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ABSTRACT

This thesis considers the ultrafast nonlinear dynamics of various processes in individ-
ual metallic and semiconductor nanostructures without averaging over ensembles.
Single nanoobjects with a size of a few nanometers show exceptional linear and
nonlinear optical behavior. Ultrafast nonlinear spectroscopy investigates the time
dependent deviations from linear light-matter interaction with sub-picosecond tem-
poral resolution. The already weak nonlinear response of bulk matter is reduced
further when single nanoobjects such as quantum dots, molecules, or nanoparticles
are investigated. Optical nanoantennas, composed of plasmonic nanostructures, are
a novel tool to investigate previously unattainable dimensions in the nanocosmos
by locally increasing the light-matter interaction. We aim for the theoretical de-
velopment and �rst experimental realization of an optical antenna to enhance the
ultrafast nonlinear response of a single nanoobject. This requires highly sensitive
experimental methods and e�cient modeling and optimization techniques by apply-
ing various numerical methods and models.

First, we introduce our method of highly sensitive and shot-noise limited tran-
sient di�erential transmission spectroscopy, followed by the implementation of a
time-resolved single photon counting photoluminescence setup and dark-�eld spec-
troscopy setup. We provide an overview on the developed and applied numerical
models which form the basis of our theoretical work. In particular, we introduce a
model to predict the polarization dependent higher harmonic emission of complex
nanostructures.

In the next part, we demonstrate for the �rst time how an extremely weak non-
linear signal can be enhanced by an optical nanoantenna. For this purpose we use
the transient optical response of a mechanically oscillating single gold nanodisc. The
antenna is a second gold nanodisc with a larger diameter and placed closely to the
particle under study. In this con�guration, the antenna enhancement can be un-
derstood in the plasmon hybridization framework, where the antenna-nanoparticle
interaction modulates the weak nonlinear response of the nanoparticle on the much
stronger antenna signal. We provide a detailed introduction to the theoretical mod-
eling and the experimental analyses. The good agreement supports the picture of
modulating the desired signal of a tiny nanoparticle on a strong carrier signal of the
antenna, in analogy to radio-frequency equivalents.

Furthermore, our sensitive pump-probe setup allows us to investigate for the �rst
time spectrally resolved ultrafast carrier dynamics in quantum con�ned states of a
single CdSe nanowire. We measure the pump induced bleaching of several excitonic
transitions which gives insight into previously hidden processes and numbers such
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as the time dependent population of various states. We discuss the observed char-
acteristic short and long living phenomena and �nd indications for re-absorption
processes of emitted photons. Finally, we investigate and discuss the interaction
between a single CdSe wire and a plasmonic nanoantenna.

In the last part of the thesis we provide a general discussion about optical nanoan-
tennas. For this purpose, we introduce a point dipole approach, based on the
discrete dipole approximation method, and focus on the fundamental interaction
mechanisms between nanoparticle and antenna. Furthermore, the strongly reduced
computation e�ort allows us to analyse previously unattainable, large parameter
spaces. The method is applied to investigate the crucial antenna parameters to
achieve maximum e�ciency. By implementing a genetic algorithm we provide a
�rst step to �nd optimized many-particle antenna geometries.
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ZUSAMMENFASSUNG

Die vorliegende Arbeit befasst sich mit der ultraschnellen nichtlinearen Dynamik
verschiedener Prozesse in individuellen metallischen und halbleitenden Nanostruk-
turen, ohne die Mittlung über Ensembles. Nanoobjekte mit einer Gröÿe von nur
wenigen Nanometern zeigen auÿergewöhnliche lineare wie auch nichtlineare optische
Eigenschaften. Die zeitabhänginge Abweichung von linearer Licht-Materie Wech-
selwirkung wird mittels ultraschneller nichtlinearer Spektroskopie untersucht, bei
einer Zeitau�ösung von weniger als einer Pikosekunde. In der Erforschung einzel-
ner Nanoobjekte, wie Quantenpunkte, Moleküle oder Nanopartikel, ist das bereits
schwache nichtlineare Signal von makroskopischer Materie weiter verringert. Op-
tische Nanoantennen, bestehend aus plasmonischen Nanoobjekten, erhöhen lokal
die Licht-Materie Wechselwirkung und bieten ein neues Hilfsmittel um zuvor un-
zugängliche Gröÿen des Nanokosmos zu untersuchen. Die Entwicklung und An-
wendung solcher Antennen zur Verstärkung ultraschneller nichtlinearer Signale von
einzelnen Nanoobjekten soll erstmalig umgesetzt werden und erfordert hochsensitive
experimentelle Methoden und eine gezielte Modellierung und Optimierung wobei nu-
merischen Lösungsverfahren und Modellbildung zum Einsatz kommen.

Im ersten Teil der Arbeit wird auf unsere Methode der hochsensitiven 'zeitabhängi-
gen di�erenziellen Transmissions-Spektroskopie' eingegangen, gefolgt von den Er-
weiterungen für zeitaufgelösten 'Einzelphotonen Photolumineszenz-Spektroskopie'
und 'Dunkelfeld-Spektroskopie'. Weiterhin bieten wir einen Überblick über die ent-
wickelten und angewandten numerischen Modelle, welche als Basis unserer theo-
retischen Arbeit dienen. Im Besonderen wird ein Modell zur Vorhersage der polari-
sationsabhängigen Emission höherer Harmonischer von komplexen Nanostrukturen
vorgestellt und diskutiert.

