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Abstract

A celebrated result in Random Matrix Theory is that the distribution of the
largest eigenvalue of the Gaussian Unitary Ensemble converges (after appropriate
rescaling) to the Tracy-Widom distribution if the matrix dimension N tends to
infinity. The interest in this distribution rose even more when it turned out that
it appears not only in the description of extremal eigenvalues for a large class
of matrix ensembles but also provides the limit law for a variety of stochastic
quantities in statistical mechanics. This phenomenon is called universality in
Random Matrix Theory.

It should be noted that the Tracy-Widom Law describes the distribution of
the largest eigenvalue only in a neighborhood of its mean that has a size of order
N—2/3_ As the main result of this thesis we provide a complete leading order
description with uniform error bounds for the upper tail of the distribution of the
largest eigenvalue beyond the Tracy-Widom regime. In addition, we are not only
concerned with the Gaussian Unitary Ensemble. Our results apply to unitarily
invariant ensembles whose probability measure is parameterized by potentials in
the class of real analytic and strictly convex functions. According to standard
notation in stochastics, we study the upper tail in the regimes of moderate, large,
and superlarge deviations. Our results are new except for a small region in the
regime of moderate deviations of size (% log N)2/3 that were proved by Choup
and by Deift et al. They allow in particular to identify precisely the range of
universality of the distribution of the largest eigenvalue. Moreover, we strengthen
previous large deviations results of Anderson et al., Johansson, and Ledoux et al.
In order to obtain our results on the distribution of the largest eigenvalue, we
use the Orthogonal Polynomial method for unitarily invariant ensembles. The
asymptotic analysis of the relevant Orthogonal Polynomials is then performed by
the Riemann-Hilbert approach introduced by Deift et al. On a technical level our
results are based on a new leading order description of the Christoffel-Darboux
kernel in the region of exponential decay. Hereby we show in particular how the
rate function, known from the theory of large deviations, is related to the Airy
kernel that is usually used for the description in the Tracy-Widom regime as well
as in the moderate regime.

Some of our main results have been announced in joint work with Thomas
Kriecherbauer, Kristina Schubert, and Martin Venker. In that paper a number of
results of this thesis has been used in a slightly more general context.
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Chapter

Introduction

In Random Matrix Theory one studies sets of matrices that are usually equipped
with a symmetry condition and a probability measure on these sets. Important ob-
jects of interest are the statistics of eigenvalues and in particular the phenomenon
of the universality of local eigenvalue statistics. Examples for local eigenvalue
statistics are e.g. the distribution of spacings and the distribution of the largest
eigenvalue. A broad overview of the field of random matrices and recent applica-
tions are given in [2, 3, 7, 9, 17, 27, 29].

This thesis deals with the distribution of the largest eigenvalue of a random
matrix. Throughout this work we study unitarily invariant matrix ensembles,
which are also called unitary ensembles in short. These ensembles consist of Her-
mitian N x N matrices M = (Mjx)1<jr<n together with a probability measure
on the matrices that is invariant under conjugation M — UMU* by any unitary
matrix U (see [9]). In this thesis we are only concerned with probability mea-
sures I@’Ny which are parameterized by real valued functions V' : J — R, where

={z € R|Ly <2 < L.} denotes a closed interval that can be bounded or
unbounded (—oco < L_ < L, < 00). Precise assumptions on V' will be given
below (see (GA)1, (GA), and (GA)grp). The probability measure Py can be
expressed by

1
e NUVID (M) dM, (1.1)

APy (M) =
ZNy

with a normalizing constant Zy 1 > 0 (see [7]). The measure dM in (1.1) denotes
the Lebesgue measure on Hermitian matrices M which is defined as the product
of Lebesgue measures on the matrix entries Mj; of the upper triangular block,
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i.e.

N
dM =[] dM;;  [[  dMjidMy,

j=1 1<j<k<N

where Mj;, = Mﬁ + z]\/[fk denotes the usual representation of complex numbers
by reals (see [2]).

One can show that HADN,V defines a unitary ensemble and the induced probability
measure on the vector of eigenvalues (A,...,Ay) can be computed explicitly.
Assuming that all orderings of eigenvalues are equally likely, one obtains the
following measure on R (see [7, Section 5.3]):

1 N
dPyy(A) = Pyy (M) d\ = Ay = N2 [T e MV ,(N) dAs - - dAw.

ZN»V 1<i<j<N i=1

(1.2)

Here, Zy v > 0 denotes again a normalization constant ensuring [pv Py v (A) dA =
1.
As mentioned above, it is the purpose of this thesis to study the distribution of
the largest eigenvalue

Amax = max{Aq,..., Ay}

of the ensembles just described. We illustrate the problem by means of the special
case

1
Vo:R=R, z+ 53;2. (1.3)

This choice of V' is of particular interest since it leads to the Gaussian Unitary
Ensemble (GUE), which is the most prominent and most studied ensemble (see
[2]). A peculiarity of this case is that GUE also belongs to the class of Wigner
ensembles where entries are chosen independently as far as symmetry permits.
Let us consider the expected eigenvalue distribution

1
Frny,(t) = NEN,VO (number of eigenvalues of M <t).

It has been shown by Wigner in [36] that the limit of Fy y,(t) for N — oo exists
with

t
Jdim P = [ py(u)du. (1.4)

The limiting expected eigenvalue density for GUE is given by

1
v, - R =R, pvy(x) = %\/4 — 22 1_g9(x). (1.5)



This result holds in great generality for Wigner ensembles and is known as the
famous Wigner’s Semicircle Law. One can show that an analogous statement
holds for ensembles with probability measure of type (1.1) under rather general
assumptions on V. For unitary ensembles, however, the limiting expected eigen-
value density py depends on V. Having (1.4) and (1.5) in mind, one expects the
largest eigenvalue A.x of GUE to be located near 2 for large values of N. In fact,
one can show that a corresponding Law of Large Numbers A\« — 2 as N — oo
holds. Moreover, the fluctuations of A, around 2 are described by

]\P_IE;OPN,VO (W < s) =: Frw(s), seR (1.6)
(see e.g. [9, Theorem 6.17] and references therein). Frw is called Tracy-Widom
distribution, whose density can be expressed in terms of a solution of the Painlevé-
IT-equation ([34]). Note that (1.6) can be viewed as an analogue to the Central
Limit Theorem, where the fluctuations are of order N=%/% in contrast to order
N~2 in the classical Central Limit Theorem.

In this thesis we study the distribution of Ay, above its mean, i.e. when Ay
lies outside the bulk of the spectrum that concentrates on [—2,2]. We define the
outer tail

2 S
ON,V()(S) = PN,VO </\Inax > 2+ N2/3> , S 1.

From the pointwise limit in (1.6) one concludes
lim Oy (s) = 1= Frw(s). (1.7)

It is well-known that (1.7) is not sufficient for a full understanding of the outer
tail, because the case that the values of s grow with N is not included. It is
the main purpose of this thesis to complete the Tracy-Widom Law (see (1.6)) by
providing the leading order behavior with uniform error bounds for (s, N) in all of
[s0,00) X {n € N: n > Ny}, where 59, Ny are some positive constants depending
on V. Moreover, our results do not only concern the Gaussian case but apply to
a wider class that will be described below. In order to formulate our main result
in the case of GUE, we introduce an unscaled version Oy y;, of O NV, 1€

ON7VO<t) = ]P)N,Vo (Amax > t) s t > 2.

Obviously, Onyy(s) = Ow (2 + ~573)- In all of this thesis we adhere to the
notation that s = (t — 2)N%/3 is used for the locally rescaled variable centered at
2, whereas t is the global, i.e. not rescaled variable, whenever we discuss outer
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tail probabilities for GUE.
The results of this thesis, applied to the Gaussain case, yield

1 efo;‘/md“
Onio(®) = o e =g (L0 (wam) + O (7)) s t € (2+ i 0)
(1.8)

(see Theorem 1.1, Example 4.13).

Formula (1.8) can be viewed as an ezact asymptotics result for the largest eigen-
value within the field of large deviations. See e.g. [14] for a general introduction
to large deviations. The term of exact asymptotics that we prefer to call leading
order behavior is discussed in [14, Section 3.7] for sums of i.i.d. variables. For
the presentation of results and their proofs we find it convenient to use a finer
terminology that has been established more recently in stochastics. Moderate de-
viations (see e.g. [14, Section 3.7]) are used to describe in more detail deviations
in a region that is closest to the one where the Tracy-Widom Law (1.6) holds. As
we will see below, this region is of particular interest when discussing the ques-
tion of universality. We also use the term superlarge deviations (see e.g. [5] and
references therein) because for general V' our assumptions are more restrictive in
the corresponding regime. In summary:

Moderate deviations for GUE:
(s, N) with 1 < gy < s < py < oo for some sequences qy, py with gy — oo and
v — 0as N — oo,

or equivalently,

(t,N) with 2+ -85 <t <2+ 25

Large deviations for GUE:
(t, N) with ¢ in some fixed compact subset of (2, 00), independent of N.

Superlarge deviations for GUE:
(t, N) with 2 < gy <t for some gy — o0 as N — oc.

We can use (1.8) to identify the region in the (s, V) plane where (1.6) still provides
the correct leading order behavior beyond the regime of validity claimed in (1.6).
The asymptotics of the Tracy-Widom distribution Fry is given by (see e.g. [4,

(1), (25)])

1— Fry(s) = 167383/26383/2 (1+0(32)). (1.9)




which implies

/2
log (1 — Pr(s)) 4 log(16ms*?)
o =5~y +0 (%) (1.10)

In Example 4.13 formula (1.8) will be evaluated in view of (1.7) and (1.9), (1.10).
It turns out that (1.9) gives the correct leading order behavior of Oy, (s) if and
only if s = o(N*1%), and (1.10) provides the correct leading order behavior of
(log On vy (5))s~3/% if and only if s = o(N?/3). Hence, the latter asymptotics is
correctly described by the Tracy-Widom Law precisely in the regime of mod-
erate deviations, whereas the stronger version (1.9) only persists in a smaller
domain. From the existing results in the literature that apply to the Gaussian
case V' = Vj the leading order behavior of Oy y,(t) can be deduced only in the
regime 2 < t < 2+ (4 log N)?/? (see e.g. [6, 8, 11]). Results on the leading order
behavior of log Oy v, (t) in the large deviations regime but without error bounds
can be found in [3, Theorem 2.6.6], [20, Remark 2.3], and [24, Theorems 1.4].

We now leave the Gaussian case and describe the main results of this thesis
that apply to a more general class of functions V : J — R. As we see shortly,
the assumptions on V' may depend on the deviations regime and on the size of
J. However, the following basic general assumptions will always be required.

(GA); A function V is said to satisfy (GA); if (1)—(3) hold:
(1) V:J — Ris real analytic, J = [L_, L4] "R with —oo < L_ < L} < o0.
(2) V' is strictly monotonically increasing (convexity assumption).

(3) limy|—00 V(2) = 00 if Ly = Fo00.

The strict increase of V' and the limit lim|;|_,o V(z) = oo in the case Ly = +00
implies at least linear growth of V(x) for |x| — oo that suffices to ensure the
integrability of Py . The real analyticity of V' is convenient for our method of
proof that is performed by a Riemann-Hilbert analysis. Due to the strict convexity
of V' one can deduce the unique existence of real numbers a = ay and b = by
with a < b such that

b V()
dt =0, dt =27 (1.11
S >

)
/a,/(b—t)(t a \J(b—t)(t —a)

holds at least in the case J = R (c.f. Lemma 2.1 with even weaker regularity
assumptions on V). The significance of these numbers becomes apparent from
the fact that [ay,by] is the support of the limiting eigenvalue density py. The
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role that the determining equations (1.11) play is rather technical and can be
found in the proof of Lemma 2.8. If the domain of definition J is a proper subset
of R, it is not apriori clear whether (1.11) can be solved for a and b (c.f. Remark
2.2). In order to ensure this solvability we introduce

(GA) A function V is said to satisfy (GA) if (1) and (2) hold:
(1) V satisfies (GA);.

(2) There exist L_ < ay < by < Ly such that (1.11) holds with a = ay and
b = bv.

Observe that there is no difference between (GA) and (GA); in the case J =R
due to Lemma 2.1.

We adapt the definition of the outer tails Oy v, O ~,v and the deviations regimes
for unitary ensembles whose probability measure EDN,V is parameterized by a
function V satisfying (GA):

ONyv(t) = PN,V (Amax > t) , > bv, (112)

Onv(s) :==Pyy (Amax > by + s> 1. (1.13)

s
Here, vy is a positive scaling factor that will be defined in (3.29) (observe that
v, = 1 and by, = 2, see Example 4.13). In analogy to the Gaussian case, the
connection between the locally rescaled variable s and the global variable ¢ is
given by s = (t — by )y N/,
The three deviations regimes are now distinguished as follows:

Moderate deviations:
(s, N) with 1 < gy < s < py < oo for some sequences qy, py with gy — oo and
w(Lly —by) > ;@% —0as N — oo,

or equivalently,

(t, N) with by +

<t<by+

N2/3 N2/3

Large deviations:
(t, N) with ¢ in some fixed compact subset of (by, L] N R, independent of N.

Superlarge deviations:
(t, N) with by < gy <t for some gy — 00 as N — oo.

Observe that the regime of superlarge deviations does not exist in the case
L+ < Q.



For our first result that applies to the case J = R, we need an additional
assumption (GA)spp for the regime of superlarge deviations. It consists of two
parts (see below). The assumption (GA)., (see page 70) requires V' to have an
analytic extension on a neighborhood of [by, 00) with a width that may decay at
oo with some power law. A linear lower bound on Re V(z) for 2 — oo in that
neighborhood is also needed.

The assumption then reads:

(GA)stp A function V is said to satisfy (GA)sp if (1) and (2) hold:
(1) V satisfies (GA) .

(2) “//,/E(;;g = O(1) for z — oc.

A large class of functions V satisfies (GA)gsyp, including in particular all real
strictly convex polynomials.

We are now able to formulate our first theorem that completely covers the case
J=R.

Theorem 1.1. Assume that V : R — R satisfies (GA), and let ny be given as in
Definition 2.9 (see also Definition 2.83). Then we have for all t > by :

e_NnV (t)

by —a 1 1
O = T N —an € (i) +© (N31) »

(i) Fort in bounded subsets of (bv + WN%/?” oo) the error bounds are uniform
in t. Here, vy denotes a constant that is defined in (3.29). This covers the

moderate and large deviations regimes.

(ii) If V' satisfies the stronger condition (GA)sLp, the error bounds in (1.14) are
uniform for allt € (bv + Wle/g, oo). In particular, this includes the regime
of superlarge deviations.

Note that in the statements of (i) and (ii) the interval (by + W?

replaced by (by + CN%/?,, o0) for any ¢ > 0. Our choice is motivated by the condition
s > 1 (see (1.13)). Any change of the constant only concerns the regime of the
Tracy-Widom Law and is therefore of no consequence for the results of this thesis.

o0) could be

Now we turn to the case that V : J — R where the interval J is a proper
subset of R. We first consider the case that J is still unbounded above.

Theorem 1.2. Let V : J — R satisfy (GA) with J = [L_,00) and L_ > —oc.
Then the results of Theorem 1.1 hold true.
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Of course, the statements need to change if L, < oo. First of all, there exists

no superlarge deviations regime and condition (GA)syp is obsolete as well. On the
other hand, we have Oy y(Ls) = 0 by definition, contradicting (1.14). As it can
be seen from Theorem 4.10 (ii), there is still a uniform leading order description
for Oy v (t) albeit it is somewhat involved. A straight forward analysis of the
formula in Theorem 4.10 (ii) (a) shows that the asymptotics (1.14) breaks down
at about distance % from L.
In the next theorem we do not consider the transition but provide a regime in
which (1.14) still holds and in a regime where the decay of Oy () to 0 can be
expressed in a simple form. A version of statement (i) of the following theorem
has already been announced in [21].

Theorem 1.3. Assume that V : J — R satisfies (GA) with J = [L_,Ly]NR and
L, < oo. Then,

L, — (log]\]]V)o‘)’ a > 1, formula (1.14) holds with error

(Z) Fort e (bv + m,
bounds that are uniform in t.

(ii) For0< L, —t=o0 (%) we have

by — ay e_N”V(t)(L+ — t)
= . 1 1 N .
Onv(t) - E= bl —av) (1+o0(1)), asN — o0

Leading order information on the outer tail that apply to general classes of unitary
ensembles have been achieved so far in the following papers. The leading order
behavior of Oy, (t) can be deduced from [8, 11] in a region that is contained in
(bv, by + (% log N)?/?). In the regime of large deviations, weaker leading order
information (for log Oy (t)) is available from [3, 20] like in the Gaussian case
above. Note that 7y is exactly the rate function of the theory of large deviations.
The known relation between the rate function and the corresponding minimizing
problem is explained in Remark 2.12. As it will be clear from the discussion below,
the results in [8, 11] prove universality for the outer tail in (by, by + (= log N)?/3),
whereas [3, 20] show V-dependent, i.e. non-universal behavior in the regime of
large deviations. Our results allow to determine precisely the range of universality
for the outer tail of the distribution of the largest eigenvalue.

It is remarkable (see Theorem 4.11) that

- The leading order behavior of Oy (s) is universal (and given by (1.9)) if
and only if s = o(N*/1%). For a description how universality slowly fades
out for larger values of s see Remark 4.12.

- The leading order behavior of (log Oy (s))s%? is universal (and given by
(1.10)) if and only if s is in the moderate regime, i.e. s = o( N?/3).



Here we mean by universal that the respective leading order behavior holds true
for all functions V satisfying (GA). Observe that the definition of O,y (s) does
contain the V-dependent numbers by and . So the universality holds up to the
corresponding rescaling. However, this is also exactly the situation in the Central
Limit Theorem where the expectation and the variance take the roles of by and

Y-

We now outline the method of proof for Theorems 1.1-1.3. It uses the or-
thogonal polynomials’ approach that is well-explained in [7]. Denote the k-point
correlation functions by

N!
RV (M, ) = N &) /RN% Py (A) dAgsr - -dAy

for 1 <k < N with Py as in (1.2), which describes the k-th marginal distribu-

N!
N—Fk)!

a probability distribution since [g« Rgé)v()\l, co AR dA - dA = N k), # 1. We
use two facts that hold for the considered densities Py y:

The distribution of the largest eigenvalue of unitary ensembles can be expressed
in terms of k-point correlation functions:

(see [2]). Observe that Rg\lﬁ)v does not represent

tion of Py y up to the factor (

PN,V(Amant_ k' / /RNV Moo A AN dhe (1.15)
k=0

(see e.g. [7, Section 5.4]). Furthermore, RE\IZ)V can be written as the determinant
of a k x k-matrix, whose entries are determined by some function Ky that is
independent of k (see [7, (5.40)]):

Ry M-y M) = det[(K iy (i, \)hi<ijer], 1<k <N. (1.16)

Moreover, Ky has a representation in terms of orthogonal polynomials. Let

P (@) =32’ +..., A0 >0, (1.17)

denote the unique orthogonal polynomial of degree 7, 0 < 5 < N, with respect to
“NV() dg, i.e.

/Jpg\zf)v(x)Pg\Jf)V(@ eV dg = 0ij.
Then we obtain ([7, Section 5.4])

N

Kny(z,y) Z P (y) e 2V@HVW) gy e . (1.18)
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In order to establish results on the probability that A,.. is larger than ¢, it is
necessary to study the behavior of Ky and the involved orthogonal polynomials.
Due to the Christoffel-Darboux formula (see [33]), we can express the kernel by

~(N=1)  (N) (N-1) (N—1) (V)
Kny(e,y) = 71\/(,]\\//) DPyyv v(@)pyy (y) — oy (@)pny (y)e_g(v( )+V (1))
B0 A% r=Yy

, T Fy,
(1.19)

which explains that Ky is often called the Christoffel-Darboux kernel. As a
consequence of (1.19), one has to consider the behavior of the Nth and the
(N — 1)st orthogonal polynomial instead of all polynomials from degree 0 to
N —1.

Since we are interested in the distribution of the largest eigenvalue, we need a
description of K near the upper edge by of the spectrum. According to [8, 25],
the following limit exists for z, ¥ in bounded subsets of R if N tends to infinity:

1
lim KNV <bv—|—x b

Yo\
N—voo yy N2/ N2/ + WN2/3> = Ai(z,y). (1.20)

The limit is called Airy kernel Ai: R? — R. It is defined by
Ai(z, 1) ::/ Ai(z + ) Ai(y + ) dt, (1.21)
0
where
_ 1o /1,
Ai:R = R, T —/ cos (3t + a:'t) dt (1.22)
7 Jo

denotes the Airy function. It solves the linear differential equation y”(x) = zy(x)
on R and is uniquely determined among all solutions of 3y = xy by the asymptotic
condition (see [1, (10.4.59)])

Ai(z) = e 3 (1+(9( 3/2)) as T — 00.

1
2\/mxl/4 1€
In order to study the regimes of moderate, large, and superlarge deviations, we
need further information about the limit in (1.20) if x and y are chosen from

unbounded subsets of R. So far, the best known result is given in [8, Theorem
1.1], which states that

1

A —2/3 —c(z+y)
N —Al(ac,y)—i—O(N e y)

x y
NP (bv e v 7VN2/3>
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for the special case V : R — R, V(z) := 2™, m € N. Here, the error bound
and the constant ¢ > 0 therein are uniform for x, y € [Lg, 00) with Ly € R arbi-
trary, but fixed. In particular, x and y are not required to lie in a bounded set.
However, this asymptotic is not sufficient for our purposes because of the rapid
decay of the Airy kernel for x, y — oo (c.f. Lemma 4.1). For z, y > (log N)“
and o > % the Airy kernel is dominated by the error term. These results are
indeed sufficient to obtain the Tracy-Widom distribution for the rescaled largest
eigenvalue % for N — oo (see [8, Corollary 1.3]), but one cannot achieve
moderate, large, or even superlarge deviations results, except for a small region
in the moderate regime.

We conclude the Introduction by outlining the contents of the remaining parts
of the thesis.

In Chapter 2 we start with the study of the equilibrium measure ;" and mo-
tivate the corresponding minimization problem by a heuristic discussion of Py y
(see description at the beginning of Section 2.1). Classical references for the equi-
librium measure are [23, 31]. In Section 2.1 we explicitly construct a measure
du¥ (z) = py(z) dz for all V satisfying (GA) that solve the related Euler-Lagrange
equations (see (2.3) and Lemma 2.8). The next section is dedicated to the log-
transform gy of the equilibrium measure, which is an essential ingredient for the
Riemann-Hilbert analysis performed in the following chapter.

