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Preface

Abstract

This thesis is devoted to the analysis of a very simple, pointwisely state-constrained optimal control
problem of an elliptic partial differential equation. The transfer of an idea from the field of optimal control
of ordinary differential equations, which proved fruitful with respect to both theoretical treatment and
design of algorithms, is the starting point. On this, the state inequality constraint, which is regarded as
an equation inside the active set, is differentiated in order to obtain a control law.
A geometrical splitting of the constraints is necessary to carry over this approach to the chosen model
problem. The associated assertions are rigorously ensured. The subsequent derivation of a control law
in the sense of the abovementioned idea yields an equivalent reformulation of the model problem. The
active set appears as an independent and equal optimization variable in this new formulation. Thereby
a new class of optimization problem is established, which forms a hybrid of optimal control and shape-/
topology optimization: set optimal control. This class is integrated into the very abstract framework of
optimization on vector bundles; for that purpose some important notions from the field of calculus on
manifolds are introduced and related with shape calculus.
First order necessary conditions of the set optimal control problem are derived by means of two different
approaches: on the one hand a reduced approach via the elimination of the state variable, which uses
a formulation as bilevel optimization problem, is pursued, and on the other hand a formal Lagrange
principle is presented.
A comparison of the newly obtained optimality conditions with those known form literature yields rela-
tions between the Lagrange multipliers; in particular, it becomes apparent that the new approach involves
higher regularity. The comparison is embedded to the theory of partial differential-algebraic equations,
and it is shown that the new approach yields a reduction of the differential index.
Upon investigation of the gradient and the second covariant derivative of the objective functional differ-
ent Newton- and trial algorithms are presented and discussed in detail. By means of a comparison with
the well-established primal-dual active set method different benefits of the new approach become appar-
ent. In particular, the new algorithms can be formulated in function space without any regularization.
Some numerical tests illustrate that an efficient and competitive solution of state-constrained optimal
control problems is achieved.
The whole work gives numerous references to different mathematical disciplines and encourages further
investigations. All in all, it should be regarded as a first step towards a more comprehensive perspective
on state-constrained optimal control of partial differential equations.

v
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Analyse eines sehr einfachen elliptischen Optimalsteuerungs-
problems mit punktweisen Zustandsbeschränkungen. Ausgangspunkt ist die Übertragung einer Idee,
die sich im Bereich der Optimalsteuerung gewöhnlicher Differenzialgleichungen sowohl bei theoreti-
scher Behandlung als auch beim Entwurf von Lösungsalgorithmen als fruchtbar erwiesen hat. Hierzu
wird die Zustandsbeschränkung in der aktiven Menge als Gleichung gesehen, aus der durch Differen-
ziation ein Steuergesetz hergeleitet werden kann.
Um diese Herangehensweise auf das gewählte Modellproblem übertragen zu können, ist eine gebiets-
weise Aufspaltung der Nebenbedingung nötig, was durch den Beweis entsprechender Aussagen ab-
gesichert wird. Die anschließende Herleitung eines Steuergesetzes im Sinne obengenannter Idee führt
zu einer äquivalenten Umformulierung des Modellproblems. Die neue Formulierung beinhaltet die ak-
tive Menge in natürlicher Art und Weise als eigenständige Optimierungsvariable, wodurch eine neu-
artige Klasse von Optimierungsproblemen begründet wird, die einen Hybrid aus Optimalsteuerung
und Form-/Topologieoptimierung darstellt: Mengen-Optimalsteuerung. Diese Klasse wird eingebettet
in einen sehr abstrakten Rahmen der Optimierung auf Vektorbündeln; hierzu werden insbesondere rele-
vante Begriffe aus dem Bereich der Differenzialrechnung auf Mannigfaltigkeiten eingeführt und mit dem
„Shape calculus“ in Beziehung gesetzt.
Auf zwei verschiedenen Wegen werden notwendige Optimalitätsbedingungen erster Ordnung für das
Mengen-Optimalsteuerungsproblem hergeleitet: einerseits wird ein reduktionistischer Ansatz verfolgt,
der die Zustandsvariable eliminiert und hier über eine Bilevelproblemformulierung führt, andererseits
wird der Weg eines formalen Lagrangeprinzips präsentiert.
Ein Vergleich der neu erhaltenen Optimalitätsbedingungen mit denen aus der Literatur bekannten er-
möglicht es Beziehungen zwischen Lagrangemultiplikatoren herzustellen; insbesondere wird klar, dass
die neue Herangehensweise Regularitätsverbesserungen mit sich bringt. Der Vergleich der notwendigen
Bedingungen wird eingebettet in die Theorie partiell differential-algebraischer Gleichungen und es wird
nachgewiesen, dass man durch den neuen Ansatz eine Indexreduktion erhält.
Auf Basis der Untersuchung von Gradient und zweiter kovarianter Ableitung des Zielfunktionals wer-
den verschiedene Newton- und Trialverfahren vorgestellt und eingehend untersucht. Durch einen Ver-
gleich mit der etablierten primal-dualen aktiven Mengenstrategie werden verschiedene Vorzüge des
neuen Ansatzes herausgearbeitet. Insbesondere sind die neuen Algorithmen ohne Regularisierung im
Funktionenraum formulierbar. Verschiedene numerische Test zeigen, dass der neue hier verfolgte An-
satz die effiziente und konkurrenzfähige Lösung von zustandsbeschränkten Optimalsteuerungsproble-
men ermöglicht.
Die gesamte Arbeit liefert zahlreiche Querbezüge zu anderen mathematischen Teilgebieten und regt an
diese weiter zu verfolgen. Insgesamt ist sie als ein erster Schritt zu einer umfassenderen Betrachtung der
zustandsbeschränkten Optimalsteuerung bei partiellen Differenzialgleichungen zu betrachten.
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Structure of this work

The structure of the work is as follows: Chapter 2 is devoted to the presentation of the analytical approach
to new necessary conditions of a very simple elliptic model problem which is introduced at the beginning.
Subsequent to the introduction of the model problem, a very brief overview on preliminary work in the
fields of optimal control of ordinary and partial differential equations and of shape optimization is given
in Section 2.1. Starting from this basis, the original model problem undergoes a series of reformulations in
Section 2.2, which yields a new type of optimization problem, called set optimal control problem. At this,
two fundamental ideas of the whole approach become apparent, namely the geometrical splitting of the
spacial domain into active and inactive sets, and the transformation of the state constraint into a control
law. As a result of the geometrical splitting, the active set with respect to the state constraint becomes
an optimization variable of its own. Hence, shape and topology calculus come on the scene in a natural
way. The derivation of the control law, which is inspired by results from optimal control of ordinary
differential equations, is directly connected to considerations of partial differential-algebraic equations,
which are addressed in Section 2.7. The following two sections present two alternative ways on how to
obtain first order necessary condition of the set optimal control problem. In particular, Section 2.3 uses a
methodology based on a bilevel formulation and its reduction to a shape optimization problem, whereas
Section 2.4 applies a formal Lagrange technique. Especially the first approach requires several subsequent
steps, which are illustrated on page 10. It turns out, that the reformulation of the state constraint yields
associated Lagrange multipliers, which are closely related to the well-known multipliers from previous
work. By that means, the known specific inherent structure of the latter multiplier, to be a sum of a regular
and a singular part, is reobtained. In view of efficient numerics, Section 2.5 is devoted to a brief second
order analysis of the reduced objective functional of the shape optimization problem and the associated
Lagrangian. The major result is that the second order derivative has a null at the optimum, which helps to
understand some of the numerical findings of Chapter 4. Moreover, the algorithms of Chapter 3 require
the identification of second order covariant derivatives of the shape functional and of the Lagrangian,
respectively. In order to do so, Section 2.6 provides an abstract perspective on shape calculus. Hereunto,
the calculus is imbedded to the more general framework of differential calculus on manifolds and vector
bundles. This reasoning enables a very abstract point of view on shape optimization and optimal control,
which provides valuable insight to the structure of the new class of set optimal control problems. Finally,
Section 2.7 is devoted to a brief analysis of the new first order necessary conditions from the perspective
of partial differential-algebraic equations. It is shown, that the new necessary conditions have a lower
differentiation index than the well-known ones. This finding is related to the analog result from optimal
control of ordinary differential equations.

Chapter 3 is devoted to the development of algorithms for solving the set optimal control problem, which
was derived in Chapter 2. At first, descent algorithms on manifolds, in general, and on a specific set of
feasible sets, in particular, are analyzed in detail in Section 3.1. In addition, it is shown that the optimum
of the original model problem is no strict local minimum of the reduced shape functional. Consequently,
gradient based algorithms are not applicable. Hence, some remarks on Newton’s method on manifolds
are presented in Section 3.2. Section 3.3 contains considerations how the new first order necessary con-
ditions are accessible for numerical solution. At this, the perspectives from the reduced approach of
Section 2.3, form the Lagrangian approach of Section 2.4 and of free boundary problems are used. This
analysis yields different Newton type algorithms in Section 3.4. Moreover, some trial algorithms are pre-
sented there, which can be regarded as simplified Newton schemes. In order to get a better understand-
ing of the benefits of the new algorithmic approach it is compared with the well-established primal-dual
active set strategy in Section 3.5.

In order to get a first impression of the capability of the theoretical and algorithmic approach of the
chapters 2 and 3, some basic numerical results are presented in Chapter 4. At first, Section 4.1 gives an
overview on different aspects of the finite element discretization, which is applied. The focus is on the
explanation of the problems that arise from the need of coping with different active sets during the itera-
tion of the algorithms, such as updating the interface and mesh deformation. Finally, Section 4.2 contains
different findings with respect to the numerical analysis of test examples. It turns out, that the new algo-
rithmic approach, though not being globally convergent, features sufficient stability and indicates a mesh
independent behavior. Moreover, it is shown, that certain types of changes of the topology of the active
set can be attained automatically in the course of the iteration of the algorithms. A comparison with an
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enhanced version of the primal-dual active set method reveals encouraging performance of the still quite
basic new approach.
The different results of this work are summarized and placed within a broader context in Chapter 5. In
particular, some selected open or undiscussed questions are seized.
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CHAPTER 1

Introduction

Optimal control of partial differential equations (OC-PDE) has gained more and more attention in applied
mathematics during the last three decades. On the one hand this discipline is appealing from a math-
ematical point of view, since many different branches meet there, and on the other hand this topic
is interesting from a practical point of view, since many real-life problems in engineering (like cool-
ing processes [35, 160], laser hardening [36, 57], laser welding [134, 135, 136, 137], control of fuel cells
[34, 152, 32, 31, 153, 154, 33, 145] or crystal growth [127]), economics [47], biology [60] and many more
can be modeled by that means. Though considerably progress is made, both theory and implementation
of robust, efficient and easy to handle software packages are far from being complete. In particular, the
treatment of state constraints, which are a natural part of almost any optimal control problem, constitute
a striking challenge.
Based on the excellent overview of Herzog and Kunisch [81] different algorithmic approaches for solving
optimal control problems (OCP) with PDE constraints can roughly be classified as follows.

OCP (infinite)

NLP (finite)

discretize

numerical
differen-
tiation

automatic
differentiation

Gradient Gradient

gradient based NLP solver

reduced OP Lagrangian

reduced
KKT linearization Gradient Hessian

Control-to-state
operator
(simulation)

establish

projected
Gradient
Method

Newton
Method
+PDAS

SQP
+PDAS

regularization

discretize discretize

- numeric differentiation is cost- + high accuracy of gradient in- - consistent discretization has to
ly since the NLP is large scale formation (directly accessible) be provided
and may yield poor approxima- ◦ requires efficient solver of the + linearized equations have to
tion of gradient information state equation (simulation) be solved in each iteration
- automatic differentiation may - requires efficient solver of the - linear systems are larger than
be restricted to simple problems adjoint equation in reduced approach, since state

1



2 Introduction

+ automatic differentiation en- - consistency of the discretiza- variable is an explicit optimiza-
sures consistency in discretiza- tion of forward and adjoint solv- tion variable
tion er has to be guaranteed - enhanced simulation software
+ little software-user interac- - nonlinear state equation has to of the state equation is typically
tion required be solved iteratively in each it- not applicable
+ highly sophisticated NLP eration - gradient of the Lagrangian
solvers available - KKT system might be not ac- might be not accessible for very

cessible for very complex OCPs complex OCPs
The left branch – often called “first discretize, then optimize” – is well-established nowadays in the field
of optimal control of ordinary differential equations (OC-ODE) even for complex problems. In contrast, the
other two branches – “first optimize, then discretize” – play a minor role there, since usability of cor-
responding software is more involved. Nonetheless, they are necessary, if very high accuracy of the
solution is required, as for instance in problems of space travel. With respect to OC-PDE the situation
changes considerably. The “fist discretize, then optimize” approach is confronted with two inherent diffi-
culties: OCPs with partial differential equation yield large-scale nonlinear optimization problems (NLP)
after discretization, such that even enhanced NLP solvers can be overcharged. Moreover, discretization
of PDEs is not as straight forward as in the case of ODEs. Henceforth, a higher amount of software-user
interaction is required so far. Consequently, the approach of “first optimize, then discretize” – with its
two representative branches black-box solvers (middle) and all-at-once solver (right) – still is state of the art,
and there is no evidence that this will change in the near future.
Pointwise state constraints play a crucial point in the treatment of OC-PDE and associated solvers. First
order based projected gradient methods do not possess a natural extension to this situation, since the pro-
jection onto the feasible set cannot be performed easily there, since the set is characterized by means of the
state, which is reduced within those methods. In addition, Newton differentiability of first order necessary
conditions (NC), i. e. the Karush-Kuhn-Tucker conditions (KKT), is lost. Thus, higher order solvers cannot
be applied (or suffer from mesh dependency), since they are based upon either linearization of the KKT
system or differentiation of the gradient of the Lagrangian. A well-established and successful remedy
is the application of a quadratic penalization of the state constraint, called Moreau-Yosida regularization.
The price to pay is an extra loop in the algorithms. Hence, the numerical schemes contain (at least) three
nested loops: the outer regularization loop, the Newton- or SQP-loop and the inner loop of the primal-
dual active set strategy (PDAS). Basically the same holds true, when using interior point methods instead of
SQP/PDAS. In contrast, the numerical schemes developed in this work come without regularization.
The content of this thesis emanated from the idea of construction new necessary conditions for state-
constrained optimal control problems of partial differential equations. At this, the ideas of Bryson, Den-
ham and Dreyfus [18] (BDD approach), which are situated in the field of OC-ODE, should serve as a blue
print; so to speak of a bridge building between the two disciplines of OC-ODE and OC-PDE. This task is
animated with two long-term goals, which have already been reached in the field of OC-ODE:
• gain an apriori insight into the structure of the active set, which is associated with the order of the

state constraint, and
• construct efficient numerics upon the basis of the new necessary conditions, which exploit some

inherent structure of the multipliers associated with the state constraint.
However, it has become apparent that developing the ideas of Bryson et al. in the world of OC-PDE is
considerably more complex and requires results of several other mathematical disciplines, see Figure 1.1.
This finding strongly influences the setup and the focus of this work. It is written from the perspective of
OC-PDE; henceforth it is expected that the reader is familiar with theory and numerics of state constraint
OC-PDE. Indeed, the reader needs not to be an expert in field of shape optimization, which enters the
considerations in a very natural way. Unfortunately, brevity inhibits a satisfactory introduction to shape
calculus and shape optimization and thus the reader is referred to literature as often as possible. It turns
out, that the identification of the second covariant derivative in shape calculus (which is necessary for
the algorithms of Chapter 3) requires a profound analysis of shape calculus, which is based upon infinite
dimensional manifolds and vector bundles and not available in literature so far. It is not expected, that
the reader is familiar with all notions used for it; hence, their definitions are included in this work. All
in all, the presentation tends to have a bias on the discipline of shape calculus in order to built a bridge
between shape calculus and shape optimization on the one hand and state-constrained optimal control
of PDEs on the other hand. The disciplines are amalgamated in a hybrid problem formulation: the set
optimal control problem.
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Figure 1.1: Mindmap of mathematical fields involved and their connections. At this, the coloring of the
different fields displays their positioning in pure, applied and computational mathematics.
Black links are used, whereas green ones are analyzed in-depth and/or partly extended. Red
connections symbolize completely new ideas/results. The blue arrow illustrates the original
goal of carrying some ideas from theory of OC-ODE over to OC-PDE.

The presentation of other important topics, such as the theory of (partial) differential-algebraic equations
(P)DAE, are kept as short as possible. In this sense, the focus has been shifted from the analysis of
the BDD approach towards a review of shape calculus and shape optimization in the context of state-
constrained OC-PDE, which is the basis for any further research on the way to reach the abovementioned
long-term goals. The first one still remains far from being reached, whereas some basic numerical results
(for the probably simplest state constraint OC-PDE model problem) can be presented in Chapter 4.
It should be emphasized, that the analysis of the state-constrained OCP reveals, that shape and topology
calculus/optimization play an equally important part. However, a profound investigation of the topol-
ogy related part is beyond the scope of this work and now open for further research. Nonetheless, there
are some minor tricks included in the numerical treatment, such that (some kind) of topology chances of
the active set can be achieved.
Moreover, it is important to notice, that the investigation of the chosen model problem is only a first step
towards a deep understanding of the fundamental ideas of this work. The depicted OCP is chosen to
be linear quadratic (i. e. convex); hence, it is some sort of odd to construct algorithms which introduce
a strongly nonlinear behavior by means of shape dependency. However, they are expected to be able
to cope with fully nonlinear problems and even reveal their full performance there. Nonetheless, the
simpler framework of the model OCP was chosen in order to keep theory as easy as possible, such that
the whole reasoning starting from the reformulation of the OCP right up to the construction of algorithms
can be exhibited here.





CHAPTER 2

Theory

This thesis is concerned throughout with the following state-constrained elliptic optimal control problem
(OCP) of tracking type. Although this model problem is probably the most elementary state constraint
representative of OC-PDE, it is possible to present and analyze the main ideas of this work.

Definition 1 (Model problem):
Let Ω ⊂ R2 be a bounded domain of class C1,1 and let Γ := ∂Ω denote its boundary.1Let the desired state
yd ∈ H1(Ω), the control shift ud ∈ H2(Ω), the Tikhonov regularization parameter λ ∈ R+, and let the state
constraining functions ymax, ymin ∈ H4(Ω), such that for all x ∈ Ω holds ymin(x) < ymax(x).
The following state-constrained linear-quadratic elliptic optimal control problem is called model problem:
Find (ū, ȳ) ∈ L2(Ω)× H1(Ω) minimizing the tracking type objective (functional)

J(u, y) :=
1
2
‖y− yd‖2

L2(Ω) +
λ

2
‖u− ud‖2

L2(Ω) (2.1a)

subject to the state equation

−∆y + y = u a. e. in Ω, (2.1b)
∂ny = 0 a. e. on Γ, (2.1c)

and the pointwise state constraints

y− ymax ≤ 0 a. e. in Ω, (2.1d)
ymin − y ≤ 0 a. e. in Ω, (2.1e)

where the state (variable) y and the control (variable) u may vary in H1(Ω) and L2(Ω), respectively.

The regularity assumptions made for the different coefficient functions and the boundary regularity of the
domain Ω are quite strong. They are required in order to achieve a fairly straight forward analysis, which
is presented in the following. It is discussed, when these assumptions are needed. The control shift ud
has no practical meaning, but simplifies the construction of analytical test examples; see Paragraph 4.2.1.

2.1 Overview on preliminary work

Before starting the actual analysis, i. e. the derivation of new first order necessary conditions, this section
is devoted to a very brief sketch of some preliminary work. For this purpose, Paragraph 2.1.1 contains
results from OC-PDE, which are directly related to the model problem. In contrast, paragraphs 2.1.2
and 2.1.3 only list some literature from the fields of shape optimization and OC-ODE, which deals with
related topics, since brevity inhibits a satisfying presentation of all relevant assertions.

1Further information on local characterization of sets are edited in [44, Chp. 2 Sec. 3–6]. In particular, a definition of sets of class
C1,1 can be found in [44, Chp. 2 Def. 3.1]. Moreover, its defining property is illustrated in the proof of Lemma 2.

5



6 2.1 Overview on preliminary work

2.1.1 Results in optimal control of PDEs

Since the model problem (2.1) is probably the simplest state-constrained optimal control problem of par-
tial differential equations, it is well studied and a lot of literature concerning different details can be
found, for instance, in [88]. The aim of this paragraph is to cite some selected results in order to provide
the basis for the following treatment.

Proposition 1 (Unique solvability of the model problem):
The model problem (2.1) is uniquely solvable; the optimum is denoted by (ū, ȳ) ∈ L2(Ω)× H1(Ω).

A proof of this well-known result can be found in e. g. [25], [159, Thm. 2.15] or [10, Satz 1.5b].

Remark (Higher regularity of the states):
Due to the C1,1-regularity of the boundary Γ each state of an admissible pair (u, y) ∈ L2(Ω) × H1(Ω)
is even in H2(Ω). Actually, the mapping (control-to-state operator) L2(Ω) → H2(Ω), u 7→ y, where y is
the unique solution of the state equation (2.1b), (2.1c) is a continuous isomorphism, cf., for instance, [69,
Thm. 2.2.2.5 and Thm. 2.3.3.2].
Consequently, one can require that the state y is an element of H2(Ω) without loss of generality. This
consideration is of fundamental importance for the analysis for pointwisely state-constrained optimal
control problems, as shown below.

Proposition 2 (First order necessary conditions; Casas):
Assume that there exists a δ > 0 such that ymax(x)− ymin(x) ≥ δ, x ∈ Ω, and let (ū, ȳ) be the optimal
solution of the model problem (2.1).

Then there are Lagrange multipliers µmax = µmax
Ω + µmax

Γ , µmin = µmin
Ω + µmin

Γ ∈ C0(Ω)
∗ and an adjoint

state ptrad ∈ ⋂s∈[1,2[ W1,s(Ω) such that the following first order necessary conditions (Karush-Kuhn-Tucker
conditions; KKT) are fulfilled: The original constraints (2.2a)–(2.2d), the adjoint equation (2.2e), (2.2f), the
complementary slackness conditions (2.2h), (2.2i) and the sign conditions (2.2j), (2.2k)

−∆ȳ + ȳ = ū a. e. in Ω, (2.2a)
∂nȳ = 0 a. e. on Γ, (2.2b)

ȳ− ymax ≤ 0 a. e. in Ω, (2.2c)
ymin − ȳ ≤ 0 a. e. in Ω, (2.2d)

−∆ptrad + ptrad = ȳ− yd + µmax
Ω − µmin

Ω a. e. in Ω, (2.2e)

∂n ptrad = µmax
Γ − µmin

Γ a. e. on Γ, (2.2f)

λ (ū− ud) + ptrad = 0 a. e. in Ω, (2.2g)
〈µmax , ȳ− ymax〉C0(Ω)

∗,C0(Ω)
= 0, (2.2h)

〈µmin , ymin − ȳ〉C0(Ω)
∗,C0(Ω)

= 0, (2.2i)

µmax ≥ 0, (2.2j)

µmin ≥ 0. (2.2k)

Proof. Due to Sobolev’s embedding theorems, cf., for instance, [2, Thm. 4.12A], H2(Ω) is continuously
embedded in C0(Ω). Define ŷ := ymax − δ/2 ∈ H4(Ω) ⊂ H2(Ω). Due to the assumptions on the state
constraints, the pair

(û, ŷ) := (−∆ŷ + ŷ, ŷ) ∈ H2(Ω)× C0(Ω)

is a Slater point of the optimal control problem (2.1). That is to say, (û, ŷ) is an interior point of the
admissible set L2(Ω)×{y ∈ H2(Ω) | ymin ≤ y ≤ ymax}, where the topology of C0(Ω) is used for the state
associated component. The assertion follows now from, e. g., [25, Thm. 2] or [159, Thm. 6.5].
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Remark:
Due to the theorem of Riesz-Radon the dual of C0(Ω) can be identified with the spaceM(Ω) of regular
Borel measures on Ω, cf., for instance, [4, Thm. 4.22]. Consequently, the multipliers µmax and µmin can
be identified with elements of M(Ω) and thus do not necessarily possess a pointwise interpretation.
Moreover, their decomposition into one part on Ω and a second part on the boundary Γ is just a splitting
such that µmax

Ω and µmin
Ω have their support in Ω, whereas the support of µmax

Γ and µmin
Γ is localized

within Γ.
The adjoint equation is only a symbolic notation for its weak formulation, cf. [25, 26, 3] and [159,
Sec. 7.2.3].

This formulation strikes a nerve of the necessary conditions. The multiplier µ := µmax − µmin does not
possess a pointwise interpretation in general. Moreover, the regularity can not be improved actually,
since there are examples (e. g., cf. [128, 24], [91, Ex. 3]), where the optimal state hits the state constraint
in isolated points, and consequently the multiplier is a Dirac measure, which is concentrated there. How-
ever, the Lagrange multipliers µmax and µmin reveal some intrinsic structure, provided there are some
additional assumptions fulfilled for the active set, see Definition 3 and Assumption 1. In particular, they
can be decomposed into a regular part on the interior of the active set and a singular part on the interface
(that is the boundary of the active set). These results are due to Bergounioux and Kunisch [14].

Proposition 3 (Enhancement of first order necessary conditions; Bergounioux and Kunisch):
Let (ū, ȳ) ∈ L2(Ω) × H1(Ω) be the unique optimal solution of the model problem (2.1), let the adjoint
state ptrad and the multipliers µmax and µmin be given by Proposition 2 and let Assumption 1 be fulfilled.
Let ptrad

I , ptrad
Amax

and ptrad
Amin

be the restrictions of ptrad on the inactive, respectively active sets (cf. Defi-
nition 3). Use the same notation for ȳ. Furthermore, for later use let (here γ := ∂A, see Definition 3)

µmax
I

:= µmax|I∪Amin , µmax
Å

:= µmax|Åmax
, µmax

γ := µmax|γmax ,

µmin
I

:= µmin|I∪Amax , µmin
Å

:= µmin|Åmin
, µmin

γ := µmin|γmin ,

µ
Å

:= µmax
Å
− µmin

Å
, µγ := µmax

γ − µmin
γ ,

cmax := λ(−∆2ymax + 2∆ymax − ∆ud + ud)− ymax + yd, (2.3a)

cmin := λ( ∆2ymin − 2∆ymin + ∆ud − ud) + ymin − yd, (2.3b)

ptrad
A

:= ptrad|A.

Then there holds:
1. In the active set everything is determined by the coefficient functions

ptrad
Amax

= λ(∆ymax − ymax + ud) ∈ H2(Åmax), (2.4a)

ptrad
Amin

= λ(∆ymin − ymin + ud) ∈ H2(Åmin), (2.4b)

µmax
Å

= cmax ≥ 0 in L2(Åmax), (2.4c)

µmin
Å

= cmin ≥ 0 in L2(Åmin). (2.4d)

2. The adjoint state in the inactive set is given as the H2-regular solution of

−∆ptrad
I + ptrad

I = ȳI − yd a. e. in I , (2.4e)

∂n ptrad
I = 0 a. e. on Γ, (2.4f)

ptrad
I |γmax = ptrad

Amax
|γmax a. e. on γmax, (2.4g)

ptrad
I |γmin = ptrad

Amin
|γmin a. e. on γmin. (2.4h)

3. In particular, µmax
Γ = µmin

Γ = 0, µmax
I = 0 and µmin

I = 0.



8 2.1 Overview on preliminary work

4. The interface parts of the multipliers ensue as the jump in the normal derivatives of the adjoint
states and thus they are H1/2-regular (cf. Lemma 1)

µmax
γ = ∂

I
n ptrad
I + ∂

A
n ptrad
Amax

a. e. on γmax, (2.4i)

µmin
γ = −∂

I
n ptrad
I − ∂

A
n ptrad
Amin

a. e. on γmin. (2.4j)

Remark:
The just presented proposition says:
• The Lagrange multipliers µmax and µmin are concentrated on the active sets, which is basically a

consequence of complementary slackness (2.2h), (2.2i) and the definition of the active sets. This
result was already proven in [25, Sec. 8].

• Each of the multipliers can be decomposed into two parts. One of them, µmax
γ and µmin

γ , respectively,
is concentrated on the interface. If it is regarded as an object living on the interface, it is H1/2-
regular. But if one treats it as an object defined on the active set or even on Ω, it is not a function,
but a measure inM(Ω). Consequently, the assumptions made in Proposition 3 are weak enough
in order to preserve the measure character of the multipliers. The other component, µmax

Å
and µmin

Å
,

respectively, is distributed in the active set and L2-regular. Altogether one recognizes, that the
measure nature appears only at the boundary of the active set.

• The regular, distributed part of the multipliers is prescribed by the choice of the coefficient func-
tions. Consequently, the position of the active set in Ω is restricted apriori by means of the coeffi-
cient functions, provided that the optimal control problem is strictly complementary2: Those subsets
of Ω in which the combination of coefficients (2.4c) and (2.4d) are negative cannot by parts of the
active set. This insight can be used algorithmically, see the 2nd item of the discussion on page 109.
Moreover, this fact should be minded when constructing test examples, cf. Paragraph 4.2.1.

• The adjoint state is a regular function locally. Its global regularity suffers from a kink at the interface
between active and inactive set, which is induced by the singular component of the multiplier.

• The weak continuity of the adjoint state across the interfaces (2.4g), (2.4h) combined with the gra-
dient equation (2.2g) reveals weak continuity of the optimal control across the interfaces

ūI |γmax = ūAmax |γmax (2.5a)
ūI |γmin = ūAmin |γmin . (2.5b)

2.1.2 Results in shape optimization

The model problem (2.1) is reformulated in Theorem 2, such that the active set (cf. Definition 3) becomes
an optimization variable. Differentiation with respect to this variable requires the application of a suitable
calculus, namely shape- and topology calculus. The foundation of modern shape calculus is close-knit
with Céa, Gioan and Michel [27], Murat and Simon [129] and Zolésio [162], whereas the notion of a
topology derivative goes back to Sokołowski and Żochowski, [101]. The latter field is left untouched
within this thesis and consequently this paragraph focuses on the first one. Shape calculus and shape
optimization has gained much attention during the last three decades and is consolidated in several
textbooks, e. g. [150, 139, 151, 78, 115, 19, 44]. Especially the recent book of Delfour and Zolésio contains
an extensive list of references, is an excellent starting point to get in touch with the theoretical basis of
shape optimization and is the main reference of this work. Due to brevity a separate presentation of
relevant results, such as the Hadamard structure theorem ([44, Chp. 9 Thm 3.6]), rules for differentiation of
shape functionals ([44, Chp. 9 Thm. 4.2 and 4.3]) and the local shape derivative of elliptic boundary value
problems (BVP) ([146, Sec. 3.4]) is abandoned here. However, detailed references are always given when
results from those fields are applied.

2An optimization problem, or more precisely an inequality constraint of an optimization problem, is said to be strictly comple-
mentary, if the associated Lagrange multiplier is positive almost everywhere in the active set.
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2.1.3 Results in optimal control of ODEs

As already indicated, an essential idea of this thesis is to transfer some ideas from optimal control of ordi-
nary differential equations to OC-PDE. The Karush-Kuhn-Tucker conditions of Proposition 2 are analo-
gously to the OC-ODE result of Jacobson, Lele and Speyer [102], often called direct adjoining approach,
since the original state constraints are directly adjoint to the objective. However, even one decade be-
fore Bryson, Denham and Dreyfus published an alternative version of first order necessary [18] in 1963,
where a reformulation of the state constraint is adjoint to the objective. This idea is often called indi-
rect adjoining approach, but is referred to as Bryson-Denham-Dreyfus- or simply BDD approach here. The
reformulation is based upon differentiation and is discussed in Paragraph 2.2.2 in more detail. Later on,
Maurer succeeded in integrating both approaches into a more general framework in the habilitation [121];
later published in [122]. His investigations revealed that the multipliers associated with the different total
time derivatives of the constraining function up to a certain order, by which the objective is augmented,
become the more regular, the higher the order of the derivative is. An excellent survey on many more
different contributions, which can be clustered roughly to the two approaches, is due to Hartl, Sethi and
Vickson [75].
A second essential idea of this work is to use the active set of the state constraint as a separate and equal
variable of the OCP. This is similar to introduce the starting and endpoints of active sets as optimization
variables in context of OC-ODE, as it is done in multiple shooting methods and which are applied to solve
multipoint boundary value problems; see [155, Sec. 7.3.5]. The combination of direct adjoining approach and
multiple shooting methods proved to be a superior starting point for numerical treatment of complex
OCPs; see, e. g. [20, 21, 123]

2.2 Reformulation into a set optimal control problem

After having commented on some preliminary work the actual involvement with content of this thesis
starts now. This section is devoted to an specific reformulation of the original model problem (2.1).
Hereto, two of the essential ideas of this thesis are applied, namely
• introducing the active set of the state constraint as a separate and equal variable of the optimal

control problem and
• reformulating the state constraint in order to derive a control law.

It is important to notice, that the first idea can be realized without the second; however, they are presented
in combination for brevity. Nonetheless, the procedure contains several steps such that it may be helpful
to gain an overview of the whole reasoning by means of the illstration on page 10.

2.2.1 Geometrical Splitting

One essential idea, which is the basis for all the following, is a splitting of the state equation and the state
constraint. The splitting is adapted to the geometrical partition of the domain Ω in the two parts of active
and inactive set (cf. Definition 3) and should keep the original information. That is to say, the original
constraints and the their split counterparts are to be equivalent.
Proposition 4 states an equivalent reformulation of the state equation. In order to prove it, one requires
some assertions on Sobolev spaces which are given by Definition 2, lemmas 1, 2 and an abstract ver-
sion of Green’s formula, which connects boundary value problems and their variational formulation; see
Lemma 3.

Definition 2 (Trace operators):
For m, N ∈ N let G ⊂ RN be a bounded domain of class Cm−1,1 with boundary Γ := ∂G. Let 1 < p < ∞
be given. Then:

1. The trace operator

τG = τ1
G : Wm,p(G)→Wm− 1

p ,p
(Γ)

is defined as the extension of the trace operator for continuous functions.
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2. Additionally, let n = (n1, . . . , nN)
> be a Cm−2,1-regular extension of the outer unit normal vector

field of G, if m > 1, and let n be L∞-regular, if m = 1 respectively. Then

τm
G : Wm,p(G)→

m−1×
i=0

Wm−i− 1
p ,p

(Γ)

f 7→ τm
G ( f ) :=

(
τG( f ), τG(D( f ) n), . . . , τG

( N

∑
i1 ...im−1=1

Di1 ...im( f )ni1 . . . nim−1

))
is called the trace operator of m-th order.

3. To shorten the notation also define

f |Γ := τG( f ) Dirichlet trace (operator) or (Dirichlet-)trace
∂n f := τG(D( f ) n) Neumann trace (operator) or normal derivative

∂nn f := τG(n>D2( f ) n) binormal trace (operator) or binormal derivative.

Remark:
All components of Definition 2 are well-defined due to [69, p. 37, Thm. 1.5.1.2] and [151, Chp. 2.1].
Later on, the just defined trace operators are often applied to inner boundaries (interfaces) subdividing
a set in two disjoint parts. In this context, it is important to distinguish between the trace operators
acting on the same interface but related to either of the separated sets. In particular, this is relevant to the
Neumann trace, since it uses the outer unit normal vector field n. In this situation the notation

∂G
n f := τG(D( f ) nG)

is used to indicate that the outer unit normal vector field nG of the set G is applied. Such kind of a
notation is not necessary for the binormal derivative, due to the fact that the possible wrong choice of the
unit normal vector field, i. e. the wrong sign, is compensated since it is used quadratic.

Lemma 1 (Properties of the trace operator):
For m, N ∈ N let G ⊂ RN be a bounded domain of class Cm−1,1 with boundary Γ := ∂G. Let 1 < p < ∞
be given. Then the trace operator of m-th order

τm
G : Wm,p(G)→

m−1×
i=0

Wm−i− 1
p ,p

(Γ)

given by Definition 2 is linear, continuous, onto and possesses a continuous right inverse. This is an exten-
sion operator ωm

G , such that
τm

G ◦ωm
G = Id

×m−1
i=0 Wm−i− 1

p ,p
(Γ)

.

A proof for Lemma 1 can by found in [69, Thm. 1.5.1.2].

The trace operators take up a central position in two respects: On the one hand they form the glue for
Sobolev spaces on split domains (cf. Lemma 2) and on the other hand they are essential for the analysis
of PDEs and boundary value problems (cf. Lemma 3).

Lemma 2 (Weak continuity in Wm,p):
Let m, N ∈ N, 1 < p < ∞, B ⊂ RN be a bounded domain, and let G ⊂⊂ B be a compactly contained
domain of class Cm−1,1 with complement Gc := B \G. Furthermore, let τm

G , τm
Gc denote the trace operators

of m-th order, which were introduced in Definition 2, and let the map f : B → R fulfill f |G ∈ Wm,p(G),
f |Gc ∈Wm,p(Gc). Then there holds

f ∈Wm,p(B)⇐⇒ τm
G ( f |G) = τm

Gc( f |Gc) .
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Proof. 1) This preliminary part provides a localization of the boundary Γ such that it can be described
as a graph in a local coordinate system; additionally, tangential and normal vectors in the local basis are
given. The results are based on [4, p. 256–266] and will be used in the third part of the proof.
Since G ⊂ RN is a bounded Cm−1,1-domain, there exist r ∈ N and U1, . . . , Ur ⊂ RN such that U1, . . . , Ur
is an open cover of Γ := ∂G, and such that Γq := Γ ∩ Uq (q = 1 . . . r) possesses a representation as
a graph of a Cm−1,1-regular function, and such that G is above the graph locally. In particular, there
exist domains Dq ⊂ RN−1, numbers aq > 0, local coordinate systems (eq,1, . . . , eq,N) of RN and Cm−1,1-
functions gq : Dq → R, such that for

ψq : Dq×]− aq; aq[→ RN , ψq(y, h) := (y, gq(y) + h) :=
N−1

∑
i=1

yieq,i + (gq(y) + h)eq,N

there holds

(i) ψq(Dq×]− aq; aq[) = Uq ,

(ii) ψq(Dq×]0; aq[) = Uq ∩ G ,

(iii) ψq(Dq × 0) = Γq ,

(iv) ψq ∈ Cm−1,1(Dq×]− aq; aq, RN) ,

(v) ∇ψq ∈ Cm−2,1(Dq×]− aq; aq[, RN×N) .

Dq×]− aq; aq[

y ∈ RN−1

h ∈ R

Γq

Uq

ψq

G

eq,N

eq,1, . . . , eq,N−1

Figure 2.1: Illustration of ψq.

In addition, there exist bounded sets U0, Ur+1 ⊂ B, such that

U0, . . . , Ur is an open cover of G, where U0 ⊂⊂ G and
U0, . . . , Ur+1 is an open cover of B.

Furthermore, there exists a partition of unity subordinated to the open cover of B, i. e.

∃Φq ∈ C∞
0 (Uq), q = 0 . . . r + 1 with

{
∀xq ∈ Uq : Φq(xq) ∈ [0; 1]
∀x ∈ B : ∑q=0...r+1 Φq(x) = 1 .

(2.6)

For all q = 0 . . . r + 1 define the localizations of f

fq := Φq f ∈Wm,p(Uq) .

Since ψq is a Cm−1,1 transformation, fq ◦ ψq is measurable in particular. Fubini’s theorem then yields the
existence of zero sets Nq ⊂ R, such that the functions

y 7→ fq ◦ ψq(y, h) = Φq f (y, gq(y) + h)

are measurable and integrable for all h ∈]− aq; aq[\Nq. Then, the local part τ1
G,q of the (Dirichlet-)trace

operator τ1
G on the set Uq can be defined as

fq 7→ lim
h↘0

fq ◦ ψq(., h) =: τ1
G,q( fq).
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As the last preliminary result define the tangential- and normal vectors

tq,i(x) := ∂iψq(y, h) = eq,i + ∂igq(y)eq,N , ∀i = 1 . . . N − 1 (2.7)

nq(x) :=
(

1 + |∇gq(y)|2
)− 1

2

(
N−1

∑
i=1

∂igq(y)eq,i − eq,N

)
. (2.8)

The local definitions of the trace operator and of the tangential and normal vectors are not dependent on
the specific choice of the open cover and the local coordinate systems (cf. [4, p. 256–266]). Consequently,
it is sufficient to prove the assertion of Lemma 1 locally and use the finite partition of unity for the
globalizing step. Thus, the localization index q will be omitted in third the part of the proof, where the
results of the present part are used.

2) This part is devoted to prove the if implication of the assertion.
Let f ∈ Wm,p(B) be given. Since Wm,p(B) ∩ C∞(B) is dense in Wm,p(B) (cf. [4, Satz 2.23]), there is a
sequence ( fn)n∈N ⊂ Wm,p(B) ∩ C∞(B) with fn → f in Wm,p(B). Continuity of fn yields τm

G ( fn|G) =
τm

Gc( fn|Gc) for all n ∈N. Furthermore, the continuity of the trace operators yields

τm
G ( f |G) = lim

n→∞
τm

G ( fn|G) = lim
n→∞

τm
Gc( fn|Gc) = τm

Gc( f |Gc) ,

where the limit is take in ×m−1
i=0 Wm−i− 1

p ,p
(Γ).

3) This part is devoted to prove the only-if implication and uses mathematical induction with respect to
m ∈N.
Let f |G and f |Gc be Wm,p-regular and let τm

G ( f |G) = τm
Gc( f |Gc). Then f ∈ Lp(B) and it remains to show

that the composition of the partial derivatives of f |G and f |Gc

∂i1 . . . ∂im f (x) :=

{
∂i1 . . . ∂im( f |G)(x) , x ∈ G ,
∂i1 . . . ∂im( f |Gc)(x) , x ∈ Gc , i1 . . . im ∈ 1, . . . , N

defines partial derivatives of f . In the following, let φ ∈ C∞
0 (B) be given arbitrarily.

m = 1: Then there holds

−
∫

B
f ∂iφ = −

∫
G

f |G∂iφ−
∫

Gc
f |Gc ∂iφ

=
∫

G
∂i f |G φ +

∫
Gc

∂i f |Gc φ−
∫

Γ

[
τ1

G( f |G)− τ1
Gc( f |Gc)

]
︸ ︷︷ ︸

=0

ni φ dσ

=
∫

B
∂i f φ, ∀i = 1 . . . N .

m = 2: According to the case “m = 1” f ∈W1,p(B). Therefore, it holds for all i, j = 1 . . . N

(−1)2
∫

B
f ∂i∂j φ = −

∫
B

∂i f ∂j φ

=
∫

G
∂j∂i f |G φ +

∫
Gc

∂j∂i f |Gc φ−
∫

Γ

[
τ1

G(∂i f |G)− τ1
Gc(∂i f |Gc)

]
nj φ dσ , (2.9)

and it remains to show that τ1
G(∂i f |G)− τ1

Gc(∂i f |Gc) = 0. The basic idea to do so, is to express the partial
derivatives in terms of tangential vectors tk (k = 1 . . . N − 1) and the outer unit normal vector n, which
were defined in (2.7) and (2.8). Consequently, define the coefficients ζs

j , which describe the transformation
from the canonical basis (e1, . . . , eN) to (t1, . . . , tN−1, n):

ej =
N−1

∑
s=1

ζs
j t

s + ζN
j n .

This yields

τ1
G(∂i f |G) = τ1

G

(
D( f |G)

( N−1

∑
s=1

ζs
i ts + ζN

i n
))

=
N−1

∑
s=1

ζs
i τ1

G
(
D( f |G)ts)︸ ︷︷ ︸

(1)

+ζN
i τ1

G
(
D( f |G)n

)︸ ︷︷ ︸
(2)

. (2.10)
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The term (2) equals to τ2
G( f |G) and consequently only the term (1) requires further investigation.

The partial derivative with respect to the s-th local basis vector es (s = 1 . . . N − 1) is then given by

∂s f |G(x) := D( f |G(x))es

= D( f |G ◦ ψ(y, z))es

= (D f |G) ◦ ψ(y, z) ∂sψ(y, s)
= (D f |G)(x)ts(x) ,

which yields

∂sτ1
G( f |G) = τ1

G(D f |Gts) . (2.11)

The same arguments are valid for τ1
Gc(∂i f |Gc) and consequently equation (2.9) can be reformulated by

means of equations (2.10) and (2.11)

(−1)2
∫

B
f ∂i∂jφ =

∫
G

∂j∂i f |G φ +
∫

Gc
∂j∂i f |Gc φ−

∫
Γ

[
τ1

G(∂i f |G)− τ1
Gc(∂i f |Gc)

]
nj φ dσ

=
∫

B
∂j∂i f φ−

∫
Γ

N−1

∑
s=1

ζs
i ∂s

[
τ1

G( f |G)− τ1
Gc( f |Gc)

]
︸ ︷︷ ︸

=0

nj φ dσ

−
∫

Γ
ζN

i

[
τ1

G( f |Gn)− τ1
Gc( f |Gc n)

]
︸ ︷︷ ︸

=τ2
G( f |G)−τ2

Gc ( f |Gc )=0

nj φ dσ , ∀i, j = 1 . . . N .

That is to say, f ∈W2,p(B).
m− 1→ m: Assume that the only-if implication is valid for m− 1, i. e. f ∈Wm−1,p(B). Consequently, for
all i1, . . . , im = 1 . . . N

(−1)m
∫

B
f ∂i1 . . . ∂im φ =

∫
B

∂im . . . ∂i1 f φ−
∫

Γ

[
τ1

G(∂im . . . ∂i1 f |G)− τ1
Gc(∂im . . . ∂i1 f |Gc)

]
nim φ dσ . (2.12)

By using the same arguments as in the “m = 2”-step, one obtains an expression in terms of ts and n:

τ1
G(∂im . . . ∂i1 f |G) = τ1

G

D . . . D︸ ︷︷ ︸
m times

( f |G)
m

∏
l=1

(
N−1

∑
s=1

ζs
il t

s + ζN
il n

) .

For convenience define the abbreviations

T1
l :=

N−1

∑
s=1

ζs
il t

s , T2
l := ζN

il n ,

and the product becomes
m

∏
l=1

(T1
l + T2

l ) =
m

∏
l=1

T1
l +

m

∏
l=1

T2
l + ∑

α∈{1,2}m
α/∈{(1,...,1),(2,...,2)}

m

∏
l=1

Tαl
l .

Herein, the first summand contains tangential vectors only, the second summand only the normal vec-
tor, and the third one contains both tangential and normal vectors. This notice helps to structure the
boundary integral in (2.12):∫

Γ

[
τ1

G(∂im . . . ∂i1 f |G)− τ1
Gc(∂im . . . ∂i1 f |Gc)

]
nim φ dσ

=
∫

Γ

[
τ1

G

(
D . . . D( f |G)

m

∏
l=1

T1
l

)
− τ1

Gc

(
D . . . D( f |Gc)

m

∏
l=1

T1
l

)]
dσ

+
∫

Γ

[
τ1

G

(
D . . . D( f |G)

m

∏
l=1

T2
l

)
− τ1

Gc

(
D . . . D( f |Gc)

m

∏
l=1

T2
l

)]
dσ

+
∫

Γ
∑

α∈{1,2}m
α/∈{(1,...,1),(2,...,2)}

[
τ1

G

(
D . . . D( f |G)

m

∏
l=1

Tαl
l

)
− τ1

Gc

(
D . . . D( f |Gc)

m

∏
l=1

Tαl
l

)]
dσ (2.13)
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The first part can be treated like term (1) in equation (2.10). Again, denote the partial derivative with
respect to the s-th local basis vector es with ∂s (s = 1 . . . N − 1), then one obtains

∂s1 . . . ∂sm f |G(x) = ∂s1 . . . ∂sm−1
(
(D f |G) ◦ ψ(y, z)

(
esm + ∂sm g(y)eN))

= ∂s1 . . . ∂sm−2
(
(DD f |G) ◦ ψ(y, z)

(
esm−1 + ∂sm−1 g(y)eN)(esm + ∂sm g(y)eN)

+(D f |G) ◦ ψ(y, z) ∂sm−1 ∂sm g(y)eN
)

...

= (D . . . D︸ ︷︷ ︸
m times

f |G)(x)ts1(x) . . . tsm(x) + additional terms ,

where the additional terms contain derivatives of f |G up to order m− 1. This yields

τ1
G

(
D . . . D( f |G)

m

∏
l=1

T1
l

)
= ∑

α∈{1...N−1}m

(
m

∏
l=1

ζ
αl
il

)
τ1

G

(
D . . . D( f |G)

m

∏
l=1

tαl

)
(2.14)

= ∑
α∈{1...N−1}m

(
m

∏
l=1

ζ
αl
il

)(
∂α1 . . . ∂αm τ1

G ( f |G)− τ1
G(additional terms)

)
Consequently, the first summand of equation (2.13) vanishes, since

• τ1
G( f |G) = τ1

Gc( f |Gc) =⇒ ∂α1 . . . ∂αm τ1
G ( f |G) = ∂α1 . . . ∂αm τ1

Gc ( f |Gc),

• f ∈Wm−1,p(B) and the additional terms only contain derivatives up to order m− 1
=⇒ τ1

G(additional terms) = τ1
Gc(additional terms).

The second summand in equation (2.13) refers to the m-th component of τm
G

τ1
G

(
D . . . D( f |G)

m

∏
l=1

T2
l

)
=

(
m

∏
l=1

ζN
il

)
τ1

G

(
D . . . D( f |G)

m

∏
l=1

n

)
and consequently vanishes, too. The third summand in equation (2.13) basically consists of terms of the
following type

τ1
G

( k times︷ ︸︸ ︷
D . . . D D . . . D( f |G)∏ n︸ ︷︷ ︸

=:F|G

∏ tαl
)
− τ1

Gc

(
D . . . D . . . D( f |Gc)∏ n︸ ︷︷ ︸

=:F|Gc

∏ tαl
)

,

where F|G and F|Gc are Wk,p-regular for a suitable k ∈ {2, . . . , m − 1} depending on the number of n-
factors in the considered term. Observing that

∂s
(

D f |G(x)n(x)
)
= D

(
(D f |G) ◦ ψ(y, z) n(y, z)

)
es

= (DD f |G) ◦ ψ(y, z)Dψ(y, z)es n(y, z) + (D f |G) ◦ ψ(y, z) (Dn(y, z))es

= (DD f |G)(x)ts(x)n(x) + additional terms ,

where the additional terms contain derivatives of f |G up to order 1. This yields

τ1
G
(
D . . . D(F|G)∏ tαl

)
= ∂α1 . . . ∂αk τ1

G(F|G)− τ1
G(additional terms) .

Consequently, one recognizes the structure of (2.14) in this type of terms. But since the number of differ-
ential operators D applied to F is m− k < m, it was already shown in inductive step m− k− 1→ m− k,
that these type of terms vanish. Therefore, the third summand of equation (2.13) vanishes, which com-
pletes the proof of the inductive step and the whole proof.

Remark:
Lemma 2 provides sharp interface conditions which guarantee that a piecewise defined Wm,p-function
globally exhibits the same regularity, and, vice versa, that a Sobolev function exhibits “weak continuity”
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across sufficiently smooth interfaces. That is to say,∫
∂G

∂im . . . ∂i1 ( f |G) φ dσ =
∫

∂G
∂im . . . ∂i1 ( f |Gc) φ dσ, ∀φ ∈ C∞

0 (B), i1 . . . im ∈ {1, . . . , N}.

As already mentioned in the introducing text above Lemma 2 the second important property of trace op-
erators is their application in the analysis of boundary value problems. The connection between bound-
ary value problems and their corresponding variational formulations is based on Green’s formulae, often
called integration by parts.

Lemma 3 (Abstract Green’s formula):
Let V, H, T be Hilbert spaces, τ : V → T be linear and continuous, and a : V × V → R be bilinear and
continuous with the so called trace properties:

(i) τ maps V onto T (trace operator),
(ii) V is contained in H with a stronger topology,

(iii) V0 := kernel(τ) is dense in H.

H is referred to as the pivot space to V, since (ii) and (iii) imply the Gelfand triples

V0 ⊂ H = H∗ ⊂ V∗0 ,
V ⊂ H = H∗ ⊂ V∗.

Let Λ : V → V∗0 be the formal operator associated with the bilinear form a, i. e.

〈Λv , w〉V∗0 ,V0
= a(v, w), ∀v ∈ V, w ∈ V0 .

In addition, define the domain Hilbert space

V(Λ) := {v ∈ V |Λv ∈ H}, equipped with the norm ‖v‖V(Λ) := (‖v‖2
H + ‖∆v‖2

H)
1
2 . (2.15)

Then there holds:
There exists a unique linear continuous operator δ : V(Λ)→ T∗, such that the Green’s formula holds

a(u, v) = (Λu, v)H + 〈δu , τv〉T∗,T ∀u ∈ V(Λ), v ∈ V, (2.16)

where (., .)H represents the inner product in H and 〈. , .〉X∗,X is the duality pairing of a Banach space X and
its dual (space).

This lemma and its proof can be found in [6, Thm. 6.2-1]. Additional information about maximal domains
of elliptic operators (a closely related topic) can be found in [69, Sec. 1.5.3].

Remark:
A classical setting for the Green’s formula of Lemma 3 is the following:

V = H1(Ω), H = L2(Ω), T = H
1
2 (Γ), a(u, v) :=

∫
Ω
∇u · ∇v + u v, τ = τΩ, V0 = H1

0(Ω),

where τΩ is the Dirichlet trace operator from Definition 2, and where Ω is of class C1,1; see also [69, Rem.
1.5.3.5]. The formal operator associated with the bilinear form is

Λ = −∆ + Id.

It is well-known that (2.16) here is∫
Ω
∇u · ∇v + u v =

∫
Ω
−∆u v + u v + 〈∂nu , τΩv〉

H−
1
2 (Γ),H

1
2 (Γ)

.

In other words, δ = ∂n is the Neumann trace operator. The idea how to prove this result is as follows:
The Green’s formula for (strongly) differentiable functions comes with the normal derivative ∂n. Since
the operator δ is unique and the (strongly) differentiable functions are also weakly differentiable, δ is
an extension of the classical normal derivative. In addition, it is compatible with the definition of the
Neumann trace operator (cf. Definition 2) and therefore denoted by the same symbol.
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From the perspective of functional analysis, the basis for a first step for the reformulation of the model
problem (2.1) is provided now. Thus, the notion of active and inactive set is introduced and some require-
ments on their regularity are stated. Afterwards, an equivalent split reformulation of the state equation
is presented by Proposition 4.

Definition 3 (Active set):
The subsets of Ω in which the optimal state ȳ hits the state constraints are called the upper and lower
active set

Amax := {x ∈ Ω | ȳ(x) = ymax}, (2.17a)

Amin := {x ∈ Ω | ȳ(x) = ymin}. (2.17b)

Their boundaries are denoted by

γmax := ∂Amax, (2.17c)
γmin := ∂Amin, (2.17d)

and are called upper and lower interface. Their union and complement

A := Amax ∪Amin

I := Ω \ A
γ := γmax ∪ γmin (2.17e)

are referred to as (optimal) active set, (optimal) inactive set and (optimal) interface.

Remark:
The active sets are closed due to ȳ ∈ C0(Ω) and ymax, ymin ∈ H4(Ω) ↪→ C0(Ω) in R2, since they are the
zero level set of ȳ− ymax and ymin − ȳ, respectively.

In order to apply Lemma 2 and some subsequent results, there are some – unfortunately restrictive –
assumptions to be made.

Assumption 1 (Regularity of the active sets):
There is an l ∈N, such that the active set A fulfills

A =
l⋃

i=1

Ai , Åi = Ai , A∩ Γ = ∅ , Ai ∩Aj = ∅ , i 6= j , i, j ∈ {1, . . . , l} ,

Ai has a C1,1-boundary for each i.

At this, B̊ denotes the interior of a set B ⊂ R2 and B its closure. Moreover, it is assumed that A 6= ∅.

The geometrical consequences of Assumption 1 are illustrated in Figure 2.2.

Remark:
The assumptions on regularity of the active set are mainly due to technical reasons and require some
explication.
• The active set is supposed to be non-empty to ensure a non-redundant formulation of the original

model problem (2.1); otherwise the whole approach of this thesis is not possible and unnecessary.
Hence, this assumption is natural and poses no true restriction of the general case.

• The assumption, that the active set shall be equal to the closure of its interior has two main impli-
cations.

– Any lower dimensional connection component is forbidden. This is very restrictive, since
it is known that the active set may consist of such kind of sets, such as isolated points and
regular curves. To the best of the author’s knowledge, there is no appropriate method, which
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Γ

not allowed

allowed

Figure 2.2: Illustration of allowed active sets.

is similar to the approach of this thesis, how to deal with such kind of sets. This is basically
due to two different reasons. For one thing the derivation of a control law in the active set has
to be adapted when the set has no interior. And for another thing – and this is much more
fundamental – one has to apply a different kind of shape calculus, which can cope with sets of
codimension greater than zero.

– Sets with lower dimensional appendices are forbidden, too. This specific assumption does not
seem to be very restrictive. It might be possible to prove that such kind of sets cannot occur in
principle. However, this topic is beyond the scope of this thesis.

• The C1,1-regularity of the boundaries enables a widespread application of shape calculus, which
would not be possible with Lipschitzian boundaries. In this respect, confer the counterexam-
ples of Adams, Aronszajn and Smith and of Murat and Simon which both are presented in [44,
Chp. 2 Ex. 5.1, 5.2]. Moreover, the regularity ensures higher regularity of different entities on the
boundaries (e. g. traces of distributed functions) and of extensions of such traces to the bulk of the
domain.

• The active set shall consist of a finite number of connection components, which helps to avoid
pathological situations. Moreover, this assumption ensures that the inactive set is of class C1,1

as well. Otherwise, if the active set had infinitely many connection components, the inactive set
would not be lying locally on one side of its boundary anymore. Hence, standard theory of elliptic
boundary value problems can be applied.

• There are three major simplifications due to the fact that the active set may not intersect the outer
boundary Γ.

– Starting and endpoint of those parts of the boundary of the active set, which are subsets of Ω,
would cause extra terms in shape calculus, see [151, Sec. 3.8].

– If starting and endpoints of the boundary part in Ω have to be respected, theory of function
spaces gets more involved, since for instance H−1/2(γ) is no longer the dual space of H1/2(γ),
see [69, p. 57] and [117, Chp. 1 Thm. 11.7 and Rem. 12.1]. This type of problem occurs as well,
when finite element discretization is used and the boundaries are approximated by polygons.
Nevertheless, they are neglected in the numerical implementation and tests of the thesis (see
Chapter 4).

– If there is no intersection with the outer boundary Γ, the compactness of Γ yields that each con-
nection component of the active set has a positive distance to it. Hence, there are no restrictions
to variations of the active set, which considerably simplifies the analysis. Consequently, the
active set turns out to be a critical shape of the reduced function F (Theorem 8) and there is
no need for restriction to something similar like a “cone of admissible directions”.
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Since later on it will be referred to the assumptions frequently, it is useful to define the family of subsets
of Ω which fulfill Assumption 1 and to fix some corresponding notation.

Definition 4 (Family of feasible sets):
The family of feasible (active) sets is given by

O := {B ⊂ Ω | B fulfills Assumption 1} ∪∅.

Definition 5:
Let B ∈ O, where O is given by Definition 4. Then define the following symbols

J := Ω \ B,
β := ∂B,

nB := outer unit normal vector field of B,
nJ := outer unit normal vector field of J restricted to β,

∂
B
n (.) := τB (D(.)nB ),

∂
J
n (.) := τJ (D(.)nJ ).

Having the notation at hand, it is possible to introduce a split version of the state equation.

Proposition 4 (geometrical splitting of an elliptic boundary value problem3):
Let B ∈ O, where O is given by Definition 4 and use the notations of Definition 5. Furthermore, for
M ∈ {Ω, B̊,J }, define the domain Hilbert space H1(M, ∆) := {v ∈ H1(M) |∆v ∈ L2(M)} of the
operators ∆(.) and −∆ + Id, cf. (2.15) in Lemma 3.
Then the boundary value problems (for fixed u)

−∆y + y = u a. e. in Ω , (2.18a)
∂ny = 0 a. e. on Γ , (2.18b)

y ∈ H1(Ω, ∆) , (2.18c)

u ∈ L2(Ω) (2.18d)

and

−∆yJ + yJ = uJ a. e. in J , (2.19a)

∂nyJ = 0 a. e. on Γ , (2.19b)

yJ |β − yB |β = 0 a. e. on β , (2.19c)

yJ ∈ H1(J , ∆) , (2.19d)

uJ ∈ L2(J ) , (2.19e)

−∆yB + yB = uB a. e. in B̊ , (2.19f)

∂
J
n yJ + ∂

B
n yB = 0 a. e. on β , (2.19g)

yB ∈ H1(B̊, ∆) , (2.19h)

uB ∈ L2(B̊) , (2.19i)

are equivalent in the following sense:
If uJ = u|J and uB = u|B , then the unique solutions y of (2.18) and the solutions yB and yJ of (2.19) are
connected by yB = y|B and yJ = y|J . In particular, (2.19) is uniquely solvable.

Proof. The proof is based on the idea to show that both (2.18) and (2.19) are equivalent to a variational
formulation: Look for y satisfying

aΩ(y, ϕ) :=
∫

Ω
∇y · ∇ϕ + yϕ =

∫
Ω

uϕ =: (u, ϕ)L2(Ω) , ∀ϕ ∈ H1(Ω) (2.20a)

y ∈ H1(Ω) . (2.20b)

3This result is similar to the discussion of a transmission problem and domain decomposition methods in [17, §I.4].
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The bilinear form a(y, ϕ) is known to be continuous and coercive on H1(Ω)× H1(Ω). Consequently, the
theorem of Lax and Milgram guarantees existence and uniqueness of a solution y of (2.20).

1) (2.20) implies (2.19), which will be proven in this part.
Due to Lemma 2 the space H1(Ω) can be identified with W := {(vJ , vB ) ∈ V | vJ |β = vB |β} and thus (2.20)
is equivalent to look for (yJ , yB ) ∈W satisfying

aΩ(y, ϕ) = (u, ϕ)H , ∀ϕ := (ϕJ , ϕB ) ∈W, (2.21)

where u = (u|J , u|B ) ∈ H := L2(J )× L2(B̊), cf. (2.19e) and (2.19i). In particular, there holds (2.19c), since
y ∈ H1(Ω) = W. The next step is to apply the abstract Green’s formula of Lemma 3. In order to check
the assumptions, the following notations will be useful:

V := H1(J )× H1(B̊)

T := H
1
2 (∂J )× H

1
2 (∂B̊) ∼= H

1
2 (Γ)× H

1
2 (β)× H

1
2 (β)

τ : V → T, (vJ , vB ) 7→ (τJ (vJ ), τB (vB )) ≡ (vJ |Γ, vJ |β, vB |β)

a : V ×V → R, (v, w) 7→ aJ (vJ , wJ ) + aB (vB , wB ) :=
∫
J
∇vJ · ∇wJ + vJ wJ +

∫
B̊
∇vB · ∇wB + vBwB

V0 := H1
0(J )× H1

0(B̊)
Λ = (−∆ + IdH1(J ),−∆ + IdH1(B̊)) : V 7→ V∗0 = (H−1(J ), H−1(B̊)).

Then there holds

(i) τ is onto according to Lemma 1
(ii) V ⊂ H according to the Sobolev embedding theorem and has a stronger topology

(iii) C∞
0 (J )× C∞

0 (B̊) is dense in H and V0; consequently V0 ⊂ H is dense, too.

Since Λ is the formal operator associated with the continuous bilinear form a, there holds

a(y, ϕ) = 〈Λy , ϕ〉V0
∗,V0

, ∀ϕ ∈ V0,

V0⊂W
===⇒

(2.21)
〈Λy , ϕ〉V0

∗,V0
= (u, ϕ)H , ∀ϕ ∈ V0,

V0⊂H
===⇒
dense

Λy = u in H, i. e. Λy ∈ H.

Consequently, y ∈ V(Λ) := {v ∈ V |Λv ∈ H} = H1(J , ∆)× H1(B̊, ∆); in other words (2.19a), (2.19d),
(2.19f) and (2.19h) are fulfilled and the assumptions of Lemma 3, too. That is to say, there exists a unique
operator

δ = (δΓ, δJβ , δBβ ) : V(Λ)→ T∗ ∼= H−
1
2 (Γ)× H−

1
2 (β)× H−

1
2 (β),

and it holds
a(y, ϕ) = (Λy, ϕ)H + 〈δy , τϕ〉T∗,T , ∀ϕ ∈ V.

This equation is also fulfilled if ϕ only ranges in W ⊂ V and a comparison with (2.21) yields

〈δy , τϕ〉T∗,T = 0, ∀ϕ ∈W, ⇔ 〈δΓyJ , ϕJ |Γ〉H− 1
2 (Γ),H

1
2 (Γ)

+ 〈δJβ yJ , ϕJ |β〉H− 1
2 (β),H

1
2 (β)

+ 〈δBβ yB , ϕB |β〉H− 1
2 (β),H

1
2 (β)

= 0, ∀(ϕJ , ϕB ) ∈W.

