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2. Gutachter: Prof. Dr. Kurt Chudej





Inhaltsverzeichnis

Deutsche Zusammenfassung V

Summary XI

1 Mathematical Control Theory 1
1.1 Introduction to Control Theory . . . . . . . . . . . . . . . . . . . . . 1
1.2 Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Optimal Control of PDEs 17
2.1 Banach Space Optimization . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Optimal Control of PDEs . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Discretization of semilinear parabolic PDEs . . . . . . . . . . . . . . 26

2.3.1 Galerkin Approximation . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Discretization in Time . . . . . . . . . . . . . . . . . . . . . . 33

3 Minimal Stabilizing Horizons 35
3.1 Distributed Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Derivation of the Exponential Constants . . . . . . . . . . . . 36
3.1.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Introduction to Backstepping . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Dirichlet Boundary Control . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Exponential Constants for Dirichlet Boundary Control . . . . 46
3.3.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Neumann Boundary Control . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.1 Exponential Constants for Neumann Boundary Control I . . . 52
3.4.2 Exponential Constants for Neumann Boundary Control II . . 55
3.4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6 Method of Nevistic/Primbs . . . . . . . . . . . . . . . . . . . . . . . 61
3.7 Linear Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.7.1 Exponential Constants for the Wave Equation . . . . . . . . . 65
3.7.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Algorithms 75
4.1 Algorithms in PDE Optimization . . . . . . . . . . . . . . . . . . . . 75

4.1.1 First Order Methods . . . . . . . . . . . . . . . . . . . . . . . 76
4.1.2 Higher Order Methods . . . . . . . . . . . . . . . . . . . . . . 81

III



Inhaltsverzeichnis

4.2 Proper Orthogonal Decomposition in Model Predictive Control . . . . 91
4.3 Adaptive Horizon MPC . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3.1 Algorithms for Adaptive Horizon MPC . . . . . . . . . . . . . 97
4.3.2 Multigrid Methods in Adaptive MPC . . . . . . . . . . . . . . 99

5 Numerical Implementation 103
5.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
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Deutsche Zusammenfassung

Das Thema dieser Dissertation ist die Modellprädiktive Regelung (Model Predictive
Control (MPC)) von partiellen Differentialgleichungen (Partial Differential Equati-
ons (PDE)). Im Englischen werden weiterhin die Bezeichnungen

”
Receding Horizon

Control“(RHC) sowie
”
Nonlinear Model Predictive Control“(NMPC) bei nichtli-

nearen Systemen verwendet. Die modellprädiktive Regelung ist eine Methode der
Kontrolltheorie und wird zur Stabilisierung eines Gleichgewichts in Kontrollsyste-
men genutzt. Die Idee ist hierbei, die Lösung eines Optimalsteuerungsproblems auf
einem unendlichen Zeithorizont durch eine iterative Abfolge von Optimalsteuerungs-
problemen auf einem endlichen Zeithorizont zu approximieren. Das Vorgehen lässt
sich in drei Schritten beschreiben:

• Der aktuelle Zustand des Systems wird gemessen.

• Ausgehend von einem Modell wird das Verhalten des Systems prädiziert und
aus der Lösung eines Optimalsteuerungsproblem eine optimale Folge von Steu-
erwerten berechnet.

• Das erste Element dieser Folge wird im System implementiert und der Opti-
mierungshorizont wird vorwärts auf den nächsten Zeitschritt verschoben.

Durch das Wiederholen dieser Schritte wird eine Steuerfolge auf dem unendlichen
Zeithorizont erzeugt.
Die modellprädiktive Regelung wurde in den vergangenen Jahrzehnten theoretisch
untersucht (siehe [80]) und mit großem Erfolg in industriellen Anwendungen ge-
nutzt (siehe [79]). Hierbei lag der Schwerpunkt in der Regel auf Systemen, die von
gewöhnlichen Differentialgleichungen (ODE) erzeugt werden. Diese werden in der
Systemtheorie auch als endlich dimensional bezeichnet. In den Naturwissenschaften
und technischen Anwendungen treten jedoch häufig Prozesse auf, welche durch par-
tielle Differentialgleichungen beschrieben werden. Dies sind beispielsweise Probleme
der Wärmeausbreitung oder der Struktur- und Strömungsmechanik. Diese Syste-
me werden in der Systemtheorie auch als unendlich dimensionale- oder verteilt-
parametrische Systeme bezeichnet. Da die Idee von MPC nicht von der Art des
dynamischen Systems abhängt, ist es naheliegend das Konzept auch für partielle Dif-
ferentialgleichungen zu nutzen. Dies wurde z.B. im Rahmen der Strömungskontrolle
in [16] und [50] sowie in der Anwendung auf Gleichungen der Verfahrenstechnik in
[30] umgesetzt. Es ist zu beachten, dass die theoretische Analyse des zugehörigen
Optimalsteuerungsproblems deutlich schwieriger als im ODE Fall sein kann. Dies gilt
ebenfalls für die numerischen Algorithmen zur Lösung des Optimierungsproblems.
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Deutsche Zusammenfassung

Ein wichtiger Aspekt im Zusammenhang mit MPC ist die zugehörige Stabilitätsanalyse.
Hier wurden in der Vergangenheit häufig künstliche Endbeschränkungen und -kosten
eingeführt, um die Stabilität des Systems garantieren zu können. Da jedoch in der
Anwendung oftmals auf derlei Hilfsmittel verzichtet wird (siehe [79]), betrachten
wir in dieser Arbeit die so genannte unrestringierte modellprädiktive Regelung. Eine
wichtige Rolle in der Stabilitätsanalyse dieser Methode spielt der Optimierungsho-
rizont: Ist dieser zu kurz, kann es zur Instabilität oder zu einer schlechten Regelgüte
kommen. Ist der Optimierungshorizont zu lang gewählt, ist eine Berechnung des
Optimalsteuerungsproblems in sinnvoller Zeit unter Umständen nicht möglich. Die
Horizontlänge ist daher in dieser Arbeit eine wichtige Größe.

Gliederung und eigener Beitrag

Diese Arbeit gliedert sich in sechs Kapitel:

• Der erste Abschnitt des ersten Kapitels stellt bekannte Grundlagen der mathe-
matischen Kontrolltheorie vor. Die Darstellung der Ergebnisse folgt imWesent-
lichen [45]. Zunächst werden zeitkontinuierliche und zeitdiskrete Kontrollsyste-
me eingeführt und der Unterschied zwischen einem offenen und einem geschlos-
senem Regelkreis erläutert. Weiterhin wird gezeigt, wie zeitkontinuierliche Sys-
teme mittels Abtastung zeitdiskret interpretiert werden können. Anschließend
wird der Begriff der asymptotischen Stabilität eines Gleichgewichtes mit Hilfe
von Vergleichs- und Lyapunovfunktionen eingeführt. Im zweiten Abschnitt des
Kapitels wird die Methode der modellprädiktiven Regelung vorgestellt. Hierfür
werden die benötigten Hilfsmittel wie Zustandskosten, Kostenfunktional und
optimale Wertefunktion definiert. Der Schwerpunkt des Abschnittes liegt auf
dem Konzept der relaxierten Lyapunov Ungleichung sowie auf Abschätzungen
des Grades der Suboptimalität des MPC Reglers. Die entsprechenden Sätze
bilden die Grundlage der theoretischen Ergebnisse in Kapitel 3.

• Im ersten Abschnitt von Kapitel 2 wird zunächst das Optimalsteuerungs-
problem als abstraktes Optimierungsproblem im Banachraum beschrieben.
Dies erleichtert das Aufstellen der notwendigen Bedingungen, welche auch für
die Algorithmen in Kapitel 4 relevant sind. In Abschnitt 2.2 werden dann
die benötigten Resultate der Optimalsteuerung partieller Differentialgleichun-
gen aus [91] präsentiert. Hierzu werden zunächst die zugehörigen Sobolev
Räume definiert. Der Schwerpunkt liegt dann auf den Existenz- und Regu-
laritätssätzen für die in dieser Arbeit betrachteten partiellen Differentialglei-
chungen. Anschließend wird in Abschnitt 2.3 auf die Diskretisierung der par-
tiellen Differentialgleichung eingegangen. Für die Ortsdiskretisierung wird zu-
nächst das Galerkin Verfahren vorgestellt. Danach erfolgt eine kurze Übersicht
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der Finite Elemente Methode (nach [42]) sowie der Modellreduktionstechnik
Proper Orthogonal Decomposition (POD) (nach [96]). Abschließend wird mit
dem semi-impliziten Euler Verfahren eine Möglichkeit der Zeitdiskretisierung
präsentiert.

• Kapitel 3 stellt den theoretischen Beitrag dieser Arbeit dar. Hier werden kon-
krete Abschätzungen des minimal stabilisierenden Horizonts für verschiedene
Klassen von partiellen Differentialgleichungen bewiesen. Weiterhin werden die
theoretischen Resultate genutzt, um die Abhängigkeit des Horizonts von Para-
metern zu diskutieren. Anhand von numerischen Simulationen werden die Re-
sultate erläutert. In Abschnitt 3.1 wird die semilineare Wärmeleitungsgleichung
mit verteilter Steuerung bezüglich des Horizonts analysiert. Der Abschnitt
verallgemeinert die bereits publizierten Resultate in [8]. Insbesondere erfolgt
eine Untersuchung über die Auswirkung unterschiedlicher Kostenfunktionale.
Abschnitt 3.2 beinhaltet einen kurzen Einschub über die Backstepping Me-
thode, welche im Folgenden benötigt wird. Die Herleitung orientiert sich an
[62]. Die lineare Wärmeleitungsgleichung mit Dirichlet Randsteuerung wird
in Abschnitt 3.3 betrachtet. Der Schwerpunkt liegt auch hier auf der Para-
meterabhängigkeit des Horizonts sowie auf dem Einfluss der verschiedenen
Kostenfunktionale. Weiterhin werden die Unterschiede zur verteilten Steue-
rung aufgezeigt und durch numerische Ergebnisse belegt. Spezialfälle dieser
Resultate wurden bereits in [4] veröffentlicht. In Abschnitt 3.4 wird die linea-
re Wärmeleitungsgleichung mit Neumann Randsteuerung betrachtet. Hierbei
liegt das Hauptaugenmerk darauf, dass das Stabilitätsverhalten, abhängig von
der Parameterwahl, entweder dem der verteilten Steuerung oder dem der Di-
richlet Randsteuerung ähnelt. Der eindimensionale Spezialfall wurde bereits in
[5] publiziert. Zusätzlich wird hier eine Analyse der unterschiedlichen Kosten-
funktionale vorgenommen. In Abschnitt 3.5 wird gezeigt, wie die entwickelte
Methode angepasst werden kann, um einen zusätzliche Konvektionsterm zu
berücksichtigen. Die Auswirkungen des Konvektionsterms auf den minimal
stabilisierenden Horizont wird theoretisch betrachtet und numerisch verifi-
ziert. Ein Vergleich der hier benutzten Methode mit einem in [75] entwickelten
Verfahren findet sich in Abschnitt 3.6 anhand der räumlich diskretisierten,
linearen Wärmeleitungsgleichung. Es werden insbesondere die Vor- und Nach-
teile beider Methoden beschrieben. In Abschnitt 3.7 wird gezeigt, dass die
Analyse nicht nur auf parabolische, sondern auch auf hyperbolische partielle
Differentialgleichungen anwendbar ist. Am Beispiel der randgesteuerten Wel-
lengleichung wird die Bedeutung der endlichen Ausbreitungsgeschwindigkeit
dieser Gleichung dargelegt. Ein Spezialfall dieser Resultate wurde bereits in
Zusammenarbeit mit Karl Worthmann in [8] und [6] publiziert. Im Gegensatz
hierzu werden die Beweistechniken jedoch komplett geändert um allgemeinere
Resultate zu erhalten. Insbesondere kann auf eine explizite Lösungsdarstellung
verzichtet werden.

VII



Deutsche Zusammenfassung

• Kapitel 4 beschäftigt sich mit den Algorithmen, die im entwickelten Softwa-
repaket implementiert sind. In Abschnitt 4.1 werden einige aus der Literatur
bekannten Algorithmen zur Optimalsteuerung von partiellen Differentialglei-
chungen vorgestellt. Insbesondere wird hierbei auf die Anwendbarkeit der Ver-
fahren für den MPC Algorithmus eingegangen. Abschnitt 4.2 befasst sich mit
der Möglichkeit, die modellprädiktive Regelung mit der Modellreduktionstech-
nik Proper Orthogonal Decomposition zu kombinieren. Es werden aus der Li-
teratur bekannte Algorithmen präsentiert sowie neue Algorithmen entwickelt.
Weiterhin werden die Vor- und Nachteile der verschiedenen Ansätze disku-
tiert. In den Arbeiten [77] und [38] wurden Algorithmen entwickelt, in denen
die Horizontlänge während des MPC Verfahrens nicht länger konstant ist, son-
dern in jedem Schritt geändert werden kann. In Abschnitt 4.3 wird analysiert,
inwiefern sich diese Algorithmen für die Anwendung auf partielle Differenti-
algleichungen eignen. Insbesondere wird eine neue Methode präsentiert, die
zeigt, wie in diesem Zusammenhang Mehrgittermethoden sinnvoll eingesetzt
werden können.

• Im ersten Abschnitt von Kapitel 5 werden zunächst Beispiele für semilineare
partielle Differentialgleichungen motiviert und vorgestellt, welche in Kapitel 6
als Benchmark Probleme dienen. Der Fokus liegt hier auf der nicht monotonen
Schlögl Gleichung sowie auf einer nichtlinearen partiellen Differentialgleichung
aus der Verfahrenstechnik. Der Abschnitt 5.2 befasst sich mit der tatsächlichen
Umsetzung der Algorithmen im C++ Softwarepaket. Hierbei liegt der Schwer-
punkt auf der strukturellen Darstellung der objektorientierten Klassen. Außer-
dem werden Quellcodeauszüge angegeben, um dem Anwender die Benutzung
des Programms aufzuzeigen. Ein vollständiges Beispiel findet sich in Appendix
A. Weiterhin befindet sich das Softwarepaket auf der beigelegten CD-ROM.

• Das letzte Kapitel 6 beinhaltet die numerischen Resultate dieser Arbeit. In
Abschnitt 6.1 wird für die Testbeispiele aus 5.1 gezeigt, dass eine Echtzeit
Realisierung des MPC Algorithmus möglich ist. Danach werden in Abschnitt
6.2 die Optimierungsalgorithmen aus Abschnitt 4.1 numerisch miteinander
verglichen und hinsichtlich ihrer Anwendbarkeit auf MPC analysiert. Wei-
terhin werden Parameterstudien bezüglich Diskretisierung, Optimierungsho-
rizont, Regularisierungs- und Reaktionsparameter durchgeführt. Die Algorith-
men aus Abschnitt 4.2, welche MPC mit POD kombinieren, werden in Ab-
schnitt 6.3 verglichen. Abschließend werden in Abschnitt 6.4 der Nutzen und
die Grenzen der Algorithmen mit variabler Horizontlänge in der Anwendung
auf partielle Differentialgleichungen durch numerische Simulationen aufgezeigt.

Die Hauptbeiträge dieser Arbeit sind:

• Die theoretische Herleitung und Analyse konkreter Horizontabschätzungen für
den MPC Algorithmus

VIII



• Das Entwickeln neuer Algorithmen und der numerische Vergleich mit aus der
Literatur bekannten Methoden

• Die Implementierung der Algorithmen in einem C++ Softwarepaket
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Summary

This thesis deals with Model Predictive Control (MPC) of Partial Differential Equa-
tions (PDE). Other designations are Nonlinear Model Predictive Control (NMPC)
for nonlinear systems and Receding Horizon Control (RHC). MPC is a method in
control theory which is used for the stabilization of equilibrium points in a con-
trol system. The idea is to approximate an optimal control problem on an infinite
time horizon through a sequence of finite horizon optimal control problems. The
procedure is the following:

• Measure the current state of the system.

• Predict the behaviour of the system based on the model and compute the
optimal control sequence by solving the optimal control problem.

• Implement the first element of the control sequence to the system and shift
the horizon forward in time.

Repeating these steps leads to a control sequence on the infinite time horizon.
Model Predictive Control was theoretically investigated during the last decades and
it was successfully applied to industrial processes. The focus was mainly on systems
which originate from Ordinary Differential Equations (ODE). These systems are also
called finite dimensional systems. However, in many engineering applications partial
differential equations are necessary to describe the physical phenomena. Examples
are given by heat conduction, fluid flows and electromagnetic waves. These systems
are known as infinite dimensional or distributed parameter systems. Since the idea
of MPC is independent of the underlying system, it is quite natural to use this
concept for partial differential equations, as well. The application of MPC to flow
control problems, for instance, can be found in [16] and [50]. Further applications
in the context of process engineering can be found in [30]. It should be mentioned
that optimal control of partial differential equations can be a difficult task from the
theoretical as well as from the numerical point of view.
An important aspect in the context of MPC is the corresponding stability analysis.
In the MPC literature artificial terminal constraints or costs are often incorporated
to guarantee stability of the system. However, in most industrial applications these
tools are not used, cf. [79]. Thus, in this thesis we exclusively investigate the so
called unconstrained MPC approach. The optimization horizon plays an important
role in the stability analysis: A too short horizon can yield an unstable behaviour
or a bad performance of the MPC controller. In contrast to that a large horizon
increases the complexity of the resulting optimal control problem. Therefore, this
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Summary

parameter plays a important role in our analysis.

Outline and Contribution

This thesis consists of six chapters:

• In the first section of Chapter 1 the basic concepts of the mathematical con-
trol theory are introduced. The representation essentially follows [45]. First,
continuous-time and discrete-time control systems are defined and the differ-
ence between open-loop and closed-loop control is explained. Furthermore,
we show that continuous-time control systems can be interpreted in a discrete
way by using the idea of sampling. The concept of asymptotic stability of an
equilibrium is introduced by using comparison functions. In the second part
of this chapter we introduce the Model Predictive Control (MPC) algorithm
and define the required terms like stage cost, cost functional and optimal value
function. The focus of this section is the relaxed Lyapunov inequality and the
suboptimality of the MPC controller. The corresponding theorems form the
basis of the theoretical investigations in Chapter 3.

• In the first section of Chapter 2 we interpret the optimal control problem
as an abstract optimization problem in a Banach space. This simplifies the
development of the necessary conditions which are also required in Chapter
4. In Section 2.2 we present some results concerning the optimal control of
partial differential equations, cf. [91]. The focus lies on the presentation of
existence- and regularity theorems as well as on the definition of the required
Sobolev spaces. Afterwards, in Section 2.3 the discretization of the PDE is
considered. For the spatial discretization the Galerkin method is introduced.
Its variants Finite Element Method (FEM), cf. [42], and the model reduction
technique Proper Orthogonal Decomposition (POD), cf. [96], are discussed.
Moreover, we present with the semi-implicit Euler method an example for the
time discretization.

• Chapter 3 is the main theoretical contribution of this thesis. We present
concrete estimates for the minimal stabilizing horizon for different classes of
partial differential equations. Furthermore, the theoretical results are used to
explain the dependence of the horizon on several parameters. In Section 3.1 we
analyse the semilinear heat equation with distributed control with regard to
the optimization horizon. This section generalizes our results in [8]. Especially,
we examine the influence of different cost functionals. In Section 3.2 we give
a short introduction to the backstepping method, which is required in the
remaining chapter. The representation follows [62]. The linear heat equation
with Dirichlet boundary control is investigated in Section 3.3. We analyse
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the parameter dependence of the horizon and the influence of different stage
cost. Furthermore, the results are compared with those from the distributed
control. Special cases of these results are already published in [4]. In Section
3.4 the linear heat equation with Neumann boundary control is looked at. The
main observation is that the stability behaviour is, depending on the choice of
the parameters, either similar to the distributed control case or similar to the
Dirichlet boundary control case. The special case of the one dimensional heat
equation was already published in [5]. In addition, we investigate the influence
of different cost functionals. In Section 3.5 we show how to adapt our method
to incorporate an additional convection term. The influence of the convection
is analysed from a theoretical and a numerical point of view. Afterwards, we
compare the method presented in this thesis with an approach developed in
[75]. By using the example of the spatially discretized heat equation we discuss
the pros and cons of both methods. In Section 3.7 we demonstrate that the
described analysis is not only applicable to parabolic, but also to hyperbolic
partial differential equations. With the example of the boundary controlled
wave equation we analyse the important role of the finite propagation speed
in this context. Some special cases of these results are already published in a
joint work with Karl Worthmann in [8] and [6]. However, the proofs in this
section are completely different so that more general results can be obtained.

• In Chapter 4 we present the algorithms which are implemented in the software
package. Section 4.1 is concerned with well known algorithms for solving PDE
constrained optimal control problems. Especially, their applicability to MPC
is discussed. The possibility to combine Model Predictive Control with Proper
Orthogonal Decomposition is demonstrated in Section 4.2. We compare known
algorithms as well as new approaches and analyse the advantages and disad-
vantages. In [77] and [38] the authors suggest to allow different optimization
horizons in each MPC step. In Section 4.3 we discuss if these algorithms are
suitable for the application on PDEs. Especially, we describe a new approach
how multigrid methods can be successfully used in this context.

• In the first part of Chapter 5 we introduce two semilinear PDEs which are used
as benchmark problems in Chapter 6. In detail we look at the nonmonoton
Schlögl equation and at the nonlinear model of a catalytic rod. Section 5.2
is about the actual implementation of the algorithms in the C++ sourcecode.
The focus is on the structure of the object-oriented classes. Furthermore,
fragments of the sourcecode are displayed to explain the functionality of the
program. A complete example is given in Appendix A. The sourcecode can be
found on the enclosed CD-ROM.

• The last Chapter 6 contains the numerical results of this thesis. In Section
6.1 we demonstrate that a real-time realization of the MPC algorithm is pos-
sible for the introduced examples in Section 5.1. Afterwards, in Section 6.2 we
compare the numerical performance of the optimization algorithms presented
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in Section 4.1 and the applicability to the MPC algorithm. We investigate
the computing time considering several parameters like discretization, opti-
mization horizon, regularization- and reaction parameter. The MPC-POD
algorithms introduced in Section 4.2 are analysed in Section 6.3. Finally, we
demonstrate the advantages and limitations of the adaptive horizon algorithms
presented in Section 6.4.

The main contributions of this thesis are:

• The theoretical analysis of the minimal stabilizing horizon in the MPC algo-
rithm for different classes of PDEs;

• The development of new algorithms and the numerical comparison with known
approaches;

• The implementation of the algorithms in a C++ software package;
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1 Mathematical Control Theory

In this Chapter we give a short introduction into mathematical control theory. Con-
trol theory is concerned with the analysis and design of control systems. In the
first part we present an overview about control systems where we focus on sampled
data systems, stability and Lyapunov functions. A detailed introduction into this
topic can be found in [86]. For an overview with the emphasis on linear infinite
dimensional systems we refer to [26]. In the second part we introduce the concept
of Model Predictive Control (MPC) with the focus on suboptimality estimates. Our
presentation is essentially based on [45].

1.1 Introduction to Control Theory

Control systems

In this section we introduce the concept of control systems. The goal is to control
the state of a system such that a desired behaviour is obtained. First, we give a
formal definition:

Definition 1.1
Let Y and U be reflexive Banach spaces. A control system is a quadruple Σ =
(T, Y, U, f) with state space Y , control space U and right hand side f : Df →
Y ∗, where Df is a subset of Y × U . For a time set T = R the system is called
continuous-time control system and the transition map is given by the solution of

ẏu(t) = f(yu(t), u(t)), yu(0) = y0, t ∈ R
+
0 , (1.1)

where y0 ∈ Y denotes the initial value. For T = N0 the system is called discrete-
time control system and the transition map is given by the solution of

yu(n+ 1) = f(yu(n), u(n)), yu(0) = y0, n ∈ N0. (1.2)

The space of control sequences u : T → U is denoted by U .
Definition 1.2
The function yu(t, y0) of (1.1) or (1.2) emanating from initial value yu(0) = y0 ∈ Y
is called solution trajectory of (1.1) or (1.2) for t ∈ T.

It should be mentioned that the choice of the spaces Y and U strongly depends
on the investigated PDE and the kind of control. In Section 2.2 we introduce the
appropriate function spaces and solution concepts for the PDEs considered in this
thesis.
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1 Mathematical Control Theory

Remark 1.3
We want to mention that the control theory literature generally denotes the state
by x and the state space by X. However, we use the notation y and Y while x
denotes the independent variable in the PDE. Furthermore, we use the abbreviation
y(·) = yu(·) when u(·) is apparent from the context.

It is important to note that state and control space are arbitrary reflexive Banach
spaces. This allows us to deal with ordinary as well as partial differential equations.
In control theory we distinguish between open-loop and closed-loop control systems.

Definition 1.4
Let a control system (1.1) or (1.2) be given. A function u : T → U based on some
initial condition y0 is called an open-loop control law. A function F : Y → U is
called closed-loop or feedback control law.

A schematic representation of both control concepts is displayed in Figure 1.1. The
control in the open-loop case only depends on the initial value and the model. The
main advantage of this approach is that the computation of an appropriate control
can usually be done offline.
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Figure 1.1: Schematic representation of an open-loop (above) and a closed-loop (be-
low) control system.

However, in practical applications the exact model is generally unknown and per-
turbations or uncertainties can occur. Thus, the open-loop control can lead to an
undesirable behaviour. In contrast to that the feedback control law is able to address
these problems, because the control depends on the current state. In Figure 1.1 we
observe the main difference between open-loop (above) and closed-loop (below) con-
trol: In the closed-loop case the control does not only use information about the
reference signal, but also about the currently measured state. Thus, the feedback
control is able to correct deviations from the desired behaviour. Since the current

2



1.1 Introduction to Control Theory

control is influenced by the current state the computation of the control sequence
has to be done online. Depending on the computational burden to determine the
feedback this can yield problems.

Obviously, the feedback law formally eliminates the control from the system and we
end up with the continuous-time dynamical system

ẏ(t) = f(y(t), F (y(t))) =: g(y(t)), t ∈ R (1.3)

with a function g : Y → Y . In the discrete case we obtain the so called discrete-time
dynamical system

y(i+ 1) = f(y(i), F (y(i))) =: g(y(i)), i ∈ N0. (1.4)

Next, we give an example for a continuous-time control system by the controlled
heat equation.

Example 1.5 (Heat equation)
We look at the linear heat equation

yt(x, t) = ∆y(x, t) + µy(x, t) + u(x, t) in Ω× (0,∞) (1.5a)

y(x, t) = 0 on ∂Ω× (0,∞) (1.5b)

y(x, 0) = y0(x) in Ω (1.5c)

with domain Ω ⊂ R
n, reaction parameter µ ∈ R and initial function y0(x). We use

the notation yt :=
∂y
∂t

for the time derivative and ∆ :=
∑n

i=1
∂2

∂x2i
for the Laplacian.

The state y(x, t) can be seen as the heat distribution inside the domain. In this
example the control u(x, t) acts as a heat source in the whole domain. The task is to
choose the control u in such a way that the corresponding temperature distribution
y is close to a prescribed temperature.
If we interpret the state as an abstract function we obtain that the state space is
given by y(t) := y(·, t) ∈ H1

0 (Ω) = Y . For the control space we get u(t) := u(·, t) ∈
L2(Ω) = U , cf. [91]. A precise definition of the corresponding function spaces as
well as the regularity results for this equation are presented in Section 2.2.

In control systems from practical applications the state and control values are often
restricted. For the previous example, for instance, it is natural to introduce con-
trol bounds, because the capacities for cooling and heating are generally restricted.
Therefore, it is reasonable to introduce nonempty subsets Y ⊂ Y and U ⊂ U which
contain the admissible values for state and control, respectively. A suitable choice
of control constraints in Example 1.5 are so called box constraints

U = {u ∈ L2(Ω) : ua ≤ u ≤ ub} (1.6)

with the lower and upper bound ua, ub ∈ L2(Ω), respectively. We want to point
out that in this thesis state and control constraints do not play an important role.

3
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Especially state constraints are a difficult task in the context of PDE constrained
optimization, cf. [52]. In the following we will not pay attention to feasibility issues.
Particularly, for discrete time control systems we assume that for each y ∈ Y there
exists a feasible control u ∈ U such that f(y, u) ∈ Y. This assumption is called
controlled forward invariance of Y, cf. [45].

Sampled data systems

Although most models in real applications and all systems considered in this thesis
are given by continuous time systems, in the context of Model Predictive Control
it is reasonable to interpret them as discrete time models. In order to convert a
continuous time system (1.1) into a discrete time system (1.2) we use the concept
of sampled data systems. Starting point is the continuous time system

ẏ(t) = f(y(t), v(t)) (1.7)

with control function v : R → V , where V denotes the continuous time control
space. Note that we change the notation of the control to distinguish between the
continuous control v and the discrete control u. We assume that (1.7) has a unique
solution ϕ(t, t0, y0, v) for all control functions v ∈ L∞(R, V ) and all initial values
y(t0) = y0 ∈ Y . For the continuous time PDEs investigated in this thesis this
requirement is met, see Section 2.2. Next we introduce an equidistant sampling grid
t0 < t1 < · · · < tN with tn = nT , where T > 0 denotes the sampling time. The
idea of sampling is to find a discrete time system (1.2) in which the values on the
sampling grid coincide with those of the continuous time system, i.e.,

ϕ(tn, t0, y0, v) = yu(n, y0), n = 0, 1, . . . , N. (1.8)

For the control function v ∈ L∞([t0, tN ], V ) we define the corresponding discrete
time control sequence u(·) ∈ UN with U = L∞([0, T ], V ) by

u(n) := v|[tn,tn+1](·+ tn), n = 0, . . . , N − 1. (1.9)

Since u(n) is the restriction of v onto the interval [tn, tn+1], equation (1.8) holds and
the trajectories of the discrete and continuous time system coincide on the sampling
grid, cf. [45]. The corresponding discrete time system is given by

y(n+ 1) = f(y(n), u(n)) := ϕ(T, 0, y(n), u(n)). (1.10)

Remark 1.6
By using the method of sampling we can reproduce every continuous time solution
at the sampling times. Motivated by this fact in the remaining chapter we restrict
ourselves to discrete time systems. The possibility to rewrite a continuous time sys-
tem in a discrete way is quite important in our theoretical investigations in Chapter
3.
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In the practical implementation it is necessary to use finite dimensional subspaces
U ⊂ L∞([0, T ], V ). A popular choice is the implementation via zero order hold
where the control u(n) remains constant on each sampling interval [tn, tn+1] and,
thus, we obtain u(n) ∈ V . The algorithmic realization in Chapter 4 is based on this
method.

Example 1.7 (Example 1.5 continued)
We apply the sampling method to the continuous time system (1.5). The unique
solution is denoted by ϕ(t, 0, y0, u). The corresponding sampled data system with
sampling time T > 0 is recursively defined by

y(n+ 1) := ϕ(T, 0, y(n), u(n)). (1.11)

With this definition we obtain y(n) = y(·, nT ) ∈ H1
0 (Ω) = Y , where y(x, t) denotes

the solution of (1.5). The discrete time control sequence is defined according to (1.9)
while the control space is given by u(n) ∈ U = L∞([0, T ], L2(Ω)).

Remark 1.8
We want to point out that an explicit solution of the continuous-time system (1.1)
is generally not available and it is necessary to discretize the system to obtain a
numerical approximation of the solution, see Section 2.3.2. Thus, a discrete-time
control system arises in a natural way. However, in our theoretical analysis we do
not investigate the influence of approximation errors and, thus, we assume that the
exact solution is known on the sampling grid. In order to be as close as possible to
this assumption in our numerical Chapter 6 we use a tolerance for the ODE solver
that is much higher than what is reasonable from a practical point of view.

Stability of control systems

Our goal in this thesis is to find a feedback law that stabilizes the system at an
equilibrium point. These points y∗ ∈ Y are characterized by

f(y∗, u∗) = y∗ (1.12)

for at least one control value u∗ ∈ U. For Example 1.5 it is obvious that the
uncontrolled equation (u ≡ 0) has the equilibrium y∗ ≡ 0. Throughout this thesis
we focus on stabilizing this equilibrium. In order to look at equilibrium points in
more detail we introduce the concept of stability. A suitable tool to describe stability
for nonlinear systems are so called comparison functions, cf. [85].

Definition 1.9
We define the following classes of comparison functions:

K := {α : R+
0 → R

+
0 | α is continuous and strictly increasing with α(0) = 0}

K∞ := {α : R+
0 → R

+
0 | α ∈ K, α is unbounded}

L := {δ : R+
0 → R

+
0 | δ is continuous and strictly decreasing with lim

t→∞
δ(t) = 0}

KL := {β : R+
0 × R

+
0 → R

+
0 | β is continuous, β(·, t) ∈ K, β(r, ·) ∈ L}

5
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In the next example we present an important representative of the class KL.

Example 1.10
We look at an exponentially decaying function. For an overshoot bound C ≥ 1
and a decay rate σ ∈ (0, 1) we define

β(r, n) = Cσnr. (1.13)

This function will play a dominant role in our theoretical investigations of parabolic
PDEs in Chapter 3.

Next, we use the comparison functions in order to define asymptotic stability for
discrete-time dynamical system, cf. [45].

Definition 1.11
Let y∗ ∈ Y be an equilibrium for the discrete-time dynamical system (1.4), i.e.,
g(y∗) = y∗. Then the equilibrium is said to be asymptotically stable if there
exists a neighbourhood N (y∗) and a KL function β such that for each y0 ∈ N (y∗)
the state trajectory y(n; y0), n ∈ N0 satisfies the inequality

‖y(n; y0)− y∗‖ ≤ β(‖y0 − y∗‖, n), n ∈ N0. (1.14)

Moreover, y∗ is called globally asymptotically stable if N (y∗) = Y .

In Example 1.5 the equilibrium y∗ ≡ 0 is globally asymptotically stable for µ < λ1,
where λ1 denotes the smallest eigenvalue of the negative Laplacian, see Section 3.1
for details. For µ > λ1 this equilibrium is unstable.
Now, we introduce the concept of Lyapunov functions which is an important tool to
prove stability of closed-loop control systems, cf. [45]. Lyapunov functions are often
interpreted as the energy of the system. Thus, they characterize the equilibrium as
the state where no energy in the system is present.

Definition 1.12
Let y∗ ∈ Y be an equilibrium point for the dynamical system (1.4) and Y ⊂ Y a
subset of the state space. A function V : Y → R

+
0 is called Lyapunov function

on Y if the following conditions are satisfied:

• There exist functions α1, α2 ∈ K∞ such that

α1(‖y − y∗‖) ≤ V (y) ≤ α2(‖y − y∗‖) (1.15)

holds for all y ∈ Y.

• There exists a function αV ∈ K such that

V (g(y)) ≤ V (y)− αV (‖y − y∗‖) (1.16)

holds for all y ∈ Y with g(y) ∈ Y.
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1.2 Model Predictive Control

Moreover, if Y = Y , then V (·) is called global Lyapunov function.

Lyapunov functions are well suited to analyse stability of dynamical systems, be-
cause (under suitable conditions) the existence of a Lyapunov function is a sufficient
condition for stability, cf. [45]. Next, we transfer the concept of stability to discrete-
time control systems.

Definition 1.13
Let y∗ ∈ Y be an equilibrium for the discrete-time control system (1.2), i.e., f(y∗, u∗) =
y∗. Then the equilibrium is said to be asymptotically controllable if there exists
a neighbourhood N (y∗) and a KL function β such that for each y0 ∈ N (y∗) there
exist a control sequence u ∈ U∞ that guarantees

‖yu(n; y0)− y∗‖ ≤ β(‖y0 − y∗‖, n), n ∈ N0. (1.17)

Moreover, y∗ is called globally asymptotically controllable if N (y∗) = Y .

Remark 1.14
We want to point out that there exists a wide range of different concepts concerning
controllability. Especially for infinite dimensional systems we distinguish between
approximately controllable, exactly controllable and null controllable, cf.
[25]. An introduction into controllability of linear infinite dimensional systems can
be found in [26]. A detailed overview with the focus on parabolic and hyperbolic PDEs
is given in [102]. Although these concepts are not in the focus of this thesis, we want
to point out that the considered PDEs in the ensuing chapters possess a property
that is called null controllable in time T . This means that for each initial
function y0 there exists a control u and a time T > 0 such that yu(T ) = 0, where
the corresponding function spaces depend on the considered PDE. It can be shown
that the linear heat equation with finite domain is null controllable for arbitrarily
small values of T , cf. [102]. Under suitable conditions on the nonlinearity the same
holds true for the semilinear heat equation, cf. [33]. In contrast to that the boundary
controlled wave equation is null controllable in time T > 0, where T depends on
the domain and, thus, cannot be arbitrarily small. This fact is due to the finite
propagation speed of the wave and will play an important role in our investigations
in Section 3.7. We want to mention that the analysis concerning controllability
becomes much more complicated if state or control constraints are incorporated.

1.2 Model Predictive Control

In this section we introduce the concept of Model Predictive Control (MPC). In re-
cent years the idea to apply MPC to infinite dimensional systems becomes popular.
The possibility to solve large scale optimal control problems in a reasonable time
plays a role in this context. Since there is much literature concerning this topic
we only want to give a short overview. An important application of MPC is given
by the control of fluid flows. This subject is strongly related to the control of the

7
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Navier-Stokes equation and can be found, e.g., in [16] and [37]. In [30], [28] and [29]
the authors apply MPC to parabolic PDEs which originate from process engineer-
ing. A relatively new approach is given by the combination of predictive control
with model reduction techniques. In this context the reduction technique Proper
Orthogonal Decomposition plays an important role and the combination with MPC
is investigated e.g. in [3], [54] and [37]. In Section 4.2 we will use this concept as
well. A stability analysis of the MPC method for a general class of abstract PDEs is
presented in [57], where the focus is on control Lyapunov functions. Finally, we want
to mention that instantaneous control can be interpreted as an MPC variant with
the shortest possible horizon. (Note that the use of the term instantaneous control
is not unique, see the discussion in Section 3.7.2.) This method was successfully
applied to flow control problems, cf. [50], and to the control of the Fokker-Planck
equation, cf. [10].

In the following the aim is to stabilize the equilibrium y∗ of the discrete-time con-
trol system with a feedback law F : Y → U. Stabilize means in this context
that we want to find a feedback, such that the corresponding closed-loop system
is asymptotically stable. In order to measure the distance of the current state y to
the desired equilibrium we introduce the continuous stage costs (also called running
costs) l : Y × U → R

+
0 . It is often reasonable to penalize the control effort in the

current step as well. In practical applications, for instance, one should have in mind
that the insertion of high energy can be expensive. Furthermore, for theoretical and
computational reasons it is useful to take the control costs into account. We chose
stage costs which are nonnegative and uniquely identify the equilibrium y∗, i.e.,

l(y∗, u∗) = 0 and l(y, u) > 0 for all y ∈ Y, u ∈ U with y 6= y∗. (1.18)

In this thesis we always assume y∗ = 0 and u∗ = 0. Therefore, in the remaining
chapter we restrict ourselves to consider this case.
For Example 1.5 suitable stage costs are given by

l(y(n), u(n)) =
1

2
‖y(·, nT )‖2L2(Ω) +

λ

2
‖u(·, nT )‖2L2(Ω), (1.19)

i.e., we penalize the state as well as the control in the L2(Ω)-norm, cf. [91]. The
constant λ > 0 denotes a so called regularization or Tikhonov parameter.

Definition 1.15
Let a discrete time control system (T, X, U, f) be given. Then we define the cost
functional JN : Y × UN → R

+
0 by

JN(y0, u(·)) :=
N−1∑

n=0

l(yu(n, y0), u(n)) (1.20)

with optimization horizon N ∈ N≥2 and y0 ∈ Y . The corresponding optimal
value function VN : Y → R

+
0 is denoted by

VN(y0) := inf
u(·)∈UN

JN (y0, u(·)). (1.21)
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A control sequence u∗(·) ∈ U
N is called optimal control sequence for the finite

horizon problem, if

VN (y0) = JN(y0, u
∗(·)) (1.22)

holds. Analogously, we define the infinite horizon cost functional

J∞(y0, u(·)) :=
∞∑

n=0

l(yu(n, y0), u(n)) (1.23)

with corresponding optimal value function

V∞(y0) := inf
u(·)∈U∞

J∞(y0, u(·)). (1.24)

A control sequence u∗(·) ∈ U
∞ is called optimal control sequence for y0, if

V∞(y0) = J∞(y0, u
∗(·)) (1.25)

holds. The corresponding trajectory y∗u(·, y0) is called optimal trajectory.

In the following we assume that V∞(y0) < ∞. By using Bellman’s optimality prin-
ciple, cf. [86], one can derive an optimal feedback law.

