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Abstract. We introduce a new formulation of the minimum time problem in which we employ the

signed minimum time function positive outside of the target, negative in its interior and zero on its

boundary. Under some standard assumptions, we prove the so called Bridge Dynamic Programming

Principle (BDPP) which is a relation between the value functions defined on the complement of the

target and in its interior. Then owing to BDPP, we obtain the error estimates of a semi-Lagrangian

discretization of the resulting Hamilton-Jacobi-Bellman equation. In the end, we provide numerical

tests and error comparisons which show that the new approach can lead to significantly reduced

numerical errors.

1. Introduction

The global solution of the minimum time problem can be efficiently obtained via the solu-

tion of the associated Hamilton-Jacobi-Bellman equation. Indeed, the unique viscosity solution

of this equation is the optimal value function of the problem, whose knowledge can in a subse-

quent step be used in order to synthesize the optimal control functions. For the numerical solution

of this Hamilton-Jacobi-Bellman equation, semi-Lagrangian schemes — which consist of a semi-

discretization in time followed by a finite element discretization in space — are particularly attrac-

tive because they are unconditionally stable and allow to combine different discretization methods

in space and time [7]. Most importantly, however, the semi-discretization is directly linked to

a discrete time approximation to the original minimum time problem, which facilitates both the

interpretation of the numerical results and the synthesis of approximately optimal feedback laws

from the numerical approximation.

In the case of the minimum time problem, the semi-Lagrangian approach was first presented and

analyzed in [2, 3], recent developments include the analysis of high-order discretization schemes in

time in [4]. One of the main disadvantages of the semi-Lagrangian approach is the fact that the

semi-discretization of the standard minimum time problem leads to a piecewise constant optimal

value function whose discontinuities pose problems, e.g., for the subsequent spatial discretization.

The discontinuities stem from the fact that the optimal value function is fixed to v ≡ 0 on the target

set of the minimum time problem. In order to improve the approximation, it does hence appear to

be a good idea to use a formulation of the minimum time problem which avoids setting v to 0 by

extending the problem inside the target in a meaningful way. This is what is done in this paper,

which presents the theoretical foundations of a new formulation of the minimum time problem
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2 A new approach to the minimum time problem

as well as its numerical discretization including an error analysis of the resulting semi-Lagrangian

scheme. Numerical examples show that under suitable conditions the new formulation is indeed

able to significantly reduce the numerical error compared to the classical approach.

The remainder of the paper is organized as follows. Section 2 introduces the new formulation

of the minimum time problem from a theoretical point of view and proves the bridge dynamic

programming principle (BDPP) as the main technical tool for the subsequent analysis. In Section

3 the discretization is introduced and the numerical error is analyzed. The performance of the new

approach is finally illustrated by several numerical examples in Section 4.

2. A new formulation of the minimum time problem

To begin with, we recall basic notations and definitions necessary for this work. Let S ⊂ Rn be

a closed set and σ > 0 be a given constant. For x ∈ Rn, we define

dS(x) = min{‖y − x‖ : y ∈ S},

Sσ = {x ∈ Rn : dS(x) ≤ σ},

S−σ = {x ∈ Rn : dSc(x) ≥ σ},

where Sc is the complement of S, Sc = Rn \S, and S̄ is the closure of S. For readers’ convenience,

we also recall the definition of a set satisfying an internal (external) sphere condition as follows.

Definition 2.1. Let S ∈ Rn be closed and ρ > 0 be given.

(1) S satisfies a ρ–internal sphere condition if S is the union of closed spheres of radius ρ, i.e.,

for any x ∈ S there exists y such that x ∈ Bρ(y) ⊂ S.

(2) S satisfies a ρ–external sphere condition if S̄c satisfies a ρ–internal sphere condition.

Consider the control dynamics and its inverse one in Rn

(2.1)

ẏ+(t) = f(y+(t), u(t))

y(0) = ξ
, (2.2)

ẏ−(t) = −f(y−(t), u(t))

y(0) = ξ
,

where u(t) ∈ U for a. e. t, U ⊂ Rm a compact set. Under standard assumptions, the existence

and uniqueness of (2.1) as well as (2.2) are guaranteed for any u(·) measurable and any ξ ∈ Rn.

Let S ⊂ Rn, a nonempty compact set, be the target and U := {u : [0,+∞)→ U, measurable}. We

define the minimum time to reach S and to S̄c by following some u(·) ∈ U from ξ /∈ S and η /∈ S̄c

respectively
tS(ξ, u) = min{t : y+(t, ξ, u) ∈ S} ≤ +∞,

tSc(η, u) = min{t : y−(t, η, u) ∈ S̄c} ≤ +∞.

