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Chapter 1  

Summary 

This thesis concerns the tailor-made synthesis of tetraphenylbenzidine (TPD) and 

triphenylamine (TPA) based organic semiconducting polymers and the investigation of the 

charge carrier transport, doping effects and the application in organic/hybrid photovoltaics and 

sensors. The specific design of TPD and TPA main-chain polymers enabled the use of this class of 

well-known hole transport materials for new applications such as injecting layers in perovskite 

solar cells and impedimetric gas sensors. Furthermore, a detailed study on the delocalization 

and charge-transfer (CT) character in donor-acceptor (D-A) copolymers was achieved through 

the design of D-A copolymers with different CT-character.  

A great challenge in the field of perovskite solar cells, which are highly efficient and underwent 

an extraordinary development recently, is the uniform film formation resulting in big perovskite 

crystals and smooth surfaces. In the first part of this thesis, a one-pot fabrication method 

towards bilayer devices was developed to reach this goal. Hereto, the crystallization of the 

perovskite was guided within a polymer matrix. For that, a TPD homopolymer (PTPD) with oligo 

ethylene glycol side chains was designed and synthesized in order to obtain solubility and 

miscibility in the perovskite precursor (CH3NH3I + PbI2) solution. In a single step, the blend 

solution containing PTPD and the perovskite precursors was spin coated. Through thermal 

annealing a crystallization driven vertical phase separation occurred and the desired bilayer 

structure (PTPD/perovskite) was formed. Big perovskite crystals with a smooth surface could be 

achieved, which offer an optimal geometry for efficient solar cells. It was demonstrated that 

solar cells prepared with this novel approach worked well with an underlying mesoporous TiO2

The second part deals with the influence of the polarity of the side chains of PTPDs acting as hole 

injecting layer at the interface to the perovskite layer. Therefore, perovskite solar cells were 

prepared using a commonly used two step method. First, a PbI

 

layer as scaffold. Thus, this system is of great relevance for the emerging field of perovskite solar 

cells because it is a simple and scalable method leading to smooth and uniform crystal 

formation. 

2 layer is prepared and immersed 

into a CH3NH3X solution, annealed and second coated with a hole conductor. Important 

questions regarding the influence of properties of the hole conducting material are examined. In 

detail, the molecular weight dependence of the hole transport mobility in PTPDs was 
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investigated by space charge limited current (SCLC) measurements. It could be shown that the 

hole transport mobility is independent on the molecular weight for theses amorphous polymers 

and the attachment of polar side chains does also not affect the hole transport behavior. 

Furthermore, SCLC, UV-vis, and spectroelectrochemical measurements revealed that the doping 

with a Co(III)-complex increases the charge carrier concentration via oxidation, which leads to 

an increased conductivity and therefore a better power conversion efficiency (PCE). The solar 

cells were characterized in detail taking into account the question of storage and hysteresis 

effects due to measurement conditions. After storing the devices, the PCE increased due to 

improved absorption leading to improved EQE. Additionally, the PTPD with polar side chains 

lead to a less pronounced hysteresis effect and a higher stability under illumination compared to 

the polymer carrying non-polar side chains.  

In the third part PTPDs are presented as active materials for impedimetric NO2 gas dosimeters. 

The advantage of gas dosimeters is the simultaneous detection of the actual concentration as 

well as the exposure in dependence of time. Therefore, the active material has to accumulate the 

analyte during exposure and no recovery of the signal after exposure has to occur. The PTPD is a 

suitable active material for the detection of NO2 because of its oxidizability. The oxidation of the 

PTPD lead to a measureable change of the conductivity and resistivity. We showed that the pure, 

undoped PTPD behaves as a classical NO2 sensor with a certain recovery of the sensor signal. 

However, the doping of the PTPD with a Co(III)-salt and the addition of a conducting Li-salt lead 

to a reduction of the recovery and the accumulation of NO2

The fourth part addresses the question of tuning the absorption behavior of PTPDs and presents 

a detailed study of the influence of the chemical structure on delocalization in donor-acceptor 

copolymers. It is known in the literature that the optical gap can be reduced using the D-A 

concept. For the implementation of the D-A concept two strategies are known: 1) incorporation 

of the acceptor unit in the main chain in an alternating way and 2) attachment of the acceptor to 

the side chain of the polymer. These strategies were compared in this work to understand the 

influence on exciton delocalization and the effect of the CT-character on charge transport. 

Additionally, the charge separation in bilayer solar cells with C

 in the PTPD layer. Thus, the 

adsorption and desorption rates could be tailored by doping and addition of the conducting salt.  

60 was studied. Therefore, two 

novel D-A copolymers based on TPA as donor unit were synthesized. Cyclic voltammetry, UV-vis, 

fluorescence, and SCLC measurements revealed that the two D-A copolymers have a different 

degree of CT-character and delocalization. Thus, also the hole transport mobilities vary. We 

found that the strong exciton localization that exists in the D-A copolymer with acceptor in the 

side chain together with a lowered conjugation in this system hinders the charge separation 

with C60. However, the weak CT-character and strong conjugation/delocalization in the D-A 

main-chain copolymer leads to improved charge separation in the bilayer solar cells.  
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Zusammenfassung 

Diese Arbeit beschäftigt sich mit der maßgeschneiderten Synthese von organischen, 

halbleitenden Polymeren basierend auf Tetraphenylbenzidin (TPD) und Triphenylamin (TPA) 

und deren Untersuchung hinsichtlich des Ladungsträgertransports, des Einflusses von 

Dotierung und der Anwendung in organischen/Hybrid-Solarzellen und Sensoren. Das 

spezifische Design der TPD- und TPA-Hauptkettenpolymere ermöglicht die Nutzung dieser 

Materialklasse als namhafte Lochtransportmaterialien für neue Anwendungen wie den Einsatz 

als Injektionsschichten in Perovskit Solarzellen und als impedimetrische Gassensoren. 

Weiterhin wurde eine Studie über die Delokalisierung und den Ladungstransfercharakter in 

Donor-Akzeptor (D-A) Copolymeren durchgeführt, indem D-A Copolymere mit 

unterschiedlichem Ladungstransfercharakter konzipiert wurden.  

Eine große Herausforderung auf dem Gebiet der hoch effizienten Perovskit Solarzellen, die 

bisher eine außergewöhnliche Entwicklung durchlaufen haben, ist eine gleichmäßige 

Filmbildung, die es ermöglicht große Perovskit-Kristalle und glatte Oberflächen zu erhalten. Um 

dieses Ziel zu erreichen, wurde im ersten Teil dieser Arbeit eine Eintopfmethode für die 

Herstellung von Zweischichtsolarzellen entwickelt. Hierfür wurde die Kristallisation des 

Perovskits innerhalb einer Polymermatrix gesteuert. Daher wurde ein TPD Homopolymer 

(PTPD) mit Oligoethylenglykol-Seitenketten maßgeschneidert synthetisiert, um die nötige 

Löslichkeit und Mischbarkeit in der Lösung der Perovskit-Edukte (CH3NH3I und PbI2) zu 

erzielen. In einem einzigen Schritt wurde die Blend-Lösung aus PTPD und Perovskit-Edukten 

durch Lackschleudern aufgetragen. Durch anschließende thermische Behandlung trat eine 

kristallisationsgetriebene vertikale Phasenseparation auf und die gewünschte 

Zweischichtstruktur (PTPD/Perovskit) bildete sich aus. Große Perovskit-Kristalle mit einer 

glatten Oberfläche, welche eine optimale Geometrie für effiziente Solarzellen aufweisen, konnten 

erhalten werden. Die mit diesem neuen Ansatz hergestellten Solarzellen zeigten eine sehr gute 

Funktionsweise bei Verwendung einer unterliegenden, mesoporösen TiO2

Der zweite Teil beschäftigt sich mit dem Einfluss der Polarität der Seitenkette der PTPDs als 

Lochinjektionsschicht an der Grenzfläche zur Perovskit-Schicht. Für diese Untersuchungen 

wurden Perovskit-Solarzellen mit Hilfe der gängigen, zweistufigen Methode hergestellt. 

Zunächst erfolgte die Herstellung der PbI

-Schicht als Gerüst. 

Daher ist dieses System von großer Relevanz für das aufstrebende Gebiet der Perovskit-

Solarzellen, da es eine einfache und skalierbare Methode darstellt, um eine glatte und 

einheitliche Kristallbildung zu erzielen. 

2-Schicht, welche einer CH3NH3X-Lösung ausgesetzt 

wurde. Nach einem Tempervorgang wurde im zweiten Schritt der Lochleiter aufgetragen. 
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Wichtige Fragestellungen im Hinblick auf den Einfluss der Eigenschaften des lochleitenden 

Materials wurden untersucht. Der Einfluss des Molekulargewichts auf die 

Lochtransportmobilität der PTPDs wurde mittels „Space charge limited current“ (SCLC) 

Messungen betrachtet. Es konnte gezeigt werden, dass die Lochtransportmobilität unabhängig 

vom Molekulargewicht dieser amorphen Polymere ist und die Anbindung von polaren 

Seitenketten das Lochtransportverhalten ebenfalls nicht beeinflusst. Weiterhin zeigten SCLC, 

UV-vis und spektroelektrochemische Messungen, dass durch Dotierung mit einem Co(III)-

Komplex die Ladungsträgerkonzentration durch Oxidation erhöht wird, was zu einer erhöhten 

Leitfähigkeit und daher einem verbesserten Wirkungsgrad der Solarzellen führt. Die Solarzellen 

wurden im Detail charakterisiert, wobei Fragen der Lagerung und Hystereseeffekte aufgrund 

von Messbedingungen adressiert wurden. Nach Lagerung der Solarzellen erhöhte sich der 

Wirkungsgrad aufgrund der verbesserten Absorption, welche zu einer verbesserten externen 

Quantenausbeute führte. Zusätzlich resultierte der Einsatz von polaren Seitenketten am PTPD 

im Vergleich zum Polymer mit unpolaren Seitenketten in einem weniger stark ausgeprägten 

Hystereseeffekt und einer höheren Stabilität unter Beleuchtung. 

Im dritten Teil dieser Arbeit werden PTPDs als aktive Materialien für impedimetrische NO2-

Gasdosimeter vorgestellt. Der Vorteil von Gasdosimetern ist die gleichzeitige Detektion der 

aktuellen Konzentration und der Exposition in Abhängigkeit der Zeit. Daher muss das aktive 

Material den Analyten während der Exposition akkumulieren und es darf keine Regeneration 

des Signals nach der Exposition auftreten. PTPD ist aufgrund seiner Oxidierbarkeit ein 

geeignetes aktives Material für die Detektion von NO2. Die Oxidation des PTPDs führt zu einer 

messbaren Änderung der Leitfähigkeit und des Widerstands. Wir konnten zeigen, dass das reine, 

undotierte PTPD als klassischer Gassensor für NO2 fungiert, wobei eine Regeneration des 

Sensorsignals auftritt. Allerdings führen die Dotierung des PTPDs mittels Co(III)-Komplex und 

die Zugabe eines Li-Leitsalzes zur Reduktion der Regeneration des Sensorsignals und einer 

Akkumulation von NO2

Der vierte Teil beschäftigt sich mit der Frage der Variation des Absorptionsverhaltens von 

PTPDs und zeigt eine detaillierte Studie hinsichtlich des Einflusses der chemischen Struktur auf 

die Delokalisierung in D-A-Copolymeren. Aus der Literatur ist bekannt, dass die optische Lücke 

mit Hilfe des D-A-Konzepts reduziert werden kann. Zur Umsetzung des D-A-Konzepts sind zwei 

Strategien bekannt: 1) Alternierender Einbau der Akzeptoreinheit in die Polymerhauptkette und 

2) Anbindung des Akzeptors an die Seitenkette des Polymers. Diese Strategien wurden in dieser 

Arbeit verglichen, um den Einfluss auf die Exzitionendelokalisierung und den Effekt des 

Ladungstransfercharakters auf den Ladungstransport zu verstehen. Zusätzlich wurde die 

 in der PTPD-Schicht. Folglich wurden die Adsorptions- und 

Desorptionsraten durch Dotierung und Zugabe des Leitsalzes auf den Einsatz als 

Dosimetermaterial zugeschnitten.   
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Ladungstrennung in Zweischichtsolarzellen mit C60 untersucht. Dafür wurden zwei neue D-A-

Copolymere, basierend auf TPA als Donoreinheit, synthetisiert. Cyclovoltammetrie-, UV-vis-, 

Fluoreszenz- und SCLC-Messungen ergaben, dass die beiden D-A-Copolymere einen 

unterschiedlichen Anteil an Ladungstransfercharakter und Delokalisierung besitzen. Daher 

variieren auch die Ladungstransportmobilitäten. Wir konnten zeigen, dass die starke 

Lokalisierung des Exzitons im D-A-Copolymer mit Akzeptor in der Seitenkette zusammen mit 

der verringerten Konjugation des Systems die Ladungsseparation mit C60

 

 hindert. Allerdings 

führen der schwächere Ladungstransfercharakter und die starke Konjugation/Delokalisierung 

im D-A-Hauptkettencopolymer zu einer verbesserten Ladungsseparation in 

Zweischichtsolarzellen.     
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Chapter 1 

Introduction 

1.1 Organic/hybrid photovoltaics - Motivation 

In 2014, the first organic photovoltaic (OPV) test park was settled in Denmark.[1] A platform with 

a capacity of 1000 m2 with four tilted rows was installed at the technical university of Denmark’s 

Department and Energy Conversion campus. The energy payback time of this prototype park, 

which is the time a plant has to operate until the amount of energy needed for the setup of the 

plant has been harvested, is 180 days when located in southern Europe.[2] In an article about the 

OPV-based solar park, Frederik Krebs, one of Europe’s leading researchers on OPV technology, 

comments: „Of all known renewable energy technologies the polymer solar cell is the only one 

that inherently enables fast manufacture of a given energy producing unit with a very thin 

outline using only abundant elements“.[2]  For the solar panels in this park, the so called bulk 

heterojunction solar cells composed of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 

butyric acid methyl ester (PC61

 

BM) are applied. On the lab scale such types of solar cells can 

achieve power conversion efficiencies (PCEs) up to ∼ 5 %.  

Figure 1. Top left: Semitransparent organic solar cell by Heliatek; top right: Façade of EPFL’s SwissTech 

Convention Center with dye sensitized solar cells from Solaronix; bottom: front row of the solar park at 

the technical university of Denmark with lanes of stretches of solar cell foil.[2–4] 
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Another example of a large area application of organic solar cells is the façade of the École 

polytechnique fédérale de Lausanne‘s SwissTech Convention Center. Here, dye sensitized solar 

cells (DSSCs) were integrated in the building-architecture. Due to the transparency and 

multicolour of the DSSC devices they are very attractive for applications in architecture and 

design (see Figure 1).  

The great advantage of OPVs is their production on large areas including fast manufacturing 

rates. A good performance-to-weight ratio and the optimal energy payback time give rise to low 

cost applications. Furthermore, OPVs can be solution processed making them highly suitable for 

roll-to-roll fabrication processes on curved and flexible substrates. Most important, the 

properties of the active materials can be tailored by organic synthesis. This offers numerous 

possibilities for achieving better performing solar cells.

On the lab scale high efficiencies up to 9.2 % for single junction polymer solar cells and 10.2 % 

for polymer tandem cells have been reached.

[5] 

[6,7] However, the transfer to large area modules is 

still a challenge. For example, the cells produced by roll-to-roll printing on a large scale for the 

above mentioned solar park exhibit around 1.53 %.  Also, the number of synthetic steps towards 

the active materials have to be reduced and large amount syntheses need to be optimized.[8] 

Nevertheless, OPVs are of great interest for commercial applications. Heliatek holds the world 

record for opaque organic solar cells with a PCE of 12 % using small molecules. Semitransparent 

devices already reach a PCE of 7.2 %.[9]

  

 The mentioned efficiencies were gained with different 

approaches to realize an organic solar cell. In the following chapter the different types of organic 

solar cells will be presented. 
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1.2 Types of organic solar cells 

The research on organic solar cells started with the bilayer solar cell reported by Tang in 

1986.[10]

Figure 2

 He used copper pthalocyanine as donor and a perylene tetracarboxylic derivative as 

acceptor material. In a) a schematic illustration of the bilayer setup is shown. The 

physical processes of such a solar cell involves light absorption, formation of bound electron-

hole pairs (excitons), exciton dissociation into free charge carriers, and transport of the holes 

and electrons to the corresponding electrodes. In more detail, the excitons migrate/diffuse until 

they reach the interface of donor and acceptor material. Here, if the necessary driving force to 

separate the excitons into free charges is given, the charge carrier separation occurs. Afterwards, 

these free charge carriers can be transported to the electrodes. The electrons move through the 

acceptor and the holes through the donor material. The limiting factor for the overall 

performance in bilayer cells is the fast recombination of the excitons due to their short diffusion 

lengths (∼ 10-15 nm).[11,12] But, reducing the layer thickness does not help for better efficiencies 

because approximately > 200 nm layer thicknesses are required for sufficient light absorption. 

Therefore, nowadays such simple bilayer solar cells are usually used for fundamental studies on 

exciton diffusion and charge transport only. However, a thin bilayer device can be optimized in a 

p-i-n structure, if all separated charges are extracted out using doped injection layers.[13]

Figure 2

 The 

dilemma between exciton diffusion length and layer thickness can be overcome by blending the 

donor and acceptor material resulting in a bulk-heterojunction solar cell (see b)).[14] 

Here, the mixture of the materials creates a large interface area, where the excitons can be 

separated. Furthermore, nanostructured conduction pathways through the materials 

(percolations ways) guarantee the proper operation of the solar cell even for thicker active 

layers. Thus, the current produced in the solar cell can be adjusted by the absorption of the 

active layer through thickness variation.[15]  
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Figure 2. Schematic illustration of a) bilayer solar cell, b) bulk heterojunction solar cell, c) dye-sensitized 

solar cell, and d) perovskite solar cell.  

Another approach towards highly efficient organic solar cells is the dye-sensitized solar cell 

(DSSC). It was firstly reported in 1991 by O’Reagan and Grätzel.[16] The principle of the DSSC is 

based on a broad band inorganic semiconductor scaffold, e. g. TiO2, which is sensitized, i. e. the 

surface is chemisorbed with a strongly absorbing dye. The pores of the scaffold are filled with a 

hole conducting material. This hole conductor can be either liquid (Grätzel cell) or solid (solid 

state DSSC). High efficiencies up to 12 % were reached with the Grätzel cell, however the long 

time stability due to the use of the liquid electrolyte is limited.[17] This can be overcome by the 

use of solid state hole conductors.[18]

An emerging new and extremely successful concept in the field of solution processed 

photovoltaics is the perovskite solar cell.  

 But, up to now the record efficiency is still lower (7.2 %) 

compared to the DSSCs with liquid electrolytes.  

Perovskite solar cells 

Generally, the perovskite crystal structure was discovered for calcium titanate which crystallizes 

in a cubic ABX3 type. The same crystal structure was found for the inorganic-organic hybrid 

semiconductors with the composition CH3NH3PbX3 (X = Cl, Br, I), which recently had a 

breakthrough in solar cell research. The first report on the incorporation of perovskites into a 

solar cell as absorber was by Miyasaka in 2009 who reported an efficiency of 3.8 % using liquid 

electrolytes in DSSCs.[19]

Electron blocking layer

Electron blocking layer

Sensitized TiO2

Mesoporous TiO2

Hole transport layer
Perovskite (CH3NH3PbX3) 

Mesoporous TiO2 
(optional)

Hole transport layer

a) b)

c) d)

 Up to now, the small area perovskite solar cells (LHPSCs) have reached 

a record certified value of 17.9 % published in the “National Renewable Energy Laboratory” 
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(NREL) tables.[20] This extraordinary development has never happened so fast for other solar 

technologies. The perovskites exhibit ambipolar transport, high conductivity, and high 

absorption of light in the visible wavelength region.[21] To date, the perovskite analogues 

CH3NH3PbI3 and CH3NH3PbI3-xClx are the most prominently used systems in highly efficient 

devices. In a CH3NH3PbI3 perovskite crystal, the Pb2+ coordinates to six I- anions forming PbI6-

octahedra. These octahedra are connected at their corners to built up a framework of Pb2+ and I-. 

The CH3NH3+ cation is located at the centre of PbI6 Figure 3-octahedra (see ). The resulting cubic 

crystal structure was first found by Weber at high temperatures.[22] However, the structure is 

heavily disordered with high atomic displacement parameters especially for the anions. This 

was shown by single crystal X-ray diffraction of CH3NH3PbX3 (X = Cl, Br, I). Furthermore, in 

these disordered materials phase changes appear as the temperature increases. At 327.4 K a 

tetragonal structure forms, while at 162.2 K the structure rearranges to an orthorhombic phase. 

When we consider the organic cations, their size has to match the space that is formed by eight 

adjacent octahedra connected through the halide corners. The size of the organic ammonium 

cation strongly influences the band gap of the semiconductor. For instance, methylammonium, 

formamidinium, and tetramethylammonium are suitable cations for the formation of a 3D-

network.[23] However, ethylammonium is already large enough to force the system into a 2D 

structure.[24] There are also attempts to replace the Pb-cation. One possibility are Sn-perovskite 

compounds of the type CH3NH3SnI3 with high electron and hole mobilities of 2000 cm2 V-1 s-1 

and 300 cm2 V-1 s-1. Due to their facile oxidizability, these compounds behave as p-type 

semiconductors with metal-like conductivities.[25] Recently, Noel et. al were able to prepare solar 

cells based on CH3NH3SnI3 with an efficiency of 6.4 %.

 

[26] 

Figure 3. a) Schematic representation of the perovskite crystal structure (AMX3). A = CH3NH3+, M = Pb, 

X = I, Cl, etc. b) Schematic energy diagram of a perovskite solar cell using TiO2 as electron conductor and 

spiro-MeOTAD as hole conductor. Adapted from[27,28]

E 
(eV)

TiO2 CH3NH3PbI3 Spiro-
MeOTAD

-4.0

CB

-3.93

-5.43

1.5 eV

-5.22
HOMO -5.1

-4.4

FTO

CB

Au

e-
e-

h+
h+

A

M
X

a) b)
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In principle, perovskite devices can be prepared in two different architectures. First, the active 

perovskite layer is placed on top of either a nanostructured metal oxide, such as TiO2, ZnO or 

ZrO2, or an Al2O3 Figure 2 scaffold (confer d)). Second, only a planar electron conducting layer, 

e. g. ZnO or TiO2, is used without a nanostructuring of the metal oxide. Since the transport rate is 

similar in devices with and without nanostructured TiO2, the general working principle of 

perovskites was found to be dominated by the perovskite material itself.[27] A strong difference 

exists between CH3NH3PbI3 and mixed halide CH3NH3PbI3-xClx compounds. The incorporation 

of Cl-ions does not change the band gap, however the diffusion length of charge carriers 

increases from 130 nm for CH3NH3PbI3 to > 1000 nm for CH3NH3PbI3-xClx.[29,30] This is 

supposed to be the reason why CH3NH3PbI3 cells work efficiently with a mesoporous layer that 

can drain electrons, and  CH3NH3PbI3-xClx can also be used in planar setups or with an insulating 

Al2O3 layer.[31] Using the mixed halide CH3NH3PbI3-xClx, highly efficient charge generation and 

collection can be achieved without nano- or mesostructures. This was shown for the first time by 

Liu et al. in a fully solution processed solar cell with a record PCE of 15.4 %.[32] Nevertheless, a 

complete surface coverage is more difficult to achieve for planar devices compared to the 

mesoporous devices, which is still a drawback of the planar cell especially in case of 

reproducibility. The optimal surface coverage and careful optimization of the electron 

conducting oxide layer are the most important factors to reach high efficiencies. For example, 

planar devices with ZnO and CH3NH3PbI3 reached a record efficiency up to 15.7 %.[33]

In this thesis, the following concept was used for the preparation of perovskite solar cells. It is a 

straight forward processing technique presented by Burschka et al. who demonstrated a very 

good performing cell with 15 % PCE.

 The 

record efficiencies have to be treated with caution, since a scattering of data and strong 

deviations of the performances using different architectures in various laboratories are reported 

in the literature. 

[34] Here, a mesoporous TiO2 layer adapted from the DSSC 

concept is used. The CH3NH3PbI3 perovskite was formed by a sequential dipping technique. 

First, PbI2 was spin-coated on top of the mesoporous TiO2. Then, the substrate was dipped into a 

solution of CH3NH3I to form the perovskite crystals. This crystallization process in film can also 

be realized using CH3NH3I vapour.[35] The role of the mesoporous TiO2 is still under 

discussion.[31]

  

 In order to understand the characterization methods applied in organic solar cells, 

the following chapter gives an overview.  
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1.3 Characterization of organic solar cells  

Usually, organic solar cells are analyzed by two important characterization methods: the 

measurement of the current density-voltage (J-V)-characteristics and the external quantum 

efficiency (EQE). A J-V-curve is typically recorded in dark and under illumination of the device. 

Under dark conditions, no current flows until the injection barrier at a certain threshold voltage 

is reached. Then, a current starts flowing in forward bias. The threshold voltage is similar to the 

photovoltage under illumination, when the cell produces a photocurrent in the fourth quadrant. 

Figure 4a) illustrates a typical J-V-curve under illumination and in dark. For the measurement in 

light, typically a solar simulator is used which produces a solar-like irradiation spectrum. This 

spectrum is equivalent to the air mass 1.5 solar spectrum (AM 1.5) and the light intensity is 

normally set to “1 sun”, corresponding to 1000 W m-2. The resulting photovoltaic parameters 

derived from the J-V-characteristics  are the short circuit current density JSC, the open circuit 

voltage VOC

 

, the fill factor (FF), and the PCE. 

Figure 4. a) Examples of a J-V-characteristic of an organic solar cell under illumination and in dark. The 

Intersections with the abscissa and the ordinate give the parameters VOC and JSC

The quotient of the maximum power P

. The maximum power 

point (MPP) represents the point where the product of voltage and current density is maximal. b)External 

quantum efficiency (EQE) spectrum of a solar cell. 

max and the incident power P in

 

 gives the PCE of the cell as 

shown in equation (1).  

𝑃𝐶𝐸 = 𝑃𝑚
𝑃𝑖𝑛

= 𝐽𝑆𝐶∙𝑉𝑂𝐶∙𝐹𝐹
𝑃𝑖𝑛

∙ 100%     Equation (1) 
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As depicted in Figure 4a), the JSC and the VOC determine the power production of the solar cell. 

However, the maximum power density produced (Pmax) occurs at the maximum voltage (Vmax) 

and the maximum current density (Jmax).  Due to the resistance and recombination losses as well 

as the diode behavior, the Vmax is always lower than the VOC; the same applies for JSC

𝐹𝐹 = 𝑃𝑚
𝐽𝑆𝐶∙𝑉𝑂𝐶

        Equation (2) 

. The 

difference is described by the FF (equation (2)). 

 
In order to analyze the J-V-characteristic in more detail, the series resistance (RS) and the shunt 

resistance (RSH) can be calculated by taking the inverse of the slopes near to the JSC and VOC. A 

low RS and a very high RSH are desirable for a perfect working solar cell with high FF. The RS

The EQE, or incident photon to current efficiency (IPCE), is defined as the ratio of the number of 

incident photons to the number of generated charge carriers at a specific wavelength λ 

(equation 3), where h is the Plank’s constant, c the speed of light, q the elementary charge, J

 

strongly influences the FF. 

SC

𝐸𝑄𝐸 = ℎ∙𝑐
𝑞
∙ 𝐽𝑆𝐶(𝜆)
𝑃(𝜆)𝜆

     Equation (3) 

(λ) 

the short circuit current density at the wavelength λ and P(λ) the monochromatic incident 

optical power. 

In OPVs the EQE value is determined by the absorption behavior of the used active materials. 

Hereafter, an overview over organic semiconducting polymers used in OPV is given to 

understand the crucial influence of the materials on the device performance and 

photogeneration induced charge generation processes. 
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1.4 Organic semiconducting polymers 

The semiconducting properties of conjugated polymers arise from their π-electrons which 

delocalize over the monomer units via alternating single and double C-C bonds resulting in an 

extended π-system.  This is possible, because pz orbitals carrying electrons are left over from the 

sp2 hybridization of the carbon atoms in the double bonds. Due to the delocalization to other π-

bonds in the neighborhood, the mobility of charge carriers is possible. Another important 

prerequisite for optoelectronic applications is the solubility of the materials. Only soluble 

materials can be utilized in straight-forward processing techniques such as printing on a large 

scale. Organic semiconducting polymers are classified into hole and electron conducting 

polymers. For both types, homopolymers or copolymers are known in the literature. The unique 

feature of organic semiconducting polymers is the tunability of their electronic and optical 

properties by structural changes using smart synthetic approaches. Especially the variation of 

the electronic location of highest occupied molecular orbital (HOMO) and lowest unoccupied 

molecular orbital (LUMO) levels and the optical gap (Eopt) is an important research field. For the 

use of semiconducting polymers in OPVs, a low Eopt

Donor-acceptor concept 

 is desirable to realize strong absorption over 

a broad wavelength range. Therefore, the donor-acceptor (D-A) strategy was developed. 

The concept of achieving lower optical gaps in conjugated polymers via the D-A strategy (also 

known as low band gap strategy) was applied successfully over the last 10 years.[36,37] Generally, 

five energetic contributions determine the Eopt of polyaromatic conjugated systems: the energy 

appendant to the bond length alternation, the planarity, the aromatic resonance energy of the 

cycle, the inductive or mesomeric electronic effects of the substitution, and the intermolecular or 

intramolecular coupling.[38] De facto, the enlargement of the π-system, the stabilization of the 

quinoidal form, and the use of electron-pulling and pushing units lead to a reduction of the Eopt

Figure 5

. 