Der nächsten Abschnitt befasst sich mit der erstmaligen Realisierung einer op-
tischen Nanoantenne zur Verstärkung eines extrem schwachen nichtlinearen Sig-
nals. Zu diesem Zweck verwenden wir die zeitabhängige Modulation der optischen
Eigenschaften eines einzelnen Gold-Nanopartikels, verursacht durch dessen mecha-
nische Oszillationen. Die Antenne wird durch eine zweite, gröÿere Nanostruktur
realisiert und be�ndet sich im Abstand von nur wenigen Nanometern zum unter-
suchten Nanopartikel. Die Wechselwirkung zwischen beiden Nanoobjekten und die
angestrebte Antennenverstärkung kann im Rahmen der Plasmonhybrisierung ver-
standen werden. Dabei wird das schwache, nichtlineare Signal des Nanopartikels
auf das starke Trägersignal der Antenne moduliert. Wir bieten eine detaillierte
Einführung in die theoretische Modellierung und experimentelle Analyse. Die gute
Übereinstimmung bestätigt die Analogie zu bekannten Radiofrequenzantennen die
bei niedereren Frequenzen arbeiten.
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Im Weiteren ermöglicht unsere hochsensible Methode zum ersten Mal die spek-
tral aufgelöste Untersuchung von ultraschnellen Ladungsträgerdynamiken innerhalb
quantisierter Zustände eines einzelnen CdSe Nanodrahtes. Wir messen das anre-
gungsinduzierte Bleichen unterschiedlicher Exzitonenübergänge und erhalten Ein-
sicht in zuvor versteckte Prozesse und Gröÿen wie zum Beispiel die zeitabhängige
Population verschiedener Zustände. Die beobachteten Phänomene spielen sich auf
unterschiedlichen Zeitskalen ab und werden im Einzelnen diskutiert. Weiterhin
�nden wir Hinweise für Reabsorptionsprozesse von emittierten Photonen. Zuletzt
untersuchen und diskutieren wir die Wechselwirkung zwischen einem einzelnen CdSe
Nanodraht und einer plasmonischen Antenne.

Der letzte Teil der Arbeit bietet eine allgemeine Diskussion von optischen Nanoan-
tennen. Zu diesem Zweck verwenden wir einen Punkt-Dipol Ansatz auf Basis
der 'Discrete Dipole Approximation', um im Weiteren besonderen Wert auf die
elementaren Wechselwirkungsmechanismen zwischen Nanopartikel und Antenne zu
legen. Weiterhin erlaubt uns der stark reduzierte Rechenaufwand riesige, zuvor
unzugängliche Parameterräume zu analysieren. Wir verwenden die Methode und
diskutieren die relevanten Eigenschaften einer optischen Nanoantenne mit maxi-
maler E�zienz. Mittels der Implementierung eines genetischen Algorithmus bieten
wir einen ersten Schritt zum Au�nden optimaler Mehr-Teilchen Antennengeome-
trien.
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1
INTRODUCTION AND OUTL INE

Nanoobjects which consist of a few hundreds to a few hundreds of thousands of
atoms bridge the gap between atomistic and bulk behavior. At these scales, sin-
gle mesoscopic nanostructures with a size of a few nanometers show exceptional
linear and nonlinear properties which make them to essential objects in fundamen-
tal research, novel technologies, and future applications. Among the wide �eld of
nanoscale science, nanooptics investigates the linear and nonlinear light-matter in-
teraction of subwavelength nanosystems in the visible spectrum. One of the most
fundamental and amazing topics of this �eld of research is the ability of shaping the
interaction of light and matter, especially the linking of di�erent nanosystems via
their electromagnetic interaction to complex networks.

Sophisticated fabrication techniques and methods such as electron beam lithog-
raphy or chemical synthesis allow the production of a wide range of nanoobjects.
Prominent examples of particular interest are plasmonic nanostructures and meta-
materials, arti�cial atoms such as semiconductor nanocrystals and epitaxial semi-
conductor quantum dots, but also carbon nanotubes, graphene nanodots, single
molecules, or dielectric microcavities [1�9]. Besides the fundamental physical inter-
est in metal and semiconductor nanosystems, which we are going to investigate in
greater detail, �rst applications in optical sensors and �lters or bio-medical imaging
and diagnostics have been developed [10�14]. The great success of these nanoobjects
for this kind of applications is due to their linear optical properties and the wide
spectral tunability of absorbing but also emitting states dependent on the material
and geometric properties of the nanoparticle.

Arti�cial atoms such as nanoscopic semiconductor quantum systems show discrete
electron and hole state energies, strongly deviating from the bulk band struc-
ture [4]. The quantum con�nement, determined by the geometrical properties of
the nanosystem, allows the tailoring of speci�c spectral properties. Simultaneously,
their longevity and stability are clear advantages compared to single molecules and
are essential for technological applications. In the age of quantum information,
arti�cial atoms provide a basis for optical integrated circuits and quantum net-
works [15]. At ultra-low temperatures, the elementary building blocks such as single
photon sources, but also simple quantum gates have been experimentally demon-
strated [16, 17]. In cavity quantum electrodynamics, strong coupling between a sin-
gle emitter and a cavity system is investigated and provides the basis for quantum
information processing [18]. Semiconductor nanowires are novel one-dimensional
nanostructures which combine the quantum properties with strongly anisotropic
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4 1 introduction and outline

behavior at room temperature. This makes them very appealing systems for funda-
mental research, future technologies, and next generation solar cells [19�22].

Localized surface plasmons are the classical coherent oscillation of the quasi free
conduction band electrons in the con�nement of a metal nanoparticle. Di�erent
plasmon mode resonances shape the spectral response of subwavelength structures
and are determined by the dielectric constants of the used metal but also by the size,
shape, excitation properties, and environment of the nanoobject [23]. In resonance,
the periodic displacement of the free carriers with respect to the quasi static ionic
lattice, combined with the large free carrier density leads to strong dipole moments
and e�cient far-�eld coupling and emission [24]. The corresponding electric near-
�elds can exceed the excitation �eld intensity by orders of magnitude and allows the
electromagnetic interaction of individual metal nanostructures [25, 26]. In analogy
to molecular orbital theory, plasmon hybridization gives an intuitive description
for the mixing of elementary plasmonic modes into new hybrid modes with corre-
sponding eigenenergies [27, 28]. This provides additional parameters to shape the
optical properties and electric near-�elds of complex metallic nanosystems as shown
in many fascinating examples [29, 30]. Plasmonic metamaterials are arti�cial large
area structures with engineered optical properties which cannot be found in natural
matter. Common examples are negative refractive index media, superlenses, and op-
tical cloaking [31�33]. Furthermore, sharp plasmon resonances and their sensitivity
to the environment make them to popular candidates for optical sensors [11, 34, 35].