Theorem 1.16
For an initial value y0 ∈ Y we define the optimal feedback law

u∗(n) := F (yu(n, y0)) := argmin
v∈U

{V∞(f(yu(n, y0), v)) + l(yu(n, y0), v)}. (1.26)

Then u∗(·) minimizes the infinite horizon cost functional (1.23). The resulting feed-
back is also called infinite horizon optimal control law. Furthermore, it holds
that

J∞(y0, F ) = V∞(y0). (1.27)

The proof can be found e.g. in [45]. Note that we need to assume that the minimum
in (1.26) actual exists. Although Theorem 1.16 provides a possibility to obtain a
feedback law, for practical applications this method is not suitable, because it re-
quires the knowledge of V∞(y). Thus, we have to solve an infinite horizon optimal
control problem in each step, which is even for finite dimensional systems a difficult
task. The approach to solve this optimization problem for a high dimensional sys-
tem via Hamilton-Jacobi-Bellman equations seems to be for the foreseeable future
not appropriate, cf. [62]. However, there exist new approaches where this method is
combined with a model reduction technique, cf. [65] and [60]. For the special case
of a linear system without state and control constraints the solution of the infinite
horizon optimization problem can be obtained by solving algebraic Riccati equations,
cf. [15].
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In order to overcome the problem of solving an optimal control problem on an
infinite horizon we use the concept of Model Predictive Control (MPC). The idea is
to substitute the infinite horizon problem by an iterative sequence of finite horizon
optimization problems. For this purpose we define the Optimal Control Problem
with horizon N (OCPN)

min
u(·)∈UN

JN(y0, u(·)) :=
N−1∑

n=0

l(yu(n, y0), u(n)) (1.28a)

subject to

yu(0, y0) = y0, yu(n+ 1, y0) = f(yu(n, y0), u(n)). (1.28b)

It should be mentioned that in our notation the shortest reasonable horizon is given
by N = 2. (The motivation for this notation is that the optimal control problem
with horizon N leads to a control sequence with N elements.)
In Figure 1.2 we display one step of the Basic MPC Algorithm 1.1. The previously
applied controls and the trajectory in the past are coloured in black. In the first
step we measure the current state y(n) and set y0 := y(n). Afterwards, we solve
the finite horizon optimal control problem (1.28) to obtain the open loop optimal
control sequence u∗(·) (blue) and the corresponding open loop trajectory yu(·) (red).
In the last step we apply the MPC feedback FN(y(n)) := u∗(0) to the system and get
the next state yFN

(n+1). This means that the first element of the open loop control
sequence provides the feedback law in this step. By shifting the horizon forward in
time and repeating this procedure we obtain the MPC feedback on an infinite time
horizon, see Figure 1.2 (below). The resulting MPC closed loop trajectory is given
by

yFN
(n + 1) = f(yFN

(n), FN (yFN
(n))). (1.29)

In order to rate the quality of the MPC feedback we look at the cost functional on
the infinite horizon

V FN
∞ (y0) :=

∞∑

n=0

l(yFN
(n), FN(yFN

(n))). (1.30)

Obviously, the cost produced by the MPC feedback is always higher than or equal
to the cost obtained by the optimal feedback, i.e., we have V FN

∞ (y0) ≥ V∞(y0).

1 for n = 0, 1, 2, . . . do
2 Measure the state y(n) ∈ Y ;
3 Set y0 := y(n), solve the optimal control problem (1.28) and denote the

obtained optimal control sequence by u∗(·) ∈ U
N(y0);

4 Define the MPC-feedback FN(y(n)) := u∗(0) ∈ U and use this control in
the next sampling period;

5 end

Algorithm 1.1: Basic MPC Algorithm
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Figure 1.2: Illustration of the basic MPC Algorithm 1.1: The figures above display
the predicted control (blue) and the corresponding state trajectory (red)
in the current MPC step. The first element of the control sequence
is implemented as a feedback, i.e., FN (y(n)) = u(0). Afterwards, the
horizon is shifted and the procedure is repeated (below).

In the following we want to answer two important questions which arise in the
context of MPC:

• Does the MPC feedback stabilize the closed loop system (1.29) for a given
optimization horizon N?

• How good is the MPC feedback with horizon N compared to the optimal
feedback (1.26)?

Remark 1.17
We want to point out that in the MPC literature stabilizing terminal constraints
or terminal costs are often introduced in the optimization problem (1.28) to prove
stability of the MPC closed loop system, cf. [80]. In contrast to that we use the
MPC scheme without artificial constraints, because these problems are much eas-
ier to handle from the numerical point of view. Especially, incorporating terminal
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constraints in the PDE constrained optimization problem is a difficult task and only
very few literature about this topic is available. In [57] the authors present a method
to construct control Lyapunov functions as terminal costs for a class of semilinear
PDEs. However, for more complicated infinite dimensional systems the construction
of these functions seems to be a delicate problem. Finally we want to mention that
unconstrained MPC schemes are often used in industrial applications, cf. [79].

In order to answer the question concerning the quality of the MPC feedback we use
the concept of the relaxed Lyapunov inequality, cf. [43]. The proof of the following
theorem can be found in [45].

Theorem 1.18
Let FN : Y → U be a feedback law and VN : Y → R

+
0 a function which satisfies the

relaxed Lyapunov inequality

VN(f(y, FN(y))) ≤ VN(y)− αl(y, FN(y)) (1.31)

for some α ∈ (0, 1] and all y ∈ Y. Then the suboptimality estimate

V FN
∞ (y) ≤ 1

α
V∞(y) (1.32)

holds for all y ∈ Y.
If, in addition, K∞-functions η, η exist satisfying

η(‖y‖) ≤ l∗(y) := min
u∈U

l(y, u) and VN(y) ≤ η(‖y‖) (1.33)

for all y ∈ Y, then the closed loop system (1.29) is asymptotically stable and, thus,
in particular converges to the equilibrium y∗ = 0 as n→ ∞.

The parameter α is called suboptimality degree because it measures the performance
of the MPC feedback compared to the optimal feedback. An α value close to 1
indicates that the MPC feedback is nearly as good as the optimal feedback. For a
small α > 0 we can guarantee stability, however, with possibly bad performance. If
α ≤ 0, no statement about the stability of the closed loop system is possible.
The next goal is to present a possibility to determine the value of α. For this purpose
we introduce the exponential controllability with respect to the stage costs l.

Definition 1.19
The system (1.2) is called exponentially controllable with respect to the stage
costs l if there exist an overshoot bound C ≥ 1 and a decay rate σ ∈ (0, 1) such that
for each y ∈ Y there exists uy ∈ U satisfying

l(yuy(n; y), uy(n)) ≤ Cσnmin
u∈U

l(y, u) = Cσnl∗(y) (1.34)

for all n ∈ N0.
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It is important to note that we do not require that uy ∈ U is in any sense optimal.
By using the exponential controllability we can formulate the following theorem
which forms the basis of our analysis in Chapter 3. The proof can be found in [46].

Theorem 1.20 (Stability Theorem)
Let the controllability condition (1.34) holds with overshoot constant C ≥ 1 and
decay rate σ ∈ (0, 1). Furthermore, let the prediction horizon N be chosen such that
the stability condition

αN := 1− (γN − 1)
∏N

i=2(γi − 1)
∏N

i=2 γi −
∏N

i=2(γi − 1)
> 0 (1.35)

holds with γi := C
∑i−1

n=0 σ
n. Then, the relaxed Lyapunov Inequality (1.31) holds

with α = αN for each y ∈ Y and, consequently, the suboptimality estimate

V FN
∞ (y) ≤ 1

αN
V∞(y), y ∈ Y. (1.36)

If, in addition, K∞-functions η, η exist satisfying

η(‖y‖) ≤ l∗(y) ≤ η(‖y‖) (1.37)

for all y ∈ Y , then the closed loop system (1.29) is asymptotically stable and thus in
particular converges to the equilibrium y∗ = 0 as n→ ∞.

Note that condition (1.37) is always satisfied for the quadratic stage costs considered
in this thesis. For the stage cost (1.19) we have

l∗(y) = min
u∈U

l(y, u) =
1

2
‖y‖2L2(Ω) (1.38)

and, thus, we can choose η(r) = η(r) = 1
2
r2.

Remark 1.21
It should be mentioned that αN > 0 is a sufficient condition to guarantee stability of
the MPC closed loop system. For αN ≤ 0 no statement about the stability behaviour
of a concrete system is possible. Theorem 1.20 is tight in the following sense: If
αN < 0, then there exist a control system (1.2) and stage cost l such that the
exponential controllability condition (1.34) holds, but the MPC closed loop system
(1.29) is not asymptotically stable. The proof is given in [45].

The choice of an appropriate horizon is an important task in the construction of
an MPC controller: On the one hand a too short horizon can yield an unstable
behaviour or a poor performance. On the other hand a large horizon leads to an
optimization problem which requires much more computing time.
In order to investigate αN in more detail we visualize formula (1.35) by using the
concept of stability regions introduced by [94]. The value of αN only depends on
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1 Mathematical Control Theory

the exponential constants C, σ and on the optimization horizon N . For a given
suboptimality degree ᾱ we display the regions in the (C, σ)-plane where we have
αN ≥ ᾱ for different optimization horizons N . Since we are especially interested in
the minimal stabilizing horizon, we consider ᾱ = 0. In Figure 1.3 we observe that
the required horizon N is small if the overshoot bound C is close to 1 or the decay
rate σ close to 0. However, it can be seen that the influence of both constants is very
different: For a fixed value of σ it is possible to obtain stability with the shortest
reasonable horizon N = 2 by reducing the value of C. For a fixed value of C this is
generally impossible, even for arbitrarily small values of the decay rate σ.
This observation plays an important role in our theoretical analysis in Chapter 3. If

Figure 1.3: Stability areas for different optimization horizons N in dependence of C
and σ

one can use the stage cost l as design variable this fact can be exploited to construct
an MPC controller which only requires a short horizon. The idea is to reduce the
value of the overshoot bound C by a subtle design of l, see Chapter 3 for details.

Remark 1.22
It should be noted that there are further approaches for the stabilization of PDEs
beside MPC. Well known methods, which are originally developed for finite dimen-
sional systems, are the concepts PID control and pole placement, cf. [90]. The
application of Lyapunov based techniques to nonlinear hyperbolic and parabolic
PDEs can be found in [23]. A further approach to stabilize infinite dimensional
systems is given by the Gramian technique. In [25] this method was successfully
applied to rotating body-beam systems and to the Euler equation from fluid dynam-
ics. In recent years the concept of backstepping has become popular. The main

14



1.2 Model Predictive Control

advantage is that the stabilizing feedback is often given in an explicit way. (We will
use this property in Chapter 3.) However, the main advantage of the MPC approach
is that state and control constraints can be incorporated in contrast to most other
methods.

15





2 Optimal Control of PDEs

This chapter deals with the analysis of PDE constrained optimal control problems
and with the discretization of the corresponding PDEs. In the first section we
introduce an abstract optimization problem in a Banach space and recapitulate
the first order necessary conditions. The presentation essentially follows [52]. In
Section 2.2 we present some existence and regularity results for the optimal control
problems investigated in this thesis. The main theorems concerning the semilinear
heat equation can be found in [91]. Discretization schemes for PDEs are introduced
in Section 2.3. For the spatial discretization we focus on the Galerkin method. In
this context we discuss the Finite Element Method (FEM), cf. [42], and the model
reduction technique Proper Orthogonal Decomposition (POD), cf. [96]. We close
this chapter by presenting a simple example for the time discretization: the semi-
implicit Euler method. It should be mentioned that there is a wide range of literature
on the topics considered in this chapter and it is far out of the scope of this thesis to
give an overview. We will also not introduce all required concepts from functional
analysis.

2.1 Banach Space Optimization

In this section we look at an optimal control problem in the following general form

min
y∈Y,u∈U

J(y, u) subject to e(y, u) = 0, u ∈ U (2.1)

with the objective function J : Y × U → R and the state equation e : Y × U → Z.
The Banach spaces U, Y and Z are assumed to be reflexive. In the context of our
PDE constrained optimal control problem J(y, u) denotes the cost functional (also
called objective function), e(y, u) = 0 represents the PDE and the admissible set of
control values U is given by pointwise box constraints. As already said in Chapter 1
state constraints are not the focus of this thesis. In the context of PDE constrained
optimization the theoretical analysis as well as the numerical implementation of
state constraints are much more involved compared to the ODE case, cf. [52].
First, we require some definitions from optimal control theory:

Definition 2.1

1. A state-control pair (ȳ, ū) ∈ Y × U is called optimal for (2.1) if and only if
e(ȳ, ū) = 0 and

J(ȳ, ū) ≤ J(y, u) for all (y, u) ∈ Y × U, e(y, u) = 0. (2.2)
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2 Optimal Control of PDEs

2. A functional F : X → R is called weakly lower semicontinuous if and
only if

xk ⇀ x ⇒ lim inf
k→∞

F (xk) ≥ F (x), (2.3)

where we use the notation xk ⇀ x for the weak convergence.

3. The operator F : U ⊂ X → Y is called Fréchet differentiable (F-differentiable)
at x ∈ U if there exists a bounded linear operator F ′ ∈ L(X, Y ) such that

lim
‖h‖X→0

1

‖h‖X
‖F (x+ h)− F (x)− F ′(x)h‖Y = 0. (2.4)

We use the notation 〈·, ·〉V ∗,V for the duality pairing in the Banach space V and
〈·, ·〉V for the scalar product if V is a Hilbert space. The following assumptions are
required to prove existence of an optimal pair (ȳ, ū).

Assumption 2.2

1. U ⊂ U is convex, nonempty, bounded and closed.

2. The state equation e(y, u) = 0 has a bounded unique solution operator u ∈
U 7→ y(u) ∈ Y .

3. (y, u) ∈ Y × U 7→ e(y, u) ∈ Z is continuous under weak convergence.

4. J is weakly lower semicontinuous in y and u.

The proof of the following existence theorem can be found in [52]:

Theorem 2.3
Let Assumption 2.2 hold. Then problem (2.1) has an optimal solution (ȳ, ū).

Note that the first assumption is always satisfied in the case of box constraints.
The second assumption is quite important for the theoretical analysis as well as
for the numerical algorithms. By using the solution operator y = y(u) =: S(u),
where S is the so called control to state operator, we can eliminate the constraints
e(y, u) = 0 from the optimization problem. This leads to the reduced cost functional
Ĵ(u) := J(S(u), u) and the reduced optimization problem

min
u∈U

Ĵ(u) = min
u∈U

J(S(u), u). (2.5)

In the context of optimal control this procedure is very reasonable because there
is the independent control input u and the state variable y, which depends on the
control. The reduced control problem is the starting point for the optimization
algorithms presented in Section 4.1. In Chapter 4 we also need the ability of com-
puting the derivatives of the reduced cost functional. Therefore, we assume that J
and e are continuously F-differentiable and there exists a unique solution operator
u ∈ U 7→ y(u) ∈ Y . If in addition ey(y(u), u) ∈ L(Y, Z) is continuously invertible,
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2.1 Banach Space Optimization

the implicit function theorem ensures that y(u) is continuously differentiable. Differ-
entiating the state equation with respect to u yields ey(y(u), u)y

′(u)+eu(y(u), u) = 0
and, thus,

y′(u) = −ey(y(u), u)−1eu(y(u), u). (2.6)

By using this equation and after some calculations, cf. [52], we obtain the well known
representation of the first derivative of the reduced cost functional

Ĵ ′(u) = eu(y(u), u)
∗p(u) + Ju(y(u), u) (2.7)

where the adjoint state p = p(u) ∈ Z∗ satisfies the adjoint equation

ey(y(u), u)
∗p = −Jy(y(u), u). (2.8)

Thus, the derivative Ĵ ′(u) can be computed by the following algorithm:

• Determine the adjoint state by solving the adjoint equation (2.8).

• Compute Ĵ ′(u) via (2.7).

Note that in Chapter 4 we will also use the gradient ∇Ĵ , which is the Riesz repre-
sentation of the derivative Ĵ ′. However, in the literature this notation is not unique.

In order to derive a representation of the second derivative it is reasonable to intro-
duce the so called Lagrange function L : Y × U × Z∗ → R

L(y, u, p) = J(y, u) + 〈p, e(y, u)〉Z∗,Z . (2.9)

The Lagrange function is also a useful tool to write the necessary optimality con-
ditions in a compact form, see Theorem 2.4. Since we are interested in the second
derivative of the reduced functional, we assume that J and e are twice continuously
F-differentiable. The derivation of the following formula can be found in [52]

Ĵ ′′(u) =y′(u)∗Lyy(y(u), u, p(u))y
′(u) + y′(u)∗Lyu(y(u), u, p(u))

+ Luy(y(u), u, p(u))y
′(u) + Luu(y(u), u, p(u)). (2.10)

In Chapter 4.1 we will explain that it is generally not necessary to compute the
whole operator Ĵ ′′(u), but only operator-vector-products Ĵ ′′(u)s. By using formula
(2.10) and the representation of y′(u) (2.6), we obtain the following algorithm to
calculate these products, cf. [52]:

• Compute the sensitivity

ey(y(u), u)δsy = −eu(y(u), u)s

• Compute

h1 = Lyy(y(u), u, p(u))δsy + Lyu(y(u), u, p(u))s

h2 = Luy(y(u), u, p(u))δsy + Luu(y(u), u, p(u))s
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2 Optimal Control of PDEs

• Compute
ey(y(u), u)

∗h3 = −eu(y(u), u)∗h1
and set Ĵ ′′(u)s = h2 + h3.

Finally, we present the important first order necessary conditions for the abstract
optimization problem (2.1). The proof can be found in [52].

Theorem 2.4
Let (ȳ, ū) be an optimal solution of the problem (2.1) and let Assumption 2.2 hold.
Furthermore we assume that J and e are continuously F-differentiable and that
ey(y(u), u) ∈ L(Y, Z) has a bounded inverse for all u ∈ U. Then there exists an
adjoint state (or Lagrange multiplier) p ∈ Z∗ such that the following optimality
conditions hold

e(ȳ, ū) = 0, (2.11a)

ey(ȳ, ū)
∗p = −Jy(ȳ, ū), (2.11b)

〈Ju(ȳ, ū) + eu(ȳ, ū)
∗p, u− ū〉U∗,U ≥ 0 ∀u ∈ U. (2.11c)

Using the Lagrange function (2.9) we can write (2.11) in the compact form

Lp(ȳ, ū, p) = e(ȳ, ū) = 0, (2.12a)

Ly(ȳ, ū, p) = 0, (2.12b)

〈Lu(ȳ, ū, p), u− ū〉U∗,U ≥ 0 ∀u ∈ U. (2.12c)

We close this section with a short discussion of the variational inequality (2.11c). For
this purpose we again address the reduced control problem. The following theorem
presents an alternative representation of (2.11c) in the case of box constraints by
introducing Lagrange multipliers. The proof can be found in [52].

Theorem 2.5
Let U = L2(Ω), ua, ub ∈ L2(Ω), ua ≤ ub and U be given by

U = {u ∈ L2(Ω) : ua ≤ u ≤ ub}. (2.13)

Then the following conditions are equivalent

• ū ∈ U,

〈Ju(y(ū), ū) + eu(y(ū), ū)
∗p, u− ū〉U = 〈∇Ĵ(ū), u− ū〉U ≥ 0 ∀u ∈ U. (2.14)

• There are Lagrange multipliers µb, µa ∈ U∗ = L2(Ω) with

∇J(ū) + µb − µa = 0 (2.15a)

µa ≥ 0, ua − ū ≤ 0, 〈µa, ua − ū〉U = 0 (2.15b)

µb ≥ 0, ū− ub ≤ 0, 〈µb, ū− ub〉U = 0. (2.15c)
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2.2 Optimal Control of PDEs

2.2 Optimal Control of PDEs

In this section we start with the definition of the required function spaces. A detailed
introduction can be found in [32]. Especially, the precise definition of a Lipschitz
domain and weak derivatives can be found there. Furthermore, we assume that the
definition of the Lebesgue spaces Lp(Ω) with the corresponding Lp-norm

‖u‖Lp(Ω) =

(∫

Ω

|u(x)|p dx
)1/p

, p ∈ [1,∞),

‖u‖L∞(Ω) = ess sup
x∈Ω

‖u(x)‖

is known. Functions which only differ on a set of measure zero belong to the same
equivalence class. Next, we introduce the so called Sobolev spaces

Definition 2.6
Let Ω ∈ R

n with boundary Γ := ∂Ω be open. For k ∈ N0, p ∈ [1,∞], we define the
Sobolev space W k,p(Ω) by

W k,p(Ω) := {u ∈ Lp(Ω) : u has weak derivativesDαu ∈ Lp(Ω) for all |α| ≤ k}
with the associated norm

‖u‖W k,p(Ω) :=




∑

|α|≤k
‖Dαu‖pLp(Ω)





1/p

, p ∈ [1,∞)

‖u‖W k,∞(Ω) :=
∑

|α|≤k
‖Dαu‖L∞(Ω).

• For the important case p = 2 we define Hk(Ω) := W k,2(Ω).

• The closure of C∞
0 (Ω) in W k,p(Ω) is denoted by W k,p

0 (Ω).

• The dual space of the Hilbert space H1
0 (Ω) is denoted by H−1(Ω).

In the context of parabolic PDEs it is reasonable to interpret the solution y(x, t)
as an abstract function (also called vector-valued function) y(t) = y(·, t) ∈ X with
values in the Banach space X .

Definition 2.7
For 1 ≤ p < ∞ we denote by Lp(a, b;X) the Banach space of abstract functions
y : [a, b] → X with the property

∫ b

a

‖y(t)‖pX dt <∞. (2.16)

The corresponding norm is given by

‖y‖Lp(a,b;X) :=

(∫ b

a

‖y(t)‖pX dt

)p

. (2.17)
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2 Optimal Control of PDEs

Analogously, we define the Banach space L∞(a, b;X) by

‖y‖L∞(a,b;X) := ess sup
t∈[a,b]

‖y(t)‖X <∞. (2.18)

For a Hilbert space V we introduce the space

W (0, T ;V ) := {y : y ∈ L2(0, T ;V ), yt ∈ L2(0, T ;V ∗)} (2.19)

with the associated norm

‖y‖W (0,T ;V ) :=

(∫ T

0

(‖y(t)‖2V + ‖yt(t)‖2V ∗) dt

)

. (2.20)

For the important case V = H1(Ω) we write

W (0, T ) := {y : y ∈ L2(0, T ;H1), yt ∈ L2(0, T ;H−1)}.

Next, we present the Friedrichs-Poincaré inequality (also known an Friedrichs in-
equality). The proof can be found in [24].

Theorem 2.8
Let Ω ⊂ R

n denote a bounded Lipschitz domain and let Γ0 ⊂ Γ be a measurable set
such that |Γ0| > 0. Then there exists a constant c > 0 such that

∫

Ω

|y|2 dx ≤ c

∫

Ω

|∇y|2 dx (2.21)

for all y ∈ H1(Ω) that satisfy y = 0 on Γ0.

This useful inequality will play an important role in our theoretical investigations.
Therefore, in Chapter 3 we will use a version of this inequality where the best
Friedrichs constant is explicitly given.

Now, we have the necessary tools to analyse the semilinear heat equation with a
distributed control function u(x, t) and Neumann control v(x, t) on the boundary

yt(x, t)−∆y(x, t) + f(y(x, t)) = u(x, t) in Q := Ω× (0, T ) (2.22a)

∂νy(x, t) = v(x, t) on Σ := Γ× (0, T ) (2.22b)

y(0, x) = y0(x) in Ω (2.22c)

In most practical applications only one of these control functions is present in the
system.

Remark 2.9
It should be mentioned that most theorems presented in this section are (under suit-
able conditions) valid for more general PDEs :
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2.2 Optimal Control of PDEs

• The negative Laplacian can be replaced by an elliptic differential operator

Ay(x) = −
n∑

i,j=1

Di(aij(x)Djy(x)), x ∈ Ω

satisfying
∑n

i,j=1 aij(x)ξiξj ≥ γ|ξ|2, γ > 0, ∀ξ ∈ R
n.

• The nonlinear function f may depend on x and t, i.e., f(x, t, y).

• A nonlinear function b(x, t, y) can be incorporated on the boundary.

• A homogeneous Dirichlet condition can be imposed on the boundary.

In general, one cannot expect to find classical solutions of (2.22) and, thus, we are
interested in so called weak solutions. For this purpose we multiply equation (2.22a)
with φ ∈ H1(Ω) and integrate over Ω. Using integration by parts we obtain

∫

Ω

yt(x, t)φ(x) dx+

∫

Ω

∇y(x, t)∇φ(x) dx+
∫

Ω

f(y(x, t))φ(x) dx

=

∫

Ω

u(x, t)φ(x) dx+

∫

Γ

v(x, t)φ(x) dS. (2.23)

This representation also forms the basis of the Galerkin method presented in Section
2.3.1.

Definition 2.10
A function y ∈ W (0, T ) is called weak solution of (2.22) if

• (2.23) holds for each φ ∈ H1(Ω) and a.e. time 0 ≤ t ≤ T

• and the initial condition y(0) = y0 is satisfied.

The following assumptions are required to prove the existence of a weak solution:

Assumption 2.11
Let Ω ⊂ R

n, n ≥ 1, be a bounded Lipschitz domain (for n = 1 a bounded interval).
The function f is assumed to be locally Lipschitz, continuous and monotonically
increasing.

Theorem 2.12
Suppose that Assumption 2.11 hold. Then the semilinear parabolic initial value
problem (2.22) has a unique weak solution y ∈ W (0, T ) ∩ C(Q̄) for any triple
u ∈ Lr(Q), v ∈ Ls(Σ) and y0 ∈ C(Ω̄) with r > n/2 + 1, and s > n+ 1.

The proof of an even more general result can be found in [81]. The uniqueness is
quite important, because it guarantees the existence of a unique control to state
mapping S : Lr(Q)× Ls(Σ) →W (0, T ) ∩ C(Q̄), (u, v) 7→ y.
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2 Optimal Control of PDEs

After these results concerning the state equation we introduce the general cost func-
tional, cf. [91],

min J(y, u, v) :=

∫

Ω

φ(y(x, T )) dx+

∫∫

Q

ϕ(y(x, t), u(x, t)) dxdt

∫∫

Σ

ψ(y(x, t), v(x, t)) dSdt. (2.24)

Assumption 2.13

• Ω ⊂ R
n is a bounded Lipschitz domain.

• The functions φ, ϕ and ψ are twice differentiable with respect to y, u and v.

• Let ϕ and ψ be convex with respect to u and v, respectively.

• We have fy(y) ≥ 0 and y0 ∈ C(Ω̄).

• The sets of admissible control values are given by

U = {u ∈ L∞(Q) : ua(x, t) ≤ u(x, t) ≤ ub(x, t) for a.e. (x, t) ∈ Q}
V = {v ∈ L∞(Σ) : va(x, t) ≤ v(x, t) ≤ vb(x, t) for a.e. (x, t) ∈ Σ}

with ua, ub ∈ L∞(Q), ua(x, t) ≤ ub(x, t) and va, vb ∈ L∞(Σ), va(x, t) ≤ vb(x, t).

The existence of an optimal control can be shown with these assumptions, cf. [91].

Theorem 2.14
Suppose that Assumption 2.13 holds. Then the optimal control problem with cost
functional (2.24) and PDE (2.22) has at least one optimal pair (ū, v̄) ∈ U×V with
associated state ȳ = y(ū, v̄).

We close the investigation of this optimal control problem by presenting the first
order optimality conditions, cf. [91].

Theorem 2.15
Suppose that Assumption 2.13 is satisfied and let (ū, v̄) an optimal control pair for
the optimal control problem with cost functional (2.24) and state equation (2.22).
Let the adjoint state p ∈ W (0, T ) ∩ L∞(Q) be the solution of the corresponding
adjoint equation

−pt(x, t)−∆p(x, t) + fy(ȳ(x, t))p(x, t) = ϕy(ȳ(x, t), ū(x, t)) in Q (2.25a)

∂νp(x, t) = ψy(ȳ(x, t), v̄(x, t)) on Σ (2.25b)

p(x, T ) = φy(ȳ(x, T )) in Ω. (2.25c)

Then the variational inequalities
∫∫

Q

(p(x, t) + ϕu(ȳ(x, t), ū(x, t)))(u(x, t)− ū(x, t)) dxdt ≥ 0 ∀u ∈ U (2.26a)

∫∫

Σ

(p(x, t) + ψv(ȳ(x, t), v̄(x, t)))(v(x, t)− v̄(x, t)) dxdt ≥ 0 ∀v ∈ V (2.26b)

are satisfied.
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2.2 Optimal Control of PDEs

Obviously, we have exactly the same structure as in Theorem 2.4 where we investi-
gated the abstract optimal control system: The necessary conditions consist of the
state equation (2.22), the adjoint equation (2.25) and the variational inequalities
(2.26).

Example 2.16
In this example we consider the semilinear heat equation with distributed control
and a quadratic cost functional. To shorten the notation we neglect the function
arguments. We look at the optimal control problem

min J(y, u) =
1

2
‖y − yd‖L2(Q) +

λ

2
‖u‖L2(Q) (2.27)

subject to

yt −∆y + f(y) = u in Q

∂νy = 0 on Σ

y(0) = y0 in Ω

where λ > 0 denotes a regularization parameter and yd the desired state. Then the
adjoint equation is given by

−pt −∆p + fy(ȳ)p = ȳ − yd in Q

∂νp = 0 on Σ

p(T ) = 0 in Ω.

For the variational inequality we obtain

∫∫

Q

(p+ λū)(u− ū) ≥ 0 ∀u ∈ U.

By using the projection operator P[ua,ub](v) := max{ua,min{ub, v}}, the varia-
tional inequality can be written in the following useful form, cf. [91],

ū(x, t) = P[ua,ub]

{

−1

λ
p(x, t)

}

.

Remark 2.17
In Section 3.1 we analyse a larger class of semilinear PDEs which is not fully covered
by the theorems in this section. This especially concerns the non monotonic Schlögl
equation presented in Section 5.1. However, in this case the transformation y(x, t) :=
eµtv(x, t) (for a particular choice of µ ∈ R) leads to a monotonically increasing
nonlinearity, which can be addressed with the methods presented in this section, cf.
[20].
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Remark 2.18
The treatment of Dirichlet boundary control is more complicated than the corre-
sponding Neumann control because the standard variational formulation does not
work in this case. However, the linear heat equation with Dirichlet boundary con-
trol considered in this thesis was already studied in the early seventies by [68] using
the so called transposition method. The existence and regularity results concerning
the boundary controlled linear wave equation considered in Section 3.7.2 can also be
found in [68]. A nice approach to deal with general linear quadratic optimal control
problems is given by the theory of strongly continuous semigroups, see e.g. [15] and
[67].

2.3 Discretization of semilinear parabolic PDEs

In this section we present a method for the numerical solution of the semilinear heat
equation (2.22). We choose an approach where we start with a discretization of the
space variable. Afterwards, we solve the resulting semi-discretized system by a time-
stepping scheme. In the literature this technique is known as vertical method of
lines, cf. [42]. For the spatial discretization we use the so called Galerkin approx-
imation. The introduced concepts can be found in most textbooks concerning the
numerical approximation of PDEs, see e.g. [61] and [42] for a practical approach.
The stability theory of finite elements and the associated theory of the approxi-
mation errors for a semilinear PDE can be found in [89]. An introduction to finite
elements in the context of optimal control is given in [73]. For the time discretization
we discuss the semi-implicit Euler method.

2.3.1 Galerkin Approximation

The Galerkin method for the semilinear heat equation (2.22) is based on the weak
variational formulation (2.23). For y ∈ W (0, T ) the variational representation was
given by

∫

Ω

yt(x, t)φ(x) dx+

∫

Ω

∇y(x, t)∇φ(x) dx+
∫

Ω

f(y(x, t))φ(x) dx

=

∫

Ω

u(x, t)φ(x) dx+

∫

Γ

v(x, t)φ(x) dS. (2.28)

for all test functions φ ∈ V := H1(Ω) and a.e. t ∈ [0, T ]. The idea of the Galerkin
approach is to approximate the infinite dimensional function space V by a finite
dimensional subspace Vh := span{ψ1, . . . , ψNG

} ⊂ V . The linear independent ansatz
functions {ψj}NG

j=1 form a basis of Vh, whereNG denotes the dimension of the Galerkin
approximation. In the next step we approximate the functions y, u and v with
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respect to the ansatz functions

yh(x, t) =

NG∑

j=1

yj(t)ψj(x), uh(x, t) =

NG∑

j=1

uj(t)ψj(x), (2.29a)

vh(x, t) =

NG∑

j=1

vj(t)τΓ(ψj)(x) and y0h(x) =

NG∑

j=1

y0jψj(x) (2.29b)

with coefficients yj(t), uj(t), vj(t) and initial condition y0j. The continuous trace
operator is denoted by τΓ : H1(Ω) → L2(Γ). Moreover, we define the coefficient
vectors

yh(t) := (y1(t), . . . , yNG
(t))⊤, uh(t) := (u1(t), . . . , uNG

(t))⊤

vh(t) := (v1(t), . . . , vNG
(t))⊤, y0 := (y01, . . . , y0NG

)⊤

with yh,uh, vh : [0, T ] → R
NG and y0 ∈ R

NG .

By inserting (2.29) into the weak formulation (2.28) and letting the test functions
φ range over ψi(x) for i = 1, . . . , NG we get

NG∑

j=1

ẏj(t)

∫

Ω

ψj(x)ψi(x) dx+

NG∑

j=1

yj(t)

∫

Ω

∇ψj(x)∇ψi(x) dx

+

∫

Ω

f

(
NG∑

j=1

yj(t)ψj(x)

)

ψi(x) dx

=

NG∑

j=1

uj(t)

∫

Ω

ψj(x)ψi(x) dx+

NG∑

j=1

vj(t)

∫

Γ

τΓ(ψj)(x)τΓ(ψi)(x) dS. (2.30)

The initial value is given by the projection of y0(x) onto the subspace Vh, i.e.,

y0j =

∫

Ω

y0(x)ψj(x) dx, and y0 =: S(y0(x)). (2.31)

By using the standard notation for the mass matrix M and the stiffness matrix K,
i.e.,

Mij :=

∫

Ω

ψi(x)ψj(x) dx and Kij :=

∫

Ω

∇ψj(x)∇ψi(x) dx, i, j = 1, . . .NG

we obtain the following NG-dimensional ODE initial value problem

M ẏh(t) +Kyh(t) + F (yh(t)) =Muh(t) +Qvh(t) (2.32a)

yh(0) = y0. (2.32b)
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2 Optimal Control of PDEs

Here we used the abbreviation

Qij :=

∫

Γ

τΓ(ψi)(x)τΓ(ψj)(x) dS i, j = 1, . . . NG and (2.33)

F (yh(t))i :=

∫

Ω

f

(
NG∑

j=1

yj(t)ψj(x)

)

ψi(x) dx i = 1, . . .NG. (2.34)

Thus, the Galerkin semi discretization leads to a system of (nonlinear) ODEs which
has to be solved by a time stepping scheme.

Remark 2.19
It is not necessary to take both the test functions and the ansatz functions from the
same finite dimensional subspace Vh. The choice of different spaces for ansatz- and
test functions generally leads to asymmetric mass- and stiffness matrices. In the
literature this approach is known as Petrov-Galerkin method, cf. [19].

Note that the spatial discretization of the PDE also provides a natural discretization
of the cost functional and it is reasonable to choose the same approximation order
for both. For the important stage costs (1.19), for instance, we obtain

l(yh(n), uh(n)) =
1

2
‖yh(·, nT )‖2L2(Ω) +

λ

2
‖uh(·, nT )‖2L2(Ω)

=
1

2

〈
NG∑

j=1

yj(nT )ψj(·),
NG∑

i=1

yi(nT )ψi(·)
〉

L2(Ω)

+
λ

2

〈
NG∑

j=1

uj(nT )ψj(·),
NG∑

i=1

ui(nT )ψi(·)
〉

L2(Ω)

=
1

2

NG∑

j=1

NG∑

i=1

yj(nT )yi(nT ) 〈ψj(·), ψi(·)〉L2(Ω) +
λ

2

NG∑

j=1

NG∑

i=1

uj(nT )ui(nT ) 〈ψj(·), ψi(·)〉L2(Ω)

=
1

2
yh(nT )

⊤Myh(nT ) +
λ

2
uh(nT )

⊤Muh(nT ). (2.35)

The stage cost for the boundary control case can be obtained in exactly the same
way. The only difference is that in the second term the mass matrix M has to be
replaced by the boundary mass matrix Q, i.e.,

l(yh(n), vh(n)) =
1

2
yh(nT )

⊤Myh(nT ) +
λ

2
vh(nT )

⊤Qvh(nT ). (2.36)

It should be noted that we have not yet used the particular structure of the ansatz
functions {ψj}NG

j=1 ⊂ Vh. In the following we present two different methods for
obtaining these functions.

Finite Element Method

First, we look at the Finite Element Method (FEM). A detailed introduction can
be found e.g. in [42], [19] and [61]. The idea is to choose the ansatz functions
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2.3 Discretization of semilinear parabolic PDEs

{ψj}NG

j=1 ⊂ Vh in such a way that the resulting mass- and stiffness matrices have a
sparse structure. This can be achieved by subdividing the domain Ω̄ into a finite
number of subsets Ki (the so called elements), i.e., Ω̄ = ∪Ki and approximate the
solution on these elements by (low dimensional) polynomials. We focus on the prob-
ably most famous approach in which the two dimensional domain is discretized by
a triangulation Th and the ansatz functions are piecewise linear on each element.

In the following we assume that Th is a regular triangulation of Ω, cf. [42] for the
precise definition, with maximum triangle diameter h > 0 and nodes (vertices of the
triangle) {pi}NFEM

i=1 , where NFEM denotes the number of nodes. Then the piecewise
linear ansatz functions {ψj}NFEM

j=1 are defined by

ψi(pj) = δij , i, j = 1, . . . , NFEM . (2.37)

These pyramid-shape functions are also denoted as Courant elements or nodal basis,
cf. [19]. Note that the dimension of Vh coincides with the number of nodes. However,
this changes if a Dirichlet boundary condition is imposed.
The main advantage of the FEM approach is that the mass matrixMij =

∫

Ω
ψiψj dx

only contains non-zero entries if the corresponding triangles have a common edge
or node. The same holds for the stiffness matrix K. Thus, with this approach we
obtain a large scale problem with a sparse structure.
After this specification of the subspace Vh we look at the approximation functions
(2.29) at grid point pi

yh(pi, t) =

NFEM∑

j=1

yFEMj (t)ψj(pi) = yFEMi (t), i = 1, . . . , NFEM . (2.38)

Thus, the approximation of the solution at point pi coincides with the i-th coordinate
function of the solution y

FEM

h
(t). The same is true for the control uFEM

h
(t). Before

we finally write down the resulting ODE system we want to investigate a useful
property of the nodal basis concerning the nonlinear function (2.34). At the grid
point pi we have

f

(
NFEM∑

j=1

yFEMj (t)ψj(pi)

)

= f(yFEMi (t)), i = 1, . . . , NFEM . (2.39)

The function
∑NFEM

j=1 f(yFEMj (t))ψj(x) coincides with f
(
∑NFEM

j=1 yFEMj (t)ψj(x)
)

on

the grid points. Furthermore, the difference between these functions is of exactly
the same order as the FEM error. Thus, we can replace

F (yh(t))i =

∫

Ω

f

(
NFEM∑

j=1

yFEMj (t)ψj(x)

)

ψi(x) dx, i = 1, . . . NFEM (2.40)
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2 Optimal Control of PDEs

by

NFEM∑

j=1

f
(
yFEMj (t)

)
∫

Ω

ψj(x)ψi(x) dx i = 1, . . . NFEM . (2.41)

It should be mentioned that (2.41) is a considerable simplification because the ansatz
functions do not longer occur in the nonlinear function. Analogously to (2.32), we
end up with the following ODE system

M ẏ
FEM

h
(t) +Ky

FEM

h
(t) +Mf(yFEM

h
(t)) =Mu

FEM

h
(t) +QvFEM

h
(t) (2.42)

y
FEM

h
(0) = y0 (2.43)

where f is interpreted componentwise. The characteristic properties of this system
are the high dimension and the sparsity structure of the matrices.
In our numerical implementation we use the Matlab PDE toolbox where the matrices
M,K and Q can be directly obtained by the commands assema and assemb. For
linear finite elements we have (under suitable conditions) the following well known
a-priori error estimate, cf. [89],

‖yh(x, t)− y(x, t)‖ < ch2, for fixed t ∈ [0, T ]. (2.44)

Remark 2.20
It should be mentioned that there exist further important methods for the spatial
discretization of PDEs, e.g. the Finite Difference Method (FDM) and the Fi-
nite Volume Method (FVM). The finite difference method is often applied for
one dimensional problems or in case of simple structured domains. We will use this
approach for the implementation of the one dimensional examples in Chapter 6. In
this case there is a strong relation between FEM and FDM, cf. [42].

Proper Orthogonal Decomposition

In this section we introduce a second variant to obtain the finite dimensional sub-
space Vh in the Galerkin approximation: the model reduction technique Proper
Orthogonal Decomposition (POD). The method is also called Karhunen-Loeve de-
composition and there exist much literature concerning this topic. A detailed intro-
duction can be found in [96], where also the strong relation to the singular value
decomposition is analysed.
We start this section by observing that the basis function in the FEM approach are
not correlated to the physical properties of the underlying equation. On the one
hand this fact is beneficial because the same ansatz functions can be used for very
different classes of PDEs. On the other hand the resulting system of ODEs is quite
large. The idea of POD is to choose the ansatz functions in such a way that they
reflect the dynamics of the system. For this purpose we assume that we know the
solution of the semilinear PDE (2.22) for given control functions u(x, t) and v(x, t)
at discrete time instances 0 = t1 < · · · < tn = T . These so called snapshots can be
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2.3 Discretization of semilinear parabolic PDEs

obtained, for instance, by measurement of a real physical process. In our algorithms
presented in Chapter 4 we use high dimensional FEM models to get the solution on
the time instances. The snapshot ensemble is denoted by Y := {ys1(x), . . . , ysn(x)}
with ysi (x) := y(x, ti). If we assume that {ψi(x)}li=1 denote an orthonormal basis of
Y , where l = dimY , we can express each element of Y as

ysj (x) =
l∑

i=1

〈ysj(x), ψi(x)〉L2(Ω)ψi(x) for j = 1, . . . , n. (2.45)

Depending on the number of snapshots and the dynamics of the system the dimen-
sion of Y can be quite large. The idea of POD is to extract the dominant basis
functions and to consider a reduced basis of dimension NPOD ≪ l. Of course, in
this case we cannot expect to satisfy equation (2.45) as well. However, we will
choose the reduced basis functions such that (2.45) is approximately satisfied in a
least square sense, i.e.,

min
{ψi(x)}

NPOD
i=1

1

n

n∑

j=1

∥
∥
∥
∥
∥
ysj (x)−

NPOD∑

i=1

〈ysj (x), ψi(x)〉L2(Ω)ψi(x)

∥
∥
∥
∥
∥

2

L2(Ω)

(2.46)

subject to 〈ψi(x), ψj(x)〉L2(Ω) = δij for 1 ≤ i ≤ NPOD, 1 ≤ j ≤ i.

