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Abstract

We present a numerical technique for the computation of a Lyapunov function for nonlinear systems with an

asymptotically stable equilibrium point. The proposed approach constructs a partition of the state space, called

a triangulation, and then computes values at the vertices of the triangulation using a Lyapunov function from a

classical converse Lyapunov theorem due to Yoshizawa. A simple interpolation of the vertex values then yields

a Continuous and Piecewise A�ne (CPA) function. Veri�cation that the obtained CPA function is a Lyapunov

function is shown to be equivalent to veri�cation of several simple linear inequalities. A numerical example is

provided to illustrate the advantages of the proposed technique.
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1 Introduction

Lyapunov's Second or Direct Method [13] (see also [8, 18, 22]) has proved to be one of the most useful tools for
demonstrating stability properties. This is largely due to the fact that if one has a Lyapunov function at hand there is
no need to explicitly generate system solutions in order to determine stability. Unfortunately, this frequently trades
the di�cult problem of generating system solutions for the equally di�cult problem of constructing a Lyapunov
function.

Converse Lyapunov theorems provide existence results for Lyapunov functions; i.e., assuming a particular stability
property holds then there exists an appropriate Lyapunov function [15, 12, 21, 22]. However, such results are largely
not constructive in nature and, in fact, depend explicitly on solutions of the system under study. As a consequence,
various approaches have been proposed for the numerical construction of Lyapunov functions such as collocation
methods [3, 9], graph theoretic methods [2, 10], semide�nite optimization for sum-of-squares polynomials (known
as the SOS method) [16, 17], and linear programming to generate continuous and piecewise a�ne (CPA) Lyapunov
functions [14, 1, 5, 6].

This latter approach, sometimes called the CPA method, is the starting point for this paper. In the CPA method, a
domain of the state space is partitioned into simplices (called a triangulation) and a linear program is constructed
to obtain numerical values at each simplex vertex. This linear program is constructed in such a way that the convex
interpolation of these values yields a Lyapunov function that is CPA; that is, a CPA Lyapunov function. However,
a shortcoming of this approach is that the linear program can be quite large with the number of variables being at
least the number of vertices in the triangulation and the number of constraints being at least the number of simplices
in the triangulation times the dimension of the state space. Consequently, solving the linear program can be quite
slow.

In this paper we consider systems described by ordinary di�erential equations

ẋ = f(x), x ∈ Rn, (1)

where we assume f : Rn → Rn is twice continuously di�erentiable (i.e., f ∈ C2(Rn,Rn)), f(0) = 0, and denote
solutions to (1) by φ : R≥0 × Rn → Rn. As an alternate approach to constructing a CPA Lyapunov function,
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we compute simplex vertex values by numerically approximating a Lyapunov function from the converse Lyapunov
theorem demonstrated by Yoshizawa [21, 22]. Veri�cation that the resulting CPA function is in fact a CPA Lyapunov
function can be done by checking straightforward linear inequalities similar to those that comprise the constraints
in the linear programming approach.

While the construction of Yoshizawa requires the solutions of (1) for every initial condition, only the solution over
a �nite time horizon is required. Furthermore, this �nite time solution is not required for every initial condition
in the considered region, but only at the vertices of the triangulation. It is satisfaction of the aforementioned
linear inequalities that is the crucial step in demonstrating a CPA Lyapunov function rather than constructing a
numerical approximation of the construction of Yoshizawa. In practice, numerically approximating the construction
of Yoshizawa provides a principled guess for the vertex values of the triangulation.

The bene�t of this approach in constructing CPA Lyapunov functions over the linear programming approach is
two-fold; (i) in all examples so far considered, a signi�cant speed-up in computation time is achieved; and (ii) the
possibility of obtaining a CPA Lyapunov function on a larger domain. While it is di�cult to directly compare the
computational burden of the linear programming approach and the approach proposed herein, both techniques are
applied to a third order numerical example in Section 5 where the computation time is reduced from more than 70
minutes to less than one minute and the size of the domain on which the Lyapunov function is obtained is more
than doubled.

