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1 Introduction

The lack of closed form solutions of dynamic decision models with optimizing agents has
generated a large number of computational methods to solve such models. A detailed
discussion of a variety of numerical methods ad accuracy tests are provided in Santos and
Vigo-Aguiar (1998), Judd (1998), Juillard and Villemot (2011) and Grüne and Semmler
(2004). The latter have proposed Dynamic Programming (DP), with grid refinement, cf.
Grüne (1997), to solve a family of continuous and discrete time dynamic models with
optimizing agents. DP provides the value function and the control variable in feedback
form, even for rather complex problems.

In DP a global solution to the optimal control problem is found by first computing an
approximation to the optimal value V and then computing the optimal control from V ,
see Grüne and Semmler (2004). Yet, since DP computes the value and policy function at
each point of a grid of the state space, it has the disadvantage that even with an adaptive
choice of the grid its numerical effort typically grows exponentially with the dimension of
the state variable. Hence, already for moderate state dimensions it may be impossible to
compute a solution with reasonable accuracy.

This paper illustrates how Nonlinear Model Predictive Control (NMPC) can be used as
an alternative approach to solve dynamic decision models in economics. NMPC is a well
known method in control engineering which is frequently used in industrial practice, partic-
ularly in chemical process engineering. Traditionally, NMPC is applied to optimal feedback
stabilization problems, see, e.g., Rawlings and Mayne (2009) or Grüne and Pannek (2011)
and the references therein. Recently, however, the application of NMPC to more gen-
eral optimal control problems has attracted considerable attention, see, e.g., Amrit et al.
(2011); Angeli et al. (2009); Angeli and Rawlings (2010); Diehl et al. (2011); Grüne (2013);
Grüne and Stieler (2014) for undiscounted optimal control problems. Similar to DP, NMPC
can solve nonlinear dynamic decision problems globally without having to resort to local
approximations by linearization techniques.

However, unlike DP the solution is not found on a grid in state space. Rather, an infi-
nite horizon trajectory is synthesized by putting together pieces of finite horizon optimal
trajectories, which implies that the numerical effort of the approach scales much more
moderately with the state dimension. This approach, termed receding horizon control in
control engineering, is in fact not unknown in economics. In the economic literature, it is
known as sliding or rolling planning, see, e.g., Kaganovich (1985) and the references therein.
However, in the economic context we are only aware of applications of this approach to lin-
ear models. The contribution of this paper is to demonstrate that NMPC also applies to
nonlinear problems in dynamic decision making in economics. To this end, we establish a
convergence result for discounted optimal control problems and illustrate its performance
by applying it to several economic decision models.

Assuming that a reliable numerical solver for finite horizon optimal control problems is
available4, the main source of errors in NMPC is the difference between the optimal trajec-
tories of finite and infinite horizon optimal control problems. In Section 3, we show that for
discounted optimal control problems with small discount factor and for problems satisfying

4For a discussion of this aspect see Section 7.
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the so called turnpike property, cf. McKenzie (1986), for sufficiently long finite horizons,
NMPC yields approximately infinite horizon optimal trajectories. Unlike other numerical
errors, like, e.g., interpolation errors in DP, this source of errors allows for a precise eco-
nomic interpretation. In fact, the mismatch between the true solution of an infinite horizon
decision problem and its NMPC solution is due to the fact that the decision for the control
to be implemented at the next time step is taken by looking at the problem on a truncated
time horizon, i.e., with a particular form of decision making under limited information.

Sims (2005, 2006), in a series of research papers, showed that agents make decisions under
limited information: The information is either not available or the agents respond impre-
cisely to the available information. In this context, we can interpret the gap between the
infinite horizon solution and the NMPC solution as induced by the agents’ decision making
using only limited information. As such, the abstract convergence results from Section 3
have a self-evident economic interpretation: if the agents information and information pro-
cessing capacity increases this is likely to approximate better the infinite horizon decision
making5, which is reflected, e.g., in the examples in Sections 4.1 and 5.1 below. One might
even use NMPC to systematically study the effects of decision making for this particular
form of rational inattention.

Though we do not elaborate further on the latter aspect in this paper, we would like to make
some remarks on the finiteness of the decision horizon. The argument could be made that
if the agents come close to the final period they will sell all their assets which will impact
the last period’s outcome. Yet, the way the NMPC solution procedure is set up, only the
first decision step is implemented. If the decision horizon is N , then one is, in the closed
loop solution, always N − 1 periods away from the final decision. Hence, one never sees
the effects which appear at the end of the decision horizon. This can be formalized using
the turnpike property, which then allows to prove a formal convergence result, see Section
3. Under the appropriate conditions, this property holds without using the salvage value
of the finite horizon model. If, however, the decision horizon is short it might be beneficial
to take into account the salvage value, provided it can be determined in a reasonable way.
Likewise, information about optimal steady states may be incorporated into the NMPC
algorithm via terminal constraints which may be useful for short decision horizons. Yet, as
the decision horizon becomes larger, typically there is no need for taking the salvage value
or information about steady state into account since NMPC already approximates well the
infinite horizon decision model. One of the issues will thus be how large the decision horizon
N needs to be, see Sections 3 as well as the discussion for the examples in Sections 4.1 and
5.1.

In this paper, we evaluate the performance of NMPC analytically and via computer sim-
ulations for a selection of dynamic decision models in economics. Particularly, we extend
the economic MPC results from the literature by considering discounted optimal control
problems, both analytically and by studying a number of examples by means of numerical
simulations. In order to study the accuracy of NMPC for approximating discounted infinite
horizon problems, we first want to test our algorithm by studying the well-known basic
growth model of Brock and Mirman (1972) type, for which the exact solution is known,

5Sims notes “. . . the capacity-constrained agent’s behavior approximates that of a fully optimizing agent,
but with a tight capacity constraint his behavior will be much more weakly correlated with external infor-
mation than the behavior of a fully optimizing agent would be.” (Sims; 2006, p. 158)
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and a recent DSGE extension of it. To study the Brock et al model allows us to judge the
accuracy of our numerical method for a model with short decision horizon, and to explore
what the new method can contribute.

As mentioned above, there are, in the economic literature, more complicated dynamic
models with optimizing agents which have been a challenge to commonly used numerical
techniques. These are models with multiple equilibria, regime changes in the dynamics,
models for tracking the dynamics of the state variables over a finite horizon and dynamic
models with parameter uncertainties and learning6. Examples of such challenges to numer-
ical solution methods can be found in the literature on the dynamic decision problems of
the firm,7 economic growth,8 macrodynamics of DSGE type,9 in models with exhaustible
resources and in ecological management problems.10 Our paper here studies some of the
proto-type models from some of those areas and applies the proposed NMPC to find the
global solution.

The remainder of the paper is organized as follows. Section 2 describes the basic strategy of
NMPC. In Section 3 we provide convergence results for NMPC applied to infinite horizon
discounted optimal control problems. Section 4 solves one dimensional control problems
with one and two decision variables. Here we study the basic growth model for which the
exact solution is known, so that we address the accuracy problem. We also study a DSGE
extension of it. In Section 5 we then study two dimensional dynamic optimization models,
specifically a model with two domains of attraction and a threshold, and another one where
the paths of the state variables need to be tracked. In Section 6 we apply NMPC to a
higher dimensional problem, by discussing a five dimensional integrated assessment model
of growth and climate change. Section 7 gives details of the numerical implementation and
discusses some known pitfalls of the NMPC method. Section 8 provides an outlook how
NMPC can be used for stochastic problems, and Section 9 concludes the paper.

2 Nonlinear model predictive control

In this section we describe the basic principles of the NMPC method. Further implemen-
tational details are discussed in Section 6.