The solution {ψi(x)}NPOD

i=1 of the minimization problem (2.46) is called POD basis of
rank NPOD and can be obtained by solving an eigenvalue problem, cf. [96]. We follow
the representation of [27]. First, we build up the so called correlation matrix K ∈
R
n×n, which is positive semi-definite with rank l, corresponding to the snapshots

{ysi (x)}ni=1 by

Kij =
1

n
〈ysi (x), ysj (x)〉L2(Ω).

Afterwards, we compute the positive eigenvalues λ1 ≥ · · · ≥ λl > 0 and the corre-
sponding eigenvectors v1, . . . , vl ∈ R

n. Then the POD basis of rank NPOD ≤ l is
given by

ψi(x) =
1√
λi

n∑

j=1

(vi)jy
s
j (x), (2.47)

where (vi)j denotes the j-th component of the eigenvector vi.

Using the computed POD basis we can formulate the Galerkin approximation

yh(x, t) =

NPOD∑

j=1

yROMj (t)ψj(x), uh(x, t) =

NPOD∑

j=1

uROMj (t)ψj(x), (2.48a)

vh(x, t) =

NPOD∑

j=1

vROMj (t)τΓ(ψj)(x) and y0h(x) =

NPOD∑

j=1

yROM0j ψj(x). (2.48b)
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2 Optimal Control of PDEs

Note that in contrast to the FEM case an interpretation of the coefficient vectors

y
ROM

h
(t) := (yROM1 (t), . . . , yROMNPOD

(t))⊤, u
ROM

h
(t) := (u1(t), . . . , u

ROM
NPOD

(t))⊤

v
ROM

h
(t) := (vROM1 (t), . . . , vROMNPOD

(t))⊤, y
ROM

0
:= (yROM01 , . . . , yROM0NPOD

)⊤

with respect to spatial coordinates is not possible. In order to write the formulas
(2.48) in a compact way we define the linear operator P : RNPOD → L2(Ω) by

w(x) = P(wROM ) :=

NPOD∑

j=1

wROMj ψj(x)

with w
ROM ∈ R

NPOD . Furthermore, the initial value is given by the projection of
the initial function y0(x) onto the reduced basis, i.e.,

yROM0j =

∫

Ω

y0(x)ψj(x) dx, and y
ROM

0
=: S(y0(x)). (2.49)

By using the general Galerkin ODE system (2.32) and the concepts of the spatially
discrete cost function (2.35) we can formulate the reduced POD optimal control
problem

M ẏ
ROM

h
(t) +Ky

ROM

h
(t) + F (yROM

h
(t)) =Mu

ROM

h
(t) +QvROM

h
(t) (2.50a)

y
ROM

h
(0) = y

ROM

0
(2.50b)

with the corresponding quadratic cost functional

J(yROM

h
(t),uROM

h
(t), vROM

h
(t)) =

∫ T

0

1

2
yh(t)

⊤Myh(t) +
λ

2
uh(t)

⊤Muh(t)

+
λ̂

2
vh(t)

⊤Qvh(t) dt (2.50c)

where λ, λ̂ > 0 denote the regularization parameters. It is important to note that
in contrast to the finite element case we cannot get rid of the ansatz functions in
the nonlinearity f , because the approximation approach (2.41) does not work, see
also Remark 2.21. Furthermore, we want to mention that we use the notation yROM

(Reduced Order Model) instead of yPOD. On the one hand this indicates that also
other model reduction techniques can be used. On the other hand we will need the
notation yPOD later for the closed loop trajectory of the full model that uses the
control obtained from the reduced POD optimization problem.
The most important property of the ODE system (2.50a) is that the dimension is
quite small (in our simulations we have NPOD ≤ 5) and the corresponding matrices
are dense while the finite element method provides high dimensional matrices with
a sparse structure.

In the context of POD some questions arise:
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2.3 Discretization of semilinear parabolic PDEs

• How do we obtain the control for the creation of the snapshots?

• Where should the snapshots be localized?

• What information should be incorporated into the snapshot ensemble?

• How large is the model error?

The answers for these questions are not easy and there is some literature concerning
these topics. Some ideas how to find the control for the snapshot generation are
shortly discussed in Section 4.2. Further information can be found in [37] and [27].
The location and the number of snapshots are often determined in a more or less
heuristic way. However, some works deal with the optimal snapshots location, cf.
[64]. In [27] it was shown that it is reasonable to incorporate not only the snapshots
of the state equation, but also the snapshots of the adjoint equation and derivative
information, cf. [63], into the ensemble. The question concerning the error between
the control from the POD model and the exact one demonstrates a major problem of
the POD method. Although there exist a-posteriori error estimates for some classes
of PDEs, cf. [92], only very few a-priori estimates are available for this method.

Remark 2.21
It should be mentioned that the POD approach is not a universal remedy for solving
optimal control problems. One major drawback is the lack of appropriate a-priori
error estimates. Furthermore, one has to take into account that the resulting POD
matrices are dense. In [20], for instance, the authors demonstrate that the required
computing time for a POD model of dimension 15 with fully populated matrices was
higher than the 300-dimensional FE based model with sparse matrices. Moreover, we
want to recall that in the nonlinear function F of (2.50a) the ansatz functions are
still present. Thus, the evaluation requires operations in the high dimensional space,
which is especially disadvantageous for optimization algorithms. However, current
research on the Discrete Empirical Interpolation Method (DEIM) indicates that this
difficulty can be overcome by building new basis functions upon the nonlinear term,
cf. [22].

2.3.2 Discretization in Time

In this section we present a time-stepping scheme to solve the semi-discretized PDE
(2.32). Much has been written about ODE solvers and in particular ODE integra-
tors for discretized PDEs. We want to restrict ourselves to the first order Euler
method, which is the most simple example of an ODE solver. However, arbitrary
time stepping schemes can be incorporated into our C++ implementation. Again,
we look at the ODE system (2.32)

M ẏh(t) +Kyh(t) + F (yh(t)) =Muh(t) +Qvh(t) (2.51)

yh(0) = y0. (2.52)
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The goal is to find an approximation of yh(t) for given control functions uh(t)
and vh(t). In order to shorten the notation we define P (t) := Muh(t) + Qvh(t).
Furthermore, we introduce a time grid 0 = t0 < t1 < . . . with ti := iτ , where τ
denotes the stepsize of the integration scheme.
It is well known, cf. [42], that explicit methods are generally not qualified for semi-
discretized PDEs due to the stiffness of the resulting matrices. Thus, we start our
investigations with the implicit Euler method

(M + τK)yh(ti+1) + τF (yh(ti+1)) =Myh(ti) + τP (ti). (2.53)

In order to obtain the solution yh(ti+1) we have to solve a nonlinear equation system
in each time step. However, for high dimensional systems or strongly nonlinear
problems this is a difficult task. This leads to the idea to combine the advantages of
the explicit- and the implicit Euler method. The semi-implicit Euler method treats
the nonlinear function F in an explicit way, i.e., we obtain

(M + τK)yh(ti+1) =Myh(ti) + τF (yh(ti)) + τP (ti). (2.54)

Although we preserve the beneficial stability behaviour of the implicit method (under
suitable conditions), we only have to solve a linear system of equations. This idea is
a special case of more general operator splitting methods, cf. [56]. The stability and
convergence analysis of the semi-implicit Euler method can be found in [87].
Similar to the spatial discretization the time stepping scheme also provides a discrete
approximation of the time integral in the cost functional (2.24). Note that in our
investigations the stepsize τ is much smaller than the sampling time T , see Remark
1.8.

Remark 2.22
By using the semi-implicit Euler method the effort for solving a nonlinear ODE
system is essentially the same as for solving a linear ODE system. In Chapter 4
we will see that the advantage of the SQP method is that only linear PDEs have to
be solved. In contrast to that the (reduced) Newton method requires the solution of
nonlinear PDEs. If the resulting ODE system is solved by this semi-implicit scheme
the advantage of the SQP method is negligible, see also Section 4.1.2.

Remark 2.23
As already mentioned, most explicit ODE solvers are not suited for large scale stiff
systems. However, there exist stabilized explicit methods which are developed for
the application on high dimensional semi-discretized parabolic PDEs. In Chapter
6 we will successfully use a representative of the ROCK (Orthogonal-Runge-Kutta-
Chebyshev) family, cf. [56]. In this context we implement the method of mass lump-
ing to apply the explicit method, cf. [42].
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In this chapter we come back to the MPC method introduced in Section 1.2. As
already mentioned, the crucial parameter in the analysis of the MPC algorithm is
given by the length of the optimization horizon. Especially, the smallest horizon,
for which the MPC feedback stabilizes the system, is of interest from the theoretical
and practical point of view. In the following this horizon is called minimal stabilizing
horizon. The aim of this chapter is to estimate this particular horizon for different
partial differential equations. This chapter contains the theoretical contribution of
this thesis.
Theorem 1.20 provides a possibility for estimating the minimal stabilizing horizon
that guarantees a desired suboptimality estimate by using the exponential controlla-
bility condition (1.34). In this chapter we aim at estimating the overshoot constant
C and the decay rate σ for different classes of parabolic PDEs. The results will be
used for explaining the qualitative behaviour of the horizon with regard to several
parameters. Furthermore, we can employ the method to give design guidelines for
the stage cost l in order to shorten the horizon. Note that some exponential esti-
mates for the presented equations are known in the literature, e.g. [26]. However,
the exponential constants are often not specified and the control cost is not incor-
porated.
Our road map is inspired by Theorem 1.20 and is given by the following scheme:

1. Find (not necessarily optimal) controls u such that the exponential controlla-
bility condition (1.34) is fulfilled.

2. Calculate C and σ for this particular control.

3. Determine the minimal horizon N̄ that guarantees the desired suboptimality
degree by using (1.35)

Note that the effort for finding an appropriate control u in step 1 is quite different
for various types of equations. Thus, the generality of the presented. results strongly
depends on the considered PDE and the control structure. In Section 3.1 we derive
the exponential constants for a class of n-dimensional semilinear heat equations
with distributed control (3.1.1) and compare the results with a numerical simulation
(3.1.2). Afterwards, in Section 3.2 we introduce with the well known backstepping
approach, cf. [62], a possibility to obtain a stabilizing feedback for the boundary
controlled one dimensional heat equation. On the basis of these results we derive
the exponential constants for the Dirichlet controlled heat equation in Section 3.3
and for Neumann control in Section 3.4. The influence of an additional convection
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term in the heat equations is analysed in Section 3.5. In Section 3.6 we compare our
method to determine a stabilizing horizon with an approach presented in [75]. In
order to demonstrate that our road map is not only applicable to parabolic systems
but also to hyperbolic PDEs in Section 3.7 we look at the example of the linear wave
equation.

3.1 Distributed Control

In this section we apply the steps of our road map to a semilinear heat equation
with distributed control. Using a feedback control law we derive the exponential
constants for two different stage costs. Afterwards, we use these results in order to
explain the numerical results from the simulation.

3.1.1 Derivation of the Exponential Constants

We consider the semilinear heat equation

yt(x, t) = ∆y(x, t) + f(y(x, t))y(x, t) + u(x, t) in Ω× (0,∞) (3.1a)

y(x, t) = 0 on ∂Ω× (0,∞) (3.1b)

y(x, 0) = y0(x) in Ω (3.1c)

with homogeneous Dirichlet boundary conditions and distributed control inside the
domain. We assume that f ∈ C1(R,R) and f(y) ≤ M, ∀y ∈ R with a constant
M ∈ R. In Theorem 3.6 we additionally require (f(y)y)′ ≤M, ∀y ∈ R.

Remark 3.1
An important sufficient condition for the global existence of solutions of semilinear
PDEs with nonlinearity g(y) is given by, cf. [21],

yg(y) ≤ C|y|2 for |y| ≤ K

with constants K,C <∞. In the case g(y) = f(y)y this condition is always satisfied
with C =M .

Remark 3.2
In [8] we consider more general nonlinearities by replacing f(y)y by a continuously
differentiable function g(y) satisfying g(0) = 0. However, in this case we only obtain
local results and g′(0) plays the role of M .
As an example we look at the nonlinearity of Schlögl type g(y) = µ(y − y3). We
obtain g′(0) = µ and f(y) = µ(1− y2) ≤ µ =M .

It is well known that for the uncontrolled equation (u ≡ 0) the origin y(x) ≡ 0
can be an unstable equilibrium for M ≥ λ1 where λ1 = λ1(Ω) denotes the smallest
eigenvalue of (−∆) in H1

0 (Ω). Our goal consists of stabilizing this unstable equilib-
rium. For the choice of the stage cost l there are various possibilities. A heuristic
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analysis of the influence of different stage costs on the MPC algorithm can be found
in [7]. A common choice, cf. [57], of l is given by

l(y(n), u(n)) =
1

2
‖y(·, nT )‖2L2(Ω) +

λ

2
‖u(·, nT )‖2L2(Ω), (3.2)

i.e., we penalize the state as well as the control in the L2(Ω)-norm. The constant
λ > 0 denotes a so called regularization or Tikhonov parameter. In order to fulfill
the first step of our road map we have to find a control u such that the exponential
controllability condition (1.34) is satisfied. A key issue in our method is that we do
not need that this control is optimal in any sense. It is well known, cf. [26], that
the state feedback

u(x, t) := −Ky(x, t) (3.3)

stabilizes the linear heat equation (i.e. f ≡ const) for a sufficient large constant
K ∈ R.
Since we are interested in tight estimates for the controllability constants we require
the following version of the Friedrichs inequality (2.21), where the best Friedrichs
constant is explicitly given:

Theorem 3.3
Let Ω be a Lipschitz domain. For u ∈ H1

0 (Ω) the following inequality holds
∫

Ω

|u(x)|2 dx ≤ C

∫

Ω

|∇u(x)|2 dx. (3.4)

The optimal Friedrichs constant is given by C = 1
λ1

where λ1 denotes the least
eigenvalue of the Dirichlet eigenproblem

−∆u = µu in Ω

u = 0 on ∂Ω.

The proof of a more general result can be found in [13].

Theorem 3.4
The semilinear heat equation (3.1) with control (3.3), K > M − λ1, and stage cost
(3.2) satisfies the exponential controllability condition (1.34). The corresponding
constants are given by σ = e−2T (λ1−M+K) ∈ (0, 1) and C = (1 + λK2) ∈ R.

Proof. The particular control (3.3) reduces the equation (3.1) to

yt(x, t) = ∆y(x, t) + (f(y(x, t))−K)y(x, t). (3.5)

Note that we get a more regular solution than in the general case, because there is
no longer a control function in the equation. In order to obtain an estimation for
σ we use classical Lyapunov methods presented in e.g. [26]. For this purpose we
define

V (t) :=
1

2
‖y(·, t)‖2L2(Ω) =

1

2

∫

Ω

y(x, t)2 dx (3.6)
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and differentiate V (t) with respect to time

V̇ (t) =

∫

Ω

y(x, t)yt(x, t) dx =

∫

Ω

y(x, t)(∆y(x, t) + (f(y(x, t))−K)y(x, t)) dx

≤
∫

∂Ω

y(x, t)∂νy(x, t) dS −
∫

Ω

∇y(x, t) · ∇y(x, t) dx+ (M −K)

∫

Ω

y(x, t)2 dx

≤ (−λ1 +M −K)

∫

Ω

y(x, t)2 dx = 2(−λ1 +M −K)V (t)

where we used the tight Friedrichs inequality (3.4) in the last estimate. This yields

V (t) ≤ e−2t(λ1−M+K)V (0) (3.7)

and thus

l∗(y(n)) =
1

2
‖y(·, nT )‖2L2(Ω) ≤

1

2
e−2nT (λ1−M+K)‖y(·, 0)‖2L2(Ω) = σnl∗(y0)

with σ := e−2T (λ1−M+K).
The overshoot constant C is determined by including the control effort

l(y(n), u(n)) =
1

2
‖y(·, nT )‖2L2(Ω) +

λ

2
‖u(·, nT )‖2L2(Ω)

=
1

2
‖y(·, nT )‖2L2(Ω) +

λ

2
K2‖y(·, nT )‖2L2(Ω)

= Cl∗(y(n)) with C := (1 + λK2).

By combining the previous results we obtain the desired inequality (1.34)

l(y(n), u(n)) ≤ Cl∗(y(n)) ≤ Cσnl∗(y0). (3.8)

This completes the proof.

The analysis in [7] shows that the minimal stabilizing horizon strongly depends on
the choice of the stage cost. An alternative choice of l is to penalize the gradient
of the state y instead of the state itself. Since we consider homogeneous Dirichlet
boundary conditions this stage cost also identifies the equilibrium y ≡ 0 and we
obtain

l(y(n), u(n)) =
1

2
‖∇y(·, nT )‖2L2(Ω) +

λ

2
‖u(·, nT )‖2L2(Ω). (3.9)

In order to prove a similar result to Theorem 3.4 for stage cost (3.9) we need the
following extension of the Friedrichs inequality:

Lemma 3.5
For u ∈ H2(Ω) ∩H1

0 (Ω) the following inequality holds
∫

Ω

|∇u(x)|2 dx ≤ C

∫

Ω

(∆u(x))2 dx

where C is the same tight Friedrichs constant as in Theorem 3.3,
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Proof. By using the Cauchy-Schwarz inequality and the classical Friedrichs inequal-
ity (3.4) we obtain

∫

Ω

|∇u(x)|2 dx =

∫

∂Ω

u(x)∂νu(x) dS −
∫

Ω

u(x)∆u(x) dx

≤
(∫

Ω

u(x)2 dx

) 1
2
(∫

Ω

(∆u(x))2 dx

) 1
2

≤
√
C

(∫

Ω

|∇u(x)|2 dx
) 1

2
(∫

Ω

(∆u(x))2 dx

) 1
2

and thus
(∫

Ω

|∇u(x)|2 dx
) 1

2

≤
√
C

(∫

Ω

(∆u(x))2 dx

) 1
2

with the same optimal constant C.

Theorem 3.6
The semilinear heat equation (3.1) with control (3.3), K > M − λ1, and stage cost
(3.9) satisfies the exponential controllability condition (1.34). The corresponding

constants are given by σ = e−2T (λ1−M+K) ∈ (0, 1) and C =
(

1 + λK2

λ1

)

∈ R.

Proof. Since we do not change the control we obtain the same reduced PDE (3.5)
as before. In particular, we have the same regularity results. Similar to (3.6) we
define

V (t) :=
1

2
‖∇y(·, t)‖2L2(Ω) =

1

2

∫

Ω

∇y(x, t) · ∇y(x, t) dx. (3.10)

Differentiating with respect to time yields

V̇ (t) =

∫

Ω

∇y(x, t) · ∇yt(x, t) dx =

∫

∂Ω

yt(x, t)∂νy(x, t) dS −
∫

Ω

∆y(x, t)yt(x, t) dx

≤ −
∫

Ω

(∆y(x, t))2 dx+ (M −K)

∫

Ω

∇y(x, t)∇y(x, t) dx

≤ (−λ1 +M −K)

∫

Ω

∇y(x, t) · ∇y(x, t) = 2(−λ1 +M −K)V (t)

and thus

l∗(y(n)) =
1

2
‖∇y(·, nT )‖2L2(Ω) ≤

1

2
e−2nT (λ1−M+K)‖∇y(·, 0)‖2L2(Ω) = σnl∗(y0)

with σ = e−2T (λ1−M+K). In order to estimate the overshoot bound C we consider

l(y(n), u(n)) =
1

2
‖∇y(·, nT )‖2L2(Ω) +

λ

2
‖u(·, nT )‖2L2(Ω)

=
1

2
‖∇y(·, nT )‖2L2(Ω) +

λ

2
K2‖y(·, nT )‖2L2(Ω)

≤ Cl∗(y(n)) with C :=

(

1 +
λK2

λ1

)

. (3.11)

Together with the previous result we obtain the desired inequality.
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3.1.2 Numerical Results

In this section we apply the theoretical results presented before to a simple exam-
ple. This section is divided into two parts: In the first one we follow our road map
and compute concrete values of the minimal stabilizing horizon for our test example.
Afterwards, we compare these quantitative results with the minimal stabilizing hori-
zon we observed in a numerical simulation of the closed loop system. In the second
part we use our theoretical results for a qualitative analysis in order to describe the
dependence of the stabilizing horizon on different parameters and stage costs.
Our test example in this section is given by the linear one dimensional heat equation

yt(x, t) = yxx(x, t) + µy(x, t) + u(x, t) in (0, L)× (0,∞) (3.12a)

y(0, t) = y(L, t) = 0 in (0,∞) (3.12b)

y(x, 0) = y0(x) in (0, L) (3.12c)

with the corresponding stage cost

l(y(n), u(n)) =
1

2
‖y(·, nT )‖2L2(0,L) +

λ

2
‖u(·, nT )‖2L2(0,L) (3.13)

and

l(y(n), u(n)) =
1

2
‖yx(·, nT )‖2L2(0,L) +

λ

2
‖u(·, nT )‖2L2(0,L) (3.14)

respectively. The parameters in this example are given by the reaction value µ, the
interval length L, the regularization parameter λ and the sampling time T .

Quantitative analysis

In Section 3.1.1 we derived the exponential constants C and σ for a prescribed
control u. Thus, two steps of our road map are already done. In the last step
we use formula (1.35) in order to determine the smallest horizon that guarantees
stability. The procedure is as follows: We insert the K-dependent constants σ(K)
and C(K) in (1.35) and obtain αN (K) = αN(C(K), σ(K), N). If there exists K ∈ R

such that αN(K) > 0 Theorem 1.20 guarantees stability with horizon N . Therefore,
the minimal stabilizing horizon is the smallest horizon N̄ with maxK αN̄(K) > 0.
Note that the optimization over K is an easy one dimensional problem. In the
implementation for the example we use Maple to solve this problem.
Furthermore, we determine the smallest horizon where we observe stability in the
numerical simulation of the MPC closed loop system. The arising control problems
are solved with the optimization algorithms presented in Chapter 4.
First, we look at the 1D heat equation (3.12) with stage cost (3.13), domain Ω =
(0, 1) and sampling time T = 0.01. In Table 3.1 we display the minimal stabilizing
horizon NT computed by the results of Section 3.1.1 and the horizon observed in the
numerical simulation NP . Obviously, the values of NT are always equal or greater
than those of NP . Thus, the theoretical results provide indeed upper bounds for the
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λ = 0.001 λ = 0.005 λ = 0.01
µ NT NP NT NP NT NP

10 2 2 2 2 2 2
11 2 2 4 2 9 3
12 2 2 8 3 18 4
13 2 2 12 3 27 4
14 3 2 16 4 34 5
15 3 2 20 4 42 6

Table 3.1: Minimal stabilizing horizon computed from theory NT and observed in
the numerical simulation NP

stabilizing horizons. However, it can be seen that the computed horizons are quite
conservative for this example. This observation is true regardless of the parameter
setting and the type of stage cost (but much less for small values of λ and µ). This
behaviour is caused by different reasons: First, we have to note that the condition
αN > 0 is only sufficient to guarantee stability. For αN ≤ 0 no statement about
stability of a concrete example is possible (see also Remark 1.21). Furthermore,
Theorem 1.20 only requires the values of the exponential constants C and σ but no
information about the underlying dynamical system. It seems to be reasonable that
tighter estimates can be obtained by taking the special structure of the PDE and
the stage cost into account (see Section 3.6). Finally, it is important to note that the
chosen control is not the optimal one and this fact can also produce conservatism.
It should be mentioned that the described problems arise from the power of the
used method: It can be applied to very general systems and the knowledge of an
optimal control is not required. Since the conservatism of the results is also present
for boundary control and different stage cost, in the remaining chapter we will focus
on a qualitative analysis.

Remark 3.7
It should be mentioned that the derived exponential constants C and σ can be used
to gain improved stability results. In [9] we reduce the conservatism of the estimates
by replacing the controllability condition (1.35) by a boundedness condition on the
finite horizon optimal value functions. For details we refer to [99].

Qualitative analysis

In the quantitative analysis we have seen that the theoretically computed horizons
are in general quite conservative for a concrete example. Nevertheless, in the follow-
ing we will show that the presented methods are very well suited for a qualitative
analysis concerning the stability behaviour depending on parameters and different
stage costs.
In the first step we want to analyse the impact of the different stage costs (3.2)
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3 Minimal Stabilizing Horizons

and (3.9) on the minimal stabilizing horizon. Obviously, we obtain the same de-
cay rate σ = e−2T (λ1−M+K) for both costs (see Theorem 3.4 and 3.6). Thus, we
can only explain the different behaviour through the overshoot constant C. The
eigenvalue λ1 influences not only the decay rate but also the overshoot bound in
(3.9). It is important to note that λ1 solely depends on the domain Ω. Thus, in
order to investigate the difference between the stage costs in detail it is reasonable
to look at a problem with different domains. In view of our test example this means
that we consider (3.12) with varying interval length L. For the numerical simula-
tion we choose the destabilizing reaction value µ ≡ 15, the regularization parameter
λ = 0.01 and the sampling time T = 0.01. The smallest eigenvalue for this problem
is given by λ1 = (π/L)2, cf. [88]. Thus, the origin is an unstable equilibrium for
L ≥ 1 (λ1 = (π/L)2 < 15 = µ).
The overshoot constants are given by C = (1 + λK2) for stage cost (3.2) and by
C = (1 + λK2

λ1
) for (3.9). Since a smaller constant C leads to a shorter horizon we

expect to observe shorter horizons for (3.9) than for (3.2) if λ1(L) < 1 and vice
versa for λ1(L) > 1. In order to demonstrate that this behaviour in fact occurs,
we consider the minimal stabilizing horizon of (3.12) with varying interval length
L. The results of the numerical simulation are presented in Table 3.2. The first two

L λ1(L) N‖y‖ N‖∇y‖
1 π2 6 2
2 π2/4 8 5
3 π2/9 8 7
π 1 8 8
4 π2/16 8 10
5 π2/25 8 12

Table 3.2: Minimal stabilizing optimization horizons for the reaction-diffusion equa-
tion (3.12) with T = 0.01 and λ = 0.01 determined by numerical MPC
closed loop simulations

rows show the varying interval length L with the corresponding eigenvalue λ1. The
minimal stabilizing horizon observed in the numerical example is denoted by N‖y‖
for stage cost (3.2) and by N‖∇y‖ for stage cost (3.9). Obviously, the values N‖∇y‖
are smaller than N‖y‖ up to L = π . This behaviour changes to the opposite for
L > π. The observation corresponds exactly to the theoretical results presented in
Theorem 3.4 and Theorem 3.6: For L < π there is λ1 > 1 and the value C for the
stage cost (3.9) is smaller than the corresponding C for (3.2). The smaller value
of C leads to a shorter horizon (see Figure 1.3). Note that the chosen initial func-
tion y0(x) = sin( π

L
x) is the corresponding eigenfunction to the least eigenvalue and

therefore the Friedrichs inequality in the theorems is tight. This explains why the
turning point λ1 = 1 is tight. For different initial functions it is possible to obtain
shorter horizons for (3.9) even if L > π.
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Furthermore, we see that N‖y‖ grows for small L but then it remains constant. In
contrast to this N‖∇y‖ increases monotonically. We can use the previous theorems to
explain this behaviour as well. For stage cost (3.2) the eigenvalue λ1 (and therefore
L) influences only the decay rate σ = e−2T (λ1−M+K) but not the overshoot bound
C = (1 + λK2). In order to ensure that σ ∈ (0, 1) the gain parameter K has to
compensate M −λ1. Thus, for small λ1 we need a large parameter K and this leads
to large C and a long horizon N . In the second row we see that there is a big decay
(compared to M) from λ1 = π2 to λ1 = π2/4 for the interval length L = 1 and
L = 2. For larger L the decay in λ1 is comparatively small, the K and therefore
the horizon N does not change considerably. The same argument holds true for the
influence of λ1 to σ in the case of stage cost (3.9). However, in contrast to (3.2)
the overshoot bound C = (1 + λK2

λ1
) also depends on the eigenvalue λ1. Since λ1

converges to zero for growing interval length L we obtain a large constant C and
thus we expect a large horizon N .

3.2 Introduction to Backstepping

In this section we introduce the backstepping approach to construct an exponential
stabilizing feedback for the one dimensional heat equation with either Dirichlet or
Neumann boundary control. One advantage of this method is that the resulting
feedback is given as an explicit formula. We consider

yt(x, t) = yxx(x, t) + µy(x, t) in (0, 1)× (0,∞) (3.15a)

y(0, t) = 0 in (0,∞) (3.15b)

with either Dirichlet control

y(1, t) = u(t) in (0,∞) (3.16a)

or Neumann control

yx(1, t) = u(t) in (0,∞) (3.16b)

on the right boundary (x = 1). On the left boundary (x = 0) we impose a homoge-
neous Dirichlet condition. In the derivation of the feedback we follow [62].
The idea behind the method of backstepping is to transform (3.15) into a so called
target system which is exponentially stable. The coordinate transformation is done
with a Volterra kernel

w(x, t) = y(x, t)−
∫ x

0

k(x, z)y(z, t) dz. (3.17)

A suitable target system is given by

wt(x, t) = wxx(x, t) + (µ−K)w(x, t) (3.18a)
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w(0, t) = 0 (3.18b)

with w(1, t) = 0 for (3.16a) and wx(1, t) = 0 for (3.16b). From (3.17) it follows
directly that (3.18b) is fulfilled for arbitrary k(x, z). We differentiate (3.17) with
respect to x and t to derive the Volterra kernel k(x, z). For this purpose we introduce
the following notation

kx(x, x) =
∂

∂x
k(x, z)|z=x,

kz(x, x) =
∂

∂z
k(x, z)|z=x,

d

dx
k(x, x) = kx(x, x) + kz(x, x)

By using the Leibniz differentiation rule we obtain

wx(x, t) = yx(x, t)− k(x, x)y(x, t)−
∫ x

0

kx(x, z)y(z, t) dz (3.19)

and thus

wxx(x, t) =yxx(x, t)− y(x, t)
d

dx
k(x, x)− k(x, x)yx(x, t)− kx(x, x)y(x, t)

−
∫ x

0

kxx(x, z)y(x, t) dz. (3.20)

Note that we have not used the PDE (3.15) yet, but only the Volterra transformation
(3.17). Differentiating (3.17) with respect to t yields

wt(x, t) =yt(x, t)−
∫ x

0

k(x, z)yt(z, t) dz

=yxx(x, t) + µy(x, t)−
∫ x

0

k(x, z)(yzz(z, t) + µy(z, t)) dz

=yxx(x, t) + µy(x, t)− k(x, x)yx(x, t) + k(x, 0)yx(0, t) + kx(x, x)y(x, t)

− kx(x, 0)y(0, t)−
∫ x

0

kzz(x, z)u(z, t) dz −
∫ x

0

µk(x, z)y(z, t) dz (3.21)

where we used partial integration in the last equality. By combining (3.20), (3.21)
and (3.17) to the target system (3.18) we obtain

wt(x, t)− wxx(x, t)− (µ−K)w(x, t) =

(

K + 2
d

dx
k(x, x)

)

y(x, t)

+k(x, 0)yx(0, t) +

∫ x

0

(kxx(x, z)− kzz(x, z)−Kk(x, z)) y(z, t) dz
!
= 0

In order to keep the right hand side to be zero we get the following PDE for the
kernel k(x, z)

kxx(x, z)− kzz(x, z) = Kk(x, z) (3.22a)
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k(x, 0) = 0 (3.22b)

k(x, x) = −K
2
x. (3.22c)

This PDE is of wave equation type (also known as Klein-Gordon-Equation) with
unusual boundary conditions. It can be shown that the PDE is well posed and the
solution is given by

k(x, z) = −KzI1(
√

K(x2 − z2))
√

K(x2 − z2)
(3.23)

where I1 denotes the first modified Bessel function. Furthermore, the inverse trans-
formation to (3.17) can be obtained in the same way. All together we get

w(x, t) = y(x, t) +

∫ x

0

k1(x, z)y(z, t) dz

= y(x, t) +

∫ x

0

Kz
I1

(√

K(x2 − z2)
)

√

K(x2 − z2)
y(z, t) dz (3.24)

y(x, t) = w(x, t) +

∫ x

0

k2(x, z)w(z, t) dz

= w(x, t)−
∫ x

0

Kz
J1

(√

K(x2 − z2)
)

√

K(x2 − z2)
w(z, t) dz (3.25)

where J1 denotes the classical Bessel function. To fulfill the homogeneous condition
on the right we have to choose the feedback control as

u(t) = y(1, t) =

∫ 1

0

k(1, z)y(z, t) dz = −
∫ 1

0

Kz
I1

(√

K(1− z2)
)

√

K(1− z2)
y(z, t) dz (3.26)

for the Dirichlet controlled case and as

u(t) = yx(1, t) = k(1, 1)y(1, t) +

∫ 1

0

kx(1, z)y(z, t) dz

= −K
2
y(1, t)−

∫ 1

0

Kz
I2

(√

K(1− z2)
)

1− z2
y(z, t) dz (3.27)

for the Neumann controlled PDE. This section can be summarized in the following
theorem

Theorem 3.8
Define the linear and bounded operator K : H i(0, 1) → H i(0, 1), (i = 0, 1, 2) by

w(x, t) = (Ky)(x, t) = y(x, t) +

∫ x

0

k1(x, z)y(z, t) dz

45



3 Minimal Stabilizing Horizons

where k1(x, z) is given by (3.24). Then
1. K has a linear bounded inverse K−1 : H i(0, 1) → H i(0, 1), (i = 0, 1, 2), and
2. K converts the system (3.15) into (3.18).

Proof. For the proof of the first assertion and the transformation properties cf. [69].
The proof of the explicit formulas for the kernel k1(x, z) and k2(x, z) can be found
in [84].

3.3 Dirichlet Boundary Control

3.3.1 Exponential Constants for Dirichlet Boundary Control

In this section we consider a boundary control problem for the one dimensional
linear heat equation

yt(x, t) = yxx(x, t) + µy(x, t) in (0, 1)× (0,∞) (3.28a)

y(0, t) = 0 in (0,∞) (3.28b)

y(1, t) = u(t) in (0,∞) (3.28c)

y(x, 0) = y0(x) in (0, 1). (3.28d)

There is a homogenous Dirichlet boundary condition on the left (x = 0) and Dirichlet
boundary control on the right (x = 1). The general procedure is the same as in
Section 3.1.1. In order to obtain a control that satisfies the controllability condition
we use the technique of backstepping presented in the previous section. Note that
the target system (3.18) has the same structure as the reduced PDE (3.5) we used
in Theorem 3.4. Once again K denotes the gain parameter.
The following lemma is well known from the analysis of integral equations, cf. [31].
Since we are interested in an explicit representation of the boundedness constant we
recapitulate the proof.

Lemma 3.9
Let u(x) ∈ L2(0, 1) and u(x) = v(x)+

∫ x

0
ki(x, z)v(z) dz, (i = 1, 2). Then the estimate

‖u(·)‖2L2(0,1) ≤ (1 + Li)
2‖v(·)‖2L2(0,1) (3.29)

holds with the constant Li :=
(∫ 1

0

∫ x

0
ki(x, z)

2 dz dx
)1/2

.

Proof. By using the Cauchy-Schwarz inequality we get

‖u(·)‖L2(0,1) =

∥
∥
∥
∥
v(·) +

∫ x

0

ki(x, z)v(z) dz

∥
∥
∥
∥
L2(0,1)

(3.30)

≤
(∫ 1

0

v(x)2 dx

) 1
2

+

(
∫ 1

0

(∫ x

0

ki(·, z)v(z) dz
)2

dx

) 1
2
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≤
(∫ 1

0

v(x)2 dx

) 1
2

+

(∫ 1

0

(∫ x

0

ki(x, z)
2 dz

)(∫ x

0

v(z)2 dz

)

dx

) 1
2

≤
(

1 +

(∫ 1

0

∫ x

0

ki(x, z)
2 dz dx

) 1
2

)

‖v(·)‖L2(0,1) = (1 + Li)‖v(·)‖L2(0,1)

with Li :=
(∫ 1

0

∫ x

0
ki(x, z)

2 dz dx
)1/2

, which is finite since the operator is bounded

in L2(0, 1) (see Theorem 3.8).

Similar to the case of distributed control we look at two different stage costs. Suitable
costs for boundary control are e.g.

l(y(n), u(n)) =
1

2
‖y(·, nT )‖2L2(Ω) +

λ

2
|u(nT )|2. (3.31)

This cost functional corresponds to (3.2).

Theorem 3.10
The Dirichlet boundary controlled heat equation (3.28) with control (3.26), K >
µ−λ1, and stage cost (3.31) satisfies the exponential controllability condition (1.34).
The corresponding constants are given by σ = e−2T (λ1−µ+K) ∈ (0, 1) and C = (1 +

λK2η(K))ξ(K) ∈ R with η(K) :=

∫ 1

0

(

x
I1(
√

K(1− x2))
√

K(1− x2)

)2

dx and ξ(K) :=

(1 + L1(K))2(1 + L2(K))2.

Proof. Since the target system (3.18) is a special case of the reduced PDE (3.5)
we can use the information about the decay rate. By combining Theorem 3.4 and
Lemma 3.9 we obtain

‖y(·, t)‖2L2(Ω) ≤ (1 + L2)
2‖w(·, t)‖2L2(Ω) ≤ (1 + L2)

2e−2t(λ1−µ+K)‖w(·, 0)‖2L2(Ω)

≤ (1 + L1)
2(1 + L2)

2e−2t(λ1−µ+K)‖y(·, 0)‖2L2(Ω)

and thus

l∗(y(n)) =
1

2
‖y(·, nT )‖2L2(Ω) ≤

1

2
ξ(K)σn‖y(·, 0)‖2L2(Ω) = ξ(K)σnl∗(y0) (3.32)

with ξ(K) := (1 + L1(K))2(1 + L2(K))2 and σ := e−2T (λ1−µ+K). Moreover, we get

l(y(n), u(n)) =
1

2
‖y(·, nT )‖2L2(Ω) +

λ

2
|u(nT )|2

=
1

2
‖y(·, nT )‖2L2(Ω) +

λ

2

∣
∣
∣
∣
∣

∫ 1

0

Ky(x, nT )x
I1(
√

K(1− x2))
√

K(1− x2)
dx

∣
∣
∣
∣
∣

2

≤ 1

2
‖y(·, nT )‖2L2+

λ

2
K2‖y(·, nT )‖2L2

∫ 1

0

(

x
I1(
√

K(1− x2))
√

K(1− x2)

)2

dx
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= C̃l∗(y(n)) (3.33)

with C̃ := (1 + λK2η(K)) and η(K) :=

∫ 1

0

(

x
I1(
√

K(1− x2))
√

K(1− x2)

)2

dx.

By combining (3.32) and (3.33) we obtain

l(y(n), u(n)) ≤ C̃l∗(y(n)) ≤ C̃ξ(K)σnl∗(y0) = Cσnl∗(y0) (3.34)

with C := C̃ξ(K).

From Section 3.3.1 we know that an alternative choice for the stage cost is given by
penalizing the gradient of the state. Thus, we consider

l(y(n), u(n)) =
1

2
‖yx(·, nT )‖2L2(Ω) +

λ

2
|u(nT )|2. (3.35)

Since there is still a homogenous Dirichlet condition on the left (x = 0) this cost
also identifies the equilibrium y ≡ 0, i.e., l(y, 0) = 0 ⇔ y = 0. Now, we can prove
a similar result to Theorem 3.10:

Theorem 3.11
The Dirichlet boundary controlled heat equation (3.28) with control (3.26), K >
µ−λ1, and stage cost (3.35) satisfies the exponential controllability condition (1.34).
The corresponding constants are given by σ = e−2T (λ1−µ+K) ∈ (0, 1) and C = (1 +

4λK2η(K)
π2 )ξ(K) ∈ R with η(K) :=

∫ 1

0

(

x
I1(
√

K(1− x2))
√

K(1− x2)

)2

dx and ξ(K) :=

(1 +M1(K))2(1 +M2(K))2.