In Chapter 3, the condition on V to be real analytic in a neighborhood of
J comes into play when we perform the nonlinear steepest descent method of
Deift-Zhou [13] and further developed in [12]. Results in the case of finite regu-
larity of V' can be found in [26] but for simplicity we will not treat this case. A
Riemann-Hilbert problem is, roughly speaking, the problem of finding a matrix-
valued function that is analytic on the complex plane except along a given curve,
where a prescribed jump condition has to be satisfied together with an asymptotic
condition at infinity. Following [15, 16], we recall in Theorem 3.1 that the unique
solution Y of such a specific problem can be expressed exactly in terms of the or-
thogonal polynomials p%v‘), and pg\],v‘; 1), which are part of the Christoffel-Darboux
kernel Ky (see (1.19)). In Sections 3.1 and 3.2 we transform the Riemann-
Hilbert problem for Y into a Riemann-Hilbert problem for R whose solution can
be written in the form Id +small. The main results of this Chapter are given in
Theorems 3.26 and 3.27. The first one provides a representation of R with an
uniform error on bounded subsets of J which is sufficient to obtain moderate
and large deviations results. The second theorem deals with the case Ly = oo
and is used for superlarge deviations. Indeed, Theorem 3.27 is the reason why
we introduce (GA) to obtain error bounds that are also uniform on unbounded
sets.
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Reversing the transformations from Y to R, we achieve an asymptotic descrip-
tion of Y which is used in Chapter 4. There, we first turn to the kernel Ky i that
has a representation in terms of the orthogonal polynomials (see (1.19)) contained
in Y. In Section 4.1 we use the asymptotic behaviors of Y and of the Airy kernel
(see Lemma 4.1) to obtain the leading order behavior of Kyy with a uniform
error bound in different subsets of J (Theorem 4.4). Using the representations of
Ky v together with (1.15) and (1.16), we obtain the main results of this thesis.
In Theorem 4.11 we present the connection between the asmyptotic behavior of
the outer tail O ~,v and the asymptotics of the Tracy-Widom distribution which
is the basis of the universality result described above. Finally in Example 4.13 we
make the Gaussian case explicit.



Chapter 2

The Equilibrium Measure

In this chapter we will provide information about the equilibrium measure which
is an essential ingredient for the analysis of the Riemann-Hilbert problem. In
the first section the energy functional is motivated that defines the equilibium
measure ;" as its unique minimizer. Moreover, we construct p" explicitly and
show that it satisfies the corresponding Euler-Lagrange equations. In the second
section we focus on some properties of its log-transform gy that are needed in
Chapter 3. We also discuss its connection with the rate function ny .

The presentation follows essentially [7, Chapter 6]. More details than can usually
be found in the literature are given for the proofs of Lemmas 2.1, 2.8, and 2.15.
For our analysis of the superlarge deviations regime it is useful to compare the
asymptotic behaviors of V' and ny (see (2.32), (2.34), and Lemma 2.18).

2.1 Existence and uniqueness of the Equilibrium
Measure

In the Introduction we have seen that the probability measure on the vector of
eigenvalues A = (A1, ..., A\x) € JV is given by dPy v (\) = Py (A) dX with

Pva()\) -

Zlv exp (210g (H A — M) _ NZ}WM)

i<j

1 N

ZN,V i#j i=1

) L (21
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Denoting ) the normalized counting measure of A, i.e. uy := % SN 8, we have

1

_ e—N2iV(HA)
Ny

Pnyv(N)
with
L= [[ logle =yl din@)dua(y) + [ Via) dpa(a)
J2\{(z,z)|zeJ}

The exponent Iy (115) together with the fact that [, duy = 1 motivate the follow-
ing definition. Denote by M(.J) the set of Borel measures on J with [, du =1
and set

I M) =R () i= [ [ 1ogla =y du(a) duty) + [ V(@) du(a)
(2.2)

The functional Iy, also arises in potential theory where it has an interpretation as
an energy. This is the reason why Iy is usually referred to as the energy functional
for the potential V. Having (2.1) in mind, we expect that the leading contribution
of integrals with respect to dPy1(A) is determined by tupels A € JV for which
Iv(py) is close to the infimum of Iy,. Under assumptions on V that are much
weaker than (GA); it can be shown that there exists a unique minimizer p" of
Iy, called equilibrium measure. Moreover, (see [7, Section 6.6]) the minimizer is
characterized by its Euler-Lagrange equation. More precisely, for p € M(J) one
has

p=p" <= pusatisfies (EL)

with
>0 , if x € J\supp(n),

=0 , if 2 € supp(p).
(2.3)

(EL) 3Fily eR: 2/Jlog |z —y| M du(y) + V() + Iy {

In this thesis these general facts about equilibrium measures, that hold for a
rather general class of potentials V', will not be used. Instead, we will construct
a function py for potentials V' that satisfy our general assumption (GA), such
that py(z)dz € M(J) satisfies (EL) (see Definition 2.3 and Lemma 2.8). By
what has just been said it is justified to call py the density of the equilibrium
measure. One ingredient of the proof are the Mhaskar-Rakhmanov-Saff numbers
(MRS numbers in short) ay, by € R (see e.g. [28, 30]) depending on V' that are
implicitly defined by two integral equations. For the convenience of the reader
we verify the unique existence of these numbers in Lemma 2.1 for strictly convex
twice differentiable functions V' defined on all of R.



2.1 Existence and uniqueness of the Equilibrium Measure 15

Lemma 2.1. Let V € C*(R,R) be a function with limjy . V(z) = co whose
derivative V' is strictly monotonically increasing. Then there exist unique real
numbers a = ay and b = by with a < b that are determined by the following two
integral equations

/ V0 gy, (2.4)
@ y/(b=1)(t —a)

/ V) g on (2.5)
o SO0t —a)

Proof. Due to the assumptions on the function V' to be strictly convex with
V(z) — oo for |z| — oo, V has a unique minimum assumed at x = m. We can
say without restriction that m = 0, otherwise consider V(z) := V(z — m). It is
not difficult to see that (a,b) solve (2.4), (2.5) for V' if and only if (a —m,b—m)
solve (2.4), (2.5) for V.

First of all, we notice that

v {<o it <o, 26
>0 ,ift>0,

since V' is strictly increasing and V/(0) = 0. This implies that the first integral

equation can only be satisfied in the case a < 0 < b. The proof is structured in

the following way:

Claim 1: For any b > 0 there exists a unique a = a(b) < 0 satisfying (2.4).

Claim 2: The such defined function a : (0,00) — (—00,0) is strictly decreasing.

Claim 3: limy\ o a(b) = 0.

Claim 4: There exists a unique b > 0 such that (2.5) is satisfied with a = a(b).

Then, the statement of Lemma 2.1 is a direct consequence.

Proof of Claim 1:
Using the substitution ¢t = “TJ“b + b_T“s for a < b, we obtain

b—a

/b ) dltZ/lvl(a;b+ 2S>ds a<b
a £)(t —a) ’

[(b—t)(t 1 /1= 82

and define for b > 0:

g : (—00,0) = R, w@:/vﬁggyw, (2.7)

a+b+b—a
2 2

with fy(a,s) == s. (2.8)
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Let b > 0 be arbitrary, but fixed. g, is a strictly increasing function on (—o0,0),
which can be seen as follows. The derivative of g, is given by

/ PV (fo(a,5))(1 = s)
gp(a) —/_1 Wi ds. (2.9)
The strict increase of V' implies that the integrand in (2.9) is non-negative.
Moreover, for any a < 0 there exists s € (—1,1) such that V"(f(a,s)) > 0.
Since V" is continuous and 1 — s > 0 for s € (—1,1), we have g;(a) > 0 for
all a € (—00,0). Since lim, o gy(a) > 0 (see (2.6)), it suffices to show that
there exists a € (—o0,0) with gy(@) < 0. Indeed, the existence of a function
a: (0,00) = (—00,0), b — a(b) such that g,(a(b)) = 0 follows then from the
Intermediate Value Theorem and the uniqueness of a(b) follows from the strict
monotonicity of ¢,. In order to complete the proof of Claim 1, we split ¢, up in
the following way:

@) V'(fo(a, s)) L V'(fi(a, s)) _
= d / 22D s = +(a),
gv(a) Iy i 5+ @) V15 s =:g, (a) + g, (a)
where z(a) := —gf—g has the property that

<0 ,ifse[-1,2(a)),
fola,s)S=0 , if s = x(a),
>0 ,if s € (zp(a),1].
This implies V'(fy(a,-)) < 0 on [—1,z4(a)), V'(fo(a,-)) > 0 on (zp(a),1] (see
(2.6)) and in particular g, < 0 and g > 0 on (—o0,0). Choose @ < —3b. Then
xp(@) > 0 and
_(x 0 V'(fu(a,s)) :

< d “ SmVi(—b
b (a) =/, m s < m — 7T ( )

Furthermore, we express g;~ through g (a) = [, V\(/J;”E%g))x[mb (a)1](s) ds. For all

€ [-1,1] and a € (—o0,0] we have
V'(fo(a, s)) V'(b)
T a5 AXlrp(a S
‘ i X (9)| < =3

and / ds =V'(b)7 < .
1 — 52

Since aErPoo xp(a) = 1 and applying Lebesgue’s Dominated Convergence Theorem,
we obtain lim gi (a) = 0. We can now choose @ < —3b with the additional
requirement g, (@) < —imV’(—b). Then,

(@) = g5 (@) + g5 (@) < V(=) — LxV'(=b) = LeV(b) <,
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which completes the proof of Claim 1.
Hence, for any b > 0 there exists one and only one a(b) < 0 such that

aa®) = [ W ds = 0. (2.10)

Proof of Claim 2:
We differentiate (2.10) with respect to b and solve the resulting equation for a':

fl V" (fo(a(b),s))(1+s) ds

d(b) = — Ty s (2.11)
f,ll v (fb(\/(l)sg )1-5) 4g°

Using the same arguments as below (2.9), one concludes that both numerator
and denominator of (2.11) are positive, which yield a/(b) < 0 for b > 0.

Proof of Claim 3:
Since a : (0,00) —
a* = limpy g a(b) € (—

(—00,0) is strictly decreasing (see Claim 2), the limit
00, 0] exists. Consider the function

LV (falb, 5))
o VI—8

with f,(b,s) = fiy(a,s) for a < b (see (2.8)). One can show with the same
arguments used in the proof of Claim 1 that for any a < 0 there exists a
unique b = b(a) > 0 such that §,(b(a)) = 0. Assume now that a* < 0. Then
b* :=b(a*) > 0 with g,+(b*) = 0. Since gy(a) = Go(b) for a < 0 < b (see (2.7)), we
have a* = a(b*) < limp o a(b) = a* providing the desired contradiction.

Ja:(0,00) = R, Ga(b) := ds

Proof of Claim 4:
Define

a(b) +b b—a(b)
2 * 2

f(b,s) = s, b>0,s¢e[-1,1],

with a(b) as defined in Claim 1. The substitution ¢ = f(b, s) for b > 0 yields

/b V(¢ 4 f (b )V'(f(b.5)
a(b) \/(b—t)(t—a - 1—52

Using

LVI(f,s)) ,
/lmdS—O (2.12)
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(c.f. (2.10)), we obtain
/b tV'(t) & — b—a(b) rt sV'(f(b,s))
a(b) \/(b—t)(t—a(b)) 2 Ja V1=

which suggests to define

ds,

b—a(b) r sV'(f(b,s))
2 -1 /1 — 52

and seck for b > 0 with h(b) = 27 in order to satisfy the second integral equation.
By Claim 3 we have limy\ g h(b) = 0. Our procedure is now the following: First,
we prove that h is a strictly increasing function. Then, we show that there exists
b > 0 with h(b) > 2. Since h is continuous on (0, 0), one concludes the unique
existence of b > 0 with h(b) = 2.

In order to start with the first step, we introduce the measure « on [—1, 1] with

h:(0,00) = R, h(b) := ds

density 9% := % and denote its moments by my := [, s*da(s). Together
with (2.11) we obtain a'(b) = ngﬁl Then, using (2.12),
1—2d(b) t sV'(f(b,s b—a(b
h'(b) = 5 (®) g \/(1f£732>> ds + 4() [(a' (D) + 1)my + (1 — a’(b))ma)
1—a( fbsV’ b,s)) b—a(b) memy —m?
= ds + . .
b—a(b 1— 32 2 mo — My
For b > 0 we have a(b) < 0 (see proof of Claim 2), b — a(b) > 0, and
I %\/—S)ds > 0, since tV'(t) > 0 for all ¢ € R\{0} (see (2.6)). Further-

more, one concludes from the positivity of the denominator of a’(b) (see (2.11))
that mo > m;. Due to the Cauchy-Schwarz inequality we have (1, 1-sda(s))? <
(S, 12da(s)) - (1, s> da(s)), which yields m? < m0m2 Hence h' >0 on (0,00).
In the last step of the proof we choose b > max{2, - v'(1)7 V, } For the related

value @ := a(b) we can either have —a < b or —a > b. We now show that in both
cases h(b) > 2 holds. We have for —a < b that

b / 5
hb) > Vi) g W/( )(g—arcsin (6 a))

b/2 \[(b—t)(t — a) —a

bV2( ) (2 — arcsin (;)) > EV;“) > 2m,

v

and for —a > b

o2 [ e () ()

bV/(2 ) (arcsm <

| \/
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This completes the proof of Claim 4. O

Remark 2.2. Although Lemma 2.1 is formulated only in the case J = R we may
still learn something from it if L, < oo or L_ > —oo. In theses cases we can
extend any V that satisfies (GA); to a function V : R — R for which the assump-
tions of Lemma 2.1 hold. Since ay, by are uniquely determined, we conclude that
there exists at most one pair of numbers L_ < a < b < L, satisfying (2.4) and
(2.5). Moreover, no such pair (a,b) of MRS numbers exists if and only if ap, < L_
or by > L. As mentioned before the equilibrium measure p" exists uniquely for
all V that satisfy (GA); independent of the existence of the MRS numbers. If the
MRS numbers do not exist the density of the equilibrium measure generically has
a singularity at least at one finite endpoint of .J, which is then called a hard edge.
At a hard edge the distribution of the extremal eigenvalues is not converging to
the Tracy Widom distribution as N — oo. Since this case is not the subject of
the thesis, we exclude this possibility. In fact, condition (GA) on V is precisely
condition (GA); together with the assumption that the MRS numbers exist in
(L - L+)'

Next, we define py (c.f. paragraph below (2.3)) together with some useful
auxiliary functions (see [7, Chapter 6] for a motivation). The fact that py in-
deed represents the density of the equilibrium measure " is the main result of
this section, which is stated in Lemma 2.8 below.

Definition 2.3. Assume that V' satisfies (GA). We define

qv : C\ lav,by] = C, qv(z) = (2 — bv) (z — av)% (2.13)
hy i JxJ =R, hy(t,z) ::/0 V" (z +u(t — x)) du (2.14)

. . ‘:l by hy (t, x)
Gy:J =R, Gylz): 7T/av (bv_t%(t_av)%dt (2.15)

NI

)
1 _ . 1 .
pv - R — R PV($) = { ( 4 LU) (I CLV) GV(I‘) ) ifre [aV7bV]7
0 , else.

(2.16)

Remark 2.4. (i) In all of this thesis we use the principal branch for the function
Z z%, z + log z, and z — arg z. In particular it is implicit that z € C\Ry .

(ii) By (i) the function gy as given in (2.13) is only defined on C\(—o0,by].
However, there exists an analytic extension to C\ [ay, by]. Hence, the above
defined function ¢y must be considered as this analytic continuation.
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On [ay, by] we have extensions (qy )+ from the upper resp. lower side of R:

[NIES

(av) (@) = lim gy (o £ i) = i (by —2)* (x —av)? . € [av, by].

This leads us to another representation of Gy and py (c.f. (2.15) and (2.16)):

_ l bv ihV(tvx) T
G”@‘wlvwmgw“’ e J,
pv() = o (av). () Gu(x), v € av, by

In the case € R\[ay, by] one readily verifies that (qv)(z) = (qv)_(x) =
qv () with

1

(x—bv)%(m—av)% , if x> by,
qv(z) = i i .
—(by —x)2 (ay —2)? | ifz<ay.

(iii) For arbitrary values t, z € J we have
1
V()= V'(x) = / V' +ult —x))du(t —x) = hy(t,2)(t —x). (2.17)
0

Hence, there exists another representation for hy on {(¢,z) € J* |t # z}:

V() = V()

hV(tvx) = T —t

(2.18)

(iv) V is a strictly convex function, which induces by (2.17) the positivity of hy
on J2\{(z,z)|z € J}. Hence we conclude that

Gy >0 on J. (2.19)

In the following proposition we provide auxiliary results that are used in Corol-
lary 2.7 and Lemma 2.8 below.

Proposition 2.5. (i) Let a, b € R with a < b and let f : C\[a,b] — C be a
holomorphic function, which has limits fy from the upper resp. lower side

of [a,b] such that (2.20) below holds. For all z € C\|a,b] we have

()

Ui ),
=3 = )

271 t—z

—f(2) + Res(h,,0) with h,(¢) =
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(i) Let V' satisfy (GA) and let qy be given as in (2.13). Then we have for
z e C\[av,bv],

1 b ) 1 1
S A dt = —
qv(2)

T Jay (qv)+(8) 1=z

Remark 2.6. We shall see in all our applications that the hypothesis (2.20) is
easily verified by Cauchy’s Theorem and by the Dominated Convergence Theo-
rem.

Proof. (i) We first introduce the curves 7, 7., and I, according to Figure 2.1. ~y
denotes a closed curve that is orientated positively and winds once around
[a,b] but does not contain z € C\[a, ] in its interior. 7, is a circle around
z with a sufficiently small radius such that v and v, do not intersect. The
curve I', denotes the boundary of the circle B,.(0) with > 0 big enough to
ensure v and -, in the interior of B,.(0).

o
R 0B,-1(0)

Figure 2.1: The curves v, [',, 7., and o.
We now use the assumption

A0, 1 f©)

270 /a t—2z dt = 2mi [y (—z de. (2:20)
Since f(z) = 5= /., g(fz) d¢ we have

s 1 f©Q)

27?2'/«,(—2(1(— f(z)+2m'/rzé—zdg'

We now perform a residue calculation at infinity by first parameterizing I',
through T',(¢) = re', ¢ € [0,27], and then substituting o(t) := %(t) This
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yields

1 f(¢) T
2i FZC—de 27TZ/ F )— =z L) dt

o f(olt)) '<_U§?> Y eri/_g (SR

2 o)™l —z ot (l-z (2

_ 1 ()
27 /—g (1—20)¢ d

with ¢ = 90B,-1(0) as in Figure 2.1. For ¢ on ¢ we have (™! on I', and
|2¢| < 1, which completes the proof of part (i).

(ii) Observe that (gv )y = —(qy)_ on the interval [ay, by], which yields 7(q‘/1)+ =
l( LS )andhence

(qv)+ (qv)-

1 fbv i 1 1 by 1 1 1
il ane L <<qv>_<t> - <qv>+<t>>'t—zd"

We can now verify the hypothesis of (i) (use Remark 2.6) with a = ay,
b=by, f= i and obtain

1 rov 1 1 1
—/ : dt = — + Res(h.,0)
mJay (qv)4(t) -2 qv (2)

with h (C) W for 2 < C\[CL\/, bV]
-1

Since gy (¢71) = (X1 — by O)Y?(1 — ay¢)Y/? for |¢| small, we have

1
h.(¢) = (1= by OV2(1 — ayO)V2(1 — C2)

for |C] small.

Obviously, h, can be extended analytically in 0 and hence Res(h,,0) = 0.
]

A first implication of Proposition 2.5 is given in the following corollary, which
states another representation of Gy and Gf, on J\[ay,by| that will be used in
Lemma 2.18.
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Corollary 2.7. Let V satisfy (GA) and let Gy, qv be given as in (2.15), (2.13).
For x € J\|ay, by] we have

ot 2 At v,
o) = 1 G e e
g o ()
e (0 )
Proof. Since z € J\[ay,by], we can apply (2.18) and obtain
Gv(@) = V;(r%) /: x 1—t | (qV;+(t) - 71r/abvv Z /—(ti | (QV)i+(t) o
0= [ e e e e
i i/bvv (xv /—(tt)>2 ' (QV;+(t) «

(c.f. Remark 2.4 (ii)). Proposition 2.5 (ii), the identities

1 B 1 4 t—av I (t—av)Q
r—t z—ay (r—ay)? (v—ay)(z—1t)
1 . 1 2<t—av) (t—av)2 t—av
(x—1)2 (JZ—CL\/)Q—'_ (.T—av)3+(33—av)3($—t) <3+ x—t)’

and the fact that the MRS-numbers ay, by are determined by (2.4) and (2.5),
yield the desired equalities. O

The representations of Gy and Gy, in Corollary 2.7 yield in particular

) |
Gy(w) = =5+ O (=) (2.21)
Gl (z) = ‘C]/Vg; +V'(2) O (p2) + O (oboys) (2.22)

for z — oo.
We are now ready to prove the main result of this section:
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Lemma 2.8. Assume that V' satisfies (GA) and let py be given as in (2.16). Then,
(i) py >0 on (ay,by),
.. b
(i) Joy pv(t)dt =1,
(1ii) pv(z)dx satisfies (EL) (see (2.3)).

Proof. We suppress the V-dependency of all functions and numbers in the proof
and write for example @ instead of ay. Statement (i) is immediate from (2.19)
and (2.16). The main key to prove (ii) is the connection between the analytic
auxiliary function

, _alz) b AV'(2)
F:C\[a,h] = C, F(z):= zm'/a RO

and the Cauchy transform of p, which is defined by
L v plt)
CpiC\la,t] 5 C,  (Cp)()i= 5 [ Lt
p: C\la, ] ) () i= 5 [ L2
The trick consists of rewriting F' such that one can derive Fy (x) for € J. Using

V'(t) = V'(x) + h(t,z)(t — x) for arbitrary ¢, x € J (see (2.17)) and Proposition
2.5 (ii), we obtain for all z € C\[a,b] and z € J:

@ o) ihlta)(t )
F(z)= 5V | r =2 ¥ o / r =2 &

V') q(z) pPih(t x)(t — )
T om om / Tq4 () (¢ — 2) «

Hence, by dominated convergence and (2.15), (2.16), we obtain

Fn) = B OG0 —Re(ri@) (229)

for x € J. This representation of Fl on [a,b] C J is important to obtain the
desired relation between F' and Cp. Since F, — F_ = #q+G = 2p on [a,b] and
using Proposition 2.5 (i) (see also Remark 2.6), we have

2Cp)(2) = — / PR =) G p) — Res(ha0)  (2.24)

_% t— =z

with h,(¢) = ﬂi?) for z € C\[a,b]. We now come to the point where we use

equations (2.4) and (2.5) that define a and b. Together with = = —%—Z%—l—#iz)
and ¢(z) = z(1 + O(|z|™1)) for |z| = oo we obtain

F(z)—q<z>< 2 +O(|Zl3))=—7éz+(9(;|2) for |z] — oc.

