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regressions. Adapted from Piayda et al., 2014. 
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Figure 11: Tree diameter increment (mm) during 2011 and 2012. Values are means ± se (n=9). From 

Costa e Silva et al., under review in AFM. 

 

 

Study I 
 

Figure 1: a) Schematic overview and pictures of the experimental setup for measuring leaf 

transpiration, its isotopic composition and micrometeorological parameters within the chamber in the 

field. 
 

Figure 2: Environmental conditions and ecophysiological parameters observed with the chamber 

setup in late spring (a-c), late summer (d-f) and fall (g-i; date format: day.month.year): relative 

humidity corrected to leaf temperature (h, [%], black lines), leaf temperature ([°C], dashed grey lines), 

transpiration rate (E, [mmol m
−2

 s
−1

], n=3, mean ± SE, green circles), and total leaf conductance (gtw, 

[mmol m
−2

 s
−1

], black circles). 

 

Figure 3: Measurements in spring (a-c), summer (d-f) and fall (g-I; date format: day.month.year) of 

the oxygen isotope signatures of transpired vapor (δE, black circles, n=3, mean values ± SE) and 

modeled δE considering non-steady state with varying observed leaf water volume Vm and αk between 

1.018 and 1.0265 (grey uncertainty band). The dark grey uncertainty band indicates modeled δE with 

αk = 1.018 and varying leaf temperature from observed values to +6 °C. The solid red line is modeled 

δE with constant leaf water volume Vm of the observed mean value and αk = 1.018. Grey squares show 

measured oxygen isotope signatures of ambient air and white triangles are oxygen isotope signatures 

of xylem (n=3, mean values ± SE). Please note different scales for positive and negative values.. 

 

 

Figure 4: Diurnal cycles of modeled and measured oxygen isotope signatures of leaf mesophyll water 

(δm; a) and modeled versus measured δm (b) on 4.6. (circles; black line); 6.6. (up triangles; black dotted 

line); 10.6. (squares; black dashed line) and 11.11.2011 (down triangles; grey line). 

 

Figure 5: Modeled oxygen isotope signatures of transpiration and observed oxygen isotope signatures 

of xylem (grey dotted line; n=3, mean values) at June 4 (a), September 18 (b) and November 11 (c; 

date format: day.month.year). Red lines indicate modeled δE with observed leaf water residence time 

(see Fig. 2), black dotted and solid lines are δE with ½ and ¼ of the observed leaf water residence time 

and black dashed lines are δE with twice the observed leaf water residence time. 

 

Figure 6: Spring (a, d), summer (b, e) and fall (c, f) deviations of the oxygen isotope signature of 

transpired vapor from xylem water (ΔE, [‰]) against deviation of leaf water isotopic composition at 

the evaporating sites from isotopic steady-state (Δe−ΔC, [‰]; a-c), and against Δe−ΔC amplified by 

1/(1−h) (d-f). The black lines indicate significant linear regressions and dashed black lines the 95% 

confident bands. The 1:1 line is indicated in black; coefficients of determination R² and significance 

level p are shown inside the plots. 

 

Figure 7: Isoforcing of transpiration on the atmosphere [IE; mol m
−2

 s
−1

 ‰] for each measurement day 

assuming isotopic steady-state (ss, black solid lines) or non-steady-state (nss, red dashed lines). 

Nighttime transpiration rates and conductances were taken from Dawson et al. (2007). 24h means ± 

SE are given for each measurement day (date format: day.month.year); errors were calculated from 

bootstrap re-sampling. 

 

Figure S1: Concentration dependencies of the Cavity Ring-Down Spetrometer at six different oxygen 

(a) and deuterium (b) isotopic signatures. Each sample with distinct signature (I-VI; see Table S1) was 

measured from 5000 to 30000 ppmv H2O concentration. 
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Figure S2: H2O (ppm), δ
18

O and δD (‰) observed with the Cavity Ring-Down Spectrometer of 

ambient air and blank branch chamber (a-c) and of ambient air and branch chamber with branch 

enclosed (d-f). Arrows denote switch from ambient air going into the branch chamber to air coming 

out of the branch chamber. 

 

Study II 

 

Figure 1: Environmental conditions from April 6 to May 3, 2011. a) Photosynthetic photon flux 

densitiy (PPFD, µmol m
−2

 s
−1

, black lines), b) air temperature (°C, black lines), c) relative humidity 

(%, black lines), d) vapor pressure deficit (VPD, kPa, black lines), e) soil temperature in 5 cm soil 

depth on vegetation (black lines), roots (black dotted lines) and bare soil plots (black dashed lines), 

and f) soil volumetric water content in 5 cm soil depth (θs, m
3
 m

−3
) on vegetation (black lines), roots 

(black dotted lines) and bare soil plots (black dashed lines) as well as rainfall (mm d
-1

, black bars). 

Black arrows indicate measurement dates (April 8, 12, 18, 26, and May 2, 2011). 

 

Figure 2: Soil profiles of volumetric water content (θs, dashed black lines and grey squares; mean ± 

SD, n=3-4; depths 5, 15, 30, and 60 cm) temperature (dotted black lines and dark grey up triangles; 

mean ± SD, n=3-4; depths 0, 5, 15, 30, and 60 cm), and soil δ
18

O (black solid lines and circles; mean ± 

SD, n=3-4; depths 0, 2, 5, 10, 15, 20, and 40 cm) on roots, soil and vegetation plots on 5 days between 

April 8 and May 2, 2011. 

 

Figure 3: Measured δ
18

OE on root and bare soil plots (black circles) and calculated with the Craig and 

Gordon equation using approach I (solid black lines), II (long dashed black lines) and III (dotted black 

lines) according to Table 1. Measured δ
18

OE are shown as mean values ± SD (n=3). 

 

Figure 4: a-e) Measured evapotranspiration (ET, black squares) and δ
18

OET (grey circles, ‰) based on 

CRDS measurements from April 8 to May 2, 2011 (mean ± SD, n = 3). f-j) Modeled isotopic signature 

of leaf water at the evaporating sites in steady state (δ
18

Oe-ss, dashed black lines) and non-steady state 

(δ
18

Oe-nss, solid black lines) and measured δ
18

O of leaf mesophyll water at midday (grey circles, mean 

values ± SD, n=5). k-o) Modeled isotopic composition of leaf transpired water (δ
18

OT) in steady-state 

(δ
18

OT-ss, black dashed lines) and non-steady state (δ
18

OT-nss, black solid lines) and isotopic 

composition of soil evaporated water δ
18

OE using different formulations for the kinetic fractionation 

factor on vegetation plots. p-t) Contribution of plant transpiration to total understory 

evapotranspiration (ft) using all combinations of δ
18

OT and δ
18

OE of k-o). No values for ft are displayed 

if ft < 0 or ft > 1.  

 

Figure 5: Regressions of measured against modeled δ
18

OE on soil plots varying a) the oxygen isotope 

composition of the evaporating surface (δ
18

Oe); b) temperature  and c) the formulation for αk. a) δ
18

Oe 

was varied relative to the nominal values at the evaporating front by +1‰ (grey dashed line), +3‰ 

(dark grey dashed line), -1‰ (light grey dashed line), -3‰ (grey dotted line) and as obtained at the 

evaporating front (black line). b) temperature (te) was equally varied relative to values obtained at the 

evaporating front by +2 °C (grey dashed line), +5°C (black dashed line), -2°C (light grey dashed line), 

-5°C (grey dotted line) and as obtained at the evaporating front (black line). c) In order to test the 

sensitivity of the modeled δ
18

OE in regard to αk we obtained δ
18

OE by using the formulations for αk as 

follows: diffusivity coefficient of Merlivat  et al. (1978) in combination with nk=MB96 (black line), in 

combination with nk=1 (grey dotted line) and the diffusivity coefficient of Cappa et al. (2003) in 

combination with nk=MB96 (black dashed line) and nk=0.5 (grey dashed line). Black circles are 

measured (± SD, n = 3) against modeled values with the nominal values of δ
18

Oe and temperature at 

the evaporative front and αk = Me78
MB96

. 

 

Study III 
 

Figure 1: Rectangular transect grid (white squares) with 100 observation points of 100 × 100 m 

extend. Background: aerial photograph of study site in central Portugal with Q. suber  trees (Google, 

2013). 
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Figure 2: Sketches of crown models: ellipsoidal Se(h), asymmetric ellipsoidal Se9/10(h) and 

triangular model St(h). ht = crown top height, hb = crown bottom height, rc = crown radius. 

 

Figure 3: Histogram of angular averaged transmittance deviations from unity Pgap − 1. Light grey: 

values set to 1 and kept for further analysis. Black: considered operational errors and excluded from 

further analysis with MAD filter based on 2.5 standard deviations. 

 

Figure 4: Dependency of gap probability Pgap on zenith view angle θ. Black symbols: DCP method 

at 3, 6 and 8 m height. Grey symbols: LAI-2000 method at 3 m height (6 and 8 m heights not shown). 

Solid lines: Beer’s law with effective leaf area index Le . Dashed lines: Beer’s law with angular 

dependent leaf clumping Ω (θ) of Fig. 6. 

 

Figure 5: a) Empirical leaf inclination angle α distribution (bars, n=281), non-parametric kernel 

smooth distribution function (dashed line), two-parameter Beta-distribution (solid line). The abscissa 

displays angle of the leaf normal to zenith: 0=horizontal aligned leaves, 1 = vertical aligned leaves. b) 

Leaf projection function G(θ) over view zenith angle θ derived from kernel smooth (dashed line) and 

Beta-distribution (solid line). Uncertainty bands present standard error. 

 

Figure 6: Change of clumping index Ω with zenith view angle θ at 3, 6 and 8 m height. Solid lines: 

fitted third degree polynomials. 

 

Figure 7: a) Height distribution of cumulative effective leaf area index ∑Le for LAI-2000 and DCP 

derived from Pgap (53°). b) Same for cumulative leaf area index ∑L. 

 

Figure 8: a, b) change of mean gap probability Pgap  and standard error σ Pgap  with view angle span 

θ v . c, d) change of mean leaf area index L   and standard error σ L   with view angle span θv. All 

plots display observations at zenith view angles of 0°, 53°, 68° and 3 m height above ground for LAI 

2000 and DCP.  

 

Figure 9: a) height distribution of leaf area index L estimated with the ellipsoidal (Se , solid line), 

asymmetric ellipsoidal (Se 9/10 , dashed line) and triangular (St , dotted-dashed line) crown model 

from crown parameters and leaf area index L derived from Pgap (53°) at 3 m height. b) height 

distribution of cumulative leaf area index ∑L. Dots: measured cumulative height distribution with 

DCP. Lines: estimated cumulative height distribution by integration of Se, Se 9/10 and St from a). 

 

Study IV 
 

Figure 1: Environmental conditions during 2011; a) daily mean air temperature (black line), vapor 

pressure deficit (VPD; black long dashed line) and daily rainfall (black bars) observed in the open 

area; b) soil temperature in the open and tree plots (grey and black lines, respectively). The lighter 

grey lines indicate daily means; c) soil volumetric water content (Θ) in 5 cm soil depth in the open and 

tree plots (grey and black lines, resp.) and d) daily sums of photosynthetic photon flux density (PPFD) 

in the open (grey line) and tree plots (black line). 

 

Figure 2: a-h) Relative vegetation cover in % of living biomass of distinct functional groups of the 

herbaceous layer (Grasses, N-fixing and other forbs) in early spring, late spring and fall 2011 on the 

open (a-e) and tree plots (f-h; mean values; n = 5).   

 

Figure 3: a) Renkonen index showing the relative (0-1) similarity between the open and the tree site 

from April to June. b-g) Relative vegetation cover in % of each species of the three functional groups 

of the herbaceous layer (Grasses, N-fixing and other forbs) on the open (left) and the tree site (right) 

from April to June (mean values; n = 5). 
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Figure 4: a-h) Total daily water reduction in the upper 60 cm of the soil in the open and the tree plots 

(grey and black bars, respectively) as well as total herbaceous evapotranspiration (ET) during daylight 

on the open (a-d) and tree plots (e-h; white and black circles, respectively). Results are presented as 

mean values (± SD in case of ET; n=3-4) and  i-l) relative water use of the herbaceous layer [%] on the 

open (grey circles) and tree plots (black circles), between April 4 and November 22, 2011: early spring 

(a, e, i), late spring (b, f, j), summer (c, g, k), and fall (d, h, l). 

 

Figure 5: a-d) Total net CO2 exchange during daylight on the open and tree site (grey and black 

cycles) during the four measurement campaigns between April 24 and November 22, 2011: early 

spring (a), late spring (b), summer (c), and fall (d). Results are mean values ± SD (n=3). 

 

Figure 6: a-b) Open and tree site (white and black circles, respectively) net CO2 exchange during 

daylight (NEE) in spring (April-June) versus open and tree site photosynthetic photon flux density (a, 

PPFD), and soil water content in 5 cm depth (b). c-d) Difference between open and tree site in spring 

(Δopen – tree site; April-June) net CO2 exchange during daylight (NEE) versus difference between 

open and tree site photosynthetic photon flux density (c, PPFD), and water use (d). Sites specific 

differences could only be calculated for measurements on consecutive days. Black lines depict linear 

regressions between NEE and SWC (b) and non-linear regressions between ΔNEE and Δsoil water use 

(d).  

 

Study V 
 

Figure 1: Environmental conditions from March to December 2011; a) daily averages of air 

temperature (grey line), vapor pressure deficit (VPD; grey long dashed line) and rainfall (black bars); 

b-de) daily sums of environmental conditions at the open (grey) and tree site (black) of: photosynthetic 

photon flux density (PPFD), soil temperature in 5 cm soil depth (lighter lines denote running 

averages), soil volumetric water content (Θ) in 5 and 60 cm soil depth. e) daytime integrated net 

ecosystem fluxes of: net CO2 exchange (NEE, g C m
-2

 d
-1

) and evapotranspiration (ET, mm d
-1

, black 

bars) from March to December 2011. 

 

Figure 2: Rainfall and infiltration into the soil following rain events > 2 mm at a, b) the open and c, d) 

tree site on understory plots (green circles), bare soil plots (blue circles, all in mm d
-
1; n=4, mean 

values ± SE) and rainfall (grey bars). Insets present differences in infiltration between understory and 

bare soil versus rain amount at the open and tree site. Regression line, coefficient of regression and p-

value are given. 

 

Figure 3: Development of midday oxygen isotope signatures within the ecosystem from April to 

November 2011; a-d) atmospheric δ
18

O at 9 m height (grey diamnonds); e-h) δ
18

O of rainfall (black 

circles) and δ
18

O of soil water at the evaporating site on vegetation plots at the open (white triangles) 

and tree site (grey triangles, mean values ± SD, n=3); i-l) measured δ
18

O of evapotranspiration on the 

open (white circles) and tree site (grey circles, mean values ± SD, n=3); m-p) modeled δ
18

O of 

evaporated vapor from vegetation plots on the open (white triangles) and the tree site (grey triangles) 

and modeled δ
18

O of herbaceous leaf transpired vapor at the open (white circles) and the tree site (grey 

circles). 

 

Figure 4: a) Oxygen isotope signatures of soil evaporation on bare soil plots calculated with the Craig 

and Gordon equation versus measured values for the open (white circles) and tree sites (black circles) 

of all measurements (mean values ± SE; n=3); the grey and black line denote regression lines for the 

open and tree sites, respectively. b) Modeled against measured values during midday only (14:00 h). c) 

Modeled δ
18

O of leaf water at the evaporating sites in the non steady state versus measured oxygen 

isotope signatures of bulk leaf water for the open (white circles) and tree site (black circles) for all 

available data points of measured leaf water δ
18

O throughout the study period. Regression equations 

(observed vs. modeled), correlation coefficients are given below the plots. p-values were less than 

0.001 for all regressions. 
 

Figure 5: Daytime integrated understory evapo-transpiration (ET, mm d
-1

, mean values ± SD, n=3), 
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which is the sum of herbaceous layer transpiration (T, green bars) and soil evaporation (E, blue bars) 

at the open (i-l) and tree site (m-p); daytime integrated net understory CO2 exchange (NEE, g C m
-2

 d
-

1
, white circles; mean values ± SE, n=3), herbaceous gross primary production (GPP, dashed green 

line, mean values, n=3) and respiration (R, blue line, mean values, n=3) on the open (a-d) and tree site 

(e-h). q-x) Inherent water-use effi-ciency (iWUE) of the whole understory (GPP*VPD/ET, white 

circles), and understory vegetation (GPPu*VPD/T, green circles). iWUE was calculated from daytime 

integrated values of ET, T and GPPu for the open site (q-t) and the tree site (u-x). 

 

Figure 6: a) Daytime integrated ecosystem evapotranspiration (ET, sum of the stacked bars) and its 

components cork-oak transpiration (To, dark green), herbaceous transpiration (Tu, green) and soil 

evaporation (E, blue, all mm d
-1

). b) Daytime integrated GPP of cork oaks (GPPo, dark green) and 

understory (GPPu,  green), ecosystem respiration (Reco; blue), and net ecosystem CO2 exchange (NEE, 

black squares, all in g C m
-2

 d
-1

). 

 

Figure 7: Inherent water-use efficiency (iWUE, GPP*VPD/(E)T) of the ecosystem (white circles), the 

black line represents the running average, cork oaks (dark green) and understory vegetation (green 

circles). 

 

Figure S1: Typical diurnal courses of understory ET, δ
18

OET, NEE and its components on 23. and 24. 

May 2011. a,d) of oxygen isotope signatures of measured ET (grey circles, n=3 ± SD) and modeled E 

and T (blue line and green dashed line) at the open (a) and tree site (d); b, e) of fluxes of measured ET 

(grey circles, n=3 ± SD) and modeled E and T (blue line and green dashed line) on the open (b) and 

tree site (e). c, f) Fluxes of measured net understory CO2 exchange (NEEu; grey circles, n=3 ± SD) and 

understory respiration (Ru; blue circles, n=3 ± SD) and estimated understory plant CO2 uptake (GPPu; 

green dashed line) at the open (c) and tree site (f). 

 

Study VI 
 

Figure 1: Meteorological data during 2011 and 2012. (a) 10-day average air temperatures ( °C) and 

10-day sum of precipitation (mm). (b) 10 day average of total incident photosynthetically active 

radiation (PAR, mol m
-2

 d
-1

). (c) 10-day average of maximum vapour pressure deficit (VPDmax, hPa).  

 

Figure 2: Daily mean values of soil water content (%) at 2 and 40 cm depth. 

 

Figure 3: Daily values of net ecosystem exchange (NEE, g C m
-2

 day
-1

) during 2011 (a) and 2012 (b). 

Negative values represent carbon sequestration in the ecosystem while positive values represent 

carbon emissions to the atmosphere. The black line indicates a 10-day running average. 

 

Figure 4: Linear regressions between gross primary productivity (GPP) and daily-integrated incident 

photosynthetically active radiation (PAR) over the seasons in 2011 and 2012. Radiation use efficiency 

(RUE) expressed in g C MJ
-1

. (a) Winter, 2011: y = 0.31x + 1.11, r
2
 = 0.57, n=56; 2012: y = 0.25x + 

1.06, r
2
 = 0.62, n=71. (b) Spring, 2011: y = 0.26x + 2.74, r

2
 = 0.20, n=32; 2012: y = 0.28x + 2.0, r

2
 = 

0.46, n=44. (c) Summer, 2011: y = 0.42x + 0.02, r
2
 = 0.58, n=96; 2012: y = 0.21x + 0.24, r

2
 = 0.22, 

n=62. (d) Autumn, 2011: y = 0.33x + 0.67, r
2
 = 0.55, n=61; 2012: y = 0.33x + 0.83, r

2
 = 0.71, n=57. 

 

Figure 5: Total cumulative leaf fall during 2011 and 2012 in g DM m
-2

 and time interval of different 

phenological stages. Values are means ± se (n=6). 

 

Figure 6: Tree leaf area index (LAI) during 2011 (a) and 2012 (b). The dash line represents LAI of old 

leaves matured in the previous spring. 

 

Figure 7: Tree diameter increment (mm) during 2011 and 2012. Values are means ± se (n=9).  

 

Study VII 
 

Figure 1: Satellite image of the study site (© Google Maps, 2013). 1: position of the overstorey tower. 
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2: position of the understorey tower. 

 

Figure 2: a) Daily sum of precipitation P for 2011 (black) and 2012 (grey). b) Cumulative 

precipitation P for 2011 (black) and 2012 (grey) based on half hourly data. 

 

Figure 3: Quantile-quantile plot of important climate and environmental parameters for the years 2011 

and 2012 based on daily averages. Black dots represent the 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 

0.9, 0.95, and 0.99 quantiles of the respective distribution. Grey dots represent the 0.5 quantile. a) air 

temperature T , b) precipitation P , and c) vapour pressure deficit of the air vpd, each measured at 20 m 

height above ground. d) soil moisture in the first 20 cm θ20 cm (root zone of understorey vegetation). 

 

Figure 4: a) Maximum daily vapour pressure deficit vpdmax, b) daily sum of ecosystem 

evapotranspiration ETo and c) daily sum of understorey transpiration + soil evaporation ETu for 2011 

(black) and 2012 (grey). Lines mark kernel regressions. 

 

Figure 5: Box plot of monthly volumetric soil moisture a) down to 20 cm depth θ20 cm (root zone of 

understorey vegetation) and b) down to 60 cm depth θ60 cm for the years 2011 (black) and 2012 (grey). 

Central line marks the median, box marks the 0.25 and 0.75 quantiles. Dashed lines mark the 0.05 and 

0.95 quantiles. Data within a two day interval after a rain event were excluded. 

 

Figure 6: a) Ecosystem net carbon exchange NEEo, b) ecosystem gross primary production GPPo, c) 

understorey gross primary production GPPu for 2011 (black) and 2012 (grey). Dots mark daily sums, 

lines are kernel regressions. 

 

Figure 7: a) Apparent maximum carboxylation rate Vcmax, b) stomatal conductance parameter m, c) 

vapour pressure deficit sensitivity parameter D0 , d) fraction m/(1 + (vpd / D0)) relating assimilation A 

and stomatal conductance gs e) daily median stomatal conductance for water vapour gsh and f) optimal 

temperature of carboxylation Topt.The model is fitted to median daily cycles of gross primary 

production GPPo and evapotranspiration ETo of the Q. suber trees in a day long moving window for 

the summer period of 2011 (black) and 2012 (grey).   
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ABBREVIATIONS 

αk kinetic fractionation factor 

α
+ 

equilibrium fractionation factor 

δ
18

O stable oxygen isotope signature (‰) 

Θ volumetric water content 

E soil evaporation 

ET evapotranspiration 

ft fraction of T contributing to ET 

GPP gross primary productivity 

gt total leaf conductance to water vapor (mol m
-2

 s
-1

) 

h  relative humidity 

LAI leaf area index 

NEE net ecosystem CO2 exchange 

o overstory 

Pgap gap probability 

R ratio of [
18

O]/[16
O] 

Reco ecosystem respiration 

s soil   

T plant transpiration 

Vcmax maximum carboxylation rate 

w H2O concentration  

T  temperature 

t trees 

u understory  



Summary 

 

 

XXII 

SUMMARY 

Semi-arid ecosystems cover large areas world-wide and contribute about 40% to global gross primary 

production (GPP). The major driving factor of GPP in these ecosystems is water availability; since 

annual precipitation pattern show periodical summer droughts and evapotranspiration losses are high. 

Hence, understanding seasonal vegetation-soil-water feedbacks is vitally important. This thesis aims at 

disentangling vegetation impacts on water and carbon cycling of a Mediterranean savanna-type oak 

woodland. Special focus was laid on the seasonal understory impact on net ecosystem fluxes, soil 

water distribution and tree-understory interactions. Moreover, the impact of altered precipitation 

pattern and drought intensity on ecosystem functioning was assessed, as these phenomena are 

predicted to increase by climate change scenarios in these ecosystems. 

To achieve these aims, classical ecophysiological measurements, plant community and structural 

observations as well as eddy-covariance technique were combined with a novel stable oxygen isotope 

partitioning approach.  

Stable oxygen isotopes are valuable tracers for water movements within the ecosystem, but due to 

methodological restrictions in the past, it was necessary to validate modeling approaches and derive 

field sampling protocols for model input parameters. Therefore, a measurement set-up was developed 

coupling branch and soil chambers with an H2O laser spectrometer, enabling direct, high frequent 

measurements of δ
18

O signatures of evaporative fluxes and, to my best knowledge, the first validation 

of the Craig and Gordon model under heterogeneous field conditions. Thereby it was possible to 

assess multiple effects of understory vegetation on ecosystem water cycle and productivity. Although 

understory transpiration strongly contributed to ecosystem evapotranspiration, beneficial effects of the 

understory vegetation were dominant as herbaceous biomass strongly increased rain infiltration, 

diminished soil evaporation and significantly added to the ecosystem carbon sink strength. However, 

the understory was also vulnerable towards drought: development, species composition, transpiration 

and carbon gain of the understory plants were strongly influenced by competition for water with cork-

oak trees which shortened the understory longevity and reduced the overall understory productivity in 

spring.  
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The years 2011 and 2012, contrasting in annual precipitation amount and pattern, offered an ideal 

opportunity to study effects of drought on ecosystem functioning. The pronounced winter/spring 

drought and reduced precipitation in 2012 led to strongly reduced development of the understory 

layer. Ecosystem carbon sink strength and net ecosystem evapotranspiration were severely reduced 

and more water was used by the ecosystem through evapotranspiration than was introduced by 

precipitation in 2012. Decreased ecosystem productivity was caused by stomatal regulations and 

decreased maximum carboxylation rate (Vcmax) of cork-oaks. Moreover, the drought in 2012 led to 

strong alterations in tree phenology: annual tree diameter increment and fruit production were severely 

reduced.  

These findings suggest that the herbaceous understory, although vulnerable to drought, plays a vitally 

important role for ecosystem fluxes, rain infiltration and hence also cork-oak productivity and 

ecosystem resilience towards drought. At the same time, the increased drought and altered 

precipitation pattern predicted in future climate change scenarios for the Mediterranean basin does not 

only threaten understory development and annual cork growth. It also very likely decreases rain 

infiltration and ground water recharge, which in turn can severely affect cork-oak productivity and the 

resilience of the ecosystem towards drought. 
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ZUSAMMENFASSUNG 

Semiaride Ökosysteme tragen etwa 40% zur globalen Brutto-Primär-Produktion (GPP) bei und 

bedecken große Teile der weltweiten Landmasse. Wasserverfügbarkeit ist einer der wichtigsten 

limitierenden Faktoren für GPP; insbesondere, da die jahreszeitlichen Niederschlagsdynamiken zu 

periodischen Sommerdürren führen und die Wasserverluste durch Evapotranspiration hoch sind. 

Daher ist ein Verständnis saisonaler Wechselwirkungen zwischen Vegetation, Boden und Wasser von 

fundamentaler Bedeutung. Das Hauptziel dieser Doktorarbeit ist die Aufschlüsselung von 

Vegetationseinflüssen auf den Wasser- und Kohlenstoffhaushalt eines mediterranen savannenartig 

strukturierten Eichenwaldes. Ein spezieller Fokus liegt dabei auf dem saisonalen Einfluss des 

Unterwuchses auf Ökosystemflüsse, Bodenwasserverteilung und auf Wechselwirkungen mit der 

Baumschicht. Außerdem wurde der Einfluss veränderter Niederschlagsdynamiken auf Nettoflüsse und 

Produktivität des Ökosystems untersucht, da eine Zunahme von Trockenstressperioden durch 

Klimawandelmodellen vorhergesagt wird.  

Um diese Fragen zu untersuchen, wurden klassische ökophysiologische Messungen, 

pflanzengesellschaftliche und strukturelle Vegetationsaufnahmen und die Eddy-Kovarianz-Technik 

kombiniert und basierend auf den Eigenschaften stabiler Sauerstoff-Isotopen ein neuartiger 

Partitionierungsansatz entwickelt. 

Stabile Sauerstoff-Isotope sind wertvolle Indikatoren für Wasserbewegungen innerhalb eines 

Ökosystems. Bisher unterlag der Einsatz stabiler Sauerstoff-Isotope für ökologische Untersuchungen 

technischen Einschränkungen. Deshalb wurden im Zuge dieser Arbeit verbreitete Modellansätze 

validiert und Freiland-Messprotokolle für deren Eingangsparameter erarbeitet. In einem ersten Schritt 

wurde dafür ein Messaufbau entwickelt, bei dem Gaswechselkammern auf verschiedenen Ebenen mit 

einem H2O-Laser-Spektrometer gekoppelt wurden, um eine direkte, hochfrequente Messung der δ
18

O 

Signaturen evaporativer Flüsse zu ermöglichen und die erste Validierung des Craig-und-Gordon-

Modells unter heterogenen Freilandbedingungen durchzuführen. So konnten verschiedener Effekte der 

Unterwuchsvegetation auf den Wasserhaushalt und die Produktivität des Ökosystems ermittelt 

werden. Insgesamt trug die Transpiration des Unterwuchses stark zur Evapotranspiration des 

Ökosystems bei. Dennoch waren vorteilhafte Effekte dominant: die Biomasse des krautigen 
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Unterwuchses erhöhte in starkem Ausmaß die Niederschlagsinfiltration, unterdrückte die 

Bodenevaporation und trug signifikant zur Funktion des Ökosystems als Kohlenstoffsenke bei. 

Andererseits zeigte die Unterwuchsvegetation eine starke Sensitivität gegenüber Trockenheit, da ihr 

Biomassezuwachs,  ihre Artenzusammensetzung, Transpiration und Kohlestoffaufnahme durch 

Wasserkonkurrenz mit Korkeichen limitiert war. Dies führte zu einer verkürzten Vegetationsperiode 

und reduzierte die Kohlenstoffaufnahme im gesamten Frühjahr. 

Die Jahre 2011 und 2012 unterschieden sich signifikant hinsichtlich der absoluten 

Niederschlagsmenge und -verteilung, so dass diese Zeit eine ideale Gelegenheit bot, den Einfluss von 

Trockenheit und veränderten Niederschlagsdynamiken auf das Ökosystem zu untersuchen. Die 

Winter/Frühjahrstrockenheit in 2012 verhinderte die Entwicklung des Unterwuchses und die 

Kohlenstoffaufnahme und Evapotranspiration des Ökosystems waren stark vermindert. Zudem verlor 

das Ökosystem im trockenen Jahr 2012 mehr Wasser durch Evapotranspiration als durch 

Niederschläge zugeführt wurde. Die verminderte Ökosystem-Produktivität im Sommer 2012 wurde 

hauptsächlich durch stomatäre Regulation und verminderte maximale Carboxilierungsrate (Vcmax) der 

Korkeichen verursacht, während die gesamte Blattfläche stabil geblieben ist. Desweiteren zeigten sich 

starke Einbußen in Fruchtproduktion und Stammzuwachs, was für die Korkproduktion von 

wirtschaftlicher Bedeutung ist. 

Die Ergebnisse dieser Arbeit weisen darauf hin, dass der krautige Unterwuchs, trotz seiner 

Dürreanfälligkeit, eine entscheidende Rolle für die Entwicklung der Kohlenstoff- und Wasserflüsse 

des Ökosystems und für die Niederschlagsinfiltration spielt, was wiederum die Produktivität der 

Korkeichen und die Resilienz des Ökosystems gegenüber Trockenheit beeinflusst. Gleichzeitig, 

schädigen verstärkte Trockenheit und veränderte Niederschlagsverteilung, wie sie durch 

Klimawandelprognosen für den Mittelmeerraum vorausgesagt werden, nicht nur die Entwicklung des 

Unterwuchses und die Korkproduktion. Vielmehr sind negative Auswirkungen auf die 

Niederschlagsinfiltration und die Grundwasserneubildung sehr wahrscheinlich, was zu langfristigen 

und anhaltenden Konsequenzen für die Produktivität und die Resilienz des Ökosystems gegenüber 

Trockenheit führen kann.  
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1. VEGETATION AND DROUGHT EFFECTS ON WATER BALANCE AND ITS IMPACT 

ON CARBON GAIN IN SEMI-ARID ECOSYSTEMS 

Semi-arid ecosystems contribute to ca. 40% global net primary productivity (Grace et al., 2006), 

although water availability is the major factor limiting carbon dioxide uptake (Pereira et al., 2006). 

Annual precipitation pattern show periodical summer droughts and evapotranspiration (ET) losses are 

high accounting up to 95% of the water input (Huxman et al., 2005). At the same time, ET has two 

distinct components: soil evaporation and plant transpiration, which may need to be further separated 

in contributions of different plant functional types. These fluxes are not necessarily controlled by the 

same mechanisms (Cavanaugh et al., 2011; Raz-Yaseef et al., 2012; Yepez et al., 2007; Zhang et al., 

2011). Thus a separation of these component fluxes is needed to gain functional understanding on the 

development of net ecosystem water fluxes and their coupling with carbon cycling.  

In addition, climate change is expected to cause substantial changes in water availability due to 

increasing air temperature and changed rainfall pattern, which might lead to a prolonged dry season 

and to more frequent drought spells but also significant increases in heavy precipitation events (Costa 

et al., 2012; IPCC, 2007; Trigo et al., 2013; Xu et al., 2013). Annual precipitation pattern of the recent 

past already show a significant decrease of rain amount in February and March as well as a decrease of 

total annual rainfall on the Iberian Peninsula (Guerreiro et al., 2013; Garcia-Barron et al., 2013; 

Pereira et al., 2007; Paredes et al., 2006). While well adapted to a prolonged summer drought, species 

in semi-arid Mediterranean ecosystems rely on winter recharge and sufficient water supply during 

spring, as this is their main growth period. Consequently, a functional understanding of the impact of 

increased drought and altered precipitation pattern on ecosystem functioning is vitally important for 

predictions of ecosystem resilience towards ongoing climate change. 

In the Mediterranean Basin evergreen savannah type oak woodlands (called `Montado´ in Portugal and 

`Dehesa´ in Spain) form such semi-arid ecosystems. In Portugal and Spain they cover 1.5 million 

hectares (2.5 million hectares in the Mediterranean Basin) and form the predominant land-cover type 

in the south-western Iberian Peninsula. They are commonly exploited as pastoral agro-forestry 

ecosystems, mainly for cork-production but also for grain harvest or pastures. Moreover, they are 
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highly diverse and considered a habitat of high conservation value (Moreno et al., 2005; Perez-Ramos 

et al., 2008). Therefore, their sustainability is vitally important for agronomical and biodiversity 

aspects and is currently being threatened by unbalanced management practices (Bugalho et al., 2011). 

The ‘Montado’ is a multi-layered ecosystem consisting of a widely spaced tree cover usually 

composed of Quercus suber L. sometimes mixed with Quercus ilex La. and an understory layer 

comprised of grasslands, shrub formations and/or cereal crops (Perez-Ramos et al., 2008). While trees 

have access to deeper soil layers and/or ground water, shallow rooted herbaceous plants are vulnerable 

to drought and die back at the onset of summer drought (Paço et al., 2009). Consequently, the 

contribution of the herbaceous layer to ecosystem productivity varies intra-annually and can be 

remarkably high, especially in spring, contributing up to more than 50% of total gross primary 

productivity (GPP; Unger et al., 2009, 2010).  

While the impact of understory plants on carbon and also nitrogen cycling (Hussain et al., 2009; 

Otieno et al., 2011; Unger et al., 2009, 2010) in the Montado is relatively well characterized, less is 

known concerning its role in the ecosystem water cycle. Paço et al. (2009) gave first insights that at 

least in times of high water availability (October-May/June) understory evapotranspiration can be 

equal to and sometimes exceeds tree transpiration, but due to methodological difficulties soil 

evaporation and understory transpiration have so far not been analyzed separately. The functional 

understanding of soil evaporation dynamics and vegetation-soil-feedbacks within the water cycle, 

however, remains a main challenge in semi-arid regions, as diminishing the unproductive water loss 

from the soil has been addressed a high priority (Wang et al., 2012a; Raz-Yaseef et al., 2012). 

Moreover, the presence of understory vegetation has various other impacts on soil water relations than 

sheer reduction of soil evaporation. Transpiration of active vegetation causes great water losses which 

are dependent in their amount on water availability, plant functional type and stomatal regulation as 

well as leaf area index (LAI). Also, rainfall might be intercepted while at the same time hydraulic 

redistribution might be altered depending on rooting depths and structure (Tromble, 1988; Bhark & 

Small, 2003; Huxman et al., 2005; Dawson, 1993; Schwinning & Ehleringer, 2001; Devitt & Smith, 

2002). Thus, more research is needed to disentangle the complex interplay between vegetation-soil-

atmosphere feedbacks and ecological functioning. 
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2. OBJECTIVES OF THE PRESENT WORK 

The overall aim of this dissertation is a detailed mechanistic evaluation of the water balance and 

carbon cycling in a Mediterranean savannah-type oak woodland with a focus on understory vegetation 

impact. Moreover, this dissertation aims at disentangling impacts of drought and altered precipitation 

regime on ecosystem functioning.  

Gaining a complete picture of these complex processes requires a combination of multiple methods. 

Consequently, this thesis combines classical ecophysiological measurements (i.e. gas exchange, leaf 

water potentials), eddy-covariance technique and plant community assessments and stand structural 

observations. Moreover, new methods were developed, namely a digital cover based approach 

obtaining leaf areas index in heterogeneous stands and a novel partitioning approach based on 

coupling of gas-exchange chambers with a stable oxygen isotope laser spectrometer. 

 

Using oxygen isotope signatures as a tool to partition ecosystem evapotranspiration: fractionation 

processes and model evaluations (study I, II) 

Separating net fluxes into their components enhances functional understanding regarding the seasonal 

dynamics of ecosystem water and carbon fluxes. Traditionally, partitioning water into its component 

fluxes, transpiration (T) and evaporation (E), can be done with combinations of lysimeter, porometer, 

Bowen ratio, eddy-covariance and sap flow measurements (e.g. Haverd et al., 2011; Lai et al., 2006). 

However, these methods have limitations in multi-layered ecosystems; requiring a separation between 

soil evaporation and transpiration of a dense grass layer (Dubbert et al., 2013) and an additional tree 

layer (Yepez et al., 2007). A solution in such a case can be the partitioning by means of stable oxygen 

isotopes, as soil evaporation and plant transpiration differ in their oxygen isotope signatures. Hence, 

evapotranspiration can be separated knowing the net ET flux and oxygen isotope compositions of ET, 

soil E and plant T (Yakir & Sternberg, 2000).  

Evaporation from the soil modifies the isotopic composition of source water (Craig and Gordon, 

1965), due to kinetic (lighter isotopologues H2
16

O diffuse faster) and equilibrium (lighter 

isotopologues evaporate more easily) fractionation effects. While soil evaporation is depleted 

compared to the δ
18

O signature of source/soil water, δ
18

O of plant transpiration is supposed to be in an 
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isotopic steady-state, which means that it equals the isotope signature of source water, at least during 

daytime (Dawson, 1993), although steady-state conditions are not always found due to the transient 

changes in atmospheric conditions (Lai et al., 2006). The large differences between evaporative δ
18

O 

(depleted compared to source water) and transpirational δ
18

O (equal to source water) provide the basis 

for using stable isotopes to separate soil evaporation and plant transpiration fluxes (e.g. Williams et 

al., 2004; Lai et al., 2006; Yepez et al., 2007). This requires the use of modeling approaches, 

estimating δ
18

O of soil evaporation and plant transpiration. However, field studies validating δ
18

O 

modeling approaches with direct estimates of δ
18

O of transpiration and evaporation are still scarce 

(Wang et al., 2012b, 2013, Simonin et al., 2013) specifically under field conditions, since only recent 

developments in laser spectroscopy enable the measurement of δ
18

OET and its components directly 

(Werner et al., 2012b). Therefore, I developed and implemented a flow-through gas-exchange systems 

at ground and branch level coupled to a H2O Cavity-Ring-Down Spectrometer enabling high frequent 

measurements of fluxes and oxygen isotopic signatures of evaporation, transpiration and 

evapotranspiration.  

The specific tasks were: 

 Validate modeling approaches calculating δ
18

O of transpired vapor (Dongmann et al., 1974) 

or soil evaporation (Craig and Gordon, 1965) with direct estimates (study I,  II). 

 Determine field sampling protocols for important input parameters of the model based on 

sensitivity analyses (study I and II) and determine the impact of isotopic non-steady-state of 

transpiration on δ18
O of atmospheric vapor (study II). 

 Develop a partitioning approach using stable oxygen isotopes separating understory T and 

soil E (study II) 

 

Assessing small scale heterogeneity due to sparse, heterogeneous tree cover (study III, IV) 

In cork-oak woodlands, tree cover is sparse and not uniformly distributed, creating distinct patches 

where the herbaceous layer grows under the tree-crown projected area or in clearings. It can thus be 

expected that the microclimate is significantly influenced by the patchy cover of oak trees, probably 
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creating small scale heterogeneity within the understory vegetation (Scholes & Archer, 1997; Cubera 

& Moreno, 2007; Moreno, 2008). Therefore, it is important to characterize the interactions between 

trees and understory vegetation throughout the seasons to answer the question: 

  How does tree cover influences overall herbaceous layer yield, species abundance and 

understory longevity (study IV)?  

Such possible small scale heterogeneity in herbaceous layer development and fluxes need to be 

considered when up-scaling to a higher level. Estimates of stand leaf area index (LAI) and gap 

probability (Pgap) can be used to upscale small scale observations to ecosystem level. However, 

common indirect approaches estimating stand LAI and Pgap, for example the LAI-2000 instrument (Li-

Cor, 1992), often do not account for leaf clumping and wooden tissue effects, which can have a large 

influence on the estimate of LAI and Pgap specifically in open, heterogeneous stands such as savanna-

type ecosystems.   

Therefore, it was necessary to: 

  Develop and validate a method to obtain oak-tree leaf area index (LAI) and gap probability 

(Pgap) in distinct seasons accounting for effects of leaf clumping and wooden tissue (study III). 

 

Understory impact on soil water distribution, water cycling and productivity (study IV, V) 

In general, introducing dense herbaceous layers to maximize the productive and minimize the 

unproductive water loss by reducing open soil patches (Wang et al., 2010; Raz-Yaseef et al. 2012) has 

been addressed a major goal in dry-lands (Wang et al., 2012a). However, the presence of vegetation 

has various impacts on soil water relations than sheer reduction of soil evaporation. Rainfall might be 

intercepted while at the same time hydraulic redistribution might be altered (Tromble, 1988; Dawson, 

1993; Schwinning & Ehleringer, 2001; Devitt & Smith, 2002; Bhark & Small, 2003; Huxman et al., 

2005; Scott et al., 2014). Similar to the findings regarding its impact for carbon cycle (Unger et al., 

2009, 2010), I hypothesize that the herbaceous understory layer, although vulnerable to drought, plays 

an important role in the water cycle and particularly for soil water redistribution.   
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Consequently the method developed in studies I, II, III and IV will be used to: 

 Disentangle the impact and environmental controls of herbaceous vegetation and soil fluxes 

on ecosystem evapotranspiration, productivity and water-use efficiency with special respect to 

understory heterogeneity (study IV, V). 

 Quantify vegetation effects on unproductive soil water loss and rain infiltration (study V). 

 

Drought impact on development of cork-oak and ecosystem carbon and water cycle (study VI, VII) 

Species in semi-arid environments have developed vast structural and functional adaptations to 

regulate carbon assimilation and respiratory water loss (e.g. Tenhunen et al., 1987, Werner et al., 

1999; and literature therein). Considerable knowledge has been acquired on physiological processes in 

the last three decades (Beyschlag et al., 1986; Sala and Tenhunen, 1996; Tenhunen et al., 1985, 1990; 

Werner et al., 2001), emphasizing the role of ecophysiological adaptations to summer drought in 

Mediterranean climate conditions. However, winter recharge and sufficient water supply during spring 

are important in these ecosystems, as this is their most active period. 

However, in the Mediterranean basin, reduced and altered precipitation pattern are already observed in 

previous studies and expected to continue with ongoing climate change (Hulme et al., 1999; Costa et 

al., 2012; Garcia-Barron et al., 2013; Guerreiro et al., 2013; Trigo et al., 2013).  Consequently, a 

functional understanding of the impact of increased drought and altered precipitation pattern on 

ecosystem functioning is vitally important for predictions of ecosystem resilience towards ongoing 

climate change.  

Therefore, the following questions were addressed: 

 How does altered precipitation pattern and drought intensity impact net ecosystem exchange, 

evapotranspiration and cork-oak phenology (Study VI, VII)? 

 What are the environmental drivers and physiological responses (study VII)? 
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3. STUDY SITE AND EXPERIMENTAL DESIGN  

Measurements were conducted in 2011 and 2012 in an open cork-oak woodland (Quercus suber L.) in 

central Portugal, approximately 100 km north-east of Lisbon (N39°8’17.84’’ W8°20’3.76’’; Herdade 

de Machoqueira do Grou). The trees are widely spaced (209 individuals ha
-1

) with a leaf area index of 

1.1 and a gap probability of 0.7. The oak trees are managed for cork production, were planted 

approximately 50 years ago and have a mean maximum crown height of 10 m and diameter at breast 

height of 25 cm. It is a bi-layered system containing a herbaceous layer dominated by native annual 

forbs and grasses, with a growth peak in spring (April-May) and senescence occurring between late 

May and early June with the onset of summer drought. In autumn 2009 the site was ploughed, limed 

and then seeded with a legume-rich seed mixture of native species, a common practice in agro-

silvopastoral systems in Portugal to improve productivity and soil fertility (Crespo, 2006). The soil is a 

cambisol, with 81% sand, 14% silt and 5% clay. The site is characterized by a Mediterranean climate, 

with wet spring conditions and hot, dry summers. Long-term mean annual temperature is 

approximately 15.9 °C and long-term mean annual precipitation is 680 mm (Instituto de Meteorologia, 

Lisbon). 

 

Figure 1: a) Satellite image of the study site (© Google Maps, 2011) with 1 position of the 

experimental understory sites; 2 position of the ecosystem tower and 3 position of the understorey 

tower. b, c) Picture of the open and tree site, respectively and d, e) vegetation and bare soil plots. 

 

Two experimental sites were established (Fig. 1a): one directly under the oak crown projected area 

(Fig. 1c) and another one in an adjacent open area, 5-7 m distant from any tree canopy cover (Fig. 1b). 
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Two types of plots were installed at each site: bare soil plots with total exclusion of above-ground 

biomass and root in-growth by inserting trenching meshes (Fig. 1e) and understory plots with 

undisturbed herbaceous understory vegetation (Fig. 1d).  

An ecosystem and an understory eddy-covariance flux tower were set up both within approximately 

150 m distance of the experimental field site (see Fig. 1a). Flow-through soil and branch chambers 

were developed, and connected to a Cavity Ring-Down Spectrometer (CRDS, Picarro; Fig. 2, a picture 

of the branch chamber set-up can be found in study I), to measure fluxes and isotopic signatures of 

evaporation and transpiration. To develop a new method indirectly estimating height and angle 

dependent LAI and Pgap based on digital cover photography a height adjustable tripod was equipped 

with a digital camera mounted on a tiltable rack that can be inclined to different zenith view angles. 

 

 

Figure 2: Schematic overview of the experimental setup for measuring soil evaporation and 

understory evapotranspiration and its isotopic composition in the field. Insets 13 show pictures of the 

chamber and laser spectrometer (L2120-i, Picarro, Santa Clara, USA). 
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4. MAIN RESULTS OF THIS THESIS 

4.1. Validation of oxygen isotope modeling approaches (study I, II, V) 

Although the Craig and Gordon (1965) model of evaporation was often used for ET partitioning in the 

past, its validation with direct estimates of δ
18

OE in the field remained challenging (see Williams et al., 

2004, Yepez et al., 2007; Wang et al., 2013). It could be demonstrated for the first time that predicting 

δ
18

O of evaporation by the Craig and Gordon equation led to good agreement with measured δ
18

OE 

based on CRDS measurements under very contrasting environmental conditions in the field (see Fig. 

3; Dubbert et al., 2013; study II, V). This is promising since the limiting data to test theoretical 

assumptions incorporated into modeling frameworks typically are direct estimates of δ
18

OE.  

However, special care must be taken concerning key parameters of the Craig and Gordon equation 

since δ
18

OE is sensitive to even small uncertainties in δ
18

O and temperature at the evaporating sites 

(δ
18

Oe and Te) and the kinetic fractionation factor (αk). The results of study II highlight the need for 

thorough characterization of the soil profile isotopic and climatic properties for correct estimations of 

δ
18

OE. In study II also formulations of αk of soil evaporation were tested and it is recommended to 

account for variations in the kinetic fractionation factor depending on soil water availability in field 

studies that deal with broad changes in volumetric soil water content near the soil surface. 

 

 

 

 

 

 

 

 

 

 

Figure 3: a) Oxygen isotope signatures of soil 

evaporation on bare soil plots calculated with the 

Craig and Gordon equation versus measured 

values for the open (white circles) and tree site 

(black circles) of every measurement point 

(mean values ± SD; n=3), the grey and black line 

denote regression lines for the open and tree site, 

respectively (adapted from Dubbert et al., 2014c, 

see also Dubbert et al., 2013) 
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Similar to validations of modeled δ
18

O of soil evaporation, study I underlined that direct estimates of 

δ
18

O of transpiration fit very well with indirect estimates of δ
18

OT via modeling of δ
18

O of leaf water at 

the evaporating sites. Moreover, results of study I revealed that diurnal development of δ
18

OT was 

largely driven by the strong diurnal changes in relative air humidity (see also recent findings under 

controlled conditions of Simonin et al., 2013).  

 

Figure 4: Diel measurements in spring (a-c), summer (d-f) and fall (g-i) of the oxygen isotope 

signature of transpired vapor (δ
18

OT, black circles, n=3, mean values ± SE) and modeled δ
18

OT (red 

lines). Grey squares show measured oxygen isotope signatures of ambient air and grey triangles 

indicate δ
18

O of source water, i.e. xylem (from Dubbert et al., 2014a). 
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It has generally been expected that plant transpiration reaches isotopic steady-state during large parts 

of the day, which means that δ
18

OT is equal to source/xylem water (Dawson, 1993; see dotted line in 

Fig. 4). In contrast, here δ
18

OT strongly deviated from steady-state predictions, specifically when leaf 

conductance was low (Fig. 4; compare measured and modeled δ
18

OT with xylem isotopic values, 

dotted line).  

The results obtained with this new method strongly suggest that non-steady-state transpiration very 

likely plays an important role under natural conditions. Finally, strong differences between isoforcing 

on the atmosphere considering isotopic steady-state vs. non-steady-state imply that non-steady-state 

effects of plant transpiration have likely consequences for partitioning ecosystem evapotranspiration 

using δH2
18

 O or carbon fluxes using δC
18

O
16

O, or satellite-based applications (study I, II).  

4.2. Impact of scale heterogeneity due to sparse tree cover on understory vegetation 

dynamics and fluxes (study III, IV) 

In study IV significant interactions between trees and understory vegetation could be observed, leading 

to small scale heterogeneity within the understory vegetation development. By the end of the 

understory growing period (the last 6 weeks before senescence) a significant impact of tree cover on 

herbaceous plants development and net CO2 and water fluxes was detected. This led to 1) a niche 

segregation regarding the dominance of distinct functional groups on both sites, and 2) an earlier and 

faster senescence of the herbaceous layer under the trees due to a strong competition for water (study 

IV, V; Fig. 5, 7). This was unexptected as previous studies often found a beneficial effect of tree 

presene on herbaceous development (Joffre & Rambal, 1993; Cubera & Moreno, 2007). This even 

influenced total ecosystem sink strength in spring, as it reduced the overall understory productivity by 

21.5% on average during the late spring (study IV, V, Fig. 7).  

As tree cover in this ecosystem is sparse and heterogeneously distributed, the conclusions gained in 

study IV must be considered when net water and carbon fluxes of this ecosystem are separated into 

tree, understory and soil fluxes with the approach developed in chapter I and II. Therefore, 

partitioning of water and carbon fluxes at the understory level was done site specifically in an open 

area as well as under tree crowns. Estimates of vertical and angular gap probability Pgap distributions 
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(study III) can then be used to quantify the amount of open and tree crown covered ground area and 

used for up-scaling to ecosystem level.  

 
Figure 5: a-h) Relative vegetation cover in % of distinct functional groups of the herbaceous layer 

(Poaceae, N-fixing and other forbs) in spring and fall 2011 on the open (a-e) and tree site (f-h; mean 

values; n = 5). From Dubbert et al., 2014b. 