Proof. By using the Leibniz formula we differentiate the Volterra transformation
(3.17) with respect to x and get

wx(x, t) = yx(x, t)− k(x, x)y(x, t)−
∫ x

0

kx(x, z)y(z, t) dz. (3.36)

Similar arguments as in Lemma 3.9 yield

‖wx(·, t)‖L2(Ω) ≤‖yx(·, t)‖L2(Ω) + ‖k(·, ·)y(·, t)‖L2(Ω) +

∥
∥
∥
∥

∫ x

0

kx(·, z)y(z, t) dz
∥
∥
∥
∥
L2(Ω)

≤‖yx(·, t)‖L2(Ω) + ‖Kx

2
‖L2(Ω)‖y(·, t)‖L2(Ω)

+

∥
∥
∥
∥

∫ x

0

kx(·, z) dz
∥
∥
∥
∥
L2(Ω)

‖y(·, t)‖L2(Ω)

≤
(

1 +

(

K√
12

+

∥
∥
∥
∥

∫ x

0

kx(·, z) dz
∥
∥
∥
∥
L2(Ω)

)

2

π

)

‖yx(·, t)‖L2(Ω) (3.37)
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and thus
‖wx(·, t)‖2L2(Ω) ≤ (1 +M1(K))2‖yx(·, t)‖2L2(Ω) (3.38)

with M1(K) = ( K√
12

+ (
∫ 1

0

∫ x

0
kx(x, z)

2 dz dx)
1
2 ) 2

π
. From the inverse transformation

we obtain M2(K) in the same way. In order to determine the decay rate we can use
the information from Theorem 3.6. Together with the previous result we get

‖yx(·, t)‖2L2(Ω) ≤ (1 +M2)
2‖wx(·, t)‖2L2(Ω) ≤ (1 +M2)

2e−2t(λ1−µ+K)‖wx(·, 0)‖2L2(Ω)

≤ (1 +M1)
2(1 +M2)

2e−2t(λ1−µ+K)‖yx(·, 0)‖2L2(Ω)

and thus

l∗(y(n)) =
1

2
‖yx(·, nT )‖2L2(Ω) ≤

1

2
ξ(K)σn‖yx(·, 0)‖2L2(Ω) = ξ(K)σnl∗(y0) (3.39)

with ξ(K) := (1 +M1(K))2(1 +M2(K))2 and σ := e−2T (λ1−µ+K). Moreover, we get

l(y(n), u(n)) =
1

2
‖yx(·, nT )‖2L2(Ω) +

λ

2
|u(nT )|2

=
1

2
‖yx(·, nT )‖2L2(Ω) +

λ

2

∣
∣
∣
∣
∣

∫ 1

0

Ky(x, nT )x
I1(
√

K(1− x2))
√

K(1− x2)
dx

∣
∣
∣
∣
∣

2

≤ 1

2
‖yx(·, nT )‖2L2+

λ

2
K2‖y(·, nT )‖2L2

∫ 1

0

(

x
I1(
√

K(1− x2))
√

K(1− x2)

)2

dx

≤ C̃l∗(y(n)) (3.40)

with C̃ := (1 + 4λK2η(K)
π2 ) and η(K) :=

∫ 1

0

(

x
I1(
√

K(1− x2))
√

K(1− x2)

)2

dx.

By combining (3.39) and (3.40) we obtain

l(y(n), u(n)) ≤ C̃l∗(y(n)) ≤ C̃ξ(K)σnl∗(y0) = Cσnl∗(y0) (3.41)

with C := C̃ξ(K).

3.3.2 Numerical Results

Now, we want to show how the previous results can be used to explain the numerical
observations. As a first step we compare the results for boundary control with the
corresponding results for the distributed case. Afterwards, we analyse the difference
between the stage costs (3.31) and (3.35).
In order to compare the Dirichlet result to that from the distributed case we look
at the main difference between the constants in Theorem 3.4 and Theorem 3.10.
Since we choose the target system (3.18) which is similar to the reduced system
(3.5), we obtain the same decay rate σ for both systems. The difference is due to
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3 Minimal Stabilizing Horizons

the occurrence of the K dependent functions η(K) and ξ(K). In order to explain
the influence of these functions on the optimization horizon we compare the heat
equation with distributed control (3.12) with the boundary controlled heat equation
(3.28) in terms of the regularization parameter λ and the reaction parameter µ.
In Table 3.3 the results of the numerical simulation are presented. The minimal

λ = 0.001 λ = 0.01 λ = 0.05
µ ND NB ND NB ND NB

11 2 2 3 2 7 2
12 2 3 4 3 11 3
13 2 3 4 3 14 4
14 2 4 5 4 15 5
15 2 5 6 5 16 6
16 2 6 6 6 16 7
17 2 7 7 7 16 8
18 2 7 7 7 16 8
19 2 8 8 8 16 9

Table 3.3: Minimal stabilizing horizon for distributed ND and boundary NB control
with varying λ and µ determined by numerical simulations of the MPC
closed loop

stabilizing horizon observed in the MPC closed loop is denoted by ND for the dis-
tributed controlled PDE (3.12) and by NB for the Dirichlet boundary controlled
PDE (3.28). First, one observes that the shortest possible horizon (N = 2) is suf-
ficient to guarantee stability for the distributed controlled case if λ = 0.001 and
µ ≤ 19. This leads to the question whether for each µ it is possible to find a λ that
is sufficient for stability with N = 2. To answer this question we again look at the
overshoot constant C = (1+ λK2) for the distributed case. Obviously, it is possible
for each fixed µ (and therefore K) to bring C arbitrarily close to 1 by reducing the
parameter λ. Thus, we obtain stability with an optimization horizon N = 2 (see
Figure 1.3). In contrast to this, for λ = 0.001 we do not get stability with this
horizon for the boundary controlled equation for arbitrary reaction parameter µ.
(In fact we do not obtain stability with N = 2 for arbitrarily small regularization
parameter λ.) In order to explain why this is in general not possible we have to
take a closer look at the overshoot bound C = (1 + λK2η(K))ξ(K). For arbitrarily
small values of λ the constant converges to C = ξ(K). Since ξ(K) is an increasing
function with ξ(K) > 1 for K > 0 we cannot expect stability with N = 2 for gen-
eral values of µ, not even for arbitrarily small λ. Of course, it is possible to reach
stability with this horizon for particularly small values of µ, e.g. if λ = 0.001 and
µ = 11. This is due to the fact that N = 2 is also possible if C < 2 and σ small
enough (see Figure 1.3). In Chapter 6 we will see that for the boundary controlled
PDE this overshooting is natural and actually observable, see Figure 6.5 (right).
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3.4 Neumann Boundary Control

Furthermore, we observe that the horizon for the distributed controlled PDE is very
sensitive with respect to the regularization parameter λ: for increasing values of λ
the minimal stabilizing horizon grows dramatically. This can be explained by the
influence of λ on the overshoot bound: an increasing value of λ results directly in
an increasing C and therefore in a larger horizon. This leads to the question why
this occurs for the boundary controlled PDE only in a moderate way. In order to
give an answer to this question we have to take a closer look at the function η(K).
η(K) is an increasing function with η(0) = 0 and η(22.81) ≈ 1. Since µ < 20 and
therefore K < 20 we obtain η(K) < 1, i.e., the function damps the influence of λ on
the overshoot constant.
In the second step we consider the influence of the different stage costs (3.31) and
(3.35) on the stabilizing horizon. In Section 3.1.2 we observed (for L = 1) that pe-
nalizing the gradient of the state (stage cost (3.9)) leads to a significant shorter
horizon than penalizing the state itself (stage cost (3.2)). We want to answer
the question whether we obtain the same behaviour for the boundary controlled
problem. First, we observe that we have the same decay rate σ for both stage
costs. Furthermore, both overshoot constants are influenced by the same func-
tion η(K). Therefore, the above arguments concerning the sensitivity on the reg-
ularization parameter λ are also true for the cost (3.35). The differences between
the stage costs are due to the function ξ(K). Since both have the same structure
ξ(K) := (1 + f1(K))2(1 + f2(K))2 we have to take a closer look at the functions
L1(K), L2(K) and M1(K),M2(K) respectively. A numerical evaluation shows that
M1(K) ≫ L1(K) and M2(K) ≫ L2(K). Therefore, we expect a converse behaviour
as for the distributed control problem: for the boundary controlled PDE (3.28) the
stage cost (3.31) leads to shorter stabilizing horizons than stage cost (3.35). This
corresponds to the observation in the numerical example. For stage cost (3.31),
λ = 0.001 and µ = 11 we need N = 2 to get stability (Table 3.3). In contrast to
this the minimal stabilizing horizon for stage cost (3.35) is at least N = 29, even for
this comparatively small reaction parameter.

3.4 Neumann Boundary Control

In this section we look at the linear heat equation with Neumann boundary control.
In contrast to the previous section we distinguish between small and large values
of the reaction parameter µ. In Subsection 3.4.1 we will derive the exponential
constants for the n-dimensional heat equation for sufficiently small values of µ.
Afterwards, we consider the case for arbitrary values of µ. In order to construct a
control we use the method of backstepping presented in Section 3.2. This technique
only works for the one dimensional case. In Subsection 3.4.3 we will demonstrate
that the different properties of the controls are reflected in the numerical simulation.
The exponential estimates in this section differ from the previous sections: the
overshoot constant depends on a generic constant, i.e., the formulas cannot be used
to determine explicit horizons, but they allow us to give qualitative explanations.
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3.4.1 Exponential Constants for Neumann Boundary Control I

In this section we consider the n-dimensional heat equation with Neumann boundary
control

yt(x, t) = ∆y(x, t) + µy(x, t) in Ω× (0,∞) (3.42a)

∂νy(x, t) = u(x, t) on ΓN × (0,∞) (3.42b)

y(x, t) = 0 on ΓD × (0,∞) (3.42c)

y(x, 0) = y0(x) in Ω (3.42d)

with ∂Ω = ΓN ∪ ΓD, ΓN ∩ ΓD = ∅ and |ΓN | 6= ∅. |ΓD| 6= ∅ ensures that the origin is
the only equilibrium. The stage cost for this problem are given by

l(y(n), u(n)) =
1

2
‖y(·, nT )‖L2(Ω) +

λ

2
‖u(·, nT )‖L2(ΓN ) (3.43)

It is well known that the feedback

∂νy(x, t) = −Ky(x, t) on ΓN × (0,∞) (3.44)

can stabilize the problem for small values of the reaction parameter µ, i.e., µ < CD,
see Theorem 3.12. In order to prove a similar result to Theorem 3.4 we need the
following generalization of the Friedrichs inequality

Theorem 3.12
For u ∈ H1(Ω) the following inequality holds

∫

Ω

|∇u|2 dx+ s

∫

∂Ω

|u|2 dS ≥ CF (s)

∫

Ω

|u|2 dx (3.45)

where the optimal Friedrichs constant CF (s) is given by the least eigenvalue of

−∆u = µu in Ω

∂νu+ su = 0 on ∂Ω.

Moreover, CF (s) is increasing and

lim
s→∞

CF (s) = CD (3.46)

where CD is the least eigenvalue of the Dirichlet eigenproblem

−∆u = µu in Ω

u = 0 on ∂Ω.

Proof. A generalization of the first result is proven in [12]. A proof for the second
result can be found in [13].

Moreover, we need
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Corollary 3.13
For u ∈ H2(Ω) with ∂νu(x) = −Ku(x), x ∈ ∂Ω, K ∈ R

+, the following inequality
holds

CF (K)

[∫

Ω

|∇u(x)|2 dx+K

∫

∂Ω

|u(x)|2 dS
]

≤
∫

Ω

(∆u(x))2 dx

with the optimal Friedrichs constant given in Theorem 3.12.

Proof. By using integration by parts and the Cauchy-Schwarz inequality we obtain
∫

Ω

|∇u(x)|2 dx+K

∫

∂Ω

|u(x)|2 dS

=

∫

∂Ω

u(x)∂νu(x) dS −
∫

Ω

u(x)∆u(x) dx+K

∫

∂Ω

|u(x)|2 dS

≤
[∫

Ω

u(x)2 dx

] 1
2
[∫

Ω

(∆u(x))2 dx

] 1
2

≤ 1
√

CF (K)

[∫

Ω

|∇u(x)|2 dx+K

∫

∂Ω

|u(x)|2 dS
] 1

2
[∫

Ω

(∆u(x))2 dx

] 1
2

and thus

√

CF (K)

[∫

Ω

|∇u(x)|2 dx+K

∫

∂Ω

|u(x)|2 dS
] 1

2

≤
[∫

Ω

(∆u(x))2 dx

] 1
2

.

Theorem 3.14
Let µ < CD. Then the Neumann controlled heat equation (3.42) with control (3.44),
where K is chosen such that CF (K) > µ, and stage cost (3.43) satisfies the expo-
nential controllability condition (1.34). The corresponding constants are given by
σ = e−2T (CF (K)−µ) ∈ (0, 1) and C = (1 + λK2M) ∈ R with M ∈ R.

Proof. In order to use the Lyapunov methods from the previous theorems we define

V (t) :=
1

2
‖y(·, t)‖2L2(Ω) =

1

2

∫

Ω

y(x, t)2 dx (3.47)

and differentiate V (t) with respect to time

V̇ (t) =

∫

Ω

y(x, t)yt(x, t) dx =

∫

Ω

y(x, t)(∆y(x, t) + µy(x, t)) dx

=

∫

ΓN

y(x, t)∂νy(x, t) dS −
∫

Ω

∇y(x, t) · ∇y(x, t) dx+ µ

∫

Ω

y(x, t)2 dx

= −K
∫

ΓN

y(x, t)2 dS −
∫

Ω

∇y(x, t) · ∇y(x, t) dx+ µ

∫

Ω

y(x, t)2 dx

≤ (−CF (K) + µ)

∫

Ω

y(x, t)2 dx = −2(CF (K)− µ)V (t)

53



3 Minimal Stabilizing Horizons

and thus
V (t) ≤ e−2t(CF (K)−µ)V (0). (3.48)

Because of Theorem 3.12 and µ < CD there exists K ∈ R such that CF (K) > µ.
This yields

l∗(y(n)) =
1

2
‖y(·, nT )‖2L2(Ω) ≤

1

2
e−2nT (CF (K)−µ)‖y(·, 0)‖2L2(Ω) = σnl∗(y0)

with σ = e−2T (CF (K)−µ) ∈ (0, 1). In order to prove the exponential decay of the
derivative we define similarly to (3.10)

V (t) :=
1

2
‖∇y(·, t)‖2L2(Ω) =

1

2

∫

Ω

∇y(x, t) · ∇y(x, t) dx

and differentiate with respect to time

V̇ (t) =

∫

Ω

∇y(x, t) · ∇yt(x, t) dx

=−
∫

Ω

∆y(x, t)yt(x, t) dx = −
∫

Ω

(∆y(x, t))2 dx− µ

∫

Ω

∆y(x, t)y(x, t) dx

≤− CF (K)

[∫

Ω

|∇y(x, t)|2 dx+K

∫

ΓN

y(x, t)2 dS

]

− µ

∫

ΓN

y(x, t)∂νy(x, t) dS + µ

∫

Ω

|∇y(x, t)|2 dx

≤− (CF (K)− µ)

∫

Ω

|∇y(x, t)|2 dx− (CF (K)− µ)
︸ ︷︷ ︸

≥0

K

∫

ΓN

y(x, t)2 dS

≤− 2(CF (K)− µ)V (t).

Thus, we get
1

2
‖∇y(·, t)‖2L2(Ω) ≤

1

2
e−2t(CF (K)−µ)‖∇y(·, 0)‖2L2(Ω)

By combining the previous results with the trace theorem, cf. [32], we can prove the
boundedness of the control effort

∫

∂Ω

y(x, t)2 dS ≤ C‖y(·, t)‖2H1(Ω) ≤ C‖y0(·)‖2H1(Ω).

Therefore, there exists a constant M ∈ R such that ‖y(·, t)‖2L2(ΓN ) ≤M‖y(·, t)‖2L2(Ω)

and we determine the overshoot constant by

l(y(n), u(n)) =
1

2
‖y(·, nT )‖2L2(Ω) +

λ

2
‖u(·, nT )‖2L2(ΓN )

=
1

2
‖y(·, nT )‖2L2(Ω) +

λ

2
K2‖y(·, nT )‖2L2(ΓN )

≤ Cl∗(y(n)) with C := (1 + λK2M).
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3.4.2 Exponential Constants for Neumann Boundary Control II

In this subsection we consider the Neumann controlled PDE (3.42) with an arbi-
trarily large reaction parameter µ. Since the backstepping approach only works in
one dimension we investigate

yt(x, t) = yxx(x, t) + µy(x, t) in (0, 1)× (0,∞) (3.49a)

y(0, t) = 0 in (0,∞) (3.49b)

yx(1, t) = u(t) in (0,∞) (3.49c)

y(x, 0) = y0(x) in (0, 1). (3.49d)

As stage cost we use the one dimensional version of (3.43), i.e.,

l(y(n), u(n)) =
1

2
‖y(·, nT )‖2L2(Ω) +

λ

2
|u(nT )|2. (3.50)

Theorem 3.15
The Neumann controlled heat equation (3.49) with control (3.27), where K is chosen
such that K > µ − λ1, and stage cost (3.50) satisfies the exponential controllability
condition (1.34). The corresponding constants are given by σ = e−2T (λ1−µ+K) ∈ (0, 1)

and C =

(

1 + λK2
(√

M
2

+ η̃(K)
)2
)

ξ(K) ∈ R with

η̃(K) :=





∫ 1

0

(

x
I2(
√

K(1− x2))

(1− x2)

)2

dx





1
2

and ξ(K) := (1 + L1(K))2(1 + L2(K))2.

Proof. First, we note that the Volterra kernel for the Neumann control is exactly the
same as in the Dirichlet case (only the feedback control and the eigenvalue change).
With the same calculation as in Theorem 3.10 we get

l∗(y(n)) =
1

2
‖y(·, nT )‖2L2(Ω) ≤

1

2
ξ(K)σn‖y(·, 0)‖2L2(Ω) = ξ(K)σnl∗(y0) (3.51)

with ξ(K) := (1 + L1(K))2(1 + L2(K))2 and σ := e−2T (λ1−µ+K). With similar
arguments as in Theorem 3.10 and Lemma 3.9 we obtain

|u(t)| ≤ K

2
|y(1, t)|+

∣
∣
∣
∣
∣
∣

∫ 1

0

Kz
I2

(√

K(1− z2)
)

1− z2
y(z, t) dz

∣
∣
∣
∣
∣
∣

≤ K
√
M

2

(∫ 1

0

y(x, t)2 dx

) 1
2

+K

(∫ 1

0

y(x, t)2 dx

) 1
2






∫ 1

0



z
I2

(√

K(1− z2)
)

1− z2





2

dz






1
2
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≤
(√

M

2
+ η̃(K)

)

K

(∫ 1

0

y(x, t)2 dx

) 1
2

This yields

l(y(n), u(n)) =
1

2
‖y(·, nT )‖2L2(Ω) +

λ

2
|u(nT )|2 ≤ C̃l∗(y(n)) (3.52)

with C̃ =

(

1 + λK2
(√

M
2

+ η̃(K)
)2
)

. By combining (3.51) and (3.52) we obtain

l(y(n), u(n)) ≤ C̃l∗(y(n)) ≤ C̃ξ(K)σnl∗(y0) = Cσnl∗(y0) (3.53)

with C := C̃ξ(K).

It should be mentioned that the smallest eigenvalue in the previous theorem is given
by λ1 = π2/4 and, thus, is different to that in the Dirichlet case where we have
λ1 = π2.

3.4.3 Numerical Results

In this section we investigate the Neumann controlled heat equation in the context
of our theoretical results from the previous section. The case of Neumann control is
remarkable because we obtained different exponential constants for different mag-
nitudes of the reaction value µ. This is the opposite behaviour to the distributed
and the Dirichlet boundary control. The focus of this section is on the investigation
whether the different controls from Section 3.4.1 and 3.4.2 result in a different be-
haviour of the minimal stabilizing horizon.
For this purpose we consider the Neumann controlled equation in one dimension
(3.49). From the spectral properties we know that the uncontrolled equation is un-
stable for µ ≥ π2/4. The smallest eigenvalue of the corresponding Dirichlet problem
is given by CD = π2. Thus, for π2/4 ≤ µ < π2 we can stabilize (3.49) with control
(3.44). Moreover, we can use the results from Theorem 3.14. For larger values of the
reaction parameter (µ ≥ π2) we have to use the weaker results from Theorem 3.15.
We focus again on the analysis of the overshoot bound. It is visible that the overshoot
constant in Theorem 3.14 (C = (1+λK2M)) has a very similar structure to that in
the distributed controlled case in Theorem 3.4 (C = (1+ λK2)). In contrast to this

the overshoot constant for large values of µ (C = (1+ λK2(
√
M
2

+ η̃(K))2)ξ(K)) re-
sembles that of the Dirichlet controlled case (C = (1+ λK2η(K))ξ(K)). Therefore,
from our theory we expect a Dirichlet like behaviour for µ ≥ π2 and a distributed
control like behaviour for π2/4 ≤ µ < π2. This is exactly what we observe in the
numerical simulation.
First, we recapitulate the major differences between Dirichlet and distributed con-
trol from Subsection 3.3.2. One observation was that it is always possible to stabilize
the heat equation with distributed control with the smallest horizon by reducing the
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value of the regularization parameter λ. Obviously, the arguments from Subsection
3.3.2 are also true for the Neumann controlled equation with µ < π2: We can bring
C = (1 + λK2M) arbitrarily close to 1 by reducing the value of λ. Thus, it is pos-
sible to stabilize the problem with a horizon N = 2 for sufficiently small λ. Since
the control (3.44) does not stabilize the problem for a reaction parameter µ ≥ π2

we have to choose the control (3.27) and we can use the results from Theorem 3.15.
With the same arguments as for the Dirichlet controlled system we have C → ξ(K)
for λ → 0. Thus, for µ ≥ π2 we cannot guarantee stability with a horizon N = 2
even for arbitrarily small λ.
An interesting question is whether the bound π2 is actually observable in the nu-
merical simulation. To answer the question we have to keep the influence of the
decay rate σ small. One possibility to do this is to reduce the sampling time T . For
T → 0 we obtain σ → 1 and, thus, we can observe the pure influence of C. In Figure
3.1 the maximum value of µ is displayed where stability is obtained with N = 2
depending on the sampling time T (blue line). Furthermore, we see the bound π2

derived from the theory (dashed black line). It is observable that the curve tends
to the theoretical bound for small values of T . For even smaller values of T , the
numerical errors become predominant.
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Figure 3.1: Maximum value of µ where stability with N = 2 is observed in the
numerical simulation, in dependence of the sampling time T .

Furthermore, we have seen in Section 3.3.2 that in the Dirichlet case the stage cost,
where the gradient of the state is penalized, leads to a much longer horizon than
the stage cost, where the state is penalized. In the case of distributed control we
observe the contrary behaviour for L = 1 (see Table 3.2). In the next example
we investigate this problem for the Neumann controlled case. We consider the one
dimensional heat equation (3.49) with stage cost

l(y(n), u(n)) =
1

2
‖y(·, nT )‖2L2(Ω) +

λ

2
|u(nT )|2 (3.54)
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and

l(y(n), u(n)) =
1

2
‖yx(·, nT )‖2L2(Ω) +

λ

2
|u(nT )|2 (3.55)

Following our analysis we expect that stage cost (3.55) yields shorter stabilizing
horizons than (3.54) for µ < π2 (’distributed control like behaviour’). This property
changes to the opposite for µ ≥ π2 (’Dirichlet control like behaviour’). In the
numerical simulation we choose the parameters T = λ = 0.01. The results are
presented in Table 3.4. We denote the minimal stabilizing horizon for stage cost
(3.54) and (3.55) with N‖y‖ and N‖∇y‖, respectively. Obviously, the required horizon
for the cost (3.55) is much smaller than for (3.54) in the case of a reaction parameter
up to µ = 9. This behaviour changes drastically for values above µ = 10. Thus, the
numerical results perfectly match our theoretical findings. Once again we observe
that our theoretical bound µ = π2 is actually tight.

µ N‖y‖ N‖∇y‖
5 3 2
6 4 2
7 4 2
8 5 2
9 6 2
10 6 16
11 7 33

Table 3.4: Comparison of the minimal stabilizing horizon for stage costs (3.54) N‖y‖
and (3.55) N‖∇y‖ depending on the reaction parameter µ. The parameters
for the numerical MPC simulation are given by T = λ = 0.01.

3.5 Convection

In this section we examine the heat equation with an additional convection term and
a diffusion parameter ε > 0. Although after slightly changes the presented meth-
ods are also applicable to distributed and Neumann boundary control we restrict
ourselves to the case of Dirichlet control. Thus, we look at the Dirichlet boundary
controlled PDE (3.28) with additional convection term

ỹt(x, t) = εỹxx(x, t) + bỹx(x, t) + µỹ(x, t) in (0, 1)× (0,∞) (3.56a)

ỹ(0, t) = 0 in (0,∞) (3.56b)

ỹ(1, t) = ũ(t) in (0,∞) (3.56c)

ỹ(x, 0) = ỹ0(x) in (0, 1) (3.56d)

with b ∈ R. It is well known from the theory of convection dominated diffusion
equations that it is possible to transform (3.56) into a PDE without convection, cf.
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3.5 Convection

[61]. For the one dimensional equation (3.56) the transformation is given by

y(x, t) := ỹ(x, t)e
b
2ε
x. (3.57)

To prove that this transformation actually eliminates the convection we differentiate
y(x, t) with respect to t and x

yt(x, t) = ỹt(x, t)e
b
2ε
x

yxx(x, t) = ỹxx(x, t)e
b
2ε
x +

b

ε
ỹx(x, t)e

b
2ε
x +

b2

4ε2
ỹ(x, t)e

b
2ε
x

and get

yt(x, t)− εyxx(x, t)−
(

µ− b2

4ε2

)

y(x, t)

= ỹt(x, t)e
b
2ε
x − εỹxx(x, t)e

b
2ε
x − bỹx(x, t)e

b
2ε
x − b2

4ε2
ỹ(x, t)e

b
2ε
x −

(

µ− b2

4ε2

)

ỹ(x, t)e
b
2ε
x

= 0

Therefore, we obtain the heat equation without convection but with an altered
reaction term

yt(x, t) = εyxx(x, t) +

(

µ− b2

4ε2

)

y(x, t) in (0, 1)× (0,∞) (3.58a)

y(0, t) = 0 in (0,∞) (3.58b)

y(1, t) = u(t) = ũ(t)e
b
2ε in (0,∞) (3.58c)

y(x, 0) = ỹ0(x)e
b
2ε
x in (0, 1). (3.58d)

Remark 3.16
Note that this method to eliminate the convection term is not restricted to the one
dimensional equation. Furthermore, the idea can be generalized to spatially varying
functions ε(x) and b(x), cf. [62]. However, in these cases the transformation be-
comes much more complicated.
In the FEM literature the transformation trick is also known as Lagrange-Galerkin
method, cf. [61]. The name Lagrange originates from the Lagrangian description in
fluid dynamics where the observer moves with the fluid.

Now, we are in the setting of Section 3.3 and can apply the known results to (3.58).
Analogous to (3.18) the desired target system for the PDE (3.58) is given by

wt(x, t) = εwxx(x, t) +

(

µ− b2

4ε2
−K

)

w(x, t) in (0, 1)× (0,∞) (3.59a)

w(0, t) = 0 in (0,∞) (3.59b)

w(1, t) = 0 in (0,∞) (3.59c)
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with the control feedback

ũ(t) = −
∫ 1

0

e−
b
2ε

(1−x)Kỹ(x, t)x
I1(
√

K(1− x2))
√

K(1− x2)
dx. (3.60)

By applying the results from Section 3.3 to system (3.59) we directly obtain σ =

e−2T (π2−µ+K+ b2

4ε2
). In order to get an estimate for the overshoot constant C we have

to investigate the feedback law (3.60) in more detail

ũ(nT )2 =

(
∫ 1

0

e−
b
2ε

(1−x)Kỹ(x, nT )x
I1(
√

K(1− x2))
√

K(1− x2)
dx

)2

≤
∫ 1

0

(

e−
b
2ε

(1−x)Kỹ(x, nT )
)2

dx ·
∫ 1

0

(

x
I1(
√

K(1− x2))
√

K(1− x2)

)2

dx

≤ K2

∫ 1

0

e−
b
ε
(1−x)ỹ(x, nT )2 dx · η(K)

≤ K2

∫ 1

0

ỹ(x, nT )2 dx · η(K) ·
{

1 : b ≥ 0

e
|b|
ε : b < 0

For stage cost (3.31) we obtain

l(y(n), u(n)) =
1

2
‖ỹ(·, nT )‖2L2(Ω) +

λ

2
|ũ(nT )|2 ≤ C̃l∗(y(n) (3.61)

where C̃ is given by

C̃ := 1 + λK2η(K) ·
{

1 : b ≥ 0

e
|b|
ε : b < 0

With the same arguments as in Theorem 3.10 we get C = C̃ξ(K).

Numerical results

In the next step, we want to analyse the reaction-convection-diffusion equation (3.56)
with regard to the convection parameter b. From the decay rate σ we directly ob-
serve that b2

4ε2
counteracts the destabilizing reaction term µ. As a result we observe

that for a convection value b 6= 0 the equation is stable for larger values of µ, in-
dependently of the sign of b. Since the convection term has a beneficial effect on
stability we expect shorter stabilizing horizons for larger |b|. Furthermore, we see
that in contrast to σ the overshoot constant C depends on the sign of b. This asym-
metry is due to the fact that the control only acts on the left boundary. Obviously,
for values b < 0 we obtain a large overshoot constant and thus, we expect longer
stabilizing horizons than for values b ≥ 0.
In the numerical simulation we look at the reaction-convection-diffusion equation
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3.6 Method of Nevistic/Primbs

(3.56) with varying convection value b and regularization parameter λ. The sam-
pling time is given by T = 0.01 and the reaction value by µ = 15. The minimal
stabilizing horizon observed in the MPC closed loop is displayed in Table 3.5. Obvi-
ously, the horizon shrinks for large values of |b|. This corresponds to our theoretical
considerations for σ. For b ≥ 0 we observe a monotonically decay for the horizon.
This behaviour is reasonable because for b ≥ 0 the overshoot constant does not
depend on b. Thus, the decay can again explained by the behaviour of σ. For small
negative values of b the decay rate cannot compensate the higher value of C and we
observe a larger horizon. Since the influence of C grows with an increasing regular-
ization parameter this effect is stronger for large values of λ.

b -5 -4 -3 -2 -1 0 1 2 3 4

λ = 0.01 2 2 5 6 6 5 4 3 3 2
λ = 0.1 2 5 11 11 9 8 6 5 3 2

Table 3.5: Minimal stabilizing horizon of the reaction-convection-diffusion equation
(3.56) depending on the convection parameter b. The parameters used in
the numerical MPC simulation are given by µ = 15 and T = 0.01.

.

Finally, we want to remark that the findings from Section 3.3 concerning stability
with the shortest possible horizon is also true for the PDE (3.56): Since we have
C → ξ(K) > 1 for λ→ 0 we cannot expect to observe stability for N = 2, even for
arbitrarily small λ. This is indeed visible in the numerical simulation.

3.6 Method of Nevistic/Primbs

As we have seen in the previous sections the predicted minimal stabilizing horizons
are very conservative. In this section we show the possibility to improve the results
concerning suboptimality and stabilizing horizons by taking advantage of special
structures of the control problem. In the following we briefly describe the method
of Nevistic and Primbs presented in [75]. The method is developed for finite dimen-
sional linear-quadratic control problems without state or control constraints and it
uses Riccati difference equations (RDE). However, after an appropriate discretiza-
tion this technique is also applicable for linear PDEs.

We look at the following finite dimensional linear system

y(n+ 1) = Ay(n) +Bu(n), y(0) = y0 (3.62)

where y(n) ∈ R
n and u(n) ∈ R

m. The quadratic cost functional is given by

VN(y0) = inf
u(·)

N−1∑

k=0

y⊤(k)Qy(k) + u⊤(k)Ru(k). (3.63)
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Note that we have a different notation to [75]. To be consistent in this thesis we
changed the limit of the sum from N to N -1. The matrices Q ∈ R

n×n and R ∈ R
m×m

are positive definite, A is invertible and [A,B] is a stabilizable pair.
The presented method is based on the knowledge of the optimal value function. In
the linear quadratic control problem without constraints this information can be
obtained by the Riccati Difference Equation (RDE) which is given by

Pj+1 = A⊤ [Pj − PjB(B⊤PjB +R)−1B⊤Pj
]
A +Q (3.64)

with P0 = Q. We define λN and λN as the smallest and the largest eigenvalue of PN .
Furthermore, let βN = min{β| βPN ≥ PN+1}. Then the following stability theorem
holds:

Theorem 3.17
Let N be such that

λ0 − (βN−1 − 1)λN > 0,

then the receding horizon policy is stabilizing and VN is a Lyapunov function for the
closed loop system with

VN(y(k + 1)) ≤ γNVN(y(k))

where γN = (1 − λ0−(βN−1−1)λN

λN
). Furthermore, a bound for the infinite-horizon

performance is given by

V µN
∞ (y0) ≤

(

1 +

(
βN−1 − 1

βN−1

)
γN

1− γN

)

VN(y0) (3.65)

The proof can be found in [75]. Note that the inverse of
(

1 +
(
βN−1−1
βN−1

)
γN

1−γN

)

plays

the role of the suboptimality degree αN in our method.
In the next step we apply the presented method to the discretized one dimensional
heat equation with distributed control

yt(x, t) = yxx(x, t) + µy(x, t) + u(x, t) in (0, 1)× (0,∞) (3.66a)

y(0, t) = y(1, t) = 0 in (0,∞) (3.66b)

y(x, 0) = y0(x) in (0, 1). (3.66c)

and quadratic stage cost

l(y(n), u(n)) =
1

2
‖y(·, nT )‖2L2(Ω) +

λ

2
‖u(·, nT )‖2L2(Ω). (3.67)

Since the previous results are formulated for finite dimensional discrete time systems
we have to rewrite (3.66) in an appropriate way. In the first step we discretized the
spatial variable by central finite differences with M inner grid points and obtain

y′h(t) = Ãyh(t) + B̃uh(t) (3.68)
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with

Ã :=
1

h2x











−2 1 0 · · · 0

1 −2 1 · · · ...
...

. . .
. . .

. . .
...

... 1 −2 1
0 · · · 0 1 −2











+ µIM and B̃ := IM

where IM denotes the unit matrix and hx = 1/(M + 1) the spatial discretization.
Equation (3.68) is a linear system of ODEs with constant coefficients and the solution
exists and is unique. The solution can be formally written as

yh(t) = etÃyh0 +

∫ t

0

e(t−τ)ÃB̃uh(τ) dτ (3.69)

where e· denotes the matrix exponential. It is remarkable that the solution formula
also holds for infinite dimensional systems if Ã is interpreted as the infinitesimal
generator of etÃ in the sense of semigroup theory, cf. [78].
By introducing the sampling time T and taking into account that the control is
constant in each sampling interval we obtain

y(n+ 1) = eTÃy(n) + Ã−1
(

eTÃ − IN

)

B̃u(n)

with y(n) := yh(nT ). By defining A := eTÃ and B := Ã−1
(

eTÃ − IN

)

B̃ we get

exactly the required form (3.62).
Furthermore we have to approximate the L2-norm in the stage cost (3.67). By using
the trapezoidal rule we obtain the following matrices for Q and R

Q :=
hx
2










1
2

1
. . .

1
1
2










and R := λQ.

In order to compare the results of [75] with our method we implemented the proce-
dure in Matlab. Since the main focus of this section is not on an efficient code but
only on the results we implement the matrices straightforward by using the matrix
exponential expm. The required values in (3.65) are the maximal eigenvalue λN of
PN and the value βN that can be computed as the maximum eigenvalue of PN+1P

−1
N ,

cf. [75]. In order to ensure that the Riccati matrices PN are correctly computed we
also determine the optimal control sequence by

uN(k) = −
(
B⊤PN−(k+1)B +R

)−1
B⊤PN−(k+1)Ay(k)

and compare the results with those one obtained by the optimal control algorithms
presented in Section 4.1.

63



3 Minimal Stabilizing Horizons

To get the values for the method presented in Section 3.1 we proceed as already
described: Insert the K depending values σ(K) and C(K) from Theorem 3.4 into
the αN formula (1.35) and determine that value of K which produces the largest
αN .
We consider the linear heat equation (3.66) with parameter T = 0.01, λ = 0.01,
M = 100 and µ = 12.

N αN N/P αN
7 -0.0291 -0.1483
8 0.0935 -0.1398
9 0.2080 -0.1256
10 0.3140 -0.1061
11 0.4108 -0.0816
12 0.4979 -0.052
13 0.5751 -0.019
14 0.6426 0.017
15 0.7010 0.057

Table 3.6: Suboptimality degree αN determined by the method of Nevistic/Primbs
[75] and by the method presented in Section 3.1 in dependence of the
horizon N

In Table 3.6 the αN values for both methods are displayed. Obviously, the values de-
rived from the method presented in Section 3.1 are smaller than those we determined
by the procedure of Nevistic/Primbs. As a result, the α value becomes positive for
a smaller horizon N and, thus, we can guarantee stability for a smaller horizon. In
the example the predicted minimal stabilizing horizon for the first method is given
by N = 8 and, thus, much more closer to the true horizon N = 4 than the predicted
horizon N = 14 from the second method. This outcome is also observable for all
considered parameters.
This result is not surprising because the method of this section uses the special
structure of the linear quadratic problem to obtain information about the optimal
value function. The drawback is that this approach will not work for different con-
trol structures or if control or state constraints are incorporated. The power of the
technique presented in Section 3.1 is that it is also applicable for nonlinear and
infinite dimensional systems. Furthermore, no knowledge of the optimal control is
required. However, the price of this generality is given by the conservatism of the
results.

Remark 3.18
We want to mention that the results concerning the minimal stabilizing horizon can
even be improved if we take the exact optimal solution into account. For the one di-
mensional linear heat equation with distributed control and quadratic cost functional
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the following upper bound can be proven

N̄ =

⌈
λ

T
(µ− π2)

⌉

+ 1. (3.70)

This estimate on the minimal stabilizing horizon yields significantly better results
than both other methods.

3.7 Linear Wave Equation

In this section we show that the presented method is not only applicable for parabolic
PDEs but also for hyperbolic equations. Using the example of the linear, boundary
controlled wave equation we demonstrate the applicability of the road map and
explain the difference to the parabolic heat equation. The finite propagation speed
of hyperbolic systems plays an important role.

3.7.1 Exponential Constants for the Wave Equation

We look at the one dimensional linear wave equation

ytt(x, t)− c2yxx(x, t) = 0 in (0, L)× (0,∞) (3.71a)

y(0, t) = 0 in (0,∞) (3.71b)

yx(L, t) = v(t) in (0,∞) (3.71c)

with Neumann boundary control on the right side of the domain Ω = (0, L). On
the left side we impose a homogeneous Dirichlet condition. The propagation speed
is given by c. In contrast to the heat equation the wave equation is of second order
in time and, thus, we need an initial condition for the state y(x, 0) = y0(x) ∈ H1(Ω)
as well as for yt(x, 0) = y1(x) ∈ L2(Ω). The PDE (3.71) is known to be finite time
controllable for T ≥ 2L

c
, cf. [47].

The equilibrium is given by (y, yt) = (0, 0). Again, we define the discrete state
as y(n) = y(x, nT ) and the control as u(n)(·) = v(·)|[nT,(n+1)T ). The choice of an
appropriate cost functional is quite important. First, we note that the functional

l(y(n), u(n)) =
1

2
‖y(·, nT )‖2L2(Ω) +

λ

2

∫ (n+1)T

nT

v(t)2 dt.

from the parabolic case is not applicable since it does not identify the equilibrium.
A suitable choice with regard to the equilibrium is given by

l(y(n), u(n)) =
1

2
‖y(·, nT )‖2L2(Ω) +

1

2
‖yt(·, nT )‖2L2(Ω) +

λ

2

∫ (n+1)T

nT

v(t)2 dt. (3.72)

Since the energy of the system plays an important role for the wave equation (for the
uncontrolled equation the energy is conserved) it seems to be an appropriate task
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to minimize the energy of the system. The total energy consists of the potential
energy yx and the kinetic energy yt

E(t) :=
1

2

∫ L

0

yx(x, t)
2 +

1

c2
yt(x, t)

2 dx (3.73)

Therefore, the corresponding stage costs are given by

l(y(n), u(n)) =
1

2
‖yx(·, nT )‖2L2(Ω) +

1

2
‖yt(·, nT )‖2L2(Ω) +

λ

2

∫ (n+1)T

nT

v(t)2 dt. (3.74)

Note that because of the Poincaré inequality the stage costs (3.72) and (3.74) are
equivalent. We will see that we have to alter the energy (3.74) to a weighted energy
to get suitable estimates. First, we give the motivation for this concept, see also [8]
and [6]. A well known feedback to stabilize the wave equation (3.71) is given by

yx(1, t) = −K
c
yt(1, t) (3.75)

with K ∈ (0, 1]. In order to explain the behaviour of this feedback we consider the
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Figure 3.2: Solution trajectory of the wave equation (3.71) with control (3.75)

following example:

Example 3.19
We consider the wave equation (3.71) with control (3.75) and initial conditions

y0(x) =

{
−16x2 + 16x− 3 : 0.25 ≤ x ≤ 0.75

0 : else
(3.76)

and y1(x) = 0. The parameters are given by K = L = c = 1. In Figure 3.2 the
solution trajectory of (3.71) with control (3.75) is displayed. It is obvious that for
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T ≥ 2 the origin is obtained. Figure 3.3 (left) displays the energy of this system.
It can be seen that the energy is monotonically, but not strictly monotonically de-
creasing. This is due to the fact that the propagation speed of the wave is finite and
the control acts only on the right boundary. Therefore, the control can only reduce
the energy of the system if the wave reaches the right side. In view of the constants
for the exponential controllability this leads to a large overshoot constant C. This
means the MPC algorithm requires a long prediction horizon to observe a decay in
the stage cost. Actually we can only prove stability for a prediction horizon of at
least T ≥ 2.
This problem leads to the introduction of a so called weighted energy. In order to
motivate the choice of the weighted energy we analyse the exact solution of the equa-
tion. Note, that we do not use this representation in the proof of the exponential
controllability, in contrast to [8]. The solution of (3.71) with control (3.75), which
can be found by using the method of reflection, cf. [88], is given by

y(x, t) =
1

2
(y0(x+ ct) + y0(x− ct)) +

1

2c

∫ x+ct

x−ct
y1(s) ds for x > ct (3.77)

y(x, t) =
1

2
(y0(ct + x)− y0(ct− x)) +

1

2c

∫ ct+x

ct−x
y1(s) ds for x < ct

with the partial derivatives

yt(x, t) =
c

2
(y′0(x+ ct)− y′0(x− ct)) +

1

2
(y1(x+ ct) + y1(x− ct)) for x > ct

yt(x, t) =
c

2
(y′0(ct+ x)− y′0(ct− x)) +

1

2
(y1(ct + x)− y1(ct− x)) for x < ct

and

yx(x, t) =
1

2
(y′0(x+ ct) + y′0(x− ct)) +

1

2c
(y1(x+ ct)− y1(x− ct)) for x > ct

yx(x, t) =
1

2
(y′0(ct+ x) + y′0(ct− x)) +

1

2c
(y1(ct+ x) + y1(ct− x)) for x < ct.

