxazolidinone (289), LiCl, −20 °C to rt, 3 h; (viii) a) 

NaHMDS, THF, −78 °C, 1 h; b) MeI, −78 °C to rt, 5 h. 
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     The second target natural product of this thesis was torrubiellone D (15) (figure 

4.2).115  The synthesis consisted of two major parts: the preparation of tetramic acid 

core 383 and of unsaturated aldehyde fragment 384, needed to install the 3-acyl side 

chain.  

 

 

 

Figure 4.2 Structure of torrubiellone D (15) 

 

     The tetramic acid fragment 383 was generated following literature 

procedures.53,152,226  

     The side chain was synthesised in two ways (scheme 4.5). Both started with the 

transformation of diethyl ethylmalonate (389) into racemic TBS-protected aldehyde 

385 via reduction, mono-protection and Swern-oxidation.192 One path utilised a step 

by step elongation strategy,225 incorporating a Wittig reaction, a DIBAL-H reduction 

and an oxidation-Wittig one step procedure to methyl ester 402. This intermediate 

was converted into desired aldehyde side chain 384 by DIBAL-H reduction and Dess-

Martin oxidation.       

     The second pathway employs a HWE reaction with phosphonate 398 to generate 

ethyl ester 394 in one step.242 It is transformed into aldehyde 384 by applying 

DIBAL-H and Swern oxidation conditions. 
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Scheme 4.5 Synthetic routes to aldehyde side chain 384; reagents and conditions: (i) a) LiAlH4, 

THF, rfx, 2 d; b) 5 d extraction; (ii) nBuLi, TBSCl, THF, −78 °C to −20 °C, 2 h; (iii) 

oxalyl chloride, DMSO, NEt3, CH2Cl2, −78 °C to rt, 16.5 h; (iv) Ph3P=CHCOOMe, 

CH2Cl2, rt, 3 h; (v) DIBAL-H, CH2Cl2, −78 °C, 1 h; (vi) MnO2, Ph3P=CHCOOMe, 

CH2Cl2, rt, 3 d; (vii) (EtO)2OPCH2CHCHCOOEt (398), DBU, LiCl, MeCN, 0 °C to rt; 

14 h; (viii) DIBAL-H, CH2Cl2, −78 °C, 1 – 2 h; (ix) DMP, CH2Cl2, rt, 2 h; (x) oxalyl 

chloride, DMSO, NEt3, CH2Cl2, −78 °C to rt, 16.5 h. 

 

     The coupling of fragment 383 with 384 by ketenylidene(triphenyl) phosphorane 

(39) mediated 3-acylation has been tested multiple times,203,246 but the desired 

product could not be purified and isolated to date. 

     The last natural products covered in this thesis were quinolactacins A2 (17) and 

B2 (18).124,125 17 was synthesised in a new and efficient way employing two different 

routes (scheme 4.6). Starting with L-isoleucine (163), tetramic acid 62 was produced 

following standard methodology. In one case, 62 was reacted with  N-methyl-

anthranilic acid (192) and in the other with ortho-nitrobenzoic acid (413) to give 4-O-

acylated compounds 193 and 414.78 The 4-O-acyl to 3-acyl rearrangement was 

initiated using acetone cyanohydrine and NEt3.
77 In the first case, the 3-acyl 

compound spontaneously cyclised to desired natural product 17 in an overall yield of 

19% over five steps, whereas in the second case the nitro functionality was reduced 

by hydrogenation before the cyclisation occurred.81 In order to produce 17, an 
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additional selective methylation was performed to give 17 in a yield of 21% over 

seven steps. 
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Scheme 4.6 Synthetic route towards quinolactacins A2 (17) and B2 (18); reagents and conditions: 

(i) Boc2O, NaOH, dioxane/H2O, rt, 18 h; (ii) a) Meldrum's acid (35), EDC · HCl, DMAP, 

CH2Cl2, rt, 14 h; b) EtOAc, rfx, 2 h; (iii) TFA, CH2Cl2, rt, 30 min; (iv) N-methylanthranilic 

acid (192), EDC · HCl, DMAP, CH2Cl2, 0 °C to rt, 5 h; (v) o-nitrobenzoic acid (413), 

EDC · HCl, DMAP, CH2Cl2, 0 °C to rt, 4 h; (vi) (CH3)3C(OH)CN, NEt3, MeCN, rt,  

14 h – 4 d; (vii) H2 (1 atm), Pd/C (10%), MeOH, rt, 14 h; (viii) K2CO3, MeI, DMF, rt, 6 h. 

 

     The major part of the analytical data suggested that 17 was synthesised 

successfully. Solely the wrong value of the specific optical rotation remained 

inexplicable (−17.1 ° (c = 0.2) instead of +17.9 ° (c = 0.13)125). Due to the facts that 

both independent pathways gave the same result and all stereocenters originated 

from the chiral pool, incorrect literature values cannot be ruled out.   
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     The same sequence was carried out to generate 18, by replacing 163 by L-valine 

(407) as the starting material. 4-O-Acyl compound 423 was synthesised, but the rest 

of the route could not be completed to date (scheme 4.6). 

     In the last part of the thesis, potential inhibitors for the adenylyl cyclase (an 

enzyme, responsible for the transformation of ATP into cAMP145) were synthesised 

and biochemically evaluated. This project was carried out in close cooperation with 

Dr. S. Kleinbölting from the group of Prof. C. Steegborn (biochemistry department), 

who performed all the biochemical tests.258,259  

     On the basis of computational studies, L-tryptophan derived compound 208 

surfaced as the first candidate (figure 4.3). The synthesis was achieved in two steps, 

starting from Boc- and formyl-protected L-tryptophan (429). The tetramic acid was 

generated using Meldrum's acid (35)48 and the 3-acetylation was accomplished by 

applying ketenylidene(triphenyl) phosphorane (39).203,246  

     Ten more tetramic acids and 3-acyltetramic acids were synthesised for 

biochemical evaluation, derived from L-phenylalanine, L-tyrosine and L-isoleucine. 

Figure 4.3 shows the two most promising representatives: compounds 403 and 193.  

 

 

 

Figure 4.3 Potential tetramic acid incorporating inhibitors for the adenylyl cyclase 

 

     In the end, 208 shows no significant activity and even compounds 403 and 193 

only show an inhibition of about 50%, when used in high concentrations of 100 µM.258  

     In summary, no definite proof could be found to confirm the theory that tetramic 

acid derivatives can serve as new leads to powerful adenylyl cyclase inhibitors. 

However, the synthesis of various different tetramic acids based upon L-tryptophan 

and L-phenylalanine could be synthetically relevant and biochemically interesting. 
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5 Zusammenfassung 

     Diese Arbeit war in vier Hauptbereiche aufgeteilt. Die ersten drei Teile 

beschäftigten sich mit den Synthesen von Macrocidin A (5) und den dazugehörigen 

Analoga (6 – 14), mit der Synthese von Torrubiellon D (15) und mit den Synthesen 

von Quinolactacin A2 (17) und B2 (18). Der abschließende Teil befasste sich mit der 

Synthese potentieller Adenylylcyclase Inhibitoren und deren biochemischer 

Evaluation. 

     Das Hauptaugenmerk dieser Arbeit lag auf dem Naturstoff Macrocidin A (5) und 

seinen Analoga (6 – 14) (Abb. 5.1). 

 

 

 

Abbildung 5.1 Strukturen von Macrocidin A (5) und Macrocidin Derivaten 6 – 14 

 

     Von den vier benötigten Seitenketten (210 – 213) die für die Synthese von 6 – 9 

notwendig waren, wurden zwei (211 und 213), in je drei Schritten, synthetisiert 

(Veresterung, Boran Reduktion und HBr vermittelte Bromierung und Esterhydrolyse) 

(Schema 5.1), wobei die anderen beiden Seitenketten (210 und 212) kommerziell 

erwerblich waren. 

     Die literaturbekannte L-Tyrosin abgeleitete Tetramsäure 11698,152 wurde nach den 

Vorschriften von Yoshii et al.76 und Yoda et al.79 mit den Seitenketten 210 – 213 

gekoppelt. Makroveretherung unter Palladium Katalyse98,152 und darauffolgende 

Entschützung lieferten 6 und 8 über zwei Stufen. Die Synthese von 7 und 9 wurde 

noch nicht vollständig abgeschlossen. 
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Schema 5.1 Synthese der Analoga 6 – 9; Reagenzien und Bedingungen: (i) EtOH, H2SO4, CH2Cl2, 

RF, 14 h; (ii) BH3 · THF, THF, −20 °C auf RT, 14 h; (iii) 48 % HBraq, RF, 15 min; (iv) a) 

DCC, DMAP, CH2Cl2, 0 °C auf RT, 1.5 h; b) NEt3, CaCl2, RT, 14 h; (v) Pd(PPh3)4 kat., 

K2CO3, THF/MeOH, RF, 48 h; (vi) TFA, CH2Cl2, RT, 15 min. 

 

     Die zweite Gruppe von Macrocidin A Derivaten (10 – 13) trugen die ursprüngliche 

Methylgruppe in der Seitenkette, welche stereoselektiv bei der Synthese der 

verschiedenen Seitenketten eingebaut wurde. Die Synthese eben dieser 

Seitenketten (214 – 217) und vor allem die stereoselektive Einführung der 

Methylgruppe wurde intensiv untersucht.  

     Schema 5.2 fasst die optimierte neun Stufen Synthese der gewünschten 

Seitenketten 214 – 217 ausgehend von den Dicarbonsäuren 218 – 221 zusammen. 

     Diese beinhaltete die Desymmetrisierung von 218 – 221 zu den TBS-geschützten 

Estern 277 – 280 durch Veresterung, Boran Reduktion und TBS-Schützung. 

Weiterhin wurde die Reaktionssequenz durch Esterverseifung, stereoselektive 

Methylierung mit Hilfe von Evans Auxiliar 289, Transformation des TBS-geschützten 

Alkohols zum Bromid und Auxiliar Abspaltung komplettiert.  

     Die komplette Route wurde verifiziert und optimiert, auch wenn sie nur im Falle 

von Verbindung 226 bisher bis zum Ende durchgeführt wurde. Weiterhin stehen noch 

die Synthesen der entsprechenden Makrozyklen 10 – 13 aus. 
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Schema 5.2 Synthese der α-methylierten Bromsäuren 214 – 217; Reagenzien und Bedingungen: 

(i) EtOH, H2SO4, CH2Cl2, RF, 14 h; (ii) BH3 · THF, THF, −20 °C auf RT, 14 h; (iii) 

Imidazol, TBSCl, DMF, 0 °C auf RT, 14 h; (iv) LiOH, THF/H2O, 0 °C auf RT, 14 h; (v) 

a) PivCl, NEt3, THF, −20 °C, 1 h; b) (R)-4-Benzyloxazolidinon (289), LiCl, −20 °C auf 

RT, 3 h; (vi) a) NaHMDS, THF, −78 °C, 1 h; b) MeI, −78 °C to rt, 5 h; (vii) I) TBAF, 

THF, 0 °C auf RT, 3 h; II) 1 % HCl in EtOH, RT, 5 min; viii) CBr4, PPh3, CH2Cl2, RT, 

1 h; ix) LiOH, H2O2, THF/H2O, 0 °C, 1 h. 

 

     Das dritte von Macrocidin A (5) abgeleitete Zielmolekül entsprach einem 

Kronenether Analogon (14). Erneut wurde die Synthese der dafür benötigten 

Seitenkette 323 fertiggestellt (Schema 5.3), wobei aber bisher nur initiale 

Experimente durchgeführt wurden um Makrozyklus 14 zu generieren.  

     Die entsprechende Seitenkette wurde in sechs Schritten hergestellt, beginnend 

mit einer einfachen TBS-Schützung von Triethylenglykol (319) gefolgt von einer 

TEMPO Oxidation und einer Veresterung der entstandenen Carbonsäure zu 

entweder Ethylester 330 oder Benzylester 332. Entschützung des verbleibenden 

Alkohols, Bromierung und die Hydrolyse des entsprechenden Esters liefert 

abschließend die gewünschte Seitenkette 323 über sechs Stufen. Im Laufe dieser 

Synthese wurden viele Probleme, die Aufarbeitung und den generellen Umgang mit 

derart polaren und instabilen Polyethern betreffend, gelöst. 

 



140                                                                                Zusammenfassung 
 

 

 

Schema 5.3 Herstellung der Polyether Seitenkette 323; Reagenzien und Bedingungen: (i) Imidazol, 

TBSCl, DMF, 0 °C auf RT, 2,5 h; (ii) NaClO2, TEMPO, NaOCl, Na2HPO4, NaH2PO4, 

MeCN, 35 °C, 14 h; (iii) ROH, EDC · HCl, DMAP, CH2Cl2, 0 °C auf RT, 14 h; (iv) 

1 % HCl in EtOH, RT, 45 min; (v) CBr4, PPh3, CH2Cl2, RT, 1 – 3 h; (vi) NEt3, LiBr, 

MeCN/H2O, RT, 14 h. 

 

     Eine weiteres Ziel der Arbeit war die Herstellung einer Seitenkette, die zur 

Synthese von Macrocidin A (5) selbst verwendet werden sollte. Viele Rückschläge 

mussten hierbei in Kauf genommen werden bevor eine vielversprechende Route 

ausgearbeitet werden konnte (Schema 5.4).  

 

 

 

Schema 5.4 Teilsynthese der Seitenkette zur Totalsynthese von Macrocidin A (5); Reagenzien und 

Bedingungen: (i) Imidazol, TBSCl, DMF, 0 °C auf RT, 14 h; (ii) DIBAL-H, CH2Cl2, 

−78 °C, 30 min; (iii) PMB-Trichloracetimidat, PPTS, CH2Cl2, RT, 23 h; (iv) TBAF, THF, 

RT, 2 h; (v) a) Oxalylchlorid, DMSO, CH2Cl2, −78 °C, 15 min; b) NEt3, −78 °C auf RT, 

30 min; (vi) NaClO2, NaH2PO4, 2-Methyl-2-buten, THF/H2O/tBuOH, RT, 2 h; (vii) a) 

PivCl, NEt3, THF, −20 °C, 1 h; b) (R)-4-Benzyloxazolidinon (289), LiCl, −20 °C auf RT, 

3 h; (viii) a) NaHMDS, THF, −78 °C, 1 h; b) MeI, −78 °C auf RT, 5 h. 

 

     Die Synthese startete mit einer Standard TBS-Schützung des bekannten 

Intermediats 119, einer DIBAL-H Reduktion des Methylesters und einer PMB-

Schützung des so entstandenen Allylalkohols zu 371. Anschließend standen die 

TBS-Entschützung und eine schrittweise Oxidation zu Carbonsäure 374 an, gefolgt 

von einer stereoselektiven Methylierung zu 376 mit Hilfe von Evans Auxiliar 289 
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(Schema 5.4). In der Zukunft könnte die gezeigte Synthese der Seitenkette die 

stereoselektive Einführung des Epoxids und letzendlich die Synthese von 5 

ermöglichen. 

     Der zweite Naturstoff, der Ziel dieser Arbeit war, war Torrubiellon D (15) (Abb. 

5.2).115 Die Synthese setzt sich aus zwei Hauptteilen zusammen, die Herstellung des 

Tetramsäure Grundkörpers 383 und die des ungesättigten Aldehydfragments 384, 

welches für die Einführung der 3-Acylseitenkette benutzt werden soll. 

 

 

 

Abbildung 5.2 Struktur von Torrubiellon D (15) 

 

     Das Tetramsäurefragment 383 wurde Literatursynthesen folgend 

aufgebaut.53,152,226  

     Die Seitenkettensynthese erfolgte über zwei Wege (Schema 5.5). Beide 

begannen mit der Umwandlung von Diethylethylmalonat (389) zum racemischen 

TBS-geschütztem Aldehyd 385. Dies wurde durch Reduktion, einfache Schützung 

und Swern Oxidation bewerkstelligt.192 Ein Weg verfolgte dann eine schrittweise Ver-

längerungsstrategie,225 die eine Wittig Reaktion, eine DIBAL-H Reduktion und eine 

einstufige Oxidations-Wittig Methode umfasste, um zu Methylester 402 zu gelangen. 

Diese Zwischenstufe wurde dann durch erneute DIBAL-H Reduktion und Dess-Martin 

Oxidation in die gewünschte Aldehydseitenkette 384 umgewandelt. 

     Der zweite Pfad wendete eine HWE-Reaktion mit Phosphonat 398 an um 

Ethylester 394 in einem Schritt zu erzeugen.242 Dieser wurde dann durch DIBAL-H 

Reduktion und Swern Oxidation in den Aldehyd 384 überführt. 
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Schema 5.5 Syntheseroute zum Aldehydbaustein 384; Reagenzien und Bedingungen: (i) a) LiAlH4, 

THF, RF, 2 d; b) 5 d Extraktion; (ii) nBuLi, TBSCl, THF, −78 °C auf −20 °C, 2 h; (iii) 

Oxalylchlorid, DMSO, NEt3, CH2Cl2, −78 °C auf RT, 16,5 h; (iv) Ph3P=CHCOOMe, 

CH2Cl2, RT, 3 h; (v) DIBAL-H, CH2Cl2, −78 °C, 1 h; (vi) MnO2, Ph3P=CHCOOMe, 

CH2Cl2, RT, 3 d; (vii) (EtO)2OPCH2CHCHCOOEt (398), DBU, LiCl, MeCN, 0 °C auf 

RT; 14 h; (viii) DIBAL-H, CH2Cl2, −78 °C, 1 – 2 h; (ix) DMP, CH2Cl2, RT, 2 h; (x) 

Oxalylchlorid, DMSO, NEt3, CH2Cl2, −78 °C auf RT, 16,5 h. 

 

     Die Kopplung beider Fragmente 383 und 384 durch Ketenylidentriphenyl- 

phosphoran (39) vermittelte 3-Acylierung wurde mehrmals durchgeführt,203,246 jedoch 

konnte das gewünschte Produkt bisher noch nicht sauber isoliert werden. 

     Die letzten in dieser Arbeit behandelten Naturstoffe waren Quinolactacin A2 (17) 

und B2 (18).124,125 17 wurde auf zwei verschiedenen Routen neu und effizient 

synthetisiert (Schema 5.6). Beginnend bei L-Isoleucin (163) wurde Tetramsäure 62 

nach Standardvorschriften erhalten. Einerseits wurde 62 mit N-Methylanthranilsäure 

(192) und andererseits mit ortho-Nitrobenzoesäure (413) umgesetzt um 

4-O-Acylverbindungen 193 und 414 herzustellen.78 Die Umlagerung der 4-O-Acyl- 

zur 3-Acylverbindung wurde durch Acetoncyanhydrin und Triethylamin eingeleitet.77 

Im ersten Fall zyklisierte das 3-Acyl-Produkt von selbst und lieferte damit das 

gewünschte Naturprodukt 17 in einer Gesamtausbeute von 19 % über fünf Stufen, 

während im zweiten Fall die Nitro-Gruppe hydrogenolytisch reduziert wurde bevor die 

spontane Zyklisierung stattfand81. Um nun ebenfalls 17 zu synthetisieren war noch 
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eine selektive Methylierung nötig. Dieser Weg lieferte 17 in einer Ausbeute von 21 % 

über sieben Stufen. 
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Schema 5.6 Syntheseweg zu Quinolactacin A2 (17) and B2 (18); Reagenzien und Bedingungen: (i) 

Boc2O, NaOH, Dioxan/H2O, RT, 18 h; (ii) a) Meldrumsäure (35), EDC · HCl, DMAP, 

CH2Cl2, RT, 14 h; b) EtOAc, RF, 2 h; (iii) TFA, CH2Cl2, RT, 30 min; (iv) 

N-Methylanthranilsäure (192), EDC · HCl, DMAP, CH2Cl2, 0 °C auf RT, 5 h; (v) 

o-Nitrobenzoesäure (413), EDC · HCl, DMAP, CH2Cl2, 0 °C auf RT, 4 h; (vi) 

(CH3)3C(OH)CN, NEt3, MeCN, RT,  14 h – 4 d; (vii) H2 (1 atm), Pd/C (10 %), MeOH, 

RT, 14 h; (viii) K2CO3, MeI, DMF, RT, 6 h. 

 

     Der Hauptteil der analytischen Daten lässt darauf schließen, dass 17 erfolgreich 

synthetisiert wurde. Einzig und allein der falsche spezifische Drehwert (−17.1 ° 

(c = 0.2)) anstatt +17.9 ° (c = 0.13)125) bleibt bislang unerklärlich. Aufgrund der 

Tatsachen das beide Synthesewege unabhängig voneinander das selbe Ergebnis 
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zeigten und alle Stereozentren aus dem chiralen Pool stammten, kann nicht 

ausgeschlossen werden, dass die Literaturwerte falsch sind. 

     Die gleiche Reaktionssequenz kann angewendet werden um 18 herzustellen, 

indem 163 durch L-Valin (478) ersetzt wird. Bislang wurde diese Route noch nicht 

vollständig durchgeführt aber erste Experimente zeigen vielversprechende Resultate 

(Schema 5.7). 

     Im letzten Teil dieser Arbeit wurden potentielle Inhibitoren für die Adenylylcyclase 

(ein Enzym, verantwortlich für die Umwandlung von ATP zu cAMP145) synthetisiert 

und biochemisch untersucht. Dieses Projekt wurde in enger Kooperation mit Dr. S. 

Kleinbölting der Arbeitsgruppe von Prof. C. Steegborn realisiert, die alle 

biochemischen Tests durchführte.258,259 

     Auf der Basis von computerbasierten Berechnungen kam L-Tryptophan Derivat 

208 als erster Kandidat zum Vorschein (Abb. 5.3). Die Synthese von 208 wurde in 

zwei Schritten verwirklicht, beginnend von Boc- und Formyl-geschütztem 

L-Tryptophan (517). Die Bildung der Tetramsäure wurde mit Meldrumsäure (35)48 

und die 3-Acetylierung mit Ketenylidentriphenylphosphoran (39)203,246 verwirklicht. 

     Zehn weitere Verbindungen auf der Basis von L-Phenylalanin, L-Tyrosin und 

L-Isoleucin abgeleiteten Tetramsäuren und 3-Acyltetramsäuren wurden synthetisiert 

um biochemisch getestet. Abb. 5.3 zeigt die zwei wirkungsvollsten Vertreter: 

Verbindungen 403 und 193. 

 

 

 

Abbildung 5.3 Potentielle Inhibitoren der Adenylylcyclase die das Motiv einer Tetramsäure enthalten 

 

     Am Ende zeigte 208 keine wesentliche Aktivität und sogar Verbindungen 403 und 

193 zeigten nur eine Inhibition von rund 50 % wenn sie in einer hohen Konzentration 

eingesetzt wurden.258 
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     Zusammenfassend lässt sich sagen, dass kein eindeutiger Beweis erbracht 

werden konnte dass Tetramsäuren als leistungsfähige neue Adenylylcyclase 

Inhibitoren fungieren können. Trotzdem könnte die Synthese von verschiedenartigen, 

L-Tryptophan und L-Phenylalanin abgeleiteten Tetramsäuren von synthetischem 

Nutzen oder von biochemischem Intresse sein. 
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6 Experimental Part 

6.1 General methods 

     All non-aqueous reactions were carried out under argon or nitrogen atmosphere 

using Schlenk technique unless noted otherwise. Flasks were dried in an oven or 

manually with a heat gun under vacuum. In these cases only freshly dried and readily 

distilled solvents (abs.) were used. In cases when no shielding gas is required, 

solvents with the purification grade p.a. or freshly distilled technical solvents were 

employed.  

 

Solvents/chemicals : Standard solvents for extraction and column chromatography 

(cyclohexane, n-hexane, dichloromethane, chloroform, ethyl acetate, diethyl ether, 

methyl tert-butyl ether, tetrahydrofuran, ethanol, methanol) were distilled from 

technical sources prior to their use.  

     If dry solvents/reagents were used they were dried according to literature 

procedures262 and freshly distilled before use. Dichloromethane, dimethylformamide, 

dimethyl sulfoxide and triethylamine were dried over calcium hydride, diethyl ether 

and tetrahydrofuran over sodium/benzophenone and methanol over magnesium. 

Acetonitrile was dried over potassium carbonate and phosphorus pentoxide.  

     Chemicals were obtained by various suppliers (ABCR, Acros Organics, AK 

Scientific, Alfa Aesar, Carbolution, Fisher Scientific, Fluka, Grüssing, Merck, Sigma-

Aldrich, Roth, VWR) and used without further purification unless noted otherwise. 

         

Analytical TLC : TLC was carried out using silica gel plates (either TLC silica gel 60 

F254 foil plates from Merck or TLC silica gel 60 RP-18 F254s foil plates from Merck). 

Besides UV-light (254 and 366 nm), for visualisation a variety of stains were used: 

• iodine on fine silica gel; 

• potassium permanganate (1 g KMnO4, 2 g Na2CO3, 100 mL H2O);  

• para-anisaldehyde (PAA) (100 mL EtOH, 5 mL H2SO4, 5 mL para-anis-

aldehyde);  

• ceric ammonium molybdate (CAM) (6 mL H2SO4, 1 g Ce(SO4)2, 2.5 g 

12 MoO3 × H3PO4, 94 mL H2O). 

In the case of 3-acyltetramic acid, two Rf -values might by reported, representing two 

tautomers of the same compound. 
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Column chromatography : Column chromatography was performed using silica gel 

with the particle size of 63 – 200 µm or flash silica gel with the particle size of       

25 – 40 µm from Macherey-Nagel. The column length was 30 cm and the diameter of 

the column was adjusted to the amount of silica gel needed. For a standard 

separation a mass ratio of 20:1 (silica gel/substance) is applied, for a more 

challenging separation a mass ratio of 100:1 (silica gel/substance) is applied.262 

 

HPLC: Analytical HPLC measurements were carried out with a Beckman System 

Gold Programmable Solvent Module 126 either using a KinetexTM C18-HPLC-column 

(250 × 4.6 mm, pore size 100 Å, particle size 5 µm) by Phenomenex or a ProntosilTM 

RP 200-5-C18 column (250 × 4.0 mm, particle size 5 µm) by Bischoff. Detection was 

performed by the use of a Diode Array Detection Module 168 from Beckman 

Instruments. 

     Preparative HPLC was carried out with a Knauer WellChrom K-1800 either using 

a KinetexTM C18-HPLC-column (250 × 21.2 mm, pore size 100 Å, particle size 5 µm) 

by Phenomenex or a ProntosilTM RP 200-5-C18 column (250 × 20.0 mm, particle size 

5 µm) by Bischoff. Detection was performed by the use of a WellChrom UV-detector 

K-2600 from Knauer.  

 

NMR spectroscopy : All 1H-NMR, 13C-NMR and 31P-NMR spectra were recorded on 

a Bruker DRX 300 or DRX 500. Coupling constants are recorded in [Hz] and 

chemical shifts in [ppm] in reference to the respective deuterated solvent which is 

employed (chloroform-d1 (CDCl3) (δ(1H) = 7.26 ppm, δ(13C) = 77.16 ppm), methanol-

d4 (MeOD) (δ(1H) = 3.31 ppm, δ(13C) = 49.00 ppm), acetone-d6 (δ(1H) = 2.05 ppm, 

δ(13C) = 29.84, 206.26 ppm) and dimethyl sulfoxide-d6 (DMSO-d6) (δ(
1H) = 2.50 ppm, 

δ(13C) = 39.52 ppm)).263,264 In order to describe the spin multiplicity the following 

abbreviations are used: s (singlet), d (doublet), t (triplet), q (quartet), quin (quintet), m 

(multiplet), br (broad). The assignment of the signals to the corresponding atoms was 

conducted with the help of advanced 13C-NMR spectra (JMOD) and 2D-NMR spectra 

(HSQC, HMBC). 

     If signals are interchangeable, and therefore cannot be assigned with certainty, 

the atoms are marked with "†". If multiple stereoisomers are visible, resulting in 

multiple signals for one atom, the major signal is marked with "*". If one multiplet can 
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be assigned to multiple atoms, the atoms concerned are separated with ",". If an 

assignment cannot be made, all atoms concerned are separated with "/". 

 

Gas chromatography : All GC spectra are recorded on a Carlo Erba HRGC 5160 

Mega Series gas chromatograph employing a DB-5ms silica column (l = 30 m, 

ø = 0.25 mm, df = 0.25 µm, J & W Scientific). The GC spectra were measured with 

two major heating protocols:  

• program 0: the base temperature was 80 °C and was raised to 280 °C with 

5 °C/min and was kept there for 15 min. 

• program 4: the base temperature was 150 °C and was raised to 280 °C with 

5 °C/min and was kept there for 30 min. 

The retention times (tR) are shown in [min]. 

 

Mass spectrometry: EI mass spectra were obtained on a Thermo Finnigan MAT 

8500 spectrometer with a MAT SS 300 data system and the measurements were 

carried out using 70 eV of ionisation energy (positive ion mode). The measurements 

were carried out by direct insertion probe-mass spectroscopy (DIP-MS).  

     GC-MS spectra were obtained on a Thermo Finnigan MAT 95 spectrometer 

coupled to a GC-unit (Hewlett Packard 5890 Series II).  

     HRMS spectra were obtained on a Thermo Scientific Q Exactive Orbitrap mass 

spectrometer connected to a Dionex UltiMate 3000 RS UHPLC unit. The 

measurements were carried out applying electrospray ionisation (ESI). 

     The peak values represent the mass-to-charge ratio (m/z) and their relative 

intensity [%] is reported in brackets in reference to the base peak which represents 

100%. Furthermore, when dealing with halogens, the respective m/z values are 

marked to which isotope they belong (e.g. 79Br vs. 81Br). 

 

IR-spectroscopy : The IR spectra were recorded on a PerkinElmer Spectrum One 

FT-IR-spectrometer. The absorption wavelength (λ) of the bands is reported as their 

spectroscopic wavenumbers (��) in [cm−1]. The intensity of the bands is labelled with s 

(strong), m (medium) or w (weak). 

 

Melting point measurements : The melting points of solids were measured with a 

BÜCHI M-565 melting point apparatus and remain uncorrected. 
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Polarimetry : The specific rotation ([α]D) of substances was measured with a 

PerkinElmer polarimeter 343 at 24 °C and/or with a Jasco P-1020 polarimeter 

(λ = 589 nm, c = 1.0 ≡ 1 mg/mL) (OC1/2).  

 

X-Ray:  Crystal structures were obtained on a STOE-IPDS II diffractometer and were 

measured and calculated by M.Sc. Johannes Obenauf from the group of Prof. R. 

Kempe (inorganic chemistry II). 

 

 

6.2 Macrocidin A and analogues  

6.2.1 Synthesis of an allyl-protected L-tyrosine derived 

tetramic acid  

6.2.1.1 General method to prepare tetramic acids fr om protected 

amino acids 

     According to procedures of Jouin et al.48 and Hosseini et al.,53 to a 0.15M solution 

of a protected amino acid (1.0 eq.) in CH2Cl2 abs. at 0 °C are added Meldrum's acid 

(35) (1.1 eq.), EDC · HCl (1.2 eq.) and DMAP (1.4 eq.) and the mixture is stirred for 

14 h at room temperature. The mixture is diluted with EtOAc (20 mL/mmol) and the 

organic phase is washed with brine (2 × 10 mL/mmol), 5% citric acid 

(3 × 10 mL/mmol) and brine (10 mL/mmol). It is dried over Na2SO4, filtered and 

heated to reflux for 2 h before the solvent is evaporated. After drying in vacuo the 

crude tetramic acid is obtained.  
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6.2.1.2 Preparation of N-(tert-butoxycarbonyl)-(5 S)-5-((4-allyloxy) 

benzyl)-pyrrolidine-2,4-dione (116)  

 

 

     Compound 116 is prepared applying the general method of 6.2.1.1. The use of 

bisprotected L-tyrosine derived amino acid 224 (prepared from L-tyrosine over two 

steps according to literature procedures of Barnickel152, Bose et al.99 and 

Kane et al.100) (10.2 g, 31.9 mmol) yields the product as a yellow foam (9.8 g, 

28.5 mmol, 89%) without further purification.  

      

Rf 0.38 (33% EtOAc in cHex + two drops of acetic acid)  
1H-NMR (300 MHz, CDCl3): tautomeric ratio: (keto : enol) 90% : 10% (calculated 

from NMR) (only keto form recorded, because enol form to weak and 

indistinct), assignment differs from literature.152 

 1.62 (s, 9H, H-16), 2.27 (dd, J = 22.3, 1.7 Hz, 1H, H-3a), 2.85 (d, 

J = 22.3 Hz, 1H, H-3b), 3.15 (dd, J = 14.1, 3.1 Hz, 1H, H-6a), 3.33 (dd, 

J = 14.1, 5.1 Hz, 1H, H-6b), 4.48 (ddd, J = 5.4, 1.5, 1.4 Hz, 2H, H-11), 

4.60 (ddd, J = 5.1, 3.1, 1.7 Hz, 1H, H-5), 5.28 (ddt, J = 10.6, 1.6, 1.4 Hz, 

1H, H-13Z), 5.39 (ddt, J = 17.3, 1.6, 1.5 Hz, 1H, H-13E), 6.02 (ddt, 

J = 17.3, 10.6, 5.4 Hz, 1H, H-12), 6.82 (d, J = 8.7 Hz, 2H, H-9), 6.92 (d, 

J = 8.7 Hz, 2H, H-8).  
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13C-NMR (75 MHz, CDCl3): assignment differs from literature.152 

 28.2 (CH3, C-16), 35.8 (CH2, C-6), 43.5 (CH2, C-3), 68.6 (CH, C-5), 69.0 

(CH2, C-11), 84.4 (Cquart, C-15), 115.3 (CH, C-9), 117.9 (CH2, C-13), 

125.9 (Cquart, C-7), 131.0 (CH, C-8), 133.2 (CH, C-12), 149.2 (Cquart, 

C-14), 158.2 (Cquart, C-10), 167.6 (Cquart, C-2), 204.6 (Cquart, C-4). 

DIP-MS The MS spectrum of 116 is in good agreement with literature.152 

mp 68.4 °C 

[α]D
24 +77.4 ° (c = 1.0, CHCl3), [lit.: +75.3 ° (c = 1.0, CHCl3)]

152 

IR (cm -1)  The IR spectrum of 116 is in good agreement with literature.152 

 

 

6.2.2 Synthesis of unbranched and α-methylated bromo acids  

6.2.2.1 General method to prepare monoethyl esters from 

dicarboxylic acids 

     To a suspension of dicarboxylic acid (1.00 eq.) in a suitable solvent (0.5 mL/mmol) 

are added ethanol p.a. (1.01 eq.) and conc. H2SO4 (0.4 drops/mmol) and the mixture 

is heated to reflux for 14 h. The reaction is left to cool to room temperature before 

diluting the mixture with Et2O (0.5 mL/mmol) and H2O (0.5 mL/mmol). The phases 

are separated and the aqueous phase is extracted with Et2O (3 × 0.5 mL/mmol). The 

combined organic phases are washed with H2O (0.5 mL/mmol), before they are dried 

over MgSO4, filtered and the solvent evaporated to give the crude product which is 

purified by column chromatography (20% → 67% Et2O in cHex→ Et2O).  
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6.2.2.2 Preparation of adipic acid monoethyl ester (271)  

 

 

     Compound 271 is prepared applying the general method of 6.2.2.1. The use of 

adipic acid (218) (15.0 g, 102.6 mmol) and THF as a solvent yields the product as a 

colourless oil (8.2 g, 47.0 mmol, 46%). 

          

Rf 0.27 (50% Et2O in cHex), tailing observed 
1H-/13C-NMR The NMR spectra of 271 are in good agreement with literature.265,266 

GC (tR) 15.36 min (program 0) 

GC-MS (EI): 

 175 (1), 156 (4), 129 (90), 115 (22), 111 (57), 101 (65), 88 (58) 

[C4H8O2
+] (McL), 83 (45), 73 (58), 60 (42) [C2H4O2

+] (McL), 55 (100). 

IR (cm -1)  2960 (w, br), 2934 (w), 1731 (s), 1704 (s), 1416 (m), 1373 (m), 1179 (s), 

1142 (s), 1096 (m), 1077 (m), 1028 (m), 919 (m), 854 (m), 758 (m). 

 

 

6.2.2.3 Preparation of pimelic acid monoethyl ester  (225) 

 

 

     Compound 225 is prepared applying the general method of 6.2.2.1. The use of 

pimelic acid (219) (10.0 g, 62.4 mmol) and CH2Cl2 as a solvent yields the product as 

a colourless oil (5.3 g, 27.9 mmol, 45%). 

      

Rf 0.16 (25% EtOAc in cHex), tailing observed 
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1H-NMR (300 MHz, CDCl3): 

 1.23 (t, J = 7.2 Hz, 3H, H-1), 1.29 – 1.42 (m, 2H, H-6), 1.56 – 1.70 (m, 

4H, H-5, H-7), 2.27 (t, J = 7.5 Hz, 2H, H-8), 2.32 (t, J = 7.4 Hz, 2H, H-4), 

4.10 (q, J = 7.2 Hz, 2H, H-2),  11.02 (br s, 1H, COOH-9). 
13C-NMR (75 MHz, CDCl3): 

 14.3 (CH3, C-1), 24.4 (CH2, C-7), 24.6 (CH2, C-5), 28.6 (CH2, C-6), 33.9 

(CH2, C-8), 34.2 (CH2, C-4), 60.4 (CH2, C-2), 173.8 (Cquart, C-3), 179.9 

(Cquart, C-9). 

GC (tR) 18.85 min (program 0) 

GC-MS (EI): 

 170 (3), 143 (78), 129 (28), 125 (59), 114 (38), 101 (32), 97 (49), 88 

(91), 83 (37) [C4H8O2
+] (McL), 73 (64), 69 (100), 60 (78), 55 (65). 

IR (cm -1) 3197 (w, br), 2939 (w), 2869 (w), 1728 (s), 1706 (s), 1462 (w), 1415 (w), 

1373 (m), 1240 (m), 1181 (s), 1087 (m), 1028 (m), 936 (w), 860 (m), 

737 (w). 

 

 

6.2.2.4 Preparation of suberic acid monoethyl ester  (272)  

 

 

     Compound 272 is prepared applying the general method of 6.2.2.1. The use of 

suberic acid (220) (15.0 g, 86.1 mmol) and THF as a solvent yields the product as a 

colourless oil (7.7 g, 38.0 mmol, 44%).   

      

Rf 0.48 (50% EtOAc in cHex), tailing observed 
1H-/13C-NMR The NMR spectra of 272 are in good agreement with literature.266 

GC (tR) 20.20 min (program 0) 
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GC-MS (EI): 

 185 (4) [M+-OH], 157 (100), 143 (23), 138 (83), 128 (14), 111 (41), 97 

(46), 88 (96) [C4H8O2
+] (McL), 83 (54), 73 (46), 69 (69), 60 (61), 55 (52). 

IR (cm -1) 3058 (w, br), 2935 (m), 2858 (w), 1732 (s), 1704 (s), 1415 (m), 1373 

(m), 1177 (s), 1095 (m), 1031 (m), 938 (w), 856 (w), 730 (w). 

 

 

6.2.2.5 Preparation of azelaic acid monoethyl ester  (226)  

 

 

     Compound 226 is prepared applying the general method of 6.2.2.1. The use of 

azelaic acid (221) (10.0 g, 53.1 mmol) and CH2Cl2 as a solvent yields the product as 

a colourless oil (5.6 g, 26.1 mmol, 49%). 

 

Rf 0.38 (33% EtOAc in cHex), tailing observed 
1H-NMR (300 MHz, CDCl3): 

 1.23 (t, J = 7.1 Hz, 3H, H-1), 1.26 – 1.39 (m, 6H, H-6, H-7, H-8),      

1.51 – 1.69 (m, 4H, H-5, H-9), 2.26 (t, J = 7.5 Hz, 2H, H-4), 2.32 (t, 

J = 7.5 Hz, 2H, H-10), 4.10 (q, J = 7.2 Hz, 2H, H-2), 11.04 (br s, 1H, 

COOH-11).  
13C-NMR (75 MHz, CDCl3): 

 14.3 (CH3, C-1), 24.7 (CH2, C-9), 25.0 (CH2, C-5), 28.9 (2 × CH2, 

C-6/C-7/C-8), 29.0 (CH2, C-6/C-7/C-8), 34.1 (CH2, C-10), 34.4 (CH2, 

C-4), 60.4 (CH2, C-2), 174.1 (Cquart, C-3), 180.2 (Cquart, C-11). 

GC (tR) 23.26 min (program 0) 

GC-MS (EI): 

 199 (2), 171 (64), 152 (76), 124 (27), 111 (23), 101 (25), 97 (29), 88 

(100) [C4H8O2
+] (McL), 83 (51), 73 (34), 69 (25), 60 (48), 55 (64). 