Pgap and LAI are important ecosystem parameters that are needed in soil-vegetation-atmosphere 

transfer modeling (De Pury and Farquhar, 1997; Sellers and Dorman, 1987) or radiative transfer 

schemes (Jacquemoud et al., 2000; Haverd et al., 2012). Since recent model development head 

towards high-resolution multi layer models (Baldocchi, 1997), the demand for vertically resolved and 

repeated measures of Pgap and LAI will increase in the future. Height and angularly distributed digital 

cover photography (DCP) could successfully be applied here for the first time and delivers similar gap 

probability Pgap and effective leaf area index LAI as the established LAI-2000. Notably, the appliance 

compared to the LAI-2000 is much easier and better (study III, Fig. 6). Regarding the present work, 

measurements of Pgap allowed a flux partitioning on ecosystem level without neglecting important 

information on ecosystem heterogeneity yielded through site specific measurements at the understory 

level (study V). 
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Figure 6: Dependency of 

gap probability Pgap on 

zenith view angle θ. Black 

symbols: DCP method at 

3, 6 and 8 m height. Grey 

symbols: LAI-2000 

method at 3 m height (6 

and 8 m heights not 

shown). Solid lines: 

Beer’s law with effective 

leaf area index Le. Dashed 

lines: Beer’s law with 

angular dependent leaf 

clumping Ω(θ) (see 

chapter III). From Piayda 

et al., under review 

Ecology. 

 

 

 

 

4.3. Impact of the herbaceous layer on ecosystem water budget, infiltration capacity 

and productivity (study IV, V) 

Based on the insights from studies I, II, III and IV ecosystem water fluxes were separated into tree, 

understory and soil components. One main observation was the very distinct responses of understory T 

and soil E to changes in environmental conditions. While E was significantly correlated with top soil 

θs (R²=0.55, p<0.001), understory T was independent from θs but correlated with VPD instead 

(R²=0.57, p<0.001). This highlights that considering herbaceous understory E and T separately is 

crucial for understanding changes in net ET, as they are controlled by different environmental drivers 

(study V, Fig. 7; see also Cavanaugh et al., 2011; Raz-Yaseef et al., 2012). 
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Figure 7: Daytime integrated net understory CO2 exchange (NEE, g C m
-2

 d
-1

, white circles; mean 

values ± SE, n=3), herbaceous gross primary production (GPP, dashed green line, mean values, n=3) 

and respiration (R, blue line and circles, mean values, n=3) on the open (a-d) and tree site (e-h); 

daytime integrated understory evapotranspiration (ET, mm d
-1

, mean values ± SD, n=3), which is the 

sum of herbaceous layer transpiration (T, green bars) and soil evaporation (E, blue bars) at the open (i-

l) and tree site (m-p).  Adapted from Dubbert et al., 2014c. 
 

Moreover, both components considerably contributed to overall ecosystem water loss (max. 43 and 

55%, Fig. 8). Still, soil E did not play a major role limiting ecosystem productivity and water-use 

efficiency, since it decreased rapidly with drying top-soil and was low during dry periods where water 

availability was limiting ecosystem productivity. Moreover, the understory water-use efficiency 
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matched that of the cork-oaks during spring and fall and the herbaceous layer substantially added to 

the ecosystem carbon sink strength (see Unger et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: a) Daytime integrated 

ecosystem evapotranspiration 

(ET, sum of the stacked bars) 

and its components cork-oak 

transpiration (To, dark green), 

herbaceous transpiration (Tu, 

green) and soil evaporation (E, 

blue, all mm d
-1

). b) Daytime 

integrated GPP of cork-oaks 

(GPPo, dark green) and 

understory (GPPu, green), 

ecosystem respiration (Reco; 

blue), and net ecosystem CO2 

exchange (NEE, black squares, 

all in g C m
-2

 d
-1

). From 

Dubbert et al., 2014c. 

 

Furthermore, herbaceous biomass strongly increased rain infiltration and also diminished E. A 

significant relation was found between amount of rain fall and difference in infiltration between bare 

soil and vegetated patches, the higher the amount of rain the higher the differences in infiltration 

between bare soil and vegetated soil (Fig. 9). This indicates that the presence of a fully developed 

herbaceous layer should be even more important with an altered, more heterogeneous precipitation 

pattern, with longer dry periods and heavy rain events, predicted by climate change scenarios for the 

Mediterranean basin (study VII, Fig. 9; see also Bhark et al., 2003; Thompson et al., 2010).  

Finally, changes in ecosystem NEE and ET, especially between spring and summer, can largely be 

attributed to understory vegetation dynamics, since cork-oak, soil and respiratory flux components 

remained comparatively stable throughout the year. Thus the herbaceous layer, although itself 
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vulnerable to drought plays an important role for ecosystem flux dynamics, rain infiltration and hence 

indirectly cork-oak productivity and ecosystem resilience towards drought. 

 

Figure 9: Rainfall and infiltration into the soil following rain events > 2 mm at a, b) the open and c, d) 

tree site on understory plots (green circles), bare soil plots (blue circles, all in mm d
-1

; n=4, mean 

values ± SE) and rainfall (grey bars). Insets present differences in infiltration between understory and 

bare soil versus rain amount at the open and tree site. Regression line, coefficient of regression and p-

value are given. From Dubbert et al., 2014c. 

4.4. Effects of extreme drought on ecosystem carbon gain, cork-oak and herbaceous 

layer development (study VI, VII) 

Cork-oak savannas are well adapted to a prolonged summer drought, but winter recharge and 

sufficient water supply during spring is important in these ecosystems, as this is their most active 

period. Hence, a functional understanding of the impact of increased drought and altered precipitation 
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pattern on ecosystem functioning, as predicted by climate change scenarios (Costa et al., 2012; IPCC, 

2007), is important.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: a) Ecosystem net 

carbon exchange (NEEo), b) 

ecosystem gross primary 

production (GPPo) and c) 

understory gross primary 

production (GPPu) for 2011 

(black) and 2012 (grey). Dots 

mark daily sums, lines are kernel 

regressions. a) Ecosystem 

evapotranspiration ETo and b) 

understory evapotranspiration ETu 

for 2011 (black) and 2012 (grey). 

Dots mark daily sums, lines are 

kernel regressions. Adapted from 

Piayda et al., 2014. 

 

The years 2011 and 2012, 

contrasting in annual precipitation amount as well as pattern, offered an ideal opportunity to study 

effects of drought. Here, it could be demonstrated that in the exceptionally dry year 2012 (2
nd

 driest 

year since 1950, Caldeira et al., unpublished; Trigo et al., 2013) ecosystem carbon sink strength and 

net ecosystem evapotranspiration were reduced by 34 and 26 %, respectively (study VI, VII; Fig. 10). 
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Ecosystem productivity was mainly diminished by reduced stomatal conductance and decrease of Vcmax 

of cork-oaks, while LAI was maintained (study VI, VII). Moreover, the severe drought in 2012 led to 

strong alterations in tree phenology: annual tree diameter increment was reduced by 64% and fruit 

production was severely depressed by water stress showing a reduction of 54% during the dry year of 

2012 (study VI, VII; Fig. 11). Enhanced understanding of cork productivity (i.e. tree diameter growth) 

with ongoing climate change is particularly important for farmers. Further, understory growth was 

strongly diminished due to drought induced late germination in fall and a pronounced drought during 

the main growth period. The findings of study VII indicate that the timing of precipitation and drought 

is very important for herbaceous layer development. 

 

Figure 11: Tree diameter increment (mm) during 2011 and 2012. Values are means ± se (n=9). From 

Costa e Silva et al., under review in AFM. 

 

Finally, it could be shown that in a dry year the Montado ecosystem uses more water through 

evapotranspiration than is introduced into the ecosystem by precipitation: the ratio ET/P increased to 

122% in 2012 compared to 86% in 2011 (study VII). The resulting depletion of deep/groundwater 

reservoirs could prove fatal for the resilience of this ecosystem, as cork-oak trees rely on their access 

to water in deep soil layers (Kurz-Besson et al., 2006).  
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4.5. Conclusions 

This thesis aimed at a detailed mechanistic evaluation of the water balance and carbon cycling in a 

Mediterranean savannah-type oak woodland with a focus on understory vegetation impact.   

To achieve this, a combined flux and δ
18

O partitioning approach was developed coupling flow through 

soil chambers to a Cavity Ring-Down Spectrometer (CRDS). It could be demonstrated for the first 

time that predicting δ
18

O of evaporation and transpiration led to good agreement with measured δ
18

OE 

and δ
18

OT based on CRDS measurements under contrasting environmental conditions in the field. The 

established field protocols strongly enhance the significance of δ
18

O as a tracer for water movement 

within the ecosystem and help avoiding previous pitfalls such as transpirational isotopic steady-state 

assumption and uncertainties related to model input parameter estimates. The developed δ
18

O 

partitioning approach proved to be a very good tool separating ecosystem water fluxes, specifically in 

ecosystems with dense herbaceous layers, preventing approaches solely based on flux measurements. 

Thereby, it could be demonstrated that the understory, despite its high transpirational water loss, 

played a vitally important role for ecosystem functioning, as it enhanced rain infiltration, diminished 

soil E and contributed significantly to ecosystem sink strength. Moreover, altered precipitation pattern 

and extreme drought as observed in the extreme dry year 2012 severely reduced ecosystem net fluxes, 

inhibited understory development and influenced cork-oak productivity and phenological 

development.  

In conclusion, the insights gained in this thesis enhance a mechanistic understanding of the processes 

regulating net water fluxes and productivity in semi-arid ecosystems. Moreover, they can help to adapt 

management practices maintaining a sustainable and productive land-use in the face of increased 

drought intensity and altered precipitation pattern. 
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6. STUDY OVERVIEW, PUBLICATION STATUS AND CONTRIBUTIONS  

The publications and manuscripts included in this dissertation were prepared in cooperation with 

various co-authors. An overview over the objectives and the main outcome of the individual studies is 

presented in Table 1. 

 

Table 1: Overview of titles, objectives and Conclusions of the individual studies of this work. 

Study Objectives Conclusions 

I 

 Validating modeling approaches 

for estimating δ
18

OT and quantify 

the impact of non-steady-state 

transpiration 

 Good agreement between modeled δ
18

OT and 

measured δ
18

OT based on CRDS 

 Strong impact of isotopic non-steady-state on 

atmospheric δ
18

O 

II 

 Validating the Craig and Gordon 

model for soil evaporation 

 Impact of isotopic steady-state 

assumption of transpiration on ET 

partition (ft) 

 Good agreement between modeled δ
18

OE and 

measured δ
18

OE based on CRDS 

 Strong impact of isotopic non-steady-state 

assumption to ft 

III 

 Develop a DCP based method to 

obtain LAI and Pgap in an open, 

heterogeneous  woodland and 

comparison with LAI-2000 

 Better appliance compared to established LAI-2000 

 Development of field measurement and analysis 

protocol 

IV 

 Determine the heterogeneity 

created by the patchy tree cover 

 Determine possible interaction 

between trees and understory and 

their impact  

 Sparse tree cover leads to strong understory small 

scale heterogeneity regarding dominance of 

functional groups 

 Earlier senescence of the understory under trees, 

due to competition for water 

V 

 

 Disentangle understory impact on: 

i)  ecosystem water fluxes  

ii) rain water infiltration 

 Quantify the role of the herbaceous 

layer for ecosystem productivity 

 Understory accounted for max. 43% of ET and 

51% of GPP 

 Soil E is high during wet periods but does limit 

ecosystem WUE during drought 

 Beneficial understory effects are dominant: 

increased infiltration and reduced E 

VI 

 Quantify the effect of contrasting 

seasonal water availabilities on  

oak phenology and carbon cycle 

 NEE reductions under drought are not caused by 

leaf area reductions 

 Tree diameter growth and fruit production severely 

affected by drought 

VII 

 Effect of winter/spring drought on 

net ecosystem carbon exchange 

(NEE) and evapotranspiration (ET) 

 Identify the responsible 

environmental parameters and 

physiological responses 

 In a drought year more water evaporates from the 

ecosystem than is introduced 

 Understory growth is completely inhibited in the 

drought year and ecosystem sink-strength strongly 

diminished by 34% 
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The co-authors listed in these publications and manuscripts contributed as follows: 

Study I: OXYGEN ISOTOPE SIGNATURES OF TRANSPIRED WATER VAPOR – THE ROLE OF 

ISOTOPIC NON-STEADY-STATE TRANSPIRATION UNDER NATURAL CONDITIONS 

Status: published in New Phytologist, 203: 1242-1252; accepted: 9. June 2014 

 

Contributors: 

Maren Dubbert development of experimental design, accomplishment of field work, modeling 

and laboratory analyses, preparation of the manuscript 

Arndt Piayda suggestions to improve the manuscript, help with field work 

Matthias Cuntz discussions on results, help with model development, suggestions to improve 

the manuscript 

Christiane Werner discussions on experimental design and results, suggestions to improve the 

manuscript 

 

Study II: PARTITIONING EVAPOTRANSPIRATION – TESTING THE CRAIG AND GORDON 

MODEL WITH FIELD MEASUREMENTS OF OXYGEN ISOTOPE RATIOS OF EVAPORATIVE FLUXES 

Status: published in Journal of Hydrology, 496: 142-153; accepted: 19. May 2013 

Contributors: 

Maren Dubbert development of experimental design, accomplishment of field work, modeling 

and laboratory analyses, preparation of the manuscript 

Matthias Cuntz discussions on the results, help with model development, suggestions to 
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1.1.  Summary  

 The oxygen isotope signature of water is a powerful tracer of water movement from plants to the 

global scale. However, little is known on the short-term variability of oxygen isotopes leaving the 

ecosystem via transpiration as high-frequency measurements are lacking. 

 A laser spectrometer was coupled to a gas-exchange chamber directly estimating branch-level 

fluxes in order to evaluate the short-term variability of the isotopic composition of transpiration 

(δE) and to investigate the role of isotopic non-steady-state under natural conditions in cork-oak 

trees (Quercus suber L.) during distinct Mediterranean seasons. 

 18
O of transpiration (δE) deviated from isotopic steady-state throughout most of the 

day even when leaf water at the evaporating sites was near isotopic steady-state. High agreement 

was found between estimated and modeled δE assuming non-steady-state enrichment of leaf water. 

 18
O flux on atmospheric values, deviated from 

steady-state calculations but daily means were similar between steady-state and non-steady-state. 

However, strong daytime isoforcing on the atmosphere imply that short-term variations in δE have 

likely consequences for large-scale applications, e.g. partitioning of ecosystem fluxes or satellite-

based applications. 
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Table 1: Used symbols and descriptions.  

 

  

1.2. Introduction 

Oxygen isotope signatures (δ
18

O) of water can reveal important information on the impact of distinct 

pathways of water from ecosystem to global scale (Dongmann et al., 1974; Yakir & Sternberg, 2000; 

Symbol Description 

αk kinetic fractionation factor 

α
+ 

equilibrium fractionation factor 

δ
18

O oxygen stable isotope signature (‰) 

δ shortened for oxygen stable isotope signature (‰) 

Δ deviation of a given isotopic signature from source water 

 Péclet number 

θ volumetric soil water content (m
3
 m

-3
) 

C the molar water concentration (mol m
-3

) 

D/Di  differences in molecular diffusivity (D) between the major and the minor isotopologue 

E plant transpiration (mmol m
−2

 s
−1

) 

ET Evapotranspiration (mmol m
−2

 s
−1

) 

f1,2 factors for estimating Rl 

fem factor for estimating Rm 

gtw  total conductance for water vapour  

h relative humidity normalized to leaf temperature (%) 

I Isoforcing (mol m
-2

 s
-1

 ‰) 

Leff effective length of water movement in the leaf mesophyll (m) 

n exponent relating D/Di to apparent kinetic fractionation 

 

 rh 

relative air humidity (%) 

R isotope ratio of (
18

O)/(
16

O) 

T temperature (°C) 

u flow rate (mol(air) s
-1

) 

Vm leaf water volume (mol(H2O) m
-2

),  

w mole fraction (mol(H2O) mol(air)
-1

) 

Subscript Description 

a atmospheric air 

C Craig and Gordon steady-state prediction at the evaporating (‰) 

e evaporating site 

e(t) leaf-water at the evaporating sites at time t (‰) 

e(t+dt) leaf-water at the evaporating sites at time plus a time step t+dt (‰) 

h relative humidity 

i stomatal cavity 

in chamber air 

l leaf 

m liquid mesophyll water 

out background air  

p precipitation 

s source water; i.e. xylem water 
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Williams et al., 2004). At ecosystem level for example they can be used to partition net water fluxes 

into their constituent fluxes (Yakir and Sternberg, 2000). The largest water output flux of an 

ecosystem is transpiration, associated with an isotopic composition (δE), participating strongly in the 

local (isotopic) water cycle. δE is mostly assumed to be in isotopic steady-state, i.e. has the same 

composition as the supplying water, because an increase in the isotopic composition of terrestrial 

waters is not observed in the long-term. It became clear, though, in recent years that leaf water, which 

feeds transpiration, is isotopically not in steady-state most of the time in many of different ecosystems 

(Dongmann et al., 1974; Cernusak et al., 2002; and others). Consequently, δE should also deviate from 

isotopic steady-state. It was, however, difficult to determine δE in the past since measurements of 

water vapor isotopes were difficult to obtain using cold-trap methods (Helliker et al., 2002), delivering 

data with low time resolution (Harwood et al., 1998). Alternatively, δE can be estimated indirectly by 

modeling the isotopic signature of leaf water at the evaporating sites of the leaves under the 

assumption of non-steady-state transpiration, i.e. δE ≠ δ
18

O of xylem/source water (δs; Dongmann et 

al., 1974). Thereafter δE can be determined by the equation of Craig & Gordon (1965). Nevertheless, 

ecosystem partitioning studies still often assumed transpiration to be in isotopic steady-state, i.e. being 

equal to δ
18

O of xylem water (δs, e.g. Yepez et al., 2003). 

More information is available on isotopic non-steady-state effects on the oxygen isotope enrichment of 

leaf water itself (δl) and associated mechanistic processes at leaf- and canopy-scale (Cuntz et al., 2007; 

Farquhar & Cernusak, 2005; Lai et al., 2008; Seibt et al., 2006; Xiao et al., 2012). In contrast, the 

diurnal development of δE and the relation between non-steady-state leaf water and the consequent 

non-steady-state effect of transpired vapor has gained little attention. The latter can, however, be 

estimated indirectly by measurements of ambient vapor isotopic composition inside the canopy (Xiao 

et al., 2010), whereas field studies estimating the temporal development of δE directly, i.e. by coupling 

gas-exchange systems to laser spectrometers, are still scarce (but see Haverd et al., 2011; Wang et al., 

2012). The recent developments in laser spectroscopy now enable direct measurements of the isotopic 

composition of atmospheric water vapor (δa), evapotranspiration (δET), and its components with high 

temporal resolution in the field (minute to hourly scale, Werner et al., 2012 and literature therein). 

Consequently, emerging studies using continuous high-frequency measurements of δa combined with 
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land surface models have gained new insights into fractionation processes occurring during isotopic 

water vapor and carbon dioxide exchange (C
18

O
16

O; e.g. Berkelhammer et al., 2013; Lee et al., 2012; 

Welp et al., 2012; Xiao et al., 2010; 2012). In this context, it is important to quantify and disentangle 

the impact of isotopic non-steady-state transpiration on ecosystem flux partitioning and atmospheric 

vapor under natural conditions. 

Moreover, direct estimates of δE bear the novel opportunity to validate and improve common 

modeling, for example the Craig and Gordon equation isotopes of soil evaporation (Craig & Gordon, 

1965; Good, et al., 2012; Dubbert et al., 2013; Hu et al., 2014) and resolve the role of non-steady-state 

transpiration under natural conditions on a diurnal basis at high resolution (Simonin et al., 2013). At 

present hardly anything is known about the impact of environmental factors or differences between 

plant functional groups on i) temporal variations of δE on a diurnal time scale, ii) the proportion of 

non-steady-state transpiration under natural conditions and iii) the isoforcing of non-steady-state 

transpiration on the atmosphere. This knowledge is crucial, since δE is widely used to partition 

ecosystem fluxes (Yakir & Sternberg, 2000) or in water balance modeling from regional to global 

scales (e.g. Farquhar & Lloyd, 1993; Jasechko et al., 2013; Schlesinger et al., 2014). 

To fill this gap, a novel approach was used, combining a custom build flow-through gas-exchange 

branch chamber with a Cavity Ring-Down Spectrometer. We present here, to our knowledge, the first 

data-set on daytime cycles of direct estimates of δE in key environmental periods: spring, summer 

drought, and the beginning of autumn. Particularly, we compare direct with indirect estimates of the 

isotopic composition of transpired water vapor (δE) of cork-oak trees (Quercus suber L.). Furthermore, 

we quantify the role of non-steady-state transpiration and determine the driving factors for the 

deviation of δE from the isotopic composition of source water δs, i.e. isotopic steady-state, as well as 

the isoforcing of isotopic non-steady-state transpiration on the atmosphere. 

1.3. Materials and Methods 

Isotopic compositions are reported here as ratios R between the concentrations of rare and common 

isotopes, and expressed as δ-notation, i.e. relative to Vienna Standard Mean Ocean Water (V-SMOW; 

Gonfiantini, 1978): δ = R/RV-SMOW−1, or in Δ-notation, i.e. relative to source water Rs: Δ = R/Rs −1. 
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The latter facilitates a comparison between different ecosystems. A list of all abbreviations is given in 

Table 1. 

1.3.1. Study site 

Measurements were conducted between June and November 2011 in an open cork-oak woodland in 

central Portugal (N39° 8’ 17.84’’ W8° 20’ 3.76’’; Herdade de Machoqueira do Grou). The trees are 

widely spaced (209 individuals ha
-1

) with a leaf area index of 1.1 and mean maximum height of 10 m. 

Mean annual temperature is approximately 15.9 °C and mean annual precipitation is 680 mm (last 30-

years average, Instituto de Meteorologia, Lisbon). For further information see Dubbert et al. (2013).  

1.3.2. Environmental variables 

Air temperature and relative humidity (rh, CS-215 Temperature and Relative Humidity Probe, 

Campbell Scientific, Logan, UT, USA) were stored as 30 min averages in a data logger (Cr10x, 

CR1000, Campbell Scientific, Logan, UT, USA). Volumetric soil water content (θs, 10hs, Decagon, 

Washington, USA) in 5 and 60 cm depth were measured and 60 min averages were stored in a 

datalogger (CR1000, Campbell Scientific, Logan, UT, USA; 4 sensors per depth). Leaf temperature 

was recorded simultaneously with gas-exchange measurements (see below). Relative humidity 

corrected to leaf temperature h and leaf vapor pressure deficit VPD ([Pa]) were calculated from 

relative humidity and leaf and air temperature. 
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1.3.3. CRDS based measurements 

  

Figure 1: a) Schematic overview and pictures of the experimental setup for measuring leaf 

transpiration, its isotopic composition and micrometeorological parameters within the chamber in the 

field.  

Fluxes and isotopic composition of cork-oak transpiration were measured using a Cavity Ring-Down 

Spectrometer (CRDS, L2120-i, Picarro, Santa Clara, USA) in combination with custom-built branch 

chambers in an open gas exchange system (n=3 per treatment, Fig. 1). A transparent cylindrical acrylic 

chamber with a total volume of 2.5 L was coated with an FEP foil (4PTFE, Stuhr, Germany) to avoid 

isotopic fractionation. The background air inlet port and the sampling air outlet port were located at 

opposite sides of the chamber. The background air was sampled above crown height and buffered with 

a 200 L volume. The flow through the chamber was adjusted between 1 and 2.5 L min
−1

. The CRDS 

was calibrated three times a day using a standards delivery module and vaporizer (Picarro, Santa 

Clara, USA) with two laboratory standards that were regularly calibrated against V-SMOW and SLAP 

(IAEA, Vienna). Measurement precision was < 0.2‰. The concentration dependency of the 

instrument was determined according to the procedure of Schmidt et al. (2010, Figure S1 and Table 

S1). H2O mole fractions (ppmv) of the CRDS were calibrated prior to each measurement campaign in 

the laboratory using a dew point generator (Walz, Effeltrich, Germany). During field measurements 

the precision of the instrument was regularly cross-checked using an equally calibrated infrared gas 
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analyzer (Li840, Licor Biosciences, Lincoln, USA). The precision of the CRDS was < 100 ppmv 

throughout the measurement period; blank measurements of the chamber were obtained and did not 

reveal differences connected with air passing the chamber (Fig. S2). Background and sampling air 

were measured alternately until stable values were reached and a five minutes interval average was 

recorded for calculation of transpiration (E) and δE (see Fig. S2). The observed increase in air 

temperature in the chamber above ambient was ca. 2 °C after 5 min and stable thereafter.  

Fluxes of E as well as total leaf conductance (gtw) were calculated based on von Caemmerer & 

Farquhar (1981). Gas-exchange was not measured during the night, because transpiration ceases 

almost completely and calculations of fluxes are very error prone. Therefore nighttime values of 

transpiration and conductance needed for modeling nighttime δE and δe were taken from published data 

of a comparative Mediterranean oak system (Dawson et al., 2007). Isotope signatures of transpired 

vapor were calculated by mass balance: 
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 (1) 

where u is flow rate [mol(air) s
−1

], w is mole fraction [mol(H2O) mol(air)
−1

] and δ is isotope ratio of 

the incoming (in) and outgoing (out) air stream of the chamber. Flow rates are measured with humid 

air so that conservation of dry air gives uin(1−win) = uout(1−wout), and it follows the second line of Eq. 

(1). This is equivalent to the equation given by Simonin et al. (2013) therein cited as Evans and von 

Caemmerer (personal communication). The second term in Eq. (1) corrects for the increased air flow 

in the chamber due to addition of water by transpiration E.  

1.3.4. Measurement of the isotopic composition of xylem water 

Xylem samples of terminal branches (n=4) were collected at noon. Leaf samples (n = 2-4) were 

collected at 12 time points throughout the measurement campaign. Xylem and leaf water was extracted 

on a custom build vacuum line by cryogenic distillation. Samples were heated at approximately 95 ºC 

for 90 min under vacuum of 0.04 to 0.08 mbar and vapor was trapped in liquid N2 cooled water traps. 
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Samples were stored in sealed glass vials at 4 ºC until analysis. Water δ
18

O was analyzed after 

headspace equilibration for 24 hours at 20 °C on an Isoprime IRMS (Elementar, Hanau, Germany) 

coupled via open split to a µgas auto sampler (Elementar, Hanau, Germany). Within every batch of 44 

samples three replicates of three different laboratory standards were analyzed for δ
18

O calibration 

versus V-SMOW. Laboratory standards were regularly calibrated against V-SMOW, SLAP, and GISP 

water standards (IAEA,Vienna). Analytical precision was < 0.1‰. 

1.3.5. Calculation of isotopic signatures 

The isotopic ratio of transpiration RE is linked to the isotopic ratios of water at the evaporating sites Re 

and ambient vapour Ra (Craig & Gordon, 1965; Farquhar & Lloyd, 1993): 
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with αk and α
+
 being the kinetic and equilibrium fractionation factors (> 1), respectively, and h the 

relative humidity corrected for leaf temperature. The Craig and Gordon steady-state requires that the 

isotopic composition of vapour departing from the leaf must be the same as the isotopic composition 

of incoming water, i.e. RE = Rs, which leads to: 

 askC
hRRhR    )1(

 (3) 

where RC is the isotopic composition of leaf water at the evaporating site in steady-state. Subtracting 

Eq. (3) from Eq. (2) gives: 

 
 

sEkCe
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 (4) 

which leads to a linear relationship in Δ-notation between the isotopic composition of evaporation RE 

or expressed as deviation from source values as ΔE and the deviation from steady-state of the isotopic 

composition at the evaporating sites Δe: 
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 (5), 

with ΔC  as the deviation of leaf water at the evaporating site in steady-state from source water. 1−h in 

the denominator emphasizes the fact that if humidity approaches saturation the pure water flux E 
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diminishes, while in the Isoflux term EΔE, consequently ΔE approaches infinity; because 

 

 
Ce

k

itw

E

wg
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 (6) 

with gtw being the total conductance for water vapour from the stomatal cavity to the point of 

observation, and wi the humidity in the stomatal cavity, i.e. vapour saturation at leaf temperature 

expressed as mole fraction [mol(H2O) mol(air)
−1

]. The flux from the vegetation to the atmosphere in δ-

terms is not simply an isotope flux EδE but rather the isoforcing IE (Cuntz et al., 2003; Lee et al., 

2009): 
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with wa being the atmospheric humidity in mole fraction [mol(H2O) mol(air)
−1

].  

 The non-steady-state isotopic composition of leaf water Rl can be written in an iterative form, 

if leaf water volume Vm [mol(H2O) m
−2

] is constant (Dongmann et al., 1974; Cuntz et al., 2007): 
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where Rl at a time t+dt is calculated from Rl at an earlier time t with constant environmental conditions 

during the time step dt. The factors f1 and f2 depend on the water pool of interest. To calculate the 

isotopic composition of total mesophyll water Rm, i.e. Rl ≡ Rm, the factors are f1 = f2 = fem, with 
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 with the Péclet number 
CD

EL
eff

m
  (8), 

where C=10
6
/18=55.6·10

3
 mol m

-3
 is the molar water concentration, D (m

2
 s

-1
) is the tracer diffusivity 

in liquid water and Leff (m) is the effective length of water movement in the leaf mesophyll. To 

calculate the isotopic composition at the evaporating sites Re, i.e. Rl ≡ Re, the factors are f1 = 1, f2 = fem. 

We follow Cuntz et al. (2007), who argued that f1 = f2 = 1 is sufficient in this case. 

Notably, isotope signatures of leaf water at the evaporating site in the non-steady-state can be modeled 

independent from observations of RE and can then be used to predict RE and inversely, observations of 

RE can be used to predict Rl at the evaporating site. 
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1.3.6. Statistical analysis 

Linear relationships were tested between measured and modeled estimates of δE, and between ΔE and 

(Δe−ΔC) or (Δe−ΔC)/(1−h) separately for days in spring, summer and fall. Statistical analyses were 

carried out with Statistica (Statistica 6.0, StatSoft, Inc., Tulsa, USA). 

1.4. Results and discussion 

The laser spectrometer coupled to gas-exchange chambers enabled high time resolved estimates of δE 

in the field (Fig. 1). To evaluate how changes in environmental factors impact temporal variations of 

δE on a diurnal time scale measurements were conducted in three distinct climatic periods: 1) moist 

and warm spring (11.4% mean soil moisture θs) with high transpiration rates (max. 0.49 mmol m
−2

 

s
−1

), 2) dry, warm summer (4.5% θs), with reduced leaf conductance, and 3) wet, cold fall with 

maximum transpiration rate dropping to 0.18 mmol m
−2

 s
−1

 (Fig. 2). 

 

Figure 2: Environmental conditions and ecophysiological parameters observed with the chamber 

setup in late spring (a-c), late summer (d-f) and fall (g-i; date format: day.month.year): relative 

humidity corrected to leaf temperature (h, [%], black lines), leaf temperature ([°C], dashed grey lines), 

transpiration rate (E, [mmol m
−2

 s
−1

], n=3, mean ± SE, green circles), and total leaf conductance (gtw, 

[mmol m
−2

 s
−1

], black circles). 
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In the following we quantify the deviation of δE from xylem water (δs), validate a commonly used 

modeling approach (3.1.) and analyze the relationship between the occurrence of isotopic non-steady-

state at the leaf level and the extent of depletion of δE. Finally, we quantify the isoforcing of isotopic 

non-steady-state transpiration on atmospheric δ
18

O (3.2.). 

1.4.1. Isotopic non-steady-state transpiration under natural conditions and comparison 

with modeled δT 

Observed plant transpirational isotope signatures (δE) never reached xylem values (i.e. steady-state, δs) 

during daytime on any day and varied between −26.1‰ and −6.2‰ (Fig. 3). Consequently, the 

deviation of δE from δs (ΔE), varied strongly within a day and was generally most negative in the 

morning. δE mainly increased throughout the day towards the end of the light period (Fig. 3). During 

the dark period δE could not be measured due to high methodological uncertainties during very low 

nocturnal flux rates (E). However, modeled δE values (eq. 2 and 7) indicate that the negative δE values 

during the day are counterbalanced during the night (Fig. 3). The diurnal development of δE thus 

differs from the dome-shaped pattern of oxygen isotope signatures of leaf mesophyll water (δm) with 

highest enrichment corresponding to peak temperature and low h in the afternoon and lowest δm 

around sunrise (Fig. 4, see also Lai et al., 2006; 2008; Yepez et al., 2007). The peak δm enrichment 

shifted to latter afternoon/evening hours with increasing day length and higher temperatures. Notably, 

modeled and observed δm fit very well (δm,obs = 0.96∙δm,model + 0.33, R² = 0.91, p<0.001; Fig. 4). 

In general, measured plant transpirational isotope signatures (δE) ranged between xylem water δs (−3.4 

to −4.7 ‰) and ambient vapor δa (−19.9 to −30.2 ‰; Fig. 3). If δa can assumed to be in equilibrium 

with precipitation during a rain event and fractionation associated with condensation is around −10‰ 

at 20 °C (Majoube, 1971) the δa values observed correspond to isotope signatures of precipitation δp of 

about −10‰ (but note the shifts to very negative δa on June 11, September 18 and 20). Indeed, 

observed δp varied between −7 and −10‰ at this site (Dubbert et al., unpublished). Somewhat higher 

values in xylem (δs) indicate that δs and hence soil water isotopes were not in full equilibrium with δp, 

which is mainly caused by the relatively hot and dry environment leading to strong evaporative 
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enrichment and isotopic gradients within the top 20 cm of the soil profile of more than 10‰ within 

few days after a rain event (Dubbert et al., 2013). Moreover, atmospheric vapour is transported 

towards the site from north to north-east (mainly continental air masses) and is thus not expected to be 

in isotopic equilibrium with local xylem water on each day. 

 

Figure 3: Measurements in spring (a-c), summer (d-f) and fall (g-I; date format: day.month.year) of 

the oxygen isotope signatures of transpired vapor (δE, black circles, n=3, mean values ± SE) and 

modeled δE considering non-steady state with varying observed leaf water volume Vm and αk between 

1.018 and 1.0265 (grey uncertainty band). The dark grey uncertainty band indicates modeled δE with 

αk = 1.018 and varying leaf temperature from observed values to +6 °C. The solid red line is modeled 

δE with constant leaf water volume Vm of the observed mean value and αk = 1.018. Grey squares show 

measured oxygen isotope signatures of ambient air and white triangles are oxygen isotope signatures 

of xylem (n=3, mean values ± SE). Please note different scales for positive and negative values. 
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Variations in δE can be caused by changes in abiotic or biotic conditions, i.e. relative humidity or 

stomatal conductance, and are expected to persist until sufficient time has passed under constant 

environmental or physiological conditions to allow for δE to approach δs. Most isotope models assume 

that the leaf consists of a single water pool supplying the transpiration stream (bulk leaf water = Vm; 

eq. 7; Dongmann et al., 1974; Farquhar & Cernusak, 2005) and leaf water residence time can be 

calculated as Vm divided by the one way flux of water out of the leaf (gtwwi; eq. 7). This leads to mean 

leaf water residence times of 4.6 ± 2.3 h, 5.4 ± 1.9 h, and 3.6 ± 1.6 h in spring, summer and fall, 

respectively, indicating that in our case the residence time of the water supporting the transpirational 

flux is always much longer than periods during which environmental or physiological conditions 

remain constant (Fig. 2 and 3; Simonin et al., 2013). However, we can expect that leaf water residence 

times differ strongly between different plant functional groups (Simonin et al., 2013; Kahmen et al., 

2009), i.e. between crop plants and drought-adapted species with high stomatal control as Q. suber. 

Indeed, comparing modeled δE with theoretical leaf water residence times of doubling or reducing (to 

½  and ¼) the observed leaf water residence time (Fig. 5), it becomes clear that the observed pattern of 

strong depletion of δE relative to δs during the day cannot equally be expected in ecosystems 

dominated by species with small leaf water residence times either due to low stomatal control or low 

leaf water contents (see for example the differences in leaf water residence time and depletion of δE 

from isotopic steady-state between Citrus and Tobacco observed by Simonin et al. (2013). 

 

Figure 4: Diurnal cycles of modeled and measured oxygen isotope signatures of leaf mesophyll water 

(δm; a) and modeled versus measured δm (b) on 4.6. (circles; black line); 6.6. (up triangles; black dotted 

line); 10.6. (squares; black dashed line) and 11.11.2011 (down triangles; grey line). 
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Moreover, due to its influence on leaf water residence time (see Eqn. 2) the leaf water content (Vm) 

represents an important model input parameter. However, measuring Vm of leaves from remote field 

sites is not straight forward, and is therefore often assumed to be stable (e.g. Yepez et al., 2003). Here, 

Vm of cork-oak leaves was measured once in each season (spring, summer and fall) during morning 

and afternoon, and ranged between 8.4 and 12.8 mol m
−2

. Comparing the use of measured changes in 

Vm with the assumption of a fixed mean value (Fig. 3, upper boarder of grey areas and solid red lines, 

respectively) shows that the measured range of Vm is either not large enough to strongly influence δE 

predictions or modeling δE is not sensitive in regard to changes in Vm. Accordingly, Cernusak et al. 

(2002; 2003) found considerable variations in Vm in lupin and blue gum and still found no significant 

impact on the prediction of δE (see also Cuntz et al., 2007). 

 

Figure 5: Modeled oxygen isotope signatures of transpiration and observed oxygen isotope signatures 

of xylem (grey dotted line; n=3, mean values) at June 4 (a), September 18 (b) and November 11 (c; 

date format: day.month.year). Red lines indicate modeled δE with observed leaf water residence time 

(see Fig. 2), black dotted and solid lines are δE with ½ and ¼ of the observed leaf water residence time 

and black dashed lines are δE with twice the observed leaf water residence time. 

 

In general, we found a good agreement between measured and modeled δE when first modeling the 

isotopic enrichment of leaf water at the evaporating sites of the leaves under the assumption of non-

steady-state transpiration (δe), and second calculating the depletion of δE compared to isotopic 
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signatures of xylem water (δs) using the Craig and Gordon equation (Fig. 3; equation 2 and 7). 

However, changes in the kinetic fractionation factor in the model, i.e. from morning to evening or 

between days strongly alter predicted δE (Fig. 3d-f). Kinetic fractionation describes the effect of 

differences in molecular diffusivity (D) between the major and the minor isotopologue (D/Di). It can 

be expressed as αk = (D/Di)
n
, where n equals 0 under fully turbulent conditions, 2/3 for diffusion 

through leaf laminar boundary layer and 1 for fully molecular diffusion (Farquhar & Lloyd, 1993). 

Lee et al. (2009) suggested that apparent αk differs between scales (i.e. leaf vs. canopy). At the leaf 

scale, αk should always be close to the molecular value (1.028, Merlivat 1978) as stomatal resistance is 

usually much greater than boundary layer resistance. In contrast at the canopy scale αk can vary much 

stronger: Lee et al. (2009) found canopy αk values between 1.012 and 1.031. In chamber applications 

αk should likewise be a weighted average between boundary layer, stomatal and aerodynamic 

resistances due to the ventilation of the chamber. Boundary layer resistance in gas exchange chambers 

is often determined with heat plates or alike (Brenner et al., 1995). However, this determines a 

combined boundary and aerodynamic resistance and we argue that the boundary layer resistance 

determined from heat measurements cannot be taken directly for weighting boundary layer 

fractionation in total αk. Boundary layer and aerodynamic resistances depend on wind speed, thus 

using the formulations of the two resistances at canopy scale and with wind speeds of 1 to 2.5 m s
−1

 in 

the chamber (i.e. range of ventilation within the chamber due to orientation of the van relative to 

leaves) αk was estimated to range between 1.018 and 1.0265. Notably overall very good fits between 

measured and modeled δE and δm were found with αk = 1.018 (δE,obs = 0.82∙δE,model − 2.9; R² = 0.68; p < 

0.001, Fig. 3), although our results suggest that αk was larger in summer (Fig. 3d-f). 

Another critical issue is the correct estimation of leaf temperature. Temperature measurements were 

obtained from the surface of a single leaf in this study but the increase of leaf temperature above air 

temperature can be in-homogeneous in branch bags specifically with high radiation as leaves might 

shade each other (Mott & Peak, 2011). Variations in temperature influence modeled δE indirectly as 

they are used to calculate the equilibrium fractionation factor and to normalize h to leaf temperature 

values. Therefore we tested the sensitivity of temperature on modeled δE by assuming a maximum 

deviation from observed leaf temperature during day-time of 6 °C (without incoming radiation during 
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night temperatures should be homogeneous). Clearly variations in temperature can have an influence 

on modeled δE in certain situations: a high influence of temperature changes on modeled δE could be 

observed during wet conditions in fall in the early morning (Fig. 3 dark grey areas). During all other 

days, modeled δE was, however, not very sensitive to temperature and the uncertainty does not 

compromise our findings regarding the strong deviation of δE from isotopic steady-state. Another 

aspect is the increase in air temperature inside the closed chamber, which was comparatively small 

here (Pape et al., 2009; on average 2 °C). We did not measure the difference between leaf surface 

temperatures of leaves inside and outside the chamber, but could not detect an increase in leaf 

temperature within the app. 10 min while the chamber was closed. Thus, the increase of temperature 

due to the chamber application had supposedly only little impact on measured δE. 

1.4.2. Relationship between Δe−ΔC and ΔT and impact on atmospheric vapor 

Deviations from isotopic steady state at the leaf level, Δe−ΔC, and of transpired vapor, ΔE, have not 

been considered separately in the past. However, transpiration (E) is a two-way flux, with E/(1−h) of 

water vapor diffusing out of the stomata and E∙h/(1−h) of vapor diffusing into the leaf (Farquhar & 

Cernusak, 2005) and likewise the isotopic composition of transpiration has also two parts. Denoting 

ΔE as in Eq. (5) reveals that ΔE is not simply a mirror of Δe−ΔC but that the non-steady-state effect of 

leaf water at the evaporating sites is amplified by the factor 1/(1−h) for ΔE. The deviation of leaf water 

isotopic composition at the evaporating sites from isotopic steady state (Δe−ΔC) was well correlated 

with ΔE in fall (and to lesser degree in spring) when h was high (Fig. 6a, c) and thus the denominator 

in eq. 4 is small. Still during spring and also fall, the non-steady-state effect of leaf water at the 

evaporating sites is amplified by up to 15‰ for ΔE. During dry and hot days in summer no correlation 

between Δe−ΔC and ΔE could be found at all, although the variability of Δe−ΔC was not small (between 

−4.1 to −8.8‰, Fig. 6b). In contrast, (Δe−ΔC)/(1−h) was well correlated with ΔE and near to the 1:1 

line also during summer (Fig. 6d-f). These results suggest that δE can strongly deviate from δs, even 

when Δe−ΔC is small (Fig. 6). So far, the relation between the non-steady-state effects of leaf water 

and of transpired vapour has gained little attention. Comparing Δe−ΔC and ΔE of previous studies 

seems to support our findings though (e.g. Lai et al., 2006; Yepez et al., 2007). Notably, the deviations 
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of observed vs. modeled ΔE from the 1:1 line are not caused by the exclusion of the term α
+
αk, which 

has a very small overall effect on ΔE even in summer where diurnal temperature fluctuations were high 

(Fig. 6d-f). 

 

Figure 6: Spring (a, d), summer (b, e) and fall (c, f) deviations of the oxygen isotope signature of 

transpired vapor from xylem water (ΔE, [‰]) against deviation of leaf water isotopic composition at 

the evaporating sites from isotopic steady-state (Δe−ΔC, [‰]; a-c), and against Δe−ΔC amplified by 

1/(1−h) (d-f). The black lines indicate significant linear regressions and dashed black lines the 95% 

confident bands. The 1:1 line is indicated in black; coefficients of determination R² and significance 

level p are shown inside the plots. 
 

Oxygen isotope signatures of transpiration are used in applications differing in spatial (plant to global) 

and temporal (minute to annual) scales and it is thus crucial to assess where large errors can be 

expected by assuming steady-state transpiration at larger scales. Accordingly, isoforcing of 

transpiration on the atmosphere (IE; Lee et al., 2009) was estimated assuming transpiration to be in 

steady-state vs. non-steady-state (Fig. 7). Notably, isoforcing of the transpirational flux on 

atmospheric vapor is mostly positive here, as despite its depletion relative to xylem values δE is 
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enriched relative to ambient vapour. IE was large during daytime in spring and summer (up to 1.05 mol 

m
−2

 s
−1

 ‰), when fluxes were high. Looking at daytime values only, IE assuming steady-state 

transpiration was significantly higher than assuming non-steady-state δE on all days during spring and 

summer but not during fall, when the transpiration flux was small (Fig. 2 and 7g-i). This implies that 

assuming plant transpiration to be in the steady-state can have a large impact for applications that 

assess relatively short time intervals (e.g. partitioning studies: Williams et al., 2004; Yakir & 

Sternberg, 2000; Yepez et al., 2003; Zhang et al., 2011; Hu et al., 2014). Dubbert et al. (2013) found 

in a Mediterranean grassland community that assuming E in isotopic steady-state can lead to offsets of 

up to 70% in the estimation of the fraction of transpiration on total evapotranspiration. Moreover on 

larger spatial scales disregarding diurnal variation may still be affected by the sampling period during 

daytime, e.g. satellite based water isotope assessments looking at the atmospheric boundary layer (Lee 

et al., 2012). Consequently, recent studies investigated the influence of (isotopic non-steady-state) E 

on canopy-air exchange of oxygen isotopes of H2O and CO2 (Xiao et al., 2010; Berkelhammer et al., 

2013) or on water vapor deuterium excess (Welp et al., 2012) using continuous observations of δa and 

including a non-steady-state formulation for leaf water enrichment into a land surface model (SiLSM). 

Interestingly, Xiao et al. (2010; for soybean) found that the isotopic non-steady-state of transpiration 

has a greater impact on leaf-water enrichment than the Péclet effect. Xiao et al. (2012) on the other 

hand suggest also that the isotopic steady-state assumption determines plant C
18

O
16

O exchange quite 

well during daytime. 

Notably, modeling δE with a broad range of leaf water residence times (Fig. 5) indicates that the effect 

of considering isotopic steady-state of transpiration will be strongly dependent on plant functional 

type. Therefore, a survey on species from distinct functional groups with different leaf morphological 

and structural traits, leaf water residence times and transpiration rates might be indicative for a 

thorough characterization of the role of non-steady-state transpiration. It would be particularly 

interesting to investigate how different plant functional groups differ in the diurnal development of δE 

in regard to environmental stresses such as drought (Lai et al., 2008; Simonin et al., 2013). 

In the long run, deviations from isotopic steady-state must be compensated for as accumulation of 

heavy water can only occur over short time-scales, i.e. hours or in extreme cases days. Consequently, 
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considering whole day mean IE, the deviation during daytime was compensated during the night by 

larger IE considering isotopic non-steady-state transpiration. Only in two out of nine measurement 

days 24h mean isoforcing was significantly smaller considering non-steady-state compared to steady-

state (Fig. 7). It would thus be interesting to determine the maximum time period that IE can deviate 

from the steady-state prediction. 

Concluding, we found strong deviations from isotopic steady-state in plant transpiration during 

daytime that should be considered carefully when using δE to trace the impact of fluxes of the water or 

carbon cycle. 

 

Figure 7: Isoforcing of transpiration on the atmosphere [IE; mol m
−2

 s
−1

 ‰] for each measurement day 

assuming isotopic steady-state (ss, black solid lines) or non-steady-state (nss, red dashed lines). 

Nighttime transpiration rates and conductances were taken from Dawson et al. (2007). 24h means ± 

SE are given for each measurement day (date format: day.month.year); errors were calculated from 

bootstrap re-sampling. 
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Figure S1: Concentration dependencies of the Cavity Ring-Down Spetrometer at six different oxygen 

(a) and deuterium (b) isotopic signatures. Each sample with distinct signature (I-VI; see Table S1) was 

measured from 5000 to 30000 ppmv H2O concentration. 
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Figure S2: H2O (ppm), δ
18

O and δD (‰) observed with the Cavity Ring-Down Spectrometer of 

ambient air and blank branch chamber (a-c) and of ambient air and branch chamber with branch 

enclosed (d-f). Arrows denote switch from ambient air going into the branch chamber to air coming 

out of the branch chamber. 
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Table S1: Equations, R² and p values for the Concentration dependencies of the Cavity Ring-Down 

Spetrometer at six different oxygen and deuterium isotopic signatures as shown in Fig. S1.  

standards δ
18

O(‰) R² p 

I (4.3) 0.000026*H2O+4.3 0.72 <0.001 

II (1.0) 0.000015*H2O +1.02 0.39 0.007 

III (-0.8) 0.000011*H2O -0.78 0.3 0.02 

IV(-9.1) 0.0000011*H2O -9.1 0.02 n.s. 

V (-11.2) 0.0000036*H2O -11.2 0.03 n.s. 

VI (-18.2) 0.0000027*H2O -18.2 0.07 n.s. 

    

standards δD(‰) R² p 

I (36.9) 0.00014*H2O+36.9 0.63 <0.001 

II (17.7) 0.0000759*H2O +17.7 0.29 0.03 

III (2.8) 0.0000775*H2O +2.8 0.28 0.02 

IV(-55.4) 0.00000257*H2O -55.4 0.17 n.s. 

V (-61.0) 0.0000039*H2O -61.0 0.29 0.02 

VI (-103.7) 0.00000546*H2O -103.7 0.001 n.s. 
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2.1. Abstract 

Stable oxygen isotopes of water provide a valuable tracer for water movements within ecosystems and 

are used to estimate the contribution of transpiration to total ecosystem evapotranspiration (ft). We 

tested the Craig and Gordon equation against continuous field measurements of isotopic composition 

of evaporation and assessed the impact for partitioning evapotranspiration. Therefore, evaporation (E) 

and its isotopic signature (δ
18

OE) on bare soil plots, as well as evapotranspiration (ET) and its 

corresponding isotopic composition of (δ
18

OET) of an herbaceous layer was measured with a cavity 

ring-down spectrometer connected to a soil chamber on a field site in central Portugal. We quantified 

the variation in δ
18

OE arising from uncertainties in the determination of environmental input variables 

to the Craig and Gordon equation: the isotope signature (δ
18

Oe) and the temperature at the evaporating 

site (Te), and the kinetic fractionation factor (αk). We could hence quantify ft based on measured 

δ
18

OET, modeled δ
18

OE from observed soil water isotopic composition at the evaporating site (δ
18

Oe), 

and modeled δ
18

O of transpiration (δ
18

OT) from observed total soil water isotopic composition. 

Our results demonstrate that predicting δ
18

OE using the Craig and Gordon equation leads to good 

agreement with measured δ
18

OE given that the temperature and 
18

O isotope profiles of the soil are 

thoroughly characterized. However, modeled δ
18

OE is highly sensitive to changes in Te and δ
18

Oe as 

well as αk. This markedly affected the partition results of transpiration and evaporation from the total 

ET flux: The fraction of transpiration (ft) varied strongly using different formulations for αk and 

assuming steady or non-steady state transpiration. These findings provide a first comparison of laser-

based and modeled isotopic compositions of evaporation based on the Craig and Gordon equation 

under field conditions. This is of special interest for studies using stable isotopes to separate soil 

evaporation and plant transpiration fluxes and highlights the need for a thorough characterization of 

the micrometeorological and isotopic constitution of the upper soil layer to locate the evaporating front 

with a resolution of a few cm soil depths. We also call on a better characterization of the kinetic 

fractionation factor of soil evaporation.  
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2.2. Abbreviations 

αk/α
+ 

kinetic fractionation factor/equilibrium fractionation factor 

δ
18

O oxygen stable isotope signature (‰) 

Θ volumetric water content 

R Isotope ratio of [
18

O]/[16
O] 

E soil evaporation 

T plant transpiration 

ET evapotranspiration 

ft T/ET 

w H2O concentration  

h  relative humidity 

nk  exponent relating αk, diff = (Dv/Dv
i
) to αk 

Dv
i
 diffusivity of H2

18
O in air 

Dv diffusivity of H2O in air 

ns/na constants used in the definition of the nk exponent related to soil and atmosphere controlled 

diffusivity (1 and 0.5, respectively) 

gt total leaf conductance to water vapor (mol m
-2

 s
-1

) 

V water volume (mol m
-2

) 

T  Temperature 

s soil 

e evaporating surface 

v ambient water vapor 

m liquid mesophyll water 

r residual 

sat saturation 

surf surface 

lw leaf water 
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2.3. Introduction 

Oxygen isotope signatures are valuable tracers for water movements within the ecosystem because of 

the distinct isotopic compositions of water in the soil and vegetation (Yakir and Sternberg, 2000). 