The simplicity of the solution is due to the fact that we only take into account K = 1
and, thus, no reflections occur on the right side.
The energy of the system is given by

E(t) :=
1

2

∫ 1

0

yx(x, t)
2 +

1

c2
yt(x, t)

2 dx

=
1

4

∫ 1

0

(yx(x, t) +
1

c
yt(x, t))

2 + (yx(x, t)−
1

c
yt(x, t))

2 dx

=
1

4

∫ ct

0

(y′0(ct+ x) +
1

c
y′1(ct+ x))2 + (y′0(ct− x) +

1

c
y′1(ct− x))2 dx

+
1

4

∫ 1

ct

(y′0(x+ ct) +
1

c
y′1(x+ ct))2 + (y′0(x− ct)− 1

c
y′1(x− ct))2 dx.
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Obviously, the energy can be split into two parts: (yx(x, t) +
1
c
yt(x, t))

2 represents
the movement of the energy to the left and (yx(x, t) − 1

c
yt(x, t))

2 to the right side.
Furthermore, it can be seen that the decrease of the energy is given by

∫ 1

1−ct
(y′0(x)−

1

c
y1(x))

2 dx.

This explains, why we do not observe a strict decay for the energy: If y′0(x) and
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Figure 3.3: Classical energy E(t) (left) and weighted energy Ew(t) (right) for the
Example 3.19

y1(x) vanish for x ∈ [1 − ct, 1] or the terms cancel out each other, the energy stays
constant. In order to overcome this fact we introduce a so called weighted energy
which takes the movement of the wave into account

Ew(t) :=
1

4

∫ 1

0

ω1(x)

(

yx(x, t) +
1

c
yt(x, t)

)2

+ ω2(x)

(

yx(x, t)−
1

c
yt(x, t)

)2

dx

(3.78)

where ωi : [0, 1] → R, i = 1, 2, are continuous functions. A natural choice for the
weight functions is given by ω1 = 2+ x and ω2 = 2− x, see Figure 3.4. The arrows
indicate the direction of the propagation, i.e. the energy far away from the actuator
is stronger penalized than the energy close to the right side. In Figure 3.3 (right) it
can be seen that the weighted energy (3.78) with control (3.75) actually is a strictly
monotonically decreasing function.

After this motivation we rewrite the weighted energy (3.78) in an appropriate way
and define the functional

V (t) :=
1

2

∫ L

0

yx(x, t)
2 +

1

c2
yt(x, t)

2 +
δ

c2
xyx(x, t)yt(x, t) dx (3.79)
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Figure 3.4: Weightfunctions ω1, ω2 in the weighted energy (3.78)

with δ ∈ (0, 2) (for δ = 1 we obtain (3.78)). This leads us to the following stage cost

l(y(n), u(n)) := V (nT ) +
λ

2

∫ T

0

u(n)(·)2 dt. (3.80)

In [8] we derived the exponential constants C and σ for the case K = δ = 1. Since
for these parameters the solution can be easily found (see Example 3.19), the proof
was based on the exact representation. In the following theorem we generalize the
results from [8] by allowing δ ∈ (0, 2) and K ∈ (0, 1]. Thus, we allow reflections
on the right boundary (this happens for K ∈ (0, 1)). In this case it is much more
complicated to give a representation of the solution. Therefore, the following proof
is based on Lyapunov methods presented in [62] and avoids the knowledge of the
exact solution.

Theorem 3.20
The boundary controlled wave equation (3.71) with control (3.75), K ∈ (0, 1], and
stage cost (3.80), 0 < δ ≤ 4Kc

L(K2+1)
, satisfies the exponential controllability con-

dition (1.34). The corresponding constants are given by σ = e
− δ

δ L
c +2

T
and C =

(

1 + λK
(2−δ L

c
)c

)

.

Proof. In order to estimate σ we differentiate (3.79) with respect to time and get

V̇ (t) =

∫ L

0

yx(x, t)yxt(x, t) +
1

c2
yt(x, t)ytt(x, t)

+
δ

2c2
x (yxt(x, t)yt(x, t) + yx(x, t)ytt(x, t)) dx
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=yx(x, t)yt(x, t)
∣
∣L

0
−
∫ L

0

yxx(x, t)yt(x, t) dx+

∫ L

0

yt(x, t)yxx(x, t) dx

+
δ

4c2

∫ L

0

x
d

dx

(
c2yx(x, t)

2 + yt(x, t)
2
)
dx

=− K

c
yt(x, t)

2 +
δ

4

[

x

(

yx(x, t)
2 +

1

c2
yt(x, t)

2

)]L

0

− δ

4

∫ L

0

yx(x, t)
2 +

1

c2
yt(x, t)

2 dx

≤− K

c
yt(x, t)

2 +
δL

4

(
K2

c2
yt(1, t)

2 +
1

c2
yt(1, t)

2

)

− δ

2(δL
c
+ 2)

∫ L

0

yx(x, t)
2 +

1

c2
yt(x, t)

2 +
δ

c2
xyx(x, t)yt(x, t) dx

≤− δ

δL
c
+ 2

V (t).

This yields

l∗(y(n) ≤ σnl∗(y(0)) with σ = e
− δ

δ L
c +2

T
.

With the same arguments (and δ = 0) we obtain

E(t0) = E(t1) +
K

c

∫ t1

t0

yt(1, τ)
2 dτ

with 0 ≤ t0 ≤ t1. This means that the decay of the energy is exactly what we take
out of the system. Furthermore, we get

l(y(n), u(n)) =V (nT ) +
λ

2

∫ T

0

u(n)(·)2 dt = V (nT ) +
λK2

2c2

∫ (n+1)T

nT

yt(1, t)
2 dt

≤V (nT ) +
λK

2c
(E(nT )− E((n+ 1)T )) ≤ V (nT ) +

λK

2c
E(nT )

≤
(

1 +
λK

(2− δL
c
)c

)

l∗(y(n)).

With C =
(

1 + λK
(2−δ L

c
)c

)

we obtain the desired inequality.

3.7.2 Numerical results

In this section we give some numerical results in order to illustrate the findings from
Theorem 3.20. Since energy arguments play an important role in our reasoning, we
choose the energy conserving Newmark scheme for the time discretization, cf. [55].
Further remarks concerning the discretization of the wave equation in the context
of optimization can be found in [101] and [36]. The spatial discretization is given
by δx = 0.001.
First, we show that the decay rate, derived in Theorem 3.20, holds for Example 3.19.
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With the parameter c = L = δ = 1 and T = 0.01 we get σ = e−T/3. In Figure 3.5
the σ- values from the numerical simulation are displayed for the classical energy
(blue ’o’) and the weighted energy (red ’x’). Obviously, the values of the weighted
energy are bounded from above by σ = e−0.01/3 (solid black line) while the classical
energy achieves values of one and is therefore useless for our method.
For the next example we look at the numerical observations from [55] and [66]. The
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Figure 3.5: σ- values from the numerical simulation for the classical energy (’o’) and
the weighted energy (’x’). The solid line (black) displays the theoretical
bound of σ derived in Theorem 3.20.

results indicate that the MPC algorithm performs very well, even for the shortest
possible horizon N = 2. This special kind of MPC, where the prediction horizons
do not overlap, is also called instantaneous control. Note that the use of the term
instantaneous control is not unique. In [53] the authors used this notation for N = 2,
but the corresponding optimal control problem is only approximately solved by ex-
actly one gradient step. This technique, in turn, sometimes is also called one step
gradient method, cf. [66].
In the following we investigate the stability behaviour of instantaneous control.
From the α-formula (1.35) for N = 2 we obtain the sufficient stability condition
α2 = 1 − (C(1 + σ) − 1)2 > 0. For Example 3.19 and the constants δ = K = 1
we get the condition T > −3 log

(
1−λ
1+λ

)
. In the simulation we choose λ = 0.001 and

T = 0.01 > −3 log
(
1−0.001
1+0.001

)
≈ 0.006.

We compare the closed loop solution of the instantaneous control with the optimal
control open loop solution on the time interval [0, 2]. The solution trajectory for the
instantaneous control (red ’x’) and the optimal control (solid blue line) at different
time snapshots are depicted in Figure 3.6. Obviously, both trajectories are quite
close together. This observation is pretty surprising, since the optimal control takes
information of the whole interval [0, 2] (in this example 200 time steps), while the
instantaneous control technique only uses the information of the next time step in
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each iteration. Whereas at t = 2 differences between the solutions are visible, at
t = 4 the equilibrium is also for the instantaneous control almost attained (as in
[55] the optimal control is continued by zero input on (2, 4]).
It is remarkable that the computation time for the optimal control in the whole time
interval is more than 21000 times longer than for one single step of the instanta-
neous control. Thus, the overall time for the instantaneous control algorithm on the
interval [0; 2] is more than 105 times smaller than the optimal open loop control.
Since the controls from both methods are quite close together and the computation
of the instantaneous control is in real time possible (even for this fine spatial dis-
cretization), this technique seems to be very attractive for the wave equation.
The numerical results in [66] show that the success of the presented method is not
due to the introduced weighted energy. However, only for this concept our analysis
is applicable and we can prove that a stabilizing feedback is obtained. A gener-
alization of the weighted energy to the n-dimensional wave equation seems rather
complicated, because of the domain dependence of the weight functions. Only for
simple domains an appropriate weight function can be found, e.g., for a two dimen-
sional rectangular domain. In contrast to this, the instantaneous control algorithm
with the classical energy can be easily generalized to the multi dimensional case.
An example for a successful application of this method on a L shaped domain can
be found in [55].
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Figure 3.6: Comparison of optimal control (solid blue line) and instantaneous control
(red ’x’) at different time snapshots.
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4 Algorithms

In this chapter we present algorithms for solving MPC problems with PDEs. Fur-
thermore, we investigate methods for solving the arising subproblems. The basic
idea of MPC was presented in Section 1.2 and the most simple MPC Algorithm 1.1
forms the basis for the following considerations.
The essential effort of MPC is to solve an optimal control problem in each time
step. Since this is, especially in the case of PDEs, a time consuming task, it is
quite important to find efficient algorithms to solve such problems. Recently a lot of
literature concerning this topic has been published. A detailed introduction to the
field of optimization algorithms for infinite dimensional systems can be found in [52]
and [18]. In Section 4.1 we summarize well known algorithms in PDE constrained
optimization.
One possibility to significantly reduce the computing time for the optimal control
problem is the use of model reduction techniques. Here, we focus on the reduction
method Proper Orthogonal Decomposition (POD) presented in Section 2.3.1. In
Section 4.2 we present known algorithms, which combine model predictive control
with model order reduction and compare those with our new approach.
In the ensuing Section 4.3 we introduce the idea of adaptive horizon MPC from
[38] and [77] and show how to implement these algorithms in the context of infinite
dimensional control systems. Moreover, we investigate the possibility to combine
adaptive horizon MPC with multigrid methods.

4.1 Algorithms in PDE Optimization

In this section we present algorithmic approaches for solving PDE constrained op-
timization problems. The presentation is based on [52], [49] and [18]. First, we
recapitulate the abstract optimization problem (2.1)

min
(y,u)∈Y×U

J(y, u) subject to e(y, u) = 0, u ∈ U (4.1)

with J : Y × U → R, e : Y × U → Z. In our context J(y, u) denotes the cost
functional, e(y, u) = 0 represents the PDE and the admissible set of control values
U is given by pointwise box constraints.
The algorithms presented in this section are based on the so called Black-Box ap-
proach. This means we distinguish between the independent control variable u and
the dependent state variable y(u). We already investigated this concept in Section
2.1 where we introduced the unique solution operator y = S(u) to eliminate the
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constraint e(y, u) = 0. The reduced cost functional is given by Ĵ(u) := J(S(u), u).
Thus, the state y is eliminated from the optimization problem. However, the control
constraints are still present.
In contrast to this, the All-at-Once technique considers the control and state vari-
ables as independent optimization variables, which are coupled through the PDE
e(y, u) = 0. For details we refer to [40].
Furthermore, we distinguish between first order gradient-type methods and higher
order (Quasi-) Newton methods. The following algorithms are formulated in a func-
tion space setting. The presentation is based on [52] and [18]. A detailed overview
of algorithms in finite dimensional optimization can be found in [76] and [35, 34].

4.1.1 First Order Methods

The methods under observation in this thesis are so called descent algorithms. The
idea is to find at the current iterate uk ∈ U a descent direction dk ∈ U satisfying

〈∇Ĵ(uk), dk〉U < 0 (4.2)

and a step length σk satisfying

Ĵ(uk + σkdk) < Ĵ(uk). (4.3)

Therefore, the general descent method is given by

Input: initial point u0 ∈ U
1 for n = 0, 1, . . . do

2 if ∇Ĵ(un) = 0 then
3 Stop
4 end

5 Choose a descent direction dn ∈ U : 〈∇Ĵ(un), dn〉U < 0;

6 Choose a stepsize σn > 0 such that Ĵ(un + σndn) < Ĵ(un);
7 Set un+1 := un + σndn;
8 Set n = n+ 1;

9 end

Algorithm 4.1: General descent method

Since we have no further conditions on the stepsize, for this general algorithm it is
not possible to prove convergence, cf. [52]. (It may occur that the stepsize decreases
too fast). Moreover, for a practical implementation the stopping criterion (2) should
be replaced by an appropriate one, e.g. ‖∇Ĵ(uk)‖U < ε with prescribed ε > 0. The
choice of the steplength σk plays an important role in the algorithm. A widely used
criterion for an appropriate step size is given by the Armijo Rule

Ĵ(uk + σkdk) ≤ Ĵ(uk) + δσk〈∇Ĵ(uk), dk〉U (4.4)
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with a constant δ ∈ (0, 1). This condition guarantees a sufficient large decrease and
can be generalized to the problem with box constraints, cf. [52]. In order to ensure
that the cost functional does not increase too fast beyond the minimum in addition
the following inequality

〈∇Ĵ(uk + σkdk), dk〉U > γ〈∇Ĵ(uk), dk〉U with γ ∈ (0, 1) (4.5)

should be satisfied. Both inequalities together are known as Wolfe-Powell condition.
A frequently used method to find an appropriate step length is the bisection tech-
nique, i.e., we choose the maximum σk ∈ {1, 1/2, 1/4, . . .} that satisfies condition
(4.4) and (4.5). A detailed overview of line search algorithms and their geometrical
meaning can be found in [76].
An alternative method to obtain a suitable step size is the inexact line search,
cf. [49] in the context of PDE constrained optimization. The idea is to minimize
ϕ(t) := Ĵ(uk + tdk) for fixed dk. Solving this problem by Newton’s method is not
useful because the Hessian is not computed in first order methods. The Taylor
expansion combined with the secant method yields

ϕ(t) ≈ ϕ(0) + ϕ′(0)t+
ϕ′(σ)− ϕ′(0)

2σ
t2 (4.6)

and minimization of the right hand side leads to

t = − σϕ′(0)

ϕ′(σ)− ϕ′(0)
= − σ〈∇Ĵ(uk), dk〉U

〈∇Ĵ(uk + σdk), dk〉U − 〈∇Ĵ(uk), dk〉U
. (4.7)

Starting with an initial value σ0 > 0 and setting σi+1 = ti yields an iterative proce-
dure. Although this inexact line search may lead to no descent, it yields quite good
results in the practical implementation. The results in Chapter 6 indicate that only
very few iterations of this line search are necessary to obtain a significant reduction
in the number of steps in the descent method, compared to the bisection method.

Next, we focus on the determination of an appropriate descent direction. The gradi-
ent methods belong to the most simple optimization algorithms. They are in general
of first order and comparatively easy to implement. However, for complicated prob-
lems, where no second order information is available, they are still of interest.
The crucial step is the efficient computation of the gradient. There are essentially
three different methods in order to obtain the first order information. One possi-
bility is given by numerical differentiation. In this case the gradient is built up by
finite difference methods. This approach is used e.g. in the MPC software package
yane. For details concerning numerical differentiation we refer to [76] and in the
context of PDE constrained optimization to [41]. Moreover, it is possible to use Au-
tomatic Differentiation. This technique decomposes the code for the evaluation of
the cost functional in elementary arithmetic operations, where exact differentiation
rules can be applied iteratively. In this thesis, we focus on a third approach, the
adjoint based approach to determine the gradient. An overview of these methods
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and a comparative study in the context of PDE constrained optimization can be
found in [41].
The adjoint method is based on the analysis in Chapter 2 and uses the representa-
tion of the gradient in formula (2.7). Thus, the algorithm to compute the gradient
at some point u ∈ U of the reduced cost functional is given by:

Input: u ∈ U
Output: ∇Ĵ(u)

1 Solve the state equation e(y(u), u) = 0;
2 Solve the adjoint equation ey(y(u), u)

∗p = −Jy(y(u), u);
3 Compute the reduced gradient ∇Ĵ(u) = eu(y(u), u)

∗p+ Ju(y(u), u)

Algorithm 4.2: Evaluation of the reduced gradient ∇Ĵ(u)

Obviously, the computation of the gradient needs the solution of the (potentially
nonlinear) state equation and the linear adjoint equation. This algorithm enables
us to compute first order optimization algorithms.

Remark 4.1
Note, that Algorithm 4.2 is only exact in the function space setting. However, in the
real implementation the state and adjoint equation cannot be computed exactly and
have to be discretized. The way presented in this section is in the literature known
as optimize then discretize (OD) approach, i.e., we build up the optimization
algorithms and the gradient in the function space and afterwards we discretize the
arising subproblems for the state equation e(y, u), the adjoint equation ey(y, u)

∗ and
the cost functional J(y, u) e.g. by the finite element method presented in Section
2.3.1. The opposite approach is given by discretize then optimize (DO). In this
case the cost functional and the state equation are discretized and a finite dimensional
nonlinear optimization problem is obtained. With the classical finite dimensional
optimality system the adjoint of the discrete system and the discrete gradient can
be determined. For general discretizations of the adjoint equation in the (OD) case
we cannot expect that the discrete gradient coincides with that one from the (DO)
case. However, an inconsistent gradient could lead to problems in the optimization
algorithm. Thus, it is reasonable to use a discretization for the adjoint equation that
matches the discretization of the state equation and the cost functional. A detailed
overview of the construction of appropriate discretizations of the adjoint equation
can be found in [71]. The important case, in which we discretize the time variable
by a semi implicit Euler scheme (see Section 2.3.1), can be found e.g. in [39].

Projected Gradient Methods

The first algorithm we present is the gradient method, also known as steepest descent
method. The idea is to go in each step of the descent Algorithm 4.1 towards the
negative gradient, i.e., we choose dn := −∇Ĵ(un). The convergence proof of the
gradient method with a step size satisfying the Armijo condition can be found in
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[76] for finite dimensional problems and in [52] for the Banach space setting.

Input: initial guess u0 ∈ U,max steps nmax, tolerance tol
1 Set n := 0;

2 Evaluate d0 := −∇Ĵ(u0);
3 while (n < nmax && ‖dn‖U > tol) do

4 Evaluate dn := −∇Ĵ(un) with Algorithm 4.2;
5 Calculate a step length σn, satisfying Armijo’s rule (4.4);
6 Set un+1 := un + σndn;
7 Set n = n + 1

8 end

Algorithm 4.3: Gradient algorithm

The gradient method is known to quickly reduce the objective function in the first
steps, but then it slows down. Since the initial guess for the optimal control prob-
lem in the MPC algorithm is in general quite good (except for the first step), this
algorithm seems to be inappropriate for MPC. As we will see in Chapter 6 this is
often actually true. However, for some problems the gradient method is a serious
alternative.
One advantage of this method is that it can easily be generalized to the case
with box control constraints. In this case we use the projection P[ua,ub](v) :=
max{ua,min{ub, v}} to obtain admissible controls, where ua and ub denote the lower
and upper bound. Furthermore, the Armijo rule and the Wolfe-Powell condition
have to be adapted to the constrained case

Ĵ(P[ua,ub](u
k + σkd

k)) ≤ Ĵ(uk) + δσk〈∇Ĵ(uk), d̃k〉U (4.8a)

〈∇Ĵ(P[ua,ub](u
k + σkd

k)), dk〉U > γ〈∇Ĵ(uk), d̃k〉U (4.8b)

with 0 < δ < γ < 1
2
and d̃k is as follows

d̃k =

{
dk : uk ∈ int(Uad)
0 : uk ∈ ∂Uad and dk points outwards U

The resulting method is known as projected gradient algorithm and is given by
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Input: initial guess u0 ∈ U,max steps nmax, tolerance tol
1 Set n := 0;

2 Evaluate d0 := −∇Ĵ(u0);
3 while (n < nmax && ‖dn‖U > tol) do

4 Evaluate dn := −∇Ĵ(un) with Algorithm 4.2;
5 Calculate a step length σn, satisfying projected Armijo rule (4.8a);
6 Set un+1 := P[ua,ub](un + σndn);
7 Set n = n+ 1;

8 end

Algorithm 4.4: Projected gradient algorithm

Nonlinear Conjugate Gradient Methods

The next algorithm under consideration is the Nonlinear Conjugate Gradient (NCG)
algorithm. The conjugate gradient (CG) algorithm is a well known iterative method
for solving systems of linear equations with a symmetric and positive definite co-
efficient matrix. Especially for large scale systems CG has attractive convergence
properties (see also the application to Newton’s method in 4.1.2). The idea of the
CG method originates from the minimization of a convex, quadratic cost function.
The NCG algorithm generalizes the CG approach to general nonlinear functions.
A detailed overview of this method for finite dimensional optimal control problems
can be found in [76]. A presentation of the NCG algorithm in the case of PDE
constrained optimization can be found in [49], where it was used for the optimal
control of the Navier-Stokes equation. The NCG algorithm in the Banach space
setting, cf. [18], is given by

Input: initial guess u0 ∈ U,max steps nmax, tolerance tol
1 Set n := 0;

2 Evaluate d0 := r0 := −∇Ĵ(u0);
3 while (n < nmax && ‖dn‖ > tol) do
4 Calculate a step length σn satisfying Armijo’s rule (4.4);

5 Set un+1 := un + σndn ; rn+1 := −∇Ĵ(un+1);
6 Determine step length βn+1 ;
7 Set dn+1 := rn+1 + βn+1dn and n := n + 1;
8 if (rn, dn) ≤ 0 then
9 Set dn := rn;

10 end

11 end

Algorithm 4.5: Nonlinear Conjugate Gradient algorithm

There are different options for the choice of β in step (6). Quite popular formulas
(especially for the finite dimensional optimization) are given by the Fletcher-Reeves
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and the Polak-Ribiere methods

βFRk+1 :=
〈rk+1, rk+1〉U
〈rk, rk〉U

, βPRk+1 :=
〈rk+1, rk+1 − rk〉U

〈rk, rk〉U
, βPR+k+1 := max{βPRk+1, 0}

More elaborate formulations, cf. [18], are given by Dai-Yuan

βDYk+1 =
〈rk+1, rk+1〉U

〈dk, rk+1 − rk〉U

and by Hager-Zhang

βHZk+1 =
〈σk, rk+1〉U
〈dk, yk〉U

with σk = yk −
〈yk, yk〉U
〈yk, dk〉U

and yk = rk+1 − rk. The results in [97] indicate that βDYk+1 and βHZk+1 are favourable
in the context of PDE constrained optimization. It is important to note that the β
formulas are based on the control space inner product. In the implementation this
has to be approximated in an appropriate way. Using the finite dimensional Eu-
clidean inner product would lead to scaling problems and, thus, to bad convergence
properties. Even in the infinite dimensional setting there is a significant difference
in the convergence speed between choosing the L2 or H1 inner product, cf. [97].

It is well known, cf. [76], that the NCG method generally yields better results than
the steepest descent method. The nonlinear CG method was successfully used in
applications like the optimal control of quantum systems [97] and the control of laser
processes [95]. The numerical results in Chapter 6 indicate that the NCG method
also yields good results for the MPC algorithm.

4.1.2 Higher Order Methods

In this section we present higher order optimization algorithms. We start with the
optimization problem, where no additional control constraints are present. Later on
we will see how this problem can be handled. The most popular higher order algo-
rithm for finite and infinite dimensional optimization problems is given by Newton’s
method. The basic algorithm reads

Input: initial guess u0 ∈ N (u∗),max steps nmax, tolerance tol
1 while (n < nmax && ‖∇Ĵ(un)‖ > tol) do

2 Solve ∇2Ĵ(un)δun = −∇Ĵ(un) ;
3 Update un+1 = un + δun ;
4 Set n = n + 1 ;

5 end

Algorithm 4.6: Newton algorithm
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The condition u0 ∈ N (u∗) means that the initial guess has to be close to the optimal
value u∗, because the algorithm is only locally convergent. Algorithm 4.6 requires
second derivatives of the reduced cost functional and the solution of a linear operator
equation in each optimization step. After discretization of the control space the
latter results in an often high dimensional linear system of equations. Especially
in the case of distributed control, where the number of control variables is rather
high, this problem has to be solved with iterative methods. A further problem is
that building up the Hessian ∇2Ĵ(u) in an explicit way is a time consuming task.
Moreover, since the dimension of the Hessian is the square of the number of control
variables, this can also lead to storage problems. In order to demonstrate this we
consider the example of a two dimensional distributed control problem. Let the
spatial discretization in each dimension be given by hx = 1

100
and an optimization

horizon of N = 20 is chosen. If we store the variables in the C++ format double,
we will obtain a memory requirement for the Hessian of (1002 · 20)2 · 8 byte ≈ 298
Gbyte. This is in general not practicable in view of the internal memory. For a
finer discretization, a higher dimensional problem or a longer horizon it is in general
infeasible to build up the Hessian explicitly. To overcome the described problems
in the following section we consider the application of Krylov type methods to the
Newton algorithm.

Newton-CG Method

Next, we explain a possibility to make Algorithm 4.6 applicable for PDE constrained
optimization. The idea is to solve the linear system of equations (2) by an iterative
Krylov method like CG or MINRES. The main advantage is that these algorithms do
not require the explicitly formed Hessian, but only the evaluation of matrix-vector
products ∇2Ĵ(u)δu. The evaluation of the reduced Hessian times a vector can be
done by the methods presented in Section 2.2. The following Algorithm 4.7 is based
on the representation of the Hessian (2.10).

Input: u ∈ U , s ∈ U
Output: ∇2Ĵ(u)s

1 Solve the state equation e(y(u), u) = 0 ;
2 Solve the adjoint equation ey(y(u), u)

∗p = −Jy(y(u), u) ;
3 Solve the linearized state equation ey(y(u), u)δsy = −eu(y(u), u)s ;
4 Compute h1 = Lyy(y(u), u, p(u))δsy + Lyu(y(u), u, p(u))s;
5 Compute h2 = Luy(y(u), u, p(u))δsy + Luu(y(u), u, p(u))s;
6 Compute the adjoint equation ey(y(u), u)

∗h3 = −eu(y(u), u)∗h1 ;

7 Compute ∇2Ĵ(u)s = h2 + h3

Algorithm 4.7: Evaluation of the reduced Hessian times a vector ∇2Ĵ(u)s

Note that the steps (1) and (2) are typically already done for the evaluation of
the gradient. Therefore, the additional effort essentially derives from the solution
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of a linearized state equation (3) and a linear adjoint equation (6). The Lagrange
function is again given by L(y, u, p) = J(y, u) + 〈p, e(y, u)〉Z∗,Z . All cost functionals
considered in this thesis have the structure J(y, u) = J1(y) + J2(u), i.e., the control
and the state variable are decomposed. In this case we obtain Lyu = Luy = 0.
Since J1 and J2 are usually quadratic functionals and e(y, u) represents a semilinear
PDE, where the partial derivative of the Nemitzki operator can be easily computed
analytically, the evaluation of Lyy and Luu is not a big problem.

Example 4.2
In this example we show how to obtain the partial derivatives of the Lagrangian in
the case of an abstract semilinear PDE and a quadratic cost functional. We consider
e(y, u) = Ay + f(y) + Bu = 0 and J(y, u) = 1

2
‖Qy − yd‖2Y + λ

2
‖u‖2U where A,B,Q

are appropriate operators. With the Lagrangian L(y, u, p) = J(y, u)+〈p, e(y, u)〉Z∗,Z

we obtain

L(y, u, p) =
1

2
‖Qy − yd‖2Y +

λ

2
‖u‖2U + 〈p, Ay + f(y) +Bu〉Z∗,Z ,

Ly(y, u, p) = Q∗(Qy − yd) + A∗p+ f ′(y)p,

Lu(y, u, p) = λu+B∗p,

Lyy(y, u, p) = Q∗Q+ f ′′(y)p,

Luu(y, u, p) = λIU ,

Lyu(y, u, p) = Luy(y, u, p) = 0.

Algorithm 4.8 is the so called Newton-CG method. The idea is to solve the linear
equation using the conjugate gradient method and to avoid an explicit representation
of the Hessian.

Input: initial guess u0 ∈ N (u∗),max steps nmax, tolerance tol
1 while (n < nmax && ‖∇Ĵ(un)‖ > tol) do

2 Compute bn = −∇Ĵ(un) with Algorithm 4.2 ;
3 Choose δun0 and set k = 0;

4 Compute rn0 = bn −∇2Ĵ(un)δu
n
0 with Algorithm 4.7 and set dn0 = rn0 ;

5 while (k < kmax and ‖rk‖U < tolCG) do

6 Compute z = ∇2Ĵ(un)d
n
k with Algorithm 4.7 ;

7 Evaluate αnk =
〈rnk ,rnk 〉U
〈dn

k
,z〉U ;

8 Set δunk+1 = δunk + αnkd
n
k and rnk+1 = rnk − αnkz ;

9 Evaluate βnk =
〈rnk+1,r

n
k+1〉U

〈rn
k
,rn

k
〉U and set dnk+1 = rnk+1 + βnk d

n
k ;

10 Set k = k + 1 ;

11 end
12 Update un+1 = un + δunk ;
13 Set n = n + 1 ;

14 end

Algorithm 4.8: Newton-CG algorithm
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The Newton-CG method consists of an outer Newton loop for the optimization
and the inner CG loop, in which the arising linear system is solved. The main
computational effort within the CG loop is the evaluation of the Hessian times
vector product (6). For this task, we have to solve one linearized state equation and
one adjoint equation in each CG step. The effort to obtain the gradient in (2) is
the same as in the gradient type methods, i.e., the evaluation of the nonlinear state
and the linear adjoint PDE.
It seems to be appropriate to solve the linear system only with high accuracy when
the current Newton iterate is close to the optimum. To save iterations in the CG
loop we choose the tolerance tolCG depending on the outer loop. In [49] the authors
suggest the following stopping criterion for the inner loop

‖rnk‖U
‖∇Ĵ(u0)‖U

≤ min

{(

‖∇Ĵ(un)‖U
‖∇Ĵ(u0)‖U

)q

, p
‖∇Ĵ(un)‖U
‖∇Ĵ(u0)‖U

}

(4.9)

with constants q ∈ (1, 2] and p > 0. Note that p is only relevant in the first steps,
but afterwards the influence of q becomes dominant. The value of q determines the
convergence order of the outer loop. For q = 2 we obtain the desired quadratic
convergence behaviour. The case q = 1 yields a linear and q = 1.5 a superlinear
order. It is important to note that we have a trade off behaviour: If we choose q = 2
we have the desired quadratic convergence for the Newton method, but a lot of CG
steps have to be done in the inner loop. In contrast to that, for q = 1.5 we only
obtain a superlinear convergence order, but we require less CG steps. Detailed nu-
merical results concerning the number of CG steps in dependence on q can be found
in [49], where the Newton-CG method was applied to an optimization problem in
semiconductor design.
Since the Newton update is automatically scaled in the function space, cf. [18], a
steplength of σk = 1 is reasonable and yields good numerical results, see Chapter 6.
However, for some problems with nonconvex cost functional it is useful to shorten
the stepsize.
In the literature, the Newton-CG method is also known as inexact Newton method.
A convergence proof for finite dimensional optimization problems can be found in
[76]. The application to a PDE constrained optimization problem, namely the opti-
mal control of the Navier-Stokes equations, can be found in [51]. The convergence
proof for infinite dimensional systems can also be found in this reference.

Remark 4.3
We want to point out that the main advantage of Algorithm 4.8 is to avoid the
explicit formulation of the Hessian. Even in the case, where a direct method like
Gaussian elimination is favourable to solve the linear equation, it is often useful to
choose Algorithm 4.8. Building up the full Hessian with Algorithm 4.7 and taking
the symmetry into account requires dim Uh PDE solutions. Contrary to that we
need two PDEs solved in each CG step. Thus, we should prefer Algorithm 4.8 if
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the condition dim Uh

2
≥ ncg is satisfied, cf. [14]. The numerical results in Chapter

6 indicate that even for large problems only few CG steps are necessary, see also
[51]. Therefore, even for boundary control problems, where the number of control
variables is comparatively small, Algorithm 4.8 yields good results.

Remark 4.4
It is known that the CG method requires a symmetric and positive definite matrix.
Although the Hessian of the reduced cost functional is indeed symmetric and positive
definite, it is not guaranteed that these properties are preserved for the discretized
Hessian. In [18] the authors suggest to use further Krylov type methods like sym-
metric LQ (SYMMLQ), GMRES or BiCG to overcome this problem.

BFGS Algorithm

In this section we focus on so called Quasi-Newton methods. These methods require,
just like gradient methods, only first order information and avoid the necessity to
compute Hessian operations. However, they can produce superlinear convergence
and outperform the first order methods presented in Section 4.1.1. The most promi-
nent candidate of this type is the BFGS algorithm (named after Broyden, Fletcher,
Goldfarb and Shanno).
A detailed derivation of this method for finite dimensional optimization problems
can be found in [76]. The idea is to find an approximation B for the true Hessian.
We start with an initial guess, e.g. B0 = I and update the approximation Bn in
each step by

Bn+1 = Bn −
Bnsns

⊤
nBn

s⊤nBnsn
+
yny

⊤
n

y⊤n sn
(4.10)

with sn = un+1−un and yn = ∇Ĵ(un+1)−∇Ĵ(un). Because of scaling problems, it is
not useful to apply (4.10) directly to the discretized problem. In order to generalize
(4.10) we have to explain how the dyadic products are defined in the function space
setting. The rank-one operator w ⊗ z ∈ L(U), w, z ∈ U is defined by

(w ⊗ z)(v) := 〈z, v〉Uw.
With this notation we can formulate the following function space BFGS algorithm.

Input: initial guess u0 ∈ N (u∗),max steps nmax, B0 ∈ L(U) symmetric
1 while (n < nmax && ‖∇Ĵ(un)‖ > tol) do

2 Solve Bnδun = −∇Ĵ(un) ;
3 Update un+1 = un + δun ;

4 Compute ∇Ĵ(un+1) by Algorithm 4.2 ;

5 Set sn = un+1 − un, yn = ∇Ĵ(un+1)−∇Ĵ(un) ;
6 Update Bn+1 = Bn +

yn⊗yn
〈yn,sn〉U − Bnsn⊗Bnsn

〈Bnsn,sn〉U ;

7 Set n = n + 1 ;

8 end

Algorithm 4.9: BFGS algorithm
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As already mentioned, the appropriate approximation of the scalar products is im-
portant. The convergence proof of this algorithm in the function space setting can
be found in [51]. Note that the BFGS algorithm only requires first order gradient
information and, thus, one solution of the nonlinear state equation and one of the
linear adjoint equation in each step. The additional effort in contrast to the NCG
algorithm is given by the necessity to solve the linear system in step (2) and the
computation of the dyadic products in step (6). Moreover, just like in the Newton
Algorithm 4.6, the storage of the full matrix Bn causes problems for large optimiza-
tion problems. However, especially for boundary control problems, Algorithm 4.9
yields reasonable results, see Chapter 6.
One possibility to overcome the drawback of having to solve the linear system is to
use updates that approximate the inverse of the Hessian, i.e. H = B−1, instead of
the Hessian itself. By applying the Sherman-Morrison-Woodbury formula, cf. [76],
to (4.10) we obtain

Hk+1 = Hk +
s⊤k yk + y⊤k Hkyk

(s⊤k yk)
2

(sks
⊤
k )−

Hkyks
⊤
k + sky

⊤
k

s⊤k yk
(4.11)

for the finite dimensional problem. This formula can also be generalized to the
function space setting. By replacing Bk+1 by formula (4.11) in step (6) and inserting
δuk = −Hk∇Ĵ(uk) in step (2), we avoid the solution of the linear system.
To overcome the storage problem, as well, we consider a matrix free version of the
BFGS algorithm presented in [18]. The idea is based on the observation that the
algorithm described before only requires the action of Hk on the vector ∇Ĵ(uk), but
not the matrix Hk itself. By using the definition of the dyadic products and the
recursion relation for Hk, we obtain a recursive formula for zk = Hkyk, which reads

zk = H0yk +
k−1∑

j=1

[cj〈sj, yk〉Urj − 〈zj , yk〉Usj ] (4.12)

where cj = 〈sj , yj〉−1
U , dj = 1 + cj〈yj, zj〉U , and rj = djsj − zj . The search direction

is given by

pk+1 = −H0gk+1 −
k∑

j=1

[cj〈sj, gk+1〉Urj − 〈zj , gk+1〉Usj] . (4.13)

The main advantage of the matrix-free BFGS Algorithm 4.10 is given by the fact
that only the vectors {sj, yj, zj} are stored, but not the full inverse of the Hessian Hk.
Thus, this method allows us to handle quite large optimization problems without
getting into trouble with memory requirements. However, it should be mentioned
that the computational effort in each optimization step is higher compared to the
BFGS algorithm presented before.
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Input: u0 ∈ N(u∗), H0 = I, g0 = ∇Ĵ(u0), p0 = −g0
1 Compute u1 = u0 + σ0p0 with σ0 satisfying Armijo;

2 Compute g1 = ∇Ĵ(u1), y0 = g1 − g0, s0 = α0p0, and p1 = −H0g1 ;
3 while (n < nmax && ‖gn+1‖ > tol) do
4 Update un+1 = un + σnpn with σn satisfying Armijo ;

5 Compute gn+1 = ∇Ĵ(un+1), yn = gn+1 − gn, sn = σnpn ;
6 Compute zn with (4.12);
7 Compute and save cn = 〈sn, yn〉−1

U , dn = 1 + cn〈yn, zn〉U , and
rn = dnsn − zn ;

8 Compute new search direction pn+1 with (4.13) ;
9 Set n = n + 1 ;

10 end

Algorithm 4.10: Matrixfree BFGS algorithm

Remark 4.5
The presented algorithms in this section have in common that they are only locally
convergent, i.e., an appropriate initial guess has to be available. In the context of
MPC it is often possible to obtain a good start solution from the optimal control
sequence of the previous MPC step. For the first MPC step or the case of instan-
taneous control (N = 2), where no previous information exists, it is reasonable to
compute few steps with the gradient method and switch to higher order algorithms if
we are close to the optimum.
General globalization strategies for Quasi- and inexact Newton methods can be found
in [76] for finite dimensional optimization and in [52] for PDE constrained optimiza-
tion.