Although the linear properties of these nanosystems are mainly well understood,
the nonlinear and especially ultrafast processes are still under discussion and con-
tent of current research. Ultrafast nonlinear spectroscopy investigates the deviations
from linear light-matter interaction appearing on sub-picosecond timescales. How-
ever, even with the best preparation methods, the individual objects of interest
di�er from each other in size, shape, or local environment, rendering the necessity
of single object experiments. Here, the weak nonlinear response is reduced further
and becomes almost impossible to detect due to the tiny interaction cross sections of
the nanoobjects and the incident light �eld [36�39]. Surface enhanced Raman spec-
troscopy uses the surface roughness of metals to increase the Raman scattering of
single molecules or other nanostructures by random local �eld enhancement [40, 41].
Optical antennas are contrived metal nanostructures based on plasmonic objects
and promise controlled signal enhancement to open a new regime in linear and
nonlinear spectroscopy on the nanoscale [42, 43]. The conversion of the incoming
light into strongly ampli�ed and localized �elds enhances the light-matter interac-
tion within the volume of a nanofocus. Di�erent antenna designs are suggested to
achieve strong �eld, signal, or directivity enhancement, inspired by radio-frequency
equivalents to link various subsystems over large distances [24, 44, 45]. However,
the fabrication limitations and especially the characteristic properties of metals in
the optical spectrum complicate the downscaling into the nanometer regime [46].
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In this thesis, we aim for the investigation of di�erent ultrafast nonlinear processes
in individual metallic and semiconductor nanostructures without averaging over en-
sembles. For this purpose, we want to theoretically study, develop, and apply optical
antennas for nonlinear spectroscopy, based on plasmonic nanostructures. Chapter 2
will provide an introduction into the theoretical and experimental concepts of ultra-
fast nonlinear nanooptics. We will introduce the basic set of di�erential equations
and use the example of gold to consider the linear material response of noble metals.
Mie theory will be applied to describe the scattering of a plane wave by a spheri-
cal particle and to introduce the fundamentals of localized surface plasmons which
shape the linear spectral response of metal nanoparticles. Furthermore, we will
present a classical model for the light-matter interaction of semiconductor nanos-
tructures and excitonic transitions, followed by a review about ultrafast nonlinear
optics. At the end of this chapter, we will introduce the applied experimental
techniques of transient transmission spectroscopy, time-resolved photoluminescence
measurements, and dark-�eld microscopy.

Chapter 3 will brie�y introduce the �nite element method and present the developed
and applied numerical models which allow us to compute the scattering of di�er-
ent types of nanosystems in speci�c boundary conditions. In particular, we will
discuss our model for the computation of the higher harmonic generation in com-
plex coupled nanostructures which allows the prediction of the polarization resolved
higher harmonic emission. In order to compute the interaction of chiral media and
plasmonic antennas, we will show the implementation of the constitutive material
equations into our model.

In chapter 4 we will present the �rst realization of an optical nanoantenna for ul-
trafast nonlinear spectroscopy and investigate the time resolved acousto-plasmonic
response of single tiny metal nanoparticles. The partial absorption of the excitation
laser pulse launches mechanical vibration of the structure's lattice which leads to a
perturbation of the optical properties. We will give a full theoretical description of
the optical excitation and interrogation processes. This will allow us to investigate
the size dependent mechanical properties and the mechanical mode spectrum of tiny
metal nanoparticles. However, the rapidly reducing signal intensity for decreasing
particle sizes limits our investigations of smaller structures and requires the appli-
cation of an optical nanoantenna. Based on plasmon hybridization, we will discuss
the antenna mechanisms and their in�uences on the excitation and interrogation
process. We will theoretically optimize the antenna structure and present the ex-
perimental realization of an optical nanoantenna for ultrafast spectroscopy, which
enhances the nonlinear response of a single nanoparticle by one order of magnitude.

The ultrafast carrier dynamics in quantum con�ned states of a single CdSe nanowire
will be investigated in chapter 5. Semiconductor nanostructures which are on the
size of the exciton Bohr radius show quantum con�ned states of the electron and
the hole. We will experimentally determine the population of the several states and
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apply a six-band-e�ective mass model to predict the optically allowed transition
energies. This will give us insight into previously unattainable carrier dynamics
in quantized states of a semiconductor nanowire. We will separately discuss the
observed characteristic short and long living features in the transient absorption
spectra and directly extract the lifetime of various transitions. Furthermore, we
will discuss the correlations between state populations, quantum e�ciency, and
time resolved photoluminescence measurements of di�erent single wires. It will be
shown that the discrepancy between the number of excited and radiatively decayed
excitons gives us hints on re-absorption processes, after emission of a photon. Fi-
nally, we will present our theoretical and experimental work of coupling a single
CdSe nanowire to a plasmonic antenna.

In the last part of this thesis, in chapter 6, we will generally discuss the crucial
parameters for an optical nanoantenna to achieve maximum e�ciency and signal
enhancement of the linked nanosystem. For this purpose, we will introduce a point
dipole approximation model for the fast computation and optimization of complex
plasmonic antennas so that large parameter spaces can be investigated. We will
show that our model can predict the linear and nonlinear response of complex cou-
pled plasmonic nanostructures. Furthermore, we will consider the limitations of our
model. The method will be applied to discuss the optimum antenna parameters for
the cases when the nanoobject does signi�cantly in�uence the overall response or
not. Finally, we will discuss the implementation of an evolutionary algorithm to
�nd advanced antenna geometries, consisting of several nanoparticles.