The paper is organized as follows: in Section 2 we describe the construction of CPA functions on a given triangulation
and the linear inequalities used to verify if a given CPA function is, in fact, a Lyapunov function. In Section 3 we
describe the Lyapunov function construction due to Yoshizawa and describe the form of the stability estimates
required. In Section 4 we propose an algorithm for constructing CPA functions and verifying that they are CPA
Lyapunov functions. In Section 5 we present a third order numerical example and in Section 6 we provide some
concluding remarks.
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2 Continuous and Piecewise A�ne Lyapunov Functions

In the sequel, we will de�ne continuous and piecewise a�ne (CPA) functions on suitable triangulations. For a set
Ω ⊂ Rn, we denote the interior of Ω by Ω◦, the closure of Ω by Ω, the boundary of Ω by ∂Ω, and the complement
of Ω by ΩC . For a vector x ∈ Rn, we denote the 2-norm by |x| and the 1-norm by |x|1. We denote the 2-norm of
matrices by ‖ · ‖. We denote the positive real numbers by R>0 and the nonnegative real numbers by R≥0. Given
ε ∈ R>0 we de�ne Bε := {x ∈ Rn : |x| < ε}. We denote the closed convex hull of an ordered set of points xi ∈ Rn,
i = 0, 1, . . . , N by co{x0, x1, . . . , xN}.
De�nition 1. A �nite collection T = {S1,S2, . . . ,SN} of n-simplices in Rn is called a suitable triangulation if

i) Sν ,Sµ ∈ T , ν 6= µ, intersect in a common face or not at all.

ii) With DT := ∪νSν, D◦T is a simply connected neighborhood of the origin.

iii) If 0 ∈ Sν, then 0 is a vertex of Sν.
Remark 1. Property i), often called shape regularity in the theory of �nite element methods, is needed so that we
can parameterize every continuous function, a�ne on every simplex, by specifying its values at the vertices. Property
ii) ensures that DT is a natural domain for a Lyapunov function and, without Property iii), a function a�ne on
each of the simplices could not have a local minimum at the origin. �

In what follows, we will de�ne simplices by �xing an ordered set of vertices and considering the closed convex hull
of those vertices. For a given suitable triangulation, T , and with DT := ∪S∈T S, we denote the set of all continuous
functions f : DT → R that are a�ne on every simplex S ∈ T by CPA[T ].
Remark 2. A function V ∈ CPA[T ] is uniquely determined by its values at the vertices of the simplices of T . To
see this, let Sν = co{x0, x1, . . . , xn} ∈ T . Every point x ∈ Sν can be written uniquely as a convex combination
of its vertices, x =

∑n
i=0 λ

x
i xi, λ

x
i ≥ 0 for all i = 0, 1, . . . , n, and

∑n
i=0 λ

x
i = 1. The value of V at x is given by

V (x) =
∑n

i=0 λ
x
i V (xi). Additionally, V has a representation on Sν as V (x) = wTν (x − x0) + aν for some wν ∈ Rn

and some aν ∈ R. In what follows, for V ∈ CPA[T ] and x ∈ Sν we denote

∇Vν := ∇V (x)
∣∣∣
x∈S◦ν

= wν .
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Then, as shown in [5, Remark 9], ∇Vν is linear in the values of V at the vertices x0, x1, . . . , xn. �

For a function V : Rn → R≥0, the upper Dini derivate at x ∈ Rn in the direction w ∈ Rn is de�ned by

D+V (x,w) := lim sup
h→0+

V (x+ hw)− V (x)

h
. (2)

If V : Rn → R≥0 is di�erentiable then D+V (x,w) = ∇V (x)Tw.

Our subsequent results will be valid on a domain D ⊂ Rn minus a �xed arbitrarily small neighborhood of the origin.
We de�ne a CPA[T ] Lyapunov function that accounts for this.
De�nition 2. Let T be a suitable triangulation and let V ∈ CPA[T ] be a positive de�nite function. Let ε ∈ R>0 be
such that

max
|x|≤ε

V (x) < min
x∈∂DT

V (x) (3)

If there is a constant α∗ ∈ R>0 such that
D+V (x, f(x)) ≤ −α∗|x| (4)

for all x ∈ (DT \ Bε)◦ we call V a CPA[T ] Lyapunov function for (1) on DT \ Bε.