A schematic picture of the fundamental energy of quinoidal vs. aromatic form and the orbital 

interaction between donor and acceptor units are illustrated in . As depicted below, a 

low Eopt results from the orbital interaction overlap of the HOMO/LUMO. Thus, the energy levels 

have to be close to each other. Usually, strong electron donating groups are used as the donor 

part and strong electron deficient units for the acceptor part.  
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Figure 5. Schematic illustration of a) energetic comparison of the aromatic and quinoid structure of a 

thiophene subunit and b) Interaction between donor and acceptor unit which leads to a lowered optical 

gap Eopt. Reproduced from

The modern polymer chemistry allows the design of a variety of homo- and copolymers. Thus, 

many different synthetic approaches towards semiconducting polymers are used in the 

literature. In the following, the most frequently applied methods are presented. In this theses 

Suzuki and Yamamoto polycondensation were the methods of choice for the synthesis of the 

semiconducting polymers and copolymers  

[39,40] 

Polymerization methods 

The common feature in the structure of the above mentioned semiconducting polymers is their 

polyarylene backbone. In order to obtain aryl-aryl C-C coupling, so called cross-coupling 

techniques were developed in the 1970’s. For example, poly(phenylene)s were synthesized by 

Yamamoto.[41] He used the Kumada cross-coupling for the polycondensation, which was just 

discovered four years before.[42] The Kumada cross-coupling has reached a high level of 

development, e. g. living polymerizations with full endgroup control and the possibility to 

synthesize block copolymers were presented for P3HT.[43,44] The living Kumada chain-transfer 

polymerization was also applied for the polymerization of other monomers such as fluorenes or 

carbazoles.[45]

Another important and well developed polymerization method for the synthesis of 

semiconducting polymers is the Suzuki polycondensation. The coupling reaction towards low 

molecular weight compounds itself was developed by Suzuki.

   

[46] Figure 6 As depicted in , the first 

step of the reaction mechanism is the oxidative addition of the aryl-halide to the Pd(0)-complex. 

LUMO

HOMO

LUMO

HOMO

Eopt

D-A

Donor unit Acceptor unit

Aromatic Quinoid

E

a) b)
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This is the rate-determining step. The higher the reactivity and the weaker the aryl-halide bond, 

the faster the rate-determining step. The relative reactivity of the halides decreases in the order 

of I > Br >> Cl. In the next step the transmetalation takes place after which the reductive 

elimination results in the aryl-aryl C-C bond leading to the coupled product.  

 

Figure 6. Illustration of the catalytic cycle of a Suzuki coupling reaction involving the steps oxidative 

addition (1), transmetalation (2), and reductive elimination (3). Adapted from[46]

The first synthesis of poly(para-phenylene) via Pd-catalyzed coupling was shown in 1989.

. 

[47] To 

date, Suzuki polycondensation is among the widely used methods to synthesize conjugated 

polymers.[48]

Figure 7

 The polycondensation occurs via a step-growth mechanism using either AA/BB or 

the AB type monomers. In the AA/BB type, two monomers are used for the polymerization, 

usually one carrying two halide groups and the other one carrying two boronic acid derivatives. 

The AB approach uses one single monomer holding both functional groups necessary for the 

reaction.  shows a schematic picture of the two described Suzuki approaches.  
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Figure 7. Schematic illustration of the AA/BB and AB approach for Suzuki polycondensation. A: Halide, B: 

boronic acid derivative. In AA/BB type all possible end groups are present, whereas in AB-type 

condensations, the possibilities are limited. Adapted from

The AA/BB type approach is advantageous for the synthesis of alternating copolymers. 

Subsequently, it is mainly applied for the preparation of D-A polymers. In contrast, the AB 

approach requires the synthesis of an asymmetrically substituted monomer. This can be 

challenging when alternating copolymer structures, e. g. for D-A copolymers, are desired.

[48] 

[49] 

However, the AB approach enables a Suzuki living chain-growth polymerization which offers 

new routes for end group functionalization towards block copolymers.

Another prominent polymerization method, mostly established for the synthesis of D-A 

polymers, is the Stille-polycondensation. In Stille coupling reactions, stannanes instead of 

boronic acid derivatives are coupled with aryl halides, triflates, or acyl chlorides in a Pd-

catalyzed cross-coupling reaction.

[50,51] 

[52,53] Similar to the Suzuki-polycondensation, the Stille-

reaction can be utilized to prepare semiconducting polymers via aryl-aryl coupling in an AA/BB 

approach.[54] Advantageous are the mild reaction conditions and the tolerance of many 

functional groups. Additionally, higher molecular weight polymers were usually obtained by this 

method. Hence, a variety of monomers were polymerized via Stille-coupling.[55] For the sake of 

completeness, the coupling methods Sonogashira (alkin-halide coupling) and Heck (vinyl-halide 

coupling) should be mentioned as further polycondensation methods for the synthesis of 

conjugated semiconducting polymers.[56,57]

Contrary to the above mentioned cross-coupling reactions which require bifunctional groups, 

the Yamamoto reaction can be carried out with monofunctional organohalides using zerovalent 

nickel complexes.

     

[58] It was shown that linear polymers or cycles of poly(N-(2-

ethylhexyl)carbazol-3,6-diyl) can be synthesized by Yamamoto polycondensation efficiently.[59] 

Generally, a bis(cyclooctadiene)nickel(0) (Ni(COD)2

Figure 8

) catalyst is used in combination with a 2,2‘-

bipyridyl (bpy) coligand.  gives the catalytic cycle of the Yamamoto cross coupling as 

proposed by the group around Yamamoto. The reaction mechanism starts with a ligand 

exchange (COD vs. bpy) followed by the oxidative addition of the aryl halide (e. g. ArBr) to the 

(bpy)Ni(COD)-complex leading to (bpy)Ni(Br)(Ar). This complex undergoes a 

+
[Pd]
Base

AA B B
n

BA
[Pd]
Base n

AA/BB approach

AB approach
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disproportionation to (bpy)Ni(Br2) and (bpy)Ni(Ar2). After reductive elimination the coupled 

aryl-aryl compound is formed. A disadvantage of the Yamamoto-coupling is the need of a 

stoichiometric amount of the Ni(0) catalyst.[60]

 

      

Figure 8. Schematic catalytic cycle of a Yamamoto cross coupling reaction starting from the precatalyst 

Ni(COD)2 involving the steps oxidative addition (1), transmetalation (2), and reductive elimination (3).

The above mentioned synthetic approaches are frequently used in the synthesis of organic 

semiconducting polymers. Since this thesis is dealing with the design of hole transporting 

polymers, the next part will give an overview of typical polymers reported in the literature 

followed by a short part about electron transporting polymers.   

[60] 

Hole transporting materials 

All materials presented in the following have in common that their hole transporting nature is 

based on the strong electron donating ability of the conjugated systems. The overview over the 

hole transport materials (HTMs) given below represents an excerpt of the known materials to 

date. Two recent reviews by Cheng and Zhang can be consulted for more detailed 

information.[61,62] Figure 9  gives a choice of homopolymers and D-A copolymers.  
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Figure 9. Examples for hole transport materials used in OPVs. Top: Homopolymers with large optical gap. 

Down: P3HT and D-A copolymers with low optical gap.  

The most prominent example of a HTM for the use in OPVs is P3HT. It possesses excellent optical 

and electrical properties in combination with high thermal and chemical stability. An important 

step towards the structural control of P3HT was found by McCullough.[63] He demonstrated a 

polymerization method where highly regioregular P3HT is produced. The regioregularity as well 

as the molecular weight are essential for the packing of P3HT and consequently the hole 

transport properties.[64,65] Among the numerous synthetic routes towards P3HT and its 

derivatives, the living chain growth polymerization via Kumada coupling is well understood and 

applied e. g. for the preparation of well-defined block copolymers.[43] Since the HOMO and LUMO 

values fit properly to the commonly used PC61BM, a lot of research effort has been put in the 

investigation of OPVs using the P3HT/PC61

In the beginning of the era of OPVs, poly(p-phenylenevinylene) (PPV) and poly[2-methoxy-5-(2-

ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) were studied intensively. The synthesis can 

be carried out via the Gilch-Route.

BM system.    

[66] Initial bilayer solar cells were prepared in combination 

with PC61BM by Inganäs.[67] Later, bulk heterojunction solar cells were shown and e. g. thiophene 

was used as a comonomer to reach higher efficiencies.

Another family of materials with strong electron-donating nature are poly(triarylamine)s. They 

stand out due to their excellent hole transport mobilities and good electrochemical stability. The 

corresponding monomer triphenylamine (TPA) is used in commercial xerographic applications 

because of its excellent physical, photochemical and electrochemical properties of this hole 

conductor.

[68,69] 

[70] Within the functional TPA moiety, the nitrogen center can be easily oxidized 

resulting in effective transport of positive charge carriers via a radical cation species. The 
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unsubstituted TPA can undergo dimerization to tetraphenylbenzidine (also triphenyldiamine, 

TPD).[71] Low molecular weight TPDs showed high hole transport mobilities up to 

10-2 cm2 V-1s-1.[72] The TPA or TPD units can be incorporated either in the main chain or in the 

side chain of a polymer with a non-conducting backbone, e. g. poly(styrene). These polymeric 

analogues are used as HTMs in OLEDs or OPVs.[73] In order to realize the solubility of TPA main 

chain polymers either methyl groups, alkyl or alkoxy chains have to be attached. One 

commercially available TPA main chain polymer, poly[bis(4-phenyl)(2,4,6-

trimethylphenyl)amine], is soluble due to the three methyl groups that lead to a twist of the 

polymer backbone and reduced interaction between the chains. The synthesis is carried out via 

AB-type Suzuki polycondensation. This polymer showed a high hole transport mobility of 6 ∙ 10-

3 cm2 V-1 s-1 in organic field effect transistors (OFETs) and was e. g. used in air-stable OFETs.[74,75] 

In the case of alkoxy side chains, it was shown by Sim et al. that the polymer containing alkoxy 

substituents is more easily oxidized resulting in a change of the optical and hole transport 

properties.[76] The polymerization method used in this study was FeCl3-catalyzed oxidative 

coupling.[77] Suzuki coupling was also used to synthesize polyelectrolytes with a TPD backbone, 

or polymers with an additional phenyl spacer.[78,79] Another suitable approach towards TPA 

main chain polymers is the application of the Buchwald-Hartwig reaction as polymerization 

technique.[80,81] In the literature, also TPA containing polymers without direct aryl-aryl coupling 

leading to less conjugated systems are demonstrated. These polymers are connected for 

example by small alkyl spacers or ether linkages.

Besides, the styryl-type TPA/TPD side chain polymers should be mentioned. The synthesis of 

such polymers can be realized by controlled polymerization such as the nitroxide mediated 

radical polymerization (NMRP) or anionic polymerization.

[82–84] 

[85,86] But all these TPA-containing 

main-chain or side-chain polymers have only a limited absorption in the visible range with Eopt 

around 3.5 eV.[87]

Another well-known HTM which was first used in OLEDs are poly(fluorene)s (PFs). Their rigid 

and planar backbone, the high hole transport mobility, and the low lying HOMO are promising 

properties for the use in OPVs as well. In order to synthesize PF, the straight-forward Suzuki 

polycondensation can be used.

  

[88] However, the drawback of PFs is the large Eopt of 3.0 eV. 

Approaches towards the reduction of the Eopt

The substitution of the carbon atom in fluorene with nitrogen leads to another prominent 

monomer for conjugated polymers, the carbazole. Poly(2,7-carbazole)s were used as 

homopolymers in bulk heterojunction solar cells but only moderate efficiencies were reached 

because of the high E

 will be given later on.  

opt similar to PFs.[89] Furthermore, the fusion of two carbazoles gives 

another monomer, the indolo[3,2-b]carbazole. A corresponding homopolymer showed a very 
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high hole mobility in OFETs. This is due to the large coplanar π-system.[90,91] Other fused 

monomers such as isothianaphthene, cyclopenta[2,1-b:3,4-b′]dithiophene, silafluorene, 

dithieno[3,2-b:2′,3′-d]silole, dithieno[3,2-b:2′,3′-d]pyrrole, benzo[1,2-b:4,5-b′]dithiophene, 

thieno[3,4-b]thiophene, and thieno[3,2-b]thiophene are applicable as HTMs.

All the homopolymers reviewed above, except for P3HT, possess a large E

[92–98] 

opt

Figure 5

 which is 

unfavorable for their use in OPVs. A breakthrough was gained by the introduction of the D-A 

strategy which was explained above (confer ). In the following a few examples for highly 

efficient D-A-materials are given. The successful use of D-A polymers for photovoltaic 

applications has caused a tremendous interest in this class of materials.[99]

Figure 9

 Commercial products 

such as copolymers with 2,7-carbazole, 9,9-dioctylfluorene or benzodithiophene were 

developed in between (see PTB7 and PCDTBT in ).  Especially these three monomers 

have attracted attention for OPV applications.[100–102]

 

  

Figure 10. Summary of selected donor and acceptor units for the synthesis of D-A-copolymers to achieve 

low optical gaps. Adapted from[99]

Furthermore, D-A copolymers were also efficiently used in OFETs. For example, the copolymer 

poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b’]dithiophen-2-yl)- alt -[1,2,5]thiadiazolo[3,4-

c]pyridine] (PCDTPT) showed a very high hole transport mobility of 23.7 cm

. 

2 V-1 s-1.[103] A class 

of very efficient D-A-copolymers are based on diketopyrrolopyrrole (DPP) and have provided 
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PCEs of ∼ 8 % in OPV cells.[104] Furthermore, through clever combination of D-A units a very high 

VOC up to 1.1 V could be reached in D-A copolymers.[105] Figure 10  gives an overview over typical 

D- and A-moieties for the synthesis of D-A-polymers. 

 

The TPA-unit as donor for D-A-copolymers was successfully used in combination with 

benzothiadiazole as acceptor.[106] An enhancement of the optical absorption was achieved and a 

PCE of 2.8 % was found for devices in combination with PC61BM[106] Different other copolymers 

using comonomers such as thiophene, 3,4-ethylenedioxythiophene, carbazole and fluorene were 

also used to tailor the optical and electrochemical properties of TPA-

containing copolymers.[107-109]

A new D-A strategy that benefits from a different arrangement of D and A units was effectively 

applied in OPVs with TPA as donor unit. Here, the polymer backbone is composed of electron 

rich units whereas the acceptor moiety is located in the side chain of the polymer either directly 

coupled or separated by a π-bridge. The concept was first shown by Huang.

  

[110] Copolymers 

comprised of TPA and fluorene or TPA and carbazole were used.[37,111] Due to the improvement 

of the absorption behavior and a high hole transport mobility a PCE of 4.74 % was achieved with 

[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM).[112] Figure 11 In  some examples for TPA 

copolymers using these two different D-A approaches are shown.   

 

Figure 11. D-A-copolymers with TPA as donor unit. Top: classical D-A-strategy, bottom: D-A-strategy with 

the acceptor moiety in the side chain of the copolymer. 
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Electron transporting materials 

Similar to the HTMs presented above, electron transporting materials (ETMs), should provide 

good transport and light harvesting properties as well as stability under the processing and 

operational conditions. Generally, electron transporting materials are electron deficient and 

possess a low lying LUMO level. Therefore, they can be easily reduced to radical anions. The 

majority of ETMs are low molecular weight compounds. However, there are some examples of 

well operating polymeric ETMs (see Figure 12).    

 

Figure 12. Examples for small molecule and polymer ETMs. Top: C60, PC61

The most common ETM used in OPVs is the fullerene derivative PC

BM, perylene bisimide; down: 

perylene bisimide and naphthalene bisimide based copolymers, poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-

(1-cyanovinylene)phenylene]. 

61BM, which was reported by 

Hummelen et al. in 1995 for the first time.[113] It is a soluble C60-derivative, and provides, similar 

to C60 itself, a high electron mobility.[114] The disadvantage of PC61BM is the low absorption in 

the visible wavelength region. An improvement of the absorption was achieved by developing 

the C70 analogue (PC71BM). Nevertheless, both fullerene derivatives are used in OPVs with 

suitable HTMs reaching high efficiencies (8-10 %). Other low molecular weight ETMs  for the 

application in OPVs are for example based on perylene bisimide (PBI).[115] They possess high 

electron affinity and good electron mobilities in combination with strong absorption in the 
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visible light. Substitution of the imide functionality with alkyl or ethylene glycol side chains can 

improve the solubility in common organic solvents. By contrast, the substitution of the core 

positions leads to changes in the optical and electrochemical properties. Thus, a variety of tailor 

made molecules have been synthesized for the use as ETMs in OPVs as well as in OFETs.[116,117]

In the field of polymeric ETMs, good performances in OFETs were found for some of these 

acceptor materials.

     

[118–122] Here, also the polymer analogues of the above mentioned perylene 

bisimides were used.[123] Among the best performing ETM for OFETs is the alternating 

copolymer poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-

5,5'-(2,2'-bithiophene)}. A very high electron mobility of 0.45–0.85 cm-2 V-1 s-1 was reported for 

this  material.[124] The record electron mobility measured in OFETs to date is 6.3 cm-2 V-1 s-1 

shown by Sun et al.[125] However, the application for OPVs is still a challenge. For example, a PBI 

containing copolymer with a low optical gap and high electron mobility of 1.3 ∙ 10-2 cm-2 V-1 s-1 in 

OFETs reached an efficiency of 1.5 % in combination with a bi(thienylenevinylene)-substituted 

polythiophene.[126]

A very promising cyano-substituted derivative of MEH-PPV was reported by Friend et al. in 

1998, showing a very high peak external quantum efficiency of 28 % at that time. Nevertheless, 

the PCE in the corresponding solar cells were only modest.

  

[127,128] In combination with the more 

suitable poly[3-(4-n-octyl)-phenylthiophene] a PCE of 2 % was achieved.[129] For further reading 

a recent review reports on polymeric ETMs.

  

[130] 
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1.5 Charge transport in organic semiconducting polymers 

The charge transport in organic semiconductors is different from the transport in classical 

inorganic semiconductors. Therefore, other theoretical models have to be applied. The following 

part summarizes in short a review about charge transport in organic semiconductors where 

more detailed information can be found.

When talking about charge transport, the main parameter for its description is the charge 

carrier mobility. In general, in the absence of an external potential, transport is diffusive and can 

be expressed by the simple diffusion equation:  

[131] 

〈𝑥2〉 = 𝑛𝐷𝑡       Equation (4) 

where 〈𝑥2〉 is the mean-square displacement of the charges, D the diffusion coefficient, t the 

time, and n represents an integer number equal to 2, 4, or 6 for one-, two-, and three-

dimensional systems. Via the Einstein-Smoluchowski equation the charge mobility µ can be 

expressed using the diffusion coefficient:  

𝜇 = 𝑒𝐷
𝑘𝐵𝑇

       Equation (5) 

where kB

𝜇 = 𝑣
𝐹

        Equation (6) 

 is the Boltzmann constant an e is the electron charge. If an external electric field (F) is 

applied, a drift of the charge carriers is induced. Thus, the mobility can be described as 

with the velocity of the charges 𝑣. The charge transport mechanism in organic materials is 

predominantly hopping between localized states. Thus, the mobility increases with electric field 

and charge concentration, and decreases with decreasing temperature. The Poole-Frenkel 

equation (7) describes the dependence of the mobility on the electric field.  

𝜇 = 𝜇0 exp�𝛽√𝐸�       Equation (7) 

Where β stands for material dependent parameters, including the temperature dependence.  

Many other factors influence the charge carrier mobility, e. g. molecular packing disorder, 

presence of impurities, charge carrier density, and molecular weight. However, if no chemical or 

physical defects are present, the charge transport depends on the electronic and electron-

vibration (phonon) interactions. A phonon is a “particle-like quantized mode of vibrational 

energy arising from the collective oscillations of atoms within a crystal”.[131] The electron-

phonon interactions in organic semiconductors are large compared to the electronic 
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interactions. Thus, electron-phonon coupling leads to the formation of polarons. In the 

literature, two main models are present for the description of charge transport in organic 

semiconductors: the polaron model[132–134] and the disorder model[135–137]

The polaron model considers the strong electron-phonon interaction in a situation where 

chemical and physical defects are absent. According to general models, the mobility is the sum of 

two contributions:

.  

𝜇 = 𝜇𝑡𝑢𝑛 + 𝜇ℎ𝑜𝑝      Equation (8) 

[138–140] 

The first contribution arises from electron tunneling (µtun) and dominates the transport at low 

temperatures. At higher temperatures the second term (µhop

The disorder model describes the charge transport in the presence of static disorder. This 

disorder arises from chemical or structural defects of the polymeric backbone, resulting in kinks 

or twists. Due to the disordered structure of conjugated polymers, the mobility in those systems 

is orders of magnitudes lower than for organic crystals. In contrast to standard semiconductor 

models, where the concept of a band conduction is used, the disorder model assumes that 

localized states are present in organic semiconductors. The charge carriers have to hop between 

these localized states. Thus, the charge transport sites are delocalized and can be described by a 

Gaussian density of states (DOS). The disorder of the system can be quantified by the shape of 

the DOS. In highly ordered systems the band states delocalize. Due to increasing disorder the 

band states localize until all states are localized in strong disorder. The charge transport occurs 

in the hopping regime where the charges can hop between interacting molecules (see 

) is dominant, which is related to 

the hopping motion. The relative contributions of these mechanisms depend on electron-phonon 

coupling, electronic and phonon bandwidths, and phonon energy. 

Figure 

13a)). Bässler and his co-workers developed this hopping transport in a Gaussian DOS for a 

disordered system.[135]

𝜇 = 𝜇0 exp �− � 2𝜎
3𝑘𝑇

�
2
� exp𝐶 �� 𝜎

𝑘𝑇
�
2
− Σ2�√𝐸    Equation (9) 

 The DOS can be described as a Gaussian function, where the width σ of 

the DOS is a measure of the disorder of the transport states. Thus, the charge carrier mobility 

dependence on the temperature T and the electric field E can be derived by:  

where µ is the mobility, µ0

Figure 

13

 the mobility at zero field, C an empirical constant, and Σ the quantity 

which describes the positional disorder. The Gaussian shape originates from the absorption 

bands in the disordered organic materials and has no direct experimental proof (see 

b)). Within this model the charge carrier mobility is dependent on the temperature (non-

Arrhenius) and the electric field. In particular, the field dependence resembles a Poole-Frenkel 

behavior. The results of simulations done with the standard Gaussian disorder model can only 
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explain experimental data at high fields. Thus, an extended version of the Gaussian disorder 

model was introduced.[141]

 

 It includes spatial correlation among hopping sites. 

Figure 13. a) Arbitrary pathway of an electron through a molecular ensemble. The horizontal lines 

represent energy levels of individual molecules. Hopping to lower energy states happens more often since 

hopping to higher energy states needs an activation energy. b) Schematic picture of the density of states 

(solid line) and occupied states (dashed line) for a disordered semiconductor. Adapted from

The charge carrier mobility can be determined by a variety of methods. In the following, some 

important methods are presented. 

[142] 

Time of flight technique 

The time of flight (ToF) technique is a classical method to determine the charge carrier mobility 

in an organic semiconductor.[143,144] Figure 14  depicts a typical setup and the corresponding 

schematic photocurrent transient.  

 

Figure 14. a) Schematic TOF setup and b) schematic representation of a photocurrent transient. Adapted 

from
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For the experiment, the sample is sandwiched between two electrodes. A short laser pulse 

generates a spatially narrow sheet of charge carriers at one electrode. The applied electric 

field pushes the charges and the mean arrival time (ttr

𝑡𝑡𝑟 = 𝜇
𝑑𝐹

       Equation (10) 

) at the exit contact is recorded. 

Together with the sample thickness d, the electric field F and the mobility µ the following 

relation can be used: 

For the observation of an ideal ToF signal several requirements have to be fulfilled. Before 

photoexcitation the sample has to be free of charges, the thickness of the sheet of charge 

carriers should be small in comparison to the film thickness, and the charges cannot interact 

due to their low concentration. Furthermore, the mobility should be time independent. 

Therefore, no deep trapping should be present because they would lead to a time dependent 

mobility. Thus, to meet the above criteria the sample thickness for the ToF measurement is 

kept high (in the range of µm). 

Space charge limited current  

Space charge limited current (SCLC) measurements are based on a diode setup where the 

organic semiconductor is placed between two electrodes. Those devices are called single carrier 

devices including the differentiation of hole-only or electron-only devices. The current-voltage 

curve is determined by the mobility and concentration of charge carriers and the electric field. 

The choice of the electrodes is crucial since exclusively Ohmic injection from one electrode and 

charge collection from the other electrode has to be ensured. In hole-only devices the charge 

injection into the HOMO of the semiconductor should take place and charge transport occurs 

through the HOMO states only. For electron-only devices electrons are to be injected into the 

LUMO and are transported through the LUMO states. Experimentally, for hole-only devices often 

poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) or MoO3

Figure 15

 coated indium 

tin oxide (ITO) in combination with gold as extraction electrode is used.  shows a 

typical setup of a hole-only device. In the case of electron-only devices mainly zinc oxide coated 

ITO and calcium find application as electrode configurations. The selection of electrodes 

depends on the HOMO/LUMO values of the material in general.     

 



 
30 

 

Figure 15. Schematic illustration of a hole-only device with PEDOT:PSS and gold as electrodes. The holes 

are injected by the PEDOT:PSS electrode and migrate to the Au electrode only through the HOMO states. 

If the cathode and the anode are Ohmic contacts, which means that the current is not injection 

limited, the current will be only limited by the organic semiconductor itself.[145] As a rule of 

thumb the difference in work function of the injecting electrode and the energy level of the 

semiconductor should be < 0.3 eV to achieve Ohmic injection.[146] “Ohmic contact” can be a 

misleading term. It does not mean that the current follows Ohm’s law across the whole 

measurement, i. e. a linear dependence of the current density J on the voltage V. But, the relation 

of J and V is only linear at low V. Here, fewer charge carriers per volume are injected than are 

present in the material. The corresponding resistance is Ohmic. In an ideal organic 

semiconductor without intrinsic charge carriers and only a small charge carrier density (n0), the 

current density at low applied voltage is only due to these charge carriers. The current is in this 

case linear (J = σF), assuming that the specific conductivity σ = en0µ is constant and the electric 

field F is constant. An increase of the applied voltage leads to injection of charge carriers. When 

the density of excess charge carriers becomes larger than n0, the organic semiconductor 

contains a space charge. This space charge will determine the internal field and the current 

density extensively. Therefore, the J-V-characteristic becomes nonlinear. This can be explained 

by the SCLC model which was originally derived for molecular crystals. [147,148]

We assume that the current is bulk-limited and the current density is determined by the drift 

current for large enough fields and mobility. The diffusive processes can be neglected since they 

are only significant near the contact and only the drift current determines the overall current. 

Thus, the current density can be described by   

  

𝐽 = 𝑒𝜇𝐹 − 𝑒𝐷 𝑑𝑛
𝑑𝑥
≅ 𝑒𝜇𝐹    Equation (11) 

with the mobility µ, the charge carrier density n, and the applied electric field F. The Poisson’s 

equation (equation 12) gives the electric field from the injected space charge. 

∇𝐹 = 𝑒𝑛
𝜀

       Equation (12) 

HOMO

LUMO

+ + + + +
Au

PEDOT:PSS

Semiconductor

ITO
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where e is the dielectric constant of the material. Consequently, the trap-free SCLC, known as 

Mott-Gurney law or SCLC square-law, is obtained by solving equations (11) and (12) for one 

dimension and constant mobility 

𝐽 = 9
8
𝜀𝜀0𝜇

𝑉2

𝐿3
      Equation (13) 

with ε0 being the permittivity of free space. Therefore, the current flowing through the insulator 

is proportional to the square of the Voltage and inversely proportional to the third power of the 

sample thickness. This current is named space charge limited current (SCLC). Thus, in an 

experiment one can clearly distinguish between an Ohmic current (∝ V L-1) and SCLC (∝ V2 L-3). 

In the real case, the two electrodes commonly have different work functions. Therefore, a built-

in potential Vbi exists which has to be taken into consideration for the evaluation of the J-V-

curves. Also, the mobility is field dependent and traps are often present in organic 

semiconductors. For the evaluation of SCLC measurements the quadratic dependence of J and V, 

as well as the L-3 dependence have to be valid.[149]

Figure 16

 For organic semiconductor polymers the 

dielectric constant is assumed to be 3. 

 illustrates the different regimes of a J-V curve in an exemplary single carrier device. 

First, the current density increases linearly with the voltage (Ohmic regime). For higher voltages 

it changes over to a quadratic dependence (SCLC regime). Here, the current is reduced by a 

factor that represents the ratio of free and total number of charge carrier. After all traps are 

filled, the trap-filling limit voltage VTFL is reached and the device is in the SCLC trap-free 

regime.[150]

Finally, the SCLC method can be used to characterize the charge transport properties of organic 

semiconductors. In recent years, this is done for many materials used in OPV.

 In most experiments, the trap-free regime cannot be found because high voltages are 

required.   