2.1 Problem formulation

We consider infinite horizon discounted optimal control problems, either given in continuous
time t ∈ R+

0 by

V (x0) := max
u∈U

ˆ ∞
0

e−δtg(x(t), u(t))dt (2.1)

6For the latter see Bréchet et al. (2012)
7See Feichtinger et al. (2001) and Haunschmied et al. (2003).
8In the latter type of models a convex-concave production function arises which leads to thresholds

separating paths to low per capita income (poor) countries and high per capita income (rich) countries, see
Skiba (1978) and Azariadis and Drazen (1990).

9See Farmer et al. (2009)
10See in particular Brock and Starrett (1999)
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where
d

dt
x(t) = f(x(t), u(t)), x(0) = x0 ∈ X ⊆ Rn (2.2)

or in discrete time t ∈ N0 given by

V (x0) := max
u∈Ud

∞∑
k=0

βkg(x(k), u(k)) (2.3)

where
x(k + 1) = ϕ(x(k), u(k)), x(0) = x0 ∈ X ⊆ Rn (2.4)

and U and Ud are appropriate sets of control functions and control sequences, respectively,
and X ⊆ Rn is the part of the state space we are interested in.

NMPC as described in the sequel applies to discrete time problems, hence the continuous
time problem needs to be discretized in time in order to apply the method11. To this end,
the continuous time optimal control problem (2.1)–(2.2) is replaced by a first order discrete
time approximation given by

Vh(x0) := max
u∈Ud

Jh(x0, u), Jh(x, u) :=

∞∑
k=0

βkgh(x̃(k), u(k)) (2.5)

where β = e−δh, gh(x, u) = hg(x, u) and x̃(k) is defined by the discrete dynamics

x̃(k + 1) = ϕh(x̃(k), u(k)), x̃(0) = x0, (2.6)

where h > 0 is the discretization time step and ϕh is a numerical approximation to the
continuous time solution of (2.2) at time h. If the original problem is of type (2.3)–(2.4),
then it is already in the form (2.5)–(2.6) with h = 1 and x̃(k) = x(k). Since in the remainder
of this section we exclusively deal with discrete time problems, in order to simplify the
notation we will omit the indices h and d and the tilde on x̃(k). In exchange, we will
use indices ∞ and N in order to indicate optimization on infinite and finite horizons,
respectively.

2.2 The idea of NMPC

The idea of NMPC now lies in replacing the maximization of the discrete time infinite
horizon functional

max
u∈U

J∞(x(0), u) where J∞(x(0), u) :=

∞∑
k=0

βkg(x(k), u(k)) (2.7)

from (2.3) by the iterative maximization of finite horizon functionals

max
u∈U

JN (x(0), u) where JN (x(0), u) :=
N−1∑
k=0

βkg(x(k), u(k)) (2.8)

11This approach is similar to the first step of the semi-Lagrangian discretization technique for the DP
method going back to Capuzzo Dolcetta (1983) and Falcone (1987) and also described in Grüne and Semmler
(2004).
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for a truncated finite horizon N ∈ N with given initial value x(0) ∈ X ⊆ Rn and xi
generated by the usual dynamics x(k + 1) = ϕ(x(k), u(k)) for k = 0, 1, 2, . . . , N − 1. Note
that in the standard case, neither β nor g nor ϕ changes when passing from (2.7) to (2.8),
only the optimization horizon is truncated, though changes can be allowed for in extensions,
see the discussion in the second past paragraph of Section 3.3 and the Example in Section
4.2, below.

Problems of type (2.8) can be efficiently solved numerically by converting them into a
static nonlinear program (NLP) and solving them by NLP solvers, implementation details
are discussed in Section 7, below.

Given an initial value xN (0), NMPC now generates solutions xN (i) on an infinite time
horizon by iteratively solving (2.8) as follows:

(1) for i = 0, 1, 2, 3, . . .
(2) solve (2.8) with initial value x(0) := xN (i) and denote the

resulting optimal control sequence by u∗N,i(·)
(3) set uN (i) := u∗N,i(0) and xN (i+ 1) := ϕ(xN (i), uN (i))
(4) end of for-loop

This algorithm yields an infinite trajectory xN (i), i = 0, 1, 2, 3, . . . whose control sequence
uN (i) consists of all the first elements u∗N,i(0) of the optimal control sequences for the
finite horizon subproblems (2.8). In what follows, we refer to the finite horizon optimal
trajectories corresponding to u∗N,i(·) computed in Step (2) as the open loop trajectories
while the trajectory xN (i) computed in Step (3) will be referred to as the closed loop
trajectory.

3 Convergence analysis

Results which show that the value of an infinite horizon performance criterion evaluated
along an NMPC solution approximates the infinite horizon optimal value for sufficiently
large horizon have been obtained for various types of undiscounted optimal control prob-
lems. We refer to, e.g., Amrit et al. (2011); Angeli et al. (2009); Angeli and Rawlings (2010);
Diehl et al. (2011) for averaged performance criteria, Grüne (2013); Grüne and Stieler (2014)
for non-averaged criteria and Sections 5.4 and 6.5 of Grüne and Pannek (2011) for stabilizing
problems. In this section we investigate the infinite horizon performance of the trajectories
generated by the NMPC trajectories for discounted optimal control problems. To this end,
we consider the discounted infinite horizon functional

Jcl∞(x, µN ) :=

∞∑
k=0

βkg(xµN (k, x), µN (xµN (k, x)))

evaluated along the closed loop MPC trajectory. Our goal is to show that this value is close
to the optimal value

V∞(x) := max
u∈U

J∞(x, u)

under suitable conditions and that the difference between Jcl∞(x, µN ) and V∞(x) converges
to 0 as N → ∞. For this analysis, we will also utilize the finite horizon optimal value
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function
VN (x) := max

u∈U
JN (x, u).

An important tool in the sequel is the dynamic programming principle, which states that

VN (x) = JK(x, u∗N ) + βKVN−K(xu∗N (K,x))

in the finite horizon case for all K ≤ N and

V∞(x) = JK(x, u
∗
∞) + βKV∞(xu∗∞(K,x))

in the infinite horizon case for all K ∈ N. Here u∗N and u∗∞ denote the finite and infinite
horizon optimal control sequences for initial value x.

3.1 The case of small discount factors

If the discount factor β ∈ (0, 1) is small, i.e., not too close to 1, then it is rather easy to
establish a convergence estimate for MPC. Assuming that VN and V∞ are bounded by a
constant M on X, a little computation using the dynamic programming principle reveals
that

|VN (x)− V∞(x)| ≤ βNM

for all x ∈ X. Using the dynamic programming principle once more then yields

g(x, µN (x)) = VN (x)− βVN−1(f(x, µN (x)) = V∞(x)− βV∞(f(x, µN (x)) +R

where the remainder term R satisfies |R| ≤ 2βNM . From this we obtain

Jcl∞(x, µN ) =
∞∑
k=0

βkg(xµN (k, x), µN (xµN (k, x)))

≤
∞∑
k=0

βk
(
V∞(xµN (k, x))− βV∞(xµN (k + 1, x)) + 2βNM

)
= V∞(x) +

2βNM

1− β

due to the boundedness of V∞. Since 2βN → 0 as N →∞, this shows the desired estimate.

3.2 The case of discount factors close to 1

While the reasoning of the previous section also applies if β is close to 1, the convergence
of βN → 0 will be very slow and the resulting estimate will be overly pessimistic. For
instance, in the example in Section 4.1 for N = 10 we obtain an accuracy of about 10−8.
However, since β = 0.95 we have β10 ≈ 0.6, i.e., the factor in the error term is by many
orders of magnitude larger than the actual error of NMPC and does by no means explain
its almost perfectly optimal performance.