Evaporation from the soil modifies the isotopic composition of source water and was first described by 

Craig and Gordon (1965). Evaporated water vapor is strongly depleted in relation to the evaporating 

water source based on isotope fractionation associated with equilibrium isotope effects at the vapor-

liquid interface (equilibrium fractionation, α
+
) and diffusion-controlled isotope effects (kinetic 

fractionation, αk). The evaporation model proposed by Craig and Gordon is widely used in ecological 

and modeling studies to determine the oxygen isotopic composition of soil evaporation and plant leaf 

water enrichment. It has been used to achieve better understanding of the dynamics of hydrological 

processes (Barbour, 2007; Braud et al., 2005a, b; Cuntz et al., 2007; Haverd and Cuntz, 2010), and to 

partition ecosystem water fluxes into their components: soil evaporation and plant transpiration (e.g. 

Haverd et al., 2011; Williams et al., 2004; Yepez et al., 2005, 2007).  

Evaporation from the soil occurs at the vapor-liquid interface (the evaporating front) below which 

liquid transport and above which vapor transport is dominant (Braud et al., 2005a). It has been shown 

for unsaturated soils that this front is related to a strong enrichment in soil water isotopic composition 

relative to the rest of the soil column and an exponential depletion in isotopic signature within few cm 

of the underlying soil due to evaporative enrichment of the remaining liquid water (Zimmermann et 

al., 1967). A precise determination of the evaporating front is therefore very important for a correct 

estimation of δ
18

OE but its precise determination remains a challenge in most field studies due to the 

requirement of large sample sizes (see Lai et al., 2006; Wang et al., 2010; Williams et al., 2004; Yepez 

et al., 2005, 2007). 

While soil evaporation is seldom in the steady state, plant transpiration reaches steady state at certain 

times of the day. During steady state transpiration the δ
18

O of the transpiration flux is equal to the 

isotope signature of xylem/source water (Dawson, 1993). The large differences between evaporative 

non-steady state δ
18

O (depleted compared to source water) and transpirational steady state δ
18

O (equal 

to source water) then provide the basis using stable isotopes to separate soil evaporation and plant 

transpiration fluxes (e.g. Lai et al., 2006; Wang et al., 2010; Williams et al., 2004; Yepez et al., 2007). 
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However, it has to be taken into account that steady state conditions are not always found due to the 

transient changes in atmospheric conditions (Yakir and Sternberg, 2000). Thus, non-steady state 

transpiration is depleted in δ
18

O relative to xylem/source water during parts of the day (Cuntz et al., 

2007; Dongmann et al., 1974; Farquhar and Cernusak, 2005).  

Recent developments in laser spectroscopy enable the measurement of δ
18

O of atmospheric water 

vapor (δ
18

Ov), and evapotranspiration (δ
18

OET) and its components with a high temporal resolution in 

the field (Werner et al., 2012). In the past, however, precise determinations of δ
18

OET, δ
18

OE and δ
18

OT 

have been a challenge since measurements of water vapor were difficult to obtain using cold-trapping 

methods (e.g. Helliker et al., 2002; Williams et al., 2004; Yepez et al., 2005). Several studies have 

conducted experiments on isotopic evaporation (Cappa et al., 2003; Craig et al., 1963; Merlivat, 1978; 

Rozanski and Chmura, 2006; Stewart, 1975), but only few studies (i.e. Braud et al. 2009a,b; Kim and 

Lee, 2011) used continuous measurements of δ
18

O of evaporation or ambient water vapor. Field 

studies comparing modeled with directly measured isotope signatures of evaporation are even scarcer 

(but see Haverd and Cuntz, 2010 and for controlled conditions Rothfuss et al., 2010 and 2012). To 

close this research gap we measured the isotopic composition of evaporation (δ
18

OE) obtained with a 

cavity ring-down spectrometer connected to a soil chamber on experimental plots in a herbaceous 

community of an open oak woodland in central Portugal. We tested the Craig and Gordon equation 

against directly measured δ
18

OE. Specifically, we quantified the variation in δ
18

OE arising from 

uncertainties in the determination of important environmental input variables to the Craig and Gordon 

equation: the isotope signature at the evaporating site (δ
18

Oe), the temperature at the evaporating site 

(Te), and the kinetic fractionation factor (αk). Finally, we measured the isotopic composition (δ
18

OET) 

and fluxes of evapotranspiration of an herbaceous understory layer and quantified the contribution of 

transpiration to evapotranspiration (ft) based on measured δ
18

OET and modeled δ
18

OE and δ
18

OT on 

vegetation plots. 

2.4. The Craig and Gordon equation 

Craig and Gordon (1965) developed an equation describing the isotopic composition of evaporation 

from an open water body: 
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  (1) 

 

where RE is the isotope ratio (
18

O/
16

O) of evaporated vapor, Re is the isotope ratio at the evaporating 

sites and Rv is the isotope ratio of ambient water vapor, αk is the kinetic fractionation factor, α
+
 is the 

water vapor equilibrium fractionation factor (Majoube, 1971; αk and α
+
 >1), and h is the relative 

humidity normalized to the temperature at the evaporating sites (Te). Most of the environmental input 

(Te, h, and Rv, Re) need to be determined and a thorough estimation with respect to spatial (e.g. 

conditions at different soil depths) and temporal variation remains challenging. 

The evaporation of water in air is characterized by a fractionation effect that derives from two 

fractionating processes: equilibrium fractionation and kinetic fractionation. Equilibrium isotope effects 

(α
+
) occur because the lighter isotopologue (H2

16
O) evaporates more easily compared to the heavier 

isotopologue (H2
18

O). This is a rather well characterized, temperature dependent process (Majoube, 

1971). In contrast, a determination of the kinetic fractionation (αk) and an agreement on the correct 

formulation remains controversial (Braud et al., 2005a,b; Braud et al., 2009 a,b; Cappa et al., 2003; 

Horita et al., 2008; Luz et al., 2009; Rothfuss et al., 2012). Kinetic fractionation occurs because the 

lighter isotopologue diffuses faster compared to the heavier isotopologue. It involves molecular 

diffusion through the soil and resistance to water vapor transport in a laminar boundary layer as well 

as turbulent conditions above the boundary layer. Previous studies determined experimentally the 

molecular diffusion coefficient (Dv/Dv
i
). Cappa et al. (2003) recommended a value of Dv/Dv

i
 =1.032 

according to the kinetic theory of gases. On the other hand Merlivat (1978) and more recently Luz et 

al. (2009) determined a value of Dv/Dv
i
 =1.0285 that deviate from the kinetic theory. Additionally to 

pure molecular diffusion, studies determined an exponent nk to αk, allowing for the nature of the 

transport conditions: nk evolves from 1 when molecular diffusion is the dominant process to 0.5 when 

turbulent transport becomes most important. When only molecular diffusion plays a role, as in dry 

soils, αk = Dv/Dv
i
 (Barnes and Allison, 1983). There are various expressions in the literature for the 

exponent nk according to the hypotheses made on the influence of molecular and turbulent resistance 

(for a summary see Braud et al., 2005a). The exponent nk proposed by Stewart (1976) and Mathieu 
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and Bariac (1996) is empirically derived and relates the soil water content θ to the contribution of 

turbulent resistance to total transport resistances in an unsaturated soil: 

      

 (2). 

 

The exponent nk reads as follows: 

      

  (3), 

 

with θsurf,, θsat and θr as the volumetric soil water content at the soil surface, saturated and residual 

volumetric soil water content. Residual water content was 0.01 m
3
m

-3
 on all plots whereas saturated 

water content differed between the specific plot types: 0.24 m
3
 m

-3 
for vegetation plots, 0.2 m

3
 m

-3 
for 

root plots, and 0.18 m
3
 m

-3
 for soil plots.  

Table 1: Description of the three approaches used in this study to calculate δ
18

OE varying the soil 

depth used to derive the isotopic signature and temperature at the evaporating site (δ
18

Oe and Te) and 

the kinetic fractionation factor (αk). 

 

Residual and saturated water contents were derived empirically from observed minima and maxima of 
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volumetric soil water content throughout the years 2010 and 2011. nk increases from na = 0.5 under 

saturated soil conditions to ns = 1 on dry soil, where kinetic fractionation is dominated by molecular 

diffusion resistances (Mathieu and Bariac, 1996; see Table 1).  

2.5. Materials and Methods 

2.5.1. Study site 

We tested the Craig and Gordon model in a savannah-type oak-oak (Quercus suber L., ~200 

individuals per ha) woodland in central Portugal approximately 100 km north-east of Lisbon 

(N39°8’17.84’’ W8°20’3.76’’). It is a bi-layered system with an understory layer dominated by native 

annual plants with a peak growth in spring (April-May), contributing up to 50 % to ecosystem carbon 

uptake (Unger et al., 2010) and senescing from late May - early June with the onset of summer 

drought. We established three types of plots sized 40*80 cm in an open area: bare soil plots with total 

exclusion of root in-growth by inserting trenching meshes (mesh diameter < 1 µm, Plastok, 

Birkenhead, UK), root plots with exclusion of vegetation layer directly on the plots but allowing 

neighboring roots to grow in, and understory vegetation plots with undisturbed herbaceous understory 

vegetation. All plots were established 1 year before measurements to minimize effects of disturbance 

and germinating seedlings were regularly removed. 

2.5.2.  Environmental variables 

Photosynthetic photon flux density (PPFD, LI-190SB, LI-COR, Lincoln, USA), rainfall (ARG100 

Rain gauge, Campbell Scientific, Logan, UT, USA), air temperature, and relative humidity (h, CS-215 

Temperature and Relative Humidity Probe, Campbell Scientific, Logan, UT, USA) were measured and 

30 min averages were stored in a datalogger (CR10x, Campbell Scientific, Logan, UT, USA). Soil 

temperature (custom built pt-100 elements) and volumetric water content (θ, 10hs, Decagon, 

Washington, USA) in 5, 15, 30 and 60 cm depth were measured in vegetation, root, and soil plots and 

60 min averages were stored in a datalogger (CR1000, Campbell Scientific, Logan, UT, USA; n = 4 

per for each soil depth and plot type). Temperature at the soil surface was manually measured on each 
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measurement day in diurnal cycles corresponding with the gas exchange measurements using 

temperature probes (GMH 2000, Greisinger electronic, Regenstauf, Germany). 

2.5.3.  Sampling and measurement of δ
18

Os 

Soil samples for water extraction and analysis of δ
18

O were taken on April 8, 12, 18, and 26 and May 

2, 2011 on vegetation, root and soil plots using a soil corer. Samples were collected from the soil 

surface (up to 0.5 cm depth), 2, 5, 10, 15, 20, and 40 cm soil depths (n = 4 per for each soil depth and 

plot type) and stored in 12 ml glass vials, sealed with parafilm and immediately frozen until water 

extraction. Water samples were extracted on a custom build vacuum line by cryogenic distillation 

(design of R. Siegwolf). Samples were heated at approximately 80 ºC for 90 min under vacuum of 

0.04 to 0.08 mbar. Water traps that were cooled with liquid N2 were used to collect the water vapor. 

Samples were stored in Eppendorf vials at 4ºC until analysis. Water δ
18

O analysis was performed by 

headspace equilibration on an Isoprime IRMS (Elementar, Hanau, Germany) coupled via open split 

connection to a µgas autosampler (Elementar, Hanau, Germany) and sample preparation system. 

Equilibration was done for 5 hours at 40°C. For every batch of ~47 samples 3 different laboratory 

standards were analysed 3 times for δ
18

O calculation versus VSMOW. Laboratory standards were 

regularly calibrated against VSMOW, SLAP, and GISP water standards (IAEA,Vienna). Analytical 

precision was < 0.1‰. 

2.5.4. CRDS based measurements of δ
18

OE and understory δ
18

OET and their respective fluxes 

Fluxes and isotopic composition of soil evaporation on the root and soil plots as well as of 

evapotranspiration on vegetation plots (n = 3 per treatment) were measured using a Cavity Ring-Down 

Spectrometer (CRDS, Picarro, Santa Clara, USA) in combination with soil chambers, custom built, 

following the design of Pape et al. (2009), in an open gas exchange system. A transparent Plexiglas 

soil chamber was coated with an isotope inert FEP foil (4PTFE, Stuhr, Germany) with a total volume 

of 60 L. The background air inlet port and the sampling air outlet port were located in 10 and 50 cm 

height, respectively. The background air was sampled from 1.5 distance and buffered with a 200 L 

buffer volume. The flow through the chamber was regulated as described in Pape et al. (2009) using a 



Study II: Partitioning evapotranspiration – Testing the Craig and Gordon model with field 

measurements of oxygen isotope ratios of evaporative fluxes 

 

 

68 

fan inside the inlet sampling tube and could be adjusted between 0 and 40 L min
-1

. The CRDS was 

calibrated 3 times a day using a standards delivery module and vaporizer (SDM, Picarro, Santa Clara, 

USA) with two laboratory standards that were regularly calibrated against VSMOW and SLAP. 

Measurement precision was < 0.2‰. H2O concentrations (ppmv) of the CRDS were calibrated prior to 

each measurement campaign in the laboratory using a dew point generator (Walz, Effeltrich, 

Germany). During field campaigns the running precision of the instrument was regularly crosschecked 

using an equally calibrated infrared gas analyzer (Li840, Licor Biosciences, Lincoln, USA). The 

precision of the CRDS was below 100 ppmv throughout the measurement period. We measured 

background and sampling air alternately until stable values were reached. The chamber maintained on 

the plots until stabilization was reached, which was <10 min. The observed increase in air temperature 

above ambient values was ca. 3 °C after 5 min and stable thereafter, which is smaller compared to 

those found in Pape et al. (2009). A 5 min interval average was finally recorded for the calculation of 

evaporation (E) and evapotranspiration (ET) with the gas exchange equations of von Caemmerer & 

Farquhar (1981). 

Isotope signatures of evaporation and evapotranspiration were calculated by mass balance: 

        

(4) 

 

where δ
18

Oout and δ
18

Oin is the isotope ratio of the chamber and background air and wout and win as the 

H2O concentration of the chamber and background air, respectively. Measurements were obtained on 

five days during April, corresponding with the soil water isotope sampling.  

2.5.5. Estimation of δ
18

OE, δ
18

Oe, and δ
18

OT and ft 

We modeled δ
18

OE using approaches differing in the three input variables – temperature (Te), isotopic 

composition at the evaporating sites (Re), and kinetic fractionation factor (αk, for a detailed overview 

see Table 1). In approach I values of Te and Re measured at the evaporating front and the formulation 

for αk provided by Mathieu and Bariac (1996) were used. Approach II was also calculated with values 
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of temperature and Re measured at the evaporating front but with kinetic fractionation only influenced 

by molecular diffusion as suggested by Barnes and Allison (1983, nk = 1). Approach III again used the 

formulation of Mathieu and Bariac (1996) for αk but used average values of the upper 10 cm of the soil 

profile for Re and Te (see Table 1). The evaporating front is characterized by a large enrichment of the 

soil δ
18

O signature. Thus, Re and Te were taken from the depth were the strongest enrichment in δ
18

O 

could be detected, which was commonly the soil surface (see Barnes and Allison, 1983; Braud et al., 

2005; Harverd and Cuntz, 2010). In the few cases where the strongest isotopic enrichment was found 

in 2 cm soil depth soil temperature measured at 5 cm depth was taken for Te as direct measurements in 

2 cm depths were not available on our plots. Comparisons between soil temperature in 2 cm and 5 cm 

depth on a soil profile adjacent to our plots revealed that temperatures differences between 2 and 5 cm 

depths were on average less than 1 °C (data not shown).  

The isotope signature of evapotranspiration (ET) is influenced by soil evaporation (E) and plant 

transpiration (T) and can be calculated if the isotope signatures of T (δ
18

OT), E (δ
18

OE), and ET (δ
18

OET) 

are known. Therefore, we measured fluxes and isotope signatures of ET and modeled δ
18

OE and δ
18

OT. 

δ
18

OE on vegetation plots was modeled as for root and soil plots with approach I and II (see above). To 

calculate δ
18

OT, in a first step the isotopic composition of leaf water at the evaporating sites (δ
18

Oe) 

was calculated. We followed the method of Cuntz et al. (2007) and used the iterative solution of the 

ordinary differential equation for leaf water at the evaporating sites in non-steady state as in 

Dongmann et al. (1974). In this case it is assumed that environmental conditions that influence δ
18

Oe 

change to a new value at time t and stay fixed over a time period dt. This “Dongmann-style solution” 

then reads (Dongmann et al., 1974; Cuntz et al., 2007): 

     

 (5) 

 

with Re(t+dt) as the isotope ratio of leaf water at the evaporating sites at time t+dt, Re(t) as the isotope 

ratio of leaf water at the evaporating sites at time t. A time step of 1 h was used in our calculations, as 

environmental measurements did not allow a more precise resolution of environmental variables. gt is 
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total conductance (mol m
-2

 s
-1

) calculated with canopy temperatures measured inside the canopy with a 

custom built PT-100 element. wi is the humidity in the stomatal cavity, i.e. vapor saturation at leaf 

temperature (mol H2O mol air
-1

), Vm the mesophyll water volume (mol m
-2

;), where gravimetric 

estimates of lamina water volume were used, αk and α
+ 

are the kinetic and equilibrium fractionation 

factors, respectively. α
+
 was calculated as for soil evaporated δ

18
O (see above) and αk was assumed to 

be 1.0189 corresponding to a laminar boundary layer. Rc is the Craig and Gordon steady-state isotope 

ratio at the evaporating sites, i.e. Eq. (1) rearranged for Re with RE = Rx, and Rx being the isotope ratio 

of xylem water. It has to be noted that we were not able to sample xylem water in large sample sizes, 

due to methodological restrictions related to the size and lacking lignifications of the herbaceous plant 

species. Therefore we estimated the source/xylem isotopic ratio by assuming root water uptake 

proportional to root density, which was estimated as root biomass (g) per kg soil along the soil profile. 

In very dry soil conditions this method could pose some error since plants can shift water uptake into 

deeper, wetter soil layers. However, typically non woody species, such as the understory vegetation in 

this study, lack high ability to shift water uptake depths, mainly because they have shallow root 

systems (Moreno-Gutierrez et al., 2012; Otieno et al., 2011). We could detect understory roots only 

down to 50 cm and root density declined dramatically below 20 cm with more than 80 % of the root 

system in the upper 15 cm depth during the whole study period.  

Knowing the isotopic signature of leaf water at the evaporating sites, the isotopic signature of plant 

transpiration can finally be calculated using the Craig and Gordon formulation (see Eq. 1) with the 

isotopic signature of leaf water at the evaporating sites in the non-steady-state as Re.  

The contribution of T to ET, ft = T/ET, was estimated based on measured δ
18

OET and modeled δ
18

OE 

and δ
18

OT: 

       

 (6) 
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2.6. Results  

2.6.1. Environmental conditions 

The first half of April 2011 was dry and hot with high solar radiation (max. 2000 µmol m
-2

 s
-1

; Fig. 1a) 

and air temperatures reaching 30 °C (Fig. 1b) and vapor pressure deficit up to 3 kPa (VPD; Fig. 1d). 

Temperatures in the upper soil layer reached 35 °C on soil and root plots (Fig. 1e). No rain events 

occurred in early April resulting in decreasing volumetric soil water content (θs) in the upper soil 

layers from about 0.1 m
3
 m

-3
 to 0.04 m

3 
m

-3
 on April 18 (Fig. 1f). The second half of the month was 

characterized by more volatile weather conditions with rainy and sunny periods, a decrease in 

maximum temperature and VPD, and higher soil water availability.  

 

 

 

 

 

Figure 1:  

Environmental conditions 

from April 6 to May 3, 

2011. a) Photosynthetic 

photon flux densitiy 

(PPFD, µmol m
−2

 s
−1

, 

black lines), b) air 

temperature (°C, black 

lines), c) relative humidity 

(%, black lines), d) vapor 

pressure deficit (VPD, kPa, 

black lines), e) soil 

temperature in 5 cm soil 

depth on vegetation (black 

lines), roots (black dotted 

lines) and bare soil plots 

(black dashed lines), and f) 

soil volumetric water 

content in 5 cm soil depth 

(θs, m
3
 m

−3
) on vegetation 

(black lines), roots (black 

dotted lines) and bare soil 

plots (black dashed lines) 

as well as rainfall (mm d
-1

, 

black bars). Black arrows 

indicate measurement 

dates (April 8, 12, 18, 26, 

and May 2, 2011). 



Study II: Partitioning evapotranspiration – Testing the Craig and Gordon model with field 

measurements of oxygen isotope ratios of evaporative fluxes 

 

 

72 

2.6.2. Profiles of soil temperature, volumetric water content and δ
18

O 

The oxygen isotopic composition in the soil (δ
18

Os) differed significantly across the soil depths but 

was constant between 10 and 40 cm at app. -7‰ (Fig. 2) reflecting rain water isotopic composition 

during the study period (data not shown). However, we found a strong increase in δ
18

Os in the top of 

the soil profile with the most enriched δ
18

Os values at 0-5 cm soil depth between 4‰ and -3‰. During 

most of the study period the evaporating front (the depth with the most enriched isotopic signal) was 

directly at the soil surface. However, with decreasing volumetric soil water content (θs) between April 

12 and 18, the peak in δ
18

O decreased to around 2 cm soil depth for root and bare soil plots (Fig. 2).  

Vegetation cover strongly affected the soil water oxygen isotope profile. The peak in δ
18

O of the soil 

profile was not as pronounced on vegetation plots compared to soil and root plots (Fig. 2). While the 

isotope enrichment in δ
18

O in the soil profile varied between ~ -3‰ and 1.5‰ in vegetation plots (Fig. 

2a-e) it ranged between 1.5 ‰ and 4 ‰ in root and soil plots (Fig. 2f-o). Furthermore, in the 

vegetation plots the evaporating front did not move into deeper soil layers with decreasing θs as in soil 

and root plots during the study period (Fig. 2). 

Volumetric soil water content (θs) was rather similar in all soil depths and decreased from nearly 0.1 to 

0.04 m³m
-
³ in the first half of April (Fig. 2). Following rain events in the second half of the month, θs 

increased in the upper 10 cm soil (to 0.14 m³m
-
³). Soil temperature was also variable between the soil 

depths. Midday soil temperature was highest in the upper 5 cm of the soil profile (up to 30 °C) and 

exponentially decreased to minimum values in 60 cm soil depth (around 18 °C). At the soil surface, 

the midday temperature was between 24 and 26 °C (Fig. 2). 

In general, vegetation cover has a strong influence on microclimatic conditions in the soil. Both the 

maximum soil temperature and the diurnal amplitude of soil and surface temperatures were reduced in 

plots with vegetation cover (from ~15 °C on bare soil/root plots to ~9 °C on vegetation plots; Fig. 1, 

2). During the dry down period in the first half of April, the θs profile was similar between the three 

plot types. However, following the rainfall events between April 18 and 24, plots with vegetation 

cover exhibited higher soil moisture contents in the upper 10 cm than did the other plot types (Fig. 2). 
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Figure 2: Soil profiles of volumetric water content (θs, dashed black lines and grey squares; mean ± 

SD, n=3-4; depths 5, 15, 30, and 60 cm) temperature (dotted black lines and dark grey up triangles; 

mean ± SD, n=3-4; depths 0, 5, 15, 30, and 60 cm), and soil δ
18

O (black solid lines and circles; mean ± 

SD, n=3-4; depths 0, 2, 5, 10, 15, 20, and 40 cm) on roots, soil and vegetation plots on 5 days between 

April 8 and May 2, 2011. 
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2.6.3. Measured and modeled δ
18

OE 

Measured oxygen isotope signatures of soil evaporation (δ
18

OE) ranged from -13.1‰ to -20.1‰ on 

soil plots (Fig. 3a-e) and from -14.8‰ to -19.9‰ on root plots (Fig. 3f-j) and were thus in all cases 

strongly depleted in relation to both mean soil δ
18

O (Fig. 2) and rain water δ
18

O which ranged between 

-6‰ and -8‰. We found strong diurnal courses of δ
18

OE in both treatments. δ
18

OE was highest in the 

morning and evening and decreased by 3.5‰ to 7‰ during the day (Fig. 3b, d, g, i).  

We modeled δ
18

OE based on the Craig and Gordon equation with 3 approaches differing in their input 

variables all using the fractionation factors of Merlivat (1978; see Table 1). In approach I the isotopic 

composition and temperature from the evaporating front were used (which is equivalent to the most 

enriched δ
18

O signal in the soil δ
18

O profile) to calculate α
+
 and h and the formulation of Mathieu and 

Bariac (1996) for αk. Kinetic fractionation αk as obtained by this method ranged between 1.021 and 

1.022 under relatively wet conditions on May 2 on root and soil plots, respectively, to a maximum of 

1.0262 on both root and soil plots under the driest soil conditions on April 18. A different formulation 

for the kinetic fractionation αk was used in approach II with nk = 1 (Barnes and Allison, 1983), thus 

ignoring the influence of turbulent resistances on diffusion controlled fractionation. Finally, we used 

mean values of the upper 10 cm for soil temperature and the soil water isotopic composition and the 

formulation for αk of Mathieu and Bariac (1996; approach III).  

Approach I nicely reflected measured values (Fig. 3) and remained within the standard deviation of 

measured δ
18

OE with few exceptions, i.e. May 2 where measured δ
18

OE on soil plots was in better 

agreement with modeled δ
18

OE using nk=1, hence approach II. Neglecting the turbulent component in 

the formulation for the kinetic fractionation αk (approach II) led to strong negative offsets from 

measured δ
18

OE between 2 to 7‰ (Fig. 3). The magnitude of this offset depended on the soil water 

content and was stronger in conditions of high soil water content than during lower soil water content 

(compare the dry April 12 with the wet April 26, Fig. 3b, g, d, and i). Approach III led to a strong 

negative offset relative to measured δ
18

OE of up to 15‰ between 14:00 and 19:00 (Fig. 3). Further, 

using averaged values from the upper 10 cm soil for temperature and soil δ
18

O also strongly 

overestimated the diurnal amplitude in δ
18

OE, which reached between 10‰ and 20‰ in approach III. 
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In contrast, the diurnal amplitude of measured δ
18

OE was between 5 and 8‰ (Fig. 3).  

 

 

Figure 3: Measured δ
18

OE on root and bare soil plots (black circles) and calculated with the Craig and 

Gordon equation using approach I (solid black lines), II (long dashed black lines) and III (dotted black 

lines) according to Table 1. Measured δ
18

OE are shown as mean values ± SD (n=3). 

 

Similar results could be observed when calculating δ
18

OE with parameters taken from an average of the 

upper 10 cm and αk with nk=1 (data not shown), which led to the same slope as in approach III with 

the same negative offset as between approaches I and II (Fig. 3).  

2.6.4. Measured δ
18

O of evapotranspiration 

Measured ET in the vegetation plots ranged between ~0.5 mmol m
-2

 s
-1

 in the morning to 3.8 mmol m
-2

 

s
-1

 during midday. Maximum midday ET was highest on April 8 and declined until April 18 to 1.3 

mmol m
-2

 s
-1 

(Fig. 4a-c). After the rainfall events between April 18 and 24 maximum midday ET 

increased again to around 2-3 mmol m
-2

 s
-1

 (Fig. 4d, e). In contrast, soil evaporation, measured on bare 

soil and root plots never exceeded 1.9 mmol m
-2

 s
-1

 and was between 0.4 and 0.7 in first dry half of 

April and between 1 and 1.9 mmol m
-2

 s
-1

in the second wetter half of the month (data not shown). 

CRDS based measured δ
18

OET ranged from -21.3‰ to -12.4‰ (Fig. 4a-e). In general, measured δ
18

OET 
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varied strongly within a day with most negative values in the morning (-17.8‰ to -21.3‰). δ
18

OET 

increased throughout the day and reached values between -16.6‰ and -12.4‰ in the evening (Fig. 4b 

and d).  

 

Figure 4: a-e) Measured evapotranspiration (ET, black squares) and δ
18

OET (grey circles, ‰) based on 

CRDS measurements from April 8 to May 2, 2011 (mean ± SD, n = 3). f-j) Modeled isotopic signature 

of leaf water at the evaporating sites in steady state (δ
18

Oe-ss, dashed black lines) and non-steady state 

(δ
18

Oe-nss, solid black lines) and measured δ
18

O of leaf mesophyll water at midday (grey circles, mean 

values ± SD, n=5). k-o) Modeled isotopic composition of leaf transpired water (δ
18

OT) in steady-state 

(δ
18

OT-ss, black dashed lines) and non-steady state (δ
18

OT-nss, black solid lines) and isotopic 

composition of soil evaporated water δ
18

OE using different formulations for the kinetic fractionation 

factor on vegetation plots. p-t) Contribution of plant transpiration to total understory 

evapotranspiration (ft) using all combinations of δ
18

OT and δ
18

OE of k-o). No values for ft are displayed 

if ft < 0 or ft > 1. 
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2.6.5. Calculating δ
18

OE and δ
18

OT for vegetation plots 

The isotopic signature of evapotranspiration (ET) consists of and is influenced by soil evaporation (E) 

and plant transpiration (T). Knowing these values allows for the prediction of their relative 

contributions to ET. 

Therefore, we modeled δ
18

O of soil evaporation and understory plant transpiration (δ
18

OT) on 

vegetation plots (Fig. 4k-o). We calculated δ
18

OT in the non-steady state by modeling the leaf water 

enrichment at the evaporating sites in non-steady state (δ
18

Oe-nss, Fig. 4f-j). Leaf water δ
18

Oe-nss was 

most negative during the early morning (about -5‰) and increased steadily throughout the diurnal 

course until a plateau was reached around 15:00 (~ 10 to 15‰). In comparison, δ
18

O of leaf water at 

the evaporating sites assuming steady state transpiration was slightly enriched with the strongest 

deviation from non-steady state values during the morning (Fig. 4f-j). 

Accordingly, transpired δ
18

O in non-steady state was most negative during the morning (~ -20‰) and 

then increased steadily until steady state was reached in the afternoon. Steady state was reached 

between 14:00 (April 26, Fig. 4l, i) and 18:00 (April 12, Fig. 4n) where δ
18

OT matched δ
18

O of source 

water (~ -6 to -8‰). In comparison, the isotope signature of transpiration assuming steady state ranged 

around source water values of -6 to -8‰ during the whole day. 

δ
18

O of soil evaporation (δ
18

OE) on vegetation plots was modeled using approach I, which led to the 

best fit with measured values on root and bare soil plots (see Fig. 3) and approach II for comparison 

(see Table 1). The calculated isotope signature of soil evaporation on vegetation plots was between -20 

and -30‰ and thus depleted by approximately 7‰ relative to δ
18

OE on soil and roots plots (compare 

Fig. 3 and 4k-o). This corresponds well with the higher increase of soil δ
18

O at the evaporating front 

on soil and root plots compared to vegetation plots (Fig. 2). Albeit this strong negative offset δ
18

OE 

followed similar diurnal pattern in all three treatments (Fig. 3 and 4k-o). We additionally calculated 

δ
18

OE assuming only molecular transport (nk = 1). Similar as in root and bare soil plots this led to 

negative offsets the magnitude of which were dependent on the soil water content (Fig. 1 and 4k-o). 



Study II: Partitioning evapotranspiration – Testing the Craig and Gordon model with field 

measurements of oxygen isotope ratios of evaporative fluxes 

 

 

78 

2.6.6. Calculating the contribution of T to ET 

In order to test the variability in the calculated contribution of T to ET (ft) that arises due to 

assumptions on the (non-)steady state of plant transpiration or the nature of transport resistances and 

the formulation of kinetic fractionation we calculated ft using δ
18

O of transpiration in the steady state 

and in the non-steady state and δ
18

O of evaporation by both including and excluding influences of 

turbulent resistance on kinetic fractionation (nk = 1 and nk = Mathieu and Baric, 1996; Fig. 4p-t).  

All four combinations differed strongly in their outcome. Calculating ft assuming non-steady state 

transpiration and including turbulent resistance in the estimation of kinetic fractionation led to ft 

during the measurement period between 0.8 and 0.2. ft declined from around 0.8 in the beginning of 

the study period (April 8 and 12, Fig. 4p, q) to around 0.5 with the onset and after the heavy rain falls 

between April 18 and 24 (Fig. 4r-t). ft also varied within a day albeit in smaller magnitude from 0.5-

0.7 and 0.2-0.5 on April 12 and 26, respectively (Fig. 4q, s).  

The difference between using steady state and non-steady state calculations of transpirational δ
18

O was 

highest in the morning when steady state transpiration was not yet reached and amounted up to 0.7 

(0.8 and 0.1 for δ
18

OT-nss and δ
18

OT-ss, respectively; Fig. 4q and s). Assuming steady state transpiration 

ft was far more variable within a day and did not result in values between 0 and 1 on April 26 in the 

early morning (Fig. 4s). 

Moreover, using nk = 1 and nk = Mathieu and Baric (1996) showed both similar diurnal fluctuations 

but differed strongly across the different measurement days. This is caused by the difference between 

δ
18

O of evaporation calculated by the two formulations of nk, which gets larger in times of higher soil 

water content θs (compare Fig. 4p-r to s-t). 

2.7. Discussion 

2.7.1. δ
18

OE and uncertainties in regard to changes in δ
18

Oe, temperature and αk 

In general, our results show that modeling the isotopic composition of evaporation (δ
18

OE) with the 

Craig and Gordon equation effectively reproduces the temporal dynamics of δ
18

OE measured with a 

laser spectrometer (Fig. 3). However, special care has to be taken concerning the use of key 
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parameters of the Craig and Gordon equation, namely the spatial resolution of the isotopic 

composition of the soil profile used to determine the δ
18

O signal at the evaporating sites (δ
18

Oe), the 

temperature used to normalize h and to derive α
+
, and the formulation used to estimate the kinetic 

fractionation factor (αk).  

 

 

 

 

 

Figure 5: Regressions of measured 

against modeled δ
18

OE on soil plots 

varying a) the oxygen isotope 

composition of the evaporating 

surface (δ
18

Oe); b) temperature and 

c) the formulation for αk. a) δ
18

Oe 

was varied relative to the nominal 

values at the evaporating front by 

+1‰ (grey dashed line), +3‰ (dark 

grey dashed line), -1‰ (light grey 

dashed line), -3‰ (grey dotted line) 

and as obtained at the evaporating 

front (black line). b) temperature (te) 

was equally varied relative to values 

obtained at the evaporating front by 

+2 °C (grey dashed line), +5°C 

(black dashed line), -2°C (light grey 

dashed line), -5°C (grey dotted line) 

and as obtained at the evaporating 

front (black line). c) In order to test 

the sensitivity of the modeled δ
18

OE 

in regard to αk we obtained δ
18

OE by 

using the formulations for αk as 

follows: diffusivity coefficient of 

Merlivat et al. (1978) in combination 

with nk=MB96 (black line), in 

combination with nk=1 (grey dotted 

line) and the diffusivity coefficient 

of Cappa et al. (2003) in 

combination with nk=MB96 (black 

dashed line) and nk=0.5 (grey 

dashed line). Black circles are 

measured (± SD, n = 3) against 

modeled values with the nominal 

values of δ
18

Oe and temperature at 

the evaporative front and αk = 

Me78
MB96

. 



Study II: Partitioning evapotranspiration – Testing the Craig and Gordon model with field 

measurements of oxygen isotope ratios of evaporative fluxes 

 

 

80 

Although soil water δ
18

O showed little variation below 10 cm soil depth, we have demonstrated that 

δ
18

Os varied considerably in the upper 10 cm of the soil profile. Especially near the evaporating front 

changes of several ‰ occurred within few mm to cm (Fig. 2; Barnes and Allison, 1983; Braud et al., 

2005a), thus imprecise estimations of δ
18

Os, hence δ
18

Oe, will have a huge impact on the estimate of 

δ
18

OE (see Fig. 3). To gain more insight into the required precision for the soil isotope profile for 

reliable δ
18

OE estimations, we calculated δ
18

OE varying δ
18

Oe between +3 and -3‰ from the observed 

value at the evaporating front (Fig. 5a). A deviation in δ
18

O of 1‰ relative to δ
18

O of soil water at the 

evaporating front leads to rather small offsets relative to measured values of δ
18

OE of also about 1‰; 

however this offset increases non-linearly to 5‰ when δ
18

O of soil water deviates 3‰ from its 

observed value (Fig. 5a). A change of 3‰ occurs easily within 1-2 cm of the soil near the evaporating 

front (Fig. 2). Therefore a deviation of more than 1-2 cm from soil δ
18

O measured at the evaporating 

front or averaging over several cm of the soil profile (approach III; Fig. 3) leads to poor agreement 

with measured δ
18

OE (Fig. 5a). This is of special importance in ecosystems with unsaturated surface 

soil layers. However, precisely estimating the evaporating front remains a challenge in field studies 

and often isotope data of the soil column is averaged over several cm of the soil column (e.g. Lai et al., 

2006; Yepez et al., 2005) or evaporative enrichment at the evaporating front is neglected and isotopic 

signatures of irrigation water are used instead (e.g. Wang et al., 2010).  

Similar to oxygen isotope profiles the temperature also varied considerably in the upper cm of the soil 

profile (see Fig. 2). Since the soil temperature must be determined at the evaporating front to 

normalize h and to derive α
+
, we wanted to quantify the uncertainty in the calculation of δ

18
OE arising 

from soil temperature variations modifying the temperature (Te) between +5 and -5 °C from values 

obtained at the evaporating front (Fig. 5b). Altering Te strongly influenced the comparison of 

measured versus calculated δ
18

O of evaporation (δ
18

OE). The typical maximum diurnal temperature 

measured at the evaporating front was around 24-26 °C with a diurnal temperature amplitude of about 

6 °C. A deviation from that temperature by 2 °C in either direction led to an offset in δ
18

OE of about 

2‰. The variation in temperature also influenced the diurnal amplitude of δ
18

OE with higher 

temperatures leading to small diurnal changes in δ
18

OE and lower temperatures leading to stronger 

alterations in δ
18

OE throughout the day (Fig. 5b). Soil temperature was not equal throughout the soil 
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profile and changes of 2 °C often occurred within the upper 10 cm and soil temperature of the upper 

60 cm was about 5 °C lower compared to soil surface temperatures at midday. The air temperature 

measured at 1.5 m height differed even stronger to soil surface temperature, especially on bare soil 

plots. Therefore soil temperature measurements need to be done in a very fine scale especially 

between the soil surface and 10 cm soil depth for a precise estimation of temperature at the 

evaporating sites. 

In previous studies no agreement on the value of the kinetic fractionation factor was found and both 

published values for the fractionation factor of molecular diffusion are still in use (compare Cappa et 

al., 2003 and Merlivat, 1978; see also Luz et al., 2009). There is additionally no general solution as 

how to express the combined influence of different resistances on the apparent kinetic fractionation 

factor (for a summary see Braud et al., 2005a, b). Stewart et al. (1974) linked the apparent kinetic 

fractionation factor αk with the fractionation of molecular diffusion by an exponential relation: αk = 

(Dv/Dv
i
)

nk
 (see Table 1). nk is then dependent on the nature of the transport and can evolve from nk = 

0.5 (turbulent conditions, ak = 1.014) to nk = 1 (αk = 1.0285; pure molecular diffusion; Dongmann et 

al., 1974). According to Stewart et al. (1974) when the soil is near saturation at the soil surface, 

transfer processes are atmosphere controlled (nk = na =0.5). With the dry down of the soil surface a 

vapor diffusion layer evolves and the transfer processes will be increasingly soil controlled (nk = ns = 

1; Mathieu and Bariac, 1996). Thus nk values evolve from na = 0.5 up to ns = 1 for soils drying under 

the influence of a turbulent air flow. Mathieu and Bariac (1996) proposed a formulation for the 

exponent nk on the basis of the volumetric soil water content at the soil surface θsurf compared to 

residual θres and saturated θsat that makes the kinetic fractionation factor very plastic with changes in 

surface volumetric soil water content (θsurf, see Table 1). Rothfuss et al. (2012) suggested likewise that 

under field conditions the kinetic fractionation factor is not constant. However, there is still 

controversy since kinetic fractionation factors estimated by Rothfuss et al. (2012) as well as Braud et 

al. (2009a,b) contradict the theory of Mathieu and Bariac (1996) since their obtained kinetic 

fractionation was near to diffusive conditions (1.0285) under wet soil conditions and near to laminar 

conditions (1.0189) under dry soil conditions. In our study, the kinetic fractionation factor calculated 

using the equation by Mathieu and Bariac (1996) ranged from 1.0261 (when the soil was driest at 
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April 18; nk = 0.91) to 1.022 (when soil was wettest at May 2; nk = 0.77), suggesting that conditions 

always ranged between diffusive and laminar. Notably, a retreat of the evaporating front away from 

the soil surface could only be detected on April 12 (soil plots only) and 18 and the evaporating front 

never decreased below 2 cm soil depth, which is in agreement with modeling approaches (Braud et al., 

2005a, b; Haverd and Cuntz, 2010).  

In general it has to be noted that assuming αk to vary with the dry down of the soil, which is not 

common to our knowledge in studies determining the isotopic composition of evaporation for 

partitioning purposes (e.g. Lai et al., 2006; Yepez et al., 2007), considerably improved the agreement 

between modeled and measured evaporative δ
18

O (Fig. 3). nk = 1 leads to a negative offset of about 

4‰ in comparison to the better fitting solution of Mathieu and Bariac (1996) on soil and root plots 

under rather dry soil conditions with soil water contents between 0.04 and 0.1 m
3
m

-3
 in this study (Fig. 

5c). For δ
18

OE measured on root plots this offset is not constant but varies around 2-3‰ during times 

of low soil water content and 5-6‰ after rainfall (data not shown). The different response of the 

treatment plots on the exclusion of nk can be explained by the difference in volumetric soil water 

content over time. Soil plots only slightly differed in θsurf before and after rainfall (Fig. 1, 4% increase 

from April 18 to 26), but the increase in θsurf after rainfall was far stronger on root plots (7% increase 

from April 18 to 26). Consequently, transfer processes were also affected by atmospheric turbulence 

and molecular diffusion in the soil did not play the sole role. Recently modeling studies address the 

issue of how to correctly estimate αk under changing environmental conditions (Braud et al., 2005a; 

Harverd and Cuntz, 2010; Harverd et al., 2011; Rothfuss et al., 2012), but no general conclusion could 

be derived. Despite the overall promising results of modeled δ
18

OE obtained using the equation of 

Mathieu and Bariac (1996) to estimate αk, it has to be noted that this formulation did not fit on every 

single measurement day. On May 2 measured values seemed to be in better agreement with modeled 

values when assuming diffusive conditions (1.0285) while on root plots on April 26 the agreement was 

better when assuming laminar conditions (1.0189, data not shown). Further, the values for αk derived 

in this study did not display a very broad range since soil conditions were never near saturation. We 

would thus strongly urge for more tests regarding the formulation for αk under more contrasting soil 

conditions ranging from saturation to residual soil water content. Finally, it has to be noted that 
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measured δ
18

OE might have been influenced by chamber effects. Any gas-exchange chamber needs to 

be well mixed for a proper estimation of fluxes; however this influences the boundary layer so that 

chamber conditions might be nearer to turbulent conditions than under natural conditions (at least for 

small to average wind speeds, see Pape et al., 2009). This influence will be especially large in dense 

forest ecosystems, which are relatively wind-still, compared to open grasslands as in this study. 

Likewise, there is still no agreement on the use of which molecular diffusivity ratio Dv/Dv
i
 (see Braud 

et al., 2005a; Horita et al., 2008; Luz et al., 2009). Both values experimentally determined by Merlivat 

(1978, 1.0285) and Cappa et al. (2003, 1.032) are still in use in experimental field studies aiming to 

partition ecosystem water fluxes (Lai et al., 2006; Williams et al., 2004; Yepez et al., 2007). Recently, 

Luz et al. (2009) confirmed the value estimated by Merlivat (1978) that deviates from kinetic theory, 

although the reason for this deviation remains an open question. A test of both values against 

measured evaporative δ
18

O (δ
18

OE) showed that the use of Cappa et al. (2003) produced negative 

offsets δ
18

OE of about 2-3‰ compared to measured δ
18

OE using nk of Mathieu and Bariac (1996) and 

even 5‰ using nk = 1 (data not shown). Therefore we additionally assumed pure atmosphere 

controlled conditions (nk = na = 0.5), although this is not realistic in an un-saturated soil as in this 

study. This led to strong positive offsets of about 8‰ (Fig. 5c). It can thus be concluded that no 

formulation for αk in combination with the diffusivity ratio of Cappa et al. (2003) led to satisfying 

agreement with measured δ
18

OE.  

2.7.2. Modeling δ
18

OE, δ
18

Oe and δ
18

OT on vegetation plots 

The isotope signature of leaf water at the evaporating sites (δ
18

Oe) in steady and non-steady state both 

steadily increased over the diurnal course as was expected (see Cuntz et al., 2007; Farquhar and 

Cernusak, 2005). δ
18

Oe in the non-steady state is depleted relative to steady state δ
18

Oe by up to 2‰ 

during large parts of the day especially in the morning hours, which is within the expected range for 

species with short water turnover times in leaves (Lai et al., 2006; Yepez et al., 2007).  

δ
18

Oe in non-steady state was surprisingly similar to measured midday bulk leaf water δ
18

O, which 

ranged between 7‰ and 11‰ (Fig. 4f-j). Bulk leaf δ
18

O contains a mixed signal of non-fractionated 
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xylem water and water at the evaporating sites that is highly enriched in δ
18

O (Cuntz et al., 2007; Gan 

et al., 2002; Yakir, 1992; Yakir et al., 1994). Therefore measured leaf water should be depleted 

compared to leaf water at the evaporative sites due to the Péclet effect (Farquhar and Lloyd 1993), 

which the observations only hint upon. We calculated δ
18

O of transpiration (δ
18

OT) based on non-

steady state leaf water enrichment as well as assuming steady state transpiration throughout the day. 

According to changes in δ
18

O at the evaporating sites in the non-steady state (δ
18

Oe-nss), δ
18

OT was 

rather negative in the morning by -20‰ and increased to source water values throughout the day (Fig. 

4k-o), which is in agreement with previous studies (e.g. Yepez et al., 2007).  

Modeled δ
18

O of evaporation (δ
18

OE) on vegetation plots was markedly depleted compared to modeled 

and measured δ
18

OE on root and soil plots. The amount of this relative depletion corresponded to the 

difference in evaporative enrichment in soil δ
18

O at the evaporating front (Fig. 2, compare Fig. 3 and 

4k-o), thus the differing microclimatic conditions and profiles of δ
18

Os on vegetation plots in 

comparison to soil and root plots had a large influence on δ
18

OE.  

2.7.3. Partitioning evapotranspiration 

The knowledge of the isotope signatures of evapotranspiration and its components – plant 

transpiration and soil evaporation – provides the possibility to estimate the relative contribution of T to 

ET (ft; Fig. 4p-t). Previous studies already demonstrated the importance of taking into account the 

non-steady state of plant transpiration; however the assumption of steady state transpiration can still be 

found in partitioning studies. Further, it is not common to account for transport resistances other than 

molecular diffusion (nk = 1) let alone possible changes in the kinetic fractionation factor over time due 

to changes in the nature of transport resistances, i.e. from atmosphere dominated transport in saturated 

soils to molecular diffusion dominated transport in dry soils. We calculated ft based on measured 

δ
18

OET and modeled δ
18

O of evaporation and transpiration (δ
18

OE and δ
18

OT) assuming both steady and 

non-steady state transpiration and including and excluding the effect of turbulent resistance to kinetic 

fractionation in the calculation of δ
18

OE to demonstrate the consequences regarding the variability in ft. 

All four approaches considerably varied in their outcome. 
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Measured evapotranspiration (ET, Fig. 4a-e) was highest in the beginning of the month and declined 

with the ongoing dry-down period of the soil water content (θs). However, with rising θs ET only 

slightly increased in the second half of the study period suggesting that ET was mainly driven by VPD 

and not θs during the measurement period (Fig. 1 and 4a-e; see also Cavanaugh et al., 2011). The 

isotope signature of ET also slightly decreased throughout the measurement period (Fig. 5a-e). This 

can either be caused by changing source water isotopic conditions or varying contributions of plant 

transpiration (ft) to total ET. Source water δ
18

O did not decrease throughout the month and only 

slightly varied between ~ -6 to -8‰ with a peak on April 18, suggesting that changes in ft were the 

cause of variation during the measurement period.  

Previous studies have shown that ft considerably varies between ecosystems and in time. On an annual 

basis ft is mostly within the range of 0.3 to 0.8 (see Cavanaugh et al., 2011; Raz-Yaseef et al., 2012; 

Williams et al., 2004; Yepez et al., 2003, 2005, 2007; Zhang et al., 2011). Raz-Yaseef et al. (2012) and 

Cavanaugh et al. (2011) both investigated how the temporal changes in soil moisture distribution due 

to precipitation influence the ET partitioning (see also Yepez et al., 2007; Zhang et al., 2011). Both 

studies concluded that soil evaporation was basically driven by volumetric soil water content (θs) in 

the top soil layer. In contrast, plant transpiration was found to be driven by θs of the root zone and 

VPD. If this holds for the investigated understory vegetation in our study, we would expect ft to be 

large during the first half of the study period with low top layer θs but high VPD and to decrease with 

the onset of the rainfalls in the middle of the month, where VPD was considerably lower but top soil 

layer θs increases due to rainfall infiltration (Fig. 1).  

Using the exponent nk of Mathieu and Bariac (1996; see Table 1) to calculate the isotopic composition 

of evaporation obviously led to the best agreement with our hypothesis on the development of ft 

throughout the study period. Calculating δ
18

O of evaporation (δ
18

OE) with nk = Mathieu and Bariac 

(1996) led to progressive changes in ft between the periods before and after the rainfalls between April 

18 and 25: ft was initially high (about 0.9) and decreased to 0.4 during midday after the rain events.  

A decrease in ft as observed in this study by assuming non-steady state transpiration and nk = Mathieu 

and Bariac (1996) could also be caused by changing vegetation cover (Wang et al., 2010; Yepez et al., 

2007). Here the vegetation cover decreased throughout the study period from 87% to 74% vegetation 
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cover. However, this small decrease in vegetation cover is unlikely to explain such a drastic decrease 

in ft from ~0.9 to 0.4.  

When changes in the kinetic fractionation factor during the study period were neglected (nk = 1) ft was 

more stable ranging between 0.6 and 0.75. However, this approach led to strong offsets of modeled 

compared to measured δ
18

OE on both root and soil plots (Fig. 3) and thus we would not recommend to 

use static values for the kinetic fractionation factor in field studies that deal with broad changes in 

volumetric soil water content near the soil surface (see also Rothfuss et al., 2012). Different 

assumptions made on the nature of transport resistances may thus easily lead to strong deviations in ft 

– in this study up to 0.3 (Fig. 4p-t). However, the parameterization of nk was developed (Mathieu and 

Bariac, 1996) and tested here on bare soil and root plots. It is still unclear to what extent vegetation 

cover might change the importance of the different transport resistances to the effective fractionation 

coefficient αk. 

Comparisons between modeled transpirational δ
18

O with and without the assumption of non-steady 

state indicate that the understory vegetation was not at steady state during large parts of the day (Fig. 

4k-o). Steady state was reached between approximately 14:00 and 17:00. Accordingly, differences 

between ft based on the assumption of steady versus non-steady state transpiration were rather small 

during the afternoon. During the rest of the day, especially before 12:00, assuming steady state 

transpiration led to much stronger diurnal fluctuations and low ft before midday. Errors in the 

estimation of ft due to steady state assumptions previously reported in literature are between 9 and 

25% (Yepez et al., 2007). Here, we found even larger deviations between ft estimated with 

transpiration in steady versus non-steady state: in the morning deviations between ft with the 

assumption of steady versus non-steady state transpiration were between 0.2 and 0.7 (Fig. 4p-t). 

Further, it has to be noted that – when assuming steady-state transpiration – ft could not be predicted 

in the early morning of April 26 as it was not within the range of 0-1 (Fig. 4s). After midday, however, 

agreement between ft calculated with and without the assumption of steady state was much better. In 

conclusion, assuming non-steady state conditions of plant transpiration is important for studies that 

focus on diurnal measurements as plants did not transpire in steady state over large parts of the day.  
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2.8. Conclusions 

In this study we demonstrated that predicting δ
18

O of evaporation by the Craig and Gordon equation 

led to good agreement with δ
18

OE based on CRDS and gas-exchange measurements under changing 

environmental conditions in the field. However, special care must be taken concerning key parameters 

of the Craig and Gordon equation since δ
18

OE is sensitive to even small uncertainties in δ
18

O and 

temperature at the evaporating sites (δ
18

Oe and Te) and the kinetic fractionation factor (αk). Our results 

emphasize the need for thorough characterization of the soil profile isotopic and climatic properties for 

correct estimations of δ
18

OE. We also urge for a better characterization of the formulation of αk of soil 

evaporation and we would not recommend to use static values for the kinetic fractionation factor in 

field studies that deal with broad changes in volumetric soil water content near the soil surface. 