Since (ϕJ , ϕB ) ∈W one can make use of ϕJ |β = ϕB |β yielding

〈δΓyJ , ϕJ |Γ〉H− 1
2 (Γ),H

1
2 (Γ)

+
〈
(δJβ yJ + δBβ yB ) , ϕB |β

〉
H−

1
2 (β),H

1
2 (β)

= 0, ∀(ϕJ , ϕB ) ∈W.

Finally, the stepwise variation ϕ ∈ H1
0(Ω) ⊂ H1(Ω) ∼= W and ϕ ∈W reveals〈

(δJβ yJ + δBβ yB ) , ϕ|β
〉

H−
1
2 (β),H

1
2 (β)

= 0, ∀ϕ ∈ H1
0(Ω)

〈δΓyJ , ϕ|Γ〉
H−

1
2 (Γ),H

1
2 (Γ)

= 0, ∀ϕ ∈W.
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Since the trace operator (.)|Γ : W → H1/2(Γ) is onto (cf. Lemma 1) and referring to the Remark on page 16

∂nyJ = δΓ = 0 in H−
1
2 (Γ), i. e. (2.19b).

The analog property of the trace operator (.)|β yields

∂
J
n yJ + ∂

B
n yB = δJβ yJ + δBβ yB = 0 in H−

1
2 (β), i. e. (2.19g).

Altogether (2.20) implies (2.19).
2) This part is devoted to prove that (2.19) implies (2.20).
Let ϕ ∈ H1(Ω) be arbitrary. Lemma 2 yields ϕJ := ϕ|J and ϕB := ϕ|B are H1-functions with ϕJ |β = ϕB |β.
Multiplying the PDEs (2.19a) and (2.19f) with ϕJ and ϕB respectively, integration, and integration by
parts results in ∫

J
∇yJ · ∇ϕJ + yJ ϕJ −

∫
Γ

∂nyJ ϕJ −
∫

β
∂
J
n yJ ϕJ =

∫
J

uJ ϕJ ,∫
B̊
∇yB · ∇ϕB + yB ϕB −

∫
β

∂
B
n yB ϕB =

∫
B̊

uB ϕB .

Addition of these equations, together with the conditions (2.19b), (2.19g) and ϕJ |β = ϕB |β, yields (2.20).
3) The equivalence of (2.18) and (2.20) can be shown with the same arguments used in parts 1) and 2).

Now that an equivalent split reformulation of the state equation is provided, the whole optimal control
problem (2.1) can be divided. This is a first step towards introducing the active set as a separate and
equal variable. But before stating this result, a technical assertion is presented for later use.

Lemma 4:
Let O be the family of feasible sets and let Bmax, Bmin ∈ O such that B := Bmax∪̇ Bmin ∈ O.
Then there exists a function ymax

min ∈ H4(Ω) such that

ymax
min (x) =

{
ymax(x), x in a neighborhood Bmax of Bmax,
ymin(x), x in a neighborhood Bmin of Bmin,

(2.22)

∂nymax
min = 0 on Γ.

The sets Bmax and Bmin are specified in the proof; also cf. Figure 2.3.

Remark:
Note, that the construction of ymax

min depends on the particular choice of B. However, the function can
remain unchanged, if the boundary β of B is only slightly deformed in the sense of shape calculus; see
Section 2.6.
The set dependency of ymax

min is typically suppressed in the following, since the context tells to which set
B ∈ O the function has been constructed.

Proof. According to the choice B ∈ O, Assumption 1 and the assumption that ymin < ymax (see Defini-
tion 1) there exists δ > 0, such that

dist(Γ, β) > δ, dist(βmax, βmin) > δ,

where βmin := ∂Bmin and βmax := ∂Bmax are in the style of notation (2.17c), (2.17d). Consequently, there
exist open sets Bmax and Bmin, which are compactly contained in Ω and which in turn contain the sets
Bmax and respectively Bmin such that there holds

dist(Bmax, Bmin) >
δ

3
, dist(Bmax, ∂Bmax) >

δ

3
, dist(Bmin, ∂Bmin) >

δ

3
.

In addition, there is a set Jmax
min ⊂ J with Ω = Jmax

min ∪ Bmin ∪ Bmax and

dist(∂Jmax
min , βmax) >

δ

6
, dist(∂Jmax

min , βmin) >
δ

6
, dist(∂Jmax

min , ∂Bmax) >
δ

6
, dist(∂Jmax

min , ∂Bmin) >
δ

6
.



22 2.2 Reformulation into a set optimal control problem

Γ

Bmax

Bmin

Bmax

Bmin

Jmax
min

Figure 2.3: Illustration of Bmax, Bmin and Jmax
min

There are ΦJ , Φmax and Φmin, a partition of unity subordinated to Jmax
min , Bmax and Bmin, comparable

to (2.6). Finally, the function

ymax
min := Φmaxymax + Φminymin

fulfills all properties claimed, since ymax, ymin ∈ H4(Ω) (cf. Definition 1).

Theorem 1 (Split reformulation of the model problem):
Let the active and inactive sets be given by Definition 3 and let ymax

min be given by Lemma 4 and be con-
structed to the active set A.
Then the original model problem (2.1) and the following split reformulation

minimize J(uI , uA , yI , yA) :=
1
2
‖yI − yd‖2

L2(I) +
1
2
‖yA − yd‖2

L2(Å)

+
λ

2
‖uI − ud‖2

L2(I) +
λ

2
‖uA − ud‖2

L2(Å)
, (2.23a)

subject to

A, I , and γ given by Definition 3, (2.23b)

uI ∈ L2(I), yI ∈ H1(I , ∆), (2.23c)

uA ∈ L2(Å), yA ∈ H1(Å, ∆), (2.23d)
yA = ymax

min in A, (2.23e)

ymin < yI < ymax in I , (2.23f)

−∆yI + yI = uI a. e. in I , (2.23g)

−∆yA + yA = uA a. e. in Å, (2.23h)

∂nyI = 0 a. e. on Γ, (2.23i)
yI |γ − yA |γ = 0 a. e. on γ, (2.23j)

∂
I
nyI + ∂

A
n yA = 0 a. e. on γ, (2.23k)

are equivalent in the following sense:
Let (ū, ȳ) be the optimal solution of (2.1) and let (ūI , ūA , ȳI , ȳA) be the optimal solution of (2.23), then

ū|
Å
= ūA , ȳ|

Å
= ȳA ,

ū|I = ūI , ȳ|I = ȳI .

Proof. Due to Proposition 4 the global state equation (2.1b), (2.1c) is equivalent to its split reformulation
(2.23g)–(2.23k).
Let (ū, ȳ) ∈ L2(Ω) × H1(Ω) be the optimal solution of the model problem (2.1). Then the state is an
element of H2(Ω) actually (see the Remark on page 6); henceforth, it is an element of H1(Ω, ∆) as well.
Consequently, (ū|

Å
, ū|I , ȳ|

Å
, ȳ|I ) is a solution of the split reformulation of the state equation and fulfills

the split state constraint (2.23e), (2.23f). That is to say, the tuple is feasible for the reformulation (2.23).
Vice versa, the concatenation of any admissible tuple of the reformulation is feasible for the original
model problem, too. Moreover, such corresponding pairs of assembled and split tuples yield the same
values of the objectives (2.1a) and (2.23a).
Thus, J is bounded from below by the optimal value of J. This lower bound is reached only for
(ūI , ūA , ȳI , ȳA) = (ū|I , ū|

Å
, ȳ|I , ȳ|

Å
), since otherwise the original model problem were not uniquely solv-

able.
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2.2.2 Application of the Bryson-Denham-Dreyfus approach

As already indicated at the beginning of this section a second essential idea is a reformulation of the state
constraint in order to reveal conditions which are set to the control variable implicitly. This is the topic for
this paragraph. Since this approach is not mandatorily connected to the introduction of the active set as a
separate variable, this paragraph can be skipped. However, due to brevity, the subsequent presentation
relies on the reformulation of the state constraint developed here.
The approach is based on an idea of Bryson, Denham and Dreyfus [18], who dealt with optimal con-
trol problems of ordinary differential equations. Henceforth, it is called Bryson-Denham-Dreyfus approach
(BDD approach). It is integrated in the wider context of index reduction of (partial) differential-algebraic
equations in Section 2.7, since it basically tries to reveal additional information which are hidden in the
algebraic constraint modelled by the state constraints.
From the perspective of optimal control the goal is to derive an equivalent form of the algebraic con-
straint, which reveals its impact on the control more explicitly than the original state constraint. In other
words, the state constraint is transformed into a control law.
The heuristic procedure in order to reveal the control law is as follows:

1. Differentiate the algebraic equation formed by the state constraint in the active set. Use the differ-
ential operator of the state equation for this purpose.

2. Use the state equation to replace a derivative of the state whenever possible.
3. Stop, if the obtained equation reveals an explicit dependency on the control. Otherwise perform

the first step.
4. Once, there is an equation obtained for the control – i. e. a control law – use the equations, which

were produced by repeatedly performing steps 1 and 2 to replace the state with the derivatives of
the constraining function.

5. Caused by (repeated) differentiation within the first step, there is some loss of information. Add a
suitable boundary condition to compensate this loss, such that the original equation and its differ-
entiated counterpart are equivalent.

The different steps applied to the split reformulation (2.23) read as follows:
1. Differentiation of the state constraint (2.23e), that is applying the operator −∆, yields

− ∆yA = −∆ymax
min in Å. (2.24)

2. Comparison with the state equation in the active set (2.23h) exposes the control law

uA − yA = −∆ymax
min in Å, (2.25)

and an anew execution of step 1 is not necessary.
4. Since equation (2.25) still contains the state, use the original state constraint (2.23e) – for it being the

zeroth differential order of itself – in order to replace the state

uA − ymax
min = −∆ymax

min in Å. (2.26)

5. If one replaces the state constraint (2.23e) by its newly obtained reformulation (2.26) within the
constraints of problem (2.23), one suffers from a loss of sharpness of the constraints: Let yI , yA , uI
and uA be a feasible choice for the constraints of problem (2.23) and suppose that only upper state
constraints have to be fulfilled. Then define zA ∈ H1(Å, ∆) as the solution of{

−∆zA + zA= 0 in Å,

∂
A
n zA= −1 on γ.

The weak maximum principle yields zA 6≡ 0, zA ≤ 0. Due to elliptic regularity, zA is in H2(Å)
actually and thus zA |γ ∈ H3/2(γ), cf. Lemma 1. By means of the extension operator ω2

J of Lemma 1
there exists zI ∈ H2(J ), such that

zI |Γ = 0 on Γ, zI |γ = zA |γ ≤ 0 on γ,

∂nzI = 0 on Γ, ∂
I
nzI = −∂

A
n zA = 1 on γ.
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Due to the boundary conditions, there is a choice with zI ≤ 0 in I . After all, the functions yI + zI ,
yA + zA , uI −∆zI + zI and uA + 0 fulfill (2.26) and all of the constraints of problem (2.23), but (2.23e).
Consequently, the state constraint (2.23e) cannot be replaced equivalently by the control law (2.26)
within problem (2.23).

Therefore, one needs to provide a condition which is compatible with the constraints of (2.23) and
which enables an equivalent replacement for the state constraint together with the control law.
In view of the differential equation (2.24) a Dirichlet or Robin-type boundary condition would be
adequate

yA |γ = ymax
min |γ on γ,

∂
A
n yA + yA = ∂

A
n ymax

min + ymax
min on γ,

but a Neumann boundary condition would not. However, in view of (2.26) a Neumann boundary
condition would be suitable as well

−∆yA + yA = uA in Å
−∆ymax

min + ymax
min = uA in Å

∂
A
n yA = ∂

A
n ymax

min on γ

 ⇒ yA = ymax
min in Å.

The BDD approach has been applied to the reformulated model problem (2.23) within the preceding
explanation, and it has been revealed that there are different options for the boundary condition. To be
more precise there are three different types of reformulations for the state constraint

yA = ymax
min in A ⇔

{
−∆ymax

min + ymax
min = uA in Å,

ymax
min |γ = yA |γ on γ,

(2.27)

yA = ymax
min in A ⇔

{
−∆ymax

min + ymax
min = uA in Å,

∂
A
n ymax

min = ∂
A
n yA on γ,

(2.28)

yA = ymax
min in A ⇔

{
−∆ymax

min + ymax
min = uA in Å,

∂
A
n ymax

min + ymax
min = ∂

A
n yA + yA on γ.

(2.29)

Each of these different BDD reformulations of the state-constrained can be used within all of the following
considerations. They yield different type of optimality systems; in particular, the interface condition of
the adjoint equations differs, see Appendix A. Due to brevity, the remainder of this thesis is focused on
the first choice (2.27) only.

Obviously, the above reasoning essentially relies on the regularity of the active set induced by Assump-
tion 1. In particular, it would not be possible to recover the original constraint after differentiation, if
the active set had lower dimensional connection components or lower dimensional appendices. Addi-
tionally, there are new ideas required, if the control of the considered OCP only acts on the boundary Γ,
since differentiation of the state constraint cannot directly reveal a control law. It is beyond the scope of
this thesis to extend the approach to such problems, however the concept of a virtual distributed control
developed by Krumbiegel and Rösch [110] might be suitable. Moreover, it should be noted, that it is not
always expedient to apply the differential operator of the state equation to the constraint, for instance, in
the case of gradient constraints. It might be helpful to rewrite the state equation to a system of first order
differential equations, but even then there are situations (e. g. constrained L2-norm of the gradient) where
additional ideas are required. Since this thesis is to be understood as a first step to investigate index re-
duction of partial differential-algebraic equations in the context of optimal control of partial differential
equations, theses questions are left unattained.

2.2.3 Resulting set optimal control problem

Until now, the active set A and the inactive set I were prescribed by Definition 3. From the point of
view of solving the state-constrained model problem via the splitting technique of Paragraph 2.2.1 and
the Bryson-Denham-Dreyfus approach of Paragraph 2.2.2 these definitions are unsatisfactory, since they
are implicit: without having solved the optimal control problem, one does not know A and I ; without
knowledge of these sets, one is not able to state the reformulated problem, which is to be solved.
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This tautology can be tackled by regarding the active set as unknown and treating it as optimization
variable. Hence, there are three different steps of reformulation:

• geometrical splitting of the constraints,

• application of the BDD approach (derivation of a control law) and

• introduction of the active set as an optimization variable.

Theorem 2 (Reformulation as set optimal control problem):
Let the family of admissible sets O be given by Definition 4 and use the notations of Definition 5. Then
there holds:
The original model problem (2.1) and the set optimal control problem (set-OCP)

minimize J(B; uJ , uB , yJ , yB ) :=
1
2
‖yJ − yd‖2

L2(J ) +
1
2
‖yB − yd‖2

L2(B̊)

+
λ

2
‖uJ − ud‖2

L2(J ) +
λ

2
‖uB − ud‖2

L2(B̊) (2.30a)

subject to

B ∈ O, (2.30b)

uJ ∈ L2(J ), yJ ∈ H1(J , ∆), (2.30c)

uB ∈ L2(B̊), yB ∈ H1(B̊, ∆), (2.30d)

−∆ymax
min + ymax

min = uB in B̊, (2.30e)

ymax
min |β = yB |β on β, (2.30f)

ymin < yJ < ymax in J , (2.30g)

−∆yJ + yJ = uJ a. e. in J , (2.30h)

−∆yB + yB = uB a. e. in B̊, (2.30i)

∂nyJ = 0 a. e. on Γ, (2.30j)

yJ |β − yB |β = 0 a. e. on β, (2.30k)

∂
J
n yJ + ∂

B
n yB = 0 a. e. on β, (2.30l)

are equivalent in the following sense:
Let (ū, ȳ) be the optimal solution of (2.1) and let (B̄; ūJ , ūB , ȳJ , ȳB ) be the optimal solution of (2.30), then

A = B̄, ū|
Å
= ūB , ȳ|

Å
= ȳB ,

ū|I = ūJ , ȳ|I = ȳJ .

In particular, (2.30) is uniquely solvable.

Proof. It will be shown that the unique optimal solution to the original model problem is optimal for the
reformulation, as well.

Thereto, let (ū, ȳ) be the optimal solution to (2.1), and letA be given by Definition 3. By defining B̄ := A,
J := Ω \ A, ūJ := ū|J , ūB := ū|B , ȳJ := ȳ|J , and ȳB := ȳ|B , one obtains a feasible point for (2.30): The
specific choice of B̄ and J guarantees (2.30b) and (2.30g), Proposition 4 ensures feasibility for (2.30h)–
(2.30l), whereas the construction of the BDD ansatz, cf. (2.27), ensures (2.30e) as well as and (2.30f). Now
suppose this point is not optimal, in other words there exists an admissible tuple (B̂; ûJ , ûB , ŷJ , ŷB ) with

J(B̂; ûJ , ûB , ŷJ , ŷB ) < J(B̄; ūJ , ūB , ȳJ , ȳB ).

Regarding the equivalence between the state equation and its split version (see Proposition 4), it can
easily be verified that (û, ŷ) defined by

û =

{
ûJ in Ĵ ,
ûB in B̂,

and ŷ =

{
ŷJ in Ĵ ,
ŷB in B̂,

is a feasible point for the original problem (2.1). This yields

J(û, ŷ) = J(B̂; ûJ , ûB , ŷJ , ŷB ) < J(B̄; ūJ , ūB , ȳJ , ȳB ) = J(ū, ȳ),

in contradiction to optimality of (ū, ȳ). Uniqueness of the solution of the reformulation is shown with the
same arguments as above together with the uniqueness of the solution of the original model problem.
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Remark:
To the best of the author’s knowledge, problems of this type have not been studied in literature so far and
the notion of a set optimal control problem is introduced. It can be seen as a generalization of multipoint
boundary value problems from the world of ODEs (see Paragraph 2.1.3), and thus the split BVP may also
be called multiset boundary value problem.
The family O of all admissible sets B (cf. Definition 4) does not possess a vector space structure, cf. Sec-
tion 2.6 and the 13th item on page 68 in particular. Consequently, problem (2.30) does not fit in the usual
framework of nonlinear optimization in Banach spaces. It is a hybrid problem which possesses Banach
space variables and a set variable, whose topology and shape has to be determined. Hence, it forms an
integration of shape/topology optimization on the one hand, and optimal control of PDEs on the other
hand.
It becomes apparent in Paragraph 2.6.3 that a set optimal control problem should be regarded as an
optimization problem on a vector bundle on O and that some details of notation should be adapted to
this fact. In particular, if the function space variables and the set variable are regarded as equal, it is
important to ensure, that the former can be chosen without having specified the latter. However, the
chosen notation seems to be natural and hence it is retained for convenience.

2.2.4 Role of the strict inequality constraint

Before proceeding to the derivation of first order necessary optimality conditions in sections 2.3 and 2.4
it is indicated to have a closer look at the set-OCP (2.30). In particular, it is necessary to investigate the
strict inequality constraint (2.30g), i. e. ymin < yJ < ymax, in more detail. The aim of this paragraph is to
rise the awareness, that strict inequality constraints within infinite dimensional optimization are a topic
of its own and that there seems to be a fluent passage from non-strict to strict inequality constraints.

Strict inequality constraints are non-standard in nonlinear optimization, since they lead to nonclosed
admissible sets typically. Hence, they may yield unsolvable optimization problems, since existence of a
minimizer is not guaranteed. Unsolvability is not an issue in the present context, since existence of a min-
imizer is ensured by Theorem 4. However, there is no standard procedure available how to treat such
kind of constraints. Nonetheless, strict inequality constraints naturally emerge in the context of shape
optimization and free boundary value problems, where the optimal set sometimes may be characterized
by the domain of the positive part of the optimal state; cf. the weak formulation of free boundary prob-
lems in [163] and the references therein. It should be interesting to pursue the approach presented there,
however this reaches beyond the scope of this thesis. The analysis of strict inequality constraints remains
restricted to the considered specific situation.

A nearby idea is to rewrite it as non-strict inequality ymin ≤ yJ ≤ ymax and regard it as not active. This is
a very natural point of view, since this is its original interpretation. At a first glance inactive constraints
should have no impact on the derivation of necessary conditions – they do not seem to restrict the set
of admissible directions of variation (cf. tangent and linearizing cone, [103, 124]) – because there is a
positive distance between the optimal solution and the part of the boundary of the admissible set, which
corresponds to the inactive constraint. Unfortunately, this point of view is only true, if there are finitely
many inactive constraints present only. In the specific situation the constraint ymin < yJ < ymax can be
interpreted as infinitely many pointwise, inactive constraints

ymin(x) < yJ (x) < ymax(x), ∀x ∈ J ,

since elliptic regularity ensures yJ ∈ H2(J ) ⊂ C0(J ). Each of those pointwise constraints is inactive
and there is an (individual) positive distance to the active situation

∀x ∈ J ∃ δ(x) > 0 : ymax − yJ (x) ≥ δ(x) and yJ (x)− ymin ≥ δ(x).

But on the other hand one has

yJ |βmax = ymax|βmax and yJ |βmin = ymin|βmin ,
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which yields that there is no such distance δ > 0 that works for all x ∈ J simultaneously. Consequently,
the constraint as a whole should be seen as “quasi active” in the sense that the optimum does not lie in
the interior of the admissible set.4

From this perspective there is little hope to adequately deal with the strict inequality constraint. However,
there is some structure which is exploited in the following.

Assumption 2 (Gamma is strictly inactive):
There is a δ > 0 such that the optimal state ȳI in the (optimal) inactive set I fulfills

ymax|Γ − ȳI |Γ ≥ δ and ȳI |Γ − ymin|Γ ≥ δ.

Lemma 5:
Let the assumptions 1 and 2 be fulfilled and let ȳ be the composed optimal state of the set optimal control
problem of Theorem 2. Then

∀Mmax ⊂ (Amin ∪ I ∪ Γ) with dist(Mmax, γmax) > 0 and Mmax is closed

there holds
∃ δ > 0 : ymax|Mmax − ȳ|Mmax ≥ δ.

The analogous assertion holds true for the lower constraints ymin.

Proof. Assume there is such a set M for which there is no δ > 0 as claimed. Since M is compact and since
ȳ and ymax are continuous, it follows that there is an x ∈ M with ȳ(x) = ymax(x). Furthermore, ȳ respects
ymin < ȳI < ymax in I and ȳ = ymin < ymax in Amin; consequently, one has x ∈ M \ (I ∪Amin) = M ∩ Γ.
This is a contradiction to Assumption 2.

The assertion of Lemma 5 is illustrated in Figure 2.4.

Γ γmax γmin

ymax

Γ

Amin IIAmax

ymin

I

ȳ

Figure 2.4: Illustration of the sets Mmax and Mmin.

Lemma 6 (Second reformulation as set optimal control problem):
Let the family of admissible setsO be given by Definition 4, use the notations of Definition 5, and denote
the two components of the “candidate active set” B corresponding to the upper and the lower state
constraint with Bmax and Bmin, in the style of Amax and Amin. Then there holds:
The original model problem (2.1) and the set optimal control problem (where in comparison to (2.30) the
interface condition (2.30f) is replaced by the weaker conditions (2.31g) and (2.31h))

minimize J(B; uJ , uB , yJ , yB ) :=
1
2
‖yJ − yd‖2

L2(J ) +
1
2
‖yB − yd‖2

L2(B̊)

+
λ

2
‖uJ − ud‖2

L2(J ) +
λ

2
‖uB − ud‖2

L2(B̊) (2.31a)

4Note, that the cones defined by ȳ ≤ ymax and ymin ≤ ȳ indeed have interior points, since the space C0(Ω) is used here.
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subject to

B ∈ O, (2.31b)

uJ ∈ L2(J ), yJ ∈ H1(J , ∆) , (2.31c)

uB ∈ L2(B̊), yB ∈ H1(B̊, ∆) , (2.31d)

−∆ymax
min + ymax

min = uB in B̊, (2.31e)

ymin < yJ < ymax in J , (2.31f)

yB |Bmin < ymax|Bmin in Bmin, (2.31g)
ymin|Bmax < yB |Bmax in Bmax, (2.31h)

−∆yJ + yJ = uJ in J , (2.31i)

−∆yB + yB = uB in B̊, (2.31j)

∂nyJ = 0 on Γ, (2.31k)

yJ |β − yB |β = 0 on β, (2.31l)

∂
J
n yJ + ∂

B
n yB = 0 on β, (2.31m)

are equivalent in the following sense:
Let (ū, ȳ) be the optimal solution of (2.1) and let (B̄; ūJ , ūB , ȳJ , ȳB ) be the optimal solution of (2.31), then

A = B̄, ū|
Å
= ūB , ȳ|

Å
= ȳB ,

ū|I = ūJ , ȳ|I = ȳJ .

In particular (2.31) is uniquely solvable.

Proof. 1) According to Proposition 4, the minimizer (ū, ȳ) ∈ L2(Ω)× H2(Ω) of the original model prob-
lem is feasible for the state equations of the reformulation, if one chooses B := A and J := I . Addition-
ally, the BDD reformulation of the state constraint (2.31e) is fulfilled. Consequently, (ū|J , ū|B , ȳ|J , ȳ|B ) is
a feasible point for the reformulation and

min J(B̊; uJ , uB , yJ , yB ) ≤ J(Å; ū|I , ū|A , ȳ|I , ȳ|A) = J(ū, ȳ).

2) Assume there exists an admissible point (B̂; ûJ , ûB , ŷJ , ŷB ) of the set set optimal control problem with

J(B̂; ûJ , ûB , ŷJ , ŷB ) < J(Å; ū|I , ū|A , ȳ|I , ȳ|A).
Again using Proposition 4 it can easily be verified that (û, ŷ) defined by

û =

{
ûJ in Ĵ ,
ûB in B̂,

and ŷ =

{
ŷJ in Ĵ ,
ŷB in B̂,

fulfills the state equation of the original model problem. Suppose that there exists x ∈ βmax such that
ŷ(x) > ymax(x) (note that due to elliptic regularity ŷ ∈ H2(Ω) ⊂ C0(Ω)). Continuity of ŷ and ymax yields
existence of δ > 0 with

∀x ∈ Bδ(x) : ŷ(x) > ymax(x).
Consequently, ŷJ > ymax in Bδ(x) ∩ Ĵ 6= ∅, which contradicts the feasibility of ŷJ , cf. (2.31f). That is,
ŷ ≤ ymax on βmax. Furthermore, z := ŷB − ymax fulfills

−∆z + z = 0, in B̂max,
z ≤ 0, on βmax.

The weak maximum principle yields z ≤ 0 in B̂max, i. e. ŷB ≤ ymax everywhere in B̂max. Consequently,
ŷ ≤ ymax in Ω. Analogously one obtains ŷB ≥ ymin everywhere in Ω.
All in all, (ûJ , ûB , ŷJ , ŷB ) is admissible for the original model problem, which yields

J(Å; ū|I , ū|A , ȳ|I , ȳ|A) = J(ū, ȳ) = min J(u, y) ≤ J(B̂; ûJ , ûB , ŷJ , ŷB ),

in contradiction to the assumption.
3) Uniqueness of the solution of the reformulation is shown with the same arguments as above together
with the uniqueness of the solution of the original model problem.

Remarks (on the strict inequality constraint and optimality):
In view of the lemmas 5 and 6 the BDD interface condition

yB = ymax
min on β
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can be regarded as the “active part” of the inequality constraint ymin < yJ < ymax in J and compensates
its influence on admissibly near the optimum. In other words, if the interface condition is used as con-
straint – this is formulation (2.30) –, one can expect, that the strict inequality has no local impact on optimality.
That is to say, it does not restrict the cone of feasible directions in which the directional derivative of the
objective must vanish at the optimal configuration.
One can expect, in particular, that the first order necessary conditions obtained for the set optimal control
problem without strict inequality actually are compatible with the strict inequality constraint. Indeed, this
expectation holds true as it is shown by Theorem 8. In this respect, see also the Remarks on the strict
inequality constraint on page 49.

Nonetheless, the strict inequality constraint may not be abandoned, since it has a global effect on optimal
solutions. This circumstance is illustrated in Figure 2.5.

inactive constraint

optimal value if the
inactive constraint
is omitted

optimal
value

U

Y

M

J

Figure 2.5: Illustration of the global effect of an inactive constraint.

In addition, if it is not abandoned completely, but relaxed to the non-strict case

ymin ≤ yJ ≤ ymax

and not treated as mandatorily inactive, unique solvability of the set optimal control problems (2.30) and
respectively of (2.31) is lost. The interpretation of B and J as active, respectively inactive set does not
hold any more and for example the choice B = ∅, J = Ω, ȳJ := ȳ and ūJ := ū is feasible and yields
the optimal value. Hence, arbitrarily small perturbations of (2.30g) (the relaxation from the strict to the
non-strict case is the smallest perturbation one might think of) seem to have an impact on solvability of
the optimization problem. This finding is illustrated in Figure 2.6.

Remark:
In view of the deeper analysis in Section 2.4, especially from the perspective of the reduced formulation
(2.38), where the strict inequality constraint is used as a constraint for the set variable, one is mandatorily
faced with this global effect on optimal solutions. Consequently, the constraint is necessary in general,
but can be omitted while deriving first order necessary conditions for it has no local impact on optimality.

Unfortunately, the question whether the original unique optimum can be a cluster point of such addi-
tional critical points mentioned above is left open here. In view of the reduced bilevel optimization prob-
lem (2.38), this would mean, that there are sets Bn ∈ O such that for each n ∈ N the relaxed constraint
ymin ≤ ȳJ ≤ ymax is fulfilled and Bn converges to the optimal active set A (with respect to a reasonable
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[[ U

J

unique
optimum

additional optimum
if inactive constraint
may be active

Figure 2.6: Illustration of a “quasi active” constraint.

topology on O), while F (Bn) = F (A). In other words, it is not clear, whether the original unique op-
timum is an interior point of the set {B ∈ O | ymin ≤ ȳJ ≤ ymax} with respect to a reasonable topology
on O. Therefore, the role of the strict inequality constraint is closely related to the question whether the
optimal active set A is an isolated critical point of the shape functional F ; cf. Paragraph 2.5.2.

2.3 First order analysis via reduction technique

After having found an equivalent reformulation of the original model problem (2.1), in which the active
set arises as separate and equal variable, this section and Section 2.4 are attended to derive first order
necessary conditions. Whereas an informal approach via the Lagrange principle is used in Section 2.4, a
more rigorous reasoning by means of the formulation of a bilevel optimization problem is applied here.
The latter procedure requires a sequence of steps as illustrated on page 10 and roughly follows the general
recipe for deriving first order necessary conditions form Paragraph 2.3.2. In view of this, it is gainful to
envision the abstract framework of optimal control (cf. also [19, Chp. 3]).

2.3.1 Abstract framework of optimal control

Let U and Y be two sets, whose intrinsic structure is known sufficiently well. These are, for instance, Ba-
nach spaces, topological spaces or Riemannian manifolds. In addition, let J : U×Y→ R be a functional,
which has to be minimized. One fundamental ingredient of optimal control is a distinction between the
control u ∈ U and the state y ∈ Y, which is due the so called control-to-state operator S : U → Y. It
is motivated by the common situation in applications, that a controlable input u to a system evokes an
unique answer y.5 Since not every input might be realizable and not every output might be desirable, the
minimization takes place on a set M ⊂ U×Y.

minimize J(u, y) subject to

{
(u, y) ∈M ⊂ U×Y

y = S(u)

The control-to-state operator plays a decisive role in the analysis of optimal control problems. Due to it,
the state can be regarded as dependent on the control, and hence the whole optimization problem can be
reduced:

minimize f (u) := J(u, S(u)) subject to (u, S(u)) ∈M.
The derivation of first order necessary conditions is substantially connected with differentiability of the
operator S now.
With respect to shape and topology optimization, the control is a domain, whose optimal design has to
be found. The state is typically given as solution of a boundary value problem defined on this domain.
Hence, the “control-to-state operator” is the evaluation of a BVP for a given domain and the appropriate
framework for the analysis is the shape- or topology calculus, respectively.
In the context of the set optimal control problem (2.30), the abstract control is composed of the function
control variables uJ and uB and of the set variable B. Consequently, the family O rather defines the

5The reasonable possibility that S is a set valued operator and that the optimization singles out one specific answer is disregarded
here. Such kind of problems are investigated in [59].
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U

Y

M

(u, S(u))

Figure 2.7: The abstract setting of optimal control.

set of admissible sets (comparable to uJ ∈ L2(J )), than being an explicit constraint (cf. (2.30b)). The
corresponding control-to-state operator maps the controls (uJ , uB ,B) to the states (yJ , yB ) here.

However, it is possible to focus on another structure of the set-OCP, which is more similar to shape-
and topology optimization. Regard the set B as the control and the minimizing tuple (ūJ , ūB , ȳJ , ȳB ) as
corresponding state. Thus, the map which assigns B to the tuple (called geometry-to-solution operator
in the following) plays the role of a control-to-state operator then. This point of view will be used for the
remainder of this section. In particular, it has to be ensured, that the mentioned operator is well-defined
and differentiable. But before proceeding to the analysis of the specific problem under consideration, it
might be helpful to illustrate the basic steps in an abstract but compact way.

2.3.2 General recipe for deriving first order necessary conditions

An approach, which is often applied to derive first order necessary conditions, is the analysis via reduc-
tion, i. e. via introduction of a control-to-state operator. The derivation of first order necessary conditions
is along the lines of the following informal recipe then. It should be noted, that this approach may have
a major drawback. In particular, there are optimization problems, which are differentiable, but whose
control-to-state operator is not.6 In such a situation, this approach cannot be applied, but it may be
possible to use a Lagrange principle, see Section 2.4 and [100].

1. Identify a control-to-state operator S.
a) Prove its well-definedness.
b) Formulate the reduced optimization problem

minimize f (u) := J(u, S(u)) subject to (u, S(u)) ∈M.

2. Derive the derivative of the reduced objective f :
a) Prove differentiability of J and S.
b) Use the chain rule(

(D f )(u)
)
(v) =

(
(DJ)(u, S(u))

)
(v) = 〈(∂u J)(u, S(u)) , v〉 +

〈
(∂y J)(u, S(u)) , (DS)(u)v

〉
.

3. Identify the Hadamard form of the derivative of the reduced objective J, or even the gradient in the
case of Hilbert spaces:

a) Introduce adjoint variables.
b) Transform

(
(D f )(u)

)
(v) into Hadamard form 〈(D f )(u) , v〉 (see below).

c) Identify the gradient 〈(D f )(u) , v〉 = ((∇ f )(u) , v).

6Regard the following two-dimensional optimization problem due to S. Bechmann. Minimize the objective J(x1, x2) = x2 subject
to x2

1− x2
2 = 0 and x2 ≤ 0. The obvious unique solution is x̄ = (0, 0). Moreover, there exist Lagrange multipliers, since the tangent

cone and the cone of descent directions do not intersect, cf. [61, Prop. 2.2.1]. However, if the equality constraint is eliminated, one
obtains the reduced optimization problem: minimize f (x1) = |x1|, which obviously not differentiable.
In the context of shape optimization there is an example given in [100].
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4. Establish first order necessary conditions 〈(D f )(ū) , v〉 ≥ 0, ∀v ∈ K(ū).
At this, the set K(ū) is a suitable set of allowed directions of variation, which locally approximates
the projection of the intersection of M with the graph of S onto the set U. This can be for instance
the tangential cone, or if additional nonlinear equality constraints are present the derived cone; see
[82, Chp. 4 Sec. 2]. In the case of U being a manifold, K(ū) can be a suitable part of the tangent
space TūU; cf. Definition 8.

In order to get a better understanding of the Hadamard form, the steps 2 and 3 are reviewed in more
detail. Thereto, the common situation is used, where the constraint only implicitly defines the control-
to-state operator S. However, specific difficulties, such as differentiability can only be obtained for some
subsets or with respect to some directions, are not addressed here for simplicity.

minimize J(u, y) subject to

{
(u, y) ∈M ⊂ U×Y

T(u, y) = 0 in Z
(2.32)

Assume J and T are sufficiently smooth and there exists an implicit function (locally around the optimal
control ū) S : U→ Y, u 7→ y = S(u) with 0 = T(u, S(u)). This yields

0 = (DT)(u, S(u)) = (∂uT)(u, S(u)) + (∂yT)(u, S(u)) ◦ (DS)(u)

⇔ (DS)(u) = −(∂yT)−1(u, S(u)) ◦ (∂uT)(u, S(u)). (2.33)

And consequently, there holds7 for all v ∈ TūU(
(DJ)(ū, S(ū))

)
(v) =

〈
(∂u J)(ū, S(ū)) , v

〉
T∗ū U,TūU

+
〈
(∂y J)(ū, S(ū)) ,

(
(DS)(ū)

)
(v)
〉

T∗S(ū)Y,TS(ū)Y
.

This representation of the derivative is not in Hadamard form, since it is not obvious, what its representa-
tive in T∗ū U should be (

(DJ)(ū, S(ū))
)
(v) =

〈
(DJ)(ū, S(ū)) , v

〉
T∗ū U,TūU

.

By the use of (2.33) the derivative reads(
(DJ)(ū, S(ū))

)
(v) =

〈
(∂u J)(ū, S(ū)) , v

〉
T∗ū U,TūU

+
〈
(∂y J)(ū, S(ū)) , −(∂yT)−1(ū, S(ū)) ◦

(
(∂uT)(ū, S(ū))

)
(v)
〉

T∗S(ū)Y,TS(ū)Y
.

Adjoining the operator in the second duality pairing and introducing the adjoint state p ∈ Z∗ yields(
(DJ)(ū, S(ū))

)
(v) =

〈
(∂u J)(ū, S(ū)) , v

〉
T∗ū U,TūU

+
〈
(∂uT)∗(ū, S(ū)) ◦

(
−(∂yT)−1(ū, S(ū))

)∗ (
(∂y J)(ū, S(ū))

)
︸ ︷︷ ︸

=:p

, v
〉

T∗ū U,TūU
(2.34)

=
〈
(∂u J)(ū, S(ū)) +

(
(∂uT)∗(ū, S(ū))

)
(p) , v

〉
T∗ū U,TūU

.

Consequently, the Hadamard form is obtained. Moreover, if TūU is a Hilbert space one can proceed and
identify the (U-)gradient8 of the reduced objective f

〈D f (ū) , v〉T∗ū U,TūU = (∇ f (u) , v)TūU.

That is

(∇ f )(ū) = (∇J)(ū, S(ū)) = (∇u J)(ū, S(ū)) +
(
(∇uT)∗(ū, S(ū))

)
(p) ∈ TūU. (2.35)

7The notions of the tangent and cotangent spaces (cf. Definition 8 and Definition 10) are used, since they are needed if the spaces
have no linear structure. If such a structure is present, however, the co/tangent spaces coincide with the space itself and its dual,
respectively. Due to the subscript of the tangent space, there should be no confusion with the constraining operator T.

8If there is a Gelfand triple TūU ⊂ H = H∗ ⊂ T∗ū U with pivot Hilbert space H it is possible to identify an H-gradient, too

(∇U f (ū) , v)TūU = (∇H f (ū) , v)H .

This topic is closely related to Sobolev gradients, cf. the Remark to Theorem 7.



2.3.3 Reformulation into a bilevel optimization problem 33

Hence, the introduction of adjoint variables can be regarded as typical step in the derivation of the
Hadamard form of the derivative of the reduced objective f .

Although the gradient of the reduced objective for the model problem (2.1) is well-known, it may be
instructive to transfer the abstract derivation of the gradient to the specific situation.

It is well-known (cf. Proposition 4), that for each u ∈ L2(Ω), there exists a unique y ∈ H1(Ω) with

a(y, φ) :=
∫
J
∇y · ∇φ + y φ =

∫
J

u φ =: F(u), ∀φ ∈ H1(Ω).

The variational form can also be written as an operator equation

Λ(y) = F(u),

where the operator Λ : H1(Ω) → H1(Ω)∗ is associated with the bilinear form a. That is to say, the
constraint operator is given by

T : L2(Ω)× H1(Ω)→ H1(Ω)∗, (u, y) 7→ Λ(y)− F(u).

Moreover, since for every u ∈ L2(Ω) there exists a unique y ∈ H1(Ω) with T(u, y) = 0, there is a control-
to-state operator

S : L2(Ω)→ H1(Ω), u 7→ y = (Λ−1 ◦ F)(u).

Hence, by means of (2.34) and the objective functional J(u, y) = 1
2‖E(y− yd)‖2

L2(Ω)
+ 2

λ‖u− ud‖2
L2(Ω)

one
obtains

p = −
(
(∂yT)−1(u, S(u))

)∗
(∂y J)(u, S(u))

= −(Λ−1)∗E(S(u)− yd) ∈ H1(Ω)∗∗ ∼= H1(Ω),

where E : H1(Ω) → L2(Ω) is the embedding operator. In other words, the adjoint state fulfills the
boundary value problem9

Λ∗p = −E(S(u)− yd) ⇐⇒
{
−∆p + p = −(y− yd) in Ω,

∂n p = 0 on Γ.

Finally, the gradient of the reduced objective can be identified with

(∇ f )(u) = (∇u J)(u, S(u)) + (∂uT)∗(u, S(u))p = λ(u− ud)− F∗p = λ(u− ud)− p.

These results are in total agreement with well-known approach of deriving the adjoint state of the state-
unconstrained analog of the model problem (cf. [159, Sec. 2.8]), except for the different sign of p, which is
due to fact that the adjoint state usually is defined as the negative Lagrange multiplier (“Russian minus”).

2.3.3 Reformulation into a bilevel optimization problem

The aim of this paragraph is a first analysis of the set optimal control problem (2.30) with respect to its
inherent structure. Since the set optimal control problem shelters the two types of optimization prob-
lems – shape/topology optimization on the one hand, and optimal control on the other hand – it is
obvious to look for an bilevel formulation, which separates these two parts. Thus, examine the bilevel
optimization problem (BiOP) (2.36)–(2.37)

outer
optimization
problem (oOP)


minimize J(B; ūJ , ūB , ȳJ , ȳB ), (2.36a)

subject to

{
B ∈ O, (2.36b)
ymin < ȳJ < ymax in J , (2.36c)

where (ūJ , ūB , ȳJ , ȳB ) is the solution to the inner optimization problem, which is parametrized by B:

9Due to symmetry of the bilinear form a, its associated operator Λ is self adjoint.
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inner
optimization
problem (iOP)



minimize J(B; uJ , uB , yJ , yB ) :=
1
2
‖yJ − yd‖2

L2(J ) +
1
2
‖yB − yd‖2

L2(B̊)

+
λ

2
‖uJ − ud‖2

L2(J ) +
λ

2
‖uB − ud‖2

L2(B̊) (2.37a)

subject to

uJ ∈ L2(J ), yJ ∈ H1(J , ∆), (2.37b)

uB ∈ L2(B̊), yB ∈ H1(B̊, ∆), (2.37c)

−∆ymax
min + ymax

min = uB in B̊, (2.37d)

ymax
min |β = yB |β on β, (2.37e)

−∆yJ + yJ = uJ in J , (2.37f)

−∆yB + yB = uB in B̊, (2.37g)

∂nyJ = 0 on Γ, (2.37h)

yJ |β − yB |β = 0 on β, (2.37i)

∂
J
n yJ + ∂

B
n yB = 0 on β. (2.37j)

Provided that the set parametrized inner optimization problem is uniquely solvable for each set B ∈ O,
this BiOP fits in the framework of Paragraph 2.3.1. The deeper analysis will be the scope of para-
graphs 2.3.4–2.3.7.

2.3.4 Geometry-to-solution operator

At first, the most important question concerning the bilevel problem is, if it is well-defined. This question
is twofold:

• Is there a minimizer of the inner optimization problem (2.37) for any B ∈ O?

• Is the outer optimization problem (2.36) well-defined? In particular, how can the strict inequality
constraint (2.36c) be interpreted?

Since the second question has already been discussed in Paragraph 2.2.4, it remains to answer the first
one. Indeed, the inner optimization problem is well-defined:

Theorem 3 (Unique solvability of the inner optimization problem):
Let the family of admissible sets O be given by Definition 4 and use the notations of Definition 5.
Then the (parametrized) optimization problem (2.37) has a unique solution (ūJ , ūB , ȳJ , ȳB ) for any B ∈ O.

Proof. Let Ω = B ∪̇ J be a splitting with B ∈ O. Due to constraints (2.37d), (2.37e), and (2.37g), the
variables uB = −∆ymax

min + ymax
min and yB = ymax

min are fixed on the set B. Consequently, it has to be optimized
in the set J only.

With the solution operator

S : L2(J )→ H1(J , ∆), uJ 7→ yJ , which is the solution to


−∆yJ + yJ = uJ a. e. in J ,

∂nyJ = 0 a. e. on Γ,
yJ |β = ymax

min |β a. e. on β.

at hand, the inner optimization problem can be reduced to the set J equivalently:

minimize J(B; uJ ,−∆ymax
min + ymax

min , S(uJ ), ymax
min )

subject to uJ ∈ U := {uJ ∈ L2(J ) | ∂Jn S(uJ ) = −∂
B
n ymax on β}.

The solution operator S is continuous from L2(J ) to H2(J ) (cf. [69, Thm. 2.3.3.2]), and since H1(J , ∆) ↪→
H2(J ), S is continuous from L2(J ) to H1(J , ∆), too. In addition, ∂

J
n is continuous as well (cf. Lemma 1),

and the admissible set U is a closed, convex and nonempty subset of L2(J ). The last property is a
consequence of the extension operator ω2

J : let z ∈ H2(J ) given by z := ω2
J (0, ymax

min |β, 0, ∂
J
n ymax

min ), then
−∆z+ z ∈ U. Consequently, the reduced problem has a unique optimal solution (cf. [159, Thm. 2.16]).
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Unique solvability of the bilevel optimization problem is an easy consequence of theorems 2 and 3.

Theorem 4 (Reformulation as bilevel optimization problem):
Let the family of admissible sets O be given by Definition 4 and use the notations of Definition 5.
Then the bilevel optimization problem (2.36), (2.37) and the set optimal control problem (2.30) are equiv-
alent. In particular, the bilevel optimization problem is uniquely solvable.

Proof. Let (A, ūI , ūA , ȳI , ȳA) be the unique solution of the set optimal control problem according to Theo-
rem 2. In a first step, it will be shown, that this tuple is feasible for the bilevel optimization problem:
Theorem 1 says, that (ūI , ūA , ȳI , ȳA) is the unique solution to (2.23). The state constraint (2.23e) can be re-
placed by the equivalent BDD ansatz (2.27) and since the constraint ymin < ȳI < ymax is not active, (2.23f)
can be omitted. By means of these reformulations, (2.23) becomes the inner optimization problem (2.37)
for the setA. Consequently, (ūI , ūA , ȳI , ȳA) is an optimal solution of the inner optimization problem (2.37)
for the setA, too, and unique due to Theorem 3. Additionally, (A, ūI , ūA , ȳI , ȳA) is admissible for the outer
optimization problem (2.36).
It remains to show, that it is optimal and the unique optimum. Both properties can be proven by the
contradiction ideas form the proof of Theorem 2.

In view of the abstract framework of optimal control from Paragraph 2.3.1, the existence and uniqueness
results of the theorems 3 and 4 transcend their assertion: They ensure the existence of a control-to-state
operator, which should more accurately be called geometry-to-solution operator in this specific context.
Beyond this, the theorems enable a formulation as reduced optimization problem.

Definition 6 (Geometry-to-solution operator):
Let the family of admissible sets O be given by Definition 4. Then the map

G : O → L2(J )× L2(B̊)× H1(J , ∆)× H1(B̊, ∆), B 7→ (ūJ , ūB , ȳJ , ȳB ),

where the image is the solution of the inner optimization problem (2.37), is called the geometry-to-solution
operator for the set optimal control problem (2.30) and the bilevel optimization problem (2.36), (2.37),
respectively.10

With help of this definition, one can reduce the bilevel optimization problem (2.36), (2.37), and the set
optimal control problem (2.30) as well:

minimize F (B) := J(B; G(B)), (2.38a)

subject to

{
B ∈ O, (2.38b)
ymin < G3(B) < ymax in J . (2.38c)

At this, G3 denotes the third component of the geometry-to-solution operator.

If one steps back to the general recipe of how to derive first order necessary conditions of Paragraph 2.3.2,
one recognizes, that the first step is successfully completed.
In order to tackle the second step of the recipe, it is necessary to analyze the differentiability of the re-
duced functionalF . Since the reduced problem (2.38) suppresses the OC-PDE character of the set optimal
control problem, but maintains the shape/topology-optimization character, it is nearby to check whether
F can be differentiated by means of the corresponding calculus. However, the bilevel character is only
suppressed via the geometry-to-solution operator. Shape/topological differentiability of G is not obvious
and requires further investigation. Conceptually this means, that one needs to prove shape/topological
differentiability of a set parametrized minimization problem, which is the goal of the following para-
graph. Another approach to tackle such type of problems can be found in [44, Chp. 10].

10In view of the results of Section 2.6 the geometry-to-solution operator G maps from O to a vector bundle E on O. Hence, to
be precise, one should write G : O → E, where the vector bundle E is given by (2.86), since only the specific choice of B ∈ O
determines the image space L2(J )× L2(B̊)× H1(J , ∆)× H1(B̊, ∆).
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2.3.5 Necessary conditions for the inner optimization problem

As already mentioned, the geometry-to-solution operator G hides the OC-PDE character of the bilevel
problem. Applying G to a set B ∈ O means solving the inner optimization problem (2.37) for B. The aim
of the present paragraph is to provide a constructive way to evaluate G. Since the set parametrized inner
optimization problem is strictly convex for any choice of B ∈ O, solving it is equivalent to solve its first
order necessary (and sufficient) conditions. Moreover, since (iOP) is an optimization problem in Banach
spaces, it is possible to use the sophisticated tools of Karush-Kuhn-Tucker theory to prove existence of
Lagrange multipliers.

Theorem 5 (Existence of Lagrange multipliers for the inner optimization problem):
Let the family of admissible sets O be given by Definition 4, let B ∈ O be arbitrarily chosen, and let
(ūJ , ūB , ȳJ , ȳB ) be the optimal solution to the inner optimization problem (2.37) for the fixed parameter B.

Then there exist multipliers q̄B ∈ H2(B̊), σ̄J ∈ H−3/2(β), and functions p̄J ∈ L2(J , ∆), p̄B ∈ H2(B̊), such
that there holds (this is the dual part of Karush-Kuhn-Tucker (KKT) conditions)11

−∆ p̄J + p̄J = ȳJ − yd a. e. in J , (2.39a)

∂n p̄J 0 a. e. on Γ, (2.39b)

∂
J
n p̄J = σ̄J a. e. on β, (2.39c)

λ (ūJ − ud) = − p̄J a. e. in J , (2.39d)

−∆ p̄B + p̄B = ȳB − yd a. e. in B̊, (2.39e)

p̄B |β = 0 a. e. on β, (2.39f)

λ (ūB − ud) = − p̄B − q̄B a. e. in B̊. (2.39g)

Remarks:

1. Note, that due to the low regularity of σ̄J , the equations defining p̄J make sense for p̄J ∈ L2(J , ∆),
and for Γ, β of class C1,1 only. In particular, this result is one cause of the Assumption 1 on the
regularity of the boundaries.

2. Further properties of the Hilbert space L2(Å, ∆) (its definition is given by (2.15)) can be found in [6,
Sec. 7.1], [69, Sec. 1.5.3] and [64]. Especially it is mentioned there ([6, Thm. 7.1-2]), that

(−∆ + Id, ∂n, ∂
J
n ) : L2(J , ∆)→ L2(J )× H−

3
2 (Γ)× H−

3
2 (β), φ 7→ (−∆φ + φ, ∂nφ, ∂

J
n φ)

is an isomorphism. This is used in the following proof actually.
3. Obviously one gains regularity of the multiplier q̄B by means of the BDD ansatz, since the cor-

responding distributed Lagrange multiplier µ
Å

is in L2(Å) only, cf. Proposition 3. Besides index
reduction (cf. Paragraph 2.7.3) this is an essential motivation for the BDD approach.

4. However, there is no improvement of regularity of σ̄B vs. µγ. Even worse, the new interface multi-
plier is less regular. But the comparison is flawed, since µγ lives on the optimal interface, whereas
σ̄B does not (have to do it) and since it is known, that characterizing properties of the optimum may
yield higher regularity. In particular, Corollary 2 shows that regularity of primal and dual variables
is higher at the optimum at least. Moreover, the BDD ansatz applied here (i. e. (2.27)) does not
contain a differentiation step of the boundary condition, such that improvement of the regularity of
the corresponding multiplier cannot be expected as contrasted with the BDD approach (2.28), see
Appendix A.

5. Low regluarity of σ̄J and p̄J is a very crucial point in the following considerations. For one thing,
it is responsible for different fruitless efforts to prove shape differentiability of the KKT system,
cf. Lemma 8 and Appendix C. For another thing, low regularity may cause issues in the numerical
treatment, cf. the 3rd item on page 101.

6. While Bergounioux and Kunisch had to search for a suitable decomposition of the Lagrange multi-
plier associated with the state constraint into a distributed regular part µ

Å
and a singular interface

part µγ (cf. Proposition 3), the BDD reformulation (2.27) of the state constraint entails the intro-
duction of two multipliers q̄B and σ̄J . Thus, an outcome of the BDD approach is a quite natural
decomposition of the multiplier.

11The dual variables are denoted with a bar .̄ here in order to distinguish them from another set of dual variables, which are
introduced in Theorem 9 in Appendix B. Moreover, the indices B and J are used in order to mark, that the multipliers are
associated with the set parametrized inner optimization problem.
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7. It would be desirable to formulate an adjoint equation, whose form is closer to the state equation
of (iOP). In other words, the adjoint states p̄J and p̄B should be directly connected via interface
conditions. This topic is discussed in Appendix B.

Proof. The proof consists of three parts. The first one provides existence of q̄B and σ̄J as Lagrange multi-
pliers to a reduced problem. The second part shows, that the functions p̄J and p̄B are well-defined and
that the relations (2.39) hold. Finally, higher regularity of q̄B is shown.
1) The coupled system (2.37d)–(2.37j) can be written equivalently (this is without changing the feasible
set) as

−∆yJ + yJ = uJ in J , (2.40a)

∂nyJ = 0 on Γ, (2.40b)

∂
J
n yJ = ∂

J
n ymax

min on β, (2.40c)

yJ |β = ymax
min |β on β, (2.40d)

−∆yB + yB = uB in B̊, (2.40e)

ymax
min |β = yB |β on β, (2.40f)

−∆ymax
min + ymax

min = uB in B̊. (2.40g)

In particular, the constraints are separated in one block which acts on J and one which acts on B̊ now.
Consequently, the minimization on the two sets are independent of each other.
Let B ∈ O be arbitrarily chosen, but fix. Consider the linear control-to-state operators SJ and SB of the
split system (2.40)

SJ : L2(J )→ H2(J ), uJ 7→ yJ , where yJ is the solution to (2.40a)–(2.40c),

SB : L2(B̊)→ H2(B̊), uB 7→ yB , where yB is the solution to (2.40e)–(2.40f).

SJ and SB are known to be continuous (cf. [69, Thm. 2.3.3.2] or [6, Thm. 7.1-2]). With use of the Dirichlet
trace operators on the interface (cf. Definition 2 and Lemma 1)

τJ : H2(J )→ H
3
2 (β),

τB : H2(B̊)→ H
3
2 (β),

the inner optimization problem (2.37) can be reduced to

minimize f (uJ , uA) := J(B; uJ , uB , SJ (uJ ), SB (uB ))

subject to T(uJ , uB ) :=
(

τJ SJ (uJ )− τJ ymax
min

∆ymax
min − ymax

min + uB

)
= 0, (2.41)

where T : L2(J ) × L2(B̊) → H3/2(β) × L2(B̊) collects the remaining constraints (2.40d), (2.40g). This
reduced problem fits in the usual framework of nonlinear optimization in Banach spaces.
In order to prove existence of multipliers, one has to show that a constraint qualification is valid. In the
current context, the Zowe-Kurcyusz constraint qualification (cf. [164] and [159, p. 330]) is suitable, and its
validity for the operator T in (ūJ , ūB ) will be proven next.
Note, that T is continuously Fréchet differentiable, since SJ is continuous and affine. Thus, for each
arbitrary z1 ∈ H3/2(β) and z2 ∈ L2(B̊) one has to find (hJ , hB ) ∈ L2(J )× L2(B̊) such that

(DT(ūJ , ūB ))(hJ , hB ) =
(

τJ S0
J (hJ )
hB

)
=

(
z1

z2

)
,

where S0
J is the linear part of the affine operator SJ . This is the solution operator to

−∆v + v = hJ in J ,

∂nv = 0 on Γ,

∂
J
n v = 0 on β.

As a start, this defines hB := z2. According to Lemma 1, there exists v ∈ H2(J ) such that
∂nv = 0 on Γ, ∂

J
n v = 0 on β, τJ v = z1 on β.

Consequently, hJ := −∆v + v ∈ L2(J ) is well-defined and τJ S0
J (hJ ) = z1. Hence, the Zowe-Kurcyusz

constraint qualification is fulfilled and there exist Lagrange multipliers σ̄J ∈ H3/2(β)
∗
= H−3/2(β) and

q ∈ L2(B̊).
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2) In addition, (ūJ , ūB , q̄B , σ̄J ) is a saddle point of the Lagrange function (cf. [159, Thm. 6.3])

L : L2(J )× L2(B̊)× L2(B̊)× H−
3
2 (β)→ R ,

L(uJ , uB , qB , σJ ) := f (uJ , uB ) +
∫
B̊

qB (uB + ∆ymax
min − ymax

min ) +
〈
σJ , τJ SJ (uJ )− τJ ymax

min
〉

H−
3
2 (β),H

3
2 (β)

.

Since the constraints (2.41) solely consist of equations, one has (analogously to S0
J , S0

B denotes the linear
part of the affine operator SB here)

0 = ∂uB
L(ūJ , ūB , q̄B , σ̄J ) h =

∫
B̊
(SB (ūB )− yd) S0

B (h) + λ(ūB − ud) h + q̄B h, ∀h ∈ L2(B̊).

Now let p̄B ∈ H2(J ) ∩ H1
0(B̊) be introduced as the solution to (2.39e), (2.39f). Using integration by parts

one can proceed, that for all h ∈ L2(B̊) there holds

0 =
∫
B̊
(−∆ p̄B + p̄B ) S0

B (h) + λ(ūB − ud) h + q̄B h

=
∫
B̊
(−∆S0

B (h) + S0
B (h))︸ ︷︷ ︸

=h

p + λ(ūB − ud) h + q̄B h +
∫

β
−∂

B
n p̄B τBS0

B (h)︸ ︷︷ ︸
=0

+ τB p̄B︸ ︷︷ ︸
=0

∂
B
n S0
B (h).

Hence, one obtains (2.39g). In addition, the saddle point property, together with p̄J ∈ L2(J , ∆), which is
well-defined by (2.39a)–(2.39c) (cf. the 2nd item of the Remarks above this proof), and a suitable Green’s
formula (cf. [69, Thm. 1.5.3.6] in the special case without corners Sj) yields

0 = ∂uJ
L(ūJ , ūB , q̄B , σ̄J ) h

=
∫
J
(SJ (ūJ )− yd) S0

J (h) + λ(ūJ − ud) h +
〈

σ̄J , τJ S0
J (h)

〉
H−

3
2 (β),H

3
2 (β)

=
∫
J
(−∆ p̄J + p̄J ) S0

J (h) + λ(ūJ − ud) h +
〈

σ̄J , τJ S0
J (h)

〉
H−

3
2 (β),H

3
2 (β)

=
∫
J
(−∆S0

J (h) + S0
J (h))︸ ︷︷ ︸

=h

p̄J + λ(ūJ − ud) h

−
〈

∂n p̄J︸ ︷︷ ︸
=0

, S0
J (h)|Γ

〉
H−

3
2 (Γ),H

3
2 (Γ)

+
〈

σ̄J − ∂
J
n p̄J︸ ︷︷ ︸

=0

, τJ S0
J (h)

〉
H−

3
2 (β),H

3
2 (β)

+
〈

p̄J |Γ , ∂nS0
J (h)︸ ︷︷ ︸
=0

〉
H−

1
2 (Γ),H

1
2 (Γ)

+
〈

τJ p̄J , ∂
J
n S0
J (h)︸ ︷︷ ︸
=0

〉
H−

1
2 (β),H

1
2 (β)

.

Finally, one obtains (2.39d). This completes the derivation of the claimed conditions.
3) Equation (2.39g) guarantees higher regularity of q̄B indeed

q̄B = −λ(ūB − ud)− p̄B ∈ H2(B̊).

In view of strict convexity of the inner optimization problem, the KKT conditions are also sufficient.
Consequently, the goal of constructively evaluate the geometry-to-solution operator G is reached, if one
is able to solve the first order necessary conditions. This topic is investigated next. Due to Theorem 5 the
full first order necessary and sufficient conditions for the inner optimization problem iOP for B ∈ O are

−∆ȳJ + ȳJ = ūJ in J , (2.42a)

−∆ȳB + ȳB = ūB in B̊, (2.42b)
∂nȳJ = 0 on Γ, (2.42c)

ȳJ |β = ymax
min |β on β, (2.42d)

∂
J
n ȳJ = ∂

J
n ymax

min on β, (2.42e)

−∆ymax
min + ymax

min = ūB in B̊, (2.42f)

ymax
min |β = ȳB |β on β, (2.42g)

−∆ p̄J + p̄J = ȳJ − yd in J , (2.42h)

−∆ p̄B + p̄B = ȳB − yd in B̊, (2.42i)
∂n p̄J = 0 on Γ, (2.42j)

p̄B |β = 0 on β, (2.42k)

∂
J
n p̄J = σ̄J on β, (2.42l)

λ (ūJ − ud) + p̄J = 0 in J , (2.42m)

λ (ūB − ud) + p̄B + q̄B = 0 in B̊, (2.42n)
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where the functions involved possess the following regularities

ūJ ∈ L2(J , ∆), (2.43a)

ūB ∈ L2(B̊, ∆), (2.43b)

ȳJ ∈ H2(J ), (2.43c)

ȳB ∈ H2(B̊), (2.43d)

p̄J ∈ L2(J , ∆), (2.43e)

p̄B ∈ H2(B̊), (2.43f)

q̄B ∈ H2(B̊), (2.43g)

σ̄J ∈ H−
3
2 (β). (2.43h)

Fortunately this optimality system can be reduced considerably. However, this property is only due to
the very simple structure of the original model problem (2.1), such that the assertion of Lemma 7 is not
representative for the presented approach.

Lemma 7 (Reduced optimality system of the inner optimization problem):
The optimality system (2.42) can be reduced to

−∆ȳJ + ȳJ +
1
λ

p̄J = ud in J , (2.44a)

∂nȳJ = 0 on Γ, (2.44b)

ȳJ |β = ymax
min |β on β, (2.44c)

∂
J
n ȳJ = ∂

B
n ymax

min on β. (2.44d)

−∆ p̄J + p̄J − ȳJ = −yd in J , (2.44e)

∂n p̄J = 0 on Γ, (2.44f)

This means, that instead of solving (2.42) all at once, one can solve it step by step:

1. assign ȳB = ymax
min in B̊

2. solve (2.44)

3. assign

{
ūJ = − 1

λ p̄J + ud in J
ūB = −∆ymax

min + ymax
min in B̊

4. solve

{
−∆ p̄B + p̄B = ymax

min − yd in B̊
p̄B |β = 0 on β

5. assign

{
q̄B = λ(ūB − ud)− p̄B in B̊
σ̄J = ∂

J
n p̄J on β.

Remark:
On the first glance, it may be confusing, that the lemma states on the one hand, that the optimality system
can be reduced to (2.44), and on the other hand, that there are four additional solving steps. Usually,
one is not really interested in solving the optimality system itself, but find the optimal solution of iOP.
In other words, one aims at solving the optimality system in the primal variables. This is done in the
first three steps, indeed. But since the assignments in steps one and three are very cheap in the current
context, solving the inner optimization problem means solving the (ȳJ , p̄J )-system (2.44), here. This fact
is reflected in Theorem 6.

Proof. First of all, it will be shown, that the optimality system (2.42) can be solved by executing the five
steps of solving and assigning. Afterwards, the attention is concentrated on the question, whether the
solving steps are well-defined.

1) The BDD reformulation of the state constraint (2.42f), (2.42g), together with the state equation (2.42b),
ensures ȳB = ymax

min ; cf. (2.27). Consequently, ȳB can be replaced by ymax
min within (2.42). Plugging the gradi-

ent equation (2.42m) into the state equation (2.42a) yields the reduced system (2.44). As soon as (2.44) is
solved, the right hand sides of the assignment in step three are known. After having solved the adjoint
boundary value problem of step four, the remaining part of solving (2.42) means executing assignments
of the fifth step.
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2) In contrast to the boundary value problem of step four, it is not obvious if the reduced system (2.44) is
uniquely solvable, since the distribution of boundary condition is unusual.
Strict convexity of the inner optimization problem (2.37) ensures unique solvability (cf. Theorem 3) as
well as sufficiency of its first order necessary conditions (2.42). Assume the BVP (2.44) were not uniquely
solvable. Hence, in virtue of the first assignment in step three, each of its solutions would produce an
extra optimal solution of the inner optimization problem. This contradiction completes the proof.