Primal- Dual Active Set Method

In this section we present an approach which incorporates control constraints into
the optimal control algorithm. The method is known as primal-dual active set
strategy and can be found in e.g. [58], [49] and [39]. We consider box constraints
U = {u ∈ L2(Q) : ua(x, t) ≤ u(x, t) ≤ ub(x, t)} with bounds ua, ub ∈ L∞(Q). In
order to keep the notation simple we will neglect the arguments x and t when it is
useful. Furthermore, we look at the case of distributed control, where the control
acts on the whole domain Q. The adaption to boundary control or distributed
control on partial domains is straightforward.
First, we recapitulate the first order optimality condition (2.15) for the control
constrained case

∇J(u) + µb − µa = 0 (4.14a)

µa ≥ 0, ua − u ≤ 0, 〈µa, ua − u〉U = 0 (4.14b)

µb ≥ 0, u− ub ≤ 0, 〈µb, u− ub〉U = 0, (4.14c)
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where µa and µb are the corresponding Lagrange multiplier for the inequality con-
straints. We define the so called active sets, i.e. those subsets of Q where the bounds
ua or ub are attained, by

A+ := {(x, t) ∈ Q : u(x, t) = ub(x, t)} (4.15a)

A− := {(x, t) ∈ Q : u(x, t) = ua(x, t)}. (4.15b)

By introducing the multiplier µ := µb − µa we obtain the following important char-
acterization (cf. [39] for the proof)

A+ = {(x, t) ∈ Q : µ+ c(u(x, t)− ub(x, t)) > 0} (4.16a)

A− = {(x, t) ∈ Q : µ+ c(u(x, t)− ua(x, t)) < 0} (4.16b)

with c ∈ R
+. The idea of the primal-dual active set method is to determine the

active sets for the primal variable u and then compute the dual variable from
the optimality condition (4.14a) via

µ = −∇J(u). (4.17)

The primal-dual active set algorithm reads

Input: Initial guess u0, µ0

1 Set k = 1 ;
2 while (k < kmax and stopping criterion is violated) do
3 Compute the active sets A+

k , A−
k from (µk−1, uk−1) with (4.16) ;

4 Solve minuk∈U Ĵ(uk) s.t. uk = ub on A+
k and uk = ua on A−

k ;
5 Compute the multiplier µk from the current iterate by (4.17) ;
6 Set k = k + 1 ;

7 end

Algorithm 4.11: Primal-dual active set strategy

In step (3) we determine the active sets via formula (4.16) using the information of
u and µ from the previous step. Subsequently, in step (4) we solve the optimization
problem, where the values on the active sets are fixed by the corresponding bounds.
Since the control values on the active sets Ak := A+

k ∪ A−
k are fixed they can be

eliminated from the optimization problem. Therefore, we obtain an unconstrained
optimization problem on the inactive set Ik = Q \ Ak that can be solved, e.g., by
the Newton Algorithm 4.8. In the last step (5) the multiplier µ is updated by the
optimality condition (4.17). A suitable stopping criterion for this algorithm is the
agreement of the active sets in two consecutive iterates. The numerical results in
[39] indicate that this criterion is often satisfied within less than five steps.
Note, that Algorithm 4.11 consists of an outer iteration, where the active sets are
determined, and an inner iteration, where the unconstrained optimal control prob-
lem is solved. An alternative approach is given if these iterations interchange, i.e.
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the control problem forms the outer iteration and the active sets are updated in the
inner iteration, cf. [58] and [39]. In the case where the optimization problems are
solved by SQP methods Algorithm 4.11 is also known as PD-SQP and the opposite
as SQP-PD method. The proof of local superlinear convergence for these two algo-
rithms can be found in [58].
The last algorithm in this section is a variant of the primal-dual active set strat-
egy, where the interpretation of these methods as semismooth Newton algorithm
becomes more obvious. The starting point is again the optimality system (4.14)
where the complementarity conditions (4.14b) can be rewritten in terms of min and
max operations as

∇Ĵ(u) + µ = 0 (4.18a)

max{0, µ+ c(u− ub)}+min{0, µ+ c(u− ua)} − µ = 0. (4.18b)

The idea to apply Newton’s method directly to system (4.18) fails, since (4.18b)
is not differentiable in a classical sense due to the presence of the min and max
operators. However, (4.18b) is so called Newton differentiable (cf. [52] for the de-
tailed definition) in the case c = λ, where λ denotes the regularization parameter.
Therefore, it is possible to apply a so called semismooth Newton method, cf. [59],
to system (4.18). Note the two different types of nonlinearities in (4.18): On the
one hand we have the possibly highly nonlinear (due to the PDE solution operator
S(u)), but typically smooth functional Ĵ(u) = J(S(u), u). On the other hand there
are the simple, but not differentiable max and min operations.
By using the notation of the active sets the semismooth Newton method yields, cf.
[49], the linear operator equation

(

∇2Ĵ(uk) I
cχAk

−χIk

)(
δu
δµ

)

= −
(

∇Ĵ(uk) + µk
cχA+

k
(uk − ub) + cχA−

k
(uk − ua)− χIkµk

)

(4.19)

In order to apply an iterative method to the (discretized) linear system, e.g. the CG
algorithm, it is necessary to rewrite (4.19) in an equivalent symmetric form. This
can be done by using the definition of the active sets and by taking into account
that δµ = 0 on the inactive set Ik. We obtain

(

∇2Ĵ(uk) χAk

χAk
0

)(
δu

δµ|Ak

)

= −
(

∇Ĵ(uk) + µk
χA+

k
(uk − ub) + χA−

k
(uk − ua)

)

(4.20)

As already mentioned before it is not reasonable to build up the Hessian ∇2Ĵ(uk)
explicitly, but only evaluate the matrix vector products ∇2J(uk)d by Algorithm 4.7
in each CG step. Furthermore, it is possible to replace the Hessian ∇2Ĵ(uk) by a
quasi- Newton approximation like the BFGS method presented in this section.
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Input: Initial guess u0, µ0

1 Set k = 0 ;
2 while (k < kmax and stopping criterion is violated) do
3 Evaluate the reduced gradient ∇J(uk) with Algorithm 4.2 ;
4 Compute the active sets A+

k and A−
k with (4.16) ;

5 Solve the Newton system (4.20) iteratively via Krylov methods;
6 Update uk+1 := uk + δu, µk+1|Ak

:= µk|Ak
+ δµk|Ak

, µk+1|Ik = 0 ;
7 Set k = k + 1 ;

8 end

Algorithm 4.12: Semismooth Newton method

A suitable stopping criterion for Algorithm 4.12 is given by
∥
∥
∥
∥
∥

(

∇Ĵ(uk) + µk
χA+

k
(uk − ub) + χA−

k
(uk − ua)

)∥
∥
∥
∥
∥
< ε.

Note that in Algorithm 4.12 the active sets are updated in each Newton iteration
(step (4)). In contrast to that in the PD-Newton Algorithm 4.11 the active set
update follows the exact solution of the unconstrained problem. Thus, in the case
where the Newton method yields the exact solution within one step in the inner
iteration, both algorithms coincide. A numerical study, in which the three presented
algorithm are compared can be found in [58]. Furthermore, the proof of superlinear
convergence for the semismooth Newton Algorithm 4.12 can also be found in this
reference. In view of the application to the discretized problem the semismooth
Newton algorithm enjoys a property called mesh independence. This means that
the number of Newton steps is independent of the mesh size (for the proof we refer
to [93]). In our numerical simulations Algorithm 4.12 yields quite good results.

Further methods

In the previous section we presented some popular algorithms for PDE constrained
optimization. However, there is a wide range of further algorithms and it is by far
out of the scope of this thesis to give an overview of this topic. Since some of these
methods are quite popular we want to mention them at least.

In contrast to the black-box approach the all-at-once method treats the control
and state variables as independent optimization variables. The idea of sequential
quadratic programming (SQP) is to solve the optimization problem (4.1) by a
sequence of quadratic programming (QP) problems, i.e., problems with quadratic
cost functional and linear constraints. In the case without control constraints the
problem reads





Lyy Luu e∗y
Luy Lyy e∗u
ey eu 0









yk+1 − yk
uk+1 − uk
pk+1



 = −





Jy(yk, uk)
Ju(yk, uk)
e(yk, uk)



 . (4.21)
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First, we note that the linear system (4.21) is quite large, even in the case that
the control space is small (e.g. boundary control). This is by reason that (4.21)
contains the (discretized) state, control and adjoint variables. In contrast to the
reduced objective approach we obtain a large linear system with a sparse structure.
Therefore, it is important to apply preconditioned iterative solver. In this context
it is remarkable that a special choice of the preconditioner leads to a system that
can be interpreted as a SQP method for the reduced system, cf. [40]. The main
advantage of the SQP algorithm is that only linearized equations have to be solved.
This becomes an important point if the effort for solving the nonlinear equation
e(y, u) = 0 is much higher than for the linearized equation ey(y, u) = 0. However,
if it is possible to treat the nonlinearity in an explicit way during the time step-
ping routine (as we do this in the semi-implicit Euler method) this advantage is
neglectable.

A different approach is given by the application of multigrid methods to the op-
timal control problem. The method originates from the numerical solution of PDEs
where multigrid techniques are used for a long time, cf. [42]. In the context of PDE
optimization the idea is to apply multigrid algorithms to the fully discretized first
order optimality system. A detailed introduction to this topic can be found in [18],
where especially semilinear PDEs are investigated. The application to reaction dif-
fusion processes can be found in [17].

In the special case where linear quadratic optimal control problems without addi-
tional constraints are considered, it is possible to use Riccati equations to find the
optimal solution. A detailed overview of how this method can be applied to MPC
and how it can be generalized to semilinear PDEs by linearization techniques can
be found in [48].

An alternative approach to deal with control constraints are interior point meth-
ods. The application to PDE constrained optimization can be found, e.g., in [98].

4.2 Proper Orthogonal Decomposition in Model

Predictive Control

In Section 4.1 we presented efficient algorithms for solving the optimal control prob-
lem in each MPC step. However, for a fine discretization or a multidimensional
model from a real application, online optimization is generally not possible. When
we consider MPC as a low dimensional approximation in time of the infinite hori-
zon problem, it seems to be desirable to reduce the spatial dimension as well. One
approach to do this is the use of the model reduction technique Proper Orthogo-
nal Decomposition (POD) presented in Section 2.3.1. In Figure 4.1 we see different
possibilities to treat infinite dimensional system on an infinite time horizon. If we in-
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clude the algorithms from Section 4.1 in the MPC step we consider high (but finite)
dimensional problems on a short time horizon. (Although most of the optimization
algorithms are formulated in an infinite dimensional way, we have to discretize the
problem in order to solve the underlying PDEs.) The last step is the reduction from
the high dimensional FEM model to a low dimension POD model.
Note that the model order reduction technique is also of interest for the infinite hori-
zon problem. In [65] the authors reduced the infinite dimensional problem via POD
and obtained a feedback by solving the Hamilton-Jacobi-Bellman equation arising
from the reduced model. This method was successfully applied to the Burgers equa-
tion.
Another possibility to get a reduced order model is to decompose the differential op-
erator into a (finite dimensional) unstable subsystem and an (infinite dimensional)
stable subsystem. The idea is to control only the often low dimensional unstable
system. This method is also known as modal decomposition and can be found in
e.g. [23]. The combination of the modal decomposition with MPC for semilinear
parabolic systems can be found in [28], [29] and [30].

✲

✻
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Figure 4.1: Relation between different approaches

The combination of MPC and POD was investigated some years ago for applica-
tions in flow control, e.g. [16], and chemical engineering [54]. In order to present
algorithms where we combine MPC with POD we repeat the main steps of the POD
method:

• Solve the state equation to obtain snapshots yj = y(tj)

• Build up the correlation matrix Kij =
1
n
〈yi, yj〉L2
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• Compute eigenvalues and eigenvectors of K

• Determine the ansatz functions for the Galerkin approximation and build up
the reduced model

An important question is how to obtain the control sequence for the simulations of
the snapshots. In practical applications it is often possible to give an initial guess
by physical considerations, see also the discussion in [37]. Furthermore, there exist
methods where the snapshots are generated by random controls. An easy adaption
strategy is given by the following idea: Start with an initial control, e.g. u = 0, and
compute the arising snapshots. The optimal control of the corresponding reduced
system is used to update the snapshot ensemble. In case the change of the control in
two consecutive steps is small enough the algorithm terminates. A more elaborate
variant of this algorithm can be found in [27]. One advantage of the MPC method
is that a suitable initial guess is already known from the previous step. Therefore,
it is in general not necessary to use the adaption strategy. The numerical results in
Chapter 6 and in [3] indicate that no adaption strategy is required even for the first
step, where no initial guess is available.

There are several possibilities to combine MPC with POD. One obvious method
is given in Algorithm 4.13. The idea is to compute the snapshots on a long time
horizon (1) and build up the reduced model (2). These steps can be done offline
before the MPC algorithm comes into play. The optimal control problem in each
MPC step (5) is solely solved for the reduced problem (2.50). By using (2.48)
the optimal control sequence of the reduced model provides an approximation of
the high dimensional control problem u = P(uROM). The first element of this
sequence is implemented to the full system (6) and yields the state for the next
iteration (7). The essential property and the advantage of this algorithm is that
we build up the reduced system only once before the online computation begins.

1 Create snapshots by solving the state equation on a long horizon ;
2 Build up the reduced order model fROM ;
3 for i = 1, 2, . . . do
4 Project the current state to the reduced state yROM(i) = Sy(i);
5 Solve the reduced order optimal control problem with horizon N ;
6 Compute the first element of the full control sequence by the reduced

model F (y(i)) := u(0) = P(uROM(0));
7 Compute new state y(i+ 1) = f(y(i), F (y(i))) and set i := i+ 1;

8 end

Algorithm 4.13: MPC-POD-Algorithm 1

Obviously, the algorithm only yields reasonable results if the system does not change
so much and, thus, the reduced model remains a good approximation of the full
model during the process. In [100] this algorithm was combined with linearization
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techniques.
In order to overcome the drawback from the previous algorithm we look at Algorithm
4.14. In contrast to Algorithm 4.13 the reduced model is computed within each
MPC step (3). However, the snapshots are only computed for the optimization
horizon N to obtain an appropriate model for the current optimization problem.

1 for i = 1, 2, . . . do
2 Create snapshots by solving the state equation on the horizon N ;
3 Build up the reduced order model fROM ;
4 Project the current state to the reduced state yROM(i) = Sy(i);
5 Solve the reduced order optimal control problem with horizon N ;
6 Compute the first element of the full optimal control sequence by the

reduced model F (y(i)) := u(0) = P(uROM(0));
7 Compute new state y(i+ 1) = f(y(i), F (y(i))) and set i := i+ 1;

8 end

Algorithm 4.14: MPC-POD-Algorithm 2

The drawback of this method is that all computations for obtaining the reduced
model, including the simulation for the snapshots, have to be done online.

It seems to be desirable to update the reduced model only in the case when a suit-
able approximation of the full system fails. Otherwise, the model should remain the
same during the MPC steps. The idea to estimate the quality of the reduced model
can be found in Figure 4.2.

✲uROM(i) u(i)

❄
❄

yROM(i+ 1) y2(i+ 1)
y1(i+ 1)

✲

P

P

fROM f

Figure 4.2: Model error estimator

The previous algorithms coincide in the following two steps: Compute the high
dimensional control from the reduced control sequence and apply the feedback
to the full model to obtain the next state. Thus, the steps to obtain the state
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y1 = f(y(i), F (y(i))) are those we have to do anyway. Furthermore, the state of the
reduced model yROM at the next time step is a byproduct of the optimization prob-
lem. The only additional step is to compute y2 = P(yROM) via formula (2.48), which
can be done quite fast. If we consider the relative difference between y1 and y2 in an
appropriate norm we get a measure of the viability of the current model. Note that
this procedure only yields a statement about the quality of the model but not about
the quality of the control. This idea leads to Algorithm 4.15. While the relative
model error e is below a given bound ε the reduced model does not change. If this
criterion fails the reduced model is updated and the current step is computed again.

1 Create snapshots by solving the state equation ;
2 Build up the reduced order model fROM ;
3 e = 0, k = 0;
4 while e ≤ ε do
5 Project the current state to the reduced state yROM(i) = Sy(i);
6 Solve the reduced order optimal control problem with horizon N ;
7 Compute the first element of the full optimal control sequence by the

reduced model F (y(i)) := u(0) = P(uROM(0));
8 Compute new state y1 = y(i+ 1) = f(y(i), F (y(i))) ;
9 Compute the full state from the reduced state y2 = P(yROM(i+ 1));

10 Evaluate the model error e = ‖y1 − y2‖L2/‖y1‖L2 ;
11 if e > ε && k > 0 then
12 GOTO 1
13 else
14 Set i := i+ 1, k := k + 1;
15 end

16 end

Algorithm 4.15: MPC-POD-Algorithm 3

In order to demonstrate the algorithm we look at the example of the catalytic
rod presented in Chapter 6. In Figure 4.3 the error of the model for the three
presented algorithms is displayed. In this example we consider 50 MPC steps and
the prescribed error is given by ε = 0.01. This means that we tolerate a maximum
relative error of 1% in each step. The blue line displays the model error of Algorithm
4.13 in which the reduced model is built up only one time. Obviously, the error is
rapidly monotonically increasing (at the final time t = 0.5 a relative error of ≈ 150%
is reached). In contrast to that the error of Algorithm 4.14 (black line), where the
reduced model is built up in each time step, is below ≈ 0.1%. The red line shows the
error for Algorithm 4.15. It is evident that the value is always below the prescribed
bound of 1%. Moreover, it can be seen that the reduced model is built up at the
beginning and it has to be recomputed three times in order to stay below the bound.
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As we will see in Chapter 6 the computing time for the additional three updates
of Algorithm 4.15 compared to Algorithm 4.13 is rather small. In contrast to that,
Algorithm 4.14 needs more than twice the computation time due to the 49 additional
updates. The numerical results indicate that Algorithm 4.14 yields a good tradeoff
between computing time and model accuracy.
Finally, we want to remark that the variable k in Algorithm 4.15 ensures that no
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Figure 4.3: Error of the model for Algorithm 4.13 (blue), Algorithm 4.14 (black)
and Algorithm 4.15 (red)

endless loop can occur. Otherwise, this might be possible if the reduced model is
too bad to undercut the model error in the first step. Furthermore, it allows us to
choose ε = 0 , see Section 6.3.

4.3 Adaptive Horizon MPC

An important parameter for the computational effort of the MPC algorithm is given
by the length of the optimization horizon N . As we will see in Chapter 6 the com-
puting cost grows with the horizon length. Therefore, we have a tradeoff between a
higher degree of suboptimality (see Section 1.2) and the computing time. In Chapter
3 we presented results that allow for estimating the minimal horizon that satisfies
a desired suboptimality degree. Although the results are useful for a qualitative
analysis they are quite conservative for a concrete example. Furthermore, it seems
to be reasonable that an appropriate horizon depends on the current state and, thus,
changes during the runtime of the algorithm. The idea of adaptive horizon algo-
rithms can be found in [38], [77] and [45]. Since these algorithms are formulated for
arbitrary metric spaces, they are directly applicable to infinite dimensional systems.
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However, to our knowledge the presented algorithms were not applied to PDE sys-
tems yet. One well known drawback of these algorithms is the possibility that the
computational burden for the additional optimization problems is much higher than
the benefit of shorter horizons. Surprisingly, this fact makes adaptive algorithms in-
teresting for the application to PDEs. In Section 4.2 we demonstrate that the effort
for solving PDE constrained optimal control problems can be significantly reduced
by using low dimensional models. These concepts can also be used for solving the
optimization problems arising in adaptive horizon MPC.
In Section 4.3.1 we take a look at some ideas of the adaptive horizon methods de-
scribed in [77] and [38]. In the ensuing Section 4.3.2 we present a new algorithm to
combine adaptivity with hierarchical grid methods.

4.3.1 Algorithms for Adaptive Horizon MPC

The algorithms we introduced in this section are essentially based on the relaxed
Lyapunov inequality VN(y) ≥ VN(f(y, FN(y)) + αl(y, FN(y)) we already used in
Theorem 1.20. In this theorem it was required that the inequality holds for all
y ∈ Y . Hence, this α is also called global suboptimality degree. Since this leads in
general to quite conservative values of α it was suggested by [77] to only consider
those points of the state space Y which are visited by the trajectory. This leads to
the following theorem, whose proof can be found in [77]:

Theorem 4.6
Consider a feedback law FN : Y → U and its associated trajectory y(·) with initial
value y(0) = y0 ∈ Y . If there exists a function VN : Y → R satisfying

VN(y(n)) ≥ VN(y(n+ 1)) + αl(y(n), FN(y(n)) (4.22)

for some α ∈ (0, 1] and all n ∈ N0 then

αV∞(y(n)) ≤ αV FN
∞ (y(n)) ≤ V∞(y(n)) (4.23)

The corresponding α value is called the closed-loop suboptimality degree. Note that
VN(y(n)) and l(y(n), FN(y(n))) are byproducts of the optimization problem and
they are known at time n. However, since VN(y(n + 1)) is not available at time n
the condition (4.22) cannot be checked online. Nevertheless, by using a posteriori
information, i.e. at time n + 1 we determine the α value from the previous step,
(4.22) can be used for adapting the horizon, cf. [77] for details. The drawback of
these algorithms is that they cannot ensure the desired suboptimality for the closed
loop system. In principle, it is possible to compute VN(y(n + 1)) at time n by
solving an additional optimal control problem. However, due to measurement and
modelling errors we cannot expect to know y(n+1) exactly (see also the remarks in
[77]). Furthermore, this implementation would double the computational burden.
To overcome these problems there are some approaches for a priori estimates. Since
this is not the main topic of this section, we do not go into detail. Elaborate
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information can be found in [77].
In this section we follow the ansatz of [38]. In order to indicate that the horizon is
no longer constant, we use the notation N(n) for the horizon at time n. The idea is
to compute an upper bound for the unknown VN(n+1)(y(n+ 1)) that is available at
time n, i.e.

V̄N(n+1)(y(n+ 1)) ≥ VN(n+1)(y(n+ 1)). (4.24)

Since this upper bound can be quite far away from VN(n+1)(y(n+ 1)), it is possible
to obtain quite conservative values for α. Now, the key step is to introduce a so
called slack variable s(n) that relaxes inequality (4.22) by the conservatism from
the previous steps. This leads to the following theorem which proof can be found in
[38] and provides the basis for Algorithm 4.16.

Theorem 4.7
Consider a closed loop trajectory y(·) according to (1.29) and suppose that for a
pre-specified ᾱ ∈ (0, 1) we can find a control horizon N(n) ∈ N2 such that

VN(n)(y(n)) ≥ V̄N(n+1)(y(n+ 1)) + ᾱl(y(n), FN(n)(y(n))) + s(n) (4.25)

where

s(n) = s(n− 1) + αl(y(n− 1), FN(n−1)(y(n− 1))) + V̄N(n)(y(n))− V̄N(n−1)(y(n− 1))
(4.26)

and s(0) = 0 hold for all n ∈ N0. Then

αV FN
∞ (y(0)) ≤ V∞(y(0)). (4.27)

This theorem can directly be used in the following algorithm, which was developed
in [38]:

Input: y(0), Nmin, ᾱ
1 Calculate VN(n)(y(n));
2 Calculate V̄N(n+1)(y(n+ 1)) ;
3 while condition (4.25) is violated do
4 Set N(n) := N(n) + 1;
5 Calculate VN(n)(y(n));
6 Calculate V̄N(n+1)(y(n+ 1)) ;

7 end
8 Apply u(n) and get y(n+ 1) ;
9 Set N(n + 1) := max(N(n)− 1, Nmin) ;

10 Set n := n + 1 and go to 1

Algorithm 4.16: Adaptive Horizon MPC

The procedure is simple: We enlarge the horizon until condition (4.25) is satisfied
(step 3-7). If an appropriate horizon is found, the control is applied to the system

98



4.3 Adaptive Horizon MPC

(8) and the horizon is reduced (9). In this algorithm the optimization horizon
can be maximally reduced by one in each MPC step. In Section 6.4 it turns out
that for a semilinear PDE with distributed control step (9) is not useful: Since the
horizon stays constant for a long time the algorithm has to increase and decrease the
horizon in each step. To overcome this problem we introduce an additional criterion
to reduce the horizon depending on the current α value. The numerical examples
in Chapter 6 indicate that α > ρᾱ with a prescribed ρ > 3

2
yields good results.

One possibility to define V̄N(n+1)(y(n+ 1)) is given by

V̄N(n+1)(y(n+ 1)) = VN(y(n))− l(y(n), u(n))− l(ye(n), ue(n)) + VNmax−N+1(ye(n))

where the first three terms are already known after the evaluation of VN(y(n)),
cf. [38]. Nmax denotes a horizon, where the closed loop performance of ᾱ can be
guaranteed. ye(n) is the prediction at time n of the value y(n+N−1). To ensure that
this idea actually reduces the computational effort, the condition Nmin ≥ Nmax/2
should be satisfied, cf. [38].
The advantage of this approach is that the conservatism of the upper bound does
not play an important role due to the slack variable. Furthermore, Theorem 4.7
guarantees a closed loop suboptimality degree of at least ᾱ for Algorithm 4.16.

4.3.2 Multigrid Methods in Adaptive MPC

As already mentioned, the effort for solving the additional optimal control problems
in adaptive horizon MPC is often higher than the benefit. This leads to the idea
to combine the adaptive algorithms from the previous section with model order
reduction. One concept originates from the multigrid method for solving PDEs and
uses hierarchical grids for the spatial discretization. The method is based on the
numerical observation in Section 6.2 that the minimal stabilizing horizon is not very
sensitive with respect to the spatial discretization.

Distributed Boundary
Grid Horizon Time (s) Horizon Time (s)
0.1 6 0.07 9 0.45
0.04 6 0.24 8 0.92
0.02 6 0.80 8 1.98
0.01 6 3.88 8 4.59

Table 4.1: Minimal stabilizing horizon for distributed and boundary control with
varying spatial discretizations determined by numerical simulations of
the MPC closed loop

In Table 4.1 we see the numerical results for the minimal stabilizing horizon for
a nonlinear one dimensional PDE with either distributed or boundary control de-
pending on the mesh size h. The details concerning the equation, optimizer and
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parameter can be found in Section 6.2. It is remarkable that in the distributed case
the minimal stabilizing horizon is the same for each grid size. Except for the coarsest
grid, we see the same behaviour for the boundary controlled case. Furthermore, the
computing time for 100 MPC steps is displayed. Obviously, the computational bur-
den is significantly reduced for the coarse grid compared to the finest one. However,
as mentioned before the difference with respect to the optimization horizon is small.
This observation is used for the construction of Algorithm 4.17. In step (1) the
current state y(n) is restricted to the state on the coarse grid yh(n). In a finite ele-
ment implementation h > 0 is typically given by the diameter of the triangulation.
Ih denotes the well known restriction operator from multigrid theory, cf. [42], and
V h
N(n)(yh(n)) is the optimal value function for the discretized system. Based on the

coarse grid model an appropriate horizon N is determined similarly to Algorithm
4.16, step (2)-(9). Table 4.1 indicates that these steps can be computed quite fast.
In step 10 the full optimal control problem is solved with the priorly determined
horizon. Afterwards, the control u(n) is applied to obtain the next state y(n+ 1).
From the theoretical point of view the single purpose of the while loop is to determine
the horizon. In the practical implementation one can use the information that the
optimal control problem with the current horizon was already solved on the coarse
grid. Therefore, it is possible to obtain with u(n) = Ihuh(n) a good initial guess for
the full optimization problem. Ih denotes the so called prolongation operator. This
idea is investigated in Section 6.4.

Input: y(0), Nmin, ᾱ, h
1 yh(n) = Ih(y(n)) ;
2 while N(n) ≤ Nmax do
3 Calculate V h

N(n)(yh(n));

4 Calculate V̄ h
N(n+1)(yh(n + 1)) ;

5 if condition (4.25) holds then
6 BREAK;
7 end
8 Set N(n) := N(n) + 1;

9 end
10 Calculate VN(n)(y(n)) ;
11 Apply u(n) and get y(n+ 1) ;
12 Set N(n + 1) := max(N(n)− 1, Nmin);
13 Set n := n + 1 and GOTO 1

Algorithm 4.17: Hierarchical grids in adaptive horizon MPC

Of course, the algorithm only yields reasonable results if the α value on the coarse
grid is close to that of the full system. A justification that this the case is given in
Theorem 4.8. The goal is to compare at time n the local degree of suboptimality
for the full system with that for the system on the coarse grid.

Theorem 4.8
Let y(n) be a closed loop trajectory and yh(n) = Ihy(n) the restriction to the dis-
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cretized grid. Assume that |V (y) − Vh(yh)| < ε and V (y) < ∞ for all y ∈ Y .
Furthermore, let l(y(n), 0) 6= 0. Then it holds

|α− αh| < C(y)ε (4.28)

where αh :=
V h
N (yh(n))−V h

N (yh(n+1))

l(yh(n),uh(n))
is the local α value for the discretized problem.

Proof. To shorten the notation we define x = y(n) and y = y(n + 1). From the
boundedness of V (x) and the assumption |V (x)−Vh(xh)| < ε we directly obtain the
boundedness of V (y), l(x, u), l(xh, uh), Vh(xh) and Vh(yh). With the definition of α
we get

|α− αh| =
∣
∣
∣
∣

VN(x)− VN(y)

l(x, u)
− V h

N(xh)− V h
N(yh)

l(xh, uh)

∣
∣
∣
∣

=

∣
∣
∣
∣

l(xh, uh)VN(x)− l(xh, uh)VN(y)− l(x, u)V h
N(xh) + l(x, u)V h

N(yh)

l(x, u)l(xh, uh)

− l(xh, uh)V
h
N (xh)− l(xh, uh)V

h
N(xh)− l(xh, uh)V

h
N(yh) + l(xh, uh)V

h
N(yh)

l(x, u)l(xh, uh)

∣
∣
∣
∣

≤ l(xh, uh)
∣
∣VN(x)− V h

N (x)
∣
∣+ V h

N(xh) |l(xh, uh)− l(x, u)|
l(x, u)l(xh, uh)

+
l(xh, uh)

∣
∣V h
N(y)− VN(y)

∣
∣+ V h

N(yh) |l(x, u)− l(xh, uh)|
l(x, u)l(xh, uh)

≤ 4M(y)ε

l(x, u)l(xh, uh)
= C(y)ε

with M(y) = max{Vh(xh), Vh(yh)}.
Remark 4.9
It is important to note that the estimate (4.28) becomes arbitrary bad if the state is
close to the equilibrium. In order to overcome this problem it is useful to introduce
the concept of practical suboptimality. This means that the suboptimality inequality
only holds outside an ε ball around the equilibrium. See [44] for a precise definition
and further remarks.

For a linear PDE with quadratic cost functional and a discretization with linear
finite elements it is known, cf. [72], that |V (y) − Vh(yh)| < ch2 and, thus, we get
|α−αh| = O(h2). Estimates concerning the discretization error of the optimal value
function for more general PDEs and cost functionals can be found in [74].
It should be mentioned that the previous theorem in general cannot be used to esti-
mate the maximal deviation between the determined horizon for the coarse grid and
that one of the full system. On the one hand, the generic constants from Theorem
4.8 are in general unknown, as well as, the constants C and σ from the exponential
controllability condition. On the other hand, solving the α formula (1.35) for the
horizon N is a nontrivial task and in general impossible.
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Remark 4.10
Note, that the notation VN(x) in Algorithm 4.17 suggests that we solve the optimal
control problem exactly without a spatial discretization. This is of course not true
and was only done to simplify the notation. In the real implementation we have not
only the coarse grid with mesh size h but also a fine grid with mesh size H. The
restriction operator is then given by IhH . However, Theorem 4.8 is also applicable
for this case.

Remark 4.11
It is a natural idea to replace the coarse grid in Algorithm 4.17 by a reduced POD
model. Actually, the resulting algorithm has similar properties as Algorithm 4.17.
However, the numerical investigations indicate that the additional time for generat-
ing the reduced POD model in each MPC step is higher than the benefit caused by
the adaptive horizon. The idea to combine Algorithm 4.15 with the adaptive hori-
zon method seems to be more interesting. However, in the numerical simulation we
observe the following tradeoff behaviour: Algorithm 4.15 is successful if the system
does not change that much and, thus, the POD model remains constant for some
MPC steps. In contrast to that, the adaptive horizon algorithms are reasonable if
the system behaviour changes.
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The content of this chapter is twofold: In Section 5.1 we introduce some test ex-
amples and describe their stability behaviour. In detail we want to motivate the
Schlögl equation and the model of the catalytic rod. The nonlinearity of Schlögl
type originates from the theoretical description of chemical reactions. Because of
the non-monotonicity of the resulting system, this equation is of particular inter-
est for theoretical as well as for practical reasons. In the subsequent motivation
we follow [70] and [20]. The catalytic rod equation is a frequently used model in
chemical engineering, cf. [23], in order to describe the temperature distribution of
an exothermic catalytic reaction.
In the second part of this chapter we present an overview of the practical contri-
bution of this thesis. The modular structure of the C++ code is introduced and
the application to an example is displayed. The implementation is based on the
algorithms introduced in Chapter 4.

5.1 Examples

5.1.1 Schlögl Equation

The first considered system was discussed by Schlögl [83] as a model for an auto-
catalytic reaction scheme

A1 + 2X
k+1−⇀↽−
k−1

3X, X
k+2−⇀↽−
k−2

A2.

with velocity constants k+1 , k
−
1 , k

+
2 , k

−
2 . A1 and A2 are chemicals with known constant

concentrations c1 and c2 respectively. The constancy of the concentrations can be
assured by continuously feeding the reactor where the reaction takes place. Then
the reaction kinetics of the chemical X is given by the cubic polynomial

f(y) = −k−1 y3 + k+1 y
2 − k+2 y + k−2 c2

where y denotes the concentration of X . For suitable velocity constants, f(y) = 0
has three real-valued roots and we can rewrite f(y) as

f(y) = −k(y − y1)(y − y2)(y − y3)

with constant parameters k and yi (i = 1, 2, 3). By combining the reaction term
with the diffusion of X we obtain the PDE for the concentration field y(x, t)

yt(x, t) = D∆y(x, t)− k(y(x, t)− y1)(y(x, t)− y2)(y(x, t)− y3) (5.1)
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where D denotes the diffusion coefficient. For unbounded domains or large domains
with Neumann boundary conditions it is known, cf. [20], that the solution of (5.1)
has a wave type behaviour. This can lead to numerical difficulties in the optimal
control problem. In our examples with small domains the travelling waves do not
play a role.
In the following we consider the case y1 = −1, y2 = 0 and y3 = 1. Then the
nonlinearity reduces to f(y) = −µy(y + 1)(y − 1) = µ(y − y3) where k = µ is the
reaction parameter. The resulting reaction diffusion equation is in the literature
also known as Chaffee Infante equation. Since this model is an easy representative
of an equation with a non monotone nonlinearity, it is well suited as a benchmark
example for optimization algorithms. Our first test example is a one dimensional
system with distributed control. We look at

yt(x, t) = yxx(x, t) + µ(y(x, t)− y(x, t)3) + u(x, t) in (0, 1)× (0,∞) (5.2a)

y(0, t) = y(1, t) = 0 in (0,∞) (5.2b)

y(x, 0) = y0(x) in (0, 1) (5.2c)

where we impose a homogeneous Dirichlet condition on the boundary. As already
discussed in Chapter 3 the origin (y ≡ 0) is an unstable equilibrium for µ ≥ π2.
Moreover, as we can see in Figure 5.1 (for µ = 15), there are in addition two stable
equilibria (solid lines). It can be proven, cf. [21], that for a positive initial function
y0(x) the solution converges to the positive equilibrium for t → ∞ and vice versa
for negative initial data. Furthermore, any solution is global and there is no blow
up in finite time, see also Remark 3.2. The solution trajectory of the uncontrolled
equation can be found in Figure 6.1 with y0(x) = 0.2 sin(πx).
Although there exist models in application where a distributed control in the whole
spatial domain makes sense, it is often more reasonable that the control can only act
on parts of the boundary. Therefore, our next test example is the one dimensional
Schlögl equation with Neumann boundary control on the right side

yt(x, t) = yxx(x, t) + µ(y(x, t)− y(x, t)3) in (0, 1)× (0,∞) (5.3a)

y(0, t) = 0 in (0,∞) (5.3b)

yx(1, t) = u(t) in (0,∞) (5.3c)

y(x, 0) = y0(x) in (0, 1). (5.3d)

On the left side we impose an homogeneous Dirichlet condition. Since in many
chemical engineering problems only the flux and not the value on the boundary can
be controlled, the use of Neumann control seems to be reasonable. In Chapter 3 we
have seen that the uncontrolled equation is unstable for µ ≥ π

4
. In this case we have

again two stable and one unstable equilibrium. The three equilibria of the PDE
(5.3) are displayed in Figure 5.2 for µ = 15.

In the last example for the Schlögl model we consider a two dimensional equation
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Figure 5.1: Stable equilibria (solid lines) and unstable equilibrium (dashed line) of
the uncontrolled one dimensional Schlögl equation (5.2) with µ = 15.

with Neumann control on some parts of the boundary

yt(x, t) = ∆y(x, t) + µ(y(x, t)− y(x, t)3) in Ω× (0,∞) (5.4a)

∂νy(x, t) = u(x, t) on ΓNc × (0,∞) (5.4b)

∂νy(x, t) = 0 on ΓN0 × (0,∞) (5.4c)

y(x, 0) = y0(x) in Ω (5.4d)

The domain is given by the unit square with circular hole, see Figure 5.3 (a) for the
detailed description. The boundary ∂Ω is divided into two parts: The boundary
of the square ΓN0 and the boundary of the inner circle ΓNc . On ΓN0 we impose a
homogeneous Neumann condition while the Neumann control acts on ΓNc .
If we interpret the solution y(x, t) as a temperature field, the homogeneous Neumann
condition on the boundary of the square can be seen as a perfect isolation of the
domain. The circle inside the domain can be considered as a cooling device to control
the temperature in the reactor by the heat flux.
For µ 6= 0 it is obvious that the uncontrolled equation has the three equilibria
y ≡ −1, y ≡ 0 and y ≡ 1. (In the special case µ = 0 we get that y ≡ c is an
equilibrium for each c ∈ R.) The equilibrium y ≡ 0 is again unstable for arbitrary
µ > 0 while y ≡ −1 and y ≡ 1 are stable.
In order to solve the PDE (5.4) we discretize the spatial variable by the finite

element method introduced in Section 2.3.1. We use the Matlab PDE Toolbox to
generate a mesh of triangular piecewise linear finite elements. The assembling is
also done by Matlab. Since we do not utilize adaptive algorithms in space these
steps can be done offline before the MPC algorithm starts. For the simulations in
Chapter 6 we consider the three different meshes displayed in Figure 5.3 (b)-(d).
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Figure 5.2: Stable equilibria (solid lines) and unstable equilibrium (dashed line) of
the uncontrolled one dimensional Schlögl equation (5.3) with µ = 15.

The corresponding information about the triangulation can be found in Table 5.1.
With hmax we denote the maximum diameter of the triangles. The corresponding
number of nodes is given by Mx. Since we use linear finite elements, Mx coincides
with the number of state variables. The number of control variables (in this case the
number of nodes on the circle) is denoted by Mu. Obviously, the control dimension
grows much slower than the dimension of the state. This is due to the fact that we
consider boundary control.

hmax Mx Mu

Grid I 0.10 183 16
Grid II 0.05 652 24
Grid III 0.02 4089 48

Table 5.1: Parameter values for the triangulations in Figure 5.3 (b)-(d) with max-
imum triangle diameter hmax, number of state variables Mx and control
variables Mu.

5.1.2 Catalytic Rod

The catalytic rod model is a frequently used example in chemical engineering, cf.
[23]. It describes an exothermic catalytic reaction A→ B which takes place in a long
thin rod, see Figure 5.4. Since the reaction is exothermic the task is to control the
temperature of the rod. Controlling inside the domain is for this model in principle
possible, because the rod is coated by a cooling medium. By assuming constant
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Figure 5.3: Geometry of the domain (a) and triangulation for the FEM solver.

density, heat capacity, conductivity and a constant temperature on the boundary,
the dimensionless rod temperature y(x, t) can be described as

yt(x, t) = yxx(x, t) + βT (e
− γ

1+y(x,t) − e−γ) + βU(v(x, t)− y(x, t)) (5.5a)

y(0, t) = y(π, t) = 0 (5.5b)

y(x, 0) = y0(x). (5.5c)

The constants are given by the dimensionless heat of reaction βT , the dimensionless
activation energy γ and the dimensionless heat transfer coefficient βU . We want to
point out that in this model the control can generally not act in each spatial point
independently. In [23] the author suggest to use v(x, t) = b(x)u(t) where b(x) is
a given shape function, i.e., we have only a one dimensional control variable u(t).
This assumption simplifies the control problem and it is more realistic than v(x, t) =

u(x, t). One possibility of the actuator distribution is given by b(x) =
√

2
π
sin(x), cf.

[23]. This idea takes into account that the hot-spot is in the middle of the rod and
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Figure 5.4: Catalytic rod.

we need the maximum cooling at this position. A further possibility is that we only
can control some parts of the domain, cf. [11]. In this case we have b(x) = 1ω, where
1 denotes the indicator function and ω ⊆ (0, π). If we consider a model with several
actuators we obtain v(x, t) =

∑k
i=1 bi(x)ui(t) with control functions ui(t), i = 1 . . . k.

The typically used process parameters for this model, cf. [23], are given by

βT = 50.0, βU = 2.0, γ = 4.0.

In Figure 5.5 the non-negative equilibria of the uncontrolled equation (5.5) are
displayed. For these parameters the origin is an unstable equilibrium (dashed line).
In Section 6.1 we will see that stabilization with MPC is not a problem from the
optimization point of view and thus does not qualify as a benchmark example for the
optimal control algorithms. However, we will observe that the catalytic rod model
requires different minimal stabilizing horizons for different initial distributions. This
makes the example interesting for the adaptive horizon algorithms in Section 6.4.

5.2 Implementation

In this section we present an overview of the C++ implementation for the algorithms
presented in Chapter 4. In the first part we consider the plain MPC Algorithm. Since
our program has a modular object-oriented structure, replacing single components
like PDE models or optimization algorithms is an easy task. We begin the section
with a flow diagram of the program before we consider the corresponding classes in
detail. It should be mentioned that we will not explain each internal method of the
abstract class but only those which are relevant for the user. Furthermore, we only
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Figure 5.5: Stable (solid line) and unstable equilibrium (dashed line) of the uncon-
trolled catalytic rod model (5.5).

display fragments of the source code which are meaningful. A complete example
can be found in Appendix A.
The implementation of theMPC-POD algorithm is presented in Section 5.2.2. Here,
the aim is to explain the interaction between the components rather than investi-
gating the source code in detail. We complete the chapter with the presentation of
the adaptive horizon MPC algorithms.

5.2.1 Plain MPC Algorithm

The principle structure of the implementation is displayed in Figure 5.6. The ab-
stract classes are written in black while the example subclass is red. On the bottom
of the pyramid we have the abstract class Model. It contains information about the
problem setting like PDE and cost functional. The class has to provide predictions
for state and adjoint equation as well as gradient information and possibly control
constraints for the optimal control solver. Since we have to discretize the PDE for
the simulation, this class generally requires an external ODE solver for time inte-
gration and a method to discretize the spatial variable, e.g. a FEM class. However,
in the case of discrete time systems or if the spatial variable is directly discretized
by finite differences these classes are not necessary. An example subclass is given by
CatalyticRod.
On the next level we have the abstract class Optimize. This is the centerpiece of the
implementation: For the current state y(n) it solves the optimal control problem
and provides the next state y(n+1) as well as the optimal control sequence u⋆. For
this purpose it requires the information from the Model class. An example subclass
is given by BFGS which is an implementation of Algorithm 4.9.
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Figure 5.6: Program structure.