Then the minimum time functions to reach S and to S̄c from ξ and η are defined respectively as

TS(ξ) = inf
u∈U
{tS(ξ, u)},

TSc(η) = inf
u∈U
{tSc(η, u)}.

Under standard assumptions, the infimum is attained, provided it is not +∞. We also define

RS = {ξ ∈ Rn : TS(ξ) < +∞},

RSc = {η ∈ Rn : TSc(η) < +∞},
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the reachable sets w.r.t S and S̄c. We define level sets in a neighborhood of ∂S by setting, given

τ > 0,

S+
τ = {x /∈ S, TS(x) < τ},

S−τ = {x /∈ S̄c, TSc(x) < τ}.

Our aim in this section is to introduce a new approach to the minimum time problem, so that it

is possible to design a numerical scheme to solve its corresponding discrete problem more efficiently

in some cases. The following assumptions are supposed to be satisfied throughout this paper.

Assumptions 2.2.

a) f(x, u) is globally Lipschitz continuous in x, uniformly in u and ‖f(x, u)‖ ≤ K(1 + ‖x‖),
for all x ∈ Rn, u ∈ U , K is a positive constant,

b) S is a compact set with C2 boundary,

c) (f, U), (−f, U) are small time controllable on S, S̄c respectively. Moreover, assume TS(·),
TSc(·) are locally Hölder continuous with exponent 1

l in RS , RSc, l ∈ N \ {0}, i.e., for all

compact subsets KS ⊂ RS and KSc ⊂ RSc there exists a constant L > 0 such that

(2.3)
|TS(x)− TS(y)| ≤ L ‖x− y‖

1
l for all x, y ∈ KS

|TSc(x)− TSc(y)| ≤ L ‖x− y‖
1
l for all x, y ∈ KSc .

Remark 2.3. Readers can find the definition of small time controllability in [1], and sufficient

conditions which guarantee the Hölder continuity of the minimum time function in, for instance,

[1, 10, 11, 12]. If l = 1, T is Lipschitz continuous.

For x ∈ RS , consider the control system (2.1) and the target set S. Under our assumptions, it

is well known that for all t > 0 the function TS(x) satisfies the dynamic programming principle

(2.4) TS(x) = inf
α∈U
{t+ TS(y+(t, x, α))}

and is the unique viscosity solution of the following boundary value problem (see [1])

(2.5)


supu∈U{−f(x, u)∇TS(x)} − 1 = 0 in RS \ S

TS(x) = 0 on ∂S

TS(x) = +∞ as x→ x0 ∈ ∂RS .

In the classical approach (see, e.g., [2, 5]), one does care only what happens in S̄c, and, by definition,

TS(x) is set to be zero whenever x ∈
o
S, where

o
S is the interior of S. Then, defining the Kruzkov

transform

vS(x) =

1− e−TS(x) x ∈ RS ,

1 x /∈ RS ,

vS(x) satisfies the dynamic programming principle

(2.6) vS(x) = inf
α∈U
{
∫ t

0
e−sds+ e−tvS(y+(t, x, α))}

for all t > 0 and is the unique bounded viscosity solution of

(2.7)

vS(x) + supu∈U{−f(x, u)∇vS(x)} − 1 = 0 in Rn \ S

vS(x) = 0 on S.
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The full discretization of (2.7) can be constructed by a semi-Lagrangian approach [7]. In this

approach, first proposed for the minimum time problem in [2, 3], the problem is first discretized

in time and then in space. More specifically, here we follow the approach in [4] which uses a high

order one step numerical approximation in time and a first order interpolation in space. As already

observed in [2], when applied to this procedure (2.7), the semi-discretization in time is a piecewise

constant function with jumps of size ≈ h, a fact which may deteriorate the convergence properties

of the subsequent spatial discretization. From the interpretation of the semi-discrete problem as a

discrete time optimal control problem (see, e.g., [2, Section 2]) it is easily seen that this piecewise

constant behavior stems from the fact that the approximate solution of (2.7) is equal to 0 on
o
S.

Our goal is thus to reformulate the problem so that this issue is reduced, at least, for some classes

of the control systems. To this aim, instead of letting TS(x) be zero in
o
S, we do as in what follows.

For x ∈ RSc , consider the reverse dynamics (2.2) and the new target set as the closure of the

complement of the original target set S, S̄c. Due to the same arguments as above, TSc(x) is the

unique viscosity solution of

(2.8)


supu∈U{f(x, u)∇TSc(x)} − 1 = 0 in RSc \ Sc

TSc(x) = 0 on ∂Sc

TSc(x) = +∞ as x→ x0 ∈ ∂RS
c
.