At this point, the goal to provide a constructive way to evaluate the geometry-to-solution operator G
is attained. Instead of solving the inner optimization problem (2.37), one can solve its first order nec-
essary and sufficient conditions (2.42). Consequently, the inner optimization problem can be replaced
by this conditions within the bilevel optimization problem (2.36), (2.37). Thereby – in view of the ex-
planation at the end of Paragraph 2.3.4 – one has already gained a lot: It is not necessary to prove
shape/topological differentiability of a set parametrized minimization problem any more; now one has
to prove shape/topological differentiability of the optimality system, which is a partial differential alge-
braic equation (PDAE).
Beyond this, it is even not necessary to solve the whole optimality system. It is sufficient to solve its
reduced form of Lemma 7, i. e. solve BVP (2.44). And as a result, shape/topological differentiability is
only needed for this boundary value problem. This is much closer to the standard problem formulation
of shape/topology optimization.
That is to say, this paragraph helps to prove differentiability of the geometry-to-solution operator G, and
therefore is an essential ingredient to tackle the second step of the general recipe of Paragraph 2.3.2.

2.3.6 Analysis of the outer optimization problem

By means of the preliminary work of Paragraph 2.3.5 it is possible to derive the derivative of the reduced
objective F of the reduced bilevel optimization problem (2.38). This is step two of the general recipe of
Paragraph 2.3.2 within the analysis of the set optimal control problem (2.30).
By means of the geometry-to-solution operator G (cf. Paragraph 2.3.4), it is possible to reduce the bilevel
optimization problem BiOP to (2.38). The detailed analysis of the inner optimization problem (cf. Para-
graph 2.3.5) yields necessary and sufficient conditions, which enable an easy evaluation of the geometry-
to-solution operator. Altogether the set optimal control problem (2.30) is equivalent to a strongly reduced
shape/topology optimization problem.

Theorem 6 (Set optimal control problem as shape/topology optimization problem):
The set optimal control problem (2.30) is equivalent to the shape/topology optimization problem

minimize F (B) :=
1
2

∥∥ȳJ − yd
∥∥2

L2(J )
+

1
2
‖ymax

min − yd‖2
L2(B̊) +

1
2λ

∥∥ p̄J
∥∥2

L2(J )
+

1
2λ
‖pmax

min ‖
2
L2(B̊) (2.45a)

subject to

B ∈ O, (2.45b)
ymin < ȳJ < ymax in J , (2.45c)

−∆ȳJ + ȳJ +
1
λ

p̄J = ud in J , (2.45d)

∂nȳJ = 0 on Γ, (2.45e)

ȳJ |β = ymax
min |β on β, (2.45f)

∂
J
n ȳJ = ∂

B
n ymax

min on β, (2.45g)

−∆ p̄J + p̄J − ȳJ = −yd in J , (2.45h)

∂n p̄J = 0 on Γ, (2.45i)

p̄J ∈ L2(J , ∆), ȳJ ∈ H2(J ), (2.45j)

in the following sense:
Let (A; ūI , ūA , ȳI , ȳA) be the optimal solution of (2.30) and let B̄ be the optimal solution of (2.45), then

A = B̄, ūA = − 1
λ

pmax
min + ud, ȳA = ymax

min ,

ūI = −
1
λ

p̄J + ud, ȳI = ȳJ .
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In particular, (2.45) is uniquely solvable. At this, the coefficient function pmax
min ∈ H2(Ω) is constructed the

same way as ymax
min in Lemma 4, but such that

pmax
min (x) =

{
λ (∆ymax(x)− ymax(x) + ud(x)), x in a neighborhood Bmax of Bmax,
λ (∆ymin(x)− ymin(x) + ud(x)), x in a neighborhood Bmin of Bmin,

(2.46)

∂n pmax
min = 0 on Γ.

Remarks:
Although the set optimal control problem (2.30) and the shape/topology optimization problem look sim-
ilar, there is an essential discrepancy: The boundary value problem (2.45d)–(2.45i) is uniquely solvable for
any given B ∈ O, whereas (2.30h)–(2.30l) is not. Consequently, the set optimal control problem requires
optimization with respect to the function space variables, whereas its reduced counterpart does not.
The strict inequality constraint (2.45c) plays the role of a constraint here, which influences the admis-
sibility of the geometrical splitting of Ω = B ∪̇ J . That is to say, the constraint is a state constraint in
shape/topology optimization. Moreover, in view of the discussion of Paragraph 2.2.4, it is expected that
is has no effect on first order necessary conditions. This actually turns out to be true in Paragraph 2.3.7.

Proof. The set-OCP (2.30) is equivalent to the bilevel optimization problem (2.36), (2.37) according to
Theorem 4. By means of strict convexity of the inner optimization problem (2.37) – confer the proof of
Theorem 3 – its first order necessary conditions (2.42) are sufficient, too. Hence, the inner optimization
problem can equivalently be replaced by its optimality system within the bilevel optimization problem.
However, one is only interested in the optimal primal variables ūJ , ūB , ȳJ , ȳB and not in the dual ones.
Consequently, it is sufficient to execute the first three solving steps of Lemma 7:

1. assign ȳB = ymax
min ,

2. solve (2.44), i. e. solve (2.45d)–(2.45i)
3. assign ūJ = − 1

λ p̄J + ud and ūB = −∆ymax
min + ymax

min = − 1
λ pmax

min + ud.
Plugging these results into the objective J in (2.30a) yields (2.45a)

F (B) := J(B; ūJ , ūB , ȳJ , ȳB ) = J(B;− 1
λ

p̄J + ud,− 1
λ

pmax
min + ud, ȳJ , ymax

min ).

All in all, one has reached the reduced reformulation (2.45).

As already mentioned, the scope of this paragraph shall be to execute the second step of the general
recipe of Paragraph 2.3.2. The first part therein is to prove differentiability of the control-to-state oper-
ator S, which means to prove shape differentiability of the equality constraints in the present context.
However, differentiability of the constraints could not yet be proven (see Appendix C for a more detailed
discussion), and has to be assumed here.

Lemma 8 (Shape derivative of the constraints):
Let the family of admissible sets O be given by Definition 4. Let B ∈ O be given, such that the solution
(ȳJ , p̄J ) of (2.45d)–(2.45j) lies in H2(J )× H1(J ).12 Moreover, let pmax

min be defined as in (2.46). Addition-
ally, assume that the boundary value problem (2.45d)–(2.45j) is shape differentiable.
Then for each

V ∈ V := {W ∈ C1,1(Ω, R2) |W · n = 0 on Γ} (2.47)
the (local13) shape derivatives y′J [V] ∈ H2(J ) and p′J [V] ∈ L2(J , ∆) are given as the unique solution of
the boundary value problem

−∆y′J [V] + y′J [V] = − 1
λ

p′J [V] in J , (2.48a)

∂ny′J [V] = 0 on Γ, (2.48b)

y′J [V]|β = 0 on β, (2.48c)

∂
J
n y′J [V] = V · nJ

1
λ
(pmax

min |β − p̄J |β) on β, (2.48d)

−∆p′J [V] + p′J [V] = y′J [V] in J , (2.48e)

∂n p′J [V] = 0 on Γ. (2.48f)
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Remark:

1. The definition of the space of velocity fields V is advisedly chosen:
• it ensures that the holdall Ω remains unchanged under the action of V;
• C1,1 regularity of the transported candidate active set Bt is preserved; see Paragraph 2.6.1;
• the regularity assumptions (V) (cf. [44, Chp. 4 Eq. (5.5)]), required for the definition Hadamard

differentiability (cf. [44, Chp. 9, Def. 3.1]), which is the basis for the definition of shape differ-
entiability (cf. [44, Chp. 9, Def. 3.4]), are fulfilled. In particular, attend to [44, Chp. 4, Rem. 5.2
and the introduction to Sec. 5.2].

2. As already mentioned in the 5th item of the Remarks on page 36 the low regularity of p̄J is cru-
cial. In particular, it has not yet been possible to prove Lemma 8 without the additional regularity
assumption at p̄J . From the perspective of necessary conditions of the set-OCP (2.30) the assump-
tion is without problems, since it is fulfilled at the optimum. However, from an algorithmic stand
point, the assumption made may be a true restriction, since the optimality system of iOP and its
local shape derivative system (2.48) have to be solved at non-optimal configurations as well; see
Algorithm 1.

3. The notation (.)′[V] is used here for the local shape derivative. The explicit usage of the velocity
field V indicates, that this object is a semiderivative, and hence requires a “direction”.

Proof. The proof consists of two parts. Firstly, it is shown, that the shape derivatives y′[V] and p′J [V] are
solutions to the coupled BVP (2.48). Afterwards unique solvability in of the system is provided.
1) Since each component – except the Neumann interface condition – of the BVP (2.45d)–(2.45j) is pretty
much standard, the reader is referred to the rules for shape differentiation of boundary value problems
[147, Lem. 14, Lem. 15] or [151, Prop. 3.1, Prop 3.3]. For convenience the derivation of the non-standard
Neumann boundary condition (2.45g) is given here. Its special character is, that although the function
ymax

min does not depend on the choice of B locally (cf. the Remark to Lemma 4), its normal derivative ∂
J
n ymax

min
does, indeed.
Before the derivation of the shape derivative can be addressed, it is useful to notice the following finding:
In contrast to the Neumann trace operator ∂

J
n (.), the tangential gradient ∇β(.) and the Laplace-Beltrami

operator ∆β(.) are directly acting on the submanifold β ⊂ R2. That is, they act on the image space of the
Dirichlet trace operator τβ(.) = (.)|β. Consequently, there holds

φ ∈ H2(J ) with φ|β ≡ 0 on β ⇒ ∇βφ ≡ 0 and ∆βφ ≡ 0,

whereas
φ ∈ H2(J ) with φ|β ≡ 0 on β ; ∂

J
n φ = 0.

Transferred to the Dirichlet boundary condition (2.45f), this yields

∇β(ȳJ − ymax
min ) ≡ 0 and ∆β(ȳJ − ymax

min ) ≡ 0. (2.49)

According to [147, Lem. 15], which provides the derivative of Neumann boundary conditions, and with
use of the notation ∂nn for the binormal derivative (cf. Definition 2), there holds

∂
J
n (y

′
J [V]− ymax

min
′[V]︸ ︷︷ ︸

=0

) = −V · nJ ∂nn(ȳJ − ymax
min ) +∇β(ȳJ − ymax

min )︸ ︷︷ ︸
=0

·∇β(V · nJ )

= V · nJ
(
∆(ymax

min − ȳJ )|β − ∆β(ymax
min − ȳJ )︸ ︷︷ ︸
=0

− ∂
J
n (y

max
min − ȳJ )︸ ︷︷ ︸
=0

κJ
)

= V · nJ
(

∆ymax
min − ȳJ︸︷︷︸

=ymax
min

+ud −
1
λ

p̄J
)∣∣

β

= V · nJ
1
λ
(pmax

min |β − p̄J |β), (2.50)

12Actually, this condition is fulfilled for the active set B = A at least, see Corollary 2. Note in addition, that higher regularity at
the optimum can be proven without knowledge of shape differentiability, since it only relies on weak continuity of the optimal
control across the optimal interface γ.

13A detailed background to this notion can be found in Paragraph 2.4.2.
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where (2.45d), (2.49) and the identity [151, Prop. 2.68]

∂nn(.) = ∆(.)|β − ∆β(.)− ∂
J
n (.) κJ . (2.51)

are applied. Here κJ denotes the mean curvature of β, where β is interpreted as boundary of J ; cf. [44,
p. 74]14.
2) Unique solvability of the BVP is ensured by the following reasoning. Regard the auxiliary strictly
convex optimization problem

minimize f (u′) :=
∫
J

1
2

S(u′)2 +
λ

2
(u′)2

subject to u′ ∈ U := {u′ ∈ L2(J ) | ∂Jn S(u′) =
1
λ

V · nJ (pmax
min − p̄J ) on β},

where S : L2(J )→ H2(J ) is the solution operator of the boundary value problem

−∆y′ + y′ = u′ in J ,

∂ny′ = 0 on Γ,

y′ = 0 on β.

Since V ∈ V , and since the normal vector field nJ is Lipschitzian (cf. Definition 2), their scalar product
V · nJ is Lipschitz continuous, too. In consequence of [69, Thm. 1.4.1.1] and of p̄J ∈ H1(J ), there holds

1
λ

V · nJ (pmax
min − p̄J ) ∈ H1(Ω).

Furthermore, the right hand side of the inhomogeneous Neumann boundary condition on β within the
definition of U is an element of H1/2(β). Lemma 1 ensures U to be nonempty now.
The auxiliary optimization problem is uniquely solvable, which is obtained with the same proof as that
of Theorem 3. Furthermore, with the same reasoning as in the proofs of Theorem 5 and Lemma 7, one
recognizes that the BVP (2.48) can be interpreted as the reduced first order necessary and sufficient con-
ditions of the auxiliary problem. Unique solvability of (2.48) is a consequence of unique solvability of the
auxiliary problem now.

Lemma 8 offers the opportunity to derive the shape derivative of the reduced functional F .

Lemma 9 (Shape differentiability of F ):
Let the family of admissible sets O be given by Definition 4 and let B ∈ O such that the assumption of
Lemma 8 are fulfilled. Furthermore, let V ∈ V – see (2.47) – be arbitrarily chosen.
Then the shape semiderivative of the reduced objective F – see (2.45a) – in the direction V is given by

dF (B; V) =
∫
J
(ȳJ − yd) y′J [V] +

∫
β

1
2
(ȳJ − yd)

2 V · nJ +
∫

β

1
2
(ymax

min − yd)
2 V · nB

+
∫
J

1
λ

p̄J p′J [V] +
∫

β

1
2λ

p̄2
J V · nJ +

∫
β

1
2λ

pmax
min

2 V · nB , (2.52)

where y′J [V] ∈ H2(J ) and p′J [V] ∈ L2(J , ∆) are the unique solutions of the BVP (2.48).

Proof. Due to the rules of shape calculus (cf. [151, Eq. (2.168)]), the first summand can be differentiated.
Since yd is not dependent on the shape J , since y′J [V] ∈ H2(J ) is well-defined (see Lemma 8) and since
V ∈ V , one has

d
(

1
2

∥∥ȳJ − yd
∥∥2

L2(J )
; V
)
=
∫
J

(1
2
(ȳJ − yd)

2
)′
[V] +

∫
∂J

1
2
(ȳJ − yd)

2 V · n

=
∫
J
(ȳJ − yd) (y′J [V]− y′d[V]︸ ︷︷ ︸

=0

)

+
∫

β

1
2
(ȳJ − yd)

2 V · nJ +
∫

Γ

1
2
(ȳJ − yd)

2 V · n︸︷︷︸
=0

.

14Note, that the sign of the mean curvature depends on the choice of the orientation of the normal vector field of the boundary.
Hence, since nB = −nJ , there holds κB = −κJ .
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The second summand of F yields

d
(

1
2
‖ymax

min − yd‖2
L2(J ); V

)
=
∫
B

(1
2
(ymax

min − yd)
2
)′
[V] +

∫
∂B

1
2
(ymax

min − yd)
2 V · n

=
∫
B
(ymax

min − yd) (ymax
min
′[V]︸ ︷︷ ︸

=0

− y′d[V]︸ ︷︷ ︸
=0

) +
∫

β

1
2
(ymax

min − yd)
2 V · nB ,

since neither yd nor ymax
min is dependent on the shape B (at least locally; cf. the Remark of Lemma 4). The

analog results for the remaining two terms of the sum lead to (2.52).

In view of the general recipe to derive first order necessary conditions in Paragraph 2.3.2, a closer look
at the representation (2.52) of the shape semiderivative reveals, that the Hadamard form (cf. [44, Chp. 9
Thm. 3.6, Chp. 9 Cor. 1]) – i. e. a gradient representation – has not yet been obtained. Generally speaking,
it is necessary to identify the adjoint operator of the derivative of the geometry-to-solution operator, such
that adjoint states can be derived; see (2.34).

Lemma 10 (L1-shape gradient of F ):
Let the family of admissible sets O be given by Definition 4, let B ∈ O be chosen such that the assump-
tions of Lemma 8 are fulfilled and let pmax

min be defined as in (2.46). Furthermore, let the shape adjoint states
YJ and PJ be the unique solution to the shape adjoint equation

−∆YJ + YJ +
1
λ

PJ =
1
λ

p̄J in J , (2.53a)

∂nYJ = 0 on Γ, (2.53b)

YJ |β = 0 on β, (2.53c)

∂
J
n YJ = 0 on β, (2.53d)

−∆PJ + PJ −YJ = ȳJ − yd in J , (2.53e)

∂nPJ = 0 on Γ, (2.53f)

YJ ∈ H2(J ), PJ ∈ L2(J , ∆). (2.53g)

Then the shape semiderivative of the reduced objective F – see (2.45a) – evaluated at the set B in the
direction V ∈ V can be expressed as

dF (B; V) =
∫

β

( 1
λ
(pmax

min − p̄J )PJ −
1

2λ
(pmax

min
2 − p̄2

J )
)

V · nJ .

Thus, the (L1-) shape gradient can be identified with

∇F (B) = 1
λ
(pmax

min |β − p̄J |β)PJ |β −
1

2λ
(pmax

min
2|β − p̄2

J |β) ∈ L1(β). (2.54)

In other words, one has

dF (B; V) =
〈
∇F (B) , V|β · nJ

〉
C0,1(β)

∗,C0,1(β)
=
∫

β
∇F (B)V · nJ .

In respect of higher regularity of the shape gradient confer the Remark to Theorem 7.

Remark:
In defiance of the original usage of the notion of the shape gradient [44, Chp. 9 Def. 3.4 and Thm. 3.6], the
associated but strictly speaking distinguished scalar distribution (2.54) (cf. [44, Chp. 9 Cor. 1]) is called
shape gradient in the following. See also 15th item of the discussion on page 77.

Proof. 1) This part concerns the unique solvability of the shape adjoint system (2.53).
Since it has the same form as (2.48), the assertion follows along the lines of the second part of the proof
of Lemma 8, in which one uses the auxiliary strictly convex optimization problem

minimize f (U) :=
∫
J

1
2
(S(U)− (yd + ȳJ ))

2 +
λ

2
(U − 1

λ
p̄J )

2

subject to U ∈ {U ∈ L2(J ) | ∂Jn S(U) = 0 on β},
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where S : L2(J )→ H2(J ) is the solution operator for the boundary value problem

−∆Y + Y = U in J ,
∂nY = 0 on Γ,

Y = 0 on β.

2) Let V ∈ V be arbitrary, but fixed. One recognizes that the shape semiderivative of the reduced objec-
tive can be transformed into Hadamard form by means of the shape adjoint system (2.53) and the local
shape derivative BVP (2.48)

dF (B; V) =
∫
J
(ȳJ − yd) y′J [V] +

∫
β

1
2
(ȳJ − yd)

2 V · nJ +
∫

β

1
2
(ymax

min − yd)
2 V · nB︸︷︷︸

=−nJ

+
∫
J

1
λ

p̄J p′J [V] +
∫

β

1
2λ

p̄2
J V · nJ +

∫
β

1
2λ

pmax
min

2 V · nB︸︷︷︸
=−nJ

=
∫
J
(−∆PJ + PJ −YJ ) y′J [V] +

∫
J
(−∆YJ + YJ +

1
λ

PJ ) p′J [V]

+
∫

β

( 1
2
(ȳJ − yd)

2 − 1
2
(ymax

min − yd)
2︸ ︷︷ ︸

=0

+
1

2λ
( p̄2
J − pmax

min
2)
)

V · nJ

=
∫
J

(
−∆y′J [V] + y′J [V] +

1
λ

p′J [V]︸ ︷︷ ︸
=0

)
PJ +

(
−∆p′J [V] + p′J [V]− y′J [V]︸ ︷︷ ︸

=0

)
YJ

+
∫

Γ
−∂nPJ︸ ︷︷ ︸

=0

y′J [V] + PJ ∂ny′J [V]︸ ︷︷ ︸
=0

−∂nYJ︸ ︷︷ ︸
=0

p′J [V] + YJ ∂n p′J [V]︸ ︷︷ ︸
=0

+
∫

β
−∂

J
n PJ y′J [V]︸ ︷︷ ︸

=0

+PJ ∂
J
n y′J [V]︸ ︷︷ ︸
=V·nJ

1
λ (pmax

min− p̄J )

=0︷ ︸︸ ︷
−∂

J
n YJ p′J [V] +YJ︸︷︷︸

=0

∂
J
n p′J [V] +

1
2λ

(
p̄2
J − pmax

min
2
)

V · nJ

=
∫

β

( 1
λ
(pmax

min − p̄J )PJ −
1

2λ
(pmax

min
2 − p̄2

J )
)

V · nJ .

Herefrom, the shape gradient (2.54) can be identified by means of the fundamental lemma of calculus of
variations.

Remark (Constructive heuristic to derive the shape adjoint system):
The shape adjoint boundary value problem (2.53) can be obtained constructively by means of the follow-
ing heuristic:
• Multiply the homogeneous PDEs (2.48a) and (2.48e), which define the shape derivatives y′J [V] and

p′J [V], by PJ and respectively YJ , integrate and add the two terms to dF (B; V) (2.52).

• Perform an integration by parts and define YJ and PJ , such that all contributions of y′J [V] and p′J [V]
vanish.

This yields

dF (B; V) =
∫
J
(ȳJ − yd) y′J [V] +

∫
β

1
2
(ȳJ − yd)

2 V · nJ +
∫

β

1
2
(ymax

min − yd)
2 V · nB

+
∫
J

1
λ

p̄J p′J [V] +
∫

β

1
2λ

p̄2
J V · nJ +

∫
β

1
2λ

pmax
min

2 V · nB

−
∫
J
(−∆y′J [V] + y′J [V] +

1
λ

p′J [V])PJ −
∫
J
(−∆p′J [V] + p′J [V]− y′J [V])YJ

=
∫
J
(ȳJ − yd + ∆PJ − PJ + YJ︸ ︷︷ ︸

⇒ (2.53e)

)y′J [V] +
∫
J
(

1
λ

p̄J + ∆YJ −YJ −
1
λ

PJ︸ ︷︷ ︸
⇒ (2.53a)

)p′J [V]
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+
∫

Γ
∂ny′J [V]︸ ︷︷ ︸

=0

PJ − y′J [V] ∂nPJ︸︷︷︸
⇒ (2.53f)

+ ∂n p′J [V]︸ ︷︷ ︸
=0

YJ − p′J [V] ∂nYJ︸ ︷︷ ︸
⇒ (2.53b)

+
∫

β
∂
J
n y′J [V]︸ ︷︷ ︸

=V·nJ
1
λ ( p̄J −pmax

min )

PJ − y′J [V]︸ ︷︷ ︸
=0

∂
J
n PJ + ∂

J
n p′J [V] YJ︸︷︷︸

⇒ (2.53c)

−p′J [V] ∂
J
n YJ︸ ︷︷ ︸

⇒ (2.53d)

+
∫

β

1
2

(
(ȳJ − yd)

2 − (ymax
min − yd)

2 +
1
λ

p̄2
J −

1
λ

pmax
min

2)V · nJ .

The Hadamard form is obtained in Lemma 10 at the price of solving the shape adjoint boundary value
problem (2.53). This drawback can be overcome.

Theorem 7 (Shape gradient of F without shape adjoints):
Let the family of admissible sets O be given by Definition 4 and let B ∈ O be chosen such that the
assumptions of Lemma 8 are fulfilled.
Then the shape gradient of the reduced objective F – see (2.45a) – evaluated at the set B has a represen-
tation as

∇F (B) = − 1
2λ

(pmax
min |β − p̄J |β)

2 ∈ L1(β), (2.55)

where pmax
min is defined in (2.46) and p̄J is given by (2.45d)–(2.45j). In particular, the shape gradient comes

without shape adjoint variables.

Proof. Lemma 10 ensures, that the shape adjoint system (2.53) is uniquely solvable. A closer look reveals,
that the unique solution to the shape adjoint system is given by PJ = p̄J and YJ = 0. Thus, one finally
obtains (2.55)

∇F (B) =
( 1

λ
(pmax

min |β − p̄J |β)PJ |β −
1

2λ
(pmax

min
2|β − p̄2

J |β)
)

=
( 1

λ
(pmax

min |β − p̄J |β) p̄J |β −
1

2λ
(pmax

min
2|β − p̄2

J |β)
)

= − 1
2λ

(
pmax

min
2|β − 2pmax

min |β p̄J |β + p̄2
J |β
)

.

Remark:

• If it is possible to ensure that p̄J |β ∈ H3/2(β) for a given J , the regularity of the shape gradient
improves to H3/2(β). This is due to [69, Thm. 1.4.4.2], which states, that H2(J ) is an algebra, i. e.
the product of two H2 functions are H2 regular, as well. And this fact can be carried over to the trace
spaces. Indeed, Corollary 2 ensures, that p̄I ∈ H2(I) and thus the shape gradient is H3/2-regular
at least the optimum.

• As a result, one can identify a so called Sobolev gradient of the reduced objective F (see [130], [146,
Sec. 5.3]). Hereunto, let ∇F (B) ∈ L2(β) and consider the variational problem∫

β
∇β(∇SF (B)) · ∇β ϕ +∇SF (B) ϕ =

∫
β
∇F (B) ϕ ∀ϕ ∈ H1(β),

⇔ (∇SF (B) , ϕ)H1(β) = (∇F (B) , ϕ)L2(β) ∀ϕ ∈ H1(β),

which is associated with the surface PDE problem of the Laplace-Beltrami operator

−∆β(∇SF (B)) +∇SF (B) = ∇F (B) a. e. on β.

This surface PDE is known to be uniquely solvable, cf. for instance [49].
• Sobolev gradients have the appealing property that the operator which maps ∇F to ∇SF may be

used for preconditioning in steepest descent algorithms, cf. for instance [146, 56].
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The assertion of Theorem 7 is significantly affected by the observance that the shape adjoint variables are
either zero or already given by the adjoint state of the inner optimization problem. This is a special case
of a more general result concerning bilevel optimization problems with the following structure:

minimize J(b; ub, yb)

subject to b ∈M ⊂ B (2.56)
(ub, yb) := arg min

(u,y)∈U×Y

J(b; u, y) subject to T(b; u, y) = 0 in Z.

It is assumed here, that there exists operators

Sb : U→ Y, u 7→ y = Sb(u) with T(b; u, Sb(u)) = 0, ∀b ∈ B,
G : B→ U×Y, b 7→ (ub, yb),

and that all operators are sufficiently smooth for the following analysis. In particular, the parametrized
inner optimization problem is uniquely solvable for each parameter b ∈ B. In other words, the bilevel
optimization problem can equivalently be formulated as

minimize J(b; G(b))
subject to b ∈M ⊂ B.

Moreover, it is assumed, that the first order necessary conditions for the parametrized inner optimization
problem are also sufficient. Then the effect of the operator G is the same as solving the optimality system.
In view of Paragraph 2.3.2, the optimality system can be written as

T (b; u, y, p) = 0,

where the operator T is

T : B×U×Y×Z∗ → Z×Y∗ ×U∗, (b; u, y, p) 7→

T(b; u, y)
((∂yT)(b; u, y))∗p +∇y J(b; u, y)
((∂uT)(b; u, y))∗p +∇u J(b; u, y)

 .

Unique solvability of the optimality system for arbitrarily chosen b ∈ B induces

G : B→ U×Y×Z∗, b 7→ (ub, yb, pb) = (G(b), pb).

All in all, the bilevel optimization problem can equivalently be replaced by

minimize J(b; ub, yb)

subject to b ∈M ⊂ B,
T (b; ub, yb, pb) = 0.

Referring to the definition (2.34) of the adjoint state p, one can introduce another adjoint P = (Pu, Py, Pp)
in Z∗ ×Y∗∗ ×U∗∗ (

∂u,y,pT (b,G(b))
)∗

P = −∇u,y,p J(b,G(b)),

where the objective J is only formally dependent on p. This yields(∂uT(b; ub, yb))
∗ (∂u(∂yT(b; ub, yb))

∗p + ∂u∇y J(b; ub, yb))
∗ (∂u(∂uT(b; ub, yb))

∗p + ∂u∇u J(b; ub, yb))
∗

(∂yT(b; ub, yb))
∗ (∂y(∂yT(b; ub, yb))

∗p + ∂y∇y J(b; ub, yb))
∗ (∂y(∂uT(b; ub, yb))

∗p + ∂y∇u J(b; ub, yb))
∗

0 ∂yT(b; ub, yb) ∂uT(b; ub, yb)

·
·

Pu

Py

Pp

 =

−∇u J(b; ub, yb)
−∇y J(b; ub, yb)

0

 .

By setting
Pu = pb, Py = 0, Pp = 0.

this equation system reduces to

(∂uT(b; ub, yb))
∗p = −∇u J(b; ub, yb),

(∂yT(b; ub, yb))
∗p = −∇y J(b; ub, yb)

which is part of T (b; ub, yb, pb) = 0. Consequently, the choice for P is a solution.
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Remark:
One recognizes, that the bilevel structure of set optimal control problem – confer (2.30) and (2.36), (2.37) –
fits into the more general framework (2.56). Additionally, the reduction of the optimality system of the
inner optimization problem (cf. Lemma 7) has no impact on the results on principle. The reduction only
is for convenience in order to avoid large systems. With it, the whole procedure of paragraphs 2.3.4–2.3.6
is not restricted to the special case under consideration. In particular, one might think of state-constrained
optimal control problems with multiple controls and/or states, where the reduction step of Lemma 7 is
not applicable.

2.3.7 New necessary conditions

The aim of this paragraph is the derivation of necessary conditions for the outer optimization prob-
lem (2.36), which parallels the fourth step of the general recipe of Paragraph 2.3.2.

Theorem 8 (Necessary conditions for the outer optimization problem oOP):
Let (A, ūI , ūA , ȳI , ȳA) be the unique solution of the bilevel optimization problem (2.36), (2.37), γ = ∂A
and let pmax

min be given by (2.46).
Then the shape gradient of the reduced objective (2.45a) has a null

∇F (A) = − 1
2λ

(pmax
min |γ − p̄I |γ)

2 = 0.

In particular, there holds
pmax

min |γ = p̄I |γ on γ. (2.57)

Proof. According to Theorem 6, the bilevel optimization problem (2.36), (2.37) is equivalent to the reduced
shape/topology optimization problem (2.45), which can be written compactly as (2.38)

minimize F (B) := J(B; G(B)),

subject to

{
B ∈ O,
ymin < G3(B) < ymax in J .

Now omit the strict inequality constraint for a short while and look for necessary conditions of the relaxed
optimization problem. In view of the discussion in Paragraph 2.2.4, this approach is not unreasonable,
since only an inactive constraint is omitted. Again only concentrating on the shape optimization aspect,
a necessary condition of the unconstrained, relaxed problem obviously is

0 = ∇F (A) = − 1
2λ

(pmax
min |γ − p̄I |γ)

2.

The definition of pmax
min = λ(∆ymax

min − ymax
min + ud) (cf. (2.46)) and the optimality conditions ūA = −∆ymax

min +
ymax

min and − p̄I = λ(ūI − ud) (cf. step 3 in Lemma 7) yield

0 = − 1
2λ

(pmax
min |γ − p̄I |γ)

2

= − 1
2λ

(λ(∆ymax
min − ymax

min + ud)|γ + λ(ūI − ud)|γ)2

= −λ

2
((ud − ūA)|γ + (ūI − ud)|γ)2

= −λ

2
(ūI |γ − ūA |γ)

2,

where the last step is due to H1-regularity of ud and Lemma 2 (mind the twofold meaning of (.)|γ, as
trace with respect to I and A, respectively). In other words, the optimal control is weakly continuous
across the optimal interface

ūI |γ = ūA |γ, on γ.
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A comparison with the necessary conditions of Proposition 3 shows, that this condition is a necessary
condition for the original state-constrained optimal control problem (2.1): The Dirichlet traces of the
adjoint state ptrad coincide on the interface, cf. (2.4g) and (2.4h). With use of the gradient equation (2.2g)
this matching is transferred to the optimal control, see (2.5).
The original model problem is equivalent to the considered outer shape optimization problem and hence
– following the steps in reversed order – shape gradient equals zero indeed is a necessary optimality
condition.

As an easy consequence of Theorem 8 one has

Corollary 1 (Local shape derivatives at the optimum):
Let (A, ūI , ūA , ȳI , ȳA) be the unique solution of the bilevel optimization problem (2.36), (2.37), let γ = ∂A,
let pmax

min be given by (2.46), and let V ∈ V be arbitrarily chosen.
Then the local shape derivatives y′I [V] and p′I [V] defined by (2.48) in Lemma 8 vanish

y′I [V] ≡ 0, p′I [V] ≡ 0.

Proof. According to Theorem 8, there holds pmax
min |γ = p̄I |γ on γ. Hence, the BVP (2.48) is homogeneous

and its unique solution is y′I [V] = p′I [V] ≡ 0.

Remarks (on the strict inequality constraint):
Since y′I [V] ≡ 0 for all V ∈ V , the equation yJ |β = ymax

min |β holds true for J “near” I up to first order in
perturbations V of I . Near means here, that J = It := Tt(V)(I) with t > 0 sufficiently small, where the
transformation Tt(V) is defined in the 2nd item of the discussion on page 72.
In view of the reasoning of Paragraph 2.2.4, in particular the first of the Remarks to Lemma 6 on page 28,
it turns out to be sufficient to use the constraint yB = ymax

min on β and not the whole inequality constraint
ymin < yJ < ymax in J in order to derive first order necessary conditions for the set optimal control
problem (2.30). That is to say, the interpretation of the interface condition as the “active part” of the
inequality constraints, seems to hold true. This result justifies to derive necessary conditions in the given
approach while omitting the strict inequality constraint.
In other words, the strict inequality constraint seems to have no impact on the admissible directions of
variation. Supposing that this holds true, indeed, directly yields

0 = dF (A; V) = (∇F (A) , V · nI )L2(J ), ∀V ∈ V ,

⇔ 0 = ∇F (A).
In particular, the assertion of Theorem 8 would follow without referring to results of [14], cf. Proposi-
tion 3, which are not embedded in the approach presented here.

Corollary 2 (Higher regularity at the optimum):
Let (A, ūI , ūA , ȳI , ȳA) be the unique solution of the bilevel optimization problem (2.36), (2.37).
Then the adjoint states, the multipliers provided by Theorem 5, and the optimal controls feature higher
regularity

ūI ∈ H2(I), (2.58a)

p̄I ∈ H2(I), (2.58b)

σ̄I ∈ H
1
2 (γ), (2.58c)

ūA ∈ H2(Å), (2.58d)

p̄A ∈ H2(Å), (2.58e)

q̄A ∈ H2(Å). (2.58f)

Proof. According to the defining equations (2.39a), (2.39b) and Theorem 8 the adjoint state p̄I fulfills

−∆ p̄I + p̄I = ȳI − yd a. e. in I ,
∂n p̄I = 0 a. e. on Γ,
p̄I |γ = pmax

min |γ a. e. on γ.



50 2.3 First order analysis via reduction technique

This BVP is uniquely solvable in H2(J ), since ȳI − yd ∈ H2(J ) and since pmax
min ∈ H2(B̊) (cf. (2.46)), which

yields pmax
min |β ∈ H3/2(γ) (cf. Lemma 1). This is (2.58b). Hence, one obtains (2.58c) via the properties of the

Neumann trace operator (cf. Lemma 1) and σ̄I = ∂
I
n p̄I ∈ H1/2(γ). Furthermore, the gradient equation

(2.39d) yields (2.58a)

ūI = −
1
λ

p̄I + ud ∈ H2(J ).

Due to the control law (2.42f) and ymax
min ∈ H4(Å) one obtains H2-regularity of ūA , see (2.58d). Moreover,

the adjoint state in the active set solves the Dirichlet BVP (2.39e), (2.39f)

−∆ p̄A + p̄A = ȳA − yd a. e. in Å,
p̄A |γ = 0 a. e. on γ.

Consequently, p̄A ∈ H2(Å), which proves (2.58e). Finally the gradient equation (2.39g) yields (2.58f)

q̄A = −λ(ūA − ud)− p̄A ∈ H2(B̊).

At this point the derivation of the first order necessary conditions of the bilevel optimization problem
and its equivalent set optimal control problem is completed. The entire optimality system is repeated for
convenience. At this, three different but equivalent formulations, which express that the shape gradient
must vanish are given: prescribed inhomogeneous Dirichlet trace of p̄I on γ, weak continuity across the
interface of the optimal control, and prescribed inhomogeneous Dirichlet trace of the multiplier q̄A on γ.
The first two conditions are known from the proof of Theorem 8, whereas the last one is a consequence
of the first two and the gradient equations (2.59n) and (2.59o).

Corollary 3 (Full first order necessary conditions of the set optimal control problem):
Let A ∈ O and (ūI , ūA , ȳI , ȳA) ∈ H2(I) × H2(Å) × H2(I) × H2(Å) be the unique solution of the set
optimal control problem (2.30).
Then there holds

−∆ȳI + ȳI = ūI in I , (2.59a)

−∆ȳA + ȳA = ūA in Å, (2.59b)
∂nȳI = 0 on Γ, (2.59c)
ȳI |γ = ymax

min |γ on γ, (2.59d)

∂
I
n ȳI = ∂

I
nymax

min on γ, (2.59e)

−∆ymax
min + ymax

min = ūA in Å, (2.59f)

ymax
min |γ = ȳA |γ on γ, (2.59g)

ymin < ȳI < ymax in I , (2.59h)

−∆ p̄I + p̄I = ȳI − yd in I , (2.59i)

−∆ p̄A + p̄A = ȳA − yd in Å, (2.59j)
∂n p̄I = 0 on Γ, (2.59k)
p̄A |γ = 0 on γ, (2.59l)

∂
I
n p̄I = σ̄I on γ, (2.59m)

λ (ūI − ud) + p̄I = 0 in I , (2.59n)

λ (ūA − ud) + p̄A + q̄A = 0 in Å, (2.59o)
p̄I |γ − pmax

min |γ = 0 on γ, (2.59p)
ūI |γ − ūA |γ = 0 on γ, (2.59q)

q̄A |γ − pmax
min |γ = 0 on γ, (2.59r)

where the last three equations are equivalent formulations for the condition that the shape gradient must
vanish at the optimal configuration.

This optimality system deserves closer attention. Its connection with the necessary condition of [14],
cf. Proposition 3, is of major interest.

Proposition 5 (Connection between common and new necessary conditions):
LetA be the (optimal) active set and let p̄I , p̄A , q̄A and σ̄I be the multipliers of the optimality system (2.59)
and let ptrad

I , ptrad
A , µmax and µγ be given by Proposition 3.
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Then there holds

p̄I = ptrad
I in I , (2.60a)

p̄A + q̄A = ptrad
A in A, (2.60b)

−∆q̄A + q̄A = µmax
Å

a. e. in Åmax, (2.60c)

−∆q̄A + q̄A = −µmin
Å

a. e. in Åmin, (2.60d)

σ̄I + ∂
A
n (q̄A + p̄A) = µγ a. e. on γ. (2.60e)

The proof is included in the proof of Corollary 6.

Remarks (Concluding results):

1. The Bryson-Denham-Dreyfus approach yields an additive decomposition of the adjoint state ptrad
A

into p̄A and q̄A , whereas everything remains unchanged in the inactive set.
2. The relationship between the multipliers µÅ and q̄A is directly linked with the BDD reformulation

of the state constraint. Instead of the original state constraint, a differentiated counterpart – the
control law (2.28) – was used, and, in the end, an analog differential equation holds true for the
corresponding multipliers (cf. (2.60c), (2.60d)). In particular, one recognizes that the differential
operations made within the BDD ansatz in order to derive the control law (primal regime) finds
expression in an inverse manner on the dual regime and consequently yield higher regularity for
the multiplier.

3. The new multipliers q̄A and σ̄I do not feature any sign conditions. On the one hand this fact is not
surprising, since they correspond to equality constraints and as such do not have a fixed sign. On
the other hand the multipliers µÅ and µγ are known to be nonnegative and one might wonder, why
this property is not mirrored the new ones, especially if one bares in mind their tight connection
shown in Proposition 5. This topic is examined in Corollary 6 in the Appendix B.

2.4 First order analysis via formal Lagrange technique

The first order analysis of the set optimal control problem (2.30) via reduction technique in Section 2.3
means taking a mathematically rigorous, but sophisticated path. The formal Lagrange technique is
known to be a powerful tool in order to derive the first order necessary conditions in a possibly unjusti-
fied, but easy to handle and constructive manner. In general one cannot expect to gain a deeper insight
in the function spaces in which the multipliers can be found, but its probably most salient property is,
that the derivation of necessary conditions only requires partial derivatives.
A revision of Section 2.3 reveals (see page 10) that many subsequent steps are required in order to derive
the total shape derivative of the reduced objective F (cf. (2.45a)). Most of them can be bypassed within
the Lagrange technique, which yields two benefits. The obvious one is – as already mentioned – that
much effort is saved, if the local shape derivative of the constraints has not to be derived. The second,
more profound benefit emerges with a review of the approach of Section 2.3:
• The derivation of the shape derivative of the reduced objective F enforces the introduction of the

local shape derivatives y′J [V] and p′J [V], cf. Lemma 9.
• One can get rid of the local shape derivatives by introducing the shape adjoint variables YJ and PJ ,

cf. Lemma 10.
• Finally it turns out, that the shape derivative, respectively the shape gradient can be expressed

without referring to the shape adjoint variables, cf. Theorem 7.
In the light of these experiences, it seems reasonable to wonder if this approach is really suitable for
the considered class of problems. It is easily conceivable that there are problems, where F is shape
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differentiable, but one of the mentioned steps is not applicable. An indication that such situations do
occur indeed can be found in a paper of Ito, Kunisch and Peichl [100]. A technique to compute the
shape derivative of a shape optimization problem is proposed therein, which copes without local shape
derivatives; cf. also [77, 76]. Such ideas to use the Lagrange formalism are also known from the field of
topology optimization; cf. [58, 132, 133].

It is beyond the scope of this thesis, to develop and prove such a technique in the more general frame-
work of set optimal control problems, but these hints shall motivate, that raison d’être of the Lagrange
technique reaches beyond the first-mentioned benefit.

For convenience, the formal Lagrange principle is worked out in the notation of the abstract framework
of optimal control, which was given in Paragraph 2.3.2. Thereto, define the Lagrangian with respect to
the optimization problem (2.32)

L(u, y, p) := J(u, y) + 〈p , T(u, y)〉Z∗,Z.

Then its partial derivatives are(
(∂uL)(u, y, p)

)
(v) =

〈
(∂u J)(u, y) , v

〉
U∗,U

+
〈

p ,
(
(∂uT)(u, y)

)
(v)
〉

Z∗,Z

=
〈
(∂u J)(u, y) +

(
(∂uT)∗(u, y)

)
(p) , v

〉
U∗,U

,(
(∂yL)(u, y, p)

)
(z) =

〈
(∂y J)(u, y) , z

〉
Y∗,Y

+
〈

p ,
(
(∂yT)(u, y)

)
(z)
〉

Z∗,Z

=
〈
(∂y J)(u, y) +

(
(∂yT)∗(u, y)

)
(p) , z

〉
U∗,U

,(
(∂pL)(u, y, p)

)
(s) =

〈
s , T(u, y)

〉
Z∗,Z

.

A comparison with equation (2.35) reveals, that for an admissible pair (u, y) ∈M, i. e.

T(u, y) = 0 ⇔ (∂pL)(u, y, p) = 0,

there holds
(D f )(u) = (∂uL)(u, y, p),

if the adjoint state p is chosen equally in both approaches as

p := −
(
(∂yT)−1(u, y)

)∗(
(∂y J)(u, y)

)
,

which is equivalent to
(∂yL)(u, y, p) = 0.

In other words, the Lagrange technique enables the derivation of the gradient of the reduced objective f
without differentiating the implicitly defined control-to-state operator S, cf. (2.33).

This scheme is applied to the set optimal control problem (2.30) within the remaining part of this section.

2.4.1 Lagrangian

The Lagrangian for the set optimal control problem (2.30) is defined as usual, by augmenting the objective
with duality products of multipliers and constraints. At this, the strict inequality constraint ymin < yJ <
ymax in J (i. e. (2.30g)) is disregarded, which is motivated by the considerations of Paragraph 2.2.4, and
by the success in deriving first order necessary conditions in Paragraph 2.3.7.

To simplify the notation, use the following abbreviations for the duality pairings for the remaining part
of this paragraph.

〈. , .〉M := 〈. , .〉
H−

1
2 (M),H

1
2 (M)

, for M ∈ {Γ, β, γ},

〈〈. , .〉〉M := 〈. , .〉
H−

3
2 (M),H

3
2 (M)

, for M ∈ {Γ, β, γ}.
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Definition 7 (Lagrangian):
The Lagrangian of the set optimal control problem

minimize J(B; uJ , uB , yJ , yB ) :=
1
2
‖yJ − yd‖2

L2(J ) +
1
2
‖yB − yd‖2

L2(B̊)

+
λ

2
‖uJ − ud‖2

L2(J ) +
λ

2
‖uB − ud‖2

L2(B̊) (2.61a)

subject to

B ∈ O, (2.61b)

uJ ∈ L2(J ), yJ ∈ H1(J , ∆), (2.61c)

uB ∈ L2(B̊), yB ∈ H1(B̊, ∆), (2.61d)

−∆ymax
min + ymax

min = uB in B̊, (2.61e)

ymax
min |β = yB |β on β, (2.61f)

ymin < yJ < ymax in J , (2.61g)

−∆yJ + yJ = uJ in J , (2.61h)

−∆yB + yB = uB in B̊, (2.61i)

∂nyJ = 0 on Γ, (2.61j)

yJ |β = ymax
min |β on β, (2.61k)

∂
J
n yJ = ∂

J
n ymax

min on β, (2.61l)

which is an equivalent reformulation15of the original set optimal control problem (2.30), is defined as

L : O × L2(J )× L2(B̊)× H2(J )× H2(B̊)× L2(J , ∆)× L2(B̊, ∆)

× L2(B̊)× H−
3
2 (β)× H−

3
2 (β)→ R (2.62)

L(B; uJ , uB , yJ , yB ; pJ , pB , qB , σJ , σB )

:= J(B; uJ , uB , yJ , yB )

−
∫
J
(−∆yJ + yJ − uJ ) pJ −

〈
pJ , ∂nyJ

〉
Γ −

〈
pJ , ∂

J
n yJ − ∂

J
n ymax

min

〉
β

−
∫
B̊
(−∆yB + yB − uB ) pB

+
∫
B̊
(∆ymax

min − ymax
min + uB ) qB +

〈〈
σB , yB − ymax

min
〉〉

β
+
〈〈

σJ , yJ − ymax
min
〉〉

β
. (2.63)

2.4.2 Partial shape derivatives

As already mentioned, one advantage of the formal Lagrange technique is, that all variables are treated
as independent. Hence, there is no need for applying the chain rule, and in this sense the formalism only
relies on partial derivatives. Thus, the notion of a partial shape derivatives is required in the present
context.
By way of illustration, let f be a shape functional (whose domain actually is a vector bundle and should
not be written as Cartesian product)

f : O ×X→ R, (B, x) 7→ f (B, x),

which is assumed to be shape differentiable at A ∈ O. In addition, let x(B) ∈ X be uniquely determined
by the choice of the set B and be shape differentiable at A. Then the chain rule16 reveals, that the (total)
shape derivative consists of two separate parts
• the partial shape derivative, which describes the explicit dependency of f on the shape variable B and
• the partial derivative with respect to the function variable x composed with the local shape derivative

x′(A)[V], which describes the implicit dependency of f on the shape variable, which is caused by
the shape dependent variable x

d f (A, x(A); V)︸ ︷︷ ︸
total shape derivative

= ∂B f (A, x(A); V)︸ ︷︷ ︸
partial shape derivative

+∂x f (A, x(A)) ◦ x′(A)[V]︸ ︷︷ ︸
local shape derivative

.

15Confer the first part of the proof of Theorem 5. It is possible to analogously define a Lagrangian for original set optimal control
problem, too. However, this approach yields the sightly different necessary conditions which are obtained in Appendix B.

16It should be noted that applicability of the chain rule requires suitable notions of derivatives; Hadamard differentiability is
required in particular. This topic is discussed in [44, p. 170 and Chp. 9 Sec. 2.3] in the context of shape calculus.
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In particular, the derivative of an integral domain shape functional f (B) :=
∫
B̊ G(B) decomposes (see

[151, Eq. (2.168)])

d f (B; V) =
∫

∂B
G(B)|∂A V · n +

∫
B̊

G′(B)[V],

whereas the derivative of an integral boundary shape functional f (B) :=
∫

∂B g(B) (whose integrand is
the trace of a distributed function g(B) = G(B)|∂B) yields (see [151, Eq. (2.174)])

d f (A; V) =
∫

∂A

(
∂nG(A) + κ g(A)

)
V · n +

∫
∂A

(
G′(A)[V]

)
|∂A.

In addition, one is often confronted with the situation, that the integrand of an integral boundary shape
functional is the product of the trace of a distributed function and another function which cannot be seen
as the trace of a distributed function, this is

f (B) :=
∫

∂B
G(B)|∂B h(B).

At this, the decomposition into partial and local shape derivative is given by17

d f (A; V) =
∫

∂A
κ g(A) h(A)V · n + g′(A)[V] h(A) + g(A) h′(A)[V]

=
∫

∂A
κ g(A) h(A)V · n +

((
G′(A)[V]

)
|∂A + ∂nG(A)V · n

)
h(A) + g(A) h′(A)[V]

=
∫

∂A

(
∂nG(A) h(A) + κ g(A) h(A)

)
V · n +

∫
∂A

(
G′(A)[V]

)
|∂A h(A) + g(A) h′(A)[V].

The situation gets even more involved if a normal derivative is part of the integrand

f (B) :=
∫

∂B
∂nG(B).

In order to derive its (partial) shape derivative one can make use of the oriented distance function to be
introduced next. As a start define the distance function from a point x ∈ R2 to a set M ⊂ R2.

dM(x) :=

{
infy∈M |x− y|, M 6= ∅,
+∞, M = ∅.

(2.65)

The the oriented distance function from a point x ∈ R2 to a set M ⊂ R2 is defined as

bM(x) := dM(x)− dMc(x). (2.66)

It is known that, when M is of class C1,1, there is a radius ρ > 0 such that bM ∈ C1,1(Bρ(x)) for each
x ∈ ∂M, cf. [44, Chp. 7 Thm. 8.5]. Furthermore, the gradient ∇bM of the oriented distance function is
an extension of the outer unit normal vector field locally in Bρ(x), (ibidem). Consequently, the oriented
distance function bB exists for any B ∈ O, is C1,1-regular in a tubular neighborhood of β = ∂B and its
gradient is an extension of the unit normal vector field nB . Due to Rademacher’s theorem the second
derivative D2bB exists almost everywhere in this neighborhood. The set index of bB will be omitted in the
following, since its connection with the set will be obvious.

With this notion at hand one can resume the derivation of the shape derivative of f

d f (A; V) =
∫

∂A
κ ∂nG(A)V · n +

(
∂nG(A)

)′
[V]

=
∫

∂A
κ ∂nG(A)V · n +

((
∇G(A) · ∇b

)
|∂A
)′
[V].

Thus, one has to analyze the second summand in more detail((
∇G(A) · ∇b

)
|∂A
)′
[V]

(2.64)
=
(
∇G(A) · ∇b

)′
[V]|∂A + ∂n

(
∇G(A) · ∇b

)
V · n

17Due to [151, Eqs. (2.173), (2.163) and (2.169)] there holds

g′(A)[V] = G′(A)[V]|∂A + ∂nG(A)V · n. (2.64)
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=
((
∇G(A)

)′
[V] · ∇b +∇G(A) · (∇b)′[V]

) ∣∣∣
∂A

+
(
∇
(
∇G(A) · ∇b

)
· ∇b

)
|∂A V · n

=
(
∇
(
G′(A)[V]

)
· ∇b

)∣∣∣
∂A

+
(
∇G(A)

)∣∣
∂A · (∇b)′[V]

∣∣
∂A

+
(

D2G(A)∇b · ∇b + D2b∇G(A) · ∇b︸ ︷︷ ︸
∇G(A)·D2b∇b=0, since D2b∇b=0, cf. [44, p. 372]

)∣∣∣
∂A

V · n

= ∂nG′(A)[V] +
(
∇G(A)

)∣∣
∂A · (∇b)′[V]

∣∣
∂A + ∂nnG(A).

Altogether this results in

d f (A; V) =
∫

∂A

(
∂nnG(A) + κ ∂nG(A)

)
V · n +

∫
∂A

∂nG′(A)[V] +
(
∇G(A)

)∣∣
∂A · (∇b)′[V]

∣∣
∂A.18

Another frequent case is that test functions are contained in the integrand. Test functions do not depend
on the shape explicitly and henceforth their local shape derivative vanishes. With respect to the partial
shape derivative they behave like shape dependent functions (since the explicit shape dependency is
neglected then), and consequently the most common situations are covered within the above considered
cases.

With these deliberations at hand it is possible to compute the derivative of the Lagrangian. Since all vari-
ables of the Lagrangian are independent – in particular, all functions space variables are independent of
the choice of the set B ∈ O19 – the (total) shape derivative of L coincides with its partial shape derivative

dL(B; . . . ; V) = ∂BL(B; . . . ; V).

2.4.3 New necessary conditions

In order to derive first order necessary conditions for the set optimal control problem (2.61), one needs to
compute all partial derivatives of the Lagrangian L at the optimum (cf. [52, Prop. 1.6 on p. 170])

ō := (A; ūI , ūA , ȳI , ȳA ; p̄I , p̄A , q̄A , σ̄I , σ̄A).

The experiences of Section 2.3 say, that the strict inequality constraint (2.61g) has no influence on local op-
timality and consequently the cone of admissible directions of variation is not restricted. The Lagrangian
is a convex-concave functional with respect to the function space variables. To the best of the author’s
knowledge, the qualitative dependency on the set variable cannot be classified but nonlinear, which is
due to the underlying manifold structure of the shape space, see Section 2.6. Nevertheless, L has a critical
point a the optimum ō. Hence, each partial derivative of L evaluated at ō has a null. These necessary
conditions for optimality will be derived in the following.

As a start, regard the derivatives with respect to the control variables.

0 =
(
∂uJ
L(ō)

)
(h) =

∫
I

λ(ūI − ud) h + h p̄I , ∀h ∈ L2(J ),

0 =
(
∂uB
L(ō)

)
(h) =

∫
Å

λ(ūA − ud) h + h p̄A + h q̄A , ∀h ∈ L2(B̊).

Consequently, the fundamental lemma of the calculus of variations yields

0 = λ(ūI − ud) + p̄I a. e. in I , (2.68a)

0 = λ(ūA − ud) + p̄A + q̄A a. e. in Å. (2.68b)

18The local shape derivative of the gradient of the oriented distance function is given by [44, Chp. 9 Eq. (4.38)]

(∇b)′[V] =
(
(DV)∇b · ∇b

)
∇b− (DV)>∇b−D2b V. (2.67)

19However, Definition 7 reveals on closer examination, that the function spaces of the variables do dependent on the set B. This
implicit dependency can be overcome by regarding the variables as the restrictions of some else, which are defined on the
holdall Ω. This method of function space embedding is used in [44, p. 565ff.]. Alternatively one can regard the Lagrangian as a
functional on a vector bundle on a shape related manifold, see Paragraph 2.6.3. It is important to notice however, that the space
dependency does not imply a predetermination of function space variables if the set variable is fixed.
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The partial derivatives with respect to the state variables yield the adjoint equations with the help of
Green’s formula (cf. Remark to Lemma 3)

0 =
(
∂yJ
L(ō)

)
(h) =

∫
I
(ȳI − yd) h + (∆h− h) p̄I −

〈
p̄I , ∂nh

〉
Γ −

〈
p̄I , ∂

I
nh
〉

γ
+
〈〈

σ̄I , h
〉〉

γ

=
∫
I
(∆ p̄I − p̄I + ȳI − yd) h−

〈〈
∂n p̄I , h

〉〉
Γ +

〈〈
σ̄I − ∂

I
n p̄I , h

〉〉
γ

, ∀h ∈ H2(J ),

0 =
(
∂yB
L(ō)

)
(h) =

∫
Å
(ȳA − yd) h + (∆h− h) p̄A +

〈〈
σ̄A , h

〉〉
γ

=
∫
Å
(∆ p̄A − p̄A + ȳA − yd) h +

〈
p̄A , ∂

A
n h
〉

γ
+
〈〈

σ̄A − ∂
A
n p̄A , h

〉〉
γ

, ∀h ∈ H2(B̊).

That is so say

−∆ p̄I + p̄I = ȳI − yd a. e. in I , (2.69a)
∂n p̄I = 0 a. e. on Γ, (2.69b)

∂
I
n p̄I = σ̄I a. e. on γ, (2.69c)

−∆ p̄A + p̄A = ȳA − yd a. e. in Å, (2.69d)
p̄A |γ = 0 a. e. on γ, (2.69e)

∂
A
n p̄A = σ̄A a. e. on γ. (2.69f)

Whereas the derivatives with respect to the multipliers yield the original constraints, as usual, the partial
shape derivative of the Lagrangian can be simplified, with the help of different equations as indicated

0 = ∂B
(
L(ō); V

)
=
∫

γ

(1
2
(ȳI − yd)

2 +
λ

2
(ūI − ud)

2
)

V · nI +
∫

γ

(1
2
(ȳA − yd)

2 +
λ

2
(ūA − ud)

2
)

V · nA

−
∫

γ
(−∆ȳI + ȳI − ūI ) p̄IV · nI −

∫
γ

p̄I
(
∂nn(ȳI − ymax

min ) + κI ∂
I
n(ȳI − ymax

min )
)

V · nI

−
∫

γ
∂
I
n(ȳI − ymax

min )︸ ︷︷ ︸
=0, use (2.61l)

∂
I
n p̄I V · nI

−
∫

γ
(−∆ȳA + ȳA − ūA) p̄A︸︷︷︸

=0, use (2.69e)

V · nA

+
∫

γ
(∆ymax

min − ymax
min + ūA︸ ︷︷ ︸

=0, use (2.61e)

) q̄AV · nA +
∫

γ

(
∂
A
n (ȳA − ymax

min )︸ ︷︷ ︸
=0, use ȳA≡ymax

min

+κA ( ȳA − ymax
min︸ ︷︷ ︸

=0, use (2.61f)

)
)

σ̄A V · nA

+
∫

γ

(
∂
I
n(ȳI − ymax

min )︸ ︷︷ ︸
=0, use (2.61l)

+κI (ȳI − ymax
min︸ ︷︷ ︸

=0, use (2.61k)

)
)

σ̄I V · nI

=
∫

γ

1
2

(
(ȳI − yd)

2 − (ȳA − yd)
2︸ ︷︷ ︸

=0, use (2.61k), (2.61f) and yd∈H1(Ω)

)
V · nI +

∫
γ

(λ

2
(ūI − ud)

2 − λ

2
(ūA − ud)

2
)

V · nI

+
∫

γ

(
∆ȳI − ∂nnȳI − κI ∂

I
n ȳI︸ ︷︷ ︸

=∆γȳI , use (2.51)

−ȳI + ūI
)

p̄IV · nI +
∫

γ

(
∂nnymax

min + κI ∂
I
nymax

min︸ ︷︷ ︸
=∆ymax

min−∆γymax
min , use (2.51)

)
p̄IV · nI

=
∫

γ

(λ

2
(ūI − ud)

2 − λ

2
(ūA − ud)

2 + (∆γȳI − ∆γymax
min︸ ︷︷ ︸

=0 20

+ ∆ymax
min −
=ymax

min , use (2.61k)︷︸︸︷
ȳI︸ ︷︷ ︸

=−ūA , use (2.61e)

+ūI ) p̄I︸︷︷︸
=−λ(ūI−ud), use (2.68a)

)
V · nI

=
∫

γ
−λ

2
(
− ū2

I +
XXXX2 ūI ud −��u

2
d + ū2

A −���
�XXXX2 ūA ud +��u

2
d −����XXXX2 ūA ūI + 2 ūA ud + 2 ū2

I −
XXXX2 ūI ud

)
V · nI

=
∫

γ
−λ

2
(ūI − ūA)

2V · nI , ∀V ∈ V .

Hence, one obtains weak continuity of the optimal control across the interface γ

ūI |γ = ūA |γ a. e. on γ. (2.70)

20Use the same reasoning as in the first part of the proof of Lemma 8 which yielded (2.49).
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In summary, the vanishing partial shape derivative of the Lagrangian L is compatible with the inequality
constraint (2.61f), since weak continuity of the optimal control actually is a necessary condition for the
considered optimal control problem, cf. (2.5).

Remark:
Weak continuity of the optimal control across the interface between active and inactive set is the analog
to the continuity of the Hamiltonian across junction points of boundary arcs for autonomous problems
in OC-ODE, see [122, p. 22 (iii)], [75, Eq. (5.15)].

This Section ends with a corollary, in which some principle results of sections 2.3 and 2.4 are collected.

Corollary 4:
Let A ∈ O and (ūI , ūA , ȳI , ȳA) ∈ H2(I) × H2(Å) × H2(I) × H2(Å) be the unique solution of the set
optimal control problems (2.30), and respectively (2.61).
Then there holds:

1. The necessary conditions of Corollary 3, which were obtained via the reduction technique of Sec-
tion 2.3 coincide with the saddle point characterizing equations of the Lagrangian, i. e. the equality
constraints of (2.61) and (2.68)–(2.70).

2. The necessary conditions are compatible with the strict inequality constraint ymin < ȳI < ymax in I ,
i. e. (2.30g).

Proof. 1) The first assertion is obvious, except that equation (2.69f) has no analog within the conditions of
Corollary 3. However, this equation is unnecessary, since it only determines the additional multiplier σ̄B
to be the Neumann trace of p̄A .
2) The optimal state obviously respects the strict inequality constraint, since the inactive set I is defined
such that this condition is fulfilled, cf. Definition 3.

2.5 Second order analysis

After the analysis of first order necessary conditions for the set optimal control problem (2.30) has been
presented in detail in the last three sections, this section is devoted to a brief analysis of the second order
derivative of the reduced objective F , which is defined in (2.38a) and (2.45a), respectively.
However, there are no second order sufficient conditions derived – or to be more precise, it is shown, that
the second order shape semiderivative of F is not definite at the optimum. Nonetheless, the knowledge
of the second order shape semiderivative is used for the design of efficient algorithms, cf. Chapter 3.

2.5.1 Second order shape semiderivative and lack of second order sufficiency

In the course of the lengthy derivation of Paragraph 2.3.6 it turned out (cf. Theorem 7), that the shape
semiderivative of the reduced objective F (see (2.45a)) is given by

dF (B; V) = − 1
2λ

∫
β
(pmax

min − p̄J )
2V · nJ , ∀V ∈ V .

The second order shape semiderivative is as follows.

Lemma 11 (Second order shape semiderivative of F ):
Let the family of admissible sets O be given by Definition 4, let B ∈ O and let V, W ∈ V – see (2.47) – be
arbitrarily chosen. Furthermore, let p′J [W] ∈ L2(J , ∆) be the local shape derivative with respect to the
velocity field W according to Lemma 8.
Then the second order shape semiderivative of the reduced objective F – see (2.45a) – with respect to V
and W is given by

d2F (B; V, W)= − 1
2λ

∫
β
( p̄J − pmax

min )
(

2p′J [W]V · nJ +
(

2∇( p̄J − pmax
min ) ·V+ ( p̄J − pmax

min )div V
)

W · nJ
)

.
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Proof. The second order shape semiderivative is obtained via repeated differentiation, cf., for instance,
[146, 156] and the extensive presentation in [44, Chp. 9 Sec. 6], in particular page 508ff. and 516ff. Note,
that V and W are autonomous vector fields, and consequently there hold some simplifications, e. g.
V′ = 0, which are used below.
Due to Gauß’s divergence theorem and since one has V · n = 0 on Γ, the shape semiderivative can be
expressed as a volume integral

dF (B; V) = − 1
2λ

∫
J

div
(
( p̄J − pmax

min )
2 V
)

.

Note, that the coefficient function pmax
min , which was defined in (2.46) by means of an analog construction

as in the proof of Lemma 4, depends on the set B, but can be chosen unchanged, if the set is only slightly
deformed; see the Remark to Lemma 4. Hence, the local shape derivative of pmax

min is zero.
The rules of computation for shape semiderivatives of domain integrals (see [151, Eq. (2.167)], [44, Chp. 9
Eq. (4.6)] and Paragraph 2.4.2) and the Gauß divergence theorem yield

d2F (B; V, W)

= − 1
2λ

∫
J

(
div

(
( p̄J − pmax

min )
2 V
))′

[W] + div
(

div
(
( p̄J − pmax

min )
2 V
)

W
)

= − 1
2λ

∫
J

div
((

( p̄J − pmax
min )

2 V
)′

[W] + div
(
( p̄J − pmax

min )
2 V
)

W
)

= − 1
2λ

∫
J

div
(

2( p̄J − pmax
min )(p′J [W]− pmax

min
′[W]︸ ︷︷ ︸

=0

)V + ( p̄J − pmax
min )

2 V′︸︷︷︸
=0

)
− 1

2λ

∫
J

div
((

2( p̄J − pmax
min )∇( p̄J − pmax

min ) ·V + ( p̄J − pmax
min )

2 div V
)

W
)

= − 1
2λ

∫
β
( p̄J − pmax

min )
(

2p′J [W]V · nJ +
(

2∇( p̄J − pmax
min ) ·V + ( p̄J − pmax

min )div V
)

W · nJ
)

.