Furthermore, we have shown that varying the formulation for kinetic fractionation of soil evaporation 

or assuming steady state transpiration led to drastic changes in the estimation of ft of up to 0.7. To gain 

a more complete understanding further studies are needed investigating modeled and measured δ
18

OE 

over longer time-scales with even stronger changes in environmental conditions, such as wet springs 

or autumns compared to summer drought.  
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3.1. Abstract 

Leaf area index L is a key vegetation parameter that can be used in soil-vegetation-atmosphere 

exchange modeling. To represent the structure of ecosystems in vertically distributed modeling, 

vertically resolved L distributions as well as vertical and angular gap probability Pgap(θ) distributions 

are needed, but they are rarely available. On the experimental side, studies often neglect woody plant 

components when using indirect methods for L or observations. This can lead to significantly biased 

results, particularly in semi-arid savannah-type ecosystems with low L values. 

The objective of this study is to compare three non-destructive leaf area index measurement 

techniques in a sparse savannah-type cork oak canopy in central Portugal in order to derive vertically 

resolved L as well as vertically and angularly resolved Pgap(θ). We used the established LAI-2000 

device as well as fast digital cover photography (DCP), which was vertically and angularly distributed. 

We applied object-based image analysis to DCP to exclude woody plant components. We compared 

the results with vertically distributed LAI-2000 measurements and with vertical estimates based on 

easily measurable crown parameters. 

Height and angularly distributed DCP was successfully applied here for the first time. It delivers gap 

probability and effective leaf area index measurements that are comparable to the established LAI-

2000. The height and angularly dependent leaf clumping index Ω could be determined with DCP, 

which led to a 30% higher total leaf area index L for DCP compared to LAI-2000. The exclusion of 

woody tissue from DCP yields on average a 6.9% lower leaf area index L. Including Ω and excluding 

woody tissue, the L of DCP matched precisely with direct measurements using litter traps. However, 

the set-up and site-specific adjustment of the image analysis algorithm remains challenging. We 

propose a special filter for LAI-2000 to enhance data quality when used in open canopies. Finally, if 

height-dependent observations are not feasible, ground-based observations of crown parameters can be 

used to derive very reasonable L height distributions from a single, ground-based L observation. 
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3.2. Introduction 

Leaf area index L is defined as the one-sided leaf area per unit of ground area (Watson, 1947). It is an 

important structural parameter of plants, canopies and ecosystems and strongly influences amounts of 

carbon uptake by photosynthesis (e.g. Bunce, 1989) and transpiration (e.g. Monteith, 1965). It 

determines the radiative energy absorbed and reflected by the canopy (Monteith, 1959) as well as the 

maximum capacity of rainfall interception, and thus canopy evaporation (Rutter et al., 1971). 

The structural parameter quantifying the amount of light passing through the canopy is the gap 

probability Pgap(θ), which depends on L, tree density and other stand attributes. It is the probability of 

a direct beam of radiation passing through the canopy without being intercepted by the foliage (Monsi 

and Saeki, 1953, 2005). It controls the energy distribution between plant surfaces and the soil surface 

as well as within the plant (Chen and Black, 1992; Nilson, 1971) and, thus, the ecosystem albedo. 

Pgap(θ)  and L are important ecosystem parameters that are needed in soil-vegetation-atmosphere 

transfer modeling (De Pury and Farquhar, 1997; Sellers and Dorman, 1987; Sinclair et al., 1976) or 

radiative transfer schemes (Jacquemoud et al., 2000; Haverd et al., 2012). Because recent model 

development aims for high-resolution multi-layer models (Baldocchi, 1997), the demand for vertically 

resolved plant or ecosystem parameters such as Pgap(θ) and L is increasing. Although vertically 

distributed observations in tree canopies are challenging (Meir et al., 2000), expensive and often not 

feasible, several observation approaches have been applied (Beadle et al., 1982; Hutchison et al., 1986; 

Parker et al., 1989; Strachan and McCaughey, 1996; Wang et al., 1992). Such approaches either 

required labor-intensive destructive sampling, heavy equipment, and ’above canopy readings’ with a 

tower, or did not take into consideration important factors such as the leaf clumping index Ω. 

Multiple techniques exist and have been widely used to measure leaf area index L and gap probability 

Pgap(θ). They can be classified into direct and indirect methods. Direct techniques include destructive 

sampling or litter traps (Jonckheere et al., 2004) and are not suitable for measuring. In general, they 

deliver the most precise results but are very labor intensive, and multiple observations during the year 

are often not feasible. Indirect techniques include the inclined point quadrat method (Warren Wilson, 

1960, 1965), the commercially available LAI-2000 plant canopy analyzer (LI-COR, 1992; Cutini 
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et al., 1998) or digital hemispherical (DHP) and digital cover photography (DCP) (Ryu et al., 2010b; 

Macfarlane et al., 2007a). DCP offers the advantage of using off-the-shelf digital cameras and 

providing a minimum of image distortion. Thus, common image analysis software can be used. 

Indirect techniques deliver Pgap(θ), L and other structural parameters of the canopy, such as crown 

cover and porosity (Macfarlane et al., 2007b). They are less labor intensive than direct methods and 

allow repeat observations throughout the year (Ryu et al., 2012), but they are inferior in accuracy. 

Most indirect techniques are based on the observation of and use the gap probability theory by Nilson 

(1971) to infer L. Some techniques need additional information about leaf inclination angles α to 

convert the projected leaf area observed by the sensors into actual leaf surface (Warren Wilson, 1960). 

Techniques such as the LAI-2000 instrument (LI-COR, 1992; Miller, 1967) or DCP applied at 

(Macfarlane et al., 2007b; Pisek et al., 2011; Wit, 1965) circumvent this need. However, DCP applied 

at angles 0<Θ<90 comes with a biased mean compared to DHP because a rectangular area is averaged 

but not a spherical sector. Still, when images represent only a small horizontal view span compared to 

360, the bias on mean is small. 

Using methods based on the influence of the spatially non-homogeneous distribution of leaves on 

Pgap(θ), expressed as clumping index Ω, needs to be considered because the gap probability theory 

assumes random distributed light intercepting elements (Fassnacht et al., 1994; Nilson, 1971). This 

greatly influences L derivation in open, heterogeneous stands such as savannah-type ecosystems. 

However, estimating the spatial and angular distribution of Ω within a plant stand remains challenging 

(Leblanc et al., 2005; Ryu et al., 2010b). 

The contribution of woody tissue (e.g., stems, branches, twigs) to observed gap probability Pgap(θ), 

and thus inferred leaf area index L, is still an unsolved problem for indirect measurements. It is 

assumed to introduce substantial biases depending on the ecosystem type L (Chen et al., 1997a, 1997b; 

Deblonde et al., 1994; LI-COR, 1992). Commonly, observations during leafless periods are used to 

estimate wood area index W and subtract it from L, which is only feasible in deciduous forests 

(Deblonde et al., 1994; Ryu et al., 2012) and assumes a random distribution of woody tissue with 

respect to the position of the leaves. Only a few approaches attempt to quantify this influence 

(Kucharik et al., 1998) and to our knowledge, it has not yet been included directly in computations. 
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The aim of the present study is to compare the performance of the established LAI-2000 against the 

DCP method with respect to leaf clumping effects, methodological biases and the influence of woody 

tissue. We derive height and angularly dependent gap probability Pgap(θ)  and height dependent leaf 

area index L in an open savannah-type woodland. Additionally, we test a ground-based approach to 

estimate height dependent L when height distributed measurements are not feasible. We address the 

following research questions: (1) How do gap probability Pgap(θ), leaf area index L and clumping 

index Ω change with height and view zenith angle? (2) How strong is the influence of non-

homogeneity on both methods? (3) How does the image size of DCP influence the accuracy of gap 

probability Pgap(θ)  and leaf area index L observations? (4) How strong is the influence of woody 

tissue on gap probability Pgap(θ)  and leaf area index L? (5) How well can we derive height 

distributed leaf area index L with only ground-based observations? 

3.3. Materials and methods 

3.3.1. Theory 

3.3.1.1. Gap probability theory 

Beer’s law for absorption of light by particles (Bouguer, 1729; Beer, 1852) is used to relate leaf area 

index L to the gap probability Pgap(θ) of the canopy (Nilson, 1971):   

 

where Pgap(θ) is the gap probability of the canopy, G(θ) is the leaf projection function, L 

[m
2
leaf/m

2
ground] is the leaf area index (sometimes referred to as Lt), Ω(θ) is the clumping index, and 

θ [°] is the view zenith angle. In fact, L refers to foliage area index if it has not been corrected for the 

influence of wooden tissue on Pgap(θ). By dividing through cos(θ) leaf area index is normalized to 

unity path length independent of the incidence angle. G(θ) was introduced in Eq.  (1) by Monsi and 

Saeki (1953) to transform the projection of leaf area perpendicular to the view direction into actual 
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leaf area index. The shape of G(θ) is dependent on the distribution of leaf angles f(α). Wilson (1960, 

1967) gave the solution as:   

 

with   

 

where ϑ = cos − 1(cos(θ) cos(α)). α [°] is the angle of the leaf’s normal to the zenith. φ(θ, α) results 

from the scalar product of both, the directional vector of the view direction and the directional vector 

of the leaf’s normal. It is integrated over the azimuth angle assuming the same distribution of leaf 

inclination over the entire azimuthal range. While Wilson (1967) assumes a uniform distribution of 

leaf angles f(α), Goel and Strebel (1984) proposed a Beta-distribution with two parameters, to 

represent leaf inclinations of real plants.  

The original formulation of Beer’s law assumes random distribution of light intercepting elements in 

the pathway of penetrating beams. Since leaf elements in natural canopies are seldom randomly 

distributed but clumped into crowns, Nilson (1971) introduced the clumping index Ω(θ) in Eq. (1). It 

distributes leaf area index from within crowns upon the entire canopy or region of measurement and is 

unity for randomly distributed leaf elements and decreases with increasing clumping.   

3.3.1.2.  LAI-2000  

The internal software of the LAI-2000 as well as the FV2200 windows-software (LI-COR 

Biosciences, Inc., 2010) for post processing calculates gap probability Pgap(θ) for each reading from 

the ratio of above canopy light intensity A and below canopy light intensity B. This is used to 

calculate the contact frequency K(θ) for each view zenith angle θ of the instrument following Miller 

(1967, 1986):   
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K(θ) arises from the inclined point quadrat method (Wilson, 1959, 1960) and is averaged over all 

readings for each angle to K(θ)  within each measurement. Since the clumping index Ω(θ) is 

unknown here, only effective leaf area index Le can be described by Eq. (4) underestimating actual 

leaf area index L. By the instrument software, the average gap probability Pgap(θ)   is reversely 

calculated via:   

 

according to Eq. (4). Miller (1967) derived a solution to determine Le directly from K(θ)  without 

knowledge of G(θ) under the condition that measurements of K(θ)  exist for different angles θ as:   

 

and since  of the leaf angle distribution function f(α), Eq. (6) 

reduces to:   

 

Recently, Ryu et al. (2010a) reported on the effects of averaging K(θ) instead of Pgap(θ) in Eq.  (4) on 

the estimation of Le  by the LAI-2000 instrument software which introduces an apparent clumping 

effect, partially compensating the unknown clumping index Ω(θ) of Eq. (4). Therefore, the correct 

averaging method (averaging Pgap instead of K(θ)) as well as the standard instrument software 

averaging is applied throughout this work to compare the influence of apparent clumping of leaves on 

leaf area index estimation. With the correct averaging method, Pgap(θ)  is calculated directly from 

readings and Eq. (7) leads to effective leaf area index Le assuming random distributed leaf elements 

making Eq. (5) obsolete.   
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3.3.1.3.  Digital cover photography  

The whole image must be separated in areas of gaps and plant tissue by some algorithm. If only the 

total number of pixels within gaps is known, the assumption must be made to face random distributed 

leaf elements resulting in effective leaf area index Le (Macfarlane et al., 2007a,b):   

 

Where gt  [pxl] is the number of pixels in all gaps average over all images and A [pxl] is the total 

number of pixels in each image file that Pgap = gt  /A. DCP offers the advantage to determine 

different gaps in the canopy separately, i.e. between crowns as well as gaps within crowns. Therefore, 

the clumping of leaf elements into crowns can be considered explicitly when calculating leaf area 

index L:   

 

where gl  [pxl] is the average number of pixels in the largest gap on the image which is normally, but 

not always, the gap between adjacent crowns.  The expression ( gt  − gl  )/(A − gl  ) calculates the 

gap probability within the crown envelopes. Since this gap probability is only valid within crowns, it 

needs to be scaled to total canopy according to the ratio of the crowns envelope to whole image area 

by 1 − gl  /A following Leblanc (2002). gl  , gl  and A should further be understood as angularly 

dependent in this work, since the DCP method is applied for different angles. Hence, leaf area index L 

and effective leaf area index Le can be calculated from observations at any θ since G(θ) is known.  

The clumping index Ω (θ) = Le /L mentioned in section 2.1.1 can be directly estimated via (Leblanc, 

2002):   
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Additionally, the prior averaging of gap fractions avoids undefined leaf area index L and clumping 

index Ω(θ) from images showing solely sky and prevents data loss.   

3.3.2. Site description  

The study was conducted in a Portuguese savannah-type cork-oak forest located ca. 100 km north-east 

of Lisbon (39°8 0 20.7 00 N, 8°20 0 3.0 00 W, 162 m above mean sea level) which is part of the 

European integrated carbon observation system ICOS. The only tree species on the site is the 

evergreen Quercus suber (L.) with a tree density of 209 ha
− 1

. The understory vegetation consists of 

annual grasses and herbs that undergo annual die back at the onset of summer drought (Dubbert et al., 

2013). The site is managed by local farmers for the purpose of cork and cattle production. 

3.3.3. Sampling design and measurements  

In August 2011 a 100 m × 100 m regular transect grid close to the Eddy-covariance flux tower was 

established under consideration of a semivariogram analysis of previous, ground-based leaf area index 

measurement with DCP (Fig.1). On each point of the grid, a large but lightweight tripod of 8.5 m 

maximum height was set up and equipped with a LAI-2000 plant canopy analyser sensor head (LI-

COR Biosciences Inc., Lincoln, NE, USA) operated in remote below mode connected to the control 

unit on the ground. At 3, 4, 5, 6, 7, 8, and 8.5 m height a sequence of 5 replicates were measured 

considering all 5 rings of the sensor head (view zenith angle θ = 7°, 23°, 38°, 53°, 68°, respectively), 

each enclosing a view angle span θ v of 10° to 13°. Simultaneously on the nearby Eddy-covariance 

flux tower, a second plant canopy analyser was operated in remote above mode with an automatic 

logging interval of 15 s.  Both sensor heads were equipped with 180 ◦ view caps, calibrated against 

each other and aligned in the same azimuthal direction. All LAI-2000 measurements were conducted 

during dusk and dawn to avoid direct sunlight conditions. After the measurement both control units 
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were connected for data exchange.  

During daylight conditions, the tripod was equipped with a Canon PowerShot D10 digital camera 

(Canon Inc., Tokyo, Japan) mounted on a tiltable rack that can be inclined to zenith view angles θ = 

0°, 10°, 23°, 38°, 53°, 68°, 71°, and 90° by a bowden cable and is triggered by a custom built remote 

control. Images facing in one azimuthal direction were taken at each height mentioned before. The 

camera has a 1/2.3 inch (ca. 6.16 × 4.62 mm) CCD sensor and a focal length of 6.2 mm enclosing a 

horizontal and vertical view angle span θ v of 53° and 41°, respectively. It was set to the maximum 

resolution of 4000 × 3000 pixel, fine compression ratio, automatic exposure and no zoom.  

On 105 trees the height of the crown top ht and crown bottom hb were determined from the ground 

using a digital hypsometer (Forestor Vertex, Hagl¨of Sweden). The crown radius rc was measured 

with a measuring tape in 0°, 90°, 180° and 270° azimuthal direction and averaged for each tree.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Rectangular transect grid (white 

squares) with 100 observation points of 100 × 

100 m extend. Background: aerial photograph 

of study site in central Portugal with Q. suber  

trees (Google, 2013). 

3.3.4. Data processing and analysis  

3.3.4.1.  LAI-2000 and DCP  

The readings of the LAI-2000 device were treated with the original and the correct averaging method 

according to Section 2.1.2 for each height. Standard errors were estimated using bootstrap.  

The digital cover images were analysed in original size representing a vertical view angle span θ v of 
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41 ◦ and cropped sizes representing θv spans of 20.5°, 10.25° and 5.625°.  The separation in gap, leaf 

and trunk area in the image was done by object-based image analysis using the eCognition software 

(Trimble Germany GmbH). The images were segmented using multiresolution segmentation with 

step- wise increased object sizes (Trimble, 2012). Gaps were classified by thresholds on object 

averages of brightness bri  , blue difference bd  and blue ratio br   (defined in Appendix B). The 

differences between neighbouring objects were used to strengthen the discriminatory power on the 

edges of gap areas (Appendix B). Image objects were classified as wooden tissue by thresholds based 

on shape features as well as rgb sum ∑ RGB  and green ratio gr  (Appendix B). Objects are only 

classified as wooden tissue when they did not obscure - or been obscured by - leaves (Kucharik et al., 

1998) using the relative amount of gap objects in a certain radius around the object as threshold.  

The number of pixels in gaps between crowns gl and the number of pixels in all gaps gt were averaged 

using bootstrap and used according to Section 2.1.3 for each height. The 90° view zenith angle images 

were used to determine leaf angle distribution f(α) and leaf projection function G(θ) utilizing the open 

source image processing package Fiji (Schindelin et al., 2012) measuring the angle of leaves whose 

lamina is aligned perpendicular to the view direction (Ryu et al., 2010b). 

3.3.4.2. Auxiliary data  

 

 

Figure 2: Sketches of crown models: ellipsoidal Se(h), asymmetric ellipsoidal Se9/10(h) and 

triangular model St(h). ht = crown top height, hb = crown bottom height, rc = crown radius. 
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To infer the height distribution of leaf area index L from purely ground-based observations, each set of 

crown top height ht, crown bottom height hb and crown radius rc observations were used to set up a 

crown shape model representation. All representations of a certain crown shape model were averaged 

using bootstrap, normalized to unity and multiplied by leaf area index L of 3 m height. This was done 

for a symmetric ellipsoid crown shape model Se(h), asymmetric ellipsoid crown shape model Se 

9/10(h) and triangular crown shape model St(h) illustrated in Fig. 2. h [m] is height above ground, rc 

[m] is the horizontal semiaxis and (ht − hb)/2 [m] is the vertical semiaxis of the crown. The 

asymmetric crown shape model Se 9/10(h) (ellipse centre at 9/10th of ellipse height) is estimated on 

the site to be the most representative crown shape. Additionally, the ellipsoidal Se(h) and triangular 

St(h) crown shape model were used to estimate the influence of the model shape on L height 

distribution. For each model, the leaf density is assumed to be uniform over the entire height range.  

3.4. Results and discussion 

In this section, an improvement of the LAI-2000 readings treatment is proposed and observed gap 

fraction distributions Pgap(θ)  of LAI-2000 and DCP are compared. Accordingly, the leaf projection 

function G(Θ) as well as the angular leaf clumping dependency Ω(Θ) are discussed with regard to leaf 

area index calculations. Then, the observed effective leaf area index Le and the leaf area index L are 

compared for both methods. The influence of view the angle span on DCP uncertainty is shown and 

the bias on L due to the influence of woody foliage is quantified. Finally, a purely ground-based 

approach for estimating L height distribution is proposed.  

3.4.1. LAI-2000 bad readings handling 

The LAI-2000 device measures light intensity above and below the canopy to infer gap probability 

Pgap(θ). By default, the instrument software ignores transmittance readings, where at least one of the 

rings of the below canopy light intensity readings B returns a higher value than the respective above 

canopy light intensity reading A resulting in Pgap(θ) values > 1. It is assumed that these values are 
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caused by operational errors, which is reasonable in canopies with higher leaf area index L (LI-COR, 

1992). However, this introduces a large negative bias when used in open canopies since light 

attenuation is generally small, A and B reading differences are small and normal measurement 

variations can lead to Pgap(θ) > 1. This appears in about 50% of observations made for this work. 

Inspecting the distribution of angularly averaged Pgap(θ)  > 1, the majority does not exceed 10% 

deviation (Fig. 3). Only few, distinct values apart from the main distribution exceed 10% deviation, 

indicating multiple Pgap(θ) values larger than unity due to operational errors.  This can only be 

observed when plotting the angularly averaged Pgap instead of gap fractions from all rings 

individually, since the magnitude of deviation depends on the view angle and multiple deviation 

distributions superpose each other making an error detection impossible. Pgap(θ)  values larger than 

10% deviation were excluded from further calculations employing a median absolute difference filter 

(MAD) based on 2.5 standard deviations. The retained Pgap(θ) values were set to unity. The amount 

of bad readings could thus be reduced from 50% to 3% and by setting Pgap(θ) with deviations below 

10% to unity instead of excluding them from calculation, resulting L is reduced by 26% at 3 m height 

to 63% at 8.5 m height, respectively. Pgap(θ) and effective leaf area index Le are then very 

comparable to DCP (Fig. 4, 7a), which is not subject to this source of error. Hence, this bad readings 

handling is considered to be appropriate to deal with the occurrence of large gaps in the canopy and is 

used in the further analysis. 
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Figure 3: Histogram of angular averaged transmittance deviations from unity Pgap − 1. Light grey: 

values set to 1 and kept for further analysis. Black: considered operational errors and excluded from 

further analysis with MAD filter based on 2.5 standard deviations. 

3.4.2. Gap probability distribution 

The height and angularly dependent gap probability Pgap(θ) was measured with the LAI-2000 and 

DCP, which is further used to calculate leaf area index L.  At 3 m height, Pgap(θ) is nearly identical at 

all observed angels θ using both methods (Fig.  4), with a maximum difference of 6.5%.  For all other 

heights, the differences do not exceed 10.6% (data not shown for the sake of clarity). In general, 

differences may be caused by occasionally falling below the minimum distance from the sensors to the 

leaves defined in Lang (1986); LI-COR (1992, App.  F). This is much more likely while measuring 

within tree crowns than below the canopy. However, both methods follow the same behaviour of 

increasing Pgap(θ) with increasing height above ground h and decreasing Pgap(θ) with increasing 

view zenith angle θ. DCP shows a more consistent picture for the height and angular dependence. The 

standard error of LAI-2000 is smaller than that of DCP since each LAI-2000 measurement integrates 

over a larger azimuthal angle range (see section 3.6). The good agreement of both methods proofs the 

reasonable handling of bad readings of section 3.1. LAI-2000 Pgap(θ) calculated with the standard 

software, excluding all readings with Pgap(θ) > 1, leads to up to 29.2% lower gap probabilities, never 
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reaching values larger than 0.72, even at the highest height.  

The outer most rings of the LAI-2000 sensor head are reported to be significant sources of error due to 

the contamination of scattered light (Kobayashi et al., 2013; Comeau et al., 2006; Stenberg et al., 

1994; Comeau et al., 1998; LI-COR, 1992) leading to an artificially higher Pgap. Compared to DCP, 

which is not subject to contamination, this effect cannot be observed here. In fact, LAI-2000 Pgap(θ) 

is rather lower than DCP Pgap(θ). Hence, to infer effective leaf area index Le and leaf area index L for 

the LAI-2000 method, all rings are considered in this work.  

Beer’s law calculates effective leaf area index Le and leaf area index L from Pgap(θ) observations (Eq.  

(1)). When the clumping index Ω(θ) is incorporated in the calculation, the influence of a non-

homogeneous leaf distribution can be considered (Nilson, 1971) in DCP. Beer’s law is plotted in Fig. 

4 with the effective leaf area index Le neglecting the non-homogeneous leaf distribution and with a fit 

to the angular dependent clumping index Ω(θ) of Fig. 6 (see section 3.4). Under consideration of 

angularly dependent leaf clumping, angular dependence of Beer’s law is improved, following closer 

the measured angularly dependent gap probability Pgap(θ).  Hence, the derivation of L from Pgap(θ) 

is improved, in particular for higher view zenith angles θ. This is of great importance for DCP, when 

observations of leaf angle α are missing and L is derived from Pgap(θ = 57.3°) (see section 3.3). 

Clumping is taken into consideration for the calculation of L from Pgap(θ) in the further analysis as 

shown in section 3.4.  

 

 

 

 

Figure 4: Dependency of gap 

probability Pgap on zenith view 

angle θ. Black symbols: DCP 

method at 3, 6 and 8 m height. Grey 

symbols: LAI-2000 method at 3 m 

height (6 and 8 m heights not 

shown). Solid lines: Beer’s law 

with effective leaf area index Le . 

Dashed lines: Beer’s law with 

angular dependent leaf clumping Ω 

(θ) of Fig. 6. 
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3.4.3. Leaf projection function 

The calculation of leaf area index L from gap probability Pgap(θ) requires information on the leaf 

projection function G(θ) and, therefore, on leaf inclination angle distribution  f(α) (Eq. 1 and 2).  To 

incorporate the empirical distribution of leaf angles into G(θ) calculation, a non-parametric kernel 

smooth (Härdle and Müller, 1997), considered as the best approximation of the empirical distribution, 

and the two-parameter Beta-distribution of section 2.1.1 is used. The distributions are normalized to 

unity and plotted over α/90° in 5a.  Both distributions lead to similar leaf projection functions G(θ) 

with comparable, narrow uncertainty bands (Fig. 5b). Hence, the beta distribution is considered 

appropriate for the Q. suber stand approving results from Wang et al. (2007) and is used for the entire 

treatment due to lower computational expense.  

The majority of leaves of the Q. suber trees are tilted at angles between 30° to 75° (Fig. 5a). Only a 

small amount of leafs is horizontally aligned, typical for trees adapted to high incoming radiation.  

Hence, the derived leaf projection function G(θ) shows very little change with view zenith angle and is 

0.5 at 57.3° (Fig. 5b) according to theory (Pisek et al., 2011; Wit, 1965). Therefore, the influence on 

the transformation from gap probability Pgap(θ) to leaf area index L is nearly equal for all view zenith 

angles θ here.  However, the need for leaf inclination angle information can generally be avoided for a 

single L estimation by choosing θ = 57.3 ◦ for observations of Pgap so that G(θ) = 0.5 and is 

independent of f(α) (Macfarlane et al., 2007b).  
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Figure 5: a) Empirical leaf 

inclination angle α distribution (bars, 

n=281), non-parametric kernel 

smooth distribution function (dashed 

line), two-parameter Beta-

distribution (solid line). The abscissa 

displays angle of the leaf normal to 

zenith: 0 = horizontal aligned leaves, 

1 = vertical aligned leaves. b) Leaf 

projection function G(θ) over view 

zenith angle θ derived from kernel 

smooth (dashed line) and Beta-

distribution (solid line). Uncertainty 

bands present standard error. 

 

3.4.4. Clumping index 

The angular dependency of leaf clumping index Ω(θ) is usually determined with the TRAC instrument 

based on gap size distribution or inversely modelled from independent estimates of leaf area index L 

and effective leaf area index Le (Ryu et al., 2010b; Leblanc et al., 2005; Leblanc, 2002; Kucharik et 

al., 1997; Chen and Cihlar, 1995; Chen and Black, 1992). Here, DCP is used to derive height and 

angularly distributed Ω(θ) for the first time (Fig. 6).  

Ω(θ) decreases with increasing height above ground according to theory, since the gaps within crowns 

gt − gl observed by the sensor decrease and the gaps between crowns gl increase. Theoretically, Ω(θ) 

increases monotonically with increasing θ and approaches 1 at 90° since the cameras sensing pathway 

through the canopy approaches infinite length and large gaps are successively decomposed in to 

smaller ones (Haverd et al., 2012; Ryu et al., 2010b; Norman and Welles, 1983). This is only true for 

lower heights where the edges of the camera view angle span θv do not exceed the canopy top height. 
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At upper heights, a certain amount of clear sky over the canopy top is always visible, even at low 

angles. Therefore, Ω(θ) = 1 is never reached.  

However, observed Ω(θ) shows a sigmoid behaviour for all heights here with a decline at the mid view 

zenith angles around 40° . This behaviour is comparable to TRAC and model findings of Leblanc et al. 

(2005), Kucharik et al. (1997), and Ryu et al. (2010b) and the values are low as in other savannah-type 

ecosystems. The reasons for the sigmoid behaviour is still unclear. Ryu et al. (2010b) proposed the 

heterogeneous ecosystem scale tree distribution pattern causing different clustering of trees at different 

zenith view angles θ.  This could be a possible explanation here, since the western part of the 

experimental site is planted much denser than the eastern part (Fig. 1) and the Q. suber trees are 

planted in loosely series along the contour lines of the site causing a stand-scale clumping effect.  

Another possible cause for increasing Ω(θ) at mid view zenith angles can be observation points located 

directly below or within a tree crown. Observations at the very centre of the crown are impossible 

since the position is occupied by the trunk. Hence, observations always take place at a certain distance 

to the horizontal crown centre. When the instrument is tilted and faces towards the crown centre, the 

path length through the crown increases with increasing θ thus leads to monotonically increasing Ω(θ). 

If the instrument is tilted and faces away from the crown centre, path length within the crown 

decreases with θ and leads to decreasing Ω(θ) until the next adjacent tree crown interferes the sensor 

pathway. Even when the observation points are numerous, 50% of all observations below or within 

crowns are affected by decreasing path length with increasing θ and so is the canopy average.  This 

effect should only occur when tree density is low and adjacent trees are interferring the sensing 

pathway only at very high θ such as in savannah-type ecosystems and depend on the crown shape. 

However, this effect should diminish with increasing height above ground which cannot be observed 

here. Additionally, the clumping of leaves to shoots within crowns is not considered in DCP so far. It 

may change with view zenith angle due to changing shoot angles projected to the view zenith angle 

resulting in different gap size distributions. This may counteract the mid view angle decline of Ω(θ).  

The influence on resulting leaf area index L remains unclear. The decreased Ω(θ) may lead to an 

artificial overestimation of L or account for the shortened pathway at these particular observation 

positions leading to the correct L. This is of peculiar importance when L is inferred from Pgap(θ = 
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57.3°) since this effect occurs in the mid zenith view angles and needs therefore further investigations 

e.g. with a radiative transfer model or investigations on the within crown gap size distribution. 

However, to represent the angular dependency of Ω(θ) in Eq. (1) for further computations in section 

3.2, a third degree polynomial fit is used. 

 

Figure 6: Change of clumping index Ω  with zenith view angle θ at 3, 6 and 8 m height. Solid lines: 

fitted third degree polynomials. 

3.4.5. Cumulative leaf area index height distribution 

The effective leaf area index ∑Le is calculated from Pgap(θ)   (with non-homogeneous leaf 

distribution omitted) for both methods and from θ = 53 ◦ under consideration of leaf projection 

function G(θ) = 0.5 for DCP. The cumulative leaf area index ∑L distribution (Fig. 7b) of LAI-2000 is 

calculated by ln(Pgap)  -averaging of the standard software introducing an apparent leaf clumping 

index (see section 2.1.2), whereas the cumulative DCP ∑L distribution is calculated under explicit 

consideration of leaf clumping (Eq. (9) and section 3.4).  
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Figure 7: a) Height distribution of cumulative effective leaf area index ∑Le for LAI-2000 and DCP 

derived from Pgap (53°). b) Same for cumulative leaf area index ∑L. 

 

Both methods show very similar cumulative ∑Le height distributions and com- parable uncertainties 

(Fig. 7a) as a result of well matching Pgap observations (Fig. 4).  

However, the distribution of total canopy leaf area index shows considerable differences among both 

methods. Only the estimate by DCP (Fig. 7b) matches very well with direct litter trap based 

measurements of the same period with  of 1.15 to 1.05  ( Costa e Silva et al., unpublished results), and 

it is comparable to other savannah-type ecosystems (Ryu et al., 2010b; Pereira et al., 2007; Kim et al., 

2006). At a height of 3 meters, LAI-2000 L is 32% lower than DCP and underestimates strongly 

compared to the litter trap measurements. This difference decreases with increasing height above the 

ground. Ryu et al. (2010a) showed that the apparent clumping of LAI-2000 overestimates Ω(Θ), 

leading to lower L, which can be confirmed in this study. Thus, with an independent estimation of 

clumping, LAI-2000 cannot be used to estimate L in this open canopy. Additionally, the decreasing 



Study III: Influence of woody tissue and leaf clumping on vertically resolved leaf area index and 

angular gap probability estimates 

 

 

111 

difference between LAI-2000 and DCP with height above ground indicates a decrease in apparent 

clumping of LAI-2000 with decreasing canopy cover, proving the model results from Ryu et al. 

(2010a). This trend changes according to the order of canopy cover, and cannot be correlated to actual 

clumping.  

3.4.6. Influence of view angle span on DCP results 

The view angle span θv of the camera determines the amount of angular integration present in each 

image. Hence, the larger θv, the smaller is the standard error of mean gap probability σ Pgap   and leaf 

area index σ L   as shown in Fig. 8b,d. The standard error for the LAI-2000 device is generally smaller 

than for DCP since each LAI-2000 measurement integrates over 180 ◦ azimuth angle compared to 53 ◦ 

to 6.625 ◦ angle (maximum sensor width to smallest image crop) of DCP.  

 

 

 

Figure 8: a, b) change of mean 

gap probability Pgap  and 

standard error σ Pgap  with view 

angle span 

θ v . c, d) change of mean leaf 

area index L   and standard 

error σ L   with view angle span 

θv. All plots display 

observations at zenith view 

angles of 0°, 53°, 68° and 3 m 

height above ground for LAI 

2000 and DCP. 

 

However, the mean gap probability Pgap  itself shows no change according to view angle span θv 

(Fig. 8a), illustrating the robustness of DCP to different image sizes.  Nevertheless, the larger θv, the 

larger is the bias due to taking one leaf projection function G(θ) and cos(θ) value for the whole image 

leading to differences in resulting mean leaf area index L (Fig. 8c) according to θv.  Here, this bias is 
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comparably small since G(θ) is rather flat (see Fig. 5). When G(θ) is strongly bent, e.g. with 

planophile leaves, the bias will be larger. Hence, the image needs to be cropped to an optimal size 

minimizing the higher bias coming with large image sizes and the higher uncertainty coming with 

smaller image sizes. Throughout the rest of this study, Pgap and L values with θv = 10.25° are used to 

be comparable to the LAI-2000 ring span.  

Theoretically, observation of DCP gap probability Pgap(θ) at a certain height should lead to the same 

leaf area index L, independent from the chosen view zenith angle θ. However, average differences of 

10.5% occurred with varying θ (Fig. 8c), most likely due to an insufficient estimation of the angular 

dependency of clumping index Ω(θ) mentioned in section 3.4. According to Eq. (9), errors in Ω(θ) or 

leaf projection function G(θ) linearly propagate to L. However, uncertainties associated with G(θ) are 

comparably small (Fig. 5) with respect to uncertainties of Ω(θ).   

3.4.7. Exclusion of wooden tissue 

By excluding wooden tissue like trunk and branch area in each image (see Sec. 2.4.1), the influence on 

gap probability Pgap and leaf area index L is quantified. The relative bias by not excluding the trunks 

and branches on gap probability εPgap(θ) is rather small and ranges up to -2.2%. The relative bias on 

leaf area index εL is stronger ranging from 3.1% to 20.9%. However, for angles and heights used here 

it is on average 6.9%. An overview of the relative bias depending on view zenith angle is listed in Tab. 

1. εPgap(θ) decreases with decreasing zenith view angle θ and decreases with increasing height above 

ground h since the amount of trunk area in the sensor view field is decreasing. In contrast, no height 

dependent behaviour is evident for εL, since wooden tissue either occluded gaps between or within 

crowns. Hence, the exclusion of wooden tissue raises or diminishes clumping index Ω (θ) with no 

clear height dependency and superposes the influence of εPgap(θ) on εL. Throughout the whole 

treatment, Pgap(θ) and L values corrected for the wooden tissue influence are used. 
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Table 1: Relative bias of gap probability Pgap and leaf area index L when wooden tissue is not 

excluded. h = height above ground, εPgap (θ) = relative bias of gap probability at 0°, 53° and 71° view 

zenith angle, εL = relative bias of leaf area index L derived from Pgap (53°). 

 

 

The wooden tissue bias presented here can be understood as a ”best-case” estimation since the 

classification algorithm is designed to rather failing to detect wooden tissue than wrongly classifying 

leaves as wooden tissue, to avoid an overestimation of the bias. 

The whole image analysis process is fully automated by using an object-based image analysis software 

to detect number of pixels in all gaps gl automatically by object attributes. This overcomes time 

consuming manual treatments as required in previous studies (e.g. Ryu et al., 2010b; Macfarlane et al., 

2007b,a) and contributes towards a more standardized and less labour intense processing of DCP 

images suitable for long term observations. Additionally, the detection based on objects is less 

sensitive to thresholds, since the mean over the pixels contained in an object is used for classification 

instead of every single pixel value separately. Furthermore, it offers much more characteristics, e.g. 

geometry and neighbourhood, to classify images than pixel based approaches.  Finally, the influence 

of wooden tissue on gap probability Pgap(θ) and leaf area index L can be quantified even in evergreen 

canopies where no leafless period occurs and one of the disadvantages of indirect L estimation 

methods can be overcome (e.g. Macfarlane et al., 2007b; Coops et al., 2004; Kucharik et al., 1998; 

Whitford et al., 1995).  

However, the set-up of the algorithm and the adjustment of the thresholds, especially for the detection 

of wooden tissue (see sec. 2.4.1), is site-specific and challenging. It requires expert knowledge in 

object based image analysis and to our knowledge, currently no open source software is available for 

this purpose. The presented algorithm is additionally computationally expensive compared to common 
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image processing software. Further, it is desirable to improve the algorithm with more transferable 

thresholds allowing a fast application in different ecosystems. 

3.4.8. Auxiliary data derived height distributions 

 Estimating vertical leaf area index L distributions in tall canopies is challenging since height 

distributed observations within the entire canopy are often not feasible. Therefore, an approach 

demanding only ground-based observations is tested here. In Fig. 9a, the height distribution of leaf 

area index L derived from the observed crown top height ht, crown bottom height hb, crown radius rc, 

and bottom leaf area index L at 3 m height is shown for each crown model (see Section 2.4.2).  The 

shape as well as the height of maximum L varies according to the model chosen. The higher the centre 

of gravity of the crown model, the higher is maximum L located in the crown. The integrated, 

cumulative P L distributions are plotted in Fig. 9b together with the measured cumulative P L height 

distribution of DCP. The ground-based crown model estimates fit very well to the distributions 

observed (R
2
 e = 0.96, R

2
 e 9/10 = 0.95, R

2
 t = 0.91) even if each crown model assumes a uniform leaf 

density distribution with height, that is rather unlikely at the site in Portugal. The ellipsoidal and 

triangular crown model Se(h) and St(h) are considered as most extreme assumptions on the natural 

crown shape. However, they do not significantly exceed the observations uncertainties. The relative 

error of the model based distribu- tion to the observed distribution is 3% for the ellipsoidal and 

asymmetric ellipsoidal crown model and 16% for the triangular crown model. Hence, if an appropriate 

crown model is chosen, it has a minor influence on the resulting distribution com- pared to other 

sources of error like the influence of wooden tissue or neglecting leaf clumping. The assessment of L 

height distributions via ground-based observations of crown parameters and a single, ground-based L 

observation is feasible and a great opportunity for application in tall canopies where height dependent 

gap probability Pgap observations are challenging. 
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Figure 9: a) Height distribution of leaf area index L estimated with the ellipsoidal (Se , solid line), 

asymmetric ellipsoidal (Se 9/10 , dashed line) and triangular (St , dotted-dashed line) crown model 

from crown parameters and leaf area index L derived from Pgap (53 ◦ ) at 3 m height. b) Height 

distribution of cumulative leaf area index ∑L. Dots: measured cumulative height distribution with 

DCP. Lines: estimated cumulative height distribution by integration of Se , Se 9/10 and St from a). 

3.5. Conclusions 

In this study, we employed vertically and angularly distributed gap probability Pgap observations and 

derived vertical leaf area index L and effective leaf area index Le  distributions for LAI-2000 and 

digital cover photography DCP in an open Q. suber  forest. Additionally, we estimated vertical L 

distributions with ground-based observations of crown parameters and a single ground-based L 

observation.  

We observed the following results: (1) Height and angularly dependent digital cover photography 

(DCP) was successfully applied here for the first time. It delivers very similar gap probability Pgap(θ) 
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and effective leaf area index Le as the established LAI-2000. (2) Height and angularly dependent leaf 

clumping index Ω could be successfully determined with DCP and is mandatory for deriving correct 

leaf area index L from gap probability Pgap(θ) at any view zenith angle θ.  (3) The effect of leaf 

clumping index Ω on total leaf area index L yield 30% higher L compared to approximated L from 

LAI-2000 observations. This difference decreases with increasing height above ground. (4) The 

exclusion of wooden tissue from DCP by object-based image analysis yield on average 6.9% lower 

leaf area index L values. This is a ’best case’ approximation, since the algorithm is designed not to 

overrate the effect. (5) When clumping index Ω is included and woody tissue is excluded from DCP, L 

of DCP matched precisely with direct measurements using litter traps. (6) When LAI-2000 is used in 

open canopies, we recommend treatment of bad readings to avoid strong biases on gap probability 

Pgap, effective leaf area index Le and leaf area index L due to small variations in light intensities. (7) 

When height dependent observations are not feasible, ground-based observations of crown parameters 

can be used to derive reasonable leaf area index L height distributions from a single, ground based L 

observation. 

For an efficient estimation of leaf area index height profiles of a forest canopy we recommend the 

following steps: 

 • Use below canopy digital cover photography DCP at a view zenith angle θ = 57.3° since no 

information on leaf projection function G(θ) is needed. 

• Exclude wooden tissue from the images with object-based image analysis. 

• Infer total leaf area index L of the canopy explicitly including leaf clumping Ω(θ). 

• Use a digital hypsometer to measure crown top height ht, crown bottom height hb, and crown radius 

rc from the ground. 

• Use the crown parameters and a suitable crown model to extrapolate total leaf area index L along the 

height above ground. 
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3.7. Appendix A: Nomenclature 

A [pxl]   total number of pixels in each image 

f(α) [ − ] leaf angle distribution function 

G(θ) [ − ]  leaf projection function 

gl [pxl]  number of pixels in gaps between crowns 

gt [pxl]  number of pixels in all gaps (gaps between crowns + gaps within crowns envelopes) 

h [m]   height above ground 

ht [m]   height of the crown top 

hb [m]   height of the crown bottom 

K(θ) [ − ]  contact frequency 

L [m
2
/m

2
]  leaf are index 

∑L [m
2
/m

2
]  cumulative leaf are index 

εL [%]   relative bias of leaf are index 

Le [m
2
/m

2
]      effective leaf are index 

∑Le [m
2
/m

2
] cumulative effective leaf are index 

Pgap(θ) [ − ]  gap probability 

εPgap(θ) [%]  relative bias of gap probability 

rc [m]   crown radius 

Se(h) [ − ]  ellipsoidal crown shape model 

Se 9/10(h)[ − ] asymmetric ellipsoidal crown shape model 

S t(h) [ − ]  triangular crown model 

θ [°]   view zenith angle 

α [°]   angle of the leaf’s normal to the zenith 
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θv [°]   view angle span 

W [m
2
/m

2
]     wood area index 

Ω(θ) [ − ]  clumping index 

3.8. Appendix B: Image object classification criteria 

The colour criteria used for the classification of gap objects are brightness bri  , blue difference bd  : 

 

 

 

and blue ratio br  : 

 

 

They are combined in a threshold criteria as: 

 

 

 

Within a radius of 50 pixels around each object classified as gap, the average difference to 

neighbouring gap and unclassified objects of brightness ( bridi f gap   and bridi f unc  ) and blue ratio 

( bridi f gap   and bridi f unc  )  are calculated for the refinement of the gap edges.  All gap objects missing 
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following threshold are declared as unclassified: 

 

 

This threshold is iteratively applied until no further changes in classification occurs. Image objects 

were classified as wooden tissue by thresholds based on the shape features area/width, length/width, 

curvature/length, border length/area, roundness, ellipse ratio, elliptic fit, and rectangular fit (feature 

description can be found in Trimble (2012)) as well as rgb sum ∑RGB:  

 

 

 

and green ratio gr  : 

 

 

 

The thresholds values for the wooden tissue detection are dependent on object size classes, therefore 

numerous and not shown here. 
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4. Study IV: INFLUENCE OF TREE COVER ON HERBACEOUS LAYER 

DEVELOPMENT AND CARBON AND WATER FLUXES IN A PORTUGUESE CORK-

OAK WOODLAND   
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4.1. Abstract  

Facilitation and competition between different vegetation layers may have a large impact on small-

scale vegetation development. We propose that this should not only influence overall herbaceous layer 

yield but also species distribution and understory longevity, and hence the ecosystems carbon uptake 

capacity especially during spring. We analyzed the effects of trees on microclimate and soil properties 

(water and nitrate content) as well as the development of an herbaceous community layer regarding 

species composition, aboveground biomass and net water and carbon fluxes in a cork-oak woodland in 

Portugal, between April and November 2011. 

The presence of trees caused a significant reduction in photosynthetic active radiation of 35 mol m
-2

 d
-

1
 and in soil temperature of 5°C from April to October. At the same time differences in species 

composition between experimental plots located in open areas and directly below trees could be 

observed: species composition and abundance of functional groups became increasingly different 

between locations from mid April onwards. During late spring drought adapted native forbs had 

significantly higher cover and biomass in the open area while cover and biomass of grasses and 

nitrogen fixing forbs was highest under the trees. Further, evapotranspiration and net carbon exchange 

decreased significantly stronger under the tree crowns compared to the open during late spring and the 

die back of herbaceous plants occurred earlier and faster under trees. This was most likely caused by 

interspecific competition for water between trees and herbaceous plants, despite the more favorable 

microclimate conditions under the trees during the onset of summer drought.        
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4.2. Introduction  

Mediterranean oak woodlands are savannah type, pastoral agro-forestry ecosystems (called ‘Montado’ 

in Portugal) which cover large areas of the Mediterranean basin. They are highly diverse and 

considered a habitat of high conservation value (Perez-Ramos et al., 2008). The ‘Montado’ is a multi-

layered ecosystem consisting of a widely spaced tree cover composed of Quercus. suber L. ,Quercus 

ilex or a combination of these, and an understory layer comprised of shrub formations and/or 

grasslands, fallows or cereal crops (Diaz et al., 1997; Perez-Ramos et al., 2008). In the ‘Montado’ 

ecosystem, the life cycle of herbaceous plants, which typically consist of annual C3 plants, is 

terminated by the beginning of the dry season. Commonly the vegetative cycle starts in autumn after 

the first rains and lasts until the onset of the drought season (Aires et al., 2008), with the main growth 

phase in spring between March and late May (Jongen et al. 2011; 2013a; Otieno et al., 2011). 

However, changes in seasonal rainfall can alter this pattern (Figueroa and Davy, 1991; Miranda et al., 

2002). Furthermore, factors such as extent of rainfall and the duration of the summer drought period 

may influence resource availability and affect plant species composition and productivity (Schwinning 

and Ehleringer, 2001).  

The contribution of the herbaceous layer to ecosystem fluxes and productivity consequently varies 

intra-annually and can be remarkably high, especially in spring. Paço et al. (2009) showed that in 

times of high water availability (October-May/June) herbaceous evapotranspiration is equal to and 

sometimes exceeds tree transpiration (see also Dubbert et al., 2013). Furthermore, the herbaceous layer 

can make up to more than 50% of total gross primary productivity (GPP) during spring and thus play a 

significant role for ecosystem productivity (Unger et al., 2009, 2010). Herbaceous plants also play an 

important role in the nitrogen budget enhancing soil nitrogen input and retention in the ecosystem 

(Otieno et al., 2011) and enhancing growth rate and fruit production of the trees (Pulido, et al., 2010). 

The high spatial heterogeneity created by the sparse tree cover, affects microclimate and nutrient 

availability (Huber-Sannwald and Jackson, 2001; Hussain et al., 2009; Moreno, 2008), creating 

distinct patches where herbaceous plants grow in the open or under the tree crown. In summer and late 

spring, the combination of water stress with high radiation can lead to plant photoinhibition (Werner 

and Correia, 1996; Werner et al., 2001, 2002). Trees can potentially mitigate the photosynthetic 
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damage in the herbaceous vegetation providing shade and temporarily moistening the top soil layers 

by hydraulic lift (Cubera and Moreno, 2007). This process is characterized by water movement 

upwards through the root systems of plants that have access to deeper soil depths (Caldwell et al., 

1998) and may temporarily increase the soil water content in the upper soil layers (e.g. Kurz-Besson et 

al., 2006). Hydraulic lift might have a facilitating effect for herbaceous plants, but that effect might 

easily be overwhelmed by competition for water with trees (Ludwig et al., 2004). Soil nutrient content 

has also been found to be positively affected by trees (e.g. Gallardo et al., 2000; Gallardo, 2003). 

However, trees might also act as competitors for nutrients, water and light for the understory, since 

competition for resources in agro-forestry systems is a frequent phenomenon (José et al., 2004).  

Most studies on tree versus herbaceous interactions in these ecosystems focus on biomass production 

(Scholes and Archer, 1997) at large spatial scales (landscape level; Casado et al., 2004; Costa et al., 

2009; Jose et al., 2004). An issue that has not been adequately covered yet is how changes might occur 

in the competitive balance between trees and the herbaceous layer over the course of a year. During 

times when water is generally not a limiting factor, maybe shade effects of trees crowns have no 

significant impact on the herbaceous layer. With increasing drought intensity though, facilitation may 

play a more important role, although also the opposite was found in ‘Montado’ systems (Bertness and 

Callaway, 1994; Maestre et al., 2009; Moreno, 2008). According to previous findings in ‘Montado’ 

sites with similar annual rainfall than our site (i.e. Moreno, 2008), we hypothesize that the herbaceous 

layer will overall profit from the reduced light and temperature stress that should occur under the trees. 

We propose that this should not only influence overall herbaceous layer yield but also species 

composition and understory longevity, and hence the ecosystems carbon uptake capacity especially 

during spring. The main aim of this study was to determine possible facilitating and competitive 

effects of tree cover on herbaceous vegetation (cover and biomass, species composition and water and 

carbon fluxes) and their impact during distinct periods within the year: the peak growing period 

(April-May); the transition of wet spring to summer drought (late May-June); peak summer drought 

(September) and the re-wetting period at the beginning of autumn (October-November).  
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4.3. Materials and Methods  

4.3.1. Study site  

Measurements were conducted between April 6 and November 22 2011 in an open cork-oak woodland 

(Quercus suber L.) in central Portugal, approximately 100 km north-east of Lisbon (N39°8’17.84’’ 

W8°20’3.76’’; Herdade de Machoqueira do Grou). The oak-trees are widely spaced (209 individuals 

ha
-
1) with a leaf area index of 1.1 and a gap probability of 0.7. The oak-trees are managed for cork 

production, were planted approximately 50 years ago and have a mean maximum crown height of 10 

m and diameter at breast height of 25 cm (Piayda et al., unpublished). It is a bi-layered system 

containing an annual herbaceous layer dominated by native forbs and grasses, with a biomass peak in 

spring (April-May) and senescence occurring between late May and early June with the onset of 

summer drought. In autumn 2009 the site was ploughed, limed and then seeded with a legume-rich 

seed mixture of native species, a common practice in these agro-silvopastoral systems in Portugal to 

improve productivity and soil fertility (Crespo, 2006). The seed mixture contained: Trifolium 

subterraneum L., Trifolium michelianum L., Trifolium resupinatum L., Trifolium vesiculosum Savi., 

Trifolium incarnatum L., Trifolium glanduliferum Boiss., Biserrula pelecinus L., Ornithopus sativus 

Brot., Ornithopus compressus L. and Lolium multiflorum Lam. In total 20 herbaceous species were 

observed during the measurement period in 2011 (Table 1). 