Now we are going to redefine the minimum time function as

(2.9) T (x) =



TS(x) if x ∈ RS

0 if x ∈ ∂S

−TSc(x) if x ∈ RSc

+∞ if x→ x0 ∈ ∂RS ,

−∞ if x→ x0 ∈ ∂RS
c

and the value function as

(2.10) v(x) =


1− e−T (x) if x ∈ Rn \ S

0 if x ∈ ∂S

eT (x) − 1 if x ∈ Rn \ Sc.

Then the minimum time problem is reformulated as T (x) is the unique viscosity solution of

(2.11)


supu∈U{−f(x, u)∇T (x)} − 1 = 0 in RS \ S or RSc \ Sc

T (x) = 0 on ∂S

T (x) = +∞ as x→ x0 ∈ ∂RS or ∂RSc .

It is easy to check that the transformation (2.10) satisfies the required properties of Proposition

2.5 in [1], thus v(x) is the unique bounded viscosity solution of

(2.12)


v(x) + supu∈U{−f(x, u)∇v(x)} − 1 = 0 in Sc

−v(x) + supu∈U{−f(x, u)∇v(x)} − 1 = 0 in
o
S

v(x) = 0 on ∂S,

The remaining part of this section is devoted to proving some results necessary for error estimates

later on. It is easy to see that T and v satisfy the dynamic programming principles (2.4) and
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(2.6) whenever the optimal trajectories y+ on the right hand side of these principles stay in Sc.

Likewise, it is straightforward to see that (2.4) and (2.6) with y− in place of y+ hold for −T and

−v, respectively, whenever y− stays in S. However, it remains to be clarified how these principles

change for trajectories crossing ∂S. To this end, observe that under the assumptions on S, there

exists ρ > 0, such that S satisfies both the ρ-internal and the ρ-external sphere condition and

Sρ ∈ RS , S−ρ ∈ RS
c
. Let τ1 = minx∈∂Sρ TS(x), τ2 = minx∈∂S−ρ TSc(x) and τ = min{τ1, τ2}.

Proposition 2.4 (Bridge Dynamic Programming Principle (BDPP) for T ).

Under Assumptions 2.2,

(2.13) T (x) = inf
α∈U
{t+ T (y+(t, x, α))} for x ∈ S+

τ , T (x) < t ≤ τ,

(2.14) T (x) = sup
α∈U
{−t+ T (y−(t, x, α))} for x ∈ S−τ , T (x) < t ≤ τ.

Proof. By means of (2.9), (2.13) can be rewritten as

TS(x) = inf
α∈U
{t− TSc(y+(t, x, α))}.

Fix α ∈ U such that t = tS(x, α) + tSc(z, ᾱ), where ᾱ(s) = α(t− s), z = y+(t, x, α). Then

tS(x, α) = t− tSc(z, ᾱ) ≤ t− TSc(z),

by taking the infimum over U ,

TS(x) ≤ inf
α∈U
{t− TSc(y+(t, x, α))}.

Now let α, α1 ∈ U , such that t = tS(x, α) + tSc(y, α1) and TSc(y) ≥ tSc(y, α1) − ε for any fixed

ε > 0, where y = y+(t, x, ᾱ),

ᾱ(s) =

α(s) s ≤ tS(x, α)

α1(t− s) s > tS(x, α),

then tS(x, ᾱ) = t− tSc(y, α1) ≥ t− TSc(y)− ε. By letting ε→ 0+ and taking the infimum over U ,

TS(x) ≥ inf
α∈U
{t− TSc(y+(t, x, α))}

which completes the proof (2.13).

For (2.14), by exchanging the roles of S and S̄c, we obtain, from (2.13),

TSc(x) = inf
α∈U
{t− TS(y−(t, x, α))},

or, equivalently, −TSc(x) = supα∈U{−t+ TS(y−(t, x, α))}, i.e (2.14). �

Proposition 2.5 (BDPP for v).

Under Assumptions 2.2,

(2.15) v(x) = inf
α∈U
{
∫ t

0
e−sds+ e−T (x)v(y+(t, x, α))} for x ∈ S+

τ , T (x) < t ≤ τ,

(2.16) v(x) = sup
α∈U
{−
∫ t

0
e−sds+ e−T (x)v(y−(t, x, α))} for x ∈ S−τ , T (x) < t ≤ τ.
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Proof. To start with, we prove (2.15). Let J(x, α) =
∫ tS(x,α)

0 e−sds, by definition, v(x) = infα∈U J(x, α).