As an easy consequence, every second order shape semiderivative has a null at the optimal configura-
tion.

Corollary 5 (A is a null of the second order shape semiderivative):
Let A ∈ O be the (optimal) active set.
Then for each V, W ∈ V the second order shape semiderivative of the reduced objective vanishes

d2F (A; V, W) = 0.

Proof. The assertion of Theorem 8 yields that the trace of p̄I − pmax
min on the boundary γ of the active set A

is zero
( p̄I − pmax

min )|γ ≡ 0.
Consequently, the second order shape semiderivative of the shape functional F given by Lemma 11
vanishes for all V, W ∈ V , too.

Remark:
The assertion of Corollary 5 still holds true, when the velocity fields V and W are chosen to be nonau-
tonomous, since the additional term induced thereby contains a p̄I − pmax

min -factor; cf. the proof of
Lemma 11.

Hence, the unique minimum A of the shape optimization problem (2.45) is a critical point of the first and
the second order shape semiderivative of F . This result has some important consequences:
• In order to prove that the optimal configurationA is an isolated critical point ofF inO, with respect

to an appropriate topology, one would usually apply positive definiteness – or more precisely uni-
form ellipticity – of the Hessian, cf. [159, Thm. 4.23]. Ellipticity is obviously not given in the present
context. Approaches which are used by Dambrine et al. in [38, 37, 39] seem to be not applicable
here, and consequently one requires some suitable substitute.
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• There is not only a lack of ellipticity, but there are even descent directions inA, cf. Paragraph 3.1.1. It
is argued there, that descent directions can only be avoided by constraining the set of feasible direc-
tions of variation by respecting the neglected inequality constraint. In other words, the inequality
constraint does not has to be respected as long as first order necessary conditions are considered,
but the situation changes completely with respect to second order analysis.

• The presence of descent direction influences the choice of algorithms since descent algorithms can-
not be applied. Thus, one has to look for approaches related to Newton’s method. This topic is
discussed in-depth in Chapter 3.

2.5.2 Remarks on isolated critical points

The goal of this paragraph is to investigate, whether the optimal active set A is an isolated critical point
of the reduced objective F defined in (2.45a). Since the second order shape derivative has a null at A,
cf. Corollary 5, the typical reasoning, i. e. using positive definiteness in order to get a quadratic growth
condition, is not applicable. One might argue that perhaps a fourth order shape derivative might provide
positive definiteness. However, higher order shape derivatives are not easily achievable. Furthermore,
the results of the Paragraph 3.1.1 show, that there are even descent directions in A and thus it is not
possible to prove positive definiteness of any higher order shape derivative. These descent directions
have to be infeasible with respect to the strict inequality constraint (2.45c); otherwise A would not be an
optimum. Consequently, positive definiteness of any higher order shape derivative can only be achieved
– if at all – in a suitable restricted set of admissible directions, which is prescribed by the strict inequality.
However, it is by far not an easy task to characterize this set of directions. All in all, the approach via
higher order derivatives seems not very promising.

In particular, it is sufficient but not necessary to prove any growth condition in order to ensure, that A is
an isolated critical point. The idea of the following approach is to directly prove thatA is an isolated null
of the shape gradient ∇F . However, all efforts made in order to get a rigorous proof suffer from a lack
of uniformity with respect to the direction of variation in the end. Henceforth, it can only be conjectured,
that the optimal configuration is an isolated critical point of the reduced shape functional F .

Conjecture 1 (A is an isolated critical point of F ):
The optimal active setA is an isolated critical point of the reduced shape functional F with respect to the
Courant metric (cf. Lemma 12) in the set X (A) ⊂ O (see Lemma 13).

Remark:
Note, that the set X (A) is used here, in order to restrict the assertion to a subset of O where the shape
sensitive Courant metric is defined. This topic is discussed in-depth in Paragraph 2.6.1.
Moreover, the assertion does not contain any claim with respect to changes of the topology of A.

The main reason for the null of the second order shape semiderivative ofF is due to the fact, that the term
p̄J − pmax

min appears in quadratic form in the gradient, see (2.55). As already argued above, such problems
can typically be overcome by means of higher order derivatives; but this approach is very difficult in the
context of shape calculus. The proposed remedy is to analyze a single p̄J − pmax

min -factor. Obviously, the
null of ∇F is isolated, if it is possible to prove, that the Dirichlet trace of p̄J − pmax

min is nonzero in a small
neighborhood of A (except at A itself of course).

Hence, let V ∈ V be arbitrary and define the transformed inactive set Tt(V)(I) by means of the velocity
method, which is presented in the 2nd item of the discussion on page 72. Assume that for all V ∈ V the
mapping t 7→ p̄Tt(V)(I) is continuously differentiable for t ∈ [0; δ] and for a sufficiently small δ > 0. Then
a first order Taylor expansion yields

p̄Tt(V)(I) − pmax
min |Tt(V)(I) = p̄I − pmax

min |I + d
(

p̄I − pmax
min |I ; V

)
t + o(t2).
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This equation is still valid if one applies the Dirichlet trace operator (.)|t := (.)|∂Tt(V)(I)\Γ

( p̄Tt(V)(I) − pmax
min )|t = p̄I |γ − pmax

min |γ︸ ︷︷ ︸
=0

+
(

p′I [V]︸ ︷︷ ︸
=0

− pmax
min
′[V]︸ ︷︷ ︸

=0

)∣∣∣
γ

t +
(
∇( p̄I − pmax

min )·V
)∣∣

γ t + o(t2)

=
(
∇γ( p̄I − pmax

min )︸ ︷︷ ︸
=0

·V
)

t + ∂
I
n( p̄I − pmax

min )︸ ︷︷ ︸
µγ

V · nI t + o(t2)

= µγV · nI t + o(t2).

Now assume in addition that µγ 6= 0 almost everywhere on γ. Then for each V ∈ V \ {0} there exists a
δ = δ(V) > 0 such that

( p̄Tt(V)(I) − pmax
min )|t 6≡ 0, ∀t ∈ [0; δ].

Consequently, ∇F (Tt(V)(A)) 6= 0 for all those t. However, there is no guarantee, that inf{δ(V) |V ∈
V} > 0. This can only be assured, if the above Taylor expansion features a qualitative property similar to
a uniform estimate of the quadratic remainder term.

2.5.3 Total linearization

Besides second order analysis of the reduced shape functional F , it is useful to consider second order
derivatives of the Lagrangian (2.63) in order to construct second order algorithms based upon the formal
Lagrange technique of Section 2.4. This perspective is pursued in Paragraph 3.3.3 and Appendix E.

2.6 Shape calculus and calculus on manifolds

This section is devoted to give a rather abstract point of view on shape optimization and shape calcu-
lus. Hereby, it is possible to gain some insight in the general structure, which constitutes the basis of
shape optimization in general and of the set optimal control problem (2.30) in particular. The following
considerations shall be seen as a starting point for a deeper analysis of this topic, since many details are
rather suggested and conjectured than rigorously proven. It is very likely that the abstract point of view
is well-known within the community of people who work in the field of shape optimization. Nonethe-
less, a comprehensive comparison of shape calculus and calculus on (infinite dimensional) manifolds is
not available to the best of the author’s knowledge. Moreover, it seems, that specific details that have
to be considered when constructing optimization algorithms on manifolds have not found entrance into
shape optimization yet. Indeed, the content of this section was motivated originally to extract the second
covariant derivative of the reduced shape functional, since this object is required for Newton methods;
cf. Section 3.2.

2.6.1 Decomposition of O into manageable subsets X (.)

This Paragraph 2.6.1 is concerned with the analysis of the family of feasible sets O given by Definition 4.
It will turn out, that O can be seen as a manifoldlike object. Manifolds possess three hierarchical layers
of inherent structure:
• the global layer describing the object as a whole,
• the local layer described by charts,
• the infinitesimal layer described by differential calculus.

These three layers of O will be considered in-depth in the following. In order to do so, there are some
natural conditions to be respected when analyzing O with respect to shape optimization.

1. Shape optimization does not deal with changes of the topology of the set that should be optimized.
2. The set O must not be quit.

The first condition is related to the global description layer of O. The family O decomposes into subsets,
each collecting all elements of the same topology. In other words, for every B ∈ O define the subset

O(B) := {M ∈ O |M is homeomorphically homotope to B in Ω}. (2.71)
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Two sets M, N ⊂ Ω are called homeomorphically homotope (isotopic) in Ω here, if there exists a homotopy

Φ : [0; 1]×Ω→ Ω

that fulfills

Φ(0, M) = M,
Φ(1, M) = N and
∀t ∈ [0; 1] : Φ(t, .) : Ω→ Ω is a homeomorphism.

The decomposition (2.71) induces an equivalence relation in O
A ∼ B :⇔ A ∈ O(B).

Let {Bi}i∈I be a collection of representatives of each equivalence class (i. e. a partition of O). Then O decom-
poses disjointly

O =
⋃
i∈I
O(Bi)

and each set O(Bi) is a maximal set on which shape optimization can act reasonably. In this context it
is important to note the semantic in the definition of O(B): it is not enough to demand that M is home-
omorphic to B (in R2), since there are obvious cases where the topology of M and B are the same (in
R2), but the two sets cannot be mapped onto each other without changing their topology in Ω; cf. Fig-
ure 2.8. In addition, the property of continuous deformation of the original set to the other (homotopy)
is fundamental from the point of view of shape optimization, which only deals with such kind of set
transformations.

Γ

J

J
B

J

Γ

M /∈ O(B)

J

J

B

M /∈ O(B)
Γ

Γ

Figure 2.8: Illustration of sets M ∈ O \ O(B): M is not the image of B with respect to any homeomor-
phism of Ω (left), whereas B can be mapped to M by means of a homeomorphism of Ω (right)
but it cannot be continuously deformed into it while staying in Ω.

The second condition is related to the local description layer ofO. Shape optimization may only perform
in such a way that it ensures that the image set B of a “deformation” of a set A ∈ O is still contained
in O. Two different properties are important here. For one thing C1,1-boundary regularity has to be
preserved and for another thing the image set has to be located in Ω. “Deformations” can be modeled by
transformations of R2, i. e. mappings R2 → R2. Consequently, one has to choose a suitable class Θ0 of
such mappings.

Based upon Θ0, which indeed is a Banach space of functions, it is possible to construct a set of charts,
each of which is defined on a subset of the above constructed equivalence classes O(Bi). Since the ap-
proach requires a bundle of notations and some notions of group theory, its various steps are illustrated
in Figure 2.9 on page 62 for convenience.

The characterization is constructed in a series of three technical lemmas, which extensively use results
from [44, Chp. 3 and Chp. 4] and which are followed by an in-depth discussion. The reader is also referred
to the detailed presentation of Younes [161], in particular, chapters 8 and 12.
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As a start let21 Θ := C1,1(R2, R2) and consider the subspace

G(Θ) := {Id + f | f ∈ Θ, Id + f bijective and (Id + f )−1 − Id ∈ Θ} ⊂ Id + Θ, 22 (2.72)

which has a group structure for the composition (F ◦ G)(x) := F(G(x)). The elements of G(Θ) are called
perturbations of identity. Furthermore, G(Θ) equipped with the right-invariant metric23

d : G(Θ)× G(Θ)→ R, (F, G) 7→ d(F, G) := d(Id, G ◦ F−1), where

d(Id, F) := inf
n∈N

F=F1◦···◦Fn
Fi∈G(Θ)

∑
i=1...n

‖Fi − Id‖Θ + ‖F−1
i − Id‖Θ (2.73)

is a complete right-invariant metric space; cf. [44, Chp. 3 Thm. 2.9(i)]. Note, that the basic space Θ is chosen
with respect to the abovementioned, local layer related condition. In particular, the elements of the group
G(Θ) preserve C1,1-boundary regularity; cf. the proof of the 2nd item of Lemma 13.
Up to this point the considered diffeomorphisms do not ensure, that the images of a set B ∈ O are
located in Ω. Thus, the interest is focused on the set of all transformations in G(Θ), which do not affect
the complement Ωc of the bounded domain Ω and which map some specific subset onto themselves:

Lemma 12:
Let the group G(Θ) defined in (2.72) and let B ∈ O.
Then the sets of all transformation, which do not affect Ωc and do not change B respectively

H(Ω) := {F ∈ G(Θ) | F|Ωc = IdΩc}, (2.74)
K(B) := {F ∈ H(Ω) | F(B) = B} (2.75)

are closed subgroups of G(Θ) andH(Ω) respectively.
Moreover, the function

dK : H(Ω)×H(Ω)→ R, dK(F ◦ K(B) , H ◦ K(B)) := inf
K∈K(B)

d(F, H ◦ K),

induced by the metric d in H(Ω), is a right-invariant metric on H(Ω)/K(B), called Courant metric. The
space (H(Ω)/K(B), dK) is complete and the topology induced by dK is equivalent to the quotient topol-
ogy ofH(Ω)/K(B).

Remark:
The closed subgroup K(B) induces an equivalence relation inH(Ω). Let F, G ∈ H(Ω), then

F ∼B G :⇔ F(B) = G(B).
The equivalence classes are denoted by [.]B in the following and in most cases by [.] if the choice of the
defining set B is clear. Note, that [Id]B = K(B).

Proof. 1) This part is devoted to prove thatH(Ω) ⊂ G(Θ) is a closed subgroup.
Recall that (G(Θ), d) is complete. As preliminary step, introduce an auxiliary metric. According to [44,
Chp. 3 Thm. 2.3] the topologies induced by the metric d and the semimetric24 d0 : G(Θ)× G(Θ)→ R

(F, G) 7→ d0(F, G) := d0(Id, G ◦ F−1) := ‖G ◦ F−1 − Id‖Θ + ‖F ◦ G−1 − Id‖Θ,

are equivalent. Thus, they are equivalent metrics onH(Ω) and one can start to prove the assertion.
21C1(R2, R2) :=

{
f : R2 → R2

∣∣ ∀|α| ≤ 1 : ∂α f is continuous in R2}
C1(R2, R2) :=

{
f ∈ C1(R2, R2)

∣∣ ∀|α| ≤ 1 : ∂α f is bounded and uniformly continuous on R2}
C1,1(R2, R2) :=

{
f ∈ C1(R2, R2)

∣∣ ∀|α| ≤ 1 ∃c > 0 ∀x, y ∈ R2 : |∂α f (x)− ∂α f (x)| ≤ c|x− y|
}

22The somehow complicated notation is due to the fact, that Id /∈ Θ, since Id is not bounded on R2.
23A metric d on a group (G, ◦) is said to be right-invariant, if for all F, G, H ∈ G: d(F ◦ H, G ◦ H) = d(F, G).
24A semimetric d0 is a function with the following properties

(i) d0(F, G) ≥ 0
(ii) d0(F, G) = 0 ⇔ F = G

(iii) d0(F, G) = d0(G, F).

In other words, it lacks the triangle inequality in order to be a proper metric.
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Obviously, H(Ω) is a subgroup of G(Θ) and it is sufficient to show, that any given sequence (Fn)n∈N ⊂
H(Ω), which converges against an F ∈ G(Θ), already converges in H(Ω). Let F ∈ G(Θ) be the limit of
Fn, i. e. d(F, Fn) → 0. Let x ∈ Ωc be arbitrarily chosen. Since Fn ∈ H(Ω) and by means of the equivalent
metric, there holds

|F(x)− x| = |F ◦ F−1
n (x)− x| ≤ ‖F ◦ F−1

n − Id‖Θ ≤ d0(F, Fn)→ 0 ,

thus F|Ωc = IdΩc . That is to say, F ∈ H(Ω).
2) In this part it is proven, that K(B) ⊂ H(Ω) is a closed subgroup and uses arguments similar to the
proof of [44, Chp. 3 Lem. 2.3].
ObviouslyK(B) is a subgroup and it remains to show, that it is closed. Let (Fn)n∈N ⊂ K(B) be a sequence
which converges against an F ∈ H(Ω). By means of the equivalent metric d0 there holds

‖F ◦ F−1
n − Id‖Θ + ‖Fn ◦ F−1 − Id‖Θ = d0(Fn, F)→ 0.

Let y ∈ B; then for each n ∈N there is an xn ∈ B with F−1
n (xn) = y, since Fn ∈ K(B). Moreover,

|F(y)− xn| = |F ◦ F−1
n (xn)− xn| ≤ ‖F ◦ F−1

n − Id‖Θ → 0,

this is F(y) ∈ {xn} ⊂ B̄ = B. Consequently, F(B) ⊂ B and there even holds F(B) ⊂ B̄ = B, since B is
closed.
On the other hand F ◦ F−1

n (y) ∈ F(B) for each n ∈ N and y ∈ B, since due to Fn ∈ K(B) there holds
xn := F−1

n (y) ∈ B. In addition, F(xn)→ y since

|F(xn)− y| = |F ◦ F−1
n (y)− y| ≤ ‖F ◦ F−1

n − Id‖Θ → 0.

In other words, each y ∈ B is the limit of a sequence F(xn) ⊂ F(B). Consequently, B ⊂ F(B).
All in all, one obtains B ⊂ F(B) ⊂ B̄ = B. Continuity of F and closedness of B ensure that F(B) is closed
such that one finally gets F(B) = B. That is to say, F ∈ K(B).
3) The metric d is right-invariant on G(Θ) and consequently on H(Ω). Furthermore, H(Ω) is complete
as a closed subgroup of the complete metric space G(Θ). The assertion now follows directly from [44,
Chp. 3 Thm. 2.8].

By means of the metric group G(Θ) and its subgroups defined in Lemma 12 some important subsets of
the family O can be characterized:

Lemma 13:
Let B ∈ O and let H(Ω) and K(B) be given by Lemma 12. Consider the family of all images of B which
can be obtained via transformations inH(Ω)

X (B) := {F(B) ⊂ R2 | F ∈ H(Ω)}.
Then there holds:

1. F ∈ H(Ω) is bijective on Ω and F(Γ) = Γ,
2. X (B) ⊂ O; in particular, there is F(B) ⊂ Ω for F(B) ∈ X (B),
3. there is a bijective map

H(Ω)/K(B)→ X (B), [F]B 7→ B[F] := F(B),

4. the Courant metric dK inH(Ω)/K(B) induces a metric in X (B)
d(B[F],B[G]) := dK([F]B , [G]B), ∀ B[F], B[G] ∈ X (B).

In particular, the bijection given by the third assertion enables to identify the topological structure of
X (B) with the one of the quotient groupH(Ω)/K(B).

Proof. 1) Each F ∈ H(Ω) fulfills F|Ωc = IdΩc by definition. Hence, there holds F(Γ) = Γ and moreover
F(Ω) = Ω, since F is bijective as an element of G(Θ).
2) Each F(B) ∈ X (B) is an element of the family O, i. e. it fulfills the Assumption 1. This can be seen
as follows. Due to F(Ω) = Ω, there holds F(B) ⊂ Ω for all F ∈ H(Ω). Moreover, since F ∈ H(Ω) is a
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homeomorphism, the topologies of B and F(B) (regarded as subsets of R2) are the same. Let (xn)n∈N ⊂
B and (yn)n∈N ⊂ Bc converge to an arbitrary but fixed x ∈ β := ∂B, then

F(B) 3 F(xn)→ F(x) and F(Bc) 3 F(yn)→ F(x).

That is, F(x) ∈ F(B) ∩ F(Bc) = ∂F(B) and thus F(β) ⊂ ∂F(B). The inverse inclusion is proven with the
same reasoning and the fact that F−1 − Id ∈ Θ, which yields F−1 is continuous on R2. In particular, the
property B̊ = B transfers to the image F(B) and the boundaries of the connected components of F(B)
and Γ are pairwise disjoint. In addition, the boundary of F(B) is of class C1,1, since B ∈ O is of class C1,1

and since F ∈ G(Θ), where Θ = C1,1(R2, R2). In other words, the boundary is locally the image of the
C1,1-regular map F ◦ ψq, whereas ψq was used in the proof of Lemma 2; cf. Figure 2.1.
3) The map is onto: let X ∈ X (B), i. e. there is an F ∈ H(Ω) with F(B) = X. Consequently, F ◦ K(B) =
F(B) = X, for all K ∈ K(B). That is X = G(B), for all G = F ◦ K ∈ [F].
Moreover, the map is injective: let [F], [G] ∈ H(Ω)/K(B) with [F] 6= [G]. In other words F 6= G ◦ K in
H(Ω), for all K ∈ K(B). Since H(Ω) is a group, this is equivalent to G−1 ◦ F 6= K, for all K ∈ K(B).
Briefly worded G−1 ◦ F /∈ K(B). In particular, G−1 ◦ F(B) 6= B and consequently – since G is bijective on
Ω and G−1 ◦ F(B) ⊂ Ω – there holds F(B) 6= G(B).
4) According to Lemma 12 dK is a metric on the quotient group H(Ω)/K(B). This metric is induced to
X (B) via the constructed bijection.

The subgroup H(Ω) has the advantageous property that “small” transformation in H(Ω) can be associ-
ated with a path, which lies inH(Ω).

Lemma 14:
For ε > 0 define the ball around the identity

Bε := {F ∈ H(Ω) | d(Id, F) < ε} (2.76)

and define the family of associated paths

T (Bε) := {Tt(F) := Id + t(F− Id) | F ∈ Bε, t ∈ [0, 1]} . (2.77)

Then there exists an ε > 0 such that T (Bε) ⊂ H(Ω). In other words, each F ∈ Bε is isotopic to Id
withinH(Ω).

Proof. 1) The first step is to prove that there is an ε > 0 such that T (Bε) ⊂ G(Θ).
Thereto, use the equivalence between the topologies induced by the (semi-)metrics d and d0, as it has
been done in the proof of Lemma 12:

∃ ε > 0 ∀F ∈ Bε : d0(Id, F) < 1.

Consequently, there holds for F ∈ Bε and t ∈ [0, 1]

‖t(F− Id)‖Θ ≤ ‖F− Id‖Θ ≤ ‖F− Id‖Θ + ‖F−1 − Id‖Θ = d0(Id, F) < 1. (2.78)

That is to say, t(F− Id) ∈ B1(0) ⊂ Θ.25 Using [44, Chp. 3 Thm. 2.17], one obtains T (Bε) ⊂ G(Θ).
2) It remains to show that that T (Bε) ⊂ H(Ω).
Let F ∈ Bε (in particular F|Ωc = IdΩc ) and let t ∈ [0, 1], then there holds

∀x ∈ Ωc : Tt(F)(x) = x + t (F− Id)(x) = x + t (IdΩc − Id)(x) = x.

Thus, each Tt(F) ∈ T (Bε) is inH(Ω), too.

It may be instructive to consider the assertions of lemmas 12 to 14 from the perspective of group the-
ory. For convenience, the required and rather elementary notions from group theory are collected in the
Appendix D in Definition 21.

1. The group G(Θ) operates faithfully on the points X ∈ R2.
2. The subgroup H(Ω) ensures, that the domain Ω is invariant with respect to the action of its el-

ements. This is important, since one is interested in transformations of the (candidate) active
set B while the holdall Ω (as a set) should remain unchanged. In other words, the subgroup
H(Ω) ⊂ G(Θ) is the isotropy group of Ωc with respect to the group operation.

25B1(0) is the ball with radius 1 around the null function in Θ with respect to ‖.‖Θ
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3. Another reasonable choice for a subgroupH(Ω) would be {F ∈ G(Θ) | F(Ω) = Ω}. This subgroup
is larger than H(Ω) and thus may yield richer quotient groups. However, it has the drawback that
there may be f ∈ B1(0) such that Id + f is in this subgroup, whereas Id + t f is not. Consequently,
the assertion of Lemma 14 cannot be verified in this situation. A prototypic counterexample is
illustrated in Figure 2.10. In this respect, confer also the discussion of transformation- and flow
approach of path following in Section 3.1 on page 92ff.

(Id + t f )(Ω)

t f

ΩΩ

(Id + f )(Ω)

f

Figure 2.10: Illustration of a transformation Id + f , which fixes Ω, whereas Id + t f does not.

4. For the purpose of optimization one is essentially interested in how F ∈ H(Ω) transforms the
elements of O interpreted as subsets of Ω (this is how they are deformed). Hence, one focuses
on a group operation on the set of all feasible active sets O, and not on a group operation on
the points of R2. Fortunately, H(Ω) operates faithfully on O: Indeed, it operates on O as it is
shown in the second part of the proof of Lemma 13. In addition, let F ∈ H(Ω) \ {Id}, let X0 ∈ Ω
with |(F − Id)(X0)| = maxX∈Ω |(F − Id)(X)| and let 0 < ε < min{|(F − Id)(X0)|/2, dist(X0, Γ)}.
Then the ε-ball Bε(X0) and its image F(Bε(X0)) are contained in O, but F(Bε(X0)) 6= Bε(X0), since
F(X0) /∈ Bε(X0). Consequently, only Id ∈ H(Ω) is the identity on O.

5. H(Ω) operates faithfully, but obviously not transitive, since O contains sets of different topology,
which cannot be mapped onto each other by the elements of the group H(Ω). Consequently, there
are several orbits; actually there are at least countably many, since for each number of connected
components of B ∈ O there is at least one orbit of its own. Thus, one question occurs immediately:
Is there more than one orbit for a fixed topological configuration? More precisely, is the equivalence
class O(B), which is defined in (2.71), identically equal to the orbit X (B), defined in Lemma 13, or
is it a proper superset?
If O(B) is a proper superset of X (B), this fact has fundamental impact on algorithms that shall
solve the set optimal control problem (2.30) and which are supposed to be constructed on the basis
of shape calculus: Suppose the right topology of the active set A is known apriori, but its exact
shape is not. Then it is (at least in principle) an easy task to start the algorithm with some initial
guess in O(A). This is a mandatory choice since a shape calculus based algorithm cannot be ex-
pected to change the topology of the set which has to be optimized. However, actually one has
to start the algorithm with some initial guess in the apriori unknown set X (A), in order to ensure
that the algorithm, which uses transformations in H(Ω) as iterative steps, at least has a chance to
converge to A. Otherwise there were no hope for success, since all the iterates that the algorithm
can produce were located in the orbit of the initial guess, which is disjoint to the orbit X (A).
Unfortunately, this question remains open, to the best of the author’s knowledge. Apparently, this
question has not gained much attention in the community of shape optimization. Perhaps this is
due to the somehow unfavorable position between questions about solvability of shape optimiza-
tion problems on the one hand and questions about how to design efficient numerics, which are
located in the regime of finite dimension after discretization, on the other hand.
Nonetheless, this question is related to the infinite dimensional framework and should not cause
problems in the finite dimensional world after discretization, as long as questions concerning con-
vergence of the discretized problem towards the continuous one are not addressed.

6. It is possible to repeat the derivation of the characterization of the subsets X (A) ofO when starting
with other function spaces Θ, as long as the requirement that the corresponding transformations
yield images in O is fulfilled (cf. page 61). One can choose, for instance, Θ := D(R2), the space of



2.6.1 Decomposition of O into manageable subsets X (.) 67

all infinitely often differentiable (smooth) functions with compact support. This choice may lead
to a smaller set X (A), since the set of transformations is smaller then. However, a higher order
of differentiability of the functions in Θ may yield a higher order of differentiability of the objects
X (.) regarded as manifolds (see below). This observation is relevant with respect to vector bundles
which are constructed on X (.); cf. the 16th item on page 78.

7. The subgroup K(B) ⊂ H(Ω) is the stabilizer of the set B with respect to the operation on the
family O, introduced in 4th item. Note, that the subgroups H(Ω) ⊂ G(Θ) and K(B) ⊂ H(Ω) are
the stabilizers of the sets Ωc and B with respect to different operations: a pointwise operation of R2

and a “setwise” operation on O.
8. There are many different transformations in H(Ω) which map B to a fixed image F(B). However,

the stabilizer K(B) induces an equivalence relation on the metric spaceH(Ω)

∀F, G ∈ H(Ω) : F ∼ G :⇔ F(B) = G(B)⇔ F ◦ K(B) = G ◦ K(B) ⇔ [F] = [G] inH(Ω)/K(B).
Consequently, the transition from H(Ω) to the quotient group ensures the unique identification
of the image set B[F] = F(B) with respect to a given equivalence class of transformations [F]. The
equivalence class is constructed in such a way that all F ∈ H(Ω), which transform B and J without
moving the interface β are disregarded.
In other words, the whole approach from G(Θ) via H(Ω) through to H(Ω)/K(A) yields a charac-
terization of the set X (A) by means of the bijection stated in Lemma 13. And the set X (A) is the
relevant object, wherein shape optimization takes place. To be more precise, it would be favorable
to have a detailed characterization of the set O(A), since it is exactly the subset of the admissible
set O, which is related to the shape optimization part of the set optimal control problem (2.30), but
with regard to the 5th remark there is no deeper analysis available yet but for X (A).

Apart from the group theoretic point of view, it is paying to analyzeH(Ω) from the perspective of metric
spaces.

9. Define the closed subspace
Θ0 := { f ∈ Θ | f |Ωc ≡ 0} (2.79)

and consider the associated metric group G(Θ0). Obviously, there holds G(Θ0) = H(Ω). Although
one is interested in G(Θ0) actually, since it is a rather natural choice for a space of transformations,
that ought to map the family O into itself, the approach via H(Ω) was chosen here, since it is
straight forward to use the results of [44, Chp. 3].

10. Furthermore, it is known, that the tangent space TFG(Θ) to G(Θ) is Θ for all F ∈ G(Θ); cf. [44,
Chp. 3 Thm. 2.17]. The proof can be carried over to H(Ω) easily and one obtains that the tangent
space TFH(Ω) toH(Ω) is Θ0 for each F ∈ H(Ω). An illustration of the relation of the tangent space
Θ0, the affine space Id + Θ0 and the subsetH(Ω) is given in Figure 3.1.

11. According to [44, Chp. 3 Rem. 2.6], the framework presented here, is similar to an infinite dimen-
sional Riemannian manifold and hence there are similarities to the theory of Lie groups26. Note, that
the notions of manifold as well as Lie group are typically defined in the finite dimensional case,
and thus may only help to give a conception of the considered metric space with group struc-
ture. Nonetheless, there is literature available concerning the infinite dimensional case; see, for
instance, [113, 106].

12. The quotient group of a Lie group and a closed subgroup carries a manifold structure; cf., for exam-
ple [83, Thm. 10.1.10]. Moreover, the tangent space of the quotient manifold can be characterized
by means of the Lie algebras of the Lie group and its subgroup; cf. [83, Cor. 10.2.13].
In view of these results, it should be worthwhile having a closer look at the analogous, infinite
dimensional situation of the tangent space of H(Ω)/K(B). This goal is all the more interesting
because shape calculus and algorithms of shape optimization essentially rely on the tangent spaces
of the set of admissible shapes. This set is X (A) ∼= H(Ω)/K(A) here. Although this topic goes
beyond the scope of this thesis, and the analysis is confined to the tangent space of H(Ω), a qual-
itative consideration shall give an expectation of the tangent space of H(Ω)/K(B) here: Imagine
a smooth deformation of the set B driven by t 7→ Id + t f ∈ H(Ω) and regard its influence on the
set B as t converges to zero. Due to the factorization with K(B) both the nature of f in the bulks

26For a precise definition of the notions of manifold and Riemannian manifold, cf., for instance, Definition 14 or [1, Sec. 3.1.1 and
3.6] and for those of Lie group, cf., for instance, [83, Def. 9.1.1].
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of B and J = Ω \ B, and any part of the transformation which acts in tangential direction on the
boundary β are irrelevant. Thus, it can be expected that the tangent space of the quotient manifold
H(Ω)/K(B) is given by {( f · nB )|β | f ∈ H(Ω)}.
This observation is in accordance with the Hadamard Structure Theorem [44, Chp. 9 Thm.3.6], which
says that shape gradients are concentrated on the boundary of the deformed set and are dependent
on the normal component of the deformation vector field only. Confer also the 13th item on page 77.

13. In view of the manifoldlike character of H(Ω)/K(B) ∼= X (B), the orbits X (M), M ∈ O(B) might
be regarded as domains of definition of charts of the (possibly larger) manifoldlike object O(B). In
particular, the family of orbits {X (M) |M ∈ O(B)} defines an atlas of O(B). However, it is not
obvious how these charts should look like. A definition in the style of

ϕM : X (M) ∼= H(Ω)/K(M)→ Θ0, M[F]
∼= [F] 7→ F− Id

is too simple, since the representative F has to be specified in order to get a well-defined map;
perhaps some kind of determination via a minimal norm property might help.

If O(B) is a proper superset of X (B) in the sense of the 5th item, it seems that O is not connected,
since there is no overlap area of the different charts. It should be emphasized however, that the
definition of a chart usually is based on the fact, that its image is an open set. This property may be
fulfilled within the above considerations, but the question is left open here. It is possible to define
charts with open image in the tangential space indeed by means of Lemma 14, but it is not decided
definitely here, whether O(B) is connected or not.

14. According to [44, Chp. 3 Thm. 2.17(i)], the mapping Θ ⊃ B1(0) → G(Θ), f 7→ Id + f is well-
defined and continuous. This yields that the tangential space Θ can be mapped to the manifoldlike
space G(Θ), locally around f = 0. The mapping is surjective onto an ε-ball around Id ∈ G(Θ),
which can be proven with the idea of the proof of Lemma 14. This assertion carries over to B1(0) ⊂
Θ0 and H(Ω). It would be desirable at this point, if this consideration could be advanced to the
quotient space H(Ω)/K(B). For one thing it would be possible to analyze shape functionals (at
least locally) be means of the tangent space instead of regarding them on the set X (B), which is
much easier, since the tangent space is expected to be a Banach space. For another thing it would
no longer be necessary to analyze the local properties of shape functionals in the tangent space Θ0
of H(Ω), which is not perfectly adapted to the situation, since the corresponding group operation
acts pointwisely and not setwisely; cf. the 4th remark.

15. The whole approach yields a metric on the feasible set O. It is possible to introduce other metrics,
cf. [44, Chp. 5, 6, 7] or [161], however the Courant metric is distinguished: If a shape functional
is Hadamard semidifferentiable, then it is continuous with respect to the Courant metric; see [44,
Chp. 9, Thm. 3.3]. Moreover, the method of perturbation of identity is directly connected with the
approach.

Up to this point the global and the local description layer of the family of feasible sets O have been
investigated. It remains to analyze the infinitesimal layer, which means putting shape calculus into the
framework of differential calculus on manifolds.

2.6.2 Abstract view on shape calculus

Therefore, up next a very brief crash course in first and second order calculus on smooth (i. e. C∞-)
manifolds, which is based on [1, Chp. 3 and 5]. It is far beyond the scope of this thesis either to give
a sufficient review of this topic or to prove that the results thereof can be carried over to shape calculus
directly. In particular, the manifoldO is not C∞ if it is equipped with the structure, which was constructed
in Paragraph 2.6.1, since the elements of Θ are not C∞ (cf. the 6th item of the discussion above). The
aim is to give some insight into the structure of calculus on manifolds and thereby to establish some
understanding of shape calculus, without having to cope with technical details.

The first intermediate goal is the notion of a derivative of a smooth function on a manifold. The main
difficulty is the fact that a direct generalization of directional derivatives in Banach spaces (i. e. Gateaux
semiderivative, [44, Chp. 9 Def. 2.1(i)]) as

d f (x, ξ) := lim
t→0

f (x + tξ)− f (x)
t
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is not possible, since the argument x + tξ has no meaning due to the lack of a linear vector space structure
on a manifold. As a consequence, directional derivatives are constructed by means of curves on the
manifold in manner of Hadamard semiderivatives; cf. [44, Chp. 9 Def. 2.1(ii)].

Definition 8 (directional derivative, tangent vector, tangent space):
LetM be a (real) manifold, let Fx(M) be the set of real-valued, smooth functions defined in a neighbor-
hood of x ∈ M. Furthermore, let α : R→ M be a smooth mapping with α(0) = x, called smooth curve in
M trough x. Then

1. d
dt f (α(t))|t=0 is called the directional derivative of f ∈ Fx(M) in x

2. the map α̇(0) : Fx(M) → R, f 7→ α̇(0) f := d
dt f (α(t))|t=0 is called tangent vector or canonical lifting

of the curve α at t = 0
3. a tangent vector ξx to the manifoldM at point x is defined as mapping Fx(M) → R such that there

exists a curve α trough x (α(0) = x) with

ξx f = α̇(0) f

4. the set TxM of all tangent vectors ξx at point x is called tangent space toM at x and admits a linear
vector space structure.

Definition 9 (tangent bundle, vector field, derivation):
LetM be a (real) manifold and let F(M) be the set of real-valued, smooth functions defined onM. Then

1. the tangent bundle TM is the collection of all tangent vectors toM27

TM :=
⋃

x∈M
TxM

2. a smooth mapping ξ :M→ TM, x 7→ ξx ∈ TxM is called vector field onM
3. the set of all vector fields onM is denoted by V(M)

4. a derivation at x ∈ M is defined as a mapping Dx : F(M)→ R, which fulfills
a) R-linearity: ∀a, b ∈ R, f , g ∈ F(M) : Dx(a f + bg) = aDx( f ) + bDx(g) and
b) the product rule: ∀ f , g ∈ F(M) : Dx( f g) = Dx( f )g + f Dx(g)

5. a derivation on F(M) is a mapping D : F(M)→ F(M), which fulfills
a) R-linearity: ∀a, b ∈ R, f , g ∈ F(M) : D(a f + bg) = aD( f ) + bD(g) and
b) the product rule: ∀ f , g ∈ F(M) : D( f g) = D( f )g + f D(g).

The notion of a derivation axiomizes the notion of vector fields and as a result of this it axiomizes the
notion of the covariant derivative (cf. Definition 11). Each vector field ξ ∈ V(M) defines a derivation

D : F(M)→ F(M), f 7→ D( f ) := ξ f ,

where (by means of Definition 8 for a suitable curve α)

∀x ∈ M : (ξ f )(x) := ξx f = α̇(0) f =
d
dt

f (α(t))|t=0 ∈ R.

Vice versa, each derivation on F(M) can be realized by a vector field. Consequently, it is sufficient to
maintain the notion of a vector field and the notion of a derivation can be abandoned.

Definition 10 (covector, cotangent space, cotangent bundle):
LetM be a (real) manifold. Then

1. a covector at x ∈ M is a linear functional µx : TxM→ R

2. the set of all covectors at x ∈ M form the cotangent space T∗xM toM at x, which is the dual space of
the tangent space TxM

27Even if two tangent spaces TxM and TyM (x, y ∈ M) are isomorphic, their elements ξx and ξy are not identified with each other
in TM. Consequently, each element ξx ∈ TM is characterized by the tangent vector ξx ∈ TxM itself and its foot x ∈ M.
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3. the cotangent bundle T∗M is the collection of all covectors toM

T∗M :=
⋃

x∈M
T∗xM.

Definition 11 (covector field, covariant derivative of functions):
LetM be a (real) manifold. Then

1. a covector field is a smooth map µ :M→ T∗M, x 7→ µx

2. the set of all covector fields is referred to as V(M)∗

3. a covector field µ acts on a vector field ξ ∈ V(M) as follows

∀x ∈ M : (µ[ξ])(x) := µx[ξx] ∈ R

and consequently µ[ξ] ∈ F(M)

4. for each f ∈ F(M) there exists one distinct covector field, the covariant derivative of f , defined by

D f : M→ T∗M, x 7→ (D f [.])(x), where ∀ξ ∈ V(M) : (D f [ξ])(x) := ξx f .

The covariant derivative is the generalization of the common concept of the first order derivative of a
function f : RN → R, and thus the first intermediate goal is reached. The next step is to provide tools
needed for a generalization of a second order derivative.
Second order derivatives are based on the notion of the first order derivative of vector fields. However, it
is not possible to use the (manifold intrinsic) concept of curves to define directional derivatives of vector
fields, as it was done in Definition 8 in order to introduce directional derivatives of real-valued functions:

lim
t→0

ξα(t) − ξα(0)

t
is not well-defined since the tangent vectors ξα(t) and ξα(0) live in different tangent spaces. Consequently,
one has to choose an axiomatic approach to introduce the notion of a covariant derivative of a vector
field, which is similar to the axiomatic definition of derivations in Definition 9.

Definition 12 (covariant derivative of (co-)vector fields):
LetM be a (real) manifold. Then

1. a covariant derivative of a vector field ξ ∈ V(M) with respect to the direction η ∈ V(M) is a mapping
∇ηξ :M→ TM, x 7→ (∇ηξ)(x) which fulfills

a) F(M)-linearity in η: ∀ f , g ∈ F(M), η, χ, ξ ∈ V(M): ∇f η+gχξ = f∇ηξ + g∇χξ

b) R-linearity in ξ: ∀a, b ∈ R, η, ξ, ζ ∈ V(M): ∇η(aξ + bζ) = a∇ηξ + b∇ηζ

c) the product rule: ∀ f ∈ F(M), η, ξ ∈ V(M): ∇η( f ξ) = (η f )ξ + f∇ηξ,28

2. a covariant derivative of a covector field µ ∈ V(M)∗ can be defined by

∀η, ξ ∈ V(M) : (∇ηµ)[ξ] := η(µ[ξ])− µ[∇ηξ] = (D(µ[ξ]))[η]− µ[∇ηξ].

Remark:
The notion of a covariant derivative of a vector field is closely related to the notion of an affine connection
on the manifold; cf., for instance, [1] or [113, p. 101ff.]. In fact each affine connection defines a covariant
derivative and vice versa. Furthermore, it is known, that there are infinitely many affine connections
on a manifold [1, p. 94]. One or another of them may distinguish itself with respect to computational
accessibility or some other properties, for instance, the Riemannian/Levi-Civita connection. All in all, there
is some freedom for the choice of a covariant derivative∇ on a manifold. In particular, one has to choose,
since there is none of them given apriori.

28Note, that there is an essential difference between f ξ and ξ f for f ∈ F(M) and ξ ∈ V(M): ( f ξ)(x) = f (x)ξx ∈ TxM is a simple
multiplication, whereas (ξ f )(x) = ξx f = (D f [ξ])(x) ∈ R is the application of a directional derivative.



2.6.2 Abstract view on shape calculus 71

Let M be a (real) manifold. Furthermore, let f ∈ F(M) and let η ∈ V(M). Hence, the covariant
derivative of f applied to the vector field η is

F := D f [η] ∈ F(M)

and it is possible to derive the covariant derivative of F itself by repeated differentiation. By doing so, it
becomes apparent, that the definition of the covariant derivative of a covector field is chosen in such a
way that the expected rules for differentiation are fulfilled. Thus, let ξ ∈ V(M) be another vector and
compute

DF[ξ] = D(D f [η])[ξ] = (∇ξ(D f ))[η] + D f [∇ξη]. (2.80)
This equation can be understood as product rule for the differentiation of the “product” D f [η]. It accounts
for some inherent, general properties of derivatives; cf. [1, p. 95f.]: A directional derivative depends
locally on the object to be differentiated and pointwisely on the direction towards which is differentiated.
Locally means, that the object has to be known in a local neighborhood around the point of evaluation.
In particular, it is not enough if one has information about the vector field η at some point x ∈ M only in
order to compute D(D f [η])[ξ](x), since it is not possible to derive D f [∇ξ η](x) then.

Definition 13 (second covariant derivative):
LetM be a (real) manifold. Then the second covariant derivative ∇2 of a function f ∈ F(M) is defined as

∀η, ξ ∈ V(M) : ∇2 f [ξ, η] := (∇ξ(D f ))[η].

By means of the notion of the second covariant derivative one recognizes that the second directional
derivative D(D f [η])[ξ] of a function f ∈ F(M) decomposes into two parts: the second covariant deriva-
tive and one term which contains the (first order) covariant derivative.
Herewith, the second intermediate goal of the notion of a second order derivative is reached. However,
the terms shape gradient and shape Hessian are frequently used in the context of shape calculus. Thus, it is
worthwhile to introduce the notions of (Riemannian) gradient and (Riemannian) Hessian in the calculus on
(Riemannian) manifolds in a third intermediate step.

Definition 14 (Riemannian metric, Riemannian manifold):
Let M be a (real) manifold and let all tangent spaces TxM be Hilbert spaces with an inner product
(symmetric positive definite)

gx(., .) = 〈. , .〉x : TxM× TxM→ R.
Then

1. the mapping g : x 7→ gx is called a Riemannian metric onM, if for all vector fields ξ, ζ ∈ V(M) the
map

M→ R, x 7→ 〈ξx , ζx〉x
is smooth,

2. a pair (M, g) of a manifold and a Riemannian metric is called a Riemannian manifold.

Definition 15 (gradient, Hessian):
Let (M, g) be a Riemannian manifold and let f ∈ F(M) be a smooth function.

1. The gradient grad f of f (with respect to the metric g) is the Riesz representative of the covariant
derivative D f . In other words, it is defined as the unique vector field that fulfills

∀x ∈ M, ∀ξ ∈ V(M) :
〈
(grad f )(x) , ξx

〉
x = (D f [ξ])(x)

2. Let∇ be an affine connection onM. Then the Hessian Hess f of f (with respect to the metric g and the
affine connection ∇) is the mapping

Hess f : V(M)→ V(M), ξ 7→ ∇ξ grad f .

This is the linear operator induced by the second covariant derivative

∀ξ, η ∈ V(M) :
〈
(Hess f )[ξ] , η

〉
=
〈
∇ξ grad f , η

〉
= ∇2 f [ξ, η].
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By means of gradient and Hessian the second directional derivative (2.80) can be expressed as follows

D(D f [η])[ξ] = ∇2 f [ξ, η] + D f [∇ξη] =
〈
(Hess f )[ξ] , η

〉
+
〈
grad f , ∇ξη

〉
.

The last intermediate step is concerned with vector bundles, see for example [83, Def. 10.2.2] or [113,
Chp. III §1]. Vector bundles are a generalization of tangent bundles and help to understand the idea
of function space parametrization in shape calculus and of shape dependent functions in general. The
definition is given for the finite dimensional case in order to hide some technical overhead, although it is
used in the infinite dimensional setting later on.

Definition 16 (vector bundle):
LetM and E be (real) manifolds and let B be a Banach space.
Then

1. E together with a smooth map π : E → M is called a smooth vector bundle onM if the following
conditions are fulfilled

a) For each x ∈ M, there is an open neighborhood U of x inM and a diffeomorphism

ϕU : π−1(U)→ U × B

commuting with the projection on U, prU : U × B → U, (x, v) 7→ x. That is, the following
diagram is commutative

π−1(U) U × B

U

ϕU

π prU

and in particular, by means of the projection prB : U × B → B, (x, v) 7→ v, one obtains an
isomorphism for each x ∈ U

ϕx
U := prB ◦ϕU |π−1(x) : π−1(x)→ B.

b) For each x ∈ M the set π−1(x) carries the structure of a Banachable space (i. e. a complete
topological space whose topology can be defined by a norm) and the maps

ϕx
U : π−1(x)→ B

are linear and continuous.
2. The spaces E and B are called total space and base space of the vector bundle, respectively.
3. The sets Bx := π−1(x) are called fibers of the bundle.
4. The prototype Banach space B is often called standard fiber of the bundle.
5. The maps ϕU are called trivializing maps of the vector bundle.
6. A vector bundle E is called trivial, if it is isomorphic toM× B. (Note, that a vector bundle is always

trivial on U, i. e. a vector bundle is always locally trivial.)

Remark:
LetM be a manifold and TM its tangent bundle. Then TM is a vector bundle onM together with the
natural projection π : TM→M, TxM 3 ξx 7→ x.

The tight review of various notions known from the theory of manifolds is finished here. Following the
approach of Delfour and Zolésio in [44, Chp. 9] one finds the following similarities among shape calculus
and the differential calculus on manifolds, which is already slightly indicated in [42]:

1. The metric spaceH(Ω) plays the role of an infinite dimensional manifold; cf. the 11th and the 13th
item of the discussion on page 67.

2. Transformations f := F − Id ∈ Θ0 and velocity fields V ∈ V define paths in H(Ω) by means of
transformation- and flow approach, respectively (see page 92). Let F ∈ H(Ω), let f ∈ Θ0 and let
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V ∈ V then there exists an interval I ⊂ R containing 0 such that one gets paths (straight lines and
integral curves, cf. the 5th item) through F

I → H(Ω), t 7→ Tt( f ) := F + t f

I → H(Ω), t 7→ Tt(V) := x(t, .), the solution of
d
dt

x(t, X) = V(x(t, X)), x(0, X) := F(X), X ∈ Ω.

Consequently, f and V define tangent vectors f = ∂t(Tt( f ))|t=0 and V = ∂t(Tt(V))|t=0.

However, the spaces Θ0 (see (2.79)) and V (see (2.47)) are not the same. In particular, Θ0 ⊂ V since
each f ∈ Θ0 fulfills f · n ≡ 0 on Γ but not every V ∈ V is such that V|Γ = 0. Hence, following
Definition 8, the two approaches seem to induce different tangent spaces to H(Ω). Several facts
should be noted in this respect:

• The difference between Θ0 and V is concentrated in a neighborhood of the boundary Γ, i. e.

∀K ⊂⊂ Ω, V ∈ V ∃ f ∈ Θ0 : V|K ≡ f |K.

• As already discussed in the 8th and the 12th item on page 67f. one actually is interested in opti-
mization within the setO(A) or at least X (A) ∼= H(Ω)/K(A). By means of the consequential
fact that shape calculus is “set sensitive” only but not “pointwise sensitive”29 (cf. the 4th item
of the above mentioned discussion) and by means of the requirement that the distance be-
tween the boundary of the active set B ∈ O and the boundary of the holdall Ω is positive
dist(γ, Γ) ≥ δ > 0 (cf. Assumption 1, and the proof of Lemma 4), one can deduce that the
constitution of the transformation near Γ does not influence any result. Consequently, one
should expect no disagreement when applying transformations f ∈ Θ0 instead of velocity
fields V ∈ V .

• These considerations find expression in two important results of shape calculus. For one thing
the method of perturbation of identity (which corresponds to the usage of f ∈ Θ0) and the velocity
method yield the same shape derivatives [44, Chp. 9 Thm. 3.1] and for another thing the relevant
part of the shape derivative is concentrated on the perturbed interface [44, Chp. 9 Thm. 3.6,
Cor. 3.1].

• Nonetheless, it should be emphasized that the two approaches are not equivalent in general
and that only the velocity method is straight forward applicable in presence of a constraining
holdall (see [44, Chp. 9 Sec. 3.3]). A detailed analysis of the structure of shape derivatives in
the presence of a holdall can be found in [43].

3. The tangent bundle TH(Ω) is trivial sinceH(Ω) is an open submanifold of the affine space Id +Θ0;
cf. the reasoning on page 95. Moreover, it is naturally isomorphic to H(Ω)×Θ0, in the sense, that
one can use the identity as isomorphism.

Thus, many notions concerning manifolds, which have to be distinguished in general denote the
same object in the context of H(Ω), since one rather is in framework of vector spaces than in those
of manifolds. Especially the handling of vector fields and many therefrom deduced notions is
considerably simplified. This finding is amplified by the fact that the manifoldH(Ω) can be covered
by a single chart. Unfortunately, it is not possible to give a complete overview of simplifications
here, and many interesting consequences are left to the reader. He is referred to the extensive
textbook of Lang [113] once again.

4. One outcome of the (natural) triviality of the tangent bundle TH(Ω) = H(Ω) × Θ0 is, that an
f ∈ Θ0 (as well as an V ∈ V) is a tangent vector to all F ∈ H(Ω) simultaneously. In particular, there
is a natural notion of parallel transport (see [108, Chp. II Sec. 3]) of tangent vectors. Two elements
f ∈ TFH(Ω) = Θ0 and g ∈ TGH(Ω) = Θ0 are parallel if and only if f = g ∈ Θ0.

This canonical parallel transport induces a canonical choice for a covariant derivative of vector
fields onH(Ω), cf. the 7th item.

5. Vector fields onH(Ω) in the sense of Definition 8 are smooth maps

H(Ω) 3 F 7→ ξF ∈ TFH(Ω) = Θ0 or respectively H(Ω) 3 F 7→ ξF ∈ V .

29All functions considered in this thesis are dependent on specific sets only (F = F (B), uJ = uJ (J ), σ = σ(β), . . . ) and
are invariant with respect to pointwise reparametrization of the sets. This means the functions fulfill a so called compatibility
condition; cf. [44, p. 202]
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They are not common in shape calculus, but it is usual to work with nonautonomous velocity fields
(these are time-dependent vector fields, cf. [113, Chp. IV §1 and §2]) and their corresponding paths
(these are integral curves, ibidem). A nonautonomous velocity field V ∈ C1([0; τ],V) induces an
integral curve in the manifoldH(Ω) through Id ∈ H(Ω) by means of

T.(V) : [0; τ]→ H(Ω), t 7→ Tt(V) := x(t, .), where
d
dt

x(t, X) = V(t, x(t, X)), x(0, X) := X ∈ Ω.

This finding can be generalized to an integral curve inH(Ω) through arbitrary elements F ∈ H(Ω)
by imposing the initial condition x(0, X) := F(X) for X ∈ Ω, as it was done in the 2nd item.
In contrast, the paths defined via the transformation approach t 7→ F + t f define straight lines in
H(Ω) regarded as subset of the affine space Id + Θ0.

6. There are two different canonical identifications of the tangent bundle of the manifold H(Ω). One
of them is induced by the underlying Banach space Θ0, since H(Ω) is an open subset of the affine
space Id + Θ0. The other one is due to the group structure of H(Ω) with respect to composition.
It will be come apparent in the following (in particular, cf. the 18th item), that the first one gives
the notion of a shape derivative (cf. [151, Sec. 2.30], whereas the second one yields the Eulerian or
material derivative (cf. [151, Sec. 2.11 and 2.25]).
Let ξ ∈ V(H(Ω)) be a vector field. It is a smooth map

ξ : H(Ω)→ TH(Ω), F 7→ ξF ∈ TFH(Ω) = Θ0.

The underlying Banach space structure permits the canonical identification of the tangent bundle.
That is, for arbitrary F ∈ H(Ω) identify TFH(Ω) with the standard fiber TIdH(Ω) = Θ0 by means
of the trivializing map30

ϕId : TH(Ω)→ H(Ω)×Θ0,
which is defined fiber-wise by means of the identity

ϕF
Id : TFH(Ω)→ Θ0, ξF 7→ ξF.

This results in the identification of different tangent spaces by means of the identity

(ϕG
Id)
−1 ◦ ϕF

Id : TFH(Ω)→ TGH(Ω), ξF 7→ (ϕG
Id)
−1 ◦ ϕF

Id(ξF) = Id(ξF) = ξF.

The group structure permits another canonical identification of tangent bundle. That is, for arbi-
trary F ∈ H(Ω) identify TFH(Ω) with the standard fiber TIdH(Ω) = Θ0 by means of the trivializ-
ing map

ϕ◦ : TH(Ω)→ H(Ω)×Θ0,
which is defined fiber-wise by means of the pull-back to Id

ϕF
◦ : TFH(Ω)→ Θ0, ξF 7→ ξF ◦ F.

This results in the identification of different tangent spaces by means of the composition of trans-
formations

(ϕG
◦ )
−1 ◦ ϕF

◦ : TFH(Ω)→ TGH(Ω), ξF 7→ (ϕG
◦ )
−1 ◦ ϕF

◦ (ξF) = ξF ◦ F ◦ G−1.

7. There is a canonical covariant derivative of vector fields onH(Ω) which is induced by the underly-
ing Banach space Θ0, since H(Ω) is an open subset of the affine space Id + Θ0. Let ξ, η ∈ V(H(Ω)
be two vector fields. They are smooth maps ξ, η : H(Ω) → TH(Ω), F 7→ ξF, ηF ∈ TFH(Ω) = Θ0.
By means of the (global) chart φ : H(Ω) → Θ0, F 7→ φ(F) := F − Id, the vector fields can be
uniquely identified with smooth vector fields on (a subset of) the Banach space Θ0:

φ∗ : V(H(Ω))→ V(Θ0), ξ 7→ φ∗(ξ),

where for f ∈ H(Ω)− Id = φ(H(Ω)) ⊂ Θ0

(φ∗(ξ)) f := ϕ
φ−1( f )
Id (ξφ−1( f )) = ξId+ f .

The following commutative diagram illustrates the situation.
30Note, that in defiance of the notation of Definition 16 the subscript of the trivializing map does not indicate the local chart here,

but the connection to the identity in order to distinguish it from the trivializing map to be introduced below.
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TH(Ω) H(Ω)

H(Ω)×Θ0

TΘ0 = Θ0 ×Θ0 φ(H(Ω)) ⊂ Θ0

ξ

ϕId

φ× Id

φ∗(ξ)

φ = .− Id

A canonical choice for a covariant derivative of ξ with respect to direction η at F is then given by the
directional derivative of the projection φ∗(ξ) with respect to ηF at the projected point φ(F) = F− Id.
In order to mark that this choice it related to the trivializing map ϕId of 6th item, the covariant
derivatives gets the superscript Id

∇Id
η ξ : H(Ω)→ TH(Ω), F 7→ (∇Id

η ξ)F ∈ TFH(Ω),

where for F = Id + f ∈ H(Ω)

(∇Id
η ξ)F := lim

t→0

(φ∗(ξ)) f+t(φ∗(η)) f
− (φ∗(ξ)) f

t
= lim

t→0

ξF+tηF − ξF

t
.

Consequently, the definition of the covariant derivative corresponds to the usual directional deriva-
tive in the Banach space Θ0. It is important here, that F + tηF = (Id + tηF ◦ F−1) ◦ F is an element
ofH(Ω) for sufficiently small t ≥ 0. Fortunately this is true, cf. the 3rd item on page 66.

8. In order to see the relation of the covariant derivative from the 7th item to the derivative of nonau-
tonomous velocity fields (cf. [44, Chp. 9 Sec. 6.3]), let α : I ⊂ R → H(Ω) be an integral curve to η
through F. That is to say,

∀t ∈ I : α̇(t) = ηα(t) and α(0) = F (in particular 0 ∈ I).

(α̇ : I → TH(Ω) is called canonical lifting of α (see [114, Chp. IV §3]).) This defines a nonautonomous
velocity field (cf. [113, Chp. IV §2])

W : I ×Ω→ R2, (t, x) 7→W(t, x) := ηα(t)(x).

In particular, there holds

∀t ∈ I : W(t, .) ∈ Tα(t)H(Ω)

∀X ∈ Ω, ∀t ∈ I : α̇(t)(X) = W(t, α(t)(X)), α(0)(X) = F(X).

The second vector field ξ defines a nonautonomous velocity field V (lifting) along α

∀x ∈ Ω, ∀t ∈ I : V(t, x) := ξα(t)(x).

Now one recognizes, that there holds31

(∇Id
η ξ)F(x) = lim

t→0

ξF+tηF (x)− ξF(x)
t

= lim
t→0

ξα(t)(x)− ξα(0)(x)
t

= lim
t→0

V(t, x)−V(0, x)
t

=
∂

∂t
V(t, x)

∣∣∣
t=0

= V′(0, x).

31A detailed analysis for the justification for the transition from Gateaux to Hadamard semiderivatives is left open here and the
reader is referred to [44, Chp. 9 Sec. 3.1 and 3.3].
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In other words, the derivative is given by

(∇Id
η ξ)F =

d
dt

ξα
Id(t)

∣∣∣
t=0

,

where ξα
Id is the by means of ϕId to the standard fiber Θ0 transported lifting ξα

ξα
Id : I → Θ0, t 7→ ϕ

α(t)
Id (ξα(t)) = ξα(t).

I ⊂ R H(Ω) TH(Ω)

H(Ω)×Θ0

α ξ

ϕId

ξα

ξα
Id

9. The construction of the 8th item can be repeated with use of the trivializing map ϕ◦ from the 6th
item instead of ϕId . The transport of the lifting ξα to the standard fiber Θ0 now reads

I ⊂ R H(Ω) TH(Ω)

H(Ω)×Θ0

α ξ

ϕ◦

ξα

ξα
◦

ξα
◦ : I → Θ0, t 7→ ϕ

α(t)
◦ (ξα(t)) = ξα(t) ◦ α(t).

This gives rise to a second canonical covariant derivative

(∇◦η ξ)F(x) :=
d
dt

ξα
◦(t)

∣∣∣
t=0

=
d
dt

ξα(t)
(
α(t)(X)

)∣∣∣
t=0

=
d
dt

V
(
t, α(t)(X)

)∣∣∣
t=0

=
∂

∂t
V
(
t, α(t)(X)

)∣∣∣
t=0

+ DxV
(
t, α(t)(X)

)
α̇(t)(X)

∣∣∣
t=0

= V′
(
0, α(0)(X)

)
+ DxV

(
0, α(0)(X)

)
W
(
0, α(0)(X)

)
= V′(0, x) + DxV(0, x)W(0, x)

= (∇Id
η ξ)F(x) + DxξF(x) ηF(x).

As it becomes apparent during the course of the 18th item, the approach via ϕ◦ is more general,
since covariant derivatives in more general vector bundles on H(Ω) can be constructed that way.
Nonetheless, the covariant derivative ∇Id is useful in order to understand the differences between
material and shape derivatives, from the perspective of calculus on the manifoldH(Ω).

10. To the best of the author’s knowledge, the usual shape calculus avoids the introduction of a co-
variant derivative of vector fields and consequently of covector fields, too. One confines oneself
with the computation of first and second order directional derivatives of shape functionals. This
approach is general enough to be able to extract the essence of shape calculus in terms of differential
calculus on manifolds at least up to second order derivatives. In other words, one recognizes that
these objects possess some intrinsic structure afterwards.

11. The notion of the Hadamard semiderivative [44, Chp. 9 Rem. 2.1] corresponds to the notion of the
directional derivative from Definition 8.
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12. In contrast, the directional derivative which corresponds to the method of perturbation of identity,
is a Gateaux derivative [44, Chp. 9 Def. 2.1(i)]. Moreover, the transformation approach is essentially
based on the fact, that the manifold H(Ω) is embedded to the affine space Id + Θ0.32 Hence, it is
possible (by means of the notation of the Remark on page 63 and of Lemma 13) to define

FB : B1(0) ⊂ Θ0 → R, f 7→ FB ( f ) := F ([Id + f ]B (B)) = F (B[Id+ f ])

for each B ∈ O. In other words, it is possible to locally transform the shape functional F defined
on the manifold X (B) ⊂ O into a functional FB defined on the Banach space Θ0. This notation is
also used by Delfour and Zolésio; cf. [44, Chp. 9 Sec. 3.3].
However, it is important to notice that this kind of notation is not perfectly adapted to the situation
of shape calculus, where the considered objects usually are set dependent only. The shape func-
tional F is defined on O or at least on a the subset X (B) (for an arbitrarily chosen B ∈ O), but
the local definition of FB is based on a subset of Θ0 which corresponds to H(Ω). In particular, all
f ∈ [F]B − Id := {G − Id ∈ Θ |G ∈ [F]B} yield the same set B[F] ∈ X (B) ⊂ O and hence they
evaluate F at the same point (i. e. set B[F]).
A remedy would be to transport the equivalence classes [F]B ⊂ H(Ω) down to the Banach space Θ0
– that is to define the quotient of Θ0 and the equivalence relation induced by the classes [F]B − Id.
But the equivalence classes are no (affine) linear subspaces and consequently the quotient is no
linear space. Hence, this reasoning contradicts the original goal of transporting shape calculus into
a Banach space.
This aim can only be achieved by the introduction of a retraction (cf. Definition 20) or charts on the
manifold X (B). However, this topic goes beyond the scope of this thesis.

13. The notion of shape derivative of a real-valued shape functional corresponds to the notion of a deriva-
tion on the manifold X (B) and the mapping “set 7→ shape derivative” corresponds to a covariant
derivative. Hence, in the particular context of the shape functional F , the mapping

X (A)→ T∗X (A), B 7→ (DF )(B)[.] ∈ T∗BX (A)
is the covariant derivative (see (2.38a)), where (cf. Lemma 10 and Theorem 7)

(DF )(B)[V · nJ ] = −
1

2λ

∫
β
( p̄J − pmax

min )
2V · nJ , V · nJ ∈ TBX (A). (2.81)

This point of view clarifies the notion of the shape semiderivative used in the sections above

dF (B; V) = (DF )(B)[V · nJ ].
It is a bit of inconvenient that the notation dF (B; V) mixes elements of different manifolds (also
cf. the 12th item): on the one hand dF (B; .) says, that shape derivatives are studied and therefore
suggests that only set sensitive (and not pointwisely sensitive) operations are considered (which is
the regime of X (B) and H(Ω)/K(B)), and on the other hand the usage of V ∈ V corresponds to
pointwise vector fields and transformations (which is the regime ofH(Ω)).
It should be noted, that working with H(Ω) seems to be inevitable, when the feasible shapes do
not have as pretty properties as those contained in O. The subgroup K(A) may be singleton {Id}
in this case.