For this reason, in this section we provide an alternative convergence proof which relies
on the turnpike property rather than on the size of the discount factor. For stating the
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respective assumption, we need to introduce some notation. As above, u∗∞ and u∗N denote
the infinite and finite horizon optimal control sequences, respectively. A point x? ∈ X is
called (infinite horizon) optimal equilibrium, if xu∗∞(k, x

?) = x? for all k ∈ N. A function
α : R+

0 → R+
0 is of class K∞ if it is continuous, unbounded and strictly increasing with

α(0) = 0. Moreover, as usual we denote the open ball around x ∈ X with radius ε > 0 as
Bε(x).
Now we make the following assumptions:

Assumption 3.1 There is an optimal equilibrium x? ∈ X with corresponding control
value u? ∈ U satisfying f(x?, u?) = x? and the following properties.

(i) x? is asymptotically stable for the infinite horizon problem in the following sense:
there exists ρ ∈ L such that the optimal trajectories xu∗∞(k, x), x ∈ X satisfy

‖xu∗∞(k, x)− x
?‖ ≤ ρ(k) for all k ∈ N.

(ii) The finite horizon problems have the turnpike property at x? in the following sense:
for each c ∈ (0, 1) there exists σc ∈ L such that for each optimal trajectory xu∗N (k, x),
x ∈ X and all N ∈ N there is a set Q(x,N, c) ⊆ {0, . . . , N} with #Q(x,N, c) ≥ cN
and

‖xu∗N (k, x)− x
?‖ ≤ σc(N) for all k ∈ Q(x,N, c).

(iii) The optimal value functions VN and V∞ are continuous at x? in the following uniform
way: there is an open ball Bε(x?), ε > 0, around x? and α ∈ K∞ such that for all
x ∈ Bε(x?) and all N ∈ N ∪ {∞} the inequality

|VN (x)− VN (x?)| ≤ α(‖x− x?‖)

holds.

We remark that the fact that the bounds in (i) and (ii) are assumed to be independent of
x may be restrictive if X is unbounded. However, since the interesting dynamics usually
takes place in a bounded set X, we decided to make this assumption which considerably
simplifies the subsequent arguments. A discussion of the turnpike property (ii) is provided
in Section 3.3.

Lemma 3.2 (i) If Assumption 3.1 (i) and (iii) hold, then the equation

V∞(x) = JK(x, u∗∞) + βKV∞(x?) +R1(x,K) (3.9)

holds with |R1(x,K)| ≤ α(ρ(K)) for all sufficiently large K ∈ N and all x ∈ X.

(ii) For any c ∈ (0, 1), if Assumption 3.1 (ii) and (iii) hold, then the equation

VN (x) = JK(x, u∗N ) + βKVN−K(x?) +R2(x,K,N) (3.10)

holds with |R2(x,K,N)| ≤ α(σc(N)) for all sufficiently large N , all x ∈ X and all K ∈
Q(x,N, c).
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Proof: (i) The dynamic programming principle yields

V∞(x) = JK(x, u
∗
∞) + βKV∞(xu∗∞(K,x)).

Hence, (3.9) holds with R1(x,K) = βKV∞(xu∗∞(K,x))−β
KV∞(x?). Now choose K ∈ N so

large that ρ(K) < ε holds for ρ from Assumption 3.1 (i) and ε from Assumption 3.1 (iii).
Then we obtain |R1(x,K)| ≤ βKα(‖xu∗∞(K,x)− x

?‖) ≤ α(ρ(K)) and thus the assertion.

(ii) In the finite horizon case, the dynamic programming principle yields

VN (x) = JK(x, u∗N ) + βKVN−K(xu∗N (K,x)).

Hence, (3.10) holds with R2(x,K,N) = βKVN−K(xu∗N (K,x))− β
KVN−K(x?). Now choose

N ∈ N so large that σc(N) < ε holds for σc from Assumption 3.1 (ii) and ε from Assumption
3.1 (iii). For any K ∈ Q(x,N, c) this implies |R2(x,K,N)| ≤ βKα(‖xu∗N (K,x) − x

?‖) ≤
α(σc(N)) and thus the assertion.

Lemma 3.3 If Assumption 3.1 (i)–(iii) holds, then for any c ∈ (0, 1) the equation

JK(x, u
∗
∞) = JK(x, u∗N ) +R3(x,K,N) (3.11)

holds with |R3(x,K,N)| ≤ α(ρ(K)) + α(σc(N)) for all sufficiently large N , all x ∈ X and
all sufficiently large K ∈ Q(x,N, c).

Proof: The finite horizon dynamic programming principle implies that u = u∗N minimizes
the expression JK(x, u) + βKVN−K(xu(K,x)). Together with the error term R2 defined in
the proof of Lemma 3.2 (ii) and R̃1(x,K,N) = βKVN−K(xu∗∞(K,x)) − β

KVN−K(x?) this
yields

JK(x, u∗N ) + βKVN−K(x
?) = JK(x, u∗N ) + βKVN−K(xu∗N (K,x))−R2(x,K,N)

≤ JK(x, u∗∞) + βKVN−K(xu∗∞(K,x))−R2(x,K,N)

= JK(x, u∗∞) + βKVN−K(x
?)−R2(x,K,N) + R̃1(x,K,N).

Similar to the proof of Lemma 3.2 (i) one sees that |R̃1(x,K,N)| ≤ α(ρ(K)) for all suffi-
ciently large K.

Conversely, the infinite horizon dynamic programming principle implies that u∗∞ minimizes
the expression JK(x, u∗∞)+ βKV∞(xu∗∞(K,x)). Using the error terms R1 from the proof of
Lemma 3.2 (i) and R̃2(x,K,N) = βKV∞(xu∗N (K,x))− β

KV∞(x?) we obtain

JK(x, u∗∞) + βKV∞(x?) = JK(x, u∗∞) + βKV∞(xu∗∞(K,x))−R1(x,K)

≤ JK(x, u∗N ) + βKV∞(xu∗N (K,x))−R1(x,K)

= JK(x, u∗N ) + βKV∞(x?)−R1(x,K) + R̃2(x,K,N).

As in the proof of Lemma 3.2 (ii) one obtains |R̃2(x,K,N)| ≤ α(σc(N)). Together with
the estimates for R1 and R2 from Lemma 3.2 this yields

|R3(x,K,N)| = |JK(x, u∗∞)− JK(x, u∗N )|
≤ max{|R1(x,K)|+ |R̃2(x,K,N)|, |R̃1(x,K,N)|+ |R2(x,K,N)|}
≤ α(ρ(K)) + α(σc(N)).
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Theorem 3.4 If Assumption 3.1 (i)–(iii) holds and V∞ is bounded on X, then the inequal-
ity

Jcl∞(x, µN ) ≤ V∞(x) +
δ(N)

1− β
holds for all sufficiently large N ∈ N with

δ(N) = (2 + 2β)α(ρ(dN/2e − 2)) + 2α(σ1/2(N − 1)).

Proof: Picking x ∈ X and abbreviating x+ := f(x, µN (x)), the dynamic programming
principle and the definition of µN yield

g(x, µN (x)) = VN (x)− βVN−1(x+).

Moreover, again by the dynamic programming principle, the optimal control u∗,+N−1 for
x+ coincides with u∗N (· + 1). Thus, for any K ∈ Q(x,N, c) with K ≥ 1 we obtain12

K − 1 ∈ Q(x+, N − 1, c) and R2(x,K,N) = R2(x
+,K − 1, N − 1). Using (3.10) for N with

x and K and with N − 1, x+ and K − 1, respectively, yields

VN (x)− βVN−1(x+)
= JK(x, u∗N ) + βKVN−K(x?) +R2(x,K,N)

− βJK−1(x+, u∗N−1)− ββK−1VN−1−(K−1)(x?)− βR2(x
+,K − 1, N − 1)

= JK(x, u∗N )− βJK−1(x+, u∗N−1) + (1− β)R2(x,K,N).

A similar estimate using (3.9) yields

V∞(x)− βV∞(x+) = JK(x, u∗∞)− βJK−1(x+, u∗,+∞ ) +R1(x,K)− βR1(x
+,K − 1).