Let α ∈ U such that t = tS(x, α) + tSc(z, ᾱ) and tS(x, α) ≤ TS(x) + ε (< t) for any fixed ε > 0 small

enough, where z = y+(t, x, α), ᾱ(s) = α(t− s). We have

(2.17)

J(x, α) =

∫ t

0
e−sds−

∫ t

tS(x,α)
e−sds =

∫ t

0
e−sds+ e−tS(x,α)(e−(t−tS(x,α)) − 1)

=

∫ t

0
e−sds+ e−tS(x,α)(e−tSc (z,ᾱ) − 1) ≤

∫ t

0
e−sds+ e−tS(x,α)v(y+(t, x, α))

≤
∫ t

0
e−sds+ e−TS(x)−εv(y+(t, x, α)).

From (2.17), by letting ε→ 0+ and taking the infimum over U , we obtain

v(x) ≤
∫ t

0
e−sds+ e−TS(x)v(y+(t, x, α)).

Let α, α1 ∈ U , such that t = tS(x, α) + tSc(z, α1) and tSc(z, α1) ≤ TSc(z) + ε for any fixed ε > 0,

where z = y+(t, x, ᾱ),

ᾱ(s) =

α(s) s ≤ tS(x, α)

α1(t− s) s > tS(x, α)
.

Then

(2.18)

J(x, ᾱ) =

∫ t

0
e−sds+ e−tS(x,α)(e−tSc (z,α1) − 1) ≥

∫ t

0
e−sds+ e−tS(x,α)(e−TSc (z)−ε − 1)

≥
∫ t

0
e−sds+ e−TS(x)(e−TSc (z)−ε − 1).

By taking the infimum over U and letting ε→ 0+ in (2.18), we receive

v(x) ≥
∫ t

0
e−sds+ e−TS(x)v(y+(t, x, α)).

Thus (2.15) is proved. Analogously for (2.16), the proof is completed. �

Remark 2.6. We remark that the factor e−T (x) in front of v in (2.15) and (2.16) is different from

the factor e−t in the “usual” dynamic programming principle (2.6). This is due to the fact that the

Kruzkov transform, i.e., the exponential transformation in (2.10), acts with different signs inside

and outside S and the different factor is needed as a correction term when the optimal trajectories

are crossing ∂S.

3. Discretization and error estimate

In this section, we are going to introduce the semi- and fully discrete version of (2.12) constructed

by means of a high order one step numerical approximation in time and a first order interpolation

in space. We will also provide error estimates of the value function ‖vh − v‖∞,Ω , ‖v∆ − v‖∞,Ω,

where ‖·‖∞,Ω is a usual supremum norm taken on Ω and vh, v∆, Ω will be specified later, carried

out under the continuity property of v, the local error of the numerical scheme, in conjunction with

Proposition (2.4) and (2.5).
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3.1. Discretization. Fix h > 0 sufficiently small and let q > 0 be a given integer number. We

approximate (2.1),(2.2) by means of a one step q−th order numerical scheme which is fully described

in [4]. The numerical approximations of (2.1),(2.2) can be written in the following classical forms,

respectively,

(3.1)

y+
n+1 = y+

n + hΦ+(yn,Mn, h)

y+
0 = ξ

, (3.2)

y−n+1 = y−n + hΦ−(yn,Mn, h)

y−0 = ξ
,

where Mn is an m× k control matrix, Mn ∈ Uk, and k ∈ N \ {0} depends on the specific method.

The increment functions Φ+, Φ− satisfy the properties as those of Φ in [4]. We need the following

assumptions on the scheme to preserve the order of the method for proving error estimate later:

Assumptions 3.1.

(O.1) For any x ∈ Rn and any measurable u, υ : [0, h)→ U there exists m×k matrices M, M̄ ∈ Uk

such that

(3.3)

∥∥y+(h, x, u)− y+
h (h, x,M)

∥∥ ≤ Chq+1,∥∥y−(h, x, υ)− y−h (h, x, M̄)
∥∥ ≤ Chq+1,

where C is a constant.

Conversely,

(O.2) for any matrices M, M̄ ∈ Uk, there exists a measurable control u, υ : [0, h) → U such that

(3.3) holds.

For the construction of higher order one step methods satisfying Assumptions 3.1 for some classes

of control systems we refer to in [9]. Assumptions 3.1 appear, for example, in [8, 6, 4]. We only

remark that the simplest scheme satisfying Assumptions 3.1 (with q = 1) is the Euler scheme with

M = u and Φ+(y, u, h) = f(y, u), Φ−(y, u, h) = −f(y, u).

Consider the following problem as the discrete version of (2.12)

(3.4)


vh(x) = infM∈Uk{e−hvh(x+ hΦ+(x,M, h))}+ 1− e−h for x ∈ Sc

vh(x) = supM∈Uk{e−hvh(x+ hΦ−(x,M, h))}+ e−h − 1 for x ∈
o
S

vh(x) = 0 for x ∈ ∂S.