14. An obvious drawback when working with the manifold X (A) is the fact that the (expected; see the
12th item on page 67) tangent bundle

TX (A) = {V · nB |V ∈ V , nB is the outer unit normal vector field of B ∈ X (A)}
is not trivial. Thus, it may be more convenient to stay in the context ofH(Ω) and mind that all con-
sidered functions are constant with respect to the submanifoldK(A). This seems to be the common
approach in shape calculus. It entails the disadvantage that extra structure which is induced by the
constancy with respect to K(A) has to be recovered in each assertion. The structure theorems for
first and second order shape derivatives [44, Chp. 9 Thm. 3.6, Cor. 3.1 and Thm. 6.3] represent this
finding.

15. The framework of the manifold X (A) and of shape calculus is based on the Banach space Θ0.
The choice Θ0 = { f ∈ C1,1(R

2, R2) | f |Ωc ≡ 0} is no Hilbert space and hence X (A) cannot be a
32According to the result of Henderson [79] every (separable) Banach manifold can be embedded into a lager Banach space and

thus the considered imbedding is not surprising.
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Riemannian manifold in sense of Definition 14. Consequently, the notion of a gradient (cf. Defini-
tion 15) should actually not be used in shape optimization. Nonetheless, there is some justification
for the usage of this term in the sense of Lemma 10 and the associated Remark. As already ad-
dressed in the 6th item on page 66 it is possible to repeat the construction of the manifold based
on the space D(R2). By doing so, one obtains the same term (2.81) for the covariant derivative of
the shape functional F . The covariant derivative (DF [.])(B) evaluated at set B is an element of
T∗BH(Ω) = Θ∗0 = D′(Ω, R2) then. This is a distribution and its support is concentrated on the in-
terface β. Moreover, there is a regular representative − 1

2λ ( p̄J − pmax
min )

2 ∈ L1(β) of the distribution,
which is called the (shape) gradient here. All in all, the so-defined shape gradient fulfills∫

β
∇F (B)V · nJ = (DF )(B)[V · nJ ].

16. The idea of function space parametrization, see [44, p. 565], which enables the comparison of two func-
tion spaces B(A) and B(B) defined on different setsA, B ∈ O can be formalized as parallel transport
(cf. [109, Chp. III Thm. 9.8]) in a vector bundle (see Definition 16) onH(Ω) in the following way:

Let A ∈ O and let F ∈ H(Ω), then there is F(A) ∈ X (A) ⊂ O (A does not have to be the optimal
active set here, but the letter is used instead of B, since B and B look quite similar). Moreover, let
S ⊂ Ω and let B(S) be a Banach space on the set S . One may think of B(S) ∈ {L2(S), H1(S)},
where S ∈ {Ω, Å, I , γ} for instance. Then the set

E(B,S) := {B(F) := B(F(S)) | F ∈ H(Ω)}
can be given the structure of a vector bundle to the base space H(Ω) (cf. [113, Chp. III §1]): The
manifoldH(Ω) can be covered by a single chart, since it is an open subset of Id + Θ0, which makes
it all the way easier. Let

π : E(B,S)→ H(Ω), B(F) 7→ F
and define the trivializing map (cf. the trivializing map ϕ◦ from the 6th item)

ϕH(Ω) : π−1(H(Ω))→ H(Ω)× B(S), B(F) 3 vF 7→ (F, vF ◦ F),

Here B(S) is the standard fiber. By this means all requirements for Definition 16 can be fulfilled, if
the regularity of the transformations F ∈ H(Ω) is suitable. Indeed, the regularity of F is a limiting
factor, since the composed function vF ◦ F used in the trivializing map can only be as regular as F
is. When F is C1,1, one cannot expect for instance that it is possible to identify H3(B = F(A)) with
H3(A) by means of the proposed idea.

Consequently, if the Banach spaces B(S) and Θ0 fit together, the space B(G) is linearly isomorphic
to the space B(F) (where F, G ∈ H(Ω)) by means of

ϕ−1
G ◦ ϕF : B(F)→ B(G), vF 7→ vF ◦ F ◦ G−1. (2.82)

17. Here one recognizes once again, that Θ0 has a fundamental impact on structure of X (A) and that
it has to be chosen carefully. The more regularity is induced via the choice of a small function space
Θ, the more structures (as e. g. vector bundles) can be build upon the manifold X (A). However,
such a choice is accompanied with a possible shrink of X (A), which are the orbits of the group
operation on the family of feasible sets O and hence O might decompose into even more separate
components, cf. the 5th item on page 66. All in all, one has to balance different requirements:

• Requirements on the choice of a class of feasible sets O.

• Requirements on the regularity of functions/solutions related to boundary value problems
posed on sets which are elements of O.

• Requirements from shape calculus in order to be able to construct vector bundles of function
spaces.

18. Now let α : [0; τ]→ H(Ω) be a differentiable curve onH(Ω). Then the above construction induces
a parallel translation along α (cf. [1, p. 104])

Ps←t
α = ϕ−1

α(s) ◦ ϕα(t) : B(α(t))→ B(α(s)), vα(t) 7→ vα(t) ◦ α(t) ◦ α(s)−1, for all s, t ∈ [0; τ].

This parallel translation induces a covariant derivative (an affine connection, respectively) in the
vector bundle E(B,S); cf. [1, Sec. 8.1.1]. Figure 2.11 illustrates the whole setting for convenience.
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α(0)

α(τ)

B(α(0))

B(α(τ))

H(Ω)

vα(0)

vα(t) vα(τ)

vα(t)

P0←t
α

∂
∂t vα(t)

Figure 2.11: Illustration of a vector bundle E(B,S), the parallel translation P0←t
α and the

derivative of the section v.

Let v be a section of E(B,S), this is a differentiable assignment v : H(Ω) → E(B,S), F 7→ v(F) ∈
B(F); cf. [109, Chp. I Def. 3.1]. Then

vα : [0; τ]→ E(B,S), t 7→ vα(t) := vα(t) ∈ B(α(t))

is a section of E(B,S) over α. By means of the parallel translation along α this section can be
transported to the fiber above the starting point α(0)

vα : [0; τ]→ B(α(0)), t 7→ vα(t) := P0←t
α (vα(t)) = vα(t) ◦ α(t) = vα(t) ◦ α(t).33

It is possible to derive the total time derivative of vα then

d
dt

vα(t) =
d
dt

(vα(t) ◦ α(t))

=

(
∂

∂t
vα(t)

)
◦ α(t) + (Dx(vα(t)) ◦ α(t)) α̇(t),

where Dxvα(t) is the derivative of vα(t) ∈ B(α(t)) with respect to the spacial variable x in α(t)(S) ⊂
Ω ⊂ R2. This reasoning can be regarded as a definition for a covariant derivative of the section v
with respect to the vector field ξ (cf. item 9)

(∇ξ v)F :=
∂

∂t
vα(t)

∣∣∣
t=0

+
(
Dx(vα(t)) ◦ α(t)

)
α̇(t)

∣∣∣
t=0

, where F = α(0) and ξF = α̇(0) ∈ TFH(Ω).

In order to understand this object in terms of shape calculus, let α be the integral curve of a nonau-
tonomous velocity field V ∈ C1([0; τ],V). Then the following relations between the different per-
spectives hold true

∀X ∈ Ω, ∀t ∈ [0; τ] : α(t)(X) = Tt(V)(X), cf. item 5,
α(0)(X) = T0(V)(X) = F(X) = x,
St := Tt(V)(S),
vt := vα(t) ∈ B(St),

vt := vt ◦ Tt(V) = vα(t) ∈ B(S).
33Note that vα(t) = vα(t) ◦ α(t) must not be confused with v ◦ α(t) ◦ α(t). In order to see this, it is necessary to understand, that

the section v depends on both the footpoint F ∈ H(Ω) and the variable x ∈ F(S). In other words, v = v(F, x) and in particular
vα(t)(x) = v(α(t), x). Consequently, there is vα(t)(X) = v(α(t), α(t)(X)), where x = α(t)(X) ∈ α(t)(S) and X ∈ S .
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Moreover, one has

(∇Vv)F(x) =
d
dt

vt(x)
∣∣∣
t=0

=
d
dt
(
vt ◦ Tt(V)(X)

)∣∣∣
t=0

=

(
∂

∂t
vt

)
◦ Tt(V)(X)

∣∣∣
t=0

+
(
(Dxvt) ◦ Tt(V)(X)

) d
dt

Tt(V)(X)
∣∣∣
t=0

=
∂

∂t
vt(x)

∣∣∣
t=0

+
(
Dxv0(x)

)
V(0, x)

In particular, with the common notation (cf. for instance [151, Eq. (2.106)])

(∇Vv)F(x) = v′0[V(0)] + Dv0V(0).

All in all, the covariant derivative in direction V ∼= ξ corresponds to the material derivative of shape
calculus and the partial time derivative (which can be seen as a second type of covariant derivative,
cf. item 8th) is the shape derivative.

19. It is beyond the scope of this thesis to carry the considerations made in the 16th and 18th item over
to the quotient manifold X (A), though this is an interesting and important task in order to get a
complete overview of shape calculus from the perspective of calculus on manifolds.

Some explaining remarks seem to be indicated. Specialize to the choice S ∈ {Ω,A, I , γ} for the
following considerations. The approach via the vector bundle E(B,S) has the drawback that two
fibers B(F) and B(G) can denote the “same” Banach space, although F 6= G in the following sense:
Let [F]A = [G]A , then F(S) = G(S) and consequently both B(F) and B(G) represent the space
B(F(S)). The situation is similar to (nonlinear) change of coordinates. This drawback can be over-
come when regarding the corresponding vector bundle on the quotient manifoldH(Ω)/K(A)

Ẽ(B,S) = {B([F]A) := B([F]A(S)) | [F]A ∈ H(Ω)/K(A)}.
However it not directly possible to carry over the idea of the linear isomorphisms (2.82), since the
mapping

v 7→ v ◦ F
requires a pointwise interpretation of F, which is not given when trying to work with

v 7→ v ◦ [F]A .

Hence, basically the necessary construction needed here should be similar to one of the horizontal
subbundle on page 93f.

20. Delfour and Zolésio show in a detailed analysis of the second order shape semiderivative of shape
functionals that this object has a rich inherent structure, [44, Chp. 9 Sec. 6], [41, 42]. It is valuable to
regard some of their results from the perspective of calculus on manifolds.

To this, letM be a set of feasible shapes, let J : M → R be a differentiable shape functional and
let V, W be two suitable nonautonomous velocity fields. They prove (cf. [44, Chp. 9 Thm. 6.5(iii)]),
that the second order shape semiderivative decomposes into two distinct parts:

d
(
dJ(M; V); W

)
= ∇2 J(M)[V(0), W(0)] + dJ

(
M; V′(0) + DV(0)W(0)

)
. (2.83)

This result is nothing but the decomposition already obtained in (2.80): the first term corresponds
to the second covariant derivative of J and the second one fits as well since V′(0) + DV(0)W(0) is
the covariant derivative of the vector field V with respect to W evaluated at t = 0; cf. the 9th item.

At this point it becomes apparent, why the second order shape semiderivative for autonomous and
nonautonomous velocity fields differ. It has been explained in the paragraph below of (2.80), that
the computation of the second directional derivative of a function on a manifold requires informa-
tion about the vector field η in a neighborhood of the evaluation point, since one has to compute
its covariant derivative. Hence, that is why the V′(0) term appears in (2.83) and which requires a
nonautonomous velocity field.

The second shape semiderivative of the reduced shape functional F defined in (2.38a) can be ex-
pressed in a different fashion than those of Lemma 11. It is worthwhile to analyze this formula,
since it is possible to extract the second covariant derivative from it. With use of the oriented dis-
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tance function b = bB (defined in (2.66) on page 54) and by means of [44, Chp. 9 Eq. (6.21)] there
holds for two nonautonomous velocity fields V and W

d2F (B; V, W)

= − 1
2λ

∫
β

(
( p̄J − pmax

min )
2
)′

[W(0)]V(0) · nJ

− 1
2λ

∫
β

(
∂
J
n

(
( p̄J − pmax

min )
2
)
+ κJ ( p̄J − pmax

min )
2
)

V(0) · nJW(0) · nJ

+( p̄J − pmax
min )

2
(
(D2b V(0)) ·W(0)−V(0) · ∇βV(0) · nJ −W(0) · ∇βW(0) · nJ

)
− 1

2λ

∫
β
( p̄J − pmax

min )
2(V′(0) + DV(0)W(0)) · nJ

= − 1
2λ

∫
β

2( p̄J − pmax
min )p′J [W(0)]V(0) · nJ

− 1
2λ

∫
β
( p̄J − pmax

min )
(

2∂
J
n ( p̄J − pmax

min ) + κJ ( p̄J − pmax
min )

)
V(0) · nJW(0) · nJ

+( p̄J − pmax
min )

2
(
(D2b V(0)) ·W(0)−V(0) · ∇βV(0) · nJ −W(0) · ∇βW(0) · nJ

)
− 1

2λ

∫
β
( p̄J − pmax

min )
2 (V′(0) + DV(0)W(0)

)
· nJ

If V(0) and W(0) have no tangential component on β, that is to say V(0)|β = V(0) · nJ nJ and
W(0)|β = W(0) · nJ nJ the formula simplifies, since D2b nB = D2b∇b = 0 and since nJ⊥∇β(.)

d2F (B; V, W)

= − 1
2λ

∫
β

2( p̄J − pmax
min )p′J [W(0)]V(0) · nJ

− 1
2λ

∫
β
( p̄J − pmax

min )
(

2∂
J
n ( p̄J − pmax

min ) + κJ ( p̄J − pmax
min )

)
V(0) · nJW(0) · nJ

− 1
2λ

∫
β
( p̄J − pmax

min )
2 (V′(0) + DV(0)W(0)

)
· nJ (2.84)

In view of the result of the 9th item and (2.83) the second covariant derivative of the reduced func-
tional F reads

∇2F (B)[V, W]

= − 1
2λ

∫
β

2( p̄J − pmax
min )p′J [W(0)]V(0) · nJ

− 1
2λ

∫
β
( p̄J − pmax

min )
(

2∂
J
n ( p̄J − pmax

min ) + κJ ( p̄J − pmax
min )

)
V(0) · nJW(0) · nJ . (2.85)

This second covariant derivative plays an essential role when solving the original model prob-
lem (2.1) numerically; cf. sections 3.2 and 3.4.

21. In practice one typically knows the velocity fields V(0), W(0) only on the boundary and they are
parallel to the normal vector field nJ ; cf. Chapter 3 and in particular the 9th item of the discussion
of Algorithm 1 on page 111. Thus, one has to introduce some artificial extension into the bulk of the
domain in order to derive (DV(0)W(0)) · nJ . A nearby idea to obtain such an extension is based
on the distance projection onto the boundary; cf. [44, Chp. 6 Def. 3.1] and Figure 2.12. Thereto, let
dβ be the distance function of the boundary β = ∂B, which was defined in (2.65) and let x ∈ R2 be
arbitrary but fix. Then the distance projection pβ of x is

pβ(x) :=

{
y, iff {y ∈ β | |y− x| = dβ(x)} is a singleton
not defined otherwise.

Due to [44, Chp. 7 Thm. 8.3] the distance projection pβ is well-defined in a sufficiently small tubular
neighborhood of β and is of class C0,1 there.
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x1

pβ(x1)
x2

pβ(x2)

x3 β = ∂B

no projection possible

Figure 2.12: Illustration the projection pβ onto the boundary β := ∂B.

Now let V(0)|β = v nJ and define its extension

V(0) = (v ◦ p)∇b.

Then there holds

(DV(0)W(0)) · nJ =
(

D
(
(v ◦ p)∇b

)
W(0)

)
· ∇b

∣∣∣β
=
((

(Dv) ◦ p Dp∇b︸ ︷︷ ︸
=0

+(v ◦ p)D2b
)

W(0)
)
· ∇b

∣∣∣β
= (v ◦ p)W(0) ·

(
D2b∇b︸ ︷︷ ︸

=0

)∣∣
β

= 0.

Consequently, if the velocity field is autonomous, the last integral term of (2.84) vanishes and the
second shape semiderivative coincides with the second covariant derivative (2.85). This reason-
ing excuses the use of second order shape semiderivatives in numerical calculations, although the
second order covariant derivative should be used actually; cf. Section 3.2.

All in all the conclusion of the comparison of differential calculus on manifolds and shape calculus is
threefold

1. Shape calculus embeds into the more general differential calculus on manifolds
2. the comparison enables valuable insight in the structure of shape calculus
3. the comparison presented here is far from complete. In particular, at least two urgent question

remain unanswered
a) How does a suitable atlas of X (A) andH(Ω)/K(A) look like?
b) How can shape derivatives and function space parametrization be expressed by means of

intrinsic notions of X (A)?

2.6.3 Abstract view on set optimal control problems

By means of the preceding discussion, it is possible to embed shape optimization and set optimal control
problems into the general framework of optimization on vector bundles.
The most common situation in shape optimization is illustrated Figure 2.13 on the left hand side. One has
to minimize a functional J : E→ R, where E is a vector bundle on a manifoldM, and whereM collects a
suitable class of shapes. Moreover, there are explicit constraints on the admissibility of the shapes, which
is reflected by a set U ⊂ M. One may think of volume constraints for instance. Typically, one has to
fulfill an additional constraint like a boundary value problem. This constraint is modeled by a function
f :M→ E, which associates an element f (x) ∈ Ex with each set x ∈ M. The particular situation enables
the introduction of a reduced shape functional F :M→ R, x 7→ J(x, f (x)).
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A more general situation is illustrated on the right hand side of Figure 2.13. It is not possible to introduce
a reduced shape functional here, due to the lack of a function f : M → E. In this context, it is assumed
that some fiber-wise constraints have to be fulfilled. That is to say, only those elements fx of the fiber Ex
for x ∈ U are feasible, which fulfill ax ≤ fx ≤ bx. In particular, this optimization problem does not fit
into the abstract framework of optimal control, since there is no distinction between “free” controls and
“dependent” states.

Ey

y

U

M

graph f

f (U)

E

Ex

x

M

U

y

x

Ey

E

Ex

a ≤ f ≤ b

Figure 2.13: Illustration of two prototypic optimization problems on a vector bundle E: A typical shape
optimization problem with state equation (left) and an optimization problem that is no op-
timal control problem (right).

With these deliberations at hand it is possible to class the set optimal control problem (2.30) within the
abstract framework, see Figure 2.14. The objective J (see (2.30a)) is defined on the vector bundle

E = E(L2
J , L2

B , H1
J ∆, H1

B∆) (2.86)

over the manifoldlike object O. For B ∈ O the fiber EB of the vector bundle is given by L2(J )× L2(B̊)×
H1(J , ∆)× H1(B̊, ∆). With respect to the shape optimization perspective it is allowed to confine oneself
with the manifold X (A) instead of coping with the more complex setO. The split state equation (2.30h)–
(2.30l) and the BDD reformulation (2.30e)–(2.30f) of the state constraints define a subset in each fiber,
namely the graph of the control-to-state operator (uJ , uB ) 7→ (yJ , ymax

min ). In each fiber there is a unique
point on the graph singled out by means of Theorem 3, which gives rise to the geometry-to-solution
operator G (cf. Definition 6). This operator plays the role of a boundary value constraint in “common”
shape optimization. Additionally, one has to fulfill the strict inequality constraint (2.30g), which defines
a subset of the vector bundle in the fashion of the second prototypic situation presented above. The inter-
section of this subset and the graph of the geometry-to-solution operator implicitly defines the feasible
set of shapes of the optimal control problem.

2.7 Remarks on optimal control and PDAE

This section is devoted to the analysis of the first order necessary conditions from the perspective of
partial differential-algebraic equations (PDAE). This point of view reveals a fundamental idea behind the
Bryson-Denham-Dreyfus approach: the reduction of the differentiation index.
Optimal control problems typically possess a relevant part of conditions which can be seen as PDAE-
system. The dynamics of the process to be controlled are modeled by differential equations and they are
typically accompanied by a set of algebraic constraints; state and control constraints, coupling equations,
etc. Furthermore, first order necessary conditions are (P)DAE-systems or at least are composed of a
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X (A)

graphG
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ymin
< yJ

< ymax

graphG ∩ (ymin < ȳJ < ymax)
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B

Figure 2.14: Illustration of the set optimal control problem in the vector bundle E and the implicitly
defined subset of those elements of X (A) at which the strict inequality constraint ymin <
ȳJ < ymax is fulfilled.

(P)DAE-system and additional conditions. Hence, the theory of (P)DAE-systems has natural value when
analyzing optimal control problems.
The essential benefit of the BDD approach in OC-ODE and the associated determination of the order
(index) of the state constraint is twofold:34

• the approach turned out to be superior in view of its numerical realization, cf. [20, 21, 75]
• the index (i. e. the order) of the state constraint enables some prediction of possible active sets;

see [73, 141, 75].35

Since the analysis of the BDD approach in the context of optimal control of PDEs within this thesis is very
far from complete, such kind of assertions are not available there yet. Moreover, especially the question
of apriori knowledge of certain properties of the active set is much more complex in OC-PDE, since a
classification of the possible active sets (points, curves, . . . ) is considerably more sophisticated than in
the regime of ODEs, since there is no canonical choice yet. It is even necessary to develop suitable notions
of indices/orders of the state constraint.
This should be regarded with respect to the development in the field of (P)DAEs. The field of (ordinary)
DAE has been investigated intensively during the last three decades and comes up with considerably
insight, whereas the topic of PDAE has gained more and more attention in the last 15 years and its theory
is far from complete.

2.7.1 Remarks on DAE

A short survey on DAEs can be found in [65] and in-depth introductions are due to Brenan et al. [16] and
to Griepentrog and März [66]. A substantial overview on the numerical solution of DAEs can be found
in the book of Hairer et al. [71, 72].
One central notion within the treatment of DAEs it the index, which comes in various variants: differenti-
ation index, perturbation index, strangeness index, etc. The index plays a crucial role in both the theoretical
and numerical treatment of DAEs. The concept of the differential index is presented briefly in the follow-
ing and equipped with some remarks on its implications.

34A definition of the order of a state constraint can be found in [75, p. 183] or [122].
35In particular, if the order of a state constraint is odd, the active set consists of contact points only. In contrast, when it is even the

active set can also be composed of intervals (boundary arcs).
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Firstly define a DAE as an everywhere singular implicit ordinary differential equation; see [65]:

Definition 17 ((Ordinary) differential-algebraic equation (DAE)):
Let I ⊂ R be an interval, m ∈N, D, D′ ⊂ Rm and F : I × D× D′ → Rm. Then the equation

F(t, y(t), y′(t)) = 0, t ∈ I

is called a differential-algebraic equation. Typically it is required that ∂y′F is singular in order to discriminate
the notion from a “normal” implicitly defined ODE.

There are several prototypic subclasses of DAEs, for example the class of semi-explicit DAEs

y′ = f (t, y, z),
0 = g(t, y, z),

(2.87)

and the class of linear constant coefficient DAEs

Ay′ + By = f (t). (2.88)

Both subclasses are instructive. For one thing one can easily recognize the part of differential equations
y′ = f (t, y, z) and the part of algebraic equations 0 = g(t, y, z) of semi-explicit DAEs, which are of
major interest, since various practical applications can be modeled by this class. For another thing linear
constant coefficient DAEs are the best understood representatives and are closely related to the PDAE-
system considered below.
The differentiation index is defined as follows (cf. for instance [72, Chp. VII Def. 2.1], [16, Def. 2.2.2])

Definition 18 (Differentiation index):
Let F(t, y(t), y′(t)) = 0 be a DAE.
Then the minimal number s of differentiations

d
dt

F(t, y(t), y′(t)) = 0,
d2

dt2 F(t, y(t), y′(t)) = 0, . . .
ds

dts F(t, y(t), y′(t)) = 0 (2.89)

required such that (2.89) allows for the extraction of an explicit ODE y′ = Φ(t, y) be means of algebraic
manipulations is called the differentiation index of the DAE.

The algebraic conditions of a DAE may be seen as description of a submanifold of the Rm, in which the
trajectories of the solutions have to be located; see [72, p. 454ff.]. For instance consider

y′ = f (t, y, z)
0 = g(y).

Then g(y) = 0 implies that the trajectories y(t) lie in the zero level set which is a submanifold indeed.
Moreover, differentiation of g(y) = 0 with respect to time t yields

0 =
d
dt

g(y) = dyg(y) y′ = dyg(y) f (t, y, z).

Consequently, the trajectories have to be located in an additional “hidden” submanifold defined by 0 =
dyg(y) f (t, y, z) as well, if dyg(y) is regular.
The mechanism of deriving the differentiation index reveals such conditions which are implicitly given
by the DAE. For linear constant coefficient DAEs there is a constructive method available to determine
the differentiation index (cf. [16, p. 20]), which will be used later on in Paragraph 2.7.3.
From the perspective of solving DAEs numerically the differentiation index plays a fundamental role.
Whereas index-1 DAEs can be solved more or less as usual ODEs [72, Chp. VI], the situation chances es-
sentially when solving higher index DAEs. There are several efficient methods, which cope with index-2
DAEs, [72, Chp. VII]. However, there seems to be no standard procedure available for higher index DAEs.
Consequently, one has to use methods of index reduction which may suffer from drift-off effects and thus
have to be stabilized or in some specific situations one can choose problem-adapted local coordinates [72,
Sec. VII.2]. Drift-off means that numerical integration schemes tend to diverge from the manifold defined
by the algebraic equations. Hence, there is need for mechanisms which either ensure that the algebraic
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equations are satisfied or, if they are not, that the iterates are transported back onto the corresponding
manifold. Minimal coordinates, known from multibody physics, are an example for problem-adapted
local coordinates. They are characterized by the fact the each degree of freedom of motion is associated
with exactly one coordinate (i. e. a variable) and consequently the model comes without additional alge-
braic constraints. However, such coordinates cannot be found in general and the resulting ODEs might
be hard to solve.

2.7.2 Remarks on PDAE

As already mentioned, the topic of PDAE is relatively young and the understanding is far from being
complete. The situation is much more complex than DAEs due to different variables and it may be
conjectured that the transition from DAE to PDAE is as complicated as the passage from ordinary to
partial differential equations. In particular, there are various notions of indices which try to capture the
essence of its corresponding analogs in the world of DAEs; cf. for instance [23, 120, 140, 148] and the
references therein.
Although it would be desirable to confront theory of OC-PDE with the results of PDAE in general, this
goal is far beyond the scope of this thesis. The analysis is content with the specific analysis of the model
problem and the corresponding results in view of PDAE. It should be taken to mean a first step towards
a better understanding of state-constrained optimal control of partial differential equations.

2.7.3 First order necessary conditions as PDAE

The part of distributed (in contrast to boundary-) equations of the first order necessary conditions of
Proposition 2 and Proposition 3 reads as follows, where µÅ collects µmax and −µmin as in Proposition 5

−∆yJ + yJ − uJ = 0 in J , (2.90a)

−∆yB + yB − uB = 0 in B̊, (2.90b)

−∆ptrad
J + ptrad

J − yJ = −yd in J , (2.90c)

−∆ptrad
B + ptrad

B − yB − µB̊ = −yd in B̊, (2.90d)

λ uJ + ptrad
J = λ ud in J , (2.90e)

λ uB + ptrad
B = λ ud in B̊, (2.90f)

yB = ymax
min in B̊. (2.90g)

By means of the classification (2.87) and (2.88) this is a linear constant coefficient PDAE in semi-explicit
form. Moreover, there occurs only one single differential operator. Hence, though ∆ involves partial
derivatives with respect to different variable, this PDAE is pretty similar to the DAE situation.
In order to determine the differentiation index of the PDAE-system use the iterative two-step strategy
presented in [16] on page 20:
• perform some algebraic equivalence transformation such that the PDAE becomes semi-explicit,
• differentiate the algebraic equations.

In terms of linear algebra applied on (2.88) this reads as follows. There is a nonsingular matrix P such
that (2.88) premultiplied by P is (

A1 A2
0 0

)
∆v +

(
B1 B2
B3 B4

)
v =

(
f1
f2

)
, (2.91)

where (A1 A2) has full row rank and where v := (uJ , uB , yJ , yB , ptrad
J , ptrad

B , µB̊)
>. Differentiation of the

second row (the algebraic equations) yields(
A1 A2
B3 B4

)
∆v +

(
B1 B2
0 0

)
v =

(
f1

∆ f2

)
.

If the matrix multiplied by ∆v is still singular the process is repeated, otherwise the number of iterations
equals the differentiation index.
In particular, the PDAE (2.90) is already in semi-explicit form (2.91). Differentiation of the algebraic
equations yields

λ∆uJ + ∆ptrad
J = λ∆ud in J , (2.92a)

λ∆uB + ∆ptrad
B = λ∆ud in B̊, (2.92b)

∆yB = ∆ymax
min in B̊. (2.92c)
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Obviously one has reached differential equations for the control variables. However, there is no differen-
tial equation obtained for µÅ and thus the matrix to be multiplied with ∆v is still singular. It remains to
manipulate (2.92c) again. By means of the state equation (2.90b) one obtains an algebraic equation

yB − uB = ∆ymax
min in B̊. (2.93)

Repeated differentiation and usage of (2.90b), (2.92b) and (2.90d) yields

∆yB − ∆uB = ∆2ymax
min in B̊, (2.94a)

⇒ yB − uB +
1
λ

∆ptrad
B = ∆2ymax

min +
1
λ

∆ud in B̊, (2.94b)

⇒ (λ− 1)yB − λuB + ptrad
B − µB̊ = λ∆2ymax

min + ∆ud − yd in B̊. (2.94c)

Still there is no differential equation obtained for µ
Å

yet, but a third differentiation step is sufficient

(λ− 1)∆yB − λ∆uB + ∆ptrad
B − ∆µB̊ = λ∆3ymax

min + ∆2ud − ∆yd in B̊. (2.95)

Consequently, the PDAE-system that is the core of the common first order necessary conditions has dif-
ferentiation index s = 3.
In marked contrast to this result the differentiation index of the PDAE-system related to the new first
order necessary conditions of Corollary 3 equals s = 1: the PDAE-system reads

−∆yJ + yJ − uJ = 0 in J , (2.96a)

−∆yB + yB − uB = 0 in B̊, (2.96b)

uB = −∆ymax
min + ymax

min in B̊, (2.96c)

−∆pJ + pJ − yJ = −yd in J , (2.96d)

−∆pB + pB − yB = −yd in B̊, (2.96e)

λ uJ + pJ = λ ud in J , (2.96f)

λ uB + pB + qB = λ ud in B̊. (2.96g)

Differentiation of the algebraic equations yields equations such that all variables occur in differentiated
form

∆uB = −∆2ymax
min + ∆ymax

min in B̊, (2.97a)
λ∆uJ + ∆pJ = λ∆ud in J , (2.97b)

λ∆uB + ∆pB + ∆qB = λ∆ud in B̊. (2.97c)

Hence, there holds

Proposition 6 (Index reduction by means of Bryson-Denham-Dreyfus approach):
Let s be the differentiation index of DAEs given by Definition 18. This notion can by carried over to the
specific PDAE (2.90) and (2.96), which yields

s = 3 for (2.90) and
s = 1 for (2.96).

One recognizes that the impact of the Bryson-Denham-Dreyfus approach of Paragraph 2.2.2, which ba-
sically consists in differentiating the original state constraint in order to obtain a control law, caused a
double index reduction: for one thing the control law (2.96c) appears in the PDAE-system instead of the
original state constraint and for another thing the whole approach yielded a multiplier q̄A which can be
interpreted as an integrated version of the original multiplier µ

Å
; see Proposition 5. In other words, the

double index reduction is due to an effect in the primal stage and due to an effect in the dual stage.
It has been explained in Paragraph 2.7.1, that the differentiation index has considerably impact on suitable
numerical treatment. One may assume that this is valid for PDAE as well; see [51]. Consequently, the new
necessary conditions of Corollary 3 might be more easily to solve than the original ones of Proposition 2
and Proposition 3.
However, due to the very simple structure of the considered model problem, it is nearby to reduce the
PDAE to the inactive set; cf. the discussion in Paragraph 3.3.2 on page 104f.
The notion of the differentiation index is closely connected with the specification of consistent initial con-
ditions [16, p. 19], [72, p. 456]. Such initial conditions respect all algebraic constraints – in particular the
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hidden constraints which are revealed by determining the differentiation index – and hence yield unique
solutions locally. In the field of PDAE, the determination of unique solution relies on specification of
initial and/or boundary conditions, which respect all involved algebraic constraints [120]. Hence, one
fundamental task in theory of (P)DAE is the specification of consistent initial/boundary data in order to
be able to compute solutions.
The task in solving the state-constrained OCP is somehow the other way around: Consistent initial/
boundary conditions are prescribed there. These are the boundary conditions on Γ and the interface con-
ditions on γ of the first order necessary conditions of propositions 2 and 3 or of Corollary 3, respectively.
But one has to determine the domain (this is the active set) such that this data is consistent.
This point of view it similar to free boundary problems where some boundary conditions are prescribed and
one has to find the right domain such that these conditions permit a solution; cf. Paragraph 3.3.2.
Moreover, it would be worthwhile to analyze the considered PDAE with respect to the perturbation
index, cf. [72, Chp. VII Def. 3.1], [22] and [118, 119, 140], since it gives valuable insight into the behavior
of the discretized counterparts of the problem. However, this topic is beyond the scope of this thesis.

2.7.4 Order of a state constraint

It has been revealed in Paragraph 2.7.3 that the application of the BDD approach yields a double reduction
of the differentiation index of the first order necessary conditions. This Paragraph is devoted to the
closely related determination of the order of the state constraint in the style of the corresponding notion
in OC-ODE; see, e. g., [122, 75]. The concept is basically the same as determining the differentiation
index and means applying the first three steps of the recipe of determining the control law from page 23.
This scheme yielded that one single differentiation step by means of applying the Laplacian to the state
constraint in Paragraph 2.2.2 is sufficient.
In view of the usual reasoning in OC-ODE, where one differentiation step corresponds to a first order
time derivative of the constraint, it seems reasonable to call the state constraint of the considered model
problem (2.1) a constraint of second order.

Definition 19 (Order of a state constraint):
The number of iterations needed to reach the stopping criterion in the 3rd step within the heuristic from
page 23 multiplied by the order of the applied differential operator is called the order of the state constraint.

Obviously this definition has a limited range, since it is based upon a non-formalized heuristic, which
deserves further investigation. Nonetheless, one obtains a first conjectured result in view of the topolog-
ical possibilities of the active set associated with the state constraint of the considered model problem,
which is based upon the knowledge from OC-ODE; cf. the citations on page 84.

Conjecture 2:
Since the order of the state constraint equals two, the topological possibilities of the active set are not
prescribed. In particular, distributed components as well as isolated components (i. e. curves and single
points) may occur.

Although this conjecture is barely an assertion, it implies the expectation, that constraints that possess an
odd order behave analog to the OC-ODE case as well. In other words, such constraints can only produce
active sets of lower dimension. A slight hint is due to [70], where the gradient-constrained numerical test
example exhibits an active curve only.

2.8 Remarks on different necessary conditions

It has already be indicated at the beginning of Section 2.2 that the BDD approach and the treatment of
the active set as a separate variable are independent ideas. In particular, the latter can also be found in
the paper of Hintermüller and Ring [90], where first order necessary conditions are formulated upon the
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basis of a direct application of the state constraints. Henceforth, their optimality system (see [90, Prop. 2])
is similar to the one of Corollary 3 but contains the multipliers µ

Å
and µγ.

In view of the different optimality systems, which are obtained via different BDD approaches (see Ap-
pendix A), and in advance of Paragraph 3.3.2 the abstract view on set optimal control problems of Para-
graph 2.6.3 provides the following insight. Each of the different approaches yields its own geometry-
to-solution operator and thus induces its own graph in the vector bundle E over X (A). By means of
Paragraph 3.3.1 one recognizes, that these different graphs can be used to construct different Newton
algorithms. A comparison of the performance of those algorithms may rate the value of the underlying
approaches. However, the idea of relaxation approaches, which is presented in Paragraph 3.3.2, reveals
that there are even more algorithms to be taken into account, such that a concluding verdict is beyond
the scope of this thesis.





CHAPTER 3

Algorithms

This Chapter is devoted to the derivation of algorithms to solve the model problem (2.1) based upon
the approach of Chapter 2. As presented in Section 2.6 shape optimization cannot be regarded as opti-
mization in a linear space, but on an infinite dimensional manifold. Hence, one has to be aware of some
fundamental differences to optimization on Banach spaces from the algorithmic point of view. These
are discussed in sections 3.1 and 3.2. Further details on algorithms designed for optimization on (finite
dimensional) manifolds can be found in a comprehensible textbook due to Absil, Mahony and Sepul-
chre [1].
The optimality systems obtained in Chapter 2 are analyzed in more detail in Section 3.3 in order to explore
different approaches how they can be solved. Based upon the experiences gained thereby some adapted
algorithms are formulated and discussed in Section 3.4. Finally Section 3.5 is devoted to an analysis of
well established primal-dual active set strategy in order to contrast some benefits and drawbacks of the
new algorithms.
It is important to note, that the whole algorithmic analysis comes without profound results like proofs
for convergence. Moreover, this Chapter and the numerical analysis of Chapter 4 are contented with
the shape calculus based point of view. Questions concerning topology calculus/optimization are left
unattended and may be a topic for future research. A first step towards topological analysis of state-
constrained OCPs is due to Hintermüller and Laurain [89].

3.1 Descent algorithms in H(Ω)

Descent algorithms form probably the most elaborate and most important class of solution strategies
in (unconstrained) nonlinear optimization, since they are typically the basis for more sophisticated ap-
proaches. Hence, it is worth addressing them in more detail.
In the context of optimization in Banach spaces descent algorithms perform with an iterative three-step
strategy.

1. As a start, find a search direction originating at the current iterate,
2. afterwards determine a step size to go in this direction,
3. finally add the vector “step size times search direction” to the current iterate.

If this is done astutely enough one obtains, that the objective at the new iterate is smaller than at the
starting point. Of course, one has to guarantee convergence as such and that the descent is large enough
in order to prevent the algorithm from converging against an objective value that is not optimal; however
this is not the focus of the present discussion. The keywords gradient-related sequence and Armijo step
length should be sufficient here, cf. [46, 131]. Instead, the interpretation of the three steps is addressed for
optimization problems that are not posed in Banach spaces but in the metric space H(Ω). At this, H(Ω)
ought to be regarded as similar to a Riemannian manifold with tangent space TIdH(Ω) = Θ0; cf. the 10th
item of the discussion on page 67.
The search directions f of step one are located in the tangent space Θ0 to the manifold now and the
tangent space does not coincide with the space H(Ω) anymore, as one was used to in the framework of
Banach spaces.

91
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The metric space indeed is a subset of the affine space Id + Θ0, however it is not convex and hence the
line search of step two should not be interpreted as the minimization along the line Id + t f ⊂ Id +
Θ0, t ∈ R, since this straight line might abandon the manifold H(Ω). This situation is illustrated in
Figure 3.1. The line search should be performed on the geodesic through the current iterate in the search

Id

TIdH(Ω) = Θ0

F(B) ∼= F = Id + f H(Ω)

geodesic through B in
direction f

B ∼= Id

B1(0)

f

0

Id + Θ0

Figure 3.1: One step of a descent algorithm.

direction. Hence, the determination of a step size hosts two main difficulties. On the one hand it is a
non-trivial task to establish a constructive characterization of geodesics inH(Ω) and probably there is no
efficient numerical scheme to evaluate them.1 On the other hand, like in the Banach space situation, the
(numerical) minimization along some path (for instance a geodesic or a straight line) is expensive and
consequently one would use some well established line search algorithms like Armijo’s step length rule
or even more sophisticated ideas; cf. for instance [15, Sec. 4.2.1].

The third step of the general scheme is the update of the current iterate. This part is basically the same in
the Banach space setting and inH(Ω). Once, that the direction is identified, one follows the correspond-
ing geodesic up to the determined step size.

The second step is scrutinized in the following. There are two nearby ideas in order to circumvent the dif-
ficulties arising from the determination of geodesics in H(Ω). In other words, there are other retractions
(cf. Definition 20) than the exponential map, which can be accessed computationally in a more efficient
way. The first idea is about approximating geodesics via cheaply achievable paths inside H(Ω), the sec-
ond is to follow the descent direction in Id + Θ0 without paying attention, whetherH(Ω) is left, and use
a projection back into the manifold if required.

The first of them originates in the specific property of the metric spaceH(Ω), that the unit ball B1(0) ⊂ Θ0
can be continuously embedded into the manifold, this is Id + B1(0) ⊂ H(Ω); cf. the first step of the
proof of Lemma 14 and Figure 3.1. Hence, it is possible to follow the vector field f in the affine space
Id + Θ0, without immediately leaving the manifold; henceforth denoted by transformation approach (of
path following). From the perspective of geometric deformations of the candidate active set B within the
holdall Ω, that is nothing but choosing a suitable τ > 0 and applying X 7→ (Id + τ f )(X) to all X ∈ Ω.
Actually it is sufficient to proceed likewise with all X ∈ β and to determine the boundary of the image of
B in this manner.

A more sophisticated approach uses the flow induced by the vector field f , henceforth denoted by flow
approach (of path following). Here X ∈ Ω is mapped to Tτ( f )(X) := x(τ, X), where

d
dt

x(t, X) = f (x(t, X)), t ∈ [0, τ], x(0, X) := X. (3.1)

1A well-known and often used connection between the tangent space and geodesics is the (Riemannian) exponential map; [1,
Sec. 5.4]. However, it is mentioned there (page 103), that this map is not necessarily the best choice in view of computational
efficiency.
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Both approaches are illustrated in Figure 3.2, namely both from the perspective of the metric spaceH(Ω)
and from the perspective of geometric deformation of the boundary β of the active set B.2

Id + Θ0

H(Ω)

Id

f

(Id + 2 f )

G on geodesic through Id
in direction f with
d(Id, G) = 2

Ω

β
T2( f )

T2( f )(β)

(Id + 2 f )(β)

f

Figure 3.2: Transformation- and flow approach of approximate geodesic path following illustrated in the
regime of the metric space H(Ω) (left) and from the point of view of geometric deformation,
respectively (right).

Obviously, the flow approach is more accurate but the price to pay is a more involved computation.
In particular, it requires the knowledge of the vector field f in the whole domain Ω. It turns out (see
the Remarks on the Newton update step on page 111), that f is known on the interface β only and
consequently the flow approach demands an efficient scheme how to extend the vector field. Fortunately,
there are several highly developed ideas and efficient numerics available, for instance level set methods and
fast marching methods; cf. [149]. Additional ideas are discussed in Paragraph 4.1.3.

The question of extending the vector field from the current interface to the bulk of the domain is directly
linked to the question of a horizontal lift of the tangent vector of the quotient manifold H(Ω)/K(A) to a
tangent vector of the manifold H(Ω); cf. [1, Sec. 3.5.8]. The concept is the same as the construction of a
horizontal subbundle, cf. [113, p. 101ff.], which is important in the context of Ehresmann connections.

From the perspective of H(Ω)/K(A) the manifold H(Ω) can be described as a fiber bundle, where the
canonical projection

πA : H(Ω)→ H(Ω)/K(A), F 7→ [F]A
is the bundle projection. It induces a projection T(πA) : TH(Ω) → T(H(Ω)/K(A)) between the tan-
gent bundles. This function can be understood as follows (cf. Figure 3.3). Let B ∈ X (A). Then
a normal vector field v defined on the interface β = ∂B can be interpreted as a tangent vector in
TBX (A) ∼= T[F]A

H(Ω)/K(A), where B = [F]A(A) (see the Remark on page 63 for a definition of the
notation). Choose an arbitrary representative G of the equivalence class [F]A . Hence, all tangent vectors
f ∈ TGH(Ω) such that T(πA)( f ) = v can be regarded as representatives of the tangent vector v. Each
such f is an element of Θ0 and fulfills f |β · nB = v. In other words, the projection T(πA) is nothing but

T(πA) : TH(Ω)→ T(H(Ω)/K(A)), (F, f ) 7→ f |∂F(A) · nF(A) ∈ T[F]A
(H(Ω)/K(A)).

Obviously there are infinitely many f , which are elements of Θ0, and which are projected on a single v,
namely all extensions of v into the bulk of the domain Ω.

The equivalence class [F]A ⊂ H(Ω) is a submanifold of H(Ω) and consequently has its own tangent
bundle T[F]A . This tangent bundle forms the kernel of projection T(πA) and is called the vertical subbundle
V of TH(Ω). Hence, there holds

∀G ∈ [F]A , ∀ f ∈ VG : T(πA)( f ) = 0 ∈ T[F]A
(H(Ω)/K(A)).

2The two path following approaches are directly connected with the two different approaches of the perturbation of identity and
the velocity method in shape calculus, cf. [44, Chp. 1 Sec. 10.6], and they define retractions

Rtrans
F : TFH(Ω)→ H(Ω), f 7→ Id + F + f ,

R f low
F : TFH(Ω)→ H(Ω), f 7→ T1( f )(F),

as long as ‖ f ‖Θ0
is small enough.
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H(Ω)/K(A)
[Id]A
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(H(Ω)/K(A))
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v
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f (F)

f (G)

Figure 3.3: Illustration of the canonical projection πA of H(Ω) to H(Ω)/K(A) and of vertical and hori-
zontal subbundles V and H.

Since each fiber VG is a vector subspace of Θ0, it is possible to define a corresponding direct complement
HG such that

Θ0 = VG ⊕ HG.
If there are some regularity requirements fulfilled (concerning the choice of HG in dependency of G,
cf. [113, p. 101ff.]), the collection of all complements HG form a subbundle of TH(Ω), the horizontal
subbundle H. Note, that the vertical subbundle is uniquely determined, whereas there is some freedom to
choose the horizontal subbundle.

The horizontal subbundle enables to choose a unique representative f (G), called horizontal lift, of the
tangent vector v ∈ T[F]A

(H(Ω)/K(A)) for each representative G ∈ [F]A . It would be desirable now that
all representatives f (G) coincide, independent of G. Hence, all subspaces HG must be equal. Such a
choice is possible only, if all vertical spaces VG are such that there exists a horizontal space HF with

Θ0 = VG ⊕ HF, for all G ∈ [F]A .

It is beyond the scope of this thesis to prove that this condition can be satisfied. However, it is obvious,
that there are various extensions of a normal vector field v and that these extension are only dependent
on v and the boundary β. In particular, these extension are independent from the transformation “used”
to map the set A ∼= [Id]A to B ∼= [F]A , which means they are independent of the choice G ∈ [F]A .

All in all, a specific algorithm which produces an extension of v to the holdall corresponds to a realization
of a horizontal bundle whose fibers HG are all equal.

As already mentioned, it is not possible to use the transformation approach with arbitrarily large step
size τ > 0, since one might leave the manifold H(Ω). Regarded from the perspective of geometrical
deformation of the interface β, this effect manifests itself as some pathological behavior. The image of
interface might have corners and thus is not of class C1,1 any more, or even worse, it might be self-
intersecting.3 Self-intersection implies, that there is no reasonable interpretation of the interior of the
interface, and thus the responsible transformation of the active set is infeasible. These type of problems
are illustrated in Figure 3.4 and cannot occur in the framework of the flow approach. For one thing the
trajectories x(., X) for X ∈ Ω do not intersect each other, which prevents self-intersection of the images of

3This topic is closely related to the introduction of viscosity solutions and entropy solutions and ideas of level set methods in the
context of propagating interfaces; cf. [149].
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β β

f f

Figure 3.4: Self-intersection of the image of the interface produced by the transformation approach (left),
whereas the flow approach does not produce problems (right).

the interface, and for another thing the trajectories cannot leave Ω, since f |Ωc ≡ 0 and thus the maximal
interval of existence is unbounded; see, for instance, [7, Satz 2.5.1] or [5, Thm. 7.6] and the manifold
corresponding results in [113, Chp. 4 §1]. Finally, the flow x(t, X) is C1,1-regular with respect to X ∈ Ω,
since f is; cf. [5, Thm. 9.5, Rem. 9.6]. All in all, the images of the interface β transported by the flow are of
class C1,1 for all t.
However, the numerical practice of the flow approach is not immune from leaving the manifold H(Ω).
In fact, it is not possible to solve the flow equation (3.1) exactly and one must use approximate solutions
produced by some ODE solver. There is no guarantee, that the approximations of the different analytical
trajectories do not intersect each other, and hence self-intersection of the image of the interface β cannot
be avoided in general. This problem is reinforced by the lack of knowledge of the perturbation vector
field in the bulk of Ω and the resulting need for numerical extensions. Nonetheless, there is always a
τ > 0, such that the flow image Tτ( f )(B) of the active set remains inH(Ω).
After having seen, that the numerical practice of both the transformation and the flow approach of path
following can suffer from the fact that the next iterate may be outside the manifold, if one does not care
about the maximal step size, it is nearby to analyze the second idea to circumvent geodesics, which uses
a projection into the metric space H(Ω). In the context of (finite dimensional) manifolds such kind of
projections are called retractions, cf. [1, Def. 4.1.1].

Definition 20 (retraction):
LetM be a manifold, let TxM be the tangent space toM at point x ∈ M (cf. Definition 8) and let TM
be the tangent bundle (cf. Definition 9).
Then a smooth mapping R : TM→M is called retraction on the manifoldM, iff it fulfills the following
properties. Let Rx be the restriction of R to the tangent space TxM, then

1. Rx(0x) = x, where 0x is the zero element of TxM,
2. DRx(0x) = IdTxM.

In the particular case of the metric space H(Ω), it is known, that the tangent space TFH(Ω) is given by
Θ0 for each F ∈ H(Ω). Consequently, due to the natural projection

T(H(Ω))→ H(Ω), TFH(Ω) 3 f 7→ F,

and since the manifold H(Ω) can be covered by a single chart by construction, the tangent bundle be-
comes isomorphic to

T(H(Ω)) ∼= H(Ω)×Θ0.
This is to say, the tangent bundle TH(Ω) is a trivial vector bundle onH(Ω); cf. Definition 16.
By means of retractions it is possible to project paths located in the tangent bundle into the manifold. In
other words, let R : H(Ω)×Θ0 → H(Ω) be a retraction, let F be an element of H(Ω) and let f ∈ Θ0 =
TFH(Ω) be a tangent vector, then the mapping t 7→ R(t f ) defines a path in the manifold H(Ω), which
can be interpreted as the projection of the path t 7→ t f , which is located in TH(Ω). This situation is
illustrated in Figure 3.5. From the point of view of the geometric deformation of the interface β and the
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F
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R(t f )

Id + Θ0

H(Ω)
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F + t f

R(t f )
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(F + t f )(β)

R(t f )(β)

Figure 3.5: Different illustrations of a linear path F + t f in the (affine) tangent space and its projection
R(t f ) by means of a retraction: perspective from a typical manifold (left), from the metric
spaceH(Ω) and from the geometric deformation (right).

candidate active set B, respectively, the retraction ensures, that the image keeps contained in the family
O and therefore it avoids degeneracy phenomena.

Whereas Riemannian manifolds always admit a retraction given by the Riemannian exponential map, cf. [1,
Sec. 5.4], it is not obvious whether the metric space H(Ω) possesses a map that can be regarded as the
generalization of a retraction to the infinite dimensional setting, and it goes beyond the scope of this
thesis to answer this question. It should be emphasized, that mere existence of such a mapping is not
enough – it is valuable only, if it can be computed efficiently. Nonetheless, there are ideas how to avoid
degeneracy phenomena on the discretized level within the numerical realization of descent algorithms;
cf. Paragraph 4.1.2. Indeed, these projections behave like a retraction. They do not influence the trans-
formation of the active set, as long as the deformation is small enough and consequently the defining
properties of Definition 20 are fulfilled.

As concluding remark it is worthwhile to comment on a similarity between steepest descent methods
and the approximation of geodesics by means of the transformation approach of path following. The
steepest descent algorithm tries to follow the path of steepest descent which originates at the initial
guess and leads down to the minimum. However, this path is curved in general and hence it is inef-
ficient/impossible to compute it exactly. Thus, one confines oneself with approximations by means of
tangent direction on this path (similar to an Euler method for solving ODEs). This is obviously analog to
the transformation approach.

This brief overview on descent algorithms must by sufficient here. The most prominent representative
of this class is the method of steepest descent. Unfortunately, this algorithm is not applicable to the set
optimal control problem (2.30) and its reduced shape optimization counterpart (2.45), since the critical
points of the shape functional F are no (local) minima, which is shown next.

3.1.1 The optimal solution is no local minimum of F

One possible idea for solving the bilevel optimization problem numerically is to apply a gradient-based
algorithm on the shape functional F . However, the bilevel optimization problem is constrained, since
one has to respect the strict inequality constraint ymin < yJ < ymax in the candidate inactive set J .
Nonetheless, one of the most fundamental ideas behind the whole approach of this thesis is, that this
constraint does not need to be respected rigorously. To be more precise, the strict inequality is not relevant
if first order optimality conditions are investigated, but it has some impact on optimality from a global
point of view; cf. Paragraph 2.2.4.

With regard to the construction of algorithms the question arises, whether the constraint has to be taken
into account, or not. Sure enough, it has to be considered when a steepest descent algorithm is applied,
since the active set A is no strict (local) minimum of the shape functional F . This fact is illustrated from
the algorithmic point of view now and it is neatly proven afterwards.

Due to Theorem 8 the shape gradient of F can be represented by the non-positive function

− 1
2λ

( p̄J − pmax
min )

2 ∈ L1(β).
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A steepest descent algorithm would choose the normal component of a perturbation vector field as a
scalar multiple of the representative.4 But the non-positivity of the gradient results in perturbation fields
which can only shrink the current guess of the active set, since the step size is always positive. This
behavior is due to the fact, that the unique global optimum of the reduced shape functional F is given
by B = ∅, which corresponds to the optimal solution of the state unconstrained version of the original
optimal control problem (2.1). Therefore, such an algorithm can never reach the optimal active set A, if
the initial guess B is such that A * B as illustrated in Figure 3.6. In the special case B ⊂ A a steepest
descent algorithm only has a chance to reach A if negative step sizes are allowed, too.

optimal configuration A

current guess B

possible guess after
applying the
pertubation field

impossible
configuration after
applying the
pertubation field

unreachable region
for steepest de-
scent deformations
starting at B

Figure 3.6: Illustration of an impossible step in a steepest descent algorithm.

Conversely this means that there are vector fields, which lead to perturbations of the optimal active setA,
such that the value of the shape functional decreases. Thus, A cannot be a strict local minimum of F .

Proposition 7 (A is no strict local minimum of F ):
Let A ∈ O be the (optimal) active set for the original optimal control problem (2.1) and its equivalent
reduced shape/topology optimization problem (2.45). Furthermore assume that A 6= ∅, i. e. the state
constraints are essential.
Then A is a critical point, but is no strict local minimum of the reduced objective F .5

Proof. 1) According to Theorem 8 the set A is a critical point of the reduced objective F with respect to
shape calculus.
2) According to the 14th item of the discussion on page 68 the ball B1(0) ⊂ Θ0 is continuously embedded
inH(Ω) by means of the mapping f 7→ Id + f . Moreover, the mapping is surjective onto a suitable ε-ball.
Let ε > 0 be chosen adaptively. Furthermore, there exists an approximation f ∈ Θ0 of the outward unit
normal vector field of the active set A; see [69, Lem. 1.5.1.9]. That is, there exists a δ > 0 and an f ∈ Θ0
such that

∀x ∈ γ : f (x) · nA(x) ≥ δ.
Choose η > 0 such that F := Id − η f ∈ Bε ⊂ H(Ω) and define B := F(A) ∈ X (A) ⊂ O. Then there
holds B ⊂ A, since the transformation F maps the boundary γ towards the interior of A, i. e. F(γ) ⊂ Å.

Let (ūI , ūA , ȳI , ūA) ∈ L2(I)× L2(Å)× H1(I , ∆)× H1(Å, ∆) be the optimal solution of the set optimal
control problem (2.30). This tuple is the optimal solution of the bilevel problem (2.36), (2.37), too. In

4A steepest descent algorithm based on a Sobolev gradient, which was introduced in the Remark to Theorem 7 would act similar,
since the weak maximum principle still holds true for the corresponding surface PDE with the usual proof, and thus ∇SF has
the same sign as ∇F .

5The assertion is related to shape calculus only, since the analysis of infinitesimal topology dependency goes beyond the scope of
this thesis.
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particular, it is the optimal solution of the inner optimization part (2.37) to the fixed set A. Additionally,
the tuple is feasible for the inner optimization problem to the fixed set B: If one concatenates the states
ȳA and ȳI , one obtains a state on the whole domain Ω (cf. Proposition 4), which itself can be split again
to yJ ∈ H1(J , ∆) and yB ∈ H1(B̊, ∆). Assembling and anew dissection can be done with the optimal
control as well. Furthermore, there holds yB = ȳA |B ≡ ymax

min , since B is a subset of A. Consequently, all
constraints of the inner optimization problem (2.37) are fulfilled.6

Hence, there holds by definition of F , cf. (2.38a)

F (B) = min
uJ ,uB ,yJ ,yB

J(B; uJ , uB , yJ , yB ) ≤ J(B; ūI , ūA , ȳI , ȳA) = J(A; ūI , ūA , ȳI , ȳA) = F (A).

In other words, for each (sufficiently small) ε > 0 there is a set B ∈ O with d(B,A) ≤ ε (the metric
induced in X (A), cf. Lemma 13) and F (B) ≤ F (A). Hence, A is no strict local minimum of the reduced
objective F .

Remark:
The proof shows that there even holds

∀B1,B2 ∈ O with B1 ⊂ B2 : F (B1) ≤ F (B2).

Thus, it is necessary to use algorithms which either rely on the strict inequality constraint or which search
for critical points of the shape functional F .
It is not possible to satisfy the strict inequality constraint directly, as it is done, for instance, by projected
gradient methods, since the constraint poses an implicit condition on the feasibility of a set B. Here one
recognizes the character of a state constraint. A common remedy is to fulfill such constraints iteratively
by means of some penalization. However, this approach contradicts the original goal to get an algorithm
which neither requires regularization nor penalization of the constraint.
At this point, it is worthwhile to comment on penalization of the strict inequality constraint ymin < ȳJ <
ymax. One nearby idea is to augment F by a quadratic penalty term

A(B) :=
c
2

∫
J

max{0, ȳJ − ymax}2 + max{0, ymin − ȳJ }
2 (3.2)

where c > 0; cf. [90, Eq. (3.6)]. Afterwards one studies the behavior when c is send to infinity. However,
this approach only ensures, that the inequality constraint ymin ≤ ȳJ ≤ ymax is respected in the limit,
whereas one requires the strict inequality counterpart. This approach is not recommended, since a loss
of unique solvability and of the precise meaning of the (in-)active set is concomitant with it; cf. Para-
graph 2.2.4 in particular page 29. A remedy would be to sharpen the penalty term to

Aε(B) :=
c
2

∫
J

max{0, ȳJ − ymax + ε}2 + max{0, ymin − ȳJ + ε}2

and to drive ε to zero. However,

ȳJ (x)→ ymax
min (x), x → x̄ ∈ β,

since ȳJ |β = ymax
min |β due to (2.45f). Consequently, this idea induces a conflict between the evaluation of

F and its gradient. It manifests itself in the impossibility of convergence of the algorithm unless ε = 0,
since otherwise the penalty term can never vanish and always gives a descent direction. Furthermore,
the introduction of two penalty parameters always requires some smart coupling which is very likely to
be problem dependent.
All in all, it is indicated to develop a method, which does without paying attention to the constraint
ymin < yJ < ymax but searches for critical points of the reduced functional F . An obvious choice is a
Newton scheme, which is introduced in the next section 3.2.
However, despite the objections it seems to be reasonable to use the penalty approach as globalization
strategy for a Newton algorithm. As long as the current guess of the active set is ”far away“ from the
optimal one, an augmented functional may give the right idea how to deform the iterate. And when the
guess is ”near enough“ one switches to a Newton scheme; cf. the remarks on the a posteriori step 3 on
page 111.

6Note, that the state yJ obtained by this means is not expected to fulfill the strict inequality constraint (2.36c). This is just the
substance of considerations: analyze the critical point A of the unconstrained functional F .
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3.2 Remarks on Newton techniques on manifolds

This paragraph is devoted to a short presentation of the concept of Newton’s method on Riemannian
manifolds. The main source is the recent textbook [1], in particular sections 5 and 6.
Given a sufficiently smooth objective f on a Euclidean vector space, the Newton’s method is applied to
find critical points of the gradient∇ f . It performs by iteratively solving the Newton equation and updating
the old iterate (Newton update)

(Hess f (xk))[δk] = − grad f (xk),
xk+1 = xk + δk.

This rule requires the explanation of the different constituents in the context of a manifoldM:
• The Newton equation has to be handled with care, since one has to use the gradient and the Hessian

operator (see Definition 15) and cannot simply use first and second order directional derivatives. In
case of a non-Riemannian manifold there is neither a notion of a Hessian nor of a gradient available
and a remedy is to apply first and second order covariant derivatives (cf. definitions 11 and 13) and
to use the functional equation in T∗xk

M

(∇2 f )(xk)[δk, .] = −(D f )(xk)[.]

or its variational form

(∇2 f )(xk)[δk, v] = −(D f (xk))[v], ∀v ∈ TxkM.

In either case the increment δk is an element of the tangential space TxkM.
• Moreover, the Newton update is not directly realizable on manifolds, since they lack a linear struc-

ture in general. However, the update can be understood by means of a retraction (see Definition 20)

xk+1 := Rxk (δk).

Hence, it is an important step to identify the second covariant derivative of the reduced shape func-
tional F in order to establish a Newton’s method; cf. the 20th item of the discussion on page 80.

3.3 Different perspectives on first order optimality system

The basis of all algorithms analyzed within this thesis are the first order necessary conditions of the orig-
inal model problem (2.1) related to the Bryson-Denham-Dreyfus approach (Paragraph 2.2.2) and which
were stated in Corollary 3. However, the equivalent necessary conditions, which are derived in Ap-
pendix B, are used here for them being less tailored to the original model problem (cf. (2.40) for the
specific reformulation which yields the necessary conditions of Corollary 3). They are put together for
convenience:

−∆ȳI + ȳI = ūI in I , (3.3a)

−∆ȳA + ȳA = ūA in Å, (3.3b)
∂nȳI = 0 on Γ, (3.3c)

ȳI |γ − ȳA |γ = 0 on γ, (3.3d)

∂
I
n ȳI + ∂

A
n ȳA = 0 on γ, (3.3e)

−∆ymax
min + ymax

min = ūA in Å, (3.3f)

ymax
min |γ = ȳA |γ on γ, (3.3g)

−∆ p̂I + p̂I = ȳI − yd in I , (3.3h)

−∆ p̂A + p̂A = ȳA − yd in Å, (3.3i)
∂n p̂I = 0 on Γ, (3.3j)

p̂I |γ − p̂A |γ = 0 on γ, (3.3k)

∂
I
n p̂I + ∂

A
n p̂A = σ̂I on γ, (3.3l)

λ (ūI − ud) + p̂I = 0 in I , (3.3m)

λ (ūA − ud) + p̂A + q̂A = 0 in Å, (3.3n)

ymin < ȳI < ymax in I , (3.3o)


p̂I |γ − pmax
min |γ = 0 on γ, (3.3p)

ūI |γ − ūA |γ = 0 on γ, (3.3q)
q̂A |γ = 0 on γ, (3.3r)

As in Corollary 3 the conditions (3.3p)–(3.3r) are different representatives of the necessary condition
which is related to the variation of the active set.
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The analysis of Paragraph 3.1.1 suggests, that it is unrewarding to use the first order optimality system in
order to establish a steepest descent algorithm. Consequently, this thesis is focused on the presentation
of Newton’s method and some related approaches to solve (3.3). Hence, one is interested in derivatives
of the system which are provided by the following paragraphs.
The strict inequality (3.3o) is an important part in this optimality system. It was argued in Paragraph 2.2.4,
that it has no local impact on optimality. This point of view proved well-founded during the derivation of
the optimality system in sections 2.3 and 2.4. This reasoning can also be used while deriving derivatives
of the equation part of the optimality system. Nonetheless, the inequality must not be ignored, if an
algorithm shall be designed for solving the original model problem (2.1) or the equivalent set optimal
control problem (2.30), respectively.

3.3.1 Perspective from reduced/bilevel approach

The point of view of the reduced approach, which was pursued in Section 2.3 has already been used to
illustrate descent and Newton algorithms in sections 3.1 and 3.2. It is based on the reformulation of the
set optimal control problem as an equivalent bilevel optimization problem (2.36), (2.37), which introduces
a hierarchical distinction between the set variable B and the function space variables uJ , uB , yJ and yB .
In other words, this perspective focuses on the necessary condition of the outer optimization problem
(2.36), which is given by a null of the covariant derivative of the reduced functional

DF (B)[V] = − 1
2λ

∫
β
( p̂J − pmax

min )
2V · nJ .