[151,152]

 

 Thus, the 

determination of the hole and electron mobilities via SCLC measurements has become a versatile 

method. An advantage is that the layer thicknesses are often comparable to active layer 

thicknesses in OPV devices and the bulk charge carrier transport perpendicular to the substrate 

plane is monitored. Thus, one gets a realistic impression of the charge transport in an OPV cell 

by measuring an SCLC device compared to other methods such as OFET experiments. In this 

thesis, the SCLC method was extensively used for the investigation of charge transport 

properties of the synthesized polymers, especially for the comparison among them.  
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Figure 16. Log J vs. log V plot of an SCLC-characteristic including the three cases: I) linear regime, II) trap 

limited regime, and III) trap-free regime. Adapted from[150]

Organic field effect transistors (OFET) 

    

Another prominent method to determine the charge carrier mobility is the OFET 

measurement.[153] In contrast to the methods described above, the OFET mobility does not 

describe the bulk property of the material. Rather a mobility in a very thin layer at the 

semiconductor/dielectric interface as a function of the gate voltage Vg

Figure 17

 is obtained. The setup of 

an OFET consists of three electrodes (see ): the source, drain and gate contact. A thin 

layer of the semiconducting material/polymer is placed between the source and drain of width 

W (channel width) having the distance L (channel length) between them. The semiconducting 

layer is separated from the gate electrode, often highly doped silicon, by an insulating gate 

dielectric ( e. g. SiO2

 

).  

Figure 17. a) Schematic of an OFET in bottom gate architecture, b) OFET output characteristic, and c) 

OFET transfer characteristic in the saturation regime showing the on/off ratio and the threshold voltage 

Vth

log J
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 (intersection with the x-axis of the linear fit to the square root of the drain current).   
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Generally, voltage is applied to the gate electrode (Vg) and the drain electrode (Vd), whereas the 

source electrode is grounded (Vs = 0). The term Vg is used for the potential difference between 

gate and source and Vds is used for the potential difference between source and drain. A negative 

gate voltage will accumulate positive charges (holes) at the insulator/semiconductor interface. 

As long as no source-drain bias is applied, the charge carrier concentration in the transistor 

channel is uniform (linear regime) and the current is directly proportional to Vds. Increasing the 

source-drain voltage leads to an increase of the charge carrier concentration at the drain 

electrode. Further increase of the source-drain voltage gives rise to a depletion region next to 

the drain. Here, a so called “pinch off” point Vds = Vg – Vth is reached. After this point, increasing 

the voltage leads to a saturation of the current. For the evaluation of the OFET parameters two 

current-voltage characteristics have to be measured: the output and the transfer characteristic. 

First, the output characteristic (drain current vs. source-drain voltage for different constant gate 

voltages) shows the linear regime at low Vds and the saturation regime at high Vds. Second, from 

the transfer characteristic (drain current vs. gate voltage at constant Vds), measured in the linear 

regime of the transistor, one can extract the onset voltage (Von). In case of the transfer 

characteristic measured in the saturation regime, the square root of the drain current should be 

linearly dependent on the gate voltage. According to equation (16) one can calculate the 

mobility µsat, where C i is the capacitance of the dielectric insulator.[154]

𝐼𝑆𝐷 = 𝑊
2𝐿
µ𝑠𝑎𝑡𝐶𝑖(𝑉𝐺 − 𝑉𝑇)2    Equation (16) 

  

For the complete characterization of the OFET the threshold voltage (Vth

Consequently, the OFET measurement is a versatile tool for the characterization of organic 

semiconducting polymers. The p- or n-type behavior of unknown materials can be verified 

easily. The OFET mobility represents the properties of a very thin layer of the active material at 

the interface to the dielectric. Thus, the mobilities obtained from OFETs cannot be compared to 

the mobility of the bulk material, e. g. present in an organic solar cell. 

) has to be calculated. 

This can be done by extrapolating the linear fit to zero.  
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1.6 Organic semiconductors for sensor applications 

The unique properties of semiconducting polymers were not only used in OPVs, OLEDs, and 

OFETs but also for electrical sensor applications. In general, the analyte interaction with the 

sensor is transformed into an electrical signal. The configurations that are built up to evaluate 

the sensing behavior include chemiresistors, transistors, diodes, optic devices, piezoelectric 

crystal sensors, and amperometric sensors. Two overview reviews by Nylander and Bai can be 

addressed for further reading.[155,156]

Figure 18

  In the following, the sensor configurations which are 

mainly used for organic semiconductors will be introduced: a) chemiresistors, b) OFETs, and c) 

diodes.  illustrates the setups schematically.  

 

Figure 18. Schematic illustration of sensor configurations. a) Chemiresistor based on interdigitated 

electrodes, b) OFET with source, gate, and drain electrodes, and c) diode where the active layer is 

sandwiched between two electrodes.    

A very simple and most commonly used setup is the two-terminal chemiresistor (Figure 18 a)). 

The electric resistance of that type of resistor is sensitive to the environment. Therefore, the 

measurement signal can be for example the resistance, a potential, or a current change. In order 

to improve the performance, interdigitated electrodes are applied.[157] Usually, metal oxides as 

sensitive layers are used at high temperatures (200 to > 400 °C) in air. When a sensor with n-

type metal oxide as active material is exposed to air, oxygen is adsorbed onto the semiconductor 

surface. Thus, a potential barrier at the grain boundaries is built up. At the high operating 

temperatures, the oxygen is able to trap electrons from the active material leading to a lower 

free charge carrier concentration and the formation of a depletion layer. Simultaneously, the 

resistance increases. Exposing the chemiresistor to a reducing gas, such as H2, CH4, CO or H2S, 

the electrical resistance decreases due to the reduction of the depletion layer and the potential 

energy barrier. In contrast, an oxidizing gas, e. g. NO2, increases the potential barrier and the 

thickness of the depletion layer leading to a higher measureable resistance.[158] For p-type 

materials the same processes happen inversely. Thus, e. g. NO2

Gate

Active layer

Dielectric

Active layer

Active layer

Electrode

Electrode

a) b) c)

 leads to a decrease of the 

resistance and the conductivity increases. In order to find sensors for low temperature 
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operating, organic semiconducting polymers are under investigation for the detection of gases at 

room temperature. As an example, conducting poly(aniline) and poly(thiophene) films were 

shown to be efficient as NO2 sensors using resistivity measurements.

OFET setups have emerged as an alternative to chemiresistors and are widely used for sensing 

applications. Here, a variety of materials exists for the detection in vapor or aqueous phase.

[159,160] 

[161] 

The general setup and working principle of an OFET, which is a three-terminal device, was 

already described in chapter 1.5. The main advantage of an OFET sensor is the current 

modulation, which is possible due to the additional gate electrode. Hence, the current through 

the semiconductor can be adjusted over orders of magnitude resulting in an amplified sensor 

response. During the interaction with an analyte, the electrical characteristics of the OFET 

change. Thus, the bulk conductivity, the mobility, or the threshold voltage alter and can be 

monitored. There are several possible sensing mechanisms, including doping of the 

semiconductor or changes of the Schottky barrier height at the interface. However, it was shown 

by Andringa et al. that the sensing behavior in ZnO-based transistors arises from trapped charge 

carriers that are located at the gate dielectric.[162] A similar behavior could be shown for n-type, 

p-type, and ambipolar organic semiconductors including a TPD based polymer.[163]

In contrast to the more difficult setup of an OFET sensor, a diode setup is very simple (see 

   

Figure 

18 b)). If the diode is exposed to an analyte, electric parameters such as the current density and 

the rectification behavior vary. It was shown that poly(pyrrole)/gold junctions have a significant 

response to NOx gas which is due to the change in the Schottky barrier height and in the charge 

carrier concentration in the active layer.[164]

All the above mentioned sensors have in common that the electrical properties of the active 

material change upon exposure to an analyte. In a standard experiment, the sensor is exposed to 

different concentration pulses of a specific gas/gas mixture in a given period of time. The 

corresponding sensor signal is monitored. For a classical sensor the analyte is adsorbed during 

exposure to a certain gas and the actual concentration can be detected. When the sensor is not 

exposed to the analyte, desorption occurs and the signal recovers. In order to achieve 

information about the overall concentration for a given time period, the sensor signal has to be 

mathematically integrated in an additional step. This is not precise because of slow sensor 

response and recovery times as well as baseline drifts. Furthermore, the detection of integrated 

concentration values inherits the disadvantage of continuous switching between clean air and 

the analyte.

 Both transistors and diodes have the advantage of 

providing more details of the semiconducting layer and the sensing behavior.     

[165] However, for many applications maximum concentration requirements in 

emission or immission (the amount of adsorbed pollutant or the concentration taken in) have to 

be fulfilled. A promising approach to overcome these disadvantages is the so called dosimeter-
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type, accumulating, or integrating sensing principle.[166]

Figure 19

 Here, the analyte molecules accumulate 

in the sensitive layer. This leads to an additive change of electrical properties. The accumulation 

is either due to strong analyte sorption or a chemical reaction between analyte and receptor. In 

 a comparison of the classical sensor behavior and the dosimeter behavior is shown.  

 
Figure 19. Comparison of the classical sensor (violet) and a dosimeter (green) behavior. Adapted from

In the case of a dosimeter, through equation (15) the analyte amount or cumulated exposure A

[166] 

C 

is given by the time integral of the analyte concentration (c(t)) with the starting point of the 

sorption interval (t0

𝐴𝑐 = ∫ 𝑐(𝑡)𝑡
𝑡0

𝑑𝑡     Equation (15) 

) in accordance with the sensor signal.  

The analyte molecules can be released in a regeneration step. This can be done e. g. thermally or 

chemically.  
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Chapter 3  

Objective of the Thesis 
 

The aim of this thesis is, on the one hand, to derive a fundamental correlation between 

delocalization effects in a polymer chain and exciton dissociation. On the other hand, the 

suitability of triphenylamine (TPA)-type main-chain polymers for novel applications such as 

perovskite solar cells and dosimeters to detect and assay NOx

Lead halide perovskite solar cells are an emerging new research field which recently underwent 

a tremendous development. However, there are still challenges to improve the performance of 

these solar cells. Key issues are a) how to form big perovskite (CH

 was tested. For this purpose, 

tailor-made main-chain polymers based on tetraphenylbenzidine (TPD) and TPA were 

synthesized. The focus is laid on the development of polymers with an optimal designed 

structure in order to achieve essential properties such as hole transport, light absorption or 

solubility for the desired application. Detailed investigations regarding charge carrier transport, 

electronic and optical properties as well as doping effects are addressed.  

3NH3PbX3

Further, PTPDs shall be investigated as active materials for detecting and assay of NO

, X = Cl, Br, I) 

crystals and smooth surfaces? And b) what is the design rule for suitable hole injecting layers? In 

the first part of this thesis, a one-pot fabrication method shall be tested to improve the 

morphology of the solar cell and simplify the preparation procedure. Therefore, a tailor-made 

PTPD needs to be designed for the requirements such as solubility and compatibility with the 

perovskite precursors in a common solvent. A particular focus will be laid on the fabrication 

method. In order to characterize the corresponding solar cells, measurements of the current-

voltage characteristics, the external quantum efficiency, and the optical absorption shall be 

employed. Furthermore, the question of suitable hole injecting materials for devices shall be 

investigated. Therefore, in the second part perovskite solar cells with the different PTPDs shall 

be prepared in a conventional two step approach and characterized in detail. A comparison of 

PTPDs with polar and non-polar side chains and a detailed investigation of the hole transport 

mobility and doping effects shall be addressed.  

2 in gas-

sensors. Integrating gas-sensors (dosimeters) can accumulate the analyte gas which enables the 

detection of the exposure during a period of time and the actual concentration in one system. 

Conventional integrating gas-sensors based on metal oxides operate at elevated temperatures. 

Thus, the use of organic semiconducting polymers which can be used at room temperature is 
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desirable. Furthermore, the processability from solution allows a low cost fabrication of the 

sensors with printing techniques. In this work, PTPDs shall be used due to their suitable 

oxidation potential and good hole carrier transport. The resistivity measured by impedance 

spectroscopy shall be applied as sensor signal and the influence of doping and addition of 

conducting salts on the sensor performance shall be investigated.  

In the above mentioned applications PTPD homopolymers with a large optical gap are used. 

However, it is desirable to tune the absorption behavior of PTPDs towards the long wavelength 

region to improve the light harvesting property for the use in organic solar cells. The donor-

acceptor (D-A) concept is a well-known method to lower the optical gap. Here, two strategies are 

known in the literature: 1) Donor and acceptor alternating in the polymer main-chain and 2) 

incorporation of the acceptor to the polymer (donor) side chain. To evaluate the advantages of 

theses concepts, a comparison of the two strategies with respect to the influence of the excited 

state charge-transfer (CT) character, delocalization and hole transport on charge separation 

shall be investigated. Therefore, novel D-A copolymers based on TPA involving both strategies 

shall be synthesized. A variety of techniques such as cyclic voltammetry, UV-vis and fluorescence 

spectroscopy and SCLC measurements shall be employed for characterization. Finally, the 

influence of the CT-character/delocalization on the charge separation shall be investigated in 

bilayer solar cells in a joint work with the physics.  
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Chapter 2  

Overview of the Thesis 

 

This thesis focuses on charge carrier transport, doping and application of main-chain 

triphenylamine (TPA) and tetraphenylbenzidine (TPD) based organic semiconducting polymers 

in organic/hybrid photovoltaics and sensors. In particular, the effect of structural compositions 

of these hole transporting polymers on electronic and optical properties is addressed. 

Fundamental investigations of the properties tailored by the polymer structure are discussed. 

This is crucial, since PTPAs/PTPDs are widely used for applications such as organic field effect 

transistors (OFETs), organic light emitting diodes (OLEDs), sensors, and organic photovoltaics 

(OPVs). In this thesis, main-chain homopolymers as wells as copolymers were synthesized. The 

polymers were applied in lead halide perovskite solar cells, bilayer solar cells and 

chemiresistors for gas sensing as depicted in Figure 1. 

 

 

Figure 1. Overview of the thesis including the three main parts: perovskite solar cells, NO2

TiO2

PTPD

D D D DDD
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D A D A D A
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/Phase separation
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 gas 

dosimeters, and donor-acceptor copolymers.  
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In the case of the homopolymers, the properties were tailored by the introduction of either polar 

or non-polar side-chains and the control of the molecular weight. For the copolymers well 

selected comonomers were incorporated to change their optical and electronic properties in the 

desired way. Hence, the central issue combining all chapters is the design of PTPA/PTPD with 

variable properties which are necessary for each application. The thesis is divided into three 

main sections and contains five papers. Four appear in the main part and one can be found in the 

appendix.  

In the first section, the design of PTPD homopolymers as suitable hole transport materials for 

perovskite solar cells is presented which is shown in the chapters 5 and 6. In chapter 5 an 

elegant novel approach towards the deposition of the active perovskite (CH3NH3PbI3) and the 

hole transport layer in one single step was studied to improve and simplify the fabrication 

process. The strategy involves a controlled crystallization of the perovskite within a polymer 

matrix which leads to the formation of large crystals and a flat surface. For this, a PTPD with 

polar side chains was applied. The benefits of using the PTPD are the combination of good hole 

transport mobilities, solubility in polar solvents, and compatibility as well as miscibility with the 

perovskite precursors (CH3NH3I + PbI2

The second section deals with the use of PTPDs for impedimetric NO

). Thus, we show that after spin coating and annealing a 

mixture of the PTPD and the precursors leads to a crystallization driven vertical phase 

separation resulting in the desired bilayer structure. In Chapter 6 the influence of the polarity of 

the side chains on the PTPD acting as hole conducting material at the interface to the perovskite 

layer in solar cells is addressed. Therefore, the perovskite solar cells were prepared in the 

conventional way, meaning that the perovskite layer and the hole transport material were 

deposited in two steps. Important questions regarding the properties of the hole conducting 

material for devices are presented.   

2 gas dosimeters 

(chapter 7). Gas dosimeters possess the particular feature that the actual concentration as well 

as the accumulated exposure of the analyte can be detected in one device. Therefore, the active 

material has to accumulate the analyte during exposure and no recovery after exposure is 

desirable to obtain the accumulated exposure. For the detection of NO2 it is beneficial to apply 

an oxidizable material. The oxidation leads to a change of the conductivity and resistivity of the 

material. Thus, PTPDs with their suitable oxidation behavior in combination with good hole 

transport mobilities are presented as very promising materials. The pure, undoped PTPD 

behaves as a classical NO2 sensor with a certain recovery of the sensor signal. However, it could 

be shown that doping of the PTPD and the addition of a conducting salt can lead to a reduction of 

the recovery and the accumulation of NO2 in the PTPD layer. Thus, the adsorption and 

desorption rates can be tailored by doping and addition of conducting salt.  
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The third chapter addresses the question of tuning the optical behavior of PTPDs (chapter 8). 

Usually, PTPDs exhibit a large optical gap resulting in absorption in the short wavelength region. 

It is desirable to tune the absorption behavior in order to improve light harvesting in organic 

solar cells. Two strategies are known in the literature to reduce the optical gap by applying the 

donor-acceptor (D-A) concept: 1) Attachment of the acceptor unit to the side chain of the 

polymer and 2) incorporation of the acceptor unit into the main chain. Here, we study 

comparatively the two strategies. Two new D-A copolymers applying the two strategies 

resulting in different charge transfer (CT) character and delocalization were synthesized for this 

purpose. The effect of the delocalization on charge transport as well as on charge separation was 

investigated in detail.  

In the following, an overview of the main results of each chapter is given. The detailed 

description of the experiments and results can be found in the individual chapters and their 

supporting information.  

 

Crystallization-driven phase separation towards one pot fabrication of bilayer 

pervoskite/polymer solar cells 

This chapter deals with an innovative approach to fabricate the bilayer structure of perovskite 

and the hole transport layer in one step with improved control of the perovskite crystallization 

within a polymer matrix. The benefit of this strategy is to simplify the processing conditions of 

perovskite solar cells which is at the moment very challenging. Most important is the uniform 

film formation of the highly crystalline perovskite layer and full surface coverage. Therefore, we 

tailored a PTPD which is soluble in polar solvents and miscible as well as compatible with the 

perovskite precursors (CH3NH3I and PbI2). The PTPD carries ethylene glycol side chains to 

guarantee solubility in e. g. dimethylformamide or γ-butyrolactone. Furthermore, the 

amorphous character and low glass transition temperature of the polymer is favorable for this 

approach. In more detail, the perovskite precursors and the PTPD were dissolved in one solvent 

and spin coated on a fluorine doped tin oxide substrate having TiO2 as blocking layer together 

with a mesoporous TiO2 

Figure 2

scaffold layer. Due to thermal annealing the crystallization driven 

vertical phase separation starts from the scaffold layer and the desired bilayer structure (PTPD 

on top of the perovskite layer) is formed. The strategy is depicted in .  
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Figure 2. Schematic illustration of the crystallization driven phase separation towards the one pot 

fabrication of bilayer structure of perovskite and hole transport material. The precursor solution contains 

PTPD, CH3NH3I, and PbI2

In order to investigate the layered structure of the device, scanning electron microscopy (SEM) 

pictures were recorded. 

 and. After thermal annealing and crystallization of the perovksite, the two-layer 

structure is formed.    

Figure 3 shows the structure of a device prepared by the one-pot 

fabrication method of hole transport material and perovskite layer as well as an top-view image.  

 

Figure 3. a) Cross-sectional SEM image of a device with perovskite/polymer layer prepared by spin-

coating on mesoporous TiO2 from precursor solution (PTPD + CH3NH3I + PbI2). Annealing was done at 

135 °C for 10 min. b) Corresponding top-view. 

200 nm

Polymer

CH3NH3PbI3

Mesoporous
TiO2
+ CH3NH3PbI3

a) b)

10 µm
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Finally, the photovoltaic characterization of the devices revealed appreciably high efficieny. The 

devices showed a good fill factor of 0.59 % and an efficiency of around 5 %. Additionally, the 

crystallization driven one-pot strategy was also compared on a substrate without mesoporous 

TiO2

 

 layer as scaffold. This further supports the relevance of the scaffold layer to process the 

hole transport and the perovskite layer in only one simple step.  

Perovskite Solar Cells Involving Poly(tetraphenylbenzidine)s: Investigation of Hole 

Carrier Mobility, Doping effects, and Photovoltaic Properties 

In perovskite solar cells, the most important requirements, besides the active perovskite layer 

itself, are suitable extraction layers for holes and electrons. Thus, the hole transport layer (HTL) 

plays a crucial role to obtain high PCEs. This chapter deals with the application of PTPDs as HTLs 

in CH3NH3PbI3 perovskite solar cells. In particular, the following fundamental questions are 

addressed in detail: 1) Is there a molecular weight dependence or an optimum molecular weight 

for charge carrier transport? 2) What is the nature and mechanism of the doping of the PTPD 

with a Co(III)-complex and what is its effect on charge carrier mobility and the photovoltaic 

properties? 3) What is the influence of the side chain polarity on charge transport and on solar 

cell performance in CH3NH3PbI3

Figure 4

 devices? To answer these questions, we carried out a study on 

the charge transport in view of the varied molecular weight distributions, the mechanism of 

doping and the application in perovskite solar cells involving a series of PTPDs. Therefore, three 

polymers carrying ethylhexyloxy side chains (PTPD1-3) and one carrying hydrophilic oligo 

ethylene glycol (OEG) side chains (PTPD4) were synthesized and investigated. The SCLC method 

revealed that there is neither a dependence of the hole transport mobility on the molecular 

weight nor on the polydispersity of the PTPD polymers. Furthermore, nature of the side chains 

has no effect on the hole transport mobility. Doping of the PTPDs with a Co(III)-complex shows 

an increase of the charge carrier density in SCLC devices which was further investigated by UV-

vis-NIR measurements ( a). Thus, the addition of a Co(III)-complex leads to typical new 

absorption bands which could be attributed to radical cation species as confirmed by 

spectroelectrochemical measurements (Figure 4b).  
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Figure 4. a) UV-vis and b) spectroelectrochemical measurements of PTPD2. In both, new absorption 

bands arise due to oxidation of the polymer.  

The influence of the Co(III) doping was further investigated in photovoltaic measurements. 

Additionally, a conducting Li-salt (lithium bis(trifluoromethanesulfonyl)imide) was added which 

improved the photovoltaic performance of the devices drastically. In a further experiment we 

compared the influence of the nature of side chains of the PTPDs on PCE. Here, PTPD2 with 

ethylhexyl and PTPD4 with OEG side chains give a similar PCE. However, there is an influence of 

the side chains on the hysteresis behavior of the solar cells and on the device stability under 

illumination. PTPD4 with OEG side chains shows a less pronounced hysteresis on forward and 

backward measurement and a higher device stability under illumination probably due to a 

better interface formation with the rough and polar perovskite surface.  

Further, we investigated the effect of storage on the photovoltaic parameters. All the 

photovoltaic parameters except the fill factor were improved drastically after storage under 

nitrogen. This is very surprising and it is an unexpected result. Therefore, a comparison of EQE 

and UV-vis absorption was carried out to understand this improvement. We can attribute the 

effect of storage to an increased absorption in the long wavelength region. This can be observed 

in EQE and UV-vis measurements for the stored devices (Figure 5). The reason for this is 

probably a post-crystallization effect and decreasing defects.     
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Figure 5. Comparison of freshly prepared devices (squares) and devices stored for 5 months under 

nitrogen (circles). a) EQE spectra, b) UV-vis spectra.  

 

Undoped and doped Poly(tetraphenylbenzidine) as Sensitive Material for an 

Impedimetric NO2

Conductometric gas dosimeters are an alternative to conventional gas sensors to determine the 

dose or concentration of toxic and harmful gases. The difference to classical gas sensors is that 

the total amount of dose of the analyte can be detected directly. This is due to the accumulation 

of gas molecules which leads to an added change of the electrical properties of the active 

material. Most important is a selective accumulation of the analyte molecules and a measurable 

dependence of the change of electrical properties. It is desirable to use organic semiconducting 

polymers for the application in gas dosimeters because of their advantageous properties of 

excellent film formation, low temperature operation, and low cost fabrication. But the main 

challenge is to achieve sensitivities < 10 ppm. We show that PTPDs are suitable materials for the 

use as active layers in gas dosimeters. The sensing mechanism arises from the good oxidizability 

of the PTPD with NO

 Gas Dosimeter 

2. In more detail, the interaction with NO2 leads to the oxidation of PTPD 

which is similar to a doping effect. Thus, the conductivity increases and the resistivity decreases 

upon exposure to NO2. This was measured with impedance spectroscopy. When the PTPD is 

used in its undoped state, the sensor signal increases during exposure to NO2

Figure 6

. However, in 

absence of the analyte a cetain recovery occurs and the accumulated dose of the analyte cannot 

be detected and it works as a classical sensor ( a). To improve the dosimeter behavior of 

PTPD, we doped the polymer with a Co(III)-complex and added a Li-salt as conducting salt, 

leading to a drastic improvement of the dosimeter behavior. As depicted in Figure 6b the active 
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material is now able to accumulate the analyte. Moreover, analyte concentrations < 10 ppm 

could be detected. 

 

Figure 6. Conductance G (lines) of a) an undoped PTPD film and b) additivated PTPD film during NO and 

NO2 dosing over time t. The concentration of NO is represented by the hatched areas, the concentration of 

NO2

Influence of the Excited State Charge-Transfer Character on the Exciton Dissociation in 

Donor-Acceptor Copolymers 

 by the white areas.  

Alternating donor-acceptor copolymers (D-A copolymers) are widely used in the field of bulk 

heterojunction solar cells in order to lower the optical gap and achieve better light harvesting. 

Commonly, two strategies are used in the literature to synthesize D-A copolymers. The first 

strategy is the incorporation of an acceptor unit as a side chain on the donor backbone. For the 

second strategy donor and acceptor units are linked in an alternating way in the main chain. 

Here, we correlate the charge transfer (CT) character and the delocalization in these D-A 

copolymers with the charge carrier mobility and study the charge separation in bilayer solar 

cells with C60. For this, we compared two novel D-A copolymers to indentify the fundamental 

differences of both strategies. Our D-A systems are based on triphenylamine (TPA) as donor 

unit. The acceptor moiety in the first D-A copolymer is a dicyanovinyl group attached to the side 

chain (P2). For the second D-A copolymer P3, a thieno[3,4-b]thiophene carboxylate unit was 

incorporated in the main chain. The two D-A copolymers were compared with a reference 

homopolymer (P1) without any acceptor unit. Detailed UV-vis absorption studies showed that 

new bands in the long wavelength region appear by introduction of both acceptor units. 

Furthermore, P2 has a limited delocalization and a strong CT-character, whereas in P3 the new 

absorption band can be mainly attributed to a π-π*-transition with considerable delocalization 
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(Figure 7). These observations are furthermore supported by photoluminescence 

measurements.   

 

Figure 7. a) Molar extinction coefficient per repeat unit UV−vis absorption spectra of P1, P2, and P3 in 

film obtained from 10 mg mL-1

Cyclic voltammetry measurements revealed that the introduction of the strong electron 

withdrawing dicyanovinyl acceptor reduces the electron richness and delocalization of the TPA 

main chain for P2. On the other hand, the thieno[3,4-b]thiophene carboxylate acceptor 

incorporated in the main chain (P3) does not affect the oxidation potential. The resulting 

oxidizability is similar to the homopolymer P1, which means that the conjugation of the TPA 

backbone is maintained. This result could be supported by hole transport mobility 

measurements. Here, it was found that the hole transport mobility of P2 with dicyanovinyl 

acceptor in the side chain is strongly reduced in comparison to P1 and P3, which can be 

attributed to the reduced delocalization in P2 (

 solutions in chlorobenzene. b) Half-log plot of current density J vs. voltage 

V of P1, P2, and P3 for comparable layer thicknesses.  

Figure 7b). 

In order to evaluate the nature of excited states in the two D-A copolymers, field-dependent 

charge extraction studies in bilayer solar cells with C60

Figure 8

 as acceptor were performed. A higher 

photodissociation at low internal field strength was found for P3. In contrast, P2 shows a poor 

photodissociation. Thus, the stronger CT-character and more localized hole in P2 is not 

beneficial for the charge separation process ( ). Consequently, charge separation occurs 

more readily when the acceptor is incorporated in the main chain of the D-A copolymer 

guaranteeing delocalization along the main chain. 
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Figure 8. Normalized field-dependent photocurrent quantum yields of copolymer/C60

 

 bilayer devices 

calculated from the photocurrent under AM 1.5 conditions. The lines indicate fits based on an effective 

mass model including interfacial dipole effects. 

  

104 105

0.01

0.1

1

 P 2
 P 3

 

 

Ph
ot

oc
ur

re
nt

 Q
ua

nt
um

 Y
ie

ld

Internal Electric Field (V cm-1)



 
59 

Individual contributions to joint publications  
 

The following section specifies the individual contributions of the authors. 

 

Chapter 5 

This work is prepared for submission to Advanced Materials under the title:  

“In situ crystallization-driven phase separation towards one pot fabrication of 

Pervoskite/Polymer solar cells “  

by Katharina Neumann and Mukundan Thelakkat. 

I synthesized and characterized the polymer, developed the fabrication method, built the solar 

cells and performed the full characterization thereof. Furthermore, I wrote the manuscript.   

Mukundan Thelakkat supervised the project and corrected the manuscript  

 

Chapter 6 

This work is accepted to be published in RSC Advances, 2014, DOI: 10.1039/C4RA05564K under 

the title:  

“Perovskite Solar Cells Involving Poly(tetraphenylbenzidine)s: Investigation of Hole Carrier 

Mobility, Doping effects and Photovoltaic Properties“  

by Katharina Neumann and Mukundan Thelakkat. 

I synthesized and characterized all polymers, built the solar cells and performed the full 

characterization thereof. Furthermore, I wrote the manuscript.   

Mukundan Thelakkat supervised the project and corrected the manuscript  

 

Chapter 7 

This work is submitted to Applied Physics Letters under the title:  

 “Undoped and doped Poly(tetraphenylbenzidine) as Sensitive Material for an Impedimetric NO2 

Gas Dosimeter” 



 
60 

by Isabella Marr, Katharina Neumann, Mukundan Thelakkat, and Ralf Moos.  