The soil is a Cambisol, its substrate consists of 81% sand, 14% silt and 5% clay. The site is 

characterized by a Mediterranean climate, with wet spring conditions and hot, dry summers. Long-

term mean annual temperature is approximately 15.9 °C and long-term mean annual precipitation is 

680 mm (Instituto de Meteorologia, Lisbon). 

We established plots in two different locations: one directly under the oak trees crown projected area 

and another one in an adjacent open area, approximately 5-7 m distant from canopy cover. A total of 

10 permanent herbaceous layer plots of 40 x80 cm were installed with 5 plots in each location. The 

distance to the cork-oak crown was selected in order to ensure similar soil and environmental 



Study IV: Influence of tree cover on herbaceous layer development and carbon and water fluxes in a 

Portuguese cork-oak woodland 

 

 

130 

conditions between locations and on the other hand eliminate shading or influence of cork-oak roots, 

which was verified with soil profiles to 100 cm depth. 

Table 1: List of herbaceous species growing in the open and tree site in 2011. 

N-fixing forbs Forbs Grasses 

Ornithopus compressus L. Crepis vesicaria L. Briza maxiama L. 

Ornithopus sativus Brot. Geranium spec Lolium multiflorum Lam. 

Trifolium glanduliferum Boiss. Plantago coronopus L. Vulpia bromoides Gray 

Trifolium michelianum Savi Rumex acetosella L. Vulpia geniculata Link 

Trifolium incarnatum L. Silene gallica L.  

Trifolium subterraneum L. Spergula arvensis L.  

Trifolium resupinatum L. Tolpis barbata (L.) Gaertn.  

Trifolium vesiculosum Savi Tuberaria guttata (L.) Fourr.  

4.3.2. Environmental parameters  

In the open and the tree plots photosynthetic photon flux density was measured below the oak canopy 

and above the herbaceous vegetation at approximately 1.5 m height (PPFD, LI-190SB, LI-COR, 

Lincoln, USA). Rainfall (ARG100 Rain gauge, Campbell Scientific, Logan, UT, USA), air 

temperature and relative humidity were all measured continuously in the open area (CS-215 

Temperature and Relative Humidity Probe, Campbell Scientific, Logan, UT, USA) and means were 

stored in a datalogger every 30 minutes (CR10x, Campbell Scientific, Logan, UT, USA). Vapor 

pressure deficit (VPD, kPA) was calculated from relative humidity and air temperature data.  

Soil temperature (custom built Pt-100 elements) and volumetric water content (θ, 10hs, Decagon, 

Washington, USA) in 5, 15, 30 and 60 cm depth were measured on both plots and stored in a 

datalogger as 60 minutes means (CR1000, Campbell Scientific, Logan, UT, USA. The total daily 

water reduction of the upper 60 cm of the soil profile (the sum of plant transpiration and soil 

evaporation as well as runoff and drainage) was calculated from θ measurements. Therefore, the 

reduction in θ over 24 h (midnight to midnight) was estimated for each depth separately and then 

integrated for the whole upper 60 cm of the soil profile. 
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4.3.3. Vegetation Cover and aboveground biomass  

Vegetation cover of the permanent plots was analyzed four times during each of three measuring 

periods: moist spring (April 6 - May 3), the transition of wet spring to summer drought (May 23 - June 

16) and the re-wetting period at the beginning of autumn (October 25 - November 22). Cover was 

estimated as the percentage of species canopy cover in each plot and thereafter pooled into functional 

groups: grasses and forbs (subdivided into N-fixing forbs and other forbs). Only living plant material 

was recorded.  

To compare species similarity between both locations, Renkonen similarity was calculated. This index 

was chosen because it is rather robust, as it is not strongly influenced by the number of species and 

sample size (Krebs, 1998). The Renkonen similarity index was calculated for every measuring day. As 

a means of abundance, species cover percentage was used in the calculations (Krebs, 1998):  

       

1) 

 

where P is the percentage similarity between sample 1 and 2, P1i the percentage of species i in 

community sample 1, and P2i the percentage of species i in community sample 2. 

Living aboveground biomass of herbaceous plants was determined destructively on five 40x40 cm 

plots in the open and under the trees randomly selected near the permanent plots. Harvesting took 

place in 6 measuring dates: four in spring and two in November. All green fresh aboveground plant 

biomass was collected, divided by functional groups, dried (60 °C, 48 hours) and weighed. 

4.3.4. Soil nitrate content  

Soil samples for the determination of nitrate content were collected on May 25, September 20 and 

November 10. Soil was sampled at 0-10, 10-20 and 20-30 cm depth (n = 3 on the open and tree plots 

each). Nitrate extraction was carried out using Flow Injection Analysis (MLE FIA-II, Dresden, 

Germany). 30 ml CaCl2 (0.01 mol) were added to 15 mg fresh soil, shaken for 1 hour and then 

filtrated. 15 ml of the solution were injected into the FIA laboratory device and automatically 
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analyzed.  

4.3.5. Gas-exchange measurements  

Net CO2 exchange (NEE) and evapotranspiration (ET) on vegetation plots were measured using a 

cavity ring-down spectrometer (CRDS, Picarro, Santa Clara, USA)  and a CO2 infrared gas analyzer 

(BINOS100; Fisher-Rosemount GmbH &Co., Hasselroth, Germany) in combination with transparent 

chambers in an open gas exchange system. Chambers were custom built, following the design of Pape 

et al. (2009, see also Dubbert et al., 2013). A transparent Plexiglas soil chamber was coated with an 

isotope inert FEP foil (4PTFE, Stuhr, Germany) with a total volume of 60 L. The background air inlet 

port and the sampling air outlet port were located in 10 and 50 cm height, respectively. The 

background air was sampled with a tube from 1.5 m distance to the ground and buffered with a 200 L 

buffer volume. The flow through the chamber was regulated as described in Pape et al. (2009) using a 

fan inside the inlet sampling tube and could be adjusted between 0 and 40 L min
-1

. We measured 

background and sampling air alternately until stable values were reached. The chamber was 

maintained on the plots until stabilization was reached, which was <10 min. The observed increase in 

air temperature above ambient values was ca. 3 °C after 5 min and stable thereafter, which is smaller 

compared to those found in Pape et al. (2009). A five minutes interval average for the calculation of 

NEE and ET was used. Fluxes of NEE and ET were calculated with the gas exchange equations of von 

Caemmerer and Farquhar (1981). Total daytime sums of NEE and ET and midday averages of gtw of 

the herbaceous layer were calculated. The relative contribution of total daytime ET to the total water 

loss from the 60 cm upper soil layer (thereafter termed “relative soil water use”) was estimated by 

relating the total daily water loss from the upper soil layers to total daytime ET of the herbaceous 

layer. Gas-exchange measurements were carried out between April and the end of November, 

corresponding to the measurement intervals of vegetation cover. 
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4.3.6. Statistical analysis  

All results are presented as mean values (± SD, n=3-5). T-tests were conducted to test for significant 

differences in nitrate content between study plots within each soil depths and seasons. Mann-Whitney 

U-tests were carried out to examine location specific differences in vegetation cover and aboveground 

biomass separately for distinct functional groups for all measuring dates. The same test was used to 

examine location specific differences in evapotranspiration and net carbon exchange for each sampling 

date in spring, summer and autumn separately.  

Non-linear correlations were used to relate the location differences in total NEE during daylight in 

spring with the location differences in PPFD, relative water use. For all calculations of between 

location differences only those dates were used, where measurements on open and tree plots were 

conducted on consecutive days with comparable environmental conditions. Linear regressions were 

used to relate NEE in spring on both plots with PPFD and θ. Statistical analyses were carried out with 

the software Statistica (Statistica 6.0, StatSoft, Inc., Tulsa, USA).  

4.4. Results  

4.4.1. Development of microclimatic conditions and soil nitrate content  

Over the course of the study period, air temperature followed the typical Mediterranean climate pattern 

with mean temperatures around 10 °C at the beginning of the year but rising above 25 °C in August 

and September (Fig. 1a). Consequently, vapor pressure deficit (VPD) was low during winter and high 

during summer and strongly variable with values ranging from 0.6 to 3 kPa (Fig. 1a). During summer, 

soil temperatures exceeded air temperature by up to 10 °C. Moreover, daily mean soil temperature was 

generally 5 °C higher on the open plots compared to the tree plots between April and October (Fig. 

1b). 

With a total amount of 816 mm rainfall 2011 was rather high compared to the long term average (680 

mm). Major rainfall occurred during spring and winter with barely any rain during the summer 
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months.  After the last rainfalls occurred between late May and early June and θ dropped below 0.05 

m
3
 m

-3
 on both study areas (Fig. 1c).  

During the winter months (January-March and November-December), mean daily integrated PPFD 

was 13 mol m
-2

 d
-1

 on both plots. On the open plots, PPFD increased until mid-June to a peak of 64.4 

mol m
-2

 d
-1

 and then declined towards the end of the year (Fig. 1d), while it remained rather stable 

under the trees with a mean value of about 14 mol m
-2

 d
-1

, never exceeding  22 mol m
-2

 d
-1

 (Fig. 1d).  

Soil nitrate content ranged between 0.13 and 3.1 mg kg
-1

 (Table 2). Generally, soil nitrate content 

declined rapidly with depth (with the exception of November), and especially in May soil nitrate 

content was considerably higher on the open plots compared to the tree plots (Table 2).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Environmental conditions during 2011; a) daily mean air temperature (black line), vapor 

pressure deficit (VPD; black long dashed line) and daily rainfall (black bars) observed in the open 

area; b) soil temperature in the open and tree plots (grey and black lines, respectively). The lighter 

grey lines indicate daily means; c) soil volumetric water content (Θ) in 5 cm soil depth in the open and 

tree plots (grey and black lines, resp.) and d) daily sums of photosynthetic photon flux density (PPFD) 

in the open (grey line) and tree plots (black line). 
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Table 2: Nitrate content in different soil depths in May, September and November 2011 (mean values 

± SD; n = 3). * denote statistic significant differences between the open and the tree site (p<0.05).  

Month Soil depth  Nitrate content (mg kg
-1

) 

in the soil 

Sign. 

 (cm) Open plots Tree plots  

May 0-10 1.33 ± 0.99 0.27 ± 0.11 * 

 10-20 0.53 ± 0.29 0.16 ± 0.04 * 

 20-30 0.47 ± 0.46 0.13 ± 0.08 n.s. 

September 0-10 3.1 ± 0.42 2.48 ± 0.02 n.s. 

 10-20 1.05 ± 0.08 0.97 ± 0.02 n.s. 

 20-30 1.12 ± 0.03 1.26 ± 0.23 * 

November 0-10 0.77 ± 0.06 0.43 ± 0.06 * 

 10-20 0.68 ± 0.27 0.43 ± 0.06 n.s. 

 20-30 0.67 ± 0.08 0.33 ± 0.02 * 

 

4.4.2. Herbaceous layer species distribution and aboveground biomass  

plant cover reached a maximum of 90 and 88% in late May (Fig.2) and a total aboveground biomass 

was 69 ± 4 and 72 ± 21 g m
-2

 in the beginning of April on the open and tree plots, respectively (Table 

3). On the first sampling date in April species composition was relatively similar between open and 

tree plots (Renkonen similarity of 65%, Fig. 3a-b) and no significant plot specific differences could be 

found regarding the percentage cover and biomass of each functional group (U-tests; p>0.05). 

Although total green aboveground biomass and cover did not significantly differ until the end of May 

between locations (U-tests, p>0.05; Fig. 2 and Table 3), species composition, cover and biomass of 

each functional group developed differently between locations from April 24 until June 14 (Fig. 3, 

Table 3). This is underlined by the Renkonen similarity, decreasing rapidly from early April to late 

May to 30% (Fig. 3a-b). 

Between early April and late May grass cover and biomass slightly increased on the tree plots reaching 

42% and 44 g m
-1

, respectively. While always present on the tree plots, grasses completely vanished 

from the open plots during late spring. During the same time forbs, such as Tuberaria guttata, roughly 

doubled their cover and aboveground biomass reaching 55% and 51 g m
-2

, respectively (Fig. 3c). 
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Figure 2: a-h) Relative vegetation cover in % of living biomass of distinct functional groups of the 

herbaceous layer (Grasses, N-fixing and other forbs) in early spring, late spring and fall 2011 on the 

open (a-e) and tree plots (f-h; mean values; n = 5).    

 

In addition, the herbaceous understory began to die off 2 weeks earlier on the tree plots compared to 

the plots in the open (Fig. 2b and f). The retarded wilting rate on the open plots was mostly caused by 

the persistence of two species, T. guttata and T. barbata (Fig. 3c), which played only a minor role on 

the tree plots ( highest cover value of 12% in the second half of May, Fig. 3d). Among forbs, nitrogen 

fixers, especially Trifolium species, became more abundant on the tree plots compared to those in the 

open, contributing by 36% to total cover (Fig. 2 and 3f).  
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Figure 3: a) Renkonen index showing the relative (0-1) similarity between the open and the tree site 

from April to June. b-g) Relative vegetation cover in % of each species of the three functional groups 

of the herbaceous layer (Grasses, N-fixing and other forbs) on the open (left) and the tree site (right) 

from April to June (mean values; n = 5). 

 

In contrast to spring, plant species composition was relatively homogeneous and no significant 

differences between locations could be found during germination and initial growth in autumn. After 

the first rain events in autumn plants started to germinate and quickly reached a total cover of roughly 

50% within one month. During the germination phase single plants were initially so small that species 

identity could not be determined allowing only a general classification of grasses and forbs. Thus we 

did not distinguish any further between N-fixing and other forbs in autumn.   
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Table 3: Living aboveground biomass [g m
-2

] of distinct functional groups of the herbaceous layer 

(Grasses, N-fixing and other forbs) in spring and fall 2011 on the open and tree site (mean values ± 

SD; n=5). 

  

 

open site tree site 

 

grasses forbs total grasses forbs total 

date 

 

other 

forbs 

N-fixing 

forbs 

 

 

other 

forbs 

N-fixing 

forbs 

 

8.4.2011 20 ± 12 26 ± 7 23 ± 10 69 ± 4 32 ± 15 11 ± 10 29 ± 12 72 ± 21 

24.4.2011 18 ± 3 30 ± 5 22 ± 5 70 ± 9 32 ± 8 10 ± 6 29 ± 10 71 ± 11 

27.5.2011 11 ± 5 51 ± 4 5 ± 2 67 ± 7 44 ± 35 10 ± 8 18 ± 10 72 ± 23 

14.6.2011 0 30 ± 20 3 ± 3 33 ± 12 6  ± 5 4  ± 3 7  ± 2 17 ± 9 

1.11.2011 6 ± 2 8 ± 2 14 ± 2 8 ± 2 7 ± 2 15 ± 4 

14.11.2011 23 ± 7 20 ± 2 43 ± 7  23 ±  7 18 ±  2 41 ± 7 

4.4.3. Herbaceous layer evapotranspiration, water loss in the soil and total conductance  

Total evapotranspiration (ET) of the herbaceous layer during daytime, calculated for the open and tree 

plots, was generally highest during spring (Fig. 4 a, b, e, and f) and lowest during summer drought 

(Fig. 4 c, g), when herbaceous vegetation had vanished and soil θ was low. ET did not differ 

significantly between the open and tree plots during summer and autumn (Fig. 4 c, d, g, and h; U-tests, 

p>0.05) and was 0.13 ± 0.02 mm d
-1 

during summer and 0.4 ± 0.03 mm d
-1

 in autumn. In contrast, 

herbaceous layer ET was significantly lower on the tree plots compared to the open plots during spring 

(U-test, p<0.05), and especially in the transition period between spring and summer (late May - mid 

June; Fig. 4 a, b, e, and f). Herbaceous layer ET amounted up to 2 mm d
-1

 on the open and up to 1.7 

mm d
-1 

on the tree plots; on average ET was 0.53 ± 0.16 mm d
-1

 higher on the open plots between late 

May and mid June (Fig. 4 b, f). In contrast to summer and autumn where ET was relatively stable, ET 

was highly variable in spring on both locations. ET correlated well with VPD (in case of soil θ > 0.09 

m
3
 m

-3
) and soil θ (in case of VPD > 0.8 kPa; data not shown). Typically, rain events occurred roughly 

every 7-10 days during spring, followed by dry-down periods (Fig. 1 a, c), leading to rapid changes in 

VPD and θ and hence ET. 
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Figure 4: a-h) Total daily water reduction in the upper 60 cm of the soil in the open and the tree plots 

(grey and black bars, respectively) as well as total herbaceous evapotranspiration (ET) during daylight 

on the open (a-d) and tree plots (e-h; white and black circles, respectively). Results are presented as 

mean values (± SD in case of ET; n=3-4) and  i-l) relative water use of the herbaceous layer [%] on the 

open (grey circles) and tree plots (black circles), between April 4 and November 22, 2011: early spring 

(a, e, i), late spring (b, f, j), summer (c, g, k), and fall (d, h, l). 

   

The total daily water loss within the upper soil layers (where herbaceous roots were detected from 0 to 

roughly 60 cm soil depth) was highest during times of high rainfall in autumn (up to 5 mm d
-1

)
 
and 

lowest during summer drought (0.15 ± 0.02 mm d
-1

; Fig. 4). During springtime water loss in the soil 

profile mainly followed rainfall patterns with high soil water loss immediately after rainfall reaching 2 
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and 2.2 mm d
-1 

in the tree and open plots, respectively. Mean spring water loss from the upper soil 

layers was similar in both plots with 1.400 ± 0.2 mm d
-1

. 

By relating the total daily water loss from the upper soil layers to total daily ET of the herbaceous 

layer we calculated the relative contribution of ET to the total water loss from the upper soil where 

herbaceous roots have access (thereafter termed “relative soil water use”, Fig. 4i-l). In general, relative 

soil water use was high during dry periods (spring and summer, Fig. 4i-k) and low during wet periods 

(autumn, Fig. 4l). During early spring (April 6 to May 23) relative soil water use did not differ much 

between the study locations. However, starting from the onset of summer in late May until mid June it 

was clearly visible that the relative soil water use was considerably higher on open plots, reaching 

100%. In comparison the relative soil water use on the tree plots was only 60% on average during this 

period. 

4.4.4. Net CO2 exchange of the herbaceous layer  

Figure 5: a-d) Total net CO2 exchange during daylight on the open and tree site (grey and black 

cycles) during the four measurement campaigns between April 24 and November 22, 2011: early 

spring (a), late spring (b), summer (c), and fall (d). Results are mean values ± SD (n=3). 

 

Total net herbaceous CO2 exchange during daytime (NEE; comprising plant and soil net CO2 

exchange) was calculated for the open and tree plots ranging between -2.1 ± 0.38 and 0.56 ± 0.08 g C 

m
-2

 d
-1

 (negative and positive values indicate net CO2 uptake and release, respectively; Fig. 5a-d). 

Generally, herbaceous net CO2 uptake was highest during the growth peak in April and declined 
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during the spring to summer transition with the dying of the herbaceous vegetation and dry down of 

the soil (Fig. 5a-d). In the absence of living herbaceous vegetation we found net respiration of 

maximum 0.56 ± 0.08 g C m
-2

 d
-1

 in September and October before the germination of the herbaceous 

vegetation. After the first rainfall at the end of October herbaceous fluxes turned from net respiration 

to net carbon uptake within 2 weeks only (Fig. 5d). Thereafter, net carbon uptake ranged between -

0.02 ± 0.13 and -0.8 ± 0.45 g C m
-2

 d
-1

 and remained considerably smaller than spring time values. 

While NEE was similar on both plots during summer and autumn (Mann-Whithney-U tests, n.s.), we 

found lower net CO2 uptake on tree plots during spring, which became more and more pronounced 

with the transition to summer drought (p<0.05 between June 1 and 16). The shift from a net carbon 

sink to a net carbon source was considerably earlier on tree plots (beginning of June) when we still 

observed net CO2 uptake of on average -0.66 ± 0.18  g C m
-2

 d
-1

 
 
on open plots.  

Strong differences in PPFD between open and tree plots could be detected between April and October 

and led to the assumption that the differences between locations in herbaceous CO2 uptake in late 

spring might be related with a shading effect of the tree canopy. However, no correlations between 

PPFD and NEE in spring time (April-June) within each plot type could be detected (Fig. 6a) and also 

no correlation between the differences between locations in PPFD and in NEE was found (Fig. 6d). In 

contrast, location specific differences were found in spring regarding the relationship of NEE and soil 

water content (θ). Under the trees NEE seemed to be strongly influenced by θ in spring, while this was 

not the case for the open area (Fig. 6b). Moreover, the difference in relative soil water use between 

open and tree plots was highly correlated to open versus tree plot differences in NEE (Fig. 6e). 
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Figure 6: a-b) Open and 

tree site (white and 

black circles, 

respectively) net CO2 

exchange during 

daylight (NEE) in spring 

(April-June) versus open 

and tree site 

photosynthetic photon 

flux density (a, PPFD), 

and soil water content in 

5 cm depth (b). c-d) 

Difference between 

open and tree site in 

spring (Δopen – tree 

site; April-June) net CO2 

exchange during 

daylight (NEE) versus 

difference between open 

and tree site 

photosynthetic photon 

flux density (c, PPFD), 

and water use (d). Sites 

specific differences 

could only be calculated 

for measurements on 

consecutive days. Black 

lines depict linear 

regressions between 

NEE and SWC (b) and 

non-linear regressions between ΔNEE and Δsoil water use (d).  

4.5. Discussion  

Interactions between different ecosystem plant layers are always a sum of facilitation and competition 

effects (Campbell et al., 1991). Previous studies have demonstrated that the nature of the influence of 

trees on herbaceous vegetation is highly variable between ecosystems and often depends on general 

ecosystem characteristics such as physical soil properties, annual amount of rainfall and radiation 

(Hussain et al., 2009; Moreno, 2008). For Mediterranean oak woodlands with annual precipitation 

regimes similar to our field site, previous studies often report beneficial effects of tree presence on 

herbaceous biomass production (Cubera and Moreno, 2007; Joffre and Rambal, 1993). However, most 

of these studies focus on herbaceous productivity and crop yield rather than the influence of trees 

regarding species composition, water and carbon fluxes and competitive balance within a year or even 

season. In the following, we will discuss 1) the influence of tree cover on herbaceous layer cover and 
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biomass development, species composition and functional group abundance in distinct seasons and 2) 

address how competition for water between trees and herbaceous vegetation affects herbaceous layer 

longevity and its contribution to ecosystem carbon gain during spring.  

4.5.1. Influence of tree cover on herbaceous layer productivity and the development of 

distinct functional groups  

Biomass development is mainly influenced by microclimatic conditions, soil water and nutrient 

availability (Pereira et al., 2006). For Mediterranean evergreen oak-savannahs, it has been shown that 

the positive effects of tree cover on microclimatic conditions, such as reduced light stress and 

temperature, may counterbalance negative effects of trees through competition for soil water or 

nutrients (Moreno, 2008; Scholes and Archer, 1997), which is in accordance with the stress gradient 

hypothesis that postulates increasing importance of facilitation with increasing abiotic stress (Bertness 

and Callaway, 1994). However, recent studies demonstrated that this cannot be generalized for arid or 

semi-arid regions (Maestre et al., 2005; 2006; Rolo and Moreno, 2011). For example, Moreno (2008) 

showed that the positive effect of trees on microclimatic conditions has a strong effect in sub-humid 

oak savannahs, while this may be counterbalanced by competition for water in semi-arid savannahs. 

Here a facilitating effect of tree cover herbaceous total green aboveground biomass and total green 

herbaceous ground cover could not be detected (70 and 72 g m
-2

 and 88 and 90 % cover in the open 

and tree plots, respectively, Fig. 2, Table 3). Further, net CO2 exchange was not significantly different 

between open and tree plots during most of the study period (Fig. 5). It is likely that tree cover did not 

have a significant influence on aboveground biomass production during most parts of the vegetation 

period, because its influence on microclimate and soil properties became significant only late within 

the main vegetative growth phase of the herbaceous plants, i.e. between April and May when peak 

biomass and cover, and during summer where herbaceous plants where dormant (see also Hussain et 

al., 2009; Ma et al., 2007; Aires et al., 2008).  

Scholes and Archer (1997) report, that the difference in species composition beneath and beyond the 

tree cover is stronger in low rainfall sites and weaker in high rainfall sites. Considering overall annual 

rainfall amount and species composition in early April, this is in agreement with our results, which is 
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underlined by the high Renkonen-similarity ratio of 66% at the beginning of April. However, the 

timing of precipitation and drought periods can further lead to strong intra-annual differences in 

location specific biomass and cover development (Schwinning and Ehleringer, 2001; Miranda et al., 

2002; Jongen et al., 2011). Accordingly, an increasing deviation in % cover of different functional 

groups could be observed starting from mid April. This development corresponded well to the 

growing plot differences in microclimatic conditions and a first 3 week dry-down period, which 

resulted in soil moisture contents below 0.05 m
3
m

-3
 (Fig. 1c). Plants adapted to high radiation, 

temperature and aridity (native forbs such as T. guttata and T. barbata; Ellenberg, 1996) increased in 

abundance (i.e. % ground cover) in the open plots, profiting from the strong decline in total cover of 

species probably less tolerant towards drought and high light conditions such as grasses, i.e. Briza 

maxima, Lolium multiflorum and the Vulpia species, or introduced legumes such as Ornithopus or 

Trifolium (Jongen et al., 2013a, b). In the open area the decline in grass and N-fixer cover and biomass 

was only compensated by the increase of native forbs at the end of May, leading to slightly lower total 

plant cover at the open area compared to below tree plots between mid April to beginning of May. 

Likewise, grasses increased their total cover and aboveground biomass on tree plots during the same 

time, profiting from the shading effect of the trees. The higher cover and biomass of legumes under 

trees during late spring/drought onset may be related with their supposed competitive advantage due to 

their ability to fix nitrogen (Snapp and Silim, 2002), since the availability of nitrate in the soil under 

the trees was extremely low during May (Table 2; see also Jongen et al., 2013b; Otieno et al., 2011).  

Finally, it has to be noted, that although tree vs. open plot differences regarding cover and biomass 

were not significant at the first sampling point in April, a higher abundance of native forbs on open 

plots and of nitrogen fixing forbs on tree plots was already prevalent from the previous year. 

Therefore, increased long term deviation of the herbaceous vegetation under trees and in the open can 

thus be expected although the regular process of sowing at this site (every 3-5 years) disrupts this 

development. Indeed, a shift in species composition and abundance from spring 2010 (first growth 

period after sowing) to spring 2011 could be observed (data not shown), indicating that 1) the seed 

mixture had a distinctive effect on species composition of the herbaceous layer and 2) this effect 

declines swiftly even within one year. Specifically the abundance of Trifolium species, which were 
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included in the seed mixture, declined from 2010 to 2011 throughout the entire study site and the 

abundance of naturally occurring grasses (below the trees) and of native forbs (Tuberaria and Tolpis, 

in the open area) increased at the same time (M. Jongen, personal communication). 

4.5.2. Competition for water during late spring between herbaceous layer and trees  

A shift from competition to facilitation following increasing environmental stress over the course of 

one growing season has been observed by Kikividze et al. (2006). Here, we found neither a clear net 

facilitation nor competition effect under favorable conditions until late May. However, when 

environmental stress increased, i.e. soil water contents dropped to 0.05 m
3
m

-3
, and the “stress gradient 

hypothesis” would predict an increased facilitation effect by the trees (Bertness and Callaway, 1994), 

in fact the opposite was observed: in the understory of trees the herbaceous layer turned from being a 

CO2 sink to a CO2 source two weeks earlier compared to the open area, accompanied by a drastic 

decrease in aboveground living biomass and green cover. During these two weeks net CO2 uptake on 

open plots still amounted ca. -0.66 ± 0.18 g C m
-2

 d
-1 

(fig. 5), indicating that tree cover strongly 

reduced the herbaceous carbon gain. This might even influence the ecosystem carbon sink strength, 

since Unger et al. (2009) found that herbaceous plants can make up to over 50% of total ecosystem 

GPP during spring time, thus playing a significant role for ecosystem productivity (Aires et al., 2008; 

Jongen et al., 2011; Pereira et al., 2007). It has to be noted however, that net CO2 fluxes were 

measured here, so that a decline in NEE might be both related to lower herbaceous plant uptake and 

higher respiration rates of soil microorganisms or roots. 

In contrast to previous findings (Hussain et al., 2009), light was not a limiting factor for CO2 uptake on 

either of the locations in our study (Fig. 6a). Additionally, no correlations were observed between the 

differences in net CO2 exchange and light intensity (Fig. 6c). Unfortunately, air temperature and 

relative humidity were not continuously recorded on each of the plots separately, however point 

measurements of air temperature did not reveal significant differences between the plots (data not 

shown), although differences in soil temperature could be detected (Fig. 1). Thus, the early senescence 

observed under the trees cannot simply be related to microclimatic conditions in our study. 

Instead, early senescence corresponding with lower carbon and water fluxes under the trees provides a 
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strong indication for enhanced belowground competition with trees for water (Scholes and Archer, 

1997; Cubera and Moreno, 2007; Moreno et al., 2007). This was not visible from soil water content 

measurements alone, being similar on both locations and in summer even slightly higher under the 

trees (Fig. 1). However, during spring a strong difference of the relative soil water use of the 

herbaceous layer was detected on the tree compared to the open plots (Fig. 4i-l). This can be attributed 

either to higher drainage/runoff rates or a second sink, i.e. trees taking up water from these depths (0-

60 cm). Higher drainage or runoff rates are unlikely, since only very small amounts of rainfall 

occurred during that time and soil water content was rather low (Fig. 1), suggesting that competition 

with oak trees for water from the top soil layers negatively affected carbon gain and thus longevity at 

the end of the herbaceous growth period (Fig. 6b,d). The observed shift of species composition 

towards grasses and N-fixing forbs under the trees, which are less adapted to drought and high 

temperatures, might have further accelerated this development. Trees surely tap into ground water or 

deep soil layers for water supply at this site (Kurz-Besson et al., 2006), and several studies report a 

niche differentiation regarding the depth of water uptake between trees and herbaceous layer in these 

ecosystem types (Moreno, 2008; Moreno et al., 2007). By contrast, Rolo and Moreno (2011) found 

strong competition for water between evergreen oaks and shallow rooted Cistus ladanifer, indicating 

that spatial niche differentiation regarding water and resource uptake between different plant layers is 

not a general mechanism. Moreover, by using water from the upper soil layers trees can also meet their 

nutrient need for nitrogen (Table 2). Moreno et al. (2007) speculated that trees do not rely on the upper 

30 cm of the soil to take up nutrients. Our results on the other hand suggest that with increasing soil 

depth nitrate content decreased markedly (see also Otieno et al., 2011). It has to be noted, that 

measured nitrate content represents just a portion of total N-content and hence interpretation of plant 

N-availability must be treated with care. Jongen et al. (2013b) found that sometimes ammonium-N 

was more abundant at the same study site: i.e. 1) during rainy periods, due to higher mobility of 

nitrate-N and 2) during the main growth period of the herbaceous layer and the oak trees, which can be 

explained by preferential uptake of nitrate-N by the vegetation (Austin et al., 2006; Marschner, 2012; 

Jongen et al., 2013b). However, the exponential decrease in nitrate content along the soil profile 

observed here is very similar to the spatial pattern of total N-content observed by Otieno et al. (2011) 
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during spring in a comparative cork-oak stand in Portugal. Therefore, we assume that these upper 30 

cm of the soil profile might be important for the nitrogen uptake of the overstory trees especially in the 

growing season, between early May and end of June in 2011. This indicates that the herbaceous plants 

were exposed to a strong competition for water and possibly nitrogen induced by the overstory trees, 

leading to lower carbon gain and early senescence.   

4.6. Conclusions   

During large parts of the year no significant influence of tree cover regarding maximum total 

aboveground biomass or cover of the understory could be found. Only by the end of the herbaceous 

vegetation growing period (during the last 6 weeks before senescence) there was a significant impact 

of tree cover on herbaceous plants development and net CO2 and water fluxes. This led 1) to a 

deviation between open and tree plots regarding the abundance of distinct functional groups and 2) to 

an earlier and faster senescence of the herbaceous layer under the trees, due to a strong competition for 

water and possibly nutrients that strongly affected the overall carbon gain of the herbaceous layer 

during spring.  

Our results indicate that the nature of the influence of tree cover on the herbaceous layer changes 

swiftly within weeks. Thus, our results clearly emphasize the complexity of the interactions between 

trees and the herbaceous layer occurring at different spatial and temporal resolution.  

4.7. Acknowledgements  

We thank the owners and employees of Herdade da Machoqueira do Grou for logistical support and 

allowing the establishment of our field site. We gratefully acknowledge help in the field from Fabio 

Gonsalvez, Jan Sauer and Katrin Remmert. We especially thank Marjan Jongen for help with species 

identification and discussions on the results, Katie Rascher, Tom Steinlein and an anonymous 

reviewer for valuable comments on the manuscript and Babsi Teichner for technical assistance in the 

lab. Funding for this project was provided by the Deutsche Forschungsgemeinschaft (WATERFLUX 

Project: # WE 2681-61; # CU 173/2-1) and the Deutsche Akademische Austausch Dienst. 



Study IV: Influence of tree cover on herbaceous layer development and carbon and water fluxes in a 

Portuguese cork-oak woodland 

 

 

148 

4.8. Literature  

Aires, L., Pio C., Pereira, J., 2008. Carbon dioxide exchange above a Mediterranean C3/C4 grassland 

during two climatologically contrasting years. Global Change Biology, 14: 539–555. 

Austin, A.T., Sala, O.E., Jackson, R.B., 2006. Inhibition of nitrification alters carbon turnover in the 

Patagonian steppe. Ecosystems, 9: 1257-1265. 

Bertness, M.D., Callaway, R., 1994. Positive interactions in communities. TREE, 9: 191- 193. 

Braun-Blanquet, J., 1964. Pflanzensoziologie: Grundzüge der Vegetationskunde. Third ed. Springer, 

Vienna. 

Caldwell, M., Dawson, T., Richards, J., 1998. Hydraulic Lift: Consequences of Water Efflux from the 

Roots of Plants. Oecologia, 113: 151-161. 

Campbell, B.D., Grime, J.P., Mackey, J.M.L., Jalili, A., 1991. The quest for a mechanistic 

understanding of resource competition in plant-communities- the role of experiments. 

Functional Ecology, 5: 241-253. 

Casado, M., Castro I., Ramírez-Sanz L., Costa-Tenorio M., de Miguel J., Francisco D., 2004. 

Herbaceous Plant Richness and Vegetation Cover in Mediterranean Grasslands and Shrublands. 

Plant Ecology, 170: 83-91. 

Costa, A., Pereira, H., Madeira, M., 2009. Landscape dynamics in endangered cork-oak woodlands in 

Southwestern Portugal (1958-2005). Agroforestry Systems, 77: 83-96. 

Crespo, D.G., 2006. The role of pasture improvement in the rehabilitation of the “montado/dehesa” 

sytem and in developing its traditional products. In: Ribeiro, J.M.C.R., Horta, A.E.M., Mosconi, 

C., Rosati, A. (eds.), Animal Products from the Mediterranean Area, Wageningen Academical 

Publishing, Wageningen. 

Cubera E., Moreno G., 2007. Effect of single Quercus ilex trees upon spatial and seasonal changes in 

soil water content in Dehesas of central western Spain. Annals for Forest Science, 64: 355 – 

364. 

Diaz M., Campos P., Pulido F., 1997. The Spanish dehesas: a diversity of land uses and wildlife. In: 

Pain D and Pienkowski M (Eds). Farming and birds in Europe: the common agricultural policy 

and its implications for bird conservation. London, UK: Academic Press. 

Dubbert M., Cuntz M., Piayda A., Maguas C., Werner C., 2013. Partitioning evapotranspiration – 

Testing the Craig and Gordon model with field measurements of oxygen isotope ratios of 

evaporative fluxes. Journal of Hydrology. 

Ellenberg, H., 1996. Vegetation Mitteleuropas mit den Alpen. 5. Auflage, Suttgart, Ulmer Verlag. 

Figueroa, M., Davy A., 1991. Response of Mediterranean grassland species to changing rainfall. 

Journal of Ecology, 79: 925–941. 

Gallardo A., Rodríguez-Saucedo J.J., Covelo F., Fernández-Alés R., 2000 Soil nitrogen heterogeneity 

in a Dehesa ecosystem. Plant and Soil, 222: 71-82. 

Gallardo, A., 2003. Effect of tree canopy on the spatial distribution of soil nutrients in a Mediterranean 

dehesa. Pedobiologia, 47: 117-125. 

Huber-Sannwald, E., Jackson, R.B., 2001. Heterogeneous soil-resource distribution and plant 

responses – from individual-plant growth to ecosystem functioning. Progress in Botany, 62: 

451-476. 

Hussain M., Otieno D., Mirzae H., Li Y., Schmidt M., Siebke L., Foken T., Ribeiro N., Pereira J., 

Tenhunen J., 2009. CO2 exchange and biomass development of the herbaceous vegetation in the 

Portuguese montado ecosystem during spring. Agriculture, Ecosystems and Environment, 132: 

143-152. 

Joffre, R., Rambal, S., 1993. How Tree Cover Influences the Water Balance of Mediterranean 

Rangelands. Ecology, 74: 570-582. 



Study IV: Influence of tree cover on herbaceous layer development and carbon and water fluxes in a 

Portuguese cork-oak woodland 

 

 

149 

Jongen, M.,  Pereira, J., Igreja Aires, L. , Pioc, C., 2011. The effects of drought and timing of 

precipitation on the inter-annual variation in ecosystem-atmosphere exchange in a 

Mediterranean grassland. Agricultural and Forest Meteorology, 151: 595–606. 

Jongen, M., Lecomte, X., Unger, S., Pinto-Marijuan, M., Pereira, J.S., 2013a. The impact of changes 

in the timing of precipitation on the herbaceous understorey of Mediterranean evergreen oak 

woodlands. Agricultural and Forest Meteorology, 171:163-173. 

Jongen, M., Lecomte, X., Unger, S., Fangueiro, D., Pereira, J.S., 2013b. Precipitation variability does 

not affect soil respiration and nitrogen dynamics in the understorey of a Mediterranean oak 

woodland. Plant and Soil. 

José S., Gillespie A., Pallardy, S., 2004. Interspecific interactions in temperate agroforestry: New 

visitas in Agroforestry. Agroforestry Systems 61, Number 1. 

Kikvidze, Z., Khetsuriani, L., Kikodze, D., Callaway, R., 2006. Seasonal shifts in competition and 

facilitation in subalpine plant communities of the central Caucasus. Journal of Vegetation 

Science, 17: 77–82. 

Krebs, C., 1998. Ecological Methodology. Second ed. Addison-Welsey Longman. 

Kurz-Besson C., Otieno D., Lobo-do-Vale R., Siegwolf R., Schmidt M., David T., Soares David J., 

Tenhunen J., Pereira J. S., Chaves M., 2006. Hydraulic lift in cork-oak trees in a savannah-type 

Mediterranean ecosystem and its contribution to the local water balance. Plant and Soil, 282: 

361-378. 

Ludwig, F., Dawson, T., Prins, H., Berendse, F., De Kroon, H., 2004. Below-ground competition 

between trees and grasses may overwhelm the facilitative effects of hydraulic lift. Ecology 

Letters, 7: 623–631. 

Ma, S., Baldocchi, D.D., Xu, L., Hehn, T., 2007. Inter-annual variability in carbon dioxide exchange 

of an oak/grass savannah and open grassland in California. Agricultural and Forest 

Meteorology, 147: 157–171. 

Maestre, F., Valladares, F., Reynolds, J., 2005. Is the change of plant-plant interaction with abiotic 

stress predictable? A meta analysis of field results in aris environments. Journal of Ecology, 93: 

748-137.  

Maestre, F., Valladares, F., Reynolds, J., 2006. The stress-gradient hypothesis does not fit all 

relationships between plant-plant interactions and abiotic stress: further insights from arid 

environments. Journal of Ecology, 94: 17-22. 

Maestre, F., Callaway, R.M., Valladares, F., Lortie, C.J., 2009. Refining the stress-gradient hypothesis 

for competition and facilitation in plant communities. Journal of Ecology, 97: 199-205. 

Marschner, P., 2012. Marschner’s mineral nutrition of higher plants. Academic, London. 

Miranda, P., Coelho F., Tomé A., Valente M., Carvalho, A., Pires, C., Pires, H., Pires, V., Ramalho, 

C., 2002. 20th century Portuguese Climate and Climate Scenarios, in Santos, F.D., K. Forbes, 

and R. Moita (eds), Climate Change in Portugal: Scenarios, Impacts and Adaptation Measures 

(SIAM Project): 454 pp. 

Moreno, G., Obrador, J.J., Cubera, E., Dupraz, C., 2005. Fine root distribution in Dehesas of Central-

Western Spain. Plant and Soil, 277: 153-162. 

Moreno G., Obrador, J., García, E., Cubera, E., Montero, M., Pulido, F., Dupraz, C., 2007. Driving 

competitive and facilitative interactions in oak dehesas through management practices. 

Agroforestry Systems, 70: 25-40. 

Moreno, G., 2008. Response of understorey forage to multiple tree effects in Iberian dehesas. 

Agriculture, Ecosystems and Environment, 123: 239-244. 

Otieno, D., Mirzaei, H., Hussain, M., Li, Y., Schmidt, M., Wartinger, M., Jung, E., Ribeiro, N., 

Pereira, J., Tenhunen, J., 2011. Herbaceous layer development during spring does not deplete 

soil nitrogen in the Portuguese Montado. Journal of Arid Environments, 75: 231-238. 



Study IV: Influence of tree cover on herbaceous layer development and carbon and water fluxes in a 

Portuguese cork-oak woodland 

 

 

150 

Paço, T.A., David, T.S., Henriques, M.O., Pereira, J.S., Valente, F., Banza, J., Pereira, F.L., Pinto, C., 

David, J.S., 2009. Evapotranspiration from a Mediterranean evergreen oak savannah: The role 

of trees and pasture. Journal of Hydrology, 369: 98-106. 

Pape, L., Ammann, C., Nyfeler-Brunner, A., Spirig, C., Hens, K., and Meixner, F.X., 2009. An 

automated dynamic chamber system for surface exchange measurement of non-reactive and 

reactive trace gases of grassland ecosystems. Biogeosciences, 6: 405-429. 

Pereira, J.S., Chaves, M.-M., Caldeira, M.-C., Correia, A.V., 2006. Water availability and production. 

In: Morison, J.I.L., Morecroft, M.D. (eds), Plant growth and climate change. Blackwell 

Publishing Ltd., Oxford. 

Pereira, J.S., Mateus, J.A., Aires, L.M., Pit, G., Pio, C., David, J.S., Andrade, V., Banz, J., David, T.S., 

Paço, T.A., Rodrigues., A., 2007. Net ecosystem carbon exchange in three contrasting 

Medditarrenean ecosystems – the effect of drought. Biogeosciences, 4: 791-02. 

Perez-Ramos, I., Zavala, M., Maranon T., Diaz-Villa, M., Valladares, F., 2008. Dynamics of 

understorey herbaceous plant diversity following shrub clearing of cork-oak forests: A five-year 

study. Forest Ecology and Management, 255: 3242-3253. 

Pulido, F., Garcia, E., Obrador, J., Moreno, G., 2010. Multiple pathways for tree regeneration in 

anthropogenic savannas: incorporating biotic and abiotic drivers into management schemes. 

Journal of Applied Ecology. 

Rolo, V., Moreno, G., 2011. Shrub species affect distinctively the functioning of scattered Quercus 

ilex trees in Mediterranean open woodlands. Forest Ecology and Management, 261: 1750-1759. 

Scholes,R.J., Archer, S.R., 1997. Tree-grass interactions in savannas. Annual Review of Ecology and 

Systematics, 28: 517-544. 

Schwinning S., Ehleringer J., 2001. Water use trade-offs and optimal adaptations to pulse-driven arid 

ecosystems. Journal of Ecology, 89: 464–48. 

Snapp, S.S., Silim, S.N., 2002. Farmer preferences and legume intensification for low nutrient 

environments. Plant and Soil, 245: 181-192. 

Unger S., Máguas C., Pereira J.S., Aires L.M., David T.S. & Werner C., 2009. Partitioning carbon 

fluxes in a Mediterranean oak forest to disentangle changes in ecosystem sink strength during 

drought. Agricultural and Forest Meteorology, 149: 949–961. 

Unger, S., Maguas, C., Pereira, J.S., Aires, L.M., David, T.S., Werner, C., 2010. Disentangling 

drought-induced variation in ecosystem and soil respiration using stable carbon isotopes. 

Oecologia, 163: 1043-1057. 

Von Caemmerer, S., Farquhar, G.D., 1981. Some relationships between the biochemistry of 

photosynthesis and the gas-exchange of leaves. Planta, 153: 376-387. 

Werner C., Correia O., 1996. Photoinhibition in cork-oak leaves under stress: Influence of the bark-

stripping on the chlorophyll fluorescence emission in Quercus suber L. Trees – Structure and 

Function, 10: 288-292. 

Werner C., Ryel R., Correia O., Beyschlag W., 2001. Effects of photoinhibition on whole-plant carbon 

gain assessed with a photosynthesis model. Plant, Cell and Environment, 24: 27-40. 

Werner, C., Correia, O., Beyschlag, W., 2002. Characteristic patterns of chronic and dynamic 

photoinhibition of different functional groups in a Mediterranean ecosystem. Functional Plant 

Biology, 29: 999-1011. 

  



Study V: Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna 

contributes up to half of ecosystem carbon and water exchange 

 

 

151 

5. STUDY V: STABLE OXYGEN ISOTOPE AND FLUX PARTITIONING 

DEMONSTRATES UNDERSTORY OF AN OAK SAVANNA CONTRIBUTES UP TO 

HALF OF ECOSYSTEM CARBON AND WATER EXCHANGE 

 

 

 

 

Maren Dubbert
1,; Arndt Piayda

2
; Matthias Cuntz

2
; Alexandra C. Correia

3
; 

Filipe Costa e Silva
3
; Joao S. Pereira

3
; and Christiane Werner

1 

 
1
Agroecosystem Research, University of Bayreuth, BayCEER, Universitätsstraße 30, 95447 Bayreuth, Germany 

2
UFZ – Computational Hydrosystems, Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 

Leipzig, Germany 
3
Instituto Superior de Agronomia, Tecnical University of Lisbon, Tapada da Ajuda, Lisbon, Portugal; 
 Corresponding author: Maren Dubbert (maren.dubbert@uni-bayreuth.de) 

 

 

 

 

 

 

 

mailto:maren.dubbert@uni-bayreuth.de


Study V: Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna 

contributes up to half of ecosystem carbon and water exchange 

 

 

152 

5.1. Abstract 

Semi-arid ecosystems contribute about 40% to global net primary production (GPP) even though 

water is a major factor limiting carbon uptake. Evapotranspiration (ET) accounts for up to 95% of the 

water loss and in addition, vegetation can also mitigate drought effects by altering soil water 

distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation 

components is crucial to gain mechanistic understanding of vegetation effects on carbon and water 

cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often 

overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and 

productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE) were 

partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was 

estimated. 

The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 

43% and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water 

loss) similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E) and, although 

E was large during wet periods, it did not diminish WUE during water-limited times. The understory 

strongly increased soil water infiltration, specifically following major rain events. At the same time, 

the understory itself was vulnerable to drought, which led to an earlier senescence of the understory 

growing under trees as compared to open areas, due to competition for water.   

Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At 

the same time the vulnerability of the understory to drought suggests that future climate change 

scenarios for the Mediterranean basin threaten understory development. This in turn will very likely 

diminish beneficial understory effects like infiltration and ground water recharge and therefore 

ecosystem resilience to drought.  
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5.2. Introduction 

Semi-arid ecosystems contribute about 40% to global net primary productivity (Wang et al., 2012) and 

in these ecosystems water and carbon dioxide cycles are tightly coupled via ecosystem water use 

efficiency (David et al., 2004; Pereira et al., 2006). Global climate change is expected to intensify 

drought and alter precipitation patterns in dry-land regions (IPCC 2007). Moreover, evapotranspiration 

(ET) accounts for up to 95% of the water loss from the ecosystem (Huxman et al., 2005). ET has two 

distinct components: plant transpiration (T) and unproductive loss of water during soil evaporation (E). 

Due to their open bi-layered structure, savanna-type ecosystems are particularly suitable to study the 

effect of water scarcity and the coupling between hydrological and biogeochemical processes of 

different plant layers (woody vs. herbaceous species) and the soil. They cover large areas world-wide 

and in Europe they are the predominant land cover type on the southern Iberian Peninsula, covering 

about 1.5 Mio ha (Bugalho et al., 2011). They consist of a sparse tree cover (e.g. cork-oak, Quercus 

suber L. and holm oak, Q. ilex) and an herbaceous understory layer. They are exploited as often low-

impact agro-forestry ecosystems with high biodiversity, specifically of the herbaceous layer, and 

considered a habitat of high conservation value (Moreno et al., 2005; Perez-Ramos et al., 2008). 

Hence, their sustainability is vitally important for both agronomical and biodiversity aspects, but is 

currently being threatened by unbalanced management practices (Bugalho et al., 2011). Moreover, 

while trees have access to deeper soil layers and/or groundwater, shallow rooted herbaceous plants are 

vulnerable to drought and die back at the onset of summer drought (Paço et al., 2009). Still, the 

herbaceous understory vegetation has a strong impact on ecosystem productivity: it can make up to 

more than 50% of total gross primary productivity (GPP) during spring (Unger et al., 2009, 2010).  

While the impact of herbaceous plants and soil on carbon cycling in oak savannas is relatively well 

characterized, less is known concerning their role in the ecosystem water cycle. In general, introducing 

dense herbaceous layers to maximize the productive and minimize the unproductive water loss by 

reducing open soil patches (Wang et al., 2010; Raz-Yaseef et al., 2012) has been considered a major 

goal in dry-lands (Wang and D’Odorico, 2008). However, the presence of (herbaceous) vegetation has 

various other impacts on soil water relations than sheer reduction of soil evaporation. Rainfall might 

be intercepted while at the same time hydraulic redistribution might be altered depending on rooting 
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depths and structure (Tromble, 1988; Dawson, 1993; Schwinning & Ehleringer, 2001; Devitt & Smith, 

2002; Bhark & Small, 2003; Huxman et al., 2005; Scott et al., 2014). Moreover, transpiration of active 

vegetation can have a huge impact on ecosystem water losses which are modulated by water 

availability, plant functional type, and stomatal regulation, as well as leaf area index (LAI). Paço et al. 

(2009) gave first insights that at least in times of high water availability (October-May/June) 

understory evapotranspiration can be equal to and sometimes exceeds tree transpiration. Soil 

evaporation and herbaceous transpiration, however, have seldom been analyzed separately in savanna 

ecosystems so far. Thus the functional understanding of soil evaporation dynamics and vegetation-soil 

feedbacks within the water cycle remain a major challenge in semi-arid regions.  

Consequently, in dry-land ecosystems partitioning ET and analyzing vegetation effects on soil water 

distribution is not only important to better understand the ecosystem water budget (Haverd et al., 

2011; Raz-Yaseef et al., 2012) but also for predictions of carbon cycling, i.e. ecosystem productivity 

(Scott et al., 2006; IPCC, 2007; Yepez et al., 2007). Oxygen isotope signatures (δ
18

O) have been used 

to partition ecosystem ET because of the distinct isotopic compositions of water transpired by leaves 

relative to soil evaporated vapor (Yakir and Sternberg, 2000). In the past however, precise 

determinations of isotopic compositions of evapotranspiration (δ
18

OET), evaporation (δ
18

OE) and 

transpiration (δ
18

OT) have been challenging since measurements of water vapor were difficult to obtain 

using conventional cold-trapping methods (e.g. Helliker et al., 2002; Williams et al., 2004). Recent 

developments in laser spectroscopy now enable measurements of δ
18

O of ambient water vapor (δ
18

Oa), 

δ
18

OET and its components with high temporal resolution in the field (Werner et al., 2012) and bear a 

novel opportunity to separate evaporative and transpirational fluxes with higher temporal resolution 

(Dubbert et al., 2013; Wang et al., 2013).  

The main goal of this study was to analyze the contribution of the herbaceous layer to ecosystem water 

cycle and productivity, which was assessed by combining eddy co-variance and chamber based flux-

measurement techniques with a novel laser spectrometer. We hypothesize that the herbaceous 

understory layer, although vulnerable to drought, plays an important role in the water and carbon cycle 

and soil water redistribution. We focused on disentangling the inter-seasonal impact of understory 

vegetation effects on: i) the ecosystem water and carbon fluxes, ii) soil evaporation and iii) the 
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influence of vegetation on rain infiltration. To explicitly account for the heterogeneity created by the 

patchy tree cover (Moreno et al., 2007) two experimental sites were installed (under the tree crown 

and in an adjacent open area) containing understory vegetation and bare soil plots.   