271 22
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Due to this asymptotic we can also state the asymptotic behavior of h,(&) for
&E—0:

Feh) L+ 0(eP) _ —2 +0(e)
- e(l-&) ¢

It is now obvious that h, can be continued analytically in 0, which yields (see
(2.24))

h.(§) = for £ — 0.

2(Cp)=F on C\[a, b]. (2.25)

In addition, we have for |z| — oo,

f+(’)(||2):7m'F()—2me / plt _1/; ()dt+(9<%)

which shows (ii) by comparison of coefficients.

The last step consists of the proof that the Euler-Lagrange equations (see (2.3))
are satisfied for du(xz) = py(x) dz. To this end we introduce the Hilbert transform
Hp:R — R, (Hp)(z) := 1PV [ % dt. The derivative of [log |z — y|~'¢(y) dy
for any Holder continuous function ¢ is given by m(H)(z) (see [7, Section 6.7]).
Hence, we have

= T [1ogle — sl o) dy + V()| = 2x(Hp) @) + V' (2). (2.26)

The relation 2(Cy1p) = p — iHp on R between the Cauchy- and the Hilbert
transform (see [7, (6.135)]) together with (2.23), (2.25) leads to

1 Re(g4(2))G(0).

(Hp)(x) = ~21m((C4 p)(2)) = Re(iF, (1)) = —_V'(2) + o

2m
Since G > 0 on J (see (2.19)) and
>0 ,ifz>0b,

Re(q:(¢)) =0 , if z € [a,8],
<0 ,ifz<a,

(see Remark 2.4 (ii)), we obtain

<0 ,ifxel[l_,a),
2m(Hp)(z) + V'(z) = Re(g4(2)) - G(z){=0 , if x € [a,b], (2.27)
>0 ,ifze (b Ly
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(2.26) and the Fundamental Theorem of Calculus yield the existence of [ € R
such that

>—1 ,ifz e J\|a, b,

2 [ tog e —yl " p(y) dy + V
loglz =yl ply) dy (x){:_g , if z € [a,b)].

Since [a, b] is the support of p, condition (EL) (see (2.3)) is satisfied. O

2.2 The log-transform of the Equilibrium Measure

In this section we analyze the log-transform gy of the density py of the equilibrium
measure which is needed in the Riemann-Hilbert analysis performed in Chapter
3. Furthermore, we make use of the real analyticity of the function V' that allows
us to study holomorphic extensions of the functions hy, Gy, and py depending
on V. The main results of this section are stated in Lemma 2.15 and 2.18. The
first one deals with the holomorphic extensions of Gy, ny, and &, on a suitable
bounded neighborhood of .J. These estimates are substantial for the construction
of a local parametrix used in the analysis of the Riemann-Hilbert problem in
Section 3.2. The representation of 7y through V and an error term in Lemma
2.18 allows to formulate the assumptions (GA)sLp for the superlarge deviations
regime in a simple form without explicit reference to 7y .

Definition 2.9. Assume that V satisfies (GA) and let py, gy, and Gy be given as
in Definition 2.3. We set

by
gv :C\(—00,by] = C,  gy(z) = / log(z — t)py () dt, (2.28)
by
v R — R, Ey(x) = 27?/ py(t)dt, (2.29)
/bx oGyt dt if x> by,
\%4
ny:J — R, nv(z) =10 , if z € [ay, by,

/ ' —qv(t)Gy(t)dt , if x < ay.
(2.30)
The function gy is called log-transform of py .

Since supp py = [ay, by| and ff“/’ py(t)dt =1 (see (2.16) and Lemma 2.8 (i),
(ii)) we have

0 s if x Z bv,
= 2.31
év(@) {27r , ifx < ay. ( )
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We can provide information about the asymptotic behavior of 7y, and its first and
second derivative on (by, L) as well. First, (2.19) and (2.13) imply that ny(z) is
strictly monotonically increasing for x > by . Due to the representation of Gy in
(2.21) and gy (z) = O(z — by) we obtain

0y (@) = v ()G (2) = V'(2) + O (2

V) for  — oo, (2.32)

which also yields by the strict monotonicity of V' that

lim ny () = o0 (2.33)

T—00
e (35—1@\/ + I—lbv) =0 (ﬂﬂ—lbv)

in the case L, = oo. Furthermore, using @ =
and (2.22), one has for x — oo:

U (@) (o) + av(0)Gy o)

(z)
=0 (=) (V@) + 0 (7)) + V@) + V@0 (75) + O (=)
_ ”(.Z') + V/( ) ( ) + O ( = bv)2> . (234)

The estimate claimed in Proposition 2.10 is used in both Chapters 3 and 4.

N[ =

~

=

ny(z) =

<

Proposition 2.10. Let V' satisfy (GA) with L, = oo. Then, for every e > 0 there
exists a constant cy = cy(€) > 0 such that for every x > by + ¢,

nv(z) > ny(by +¢€) +cy(x — (bv +€)).
Proof. The strict monotonicity of V' implies hy > 0 (see (2.14)) and consequently

L by (ta)
S - )
GV (ZU) - 7T/a (b—t)1/2 (t_a)l/Q dt

see (2. with a = ay and b0 = by. For all x > b and t € |a, “%=| we obtain
( (2.15)) with d b = by. For all b and [ “;rb] btai

Vi) = Vi) V) = V()

hv(t, ZE) =

x—t T —a

Consequently,

for all x > b.
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For x > b+ € we have

mwie) = b+ + [ fE-bt—acva
1B — 17 (DY g —
va(b+e)+v(b) 2V(2)/b+e‘/:—2dt'

Since the integrand is strictly monotonically increasing, we have ,/g >

Vi)V () _
5=/ i—a > 0 to obtain the

statement. ]

€
b—a+e

for t € [b+ €, z]. We can now choose ¢y =

In the following corollary we provide some properties of the log-transform gy .

Corollary 2.11. Assume that V satisfies (GA) and let gy, &v, nv, and ly be given
as in Definition 2.9 and (EL) (see (2.3) and also Lemma 2.8 (iii)). Then,

(1) (gv)+(x) = (gv)-(z) = i&v(x) for x € R.
Together with (2.31) this implies in particular that e9V possesses an analytic
extension to C\|ay, by].

(ii) (gv)+(@) + (gv)-(z) = V(2) + v —nv(x) for x € J.
(iii) gv(z) =logz + O (|z|7!) as |z| = oo.

Proof. Statement (i) is immediate from the pointwise limit

(gv)+(r) = / vlog!x —t|pyv () dtim/

ay x

b b

\4
pv(t)dt
for x € R combined with (2.29). Furthermore, using
v = =2 [ loglby =yl pv(y) dy = V(bv)

(see Lemma 2.8 (iii)), (2.26), (2.27), (2.30), and Remark 2.4 (ii), we obtain

2 [ loglz =y pv(y) dy + V(@) + Iy

- [ (2 froele st an 4 veo) | a
= [ Rella) )Gy (1)t = (@)
which proves (ii). Claim (iii) follows from
log(z—t):logzntlog(l—g):1ogz+@<‘?1l>’ for 2] — oo

uniformly in ¢ € [ay, by] and Lemma 2.8 (ii). O
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Remark 2.12. The connection between 7y, the functional Iy, and the constant [y
from the Euler-Lagrange equations (see (2.30), (2.2), and (2.3)) becomes obvious
in the proof of Corollary 2.11. For x > by we have

wio) = [ () @a= (2) )+

One may also view 1y (z) as the value of the left hand side in (EL), i.e

(@) =2 [ logle [~ py(y) dy + V(2) + Iy

In our Riemann-Hilbert analysis in the next chapter (in particular the trans-
formation S — T') we need to make use of the real analyticity of V. Since J is
its domain of definition, there exists an open and convex neighborhood Dy C C
with J C Dy and a holomorphic extension V : Dy, — C of V with V‘ =V. We

construct a particular subset
Uy, 5= {z € C| dist(z,J) < 6v} (2.35)

of Dy with a compact subset J C J and a suitable constant & > 0 on which
we consider the holomorphic extension of V. To this end, we distinguish between
the two possibilities of bounded and unbounded intervals J. Define

~ L_ y lf L_ > —00 ~ L+ > lf L+ < X0
L_ = ) and L, = )
ay —1 | if L_=—00 by +1 ,if L, =0
and set
Jo=[L_,L.]. (2.36)

The advantage of this special choice of J will become clear later on. Then, we
choose a constant dy such that

0< &V S min (1’ bvgav’ L+;bv’ ang—) and U&VJ C Dv. (237)

In the further proceeding in Chapter 3 it will be necessary to consider neighbor-
hoods of size oy of ay, by, and of Ly, L_, if they are finite. The conditions on
oy in (2.37) ensure that these neighborhoods do not overlap.

With V' we can also extend hy and Gy (see (2.14), (2.15)) analytically to Dy
because V” has an holomorphic continuation V” on Dy. In contrast, & and 7y
as defined in (2.29), (2.30) have no analytic extension to all of Dy since py does
not have one. We define

cjv : (C\((—OO, av] U [bv, OO)) — C, cjv(z) = (bv — Z)

=
ISt

(z—ay)?z, (2.38)
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which describes the holomorphic extension of ¢ — \/ (t —ay)(by —1t),t € (ay,by),
to C\((—o0, ay]U[by, 00)). Hence, we can express py via py = 5-GvGy on (ay, by)
(see (2.16)). This representation induces that &, can be analytically extended to
Dy \((—o0, ay] U [by, 00)).

However, the function 7y on J (see (2.30)) depends on gy, which is holomorphic
on C\[ay, by]. Since one has to distinguish between the intervals [L_, ay ), [ay, by,
and (by, L] in the definition, we can extend 7y to neighborhoods of ay and by,
but we have to make sure that these neighborhoods have no intersection.

Definition 2.13. Assume that V satisfies (GA) and let qy, ¢y, Gy be given as
in (2.13), (2.38), (2.15). Denote Dy the domain of definition of the holomorphic
extension of V' and choose &y according to (2.37) (see also (2.35)). We set (c.f.
Figure 2.2):

&+ Dy\(—oo, ] Ulbv,00) 5 € &() = [ av(tGu()ar  (2.39)

nv : Dyv\({z € C|Re(z) € [av + ov,bv — ov]} U [ay, by]) — C,
/Z qV<t)Gv(t) dt , if z € Dy, Re(z) > by — oy, 2 ¢ (bv — 5'\/,()\/]
ny(z) = {7’
/ qV(t)Gv(t) dt , if z € Dy, Re(z) <ay+oy, z ¢ [a,v,av +6v)
ay

(2.40)

Figure 2.2: Domains of definition of the holomorphic extensions &y (above) and ny
(below) in the case L4 < oo, L_ = —o0.
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Remark 2.14. (i) Asin Remark 2.4 (ii) we can consider the limits (Gy )+ on R:

~ o :FZ (SC — bv)
(@v): (z) = {ﬂ P

y ifl’va,

) lfl‘SCLVa

(x —ay)

(ay —x)

[N NI
[N NI

and by the Identity Principle

qv(z) = tigy(2) with Im(z) = 0.

(ii) The definitions of the holomorphic extensions &y and 7y (see (2.39), (2.40))
consist of complex path integrals. For the sake of definiteness (in the defi-
nition of 7y ) we always choose these paths to be straight lines, e.g. {1/ (2) =
o Gv(Y())Gy (y(t)y'(t) dt with ~ : [0,1] — C, ¥(t) := z + t(by — 2). Note
furthermore that the analytic extensions agree with those functions defined
in (2.29), (2.30) on their common range of definition. For the convenience

of the reader we illustrate the range of definitions of the continuations in
Figure 2.2.

(iii) Applying (i) we obtain relations between 1y and &y on their common do-
main of definition. In particular, for z € Bj,, (by) with Im(z) Z 0 we have

z

()= [ a Gy dt = [ g (1)Gy(1) dt = Fiey (7).

and for z € Bs,, (ay) with Im(z) 2 0 (see (2.16), Lemma 2.8 (ii)):

b

nv(z) = /az qv(1)Gy (1) dt = £ [/a

\4

D ()Gy (1) dt+ /b G ()G (1) dt]

\4

by
= %1 [/ 2mpy (1) dt — fv(z)] = Fi(&v(z) — 2m).
ay
Furthermore, one has

Ny = —1- on [ay,ay + av) U (by — v, by].

The Riemann-Hilbert analysis in Chapter 3 requires considerations of the holo-
morphic extensions of Gy, ny, and &, on suitable neighborhoods of J. Lemma
2.15 provides estimates for these functions on bounded sets.

Lemma 2.15. Assume that V satisfies (GA). Let Gy, ny, &y, J, 6y, and Us, 7
be given as in (2.15), (2.40), (2.39), (2.36), (2.37), and (2.35). Then, there exist
ov, dy > 0 with oy < &y such that (i)-(iii) hold:
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(i) For all z € U, 7 the analytic continuation of Gy satisfies

|Gy (2)| = dv  and |arg(Gy(2))] < % (2.41)
i)
_ 3/2 ; - _
Re(ny (2)) > YE0—o) dv{|Z b 2 Sl e b <

m\ﬁ c:h

2z —av*? | ifzel, ;. |arglay — z)|

(1i1) For any compact K C (0,0v] there exists cyx > 0 such that for all § € K
and for all z € C with Re (2) € [ay + §,by — §] and |Im(2)| < §:

< —cyg|Im(z)| , if Im(z) €[ 0,4],
m (&v (Z»{z cvic|Im(z)| , if Im(2) € [=6,0].

Proof. The first part (i) of the statement uses the compactness of .J together with
(2.19). This shows that Gy attains a positive minimum on J, i.e. there exists a
constant my > 0 such that Gy (J) C [my,00). Since Gy has been extended
continuously on U 7, we can choose a possibly smaller neighborhood U, . ; of

J, such that |Gy (U o) C [755,00) and |arg(Gy (U, 7))| < 5. (2.41) is satisfied
with the choice of dy = 5~
For z € U, ; and |arg(z — by)| < {5 we have

i) = [ G- /0 T ey (e ar

with y(t) := by + te'®sEv) 0 <t < |z — by/|. Since |qv(v(2))] > /(bv — av)t,
larg(qv (7(1)))] < 3larg(z —by)| - 2 < %%, and due to (2.41), we have

Re(py () = [ lavGODI - [Gv (1(0)
cos (argav (1(1))) + ara(C (1(1)) + (= — by)

by | o=
/ V\/ by —ay)t - dvcos()dt bv Vd\z—b|3/2

The case z € U, j with |arg(ay — 2)| < {5 follows in a similar way.
We prove claim (iii) by deforming the path of integration and introducing
x := Re(z) and y := Im(z) to obtain

()= [ @Gy (1 dt + & (x).
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Since z € R, we have & (z) € R. Thus,
Im(&v (2))
T 0
— Im (/ Gy ()G (1) dt) — Re (/y Gy (2 +it) Gy (x + it) dt)

= /yo |Gy (x + it)| - |Gy (z +it)] - cos [arg(Gy (z + it)) + arg(Gy (x +it))] dt.

Furthermore, using

G(x +it)| > | — ay|Y?|z — by|? > min(K) > 0,
|arg 4(z +it)| = 3| arg((v +it) — ay) +arg(by — (z +it))| < 5 - § = §,

and (2.41), we obtain

< —min(K)dy cos(Z , if y €10,4],
> min(K)dy cos(§)(—y) , if y € [-6,0].
Choosing cy,x = min(K)dy cos(§), Lemma 2.15 is proved. O

Remark 2.16. In the proof of Lemma 2.15 as well as in the definition of &y by
(2.37) we have only used that .J is a compact set satisfying [ay,by] € J C .J. We
may therefore replace J by any set J with the same properties. The corresponding
statement reads:

Assume that the assumptions of Lemma 2.15 are satisfied and choose an arbitrary
but fixed compact subset J of J with lay, by] C J. Then, there exist av(j),
dv(j ) > 0, dependent on J, such that:

(i) For all z € U, ;) j we have

Gy (2)] > dy(J) and |arg(Gy(2))] < T

(i)

Re(nv(2))
> V2v=av) bV av) av () 2 —byP? L ifzel,, g0 larg(z = by)| < 5,
|z —ay|*? 1szU )0 larg(ay — 2)| < 5.

(iii) For any compact K C (0,0 (J)] there exists ¢(K, J) > 0 such that for all
d € K and for all z € C with Re (2) € [ay + d,by — d] and |Im(z)| < ¢:

< —¢(K,J)|Im(2)| , if Im(z) €[ 0,4],

m(&y(2)) {; oK, )| Im(z)| , if Im(z) € [=4,0].
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Corollary 2.17. Assume that V' satisfies (GA) and let ny be given as in (2.30).
For all t, x with by <t < x < L, there exists a constant ¢,y > 0 such that

/
t
77/\/( ) <c
ny ()
Proof. We distinguish the cases L, < co and L, = oo.
If Ly < oo, we apply Lemma 2.15 (i) and obtain a positive constant dy such

that Gy (z) > dy for all = € [by, L.]. In addition, there exists dyy > 0 such that
Gy (t) < dy for all t € [by, L]. Hence,

ny (1) _ qv (t)Gy(t) < qv(t) - dy
n(x)  qu(z)Gy(z) ~ qv(z)-dy

The strict increase of gy (see (2.13)) yields the claim.

Assume now that L, = co. Due to (2.32) and the fact that V"’ is strictly mono-
tonically increasing with V/ > 0 on [by, 00), we conclude the existence of ¢y > by
such that

1
W(1) < SVI(E) and () > JV'(2) (2.2
for all ¢, x > ty. Then,
(t "(t
W) g VO
M) = Vi)

fortg <t <z

It remains to consider the case t < to. If t < x < tg, one can proceed as in the case
L, < oo by applying Remark 2.16 (i) instead of Lemma 2.15 (i). Let t <ty < .
Together with Gy (t) < dy for all t € [by, %) and the choice of t, (see (2.42)) we
obtain

W) _ a(t)-dy _ avlt)-dy
m(z) = 3V'(2) 3V (to)
which completes the proof. n

In order to treat the case of unbounded J in Chapter 3, it is necessary to extend
the estimates of Lemma 2.15 (ii) resp. Remark 2.16 (ii) for large values of z. This
will be done by comparing 1y to V' in the next lemma.

Lemma 2.18. Let V satisfy (GA) with Ly > by + 1. Denote Dy the domain of
definition of the holomorphic extension of V and let ny be given as in (2.40). For
z € Dy with Re(z) > by + 1 and [Im(z)| < 1 we have

v (z) =V(z) —rv(2)
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with
‘Z—av| 2+(bv—av) (t—av)3/2 /
<2In{——— 24 —————+- — .
pvte)) < 2mn (=) 2 2200 OO
Proof. Due to (2.40) and Corollary 2.7 we have
Y 2qv () qv (s) vt —ay)*? V'(t)
_ _ — : dt ) d
m(2) /bv Vi) (s —ay)? 7(s—ay)? /av (by —t)1/2 s—t °
=V(z) —rv(2)

with

2
( bV + / qV
S — CLV
1 (t — ay)3/? = qy(s) 1
— V(¢ / . ds | dt. 2.43
+7T/av (by —t)1/2 (t) b (s —ay)? s—t ° (243)
Note that the justification for applying Fubini’s Theorem will be provided a
posteriori in the proof of the estimates below. We will now estimate the second and
third summand of ry separately. In both cases we deform the path of integration.

More precisely, we perform straight line integrals from by to z := Re(z) and from
x to z and define

v : [0, |Im(2)|] — C, v(u) = x + ue 8=, (2.44)

Then we have

z 2qv 1/2 [Im(z) fy u — bv>1/2
<2/ ds 2/ du.
/bv (s—av (s —ay) 3/2 * (v(u) — ay)3/? "
Since s — by < s —ay for s € [by, 2],
[y(u) —av| = |y(u) —by| =2 —by > 1 (2.45)

for all w € [0, [Im(2)]], * — ay < |z — ay|, and |Im(z)| < 1, we obtain

/z 2(]\/(8)

For t € [ay,by] we have

[ L
by (s —ay)? s—t

z (g — by )2 1 [Im(z)|
< / (s = bv) . ds + /
b (s —ay)?? s—t 0

T 1 —
ds§2/) <b+2§2m<kaﬂ>+z (2.46)
bV S — CLV b

v — ay

(Y(w) —by)'? 1

() — a2 () — 1|
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with v as in (2.44). Using s —¢ > s —by for all s € [by, x|, [y(u) —t| > |y(u) —by|

for all u € [0, [Im(z)]], and (2.45), we conclude

/bz(qV(S) - ds| <

s—ay)? s—t

- 1/2
_ 2 (.1' bv> +1<
bv—av

The claim follows from (2.43), (2.46), and (2.47).

x 1
- /bv (s = by)%(s — ay)?/?

ds+1

(2.47)



Crapier I
Chapter

Riemann-Hilbert problem

In order to study the distribution of the largest eigenvalue of unitary ensembles
to leading order, we have already derived a representation of this distribution in
terms of orthogonal polynomials (see (1.15), (1.16), and (1.19)). We characterize
the orthogonal polynomials in terms of the solution of a Riemann-Hilbert problem
(see [16]) and perform the nonlinear steepest descent method (introduced in [13]
and further developed in [12]) to obtain asymptotics of the orthogonal polynomi-
als. We follow [10], incorporate improvements introduced in [22, 35|, and expand
significally on the details. The existing results are improved in the region that
corresponds to the superlarge deviations regime (see Theorem 3.27).

