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Abstract: The recent rapid uptake of residential solar photovoltaic (PV) installations provides
many challenges for electricity distribution networks designed for one-way power flow from the
distribution company to the residential customer. In particular, for grid-connected installations,
intermittent generation as well as large amounts of generation during low load periods can lead
to a degradation of power quality and even outages due to overvoltage conditions. In this paper
we present two approaches to mitigate these difficulties using small-scale distributed battery
storage. The first is a decentralized model predictive control (MPC) approach while the second
is a hierarchical distributed MPC approach using a so-called Market Maker. These approaches
are validated and compared using data on load and generation profiles from customers in an

Australian electricity distribution network.

1. INTRODUCTION

Recent years have seen dramatic worldwide growth in res-
idential solar photovoltaic (PV) generation. In Australia,
for example, the National Electricity Market (NEM) has
seen estimated installed capacity rise from just 23 MW in
2008 to 1450 MW in 2012 with a forecast of 5100 MW
by 2020 (Australian Energy Market Operator (AEMO)
[2012]). The key drivers for this rapid uptake include the
introduction of residential feed-in tariffs, together with
sharp falls in the capital costs of solar PV panels.

High levels of PV penetration into the low-voltage distri-
bution network can create significant operational problems
for utilities, such as reverse power flow during daytime
periods of peak generation coupled with low residential
load (Katiraei and Aguero [2011], Huq et al. [2012]). This
can in turn lead to increases in distribution feeder voltages
(the so-called voltage rise problem), with the potential for
adverse impacts on the operation and safety of customer-
owned devices (Huq et al. [2012]). The intermittency of
solar PV generation further exacerbates these problems.

In response to these challenges in integrating solar PV into
the grid, the opportunities offered by distributed battery
storage devices are increasingly being recognized by util-
ities looking to reinforce distribution networks and shave
peak demand without large-scale capital costs for feeder
replacement and related network upgrades (Nykamp et al.
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[2013a], Nykamp et al. [2013Db]). Likewise, consumers seek-
ing reduced electricity costs by shifting electricity pur-
chases away from times of peak tariffs, together with a
desire for increased energy self-sufficiency, are beginning
to consider residential battery storage as a viable option.

To date the high capital cost of battery systems has made
deployment of residential energy storage systems largely
uneconomic (Wolfs and Reddy [2012]). This situation is set
to change in the near future, however, through a confluence
of steadily rising electricity costs and projections of rapid
uptake of battery electric vehicles (BEVs) and plug-in
hybrid electric vehicles (PHEVs) over the next 510 years.
If realized, these projections point to opportunities for
employing retired electric vehicle batteries in residential
storage applications, over and above the storage offered
by in-service BEVs and PHEVs (Shao et al. [2013], Wolfs
and Reddy [2012]).

With economically viable residential storage on the hori-
zon, researchers have recently moved from the analysis of
relatively rudimentary and largely uncoordinated battery
energy storage systems (Nair and Garimella [2010]) to
systems of increasing scale and sophistication (Wolfs and
Reddy [2012], Hill et al. [2012], Hugq et al. [2012], Tran and
Khambadkone [2013], Guo et al. [2013]). A key signature of
these more recently proposed systems is their decentralized
nature, with the consequent need for distributed control to
achieve desired network behavior.

In this paper, we propose a hierarchical distributed control
structure for residential energy systems based on the so-
called Market Maker concept (Garman [1976]; see also
Beja and Goldman [1980]). The basic module is the resi-



dential energy system (RES) shown in Figure 1, consisting
of the residential load, a battery, and solar PV panels. Each
RES is connected to the wider electricity network through
a point of common coupling.

Let 7 be the number of RESs in the network, and assume
the existence of a Market Maker (MM) or Local Grid
Operator (we will use Market Maker in what follows). We
assume that each RES can communicate with the Market
Maker, but that the RESs do not communicate with each
other, reflecting the largely ad hoc formation of residential
energy systems. Each RES implements a model-predictive
control (MPC) strategy (Griine and Pannek [2011]) in
order to determine its grid (voltage) profile by modulating
its battery profile. The Market Maker implements a simple
strategy in order to set prices for buying and selling
electricity within the residential network, with a view to
minimizing the aggregate impact of the Z RESs on the
distribution grid.