IR (cm -1) The IR spectrum of 226 is in good agreement with literature.267 
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6.2.2.6 General method to prepare ethyl hydroxyalka noates from 

dicarboxylic acid monoethyl esters 

     According to procedures of Yoon et al.157 and Gung et al.,158 a solution of 

dicarboxylic acid monoethyl ester (1.00 eq.) in THF abs. (1.3 mL/mmol) is cooled to 

−20 °C in an ice/salt bath and borane (complex with THF, 1M in THF) (1.13 eq.) is 

added dropwise by the use of a syringe pump (1.5 mL/min). The reaction is left to 

slowly warm to room temperature and is stirred for 14 h. The mixture is cooled to 

0 °C, diluted with H2O (1 mL/mmol) and K2CO3 (0.2 g/mmol) is added. Et2O 

(1.5 mL/mmol) is added and the phases are separated. The aqueous phase is 

extracted with Et2O (3 × 1 mL/mmol) and the combined organic phases are dried 

over MgSO4 and filtered. The solvent is evaporated to give the crude product which is 

purified by column chromatography (50% EtOAc in cHex). 

 

 

6.2.2.7 Preparation of ethyl 6-hydroxyhexanoate (26 1)  

 

 

     Compound 261 is prepared applying the general method of 6.2.2.6. The use of 

monoester 271 (7.6 g, 43.8 mmol) yields the product as a colourless oil (6.7 g, 

42.1 mmol, 96%). 
 

Rf 0.58 (67% EtOAc in cHex) 
1H-/13C-NMR The NMR spectra of 261 are in good agreement with literature.268 

GC (tR) 11.72 min (program 0) 

GC-MS (EI): 

 130 (12), 115 (40), 101 (67) [M+-C3H7O], 97 (45), 88 (94) [C4H8O2
+] 

(McL), 73 (58) [M+-C4H7O2], 69 (100), 60 (51), 55 (64). 
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IR (cm -1) 3349 (w, br), 2934 (m), 2871 (w), 1734 (s), 1463 (w), 1419 (m), 1374 

(m), 1338 (m), 1183 (m), 1071 (m), 1053 (m), 1030 (s), 951 (w), 847 

(w), 737 (w), 669 (m). 

 

 

6.2.2.8 Preparation of ethyl 7-hydroxyheptanoate (2 27)269 

 

 

     Compound 227 is prepared applying the general method of 6.2.2.6. The use of 

monoester 225 (4.6 g, 24.5 mmol) yields the product as a colourless oil (3.4 g, 

19.6 mmol, 80%). 

 

Rf 0.55 (50% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 1.10 (t, J = 7.0 Hz, 3H, H-1), 1.14 – 1.29 (m, 4H, H-6, H-7), 1.33 – 1.55 

(m, 4H, H-5, H-8), 2.14 (t, J = 7.5 Hz, 2H, H-4), 3.06 (br s, 1H, OH), 

3.43 (t, J = 6.6 Hz, 2H, H-9), 3.97 (q, J = 7.1 Hz, 2H, H-2). 
13C-NMR (75 MHz, CDCl3): 

 14.0 (CH3, C-1), 24.7 (CH2, C-5), 25.3 (CH2, C-7), 28.7 (CH2, C-6), 32.3 

(CH2, C-8), 34.1 (CH2, C-4), 60.0 (CH2, C-2), 62.2 (CH2, C-9), 173.8 

(Cquart, C-3). 

GC (tR) 13.90 min (program 0) 

GC-MS (EI): 

 144 (12) [M+-C2H5], 129 (17) [M+-C2H5O], 111 (18), 101 (42) 

[M+-C3H5O2], 88 (100) [C4H8O2
+] (McL), 83 (32), 73 (33) [C3H5O2

+], 69 

(38), 60 (42), 55 (67). 

IR (cm -1) 3392 (w, br), 2934 (m), 2861 (w), 1733 (s), 1463 (w), 1420 (w), 1372 

(m), 1343 (w), 1300 (w), 1252 (m), 1179 (m), 1096 (m), 1076 (m), 1055 

(m), 1029 (s), 914 (w), 857 (w), 729 (w). 
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6.2.2.9 Preparation of ethyl 8-hydroxyoctanoate (26 2)  

 

 

     Compound 262 is prepared applying the general method of 6.2.2.6. The use of 

monoester 272 (1.5 g, 7.4 mmol) yields the product as a colourless oil (1.3 g, 

6.6 mmol, 90%). 

      

Rf 0.39 (66.7% EtOAc in cHex) 
1H-/13C-NMR The NMR spectra of 262 are in good agreement with literature.270,271 

GC (tR) 17.10 min (program 0) 

GC-MS (EI): 

 158 (18) [M+-C2H5;-H], 143 (22) [M+-C2H5O], 125 (22), 124 (23), 115 

(21) [M+-C3H5O2], 101 (53), 96 (28), 88 (100) [C4H8O2
+] (McL), 83 (28), 

73 (36) [M+-C6H11O2], 70 (43), 60 (43), 55 (79). 

IR (cm -1) 3422 (w, br), 2932 (m), 2858 (w), 1733 (s), 1462 (w), 1418 (w), 1371 

(m), 1339 (w), 1300 (w), 1248 (m), 1179 (m), 1095 (m), 1033 (m), 939 

(w), 858 (w), 726 (w), 667 (w).  

 

 

6.2.2.10 Preparation of ethyl 9-hydroxynonanoate (2 28)  

 

 

     Compound 228 is prepared applying the general method of 6.2.2.6. The use of 

monoester 226 (2.5 g, 11.6 mmol) yields the product as a colourless oil (2.2 g, 

10.9 mmol, 95%). 
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Rf 0.36 (50% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 1.23 (t, J = 7.1 Hz, 3H, H-1), 1.25 – 1.39 (m, 8H, H-6, H-7, H-8, H-9),  

1.47 – 1.66 (m, 4H, H-5, H-10), 1.96 (br s, 1H, OH), 2.26 (t, J = 7.5 Hz, 

2H, H-4), 3.61 (t, J = 6.6 Hz, 2H, H-11), 4.10 (q, J = 7.1 Hz, 2H, H-2),  
13C-NMR (75 MHz, CDCl3): 

 14.4, (CH3, C-1), 25.0 (CH2, C-5), 25.8 (CH2, C-9), 29.1 (CH2, C-6/ 

C-7/C8), 29.3 (2 × CH2, C-6/C-7/C-8), 32.8 (CH2, C-10), 34.5 (CH2, 

C-4), 60.3 (CH2, C-2), 63.0 (CH2, C-11), 174.0 (Cquart, C-3). 

GC (tR) 20.32 min (program 0) 

GC-MS (EI): 

 172 (8), 157 (5) [M+−OC2H5], 138 (14), 129 (7) [M+−COOC2H5], 115 (7), 

110 (9), 101 (45), 97 (29), 88 (100) [C4H8O2
+] (McL), 84 (29), 73 (31), 

69 (47), 60 (30), 55 (77). 

IR (cm -1)  3342 (w, br), 2929 (m), 2856 (m), 1734 (s), 1465 (w), 1373 (m), 1301 

(w), 1241 (m), 1180 (m), 1097 (m), 1034 (m), 940 (w), 858 (w), 724 (w). 

 

 

6.2.2.11 General method for the Appel bromination o f alcohols 

     According to procedures of Wang et al.161 and Oikawa et al.,187 to a 0.01 – 0.05M 

suspension of alcohol (1.0 eq.) in CH2Cl2 abs. at 0 °C are added PPh3 (1.0 – 2.0 eq.) 

and CBr4 (1.0 – 3.0 eq.) and the mixture is left to warm to room temperature. The 

reaction mixture is stirred for 1 h – 3 h before solvent evaporation gives the crude 

product.  
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6.2.2.12 Preparation of ethyl 7-bromoheptanoate (22 9)  

 

 

     Compound 229 is prepared applying the general method of 6.2.2.11. The use of 

alcohol 227 (100 mg, 0.57 mmol) and purification of the crude product by column 

chromatography (67% → 80% EtOAc in cHex) yields the product as a yellow oil 

(121 mg, 0.51 mmol, 89%).   

           

Rf 0.74 (80% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): only a vague 1H-NMR spectrum is mentioned in the 

literature.272 

 1.24 (t, J = 7.1 Hz, 3H, H-1), 1.28 – 1.51 (m, 4H, H-6, H7), 1.62 (tt, 

J = 7.6, 7.4 Hz, 2H, H-5), 1.85 (tt, J = 7.4, 6.7 Hz, 2H, H-8), 2.28 (t, 

J = 7.4 Hz, 2H, H-4), 3.39 (t, J = 6.7 Hz, 2H, H-9), 4.11 (q, J = 7.1 Hz, 

2H, H-2). 

  

 

6.2.2.13 General method to prepare bromoalkanoic ac ids from 

ethyl hydroxyalkanoates 

     According to a procedure of Höfling et al.,163 HBr (48%) (3 – 6 mL/mmol) is 

degassed with argon and the ethyl hydroxyalkanoate (1.0 eq.) is added dropwise. 

The mixture is heated to 125 °C for 2 h and left to cool down to room temperature 

before pouring the reaction mixture into H2O (1 mL/mmol).The aqueous phase is 

extracted with EtOAc (4 × 1 mL/mmol) and the combined organic phases are washed 

with H2O (1 mL/mmol) and brine (1 mL/mmol). Drying of the organic phases over 

MgSO4, filtration and solvent evaporation yields the crude product. 
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6.2.2.14 Preparation of 7-bromoheptanoic acid (211)   

 

 

     Compound 211 is prepared applying the general method of 6.2.2.13. The use of 

monoester 227 (600 mg, 3.4 mmol) and purification of the crude product by column 

chromatography (33% EtOAc in cHex) yields the product as a yellow oil (548 mg, 

2.6 mmol, 76%) which solidifies in the refrigerator. 

      

Rf 0.41 (50% EtOAc in cHex) 
1H-NMR The 1H-NMR spectrum of 211 is in good agreement with literature.273 
13C-NMR (75 MHz, CDCl3): 

 24.5 (CH2, C-3), 27.9 (CH2, C-5), 28.3 (CH2, C-4), 32.6 (CH2, C-6), 33.8 

(CH2, C-7), 34.0 (CH2, C-2), 180.3 (Cquart, C-1). 

DIP-MS (EI):  

 208 (1) [M+, 79Br], 151 [M+−CH2COOH, 81Br], 149 [M+−CH2COOH, 79Br], 

129 (68) [M+−Br], 111 (90), 83 (55), 73 (56), 69 (94), 60 (100), 55 (78), 

41 (97). 

 

6.2.2.15 Preparation of 9-bromononanoic acid (213)  

 

 

     Compound 213 is prepared applying the general method of 6.2.2.13. The use of 

monoester 228 (2.0 g, 9.9 mmol) and purification of the crude product by Kugelrohr 

distillation yields the product as a colourless oil (1.6 g, 6.6 mmol, 66%) which 

solidifies in the refrigerator. 
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Rf 0.41 (50% EtOAc in cHex) 
1H-NMR The 1H-NMR spectrum of 213 is in good agreement with literature.274 
13C-NMR (75 MHz, CDCl3): literature spectrum misses one carbon.275 

 24.7 (CH2, C-3), 28.2 (CH2, C-7), 28.7 (CH2, C-6), 29.0 (CH2, C-4), 29.1 

(CH2, C-5), 32.9 (CH2, C-8), 34.0 (CH2, C-9), 34.2 (CH2, C-2), 180.4 

(Cquart, C-1).  

DIP-MS (EI): 

 238 (5) [M+, 81Br], 236 (5) [M+, 79Br], 195 (11), 193 (10), 179 (10) 

[M+−CH2COOH, 81Br], 177 (11) [M+−CH2COOH, 79Br], 157 (15) [M+−Br], 

139 (38), 97 (40), 73 (66) [C2H4COOH+], 69 (27), 60 (100), 55 (61), 41 

(54), 39 (16).  

 

 

6.2.2.16 General method for the THP-protection of a lcohols 

     According to a procedure of Miyashita et al.,171 to a 0.1 – 0.5M solution of alcohol 

(1.0 eq.) in CH2Cl2 abs. are added PPTS (0.1 eq.) and DHP (1.5 – 3.0 eq.) and the 

reaction is left to stir for 14 h at room temperature. The reaction mixture is diluted 

with brine (3 mL/mmol) and Et2O (3 mL/mmol). The phases are separated and the 

aqueous phase is extracted with Et2O (3 × 3 mL/mmol). The combined organic 

phases are dried over MgSO4 and filtered. The solvent is evaporated to give the 

crude product.  
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6.2.2.17 Preparation of ethyl 6-((tetrahydro-2 H-pyran-2-yl)oxy) 

hexanoate (273)  

 

 

     Compound 273 is prepared applying the general method of 6.2.2.16. The use of 

alcohol 261 (3.0 g, 18.7 mmol) and purification of the crude product by column 

chromatography (9% EtOAc in cHex) yields the product as a colourless oil (3.2 g, 

13.2 mmol, 71%). 

      

Rf 0.72 (67% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 1.22 (t, J = 7.1 Hz, 3H, H-1), 1.31 – 1.44 (m, 2H, H-6), 1.44 – 1.71 (m, 

9H, H-5, H-7, H-10, H-11a, H-12), 1.71 – 1.86 (m, 1H, H-11b), 2.27 (t, 

J = 7.5 Hz, 2H, H-4), 3.35 (dt, J = 9.6, 6.5 Hz, 1H, H-8a), 3.41 – 3.51 

(m, 1H, H-13a), 3.70 (dt, J = 9.6, 6.7 Hz, 1H, H-8b), 3.77 – 3.88 (m, 1H, 

H-13b), 4.09 (q, J = 7.1 Hz, 2H, H-2), 4.51 – 4.56 (m, 1H, H-9). 
13C-NMR (75 MHz, CDCl3): 

 14.3 (CH3, C-1), 19.8 (CH2, C-11), 24.9 (CH2, C-4), 25.6 (CH2, C-12), 

25.9 (CH2, C-6), 29.5 (CH2, C-7), 30.9 (CH2, C-10), 34.4 (CH2, C-4), 

60.2 (CH2, C-2), 62.4 (CH2, C-13), 67.4 (CH2, C-8), 98.9 (CH, C-9), 

173.8 (Cquart, C-3). 

DIP-MS (EI): 

 159 (12) [M+−THP], 143 (52) [M+−OTHP], 115 (57), 101 (38) [OTHP+], 

97 (45), 85 (100) [THP+], 73 (12) [COOC2H5
+], 69 (41), 67 (12), 55 (17), 

41 (31).  

IR (cm -1)  2940 (m), 2869 (w), 1734 (s), 1455 (w), 1371 (w), 1352 (w), 1323 (w), 

1259 (w), 1233 (m), 1200 (m), 1161 (m), 1136 (s), 1119 (s), 1077 (s), 

1032 (s), 1022 (s), 972 (m), 906 (m), 869 (m), 814 (m), 741 (w). 
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6.2.2.18 Preparation of ethyl 7-((tetrahydro-2 H-pyran-2-yl)oxy) 

heptanoate (274)  

 

 

     Compound 274 is prepared applying the general method of 6.2.2.16. The use of 

alcohol 227 (900 mg, 5.2 mmol) and purification of the crude product by column 

chromatography (9% EtOAc in cHex) yields the product as a colourless oil (1.1 g, 

4.2 mmol, 82%). 

      

 No experimental data is available, although a synthesis of compound 

274 has been published.276 

Rf 0.66 (50% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 1.20 (t, J = 7.2 Hz, 3H, H-1), 1.24 – 1.40 (m, 4H, H-6, H-7), 1.40 – 1.70 

(m, 9H, H-5, H-8, H-11, H-12a, H-13), 1.69 – 1.87 (m, 1H, H-12b), 2.24 

(t, J = 7.5 Hz, 2H, H-4), 3.32 (dt, J = 9.6, 6.5 Hz, 1H, H-9a), 3.39 – 3.50 

(m, 1H, H-14a), 3.67 (dt, J = 9.6, 6.8 Hz, 1H, H-9b), 3.75 – 3.87 (m, 1H, 

H-14b), 4.07 (q, J = 7.2 Hz, 2H, H-2), 4.49 – 4.55 (m, 1H, H-10). 
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6.2.2.19 Preparation of ethyl 8-((tetrahydro-2 H-pyran-2-yl)oxy) 

octanoate (275)  

 

 

     Compound 275 is prepared applying the general method of 6.2.2.16. The use of 

alcohol 262 (400 mg, 2.1 mmol) and purification of the crude product by column 

chromatography (9% EtOAc in cHex) yields the product as a colourless oil (498 mg, 

1.8 mmol, 86%). 

      

Rf 0.70 (67% EtOAc in cHex) 
1H-/13C-NMR The NMR spectra of 275 are in good agreement with literature.277 

DIP-MS (EI): 

 187 (3) [M+−THP], 171 (10) [M+−OTHP], 143 (5), 125 (23), 101 (28) 

[OTHP+], 97 (15), 85 (100) [THP+], 55 (19), 41 (13).  

IR (cm -1)  2935 (m), 2857 (w), 1734 (s), 1454 (w), 1371 (w), 1351 (w), 1322 (w), 

1251 (w), 1200 (m), 1181 (m), 1135 (m), 1119 (s), 1077 (m), 1022 (s), 

984 (m), 905 (m), 868 (m), 814 (w), 727 (w). 
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6.2.2.20 Preparation of ethyl 9-((tetrahydro-2 H-pyran-2-yl)oxy) 

nonanoate (276)  

 

 

     Compound 276 is prepared applying the general method of 6.2.2.16. The use of 

alcohol 228 (2.0 g, 9.9 mmol) and purification of the crude product by column 

chromatography (9% EtOAc in cHex) yields the product as a colourless oil (2.70 g, 

9.4 mmol, 95%). 

      

Rf 0.83 (50% EtOAc in cHex) 
1H-/13C-NMR The NMR spectra of 276 are in good agreement with literature.277 

DIP-MS (EI): 

 386 (2) [M+], 202 (5), 186 (17), 158 (7), 140 (30), 101 (23) [M+−OTHP], 

85 (28) [M+−THP], 69 (84), 67 (50), 57 (52), 55 (100), 43 (50), 41 (100). 

IR (cm -1)  2931 (m), 2856 (m), 1735 (s), 1455 (w), 1371 (w), 1352 (w), 1323 (w), 

1244 (w), 1200 (m), 1181 (m), 1136 (m), 1120 (s), 1078 (m), 1031 (s), 

987 (m), 971 (m), 905 (w), 869 (m), 814 (w), 725 (w). 

 

 

6.2.2.21 General method for the TBS-protection of a lcohols 

     According to a procedure of Wright et al.,172 a 0.33M solution of alcohol (1.0 eq.) 

in DMF abs. is cooled to 0 °C and imidazole (2.0 eq.) and TBSCl (1.1 – 1.2 eq.) are 

added. The reaction is left to slowly warm to room temperature and is stirred for 14 h. 

The reaction mixture is diluted with H2O (2 mL/mmol) and extracted with EtOAc 

(3 × 2 mL/mmol). The combined organic phases are washed thoroughly with H2O 

(3 × 2 mL/mmol) and brine (2 × 2 mL/mmol) before they are dried over MgSO4 and 

filtered. The solvent is evaporated to give the crude product. 
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6.2.2.22 Preparation of ethyl 6-(( tert-butyldimethylsilyl)oxy)hexan 

-oate (277)278  

 

 

     Compound 277 is prepared applying the general method of 6.2.2.21. The use of 

alcohol 261 (6.7 g, 42.1 mmol) and purification of the crude product by column 

chromatography (14% EtOAc in cHex) yields the product as a colourless oil (9.9 g, 

32.8 mmol, 86%). 

      

Rf 0.90 (33% EtOAc in cHex) 
1H-/13C-NMR The NMR spectra of 277 are in good agreement with literature.278 

GC (tR) 20.48 min (program 0) 

GC-MS (EI): 

 259 (8) [M+-CH3], 229 (41) [M+-C2H5O], 217 (97) [M+-tBu], 171 (100), 

129 (19), 115 (8) [TBS+], 103 (27), 101 (17), 97 (14), 75 (67) 

[C2H7OSi+], 73 (37), 69 (45), 55 (14).  

IR (cm -1)  2930 (m), 2858 (w), 1737 (s), 1470 (w), 1463 (w), 1387 (w), 1372 (w), 

1253 (m), 1159 (m), 1096 (s), 1035 (m), 1006 (w), 938 (w), 915 (w), 832 

(s), 773 (s), 712 (w), 661 (w). 
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6.2.2.23 Preparation of ethyl 7-(( tert-butyldimethylsilyl)oxy) 

heptanoate (278)  

 

 

     Compound 278 is prepared applying the general method of 6.2.2.21. The use of 

alcohol 227 (2.3 g, 13.4 mmol) and purification of the crude product by column 

chromatography (14% EtOAc in cHex) yields the product as a colourless oil (3.5 g, 

12.0 mmol, 90%). 

      

Rf 0.91 (33% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 0.03 (s, 6H, H-10), 0.88 (s, 9H, H-12), 1.24 (t, J = 7.1 Hz, 3H, H-1), 

1.28 – 1.37 (m, 4H, H-6, H-7), 1.44 – 1.55 (m, 2H, H-8), 1.55 – 1.68 (m, 

2H, H-5), 2.27 (t, J = 7.5 Hz, 2H, H-4), 3.58 (t, J = 6.4 Hz, 2H, H-9), 

4.11 (q, J = 7.1 Hz, 2H, H-2). 
13C-NMR (75 MHz, CDCl3): 

 −5.2 (CH3, C-10), 14.4 (CH3, C-1), 18.5 (Cquart, C-11), 25.1 (CH2, C-5), 

25.6 (CH2, C-6/C-7), 26.1 (CH3, C-12), 29.1 (CH2, C-6/C-7), 32.8 (CH2, 

C-8), 34.5 (CH2, C-4), 60.3 (CH2, C-2), 63.3 (CH2, C-9), 173.9 (Cquart, 

C-3). 

GC (tR) 23.32 min (program 0) 

GC-MS (EI): 

 273 (5) [M+−CH3], 243 [M+−OC2H5], 231 (71) [M+−tBu], 185 (100), 157 

(3) [M+−OTBS], 143 (7), 129 (8), 115 (9) [TBS+], 103 (18), 83 (23), 75 

(51) [C2H7OSi+], 73 (37), 55 (20). 

IR (cm -1)  2930 (m), 2857 (m), 1737 (s), 1463 (w), 1372 (w), 1304 (w), 1253 (m), 

1179 (m), 1158 (m), 1095 (s), 1034 (m), 1005 (m), 938 (w), 834 (s), 773 

(s), 711 (w), 661 (w). 

 



168                                                                                Experimental Part 
 

6.2.2.24 Preparation of ethyl 8-(( tert-butyldimethylsilyl)oxy)octan-

oate (279)  

 

 

     Compound 279 is prepared applying the general method of 6.2.2.21. The use of 

alcohol 262 (1.5 g, 8.0 mmol) and purification of the crude product by column 

chromatography (20% EtOAc in cHex) yields the product as a colourless oil (2.1 g, 

7.0 mmol, 88%). 

           

Rf 0.82 (50% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 0.04 (s, 6H, H-11), 0.89 (s, 9H, H-13), 1.25 (t, J = 7.1 Hz, 3H, H-1), 

1.28 – 1.36 (m, 6H, H-6, H-7, H-8), 1.50 (quin, J = 6.5 Hz, 2H, C-9), 

1.61 (quin, J = 7.2 Hz, 2H, H-5), 2.28 (t, J = 7.5 Hz, 2H, H-4), 3.59 (t, 

J = 6.5 Hz, 2H, H-10), 4.12 (q, J = 7.1 Hz, 2H, H-2).  
13C-NMR (75 MHz, CDCl3): 

 −5.1 (CH3, C-11), 14.4 (CH3, C-1), 18.5 (Cquart, C-12), 25.1 (CH2, C-5), 

25.8 (CH2, C-8), 26.1 (CH3, C-13), 29.2 (CH2, C-6/C-7), 29.3 (CH2, 

C-6/C-7), 33.0 (CH2, C-9), 34.5 (CH2, C-4), 60.3 (CH2, C-2), 63.4 (CH2, 

C-10), 174.0 (Cquart, C-3).  

GC (tR) 24.91 min (program 0) 

GC-MS (EI): 

 287 (5) [M+−CH3], 257 (16) [M+−C2H5O], 245 (61) [M+−tBu], 200 (29) 

[M+−tBu; −C2H5O], 199 (100), 115 (11) [C6H15Si+], 103 (19), 75 (56) 

[C2H7OSi+], 73 (32), 55 (40).  

IR (cm -1)  2929 (m), 2857 (m), 1737 (s), 1463 (w), 1372 (w), 1252 (m), 1178 (m), 

1095 (s), 1037 (m), 1006 (w), 939 (w), 832 (s), 812 (m), 773 (s), 711 

(w), 661 (w). 
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6.2.2.25 Preparation of ethyl 9-(( tert-butyldimethylsilyl)oxy) 

nonanoate (280)  

 

 

     Compound 280 is prepared applying the general method of 6.2.2.21. The use of 

alcohol 228 (1.0 g, 4.9 mmol) and purification of the crude product by column 

chromatography (20% EtOAc in cHex) yields the product as a colourless oil (1.4 g, 

4.5 mmol, 93%). 

      

Rf 0.84 (50% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 0.04 (s, 6H, H-12), 0.88 (s, 9H, H-14), 1.25 (t, J = 7.1 Hz, 3H, H-1), 

1.25 – 1.37 (m, 8H, H-6, H-7, H-8, H-9), 1.42 – 1.55 (m, 2H, C-10), 

1.55 – 1.68 (m, 2H, H-5), 2.28 (t, J = 7.5 Hz, 2H, H-4), 3.58 (t, 

J = 6.6 Hz, 2H, H-11), 4.11 (q, J = 7.1 Hz, 2H, H-2). 
13C-NMR (75 MHz, CDCl3): 

 −5.1 (CH3, C-12), 14.4 (CH3, C-1), 18.5 (Cquart, C-13), 25.1 (CH2, C-5), 

25.9 (CH2, C-9), 26.1 (CH3, C-14), 29.2 (CH2, C-6, C-7, C-8), 29.4 

(2 × CH2, C-6, C-7, C-8), 33.0 (CH2, C-10), 34.5 (CH2, C-4), 60.2 (CH2, 

C-2), 63.4 (CH2, C-11), 174.0 (Cquart, C-3).  

DIP-MS (EI): 

 315 (2) [M+−H], 301 (9) [M+−CH3], 287 (73) [M+−C2H5], 273 (13), 271 

(11) [M+−OC2H5], 259 (86) [M+−tBu], 241 (82), 227 (13), 213 (100) 

[M+−COOC2H5, −2 × CH3], 171 (10), 131 (11) [OTBS+], 121 (15), 115 

(10) [TBS+], 103 (16), 95 (18), 81 (26), 75 (100) [C2H7OSi+], 73 (43) 

[COOC2H5
+], 69 (42), 56 (36), 42 (19).  
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6.2.2.26 General method for the saponification of p rotected ethyl 

hydroxyalkanoates 

     According to a procedure of Kobayashi et al.,173 a solution of protected ethyl 

hydroxyalkanoate (1.0 eq.) in THF (4 mL/mmol) is cooled to 0 °C and H2O 

(3 mL/mmol) and LiOH (2M in H2O) (3.2 – 3.5 eq.) are added dropwise. The 

suspension is left to slowly warm to room temperature and is stirred for 14 h, until the 

mixture becomes clear. THF is evaporated and the pH of the aqueous phase is 

carefully adjusted to 5 with 2M HClaq. The aqueous phase is extracted with EtOAc 

(3 × 8 mL/mmol) and the combined organic phases are washed with H2O 

(2 × 8 mL/mmol) before they are dried over MgSO4 and filtered. The solvent is 

evaporated to give the crude product.  

 

 

6.2.2.27 Preparation of 6-((tetrahydro-2 H-pyran-2-yl)oxy)hexanoic 

acid (281)  

 

 

     Compound 281 is prepared applying the general method of 6.2.2.26. The use of 

alcohol 273 (1.0 g, 4.1 mmol) and purification of the crude product by column 

chromatography (6% → 9% → 50% EtOAc in cHex) yields the product as a 

colourless oil (704 mg, 3.3 mmol, 80%). 

           

Rf 0.50 (75% EtOAc in cHex), tailing observed 
1H-/13C-NMR The NMR spectra of 281 are in good agreement with literature.279 

DIP-MS (EI): 

 215 (1) [M+−H], 143 (4) [M+−C2H4COOH], 131 (5) [M+−THP], 115 (55) 

[M+−OTHP],  101 (31) [OTHP+], 97 (41), 85 (100) [THP+], 73 (17), 69 

(50), 67 (15), 55 (30), 41 (47). 



Experimental Part                                                                                                                 171 
 

IR (cm -1)  3001 (w, br), 2942 (m), 2869 (m), 1732 (m), 1707 (s), 1455 (w), 1441 

(w), 1412 (w), 1353 (w), 1260 (m), 1233 (m), 1200 (m), 1184 (m), 1166 

(m), 1136 (m), 1118 (s), 1075 (s), 1021 (s), 973 (m), 904 (m), 868 (m), 

804 (m), 740 (w). 

 

 

6.2.2.28 Preparation of 7-((tetrahydro-2 H-pyran-2-yl)oxy)heptan-

oic acid (282)  

 

 

     Compound 282 is prepared applying the general method of 6.2.2.26. The use of 

alcohol 274 (905 mg, 3.5 mmol) and purification of the crude product by column 

chromatography (6% → 9% → 50% EtOAc in cHex) yields the product as a 

colourless oil (366 mg, 1.6 mmol, 45%). 

           

Rf 0.30 (25% EtOAc in cHex), tailing observed 

  The complete spectral data (NMR, MS, IR) of 282 is in good agreement 

with literature.280 
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6.2.2.29 Preparation of 8-((tetrahydro-2 H-pyran-2-yl)oxy)octanoic 

acid (283)  

 

 

     Compound 283 is prepared applying the general method of 6.2.2.26. The use of 

alcohol 275 (299 mg, 1.1 mmol) and purification of the crude product by column 

chromatography (6% → 13% → 17% EtOAc in cHex) yields the product as a 

colourless oil (186 mg, 0.76 mmol, 69%). 

           

Rf 0.42 (50% EtOAc in cHex), tailing observed 

 The complete spectral data (NMR, MS, IR) of 283 is in good agreement 

with literature.280 

 

 

6.2.2.30 Preparation of 9-((tetrahydro-2 H-pyran-2-yl)oxy)nonanoic 

acid (284)  

 

 

     Compound 284 is prepared applying the general method of 6.2.2.26. The use of 

alcohol 276 (2.9 g, 10.0 mmol) and purification of the crude product by column 

chromatography (6% → 13% → 17% EtOAc in cHex) yields the product as a 

colourless oil (1.3 g, 5.2 mmol, 52%). 

           

Rf 0.33 (25% EtOAc in cHex), tailing observed 
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 The complete spectral data (NMR, MS, IR) of 284 is in good agreement 

with literature.280 

  

 

6.2.2.31 Preparation of 6-(( tert-butyldimethylsilyl)oxy)hexanoic 

acid (285)  

 

 

     Compound 285 is prepared applying the general method of 6.2.2.26. The use of 

alcohol 277 (3.0 g, 10.9 mmol) and purification of the crude product by column 

chromatography (6% → 9% → 17% EtOAc in cHex) yields the product as a 

colourless oil (1.4 g, 5.6 mmol, 51%). 

           

Rf 0.62 (25% EtOAc in cHex), tailing observed 
1H-NMR (300 MHz, CDCl3): only a vague 1H-NMR spectrum is mentioned in the 

literature.281 

 0.04 (s, 6H, H-7), 0.89 (s, 9H, H-9), 1.33 – 1.45 (m, 2H, H-4),        

1.48 – 1.59 (m, 2H, C-5), 1.65 (quin, J = 7.6 Hz, 2H, H-3), 2.36 (t, 

J = 7.6 Hz, 2H, H-2), 3.61 (t, J = 6.3 Hz, 2H, H-6), 10.63 (br s, 1H, 

COOH-1). 
13C-NMR The 13C-NMR spectrum of 285 is in good agreement with literature.281 

GC (tR) 21.02 min (program 0) 

GC-MS (EI): 

 213 (4), 189 (22) [M+−tBu], 171 (92), 131 (3) [M+−TBS], 129 (12), 115 

(3) [TBS+], 75 (100) [C2H7OSi+], 73 (22), 69 (51), 55 (16).  

IR (cm -1)  3000 (w, br), 2929 (m), 2858 (m), 1708 (s), 1472 (w), 1463 (w), 1412 

(w), 1388 (w), 1361 (w), 1283 (w), 1252 (m), 1097 (s), 1005 (w), 938 

(m), 832 (s), 773 (s), 711 (m), 660 (m). 
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6.2.2.32 Preparation of 7-(( tert-butyldimethylsilyl)oxy)heptanoic 

acid (286)  

 

 

     Compound 286 is prepared applying the general method of 6.2.2.26. The use of 

alcohol 278 (4.5 g, 15.6 mmol) and purification of the crude product by column 

chromatography (6% → 9% → 17% EtOAc in cHex) yields the product as a 

colourless oil (3.1 g, 11.7 mmol, 75%). 

      

Rf 0.58 (33% EtOAc in cHex), tailing observed 
1H-NMR The 1H-NMR spectrum of 286 is in good agreement with literature.282  
13C-NMR (75 MHz, CDCl3): 

 −5.1 (CH3, C-8), 18.5 (Cquart, C-9), 24.8 (CH2, C-3), 25.6 (CH2, C-4/C-5), 

26.1 (CH3, C-10), 29.0 (CH2, C-4/C-5), 32.7 (CH2, C-6), 34.2 (CH2, C-2), 

63.3 (CH2, C-7), 180.2 (Cquart, C-1). 

GC (tR) 23.52 min (program 0) 

GC-MS (EI): 

 227 (6), 203 (14) [M+−tBu], 185 (100) [M+−C2H7OSi+], 129 (9) 

[M+−OTBS], 111 (7), 93 (9), 83 (17), 75 (81) [C2H7OSi+], 73 (19), 55 

(24).  

IR (cm -1)  The IR spectrum of 286 is in good agreement with literature.282 
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6.2.2.33 Preparation of 8-(( tert-butyldimethylsilyl)oxy)octanoic 

acid (287)  

 

 

     Compound 287 is prepared applying the general method of 6.2.2.26. The use of 

alcohol 279 (2.2 g, 7.4 mmol) and purification of the crude product by column 

chromatography (6% → 9% → 17% EtOAc in cHex) yields the product as a 

colourless oil (1.4 g, 5.2 mmol, 71%). 

      

Rf 0.56 (25% EtOAc in cHex), tailing observed 
1H-NMR (300 MHz, CDCl3): 

 0.04 (s, 6H, H-9), 0.89 (s, 9H, H-11), 1.28 – 1.36 (m, 6H, H-4, H-5, H-6), 

1.51 (quin, J = 6.6 Hz, 2H, H-7), 1.63 (quin, J = 7.3 Hz, 2H, H-3), 2.34 

(t, J = 7.3 Hz, 2H, H-2), 3.59 (t, J = 6.6 Hz, 2H, H-8), 10.69 (br s, 1H, 

COOH-1). 
13C-NMR (75 MHz, CDCl3): 

 −5.1 (CH3, C-9), 18.5 (Cquart, C-10), 24.8 (CH2, C-3), 25.8 (CH2, C-6), 

26.1 (CH3, C-11), 29.2 (CH2, C-4/C-5), 32.9 (CH2, C-4/C-5), 34.2 (CH2, 

C-2), 63.4 (CH2, C-8), 180.3 (Cquart, C-1).  

GC (tR) 24.46 min (program 0) 

GC-MS (EI): 

 241 (10), 217 (14) [M+−tBu], 200 (29) [M+−tBu; −OH], 199 (100) 

[M+−C2H7OSi], 131 (6) [C6H15OSi+], 115 (7) [C6H15Si+], 75 (74) 

[C2H7OSi+], 73 (26), 55 (42).  

IR (cm -1)  2929 (m), 2856 (m), 1708 (s), 1463 (w), 1412 (w), 1388 (w), 1361 (w), 

1253 (m), 1095 (s), 1005 (w), 938 (m), 832 (s), 773 (s), 728 (w), 661 

(m). 
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6.2.2.34 Preparation of 9-(( tert-butyldimethylsilyl)oxy)nonanoic 

acid (288)  

 

 

     Compound 288 is prepared applying the general method of 6.2.2.26. The use of 

alcohol 280 (4.0 g, 12.6 mmol) and purification of the crude product by column 

chromatography (10% → 20% EtOAc in cHex) yields the product as a colourless oil 

(3.4 g, 11.6 mmol, 92%). 

           

Rf 0.63 (25% EtOAc in cHex), tailing observed 
1H-NMR The 1H-NMR spectrum of 288 is in good agreement with literature.283 
13C-NMR (75 MHz, CDCl3): 

 −5.1 (CH3, C-10), 18.5 (Cquart, C-11), 24.8 (CH2, C-3), 25.9 (CH2, C-7), 

26.1 (CH3, C-12), 29.2 (CH2, C-4/C-5/C-6), 29.4 (2 × CH2, C-4/C-5/C-6), 

34.2 (CH2, C-2), 33.0 (CH2, C-8), 63.4 (CH2, C-9), 180.3 (Cquart, C-1).  

GC (tR) 26.65 min (program 0) 

GC-MS The MS spectrum of 288 is in good agreement with literature.283 

IR (cm -1)  2929 (m), 2896 (w, br), 2856 (m), 1709 (s), 1464 (w), 1416 (w), 1387 

w), 1361 (w), 1251 (m), 1096 (s), 1005 (w), 938 (m), 832 (s), 773 (s), 

733 (w), 661 (m). 
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6.2.2.35 General method to prepare ( R)-4-benzyl-3-

(alkanoyl)oxazolidin-2-ones 

     According to a procedure of Yadav et al.,178,179 a solution of carboxylic acid 

(1.0 eq.) in THF abs. (10 mL/mmol) is cooled to −20 °C in an ice/salt bath and NEt3 

abs. (2.5 eq.) and PivCl (1.0 eq.) are added. The mixture is stirred for 1 h at −20 °C 

before dry LiCl (1.5 eq.) and (R)-4-benzyloxazolidinone (289) (1.0 eq.) are added. 

The stirring is continued for 1 h at −20 °C and 2 h at room temperature before the 

reaction is terminated by the addition of sat. NH4Claq (10 mL/mmol) and EtOAc 

(15 mL/mmol). The phases are separated and the aqueous phase is extracted with 

EtOAc (3 × 10 mL/mmol) and the combined organic phases are dried over MgSO4 

and filtered. The solvent is evaporated to give the crude product.  

 

 

6.2.2.36 Preparation of ( R)-4-benzyl-3-(6-(( tert-butyldimethylsilyl) 

oxy)hexanoyl)oxazolidin-2-one (290)  

 

 

     Compound 290 is prepared applying the general method of 6.2.2.35. The use of 

carboxylic acid 285 (770 mg, 3.1 mmol) and purification of the crude product by 

column chromatography (flash silica, 10% EtOAc in cHex) yields the product as a 

colourless oil (1.1 g, 2.7 mmol, 87%). 

           

Rf 0.58 (25% EtOAc in cHex) 
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1H-NMR (300 MHz, CDCl3): 

 0.05 (s, 6H, H-7), 0.89 (s, 9H, H-9), 1.37 – 1.50 (m, 2H, H-4),        

1.51 – 1.63 (m, 2H, H-5), 1.65 – 1.78 (m, 2H, H-3), 2.76 (dd, J = 13.2, 

9.6 Hz, 1H, H-13a), 2.90 (dt, J = 17.1, 7.4 Hz, 2H, H-2b), 2.99 (dt, 

J = 16.9, 7.7 Hz, 2H, H-2a), 3.29 (dd, J = 13.2, 3.3 Hz, 1H, H-13b), 3.62 

(t, J = 6.3 Hz, 2H, H-6), 4.07 – 4.27 (m, 2H, H-11), 4.62 – 4.73 (m, 1H, 

H-12), 7.17 – 7.41 (m, 5H, H-15, H-16, H-17). 
13C-NMR (75 MHz, CDCl3): 

 −5.1 (CH3, C-7), 18.5 (Cquart, C-8), 24.3 (CH2, C-3), 25.6 (CH2, C-4), 

26.1 (CH3, C-9), 32.8 (CH2, C-5), 35.7 (CH2, C-2), 38.1 (CH2, C-13), 

55.3 (CH2, C-12), 63.2 (CH2, C-6), 66.3 (CH2, C-11), 127.5 (CH, C-17), 

129.1 (CH, C-16), 129.6 (CH, C-15), 135.5 (Cquart, C-14), 153.6 (Cquart, 

C-10), 173.5 (Cquart, C-1).  

GC (tR) 24.25 min (program 4) 

GC-MS (EI): 

 405 (1) [M+], 390 (4) [M+−CH3], 348 (100) [M+−tBu], 229 (13)    

[M+−C10H10NO2], 171 (36), 141 (7), 129 (7), 117 (12), 91 (20) [C7H7
+], 

75 (22) [C2H7OSi+], 73 (10).  