Now we are going to show that (3.4) has a unique bounded solution vh by a contraction mapping

argument, and vh can be considered as an approximation of v by proving that an upper bound of

the error estimate ‖vh − v‖∞,Ω on some compact domain is bounded by some function depending

on h continuously.

Theorem 3.2. The problem (3.4) admits a unique bounded solution υ ∈ L∞(Rn). Moreover,

‖υ‖∞ ≤ 1.
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Proof. Denoting

BL∞(0, r) = {υ ∈ L∞(Rn) : ‖υ‖∞ ≤ r},

(Soutυ)(x) = inf
M∈Uk

{e−hυ(x+ hΦ+(x,M, h))}+ 1− e−h,

(Sintυ)(x) = sup
M∈Uk

{e−hυ(x+ hΦ−(x,M, h))}+ e−h − 1,

(Sυ)(x) =

(Soutυ)(x) for x ∈ Sc

(Sintυ)(x) for x ∈
o
S,

(3.4) can be rewritten as 
υ(x) = (Soutυ)(x) for x ∈ Sc

υ(x) = (Sintυ)(x) for x ∈
o
S

υ(x) = 0 for x ∈ ∂S
or equivalently υ(x) = (Sυ)(x) for x ∈ Sc ∪

o
S

υ(x) = 0 for x ∈ ∂S.
We will divide the proof into two main steps. We first prove that S maps BL∞(0, 1) into BL∞(0, 1)

and then that S is a contraction mapping. Then the existence of a unique solution follows from

Banach’s fixed point theorem.

Step 1: S : BL∞(0, 1)→ BL∞(0, 1). For ‖υ‖∞ ≤ 1, we observe that

(Soutυ)(x) ≤ e−h ‖υ‖∞ + 1− e−h ≤ 1,

(Soutυ)(x) ≥ −e−h ‖υ‖∞ + 1− e−h ≥ 1− 2e−h > −1.

Similarly, we also have

(Sintυ)(x) ≤ e−h ‖υ‖∞ + e−h − 1 ≤ 2e−h − 1 < 1,

(Sintυ)(x) ≥ −e−h ‖υ‖∞ + e−h − 1 ≥ −1.

Then, ‖Soutυ‖∞ ≤ 1, ‖Sintυ‖∞ ≤ 1 for υ ∈ BL∞(0, 1) and therefore ‖Sυ‖∞ ≤ 1 and thus

Sυ ∈ BL∞(0, 1).

Step 2: S is a contraction mapping. Let u, v be bounded and u = v = 0 on ∂S. Let x /∈ S, M be

a control matrix such that

(Soutυ)(x) ≥ e−hυ(x+ hΦ+(x,M, h)) + 1− e−h − ε,

for any fixed ε > 0. Then

(Soutu)(x)− (Soutυ)(x) ≤ e−h(u(x+ hΦ+(x,M, h))− υ(x+ hΦ+(x,M, h))) + ε

≤ e−h ‖u− v‖∞ + ε,

which implies

(3.5) ‖Soutu− Soutv‖∞,Sc ≤ e
−h ‖u− v‖∞ + ε.

Analogously,

(3.6) ‖Sintu− Sintv‖∞,oS ≤ e
−h ‖u− v‖∞ + ε?.
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Putting together (3.5), (3.6) and owing to u = v = 0 on ∂S, we obtain, for ε, ε? → 0+,

(3.7) ‖Su− Sv‖∞ ≤ α ‖u− v‖∞ , where α = e−h < 1,

i.e., S is a contraction mapping. Consequently, there exists a unique bounded solution of

(3.4).

�

Let us turn to the discretization in space. To this end, let Ω containing S be a compact subset

of RS . We construct a grid over Ω with space step ∆x. Set Γ = {x1, x2, ..., xN}, where N is a

number of the grid points. In order to construct a numerical algorithm for (2.12), (3.4) has to be

discretized in state variables as well. To do this, we use, for simplicity, the first order interpolation,

see [5, 4] for the details. The fully discrete problem of (2.12) reads as

(3.8)


v∆(x) = infM∈Uk{e−hI[v∆](x+ hΦ+(x,M, h))}+ 1− e−h for x ∈ Sc

v∆(x) = supM∈Uk{e−hI[v∆](x+ hΦ−(x,M, h))}+ e−h − 1 for x ∈
o
S

v∆(x) = 0 for x ∈ ∂S,

where I[v∆](x) =
N∑
1
βiv∆(xi) if provided x =

N∑
1
βixi and

N∑
1
βi = 1, βi ≥ 0.