The implication of a CPA[T ] Lyapunov function for (1) on DT \ Bε is slightly weaker than asymptotic stability of
Bε as we make precise in the following theorem. By a slight abuse of notation, for a set Ω ⊂ Rn, we denote the
reachable set of (1) from Ω at time t ∈ R≥0 by φ(t,Ω) := ∪x∈Ωφ(t, x).
Theorem 1. Given a suitable triangulation, T , and ε ∈ R>0, assume that V : D → R≥0 is a CPA[T ] Lyapunov
function for (1) on DT \ Bε. For every c ∈ R≥0 de�ne the sublevel set LV,c := {x ∈ DT : V (x) ≤ c} and
let m := max|x|≤ε V (x) and M := minx∈∂DT V (x). Then, for every c ∈ [m,M) we have Bε ⊂ LV,c ⊂ D◦T and,
furthermore, there exists a Tc ≥ 0 such that φ(t,LV,c) ⊂ LV,m for all t ≥ Tc.

In other words, a CPA[T ] Lyapunov function implies attractivity (from LV,M) and forward invariance of the set
LV,m. The proof is similar to [6, Theorem 6.16] and we consequently omit the details.

For a given CPA[T ] function, veri�cation that this function is a CPA[T ] Lyapunov function can be done by checking
certain linear inequalities at the vertices of T . This is the result of Theorem 2 and Corollary 1. The proofs of
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Theorem 2 and Corollary 1 are similar to [4, Theorem 2.6] and, consequently, we omit the details. Denote the
diameter of a simplex Sν by diam(Sν) := maxx,y∈Sν |x− y|.
Theorem 2. Let T be a suitable triangulation and let V ∈ CPA[T ]. Let Sν = co{xν0, xν1, . . . , xνn} ∈ T and let
µν ∈ R≥0 satisfy

max
i,j,k=1,2,...,n

x∈Sν

∣∣∣∣ ∂2fk
∂xi∂xj

(x)

∣∣∣∣ ≤ µν . (5)

For each Sν, for i = 0, 1, . . . , n de�ne the constants

Ei,ν :=
nµν

2
|xi − x0| (|xi − x0|+ diam(Sν)) . (6)

Then, for every Sν such that the inequalities

∇V T
ν f(xνi ) + |∇Vν |1Ei,ν < 0 (7)

hold for all vertices xνi ∈ Sν, i = 0, 1, . . . , n, we have

∇V T
ν f(x) < 0, ∀x ∈ Sν .

Corollary 1. Assume that V ∈ CPA[T ] is positive de�nite and that the constant ε ∈ R>0 satis�es (3). If the
inequalities (7) are satis�ed for all Sν ∈ T with Sν ∩ BCε 6= ∅, then V is a CPA Lyapunov function for (1) on
DT \ Bε.
Remark 3. The usefulness of Theorem 2 is that it reduces the veri�cation that a given function V ∈ CPA[T ] is
a Lyapunov function for (1) to the veri�cation of a �nite number of inequalities (7). In the linear programming
approach used in [1, 5, 6, 14], the linear inequalities are used as constraints in a linear program and, hence, a solution
necessarily satis�es (7). By contrast, in this paper, we propose �xing the vertex values by a computational procedure
described in the next section followed by verifying the inequalities (7). �

We now turn to the question of the existence of a CPA[T ] Lyapunov function. As we will demonstrate in Theorem 3,
if a CPA[T ] function approximates a twice continuously di�erentiable Lyapunov function, then the CPA[T ] function
is in fact a CPA[T ] Lyapunov function. To do this, we require the following de�nitions.
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De�nition 3. Let D ⊂ Rn be a domain, f : D → R be a function, and T be a triangulation such that DT ⊂ D.
The CPA[T ] approximation g to f on DT is the function g ∈ CPA[T ] de�ned by g(x) = f(x) for all vertices x of all
simplices in T .