In Ratnam et al. [2013], a minimization criterion was intro-
duced in order to reduce the impact of a single RES on the
power grid. To achieve this goal, drawing and supplying
power from/to the grid were equally penalized. While the
present paper starts from the RES setup proposed in Rat-
nam et al. [2013], we propose three important extensions.
The first is that we consider an interconnected network of
several RESs as opposed to a single RES. The second is
that we aim to maximize the profit of (or minimize the
cost to) each individual RES. The third modification is
that we seek in the present paper to maximize profit in
an ongoing manner by implementing the optimization in
a receding horizon (or MPC) fashion.

The rest of the paper is organized as follows: in Sec-
tion 2 we formalize the Residential Energy System. In
Section 3 we present a decentralized MPC scheme for
the network (i.e., a scheme without communication or
cooperation among RESs). In Section 4 we formally intro-
duce the Market Maker and propose a distributed MPC
scheme using the Market Maker. In Section 5 we apply
these algorithms to data from an Australian electricity
distribution company to investigate the behavior of the
proposed algorithms when applied to a real-world setting.
We conclude in Section 6.

In what follows we denote the positive integers by N and
the nonnegative integers by Ny.

2. THE RESIDENTIAL ENERGY SYSTEM

We consider a small, neighborhood-level, electricity net-
work consisting of several residences. Each residence com-
prises a Residential Energy System (RES) as shown in
Figure 1, consisting of a residential load, a battery, and
solar PV panels. Each RES is connected to the wider
electricity network. In what follows, the solar PV panels
could be replaced by any residential-scale local generation
and the battery could be replaced by any residential-
scale local energy storage. The important characteristics
of these elements are that the generation and the load
are not controllable. A recent study (Barker et al. [2012])
suggests that flexible consumption represents up to 60%
of household electricity usage in the form of appliances
such as air conditioners and refrigerators. Consequently, in

Fig. 1. System model where possible power transfer is in-
dicated by an arrow above. In particular, solar panels
provide power, residential loads draw power, and the
batteries and network can both supply and draw power.

future work we will include splitting the load into control-
lable and uncontrollable components but, for simplicity,
we initially restrict attention to uncontrollable loads only.

Mathematically, the RES is defined by the following
discrete-time system

z(k+1) = f(x(k), u(k)), (1)

y(k) = h(u(k), w(k)) (2)
where z,u,w € R? and T € N is the number of RESs
connected in the local area under consideration. For user
i, x; is the state of charge of the battery in kWh, wu; is the
battery charge/discharge rate in kW, w; is the residential
load minus the local generation in kW, and y; is the power
supplied by/to the grid in kW. A simple model of the RES
of user 1 is:

Here, T represents the length of the sampling interval in
hours; e.g., T = 0.5 corresponds to 30 minutes. The state
of charge of the battery and the charge/discharge rates of
the battery are constrained in practice. In other words,
there exist C;, 4; € Rso and u; € Rog so that
and

u; < ul(k;) <u; Vk e Ng. (5)
A simple approach to using a battery in an RES, which we
refer to as the Simple Controller, is as follows: If generation
exceeds load, and if the battery is not fully charged, then
charge the battery. If load exceeds generation, and if the
battery is not fully discharged, then discharge the battery
(see, e.g., Nykamp et al. [2013b]). In a scenario where
power can be sold by a residence to the grid, such as is
considered herein, this behavior can be enforced by setting
the price for buying power (slightly) higher than the price
for selling power. We assume that metering is in place to
allow each RES to purchase electricity from the grid as
well as to receive compensation for electricity delivered to
the grid. This is common practice in electricity networks
where there is a feed-in tariff for power supplied to the
grid by individual residences.

To facilitate our discussion of algorithms for decentralized
or distributed control of RESs we will make use of the
three synthetic energy profiles w; depicted in Figure 2.
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Fig. 2. Energy usage without (---) and with (—) use
of battery storage is shown for 24 hours. Peaks are
indicated by green lines.

3. A DECENTRALIZED RES CONTROLLER

For the Simple Controller proposed in the previous section,
if the load always exceeds generation then the battery will
never be used (see RES 3 in Figure 2). Intuitively, though,
a battery can be used to time-shift energy consumption
and, hence, can be used to flatten the usage profile. Con-
sequently, in this section we present a simple decentralized
MPC scheme such that each RES uses a local controller in
order to even out its profile, (y;(k))ken,, ¢ € {1,2,...,Z},
of power supplied from/to the grid.