In order to establish a Newton’s method, these considerations and the ones of Section 3.2 give rise to
derive the second covariant derivative of F ; cf. (2.85). This approach requires the evaluation of the differ-
ent constituents of the first and second order covariant derivative. In particular, it requires p̂J |β, which
can be accessed by solving the inner optimization problem. Due to the simple character of the original
model problem, it could been shown (Theorem 6), that the inner optimization problem can equivalently
be replaced by its first order necessary conditions (3.3a)–(3.3n).
This perspective emphasizes, that equation (3.3p) can be seen as the whole first order necessary condition
of the bilevel optimization problem, and that (3.3a)–(3.3n) should rather be regarded as conditions to
evaluate the reduced functional F than as necessary conditions. Consequently, this approach fits into the
class of ”first optimize, then discretize“ black-box solvers, which was presented in the Introduction on
page 1f. The inner optimization problem is handled as black box here and it is assumed that a correspond-
ing solver is provided. Consequently, optimization takes place on the graph of the geometry-to-solution
operator (cf. Figure 2.14) and approaching the optimum algorithmically means constructing/following
some path on the graph.
It remains to analyze the facultative equations (3.3q) and (3.3r). As mentioned in the introducing text
above Corollary 3, they are equivalent conditions for the vanishing of the first order derivative of the
reduced functional F . However, they are equivalent to (3.3p) at the optimum only. Hence, it is possible
to construct different algorithms when trying to find nulls of7

Ku
u(B)[V] :=

1
2

∫
β
(ūJ − ūB )

2 V · nJ , (3.4a)

K
q
q(B)[V] :=

1
2

∫
β

q̂2
B V · nJ . (3.4b)

This idea basically means trying to find critical points of different functionals, which are all defined on
the same graph of the geometry-to-solution operator, and which all have the same critical points. These
ideas are special cases of the more general variational relaxation approach, which is introduced in the
next Paragraph.

3.3.2 Perspective from free boundary problems: (variational) relaxation approaches

If one regards the optimality system (3.3) without keeping in mind how it has been derived – and there-
fore has no bias to treat the shape gradient equations (3.3p)–(3.3q) different than the others – one recog-

7The notation is explained in footnote 10 on page 102.
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nizes typical properties of free boundary problems. The equation part of the system is overdetermined
in general and solvable for very special sets B ∈ O only. The strict inequality constraint then additional
singles out the right active setA. The equation part of (3.3) is denoted a free boundary PDAE here in order
to distinguish it from typical (elliptic) free boundary problems, where one deals with (elliptic) boundary
value problems equipped with an additional boundary condition for determination of the right domain.
An introduction to the theory of free boundary problems can be found in [107, 62]. A common strategy for
solving free boundary problems – henceforth referred to as relaxation approach – consists in relaxing one
boundary condition such that the remaining system is solvable for a given domain and then minimizing
the residual in the relaxed equation; see, for instance, [53]. In other words, the free boundary problem is
transformed into a shape/topology optimization problem, which is typically of least square type. A sec-
ond idea of solving free boundary problems is based on total linearization of the system of equations and
is discussed in Paragraph 3.3.3. Both approaches basically aim at solving a severely nonlinear equation8.
The relaxation approach and total linearization are analog to the reduced approach and the Lagrange
approach of Section 2.3 and Section 2.4, respectively. The reduced approach yields an algorithm which
minimizes the residuum in one equation of the optimality system while (exactly) fulfilling the other
equations (see Paragraph 3.3.1), whereas the Lagrange approach results in an algorithm that treats all
necessary conditions as equal and simultaneously approximates the solution to all equations (see Para-
graph 3.3.3).
When solving the free boundary PDAE by means of the relaxation approach the question arises which of
the shape gradient equations (3.3p)–(3.3r) shall be used and which of the boundary conditions shall be
relaxed. Moreover, it even seems to be reasonable to relax distributed algebraic equations, though this
idea is not pursued within this thesis. Probably there is no universal recommendation, especially when
problems and their necessary conditions become more complex than the simple model problem to be
considered here.
The only interface condition, whose relaxation is unrewarding apriori, is the kink condition of the adjoint
(3.3l), since its only value is the determination of σ̂J . A second finding is, that after having decided which
of the shape gradient equations (3.3p)–(3.3r) to use and which of the boundary conditions to relax, the
remaining PDAE can be reduced.9 Both in view of computational effort and in view of the experiences
in solving DAEs (cf. Paragraph 2.7.1) it is recommended to reduce the PDAE as far as possible. By that
means one can reduce the free boundary PDAE to a more common free boundary problem, due to the
very simple structure of the model problem; in more complex situations (as for example problems with
several states/controls, cf., e. g., [33, 145]) this would no longer be appropriate.
According to Eppler and Harbrecht [55, 54] it seems to be favorable to relax the Neumann boundary
condition (3.3e) since relaxation of Dirichlet conditions (and tracking them in L2) is ill-posed. Moreover,
all other relaxation approaches suffer from difficulties with corresponding PDEs.

1. If the weak continuity condition (3.3d) is relaxed, the local shape derivatives of the reduced coupled
PDE system contain the boundary condition

∂
J
n y′[V] = −V · nJ ∂nn(ȳJ − ymax

min ) +∇β(ȳJ − ymax
min ) · ∇β(V · nJ ), on β

which is hard to get access to by means of standard finite element discretizations and which cannot
be simplified as in (2.50), since the condition (ȳJ − ymax

min )|β = 0 is relaxed.
2. If the BDD condition (3.3g) is relaxed, it is not possible to reduce the remaining PDE system to the

candidate inactive set J , since yB does not need to be equal to ymax
min any longer. Consequently, the

computational effort would increase significantly in comparison to other relaxation approaches.
3. All other possible choices of relaxation yield the boundary value problem (3.14), which is non-

standard due to its asymmetric distribution of boundary conditions. Numerical practice shows,
that the solution p̂J tends to have oscillations near the interface β if the finte-element mesh yields
a zigzagging polygon representation of the interface; see Paragraph 4.1.2 on page 123. It would
be interesting to analyze this behavior in order to understand whether these problems are due
to theoretical reasons – the results of Conjecture 3 and Theorem 9 indicate that one has to expect

8Even if the boundary value problem is linear, the shape variable induces an intrinsic nonlinear behavior, since it is not located in
a linear vector space; cf. Section 2.6.

9It is important to mind the ordering of the different steps. If one reduces the system after having chosen one of the shape gradient
equations, but before having relaxed one condition, the first choice is irrelevant, since the shape gradient equations are equivalent
then.
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poor regularity – or due to the fact that an unsuitable finite element approximation was applied.
However, a deeper investigation is beyond the scope of this thesis.

In order to illustrate the idea of the relaxation approach, the consequences of the relaxation of the Neu-
mann boundary condition (3.3e) and of the shape gradient condition (3.3p) are analyzed in more detail.
One ends up with the following reformulation no matter what representative of the shape gradient is
chosen. One aims at the minimization of the L2 cost functional (merit functional)10

K∂n
p (B) :=

1
2
‖∂Jn (y∗J − ymax

min )‖2
L2(β) =

1
2

∫
β

(
∂
J
n (y

∗
J − ymax

min )
)2 (3.5)

subject to the strict inequality constraint

ymin < y∗J < ymax in J

where (y∗J , p∗J ) fulfills

−∆y∗J + y∗J +
1
λ

p∗J = ud in J , (3.6a)

∂ny∗J = 0 on Γ, (3.6b)

y∗J |β = ymax
min |β on β, (3.6c)

−∆p∗J + p∗J − y∗J = −yd in J , (3.6d)

∂n p∗J = 0 on Γ, (3.6e)

p∗J |β = pmax
min |β on β. (3.6f)

Once having solved this shape optimization problem, the remaining variables of the original first order
necessary conditions (3.3) can be obtained by assignments more or less

−∆ymax
min + ymax

min = ūB in B̊, (3.7a)

−∆ȳB + ȳB = ūB in B̊, (3.7b)

ymax
min |β = ȳB |β on β, (3.7c)

−∆ p̂B + p̂B − ȳB = −yd in B̊, (3.7d)
p̂B |β = pmax

min |β on β, (3.7e)

ūJ = − 1
λ

p∗J + ud in J , (3.8a) q̂B = −λ (ūB − ud)− p̂B in B̊, (3.8b)

σ̂J = ∂
J
n p∗J + ∂

B
n p̂B on β. (3.8c)

Hence, it is necessary to provide a constructive scheme to minimize the merit function only. Its critical
points (i. e. sets) are characterized by nulls of its gradient. According to Paragraph 2.4.2 there holds

dK∂n
p (B; V) =

1
2

∫
β

(
2 ∂
J
n (y

∗
J − ymax

min ) ∂nn(y∗J − ymax
min ) + κJ

(
∂
J
n (y

∗
J − ymax

min )
)2
)

V · nJ

+
1
2

∫
β

2 ∂
J
n (y

∗
J − ymax

min )
(
∇(y∗J − ymax

min )
′[V] · nJ︸ ︷︷ ︸

∂
J
n y∗J

′ [V]

+∇(y∗J − ymax
min ) · (∇bJ )

′[V]
∣∣
β

)

and with
∂nn(y∗J − ymax

min ) = ∆(y∗J − ymax
min )|β − ∆β(y∗J − ymax

min )︸ ︷︷ ︸
=0

−κJ ∂
J
n (y

∗
J − ymax

min )

=
(
y∗J +

1
λ

p∗J − ud + ūA − ymax
min
)
|β − κJ ∂

J
n (y

∗
J − ymax

min )

=
(
y∗J +

1
λ

p∗J − ud −
1
λ

pmax
min + ud − ymax

min
)
|β − κJ ∂

J
n (y

∗
J − ymax

min )

= −κJ ∂
J
n (y

∗
J − ymax

min )

and due to (2.67)

∇(y∗J − ymax
min ) · (∇bJ )

′[V]
∣∣
β = ∇(y∗J − ymax

min ) ·
((

(DV)∇bJ · ∇bJ
)
∇bJ − (DV)>∇bJ −D2bJ V

)∣∣∣β
= ∇(y∗J − ymax

min )︸ ︷︷ ︸
‖ nJ , cf. (3.6c)

·
( (

nJ · (DV)>nJ
)

nJ − (DV)>nJ︸ ︷︷ ︸
⊥ nJ

−D2bJ
∣∣
β V
)

= −∇(y∗J − ymax
min )D2bJ

∣∣
β V = 0 since ∇bJ D2b = 0

10The notation of the functionals is according to the following scheme: the subscript (p, u or q) indicates which of the shape gradient
equations (3.3p)–(3.3r) were used; the superscript tells which interface condition is relaxed.
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one obtains

dK∂n
p (B; V) =

∫
β
−1

2
κJ
(
∂
J
n (y

∗
J − ymax

min )
)2 V · nJ + ∂

J
n (y

∗
J − ymax

min ) ∂
J
n y∗J

′[V], (3.9)

where the local shape derivatives fulfill

− ∆y∗J
′[V] + y∗J

′[V] = − 1
λ

p∗J
′[V] in J , (3.10a)

∂ny∗J
′[V] = 0 on Γ, (3.10b)

y∗J
′[V]|β = −∂

J
n (y

∗
J − ymax

min )V · nJ on β, (3.10c)

− ∆p∗J
′[V] + p∗J

′[V] = y∗J
′[V] in J , (3.10d)

∂n p∗J
′[V] = 0 on Γ, (3.10e)

p∗J
′[V]|β = −∂

J
n (p∗J − pmax

min )V · nJ on β. (3.10f)

In order to get rid of the local shape derivative in (3.9) one can introduce adjoint variables. By means of
the heuristic of Remark on page 45 one derives an adjoint system

−∆Y∗J + Y∗J +
1
λ

P∗J = 0 in J , (3.11a)

∂nY∗J = 0 on Γ, (3.11b)

Y∗J |β = 0 on β, (3.11c)

−∆P∗J + P∗J −Y∗J = 0 in J , (3.11d)

∂nP∗J = 0 on Γ, (3.11e)

P∗J |β = −∂
J
n (y

∗
J − ymax

min ) on β. (3.11f)

Using the adjoint variables one obtains the following representation of the shape semiderivative

dK∂n
p (B; V) =

∫
β

(
−1

2
κJ P∗J

2 + P∗J ∂
J
n P∗J + ∂

J
n (p∗J − pmax

min ) ∂
J
n Y∗J

)
V · nJ . (3.12)

With this Hadamard form of the shape semiderivative of the merit functional at hand it is possible to
construct a steepest descent algorithm for minimizing the cost functional (3.5). A Newton type method
would require the second order semiderivative of the cost functional K∂n

p whose derivation goes beyond
the scope of this thesis. In particular, there occur some difficulties due to differentiation of the curvature
in (3.12). They are avoided in [54] by restricting the considerations to star shaped domains, which would
be too strong an assumption in the present context.
As mentioned above there are good reasons to relax the Neumann boundary condition (3.3e). Nonethe-
less, it is worthwhile regarding the approach of relaxing the shape gradient condition (3.3p) and of mini-
mizing

Kp
p(B) :=

1
2

∫
β
( p̂J − pmax

min )
2, (3.13)

subject to the usual inequality constraint, where p̂J is given by

−∆ȳJ + ȳJ +
1
λ

p̂J = ud in J , (3.14a)

∂nȳJ = 0 on Γ, (3.14b)

ȳJ |β = ymax
min |β on β, (3.14c)

∂
J
n ȳJ = ∂

J
n ymax

min on β, (3.14d)

−∆ p̂J + p̂J − ȳJ = −yd in J , (3.14e)

∂n p̂J = 0 on Γ, (3.14f)

A comparison with the approach of Paragraph 3.3.1 reveals significant similarities, since (3.3a)–(3.3n)
can be reduced to (3.14). In particular, one aims at minimizing the merit function Kp

p on the one hand,
whereas one searches nulls of the very similar object DF (.)[.] on the other hand. Hence, a Newton scheme
for minimizing the functional Kp

p is to be understood as a third order method with respect to minimization
of F . Applying this insight to the minimization of K∂n

p explains the difficulties when trying to derive its
second order shape semiderivative: in fact, this is similar to derive a third order shape derivative of the
functional F .
All in all, many of the relaxation approaches for solving the free boundary PDAE (3.3) are very similar
to the bilevel/reduced approach of Paragraph 3.3.1 from the analytical point of view. Both ideas are
based on fulfilling all equations of the first order necessary conditions (3.3) but one, whose defect is to be
brought to zero. From this perspective the relaxation approaches introduce other sections than the graph
of the geometry-to-solution operator into the vector bundle E on the manifold X (A); cf. Paragraph 2.6.3.
These sections may have beneficial properties as for instance guaranteeing higher regularity and therefore
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may yield higher stability and efficiency of thereon based algorithms. However, the algorithmic access
to relaxation approaches and to the bilevel approach are different. The classical idea of solving a free
boundary problem by means of the relaxation approach, which is carried over to a free boundary PDAE
here, uses minimization of quadratic merit functions, whereas the bilevel approach calls for solving a
variational equation. It has been demonstrated in the case of K∂n

p , that there are severe problems to
establish a Newton’s method for minimization of merit functions.
The proposed remedy is a new hybrid approach (henceforth denoted by variational relaxation approach).
It benefits from the freedom of the relaxation approach to choose the equation which is relaxed and
from the freedom to choose different norms for the merit function, while combining the efficiency of a
Newton’s method of the reduced/bilevel approach. The goal is to find solutions (these are sets B ∈ O)
to variational equations of the following type (also cf. (3.4))

0 = K
p
p(B)[V] :=

1
2

∫
β
( p̂J − pmax

min )
2V · nJ = DF (B)[V], ∀V ∈ V , (3.15a)

0 = Ku
u(B)[V] :=

1
2

∫
β
(ūJ − ūB )

2V · nJ , ∀V ∈ V , (3.15b)

0 = K∂n
p (B)[V] :=

1
2

∫
β

(
∂
J
n (y

∗ − ymax
min )

)2V · nJ , ∀V ∈ V . (3.15c)

Unfortunately, the indefiniteness of the second order shape semiderivative d2F at the optimal configura-
tion A (cf. Corollary 5 and (2.85)) reenters the considerations again, since any dK.

. has a null at A as well.
Hence, typical quasi Newton schemes based on positive definiteness preserving update rules like the BFGS
method seem to be not suitable; however symmetric rank-1 update methods (SR1) should be applicable [131].
Another remedy is to solve the variational equations related to nonquadratic relaxation

0 = K̃
p
p(B)[V] :=

∫
β
( p̂J − pmax

min )V · nJ , ∀V ∈ V , (3.16a)

0 = K̃u
u(B)[V] :=

∫
β
(ūJ − ūB )V · nJ , ∀V ∈ V , (3.16b)

0 = K̃∂n
p (B)[V] :=

∫
β

∂
J
n (y

∗ − ymax
min )V · nJ , ∀V ∈ V . (3.16c)

This idea is pursued in the 8th item of the discussion on page 110.
After having commented on some selected ideas about how to solve the free boundary PDAE (3.3), the
remaining part of this Paragraph is concerned with the perspective from the first order necessary con-
ditions of Casas (Proposition 2) which are enhanced by Bergounioux and Kunisch (Proposition 3). Due
to the simple structure of the model problem (2.1) it is possible to reduce that optimality system as well,
such that the major effort has to be spend on solving (3.17):

−∆ȳI + ȳI +
1
λ

ptrad
I = ud in I , (3.17a)

∂nȳI = 0 on Γ, (3.17b)
ȳI |γ = ymax

min |γ on γ, (3.17c)

∂
I
n ȳI = ∂

I
nymax

min on γ, (3.17d)

−∆ptrad
I + ptrad

I − ȳI = −yd in I , (3.17e)

∂n ptrad
I = 0 on Γ, (3.17f)

ptrad
I |γ = pmax

min |γ on γ, (3.17g)

−∆ymax
min + ymax

min = ūA in Å, (3.18a)

ymax
min = ȳA in Å, (3.18b)

ptrad
A = pmax

min in Å, (3.18c)

µ
Å
= µmax

Å
− µmin

Å
in Å, (3.18d)

ūI = −
1
λ

ptrad
I + ud in I , (3.19a) µγ = ∂

I
n ptrad
I + ∂

A
n pmax

min on γ, (3.19b)

ymin < ȳI < ymax in I . (3.20a)

By means of Corollary 6 and Proposition 5 one obtains that ptrad
I = p̂I . Consequently the free boundary

problem (3.17) and the one to be solved by (3.13)–(3.14) are the same. In addition, the relaxation ap-
proaches, which are presented above, applied to (3.17) are very similar to the idea of Hintermüller and
Ring [90].
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Hence, one has to pose the question, whether the perspectives presented in this thesis essentially differ
from their approach. For one thing the Lagrange approach related ideas (see Paragraph 3.3.3), the re-
duced/bilevel approach of Paragraph 3.3.1 and the ideas of the variational relaxation approach are new
and yield efficient numerics (see Chapter 4), and for another thing the Bryson-Denham-Dreyfus approach
is expected to be beneficial. In order to see that, it is necessary to consider the context:

Up to now the considerations were based upon the following insight. By choosing one of the shape
gradient conditions (3.3p)–(3.3q) and by relaxing one boundary condition, auxiliary shape optimization
problems can be formulated. Evaluation of the corresponding merit functions requires to solve a remain-
ing PDAE, which fortunately can be reduced to a more simple coupled boundary problem (cf. (3.6) and
(3.14)). However, this reduction is due to the very simple structure of the model problem and cannot
be expected to be possible in more complex situations. In the context of optimal control problems with
several states and/or controls, one usually has to make the assumption, that within the active set only
one state/control constraint is active. Hence, the active constraint does not provide sufficient information
to determine all primal variables in the active set.11 Consequently, it is neither possible to reduce the
optimality system to a subproblem in the inactive set J nor to eliminate the algebraic conditions then.

These considerations indicate, that the significant reduction of the free boundary PDAE (3.3) is represen-
tative for a small class of optimal control problems only. Neglecting the strict inequality constraint one
recognizes that the optimality system possesses properties both of free boundary problems and of PDAE
(cf. Section 2.7) and thus one has to cope with the specific difficulties of both disciplines. In particular,
it was shown in Proposition 6 that the BDD approach yields a double index reduction and therefore the
corresponding optimality system may be solved more easily. Or, to put it in a nutshell, the real capabil-
ity of the BDD approach cannot be illustrated by means of the very simple model problem, which was
chosen here in order to keep theory as easy a possible.

Moreover, the ideas of the (variational) relaxation approach and the reduced/bilevel approach essentially
benefit from the fact that the optimality system (3.3) cannot only be reduced at all, but that reduction
yields linear systems like (3.6) and (3.14). If, for instance, the state equation of the original model problem
were semilinear, the corresponding reduced free PDAE would contain this semilinear equation. Hence,
assembling one of the cost functionals K.

. or K.
. and its derivative would require to solve a semilinear

boundary value problem in each iteration of a solution algorithm. From the point of view of optimization
in vector bundles (cf. Paragraph 2.6.3) this means that the computation of the next iterate, which has to lie
in the graph the geometry-to-solution operator (or some similar object), is very expensive in this situation.
Consequently, it might be more suitable to solve the equation inexactly or even to treat all variables as
equal and use a total linearization method which does not bother whether the boundary value problem
is linear or not; cf. Paragraph 3.3.3.

3.3.3 Perspective from Lagrange approach

As already indicated another possible approach to construct a Newton scheme which solves the equation
part of optimality system (3.3) is the idea of total linearization (sometimes called shape linearization). This
method was originally invented to solve free boundary problems; cf. [111, 105, 104]. In view of the
analysis of Paragraph 3.3.2 there are two different starting points for a total linearization. For one thing
it is possible to linearize the whole free boundary PDAE (this is the equation part of (3.3)) (full total
linearization approach) and for another thing one can reduce the free PDAE as far as possible, hence obtains
a free boundary problem and linearizes afterwards (reduced total linearization approach). Both ideas are
addressed in the following. They can be classified as ”first discretize, then optimize“ all-at-once solvers,
which were presented in the Introduction on page 1f.

The total linearization approach is based on the idea of treating function space variables and the shape
variable as equal. This is similar to the Lagrange approach of Section 2.4, which does not induce a
hierarchical distinction between the variables, as the reduced approach does. Hence, applying total lin-
earization to the whole free boundary PDAE is the same as constructing a Lagrange-Newton method for
the Lagrangian (2.63). In order to do so, one requires second order derivatives of the Lagrangian; cf. for
instance [131]. As already discussed in Paragraph 2.4.2 the variables of the Lagrangian are independent

11Note that, in contrast, the state constraint of the simple model problem fixes the state ȳB = ymax
min and the corresponding BDD

control law fixes the control ūB = −∆ymax
min + ymax

min in the candidate active set B and consequently all primal variables are fully
determined.
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and hence one has to derive partial derivatives only. This fact considerably simplifies the computation,
but nonetheless the produced expressions are longish. Since their exact wording is of minor interest here,
they are derived in Appendix E.

The derivatives can be simplified by taking into account some properties of the optimal solution and
substituting them into the formulae. In particular, one can get rid of terms which are very difficult if not
impossible to access by means of finite element discretizations as for instance ∂

J
nnn(yJ − ymax

min ). A Newton
scheme based upon such kind of simplified second order information proved to be efficient in the context
of free boundary problems (cf. [104, ISL Algorithm, p. 61]) and is expected to perform comparably in the
context of set optimal control problems. This approach is not followed up within this thesis though being
worth it.

A major difference to the perspective of the reduced approach (Paragraph 3.3.1) and the relaxation ap-
proach (Paragraph 3.3.2) is the series of iterates produced by a Lagrange-Newton scheme. The iterates are
not constrained to the graph of the geometry-to-solution operator and consequently the optimum can be
approached from additional directions in the vector bundle E on the manifold X (A); cf. Paragraph 2.6.3.

The reduced total linearization approach, which starts from a fully reduced reformulation of the free
boundary PDAE, is a hybrid of both perspectives. The reduced degrees of freedom, i. e. certain alge-
braic constraints, are always satisfied, whereas all remaining conditions are simultaneously relaxed. For
convenience, this reduced total linearization method is illustrated in more detail here. The fully reduced
reformulation of the free boundary PDAE is given by

−∆ȳI + ȳI +
1
λ

p̂I = ud in I , (3.21a)

∂nȳI = 0 on Γ, (3.21b)
ȳI |γ = ymax

min |γ on γ, (3.21c)

∂
I
n ȳI = ∂

I
nymax

min on γ, (3.21d)

−∆ p̂I + p̂I − ȳI = −yd in I , (3.21e)

∂n p̂I = 0 on Γ, (3.21f)
p̂I |γ = pmax

min |γ on γ, (3.21g)

A variational formulation reads∫
I
∇ȳI ·∇φ + (ȳI +

1
λ

p̂I − ud) φ−
∫

γ
∂
I
nymax

min φ = 0, ∀φ ∈ H1(I),∫
I
∇ p̂I ·∇ϕ + ( p̂I − ȳI + yd) ϕ = 0, ∀ϕ ∈ H1

γ(I) := {ϕ ∈ H1(I) | ϕ|γ = 0},∫
γ
(ȳI − ymax

min )ψ = 0, ∀ψ ∈ H1/2(γ),∫
γ
( p̂I − pmax

min )ψ = 0, ∀ψ ∈ H1/2(γ).

Hence, one has to solve the following Newton equation in the variables V, δy and δp in each iteration of
a total linearization method, where the current iterate is given by (J , y, p)∫
J
∇δy ·∇φ + (δy +

1
λ

δp) φ

+
∫

β

(
∇y ·∇φ + (y +

1
λ

p− ud) φ− ∂nnymax
min φ− ∂

J
n ymax

min ∂
J
n φ− κJ ∂

J
n ymax

min φ
)

V · nJ

= −
( ∫
J
∇y ·∇φ + (y + p− ud) φ−

∫
β

∂
J
n ymax

min φ
)

,∫
J
∇δp ·∇ϕ + (δp − δy) ϕ +

∫
β

(
∇p ·∇ϕ︸ ︷︷ ︸
∂
J
n p ∂

J
n ϕ

+(p− y + yd) ϕ︸︷︷︸
=0

)
V · nJ

= −
∫
J
∇p ·∇ϕ + (p− y + yd) ϕ, (3.22)∫

β
δy ψ +

(
∂
J
n (y− ymax

min ) + κJ (y− ymax
min )

)
ψ V · nJ = −

∫
β
(y− ymax

min )ψ),∫
β

δp ψ +
(

∂
J
n (p− pmax

min ) + κJ (p− pmax
min )

)
ψ V · nJ = −

∫
β
(p− pmax

min )ψ.
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The left hand side of this system can be simplified when using relations that are satisfied at the optimal
configuration (I , ȳI , p̂I ). In particular, these are y|β = ymax

min |β, ∂
J
n y = ∂

J
n ymax

min and p|β = pmax
min |β, and one

obtains∫
J
∇δy ·∇φ + (δy +

1
λ

δp) φ

+
∫

β

(
∇βymax

min ·∇βφ + (ymax
min +

1
λ

pmax
min − ud) φ− ∂nnymax

min φ− κJ ∂
J
n ymax

min φ
)

V · nJ

= −
( ∫
J
∇y ·∇φ + (y + p− ud) φ−

∫
β

∂
J
n ymax

min φ
)

,∫
J
∇δp ·∇ϕ + (δp − δy) ϕ +

∫
β

∂
J
n p ∂

J
n ϕ V · nJ = −

∫
J
∇p ·∇ϕ + (p− y + yd) ϕ,∫

β
δy ψ = −

∫
β
(y− ymax

min )ψ,∫
β

(
δp + ∂

J
n (p− pmax

min )V · nJ
)

ψ = −
∫

β
(p− pmax

min )ψ).

Furthermore, due to integration by parts on the interface β [151, Pro. 2.67 and 2.68], there holds∫
β
∇βymax

min ·∇βφ− ∂nnymax
min φ− κJ ∂

J
n ymax

min φ =
∫

β
−∆ymax

min φ.

If this relation is used formally (this means ignoring the V · nJ -factor above)12 and if one applies

0 = −∆ymax
min + ymax

min − ūA = −∆ymax
min + ymax

min +
1
λ

pmax
min − ud, in A

one ends up with ∫
J
∇δy ·∇φ + (δy +

1
λ

δp) φ = −
( ∫
J
∇y ·∇φ + (y + p− ud) φ−

∫
β

∂
J
n ymax

min φ
)

,∫
J
∇δp ·∇ϕ + (δp − δy) ϕ +

∫
β

∂
J
n p ∂

J
n ϕ V · nJ = −

∫
J
∇p ·∇ϕ + (p− y + yd) ϕ),∫

β
δy ψ = −

∫
β
(y− ymax

min )ψ, (3.23)∫
β

(
δp + ∂

J
n (p− pmax

min )V · nJ
)

ψ = −
∫

β
(p− pmax

min )ψ.

Hereby, a system is found, which seems to be accessible by means of standard finite elements.

3.4 Algorithms for set optimal control problems

The in-depth discussion of the first order optimality conditions of the set optimal control problem (2.30)
in Section 3.3 contains different ideas of algorithms. Roughly speaking they can be divided in three
groups

• reduced Newton methods,

• trial methods and

• total linearization methods.

Each of them is addressed in the subsequent paragraphs. Of course there are many more suitable algo-
rithms and in particular more sophisticated ones, but the goal of the algorithmic and numerical analysis
within this thesis is only to demonstrate, that it is possible to construct efficient numerics for solving
state constrained optimal control problems based upon the ideas of BDD approach and shape/topology
optimization. In particular, important questions like convergence analysis and error analysis remain
unattained and globalization is touched on within the discussion of the a posteriori step on page 111f.
only.

12The result can be achieved rigorously when homogenizing the free boundary problem (3.21) before shape linearizing it.
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All in all, advantages and drawbacks of the algorithmic approaches are:
• The algorithms can be formulated without discretization in contrast to the primal-dual active set

strategy, where the measure nature of the multiplier µ inhibits a formulation in function space.
• The algorithms do not contain regularization parameters and hence additional regularization loops

are not necessary.
• Since the algorithms apply elements of shape calculus only, one cannot expect that they are capable

to detect the right topology of the active set and therefore they cannot be globally convergent.
Despite this, numerical tests show that the algorithms are able to handle certain changes of the
topology of the active set during the iteration.

• The algorithms are essentially based on Assumption 1 of the active set. Thus, they cannot be applied
to problems, e. g., where (parts of) the active set consists of sets of zero measure.

3.4.1 Reduced Newton methods

The group of reduced Newton methods shall collect schemes, which are based upon a hierarchy of vari-
ables and hence it is related to the reduced approach of Section 2.3, i. e. black-box solvers. In particular,
these algorithms form the ideas from paragraphs 3.3.1 and 3.3.2. At this, the Newton’s method, which is
designed to solve the bilevel optimization problem, and the variational relaxation approaches emphasize
different perspectives. The first approach emphasizes the bilevel optimization structure and thus does
not bother how the inner optimization problem is solved and does not depend on an equivalent char-
acterization of the set parametrized optima of the inner optimization problem by means of an equation
system. In contrast, the latter approaches emphasize the free boundary PDAE character of the optimality
system, which yields more flexibility to choose an equation to be relaxed.

Algorithm 1 (Newton scheme for bilevel optimization problem):
Let F be the objective of the bilevel optimization problem (2.37), (2.36).

1. Set i := 1 and choose an initial guess Bi ∈ O.
2. Loop on i

a) Solve the inner optimization problem (2.37) for the set Bi and extract p̂Ji |βi = −λ (ūJi − ud)|βi

in order to be able to assemble ∇F (Bi) and ∇2F (Bi); cf. (2.55) and (2.85).
b) Solve the (variational) Newton equation

∇2F (Bi)[Wi, V] = −〈∇F (Bi) , V〉 ∀V ∈ V (3.24)

in the variable Wi ∈ V .
c) Perform the Newton update

Bi+1 := R(Wi)

where R : TH(Ω)→ H(Ω) is a retraction.
d) Stop the loop, if the update velocity field Wi is small enough; otherwise set i := i + 1.

End of loop
3. Check if the strict inequality constraint ymin < ȳJi+1

< ymax and the sign conditions of the multipli-
ers (cf. Corollary 6) are fulfilled. Stop if the check is passed; otherwise make another initial guess
Bi ∈ O and start all over again.

Algorithm 2 (Newton scheme for variational relaxation approaches):
Choose one of the shape gradient conditions (3.3p)–(3.3r) to use and one of the boundary conditions of
the corresponding free boundary PDAE (3.3) to be relaxed. In addition, choose a functional K in the
style of (3.15) or (3.16). Reduce the remaining part of the system and provide the shape semiderivative
DK(.)[W, .] (which either requires a shape adjoint system in case of a Hadamard derivative or a BVP for
the local shape derivatives).

1. Set i := 1 and choose an initial guess Bi ∈ O.
2. Loop on i
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a) Solve the remaining boundary value problem (and if available the corresponding adjoint sys-
tem) for the set Bi in order to assemble K(Bi)[.] (and DK(Bi)[., .]).

b) Solve the variational Newton equation

DK(Bi)[Wi, V] = −K(Bi)[V], ∀V ∈ V (3.25)

in the variable Wi ∈ V .
c) Perform the Newton update

Bi+1 := R(Wi)

where R : TH(Ω)→ H(Ω) is a retraction.
d) Stop the loop, if the update velocity field Wi is small enough; otherwise set i := i + 1.

End of loop
3. Solve the remaining part of the first order optimality system and check if the strict inequality con-

straint ymin < ȳJi+1
< ymax and the sign conditions of the multipliers (cf. Corollary 6) are fulfilled.

Stop if the check is passed; otherwise make another initial guess Bi ∈ O and start all over again.

Remarks on the initialization of the algorithms:

1. In order to obtain a reasonable initial guess B1 it may be useful to solve the state-unconstrained
optimal control problem and to mark those subregions as active, where the state violates the con-
straints. In particular, one can stop the algorithm if the optimal solution of the unconstrained prob-
lem is already feasible for the constrained version.

2. Alternatively, one can start with a candidate set C, which is obtained by means of the formula of µ
Å

,
cf. (2.4c) and (2.4d):

Cmax :=
{

x ∈ Ω
∣∣∣ cmax = λ(−∆2ymax + 2∆ymax − ∆ud + ud)− ymax + yd ≥ 0

}
, (3.26a)

Cmin :=
{

x ∈ Ω
∣∣∣ cmin = λ( ∆2ymin − 2∆ymin + ∆ud − ud) + ymin − yd ≥ 0

}
. (3.26b)

These sets contain the (optimal) active setsAmax andAmin, respectively (at least for strictly comple-
mentary problems), since they are the maximal subsets of Ω where µmax

Å
and µmin

Å
can fulfill their

sign conditions.

Remarks on the preparing step 2a:

3. Solving the inner optimization problem in step 2a is equivalent to solve its first order necessary
conditions in the present context, since the optimization problem is strictly convex.

4. It is not necessary to solve the whole inner optimality system (3.3a)–(3.3n) in step 2a. It suffices to
know p̂Ji (= p̄Ji , cf. Corollary 6) in order to assemble the shape semiderivatives. This requires to
solve the reduced inner optimality system (3.21) only (cf. Lemma 7 and Paragraph 3.3.2). Doing so,
Algorithm 1 and Algorithm 2 are more or less equal.

5. If the model problem were more complicated – for instance equipped with a semilinear state equa-
tion – sufficiency and linearity of the first order conditions would be lost. Nonetheless, it is possible
to use them, but it may be more efficient to solve them inexactly then. Moreover, it may be suitable
to use the (possibly inexact) solution of the optimality system from the previous iteration as initial
guess. However, it is necessary to transport it to the current geometry; also cf. step 2c of Algorithm 5
and the corresponding remarks.

Remarks on solving the Newton equation in step 2b:

6. The Newton equation (3.24) does not contain the second order shape semiderivative d2F (Bi; Wi, V)
as one might expect at first glance; cf. Section 3.2 and the detailed analysis of Newton’s method
in [1, Chp. 6]. In particular, the Newton algorithm is proposed with the Hessian operator there
instead of the second covariant derivative. A comparison with (2.85) reveals however, that there
is no direct access to the shape Hessian nor to the second covariant derivative ∇2F (Bi) due to
the p′J [.]-term in it. Consequently, solving the Newton equation (3.24) actually means solving the
equation simultaneously to the coupled system (2.48) which determines the local shape derivatives.
The variational Newton equation (3.24) reads in detail
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−∆y′Ji
[Wi] + y′Ji

[Wi] = −
1
λ

p′Ji
[Wi] in Ji,

∂ny′Ji
[Wi] = 0 on Γ,

y′Ji
[Wi] = 0 on βi,

∂
J
n y′Ji

[Wi] = Wi · nJi

1
λ
(pmax

min |βi − p̂Ji |βi ) on βi,

−∆p′Ji
[Wi] + p′Ji

[Wi] = y′Ji
[Wi] in Ji,

∂n p′Ji
[Wi] = 0 on Γ,

∫
βi

(
2 p′Ji

[Wi] +
(

2 ∂
J
n ( p̂Ji − pmax

min ) + κJi ( p̂Ji − pmax
min )

)
Wi · nJi

)
( p̂Ji − pmax

min )V · nJi

= −
∫

βi

( p̂Ji − pmax
min )

2V · nJi , ∀V ∈ V . (3.27)

7. This reasoning can be carried over to the Newton equation of Algorithm 2. The left hand side DK
is to be understood similar to a second covariant derivative. In particular, the parts of the shape
semiderivative, which are due to differentiation of the variational vector field V are omitted, as it
was done in order to obtain (2.85). For instance in the case of Kp

p the Newton equation is the same
as in Algorithm 1 and hence one obtains (3.27). Moreover, using K∂n

p yields (3.10) and∫
βi

(
∂
J
n y∗i

′[Wi]−
1
2

κJi ∂
J
n (y

∗
i − ymax

min )Wi · nJi

)
∂
J
n (y

∗
i − ymax

min )V · nJi

= −1
2

∫
βi

(
∂
J
n (y

∗
i − ymax

min )
)2 V · nJi .

The situation is reversed in Algorithm 2, if a Hadamard form of the derivative has been computed
by means of shape adjoint variables; cf. for instance (3.11). In that case, assembling the Newton
equation (3.25) requires solving the shape adjoint system in advance and thus saves some compu-
tational effort in direct comparison to an approach, where the system of local shape derivatives has
to be solved simultaneously to the Newton equation.

8. The proposed Newton Algorithm 1 is interfered with the not definite second covariant derivative
of the reduced objective F (cf. Paragraph 2.5.1), since at the optimum both the left and the right
hand side of the Newton equation are equal to zero. As long as the equation can be solved without
discretization, there should arise no problems in determining the update Wi · nJi , since the conver-
gence rate of the gradient to zero is higher, than those of the second covariant derivative.13 But this
fact is not necessarily reflected on the finite dimensional level, if the (finite element) approximation
is not chosen carefully enough. Moreover, one is confronted with a reduced convergence speed; see
Paragraph 4.2.4. Nonetheless, there are two nearby workarounds, which are already effective on
the continuous level.
The first is to informally cancel out one ( p̂Ji − pmax)-factor in the Newton equation (3.24) and re-
spectively in (3.27). This yields∫

βi

(
2 p′Ji

[Wi] +
(

2 ∂
J
n ( p̂Ji − pmax

min ) + κJi ( p̂Ji − pmax
min )

)
Wi · nJi

)
V · nJi

= −
∫

βi

( p̂Ji − pmax
min )V · nJi , ∀V ∈ V . (3.28)

A second idea is to compute the shape semiderivative of

− 1
2λ

∫
β
( p̂J − pmax)V · nJ

instead of dF (B; V) and afterwards extract the second covariant derivative. This reasoning re-
sults in∫

βi

(
p′Ji

[Wi] +
(

∂
J
n ( p̂Ji − pmax

min ) + κJi ( p̂Ji − pmax
min )

)
Wi · nJi

)
V · nJi

= −
∫

βi

( p̂Ji − pmax
min )V · nJi , ∀V ∈ V . (3.29)

One immediately recognizes the variational relaxation approach due to (3.16a) here.
13This is similar to when applying a Newton’s method to minimize the function x 7→ x4. The Newton equation then reads

12 x2
i δi = −4x3

i .
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Both ideas aim at coping with the difficulties that arise out of the square in the first order shape
semiderivative, namely that the second covariant derivative vanishes at the optimum. Since p′J [W]
and p̂J − pmax

min vanish there, the workarounds are expected to work unless the crucial Neumann
derivative term in the left hand side of (3.28), and respectively of (3.29), is not zero there, too. This
condition can be traced to a condition to µγ

∂
I
n( p̂I − pmax

min ) = 0
(B.9a)⇐=⇒ ∂

I
n( p̄I − pmax

min ) = 0
(2.60a), (2.46)⇐=====⇒
(2.4a), (2.4b)

∂
I
n(ptrad

I − ptrad
A ) = 0

(2.4j)⇐=⇒
(2.4i)

µγ = 0.

Hence paradoxically, one has to expect convergence problems of Algorithm 1 and of the version
of Algorithm 2 which is based on K

p
p, if the original model problem possesses a regular Lagrange

multiplier µ. By means of a special trial algorithm this behavior can be confronted; cf. the 3rd item
on page 113.

In view of the detailed analysis of different ideas of path following in Section 3.1, it is indicated to com-
ment on the Newton update step 2c.

9. Solving the Newton equation in step 2b yields an increment of the set Bi in terms of a velocity
field Wi. However, one has little information about this vector field. In particular, one gets the
normal component on the current interface βi only. This results fits in the abstract perspective on
shape calculus of Section 2.6; cf. the 14th item of the discussion on page 77 in particular.

10. It is very common in the fields of shape optimization and free boundary problems to apply schemes
for tracking the interface, which is driven by some velocity field W. The time dependent evolution
of the interface is of particular interest in many practical applications like the simulation of free
surfaces in fluid dynamics or of phase boundaries in the context of melting and solidification pro-
cesses (Stefan problem) and phase separation (Cahn-Hilliard equation); see for instance [50]. However,
tracking/evolution of the interface is not an issue in the present context, since the aim is to get the
optimal active set no matter how the intermediate iterates look like. Consequently, there is a bias
for a retraction based Newton update, for its lower computational cost in comparison with level
set or fast marching methods. However, it is beyond the scope of this thesis to develop efficient
retractions on the continuous level and the developed ideas remain restricted to the finite element
discretization; cf. Paragraph 4.1.2.

It is a matter of fact, that Newton’s method is only locally convergent and that one has to expect more
than a unique critical shape of the reduce shape functional F and respectively of the functional K, though
the original model problem (2.1) has a unique optimal solution. Consequently, the a posteriori step 3 is
mandatory.

11. In view of the possibility to solve the reduced inner optimality system (3.21) instead of the whole
inner optimality system (3.3) (cf. the 4th item above) the remaining parts (3.7)–(3.8) are to be evalu-
ated only, if the stop criterion of step 2d is fulfilled and the a posteriori criteria are to be checked in
step 3.

12. Numerical practice indicates that it is sufficient to solve the equation part of the first order nec-
essary conditions (3.3) and to check afterwards if the inequality constraints are fulfilled (see Para-
graph 4.2.3). This finding should be regarded in the context of the attempt to prove, that the critical
points of the reduced objective are isolated (Paragraph 2.5.2) and that the neglected strict inequality
constraint (3.3o) has a global impact on optimality (Paragraph 2.2.4) only.
This global impact can be done justice to, when augmenting the corresponding functional as dis-
cussed in Paragraph 3.1.1. However, it seems to be inefficient to augment the reduced shape func-
tionalF with a penalty term of type (3.2), since this term induces additional terms of the sum within
the first order shape derivative, which cause additional inhomogeneities in the shape adjoint system
(2.53).14 Hence, the first order shape semiderivative cannot be formulated without shape adjoints

14In particular, there occurs c
(

max{0, ȳJ − ymax} −max{0, ymin − ȳJ }
)

on the left hand side of (2.53e).
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any longer (cf. Theorem 7) and local shape derivatives of the shape adjoint variables are required
in order to derive the second order shape semiderivative of the augmented shape functional. All in
all, the Newton equation would call for solving the systems of local shape derivatives (y′J , p′J ) and
of local shape derivatives of the shape adjoint variables simultaneously, which is expected to be too
expensive.

Hence, it is indicated to use augmentation in the context of a steepest descent method for globaliza-
tion and to switch over to the Newton’s method when the iterates have come close enough to the
optimum.

13. If the algorithm restarts for an a posteriori criterion being not fulfilled, it is typically reasonable
to choose the subset where the current state violates or meets the state constraint as guess for the
active set. This reasoning is comparable to the primal part of the update of a primal-dual active
set strategy (see Section 3.5) and enables topology changes of the active set. In particular, new
connection components can be added to the current iterate.

A shrink of the active set (for instance remove a connection component) can be achieved by means
of two different ideas. For one thing intersection of the current active set with the candidate set C
(cf. the 2nd item) eliminates all parts which cannot be optimal (at least for strictly complementary
problems) and for another thing withdrawal of subregions of negative sign of the Lagrange multi-
pliers, which corresponds to the dual part of a step of a primal-dual active set strategy.

3.4.2 Trial methods

Obviously it would be desirable to reduce the computational effort of the Newton step 2b in algorithms 1
and 2 to the computation of Wi without having to solve the system of local shape derivatives (see e. g.
(3.27) and (3.10)). On closer examination of the different boundary value problems of local shape deriva-
tives one recognizes that the variables typically are zero at the optimum, since the system is homogeneous
then. Consequently – provided that local shape derivatives of the variables depend continuously on the
shape – the corresponding terms on the left hand side of the Newton equations are close to zero, if Bi is
close to the optimal active set.

These considerations give rise to so called trial algorithms; cf. [104, 156, 157]. They can be interpreted as
fix point methods, which are characterized by neglecting the implicit shape dependency of the objects
whose critical point ought to be found. Thus, they can also be interpreted as using the partial shape
derivatives that were introduced in Paragraph 2.4.2. One obtains the following simplified algorithms

Algorithm 3 (Trial algorithm for bilevel optimization problem):
Let F be the objective of the bilevel optimization problem (2.37), (2.36).

1. Set i := 1 and choose an initial guess Bi ∈ O.
2. Loop on i

a) Solve the inner optimization problem (2.37) for the set Bi and extract p̂Ji |βi = −λ (ūJi − ud)|βi
in order to be able to assemble the trial equation (3.30).

b) Solve the trial equation in (3.30) in the variable Wi ∈ V .
c) Perform the trial update

Bi+1 := R(Wi)

where R : TH(Ω)→ H(Ω) is a retraction.
d) Stop the loop, if the update velocity field Wi is small enough; otherwise set i := i + 1.

End of loop
3. Check if the strict inequality constraint ymin < ȳJi+1

< ymax and the sign conditions of the multipli-
ers (cf. Corollary 6) are fulfilled. Stop if the check is passed; otherwise make another initial guess
Bi ∈ O and start all over again.
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Algorithm 4 (Trial algorithm for variational relaxation approaches):
Choose one of the shape gradient conditions (3.3p)–(3.3r) and relax one of the boundary conditions of
the corresponding free boundary PDAE (3.3). In addition, choose a functional K in the style of (3.15) or
(3.16). Reduce the remaining part of the system and provide the shape semiderivative DK(.)[W, .].

1. Set i := 1 and choose an initial guess Bi ∈ O.
2. Loop on i

a) Solve the remaining boundary value problem for the set Bi in order to assemble K(Bi)[.].
b) Solve the trial equation (see e. g. (3.31)) in the variable Wi ∈ V .
c) Perform the trial update

Bi+1 := R(Wi)

where R : TH(Ω)→ H(Ω) is a retraction.
d) Stop the loop, if the update velocity field Wi is small enough; otherwise set i := i + 1.

End of loop
3. Solve the remaining part of the first order optimality system and check if the strict inequality con-

straint ymin < ȳJi+1
< ymax and the sign conditions of the multipliers (cf. Corollary 6) are fulfilled.

Stop if the check is passed; otherwise make another initial guess Bi ∈ O and start all over again.

Likewise the Newton methods, the different steps of these two algorithms require some analysis.
1. The trial equation (i. e. the simplified Newton equation) of Algorithm 3, which corresponds to (3.27),

then reads∫
βi

(
2 ∂
J
n ( p̂Ji − pmax

min ) + κJi ( p̂Ji − pmax
min )

)
( p̂Ji − pmax

min )Wi · nJi V · nJi

= −
∫

βi

( p̂Ji − pmax
min )

2 V · nJi , ∀V ∈ V , (3.30)

whereas the trial equations of the relaxed approaches due to K∂n
p , Kq

q and K
p
p are given by∫

βi

−κJi

(
∂
J
n (y

∗
i − ymax

min )
)2 Wi · nJi V · nJi = −

∫
βi

(
∂
J
n (y

∗
i − ymax

min )
)2 V · nJi , ∀V ∈ V (3.31a)∫

βi

(
2 ∂
J
n q̂Bi + κJi q̂Bi

)
q̂Bi Wi · nJi V · nJi = −

∫
βi

q̂2
Bi

V · nJi , ∀V ∈ V (3.31b)

and (3.30) since K
p
p = DF . Obviously, the trial equation (3.31a) of the relaxation approach due

to K∂n
p is not applicable, since the normal component of velocity field Wi is always reciprocal to the

curvature κJi and thus no reasonable update can be expected. Consequently, there is no guaran-
tee for a given relaxation approach to yield a working trial algorithm and the corresponding trial
equations have to be analyzed carefully.

2. Of course trial algorithms can be combined with the two ideas of avoiding the indefinite second
order derivative at the optimum, which were developed in the 8th item on page 110.

3. The paradox situation, that the Newton algorithms 1 and 2 may get into trouble if the multiplier µ
is regular (cf. the 8th item on page 110), can be encountered by means of another variational relax-
ation approach. Thereto, choose the shape gradient condition (3.3p) and use the weak continuity
condition (3.3k) to deduce

p̂A |γ = pmax
min |γ.

Now relaxing the weak continuity of the adjoint states, one has to solve

0 = Kτ
p(B)[V] :=

1
2

∫
β
( p̂J − p̂B )

2V · nJ , ∀V ∈ V (3.32)

(subject to the usual strict inequality constraint) where p̂J and p̂B are the solutions of the boundary
value problems (3.14) and

−∆ p̂B + p̂B = ymax
min − yd in B̊,

p̂B |β = pmax
min |β on β.
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The shape semiderivative of the functional is given by

DKτ
p(B)[W, V] =

1
2

∫
β

(
2
(

p′J [W]− p′B [W]
)

+
(
2 ∂
J
n ( p̂J − p̂B ) + κJ ( p̂J − p̂B )

)
W · nJ

)
( p̂J − p̂B )V · nJ , (3.33)

and the local shape derivatives p′J [W] and p′B [W] fulfill (2.48) and respectively

−∆p′B [W] + p′B [W] = 0, in B,

p′B [W]|β = −∂
B
n ( p̂B − pmax

min )W · nB , on β.

By means of (3.3f), (3.3n) and the definition of pmax
min (see (2.46)) there holds

p̂B − pmax
min = q̂B in B̊.

Hence, one obtains

p′B [W]|β = ∂
J
n q̂BW · nJ .

Consequently, the shape semiderivative can equivalently be written as

DKτ
p(B)[W, V] =

1
2

∫
β

(
2 p′J [W]

+
(
2 ∂
J
n ( p̂J − ( p̂B + q̂B )︸ ︷︷ ︸

=pmax
min

) + κJ ( p̂J − pmax
min )

)
W · nJ

)
( p̂J − pmax

min )V · nJ

= DK
p
p(B)[W, V].

Hence, the Newton Algorithm 2 applied to K
p
p and to Kτ

p, respectively, is the same. However, there
is a difference when using the Algorithm 4, since the trial equations differ. Neglecting the local
shape derivative terms in (3.33), one ends up with the trial equation∫

βi

(
2 ∂
J
n ( p̂Ji − p̂Bi ) + κJi ( p̂Ji − pmax

min )
)
( p̂Ji − pmax

min )Wi · nJi V · nJi

= −
∫

βi

( p̂Ji − pmax
min )

2V · nJi , ∀V ∈ V .

Now applying the two ideas of avoiding indefinite left hand sides (cf. the 8th item on page 110)
yields∫

βi

({2
1

}
∂
J
n ( p̂Ji − p̂Bi ) + κJi ( p̂Ji − pmax

min )
)

Wi · nJi V · nJi

= −
∫

βi

( p̂Ji − pmax
min )V · nJi , ∀V ∈ V . (3.34)

At this point the original goal of creating an algorithm, which can cope with a regular Lagrange
multiplier is reached. In order to see this, the simplified trial equation shall be analyzed at the
optimal configuration A. There holds

∂
I
n( p̂I − p̂A) = ∂

I
n( p̂I − (pmax

min − q̂A))

= µγ + ∂
I
n q̂A .

Hence, the Neumann term on the left hand side of (3.34) vanishes only if both µγ and ∂
I
n q̂A are zero

(note, that both terms are nonnegative). Consequently, the corresponding simplified trial algorithm
is expected to work even if the multiplier µ is regular (i. e. µγ = 0).

Note, that it is very unlikely that ∂
I
n q̂A vanishes as well: according to Corollary 6 the multiplier q̂A

is given as the solution of the boundary value problems

−∆q̂A + q̂A = µmax
Å

in Åmax,

q̂A |γ = 0 on γmax,

−∆q̂A + q̂A = −µmin
Å

in Åmin,

q̂A |γ = 0 on γmin.
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Hence, ∂
I
n q̂A is zero only, if the optimal active set is the solution of a nontrivial free boundary prob-

lem or if cmax and cmin are zero, too. The first case is very unlikely and the second case means that
both the regular and the singular part µ

Å
and µγ vanish simultaneously. This can only happen, if

the state constraint is not active or is completely non strictly complementary.
All in all, the trial method of the discussed relaxation approach is expected to work unless very
specific situations which probably occur only in constructed test examples.

3.4.3 Total linearization methods

The idea of total linearization form Paragraph 3.3.3 suggest the following all-at-once algorithm.

Algorithm 5 (Total linearization method):
Choose the full or the reduced total linearization approach, cf. Paragraph 3.3.3.

1. Set i := 1 and choose an initial guess for the active set Bi ∈ O and for all function variables
symbolized as fi = (yJi , pJi , . . . ).

2. Loop on i
a) Solve the Shape-Newton equation (this is (3.22) in case of the reduced total linearization ap-

proach) in the variables Wi, δ f ,i.
b) Perform the Newton update of the set

Bi+1 := R(Wi)

where R : TH(Ω)→ H(Ω) is a retraction.
c) Perform a Newton update of the function variables. That is to say, at first set

f̃i := fi + δ f ,i

and then transport f̃i from Bi to Bi+1, which yields fi+1.
d) Stop the loop, if the increment (Wi, δ f ,i) is small enough; otherwise set i := i + 1.

End of loop.
3. Solve the remaining part of the first order optimality system if necessary and check if the strict

inequality constraint ymin < ȳJi+1
< ymax and the sign conditions of the multipliers (cf. Corollary 6)

are fulfilled. Stop if the check is passed; otherwise make another initial guess Bi ∈ O and start all
over again.

In view of the analysis of Paragraph 3.3.3 it is possible to use a simplified Shape-Newton equation in
step 2a in order to circumvent problems in view of finite element discretization. This is (3.23) in case of
the reduced total linearization approach.
The Newton update step 2a has to be regarded in the context of function space parametrization and
parallel transport, which were discussed in the 16th item on page 78. Let Fi ∈ H(Ω) be a transformation
induced by Wi such that Fi(Bi) = Bi+1. Then fi+1 is given by fi+1 := f̃i ◦ F−1

i . However, Fi is not
determined uniquely since only the normal component of the velocity field Wi at the interface βi is known
and hence an extension into the bulk of the domain is required; cf. the 19th item on page 80 and the
discussion in Section 3.1 on page 93ff. Consequently, one has to provide a method how to construct the
transformation; cf. the discussion in Paragraph 4.1.3, in particular, on page 125.

3.5 Analysis of the primal-dual active set strategy

The primal-dual active set strategy (PDAS) is a standard algorithm for solving inequality constrained
quadratic optimization problems which typically occur as subproblems in sequential quadratic program-
ming (SQP) [98]. In the context of optimal control of PDEs this algorithm was initially used to solve
control-constrained problems [12]. Later on the method was applied to state-constrained OCPs [13].
However, due to lack of pointwise interpretation of the multiplier µ, this idea requires discretization be-
forehand and one is confronted with a mesh dependent behavior of the algorithm [11]. This disadvantage
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can be handled on the continuous level by means of regularization of OCPs. In particular, there are two
major ideas introduced, namely Lavrentiev regularization, see [158, 126, 142, 125, 143, 29, 92] and Moreau-
Yosida regularization; cf. [94, 95, 96, 97, 87, 127, 88]. Equipped with these enhancements the ordering of the
SQP- and the PDAS-loops can be reversed [97] and the PDAS turned out to be mesh independent [91, 85]
for it being a semi-smooth Newton method and to be very efficient [11, 125, 10].

However, regularization requires to choose a suitable regularization parameter. On the one hand regu-
larization shall be effective and thus the problem shall become easier to solve, but on the other hand the
influence of the regularization on the OCP shall be as weak as possible. Between these two priorities one
has to adjust the regularization parameter and there is no golden rule available. Fortunately, it is possi-
ble to use path-following methods with respect to Moreau-Yosida regularization [86, 87], this means starting
with a strongly regularized problem and iteratively decrease regularization, while using the intermediate
optimal solutions as initial guesses for the next less regular subproblem.

The goal of this Section is to provide some insight into how the PDAS works form a geometrical perspec-
tive and to give a hint, why the Moreau-Yosida regularization performs well. Both aspects allow for a
deeper understanding of the shape optimization/calculus based algorithms from Section 3.4. The basis
of the analysis is the following version of the PDAS.

Algorithm 6 (Unregularized PDAS (informally on continuous level)):

1. Set i = 1 and choose an initial guesses for the active set Bmax
1 and Bmin

1 .
2. Loop on i

a) Solve the coupled system

−∆yi + yi = ui in Ω,

−∆pi + pi = yi − yd + µmax
i − µmin

i in Ω,
λ (ui − ud) + pi = 0 in Ω,

∂nyi = 0 on Γ,
∂n pi = 0 on Γ,

µmax
i = 0 in J max

i := Ω \ Bmax
i ,

µmin
i = 0 in J min

i := Ω \ Bmin
i ,

yi = ymax in Bmax
i ,

yi = ymin in Bmin
i .

b) Generate new active sets

Bmax
i+1 :=

(
Bmax

i ∪
{

x ∈ Ω
∣∣ yi(x) > ymax(x)

})
\
{

x ∈ Ω
∣∣ µmax

i (x) < 0
}

Bmin
i+1 :=

(
Bmin

i ∪
{

x ∈ Ω
∣∣ yi(x) < ymin(x)

})
\
{

x ∈ Ω
∣∣ µmin

i (x) < 0
}

.

c) Stop if Bmax
i+1 = Bmax

i and Bmin
i+1 = Bmin

i .
Otherwise set i := i + 1 and restart the loop.

End of loop.

This algorithm is to be understood informally since the generation of new active sets in step 2b cannot
be carried out on the continuous level, because the multipliers µmax

i and µmin
i do not possess a pointwise

interpretation for them being measures. Nonetheless, one can recognize the essential mechanisms.

3.5.1 Two drawbacks of the primal-dual active set strategy

In order to understand strengths and weaknesses of the PDAS it is valuable to have an insight in is qual-
itative behavior. The most relevant fact is to know how the update of the active sets works. Obviously,
primal conditions (these are the state constraints) yield growth of the current guess of the active sets,
whereas a shrink is due to the sign conditions of the multipliers.

Due to Proposition 3 one can expect both multipliers µmax
i and µmin

i to decompose into a regular part in
the interior of the current active set and a singular part which is concentrated on the interface. Moreover,
the regular parts are known to be equal to cmax and cmin (cf. (2.3a) and (2.3b)). Consequently, the regular
parts of the multipliers can yield a shrink of the sets Bmax

i and Bmin
i only if they contain points which are

outside the candidate sets Cmax and Cmin; see (3.26a) and (3.26b). Vice versa, if the optimal active setsAmax
and Amin are proper subsets of candidate sets the PDAS will work as follows. Within the first iteration
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the sign conditions of the regular part of the multipliers restrict the initial guess to the candidate set. In
all following iterations further diminishment of the active sets are only due to the singular part of the
multipliers (unless some points outside the candidate sets were added by mistake). Hence, the informal
Algorithm 6 gets into big trouble then. For one thing the singular part cannot be evaluated pointwisely
and even if an evaluation were possible the algorithm would stagnate since the current guess of the active
set can only be decremented by null sets (i. e. the interface).
Hence, it is worthwhile to have a closer look on a finite element discretized counterpart of Algorithm 6.
Actually, it would be appropriate to discretize the singular and the regular component of the multipliers
separately. However, this would yield too many degrees of freedom, since there is no additional condition
to compensate for the doubled number of variables on the discretized interfaces. Thus, singular and
regular part have to be discretized jointly. This approach results in a big deflection of the discretized
multiplier at the interfaces; cf. [10, Kap. 12]. Interestingly enough this deflection does not only possess
the qualitative interpretation to be the singular part of the multiplier. The integral over a cross section
(this is a cut in normal direction on the interface) is roughly equal to the normal-kink of the adjoint state
at the interface [10, Kap. 12.2]. Consequently, the character of the singular part µγ of being a measure,
which is responsible for the kink of the adjoint state (see (2.4i), (2.4j)), is reflected on the discretized level.
Hence, it is justified to check the sign of the deflection within update step 2b of the discretized counterpart
of Algorithm 6. All in all, it is possible to shrink the size of the candidate active sets Bmax

i and Bmin
i on

the discretized level even if they are proper subsets of the candidate sets, since the singular part is at least
blurred to one mesh size.
This finding explains both why the discrete PDAS indeed has the ability to converge and why it is mesh
dependent: the algorithms has to iterate mesh layer by mesh layer in order to find the right active set
within the candidate set.
It is also possible to give plausible arguments why the Moreau-Yosida regularization is successful. Nu-
merical practice confirms that it basically blurs the singular part of the multiplier, such that it is no longer
concentrated on one or two mesh layers along the interface. The amount of this smoothing is indepen-
dent of the chosen mesh size and consequently checking the sign condition of the (regularized) multiplier
may yield a diminishment of the current guess for the active set which is not only concentrated near the
interface. In other words, more progress – and, in particular, mesh size independent progress – can be
achieved within each iteration.
Furthermore, path following ideas can be understood from this point of view as well. Starting with a
strong regularization – that is starting with strongly blurred µγ – enables quick and large deformations
of the candidate active sets. However, it inhibits an exact localization of the interface, which is hidden
somewhere underneath the approximation of the singular part of the multipliers. Cutting back regular-
ization sharpens the multiplier and yields a more precise localization of the interface. Thus, the path
following methods represent highly sophisticated schemes of balancing fast progress and accurate iden-
tification of the active set.
However, the primal-dual active set strategy has difficulties with another type of phenomenon called
degeneracy; cf. [11, 12]. This is the inability to determine if some grid points are part of the active set or
not. This situation occurs if the distance between the optimal state and the state constraint is very small in
some subregions of the optimal inactive set and typically yields chattering of the active sets Bi. Typically,
this behavior prevents the algorithm from converging fast. The autors of the cited papers present coping
strategies which basically are enhanced stopping criteria.

3.5.2 Benefits of the new approach

The specific drawbacks of the PDAS, in particular the need for regularization and the treatment of the
state constraint, which may lead to a slowdown of convergence (degeneracy), are not an issue for the
shape optimization/calculus based algorithms from Section 3.4.
For one thing those algorithms can be formulated on the continuous level (that is to say in function
and shape space) without regularization and thus may exhibit a mesh independent behavior; see Para-
graph 4.2.5.
For another thing they rely on information which is not used in the context of PDAS, namely the dif-
ferentiability with respect to deformation of the active set. This finding may be interpreted as follows.
The pointwise state constraints are not completely independent. Once, that the right topology of the
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active set is found (which of course is assumed throughout this thesis and should be a focus of further
research), there is a bias which elements of the current inactive set Ji could be active and which elements
of the current active set could be inactive. Namely those points neighboring the current interface. In
contrast, those points which are in the bulk of Ji and Bi are more unlikely to be mistakenly assumed
to be in-/active. This introduces a high amount of ”sparsity“ in comparison to the idea of a PDAS. The
latter approach treats all elements of Ω as equal with respect to the state constraint. On the one hand this
enables a global convergence, but on the other hand it induces the difficulties with respect to degeneracy.
All in all, it seems to be beneficial, to solve a highly to moderately regularized approximation of the orig-
inal model problem by means of a PDAS for globalization and then switch over to one of the presented
shape based algorithms.