We additionally need that the simplices in the triangulation T are not too close to being degenerate; that is, no
n-simplex should be close to being of dimension n− 1. This property can be quanti�ed as follows: For an n-simplex
Sν := co{x0, x1, . . . , xn} ∈ T de�ne its shape-matrix as Xν by writing the vectors x1− x0, x2− x0, . . . , xn− x0 in its
rows subsequently; i.e.,

Xν = [(x1 − x0), (x2 − x0), · · · , (xn − x0)]T . (8)

The degeneracy of the simplex Sν is quanti�ed by the value diam(Sν)‖X−1
ν ‖, where ‖X−1

ν ‖ is the spectral norm of
the inverse of Xν (see part (ii) in the proof of [1, Theorem 4.6]). To see why this quantity captures a �distance-to-
degeneracy� of the n-simplex Sν , observe that degeneracy corresponds to the presence of linearly dependent rows in
Xν , resulting in Xν being singular. If rows are nearly linearly dependent, possibly as a result of vertices being close
to each other, then the spectral norm of X−1

ν will be large. Of course, we may wish to use very small simplices in
order to reduce the error between a given Lyapunov function and its CPA approximation, and hence a reasonable
measure of distance-to-degeneracy should also scale the spectral norm of the inverse of Xν by the diameter of the
simplex, leading to the quantity diam(Sν)‖X−1

ν ‖.
De�nition 4. Given a neighborhood of the origin D ⊂ Rn, a locally Lipschitz function W : Rn → R≥0 is a Lyapunov
function for (1) on D if there exist positive de�nite functions α, α1 : R≥0 → R≥0 so that, for all x ∈ D,

α1(|x|) ≤ W (x), and (9)

D+W (x, f(x)) ≤ −α(|x|). (10)

Theorem 3. Let C,D ⊂ Rn be simply connected compact neighborhoods of the origin such that C◦ = C, D◦ = D,
and C ⊂ D◦. Assume that W ∈ C2(Rn,R≥0) is a Lyapunov function for (1) on D. Let ε ∈ R>0 satisfy

max
|x|≤ε

W (x) < min
x∈D\C◦

W (x). (11)
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Then for every R ∈ R>0 there exists a δR ∈ (0, ε) so that, for any suitable triangulation T satisfying

C ⊂ DT ⊂ D, (12)

max
Sν∈T

diam(Sν) ≤ δR, and (13)

max
Sν∈T

diam(Sν)‖X−1
ν ‖ ≤ R (14)

the CPA[T ] approximation V to W on DT is a CPA Lyapunov function for (1) on DT \ Bε. Further, for any large
enough R ∈ R>0 there are such suitable triangulations.

Proof: For a su�ciently large R ∈ R>0 constructing a suitable triangulation satisfying (12), (13), and (14) can be
done as in [5, De�nition 13]. Indeed, one can take any δR between zero and ε that is smaller than inf{|x − y| :
x ∈ C, y ∈ DC} and the triangulation T CK,b in [5, De�nition 13] with K = 0 and b = δR/

√
n. In summary, this

triangulation starts from integer grid points that are then scaled down by the constant b. Simplices that do not
intersect the interior of C are then discarded. For the rest of the proof assume that we have such a triangulation
T . We �rst derive some inequalities and then we �x δR.

For an arbitrary but �xed Sν = co{x0, x1, · · · , xn}, Sν ∩ BCε 6= ∅, de�ne Wν ∈ Rn by

Wν :=


W (x1)−W (x0)
W (x2)−W (x0)

...
W (xn)−W (x0)

 (15)

and de�ne A := max
z∈D

i,j=1,2,...,n

∣∣∣ ∂2W
∂xi∂xj

(z)
∣∣∣.

Let Xν be as in (8) and de�ne χ := maxν ‖X−1
ν ‖. Following the proof of part (iii) of [1, Theorem 4.6] we can show

that

|X−1
ν Wν −∇W (xi)| ≤ nAδR

(
1

2
n

1
2R + 1

)
. (16)
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De�ne
D := sup

x∈D
|f(x)| (17)

and observe that since f(x) is twice continuously di�erentiable in D, D < +∞.