IR (cm -1)  2928 (m), 2855 (w), 1783 (s), 1701 (m), 1472 (w), 1454 (w), 1385 (m), 

1351 (m), 1287 (w), 1250 (m), 1207 (m), 1197 (m), 1095 (s), 1052 (m), 

1005 (m), 937 (w), 915 (w), 833 (s), 774 (s), 740 (m), 701 (s), 661 (w). 
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6.2.2.37 Preparation of ( R)-4-benzyl-3-(7-(( tert-butyldimethylsilyl) 

oxy)heptanoyl)oxazolidin-2-one (291)  

 

 

     Compound 291 is prepared applying the general method of 6.2.2.35. The use of 

carboxylic acid 286 (1.4 g, 5.4 mmol) and purification of the crude product by column 

chromatography (flash silica, 10% EtOAc in cHex) yields the product as a colourless 

oil (2.0 g, 4.8 mmol, 89%). 

      

Rf 0.62 (25% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 0.05 (s, 6H, H-8), 0.89 (s, 9H, H-10), 1.31 – 1.46 (m, 4H, H-4, H-5), 

1.47 – 1.61 (m, 2H, H-6), 1.63 – 1.77 (m, 2H, H-3), 2.76 (dd, J = 13.2, 

9.6 Hz, 1H, H-14a), 2.89 (dt, J = 16.9, 7.4 Hz, 1H, H-2b), 2.98 (dt, 

J = 16.9, 7.5 Hz, 1H, H-2a), 3.30 (dd, J = 13.4, 3.3 Hz, 1H, H-14b), 3.61 

(t, J = 6.6 Hz, 2H, H-7), 4.12 – 4.24 (m, 2H, H-12), 4.62 – 4.72 (m, 1H, 

H-13), 7.17 – 7.37 (m, 5H, H-16, H-17, H-18). 
13C-NMR (75 MHz, CDCl3): 

 −5.1 (CH3, C-8), 18.5 (Cquart, C-9), 24.4 (CH2, C-3), 25.8 (CH2, C-4/C-5), 

26.1 (CH3, C-10), 29.1 (CH2, C-4/C-5), 32.8 (CH2, C-6), 35.7 (CH2, C-2), 

38.1 (CH2, C-14), 55.3 (CH, C-13), 63.3 (CH2, C-7), 66.3 (CH2, C-12), 

127.5 (CH, C-18), 129.1 (CH, C-17), 129.6 (CH, C-16), 135.5 (Cquart, 

C-15), 153.6 (Cquart, C-11), 173.5 (Cquart, C-1),  

GC (tR) 25.80 min (program 4) 
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GC-MS (EI): 

 419 (1) [M+], 404 (2) [M+−CH3], 362 (100) [M+−tBu], 243 (5) 

[M+−C10H10NO2], 185 (21), 117 (19), 91 (21) [C7H7
+], 75 (37) 

[C2H7OSi+], 73 (10).   

IR (cm -1)  2927 (m), 2855 (m), 1783 (s), 1740 (w), 1700 (m), 1605 (w), 1498 (w), 

1474 (w), 1454 (w), 1385 (m), 1351 (m), 1249 (m), 1197 (m), 1096 (s), 

1050 (m), 1030 (m), 1005 (m), 937 (w), 834 (s), 773 (s), 744 (m), 700 

(s), 661 (m). 

 

 

6.2.2.38 Preparation of ( R)-4-benzyl-3-(8-(( tert-butyldimethylsilyl) 

oxy)octanoyl)oxazolidin-2-one (292)  

 

 

     Compound 292 is prepared applying the general method of 6.2.2.35. The use of 

carboxylic acid 287 (700 mg, 2.6 mmol) and purification of the crude product by 

column chromatography (flash silica, 10% EtOAc in cHex) yields the product as a 

colourless oil (979 mg, 2.3 mmol, 91%). 

           

Rf 0.52 (25% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 0.05 (s, 6H, H-9), 0.89 (s, 9H, H-11), 1.28 – 1.42 (m, 6H, H-4, H-5, H-6), 

1.52 (quin, J = 6.6 Hz, 2H, H-7), 1.69 (quin, J = 7.5 Hz, 2H, H-3), 2.76 

(dd, J = 13.2, 9.6 Hz, 1H, H-15a), 2.89 (dt, J = 16.9, 7.5 Hz, 1H, H-2b), 

2.97 (dt, J = 16.9, 7.5 Hz, 1H, H-2a), 3.30 (dd, J = 13.2, 3.3 Hz, 1H, 

H-15b), 3.60 (t, J = 6.6 Hz, 2H, H-8), 4.12 – 4.23 (m, 2H, H-13),    

4.62 – 4.72 (m, 1H, H-14), 7.17 – 7.37 (m, 5H, H-17, H-18, H-19). 
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13C-NMR (75 MHz, CDCl3): 

 −5.1 (CH3, C-9), 18.5 (Cquart, C-10), 24.4 (CH2, C-3), 25.8 (CH2, C-6), 

26.1 (CH3, C-11), 29.3 (CH2, C-4/C-5), 29.4 (CH2, C-4/C-5), 33.0 (CH2, 

C-7), 35.7 (CH2, C-2), 38.1 (CH2, C-15), 55.3 (CH, C-14), 63.4 (CH2, 

C-8), 66.3 (CH2, C-13), 127.5 (CH, C-19), 129.1 (CH, C-18), 129.6 (CH, 

C-17), 135.5 (Cquart, C-16), 153.6 (Cquart, C-12), 173.5 (Cquart, C-1). 

GC (tR) 30.21 min (program 4) 

GC-MS (EI): 

 433 (1) [M+], 418 (9) [M+−CH3], 376 (100) [M+−tBu], 302 (1) 

[M+−C6H15OSi], 257 (9) [M+−C10H10NO2], 117 (26), 91 (30) [C7H7
+], 75 

(37) [C2H7OSi+], 73 (21), 55 (21).  

IR (cm -1)  2929 (m), 2856 (m), 1781 (s), 1708 (s), 1463 (m), 1412 (m), 1388 (s), 

1351 (m), 1253 (m), 1212 (s), 1095 (s), 1005 (m), 938 (m), 832 (s), 773 

(s), 728 (s), 700 (s), 661 (m). 

[α]D
24  −23.0 ° (c = 1.0, EtOH) 

 

 

6.2.2.39 Preparation of ( R)-4-benzyl-3-(9-(( tert-butyldimethylsilyl) 

oxy)nonanoyl)oxazolidin-2-one (293)  

 

 

     Compound 293 is prepared applying the general method of 6.2.2.35. The use of 

carboxylic acid 288 (423 mg, 1.5 mmol) and purification of the crude product by 

column chromatography (flash silica, 10% EtOAc in cHex) yields the product as a 

colourless oil (590 mg, 1.3 mmol, 90%). 

      

Rf 0.57 (25% EtOAc in cHex) 
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1H-NMR (300 MHz, CDCl3): 

 0.05 (s, 6H, H-10), 0.89 (s, 9H, H-12), 1.25 – 1.41 (m, 8H, H-4, H-5, 

H-6, H-7), 1.44 – 1.57 (m, 2H, H-8), 1.61 – 1.77 (m, 2H, H-3), 2.76 (dd, 

J = 13.3, 9.6 Hz, 1H, H-16a), 2.88 (dt, J = 16.9, 7.5 Hz, 1H, H-2b), 2.97 

(dt, J = 16.9, 7.5 Hz, 1H, H-2a), 3.30 (dd, J = 13.3, 3.3 Hz, 1H, H-16b), 

3.60 (t, J = 6.6 Hz, 2H, H-9), 4.12 – 4.24 (m, 2H, H-14), 4.62 – 4.72 (m, 

1H, H-15), 7.17 – 7.38 (m, 5H, H-18, H-19, H-20). 
13C-NMR (75 MHz, CDCl3): 

 −5.1 (CH3, C-10), 18.5 (Cquart, C-11), 24.4 (CH2, C-3), 25.9 (CH2, C-7), 

26.1 (CH3, C-12), 29.2 (CH2, C-4/C-5/C-6), 29.4 (CH2, C-4/C-5/C-6), 

29.5 (CH2, C-4/C-5/C-6), 33.0 (CH2, C-8), 35.7 (CH2, C-2), 38.1 (CH2, 

C-16), 55.3 (CH, C-15), 63.4 (CH2, C-9), 66.3 (CH2, C-14), 127.5 (CH, 

C-20), 129.1 (CH, C-19), 129.6 (CH, C-18), 135.5 (Cquart, C-17), 153.6 

(Cquart, C-13), 173.6 (Cquart, C-1). 

DIP-MS (EI): 

 447 (1) [M+], 432 (3) [M+−CH3], 418 (3), 390 (100) [M+−tBu], 271 (3) 

[M+−C10H10NO2], 143 (9), 131 (6) [OTBS+], 117 (36), 115 (13) [TBS+], 

91 (33), 75 (69) [C2H7OSi+], 73 (27), 69 (14), 55 (19), 42 (15). 

IR (cm -1)  2928 (m), 2855 (m), 1783 (s), 1701 (m), 1455 (w), 1385 (m), 1351 (m), 

1290 (w), 1251 (m), 1210 (m), 1198 (m), 1095 (s), 1052 (m), 1006 (m), 

939 (w), 834 (s), 774 (s), 744 (m), 701 (s), 662 (w), 620 (w).  
  

 

6.2.2.40 General methylation method to prepare ( R)-4-benzyl-3-(2-

methylalkanoyl)oxazolidin-2-ones from ( R)-4-benzyl-3-

(alkanoyl)oxazolidin-2-ones 

     According to a procedure of Yadav et al.,178,179 THF abs. (5 – 20 mL/mmol) is 

cooled to −78 °C in an acetone/dry ice bath and NaHMDS (1.5M in hexanes) 

(1.1 eq.) is added dropwise before a solution of (R)-4-benzyl-3-(alkanoyl)oxazolidin-

2-one (1.0 eq.) in THF abs. (1 – 5 mL/mmol) is added dropwise. The mixture is stirred 

for 1 h at −78 °C before MeI (3.0 eq.) is added dropwise and the stirring is continued 

for 3.5 h, leaving the reaction mixture to slowly warm to room temperature. The 

reaction is terminated by the addition of sat. NH4Claq (20 mL) and the phases are 
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separated. The aqueous phase is extracted with EtOAc (3 × 35 mL) and the 

combined organic phases are dried over MgSO4 and filtered. The solvent is 

evaporated to give the crude product.  

 

 

6.2.2.41 Preparation of ( R)-4-benzyl-3-(6-(( tert-butyldimethylsilyl) 

oxy)-2-methylhexanoyl)oxazolidin-2-one (294)  

1) NaHMDS, THF,
78 °C, 1 h

290
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8
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     Compound 294 is prepared applying the general method of 6.2.2.40. The use of 

unmethylated compound 290 (1.6 g, 4.0 mmol) and purification of the crude product 

by column chromatography (flash silica, 5% EtOAc in cHex) yields the product as a 

colourless oil (1.1 g, 2.7 mmol, 68%). 

           

Rf 0.68 (25% EtOAc in cHex)  
1H-NMR (300 MHz, CDCl3): 

 0.04 (s, 6H, H-7), 0.88 (s, 9H, H-9), 1.29 – 1.58 (m, 5H, H-3a, H-4, H-5), 

1.22 (d, J = 6.9 Hz, 3H, H-18), 1.69 – 1.83 (m, 1H, H-3b), 2.77 (dd, 

J = 13.2, 9.6 Hz, 1H, H-13a), 3.27 (dd, J = 13.3, 3.2 Hz, 1H, H-13b), 

3.60 (t, J = 6.4 Hz, 2H, H-6), 3.65 – 3.78 (m, 1H, H-2), 4.13 – 4.23 (m, 

2H, H-11), 4.67 (dddd, J = 9.8, 6.7, 3.4, 3.4 Hz, 1H, H-12), 7.17 – 7.37 

(m, 5H, H-15, H-16, H-17). 

GC (tR) 24.36 min (program 4) 

GC-MS (EI): 

 419 (1) [M+], 362 (100) [M+−tBu], 243 (24) [M+−C10H10NO2], 234 (33), 

185 (32), 117 (24), 91 (26) [C7H7
+], 75 (36) [C2H7OSi+], 73 (23), 55 (15). 

[α]D
24  −41.8 ° (c = 1.0, CHCl3) 
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6.2.2.42 Preparation of ( R)-4-benzyl-3-(7-(( tert-butyldimethylsilyl) 

oxy)-2-methylheptanoyl)oxazolidin-2-one (295)  

 

 

     Compound 295 is prepared applying the general method of 6.2.2.40. The use of 

unmethylated compound 291 (584 mg, 1.4 mmol) and purification of the crude 

product by column chromatography (flash silica, 5% EtOAc in cHex) yields the 

product as a colourless oil (351 mg, 0.81 mmol, 58%). 

           

Rf 0.62 (25% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 0.04 (s, 6H, H-8), 0.89 (s, 9H, H-10), 1.22 (d, J = 6.9 Hz, 3H, H-19), 

1.28 – 1.38 (m, 4H, H-4, H-5), 1.41 – 1.58 (m, 3H, H-3a, H-6),       

1.63 – 1.83 (m, 1H, H-3b), 2.76 (dd, J = 13.4, 9.6 Hz, 1H, H-14a), 3.27 

(dd, J = 13.3, 3.2 Hz, 1H, H-14b), 3.59 (t, J = 6.6 Hz, 2H, H-7),      

3.63 – 3.77 (m, 1H, H-2), 4.12 – 4.24 (m, 2H, H-12), 4.63 – 4.72 (m, 1H, 

H-13), 7.18 – 7.37 (m, 5H, H-16, H-17, H-18). 
13C-NMR (75 MHz, CDCl3): 

 −5.1 (CH3, C-8), 17.5 (CH3, C-19), 18.5 (Cquart, C-9), 2 × 26.1 (CH2, 

C-5), (CH3, C-10), 27.2 (CH2, C-4), 32.9 (CH2, C-6), 33.6 (CH2, C-3), 

37.9 (CH, C-2), 38.1 (CH2, C-14), 55.5 (CH, C-13), 63.3 (CH2, C-7), 

66.2 (CH2, C-12), 127.5 (CH, C-18), 129.1 (CH, C-17), 129.6 (CH, 

C-16), 135.5 (Cquart, C-15), 153.2 (Cquart, C-11) ,177.4 (Cquart, C-1). 

GC (tR) 26.13 min (program 4) 
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DIP-MS (EI): 

 433 (2) [M+], 418 (3) [M+−CH3], 376 (100) [M+−tBu], 257 (12) 

[M+−C10H10NO2], 199 (15), 117 (17), 91 (13) [C7H7
+], 75 (28) 

[C2H7OSi+], 73 (15), 55 (14). 

IR (cm -1) 2929 (m), 2857 (w), 1779 (s), 1697 (m), 1455 (w), 1384 (m), 1349 (m), 

1290 (w), 1236 (m), 1208 (s), 1195 (m), 1093 (s), 1051 (m), 1007 (m), 

971 (m), 832 (s), 773 (s), 745 (m), 701 (s), 661 (m). 

 

 

6.2.2.43 Preparation of ( R)-4-benzyl-3-(8-(( tert-butyldimethylsilyl) 

oxy)-2-methyloctanoyl)oxazolidin-2-one (296)  

 

 

     Compound 296 is prepared applying the general method of 6.2.2.40. The use of 

unmethylated compound 292 (645 mg, 1.5 mmol) and purification of the crude 

product by column chromatography (flash silica, 5% EtOAc in cHex) yields the 

product as a colourless oil (525 mg, 1.2 mmol, 79%). 

           

Rf 0.36 (14% EtOAc in cHex) 

de 94% (calculated from GC) 
1H-NMR (300 MHz, CDCl3): 

 0.04 (s, 6H, H-9), 0.89 (s, 9H, H-11), 1.22 (d, J = 6.9 Hz, 3H, H-20), 

1.25 - 1.35 (m, 6H, H-4, H-5, H-6), 1.41 – 1.56 (m, 3H, H-3, H-7), 

1.66 – 1.81 (m, 1H, H-3), 2.76 (dd, J = 13.3, 9.6 Hz, 1H, H-15b), 3.27 

(dd, J = 13.3, 3.3 Hz, 1H, H-15a), 3.59 (t, J = 6.4 Hz, 2H, H-8),      

3.64 – 3.77 (m, 2H, H-2), 4.13 – 4.24 (m, 2H, H-13), 4.67 (dddd, J = 9.8, 

6.7, 3.3, 3.3 Hz, 1H, H-14), 7.18 – 7.37 (m, 5H, H-17, H-18, H-19).  
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13C-NMR (75 MHz, CDCl3): 

 −5.1 (CH3, C-9), 17.5 (CH3, C-20), 18.5 (Cquart, C-10), 25.8 (CH2, C-6), 

26.1 (CH3, C-11), 27.4 (CH2, C-4/C-5), 29.6 (CH2, C-4/C-5), 33.0 (CH2, 

C-7), 33.5 (CH2, C-3), 37.9 (CH, C-2), 38.1 (CH2, C-15), 55.5 (CH, 

C-14), 63.4 (CH2, C-8), 66.1 (CH2, C-13), 127.5 (CH, C-19), 129.1 (CH, 

C-18), 129.6 (CH, C-17), 135.5 (Cquart, C-16), 153.2 (Cquart, C-12), 177.4 

(Cquart, C-1). 

GC (tR) 29.09 min (program 4) 

GC-MS (EI): 

 447 (1) [M+], 432 (3) [M+−CH3], 390 (100) [M+−tBu], 271 (8) 

[M+−C10H10NO2], 117 (15), 91 (13) [C7H7
+], 75 (18) [C2H7OSi+], 69 (11), 

55 (5).  

IR (cm -1)  2929 (m), 2857 (w), 1779 (s), 1698 (m), 1462 (w), 1384 (m), 1349 (m), 

1290 (w), 1247 (m), 1208 (m), 1195 (m), 1095 (s), 1051 (m), 1007 (m), 

971 (m), 925 (w), 834 (s), 773 (s), 756 (s), 701 (s), 665 (m). 

[α]D
24  −43.7 ° (c = 1.0, CHCl3) 

 

 

6.2.2.44 Preparation of ( R)-4-benzyl-3-(9-(( tert-butyldimethylsilyl) 

oxy)-2-methylnonanoyl)oxazolidin-2-one (297)  

1) NaHMDS, THF,
78 °C, 1 h
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     Compound 297 is prepared applying the general method of 6.2.2.40. The use of 

unmethylated compound 293 (1.0 g, 2.2 mmol) and purification of the crude product 

by column chromatography (flash silica, 5% EtOAc in cHex) yields the product as a 

colourless oil (677 mg, 1.5 mmol, 66%). 
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Rf 0.66 (25% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 0.04 (s, 6H, H-10), 0.89 (s, 9H, H-12), 1.22 (d, J = 6.9 Hz, 3H, H-21), 

1.25 – 1.35 (m, 8H, H-4, H-5, H-6, H-7), 1.43 – 1.56 (m, 3H, H-3a, H-8), 

1.67 – 1.81 (m, 1H, H-3b), 2.76 (dd, J = 13.3, 9.6 Hz, 1H, H-16a), 3.27 

(dd, J = 13.3, 3.3 Hz, 1H, H-16b), 3.59 (t, J = 6.6 Hz, 2H, H-9),      

3.64 – 3.77 (m, 1H, H-2), 4.13 – 4.25 (m, 2H, H-14), 4.63 – 4.72 (m, 1H, 

H-15), 7.18 – 7.36 (m, 5H, H-18, H-19, H-20). 
13C-NMR (75 MHz, CDCl3): 

 −5.1 (CH3, C-10), 17.5 (CH3, C-21), 18.5 (Cquart, C-11), 25.9 (CH2, C-7), 

26.1 (CH3, C-12), 27.3 (CH2, C-4), 29.4 (CH2, C-5/C-6), 29.8 (CH2, 

C-5/C-6), 33.0 (CH2, C-8), 33.5 (CH2, C-3), 37.8 (CH, C-2), 38.1 (CH2, 

C-16), 55.5 (CH, C-15), 63.4 (CH2, C-9), 66.1 (CH2, C-14), 127.5 (CH, 

C-20), 129.1 (CH, C-19), 129.6 (CH, C-18), 135.5 (Cquart, C-17), 153.2 

(Cquart, C-13), 177.5 (Cquart, C-1). 

GC (tR) 30.39 min (program 4) 

DIP-MS (EI): 

 461 (3) [M+], 446 (3) [M+−CH3], 404 (100) [M+−tBu], 131 (4) [OTBS+], 

117 (12), 113 (34), 75 (17) [C2H7OSi+].   

IR (cm -1)  2929 (m), 2856 (m), 1780 (s), 1698 (m), 1456 (w), 1385 (m), 1349 (m), 

1289 (w), 1247 (m), 1209 (m), 1196 (m), 1095 (s), 1051 (m), 1007 (m), 

970 (m), 939 (w), 917 (w), 833 (s), 774 (s), 734 (m), 701 (s), 661 (w), 

624 (w). 

 

 

6.2.2.45 General method to facilitate the oxidative  removal of the 

Evans auxiliary (I) 

     According to a procedure of Wang et al.,181 a 0.05M solution of a compound 

containing an Evans auxiliary (1.0 eq.) in a mixture of THF/H2O (3:1) is cooled to 0 °C 

and H2O2 (30%) (0.75 mL/mmol) and LiOH (2.0 eq.) are added. The mixture is stirred 

for 1 h at 0 °C before the THF is evaporated. The pH of the aqueous phase is 

adjusted to pH 3 with 2M HClaq. CH2Cl2 (15 mL/mmol) is added and the phases are 

separated. The aqueous phase is extracted with CH2Cl2 (3 × 15 mL/mmol) and the 
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combined organic phases are dried over MgSO4 and filtered. The solvent is 

evaporated to give the crude product.  

 

 

6.2.2.46 Preparation of ( R)-6-((tert-butyldimethylsilyl)oxy)-2-

methylhexanoic acid (298)  

LiOH, H2O2, THF/H2O,
0 °C, 1h

294

8

7

6

5

4

HOOC
3

O

298

C13H28O3Si

Mol. Wt.: 260.45

92

1
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Si

4

OTBSN

O

O

O

Bn

 

 

     Compound 298 is prepared applying the general method of 6.2.2.45. The use of 

alcohol 294 (300 mg, 0.71 mmol) and purification of the crude product by column 

chromatography (20% EtOAc in cHex) yields the product as a colourless oil (121 mg, 

0.46 mmol, 65%). 

           

Rf 0.38 (25% EtOAc in cHex), tailing observed 
1H-NMR (300 MHz, CDCl3): 

 0.04 (s, 6H, C-7), 0.89 (s, 9H, H-9), 1.18 (d, J = 6.9 Hz, 3H, H-10), 

1.31 – 1.58 (m, 5H, H-3a, H-4, H-5), 1.63 – 1.77 (m, 1H, H-3b),     

2.40 – 2.53 (m, 1H, H-2), 3.60 (t, J = 6.3 Hz, 2H, H-6), 11.29 (br s, 1H, 

COOH-1). 
13C-NMR (75 MHz, CDCl3): 

 −5.2 (CH3, C-7), 16.9 (CH3, C-10), 18.5 (Cquart, C-8), 23.6 (CH2, C-4), 

26.1 (CH3, C-9), 32.8 (CH2, C-5), 33.4 (CH2, C-3), 39.5 (CH, C-2), 63.1 

(CH2, C-6), 183.2 (Cquart, C-1). 
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6.2.2.47 Preparation of ( R)-7-((tert-butyldimethylsilyl)oxy)-2-

methylheptanoic acid (299)  

 

 

     Compound 299 is prepared applying the general method of 6.2.2.45. The use of 

alcohol 295 (810 mg, 1.9 mmol) and purification of the crude product by column 

chromatography (20% EtOAc in cHex) yields the product as a colourless oil (262 mg, 

0.95 mmol, 51%). 

           

Rf 0.43 (25% EtOAc in cHex), tailing observed 
1H-NMR (300 MHz, CDCl3): 

 0.04 (s, 6H, H-8), 0.89 (s, 9H, H-10), 1.18 (d, J = 7.1 Hz, 3H, H-11), 

1.29 – 1.39 (m, 4H, H-4, H-5), 1.39 – 1.58 (m, 3H, H-3a, H-6),        

1.61 – 1.76 (m, 1H, H-3b), 2.39 – 2.52 (m, 1H, H-2), 3.60 (t, J = 6.4 Hz, 

2H, H-7), 11.26 (br s, 1H, COOH-1). 
13C-NMR (75 MHz, CDCl3): 

 −5.1 (CH3, C-8), 17.0 (CH3, C-11), 18.5 (Cquart, C-9), 25.9 (CH2, C-5), 

26.1 (CH3, C-10), 27.1 (CH2, C-4), 32.8 (CH2, C-6), 33.7 (CH2, C-3), 

39.5 (CH, C-2), 63.3 (CH2, C-7), 183.2 (Cquart, C-1). 

GC (tR) 24.89 min (program 0) 

GC-MS (EI): 

  241 (8), 217 (22) [M+−tBu], 199 (100) [M+−COOH, −2 × CH3], 143 (13) 

[M+−OTBS], 129 (6) [M+−CH2OTBS], 115 (8) [TBS+], 105 (11), 75 (97) 

[C2H7OSi+], 73 (32), 55 (76). 

 

 

 

 



190                                                                                Experimental Part 
 

6.2.2.48 Preparation of ( R)-8-((tert-butyldimethylsilyl)oxy)-2-

methyloctanoic acid (300)  

LiOH, H2O2, THF/H2O,
0 °C, 1h

296

8

7

6

5

4

HOOC
3

300

C15H32O3Si

Mol. Wt.: 288.50
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     Compound 300 is prepared applying the general method of 6.2.2.45. The use of 

alcohol 296 (156 mg, 0.35 mmol) and purification of the crude product by column 

chromatography (25% EtOAc in cHex) yields the product as a colourless oil (67 mg, 

0.23 mmol, 67%). 

           

Rf 0.53 (33% EtOAc in cHex), tailing observed 
1H-NMR (300 MHz, CDCl3): 

 0.04 (s, 6H, H-9), 0.89 (s, 9H, H-11), 1.17 (d, J = 7.1 Hz, 3H, H-12), 

1.24 – 1.40 (m, 6H, H-4, H-5, H-6), 1.40 – 1.57 (m, 3H, H-3a, H-7), 

1.60 – 1.76 (m, 1H, H-3b), 2.38 – 2.52 (m, 1H, H-2), 3.59 (t, J = 6.6 Hz, 

2H, H-8), 10.89 (br s, 1H, COOH-1). 
13C-NMR (75 MHz, CDCl3): 

 −5.1 (CH3, C-9), 17.0 (CH3, C-12), 18.5 (Cquart, C-10), 25.8 (CH2, C-6), 

26.1 (CH3, C-11), 27.3 (CH2, C-4), 29.5 (CH2, C-5), 32.9 (CH2, C-7), 

33.6 (CH2, C-3), 39.5 (CH, C-2), 63.4 (CH2, C-8), 183.1 (Cquart, C-1). 

GC (tR) 26.39 min (program 0) 

GC-MS (EI): 

  255 (13), 231 (25) [M+−tBu], 213 (100) [M+−C2H7OSi+], 171 (10), 157 (5) 

[M+−OTBS], 143 (17), 111 (20), 105 (19), 89 (13), 75 (81) [C2H7OSi+], 

69 (71), 55 (47). 

IR (cm -1)  3065 (w, br), 2930 (m), 2858 (m), 1706 (s), 1464 (m), 1417 (w), 1387 

(w), 1361 (w), 1291 (w), 1254 (m), 1096 (s), 1006 (w), 938 (m), 833 (s), 

812 (m), 773 (s), 711 (w), 661 (m). 
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6.2.2.49 Preparation of ( R)-9-((tert-butyldimethylsilyl)oxy)-2-

methylnonanoic acid (301)  

 

 

     Compound 301 is prepared applying the general method of 6.2.2.45. The use of 

alcohol 297 (380 mg, 0.82 mmol) and purification of the crude product by column 

chromatography (25% EtOAc in cHex) yields the product as a colourless oil (226 mg, 

0.75 mmol, 91%). 

           

Rf 0.40 (20% EtOAc in cHex), tailing observed 
1H-NMR (300 MHz, CDCl3): 

 0.04 (s, 6H, H-10), 0.89 (s, 9H, H-12), 1.17 (d, J = 7.1 Hz, 3H, H-13), 

1.24 – 1.39 (m, 8H, H-4, H-5, H-6, H-7), 1.40 – 1.56 (m, 3H, H-3a, H-8), 

1.61 – 1.75 (m, 1H, H-3b), 2.38 – 2.52 (m, 1H, H-2), 3.59 (t, J = 6.6 Hz, 

2H, H-8), 11.13 (br s, 1H, COOH-1). 
13C-NMR (75 MHz, CDCl3): 

 −5.1 (CH3, C-10), 17.0 (CH3, C-13), 18.5 (Cquart, C-11), 25.9 (CH2, C-7), 

26.1 (CH3, C-12), 27.2 (CH2, C-4), 29.4 (CH2, C-5/C6), 29.6 (CH2, 

C-5/C-6), 33.0 (CH2, C-8), 33.7 (CH2, C-3), 39.5 (CH, C-2), 63.4 (CH2, 

C-9), 183.1 (Cquart, C-1). 

GC (tR) 27.98 min (program 0) 

GC-MS (EI): 

 269 (4), 245 (11) [M+−tBu], 227 (100) [M+−C2H7OSi], 171 (3) 

[M+−OTBS], 105 (10), 83 (38), 75 (88) [C2H7OSi+], 69 (72), 55 (41). 

[α]D
24  −7.9 ° (c = 1.0, EtOAc) 
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6.2.2.50 General method for TBAF mediated TBS-depro tection 

     According to procedures of Zhang et al.,184 Pelliciari et al.185 and Das et al.,186 a 

0.05 – 0.1M solution of TBS-protected compound (1.0 eq.) in THF is cooled to 0 °C 

and TBAF (1M in THF) (1.7 – 2.1 eq.) is added dropwise. The mixture is stirred for 

3 h leaving the reaction mixture to slowly warm to room temperature. The reaction is 

terminated by the addition of sat. NH4Claq (10 mL/mmol) and is diluted with EtOAc 

(10 mL/mmol). The phases are separated and the aqueous phase is extracted with 

EtOAc (3 × 10 mL/mmol) and the combined organic phases are dried over MgSO4 

and filtered. The solvent is evaporated to give the crude product. 

 

 

6.2.2.51 Preparation of ( R)-4-benzyl-3-(( R)-7-hydroxy-2-methyl- 

heptanoyl)oxazolidin-2-one (307)  

 

 

     Compound 307 is prepared applying the general method of 6.2.2.50. The use of 

TBS-protected compound 295 (250 mg, 0.58 mmol) and purification of the crude 

product by column chromatography (33% EtOAc in cHex) yields the product as a 

colourless oil (152 mg, 0.47 mmol, 83%). 

           

Rf 0.10 (25% EtOAc in cHex) 
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1H-NMR (300 MHz, CDCl3): 

 1.22 (d, J = 6.9 Hz, 3H, H-16), 1.29 – 1.46 (m, 4H, H-4, H-5),         

1.46 – 1.64 (m, 3H, H-3a, H-6), 1.70 – 1.83 (m, 1H, H-3b), 2.76 (dd, 

J = 13.2, 9.6 Hz, 1H, H-11a), 3.26 (dd, J = 13.2, 3.3 Hz, 1H, H-11b), 

3.63 (t, J = 6.6 Hz, 2H, H-7), 3.65 – 3.77 (m, 1H, H-2), 4.13 – 4.25 (m, 

2H, H-9), 4.63 – 4.72 (m, 1H, H-10), 7.16 – 7.37 (m, 5H, H-13, H-14, 

H-15). 
13C-NMR (75 MHz, CDCl3): 

 17.5 (CH3, C-16), 25.8 (CH2, C-5), 27.1 (CH2, C-4), 32.7 (CH2, C-6), 

33.4 (CH2, C-3), 37.7 (CH, C-2), 38.0 (CH2, C-11), 55.5 (CH, C-10), 

63.0 (CH2, C-7), 66.2 (CH2, C-9), 127.5 (CH, C-15), 129.1 (CH, C-14), 

129.6 (CH, C-13), 135.4 (Cquart, C-12), 153.2 (Cquart, C-8), 177.4 (Cquart, 

C-1).  

IR (cm -1)  3414 (w, br), 2933 (m), 2862 (w), 1773 (s), 1694 (s), 1455 (m), 1385 (s), 

1349 (s), 1289 (m), 1209 (s), 1097 (m), 1074 (m), 1051 (m), 1015 (m), 

971 (m), 925 (w), 838 (w), 762 (m), 746 (s), 701 (s). 

 

 

6.2.2.52 Preparation of ( R)-4-benzyl-3-(( R)-8-hydroxy-2-methyl- 

octanoyl)oxazolidin-2-one (308)  

 

 

     Compound 308 is prepared applying the general method of 6.2.2.50. The use of 

TBS-protected compound 296 (644 mg, 1.4 mmol) and purification of the crude 

product by column chromatography (33% EtOAc in cHex) yields the product as a 

colourless oil (337 mg, 1.0 mmol, 70%). 
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Rf 0.19 (33% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 1.21 (d, J = 6.6 Hz, 3H, H-17), 1.26 – 1.41 (m, 6H, H-4, H-5, H-6), 

1.47 – 1.62 (m, 3H, H-3a, H-7), 1.67 – 1.83 (m, 1H, H-3b), 2.76 (dd, 

J = 13.2, 9.6 Hz, 1H, H-12a), 3.26 (dd, J = 13.3, 3.2 Hz, 1H, H-12b), 

3.62 (t, J = 6.6 Hz, 2H, H-8), 3.64 – 3.77 (m, 2H, H-2), 4.13 – 4.24 (m, 

2H, H-10), 4.67 (dddd, J = 9.8, 6.6, 3.3, 3.3 Hz, 1H, H-11), 7.16 – 7.37 

(m, 5H, H-14, H-15, H-16). 
13C-NMR (75 MHz, CDCl3): 

 17.4 (CH3, C-17), 25.6 (CH2, C-6), 27.2 (CH2, C-4/C-5), 29.4 (CH2, 

C-4/C-5), 32.8 (CH2, C-7), 33.4 (CH2, C-3), 37.8 (CH, C-2), 38.0 (CH2, 

C-12), 55.4 (CH, C-11), 63.0 (CH2, C-8), 66.1 (CH2, C-10), 127.4 (CH, 

C-16), 129.0 (CH, C-15), 129.5 (CH, C-14), 135.4 (Cquart, C-13), 153.2 

(Cquart, C-9), 177.4 (Cquart, C-1). 

GC (tR) 43.85 min (program 0) 

GC-MS (EI): 

 333 (16) [M+], 233 (17) [C13H15NO3
+] (McL), 178 (32), 157 (100) 

[M+−C10H10NO2], 139 (19), 129 (12) [M+−C11H10NO3], 117 (29), 111 

(39), 91 (43) [C7H7
+], 86 (23), 69 (86), 55 (37).  

IR (cm -1)  3396 (w, br), 2930 (m), 2857 (w), 1774 (s), 1694 (s), 1454 (m), 1384 (s), 

1349 (m), 1289 (m), 1236 (m), 1209 (s), 1095 (m), 1074 (m), 1051 (m), 

1030 (m), 1015 (m), 970 (m), 920(w), 839 (w), 761 (m), 745 (m), 701 

(s). 
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6.2.2.53 Preparation of ( R)-4-benzyl-3-(( R)-9-hydroxy-2-methyl- 

nonanoyl)oxazolidin-2-one (309)  

 

 

     According to a method of Cunico et al.,182 to a solution of TBS-protected 

compound 297 (677 mg, 1.5 mmol, 1.0 eq.) in EtOH (30 mL) is added conc. HCl 

(0.3 mL) and the mixture is stirred for 5 min at room temperature. The reaction is 

terminated by the addition of sat. KHCO3aq (30 mL). The aqueous phase is extracted 

with EtOAc (4 × 30 mL) and the combined organic phases are dried over MgSO4 and 

filtered. The solvent is evaporated to give the crude product which is purified by 

column chromatography (33% → 50% EtOAc in cHex) to yield the product as a 

colourless oil (428 mg, 1.2 mmol, 84%). 

      

Rf 0.21 (33% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 1.21 (d, J = 6.9 Hz, 3H, H-18), 1.26 – 1.38 (m, 8H, H-4, H-5, H-6, H-7), 

1.48 – 1.62 (m, 3H, H-3a, H-8), 1.67 – 1.82 (m, 1H, H-3b), 2.76 (dd, 

J = 13.4, 9.6 Hz, 1H, H-13a), 3.26 (dd, J = 13.4, 3.3 Hz, 1H, H-13b), 

3.63 (t, J = 6.6 Hz, 2H, H-9), 3.64 – 3.76 (m, 1H, H-2), 4.11 – 4.24 (m, 

2H, H-11), 4.63 – 4.72 (m, 1H, H-12), 7.17 – 7.36 (m, 5H, H-15, H-16, 

H-17).  
13C-NMR (75 MHz, CDCl3): 

 17.4 (CH3, C-18), 25.6 (CH2, C-7), 27.1 (CH2, C-4), 29.2 (CH2, C-5/C-6), 

29.5 (CH2, C-5/C-6), 32.7 (CH2, C-8), 33.3 (CH2, C-3), 37.7 (CH, C-2), 

37.9 (CH2, C-13), 55.3 (CH, C-12), 63.0 (CH2, C-9), 66.0 (CH2, C-11), 

127.3 (CH, C-17), 128.9 (CH, C-16), 129.4 (CH, C-15), 135.3 (Cquart, 

C-14), 153.1 (Cquart, C-10), 177.3 (Cquart, C-1). 
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GC (tR) 40.03 (program 0) 

GC-MS (EI): 

 347 (7) [M+], 233 (20), 178 (27), 171 (88) [M+−C10H10NO2], 153 (31), 

143 (21) [M+−C11H10NO3], 134 (15), 117 (29), 91 (37) [C7H7
+], 83 (53), 

69 (100), 55 (46).  

IR (cm -1)  3418 (w, br), 2927 (m), 2855 (w), 1775 (s), 1695 (s), 1455 (m), 1385 (s), 

1349 (m), 1209 (s), 1097 (m), 1074 (m), 1050 (m), 1015 (m), 970 (m), 

762 (m), 746 (m), 702 (s), 622 (m). 

 

 

6.2.2.54 Preparation of ( R)-4-benzyl-3-(( R)-7-bromo-2-methyl- 

heptanoyl)oxazolidin-2-one (311)  

 

 

     Compound 311 is prepared applying the general method of 6.2.2.11. The use of 

alcohol 307 (171 mg, 0.54 mmol) and purification of the crude product by column 

chromatography (flash silica, 25% EtOAc in cHex) yields the product as a yellow oil 

(161 mg, 0.42 mmol, 79%). 

           

Rf 0.83 (50% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 1.23 (d, J = 6.8 Hz, 3H, H-16), 1.27 – 1.51 (m, 5H, H-3a, H-4, H-5), 

1.71 – 1.82 (m, 1H, H-3b), 1.80 – 1.92 (m, 2H, H-6), 2.77 (dd, J = 13.3, 

9.5 Hz, 1H, H-11a), 3.27 (dd, J = 13.3, 3.3 Hz, 1H, H-11b), 3.40 (t, 

J = 6.9 Hz, 2H, H-7), 3.72 (dq, J = 13.6, 6.8 Hz, 1H, H-2), 4.14 – 4.25 

(m, 2H, H-9), 4.64 – 4.73 (m, 1H, H-10), 7.16 – 7.38 (m, 5H, H-13, 

H-14, H-15). 
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13C-NMR (75 MHz, CDCl3): 

 17.6 (CH3, C-16), 26.5 (CH2, C-4), 28.2 (CH2, C-5), 32.7 (CH2, C-6), 

33.2 (CH2, C-3), 33.9 (CH2, C-7), 37.8 (CH, C-2), 38.1 (CH2, C-11), 55.5 

(CH, C-10), 66.2 (CH2, C-9), 127.5 (CH, C-15), 129.1 (CH, C-14), 129.6 

(CH, C-13), 135.4 (Cquart, C-12), 153.2 (Cquart, C-8), 177.2 (Cquart, C-1). 

DIP-MS (EI): 

 383 (15) [M+, 81Br], 381 (16) [M+, 79Br], 292 (26) [M+−C7H7, 
81Br], 290 

(25) [M+−C7H7, 
79Br], 277 (100), 233 (19), 207 (88) [M+−C10H10NO2, 

81Br], 205 (92) [M+−C10H10NO2, 
79Br], 201 (17), 199 (17), 179 (26) 

[M+−C11H10NO3, 
81Br], 177 (28) [M+−C11H10NO3, 

79Br], 133 (10), 117 

(21), 97 (86), 91 (35) [C7H7
+], 86 (19), 77 (16) [C6H5

+], 69 (12), 55 (55), 

41 (26).  

IR (cm -1)  2933 (w), 2859 (w), 1776 (s), 1695 (s), 1605 (w), 1585 (w), 1479 (w), 

1455 (m), 1434 (m), 1384 (s), 1349 (m), 1289 (m), 1238 (m), 1209 (s), 

1196 (m), 1102 (m), 1074 (m), 1049 (m), 1027 (m), 1015 (m), 971 (m), 

918 (w), 839 (w), 742 (s), 695 (s). 