On the top of the pyramid we have the main program mpcpde.cpp. Here the ac-
tual MPC loop takes place. Moreover, the concrete instances of the abstract classes
Model and Optimize are created and memory for the variables is allocated.

Class Model

Now, we present the abstract class Model and the concrete realization ReactDiff in
detail. As already said the class provides simulations for state and adjoint equation.
Furthermore, the optimizer requires information how the gradient looks like. In
Table 5.2 the abstract methods of class Model are displayed, i.e., these methods are
obligatory for the derived subclass.
The method predictState simulates the state equation with initial state x from initial
time t to t+h for a given control u. The solution at time t+h is stored in x. More-
over, the simulation for the adjoint equation is done by the method predictAdjoint.
The simulation runs from t to t + h and the solution is again stored in x. Since
the adjoint equation requires information about the current state, the solution of
the state equation is provided by the variable rpar. Note that we introduce a time
transformation to make sure that the equation runs forward in time. Therefore, the
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given state has to run backwards in time what is taken into account in the internal
implementation. The last obligatory method is computeGradient which computes
the current gradient by the adjoint p and the control u. The result is stored in
gradient.
In the next step we want to demonstrate the structure of the presented method

Function Description variables

predictState Simulate state equation t: Initial time
x: Current state
u: Current control
h: Simulation time

predictAdjoint Simulate adjoint equation t: Initial time
x: Current adjoint
rpar: Current state
h: Simulation time

computeGradient Compute the gradient p: Current adjoint
u: Current control
gradient: Current gradient
lambda: Regularization parameter
N : Horizon

Table 5.2: Methods of the abstract classModel which are obligatory for every derived
subclass.

for a concrete example. We investigate the derived subclass ReactDiff which is a
prototype class for general reaction diffusion equations. As a concrete example we
look at the one dimensional Schlögl model with distributed control (5.2). In order
to provide a simulation for the state equation, we have to discretize the PDE. For
this easy example we use a finite difference method for the spatial variable. The
method stateEquation of the class ReactDiff provides the semidiscretized PDE for
the ODE solver. In Listing 5.1 the implementation of the semidiscretization is dis-
played. The central finite differences are visible in the for loop. For the first and
the last point the homogeneous Dirichlet condition has to take into account. The
method semiFunction computes the nonlinearity of this semilinear PDE. Moreover,
we observe that we have a distributed control because u acts in each discretization
point independently.

Listing 5.1: Semidiscretized state equation

void ReactDiff:: stateEquation (int *n, double *t, double *x,

double *dx , double *u, int *ipar)

{

int dim=_dimension_state;

double hx=LENGTH/double(dim+1);
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dx[0]=( - 2.0* x[0] + x[1])/ pow(hx ,2)

+semiFunction(x[0]) + u[0];

for(int i=1;i<dim -1;i++)

{

dx[i]=(x[i-1] -2.0*x[i]+x[i+1])/pow(hx ,2)

+semiFunction(x[i]) + u[i];

}

dx[dim -1]=(x[dim -2] -2.0* x[dim -1] )/pow(hx ,2)

+semiFunction(x[dim -1]) + u[dim -1];

}

double ReactDiff:: semiFunction(double x)

{

f=MU*(x-pow(x,3));

return f;

}

Again, we want to mention that we simplified the example to clarify the structure.
In the next step we present the semidiscretization of the adjoint equation. In Listing
5.2 the method adjointEquation is displayed. It can be seen that we use again cen-
tral finite differences. Furthermore, we have the discrete representation of f ′(y)p,
where f ′(y) is computed by the method deriFunction. The last term originates from
Jy = y − yd. In our example we look at yd ≡ 0.

Listing 5.2: Semidiscretized adjoint equation

void ReactDiff:: adjointEquation(int *n, double *t, double *x,

double *dx , double *rpar , int *ipar)

{

int dim= _dimension_state;

double hx=LENGTH/double(dim+1);

dx[0]=( -2.0*x[0] + x[1])/pow(hx ,2)

+x[0]* deriFunction(rpar[0])+ rpar[0]

for(int i=1;i<dim -1;i++)

{

dx[i]=(x[i-1] -2.0*x[i]+x[i+1])/pow(hx ,2)

+x[i]* deriFunction(rpar[i])+rpar[i];

}

dx[dim -1]=(x[dim -2] -2.0* x[dim -1] )/pow(hx ,2)

+x[dim -1]* deriFunction(rpar[dim -1])+ rpar[dim -1];

}

double ReactDiff:: deriFunction(double x)

{

f=MU*(1. -3.*pow(x ,2));

return f;
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}

We want to point out that the functions described so far are only auxiliary methods
for the simulation of the PDEs. The last step is to solve the semidiscretized PDE
with an appropriate ODE solver. This is done by the obligatory methods predictState
and predictAdjoint, see Listing 5.3. First, the used ODE solver has to be declared
in the constructor of ReactDiff (not shown in the listing) before it can be initialized
by init(t,x). Afterwards the calculation is done with calc(t+h,u).

Listing 5.3: Obligatory methods predictState and predictAdjoint

void ReactDiff:: predictState ( double t, double *x,

double *u, double h )

{

_odesolver ->init(t,x);

_odesolver ->calc(t+h, u);

}

void ReactDiff:: predictAdjoint ( double t, double *x,

double *rpar , double h )

{

_odesolveadjoint ->init(t,x);

_odesolveadjoint ->calc(t+h, rpar);

}

The remaining obligatory method is computeGradient, where the current gradient is
determined. In our example ReactDiff the gradient is given by J ′ = p(x, t)+λu(x, t),
see Section 2.2. The resulting discretized version is displayed in Listing 5.4. We
compute the gradient by control u and adjoint p while the result is stored in gradient.

Listing 5.4: Obligatory method computeGradient

void ReactDiff:: computeGradient ( double *p, double *u,

double *gradient , double _lambda , int _horizon)

{

for( int j=0;j<_horizon;j++)

{

for( int i=0;i< _ctrl_dimension;i++)

{

gradient[j* _ctrl_dimension+i]

=(p[j*_ctrl_dimension+i]+_lambda*u[j*_ctrl_dimension+i]);

}

}

}

After the presentation of the obligatory methods we want to pay attention to the
control constrained case. Bounds on the control can be incorporated by setting the
variables control lb and control ub to the lower and upper bound. If the bounds
are not defined in the derived subclass, the variables have the default values −1019

and 1019 respectively.
Finally, we want to consider the special case where we use the Newton-CG method
as optimization algorithm. In Section 4.1.2 we discussed that the Newton method
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requires second order information. This information can also be included in the
subclass ReactDiff. By defining linearizedPDE = true one can define the methods
predictLinear where the linearized state equation is computed and secondDerivative
where the second derivative of the semilinear term is given. Otherwise the relevant
functions are determined by numerical differentiation.
The constructor of a Model subclass requires the state (DIMENSION X) and the
control dimension (DIMENSION U). In Listing 5.5 the generation of an instance
is displayed.

Listing 5.5: Initialization of a class ReactDiff.

Model *model = new ReactDiff(DIMENSION_U , DIMENSION_X);

The Model subclasses for the PDE examples presented in Section 5.1 can be found
in Table 5.3.

Class Description

ReactDiff One dimensional Schlögl model with distributed control (5.2)
SemiLinBC One dimensional Schlögl model with boundary control (5.3)
MODELFEM FEM Schlögl model with boundary control (5.4)
CatalyticRod Catalytic rod model (5.5)

Table 5.3: Example subclasses from the superclass Model.

Class Optimize

In this section we introduce the abstract class Optimize which is the superclass for
our optimization algorithms. Again, we only present the public methods which are
relevant for the user. In Table 5.4 these methods are displayed. The most impor-
tant function is given by calc(x,u). The input variables are the current state x and
an initial guess for the optimal control problem u, e.g., the shifted optimal control
sequence from the previous MPC step. After its computation, the state at the next
time step is stored in x while u contains the current control sequence. If the meth-
ods setTolerance and setMaxIterations are not specified then the algorithm uses the
default values tol = 10−6 and maxsteps = 500. The current values of the stage
cost and the objective function are especially of interest for adaptive horizon MPC.
The same holds for the method resizeHorizon, where the optimization horizon can
be changed in each MPC step.
In Listing 5.6 we see the initialization of a subclass BFGS. The description of the
required variables is displayed in Table 5.5. If the optimization horizon changes
during the MPC algorithm, the variable N has to be set to the maximum horizon.

Listing 5.6: Initialization of the class BFGS.

OPTIMIZE *optimize=new BFGS(model , yd, N, lambda ,T);

114



5.2 Implementation

Function Description variables

calc Calculation of the optimal control x: Current state
u: Current control

setTolerance Set prescribed accuracy tol: Tolerance
setMaxIterations Set maximum number of iterations maxsteps: Maximum steps
getStageCost Return stage cost
getObjective Return objective function value
resizeHorizon Resize optimization horizon N : New horizon

Table 5.4: Public methods of the abstract class Optimize.

Type Name Description

Model model Example model
double* yd Desired state
int N Optimization horizon
double lambda Regularization parameter
double T Sampling time

Table 5.5: Required variables for the constructor of a derived subclass.

In Table 5.6 we see the currently implemented subclasses of the abstract class OP-
TIMIZE. The details concerning the optimization algorithms can be found in Section
4.1 while the corresponding numerical results are presented in Chapter 6. In Section

Class Description

PGM Projected Gradient Method
NCG Nonlinear Conjugate Gradient Method
BFGS BFGS Method
BFGSINV Inverse BFGS Method
BFGSMF Meshfree BFGS Method
NEWTONCG Newton-CG method

Table 5.6: Example subclasses from the superclass Optimize.

6.2 we distinguish between the algorithms BFGSINV I and BFGSINV II. Both are
variants of BFGSINV with different initial approximations for the inverse Hessian,
see Section 6.2 for details. By using the method setHessian one can choose the unit
matrix (false) or the approximation from the previous MPC step (true). The default
value is true because this variant turned out to be the faster one.
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5.2.2 MPC-POD Algorithm

In this section we give an overview about the implementation of the algorithms
introduced in Section 4.2 which combine POD with MPC. The emphasis is on the
program flow and the connection between the involved classes. We will not go into
implementation details or display the source code. The interested reader can find
the concrete example on the enclosed CD-ROM.
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Figure 5.7: Program structure of MPCPOD.

In Figure 5.7 the structure of the MPCPOD code is displayed. Each box represents
a class and the arrows indicate the information flow between the classes. The file
MPCPOD.cpp is the main program where the MPC algorithm takes place. Fur-
thermore, the snapshots to determine the reduced model are created here. For this
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purpose it requires the simulations of the full model which are provided by the class
Model. The abstract class Model is the one we already introduced in Section 5.2.1.
Depending on the type of snapshots (see the discussion in Section 2.3.1) it has to
provide solutions of the state and adjoint equation for the high dimensional model.
Based on the snapshots the class PODBasis builds up the correlation matrix. The
corresponding eigenvalues and eigenvectors are computed in the class EigenValues.
By using the eigenvalues and eigenvectors the class PODBasis determines the dimen-
sion of the reduced model and calculate the reduced stiffness and mass matrices.
The class ReducedModel contains the small dimensional POD model. It requires
the corresponding matrices from class PODBasis and model information, e.g. the
nonlinearity and the cost functional, from class Model. In our implementation Re-
ducedModel is a subclass of the yane model superclass. The MPC library yane is
well suited for these small dimensional problems. However, the implementation of
other ODE optimal control solvers is also possible. Finally, the reduced OCP is
provided to MPCPOD.
Note that the presented structure only describes the generation of the reduced POD
model. The actual implementation of the algorithms presented in Section 4.2 takes
place in MPCPOD.cpp.

5.2.3 Adaptive Horizon MPC

In this section we describe the implementation of the adaptive horizon algorithms
presented in Section 4.3.1. The focus is on the class AdaptiveHorizon which is a
realization of the hierarchical grids Algorithm 4.17. The plain adaptive horizon Al-
gorithm 4.16 also fits into this setting if only the finest spatial grid is investigated.
The main task of this class is to compute an appropriate horizon which guarantees
a certain quality of the MPC closed loop solution. According to Algorithm 4.17 this
step is done for the discretized PDE on a coarse grid. Therefore, the actual opti-
mization of the full problem has to be done afterwards. This step can be omitted
if the horizon is calculated from the full model (Algorithm 4.16). In this case the
optimal control sequence is already known.

Listing 5.7: Initialization of the class AdaptiveHorizon.

AdaptiveHorizon *adaptivehorizon=new AdaptiveHorizon(optimize ,

maxN , N0 , dalpha, usecontrol , resty , restu)

In Listing 5.7 we see the initialization of the class AdaptiveHorizon. An explanation
of the required input variables can be found in Table 5.7. It should be mentioned
that the required optimization algorithm is that for the PDE on the coarse grid.
Depending on the used algorithm the maximum horizon maxN and the initial hori-
zon N0 play an important role for the performance of the adaptive horizon method.
The parameter dalpha denotes the prescribed degree of suboptimality. With the
parameter usecontrol one can decide whether the control on the coarse grid (true)
or the shifted control from the previous MPC step (false) should be used as initial
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Type Name Description

OPTIMIZE optimize Optimization algorithm on coarse grid
int maxN Maximum horizon
int N0 Initial horizon
double dalpha Desired α
bool usecontrol Use control
int resty Quotient of fine and coarse grid (state)
int restu Quotient of fine and coarse grid (control)

Table 5.7: Required variables for the constructor of class AdaptiveHorizon.

guess for the optimization algorithm. This choice is nontrivial because it depends
on the considered example and on the fineness of the coarse grid, see Section 6.4
for details. If the horizon is determined by the full model one should use the option
true, because in this case the following optimization can be omitted. The remaining
variables resty and restu denote the quotient of the fine and the coarse grid for
the state and control variable respectively. These information are required by the
internal restriction and prolongation methods.
The actual calculation of the horizon is done by the method calcAdaptive, see List-
ing 5.8. This method is called in each MPC step before the optimization algorithm
starts. The input variables are the current state x, the shifted control from the
previous MPC step Control and the current horizon N . After execution of the
method, N contains the new horizon. If the parameter usecontrol is set to true, the
variable Control contains the optimal control on the coarse grid prolongated on the
fine grid. Otherwise, it is the same as before. Afterwards, the horizon of the full
problem has to be set to the previously computed one. This can be done with the
method resizeHorizon(N).

Listing 5.8: Initialization of the class AdaptiveHorizon.

adaptivehorizon ->calcAdaptive( x, Control , N);

optimize ->resizeHorizon(N);

Finally, we want to take a note on the internal restriction and prolongation methods.
Their task is to convert variables on different meshes. For the case of spatially
one dimensional systems the corresponding operators can be found in textbooks
about multigrid methods, e.g. [19]. It is important to mention that the conversion
matrices are not build up explicitly. For the general case with higher dimensional
unstructured domains the construction of restriction and prolongation methods is
nontrivial and not yet implemented in our algorithm.
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6 Numerical Results

In this chapter we present the main numerical results. In Section 6.1 we start
with some prototype closed loop simulations for the example PDEs introduced in
Section 5.1. Afterwards in Section 6.2 we investigate the optimization algorithms
presented in Section 4.1 in detail. The focus is laid on the suitability for the MPC
algorithm and the dependence on parameters like spatial discretization, horizon
length, regularization and reaction values. In the ensuing Section 6.3 we analyse
the performance of the algorithms in which we combine MPC and POD concepts,
see Section 4.2. The advantages and limitations of the adaptive horizon algorithms
introduced in Section 4.3 are presented in Section 6.4. Throughout this chapter,
all presented results have been computed on a machine Intel(R) Core(TM)2 Duo
CPU E6850 @ 3.00GHz with 4 Gbyte internal memory. The operating system is
openSUSE 11.1 (x86 64).

6.1 Numerical Examples

6.1.1 One dimensional Schlögl equation with distributed control

In this section we present numerical simulations for the one dimensional heat equa-
tion with a nonlinearity of Schlögl type and distributed control. On the boundary
we impose a homogeneous Dirichlet condition. In detail we look at

yt(x, t) = yxx(x, t) + 15(y(x, t)− y(x, t)3) + u(x, t) in (0, 1)× (0,∞) (6.1a)

y(0, t) = y(1, t) = 0 in (0,∞) (6.1b)

y(x, 0) = 0.2 sin(πx) in (0, 1). (6.1c)

with stage cost

l(y(n), u(n)) =
1

2
‖y(·, nT )‖2L2(0,1) +

λ

2
‖u(·, nT )‖2L2(0,1). (6.2)

In Figure 6.1 we observe that for the uncontrolled equation the equilibrium y ≡ 0
is unstable and the solution converges to a different equilibrium. This behaviour is
to be expected because µ = 15 > π2 = λ1. Next, we want to stabilize the PDE
with the MPC feedback. In the numerical simulation we choose a sampling time
T = 0.025 and a regularization parameter λ = 0.01. The spatial discretization is
given by Mx = 100. We consider n = 40 MPC steps and, thus, we have t ∈ [0, 1].
The solution of the semidiscretized PDE is obtained by the ROCK4 ODE solver
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6 Numerical Results

Figure 6.1: Solution trajectory of the uncontrolled one dimensional Schlögl equation

with a tolerance tolODE = 10−8. This high accuracy seems to be exaggerated, be-
cause the error caused by the spatial discretization is much higher. However, since
discretization errors caused by time discretization are not considered in this thesis,
it is desirable to keep them small (see also Remark 1.8).
The solution of the PDE constrained optimization problem is obtained by the
Newton-CG algorithm presented in Section 4.1 with tolerance tolopt = 10−6. In
Figure 6.2 the solution trajectory (left) and the corresponding control (right) of the
MPC closed loop for different optimization horizons are displayed. First, we observe
that the MPC feedback with an optimization horizon N = 2 (a) does not yield a
stabilizing behaviour. The solution converges to an equilibrium which is different to
that of the uncontrolled equation. A similar behaviour is observable for the control:
After some steps it remains constant in time. For N = 3 (b) we observe that the
control is able to stabilize the system. The state as well as the control converge to
the origin. The same behaviour is also visible for the optimization horizon N = 4
(c). However, the convergence is significantly faster. Furthermore, it can be seen
that the control acts stronger in the first MPC steps for larger horizons. Afterwards,
it converges faster to zero than for shorter horizons.
In Figure 6.3 we look at the distance (measured in the L2(0, 1)-norm) of the state
to zero. It can be observed (left) that the solution of the uncontrolled equation and
for N = 2 converge to different equilibria. Moreover, we see (right) that a longer
horizon directly leads to a faster stabilization. In the stabilizing case (N = 3, 4, 5)
the norm ‖y(·, t)‖L2 is strictly monotonically decreasing. This behaviour is strongly
related to our theoretical investigations in Section 3.3.2. The distributed control is
able to immediately reduce the norm of the state. It is reasonable that the system
can be stabilized with N = 2, if we choose the regularization parameter λ small
enough, i.e., if we do not penalize the control effort. (In the considered example the
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6.1 Numerical Examples

(a) N = 2

(b) N = 3

(c) N = 4

Figure 6.2: Solution trajectory (left) and corresponding control (right) of the MPC
closed loop for the one dimensional Schlögl equation with distributed
control and different optimization horizons

value of λ is too large to ensure stability with a horizon N = 2.)
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Figure 6.3: Evolution of ‖y(·, t)‖L2 for different optimization horizons N

Finally, it is worth mentioning that the computing time for the considered n = 40
MPC steps is between 0.12 seconds (N = 2) and 0.28 seconds (N = 5). Therefore,
the average computing time for each single optimal control problem is only between
3ms and 7ms! The optimal control problem in each MPC step was solved with the
Newton-CG algorithm. These results indicate that real time feedback control with
MPC is in principle possible.

6.1.2 One dimensional Schlögl equation with boundary control

In this section we look at numerical simulations of the boundary controlled one di-
mensional heat equation with Schlögl nonlinearity. On the left boundary we impose
a homogeneous Dirichlet condition and on the right side we have Neumann control.
Therefore, we investigate

yt(x, t) = yxx(x, t) + 15(y(x, t)− y(x, t))3 in (0, 1)× (0,∞) (6.3a)

y(0, t) = 0 in (0,∞) (6.3b)

yx(1, t) = u(t) in (0,∞) (6.3c)

y(x, 0) = 0.2 sin(πx) in (0, 1). (6.3d)

with stage cost

l(y(n), u(n)) =
1

2
‖y(·, nT )‖2L2(Ω) +

λ

2
|u(nT )|2. (6.4)

The origin is an unstable equilibrium for the uncontrolled equation, because µ =
15 > π2/4 = λ1. This behaviour can be observed in Figure 6.4 (a). Furthermore,
we see that for a horizon of N = 2 (b) and N = 3 (c) the MPC feedback is not able
to stabilize the equation. The solution converges to an equilibrium that is not the
desired one. The first horizon where we observe stability is given by N = 4 (d).
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(a) uncontrolled (b) N = 2

(c) N = 3 (d) N = 4

(e) N = 5 (f) N = 6

Figure 6.4: Solution trajectory of the MPC closed loop for the one dimensional
Schlögl equation with no control (a) and boundary control with different
optimization horizons (b)-(f).

For an increasing horizon we obtain, as expected, a faster convergence to zero (e)-(f).
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6 Numerical Results

Similar to the case of distributed control we see that the control acts in a stronger
way in the first steps if we enlarge the horizon. However, the value of the control
is bounded, even for N → ∞. The stability behaviour is also visible in Figure 6.5
(left) where the norm of the state is displayed. We observe convergence to zero
for a horizon N ≥ 4. A more interesting property can be seen if we look at the
stabilizing horizons in detail, see Figure 6.5 (right). The norm of the state is not
strictly monotonically decreasing, but it increases in the first steps. This behaviour
is reasonable, because for stabilization we need a large value on the right boundary,
which temporarily produces a larger norm of the state. This observation also fits
to our theoretical investigations in Chapter 3: We cannot expect to obtain stability
with a horizon N = 2 if the sampling time is too short, because it is possible that
the MPC controller does not ’see’ that it is beneficial to control. This can occur
even without penalizing the control effort, i.e., for λ = 0.
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Figure 6.5: Evolution of ‖y(·, t)‖L2 for different optimization horizons N .

6.1.3 Two dimensional Schlögl equation with boundary control

In this section we investigate numerical simulations of the two dimensional FEM
example introduced in Section 5.1. The nonlinearity is of Schlögl type and we have
Neumann control on some parts of the boundary. Therefore, the PDE is given by

yt(x, t) = ∆y(x, t) + 8(y(x, t)− y(x, t)3) in Ω× (0,∞) (6.5a)

∂νy(x, t) = u(x, t) on ΓNc × (0,∞) (6.5b)

∂νy(x, t) = 0 on ΓN0 × (0,∞) (6.5c)

y(x, 0) = 0.5 in Ω (6.5d)

The boundary sets ΓNc , ΓN0 as well as the geometrical details are specified in Section
5.1. The stage costs for this problem are given by

l(y(n), u(n)) =
1

2
‖y(·, nT )‖L2(Ω) +

λ

2
‖u(·, nT )‖L2(ΓNc )

. (6.6)
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6.1 Numerical Examples

As already discussed in Section 5.1 the uncontrolled equation with initial condition
y0(x) ≡ 0.5 converges to the stable equilibrium ye(x) ≡ 1. In the MPC closed loop
simulation we choose a sampling time T = 0.01 and a small regularization parameter
λ = 0.001. The semidiscretized PDEs are again solved by the ROCK4 ODE solver
with a tolerance of tolODE = 10−8. The number of state variables caused by the
spatial discretization is given by Mx = 4098 (see Section 5.1 for details). For mesh
generation and assembling we use the MATLAB PDE toolbox.
In Figure 6.6 the used Finite Element grid (a) and the initial distribution (b)
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(b) Initial distribution
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(c) N = 2

Figure 6.6: FEM mesh (a), initial distribution y0(x) ≡ 0.5 (b) and MPC closed loop
with horizon N = 2 at time snapshots t = 0.5 and t = 1.

y0(x) ≡ 0.5 are displayed. Moreover, we see the solution trajectory of the MPC
controlled PDE with an optimization horizon N = 2 at time t = 0.5 and t = 1.
It can be observed that this horizon is too short to stabilize the system and the
trajectory converges to a stationary state different from zero. Next, we enlarge the
optimization horizon to N = 10. In Figure 6.7 we display the solution at different
time snapshots. It is clearly visible that the MPC feedback stabilizes the equation
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to the desired equilibrium y ≡ 0.
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Figure 6.7: Solution trajectory of the Finite Element example with horizon N = 10
at different time snapshots.

6.1.4 Catalytic Rod

In this section we look at the numerical simulations for the catalytic rod model (5.5).
We consider the case where we have a time dependent control function u(t) that acts
in the whole domain (see also the discussion in Section 5.1.2), i.e., the PDE is given
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6.1 Numerical Examples

by

yt(x, t) = yxx(x, t) + 50(e−
4

1+y(x,t) − e−4) + 2(b(x)u(t)− y(x, t)) (6.7a)

y(0, t) = y(π, t) = 0 (6.7b)

y(x, 0) = y0(x). (6.7c)

A natural choice for the stage cost is given by

l(y(n), u(n)) =
1

2
‖y(·, nT )‖2L2(0,π) +

λ

2
‖b(x)u(nT )‖2L2(0,π).

In our simulation we assume the shape function to be constant on the whole interval,
i.e., we consider b(x) ≡ 1

2
for x ∈ (0, π). In this easy case the stage cost simplifies to

l(y(n), u(n)) =
1

2
‖y(·, nT )‖2L2(0,π) +

λ

2

π

4
|u(nT )|2.

In the MPC closed loop simulation we choose a sampling time T = 0.01, regulariza-
tion parameter λ = 0.01 4

π
and a spatial discretizationMx = 200. The ROCK4 ODE

solver that we used in the previous examples was not able to solve the semidiscretized
PDE with a prescribed tolerance of tolODE = 10−8. Therefore, for this equation we
use the fully implicit ODE solver RADAU5. In order to investigate the long term
behaviour we consider n = 400 MPC steps.
As already remarked, the initial function y0(x) plays an important role for the stabi-
lization of (6.7) with MPC. In the first step we analyse y0(x) = 0.5 sin(x). In Figure
6.8 (a) (left) we observe that the uncontrolled equation converges to the stable equi-
librium with maximum value ≈ 14. Furthermore, it can be seen (right) that an
optimization horizon N = 2 is sufficient to obtain stability for this initial function.
This changes if we modify the initial distribution to y0(x) = sin(x), see Figure 6.8
(b). While we observe a fast stabilization to the origin with an optimization horizon
N = 3 (right), the closed loop trajectory converges to a steady state with maximum
value ≈ 4.5 for N = 2 (left). The ’turning point’ of the stability behaviour for
y0(x) = a sin(x) is given by a ≈ 0.76, i.e., for a < 0.76 we obtain stability with a
horizon N = 2 while for a > 0.76 we need at least N = 3. In the last step we look at
the initial function y0(x) = 10 sin(x). For N = 2 we observe in Figure 6.8 (c) (left)
that the solution converges to the same upper steady state as before (however, in
this case from above). On the right figure we see the fast convergence to the desired
state y ≡ 0 for an optimization horizon N = 3.
Since the qualitative behaviour is also of particular interest for the adaptive horizon
algorithms in Section 6.4 we shortly summarize the numerical findings: Starting
point is again the initial function y0(x) = a sin(x). For a > 0 the solution converges
to the stable equilibrium displayed in Figure 5.5. For 0 < a < 0.76 the MPC al-
gorithm stabilizes the equation with N = 2. For 0.76 < a < 4.5 (and N = 2) the
solution converges from below and for a > 4.5 from above to the steady state with
maximum value ≈ 4.5. With a horizon N = 3 we observe stabilization to zero for
each investigated positive initial function.
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6 Numerical Results

(a) Solution of the uncontrolled catalytic rod model (left) and the MPC closed loop trajectory
with N = 2 (right) for initial function y0(x) = 0.5 sin(x).

(b) MPC closed loop trajectory with optimization horizon N = 2 (left) and N = 3 (right) for
initial function y0(x) = sin(x).

(c) MPC closed loop trajectory with optimization horizon N = 2 (left) and N = 3 (right) for
initial function y0(x) = 10 sin(x).

Figure 6.8: MPC closed loop trajectory for the catalytic rod model (6.7) with dif-
ferent initial functions and different optimization horizons.
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6.2 Optimization Algorithms

6.2 Optimization Algorithms

In the previous section we have seen that real time MPC is in principle possible
for the example PDEs introduced in Section 5.1. Next, we want to investigate the
performance of the different optimization algorithms, presented in Section 4.1, in
detail. We focus on the influence of the spatial discretization, horizon length and
warm start behaviour. In order to keep the errors caused by initialization (memory
allocation et cetera) small, we consider parameter settings where the computational
time dominates these effects. Throughout this section we use the following abbre-
viations: The Projected Gradient Method 4.4 is denoted by PGM, the Nonlinear
Conjugate Gradient algorithm 4.5 by NCG and the BFGS algorithm 4.9 by BFGS.
Furthermore, we compare two variants of the BFGS method, where the inverse of the
Hessian is approximated: In algorithm BFGSINV I we use update formula (4.11)
with the unit matrix in the initialization step. In the variant BFGSINV II the
approximation of the inverse Hessian from the previous MPC step is used for the
initial step. The matrix free BFGS algorithm 4.10 is denoted by BFGS MF and the
Newton-CG method 4.8 by NEW CG.

Remark 6.1
A further method to solve MPC problems with PDEs is to semidiscretize the PDE
and use an existing MPC solver for ODEs, e.g., the yane library. Although this
algorithm is quite fast for small systems it is not suitable for semidiscretized PDEs.
The numerical simulations indicate that we have a factor between 10 and 200 in
the computing time compared to the algorithms in Section 4.1. However, due to the
easy implementation (no adjoint and gradient information are required) the library
is very helpful for test examples and highly nonlinear PDEs. Furthermore, we use
this algorithm in combination with POD, because the number of ODEs is in this case
quite small, see Section 6.3.

Spatial discretization

In the following, we investigate the influence of the spatial discretization for the
Schlögl equation with distributed control (5.2) presented in Section 5.1. Since we
look at a distributed control problem, the total number of optimization variables
is given by (Mx · N) where Mx denotes the number of spatial grid points and N
the optimization horizon. Thus, for algorithms which build up the (approximate)
Hessian explicitly (BFGS, BFGSINV I, BFGSINV II ) the number of optimization

variables is bounded by
√

4·109
8

≈ 22360 due to the limitation of 4 Gbyte internal

memory. In the example we use an optimization horizon N = 10 with a sampling
time T = 0.025 and a regularization parameter λ = 0.01. The stopping criterion
is given by tolopt = 10−6 first order optimality tolerance. We evaluate the semidis-
cretized PDE by the ROCK4 ODE solver with tolerance tolODE = 10−8. The initial
function is given by y0(x) = sin(πx).
The computational time in seconds for the different optimization algorithms and
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spatial discretizations is displayed in Table 6.1. We consider n = 20 MPC steps,
i.e., the presented value is the overall time for the 20 optimal control problems.
With a discretization of Mx = 2000 and a horizon of N = 10 we obtain 20000
control variables and, thus, we are close to the memory limit for the algorithms,
where the Hessian is built up explicitly. Of course the optimizer as well as the ODE
solver also require additional memory. The stepsize in the optimization method is
determined by the inexact line search method presented in Section 4.1.1.

Mx PGM NCG BFGS BFGS BFGS BFGS NEW CG
INV I INV II MF

50 0.36 0.22 0.66 0.47 0.34 0.33 0.2
100 1.32 0.82 2.77 1.90 1.29 1.24 0.67
200 7.83 4.53 12.04 8.52 5.91 6.12 3.36
400 54.45 31.29 60.80 47.74 36.18 38.01 22.16
800 416.52 239.89 354.53 308.60 225.00 269.25 167.35
2000 6432.60 3332.00 4213.40 4563.6 3057.60 3657.30 3373.00

Table 6.1: Computation time in seconds for n = 20 MPC steps of the Schlögl
equation with distributed control (5.2). The parameters are given by
N = 10, T = 0.025, λ = 0.01 and tolopt = 10−6.

First, we observe that all optimizers are able to solve the 20 optimal control problems
with Mx = 50 (this corresponds to 500 optimization variables) within one second,
even for the high accuracy setting of the optimizer and the ODE solver. This state-
ment is still true for the NCG method and the Newton-CG algorithm forMx = 100.
It should be mentioned that initialization effects can yield distorted results on the
short time scale. Comparing the first order methods, we observe that the NCG
algorithm delivers significantly better results than the pure gradient method PGM
for all displayed values of Mx. This observation is consistent with results in the
literature. Moreover, we recognize the expected fact that approximating the inverse
Hessian (BFGSINV I+II ) yields better results than approximating the Hessian it-
self. This procedure avoids the necessity to solve a linear system of equations. It is
observable that using the shifted Hessian from the previous MPC step (BFGSINV
II ) instead of the unit matrix (BFGSINV I ) leads to a beneficial behaviour. Overall
we observe that the Newton-CG method (NEW CG) yields the best results for most
of the considered parameters. However, for not too large values of Mx the nonlin-
ear conjugate gradient method seems to be a serious alternative. It can be seen
that BFGSINV II yields the best performance for the finest discretization (20000
optimization variables). However, in contrast to NEW CG and NCG we run into
memory problems in the case of a finer grid.
It is visible that the computation time scales quadratically in Mx for moderate val-
ues of the spatial discretization. This behaviour is to be expected due to the effort
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of matrix vector products. Obviously, for larger values of Mx the computing time
grows faster than quadratic. This can be explained by the behaviour of the ODE
solver. A fine discretization leads to a very stiff system and the effort significantly
grows.
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Figure 6.9: Number of iterations in each MPC step for different optimization algo-
rithms with spatial discretization Mx = 50 (left) and Mx = 2000 (right).

Next, we want to investigate the influence of the spatial discretization on the num-
ber of iteration steps of the optimization algorithms. In Figure 6.9 the number of
iterations in each MPC step is displayed. For reasons of clarity we restrict ourselves
to the algorithms PGM, BFGS and NEW CG. However, for the other methods we
observe similar results. In Figure 6.9 we compare the number of iterations of the
coarsest grid Mx = 50 (left) with that of the finest grid Mx = 2000 (right). It is
remarkable that although the number of optimization variables changes from 500 to
20000 the number of iterations remains nearly the same. This observation still holds
for the different spatial discretizations and different optimizer. Furthermore, it can
be seen that the number of iterations is essentially decreasing. This can be explained
by the stability behaviour. The MPC algorithm with horizon N = 10 stabilizes the
PDE and, thus, the solution converges to the equilibrium where less optimization
steps are required. In the following section, in which we analyse the influence of the
horizon length, we will look at this problem in more detail. Moreover, one should
mention that the first MPC step plays a particular role: In contrast to the further
steps no appropriate initial guess is available. Especially for larger horizons this fact
becomes visible. The beneficial effect of a good initial guess will be discussed later.
One should be careful comparing the algorithms in terms of the iterations. This
can easily be seen, e.g., by comparing the Newton-CG method with the projected
gradient algorithm: In each step of NEW CG a linear system of equations has to be
solved, where the computation of Hessian vector products requires additional PDE
solutions. In contrast to that the main effort in PGM is given by determining an
appropriate step length. A better indicator is the number of PDEs which have to
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be solved.
In Figure 6.10 we display the total number of solved PDEs during the 20 optimal
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Figure 6.10: Total number of solved PDEs for different optimization algorithms de-
pendent on the spatial discretization. The parameters are given by
n = 20, N = 10, T = 0.025, λ = 0.01 and tolopt = 10−6

control problems. It is remarkable that the spatial discretization plays no impor-
tant role independently of the used algorithm. The relatively small values for the
different BFGS algorithms should not be overestimated: The main effort of these
algorithms lies in the computation of dyadic products and matrix vector evaluations.
(In addition in BFGS a linear system of equations has to be solved.)

Next, we look at the finite element example presented in Section 5.1. Thus, we
investigate a PDE with Neumann boundary control on different finite element grids.
The nonlinearity of Schlögl type is given by f(y) = 5(y − y3). In Table 6.2 the
computation time for n = 20 MPC steps is displayed. We set the parameters to
N = 10, T = 0.01 and λ = 0.001. Note that this small regularization parameter
generally leads to more iteration steps and, thus, to a longer computing time. As
before, we choose tolopt = 10−6 and tolODE = 10−8 as tolerance for the optimizer
and ODE solver respectively. The number of grid points is denoted by Mx. Since
we use linear finite elements, the number Mx coincides with the degrees of freedom.
Note that the number of points where the control acts is much smaller than the
total number of grid points due to the boundary control. The number of control
variables and grid information corresponding to the values of Mx can be found in
Section 5.1.

Since the number of control variables grows only moderately compared to the total
number of grid points, it is more difficult to separate the different influences on
the computing time. However, it is reasonable that the effort for solving one PDE
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Mx PGM NCG BFGS BFGS BFGS BFGS NEW CG
INV I INV II MF

183 5.74 2.55 2.51 2.52 1.25 2.48 2.18
652 28.70 10.12 10.97 10.93 5.26 11.05 8.73
4089 919.53 299.85 356.51 353.40 158.84 363.14 321.51

Table 6.2: Computation time in seconds for n = 20 MPC steps of the finite element
example (5.4) with boundary control. The parameters are given by N =
5, T = 0.01, λ = 0.001 and tolopt = 10−6.

grows quickly. In contrast to that the computational burden within the optimizer
increases not that much because the control space is comparatively small. Therefore,
it seems to be desirable to keep the number of solved PDEs small. In Figure 6.10
we have already seen that the BFGS based algorithms are well suited concerning
this property. In contrast to the distributed case the computation of the dyadic
and scalar products plays no important role. This explains why these algorithms
perform well for this boundary control problem. Furthermore, it is observable that
for these parameters the computing time for BFGS and BFGSINV I is essentially
the same. Since the numbers of iterations are quite similar, one explanation for the
observed behaviour is that the computation of the additional dyadic products for
BFGSINV I is not much faster than solving the comparatively small linear system
of equations in BFGS. As we will see in the next section this behaviour changes for
larger optimization horizons.

In the last example we look at the one dimensional heat equation with Schlögl
nonlinearity f(y) = 8(y − y3). The parameters for the simulation are given by
N = 10, T = 0.025, λ = 0.01 and tolopt = 10−6. In Table 6.3 we display the
computing time for n = 20 MPC steps. Similar to the previous examples we observe

Mx PGM NCG BFGS BFGS BFGS BFGS NEW CG
INV I INV II MF

50 1.97 0.83 0.81 0.76 0.35 0.71 0.42
100 11.17 2.53 2.46 2.24 0.96 2.38 1.20
200 21.17 7.27 7.23 6.38 3.17 6.29 3.74
400 100.57 40.48 34.89 31.00 15.92 31.01 20.47

Table 6.3: Computation time in seconds for n = 20 MPC steps of the boundary
controlled Schlögl equation (5.3). The parameters are given by N =
10, T = 0.025, λ = 0.01 and tolopt = 10−6.

that the algorithms BFGSINV II and NEW CG perform very well. Moreover, it can
be seen that the algorithm NCG is not as competitive as in the case of distributed
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control. This can be explained by the high number of required PDE solutions (see
Figure 6.10). Again the worst result can be observed for the PGM algorithm.
It is remarkable that, although the number of control variables is much smaller for
boundary control, the computing time is not so different to the distributed controlled
case.

Horizon Length

In this section we investigate the influence of the horizon length on the computing
time in detail. Obviously, a larger optimization horizon directly leads to more control
variables and one expects that the computational time increases. However, beside
the number of optimization variables, we have to take two additional effects into
account: As already mentioned in the previous section, a longer horizon often yields
a faster convergence to the equilibrium. For most of the considered algorithms the
number of optimization steps decreases if the current state is close to the desired
one. Moreover, we will see that for some algorithms the first MPC step (where no
initial guess is available) is quite sensitive with respect to the horizon.
Again we consider the distributed controlled Schlögl equation with parameters T =
0.025, λ = 0.01, µ = 15 and Mx = 200. In Table 6.4 the computational time for
n = 20 MPC steps with varying optimization horizon is displayed.

N -1 PGM NCG BFGS BFGS BFGS BFGS NEW CG
INV I INV II MF

2 0.75 0.67 0.96 0.90 0.72 0.69 0.78
4 2.12 1.51 3.49 2.97 1.87 2.09 1.51
8 6.10 3.30 10.18 7.37 4.03 4.90 2.49
16 23.43 8.29 34.72 22.64 13.47 17.88 4.31

Table 6.4: Computation time in seconds for n = 20 MPC steps of the distributed
controlled Schlögl equation. The parameters are given by Mx = 200, T =
0.025, λ = 0.01, µ = 15 and tolopt = 10−6.