Note that here we cannot identify the two R1-terms because x+ is computed using u∗N (0)
and not u∗∞(0), hence u∞(·+ 1) does in general not coincide with the optimal control u∗,+∞
for x+.

Putting the three equations together and using Lemma 3.3 yields

g(x, µN (x)) = V∞(x)− βV∞(x+) +R4(x,K,N).

with

R4(x,K,N) = (1− β)R2(x,K,N)−R3(x,K,N) + βR3(x
+,K − 1, N − 1)

−R1(x,K) + βR1(x
+,K − 1).

From the bounds on the individual Ri-terms we obtain |R4(x,K,N)| ≤ δ(N), observing
that for c = 1/2 the set Q(x,N, 1/2) contains at least one K ≥ dN/2e− 1 which we choose
for obtaining the inequality for R4. From this we obtain

Jcl∞(x, µN ) =
∞∑
k=0

βkg(xµN (k, x), µN (xµN (k, x)))

≤
∞∑
k=0

βk
(
V∞(xµN (k, x))− βV∞(xµN (k + 1, x)) + δ(N)

)
= V∞(x) +

δ(N)

1− β
due to the boundedness of V∞. This proves the claim.

12Here we assume without loss of generality that the sets Q are always chosen maximally.
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3.3 The turnpike property

Theorem 3.4 heavily relies on the turnpike property defined in Assumption 3.1 (ii). By this
property it is guaranteed that finite-horizon optimal trajectories are close to the optimal
equilibrium x? for a minimum number of time instants. The distance between the trajectory
and x? at these time instants reduces as N increases. The typical behaviour of an optimal
trajectory is as follows: The trajectory approaches the optimal equilibrium (the turnpike),
stays there for some time and turns away in the end. For infinite-horizon optimal trajectories
(not considered here) the turnpike property ensures convergence to the optimal equilibrium.

Turnpike properties do not only play an important role in our analysis (see also Grüne
(2013) and Grüne and Stieler (2014)), but are indeed a well known and investigated research
area in mathematical and economic literature since the works of von Neumann (1945) and
Dorfman et al. (1987). The latter originally appeared in 1958 and was eponymous for the
phenomenon. Turnpike properties have been studied for different types of models and in
different settings, such as discrete-time and continuous-time, discounted and undiscounted,
finite- and infinite-horizon, stochastic and deterministic models.

In economic literature one of the main reasons for establishing turnpike properties and
searching for sufficient conditions for them to hold is to provide insights to specific models
and to guarantee a certain behaviour of the optimal trajectories/solutions. Besides those
mentioned above, one of the dominant figures in economic turnpike theory was Lionel W.
McKenzie, see, e.g., McKenzie (1986).

In mathematical literature, turnpike phenomena are investigated rather for different types of
optimal control problems than for specific models, see e.g., Zaslavski (2006) and Zaslavski
(2014) for a collection of turnpike theorems or Damm et al. (2014) for an exponential
turnpike theorem (i.e. σc from Assumption 3.1 (ii) is exponentially decaying in N). As in
economic literature one is interested in the behaviour of optimal solutions. Beyond this,
turnpike properties are a key ingredient to establish performance estimates and stability of
MPC closed-loop solutions, see Grüne (2013), Grüne and Stieler (2014) and Theorem 3.4.

There are many references on sufficient conditions for turnpike properties in case of dis-
counted optimal control problems. For example in Scheinkman (1976) the turnpike prop-
erty is proved assuming that the discount factor β is sufficiently close to 1. In Brock and
Scheinkman (1976) an explicit bound for the discount factor or, more precisely, the discount
rate in the considered continuous time model, is given. In (Zaslavski; 2014, Section 2.25)
we can find a similar assumption in Theorem 2.49 ff.: It is required that for some arbi-
trary discounting sequence the discounting factors do not change too fast. In our setting
this is equivalent to assuming that β is close to 1. The fact that turnpike results in the
literature are primarily for discount factors β close to 1 does not affect their usefulness for
our purpose. On the contrary, this is precisely the situation in which we need them for our
convergence analysis.

Beyond our theoretical analysis, numerical results indicate that the performance of NMPC
may indeed deteriorate if the turnpike phenomenon does not occur for sufficiently small N .
This is due to the fact that the numerical effort for solving the finite horizon optimal control
problem (2.8) grows with N and for too large horizons N optimization algorithms may fail
to deliver reliable solutions due to numerical problems. Thus, if the optimal trajectories
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only exhibit the turnpike property for N for which the problem is numerically infeasible,
NMPC may not produce near optimal solutions. This is, for instance, what happens in the
example in Section 4.2. Fortunately, there is a remedy for this problem, by using the infinite
horizon optimal steady state x? as terminal constraint when solving (2.3), as proposed in
Angeli et al. (2009); Angeli and Rawlings (2010); Diehl et al. (2011). More precisely, in
each iteration we perform the maximization in (2.3) only over those control sequences ui(·)
for which x(N) = x? holds. Proceeding this way forces the trajectories to exhibit the
turnpike phenomenon for smaller horizons N and can thus improve performance. We note
that in this paper such terminal constraints were only used in the example in Section 4.2;
all other computations in this paper were performed without using terminal (steady state)
constraints when solving (2.3). Further economic examples in which terminal constraints
turn out to be beneficial can be found in Bréchet et al. (2012).

Finally, it would be very interesting to extend the analysis from the previous section to
problems which exhibit a more complicated limit dynamics than optimal equilibria. The
effects which arise in this case are, however, not yet fully understood and will be subject of
future research.

4 One dimensional examples

In this section we describe the application of our NMPC algorithm to a selection of one
dimensional optimal control problems. For some one dimensional models the use of sophis-
ticated numerical algorithms is not really necessary, because these problems can usually
be solved with high precision in a reasonable amount of time with numerous procedures.
Nevertheless, such (numerically) simple problems are important for verifying the accuracy
of numerical procedures. Our first example will illustrate this, because for this problem the
exact solution is known, hence the accuracy of the respective methods can be compared
directly. For the subsequent examples the exact solution is not known, hence numerical
methods are necessary for their analysis.

4.1 The basic growth model

We start our numerical investigations with a basic growth model in discrete time, which
goes back to Brock and Mirman (1972) and has triggered extensive research in the RBC
(real business cycle) literature.13 This model has also been used as a test example for
many numerical algorithms, see, e.g., Santos and Vigo-Aguiar (1995, 1998, Sect. 4) and
Grüne and Semmler (2004). The problem is a discrete time maximization problem of type
(2.3)–(2.4) with the payoff function and dynamics given by

g(x, u) = ln(Axα − u) and x(t+ 1) = u(t).

Hereby, Axα is a production function with constants A > 0, 0 < α < 1, capital stock
x and control variable u. The difference between output and next period’s capital stock
(given by u) is consumption. The exact solution to this problem is known (see Santos and

13For a stochastic version of this basic growth model, see Section 7.
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Vigo-Aguiar (1998)) and is given by

V (x) = B + C lnx, with C =
α

1− αβ
and B =

ln((1− αβ)A) + βα
1−βα ln(αβA)

1− β
.

The unique optimal equilibrium for this example is given by x? = 1/ α−1
√
βαA and as

we specify parameters A = 5, α = 0.34 and β = 0.95 for our numerical tests, we have
x? ≈ 2.067.
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Figure 4.1: Closed loop trajectory (solid) and open loop trajectories (dashed) for the growth
model forN = 5 and x0 = 5 (left) and V (x0)−J∞(x0, µN ) for x0 = 5, N = 2, . . . , 15 (right),
with µN the NMPC controller for time horizon N .

We expect that the NMPC algorithm computes closed loop solutions such that the system
is steered into a neighborhood of the optimal equilibrium, and this is indeed the observed
behavior in Figure 4.1 (left; the closed loop solution is depicted as solid line with circles).14

Moreover, we see that the open loop trajectories (shown as dashed lines) exhibit the turnpike
property (cf. Section 3.3 and also Figure 7.11).