 

 

6.2.2.55 Preparation of ( R)-4-benzyl-3-(( R)-8-bromo-2-methyl-

octanoyl)oxazolidin-2-one (312)  

 

 

 

     Compound 312 is prepared applying the general method of 6.2.2.11. The use of 

alcohol 308 (337 mg, 1.0 mmol) and purification of the crude product by column 

chromatography (flash silica, 20% EtOAc in cHex) yields the product as a yellow oil 

(328 mg, 0.8 mmol, 82%). 



198                                                                                Experimental Part 
 

Rf 0.48 (20% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 1.21 (d, J = 6.9 Hz, 3H, H-17), 1.26 – 1.49 (m, 7H, H-3a, H-4, H-5, H-6), 

1.62 – 1.78 (m, 1H, H-3b), 1.78 – 1.89 (m, 2H, H-7), 2.76 (dd, J = 13.4, 

9.6 Hz, 1H, H-12a), 3.25 (dd, J = 13.2, 3.3 Hz, 1H, H-12b), 3.39 (t, 

J = 6.7 Hz, 2H, H-8), 3.63 – 3.76 (m, 2H, H-2), 4.13 – 4.24 (m, 2H, 

H-10), 4.67 (dddd, J = 9.8, 6.7, 3.3, 3.3 Hz, 1H, H-11), 7.17 – 7.36 (m, 

5H, H-14, H-15, H-16). 
13C-NMR (75 MHz, CDCl3): 

 17.5 (CH3, C-17), 27.2 (CH2, C-4), 28.1 (CH2, C-6), 28.9 (CH2, C-5), 

32.8 (CH2, C-7), 33.4 (CH2, C-3), 34.0 (CH2, C-8), 37.8 (CH2, C-2), 38.0 

(CH2, C-12), 55.5 (CH, C-11), 66.2 (CH2, C-10), 127.5 (CH, C-16), 

129.1 (CH, C-15), 129.6 (CH, C-14), 135.4 (Cquart, C-13), 153.2 (Cquart, 

C-9), 177.3 (Cquart, C-1).  

GC (tR) 46.10 min (program 0) 

GC-MS (EI): 

 316 (1) [M+−Br], 233 (13) [C13H15NO3
+] (McL), 226 (16) [M+−Br, −Bn], 

178 (14), 141 (100) [M+−Br, −C10H10NO2], 113 (32) [M+−Br, 

−C11H10NO3], 91 (15) [C7H7
+], 86 (16), 71 (49) [C5H11

+], 57 (41) [C4H9
+]. 

IR (cm -1)  2932 (w), 2857 (w), 1774 (s), 1694 (s), 1454 (w), 1383 (s), 1348 (m), 

1289 (w), 1240 (s), 1207 (s), 1195 (s), 1099 (m), 1014 (m), 970 (m), 

761 (m), 745 (m), 701 (s), 670 (m). 

[α]D
24  −34.6 ° (c = 1.0, CHCl3) 
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6.2.2.56 Preparation of ( R)-4-benzyl-3-(( R)-9-bromo-2-methyl- 

nonanoyl)oxazolidin-2-one (313)  

 

 

     Compound 313 is prepared applying the general method of 6.2.2.11. The use of 

alcohol 309 (190 mg, 0.55 mmol) and purification of the crude product by column 

chromatography (flash silica, 20% EtOAc in cHex) yields the product as a yellow oil 

(188 mg, 0.46 mmol, 84%). 

           

Rf 0.74 (33% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 1.21 (d, J = 6.8 Hz, 3H, H-18), 1.24 – 1.49 (m, 9H, H-3a, H-4, H-5, H-6, 

H-7), 1.67 – 1.80 (m, 1H, H-3b), 1.77 – 1.89 (m, 2H, H-8), 2.76 (dd, 

J = 13.3, 9.6 Hz, 1H, H-13a), 3.25 (dd, J = 13.3, 3.3 Hz, 1H, H-13b), 

3.39 (t, J = 6.7 Hz, 2H, H-9), 3.70 (dq, J = 13.6, 6.8 Hz, 1H, H-2),  

4.11 – 4.24 (m, 2H, H-11), 4.62 – 4.72 (m, 1H, H-12), 7.17 – 7.37 (m, 

5H, H-15, H-16, H-17). 
13C-NMR (75 MHz, CDCl3): 

 17.5 (CH3, C-18), 27.2 (CH2, C-4), 28.2 (CH2, C-7), 28.7 (CH2, C-5), 

29.5 (CH2, C-6), 32.8 (CH2, C-8), 33.4 (CH2, C-3), 34.1 (CH2, C-9), 37.8 

(CH, C-2), 38.0 (CH2, C-13), 55.4 (CH, C-12), 66.1 (CH2, C-11), 127.4 

(CH, C-17), 129.0 (CH, C-16), 129.5 (CH, C-15), 135.4 (Cquart, C-14), 

153.1 (Cquart, C-10), 177.3 (Cquart, C-1). 
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GC-MS (EI): 

 411 (4) [M+, 81Br], 409 (3) [M+, 79Br], 320 (8) [M+−C7H7, 
81Br], 318 (8) 

[M+−C7H7, 
79Br], 235 (76) [M+−C10H10NO2, 

81Br], 233 (100) 

[M+−C10H10NO2, 
79Br], 207 (27) [M+−C11H10NO3, 

81Br], 205 (24) 

[M+−C11H10NO3, 
79Br], 178 (20), 165 (6), 163 (6), 153 (12), 125 (14), 

117 (21), 91 (27) [C7H7
+], 86 (17), 83 (26), 71 (16), 69 (48), 57 (32), 55 

(28). 

IR (cm -1)  2931 (m), 2856 (w), 1775 (s), 1695 (s), 1498 (w), 1455 (m), 1384 (s), 

1349 (m), 1289 (m), 1237 (s), 1208 (s), 1196 (s), 1097 (m), 1075 (m), 

1050 (m), 1015 (m), 970 (m), 916 (w), 838 (w), 761 (m), 746 (m), 701 

(s), 640 (m). 

 

 

6.2.2.57 General method to facilitate the oxidative  removal of the 

Evans auxiliary (II) 

     According to procedures of Evans et al.180 and Marimganti et al.,226 a 0.08M 

solution of a compound containing an Evans auxiliary (1.0 eq.) in a mixture of 

THF/H2O (3:1) is cooled to 0 °C and H2O2 (30%) (0.75 mL/mmol) and LiOH (2.0 eq.) 

are added. The mixture is stirred for 1 h leaving the reaction mixture to slowly warm 

to room temperature. The reaction is terminated by the addition of 1.5M Na2SO3aq 

(3.0 mL/mmol) and 0.5M KHCO3aq (9 mL/mmol). After 5 min of additional stirring, the 

THF is evaporated. The aqueous phase is diluted with H2O (20 mL/mmol) and 

washed with CH2Cl2 (2 × 20 mL/mmol) before the pH of the aqueous phase is 

adjusted to pH 2 with 1M HClaq. The aqueous phase is extracted with EtOAc 

(4 × 20 mL/mmol) and the combined organic phases are dried over MgSO4 and 

filtered. The solvent is evaporated to give the crude product. 
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6.2.2.58 Preparation of ( R)-7-bromo-2-methylheptanoic acid (215)  

 

 

     Compound 215 is prepared applying the general method of 6.2.2.57. The use of 

alcohol 311 (161 mg, 0.42 mmol) and purification of the crude product by column 

chromatography (33% EtOAc in cHex) yields the product as a yellow oil (72 mg, 

0.32 mmol, 77%). 

           

Rf 0.51 (50% EtOAc in cHex), tailing observed 
1H-NMR (300 MHz, CDCl3): 

 1.18 (d, J = 7.1 Hz, 3H, H-8), 1.21 – 1.51 (m, 5H, H-3a, H-4, H-5), 

1.63 – 1.77 (m, 1H, H-3b), 1.86 (tt, J = 7.5, 6.7 Hz, 2H, H-6), 2.46 (dq, 

J = 13.2, 7.1 Hz, 1H, H-2), 3.40 (t, J = 6.7 Hz, 2H, H-7), 10.89 (br s, 1H, 

COOH-1). 
13C-NMR (75 MHz, CDCl3): 

 16.9 (CH3, C-8), 26.3 (CH2, C-4), 28.0 (CH2, C-5), 32.6 (CH2, C-6), 33.3 

(CH2, C-3), 33.7 (CH2, C-7), 39.3 (CH, C-2), 183.1 (Cquart, C-1). 

DIP-MS (EI): 

 224 (1) [M+, 81Br], 222 [M+, 79Br], 143 (6) [M+−Br], 125 (7), 97 (10), 87 

(15), 74 (100), 69 (9), 55 (27), 41 (28).  

IR (cm -1)  2961 (w, br), 2924 (m), 2855 (m), 1742 (w), 1705 (s), 1464 (m), 1378 

(w), 1239 (m), 1116 (w), 1058 (w), 941 (w), 728 (w). 
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6.2.2.59 Preparation of ( R)-8-bromo-2-methyloctanoic acid (216)  

 

 

     Compound 216 is prepared applying the general method of 6.2.2.57. The use of 

alcohol 312 (255 mg, 0.64 mmol) and purification of the crude product by column 

chromatography (33% EtOAc in cHex) yields the product as a yellow oil (116 mg, 

0.48 mmol, 75%). 

           

Rf 0.53 (33% EtOAc in cHex), tailing observed 
1H-NMR (300 MHz, CDCl3): 

 1.18 (d, J = 7.1 Hz, 3H, H-9), 1.28 – 1.51 (m, 7H, H-3a, H-4, H-5, H-6), 

1.62 – 1.76 (m, 1H, H-3b), 1.78 – 1.91 (m, 2H, H-7), 2.38 – 2.52 (m, 1H, 

H-2), 3.40 (t, J = 6.9 Hz, 2H, H-8), 10.76 (br s, 1H, COOH-1). 
13C-NMR (75 MHz, CDCl3): 

 17.0 (CH3, C-9), 27.1 (CH2, C-4), 28.1 (CH2, C-6), 28.8 (CH2, C-5), 32.9 

(CH2, C-7), 33.5 (CH2, C-3), 34.0 (CH2, C-8), 39.5 (CH, C-2), 183.3 

(Cquart, C-1). 

GC (tR) 20.51 min (program 0) 

DIP-MS (EI): 

 236 (4) [M+], 193 (15), 163 (6) [M+−C3H5O2], 157 (28) [M+−Br], 140 (56) 

[M+−Br, −OH], 129 (15), 111 (19), 87 (87), 74 (100) [C3H6O2
+] (McL), 69 

(37), 55 (47), 41 (55).  

IR (cm -1)  3001 (w, br), 2932 (m), 2858 (m), 1701 (s), 1464 (m), 1416 (w), 1379 

(w), 1239 (m), 934 (m), 725 (w), 642 (m), 558 (m). 

[α]D
24  −10.2 ° (c = 1.0, CHCl3) 
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6.2.3 Synthesis of a polyether bromo acid  

6.2.3.1 Preparation of 2-(2-(2-hydroxyethoxy)ethoxy )ethyl 

4-methylbenzenesulfonate (320)  

 

 

     According to a method of Ouchi et al.,190 a solution of TEG (319) (300 mg, 267 µL, 

2.0 mmol, 1.0 eq.) in THF (3 mL) is cooled to 0 °C and 0.56M NaOHaq (5.0 mL, 

2.8 mmol, 1.4 eq.) is added. p-TosOH (381 mg, 2.0 mmol, 1.0 eq.) is dissolved in 

THF (2 mL) and added dropwise over 2 h using a syringe pump. The mixture is 

stirred for 2 h at 0 °C before the reaction is terminated by the addition of ice water 

(20 mL). The mixture is extracted with CH2Cl2 (2 × 20 mL) and the combined organic 

phases are washed with H2O (2 × 15 mL) and brine (15 mL), dried over MgSO4 and 

filtered. The solvent is evaporated to give the crude product which is purified by 

column chromatography (67% EtOAc in nHex → EtOAc) to yield the product as a 

colourless oil (153 mg, 0.50 mmol, 26%). 

      

Rf 0.20 (33% EtOAc in nHex) 
1H-/13C-NMR The NMR spectra of 320 are in good agreement with literature.284 

GC-MS (EI): 

 216 (6), 186 (12), 173 (17) [TosOH+], 155 (68), 91 (100), 89 (8), 65 (28). 

IR (cm -1) The IR spectrum of 320 is in good agreement with literature.284  
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6.2.3.2 Preparation of 2,2,3,3-tetramethyl-4,7,10-t rioxa-3-sila-

dodecan-12-ol (324)  

 

 

     Compound 324 is prepared applying the general method of 6.2.2.21. The use of 

TEG (319) (5.0 g, 4.5 µL, 33.3 mmol) and purification of the crude product by column 

chromatography (50% → 75% EtOAc in nHex) yields the product as a colourless oil 

(4.7 g, 17.9 mmol, 54%). 

      

Rf 0.48 (67% EtOAc in nHex) 
1H-/13C-NMR The NMR spectra of 324 are in good agreement with literature.285 

GC (tR) 20.31 min (program 0) 

GC-MS (EI): 

 265 (23) [M+], 207 (100) [M+−tBu], 163 (35), 159 (20), 147 (24), 119 

(81), 115 (10) [C6H15Si+], 103 (46), 89 (61), 75 (94) [C2H7OSi+], 73 (31). 

IR (cm -1)  3425 (w), 2951 (w), 2929 (w), 2870 (w), 2857 (m), 1472 (w), 1463 (w), 

1389 (w), 1361 (w), 1252 (m), 1100 (s), 1006 (w), 938 (m), 835 (s), 775 

(s), 662 (m). 
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6.2.3.3 Preparation of 2,2,3,3-tetramethyl-4,7,10-t rioxa-3-sila-

dodecan-12-oic acid (325)  

 

 

     To a solution of TBS-protected compound 324 (5.5 g, 20.8 mmol, 1.0 eq.) in 

MeCN (105 mL) are added an aqueous 0.67M sodium phosphate buffer (5.6 g 

Na2HPO4 + 5.6 g NaH2PO4 in 111 mL H2O; pH = 6.7) and (2,2,6,6-tetramethyl-

piperidin-1-yl)oxyl (330 mg, 2.1 mmol, 0.1 eq.) and the mixture is heated to 35 °C. 

While stirring vigorously 2.2M NaOCl2aq (28.4 mL, 62.4 mmol, 3.0 eq.) and 

subsequently NaOClaq (2.1 mL, 12% NaOCl diluted into 42.2 mL H2O, 4.2 mmol, 

0.2 eq.) are added slowly. The reaction mixture is stirred for 14 h at 35 °C before 

letting it cool down to room temperature and diluting it with H2O (20 mL). 

0.48M Na2SO3aq (precooled to 0 °C) is added until the red-brown solution stays 

colourless. The pH of the solution is adjusted to pH 8.5 with 1M NaOHaq. MTBE 

(190 mL) is added and the mixture is stirred vigorously for 15 min. The phases are 

separated, the aqueous phase acidified to pH 3.5 with 2M HClaq and extracted with 

MTBE (4 × 100 mL). The combined organic phases are washed with H2O (100 mL) 

and brine (100 mL) and are dried over Na2SO4 and filtered. The solvent is evaporated 

to give the product as a light yellow oil (4.9 g, 17.5 mmol, 84%), which can be used 

without further purification. 

      

Rf 0.20 (67% EtOAc in nHex), tailing observed 
1H-NMR (300 MHz, CDCl3): 

 0.02 (s, 6H, H-7), 0.84 (s, 9H, H-9), 3.54 (t, J = 5.2 Hz, 2H, H-5),   

3.62 – 3.73 (m, 4H, H-3, H-4), 3.73 (t, J = 5.2 Hz, 2H, H-6), 4.13 (s, 2H, 

H-2), 8.87 (br s, 1H, COOH-1). 
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13C-NMR (75 MHz, CDCl3): 

 −5.3 (CH3, C-7), 18.0 (Cquart, C-8), 25.7 (CH3, C-9), 61.5 (CH2, C-6), 

68.5 (CH2, C-2), 70.3 (CH2, C-4), 71.1 (CH2, C-3), 72.6 (CH2, C-5), 

173.1 (Cquart, C-1). 

GC (tR) 24.78 (program 0) 

GC-MS (EI): 

 279 (1) [M+], 221 (1) [M+−tBu], 189 (2), 163 (47), 147 (13) [M+−TBS], 

133 (4), [M+−CH2TBS], 119 (42), 103 (28) [M+−TBS, −CO2], 101 (15), 

89 (9), 75 (100) [C2H7OSi+], 73 (24), 60 (2), 59 (13). 

IR (cm -1)  2952 (m), 2929 (m), 2871 (m), 2858 (m), 1737 (s), 1463 (w), 1470 (w), 

1387 (w), 1361 (w), 1251 (s), 1214 (m), 1143 (s), 1105 (s), 1006 (w), 

938 (m), 832 (s), 814 (s), 775 (s), 665 (m). 

 

 

6.2.3.4 General method to facilitate an EDC · HCl p romoted 

Steglich esterification 

     According to a procedure of Dhaon et al.,201 a 0.1M solution of a carboxylic acid 

(1.0 eq.) in CH2Cl2 abs. (50 mL) is cooled to 0 °C and DMAP (0.75 eq.), an alcohol 

(2.0 eq.) and EDC · HCl (1.2 – 1.4 eq.) are added. The mixture is left to stir for 2 h at 

0 °C before the mixture is stirred for 12 h at room temperature. The solvent is 

evaporated and the residue dissolved in EtOAc (20 mL/mmol). The organic phases 

are washed with H2O (10 mL/mmol), sat. NH4Claq (3 × 10 mL/mmol), sat. KHCO3aq 

(2 × 10 mL/mmol) and H2O (10 mL/mmol). The combined organic phases are dried 

over Na2SO4 and filtered. The solvent is evaporated to give the crude product.  
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6.2.3.5 Preparation of ethyl 2,2,3,3-tetramethyl-4, 7,10-trioxa-3-

siladodecan-12-oate (330)  

 

 

     Compound 330 is prepared applying the general method of 6.2.3.4. The use of 

carboxylic acid 325 (2.0 g, 7.2 mmol) and ethanol p.a. (0.84 mL, 14.4 mmol) and 

purification of the crude product by column chromatography (20% EtOAc in cHex) 

yields the product as a colourless oil (1.9 g, 6.1 mmol, 84%). 

      

Rf 0.40 (20% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 0.03 (s, 6H, H-7), 0.86 (s, 9H, H-9), 1.25 (t, J = 7.1 Hz, 3H, H-11), 3.52 

(t, J = 5.5 Hz, 2H, H-5), 3.63 – 3.72 (m, 4H, H-3, H-4), 3.73 (t, 

J = 5.5 Hz, 2H, H-6), 4.12 (s, 2H, H-2), 4.18 (q, J = 7.1 Hz, 2H, H-10). 
13C-NMR (75 MHz, CDCl3): 

 −5.2 (CH3, C-7), 14.3 (CH3, C-11), 18.4 (Cquart, C-8), 26.0 (CH3, C-9), 

60.8 (CH2, C-10), 62.8 (CH2, C-6), 68.8 (CH2, C-2), 70.9 (CH2, C-4), 

71.0 (CH2, C-3), 72.8 (CH2, C-5), 170.6 (Cquart, C-1). 

GC (tR) 24.27 min (program 0) 

GC-MS (EI): 

 307 (2) [M+], 261 (1) [M+−OC2H5], 249 (6) [M+−tBu], 233 (5) [M+−OC2H5, 

−CO], 161 (5) [M+−CH2OTBS], 159 (13) [M+−C2H4OTBS], 131 (100), 

117 (5), 103 (63), 75 (12) [C2H7OSi+], 73 (10). 

IR (cm -1)  2952 (m), 2929 (m), 2871 (m), 2857 (m), 1755 (s), 1470 (w), 1463 (w), 

1361 (w), 1252 (s), 1201 (s), 1144 (s), 1102 (s), 1032 (m), 1006 (w), 

939 (m), 832 (s), 812 (s), 775 (s), 719 (w), 662 (m). 
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6.2.3.6 Preparation of phenyl 2,2,3,3-tetramethyl-4 ,7,10-trioxa-3-

siladodecan-12-oate (331)  

 

 

     Compound 331 is prepared applying the general method of 6.2.3.4. The use of 

carboxylic acid 325 (140 mg, 0.50 mmol) and phenol (57 mg, 0.60 mmol) and 

purification of the crude product by column chromatography (5% EtOAc in cHex) 

yields the product as a colourless oil (130 mg, 0.37 mmol, 73%). 

      

Rf 0.81 (2.5% MeOH in CH2Cl2) 
1H-NMR (300 MHz, CDCl3): 

 0.07 (s, 6H, H-7), 0.90 (s, 9H, H-9), 3.58 (t, J = 5.4 Hz, 2H, H-5),   

3.72 – 3.76 (m, 2H, H-4), 3.78 (t, J = 5.4 Hz, 2H, H-6), 3.80 – 3.85 (m, 

2H, H-3), 4.43 (s, 2H, H-2), 7.08 – 7.14 (m, 2H, H-11), 7.20 – 7.27 (m, 

1H, H-13), 7.34 – 7.42 (m, 2H, H-12). 
13C-NMR (75 MHz, CDCl3): 

 −5.1 (CH3, C-7), 18.5 (Cquart, C-8), 26.1 (CH3, C-9), 62.9 (CH2, C-6), 

68.9 (CH2, C-2), 71.0 (CH2, C-4), 71.3 (CH2, C-3), 72.9 (CH2, C-5), 

121.5 (CH, C-11), 126.1 (CH, C-13), 129.6 (CH, C-12), 150.3 (Cquart, 

C-10), 169.2 (Cquart, C-1). 
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6.2.3.7 Preparation of benzyl 2,2,3,3-tetramethyl-4 ,7,10-trioxa-3-

siladodecan-12-oate (332)  

O
2

TBSO
COOH

325

BnOH, DMAP, EDC HCl,
CH2Cl2, 0 °C to rt, 14 h

1 2

O
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Si
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C19H32O5Si

Mol. Wt.: 368.54

14

 

 

     Compound 332 is prepared applying the general method of 6.2.3.4. The use of 

carboxylic acid 325 (1.2 g, 4.4 mmol) and benzyl alcohol (0.55 mL, 5.3 mmol) and 

purification of the crude product by column chromatography (15% EtOAc in cHex) 

yields the product as a yellow oil (1.5 g, 6.1 mmol, 89%). 

      

Rf 0.53 (25% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 0.05 (s, 6H, H-7), 0.88 (s, 9H, H-9), 3.54 (t, J = 5.4 Hz, 2H, H-5),   

3.66 – 3.75 (m, 4H, H-3, H-4), 3.75 (t, J = 5.4 Hz, 2H, H-6), 4.20 (s, 2H, 

H-2), 5.18 (s, 2H, H-10), 7.30 – 7.37 (m, 5H, H-12, H-13, H-14). 
13C-NMR (75 MHz, CDCl3): 

 −5.2 (CH3, C-7), 18.4 (Cquart, C-8), 26.0 (CH3, C-9), 62.7 (CH2, C-6), 

66.5 (CH2, C-10), 68.8 (CH2, C-2), 70.9 (CH2, C-4), 71.1 (CH2, C-3), 

72.7 (CH2, C-5), 128.4 (CH, C-12/C-13/C-14), 128.5 (CH, C-12/C-13 

/C-14), 128.6 (CH, C-12/C-13/C-14), 135.5 (Cquart, C-11), 170.4 (Cquart, 

C-1). 

GC (tR) 36.71 min (program 0) 

GC-MS (EI): 

 369 (1) [M+], 311 (1) [M+−tBu], 159 (2) [M+−C2H4OTBS], 147 (1) [M+−Bn, 

−OTBS], 103 (5), 92 (10), 91 (100) [C7H7
+], 75 (3) [C2H7OSi+], 73 (6). 

IR (cm -1)  2952 (m), 2928 (m), 2884 (m), 2856 (m), 1756 (s), 1498 (w), 1472 (w), 

1462 (w), 1388 (w), 1361 (w), 1251 (s), 1191 (m), 1143 (s), 1102 (s), 

1050 (w), 1027 (w), 1006 (w), 939 (m), 832 (s), 812 (s), 775 (s), 751 

(m), 735 (m), 696 (s), 662 (m). 
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6.2.3.8 General method to facilitate HCl promoted T BS-

deprotection 

     According to a procedure of Cunico et al.,182 to a 0.05M solution of a TBS-

protected compound (1.0 eq.) in EtOH (5 mL) is added conc. HClaq (1% in EtOH) and 

the mixture is stirred for 45 min at room temperature. The reaction is terminated by 

the addition of sat. KHCO3aq (10 mL/mmol). The aqueous solution is extracted with 

EtOAc (4 × 10 mL/mmol) and the combined organic phases are dried over Na2SO4 

and filtered. The solvent is evaporated to give the crude product.  

 

 

6.2.3.9 Preparation of ethyl (2-(2-hydroxyethoxy)et hoxy)acetate 

(333)  

 

 

     Compound 333 is prepared applying the general method of 6.2.3.8. The use of 

TBS-protected compund 330 (55 mg, 0.18 mmol) yields the product as a colourless 

oil (29 mg, 0.15 mmol, 84%) without further purification. 

           

Rf 0.26 (15% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 1.11 (t, J = 7.2 Hz, 3H, H-8), 3.17 (br s, 1H, OH), 3.39 – 3.45 (m, 2H, 

H-5), 3.48 – 3.59 (m, 6H, H-3, H-4, H-6), 3.97 (s, 2H, H-2), 4.03 (q, 

J = 7.2 Hz, 2H, H-7). 
13C-NMR (75 MHz, CDCl3): 

 13.9 (CH3, C-8), 60.5 (CH2, C-7), 61.2 (CH2, C-6), 68.3 (CH2, C-2), 70.0 

(CH2, C-4), 70.6 (CH2, C-3), 72.4 (CH2, C-5), 170.2 (Cquart, C-1). 

GC (tR) 15.49 min (program 0) 
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GC-MS (EI): 

 193 (3) [M+], 162 (12), 161 (3) [M+−CH2OH], 131 (85) [M+−C2H5O2], 130 

(58), 119 (39) [M+−COOC2H5], 117 (19), 103 (80), 102 (17), 89 (100) 

[C4H9O2
+], 88 (77), 87 (34), 75 (45) [C3H7O2

+], 73 (34), 70 (20), 61 (60), 

60 (38), 59 (93), 58 (76), 57 (25). 

IR (cm -1)  3430 (w, br), 2910 (w), 2878 (w), 1749 (s), 1449 (w), 1427 (w), 1378 

(w), 1355 (w), 1277 (m), 1203 (s), 1145 (s), 1111 (s), 1066 (s), 1028 (s), 

929 (m), 888 (m), 847 (m), 705 (w). 

 

 

6.2.3.10 Preparation of benzyl (2-(2-hydroxyethoxy) ethoxy) 

acetate (335)  

 

 

     Compound 335 is prepared applying the general method of 6.2.3.8. The use of 

TBS-protected compund 332 (1.4 g, 3.9 mmol) yields the product as a yellow oil 

(868 mg, 3.4 mmol, 89%) without further purification. 

           

Rf 0.35 (80% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 2.39 (br s, 1H, OH), 3.57 – 3.62 (m, 2H, H-5), 3.66 – 3.76 (m, 6H, H-3, 

H-4, H-6), 4.18 (s, 2H, H-2), 5.19 (s, 2H, H-7), 7.27 – 7.39 (m, 5H, H-9, 

H-10, H-11). 
13C-NMR (75 MHz, CDCl3): 

 61.8 (CH2, C-6), 66.8 (CH2, C-7), 68.7 (CH2, C-2), 70.5 (CH2, C-4), 71.2 

(CH2, C-3), 72.7 (CH2, C-5), 128.6 (CH, C-9/C-10/C-11), 128.6 (CH, 

C-9/C-10/C-11), 128.7 (CH, C-9/C-10/C-11), 135.4 (Cquart, C-8), 170.44 

(Cquart, C-1). 
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GC (tR) 29.81 min (program 0) 

IR (cm -1)  3453 (br), 2922 (m), 2853 (m), 1748 (s), 1634 (w), 1498 (w), 1455 (m), 

1429 (w), 1390 (w), 1363 (w), 1259 (m), 1195 (s), 1144 (s), 1113 (s), 

1067 (s), 1027 (m), 964 (w), 932 (w), 888 (w), 849 (w), 826 (w), 721 

(m), 697 (s), 597 (w), 576 (w), 563 (w). 

 

 

6.2.3.11 Preparation of ethyl (2-(2-bromoethoxy)eth oxy)acetate 

(336)  

 

 

     Compound 336 is prepared applying the general method of 6.2.2.11. The use of 

alcohol 333 (370 mg, 1.9 mmol) and purification of the crude product by column 

chromatography (12.5% → 17% → 33% EtOAc in cHex) yields the product as a 

yellow oil (426 mg, 1.7 mmol, 89%). 

      

Rf 0.44 (33% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 1.28 (t, J = 7.1 Hz, 3H, H-8), 3.47 (t, J = 6.3 Hz, 2H, H-6), 3.69 – 3.76 

(m, 4H, H-3, H-4), 3.82 (t, J = 6.3 Hz, 2H, H-5), 4.15 (s, 2H, H-2), 4.21 

(q, J = 7.1 Hz, 2H, H-7). 
13C-NMR (75 MHz, CDCl3): 

 14.3 (CH3, C-8), 30.3 (CH2, C-6), 60.9 (CH2, C-7), 68.9 (CH2, C-2), 70.7 

(CH2, C-4), 71.0 (CH2, C-3), 71.3 (CH2, C-5), 170.5 (Cquart, C-1). 

GC (tR) 18.25 min (program 0) 
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GC-MS (EI): 

 257 (1) [M+, 81Br], 255 (1) [M+, 79Br], 183 (16) [M+−COOBn, 81Br], 181 

(17) [M+−COOBn, 79Br], 153 (19), 152 (18), 151 (17), 150 (19), 139 (7), 

137 (8), 131 (56) [M+−C2H4OBr], 130 (35), 117 (23), 109 (99), 107 

(100), 103 (29), 89 (31), 88 (6), 73 (16), 61 (37), 59 (58), 57 (11). 

IR (cm -1) 2981 (w), 2910 (w), 2869 (w), 1749 (s), 1445 (w), 1427 (w), 1376 (w), 

1353 (w), 1276 (m), 1202 (s), 1143 (s), 1113 (s), 1028 (s), 954 (w), 934 

(w), 911 (w), 847 (m), 801 (w), 721 (w), 698 (m), 664 (w),  574 (m). 

 

 

6.2.3.12 Preparation of benzyl (2-(2-bromoethoxy)et hoxy)acetate 

(337)  

 

 

     Compound 337 is prepared applying the general method of 6.2.2.11. The use of 

alcohol 335 (868 mg, 3.4 mmol) and purification of the crude product by column 

chromatography (15% EtOAc in cHex) yields the product as a yellow oil (1.1 g, 

3.3 mmol, 98%). 

                

Rf 0.38 (25% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 3.45 (t, J = 6.3 Hz, 2H, H-6), 3.68 – 3.77 (m, 4H, H-3, H-4), 3.80 (t, 

J = 6.3 Hz, 2H, H-5), 4.21 (s, 2H, H-2), 5.19 (s, 2H, H-7), 7.31 – 7.38 

(m, 5H, H-9, H-10, H-11). 
13C-NMR (75 MHz, CDCl3): 

 30.4 (CH2, C-6), 66.7 (CH2, C-7), 68.8 (CH2, C-2), 70.7 (CH2, C-4), 71.1 

(CH2, C-3), 71.3 (CH2, C-5), 128.5 (CH, C-9/C-10/C-11), 128.6 (CH, 

C-9/C-10/C-11), 128.7 (CH, C-9/C-10/C-11), 135.5 (Cquart, C-8), 170.4 

(Cquart, C-1). 
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GC (tR) 32.07 min (program 0) 

GC-MS (EI): 

 318 (1) [M+, 81Br], 316 (1) [M+, 79Br], 193 (7) [M+−C2H4OBr], 192 (11), 

183 (18) [M+−COOBn, 81Br], 181 (19) [M+−COOBn, 79Br], 153 (37) 

[M+−OCH2COOBn, 81Br], 152 (12), 151 (39) [M+−OCH2COOBn, 79Br], 

150 (10), 148 (26), 139 (6), 137 (7), 120 (21), 109 (93), 107 (100), 105 

(20), 104 (16), 92 (48), 91 (50) [C7H7
+], 77 (11) [C6H5

+], 65 (23). 

IR (cm -1)  2879 (m, br), 1750 (s), 1498 (w), 1455 (m), 1426 (w), 1363 (w), 1275 

(s), 1192 (s), 1142 (s), 1113 (s), 1026 (m), 1006 (m), 955 (m), 910 (w), 

849 (w), 738 (m), 697 (s), 666 (s), 568 (m). 

 

 

6.2.3.13 Preparation of (2-(2-(bromoethoxy)ethoxy)a cetic acid 

(323)  

 

 

A: Synthesis starting from ethyl ester 336: 

     According to a procedure of Mattsson et al.,175 to a solution of ethyl ester 382 

(116 mg, 0.45 mmol, 1.0 eq.) in MeCN (10 mL) with H2O (2 vol%, 200 µL) are added 

NEt3 (190 µL, 1.4 mmol, 3.0 eq.) and LiBr (399 mg, 4.6 mmol, 10.1 eq.) and the 

mixture is stirred for 14 h at room temperature. H2O (10 mL) is added and the pH of 

the mixture is adjusted to pH 3 with 2M HClaq. EtOAc (50 mL) is added and the 

phases are separated before the aqueous phase is extracted with EtOAc 

(3 × 50 mL). The combined organic phases are washed with sat. NH4Claq (50 mL), 

dried over Na2SO4 and filtered. The solvent is evaporated and the product is obtained 

as a yellow oil (100 mg, 0.44 mmol, 97%). 
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B: Synthesis starting from benzyl ester 337: 

     According to a procedure of Mattsson et al.,175 to a solution of benzyl ester 383 

(100 mg, 0.32 mmol, 1.0 eq.) in MeCN (10 mL) with H2O (2 vol%, 200 µL) are added 

NEt3 (131 µL, 0.95 mmol, 3.0 eq.) and LiBr (274 mg, 3.2 mmol, 10.0 eq.) and the 

mixture is stirred for 14 h at room temperature. H2O (10 mL) is added and the mixture 

is washed with Et2O (2 × 10 mL) before the pH of the aqueous phase is adjusted to 

pH 3 with 2M HClaq. EtOAc (10 mL) is added and the phases are separated before 

the aqueous phase is extracted with EtOAc (3 × 10 mL). The combined organic 

phases are washed with brine (10 mL), dried over Na2SO4 and filtered. The solvent is 

evaporated and the product is obtained as a yellow oil (62 mg, 0.27 mmol, 87%). 

      

Rf 0.18 (67% EtOH in cHex), tailing observed 
1H-NMR (300 MHz, CDCl3): 

 3.45 (t, J = 6.2 Hz, 2H, H-6), 3.67 – 3.77 (m, 4H, H-3, H-4), 3.80 (t, 

J = 6.2 Hz, 2H, H-5), 4.18 (s, 2H, H-2), 9.12 (br s, 1H, -COOH). 
13C-NMR (75 MHz, CDCl3): 

 30.2 (CH2, C-6), 68.4 (CH2, C-2), 70.4 (CH2, C-4), 71.0 (CH2, C-3), 71.2 

(CH2, C-5), 174.6 (Cquart, C-1). 
1H-NMR (300 MHz, MeOD): 

 3.51 (t, J = 6.0 Hz, 2H, H-6), 3.66 – 3.75 (m, 4H, H-3, H-4), 3.81 (t, 

J = 6.0 Hz, 2H, H-5), 4.14 (s, 2H, H-2). 
13C-NMR (75 MHz, MeOD): 

 31.3 (CH2, C-6), 69.2 (CH2, C-2), 71.5 (CH2, C-4), 71.8 (CH2, C-3), 72.3 

(CH2, C-5), 174.1 (Cquart, C-1). 

GC (tR) 19.73 min (program 0) 

GC-MS (EI): 

 229 (2) [M+, 81Br], 227 (2) [M+, 79Br], 210 (7), 208 (8), 183 (18) [M+−CO2, 
81Br], 181 (17) [M+−CO2, 

79Br], 152 (18), 151 (49), 150 (18), 149 (50), 

139 (91), 137 (100), 133 (17) [M+−CH2Br], 109 (40), 107 (50), 103 (60), 

102 (28), 89 (7), 61 (15), 59 (10), 46 (27), 44 (11). 

IR (cm -1)  2923 (m), 2854 (w), 1731 (s), 1460 (w), 1427 (w), 1359 (w), 1277 (m), 

1229 (m), 1140 (s), 1101 (s), 1017 (s), 950 (w), 874 (m), 848 (m), 799 

(m), 663 (m), 567 (m). 
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6.2.4 Partial syntheses of side chain fragments on the way to 

macrocidin A  

6.2.4.1 Preparation of ( E)-8-methoxy-8-oxooct-6-enoic acid (346)  

 

 

     According to procedures of Cornforth et al.205 and Corey et al.,191 to a solution of 

alcohol 119 (750 mg, 4.4 mmol, 1.0 eq.) in DMF p.a. (30 mL) are added KOAc (1.5 g, 

15.3 mmol, 3.5 eq.) and PDC (7.2 g, 19.1 mmol, 4.4 eq.) and the reaction is left to stir 

for 1 d at room temperature. The pH of the reaction mixture is adjusted to pH 3 with 

1M HClaq and EtOAc (40 mL) is added. The phases are separated and the aqueous 

phase is extracted with EtOAc (3 × 80 mL). The combined organic phases are 

washed with sat. NH4Claq (4 × 50 mL), H2O (50 mL) and brine (50 mL) before they 

are dried over MgSO4 and filtered. The solvent is evaporated to give the crude 

product which is purified by column chromatography (25% → 50% EtOAc in cHex). 

This yields the desired product as a colourless oil (585 mg, 3.1 mmol, 72%). 

      

Rf 0.33 (50% EtOAc in cHex), tailing observed 
1H-/13C-NMR The NMR spectra of 346 are in good agreement with literature.286 

GC (tR) 19.97 min (program 0) 

GC-MS (EI): 

 155 (17) [M+−OCH3], 136 (66), 127 (10) [M+−COOCH3], 113 (37) 

[M+−C2H4COOH], 108 (69), 94 (18), 87 (23) [C3H6COOH+], 81 (100), 72 

(18), 67 (42), 59 (29) [COOCH3
+], 56 (51), 42 (67). 

IR (cm -1)  2950 (m), 2862 (w), 1719 (s), 1655 (m), 1435 (m), 1273 (m), 1198 (s), 

1177 (s), 1036 (m), 981 (m). 
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6.2.4.2 Preparation of ( R,E)-methyl 8-(4-benzyl-2-oxooxazolidin-

on-3-yl)-8-oxooct-2-enoate (343)  

1) PivCl, NEt3, THF,
20 °C, 1 h

343

HOOC COOMe
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O
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2)

O
NH

O

Bn

289

, LiCl, 20 °C
to rt, 3 h

 

 

     Compound 343 is prepared applying the general method of 6.2.2.35. The use of 

carboxylic acid 346 (342 mg, 1.8 mmol) and purification by column chromatography 

(flash silica, 14% → 25% EtOAc in cHex) yields the product as a colourless oil 

(497 mg, 1.4 mmol, 78%). 

      

Rf 0.38 (50% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 1.46 – 1.60 (m, 2H, H-4), 1.64 – 1.77 (m, 2H, H-3), 2.24 (tdd, J = 7.2, 

7.1, 1.5 Hz, 2H, H-5), 2.75 (dd, J = 13.3, 9.5 Hz, 1H, H-13a), 2.88 (dt, 

J = 17.1, 7.4 Hz, 1H, H-2a), 2.97 (dt, J = 17.1, 7.3 Hz, 1H, H-2b), 3.26 

(dd, J = 13.3, 3.4 Hz, 1H, H-13b), 3.69 (s, 3H, H-9), 4.09 – 4.22 (m, 2H, 

H-11), 4.59 – 4.69 (m, 1H, H-12), 5.83 (dt, J = 15.6, 1.5 Hz, 1H, H-7), 

6.95 (dt, J = 15.6, 7.1 Hz, 1H, H-6), 7.15 – 7.35 (m, 5H, H-15, H-16, 

H-17). 
13C-NMR (75 MHz, CDCl3): 

 23.7 (CH2, C-3), 27.4 (CH2, C-4), 31.9 (CH2, C-5), 35.2 (CH2, C-2), 37.9 

(CH2, C-13), 51.4 (CH3, C-9), 55.1 (CH, C-12), 66.3 (CH2, C-11), 121.3 

(CH, C-7), 127.4 (CH, C-17), 129.0 (CH, C-16), 129.4 (CH, C-15), 135.3 

(Cquart, C-14), 148.9 (CH, C-6), 153.5 (Cquart, C-10), 167.0 (Cquart, C-8), 

172.9 (Cquart, C-1).  