De�ne V ∈ CPA[T ] such that, for each vertex xi of every simplex in T , V (xi) = W (xi). Since V ∈ CPA[T ], we
have V (x) = V (x0) +∇V T

ν (x− x0) for all x ∈ Sν . Then (xi − x0)T∇Vν = W (xi)−W (x0) and, using the de�nitions
(15) and (8), we have

∇Vν = X−1
ν Wν . (18)

Since W ∈ C2(Rn,R≥0), ∇W (x) is bounded on the compact set D and we can de�ne G := R ·max
z∈D
|∇W (z)| ∈ R>0.

Using (14)

|∇Vν | = |X−1
ν Wν | ≤ ‖X−1

ν ‖ diam(Sν) max
z∈Sν
|∇W (z)|

≤ R ·max
z∈D
|∇W (z)| = G (19)

holds uniformly in ν. Let ∇Vν,i denote the ith component of ∇Vν . We then see that |∇Vν,i| ≤ G and hence
|∇Vν |1 ≤ nG.

De�ne

µ∗ := max
i,j,k=1,2,...,n

x∈D

∣∣∣∣ ∂2fk
∂xi∂xj

(x)

∣∣∣∣
and let Ei,ν ∈ R≥0 be de�ned by (6) with µν = µ∗. Then, from (13) and (6) we have

|∇Vν |1Ei,ν ≤ nG
(
nµ∗

2
δR(δR + δR)

)
= δ2

Rn
2µ∗G. (20)
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Using (10), (16), and (17) we calculate

∇V T
ν f(xi) = ∇V T

ν f(xi) + (∇W (xi)−∇W (xi))
Tf(xi)

≤ −α(|xi|) + |X−1
ν Wν −∇W (xi)||f(xi)|

≤ −α(|xi|) + nAδR

(
1
2
n

1
2R + 1

)
D. (21)

Now, �x δR ∈ (0, ε) so that

2δR

(
nA
(

1
2
n

1
2R + 1

)
D + δRn

2µ∗G
)
≤ α(ε− δR).

Then, because |xi| ≥ ε− δR and with the bounds (21) and (20), the linear constraints

∇V T
ν f(xi) + |∇Vν |1Ei,ν < 0 (22)

are satis�ed for all vertices xi of Sν .

Further, because V is de�ned as interpolated values of W , we have by (11)

max
|x|≤ε

V (x) ≤ max
|x|≤ε

W (x) < min
x∈D\C◦

W (x) ≤ min
x∈∂DT

V (x)

Since W is positive de�nite, so is V . Consequently, Corollary 1 proves the theorem. �

Theorem 3 implies that it is always possible to �nd a triangulation that admits a CPA Lyapunov function approxi-
mating a twice continuously di�erentiable Lyapunov function.

We note that the assumption ofW ∈ C2(Rn,R≥0) is required in proving (16), which, with (18), can be seen to bound
the di�erence between the slope of the CPA approximation on Sν and the gradient of the Lyapunov function W at
each vertex of Sν ; i.e., a bound on |∇Vν −∇W (xi)|. Since the right-hand side of (16) goes to zero as the diameter
of the simplex Sν goes to zero, we see that ∇Vν being close to ∇W (xi) for all vertices de�ning the simplex requires
at least continuity of ∇W (x). In fact, as can be seen from the de�nition of the constant A, what is additionally
required is that the second derivative of W needs to exist and be bounded inside each simplex.
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3 Yoshizawa Construction of Lyapunov Functions

We now turn to the question of how to de�ne the vertex values of each simplex in order to obtain a CPA Lyapunov
function. We propose using a numerical approximation of a construction initially proposed by Yoshizawa in proving
a converse Lyapunov theorem [21, Theorem 1]. We make use of the standard function classes K∞ and KL (see
[8, 11]).