2
ULTRAFAST NONL INEAR NANOOPTICS :
PR INC IPLES OF THEORY AND EXPERIMENT

2.1 light-matter interaction on the nanoscale

Nanoobjects with sizes between 1 nm and 100 nm are mesoscopic systems showing
fascinating optical properties, strongly deviating from their pure atomistic or bulk
behavior. As long as the quantum mechanical character can be neglected, the light
matter interaction and resulting electromagnetic phenomena are fully described by
Maxwell's equations [47, 48]

∇× E +
∂

∂t
B = 0 (2.1)

∇×H− ∂

∂t
D = J (2.2)

∇ ·D = ρe (2.3)

∇ ·B = 0 (2.4)

with E and H being the complex electric and magnetic vector �elds, ρe the electric
charge density and J the current density. For simplicity, the contribution of di�erent
media is embedded in the displacement �eld D and magnetic �ux density B. The
constitutive equations for optically inactive materials are de�ned as

D = ε0εrE = ε0E + P (2.5)

B = µ0µrH = µ0H + M , (2.6)

where the relative permittivity εr and permeability µr tensors are introduced to
describe the material properties. The separation of the incident electromagnetic
�eld allows the de�nition of the electric polarization density P and magnetization
M, both expressing the density of induced or oriented electric and magnetic dipole
moments, respectively. In general, the material response is a function of frequency
so that either experimentally determined data [49, 50] or physical models [51�53]
for εr(ω) and µr(ω) have to be applied. At photon energies between 1.5 eV and

3.5 eV, the electric response εr(ω) of most materials is shaped by the response of
electrons, and the contribution of vibrational and rotational modes can be neglected.
Furthermore the magnetic response vanishes (µr = 1) for most materials and the
complex refractive index n+ iκ at optical wavelengths is given by

n2 =
1

2

(√
ε′2 + ε′′2 + ε

′
)

(2.7)

κ2 =
1

2

(√
ε′2 + ε′′2 − ε′

)
. (2.8)

7
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2.1.1 Linear material response

In solid state physics, isolators, semiconductors, and metals di�er in their electronic
band structure. The Drude-Lorentz theory [52] o�ers a simple classical model to
describe the frequency dependent dielectric response function εr(ω) = ε

′
(ω)+ iε

′′
(ω)

of an isotropic medium. While the Lorentz term describes electrons bound to spa-
cially �xed atom cores under the assumption of a harmonic potential, the Drude
term considers a free electron gas to approximate the behavior of quasi free electrons
in the conductance band of a metal. Optical transitions as for example between the
valence and conduction band in semiconductors, or higher band excitations are not
described by this theory. The linear equation of motion for a bound electron driven
by a monochromatic �eld with amplitude E0 and frequency ω is given by

d2r

dt2
+ γL

dr

dt
+ ω2

0r =
e

me

E0 · exp (iωt) (2.9)

with r being the displacement from the electron's equilibrium position, γL and ω0

the decay rate and eigenfrequency of the oscillator, e the elementary charge, and
me the free electron mass. With the solution of equation 2.9, the induced local
dipole moment is given by ploc(t) = −e ·r(t). Consequently the electric polarization
density

P = −ne · ploc = −ne
e2/me

(ω2
0 − ω2) + iωγL

· E0 · exp (iωt) (2.10)

can be derived, by taking the electron density ne into account. Following equa-
tion 2.5, the complex relative permittivity εr,L = ε

′
r,L + iε

′′
r,L is given by

εr,L = 1 +
ne
ε0

e2/me

(ω2
0 − ω2) + iωγL

(2.11)

or decomposed into real and imaginary part by

ε
′

r,L = 1 +

(
nee

2

meε0

)
ω2

0 − ω2

(ω2
0 − ω2)

2
+ ω2γ2

L

(2.12)

ε
′′

r,L =

(
nee

2

meε0

)
ω/τ

(ω2
0 − ω2)

2
+ ω2γ2

L

. (2.13)

A quasi free electron follows the same equation of motion but without restoring
force (ω0 = 0). Hence equations 2.12 and 2.13 are simpli�ed to

ε
′

r,D = 1−
ω2
p

ω2 + γ2
D

; ε
′′

r,D =
ω2
pγD

ω3 + ωγ2
D

(2.14)

by introducing the plasma frequency

ωp =

√
nee

2

meε0
(2.15)



2 Ultrafast nonlinear nanooptics 9

(a) (b)

1 2 3 4 5 6
0

5

10

15

20

25

30

energy (eV)

−250

−200

−150

−100

−50

0

200300600 4001200

im
a
g
in

a
ry

 p
a
rt

 o
f 
 r

1 2 3 4 5 6
energy (eV)

200300600 4001200
re

a
l p

a
rt

 o
f 
 r

wavelength (nm)wavelength (nm)

d-band absorption

Drude fit
J.C. data

Figure 2.1

Comparison of the Drude-model �t and experimentally determined real (a) and
imaginary part (b) of the dielectric function of gold. For orientation, the vertical
dashed lines at 850 nm and 400 nm mark the spectral region of interest for this
work.

and the Drude damping γD. The red circles in �gure 2.1 show the real (a) and
imaginary part (b) of the dielectric function εr of gold, measured by Johnson and
Christy [49]. For comparison, the model solution of εr,D with ωp = 8.89 eV and
γD = 7.088 · 10−2 eV are superimposed (black curves) and in a very good agreement
for energies below ≈ 2 eV. The deviation, especially in the imaginary part, for larger
energies stems from the d-band absorption of gold, that is not taken into account
in the Drude model. As a consequence, the numerical simulations presented in this
work are computed with the optical constants determined by Johnson and Christy.
However, the model gives the correlation to elementary physical values and allows
the prediction of small perturbations in the material properties. In chapter 4 it is
used to approximate the nonlinear response of gold nanoparticles, excited by an
ultrashort laser pulse.