GC (tR) 24.02 min (program 4) 
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GC-MS (EI): 

 345 (19) [M+], 313 (23), 286 (17) [M+−COOCH3], 258 (28), 254 (9) 

[M+−C7H7], 228 (23), 222 (14), 178 (60), 169 (45) [M+−C10H10NO2], 152 

(19), 141 (40) [M+−C11H10NO3], 137 (100), 133 (39), 117 (68), 109 (87), 

101 (49), 91 (66), 86 (27), 81 (77), 67 (28), 59 (16) [COOCH3
+], 55 (25). 

IR (cm -1)  2948 (w), 2866 (w), 1776 (s), 1717 (s), 1697 (s), 1656 (m), 1481 (w), 

1455 (m), 1436 (m), 1386 (s), 1351 (s), 1328 (m), 1274 (s), 1190 (s), 

1153 (s), 1113 (m), 1097 (m), 1076 (m), 1048 (m), 1031 (m), 980 (s), 

918 (w), 847 (m), 762 (m), 740 (m), 701 (s). 

 

 

6.2.4.3 Preparation of ( E)-methyl 8-((tetrahydro- 2H-pyran-2-yl) 

oxy)oct-2-enoate (361)  

 

 

     Compound 361 is prepared applying the general method of 6.2.2.16. The use of 

alcohol 119 (1.5 g, 8.7 mmol) and purification of the crude product by column 

chromatography (25% EtOAc in cHex) yields the product as a colourless oil (2.2 g, 

8.5 mmol, 98%).  

      

Rf 0.73 (50% EtOAc in cHex) 

Isom. ratio  cis/trans = 1:10 (calculated from NMR) 
1H-NMR The 1H-NMR spectra of 361 is in good agreement with literature.287 

13C-NMR (75 MHz, CDCl3): 

 19.8 (CH2, C-12), 25.6 (CH2, C-13), 25.9 (CH2, C-3), 28.0 (CH2, C-4), 

29.6 (CH2, C-2), 30.9 (CH2, C-11), 32.3 (CH2, C-5), 51.5 (CH3, C-9), 

62.5 (CH2, C-14), 67.5 (CH2, C-1), 99.0 (CH, C-10), 121.1 (CH, C-7), 

149.7 (CH, C-6), 167.3 (Cquart, C-8).  
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GC-MS (EI): 

 225 (2) [M+−OCH3], 197 (2) [M+−COOCH3], 169 (10), 156 (10), 140 

(10), 113 (20) [C6H9O2
+], 101 (15) [M+−OTHP], 95 (50), 85 (100) [THP+], 

81 (20), 55 (32), 53 (10).  

 

 

6.2.4.4 Preparation of ( E)-methyl 8-(( tert-butyldimethylsilyl)oxy) 

oct-2-enoate (362)  

 

 

     Compound 362 is prepared applying the general method of 6.2.2.21. The use of 

alcohol 119 (6.1 g, 35.1 mmol) and purification of the crude product by column 

chromatography (15% EtOAc in cHex) yields the product as a colourless oil (10.0 g, 

34.9 mmol, 99%). 

      

Rf 0.93 (50% EtOAc in cHex) 

Isom. ratio  cis/trans = 1:10 (calculated from NMR) 
1H-NMR (300 MHz, CDCl3): 

 0.02 (s, 6H, H-10), 0.87 (s, 9H, H-12), 1.27 – 1.40 (m, 2H, H-3),      

1.40 – 1.56 (m, 4H, H-2, H-4), 2.19 (tdd, J = 7.2, 7.0, 1.5 Hz, 2H, H-5), 

3.58 (t, J = 6.3 Hz, 2H, H-1), 3.70 (s, 3H, H-9), 5.80 (dt, J = 15.6, 

1.5 Hz, 1H, H-7), 6.95 (dt, J = 15.6, 7.0 Hz, 1H, H-6). 
13C-NMR (75 MHz, CDCl3): 

 −5.2 (CH3, C-10), 18.5 (Cquart, C-11), 25.5 (CH2, C-3), 26.1 (CH3, C-12), 

27.9 (CH2, C-4), 32.3 (CH2, C-5), 32.7 (CH2, C-2), 51.4 (CH3, C-9), 63.1 

(CH2, C-1), 121.0 (CH, C-7), 149.6 (CH, C-6), 167.2 (Cquart, C-8).  
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GC-MS (EI): 

 271 (2) [M+−CH3], 255 (5) [M+−OCH3], 230 (15), 229 (75) [M+−tBu], 197 

(35), 119 (5), 99 (11), 90 (65), 89 (100), 81 (34), 75 (45) [C2H7OSi+], 73 

(33), 67 (25), 59 (15), 55 (30), 53 (8). 

IR (cm -1)  2930, 2857, 1727, 1658, 1472, 1463, 1435, 1388, 1361, 1314, 1254, 

1196, 1175, 1098, 1041, 1006, 978, 939, 832, 773, 716, 662. 

 

 

6.2.4.5 General method for the reduction of esters to alcohols 

with DIBAL-H  

     According to procedures of Barnickel152 and Fox et al.,216 a 0.05M solution of an 

ester (1.0 eq.) in CH2Cl2 abs. is cooled to −78 °C in an acetone/dry ice bath and 

DIBAL-H (1M in hexanes) (2.0 eq.) is added dropwise using a syringe pump 

(0.5 mL/min). The mixture is stirred at −78 °C for 1 – 2 h. The reaction is terminated 

by the addition of H2O (5 mL/mmol) and the remaing solid is dissolved with 2M HClaq. 

The phases are separated and the aqueous phase is extracted with CH2Cl2 

(3 × 10 mL/mmol) before the combined organic phases are washed with H2O 

(20 mL/mmol), dried over MgSO4 and filtered. The solvent is evaporated to give the 

crude product.  

 

 

6.2.4.6 Preparation of ( E)-8-((tetrahydro- 2H-pyran-2-yl)oxy)oct-2-

en-1-ol (363)  

 

 

     Compound 363 is prepared applying the general method of 6.2.4.5. The use of 

methyl ester 361 (2.2 g, 8.5 mmol) and purification of the crude product by column 
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chromatography (20% EtOAc in cHex) yields the product as a colourless oil (1.9 g, 

8.4 mmol, 98%). 

      

Rf 0.58 (50% EtOAc in cHex) 

Isom. ratio  cis/trans = 1:10 (calculated from NMR) 
1H-NMR The 1H-NMR spectra of 363 is in good agreement with literature.287 
13C-NMR (75 MHz, CDCl3): 

 19.7 (CH2, C-11), 25.5 (CH2, C-12), 25.8 (CH2, C-3), 29.0 (CH2, C-4), 

29.6 (CH2, C-2), 30.8 (CH2, C-10), 32.2 (CH2, C-5), 62.4 (CH2, C-13), 

63.7 (CH2, C-8), 67.6 (CH2, C-1), 98.9 (CH, C-9), 129.2 (CH, C-7), 

133.0 (CH, C-6).  

GC-MS (EI): 

 227 (2) [M+−H], 109 (7), 93 (7), 85 (100) [M+−THP], 70 (15), 67 (39), 55 

(72). 

 

 

6.2.4.7 Preparation of ( E)-8-((tert-butyldimethylsilyl)oxy)oct-2-en-

1-ol (364)  

 

 

     Compound 364 is prepared applying the general method of 6.2.4.5. The use of 

methyl ester 362 (2.3 g, 8.1 mmol) yields the product as a colourless oil (2.0 g, 

7.7 mmol, 95%) without further purification. 

      

Rf 0.55 (33% EtOAc in cHex) 

Isom. ratio  cis/trans = 1:10 (calculated from NMR) 
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1H-NMR (300 MHz, CDCl3): 

 0.04 (s, 6H, H-9), 0.89 (s, 9H, H-11), 1.24 – 1.43 (m, 4H, H-3, H-4), 

1.43 – 1.60 (m, 2H, H-2), 2.00 – 2.12 (m, 2H, H-5), 3.59 (t, J = 6.4 Hz, 

2H, H-1), 4.05 – 4.10 (m, 2H, H-8), 5.55 – 5.75 (m, 2H, H-6, H-7). 
13C-NMR (75 MHz, CDCl3): 

 −5.1 (CH3, C-9), 18.5 (Cquart, C-10), 25.5 (CH2, C-3), 26.1 (CH3, C-11), 

29.0 (CH2, C-4), 32.3 (CH2, C-5), 32.8 (CH2, C-2), 63.3 (CH2, C-1), 64.0 

(CH2, C-8), 129.1 (CH, C-7), 133.5 (CH, C-6).  

GC (tR) 21.88 min (program 0) 

GC-MS (EI): 

 201 (2) [M+−tBu], 183 (10), 169 (29), 155 (10), 115 (5) [M+−TBS], 109 

(30), 105 (15), 101 (5), 94 (5), 89 (5), 81 (18), 75 (100) [C2H7OSi+], 73 

(23), 67 (100), 57 (13) [tBu+], 55 (25). 

IR (cm -1)  3339, 2929, 2856, 2335, 1670, 1471, 1462, 1437, 1388, 1361, 1253, 

1218, 1097, 1004, 968, 938, 919, 832, 773, 711, 660. 

 

 

6.2.4.8 General method for the acetyl-protection of  alcohols  

     According to a procedure of Qian et al.,215 a 0.05M solution of an alcohol (1.0 eq.) 

in a mixture of CH2Cl2 abs./pyridine abs. (1:1) is cooled to 0 °C and Ac2O (1.0 eq.) 

and DMAP (catalytic amount) are added. The mixture is stirred for 14 h at room 

temperature before it is washed with 2M HClaq in quick succession until the 

separated aqueous phases' pH remains acidic. The aqueous phase is extracted with 

EtOAc (3 × 10 mL/mmol) before the combined organic phases are washed with brine 

(20 mL/mmol), dried over MgSO4 and filtered. The solvent is evaporated to yield the 

crude product.  
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6.2.4.9 Preparation of ( E)-8-((tetrahydro- 2H-pyran-2-yl)oxy)oct-2-

en-1-yl acetate (365)  

 

 

     Compound 365 is prepared applying the general method of 6.2.4.8. The use of 

alcohol 363 (1.1 g, 4.8 mmol) yields the product as a yellow oil (1.2 g, 4.5 mmol, 

95%) without further purification. 

           

Rf 0.51 (33% EtOAc in cHex) 

Isom. ratio  cis/trans = 1:10 (calculated from NMR) 
1H-/13C-NMR The NMR spectra of 365 are in good agreement with literature.288 

GC-MS (EI): 

 126 (12), 109 (29), 101 (19) [OTHP+], 98 (21), 93 (35), 85 (100), 80 

(46), 70 (30) [M+−C4H8OTHP, −Ac], 67 (58), 55 (61). 

IR (cm -1)  2937 (m), 2856 (w), 1739 (s), 1441 (w), 1381 (w), 1363 (m), 1322 (w), 

1226 (s), 1200 (m), 1184 (w), 1136 (m), 1119 (m), 1076 (m), 1021 (s), 

966 (s), 905 (m), 869 (m), 813 (m), 732 (w). 
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6.2.4.10 Preparation of ( E)-8-((tert-butyldimethylsilyl)oxy)oct-2-en-

1-yl acetate (366)  

 

 

     Compound 366 is prepared applying the general method of 6.2.4.8. The use of 

alcohol 364 (2.0 g, 7.6 mmol) yields the product as a yellow oil (2.3 g, 7.6 mmol, 

99%) without further purification. 

           

Rf 0.81 (25% EtOAc in cHex) 

Isom. ratio  cis/trans = 1:10 (calculated from NMR) 
1H-NMR (300 MHz, CDCl3): 

 0.04 (s, 6H, H-11), 0.88 (s, 9H, H-13), 1.28 – 1.44 (m, 4H, H-3, H-4), 

1.44 – 1.56 (m, 2H, H-2), 2.03 (s, 3H, H-10), 2.00 – 2.12 (m, 2H, H-5), 

3.59 (t, J = 6.6 Hz, 2H, H-1), 4.49 (dd, J = 6.4, 1.0 Hz, 2H, H-8), 5.55 

(dtt, J = 15.4, 6.4, 1.4 Hz, 1H, H-7), 5.76 (dtt, J = 15.4, 6.7, 1.0 Hz, 1H, 

H-6). 
13C-NMR (75 MHz, CDCl3): 

 −5.2 (CH3, C-11), 18.5 (Cquart, C-12), 21.2 (CH3, C-10), 25.5 (CH2, C-3), 

26.1 (CH3, C-13), 28.8 (CH2, C-4), 32.4 (CH2, C-5), 32.8 (CH2, C-2), 

63.3 (CH2, C-1), 65.4 (CH2, C-8), 123.9 (CH, C-7), 136.6 (CH, C-6), 

171.0 (Cquart, C-9).  

GC-MS (EI): 

 159 (15) [C2H4OTBS+], 133 (30), 115 (10) [TBS+], 103 (5), 75 (100) 

[C2H7OSi+], 73 (38), 59 (8) [COOCH3
+], 47 (5). 
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6.2.4.11 Preparation of ( E)-8-hydroxyoct-2-en-1-yl acetate (367)  

 

 

A: Synthesis starting from THP-protected compound 365: 

     According to a procedure of Bernady et al.,170 bisprotected compound 365 (1.2 g, 

4.5 mmol, 1.0 eq.) is dissolved in a mixture of AcOH/THF/H2O (4:2:1) (35 mL) and 

the mixture is stirred for 5 h at 45 °C. The reaction mixture is adjusted to pH 6 with 

1M NaOHaq. EtOAc (50 mL) is added and the phases are separated before the 

aqueous phase is extracted with EtOAc (3 × 50 mL). The combined organic phases 

are washed with brine (150 mL), dried over MgSO4 and filtered. The solvent is 

evaporated and left over AcOH is removed by aceotropic evaporation with toluene. 

The crude product is purified by column chromatography (25% EtOAc in cHex) to 

yield the product as a colourless oil (720 mg, 3.9 mmol, 86%). 

 

B: Synthesis starting from TBS-protected compound 366: 

     Compound 367 is prepared applying the general method of 6.2.2.50. The use of 

TBS-protected compound 366 (1.4 g, 4.7 mmol) and purification of the crude product 

by column chromatography (10% → 50% EtOAc in cHex) yields the product as a 

colourless oil (781 mg, 4.2 mmol, 89%). 

      

Rf 0.21 (33% EtOAc in cHex) 

Isom. ratio  cis/trans = 1:10 (calculated from NMR) 
1H-NMR (300 MHz, CDCl3): assignment differs from literature.289 

 1.21 – 1.41 (m, 4H, H-3, H-4), 1.43 – 1.55 (m, 2H, H-2), 1.99 (s, 3H, 

H-10), 1.95 – 2.06 (m, 2H, H-5), 2.29 (br s, 1H, OH), 3.55 (t, J = 6.6 Hz, 

2H, H-1), 4.44 (dd, J = 6.4, 1.0 Hz, 2H, H-8), 5.49 (dtt, J = 15.4, 6.4, 

1.4 Hz, 1H, H-7), 5.70 (dtt, J = 15.4, 6.7, 1.0 Hz, 1H, H-6). 
 

 

 



226                                                                                Experimental Part 
 

13C-NMR (75 MHz, CDCl3): 

 21.0 (CH3, C-10), 25.3 (CH2, C-3), 28.7 (CH2, C-4), 32.2 (CH2, C-5), 

32.5 (CH2, C-2), 62.6 (CH2, C-1), 65.3 (CH2, C-8), 123.9 (CH, C-7), 

136.4 (CH, C-7), 171.0 (Cquart, C-9).  

GC-MS (EI): 

 186 (2) [M+], 169 (2) [M+−OH], 143 (3) [M+−COCH3], 126 (15), 108 (85), 

93 (60), 80 (100), 70 (40), 67 (55), 55 (30). 

IR (cm -1)  3404 (w, br), 2935 (m), 2857 (w), 1738 (s), 1442 (w), 1363 (m), 1228 

(s), 1170 (w), 1137 (w), 1116 (w), 1075 (m), 1023 (s), 969 (s), 913 (m), 

900 (m), 867 (w), 840 (w), 806 (w). 

 

 

6.2.4.12 Preparation of ( E)-8-acetoxyoct-6-enoic acid (368)  

 

 

1) PCC oxidation: 

     According to a procedure of Herscovici et al.,195 to a solution of alcohol 367 (1.4 g, 

7.6 mmol, 1.0 eq.) in CH2Cl2 abs. (100 mL) are added carefully dried powdered 

molecular sieves (3Å) (3 g), Celite® (2 spatulas) and PCC (3.29 g, 15.3 mmol, 

2.0 eq.) and the mixture is stirred for 2 h at room temperature. The reaction mixture is 

filtered over Celite® and the solvent is evaporated in the presence of flash silica gel. 

The dark solid is loaded onto a short silica gel column and the product is eluted with 

EtOAc/cHex (1:1). Solvent evaporation gives the crude aldehyde, which is 

immediately used in the next step. 

 

2) Pinnick-oxidation: 

     According to procedures of Lindgren et al.106 and Bal et al.,107 to a solution of the 

crude aldehyde from 1) (1.00 g, 0.54 mmol, 1.00 eq.) in a mixture of 

THF/tert-butanol/H2O (1:1:0.25) (48 mL) are added 2-methyl-2-butene (5.18 mL, 

48.9 mmol, 9.00 eq.), NaH2PO4 (352 mg, 2.9 mmol, 0.54 eq.) and NaClO2 (1.77 g, 
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19.6 mmol, 3.60 eq.) and the mixture is stirred for 2 h at room temperature. The 

reaction is terminated by slow addition of sat. Na2S2O3aq (100 mL) at 0 °C. The pH is 

adjusted to pH 4 with 2M HClaq and the aqueous phase is extracted with EtOAc 

(3 × 150 mL). The combined organic phases are washed with 0.1M HCl (200 mL), 

dried over MgSO4 and filtered. The solvent is evaporated and the crude product 

purified by column chromatography (25% → 33% → 50% EtOAc in cHex → EtOAc) 

to yield the product as a colourless oil (769 mg, 3.8 mmol, 50% over two steps). 

      

Rf 0.37 (50% EtOAc in cHex), tailing observed 

Isom. ratio  cis/trans = 1:10 (calculated from NMR) 
1H-NMR (300 MHz, CDCl3): 

 1.37 – 1.49 (m, 2H, H-4), 1.57 – 1.69 (m, 2H, H-3), 2.04 (s, 3H, H-10), 

2.01 – 2.15 (m, 2H, H-5), 2.34 (t, J = 7.4 Hz, 2H, H-2), 4.49 (dd, J = 6.3, 

1.0 Hz, 2H, H-8), 5.56 (dtt, J = 15.4, 6.3, 1.4 Hz, 1H, H-7), 5.74 (dtt, 

J = 15.4, 6.5, 1.0 Hz, 1H, H-6), 10.76 (br s, 1H, COOH). 
13C-NMR (75 MHz, CDCl3): 

 21.1 (CH3, C-10), 24.2 (CH2, C-3), 28.3 (CH2, C-4), 31.9 (CH2, C-5), 

33.9 (CH2, C-2), 65.3 (CH2, C-8), 124.4 (CH, C-7), 135.8 (CH, C-6), 

171.1 (Cquart, C-9), 179.9 (Cquart, C-1).  

GC-MS (EI): 

 141 (5) [M+−COOCH3], 140 (40), 122 (15), 113 (2) [M+−C3H6COOH], 

112 (17), 99 (5) [M+−C4H8COOH], 94 (20), 80 (100), 79 (45), 73 (5), 70 

(7), 68 (9), 67 (29), 60 (10), 59 (4) [COOCH3
+], 55 (20), 54 (23). 

IR (cm -1)  2932 (w), 2920 (w, br), 2851 (w), 1778 (s), 1698 (m), 1612 (w), 1513 

(m), 1455 (w), 1385 (m), 1352 (m), 1301 (m), 1246 (s), 1210 (m), 1740 

(m), 1098 (m), 1033 (m), 972 (m), 908 (s), 821 (m), 726 (s), 702 (s), 647 

(m). 
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6.2.4.13 Preparation of ( R,E)-8-(4-benzyl-2-oxooxazolidinon-3-yl)-

8-oxooct-2-en-1-yl acetate (369)  

 

 

     Compound 369 is prepared applying the general method of 6.2.2.35. The use of 

carboxylic acid 368 (617 mg, 3.1 mmol) and purification by column chromatography 

(flash silica, 33% EtOAc in cHex) yields the product as a colourless oil (1.1 g, 

2.9 mmol, 95%). 

           

Rf 0.71 (50% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 1.40 – 1.52 (m, 2H, H-4), 1.61 – 1.74 (m, 2H, H-3), 2.02 (s, 3H, H-10), 

2.00 – 2.16 (m, 2H, H-5), 2.74 (dd, J = 13.3, 9.5 Hz, 1H, H-14a), 2.86 

(dt, J = 17.1, 7.4 Hz, 1H, H-2a), 2.95 (dt, J = 17.1, 7.3 Hz, 1H, H-2b), 

3.25 (dd, J = 13.4, 3.3 Hz, 1H, H-14b), 4.03 – 4.21 (m, 2H, H-12), 4.48 

(dd, J = 6.3, 1.0 Hz, 2H, H-8), 4.57 – 4.69 (m, 1H, H-13), 5.56 (dtt, 

J = 15.4, 6.3, 1.4 Hz, 1H, H-7), 5.74 (dtt, J = 15.4, 6.5, 1.0 Hz, 1H, H-6), 

7.14 – 7.33 (m, 5H, H-16, H-17, H-18). 
13C-NMR (75 MHz, CDCl3): 

 21.0 (CH3, C-10), 23.7 (CH2, C-3), 28.3 (CH2, C-4), 31.9 (CH2, C-5), 

35.3 (CH2, C-2), 37.9 (CH2, C-14), 55.1 (CH, C-13), 65.1 (CH2, C-8), 

66.2 (CH2, C-12), 124.3 (CH, C-7), 127.3 (CH, C-18), 128.9 (CH, C-17), 

129.4 (CH, C-16), 135.3 (Cquart, C-15), 135.8 (CH, C-6), 153.4 (Cquart, 

C-11), 170.8 (Cquart, C-9), 173.1 (Cquart, C-1).  

GC-MS (EI): 

 299 (85), 232 (10), 219 (50), 178 (100), 134 (50), 123 (70), 117 (80), 91 

(55), 91 (56) [C7H7
+], 79 (35), 67 (30), 55 (15). 
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IR (cm -1)  2933 (w), 1777 (s), 1734 (s), 1697 (s), 1481 (w), 1454 (w), 1383 (s), 

1352 (m), 1226 (s), 1099 (m), 1076 (m), 1049 (m), 1022 (m), 969 (m), 

913 (m), 841 (w), 762 (m), 730 (s), 701 (s). 

 

 

6.2.4.14 Preparation of ( E)-tert-butyl((8-((4-methoxybenzyl)oxy) 

oct-6-en-1-yl)oxy)dimethylsilane (371)  

 

 

     According to procedures of Barnickel152 and Nakajima et al.,219 to a solution of 

PMB-2,2,2-trichloroacetimidate (1M in nhex) (7.0 mL, 7.0 mmol, 1.8 eq.) in a mixture 

of nhex/CH2Cl2 (2:1) (15 mL) are added allylic alcohol 364 (1.00 g, 3.9 mmol, 1.0 eq.) 

and PPTS (194 mg, 0.77 mmol, 0.2 eq.) and the mixture is stirred for 14 h at room 

temperature. The precipitated solid is removed by filtration and washed thoroughly 

with a mixture of nhex/CH2Cl2 (2:1). The filtrate is washed with sat. KHCO3aq (20 mL) 

and brine (20 mL) before the organic phases are dried over MgSO4 and filtered. The 

solvent is evaporated to give the crude product which is purified by column 

chromatography (flash silica, 5% EtOAc in cHex) to yield the product as a colourless 

oil (1.3 g, 3.4 mmol, 89%).      

 

Rf 0.50 (10% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 0.04 (s, 6H, H-15), 0.89 (s, 9H, H-17), 1.22 – 1.44 (m, 4H, H-3, H-4), 

1.45 – 1.58 (m, 2H, H-2), 2.00 – 2.11 (m, 2H, H-5), 3.60 (t, J = 6.6 Hz, 

2H, H-1), 3.80 (s, 3H, H-14), 3.94 (dd, J = 6.0, 1.0 Hz, 2H, H-8), 4.43 (s, 

2H, H-9), 5.58 (dtt, J = 15.4, 6.0, 1.1 Hz, 1H, H-7), 5.70 (dtt, J = 15.4, 

6.5, 1.0 Hz, 1H, H-6), 6.87 (d, J = 8.8 Hz, 2H, H-12), 7.26 (d, J = 8.8 Hz, 

2H, H-11). 
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13C-NMR (75 MHz, CDCl3): 

 −5.1 (CH3, C-15), 18.5 (Cquart, C-16), 25.5 (CH2, C-3), 26.1 (CH3, C-17), 

29.0 (CH2, C-4), 32.5 (CH2, C-5), 32.8 (CH2, C-2), 55.4 (CH3, C-14), 

63.4 (CH2, C-1), 70.8 (CH2, C-8), 71.7 (CH2, C-9), 113.9 (CH, C-12), 

126.5 (CH, C-7), 129.5 (CH, C-11), 130.7 (Cquart, C-10), 134.9 (CH, 

C-6), 158.9 (Cquart, C-13).  

GC (tR) 41.67 min (program 0) 

GC-MS (EI): 

 185 (2), 137 (3) [OPMB+], 121 (100) [PMB+], 107 (3), 91 (4) [C7H7
+], 75 

(13) [C2H7OSi+], 55 (2). 

 

 

6.2.4.15 Preparation of ( E)-8-((4-methoxybenzyl)oxy)oct-6-en-1-ol  

(372)  

 

 

     Compound 372 is prepared applying the general method of 6.2.2.50. The use of 

TBS-protected compound 371 (3.2 g, 8.4 mmol) and purification of the crude product 

by column chromatography (50% EtOAc in cHex) yields the product as a colourless 

oil (2.1 g, 7.8 mmol, 93%). 

 

Rf 0.54 (50% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 1.30 – 1.48 (m, 4H, H-3, H-4), 1.49 – 1.63 (m, 2H, H-2), 1.64 (br s, 1H, 

OH), 2.01 – 2.11 (m, 2H, H-5), 3.62 (t, J = 6.6 Hz, 2H, H-1), 3.79 (s, 3H, 

H-14), 3.93 (dd, J = 6.0, 1.0 Hz, 2H, H-8), 4.42 (s, 2H, H-9), 5.57 (dtt, 

J = 15.4, 6.0, 1.2 Hz, 1H, H-7), 5.70 (dtt, J = 15.4, 6.5, 1.0 Hz, 1H, H-6), 

6.87 (d, J = 8.8 Hz, 2H, H-12), 7.26 (d, J = 8.8 Hz, 2H, H-11). 
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13C-NMR (75 MHz, CDCl3): 

 25.4 (CH2, C-3), 28.9 (CH2, C-4), 32.3 (CH2, C-5), 32.7 (CH2, C-2), 55.4 

(CH3, C-14), 63.0 (CH2, C-1), 70.7 (CH2, C-8), 71.7 (CH2, C-9), 113.9 

(CH, C-12), 126.6 (CH, C-7), 129.5 (CH, C-11), 130.6 (Cquart, C-10), 

134.7 (CH, C-6), 159.3 (Cquart, C-13).  

GC (tR) 35.05 min (program 0) 

GC-MS (EI): 

 263 (2) [M+−H], 137 (27) [OPMB+], 121 (100) [PMB+], 107 (14), 91 (13), 

77 (22), 67 (13). 

IR (cm -1)  3383 (w, br), 2931 (m), 2855 (m), 1737 (w), 1612 (m), 1586 (w), 1512 

(s), 1462 (w), 1360 (w), 1301 (m), 1245 (s), 1173 (m), 1094 (m), 1052 

(s), 1033 (s), 970 (m), 818 (s), 757 (w), 708 (w). 

 

 

6.2.4.16 Preparation of ( E)-8-((4-methoxybenzyl)oxy)oct-6-enal  

(373)  

 

 

     According to a procedure of Taillier et al.,220 a solution of oxalyl chloride (0.42 mL, 

4.8 mmol, 1.2 eq.) in CH2Cl2 abs. (18 mL) is cooled to −78 °C in an acetone/dry ice 

bath and DMSO abs. (0.32 mL, 4.4 mmol, 1.1 eq.) is added dropwise. After 5 min of 

stirring, alcohol 372 (1.1 g, 4.0 mmol, 1.0 eq.), dissolved in CH2Cl2 abs. (11 mL), is 

added dropwise and the mixture is stirred for 15 min. NEt3 abs. (2.80 mL, 20.2 mmol, 

5.0 eq.) is added dropwise and the stirring is continued for 30 min, leaving the 

reaction mixture to slowly warm to room temperature. The reaction is terminated by 

the addition of CH2Cl2 (20 mL) and sat. NH4Claq (40 mL). The phases are separated 

and the organic phase is washed with sat. NH4Claq (40 mL) and brine (2 × 40 mL) 

before being dried over MgSO4 and filtered. The solvent is evaporated to give the 
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crude product as a yellow oil (1.0 g, 3.9 mmol, 96%) which is used in the next step 

without further purification. 

 

Rf 0.56 (33% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 1.32 – 1.49 (m, 4H, H-3, H-4), 1.58 – 1.79 (m, 2H, H-2), 2.01 – 2.13 (m, 

2H, H-5), 2.43 (td, J = 7.3, 1.8 Hz, 2H, H-1), 3.80 (s, 3H, H-14), 3.93 

(dd, J = 5.8, 0.8 Hz, 2H, H-8), 4.42 (s, 2H, H-9), 5.52 – 5.74 (m, 2H, 

H-6, H-7), 6.87 (d, J = 8.8 Hz, 2H, H-12), 7.26 (d, J = 8.8 Hz, 2H, H-11), 

9.75 (t, J = 1.8 Hz, 1H, H-1). 
13C-NMR (75 MHz, CDCl3): 

 21.7 (CH2, C-3), 28.6 (CH2, C-4), 32.1 (CH2, C-5), 43.8 (CH2, C-2), 55.4 

(CH3, C-14), 70.7 (CH2, C-8), 71.7 (CH2, C-9), 113.9 (CH, C-12), 127.1 

(CH, C-7), 129.4 (Cquart, C-10), 129.5 (CH, C-11), 133.9 (CH, C-6), 

159.3 (Cquart, C-13), 202.7 (CH, C-1).  

GC (tR) 33.53 min (program 0) 

GC-MS (EI): 

 122 (100), 107 (32), 91 (23), 79 (19), 77 (28). 

IR (cm -1)  2932 (w), 2853 (w), 1766 (w), 1722 (m), 1612 (m), 1586 (w), 1512 (s), 

1462 (m), 1360 (w), 1301 (m), 1245 (s), 1172 (s), 1097 (m), 1064 (m), 

1033 (s), 970 (m), 818 (s), 758 (m), 710 (w). 

 

 

6.2.4.17 Preparation of ( E)-8-((4-methoxybenzyl)oxy)oct-6-enoic 

acid (374)  

 

 

     According to procedures of Lindgren et al.106 and Bal et al.,107 to a solution of 

crude aldehyde 373 (300 mg, 1.1 mmol, 1.0 eq.) in a mixture of tert-butanol/H2O (4:1) 
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(15 mL) are added 2-methyl-2-butene (1.1 mL, 10.3 mmol, 9.0 eq.), NaH2PO4 

(357 mg, 2.3 mmol, 2.0 eq.) and NaClO2 (414 mg, 4.6 mmol, 4.0 eq.) and the mixture 

is stirred for 2 h at room temperature. The reaction is terminated by the addition of 

sat. NH4Claq (20 mL) and EtOAc (20 mL). The phases are separated and the 

aqueous phase is extracted with EtOAc (2 × 20 mL). The combined organic phases 

are dried over MgSO4 and filtered. The solvent is evaporated and the crude product 

purified by column chromatography (20% EtOAc in cHex) to yield the product as a 

colourless oil (173 mg, 0.62 mmol, 54%). 

 

Rf 0.26 (33% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 1.32 – 1.52 (m, 2H, H-4), 1.59 – 1.72 (m, 2H, H-3), 2.00 – 2.13 (m, 2H, 

H-5), 2.36 (t, J = 7.4 Hz, 2H, H-2), 3.80 (s, 3H, H-14), 3.94 (dd, J = 5.8, 

0.8 Hz, 2H, H-8), 4.43 (s, 2H, H-9), 5.51 – 5.75 (m, 2H, H-6, H-7), 6.87 

(d, J = 8.7 Hz, 2H, H-12), 7.26 (d, J = 8.7 Hz, 2H, H-11), 9.31 (br s, 1H, 

COOH). 
13C-NMR (75 MHz, CDCl3): 

 24.3 (CH2, C-3), 28.5 (CH2, C-4), 32.0 (CH2, C-5), 33.9 (CH2, C-2), 55.4 

(CH3, C-14), 70.6 (CH2, C-8), 71.7 (CH2, C-9), 113.9 (CH, C-12), 127.0 

(CH, C-7), 129.6 (CH, C-11), 130.6 (Cquart, C-10), 134.1 (CH, C-6), 

159.3 (Cquart, C-13), 179.4 (Cquart, C-1).  

GC (tR) 37.20 min (program 0) 

GC-MS (EI): 

 152 (88), 135 (100), 121 (3) [PMB+], 107 (13), 92 (11), 77 (20), 63 (8), 

55 (6). 

IR (cm -1)  2950 (w, br), 2929 (m), 2852 (m), 1706 (s), 1612 (m), 1586 (w), 1513 

(s), 1455 (m), 1421 (w), 1361 (w), 1302 (m), 1245 (s), 1172 (s), 1097 

(m), 1033 (s), 970 (m), 848 (m), 818 (s), 776 (m), 758 (m), 709 (w), 636 

(w). 
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6.2.4.18 Preparation of ( R,E)-4-benzyl-3-(8-((4-methoxybenzyl) 

oxy)oct-6-enoyl)oxazolidin-2-one (375)  

 

 

     Compound 375 is prepared applying the general method of 6.2.2.35. The use of 

carboxylic acid 374 (173 mg, 0.62 mmol) and purification by column chromatography 

(flash silica, 10% EtOAc in cHex) yields the product as a colourless oil (133 mg, 

0.30 mmol, 49%).      

 

Rf 0.70 (50% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 1.43 – 1.56 (m, 2H, H-4), 1.65 – 1.78 (m, 2H, H-3), 2.06 – 2.17 (m, 2H, 

H-5), 2.76 (dd, J = 13.4, 9.6 Hz, 1H, H-18a), 2.90 (dt, J = 17.1, 7.4 Hz, 

1H, H-2a), 2.98 (dt, J = 17.1, 7.4 Hz, 1H, H-2b), 3.30 (dd, J = 13.4, 

3.3 Hz, 1H, H-18b), 3.80 (s, 3H, H-14), 3.95 (dd, J = 5.8, 0.8 Hz, 2H, 

H-8), 4.13 – 4.24 (m, 2H, H-16), 4.43 (s, 2H, H-9), 4.62 – 4.72 (m, 1H, 

H-17), 5.65 (m, 2H, H-6, H-7), 6.87 (d, J = 8.5 Hz, 2H, H-12),         

7.17 – 7.37 (m, 5H, H-20, H-21, H-22), 7.27 (d, J = 8.5 Hz, 2H, H-11). 

GC (tR) 22.31 min (program 0) 
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6.2.4.19 Preparation of ( R)-4-benzyl-3-(( R,E)-8-((4-methoxybenzyl) 

oxy)-2-methyloct-6-enoyl)oxazolidin-2-one (376)  

 

 

     Compound 376 is prepared applying the general method of 6.2.2.40. The use of 

unmethylated compound 375 (133 mg, 0.30 mmol) and purification of the crude 

product by column chromatography (flash silica, 10% EtOAc in cHex) yields the 

product as a colourless oil (71 mg, 0.16 mmol, 52%). 

 

Rf 0.74 (50% EtOAc in cHex) 
1H-NMR (300 MHz, CDCl3): 

 1.22 (d, J = 6.9 Hz, 3H, H-23), 1.34 – 1.51 (m, 2H, H-4), 1.68 – 1.84 (m, 

2H, H-3), 2.02 – 2.13 (m, 2H, H-5), 2.77 (dd, J = 13.3, 9.5 Hz, 1H, 

H-18a), 3.25 (dd, J = 13.3, 3.3 Hz, 1H, H-18b), 3.64 – 3.78 (m, 1H, 

H-2), 3.79 (s, 3H, H-14), 3.94 (dd, J = 5.8, 0.8 Hz, 2H, H-8), 4.11 – 4.22 

(m, 2H, H-16), 4.43 (s, 2H, H-9), 4.62 – 4.72 (m, 1H, H-17), 5.52 – 5.76 

(m, 2H, H-6, H-7), 6.87 (d, J = 8.8 Hz, 2H, H-12), 7.17 – 7.38 (m, 5H, 

H-20, H-21, H-22), 7.26 (d, J = 8.8 Hz, 2H, H-11). 
13C-NMR (75 MHz, CDCl3): 

 17.5 (CH3, C-23), 26.8 (CH2, C-4), 32.4 (CH2, C-5), 33.1 (CH2, C-3), 

37.7 (CH2, C-2), 38.1 (CH2, C-18), 55.4 (CH3, C-14), 55.5 (CH, C-17), 

66.2 (CH2, C-16), 70.7 (CH2, C-8), 71.9 (CH2, C-9), 113.9 (CH, C-12), 

126.9 (CH, C-7), 127.5 (CH, C-22), 129.1 (CH, C-21), 2 × 129.6 (CH, 

C-11, C-20), 130.7 (Cquart, C-10), 134.3 (CH, C-6), 135.5 (Cquart, C-19), 

153.2 (Cquart, C-15), 159.3 (Cquart, C-13), 177.3 (Cquart, C-1).  
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6.3 Syntheses of macrocidin A inspired macrocycles 

6.3.1 Preparation of N-(tert-butoxycarbonyl)-(5 S)-4-(8-bromo-

octanoyloxy)-5-(4-(allyloxy)benzyl)-1 H-pyrrol-2(5 H)-one 

(234)  

 

 

     According to a procedure of Yoda et al.,78 to a solution of 8-bromooctanoic acid 

(212) (360 mg, 1.6 mmol, 1.1 eq.) in CH2Cl2 abs. (30 mL) at 0 °C are added 

EDC · HCl (310 mg, 1.6 mmol, 1.1 eq.) and DMAP (20 mg, 0.16 mmol, 0.11 eq.). The 

mixture is stirred for 5 min before bisprotected tetramic acid 116 (507 mg, 1.5 mmol, 

1.0 eq.) is added and the mixture is left to stir for 4 h at room temperature. The 

mixture is diluted with EtOAc (100 mL) and the organic phases are washed with 

sat. NH4Claq (3 × 80 mL) and brine (80 mL). The organic phases are dried over 

Na2SO4, filtered and the solvent evaporated to give the crude product which is 

purified by column chromatography (25% → 50% EtOAc in cHex → EtOAc). The 

product is obtained as a yellow oil (604 mg, 1.1 mmol, 75%). 

 

Rf 0.15 (EtOAc)  
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1H-NMR (300 MHz, CDCl3):  

 1.30 – 1.52 (m, 6H, H-20/H-21/H-23), 1.60 (s, 9H, H-8), 1.61 – 1.73 (m, 

2H, H-19), 1.80 – 1.92 (m, 2H, H-22), 2.47 (t, J = 7.4 Hz, 2H, H-18), 

3.14 (dd, J = 14.1, 3.0 Hz, 1H, H-9a), 3.30 (dd, J = 14.1, 6.0 Hz, 1H, 

H-9b), 3.41 (t, J = 6.7 Hz, 2H, H-24), 4.48 (ddd, J = 5.3, 1.6, 1.2 Hz, 2H, 

H-14), 4.76 (ddd, J = 6.0, 3.0, 1.1 Hz, 1H, H-5), 5.27 (ddt, J = 10.5, 1.7, 

1.2 Hz, 1H, H-16Z), 5.39 (ddt, J = 17.3, 1.7, 1.6 Hz, 1H, H-16E), 5.88 (d, 

J = 0.8 Hz, 1H, H-3), 6.03 (ddt, J = 17.3, 10.5, 5.3 Hz, 1H, H-15), 6.78 

(d, J = 7.8 Hz, 2H, H-12), 6.91 (J = 7.8 Hz, 2H, H-11). 
13C-NMR (75 MHz, CDCl3): 

 24.4 (CH2, C-19), 28.0 (CH2, C-23), 28.3 (CH3, C-8), 28.5 (CH2, C-21), 

28.9 (CH2, C-20), 32.8 (CH2, C-22), 34.0 (CH2, C-24), 34.4 (CH2, C-18), 

35.0 (CH2, C-9), 60.7 (CH, C-5), 68.8 (CH2, C-14), 83.3 (Cquart, C-7), 

108.2 (CH, C-3), 114.7 (CH, C-12), 117.9 (CH2, C-16), 126.1 (Cquart, 

C-10), 130.5 (CH, C-11), 133.3 (CH, C-15), 149.4 (Cquart, C-6), 157.8 

(Cquart, C-13), 165.2 (Cquart, C-4), 168.3 (Cquart, C-2), 168.9 (Cquart, C-17). 