The second interesting aspect to explore is whether the NMPC closed loop trajectory max-
imizes the given objective function. In Figure 4.1 (right) we compare the exact optimal
value V (x0) to the return generated by the NMPC algorithm with different N for initial
value x(0) = x0 = 5, i.e. we compute

V (x0)− J∞(x0, µN ), J∞(x0, µN ) :=

∞∑
t=0

βtg(x(t), µN (x(t))),

where µN denotes the NMPC controller for horizon N . Figure 4.1 shows, that the dif-
ference V (x0) − J∞(x0, µN ) converges to zero exponentially fast for N → ∞ and hence,
for increasing N , the NMPC generated return J∞(x0, µN ) approximates the optimal value
V (x0) arbitrarily well.

14The MATLAB code for this example can be found on the webpage
http://num.math.uni-bayreuth.de/de/publications/2015/gruene_semmler_stieler_using_NMPC_2015
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4.2 The basic DSGE model

Next we describe an extension of the basic growth model of section 3.1, where we now
introduce also a labor choice in the preferences, as is commonly done in DSGE (dynamic
stochastic general equilibrium) models. As to the formulation of preferences we follow
Aruoba et al. (2006) and Parra-Alvarez (2012) but we do not pursue the strategy of lin-
earization about the steady state.15 We consider the non-stochastic variant of it which has
one state variable and two control variables, and attempt to find global solutions.

The model, in continuous time form, looks as follows

g(x, u) =

(
u1(1− u2)ψ

)(1−γ)
1− γ

with dynamics
d

dt
x(t) = (r(t)− ρ)x(t) + w(t)u2(t)− u1(t) .

with u1 consumption, u2 labor effort, x as capital stock, r(t) = αAx(t)α−1u2(t)
1−α the

return on capital, w(t) = (1 − α)Ax(t)αu2(t)−α the wage rate, derived from a production
function such as Ax(t)αu2(t)1−α.

The following are standard parameters for this kind of model, see Aruoba et al. (2006) and
Parra-Alvarez (2012). We set A = 1, α = 0.4, ρ = 0.0196, γ = 3.85 and ψ = 1.8011. The
discount rate for the dynamic decision problem is taken as δ = 0.010584. The steady state
values are16 x? ≈ 23.03, u?1 ≈ 1.74, u?2 ≈ 0.31.

In this example it turns out that for reasonable values of N the NMPC algorithm is not
able to find the optimal steady state x? (cf. the discussion in Section 3.3). As a remedy,
we use x? = 23.03 as a terminal constraint for the open loop optimization, i.e., we solve
(2.8) under the additional constraint x(N) = x?. In Figure 4.2 the resulting closed loop
solution and open loop solutions are shown. Choosing x? as a terminal constraint can lead
to wrong or infeasible solutions in case x? is not asymptotically stable. Since our model and
parameters are defined as in Parra-Alvarez (2012, Proposition 3.2), optimal consumption
and optimal labor effort in feedback form are known. The resulting differential equation
has two equilibria, x = 0 and x = x?. Our numerical experiments show that the dynamics
converge to x? for x(0) > 0, indicating asymptotic stability of x?. Hence, using this
equilibrium as a terminal constraint and thus forcing the solution to converge to x? is
justified.

We remark that this example is the only one in this paper where terminal constraints were
imposed. For all the other examples NMPC without terminal constraints turned out to be

15The numerical solution techniques as they are implemented by DYNARE use mostly local techniques
where an approximation is taken around the deterministic steady state. DYNARE can also solve dynamic
decision models globally by using the deterministic steady state as terminal condition. Algorithms based on
the perturbation method have been developed. These algorithms build on a Taylor series expansion of the
agents’ policy functions around the steady state of the economy and a perturbation parameter. In earlier
literature one has used the first term of this series. Since the policy functions resulting from a first order
approximation are linear and many dynamic models display behavior that is close to a linear law of motion,
the approach became quite popular under the name of linearization. Judd and Guu (1997) extended the
method to compute the higher-order terms of the expansion, see also Collard and Juillard (2001).

16For details see Parra-Alvarez (2012)
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Figure 4.2: Closed loop solution only (left) and closed loop and open loop solutions (right),
in both cases steady state of capital stock x? = 23.03 used as terminal condition.

capable of finding sufficiently accurate solutions. We also mention that using the steady
state x? as terminal constraint does not mean that we perform linearization around x?. The
optimization is still performed for the full nonlinear model, the terminal constraint only
serves as a “guideline” for the optimizer in order to find a solution approaching the optimal
steady state.

5 Two dimensional examples

Subsequently, we describe two two–dimensional problems which we have solved using our
algorithm. We first turn to a model with one control variable and two domains of attraction,
where the study of the dynamics have been quite a challenge for research in economics, since
here one expects the separation of domains of attraction given not by threshold points but
threshold lines (Skiba lines). Furthermore, a two–dimensional model is added with two
control variables where it is of economic relevance to track the finite time path of the
solution trajectories.

5.1 A 2d model with multiple domains of attraction

The following problem from Haunschmied et al. (2003) is a 2d variant of an investment
problem of the firm where the control variable is the change of investment rather than
investment itself as in the usual case. The payoff function is here given by

g(x, u) = R(x1)− c(x2)− v(u)

and dynamics by
d

dt

(
x1(t)
x2(t)

)
=

(
x2(t)− σx1(t)
u(t)

)
.

In the above model R(x1) = k1
√
x1−x1/(1+k2x41) is a revenue function of the firm with a

convex segment due to increasing returns. c(x2) = c1x2 + c2x
2
2/2 denotes adjustment costs

of investment and v(u) = αu2/2 represents adjustment costs of the change of investment.
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The convex segment in the payoff function just mentioned is likely to generate two domains
of attraction.

The following parameters will be used for our calculations: σ = 0.25, k1 = 2, k2 = 0.0117,
c1 = 0.75, c2 = 2.5, α = 12 and discount rate δ = 0.04. Generating the vector field we have
obtained the results shown in the following Figure 5.3.17

Figure 5.3: Vector field of the model with multiple attractors

The vector field shows clearly two domains of attraction,18 one at roughly x?1 = 0.5, x?2 = 0.2
and the other roughly at x?1 = 4.2, x?2 = 1.1. The vector field shows that there is a
bifurcation of the dynamics, where the trajectories go either to the low level steady state or
high level steady states. This bifurcation line has been called a Skiba curve in Haunschmied
et al. (2003). The above vector field was generated by DP19 and serves as a benchmark for
assessing the quality of the NMPC solutions.

Next, we want to test if we can replicate the two domains of attraction for a finite decision
horizon by using NMPC. Therefore, we choose different initial values from both domains
of attraction and run the NMPC algorithm for different horizons N . Figure 5.4 shows the
resulting phase plots for selected N . We observe that for small N , e.g. N = 10, all NMPC
trajectories converge to the left equilibrium. If we increase N , e.g. N = 35, the trajectories
of some of the initial values converge to the second equilibrium. For N = 50, as in Figure
5.3, we observe the existence of a Skiba curve, i.e. trajectories resulting from initial values
right (left) of the curve converge to the equilibrium on the right (left).

Note that if agents have different decision horizons, this might actually give rise to different
long run steady states.20 A further study of the numerical challenges that the above example
poses are explored in more general terms in Section 7.

17Figure 5.3 was generated through DP, with time step h = 1/20 and 101 control values Ũ covering
U = [−1, 1]. For the details of solving the model through DP and generating the vector field, see Grüne
and Semmler (2004).

18A DSGE type model with two domains of attraction and regime changes can be found in Farmer et al.
(2009). In future work of the authors the latter type of model is intended to be explored.