2.1.2 Mie theory and plasmons in spherical metal nanoparticles

The derivation of the linear optical properties εr of a metal, following the Drude
approach, assumes an in�nitely extended quasi free electron gas without restor-
ing forces. This corresponds to an in�nitely large material volume and models the
bulk optical properties. Surface plasmons are resonant coherent electron oscillations
within a typical skin depth, for example at a metal-dielectric interface [54]. How-
ever, by decreasing the structure size to particles much smaller than the excitation
wavelength λ0, the electron movement is restricted by the particle boundaries. In
analogy to a single particle in a potential well, the plasma oscillation in a metal
particle has certain discrete eigenenergies. The 'quantum' of the con�ned electron
gas oscillation is called particle plasmon or localized surface plasmon and de�ned
by its resonance energy, plasmon mode, and eigenfunction.
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A fully analytical solution of Maxwell's equation 2.1- 2.4 for a monochromatic plane
wave, scattered by a spherical object was derived by Gustav Mie in 1908 [55]. The
theory allows the extraction of three characteristic geometrical values namely scat-
tering, absorption and extinction cross section which are de�ned as follows.

σscat =
Pscat
Iinc

σabs =
Pabs
Iinc

(2.16)

σext =
Pext
Iinc

(2.17)

= σscat + σabs (2.18)

Iinc is the incident energy �ux density of the excitation wave and Pi the scattered,
absorbed or extinct energy of the particle. In case of the spherical scatterer, the
scattering and extinction cross section can be written as the in�nite series

σscat =
2π

k2

∞∑
n=1

(2n+ 1)(|an|2 + |bn|2)) (2.19)

σext =
2π

k2

∞∑
n=1

Re [an + bn] (2.20)

where k = 2π · nmed/λ is the wavenumber of the excitation wave, and nmed the
refractive index of the environment. Further, the parameters an and bn are given
by

an =
mψn(mx)ψ

′
n(x)− ψn(x)ψ

′
n(mx)

mψn(mx)ξ′
n(x)− ξn(x)ψ′

n(mx)
(2.21)

bn =
ψn(mx)ψ

′
n(x)−mψn(x)ψ

′
n(mx)

ψn(mx)ξ′
n(x)−mξn(x)ψ′

n(mx)

with m =
√
εp/εmed = np/nmed being the ratio of the refractive induces of parti-

cle and environment (µp = µmed = 1). In addition, ψn and ξn are the n-th order
Ricatti-Bessel functions, and x = k · R a size parameter depending in the sphere
radius R.

For simplicity, the d-band absorption of gold is neglected and we use the Drude
model, discussed previously, to describe the optical properties. The upper graph
in �gure 2.2(a) contains the normalized extinction cross section Cext spectrum of
a spherical particle with 100 nm in radius. The surrounding medium is vacuum
with nmed = 1. Several pronounced plasmon resonances are observed. The broad
linewidths reveal the fast dephasing of the plasmon, with lifetimes on the order of
some tens of femtoseconds. The fundamental plasmon mode, labeled n = 1 is in
the optical regime at 2 eV (600 nm), followed by higher order modes, reaching deep
into the UV. The size dependence of the plasmon modes for sphere radii, ranging
from 1 nm to 100 nm, is presented through the normalized extinction spectra in the
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(a) Normalized extinction spectra of a spherical nanoparticle with 100 nm radius and
for sphere radii between 1 and 100 nm, showing the characteristic plasmon mode de-
pendence. (b) Maximum absorption (black), scattering (red), and extinction (blue
dashed) cross section as a function of particle radius in a double-logarithmic plot.
For small sphere radii, absorption goes linearly with the volume (R3), scattering
with volume squared (R6).

lower graph. We observe a shift of the modes to higher energies by decreasing the
particle size. The spectrum of the 1 nm sphere is dominated by the fundamental
mode resonance.

In �gure 2.2(b) the maximum scattering and absorption cross section is plotted
over the particle radius. At radii below 5 nm, the maximum absorption cross sec-
tion goes linearly with the particle volume, the scattering cross section with volume
squared. This behavior changes when Cscat becomes the dominant contribution of
Cext. Here the modes broaden due to increasing radiation losses and a shift to
spectral regions with higher material losses, resulting in a complex behavior. Fur-
thermore, for realistic optical properties of gold, higher energetic plasmon modes
above ≈ 2.25 eV vanish in the d-band absorption. Plasmons in gold nanoparticles
show good tunability over wide ranges in the optical and near infrared spectrum.
In the most general case, plasmons depend on material, size, shape, and polariza-
tion [34, 56]. They can be degenerated in polarization (s-, p- polarization for a
spherical particle) or dipole forbidden (quadrupolar mode), showing negligible far-
�eld interaction and radiative decay. However, the electron movement causes high
electric near-�elds (see subsection 3.2.1) and allows strong plasmon-plasmon inter-
action between separated metallic particles on a nanometer scale. These properties
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open almost in�nite possibilities for sub-wavelength optical devices [57�59], sensing
or labeling applications [34, 60�62]. The combination of high electric near �elds,
spectral tunability, and strong far �eld interaction makes plasmonic nanostructures
to prominent candidates for optical antennas in fundamental nanoscience. Never-
theless, the scattering contribution for small particle sizes is negligible. Thus optical
antennas that have to direct photons from a local source into a certain direction have
to exceed a certain volume to work reasonably. Otherwise the dominant dissipative
losses prevent elastic scattering. In cases where the antenna serves to increase the
absorption cross section, the far �eld radiation plays a subordinate role whitch will
be discussed in more detail in chapter 6.

2.1.3 Optical response of semiconductor nanostructures

In contrast to the quasi free electrons in metals, semiconductors have an empty con-
ductance band at 0 K. But also at higher temperatures the Fermi-Dirac distribution
allows only an insu�ciently low density of free carriers for plasmonic phenomena.
However, the band gap energy Egap often lies in the optical or near infrared spec-
trum [63, 64]. As a consequence, their optical properties are dominated by interband
transitions of electrons. Table 2.1 gives an overview about the band gaps for some
elementary and combined semiconductors at room temperature (300K) and around
0K. A photon with energy larger than Egap can excite an electron from the valence
into the conduction band, while a vacancy or hole remains in the valence band. If
electron and hole are unbound they serve as quasi free charge carriers. However,
due to the attractive Coulomb interaction they can bind and form an exciton. In
analogy to the Bohr model of a hydrogen atom, the Bohr radius rB of the exciton
can be approximated by

rB =
4πε0~2

e2

(
m∗em

∗
h

m∗e +m∗h

)−1

(2.22)

where ~ = h/2π is the Planck constant, m∗e and m
∗
h the e�ective masses of electron

and hole in the crystal environment. The e�ective masses depend on the curvature
of the band structure, and can be described by an e�ective mass theory as applied
in chapter 5. Typically rB is on the order of a few nanometers.