CHAPTER 4

Numerics

This Chapter shall give some insight into the implementation of the algorithms of Chapter 3 (see Sec-
tion 4.1) and is devoted to the presentation of numerical results; cf. Section 4.2. The numerical results
are to be understood as a first small step in order to analyze the full capability of the presented ideas.
For one thing the expected benefits of the Bryson-Denham-Dreyfus approach (i. e. index reduction of the
optimality system) can only be validated by means of more complex OCPs than the simple model prob-
lem (2.1). For another thing the algorithms are expected to exhibit high performance on fine meshes and
in a severely nonlinear context (which is the standard case in the optimal control of ordinary differential
equations), since they come without regularization and are built up from the bottom in the nonlinear con-
text of optimization on vector bundles (see Paragraph 2.6.3). Evaluation of the behavior of the algorithms
in that regime is beyond the scope of this thesis as well.

Henceforth, the analysis is restricted to reduced Newton and trial methods (see paragraphs 3.4.1 and
3.4.2). Especially the promising total linearization method (i. e. the all-at-once solver), which supposedly
is best fitted to a full nonlinear OCP, remains unattained. Nonetheless, it becomes apparent that shape
calculus based algorithms perform well in comparison with a primal-dual active set strategy, which shall
be a good starting point for future investigations.

4.1 Finite element discretization

Within this section only a brief overview on selected topics concerning finite element (FE) implementation
of the shape calculus based algorithms from Chapter 3 is given. A comprehensive introduction to finite
elements methods (FEM) in context of shape and topology optimization is due to Haslinger and Neittaan-
mäkki [78].

The algorithms of Chapter 3 are discretized by means of a standard FEM which uses continuous, piece-
wise linear elements on an unstructured triangular mesh. This choice and in particular the approximation
of the C1,1 boundaries Γ and γ by means of polygons may induce considerable problems. For one thing
results of the theory of elliptic partial differential equations, which where applied in Chapter 2 may not
be valid any more1 and for another thing typical tools like integration by parts on boundaries, which are
essential in shape calculus, have additional contributions when the boundaries have kinks.2 Although
these effects shall be considered when discretizing, they are disregarded in the implementation. This
might cause reduced stability and convergence rates and ought to be investigated.

In order to distinguish between discretized and nondiscretized entities, the former are tagged with an
underline (.).

1A comprehensive collection of results in polygonal domains can be found in [69], in particular paragraphs 1.4.5 and 1.5.2 and
chapter 4.

2See [44, Chp. 10 Rem. 2.3] and the references therein; e. g. [40]. Moreover, confer [151, Sec. 3.8], which unfortunately refers to a
nonexistent section.
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4.1.1 Approximation of normal vector field and mean curvature

Shape calculus necessitates to discretize some geometric entities at the interface β, in particular the outer
unit normal vector fields nJ and nB and the curvatures κJ and κB . The curvature is required to assemble
the corresponding terms, which occur in the Newton- and trial equations of the algorithms from Sec-
tion 3.4. The unit normal vector field is important with respect to deformation of the active sets in the
course of the algorithms. There is no “natural” approximation of these notions in the context of triangular
finite elements, and hence one has to choose an approach which should preserve the order of convergence
of the FEM. Since numerical error analysis is beyond the scope of this thesis, an approach of [104] is used
and slightly adapted here.
The following considerations are related to one connection component of the boundary of a triangulated
set (in R2). It is assumed that the boundary (i. e. a polygon) has an orientated parametrization and that
the set lies locally on the left hand side of the edges. Thus, let B be an arbitrary interface node with
previous orientated edge ~u and following orientated edge ~v. Then, the curvature κ and the outer unit
normal vector ~n of the interface at B can be approximated by means of the circumcircle of the triangle
defined by B, ~u and ~v; see Figure 4.1.

~n

~n

~u ~v

M

B
κ > 0

κ < 0

Figure 4.1: Discrete approximation of mean curvature and outer unit normal vector field.

Hence, one requires the distance between B and the center M of the circumcircle, which is uniquely
determined as the intersection of the perpendicular bisectors. That is to say

M = B− 1
2
~u + α Q~u !

= B +
1
2
~v + δ Q~v, where Q :=

(
0 −1
1 0

)
.

Thus, there holds
1
2
(~v + ~u) !

= α Q~u− δ Q~v = Q (~u,~v)
(

α
−δ

)
.

Cramer’s rule yields

α
!
=

det(~u +~v, 2 Q~v)
det(2 Q (~u,~v))

=
(~u +~v) ·~v

2 det Q︸ ︷︷ ︸
=1

det(~u,~v)

Finally, one obtains

|κ| = |M− B|−1 =

∣∣∣∣−1
2
~u +

(~u +~v) ·~v
2 det(~u,~v)

Q~u
∣∣∣∣−1

=
~u⊥Q~u

2

√√√√|~u|2 + (
(~u +~v) ·~v

)2

det(~u,~v)2 |~u|2

−1

=
2|det(~u,~v)|

|~u|
√

det(~u,~v)2 +
(
(~u +~v) ·~v

)2
.
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The sign of κ is defined as follows. The curvature is positive at B, if the triangulated set is locally convex
at B and negative if it is locally concave. Moreover, if the set lies locally on the left of ~u there holds

κ > 0 at B⇔ convexity at B
⇔ interface is curved to the left at B
⇔ det(~u,~v) > 0.

Thus, one obtains

κ =
2 det(~u,~v)

|~u|
√

det(~u,~v)2 +
(
(~u +~v) ·~v

)2
.

Moreover, an outer unit normal vector~n at node B can be defined as

~n := sgn(κ)
B−M
|B−M| = κ (B−M) = κ

(
1
2
~u− (~u +~v) ·~v

2 det(~u,~v)
Q~u
)
=

det(~u,~v)~u−
(
(~u +~v) ·~v

)
Q~u

|~u|
√

det(~u,~v)2 +
(
(~u +~v) ·~v

)2
.

This formula is even stable if ~u and ~v are approximately parallel and κ tends to zero. However, there is
a situation where the whole reasoning yields somehow bad results. If the lengths of ~u and ~v are very
different and if these vectors form an obtuse angle, one is confronted with the geometric setting of the
left hand side of Figure 4.2. A reasonable remedy is to stretch the shorter one of both vectors to the length
of the other; cf. the right hand side of Figure 4.2.

~n

~u

~v
M

B
κ > 0

~n

~u

~v

M

B κ > 0

~w := ~v |~u||~v|

Figure 4.2: Remedy for a better approximation of curvature and outer unit normal vector field.

In view of the fact, that the interface β is an interior boundary of Ω it suffices to compute the discrete
approximation of κB and nB , since one obtains the approximation of κJ and nJ by reversing the signs
node-by-node.

4.1.2 Splines and tracking the interface

Each of the algorithms presented in Section 3.4 relies on the iterative update of the active set B by means
of a retraction; cf., for instance, step 2c of Algorithm 1. As already discussed in detail in Section 3.1 on
page 93ff. the deformation of the active set is a topic of its own, whose comprehensive analysis is beyond
the scope of this thesis. Hence, one confines oneself with some simple ideas, which perform adequately
for numerical testing of the algorithms.

Due to the approximation of the mean curvature, one has access to reasonable unit normal vectors at each
interface node. Hence, it is nearby to use the discrete normal component of the velocity field W, which is
obtained in each iteration of the different algorithms, and use it for the transformation approach of path
following (see page 92). In other words, each interface node B is moved to B +W(B) · n(B); cf. Figure 4.3.
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W · nJi

current interface βi

new interface βi+1

Figure 4.3: Discrete transformation approach of path following.

However, this reasoning has two drawbacks. For one thing the new discrete interface βi+1 may be de-
generated (i. e. self-intersecting) and for another thing it does not lie on grid points.3 Both problems can
be circumvented by means of an idea, which is illustrated in Figure 4.4 and which works essentially like
Huygens’ principle. Each node is assigned with an integer z = 1, if and only if the node is in the discrete

βi

βi+1

Figure 4.4: Comparison of nodal deformation of the interface corresponding to Huygens’ principle
(green) and pure discrete transformation approach (black).

active set Bi and with z = 0, if and only if the node is in the discrete inactive set Ji (by definition interface
nodes are ascribed to the active set). Then, a circle is drawn around each interface node B, whose radius
is equal to the absolute value of the velocity field Wi(B), and z is modified for each node of the grid in the
following way: increment z by 1 for each covering circle, which is due to a deformation of the interface
which increases the size of Ji, and decrement z if the circle stems from a deformation which increases the
size of Bi. If the result for a given node is positive (z > 0), it remains/becomes an element of Bi+1 and
otherwise an element of Ji+1. The new interface βi+1 is then given as the boundary polygon of Bi+1.4

Obviously, all vertices of Bi+1 are grid points. Moreover, this approach yields a well-defined polygon
even if the transformation due to Wi would result in a self-intersecting curve as illustrated in Figure 4.5.
The ability of coping with self-intersection can be used to induce changes in the topology of the active
set. Suppose the active set has linkage which connects two larger components. If the transformation Wi

3In particular, the first difficulty can be dealt be means of level set methods, which are not applied here, since a time dependent
tracking of the evolution of the interface is not an issue in the present context; see the 10th item of the discussion on page 111.

4This idea can easily be generalized to situations, where different types of active set have to be distinguish, as for example when
upper and lower state constraints are active simultaneously.
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Figure 4.5: Huygens’ principle prevents the interface from self-intersection.

moves the neighboring interface parts towards and even through each other the connection is cut and the
original connection component of the active set is split into two separate parts; see Figure 4.6. Certainly,
these considerations are also valid from the perspective of the inactive set, and hence union of connection
components of the active set is possible as well.

Figure 4.6: Huygens’ principle allows changes of topology.

Those appealing benefits of Huygens’ principle are accompanied by two drawbacks. For one thing it
is expensive to compute the z-balance for each node, since the distance to every interface node has to
be computed and compared with the value of Wi · nJi

. However, this task is perfectly parallelizable and
hence the effort is expected to play a minor role within the whole algorithm. For another thing the
new interface βi+1 typically has many sharp vertices even if the original βi is smooth. This fact yields
bad behavior of the FE approximation when solving the Newton-/trial equations of the algorithms from
Section 3.4. In particular, some functions (e. g. the adjoint state) tend to have oscillations at the interface;
see Figure 4.7. This in turn results in a very unregular velocity field Wi+1 such that the thereon based
deformation of the active set would have a much more zigzagging boundary. All in all, this effect is
self-amplifying.
The proposed remedy is a twofold adaptive smoothing, which proved successful in practice. On the
one hand a multilevel smoothing of the deformation function Wi · nJi

is applied, and on the other hand
the interface is smoothed down. Due to Assumption 1 each connection component of the interface is a
closed curve, which results in closed polygons on the discretized level. Hence, the coordinates of the
vertices of such an ordered polygon form a discrete periodic signal and it is suitable to use a fast Fourier
transformation (FFT). If high frequency components of the transformed coordinate signal are damped, the
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Figure 4.7: Oscillations of the adjoint state p̂ at the interface. See also the appertaining non-smooth inter-
face of the fifth iteration in Figure 4.16.

retransformation is a smoothed version of the original polygon. The quality of smoothing can easily be
adapted to different parameters. For instance the size of the deformation, which had yielded the current
interface which has to be smoothed out, is a good index for the distance between the current iterate and
the critical point (i. e. set) to be seeked. Thus, it indicates if only little smoothing is necessary. However,
Assumption 1 cannot ensure that all iterates of the active set Bi stay away form the outer boundary
Γ. Consequently there is no guarantee that the interfaces indeed are closed polygons and that FFT is a
suitable method. Moreover, starting points and endpoints of such nonclosed components have to remain
located at Γ after smoothing. In that situation it is possible to use spline related smoothing operations,
which yield to least square problems. Note, that those optimization problems (as well as FFT) are of
minor computational cost, since the degrees of freedom are related to the number of interface nodes only.
The second starting point is the adaptive smoothing of the normal component of the deformation vector
field. Firstly outliers are detected and replaced by means of interpolated data. This is an important
step, since disproportional big values at isolated nodes may destroy the whole geometric setting; for
instance, if the suggested, faulty deformation is bigger than Ω. Afterwards use FFT or some smoothing
spline routine in order to adaptively reduce the variation of Wi · nJi

. One has to ensure at this, that the
smoothing is ineffectual (i. e. it does not intervene) if the function is small enough, which indicates that
the current iterate is near a critical point.

It should be noted, that the adaptive smoothing of the interface is successful, as long as Assumption 1 is
fulfilled; in particular as long as the interface γ is of class C1,1. In more general situations, for instance if
the interface is allowed to be a curvilinear polygon in the sense of [69, Def. 1.4.5.1] (i. e. a curve, which
is piecewise smooth and with finitely many kinks) the smoothing operation may inhibit convergence of
the algorithms, since real kinks a smoothed out in each iteration. Hence, suitable workarounds have to
be made in such situations.

4.1.3 Mesh deformation and mesh generation

Once, that these two smoothing approaches are used the resulting polygon is no longer fixed to the
original mesh. Thus, three different approaches are suited.

• Remesh the domain Ω such that the new interface is contained in the new grid.

• Move the nodes of the current mesh such that the new interface is contained in the new grid.

• Use a finite element method that is capable to cope with that situation.
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Although the third idea is probably the best fitted approach, it is beyond the scope of this thesis and the
reader is referred to literature on unfitted finite element methods [8, 9, 74] and extended finite element methods
(XFEM) [63, 30, 28]. Moreover, there is considerably progress in the arbitrary Lagrangian-Eulerian (ALE)
methods; cf. the survey article [45] and the references therein. Those methods are widely used in the
context of computational fluid dynamics and in the simulation of structural mechanics.
Movement of the mesh nodes is an efficient approach as long as deformation is of moderate size and this
approach corresponds to the Lagrangian description used in ALE methods. Large deformations typically
yield mesh entanglement and therefore require remeshing of the domain. However, as long as distortion
is small enough, the movement of the mesh nodes is efficient and can be implemented by means of a
three step strategy:

1. extend the velocity field (Wi · nJi
) nJi

to the bulk of the domain (or at least to a narrow band around
the interface),

2. move the nodes and
3. regularize the mesh.

The first step is mandatory, if the displacement of the interface nodes is larger than the mesh size, since
the nodes in the bulk of the domain have to be moved too in order to prevent entanglement of the mesh.
Hence, one requires efficient schemes for extending the velocity field. As already mentioned in Section 3.1
on page 93 one can make use of ideas which are developed in the context of level set and fast marching
methods. Furthermore, it is possible to apply methods of linear elasticity, see [93, 48], where the mesh
is regarded as an elastic solid, whose outer boundary Γ is fixed while the interior is deformed in such a
way that the interface βi is mapped to βi+1. By that means one obtains a displacement field for all nodes
of the mesh. A less sophisticated and less robust but easier approach was chosen for the computations in
this thesis. The extension of the velocity field is obtained by means of interpolation. For this purpose, the
spacial coordinates are treated separately. All boundary nodes are fixed, i. e. they have zero displacement
and thus it is possible to compute the coordinates of the extended vector field at any node of the mesh by
interpolation of the normal component of the velocity field at the interface nodes.
Applying the transformation approach of path following (see page 92), the movement of every node is
nothing but adding the extension velocity field to its position. When the deformation of the mesh is
completed successfully, a regularization of the mesh is typically indicated. The quality of the obtained
mesh may be low due to sharp angles of some elements. Hence common strategies which jiggle the mesh,
while interface and outer boundary nodes remain fixed, can be applied.
Another benefit of mesh deformation is a simple implementation of the transport of discretized function
variables to the new mesh, which is required by total linearization methods (see step 2c of Algorithm 5).
Since the whole mesh topology is preserved, nothing has to be done when using continuous and piece-
wise linear FE. The function values are attached to their corresponding nodes and are transported by
means of the displacement of the nodes. However, the movement of nodes which is due to the mesh
regularization step, which is not necessary from the perspective of the algorithms, but only for reasons of
numerical stability, has to be applied independently. Thus there is need for interpolation actually (and, if
required, extrapolation too). These effects are neglected in the implementation of the algorithms of this
thesis, since mesh jiggling in order to increase the quality of the mesh has a minor impact on location of
the grid points.
However, mesh deformation is not always possible. In particular, if topology changes of the above de-
scribed type occur or when distortion is too large, a complete remesh of the domain is used. Since mesh
generation is costly, this situation should be avoided as often as possible. However, it is typically neces-
sary during the first iterations of the algorithms from Section 3.4, since the updates are large. Especially
in that situation the current guess Bi is far from optimal and high accuracy is of minor interest. Hence,
it is reasonable to use coarse grids then and refine them during the course of iteration. However, the
shape calculus based methods call for a sufficiently amount of nodes on the interface βi such that up-
date velocity fields are reliable. This fact constraints the mesh size from above and has to be taken into
account when remeshing. In particular, if remeshing cannot be avoided, it should be carried out such
that an anew need for mesh generation is unlikely. That is to say, use a smooth interface and ensure
that the interface nodes are arranged regularly. Consequently, it is appropriate to use a smoothed spline
interpolation of the current interface as input for the mesh generator.
Moreover, small connection components of the active set may occur, which consist of one single node in
an extreme case. This is typically caused, when a protuberance is cut off but not completely eliminated
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(like in Figure 4.8). For reasons of stability and efficiency such small artificial connection components
are deleted: otherwise, unreliable FE approximations would be produced on the one hand if the mesh
remained as coarse, and on the other hand a pointlessly fine mesh would have to be generated in order to
get a suitable resolution of the very small connection component.5 If the optimal in-/active set has such
small connection components actually an appropriately fine mesh is needed anyway and thus the small
components are not small in relation to mesh size any more.

Figure 4.8: Incomplete cut off of a protuberance.
All in all, the implemented mesh update routine roughly works as follows:
• If the normal component Wi · nJi

is large or if there is an interface node B whose distortion (Wi(B) ·
nJi (B)) nJi (B) is not significantly smaller than κJi

(B) (this means that self-intersection of the inter-
face may occur), Huygens’ principle is used for the update. In addition, FFT or smoothing spline
methods are applied to smooth the new interface nodes. Finally, a remesh is performed.

• If the normal component Wi · nJi
is of moderate size and local self-intersection can be excluded

the interface is updated by means of the transformation approach (see Figure 4.3). In addition,
FFT or smoothing spline methods are applied to smooth the new interface nodes and a remesh is
performed.

• Otherwise a mesh deformation strategy as described above is used. If mesh entanglement occurs
one of the other two branches of the routine are on hand as fall-back option.

The second branch is used for several reasons. On the one hand it is more robust than the mesh deforma-
tion strategy and thus is a good alternative. On the other hand it is less robust than Huygens’ principle,
but cheaper (no need for nodal computation of z) and more accurate, since the update does not have to
be bigger than the mesh size. Note, that Huygens’ principle update can only be applied if the nodes (at
least one, to be more precise) are shifted more than one mesh size. Moreover, it should be mentioned
that it is a nontrivial task to detect self-intersection of the interface. It has been illustrated that Huygens’
principle is capable to cope with such situations, but usage of smoothing methods induce additional dif-
ficulties illustrated in Figure 4.9. The smoothed version of a given connection component of the interface
may intersect itself, or intersect with another connection component or with the outer boundary Γ. Those
different incidents have to be detected and handled adequately.
All those more or less sophisticated ideas are mainly devoted to one goal, namely to increase stability of
the implementation of the algorithms. Actually, they help to cope with problems which are related to the
lack of global convergence of shape calculus based algorithms. Questions like changing the topology of
the active set during the iteration are actually not an issue of those methods. Moreover, the numerical
schemes should be initialized with sets that are not only of the right topological type but with sets that
actually are “near” the optimal set. The numerical practice shows that most of the discussed issues only
occur during the “pseudo-global” phase of iteration and that once the current guess is near the optimal
active set everything works fine. In particular, all smoothing and miscellaneous strategies intervene only
if they are necessary and they typically do not influence if the current iterate is sufficiently near a critical
shape. Nonetheless, the presented coping strategies enable (though not guaranteeing) convergence even
if the initial guess is far away from any critical point; cf. paragraphs 4.2.3 and 4.2.6.

5Note, that the resolution has to be high enough such that the discrete polygon has no sharp vertices, since it has to mirror the C1,1

regularity of the interface adequately.
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Γ

βi+1

smoothed version of βi+1

Figure 4.9: Prototypic intersections of the smoothed interface.

4.2 Numerical results

As already indicated in the introducing text of this chapter the numerical results presented in this section
deal with the reduced Newton and trial algorithms of paragraphs 3.4.1 only – that is to say, the total
linearization method from Paragraph 3.4.3 is not discussed. Moreover, only some selected topics are
investigated. However, the claim to demonstrate that the ideas of the chapters 2 and 3 yield efficient
solution strategies can be answered.

4.2.1 Test examples

The algorithms are tested on various examples, which are developed by Simon Bechmann. They are con-
structed such that the regularity assumptions of coefficient functions of model problem (2.1) are fulfilled.
Moreover, it is ensured that the optimal active set A is a strict subset of the candidate set C (see (3.26)).
Especially this property induced considerably difficulties when constructing OCPs, whose optimal vari-
ables shall be known analytically. Hence, the corresponding Example 4 is radially symmetric.

The presented test cases are chosen such that each of them inherits a specific difficulty: the active set of
Example 1 has four connection components, whereas those of Example 2 is not simply connected. Conse-
quently, these two test cases are predestined to investigate the ability of changes of topology. Example 3
exhibits a very small area of convergence such that stability of the algorithms can be tested. Finally, the
optimal variables of Example 4 are known exactly such that convergence can be checked.

Example 1 (Smiley): Despite the requirement of Ω to be a C1,1 domain it is chosen to be a unit square.
It turns out that this choice has no negative impact, since triangulation of Ω yields a polygonal domain
anyway. Moreover, coefficients read as follows.

Ω = ]0; 1[×]0; 1[,

λ = 10−6,
ud = 0,

yd = 7 + 10
(

∑
s∈S1

e−100 (x−s)2
+ ∑

s∈S2

e−200 (x−s)2
)

,

S1 =

{(
0.3
0.8

)
,
(

0.7
0.8

)
,
(

0.2
0.4

)
,
(

0.8
0.4

)}
S2 =

{(
0.5

0.45

)
,
(

0.5
0.55

)
,
(

0.5
0.65

)
,
(

0.5
0.1838

)
,
(

0.3
0.2551

)
,
(

0.7
0.2551

)
,
(

0.6
0.2

)
,
(

0.4
0.2

)}
,

ymax = 10.

The active set A is smiley shaped and the optimal variables are given by Figure 4.10.
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Figure 4.10: Optimal variables of Example 1.

Example 2 (Ring): This OCPs is constructed such that the candidate set C is simply connected, whereas
the optimal active set A is not. Its coefficients are as follows

Ω = ]0; 1[×]0; 1[

λ = 10−4

ud = 0

yd = 7 + 10 ∑
s∈S

e−100 (x−s)2

S =

{(
0.3
0.3

)
,
(

0.3
0.5

)
,
(

0.3
0.7

)
,
(

0.5
0.3

)
,
(

0.5
0.7

)
,
(

0.7
0.3

)
,
(

0.7
0.5

)
,
(

0.7
0.7

)}
ymax = 9.5 .

The active set A is annular and the optimal variables are given by Figure 4.11.
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Figure 4.11: Optimal variables of Example 2.

Example 3 (Bone): This OCPs is situated in a unit square as well. Its coefficient are defined as follows.

Ω = ]0; 1[×]0; 1[

λ = 10−4

ud = 0

yd = 7 + 4 ∑
s∈S

e−10 (x−s)2

S =

{(
0.3
0.3

)
,
(

0.7
0.7

)}
ymax = 9.5

The shape of the active set A is reminiscent of a bone and the optimal variables are illustrated in Fig-
ure 4.12.
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Figure 4.12: Optimal variables of Example 3.

Example 4 (analytic): As already indicated it is beneficial to test the algorithms with examples whose
optimal solutions are known exactly. Due to the specific requirements of the coefficients the example
depicted here is rotationally symmetric and henceforth the domain Ω is a unit circle. The coefficients can
be derived by means of sophisticated ideas and are polynomial.

Ω = B1(0)
λ = 1

ud =


2, if |x| < 0.5

− 1
6000 |x|

(
4080 |x|7 − 13088 |x|6 − 131960 |x|5 + 344880 |x|4

−299085 |x|3 + 105850 |x|2 − 22731 |x| − 970
)

, if |x| ≥ 0.5
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yd =


1
3

(
64 |x|7 − 3232 |x|5 + 52 |x|4 + 2400 |x|3 − 832 |x|2 + 93

4

)
, if |x| < 0.5

− 1
6000 |x|

(
4080 |x|7 − 13088 |x|6 + 14920 |x|5 − 30320 |x|4

+59635 |x|3 + 168970 |x|2 − 228191 |x|+ 48000
)

, if |x| ≥ 0.5

ymax = 1.

The optimal active set A is known to be a circle with radius 0.5: A = B0.5(0). The optimal variables are
illustrated in Figure 4.13.
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Figure 4.13: Optimal variables of Example 4.
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4.2.2 Accuracy of detecting the active set

It turns out, that the shape calculus based algorithms are capable to detect the active set with an accuracy
that is some factors higher than the mesh size. In order to get an impression of the possible accuracy
the stopping criterion of Algorithm 1 is omitted while solving the analytic Example 4. The results for
different mesh sizes h is presented in Figure 4.14. On the left hand side the median of size of the Newton
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Figure 4.14: Accuracy of detecting the optimal active set.

update is plotted against the iterations; that is to say, how far the interface nodes are displaced from one
step to the next. One recognizes that the deformation has a linear convergence rate and that it is not
bounded from below by the mesh size. On the right hand side the mean of the deviation of interface
nodes from the radius of the optimal set (R = 0.5)

meani is interface node
∣∣|xi| − 0.5

∣∣
is plotted against the number of iterations. Obviously the accuracy of the approximation of the active set
increases with smaller mesh sizes, but stagnates in each case – in contrast to the deformation. This is due
to the fact that the null of the discretized shape gradient is not obtained when the interface nodes are all
located on the exact interface, but somewhat outward the analytic active set. Otherwise the discretized
active set would systematically underestimate the size of the continuous set; cf. Figure 4.15.

optimal continuous
interface γ

nearly optimal dis-
cretized interface β

Figure 4.15: Vertices of the interface polygon lie outside of the active set A.

4.2.3 Stability and area of convergence

It turns out that the trial Algorithm 3 is much more stable than the Newton Algorithm 1. Actually the
Newton scheme converges only if the initial guess is very close to the optimum. In marked contrast the
trial algorithm is stable and converges even if the initial guess for the active set is far away from the
optimal shape or even has a different topology; cf. Figure 4.16 and Paragraph 4.2.6. Moreover, the figures
illustrate that this method is able to make considerable progress in moving the interface in one iteration.
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Figure 4.16: Progress of the interface at different iterates.

The best results with respect to stability and progress are obtained when the original trial equation (3.30)
is substituted by the second version of (3.34). Likewise the Newton scheme profits form the ideas pre-
sented in the 8th item of the discussion on page 110. It turns out that using (3.28) as Newton equation is
the best choice.

Though a profound analysis of stability and convergence of trial and Newton algorithms is beyond the
scope of this thesis, their behavior shall be illustrated for a specific situation here. The analytical test
Example 4 possesses (at least) two different critical shapes, namely the optimal active set A = B0.5(0)
and another set B∗ = BR(0) whose radius R is approximately 0.76 but not known exactly. To get an im-
pression of the shape functional, its value and its first and second order covariant derivatives are plotted
in Figure 4.17 for a one dimensional path through O. At this, the three entities are computed for guesses
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Figure 4.17: Behavior of the shape functional and its covariant derivatives along a one dimensional path
through O.
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of the active set of type B = Br(0), r ∈ [0.2; 0.9] and the semiderivatives are given as DF (B)[nB ] and
∇2F (B)[nB , nB ]. Hence, they can be seen as one dimensional and real-valued functions of the variable
r and the latter two can indeed be regarded as (ordinary) derivatives of the first one. Obviously, the
approximation of F is less accurate than those of the derivatives. This is due to the fact that evalua-
tion of the shape functional requires integration on the whole triangulated domain Ω which is a more
mesh sensitive procedure than the evaluation of the derivatives, since the latter requires integration on
the precisely determined interface only. One recognizes two double zeros of the first semiderivative at
r = 0.5 and r ≈ 0.76 which are accompanied by nulls of the second derivative. These are presented in
Figure 4.18 once again. In order to understand the behavior of the trial and the Newton algorithms, their
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Figure 4.18: Behavior of the covariant derivatives of the shape functional and the deformation of the
interface near the two critical points.

updates (scaled by the factor 0.1) are plotted as well. These graphs have to be read as follows: the value
for a given radius tells how the radius of the guess for the active set would be modified in the current
iteration. It is apparent that the trial algorithm reduces the radius for any guess whose radius lies be-
tween the two nulls. Hence, it converges to the optimal active set if its initial guess Br(0) has a radius
smaller than 0.76. In other words, it succeeds even if it starts arbitrarily near the second critical radius.
In contrast – as one would expect – the Newton scheme converges to the nonoptimal critical shape B∗ if
the initial guess has a radius bigger than approximately 0.63, where the second order shape derivative
changes the sign. Moreover, the Newton update is very unreliable if the initial guess has a radius in the
neighborhood of 0.63. For one thing the proposed update can be very large and for another thing it may
have different sign for each interface node. Note in this respect, that the update of the algorithm is not
one dimensional in practice, since the displacement of the interface nodes is not perfectly coupled. It
may happen that some interface nodes are contained in B0.63(0) whereas some others are not, and conse-
quently these two groups are moved in opposite direction such that the original shape of an approximate
circle is completely destroyed.

As a result the trial algorithm is used as long as the current guess for the active set is far away from a
critical shape and the Newton algorithm is applied only if the size of the update comes below a suitable
threshold.

In addition, Figure 4.18 shows that the updates of the trial and the Newton algorithm converge to each
other, when the active set approaches the optimal configuration with radius r = 0.5. Hence, the assertion
that the local shape derivatives vanish at the optimum (see Corollary 5) is confirmed, since Newton and
trial update just differ in this term; see Paragraph 3.4.2.
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4.2.4 Convergence rate

A two-level strategy of using a trial algorithm first and then switching over to a Newton scheme has
two advantages. For one thing one obtains higher stability (cf. Paragraph 4.2.3) and for another thing
one profits from the higher speed of convergence of the Newton method. A prototypic result is given by
Figure 4.19. The trial Algorithm 3 is started with the candidate set as initial guess for the test Example 1.
Initially, the maximum of the update, i. e. max{|Wi(B) · nJi

(B)| | B is interface node}, is reduced during

0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

iterations

m
ax

im
um

 o
f t

he
 u

pd
at

e 
si

ze

 

 

trial at h=0.04

Newton at h=0.04

trial at h=0.02

Newton at h=0.02

trial at h=0.01

Newton at h=0.01

trial at h=0.005

Newton at h=0.005

Figure 4.19: Convergence of trial and Newton scheme for Example 1 at different mesh sizes.

the trial iteration. If this update size comes below the value 2 · 10−3, the Newton scheme is used. The
decay of the step size is considerably faster then, though an superlinear convergence rate cannot be
verified. The latter finding is due to several reasons.
• The second order shape derivative is singular at the optimal configuration; see Paragraph 2.5.1.

Suitable workarounds to deal with that difficulty have been investigated by Griewank and Os-
bourne [68] and Griewank [67], but they are not applied here.

• Deforming the mesh (or even worse construction of a new mesh) from one iterate to the next im-
plies changing the discrete optimization problem, and respectively the discrete optimality system.
Consequently, the Newton algorithm gets a (slightly) modified objective in each iteration.

• The implementation does not care about specific terms which come into play when using polygons
instead of C1,1 curves; see the introducing text of Section 4.1.

• The discretization error may be dominant, since the movement of the interface is a fraction of the
mesh size only.

Each of those reasons deserves further investigation, which is not contained in this thesis.

4.2.5 Mesh (in-)dependency

It is a nontrivial task to analyze whether the shape calculus based algorithms from Section 3.4 behave
mesh independent. Since those algorithms are not globally convergent, it is necessary to start them with
an initial guess which is inside the area of convergence which itself is not known (even not in retrospect
when an algorithm has terminated successfully). Moreover, implementation has a major impact. In
particular, the treatment of deforming the interface plays an important role; cf. paragraphs 4.1.2 and 4.1.3.
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It may happen that the algorithm uses the mesh deformation strategy, but cannot reach the stopping
criterion since mesh quality is not sufficient. Hence, a remesh is indicated but induces some distortion
such that the current guess of the active set is deteriorated. As a result, the algorithm needs some extra
iterations, which are due to implementational aspects only. It is expected that only finite element meth-
ods which move the interface through a fixed mesh (as for instance unfitted FEM) can exhibit the full
capability of the presented approaches.
Nonetheless, the considered implementation exhibits a mesh independent behavior when the initial
guess is good enough. For instance the variational relaxation approach due to the function Kτ

p (see (3.32))
enhanced with the informal method of canceling one pJ − pmax

min factor (cf. the 8th item of the discussion
on page 110, in particular the Newton equation (3.28)) yields the following number of iterations.

mesh size 0.06 0.05 0.04 0.03 0.02 0.01 0.007

iterations starting at radius 0.4 27 5 6 5 6 7 6
iterations starting at radius 0.66 5 7 5 5 5 7 5

Table 4.1: Numbers of iterations needed to reach the stopping criterion for Example 4: displacement
of the interface nodes is less than 1.5 · 10−2.

In particular, the 27 iterations needed to converge for mesh size 0.06 when starting from a circle with
radius 0.4 are due to the abovementioned implementation aspects. For coarse meshes even remeshing
is not very successful to obtain higher accuracy and hence several remeshing/converging cycles have
to be performed up to a point where the mesh generator accidentally produces an appropriate mesh.
Fortunately this behavior can only be observed for large mesh size where the resolution of the interface
is insufficient.
Another confirmation for a mesh independent behavior can be found in Figure 4.19. Although the overall
algorithm tends to require more iterations when the mesh size gets smaller, the decay of the Newton
algorithm is very similar for the different mesh sizes. Actually, the algorithm switches to the Newton
scheme at approximately the same guess for the active set for the different mesh sizes. Consequently, the
different numbers of iterations are mainly due to the bad initial guess, which is not located inside the
area of convergence, what calls for stabilization.

4.2.6 Changes of topology

As already indicated several times, shape calculus based algorithms cannot be expected to be able to
change the topology of the current guess of the active set in the course of iteration. Nevertheless, there
are four criteria which help to change topology
• intersection with candidate set⇒ remove connection component of B
• checking the state constraint⇒ add connection component of B
• checking the sign conditions of multipliers⇒ remove connection component of B
• self-intersection of the interface⇒ both remove and add connection component of B.

These different types of topology changes are illustrated in more detail within this paragraph. An in-
tersection with the candidate set is responsible for the change from the initial guess to the first iteration
in Figure 4.20. The connection component of the left eye is lost after the second iteration, since it gets
to small and hence is deleted mistakenly. The interfaces is evolved up to iteration 47 then, where the
stopping criterion is met the first time. However the current state is not below the upper state constraint,
which is why additional components of the active set are appended (iteration 48). Afterwards the New-
ton loop restarts and within the next six iterations the optimal configuration is found.
Figure 4.21 shows another change of the topology of the active set. After the first four iterations, a
candidate optimal set is found, such that the a posteriori criteria are checked. In particular, the sign
conditions of the multipliers are not fulfilled, such that a hole is inserted to the active set where the sign
condition is not valid (iteration five). Finally, the algorithm converges within additional five iterations.
Topology changes due to self-intersection of the interface can be seen in Figure 4.22. The initial guess
consists of two separate connection components which are moved towards each other. After iteration
nine the interfaces intersect each other such that the two connection components are unified in iteration
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Figure 4.20: Changes of the topology due to the candidate set and the state constraint.
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Figure 4.21: Changes of the topology due to the sign conditions of the multipliers.

ten and the current guess is now “u-shaped” (simply connected). After some additional iterations the
‘u’-tips of the set intersect such that the active set consists of one not simply connected component at
iteration 15. The inactive set inclusion is diminished and is finally eliminated at iteration 20.

All in all, the algorithms are capable to cope with changes of topology during iteration, but there are
configurations where their iterations stagnate and an indispensable change of the topology is not per-
formed. This happens typically when the interface of two connection components approach each other
such that they are separated by very view mesh layers only. The finite element approximation may get
poor then since on the one hand there are only view degrees of freedom concentrated in such gaps and on
the other hand the functions may tend to large curvature there. Otherwise, if the functions behave well,
the residuum in the defect equation (this is shape gradient or merit functional equals zero) is typically
very small in the approach area and hence the update (i. e. movement of the interface) converges to zero
there.
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Figure 4.22: Changes of the topology due to self-intersection and small components.

4.2.7 Comparison with primal-dual active set methods

In order to assess the performance of the shape calculus based algorithms, different comparing tests
with a Moreau-Yosida regularized primal-dual active set strategy, which is equipped with exact path-
following (PDAS-EPF) (see [86, 87]), are run. The results are composed in Table 4.2. Here the two-level

mesh size 0.04 0.02 0.01 0.005

Example 1 Trial/Newton 14 15 18 22
(PDAS-EPF) 16 20 25 34

Example 2 Trial/Newton 9 15 16 26
(PDAS-EPF) 24 29 37 39

Example 3 Trial/Newton 32 10 67 21
(PDAS-EPF) 22 26 32 39

Table 4.2: Number of iterations needed to converge for different mesh sizes.

strategy of using Algorithm 3 (with second version of the simplified trial equation (3.34)) as pseudo-
globalizer for the Newton scheme from Paragraph 4.2.4 is applied with a mesh dependent stopping
criterion. In particular, the iteration stops if the Newton update (this is the maximum of the nodal dis-
placement of the interface) is smaller than 10−2 times the mesh size. The (PDAS-EPF) is stopped if two
subsequent iterations yield the same active nodes or if some more sophisticated criteria hold in order to
prevent additional iterations caused by degeneracy. Basically the same implementation as in [10] was
used. To guarantee comparability of the results, the (PDAS-EPF) uses the final mesh produced by the
shape calculus based algorithm. It turns out that both algorithms always end up with the same set of
active nodes, which is a reliable hint that shape calculus based algorithms indeed do converge to the
right active set in more complex situations than that of analytical test examples; see Paragraph 4.2.2.

Both algorithms exhibit a moderate mesh dependent behavior. This is due to the mesh size dependent
stopping criterion with respect to the trial/Newton scheme. The surprisingly high numbers for Exam-
ple 3 at mesh size 0.04 and 0.01 are consequences of prototypic problems: when using the bigger mesh
size the curvature of the interface is too high at some interface nodes in order to get a proper mesh, and
when using the smaller mesh size convergence is slowed down since the criterion for using the mesh
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deformation instead of remeshing is not sharp enough. Moreover, the (PDAS-EPF) needs the more itera-
tions the smaller the mesh size gets, since finer meshes allow for advanced path-following.6

Besides comparability of the algorithmic results, using the final mesh produced by means of the trial
enhanced Newton algorithm has another interesting consequence. The essence of those meshes is a very
good approximation of the interface by means of a polygon. This quality cannot be expected from an
apriori generated mesh that is not adapted to the optimal active set. Due to that property the singular part
µγ of the Lagrange multiplier has a much more regular appearance than on typical meshes; cf. Figure 4.23.
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(a) Example 1: µ on adapted mesh
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(b) Example 1: µ on unadapted mesh
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(c) Example 3: µ on adapted mesh
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(d) Example 3: µ on unadapted mesh

Figure 4.23: Comparison of the multiplier µ on different meshes.

The analysis of Paragraph 3.5.1 revealed, that the singular part µγ of the multiplier is blurred by means of
Moreau-Yosida regularization. This behavior can be exploited in order to use (PDAS-EPF) as globalizing
algorithm for shape calculus based methods. Namely solving a highly or moderately regularized approx-
imation of the original problem by applying the PDAS yields a rough but reliable determination of the
active set. In particular, the right topology is typically obtained within very view iterations. The guess of
the active set obtained this way is an excellent initial guess to start a shape calculus based algorithm. The
combination of the algorithms yield the results which are composed in Table 4.3. For this purpose the
path-following strategy was terminated after two iterations which yielded regularization parameters less
than 100 (the parameter started with value 10), which has to be interpreted as strongly regularizing. A
comparison with the pure trial/Newton algorithm (see Table 4.2) reveals a similar number of iterations.

6Note, that it is not reasonable to apply additional path-following when the regularization error gets smaller than the discretization
error, see [84]. Hence the applied path-following strategy is mesh size dependent.
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mesh size 0.04 0.02 0.01 0.005

Example 1 trial/Newton 7 + 16 8 + 13 9 + 13 9 + 15

Example 2 trial/Newton 8 + 14 8 + 13 8 + 19 8 + 20

Example 3 trial/Newton 8 + 6 9 + 42 8 + 9 9 + 10

Table 4.3: Number of iterations needed by (PDAS-EPF) and trial/Newton together for different
mesh sizes.

Hence, the performance of the combined algorithms is roughly the same, but stability is considerably
higher.



CHAPTER 5

Conclusions and Outlook

Bryson-Denham-Dreyfus approach
This work basically presents how to obtain a new kind of first order necessary conditions for the state-
constrained elliptic model problem (2.1). It is motivated by the so-called Bryson-Denham-Dreyfus ap-
proach, which aims at revealing a control law, that is induced by the state constraint. The corresponding
general recipe known in theory of OC-ODE is transferred to the elliptic problem under consideration.
At this, different reasonable, equivalent choices are suggested, among which one specific is pursued
in detail. However, the presented concept rather remains on the level of a heuristic, as long as more
comprehensive understanding of the underlying connection to the theory of partial differential-algebraic
equations is not available. In particular, frequently encountered pointwise constraints on the (Euclidean)
norm of the gradient

|∇y|2 = (∂x1 y)2 + (∂x2 y)2 ≤ ymax

pose an (unsolved and unattained) difficulty. It seems to be adequate to rewrite the second order elliptic
state equation (2.1b) as a system of first order

−div z + y = u a. e. in Ω,
∇y = z a. e. in Ω.

For one thing, this reasoning is quite standard in the field of OC-ODE, where the idea of the BDD ap-
proach was invented, and for another thing one gets a more direct access to the state constraint then.
However, the non-linearity of the constraint prohibits a direct computation of a control law.
Moreover, the control u acts on the boundary Γ of the domain Ω in probably most of the real-world
applications of OC-PDE. In this situation differentiation of the state constraint equation on the active set
(which is still expected to lie in the interior of Ω) cannot yield a boundary expression; henceforth a control
law is out of reach. It might be helpful to apply the concept of virtual distributed control then, which was
introduced by Krumbiegel and Rösch [110].
Another crucial point is concerned with the restrictive Assumption 1. It is assumed throughout this
work that the boundaries of the active set are required to be smooth enough in order to apply shape
calculus. In particular, the treatment of corners is excluded here, although associated difficulties may
reenter the considerations by means of discretization. Moreover, the active set may not contain any
lower dimensional component, although it is well-known, that isolated active curves or points do occur
indeed. From the theoretical point of view, isolated active point are not an issue, since there is no chance
to get information by means of the BDD approach, since differentiation within such components is not
possible. However, the situation changes when considering active curves (as long as this curve is a
piecewise differentiable submanifold of Ω). It is expected, that one has to distinguish between normal
and tangential directions then. Differentiation in tangential direction is possible by means of tangential
calculus, and one might obtain hidden algebraic conditions this way. With respect to normal directions
on the curve one probably reobtains the results of Bergounioux and Kunisch [14, Thm. 5].1Any starting-
and endpoints of the active curve are expected to be the most challenging detail, since tangential calculus

1Note, that shape calculus typically deals with shapes, whose boundaries are (sufficiently smooth) submanifolds with codimen-
sion one. In particular, any vector field, which is defined on these boundaries can be decomposed into a normal and the tangential
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fails there. Intuition tells, that the Lagrange multipliers possess an additional Dirac measure there. This
view is encouraged by a result of Rund [144, Satz 3.4.13].

From this perspective, the analysis of the BDD approach in the context of optimal control of parabolic
PDEs is appealing and interesting. On the one hand, one can restrict the analysis to simple OCPs, where
spacial symmetry ensures a spacial predetermination of the active set. Consequently, one can focus ini-
tially on the behavior of the different variables at starting and endpoint of the active set, which is very
close to the theory of state constrained OC-ODE, when the parabolic PDE is regarded as a formal system
of ODEs. In particular, the well-established knowledge of the topological possibilities of the active set
(i. e. contact point or boundary arc in the way of speaking in OC-ODE), which is determined by means
of the order of the state constraint, could be used then. This might be a first step towards classifying
the active set by means of the order of the state constraint in the context of OC-PDE. It seems natural to
introduce different notions of order of the state constraint with respect to time and space. In a next step,
the more complex situation could be investigated, where the spacial spread of the active set may vary
in time. However, this is expected to be very challenging, since on the one hand the efficient numerical
treatment of state-constrained parabolic OCP still faces fundamental problems, which a due to limitation
of memory, and on the other hand one has to recourse to time dependent shape calculus then, since one
deals with transient problems.

Time optimal control of PDEs

The presented approach of treating the active set, which is associated with the state constraint, as an
equal variable strongly parallels the treatment of time optimal control of PDEs; see [138, 80, 116, 99, 112].
There one tries to control a time dependent process, which is modeled by parabolic or hyperbolic PDEs,
to a prescribed final state in minimal time. Henceforth, the exact shape of the space-time cylinder is to
be found. Obviously, the set of admissible shapes is a one parameter set here. Consequently, from the
perspective of shape calculus this type of problem is much easier than finding the optimal active set of an
elliptic OCP. Optimization with respect to the topology in particular is not an issue there. Nonetheless,
time optimal control can be regarded as another representative of set optimal control and optimization
on a vector bundle. It should be noted, that the frequently applied (nonlinear) transformation of the
optimal control problem with free end-time to a fixed time interval is essentially the same as the idea of
function space parametrization, which was considered in Paragraph 2.6.2. In particular, the additional
condition, which is required to compensate the additional variable of free end-time, is the analog of the
interface BDD condition, which is necessary to fix the shape of the active set.2 Moreover, the derivative
of the Lagrangian/Hamiltonian (or the time-parametrized minimal value functional) with respect to the
parameter associated with the free end-time yields a necessary condition (often called transversality con-
dition), which is the perfect analog to the weak continuity condition across the optimal interface for the
control in the presented approach.

Set optimal control and optimization on vector bundles

The considerations of this work lead to a new type of optimization problems, which was called set op-
timal control. It is a class of hybrid problems, which contain elements of shape/topology optimization,
since a set variable occurs, and which are optimal control problems, since a function space control is in-
volved, which determines a state. Later on, this class is strongly generalized to optimization on vector
bundles.

Although this is a very general framework, there is hope that this perspective is valuable for optimal con-
trol, since many different applications incorporate intrinsic nonlinear behavior, which is due to variables
that are not elements of a linear space. Besides introducing the active set as an equal variable or time op-
timal control, another intrinsic nonlinear behavior is obtained, when angles are used as variables. They
are treated typically as elements of a linear space, which yields problems like 2π periodicity and severe
non-linearities by means of trigonometric functions. The perspective of optimization on vector bundles
suggests to treat angle related rotations in their natural, nonlinear environment, e. g. the sphere SN−1

or the special orthogonal group SO(3). Moreover, there a countless applications, where shape/topology
optimization and function space optimal control meet: technical constraints (which can be interpreted as

component. However, this is no possible any more if the active set is a submanifold of Ω with codimension greater than zero,
as for instance a curve in R3. Henceforth, a more comprehensive treatment of lower dimensional active sets at least requires
additional work at the fundament of shape calculus – not to speak about a “new shape calculus”.

2This topic is discussed in more detail in Appendix C.
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control and/or state constraints) inhibit a sufficient result, such that a (shape/topological) redesign of the
considered structural component is applied. For instance, the design part may be the number, placement
and exact shape of a conductor coil of a furnace, whereas the optimal control part may be control of the
electric current in order to achieve a certain distribution of temperature. Simultaneous optimization with
respect to shape and control might be the all-in-all approach in such applications.

Numerical approach and inherent structure of the Lagrange multiplier

The treatment of the OCP within this thesis enables a new numerical approach. The reformulation of
the state constraint by means of the BDD approach yields a natural splitting into a distributed control
law and an interface condition. It turns out, that this splitting leads to two Lagrange multipliers which
can be associated with the regular and the singular part of the well-known multiplier. For one thing this
reasoning emphasizes the PDAE character of the necessary conditions, and for another thing it suggests a
numerical treatment, which uses this intrinsic structure of the dual variables algorithmically. Thus, there
is no need for regularization, in order to be able to formulate algorithms on the infinite dimensional level.
In particular, a shape optimization based reduced approach/algorithm, which can be classified into the
middle branch of the illustration within the Introduction 1 (“black-box approach”), is presented. Moreover,
an “all-at-one approach” approach, which fits into the right branch of the illustration, and which is based
upon total linearization, is discussed, though not numerically tested.
The algorithms lack a profound convergence analysis yet, but exhibit an encouraging performance in di-
rect comparison with Moreau-Yosida regularized PDAS, which is equipped with an exact path-following
scheme. Nonetheless, a more sophisticated handling of finite element discretization (ALE methods, un-
fitted/extended FEM, etc.) is indicated. Moreover, it is shown, that the algorithms can cope with certain
changes of the topology of the active set on the run. However, this is no satisfying substitute for a fully
developed theoretical and algorithmic handling of the topology optimization component of the set opti-
mal control problem, which is not attended within this work.

All in all, this thesis is only a small step and the research is open now for further investigations in very
different directions.





Appendix

A Results of different Bryson-Denham-Dreyfus approaches

In order to give some insight to the usage of different BDD approaches, the optimality systems of the two
additional approaches of Paragraph 2.2.2 are summarized here.1 At the optimum there holds in either
case

−∆ȳI + ȳI = ūI in I ,

−∆ȳA + ȳA = ūA in Å,
∂nȳI = 0 on Γ,

ȳI |γ − ȳA |γ = 0 on γ,

∂
I
n ȳI + ∂

A
n ȳA = 0 on γ,

−∆ymax
min + ymax

min = ūA in Å,
ymin < ȳI < ymax in I ,

−∆pI + pI = ȳI − yd in I ,

−∆pA + pA = ȳA − yd in Å,
∂n pI = 0 on Γ,

λ (ūI − ud) + pI = 0 in I ,

λ (ūA − ud) + pA + qA = 0 in Å,

and furthermore

BDD interface condition adjoint interface condition facultative shape gradient equations:
either ūI |γ − ūA |γ = 0 or

ymax
min |γ = ȳA |γ

pI − pA = 0

∂
I
n pI + ∂

A
n pA = σI

pI |γ − pA |γ = 0 or
qA |γ = 0

∂
A
n ymax

min = ∂
A
n ȳA

pI |γ − pA |γ = σI

∂
I
n pI + ∂

A
n pA = 0

pI |γ − (pA |γ + qA |γ) = 0 or
qA |γ − σI = 0

∂
A
n ymax

min + ymax
min = ∂

A
n ȳA + ȳA

pI |γ − pA |γ = σI

∂
I
n pI + ∂

A
n pA = σI

pI |γ − (pA |γ + qA |γ) = 0 or
qA |γ − σI = 0

The approaches contain different interface conditions within the reformulation of the state constraint.
This yields different interface conditions of the adjoint state. Consequently, the adjoint state pA and the
multipliers σI and qA are different for each approach, though this is not marked by the notation.
These different interface conditions yield different additive decompositions of the original adjoint state
ptrad
A into a new adjoint state pA and a Lagrange multiplier qA . At this, pA solves the same PDE in each

case and this adjoint equation is only dependent on ȳA . In contrast, ptrad
A solves an equation which is

dependent on ȳA and µ
Å

, such that it mixes influences of the state equation and the state constraint. Thus,
the BDD approach helps to distinguish between the impacts of the state equation and the state constraint.
Moreover, in particular, the BDD ansatz via the Neumann boundary condition yields a multiplier σI ,
which is determined as the Dirichlet jump of the adjoint state across the interface. In a similar way as in

1In the case of the BDD approach that is based upon the Dirichlet boundary condition, the optimality system from Appendix B is
used here.
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the proof of Corollary 6, it should be possible to prove H2-regularity of pI and pA such that the Lagrange
multiplier σI is in H3/2(γ). In view of the 3rd item of the Remarks on page 51, one recognizes again, that
differentiation of the primal condition in the BDD ansatz yields higher regularity of the corresponding
multiplier.

B Existence of Lagrange multipliers

This section is devoted to prove existence of Lagrange multipliers for the inner optimization prob-
lem (2.37) in analogy to Theorem 5 on page 36. However, this goal could not be reached rigorously,
and hence some conjectures are necessary.
The proof of the mentioned theorem relies on an equivalent reformulation of the constraints, i. e. (2.40),
such that they can be decomposed in two separate/independent parts on J and B. In consequence
of this reformulation, the adjoint states p̄J and p̄B are not connected via interface conditions. This is a
big advantage, since an assertion in the style of Proposition 4 is not required to claim existence of the
adjoint states. Admittedly, it is possible to generalize this result to the situation, where the solutions of
a geometrically split BVP has a kink (i. e. a jump in the normal derivative) across the interface between
the domains J and B̊, which is induced by a H−1/2-function; see Proposition 8. But actually an analog
result for kinks which are induced by H−3/2-functions is required. Since the regularity of BVP solutions
are expected to be elements of L2(., ∆), it is not possible to work with variational formulations then.
Consequently, in order to prove the corresponding result, one requires other ideas than those which are
applied in the proofs of propositions 4 and 8.

Proposition 8 (Unique solvability of an elliptic BVP with a kink in H−1/2):
Let B ∈ O, where O is given by Definition 4 and use the notations from Definition 5. Moreover, let
σ ∈ H−1/2(β), let fJ ∈ L2(J ) and let fB ∈ L2(B̊) be arbitrary.
Then the boundary value problem

−∆vJ + vJ = fJ a. e. in J , (B.1a)

∂nvJ = 0 a. e. on Γ, (B.1b)

vJ |β − vB |β = 0 a. e. on β, (B.1c)

vJ ∈ H1(J , ∆), (B.1d)

−∆vB + vB = fB a. e. in B̊, (B.1e)

∂
J
n vJ + ∂

B
n vB = σ a. e. on β, (B.1f)

vB ∈ H1(B̊, ∆), (B.1g)

is uniquely solvable and there exists a constant c > 0 independent of σ, fJ and fB such that

(‖vJ ‖
2
H1(J ) + ‖vB‖

2
H1(B̊))

1
2 ≤ c

(
(‖ fJ ‖

2
L2(J ) + ‖ fB‖

2
L2(B̊))

1
2 + ‖σ‖H−1/2(β)

)
. (B.2)

Proof. The proof is basically along the lines of the proof of Proposition 4, but is given for convenience. It
is based on the idea to show that (B.1) is equivalent to a variational formulation: Look for v satisfying

aΩ(v, ϕ) = F(ϕ), ∀ϕ ∈ H1(Ω), (B.3a)

v ∈ H1(Ω), (B.3b)

where (with a piecewise defined function f |J := fJ and f |B := fB )

aΩ(v, ϕ) :=
∫

Ω
∇v · ∇ϕ + v ϕ,

F(ϕ) := ( f , ϕ|β)L2(Ω) +
〈
σ , ϕ|β

〉
H−

1
2 (β),H

1
2 (β)

:=
∫

Ω
f ϕ + 〈σ , ϕ〉

H−
1
2 (β),H

1
2 (β)

.

The bilinear form a(., .) is known to be continuous and coercive on H1(Ω)×H1(Ω), and, moreover, there
holds F ∈ H1(Ω)∗, since ϕ → ϕ|β is continuous from H1(Ω) to H1/2(β) (cf. Lemma 1). Consequently,
the theorem of Lax and Milgram guarantees existence and uniqueness of a solution v of (B.3) and the
existence of c > 0 such that (B.2) is fulfilled. To shorten the notation

〈. , .〉M := 〈. , .〉
H−

1
2 (M),H

1
2 (M)

, for M ∈ {β, Γ}

is used for the remainder of the proof.
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1) (B.3) implies (B.1), which will be proven in this part. Due to Lemma 2 the space H1(Ω) can be iden-
tified with W := {(vJ , vB ) ∈ V | vJ |β = vB |β} and thus (B.3) is equivalent to look for (vJ , vB ) ∈ W
satisfying

aΩ(v, ϕ) = F(ϕ), ∀ϕ := (ϕJ , ϕB ) ∈W. (B.4)

In particular, there holds (B.1c), since v ∈ H1(Ω) = W. The next step is to apply the abstract Green’s
formula of Lemma 3. In order to check the assumptions, the following notations will be useful:

V := H1(J )× H1(B̊)
H := L2(J )× L2(B̊)

T := H
1
2 (∂J )× H

1
2 (∂B̊) ∼= H

1
2 (Γ)× H

1
2 (β)× H

1
2 (β)

τ : V → T, (vJ , vB ) 7→ (τJ (vJ ), τB (vB )) ≡ (vJ |Γ, vJ |β, vB |β)

a : V ×V → R, (v, w) 7→ aJ (vJ , wJ ) + aB (vB , wB ) :=
∫
J
∇vJ · ∇wJ + vJ wJ +

∫
B̊
∇vB · ∇wB + vBwB

V0 := H1
0(J )× H1

0(B̊)
Λ = (−∆ + IdH1(J ),−∆ + IdH1(B̊)) : V 7→ V∗0 = (H−1(J ), H−1(B̊)).

Then there holds

(i) τ is onto according to Lemma 1
(ii) V ⊂ H according to the Sobolev embedding theorem and has a stronger topology

(iii) C∞
0 (J )× C∞

0 (B̊) is dense in H and V0; consequently V0 ⊂ H is dense, too.

Since Λ is the formal operator associated with the continuous bilinear form a, there holds

a(v, ϕ) = 〈Λv , ϕ〉V0
∗,V0

, ∀ϕ ∈ V0,
V0⊂W
===⇒

(B.4)
〈Λv , ϕ〉V0

∗,V0
= F(ϕ) = ( f , ϕ)H , ∀ϕ ∈ V0,

V0⊂H
===⇒
dense

Λv = f in H, i. e. Λy ∈ H.

Consequently, v ∈ V(Λ) := {v ∈ V |Λv ∈ H} = H1(J , ∆) × H1(B̊, ∆); in other words (B.1a), (B.1d),
(B.1e) and (B.1g) are fulfilled as well as the assumptions of Lemma 3. That is to say, there exists a unique
operator

δ = (δΓ, δJβ , δBβ ) : V(Λ)→ T∗ ∼= H−
1
2 (Γ)× H−

1
2 (β)× H−

1
2 (β),

such that there holds
a(v, ϕ) = (Λv, ϕ)H + 〈δv , τϕ〉T∗,T , ∀ϕ ∈ V.

This equation is also fulfilled if ϕ only ranges in W ⊂ V and a comparison with (B.4) yields

〈δv , τϕ〉T∗,T = 〈σ , ϕ|β〉β, ∀ϕ ∈W,

⇔ 〈δΓvJ , ϕJ |Γ〉Γ + 〈δ
J
β vJ , ϕJ |β〉β + 〈δBβ vB , ϕB |β〉β = 〈σ , ϕB |β〉β, ∀(ϕJ , ϕB ) ∈W.

Since (ϕJ , ϕB ) ∈W one can make use of ϕJ |β = ϕB |β yielding

〈δΓvJ , ϕJ |Γ〉Γ +
〈

δJβ vJ + δBβ vB , ϕB |β
〉

β
= 〈σ , ϕB |β〉β, ∀(ϕJ , ϕB ) ∈W.

Finally the stepwise variation ϕ ∈ H1
0(Ω) ⊂ H1(Ω) ∼= W and ϕ ∈W reveals〈

δJβ vJ + δBβ vB , ϕ|β
〉

β
= 〈σ , ϕ|β〉β, ∀ϕ ∈ H1

0(Ω)

〈δΓvJ , ϕ|Γ〉Γ = 0, ∀ϕ ∈W.

Since the trace operator (.)|Γ : W → H1/2(Γ) is onto (cf. Lemma 1) and referring to the Remark on
page 16, one has

∂nvJ = δΓ = 0 in H−
1
2 (Γ), i. e. (B.1b).

The analog property of the trace operator (.)|β yields

∂
J
n vJ + ∂

B
n vB = δJβ vJ + δBβ vB = σ in H−

1
2 (β), i. e. (B.1f).

Altogether (B.3) implies (B.1).
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2) This part is devoted to prove that (B.1) implies (B.3).
Let ϕ ∈ H1(Ω) be arbitrary. Lemma 2 yields that ϕJ := ϕ|J and ϕB := ϕ|B are H1-functions with ϕJ |β =
ϕB |β. Multiplying the PDEs (B.1a) and (B.1e) with ϕJ and ϕB respectively, integration, and integration by
parts results in ∫

J
∇vJ · ∇ϕJ + vJ ϕJ −

∫
Γ

∂nvJ ϕJ =
∫
J

fJ ϕJ +
∫

β
∂
J
n vJ ϕJ ,∫

B̊
∇vB · ∇ϕB + vB ϕB =

∫
B̊

fB ϕB +
∫

β
∂
B
n vB ϕB .

Adding these equations and using the conditions (B.1b), (B.1f) and ϕJ |β = ϕB |β yields (B.3).

As already mentioned above, Proposition 8 is not general enough to be apply in the proof of Theorem 9,
since the kink inducing function σ is assumed to be in H−1/2(β); however, H−3/2-regularity is required.
Nevertheless, it seems reasonable to assume that an assertion analog to the proposition still holds true in
the weaker context. This conjecture is based on [6, Thm. 7.1-2] that says, that the operators

(−∆ + Id, τG) : L2(G, ∆)→ L2(G)× H−
1
2 (∂G)

(−∆ + Id, ∂n) : L2(G, ∆)→ L2(G)× H−
3
2 (∂G)

are isomorphisms, and based on [69, Thm. 1.5.3.4 with comment on p. 55] which ensures that the trace
mapping

(τG, ∂n) : L2(G, ∆)→ H−
1
2 (∂G)× H−

3
2 (∂G)

is continuous and onto for a bounded domain G ⊂ R2 of class C1,1.

Conjecture 3 (Unique solvability of an elliptic BVP with a kink in H−3/2):
Let B ∈ O, where O is given by Definition 4 and use the notations of Definition 5. Moreover, let σ ∈
H−3/2(β), let fJ ∈ L2(J ) and let fB ∈ L2(B̊) be arbitrary.
Then the boundary value problem

−∆vJ + vJ = fJ a. e. in J , (B.5a)

∂nvJ = 0 a. e. on Γ, (B.5b)

vJ |β − vB |β = 0 a. e. on β, (B.5c)

vJ ∈ L2(J , ∆), (B.5d)

−∆vB + vB = fB a. e. in B̊, (B.5e)

∂
J
n vJ + ∂

B
n vB = σ a. e. on β, (B.5f)

vB ∈ L2(B̊, ∆) (B.5g)

is uniquely solvable.

Equipped with Conjecture 3, it is possible to prove existence of Lagrange multipliers and adjoint states
for the parametrized inner optimization problem (2.37), without reformulating the constraints to inde-
pendent blocks on J and B̊, as it is done in the proof of Theorem 5.

Theorem 9 (Existence of Lagrange multipliers for the inner optimization problem):
Let the family of admissible sets O be given by Definition 4, let B ∈ O be arbitrarily chosen, and let
(ūJ , ūB , ȳJ , ȳB ) be the optimal solution to the inner optimization problem (2.37) for the fixed parameter B.

Then there exist multipliers q̂B ∈ L2(B̊), σ̂J ∈ H−3/2(β) associated with the BDD reformulated state
constraints (2.37d) and (2.37e).
Furthermore, assume that there exists p̂J ∈ L2(J , ∆) and p̂B ∈ L2(B̊, ∆) (see Conjecture 3), such that

−∆ p̂J + p̂J = ȳJ − yd a. e. in J , (B.6a)

∂n p̂J = 0 a. e. on Γ, (B.6b)

−∆ p̂B + p̂B = ȳB − yd a. e. in B̊, (B.6c)
p̂J |β − p̂B |β = 0 a. e. on β, (B.6d)

∂
J
n p̂J + ∂

B
n p̂B = σ̂J a. e. on β, (B.6e)

then there holds

λ (ūJ − ud) + p̂J = 0 a. e. in J , (B.7a)

λ (ūB − ud) + p̂B + q̂B = 0 a. e. in B̊. (B.7b)
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Proof. The proof consists of two parts. The first one provides existence of q̂B and σ̂J as Lagrange mul-
tipliers to a reduced problem. The second part shows, that the relations (B.7) hold with the assumed
functions p̂J and p̂B .

1) Let B ∈ O be arbitrarily chosen, but fix. Consider the linear control-to-state operator S = (SJ , SB ) of
the split boundary value problem (2.37f)–(2.37j),

S : L2(J )× L2(B̊)→ H2(J )× H2(B̊), (uJ , uB ) 7→ (yJ , yB ), where



−∆yJ + yJ = uJ in J ,

−∆yB + yB = uB in B̊ ,
∂nyJ = 0 on Γ ,

yJ |β − yB |β = 0 on β ,

∂
J
n yJ + ∂

B
n yB = 0 on β .