19See Grüne and Semmler (2004)
20Thus, if one interprets the finite decision horizon problem as a form of the inattantiveness problem in

the sense of Sims, a too short a decision horizon may be misleading.
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Figure 5.4: Phase plots of NMPC trajectories of the model of multiple domains of attraction
for N = 10 (upper left), N = 35 (upper right) and N = 50 (lower)

5.2 A 2d growth model with non-renewable resources

As the next example of this section we study a tracking problem. We consider a growth
model with the extraction of a non-renewable resource as discussed in Greiner and Semmler
(2008, Ch. 14)21. The model is as follows:

g(x, u) = U(u1)

d

dt

(
x1(t)
x2(t)

)
=

(
F (x1(t), u2(t))− u1(t)− σx1(t)
−u2(t)

)
and control constraints

0.01 ≤u1(t) ≤ 3.0

0.01 ≤u2(t) ≤ 2.0.

The model captures the extraction of the non-renewable resource needed for production. It
posits that there is utility from consumption, U(u1)=(u1(t)

1−σ)/(1 − σ). The production
21This is a sub-model of our high dimensional model in Section 6
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function includes extracted exhaustible resources F (x1(t), u2(t)) = x1(t)
βu2(t)

1−β. Here
x1 and x2 are the capital stock and the stock of resources, where the stock of extracted
resources is constrained by x2(t) ≤ x2(0) (due to the positive lower bound on u2) with
x2(0) the initial stock of the exhaustible resource. The control variables u1 and u2 are
consumption and the extracted resource per unit of time.

We set the parameters to ρ = 0.03, σ = 0.5, β = 0.7, and δ = 0.05. Figure 5.5 shows how
the dynamics of the optimally growth model with the non renewable resource behave.

Initially the non-renewable resource is assumed to be x2(0) = 10, and x1(0) = 1. As one
can observe the path for the non-renewable resource declines to zero, using an optimal
extraction strategy, and the capital stock first builds up and then, since the non-renewable
resources becomes exhausted, also declines to zero. The results reported here are consistent
with the literature starting with Hotelling.22 The results in the literature typically replicate
Hotelling‘s presumption, namely that the resource is optimally extracted until there is no
more resource in situ. Our NMPC algorithm lets us conveniently track the paths of the
resource and capital stock in a model with decisions on a finite time horizon. This will prove
to be a useful procedure to study the case when higher dimensional models are explored.
This is done next.

6 A five dimensional problem

The following example resembles the integrate assessment model of growth and climate
change23 that includes the non-renewable energy resource of Section 5.2, an alternative

22Yet, in Hotelling there is no capital stock and consumption included in the resource extraction model.
23See Nordhaus (2009).
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energy resource, such as renewable energy, and an adaptation policy. Here also the issue
of a tracking problem may come up. In the preferences of households it considers, beside
consumption, damages arising from the use of non-renewable energy and an investment
effect reducing those damages.24 Here too, we model the dynamic decision problem over
a finite horizon, with three control variables and five state variables. It is formulated as
continuous time problem such as

max
c(t),ep(t),u(t)

∞̂

0

e−(ρ−n)t


(
c(t) · (α2ep(t))

η
(
M(t)− M̃

)−ε
(ν2g(t))

ω

)1−σ
− 1

1− σ

 dt

s.t.

k̇(t) = A(Ank(t) +Aru(t))
α(ν1g(t))

β − c(t)− ep(t)− (δk + n)k(t)− u(t) · (ψR(t)−τ )
ġ(t) = ifp + α1ep(t)− (δg + n)g(t) + ibp

ḃ(t) = (r − n)b(t)− (1− α1 − α2 − α3)ep(t) + ibp

Ṙ(t) = −u(t)

Ṁ(t) = γu(t)− µ
(
M(t)− κM̃

)
− θ(ν3g(t))

The state variables k, g, b, R, M denote the stock of private capital, the stock of public
capital, the outstanding debt, the stock of non-renewable resource and the concentration
of greenhouse gases (GHGs). The control variables c, ep, u represent consumption, amount
of resources absorbed by the public sector and the resource extraction rate. The model of
Section 5.2 is present here in the dynamics for Ṙ and k̇, though in the production function
in k̇, in the first term, output is produced by non-polluting energy Ank and polluting energy
Aru, using the extracted resource u. Moreover, a fraction of public capital g is used for the
production of output. The last term in the capital stock equation represents the extraction
cost of the resource, which is inverse to the available resource R.

The second equation, ġ, represents the evolution of public capital, funded by a fraction of the
tax revenue available for investment on infrastructure. The constant terms are parameters.

The evolution of public debt is denoted by the ḃ equation with the first term the interest
payment, and the second term (1−α1−α2−α3)ep the excess of tax revenue over spending,
the fiscal surplus, to be used for debt redemption. The last equation represents in the first
term the pollution effect from using non-renewable energy, the second term is the natural
dissipation of GHGs M and the last term is an expression for adaption efforts, also using
up a fraction of public capital.

A list of parameters for the model is provided in Appendix A. Since we assume here
a growing population, with growth rate n, with all variables written in per capita form,
the discount rate is ρ − n. This example is a nonlinear dynamic decision model of higher
dimension. We hereby will also study the impact of state and control constraints on the
solution of the model.

In all the Figures we used a sampling rate of T = 0.1 and posited constraints such k, g, b,
24The different components of the subsequent model can be found in Greiner and Semmler (2008), Greiner

et al. (2007) and Greiner et al. (2014).
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R, M , c, ep, u ≥ 0. First, we simulated the NMPC solutions for state constraints k, g, b,
R, M ≤ 12 and control constraints c, ep ≤ 2, u ≤ 4. It turns out that the state constraints
are not active except for the state b. For this component, however, we observe that the
closed loop solution violates the constraint b ≤ 12, see graph in Figure 6.6.
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Figure 6.6: States (left) and controls (right) of the five dimensional model with constraint
b ≤ 12 and N = 15.

At the time when b hits the upper bound the control ep is increased trying to keep b feasible
but it does not succeed. This causes a kink in the graph of k, see the right figure.

A natural question, arising from the observed behaviour, is whether the states k, g, R, M
converge if the upper bound of b is omitted. Then, b exhibits unbounded growth and –
as can be seen in Figure 6.7 – all other state variables converge. Moreover, no numerical
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Figure 6.7: State trajectories (left) of the five dimensional model with unrestricted state b
and N = 15 and related controls (right) on the time interval t ∈ [0, 20].

difficulties, indicated by kinks or zig-zags, are observed. Note that in our dynamics for b,
there is no feedback from the level of debt to the fiscal surplus. For a detailed discussion of
this issue see Greiner et al. (2007), and the discussion below. We can interpret Figure 6.7
as follows: If the debt b is unbounded, this yields a strategy of immediately exploiting non-
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renewables (u increases ⇒ R is decreasing quickly) which leads to an increased emission of
GHGs (M). Then, consumption c is high at the beginning but then converges to quite a
low level. Public and private capital stagnate at the level of the respective initial stocks.

In any reasonable model, however, one would not like to have the debt variable b to be
unbounded. Debt sustainability is a major issue in economic modeling. Hence, we intend
to explore why the state constraint b ≤ 12 is not maintained and how this can be fixed. A
possible explanation is that the optimization horizon was chosen too small such that the
optimizer does not “see” the bound at times when it is still possible to find controls that
remain in the state feasible for future times. This fact can be formalized via stationarity
of feasible sets, cf. Chapter 5 of Kerrigan (2000) or equivalently via exit sets, cf. Section
8.2 of Grüne and Pannek (2011). Accordingly, the problem should vanish if N is increased
and/or the bound on b is reduced. Figure 6.8 shows that this is indeed what happens if we
increase N to 30 and additionally reduce the bound on b.
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Figure 6.8: State trajectories (left) of the five dimensional model with b ≤ 1.0, N = 30 and
related controls (right) on the time interval t ∈ [0, 100].