I synthesized and characterized the polymer, prepared the substrates for the dosimeter 

measurements, and corrected the manuscript.   

Isabella Marr performed all dosimeter measurements and wrote the manuscript.  

Ralf Moos and Mukundan Thelakkat supervised the project and corrected the manuscript.  

 

Chapter 8 

This work is published in Journal of Physical Chemstry: C 2014, 118, 27-36, 

DOI: 10.1021/jp407014q under the title:  

“Influence of the Excited-State Charge-Transfer Character on the Exciton Dissociation in 

Donor−Acceptor Copolymers“  

by Katharina Neumann, Christian Schwarz, Anna Köhler, and Mukundan Thelakkat. 

I designed and synthesized all polymers, characterized them in respect of polymer properties 

and charge transport, and wrote the corresponding part of the manuscript. I corrected the whole 

manuscript.    

Christian Schwarz did the optical measurements and built the bilayer solar cells. He interpreted 

his experiments, wrote the corresponding part, and corrected the manuscript.   

Mukundan Thelakkat and Anna Köhler supervised the project and corrected the manuscript. 

 

Appendix: Chapter 9 

This work is published in Proceedings of SPIE 8477, Organic Photovoltaics XIII, 2012, 84771H, 

doi: 10.1117/12.929842 under the title:  

„Synthesis and characterization of donor-acceptor copolymers carrying triphenylamine units for 

photovoltaic applications“ 

I synthesized and characterized the polymers and wrote the manuscript.  

Mukundan Thelakkat supervised the project and corrected the manuscript.  



 
61 

Chapter 5 

Crystallization-driven phase separation towards one 

pot fabrication of  

bilayer pervoskite/polymer solar cells 

 

Katharina Neumann, Mukundan Thelakkat* 

 

Department of Macromolecular Chemistry I, Applied Functional Polymers, University of 

Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany 

 

*Email corresponding author: mukundan.thelakkat@uni-bayreuth.de 

 

 

Prepared for submission to Advanced Materials 



 
62 

Abstract  

Perovskite solar cells are an emerging research field which underwent an outstanding 

development towards very high efficiencies. Here we show an elegant and novel approach to 

create a bilayer of perovskite and polymeric hole conductor from a blend of the precursors for 

perovskite and the polymer in a one-pot fabrication method. The strategy involves a 

crystallization driven macrophase separation leading to a desired vertical layered structure. 

This is realized by using a poly(tetraphenylbenzidine) (PTPD) polymer which is soluble in polar 

solvents such as γ-butyrolactone and N-methylpyrrolidone, in which both PbI2 and CH3NH3

Introduction 

I 

also dissolve. Thus, a homogeneous solution of all the three components could be prepared at 

elevated temperatures. After solution casting from the precursor solution the crystallization of 

the perovskite is carried out. During the crystallization process, the blend system phase 

separates leading to a layered structure of the crystallized perovskite at the bottom and the hole 

transporting polymer layer on top. The annealing protocol as well as the solar cell preparation 

and characterization are given. This method is used here for the first time and it is an elegant 

tool to reduce the processing steps for perovskite solar cells making them even more interesting 

for the use in large are applications. We obtain large crystals of perovskite with well-defined 

interfaces as observed in scanning electron microscopy.  

Finding innovative ways to solve the energy and environmental problems is the main challenge 

of the 21th century. Currently, the energy supply is achieved by using fossil fuels causing 

detrimental effects on the environment. In order to use CO2 neutral processes, the photovoltaic 

energy conversion contributes in a considerable manner as a renewable energy source. In this 

regard, very promising hybrid organic-inorganic devices using lead halide perovskite materials 

as direct band gap semiconductors have been reported recently.[1–5] High power conversion 

efficiencies (PCEs) > 15 % were reached. On an average PCE values above 10 % is reproduced in 

bilayer devices both by sequential solution processing and vapour deposition methods.[3,6–10]. 

The hybrid perovskite widely used in these studies has the general chemical composition of 

CH3NH3PbX3 (X = Cl, Br, I) where the most studied compound is the triiodide or the mixed 

halide of iodide and chloride. Many device architectures and morphologies have been shown. 

For instance, mesoporous layers or nanorods of metal oxides such as TiO2, ZnO or Al2O3 as 

scaffold were already used at the electron collecting electrode.[11–13] However, it is also possible 

to prepare highly efficient perovskite cells in a planar structure. Here, only a hole 

blocking/electron extracting layer (TiO2, ZnO, PCBM) and an electron blocking/hole extracting 

layer is necessary.[7,14,15] For hole collection, usually a doped organic hole conductor involving 

2,2’,7,7’-tetrakis(N,N-di-p-methoxyphenylamine)-9,9’-spirobifluorene (spiro-MeOTAD) or 
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poly(triphenylamines) were utilized.[16] Furthermore, it was shown that perovskites can be 

produced on flexible substrates indicating a possible use in large area applications.[10] Since 

these perovskites are direct band gap semiconductor materials capable of charge dissociation, 

the real role of both scaffolds as well as hole conductor layers are yet to be elucidated. Moreover, 

the lead perovskites exhibit very high carrier diffusion length in the range of 500 to 1000 nm 

(mixed halides favoring high diffusion length) enabling the fabrication of p-i-n solar cells 

containing thick absorbant layers of perovskite sandwiched between p-type and n-type charge 

collecting electrodes.

One of the major challenges in the fabrication of hybrid perovskite solar cells is how to decrease 

the strong scattering of the performance, which involves large variations. Not only the 

processing conditions are crucial, but also the above mentioned device architectures can 

influence the performance resulting in a broad range of efficiencies reached in different research 

groups and laboratories. Thus, highly reproducible and simple preparation methods are very 

desirable having in mind a possible application in large area roll-to-roll fabrication processes. To 

fulfill this target, several challenges have to be overcome.  The main issue is the creation of well-

defined, big perovskite crystals with less grain boundaries and a smooth surface on a large area 

scale.

[13,17] 

[18]

We developed an elegant approach based on a controlled crystallization of the perovskite within 

a polymer matrix as shown in 

 At present, most of the processing techniques result in rough surface area which in turn 

demands very thick hole transporting upper layers which limits the performance. To improve 

the performance of these devices a very thin hole collecting upper layer is necessary. Another 

issue is the insufficient surface coverage limiting large area fabrication. Therefore, innovative 

fabrication methods are necessary to overcome both the above mentioned issues.  

Figure 1. Our idea was that if it is possible that this matrix is a hole 

conductor having suitable thermal and electronic properties, there will be a good chance to 

realize the deposition of the active perovskite and the hole blocking layer in one single step. In 

this paper, we address exactly this question and report an in situ one pot fabrication of a well-

defined bilayer device structure starting from a blend of poly(tetraphenylbenzidine) (PTPD) 

carrying polar substituents and the precursors PbI2 and CH3NH3I. Our strategy toward the one-

pot fabrication is based on the crystallization driven vertical phase separation of the perovskite 

and PTPD.  
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Figure 1. Schematic illustration of the crystallization driven phase separation towards the bilayer 

structure of perovskite and hole transport layer in a one-pot fabrication. The blend solution containing 

PTPD, PbI2 and CH3NH3

The most important task to reach this goal is to develop a suitable hole conducting polymer. 

Since perovskites are prepared from the precursors PbI

I was spin-coated and thermally annealed during which the crystallization of the 

perovskite occurs and the desired bilayer (perovskite/PTPD) structure is formed.    

2 and CH3NH3I, both theses precursors 

and the hole conductor matrix should be highly soluble and miscible in a single solvent system. 

This is a prerequisite for such an in situ approach of mulity-component fabrication. We achieved 

this by designing a PTPD with polar ethylene glycol side chains. The polar substituents 

guarantee sufficient solubility and miscibility with the perovskite precursors in suitable solvents 

such as γ-butyrolactone. Furthermore, the good hole transport and electron blocking behavior of 

PTPDs, their low ionization potential and the amorphous character makes them optimal 

candidates for the application in solar cells.[10,19] Another advantage is the amorphous nature of 

PTPD leading to excellent film forming behavior together with a heterogeneous mixture of the 

precursor solution. Additionally, the non-polar nature of the polymer backbone can lead to 

phase separation of the mixture and accumulation of the polymer to the perovskite/air interface. 

The glass transition temperature (Tg

In detail, for the fabrication of the devices both the perovskite precursors PbI

) of the PTPD is 124 °C. This is highly suitable for low-

temperature processing (< 150 °C) and it is high enough to guarantee good thermal and long-

term morphological stability of the devices.  

2 and CH3NH3I 

(equimolar amounts) as well as PTPD are dissolved in γ-butyrolactone. The composition of 

precursors to polymers is 1:1 wt.%. After preparation of the wet film by spin-coating, the 
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perovskite crystallizes at 130 °C. The smartness of this concept is the simultaneous controlled 

crystallization of perovskite in a polymer matrix leading to very big perovskite crystals (50-100 

µm) and an intimate interface with the overstanding polymeric hole conductor. The thickness of 

this polymer layer can be optimized by varying the composition of the blend and very thin 

overstanding layers were thus obtained. The relative high speed of crystallization of perovskite 

and its infiltration into the mesoporous layer squeezes the polymer towards the air interface 

resulting in the desired bilayer structure. In the following, we present the preparation and 

characterization of devices in detail.  

      

Experimental part 

Materials: The synthesis of PTPD (Mn = 11000 g mol-1, PDI = 1.99) via Yamamoto 

polycondensation was published elsewhere. A detailed investigation on charge transport and the 

use of this PTPD as hole transport layer for conventional perovskite solar cells is also 

reported.

Device preparation: Structured fluorine-doped tin oxide (FTO, stripes with width of 3 mm and 

4 mm) was coated with a compact TiO

[20] 

2 layer (500 nm) by spray-pyrolysis at 450 °C. The 

mesoporous TiO2 layer was deposited by doctor-blading and subsequent annealing at 500 °C. All 

following preparation steps were carried out in a glovebox under nitrogen atmosphere. PbI2 was 

purchased from Aldrich, CH3NH3PbI3 was synthesized according to the literature.[13] 578.5 mg 

PbI2 and 199.5 mg CH3NH3PbI3 were dissolved in γ-butyrolactone (GBL) at 75 °C and 1 wt.% 

PTPD was dissolved in GBL at 135 °C. The solutions were mixed together (PTPD to precursors 

1:1 for mesoporous devices and 2:1 for planar devices) prior to spin-coating at 800 rpm for 30 s. 

The devices were annealed at 135 °C for 10 min on a hot plate. Gold was thermally evaporated in 

a vacuum deposition chamber to obtain devices having 9 or 16 mm2

Characterization: The devices were measured under nitrogen by a Keithley 6517 Source-

Measure unit under AM 1.5 G conditions (Solar simulator-A grade from Newport). The intensity 

of the light was calibrated with a standard Si-reference cell from the Fraunhofer Institute for 

Solar Energy Systems (ISE), Freiburg, as 100 mW cm

 areas. No salt or other 

additives were used for the hole conductor to avoid inclusion of salt in the perovskite film.  

2. The EQE values were measured under 

nitrogen using a Bentham PVE300 under short-circuit conditions after illuminating the devices 

with monochromatic light from a Xenon lamp passing through a Bentham TMc300 

monochromator. UV-vis measurements of the devices were carried out on a Hitachi U-3000 two-

beam-photometer. For the SEM images all samples were sputtered with platinum (2.0 nm) in a 
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Cressington sputter coater 208HR. The SEM micrographs were recorded on a Zeiss ULTRA plus 

FESEM (Zeiss, Jena, Germany). 

 

 Results and discussion 

It is known in the literature that perovskites easily crystallize in the pores of mesoporous 

TiO2.[13] In order to benefit from this property for the crystallization driven phase separation of 

our perovskite/PTPD solution, we used the electron conducting mesoporous TiO2 layer as 

scaffold. In a contorl experiment, the in situ fabrication was also tested on a planar device 

without TiO2 Figure 2 scaffold.  illustrates the two different setups.  

 

Figure 2. Schematic setup of the two devices resulting from the in situ phase separation of perovskite and 

PTPD. a) Device with additional mesoporous TiO2 as electron conductor and scaffold. b) Planar device 

with CH3NH3PbI3 perovskite layer directly on top of compact TiO2

First, we will address the device preparation on substrates with mesoporous TiO

. PTPD acts as hole conductor.  

2 as scaffold. 

For this, the CH3NH3I/PbI2

Figure 3

/PTPD solution was spin-coated on top of the scaffold and annealed 

at 135 °C for 10 min in an optimized annealing program to form the desired device morphology. 

In order to investigate the structure of the cell in detail, scanning electron microscopy (SEM) 

measurements were carried out (see a)).  The SEM image reveals the layered device 

structure (pervoskite/PTPD) formed in one preparation step.  A uniform and monolithic 

CH3NH3PbI3 active layer on top of the mesoporous TiO2 which is infiltrated with CH3NH3PbI3

Figure 3

 

crystals is clearly visible. Due to the crystallization driven phase separation, the PTPD forms a 

thin top layer, as desired for an efficient device. Thus, the PTPD was successfully expelled by 

crystallization of the pervoskite. The corresponding top-view in b) shows large 

perovskite crystals (∼ 75 µm in diameter) over a broad range in addition to areas with smaller 

crystals on top of the mesoporous TiO2

mesoporous 
TiO2

CH3NH3PbI3

PTPD

Au electrode
Compact TiO2

a) b)

 (see also supporting information Figure S1 and S2). A 

long range smooth perovskite/PTPD interface is also clearly visible.   
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Figure 3. a) Cross-sectional SEM image of a device with perovskite/PTPD layer prepared from precursor 

solution (PTPD + PbI2 + CH3NH3I) by spin-coating on mesoporous TiO2

The J-V-characteristic of the above shown device with the best performance under illumination 

and in dark is given in 

. Annealing was done at 135 °C for 

10 min. b) Corresponding top-view.  

Figure 4. A photovoltaic performance of ∼ 5 % PCE was achieved with a 

short circuit current density (JSC) of 12.04 mA cm-2, a open circuit voltage (VOC) of 667 mV, and a 

fill factor (FF) of 0.59. The average value for four cells was 3.80 %. The limiting factor of the 

device performance is the perovskite coverage of the surface (see supporting information Figure 

S2) which can be further optimized by tuning the processing conditions (spin-coating speed, 

heating and cooling times). Compared to published data, these devices exhibit low VOC

 

. This can 

be due to the fact that we have not used highly conducting PTPD (e. g. no doping or use of 

conducting Li-salt), which is necessary for extracting out the low energy electrons at the 

interface. The corresponding external quantum efficiency (EQE) and UV-vis spectra of the 

devices will be discussed later. 

 

 

200 nm

Polymer

CH3NH3PbI3

Mesoporous
TiO2
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Figure 4. J-V-characteristics of the best devices with perovskite/PTPD layer prepared from precursor 

solution (PTPD + PbI2 + CH3NH3I) by spin-coating on a substrate a) with and b) without mesoporous 

TiO2. Annealing was carried out at 135 °C for 10 min. The measurement was carried out in dark (empty 

squares) and at a simulated AM1.5G solar irradiation of 100 mW cm-2

Now that the proof of principle was shown for devices with a TiO

 (filled squares) under nitrogen. 

2 scaffold, we also prepared 

planar devices as control experiment. Here, only a hole blocking, compact TiO2 layer is used 

which further simplifies the processing due to the reduction of the preparation steps. The 

perovskite/PTPD precursor solution was spin-coated on top of the compact TiO2 

Figure 5

layer and 

annealed at 135 °C to induce the crystalliziation and phase separation.  shows the 

corresponding SEM images (see supporting information Figure S3 for an image with broader 

area). Similar to the system with TiO2

 

 scaffold, the two layers consisting of perovskite and PTPD 

are formed spontaneously due to phase separation.   

Figure 5. a) Cross-sectional SEM image of a device with with perovskite/PTPD layer prepared from the 

precursor solution (PTPD + PbI2 + CH3NH3I) by spin-coating on compact TiO2
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On comparison of the top-view of the devices with and without the mesoporous TiO2

Figure 3

 

( b)), the structure formed on planar TiO2 Figure 5 is much different as depicted in  b). 

Here, small perovskite crystals with lot of spacing or less coverage is observed. Evidently, this 

causes a lower FF and even lower VOC

 

 resulting in a decreased performance for the planar 

device. 

Table 1 gives a comparison of the devices (best and average values) with and without 

mesoporous TiO2 scaffold. Obviously, the device with mesoporous TiO2 gives a much better 

photovoltaic performance resulting from higher JSC, VOC, FF, and PCE. Additionally, the series 

(RS) and shunt resistances (RSH) of the cells were determined by evaluating the slope of the J-V 

curve at VOC and JSC, where the inverse of the slopes give the specific resistances in Ω cm-2.[21] The 

series resistance Rs increases drastically for the planar devices accompanied by a decrease of the 

RSH

Table 1. Comparison of photovoltaic parameters of devices with and without mesoporous TiO

, which is in accordance with the low FF.  

2

 

. The 

parameters for the best devices and the average values for four cells are given. For the best cells the series 

and shunt resistances were calculated. The integrated photocurrent density was calculated from EQE.  
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Figure 6a) shows the EQE measurements for both devices. The EQE-value for the device with 

mesoporous TiO2 is about 55 to 62 % for the whole absorption range from 400 to 750 nm. For 

the same wavelength range the planar device exhibits an EQE-value of about 38 % which is 

resembled by the lower JSC in the J-V-measurement. The integrated photocurrent calculated from 

the EQE are 13.84 mA cm-2 and 9.02 mA cm-2 for devices with and without mesoporous TiO2

Figure 6

, 

respectively. Additionally, the UV-vis spectra in b) confirm this, since a very strong 

difference in the optical density of the devices with and without mesoporous TiO2 is found. Thus, 

for a better solar cell performance, a higher surface coverage and a higher VOC are needed, which 

can be obtained by further optimization of the fabrication process or improvement of the 

conductivity of the hole transport layer by adding Li-salt to the precursor solution. It has to be 

mentioned that the thickness of the CH3NH3PbI3 layers were around 540 nm and 300 nm for 

devices with and without mesoporous TiO2

 

, respectively.  

Figure 6. Comparison of the devices with mesoporous TiO2 

Conclusion 

(squares) and planar devices (cycles). a) EQE-

spectra of the devices measured under nitrogen and corresponding integrated photocurrent. b) 

Corresponding UV-vis spectra.  

In conclusion, we demonstrated an elegant one-pot fabrication of CH3NH3PbI3 perovskite solar 

cells resulting in layered structures of polymeric hole conductor and perovskite. In order to 

achieve this, we synthesized a hole conducting polymer which combines good hole transport 

properties, solubility in polar solvents such as γ-butyrolactone and N-methylpyrrolidone and 

miscibility with the perovskite precursors. The driving-force towards the desired layered 

structure is a crystallization driven phase separation of the perovskite and the polymer.  We 

showed that our strategy works well when a mesoporous TiO2
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 scaffold is used as underlying 

layer. The one-pot strategy was also tested in planar devices to understand the role of the 
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scaffold, which clearly demonstrates the importance of the scaffold layer for this approach. This 

strategy is very promising and with further optimization using additives it can be extended to 

large area fabrication.  
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Supporting Information to 

Crystallization-driven phase separation towards one pot fabrication of 

bilayer pervoskite/polymer solar cells 

Katharina Neumann, Mukundan Thelakkat* 

 

Additional SEM images 

 

 

Figure S1. Overview cross sectional SEM image of a device with perovskite/PTPD layer prepared from 

precursor solution (PTPD + PbI2 + CH3NH3I) by spin-coating on mesoporous TiO2

 

. A uniform perovskite 

layer is formed over a wide area. 
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Figure S2. Top-view SEM image of a device with perovskite/PTPD layer prepared from precursor solution 

(PTPD + PbI2 + CH3NH3I) by spin-coating on mesoporous TiO2

 

. The surface is covered with large 

perovskite crystals (around 75 µm in diameter).  

 

Figure S3. Overview cross sectional SEM image of a of a device with perovskite/PTPD layer prepared 

from precursor solution (PTPD + PbI2 + CH3NH3

 

I) by spin-coating on a planar substrate. 
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ABSTRACT 

Perovskite solar cells in combination with organic hole transport materials have attracted 

attention due to their high power conversion efficiencies. Now that these high efficiencies were 

reached, it is important to address fundamental questions regarding the requirements of the 

material properties. Here, we present a detailed study on important properties of the hole 

transport material such as the influence of the molecular weight, the doping effects on charge 

carrier mobility and the polarity of the material. A series of poly(tetraphenylbenzidines) 

(PTPDs) differing in their properties was synthesized via Yamamoto polycondensation. Using 

space charge limited current (SCLC) measurements, we find that the hole transport mobility is 

independent of the investigated molecular weight and polarity of the side chains. Doping of the 

PTPDs with a Co(III)-complex reveals that the charge carrier density increases through an 

oxidation process. Further, the solar cell performance improves upon doping. After storing the 

devices, the power conversion efficiencies of the solar cells drastically increase due to improved 

absorption leading to improved EQE. For example, the best performing cell exhibited a power 

conversion efficiency of 7.69 %. Additionally, the PTPD carrying polar substituents leads to a 

less pronounced hysteresis effect and a higher stability under illumination compared to the 

polymer carrying hydrophobic side chains. 

 

1. Introduction 

Considerable effort has been made in the field of perovskite solar cells in the last year. Record 

power conversion efficiencies (PCE) up to 15 % were already reached, for example by a solution 

based two-step method.1 The perovskite used as light harvesting material is an inorganic-

organic hybrid with the structure CH3NH3PbX3 (X = I, Cl, Br). Since the first report of an 

electrolyte-based perovskite sensitized solar cell in 2009, where 3.8 % PCE was reached, 

impressive improvements of the processing and the design of solid-state perovskite solar cells 

have been achieved.2 In the previously mentioned reports mesostructured composites, involving 

titanium dioxide (TiO2) as electron conductor, were used. Moreover, vertically aligned zinc oxide 

(ZnO) nanorod arrays were also applied.3 However, it is also possible to prepare the perovskite 

devices only with the perovskite layer sandwiched between a hole blocking and a hole transport 

layer. This was shown to be highly efficient (PCE = 15.4 %) for devices prepared by vapour 

deposition and very recently for fully solution processed devices with TiO2 blocking layers.4 

Further on, a ZnO blocking layer was shown to be a promising alternative for low-temperature 

preparation of perovskite solar cells.5 Most of the achievements were realized by optimizing the 

crystallinity of the perovskite layer itself and by a suitable selection of respective hole blocking 

and hole transport materials.   
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In the majority of the cases, 2,2’,7,7’-tetrakis(N,N-di-p-methoxyphenylamine)-9,9’-

spirobifluorene (spiro-MeOTAD) is used as the hole transport layer (HTL) due to its good 

performance in solid-state dye-sensitized devices based on its processability from solution and 

suitable HOMO (highest occupied molecular orbital) level. Since spiro-MeOTAD suffers from low 

conductivity in its pristine form, commonly chemical doping is used to generate additional 

charge carriers. This is a well-known method to enhance the conductivity of organic 

semiconductors.6 Burschka et al. reported a Co(III)-complex as a chemical p-dopant which was 

successfully used for spiro-MeOTAD in perovskite solar cells.1,7 Other suitable organic HTLs for 

the use in perovskite solar cells are e. g. 2,5-bis(4,4’-bis(methoxyphenyl)aminophen-4’’-yl)-3,4-

ethylenedioxy-thiophene, poly(3-hexylthiophene) (P3HT) or low band gap polymers such as 

poly[N-9-hepta-decanyl-2,7-carbazole-alt-3,6-bis-(thiophen-5-yl)-2,5-dioctyl-2,5-di-

hydropyrrolo[3,4-]pyrrole-1,4-dione].8 In a recent study, Heo et al. compared P3HT, poly-[2,1,3-

benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b]dithiophene-2,6-

diyl]] (PCPDTBT), (poly-[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-

benzothiadiazole-4,7-diyl-2,5-thiophenediyl]) (PCDTBT) and poly(triarylamine) (PTAA) as HTLs 

in devices with a nanocomposite of mesoporous (mp)-TiO2 and with CH3NH3PbI3 perovskite as 

active layer.9 They found that PTAA was the most promising hole conductor polymer due to a 

high fill factor (FF) and a high open circuit voltage (VOC) with a maximum PCE of 12 %. In the so 

far reported studies of PTAA as HTL, the commercially available PTAA with pendant methyl 

groups was used.10 In this work, the fundamental study concerns with the basic requirements to 

be fulfilled by such a polymer. For main-chain semicrystalline semiconductor polymers such as 

P3HT, the charge carrier mobility is dependent on the molecular weight. Initially it increases 

with molecular weight and after reaching a maximum, decreases for higher molecular weights.11 

On the other hand, side-chain triphenylamines (TPAs) did not show a dependence of the 

mobility on the molecular weight due to their amorphous character.12 In our case, we are dealing 

with a material which is a main-chain poly(tetraphenylbenzidine) (PTPD) polymer with 

amorphous character. Therefore, we address the following questions: 1) Is there a molecular 

weight dependence and an optimum molecular weight for charge carrier transport? 2) What is 

the nature and mechanism of the doping of the PTPD with a Co(III)-complex and what is its 

effect on charge carrier mobility and the photovoltaic properties? 3) What is the influence of the 

polarity of the polymer on charge transport and on solar cell performance in CH3NH3PbI3 

devices? In this respect, it is important to note that the charge carrier mobility of side-chain 

poly(perylene bisimide)s changes with the polarity of the substituent considerably.13 Another 

question of relevance is the effect of storage on solar cell parameters or the life-time in general. 

In this report, we address these questions using a series of PTPD as hole transport material. The 

hole transport properties in view of the varied molecular weight distributions, the mechanism of 
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doping and finally the application in perovskite solar cells as well as their long term storage 

effects are presented.  

2. Results and Discussion 

2.1 Synthesis and Polymer Characterization  

In this section, the synthesis of the PTPD polymers and their characterization regarding the 

molecular weight as well as thermal and electrochemical properties are described. We report 

three polymers carrying ethylhexyloxy substitutents (PTPD1-3) and PTPD4 carrying 

hydrophilic oligo ethylene glycol (OEG) side chains. In the series PTPD1-3 both polydispersity 

and molecular weights are varied keeping the chemical structure the same. Furthermore, the 

side chains guarantee a good solubility of the polymers in common solvents such as 

tetrahydrofuran (THF), chlorobenzene or chloroform. In the case of the polymers with 

ethylhexyloxy side chains, different molecular weight distributions were investigated. The 

synthesis of PTPD2-4 was carried out via Yamamoto polycondensation, whereas PTPD1 was 

obtained via Suzuki polycondensation. The synthesis and a detailed investigation of PTPD1 was 

published elsewhere.14

 

 In Scheme 1 the structures of PTPD1-4 and the synthetic scheme for the 

polymers PTPD2-4 is presented. In order to keep the molecular weight deliberately low, a small 

amount (5 mol%) of a monobrominated TPA end-capper was added during the 

polycondensation of PTPD2.  

Scheme 1. Synthesis of the polymers PTPD2 and PTPD3 with hydrophobic ethylhexyloxy side chains and 

PTPD4 with hydrophilic oligo ethylene glycol side chains via Yamamoto polycondensation. The molecular 

weight of PTPD2 was adjusted by the addition of a monobrominated triphenylamine. The synthesis of 

PTPD1 via Suzuki polycondensation is described elsewhere.

 

14 
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Table 1 gives the number average molecular weights (Mn), the weight average molecular 

weights (Mw) and the polydispersity indices (PDI) obtained from size exclusion chromatography 

(SEC) measurements in THF calibrated with polystyrene standards. For the hydrophobic 

polymers, the Mn increases from 10330 g mol-1 to 37060 g mol-1 for PTPD1 to PTPD3. The 

hydrophilic PTPD4 has a Mn of 11000 g mol-1. In differential scanning calorimetry (DSC) 

measurements the glass transition temperature (Tg) values for PTPD1, PTPD2, and PTPD3 

were determined to be 147, 152 and, 157 °C, respectively. PTPD4 shows a lower Tg of 124 °C 

due to the higher flexibility of the oligo ethylene glycol side chains. In cyclic voltammetry 

measurements in dichloromethane (DCM) a similar HOMO level of -5.30 eV for all the polymers 

were found. The HOMO values were calculated from their first oxidation potentials by taking the 

absolute value of the ferroccene/ferrocenium couple to be -5.16 eV.15

Table 1. Molecular weights M

 The details of redox 

potentials, calculation of HOMO levels, SEC and DSC curves are given in the supporting 

information (Table S1, Figures S1, S2). 

n, Mw and PDI of PTPD1-4. Glass transition temperatures Tg were measured 

using DSC and hole transport mobilities µh 

Polymer 

were calculated from SCLC measurements. 