5.3. Materials and Methods 

Isotopic compositions are reported here as ratios R between the concentrations of rare and common 

isotopes (
18

O/
16

O) or expressed as δ-notation, i.e. relative to Vienna Standard Mean Ocean Water (V-

SMOW; Gonfiantini, 1978): δ
18

O [‰] = ((Rsample - RV-SMOW)/RV-SMOW)*1000. 

5.3.1. Study site and experimental design 

Measurements were conducted in an open cork-oak woodland (Quercus suber L.) in central Portugal, 

approximately 100 km north-east of Lisbon (N39°8’17.84’’ W8°20’3.76’’; Herdade de Machoqueira 

do Grou). The trees are widely spaced (209 individuals ha
-1

) with a leaf area index of 1.05 and a gap 

probability of 0.7 (Piayda et al., under review). The oak trees are managed for cork production and 

were planted approximately 50 years ago. 

Table 1: List of herbaceous species growing in the open and tree plots in 2011. 

N-fixing forbs Forbs Grasses 

Ornithopus compressus L. Crepis vesicaria L. Briza maxiama L. 

Ornithopus sativus Brot. Geranium spec Lolium multiflorum Lam. 

Trifolium glanduliferum Boiss. Plantago coronopus L. Vulpia bromoides Gray 

Trifolium michelianum Savi Rumex acetosella L. Vulpia geniculata Link 

Trifolium incarnatum L. Silene gallica L.  

 Trifolium subterraneum L. Spergula arvensis L.  

Trifolium resupinatum L. Tolpis barbata (L.) Gaertn.  

Trifolium vesiculosum Savi Tuberaria guttata (L.) Fourr.  

 

The herbaceous layer is dominated by native annual forbs and grasses (see Table 1 for detailed species 

composition). The site is characterized by Mediterranean climate, with 30 year long-term mean annual 

temperature of approximately 15.9 °C and annual precipitation of 680 mm (Instituto de Meteorologia, 

Lisbon). We established two sites: one directly under the oak crown projected area and another one in 

an adjacent open area, 5-7 m distant from any canopy cover. Two types of plots (sized 40*80 cm) 
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were installed in each site: bare soil plots with total exclusion of above-ground biomass and root in-

growth by inserting trenching meshes (trenching depth = 60 cm; mesh diameter < 1 µm, Plastok, 

Birkenhead, UK), and understory plots with undisturbed herbaceous vegetation (four plots per site and 

treatment). Both plot types were replicated 4 times at each site and equipped with soil sensors (16 

plots, see below), however gas exchange understory chamber measurements (see below) were only 

replicated 3 times, due to time limitations (12 plots total). All plots were established 1 year before 

measurements to minimize effects of disturbance.  

To assess the impact of the understory to ecosystem carbon and water cycling a combination of 

continuous (i.e. eddy co-variance, environmental sensors, soil profiles) and non-continuous (i.e. 

chamber and laser based gas-exchange and isotopic and understory biomass observations) 

measurements were conducted. At the understory level ET partitioning could be done on 26 days at the 

open and 22 days at the tree site and NEE partitioning on 23 days at the open and 20 days at the tree 

site. Measurements were distributed over four measurement campaigns in spring (7.April – 3.May), 

late spring (23.May – 16.June), summer (11. – 23.September) and fall (23.October – 22.November). 

During winter no measurements were obtained due to strong temperature limitation and consequently 

very low net water and carbon fluxes. At the ecosystem level partitioning could be achieved for days 

when our understory field site was within the footprint of the eddy co-variance system and eddy co-

variance data was of sufficient quality (i.e. no gap-filled data), which resulted in nine days equally 

distributed between spring, summer drought and fall. Separation of ET and NEE fluxes was done on 

diurnal courses repeatedly between 7 a.m. and 7 p.m. (Fig. S1) at 5-6 time points, which were used to 

calculate day-time sums of ET, E, T of the understory and the oaks and NEE, Reco and GPP of 

understory and oaks. Infiltration of precipitation into the soil on bare soil and vegetated soil patches 

was estimated for two periods: spring (7. April –16. June) and fall (23.October – 22. November).  

5.3.2. Environmental variables and herbaceous biomass 

Photosynthetic photon flux density was measured at both sites at approximately 1.5 m height (PPFD, 

LI-190SB, LI-COR, Lincoln, USA). Rainfall (ARG100 Rain gauge, Campbell Scientific, Logan, UT, 
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USA), air temperature, and relative humidity (rH, CS-215 Temperature and Relative Humidity Probe, 

Campbell Scientific, Logan, UT, USA) were measured and 30 min averages were stored in the 

datalogger (CR10x, Campbell Scientific, Logan, UT, USA). Soil temperature (custom built pt-100 

elements) in 5, 15, 30, and 60 cm depth was measured in vegetation and bare soil plots at both sites 

and 60 min averages were stored in a datalogger (CR1000, Campbell Scientific, Logan, UT, USA; 4 

sensors per depth and treatment). Temperature at the soil surface was manually measured on each 

measurement day in diurnal cycles corresponding with the gas exchange measurements using 

temperature probes (GMH 2000, Greisinger electronic, Regenstauf, Germany). Volumetric soil water 

content (θs, 10hs, Decagon, Washington, USA) in 5, 15, 30, and 60 cm depth was measured in 

vegetation and bare soil plots at both sites and 60 min averages were stored in the datalogger 

(CR1000, Campbell Scientific, Logan, UT, USA; 4 sensors per depth and treatment). The total water 

infiltration following each rain event (>2 mm d
-1

) into the upper 60 cm of the soil profile was 

calculated from θ measurements. Therefore, the maximum increase in θ (m³ m
-3

) following a rain 

event was estimated for each depth separately. The 10hs sensors integrate over 10 cm soil profile, thus 

the estimated infiltration (=increase in θ) was representative for the sensors in 5, 15, 30 and 60 cm for 

0-10, 10-20, 25-35 and 55-65  cm, respectively. The increase of θ/infiltration in the intermittent depths 

that were not measured was linearly integrated. Finally, total infiltration into the upper 60 cm of the 

soil profile was estimated as a sum of all depths and converted to mm d
-1

. 

Aboveground biomass of living herbaceous plants was determined destructively on five 40*40 cm 

plots per site randomly selected near the permanent plots. Harvesting took place at six measuring 

dates: four in spring and two in November. All aboveground parts of living plants were collected, 

dried (60 °C, 48 hours) and weighed. 

5.3.3.  Eddy-covariance measurements  

An ecosystem eddy-covariance flux tower was set up, equipped with a Gill R3A-50 ultrasonic 

anemometer (Gill Instruments Ltd., Lymington, UK). The tower was equipped with a LI-7000 closed 

path CO2 / H2O analyzer (LI-COR, Lincoln, USA). The measurement height was about 23.5 m above 
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ground and the tower was in 100 m distance of the experimental field site. 

Data were continuously acquired on a field laptop with the eddy covariance data acquisition and 

processing software package EddyMeas (Meteotools, Jena, DE, Kolle, 2007) and are post-processed 

using EddySoft according to an extended FLUXNET procedure. Heat and water fluxes are corrected 

for the energy balance closure gap according to Mauder et al. (2013). The flux gap-filling was made 

according to Reichstein et al. (2005). Gaps were only filled up to a maximum gap length of 6 days 

(Piayda et al., 2014). 

5.3.4.  Cavity Ring-Down Spectrometer based measurements of δ
18

OE and understory 

δ
18

OET, and gas-exchange flux measurements  

Water and carbon dioxide fluxes and isotopic composition of water fluxes were measured using a 

Cavity Ring-Down Spectrometer (CRDS, Picarro, Santa Clara, USA) and a CO2 infrared gas analyzer 

(BINOS100; Fisher-Rosemount GmbH & Co., Hasselroth, Germany) in combination with custom 

built soil chambers. We used 2 chambers that were switched between plots for measurements, 

following the design of Pape et al. (2009), in an open gas exchange system (n=3 plots per treatment 

and experimental site; 12 plots in total). The transparent plexiglas soil chamber had a total volume of 

60 L. The flow through the chamber was regulated as described in Pape et al. (2009) using a fan inside 

the inlet sampling tube and could be adjusted between 0 and 40 L min
-1

.  

All measurements were conducted in diurnal courses with a duration time of roughly 1.5 to 2 hours per 

measurement point and 5-6 measurement points between 7 a.m. and 7 p.m. (Fig. S1). To conduct each 

measurement point the two chambers were rotated randomly on 6 plots of one experimental site. To 

calculate net CO2 exchange (NEE) and evapotranspiration (ET) as well as its isotopic composition, 

background air going into the chamber (at 1.5 m height) and sampling air (coming out of the chamber) 

were alternately measured. After stable values were reached the final five minutes interval average 

was used for the calculation of NEE and ET. Including the time needed to reach stable values, the total 

duration of the chamber for one measurement point on each plot was between 10 and 15 min.  Fluxes 

of NEE, ET as well as total conductance (gt) were calculated with the gas exchange equations of von 

Caemmerer & Farquhar (1981).  
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Oxygen isotope compositions of soil evaporation (bare soil plots) as well as evapotranspiration of the 

understory (vegetation plots) were estimated using a mass balance approach (Dubbert et al., 2013; 

2014a): 
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where u is flow rate [mol(air) s
−1

], w is mole fraction [mol(H2O) mol(air)
−1

] and δ is isotope ratio of 

the incoming (in) and outgoing (out) air stream of the chamber. Flow rates are measured with humid 

air so that conservation of dry air gives uin(1−win) = uout(1−wout), which leads to the second line of Eq. 

(1). The second term in Eq. (1) corrects for the increased air flow in the chamber due to addition of 

water by transpiration. In addition to isotopic signatures of soil evaporation and understory 

evapotranspiration, the oxygen isotope signatures of ambient water vapor (in 9 m height) were 

measured with the CRDS. 

5.3.5.  Sampling and measurement of δ18O of soil water and precipitation 

Soil samples for water extraction and δ
18

O analysis were taken on vegetation and bare soil plots using 

a soil corer on 17 and 15 days at the open and tree site respectively (see Table S1 for details). Samples 

were collected from the soil surface (0-0.5 cm depth), 2, 5, 10, 15, 20, and 40 cm soil depths (n=4 per 

depth and treatment). Soil water samples were extracted on a custom build vacuum line by cryogenic 

distillation. Precipitation samples were collected roughly each week. Water δ
18

O analysis was 

performed by headspace equilibration on an Isoprime IRMS (Elementar, Hanau, Germany) coupled 

via open split connection to a µgas autosampler (Elementar, Hanau, Germany). Equilibration with 5% 

He and 95% CO2 gas was done for 24 hours at 20 °C. For every batch of 44 samples 3 different 

laboratory standards were analyzed. Laboratory standards were regularly calibrated against VSMOW, 

SLAP, and GISP water standards (IAEA, Vienna). Analytical precision was < 0.1‰. 
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5.3.6.  Calculation of δ
18

O of soil evaporation   

Oxygen isotope signatures of soil evaporation were calculated using the Craig and Gordon equation 

(1965): 
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where RE is the isotope ratio (
18

O/
16

O) of evaporated water vapor and Re is the isotope ratio of bulk soil 

water at the evaporating sites. The evaporating site is the vapor-liquid interface below which liquid 

transport and above which vapor transport is dominant (Braud et al., 2005). It has been shown for 

unsaturated soils that this site is related to a strong enrichment in soil water isotopic composition 

relative to the rest of the soil column and an exponential depletion in isotopic signature within few cm 

of the underlying soil due to evaporative enrichment of the remaining liquid water (Haverd and Cuntz, 

2010; Dubbert et al., 2013). Thus, for Re and temperature at the evaporating sites (Te), temperature 

(see 2.2.) and oxygen isotope signatures of bulk soil water (see 2.5) were measured along the soil 

profile and those values along the soil profile were used where the strongest enrichment in bulk soil 

δ
18

O could be detected (residual soil water volumetric content was only 1% and therefore neglected). 

Bulk soil δ
18

O was estimated with higher resolution along the soil profile than temperature (compare 

section 2.2 and 2.5), so in case the highest enrichment in bulk soil  δ
18

O was found in a depth where 

temperature was not measured, linear interpolations of the adjacent values were used. In cases, where 

bulk soil δ
18

O was not analyzed for specific dates where gas-exchange data was available and 

partitioning was conducted, values from adjacent sampling dates were taken. Ra is the isotope ratio of 

ambient water vapor, αk is the kinetic fractionation factor, α
+
 is the water vapor equilibrium 

fractionation factor (αk and α
+
 >1; Majoube, 1972; Merlivat, 1978; for the formulation of αk= αdiff

nk
 see 

Mathieu and Bariac, 1996), and h is the relative humidity normalized to Te.  

Although direct estimates of E and δ
18

OE were available for bare soil plots, vegetation depresses E and 

also influences δ
18

OE, for example due to different isotopic signatures of soil water and also 

temperature at bare soil and vegetated soil patches (see table S1 and Dubbert et al., 2013). Therefore, 

bare soil plots only served to validate the Craig and Gordon equation, because on bare soil plots E 
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contributes entirely to the evaporative flux and could be tested against modeling results. Validation 

was done site specifically, using measured and modeled δ
18

OE of 26 and 22 diurnal cycles obtained 

between 7 April and 22 November 2011 at the open and tree site, respectively. Finally, the Craig and 

Gordon equation was used to calculate δ
18

OE of vegetation plots. 

5.3.7. Modeling δ
18

O of plant leaf water at the evaporating sites and transpiration 

To calculate δ
18

OT, in a first step the isotopic composition of leaf water at the evaporating sites (δ
18

Oe) 

was calculated. We used the iterative solution of the ordinary differential equation for leaf water at the 

evaporating sites in non-steady state as in Dongmann et al. (1974; see also Cuntz et al. 2007): 
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where Re (t+dt) and (t) are the isotope ratios of leaf water at the evaporating sites at time t and after a 

time step at time t+dt, gt is the total conductance (mol m
-2

 s
-1

), wi is the mol fraction in the stomatal 

cavity, and Vm the mesophyll water volume (mol m
-2

). Rc is the Craig and Gordon steady-state isotope 

ratio at the evaporating sites, i.e. Eq. (1) rearranged for Re with RE = Rx, and Rx being the isotope ratio 

of xylem/source water. We were not able to sample xylem water in large sample sizes, due to 

methodological restrictions related to the size and lacking lignifications of the herbaceous plant 

species. Therefore the source/xylem isotopic ratio was estimated by assuming root water uptake 

proportional to root density, which was estimated as root biomass (g) per kg soil along the soil profile. 

In very dry soil conditions this method could pose some error since plants can shift water uptake into 

deeper, wetter soil layers. However, non woody species, such as the understory vegetation in this 

study, have shallow root systems and therefore lack high ability to shift water uptake depths (Otieno et 

al., 2011). For further details see Dubbert et al. (2013). Knowing the isotopic signature of leaf water at 

the evaporating sites, the isotopic signature of plant transpiration can finally be calculated using the 

Craig and Gordon formulation (Eq. 2) with the isotopic signature of leaf water at the evaporating sites 

in the non-steady-state as Re. 
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5.3.8.  Water and carbon partitioning 

The contribution of T to ET at the herbaceous understory scale, ft = T/ET, can be estimated based on 

measured understory δ
18

OET and modeled soil δ
18

OE and herbaceous δ
18

OT (Moreira et al., 1997; Yakir 

& Sternberg, 2000): 
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This approach is based on the assumption that the isotopic signature of evapotranspiration is a mixing 

ratio of not more than the two sources (evaporation and transpiration) and that no water vapor is lost 

other than by the mixing of the two sources with the atmospheric pool (i.e. no condensation). 

At the understory level, strong heterogeneity between understory vegetation growing under the tree 

crown and in open areas was found regarding species development and net fluxes of CO2 and water. It 

is important to account for this heterogeneity when we want to separate understory flux components 

from net ecosystem carbon or water fluxes. Therefore, an average flux of understory transpiration, soil 

evaporation and NEE was calculated as:  

 
treegapopengap

FPFPF  1         (5), 

where F denotes the water or carbon flux per m
2
 ground area, the subscripts open and tree denote the 

open and the tree site, respectively. Pgap is the canopy gap fraction modeled from the daily course of 

sun inclination angle and the view zenith angle distribution of Pgap (Piayda et al., unpublished). 

At the whole ecosystem level, ET was separated into transpiration of cork-oak trees (To) by subtracting 

estimates of understory evapotranspiration measured with the CRDS.  

The partitioning of the net CO2 fluxes (NEE) into gross primary production (GPP) and ecosystem 

respiration (Reco) followed Lasslop et al. (2010). GPP of the understory was estimated by subtracting 

Reco from chamber based estimates of understory NEE, arguing that Reco is mainly comprised of 

heterotrophic soil respiration and root respiration during daytime. This assumption was validated by a 

comparison of Reco of the ecosystem tower with Reco of a nearby understory tower, measuring a very 

comparable understory community. The Reco estimates of both towers were in the same range and 

correlate very well (data not shown).  
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Water use efficiency (WUE) at ecosystem and understory level was calculated. Since changes in WUE 

due to water limitations are often obscured by changes in VPD the inherent water use efficiency 

(iWUE; Beer et al., 2009) was calculated as: 

ET

VPDNEE
iWUE




         (6). 

At plant level inherent water use efficiency was calculated as follows: 

T

VPDGPP
iWUE


                                                             (7). 

5.3.9. Statistical Analysis 

If not indicated otherwise, all results are presented as mean values with standard error (n=3-4). In the 

case of diurnal cycles, all values of one treatment were integrated into a mean value that was 

conducted within one measurement point of roughly 1.5 h. In the case daytime sums are presented, 

these were estimated for each plot replicate and then averaged.  

Mann-Whitney U-tests were used to examine significant site-specific differences at each measurement 

day regarding PPFD, soil moisture, soil temperature, understory evapotranspiration and net carbon 

exchange (and their components), conductance and oxygen isotope compositions within the 

ecosystem. Spearman Rank order correlations were used relating ecosystem ET and NEE components 

and environmental factors. Non-linear regressions were performed to relate rainfall amount with 

infiltration difference between vegetation and bare soil plots and relating volumetric soil water content 

with difference in iWUE on understory level and iWUE of understory plants. Statistical analyses were 

carried out with Statistica (Statistica 6.0, StatSoft, Inc., Tulsa, USA). 
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5.4. Results 

5.4.1. Environmental conditions and net ecosystem carbon and water fluxes 

 

Figure 1: Environmental conditions from March to December 2011; a) daily averages of air 

temperature (grey line), vapor pressure deficit (VPD; grey long dashed line) and rainfall (black bars); 

b-de) daily sums of environmental conditions at the open (grey) and tree site (black) of: photosynthetic 

photon flux density (PPFD), soil temperature in 5 cm soil depth (lighter lines denote running 

averages), soil volumetric water content (Θ) in 5 and 60 cm soil depth. e) daytime integrated net 

ecosystem fluxes of: net CO2 exchange (NEE, g C m
-2

 d
-1

) and evapotranspiration (ET, mm d
-1

, black 

bars) from March to December 2011. 
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Over the course of the study period, air temperature and PPFD followed the typical Mediterranean 

climate pattern (Fig. 1). With a total annual rainfall of 800 mm, 2011 was rather wet compared to the 

long term 30 years mean of 680 mm. Despite high winter precipitation, we observed a first drought 

period between April 1 and April 18 with soil water content (θ) dropping below 0.05 m
3
 m

-3
 (Fig. 1d).  

Between April and October microclimate conditions differed considerably in the open and under the 

tree crown: light intensity and soil temperature were reduced by the tree shadow by up to 45 mol m
-2

 d
-

1
 (Fig. 1b) and up to 7 °C (Fig. 1c), respectively. Further, θ in 60 cm soil depth was 0.03 m

3
 m

-3
 lower 

at the tree site during the summer drought compared to the open site (June – October, Fig. 1d). 

Daytime ecosystem evapotranspiration ET reached maximum values in May and declined constantly 

thereafter (Fig. 1e). Likewise, net ecosystem CO2 exchange (NEE) exhibit strong seasonal changes 

reaching maximum uptake rates in June (Fig. 1f). Notably, the ecosystem was a net carbon sink 

between March and December 2011 (Fig. 1f), although daytime NEE declined during summer drought 

by about 40 %. There were only few days, where NEE showed a net CO2 release during daytime 

which correspond either to heavy rain events on dry soils resulting in increased soil respiration (“Birch 

effect”, see Unger et al., 2012) or low photosynthetic uptake on very cloudy days between September 

and November (Fig. 1d, f). 

5.4.2. Vegetation effects on rainfall infiltration 

To investigate the effect of understory vegetation on rain infiltration, maximum infiltration per rain 

event was calculated for the open and tree sites for bare soil and the understory vegetation layer (Fig. 

2). The relative infiltration averaged over all rain events (>2 mm d
-1

) was much higher on understory 

than on bare soil patches, 0.75 compared to 0.41. This could be observed for both sites and the tree 

canopy did not have significant further effects on infiltration (Fig. 2). Moreover, a significant 

relationship could be found between the amount of precipitation and the difference in infiltration 

between bare soil and understory plots (open site: R²=0.88; p<0.001; tree site: R²=0.63; p<0.001): the 

stronger the rain event, the bigger was the difference in infiltration between bare soil and understory 

plots (Fig. 2 insets). 
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Figure 2: Rainfall and infiltration into the soil following rain events > 2 mm at a, b) the open and c, d) 

tree site on understory plots (green circles), bare soil plots (blue circles, all in mm d
-
1; n=4, mean 

values ± SE) and rainfall (grey bars). Insets present differences in infiltration between understory and 

bare soil versus rain amount at the open and tree site. Regression line, coefficient of regression and p-

value are given. 

5.4.3.  Seasonal development of δ
18

O within the ecosystem 

Besides the influence on rain infiltration, understory vegetation also contributes to ecosystem water 

loss via transpiration and for a functional understanding of the development of net ecosystem 

evapotranspiration (ET) we separated between plant transpiration and soil evaporation. At the 

understory level the dense structure of the herbaceous layer prevented a flux based partitioning 
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approach and stable oxygen isotopes (δ
18

O) were used to partition ET. This requires the knowledge of 

δ
18

O of water sources within the ecosystem as input parameters for modeling δ
18

OE and δ
18

OT (Eq. 2).  

 

Figure 3: Development of midday oxygen isotope signatures within the ecosystem from April to 

November 2011; a-d) atmospheric δ
18

O at 9 m height (grey diamnonds); e-h) δ
18

O of rainfall (black 

circles) and δ
18

O of soil water at the evaporating site on vegetation plots at the open (white triangles) 

and tree site (grey triangles, mean values ± SD, n=3); i-l) measured δ
18

O of evapotranspiration on the 

open (white circles) and tree site (grey circles, mean values ± SD, n=3); m-p) modeled δ
18

O of 

evaporated vapor from vegetation plots on the open (white triangles) and the tree site (grey triangles) 

and modeled δ
18

O of herbaceous leaf transpired vapor at the open (white circles) and the tree site (grey 

circles). 

 

Oxygen isotope signatures of ambient vapor (δ
18

Oa) and precipitation (δ
18

Op) both changed 

substantially between spring and fall (Fig. 3): δ
18

Oa strongly decreased from ca. -25‰ to -30‰ from 

spring to fall (Fig. 3a-d), which can be explained by seasonal changes in the predominant wind 
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direction to north-north-east, delivering more continental, i.e. 
18

O depleted, air masses during fall. 

δ
18

Op was much higher between -8.2‰ and -0.5‰. In general, oxygen isotope signatures of soil water 

followed trends in δ
18

Op. We show the oxygen isotope signatures of soil water from the depth at which 

highest isotopic enrichment was found, i.e. the isotopic signature of the evaporating front in the soil 

profile where evaporation occurs (δ
18

Os-e) instead of bulk soil δ
18

O signatures, because δ
18

Os-e is an 

important input for the Craig and Gordon equation. δ
18

Os-e was heavily enriched during the summer 

months compared to precipitation due to much stronger evaporative enrichment during summer and 

spring as compared to fall (Fig. 3; for detailed information on the development of bulk soil δ
18

O along 

the soil profile see Table S1). 

Observed midday δ
18

O of understory evapotranspiration varied considerably between -8.8‰ and -

23.5‰. Notably, variations in δ
18

OET were strong between seasons and also within a season (Fig. 3i-l). 

Variations in δ
18

OET can be either explained by i) variation in the relative contribution of component 

fluxes E and T, with their differing isotopic signatures or ii) by change in oxygen isotopic signatures of 

the component fluxes E and T. Without the knowledge of the component isotopic signatures this 

cannot be disentangled. Consequently, these were modeled, based on the isotopic input parameters 

(see section 2.6. and 2.7.).  

Before the isotope signature of soil evaporation was modeled at vegetated soil patches (Fig. 3m-p), the 

Craig and Gordon equation was tested against direct estimates of δ
18

OE obtained at bare soil plots, 

where E contributes fully to ET: calculated δ
18

OE is in very good agreement with CRDS based 

measurements of δ
18

OE for soil conditions ranging between residual to nearly saturated soil water 

content (Fig. 4a). The agreement between measured and modeled δ
18

OE was best during midday. 

However, including morning and afternoon records decreased the coefficient of determination but did 

not significantly alter the regressions slope and offset (Fig. 4).  

Modeled midday δ
18

OE estimated on vegetation plots ranged from -15.1‰ to -31.2‰ and the inter-

seasonal development of δ
18

OE was similar to the development of δ
18

Os-e (Fig. 3m-p).  

δ
18

OT was modeled in two steps, first calculating δ
18

O of leaf water at the evaporating sites in the non 

steady state (see section 2.7. and Fig. 4c). Modeled δ
18

O of leaf water at the evaporating sites was well 

correlated with measured bulk leaf water δ
18

O, with a negative offset of measured leaf water of 2.3‰ 
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(Fig. 4d), owing to the Péclet effect (Farquhar & Lloyd, 1993) as bulk leaf δ
18

O contains a mixed 

signal of non-fractionated xylem water and water at the evaporating sites that is highly enriched in 

δ
18

O (Yakir, 1992). Midday δ
18

OT ranged between -3.9‰ and -20.1‰ and followed no clear inter-

seasonal pattern. Clearly, the strong decrease in δ
18

OET from -12.7‰ to -19.8‰ during April was 

caused by a strong decrease in T (Fig. 3i, m), while the slight overall increase of δ
18

OET in fall can be 

mainly explained by decreased  δ
18

OE  and increased δ
18

OT (Fig. 3l, p). 

 

Figure 4: a) Oxygen isotope signatures of soil evaporation on bare soil plots calculated with the Craig 

and Gordon equation versus measured values for the open (white circles) and tree sites (black circles) 

of all measurements (mean values ± SE; n=3); the grey and black line denote regression lines for the 

open and tree sites, respectively. b) Modeled against measured values during midday only (14:00 h). c) 

Modeled δ
18

O of leaf water at the evaporating sites in the non steady state versus measured oxygen 

isotope signatures of bulk leaf water for the open (white circles) and tree site (black circles) for all 

available data points of measured leaf water δ
18

O throughout the study period. Regression equations 

(observed vs. modeled), correlation coefficients are given below the plots. p-values were less than 

0.001 for all regressions. 
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5.4.4. Seasonal development of herbaceous ET and NEE components  

Understory ET partitioning was based on diurnal observations of understory ET, δ
18

OET and derived 

δ
18

OT and δ
18

OE, which were used to calculate day-time sums of ET, E, and T of the understory (Figure 

S1). Notably, daytime integrated understory transpiration and soil evaporation displayed strong short-

term variability (Fig. 5a, b and e, f). Within April T varied between 0.28 and 0.99 mm d
-1 

at both sites 

and E between 0.07 and 1.04 mm d
-1 

at both sites, respectively and both fluxes were in the same range 

during spring. Likewise, the relative contribution of T to ET varied between 34 and 93% between 

April and June. Understory ET was significantly lower at the tree site compared to the open site during 

the first half of the growing season (U-test, p<0.05), especially in the transition period between spring 

and summer (late May to mid June). This was mainly caused by lower understory transpiration due to 

a significant lower conductance (Fig. 5a-h, Table 2). On an annual basis, herbaceous T played a 

dominant role during the main growing season from April to the onset of summer drought, while soil 

E was equally high during spring and fall (0.4 ± 0.1 mm d
-1

), only ceasing during the summer drought 

period. Thus, the relative small increase of net understory ET in response to increased soil θ in fall was 

caused by very low T (0.12 ± 0.03 mm d
-1

) of the newly established understory vegetation. 

 

Table 2: Living aboveground biomass (g m
-2

) of the herbaceous layer in spring and fall 2011 on the 

open and tree site (mean values ± SD; n=5). 

 

 

 

 

 

In contrast to ecosystem NEE, NEE of the understory (NEEu) turns to a net carbon source at the onset 

of summer with net respiration rates of up to 2.8 g C m
-2

 d
-1

 (Fig. 5i-p). Understory respiration was 

relatively stable over the measurement period only declining slightly during fall, due to decreasing 

temperatures. Hence, variability in NEEu was mainly triggered by changes in gross primary production 

of the understory (GPPu) which peaked in late April at -6.5 g C m
-2

 d
-1

 corresponding to the observed 

date open site tree site 

8.4.2011 69 ± 4 72 ± 21 

24.4.2011 70 ± 9 71 ± 11 

27.5.2011 67 ± 7 72 ± 23 

14.6.2011 33 ± 12 17 ± 9 

1.11.2011 14 ± 2 15 ± 4 

14.11.2011 43 ± 7 41 ± 7 
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peak in understory aboveground biomass (70 ± 9 and 71 ± 11 g m
-2

 at the open and tree site, Table 3). 

Die-back of the understory vegetation in late spring and accordingly a decline in GPPu was 

responsible for the net release of carbon from the understory during summer, while the germination in 

late October led to a swift increase of GPPu up to 1.8 g C m
-2

 d
-1

. Notably, significant site-specific 

differences were found in GPPu and NEEu from late May onward (U-test, p<0.05). The die-back of the 

understory vegetation occurred 2 weeks earlier at the tree site, hence the reduction in GPPu was 

stronger under the trees with 50% compared to 20% reduction from late April to mid June at the open 

site (Fig. 5i-p).  

Table 3: Daytime mean conductance (mmol m
-2

 s
-1

) of the herbaceous layer during spring, late spring 

and fall (mean values ± SE) at the open and tree site. Site specific differences are indicated at p<0.05 

(Mann-Whitney U-test). 

season open site tree site p-level 

spring 111.6 ± 35 85.7 ± 41 n.s. 

late spring 102.7 ± 47 65.5 ± 48 0.02 

fall 130.2 ± 101 103.8 ± 93 n.s. 

 

Inherent water-use efficiency (iWUE) was calculated for the whole understory (including respiratory 

fluxes and soil evaporation) as well as the vegetation level (gross primary productivity and 

transpiration only; Fig. 5q-x). Understory iWUE did not show a pronounced inter-seasonal 

development and was 2.2 ± 1.2 at the open and 2.5 ± 1.2 g C mm
-1

 H2O at the tree site. Plant level 

iWUE was always  higher than understory iWUE, however the difference became very pronounced 

following rain events and a linear relationship could be detected between volumetric soil water content 

and difference in iWUE on understory vs. plant level (R²=0.3; p=0.01).  
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Figure 5: 
Daytime integrated 

understory evapo-

transpiration (ET, 

mm d
-1

, mean values 

± SD, n=3), which is 

the sum of 

herbaceous layer 

transpiration (T, 

green bars) and soil 

evaporation (E, blue 

bars) at the open (i-l) 

and tree site (m-p); 

daytime integrated 

net understory CO2 

exchange (NEE, g C 

m
-2

 d
-1

, white circles; 

mean values ± SE, 

n=3), herbaceous 

gross primary 

production (GPP, 

dashed green line, 

mean values, n=3) 

and respiration (R, 

blue line, mean 

values, n=3) on the 

open (a-d) and tree 

site (e-h). q-x) 

Inherent water-use 

effi-ciency (iWUE) 

of the whole 

understory 

(GPP*VPD/ET, 

white circles), and 

understory 

vegetation 

(GPPu*VPD/T, green 

circles). iWUE was 

calculated from 

daytime integrated 

values of ET, T and 

GPPu for the open 

site (q-t) and the tree 

site (u-x). 
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5.4.5. Contribution of understory vegetation and soil to the ecosystem carbon and water 

fluxes 

The contribution of the understory vegetation to whole ecosystem ET was highest during its growth 

peak in spring. In contrast, soil E was the dominant flux of ecosystem ET in fall reaching 55% of total 

ET. Herbaceous T and soil E alike decreased towards the beginning of the summer drought period 

from 43 and 32% in May to 30 and 16% in June, respectively (Fig. 6a), both being negligible for 

ecosystem ET during summer. Likewise, herbaceous GPP displayed the highest contribution to 

ecosystem GPP during spring but declining from 51% to 36% towards the onset of summer drought in 

June. After its germination in fall, understory contribution to GPPeco increased to 50% within two 

weeks (Fig. 6b). Despite the long drought period, cork-oak GPP as well as T were relatively stable 

during spring and summer (-4.4 ± 0.65 g C m
-2

 d
-1

 and 1.12 ± 0.14 mm d
-1

, respectively) and declining 

only drastically towards the end of summer and remaining low during autumn (-1.8 ± 0.96 g C m
-2

 d
-1

 

and 0.2 ± 0.16 mm d
-1

; Fig. 6a, b). Since Reco was relatively stable throughout the year (at 2.1 ± 0.6 g C 

m
-2

 d
-1 

on average; Fig. 6b), changes in 

ecosystem NEE, especially between 

spring and summer, can mostly be 

attributed to understory vegetation 

dynamics. 

 

 

Figure 6: a) Daytime integrated 

ecosystem evapotranspiration (ET, sum 

of the stacked bars) and its components 

cork-oak transpiration (To, dark green), 

herbaceous transpiration (Tu, green) 

and soil evaporation (E, blue, all mm 

d
-1

). b) Daytime integrated GPP of 

cork oaks (GPPo, dark green) and 

understory (GPPu,  green), ecosystem 

respiration (Reco; blue), and net 

ecosystem CO2 exchange (NEE, black 

squares, all in g C m
-2

 d
-1

).  
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Inherent water-use efficiency was calculated at ecosystem (-NEE*VPD/ET) and plant level (-

GPP*VPD/T; Fig.7). In general, cork-oak iWUE was within the range of ecosystem iWUE, which 

increased to 3.8 g C mm
-1

 H2O with the onset of summer drought but then steadily declined towards 

fall. Notably, understory iWUE was similar to cork-oak and also ecosystem iWUE in spring but much 

higher in fall (Fig. 7). 

 

Figure 7: Inherent water-use efficiency (iWUE, GPP*VPD/(E)T) of the ecosystem (white circles), the 

black line represents the running average, cork oaks (dark green) and understory vegetation (green 

circles). 

5.5. Discussion 

In semi-arid ecosystems, such as Mediterranean evergreen oak woodlands with sparse tree cover, 

water is the major factor limiting ecosystem productivity. Future climate change scenarios propose 

even increased drought and altered precipitation pattern in the Mediterranean (IPCC 2007; Costa et al., 

2012; Jongen et al., 2013). Under these conditions, an efficient use of the limited water supply is 

crucial (Wang et al., 2012) and advancements of observational methods and modeling approaches are 

vitally important to better understand vegetation-soil-water feedbacks. We hypothesized that in 

savanna type ecosystems the herbaceous understory layer, despite its ephemeral life form, plays an 

important role in the water and carbon balances and for ecosystem resilience towards drought. In the 

following, this shall be discussed with respect to the contribution of the understory to total ecosystem 
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ET and productivity, as well as influence on unproductive soil water loss, i.e. evaporation (E) and soil 

water distribution.  

The recent developments in laser spectroscopy enabled us to measure δ
18

O of ambient vapor (δ
18

Oa), 

of understory evapotranspiration (δ
18

OET) and its components with a high temporal resolution. The 

direct observations of δ
18

OE on bare soil plots allowed a detailed validation of the Craig and Gordon 

(1965) model for the first time over a whole growing season regarding short time-scales, i.e. 

differences on a diurnal basis, as well as under extreme conditions (saturated or dry soils; Dubbert et 

al., 2013; Wang et al., 2013). We could show that calculated δ
18

OE is in very good agreement with 

measurements of δ
18

OE even during early morning and afternoon, where environmental conditions 

change swiftly. However, a thorough validation of the models estimating δ
18

O soil evaporation 

(Dubbert et al., 2013) and plant transpiration (T, Dubbert et al., 2014a) are pivotal. For example, 

assuming T to be in isotopic steady-state leads to offsets of up to 70% in the estimation of the fraction 

of T on total understory evapotranspiration in this ecosystem (Dubbert et al., 2013), exceeding 

previous uncertainty estimates of around 25% (Yepez et al., 2007). This also indicates that the impact 

of not considering the effect of non-steady-state transpiration on ET partitioning probably differs 

between plant functional types and ecosystems (see Dubbert et al., 2014a). Similarly, the Craig and 

Gordon equation is very sensitive to uncertainties in estimates of temperature and oxygen isotope 

signatures of soil water at the evaporating front (Te and Re; see Braud et al., 2005; Dubbert et al., 2013; 

Rothfuss et al., 2012); hence taking averages of parts of the soil profile, as done by previous studies 

(Lai et al., 2006; Yepez et al., 2005; Wang et al., 2010), likely leads to large uncertainties not only in 

the estimate of δ
18

OE but also in the partitioning (T/ET). 

The coupling of the laser spectrometer to gas-exchange chambers for this isotope based ET 

partitioning approach further offered the opportunity to separate between herbaceous transpiration and 

soil evaporation for the first time over a whole growing season with a temporal resolution exceeding 

by far that of previous studies, who mostly were able to estimate T/ET for 1 up to 6 days over the 

growing season (see for comparison Williams et al., 2004; Yepez et al., 2007; Wang et al., 2013; Hu 

et al., 2014). This has strong potential to enhance our functional understanding of soil evaporation 

dynamics and vegetation-soil feedbacks within the water cycle, specifically for grassland ecosystems 
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where ET can hardly be separated by classical flux based approaches (but see the modeling approach 

of Hu et al., 2009).  

One main observation of this study was the distinct responses of understory T and soil E to changes in 

environmental conditions. The small contribution of T shortly after a rain pulse is due to the swift 

increase in soil E (Scott et al., 2006, Raz-Yaseef et al., 2012). In contrast, plant T strongly decreased 

upon rain events and only very gradually increased thereafter.  During drought, E also declined much 

faster, while plants maintained a relatively stable transpiration rate even under rather dry soil 

conditions. Raz-Yaseef et al. (2012) explained such findings with the regulation of T and E by 

different soil layer θs. However, a correlation between T and θs of all obtained depths (5, 15, 30 and 

60cm) could not be detected even when θs was low. While E was significantly correlated with top soil 

θs (R²=0.55, p<0.001), a correlation with VPD could only be observed when θs was strongly limiting 

E. By contrast, understory T was correlated with VPD instead (R²=0.57, p<0.001), highlighting that 

considering E and understory T separately is crucial for understanding changes in net ET. Moreover, 

soil evaporation at both sites was correlated with understory biomass development: the higher 

aboveground biomass the smaller the soil fluxes (see also Barr et al., 2004). Vegetation cover, 

depending mostly on LAI, can largely reduce unproductive soil evaporation (Hu et al., 2009; Wang et 

al., 2010; Raz-Yaseef et al., 2012). We found up to 40% reduction of E on understory vegetation plots 

compared to bare soil plots (bare soil E rates are not shown). Reducing bare soil evaporation has 

therefore been addressed as a critical issue in many dry-lands (Wang et al., 2012). Averaged for the 

periods where understory vegetation was present, soil E contributed a similar amount to ecosystem ET 

than understory T (27% and 29%, respectively), which was largely neglected in previous studies (Paço 

et al., 2009; Jasechko et al., 2013). However, soil E contributed significantly only when water was not 

limiting plant photosynthesis and growth. By contrast, during times of low water availability, inherent 

water use efficiency increased, which was at least in parts due to strongly decreased soil evaporation 

rates (Fig. 5 and 6, Pereira et al., 2007).  

Furthermore, comparisons of inherent water use efficiency reflecting water limitation effects (Vickers 

et al., 2012; Eamus et al., 2013) at ecosystem versus plant scale were conducted. In semi-arid regions 

iWUE often increases in times of moderate drought stress of the vegetation, reflecting the ability of 
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plants to adjust their photosynthetic capacity and/or stomatal control in times of lower water 

availability (Scott et al., 2006; Yepez et al., 2007; Jongen et al., 2011; Vickers et al., 2012; Eamus et 

al., 2013), which can be seen at the ecosystem level during early summer (June-July). The decrease in 

ecosystem and tree iWUE over the later course of summer might be explained, on the other hand, by 

temperature and light stress (Pereira et al., 2006). Trees did not down-regulate their transpiration very 

strongly until late August (D’Odorico; Fig. 6), probably due to their supposed access to deep soil 

water layers and/or groundwater, but the photosynthetic apparatus might still have been limited by the 

higher average (leaf) temperatures in summer compared to spring (Werner & Correia, 1996; Werner et 

al., 2006), thus leading to a decrease in iWUE (Pereira et al., 2007). Comparing ecosystem with plant 

level iWUE, a large impact of either soil evaporation or ecosystem respiration on ecosystem water use 

efficiency should be reflected in lower ecosystem scale iWUE (-NEE*VPD/ET) compared to iWUE of 

cork-oaks and the understory (-GPP*VPD/T). While iWUE of the cork-oaks was mostly within range 

of ecosystem iWUE, iWUE of the understory plants was higher than ecosystem iWUE in both spring 

and fall. In early spring and fall these smaller values on ecosystem scale were caused by both high soil 

evaporation and Reco rates. During late spring however, soil evaporation was small and the lower 

ecosystem iWUE compared to plant iWUE was mainly caused by high Reco rates. This confirms that 

during times of water limitation ecosystem iWUE is not negatively affected by soil E. Notably, even 

the strong differences between ecosystem and plant iWUE at the understory scale, immediately 

following rain events, were caused by a strong increase in plant iWUE due to decreased Tu 

immediately after rainfall and not by a decrease in iWUEeco. Moreover, the impact of the understory 

vegetation on ecosystem productivity was as large as its contribution to the water cycle (see also 

Unger et al., 2009, 2010), leading to similar or even higher iWUE of the understory and cork-oaks and, 

hence, a significant contribution of the understory layer to the ecosystem sink strength in spring and 

fall. 

In addition to this contribution to ecosystem productivity and the reduction of soil evaporation, a third 

beneficial effect of understory vegetation on ecosystem functioning was identified: understory 

vegetation impact on soil water infiltration (Tromble, 1988; Dawson, 1993; Schwinning & Ehleringer, 

2001; Devitt & Smith, 2002; Bhark & Small, 2003; Huxman et al., 2005; Kurz-Besson et al., 2006; 
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Scott et al., 2014). A positive feedback of vegetation biomass on rain water infiltration is often found 

in arid ecosystems with open canopies, where it alters spatial distribution and enhances rain use 

efficiency of the vegetation (Bromley et al., 1997; Couteron & Kokou, 1997; Rietkerk et al., 2002; 

D’Odorico et al., 2006; Chen et al., 2013). On the other hand, vegetation canopies intercept rainfall, 

and a substantial proportion of this rainfall interception can be lost due to evaporation from plant 

surfaces (Tromble, 1988). Here, we observed contrasting effects on rainfall infiltration of the two 

different vegetation types: the cork-oak canopy had no significant influence on infiltration, while the 

understory vegetation cover significantly increased infiltration compared to bare soil plots. Bhark & 

Small (2003) report that this beneficial influence is enhanced in ecosystems with strong natural surface 

run-off on bare soils with reduced hydraulic conductivity due to a sealed soil layer during the dry 

period (Chen et al., 2013), which is the case at our study site. Notably, a significant relationship 

between rain fall intensity and differences in infiltration between bare soil and understory patches 

could be observed (Bhark & Small, 2003). Likewise, Thompson et al. (2010) found an increasing 

effect of vegetation biomass on infiltration with decreasing soil water availability. Therefore, the 

presence of a fully developed herbaceous layer should be even more important with increased drought.  

Moreover, herbaceous understory vegetation has been shown to facilitate tree growth and fruit 

production by increasing soil N (Pulido et al., 2010; Rolo & Moreno, 2011). It can be expected that 

repeated ploughing, liming and sowing of a legume rich seed mixture, a common practice in agro-

silvo-pastoral systems in Portugal also done in a three to five year interval at our site, significantly 

increases the contribution of N-fixing species intensifying this effect (Crespo, 2006). 

However, the understory vegetation itself is highly vulnerable to drought, which is underlined by the 

significantly earlier die back of the understory vegetation under the trees compared to open areas at the 

onset of summer drought, when environmental stress increased. This earlier senescence below the tree 

canopy predominantly affected N-fixers and grasses and suggests competition with oak trees for water 

from the top soil layers as also herbaceous vegetation transpiration and conductance were significantly 

reduced by 40% and 45%, respectively (see also Moreno, 2008; Dubbert et al., 2014b). This drought 

induced competition even influenced total ecosystem sink strength in spring, as it reduced the overall 

understory productivity on average by 22% on the tree compared to the open sites during the last 3 
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weeks of the herbaceous vegetation period. 

In conclusion, beneficial understory vegetation effects were dominant, as herbaceous biomass strongly 

increased rain infiltration, diminished soil E and significantly added to the ecosystem carbon sink 

strength. However, the observed vulnerability of the understory vegetation to drought and competition 

for water with trees suggests, that increased drought and altered precipitation pattern as predicted in 

future climate change scenarios for the Mediterranean basin not only threaten understory development. 

They also very likely decrease rain infiltration and ground water recharge by decreasing understory 

vegetation cover and increasing amount of heavy precipitation events with high run-off from sealed 

bare soils. This in turn can severely diminish cork-oak productivity and hence the resilience of the 

ecosystem towards drought (Scott et al., 2014). 
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5.8. Supporting information 

 

Figure S1: Typical diurnal courses of understory ET, δ
18

OET, NEE and its components on 23. and 24. 

May 2011. a,d) of oxygen isotope signatures of measured ET (grey circles, n=3 ± SD) and modeled E 

and T (blue line and green dashed line) at the open (a) and tree site (d); b, e) of fluxes of measured ET 

(grey circles, n=3 ± SD) and modeled E and T (blue line and green dashed line) on the open (b) and 

tree site (e). c, f) Fluxes of measured net understory CO2 exchange (NEEu; grey circles, n=3 ± SD) and 

understory respiration (Ru; blue circles, n=3 ± SD) and estimated understory plant CO2 uptake (GPPu; 

green dashed line) at the open (c) and tree site (f). 
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Table S1: Oxygen isotope signatures of soil water [‰] in 0.5, 2, 5, 10, 15, 20 and 40 cm depth on 

bare soil and vegetation plots at the open and tree site between 7.4. and 21.11.2011. 

 

Sampling date 
Depth 

(cm) 
Open site Tree site 

  
Bare soil 

(MW±SE) 

Vegetation 

(MW±SE) 

Bare soil 

(MW±SE) 

Vegetation 

(MW±SE) 

7./8.4.2011 0.5 -1.9 2.3 -1.5 2.5 1.1 1.2 -4.2 0.8 

 2 -3.8 2.7 -3.3 1.1 -5.6 0.1 -5.9 0.1 

 5 -3.5 1.3 -4.5 0.4 -5.8 0.1 -6.4 0.1 

 10 -5.2 0.4 -5.3 0.7 -5.6 0.6 -6.5 0.1 

 15 -5.4 0.0 -5.5 0.8 -5.8 0.1 -7.1 0.7 

 20 -3.0 3.6 -5.3 1.0 -5.7 0.4 -6.9 0.5 

 40 -5.5 0.4 -5.6 0.6 -5.6 0.4 -7.6 0.2 

12/13.4.2011 0.5 -2.5 1.2 -2.8 0.4 3.5 0.8 -0.2 0.4 

 2 3.3 1.3 -2.5 0.4 3.6 0.1 -0.1 0.2 

 5 -0.3 0.4 -5.4 1.3 -1.7 1.6 -3.3 2.2 

 10 -6.0 0.1 -6.8 0.4 -5.6 0.0 -6.7 0.0 

 15 -5.8 0.4 -6.7 0.1 -5.9 0.1 -6.6 0.5 

 20 -6.1 0.1 -7.0 0.3 -6.0 0.1 -7.0 0.2 

 40 -6.2 0.1 -6.5 0.0 -6.4 0.3 -7.0 0.2 

18.4.2011 0.5 0.2 1.3 0.4 0.0 n.a. n.a. n.a. n.a. 

 2 5.4 0.3 0.1 0.8 n.a. n.a. n.a. n.a. 

 5 n.a. n.a. -0.8 0.6 n.a. n.a. n.a. n.a. 

 10 -3.0 0.2 -4.3 1.5 n.a. n.a. n.a. n.a. 

 15 -5.1 0.0 -5.2 0.4 n.a. n.a. n.a. n.a. 

 20 -5.7 0.2 -5.6 0.0 n.a. n.a. n.a. n.a. 

 40 -6.1 0.4 -6.8 0.3 n.a. n.a. n.a. n.a. 

25.4.2011 0.5 2.2 0.6 -0.7 0.8 n.a. n.a. n.a. n.a. 

 2 -3.5 2.5 -3.1 0.1 n.a. n.a. n.a. n.a. 

 5 -3.9 0.8 -5.4 0.8 n.a. n.a. n.a. n.a. 

 10 -3.7 0.5 -5.5 0.2 n.a. n.a. n.a. n.a. 

 15 -4.4 0.1 -5.1 0.1 n.a. n.a. n.a. n.a. 

 20 -3.8 1.8 -5.6 0.3 n.a. n.a. n.a. n.a. 

 40 -6.1 0.0 -5.9 0.0 n.a. n.a. n.a. n.a. 

2./3.5.2011 0.5 4.4 0.8 -4.2 0.4 -1.7 0.2 -4.7 0.0 

 2 -1.9 0.4 -4.2 0.5 -4.0 0.3 -5.7 0.3 

 5 -4.6 0.3 -6.2 0.1 -5.4 0.3 -6.1 0.4 

 10 -5.4 0.7 -7.8 0.5 -5.0 1.2 -5.3 0.1 

 15 n.a. n.a. -7.7 0.1 -4.4 0.0 -5.2 0.5 

 20 -5.2 0.4 -8.0 0.5 -4.8 0.0 -4.9 0.4 

 40 -5.5 0.1 -6.4 0.4 -5.0 0.1 -5.7 0.1 
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23./24.5.2011 0.5 1.9 1.5 1.8 2.1 1.8 0.3 -1.0 1.2 

 2 -3.9 1.4 -1.7 0.1 0.0 1.8 -1.1 1.0 

 5 -2.1 1.8 -3.2 0.5 -1.1 0.6 -3.7 0.9 

 10 -4.6 2.5 -5.3 0.8 -4.6 1.7 -3.9 1.1 

 15 -3.0 0.5 -4.1 0.1 -5.4 1.5 -4.1 0.1 

 20 -4.1 1.5 -4.9 0.2 -3.3 0.9 -3.0 0.1 

 40 -5.6 1.8 -3.9 1.2 -4.4 0.2 -4.6 0.2 

25./27.5.2011 0.5 1.2 0.6 0.1 0.2 0.8 1.2 -0.5 1.9 

 2 -4.8 4.7 -1.8 1.9 -1.3 0.2 -3.2 2.4 

 5 -5.6 2.2 -2.0 1.0 -3.3 1.7 -3.8 1.1 

 10 -7.5 2.1 -2.8 0.5 -4.9 0.1 -5.9 1.3 

 15 -5.2 0.7 -3.9 0.8 -6.6 1.3 -5.6 1.5 

 20 -4.4 0.6 -3.9 0.1 -4.7 2.1 -5.2 1.2 

 40 -4.9 1.7 -4.2 0.7 -5.3 0.4 -5.8 0.8 

31.5.2011 0.5 4.7 0.8 2.4 1.2 n.a. n.a. n.a. n.a. 

 2 -2.3 3.4 -0.1 0.7 n.a. n.a. n.a. n.a. 

 5 -3.5 1.6 -7.6 4.6 n.a. n.a. n.a. n.a. 

 10 -4.6 0.3 -5.6 3.1 n.a. n.a. n.a. n.a. 

 15 -4.5 1.1 -4.1 1.5 n.a. n.a. n.a. n.a. 

 20 -4.6 2.1 -7.4 3.1 n.a. n.a. n.a. n.a. 