MPC is a control strategy that aims at improving sys-
tem behavior by iteratively minimizing an optimization
criterion with respect to predicted trajectories and im-
plementing the first part of the resulting optimal control
sequence until the next optimization is performed, see
Griine and Pannek [2011] for details. We propose such
a predictive controller for (3). In order to do this, we
assume that we have predictions of the residential load
and generation some time into the future that is coincident
with the horizon of the predictive controller. In other
words, given a prediction horizon N € N, we assume
knowledge of w;(j) for all j € {k,...,k+ N — 1}, where
k € Ny is the current time. If the prediction horizon is
less than a day, i.e. NT < 24, such an assumption is not
initially unreasonable as residential loads tend to follow
daily patterns and one-day ahead weather predictions can
be fairly accurate. Future work will involve investigating
sensitivity of the proposed scheme to the accuracy of these
predictions as well as to the prediction horizon length.

A straightforward option in order to flatten the energy
profile of the i-th RES is to penalize deviations from its
(anticipated) average “consumption”, defined as
p N1
Gi(k) = ~ Z wi(k + 7).
j=0
With a quadratic cost function, this leads to the finite-
horizon optimal control problem
N—1
min > (§:(k +7) = Gi(k))*

Jj=0

subject to the system dynamics (3), the current state, and
the battery constraints (4)-(5). Throughout this paper we
set (0) = 0.5, C; = 4, u; = —0.5, and 4; = 0.5. In
comparison with the Simple Controller of the previous
section, this decentralized control algorithm reduces the
maximum aggregate demand to 1.7785 (from 2.2785) and
reduces the maximum aggregate supply from the RESs
to 0.8259 (from 1.1683), see also Table 1 in Section 4. In
particular, the peak energy consumption is reduced by 0.5
which corresponds to the maximal charging rate, see also
Figure 3 on the left.
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Fig. 3. Decentralized MPC with one day prediction horizon:
output (left) and state (right) trajectories y;(k) and
xi(k), k=0,1,...,47, respectively.

Furthermore, a look at the corresponding state trajectories
on the right in Figure 3 reveals that all subsystems make
use of their batteries in order to flatten their individual
energy profiles. In particular, we note that using the
Simple Controller of the previous section, RES 3 did not
use its battery at all, whereas using the decentralized MPC
scheme RES 3 always discharges its battery during its
period of peak demand.

4. A DISTRIBUTED APPROACH

In the decentralized approach of the previous section there
is no coordination between RESs. In this section, we
propose a hierarchical distributed control approach where
each RES can communicate with a centralized entity,
called the Market Maker (MM) (Garman [1976]), with
the aim of achieving some network-wide objective. The
objective we pursue in this work is to flatten the aggregate
power usage of the network.

In what follows the price of buying or selling power from
or to the grid, respectively, for an RES is discussed.
It is important in this context to note that these need
not be monetary prices, but, rather, can be viewed as
a mechanism to enforce reasonable cooperation between
RESs within the network. However, in applications such
as isolated or islanded microgrids, the distributed control
approach we propose herein may indeed form the basis of
an electricity market.

Denote the price for buying power from the grid by p :
No — Ry and the price to sell power to the grid by
q : Ng = R>p. In many current electricity markets the
values of p and ¢ are constant; i.e., they do not depend
on the time index k. In markets that implement time-of-
use pricing, the p and ¢ are periodic with a period of 24
hours and with higher values at times of predicted high
usage and lower values at times of predicted low usage. In
the sequel, these prices will be manipulated by the Market



Maker in real-time in order to obtain desirable behavior
from the residential network. To this end, the quantities

y* (k) = max{y(k),0}, and

y~ (k) =max{—y(k),0}.

are defined. We observe that only one of y* (k) or y~ (k)
can be nonzero at each k. We also observe that y™ (k) is
the power drawn from the grid at time k while y~ (k) is
the power supplied to the grid at time k. We denote the
N x N identity matrix by Iy, the N vector (1,1,...,1)T
by 1, the N x N matrix of all zeros by Oy, and the N x NV
lower triangular matrix consisting of ones and zeros by

1 0
Ly=1|:"..
1.--1
We define the finite-horizon optimal control problem for
each RES so as to minimize the cost of an individual
residence over an N-step horizon; i.e.,

k+N—1
min p(3)3;" (4) = a()iy (5) (6)

;i (+) ik

=0T a+pTg+t—qTy-
subject to the constraints (4) representing the battery
capacities and system dynamics (3); i.e., defining w;(k) €
RN by w;(k) := [w;(k),w;(k+1),...,wi(k+ N —1)]T we
have the constraints

T-LN ON ON O (C—xl(k)) ]lN
~T-Ly Oy On|( 4| o (k) In
Iy Iy —In|\%]= w; (k)
Iy —Iy In] Vi —w; (k)

w
as well as the constraints (5); i.e., u -1y < 4; < @-1y.
Here, the optimization variables are

t; = (a5 (k), ..., 0 (k+ N —1)T,
g'j_ = (gz—i_(k)v’@j_(k+N71))T7
9 =@ (k). 0, (k+ N —1)".