Let the open set D ⊂ Rn be such that D is forward invariant for (1) and the origin is contained in D. Suppose (1)
is KL-stable on D; i.e., there exists β ∈ KL so that

|φ(t, x)| ≤ β(|x|, t), ∀x ∈ D, t ∈ R≥0. (23)

It was shown in [20, Proposition 1] that KL-stability is equivalent to (local) asymptotic stability of the origin for (1)
where D is contained in the basin of attraction. See also [8, De�nition 2.9] where asymptotic stability is de�ned in
terms of a bound of class-KL. When D = Rn, KL-stability is equivalent to global asymptotic stability of the origin
for (1). We will refer to the function β ∈ KL of (23) as a stability estimate.

In what follows we will make use of Sontag's lemma on KL-estimates [19, Proposition 7] ([11, Lemma 7]):
Lemma 1. Given β ∈ KL and λ ∈ R>0, there exist α1, α2 ∈ K∞ with α1 smooth on R>0, so that, for all s, t ∈ R≥0

α1(β(s, t)) ≤ α2(s)e−λt.

De�nition 5. Given a stability estimate β ∈ KL, let α1, α2 ∈ K∞ come from Lemma 1 with λ = 2. We call the
function V : Rn → R≥0 de�ned by

V (x) := sup
t≥0

α1(|φ(t, x)|)et (24)

a Yoshizawa function for (1).

The following theorem extracts what, in the sequel, are the important elements relating to the Yoshizawa function
from [20, Section 5.1.2].
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Theorem 4. Suppose (1) is KL-stable with stability estimate β ∈ KL. Then the Yoshizawa function (24) is locally
Lipschitz on D\{0} and satis�es

α1(|x|) ≤ V (x) ≤ α2(|x|) (25)

and the decrease condition
V (φ(t, x)) ≤ V (x)e−t, (26)

for all x ∈ D and all t ∈ R≥0. Furthermore, with T : D\{0} → R≥0 de�ned by

T (x) := ln
(
α2(|x|)
α1(|x|)

)
+ 1 (27)

for all x ∈ D\{0}, we have

V (x) = sup
t≥0

α1(|φ(t, x)|)et

= max
t∈[0,T (x)]

α1(|φ(t, x)|)et. (28)

Observe that, for any x ∈ D\{0}, taking the maximum over any interval [0, T ] where T ≥ T (x) will not change the
value of the Yoshizawa function. Furthermore, since the Yoshizawa function is locally Lipschitz, (25) and (26) imply
that the Yoshizawa function is a Lyapunov function when the system under study is KL-stable.

Sketch of Proof: The properties (25) and (26) are demonstrated directly in [20, Section 5.1.2] as

V (x) = sup
t≥0

α1(|φ(t, x)|)et ≥ α1(|x|), and

V (x) = sup
t≥0

α1(|φ(t, x)|)et ≤ sup
t≥0

α2(|x|)e−2t+t = α2(|x|).

Similarly, that the Yoshizawa function is locally Lipschitz on D\{0} is shown in [20, Section 5.1.2]. In [20, Claim 2]

it is shown that for T̂ : D\{0} → R≥0 given by

T̂ (x) = −ln
(

V (x)
α2(|x|)

)
+ 1,
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the Yoshizawa function satis�es

V (x) = sup
t≥0

α1(|φ(t, x)|)et = max
t∈[0,T̂ (x)]

α1(|φ(t, x)|)et.

By using the upper and lower bounds (25) we see that

0 ≤ T̂ (x) ≤ −ln
(
α1(|x|)
α2(|x|)

)
+ 1 = T (x)

giving the result of Theorem 4. �

4 Computing CPA Lyapunov Functions

We here summarize the proposed numerical technique:

Algorithm 1:

1. Construct a suitable triangulation.

2. Compute the Yoshizawa function (28) at each vertex of the triangulation.

3. From the triangulation vertex values, construct a CPA function; i.e., calculate the gradient ∇Vν and the o�set
aν for each simplex Sν .