After solving (3.8), we obtain the numerical solution over the whole domain Ω. However, if one

is interested in the solution defined on only S̄c, one can recover it by taking all of the values of

v∆(x) with x ∈ Γ ∩ S̄c the due to the construction.

3.2. Error estimate. To begin with, notice that Hölder continuity of T implies Hölder continuity

of v with the same exponent. We will employ this property of v in the next theorems. Under

Assumptions 3.1, the construction of the discrete problem, together with the results proved in

Section 2, we are now able to provide error estimates as follows.

Theorem 3.3. Under Assumptions 2.2 and 3.1,

‖vh − v‖∞,Ω ≤ C1h
q+1
l
−1 + C2h,

where v, vh are solutions of (2.12), (3.4) respectively and C1, C2 are positive constants.

Proof. In this proof, we consider two cases as follows

Case 1: let x /∈ S. If T (x) ≥ h, let u ∈ U be the minimizer of

v(x) = inf
α
{e−hv(y+(h, x, α)) + 1− e−h},

and M be an m× k control matrix such that |y+(h, x, α)− y+
h (h, x,M)| ≤ Chq+1. Then

(3.9)

vh(x)− v(x) ≤ e−h(vh(x+ hΦ+(x,M, h))− v(y+(h, x, u)))

≤ e−h
(
vh(x+ hΦ+(x,M, h))− v(x+ hΦ+(x,M, h)) + v(x+ hΦ+(x,M, h))

− v(y+(h, x, u))
)
≤ e−h ‖vh − v‖∞,Ω + C1h

q+1
l .

If T (x) < h, let ū be the minimizer of

v(x) = 1− e−h + inf
α
{e−T (x)v(y+(h, x, α))},

and M̄ be an m× k control matrix such that

|y+(h, x, α)− y+
h (h, x, M̄)| ≤ Chq+1.
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We receive

(3.10)

vh(x)− v(x) ≤ e−hvh(x+ hΦ+(x, M̄, h))− e−T (x)v(y+(h, x, ū))

≤ e−h
(
vh(x+ hΦ+(x, M̄, h))− v(x+ hΦ+(x, M̄, h)) + v(x+ hΦ+(x, M̄, h))

− v(y+(h, x, ū))
)

+ (e−h − e−T (x))v(y+(h, x, ū))

≤ e−h ‖vh − v‖∞,Ω + C1h
q+1
l + C2(h− T (x))2

≤ e−h ‖vh − v‖∞,Ω + C1h
q+1
l + C2h

2.

From (3.9), (3.10),

vh(x)− v(x) ≤ e−h ‖vh − v‖∞,Ω + C1h
q+1
l + C2h

2.

Similarly, we can prove the reverse inequality, i.e.

v(x)− vh(x) ≤ e−h ‖vh − v‖∞,Ω + C1h
q+1
l + C2h

2.

Therefore,

(3.11) ‖vh − v‖∞,Sc ≤ e
−h ‖vh − v‖∞,Ω + C1h

q+1
l + C2h

2 for x /∈ S.

Case 2: let x ∈
o
S. By applying the corresponding formulas of v(x), vh(x) with respect to x ∈

o
S and

follow the similar technique as that of Case 1, we have

(3.12) ‖vh − v‖∞,oS ≤ e
−h ‖vh − v‖∞,Ω + C1h

q+1
l + C2h

2

By putting (3.11), (3.12) together, we derive

(3.13) ‖vh − v‖∞,Ω ≤ e
−h ‖vh − v‖∞,Ω + C1h

q+1
l + C2h

2,

Consequently,

‖vh − v‖∞,Ω ≤ C1h
q+1
l
−1 + C2h.

�

Theorem 3.4. Under Assumptions 2.2 and 3.1,

‖v∆ − v‖∞,Ω ≤ C1
∆x

1
l

h
+ C2h

q+1
l
−1 + C3h,

where v, v∆ are solutions of (2.12), (3.8) respectively and C1, C2, C3 are positive constants.

Proof. We divide the proof into two cases as follows

Case 1: Consider x /∈ S ∩ Γ. If T (x) ≥ h, let u ∈ U be the minimizer of

v(x) = 1− e−h + inf
α
{e−hv(y+(h, x, α))},

and M be an m× k control matrix such that |y+(h, x, α)− y+
h (h, x,M)| ≤ Chq+1. Then

(3.14)

v∆(x)− v(x) ≤ e−h
(
I[v∆](x+ hΦ+(x,M, h))− v(y+(h, x, u))

)
≤ e−h

(
I[v∆](x+ hΦ+(x,M, h))− I[v](x+ hΦ+(x,M, h)) + I[v](x+ hΦ+(x,M, h))

− v(x+ hΦ+(x,M, h)) + v(x+ hΦ+(x,M, h))− v(y+(h, x, u))

)
≤ e−h ‖v∆ − v‖∞,Γ + C1∆x

1
l + C2h

q+1
l .
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If T (x) < h, let ū be the minimizer of

v(x) = 1− e−h + inf
α
{e−T (x)v(y+(h, x, α))},

and M̄ be an m× k control matrix such that

|y+(h, x, α)− y+
h (h, x, M̄)| ≤ Chq+1.