Since this is a linear optimization problem, the optimum
is attained in each minimization — although it may
not be unique. Note that the minimization problem to
be solved encompasses 3N variables and 6N constraints
yielding linear growth of the optimization variables and
constraints in the prediction horizon. Furthermore, it can
be observed that any predicted control yields a solution
that is necessarily zero at the end of the prediction horizon.
This is intuitively obvious since there is no benefit to
having a charge left in the battery at the end of the
horizon. However, this does not necessarily imply that,
for a fixed k, x;(k+ N — 1) is necessarily zero due to the
receding horizon nature of MPC.

4.1 The Market Maker

In order to set prices, we propose an iterative negotiation
before prices are set. This negotiation is operated by the
Market Maker, who sets initial prices from the current
time k to the end of the prediction horizon k + N — 1
and broadcasts these to the residential network. Each
RES will then solve its own MPC problem based on the

cost functional given by (6) and then communicate its
desired grid profile, {g;( ])}fi,iv ~1 to the Market Maker.
The Market Maker uses the aggregated grid profile to
update prices, which are then broadcast to the residential
network. This process is iterated until (hopefully) a steady-
state is reached. Note that in a slight modification to the
original definition of a Market Maker proposed in Garman
[1976] we allow multiple iterations of the Market Maker
setting prices and receiving bids whereas in Garman [1976)
the Market Maker receives bids once and sets prices once
(i.e., there is only a single iteration per sampling instant).
Herein we propose a simple algorithm for the setting of
prices by the Market Maker. However many algorithms are
possible (see, e.g., Slamka et al. [2013]) and investigating
these alternatives is the subject of ongoing work.

Denote the negotiation iteration index by ¢ € Ny and
the predicted grid profile for RES 4, i € {1,...,Z},
at negotiation iteration ¢ by {gjiﬁg(j)}?iév_l. Denote the
predicted demand of the residential network at time j and
negotiation iteration ¢ by

z
M) = 3 3 0ied) Vi€ bkt N =1} (1

and the average predicted demand as

k+N-—1

MG)= < > ). 3)
=k

Note that since the predicted residential load and gen-
eration is fixed for the prediction horizon, the average
predicted demand, II(j), is independent of the iterative
negotiation process.

Let p,p € R>o be the minimum and maximum buying
prices, respectively. The buying price py1(j) of the suc-
cessor iteration is set by the Market Maker as

pet1(j) = max{p, min{p, pe(j) + 6 (Ie(5) — 11(4)) }}

where # € Ry, is a selectable parameter. The selling
price go11(j) is set to a fraction of pyy1(4); i-e. qer1(J) =
kpe+1(J), k£ € (0,1). This convention ensures that cer-
tain pathological arbitrage-type behavior is avoided since
pe(j) = qe(j) for all £ and j. In other words, buying
electricity at a particular time is always more expensive
than what can be obtained by selling electricity at that
time. This inhibits an RES short-selling electricity; i.e.,
buying a lot of power to charge its battery at one time
instant and then turning around and selling that power
at the next time instant at a profit. Note that in the
presence of realistic charging/discharging rate constraints
this may not be a problem. In the following simulations
we set 6 = 0.05, Kk = 0.95, p = 0, p = 10, and we perform
three Market Maker iterations; i.e., £ = 0,1,2, 3.

We see that when network demand at time j exceeds the
average predicted demand, the Market Maker increases
both the selling and buying price at time k£ and, con-
versely, if the network demand is less than the average
predicted demand the Market Maker decreases the prices.
Intuitively, this should have the effect of flattening the
aggregate power drawn or supplied from the residential
energy network, cf. Figure 4.
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Fig. 4. Distributed MPC with one day prediction horizon:
output trajectories y;(k), k =0,1,...,47.

peak (high) | peak (low) | variation
No Battery Storage 2.2785 -1.1683 3.4468
Simple Controller 2.2785 -0.8350 3.1135
Decentralized MPC 1.7785 -0.8259 2.6044
Distributed MPC 1.7785 -0.6683 2.4468
energy demand

Table 1. Highest and lowest
over the simulation time horizon and the dif-

ference between those two values for different
control techniques (synthetic profiles).

peak (high) | peak (low) | variation
No Battery Storage 1.0540 -0.4454 1.4994
Simple Controller 1.1040 -0.2360 1.3400
Decentralized MPC 0.8747 -0.0308 0.9055
Distributed MPC 0.7209 -0.0329 0.7538

Table 2. Energy demand peak values for differ-
ent control techniques (Ausgrid data).