4. Check the inequalities (7) at each vertex of the triangulation.

5. If necessary, re�ne the triangulation and repeat steps 2�4.

Computationally, steps 1 and 5 are also a feature of the linear programming approach [14] to computing CPA
Lyapunov functions, though it may be necessary to re�ne the triangulation in order for the linear program to be
feasible. By contrast, the calculations proposed in Algorithm 1 can be carried out for any triangulation. Assuming a
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triangulation that admits a feasible solution to the linear program of [14], the di�erence between the linear program-
ming approach [14] and the approach proposed in Algorithm 1 lies in steps 2�4. Steps 3 and 4 are computationally
straightforward. Step 2 requires some discussion.

In computing the Yoshizawa function (28), we require a stability estimate β ∈ KL, functions α1, α2 ∈ K∞ from
Lemma 1, and a solution to (1) over the �nite time window [0, T (x)]. We �rst address issues with the solution and
�nite time window and then comment on the stability estimate and K∞ functions.

As a closed form solution of (1) is generally not available, we will resort to numerical integration in order to obtain
an approximate solution φ(t, x) for use in the calculation of V (x) given by (28). For this approach to be numerically
tractable, it is important that the time horizon T (x) given by (27) not be too large.

For an exponential stability estimate β ∈ KL bounded as β(s, t) ≤ α(s)e−µt for some µ ∈ R>0, α ∈ K∞ satisfying
α(s) ≥ s, and all (s, t) ∈ R2

≥0, the functions

α1(s) := s2/µ, and α2(s) := (α(s))2/µ

satisfy Lemma 1 with λ = 2. Hence,

T (x) ≤ 2

µ
ln
(
α(|x|)
|x|

)
+ 1 (29)

and α(s) ≥ s for all s ∈ R≥0 guarantees that T (x) ≥ 1. Furthermore, if α(s) = Ms for some M > 1, then T (x) is
independent of the point x and is given by

T (x) = T = 2
µ
lnM + 1.

For a stability estimate β ∈ KL bounded by

β(s, t) ≤ exp(Mse−2t)− 1 (30)

with M ∈ R>0, the functions
α−1

1 (s) := es − 1, α2(s) = Ms, ∀s ∈ R≥0
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satisfy Lemma 1 with λ = 2. Hence the optimization horizon bound is given by

T (x) ≤ ln
(

M |x|
ln(1+|x|)

)
+ 1.

The horizon length grows with increasing |x| but not too quickly. For example, with M = 10: |x| = 1 yields
T (x) = 3.67 and |x| = 100 yields T (x) = 6.38.
Remark 4 (Stability Estimates). There are two di�culties we encounter in trying to calculate (24). The �rst
di�culty lies with �nding a stability estimate β ∈ KL or even with verifying that a particular stability estimate such
as (30) holds for a particular system (1). There seems to be little that can be done to circumvent this problem.
However, in practice, since we only compute the Yoshizawa function on a compact domain containing the origin, a
global stability estimate is not required.

The second di�culty is that Sontag's lemma on KL-estimates is not constructive and, to the best of the authors'
knowledge, given an arbitrary β ∈ KL, there are currently no constructive techniques for �nding α1, α2 ∈ K∞.
Remark 5. Recall that the result of Theorem 3 guarantees the existence of a suitable triangulation and a CPA[T ]
Lyapunov function. In particular, Theorem 3 states that the CPA[T ] approximation of a twice continuously di�er-
entiable Lyapunov function is, in fact, a CPA[T ] Lyapunov function. However, Algorithm 1 constructs a CPA[T ]
approximation to the Yoshizawa function which, as stated in Theorem 4, is only locally Lipschitz. The implication
of not approximating a twice continuously di�erentiable Lyapunov function is that it is not possible to completely
guarantee that Algorithm 1 will always yield a CPA[T ] Lyapunov function.

In practice, this causes no di�culty since whether or not a computed CPA[T ] function is a CPA[T ] Lyapunov
function relies only on the veri�cation of the linear inequalities (7). Similarly, approximation errors caused by the
use of low-order integration methods, inaccurate stability estimates, or incorrect time horizons may result in a poor
approximation of the Yoshizawa function but may nonetheless lead to a CPA[T ] function that satis�es inequalities
(7) and is hence a CPA[T ] Lyapunov function.