 

 

6.3.2 General method for the 3-acylation of tetrami c acids with 

carboxylic acids  

     According to procedures of Yoda et al.79 and Barnickel,152 to a 0.1M solution of 

tetramic acid (1.00 eq.) in CH2Cl2 abs. at 0 °C are added DMAP (0.33 eq.), a 

carboxylic acid (1.10 eq.) and DCC (1.2 eq.). The mixture is stirred for 1.5 h at room 

temperature before recooling the mixture to 0 °C and adding NEt3 abs. (1.10 eq.) and 

dry CaCl2 (1.50 eq.). The mixture is stirred for 14 h at room temperature before it is 

diluted with Et2O (25 mL/mmol) and filtered over Celite®. The filtrate is washed with 

2M HClaq (3 × 20 mL/mmol) and the aqueous phase is extracted with Et2O 

(2 × 15 mL/mmol). The combined organic phases are dried over Na2SO4, filtered and 

the solvent evaporated. The crude product is covered with a layer of Et2O and stored 

in the refrigerator for 14 h, in order for the left over urea to precipitate. The ethereal 

solution is carefully collected with a pipette and the solvent is evaporated to give the 

crude product.  
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6.3.3 Preparation of N-(tert-butoxycarbonyl)-(5 S)-3-(6-bromo-

hexanoyl)-5-(4-(allyloxy)benzyl)-pyrrolidin-2,4-dio ne 

(236)   

 

 

     Compound 236 is prepared applying the general method of 6.3.2. The use of 

tetramic acid 116 (1.0 g, 2.9 mmol) and 6-bromohexanoic acid (210) (621 mg, 

3.2 mmol) yields the product as a red oil (1.1 g, 2.0 mmol, 69%) without further 

purification. 

 

Rf 0.79, 0.21 (EtOAc), tailing observed  
1H-NMR (300 MHz, MeOD): assignment differs from literature.152  

 1.30 – 1.55 (m, 4H, H-16, H-17), 1.62 (s, 9H, H-22), 1.73 – 1.91 (m, 2H, 

H-18), 2.65 – 2.78 (m, 2H, H-15), 3.16 (dd, J = 14.1, 2.6 Hz, 1H, H-6a), 

3.36 (dd, J = 14.1, 5.4 Hz, 1H, H-6b), 3.40 (t, J = 6.8 Hz, 2H, H-19), 

4.45 (ddd, J = 5.4, 1.6, 1.2 Hz, 2H, H-11), 4.55 (dd, J = 5.1, 2.6 Hz, 1H, 

H-5), 5.21 (ddt, J = 10.5, 1.7, 1.2 Hz, 1H, H-13Z), 5.35 (ddt, J = 17.3, 

1.7, 1.6 Hz, 1H, H-13E), (ddt, J = 17.3, 10.5, 5.4 Hz, 1H, H-12), 6.76 (d, 

J = 8.8 Hz, 2H, H-9), 6.89 (d, J = 8.8 Hz, H-8). 
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13C-NMR (75 MHz, MeOD): assignment differs from literature.152 

 25.7 (CH2, C-16/C-17), 26.0 (CH2, C-16/C-17), 28.4 (CH3, C-22), 33.3 

(CH2, C-18), 34.1 (CH2, C-19), 34.6 (CH2, C-15), 35.8 (CH2, C-6), 64.7 

(CH, C-5), 69.6 (CH2, C-11), 84.7 (Cquart, C-21), 105.3 (Cquart, C-3), 

115.5 (CH, C-9), 117.5 (CH2, C-13), 127.3 (Cquart, C-7), 131.8 (CH, 

C-8), 134.7 (CH, C-12), 150.6 (Cquart, C-20), 159.1 (Cquart, C-10), 177.1 

(Cquart, C-2), 194.4 (Cquart, C-4), 194.8 (Cquart, C-14). 

 

 

6.3.4 Preparation of N-(tert-butoxycarbonyl)-(5 S)-3-(7-bromo-

heptanoyl)-5-(4-(allyloxy)benzyl)-pyrrolidin-2,4-di one 

(237)  

 

 

     Compound 237 is prepared applying the general method of 6.3.2. The use of 

tetramic acid 116 (500 mg, 1.5 mmol) and 7-bromoheptanoic acid (211) (333 mg, 

1.6 mmol) and purification of the crude product by column chromatography (25% → 

50% → 75% EtOAc in cHex → 66% EtOH in cHex → EtOH) gives the product as a 

complex with metals from the silica gel. After solvent evaporation, the product is 

redissolved in EtOAc (10 mL) and washed with 2M EDTAaq (2 × 10 mL), before 

drying over Na2SO4 and solvent evaporation, which yields the pure product as a red 

oil (370 mg, 0.69 mmol, 48%). 

 

Rf 0.85, 0.25 (EtOAc), tailing observed  
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1H-NMR (300 MHz, MeOD):  

 1.20 – 1.53 (m, 6H, H-16, H-17, H-18), 1.62 (s, 9H, H-23), 1.74 – 1.91 

(m, 2H, H-19), 2.62 – 2.76 (m, 2H, H-15), 3.10 – 3.20 (m, 1H, H-6a),      

3.25 – 3.36 (m, 1H, H-6b), 3.43 (t, J = 6.4 Hz, 2H, H-20), 4.38 – 4.47 

(m, 2H, H-11), 4.46 – 4.53 (m, 1H, H-5), 5.17 – 5.26 (m, 1H, H-13a), 

5.30 – 5.42 (m, 1H, H-13b), 5.93 – 6.11 (m, 1H, H-12), 6.70 (d, 

J = 8.0 Hz, 2H, H-9), 6.91 (d, J = 8.0 Hz, 2H, H-8). 

DIP-MS (EI): 

 391 (28), 287 (11) [M+−C10H11O, −COOtBu], 187 (9), 147 (100) 

[C10H11O
+], 119 (20), 107 (50), 91 (24), 69 (15), 57 (79), 44 (64), 41 

(100), 39 (92).  

 

 

6.3.5 Preparation of N-(tert-butoxycarbonyl)-(5 S)-3-(8-bromo-

octanoyl)-5-(4-(allyloxy)benzyl)-pyrrolidin-2,4-dio ne (238)  

 

 

     Compound 238 is prepared applying the general method of 6.3.2. The use of 

tetramic acid 116 (500 mg, 1.5 mmol) and 8-bromoctanoic acid (212) (355 mg, 

1.6 mmol) and purification of the crude product by column chromatography (25% → 

50% → 75% EtOAc in cHex → 66% EtOH in cHex → EtOH) gives the product as a 

complex with metals from the silica gel. After solvent evaporation, the product is 

redissolved in EtOAc (10 mL) and washed with 2M EDTAaq (2 × 10 mL), before 

drying over Na2SO4 and solvent evaporation, which yields the pure product as a red 

oil (700 mg, 1.3 mmol, 88%). 
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Rf 0.83, 0.27 (EtOAc), tailing observed 
1H-NMR (300 MHz, MeOD): assignment differs from literature.152 

 1.21 – 1.54 (m, 8H, H-16, H-17, H-18, H-19), 1.62 (s, 9H, H-24),         

1.76 – 1.90 (m, 2H, H-20), 2.73 (t, J = 7.4 Hz, 2H, H-15), 3.17 (dd, 

J = 14.1, 2.6 Hz, 1H, H-6a), 3.37 (dd, J = 14.1, 5.4 Hz, 1H, H-6b), 3.43 

(t, J = 6.8 Hz, 2H, H-21), 4.46 (ddd, J = 5.1, 1.6, 1.4 Hz, 2H, H-11), 4.57 

(dd, J = 5.4, 2.6 Hz, 1H, H-5), 5.22 (ddt, J = 10.5, 1.7, 1.4 Hz, 1H, 

H-13Z), 5.35 (ddt, J = 17.3, 1.7, 1.6 Hz, 1H, H-13E), 6.01 (ddd, J = 17.3, 

10.5, 5.1 Hz, 1H, H-12), 6.76 (d, J = 8.7 Hz, 2H, H-9), 6.90 (d, 

J = 8.7 Hz, 2H, H-8). 
13C-NMR (75 MHz, MeOD): assignment differs from literature.152 

 26.6 (CH2, C-16/C-17/C-18/C-19), 28.4 (CH3, C-24), 28.9 (CH2, 

C-16/C-17/C-18/C-19), 29.3 (CH2, C-16/C-17/C-18/C-19), 29.9 (CH2, 

C-16/C-17/C-18/C-19), 33.9 (CH2, C-20), 34.4 (CH2, C-21), 34.8 (CH2, 

C-15), 35.8 (CH2, C-6), 64.9 (CH, C-5), 69.7 (CH2, C-11), 84.8 (Cquart, 

C-23), 105.2 (Cquart, C-3), 115.6 (CH, C-9), 117.5 (CH2, C-13), 127.4 

(Cquart, C-7), 131.8 (CH, C-8), 134.8 (CH, C-12), 150.7 (Cquart, C-22), 

159.2 (Cquart, C-10), 195.0 (Cquart, C-4/C-14), 195.1 (Cquart, C-4/C-14). 

DIP-MS (EI): 

 550 (2) [M+], 478 (3), 451 (21), 207 (4) [C8H15BrO+−H, 81Br], 205 (4) 

[C8H15BrO+−H, 79Br], 147 (100) [C10H11O
+], 119 (9), 107 (25), 91 (11), 

57 (45), 41 (66).   
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6.3.6 Preparation of N-(tert-butoxycarbonyl)-(5 S)-3-(9-bromo-

nonanoyl)-5-(4-(allyloxy)benzyl)-pyrrolidin-2,4-dio ne (239)  

 

 

     Compound 239 is prepared applying the general method of 6.3.2. The use of 

tetramic acid 116 (1.1 g, 3.1 mmol) and 9-bromononanoic acid (213) (800 mg, 

3.4 mmol) and purification of the crude product by column chromatography (50% 

EtOAc in cHex → EtOAc → 50% EtOH in cHex) gives the product as a complex with 

metals from the silica gel. After solvent evaporation, the product is redissolved in 

EtOAc (10 mL) and washed with 2M EDTAaq (2 × 10 mL), before drying over Na2SO4 

and solvent evaporation, which yields the pure product as a red oil (721 mg, 

1.3 mmol, 42%). 

 

Rf 0.88, 0.27 (EtOAc), tailing observed  
1H-NMR (300 MHz, MeOD):  

 1.17 – 1.54 (m, 10H, H-16, H-17, H-18, H-19, H-20), 1.62 (s, 9H, H-25), 

1.75 – 1.90 (m, 2H, H-21), 2.65 – 2.82 (m, 2H, H-15), 3.10 – 3.24 (m, 

1H, H-6a), 3.32 - 3.39 (m, 1H, H-6b), 3.42 (t, J = 6.6 Hz, 2H, H-22),  

4.38 – 4.50 (m, 2H, H-11), 4.52 – 4.64 (m, 1H, H-5), 5.16 – 5.26 (m, 1H, 

H-13a), 5.29 – 5.42 (m, 1H, H-13b), 5.92 – 6.09 (m, 1H, H-12), 6.75 (d, 

J = 7.8 Hz, H-9), 6.90 (d, J = 7.8 Hz, H-8). 
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13C-NMR (75 MHz, MeOD): 

 26.0 (CH2, C-16/C-17/C-18/C-19/C-20), 28.6 (CH3, C-25), 29.1 (CH2, 

C-16/C-17/C-18/C-19/C-20), 29.6 (CH2, C-16/C-17/C-18/C-19/C-20), 

(CH2, C-16/C-17/C-18/C-19/C-20), 30.4 (CH2, C-16/C-17/C-18/C-19/ 

C-20), 33.9 (CH2, C-21), 34.5 (CH2, C-22), 34.9 (CH2, C-15), 36.1 (CH2, 

C-6), 64.2 (CH, C-5), 69.6 (CH2, C-11), 83.8 (Cquart, C-24), 104.4 (Cquart, 

C-3), 115.2 (CH, C-9), 117.4 (CH2, C-13), 128.3 (Cquart, C-7), 131.8 

(CH, C-8), 134.8 (CH, C-12), 151.5 (Cquart, C-23), 159.7 (Cquart, C-10), 

177.4 (Cquart, C-2), 197.5 (Cquart, C-4/C-14), 197.7 (Cquart, C-4/C-14). 

DIP-MS (EI):  

 465 (7), 463 (7), 410 (10), 363 (4), 361 (3), 285 (4), 263 (5), 187 (6), 

176 (6), 147 (100) [C10H11O
+], 107 (27), 91 (10), 56 (42), 41 (98). 

 

 

6.3.7 Preparation of N-(tert-butoxycarbonyl)-(3 S,6Z)-7-hydroxy-

13-oxa-4-azatricyclo[12.2.2.1 3,6]nonadeca-1(16),6,14,17-

tetraene-5,19-dione (244) 98,152  

 

 

     Macrocycle 244 is prepared applying a procedure of Barnickel.152 

      

Rf 0.47 (33% EtOH in cHex), tailing observed 
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1H-NMR (300 MHz, MeOD): assignment differs from literature.152 

 0.68 – 1.01 (m, 2H, H-13), 1.27 – 1.97 (m, 6H, H-12, H14, H15), 1.61, 

1.63* (s, 9H, H-19), 3.08 (dd, J = 13.9, 3.3 Hz, 1H, H-6), 3.39 (dd, 

J = 13.9, 3.4 Hz, 1H, H-6b), 4.12 (dt, J = 12.9, 4.7 Hz, 1H, H-11a), 4.25 

(dt, J = 12.9, 5.5 Hz, 1H, H-11b), 4.52 (br s, 1H, H-5), 4.61* (dd, J = 3.4, 

3.3 Hz, 1H, H-5), 6.74 – 6.97 (m, 4H, H-8, H-9).  
13C-NMR (75 MHz, MeOD): assignment differs from literature.152 

 26.2 (CH2, C-12), 26.5 (CH2, C-13), 28.4 (CH3, C-19), 31.7 (CH2, 

C-14/C15), 33.3 (CH2, C-14/C15), 36.6 (CH2, C-6), 63.9 (CH, C-5), 70.8 

(CH2, C-11), 84.6 (Cquart, C-18), 107.3 (Cquart, C-3), 119.0 (CH, C-9a), 

121.1 (CH, C-9b), 128.2 (Cquart, C-7), 131.2 (CH, C-8a), 132.6 (CH, 

C-8b), 150.9 (Cquart, C-17), 160.7 (Cquart, C-10), 172.9 (Cquart, C-2), 

194.8 (Cquart, C-16), 198.1 (Cquart, C-4). 

 

 

6.3.8 Preparation of N-(tert-butoxycarbonyl)-(3 S,6Z)-7-hydroxy-

14-oxa-4-azatricyclo[13.2.2.1 3,6]icosa-1(17),6,15,18-

tetraene-5,20-dione (245)  

 

 

     According to a procedure of Barnickel et al.,98,152 to a solution of potassium salt 

241 (150 mg, 0.26 mmol, 1.0 eq.) in a mixture of THF abs./MeOH abs. (5:1) (6 mL) is 

added Pd(PPh3)4 (6 mg, 2 mol%) and after 5 min of stirring, K2CO3 (108 mg, 

0.78 mmol, 3.0 eq.) is added. The mixture is heated to reflux for 2 d before the 

solvent is evaporated. The residue is dissolved in 0.5M NaOHaq (25 mL) and washed 
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with Et2O (2 × 30 mL). The pH of the aqueous phase is adjusted to pH 1 with 

conc. HClaq and the phase is extracted with CH2Cl2 (3 × 30 mL). The combined 

organic phases are dried over Na2SO4, filtered and the solvent evaporated. The 

product is obtained as an orange oil (74 mg, 0.18 mmol, 68%). 

 

Rf 0.45 (33% EtOH in cHex), tailing observed 
1H-NMR (300 MHz, MeOD):  

 0.72 – 1.05 (m, 2H, H-13), 1.17 – 1.85 (m, 8H, H-12, H14, H15, H16), 

1.62, 1.63* (s, 9H, H-20), 3.10 (dd, J = 13.9, 3.2 Hz, 1H, H-6), 3.42 (dd, 

J = 13.9, 3.7 Hz, 1H, H-6b), 4.11 – 4.25 (m, 2H, H-11), 4.55 (br s, 1H, 

H-5), 4.61* (dd, J = 3.7, 3.2 Hz, 1H, H-5), 6.54 – 7.14 (m, 4H, H-8, H-9). 
13C-NMR (75 MHz, MeOD): 

 25.8 (CH2, C-12), 27.0 (CH2, C-13), 28.4 (CH3, C-20), 29.7 (CH2, 

C-14/C15), 32.0 (CH2, C-14/C15), 35.8 (CH2, C-16), 36.3 (CH2, C-6), 

63.7 (CH, C-5), 69.2 (CH2, C-11), 84.6 (Cquart, C-19), 106.8 (Cquart, C-3), 

117.6 (CH, C-9a), 117.9 (CH, C-9b), 127.1 (Cquart, C-7), 131.4 (CH, 

C-8a), 132.4 (CH, C-8b), 150.6 (Cquart, C-18), 160.5 (Cquart, C-10), 171.1 

(Cquart, C-2), 194.4 (Cquart, C-17), 198.5 (Cquart, C-4). 

DIP-MS (EI): 

 415 (36) [M+], 342 (7) [M+−OtBu], 315 (69), 209 (22), 175 (10), 141 (6), 

125 (14), 107 (100), 91 (16), 77 (8), 57 (77) [tBu+], 41 (30).  
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6.3.9 Preparation of N-(tert-butoxycarbonyl)-(3 S,6Z)-7-hydroxy-

15-oxa-4-azatricyclo[14.2.2.1 3,6]henicosa-1(18),6,16,19-

tetraene-5,21-dione (246) 98,152  

 

 

     Macrocycle 246 is prepared applying a procedure of Barnickel.152 

 

Rf 0.10 (86% EtOAc in cHex) 
1H-NMR (300 MHz, MeOD): assignment differs from literature.152 

 0.76 – 1.00 (m, 2H, H-13), 1.12 – 1.81 (m, 10H, H-12, H14, H15, H16, 

H-17), 1.61, 1.64* (s, 9H, H-21), 3.11 (dd, J = 14.0, 2.7 Hz, 1H, H-6), 

3.43 (dd, J = 14.0, 3.3 Hz, 1H, H-6b), 4.14 – 4.25 (m, 2H, H-11), 4.54 

(br s, 1H, H-5), 4.65* (dd, J = 3.3, 2.7 Hz, 1H, H-5), 6.57 – 7.07 (m, 4H, 

H-8, H-9). 
13C-NMR (75 MHz, MeOD): assignment differs from literature.152 

 24.9 (CH2, C-12), 26.6 (CH2, C-13/C14/C15/C16), 27.2 (CH2, C-13/C14/ 

C15/C16), 28.3 (CH2, C-13/C14/C15/C16), 28.4 (CH3, C-21), 28.7 (CH2, 

C-13/C14/C15/C16), 34.7 (CH2, C-17), 35.8 (CH2, C-6), 64.0 (CH, C-5), 

68.0 (CH2, C-11), 84.7 (Cquart, C-20), 106.4 (Cquart, C-3), 116.1 (CH, 

C-9a), 117.1 (CH, C-9b), 126.9 (Cquart, C-7), 131.2 (CH, C-8a), 131.8 

(CH, C-8b), 150.9 (Cquart, C-19), 158.2 (Cquart, C-10), 168.4 (Cquart, C-2), 

195.8 (Cquart, C-18), 196.9 (Cquart, C-4). 

DIP-MS (EI): 

 429 (16) [M+], 355 (10), 329 (41), 277 (100), 231 (9), 224 (12), 199 (17), 

183 (16), 136 (13), 107 (39), 57 (38) [tBu+], 43 (33).  



Experimental Part                                                                                                                 247 
 

6.3.10 General method for the Boc-deprotection of t etramic 

acids and derivatives  

     According to procedures of Hosseini et al.53 and Barnickel,152 to a 1M solution of a 

Boc-protected tetramic acid (1.0 eq.) in CH2Cl2 is added TFA (0.4 mL/mmol) 

dropwise and the mixture is stirred for 3 h at room temperature. The solvent is 

evaporated and toluene (6 × 10 mL/mmol) is added to remove residual TFA as an 

azeotrope with toluene. Et2O (3 × 20 mL/mmol) is added and evaporated to remove 

residual toluene to give the crude product.  
 

 

6.3.11 Preparation of (3 S,6Z)-7-hydroxy-13-oxa-4-azatricyclo 

[12.2.2.13,6]nonadeca-1(16),6,14,17-tetraene-5,19-dione 

  (6)  

 

 

     Compound 6 is prepared applying the general method of 6.3.10. The use of Boc-

protected macrocycle 244 (82 mg, 0.20 mmol) and purification by preparative HPLC 

(1:1 MeOH/H2O + 1% HCOOH; after 15 min in 10 min to 100% MeOH) yields the 

product as an orange oil (22 mg, 0.07 mmol, 36%). 

 

Rf 0.42 (33% EtOH in cHex) 
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1H-NMR (300 MHz, MeOD):  

 0.64 – 0.97 (m, 2H, H-13), 1.33 – 1.47 (m, 2H, H-14), 1.47 – 1.60 (m, 

2H, H-12), 2.07 – 2.32 (m, 2H, H-15), 2.95 (dd, J = 13.7, 3.3 Hz, 1H, 

H-6a), 3.09 (dd, J = 13.7, 3.6 Hz, 1H, H-6b), 4.16 (dt, J = 12.5, 4.8 Hz, 

1H, H-11a), 4.18 (dd, J = 3.6, 3.3 Hz, 1H, H-5), 4.26 (dt, J = 12.5, 

5.0 Hz, 1H, H-11b), 6.79 (dd, J = 8.4, 2.2 Hz, 1H, H-9a), 6.87 – 6.96 (m, 

2H, H-8a, H-9b), 7.11 (dd, J = 8.4, 2.2 Hz, 1H, H-8b).   
13C-NMR (75 MHz, MeOD): quaternary carbons very faint 

 26.5 (2 × CH2, C-13/C-14), 31.8 (CH2, C-12), 32.3 (CH2, C15), 37.7 

(CH2, C-6), 61.4 (CH, C-5), 70.9 (CH2, C-11), 106.8 (Cquart, C-3), 118.5 

(CH, C-9a), 120.4 (CH, C-9b), 128.5 (Cquart, C-7), 131.8 (CH, C-8a), 

132.7 (CH, C-8b), 160.3 (Cquart, C-10), 172.2 (Cquart, C-2), 192.3 (Cquart, 

C-16), 201.0 (Cquart, C-4). 

DIP-MS (EI):  

 301 (45) [M+], 231 (36), 195 (63) [M+−C7H6O], 147 (28), 125 (23), 107 

(100), 69 (12), 44 (27). 

 

 

6.3.12 Preparation of (3 S,6Z)-7-hydroxy-15-oxa-4-azatricyclo 

[14.2.2.13,6]henicosa-1(18),6,16,19-tetraene-5,21-dione (8)  

 

 

     Compound 8 is prepared applying the general method of 6.3.10. The use of Boc-

protected macrocycle 246 (39 mg, 0.09 mmol) yields the product as an orange oil 

(20 mg, 0.06 mmol, 67%) without further purification. 
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Rf 0.40 (33% EtOH in cHex), tailing observed 
1H-NMR (300 MHz, MeOD):  

 0.65 – 1.68 (m, 10H, H12, H-13, H14, H15, H16), 2.23 – 2.36 (m, 2H, 

H-17), 2.96 (dd, J = 14.1, 3.6 Hz, 1H, H-6a), 3.09 (dd, J = 14.1, 3.6 Hz, 

1H, H-6b), 4.05 – 4.28 (m, 2H, H-11), 4.16 – 4.23 (m, 1H, H-5),       

6.61 – 6.69 (m, 1H, H-9a), 6.72 – 6.82 (m, 1H, H-9b), 6.91 – 7.01 (m, 

1H, H-8a), 7.06 – 7.16 (m, 1H, H-8b).   
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6.4 Synthesis of precursors for the synthesis of 

torrubiellone D (15)  

6.4.1 Preparation of N-(tert-butoxycarbonyl)-(5 S)-5-((4-tert-

butyldimethylsilyl)oxy)benzyl)-pyrrolidin-2,4-dione  (383)  

 

 

     Compound 383 is prepared applying the general method of 6.2.1.1. The use of 

bisprotected L-tyrosine derived amino acid 382 (prepared from L-tyrosine over three 

steps according to literature procedures of Barnickel152 and Marimganti et al.226) 

(5.5 g, 13.9 mmol) yields the product as a white foam (5.7 g, 13.6 mmol, 89%) 

without further purification. 

 

Rf 0.30 (50% EtOAc in cHex)  
1H-NMR (300 MHz, CDCl3): only keto form observed 

 0.16 (s, 6H, H-11), 0.96 (s, 9H, H-13), 1.62 (s, 9H, H-16), 2.22 (dd, 

J = 22.4, 1.7 Hz, 1H, H-3a), 2.84 (d, J = 22.4 Hz, 1H, H-3b), 3.13 (dd, 

J = 14.3, 3.0 Hz, 1H, H-6a), 3.33 (dd, J = 14.3, 4.9 Hz, 1H, H-6b), 4.60 

(ddd, J = 4.9, 3.0, 1.6 Hz, 1H, H-5), 6.75 (d, J = 8.5 Hz, 2H, H-9), 6.88 

(d, J = 8.5 Hz, 2H, H-8). 
13C-NMR (75 MHz, CDCl3): only keto form observed (C-14 not observed) 

 −4.5 (CH3, C-11), 18.2 (Cquart, C-12), 25.6 (CH3, C-13), 28.2 (CH3, 

C-16), 35.7 (CH2, C-6), 43.4 (CH2, C-3), 68.3 (CH, C-5), 84.2 (Cquart, 

C-15), 120.3 (CH, C-9), 125.4 (Cquart, C-7), 130.4 (CH, C-8), 154.8 

(Cquart, C-10), 166.5 (Cquart, C-2), 203.6 (Cquart, C-4).  
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DIP-MS (EI): 

 419 (5) [M+], 346 (3) [M+−OtBu], 319 (4), 262 (9), 221 (100) 

[M+−C9H12NO4], 73 (25) [OtBu+], 58 (12), 45 (15). 

mp 85 °C 

 

 

6.4.2 Synthesis of different C4-fragments  

6.4.2.1 Preparation of ( E)-4-bromobut-2-en-1-ol (393)  

 

 

     Compound 393 is prepared applying the general method of 6.2.4.5. The use of 

ethyl 4-bromocrotonate (386) (525 mg, 2.7 mmol) and purification of the crude 

product by column chromatography (10% → 17% EtOAc in cHex) yields the product 

as a colourless oil (300 mg, 2.0 mmol, 73%). The product is stored in the refrigerator 

under argon atmosphere to prevent decomposition. Solvent evaporation is carried 

out very carefully due to the low boiling point of the product. 

      

Rf 0.27 (25% EtOAc in cHex) 
1H-/13C-NMR The NMR spectra of 393 are in good agreement with literature.290 

GC-MS (EI): 

 151 (3) [M+], 71 (100) [M+−Br], 54 (12) [M+−Br, −OH]. 
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6.4.2.2 Preparation of ( E)-4-bromobut-2-enal (387)  

 

 

     According to procedures of Herscovici et al.195 and Corey et al.,194 to a solution of 

allylic alcohol 393 (100 mg, 0.66 mmol, 1.0 eq.) in CH2Cl2 abs. (7 mL) are added 

powdered 3Å molecular sieves (220 mg), Celite® (2 spatulas) and PCC (186 mg, 

0.86 mmol, 1.3 eq.) and the mixture is stirred for 30 min at room temperature. The 

reaction mixture is filtered over Celite® and the remaining solid is washed thoroughly 

with CH2Cl2. The solvent of the filtrate is evaporated in the presence of flash silica gel 

and the dark solid is loaded onto a short column of silica gel and the crude product is 

eluted with EtOAc/cHex (1:3). After purification by column chromatography (10% 

EtOAc in cHex) the product is obtained as a colourless oil. The determination of the 

yield is difficult due to the fast decomposition of the product during exposure to air. 

The product is stored in the refrigerator under argon atmosphere to prevent 

decomposition. 

      

Rf 0.51 (25% EtOAc in cHex) 
1H-/13C-NMR The NMR spectra of 387 are in good agreement with literature.290 
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6.4.2.3 Preparation of ( E)-4-(triphenylphosphoranylidene)but-2-

enal (379) from ( E)-4-bromobut-2-enal (387) 223,224  

 

 

     According to procedures of Berenguer et al.223 and Ernest et al.,224 to a solution of 

aldehyde 387 (~60 mg, 0.40 mmol, 1.0 eq.) in benzene (7 mL) is added PPh3 

(106 mg, 0.40 mmol, 1.0 eq.) and the mixture is stirred for 1 d at room temperature. 

The reaction mixture is filtered, the remaining solid washed thoroughly with benzene 

and MeCN and the white phosphonium bromide is dried in vacuo. The solid is 

redissolved in CH2Cl2 and washed with 1M NaOHaq. The now deep red organic 

phases are collected and dried over MgSO4 and filtered. Solvent evaporation yields 

the product as a red solid (100 mg, 0.30 mmol, ~75% over two steps). 

      
1H-NMR (300 MHz, CDCl3): 

 4.21 (dd, J = 22.5, 13.5 Hz, 1H, H-1), 5.72 (dd, J = 13.5, 9.3 Hz, 1H, 

H-2), 6.73 – 6.91 (m, 1H, H-3), 7.35 – 7.97 (m, 15H, H-6, H-7, H-8), 

8.66 (d, J = 9.1 Hz, 1H, H-4).  
13C-NMR (75 MHz, CDCl3): partial signal doubling observed 

 57.1 (CH, C-1), 109.5 (CH, C-2), 128.5, 128.7, 129.5, 129.6, 132.1, 

132.1, 133.3 (br) (Cquart, CH, C-5, C-6, C-7, C-8), 159.7 (CH, C-3), 

186.6 (CH, C-4).  
31P-NMR (121 MHz, CDCl3): 

 17.8 (PPh3). [lit.: 18.1]228 

DIP-MS (EI): 

 330 (8) [M+], 301 (4) [M+−CHO], 277 (100), 262 (72) [P(C6H5)3
+], 201 

(14), 199 (17), 183 (50), 152 (12), 108 (12), 77 (12) [C6H5
+], 52 (7) 
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6.4.2.4 Direct preparation of ( E)-4-(triphenylphosphoranylidene)       

but-2-enal (379) from ethyl 4-bromocrotonate (386) 

without intermediary purification 

 

 

1) DIBAL-H reduction: 

     According to procedures of Barnickel et al.152 and Fox et al.,216 a solution of ethyl 

4-bromocrotonate (386) (750 mg, 3.9 mmol, 1.0 eq.) in CH2Cl2 abs. (60 mL) is cooled 

to −78 °C in an acetone/dry ice bath and DIBAL-H (1M in hexanes) (7.8 mL, 

7.8 mmol, 2.0 eq.) is added dropwise using a syringe pump (0.5 mL/min). The 

mixture is stirred at −78 °C for 90 min. The reaction is terminated by the addition of 

H2O (15 mL) and the pH of the mixture is adjusted to pH 3 with 2M HClaq. The 

phases are separated and the aqueous phase is extracted with CH2Cl2 (3 × 40 mL) 

before the combined organic phases are washed with H2O (2 × 70 mL), dried over 

MgSO4 and filtered. The solvent is evaporated carefully (low boiling point of the 

product) to give the crude product.  

 

2) PCC oxidation: 

     According to procedures of Herscovici et al.195 and Corey et al.,194 to a solution of 

crude allylic alcohol 393 from 1) in CH2Cl2 abs. (50 mL) are added powdered 3Å 

molecular sieves (600 mg), Celite® (2 spatulas) and PCC (1.09 g, 5.1 mmol, 1.3 eq.) 

and the mixture is stirred for 30 min at room temperature. The reaction mixture is 

filtered over Celite® and the remaining solid is washed thoroughly with CH2Cl2. The 

solvent is evaporated in the presence of flash silica gel and the dark solid is loaded 

onto a short column of silica gel and the crude product is eluted with EtOAc/cHex 

(1:3). Solvent evaporation gives the crude aldehyde. 
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3) Phosphonium bromide generation: 

     According to procedures of Berenguer et al.223 and Ernest et al.,224 to a solution of 

crude aldehyde 387 from 2) in benzene (10 mL) is added PPh3 (1.02 g, 3.9 mmol, 

1.0 eq.) and the mixture is stirred for 1 d at room temperature. The reaction mixture is 

filtered, the remaining solid washed thoroughly with benzene and MeCN and the 

crude white phosphonium bromide is dried in vacuo. 

 

4) Ylide preparation: 

     According to procedures of Berenguer et al.223 and Ernest et al.,224 the crude 

phosphonium bromide 388 from 3) is dissolved in CH2Cl2 and washed with 

1M NaOHaq (10 mL). The now deep red organic phases are collected and dried over 

MgSO4 and filtered. Solvent evaporation yields the product as a red solid (385 mg, 

1.2 mmol, 30% over four steps). 

 

Analytical data shown in chapter 6.4.2.3. 

 

 

6.4.2.5 Preparation of ( E)-(4-ethoxy-4-oxobut-2-en-1-yl)triphenyl-

phosphonium bromide (392) 229,230  

 

 

     According to procedures of Matsumoto et al.229 and Dear et al.,230 to a solution of 

ethyl 4-bromocrotonate (386) (1 g, 5.2 mmol, 1.0 eq.) in benzene (10 mL) is added 

PPh3 (1.4 g, 5.4 mmol, 1.05 eq.) and the mixture is stirred for 2 d at room 

temperature. The reaction mixture is filtered, the remaining solid washed thoroughly 

with benzene and the resulting solid is dried in vacuo to give the product as a white 

solid (2.3 g, 5.0 mmol, 95%). 
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1H-NMR The 1H-NMR spectrum of 392 is in good agreement with literature.230 
13C-NMR (75 MHz, CDCl3): partial signal doubling observed 

 14.1 (CH3, C-6), 27.4, 28.0 (CH2, C-3), 60.8 (CH2, C-5), 117.0, 118.1 

(Cquart, C-7), 130.5, 130.6 (CH, C-8), 130.7, 130.9 (CH, C-2), 132.3, 

132.5 (CH, C-1), 134.0, 134.1 (CH, C-9), 135.3, 135.4 (CH, C-10), 

165.1 (Cquart, C-4).  

DIP-MS  (EI): 

  375 (5) [M+−Br], 279 (79), 277 (100), 262 (48) [PPh3
+], 201 (20), 199 

(23), 183 (58), 152 (13), 108 (16), 77 (19) [C6H5
+], 45 (21). 

IR (cm -1)  3644 (w), 3400 (w), 3009 (w), 2978 (w), 2874 (w), 2831 (w), 2766 (w), 

1716 (m), 1642 (w), 1587 (w), 1481 (w), 1436 (m), 1396 (w), 1365 (w), 

1326 (m), 1246 (m), 1208 (m), 1163 (m), 1112 (s), 1054 (m), 1027 (w), 

995 (m), 983 (m), 889 (m), 839 (w), 758 (m), 750 (m), 734 (m), 719 (m), 

690 (s). 

 

 

6.4.3 Preparation of 2-((( tert-butyldimethylsilyl)oxy)methyl)but-

anal (385)  

 

 

     According to a procedure of Panek et al.,192 a solution of oxalyl chloride (2.7 mL, 

31.7 mmol, 2.0 eq.) in CH2Cl2 abs. (80 mL) is cooled to −78 °C in an acetone/dry ice 

bath and DMSO abs. (4.5 mL, 63.3 mmol, 4.0 eq.) is added dropwise. After 90 min of 

stirring, alcohol 391 (prepared over two steps according to literature procedures of 

Mirilashvili et al.231 and Panek et al.192) (3.5 g, 15.8 mmol, 1.0 eq.), dissolved in 

CH2Cl2 abs. (40 mL), is added dropwise using a dropping funnel and the mixture is 

stirred for 1 h at −78 °C. NEt3 abs. (13.2 mL, 95.0 mmol, 6.0 eq.) is added dropwise 

and the stirring is continued for 14 h, leaving the reaction mixture to slowly warm to 

room temperature. The reaction is terminated by the addition of CH2Cl2 (40 mL), H2O 
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(80 mL) and sat. NH4Claq (80 mL). The phases are separated and the aqueous phase 

is extracted with EtOAc (3 × 70 mL). The combined organic phases are washed with 

H2O (200 mL) and brine (90 mL) before being dried over MgSO4 and filtered. The 

solvent is evaporated to give the crude product which is purified by column 

chromatography (12.5% EtOAc in cHex) to yield the product as a yellow oil (2.9 g, 

13.4 mmol, 85%). 

      

Rf 0.77 (20% EtOAc in cHex) 
1H-/13C-NMR The NMR spectra of 385 are in good agreement with literature.225 

GC (tR) 11.00 min (program 0) 

GC-MS (EI): 

 159 (100) [M+−tBu], 145 (16), 129 (70) [M+−tBu, −2 × CH3], 117 (67), 

101 (38) [M+−TBS], 89 (39), 75 (96) [C2H7OSi+], 59 (27). 

IR (cm -1)  3407 (w), 2967 (m), 2937 (m), 2880 (w), 2001 (w), 1715 (m), 1462 (m), 

1386 (w), 1260 (m), 1173 (m), 1137 (m), 1104 (m), 1042 (m), 776 (s). 

 

 

6.4.4 Synthesis of a polyunsaturated aldehyde fragm ent  

6.4.4.1 Preparation of (2 E,4E)-ethyl 6-((( tert-butyldimethylsilyl) 

oxy)methyl)octa-2,4-dienoate (394)  

LiCl, DBU, MeCN,
0 °C to rt, 14 h

398

(EtO)2OP COOEt

394

385

O

TBSO

1
2

3

4

5
6

O

7

8

10

O

11O
12

Si

9

14

C17H32O3Si

Mol. Wt.: 312.52

13

 

 

     According to a procedure of Jaschinski et al.,242 a suspension of dry LiCl (156 mg, 

3.7 mmol, 1.08 eq.) in MeCN abs. (50 mL) is cooled to 0 °C and phosphonate 398 

(prepared according to literature procedures of Bennacer et al.239 and Lee et al.240) 

(857 mg, 3.4 mmol, 1.00 eq.) and DBU (511 µL, 3.4 mmol, 1.00 eq.) are added 

dropwise. After 5 min of stirring, aldehyde 385 (800 mg, 3.7 mmol, 1.08 eq.), 

dissolved in MeCN abs. (5 mL), is added dropwise and the mixture is stirred for 14 h, 
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leaving the reaction mixture to slowly warm to room temperature. The reaction is 

terminated by the addition of sat. NH4Claq (70 mL) and EtOAc (100 mL). The phases 

are separated and the aqueous phase is extracted with EtOAc (3 × 100 mL). The 

combined organic phases are washed with sat. NH4Claq (2 × 100 mL) and brine 

(100 mL) before being dried over MgSO4 and filtered. The solvent is evaporated to 

give the crude product which is purified by column chromatography (3% EtOAc in 
cHex) to yield the product as a yellow oil (415 mg, 1.3 mmol, 38%). 

      

Rf 0.73 (10% EtOAc in cHex) 
1H-/13C-NMR The NMR spectra of 394 are in good agreement with literature.123 

GC (tR) 27.07 min (program 0) 

GC-MS (EI): 

 311 (1) [M+−H], 297 [M+−CH3], 282 (9) [M+−2 × CH3], 267 (9) 

[M+−OC2H5], 255 (100) [M+−tBu], 209 (23), 197 (5) [M+−TBS], 183 (7), 

133 (13), 122 (12), 115 (18), 107 (17), 103 (25), 89 (82), 79 (15), 75 

(70) [C2H7OSi+], 73 (80), 59 (12). 

IR (cm -1)  2959 (m), 2930 (m), 2858 (w), 1714 (s), 1643 (m), 1618 (w), 1463 (w), 

1368 (w), 1301 (m), 1256 (s), 1220 (m), 1182 (m), 1139 (s), 1095 (s), 

1045 (m), 1000 (s), 939 (w), 834 (s), 813 (m), 774 (s), 716 (w), 667 (m). 
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6.4.4.2 Preparation of (2 E,4E)-6-(((tert-butyldimethylsilyl)oxy) 

methyl)octa-2,4-dien-1-ol (400) from (2 E,4E)-ethyl 

6-(((tert-butyldimethylsilyl)oxy)methyl) octa-2,4-dienoate 

(394)  

 

 

     According to procedures of Ding et al.123 and Irlapati et al.,225 a solution of ethyl 

ester 394 (1.4 g, 4.5 mmol, 1.0 eq.) in CH2Cl2 abs. (20 mL) is cooled to −78 °C in an 

acetone/dry ice bath and DIBAL-H (1M in hexanes) (13.6 mL, 13.6 mmol, 3.0 eq.) is 

added dropwise using a syringe pump (0.5 mL/min). The mixture is stirred at −78 °C 

for 2 h. The reaction is terminated by slow addition of MeOH (6.5 mL) and EtOAc 

(65 mL). The resulting solid is dissolved by adding potassium sodium tartrate (30 mL) 

and stirring for 1 h. The phases are separated and the aqueous phase is extracted 

with EtOAc (3 × 40 mL) before the combined organic phases are washed with brine 

(50 mL) and dried over MgSO4 and filtered. The solvent is evaporated to give the 

crude product which is purified by column chromatography (10% EtOAc in cHex) to 

yield the product as a colourless oil (839 mg, 3.1 mmol, 69%). 