CdSe GaAs Si InP CdTe ZnO

T = 300◦K 1.74 1.43 1.11 1.27 1.44 3.20

T ≈ 0◦K 1.84 1.52 1.17 1.42 1.61 3.44

Table 2.1

Band gap energies (in eV) at room temperature and around 0K for a selection of
elementary and combined semiconductors.
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In semiconductor nanostructures with sizes around or smaller than the Bohr ra-
dius, the electrons and holes are con�ned by the boundaries of the nanocrystal.
Here, the quantum mechanical character can no longer be neglected, and a tran-
sition from the band structure to discrete states takes place. The behavior of the
single electron and hole is described separately, by the time dependent Schrödinger
equation (SE)

i~
∂

∂t
Ψi(ri, t) =

[
− ~2

2m∗i
∇2 + Vi(ri, t)

]
Ψi(ri, t) (2.23)

with Ψi being the wavefunction, m∗i the e�ective mass of the free particle in the
potential Vi(r, t). In order to solve equation 2.23 in steady state, several approxi-
mations are possible. An atomistic approach via pseudopotentials takes each atom
of the quantum dot or nanocrystal into account and avoids the approximation via
e�ective masses of the bulk material band structure. However, these methods are
content of current theoretical research and limited due to the huge computational
e�ort. In chapter 5 we apply a single band model for the electrons and six-band ef-
fective mass theory for the holes to describe the band properties of bulk CdSe. Thus
we separately solve the Schödinger equation for both charge carriers independently.
However, the steady state two particle SE for the exciton is given by

−EXΨX(re, rh) =

[
− ~2

2m∗e
∇2

re + Ve(re)− · · ·

− ~2

2m∗h
∇2

rh
+ Vh(rh)−

e2

ε |re − rh |

]
ΨX(re, rh) (2.24)

with EX being the exciton energy, which di�ers from the energy that can be cal-
culated from the single particle Hamiltonians due to the Coulomb term in equa-
tion 2.24. But the solution for the exciton can be approximated from the single
particle solutions. The resulting eigenenergy can be written to

EX = Ee + Eh + ECoul (2.25)

where Ee and Eh are the steady state eigenenergies of the single particle solu-
tion. The binding energy ECoul is typically negative due to the attractive Coulomb
interaction, leading to a small energy reduction with respect to the free carri-
ers. From �rst order perturbation theory, the exciton-photon interaction follows
Fermi's Golden Rule. Hence, the dipole allowed transition probability rate γ0,X is
given by

γ0,X =
2π

~
|d0,X |2 δ (E0 − (EX + Egap))− ~ω) (2.26)

with

d0,X =

∫
Ψ∗X d̂ Ψ0 d

3r =
〈

ΨX

∣∣∣ d̂ ∣∣∣Ψ0

〉
(2.27)
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being the transition dipole matrix element with the dipole operator d̂, and ΨX , Ψ0

the exciton (�nal) and crystal ground state (initial). The bandgap energy is added
to the exciton energy since it is not considered in equation 2.24. In general, Egap is
a function of temperature but almost invariant for small temperature �uctuations,
especially at room tmperatures. While the binding energy ECoul is typically on
the order of some tens of meV, the eigenenergies of electrons Ee and holes Eh are
widely tunable via their potentials and con�nement. According to equation 2.26,
this allows the synthesis of arti�cial atoms and nanocrystals, with de�ned ground
state transitions over the whole optical and NIR spectrum. In analogy to the plas-
monic nanoparticles, these properties o�er a wide range of possibilities for labeling
and imaging applications [13, 14] and as local probe [65]. But especially as single
photon sources, semiconductor quantum dots are prominent candidates for future
telecommunication applications [66, 67]. In quantum information science they can
be used as qubits, due to their long coherence time at lower temperatures [15].

Although the exciton transitions in semiconductor nanostructures have to be consid-
ered quantum mechanically, their spectral dependence of the absorption cross sec-
tion can be approximated classically as summarized by Karrai and Warburton [68].
For a known exciton transition energy ~ωX and dephasing rate Γ, the absorption
cross section can be written as

σabs =σ0
(Γ/2)2

(ω − ωX)2 + (Γ/2)2
(2.28)

with σ0 =
e2f

ε0c0m0nΓ
(2.29)

where f is the oscillator strength which can be related to the optical dipole mo-
ment of the excitonic transition [69], and n the refraction index of the surrounding
medium. For a purely radiative decay of the exciton via spontaneous emission, the
dephasing rate is

Γsp = n
2π

3λ2
0

e2f

ε0c0m0

(2.30)

=
8π2n

3λ2
0

d2
12

~ε0
(2.31)

with λ0 being the emitter wavelength and d12 the dipole moment [70, 71]. Plugged
into equation 2.29, we obtain the maximum absorption cross section σ0,sp as function
of the emission wavelength λ0

σ0,sp =
3

2π

(
λ0

n

)2

, (2.32)

independent of the oscillator strength. Graph 2.3(a) shows the calculated absorp-
tion spectrum of a single emitter in vacuum at λ0 = 600 nm with purely radiative
lifetime τsp of 10 ns, respectively Γsp = 0.1 GHz = 0.41 µeV. The calculated peak
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(a) Absorption cross section σabs with peak absorption σ0,sp of an ideal emitter with
purely spontaneous emission decay at a wavelength of 600 nm and a lifetime of
10 ns. (b) For additional dephasing the spectrum broadens, while the integrated
absorption stays constant, leading to a drastic reduction of the peak absorption
cross section σ0,B.

absorption is σ0,sp = 17.2 · 104 nm2, the oscillator strength f = 1.62 (equation 2.30).
This corresponds to a dipole moment of d = 8.3 Debye or an elementary charge
separation of 0.17 nm.