Side 

chain 

Mn

[g/mol] 

a) Mw

[g/mol] 

 a) PDI T 

a) 

g

[°C] 

b) µh 

[cm2V-1s-1] 

PTPD1 alkyl c) 10330 15770 1.52 147 1.6 · 10-4 

PTPD2 alkyl 12920 29500 2.28 152 4.7 · 10

PTPD3 

-4 

alkyl 37060 147540 3.98 157 1.1 · 10

PTPD4 

-4 

OEG 11000 21900 1.99 124 1.9 · 10-4 

a)Measured by SEC in THF at room temperature; b)Tg measured from 20-280 °C, 40 K min-1 under nitrogen; 
c)Detailed characterization can be found in Ref.14

 

; OEG: oligo ethylene glycol 

2.2. Investigation of the hole transport mobility  

In the following, we investigate in detail the hole transport mobility of the polymers by SCLC 

measurements. This method allows us to compare the bulk charge transport behavior of the 

polymers with respect to different molecular weights and PDIs. For the SCLC hole-only diode 
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devices, a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) coated indium 

tin oxide (ITO) substrate was used to enable hole-injection. The polymer films with different 

layer thicknesses were prepared by doctor blading. Afterwards, gold was evaporated as the top 

electrode which preferentially allows for hole collection and hinders electron injection. Due to 

this setup and the suitable energy levels of the selected electrodes, the hole current in the SCLC 

regime should be limited only by the charge carrier mobility (µh) of the polymer and it varies 

with V2 and L-3, where V is the applied voltage and L is the layer thickness according to equation 

(1). In the current density J vs. V plots, one can differentiate between two regimes, the ohmic 

regime at very low voltages and the SCLC regime at higher voltages. In the ohmic regime, the 

current increases linearly with the voltage. Further increase of the voltage leads to the trap-

limited SCLC regime where the current shows a quadratic dependence. Thus, the Mott-Gurney 

equation (1) was used to calculate µh only in the SCLC regime.

   Equation (1) 

16 

The SCLC behavior was further verified by measuring three layer thicknesses. The fits according 

to the relation J ~ V2 L-3 are given in the supporting information (Figure S4). All the plots exhibit 

the inverse cubic dependence on the layer thickness. Since we calculated the µh values at V > 1 V, 

we also verified the dependence of the µh on voltage by taking into account the field dependence 

factor using the Murgatroyd equation.17 Calculating the mobility with this equation leads to 

similar µh values. The voltage drop Vr originating from the contact and series resistance was 

measured in a reference device without a polymer layer and was subtracted from the applied 

voltage. The built-in potential Vbi for PEDOT:PSS and gold is estimated to be 0.1 V. The log J vs. V 

plots of PTPD2, PTPD3, and PTPD4 and the corresponding fits according to equation (1) are 

illustrated in Figure 1(see Figure S3 for additional log-log plots of J vs. V). The results of the 

SCLC measurements for PTPD1 are published elsewhere.14 

Table 1

All the hole transport mobility values 

are given in , showing a µh in the range of 10-4 cm2 V-1 s-1. The values for the individual 

layer thicknesses can be found in Table S2, S3, and S4 (supporting information). Thus, our 

measurements reveal that there is no dependence of the hole transport mobility either on the 

molecular weight or on the polydispersity of the PTPD polymers. This result can be explained by 

the amorphous character of the polymers which leads to an isotropic charge transport without 

any aggregation/crystallization effects. On comparing the polymers having hydrophilic and 

hydrophobic substituents, we find a similar µh for the polymers with ethylhexyloxy side chains 

(PTPD1-3) as well as for the polymer with oligo ethylene glycol side chains (PTPD4). These 

values are in the same range of those reported for spiro-MeOTAD by Nelson et al.

 

18 
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2.3. Effect of doping PTPDs on absorption and charge carrier density 

Next, we study the mechanism as well as the effect of doping on PTPDs using the Co(III)-

complex, tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III).7

First, the influence of doping on charge carrier density in hole only devices was investigated. As 

known from the literature, doping of semiconducting polymers leads to a higher charge carrier 

density. Thus, the calculated mobility in doped devices increases due to this increased charge 

carrier concentration.

 The PTPDs have a suitable oxidation 

potential for the use of this dopant. Since there is no difference in the hole transport mobilities 

or in their HOMO values of the polymers, we use one polymer (PTPD2) as a typical example for 

our doping experiments.  

19 The sample preparation for the J-V-measurements was adapted from 

section 2.2, except that the active layer was doped with 10 wt.% Co(III)-complex prior to spin-

coating. If we consider the SCLC regime in the J-V-plots (1 to 5 V), the current density is six times 

higher for the doped device in comparison to the undoped one. Calculating the µh from the 

doped devices leads to 2.8 · 10-3 cm2 V-1 s-1

As next step, the doping mechanism was investigated by UV-vis-NIR measurements in THF 

solution, as illustrated in Figure 2. PTPD2 was mixed with different amounts (4, 6, 8, and 

10 wt%) of the dopant and the absorption was measured. Addition of the Co(III)-complex, leads 

to three new absorption bands at 490, 694, and 860 nm as well as an absorption band in the 

near IR region at 1403 nm. 

, which is one order of magnitude higher compared to 

the undoped devices. The log J vs. V plots for an undoped and a doped device are depicted in 

Figure S5. 
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Figure 1. Log-linear plots of current density J vs. voltage V (data points) and fits according to equation 1 

(straight lines) at room temperature for the hydrophobic polymers a) PTPD2 and b) PTPD3 as well as for 

the hydrophilic polymer c) PTPD4 for different layer thicknesses; d) Scheme of a hole only device with 

gold as top electrode and PEDOT:PSS as bottom electrode.  

Increasing amount of dopant increases the intensity of these absorption bands. Simultaneously, 

the absorption peak of the PTPD2 at 380 nm decreases. We verified the origin of these peaks by 

spectroelectrochemical measurements (see Figure 2b). For that purpose, PTPD2 was dissolved 

in a 0.1 M tetrabutylammonium hexafluorophosphate solution in THF. In a cuvette with a 

counter electrode (Pt) and a Pt-net as working electrode, a potential was applied. As depicted in 

Figure 2b similar peaks as shown for the chemical doping in Figure 2a arise during the 

spectroelectrochemical measurement. The new absorption bands in the long wavelength region 

correspond to the radical cation species of triphenylamine, which is known in the literature.20 

Consequently, the Co(III)-complex oxidizes the PTPD2 which leads to cationic polarons 

resulting in a higher charge carrier density.

 

21  

 

b)

c) d)

a)

1 2 3
0.1

1

10

100

1000

10000

 

 

 L = 139 nm
 L = 377 nm
 L = 475 nm

J 
[A

m
-2
]

Vappl - Vr - Vbi [V]
0 1 2 3 4 5 6

10

100

1000

10000
 L = 158 nm
 L = 210 nm
 L = 545 nm

J 
[A

m
-2
]

Vappl - Vr - Vbi [V]

0 1 2 3
1

10

100

1000

10000

J 
[A

m
-2
]

Vappl - Vr - Vbi [V]

 L = 148 nm
 L = 257 nm
 L = 732 nm

Electron blocking layer

Au



 
83 

2.3. Photovoltaic Properties  

In order to understand the influence of side chain polarity and the suitability of these polymers 

as HTL in perovskite (CH3NH3PbI3) cells, we selected the polymers PTPD2 and PTPD4 having 

comparable molecular weights, but different side groups. All photovoltaic devices were 

prepared by a modified literature procedure as described in the experimental part.1 A structured 

fluorine-doped tin oxide (FTO) substrate was coated with a thin TiO2 blocking layer. After 

deposition of mesoporous titannia (mp-TiO2

 

), the perovskite was coated by a sequential dipping 

technique. After drying, the HTL was spin coated and gold was evaporated. First, we address the 

effect of doping and additives in the HTL followed by the difference in polarity of the two 

polymers and finally the storage effects on solar cell parameters. 

Figure 2. a) UV-vis-NIR absorption spectra of PTPD2 in THF solution (0.025 mg ml-1

 

). Stepwise addition 

of the Co(III)-complex leads to four new bands at 490, 694, 860 nm, and 1403 nm. b) 

Spectroelectrochemical measurements in THF with 0.1 M tetrabutylammonium hexafluorophosphate as 

conducting salt resemble the oxidative doping.  
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2.3.1 Effect of doping and additives 

In order to learn about the influence of the doping, photovoltaic cells with Co(III)-doped  PTPD2 

was exemplarily selected and compared with undoped cells. The dopant concentration was 

varied from 4 to 10 wt.%. But here only the 10 wt.% doped cells are discussed, since they show 

the best improvement in devices. Furthermore, the influence of conducting salt lithium 

bis(trifluoromethanesulfonyl)imide (LiTFSI) and 4-tert-butylpyridine (TBP) as additives for the 

HTL are studied. The J-V-characteristics were measured and for a better understanding of the 

results, the series (RS) and shunt resistances (RSH) of the cells were determined by evaluating 

the slope of the J-V curve at VOC and JSC.22 The inverse of the slopes give the specific resistances in 

Ω cm2

Table 2

. In the first experiment, the photovoltaic devices were measured immediately after 

preparation under ambient conditions. Figure 3 shows the J-V-characteristics and the 

corresponding external quantum efficiencies (EQE) curves of the photovoltaic devices. The 

photovoltaic parameters with corresponding average values obtained under air are summarized 

in . 

 

Figure 3. Photovoltaic characterization of devices using PTPD2 undoped (squares), doped (circles), and 

doped containing the additives LiTFSI and TBP (triangles) measured immediately after preparation. a) J-

V-characteristics of the three photovoltaic devices (best cells) measured at a simulated AM1.5G solar 

irradiation of 100 mW cm-2

For the undoped devices, we find an average open circuit voltage (V

 in forward bias under ambient conditions. b) EQE-spectra of the devices 

measured under ambient conditions. The artifact at about 700 nm is due to the switching of the lamps 

from one wavelength range to the other. 

OC), short-circuit current 

density (JSC), and fill factor (FF) of 715 mV, 8.05 mA cm-2, and 0.59, respectively. This leads to an 

average power conversion efficiency (PCE) of 3.37 %. The corresponding RS and RSH are 14 and 

891 Ω cm2
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b)

. Upon the addition of dopant, the PCE increases to 4.22 %, mainly due to the higher 
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VOC of 775 mV and JSC of 9.7205 mA cm-2. The mean RS does not change, whereas the RSH is 

decreased considerably. As a result of the addition of LiTFSI and TBP, the JSC increases 

significantly to 11.23 mA cm-2 in average. The VOC slightly improves to 815 mV and the PCE 

increases to 4.39 % in average. The record cell showed a PCE of 5.10 %. Moreover, the average 

RS increases only slightly and the RSH decreases drastically to 149 Ω cm2 resulting in lowering of 

FF. Thus, the overall performance of the cells can be improved by doping and addition of LiFTSI 

and TBP, mainly due to the improvement in VOC and JSC

Table 2. Photovoltaic parameters using PTPD2 undoped, doped and doped containing LiTFSI and TBP as 

additives. The devices were measured directly after preparation and under ambient conditions.  The 

parameters for the best devices and the average values for seven cells are given.  

. The corresponding EQE measured under 

ambient atmosphere are given in Figure 3b.  

 J

[mA cm

sc 

-2

V

] [mV] 

oc FF PCE 

[%] 

R

[Ω cm

S 

2

R

] [Ω cm

SH 

2] 

A) Undoped (best) 

Average value 

RMS deviation  

9.25 

8.05 

± 0.8 

685 

715 

± 50 

0.57 

0.59 

± 0.04 

3.59 

3.37 

± 0.39 

 

15 

14 

± 2 

408 

891 

± 580 

B) doped (best) 

Average value 

RMS deviation 

9.58 

9.72 

± 1.4 

795 

775 

± 52 

0.63 

0.57 

± 0.05 

4.78 

4.22 

± 0.58 

12 

13 

± 2 

608 

340 

± 120 

C) doped +  

LiTFSI, TBP (best) 

Average value 

RMS deviation 

 

10.54 

11.24 

± 0.9 

 

805 

815 

± 10 

 

0.60 

0.48 

± 0.08 

 

5.10 

4.39 

± 0.50 

 

12 

15 

± 3 

 

272 

149 

± 66 

 

We find a significant improvement of the EQE for the whole range of absorption for the doped 

device with additives LiTFSI and TBP compared to the undoped one. The EQE of the doped 

device reaches 77 % at maximum absorption of 413 nm, while in the long wavelength region of 



 
86 

600 to 750 nm, around 40 % EQE are maintained. These results confirm the effect of the 

additives which lead to a higher photocurrent in the solar cell devices.  

 

2.3.2 Nature of side chains: hydrophobic vs. hydrophilic 

In the following section, the device results for the PTPD4 carrying hydrophilic substituents are 

compared with those for PTPD2 containing alkyl substituents. Due to the difference in polarity 

of the side chains in these polymers, the polymer / perovskite interface can be expected to be 

influenced differently. For all devices, PTPD2 and PTPD4 were doped with 10 wt.% Co(III)-

complex and the additives LiTFSI and TBP were used. The J-V-measurements were carried out 

immediately after the preparation under ambient conditions. In Figure 4 a comparison of the J-

V-characteristics of the best devices are shown. The photovoltaic parameters for the highest-

performing devices as well as average values for PTPD4 are given in Table S6.  

 

Figure 4. J-V-characteristics in light (filled symbols) and in dark (empty symbols) for the best devices 

with PTPD2 (squares) and PTPD4 (circles) both doped and containing the additives LiTFSI and TBP. The 

devices were measured in air immediately after preparation at a simulated AM1.5G solar irradiation of 

100 mW cm-2

For the devices with PTPD4 measured directly after the preparation, a mean V

 in forward bias. 

OC, JSC, and FF of 

804 mV, 9.62 mA cm-2, and 0.58, respectively are achieved. This leads to a PCE of 4.44 % in 

average and 4.62 % for the best performing device. On comparison the PTPD2 device delivered 

an average PCE of 4.39 %. Thus, the obtained results are comparable for both type of polymers. 

However, the RS for the best device with PTPD4 is 20 Ω cm2, compared to 12 Ω cm2 for PTPD2. 

The RSH slightly increases from 272 Ω cm2 to 378 Ω cm2
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In the following, we address the question of hysteresis in the J-V-measurements for both type of 

devices. It was shown in the literature that a strong hysteresis effect exists in J-V-curves in 

perovskite devices which is attributed to interface effects, trap filling, ion migration etc.23

 

 

Devices with spiro-OMeTAD as HTL showed a better performance when measured in a 

backward bias compared to the forward bias. The hysteresis effect in J-V-curves is only 

detectable under illumination, but not in dark measurements. In order to investigate the 

hysteresis effect in our systems, we measured the devices with doped HTL containing LiTFSI and 

TBP in forward (from low to high forward bias) and in backward scan (from high to low forward 

bias) for both polymer systems. The corresponding J-V-curves for PTPD2 and PTPD4 are 

illustrated in Figure 5 and the photovoltaic parameters can be found in Table S7.  

Figure 5. J-V-characteristics for devices using PTPD2 (squares) and PTPD4 (circles) as HTL, both doped 

and with LiTFSI and TBP as additives. The forward scan (filled symbols) and backward scans (empty 

symbols) were measured at a simulated AM1.5G solar irradiation of 100 mW cm-2

An obvious hysteresis occurs for both devices. The measurements in forward bias result in 

higher PCEs. This is in contrast to the results for spiro-OMeTAD, where the PCE improved due to 

a higher FF in backward scans. Clearly, PTPD4 shows a less pronounced hysteresis compared to 

PTPD2. In the case of PTPD2 the backward scan improves the FF along with a decrease in J

 under ambient 

conditions. 

SC 

resulting in low PCE. On the other hand for PTPD4 no considerable change is observed in any of 

the parameters. In the case of spiro-OMeTAD devices it was reported that the PCE could be 

improved due to a higher FF in backward scans.

Another positive effect of the hydrophilic polymer PTPD4 is evident in the following 

experiment. Devices with PTPD2 and PTPD4 (both doped and containing additives) were 

measured after five minutes under illumination in air. The PCE of the devices with PTPD2 

decreases drastically from 5.08 % to 2.35 %. This is mainly due to the reduced J
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. In contrast to 
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that, the devices with PTPD4 are highly stable. Here, the PCE is 6.50 % compared to 6.59 % after 

five minutes under illumination. The corresponding J-V-characteristics are shown in Figure 6.  

In summary, PTPD2 with ethylhexyloxy and PTPD4 with oligo ethylene glycol side chains 

deliver similar PCEs directly after preparation in forward bias and under ambient conditions. 

However, PTPD4 shows a less hysteresis effect and it has a higher stability under illumination. 

This could be attributed to interfacial effects due to the oligo ethylene glycol side chains. Due to 

the hydrophilic character, the wetting behavior of this polymer on perovskite is expected to be 

more suitable for the polar surface of the mp-TiO2

 

 covered with the perovskite layer. 

Accordingly, a better coverage of the perovskite crystals can be observed for PTPD4 in SEM 

measurements compared to that of PTPD2 (see supporting information Figure S6). 

Figure 6. J-V-characteristics for devices using PTPD2 (squares) and PTPD4 (circles) as HTL. Both HTLs 

are doped and contain the additives LiTFSI and TBP. The filled symbols represent the first measurement, 

the unfilled symbols the measurement after five minutes illumination under light. All devices were 

measured at a simulated AM1.5G solar irradiation of 100 mW cm-2

2.3.3. Influence of storage on photovoltaic parameters 

 under ambient conditions. 

To investigate whether storage has an influence on the solar cell parameters, we stored the 

devices which were doped and having additives (best performing) for both types of polymers 

(PTPD2 and PTPD4) for five months under dry nitrogen atmosphere in a glovebox (rest oxygen 

content: 30 ppm). We selected the conditions such that the perovskite will not be damaged due 

to moisture. It is reported, that the incorporation of water of crystallization leads to the 

formation of yellow CH3NH3PbI6 · 2 H2O which decreases the performance of perovskite solar 

cells.24 As an example, Figure 7 illustrates a comparison of the PCE, JSC, VOC
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 and FF of the doped 

devices with additives for PTPD2 and PTPD4 as HTL measured under air immediately after 

preparation (0 months) and after five months storage under nitrogen. The photovoltaic 

parameters after storage and average values can be found in Table S5 and S6. All the 
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photovoltaic parameters except FF improve considerably on storage under nitrogen. This was 

very surprising since organic or hybrid solar cells usually degrade on storage. 

 

Figure 7. Dependence of the mean power conversion efficiency, short circuit current density, open circuit 

voltage, and fill factor values on storage for PTPD2 (filled squares) and PTPD4 (empty squares), both 

doped and containing the additives LiTFSI and TBP and measured under air.  

After 5 months storage, the average PCE for PTPD2 device improves from 4.39 % to 5.12 %. The 

best device exhibited an efficiency of 5.87 %. This is mainly due to the enhanced JSC and VOC (see 

Table S5). The RS decreases slightly, whereas the Rsh

In the case of PTPD4, the V

 increases on storage, causing an overall 

decrease in FF from 0.58 to 0.45. 

OC reaches 877 mV, JSC 16.17 mA cm-2, and FF 0.42, leading to a mean 

PCE of 5.94 % on storage. The highest performing device improves its efficiency from 4.62 % to 

6.50 %. Here also storing the devices for five months under nitrogen improves the VOC as well as 

the JSC significantly. Also for PTPD4, the FF is reduced in accordance with the observed 

resistance values. To sum up, storage improves the overall performance of both types of devices 

(PTPD2 and PTPD4) mainly due to higher VOC and JSC

In order to understand the unexpected improvement of the solar cell performance on storage, 

we compare the EQE and UV-vis absorption in Figure 8 for PTPD2 device. Directly after 

preparation, the EQE reaches 65 % at its maximum of 400 nm. In the long wavelength region 

(500 to 800 nm), the EQE is only 30 %. Upon storage, the EQE significantly changes its shape. A 
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considerably high EQE over the 500 to 800 nm region is observed. In this region, PTPD2 does 

not absorb and the contribution to EQE comes only from the perovskite layer.  The UV-vis 

measurements show a comparative increase of optical density in the long wavelength region 

from 500 to 800 nm on storage. If the change in EQE (∆EQE) is compared with the change in 

optical density (∆OD), it is obvious that the increased EQE contribution arises from additional 

absorption in the perovskite layer. It is known in the literature that defects within CH3NH3PbI3 

in mp-TiO2 cause an optical blue shift resulting in less light harvesting and low EQE.25 Owen et al. 

have reported a detailed analysis of the blue shift in absorption spectra using pair distribution 

function analysis of X-ray scattering on perovskites. These authors clearly point out the fact that 

the disordered and amorphous phases, which are not visible in conventional XRD 

measurements, are important for device efficiency due to changes in absorption depending on 

medium or long range structural coherence. Probably, the improvements observed here can be 

of a similar nature. 

Figure 8. Comparsion of devices with PTPD2 doped and containing LiTFSI and TBP as additives: freshly 

prepared (squares), stored devices, and difference of both (triangles). a) EQE-spectra; The artifact 

between 650-700 nm is due to the switching of the lamps from one wavelength range to the other.  b) UV-

vis absorption. All measurements were carried out under ambient conditions.  

But this has to be studied in a systematic way to draw final conclusions. A 

very same trend occurs for the devices with PTPD4 on storage (see supporting information, 

Figure S7).  

 

Since the devices are not encapsulated and there is a considerable improvement on the 

photovoltaic performance of the devices with PTPD2 and PTPD4 on storage under nitrogen, we 

measured the stored devices also under nitrogen atmosphere. This was done in order to keep 

the adverse effects of moisture as low as possible during the measurements. The photovoltaic 

parameters for these measurements under nitrogen can be found in Table S5 and S6. 
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For PTPD2 the average PCE increases when measured under nitrogen (η = 5.12 to 5.84 %), for 

PTPD4 no improvement is observed (η = 5.94 to 5.43 %). For the champion cells, it is more 

pronounced and the efficiency values reach 7.69 % for PTPD2 and 6.44 % for PTPD4. In the 

case of PTPD2 the big improvement under nitrogen is seen in FF (0.46 to 0.68), whereas for 

PTPD4 the decrease in FF is compensated by the increase in Voc and thus the solar cell 

performance remains the same. The decrease in JSC for the best performing cell is only very 

marginal (14.0 to 13.4 mA cm-2 for PTPD2 and 16.65 to 16.43 mA cm-2 for PTPD4) and are 

within the errors of reproducibility and measurement. However, the average JSC values for both 

types decrease. It has been reported that the conductivity of the hole transport material can be 

improved by oxygen doping in the case of easily oxidizable hole conductors such as spiro-

OMeTAD.26 Accordingly, device performances have been shown to decrease during storage 

under argon or vacuum.27

 

 A similar effect may be expected in the case of PTPDs as well. 

3. Conclusion 

In conclusion, we investigated the material properties of PTPD main-chain polymers and the 

influence of chemical structure and properties on the solar cell performance in combination with 

CH3NH3PbI3. Appreciably good hole transport mobility with no dependence on the molecular 

weight and polydispersity was observed for these polymers. Furthermore, Co(III)-complex 

causes an oxidative doping of these polymers leading to higher charge carrier density and high 

conductivity. The mechanism of doping was also supported by spectroelectrochemical studies. 

The combination of dopant and use of the additives (LiTFSI and TBP) gave the best results for 

perovskite solar cells involving these polymers. On comparison of PTPD2 carrying 

ethylhexyloxy side chains with PTPD4 containing hydrophilic oligo ethylene glycol side chains, 

we observed less hysteresis and higher photostability for the latter. Both types of devices exhibit 

unexpected significant improvements on storage under nitrogen. The improvements in 

photovoltaic parameters can be clearly attributed to increased absorption resulting in very high 

EQE values for a broad range of absorption. Since the two polymers differ only in the nature of 

their side chains, the positive effects of PTPD4 devices can be attributed to the hydrophilic 

nature of its side chains, which is highly compatible at the interface with CH3NH3PbI3

 

 material.  
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4. Experimental Section  

4.1 Synthesis  

The monomer synthesis and the synthesis of PTPD1 is described elsewhere.

General procedure for Yamamoto polymerization: 2,2‘‐Bipyridine (3.64 mmol, 2.2 eq) and 

1,5‐cyclooctadiene (3.64 mmol, 2.2 eq) were dissolved in 2.3 ml dimethylformamide (DMF). The 

solution was degassed for 30 min. bis(1,5‐cyclooctadien)nickel (3.64  mmol, 2.2 eq) was added 

and the solution was heated to 80 °C for 30 min under stirring. The monomer (1.65 mmol, 1 eq) 

was dissolved in 2.5 ml toluene in a separate flask and degassed for 30 min. Subsequently the 

monomer solution was added to the catalyst solution by a syringe. The reaction mixture was 

stirred for 7 days at 80 °C under argon. Degassed bromobenzene was added for endcapping. 

After 24 h the reaction mixture was poured into methanol/HCl (1:1) and the precipitate was 

filtered off. For further purification soxhlet extraction in methanol and acetone were performed. 

Yield: 81 %. 

14 

1H NMR (300 MHz, CDCl3, δ): 7.44 (d, 2H, Ar H), 7.09 (d, 2H, Ar H), 6.87(m, 6H, Ar H), 3.83 (d, 

J = 5.2, 2H, OCH2), 1.73 (m, 1H, CH), 1.50 (m, 8H, CH2), 1.34 (s, 12 H, CH3), 0.92 (m, 6H, CH3

 

). 

4.2 Characterization 

Dry solvents were purchased from Aldrich and Acros, other solvents were destilled once before 

use.   

Mn and Mw values were determined by SEC in THF using a guard column (Varian, 50 × 0.75 cm, 

ResiPore, particle size 3 μm) and two separation columns (Varian, 300 × 0.75  cm, ResiPore, 

particle size 3 μm) and a Waters 515-HPLC pump with stabilized THF. The flow rate was 

0.5 mL min-1. The compounds were monitored with a Waters UV detector at 254 nm. The SEC 

systems was calibrated against polystyrene. DSC analysis was performed on a Perkin Elmer 

Diamond DSC, calibrated with indium. Tg were determined using a scanning rate of 20 °C min-1

SCLC devices were fabricated on structured ITO-coated glass substrates using AZ 1518 photo 

paint from Microchemicals to define the active area and to prevent edge effects. The devices 

were then plasma edged and a 50 nm PEDOT:PSS (Clevios) layer was spin coated into the active 

area. The PEDOT:PSS layer was heated up to 120 °C for 30 min, followed by doctor blading from 

chlorobenzene solutions of the polymer layer on top of it. Then a 40 nm gold layer was 

 

under a nitrogen flow. 
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evaporated at 5x10-7

UV-vis measurements in THF solutions (0.025 mg ml

 mbar. The device measurements were performed under active vacuum at 

room temperature with a Keithley source measure unit.  

-1

For the perovskite solar cells a TiO

) were carried out on a Hitachi U-3000 

two-beam-photometer. For the spectroelectrical measurements a voltammetry cell from ALS Co., 

Ltd with 1 mm path length, a platin-net as electrode and tetrabutylammonium 

hexafluorophosphate as conducting salt was used. 

2 blocking layer was deposited by spray pyrolyses of 

titanium(IV)bis(acetoacetonato)-di(isopropanoxylate diluted in ethanol at 450 °C on FTO coated 

glass substrates and annealed at 450 °C. Next, the mp-TiO2 layer was prepared by doctor blading 

using a commercial TiO2 paste (Solaronix T/SP) diluted with Terpineol. The films were 

gradually heated to 450 °C and baked for 15 min at this temperature. After cooling, the 

substrates were handled in a glovebox under nitrogen atmosphere. The active layer was 

prepared by a sequential deposition method. First, PbI2 was spin-coated on top of the mp-TiO2. 

Second, the perovskite pigment was formed by dipping the substrate into a solution of CH3NH3I 

in isopropanol (10 mg ml-1). Before dipping the substrate in the CH3NH3

The photovoltaic current–voltage measurements were carried out by a Keithley 6517 Source-

Measure unit under AM 1.5 G conditions (Solar simulator-A grade from Newport). The intensity 

of the light was calibrated with a standard Si-reference cell from the Fraunhofer Institute for 

Solar Energy Systems (ISE), Freiburg, as 100 mW cm

I solution it was 

prewetted in isopropanol. After drying at 70 °C, a thin layer of the PTPD polymer was spin-

coated. In a last step gold electrodes with a thickness of 60 nm were thermally evaporated.   

2

Supporting Information  

. The EQE values were measured using a 

Bentham PVE300 under short-circuit conditions after illuminating the devices with 

monochromatic light from a Xenon lamp passing through a Bentham TMc300 monochromator.  

Supporting Information is available from the Wiley Online Library or from the author. 
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1 Methods 

Cyclic voltammograms (CV) were recorded under moisture- and oxygen-free conditions using a 

standard three-electrode assembly connected to a potentiostat (model 263A, EG&G Princeton 

Applied Research) and at a scanning rate of 50 mV sec-1. The working electrode was a glassy 

carbon disk electrode (area ¼ 0.0314 cm2), a platinum wire was used as auxiliary electrode and 

the quasi-reference electrode was Ag/Ag+ composed of a Ag wire and AgNO3 in acetonitrile. 

Tetrabutylammonium hexafluorophosphate (Bu4NPF6

Table S1. Oxidation potentials E

, 0.1 M) was used as the conducting salt. 

Each measurement was calibrated with an internal standard (ferrocene/ferrocenium). The 

HOMO values were determined from the value of -5.16 eV for ferrocene with respect to vacuum 

level and correcting for the solvent effects. 

ox vs. ferrocene in cyclic voltammetry measurements at 50 mV s-

1

Polymer 

 in DCM with 0.1 M tetrabutylammonium hexafluorophosphate and calculated HOMO values for 

PTPD2-4.  

Eox1 vs. Fc

[eV] 

  HOMO 

[eV] 

PTPD2 0.10 -5.26 

PTPD3 0.10 -5.26 

PTPD4 0.11 -5.27 
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2 Size exclusion chromatography 
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Figure S1. SEC-curves of the polymers PTPD2, PTPD3, and PTPD4 measured in THF at room 

temperature (flow rate: 0.5 ml/min).   