 40 -4.7 1.6 -5.7 0.3 n.a. n.a. n.a. n.a. 

1./2.6.2011 0.5 -0.3 4.6 -0.6 6.6 -1.4 2.9 -0.2 0.8 

 2 -3.1 2.5 -1.9 0.7 -3.2 1.7 -1.7 3.5 

 5 -4.2 1.6 -4.0 3.2 -1.1 0.9 -4.1 0.1 

 10 -4.6 1.1 -5.6 1.1 -4.4 1.8 -4.9 0.5 

 15 -5.5 2.0 -2.5 0.2 -3.8 2.1 -5.1 2.2 

 20 -4.0 1.8 -3.6 1.2 -3.9 2.2 -6.0 0.5 

 40 -3.7 0.6 -3.0 0.4 -3.7 3.1 -3.4 2.0 

9./11.6.2011 0.5 n.a. n.a. 4.9 1.3 n.a. n.a. 4.1 0.5 

 2 7.4 1.2 -1.8 0.6 8.0 2.0 -1.2 2.0 

 5 -0.6 0.7 -4.6 1.4 1.4 1.5 -2.7 1.0 

 10 -2.1 0.9 -4.1 0.4 -5.2 4.1 -5.9 1.2 

 15 -1.2 1.5 -6.2 0.9 -2.6 0.3 -3.9 1.3 

 20 -1.9 0.5 -5.0 2.0 -2.7 3.0 -3.9 1.0 

 40 -4.6 0.8 -5.5 0.2 -3.7 0.5 -4.5 1.9 

14.6.2011 0.5 n.a. n.a. 7.0 0.8 -2.2 1.5 3.2 1.2 

 2 -2.2 1.0 7.3 1.3 5.2 1.4 6.5 1.2 

 5 5.8 0.9 1.6 0.5 5.1 0.8 -6.5 1.0 

 10 -1.5 2.1 -1.5 0.3 -3.1 4.5 -1.5 0.1 
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 15 -1.6 0.1 -1.4 0.1 -2.6 3.4 -4.8 1.3 

 20 -5.0 3.1 -1.6 1.3 -3.2 0.8 -4.2 3.0 

 40 -2.3 1.2 -6.7 2.5 -0.8 0.8 -2.6 2.9 

14.9.2011 0.5 n.a. n.a. n.a. n.a. n.a. n.a. -0.6 2.6 

 2 n.a. n.a. n.a. n.a. n.a. n.a. 5.4 1.5 

 5 n.a. n.a. 5.1 1.9 n.a. n.a. 5.6 1.2 

 10 n.a. n.a. 2.6 2.0 n.a. n.a. -0.5 1.6 

 15 n.a. n.a. -0.2 0.3 n.a. n.a. -1.2 0.8 

 20 n.a. n.a. -2.9 0.4 n.a. n.a. 1.5 1.0 

 40 n.a. n.a. -1.9 0.8 n.a. n.a. -0.6 2.6 

28./29.10.2011 0.5 -0.7 2.2 -1.6 0.4 1.6 1.7 -2.1 0.3 

 2 -3.9 0.2 -2.8 2.0 -1.7 0.2 -2.9 0.3 

 5 -4.0 0.2 -2.9 0.5 -2.5 0.7 -4.5 0.3 

 10 -5.3 0.7 -5.0 0.5 -3.5 2.9 -5.6 1.7 

 15 -4.2 0.4 -2.7 0.3 -2.0 0.4 -2.7 1.2 

 20 -5.7 0.2 -4.2 0.5 -5.1 0.3 -2.1 1.6 

 40 -4.4 0.8 -6.1 1.3 -4.2 0.3 -2.9 0.2 

4./5.11.2011 0.5 n.a. n.a. -6.9 0.8 n.a. n.a. -6.9 1.8 

 2 n.a. n.a. -5.8 1.5 n.a. n.a. -4.5 2.0 

 5 n.a. n.a. -4.2 0.1 n.a. n.a. -3.4 1.3 

 10 n.a. n.a. -3.7 0.8 n.a. n.a. -4.4 1.0 

 15 n.a. n.a. -3.8 1.5 n.a. n.a. -7.2 1.3 

 20 n.a. n.a. -4.1 0.3 n.a. n.a. -4.7 0.2 

 40 n.a. n.a. -5.7 0.4 n.a. n.a. -5.1 0.6 

6./7.11.2011 0.5 -1.0 0.9 -4.9 0.9 0.5 1.9 -5.5 1.7 

 2 -3.8 1.9 -4.8 0.7 -2.8 0.2 -4.2 0.3 

 5 -4.1 1.8 -3.4 0.9 -3.2 0.4 -5.4 0.4 

 10 -3.1 1.5 -3.5 1.7 -4.4 1.8 n.a. n.a. 

 15 -3.7 1.2 -3.1 3.0 -3.1 0.4 -3.3 0.6 

 20 -3.7 0.5 -3.3 1.3 -5.4 0.3 -3.1 1.0 

 40 -3.7 0.8 -3.2 0.7 -4.3 0.6 -3.3 0.6 

16./17.11.2011 0.5 -0.4 0.5 -3.7 0.9 -1.6 1.3 -4.5 0.8 

 2 -5.9 1.1 -4.9 0.9 -1.7 2.6 -4.6 0.5 

 5 -4.9 2.1 -2.9 1.3 -3.2 1.5 -3.9 0.5 

 10 -3.5  -3.0 1.1 -2.7 1.5 -4.0 2.3 

 15 -4.4 1.9 -2.6 5.5 -3.0 0.6 -3.6 0.5 

 20 -3.4 0.4 -3.2 1.4 -3.9 0.5 -3.3 1.1 

 40 -3.7 0.6 -3.9 0.4 -3.6 0.9 -2.4 0.9 

20./21.11.2011 0.5 n.a. n.a. -4.8 1.4 n.a. n.a. -5.7 1.2 
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 2 n.a. n.a. -3.3 0.2 n.a. n.a. -5.1 0.4 

 5 n.a. n.a. -5.1 0.6 n.a. n.a. -5.6 0.3 

 10 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

 15 n.a. n.a. -3.7 0.5 n.a. n.a. -2.8 0.6 

 20 n.a. n.a. -2.9 1.0 n.a. n.a. -3.2 1.0 

 40 n.a. n.a. -2.9 0.8 n.a. n.a. -3.6 0.3 
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6.1. Abstract 

In seasonally dry climates, such as the Mediterranean, lack of rainfall in the normally wet winter 

season may originate severe droughts and a great variability in annual precipitation.  Droughts, in turn, 

are a main source of inter-annual variation in carbon sequestration when winter rainfall diminishes. 

This may alter the seasonal pattern of photosynthetic uptake, which is determined by leaf phenology 

and gas exchange limitations. 

The current study is based on the monitoring of an extremely dry winter in an evergreen cork oak 

woodland under the Mediterranean climate of central Portugal. Results are centred on net ecosystem 

exchange (NEE), phenology and tree growth measurements during two contrasting years: 2011, a wet 

year with a standard summer drought pattern and 2012, with an extreme dry winter (only 10 mm of 

total rainfall) that exacerbated the following summer drought effects. The main aims of this study were 

to assess: 1) effects of winter drought in annual and seasonal NEE; 2) interactions between cork oak 

phenological events and NEE. 

The dry year 2012 was marked by a 45% increase in NEE (-388 vs. -214 gC m
-2

 year
-1

), a 63% 

reduction in annual tree diameter growth but only a 9% reduction in leaf area index compared to the 

wet year 2011. A significant reduction of 15% in yearly carbon sequestration was associated with leaf 

phenological events of canopy renewal. On the contrary to male flower production fruit setting was 

severely depressed by water stress showing a reduction of 54% during the dry year. 

Our results suggest that leaf growth and leaf area maintenance are ecophysiological traits preserved 

under drought winter and are a sink priority for photoassimilates contrarily to tree diameter growth. 

Thus, carbon sequestration reductions under low water availabilities in cork oak woodland should be 

ascribed to stomatal regulation or photosynthetic limitations and in a much less extent to leaf area 

reductions. 
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6.2. Introduction 

Cork oak (Quercus suber L.) open woodlands cover an area of about 2-2.5 million ha in the western 

Mediterranean (Aronson et al., 2009). These are man-made ecosystems exploited with low-impact 

agro-forestry, with high biodiversity and conservation value (Bugalho et al., 2011). In Portugal these 

woodlands cover 0.74 million ha and represent 23% of all forested area. Cork oak has a significant 

economic value. It provides 0.7% of the gross domestic product and supplies 54% of the worldwide 

cork production (Evangelista, 2010). Cork is a natural product consisting of continuous annual layers 

of suberized tissue produced by phellogen, a secondary meristem wrapping the inner bark. Cork wine 

bottle stoppers is the main product and to obtain commercial grade cork stripping is done traditionally 

every 9 years.  Cork removal can only be safely done when the phellogen cells are actively dividing, in 

late-spring and early-summer, to prevent injuries to the tree (Costa et al., 2003). 

Cork oak is well adapted to the adverse semiarid Mediterranean climate and its ecophysiology has 

been well studied in the last decades (e.g. Otieno et al., 2007; Pereira et al., 2009; Vaz et al., 2010). 

Adverse conditions result mainly from scarce water resources during a long dry summer season, 

usually coupled with high temperatures and high radiation. In a seasonal climate such as the 

Mediterranean, a drought is said to occur when precipitation shortages, often coupled to high 

evaporative demand, reduce moisture availability for an extended period during the normally wet 

season (Pereira et al., 2006). 

Successful adaptations to cope with water stress range from an efficient root and water transport 

system (David et al., 2007; Kurz-Besson et al., 2006) to a tight stomatal regulation at the leaf level, 

restricting water loss while limiting the rate of CO2 assimilation (Otieno et al., 2007; Pinto et al., 2012; 

Vaz et al., 2010). Nevertheless, and despite being considered drought resilient, a succession of dry 

years or severe stress events may lead the trees to surpass breakdown thresholds and result in episodes 

of tree mortality (Pereira et al., 2009). In addition, the Mediterranean region is among the most 

responsive regions to climate change, for where all recent climate projections forecast more frequent 

extreme events (Reichstein et al., 2013), such as heat waves and severe droughts (e.g. Giorgi and 

Lionello, 2008). 

Many Mediterranean-oak ecosystems have already been studied through eddy-covariance monitoring 
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for carbon sequestration assessment, including both deciduous oaks woodlands – e.g. Q. cerris or Q. 

douglasii (Baldocchi et al., 2010; Ma et al., 2007) – and Q. ilex evergreen oak woodlands with high 

(e.g. Allard et al. 2008) or low tree densities (e.g. Baldocchi et al., 2010; Pereira et al., 2007).  

Phenological patterns in Mediterranean regions are strongly influenced by a marked climatic 

seasonality and species evolved to synchronise maximum vegetative activity to the most favourable 

periods of the year (Misson et al., 2011; Pinto et al., 2011; Richardson et al., 2010). Timing of 

budburst and growing season length can directly impact on annual net ecosystem carbon uptake 

(Baldocchi, 2008; Richardson et al., 2010) and leaf age on canopy carbon uptake (Niinemets et al., 

2005). However, an earlier spring onset can be associated with either enhanced or decreased 

productivity later in the growing season (e.g. depending on interactions with water availability), and 

thus early-season gains being offset by sustained late-season reductions in physiological activity 

(Richardson et al., 2010). Furthermore, even if early leaf development is generally advantageous in 

terms of carbon uptake, there are trade-offs between increasing growing season length versus increases 

in the probability of early-spring frost damages (Saxe et al., 2001). Therefore, the evaluation of 

interactions between climate change effects, phenological events and net ecosystem exchange requires 

a species-specific ecosystem scale analysis. 

The current study is based on the monitoring of an extremely dry winter (only 10 mm of total rainfall) 

in a certified cork oak woodland. Results are centred on ecosystem carbon fluxes 

(micrometeorological method, eddy-covariance technique), phenology and tree growth measurements 

during two contrasting years: 2011, a wet year with a standard summer drought pattern and 2012, with 

an extreme dry winter that exacerbated the following summer drought effects. Main aims of this study 

were to assess 1) the effects of extreme dry winter in annual and seasonal net carbon ecosystem 

exchange (NEE), and 2) the interactions between cork oak phenological events and NEE. 



Study VI: Effects of an extreme dry winter on Q. suber woodland: net ecosystem exchange and tree 

phenology adjustments 

 

 

195 

6.3. Material and Methods 

6.3.1. Site description 

In 2009 an experimental site was established at Herdade da Machoqueira located in Central Portugal 

(39°08’18.29’ N, 8°19’57.68’ W). Vegetation consists of a ca. 50-yr-old cork oak (Quercus suber) 

open woodland with an understory of shrub species (e.g. Cistus sp., Ulex sp.) and native grassland. 

The climate is Mediterranean, with wet and mild winters and dry and hot summers. Average annual 

precipitation is 680±210 mm and mean annual temperature is 15.9 ºC (period 1955–2007, Inst. 

Meteorologia Lisbon). The soil is a cambisol (FAO), with 81% sand, 5% clay and 14% silt, with roots 

mainly in the upper horizons (ca. 0–40-cm depth) and some sinker roots taking water from deeper soil 

horizons and subsoil. Other general site characteristics are described in Table 1 for the studied period. 

Table 1: General soil, climate and vegetation characteristics in 2011 and 2012. Values are means ± se.  

Characteristic 2011 2012 Units 

Soil    

Organic matter 3.2±0.2  % 

C/N 19.3±1.4   

Carbon stock (up to 60 cm) 62.2  T C.ha
-1

 

Climate    

Mean temperature 16.1 15.2 ºC 

Total precipitation 800 469 Mm 

Total PAR 13033 13606 mol m
-2

.year
-1

 

Vegetation    

Tree density 177  trees ha
-1

 

Tree crown cover 50  % 

Tree height 7.9  M 

Tree DBH 24.7  C m 

Maximum LAI 1.15 1.05 m
2
.m

-2
 

Total tree C stock 33.7  t C.ha
-1

 

Shrubs above-ground C stock 0.34±0.10 0.51±0.18 t C.ha
-1

 

Grasses above-ground C stock 0.32±0.05 0.10±0.02 t C.ha
-1

 

6.3.2. Environmental parameters 

Meteorological data on rainfall (ARG100; Environmental Measurements Ltd., Gateshead, UK), solar 

radiation (BF2; Delta-T Devices Ltd., Cambridge, UK), air humidity and temperature (CS215; 

Campbell Scientific, Inc., Logan, UT, US) were collected continuously in 30-min time intervals 
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(CR10X; Campbell Scientific). Soil volumetric water content was measured up to 40-cm depth (2, 10, 

20, 30, 40 cm) with dielectric soil moisture sensors in four different places (EC5; Decagon Devices, 

Inc. Pullman, WA, US). These measurements were automatically collected as 30-min averages. 

Reference evapotranspiration was determined according to the FAO Penman-Monteith method (Allen 

et al., 1998). 

6.3.3. Phenological and ecophysiological measurements 

Litter fall was collected by 16 baskets of 1 m
2
 placed in two transects across the site and 

sampled every 15 days throughout 2011 and 2012, with separation of leaves, branches, male 

flowers (catkins) and acorns. Additionally, litter fall was collected in six trees with four 

baskets each placed at half distance of canopy radius. In these same trees, budburst time and 

individual leaf dimension were registered in a sampled branch per tree (selected in the south 

of the canopy) to determine the start and duration of the leaf growth period. Tree leaf area 

index (LAI) was calculated using leaf biomass from litter fall (transects) and species specific 

leaf area (SLA) following Limousin et al. (2009). Maximum LAI (LAImax) was assumed to be 

coincident with the end of new leaf growth in that year and was determined by the sum of the 

area of all leaves shed belonging to the leaf cohort of that year. In each date LAI was 

determined by subtracting to LAImax the area of all leaves shed until that date. Between 

budburst and complete leaf expansion LAI increase was determined assuming a linear leaf 

growth. 

Tree height, tree diameter and tree biomass per hectare was estimated by measuring all tree 

diameters and heights in a representative plot of 40-m radius. Tree above-ground biomass 

components (leaves, trunks and branches) were estimated subsequently using species-specific 

allometric equations (Paulo and Tomé, 2006). 

Tree-stem diameter growth was measured with dendrometer bands (± 0.1 mm) installed in 12 
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trees at breast height and registered every 15 days throughout 2011 and 2012. Leaf xylem 

water potential was measured at predawn (Ψpd) and midday (Ψmd) with a Scholander-type 

pressure chamber (PMS Instruments, Corvallis, OR, US) in six trees. Measurements were 

done in early summer, day of year (doy) 166 and 171, and in the peak of the summer drought, 

doy 251 and 256 for both 2011 and 2012, respectively. 

6.3.4. Soil analysis 

Soil samples were taken randomly from 3 10-cm depth soil profiles, together with undisturbed soil 

samples for soil bulk density calculations. Soil organic carbon concentration was determined by the 

dry combustion method according to the International Organization for Standardization 10694, using a 

CNS elemental analyser (Leco CNS-2000, MI, US). Nitrogen concentration was determined by 

Kjeldahl digestion analysis (Digestion System 40; Kjeltec Auto 1030 Analyser, DEcator, SE). Soil 

organic carbon content was determined using the method referred in IPCC (2003). 

6.3.5. Ecosystem flux measurements 

The fluxes of CO2, water vapour and sensible heat were continuously measured using an eddy-

covariance system installed at the top of a 22 m high tower. The system consisted of a 3-D sonic 

anemometer (R3; Gill Instruments Ltd., Lymington, UK) and a closed-path infrared gas analyser (LI-

7000; LI-COR Inc., Lincoln, NE, US) measuring, respectively, the three components of wind velocity 

and temperature, and the concentration of water vapour and CO2. Data were continuously acquired on 

a field laptop with EddyMeas (Meteotools, Jena, DE; Kolle and Rebmann, 2007). 

Eddy flux data was treated using the eddy-covariance data acquisition and processing software 

package EddySoft and self-written Python scripts. Fluxes were determined on a half-hourly basis by 

block-averaging the 20 Hz data. Time lags between CO2 or H2O signals and vertical wind velocity 

were determined through cross correlation analysis following Aubinet et al. (2000). Whenever this 

cross correlation failed, the dependency on relative humidity was used to determine the lag for the 
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H2O signal (Ibrom et al., 2007). High frequency losses were compensated with the use of inductances 

derived from co-spectrum analysis (Eugster and Senn, 1995). The sectorial planar fit method was used 

for the coordinate rotation of wind vectors (Rebmann et al., 2012; Wilczak et al., 2001). Moisture and 

cross wind correction were applied after Schotanus et al. (1983). The storage term of CO2 was 

calculated according to Hollinger et al. (1994) and added to the turbulent CO2 flux. 

For quality control, flags were determined for every half-hourly flux value including the following 

tests: 20 Hz data was scanned for exceeded physical limits, change rates and variances; a stationarity 

test was applied to the high frequency data based upon a 50% deviation criterion (Foken and Wichura, 

1996); on a half-hourly basis the integral turbulence characteristics were calculated following Thomas 

et al.  (2002) with a 30% deviation criterion; a spike detection routine was used based on the absolute 

median deviation principle (Papale et al., 2006). All quality control tests were summed up in a 

simplified flag system (Mauder and Foken, 2011). Total data gaps during the whole study period, due 

to missing and rejected data, were about 42%. Gap filling and flux-partitioning methods proposed by 

Reichstein et al. (2005) were used to fill data gaps and to separate the net ecosystem exchange (NEE) 

into gross primary production (GPP) and ecosystem respiration (Reco). 

6.3.6. Data and statistical analysis 

Radiation-use efficiency (RUE) was calculated on a seasonal basis, as the slope of the linear regression 

between daily-integrated gross carbon assimilation (i.e., GPP) and the daily-integrated incident 

photosynthetically active radiation (PAR), expressed in g C MJ
-1

. Statistical differences between these 

seasonal slopes for 2011 and 2012, were performed by the comparison of regression coefficients 

following Sachs (1992). Radiation use efficiencies were calculated using only non-gapfilled data. 

Seasonal data comparisons were done considering, e.g., winter corresponding to January + February + 

March (e.g. 3-months sums of NEE). 

To examine differences between variables (e.g. litter fall components, leaf water potential) we used 

one-way ANOVA. When ANOVA assumptions where not met, namely normal distribution of the data 

and homogeneity of variances, non-parametric Kruskal-Wallis test was carried out. Analysis were 
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performed using STATISTICA (Version 7, StatSoft, Inc. 2004). 

6.4. Results 

6.4.1. Meteorology and soil water availability 

Water availability is the main constraint to plant productivity in most Mediterranean ecosystems and 

the years 2011 and 2012 were quite contrasting. The year 2011 was relatively wet with annual rainfall 

(800 mm) 18% higher than normal (680 mm, 50 year average). Conversely, 2012 was dry: with an 

annual rainfall (469 mm) 31% lower than the long-term average (Table 1). In particular, 2012 had an 

extreme low winter rainfall of only 10 mm (Fig. 1a), and winter/spring rainfall was 76% lower than in 

2011, where in April and May a total of 217 mm of rain was recorded, about twice the long-term 

average for the same period. Although 2012 was a dry year, its annual average temperature was lower 

than that of 2011 (15.2 vs. 16.1 ºC, respectively, Table 1). April 2011 showed an unusually high 

average temperature (17 ºC) compared to 2012 (11 ºC), both years contrasting with the 50-year April 

average of 13.5 ºC. Furthermore, the 2011 summer drought extended through October with high 

temperatures until the onset of autumn rains in November whereas in 2012 autumn rains started 30 

days earlier. 

Due to a higher quantity of sunny days in the first three months of 2012 total PAR was 57% higher 

than in the same period of 2011 (Fig. 1b). Despite the significant lower total rainfall in 2012, the 

average of maximum vapour pressure deficit (VPDmax) was only slightly higher in the summer months 

of 2012 compared to 2011 (28 vs. 25 hPa, respectively) (Fig. 1c).  
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Figure 1: Meteorological data during 2011 and 2012. (a) 10-day average air temperatures ( °C) and 

10-day sum of precipitation (mm). (b) 10 day average of total incident photosynthetically active 

radiation (PAR, mol m
-2

 d
-1

). (c) 10-day average of maximum vapour pressure deficit (VPDmax, hPa).  

 

Relative soil water content (SWC) followed closely precipitation events and both at 2 and 40-cm 

depth, SWC in 2012 was noticeably lower than in 2011 (Fig. 2). Decreases in SWC during 2012, 

compared to 2011, were progressively larger as time progressed: reductions of 29, 51 and 72% at 40-

cm depth in winter (21 vs.15% SWC), spring (21 vs.10% SWC) and summer (14 vs. 4% SWC), 

respectively. Upon soil rewetting with the autumn rains SWC increased similarly in both years. 
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Figure 2: Daily mean values of soil water content (%) at 2 and 40 cm depth. 

6.4.2. Ecosystem carbon fluxes 

Total annual carbon fluxes clearly showed the effect of the extreme dry winter of 2012 on carbon 

sequestration reduction: net ecosystem exchange (NEE) increased from -388 in 2011 to -214 g C m
-2

 

year
-1

 in 2012 (Fig. 3c). However, there were noticeable seasonal differences in NEE between years. 

Even though 2012 started with three very dry months, NEE in this 90-day period was significantly 

more negative (higher carbon sequestration) than in the same period of 2011 (-111 vs. -56 g C m
-2

, 

respectively) (Fig. 3c). Following this period, in the early spring of 2011 there was a noticeable 

increase in NEE daily values, going from an average of -28 in March to -15 g C m
-2

 in April in spite of 

the more favorable climatic growing conditions of air temperature and PAR in the latter. Similarly, 

although later in the spring, an even more striking increase in NEE occurred in 2012 from April to 

May (-18 to -1 g C m
-2

, respectively) (Fig. 3b). Interestingly, on an annual basis, the ecosystem is a 

source of carbon to the atmosphere occasionally, during these short spring periods and in the end of 

the year after the onset of autumn rains (Fig. 3a and b). 

After these low carbon sequestration spring periods, NEE gradually decreased until the end of the 

spring, reaching minima of -5.4 and -4.3 g C m
-2

 day
-1

 around doy 158 in 2011 and 2012, respectively. 

Nevertheless, when comparing NEE sums from April to June in both years, there was a 56% reduction 

of carbon sequestration in the dry 2012 compared to 2011(-70 to -161 g C m
-2

). Additionally, while in 

2011 high values of carbon sequestration are maintained until doy 190 to only subsequently decrease 
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gradually until the end of summer, in the dry 2012 the decrease in carbon sequestration occurs 

abruptly after doy 160. In fact, from July to September 2012 a 66% decrease in carbon sequestration 

contrasts with the same period of 2011 (NEE of -61 and -178 g C m
-2

, respectively). 

In early September 2011 (ca. doy 240) an isolated 22 mm rain event caused an ecosystem CO2 efflux 

to the atmosphere mostly due to a soil respiration pulse as a consequence of soil rehydration. With the 

onset of autumn rains the ecosystem turned into a permanent source of carbon to the atmosphere 

throughout autumn/early winter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Daily values of net 

ecosystem exchange (NEE, g C 

m
-2

 day
-1

) during 2011 (a) and 

2012 (b). Negative values 

represent carbon sequestration in 

the ecosystem while positive 

values represent carbon emissions 

to the atmosphere. The black line 

indicates a 10-day running 

average. 
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6.4.3. Radiation use efficiency  

The seasonal variation and interanual differences in RUE can be perceived in Fig. 4. The winter 2011 

showed a somewhat higher but non-significant RUE than in 2012 (0.31 vs. 0.25 g C MJ
-1

, 

respectively) (Fig. 4a). Although photosynthetic activity is limited in winter by low temperatures and 

radiation leading to low GPP, a higher RUE in winter 2011 can have been due to lower direct radiation 

and greater proportion of diffuse radiation due to more cloudy days in this year. In fact, we have 

observed that RUE nearly doubles when incident sunlight is diffuse, compared to when it is mostly 

direct (see also Knohl and Baldocchi, 2008). In the spring, even though GPP values increased after 

winter (122% in 2011 and 76% in 2012), correlations with PAR were low and not significantly 

different (Fig. 4b). This low correlation is the result of leaf shedding and canopy renewal (i.e. low tree 

leaf area index) which led to higher variation in GPP for high PAR intensities. Differences in RUE 

became highlighted in summer both among seasons and between years (Fig. 4c). Whereas in 2011 

RUE is highest in summer it shows the lowest seasonal values in 2012 (0.42 vs. 0.21 g C MJ
-1

, 

respectively, P < 0.004, df =154) in accordance to GPP response to drought stress (see tree leaf water 

potentials, Table 2). When comparing the reduction of GPP from the peak of the growing season 

(early summer) to the peak of drought stress (late summer), carbon assimilation was much less 

affected in 2011 than in 2012 (on average -38% vs. -70%, respectively). Upon recovery of water 

availability in autumn, RUE (0.33 g C MJ
-1

) and average GPP (2 g C m
-2

 d
-1

) were similar in both 

years, indicating no long lasting effects of the 2012 summer drought stress (Fig. 4d). 
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Figure 4: Linear regressions between gross primary productivity (GPP) and daily-integrated incident 

photosynthetically active radiation (PAR) over the seasons in 2011 and 2012. Radiation use efficiency 

(RUE) expressed in g C MJ
-1

. (a) Winter, 2011: y = 0.31x + 1.11, r
2
 = 0.57, n=56; 2012: y = 0.25x + 

1.06, r
2
 = 0.62, n=71. (b) Spring, 2011: y = 0.26x + 2.74, r

2
 = 0.20, n=32; 2012: y = 0.28x + 2.0, r

2
 = 

0.46, n=44. (c) Summer, 2011: y = 0.42x + 0.02, r
2
 = 0.58, n=96; 2012: y = 0.21x + 0.24, r

2
 = 0.22, 

n=62. (d) Autumn, 2011: y = 0.33x + 0.67, r
2
 = 0.55, n=61; 2012: y = 0.33x + 0.83, r

2
 = 0.71, n=57. 

6.4.4. Tree leaf water potentials 

Tree leaf water potential measured in early summer of both years indicated no signs of water deficits 

as shown by the high Ψpd values and low Ψmd (Table 2). However, by late summer 2012 a clear water 

stress had developed with Ψpd reaching -2.2 MPa, and its small difference to Ψmd suggests a high 

stomatal closure. Conversely, in 2011, the higher water availability in summer is apparent from the 

higher Ψpd and low Ψmd, maintaining the stomatal conductance in accordance to the exhibited higher 

productivities. 
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Table 2: Predawn (Ψpd) and midday (Ψmd) tree leaf water potential (MPa, n=6) measured during 2011 

and 2012 in the early summer and summer end. Values are means ± se. Different letters represent 

statistical significance at P < 0.05, no letters means no differences. 

 

 

 

 

 

 

 

 

 

 

 

6.4.5. Tree litter fall and phenological development 

Leaves and branches were the main components of litter fall, representing on average 72 and 18 % of 

total litter fall in both years. However, the mean quantity of shed leaves and branches decreased about 

20 % in 2012 compared to 2011 (Table 3). Fruits and catkins showed opposite trends in 2012: fruits 

decreased by 54 % whereas catkins increased 28 % although showing a higher variability among trees. 

Budburst in 2011 started in mid-April (doy 111), ca. 30 days earlier than in 2012 (Fig. 5). Catkins also 

developed earlier in 2011 than in 2012, concomitantly with leaf expansion period, although 

completing their development earlier and being all shed by doy 137 and 158, respectively. Due to the 

later budburst in 2012 the completion of leaf expansion was also delayed until early summer (ca. doy 

187). Similarly, fruit fall started and ended later in 2012 than in 2011. 

Table 3: Total annual litter fall and litter fall components during 2011 and 2012 in g m
-2

 year
-1

. Values 

are means ± se (n=6). Different letters represent statistical significance at P < 0.05, no letters means no 

differences. 

 

Litter component 2011 2012 

Leaves 190±10 (a) 151±13 (b) 

Branches 47±9 38±9 

Fruits 8±2 (a) 4±1 (b) 

Flowers (catkins) 13±4 17±7 

Other 3±1 2±0.6 

Total litter fall 261±18 (a) 211±23 (b) 

 

Leaf fall occurred mainly between doy 95 and 187 in 2011 and 2012 (69 and 77 % of total leaves 

shed, respectively). In both years the first period of leaf fall is the most intense with highest shedding 

rates. However, different patterns of leaf shedding can be evidenced between years. Leaf fall started 

Leaf water potential 

(MPa) 

Early summer Late summer 

Ψpd Ψmd Ψpd Ψmd 

2011 -0.9±0.1 a -1.7±0.1 -1.3±0.1 a -2.2±0.1 

2012 -0.4±0.02 b -1.6±0.2 -2.2±0.2 b -2.4±0.2 



Study VI: Effects of an extreme dry winter on Q. suber woodland: net ecosystem exchange and tree 

phenology adjustments 

 

 

206 

earlier in 2011 than in 2012 (ca. doy 95 vs 132, respectively) although with a noteworthy higher 

intensity of leaf shedding in 2012 (2.3 vs. 3.8 g m
-2

 day
-1

, respectively).  

 

Figure 5: Total cumulative leaf fall during 2011 and 2012 in g DM m
-2

 and time interval of different 

phenological stages. Values are means ± se (n=6). 

6.4.6. Leaf area index 

Tree leaf area index (LAI) is in straight relation with leaf fall and new leaf growth during the spring 

(Fig. 6). The lower intensity of leaf fall during the spring of 2011 led to a smoother transition of old to 

new leaves in the canopy which is reflected in a higher minimum LAI in 2011 on doy 111 when 

compared to the minimum LAI in 2012 on doy 146 (0.56 vs. 0.2 m
2
 m

−2
, respectively). In addition, this 

period of canopy renewal and concomitantly low LAI is in accordance to the high NEE – low carbon 

sequestration – and low PAR and GPP observed correlation in both years (Fig. 2 and Fig. 4b). 

Furthermore, due to the earlier canopy renewal in 2011, LAImax was also reached earlier than in 2012 

(ca. doy 158 vs. 187, respectively) which extended the growing season in a favorable period of water 

availability. Due to the different leaf fall intensities between years the relative contribution of older 

leaves (matured in the previous spring) to each year LAI is also diverse. Therefore, in the early 

summer of 2011 old leaves contributed with 15.5 % to LAImax whereas in 2012 its contribution was 

restricted to 2.5 %. Nevertheless, in both years by doy 270 all old leaves were shed. Despite greater 
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leaf fall during 2011 than in 2012, LAImax was 9.5% higher with 1.15 and 1.05 m
2
 m

−2
, respectively. 

 

Figure 6: Tree leaf area index (LAI) during 2011 (a) and 2012 (b). The dash line represents LAI of old 

leaves matured in the previous spring. 

6.4.7. Tree diameter increment 

Tree diameter increment started earlier in 2011 than in 2012 (doy 61 vs. 76, respectively) and with 

sustained higher daily increments throughout the growing season (Fig. 7). In fact, maximum diameter 

growth rates in 2011 were double of those in 2012 (ca. 2 vs. 1 mm month
-1

, respectively). 

Furthermore, the duration of the growth period extended in 2011 till the end of the summer (doy 270) 

whereas in 2012 tree diameter increment was inhibited by drought conditions in the middle of the 

summer even with a decrease in trunk diameter in the period doy 228 to 250. Worth mentioning is the 

halt observed in tree diameter increment between doy 127 and 156 in the spring of 2012 whereas in 

2011 there were continuous growth increments. In addition, a great diameter increment in 2011 was 

recorded after the first autumn rains in contrast to 2012. Overall, total annual diameter increment in 

2012 decreased 63% compared to 2011 (8.8 vs. 3.3 mm, respectively). 
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Figure 7: Tree diameter increment (mm) during 2011 and 2012. Values are means ± se (n=9).  

6.5. Discussion 

In seasonally dry climates with a great variability in precipitation, droughts are a main source of 

interannual variation in carbon sequestration as they strongly reduce gross primary productivity as 

well as net ecosystem exchange (NEE). At the same time, leaf phenology can be expected to exert an 

important control on temporal dynamics of tree crown productivity and NEE, not only in deciduous 

forests but also in evergreen species with short leaf life-spans, where the senescence and development 

of a new canopy each spring control, to a large extent, the patterns of photosynthetic uptake in the 

most favourable season. Thus, a drought winter can have different effects on plant physiology 

throughout the following seasons depending both on its intensity and imposed limitations on important 

leaf phenophase progressions, which will ultimately exacerbate the summer drought effects. 

6.5.1. Ecosystem carbon fluxes and seasonal patterns 

The values for our cork oak ecosystem carbon balance – with an average NEE of -301 gC m
-2

 year
-1

 – 

compare well with flux measures of carbon sequestration in related Mediterranean oak ecosystems. 

For example, a Quercus ilex forest in southern France showed an average NEE of -254 gC m
-2

 year
-1

 

(Allard et al., 2008) and a closed canopy mature Quercus cerris forest in Central Italy -288 gC m
-2

 

year
-1

 (Baldocchi et al., 2010). However, when comparing with savannah-like, open woodlands with 
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more similar tree densities (e.g. < 150 trees ha
-1

), this cork oak woodland showed higher 

productivities: a deciduous-oak savannah under a Mediterranean climate in California, presented -98 

gC m
-2

 year
-1

 and a Q. ilex open woodland in southern Portugal -87 gC m
-2

 year
-1

 (Baldocchi et al., 

2010). 

In this Mediterranean climate with marked seasonality the cork oak ecosystem showed a productivity 

peak in June and July. There was a time-lag between soil water availability and carbon sequestration, 

reflected in a prolonged productivity throughout summer which only significantly declined after an 

extreme dry winter as happened in 2012. As a result, a marked difference is observed in comparison to 

other Mediterranean, such as Q. ilex ecosystems, where more than 80% of the yearly NEE occurs 

between March and June and in summer becomes a source of carbon to the atmosphere (e.g. Allard et 

al., 2008; Pereira et al., 2007). Whereas in our site, regardless of the year, March to June only 

accounted for 48% of the yearly NEE with a further significant carbon sequestration in the summer 

months (44 and 26% in 2011 and 2012, respectively). 

Although changes in spring phenology exert a major influence on the carbon balance of temperate and 

boreal deciduous forests (e.g. Baldocchi et al., 2001, 2008; Richardson et al., 2010) its effect in 

evergreen Mediterranean oaks is less evident since phenological changes are not clearly associated 

with a carbon source-sink transition. For example, Richardson et al. (2010) showed that productivity 

of evergreen needleleaf forests is less sensitive to phenology variability than deciduous broadleaf 

forests. However, among evergreen Mediterranean oak species Q. suber leaf habits are singular in that 

leaf life-span is generally short – ca. 12 (Oliveira et al., 1994; Pereira et al., 1987) to 15 months 

(Escudero and Mediavilla, 2003) – and leaf fall is highly concentrated in a short period of time (Caritat 

et al., 1996, 2006; Oliveira et al., 1994). These specific traits had a marked influence in the spring 

carbon balance of the studied cork oak woodland. Thus, in both years a clear carbon sequestration 

depression is associated to the whole leaf canopy renewal where the ecosystem becomes a temporary 

carbon source (Fig. 3). This reduction in carbon sequestration in April 2011 and May 2012 represents 

on average a 15% reduction of yearly NEE. Two orders of reasons explain this fact: first, the 

noticeable transitory decrease in leaf area due to intense leaf fall which led to an average reduction of 

49% in LAI (Fig. 6) and, second, a decoupling between tree canopy carbon uptake and respiration in 
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this period. In fact, on average, Reco increased more than GPP in this canopy renewal phase (51 vs. 

29%, respectively, data not shown) relatively to the month prior to budburst. This decoupling is 

expected both from carbohydrate and nitrogen translocation during leaf senescence associated with 

reduced photosynthetic capacity (Escudero and Mediavilla, 2003; Niinemets et al., 2005) and from a 

negative carbon balance in emerging new leafs with incipient photosynthesis and high growth 

respiration costs (Dikson, 1989). 

Quercus suber growth may be limited in winter both by low temperatures (Aranda et al., 2005) and 

low incident radiation. In 2012 – where carbon sequestration in winter was 45% of yearly total (Fig. 

3c) – a great decrease in NEE was observed by comparison to 2011 in response to a 57% higher 

incident PAR, although air temperatures were similar in both years for this period (Fig. 1). Thus, and 

since precipitation was practically inexistent (10 mm), tree productivity in winter seems to be highly 

dependent on available incident radiation. This clearly puts into perspective the advantage of 

evergreeness in environments with relatively mild winters where air temperatures do not strongly limit 

carbon uptake. Leaf persistence allows a significant ecosystem productivity to be achieved outside of 

the most favourable growing period – spring to early summer – through an adjustment of growth to 

environmental resources availability (e.g. Baldocchi et al., 2010). This feature is particularly relevant 

under the highly variable Mediterranean climate and considering the actual susceptibility of the 

Mediterranean region to winter/spring climatic changes, namely in temperature and precipitation (e.g. 

Giorgi and Lionello, 2008). 

6.5.2. Extreme dry winter effects on carbon fluxes 

The effect of a severe dry winter and a consequent low soil water refilling in 2012 led to a 45% 

decrease in annual carbon uptake in relation to 2011, from -388 to -214 g C m
-2

 year
-1

, respectively. 

This increase in NEE for the cork oak woodland is similar to that  reported for a Q. ilex forest (51%, 

Allard et al., 2008) but lower  than the 64% increase found in a Q. ilex open woodland (Pereira et al., 

2007) during years of severe drought. However, in this Q. ilex open woodland with a low tree crown 

cover (ca. 30%) a large proportion of NEE was attributable to the carbon assimilated by its annual 
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vegetation component, which was strongly affected by the shortage of rain in winter (Pereira et al., 

2007).  

The drought effects in 2012 carbon sequestration differed among seasons and even the yearly 

reduction was somewhat masked by the opposite winter trend of increased carbon sequestration. 

Throughout the spring of 2012 and before any noticeable tree water stress – assessed by tree Ψpd – 

there was an already significant 56% decrease in carbon sequestration in comparison to 2011. Even 

considering the reduction of 9% in tree leaf area index in 2012 (Fig. 7), the reduction in spring carbon 

sequestration ought to be caused mainly by the extreme drought effects on the understorey herbaceous 

layer which was severely reduced in 70% biomass in relation to 2011 (Table 1). This is supported both 

by the very low surface soil water content in spring (Fig. 2) that affect in first instance the understorey 

vegetation, and by the relevant contribution of this vegetation layer to the ecosystem productivity 

(Correia et al., 2014; Dubbert et al., 2014; Pereira et al., 2007; Unger et al., 2009). 

Nevertheless, it was in summer that the ecosystem showed to be more affected by the low water 

availability with a reduction of 66% in carbon sequestration in relation to summer 2011. The summer 

drought stress in 2012 reflected in lower tree leaf water potentials (Table 2) and lower radiation use 

efficiency (Fig. 4). Similar decreases in ecosystem light use efficiency under water stress were 

reported for Mediterranean oak woodlands (Pereira et al., 2007) and discussed elsewhere (e.g. Sinclair 

and Muchow, 1999). Even though Q. suber is considered a drought resilient tree well adapted to the 

adverse semiarid summer conditions (e.g. Pereira et al., 2009), a standard photosynthesis decrease 

occurs as the result of stomatal closure to regulate transpiration losses (e.g. Besson et al., 2014; Vaz et 

al., 2010) and photoinhibition (Werner and Correia, 1996). Even under the less-limited water supply 

conditions in 2011, stomata closure seems to have been still controlling transpiration losses, although 

later in the summer. This results from the evolutionary safety function of stomata to prevent leaf water 

potential to fall below a cavitation threshold (Buckley and Mott, 2002) that would lead to catastrophic 

damages in the root-leaf hydraulic pathway (Tyree and Sperry, 1988), i.e. losses in water transport 

capability. In both years the minimum leaf water potentials measured in the peak of summer water 

stress (Ψmd, Table 2) were above the -2.9 MPa water potential threshold, which causes a 50% loss in 

hydraulic conductivity (50PLC) due to embolism in Q. suber shoots (Pinto et al., 2012). Thus, by 
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forfeiting summer carbon uptake due to the deep root system and an efficient stomatal control, cork 

oak trees succeeded in maintaining the minimum leaf water potential above the 50PLC embolism 

threshold, throughout the experimental period. This also explains why leaf area index was relatively 

stable during the two years of observation. Vilagrosa et al. (2003) report that leaf dieback only occurs 

when stomata regulation is no longer effective, allowing PLC to rise and leaf water potential to drop 

(typically to around -5 MPa). Nevertheless, in the summer drought stress period of 2012 the observed 

safety margins above the 50PLC threshold were narrower and photosynthetic limitations higher, 

reflecting the general observed carbon sequestration reduction.  

6.5.3. Extreme dry winter effects in tree growth and phenology 

Annual stem diameter growth decreased 63% in 2012 compared to 2011 (Fig. 7). However, this 

prominent reduction can be somewhat overestimated due to the natural small decrease in cork 

diameter increments during the 9-year cork growth cycle (ca. 15% per year, Costa et al., 2003). 

Nevertheless, even after correcting our increments for a “normalised” growth, there is still a very 

significant reduction (51%) in stem diameter increment. Furthermore, we also have observed a 

significant 44% increase in annual stem diameter increment in 2013 – a wet year with 819 mm annual 

precipitation (data not shown). The seasonal reductions in tree diameter growth follow the same 

pattern as NEE in spring and summer. Thus, diameter growth reductions in 2012 relatively to 2011 

were much higher in summer (76%) than in spring (48%). However, if summer growth impairment 

can be directly linked to the observed low soil water availabilities and photosynthetic limitations (as 

discussed above), in spring the absence of tree water stress (low Ψpd, Table 2) call for a further 

understanding. It has been shown that spring growth flush in evergreen trees depend both on currently 

fixed and stored carbohydrates from the previous seasons (Cerasoli et al., 2004, Dickson, 1989) and 

that those are closely involved in early xylem differentiation in Q. suber trees (Aguado et al., 2012). In 

our case we can dismiss the hypothesis of stored carbon differences between both years in early spring 

since previous growing conditions were similar or even more favourable during the winter 2012 (Fig. 

3). More probably the decrease in stem diameter growth during spring 2012 can be ascribed to three 



Study VI: Effects of an extreme dry winter on Q. suber woodland: net ecosystem exchange and tree 

phenology adjustments 

 

 

213 

orders of interconnected effects: 1) a shorter favourable growing season length due to a later budburst 

(ca. 30 days); 2) higher intensities of leaf fall and a consequent – although temporary – much lower 

LAI and 3) a potential lower canopy nitrogen content (see below). 

It has been reported that for Mediterranean oak species air temperature is the main environmental 

driver for budburst timing (e.g. Morin et al., 2010; Pinto et al., 2011; Sanz-Perez et al., 2009). 

Although thermal times and base temperatures could not be estimated from our data, the fact that the 

month of March preceding budburst date in 2011 exhibited an average air temperature 6 ºC higher 

than in March 2012 (Fig. 1) supports that air temperature increase was the main cause for the 30-day 

earlier budburst in 2011. The extent of this advance agrees with results from Sanz-Perez et al. (2009) 

where budburst occurred 6–10 days earlier per degree spring temperature increase. The immediate 

consequence of an earlier budburst is the lengthening of the growing season allowing trees to reach 

maximum photosynthetic capability earlier in the most favourable stages of the growth season, i.e. late 

spring and early summer. It has been generally reported that longer growing seasons lead to higher net 

ecosystem carbon uptakes (e.g. Richardson et al., 2010) in the order of a further 3.7 gC m
-2

 per day in 

evergreen broadleaved forests and Mediterranean oak-grass savannah (Baldocchi, 2008). 

Relative to 2011 a higher intensity of leaf shedding was observed in 2012 in the early spring. As a 

result, the minimum LAI in 2012 was 65% lower than in 2011 (Fig. 6). This was reflected both in a 

steeper NEE increase (Fig. 3) and in a concomitant stem diameter growth stop in the same period (doy 

127 to 156, Fig. 7) in opposition to 2011 where stem diameter growth rates were sustained. This 

strongly suggests that stored and current carbon uptake were insufficient in spring 2012 for meeting 

growth sink demands and that new leaf expansion was a priority sink in opposition to diameter stem 

growth, in accordance to its much greater reduction when compared to LAI (48 vs. 9%, respectively). 

Thus, assuring tree canopy renewal and maintaining a relatively stable LAI seems to be an ecological 

trait preserved even under extreme low winter precipitation and reflects Q. suber resilience to drought. 

Maintaining a threshold LAI in these Mediterranean type climates may allow cork oak ecosystems to 

optimize productivity under a water-availability uncertainty, relying in morphological traits (e.g. depth 

rooting) and physiological responses (e.g. stomatal regulation) to face unpredictable seasonally water 

stresses. However, the magnitude and timings of drought events can have significant different LAI 
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costs as was shown for an extreme spring drought in a Q. ilex forest occurring in parallel with leaf 

phenological development, leading to critical impacts impairing ca. 50% of leaf unfolding (Misson et 

al., 2011). 

Finally, we can speculate that during spring 2012 there was a lower canopy nitrogen content with a 

consequent lower carbon uptake capacity. This is plausible given the high intensity of leaf fall during 

the spring of 2012 indicating that sink organs were accelerating senescence rate in old leaves to satisfy 

their nitrogen demand. This was perhaps the result from low rates of nitrogen uptake in roots since low 

shallow soil water availability in spring (Fig. 2) may have led to low soil nutrient availability for 

surface roots (Ryell et al., 2010) in a soil with an a priori low nitrogen content (Table 1). This 

hypothesis is supported by Ono et al. (1996) showing that nitrogen deficiency in new organs changes 

with sink development and nitrogen uptake rates, and that the rate of leaf senescence is well correlated 

to nitrogen deficiency. 

In contrast to male flower production fruit setting was highly depressed by water stress showing a 

reduction of 54% during the dry year of 2012 (Table 3). There is evidence that summer drought 

impairs fruit development through the abortion of immature acorns in Mediterranean oaks (e.g. 

Montserrat-Marti et al., 2009; Perez-Ramos et al., 2010). Female flower maturation and the following 

acorn growth occur from early summer up to early autumn (Misson et al., 2011; Oliveira et al., 1994) 

which makes these phenophases highly dependent on soil water availabilities and photoassimilates 

produced throughout summer. On the contrary, male flowers are produced in early spring – in 

synchrony with leaf expansion (Fig. 5) – although being considered to have low carbon costs and low 

sink priority compared to fruits and even to vegetative growth (Ho, 1992). This would explain a 

regular male flowering much less dependent on drought effects as it was observed in spring 2012. A 

similar result was reported by Misson et al. (2011) for Q. ilex under an extreme spring drought. 

Furthermore, in accordance to our results Penuelas et al. (2004) and Montserrat-Marti et al. (2009) 

showed that most of species – including Quercus species – delayed flowering and fruit maturation 

during dry years. 
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6.5.4.  Conclusion 

In summary, cork oak woodland net ecosystem exchange and phenology adjustments were studied 

here for the first time. Among evergreen Mediterranean oak species Q. suber leaf habits are singular in 

so far as leaf life-span is short and leaf fall is highly concentrated in a short spring period. The whole 

leaf canopy renewal is associated with an average 15% reduction of yearly carbon sequestration. Both, 

soil water availability and the extension of the favourable growing season in spring and early summer 

– as controlled by budburst date and leaf expansion period – were equally determinant for the great 

reduction in annual carbon sequestration in the dry year of 2012. Furthermore, our results suggest that 

new leaf growth in spring and maintenance of a relatively stable leaf area index are ecophysiological 

traits preserved even following an extreme dry winter. On the contrary, tree diameter growth is not a 

priority sink for photoassimilates. Thus, cork oak woodland reductions in carbon sequestration under 

low water availabilities are mainly due to stomatal or photosynthetic limitations and to a much lesser 

extent to leaf area reductions. The present work adds relevant contributions to answer questions such 

as: how does the ecosystem carbon sequestration seasonality interacts with a changing phenology due 

to global change? 
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7.1. Abstract 

 Savannah-type ecosystems account for 26–30 % of global gross primary productivity GPP with water 

being one of the major driving factors. In Europe, savannah-type woodlands cover an area of about 

1.5 million ha. Here, the recent past has shown a significant decrease of precipitation P in winter and 

spring as well as decrease of total annual precipitation. Strong effects on local water balance and 

carbon sink strength have thus been reported due to changes in precipitation regime. 

The objective of this study is to quantify the impact of the extreme drought event in 2012 on the water 

balance, gross primary productivity and carbon sink strength of a typical Portuguese cork-oak 

woodland (montado) compared to the wet year 2011. Physiological responses of the dominant tree 

species Quercus suber (L.) are disentangled, employing combined photosynthesis and stomatal 

conductance modelling. 

Precipitation effectiveness ET/P increased from 86 % in 2011 to 122 % in the dry year 2012 due to 

deep soil or ground water access of the Q. suber trees leaving no water for ground water 

replenishment. Understorey and overstorey GPP were strongly reduced by 53 % and 28 %, 

respectively, in 2012 compared to 2011 due to the late onset of the autumn rains in 2011 and an 

additional severe winter/spring drought. However, the ecosystem was still a carbon sink in both years 

but with a 38 % reduced sink strength under extreme drought in 2012 compared to 2011. The 

combined photosynthesis-stomatal conductance model yielded best results if it was allowed to adjust 

photosynthetic and stomatal parameters simultaneously. If stomatal response was modelled with the 

Leuning approach, which allows for a different sensitivity to vapour pressure deficit, the stomatal 

model parameters were highly coupled. A change in either of the parameters needed to be 

compensated by the other to guarantee a stable sensitivity of stomatal conductance to assimilation, 

independently from variations in vapour pressure deficit. The Q. suber trees showed a 31 % reduced 

stomatal conductance during the drought period 2012 compared to 2011 due to water supply 

limitations. In response to reduced leaf internal CO2 availability, the trees strongly reduced apparent 

maximum carboxylation rate by 39 % in 2012 compared to 2011. Unexpectedly, the optimum 

temperature of maximum electron transport rate decreased during the drought period, enhancing the 

susceptibility of the trees to high temperature stress during the summer. 
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Our results suggest that, if the trend of decreasing annual precipitation and changed precipitation 

pattern on the Iberian Peninsula continues, sustained effects on local ground water reservoirs, 

understorey species composition and tree mortality have to be expected in the long term. To 

successfully model the effect of drought on the montado ecosystem, variable apparent maximum 

carboxylation rate, stomatal conductance parameter m and vapor pressure deficit sensitivity parameter 

need to be incorporated in photosynthesis-stomatal conductance modelling.  