      

Rf 0.30 (10% EtOAc in cHex) 
1H-/13C-NMR The NMR spectra of 400 are in good agreement with literature.123 

GC (tR) 21.70 min (program 0) 

GC-MS (EI): 

 213 (18) [M+−tBu], 195 (2) [M+−C2H7OSi], 115 (11) [TBS+], 108 (35), 

105 (51), 95 (16), 93 (16), 89 (43), 79 (46), 75 (100) [C2H7OSi+], 73 

(81), 67 (20).  

IR (cm -1)  3350 (w, br), 2958 (m), 2928 (m), 2857 (m), 1472 (w), 1462 (w), 1380 

(w), 1361 (w), 1252 (m), 1086 (s), 986 (s), 938 (w), 833 (s), 813 (m), 

773 (s), 666 (m).  
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6.4.4.3 Preparation of ( E)-methyl 4-((( tert-butyldimethylsilyl)oxy) 

methyl)hex-2-enoate (397)  

 

 

     According to a procedure of Irlapati et al.,225 to a solution of ylide 

Ph3P=CHCOOMe (201 mg, 0.57 mmol, 1.15 eq.) in CH2Cl2 abs. (10 mL) is added 

aldehyde 385 (108 mg, 0.50 mmol, 9.0 eq.) and the mixture is stirred for 3 h at room 

temperature. The solvent is evaporated and the crude mixture is loaded onto a short 

column of silica gel and the product is eluted with CH2Cl2 to remove left over 

triphenylphosphine oxide. Solvent evaporation yields the product as a colourless oil 

(100 mg, 0.37 mmol, 74%). 

      

Rf 0.50 (5% EtOAc in nHex) 
1H-NMR (300 MHz, CDCl3): The 1H-NMR spectrum of 397 is not completely in 

agreement with literature.192 

 0.02 (s, 6H, H-8), 0.87 (s, 9H, H-10), 0.88 (t, J = 7.5 Hz, 3H, H-7), 

1.26 – 1.43 (m, 1H, H-6a), 1.51 – 1.67 (m, 1H, H-6b), 2.19 – 2.32 (m, 

1H, H-4), 3.57 (dd, J = 6.0, 1.6 Hz, 2H, H-5), 3.73 (s, 3H, H-11), 5.85 

(dd, J = 15.8, 1.1 Hz, 1H, H-2), 6.82 (dd, J = 15.9, 8.8 Hz, 1H, H-3). 
13C-NMR (75 MHz, CDCl3): The 13C-NMR spectrum of 397 is not completely in 

agreement with literature.192 

 −5.3 (CH3, C-8), 11.7 (CH3, C-7), 18.4 (Cquart, C-9), 23.4 (CH2, C-6), 

26.0 (CH3, C-10), 47.0 (CH, C-4), 51.5 (CH3, C-11), 65.5 (CH2, C-5), 

121.9 (CH, C-2), 151.1 (CH, C-3), 167.2 (Cquart, C-1).  

GC (tR) 19.79 min (program 0) (GC shows a cis:trans ratio of 1:20) 

GC-MS (EI): 

 257 (7) [M+−CH3], 242 (18) [M+−2 × CH3], 215 (63) [M+−tBu], 183 (18), 

145 (20) [CH2OTBS+], 119 (52), 89 (100), 75 (35) [C2H7OSi+], 73 (65), 

55 (17). 
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IR (cm -1)  2955, 2930, 2858, 2183, 1727, 1658, 1463, 1435, 1384, 1361, 1311, 

1253, 1175, 1145, 1099, 1006, 983, 938, 834, 774, 721, 666. 

 

 

6.4.4.4 Preparation of ( E)-4-(((tert-butyldimethylsilyl)oxy)methyl) 

hex-2-en-1-ol (401)  

 

 

     Compound 401 is prepared applying the general method of 6.2.4.5. The use of 

methyl ester 397 (336 mg, 1.2 mmol) yields the product as a colourless oil (282 mg, 

1.2 mmol, 96%) without further purification.  

      

Rf 0.63 (5% EtOAc in cHex) 
1H-/13C-NMR The NMR spectra of 401 are in good agreement with literature.123 

GC (tR) 17.59 min (program 0) 

IR (cm -1)  3333 (w, br), 2957 (m), 2929 (m), 2857 (m), 1471 (w), 1463 (m), 1383 

(w), 1361 (w), 1253 (m), 1101 (m), 1005 (m), 971 (m), 938 (w), 833 (s), 

813 (m), 772 (s), 666 (m). 
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6.4.4.5 (2E,4E)-methyl 6-(((tert-butyldimethylsilyl)oxy)methyl) 

octa-2,4-dienoate (402)  

 

 

     According to a procedure of Wei et al.,244 to a solution of allylic alcohol 401 

(287 mg, 1.2 mmol, 1.0 eq.) in CH2Cl2 abs. (30 mL) are added Ph3P=CHCOOMe 

(589 mg, 1.8 mmol, 1.5 eq.), and MnO2 (255 mg, 2.9 mmol, 2.5 eq.) and the mixture 

is stirred at room temperature. Within the next 24 h every 6 h is added another 

portion of MnO2 (4 × 255 mg, 2.9 mmol, 2.5 eq.) and the stirring is continued for 24 h 

afterwards. More Ph3P=CHCOOMe (393 mg, 1.2 mmol, 1.0 eq.) is added and the 

mixture is stirred for 24 h. The reaction mixture is filtered over Celite® and the 

remaining solid is washed thoroughly with CH2Cl2. The solvent of the filtrate is 

evaporated and the crude product is purified by column chromatography (flash silica, 

10% EtOAc in cHex) to yield the product as a colourless oil (160 mg, 0.54 mmol, 

46%).  

      

Rf 0.30 (4% Et2O in cHex) 
1H-NMR (300 MHz, CDCl3): 

 0.02 (s, 6H, H-10), 0.86 (t, J = 7.5 Hz, 3H, H-9), 0.87 (s, 9H, H-12), 

1.21 – 1.39 (m, 1H, H-8a), 1.49 – 1.65 (m, 1H, H-8b), 2.13 – 2.27 (m, 

1H, H-6), 3.48 – 3.60 (m, 2H, H-7), 3.74 (s, 3H, H-13), 5.81 (ddd, 

J = 15.4, 0.8, 0.8 Hz, 1H, H-2), 5.96 (dddd, J = 15.4, 8.8, 0.8, 0.8 Hz, 

1H, H-5), 6.20 (dddd, J = 15.4, 10.8, 0.8, 0.8 Hz, 1H, H-4), 7.27 (ddd, 

J = 15.4, 10.8, 0.8 Hz, 1H, H-3). 
13C-NMR (75 MHz, CDCl3): 

 −5.2 (CH3, C-10), 11.8 (CH3, C-9), 18.4 (Cquart, C-11), 23.9 (CH2, C-8), 

26.0 (CH3, C-12), 47.7 (CH, C-6), 51.6 (CH3, C-13), 65.9 (CH2, C-7), 

119.2 (CH, C-2), 129.4 (CH, C-4), 145.4 (CH, C-3), 146.3 (CH, C-5), 

167.9 (Cquart, C-1).  
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GC (tR) 26.60 min (program 0) 

IR (cm -1)  2956, 2930, 2857, 2166, 2132, 1977, 1720, 1644, 1617, 1463, 1435, 

1383, 1361, 1308, 1257, 1220, 1178, 1141, 1096, 1000, 938, 914, 833, 

774, 723, 667. 

 

 

6.4.4.6 Preparation of (2 E,4E)-6-(((tert-butyldimethylsilyl)oxy) 

methyl)octa-2,4-dien-1-ol (400) from ( E)-4-(((tert-butyl-

dimethylsilyl)oxy)methyl)hex-2-en-1-ol (402)  

 

 

     Compound 400 is prepared applying the general method of 6.2.4.5. The use of 

methyl ester 402 (160 mg, 0.54 mmol) yields the product as a colourless oil (126 mg, 

0.47 mmol, 87%) without further purification.  

      

Analytical data shown in chapter 6.4.4.2. 

. 
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6.4.4.7 Preparation of (2 E,4E)-6-(((tert-butyldimethylsilyl)oxy) 

methyl)octa-2,4-dienal (384)  

 

 

A:      

     According to procedures of Panek et al.192 and Irlapati et al.,225 a solution of oxalyl 

chloride (0.52 mL, 6.1 mmol, 2.0 eq.) in CH2Cl2 abs. (10 mL) is cooled to −78 °C in 

an acetone/dry ice bath and DMSO abs. (0.86 mL, 12.1 mmol, 4.0 eq.), dissolved in 

CH2Cl2 abs. (2.5 mL), is added dropwise. After 90 min of stirring, alcohol 400 

(820 mg, 3.0 mmol, 1.0 eq.), dissolved in CH2Cl2 abs. (7.5 mL), is added dropwise 

and the mixture is stirred for 1 h at −78 °C in an acetone/dry ice bath. NEt3 abs. 

(2.10 mL, 15.2 mmol, 6.0 eq.) is added dropwise and the stirring is continued for 

14 h, leaving the reaction mixture to slowly warm to room temperature. The reaction 

is terminated by the addition of CH2Cl2 (10 mL), H2O (10 mL) and sat. NH4Claq 

(20 mL). The phases are separated and the aqueous phase is extracted with EtOAc 

(3 × 20 mL). The combined organic phases are washed with H2O (50 mL) and brine 

(40 mL) before being dried over MgSO4 and filtered. The solvent is evaporated to 

give the crude product which is purified by column chromatography (5% EtOAc in 
cHex) to yield the product as a yellow oil (561 mg, 2.1 mmol, 69%). 

 

B: 

     According to a procedure of Mitton-Fry et al.,245 a solution of alcohol 400 (126 mg, 

0.47 mmol, 1.0 eq.) in CH2Cl2 abs. (2.5 mL) is cooled to 0 °C and DMP (207 mg, 

0.49 mmol, 1.05 eq.) is added and the mixture is stirred for 2 h at room temperature. 

The reaction mixture is filtered through a short column of Celite® and silica gel and 

the remaining solid is washed thoroughly with CH2Cl2. The filtrate is washed with 

sat. KHCO3aq (20 mL) and brine (20 mL) and the combined organic phases are dried 
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over MgSO4 and filtered. The solvent is evaporated to yield the product as a 

colourless oil (118 mg, 0.44 mmol, 94%).   

 

Rf 0.36 (5% Et2O in cHex), 0.59 (10% EtOAc in cHex) 
1H-/13C-NMR The NMR spectra of 384 are in good agreement with literature.123 

GC (tR) 21.70 min (program 0) 

GC-MS (EI): 

 268 (1) [M+], 253 (2) [M+−CH3], 238 (12) [M+−2 × CH3], 211 (51) 

[M+−tBu], 193 (5) [M+−C2H7OSi+], 181 (5) [M+−tBu, −2 × CH3], 169 (9) 

[M+−tBu, −C2H2O], 129 (10), 119 (10), 95 (18), 89 (40), 75 (100) 

[C2H7OSi+], 73 (60), 59 (10). 

IR (cm -1)  2956 (m), 2929 (m), 2856 (m), 1684 (s), 1640 (s), 1462 (w), 1382 (w), 

1361 (w), 1253 (m), 1164 (m), 1096 (s), 1008 (m), 987 (m), 938 (w), 

834 (s), 813 (m), 774 (s), 667 (m), 610 (w). 

 

 

6.5 Synthesis of quinolactacin A2 (17) and contribu tions to 

the synthesis of quinolactacin B2 (18)  

6.5.1 Synthesis of quinolactacin A2 (17)  

6.5.1.1 Preparation of N-(tert-butoxycarbonyl)-(5 S)-(5-sec-butyl)-

pyrrolidine-2,4-dione (411)  

 

 

     Compound 411 is prepared applying the general method of 6.2.1.1. The use of 

N-Boc-L-isoleucine (181) (prepared from L-isoleucine over three steps according to 
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literature procedures of Christen101 and Umezawa et al.291) (10.8 g, 46.9 mmol) yields 

the product as an orange oil (10.9 g, 42.7 mmol, 91%) without further purification. 

      

Rf 0.63 (iso-propanol) 
1H-NMR (300 MHz, CDCl3): only keto form visible 

 0.89 (d, J = 7.2 Hz, 3H, H-9), 0.99 (t, J = 7.4 Hz, 3H, H-8), 1.35 – 1.71 

(m, 2H, H-7), 1.55 (s, 9H, H-12), 2.11 (tqd, J = 14.5, 7.2, 3.3 Hz, 1H, 

H-6), 3.11 (s, 2H, H-3), 4.41 (d, J = 3.3 Hz, 1H, H-5). 
13C-NMR (75 MHz, CDCl3): only keto form visible 

 12.0 (CH3, C-8), 14.0 (CH3, C-9), 25.7 (CH2, C-7), 28.1 (CH3, C-12), 

37.9 (CH, C-6), 44.5 (CH2, C-3), 70.5 (CH, C-5), 84.4 (Cquart, C-11), 

149.0 (Cquart, C-10), 168.2 (Cquart, C-2), 203.9 (Cquart, C-4). 
1H-NMR (300 MHz, MeOD):  

 0.83 (d, J = 7.1 Hz, 3H, H-9), 0.99 (t, J = 7.4 Hz, 3H, H-8), 1.54 (s, 9H, 

H-12), 1.76 (dt, J = 14.7, 7.4 Hz, 2H, H-7), 2.09 (tqd, J = 14.7, 7.1, 

2.5 Hz, 1H, H-6), 4.04 (d, J = 2.5 Hz, 1H, H-5). 
13C-NMR (75 MHz, MeOD):  

 12.9 (CH3, C-8), 14.1 (CH3, C-9), 26.7 (CH2, C-7), 28.6 (CH3, C-12), 

38.2 (CH, C-6), 44.8 (CH2, C-3), 67.2 (CH, C-5), 84.3 (Cquart, C-11), 

149.2 (Cquart, C-10), 168.5 (Cquart, C-2), 204.0 (Cquart, C-4).  

DIP-MS (EI): 

 240 (2) [M+−Me], 199 (53), 182 (18) [M+−OtBu], 171 (11), 155 (5), 143 

(7), 127 (23), 112 (14), 99 (74), 84 (9), 70 (9) [C3H2O2
+], 58 (100), 42 

(33). 

[α]D
24 +53.6 ° (c = 1.0, CHCl3) 
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6.5.1.2 Preparation of (5 S)-(5-sec-butyl)-pyrrolidine-2,4-dione 

(191)  

 

 

     Compound 191 is prepared applying the general method of 6.3.10. The use of 

Boc-protected tetramic acid 411 (10.4 g, 40.7 mmol) yields the product as an orange 

oil. Et2O is added to the oil multiple times, until the pure product precipitates from 

Et2O and can be obtained by filtration as a glittering, white solid (5.4 g, 34.8 mmol, 

85%). 

      

Rf 0.86 (iso-propanol)  
1H-/13C-NMR The CDCl3 NMR spectra of 191 are in good agreement with literature.32 
1H-NMR (300 MHz, MeOD): tautomeric ratio: (keto : enol) 60% : 40% (calculated 

from NMR) 

 Keto: 0.92 (t, J = 7.5 Hz, 3H, H-8), 0.98 (d, J = 7.0 Hz, 3H, H-9), 1.29 

(ddq, J = 13.2, 9.0, 7.5 Hz, 1H, H-7a), 1.42 (dqd, J = 13.2, 7.5, 4.9 Hz, 

1H, H-7b), 1.84 (qddd, J = 9.0, 7.0, 4.9, 4.0 Hz, 1H, H-6), 3.94 (d, 

J = 4.0 Hz, 1H, H-5).  

 Enol: 0.92 (t, J = 7.5 Hz, 3H, H-8), 0.98 (d, J = 7.0 Hz, 3H, H-9), 1.19 

(ddq, J = 13.2, 9.5, 7.5 Hz, 1H, H-7a), 1.42 (dqd, J = 13.2, 7.5, 4.9 Hz, 

1H, H-7b), 1.85 (qddd, J = 9.5, 7.0, 4.9, 3.1 Hz, 1H, H-6), 4.04 (d, 

J = 3.1 Hz, 1H, H-5). 
13C-NMR (75 MHz, MeOD): 

 Keto: 12.1 (CH3, C-8), 15.5 (CH3, C-9), 25.6 (CH2, C-7), 38.6 (CH2, 

C-3), 39.0 (CH, C-6), 70.1 (CH, C-5), 174.5 (Cquart, C-2), 209.7 (Cquart, 

C-4). 
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  Enol: 12.4 (CH3, C-8), 15.8 (CH3, C-9), 24.1 (CH2, C-7), 37.4 (CH, C-6), 

64.2 (CH, C-5), 95.0 (CH, C-3), 178.9 (Cquart, C-2/C-4), 179.0 (Cquart, 

C-2/C-4). 

MS (EI): 

 155 (3) [M+], 139 (3), 127 (100) [M+−CO], 112 (2) [M+−CONH], 99 (93), 

84 (35), 71 (24), 70 (32) [C3H2O2
+], 58 (24), 42 (31). 

mp 107 °C [lit.: 113 °C]32 

[α]D
24 −23.0 ° (c = 1.0, EtOH) [lit.: −38 ° (c = 1.0, MeOH)]32 

IR (cm -1)  3176 (m, br), 3095 (m), 2974 (m), 2962 (m), 2938 (w), 2880 (m), 1771 

(m), 1685 (s), 1655 (s), 1536 (w), 1465 (w), 1456 (w), 1385 (m), 1358 

(s), 1301 (s), 1284 (m), 1247 (m), 1162 (w), 1125 (w), 969 (m), 779 (s), 

760 (s), 712 (s). 

 

 

6.5.1.3 Preparation of (5 S)-4-((2-methylamino)benzoyloxy)-(5-

sec-butyl)-1 H-pyrrol-2(5 H)-one (193)  

 

 

     According to a procedure of Yoda et al.,78 to a solution of L-isoleucine tetramic 

acid (191) (1.0 g, 6.4 mmol, 1.00 eq.) and N-methylanthranilic acid (192) (1.1 g, 

7.1 mmol, 1.10 eq.) in CH2Cl2 abs. (125 mL) at 0 °C are added EDC · HCl (1.4 g, 

7.1 mmol, 1.10 eq.) and DMAP (86 mg, 0.71 mmol, 0.11 eq.) and the mixture is left to 

warm to room temperature. Stirring is continued until TLC showed complete 

consumption of the starting material. The mixture is diluted with EtOAc (200 mL) and 

washed with sat. NH4Claq (3 × 150 mL) and brine (150 mL) before the organic phases 

are dried over Na2SO4, filtered and concentrated in vacuo. The crude product is 
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purified by column chromatography (silica gel, 25% → 50% EtOAc in cHex → EtOAc) 

to give the product as a yellow oil. The product is precipitated from EtOAc with 

pentane to give the product as a pale yellow solid (970 mg, 3.4 mmol, 52%). 

      

Rf 0.44 (EtOAc), 0.78 (20% MeOH in CHCl3)  
1H-NMR (300 MHz, CDCl3): The 1H-NMR spectrum of 193 is not completely in 

agreement with literature.136 

 0.91 (t, J = 7.5 Hz, 3H, H-8), 1.07 (d, J = 7.0 Hz, 3H, H-9), 1.23 (ddq, 

J = 14.1, 9.5, 7.5 Hz, 1H, H-7a), 1.42 (dqd, J = 14.1, 7.5, 4.3 Hz, 1H, 

H-7b), 1.95 (dqdd, J = 9.5, 7.0, 4.3, 3.2 Hz, 1H, H-6), 2.96 (s, 3H, H-18), 

4.32 (ddd, J = 3.2, 1.2, 1.2 Hz, 1H, H-5), 6.17 (dd, J = 1.2, 1.2 Hz, 1H, 

H-3), 6.63 (ddd, J = 8.1, 7.0, 0.8 Hz, 1H, H-13), 6.72 (dd, J = 8.6, 

0.8 Hz, 1H, H-15), 6.96 (br s, 1H, NH-1), 7.46 (ddd, J = 8.6, 7.0, 1.7 Hz, 

1H, H-14), 7.58 (br s, 1H, NH-17), 7.87 (dd, J = 8.1, 1.7 Hz, 1H, H-12). 
13C-NMR (75 MHz, CDCl3): The 13C-NMR spectrum of 193 is not completely in 

agreement with literature.136 

 12.2 (CH3, C-8), 16.2 (CH3, C-9), 23.1 (CH2, C-7), 29.7 (CH3, C-18), 

36.5 (CH, C-6), 63.2 (CH, C-5), 107.3 (Cquart, C-11), 107.9 (CH, C-3), 

111.4 (CH, C-15), 114.8 (CH, C-13), 131.6 (CH, C-12), 136.3 (CH, 

C-14), 153.2 (Cquart, C-16), 164.0 (Cquart, C-10), 165.6 (Cquart, C-4), 

174.3 (Cquart, C-2).    
1H-NMR (300 MHz, MeOD): 

 0.93 (t, J = 7.5 Hz, 3H, H-8), 1.04 (d, J = 7.0 Hz, 3H, H-9), 1.22 (ddq, 

J = 13.7, 9.3, 7.5 Hz, 1H, H-7a), 1.44 (dqd, J = 13.7, 7.5, 4.6 Hz, 1H, 

H-7b), 1.97 (dqdd, J = 9.3, 7.0, 4.6, 3.0 Hz, 1H, H-6), 2.95 (s, 3H, H-18), 

4.41 (dd, J = 3.0, 0.9 Hz, 1H, H-5), 6.10 (d, J = 0.9 Hz, 1H, H-3), 6.64 

(ddd, J = 8.1, 7.0, 0.8 Hz, 1H, H-13), 6.81 (dd, J = 8.6, 0.8 Hz, 1H, 

H-15), 7.48 (ddd, J = 8.7, 7.0, 1.7 Hz, 1H, H-14), 7.89 (dd, J = 8.1, 

1.7 Hz, 1H, H-12). 
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13C-NMR (75 MHz, MeOD): 

 12.5 (CH3, C-8), 16.1 (CH3, C-9), 24.4 (CH2, C-7), 29.7 (CH3, C-18), 

37.7 (CH, C-6), 64.5 (CH, C-5), 107.9 (CH, C-3), 108.0 (Cquart, C-11), 

112.5 (CH, C-15), 115.7 (CH, C-13), 132.4 (CH, C-12), 137.5 (CH, 

C-14), 154.6 (Cquart, C-16), 165.1 (Cquart, C-10), 167.9 (Cquart, C-4), 

176.3 (Cquart, C-2).  

DIP-MS (EI): 

 288 (58) [M+], 134 (100) [C8H8NO+], 120 (19), 116 (29), 106 (26) 

[C7H8N
+], 91 (24), 79 (22), 77 (41). 

HRMS (ESI): 

 289.1544 [M + H] (calculated for C16H21N2O3: 289.1552). 

mp 123 °C 

[α]D
24 −2.1 ° (c = 1.0, EtOH) 

IR (cm -1) The IR spectrum of 193 is in good agreement with literature.136 

 

 

6.5.1.4 Preparation of quinolactacin A2 (17) from ( 5S)-4-

((2-methylamino)benzoyloxy)-(5- sec-butyl)-1 H-pyrrol-

2(5H)-one (193) 

17

acetone cyanohydrin,
NEt3, MeCN, rt, 4 d

HN

O

O
O

H
N

193

1
2

3

45

67

8 9

N

10
11

HN

12

13

O

14

15

O

16

17

C16H18N2O2
Mol. Wt.: 270.33  

 

     According to a procedure of Moloney et al.,77 to a solution of 4-O-acyltetramic acid 

(193) (122 mg, 0.42 mmol, 1.0 eq.) in MeCN abs. (7 mL) are added NEt3 abs. 

(117 µL, 0.85 mmol, 2.0 eq.) and acetone cyanohydrin (39 µL, 0.42 mmol, 1.0 eq.) 

and the mixture is stirred for 4 d. During this time the progress of the reaction is 

monitored by analytical HPLC. The solvent is evaporated and the crude yellow oil is 
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purified by preparative HPLC (40% MeOH in H2O/after 20 min gradient to 100% 

MeOH in 10 min) to yield the desired natural product as a white solid (60 mg, 

0.22 mmol, 52%). 

 

All spectral and experimental data of 17 is in good agreement with literature,125 

except the value of the optical rotation.     

 

Rf 0.60 (20% MeOH in CHCl3)  
1H-NMR (300 MHz, DMSO-d6): 

 0.65 (t, J = 7.4 Hz, 3H, H-8), 0.71 – 0.95 (m, 2H, H-7), 1.13 (d, 

J = 6.9 Hz, 3H, H-9), 2.18 (dqdd, J = 8.9, 6.9, 4.5, 2.5 Hz, 1H, H-6), 

3.84 (s, 3H, H-17), 4.82 (dd, J = 2.2, 1.4 Hz, 1H, H-5), 7.45 – 7.51 (m, 

1H, H-13), 7.79 – 7.82 (m, 1H, H-14), 7.82 – 7.83 (m, 1H, H-15), 8.13 

(br s, 1H, NH-1), 8.23 – 8.27 (m, 1H, H-12). 
13C-NMR (75 MHz, DMSO-d6): 

 11.5 (CH3, C-8), 17.6 (CH3, C-9), 20.8 (CH2, C-7), 35.8 (CH, C-6), 36.1 

(CH3, C-17), 58.9 (CH, C-5), 110.4 (Cquart, C-3), 117.1 (CH, C-15), 

124.3 (CH, C-13), 125.8 (CH, C-12), 128.1 (Cquart, C-11), 132.5 (CH, 

C-14), 141.2 (Cquart, C-16), 164.2 (Cquart, C-4), 168.4 (Cquart, C-2), 171.5 

(Cquart, C-10).    
1H-NMR (300 MHz, MeOD): 

 0.70 (t, J = 7.3 Hz, 3H, H-8), 0.76 – 1.06 (m, 2H, H-7), 1.23 (d, 

J = 6.9 Hz, 3H, H-9), 2.22 – 2.37 (m, 1H, H-6), 3.90 (s, 3H, H-17), 

4.82 – 4.88 (m, 1H, H-5), 7.36 – 7.43 (m, 1H, H-13), 7.70 – 7.76 (m, 2H, 

H-14, H-15), 8.21 – 8.27 (m, 1H, H-12).  
13C-NMR (75 MHz, MeOD): 

 11.9 (CH3, C-8), 18.1 (CH3, C-9), 22.4 (CH2, C-7), 37.1 (CH, C-6), 37.9 

(CH3, C-17), 61.7 (CH, C-5), 111.5 (Cquart, C-3), 117.9 (CH, C-15), 

126.0 (CH, C-13), 127.2 (CH, C-12), 129.1 (Cquart, C-11), 134.3 (CH, 

C-14), 142.8 (Cquart, C-16), 166.0 (Cquart, C-4), 171.6 (Cquart, C-2), 174.8 

(Cquart, C-10). 
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1H-NMR (300 MHz, acetone-d6): 

 0.69 (t, J = 7.4 Hz, 3H, H-8), 0.84 – 1.08 (m, 2H, H-7), 1.30 (d, 

J = 6.9 Hz, 3H, H-9), 2.27 – 2.40 (m, 1H, H-6), 3.93 (s, 3H, H-17), 4.94 

(br s, 1H, H-5), 7.27 (ddd, J = 7.9, 6.6, 1.5 Hz, 1H, H-13), 7.60 (ddd, 

J = 8.5, 6.6, 1.5 Hz, 1H, H-14), 7.65 (dd, J = 8.5, 1.5 Hz, 1H, H-15), 

8.18 (dd, J = 7.9, 1.5 Hz, 1H, H-12), 8.24 (br s, 1H, NH-1). 
13C-NMR (75 MHz, acetone-d6): 

 12.0 (CH3, C-8), 18.3 (CH3, C-9), 22.0 (CH2, C-7), 36.8 (CH3, C-17), 

37.3 (CH, C-6), 60.9 (CH, C-5), 111.8 (Cquart, C-3), 117.4 (CH, C-15), 

124.8 (CH, C-13), 126.9 (CH, C-12), 129.3 (Cquart, C-11), 133.0 (CH, 

C-14), 142.4 (Cquart, C-16), 165.2 (Cquart, C-4), 170.3 (Cquart, C-2), 172.7 

(Cquart, C-10).  

MS (EI): 

 270 (62) [M+], 229 (11), 213 (100) [M+−C4H9], 199 (9), 185 (10), 158 

(11), 142 (3), 130 (7), 115 (3), 103 (3), 89 (3), 77 (4). 

HRMS (ESI): 

 271.1441 [M + H] (calculated for C16H19N2O2: 271.1447). 

mp  245.6 °C (decomposition) [lit.: 262 – 265 °C (decomposition)].125 

[α]D
24 −27.0 ° (c = 0.4, DMSO-d6, wet), −28.1 ° [OC1/2] (c = 0.4, DMSO-d6, 

wet), −17.1 ° (c = 0.2, DMSO abs.), −16.8 ° [OC1/2] (c = 0.14, DMSO 

abs.) [lit.: +17.9 ° (c = 0.13, DMSO)].125 
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6.5.1.5 Preparation of (5 S)-4-((2-nitro)benzoyloxy)-(5- sec-butyl)-

1H-pyrrol-2(5 H)-one (414)  

 

 

     According to a procedure of Yoda et al.,78 to a solution of L-isoleucine tetramic 

acid (191) (800 mg, 5.2 mmol, 1.00 eq.) and ortho-nitrobenzoic acid (413) (prepared 

from ortho-nitrobenzaldehyde according to a literature procedure of Travis et al.250) 

(948 mg, 5.7 mmol, 1.10 eq.) in CH2Cl2 abs. (60 mL) at 0 °C are added EDC · HCl 

(1.1 g, 5.7 mmol, 1.10 eq.) and DMAP (69 mg, 0.57 mmol, 0.11 eq.) and the mixture 

is left to warm to room temperature. Stirring is continued for 4 h before the mixture is 

diluted with EtOAc (150 mL) and washed with sat. NH4Claq (3 × 60 mL) and brine 

(60 mL). The combined organic phases are dried over Na2SO4, filtered and 

concentrated in vacuo. The crude product is purified by column chromatography 

(silica gel, 25% → 50% EtOAc in cHex → EtOAc) to yield the product as a yellow oil 

(1.3 g, 4.1 mmol, 80%). 

      

Rf 0.38 (EtOAc)  
1H-NMR (300 MHz, CDCl3): 

 0.84 (t, J = 7.4 Hz, 3H, H-8), 1.00 (d, J = 7.1 Hz, 3H, H-9), 0.97 – 1.15 

(m, 1H, H-7a), 1.19 – 1.41 (m, 1H, H-7b), 1.71 – 1.92 (m, 1H, H-6), 4.19 

(ddd, J = 3.2, 1.4, 1.2 Hz, 1H, H-5), 6.22 (dd, J = 1.6, 1.4 Hz, 1H, H-3), 

7.69 – 7.81 (m, 3H, H-12, H-13, H-14), 7.96 – 8.01 (m, 1H, H-15), 8.08 

(br s, 1H, NH-1). 
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13C-NMR (75 MHz, CDCl3): 

 11.7 (CH3, C-8), 16.1 (CH3, C-9), 22.5 (CH2, C-7), 35.8 (CH, C-6), 63.3 

(CH, C-5), 109.3 (CH, C-3), 124.4 (CH, C-15), 125.8 (Cquart, C-11), 

130.2 (CH, C-12), 133.0 (CH, C-14), 133.6 (CH, C-13), 147.9 (Cquart, 

C-16), 161.1 (Cquart, C-10), 164.9 (Cquart, C-4), 173.8 (Cquart, C-2).  

DIP-MS (EI): 

 304 (1) [M+], 258 (86) [M+−NO2], 248 (100), 202 (21), 175 (15), 170 

(17), 158 (17), 150 (64) [C7H4NO3
+], 134 (23), 130 (12), 121 (14), 104 

(21), 86 (13), 76 (14), 69 (12), 62 (14), 51 (14), 41 (17). 

HRMS (ESI): 

 305.1128 [M + H] (calculated for C15H17N2O5: 305.1137). 

[α]D
24 +67.8 ° (c = 1.0, EtOH) 

 

 

6.5.1.6 Preparation of (5 S)-3-((2-nitro)benzoyl)-(5- sec-butyl) 

pyrrolidin-2,4-dione (415)  

 

 

     According to a procedure of Moloney et al.,77 to a solution of 4-O-acyltetramic acid 

414 (500 mg, 1.6 mmol, 1.0 eq.) in MeCN abs. (8 mL) are added NEt3 abs. (0.46 mL, 

3.3 mmol, 2.0 eq.) and acetone cyanohydrin (150 µL, 1.6 mmol, 1.0 eq.) and the 

mixture is stirred for 4 h at room temperature. The solvent is evaporated and the 

residue is dissolved in 1M NaOHaq (30 mL) and the aqueous phase washed with 

Et2O (2 × 30 mL). The pH of the aqueous phase is adjusted to pH 1 with 2M HClaq 

and the phase is extracted with EtOAc (3 × 20 mL). The combined organic phases 

are dried over Na2SO4, filtered and concentrated in vacuo to yield the crude product 
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as a deep orange oil. Purification is carried out by column chromatography (RP silica 

gel, 20% → 40% MeOH in H2O → MeOH). The product obtained is dissolved in 

CHCl3 (30 mL), washed with 2M HClaq (3 × 20 mL) (to get rid of chelated metal ions), 

dried over Na2SO4, filtered and concentrated in vacuo. The desired product is 

obtained as an orange oil (319 mg, 1.1 mmol, 64%). 

      
1H-NMR (300 MHz, CDCl3): tautomeric ratio: 57% : 43% (calculated from NMR) 

 major tautomer: 0.85 (t, J = 7.4 Hz, 3H, H-8), 0.95 (d, J = 7.1 Hz, 3H, 

H-9), 1.12 – 1.53 (m, 2H, H-7), 1.81 – 1.96 (m, 1H, H-6), 3.76 (d, 

J = 3.3 Hz, 1H, H-5), 7.37 (br s, 1H, NH-1), 7.59 (dd, J  = 7.3, 1.8 Hz, 

1H, H-12), 7.67 (ddd, J = 8.0, 7.5, 1.8 Hz, 1H, H-14), 7.74 (ddd, J = 7.5, 

7.3, 1.4 Hz, 1H, H-13), 8.15 (dd, J = 8.0, 1.4 Hz, 1H, H-15). 

 minor tautomer: 0.94 (t, J = 7.4 Hz, 3H, H-8), 1.02 (d, J = 6.9 Hz, 3H, 

H-9), 1.12 – 1.53 (m, 2H, H-7), 1.92 – 2.05 (m, 1H, H-6), 4.13 (d, 

J = 3.6 Hz, 1H, H-5), 6.95 (br s, 1H, NH-1), 7.51 (dd, J = 7.4, 1.6 Hz, 

1H, H-12), 7.65 (ddd, J = 8.0, 7.7, 1.6 Hz, 1H, H-14), 7.74 (ddd, J = 7.7, 

7.4, 1.1 Hz, 1H, H-13), 8.16 (dd, J = 8.0, 1.1 Hz, 1H, H-15). 
13C-NMR (75 MHz, CDCl3): 

 major tautomer: 11.8 (CH3, C-8), 15.6 (CH3, C-9), 23.4 (CH2, C-7), 37.1 

(CH, C-6), 67.2 (CH, C-5), 101.7 (Cquart, C-3), 124.6 (CH, C-15), 128.3 

(Cquart, C-11), 130.4 (CH, C-12), 131.9 (CH, C-14), 133.5 (CH, C-13), 

147.7 (Cquart, C-16), 176.2 (Cquart, C-2), 178.1 (Cquart, C-10), 193.4 

(Cquart, C-4). 

 minor tautomer: 11.8 (CH3, C-8), 15.5 (CH3, C-9), 23.9 (CH2, C-7), 37.1 

(CH, C-6), 62.1 (CH, C-5), 106.4 (Cquart, C-3), 123.8 (CH, C-15), 128.1 

(Cquart, C-11), 129.5 (CH, C-12), 131.5 (CH, C-14), 133.9 (CH, C-13), 

147.7 (Cquart, C-16), 168.9 (Cquart, C-2), 189.2 (Cquart, C-10), 193.6 

(Cquart, C-4). 
1H-NMR (300 MHz, MeOD): 

 0.88 (t, J = 7.4 Hz, 3H, H-8), 0.98 (d, J = 7.1 Hz, 3H, H-9), 1.10 – 1.29 

(m, 1H, H-7a), 1.30 – 1.47 (m, 1H, H-7b), 1.80 – 1.97 (m, 1H, H-6), 3.90 

(d, J = 3.3 Hz, 1H, H-5), 7.52 (dd, J = 7.5, 1.5 Hz, 1H, H-12), 7.67 (ddd, 

J = 8.2, 7.6, 1.5 Hz, 1H, H-14), 7.77 (ddd, J = 7.6, 7.5, 1.1 Hz, 1H, 

H-13), 8.14 (dd, J = 8.2, 1.1 Hz, 1H, H-15). 
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13C-NMR (75 MHz, MeOD): 

 12.2 (CH3, C-8), 15.9 (CH3, C-9), 24.5 (CH2, C-7), 38.1 (CH, C-6), 66.8 

(CH, C-5), 102.8 (Cquart, C-3), 124.9 (CH, C-15), 130.4 (CH, C-12), 

132.2 (CH, C-14), 133.6 (Cquart, C-11), 135.0 (CH, C-13), 148.3 (Cquart, 

C-16), 176.0 (Cquart, C-2), 186.6 (Cquart, C-10), 193.8 (Cquart, C-4).  

DIP-MS (EI): 

 304 (1) [M+], 258 (100) [M+−NO2], 248 (84), 202 (25), 175 (18), 170 

(18), 158 (19), 150 (78), 134 (28), 130 (16), 121 (20), 104 (27), 86 (16), 

76 (23) [C6H4
+], 69 (17), 57 (16) [C4H9

+], 51 (22), 42 (28). 

[α]D
24 −44.2 ° (c = 1.0, EtOH) 

 

 

6.5.1.7 Preparation of (3 S)-(3-sec-butyl)-2,3-dihydro-1 H-

pyrrolo[3,4-b]quinoline-1,9-(4 H)-dione (417)  

 

 

     According to a procedure of Abe et al.,81 to a solution of 3-acyltetramic acid 415 

(319 mg, 1.1 mmol, 1.0 eq.) in MeOH abs. (15 mL) is added palladium on charcoal 

(10%, 32 mg, 10% w/w) and the mixture is stirred under hydrogen at atmospheric 

pressure for 14 h at room temperature, resulting in a green solution and precipitation 

of a white solid. The reaction mixture is filtered over Celite®, the Celite® is washed 

thoroughly with MeOH (30 mL) and CHCl3 (30 mL) and the combined filtrates are 

concentrated in vacuo. The product is precipitated by the addition of cold MeOH and 

the solid is washed with Et2O giving the product as a pale yellow solid (185 mg, 

0.72 mmol, 69%).  

     [150 mg are purified by preparative HPLC to get better analytical data (40% 

MeOH in H2O/after 20 min gradient to 100% MeOH in 10 min). This only yielded 
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9 mg of pure white product, possibly due to its high polarity and bad solubility in pure 

methanol]    

      

Rf 0.41 (50% MeOH in H2O, RP silica)  
1H-NMR (300 MHz, DMSO-d6): 

 0.73 (t, J = 7.4 Hz, 3H, H-8), 0.87 – 1.02 (m, 2H, H-7), 1.10 (d, 

J = 7.1 Hz, 3H, H-9), 2.08 – 2.23 (m, 1H, H-6), 4.56 (d, J = 2.5 Hz, 1H, 

H-5), 7.39 (ddd, J = 8.2, 6.9, 1.1 Hz, 1H, H-13), 7.64 (dd, J = 8.4, 

1.1 Hz, 1H, H-15), 7.71 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H, H-14), 8.05 (br s, 

1H, NH-1), 8.16 (dd, J = 8.2, 1.4 Hz, 1H, H-12), 12.37 (br s, 1H, NH-17). 
13C-NMR (75 MHz, DMSO-d6): 

 11.8 (CH3, C-8), 17.1 (CH3, C-9), 21.3 (CH2, C-7), 36.6 (CH, C-6), 58.8 

(CH, C-5), 109.4 (Cquart, C-3), 118.8 (CH, C-15), 124.1 (CH, C-13), 

125.6 (CH, C-12), 127.1 (Cquart, C-11), 132.3 (CH, C-14), 139.8 (Cquart, 

C-16), 162.7 (Cquart, C-4), 168.8 (Cquart, C-2), 172.2 (Cquart, C-10).   

DIP-MS (EI): 

 256 (12) [M+], 227 (10), 200 (100), 172 (6), 145 (13), 130 (5), 116 (4), 

104 (6), 89 (5), 57 (4). 