  

3 Differential scanning calorimetry 
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Figure S2. DSC-curves of the polymers PTPD2, PTPD3, and PTPD4. All three polymers show a 

glass transition.  
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4 Space charge limited current measurements 

4.1 Log-log plots  

 

 

Figure S3. Log-log plots of current density J vs. voltage V (data points) and fits according to 

equation 1 (straight lines) at room temperature for the polymers a) PTPD2, b) PTPD3 and c) 

PTPD4 for different layer thicknesses.  
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4.2 Verification of the relation J ~ V2 L-3

 

   

Figure S4. Log-log plot of the thickness dependence of the current density at a fixed bias of 4 V 

for a) PTPD2, b) PTPD3 and c) PTPD4 . The squares are experimental data and the solid line is 

the fit according to relation J ~ V2 L-3

 

, where L is the thickness of the sample. 
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4.3 SCLC results for different layer thicknesses  

 

Table S2. Calculated hole transport mobilities µh for three layer thicknesses and average value 

for µh 

PTPD2 

for PTPD2.   

Device L [nm] µh [cm2V-1s-1] 

 1 139 1.9 · 10-4 

 2  377 2.0 · 10

 

-4 

3 475 5.6 · 10

 

-4 

Average  3.2 · 10-4 

 

Table S3. Calculated hole transport mobilities µh for three layer thicknesses and average value 

for µh 

Device 

for PTPD3.   

L [nm] µh [cm2V-1s-1] 

1  158 1.5 · 10-4 

2 210 4.1 · 10

3 

-4 

545 1.2 · 10

Average 

-4 

 2.3 · 10-4 

 

Table S4. Calculated hole transport mobilities µh for three layer thicknesses and average value 

for µh 

Device 

for PTPD2.   

L [nm] µh [cm2V-1s-1] 

1  148 4.9 · 10-4 

2 257 8.4 · 10

3 

-4 

732 5.4 · 10

Average 

-4 

 6.2 · 10-4 
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4.4 Effect of doping in SCLC devices 
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Figure S5. Log-linear-plots of J vs. V for the undoped PTPD2 and doped SCLC devices with 10 

% Co(III)-complex at similar active layer thicknesses of 184 nm.  
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5 Solar cell characterization 

5.1 Summary of photovoltaic parameters  

 

Table S5. Photovoltaic parameters of the devices stored for 5 month under nitrogen using 

PTPD2 doped containing LiTFSI and TBP as additives. The devices were measured under 

ambient conditions and under nitrogen conditions. The parameters for the best devices and the 

average values for seven cells are given.  

PTPD2  

doped 

+ LiTFSI, TBP 

J

[mA cm

sc 

-2

V

] [mV] 

oc FF PCE 

[%] 

R

[Ω cm

S 

2

R

] [Ω cm

SH 

2] 

Stored 5 month 

measured under air 

      

Best value  

Average value 

RMS deviation 

14.00 

13.18 

± 1.06 

910 

894 

± 32 

0.46 

0.44 

± 0.04 

5.87 

5.12  

± 0.55  

16 

19 

± 2 

179 

167 

± 28 

Stored 5 month 

measured under N

 

2 

     

Best value 

Average value 

RMS deviation 

13.40 

11.62  

± 1.8 

918 

921  

± 34 

0.68 

0.54  

± 0.11 

7.69 

5.84  

± 1.73 

15 

19 

± 3 

8803 

1665 

± 1192 
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Table S6. Photovoltaic parameters for PTPD4 doped containing the additives LiTFSI and TBP 

directly after preparation and stored for 5 months measured under ambient conditions. Stored 

devices measured under nitrogen atmosphere. Average values for four cells and standard 

deviation. 

PTPD4 

doped  

+LiTFSI, TBP 

J

[mA cm

sc 

-2

V

] [mV] 

oc FF PCE 

[%] 

R

[Ω cm

S 

2

R

] [Ω cm

SH 

2] 

After preparation measured 

under air 

      

Best value 9.81 815 0.58 4.62 20 378 

Average value 9.62 804 0.58 4.44 15 3010 

 ± 0.75 ± 27 ± 0.04 ± 0.16 ± 1.5 ± 1594 

Stored 5 month measured 

under air 

      

Best 

Average 

16.65 

16.17 

± 0.34 

866 

877 

± 8 

0.45 

0.42 

± 0.02 

6.50 

5.94 

± 0.40 

15 

25 

± 4 

427 

352 

± 41 

Stored 5 month measured 

under N

 

2 

     

Best 

Average 

16.43 

14.26 

± 0.18 

955 

931 

± 39 

0.41 

0.41 

± 0.04 

6.44 

5.43 

± 0.7 

18 

24 

± 7 

223 

222 

± 14 
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Table S7. Comparison of the photovoltaic parameters for devices with PTPD2 and PTPD4 both 

doped and containing the additives LiTFSI and TBP; measured in air under forward bias (f) and 

backward bias (b).  

 V

[mV] 

oc J

[mA cm

sc 

-2

FF 

] 

PCE 

[%] 

R

[Ω cm

S 

2

R

] [Ω cm

SH 

2] 

Under air       

PTPD2 f 

PTPD2 b 

910 

898 

14.00 

11.41 

0.46 

0.50 

5.87 

5.11 

16 

18 

179 

219 

PTPD4 f 

PTPD4 b 

866 

910 

16.60 

16.65 

0.45 

0.43 

6.50 

6.47 

20 

18 

378 

237 
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5.2 Comparison of the interfaces of PTPD2 and PTPD4 

 

Figure S1. SEM images of devices with PTPD2 (a) and b)) and PTPD4 (c) and d)) showing the 

better compatibility of PTPD4 with the perovskite crystals.  
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5.3 Comparison of EQE and UV-vis upon storage for PTPD4 

 

 

Figure S6. Comparsion of freshly prepared devices (squares) and devices stored for 5 months 

under nitrogen atmosphere (circles) with undoped PTPD4 and difference between the two 

devices (triangles) a) EQE-spectra; The artifact between 650-700 nm is due to the switching of 

the lamps from one wavelength range to the other. b) UV-vis absorption. All measurements 

were carried out under ambient conditions.   
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ABSTRACT 

This article presents an NO2 detecting gas dosimeter based on poly(tetraphenylbenzidine) 

poly(TPD) as NOx sensitive layer. Gas dosimeters are suitable devices to determine reliably low 

levels of analytes over a long period of time. During NOx exposure, the analyte molecules are 

accumulated irreversibly in the sensing layer of the dosimeter enhancing the conductivity of the 

hole conducting poly(TPD) which can be measured by impedance spectroscopy. Due to their 

possibility for low cost production by simple printing techniques and very good physical, 

photochemical, and electrochemical properties, poly(TPD)s are suitable for application in gas 

dosimeters operated at room temperature. We studied the effect of doping with a Co(III)-

complex in combination with a conducting salt on the dosimeter behavior. Compared to the 

undoped material, a strong influence of the doping can be observed: the conductivity of the 

sensing material increases significantly, the noise of the signal decreases and an unwanted 

recovery of the sensor signal can be prevented leading to NOx 

 

detection < 10 ppm. 

I. INTRODUCTION 

In times of strict environmental requirements and a growing demand for energy and mobility, 

reliable and low analyte concentration-detecting gas sensing devices are required to determine 

the dose or concentration of toxic and harmful gases, e.g. SO2, CO, H2S, NH3, and NOx (NO and 

NO2). For that purpose, conductometric gas dosimeters are an interesting alternative to 

conventional gas sensors. Compared to classical gas sensors, gas dosimeters enable to detect the 

total amount or dose of the analyte directly by accumulation of gas molecules, which can be read 

out electrically. Even the actual analyte concentration can be - additionally - obtained by the 

derivative of the time-dependent sensor signal.

The sensing principle of gas dosimeters is based on the selective accumulation of analyte gas 

molecules in the sensor layer, causing a concomitant analyte level-dependent change of the 

electrical properties of the sensing material. Gas dosimeters are suitable for a reliable long-term 

detection of lowest analyte concentrations below 10 ppm.

1,2 

3 The operation of a gas dosimeter 

consists of two phases: the sensing period and the regeneration period. During the sensing 

period, under sorption conditions, analyte molecules accumulate irreversibly in the sensitive 

layer, yielding a change of the sensor signal (conductance or resistance change) with a 

concentration-dependent slope. In case of saturation effects of the signal, the sensitive material 

has to be regenerated either by chemical reactions2,4, elevated temperatures5,6, or optical 

methods4,7. If the dosimeter is applied as single-use device it has to be replaced. The dosimeter 

principle enables a direct detection of the analyte amount, which is in accordance with 

international and national environmental immission or emission regulation limits, which are 
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often given as mean time values. Factors influencing the sensing behavior and the sensor signal 

of gas dosimeters are, e.g., temperature6,8, thickness of the sensitive layer9 and sensor set up.

Suitable materials for the application as sensitive layer are, for example, metal oxides, carbon 

nanotubes and (semi)conducting polymers, changing their electrical properties during exposure 

to the analyte gas.

10 

1

Organic semiconducting polymers are well known for application as active sensor materials. 

Advantageous is their unique film forming behavior in combination with the possibility for low 

mass cost production by simple printing techniques. Furthermore, the variety of chemical and 

structural compositions enables to tailor materials with accurately adjusted properties.

 Polymer-based gas sensing devices are a low-cost alternative to classical gas 

sensors and, moreover, they can be operated at room temperature. Therefore, with the 

combination of the dosimeter principle and an organic semiconducting polymer as sensitive 

layer a highly sensitive and reliable detection of lowest analyte concentrations can be achieved. 

11,12 

Thus, organic semiconducting polymers were applied in organic field effect transistor (OFET) 

sensors.13 Especially, p-type semiconductors, e. g. poly(3-hexylthiophene) or poly(pyrrole), are 

suitable for the detection of NO2. This is due to the oxidizing ability of NO2 leading to acceptor 

doping of the polymer semiconductor, which causes a change of the electrical properties.14,15 

Also, poly(tetraphenylbenzidine)s (PTPDs) were successfully applied for NO2 sensing in 

OFETs.16 It was shown in the literature that in an OFET setup the sensing mechanism is based on 

trapped charge carriers that are located at the gate dielectric.17,18 PTPDs are well known hole 

conductors for the use in organic light emitting diodes, organic photovoltaics or OFETs. Their 

excellent physical, photochemical, and electrochemical properties are advantageous for these 

applications.

In this letter, we show the poly(TPD) derivative, 

poly[N,N'‐bis(4‐(2‐ethylhexyloxy)phenyl)‐N,N'‐di‐para-tolylbiphenyl‐4,4'‐diamine] (PTPD), as a 

promising material for the application in an impedimetric NO

19 

x gas dosimeter. Furthermore, 

PTPD was doped with the Co(III)-complex, tris(1-(pyridin-2-yl)-1H-pyrazol)cobalt(III) 

tris(hexafluorophosphate), and the conducting salt lithium bis(trifluoromethanesulfonyl)imide 

was used. PTPD in combination with doping with a Co(III)-complex and the addition of a 

conducting lithium salt acts as active material in a NO2 dosimeter, whereas without doping and 

the Li-salt the PTPD shows a classical sensor behavior for NO2. This composition, Co(III)-doping 

and conducting salt, was shown to be efficient to increase the conductivity of PTPD.20

 

 In the 

following, this composition is abbreviated “additivated PTPD”. 
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II. Experimental 

The synthesis of poly[N,N'‐bis(4‐(2‐ethylhexyloxy)phenyl)‐N,N'‐di‐para-

tolylbiphenyl‐4,4'‐diamine] PTPD and a detailed investigation of the charge transport properties 

is described elsewhere.21 The polymer used in this study has a number average molecular 

weight of 7820 g mol-1, a weight average molecular weight of 13550 g mol-1, and a polydispersity 

index (PDI) of 1.70. Tris(1-(pyridin-2-yl)-1H-pyrazol)cobalt(III) tris(hexafluorophosphate) was 

synthesized according to the literature.22 

The experimental set up of the PTPD based gas dosimeters consists of planar Al

Lithium bis(trifluoromethanesulfonyl)imide was 

purchased from Aldrich. 

2O3 substrates 

with screen printed interdigitated gold electrodes (line-to-space ratio = 100 µm) with a thin 

polymer layer that was coated by doctor blading from 3 wt.% chlorobenzene solutions at 70 °C. 

For the additivated PTPD, 12 wt.% Co(III)-complex, 8 wt.% Li-salt both dissolved in acetonitrile, 

and tert-butylpyridine as co-solvent were added to the PTPD solution. The thicknesses of all 

films were around 80 nm. The sensing device was placed into a gas test bench and connected to 

an impedance analyzer (Alpha-A High Performance Frequency Analyzer, Novocontrol). The 

measurements were carried out at room temperature and at a fixed frequency f = 10 Hz and a 

voltage amplitude Urms = 100 mV in nitrogen gas flow with a constant flow rate of 200 ml min-1. 

NO and NO2 was dosed in concentration from 5 to 20 ppm and in alternating pulses and a 

subsequent N2

III. Results and Discussion 

 purging of 100 s each. 

The complex impedance of an undoped and additivated PTPD film was measured as mentioned 

above. From the absolute value of the impedance |Z| and the phase angle φ, the resistance R can 

be calculated by Eq. (1). 

R = |Z| × (1/cos φ)      (1) 

The conductance G = R-1

 

 was chosen as the sensor signal. It is plotted in Fig. 1 over the time t. 
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FIG. 1. Conductance G of a) the undoped PTPD film and b) additivated PTPD film during NO and NO2 

dosing over time t. The concentration of NO is represented by the hatched areas, the concentration of NO2

In the case of the undoped PTPD, the sensor signal increases during exposure to NO

 

by the blank areas. 

x. This 

sensor response is due to the interaction of the analyte with the undoped PTPD. Evidently, the 

conductance is increased, which is caused by the higher conductivity of the PTPD after exposure 

to NOx. The mechanism behind the enhanced conductivity is based on the oxidation of the 

polymer by NO2 involving radical cations of the polymer and NO2- anions (see also supporting 

information).15 In absence of the analyte NOx, the sensor signal of the undoped sample shows a 

certain recovery (Fig. 1a). For the additivated PTPD, a similar response to NOx is visible (Fig. 1b). 

However, the conductance G is orders of magnitudes higher compared to the undoped PTPD, 

making electric measurement circuitry easier. Except for the first NO pulse, the reaction of the 

additivated PTPD film toward NO is negligible and the device is only sensitive to NOx exposure. 

Surprisingly, the additivated PTPD device shows only a weak recovery, resulting in the desired 

dosimeter behavior. This might be explained by the Co(III)-doping which is used for the 

additivated PTPD. The doping leads to the formation of radical cations. Evidently, this has a 

strong influence on the adsorption and desorption of NOx

The slope of the conductance course does not depend linearly on the NO

 during the interaction with PTPD. 

2 concentration, 

resulting in a non-linear characteristic line for both dosimeter devices. This is caused by 

saturation effects of the sensor signal. The total NO2 dose ANO2 can be calculated by integration 

of the NO2 concentration cNO2 over time (Eq. 2).1,2 In Fig. 2a) the sensor signal G vs. ANO2

    

 is 

depicted. 

∫=
t

NONO ttctA
0

~d)~()(
22

     

  (2) 
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FIG. 2. a) Characteristic line given as the conductance G over the total NO2 amount ANO2 for the 

additivated PTPD device. b) Time derivative of the conductance dG/dt of the additivated PTPD device 

during NO and NO2 dosing over time t. The concentration of NO dosing is represented by the hatched 

areas, the concentration of NO2

One can observe a linear course up to a total NO

 dosing by the blank areas. 

2 dose of only 1500 ppms, for higher doses, no 

linear correlation with the conductance is given anymore. In order to investigate this behavior in 

more detail, Fig. 2 b) gives the time derivative of the conductance dG/dt of the additivated PTPD 

device. Obviously, the sensor can clearly distinguish between NO and NO2. The time derivative 

dG/dt follows the actual NO2

 

 concentration. The sharp peak at the beginning is a drawback. 

However, it needs to be excluded that an erroneous gas dosing is responsible for this unwanted 

behavior. The determination of the characteristic line of undoped PTPD was not possible due to 

the strong recovery of the sensor signal. 

IV. Conclusion and Outlook 

In conclusion, we have shown that PTPD is a promising material for application as NO2 sensitive 

layers in gas dosimeters. In combination with additives, Co(III)-complex and Li-salt, which 

increase the conductivity of the sensing layer, it was possible to improve the recovery of the 

signal strongly. In further measurements, the investigation of the sensor signal towards lower 

NOx concentrations has to be conducted, due to saturation effects in the above shown results. It 

is also required to test the suitability of this material for air quality monitoring. The 

determination of the actual NO2

 

 concentration was only partly possible since the sensor 

characteristic is not completely linear and probably also because of imperfections of the gas 

dosing unit. 
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Figure 1. Uv-vis absorption spectra of undopted PTPD in THF solution (0.02 mg mL-1) under nitrogen 

(black curve) and under exposture to NO2 (500 ppm for 10 min, red curve). The inset shows the 

wavelength range from 450 to 800 nm. New absorption bands arise after exposure to NO2 which are 

consistent with the absorption bands arising from oxidation with Co(III)-complex (blue curve) or 

electrochemical oxidation (applied potential + 2 V, green curve). 
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ABSTRACT  

We synthesize a polytriphenylamine homopolymer and two donor−acceptor copolymers (D−A -

copolymers) based on triphenylamine (TPA) as donor in combination with two different 

acceptor moieties to study the effect of the acceptor unit on the excitedstat charge-transfer 

characteristics (CT-characteristics) and charge separation. The two acceptor moieties are a 

dicyanovinyl group in the side chain and a thieno[3,4-b]thiophene carboxylate in the main chain. 

Absorption and photoluminescence studies show new CTbands for both of the D−A-copolymers. 

Field-dependent charge extraction studies in bilayer solar cells indicate a stronger CT-character 

for the copolymer in which the acceptor group is less conjugated with the copolymer backbone. 

The D−A-copolymer carrying the acceptor unit in the main chain exhibits smaller excitonic CT-

character and good conjugation leading to less-bound electron−hole pairs and a better charge 

separation. This fundamental study gives insight into the interdependence of conjugation, 

charge carrier mobility, and solar cell performance for two different D−A-copolymers. 

INTRODUCTION 

There is intensive research in the field of bulk Heterojunction solar cells comprising alternating 

donor−acceptor copolymers (D−A-copolymers) and fullerene derivatives with the aim to design 

novel D−A-copolymers and thus to increase the power conversion efficiency.1−3 In general, two 

strategies are widely used as the design principle for these D−A -copolymers: (a) introduction of 

the A unit as a side chain on the donor backbone and (b) incorporation of D and A in the main 

chain to get alternating D−A -copolymers.4−10 The diverse elementary processes and dynamics of 

charge transfer (CT) and charge separation in such a bulk heterojunction solar cell have been 

intensively studied.11,12 After light absorption a bound metastable intermolecular CT-state is 

formed by electron transfer to a neighboring molecule. This state can separate into free charge 

carriers or recombine. Since the charge separation is a key step, it is very important to 

understand the influence of conjugation and excited-state CT-character on this process. 

Commonly, the CT-character of the excited state between D−A-copolymer and fullerene acceptor 

has been investigated.13 It is equally important to understand and correlate the degree of 

excited-state CT-character of the D−A-copolymer itself with its charge carrier mobility as well as 

the charge separation with fullerenes. It was shown by Tautz et al. that the polaron pair yield in 

D−A-copolymers is dependent on the electron affinity of the acceptor moiety.14 A correlation of 

this observation with charge separation and device characteristics was not reported there. 

Furthermore, Carsten et al. showed that not only the energetics but also the internal dipole 

moment along the polymer chain may be critical for the CT-state, and these results were 

compared with charge separation in bulk Heterojunction devices.15 Here, we first correlate the 
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observed CT-character with the conjugation/delocalization as well as with the charge carrier 

mobility in the D−A-polymer itself. The observed CT-character is then compared with the charge 

separation in fullerene bilayer devices. We selected a well-defined bilayer device to avoid 

possible morphological differences in blend devices on using different polymers. Our material 

system consists of two novel D−A -copolymers based on triphenylamine (TPA). We chose a 

system containing TPA which is a widely examined and well-known donor material with 

excellent thermal and electrochemical stability.16 The CT-character of the excited state of D−A -

copolymers depends on the nature of attachment of the acceptor unit to the donor moiety. Here, 

we compare two different D−A -copolymers: (a) with a dicyanovinyl acceptor in the side chain 

(P2) and (b) with a thieno[3,4-b]thiophene acceptor in the main chain (P3) with the 

homopolymer (P1) without any acceptor unit. Since the resulting interaction between electron 

donating and the electron withdrawing molecules usually leads to the formation of an 

intramolecular CT-state,17

EXPERIMENTAL SECTION 

 the two different strategies adopted here can result in different 

degrees of CT-character and conjugation or delocalization between the D and A moieties. 

Synthesis and Polymerization. P1: 4-Bromo-N-(4-bromophenyl)-N-(4-(2-ethylhexyloxy) 

phenyl)aniline (1; 516 mg, 0.97 mmol) and 4-(2-ethylhexyloxy)-N,N-bis(4-(4,4,5,5-tetramethyl-

1,3,2-dioxaborolan-2-yl)phenyl)aniline (2; 607 mg, 0.972 mmol) were dissolved in 8 mL of 

tetrahydrofuran (THF). A 5.3 mL aliquot of 2 M K2CO3 in water and dimethylformamide (DMF; 

1:1) were added, and the mixture was purged with argon for 30 min. Pd(PPh3)4 (45 mg, 0.04 

mmol) and Pd(OAc)2 (4 mg, 0.02 mmol) were added, and the reaction mixture was heated to 70 

°C. After 72 h the polymerization was end-capped by the addition of phenylboronic acid pinacol 

ester and bromobenzene for 3 h. After cooling, the reaction mixture was extracted with 

dichloromethane (DCM) and water. The crude product poly[N,N′-bis(4-(2-

ethylhexyloxy)phenyl)-N,N′-di-p-tolylbiphenyl-4,4′-diamine] (P1) was precipitated in MeOH and 

purified by sequential Soxhlet extraction in MeOH and EtOH. Yield: 66%. 

1

P2: First, an aldehyde functionalized copolymer was synthesized as precursor. For that, 4-

(bis(4-bromophenyl)-amino)benzaldehyde (0.79 g, 1.83 mmol) and 2 (1.15 g, 1.83 mmol) were 

dissolved in 15 mL of THF. After addition of 2.33 mL of 2 M K2CO3 in water and DMF (1:1), the 

mixture was degassed. A 20 mg (0.017 mmol) amount of Pd(PPh3)4 and 2 mg (0.009 mmol) of 

Pd(OAc)2 were added, and the reaction mixture was heated to 70 °C. After 5 days, phenylboronic 

H NMR (300 MHz, CDCl3, 298 K; ppm): δ 7.51−7.36 (d, 2H, Har), 7.18−6.99 (d, 2H, Har), 6.93−6.81 

(m, 6H, Har), 3.83 (d, 2H, O−CH 2), 1.80−1.66 (m, 1H, CH), 1.60−1.39 (m, 8H,  CH2), 1.34 (s, 12 H, 

CH3), 0.97−0.84 (m, 6H, CH3). 
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acid pinacol ester and bromobenzene were added for end-capping and the mixture was stirred 

for 3 h. The reaction mixture was cooled to room temperature and extracted with 

dichloromethane (DCM) and brine. The organic phase was dried over Na2SO4, and the solvent 

was evaporated under reduced pressure. The dark brown residue was dissolved in THF, and a 

small amount of the scavenger N,N-diethylphenylazothioformamide was added. After 3 h at 

room temperature the polymer was precipitated in MeOH followed by a Soxhlet extraction in 

EtOH for 12 h. Poly[4-((4′-((4-(2-ethylhexyloxy)phenyl)(p-tolyl)amino)biphenyl-4-yl)(p-tolyl)-

amino)benzaldehyde] was obtained as beige powder. Yield: 70%.  
1H NMR (300 MHz, CDCl3, 298 K; ppm): δ 9.83 (s, 1H, CHO), 7.84−7.64 (s, 2H, Har), 7.64−7.34 (m, 

4H, Har), 7.23−6.95 (m, Har), 6.95−6.64 (s, Har), 3.93−3.67 (d, 2H, O−CH2), 1.85−1.62 (m, 1H, CH), 

1.59−1.37 (m, 8H, CH2), 1.34 (s, 12H, CH3), 0.91 (s, 6H, CH3). IR (cm−1

Second, the precursor copolymer poly[4-((4′-((4-(2-ethylhexyloxy)phenyl)(p-

tolyl)amino)biphenyl-4-yl)(p-tolyl)-amino)benzaldehyde] (736 mg, 1.14 mmol) was dissolved in 

9 mL of pyridine and 2 mL of acetic acid. After purging with argon for 30 min, malonodinitrile (2 

mg, 0.24 mmol) and one crystal of NH4OAc were added and the solution was stirred for 70 h at 

room temperature. The reaction mixture was extracted with DCM and water. The organic phase 

was washed with water and dried over Na2SO4. After evaporation of the solvent under reduced 

pressure, the polymer was precipitated from THF in MeOH. 2-(4-((4′-((4-(2-

Ethylhexyloxy)phenyl)(ptolyl)amino)biphenyl-4-yl)(p-tolyl)amino)benzylidene)-

malonodinitrile (P2) was obtained as dark red powder. Yield: 98%.  

): ν 2915 (s), 2842 (s), 1692 

(m), 1588 (m), 1488 (m), 1469 (s), 1263 (m), 1161 (m), 1109 (m), 816 (m), 718 (s). 

1H NMR (300 MHz, CDCl3, 298 K; ppm): δ 7.87−7.67 (m, 2H, Har), 7.56 (s, 1H, Hvinyl), 7.52−7.33 (m, 

4H, Har), 7.20−6.92 (m, 10H, Har), 6.92−6.56 (m, 2H, Har), 3.93−3.67 (d, 2H, OCH2), 1.81−1.58 (m, 

1H, CH), 1.58−1.37 (m, 8H,  CH2), 0.95−0.73 (m, 6H, CH3). IR [cm−1

1H NMR (300 MHz, CDCl3, 298 K; ppm): δ 8.06−7.87 (s, 1H,  Har), 7.68−7.40 (m, 4H, Har), 

7.25−7.02 (m, 6H, Har), 7.02−6.72 (m, 2H, Har), 4.47−4.19 (d, 2H, OCH2), 4.02−3.72 (d,  2H, 

OCH2), 1.88−1.68 (m, 1H, CH), 1.68−1.12 (m, 26H, CH2), 1.10−0.72 (m, 9H, CH3). 

]: ν 2927 (m), 2222 (m), 1567 

(m), 1487 (s), 1237 (m), 1181 (m), 1112 (m), 817 (s), 696 (m). P3: Compound 2 (590 mg, 0.94 

mmol) and 4-bromothiophene-3-carbaldehyde (4; 429 mg, 0.94 mmol) were dissolved in 8 mL 

of THF. A 5 mL aliquot of 2 M K2CO3 in water and DMF (1:1) were added, and the mixture was 

purged with argon for 30 min. Then Pd(PPh3)4 (22 mg, 0.02 mmol) and Pd(OAc)2 (2 mg, 0.01 

mmol) were added, and the reaction mixture was heated to 70 °C in a microwave. After 5 h the 

reaction mixture was extracted with DCM and water. The crude product poly[octyl-6-(4-((4-(2-

ethylhexyloxy)-phenyl)(p-tolyl)amino)phenyl)-alt-4-octylthieno[3,4-b]-thiophene-2-

carboxylate] (P3) was precipitated in MeOH and purified by Soxhlet extraction in EtOH and 

acetone. Yield: 40%. 
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Physical Measurements. Number-average (Mn) and weight-average (Mw) molecular weights 

were determined by size exclusion chromatography (SEC) using a Waters 515-HPLC pump with 

stabilized THF as the eluent. The flow rate was 0.5 mL min−1. The column setup consisted of a 

guard column (Varian; 50 × 0.75 cm; ResiPore; particle size, 3 μm) and two separation columns 

(Varian; 300 × 0.75 cm; ResiPore; particle size, 3 μm). The compounds were monitored with a 

Waters UV detector at 254 nm. SEC in chlorobenzene was carried out at 60 °C on an Agilent 1100 

series SEC using two Polymer Laboratories mixed B columns. Both SEC systems were calibrated 

against polystyrene. Thermogravimetric analysis (TGA) measurements were carried out using a 

Mettler Toledo TGA/SDTA 851e with a heating rate of 40 °C min−1 under nitrogen flow, and the 

temperature of degradation (Td) corresponds to a 5% weight loss. Differential scanning 

calorimetry (DSC) analysis was performed on a Perkin-Elmer Diamond differential scanning 

calorimeter, calibrated with indium. Glass transition temperature (Tg) was determined using a 

scanning rate of 20 °C min−1 under a nitrogen flow. Cyclic voltammograms (CVs) were recorded 

under moisture- and oxygen-free conditions using a standard three-electrode assembly 

connected to a potentiostat (model 263A, EG&G Princeton Applied Research) and at a scanning 

rate of 50 mV s−1. The working electrode was a glassy carbon disk electrode (area, 1/4 × 

0.0314 cm2), a platinum wire was used as auxiliary electrode, and the quasi-reference electrode 

was Ag/Ag+ composed of a Ag wire and AgNO3 in acetonitrile. Tetrabutylammonium 

hexafluorophosphate (Bu4NPF6, 0.1 M) was used as the conducting salt. Each measurement was 

calibrated with an internal standard (ferrocene/ferrocenium). The HOMO values were 

determined from the value of −5.16 eV for ferrocene with respect to vacuum level and correcting 

for the solvent effects. For spectroscopic measurements polymer films were spincoated from 

filtered chlorobenzene solutions (10 mg mL−1). Solution measurements were also performed in 

chlorobenzene with a concentration of the repetition units of 10−5−10−3 mol L−1. Absorption was 

measured with a Cary 5000 (Varian) UV-vis spectrometer. The fluorescence quantum yields 

were measured in an integration sphere filled with nitrogen under illumination with an Ar+ 

laser (P1, UV-multiline 351 nm/364 nm; P2 and P3, 488 nm) with a charge-coupled-device 

(CCD) camera as described elsewhere.18 The fluorescence spectra were recorded on a time-

correlated single photon counting (TCSPC) setup at room temperature with the samples in 

vacuum under excitation from a laser diode (P1, 375 nm; P2 and P3, 485 nm). Electric devices 

were fabricated on structured ITO-coated glass substrates using AZ 1518 photopaint from 

Microchemicals to define the active area and to prevent edge effects. The devices were then 

plasma-edged, and a 50 nm layer of poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) 

(PEDOT:PSS; Clevios) was spin-coated into the active area. The PEDOT:PSS layer was heated to 

180 °C for 30 min, followed by spin-coating a 40 nm polymer layer on top of it for the bilayer 

solar cells. Then a 40 nm C60 layer (99.9% purity, American Dye Source Inc.) and a 100 nm 

aluminum layer were evaporated at 5 × 10−7 mbar. For the space−charge-limited current (SCLC) 
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devices, the polymers were blade-coated from chlorobenzene solutions and a 40 nm gold 

electrode was evaporated. All device measurements were performed under active vacuum at 

room temperature with a Keithley source measure unit. For performance and field-dependent 

measurements a Newport 1.5 AM solar simulator was used, and the solar spectrum 

measurements were recorded under monochromatic illumination of a 150 W xenon lamp. Light 

intensities were recorded with a Hamamatsu S1337-33BQ photodiode. The internal field F was 

calculated as F = (Voc − V)/d with applied external voltage V, the open-circuit voltage Voc, and the 

active film thickness d.  