We start with the introduction of a Riemann-Hilbert problem supposing that the
function V' is given. By solving the Riemann-Hilbert problem for ¥ we mean to
seek an analytic 2 x 2 valued matrix function Y defined on C\J that satisfies a
given jump condition:

Riemann-Hilbert problem for Y:

Y : C\J — C**? is analytic, (3.1)

e—NV(x)
Yi(z) =Y (x)vy(z) with vy (z) := (é ) ) forall z € (L_,Ly), (3.2)
i, ¥ (
(1
o1

e ZO> Id, (3.3)
v - (g

0
) O(|log|z — Ll|) e
for 2 — L4, if Ly is finite. (3.4
) Ollogle - L]} = e o0
By Y.(z) we denote the limiting values of Y (z) for z — x € R from the upper
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resp. lower side of R (c.f. Remark 2.4 (ii)):

Vi(z) :=lmY(z), z€R, =Im(z)>0. (3.5)
The matrix vy is called jump matrix for Y. We note that, although suppressed
in the notation, the matrices Y, Y,, Y, vy depend on N and V.

The following theorem establishes the relation between the solution of the above
stated Riemann-Hilbert problem and orthogonal polynomials (see e.g. [7, 10, 22,
35]).

Theorem 3.1. Assume that V satisfies (GA), and let p%\f‘)/, pg\],tf‘;l) be given as in

(1.17). Then, there exists a unique solution Y : C\J — C**? of (3.1)—~(3.4) with

N - s
v (2) . /pgv,x)/(S)e e ds
N PNV PPy —
Y(Z) — TNV TNV ST S —Z . (36)
(N-1) —NV(s)
__(N—1) (N-1) ~(N-1) [ PNV (s)e d
—2miyNy PNy (2) —ANy , s 2 §

Furthermore, we have detY (z) =1 for all z € C\J.

The solution of the Riemann-Hilbert problem (3.1)-(3.4) in the case J = R is
a well-known result that can be found in [7, 10]. Therefore, we only emphasize
the differences that arise in the proof in the case of finite values for L.

Proof. Assume that e.g. L, is finite. In a first step we show that Y as defined
by (3.6) also satisfies (3.4) (for the remaining conditions (3.1)-(3.3) proceed as in
[10]). The boundedness condition on the first column is obviously satisfied since
p%v‘)/ and p%v‘; Y are polynomials. The |log |z — L || bound on the second column
near L, follows immediately from the representation in (3.6).

Now we turn to the question of uniqueness. Suppose that Z is any solution of
(3.1)-(3.4) and denote d(z) := det(Z(z)), z € C\J. We have d (z) = d_(x) for
x € (L_,Ly) by (3.2), which implies that d is analytic on C\{L}. Since d(z) =
O(|log |z — L4||) for z — L. by (3.4), we can apply Riemann’s Continuation
Theorem to obtain the analytic extendibility of d on C. Due to lim|.| s d(2) =1
by (3.3), d is a bounded function and we have d = 1 on C\J by Liouville. Define
M :=YZ ! with Y as in (3.6), which is obviously analytic on C\J, M, = M_
on (L_, L), lim; e M(2) =1d, and M(z) = O(|log|z — L+||) for z = L. The
above arguments for d can be applied to each entry of M and we conclude M = 1d
on C\J by Liouville again, which shows the uniqueness of the solution. ]

Theorem 3.1 shows that asymptotic results for the orthogonal polynomials can
be derived from the study of the large N behavior of the solution of the respective
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Riemann-Hilbert problem. The nonlinear steepest descent method for Riemann-
Hilbert problems uses a couple of transformations

Y —-T—5—R,

where the original Riemann-Hilbert problem is successively transformed into
equivalent Riemann-Hilbert problems for 7', S, and R. The key observation is
that the solution of the final Riemann-Hilbert problem for R is close to the iden-
tity for N — oo and reversing the transformations provides asymptotic results
for Y.

3.1 Transformations Y — T — S

The first transformation Y — T normalizes the problem at infinity, i.e. T'(z) — Id
for |z| — oo. It is convenient to introduce the third Pauli matrix o3, defined by

(1 0 . o5 [€° 0
03 1= <0 _1> , to abbreviate e*?® = <O 6_Z> for z € C.

In all of this section we assume that V' satisfies (GA).

Definition 3.2. Let Y be the unique solution of (3.1)—(3.4) and let gy and [y be
given as in (2.28) resp. Corollary 2.11. Define

l

T:C\J = C>2, T(2):=e NFny(z)e Nov@-Fos

Proposition 3.3. Let T be given as in Definition 3.2.
Then T solves the Riemann-Hilbert problem for T':

T : C\J — C*? is analytic, (3.7)
Ty (z) =T (x)vr(x), forallz e (L_,Ly), (3.8)
' N (@), @) @) N((ov), @ Hav)_@)-V)-1v)
with vy () = ( 0 N ()@ =(9v)_(@)) ) ’

lim 7T'(z) =1d, (3.9)

|z]—o00

O(1) O(UO%\Z—MH)) e
T(z) = , or z — L4, if Ly is finite. (3.10
2 (om O(log|e — Lll) ) o777 B L s fimites (310
Proof. In the proof we use gy = ¢ and ly = [ abbreviatory. (3.7) follows from
the analyticity of e on C\.J (see Corollary 2.11 (i)). Condition (3.8) can easily



40 3 Riemann-Hilbert problem

be shown by the calculation

Noet)

In order to prove (3.9), we use the asymptotic behavior of g for |z| — oo (see
Corollary 2.11 (iii)), which implies lim/,| o Y (2)e V9()7s = Id. (3.10) is a conse-
quence of the boundedness of e N9(*)78 near L. O]

Recalling Corollary 2.11 (i) and (ii), (2.29), (2.30), and (2.31), we have different
representations for vy on [ay, by resp. on (L_, L )\[ay, by]:

e~ Ny (z)  o—Nny(z)
UT(:E) = 0 eiN&v (z)

1 e_NT]V(I)
0 1 , ifx e (L,,L+)\[av,bv],
= Ny @) . | (3.11)
0 iNev@) | if x € [ay, by].

On (L_, Ly)\[av, by] the jump matrix vy tends to the identity for N — oo since
ny > 0 by definition, whereas the situation is different on [ay, by]. In this case,
the entries on the diagonal of vy are rapidly oscillating. Since &y can be continued
analytically to a neighborhood of [ay, by, we can apply Lemma 2.15 (iii) and see
that limy_.. eV = 0 above [ay, by] and limy_.o V¢ = 0 below [ay, by]. We
benefit from these limits by using the following factorization of vy:

1 0 0 1 1 0
'UT(-CE) - (e’bNﬁv(fﬂ) 1) <_1 O) (6_iN£V(I) 1) fOl" x G [CLV, bv} (312)

=v;(x) =0 =y ()

Let us now consider the contour ¥g = Uj_, Yy as shown in Figure 3.1, in
particular

ZV,Q = (av7bv)7 ZVA = (L—,av), ZV,5 = (bv7L+)-

A precise definition of Xy; and Xy 3 will be given in Section 3.2 below Lemma
3.13. For the moment we just assume that Xy; and Xy 3 are continuous, satisty

E‘/’l C <C+ muo’v,j)’ ZV}B C ((Cf ﬂua’v,j)
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1 0
e~ VeV 1

v

1 e Nnv
L")

V.3

Figure 3.1: The contour g with Xg = U Yy and jump matrices for S
k=1

(with oy as Lemma 2.15 and .J, U,, jasin (2.36), (2.35)) and for all continuous
parametrizations v; of Xy, ¢ = 1,3, with

7%((0,1) = By, limyi(t) = av,  lim(t) = by
we require
Re(7:(t)) < Re(yi(s)) forall0<t<s<1.

Observe that both ay and by do not belong to .

Definition 3.4. Let T be given as in Definition 3.2 and let v,, v;, be given as in
(3.12). The contour X5 := [J;_; Yy is chosen according to Figure 3.1 (see also
description above). Define

S:C\ (ZsU{ay,by}) — C*2
T(z) , if z outside the lens shaped region,
S(z) =T (2)v,(2)"" , if z in the upper lens region,
T(z)u(z) , if z in the lower lens region.
(3.13)

Remark that each arc Xy, 1 < k <5, is equipped with an arrow that indicates
its orientation. If we traverse an arc in the direction of orientation, we call the
area on the left the positive side and the one on the right the negative side of the
arc. Consequently, for s € Xy, we define

Sy(s) :=lim S(z), for z on the positive resp. negative side of Xy ;.  (3.14)

zZ—S
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The definition of Yy in (3.5) coincides with this construction by regarding C.. as
positive resp. negative side of R, which corresponds to the direction of orientation
being from left to right.

Obviously, it only makes sense to consider the limits Sy(s) for those values of s
that are not located at an endpoint of an arc. This is the reason why we have
excluded the points ay and by from Xg.

Proposition 3.5. Let S, X5 = UZZI Yy be given as in Definition 3.4. Then S
solves the Riemann-Hilbert problem for S:

C\ (%
S()=

s U{ay,by}) — C*? is analytic,
S_(s)vs(s), s € Xg,

Uu(S) , ZfS - Ev’l,
with vs (s) == o U8 € Zvay (3.15)
UZ(S) , Z'fS € ZV73,

’UT(S) , ZfS € EVA U EV757

lim S(z) =1d,
|z]—o00

: ~_(O(1) O(llog|z — L4l|) . . .
\z|h—>HL1i S(z) = ((9(1) O(|log |z — Ly|)) if Ly is finite.

Proof. The analyticity of S on C\Xg follows from the analyticity of T, v,, and v,
on the corresponding domains. The behavior of S (z) for |z| — oo and |z| — Ly
is obvious by construction, since S = T outside the lens shaped region. The jump
conditions for S can be derived as follows:

onYy,: Sy =T=(Tv, v, =S v,
onYyg: Sy =Tv, ' =T vpv,' =T vwy = S_v by (3.12),
on Xyg: Sy =Ty =5,

on YysUXys: Sy =T, =T vp=5S_vr.

]

With the transformation T" — S we have achieved the asymptotic vg —Id for
N — oo except for the interval [ay, by|. This is crucial for the further proceeding.
It is well-known that the special Riemann-Hilbert problem with jump matrix v
on (ay,by) can be solved explicitly (see [7, (7.66)—(7.72)]):
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Lemma 3.6. Let vy be given according to (3.12) and let ay, by be the MRS-numbers
of V.. Then, the Riemann-Hilbert problem for M

M : C\[ay, by] — C**? is analytic,
M (x) = M_(z)vy, z € (av,by),

|1|1Ln M(z) =1d,
has the solution
M(z) = ; C —12> (cv(()z) cv(g)_1> G 7) (3.16)
with
(z — by)T
cy(z) = : (3.17)
(z—ay)?

Observe that ¢y has an analytic continuation on C\[ay, by].

In order to achieve our main aim of this chapter, namely to transform the
original Riemann-Hilbert problem for Y (see (3.1)-(3.4)) into a Riemann-Hilbert
problem for R whose solution is close to the identity for N — oo, we construct
a parametrix Sy, of S such that R := SSp_alr has the desired properties. Lemma
3.6 indicates that the parametrix should be given by S, = M. However, we
have to pay special attention to neighborhoods of ay, by, and to neighborhoods
of finite L4+ and we need to construct local parametrices there. The next section

is dedicated to the construction of these parametrices.

3.2 Construction of the local parametrices

We start this section by considering neighborhoods of the endpoints ay and by of
the support of the equilibrium measure. The representation of the jump matrix
vg given in (3.15) depends on the arcs Xy, 1 < k <5, and on the functions 7y
and &y. Our construction follows [10] (see also [21] for a slightly different path of
motivation). The key observation is that the jump matrices can be transformed
into constant ones (we denote them by wy, see Corollary 3.7). The corresponding
Riemann-Hilbert problem can then be solved explicitly by Airy functions, which
provide in addition almost the correct asymptotics that is needed to match the
local parametrix with the global parametrix M.

Corollary 3.7. Assume that V satisfies (GA) and let ny, vs be given as in (2.40),
(3.15). Furthermore, let Y5 = Us_, Zvi be given as in Definition 3.4 (see also
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Figure 3.1) and choose oy as in Lemma 2.15.
Then, for all s € ¥g N (By, (ay) U By, (by)), we have for 1 <k <5,

wke%(nvh(sws - 6%("")‘(8)”305(5), = Ev,k N (Bov (av) U Bav(bv)),

. 10 0 1 11
wzthw1:w3:<1 1>, w2:<_1 O)’ w4:w5:<0 1).

Proof. The claim follows from Remark 2.14 (iii). O

Inspired by the connection between wy, 1 < k < 5, and vg in Corollary 3.7, we
search for functions with jump matrices wy, on two special contours (see Lemma
3.9). To this end we introduce in Figure 3.2 two subdivisions

Q= | 9 Q= (3.18)

1<i<4 1<i<4
of C that are generated by the dividing contours

r—=\Jrey o= (J I (3.19)

1<i<4 §=1,2,3,5

Both contours depend on given angles

B e (0,3), g e (5,m). (3.20)

It will become clear in the proof of Lemma 3.15 why these conditions on 3% and /3°
are needed. The superscripts a, b are used to indicate that the parameters 3, 3°
are associated with the left resp. right endpoint of the support of the equilibrium
measure. They will be determined later. Observe in addition that I'§ and '} are
obtained from I'{ resp. I'? by reflection with respect to the real axis.

As we now see, Q% and Q° provide the domains of definition of functions ¥4,
and \I/%b that will have constant jumps wy, across I'{ resp. T'%.

Definition 3.8. Let %, Q7 be given as in (3.18) (see also Figure 3.2) with appro-
priate angles 3°, 3% (see (3.20)). Set

27

wi=es (3.21)
and define

Ul Q0 — C¥2 g, QF — CP°
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a 'Y 2 I
3 5
g 0 I rs /0
Qo » e 0L

4 r's 3 3 Fg

Figure 3.2: Definition of the subregions Q%, Qf and the contours I'*, I'* depending on
the angles 3% and 3°.

—_

Q]

through

AlQ) AW Q) ) a, if ¢ e
Ai(Q)  Ai(w) e—zag<1 0) if ¢ € Q8

Q) —wAIWQ) m,, (1 O) if ¢ € 2

2 1 i
Q) —w AW =, if ¢ € O,

Wb, (¢) 1= v2me B

(3.22)
A=) —w? Ai(—w) =, o
AT(=0) —Al(—w0) ) © T L if ¢ €95,
Ai(—¢) —w?Ai(—w()\ _x (1 0) '
./ ./ e 693 o , lfg c Q%,
W5.(Q) o= Ve oy | Y O AT 11
All=¢) - Ai(=u%) e~ %03 Lo o it ¢ € Qf
AT(=0) w? AY(~w?) ) itcens
Ai(—=¢)  Ai(—w*() i . )
AT(=() wAl(—w20) "  if ¢ e g,
(3.23)

where Ai denotes the Airy function (see (1.22) and [1, Section 10.4]).
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Note that there exists a connection between \If%b and Ue,:

For 5 € (0,%) we have 7 — 3 € (I, ), which is the allowable interval for (°
(see (3.20)). Recall that Q% depends on the angle 5* as displayed in Figure 3.2.
In addition we choose €’ as Figure 3.2 with the special choice 3° = m — 3%. Then
we have

(e —= (e, 1<i<4,

and moreover,

V5. (C) = 0305 _gu(—C)o. (3.24)

Lemma 3.9. The functions \Il%b and V4. as given in Definition 5.8 are analytic
on their domains of definition and satisfy

(\I’Zb)Jr(S) = (\Ij%b)—<8)wj fO’f‘ s € F?a J=12,3,5,
(P3a)4(s) = (¥Ga)—(s)w; forseT{, 1<i<4,

with wg, 1 < k <5, as in Corollary 3.7 and T'® = Ujz1235 F?, ' = U<i<a I as
in (3.19) (see also Figure 3.2).

Proof. Let us start with the claim for s € F?.. While the statement is obvious for

j = 3, the case 7 = 1 only needs < Lo wy = Id. The jump conditions for j = 2

-1 1
and j = 5 require a more detailed consideration. Here, we use

-1
i 10 1 0 i 1 —w
b . —503 03 _
for I'5: e (1 1>w2< 1 1) ee _<O 1),

_mig, i, 1 —w
for T : e % %wse’ 5:<0 1),

with w = 5" (see (3.21)) and obtain

W) (s)u,
Ai(s)  —w(Ai(s) + w Ai(ws)) . ( ) N
o J\ATG) Al (s) + o AT (ws) L) o ifeeTd
= \/ﬁe 12
Ai(s)  —w(Ai(s) +w Ai(ws)
Ai'(s) —w(AT'(s) +w? Ai'(ws))

_m

e 608 , if s € T2,

Using the identity

Ai(2) + w Ai(wz) + w? Ai(w?2) = 0, (3.25)
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which holds for all z € C (see [1, (10.4.7)]) and, by differentiating,
Al (2) + w? Ai'(w2) + w AT’ (W?2) = 0, (3.26)

we obtain the claim for s € Fg, 7 =1,2,3,5.
Let us now turn to the case s € I'¢ for 1 < i < 4. Similar to I'Y and T, the jump
conditions for I'{ and I'§ are the easiest. One only needs

10 1 0
0'3:<1 1) o3W1 and (_1 1)0'320'311)3.

For s € I'{, i = 2,4, we use the identity (¥%.),(s) = 03(¥%_z.)_(—s)o3 (see
(3.24)) and apply the already shown statement for s € F?, j = 2,5. Together

with w;lag = 03wy and wglag = g3w,s We obtain
for s €Ty : (Vha)y(s) = o3(V2_ga)s(—s)wy ' o5 = (Vha)_(s)ws,
for s €8s (Uha)y(s) = 03(V_g0) 1 (—s)ws o5 = (Wha)_(s)wa.
UJ

We have shown so far that the matrices wy, 1 < k& < 5, which can be expressed
through vg and 7y on Yy, also represent jump matrices for W§. resp. ‘i[l%b on

I'* resp. I'®. It is our next aim to define a biholomorphic function fi that maps
Yy in a neighborhood of ay resp. by onto I'® resp. I'. In this way we are able
to present a solution for the Riemann-Hilbert problem for S in this regime. The
following lemma serves as a preparation to define such a function (c.f. [35]).

Lemma 3.10. Assume that V' satisfies (GA) and let ny and oy be given as in
(2.40) and Lemma 2.15. Then there exist 6y > 0 with 6y < oy, positive constants

Ve, Y = vy, and an analytic function fv : Bs, (ay) U Bs,, (by) — C such that
(1)-(1ii) hold:
, ZfZ € B&V(bv)\(bv — 6’\/,[)\/],

D8 [ W
() 47]‘/( ) s ZfZ - B&V(av>\[av,av+6’v>.

=75 (z = av) fu ()
(i) fy(s)eR  forall seRN(Bs, (ay)U By, (by)).
(iii) fv(av) = fr(by) =1 and fr(Bs,(av)U Bs, (by)) C Bijuo(1).

Proof. For simplicity we suppress the V-dependence of all functions and numbers.
First, we define the analytic auxiliary function

k: By(a) U B,(b) = C

be) (z—a)'?G(z) , if z € B,(b),
T b-2)"2G(2) |, if z € B,(a),

]3/2
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where o is given according to Lemma 2.15 and G as in (2.15), holomorphically ex-
tended to B, (a)UB,(b). Recall from (2.37) that B,(a)N B, (b) = (). Consequently
(see (2.40)), we have

/Z (t— b2 k() dt , if 2 € B,(H)\(b—o,b],
nz) =4 7

z (3.27)

/ (a— Ok dt , if z € By(a)\[a,a + o),

since q(z) = —(a — 2)/2(b — 2)'/? for z € B,(a)\[a,a + o). We introduce k by
k(z) = k(b) + k(2) (2 — b) resp. k(z) = k(a) + k(2) (z —a) for 2 € B,(b) resp.

2 € B,(a). Then k is an analytic function on B,(b) U By(a). Due to (2.19) we

have k(b) > 0 and k(a) > 0. Thus, we obtain from (3.27) that

sy JakO) =02 L4 r(2)] i 2 € Bo(D\(b—a.b],
) {ék(a) (=2 [L4r(z) . ifz€ BooNaato) 2
with
’(2) = O /bi“ SO R i 2 € BO\G — o,
W/a (a— O k@) dt , ifze B,(a)\|a,a + o).

For z € B,(b), k(z) can be expressed in power series around b. Integrating term
by term in this series, we observe that r has an analytic continuation to all of
B, (b) and by the analogue argument also to all of B,(a) with r(a) = r(b) = 0.
Choosing 01 < o if necessary we may guarantee that there exists a constant
Co > 0 such that

Ir(2)| < Colz — b for z € By, (b),
Ir(2)| < Colz — al for z € By, (a),

Choosing o3 := min{oy, (10Cy) '} one has |r(z)| < 55 for all z € By,(a) U By, (b)
and

f(2)=[+r@)° 2€ Byla)UBy(b)

defines an analytic function with f(a) = f(b) = 1. The second statement of part
(iii) follows from |(1 +w)?? — 1] < |w| for w € By10(0). Since f(2) € R for all
z € (a — g9,a] U [b,b+ 03), we can apply the Reflection Principle by Schwarz to
obtain (ii). Finally, setting

(

(

2/3

k)7 = (L0 -a) o)™, (3.29)
k)" = (L0 - )" Gla)”” (3.30)

<o
I

W=7

N[ —= N =

<=

gl
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it follows from (3.28) that

p(z) = {(”yb)S/? (z —0)*? :(2)3/2 , if 2 € By, (b)\(b — 02, 1],
(Y32 (a — 2)*? f(2)%2 | it 2 € By, (a)\[a,a + o).

For the proof of claim (i) we restrict ourselves to the neighborhood of b, where
we need to show that (z — b)3/2f(2)3/? = f(2)%/? with

fiB,,(b) > C, f(z):=(z=bf(2).