 

7.2. Introduction 

One of the typical semi-arid ecosystem in Europe is a savannah-type woodland (montado), consisting 

of a sparse overstorey tree layer and a herbaceous understorey layer. During the biomass peak of the 

herbaceous plants in spring, the understorey layer can provide a large contribution to the whole 

ecosystem water and carbon balance and thus, can play a significant role in the annual carbon and 

water budgets (Unger et al., 2009, Paco et al., 2009, Dubbert et al., 2014). However, each layer 

responds differently to changes in precipitation depending on their life form (chamaephyte or 

therophyte) and access to different water reservoirs throughout the year Paco et al. (2009) including 

deep soil or ground water David et al. (2004). 

Montado ecosystems (span.: dehesa) cover an area of about 1.5 million ha in Europe (Bugalho et al., 

2011) and contribute together with savannah-type ecosystems on other continents about 30 % to global 

gross primary productivity GPP (Beer et al., 2010, Grace et al., 2006). The major driving factor of 

GPP in montado ecosystems is water (Vargas et al., 2013, Pereira et al., 2007, David et al., 2004), 

since annual precipitation patterns show periodical summer droughts and evapotranspiration losses are 

high (Krishnan et al., 2012, Huxman et al., 2005). 

In the recent past, precipitation shows a significant decrease of rain amount in February and March as 

well as a decrease of total annual rainfall on the Iberian Peninsula (Guerreiro et al., 2013, Garcia-

Barron et al., 2013, Mourato et al., 2010, Paredes et al., 2006). A trend towards extreme events in the 

form of droughts is observed due to a more heterogeneous distribution of precipitation throughout the 

year (Garcia-Barron, et al., 2013). These type of changes in precipitation regime have been reported to 
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strongly affect local water balance (Rodrigues et al., 2011, Vaz et al., 2010, Grant et al., 2010) and 

carbon sink strength (Perez-Ramos et al., 2013, Pereira et al., 2007, Granier et al., 2007, Ciais et al., 

2005) of ecosystems in semi-arid regions and are expected to increase with proceeding climate change 

(Bussotti et al., 2013, Guerreiro et al., 2013). 

Species in semi-arid environments have developed vast structural and functional adaptations to 

regulate carbon assimilation and respiratory water loss (e.g. Tenhunen et al., 1987, Werner et al., 

1999). Considerable knowledge has been acquired on leaf-level physiological processes in the last 

three decades (e.g. Beyschlag et al., 1986, Sala et al., 1996, Tenhunen, et al., 1985, Tenhunen et al, 

1990, Werner et al., 2001), emphasizing the role of ecophysiological adaptations to seasonality and 

summer drought in Mediterranean climate conditions. In these environments lack of precipitation 

often interacts with excessive irradiance and high temperature further constraining leaf carbon fixation 

through photoinhibition during drought (Werner et al., 2001, Werner et al., 2002). Cork oaks strongly 

reduce transpirational water loss by stomatal closure in response to drought to avoid a critical level of 

dehydration and hydraulic failure (Oliveira et al., 1992, Tenhunen et al., 1984, Tenhunen et al., 1987, 

Werner et al., 1996, Kurz-Besson et al., 2006). 

To investigate the influence of drought on carbon sink strength at the ecosystem level, combined 

stomatal conductance-photosynthesis models can be used in order to disentangle regulatory processes 

from effects of micro-climatic variations. Different descriptions of the underlying processes exist in 

the literature, though. For example, stomatal conductance can be modelled either reacting to relative 

humidity Ball et al. (1987) or to vapour pressure deficit Leuning et al. (1995). Also the determination 

of parameters in individual descriptions is different among different authors. The sensitivity of 

stomatal conductance to vapor pressure, for example, is often taken as a fixed value while determining 

only the other parameters in the coupled stomatal conductance-photosynthesis model time-variant, 

although the sensitivities of stomatal conductance to photosynthesis and to vapour pressure are highly 

correlated. Recent studies could consequently demonstrate that changes of one single parameter, e.g. 

only maximum carboxylation rate or only stomatal conductance sensitivity, does not explain drought-

induced reductions in both GPP and T simultaneously (Egea et al., 2011, Reichstein et al., 2003, Zhou 

et al., 2013). Further, different temperature dependencies of e.g. maximum carboxylation or electron 
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transport rate have been proposed (Medlyn et al., 2002, von Caemmerer et al., 2000, June et al., 2004). 

In the present study, we report on drought effects on a Portuguese montado ecosystem using the 

unique opportunity of two consecutive years of very contrasting hydrological conditions: 2011 being 

a wet year with regular drought pattern occurring in summer, and 2012 being an extremely dry year 

with strongly reduced precipitation amount. Particularly, 2012 showed a severe additional 

winter/spring drought characteristic for precipitation pattern changes in recent past on the Iberian 

Peninsula (2nd driest year since 1950, Costa et al., 2012, Santos et al., 2013, Trigo et al., 2013). This 

study is focussing on: (1) quantifying the effects of drought on the local ecosystem water balance, 

overstorey and understorey GPP, as well as differences in net ecosystem carbon exchange NEE 

between both years. (2) Identifying physiological responses in the drought year 2012 of the Q. suber 

trees using a combined photosynthesis-stomatal conductance model and testing the model 

performance with different process descriptions. 

7.3. Material and methods 

7.3.1. Site description 

The study was conducted at the savannah-type flux observation site ’PT-Cor’ (Fig. 1) of the European 

integrated carbon observation system ICOS ca. 100 km north-east of Lisbon, Portugal (latitude: 39° 8 

0 20.7 00 N, longitude: 8° 20 0 3.0 00 W, altitude: 162 m a.s.l.). The site is planted with evergreen 

Quercus suber (L.) trees (209 individuals ha
−1

) on a cambisol soil (Jongen et al., 2011). The tree 

canopy has a leaf area index LAI of 1.05 ± 0.07 m
2 

leaf m
−2

 ground, a midday gap probability Pgap (0) 

of 0.76 ± 0.03 and an average tree canopy height of 9.7 m (Piayda et al., in review). The Q. suber trees 

have access to deep soil layers and the ground water table is relatively shallow at this site (between 2 

and 3 m). Native annual grasses and herbs build the understorey vegetation (Dubbert et al., 2014; 

Jongen et al., 2013a), which emerges after the first rains in autumn, has a peak growth period in spring 

(Mar - Apr) and becomes senescent at the beginning of the summer period (May-June). The 

understorey vegetation density and LAI are spatially highly variable due to the heterogeneous 

topography and hence, differences in soil moisture regime. The whole region is under forest 
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management. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Satellite image of 

the study site (© Google 

Maps, 2013). 1: position of 

the overstorey tower. 2: 

position of the understorey 

tower. 

7.3.2. Climate conditions 

The site is characterised by a Mediterranean climate with moist and mild winters and dry and hot 

summers. The long term mean annual temperature is about 15.9 °C and the annual sum of precipitation 

is about 680 mm (Jongen et al., 2013), with a characteristic annual pattern of high winter precipitation 

(November to January) and summer drought during June to September (Paredes et al., 2006). The 

relevance of the winter precipitation for the Portuguese hydrological cycle can be easily explained by 

the prevailing Mediterranean-type climate that concentrates most of precipitation during the winter 

half of the year, with little to no precipitation in summer. Hence, the following data treatment is based 

on the hydrological year beginning with first autumn precipitation (October to September). 

7.3.3. Overstorey tower eddy covariance measurements 

The overstorey tower (Fig. 1, point 1) is set up with a Gill R3A-50 ultrasonic anemometer (Gill 

Instruments Ltd., Lymington, UK) in combination with a LI-7000 closed path CO2 /H2O analyzer (LI-

COR, Lincoln, USA). The inlet tube has a length of 8.5 m, is attached to one of the anemometer arms 
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and operated with an average flow rate of ca. 8 l/min. The reference cell is flushed with N2. The 

measurement height is about 23.5 m above ground. Data is continuously acquired and processed live 

on a field laptop with the eddy-covariance data acquisition and processing software package 

EddyMeas (meteotools, Jena, DE; Kolle and Rebmann, 2007).  

At a height of 20 m above ground, two up- and downward facing LI-190 Quantum sensors (LI-COR, 

Lincoln, USA) and a NR-LITE net radiometer (Kipp & Zonen, Delft, NL) are attached. A radiation 

shielded HMP 155 probe measures air temperature T and relative humidity rH (Vaisala, Helsinki, FI). 

Precipitation P is measured with an ARG100 aerodynamic rain gauge (Environmental Measurements 

Ltd., North Shields, UK) at the tower top. The meteorological parameters are logged on a CR10X 

datalogger (Campbell Scientific, Logan, USA). 

7.3.4. Understorey tower eddy covariance measurements 

The understorey tower was located about 286 m north-west of the overstorey tower (Fig. 1, point 2). It 

was equipped with a Gill R3-50 ultrasonic anemometer (Gill Instruments Ltd., Lymington, UK) in 

combination with a LI-7500A open path CO2 /H2O analyzer (LI-COR, Lincoln, USA). The gas 

analyzer was tilted at 45° from the vertical and the sensor separation was about 30 cm. The 

measurement height of both sensors was 3.15 m above ground. EddyMeas was used for data 

acquisition here as well.  

At 2 m height above ground, two PAR LITE quantum sensors facing up- and downward were attached 

to a CNR1 net radiometer (Kipp & Zonen, Delft, NL). Air temperature T and relative humidity rH 

were measured with a HMP 155 probe covered by a radiation shield and atmospheric pressure p was 

measured with a PTB 110 barometer at 1.5 m above ground (Vaisala, Helsinki, FI). The 

meteorological parameters were logged on a CR1000 datalogger (Campbell Scientific, Logan, USA). 

A third eddy covariance system consisting of an Gill R3-50 ultrasonic anemometer in combination 

with a LI-7500A open path analyzer was used to test comparability of over- and understorey tower 

systems. For a period of one week each it was mounted on the overstorey and the understorey tower 

and measured in parallel. Both systems showed high Bravais–Pearson correlation coefficients of 0.78 
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to 0.91 as well as small normalized root mean squared errors of 0.01 to 0.06 for water and carbon 

fluxes in comparison with the portable eddy system. 

7.3.5. Soil temperature and moisture 

Soil temperature Ts and soil moisture θ were measured at open and a tree shaded locations between the 

two towers. Ts was measured with thermo-couples in 2, 4, 8, 16, 30, and 60 cm depth, two replicates 

each (PT100 PRT Temperature Probe, Campbell Scientific). θ was measured with 10hs sensors 

(Decagon Devices, Inc., Washington, USA) at 5, 15, 30 and 60 cm depth, four replicates each. The 

meteorological parameters were stored on CR1000 dataloggers (Campbell Scientific, Logan, USA). 

7.3.6. Data treatment 

Eddy flux data was post-processed using EddySoft and Python 2.7. Half-hourly means were calculated 

by block-averaging the 20 Hz data, time lags between CO2/H2O signals and vertical wind velocity 

were determined via cross correlation analysis following Aubinet et al. (1999). Whenever the cross 

correlation failed for the closed path analyzer signals of the overstorey tower, the dependency on rH 

was used to determine the lag for the H2O signal according to Ibrom et al. (2007) and Rebmann et al. 

(2012). High frequency losses were compensated with the use of inductances derived from 140 co-

spectral analysis (Eugster and Senn, 1995). The sectorial planar fit method was used for the coordinate 

rotation of wind vectors (Rebmann et al., 2012; Wilczak et al., 2001). For both towers the moisture 

and cross wind correction according to Schotanus et al. (1983) was applied and the WPL correction 

for flux density fluctuations was used for the CO2/H2O signals of the open path understorey sensor 

only (Leuning, 2007; Webb et al., 1980). The storage term of CO2 was calculated after Hollinger et al. 

(1994) and added to the turbulent CO2 flux.  

For the purpose of quality control, flags were determined for every half-hourly flux value including the 

following tests: the 20 Hz data was scanned for exceeded physical limits, change rates and variances. 

The stationary test of Foken and Wichura (1996) was applied to the high frequency data based upon a 

50% deviation criterion. On a half-hourly basis, the integral turbulence characteristics (ITC) were 
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calculated following Thomas and Foken (2002) with a 30% deviation criterion. For the understorey 

tower, the parameterization of the ITC was recalculated according to the observations. A spike 

detection routine was used on the half-hourly data based on the absolute median deviation (Papale et 

al., 2006). All quality control tests were summed up in a simplified flag system referring to Mauder 

and Foken (2011).  

The partitioning of the net CO2 fluxes NEE into gross primary production GPP and ecosystem 

respiration Reco followed Lasslop et al. (2010) and the flux gap-filling was made according to 

Reichstein et al. (2005). Gaps were only filled up to a maximum gap length of 6 days.  

Ts and θ were integrated over the respective depths and the replicates of each site (open and shaded) 

are averaged. To calculate ecosystem representative Ts and θ, the open and the shaded site were 

weighted using time-dependent Pgap, modelled from the daily course of sun inclination angle and the 

view zenith angle distribution of Pgap (Piayda et al., in review). The soil heat flux G was calculated 

from the averaged Ts profiles. To estimate the energy balance closure of the towers, the storage terms 

due to changes in T, rH were added to the energy balance equation and plotted against the turbulent 

energy fluxes for daytime values with global radiation Rg > 20 W/m
2
 (Foken, 2008; Mauder et al., 

2013; Twine et al., 2000). The ratio was used to correct sensible heat H, latent heat λE and 

evapotranspiration ET flux with the Bowen ratio being preserved. 

7.3.7. Photosynthesis and stomatal conductance modelling 

The Farquhar model for photosynthesis (Farquhar et al., 1980) combined with the Leuning model for 

stomatal conductance (Leuning, 1995) was used to model gross primary production GPPo and 

evapotranspiration ETo measured at the overstorey tower for the summer months May to September of 

2011 and 2012. The model was fitted to a 31 day long moving window of GPPo and ETo to gain stable, 

median daily cycles. These were cropped to the time from sunrise to midday. Model fitting was done 

using a Nelder-Mead simplex algorithm (Nelder and Mead, 1965) with a higher order multi objective 

cost function for GPPo and ETo according to Duckstein (1981) under varying apparent maximum 

carboxylation rate Vcmax (no separate modelling of mesophyll conductance), stomatal conductance 
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parameter m and vapour pressure deficit sensitivity parameter D0 . See Appendix B for detailed model 

equations. 

7.4. Results and discussion 

Ecosystem fluxes for the hydrological years 2011 and 2012 (October 2010 to September 2012) are 

discussed in the following. Flux time series are only compared when data availability is given for both 

hydrological years, but not on an annual sum basis. 

The dominant wind direction changes during the season. Absolute values of flux measurements of the 

overstorey tower are thus not directly comparable to the absolute values of the understorey tower due 

to changing footprint area and the heterogeneity of the ecosystem. However, comparisons of the intra-

annual pattern of ecosystem fluxes between both towers and inter-annual changes between both years 

2011 and 2012 are possible and conducted in the following. 

7.4.1. Meteorological and environmental conditions  

Water scarcity is the most important factor for ecosystem productivity in savannah-type ecosystems. 

Drought stress severity and its impact on the vegetation depends on timing as well as on the amount of 

precipitation P (Penuelas et al., 2004). In this context, the hydrological years 2011 and 2012 mark 

exceptional years on the Iberian Peninsula. Compared to the long term average precipitation of about 

680 mm, P was 34% higher in 2011 and 39% lower in 2012 (Fig. 2a,b) compared to the long term 

average of precipitation of about 680 mm (Jongen et al., 2013b). In particular, the winter 2011/2012 

was very dry over Soutwestern Iberia, with only about 20 % of the long term precipitation Santos2013, 

Trigo2013. 2012 was the second driest year since 1950. The last negative P anomaly of comparable 

severity occurred in the drought year 2004/2005 (Paredes et al., 2006, Santos et al., 2007). 

The intra-annual pattern of precipitation has especially changed in 2012. Total annual reduction to the 

previous year 2011 was 495 mm of which 68 % occurred during a long drought event in winter and 

early spring (December–March). The beginning of autumn precipitation was also delayed by almost 

a month in 2012. Winter precipitation is the most important for replenishing the soil and ground water 
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reservoirs after the summer drought. But the winter precipitation period was shortened and interrupted 

for about four months in the hydrological year 2012. These phenomena, i.e. reduced annual P, 

additional winter/spring drought, and prolonged summer drought, are characteristic for observed P 

extremes in the last decades (e.g. Guerreiro et al., 2013, Paredes et al., 2006). 

 

Figure 2: a) Daily sum of precipitation P for 2011 (black) and 2012 (grey). b) Cumulative 

precipitation P for 2011 (black) and 2012 (grey) based on half hourly data. 

 

We address first the question of changes in environmental and climatic components between both 

years, which may have caused significant changes in ecosystem functioning. The distributions of most 

relevant climatic and environmental variables for plant functioning are therefore analysed in quantile-

quantile (Q-Q) plots in Fig. 3. Air temperature (Fig. 3a) and incoming photosynthetically active 

radiation PAR (data not shown) showed only minor changes between the two years so that plant 

available energy in both years was comparably high. In contrast, moisture related variables showed 

large deviations from the on-to-one line in the Q-Q plots (Fig. 3b–d). All precipitation P intensities of 

2012 stayed well below the ones in 2011 (Fig. 3b). Air vapour pressure deficit vpd was considerably 

increased at high deficits in 2012 compared to 2011 (Fig. 3c). This comes from lower absolute 
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humidity because air temperature did not change substantially. Possible reasons are either diminished 

local ecosystem evopotranspiration ET, due to diminished soil moisture (Fig. 3d) and plant 

transpiration or less air moisture input by incoming air masses from the ocean. Soil moisture was 

significantly decreased in 2012 compared to 2011 (Fig. 3d), which is exhibited especially in the 

missing medium soil moisture amounts. The contribution of local ET to the observed reduction in vpd 

was estimated by approximating the average contribution of local ET to absolute humidity of the 

atmospheric boundary layer. 50 % of absolute humidity reduction in 2012 compared to 2011 could be 

explained by a reduced contribution of local ET. This illustrates the strong influence of ET on local 

hydrological conditions and the reinforcement of plant drought stress due to increased vpd. 

The ecosystem, therefore, faced increased transpirational demand from higher atmospheric vpd 

combined with strongly decreased soil water availability, which resulted in high water stress for the 

trees but also for understorey vegetation in 2012 compared to 2011. In the following, the effect of 

decreased water availability on the ecosystem water budget is discussed. 

 

Figure 3: Quantile-quantile plot of important climate and environmental parameters for the years 2011 

and 2012 based on daily averages. Black dots represent the 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 

0.9, 0.95, and 0.99 quantiles of the respective distribution. Grey dots represent the 0.5 quantile. a) air 

temperature T , b) precipitation P , and c) vapour pressure deficit of the air vpd, each measured at 20 m 

height above ground. d) soil moisture in the first 20 cm θ20 cm (root zone of understorey vegetation). 
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7.4.2. Drought influence on ecosystem water balance 

Evapotranspiration ET is the major component of total water efflux in Mediterranean ecosystems on 

annual basis (Huxman et al., 2005). A comparably small amount of precipitation is left for ground 

water recharge and runoff. ET usually peaks in May before the onset of drought in the beginning of 

June in Mediterranean ecosystems (Vargas et al., 2013). But ecosystem evapotranspiration measured 

here at the overstorey tower (Fig. 4b) peaked within the summer drought period in June to July in 

2011. This behaviour is typical for montado ecosystems with ground water access of the trees (Paco et 

al., 2009, Pereira et al., 2007, David et al., 2007, David et al., 2004). 

 

Figure 4: a) Maximum daily vapour pressure deficit vpdmax, b) daily sum of ecosystem 

evapotranspiration ETo and c) daily sum of understorey transpiration + soil evaporation ETu for 2011 

(black) and 2012 (grey). Lines mark kernel regressions. 

 

In 2012 ETo showed a slight peak shift towards spring in 2012 and was diminished by 26 % compared 

to 2011. The major decrease occurred in late spring and summer (March to September) although the 

major reduction in precipitation P occurred in winter and early spring (December to March) (Fig. 4b). 

When atmospheric demand (Fig. 4a) and energy input into the system increased in spring 2012, the Q. 
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suber trees were not able to maintain transpiration T as high as in 2011. This indicates, that most likely 

the deep soil and/or ground water reservoirs were not refilled after summer 2011 due to the dry winter 

as displayed by soil moisture observations in 60 cm depth (Fig. 5b). However, the strongly diminished 

transpiration T led to a non-significant increase in maximum daily leaf temperature of only 1.7 °C 

during the summer period of 2012. The small influence of the reduced transpirational cooling on leaf 

temperature could be attributed to the high aerodynamic conductance in this open canopy, enabling 

a comparably high energy transport by sensible heat. 

Evapotranspiration measured at the understorey tower (ETu) peaked in March to April 2011 before the 

beginning of the summer die back of the understorey vegetation, which is rather typical in savannah-

type ecosystems (e.g. Paco et al., 2009).  ETu was reduced, though, by 38 % in 2012 compared to 

2011. The peak was slightly delayed under drought conditions in 2012, in contrast to ecosystem ET. 

The late onset of autumn precipitation P in October and additionally the missing recharge of upper soil 

moisture in winter (Fig. 5a) had an immediate impact on ETu inhibiting plant growth and herbaceous 

transpiration (see Sect. 3). ETo, on the other hand, was influenced from March onwards only. The 

precipitation events occurring in April and March 2012 (Fig. 2a) were not able to increase  ET up to 

the level of 2011 even though the atmospheric demand was slightly higher in 2012 (Fig. 4c). This can 

be explained on the one hand by very low soil moistures up to 20 cm depth in October and from 

March onwards (Fig. 5a), which prevented soil evaporation, and on the other hand, by the strong 

reduction in plant cover leading to a reduced contribution of herbaceous plant transpiration 

toecosystem  ET (see Sect. 3). 

Precipitation effectiveness indicates the amount of total precipitation P used for actual ecosystem 

evapotranspiration. ET/P was 86 %  in 2011, which is high but comparable to other studies (Sala et al., 

1996, Pinol et al., 1991). However, the strong reduction of ecosystem evapotranspiration of 26 % in 

2012 was vastly exceeded by the reduction in precipitation P of 54 %. This confirms recent results 

from Besson et al. (2014) showing a certain resilience of Q. suber tree transpiration to annual water 

shortages. This led to ET/P of 122 % in 2012, which is to our knowledge, the highest value reported 

for montado ecosystems so far. Hence more water evaporated from the soil and was transpired by the 

trees than was brought into the ecosystem by precipitation. This was possible due to the deep soil or 
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ground water access of the trees maintaining a relatively high transpiration rate throughout the 

summer. But it left also no water for ground water replenishment or runoff generation (cf. Sala et al., 

1996). 

Ecosytem productivity was markedly changed in 2012 due to the strong alterations in the water 

balance, which will be discussed in the following. 

 

Figure 5: Box plot of monthly volumetric soil moisture a) down to 20 cm depth θ20 cm (root zone of 

understorey vegetation) and b) down to 60 cm depth θ60 cm for the years 2011 (black) and 2012 (grey). 

Central line marks the median, box marks the 0.25 and 0.75 quantiles. Dashed lines mark the 0.05 and 

0.95 quantiles. Data within a two day interval after a rain event were excluded. 

7.4.3. Understorey growth inhibition 

The local understorey vegetation consists of native annual grasses and herbs (Jongen et al., 2013, 

Dubbert et al., 2014). The species are adapted to regular summer droughts by seed formation in spring 

before the onset of the summer droughts. They survive the dry periods as seeds and germinate again at 

the onset of autumn precipitation. Species abundance during spring depends thus on the amount of 

previous winter precipitation (Figueroa et al., 1991). The timing of the first autumn rains and rewetting 

of the soils is thereby of great importance for germination success, number of individuals and plant 

productivity (Jongen et al., 2013a, DiosMiranda et al., 2009). 

The understorey showed a typical annual cycle of gross primary productivity in 2011 (Fig. 6c) for 
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savannah-type understorey vegetation with the growth onset at the end of October (Ma et al., 2007). 

Carbon uptake peaked in February to March and ended with the complete die back at the end of May.  

GPPu was strongly reduced by 53 % in 2012 compared to 2011. A small GPPu peak occurred along 

with precipitation P in April and May (Fig. 6). The reduction of GPPu can be explained by the very 

low soil moisture during October 2011 (Fig. 5a) due to the late onset of autumn precipitation P 

inhibiting seed germination.  GPPu was lower during the entire year 2012 in comparison to 2011, 

particularly over the main growth period of the understorey vegetation from January to April. It was 

up to 52 % lower in March 2012, inhibiting further growth during winter/spring and probably caused 

higher seedling mortality. Dubbert et al. (2014) reported a maximum understorey vegetation cover in 

this ecosystem of about 80 % for 2011 that was reduced to about 25 % during the same period in 2012 

(data for 2012 not shown). Similar effects on seedling germination and mortality were shown by 

others (Peco et al., 1994, Espigares et al., 1995, Espigares et al., 1993) under artificial rainfall 

treatments and could be shown here under natural conditions. 

7.4.4. Ecosystem productivity reduction 

Most European, Mediterranean savannah-like ecosystems show a severe drop in gross primary 

productivity during summer (June to August) framed by a major peak in early spring (April to May) 

and a minor peak at the onset of autumn rain (Baldocchi et al., 2009). 

In our ecosystem, gross primary productivity measured at the overstorey tower showed an in this 

respect atypical annual behaviour with a very late peak during June–July (Fig. 6b). The amount of 

carbon gained was also higher compared to other Mediterranean evergreen woodlands in particular 

during the drought period in summer (Baldocchi et al., 2009, Ma et al., 2007). This annual pattern is 

rather characteristic for temperate than semi-arid ecosystems. The Q. suber trees must have deep soil 

water or ground water access in “regular” hydrological years, as shown in Sect. 2. This enabled them 

to maintain high productivity during the summer period despite high atmospheric water demand and 

low topsoil soil moisture. 

Gross primary productivity GPP showed almost the same seasonal timing in 2012 compared to 2011 
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but was strongly reduced by 28 % (Fig. 6b). The major reduction took place in spring and summer 

(April to September) together with the reduction in evapotranspiration (Fig. 6b) when atmospheric 

demand was high and the emptied deep soil and ground water reservoirs were unable to supply 

sufficient water (see Sect. 2) in 2012 compared to a regular year. This confirms the results of Pereira et 

al. (2007) who showed that drought effects on sclerophyllous trees became apparent only after the 

depletion of the deep soil and ground water reserves. Despite a delayed bud burst in spring, 

a significant difference in leaf area index LAI could not be observed during the summer period by 

long-term leaf area index observations of (Costa e Silva et al., unpubl.). Reductions in GPP and ET 

can hence be attributed solely to leaf physiological responses discussed in Sect. 6. 

  

 

Figure 6: a) Ecosystem net carbon exchange NEEo, b) ecosystem gross primary production GPPo, c) 

understorey gross primary production GPPu for 2011 (black) and 2012 (grey). Dots mark daily sums, 

lines are kernel regressions. 
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7.4.5. Net ecosystem carbon exchange reduction 

The net ecosystem carbon flux NEE was strongly reduced by 38 % in the drought year 2012 compared 

to the wet year 2011 (Fig. 6a). The ecosystem was, however, a carbon sink in both years on annual 

basis even though reductions in precipitation P (Fig. 6) and gross primary productivity (Fig. 6b) were 

severe in 2012. Pereira et al. (2007) found a similar behaviour in another montado ecosystems in 

Portugal. It still demonstrates here once more that precipitation is the dominant environmental variable 

for inter-annual change of NEE in semi-arid ecosystems even in ecosystems with ground water access. 

The reduction in carbon sink strength took place mainly in summer (May to September) along with the 

strongest reduction in gross primary productivity  (Fig. 6b) caused by the lack of water availability for 

the Q. suber trees (cf. Sect. 2). GPPo exhibited a reduction of 28 % in 2012 compared to 2011 while 

Reco showed only a reduction of 16 %.  Reco is mainly reduced in summer (July to September, data not 

shown) where soil moisture in the upper soil layer is low in both years due to the regular summer 

drought (Fig. 5a) and inter-annual differences are small. NEEo is therefore much more driven by GPPo 

than by Reco in the ecosystem studied here. Reichstein et al. (2002) hypothesized that gross primary 

productivity should be less affected by drought than ecosystem respiration in ecosystems with large 

subsoil water reservoirs because Reco depends on soil moisture and soil temperature. But it is hot and 

dry almost every summer in the Mediterranean so that the lack of soil moisture in the upper soil 

inhibits soil respiration during summer and reduces largely the contribution of Reco to inter-annual 

variations (e.g.Unger et al., 2009). This could also be the reason for the controversial findings of 

Valentini et al. (2000) that Reco becomes less important for variations of NEE with decreasing latitude 

on the Northern Hemisphere. It is, however, clear that vastly different GPPo and Reco cannot be 

sustained over long time; Reco base rates have to adapt in the long-term. 
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7.4.6. Drought impact on tree physiology 

 

Figure 7: a) Apparent maximum carboxylation rate Vcmax, b) stomatal conductance parameter m, c) 

vapour pressure deficit sensitivity parameter D0 , d) fraction m/(1 + (vpd / D0)) relating assimilation A 

and stomatal conductance gs e) daily median stomatal conductance for water vapour gsh and f) optimal 

temperature of carboxylation Topt.The model is fitted to median daily cycles of gross primary 

production GPPo and evapotranspiration ETo of the Q. suber trees in a day long moving window for 

the summer period of 2011 (black) and 2012 (grey). 

  

Multiple physiological mechanisms of plant responses to drought, excessive irradiance and high 

temperatures have been recognized on the leaf-level such as reduction of exposed leaf area or leaf 

shedding (Beyschlag et al., 1986, Sala and Tenhunen, 1996, Tenhunen et al., 1985, Tenhunen et al., 

1990, Werner et al., 2001). To avoid hydraulic failure or photodamage, carboxylation efficiency 

Vcmax and/or stomatal conductance gs can be down-regulated restricting water loss and carbon 

assimilation and hence increasing photorespiration as a protective electron sink (Farquhar et al., 1982, 

Cowan et al., 1977, Tenhunen, et al., 1987, Matthews et al., 1984, Ehleringer et al., 1984). The 

photosynthesis apparatus can further adapt to altered environmental conditions by changing the 
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rigidity of the membranes altering thus the temperature optimum of, for example, electron transport 

rates (Kattge and Knorr, 2007, von Caemmerer et al., 2000, Berry and Björkmann, 1980). 

There are different levels of complexity on how to describe photosynthesis in the literature. We focus 

here on Farquhar-type models of photosynthesis (Farquhar et al., 1980). There are three mechanisms 

that differ strongly between the different models of vegetation-atmosphere exchange: (1) the reactions 

to soil water stress, (2) the formulations used for the description of stomatal conductance and (3) the 

reactions to heat stress. How plants react to water stress is probably the least well-described 

mechanism in photosynthesis models. The different ecosystem and land surface models differ strongly 

on how they react to soil water stress. The widely used community land model CLM, for example, 

reduces apparent carboxylation efficiency Vcmax under drought (Oleson et al., 2010), which then 

indirectly reduces stomatal conductance as well, while the land surface scheme ORCHIDEE down-

regulates stomatal conductance directly leaving Vcmax unchanged (Krinner et al., 2005, Verbeeck et al., 

2011). 

There is also a great variety of descriptions of stomatal conductance (cf. Damour et al., 2010). Most 

large-scale models apply the formulation of Ball et al. (1987) though, the so called Ball–Berry or 

sometimes Ball–Woodrow–Berry model (cf. Eq. B11). Leuning (1995) argued that stomata under 

controlled conditions react to vapour pressure deficit rather then relative humidity and proposed and 

alternate form of the Ball–Berry model (cf. Eq. B10), the so-called Leuning model or sometimes Ball–

Berry–Leuning formulation. But the photosynthesis models also differ in their reactions to heat stress. 

It is still discussed in the physiological literature if heat is only changing thylakoid membrane 

properties limiting electron transport (von Caemmerer et al., 2000, June et al., 2004) or if heat is also 

inhibiting enzyme activities, i.e. also carboxylation rates (Medlyn et al., 2002, Kattge and Knorr, 

2007). 

Gross primary productivity GPPo and evapotranspiration ETo were modelled here for the period May 

to September to investigate drought impact on Q. suber tree physiology on the ecosystem scale and 

further test different model formulations described above. Differences between both years were most 

prominent during May to September, understorey vegetation had already vanished and soil 

evaporation was low compared to tree transpiration (Fig. 4c). 
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The following discussion includes (1) whether a down-regulation of only carboxylation efficiency 

Vcmax or only stomatal sensitivity m is sufficient to describe the ecosystem behaviour in both years. 

(2) It evaluates the performance of the two prominent stomatal conductance formulations. (3) It 

compares different representations of photosynthetic temperature dependencies. (4) It discusses 

possible reasons for down-regulation of stomatal conductance gs and carboxlation Vcmax, (5) 

disentangling the causes for down-regulation of stomatal conductance gs. (6) The unexpected change 

in optimal temperature Topt between the two years is discussed. 

First, GPPo and ETo were modelled with either allowing the model to adapt each day only Vcmax or 

only the slope m of the Ball–Berry stomatal conductance formulation (Ball et al., 1987, Eq. B11). The 

model was not able to reproduce the observations with sufficient performance in both cases, especially 

in 2012. The goodness of fit to the observed data steadily decreased with ongoing summer drought.  

GPPo and ETo could be successfully modelled if both,  Vcmax and m were allowed to adapt daily to 

changing environmental conditions, leading to constantly high Nash–Sutcliffe model efficiencies of

 GPP 
o

 = 0.88 and  ET 
o

 = 0.95 for 2011and  GPP 
o

 = 0.84 and  ET 
o

 = 0.90 for 2012. 

Second, the same model calibration experiment was performed with the Leuning model of stomatal 

conductance (Leuning, 1995, Eq. B10). The Leuning model has, however, an additional model 

parameter D0 which describes the sensitivity of the stomata to changes in vapour pressure deficit vpd. 

The Leuning model showed comparable high model performances to the Ball–Berry model in both 

years. When the Leuning model was used in earlier studies (e.g. Wang et al., 1998), D0 was fixed to 

a constant value. This implies that stomatal conductance sensitivity to vpd needs to change always 

similar to the sensitivity to assimilation. Model performance decreased considerably if D0 was fixed 

here. This is because m and D0 are highly correlated in the Leuning model (cf. Fig. 7b and c). This 

strict coupling is likely incorrect here since daily maximum vpd during the summer drought period 

was not significantly different between both years (only 1.3 hPa increase on average) but a strong 

decrease in Vcmax could be observed (see below). Consequently, a decrease in model performance 

occurred, when D0 was set constant. Enabling the Q. suber trees to regulate stomatal response to vpd 

and assimilation A separately was necessary to explain observed GPPo and ETo. 
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The two first points illustrate that the plants needed to regulate their potency of possible carbon 

assimilation but wanted to increase how swift stomata react to changes. The reduction in maximum 

carboxylation rate Vcmax, though, was about 37 % while the increase in the slope m was about 13 % or 

30 % whether calculation followed Ball et al. (1987) or Leuning (1995), respectively. This led to an 

overall decrease in stomatal conductance gs of about 31 %. 

Third, the temperature dependency of photosynthetic activity has generally been attributed to two 

different processes in previous publications. Medlyn et al. (2002) and Kattge and Knorr (2007) 

described the temperature dependency of both, maximum carboxylation rate Vcmax of the Rubisco 

enzyme and maximum electron transport rate Jmax by a peaked function, according to Johnson et al. 

(1942) (Eq. B6). An increase in enzyme activity with temperature is followed by a decrease above an 

optimum temperature Topt due to enzyme deactivation (Case 1). Von Caemmerer (2000), among 

others, attributed possible decrease of activity of the photosynthetic apparatus at high temperatures 

rather to thylakoid membrane properties only, limiting electron transport, thus changing with leaf 

temperature. So only Jmax is down-regulated above an optimum temperature Topt (Eq. B6), but Vcmax 

increases monotonically with a typical Arrhenius-type function (Eq. B5, Case 2). This was simplified 

by June et al. (2004) using a gaussian temperature dependency instead of the original formulation (Eq. 

B8, Case 3). Here all cases showed comparable model performances and no apparent differences in 

GPPo and ETo could be noticed. Thus, neither Case 1 nor Case 2 could be falsified here. Case 1 to case 

3, however, show a decreasing demand for parametrization (Case 1: 6, Case 2: 4, and Case 3: 3 

parameters). Despite the entropy factors of carboxylation and electron transport (Case 1 and Case 2) 

and optimum temperature Topt (Case 3), all parameters were fixed to literature values (Table 1). Case 

3, although containing only one parameter for optimization like Case 2, showed a more robust 

computational performance with fastest optimization by the Nelder–Mead algorithm (Nelder and 

Mead, 1965) among all cases. 

Fourth, multiple reasons for down-regulation of photosynthesis under drought conditions are known, 

ranging from damage of involved enzymes due to high leaf temperatures, inhibition of the 

photosynthetic apparatus to avoid excess energy in the leaves, to insufficient availability of nitrogen 

inside the leaves (Tenhunen et al., 1987, Werner et al., 1999). But protection of the photosynthetic 
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apparatus during environmental stress comes at the cost of reduced carbon sequestration (Tenhunen et 

al., 1990, Werner et al., 1999, Werner et al., 1996). Excessive radiation and high temperatures provide 

the risk of photoinhibition and photodamage under reduced CO2 supply due to stomatal closure and 

low water potentials (Werner et al., 2002). Stomatal conductance gs was strongly reduced by 31 % in 

2012 compared to 2011 (Fig. 7e) although differences in daily maximum vpd during the summer 

drought period were not significant (only 1.3 hPa increase on average) between both years (Fig. 4a). It 

is thus very likely that the trees suffered from depleted deep soil or groundwater reservoirs due to the 

missing recharge by winter precipitation, since upper soil water content values were comparable 

during summer (Fig. 5a and b). This is an evidence that plant water status of Q. suber trees is strongly 

influenced by access to groundwater here and a down-regulation of transpiration occurred to avoid 

hydraulic failure (David et al., 2007, Oliveira et al., 1992). Although transpirational cooling of leaves 

should have been reduced due to limited stomatal conductance, the daily maximum leaf temperature  

increased by only 1.7 °C in 2012 compared to 2011 (Sect. 1) so that a temperature-based damage of 

enzymes relevant for photosynthesis is unlikely. The CO2 influx into the leaves was, however, heavily 

reduced under the drought conditions in 2012. Energy utilization is thus limited while incoming 

photosynthetically active radiation PAR in 2012 was comparably high to 2011 (see Sect. 1). It is 

therefore very likely that the main cause for the Q. suber trees to down-regulate maximum 

carboxylation rate Vcmax by 37 % (Fig. 7a) was to avoid over-excitation and photodamage (Demmig-

Adams et al., 1992, Long et al., 1994, Werner et al., 2002). However, this effect may have been 

enforced by a decreased nitrogen availability during the leaf development phase in late spring caused 

by reduced soil water, and thus nitrogen solubility in 2012 (Fig. 5a and b) potentially changing leaf 

nitrogen status and permanently reducing photosynthetic capacity in 2012 compared to 2011 (Vaz et 

al., 2010). A possible indication for a permanent reduction of Vcmax is that gs tends to converge to the 

same value at the end of the drought period in both years (Fig. 7e) so that leaf internal CO2 availability 

should have approached comparable values as well. Vcmax remained, however, down-regulated 

permanently. A simultaneous reduction of Vcmax by 37 % (Fig. 7a) and an increase of m (13 % or 30 % 

whether gs was calculated following Ball (1987) or Leuning (1995, Fig. 7b) was observed. In case of 

a drought spell like 2012, the Q. suber trees responded with both, stomatal limitation as well as down-
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regulation of assimilation strongly altering entire ecosystem functioning, which was observed in 

different semi-arid ecosystems before (Reichstein et al., 2003, Egea et al., 2011, Zhou et al., 2013). 

Fifth, the use of the Leuning (1995) model with variable D0 allowed to disentangle the different 

impacts on gs. Intra-annually, stomatal conductance showed a much stronger sensitivity to vpd 

(Fig. 7c) than to variations in assimilation (Fig. 7d). Between both years, m/(1 + (vpd / D0)) increased 

only slightly by 6 % as a consequence of a slightly stronger reduction in Vcmax than in gs (37 % and 

31 %, respectively). This displays the strong resilience of sclerophyllous tree species like Q. suber to 

drought, maintaining a water use efficiency comparable to regular years (Zhou et al., 2013). The 

impact of vpd on gs was, however, weakened in 2012 (reduction of D0 by 14 %) since gs was generally 

reduced at comparable vpd. m compensated fluctuations in D0 (Fig. 7b) to yield the observed 

robustness to assimilation. The observed high intra-annual robustness indicates that these 

Mediterranean species are adapted to maintain a stable operational point (Werner and Maguas, 2010). 

Sixth, all three model descriptions (Case 1–3) showed a decrease in the optimum temperature of 

photosynthesis Topt by 4–8 °C from 2011 to 2012 (Fig. 7f). Leaf renewal in 2012 occurred under strong 

drought conditions due to the additional winter drought and under increased temperatures due to the 

bud burst occurring more than one month later than in 2011 (Costa e Silva et al., unpubl.). So carbon 

uptake in 2012 was further weakened due to a higher susceptibility of the photosynthesis apparatus to 

high temperatures in addition to the already discussed reduction of carboxylation efficiency Vcmax by 

37 %. Kattge et al. (2007) and Caemmerer et al. (2000), among others, showed for different plant 

species the opposite trend of increasing Topt with increasing growth temperature. A possible 

explanation is that not only growth temperature but also nutrient availability and plant water status 

have changed strongly here affecting thylakoid membrane properties more than growth temperature. 

In summary, the Q. suber trees responded to the drought year 2012 with a down-regulation of 

carboxylation efficiency and a decreased optimal temperature of photosynthesis. They counteracted 

this reduced carbon sequestration with a better responsiveness of the stomata. These plant responses 

were caused neither by a higher vapour pressure deficit nor by leaf temperatures nor by a depletion of 

upper soil moisture. But they were most probably triggered by a strong depletion of deep soil or 
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ground water due to the additional winter drought. 

The combined model of photosynthesis and stomatal conductance was unable to reproduce the 

observed carbon assimilation and evapotranspiration if only one reaction was considered, i.e. either in 

the photosynthetic apparatus or in stomatal conductance. It needed to adapt parameters in both sub-

modules, i.e. a strong reduction in carboxylation efficiency and a smaller increase in stomatal 

sensitivity. Earlier model-data approaches had shown that combined photosynthesis-stomatal 

conductance models need to adapt both parts in times of drought but they always predicted decreases 

in carboxylation efficiency and stomatal sensitivity. However, the modelling performed here could not 

distinguish between different model formulations found in the literature, i.e. the stomatal conductance 

formulations of Ball–Berry vs. Leuning and the different formulations of optimal photosynthetic 

temperatures. 

7.4.7.  Future development 

It is expected that the trend of decreasing total annual precipitation and alteration of precipitation 

patterns on the Iberian Peninsula, namely occurrences of additional winter/spring droughts, will 

continue with proceeding climate change (Bussotti et al., 2013, Guerreiro et al., 2013, Hulme et al., 

1999). Such severe drought periods might occur at higher frequency (Field et al., 2012, Heimann et al., 

2008, Granier et al., 2007, Miranda et al., 2002) thereby affecting the ecosystem water balance and 

productivity (Chaves et al., 2002, Fischer et al., 2002). If precipitation patterns similar to 2012 will 

occur more often then a sustainable depletion of local ground water reservoirs as well as water storage 

basins might be expected. This will affect strongly local agriculture that relies on ground water for the 

deep-rooted cork-oak trees and otherwise uses irrigation water from storage basins. The soil seed bank 

of native understorey plants may also deplete on the long term due to a shorter life cycle and reduced 

seed formation (Jongen et al., 2013a, Penuelas et al., 2002, Penuelas et al., 2004, Gordo et al., 2005). 

A shift of species composition is likely (DiosMiranda et al., 2009) but could not be observed in this 

ecosystem in a study by Dubbert et al. (2014; 2012 data not shown) during the drought year 2012 

itself. However, some effects such as tree mortality may only be evident in the long term after 
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multiple, consecutive drought years (David et al., 2004, Bussotti et al., 2013). 

7.5.  Conclusions 

We reported on the ecosystem fluxes of a savannah-type cork oak woodland under extreme 

hydrological conditions and altered precipitation P pattern. We analyzed the effects of drought in the 

year 2012 compared to the wet year 2011 on evapotranspiration and gross primary productivity of a 

montado ecosystem and its overstorey and understorey components. We additionally analyzed 

physiological reactions of the Q. suber trees. 

We conclude the following results: (1) the precipitation effectiveness increased up to 122 % in the dry 

year 2012 possible due to the ground water access of Q. suber trees leaving no water for ground water 

replenishing and runoff generation. If trends of decreasing annual P continue, sustainable effects on 

local ground water reservoirs and storage basins may be expected. (2) The understorey gross primary 

productivity and the overstorey gross primary productivity were reduced by 53 % and 28 %, 

respectively, in 2012 compared to 2011 due to a late onset of 2011 autumn rains and an additional 

severe winter/spring drought. Long term changes in understorey species composition and tree 

productivity are likely if prolonged summer droughts and additional winter/spring droughts become 

more frequent. (3) A combined photosynthesis and stomatal conductance model worked best if it was 

able to adapt the apparent maximum carboxylation rate and the stomatal conductance parameters 

simultaneously. The slope m of the stomatal conductance model had to be increased to compensate 

partly for the strong decrease in carboxylation rate. The model adjusted also the sensitivity of the 

stomata to vapour pressure deficit vpd in the Leuning model because both stomatal parameters, m and 

D0 are strongly correlated. The model performance was similar to the Ball–Berry approach. (4) The 

combined photosynthesis and stomatal conductance model also adjusted the optimum temperature of 

electron transport to lower values. This decreases carbon sequestration under higher temperatures but 

makes the photosynthetic apparatus also more vulnerable to heat stress in dry years. (5) The ecosystem 

was a carbon sink in both years with a 38 % reduced sink strength in the dry year 2012 compared to 

2011. Gross primary productivity GPP was thereby a much stronger driver than ecosystem respiration 

of the inter-annual variations of the carbon sink. 
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7.6. Appendix A – Nomenclature 

b   [mol H2O m
−2

 s
−1

] Leuning model parameter (offset) 

D0  [hPa] Leuning model parameter (vpd fraction denominator) 

ETo   [mm d
−1

] evapotranspiration measured at the overstorey tower 

ETu   [mm d
−1

] evapotranspiration measured at the understorey tower 

ETo/P  [%] precipitation effectiveness ratio 

 GPP 
o

  [-] average Nash-Suttcliff model efficiency for GPPo  

 ET 
o

  [-] average Nash-Suttcliff model efficiency for ETo 

GPP   [g C m
−2

 d
−1

] gross primary production 

GPPo  [g C m
−2

 d
−1

] gross primary production measured at the overstorey tower 

GPPu  [g C m
−2

 d
−1

] gross primary production measured at the understorey tower 

gsh   [mol H2O m
−2

 s
−1

] stomatal conductance for water vapour 

gsc   [mol CO2 m
−2

 s
−1

] stomatal conductance for carbon 

LAI  [m
2
 leaf m

−2
 ground] leaf area index 

m   [mol H2O mol air
−1

] Leuning model parameter (slope) 

NEE  [g C m
−2

 d
−1

] net ecosystem carbon exchange 

NEEo   [g C m
−2

 d
−1

] net ecosystem carbon exchange measured at the overstorey tower 

NEEu  [g C m
−2

 d
−1

] understorey + soil net carbon exchange 

P   [mm] precipitation 

p   [hPa] atmospheric pressure 

PAR   [µmolm −2 s −1 ] photosynthetically active radiation 

Pgap   [-] tree canopy gap probability 

Reco  [g C m
−2

 d
−1

] ecosystem respiration 

rH  [%] relative air humidity 

θ  [%] soil moisture 

T   [°C] air temperature 

Ts  [°C] soil temperature 
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Vcmax   [µmol m
−2

 s
−1

] apparent maximum carboxylation rate 

vpd   [hPa] air vapour pressure deficit 

7.7. Appendix B Photosynthesis model 

Appendix B Photosynthesis - stomatal conductance model 

Carbon assimilation A [mol m
−2

 s
−1

] was modelled using the model of Farquhar et al. (1980) modified 

by a smooth minimum function: 

 

 

 

with Rubisco-limited CO2 assimilation rate JC [mol m
−2

 s
−1

], Ribulose-1,5-bisphosphate (RuBP)-

limited CO2 assimilation rate JE [mol m
−2

 s
−1

] and mitochondrial respiration Rd [mol m
−2

 s
−1

]. The 

smoothing parameter η was set to 0.9. The Rubisco-limited rate JC was described by: 

 

 

 

with maximum carboxylation rate Vcmax [mol m
−2

 s
−1

], stomatal cavity CO2 concentration Ci [mol CO2 

mol
−1

 air], CO2 compensation point Γ* [mol CO2 mol
 −1

 air] (set to leaf temperature Tl 1.7
−6

), 

Michaelis-Menten coefficients of Rubisco activity for CO2 KC [mol CO2 mol
 −1

 air] and O2 KO [mol O2 

mol
 −1

 air], respectively. Oi [mol O2 mol
−1

 air] is the stomatal cavity O2 concentration. The RuBP-

limited CO2 assimilation rate JE was described by: 

 

 

 

with the rate of electron transport J [mol m
−2

 s
−1

] as: 
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with maximum electron transport rate Jmax [mol m
−2

 s
−1

], quantum yield of electron transport α and 

incident photosynthetically active photon flux density PAR [mol m
−2

 s
−1

]. The temperature 

dependencies of Kc, Ko and Rd were modelled using Arrhenius function like: 

 

 

 

with the base rates KC25 [mol CO2 mol
−1

 air], KO25 [mol O2 mol
 −1

 air], Rd25 [mol m
−2

 s
−1

] and activation 

energies EC25, EO25, ERd25 [J mol
−1

] at 25 ◦ C, respectively. T l [◦ C] is leaf temperature and R [J mol
−1

 

K
−1

] is universal gas constant. According to Medlyn et al. (2002) and Kattge and Knorr (2007), the 

temperature dependencies of maximum carboxylation rate Vcmax and maximum electron transport rate 

Jmax were modelled with a modification of the Arrhenius function showing a peak at optimum 

temperature followed by a decline with increasing leaf temperatures Tl: 

 

 

 

with the base rates Vcmax25, Jmax25 [mol m
−2

 s
−1

] and activation energies EVcmax25, EJmax25 [J mol
−1

] at 25 ◦ 

C, respectively. ΔSV, ΔSJ [J mol
−1

 K
−1

] are the entropy factors and HdV, HdJ [J mol
−1

] are the 

deactivation energies of Vcmax and Jmax, respectively. Leaf surface CO2 concentration Cs [mol CO2 mol
−1 

air] and H2O concentration Ws [mol H2O mol
−1

 air] were calculated via: 
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with the atmospheric CO2 concentration Ca [mol CO2 mol
−1

 air], aerodynamic conductivity ga [mol m
−2

 

s
-1

], stomatal cavity H2O concentration Wi [mol H2O mol
−1

 air], modelled transpiration ETmod [mol m
−2

 

s
−1

] and stomatal conductivity for water vapour gs,h [mol m
−2

 s
−1

].  

Stomatal conductance for water vapour gs,h was calculated with the equation of Leuning (1995): 

 

 

 

with stomatal conductivity slope parameter m [mol H2O mol
−1

 air], vapour pressure deficit sensitivity 

parameter D0 [hPa] and stomatal conductivity offset parameter b [mol m
−2

 s
−1

]. Canopy conductance 

for CO2 and H2O were then derived by: 

 

 

Hence, stomatal cavity CO2 concentration was calculated via: 

 

 

and finally, modelled transpiration ETmod [mol m
−2

 s
−1

] and gross primary production GPPmod [mol m
−2

 

s
−1

] could be derived by: 
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The entire calculation was iterated with initial values for ETmod = 0, gs,h = 1 and Ci = 0.8Ca, until a 

conversion of Ci was achieved for every time step. The model was fitted against measured ET and 

GPP under variation of Vcmax25, ΔSV, ΔSJ , m and D0. Constant relationships of Jmax25 = 1.67Vcmax25 and 

Rd25 = 0.011Vcmax25 were assumed (Medlyn et al., 2002; Kattge and Knorr, 2007). All other parameters 

used can be found in Table 1. 

 

Table 1: Parameters used in the photosynthesis - stomatal conductance model. Parameters with the 

source ’site avarage’ were estimated with an optimization on the entire data set. 
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