The high absorption peak and narrow linewidth of the considered idealized sys-
tem deviate strongly from measured values [72]. Especially at room temperatures
the emission spectrum of a single quantum dot shows a linewidth in the order of
100 meV. Responsible are dephasing e�ects such as scattering with phonons in the
crystal lattice. To circumvent the missing information of the statistical broadening,
a value only dependent on the oscillator strength f , which is responsible for the
absorption, is introduced. The integral absorption σi is de�ned by the integral of
equation 2.28 over the whole spectral range.

σi =

∫
σ(ω)dω (2.33)

= σ0π
Γ

2
(2.34)

=
3

4

(
λ0

n

)2

Γsp (2.35)

The product of σ0,sp and Γsp or any other σ0, Γ pair

σ0,spΓsp = σ0Γ =
e2f

nε0c0m0

(2.36)
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shows the desired f dependence. As a consequence, the integral absorption stays
invariant for a single emitter, independent of the spectral broadening components
and we can write the relation

σ0,B = σ0,sp
Γsp
ΓB

= σ0,spη (2.37)

between ideal emitter and a realistic system with peak absorption σ0,B and emission
linewidth ΓB. Furthermore we de�ne the broadening parameter η (with η < 1) by
Γsp = ηΓB. For the emitter considered previously, with λ0 = 600 nm and Γsp =

0.41 µeV, the integral of absorption is calculated to σi,sp = 112 nm2 meV. At room
temperature, a typical emission linewidth of a quantum dot is ΓB = 80 meV given
by additional dephasing. By equation 2.37 we model the corresponding absorption
spectrum which is shown in �gure 2.3. According to equation 2.37, the absorption
peak is reduced by the factor η = 5.2 · 10−6 to σ0,B = 0.89 nm2. Under the
assumption of a homogeneously illuminated laser spot area Aspot = π · 4002 nm2,
the absorbing emitter leads to a maximum signal change of σ0,B/Aspot = 1.77 · 10−6.
For comparison, the plasmon absorption maximum of a spherical gold nanoparticle
with 1.5 nm in radius is on the same order.

2.2 ultrafast nonlinear response of single nanoobjects

2.2.1 Nonlinear material polarization density

We discussed the linear material response of metallic and semiconductor nanoobjects
in the previous sections. There, a proportionality of polarization density Plin and
excitation �eld E is assumed and de�ned via the susceptibility χ(1).

Plin = ε0χ
(1)E (2.38)

with χ = (εr − 1) (2.39)
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Second harmonic (a), third harmonic (b), and sum frequency generation (c) in a
multi- photon energy conservation scheme. The gray arrows represent the emission
frequencies.
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However, the material response is much more complex than the linear approximation
of equation 2.38. Bulk material [73, 74], as well as plasmonic nanostructures [38, 75],
can show inelastic light scattering at higher frequencies than the monochromatic ex-
citation �eld ω0. These higher order nonlinear optical processes are many photon
processes with virtual energy levels as shown in �gure 2.4 and depend on the crys-
talline or molecular structure and symmetry. Prominent examples are the second
(SHG) and third harmonic generation (THG) in plasmonic nanostructures. The
latter is further discussed in section 3.3, where we introduce a numerical model to
describe the polarization dependent correlation between linear plasmonic response
and THG in complex nanostructures. For two or many color excitation at ω1 and
ω2, as sketched in �gure 2.4(c), further emission lines at (ω1 +ω2, 2ω1±ω2, · · ·) ap-
pear. In all cases, the polarization density P deviates from the linear approximation.
Hence we introduce the de�nition

P = Plin + ∆P (2.40)

where the polarization density is separated into a linear Plin and nonlinear ∆P part.
Consequently the previously discussed phenomena are covered if the polarization
density is extended by

∆P = ε0χ
(2)E2 + ε0χ

(3)E3 + · · ·︸ ︷︷ ︸
nonlinear response

(2.41)

with χ(i) being the higher order susceptibility components. As the nonlinear terms
are functions of Ei, their contribution can be neglected for small electric �eld am-
plitudes. For the interaction with ultrashort laser pulses, the high �eld amplitude
leads to higher harmonic generation.

2.2.2 Ultrafast nonlinear spectroscopy and optical antennas

Nonlinear spectroscopy investigates the deviations from linear light-matter interac-
tion [39, 74, 76, 77]. Most common is the time independent investigation of the
nonlinear response ∆P of a material, as discussed previously. As the crucial value
is the peak electric �eld amplitude, these experiments are usually performed us-
ing broadband ultrashort laser sources, leading to photon conversion with higher
harmonic and sum frequency emission. As the excitation and emission �elds are
spectrally separated, the measurement is almost background free and allows long
integration times.

More complex are multiple pulse experiments to investigate the temporal behav-
ior of ultrafast processes and phenomena [78, 79]. In the case of incoherent systems
and two laser pulses, the �rst one at frequency ω1 and time t1 serves as pump pulse
to induce the process, the second one at ω2 and t2 as probe which is detected to
interrogate its time dependent response. Since excitation and response are energy
dependent processes, we write the nonlinear polarization density as

∆P(ω1, ω2, τ2,1) = P(ω1, ω2, t2 − t1)−Plin(ω2) (2.42)
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Figure 2.5

Comparison to the linear optical response, shown in �gure 2.2. Change of extinc-
tion cross section after excitation (a). The modes are in�uenced di�erently by the
perturbation of the material properties, especially the narrow resonances show high
sensitivity. The theoretical signal contrast in the discussed ionization experiment
ranges from 10−8 to 10−2 for the scattering and 10−5 to 10−2 for the absorption
measurement.

where τ2,1 = t2 − t1 is the temporal evolution, and Plin the linear response without
pump pulse. In 2D-spectroscopy, pump and probe wavelength are tuned indepen-
dently to obtain the full two pulse response.