Numerical experiments revealed that the size of the horizon N needed to ensure constraint
satisfaction grows with the upper bound on b, i.e., N has to be increased when the upper
bound on b is raised. Figure 6.9 shows the simulation of the model with b ≤ 2.0 and N = 50.

In this context, it is interesting to compare the optimal strategies without and with bound
on the debt in Figure 6.9: as b hits the bound, the public sector is forced to use more
resources (ep is raised). In this case, with an increase of revenue ep, the fiscal surplus in
the dynamics for b (the debt equation) becomes endogenous, which allows the debt to be
bounded. This also permits the public capital g to increase. The consumption c is reduced
until t ≈ 80 in order to avoid reduction of the private capital k and in favor of a higher
constant level of consumption in a future time period. In contrast to the Figures 6.7 and
6.8, the strategy chosen in Figure 6.9 ensures higher levels of capital (private and public)
and consumption in the long run if one is willing to accept cuts at the beginning.
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Figure 6.9: State trajectories (left) of the five dimensional model with b ≤ 2.0, N = 50 and
related controls (right).

7 Some Implementational Aspects

In the previous sections various examples of finite horizon optimal control problems and
their numerical results have been presented. All simulations were either computed by a
MATLAB routine25 (for less demanding examples) or by a C++ software package26 (for
more complicated examples).

The main part of implementing the NMPC algorithm consists of solving the optimization
problem in step (2) of the NMPC algorithm. This is accomplished by transforming the
given optimization problem into standard form

min
z∈Rnz

f(z)

s.t. G(z) = 0 and H(z) ≤ 0.
(7.12)

To this end, we need to decide which variables should be chosen as optimization variables
z. In Grüne and Pannek (2011, Chapter 10), three different approaches to that problem
(also referred to as discretization) are proposed27:

1) In full discretization not only the control values uk,i, k = 0, . . . , N − 1, but also the
states xk,i, k = 0, . . . , N, are considered as optimization variables. The inclusion of
the states requires additional equality constraints which ensure that the trajectory

25available at www.nmpc-book.com
26see www.nonlinearmpc.com
27For the sake of comprehensibility we only consider systems in discrete time. In case of continuous

systems, we replace the system dynamics by a numerical approximation, cf. (2.6).

22



satisfies the system dynamics. This leads to the following definitions in (7.12):

z := (uT0,i, . . . , u
T
N−1,i, x

T
0,i, . . . , x

T
N,i)

T , f(z) := −
N−1∑
k=0

βkg(xk,i, uk,i),

G(z) :=


∗1

x0,i − x0
x1,i − ϕ(x0,i, u0,i)

...
xN,i − ϕ(xN−1,i, uN−1,i)

 , H(z) := (∗2),

where ∗1 and ∗2 denote possible pre-existing constraints.

2) Recursive discretization describes the approach to decouple the system dynamics from
the optimization problem, i.e. only the control values uk,i are optimization variables
whereas the system dynamics are computed outside the optimization. Since the op-
timizer requires information about the system and vice versa, both components need
to communicate: The optimizer sends the initial value and the control values to the
system dynamics which in turn sends the corresponding states that are needed in
order to evaluate the objective function f(z). Figure 7.10 shows the exchange of
information schematically.

NLP (7.12) Dynamics

uk,i, x0

f(z)← xk,i

Figure 7.10: Exchange of information between the optimization prob-
lem and the system dynamics

Consequently, in (7.12) after recursive discretization we have

z := (uT0,i, . . . , u
T
N−1,i)

T , f(z) := −
N−1∑
k=0

βkg(xk,i, uk,i),

G(z) := (∗1), H(z) := (∗2),

with ∗1 and ∗2 as above.

3) The third technique — called shooting discretization — includes some of the states
xk,i as optimization variables, but in contrast to full discretization just for some of
the k ∈ {0, . . . , N − 1} and possibly not for all components. Certainly, all uk,i are
chosen as optimization variables as well. As in full discretization we need to impose
additional equality constraints for the states which are optimization variables.
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Obviously, a main disadvantage of technique 1) is the high dimensionality of the resulting
optimization problem. At the same time, the optimizer is given the full information about
the dynamics which is an advantage for iterative solvers, e.g., for obtaining good initial
guesses. Moreover, the special structure of the resulting fully discretized optimization
problem can be used in order to simplify the problem to be solved (using a technique called
condensing, see Grüne and Pannek (2011, Sec. 10.4).

In recursive discretization, the optimization problem has minimal dimension but informa-
tion about the trajectories can hardly be used within the optimization. In addition, the
external computation of the trajectories may lead to numerical instability due to the sen-
sitive dependence of the values xk,i on the control values uk,i: Even a small deviation of
one of the uk,i may result in a large deviation of the trajectory and hence of the objective
function.

Shooting discretization can be seen as an attempt to reduce the dimension of the fully
discretized problem as much as possible without losing stability and useful information
about the trajectories. For a detailed discussion on the three techniques see Grüne and
Pannek (2011, Sec. 10.1). Regarding the software we used for the examples in this paper,
the MATLAB routine we have used is based upon recursive discretization and uses the
fmincon optimization routine for solving (7.12) while the C++ software is able to perform
each of the discretization techniques and has links to various optimization packages which
can be selected for solving (7.12).

Now that we have defined the optimization problem, we might expect difficulties whenever
(7.12) is nonlinear and nonconvex. In this case, the optimization algorithm may only find a
local optimum which does not need to be a global optimum or the optimizer may not able
to find an optimum, at all. While such difficulties did not occur in the examples in this
paper, when interpreting the outcome of an NMPC algorithm one should always be aware
that this may happen. Often, one can avoid such situations e.g. by adding constraints or
chosing the initial guess of the optimizer carefully.

The optimization horizon N plays an important role in NMPC. As pointed out in Section 2,
an approximation of the infinite horizon optimal trajectories can only be expected if N is
sufficiently large. In Section 5.1 we already illustrated the effect of varying N in the
presence of multiple optimal equilibria. Recall that in this example we needed to increase
N to about 50 in order to obtain the correct domains of attraction. In order to explain
why this happens and also in order to illustrate the turnpike property as the mechanism
for the approximation property of NMPC (cf. the discussions in Sections 2.2 and 4.1), we
reconsider the example from Section 4.1. In Figure 7.11 we show the optimal open loop
trajectories starting in x0 = (3, 0.75)T for different N .

This figure shows that the open loop trajectories are attracted by the lower left equilibrium
for small N and by the upper right equilibrium for larger N , i.e., for too small N the
optimizer does not “see” the proper optimal equilibrium. Moreover, we can observe the
turnpike property for N ≥ 50: the larger N , the closer the trajectories approach the
optimal equilibrium (indicated by the “+” in the upper right corner of the figure) and the
longer they stay in its neighborhood.

While it seems that increasing N is often a good strategy in order to obtain a good approx-
imation of the infinite horizon optimal solutions, we want to point out that large horizons
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Figure 7.11: Open loop trajectories for the model from Section 5.1 for x0 = (3, 0.75)T and
various N ≤ 45 (dashed) and N ≥ 50 (solid).

increase the dimensionality in (7.12) on the one hand and, on the other hand, may cause
numerical problems (as shown in Grüne and Pannek (2011) for the inverted pendulum).
Hence, there is a tradeoff between good approximation, numerical effort and numerical ac-
curacy which implies that a judicious choice of N can only be found if all these effects are
taken into account.

Summarizing, being aware of possible pitfalls, users of NMPC software should always in-
terpret the obtained results with some care and consider a series of numerical experiments
with different parameters in order to verify the validity of their results.