We have

(3.15)

v∆(x)− v(x) ≤ e−hI[v∆](x+ hΦ+(x,M, h))− e−T (x)v(y+(h, x, u))

≤ e−h
(
I[v∆](x+ hΦ+(x,M, h))− I[v](x+ hΦ+(x,M, h)) + I[v](x+ hΦ+(x,M, h))

− v(x+ hΦ+(x,M, h)) + v(x+ hΦ+(x,M, h))− v(y+(h, x, u))

)
+ (e−h − e−T (x))v(y+(h, x, ū)) ≤ e−h ‖v∆ − v‖∞,Γ + C1∆x

1
l + C2h

q+1
l + C3h

2.

From (3.14),(3.10), we obtain

v∆(x)− v(x) ≤ e−h ‖v∆ − v‖∞,Γ + C1∆x
1
l + C2h

q+1
l + C3h

2.

The proof of the reverse inequality is similar, so we dismiss it. Conclusively,

(3.16) ‖v∆ − v‖∞,Sc∪Γ ≤ e
−h ‖v∆ − v‖∞,Γ + C1∆x

1
l + C2h

q+1
l + C3h

2.

Case 2: Consider x /∈ Sc ∩ Γ. In the same way, we derive

(3.17) ‖v∆ − v‖∞,oS∪Γ
≤ e−h ‖v∆ − v‖∞,Γ + C1∆x

1
l + C2h

q+1
l + C3h

2.

(3.16),(3.17) imply

‖v∆ − v‖∞,Γ ≤ C1
∆x

1
l

h
+ C2h

q+1
l
−1 + C3h for x ∈ Γ.

Let x ∈ Ω, we have

v∆(x)− v(x) ≤ |I[v∆](x)− I[v](x)|+ |I[v](x)− v(x)| ≤ C1
∆x

1
l

h
+ C2h

q+1
l
−1 + C3h.

and, analogously,

v(x)− v∆(x) ≤ C1
∆x

1
l

h
+ C2h

q+1
l
−1 + C3h.

Finally,

‖v∆ − v‖∞,Ω ≤ C1
∆x

1
l

h
+ C2h

q+1
l
−1 + C3h.

�

4. Numerical tests

In this section we illustrate the performance of our proposed scheme compared to the classical

approach described in [5, 4]. We first consider a one-dimensional example which illustrates that the

size of the jumps in the semi-discretization vh is indeed reduced by our new approach. Afterwards

we evaluate the numerical error of the schemes for three two-dimensional examples for which the

exact solutions are known.
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4.1. A test in 1d. The first test we perform uses the simple one dimensional dynamics

(4.1) ẋ = u, u ∈ [−1, 1].

We consider this example on Ω = [−1, 1] with target S = [−0.25, 0.25]. In one space dimension, it is

possible to make the spatial step size ∆x so small that the resulting approximation very accurately

represents the semi-discretization vh. The resulting graphs in Figure 1 indicate that the size of the

jumps in the solution in the new approach (right) is only half as large as in the classical approach

(left). This observation can also be explained analytically if we look at the jump at ∂S. For the

classical approach, it is easily seen that the smallest cost vh(x) for x /∈ S is 1−e−h = h+O(h2). On

the other hand, for the new approach, we can use the fact that the system moves fastest towards

∂S for u ≡ 1 in case x < 0 and for u ≡ −1 for x > 0 and the observation that y+
h (h, x, u) = x+ hu

and y−h (h, x, u) = x−hu holds for any Runge-Kutta scheme. Thus, for each x /∈ S sufficiently close

to S, the bridge dynamic programming principles (2.15) applied to x /∈ S and (2.16) applied to

y+(h, x, u) ∈ S yield

vh(x) = e−h(e−hvh(x) + e−h − 1) + 1− e−h ⇒ vh(x) =
(1− e−h)2

1− e−2h
=
h

2
+O(h2).
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Figure 1. Example (4.1): positive part of the value function obtained by the

classical approach (left) and by the proposed new approach (right) (Ω = [−1, 1],

S = [−0.25.0.25], ∆x = 0.0002, h = 0.02).