5. AUSTRALIAN DATA

In this section, we compare the three previously discussed
controllers by considering the load and generation profiles
for 10 customers drawn from the Australian electricity
distribution company Ausgrid, a state-owned corporation
servicing approximately 1.6 million customers across New
South Wales from Sydney to Newcastle. The data from
these customers was collected as part of the Smart Grid,
Smart Clity project and covers the period 1-7 March 2011.

The difference of load and generation is shown in Figure 6.
Here, the mean consumption is +0.2308 while the peaks
of the depicted average trajectory are +1.0540 (high) and
—0.4454 (low). Note that this is the no battery case.

RESs

For the load/generation profiles presented in Figure 2, 1 average
the maximal achievable reduction with respect to the
peaks is attained and the decentralized MPC algorithm .
is outperformed, cf. Table 1. In order to explain this _
performance improvement, the corresponding charge levels 2 |
of the batteries are considered, see Figure 5. > N\/\WWWW

. RES 1 i
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asfl mem RES 3 ‘ ‘ ‘ ‘ ‘ ‘
oo time [h]

x [KWh]

L L L
30 35 40

EN
time [h]

Fig. 5. State trajectories resulting from distributed MPC,
i.e. battery levels of the individual subsystems.

In particular, it is remarkable that the decisions of indi-
vidual subsystems are more ‘in line’. In the decentralized
MPC setting, subsystem RES 3 discharged its battery after
noon (14-15 hours) but now charges during this period
of time since the overall energy demand is far below the
average, as can be seen in Figure 4.

Remark 1. The storage capacity of the individual sub-
systems does not have to be equal. This restriction was
employed in order to simplify the presentation of our

numerical findings.

Fig. 6. Energy drawn from / supplied to the grid for ten
RESs during the first week of March 2011.

Applying the decentralized MPC scheme of Section 3
yields the load/generation and battery profiles shown in
Figure 7. Applying the Market Maker based distributed
MPC scheme of Section 4 yields the load/generation and
battery profiles shown in Figure 8. The peak values are
shown in Table 2. We observe that for a network composed
solely of these customers, the peak power demand and
the peak power the network needs to absorb are both
significantly reduced by both MPC schemes, with the
Market Maker distributed MPC scheme outperforming the
decentralized MPC scheme.

We note that the distributed MPC scheme appears to
better utilize the available battery storage when compared
with the decentralized scheme in the sense that for the

decentralized scheme the batteries are on average never
empty. In contrast to this, in the distributed setting their

capacity is completely employed in order to further flatten
the aggregate grid profile.
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Fig. 7. Decentralized MPC' applied to RESs depicted in

Figure 6: Energy drawn from / supplied to the grid
(left) and battery state of charge (right).
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Fig. 8. Distributed MPC' applied for RESs depicted in
Figure 6: Energy drawn from / supplied to the grid
(left) and battery state of charge (right).

6. CONCLUSIONS

Residences with small-scale solar generation, such as roof-
mounted solar PV, are becoming increasingly common
and battery storage is frequently cited as a technology
to mitigate some of the negative network impacts that
come with widespread uptake of distributed electricity
generation. In this paper we have presented decentralized
and distributed MPC schemes for control of a network of
residences, each of which comprises a residential energy
system having a load, local generation, and a local storage
element. Our proposed distributed MPC scheme relies on
an idea from the economics literature: the Market Maker
(Garman [1976]). The effectiveness of both the decentral-
ized and distributed MPC schemes was demonstrated on
data from customers in New South Wales, Australia.

Both the model and approach taken herein are intention-
ally simple, in order to verify the soundness of the broad
algorithmic approach. There are, of course, many compli-
cations to be overcome to move the proposed distributed
MPC implementation into practice. A non-exhaustive list
includes: investigating the sensitivity of the algorithm to
imperfect prediction of load and generation; investigat-
ing the communication requirements of the algorithm, in
particular the sensitivity to communicating only coarsely
quantized trajectories to the Market Maker and coarsely
quantized prices to the customers; and making use of
more realistic battery models in which preferred operating
modes of different battery types are taken into account
(Tran and Khambadkone [2013]). Furthermore, investigat-
ing different algorithms for the operation of the Market
Maker may lead to improved performance.
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