HRMS (ESI): 

 257.1281 [M + H] (calculated for C15H17N2O2: 257.1290).  

[α]D
24 +52.3 ° (c = 1.0, DMSO abs.) 

IR (cm -1)  3209 (w), 3079 (w), 2961 (m), 2933 (m), 2874 (w), 2351 (w, br), 1675 

(s), 1610 (s), 1568 (s), 1532 (s), 1471 (s), 1369 (m), 1383 (m), 1351 

(m), 1305 (m), 1240 (m), 1208 (m), 1155 (m), 1121 (m), 1045 (m), 1025 

(m), 861 (w), 815 (m), 792 (m), 755 (s), 709 (s), 675 (s), 657 (m). 
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6.5.1.8 Preparation of quinolactacin A2 (17) from ( 3S)-(3-sec-

butyl)-2,3-dihydro-1 H-pyrrolo[3,4-b]quinoline-1,9-(4 H)-

dione (417)  

 

 

     According to a procedure of Zhang et al.,130 to a solution of unmethylated 

quinolactacin A2 precursor 417 (16.3 mg, 64 µmol, 1.0 eq.) in DMF abs. (1 mL) are 

added K2CO3 (8.8 mg, 64 µmol, 1.0 eq.) and MeI (8 µL, 0.13 mmol, 2.0 eq.) and the 

mixture is stirred for 2 h at room temperature. More K2CO3 (8.8 mg, 64 µmol, 1.0 eq.) 

and MeI (8 µL, 0.13 mmol, 2.0 eq.) are added and the mixture is stirred for another 

4 h at room temperature. The solvent is evaporated and the crude product is purified 

by preparative HPLC (40% MeOH in H2O/after 20 min gradient to 100% MeOH in 

10 min). The natural product is obtained as a white solid (14 mg, 52 µmol, 82%). 

      

All spectral and experimental data of 17 is in good agreement with literature,125 

except the value of the optical rotation.     

Analytical data shown in chapter 6.5.1.4. 
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6.5.2 Contributions to the synthesis of quinolactac in B2 

precursors  

6.5.2.1 Preparation of N-(tert-butoxycarbonyl)-(5 S)-(5-iso-

propyl)-pyrrolidine-2,4-dione (412)  

 

 

     Compound 412 is prepared applying the general method of 6.2.1.1. The use of 

N-Boc-L-valine (410) (prepared from L-valine according to literature procedures of 

Barnickel152 and Caplar et al.260) (5.0 g, 23.0 mmol) yields the crude product. The 

mixture is concentrated in vacuo multiple times, redissolving the residue in between 

with Et2O, until the product precipitates as a white solid (4.3 g, 17.7 mmol, 77%). 

      
1H-NMR (300 MHz, CDCl3): only keto form visible 

  0.92 (d, J = 6.9 Hz, 3H, H-7†), 1.11 (d, J = 7.1 Hz, 3H, H-7'†), 1.54 (s, 

9H, H-10), 2.35 (qqd, J = 7.1, 6.9, 3.8 Hz, 1H, H-6), 3.11 (s, 2H, H-3), 

4.28 (d, J = 3.8 Hz, 1H, H-5). 
13C-NMR (75 MHz, CDCl3): only keto form visible 

 16.4 (CH3, C-7†), 18.5 (CH3, C-7'†), 28.1 (CH3, C-10), 31.2 (CH, C-6), 

44.3 (CH2, C-3), 72.0 (CH, C-5), 84.4 (Cquart, C-9), 149.2 (Cquart, C-8), 

168.0 (Cquart, C-2), 203.7 (Cquart, C-4). 
1H-NMR (300 MHz, MeOD): only enol form visible; the 1H-NMR spectrum of 412 

is not completely in agreement with literature.48 

 0.84 (d, J = 6.9 Hz, 3H, H-7†), 1.14 (d, J = 7.3 Hz, 3H, H-7†), 1.52 (s, 

9H, H-10), 2.46 (qqd, J = 7.3, 6.9, 2.7 Hz, 1H, H-6), 4.37 (d, J = 2.7 Hz, 

1H, H-5).  
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13C-NMR (75 MHz, MeOD): only enol form visible 

 15.8 (CH3, C-7†), 18.7 (CH3, C-7'†), 28.4 (CH3, C-10), 30.7 (CH, C-6), 

66.2 (CH, C-5), 83.6 (Cquart, C-9), 95.7 (CH, C-3), 150.9 (Cquart, C-8), 

173.7 (Cquart, C-2), 179.7 (Cquart, C-4).  

[α]D
24 +80.0 ° (c = 1.0, EtOH) [lit.: +123 ° (c = 1.0, MeOH)].48 

 

 

6.5.2.2 Preparation of (5 S)-(5-iso-propyl)-pyrrolidine-2,4-dione 

(409)53 

 

 

     Compound 409 is prepared applying the general method of 6.3.10. The use of 

Boc-protected tetramic acid 412 (2.5 g, 10.4 mmol) yields the product as an orange 

oil. Et2O is added to the oil multiple times, until the pure product precipitates from 

Et2O and can be obtained by filtration as a glittering, white solid (1.19 g, 8.4 mmol, 

81%). 

      

Rf 0.37 (EtOAc)  
1H-/13C-NMR The CDCl3 NMR spectra of 409 are in good agreement with literature.53 

 1H-NMR (300 MHz, MeOD): tautomeric ratio: (keto : enol) 60% : 40% (calculated 

from NMR) 

 Keto: 0.91 (d, J = 6.9 Hz, 3H, H-7†), 1.01 (d, J = 7.1 Hz, 3H, H-7'†), 2.10 

(qqd, J = 7.1, 6.9, 3.8 Hz, 1H, H-6), 3.88 (d, J = 3.8 Hz, 1H, H-5). 

 Enol: 0.82 (d, J = 6.9 Hz, 3H, H-7†), 1.04 (d, J = 7.1 Hz, 3H, H-7'†), 2.12 

(qqd, J = 7.1, 6.9, 3.0 Hz, 1H, H-6), 3.98 (d, J = 3.0 Hz, 1H, H-5). 
13C-NMR (75 MHz, MeOD): tautomeric ratio: (keto : enol) 60% : 40% (calculated 

from NMR) 
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 Keto: 17.1 (CH3, C-7†), 19.0 (CH3, C-7'†), 32.0 (CH, C-6), 41.7 (CH2, 

C-3), 70.7 (CH, C-5), 174.5 (Cquart, C-2), 209.7 (Cquart, C-4). 

 Enol: 15.4 (CH3, C-7†), 19.7 (CH3, C-7'†), 30.2 (CH, C-6), 64.4 (CH, 

C-5), 94.8 (CH, C-3), 178.9 (Cquart, C-2/C-4), 179.1 (Cquart, C-2/C-4). 

[α]D
24 −38.9 ° (c = 1.0, EtOH) [lit.: −46.4 ° (c = 1.0, EtOH)].53  

 

 

6.5.2.3 Preparation of (5 S)-4-((2-nitro)benzoyloxy)-(5- iso-propyl)-

1H-pyrrol-2(5 H)-one (423)  

 

 

     According to a procedure of Yoda et al.,78 to a solution of L-valine tetramic acid 

(409) (100 mg, 0.71 mmol, 1.0 eq.) and ortho-nitrobenzoic acid (413) (prepared from 

2-nitrobenzaldehyde according to a literature procedure of Travis et al.250) (130 mg, 

0.77 mmol, 1.1 eq.) in CH2Cl2 abs. (9 mL) at 0 °C are added EDC · HCl (149 g, 

0.77 mmol, 1.1 eq.) and DMAP (10 mg, 0.08 mmol, 0.11 eq.) and the mixture is left to 

warm to room temperature. Stirring is continued for 4 h before the mixture is diluted 

with EtOAc (25 mL) and washed with sat. NH4Claq (3 × 20 mL) and brine (20 mL) 

before the organic phases are dried over Na2SO4, filtered and concentrated in vacuo. 

The crude product is purified by column chromatography (silica gel, 25% → 50% 

EtOAc in cHex → EtOAc) to give the product as a yellow oil (162 mg, 0.56 mmol, 

79%). 

      

Rf 0.47 (EtOAc)  
 

 



282                                                                                Experimental Part 
 

1H-NMR (300 MHz, MeOD): 

 0.79 (d, J = 6.9 Hz, 3H, H-7†), 1.06 (d, J = 7.1 Hz, 3H, H-7'†), 2.11 (qqd, 

J = 7.1, 6.9, 3.0 Hz, 1H, H-6), 4.27 (dd, J = 3.0, 1.1 Hz, 1H, H-5), 6.16 

(d, J = 1.1 Hz, 1H, H-3), 7.81 – 7.97 (m, 3H, H-10, H-11, H-12),     

8.05 – 8.13 (m, 1H, H-13). 
13C-NMR (75 MHz, MeOD): 

 15.1 (CH3, C-7†), 19.8 (CH3, C-7'†), 30.2 (CH, C-6), 64.5 (CH, C-5), 

109.0 (CH, C-3), 125.5 (CH, C-13), 126.7 (Cquart, C-9), 131.5 (CH, 

C-10), 134.6 (CH, C-12), 134.9 (CH, C-11), 149.4 (Cquart, C-14), 162.5 

(Cquart, C-8), 167.3 (Cquart, C-4), 175.6 (Cquart, C-2).  

DIP-MS (EI): 

 290 (1) [M+], 244 (100) [M+−NO2], 202 (16), 174 (9), 156 (23), 149 (26), 

135 (17), 121 (10), 104 (14) [C7H4O
+], 76 (12) [C6H4

+], 72 (18), 55 (19), 

51 (10).  

HRMS (ESI): 

 291.0972 [M + H] (calculated for C14H15N2O5: 291.0981). 

 

 

6.6 Synthesis of potential adenylyl cyclase inhibit ors 

6.6.1 Preparation of N-(tert-butoxycarbonyl)-(5 S)-(5-(1-formyl-

1H-indol-3-yl)methyl))-pyrrolidine-2,4-dione (430)  

 

 

     According to procedures of Jouin et al.,48 Fehrentz et al.292 and Barnickel,152 to a 

solution of Meldrum's acid (35) (239 mg, 1.7 mmol, 1.1 eq.) in CH2Cl2 abs. (25 mL) at 
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0 °C are added DMAP (368 mg, 3.0 mmol, 2.0 eq.), bisprotected L-tryptophane 429 

(commercially purchased) (500 mg, 1.5 mmol, 1.0 eq.) and DCC (372 mg, 1.8 mmol, 

1.2 eq.) and the mixture is stirred for 14 h at room temperature. The mixture is kept in 

the freezer for 1 d before the precipitated urea is removed by filtration. The solvent of 

the filtrate is evaporated and the residual oil is redissolved in EtOAc (30 mL) and the 

solution is washed with 2M HClaq (3 × 20 mL) and brine (20 mL). The organic phases 

are dried over Na2SO4, filtered and the solution is heated to reflux for 3 h. The 

mixture is concentrated in vacuo to give the crude product which is purified by 

column chromatography (flash silica, 7% → 10% → 20% EtOAc in cHex) to yield the 

product as a white solid (404 mg, 1.1 mmol, 75%). 

      
1H-NMR (300 MHz, MeOD): 

 1.49 (s, 9H, H-18), 3.26 (dd, J = 14.8, 3.0 Hz, 1H, H-6a), 3.48 (dd, 

J = 14.8, 5.2 Hz, 1H, H-6b), 4.29 (dd, J = 5.2, 3.0 Hz, 1H, H-5),     

7.04 – 7.69 (m, 4H, H-10, H-11, H-12, H-13), 7.74, 8.21* (br s, 1H, H-8), 

9.03*, 9.40 (br s, 1H, H-15). 

DIP-MS (EI): 

 158 (17) [M+−C9H12NO4], 141 (10), 130 (100), 117 (14), 82 (12), 77 

(11), 67 (15), 57 (31), 45 (71), 42 (45). 

 

 

6.6.2 General method for the actetylation of tetram ic acids 

employing ketenylidene(triphenyl)phosphorane  

     According to a procedure of Urbina-Gonzalez,246 to a 0.05M solution of tetramic 

acid (1.0 eq.) in THF abs. is added ketenylidene(triphenyl)phosphorane (39) (1.1 eq.) 

and the mixture is heated to reflux for 3 h. To the cooled reaction mixture is added 

2.5M NaOHaq (6 mL/mmol) dropwise and the stirring is continued for 2 h at room 

temperature. HBr (47%) (30 mL/mmol) and Et2O (45 mL/mmol) are added carefully 

and the phases are separated. The aqueous phase is extracted with Et2O 

(7 × 30 mL/mmol) and the combined organic phases are dried over Na2SO4 and 

filtered. Solvent evaporation gives the crude product.  
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6.6.3 Preparation of (5 S)-3-acetyl-(5-( 1H-indol-3-yl)methyl))-

pyrrolidine-2,4-dione (208)  

 

 

     Compound 208 is prepared applying the general method of 6.6.2. The use of 

bisprotected L-tryptophan tetramic acid 430 (400 mg, 1.1 mmol) and purification by 

preparative HPLC (55% MeOH in H2O + 0.1% HCOOH/after 15 min gradient to 100% 

MeOH in 10 min) yields the product as a white solid (54 mg, 0.20 mmol, 18%). 

 
1H-NMR (300 MHz, MeOD): the 1H-NMR spectrum of 208 is not completely in 

agreement with literature.149 

 2.28 (s, 3H, H-17), 3.07 (dd, J = 14.4, 6.4 Hz, 1H, H-6a), 3.24 (dd, 

J = 14.4, 4.0 Hz, 1H, H-6b), 4.13 (dd, J = 6.4, 4.0 Hz, 1H, H-5), 6.98 

(dd, J = 8.0, 7.4 Hz, 1H, H-12), 7.03 (s, 1H, H-8), 7.06 (dd, J = 7.7, 

7.4 Hz, 1H, H-13), 7.29 (d, J = 8.0 Hz, 1H, H-11), 7.54 (d, J = 7.7 Hz, 

1H, H-14). 
13C-NMR (75 MHz, MeOD):  

 20.1 (CH3, C-17), 28.4 (CH2, C-6), 63.7 (CH, C-5), 103.4 (Cquart, C-3), 

109.8 (Cquart, C-7), 112.2 (CH, C-11), 119.5 (CH, C-14), 119.8 (CH, 

C-12), 122.3 (CH, C-13), 128.8 (Cquart, C-10), 137.9 (Cquart, C-15), 173.3 

(Cquart, C-2), 187.1 (Cquart, C-16), 198.8 (Cquart, C-4).  

DIP-MS (EI): 

 270 (32) [M+], 215 (10), 201 (8), 130 (100) [M+−C6H6NO3], 103 (33), 77 

(37), 56 (42), 44 (56). 

[α]D
24  −112.2 ° (c = 1.0, MeOH) [lit.: −117.8 ° (c = 1.0, MeOH)].149 

 



Experimental Part                                                                                                                 285 
 

6.6.4 Preparation of N-(tert-butoxycarbonyl)-(5 S)-(5-benzyl-

pyrrolidine-2,4-dione (438)  

 

 

     Compound 438 is prepared applying the general method of 6.2.1.1. The use of 

N-Boc-L-phenylalanine (437) (prepared from L-phenylalanine according to a literature 

procedure of Barnickel152 and Caplar et al.260) (1.3 g, 9.2 mmol) yields the crude 

product as an oil. The oil is dissolved in a little EtOAc and the mixture is put into the 

freezer for 2 d. The precipitated product is collected by filtration to yield the product 

as white crystalline solid (1.8 g, 6.2 mmol, 73%). 

      

Rf 0.28 (EtOAc)   

X-Ray data: Mol. Wt.: 289.33 

 Lattice system orthorombic   

 Symmetry space group P 21 21 21 

 Lattice parameters a = 8.8515 (8) Å 

  b = 9.7924 (10) Å 

  c = 16.9511 (15) Å 

  α = 90 °, β = 90 °, γ = 90 ° 

 Volume of primitive cell [Å3] 1469.3 (2) 

 No.of asymmetric units Z 4    

 Attenuation coefficient 

 µ(Mo-Kα) [mm−1] 0.094 

 Mo-Kα radiation λ [Å] 0.71069 

 Temperature T [K] 133 

 Structure factor F(000) 616.0  
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 Measured reflections 16878  

 Refinement of F2 against all reflections 

 Least-square matrix: full 

 Reliability factor R[F2 > 2σ(F2)] 0.0591  

 Reliability factor wR2 0.0991 

 Goodness of fit S 0.972 

 For full details see appendix (chapter 8.1) 
1H-NMR (300 MHz, CDCl3): only keto form visible 

 1.63 (s, 9H, H-13), 2.27 (dd, J = 22.5, 1.6 Hz, 1H, H-3a), 2.87 (d, 

J = 22.5 Hz, 1H, H-3b), 3.22 (dd, J = 13.9, 2.9 Hz, 1H, H-6a), 3.40 (dd, 

J = 13.9, 5.2 Hz, 1H, H-6b), 4.65 (ddd, J = 5.2, 2.9, 1.6 Hz, 1H, H-5), 

6.99 – 7.07 (m, 2H, H-8), 7.24 – 7.36 (m, 3H, H-9, H-10). 
13C-NMR (75 MHz, CDCl3): only keto form visible 

 28.4 (CH3, C-13), 33.5 (CH2, C-6), 37.6 (CH2, C-3), 60.8 (CH2, C-5), 

79.9 (Cquart, C-12), 127.1 (CH, C-10), 128.7 (CH, C-9), 129.3 (CH, C-8), 

136.3 (Cquart, C-7), 155.3 (Cquart, C-11), 166.9 (Cquart, C-2), 206.9 (Cquart, 

C-4). 
1H-NMR (300 MHz, MeOD): only enol form visible 

 1.61 (s, 9H, H-13), 3.16 (dd, J = 14.0, 2.7 Hz, 1H, H-6a), 3.47 (dd, 

J = 14.0, 5.5 Hz, 1H, H-6b), 4.69 (dd, J = 5.5, 2.7 Hz, 1H, H-5),     

7.04 – 7.10 (m, 2H, H-8), 7.15 – 7.25 (m, 3H, H-9, H-10). 
13C-NMR (75 MHz, MeOD): only enol form visible 

 28.5 (CH3, C-13), 35.8 (CH2, C-6), 62.1 (CH2, C-5), 83.9 (Cquart, C-12), 

97.2 (CH2, C-3), 128.0 (CH, C-10), 129.1 (CH, C-9), 130.9 (CH, C-8), 

135.5 (Cquart, C-7), 150.9 (Cquart, C-11), 173.2 (Cquart, C-2), 178.1 (Cquart, 

C-4). 

DIP-MS (EI): 

 289 (1) [M+], 233 (27), 216 (17) [M+−OtBu], 189 (34), 161 (45), 146 (9), 

118 (12), 91 (63) [C7H7
+], 58 (100), 42 (16). 

[α]D
24 +116.23 ° (c = 1.0, CHCl3) 

IR (cm -1)  The IR spectrum of 438 is in good agreement with literature.293 
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6.6.5 Preparation of ( S)-5-benzylpyrrolidine-2,4-dione (433) 53  

 

 

     Compound 433 is prepared applying the general method of 6.3.10. The use of 

Boc-protected tetramic acid 438 (150 mg, 0.52 mmol) yields the crude product. The 

crude product is dissolved in a minimum of EtOAc and some Et2O is added before 

the mixture is stored in the freezer for 14 h. The pure product precipitates and is 

collected by filtration and washing with cold Et2O to yield the product as white solid 

(65 mg, 0.34 mmol, 66%). 

      

Rf 0.33 (EtOAc)   
1H-NMR (300 MHz, CDCl3): only keto form visible 

 2.73 (dd, J = 22.4, 1.7 Hz, 1H, H-3a), 2.84 (dd, J = 14.0, 8.2 Hz, 1H, 

H-6a), 2.94 (dd, J = 22.4, 0.5 Hz, 1H, H-3b), 3.17 (dd, J = 14.0, 4.0 Hz, 

1H, H-6b), 4.24 (dddd, J = 8.2, 4.0, 1.7, 0.5 Hz, 1H, H-5), 7.13 – 7.19 

(m, 2H, H-8), 7.24 – 7.37 (m, 3H, H-9, H-10). 
13C-NMR (75 MHz, CDCl3): only keto form visible 

 38.5 (CH2, C-5), 40.9 (CH2, C-3), 65.3 (CH, C-5), 127.6 (CH, C-10), 

129.2 (CH, C-9), 129.5 (CH, C-8), 135.3 (Cquart, C-7), 170.7 (Cquart, C-2), 

206.6 (Cquart, C-4). 
1H-NMR The MeOD 1H-NMR spectrum of 433 is in good agreement with 

literature.53 
13C-NMR (75 MHz, MeOD): tautomeric ratio: (keto : enol) 66% : 33% (calculated 

from NMR) 

 Keto: 38.6 (CH2, C-6), 40.6 (CH2, C-3), 66.5 (CH, C-5), 127.7 (CH, 

C-10), 129.6 (CH, C-9), 130.7 (CH, C-8), 137.0 (Cquart, C-7), 174.0 

(Cquart, C-2), 209.1 (Cquart, C-4). 
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 Enol: 38.2 (CH2, C-6), 60.2 (CH, C-5), 94.3 (CH, C-3), 128.0 (CH, 

C-10), 129.4 (CH, C-9), 131.0 (CH, C-8), 136.8 (Cquart, C-7), 177.2 

(Cquart, C-2/C-4), 178.5 (Cquart, C-2/C-4). 

DIP-MS (EI): 

 189 (9) [M+], 161 (1) [M+−CO], 98 (3) [M+−C7H7], 91 (100) [C7H7
+], 77 

(3) [C6H5
+], 65 (10). 

mp 159.5 °C 

IR (cm -1)  The IR spectrum of 433 is in good agreement with literature.53 

 

 

6.6.6 Preparation of ( S)-3-acetyl-5-benzylpyrrolidine-2,4-dione 

(434)  

 

 

     Compound 434 is prepared applying the general method of 6.6.2. The use of 

N-Boc-L-phenylalanine tetramic acid (438) (150 mg, 0.52 mmol) and purification by 

preparative HPLC (45% MeOH in H2O + 0.1% HCOOH/after 25 min gradient to 100% 

MeOH in 10 min) yields the product as a white solid (47 mg, 0.20 mmol, 39%). 

      
1H-NMR The CDCl3 

1H-NMR spectrum of 434 is in agreement with literature.137 
13C-NMR (75 MHz, CDCl3): tautomeric ratio: 83% : 17% (calculated from NMR), 

only major tautomer reported 

 19.9 (CH3, C-12), 38.5 (CH2, C-6), 63.7 (CH, C-5), 106.2 (Cquart, C-3), 

127.4 (CH, C-10), 129.2 (2 × CH, C-8, C-9), 136.6 (Cquart, C-7), 174.7 

(Cquart, C-2), 194.2 (Cquart, C-4/C-11), 195.9 (Cquart, C-4/C-11).  
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1H-NMR (300 MHz, MeOD):  

 2.34 (s, 3H, H-12), 2.94 (dd, J = 14.0, 6.3 Hz, 1H, H-6a), 3.10 (dd, 

J = 14.0, 4.5 Hz, 1H, H-6b), 4.15 (dd, J = 6.3, 4.5 Hz, 1H, H-5),     

7.13 – 7.29 (m, 5H, H-8, H-9, H-10). 
13C-NMR (75 MHz, MeOD): quaternary carbons very faint 

 20.4 (CH3, C-12), 38.3 (CH2, C-6), 63.7 (CH, C-5), 104.9 (Cquart, C-3), 

127.9 (CH, C-10), 129.3 (CH, C-9), 130.8 (CH, C-8), 137.1 (Cquart, C-7), 

173.0 (Cquart, C-2), 193.6 (Cquart, C-4/C-11), 196.5 (Cquart, C-4/C-11).  

DIP-MS (EI): 

 231 (43) [M+], 214 (2) [M+−OH], 189 (10), 140 (45) [M+−C7H7], 120 (14), 

98 (27), 91 (100) [C7H7
+], 65 (13), 43 (32). 

mp 129.5 °C 

IR (cm -1)  3189 (m), 3034 (w), 2934 (w), 1711 (s), 1615 (s, br), 1496 (m), 1453 (s), 

1424 (s), 1379 (s), 1316 (m), 1276 (s), 1227 (s), 1083 (m), 1029 (m), 

1003 (m), 962 (m), 919 (s), 884 (s), 840 (m), 781 (s), 757 (m), 727 (s), 

695 (s). 

 

 

6.6.7 Preparation of ( S)-3-acetyl-5-((4-allyloxy)benzyl)-pyrrol-

idine-2,4-dione (435)  

 

 

     Compound 435 is prepared applying the general method of 6.6.2. The use of 

tetramic acid 116 (345 mg, 1.0 mmol) and purification by preparative HPLC (45% 
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MeOH in H2O + 0.1% HCOOH/after 25 min gradient to 100% MeOH in 10 min) yields 

the product as a white solid (78 mg, 0.27 mmol, 27%). 

      
1H-NMR (300 MHz, CDCl3): tautomeric ratio: 77% : 13% (calculated from NMR), 

only major tautomer reported 

 2.46 (s, 3H, H-15), 2.60 (dd, J = 13.9, 10.3 Hz, 1H, H-6a), 3.23 (dd, 

J = 13.9, 3.4 Hz, 1H, H-6b), 3.98 (dd, J = 10.3, 3.4 Hz, 1H, H-5), 4.53 

(ddd, J = 5.2, 1.5, 1.4 Hz, 2H, H-11), 5.30 (ddt, J = 10.6, 1.6, 1.4 Hz, 

1H, H-13Z), 5.41 (ddt, J = 17.3, 1.6, 1.5 Hz, 1H, H-13E), 5.63 (br s, 1H, 

NH-1), 6.05 (ddt, J = 17.3, 10.6, 5.2 Hz, 1H, H-12), 6.87 (d, J = 8.7 Hz, 

2H, H-9), 7.10 (d, J = 8.7 Hz, H-8). 
13C-NMR (75 MHz, CDCl3): tautomeric ratio: 77% : 13% (calculated from NMR), 

only major tautomer reported 

 19.8 (CH3, C-15), 37.6 (CH2, C-6), 63.8 (CH, C-5), 69.0 (CH2, C-11), 

115.4 (CH, C-9), 117.9 (CH2, C-13), 128.6 (Cquart, C-7), 130.2 (CH, 

C-8), 133.3 (CH, C-12), 158.0 (Cquart, C-10), 185.8 (Cquart, C-2), 194.3 

(Cquart, C-4).  

 

 

6.6.8 Preparation of ( S)-3-acetyl-5-((4-hydroxy)benzyl)-pyrrol-

idine-2,4-dione (436)  

 

 

     According to procedures of Barnickel et al.,98,152 To a solution of 3-acyltetramic 

acid 435 (20 mg, 0.07 mmol, 1.0 eq.) in a mixture of THF abs./MeOH abs. (5:1) 
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(3 mL) is added Pd(PPh3)4 (~2 mg, 2 mol%) and after 5 min of stirring, K2CO3 

(29 mg, 0.21 mmol, 3.0 eq.) is added. The mixture is heated to reflux for 14 h before 

the solvent is evaporated. The residue is dissolved in 0.5M NaOHaq (25 mL) and 

washed with Et2O (2 × 30 mL). The pH of the aqueous phase is adjusted to pH 1 with 

conc. HClaq and the phase is extracted with CH2Cl2 (3 × 30 mL). The combined 

organic phases are dried over Na2SO4, filtered and the solvent evaporated. The 

product is obtained as an orange oil (12 mg, 0.05 mmol, 70%). 

      
 

1H-NMR (300 MHz, MeOD): the 1H-NMR spectrum of 436 is not in agreement 

with literature.294 

 2.34 (s, 3H, H-12), 2.86 (dd, J = 14.1, 6.0 Hz, 1H, H-6a), 3.00 (dd, 

J = 14.1, 4.4 Hz, 1H, H-6b), 4.08 (dd, J = 6.0, 4.4 Hz, 1H, H-5), 6.67 (d, 

J = 8.2 Hz, 2H, H-9), 6.98 (d, J = 8.2 Hz, 1H, H-8). 
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8 Appendix 

8.1 X-Ray structural analysis of N-(tert-butoxycarbonyl)-(5S)-

(5-benzyl)-pyrrolidine-2,4-dione (438) 

 

Computing details: 

Data collection: X-AREA-STOE; cell refinement: X-AREA-STOE; data reduction: 

X-AREA-STOE; program(s) used to solve structure: SIR97; program(s) used to refine 

structure: SHELXL97 (Sheldrick, 2008). 

 

Crystal Data: (cell parameters from 16878 reflections) 

Formula C16H19NO4 

Molecular weight [g · mol−1] 289.32 

Lattice system orthorombic 

Appearance block, colourless 

Crystal size [mm] 0.107 × 0.103 × 0.099  
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Symmetry space group P 21 21 21 

Lattice parameters a = 8.8515 (8) Å 

 b = 9.7924 (10) Å 

 c = 16.9511 (15) Å 

 α = 90 °, β = 90 °, γ = 90 ° 

Volume of primitive cell [Å3] 1469.3 (2) 

No.of asymmetric units Z 4  

Density ρ [g · cm−1] 1.308 

Attenuation coefficient µ(Mo-Kα) [mm−1] 0.094 

Mo-Kα radiation λ [Å] 0.71069 

Temperature T [K] 133 

Structure factor F(000) 616.0 

 

Data collection: 

Measurement device STOE-IPDS II  

Radiation source fine-focus sealed tube 

Radiation monochromator graphite 

Measurement method ω-scan 

Measured reflections 16878 

Independent reflections 2481 

Reflections with I > 2σ(I) 1744 

Merging error Rint 0.0965 

Maximal angle of incidence θmax 24.79 ° 

Minimal angle of incidence θmin 2.4 ° 

Miller indices h = −10→10 

 k = −11→11 

 l = −19→20 

 

Refinement: 

Refinement of F2 against all reflections 

Least-square matrix: full 

Reliability factor R[F2 > 2σ(F2)] 0.0591  

Reliability factor wR2 0.0991 
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Goodness of fit S 0.972 

Independent reflections 2481 

No. of parameters 197  

Primary atom site location: structure-invariant direct methods 

Secondary atom site location: difference Fourier map  

Hydrogen site location: inferred from neighbouring sites 

H atoms treated by a mixture of independent and constrained refinement 

w = 1/[σ2(Fo
2) + (0.0427P)2 + 0.2522P] where P = (Fo

2 + 2Fc
2)/3 

(∆/σ)max 0.05 

electron density in the crystal [e · Å−3] ∆ρmax = 0.343 

 ∆ρmin = −0.268 

Absolute structure: Flack H D (1983), Acta Cryst. A39, 876 – 881 

Flack parameter −2 (2) 

 

Special details: 

Geometry : All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) 

are estimated using the full covariance matrix. The cell s.u.'s are taken into account 

individually in the estimation of s.u.'s in distances, angles and torsion angles; 

correlations between s.u.'s in cell parameters are only used when they are defined by 

crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for 

estimating s.u.'s involving l.s. planes. 

 

Refinement : Refinement of F2 against ALL reflections. The weighted R-factor wR 

and goodness of fit S are based on F2, conventional R-factors R are based on F, with 

F set to zero for negative F2. The threshold expression of F2 > 2\σ(F2) is used only for 

calculating R-factors (gt) etc. and is not relevant to the choice of reflections for 

refinement. R-factors based on F2 are statistically about twice as large as those 

based on F, and R-factors based on ALL data will be even larger. 
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Fractional atomic coordinates and isotropic or equivalent isotropic displacement 

parameters [Å2] 

 

 x y z Uiso*/Ueq 

O1 0.1262(3)  0.5561(3)  0.76311(15)  0.0259(7) 

O2 0.5234(3)  0.8257(3)  0.61682(15)  0.0289(7) 

O3 0.0192(3)  0.4448(3)  0.65940(17)  0.0389(8) 

O4 0.0953(3)  0.5848(3)  0.52091(16)  0.0306(7) 

N1 0.2142(4)  0.5986(3)  0.64311(18)  0.0226(8) 

C1 0.1080(5) 0.5231(4) 0.6873(2)  0.0247(9) 

C2 0.1970(4)  0.6291(4)  0.5641(2)  0.0243(10) 

C3 0.3178(4)  0.7233(4)  0.5432(2)  0.0247(10) 

H3A 0.3819  0.6830  0.5014  0.030 

H3B 0.2745  0.8098  0.5230  0.030 

C4 0.4002(4)  0.7476(4)  0.6075(2)  0.0237(9) 

C5 0.3440(5)  0.6693(4)  0.6774(2)  0.0233(9) 

H5C 0.301(4)  0.725(4)  0.717(2) 0.037(12) 

C6 0.4642(4)  0.5723(4)  0.7133(2)  0.0270(10) 

H6A 0.5506  0.6273  0.7325  0.032 

H6B 0.4198  0.5246  0.7592  0.032 

C7 0.5210(4)  0.4680(4)  0.6554(2)  0.0261(9) 

C8 0.4433(5)  0.3463(4)  0.6418(3)  0.0348(11) 

H8 0.3538  0.3267  0.6706  0.042 

C9 0.4959(6)  0.2539(5)  0.5864(3)  0.0473(13) 

H9 0.4414  0.1719  0.5772  0.057 

C10 0.6274(6)  0.2796(5)  0.5441(3)  0.0456(13) 

H10 0.6620  0.2165  0.5056  0.055 

C11 0.7060(6)  0.3966(5)  0.5585(3)  0.0449(13) 

H11 0.7974  0.4136  0.5309  0.054 

C12 0.6544(4)  0.4912(4)  0.6131(2)  0.0320(10) 

H12 0.7101  0.5727  0.6218  0.038 

C13 0.0709(5)  0.3349(4)  0.8226(2)  0.0326(11) 

H13A 0.1805  0.3207  0.8234  0.049 

H13B 0.0286  0.2958  0.7742  0.049 
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H13C 0.0254  0.2901  0.8686  0.049 

C14 −0.1305(4)  0.5167(4)  0.8152(3)  0.0360(11) 

H14A −0.1644  0.4837  0.7636  0.054 

H14B −0.1467  0.6156  0.8185  0.054 

H14C −0.1880  0.4710  0.8569  0.054 

C15 0.0982(5)  0.5494(4)  0.8993(2)  0.0331(10) 

H15A 0.0826  0.6484  0.8974  0.050 

H15B 0.2064  0.5299  0.9038  0.050 

H15C 0.0452  0.5115  0.9451  0.050 

C16 0.0374(4)  0.4856(4)  0.8253(2)  0.0271(9) 

 

Atomic displacement parameters [Å2] 

 

 U11 U22 U33 U12 U13 U23 

O1 0.0248(16)  0.0284(16)  0.0244(15)  0.0031(12)  0.0028(12)  −0.0025(13) 

O2 0.0298(17)  0.0300(16)  0.0269(15)  −0.0011(13)  0.0032(13)  −0.0075(13) 

O3 0.0353(18)  0.053(2)  0.0287(16)  0.0015(15)  −0.0066(14)  −0.0150(16) 

O4 0.0270(17)  0.0388(17)  0.0261(15)  0.0026(14)  −0.0035(14)  0.0019(15) 

N1 0.0204(18)  0.0285(18)  0.0190(17)  0.0087(15)  0.0040(14)  0.0013(15) 

C1 0.025(2)  0.031(2)  0.018(2)  −0.0007(18)  −0.0073(18)  0.003(2) 

C2 0.022(2)  0.029(2)  0.022(2)  0.0003(18)  0.0000(19)  0.0054(19) 

C3 0.025(2)  0.022(2)  0.027(2)  −0.0040(18)  0.0078(18)  0.0089(18) 

C4 0.028(2)  0.021(2)  0.023(2)  −0.0029(18)  0.001(2)  0.002(2) 

C5 0.026(2)  0.028(2)  0.016(2)  0.0015(18)  0.0031(18) −0.0020(18) 

C6 0.025(2) 0.030(2)  0.027(2)  0.0047(19)  0.0006(19)  −0.0017(18) 

C7 0.026(2)  0.027(2)  0.025(2)  0.0042(18)  −0.0090(18)  0.0027(18) 

C8 0.037(3)  0.027(2)  0.041(3)  −0.002(2)  −0.012(2)  0.007(2) 

C9 0.059(3)  0.031(2)  0.052(3)  −0.002(2)  −0.026(3)  0.009(3) 

C10 0.053(3)  0.041(3)  0.043(3)  −0.013(2)  −0.013(3)  0.020(3) 

C11 0.042(3)  0.057(3)  0.036(3)  −0.009(3)  −0.002(2)  0.019(3) 

C12 0.025(2)  0.037(3)  0.034(2)  −0.008(2)  −0.005(2)  0.0006(19) 

C13 0.041(3)  0.030(2)  0.027(2)  0.0052(19) −0.001(2)  −0.0032(19) 

C14 0.022(2)  0.047(3)  0.039(3)  0.011(2)  0.005(2)  0.003(2) 

C15 0.044(3)  0.036(2)  0.020(2)  −0.0018(19)  0.002(2)  −0.005(2) 

C16 0.023(2)  0.033(2)  0.026(2)  0.0091(19)  0.0049(19)  −0.0064(18) 
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Geometric parameters 

 

Bond length [Å] 

 

O1—C1 1.335(4) C8—H8 0.9500 

O1—C16 1.486(4) C9—C10 1.390(7) 

O2—C4 1.341(4) C9—H9 0.9500 

O3—C1 1.196(5) C10—C11 1.363(7) 

O4—C2 1.238(5) C10—H10 0.9500 

N1—C1 1.411(5) C11—C12 1.386(6) 

N1—C2 1.381(5) C11—H11 0.9500 

N1—C5 1.462(5) C12—H12 0.9500 

C2—C3 1.456(6) C13—C16 1.506(5) 

C3—C4 1.332(5) C13—H13A 0.9800 

C3—H3A 0.9900 C13—H13B 0.9800 

C3—H3B 0.9900 C13—H13C 0.9800 

C4—C5 1.497(5) C14—C16 1.527(5) 

C5—C6 1.550(5) C14—H14A 0.9800 

C5—H5C 0.94(4) C14—H14B 0.9800 

C6—C7 1.503(5) C14—H14C 0.9800 

C6—H6A 0.9900 C15—C16 1.501(5) 

C6—H6B 0.9900 C15—H15A 0.9800 

C7—C8 1.396(5) C15—H15B 0.9800 

C7—C12 1.400(5) C15—H15C 0.9800 

C8—C9 1.385(6) 

 

Bond angle [°] 

 

O1—C1—N1 107.7(3) C8—C9—H9 119.6 

O1—C16—C15 102.1(3) C9—C8—C7 120.3(4) 

O1—C16—C13 109.2(3) C9—C8—H8 119.8 

O1—C16—C14 110.0(3) C9—C10—H10 120.4 

O2—C4—C5 117.9(3) C10—C9—H9 119.6 

O3—C1—O1 128.0(4) C10—C11—C12 120.9(5) 
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O3—C1—N1 124.3(3) C10—C11—H11 119.6 

O4—C2—N1 125.3(4) C11—C10—C9 119.2(5) 

O4—C2—C3 127.7(4) C11—C10—H10 120.4 

N1—C2—C3 107.0(4) C11—C12—C7 120.8(4) 

N1—C5—C4 100.9(3) C11—C12—H12 119.6 

N1—C5—C6 113.9(3) C12—C7—C6 120.4(4)  

N1—C5—H5C 104(3) C12—C11—H11 119.6 

C1—O1—C16 120.5(3) C13—C16—C14 112.6(3) 

C1—N1—C5 124.1(3) C15—C16—C13 111.3(4) 

C2—N1—C1 123.7(3) C15—C16—C14 111.1(4) 

C2—N1—C5 111.7(3) C16—C13—H13A 109.5 

C2—C3—H3A 110.0 C16—C13—H13B 109.5 

C2—C3—H3B 110.0 C16—C13—H13C 109.5 

C3—C4—O2 130.1(4) C16—C14—H14A 109.5 

C3—C4—C5 111.9(3) C16—C14—H14B 109.5 

C4—C3—C2 108.5(3) C16—C14—H14C 109.5 

C4—C3—H3A 110.0 C16—C15—H15A 109.5 

C4—C3—H3B 110.0 C16—C15—H15B 109.5 

C4—C5—C6 113.4(3) C16—C15—H15C 109.5 

C4—C5—H5C 114(3) H3A—C3—H3B 108.4 

C5—C6—H6A 109.0 H6A—C6—H6B 107.8 

C5—C6—H6B 109.0 H13A—C13—H13B 109.5 

C6—C5—H5C 110(2) H13A—C13—H13C 109.5 

C7—C6—C5 112.9(3) H13B—C13—H13C 109.5 

C7—C6—H6A 109.0 H14A—C14—H14B 109.5 

C7—C6—H6B 109.0 H14A—C14—H14C 109.5 

C7—C8—H8 119.8 H14B—C14—H14C 109.5 

C7—C12—H12 119.6 H15A—C15—H15B 109.5 

C8—C7—C6 121.6(4) H15A—C15—H15C 109.5 

C8—C7—C12 118.0(4) H15B—C15—H15C 109.5 

C8—C9—C10  120.9(5) 
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