While for this example with the chosen parameters the improvement in accuracy is almost pre-

cisely equal to h/2, in the next section we will see that for more reasonable (i.e., larger) choices of

∆x the improvement can be substantially larger, which is due to the fact that smaller jumps in vh

do not only improve the accuracy of the semi-discretization vh itself (which is what is visible here)

but also have a significant positive effect on the accuracy of the subsequent spatial discretization.

4.2. Tests in 2d. Next we consider three numerical examples to see the error behavior of the

solutions obtained by the new and the classical approaches. In all examples, we take Ω = [−2, 2]2,

S as a ball with radius r centered at the origin. For each example, the table shows the L∞ numerical

errors of the recovered numerical solutions of both approaches. Moreover, we provide two plots



A new approach to the minimum time problem 13

for the value function computed by the proposed new approach for each example. The first figure

shows the graph of the value function on the whole set Ω, while the second shows the graph on

Ω \ S. The first example uses the dynamics

(4.2) ẋ1 = u1, ẋ2 = u2, (u1, u2) ∈ [−1, 1]2.

Table 1: Comparison of error estimates for Example (4.2) (r = 0.5)

∆x h New approach Classical approach

0.02 0.01 0.0045 0.0161

0.02 0.025 0.0076 0.0243

0.02 0.05 0.0126 0.0484

0.016 0.01 0.0039 0.0126

0.016 0.025 0.0040 0.0246

0.016 0.05 0.0084 0.0487

Figure 2. Example (4.2): value function on Ω obtained by the new approach (ra-

dius of the target r = 0.25, h = 0.025, ∆x = 0.01, 3rd order Runge-Kutta scheme).

The dynamics of the second example is

(4.3) ẋ1 = −x2 + x1 u, ẋ2 = x1 + x2 u, u ∈ [−1, 1].

It is easy to check that the Petrov condition holds for the first and second examples, thus T is

Lipschitz continuous.
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Figure 3. Example (4.2): value function on Ω \ S obtained by the new approach

(radius of the target r = 0.25, h = 0.025, ∆x = 0.01, 3rd order Runge-Kutta

scheme).

Table 2: Comparison of error estimates for Example (4.3) (r = 0.5)

∆x h New approach Classical approach

0.02 0.01 0.0089 0.0357

0.02 0.025 0.0059 0.0364

0.02 0.05 0.0113 0.0480

0.016 0.01 0.0077 0.0275

0.016 0.025 0.0068 0.0290

0.016 0.05 0.0085 0.0485

Figure 4. Example (4.3): value function on Ω obtained by the new approach (ra-

dius of the target r = 0.25, h = 0.01, ∆x = 0.01, 3rd order Runge-Kutta scheme).

The last example is the classical double integrator, i.e.

(4.4) ẍ = u, u ∈ [−1, 1].

T is Hölder continuous (see [10]). Therefore, Assumptions 2.2 are satisfied and the new approach

works for all the examples.



A new approach to the minimum time problem 15

Figure 5. Example (4.3): value function on Ω \ S obtained by the new approach

(radius of the target r = 0.25, h = 0.01, ∆x = 0.01, 3rd order Runge-Kutta scheme).

Table 3: Comparison of error estimates for Example (4.4) (r = 0.1)

∆x h New approach Classical approach

0.016 0.015 0.0761 0.0766

0.016 0.025 0.0760 0.0795

0.01 0.015 0.1714 0.1737

0.01 0.025 0.1758 0.1789

0.008 0.015 0.0700 0.0713

0.008 0.025 0.0711 0.0737

Figure 6. Example (4.4): value function on Ω obtained by the new approach (ra-

dius of the target r = 0.1, ∆x = 0.016, h = 0.01, 3rd order Runge-Kutta scheme).

In conclusion, we observe that in the first two examples the numerical errors obtained by means

of the new approach are reduced significantly in comparison with the classical one. This is due to
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Figure 7. Example (4.4): value function on Ω \ S obtained by the new approach

(radius of the target r = 0.1, ∆x = 0.016, h = 0.01, 3rd order Runge-Kutta scheme).

the fact that in this examples the Petrov condition is fulfilled, hence the optimal value functions

are Lipschitz. This implies that the discretization error is of the order O(h) which is exactly the

order of the size of the jumps. Consequently the jumps in vh are a dominant error source and their

reduction has a visible effect on the error. In the last example the situation is different since v is only

Hölder continuous along a curve extending from the target S to the boundary of Ω, which is also

the place where the maximal errors are located. Due to the non-Lipschitzness, in this example, the

order of the error is larger than O(h). Hence, the reduction of the jumps which yields a reduction

of the error of order O(h) is hardly visible here because it is dominated by the larger error along

the curve where the solution is merely Hölder continuous.
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