5 Numerical Example
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Consider the third order system
ẋ1 = −x1 − x2 − x3

ẋ2 = sin(x1)− 2x2(1 + x1) + x3

ẋ3 = x1(1 + x1) + x1 − 2 sin(x2).
(31)

This system clearly has the origin as a locally asymptotically stable equilibrium point.

Fix the scaling in the Yoshizawa function (28) as α1(s) := s2 and the uniform time horizon as T (x) = T = 3. We
construct a triangulation, T , with vertices given by 0.1(i, j, k) for i, k = −30,−29, . . . , 30 and j = −40,−39, . . . , 40.
We then compute an approximation of the Yoshizawa function (28) at each vertex using an Adams-Bashforth four-
step solver for (31). Computing the values of the Yoshizawa function (28) and checking the linear inequalities (7)
at each of the 301,401 vertices was accomplished in 50 seconds on a standard PC. This yielded a CPA[T ] Lyapunov
function roughly on B1.5\B0.124, where the largest level set containing the origin is shown in Figure 1. Note that the
level sets are not, in fact, spheres and the level set shown in Figure 1 is squashed or �attened in the region x2, x3 > 0
and x1 < 0.

By way of comparison, we also applied the linear programming approach proposed in [14], with the largest level
set obtained shown in Figure 2. The triangulation used in this computation is given by 0.01(±i2,±j2,±k2) for
i, j, k = 0, 1, . . . , 9. Note that the obtained level set is on a domain with a radius less than half the size of that
obtained via the proposed approach. Despite the fact that the triangulation used in Figure 2 used 44 times fewer
grid points (i.e., 6,859), the computation took more than 70 minutes on the same PC using the state-of-the-art
Gurobi Linear Program solver.

In order for the linear program to have a solution, there cannot be any constraint violations anywhere on the com-
putational domain. In particular, for the considered example it was necessary to de�ne a �quadratic� triangulation,
so that one has smaller simplices closer to the origin, in order to obtain a feasible solution. However, using Al-
gorithm 1, one can de�ne a domain as large as desired and then, by checking the linear inequalities (7) at each
vertex, determine a region where the orbital derivative is negative. This signi�cantly simpli�es the initial setup of
the computational problem as choosing a computational domain larger than the basin of attraction does not lead to
an infeasible problem necessitating a re�nement of the computational domain.
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Figure 1: From Algorithm 1, the largest level set containing the origin (red sphere) and points where the orbital
derivative is nonnegative (blue dots).

First and second order examples can be found in [7].

6 Conclusions

In this paper we have presented a novel technique, summarized in Algorithm 1, for the numerical construction of
Lyapunov functions given a stability estimate in the form of a KL-bound on the norm of system trajectories. For
a suitable triangulation of the state space, at each simplex vertex we calculate the value of a Lyapunov function
construction due to Yoshizawa [21, 22]. From these values, we then de�ne a CPA function on the domain minus
an arbitrarily small neighborhood of the origin. We can verify that the CPA function thus de�ned is a Lyapunov
function (Corollary 1) by checking a simple linear inequality (7) at each vertex of the triangulation.

It is important to note that any CPA function that satis�es the inequalities (7) is a CPA Lyapunov function.
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Figure 2: From the LP approach of [14], the largest level set containing the origin.

Theorem 3 guarantees that a CPA function that approximates a twice continuously di�erentiable Lyapunov function
is, in fact, a CPA Lyapunov function. In this sense, the method proposed in Algorithm 1 can be seen as a way
to make a �principled guess� for a CPA function that is likely to satisfy (7), despite possible crude approximations
made in the process of computing the Yoshizawa function.

We observe that in the numerical example of Section 5, and the examples presented in [7], there is a signi�cant
improvement in computation time when using Algorithm 1 over the linear programming approach of [14]. Further
reductions in computation time can be made by moving to a parallel computation architecture based on the ob-
servation that Steps 2 and Steps 4 of Algorithm 1 can be done for each vertex independent of every other vertex.
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