RESULTS 

Synthesis  

Here, we present the synthesis and characterization of a main chain homopolymer (P1, poly-

[N,N′-bis(4-(2-ethylhexyloxy)phenyl)-N,N′-di-p-tolylbiphenyl-4,4′-diamine]), an alternating 

D−A-copolymer with dicyanovinyl in the side chain (P2, poly[2-(4-((4′-((4-(2-

ethylhexyloxy)phenyl)(p-tolyl)amino)biphenyl-4-yl)-alt-

(ptolyl)amino)benzylidene)malononitrile]) and the D−A -copolymer carrying thieno[3,4-

b]thiophene-2-carboxylate in the main chain (P3, poly[octyl-6-(4-((4-(2-

ethylhexyloxy)phenyl)(ptolyl)amino)phenyl)-alt-4-octylthieno[3,4-b]thiophene-2-carboxylate]. 

The dicyanovinyl group is strongly electron withdrawing. It has been shown that the 

introduction of this group as a side chain lowers the optical gap, by mainly lowering the LUMO 

value.10 On the other hand, the electron withdrawing comonomer thieno[3,4-b]thiophene 

carboxylate stabilizes the quinoidal form and therefore lowers the optical gap when coupled 

with a suitable donor comonomer.19,20 We used Suzuki AA/BB type polycondensation as a 

synthetic method to obtain the conjugated polymers21 because it enables the synthesis of well-

defined alternating copolymers. The symmetrically difunctionalized monomers were 

synthesized according to the literature with good yields (see the Supporting Information).22,23 

Homopolymer P1 was obtained by polycondensation between a dibromo-TPA and a TPA bis-

boronic acid ester (Figure 1). The synthesis of P2 was realized by a precursor method. We used 

monomer 3, a dibromo-TPA with an aldehyde group which is stable under Suzuki 

polycondensation conditions, and polymerized it with the common bis-boronic acid ester 

monomer 2. After purifying the precursor copolymer by Soxhlet extraction, the dicyanovinyl 

group was introduced via a polymer analogous Knoevenagel condensation with malonodinitrile. 
1H NMR spectroscopy and FT-IR spectroscopy clearly proved the complete conversion of the 

aldehyde functionality to the dicyanovinyl group (see the Supporting Information). The 

alternating main chain D−A -copolymer P3 was synthesized by reacting directly the dibromo-
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monomer thieno-[3,4-b]thiophene carboxylate 4 with monomer 2 under microwave irradiation. 

All polymers were soluble in THF, CHCl3, and chlorobenzene, whereas P3 was soluble only in 

CHCl3 and chlorobenzene.  

 
Figure 1. Scheme of the synthesis of the polymers P1, P2 and P3 via Suzuki polycondensation. 

The bis-boronic ester monomer 2 was reacted with the three different dibrominated monomers 

1, 3 and 4. The polycondensation of P3 was carried out under microwave irradiation.  

Polymer Properties  

Mw and Mn of polymers P1, P2, and P3 were determined by SEC with THF as eluent. For 

calibration a polystyrene standard was used. Copolymer P3 was analyzed in a chlorobenzene 

SEC at 60 °C due to the low solubility in THF. Homopolymer P1 has a Mn of 10330 g mol−1 and a 

Mw of 15770 g mol−1. Both D−A -copolymers show a comparable Mn with 7400 and 7770 g mol−1 

for P2 and P3, respectively. The corresponding Mw are 18760 g mol−1 and 11610 g mol−1, and all 

of the relevant SEC data are given in Table 1. The homopolymer and all copolymers showed high 

thermal stability in TGA with temperatures for 5% weight loss ranging from 402 to 410 °C. All of 

the polymers form optically clear and smooth films, which is advantageous for device 
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preparation. DSC analysis showed that all compounds were amorphous and had glass transition 

temperatures of 203, 212 and 118 °C for P1, P2, and P3, respectively. 

Table 1. Molecular Weights and Thermal Properties of the Homopolymer P1 and the D-A-

Copolymers P2 and P3.a

Polymer 

  

Mn (g mol-1 Mw (g mol) -1 PDI ) T5% (°C) Tg (°C) 

P1 10330 15770 1.52 402 203 

P2 7400 18760 2.54 410 212 

P3 7770 11610 4.91 370 118 

a

Cyclic voltammetry measurements were employed to investigate the redox behavior and the 

influence of the different electron withdrawing groups on the HOMO/LUMO levels. The HOMO 

values were calculated by calibrating with ferrocene and correcting for solvent effects.

SEC analysis was carried out in THF as eluent and polystyrene standards at room temperature. 

P3 was measured in chlorobenzene at 60 °C. 

24,25 The 

polymers were measured in DCM vs AgNO3. P1 and P3 have similar oxidation potential values 

(0.15 V vs Fc), whereas the oxidation potential of P2 is slightly higher (0.3 V vs Fc). Thus, the 

calculated HOMO levels are −5.31, −5.45, and −5.30 eV for  P1, P2, and P3, respectively. The 

values are summarized in Table 2. The LUMO levels were estimated from the optical gap 

(determined from the onset of absorption bands, vide infra) and the HOMO energy values. Due 

to the slightly lower optical gap of P3 the LUMO levels of both D−A -copolymers are similar. 

Thus, the introduction of the strong electron withdrawing dicyanovinyl acceptor unit as 

substituent reduces the electron richness and delocalization of the TPA main chain, resulting in 

an increased oxidation potential by about 0.14 V. Additionally, the redox potential is drastically 

lowered, resulting in low LUMO values. However, the incorporation of the thieno[3,4-

b]thiophene acceptor unit in the main chain does not affect the oxidation potential, indicating a 

similar oxidizability or delocalization of the main chain as in the homopolymer P1. This means 

that the thieno[3,4-b]thiophene carboxylate does not withdraw electrons from the TPA moiety 

but maintains the conjugation between two TPA units resulting in the same oxidation potential 

for both P3 and P1. This conclusion can be derived from the fact that an individual TPA unit 

exhibits an oxidation potential of about 0.2 eV higher than that for a dimer in which the TPA 

units are in conjugation.16 A further relevant parameter for semiconductor materials is the 

charge carrier mobility. We investigated the hole transport mobilities (μh) of the three polymers 
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in hole-only diodes using the SCLC method. This method allows the determination of the bulk 

charge carrier mobility. A PEDOT:PSS-coated ITO electrode and a gold electrode were used to 

fabricate the devices. In this case, PEDOT:PSS serves as a hole-injecting electrode. Furthermore, 

the high work function of the gold electrode hinders the injection of electrons but allows for hole 

collection. Therefore, the transport of the holes is only limited by the charge carrier mobility of 

the polymer and can be described by the Mott−Gurney eq 1.26

𝐽 = 9
8
𝜀𝜀0𝜇ℎ

𝑉2

𝐿3
      (1) 

  

According to this equation the current density J is dependent on the permittivity of free space ε0, 

the dielectric constant of the polymer ε (assumed to be 3), the charge carrier mobility μh, the 

thickness of the polymer layer L, and the voltage drop across the device V. Assuming ohmic 

contacts to the injecting electrode, the current is space−charge -limited at high voltages. The 

measured I−V curves were fitted according to eq 1 to obtain the hole transport mobility μh. By 

recording different active layer thicknesses, the thickness scaling of the space−charge -limited 

currents was verified. The log−log plots of J vs L and the fits according to the relation J ∼ V2/L3

Table 2. a) HOMO Values of P1, P2, and P3 Obtained from Oxidation Potential Eox vs Ferrocene 

in Cyclic Voltammetry Measurements at 50 mV s

 

are illustrated in the Supporting Information. This clearly indicates that the measured current is 

space−charge-limited. The contact resistance and series resistance were measured in a 

reference device without a polymer layer, and the corresponding voltage drop Vr was subtracted 

from the applied voltage. The built-in potential Vbi for PEDOT:PSS and gold is estimated to be 0 V. 

Figure 2 gives the half-log plots of J vs V of the three polymers at similar layer thicknesses and 

the device geometry.  

-1 in DCM with 0.1 M Tetrabutylammonium 

Hexafluorophosphatea and b) Hole Transport Mobilities (µh) Determined by SCLC measurements 

in Hole-Only devices with PEDOT:PSS and Au as Electrodes.b

 

  

Polymer Eox vs. Fc (V) HOMO (eV) Eg (eV) LUMO (eV) µh (cm2 V-1 s-1) 

P1 0.15 -5.31 2.97 -2.34 1.4x10-4 

P2 0.29 -5.45 2.24 -3.21 7.6x10

P3 

-5 

0.14 -5.30 2.10 -3.20 3.1x10-4 
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aThe HOMO value for ferrocene/ferrocenium oxidation in DCM was taken as -5.16 eV.25 LUMO 

values were estimated using the onset of absorption (Eg) from UV-VIS measurements and 

corresponding HOMO values. b

 

Given values are the average values of the three different 

measured thicknesses. 

Figure 2. a) Schematic structure of a hole-only device with PEDOT:PSS and gold as electrodes. b) 

Half-log plot of current density J vs voltage V of P1, P2 and P3 for comparable layer thicknesses. 

Additional measurements for different layer thicknesses are given in the Supporting 

Information. 

We found that the homopolymer P1 shows a hole transport mobility of 1.4 × 10−4 cm2 V−1 s−1. 

The introduction of the dicyanovinyl groups leads to a decrease of 1 order of magnitude, 

7.6 × 10−5 cm2 V−1 s−1, for P2. The low mobility of P2 indicates that the side chain acceptor unit 

does affect the delocalization or conjugation of the TPA main chain. However, the incorporation 

of the thieno[3,4-b]thiophenecarboxylate does not change the hole transport mobility 

considerably for P3 (μh = 3.1 × 10−4 cm2 V−1 s−1

Absorption and Photoluminescence Spectroscopy 

). These hole transport mobility values are in full 

agreement with the influence of the acceptor units on the delocalization or the easiness of the 

oxidation as observed in cyclic voltammetry.  

The absorption spectra of P1, P2, and P3 in solution and film are shown in Figure 3. We first 

consider the solution spectra which were recorded at a concentration of the repetition units of 

10−4 mol L−1. Identical spectra were found at a concentration of 10−5 mol L−1
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signal-to-noise ratio. For the homopolymer P1 we observe an absorption band in the high-

energy region centered at 3.22 eV that is characteristic for TPAs and that is assigned to a π−π* -
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transition. For copolymer P2 containing the pendant dicyanovinyl group, we find a lower energy 

absorption peak centered at 2.66 eV with lower oscillator strength that appears in addition to 

the original TPA absorption band. The latter is blue-shifted by 100 meV to 3.32 eV and has a 

slightly decreased oscillator strength compared to the homopolymer P1. On the basis of the low 

oscillator strength and low energy, we attribute the 2.66 eV absorption peak present in dilute 

solution to an intramolecular CT-transition with low wave function overlap from the donor 

backbone to the dicyanovinyl in the side chain. A similar absorption behavior was also shown for 

other D−Acopolymers.10

 

 Overall, the copolymer P2 is able to cover the whole low- and middle-

wavelength region of the visible spectrum.  

Figure 3.UV-vis absorption spectra of P1, P2 and P3. a) in chlorobenzene, concentration of the 

repetition units 10-4mol l-1. b) in film from 10 mg ml-1

In P3, the thieno[3,4-b]thiophene carboxylate, acting as an electron pulling unit, is placed 

directly in the main chain of the copolymer, allowing for a good electronic interaction with the 

TPA unit. As for P2, we observe a low-energy absorption band centered at 2.49 eV in addition to 

the original TPA absorption at 3.26 eV. Compared to P2, this low-energy band is shifted further 

to the red by 0.17 eV and carries a higher oscillator strength. Concomitantly, the oscillator 

strength of the high energy 3.26 eV band is strongly reduced. We consider the high oscillator 

strength of the additional, red-shifted absorption peak of P3 and the reduction of the 3.26 eV 

intensity to indicate a significant contribution of π−π*-transitions to the intramolecular CT-band 

that arises from the D−A -type interaction of the electron withdrawing thieno[3,4-b]thiophene 

carboxylate with the TPA unit. Similarly, we interpret the red shift of the low-energy band 

compared to that of P2 to indicate a higher degree of conjugation, consistent with a stronger 

contribution of the delocalized π-orbitals. We obtain the same results for the absorption spectra 

 solutions in chlorobenzene. 
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taken in thin films, except for a small solvent shift. The positions of the absorption peaks are 

summarized in Table 3. 

Table 3. Absorption Peaks (Position of the Center) in a Chlorobenzene Solution at a 

Concentration of the Repetition Units of 10-4 mol l-1 and in the Film, Made from Solutions of 

10 mg ml-1

Polymer 

 in Chlorobenzene.  

Esolution (eV) Efilm (eV) 

P1 3.22 3.26 

P2 2.66, 3.32 2.68, 3.36 

P3 2.49, 3.36, 4.11 2.46, 3.34, 4.11 

 

Further information on the nature of excited states in the polymers can be obtained from 

photoluminescence measurements. First, we find that the three polymers differ strongly in their 

thin film photoluminescence efficiencies. While integrating sphere measurements taken on thin 

films give a moderate photoluminescence quantum yield (PL QY) of 3.4 % for homopolymer P1, 

the emission is below the detection threshold of this setup for P2, and it is as low as 0.7 % for 

P3. The uncertainty on the PL QY is about 1 %. This trend is consistent with the observed 

absorption strengths of the lowest energy bands in all three polymers and confirms the 

indication of a stronger CT-character in P2 compared to P3, and, naturally, of no CT-

characteristics in P1. Due to the low emission efficiencies, we used the sensitive technique of 

TCSPC to measure the photoluminescence spectra and lifetimes. The spectra are shown in 

Figure 4. No reliable data can be obtained for the spectral window from 2.35 to 2.50 eV due to a 

technical limitation. Photoluminescence decay curves are included as Supporting Information.  

We shall discuss the data for the compounds in increasing order of intramolecular CT-character. 

For homopolymer P1, the same emission band with a 0−0 peak at 2.89 eV and vibronic replica at 

2.72 and 2.55 eV is seen in solution and, shifted by 40 meV to the red, in film. This emission 

dominates for a few nanoseconds after excitation with a lifetime of 0.9 ns in solution and 0.3 ns 

in the film. At longer times, this emission disappears and a weak, structured emission can be 

observed. It is shifted to the red by about 0.3 eV and has a lifetime of about 6 ns in solution and 

5 ns in film. Since this signal is rather weak with poor spectral to noise ratio, we can spectrally 

resolve it only for the film, where the higher energy emission decays away fast, yet not for 



 
131 

solution. Due to the moderate Stokes’s shift of about 0.33 eV between absorption and emission 

and the concomitant mirror symmetry, we attribute the higher energy emission with 0−0 peak 

at 2.89 eV to the π−π* -transition in the TPA-homopolymer, possibly with some mixing of the 

nonbonding orbital of the nitrogen lone pair. The electronic origin of the lower energy emission 

at about 2.55 eV is not clear. This emission is present in both phases, solution and film, with the 

same lifetime, yet in solution it is masked by the stronger higher energy emission. The reduction 

of the fast component in photoluminescence lifetime in film compared to solution suggests that 

the weakly red emitting sites can only be populated effectively by energy transfer in the 

condensed phase of the film.  
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Figure 4. Fluorescence spectra of the polymers in chlorobenzene solutions at a concentration of the 

repetition units of (P1, P3: 10-5mol l-1, P2: 10-3mol l-1

 

) and in the film under UV-irradiation (P1: 375 nm, 

P2, P3: 485 nm) measured in a TCSPC setup. In the spectral window from 2.35 eV to 2.50 eV, no reliable 

data could be obtained due to a technical limitation. 
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We next consider the copolymer P3 where electron-rich and electron-deficient groups alternate 

in the chain backbone. The spectra in solution and in film immediately after excitation have a 

spectral shape similar to that in P1 with similar full width at half-maximum (fwhm) of about 

0.2 eV and a comparable Stokes’s shift of 0.40 eV. The spectra show a 0−0 peak at 2.10  eV in 

solution and slightly below, at 2.03 eV, in film. Whereas no spectral change with time is 

noticeable in solution, in film the higher energy emission decays and exposes a weak emission 

centered at 1.79 eV that was initially hidden in the red tail of the higher energy peak. The energy 

difference between the comparatively intense higher energy emission and the weak lower 

energy emission bands is similar for P1 and P3. In P1, it is about 0.30 eV, and in P3, it is 0.24 eV. 

Overall, the dominant decay lifetimes in copolymer P3 are longer than those of homopolymer 

P1. For P3 in solution, the decay is not entirely exponential and can best be approximated by a 

biexponential decay with lifetimes of 2.0 ns (amplitude 20.000) and 3.2 ns (amplitude 7.000); 

i.e., the dominant contribution is twice as long as that for P1. This is consistent with the reduced 

oscillator strength of P3 compared to P1 that is also manifested in the intensity of the low-

energy absorption peak and the photoluminescence quantum yield. For P3 in film, the 

luminescence decay proceeds faster and it is characterized by a distribution of lifetimes. In 

contrast to P1 and P3, for P2 with the dicyanovinyl in the side group we observe a very weak, 

broad, unstructured emission centered at about 1.9 eV. To enable detection of this inefficiently 

emitting compound in solution, we used a concentration of the repetition units of 10−3 mol L−1 

instead of the 100 times lower value used for P1 and P3. For both, solution and film, the 

emission does not change with time except for an initial slight red shift that is common for 

condensed media where spectral diffusion in the density of states prevails.27

 

 We stress that, in 

particular, in contrast to P1 and P3, there is no significant change of the spectral shape over 

time. The emission is characterized by a distribution of lifetimes in the nanosecond range, with 

more longer lived contributions for the film. Such a broad, unstructured weak emission with a 

distribution of lifetimes is a general signature for a CT-type transition. The overall picture that 

emerges from the absorption and photoluminescence spectroscopy is that, in P2, the excited 

state is dominated by CT-character, manifested in weak absorption and weak, unstructured 

emission. The homopolymer P1 shows the moderately intense emission and good absorption 

associated with π−π*-transitions as well as a weak, lower energy emission of unclear origin. The 

nature of the first excited state in the copolymer P3 lies between the two limiting cases defined 

by P1 and P2.  
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Photocurrent Measurements  

We next consider how the different nature of the excited states impacts on their performance as 

solar cell materials. Therefore, we built bilayer solar cells where C60 is evaporated on top of a 

spin-coated polymer film. Indium−tin-oxide covered by a layer of PEDOT:PSS was used as anode 

and aluminum as a cathode. The simple device geometry of a bilayer allows for spatially distinct 

electron and hole pathways to the electrodes, thus preventing the nongeminate recombination 

of accidentally meeting charge carriers that is inherently problematic in the intermingled 

morphology of blends. The observed photocurrent characteristics in a bilayer structure can 

therefore be interpreted as arising mainly from the charge generation at the D−A-interface itself. 

The current−voltage curves of the bilayer  solar cells for the different materials under AM 1.5 

illumination are shown in Figure 5, along with the external quantum efficiency (EQE) spectra. 

The resulting solar cell parameters are given in the Supporting Information.  

 

Figure 5. a) Current-Voltage characteristics of bilayer solar cells build with the presented polymers P1, 

P2, P3 and C60 under AM 1.5 illumination. b) Corresponding External Quantum Efficiency (EQE) spectra of 

the copolymers P2 and P3. 

Homopolymer P1 and copolymer P3 show nearly identical current−voltage (I−V) curves up to 

the open-circuit voltage Voc, with similarly moderate performance. The moderate performance is 

expected for bilayer cells with such material combination.10
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 Copolymer P2 that has the stronger 

CT-character, however, is distinct and displays a reduced short-circuit current Isc and a 

concomitantly reduced fill factor FF. The lower efficiency of P2 compared to P3 over the whole 

spectral range is also evident in the EQE spectra that largely follow the absorption data of the 

blend. All three cells have a pronounced “S-shape”, i.e., a zero or low photocurrent for forward 
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bias, at voltages exceeding the open-circuit voltage. The appearance of low current upon further 

voltage increase is occasionally reported, and it is tentatively attributed to imbalanced mobilities 

of the donor and the acceptor in planar heterojunction cells.

DISCUSSION 

28 

The aim of our study is to understand what controls charge separation in D−A -copolymers P2 

and P3. The impacts both of dipolar or electrostatic effects and of excited-state delocalization 

have been demonstrated to be of importance.29−32 Here, we try to differentiate between both 

influences by comparing a homopolymer to two D−A -copolymers that represent two different 

chemical architectures. D−A -copolymer P2 with a dicyanovinyl group in the side chain (with 

reduced delocalization with the main chain) shows a stronger CTcharacter than P3 where the 

acceptor moiety is incorporated in the main chain. This is evident from the reduced oscillator 

strengths of the first absorption band in P2 compared to P1 and a barely detectable, broad, 

unstructured fluorescence that decays nonexponentially. D−A-copolymer P3 possesses a weaker 

CT-character as demonstrated by the absorption and photoluminescence properties (vide 

supra); this results in a lower prominence of the intrachain CT-character due to significant 

contributions of delocalized π- and π*-orbitals. The question in now whether the more dipolar 

character of P2 favors charge separation, e.g., by preseparation of the hole and electron on the 

copolymer and concomitant dielectric screening,29 or whether the higher degree of excited-state 

delocalization in P3 is a more beneficial approach. From the I−V curve in Figure 5, a reduced 

performance of P2 compared to P3 is already evident. The data of Figure 5 can be analyzed by 

comparison with exciton dissociation models. For this, the photocurrent quantum yield for P2 

and P3 is plotted as a function of internal electric field in Figure 6. The photocurrent quantum 

yield has been normalized to unity at the saturation value obtained for high field strengths since, 

for sufficiently high field, complete exciton dissociation and extraction are obtained.30 The 

internal field F is calculated by subtracting the applied voltage from the open-circuit voltage and 

dividing the result by the active layer thickness of the device. The effect of possible deviations in 

the internal field from the value obtained by this method is discussed in detail in ref 31. Figure 6 

shows that a higher electrical field is needed to dissociate all excitons in P2 

(Fsaturation = 1.5 × 105 V cm−1) than in P3 (Fsaturation = 6 × 104 V cm−1), implying that excitons in P2 

are more tightly bound than those in P3. Exciton dissociation at the interface between a polymer 

donor material and a fullerene acceptor is understood to be assisted by both electrostatic 

interface effects (“interfacial dipole”, parametrized through a fractional dipole strength α) and 

charge delocalization. The latter can be parametrized in terms of a heuristic “effective mass” of 

the hole on the polymer.31 Whereas electrostatic effects screen the mutual coulomb attraction of 

electron and hole, the kinetic energy associated with a delocalized hole helps its escape from the 
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coulomb potential of its geminate electron.33−35 In order to obtain insight into the observed 

photodissociation behavior, we have fitted the field-dependent photocurrent quantum yields 

with a model containing the effects of both interfacial dipoles and hole delocalization (eqs 3, 6, 

and 7 in ref 31). Good agreement with the experimental data can be obtained when the 

fractional dipole strength α at the interface to C60 is set at 0.050 in P2 and at 0.045 in P3, leading 

to effective relative hole masses meff/me of 0.44 for P2 and 0.25 for P3, where me is the mass of a 

free electron. These parameter values obtained are consistent with earlier work on 

homopolymers in bilayers with C60.31

 

 The fractional dipole strengths are about twice as high as 

those measured for homopolymer/C60 interfaces, and the effective masses are in a similar range, 

depending on the degree of conjugation of the polymers. As detailed in the Supporting 

Information, it is possible to increase the fractional dipole strength for P2 while maintaining a 

good agreement with the data when simultaneously increasing the hole effective mass further.  

Figure 6. Normalized field dependent photocurrent quantum yields of copolymer/C60 bilayer devices 

calculated from the photocurrent under AM 1.5 conditions. The lines indicate fits based on an effective 

mass model that includes interfacial dipole effects. 

What is the insight obtained from these values? This analysis tells us that the improved 

performance of P3 compared to P2, i.e. the higher photodissociation at low internal field 

strength, and concomitantly the higher short-circuit current and fill factor, are a result of the 

lower effective mass in P3. A more delocalized character of the hole on P3 is fully consistent 

with the overall more delocalized character of the excited state in P3 that is manifested in the 

optical measurements, and the higher hole mobility in P3. Furthermore, the photocurrent 

analysis shows a more localized hole on P2 to be associated with a poor photodissociation, while 

the CT-character of P2 does not turn out to be of benefit to the charge separation process. A 
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more localized hole with a higher effective mass derived in the photocurrent fit corresponds 

well with the reduced hole mobility measured for P2 in SCLC measurements. The fact that this 

correlates with a low HOMO level points at trapping effects or localization effects.36,37

CONCLUSION 

 Comparing 

these results of field-dependent photocurrent quantum yields with previous work on charge 

separation emphasizes the importance of a good conjugation to facilitate charge separation.  

On comparison of the homopolymer P1 with the two D−Acopolymers  P2 and P3, we could get 

conclusive information regarding the effective design of D−A -copolymers for an efficient 

delocalization/conjugation and good charge generation. The introduction of the strong electron 

withdrawing dicyanovinyl acceptor unit as side chain in P2 reduces the electron richness and 

delocalization of the TPA main chain. As a consequence the HOMO level is lowered in P2 and the 

hole mobility is decreased. P2 has a pronounced excited-state CTcharacter compared to P3 in 

which the acceptor enters into delocalization with the backbone. Field-dependent photocurrent 

measurements in bilayer devices clearly indicate the advantage of the alternating D−A -

copolymer strategy in which the donor and acceptor moieties exhibit a better conjugation. Thus, 

for this material system, charge separation is obtained more readily when the acceptor group is 

located within the copolymer backbone guaranteeing delocalization along the main chain. The 

concept of adding a strong acceptor to the side group which lowers the delocalization in the 

main chain, in contrast, results in a lower hole mobility and stronger bound electron hole pairs 

and thus lower solar cell power conversion efficiency. 
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Materials 
 

Commercially available starting materials were purchased from Aldrich or abcr and used 

without further purification. Solvents for chromatography, extraction and reactions were 

distilled prior to use.  

 

Monomer 1 and 2 

 

1‐Bromo‐4‐[(2‐ethylhexyl)oxy]‐benzene  

4-Bromophenole (18.08 g, 0.1 mol) and K2CO3 (33.83 g, 0.24 mol) were dissolved in dry DMF. 2-

Ethylhexylbromide (15.45 g, 0.08 mol) was added slowly and the reaction mixture was stirred 

for 24 h at 60 °C. After cooling, the reaction mixture was extracted with hexane and 1 M HCl. The 

crude product was used without further purification. Yield: 75 %. 
1

MS-EI m/z calcd for C14H21BrO 285.22, found [M

H NMR (300 MHz, CDCl3, 298 K): δ (ppm) = 7.42 ‐ 7.34 (d, 2H, Har), 6.84 ‐ 6.75 (d, 2H, Har), 3.84 ‐ 

3.79 (d, 2H, OCH2), 1.80 ‐ 1.66 (m, 1H, CH), 1.60 ‐ 1.25 (m, 8H, CH2), 1.00 ‐ 0.83 (m, 6H, CH3). 
+

 

] 284.  

4-(2-Ethylhexyloxy)-N,N-diphenylaniline  

Diphenylamine (4.91 g, 0.029 mol), 1‐bromo‐4‐[(2‐ethylhexyl)oxy]‐benzene (10 g, 0.035 mol), 

sodium-tert-butoxide (3.62 g, 0.038 mol) and 0.07 g (0.30 mmol) Pd(OAc2) were dissolved in dry 

toluene. Tri-tert-butylphosphine (1 M in toluene, 1ml) was added and the reaction mixture was 

heated to 60 °C for 24 h. After cooling to room temperature the solution was filtered over Alox N. 