Since f/(b) = f(b) = 1 by (iii), we can find a -neighborhood of b with 0 < & < o,
such that f is biholomorphic on B (b). Considering the arguments of z — b, f(z),
and f(z), it suffices to show that

f(Z) c Cy , lf zeCin B&(b), (331)
R, if z € RN Bs(b),

which can be seen as follows: Due to (ii) we have f(s) € R for all s € (b—&,b+5).
Assume that there exists 2 € Bs(b) N Cy with f(2') € R. Then, using Schwarz
Reflection Principle again, f(z') = f(z’) = f(z’). This leads to a contradiction
since f is biholomorphic on the considered regime and 2’ # 2’. Since f(C+NBs (D))

is connected and disjoint from R, the claim follows from |arg(f(b+i%)) F 3| < &
which in turn is a consequence of

arg (f(z)) € (—2%, 2%) for all z € B;(b), (3.32)

that follows from (iii). O

The connection between the just constructed function fv and 7y does not hold
on all of Bs, (ay)U Bz, (by). Due to Remark 2.14 (iii) and because of (z — 7)3? =
Fi(z — 2)3? for z € R, Im 2z = 0, we obtain a relation between fi- and &y

{[ v(by —2) fu(z )}3/2 , if 2 € B, (bv)\[by, by + ),
4€V 3
37T

— [ —a) )] L it 2 € Boy(av)\(av — dv,av]

This implies the following connection in a neighborhood of ay and by intersected
with the real axis:

R 3/2_ 477V( ) , it by <ax <by—+dy,

[z = by | fur(x)] { &r(z) , ifby — 6y < < by,
. B . 3/2 477V( ) , ifav—ffvﬁxﬁava
{7V|GIV x|fv( )} {4 (27T o gv(z)) , if ay S T S ay + 6"/.



50 3 Riemann-Hilbert problem

Definition 3.11. Assume that V satisfies (GA) and let 6v, fi, 7, and Y be
given as in Lemma 3.10 (see also (3.29), (3.30)). We define

(z — bV)fY(Z) i 2 € By, (by),
(z —av)fv(z)  if z € By, (av),
(3.33)
N8By fu(2) , if 2 € Bg, (by),
N fu(e) i 2 € By, (av).

fV : B&V(av) U B&V(bv) — (C7 fV(Z) = {

fny i Bsy (ay) U Bs, (by) = C,  fyv(z) = {

(3.34)
It follows from the definition of fyy and Lemma 3.10 (i) that
w3 . on B, (b)\(by — 3v.by ] 5
S B o By (av)\[av, av +6v).

This equality plays a crucial role in the construction of the parametrix near ay
and by. Furthermore, it is essential for the following construction that fy defines
a biholomorphic function restricted to Bj,, (by) and Bs,, (ay ), which is though a
direct consequence of its definition and the proof of Lemma 3.10:

Corollary 3.12. Assume that V' satisfies (GA) and let fy, 6y be given as in (3.33)

and Lemma 3.10. Then the restrictions fv‘B () and fy Bao (by) are biholomor-
oy (av oy (OV

phic.

As described above, the function fy is expected to map Xy, 1 < k < 5, in
neighborhoods of ay resp. by onto I'® resp. I'’. However, remark that we have not
given a precise definition of the contour Xg yet. In order to do this, we have to
make sure that fi is not only biholomorphic on By, (ay) resp. Bs,, (by) but also
satisfies the claim of the following lemma.

Lemma 3.13. Assume that V satisfies (GA). Let fy and &y be given as in (3.33)
and Lemma 3.10. Then there exists o0 > 0 with ol < 6y such that (i) and (ii)
hold:

(i) Ji(Byo (av) U Byo (by)) C Bija(1).

(ii) Let § € (0,0%] be arbitrary but fived. Then we have

tfy(by +0e%) C fu(Bs(by)) and tfy(ay +0e¥) C fr(Bs(av))

for all t € [0,1].
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Proof. In this proof we neglect the V-dependence of all functions and numbers.

A A

According to Lemma 3.10 (iii) we have f'(b) = f(b) =1 = f(a) = f'(a). Since
f’ is a continuous function, we can choose 0 < o1 < ¢ such that (i) holds for all
z € By, (a) U B, (b).

For the proof of (ii) we restrict ourselves to the neighborhood of by, the other case
works identically. Set v1 : [0,7] = C, 71(s) := b+ f501€™. Since f(b) = 0, we have
d :=min{|f(71(s))| : s € [0, 7]} > 0. For 5 : [0,7] = C, §(s) := de* it is obvious
that f(5(s)) C By, (b) and 0 < ¢° := min{|f~*(5(s))| : s € [0, 7]} < $501. This
procedure ensures that

tf(b+ de*) C f(Bgy, (b)) (3.36)

for all § € (0,0, ¢t € [0,1], and s € [0,7]. Claim (i) directly follows from the
choice of o1 above, since ¢ < 1. Observe that statement (ii) is stronger than
(3.36) for s = 2%, Here we claim that the inverse image of the straight line between

0 and f(b+ 56%) is completely contained in the closed ball with center b and
radius ¢ and not just in By, (b). In order to show this, choose § € (0, "] arbitrary,
but fixed. Denote ‘

Zi=flb+deT).

Due to (3.33) we have arg(z) = 2% + arg(f(b+ de’1')) and hence, by (3.32),
arg(2) € (7, 4). (3.37)
Now consider
v:[0,]2]] = C, ~(t) := fH(te!*#®) C By, (b) by (3.36).

Obviously, v(0) = f~1(0) = b and ~(|Z|) = f1(3) = b+ de’i". It is our aim to
show that

Re(7') <0 and Im(y") >0 on (0,|z]), (3.38)

which implies ([0, |Z]]) C Bs(b) and hence claim (ii). We have

1
V() = ————€@ for t € (0, 7)),
) 2
and hence arg(y/(t)) = arg(2) — arg(f'(y(t))). Using (3.37) and (3.32) we obtain
arg(y/(t)) € (2, 2%), which implies (3.38). u

We now provide the precise construction of the contour Xg (c.f. Definition 3.4)
near by and ay depending on a single parameter §. Let ol be given as in Lemma
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3.13 and choose § € (0,0Y].

We start with the right endpoint by of the support of the equilibrium measure
and remark that fy : Bs(by) — fv(Bs(by)) is biholomorphic (see Corollary 3.12)
since 0¥, < 6y. Furthermore, fy(s) € R for s € (by — §,by + §) (see Lemma 3.10
(ii) and (3.33)) and fy(z) € C. for z € Bs(by) N Cx (see (3.31)).

Consider the point fy (by + de’1 ). Due to the Schwarz Reflection Principle we

3mi 37

have fy(by + de” 1) = fy(by + de™s ). Applying (3.32) and (3.33) one obtains
—arg(fy(by + 6= 1)) = arg(fy(by + de’T)) € (1%,%). Now connect both
Fu(by +6e1) and fi (by + de~"5") with 0 by a straight line and denote these
lines Fl{}i and Fl",’g, whereas 0 and fy (by + de’T ) resp. fy (by + de~5") do not
belong to Fl"}i resp. Fl"}g. It is ensured by Lemma 3.13 (ii) that Fl{}i and Fl‘j}fg are
entirely contained in fy (Bs(by)). With

% = ful(by = 8,bv)), T% = fu((by, by +9))

this construction divides fi/(Bs(by)) into the four regions Ql‘)}i, . ,Ql"}i (see Fi-
gures 3.3 and 3.2) with the angle
PO .= arg (fv (bv + 56%)) € (%, 4{) . (3.39)

The definition of IIIZ"/’i as a division of Bs(by) can now be done by
m = i (), 1<i<y,
which also yields
= (IY), G=1,2.85. (3.40)

The whole construction can be seen in Figure 3.3. _
The procedure near ay works in the same way. Here, we connect fy (ay + SeT)
and fy (ay + de~ 1) by a straight line with 0 and obtain the angle

@0 — arg (fv (av + 56%)) € (%, %r) . (3.41)
This construction defines E?/’j- in Bs(ay) via
sol=A0T), 1<i<y, (3.42)
and contains the definition of III?}ﬁ through fy (see also Figure 3.4):

my = £ (), 1<i<4
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Figure 3.3: Definition of the regions III?/’i- and curves Zl"/’i- via fy

We have now reached the point when we are able to state the precise definition
of the contour Xg (c.f. Definition 3.4 and description above). Observe that this
contour now depends on the chosen parameter 6 € (0, 0%] such that

5
Ss = 2} (3.43)
k=1

Denote Zi‘,’j resp. Zi’/ig the straight line between ay + e and by 4 de’T resp.

ay + de~ T and by + de~ i . Hence, Zl(,’j and El",‘; are parallel to the real axis.
Using

SV = (ay + §,by — 0), (3.44)

(3.40), and (3.42) we set (c.f. Figure 3.6)

59, =S uSHiush,

T, = S U U R,

595 = TP USY Us, (3.45)

594 = (L_,ay — §) US,

S5 = Z(\)/’,55 U (bv +6, L),
and

0= U =Y. == U i (3.46)

j=1,2,3,5 1<i<4
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Figure 3.4: Definition of the regions III?;? and curves E?/’j- via fy

Observe that the points

3

by, by — 9, by + 9, bv+5€%,bv+5674,

ay, ay — 0, ay + 90, ay + 56%, ay + fe= %
do not belong to Xg. In particular, we have

S0y # (av,by), £94 # (L_,av), 05 # (by, Ly).

Corollary 3.14. Assume that V satisfies (GA). Let fxv, Xs, nv, vs, and o

be given as in (3.34), (3.43) (see also (3.45)), (2.40), (3.15), and Lemma 3.13.

Choose § € (0,09]. Furthermore, let B5°, B%°, \Ilgb,(;, \I/aﬁaﬁé, 50 %% be given
A%

according to (3.39), (3.41), (3.22), (3.23), (3.46) (s‘(/ze also (3.40), (3.42)). Then

we have
(E@Walinv(@)edr0m) = (BWya(fup(s)eF ™) us(s), s € £,
\%

+ 1% _
(E(s>qua,5( fN,V(s))e%st) _ (E(S)\Pza,a( fNy(s))e]?V”V(s)‘”) vs(s), s € 5%
v 1%

Jr

for any holomorphic, matriz-valued function E : Bs(by) U Bs(ay) — C**2.

Proof. Recalling Corollary 3.7 we have

e T M)+(8)0s — gy Ten ()= (s)osy, o (o) (3.47)
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for all s € Zl"}fk U Z“Zf’f; with appropriate 1 < k£ < 5. Lemma 3.9 is applicable in

the d-neighborhood of by and ay since the construction of the contours Ei’}é and
2%° through fy ensures

Y ifsex?
sYeR,-¢°V Vo
frv(s) € Ry {F?}‘S | if s € B9,

R b, 5 5 :
with T := Uj1 235 [y and 'Y := Uy<;<4 [';. Then, one obtains

(\Pgb,zS) (fN,V(S)) = <\Pbﬂb,§> (fNy(S))’LUj for s € FI‘)/’{SJ, j = 1, 2, 3,5,
\4 + \4

\I/aa,a (fNy(S)) = \I/aa,é (fN,V(s))w,; for s € F?/’f-, 1 S 1 S 4.
By + By ’

Using £, = E_ and (3.47), the statement is obvious. O

As mentioned below (3.17), we seek for a parametrix Sy, for S such that
R = SS! is close to Id. Since we know so far that \I/gbv,;(fN,V(z))e%"V(z)"?’
%4

par

satisfies the jump condition for S on a d-neighborhood of by (see Corollary

3.14), it could be a good idea to choose Sy, (2) = \D%b,g(f]v,v(z))e%""(z)“ for
14

z € Bs(by)U Bs(ay ). However, having Lemma 3.6 in mind, we need to match the
local parametrix and M (see (3.16)) as well as possible on 0Bj(ay) U 0Bs(by ).
This can be achieved by a matrix-valued holomorphic function Eyy defined on
Bs(ay) U Bs(by) such that (see also (3.35))

Eny (2)W.4( Fav(2)es v @Yo s N(2)  for 2 € OBs(by) (3.48)
Vv

and similarly,

EN’V(z)\I/;a,a(fNy(z))e%(_vaV(z))w”?’ ~ M(z) for z € 9Bs(ay).  (3.49)
14

Hence, we need to have a closer look on the asymptotic behavior of the Airy
function appearing in the definition of \Il%b and Wi, (see Definition 3.8). The
Airy function and its derivative have the well-known asymptotics [1, (10.4.59),
(10.4.61)]

_ 2;% e 1 (14 05 (1)
1 1

AT (O = _2\/7?§46_§C3/2 (1405 (I¢I72)

Ai (¢) ). (3.50)

), (3.51)
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’ ’ . s s
v’ 4 , 7’ v
’ 4 , ’ /
7 4 , z 7
v z , s ’
’ 4 , s s
’ 4 Vi s s s
4 , ’ ’ ’
’ , s s s
. s ’, s
’ ’ ’
4 s s
’ ’
’
v s
’ O ’
s s s
7 ’ ’ ’
’ s s ’
s s s s
’ ’ ’ ’

Figure 3.5: Area of validity of (3.50) and (3.51) for fixed 5 > 0.

for || — oo, where ¢ € C lies in a closed sector away from the negative real axis
with a fixed angle 5 > 0 (see Figure 3.5). Observe that the error bound in (3.50),
(3.51) depends on 3, but is uniform for ¢ in the dashed area.

The following lemma illustrates the application of these formulae for \I/%b and
Wi

Lemma 3.15. Let \IJ%b, U%a be given as in Definition 3.8. Then, for ¢ € QP resp.
¢ € Q% with |(| — oo we have

W (()ess™ s = 1 (C‘l‘ 01> (_11 1) =% (Id+0 (I¢I72)),  (3.52)

% 0 CZ
(el 0 = 1 <(_C0)4 (_2)i> G _11> e~ % (1d+0 (|¢]72))

(3.53)

Observe that the error bounds in (3.52) and (3.53) represent a 2 X 2 matriz where
each entry is of order |(|3/2.

Proof. The connection between \I/%b and U, stated in (3.24) provides (3.53),
assumed that (3.52) is correct. Hence it remains to show the asymptotic behavior
for ¢ € Q. First of all notice that the direct applicability of the asymptotics of
the Airy function and its derivative depends on the different subsets of Q° (see
Figure 3.2). For example, if ¢ € Q% no problems arise in using (3.50) and (3.51)
for Ai(¢), Ai'(¢), Ai(w?(), and Ai'(w?¢) since ¢ and w?¢ lie in a closed sector away
from the negative real axis. However, if ¢ € €3, it is not possible to apply these
formulae because 2 is not entirely contained in the dashed area (see Figure 3.5).
We circumvent this problem by using (3.25) and (3.26) which hold for all z € C.

Observe that computations with powers of the involved value w = e’ need to
_2mi 1 i

be performed with care since e.g. (w?)z = (e~ 3 )2 = ¢ % = —w # w. Using
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_2mi mi .
w?=e""3 and —w? = e, we obtain

W (0) = V2me B B;(()e” 57 for (€O 1<i<4,

with

_ (AIQ)  Ai(w?() _ [ —wAi(we)  Ai(w*()
Bio) = (Ai'(g) w? Ai’wo)’ Ba(0) = (—w2 AT (w() w? Ai’(w2§)>’
_[(—w?Ai(w?) —w? Ai(w() (A0 —w? Ai(w()

This representation has the big advantage that we can use the asymptotics (3.50)
and (3.51) for all ¢ € Q°. For instance, if ¢ € 9}, w¢ and w?¢ do not reach the
negative real axis for any fixed angle 3 since we have required in (3.20) that 8° €
(3, 7) (see also Figure 3.2). Hence, we can apply (3.50) and (3.51) for the occuring
functions Ai(w¢) and Ai(w?() (see By) and their derivatives. Nevertheless, one
has to pay special attention when adopting the related asymptotics for w(, w?¢
depending on (. It is our aim to show that all matrices B;, 1 < ¢ < 4, have the
same asymptotic structure. We do not provide the details for all subregions but
demonstrate the procedure for ¢ € QY instead. Here, we have ¢ = |(|e’® with
a € (B, ), which yields w¢ = |¢]e!=F ) and w?¢ = |¢]e™(5 %), One obtains

W) ~8 =¥ (T = (A, W) T =€ (E,
(WOt = e ¥ ¢h = ~w(t, (WQ)r =5 ¢E,
(wg)2 = (2, (W*)2 = —¢2

for ¢ € Q5. The necessary values for ¢ € Q0. i = 1,3, 4, are provided in the table
below.

@O+ | @OF | @OF [ @20)F | (@207 | @20)?
CGQ? - - - G%C*i e*%gé _gg
Ce | T | —wci | & | e8¢ e % | -
CeM e ®¢i[ef¢i | —¢F [ —w¢i [ | &
CGQZ e‘%g_i e%gi _C% _ _ i}
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Then, for ¢ € QF,

Ai(w() = —7w (*16*543/2 (1 +0 (’Q*%)) )
AT (wC) = \/_wC4e3<3/2 (1 Lo (’d*%)) ,
Ai(WHQ) = 5 e ¥ 1A (140 (10]F)).

2,/
1

Ai/(MQC) = _Qﬁ

e 6 (156" (1 + 0 (‘d*%)) :

which yield

1+ 00 )Y s,
(1+00¢ ) |

Observe by explicit computation that By, Bz, and B, have the same asymptotic
structure as (3.54). This can be obtained by devising the appropriate formulae
for the Airy function and its derivative by using the above table. Hence, we have

for ¢ € Q°,

Wi (C)

_ L. <C—i 01> L+ O(K8) ¥ (1O 9)) s, nimy
2 L0 A-(1rold) < (ol

FO(CE) 1O sy acn
1+0(¢ ) 1+0(¢ )

_11 1) (Ta+O(Jc] 7)) e Fremseon,

_1<<-i 0)
V2N 0 (G
_1<<i 0)
V2 0

which proves (3.52). O

/\/—\
/N =

We are now able to determine an analytic matrix-valued function Eyy by
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solving
oo /1 1)
\/EEN’V (f v 1 ) (_1 1> e" 19 = M on Baov(bv)\(bv — J?/,bv],
0 fav
(3.55)
1 (—fay)71 0 L =1\ _m,, 0
ﬂENy( 0 <—fN,v>i> (1 | e e = Mon By (av)\lav, av +oy)
(3.56)

with M as in (3.16) for Exy (c.f. (3.48) and (3.49)).

Definition 3.16. Assume that V satisfies (GA) and let fy v, ¢y, and o) be given
as in (3.34), (3.17) and Lemma 3.13. Then we define:

Eny : (Byo (av)\av, av + 0v,)) U (Byo (bv)\(bv — oy, by]) — C*

EN,V =

(1 =1\ (fiset 0
1264< _ ) (fN’VCV 1 ) , on Byo (by)\ (bv — oy, by,

-t 0 fN,%/CV
i 1 1 (—va)iCV 0
L el ’ , on Byo (a ay,ay +od).
i (Z _i> ( 0 (—fnv) iy v\ lovav+ov)

(3.57)

Observe that Ey y solves (3.
of fxy and ¢y (see (3.34), (3.
analytically to all of B, (ay) U

55) and (3.56) (see (3.16)). Due to the definitions
17)) and Lemma 3.10 (iii), Eyy can be extended
UB

o0, (bv)-

In neighborhoods of L, in case they are finite, the construction of the parametrix
is somewhat easier. In particular, it is not necessary to divide these neighborhoods
into further subregions. One main ingredient of this parametrix is the Cauchy
transform that plays a crucial role in Section 3.3 as well. Therefore, we give a
general definition that will also cover the applications in the next section.

Definition 3.17. Let > be a contour in C consisting of a finite union of smooth
and orientated curves in C of finite or infinite length. Moreover, ¥ is required to
self-intersect at most at a finite number of points, all intersections are transversal,
and the unbounded parts of ¥ are required to be straight lines. For f € L*(X%)
we define the Cauchy transform of f on X through

(CF) () 1= 5 / i df 2 eC\5. (3.58)
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In the following remark we summarize some properties of the Cauchy transform
(see [7, Section 7.1] and [32] for a general reference).

Remark 3.18. Let ¥ and C* f be given as in Definition 3.17 with f € L*(2).
(i) C*f is analytic on C\X.
(ii) Denote X% := ¥\ {points of self-intersection} and recall the definition of the

positive and negative side of a curve above and below (3.14).
For s € 30 the limits

(Cff) (s) := £1£I§ (C’Zf) (2), =z on the positive resp. negative side of X.°,

exist in an L2-sense (see [7, (7.1) and (7.2)]) and represent bounded opera-
tors on L?(¥). Furthermore, one has

CY—-C*=1d. (3.59)
Before defining the precise parametrix we need to introduce the function ey
referring to the Cauchy transform.

Definition 3.19. Assume that V satisfies (GA) and let 1y and oy, be given as in
(2.30) and Lemma 3.13. Choose ¢ € (0, 0¥]. Together with

IVEe — {Be(L+)\(L+ —e& Ly if Ly <oo,
v o=

@ s 1f L+ = 00,
e B(L\[L_,L_+¢) ,if L_>—c0,
0 ,if L. = —o0,

we define ey : IV{>® UIV}® — C through

L —Nny (1)
! /+ ¢ At if z € IV~

L2009 t—z
L[l e~ Nnv(?)

_ t— =z

ey(z) == (3.60)

dt it z € IV~

Observe that there is no function ey in the case J = R. The choice of &y in
(2.37) together with the further construction of o, < 6y < Gy ensures that the
intervals (L_, L_ +20%) and (L, — 20%, L) do not intersect the neighborhoods
Byo (av) and B, (by) of ay and by. Recalling (3.58), we have

[L+—200,Ly](,—N ; +e
(ClE=2b Ll (e nv); (2) , if z € IV{~, (3.61)

ev(z) = {(C[L,L+2a‘0/}(e—N77v) () ,ifze IV‘_/’E.

Lemma 3.20 shows the connection between the just defined function ey and the
jump matrix vg.
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Lemma 3.20. Assume that V' satisfies (GA). Let M, ey, and vs be given as in
(3.16), (3.60), and (3.15). For s € (L_,L_ +¢)U (L, — ¢, Ly) with € € (0,0)]
(see Lemma 3.13) we have

((1) (GV)1+(S)> _ (5 <ev>1_<s>> vels).

Proof. Due to (3.15) the jump matrix vg is given by

(1 e N
=10 1

on (L_,L_+¢e)U(Ly —e,Ly) and

(3 <ev1>>‘1 (3 <ev1>+>:<é (€V)+I(€v)>'

One of the fundamental properties of the Cauchy transform (see (3.59)) yields
(ev)s — (ev)- = =™ on (L, L_ +2)U(Ly — &, L), .