S is known to be continuous (cf. [69, Thm. 2.3.3.2]). With use of the Dirichlet trace operators on the
interface (cf. Definition 2 and Lemma 1)

τJ : H2(J )→ H
3
2 (β),

τB : H2(B̊)→ H
3
2 (β),

the inner optimization problem (2.37) can be reduced to

minimize f (uJ , uA) := J(B; uJ , uB , SJ (uJ , uB ), SB (uJ , uB ))

subject to T(uJ , uB ) :=
(

∆ymax
min − ymax

min + uB
τBSB (uJ , uB )− τBymax

min

)
= 0, (B.8)

where T : L2(J ) × L2(B̊) → L2(B̊) × H
3
2 (β). This reduced problem fits into the usual framework of

nonlinear optimization in Banach spaces.

In order to prove existence of multipliers, one has to show that a constraint qualification is valid. In
current context the Zowe-Kurcyusz constraint qualification (cf. [164] and [159, p. 330]) is suitable and its
validity for the operator T in (ūJ , ūB ) will be proven next.

Thus, for each arbitrary z1 ∈ L2(B̊) and z2 ∈ H
3
2 (β) one needs to find (hJ , hB ) ∈ L2(J )× L2(B̊) such

that

(DT)(hJ , hB ) =
(

hB
τBSB (hJ , hB )

)
=

(
z1

z2

)
.

(Note that T is continuously Fréchet differentiable, since SB is continuous and affine.) As a start, this
defines hB := z1. Now let (v1

J , v1
B ) := S(0, hB ). Consequently, v1

B ∈ H2(B̊) and τBv1
B ∈ H

3
2 (β). Next, let

v2
B ∈ H2(B̊) solve

−∆v2
B + v2

B = 0 a. e. in B̊ ,

τBv2
B = z2 − τBv1

B a. e. on β .

Due to the extension operator of Lemma 1, there exists v2
J ∈ H2(J ) which suffices

∂nv2
J = 0 a. e. on Γ,

∂
J
n v2
I = −∂

B
n v2
B a. e. on β,

τJ v2
J = τBv2

B a. e. on β.

Defining hJ := −∆v2
J + v2

J ∈ L2(J ), vJ := v1
J + v2

J , and vB := v1
B + v2

B , it follows

−∆vJ + vJ = −∆v1
J + v1

J − ∆v2
J + v2

J = 0 + hJ a. e. in J ,

−∆vB + vB = −∆v1
B + v1

B − ∆v2
B + v2

B = z1 + 0 a. e. in B̊,

∂nvJ = ∂nv1
J + ∂nv2

J = 0 + 0 a. e. on Γ,

τJ vJ − τBvB = (τJ v1
J − τBv1

B ) + (τJ v2
J − τBv2

B ) = 0 + 0 a. e. on β,

∂
J
n vJ + ∂

B
n vB = (∂

J
n v1
J + ∂

B
n v1
B ) + (∂

J
n v2
I + ∂

B
n v2
B ) = 0 + 0 a. e. on β,
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or, in other words, S(hJ , z1) = (vJ , vB ). Furthermore, there holds

(DT)(hJ , hB ) =
(

hB
τBSB (hJ , hB )

)
=

(
z1

τBv1
B + (z2 − τBv1

B )

)
=

(
z1

z2

)
.

Consequently, the Zowe-Kurcyusz constraint qualification is fulfilled and there exist Lagrange multipli-
ers q̂B ∈ L2(B̊) and σ̂J ∈ H3/2(β)

∗
= H−3/2(β).

2) In addition, (ūJ , ūB , q̂B , σ̂J ) is a saddle point of the Lagrange function (cf. [159, Thm. 6.3])

L : L2(J )× L2(B̊)× L2(B̊)× H−
3
2 (β)→ R,

L(uJ , uB , qB , σJ ) := f (uJ , uB ) +
∫
B̊

qB (uB + ∆ymax
min − ymax

min ) +
〈
σJ , τBSB (uJ , uB )− τBymax

min
〉

H−
3
2 (β),H

3
2 (β)

.

Since the constraints (B.8) solely consist of equations, there holds

0 = ∂uB
L(ūJ , ūB , q̂B , σ̂J )h

=
∫
J
(SJ (ūJ , ūB )− yd) SJ (0, h) +

∫
B̊
(SB (ūJ , ūB )− yd) SB (0, h) +

∫
B̊

λ(ūB − ud)h

+
∫
B̊

q̂B h +
〈
σ̂J , τBSB (0, h)

〉
H−

3
2 (β),H

3
2 (β)

, ∀h ∈ L2(B̊).

Now let ( p̂J , p̂B ) ∈ L2(J , ∆)× L2(B̊, ∆) be introduced as the solution to (B.6). Using the suitable Green’s
formula (cf. [69, Thm. 1.5.3.6] in the special case without corners Sj), one can proceed

0 =
∫
J
(−∆ p̂J + p̂J ) SJ (0, h) +

∫
B̊
(−∆ p̂B + p̂B ) SB (0, h)

+
∫
B̊

λ (ūB − ud)h +
∫
B̊

q̂B h +
〈
σ̂J , τBSB (0, h)

〉
H−

3
2 (β),H

3
2 (β)

=
∫
J

p̂J (−∆SJ (0, h) + SJ (0, h))︸ ︷︷ ︸
=0

+
∫
B̊

p̂B (−∆SB (0, h) + SB (0, h))︸ ︷︷ ︸
=h

+
∫
B̊

λ (ūB − ud)h +
∫
B̊

q̂B h +
〈
σ̂J , τBSB (0, h)

〉
H−

3
2 (β),H

3
2 (β)

−
〈
∂
J
n p̂J , τJ SJ (0, h)︸ ︷︷ ︸

=τB SB (0,h)

〉
H−

3
2 (β),H

3
2 (β)

+
〈
τJ p̂J︸ ︷︷ ︸
=τB p̂B

, ∂
J
n SJ (0, h)

〉
H−

1
2 (β),H

1
2 (β)

−
〈

∂
B
n p̂B , τBSB (0, h)

〉
H−

3
2 (β),H

3
2 (β)

+
〈

τB p̂B , ∂
B
n SB (0, h)

〉
H−

1
2 (β),H

1
2 (β)

−
〈
∂n p̂J︸ ︷︷ ︸
=0

, τSJ (0, h)
〉

H−
3
2 (β),H

3
2 (β)

+
〈
τ p̂J , ∂nSJ (0, h)︸ ︷︷ ︸

=0

〉
H−

1
2 (β),H

1
2 (β)

=
∫
B̊

p̂B h + λ (ūB − ud) h + q̂B h

+
〈
σ̂J − ∂

J
n p̂J − ∂

B
n p̂B︸ ︷︷ ︸

=0

, τBSB (0, h)
〉

H−
3
2 (β),H

3
2 (β)

+
〈
τB p̂B , ∂

J
n SJ (0, h) + ∂

B
n SB (0, h)︸ ︷︷ ︸

=0

〉
H−

1
2 (β),H

1
2 (β)

, ∀h ∈ L2(B̊).

Finally, one obtains λ (ūB − ud) + p̂B + q̂B = 0 in L2(B̊); this is (B.7b). Analogously, (B.7a) can be derived
by investigation of 0 = ∂uJ

L(ūJ , ūB , q̂B , σ̂J )h. This completes the derivation of the claimed conditions.

After having provided the multipliers and the adjoint equations in the mentioned setting, where the
adjoint states are connected via interface conditions, it is valuable to compare the results of Theorem 5
and Theorem 9. For convenience some of the properties discussed here are illustrated in Figure B.1.
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Corollary 6 (Comparison of multipliers):
Let the family of admissible sets O be given by Definition 4, let B ∈ O be arbitrarily chosen, and let
(ūJ , ūB , ȳJ , ȳB ) be the optimal solution to the inner optimization problem (2.37) for the fixed parameter B.
Then the multipliers given by Proposition 3 and theorems 5 and 9 are connected in the following unique
way

p̂J = p̄J a. e. in J , (B.9a)

p̂B |β = p̄J |β a. e. on β, (B.9b)

σ̂J − ∂
B
n p̂B = σ̄J a. e. on β, (B.9c)

q̂B + p̂B = q̄B + p̄B = pmax
min a. e. in B̊. (B.9d)

Moreover, at the optimal active set A there holds

q̂A |γ = 0 on γ, (B.10a)

−∆q̂A + q̂A = −∆q̄A + q̄A = µmax
Å

a. e. in Åmax, (B.10b)

−∆q̂A + q̂A = −∆q̄A + q̄A = −µmin
Å

a. e. in Åmin, (B.10c)

σ̄I + ∂
B
n (q̄A + p̄A) = µγ a. e. on γ, (B.10d)

σ̂I + ∂
B
n q̂A = µγ a. e. on γ, (B.10e)

q̂A |Åmax
≥ 0 in Åmax, (B.10f)

q̂A |Åmin
≤ 0 in Åmin, (B.10g)

σ̂A |γmax ≥ 0 a. e. on γmax, (B.10h)
σ̂A |γmin ≤ 0 a. e. on γmin, (B.10i)

and regularity of different entities improves to

p̂I , p̄I ∈ H2(I), (B.10j)

p̂A , q̂A ∈ H2(Å), (B.10k)

σ̂I , σ̄I ∈ H
1
2 (γ). (B.10l)

µmax
γ

σ̂A |γmax

q̄A
ptrad
A

p̂A

q̂A
p̄A

AmaxI

p̂I = p̄I = ptrad
I

Γ γ γ

q̄B
pmax

min

p̂B
q̂B
p̄B
0

Bmax

ββ

J

p̂J = p̄J

Γ

Figure B.1: Comparison of the Lagrange multipliers.

Proof. A comparison of the gradient equations (2.39d) and (B.7a), i. e.

λ (ūJ − ud) + p̄J = 0 a. e. in J ,

λ (ūJ − ud) + p̂J = 0 a. e. in J ,

yields (B.9a), since the optimal control ūJ is unique. Hence, (B.9b) directly results form the weak conti-
nuity of p̂ (B.6d). Another direct consequence is (B.9c), since

σ̄J
(2.39c)
= ∂

J
n p̄J = ∂

J
n p̂J

(B.6e)
= σ̂J − ∂

B
n p̂B .
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Finally, a comparison of the gradient equations (2.39g) and (B.7b), i. e.

λ (ūB − ud) + p̄B + q̄B = 0 a. e. in B̊,

λ (ūB − ud) + p̂B + q̂B = 0 a. e. in B̊, (B.11)

yields the first equation of (B.9d), since the optimal control ūB is unique. The second equation simply is
due to the definition of pmax

min ; see (2.46).
Since the adjoint state p̂ and the optimal control ū are weakly continuous across the optimal interface γ
(see (B.6d) and (2.5)), there holds (B.10a)

q̂A |γ = −λ (ūA − ud)|γ − p̂A |γ = −λ (ūI − ud)|γ − p̂I |γ = 0.

Since there is ptrad
A = pmax

min (compare (2.4a), (2.4b) and (2.46)) equation (B.9d) ensures, that

p̂A + q̂A = ptrad
A .

Consequently, superposition of the adjoint equations for p̂A and ptrad
A yields

−∆q̂A + q̂A = µ
Å
= µmax

Å
− µmin

Å
a. e. in Å.

In other words, there hold (B.10b) and (B.10c). Furthermore, a comparison of the definition of pmax
min (see

(2.46)) and the necessary conditions of Bergounioux and Kunisch for the adjoint state ptrad
A (see (2.4a),

(2.4b)) yields

pmax
min = ptrad

A in Å.
Henceforth, there hold (B.10d) and (B.10e)

µγ = ∂
I
n ptrad
I + ∂

A
n ptrad
A = ∂

I
n p̄I + ∂

A
n ( p̄A + q̄A) = σ̄I + ∂

A
n ( p̄A + q̄A) a. e. on γ,

µγ = ∂
I
n ptrad
I + ∂

A
n ptrad
A = ∂

I
n p̂I + ∂

A
n ( p̂A + q̂A) = σ̂I + ∂

A
n q̂A a. e. on γ.

The sign conditions for the multiplier q̂A are a consequence of nonnegativity of µmax and µmin and the
weak maximum principle applied to the elliptic BVP (B.10b), (B.10a) and respectively (B.10c), (B.10a).
Moreover, since q̂A |Åmax

≥ 0 and q̂A |γmax = 0 there must hold

∂
A
n q̂A ≤ 0 on γmax.

By means of (B.10e), this yields the sign condition (B.10h)

σ̂A |γmax = µmax
γ − ∂

A
n q̂A |γmax ≥ 0.

Vice versa, one obtains

∂
A
n q̂A ≥ 0 on γmin,

due to q̂A |Åmin
≤ 0 and q̂A |γmin . Hence, the sign condition (B.10i) holds true

σ̂A |γmin = −µmin
γ − ∂

A
n q̂A |γmin ≤ 0.

The enhancement of regularity at the optimal configuration A can be recognized as follows. Since the
Dirichlet trace p̄I |γ (and respectively p̂I |γ, due to (B.9a)) is equal to pmax

min |γ ∈ H3/2(γ) (cf. (2.57)), elliptic
regularity yields p̂I = p̄I ∈ H2(I). Weak continuity of p̂ at the optimal interface γ yields a H3/2-regular
Dirichlet trace for p̂A then. Hence, elliptic regularity ensures p̂A to be in H2(Å). Consequently, the prop-
erties of the Neumann trace operator (see Definition 9) ensure σ̂A and σ̄A to be elements of H1/2(γ). In
addition, ūA ∈ H2(Å), such that the H2-regularity transfers to q̂A by means of the gradient equation
(B.11). Finally, the adjoint state p̄A and the Lagrange multiplier q̄A are known to be H2-regular; cf. Theo-
rem 5.

Remarks:
Corollary 6 shows the direct connection between the multipliers in different versions.

1. The comparison of the dual variables in Corollary 6 and the results presented in Appendix A clar-
ifies that there are plenty of different ways to use the BDD approach in the context of the model
problem (2.1). However all those different ideas have in common, that the adjoint state ptrad

A is de-
composed into a sum of a new adjoint state and a Lagrange multiplier qA . At this, the influence
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of the state equation and the state constraint can be treated separately in the optimality system,
whereas this is not possible by means of the necessary conditions of Bergounioux and Kunisch;
cf. Proposition 3.

2. It should be emphasized that the multipliers q̂A and σ̂A inherit sign conditions from their counter-
parts µ

Å
and µγ, although they belong to equality constraints. This fact is not too surprising, since

the constraints can be regarded as active inequality constraints.
3. However, the multipliers q̄A and σ̄A do not exhibit this property, which indicates, that the reformu-

lation of the state equation in the proof of Theorem 5 yields a loss of sharpness.
4. The improvement of regularity of q̂A and q̄A vs. µ

Å
is linked to the treatment of the state constraint

by means of the BDD approach. The equation was differentiated twice (cf. Paragraph 2.2.2) and the
regularity improves from L2(Å) to H2(Å). Analogously, neither σ̂A nor σ̄A gains any improvement
in regularity compared to µγ, which is due to the fact that the interface condition of the BDD re-
formulation (i. e. (2.27)) does not contain differential operations. However, improvements can be
achieved by applying Neumann boundary conditions; cf. Appendix A.

5. Results, which are comparable to the 2nd and 4th item, are known from optimal control of ODE;
cf. Maurer [122, (5.9), (5.10)].

C Remarks on Shape differentiability of the constraints

Essential parts of the derivation of the full first order necessary conditions in Section 2.3 rely on Lemma 8,
which provides the local shape derivative of the equality constraints of the reduced shape optimization
problem (2.45). Unfortunately, different attempts to prove shape differentiability of this nonstandard
elliptic boundary value problem have not been successful. The crucial point is, that there is no direct
access available to prove existence and higher regularity of solutions of a boundary value problem with
an asymmetrical distribution of boundary conditions, to the best of the author’s knowledge. The BVP is
repeated here for convenience.

−∆ȳJ + ȳJ +
1
λ

p̄J = ud in J ,

∂nȳJ = 0 on Γ,

ȳJ |β = ymax
min |β on β,

∂
J
n ȳJ = ∂

B
n ymax

min on β,

−∆ p̄J + p̄J − ȳJ = −yd in J ,

∂n p̄J = 0 on Γ,

p̄J ∈ L2(J , ∆), ȳJ ∈ H2(J ).

On the first glance such kind of BVP seem to be very artificial and this may give the impression that the
associated problems can be avoided if the approach, which is pursued in Section 2.3, is modified in a
suitable way. However, there are at least three reasons, which motivate a comprehensive investigation
of PDEs that are equipped with asymmetrical boundary conditions, and which show that associated
questions arise from different aspects of optimal control.

• A second order elliptic BVP which is stated on a bounded domain that possesses two distinct
boundary components – an annulus, for example – and which has a Neumann- and a Dirichlet
boundary condition on one of these boundary components, seems to be the justified generalization
of a second order ODE initial value problem stated on a bounded interval.

• First order necessary conditions for time optimal control problems (of ODE and PDE) typically
possess such an asymmetrical distribution of “boundary” conditions: one aims at controlling a
state variable, which has to fulfill some sort of initial condition to a final state in minimal time. Here,
the initial condition is usually formulated such that a unique simulation of the state is possible for
(any) control. Henceforth, the end-time condition, which is required to determine the minimal time,
appears as additional condition in the KKT system. This additional condition is compensated by a
loss of an end-time condition for the adjoint state, see [112]. All in all, the optimality system is some
sort of (P)DAE, whose kernel is the coupled state-adjoint-system, which features an asymmetrical
distribution of “boundary”-, i. e. initial and end-time conditions.
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Theses considerations draw a parallel between time optimal control and the approach of this thesis:
the outer boundary Γ and the interface β correspond to initial time and free end-time, respectively.
Consequently, the unknown optimal inactive set parallels the time interval. Moreover, the Neu-
mann boundary condition on Γ together with either the Dirichlet- or the Neumann boundary con-
dition at the interface can be regarded as the substitute for an initial condition, whereas the second
interface condition corresponds to the end-time condition.

• It is illustrated in Section 2.7, that OC-PDE and the theory of PDAE are inextricably linked with
each other. Moreover, it cannot be expected, that practical applications of OC-PDE are as easy as
the model problem considered here. To be more precise, it is likely that the PDE constraint is ac-
companied by algebraic conditions or something else; see, for instance, [144]. Thus, it is reasonable
to embed OC-PDE into the more general framework of OC-PDAE.

Questions of solvability and regularity of the asymmetrical BVP is a typical question of theory of
PDAE, where the investigation of compatibility of algebraic conditions is fundamental.

From this perspective, the asymmetrical distribution of boundary conditions in problem (2.45) does not
appear to be artificial, not to say inevitable. In order to get a better understanding of the difficulties one is
confronted with when proving shape differentiability, some aspects shall be discussed in the following.

Since the considered BVP is non-standard, there is no shape differentiability result available in literature
so far. Hence, differentiability might be proven on an elementary basis by means of convergence of
the difference quotient or by means of application of a theorem of Correa and Seeger (cf. [44, Chp. 10
Thm. 5.1]), which is concerned with differentiability of a saddle points with respect to a parameter.

In both cases let V ∈ V be a velocity field and for t ∈ [0; τ] (and suitable τ > 0) let Tt := Tt(V) be
the associated transformation, cf. the 2nd item of the discussion on page 72. Furthermore, define Jt :=
Tt(J ), βt := Tt(β), ȳt := ȳJt and p̄t := p̄Jt and consider

−∆ȳt + ȳt +
1
λ

p̄t = ud in Jt,

∂nȳt = 0 on Γ,
ȳt|βt = ymax

min |βt on βt,

∂
J
nt ȳt = ∂

J
nt y

max
min on βt,

−∆ p̄t + p̄t − ȳt = −yd in Jt,

∂n p̄t = 0 on Γ.

The construction of ymax
min in Lemma 4 ensures, that ymax

min does not have to be redefined, if βt remains in
the sets Bmax and Bmin, respectively. This is guaranteed, as long as τ > 0 is chosen small enough.

Now the question arises, whether ȳt and p̄t converge to ȳ0 := ȳJ and ȳ0 := p̄J , respectively, such that
the corresponding difference quotients converge. However, in order to be able to obtain a well defined
difference “ȳt − ȳ0” one has to ensure, that both constituents are elements of the same vector space. This
topic is discussed in detail in Paragraph 2.6.2; in particular, in the 16th and 18th item on page 78f. Hence,
the next step is to transport ȳt and p̄t back to the domain J :

ȳt := ȳt ◦ Tt, p̄t := p̄t ◦ Tt.

The difference quotients (ȳt− ȳ0)/t and respectively ( p̄t− p̄0)/t are well-defined now, but in order to see
whether they converge properly a variational form of the defining coupled PDE is required. Such a weak
formulation can be obtained more easily when the boundary conditions are homogenized. By means of
setting yt := ȳt − ymax

min and pt := p̄t − θt, where θt ∈ H2(Jt) is defined as a solution to

−∆θt + θt = ymax
min − yd in Jt,

∂nθt = 0 on Γ,

the above coupled PDE can be homogenized

−∆yt + yt +
1
λ

pt = ud + ∆ymax
min − ymax

min − θt =: F in Jt,

∂nyt = 0 on Γ,
yt|βt = 0 on βt,

∂
J
nt yt = 0 on βt,

−∆pt + pt − yt = 0 in Jt,

∂n pt = 0 on Γ.

It is important to notice here, that θt can be chosen independently of t ∈ [0; τ], since ymax
min is independent
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of t and since θt can be defined as the restriction of the unique function Θ ∈ H2(Ω) given by

−∆Θ + Θ = ymax
min − yd in Ω,

∂nΘ = 0 on Γ.

Now, there are two different approaches to obtain a weak formulation of the homogenized coupled sys-
tem. At this point, the two abovementioned ideas (elementary approach vs. saddle point formulation
and theorem of Correa and Seeger) split up. On the one hand an informal, asymmetrical variational
formulation reads∫

Jt
∇yt · ∇ϕt + (yt +

1
λ

pt) ϕt dxt =
∫
Jt

F ϕt dxt, ∀ϕt ∈ H1(Jt),∫
Jt
∇pt · ∇φt + (pt − yt)dxt = 0, ∀φt ∈ H1

βt
(Jt) := {φt ∈ H1(Jt) | φt|βt = 0},

where yt ∈ H1
βt
(Jt). On the other hand the system may be characterized informally as the saddle point

of the functional

Lt : L2(Jt)× H1
βt
(Jt)× H1(Jt)→ R, (ϕt, φt, ψt) 7→

∫
Jt

1
2

φ2
t +

λ

2
ϕ2

t −∇φt · ∇ψt − (φt − ϕt − F)ψt dxt.

Lt is Fréchet differentiable (i. e. continuous in particular), convex with respect to (ϕt, φt) and concave
with respect to ψt. Furthermore, L2(Jt)× H1

βt
(Jt) and H1(Jt) are convex and non-empty sets. Hence,

the functional Lt has saddle points (ut, yt, pt), i. e.

(ut, yt, pt) = arg min
ϕ∈L2(Jt)

φ∈H1
βt

(Jt)

max
ψ∈H1(Jt)

L(ϕt, φt, ψt).

They are equivalently characterized by (cf. [52, Prop. 1.6, p. 170])

0 = ∂ϕt Lt(ut, yt, pt) ϕt =
∫
Jt
(λut + pt) ϕ =: f1,t[ut, yt, pt](ϕt), ∀ϕt ∈ L2(Jt),

0 = ∂φt Lt(ut, yt, pt) φt =
∫
Jt

yt φt −∇φt · ∇pt − φt pt =: f2,t[ut, yt, pt](φt), ∀φt ∈ H1
βt
(Jt),

0 = ∂ψt Lt(ut, yt, pt)ψt =
∫
Jt
−∇yt · ∇ψt − (pt − ut − F)ψt =: f3,t[ut, yt, pt](ψt), ∀ψt ∈ H1(Jt).

However, both approaches require H1-regularity of the adjoint pt, which cannot be ensured. Thus, nei-
ther a proof in the style of [90, Appendix A], nor in the style of [44, Chp. 10 Sec. 6] is applicable here.

D Some notions from group theory

The different notions introduced in this section are required to understand the group theoretic perspec-
tive on the considerations of Paragraph 2.6.1 concerning the structure of the set O, which was defined in
Definition 4. These notions are elementary and can be looked up in any textbook on algebra, for instance
[114, §5] or [83, Sec. 10.1]. Nonetheless, they are given for convenience.

Definition 21:
Let M be a set and let (G, ◦) be a group, with unit element 1. Then one can define the following notions:
• G operates on the set M (also G acts on the set M), if there is a mapping (group operation)

M× G → M, (x, g) 7→ g(x)

with the properties

∀x ∈ M, g, h ∈ G :

{
h(g(x)) = (h ◦ g)(x),

1(x) = x.

Let G operate on M. Then
• the stabilizer (or isotropy group) of x ∈ M is defined as

Gx := {g ∈ G | g(x) = x};
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• the group operation is faithful, if

∀g ∈ G \ {1} ∃x ∈ M : g(x) 6= x;

• the orbit of x ∈ M under G is defined as the set of images of x

G(x) := {g(x) ∈ M | g ∈ G};
the orbits are the equivalence classes of the equivalence relation x ∼ y :⇔ ∃g ∈ G : g(x) = y;

• the group operation is transitive, if M consist of a single orbit only; that is to say M = G(x).

E Derivation of second order derivatives of the Lagrangian

In order to establish a Lagrange-Newton method for finding critical points of the Lagrangian – see Para-
graph 3.3.3 – one has to derive its second order (partial) derivatives, which is the goal of this section.2

The statement of the Lagrangian and its first order derivatives is repeated here, for convenience. Let

o := (B; f ) := (B; uJ , uB , yJ , yB ; pJ , pB , qB , σJ , σB )

be the tuple of its variables, then the Lagrangian is defined as

L(o) = J(B; uJ , uB , yJ , yB )

−
∫
J
(−∆yJ + yJ − uJ ) pJ −

〈
pJ , ∂nyJ

〉
Γ −

〈
pJ , ∂

J
n yJ − ∂

J
n ymax

min

〉
β

−
∫
B̊
(−∆yB + yB − uB ) pB

+
∫
B̊
(∆ymax

min − ymax
min + uB ) qB +

〈〈
σB , yB − ymax

min
〉〉

β
+
〈〈

σJ , yJ − ymax
min
〉〉

β
.

As already derived in Paragraph 2.4.3 the first order derivatives are as follows. In contrast to the former
derivation, the derivatives are not simplified by means of known first order necessary conditions, since
they are the starting point for the derivation of second order derivatives and thus are not evaluated at the
optimal configuration. In abuse of notation, the duality pairings for boundary expressions are substituted
by a formal integral notation. The derivatives are evaluated with respect to the direction

h := (V; vJ , vB , zJ , zB ; sJ , sB , QB , ΣJ , ΣB ).

This yields(
∂uJ
L(o)

)
vJ =

∫
J

λ(uJ − ud) vJ + vJ pJ ,(
∂uB
L(ō)

)
vB =

∫
B̊

λ(uB − ud) vB + vB pB + vB qB ,(
∂yJ
L(o)

)
zJ =

∫
J
(yJ − yd) zJ + (∆zJ − zJ ) pJ −

∫
Γ

pJ ∂nzJ +
∫

β
zJ σJ − pJ ∂

J
n zJ ,(

∂yB
L(o)

)
zB =

∫
B̊
(yB − yd) zB + (∆zB − zB ) pB +

∫
β

zB σB ,(
∂pJ
L(o)

)
sJ =

∫
J
−(−∆yJ + yJ − uJ ) sJ −

∫
Γ

sJ ∂nyJ −
∫

β
sJ ∂

J
n (yJ − ymax

min ),(
∂pB
L(o)

)
sB =

∫
B̊
−(−∆yB + yB − uB ) sB ,(

∂qB
L(o)

)
QB =

∫
B̊
(∆ymax

min − ymax
min + uB ) QB ,(

∂σJ
L(o)

)
ΣJ =

∫
β
(yJ − ymax

min )ΣJ ,(
∂σB
L(o)

)
ΣB =

∫
β
(yB − ymax

min )ΣB ,

2In particular, it deals with the Lagrangian L given by Definition 7, but the derivations could also be performed for the Lagrangian
of the original model problem (2.1).
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∂B
(
L(o); V

)
=
∫

β

(
1
2
(yJ − yd)

2 − 1
2
(yB − yd)

2 +
λ

2
(uJ − ud)

2 − λ

2
(uB − ud)

2
)

V · nJ

+
∫

β

(
− (−∆yJ + yJ − uJ ) pJ + (−∆yB + yB − uB ) pB − (∆ymax

min − ymax
min + uB ) qB

)
V · nJ

−
∫

β

(
∂
J
n pJ ∂

J
n (yJ − ymax

min ) + pJ ∂nn(yJ − ymax
min ) + pJ ∂

J
n (yJ − ymax

min ) κJ

)
V · nJ

+
∫

β

((
∂
J
n (yB − ymax

min ) + (yB − ymax
min ) κJ

)
σB+

(
∂
J
n (yJ − ymax

min ) + (yJ − ymax
min ) κJ

)
σJ

)
V · nJ .

The next goal is to derive the derivative of each of those semiderivatives with respect to the direction

δ := (W; δ f ) = (W; δuJ
, δuB

, δyJ
, δyB

; δpJ
, δpB

, δqB
, δσJ

, δσB
).

The constituents of the direction h are treated as shape independent test functions (and in particular V
is autonomous) what considerably simplifies calculations (see Paragraph 2.4.2) and which should yield
a result, which is comparable to a second covariant derivative; cf. the 21st item of the discussion on
page 81. Furthermore, it should be mentioned that the derivation is only formally and disregards any
question concerning regularity.

d
(
∂uJ
L(o)vJ

)
δ =

∫
J

(
λ δuJ

+ δpJ

)
vJ +

∫
β

(
λ (uJ − ud) + pJ

)
vJ W · nJ ,

d
(
∂uB
L(o)vB

)
δ =

∫
B̊

(
λ δuB

+ δpB
+ δqB

)
vB −

∫
β
(λ (uB − ud) + pB + qB ) vB W · nJ ,

d
(
∂yJ
L(o)zJ

)
δ =

∫
J

δyJ
zJ + (∆zJ − zJ ) δpJ

−
∫

Γ
δpJ

∂nzJ +
∫

β
zJ δσJ

− δpJ
∂
J
n zJ

+
∫

β

(
(yJ − yd) zJ + (∆zJ − zJ ) pJ

)
W · nJ

+
∫

β

(
∂
J
n zJ σJ + zJ σJ κJ − ∂

J
n pJ ∂

J
n zJ − pJ ∂nnzJ − pJ ∂

J
n zJ κJ

)
W · nJ ,

d
(
∂yB
L(o)zB )

)
δ =

∫
B

δyB
zB + (∆zB − zB ) δpB

+
∫

β
zB δσB

+
∫

β

(
−(yB − yd) zB − (∆zB − zB ) pB + ∂

J
n zB σB + zB σB κJ

)
W · nJ ,

d
(
∂pJ
L(o)sJ

)
δ =

∫
J
−(−∆δyJ

+ δyJ
− δuJ

) sJ −
∫

Γ
sJ ∂nδyJ

−
∫

β
sJ ∂

J
n δyJ

+
∫

β

(
−(−∆yJ + yJ − uJ ) sJ

)
W · nJ

−
∫

β

(
∂
J
n sJ ∂

J
n (yJ − ymax

min ) + sJ ∂nn(yJ − ymax
min ) + sJ ∂

J
n (yJ − ymax

min ) κJ

)
W · nJ ,

d
(
∂pB
L(o)sB

)
δ =

∫
B̊
−(−∆δyB

+ δyB
− δuB

) sB −
∫

β
−(−∆yB + yB − uB ) sB W · nJ ,

d
(
∂qB
L(o)Q

)
δ =

∫
B̊

δuB
Q−

∫
β
(∆ymax

min − ymax
min + uB ) Q W · nJ ,

d
(
∂σJ
L(o)ΣJ )δ =

∫
β

δyJ
ΣJ +

(
∂
J
n (yJ − ymax

min )ΣJ + (yJ − ymax
min )ΣJ κJ

)
W · nJ ,

d
(
∂σB
L(o)ΣB )δ =

∫
β

δyB
ΣB +

(
∂
J
n (yB − ymax

min )ΣB + (yB − ymax
min )ΣB κJ

)
W · nJ ,

d
(
∂B̊(L(o); V

)
δ =

∫
β

(
(yJ − yd) δyJ

− (yB − yd) δyB
+ λ (uJ − ud) δuJ

− λ (uB − ud) δuB

)
V · nJ

+
∫

β

(
−(−∆δyJ

+ δyJ
− δuJ

) pJ − (−∆yJ + yJ − uJ ) δpJ

+(−∆δyB
+ δyB

− δuB
) pB + (−∆yB + yB − uB ) δpB

−δuB
qB − (∆ymax

min − ymax
min + uB ) δqB

)
V · nJ
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−
∫

β

(
∂
J
n δpJ

∂
J
n (yJ − ymax

min ) + δpJ
∂nn(yJ − ymax

min ) + δpJ
∂
J
n (yJ − ymax

min ) κJ

+∂
J
n pJ ∂

J
n δyJ

+ pJ ∂nnδyJ
+ pJ ∂

J
n δyJ

κJ

)
V · nJ

+
∫

β

((
∂
J
n δyB

+ δyB
κJ

)
σB +

(
∂
J
n (yB − ymax

min ) + (yB − ymax
min ) κJ

)
δσB(

∂
J
n δyJ

+ δyJ
κJ

)
σJ +

(
∂
J
n (yJ − ymax

min ) + (yJ − ymax
min ) κJ

)
δσJ

)
V · nJ

+
∫

β

(
(yJ − yd) ∂

J
n (yJ − yd) +

1
2
(yJ − yd)

2 κJ

)
V · nJW · nJ

−
∫

β

(
(yB − yd) ∂

J
n (yB − yd) +

1
2
(yB − yd)

2 κJ

)
V · nJW · nJ

+
∫

β

(
λ (uJ − ud) ∂

J
n (uJ − ud) +

λ

2
(uJ − ud)

2 κJ

)
V · nJW · nJ

−
∫

β

(
λ (uB − ud) ∂

J
n (uB − ud) +

λ

2
(uB − ud)

2 κJ

)
V · nJW · nJ

−
∫

β

(
∂
J
n (−∆yJ + yJ − uJ ) pJ + (−∆yJ + yJ − uJ )

(
∂
J
n pJ + pJ κJ

))
V · nJW · nJ

+
∫

β

(
∂
J
n (−∆yB + yB − uB ) pB + (−∆yB + yB − uB )

(
∂
J
n pB + pB κJ

))
V · nJW · nJ

−
∫

β

(
∂
J
n (∆ymax

min − ymax
min + uB ) qB + (∆ymax

min − ymax
min + uB )

(
∂
J
n qB + qB κJ

))
V · nJW · nJ

−
∫

β

(
∂
J
n pJ ∂nn(yJ − ymax

min ) +
(
∂nn pJ + ∂

J
n pJ κJ

)
∂
J
n (yJ − ymax

min )
)

V · nJW · nJ

−
∫

β

(
pJ ∂

J
nnn(yJ − ymax

min ) +
(
∂
J
n pJ + pJ κJ

)
∂nn(yJ − ymax

min )
)

V · nJW · nJ

−
∫

β

(
pJ ∂nn(yJ − ymax

min ) κJ +
(
∂
J
n pJ κJ + pJ κ2

J

)
∂
J
n (yJ − ymax

min )
)

V · nJW · nJ

+
∫

β

(
∂nn(yB − ymax

min ) σB + ∂
J
n (yB − ymax

min ) σB κJ

)
V · nJW · nJ

+
∫

β

(
∂
J
n (yB − ymax

min ) κJ σB + (yB − ymax
min ) κ2

J σB

)
V · nJW · nJ

+
∫

β

(
∂nn(yJ − ymax

min ) σJ + ∂
J
n (yJ − ymax

min ) σJ κJ

)
V · nJW · nJ

+
∫

β

(
∂
J
n (yJ − ymax

min ) κJ σJ + (yJ − ymax
min ) κ2

J σJ

)
V · nJW · nJ .
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List of symbols and abbreviations

Abbreviations

ALE arbitrary Lagrangian-Eulerian

BDD Bryson-Denham-Dreyfus

BiOP bilevel optimization problem

BVP boundary value problem

DAE differential-algebraic equation

FE finite element

FEM finite element method

FFT fast Fourier transformation

iff if and only if

iOP inner optimization problem

KKT Karush-Kuhn-Tucker (conditions)

NC (first order) necessary conditions

NLP nonlinear programming
nonlinear optimization problem

OC optimal control

OC-ODE optimal control of ODEs

OC-PDE optimal control of PDEs

OCP optimal control problem

ODE ordinary differential equation

oOP outer optimization problem

OP optimization problem

PDAE partial differential-algebraic equation

PDAS primal-dual active set strategy

PDAS-EPF PDAS equipped with exact path-following

PDE partial differential equation

set-OCP set optimal control problem

SQP sequential quadratic programming
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170 List of symbols and abbreviations

Coefficients and function(-al)s

α smooth curve in manifoldM

α̇(0) tangent vector of a curve α at t = 0

λ Tikhonov regularization parameter

µ := µmax − µmin

µM := µ|M where M ∈ {Å, γ}

µmax Lagrange multiplier to the upper state constraint

µmax
I

:= µmax|I∪Amin

µmax
M := µmax|M where M ∈ {Ω, Γ, Åmax, γmax}

µmin Lagrange multiplier to the lower state constraint

µmin
I

:= µmin|I∪Amax

µmin
M := µmin|M where M ∈ {Ω, Γ, Åmin, γmin}

µ[.] covector field

µx[.] covector to a manifold at point x

σ̄J Lagrange multiplier associated with interface BDD reformulation

ξ vector field on a manifold

ξx tangent vector to a manifold at point x

cmax regular part of the multiplier µmax

cmin regular part of the multiplier µmin

F reduced objective functional

J objective (functional)

J split objective with active set as explicit variable

J split objective

K.
. various quadratic “variational” merit functionals

K̃.
. various linear “variational” merit functionals

K.
. various merit functionals

L Lagrangian of the set optimal control problem

nM (extension of) the outer unit normal vector field of a set M

o abbreviation for the tuple of variables of the Lagrangian

p̄B adjoint state associated with state equation in B

p̄J adjoint state associated with state equation in J

ptrad adjoint state of Casas’ necessary conditions

ptrad
M := ptrad|M where M ∈ {I ,A,Amax,Amin}

pmax
min interpolation of known parts of the adjoint state

PJ shape adjoint state

q̄B Lagrange multiplier associated with distributed BDD reformulation
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u control (variable)

ud control shift

V velocity field; sometimes used for a vector space

v section of a vector bundle

vα section of a vector bundle over a curve α, which is transported to the standard fiber

vα index section of a vector bundle over a curve α

ymax
min interpolation of the state constraining functions

y state (variable)

YJ shape adjoint state

yd desired state

ymax upper state constraint

ymin lower state constraint

Miscellaneous notations

(.)′[V] local shape derivative with respect to the velocity field V

(.)|M restriction of a function to a set M; frequently used as substitute for τM

(.)c complement of a set

(.)t := (.)t ◦ Tt variable that is transported back to the original set; confer vα

(.)t variable on a transformed set Mt; confer vα

(., .)H inner product of a Hilbert space H

(. · .) scalar product in R2

( .̄ ) optimal variables

( .̂ ) Lagrange multipliers from Appendix B

( .̊) interior of a set

( . ) closure of a set (do not confuse with the shorter bar that denotes optimal variables)

( . ) discretized entities

. ◦ . composition of functions

. ∼ . equivalence relation in O

. ∼B . equivalence relation inH(Ω)

[.]B equivalence class inH(Ω); often abbreviated by [.]

〈〈. , .〉〉M := 〈. , .〉
H−

3
2 (M),H

3
2 (M)

duality pairing for M ∈ {Γ, β, γ}

〈. , .〉M := 〈. , .〉
H−

1
2 (M),H

1
2 (M)

duality pairing for M ∈ {Γ, β, γ}

〈. , .〉X∗,X duality pairing of a Banach space X

‖.‖V norm of a normed vector space V

⊂⊂ compactly contained
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Operators and other notations

α̇(0) tangent vector of a curve α at t = 0

δ unique operator due to Green’s formula; typically associated with the Neumann
trace operator ∂n in the classical setting; sometimes δ is used for a generic positive
constant or the direction in a semiderivative

ϕ◦ trivializing map of the tangent bundle TH(Ω) by means of the composition of trans-
formations

ϕId trivializing map of the tangent bundle TH(Ω) by means of the identity

ϕU trivializing map of a vector bundle in the neighborhood U

ϕx
U isomorphism between a fiber π−1(x) and the standard fiber B of a vector bundle

κM (mean) curvature of the boundary of a set M

∆ Laplace operator ∑i ∂2
xi

∆β Laplace-Beltrami operator along the boundary β

Λ formal operator associated with bilinear form

τm
M trace operator of m-th order to a set M

τM (Dirichlet) trace (operator) to a set M

ωm
M extension operator; right inverse of τm

M

a(., .) bilinear form

A(B) quadratic penalization term at the set B

bM oriented distance function to a set M ⊂ R2

∂M
n Neumann trace (operator) or normal derivative to a set M

∂nn binormal trace (operator) or binormal derivative

∂M boundary of a set M

dM distance function to a set M ∈ R2

d(., .) metric on G(Θ) and X (B), respectively

d0(., .) semimetric on G(Θ)

dK(., .) Courant metric (right-invariant metric) on the quotient groupH(Ω)/K(B)

dF (B; V) shape semiderivative of F at the set B with respect to the velocity field V

d2F (B; V, W) second order shape semiderivative ofF at the set Bwith respect to the velocity fields
V and W

D covariant derivative (operator); “common” differential operator in RN

D derivation on F(M)

Dx derivation at a point x ∈ M

grad f gradient of f ∈ F(M) (in order to distinguish it from an affine connection ∇)

∇F (.) (L1-) shape gradient of F

∇2 f [., .] second covariant derivative of a function f ∈ F(M)

∇β tangential gradient along the boundary β

∇ηξ covariant derivative of a vector field ξ ∈ V(M) with respect to η ∈ V(M)
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∇◦η ξ covariant derivative of ξ with respect to η induced by the trivializing map ϕ◦

∇Id
η ξ covariant derivative of ξ with respect to η induced by the trivializing map ϕId

∇ηµ[.] covariant derivative of a covector field µ ∈ V∗(M) with respect to η ∈ V(M)

G geometry-to-solution operator; sometimes G used for a set or an element ofH(Ω)

g Riemannian metric

gx(., .) inner product of TxM induced by a Riemannian metric on a manifoldM

Hess f Hessian of f ∈ F(M) (in order to distinguish it from a second covariant deriva-
tive ∇2

Id(.) identity operator on a set or space

Ps←t
α parallel translation along a curve α

pβ distance projection on a boundary β

R retraction

S typically a control-to-state operator

T constraining operator

Tt( f ) := Id + F + t f transformation induced by f := F− Id ∈ Θ0 for F ∈ H(Ω) and t ∈ [0; τ]

Tt(V) transformation induced by velocity field V ∈ V for t ∈ [0; τ]

Spaces and other sets

A := Amax ∪Amin (optimal) active set

Amax (optimal) upper active set

Amin (optimal) lower active set

β := ∂B interface between (candidate) in- and active set

βmax := ∂Bmax (candidate) upper interface

βmin := ∂Bmin (candidate) lower interface

B base space of a vector bundle (also called standard fiber); sometimes an interface
node or a subset of R2

B (candidate) active set

Bmax (candidate) upper active set

Bmin (candidate) lower active set

B[F] := F(B) image set of B with respect to the equivalence class [F] ∈ H(Ω)/K(B)

Bε ε-ball around the identity inH(Ω)

Br(x) ball with radius r around a point x

Bx := π−1(x) fiber of a vector bundle (E, π) through x

C candidate set for the active set; obtained via coefficients only

Cmax candidate set for the upper active set

Cmin candidate set for the lower active set

C0(.) space of continuous functions
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C1(R2, R2) space of all uniformly continuously differentiable and bounded functions

C1(R2, R2) space of all continuously differentiable functions

C∞
0 (.) space of infinitely differentiable functions with compact support

C1,1(R2, R2) space of all Lipschitz-continuous differentiable and bounded functions

(E, π) vector bundle (with different meaning)

E total space of a vector bundle

F(M) space of real-valued, smooth functions defined onM

Fx(M) space of real-valued, smooth functions defined in a neighborhood of x ∈ M

G(Θ) space/group of perturbations of identity

G(Θ0) = H(Ω) space/group of perturbations of identity, which do not act on Ωc

Γ boundary of Ω

γ := γmax ∪ γmin (optimal) interface

γmax := ∂Amax (optimal) upper interface

γmin := ∂Amin (optimal) lower interface

Ω spacial domain; sometimes called holdall

H horizontal subbundle

H(Ω) subgroup of G(Θ); stabilizer of Ωc with respect to the pointwise group operation

H1(., ∆) domain Hilbert space of the Laplacian

H1
s (.) := {ϕ ∈ H1(.) | ϕ|s = 0}

Hs(.) := Ws,2(.) L2-based Sobolev space for s > 0

Hs
0(.) closure of C∞

0 (.) in Hs(.) for s > 0

H−s(.) dual space of Hs
0(.)

I := Ω ⊂ A (optimal) inactive set

J := Ω \ B (candidate) inactive set

K(B) subgroup ofH(Ω); stabilizer of B with respect to the setwise group operation

L2(.) space of square-integrable functions

L2(., ∆) very weak Sobolev space

M (real) manifold

M(.) space of (signed) regular Borel measures

Mt := Tt(M) Image of a set M with respect to a transformation Tt := Tt(V) or Tt := Tt( f )

O family of feasible sets

O(B) set of all sets in O which are homeomorphically homotope to B in Ω

T (Bε) family of paths inH(Ω) associated with Bε

Θ := C1,1(R2, R2) base space for the construction of G(Θ)

Θ0 closed subspace of Θ

TM tangent bundle of a manifoldM
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T∗M cotangent bundle of a manifoldM

TxM tangent space to a manifoldM at x

T∗xM cotangent space to a manifoldM at x

U typically a neighborhood on a manifold; sometime an admissible set of controls

V vertical subbundle

V space of velocity fields

V(M) set of all vector fields onM

V(M)∗ set of all covector fields onM

V(Λ) domain Hilbert space of the formal operator Λ

Ws,p(.) Lp(.) based Sobolev for s ∈ R

X (B) family of all images of B which can be obtained via transformations inH(Ω)

X∗ dual space of a Banach space X





Index

“first discretize, then optimize”, 2
“first optimize, then discretize”, 2

active set, 17
candidate-, 19
lower-, 17
optimal-, 17
regularity, 17
upper-, 17

adjoint
equation, 6
shape-, 44, 45
state, 6, 32, 36, 49
variable, 31

admissible set, 6
affine connection, 70
algorithm

descent-, 91, 96
gradient-based-, 96
Newton-; bilevel optimization problem, 108,

132
Newton-; variational relaxation approach, 108
steepest descent-, 96, 103
total linearization-, 115
trial-, 112
trial-; bilevel optimization problem, 112
trial-; for bilevel optimization problem, 132
trial-; variational relaxation approach, 113

all-at-once solver, 2, 115
approach

BDD-, 2, 9, 23, 36, 83, 87, 88, 99, 145
bilevel-, 100
direct adjoining-, 9
flow- of path following, 66, 72, 92
full total linearization-, 105
indirect adjoining-, 9
Lagrange-, 51, 105
reduced total linearization-, 105
reduction-, 30, 31, 51, 100, 104
relaxation-, 101, 113
transformation-, 122
transformation- of path following, 66, 72, 92,

125
variational relaxation-, 104, 108

arbitrary Lagrangian-Eulerian method, 125

Armijo step length, 91
atlas, 68

Banach space, 16
Banachable space, 72
base space of a vector bundle, see standard fiber
BDD approach, 2, 9, 23, 36, 83, 87, 88, 99, 145
BFGS method, 104
bilevel optimization problem, 33, 47

reduced-, 35, 40
binormal derivative, 11
black-box solver, 2
Borel measure, 7
boundary arc, 84
boundary condition

Dirichlet-, 24
Neumann-, 24
Robin-type-, 24

boundary value problem
multipoint-, 26
multiset-, 26
non-standard-, 39, 41, 101, 153
shape differentiability, 42

bundle
cotangent-, 70
fiber-, 93
horizontal sub-, 80, 93, 94
tangent-, 69, 73, 74, 93
trivial vector-, 72
vector-, 35, 72, 78, 83, 106
vertical sub-, 93

Cahn-Hilliard equation, 111
calculus

on manifolds, 60
shape-, 8, 30, 60, 68, 79
topology-, 8, 30

candidate set, 109, 127
canonical lifting, 75
canonical lifting of a curve, see tangent vector of

a curve
chain rule, 31, 53
change of topology, 59, 60, 66, 108, 122, 136
class

C1,1, 5, 61

177
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Cm−1,1, 9
collection of representatives, 61
comparison of Lagrange multipliers, 151
comparison of necessary conditions, 50
compatibility condition, 73
complementary slackness condition, 6
cone

derived-, 32
linearizing-, 26
tangent-, 26, 32

connection
affine-, 70
Ehresmann-, 93
Levi-Civita-, 70
Riemannian-, 70

consistent initial condition, 87
constraint

active part of strict inequality-, 29
algebraic-, 83
control-, 83
inactive, 26
quasi active, 27
state-, 5, 83
strict inequality vs. global optimality, 29
strict inequality vs. local optimality, 29
strict inequality-, 49, 57, 59, 101, 108, 109,

112, 113, 115
contact point, 84
control-

law, 23
shift, 5
variable, 5, 30

control-to-state operator, 6, 30, 31, 34, 35, 37, 43
convergence

local-, 111
rate, 132

Correa and Seeger’s theorem, 154
cost functional, see merit functional
cotangent bundle, 70
cotangent space, 69
covariant derivative

of covector field, 70
of real-valued function, 70
of vector field, 70, 73, 74, 78
second-, 71, 81, 99

covector, 69
covector field, 70
critical point, 97, 99, 111

isolated-, 58, 59
curvature (mean-), 43

discretization, 120
curve, 69, 78

integral-, 73–75
smooth-, 69

degeneracy, 117
dense (-ly embedded), 13, 16

derivation
at a point, 69
on F(M), 69

derivative
binormal-, 11
covariant-; of covector field, 70
covariant-; of real-valued function, 70
covariant-; of vector field, 70, 73, 74, 78
covariant-; second, 71, 81, 99
decomposition of second directional-, 71
directional-, 68, 69
Eulerian-, see material derivative
Gateaux (semi-), 68, 75, 77
Hadamard (semi-), 42, 53, 68, 69, 75, 76
material-, 74
normal-, 11
second covariant-, 110
semi-, 42
shape (local semi-), 41, 51, 53, 112
shape (local semi-); at optimum, 49
shape (partial-), 53, 112
shape (second order semi-); reduced objec-

tive, 57, 81, 109
shape (semi-); constraints, 41
shape (semi-); merit functional, 103
shape (semi-); reduced objective, 43
shape-, 42, 53, 77

desired state, 5
differential-algebraic equation

free boundary partial-, 101, 108
linear constant coefficient-, 85
ordinary-, 84, 85
partial-, 83, 86
semi-explicit-, 85

differentiation index, 83–85, 87
Dirac measure, 7
direct adjoining approach, 9
Dirichlet trace (operator), 11, 37
distance function, 54

oriented-, 54
distance projection, 81
domain Hilbert space, 16

of Laplacian, 19
dual space, 16
duality pairing, 16

edge (orientated-), 120
Ehresmann connection, 93
entropy solution, 94
equation

(ordinary) differential-algebraic, 84, 85
adjoint-, 6
partial differential-algebraic, 83, 86
shape adjoint-, 44
state-, 5

equivalence
class, 61, 63, 66, 156
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relation, 61, 63, 67, 156
Eulerian derivative, see material derivative
extension of vector field, 93
extension of velocity field, 125
extension operator, 11

family of feasible sets, 19
fast Fourier transformation, 123
fast marching method, 93
feasible set, 19, 60
fiber, 72

standard-, 72, 78
fiber bundle, 93
finite element, 101, 119
finite element method, 119

extended, 125
unfitted-, 125

first order necessary conditions, see necessary con-
ditions

foot (of a tangent vector), 69
free boundary PDAE, 101, 108
free boundary problem, 88, 101, 105, 106
Fubini’s theorem, 12
function space parametrization, 78, 115
fundamental lemma of the calculus of variations,

55

Gelfand triple, 16, 32
geodesic, 92
geometrical splitting of elliptic BVP, 19, 146, 148
geometry-to-solution operator, 31, 35, 38, 83, 100,

106
globalization strategy, 98
gradient, 31, 71

H-, 32
U-, 32
Riemannian-, 71, 99
shape-, 44, 46, 48, 59, 71
Sobolev-, 32, 46, 97
tangential-, 42

gradient-related sequence, 91
Green’s formula, 56

abstract-, 16
classical setting-, 16

group, 63
isotropy-, see stabilizer
Lie-, 67
metric-, 67
operation, 155
operation; faithful-, 65, 66, 156
operation; pointwise-, 66
operation; setwise-, 66
operation; transitive-, 66, 156
quotient-, 63
subgroup-, 63

Hadamard form, 31, 44–46, 103, 110

Hadamard semiderivative, 69
Hadamard structure theorem, 8, 68
Hamiltonian, 57
Hessian, 71

Riemannian, 71
Riemannian-, 99
shape-, 71

hidden submanifold, 85
Hilbert space, 16
holdall, 42
homeomorphically homotope, 61
homotopy, 61
horizontal lift, 93, 94
horizontal subbundle, 93, 94
Huygens’ principle, 122
hybrid problem, 26

inactive set, 17
candidate-, 19
optimal-, 17

index
differentiation-, 83–85, 87
perturbation-, 84, 88
strangeness-, 84

index reduction, 24, 85, 88
indirect adjoining approach, 9
initial guess, 109
inner optimization problem, 33, 36
inner product, 16
integration by parts, 16
interface, 11, 17

candidate-, 19
discretization, 120
lower-, 17
optimal-, 17
upper-, 17

interior point method, 2
isotopic, see homeomorphically homotope

Karush-Kuhn-Tucker
conditions, 6, 36
theory, 36

Karush-Kuhn-Tucker conditions, 2

Lagrange multiplier, 6, 33, 36, 49, 148
comparison-, 151

Lagrange principle, 31
Lagrange-Newton method, 105
Lagrangian, 38, 52, 53, 60, 105, 156
Laplace-Beltrami operator, 42, 46
Lavrentiev regularization, 116
Lax and Milgram’s theorem, 20
level set method, 93
Levi-Civita connection, 70
Lie algebra, 67
Lie group, 67
lift; horizontal-, 93, 94
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lifting, 75
loss of unique solvability, 29

manifold, 60, 67–69, 93
Riemannian-, 67, 71, 91, 99

material derivative, 74
maximal domain of elliptic operator, 16
measure, 108

Borel-, 7
Dirac-, 7

merit functional, 100, 102, 104, 111
metric

Courant-, 59, 63, 64, 68
right-invariant-, 63
semi-, 63

model problem, 5
Moreau-Yosida regularization, 2, 116, 138
multiple shooting method, 9
multipliers, see Lagrange multiplier
multipoint boundary value problem, 9, 26
multiset boundary value problem, 26

natural projection, 72
necessary conditions, 30, 31, 83, 86, 88, 99, 145

Bergounioux-Kunisch, 7, 49
Bergounioux-Kunisch; reduced-, 104
Casas, 6
comparison of common and new-, 50
inner optimization problem, 38, 109
inner optimization problem; reduced-, 39
outer optimization problem, 48
set-OCP, 50

Neumann trace (operator), 11, 42
Newton equation, 99, 108, 109, 120
Newton scheme, see Newton’s method
Newton update, 99, 108, 109
Newton’s method, 99, 105

bilevel optimization problem, 108, 132
quasi-, 104
semi-smooth-, 116
variational relaxation approach, 108

norm, 16
normal derivative, 11
normal vector, 13
normal vector field, 11, 81

discretization, 120

objective (functional), 5, 30
reduced-, 30, 31, 35, 40, 43, 44, 46, 48, 57, 111

operator
control-to-state-, 6, 30, 31, 34, 35, 37, 43
Dirichlet trace-, 11, 37
extension-, 11
geometry-to-solution-, 31, 35, 38, 83, 100, 106
Laplace-Beltrami-, 42, 46
Neumann (trace)-, 42
Neumann (trace-), 11

solution-, see control-to-state-
trace operator of m-th order-, 11
trace-, 9

optimal control, 35, 36, 84, 86
abstract framework, 30
time-, 142

optimal control problem, 5, 33
reduced-, 30, 31

optimality system, see necessary conditions
optimization

bilevel-, 33, 47, 96, 108
in Banach spaces, 26
on vector bundles, 26, 82
shape-, 8, 30, 33, 83, 91
topology-, 30, 33, 91

orbit, 66, 156
order of a state constraint, 84, 88
outer optimization problem, 33, 48

parallel translation along a curve, 78
parallel transport, 73, 78, 115
parametrized optimization problem, 34
partial differential-algebraic equation, 83, 86

free boundary-, 101, 108
partition, see collection of representatives
partition of unity, 12
path

following-; exact, 138
following-; flow approach, 66, 72, 92
following-; regularization, 116
following-; transformation approach, 66, 92,

125
inH(Ω), 65

penalization, 98, 111
perturbation index, 84, 88
perturbation of identity, 63, 68, 73, 77, 93
pointwise interpretation, 7
preconditioning, 46
primal-dual active set strategy, 2, 112, 115, 138
problem

auxiliary optimization-, 43, 44
bilevel optimization-, 33, 47, 96, 108
free boundary-, 88, 101, 105, 106
hybrid-, 26
inner optimization-, 33, 36
model-, 5
multipoint boundary value-, 9, 26
multiset boundary value-, 26
outer optimization-, 33, 48, 100
parametrized optimization-, 34
reduced bilevel optimization-, 35, 40
reduced inner optimization, 34
reduced optimal control-, 30
reduced set optimal control-, 31
set optimal control-, 25, 33, 41, 52
shape optimization-, 83
shape/topology optimization-, 40, 48, 101
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Rademacher’s theorem, 54
reformulation

of BVP in split form, 19
of model problem as BiOP, 35
of model problem as set-OCP, 25, 27
of model problem in split form, 22
of set-OCP, 53
of set-OCP as shape/topology OP, 40

regularity, 39
active set, 17
higher-, 6, 36, 44, 49, 153

regularization, 98, 108
Lavrentiev-, 116
Moreau-Yosida-, 2, 116, 138

repeated differentiation, 58, 71
retraction, 93, 95, 99, 111, 121
Riemannian connection, 70
Riemannian exponential map, 92, 96
Riemannian gradient, 71
Riemannian Hessian, 71
Riemannian manifold, 67, 71, 91, 99

search direction, 92
section of a vector bundle, 79

over a curve, 79
self-intersection, 94, 122
semiderivative, 42, 43

shape-, 44
sequential quadratic programming, 2, 115
set of class C1,1, 5
set optimal control problem, 25, 33, 41
shape adjoint equation, 44, 45
shape adjoint state, 44, 51
shape calculus, 8, 66, 72, 79
shape derivative, 44, 53, 77

constraints, 41
local-, 41, 51, 53, 110, 112
local-; at optimum, 49
partial-, 53, 112
reduced objective, 43
second order-; reduced objective, 57, 58, 81,

109
shape functional, see reduced objective
shape gradient, 44, 46, 48, 71
shape Hessian, 71
shape linearization, see total linearization
sign condition, 6, 51, 108, 109, 112, 113, 115
Slater point, 6
smoothing of the interface, 123, 124
Sobolev embedding theorem, 6
Sobolev gradient, 32, 46, 97
Sobolev space, 11
solution operator, see control-to-state operator
solvability (unique-)

bilevel optimization problem, 35
BVP, 19
BVP with a kink in H−1/2, 146

BVP with a kink in H−3/2, 148
constraints, 41
inner optimization problem, 34, 47
local shape derivative BVP, 41
loss of-, 23, 29, 98
model problem, 6
set optimal control problem, 25, 28
shape adjoint equation, 44
shape/topology optimization problem, 41
split reformulation of model problem, 22
split state equation, 19
state equation, 6
surface PDE, 46

solver
all-at-once-, 2, 115
black-box-, 2

space
Banach-, 16, 68
Banachable-, 72
base-; of a vector bundle, 72, 78
complete right-invariant metric-, 63
cotangent-, 69
domain Hilbert space of Laplacian, 19
domain Hilbert-, 16
dual-, 16
Hilbert-, 16
metric-, 67
pivot Hilbert-, 16, 32
real-valued, smooth functions onM, 69
tangent-, 32, 67, 69, 91
tangent-; of quotient manifold, 67, 93
tangential-, 68
total-; of a vector bundle, 72
velocity fields, 41

split reformulation of the model problem, 22
stabilizer, 65, 67, 155
state-

constraining function, 5
constraint, 5, 83
equation, 5
variable, 5, 30

Stefan problem, 111
strangeness index, 84
strict convexity, 36, 38, 44
strict inequality constraint, 49, 101, 108, 109, 112,

113, 115
active part, 29
global optimality, 29, 111
local optimality, 29

strictly complementary, 8, 109, 115
sufficient conditions, 38
surface PDE, 46, 97
symmetric rank-1 update method, 104

tangent
bundle, 69, 73, 74, 93
space, 32, 69, 91
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vector of a curve, 69
vector to a manifold at a point, 69
vector; foot of-, 69

tangential gradient, 42
tangential vector, 13
theorem

Correa and Seeger, 154
Fubini-, 12
Gauß’s divergence-, 58
Hadamard structure-, 8, 68
Lax and Milgram, 20
Rademacher-, 54
Riesz-Radon-, 7
Sobolev embedding-, 6

Tikhonov regularization parameter, 5
topology

calculus, 8
change, see change of topology
quotient-, 63

total linearization, 60, 101, 105, 115
total space of a vector bundle, 72
trace operator, 9
trace properties, 16
tracking type, 5
transformation, 49, 59, 67
transversality condition, 142
trial algorithm, 112

bilevel optimization problem, 112, 132
variational relaxation approach, 113

trial equation, 112, 113, 120
trivial vector bundle, 72
trivializing map, 72

unit element, 155

variational formulation, 9, 16
vector bundle, 35, 72, 78, 83, 106
vector field, 69
velocity field, 41, 73

autonomous-, 80
nonautonomous-, 74, 75, 80
time dependent-, 74

velocity method, 59, 73, 93
vertical subbundle, 93
viscosity solution, 94

weak continuity, 8, 11, 15, 50, 57

Zowe-Kurcyusz constraint qualification, 37


	Preface
	Abstract
	Zusammenfassung
	Structure of this work
	Acknowledgements

	Introduction
	Theory
	Overview on preliminary work
	Results in optimal control of PDEs
	Results in shape optimization
	Results in optimal control of ODEs

	Reformulation into a set optimal control problem
	Geometrical Splitting
	Application of the Bryson-Denham-Dreyfus approach
	Resulting set optimal control problem
	Role of the strict inequality constraint

	First order analysis via reduction technique
	Abstract framework of optimal control
	General recipe for deriving first order necessary conditions
	Reformulation into a bilevel optimization problem
	Geometry-to-solution operator
	Necessary conditions for the inner optimization problem
	Analysis of the outer optimization problem
	New necessary conditions

	First order analysis via formal Lagrange technique
	Lagrangian
	Partial shape derivatives
	New necessary conditions

	Second order analysis
	Second order shape semiderivative and lack of second order sufficiency
	Remarks on isolated critical points
	Total linearization

	Shape calculus and calculus on manifolds
	Decomposition of O into manageable subsets X
	Abstract view on shape calculus
	Abstract view on set optimal control problems

	Remarks on optimal control and PDAE
	Remarks on DAE
	Remarks on PDAE
	First order necessary conditions as PDAE
	Order of a state constraint

	Remarks on different necessary conditions

	Algorithms
	Descent algorithms in Code H(Omega)
	The optimal solution is no local minimum of F

	Remarks on Newton techniques on manifolds
	Different perspectives on first order optimality system
	Perspective from reduced/bilevel approach
	Perspective from free boundary problems: (variational) relaxation approaches
	Perspective from Lagrange approach

	Algorithms for set optimal control problems
	Reduced Newton methods
	Trial methods
	Total linearization methods

	Analysis of the primal-dual active set strategy
	Two drawbacks of the primal-dual active set strategy
	Benefits of the new approach


	Numerics
	Finite element discretization
	Approximation of normal vector field and mean curvature
	Splines and tracking the interface
	Mesh deformation and mesh generation

	Numerical results
	Test examples
	Accuracy of detecting the active set
	Stability and area of convergence
	Convergence rate
	Mesh (in-)dependency
	Changes of topology
	Comparison with primal-dual active set methods


	Conclusions and Outlook
	Appendix
	Results of different Bryson-Denham-Dreyfus approaches
	Existence of Lagrange multipliers
	Remarks on Shape differentiability of the constraints
	Some notions from group theory
	Derivation of second order derivatives of the Lagrangian

	Bibliography
	List of symbols and abbreviations
	Index