Obviously, the behaviour of the algorithms with regard to the horizon length is
quite different: While the computing time for the NEW CG algorithm does not
even grow linearly we observe a nearly quadratic increase in the PGM algorithm.
For the further algorithms a superlinear growth is visible. To investigate the con-
vergence properties we especially look at the number of iterations in the first MPC
step. For the horizon N = 3 the PGM algorithm requires 4 iterations and the other
methods 3 iterations. By enlarging the optimization horizon to N = 17 the number
of iterations is 77 for PGM, 20 for the BFGS algorithms (in the first step it is the
same for these methods) and 12 for NEWCG. This observation explains the sensi-
tivity of the PGM algorithm with respect to the optimization horizon.
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Furthermore, we look at the property that a larger horizon leads to a faster stabi-
lization. In Figure 6.11 we display the number of iterations in each MPC step for the
algorithms NEW CG (left) and BFGS (right). For both methods we observe that a
larger horizon requires more iterations at the beginning. This can be explained by
the higher number of optimization variables. Moreover, it is visible that for larger
horizons the decrease of iterations is quite fast, while for shorter horizons the num-
ber remains nearly constant. In the Newton method for instance, the number of
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Figure 6.11: Number of optimization steps in each MPC step with different horizons
for the algorithms NEW CG (left) and BFGS (right).

iterations for N = 17 is below or equal that for the smaller horizons after two MPC
steps. A similar behaviour can be observed for the other algorithms. However, as
we see for the BFGS algorithm (Figure 6.11 (right)), it is possible that this property
becomes visible later. Of course, this beneficial behaviour in terms of the iterations
is only observable if N is large enough to stabilize the system. It should be men-
tioned that this effect strongly depends on the used algorithm and the considered
PDE.

Warm start behaviour and parameter dependence

In this section we investigate the influence of an appropriate initial guess on the
optimization algorithm. Moreover, we consider the effect of different reaction values
µ and different regularization parameters λ. In contrast to our earlier investigations,
the number of control variables is not affected by these parameters.

As already discussed, one advantage of the MPC algorithm is the knowledge of a
good initial guess for the optimal control problem. Only for the first MPC step
and in the case of instantaneous control (N = 2) no information is present. (One
possibility to obtain an initial guess for these cases is the application of a known
(not optimal) feedback, cf. [77].)
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In the numerical simulation we compare the case in which the initial guess is ob-
tained from the previous MPC step with that in which we initialize the optimizer
with the zero sequence. This means for the first method that we use uinitial =
(u∗1, u

∗
2, . . . , u

∗
N−1, 0), where u

∗ = (u∗0, u
∗
1, . . . , u

∗
N−1) is the optimal control sequence

from the previous MPC step. An alternative choice for the last control is given by a
simple copy of u∗N−1. More elaborate techniques to obtain a guess for the last control
are suggested in [77]. (However, these methods require the solution of additional
control problems.) In the second method we use uinitial = (0, . . . , 0). Since there is
no appropriate initial guess available for the first MPC step, we begin our consider-
ation with the second step. This ensures that in the first method all optimization
problems have an appropriate initial guess. We again consider the example of the
Schlögl model (6.1) with parameters N = 10, µ = 15, T = 0.025,Mx = 200, λ = 0.01
and tolopt = 10−6. The computing time for n = 20 MPC steps is displayed in Table

PGM NCG BFGS BFGS BFGS BFGS NEW CG
INV I INV II MF

ws 6.73 3.41 12.21 8.38 4.48 4.81 2.73
zero 12.71 5.53 28.17 15.18 9.58 14.48 4.45

Table 6.5: Computation time in seconds for n = 20 MPC steps of the Schlögl model
(6.1). The algorithm which uses the MPC initial guess is denoted by ws,
while zero is the method with zero initialization. The parameters are
given by N = 10, T = 0.025, λ = 0.01 and tolopt = 10−6.

6.5. It can be seen that the warm start method essentially halves the computa-
tion time for most algorithms. For the meshfree BFGS method this effect is even
stronger. This can be explained by the fact that a good initial guess significantly
reduces the number of iterations (see Figure 6.12). However, the BFGS MF algo-
rithm only performs well if the number of optimization steps is comparatively small
due to the recursive formulas (4.12) and (4.13).

In the next step we investigate the influence of the regularization parameter λ on
the optimal control problem. In Chapter 3 we have seen that reducing the value of
λ generally leads to smaller stabilizing horizons and faster stabilization. In contrast
to this it is well known, cf. [1], that a small value of λ requires more optimization
steps and numerical errors can occur. The following investigations show that these
contradicting effects are actually observable. We consider the example of the Schlögl
model (6.1) with parameters N = 8, T = 0.025,Mx = 200, µ = 15 and tolopt = 10−6.
In Table 6.6 the computing time for n = 20 MPC steps with varying regularization
parameter is displayed.
It is remarkable that the computing time for most of the algorithms is not monoton-
ically in λ. This is caused by similar reasons we already discussed in the investigation
of the horizon length: In Figure 6.13 (left) the L2-norm of the state for the different
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Figure 6.12: Number of optimization steps in each MPC step for different optimiza-
tion algorithms with zero initialization (left) and with initial guess from
the previous MPC step (right).

λ PGM NCG BFGS BFGS BFGS BFGS NEW CG
INV I INV II MF

0.001 0.67 0.65 12.21 3.74 3.21 6.88 0.99
0.01 5.14 2.93 8.67 6.57 3.80 4.39 2.72
0.1 2.25 2.22 6.01 4.78 2.66 2.67 2.31

Table 6.6: Computation time in seconds for n = 20 MPC steps of the Schlögl model
(6.1). The parameters are given by N = 10, T = 0.025, λ = 0.01 and
tolopt = 10−6

values of λ is presented. Obviously, for λ = 0.001 we obtain a faster stabilization
than for λ = 0.01. If the penalization of the control effort is too strong (λ = 0.1),
the MPC algorithm does not stabilize the system. The stability behaviour is directly
visible in the number of iterations (see Figure 6.13 (right)). For smaller values of the
regularization parameter the number of iterations in the first MPC step increases
dramatically. This observation is consistent with results in the literature, cf. [1].
However, after a few steps the beneficial effect of the faster stabilization is visible
and the number of iterations becomes small. Since this property can compensate the
higher effort for the first steps, for most of the algorithms the required computing
time increases from λ = 0.001 to λ = 0.01. An exception is given by the BFGS MF
algorithm. This behaviour can again be explained by the bad performance of this
algorithm if the number of iterations is comparatively large. The advantage that the
iteration number is smaller after a few steps cannot compensate the computational
burden for the first step. In the unstable case λ = 0.1 we observe once more that
a large value of λ yields few iterations for the optimization algorithm and, there-
fore, a small computation time in the first MPC step. Since the unstable equation
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converges to an equilibrium (though not the desired one) the number of iterations
remains constant during the simulation.
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Figure 6.13: Evolution of ‖y(·, t)‖2L2 for different values of λ (left). Number of op-
timization steps in each MPC step in dependence of the regularization
parameter λ (right).

Finally, we investigate the influence of the reaction parameter µ on the optimiza-
tion algorithms. Note that this parameter comes from the physical model and is
not a discretization parameter (such as the spatial discretization Mx) or a design
parameter (such as the horizon N or regularization λ) that can be chosen by the
user. From the theory in Chapter 3 we know that a larger value of µ requires a
larger control effort for compensation. Furthermore, the required horizon to obtain
stability increases. In order to investigate the influence of the reaction parameter
we look at the example of the one dimensional Schlögl equation with distributed
control (5.2). The parameters are given by N = 10, T = 0.025,Mx = 200, λ = 0.01
and tolopt = 10−6.

µ PGM NCG BFGS BFGS BFGS BFGS NEW CG
INV I INV II MF

11 5.91 3.07 10.32 7.66 3.61 4.23 2.08
16 6.70 3.46 11.66 8.52 4.43 5.11 2.76
21 7.02 3.49 11.67 4.78 4.88 5.66 3.12

Table 6.7: Computation time in seconds for n = 20 MPC steps of the Schlögl equa-
tion. The parameters are given by N = 10, T = 0.025, λ = 0.01 and
tolopt = 10−6.

In Table 6.7 we display the computing time for n = 20 MPC steps with varying
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reaction parameter µ. It is visible that the computing time is increasing for growing
parameter µ. This effect could be caused by several reasons: It is possible that the
time for solving a single PDE increases, while the number of iterations in the opti-
mization algorithm remains constant. This behaviour, for instance, was observable
in Section 6.2, in which we investigated the influence of the spatial discretization.
Furthermore, it is to be expected that the number of optimization steps increases
because the stability behaviour changes with varying reaction parameter. In Figure
6.14 it is visible that the latter is actually true. We display the number of iter-
ations for the BFGS algorithm in each MPC step in dependence of µ. It can be
seen that especially in the first steps the number of iterations is higher for a larger
reaction parameter. This behaviour can also be observed for the other optimization
algorithms.
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Figure 6.14: Number of optimization steps in each MPC step for different reaction
parameters µ.

6.3 MPC-POD Algorithms

Next, we investigate the algorithms which combine MPC and POD methods, pre-
sented in Section 4.2. We want to point out that Algorithm 4.13 and 4.14 can be
interpreted as a variant of Algorithm 4.15. The crucial parameter in Algorithm 4.15
is the local model error e. If this value exceeds a prescribed bound ε, the reduced
POD model is updated. By setting ε = ∞ we end up in Algorithm 4.13 where the
reduced model is built up once before the MPC algorithm starts. In the following
we denote this method as POD I. For ε = 0 the POD model is updated in each MPC
step. This is exactly the procedure in Algorithm 4.14 (denoted by POD III ). These
two variants are compared with Algorithm 4.15 for ε = 0.01 (denoted by POD II ).
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This means that the local model error in each MPC step is below 1%.

Remark 6.2
Once again, we want to point out that the model error describes the quality of the
reduced model. Especially, it is not possible to make a statement about the accuracy
of the closed loop trajectory with POD control. In order to estimate this error we
would need information about the error between the POD control and the control
obtained from the full model, which are generally not available.

In the following we compare the described variants of Algorithm 4.15. In the first
MPC step, where no initial guess is available, we create the snapshots by using
the initial control u = 0. This choice is motivated by the numerical results in
[3]. The snapshots in the further steps are created by using the control from the
previous MPC step. Our numerical results indicate that this method yields better
POD models than using the zero initialization in each step. A discussion concerning
this topic can be found in Section 4.2. In the snapshot ensemble we include state
information as well as information about the adjoint equation. It turns out that
this method yields better results than only using the snapshots of the state. The
same observation can be found in [27]. Similar improvements can be observed by
including the time derivative of the state instead of the adjoint, cf. [63]. The reduced
POD model is built up as described in Section 2.3.1. In order to decide how many
POD modes NPOD to incorporate in the reduced model we use the frequently used
criterion

E(NPOD) =

∑NPOD

k=1 λk
∑l

k=1 λk
≥ 0.999 (6.8)

where l denotes the dimension of the snapshot ensemble. This means that the POD
basis contains at least 99.9% of the information of the ensemble.
The optimal control problem of the reduced model is solved by the MPC library
yane, which is quite fast and well suited for these low dimensional systems. The
tolerance for the underlying optimization algorithm, NLPQLP by K. Schittkowski,
cf. [82], is given by tolopt = 10−8.

We look at the one dimensional Schlögl model (5.2) with distributed control. The pa-
rameters for our numerical closed loop simulation are given by µ = 15, λ = 0.01, T =
0.01 and N = 10. The semidiscretized full model is solved with the ROCK4 ODE
solver with tolerance tolODE = 10−8 and the low dimensional POD model with the
explicit DoPri853 ODE solver with tolerance tolODE = 10−8. We choose 10 snap-
shots of the state and 10 snapshots of the adjoint equation. Since we consider a
horizon of N = 10 the snapshots coincide with the sampling grid. In our exam-
ples a higher number of snapshots (and thus a finer resolution of the grid) did not
significantly improve the results. (For the presented example we also considered
simulations with up to 200 snapshots.) Note that the choice of a good snapshot en-
semble is a nontrivial issue. Some results concerning the optimal snapshot location
can be found in [64].
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6.3 MPC-POD Algorithms

(a) Solution trajectory with control computed by the full model (left) and by the reduced POD
model (right)

(b) Control function computed by the full model (left) and by the reduced model (right)

(c) Differences between the reduced and the full model for state (left) and control (right)

Figure 6.15: Accuracy of the reduced model compared to the full system.

In the first simulation we will show that the combination of MPC and POD yields
good results. The initial distribution is given by y0(x) = 0.2 sin(πx). Later we will
see that y0(x) plays an important role for the performance of the algorithm. In
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Figure 6.15 (a) the solution trajectory is displayed with the control computed by
the full model (left) and the control obtained by the POD model (right). We want
to point out that yPOD(x, t) is not the state of the reduced model but the state of the
full system with the control computed by POD. Obviously, both solutions are quite
similar. Furthermore, we observe the same behaviour by comparing the control (see
Figure 6.15 (b)). It is visible that the control determined by the reduced model
(right) is a very good approximation of the true control (left). Finally, in Figure
6.15 (c) we display the differences y(x, t)− yPOD(x, t) (left) and u(x, t)−uPOD(x, t)
(right). It is visible that the maximum difference in the state is approximately
2 · 10−3. The maximum error for the control is ≈ 0.02. This leads to a relative error
between the true control and the control of the reduced model of about 1%. Thus,
the model reduction technique yields quite good results for this example.
After this motivation, we want to investigate the presented example in more detail.
In addition to our three POD algorithms we also look at the NEW CG method,
which is the fastest of the ’classical’ optimization algorithms presented in Section
4.1 for this example. In our numerical simulation we consider n = 20 MPC steps.
First we want to analyse how often the POD model has to build up for the different
algorithms. In Table 6.8 we display the number of ’model updates’ in dependence
of the prescribed model error ε. The corresponding values for ε = ∞ and ε = 0
are obvious: In algorithm POD I we build up the POD model only once before the
first MPC step. The opposite procedure, where we update the model in each MPC
step, is given in algorithm POD III. Thus, we have up= 20. The interesting value is
up= 2 for algorithm POD II. This means that it is sufficient to build up the reduced
model only two times to ensure a local model error below 1%.
This is not surprising if we take a look at the dimension of the reduced POD models:
Each POD model is a one (!) dimensional system. If we take into account that
the initial distribution y0(x) is the first eigenfunction of the linearized PDE, this
behaviour is reasonable. In Figure 6.15 (a) it can be seen that in each time step the
profile is similar to the initial function with a different height. The second model
update directly occurs after the first MPC step. This is also reasonable because at
this moment we can simulate the snapshots with an appropriate control.

POD I POD II POD III
ε ∞ 0.01 0
up 1 2 20

Table 6.8: Number of model updates for the different POD algorithms.

In Table 6.9 the computing time for the three POD algorithms and the NEW CG
method for n = 20 MPC steps is displayed. The spatial discretization varies be-
tween Mx = 50 and Mx = 800. The first observation is that for a coarse spatial
discretization the NEW CG algorithm is much faster than the POD methods. This
is reasonable because in this case one simulation is cheap and the effort for build-
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Mx POD I POD II POD III NEW CG
50 0.42 0.45 0.58 0.09
100 0.61 0.63 0.89 0.24
200 0.93 0.99 1.51 1.16
400 1.66 1.78 3.23 6.88
800 3.59 4.05 9.97 48.73

Table 6.9: Computation time in seconds for n = 20 MPC steps of the one dimen-
sional Schlögl equation. The parameters are given by N = 10, T =
0.01, λ = 0.01 and µ = 15.

ing the POD system (snapshot generation, eigenvalue computation, creation of the
reduced model) is needless. However, at the latest when Mx = 400 all POD algo-
rithms outperform the NEW CG method. For a spatial discretization of Mx = 800
we have a speed up between 4.9 (POD III ) and 13.6 (POD I ). We want to point
out that the presented computing time for POD I includes the effort for building up
the one reduced model. If we take the view that this step can be done offline before
the MPC algorithm starts, algorithm POD I becomes even faster. In Figure 6.15
we have already observed that the POD approximation is quite good. Furthermore,
it can be seen that POD I is the fastest of the POD algorithms whereas POD III is
the slowest one. By taking into account that each model update requires computing
time, this result seems to be obvious. However, as we will see in the next example,
this is not true in general.

Figure 6.16: Solution trajectory of the uncontrolled equation (left) and with MPC
control (right) for the initial distribution y0(x) = 0.02 sin(πx) exp(5x).

For the next example we use the same parameters as before but we change the
initial distribution to y0(x) = 0.02 sin(πx) exp(5x). The solution trajectory for the
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uncontrolled equation can be found in Figure 6.16 (left). It is clearly visible that the
unsymmetrical initial function is first diffused to the centre before it converges to the
stable equilibrium. Therefore, it is reasonable that more POD modes are required
in order to describe the dynamics. The MPC closed loop system is presented in
Figure 6.16 (right).
In Table 6.10 we display the computing time for n = 20 MPC steps. First, we see

Mx POD I POD II POD III NEW CG
50 0.69 0.71 0.95 0.10
100 1.24 1.03 1.49 0.34
200 2.21 1.88 2.82 1.46
400 4.02 3.58 5.41 8.68
800 8.81 8.34 14.26 62.43

Table 6.10: Computation time in seconds for n = 20 MPC steps of the one dimen-
sional Schlögl equation. The parameters are given by N = 10, T =
0.01, λ = 0.01 and µ = 15.

that we obtain similar results as before: For small values of the spatial discretization
the NEW CG algorithm yields significantly better results than the POD methods.
This behaviour changes visibly for finer discretizations (e.g. Mx = 400), where
solving a PDE requires much more time. In the simulation we observe up= 4 model
updates for algorithm POD II. (For POD I and POD III we have again up= 1 and
up= 20 respectively.) Furthermore, it is visible that (except for Mx = 50) POD II
is the fastest of the POD algorithms. At the first glance this is surprising, because
in POD II we have more model updates than in POD I. In order to explain this
observation we have to take a closer look at the dimension of the reduced model.
In Figure 6.17 the dimension of the reduced model in each MPC step is displayed.
In the first step we see that 4 POD modes are needed to obtain an appropriate
approximation of the dynamics. Since POD I (red line) build up the reduced model
only once, we have a four dimensional system in each MPC step. For Algorithm
POD III (blue line), where the model is rebuilt in each step (indicated by the
squares), we observe that the number of required POD modes decreases. This is
reasonable because for larger t the shape does not change significantly. Finally, we
consider Algorithm POD III (black line). The four MPC steps where the reduced
model is built are marked by a black circle. It is visible that we have three model
updates at the beginning where the dynamic strongly changes and one after ten
MPC steps. This observation explains why POD II yields the best performance.
Algorithm POD I only requires one update but for all MPC steps we have to solve
a system of dimension 4. In the opposite case of POD III we have (except the first
step) less POD modes but a model update (including time consuming simulations)
in each step. Algorithm POD II yields a good tradeoff between the number of
updates and the dimension of the system for this example. We want to point out
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6.3 MPC-POD Algorithms

that the performance of the different algorithms strongly depends on the effort for
one simulation and on the system dynamics. If the solution for a PDE is expensive
one should keep the number of updates small. In this case it is reasonable to use the
algorithms POD I and POD II. For a system where the dynamic strongly changes it
is useful (and often necessary for keeping the model error small) to regularly rebuild
the reduced model. Finally, we compare the error of the state trajectory for POD
II and POD III. In Figure 6.18 we display the difference between y(x, t) (where
the control is obtained from the full system) and yPOD(x, t) where the control is
computed by POD II (left) and POD III (right). Although we only have 4 model
updates in Algorithm POD II, the results are quite similar. The presented examples
show that the combination of model predictive control and reduction techniques can
be very efficient. We observe a visible speed up compared to the fastest optimizer
from Section 4.1, whereas the computed control is quite similar.
As already discussed in Section 2.3.1 the nonlinearity of the reduced system still
requires operations in the high dimensional space. This problem can be avoided by
using the Discrete Empirical Interpolation Method (DEIM), which is a method that
builds new basis functions upon the nonlinear term. It is to be expected that the
use of DEIM will accelerate the optimization of the reduced system, cf. [3].
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Figure 6.17: Dimension of the reduced POD model in each MPC step. The black
circles and the blue squares indicate the model updates for POD II and
POD III respectively.

Remark 6.3
In the presented examples we have seen that only very few POD modes are required
to observe good results. This is a well known phenomenon for the heat equation and
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Figure 6.18: Difference of the closed loop trajectory between the control computed
using the full model and the control determined by POD algorithm
POD III (left) and POD II (right).

can be explained by the fast decay of the eigenvalues. This changes drastically if
an additional convection term come into play. For these equations more elaborate
techniques are required, cf. [2]. The same problems occur for hyperbolic systems like
the wave equation.
Furthermore, we want to remark that the speed up due to POD strongly depends on
the number of POD modes that are necessary to obtain an appropriate model. In
[20], for instance, the authors consider a travelling wave model where 15 POD basis
functions are required. It is demonstrated that the computing time for solving the
15 dimensional reduced system with dense matrix is much higher than for the 300
dimensional Finite Element space with a sparse structure.
Finally, it should be mentioned that the theoretical background of POD is not yet
fully understood, see also the remarks in Section 2.3.1.

6.4 Adaptive Horizon Algorithms

In this section we investigate the adaptive horizon algorithms presented in Section
4.3.1. We start with the example of the catalytic rod (6.7) in order to demonstrate
that adaptive horizon MPC can be a useful method to reduce the computational
burden. Afterwards we consider the algorithms in more detail. We close the sec-
tion by demonstrating the disadvantages of adaptive horizon MPC by means of the
boundary controlled Schlögl equation (6.3).
In Section 6.1.4 we already discussed the dependence of the minimal stabilizing
horizon on the initial function y0(x) = a sin(x). With regard to adaptive horizon
MPC the numerical simulations indicate the following behaviour for a > 4.5: With
N = 2 we can reduce the distance to zero until we are close to the upper steady
state, see Figure 6.8 (c) (left). Afterwards, we use the horizon N = 3 to bring the
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state close to the origin from where we can stabilize the system with N = 2, see
Figure 6.8 (a) (right). In our numerical example we will see that this behaviour can
be indeed observed. The parameters of the MPC algorithm are the same we already
used in Section 6.1.4 and the initial function is given by y0(x) = 10 sin(x). Since we
are essentially interested in stabilization we choose a small value ᾱ = 0.05 > 0 as
the desired suboptimality degree. Furthermore, we only reduce the horizon if the
condition α > ρᾱ holds, where α is the local suboptimality degree in the current
step, see Algorithm 4.16. In our numerical simulation we choose ρ = 3 which seems
to be a good tradeoff between oscillations and conservatism of the horizon.
In Figure 6.19 the MPC closed loop trajectory is displayed for N = 3 (left) and
for the adaptive horizon algorithm (right). It is visible that both methods stabilize
the problem. The adaptive horizon algorithm has an average horizon of N = 2.54
for the n = 300 MPC steps. However, we see that there is no big difference in the
performance of the algorithms. Again, we want to point out that we do not observe
stability with a horizon N = 2, see Figure 6.8 (c) (left). The time for computing the
300 MPC steps is given by 31.04s for N = 3 and by 20.59s for the adaptive horizon
algorithm. (The details can be found in Table 6.11.) This convincing result shows
that adaptive horizon MPC can be a useful tool in the context of PDEs.
In the next step we want to investigate the behaviour of adaptive horizon MPC for

Figure 6.19: MPC closed loop trajectory for the catalytic rod model (6.7) with opti-
mization horizon N = 3 (left) and with the adaptive horizon Algorithm
4.17 (right).

this example in more detail. In Figure 6.20 (left) we see the applied horizon in each
MPC step. Obviously, we obtain exactly the expected behaviour: At the beginning
a horizon of N = 2 guarantees a sufficient large decrease of the cost functional. At
t = 0.4 we enlarge the horizon to N = 3 to overcome the controlled steady state.
Finally, at time t = 2.02 we can reduce the horizon to N = 2. It can be seen, that
the horizon rarely changes and except for t = 0.32 no oscillations are observable.
This is due to the fact that we choose a large value ρ = 3. (Actually, for ρ = 2 the
algorithm is even a bit faster, but we obtain much more oscillations.) In Figure 6.20
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(right) we see the time evolution of the maximum value of y(·, t). The influence of
the horizon N = 3 between t = 0.4 and t = 2.02 is clearly visible.
Now, we want to investigate this example in more detail for different parameter
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Figure 6.20: Horizon that is applied in each MPC step (left) and time evolution of
the maximum value of y(·, t) (right).

settings of the adaptive horizon algorithm. In the MPC closed loop simulation we
choose a sampling time T = 0.01, regularization parameter λ = 0.01 4

π
andMx = 200

as the spatial discretization of the full model. The semidiscretized PDE is solved
by the RADAU5 ODE solver with tolerance tolODE = 10−10. For solving the opti-
mal control problem we use Algorithm BFGSINV II with a tolerance tolopt = 10−6.
Motivated by the numerical results we choose a maximum horizon Nmax = 5 and
an initial horizon N0 = 2 for the adaptive horizon algorithm. In Table 6.11 we
display the computation time for n = 300 MPC steps. The value Mh denotes the
discretization of the coarse grid. According to our implementation in Section 5.2.3
the parameter usecontrol determines whether the shifted control from the previous
MPC step is used (false) or the interpolation of the coarse grid control (true). With
t1 we denote the computing time for determining an appropriate horizon. The time
for solving the optimal control problem on the fine grid is given by t2. Thus, the
overall time of the algorithm is t1 + t2. In order to interpret the results one should
have in mind that an MPC controller with the stabilizing horizon N = 3 requires
31.04s. The MPC algorithm with a horizon N = 2 needed 20.02s. However, for this
horizon we do not observe stability.
In the first step we consider the case where we compute the horizon with the full
model, i.e., we have Mh = Mx = 200. This corresponds to Algorithm 4.16. We
observe a computing time for determining the horizon of t1 = 49.12s. Since the
optimal control sequence for the full model is already computed, we obtain t2 = 0.
However, we see that the effort for this algorithm is much higher than using the
plain MPC method with the horizon N = 3. Although the catalytic rod model is
well suited for adaptive horizon methods, Algorithm 4.16 is not useful for this prob-
lem. This observation also holds for the other considered examples. The additional
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computational burden is always higher than the benefit of the shorter horizon.
In the next step we double the mesh size, i.e., we consider Mh = 100. It can

usecontrol = false usecontrol = true
Mh t1 t2 t1 + t2 t1 t2 t1 + t2 N̄
200 49.12 0 49.12 49.12 0 49.12 2.57
100 12.98 26.38 39.36 12.90 20.35 33.25 2.57
50 3.33 26.37 29.70 3.15 21.44 24.59 2.56
25 0.83 26.09 26.92 0.61 19.98 20.59 2.56

Table 6.11: Computation time for the adaptive horizon Algorithm 4.17, where Mh

denotes the dimension of the coarse grid, t1 the computing time to deter-
mine the horizon and t2 the time for solving the optimal control problem.
The comparative values are t = 31.04s for N = 3 and t = 20.02s for
N = 2.

be seen that we can determine the appropriate horizon in t1 = 12.98s while the
actual optimization requires t2 = 26.38s. However, the overall computing time with
t1 + t2 = 39.36s is higher than the plain MPC algorithm. This changes for Mh = 50
where we observe a total computing time of t1 + t2 = 29.70s. It is visible that the
time t1 scales quadratically with the mesh size. In view of our results from Section
6.2 this behaviour is reasonable. Since the algorithm only provides the horizon, it is
clear that the optimization time t2 nearly remains constant. We can interpret t2 as
the ’pure’ optimization time of the adaptive horizon algorithm, i.e., we can estimate
the maximum benefit of the adaptive horizon method. If the computational time
to determine the horizon t1 is smaller than this benefit, adaptive horizon MPC can
be useful. In the last row (Mh = 25) we observe that the time for determining the
horizon is less than one second. In this case the adaptive horizon algorithm is ≈ 4s
(≈ 13%) faster than the MPC method with N = 3.
In the previous investigations the only task of the adaptive horizon algorithm was to
provide an appropriate horizon. Now, we consider the case where we use the coarse
grid solution as initial guess for the full problem, i.e., we set usecontrol = true. It
is clear that the values of t1 are almost the same as before, because this part of the
algorithm is the same for both variants. The important values are those of t2: We
observe that the computing time for solving the optimal control problems is smaller
than in the previous case. The explanation is that the interpolated control from
the coarse grid yields a better initial guess than the classical MPC shift. With this
variant of the algorithm and Mh = 25 we are able to compute the 300 MPC steps
within 20.59s, which is a notable speed up (≈ 34%) compared to 31.04s for the MPC
algorithm with horizon N = 3. In the last column of Table 6.11 we observe that
the determined horizon is very robust with regard to the spatial discretization. This
observation provides an important justification for the presented algorithm. Finally,
we want to point out that the advantage of the second variant is not as clear as it
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seems. In the following example we will observe a different behaviour.

Next, we shortly present two examples where the adaptive horizon algorithm does
not yield convincing results. The first example is the one dimensional Schlögl equa-
tion with distributed control (6.1). We use the parameter T = 0.01, λ = 0.01 and
Mx = 200. The optimal control problem is solved by the BFGSINV II method with
tolerance tolopt = 10−6. For solving the semidiscretized PDE we use the ROCK4
ODE solver with tolerance tolODE = 10−8.
The numerical simulations show that the minimal stabilizing horizon is given by
N = 6, see Figure 6.21. We choose the initial condition y0(x) = sin(x) which is
above the controlled steady state for N = 5. The parameters for the adaptive hori-
zon algorithm are given by Nmax = 8, N0 = 2, ρ = 3 and ᾱ = 0.05. We consider
again n = 300 MPC steps. The computing time for the minimal stabilizing horizon
N = 6 is given by 11.25s .
In Table 6.12 we observe a similar behaviour as for the example before: The time

Figure 6.21: MPC closed loop trajectory for the Schlögl equation (6.1) with opti-
mization horizon N = 5 (left) and N = 6 (right).

for determining the horizon t1 scales quadratically with the grid size and the time
for solving the optimal control problems nearly remains constant. Furthermore, we
see that the adaptive horizon method only works beneficial if the dimension of the
reduced system is small enough. The important difference to the catalytic rod model
is the observation that the classical MPC shift variant yields an initial guess that
is as good as the coarse grid interpolation method. This result is indicated by the
similar values of t2 for both variants. For the coarsest grid the first variant is even
faster. This behaviour is reasonable because the quality of the initial guess decreases
for a coarser grid. Moreover, we see again that the calculated horizon is not sensitive
with regard to the spatial discretization. It is remarkable that the average horizon
is smaller than N = 5 for which we do not observe stability for the plain MPC.
A comparison between the adaptive horizon algorithm and the plain MPC method
by means of the computing time indicates the success of the adaptive method. In
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usecontrol = false usecontrol = true
Mh t1 t2 t1 + t2 t1 t2 t1 + t2 N̄
200 16.90 0 16.90 16.90 0 16.90 4.87
100 4.44 7.99 12.43 4.59 7.92 12.51 4.89
50 1.56 8.06 9.62 1.45 8.26 9.71 4.91
25 0.43 8.15 8.58 0.63 8.47 9.10 4.91

Table 6.12: Computation time for the adaptive horizon Algorithm 4.17, where Mh

denotes the dimension of the coarse grid, t1 the computing time to deter-
mine the horizon and t2 the time for solving the optimal control problem.
The comparative value is t = 11.25s for N = 6.
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Figure 6.22: Adaptive horizon MPC closed loop trajectory for the Schlögl equation
(6.1) (left) and the applied horizon in each MPC step (right).

the fastest variant this algorithm requires 8.58s while the plain MPC needs 11.25s.
However, this speed up is bought by the performance of the MPC closed loop so-
lution. We observe a much slower convergence to the equilibrium (see Figure 6.22
(left)) compared with the plain MPC algorithm with horizon N = 6. Thus, for this
example it is not clear whether the use of the adaptive horizon algorithm is rea-
sonable. In Figure 6.22 (right) the applied horizon in each MPC step is displayed.
In contrast to the catalytic rod example we observe a monotonically increasing be-
haviour until the minimal stabilizing horizon is reached.

We close this section by investigating the boundary controlled Schlögl equation
(6.3). The parameters for the MPC simulation are given by T = 0.01, λ = 0.01 and
Mx = 200. We use the ROCK4 ODE solver with tolerance 10−8 for solving the
semidiscretized PDE. The optimal control sequence is determined by the Algorithm
BFGSINV II. For the considered parameters the minimal stabilizing horizon is given
by N = 9. The MPC algorithm with this horizon requires 13.49s for n = 300 MPC
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steps.
For the adaptive horizon algorithm we use the parameters Nmax = 11, N0 = 2, ρ = 4
and ᾱ = 0.05. In Table 6.13 the computing time of the adaptive horizon algorithm
is displayed. The interesting value is the computational time for solving the optimal
control problems t2. It can be seen that only for the variant usecontrol = true and
a fine spatial discretization a benefit is theoretically possible. However, in these
cases the time to determine the horizon is too large. Thus, the overall time is for
each adaptive horizon variant notable higher than for the plain MPC algorithm with
horizon N = 9. Furthermore, the stabilization behaviour is much better for the non-
adaptive MPC algorithm.
The bad performance of the adaptive horizon MPC is probably caused by two

usecontrol = false usecontrol = true
Mh t1 t2 t1 + t2 t1 t2 t1 + t2 N̄ stability
200 27.96 0 27.96 27.96 0 27.96 8.13 y
100 9.39 15.00 24.39 9.18 11.29 20.47 8.04 y
50 3.99 16.79 20.78 4.11 12.31 16.42 7.65 y
25 1.78 16.16 17.94 1.54 16.3 17.84 6.79 n

Table 6.13: Computation time for the adaptive horizon Algorithm 4.17, where Mh

denotes the dimension of the coarse grid, t1 the computing time to deter-
mine the horizon and t2 the time for solving the optimal control problem.
The comparative value is t = 13.49s for N = 9.

reasons. The first one becomes obvious by considering the computing time for dif-
ferent optimization horizons. In Table 6.14 we observe that the computing time is
essentially decreasing for larger horizons. This fact is caused by the reason that a
larger optimization horizon leads to a faster stabilization which is beneficial for the
optimizer close to the equilibrium. (This effect reverses for N ≥ 15.) Therefore,
the main assumption of the adaptive horizon paradigm is not satisfied. While this
problem occurs for all adaptive horizon methods, the second reason for the bad per-
formance concerns the hierarchical grid method. In Table 6.13 it can be seen that
the average horizon significantly changes with the spatial discretization. This con-
tradicts our assumption that the coarse grid provides an appropriate horizon for the
full problem which is the crucial condition for this algorithm. In the last column we
display whether the determined horizon stabilizes the equation. It can be seen that
the horizon determined on the coarsest grid is not sufficient to guarantee stability.
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N 7 8 9 10 11 12 13 14
t 17.20 15.01 13.49 14.57 13.50 12.47 11.65 11.51

Table 6.14: Computing time for the non-adaptive MPC algorithm for different op-
timization horizons.

It should be mentioned that the findings in this section are also observable for dif-
ferent values of ᾱ.
The three presented examples show that a general statement about the efficiency of
adaptive horizon algorithms is not possible. The performance strongly depends on
the investigated system and the corresponding parameters. This observation was
already done in the context of MPC for ODEs, cf. [45].
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Appendix A

The following program code represents a simple implementation example of the
Schlögl model with distributed control (5.2). The model classes are given by react-
diff.cpp and reactdiff.h. The main program is mpcpde.cpp.

Listing A.1: reactdiff.cpp

#include "reactdiff.h"

#define MU 15. // reaction parameter

#define LENGTH 1. // interval length

ReactDiff::ReactDiff(int dimension_u , int dimension_x)

: Model (dimension_u , dimension_x)

{

_ctrl_dimension =dimension_u; // dimension of control space

_state_dimension=dimension_x; // dimension of state space

// control bounds

_control_lb = new double[_ctrl_dimension];

_control_ub = new double[_ctrl_dimension];

for ( int i = 0; i < _ctrl_dimension; i++ )

{

_control_ub[i] = 10.;

_control_lb[i] = -10.;

}

//ODE solver initialization

_odefunc =new yane:: OdeSolve

::OdeFunction(stateEquation , _state_dimension);

_odeadjoint=new yane:: OdeSolve

::OdeFunction(adjointEquation , _state_dimension);

_odeconfig=new yane::OdeSolve::OdeConfig();

_odeconfig ->setTolerance(1e-8, 1e-8);

_odesolver=new yane::OdeSolve::ROCK4 ();

_odesolver ->reset(_odefunc , _odeconfig);

_odesolveadjoint=new yane::OdeSolve::ROCK4 ();

_odesolveadjoint ->reset(_odeadjoint , _odeconfig);

}

double ReactDiff:: semiFunction(double x)

{
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f=MU*(x-pow(x,3));

return f;

}

double ReactDiff:: deriFunction(double x)

{

f=MU*(1. -3.*pow(x ,2));

return f;

}

//Semidiscretization of the state equation

void ReactDiff:: stateEquation (int *n, double *t, double *x,

double *dx , double *u, int *ipar)

{

int dim= _dimension_state;

double hx=LENGTH/double(dim+1);

dx[0]=( - 2.0* x[0] + x[1])/ pow(hx ,2)

+semiFunction(x[0]) + u[0];

for(int i=1;i<dim -1;i++)

{

dx[i]=(x[i-1] -2.0*x[i]+x[i+1])/pow(hx ,2)

+semiFunction(x[i]) + u[i];

}

dx[dim -1]=(x[dim -2] -2.0* x[dim -1] )/pow(hx ,2)

+semiFunction(x[dim -1]) + u[dim -1];

}

//Semidiscretization of the adjoint equation

void ReactDiff:: adjointEquation(int *n, double *t, double *x,

double *dx , double *rpar , int *ipar)

{

int dim= _dimension_state;

double hx=LENGTH/double(dim+1);

dx[0]=( -2.0*x[0] + x[1])/pow(hx ,2)

+x[0]* deriFunction(rpar[0])+ rpar[0]

for(int i=1;i<dim -1;i++)

{

dx[i]=(x[i-1] -2.0*x[i]+x[i+1])/pow(hx ,2)

+x[i]* deriFunction(rpar[i])+rpar[i];

}

dx[dim -1]=(x[dim -2] -2.0* x[dim -1] )/pow(hx ,2)

+x[dim -1]* deriFunction(rpar[dim -1])+ rpar[dim -1];

}

void ReactDiff:: predictState ( double t, double *x,

double *u, double h )

{

_odesolver ->init(t,x);
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_odesolver ->calc(t+h, u);

}

void ReactDiff:: predictAdjoint ( double t, double *x,

double *rpar , double h )

{

_odesolveadjoint ->init(t,x);

_odesolveadjoint ->calc(t+h, rpar);

}

// Evaluation of the gradient

void ReactDiff:: computeGradient ( double *p, double *u,

double *gradient , double _lambda , int _horizon)

{

for( int j=0;j<_horizon;j++)

{

for( int i=0;i< _ctrl_dimension;i++)

{

gradient[j* _ctrl_dimension+i]

=(p[j*_ctrl_dimension+i]+_lambda*u[j*_ctrl_dimension+i]);

}

}

}

Listing A.2: reactdiff.h

#ifndef REACTDIFF_H

#define REACTDIFF_H

#include <cmath >

#include <model.h>

#include <yane/odesolve.h> //required ODE solver

/**

@author Nils Altmueller <btmb07@btm5x6 >

*/

class ReactDiff : public Model{

public:

ReactDiff(int dimension_u , int dimension_x);

~ReactDiff();

static void stateEquation(int * n, double * t, double * x,

double * dx , double * rpar , int * ipar );

static void adjointEquation(int * n, double * t, double * x,

double * dx , double * rpar , int * ipar );

static double semiFunction(double x);

static double deriFunction(double x);

void predictState ( double t, double * x,

double * u, double h ) ;

void predictAdjoint ( double t, double * x,

double * u, double h );
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void computeGradient ( double *p, double *u,

double *gradient , double _lambda , int _horizon );

yane:: OdeSolve:: OdeFunction *_odefunc;

yane:: OdeSolve:: OdeFunction *_odeadjoint;

yane:: OdeSolve:: OdeConfig *_odeconfig;

yane:: OdeSolve:: OdeSolveFirst *_odesolver;

yane:: OdeSolve:: OdeSolveFirst *_odesolveadjoint;

private:

int _ctrl_dimension;

int _state_dimension;

};

#endif

Listing A.3: mpcpde.cpp

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <iostream >

#include <iomanip >

#include <fstream >

#include <cstdlib >

#include <cmath >

#include "optimizer.h" //optimal control algorithms

#include "testexample.h" //examples from Chapter 5

#define HORIZON 10

#define T 0.01 // sampling time

#define LAMBDA 0.01 // regularization parameter

#define tol 1e-6 // tolerance for the optimizer

#define STEPS 300 // computed MPC steps

using namespace std;

int main(int argc , char *argv[])

{

int DIMX =200; //state dimension

int DIMENSION=DIMX; //control dimension

Model *model= new ReactDiff(DIMENSION , DIMX);

double *x0=new double[DIMX]; //state

double *yd=new double[DIMX]; // desired state

// optimal control sequence

double *Control=new double[HORIZON*DIMENSION];

for( int i = 0 ; i < DIMX; i++ )
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{

//initial condition

x0[i]=0.2* sin(M_PI*double(i+1)/double(DIMX +1));

yd[i]=0.0;

}

for(int i=0;i<HORIZON;i++)

{

for(int j=0;j<DIMENSION;j++)

{

Control[i*DIMENSION+j]=0.0;

}

}

// initialization of the optimal control problem

OPTIMIZE *optimize=new BFGSINV(model ,yd ,HORIZON ,LAMBDA,T);

optimize ->setTolerance(tol);

//MPC loop

for(int k=0;k<STEPS;k++)

{

//solve optimal control problem

optimize ->calc(x0,Control);

//shift the optimal control sequence

for(int i=0;i<HORIZON -1;i++)

{

for( int j = 0 ; j < DIMENSION; j++ )

{

Control[i*DIMENSION+j]=Control[(i+1)* DIMENSION+j];

}

}

for( int j = 0 ; j < DIMENSION; j++ )

{

Control[(HORIZON -1)* DIMENSION+j]=0.;

}

}

delete optimize;

delete model;

return EXIT_SUCCESS;

}
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