Now we are ready to define the parametrix S,,, for S:

Definition 3.21. Assume that V satisfies (GA), let o¥, be given as in Lemma 3.13,
and ¢, € € (0,0}]. Let the open sets

4 4
07, 119 = 10" UILY, 10050 = (J 10, 10y o= (J IS, IV == IV U vy~
=1 =1

be given according to Figure 3.6, whereas the subdivisions of HI?}‘S and IHI"}‘S into

HI?}E and IHI"}E, 1 <4 <4, can be seen in Figure 3.4 and Figure 3.3. Furthermore,

let M, Exv, B2, p&°, \Ijgby(g, Whos, fnv, v, ev, and S be given as in (3.16),
\% \4

(3.57), (3.39), (3.41), (3.22), (3.23), (3.34), (2.40), (3.60), and (3.13). We define

Spar, R 19F UTL, UTILE U T U IV, — €22

through

M(z) L if z e P UL,

Eny(2) W Fav(2)ermv@es if 2 e I,
Vv

Spar(2) : ENV@)qjga,é(fN,V(Z))e%nvwas ,if z e IS, (3.62)
14
1
M(z) 0 evl(z , if z € IV,

R(2) = S(2)Spar(2)". (3.63)
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Obviously, R is well-defined if and only if det(S,q-) # 0. It is immediate from
(3.16), (3.57) that det(M) = det(Ey,y) = det(e278) = 1. It remains to consider
the determinantes of the matrix-valued functions \If%b and V%, (see (3.22), (3.23)).
Due to [1, (10.4.12), (10.4.11)] we have

M) AW \ _ s o (A Aiw)
dt(A ©) w?Ai’(w%))‘@”) ¢ dt(Al ©) wAi'(wo)

for all ¢ € C. Using (3.24), one obtains det(\I’Bb) det(¥3.) =1, and hence
det(Spar) = 1. (3.64)
Note as well that
det(R) =1, (3.65)
since det(S) =1 (see Definitions 3.4 and 3.2, (3.12), and Theorem 3.1).

For 4, ¢ € (0,0Y] we introduce the orientated curves

S == 0Bs(by), Sy == 0Bs(av),
.. [6BuLy) Ly < oo . [6B(L) L. > —oo,
Yyg = . Yyg = .
’ 0 ,if Ly =00 ’ 0 ,if L. = —o0,
Le (Ly =g, Ly) ,if Ly <oo, . (L,L_+¢) ,if L. > —oo,
2yl = . 2yl = .
’ 0 , if L, = oo, ’ 0 ,if L. = —o0,

bV+5L+—6) ,ifL+<OO,
by + 0, 00) ,if Ly =00

de ._
ZV,5,out T {

(

(
s (L_+¢e,ay —0) ,if L. > —o0, (3.66)
Vidout (—o0,ay —0) , if L. = —o0, '

(see also Figure 3.6). Observe that E‘\S}%put and E“S};Om depend on ¢ only in the
case of finite L4. Furthermore, we define

E(\S/G = ZV6 U EVG? Eyg = th%a UZyr,
Z(‘S/EOUt = 26 Viaout Y Z(‘S/,a&out? E\L/E = ZXI;'ZZ U E\L/Zga (3.67)
Y= E%/j E%/(,53 U E(‘S/ﬁ U Xy, U Ecls},sour
The solid lines in Figure 3.6 represent the contour X z. On the dotted lines, the
parametrix Sp,, satisfies the jump condition for S, which is stated in Corollary

3.22. As we see in Lemma 3.23, this implies the analyticity of R on C\Xg. In
Lemma 3.23 we will also determine the jump matrix vg of R on Yg.
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Figure 3.6: Contour Xy in the case L_ = —oo, L4 < o0.

Corollary 3.22. Assume that V satisfies (GA). For ¢, ¢ € (0,0Y] (see Lemma
3.13) let 200, 040, 2(‘)/’;;, SU°, Spar, and vg be given as in (3.46), (3.44), (3.67),
(3.62), and (3.15). Then we have for s € £5° U X% U Z?,’g UXye

(Spar) 4. (5) = (Spar) _ (5)vs(s).

Proof. For s € El{}a U Z?}é one can apply Corollary 3.14 since Eyy has a holo-
morphic extension on Bs(by) U Bs(ay). Lemma 3.6 provides the desired jump

condition on Z(‘J}f;. Using M, = M_ = M on £ (see (3.16)) and Lemma 3.20
the claim is shown. ]

Lemma 3.23. Assume that V satisfies (GA). For 6, € € (0,0%] (see Lemma 3.13)

b,6 a,d b .
let R, X, Env, By, By, \Ijﬁb’g, ‘I/Za,[;, fnv, nv, M, ey, and vs be defined as in
)4 v

(3.63), (3.67), (3.57), (3.39), (3.41), (3.22), (3.23), (3.34), (2.40), (3.16), (3.60),
and (3.15) (see also (3.11)).

Then R has an analytic extension to C\Xg. Furthermore, we have
R (s) = R_(s)vn(s)
for s € X g with

B (500 ()M OmM () i s 33,
14
By ()Wl (frw ()X OB M(s) ™ if s € 23,
14
'UR(S) = 1
M(s) (0 evl(S) M(s)™1 ifseSiy,
MM Cfsespusiiusis,,

and

R(z) = 1d  as |z| = oo.



64 3 Riemann-Hilbert problem

Proof. Since Ry = S\ (Spar):' = S_v5(Spar) 7" = B_(Spar)—vs(Spar)3", we have
vp = (Spar)-vs(Spar)3'. It is immediate from Corollary 3.22 that vz = Id on
¥ Uy U E?/’f; U 2. In particular, R has an analytic continuation on
B.(L+)\{L+} in case of finite L. Since S(z) = O(|log |z — L1||), M(z) = O(1),
and ey (z) = O(]log |z — L4||) for z — L4 (see (3.15), (3.16), (3.60)), we obtain
R(z) = O(]log|z — L+||) for z — L. Using Riemann’s Continuation Theorem,
R can be analytically extended to B.(L<). It remains to show that R has a holo-
morphic extension to all of Bs(by)U Bj(ay ). However, this is a direct consequence
of the boundedness of R near by and ay . The analytic extendibility of R on C\Xg
is now obvious and shown by dotted lines in Figure 3.6. The different expressions
for the jump matrix vg on X follow directly from the definition of Sp,,. The
behavior of R in case of |z| — oo is a consequence of R(z) = S(z)M(z)~! for z
sufficiently large, Proposition 3.5, and Lemma 3.6. O

3.3 Asymptotic behavior of R

In the previous section we have transformed the Riemann-Hilbert problem for Y
into a Riemann-Hilbert problem for R where R is analytic on C\Xg. It is our
first aim to show that R is of the form Id + O(N1).

By a slight abuse of notation we introduce for matrices A = (a;;)1<i j<2

[Allze == (||a’ij”Lp)1§i,j§2 )

1 < p < oco. If all entries of A are of order N~! we write ||Al|zr = O(N™!) in
short.

We start by considering the difference between the jump matrix vg (see Lemma
3.23) and the identity and define

AR = VUR — 1d on ER' (368)

Lemma 3.24 shows that Apr is bounded in the L'—, L?—, and L*—norm by
O(NTY).

Lemma 3.24. Let Ag, Yg, and oy, be given as in (3.68), (3.67), and Lemma 3.13.
Then,

IRl L1 sr) + AR 2R + AR = ONT),
where the error bound is uniform for (8,€) from a compact subset of (0, 0%

Proof. In a first step we show that ||Ag|/pe(s,) = O(N ) for the different parts
of ¥y starting with El‘)}%. In this case we have

AR(S) = EN’V(S)\IIZQ/@(fNyv(tg))e%nV(s)Uf,M(S)fl —1d.
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Furthermore (see (3.34), (3.33)), | fav(s)| 7! = [N¥39%.(s=b) fir(s)| " for s € X%
Since 4 is bounded away from 0 and | fy (s)| > 2 (see Lemma 3.10 (iii)), we obtain
|fav| ™t = O(N=2/3) on B3. Due to (3.35), (3.52), and (3.55), we can conclude
that Ag(s) = M(s)O(|fxv(s)|7/*)M(s)~. Both M and M~! are bounded on
this regime since 4 is chosen from a compact subset of (0, o¥;]. Hence, we obtain

_ —3/2 _ -1
18] sty = O (33 ) =0 (V).

The statement for Z?{é can be achieved in the same way.

Figure 3.1 shows the different representations of the jump matrix vg. Together
with Lemma 3.23 and the boundedness of M and M~! on C\(Bs(ay) U Bs(by))
this leads us to

|8l gy = © (He_iNEVHLOO(ZI‘ﬁJ |
I8lmsgty = O (1% ety )

—N
8RN e s, = © (”6 "VHLoo(E‘é,iut)) '

Applying Lemma 2.15 (iii), it is obvious that [|Ag|| «us sy = O(N7H). d is
V,1 V,3
chosen from a compact subset of (0, o], which implies the existence of a positive

constant ¢ with 7y (by + ) > ¢. Since 7y is strictly monotonically increasing on
(bv, L) (see derivation below (2.31)), we deduce [|Ag| s | = O(N7!) as
V,out

well.

If L. is finite, we also have to consider the case of s € ¥{,;. Due to Lemma 2.15
(ii) we have eV (®) = O(N~1). This is sufficient to obtain the desired L>-bound
for s € 3, away from Ly Fe. If s € ¥, close to Ef}fout more care is needed due
to the singularity of the Cauchy transform in the definition of ey (see (3.61)).
We can handle this problem by deforming the path of integration so that it has
a minimum distance of § to s. Lemma 2.15 (ii) can be applied in this situation
as well.

If J is bounded, we can also conclude ||Ag|ris,) = O(N~'). The situation is
different if E(‘S}Z’Om, Ef};mt, or both of them, are unbounded. We cannot use the
estimate on Re(ny) because of the boundedness of .J (see (2.36)) in Lemma 2.15
(ii). However, using Proposition 2.10 with e = 1 we have ny(z) > ny(by + 1) +
c(x — (by 4+ 1)) for > by + 1 and ¢ > 0. This proves ||Ag||Lis, = O(N™) for
unbounded E“S}i,,,out. The case L_ = —o0 is treated in the same way:.

The inequality [|Ag|z2sy < (1AR]n1zr) - |AR| L) "? completes the proof.

]
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The main results of this section (Theorem 3.26 and Theorem 3.27) are primarily
based on [7, Theorem 7.103]. For the convenience of the reader we formulate the
statement in our context:

Lemma 3.25. Let R be the function defined in (3.63), which has an anaytic exten-
sion on C\Xg and satisfies R, = R_vgr on X and R(z) — Id as |z| — oo (see
Lemma 3.23). Furthermore, let Ag be given as in (3.68). Recall the definition of
the Cauchy transform on Xg,

(C«ZRJC) (2) = 1 /Z f(t) dt

(see (3.58)) and consider the integral operator on matriz-valued functions
Cap: L* (Zg) = L* (Zr), frr CEZ7 (fAR).

Suppose that the operator 1 — Ca,, is invertible on L*(Xg). Then there exists a
unique pug € L*(XR) satisfying

(1~ Caglir = CZ7(Ag) (3.69)
and R is given by
R=1d +CER(AR + /LRAR).

In Theorem 3.26 we study the asymptotic behavior of R and of its derivative on
J. We emphasize that the error bounds appearing in Theorem 3.26 are uniform
in z, y, if and only if z, y are chosen from bounded subsets of J.

Theorem 3.26. Let V' satisfy (GA) and let R and o9 be defined as in (3.63) and
Lemma 3.13. Choose (6,¢) from (0, 30%]*>. Then we have for z, y € J:

(i) Ry(z) =1d+O(NT),

(ii) Ry (x) = O(NT),
(iii) Ry(y) Ry () = d+]a — yO(N),
The error bounds are uniform for x, y in bounded subsets of J and for (6,€) from
compact subsets of (0, 3002

Proof. First of all, we show that 1 — Ca,, is invertible on L?(3g), which is the
assumption of Lemma 3.25. The operator C* is bounded on L*(Xg) (c.f. Remark
3.18 (ii)). Due to [|[Ag|les,y = O(N™!) (see Lemma 3.24) we can conclude
|1CaRllop = O(NT) where || - ||, denotes the operator norm on L?*(Xg). Hence,
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for N sufficiently large we may deduce the invertibility of 1 — Ca, on L*(Xg).
Lemma 3.24 and the boundedness of C=% yield |CZ"(Ag)|r2mm = O(NY).
Hence,

ikl = ONTY), (3.70)

where pup = (1 — Ca,)"'C>*(Ag) is the unique solution of (3.69). Applying
Lemma 3.25 we obtain

R(z) = 1d + 21m / ) Anr(t) t’iRit)AR“) dt,  »ecC\Ya, (3.71)
with
IAR + 1rAR| L1(ng) = O(NTY). (3.72)
Thus,
[R(z) —1d| < 217T 127 ;:;;éf‘;!;l(“), (3.73)
R(2)| < 1 |Ar + prAR[ 125 (3.74)

—or  dist(z, 2p)? ’

and claims (i) and (ii) hold for all z € J with, say, dist(z, Xg) > 3.

Let us now consider those z € J with dist(z, ) < . We begin with the case
z € [by — 6,by — 56) U (by + 156, by + 6]. Obviously, the distance between z
and El{}fﬁ is less than %. We can solve the problem by changing the parameter ¢§
into 4 = %5 and hence enlarging the circle around by. This approach ensures on
the one hand that the corresponding matrices Sy, and gpar agree at the point
, which implies R(z) = R(z), and on the other hand, that Lemma 3.24 can be
applied to derive || Az +paAzl L1z, = O(N™') with a uniform error bound since
6 is again in a compact subset of (0, %] by construction. As dist(z, ¥ 5) > 1%, we
can proceed in the same way as above to obtain (i) and (ii). If # € (by — 150, by — 4]
we shrink the circle by choosing 6 = 1%5 . In this manner we may show that claims
(i) and (ii) hold true for all z € J \E?};ut since we can change the parameter € in

the same way, if = € Z‘L/E U EXL/Z

Assume now that z € E?};,wt and the distance between x and one of the circles is

at least g := 55 min(d,e). This can be achieved by shrinking § and ¢ if necessary.
It is our aim to show that the error bounds in (i) and (ii) are uniform if x is chosen
from a bounded subset of J, which we denote by J. In the case of L, < co and
L_ > —o0 one may choose J = J without loss of generality. Now, Remark 2.16

comes into play which says that the estimates of Lemma 2.15 also hold for any
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bounded subset .J of .J instead of the previously fixed chosen bounded subset J.
Then the appearing constant o depends on J, hence we write oy (J). The jump
matrix vg on [z — Ko, T + Kol is of the form

—Nny
’UR:M<(1) € 1 )M_l

by Lemma 3.23 and has an analytic extension on B, (x) with £ := § min(ro, ov(J))
(c.f. Remark 2.16). We will now define a function R, which does not differ from R
outside B, (z) N{z € C|Im(z) < 0}, but whose jump changes in a neighborhood

of x:

R(z) = {R(z)vR(z) , if z € Bi(x) and Im(2) < 0, (3.75)

R(z) , else.

r—K x T+K
L]

b 678 \9/ 675
4 ZV,5,ou15 2V,5,out

Figure 3.7: Extract from the contour 3.

The choice of R stems from the fact that R satisfies the same Riemann-Hilbert
problem as R, except that the jump condition has been shifted away from (z —

K,z + k) onto a semicircle with radius « in the lower half plane (see also Figure
3.7):

s€(x—kr,x+RK): }ELF(S) =R (s) = R_(s~)vR(s) = R_(s),
s € 0B,(zr)N{z € C|Im(z) <0} : Ri(s) = R(s)vr(s) = R_(s)vr(s).

Hence, the contour X5 differs from ¥ only in a neighborhood of x. Remark 2.16
(ii) is applicable for all z € B, () due to the choice of . Thus, (3.73) and (3.74)
hold for R instead of R and claims (i) and (ii) follow from R, (x) = R(z) and
from the uniformity of the bounds on Aj and ppz. This completes the proof of
statements (i) and (ii).

Claim (iii) is a consequence of (i), (ii), det(R;) =1 (see (3.65)), and of

Ri(y)'Ry(z) = Td+Ry (y) " (R () — Ri(y)).
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The results of Theorem 3.26 are sufficient to derive moderate and large devia-
tions results. Although the case L, = oo might occur, the asymptotic behavior
of R with uniform error bounds on bounded subsets of .J is sufficient to give the
distribution of the largest eigenvalue in these regimes. However, we need uniform
error bounds on all of [by,00) for superlarge deviations results and hence, on
unbounded sets. Therefore, we assume that L, = oo in the remaining part of this
section. (3.71) suggests to have a closer look at the matrix Ag (see (3.68)). For
x € [by + 6, 00) we have

Anto) =M@ (g ") w)

LN (z'(cv(x)—? — (@) (evla) + cv<as>—1>2>
: (v (@) = ev(@) P ilev(2)” — ev() )

with ¢y (z) = (m)l/4 (see (3.17) and also (3.16), (2.30)).

T—ay

Since x > by, we can use the asymptotics

cv(r) +ey(r) P =2+0 (W) , cey(z) —cey(x)t =0 (ﬁ) for x — o0
(3.76)

and obtain
_ 0() o)
Agp(z) = e V@ ( vhv L ) . (3.77)
O (atr) O ()

Now consider the case x > by + 2. Due to Proposition 2.10 there exists a constant
dy > 0 such that

(@) > v (by + 1) +dv(z = (by + 1)) > dy(z = (by + 1)) > G (z = by).

Hence,

oo d
e ™ sy < [ eVHOMW dt = e NEE) < 0 (k)

Ndy

and similarly,

e || L2 (poe) = O (N(;) '

z—by)

This means in particular for the matrix Ag that (c.f. (3.77))

O 1 O 1
HARHLl(:c,oo)v HARHLz(:c,oo) = ﬁ ((’) Eix_?;j 0 (Ex_};bv)’?)) , x> by + 2.
' ' (3.78)
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In Theorem 3.27 we provide the asymptotic behavior of R, and its derivative
in unbounded subsets of J. Hence, the estimates on the real part of 7, given in
Lemma 2.15 (ii) resp. Remark 2.16 (ii) are not applicable, which were a main
ingredient in the proof of Theorem 3.26. In order to derive asymptotics that are
uniform on all of [by, c0), we introduce an additional assumption on V:

(GA), We say that V satisfies (GA) if (1) and (2) hold:
(1) V satisfies (GA) with L, = oo.

(2) There exists n € N and t* € R with t* > by + 3 such that the analytic
extension of V' exists on

U(n,t*) = {Z eC | Re(z) Z t*, |Im(z)| S m} (379)
Moreover, there exists a constant d > 0 such that for all z € U(n,t*):

Re(V(2)) > d - (Re(z) — (by — 1)). (3.80)

Due to (GA) the increase of V on (by, c0) is at least linearly. (3.80) requires that
this growth condition also holds for the real part of V' on U(n,t*).

Note that the error bounds in Theorem 3.27 are not chosen as well as possible.
However, this representation is sufficient for the application in the next chapter.

Theorem 3.27. Assume that V' satisfies (GA)s and let Ry be given as in (3.63).
Then there exists t € R with t > by + 5 such that (i)-(iii) hold for all x, y > t:

(i) Ri(z) =1d+0 (5:555)

(0 0()
() 1) = (o () o w)

., e [0 o(1)
(iii) Ri(y)~'Ry(z) = 1d+1254 ((’) ) ) (’)( 1 ))

(z—by)(y—bv)

The error bounds are uniform for all x, y > t.

Proof. In the whole proof we neglect the V-dependence in the notation. By as-
sumption we have x € E“S}%,Om C Yr (see Figure 3.6, (3.66), (3.67)). Analogous
to the proof of Theorem 3.26, we consider the Riemann-Hilbert problem for R
(see (3.75)), whose jump is shifted away from the real axis in a neighborhood of
x onto a semicircle in the lower half plane (see Figure 3.7). The corresponding
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contour for R is ¥ 7 and the radius of the semicircle can now depend on z, hence
we write k.. Applying Lemma 3.25 we obtain

Ry(x) = R(x) = Id+271r2'/2~ (Aét/iéfé)@) y

and, by differentiating,

R, (x) 1 / (A + 1aAR)D) 4

~ 2w Sh (t —x)?

We introduce a partition of X5 into X7, 1 <4 < 5, with

2= {t € Xz |Re(t) < Lz + )},

$Pi={t €| 5(z+b) <Re(t) <z —1},
YWie={teXs|r—1<Re(t) <z+1},
Sti={teXi|lz+1<Re(t) <z+ iz -0b)},
5P :={t € Xz |Re(t) >z + 5(z —b)},

which yield

(x—0b) ,ifteXt U’
it —x] ><1 ,ift e X?2uxt,
Ky ,ift e 3.

This notation must not be mixed up with the different parts of Xz (see e.g. Figure
3.6). On L;\X% C Xg we have Az = Ag and pup = pg by construction, which
yvield [Az + pzAsll iz 09 = O(NTY) (see (3.72)) and hence,

1/ (AR+MRAR)<t)dt:O(1)7

i t—x N(z—b)
1 (Ag +pplp)(t) )
2 ot =0 ()

Next let us consider the integrals over 2 and ¥*. In particular, it is necessary
to make use of the special structure of Az on ¥* U X* (see (3.77)). Denoting the
entries of the 2 x 2 matrices pp and Ag with 4 and A%, 1 <4, < 2, we obtain

ppAn pp AR nE AR wEA%
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Due to the Holder inequality, (3.70), and (3.78) (applicable since > b+ 5), we
have

||AR+:“R RHL1(22U24 < HAR”L1 n2un4) + HNR R||L1(E2u24)

Gl S -+ 0l Ex )

which yields

1/ (AR+M}?AR><t>dt:O(1)7

(wb

(zb

8
==
f=al

@‘

27 t—xa N(z=b)

1 1
1/ (Ag +ppAR)(1) - L O\e2) 9z
270 Jo2us4 (t — x)? Nlo ﬁ O(-4))

It remains to consider the contour Y3. By assumption, there exists an integer n
and a real number t* (w.l.o.g. t* > b+ 4) such that V' has an analytic extension
on U(n,t*) and the real part of V' is bounded below on U(n, t*) (see (3.80)). With
V we can extend 1 on U(n,t*) as well and obtain the same asymptotic behavior

of AR:
O (45 o(1
AR(2)] = e ( Ofem) ol ) )
(=) O (&)

In order to obtain the expressions for R (z) and R/ () in (i) and (ii), we have at
least to make sure that the real part of n is positive on U(n,t*). Lemma 2.15 is
not applicable in this situation since we do not deal with bounded subsets of J.
However, Lemma 2.18 provides a connection between V' and 7 that is sufficient
for our case, because it provides a constant ¢ > 0 such that

Re(n(2)) > Re(V(2)) — 2In (5=4) — ¢ (3.81)

for z € U(n,t*). Combining (3.80) and (3.81), we conclude that there exists ¢ > t*
and ¢ > 0 such that

Re(n(z)) > ¢+ (Re(z) — (b—1)) Vz € U(n,t). (3.82)

For > t+1 =: { we are now able to define the radius of the semicircle dependent
on x:

P (3.83)
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This choice ensures in particular 33 C U(n, t), Re(n(t)) > é(z —b) for t € ¥ (see
(3.82)), and hence |e= V10| < e~ Ne(@=b) This yields

ez sy, lle ™™ z2es) = O (mpmrs )

In analogy with the above calculation we obtain

1/ (Az + ppAg

211 Jx3 t—ux

= Le M 11 xs (0(% 3) o(z(lii))

e . O(4) oO@)
T kz  N(z—b)3(nt+l) O 1 O(l)

z—b

‘ Az + paAgllLies

@
_NnHLQ(ZS) (O

8
i
o

1/ BrtpeBp)®) )1 o (O
271 Jx3 (t — x)? 2 N@=05tD | 0

(=

r—

o)

ow)
Due to (3.83) we can conclude statements (i) and (ii).
Before turning to the asymptotic behavior of R, (y) 'Ry (z) in (iii), we remark
that

In (L:b) _ {O Eyl_b% , %f x>, (3.84)
+

[
(=0 (=2)| (=) |z
‘ T —y B =1 Tl =1
@-dm(=)_|m(G3)|_ ()] _ | ma
r—y T = R R P i

with 2y := z—’b and 29 := Z—_b In the case x > y we have z; > 1 and for x < y it
is 25 > 1. Since 2% is bounded for z € (1,00), (3.84) is immediate.