8 Outlook on NMPC for stochastic problems

In this section, by returning to the low dimensional problem of Section 3.1, we present
some experimental results for NMPC applied to stochastic problems using the certainty
equivalence principle. As we are not aware of any theoretical performance analysis for
this approach in the context of NMPC modeling, we decided to present these promising
results as an outlook and motivation for future research. Due to the fact that the control
generated by the NMPC algorithm is in feedback form, the basic concept is easily extended
to stochastic problems of the type

V (x0) = E

(
max
u∈U

∞∑
k=0

βkg(x(k), u(k))

)
(8.13)
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with the discrete time stochastic dynamics

x(k + 1) = ϕ(x(k), u(k), zk), x(0) = x0 ∈ Rn, (8.14)

where the zk are i.i.d. random variables. Again, this problem could a priori be given in
discrete time or it could be given as the time discretization of a continuous time stochastic
optimal control problem with dynamics governed by an Itô-stochastic differential equation,
see Camilli and Falcone (1995).

From a computational point of view, the main difficulty in stochastic NMPC is the efficient
solution of the corresponding finite horizon problem (2.8) which now becomes a stochastic
optimal control problem whose solution is computationally considerably more expensive
than in the deterministic case. While some MPC approaches in the literature indeed solve
stochastic optimal control problems (see, e.g., Couchman et al. (2006) or Cannon et al.
(2009) and the references therein), in this paper we follow the simpler certainty equivalence
approach similar to (Bertsekas; 2005, Section 6.1) which does in general not compute the
true stochastic optimum but in the case of stochastic perturbations with low intensities
may still yield reasonably good approximately optimal results. To this end, we replace the
stochastic dynamics by its expected counterpart

xe(k + 1) = E
(
ϕ(xe(k), u(k), zk)

)
, xe(0) = x0 ∈ Rn (8.15)

and in each iteration instead of (2.8) we solve

max
u∈U

N−1∑
k=0

βkg(xe(k), u(k)). (8.16)

Note that we only use (8.15) in order to solve (8.16) in Step (2) of the NMPC algorithm.
In Step (3) we simulate the closed loop using the original stochastic dynamics (8.14) with
zk realized by appropriate random numbers.

We illustrate the performance of this approach by a two dimensional stochastic version of
the Brock and Mirman (1972) model of Example 4.1. Here the 1d model from Example 4.1
is extended using a second variable modelling a stochastic shock. The model is given by
the discrete time equations

x1(k + 1) = x2(k)Ax1(k)
α − u(k)

x2(k + 1) = exp(ρ lnx2(k) + zk)

where A,α and ρ are real constants and the zk are i.i.d. random variables with zero mean.
The payoff function in (2.3) is again g(x, u) = lnu.

In our numerical computations we used the parameter values A = 5, α = 0.34, ρ = 0.9
and β = 0.95 and zk are i.i.d. Gaussian random variables with zero mean and variance
σ2 = 0.0082. Using that E(exp(a+ zk)) = exp(a+σ2/2), the model used for the open loop
optimization is given by

xe1(k + 1) = E(xe2(k)Ax
e
1(k)

α − u(k)) = xe2(k)Ax
e
1(k)

α − u(k)
xe2(k + 1) = E(exp(ρ lnxe2(k) + zk)) = exp(ρ lnxe2(k) + σ2/2).
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Following the computations in Santos and Vigo-Aguiar (1995) the optimally controlled
dynamics is given by x1(k+1) = αβAx2(k)x1(k)

α. From this equation and the equation for
x2(k+1), above, one can derive equations for the steady state values of E(lnx1) and E(lnx2)
which transformed to the original exponential variables yield the expected equilibria xe,?2 =

exp(σ2/(2(1− ρ2)) ≈ 1.000168 and xe,?1 = (αβA)
1

1−α (xe,?2 )
1

1−α2 ≈ 2.067739.

Figure 8.12 (left) shows the two components of a typical closed loop trajectory (solid) start-
ing in x0 = (2, 1)T , along with the optimal open loop trajectories in each iteration (dashed).
In order to measure the quality of the closed loop solutions, we have measured the average
distance of the first component of the closed loop trajectory from the expected equilibrium.
For each of these measurements an approximation Ẽ(x1(k)) of this average was computed
by a Monte-Carlo simulation using two trajectories starting in the optimal equilibrium xe,?

with length 1000 and antithetic random numbers. Figure 8.12 (right) shows that the results
improve with growing optimization horizon N until about N = 8, after which the errors
caused by the Monte-Carlo simulation and the certainty equivalence approach become vis-
ible. Despite these errors, the simulations demonstrate that the NMPC approach is very
well suited to compute approximately optimal trajectories also for stochastic problems with
a reasonably small error.
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Figure 8.12: Closed loop trajectory (solid) and open loop trajectories (dashed) for the
growth model for N = 5 and x0 = (2, 1)T (left) and equilibrium deviation |Ẽ(x1(t))− xe,?1 |
for x0 = xe,?, N = 3, . . . , 15 (right), with µN the NMPC controller for time horizon N .

9 Conclusion

In the economic literature, there have been complicated dynamic models in various economic
areas with optimizing agents, in part becoming a challenge to commonly used numerical
techniques. In this paper we have demonstrated that NMPC provides an efficient way
of numerically solving dynamic decision problems for some of the proto-type models of
some of those areas to find global solutions. Our numerical findings are supported by a
theoretical convergence analysis relying on the turnpike property of optimal solutions. Since
the NMPC method allows one to compute finite horizon dynamic decision problems, with
solutions approximating the corresponding infinite horizon models, it is well suited to track
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the solution paths for information constrained agents in the sense of Sims (2005, 2006). Yet,
as argued in Section 1 the pitfalls of finite horizon models do not necessarily arise here since
we are proposing a solution method using a receding horizon strategy, where one is always
N − 1 steps away from the endpoint. The NMPC method also permits us to compute state
and control variables for models with multiple equilibria, regime changes, and models where
the state and control paths needed to be tracked. We can compute discrete and continuous
time models where the steady states, as terminal conditions, and linearization about them,
are not needed to compute the solutions numerically. We have also shown how NMPC can
be applied to high dimensional models to find global solutions. In this case, as well as in the
context of multiple equilibria models, we could then show that the decision horizon of the
agents, and thus their informational constraints, do matter to find the proper solution. Our
examples also show that NMPC can address deterministic and stochastic model variants
with good accuracy as well as models with multiple domains of attraction. So far algorithms
and software are available that operate in both MATLAB as well as in C++. As compared
to Dynamic Programming the NMPC approach, by avoiding to grid the state space, has
significant advantages as it is less prone to the curse of dimensionality.
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A Parameters for the 5d model of Section 6

Parameter Definition Values for simulation
ρ discount rate 0.03
n rate of population growth 0.015
α1 share of public resources used to build up new public

capital
0.1

α2 share of public resources used for the transfers and
public consumption

0.7

α3 share of public resources used for the functioning of
the administration

0.1

η exponent in the utility function 0.1

M̃ pre-industrial level of GHG concentration 1
ε exponent in the utility function 1.1
ν1 fraction of public capital to support market activity 0.6 (∈ [0, 1])
ν2 fraction of public capital to mitigate climate change

damages
0.3 (∈ [0, 1])

ν3 fraction of public capital to reduce GHG emissions 0.1 (∈ [0, 1])
ω exponent in the utility function 0.05
σ exponent in the utility function 1.1
A prductivity of output production 1
An efficiency index of private capital in production 1
Ar efficiency index of non-renewable resources in produc-

tion
30 (∈ [10, 100])

α exponent of private capital and resource in the pro-
duction function

0.5

β exponent of public capital in the production function 0.5
δk depreciation of private capital 0.075
δg depreciation of public capital 0.05
ψ parameter in extraction cost function 1
τ parameter in extraction cost function 2
ifp foreign aid per period earmarked for investment in

public capital
0.05

ibp net borrowing per period earmarked for investment in
public capital

0

γ fraction of GHG emissions not absorbed by the ocean 0.9
µ inverse of the atmospheric lifetime of GHG emissions 0.01
κ parameter deterimining the level where GHG cocen-

tration can be stabilized
2

θ efficiency of public sector’s efforts to reduce GHGs 0.01
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