The solvent was removed by reduced pressure and the crude product was precipitated in MeOH 

from THF and filtered. The white powder was dried in vacuum. Yield: 87 %. 

1H NMR (300 MHz, CDCl3, 298 K): δ (ppm) = 7.26 ‐ 7.16 (m, 4H, Ha), 7.90 ‐ 7.00 (m, 6H, Har), 

6.97 ‐ 6.90 (m, 2H, Har), 6.87 ‐ 6.80 (m, 2H, Har), 3.85 ‐ 3.79 (d, 2H, OCH2), 1.76 ‐ 1.65 (m, 1H, 

CH), 1.57 ‐ 1.26 (m, 8H, CH2), 0.97 ‐ 0.86 (m, 6H, CH3). 

MS-EI m/z calcd for C26H31NO 373.53, found [M+] 373.  
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4-Bromo-N-(4-bromophenyl)-N-(4-(2-ethylhexyloxy)phenyl)aniline (1)  

4-[(2-Ethylhexyl)oxy]-N,N-diphenylaniline (8.36 g, 22.4 mmol) was dissolved in 190 ml of a 5:1 

CHCl3/AcOH mixture and degassed for 30 min with an argon stream. After cooling the solution 

to -10 °C  NBS (7.97 g, 44.8 mmol) was added in small portions under exclusion of light. After 

stirring for 3.5 h at -10 °C the reaction was quenched with 1 M NaOH. The reaction mixture was 

extracted with DCM and water. The organic phase was washed with 1 M NaOH and two times 

with water. After drying over Na2SO4 the solvent was evaporated under reduced pressure. 4-

Bromo-N-(4-bromophenyl)-N-(4-(2-ethylhexyloxy)phenyl)aniline was achieved as a viscous oil. 

Yield: 99 %.  
1

MS-EI m/z calcd for C26H29Br2NO 531.32 , found [M

H NMR (300 MHz, DMSO, 298 K): δ (ppm) = 7.33 - 7.25 (m, 4H, Ha), 7.06 - 6.98 (m, 2H, Hb), 6.92 

- 6.81 (m, 6H, Hc), 3.85 - 3.80 (d, 2H, O-CH2), 1.77 - 1.66 (m, 1H, CH), 1.58 - 1.26 (m, 8H, CH2), 

0.97 - 0.88 (s, 6H, CH3).  
+

 

] 531. 

4-(2-Ethylhexyloxy)-N,N-bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)phenyl)aniline (2)  

4-Bromo-N-(4-bromophenyl)-N-(4-(2-ethylhexyloxy)phenyl)aniline 1 (3.30 g, 6.12 mmol) were 

dissolved in THF under an argon atmosphere. The solution was cooled to -78 °C and a solution of 

n-BuLi in hexane (8.15 mL, 1.6 M, 13.04 mmol) were added dropwise. After 2 h at -78 °C 2-

isopropoxy-4,4,5,5-tetramethyl-1,2,3-dioxaborolane (8.6 ml, 7.80 g, 41.92 mmol) was added 

quickly. The reaction mixture was warmed to room temperature and stirred for 50 h. The 

reaction was quenched carefully with water. The following extraction was carried out with DCM 

and water. After drying over Na2SO4 the solvent was evaporated under reduced pressure. The 

residue was recrystallized in THF hexane (1:8).  The non-crystallized part was purified 

chromatographically (CH:EE; 10:1). Yield: 27 %.  
1

MS-EI m/z calcd for C38H53B2NO5 625.45, found [M

H NMR (300 MHz, CHCl3, 298 K): δ (ppm) = 7.68 - 7.58 (d, 4H, Ha), 7.07 - 6.99 (m, 6H, Hb), 6.86 - 

6.79 (m, 2H, Hc), 3.84 - 3.79 (d, 2H, O-CH2), 1.76 - 1.66 (m, 1H, CH), 1.53 - 1.16 (m, 32H, CH2, CH3), 

0.97 - 0.85 (m, 6H, CH3). 
+

 

] 625. 
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Monomer 3 

 

 

4-(Bis(4-bromophenyl)amino)benzaldehyde (3)  

4-Diphenylaminobenzaldehyde (5.0 g, 19.9 mmol) was dissolved in 195 ml CHCl3/AcOH (5:1) 

and degassed with an argon stream. The solution was cooled to -5 °C and N-bromosuccinimide 

(8 g, 45.77 mmol) were added in small portions. After stirring for 10 h the solution was warmed 

to room temperature and stirred for 30 h. The reaction was quenched with 1 M NaOH, extracted 

with DCM and washed with brine. The organic phase was dried over Na2SO4 and the solvent was 

evaporated under reduced pressure. The crude product was purified chromatografically (n-

hexane:DCM, gradually from 5:1 to 1:1). 4-(Bis(4-bromophenyl)amino)benzaldehyde 3 was 

obtained as yellow powder. Yield: 81 % 
1

MS-EI m/z calcd 431.12, found [M

H NMR (300 MHz, CDCl3, 298 K): δ (ppm) = 9.85 - 9.83 (s, 1H, CHO), 7.74 - 7.66 (m, 2 H, Ha), 7.48 

- 7.40 (m, 4H, Hb), 7.07 - 6.98 (m, 6H, Hc, Hd). 
+

 

] 431. 

Monomer 4 

 

4-Bromothiophene-3-carbaldehyde  

3,4-Dibromothiophene (14.44 g, 0.06 mol) were dissolved in dry diethylether and cooled to -78 

°C. Afterwards 37 ml of n-BuLi (1.6 M in hexane) were added slowly. After 30 min DMF (5.97 ml, 

0.08 mol) was added, the reaction mixture was warmed to room temperature and stirred over 

night. The reaction was quenched with saturated NH4Cl solution in water and extracted with 

diethylether. The organic phase was dried over Na2SO4 and the solvent was evaporated under 
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reduced pressure. The crude product was purified by column chromatography (hexane : 

diethylether 5:1).  

Yield: 56 %. 
1

MS-EI m/z calcd for C5H3BrOS 191.05, found [M

H NMR (300 MHz, CHCl3, 298 K): δ (ppm) = 9.97 (s, 1H, Hal), 8.18 (d, 1H, Har), 7.39 (d, 1H, Har).   
+

 

] 191.  

Octyl-thieno[3,4-b]thiophene-2-carboxylate  

4-Bromothiophene-3-carbaldehyde (5.82 g, 0.03 mol) and thioglycolicacid-octyl ester (6.85 g, 

0.03 mol) were dissolved in 50 ml DMF. K2CO3 (6.22 g, 0.04 mol) and CuO nanopowder (0.07 g, 

0.9 mmol) were added. The reaction mixture was heated to 80 °C for 16 h. The reaction mixture 

was extracted with DCM and water. The organic phase was dried over Na2SO4 and the solvent 

was evaporated under reduced pressure. The crude product was purified by column 

chromatography (Hexane : Ethylacetate, 90:1).   

Yield: 31 % 
1

MS-EI m/z calcd for C15H20O2S2 296.45, found [M

H NMR (300 MHz, CHCl3, 298 K): δ (ppm) = 7.71 (s, 1H, Har), 7.61 (d, 1H, Har), 7.30 (dd, 1H, Har), 

4.33 (t, 2H, OCH2), 1.78 (q, 2H, CH2), 1.35 (m, 10H, CH2), 0.91 (t, 3H, CH3). 
+

 

] 296.  

Octyl-4,6-dibromo-thieno[3,4-b]thiophene-2-carboxylate (4)  

Octyl-thieno[3,4-b]thiophene-2-carboxylate (2.77 g, 9.34 mmol)  were dissolved in 30 ml dry 

DMF and degassed with an argon stream for 30 minutes. After cooling the solution in an ice bath 

4.16 g (23.36 mmol) NBS were added in small portions. The reaction mixture was warmed up to 

room temperature. After stirring for 12 h the solution was poured into a 10% aqueous solution 

of Na2S2O3 and extracted with diethylether twice. The organic phase was dried over Na2SO4 and 

the solvent was evaporated under reduced pressure. The crude product was purified by column 

chromatography (DCM).   

Yield: 53 % 

1

MS-EI m/z calcd for C15H20O2S2 453.91, found [M

H NMR (300 MHz, CHCl3, 298 K): δ (ppm) = 7.53 (s, 1H, Har), 4.32 (t, 2H, OCH2), 1.76 (q, 2H, CH2), 

1.35 (m, 10H, CH2), 0.89 (t, 3H, CH3). 
+

 

] 454.  
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1H-NMR  

 

1H NMR spectra were recorded using a Bruker Avance 300 spectrometer at 300 MHz at 298 K in 

deuterated chloroform. 

 

Figure 1. 1H-NMR spectrum of P3. No signal for the aldehyde group was observed. 
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FT-IR spectra 

 

FT-IR spectra were recorded on a Perkin Elmer Spectrum 100 spectrometer in solid using a ATR 

unit.  
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Figure 2. FT-IR-spectra of the precursor alternating copolymer with aldehyde-group showing a 

typical absorption band of the -CHO group at 1694 cm-1 and the D-A-copolymer P2 showing the 

CN-stretching vibration of the dicyanovinyl group at 2219 cm-1.  
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Cyclic voltammetry  
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Figure 3. Cyclic voltammogram of P1.  
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Figure 4. Cyclic voltammogram of P2. 
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Figure 5. Cyclic voltammogram of P3. 
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Space charge limited current measurements 

 

 

Figure 6. Hole-only devices of P1 with varied layer thicknesses. The current density values for 

the layer thickness of 234 nm are divided by a factor of 2 to provide a better view on the other 

values.  

 

 

Figure 7. Log-log plot of the thickness dependence of the current density at a fixed bias of 4 V 

for P1. The squares are experimental data and the solid line is the fit according to relation J ~ 

V2/L3, where L is the thickness of the sample. 
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Device L [nm] µh [cm2V-1s-1] 

1 234 1.8 · 10-4 

2  460 1.4 · 10-4 

3 614 1.0 · 10-4 

Average  1.4 · 10-4 

Table 3. Calculated hole transport mobilities µh for three layer thicknesses as well as their 

average value.   

 

 
Figure 8. Hole-only devices of P2 with varied layer thicknesses. 
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Figure 9. Log-log plot of the thickness dependence of the current density at a fixed bias of 4 V 

for P2. The squares are experimental data and the solid line is the fit according to relation J ~ 

V2/L3, where L is the thickness of the sample. 

 

Device L [nm] µh [cm2V-1s-1] 

1 127 5.0 · 10-6 

2  190 8.5 · 10-6 

3 414 9.2 · 10-6 

Average  7.6 · 10-6 

Table 2. Calculated hole transport mobilities µh for three layer thicknesses as well as their 

average value.   

 

 

Figure 10. Hole-only devices of P3 with varied layer thicknesses. 
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Figure 11. Log-log plot of the thickness dependence of the current density at a fixed bias of 4 V 

for P3. The squares are experimental data and the solid line is the fit according to relation J ~ 

V2/L3, where L is the thickness of the sample. 

 

 

Device L [nm] µh [cm2V-1s-1] 

1 323 4.1 · 10-4 

2  482 2.9 · 10-4 

3 577 2.4 · 10-4 

Average  3.1 · 10-4 

Table 3. Calculated hole transport mobilities µh for three layer thicknesses as well as their 

average value.   
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Lifetime measurements 

 

 
Figure 12. Lifetime measurements of the (co)polymers in a time correlated single photon 

counting (TCSPC) setup. The fit parameters are shown in table 4. 
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Polymer A1 t1 (ns) A2 t2 (ns) y0  

P1 Film 45600 0.3 400 5.3 2.5  

P1 Solution 60800 0.9 400 6.0 2.5  

P2 Film 9000 1.1 700 6.0 2.5  

P2 Solution 45000 0.6 600 4.0 2.5  

P3 Film (2.05 eV) 14000 0.5 320 3.2 2.5  

P3 Film (1.79 eV) 13000 1.3 2600 3.0 2.5  

P3 Solution 20000 2.0 7000 3.2 2.5  

 

Table 4. Fit parameters of the lifetime fits in Figure 12, fitted with the biexponential equation 

y = 1*exp(-x/t1) + A2*exp(-x/t2) + y0 

 

 

Photocurrent voltage curve for monochromatic illumination 

 

Figure 13. Photocurrent voltage curve of the copolymers under monochromatic illumination at 

570 nm. 
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P2: fits with the dipole model 
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Figure 14. Fits with the dipole model and different fit parameters.1 It is shown that the data of 

P2 can be fitted with increased dipole strength α by increasing the effective mass meff. All other 

fit parameters stayed the same. Other fit parameters used (also in the main article): τ0ν0exp(-

2γr) = 40. 

 

Solar cell parameters 

 

Polymer ISC (mA cm-2) VOC (V) FF (%) PCE (%) 

P1 1.56 0.62 24.6 0.23 

P2 0.92 0.74 16.4 0.11 

P3 1.52 0.50 36.0 0.26 

 

Table 5. Characteristic parameters for the bilayer (co)polymer/C60 solar cells measured under 

AM 1.5 illumination. 
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ABSTRACT 

The synthesis and analysis of solution processable polymers for organic solar cells is crucial for 

innovative solar cell technologies such as printing processes. In the field of donor materials for 

photovoltaic applications, polymers based on tetraphenylamine (TPA) are well known hole 

conducting materials. Here, we synthesized two conjugated TPA containing copolymers via 

Suzuki polycondensation. We investigated the tuning of the energy levels of the TPA based 

polymers by two different concepts. Firstly, we introduced an acceptor unit in the side chain. 

The main-chain of this copolymer was built from TPA units. The resulting copolymer 2-(4-((4'-

((4-(2-ethylhexyloxy)phenyl)(para-tolyl)amino)biphenyl-4-yl)(para-tolyl)amino)benzylidene) 

malononitrile P1 showed a broader absorption up to 550 nm. Secondly, we used a donor-

acceptor concept by synthesizing a copolymer with alternating electron donating TPA and 

electron withdrawing Thieno[3,4-b]thiophene ester units. Consequently, the absorption 

maximum in the copolymer octyl-6-(4-((4-(2-ethylhexyloxy)phenyl)(p-tolyl)amino)phenyl)-4-

methylthieno[3,4-b]thiophene-2-carboxylate P2 was red shifted to 580 nm. All three polymers 

showed high thermal stability. By UV-vis and Cyclic voltammetry measurements the optical and 

electrochemical properties of the polymers were analyzed.  

 

1. INTRODUCTION 

Detailed research has been done in the field of copolymers used in organic photovoltaics. There 

are various combinations of donor and acceptor monomers to get copolymers with donor-

acceptor interactions. This interaction leads to a lowering of the optical gap, mainly via 

intramolecular charge transfer absorption. Therefore, the copolymer can harvest more efficient 

light when used in a solar cell. Furthermore, it is possible to adjust the HOMO and LUMO levels 

of the copolymer, which decides the obtainable photovoltage. Most of the copolymers show hole 

transport behavior. In this work we want to understand what happens when introducing an 

acceptor directly in the main chain of the copolymer in contrast to attaching the acceptor moiety 

in the side chain. This results in two main chain conjugated polymers with different properties. 

We analyse the optical and electronic properties. The copolymers presented here are based on 

Triphenylamine (TPA) derivatives. They have been widely studied in the past years as donor 

molecules.1

 

 We wanted to combine the good charge carrier transport properties with a very 

good film forming behavior by synthesizing amorphous copolymers with TPA units.  

 

 

 



 
163 

2. Results 

Sec. 2.1 Triphenylamine containing copolymers  

Here we synthesized two different TPA containing alternating copolymers by straight forward 

AA/BB type Suzuki polycondensation. The synthesis will be published elsewhere and the 

structures are given in Figure 1. Firstly, we synthesize an alternating copolymer with a 

tetraphenylbenzidine (TPD) main chain P1 with an electron withdrawing dicyanovinyl group. 

This copolymer was obtained by polymer analogous Knoevenagel condensation of a precursor 

polymer carrying aldehyde groups in alternating TPA units. Secondly, we prepared a TPA based 

copolymer with the electron accepting thieno[3,4-c]thiophene (TT) comonomer via 

polycondensation of two monomers. This TT derivative is known to stabilize the quinoid 

structure. Therefore, we wanted to study the influence of the TT unit in lowering the  optical gap 

of the resulting copolymer.  

 

Figure 1. Structures of the copolymers, P1 with a TPD main chain and an acceptor in the side chain and 

the copolymer P2 with an alternating TT unit as electron acceptor and quinoid stabilizing comonomer.  

Sec. 1.2 Characterization  
 
The weight-average molecular weights (Mw) of the copolymers P1 and P2 were determined by 

Size exclusion chromatography (SEC). For P1, THF and for P2 chlorobenzene was used as eluent. 

For calibration, a polystyrene standard was used. P1 had a Mw of 16030 g/mol with a PDI of 2.60 

and P2 had a Mw Table 1 of 55360 g/mol with a PDI of 4.91. The values are summarized in . 
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Table 1. Mw measured by SEC, thermal and optical properties in CHCl3 solution (0.02 mg/ml) and in film 

(1 wt.% in CHCl3

Polymer 

) of the copolymers P1 and P2. 

Mw PDI  [g/mol] Tg T [°C] 5% λ [°C] Solution λ [nm] Film [nm] 
P1 16030 1.35 212 410 371, 468 366, 458 

P2 55360 4.91 118 370 298, 366, 500  301, 380, 514 

 

The copolymers showed high thermal stability in thermogravimetric analysis (TGA) with 

temperatures of 5 % weight loss ranging from 402 to 410 °C. Both copolymers were analyzed by 

Differential Scanning Calorimetry (DSC). The copolymers show glass transition temperatures at 

212 °C and 118 °C for P1 and P2 respectively (see Table 1). Thus, the copolymers are amorphous 

and have an excellent film forming behavior without any crystallization effects.  

The optical characterization of the copolymers is done by UV-vis spectroscopy in film (Figure 2). 

The spectrum of P1 clearly shows the transition of the TPD backbone at 376 nm. Additionally, a 

new band assigned to a charge transfer band at 468 nm occurs. Copolymer P2 shows two 

transitions for the TPA (366 nm) and the TT (298 nm) in the backbone. Also a red shifted broad 

band occurs at 514 nm due to a strong donor acceptor interaction. Additionally, the stronger 

oscillator strength of copolymer P2 substantiates that a stronger CT interaction is present.   

 
Figure 2. UV-vis spectra of P1 and P2 in solution (2 mg/ml in CHCl3) and in film spin coated from 1 wt % 

solution in CHCl3

We also investigated the electronic properties of our copolymers with Cyclic voltammetry (CV). 

The measurements were carried out in DCM with Ferrocene as reference. The HOMO levels of 

the copolymers are -5.09 eV and -4.94 eV for P1 and P2 respectively. Copolymer P2 shows a 

. P2 shows the transition of the TPD backbone at 376 nm. The CT band of P3 is red 

shifted due to a stronger donor-acceptor interaction.   
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lower optical gap of 2.10 eV compared to P1 with an optical gap of 2.24 eV. Therefore, the LUMO 

level of P1 is -2.85 eV and -2.84 eV for P2. 

 
Tabelle 1. Oxidation Potential vs. Ferrocene (Fc) and HOMO values from CV measurements. LUMO values 

calculated by the optical gap from UV vis measurements. 

Polymer Eox1 HOMO [eV]  vs. Fc 
[eV] 

Eg LUMO [eV] [eV] 

P1 0.29 -5.09 2.24 -2.85 

P2 0.14 -4.94 2.10 -2.84 

 

In conclusion, we showed the comparison of two different TPA containing copolymers. One 

copolymer was synthesized with an electron acceptor in the side chain. The other copolymer had 

an electron withdrawing comonomer directly in the main chain. These two copolymers are 

promising materials for the application in organic field effect transistors and other organic 

electronic applications.  

 

ACKNOWLEDGEMENT 

We acknowledge financial support from EU project LARGECELLS (Grant No. 261936) and KN 

acknowledges support from BayEFG for a stipend. 

 

REFERENCES 

1. M. Thelakkat, Macromol. Mater. Eng. 2002, 287, 442–461. 

 

 

 

 

 



 
166 

 

 

 

 

 

 



 
167 

List of publications 

 

 

• K. Neumann, M. Thelakkat; “Synthesis and characterization of donor-acceptor 

copolymers carrying triphenylamine units for photovoltaic applications”, Proceedings of 

SPIE 8477, Organic Photovoltaics XIII 201, 84771H. 

• P. Goldberg-Oppenheimer; D. Kabra; S. Vignolini; S. Hüttner; M. Sommer; K. Neumann; M. 

Thelakkat; U. Steiner; “Hierarchical Orientation of Crystallinity by Block-Copolymer 

Patterning and Alignment in an Electric Field“, Chemistry of Materials 2013, 25(7), 1070. 

• K. Neumann, C. Schwarz, A. Köhler, M. Thelakkat; “Influence of the Excited-State Charge-

Transfer Character on the Exciton Dissociation in Donor−Acceptor Copolymers“,  Journal 

of Physical Chemistry:  C 2014, 118, 27-36. 

• K. Neumann, M. Thelakkat, “Perovskite Solar Cells Involving 

Poly(tetraphenylbenzidine)s: Investigation of Hole Carrier Mobility, Doping effects and 

Photovoltaic Properties“, RSC Advances, 2014, Accepted Manuscript, 

DOI: 10.1039/C4RA05564K. 

 

 

 

 

 

 

 

 

 

 

 



 
168 

 

 

 

 



 
169 

Danksagung 

 

An dieser Stelle bedanke ich mich herzlich bei allen, die direkt oder indirekt zum Gelingen dieser 

Arbeit beigetragen haben.  

Als erstes möchte ich mich ganz besonders bei meinem Betreuer Prof. Mukundan Thelakkat 

bedanken, der mir die Möglichkeit geboten hat an diesem spannenden und vor allem 

abwechslungsreichen Thema zu arbeiten. In der Zeit meiner Doktorarbeit hat er mich darin 

unterstützt mich fachlich als auch persönlich weiterzuentwickeln. Zudem empfand ich die 

Atmosphäre in der Arbeitsgruppe als sehr positiv. Besonders die vielen Gelegenheiten an 

internationalen Konferenzen mit eigenem Beitrag teilnehmen zu dürfen sind keine 

Selbstverständlichkeit. Herzlichen Dank! 

Für die finanzielle Unterstützung im Rahmen eines Graduiertenstipendiums möchte ich mich bei 

der Universität Bayern e. V. bedanken. Dies erlaubte mir die Teilnahme an Konferenzen und 

meinen Auslandsaufenthalt in Melbourne, Australien.  

Außerdem bedanke ich mich beim Graduiertenkolleg „Photophysik synthetischer und 

multichromophorer Systeme“ für die Möglichkeit mit den Doktoranden aus den anderen 

Fachrichtungen in Kontakt zu kommen, woraus viele hilfreiche Diskussionen entstanden sind.  

Bei Prof. Anna Köhler und Dr. Christian Schwarz vom Lehrstuhl Experimentalphysik II bedanke 

ich mich für die erfolgreiche und interessante Zusammenarbeit. Beide waren eine sehr große 

Hilfe für das Gelingen dieser Arbeit. Mein Dank gilt auch dem gesamten Arbeitskreis, die mich 

stets bei vielen kleinen Arbeitsschritten im Messlabor unterstützt haben. Besonders danke ich 

hier Frank Schirmer für die Hilfe bei der Substratherstellung und beim Aufdampfen!  

Weiterhin bedanke ich mich bei Prof. Ralf Moos und Isabella Marr vom Lehrstuhl 

Funktionsmaterialien für die Charakterisierung meiner Polymere als aktive Sensormaterialien, 

welches ohne ihr Zutun nicht möglich gewesen wäre.  

Außerdem möchte ich mich bei Sabrina Willer bedanken, die mich während ihrer 

Zulassungsarbeit tatkräftig mit Synthesen unterstützt hat.  

Ganz besonders möchte ich allen Mitarbeitern des Lehrstuhls Makromolekulare Chemie I 

danken! Die schöne Atmosphäre, Hilfsbereitschaft und Offenheit haben mir die Zeit am 

Lehrstuhl sehr angenehm gemacht. Ich werde an diese Zeit sehr gerne zurück denken und 

immer in sehr guter Erinnerung behalten. Die vielen, hilfreichen Diskussionen und Anregungen 



 
170 

sei es im Labor oder im Kaffeezimmer haben mir geholfen den Doktorandenalltag zu bewältigen. 

Nicht weniger hat der viele Spaß, den wir miteinander am Lehrstuhl hatten zum Erfolg der 

Arbeit beigetragen! Ganz besonders danke ich hier Anne Neubig, Andreas Ringk, Tina Weller, 

Andreas Lang, Christian Bartz, Florian Wieberger, Julia Singer, Ruth Lohwasser und dem 

gesamten Flashgames-Labor (Johannes Heigl, Christian Probst, Andreas Haedler). Vielen Dank 

auch an Katja Gräf, mit der ich viele erfolgreiche und lustige Stunden bei der Erforschung der 

Perovskit-Solarzellen gehabt habe, sowie Tanaji Gujar, der ein toller Nachfolger von ihr 

geworden ist. Besonders danke ich Helga Wietasch für die beste Laboratmosphäre, die man sich 

vorstellen kann! Außerdem für viele kleine Hilfen im Laboralltag. Vor allem gilt mein Dank auch 

den Gerätebetreuern und Technikern, die immer mit Rat und Tat zur Hilfe gestanden haben. 

Danke auch an Petra Weiss und Christina Wunderlich für die Unterstützung bei 

organisatorischen und bürokratischen Angelegenheiten während der ganzen Zeit. 

Zuletzt gilt mein größter Dank meiner Familie! Meiner Mutter Angelika, meinem Vater Werner 

und meinem Freund Christian! Danke, an meine Eltern, dass sie mir immer die Freiheit gelassen 

haben meine Entscheidungen selbst zu treffen und mich dabei bedingungslos zu unterstützen. 

Ihr alle drei habt mir in allen Situationen helfend zur Seite gestanden. Ohne Euch wäre all dies 

nicht möglich gewesen! Besonders danke ich auch meiner Oma, die mich dazu ermutigt hat 

immer weiter zu lernen und zu arbeiten, um meine Ziele zu erreichen. Auch Margit und Werner 

gilt mein herzlichster Dank. Außerdem danke ich Elfriede und Hans sowie Ulrike für ihre 

Unterstützung.  

 

 

DANKE! 

 

 

 

 

 

 

 

 

 



 
171 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
172 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
173 

(Eidesstattliche) Versicherungen und Erklärungen 

(§ 8 S. 2 Nr. 6 PromO) 

Hiermit erkläre ich mich damit einverstanden, dass die elektronische Fassung meiner 

Dissertation unter Wahrung meiner Urheberrechte und des Datenschutzes einer gesonderten 

Überprüfung hinsichtlich der eigenständigen Anfertigung der Dissertation unterzogen werden 

kann. 

 

(§ 8 S. 2 Nr. 8 PromO) 

Hiermit erkläre ich eidesstattlich, dass ich die Dissertation selbständig verfasst und keine 

anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt habe.  

 

(§ 8 S. 2 Nr. 9 PromO) 

Ich habe die Dissertation nicht bereits zur Erlangung eines akademischen Grades anderweitig 

eingereicht und habe auch nicht bereits diese oder eine gleichartige Doktorprüfung endgültig 

nicht bestanden. 

 

(§ 8 S. 2 Nr. 10 PromO) 

Hiermit erkläre ich, dass ich keine Hilfe von gewerbliche Promotionsberatern bzw. -vermittlern 

in Anspruch genommen habe und auch künftig  nicht nehmen werde. 

 

 

Bayreuth, den 30.06.2014 

 

Katharina Neumann 


	Deckblatt
	Erste Seiten+Table of contents
	Chapter 1 Summary
	Chapter 2 Introduction fertig
	1.1 Organic/hybrid photovoltaics - Motivation
	1.2 Types of organic solar cells
	Perovskite solar cells

	1.3 Characterization of organic solar cells
	1.4 Organic semiconducting polymers
	Donor-acceptor concept
	Polymerization methods
	Hole transporting materials
	Electron transporting materials

	1.5 Charge transport in organic semiconducting polymers
	Time of flight technique
	Space charge limited current
	Organic field effect transistors (OFET)

	1.6 Organic semiconductors for sensor applications
	1.7 References

	Chapter 3 Objective
	Chapter 4 Overview
	Individual contributions to joint publications

	Chapter 5 In situ perovskite
	Chapter 6 Perovskites involving PTPDs
	Chapter 7 Sensors
	Chapter 8 Influence of the CT character
	Influence of the Excited-State Charge-Transfer Character on the Exciton Dissociation in Donor−Acceptor Copolymers
	Materials
	1‐Bromo‐4‐[(2‐ethylhexyl)oxy]‐benzene
	4-(2-Ethylhexyloxy)-N,N-diphenylaniline
	4-Bromo-N-(4-bromophenyl)-N-(4-(2-ethylhexyloxy)phenyl)aniline (1)
	4-(2-Ethylhexyloxy)-N,N-bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)aniline (2)
	4-(Bis(4-bromophenyl)amino)benzaldehyde (3)
	Monomer 4
	4-Bromothiophene-3-carbaldehyde
	Octyl-thieno[3,4-b]thiophene-2-carboxylate
	Octyl-4,6-dibromo-thieno[3,4-b]thiophene-2-carboxylate (4)


	1H-NMR
	FT-IR spectra
	Cyclic voltammetry
	Space charge limited current measurements
	Lifetime measurements
	Photocurrent voltage curve for monochromatic illumination
	P2: fits with the dipole model
	References

	Chapter 9 Appendix
	List of Publications
	Danksagung
	Erklärung