We only need to COIlSldeI' the case © # y. Due to Ry (z) — Ry (y) = [ R, (¢)dt
and Ry (y)™' — Ry(x)™' = [Y(Ry(t)™!) dt we see that

In($=¢)
Ry(2) = Ry (y) N o= =
— O(N (z=b)(y=b)  z—y )
pr—y ON) 5 in( 222 (3.85)
(z=b)(y=b)  =—y
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and, by using det(R) =1 (see (3.65)) that

0 R nE) ()
R.(s)"' - Ry(a) :@(N—1>( = ) (3.56)
x—y ey R oty

Then, (see (i) and (3.85)),

R+(y)_lR+(SU) —Id _ R+(y)_1 R, (z) — Ry (y) _ (’)(N_l) ((mb)l(yb) %yj’i))
T—y Ty

and simultaneously (see (3.86)),

Ri(y) 'Ry(r) —1d _ Ri(y)! — Ry(x)”
r—y r—y

n(2=¢) ln(i_:i:) )

(z=b)(y=b)  (z—b)(y—b)

R.(x) = O(N7) (

Together with (3.84) we obtain (iii) for x # y. The case x = y follows from the
uniformity of the error bounds. O]



|Chapter 4

Proof of main results

The aim of the current chapter is the analysis of the outer tail Oy (see (1.12))
in the regimes of moderate, large, and superlarge deviations. As motivated in
the Introduction, the Airy kernel (defined in (1.21)) is strongly connected to the
distribution of the largest eigenvalue of unitary ensembles (c.f. (1.15), (1.16),
(1.20)). Hence, we have a closer look at the Airy kernel and in particular at its
asymptotic behavior. Another representation is given by (see [2, (6.2.4)])

Al(0) ATW)-AIW) A@) - 5 £ o)

Ai(z,y) = oy
i(@y) {Ai’(x)2 —zAi(z)?* |, ifz=y.

(4.1)

Using in addition [1, (10.4.59), (10.4.61)] it is immediate that

_4,3/2
3T

Ai(z,z) = 687?517 (1 +0 (#)) for z — oc.

In the following lemma we extend the asymptotic behavior of the Airy kernel to
the case = # .

Lemma 4.1. For x, y — oo we have

Ai(z,y) = 1+0(=25)+0(45)).

( y) 471_1%3/& (:IZ'% +y%) ( <x3/2) (y3/2))

Proof. Combining (1.21) with the asymptotic expansion of the Airy function
given in (3.50), we obtain

1 oo o3 (@t +y+0)°?)

Ailr.y) = E/O (z+1)7 (y+ 1)

ol

(1+0(@+72)+0(y+1)?)) at
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The integrand (z + ) Y4(y 4 ¢)~4e= 3@ 2@+ §s non-negative for ¢ €
[0,00) and z, y > 0. Applying the Mean Value Theorem, we obtain

oo =5 (@t 2+ (y+0)*?)

1
Ailz.y) = 47/ (z+8)3 (y+1)

d(1+0(z72)+0(y2)). (42

Defining

[NIE
N|=

u(t) == — (:Hlt)*i (+075 (@ +1)?2 + (y+1) ) with

WO =@+t G+ (@02 + (y+1)?),  and
o(t) = e 3 (@Y @)
we compute the integral in (4.2) using integration by parts:
oo ¢~ 5 (@t +(y+1)*?)
! (z+0)7 (y + )7

3/2,.,3/2 1 1

ty ) B /OO (33 + t)2 + (y + t)2 67;((x+t)3/2+(y+t)3/2) a (4 3)
5 5 N N

) N a@+niern

o0

dt = u(t)v(t)

. /O T () dt

0

e
N xiy% (x% —|—y%
Since (x +1) /4 (y +1)75/* = O((wy)~>/*) for t > 0 and

/ooo (1) + (y+ 1)) e 3@V DY) gy _ =5 +07)

)

we conclude by using the Mean Value Theorem again that the right hand side of
(4.3) equals

1/2 4 1/2
zry

The statement now follows with £ = xl}Qy + myll/z <2 (13% + ys%) O

Using (3.50), (3.51), and Lemma 4.1 it is a direct consequence that for z,
Yy — OQ:

S (e 448) (140 () + 0 ().
M (s et) (10 () <0 ().
Ai'(z) Ai 111 1 1 1
Wzmw (22 +y2) (1+0 () +0(32)) -
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This chapter is structured as follows: In Section 4.1 we analyze the kernel Ky v/
(see (1.18)) and obtain information about its leading term and its asymptotic
behavior in different regimes of J. This information is summarized in Theorem
4.4 which, from a technical point of view, is the basis of the main results of
this thesis. Some aspects of Theorem 4.4 have been published in [21]. The last
section of this thesis is dedicated to the study of moderate, large, and superlarge
deviations. Here, we apply the results of Section 4.1 to formula (1.15). We always
assume in this chapter that V satisfies (GA).

4.1 The kernel Ky v

As discussed in the Introduction, the kernel Ky (see (1.18)) represents a main
ingredient in the analysis of the outer tail Oy (see (1.12)), which becomes
visible in relations (1.15) and (1.16). Hence, one needs to study the behavior of
Ky y(x,y) for x, y > by. In addition, we use the Christoffel-Darboux formula for
Ky given in (1.19). The right hand side includes the orthogonal polynomials
pg\],v‘)/ and pg\],v‘; Y with respect to e VY@ dg. In Theorem 3.1 we have seen that
these polynomials are part of the solution of the Riemann-Hilbert problem for Y.

In fact, Ky can be represented for z # y by

o~ X (V(@)+V ()
KN,V(xa y) -

Torilr—y) (O 1) Yi(y) 'Yy (2) <(1)> (4.5)
(see e.g. [22]). Reversing the transformations Y — 7" — S — R of the Riemann-
Hilbert problem performed in Chapter 3 we can express the first column of Y,
in terms of R, which in turn is close to the identity if N tends to infinity (see
Theorems 3.26 and 3.27). But before stating the claims, let us introduce a further
auxiliary function. As in the previous sections, let 0%, be given as in Lemma 3.13.
Then, we define dy : (by — o}, by + o},) — R via

1
A

dy(z) = |w (= = av) fo(@)]" (4.6)

where 4 and f are given according to Lemma 3.10. Using (3.34), (3.33), and
(3.17), we obtain the following relation between the functions dy, fy v, and cy:

fJ%’VC‘_/l = N%dv on (bv, bv + 0?/) (47)

In the first theorem of this section we give a representation of the kernel Ky y
on (by, Ly) by applying (4.5). Furthermore, we distinguish between the intervals
(by, by +6) and [by +0, L), where 0 is chosen from (0, 507/]. Note that we suppress
the V-dependence of all involved functions and numbers in the proofs.
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Theorem 4.2. Assume that V satisfies (GA). Let Kn v, nv, cv, dy, fnyv, R, and
v be given as in (1.18), (2.30), (3.17), (4.6), (3.34), (3.63), and Lemma 3.13.
C’hoose 6 € (0,30%], define k : (by, Ly) — R? through

(_ A (o (@) [Nl/6dv<$>}_l) if € (by, by +6),

k() = (Z () Al (fay (@) NYody ()
2() ) ( ) , if w € by +6,Ly),
(4.8)
and set
Rovley) = (a:)krg(y; - Sg(m)kl W 2y (4.9)

Then, for x # v,

(4.10)

Proof. In order to obtain the desired representation of the kernel Ky in (4.10),
we use the expression for Ky given in (4.5). The transformations Y — 7" — S
in Chapter 3 (see Definitions 3.2 and 3.4) yield

Since det Y =1 (see Theorem 3.1), we can make use of the equation
(0 =1\ 7 (0 1
Y = (1 0 Y 10 (4.12)

(see [35]) to compute the second row of the inverse matrix Y *:

O D=0 v (4 =P ()] ( )

_ N(o)-b) (1 0) S, (y)TeVer ( 01 0

Due to det S = 1 we can apply (4.12) for S as well and obtain

(0 1) Yi(y) "t =N~ ( ) U ( 01> Néﬁs( )

— N(sw)—%) (0 1 S ( ~Nj (4.13)
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Using (4.5), (4.13), and (4.11) one has

e 5 (V(@)+V (y)+20-2g(2)~29(y))

Kt = (0 1)5,0)7'8, () (5) |

Corollary 2.11 (i), (ii), and (2.31) imply n = V+I{—2g on (b, L,]. Since S = R-S,,
(see (3.63)), we conclude that

e % (n(@)+n(y))

K(a,y) = (0 1) (S () Re ) R 0) S 00 )

2mi(x — y)
o5 (n(@)+n(y))

e (01 ) 007 () () g
o= L (n@)+n(w))
ot (0 1) (S (07 (Rel) " Ree) = 10) (), (0 )

(4.14)

We now compute the first column of (S,4,)+ () for € (b,b+9) and x € [b+0, L)
separately. Let us start with the d-neighborhood of b. Due to the definition of S,

in this regime (see (3.62)), i.c. (Syar)+(z) = En() (mgb,§)+ (fy(x))eTn@os it ig
a direct calculation to see that (Sp,,)+(2) multiplied by the unit vector equals

(Spr) 0) (3) = VERe Feg(a) (WD)

(see (3.22)). Due to fi/zlc*l = N'/6d (see (4.7)) and (3.57), we have

0= et 1 0 —[NVed()]
Ex(e) = 5 (Z _Z_> (Nl/ﬁd@) | . ] ) (4.16)

Combining (4.15), (4.16), and the definition of k, this implies

2ri(z — y)

Sy @) (5) =¥} 1)) (117
for z € (b,b+ 9). Since (Spar)+ (1) =M (é on [b+ d,L;) (see (3.62)), one

concludes that (4.17) also holds for z > b+ (see (3.16)). Having (4.14) in mind,
we need an expression for (0 1)(S,q,)5" depending on n and k. Hence, applying
(3.64), (4.12), and det(Sper) = 1 (see (3.64)),

(O 1) (Spar)+ (y)_l = egn(y)ﬁk(y)ip <_ZZ 1) (4.18)

for all y € (b, L ). The claim is now a consequence of (4.14), (4.17), and (4.18).
[
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Using Theorem 4.2, we obtain representations of Ky (see (4.9)) depending on
subsets of J (see (4.10) and (4.8)). Let us have a closer look at the d-neighborhood
of by. For x, y € (by,by +0), x # y, we have

Ai(fyv(2)) Al (fa(y)) flﬁﬁg — Al'(fxv (@) Ai(fav (y) Zﬁﬁi)
—Y

~

f(/N,V(x7 y) =

8

Obviously, this expression is similar to the Airy kernel Ai for = # y (see (4.1)).
We use the asymptotic behavior of the Airy kernel given in Lemma 4.1 to provide
the leading order behavior of Ky in Lemma 4.3. Observe that we do not obtain
an asymptotic description of K ~,v on all of (by, L ). It turns out that one has to
restrict the interval to (by + —%7, L) with an arbitrary constant ¢ > 0. For our
purposes it suffices to study the case ¢ = v with vy as in Lemma 3.10.

Lemma 4.3. Let all assumptions of Theorem 4.2 be satisfied and let vy, be given
as in Lemma 3.10.

(i) Forx, y € (bV+WT12/3=bV+5>> x #y, we have

KN,V(‘Ta y)
_N = cv(z) _ cv(y)
_ e (v (z)+nv (y)) ovly) evla) (’)( . ) N (’)( . )
41 T—y N(z—by)5/2 N(y—by)>/?

The error bounds are uniform for all x, y in the considered regime.

(i) Forz,y € [by +6,Ly), v #y, we have

Ny (@) v (y) @) ev()
K €’ C cy(x
Kyy(z,y) = - ) V(y; - yv( )

Proof. The case x, y > b+ 0 is immediate from the definition of Ky through &
(see Theorem 4.2).
For x, y < b+ 6 we also apply Theorem 4.2, but it is necessary to use the
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asymptotic behavior of the Airy kernel as well. We have

EN(xa y)
A (@) AV () — ATUn () Ai(Tv()
r—y
N <Ai(fN($))Ai'(fN(y)) N Ai/(fN(x))Ai(fN(y))> d(z) — d(y)
d(y) d(x) T—y

with
Fe.y) = f(@) () (Fx @) + fu(y)?).

(3.34), (3.33), and Lemma 3.10 (iii) imply fy(z)™! = O(N=2/3(x — b)~!) for all
x € (b,b+ d). Hence, by Lemma 4.1 and (3.35), we obtain

e~ % (n(@)+n(y))

fla,y) Ailfx(@), In(y) = = (1+ O (zatye) + O (5apom)) -

Using furthermore

fN(ﬂU) — Iny ) (@) _ fa(y)
f(z,y) In( ’

Ai(fn(2) A (fn(y)  _ fv(y

f(:c,y) Ai(fy(z), f <y)) N(l‘;lM (1 +0O ( )3/2) +0 (N(y b)3/2)) and
c(z) _ [u(x) d(y)
cly)  InYt d(x)
(see (4.4) and (4.7)), we achieve
. — %5 (n(x)+n(y))
Ky (z,y) = GT (1+0 (satim) + O (s52m))
ela) _ ely) jpoda g




82 4 Proof of main results

Applying Lemma 3.10 (iii) we obtain ;Z g;i;z =0 <%) and the boundedness

of d™! on (b, b+ §). Moreover, we have

b\1/4 Ax1/4 x—al/‘lA’x
d(z) = (vi ((;(—2)3/4 L fvzx)?ﬁ( >) — 0(1),

1
which yields 42=4®) — / d'(y +t(x —y))dt = O(1). Hence, we have

St _ % o frn(y)v/4 . 1 ' d(x) — d(y) _o ((y—b)1/4)
fn@)V4 oz —y ()% d(y) r—vy (z—b)1/% )
P 1@ @Y 1 dw) - d) =0
NV -y )Vt d(a) r—y [EOREYA

and therefore

Ky(z,y) = — (1+0 (5ato) + O (5pa2))

Together with the requirement x, y > b+ this leads us to

1
’yN2/3

?N(x7y) =

~Y@nw) ez dw)
€z cy) () 1 1
A ' [ +0 (N(xfb)m) +0 (N(wb)”‘*)

(7)) © (ste)
+0(5))0 (st |

which completes the proof. O]
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As mentioned at the beginning of this section, it is our aim to provide an
asymptotic description of the kernel Ky . In view of the results of Theorem 4.2
and Lemma 4.3 we may achieve such a result on (by + 5 N2 —73, L1). According to
(4.10) it remains to study

k()T <—¢ 1) R.(y) " Ri(v) —1d (1 12') k()

U 2i(z —y) -

in that regime, which is performed in Theorem 4.4. Here, the asymptotics of R
and its derivative given in Theorems 3.26 and 3.27 come into play. It also makes
use of the requirement (GA),, which has not appeared in this section yet. This
assumption is necessary to derive an asymptotic description of Ky v (z,y) with
x, y from unbounded subsets of [by + d,00) with a uniform error bound.

Theorem 4.4. Assume that V satisfies (GA) and let Ky, nv, cv, Vv, and oY,
be given as in (1.18), (2.30), (3.17), Lemma 3.10, and Lemma 3.18 and choose §
from an arbitrary but fized compact subset of (0, 30%].

(i) Forz, y € (bV—I—WTlg/g,bv%—é), x #y, we have

e—%(nv(‘”)ﬁ-ﬂv(y))

47
rv(r) Ea )

M+O(W)+O<W>]'

KN,V(xa y) =

The error bounds are uniform for all x, y € (bv + ﬁ, by + 5).

(i) Forx,y € [by +0,L,), v # vy, we have

(4.19)

o~ Y@y (y) [ale) _ v
Knyy(z,y) =

ir - ;V(x) +0(%)

The error bound is uniform for x, y in bounded subsets of [by + 0, L).

(1ii) Assume that 'V satisfies (GA)s in addition. For x, y > by, © # vy, we have

N (@) v (y) @) ev()
_ e 2 Cv(y) CV(I) 1
KN,V(xyy) - A |: Ty +O(N($—bv)(y—bv))

The error bound is uniform for all z, y > by + 0.
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Proof. We use the representation (4.10) for Ky from Theorem 4.2 with k as in
(4.8).

Let us start with claim (i), i.e. z, y € (b+ W%/g,b + §). Due to (3.34), (3.33),
Lemma 3.10 (iii), and the condition on x to be larger than b + ,YTlg/?,, we have
fn(x) > . Hence, we can use (3.50), (3.51), (4.7), and (3.17) and obtain

€%fN(I)3/2 ) = O(fN(:L‘)iN_éd(x)*l) — O(C JJ)) = O<1> 1
k() = ( O (fu(a) iNEd(@)) ) ~ (0 <c<w>1>> - <O (= b>4)>
(4.20)

Furthermore, the results of Theorem 3.26 (iii) are applicable since (b+ 5 —575, b+0)
is in particular a bounded subset of J. Together with (3.35), (4.20), and (4.10)
this implies

Kn(x,y) — EN(x,y)

_ o5 (@) +n(y)) (0(1) O((y — b)*1/4)> O(N™1) <O(($O_(é;—1/4)>

_Nip(x

The claim now follows from Lemma 4.3 (i).

For statement (ii) we can apply Theorem 3.26 as well since we require the error
to be uniform for x, y in bounded subsets of J. In particular we have ¢(z) = O(1)
and c(z)~! = O(1), which yield k(z) = O(e~27@) (see (4.8)).

In case (iii) we have (see Theorem 4.2 and (3.76))

Kn(z,y) - (:v,y)
_ e Fl <z<c<y> L=y >>> Ry ()~ R(x) — 1d ( c(x) + c()! )
4m c(y) + c(y)™! 2i(z — y) i(e(w) = c(@)™)

- (oY R (90))

Now, the results of Theorem 3.27 come into play, which require (GA). Using in
addition

) ol otin) (o) =0 i)

the proof is complete. n
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It turns out in Section 4.2 that the leading order of Ky y(x,x) is of special
importance. Hence, we study the results of Theorem 4.4 in the limit + — y in the
following corollary.

Corollary 4.5. Assume that V satisfies (GA) and let Kyv, nv, cv, Y, and o
be given as in (1.18), (2.30), (3.17), Lemma 3.10, and Lemma 3.13 and choose §
from an arbitrary but fized compact subset of (0, 30%/].

(i) Forz € (bv + leQ/'“bV + 5) we have

81 (z—byv)(x —ay) {1 +0 (W)} '

KNV\/(?L’, ZL‘) =

The error bound is uniform for all v € (bv + W’ by + 5).

(i) For x € [by + 6, L) we have

bV — a/V e_NnV(Z‘)

o ey LTOG)

Kyy(z,x)=

The error bound is uniform for all x in bounded subsets of [by + 8, L, ).

(iii) Assume that V' satisfies (GA) in addition. For x > by 4+ 6 we have
bV —ay e*NTYV(fL”)

Kyv(z,z) = o Py W5 Y C—— [1 +0 (%)} :

The error bound is uniform for all x > by + 0.

Proof. For the proof of claims (i) and (iii) we can apply Theorem 4.4 (i) resp.
(iii) by using in addition

) dh _cla)—cly) ) —cly)  2M@) _ b-a
i—y -y Aoy 7 o) 2e-be—a)

In order to show statement (ii), we apply (4.19) in Theorem 4.4 (ii) where the
error bound is uniform for z, y in bounded subsets of [b + §, L ). Since both left
and right hand side are continuous, we can conclude

b—a Nz 1 1
KN(x,x):?-e @) (:c—b)(q:—a)—i_O(N)]'

Using furthermore (z — b)(z — a) = O(1) for = in bounded subsets of [b+ 4, L. ),
the claim is proved. O
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We conclude this section by an estimate that is well-known in the theory of Log
Gases (see e.g. [19], [29, Chapter 11] and references therein). For our purposes
the version presented in [18, Lemma 5.2] is most convenient. Using the linear
growth of V(x) for x — oo (immediate from (GA);), the result in [18] with

Q=V, p}w(x)é%R%?V(x) = + Knv(z,z) yields
Lemma 4.6. Assume that V satisfies (GA) with Ly = oo. Then there exist
Xo > by and 7 > 0 such that

Kyy(z,2)=0 (e_Nm) for all x > X.

4.2 Moderate, large, and superlarge deviations

In order to study the distribution of the largest eigenvalue Ay of unitary en-
sembles, we recall the definition of the outer tails Oy y resp. Oy in global resp.
local variables (see (1.12), (1.13)):

ON,V(t) = ]P)NJ/()\max > t), t > b‘/7

ON’V(S) = PNy ()\max > by + s>1,

s
wN3 )T
for a function V' that satisfies (GA). Having (1.15) and (1.16) in mind, one has
to consider the integrals

/t /t det (K (2 5)),1 ) i - - day

for k = 1,..., N. The representations of Ky y(z,z) in Corollary 4.5 lead to the
analysis of integrals with integrand

e_NnV(z)
(x —by)(z —ay)’
in Proposition 4.7 and Lemma 4.8, which is the leading order of Ky vy (x,z) up to
the factor b‘/s%“‘/. The distinction between the intervals (by + Wle/g, by + ) and
[by + 6, L), where § is chosen from a compact subset of (0, 3o¥] (with o¥ as in
Lemma 3.13), has its counterpart in Theorem 4.10. We then show, how to derive

the main results (Theorems 1.1-1.3 and Theorem 4.11) from that theorem. As in
the previous section we suppress any V-dependence in all proofs.

Proposition 4.7. Assume that V' satisfies (GA) and let ¢ > 0. Then for anyt > by
with t +c¢ < Ly we have

dox =

/L+ e~ Nnv(z) e~ Nnv(t) o ( ) )
tte (# —bv)(z —av) N(t=bv)(t —av)m(t) = Y/
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The error bound is uniform if t is chosen from a bounded subset of (by, L) with
t+c S L+.

Proof. We first use the estimate

—Nn(x —-N /
/ L / ) )N -n0) g
t+e (x —b)(z — a) (t—=0)(t—a)n(t) Ji+c 1'(x)

:77’/((;)) = O(1) and furthermore

Due to Corollary 2.17 we have
L 1
/ T (z)eNa@=10) g < Ne—NW(Hc)—"(t)).
t+c

Since n(t + ¢) — n(t) is bounded below by a positive constant for ¢ in bounded
subsets, the claim follows. n

Lemma 4.8. Assume that V' satisfies (GA) and let ny be given as in (2.30).
(i) Fory € (by, Ly]NR and t € (by,y] we have

Y e—NUV(x)
/ dx
t (z—0by)(z—ay)

e_NnV(t)

N(t—by)(t —av)m(t) (1
+ (1= Wav() + D) - [0 (st ) + 0 (wiw) )

with zv (t) = nv(y) — v (t).
The error bounds are uniform for y in bounded subsets of (by, Ly] NR.

—Nzy (t)

— €

(1i) Assume that Ly = oo and let V satisfy
t € (by,o0) we have

“//,/;g% = O(1) for v — oo. For

o  e=Nm(@ o~ Ny (1) 1
L e=me—a) = ¥ (O ()

The error bound is uniform for t in subsets of (by,00) that have a positive
distance from by .

Proof. The procedure of the proof is similar for the cases (i) and (ii) and we treat
them simultaneously as far as possible. Consider

4 N =1
/ ¢ dr  with d;=¢Y NI TO
t (z—="b)(zr—a) oo L, ifj=2,
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related to the cases (i) and (ii) with the corresponding requirements on y and t.
Substituting u := n(z) — n(t) we obtain
—Nn(z)

/tj(x—eb)(x—a)

)—n(t) 1

(@(u) = b)(x(u) — a)n'(z(u))

e N dy

(4.21)

do = e~ N t)/

with z(u) := n7 (u +n(t)). Observe that 7 is strictly monotone and hence inver-
tible and that 7n(dy) — n(t) = oo (see (2.33)). Our approach is the following: For
j = 1,2 we define the auxiliary functions

1

ki [0,n(ds) =n(O]NR =R, k;(u) == (x(u) = b) (x(u) — a) ' (z(u))’

Together with (4.21) we obtain

4, oM n(d;)—n(t)
dz = e V) / ki (w)eNe d 4.22
/t @—b@—a = ° 0 s(w)e” du (422)

for j = 1,2. Expressing k;j(u) = k;(0) + K}(C,)u for ¢, € [0,1(d;) —n(t)] N R, we
need an estimate on kj. Using 2'(u) = m and the definition of n via G (see

(2.30)) we obtain two representations for the derivative:

1 1 1 ?7”(1‘(“))]

50 = = ) = 0w — a G@ [o@ =5 T @ —a T aw)

2
o 1 § 1 1 G'(z(u))
(@) = b)((u) — a)n'(z(u)? |2 (I(U) b alu) - a) T Glaluy |
2

It will turn out that one needs (4.24) to prove (i) resp (4.23) to show (ii).

Since z(u) € (t,d;) for u € (0,n(d;) —n(t)), we have (7 = (’)( ;) and m =
O+

We now restrict our attention to (i) (i.e. j = 1), where we only need to consider ¢
from bounded sets and the interval (¢,d;) = (¢,y) is contained in a fixed bounded
subset of (by, L] NR. The application of Lemma 2.15 (i) resp. Remark 2.16 (i)

yields & (’”(;L)))) = O(1) for z(u) € (t,y) and hence, (see (4.24)),

-). Furthermore, due to Corollary 2.17, one obtains /(7 = O<n 0] ).

1

40 = g —aprae (© (75) +OW)

for u € (0,n(y) —n(t)).

Next we consider the fraction (:77,/;2

for the case j = 2, which corresponds to
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claim (ii). Due to the asymptotic behavior of " and 7" given in (2.32) and (2.34),
Remark 2.16 (i), the strict increase of V', and the boundedness of % %)

V’($)2
in the assumption of (ii) we have

for x — oo

(z) V@) + V(@0 () + 0 (5E)
() V()2 + V' (2)O

V" (x . 1
- <V/<EE>)2 o (V'(w)(:vb)>> (140 (v@es)) =00)

uniformly for ¢ in subsets of (b, 00) that have a positive distance from b. This
implies (see (4.23))

1
(t =b)(t —a)(t)

with the required uniformity of the error bound.

ky(u) = O(1) for u € (0,00)

Using k;(0) = W for 7 = 1,2 we obtain from the Mean Value Theorem
1 1 e
kj(u) = ! : 1+ (O (i) 0 (7)) v - i =1,
’ (t=b)t—a)rt) |1+01)u =2,
and hence, see (4.22),
4 e Nl e—Nn(t)
/ dr = .
t (z—=>b)(z—a) (t—b)(t — a)n'(t)

n(y)—n(t)
/ e N du

[ e (0 () + 0 ) it =1

/ e_N“du+/ ue N du - O(1) , iy =2
0 0
Due to
/n(dj)n(t) N gy — % 1 — e NOw)=—n®) 1fj =1,
0 1 ,if =2,

n(d;)=(t) 1 — (N(n(y) — n(t)) + e NO@=n®)  "jf j =1,
/ P e Ny = (N(n(y) —n(t)) + e 1
0 ,if g =2,

we obviously obtain the desired results for both cases. O]
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Recall the representation of the outer tail Oy in terms of the kernel Ky v
(see (1.12), (1.15), (1.16)):

L
Ony(t) :/t +KN7V(£L‘,$) dz (4.25)
N (_ k+1 L, Ly
+> /t o [ det (B () gy da -
k=2 -

The next crucial observation is that the first summand determines the leading
order of the outer tail. Propositon 4.9 provides an estimate in this direction.

Proposition 4.9. Assume that V' satisfies (GA) and let Ony and Ky be given
as in (1.12) and (1.18). Then,

L N k

+ 1 Ly

’ON,V(t) _/t Kyyv(z,z) dﬂﬁ‘ <> il ( t Kyy(z,x) dm) .
k=2

Proof. We introduce the k x k-matrix Ky y(z1,...,25) = (Kn(xi, 25))1<ij<k,
which is symmetric (see (1.18)) and positive semidefinite since for all w € R* we
obtain

2
(W, Cng(1, ..., zp)w Z [ZwJpN z;)e” V(””f)] > (.

=0 [j=1

Due to (4.25) we have

On(t) = /ltL+ Ky(z,x)dx

N (_1)k+1

Ly Ly
/ / det (K p(@1, .. ap)) dzy - daeg. (4.26)
t t

There exists a symmetric and positive semidefinite k& x k-matrix By (21, ..., Tx)
with entries B;;, 1 <i,j < k, such that (By(z1,... ,mk))2 = Kn(x1,...,2K).
The determinant appearing in (4.26) can then be estimated by using Hadamard’s
inequality:

|det (ICNJﬁ(xl, T ))| = |det (BNk(:El, . ))|
k %2 k k
<1 (xm) B@Mﬂ 1 Kt )

The claim is now obvious by Fubini’s Theorem. O]
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We are now able to present the first main theorem of this section namely the

leading order behavior of the outer tail Oy on all of (by —|— N2 73 L+] NR.

Theorem 4.10. Assume that V satisfies (GA) and let Oy, nv, Vv, and oy be
given as in (1.12), (2.30), Lemma 5.10, and Lemma 3.13. Choose 0 from an
arbitrary but fized compact subset of (0, 30V,] and set

5= =6. (4.27)
Then, the following holds:

i) Fort € (by + —55,by + 0°) we have
~y N2/

by — ay e~ Nnv(t)
1 —_— ).
Ony(t) = ST N(f —by)(t — av)ny (1) ( O <N(t b )3/2»

The error bound is uniform for all t € (bv + N2/3 by + 50>
(i) Fort € [by +0°, L ]NR
(a) and Ly < oo we have

by — ay e~ Nnv(t)
8w N(t—by)(t —av)ni(t)
1= e VO 4 (1= (Nap(t) + e Vv 0) . 0 (1))]

(1+0(%)) (4.28)

with 2y (t) == ny(Ly) —nv(t).
The error bounds are uniform for all t € [by + 6%, L, ].

Ony(t) =

(b) and Ly = 0o we have

by — ay e~ Nnv () )
N anm L)

Ony(t) =

The error bound is uniform for t in bounded subsets of [by + 0°, 00).
(iii) Assume that V satisfies (GA)spp. Fort € [by + 0°,00) we have

bV — O/V e_NnV(t)

s NG e L0

Onyv(t) =

The error bound is uniform for all t € [by + 6%, 00).
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Proof. Recalling (4.25) we structure the proof as follow: First, we consider the
integral [“* Ky (z,2)dz in all cases (i)-(iii) under their respective assumptions.
Then, we deal with the remaining series starting from k£ = 2 in (4.25) by using
Proposition 4.9.

Let us start with claim (i), i.e. in particular ¢ < b+4°, by dividing |+ Kn(z, z) dz
into (recall (4.27))

b+6

L L
/ +KN(33,3:) der = Kn(z,z) dx—i—/ ;KN(LE,.%) dz. (4.29)
¢ b+

t

Using in addition Corollary 4.5 (i), we obtain

Kn(z,z)dz =

b+6 b—aq b6 e~ Nn(z)
t 8T /t (

e (10 () (430)

Since b+ ¢ is bounded by construction, we can apply Lemma 4.8 (i) to the right
hand side of (4.30). Due to ¢t < b+ §° and (4.27) we have b+ —t > §° > 0 and

hence n(b+ 9) —n(t) > ¢ for a constant ¢ > 0. Using 77%(15) = O(W) we obtain
b+6 e~ Nn(z) e~ Nn(®)
dz = 1 ) )
/t @—b)@—a)  NE-b)t—ay(t) (1+0 (s m))

We now turn to the second summand of (4.29).
In the case L, < oo, Corollary 4.5 (ii) and Proposition 4.7, using b + & > t + °,
give

—Nn(t)

2|=

L _
/+KN(x,x)dx:b a ‘
b

15 8t N(t—1b)(t—a)y(t) O

).

Combining this with (4.30), we obtain

b—a e~ Nn(®)

/t " Ky(z,z)dz = o N RE—a (140 (5akpz))  (431)

for L, < oo. If Ly = oo, the just given argument still yields

M b—a e~ Nn(®) .
/b+5 Kn(z,2)de === i =anm © (%)

for any fixed M > b+ 9, where the error bound may depend on M. However,
using Lemma 4.6, we can determine such a number M with M > X, and

00 b—a e~ Nn(®) .
/M Ky(z,z)de = 8t N(t—0b)(t—a)y(t) © <N)
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uniformly for ¢ € (b+ WN%/?” b+ 0°). Hence, (4.31) also holds for L, = oo.

Furthermore, we have

N 1 L, k
Z(/ KN(x,x)d:c>
i K\
b — —Nn(t) N 1 —Nn(t) k—1
_r-a, © S £ o (%)
8 N(t—0)(t—a)y(t) = k! \ (t —b)3?
b—a e~ Nn(®)

" 8 'N(t—b)(t—a)nf(t)o(fv<t—1b>3/2)7

which completes the proof of (i) together with Proposition 4.9.
In order to show claim (ii) (a), we apply Corollary 4.5 (ii) by replacing § by ¢°,
which implies

b—a e~ Nn(@)

/t+KN(37,fL')dZL': S /t+(x—b)(m—a)dx(1+o(i]>>

fort € [b+6°, L,). Using ﬁ = O(1) and Lemma 4.8 (i), we obtain

Ly b—a e~ Nn(®)
J o) de = 25 NG =)t — )yt (432)

1= e ™0 4 (1= (N2(t) + 1)e V) 0 (H)] (1+0 (%))

with z(t) := n(Ly) — n(t).

Consider the case L = oo in order to show (ii) (b). Here, ¢ is required to lie in
some fixed bounded subset of [0+ %, 00). We denote this bounded subset with [
and set S := sup(/). Corollary 4.5 (ii) and Lemma 4.8 (i) yield

b—a e~ Nn(t) X
s N ni—arm L TOR)

M
/ Ky(z,x)dr =
t

for any fixed M > S. Applying Lemma 4.6 and setting M = max{Xj, @ + 1},
we obtain

00 b—a e—Nn(t)
/M Kn(z,2)de = = 'N(t—b)(t—a)n'(t)'o( )

which proves claim (ii) (b).
If t € [b+6° 00) arbitrary and V satisfies (GA)srp, we have

0 — o0 —Nn(z)
/ KN(x,a:)dm:b a/ ¢
¢ t

& e (1+0(%))

r—"b)(r—a
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due to Corollary 4.5 (iii). Since the assumption of Lemma 4.8 (ii) is satisfied in

that case (i.e. “//,/;g% = O(1) for x — o0), one obtains

b—a e~ Nn(®)

/too Kn{oa)dr =" oo (1+0(4). (4.33)

It remains to consider the sum starting from k£ = 2 in (4.26) for (ii) (a), (b), and
(iii). Let us start with (ii) (b) and (iii) where [° Ky(z,x)dz is given by (4.33)
in both cases. Having Proposition 4.9 in mind, we consider

N q oo ko b—qa e—Nn(t) N1 N 1\ k-1
kz::zk'(/t KN(x’x)dx> " 8 'N(t-b)(t—a)nf@)gm(e W0 (%))
b—a e~ V() L
T 8r 'N(t—b)(t—a)nf(t)O(N)’

which yields the claims.
Finally, we complete the proof of (ii) (a), i.e. for t € [b+ 6%, L] with L, < oc.
By (4.32),

N oq /L, k

gg </t Kn(z,x) dx)
b—a e~ Nn®) A k-1

= . . — —Nn(t) 1 1 k
8t N(t—b)(t—au(t) ék! (™0 (%)) (©)
b—a e_Nn(t)

— . Lo(L
8t N(t—0b)(t—a)n'(t) (N)
and by Proposition 4.9 we obtain the claim. O]

Now, we prove Theorems 1.1-1.3 by applying the results of Theorem 4.10.

Proof of Theorems 1.1-1.3
Theorem 1.1 is immediate from Theorem 4.10 (i), (ii) (b), and (iii), and from
the boundedness of N7(t), N(t — b)(t — a)n'(t), N(t — b)*?, and Oy(t) for
t € (bb+ Sy
The statement of Theorem 1.2 can be obtained from Theorem 4.10 in the same
way since V' is required to satisfy (GA).
In order to prove Theorem 1.3 we have to study the representation of Oy in
(4.28), especially z(t). Obviously, there exists £ € [t, L] with

2(t) = n(Ly) —n(t) = n'(€)(Ly —1). (4.34)
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Consider the case t < Ly — (logiN for some o > 1. Using (4.34), (2.30), and
Lemma 2.15 (i), there exists ¢ > 0 such that Nz(t) > c(log N)®. Hence, e V*() =
O(%), which proves claim (i) of Theorem 1.3.

Let now Ly —t = o(%). Due to (4.34) and #/(§) = /(L) + O(L — t) we obtain

2(t) = /(L) (Ly = £) (1 4+ O(Ly — 1)) (4.35)

and hence, wy(t) := Nz(t) = o(1) for N — oo. Since e™*N®) = 1 — wpy(t) +
O(wn(t)?), we have

1— e 4 (1= (wn(t) + 1)) O (£) = wn(t) (1 + O(wy(t))) .

Applying in addition (4.28), 7/(¢) = n'(L4+)(1 + o()), and (4.35) we obtain

b—a e~ Nn(®)
On(t) = L (0 (14 o)
b—a e~ Nn(®)

= oGm0 o).

]

We now analyze the outer tail Oy (see (1.13)) in the regime of moderate
deviations. Due to the relation

S

t:bv—i—m

(4.36)

between the global variable t and the locally rescaled one s, which implies O Nv(s) =
On,v(t), we can obtain from Theorem 4.10 (i):

Theorem 4.11. Assume that V satisfies (GA). Let O,y be given as in (1.13) and
choose (s, N) from the regime of moderate deviations (see page 6). Then,

)+0(%).

Under the additional requirement that % — 0 for N — oo (c.f. page 6) we
have

logOny(s) 4 log (16753/2) + O( s
a9/ S T a5 N2/3

53/2 - 3 g3/2

Onr(9) = g (140 (37) + 0 (o

:)) - (4.37)
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Proof. 1t suffices to consider N > N, for a suitable chosen Ny > 0. We may
therefore use the asymptotic behavior of Oy provided by Theorem 4.10 (i) and
the representation of 7 given in Lemma 3.10 (i). This implies together with (4.36)

3 3 A 3 / ~ 3
) = 5= 00 =5 S (o i) (4.9
n'(t) =272t —b)2f(1)> (F(t) + (t = b) F'(1))
/2 o N
=275/ 0+ 55) " (F (b + 55) + 55 (b4 5587))

1/2

4 83/2 S / S S
nt) =5 (1+0(55)), 70 =215 (1+0(55r)) -
This yields (see Theorem 4.10 (i))
b—a e—%s3/2(1+0(5N*2/3))

87 253 (b—a+ ) (1+ 0 (335))

N 1671rsie_gss/Q(HO(SN_Q/g)) (1+0(535) + 0 (5z)) - (439)

6]\[(8) = ON(t) =

Hence,

log O (s) = _;133 (140 (535)) —log (16ms3) +log (140 (i) + O (22))

- _;133 —log (16752) + O (22%) + O ().

which proves the first claim.
5/2
In the case that s grows up to order o(N*/1%) we have ]SVT//?, = 0(1) and therefore

6_383/2(1%,)(8]\,72/3)) _ 67%53/2 (1 + 0O ( $5/2 )) .

N2/3

Together with (4.39) we obtain the second statement. O

Remark 4.12. Observe that the definition of the outer tail O ~,v depends on the
two V-dependent numbers by and . Hence, the universality result in (4.37)
holds for s = o(N*/1) up to the rescaling. The reason why one cannot expect
(4.37) holding for values of s that grow larger that N*/'® in general is due to the
representation of 7y in (4.38). Since fy is analytic in a neighborhood of by (see
Lemma 3.10), we can expand fy (by + W) as a Taylor series at by:

A A A N 2
fv (bv + s ) = Fo(0v) + o (bv) - s + 50 00) - (5m) +
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We know that fy (by) = 1 for any admissable function V, but we cannot state
any general information about f{,(by). For f{,(by) # 0 one cannot improve on
the error bound fy (by + N2/3) = 1+ O(557) and one needs the assumption

s = o(N*'®) to duduce

60(55/2]\[—2/3) — 14+ O( 5/2)

N2/3

that implies

e~ Nnv(t) — o—55°° (1 +0 (1352//23)) '

However, if there exists a function V satisfying (GA) with f\//(bv) =0, we would
obtain fi (by + ) =1+ O(Nst/s,)a and for s = o( N®/21),
14

e Nug(t) — 6_383/2 (1 +0 (]374//23)> )

and therefore

Onole) = g+ (140 () + 0 (3

:))

(c.f. proof of Theorem 4.11). Hence, the assumption f"/(bv) = 0 would lead to
the enlargement of the range of applicability of (4.37) from o( N*/'%) to o( N8/21).
Similarly, the requirement fél)(bv) = ... = fék_l)(bv) = 0 would enlarge the
range of applicability of (4.37) to s = O(Ngiﬁ).

Another way to formulate this is the following:

In the region N wE << s << N S0 the leading order behavior of the tail
probability Oy v (s) depends on all k values FPy), ... F% (by). This can still
be viewed as a weaker form of universality.

Finally, we study the Gaussian Unitary Ensembles, which are of special interest
(c.f. Introduction).
Example 4.13. Considering the function V5 : R — R, z — 122 (c.f. (1.3)) we
go through the Chapters 2-4 and determine all relevant functions and numbers
explicitly. The related MRS-numbers ay,, by, can be obtained by solving (2.4)
and (2.5), which yield —ay, = by, = 2. Together with Gy, (t) = 1 for all t € R
(see (2.15)), we obtain 7y, = 1 and

¢
77V0<t):/2 vu?2—4du fort>2



98 4 Proof of main results

(see (3.29) and (2.30)).

Since L, = oo, we have to verify (GA)grp for the study of the superlarge devi-
ations regime. Obviously, V' can be extended analytically to the whole complex
plane, and in particular to

U(1,4) = {z € C|Re(2) > 4, [Im(2)| < 575}
(c.f. (3.79)). For all z =z + iy € U(1,4) we have z > 4, |y| < 1, and

Re(V(2)) = 12 —32) > L2~ ) > 2~ 1,

D=

V(x

which shows that (GA) is satisfied. Due to the boundedness of L for

all x > 2, the assumption (GA)stp is ensured and we can apply Theorem 4.10,
obtaining

t
1 efo2 VuZ—4du

e—Nf;\/m(iu
ON,VO(t):%.M(HO(}V)), ift>2+4 0.

It is remarkable that the additional requirement for (4.37) in Theorem 4.11 is
also necessary in the Gaussian case. As described above, a closer look at the
representation of 7 is needed. With t = 2 + 3 and Vu+2 = 2+ 3 (u —2) +
O((u —2)?) for u > 2 we obtain

Ny, (t) N/ Vu—2vVu+2 du-ig 110-;]2/3 (1—}—(9(%)).

Hence,

4 $5/2
0 = s (457) o (e (140 ()

can be written in the form

4.3/2

e—Nnvo(t) = ¢ 3% (1 +0 <N2/3)>

if and only if s = o(N*/'5). This shows that one needs the same restriction on
(s, N) for GUE to obtain the result (4.37) in Theorem 4.11 as for general functions
V satisfying (GA).
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