Particle plasmons have widely tunable resonances as introduced in subsection 2.1.2.
Due to their strong correlation to the dielectric function and con�nement, they show
high sensitivity to any kind of perturbation. An example for the spectrally resolved
nonlinear response is summarized in �gure 2.5. In a Gedankenexperiment we use
the pump pulse to induce photoelectron emission from a Drude-gold nanoparticle.
Following the previous equation we compute the linear particle response Plin(ω2)
of the probe pulse as described in subsection 2.1.2. For the polarization density
P(ω1, ω2, t2− t1) after pump excitation we assume a time independent perturbation
of the plasma frequency of ∆ωp = −0.2%. This corresponds to one photoemitted
electron for the gold particle with 1 nm radius, and 106 electrons for the 100 nm
particle. Further we assume an invariant Drude damping parameter γD. The non-
linear response ∆P of a 100 nm sphere in arbitrary units is plotted in graph 2.5(a).
The missing electrons change the dielectric function, resulting in a perturbation of
the plasmon resonances. The di�erential signal ∆P is strongest where the spectral
gradient is highest (see �gure 2.2(a) for comparison), and the linear plasmon modes
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have a high q-factor combined with a high peak extinction. Graph (b) depicts the
normalized nonlinear response for di�erent sphere radii. The comparison with �g-
ure 2.2 supports the previously discussed results. The maximum di�erential signal
contrast ∆Cmax/Aspot for a spotsize of Aspot = π ·4002 nm2 as function of the sphere
radius is plotted in (c). The upper scale shows the number of emitted electrons
corresponding to the sphere radius. We �nd nonlinear signals from below 10−5 for
the smallest sphere and a single emitted electron to approximately 10−2 for larger
particles of 100 nm radius and 106 emitted conduction electrons.

In analogy to the presented example, ultrafast nonlinear processes in metal nanoob-
jects can be mapped via plasmon resonances [80]. The process has to disturb the
optical properties of the particle itself or its environment. In the latter case, the
plasmonic nanoparticle acts as a local probe or optical antenna. In chapter 4 we
investigate mechanical vibrations of metal nanoparticles. Here, the signal contrast
is on the order of ≈ 10−5 for particle sizes of a few tens of nanometers. Furthermore,
to increase the signal of even smallest gold particles, we develop and use an optical
nanoantenna as discussed in section 4.5. Here the nanoobject of interest as well
as the antenna are plasmonic nanostructures and interact strongly via their near
�elds. Plasmon hybridization can transfer the weak perturbation information to a
much stronger oscillator respectively carrier signal. The same holds true for semi-
conductor nanostructures. Transition bleaching of a single exciton as introduced in
section 2.1.3 leads to relative signals of ≈ 10−6. In chapter 5 we investigate ultrafast
carrier dynamics in quantum con�ned states in a single CdSe nanowire. In contrast
to a plasmonic nanoobject, the dipole strength of the exciton is very small and has
less in�uence on an antenna plasmon. Furthermore the combination of classical and
quantum mechanical system leads to additional e�ects which will be discussed in
section 5.5.

2.3 transient differential transmission spectroscopy

From theory, we expect relative signals of a single nanoobjects being on the order
of 10−4 or below. In combination with the high temporal resolution and detectivity
over a broad spectral range, several optical and electronic noise reducing techniques
have to be applied. Transient di�erential transmission spectroscopy is a nonlinear
two pulse technique, and allows direct extraction of the time dependent nonlinear
response of a system. Di�erent pump wavelengths are required to excite various
nanosystems as presented in the chapters 5 and 4. The probe pulse interrogates the
system response as a function of time after excitation. In the presented setup, the
measurements are performed in transmission and the nanoobjects are positioned on
200 µm thin glass substrates. High resolution electron-beam-lithography enables
design and fabrication of planar structures down to sizes of approximately 10 nm.
The sample is mounted vertically on a 3D piezo table which allows accurate scanning
and positioning in the laser focus between two high NA objectives. The di�erential
signal (eq: 2.42), caused by an intensity modulated pump pulse, is recorded by a low
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noise balanced detection ampli�er with serially connected lock in ampli�er. A dark-
�eld and photoluminescence setup supports the localization and additional analyses
the nanostructures. The experimental setup with its many degrees of freedom and
detectors is synchronized via real time electronics (ADwin - Jäger) and controlled
by an universal software package for Labview.

2.3.1 Experimental realisation

Here we focus on the optical realisation of the pump-probe spectroscopy experi-
ment [80, 81]. The achieved temporal resolution and noise limitation are separately
discussed afterwards. The implemented dark-�eld microscopy and spectroscopy
setup is discussed in greater detail in subsection 2.3.2, followed by the time and
spectrally resolved photoluminescence setup in subsection 2.3.3.

Optical setup

A simpli�ed sketch of the setup containing all relevant optics and detectors is de-
picted in �gure 2.6. As pump source we use a frequency doubled CW high-power
Nd:YVO4 solid-state laser (Coherent Verdi V18) operating at 532 nm wavelength
and 10 W output power. Ultrashort laser pulses are provided by the pumped 76

MHz Ti:Sa oscillator in femtosecond con�guration (Coherent Mira 900), equipped
with a Xwave mirror set for spectral tunability between 700 nm and 1050 nm.
The output pulses are set to ≈ 795 nm center wavelength and have energies of
≈ 20 nJ/pulse and pulse durations below 150 fs. A lambda-half plate rotates the
linear polarized Ti:Sa output and de�nes the intensity relation of pump and probe
branch which is separated by a polarizing beam splitter (PBS). The length of the
optical pump-path is controlled by a high precision mechanical delay line (OWIS -

Limes 150) with mounted retrore�ector. This allows the variation of the path by
2 × 15 cm with a resolution below 10 µm, corresponding to a temporal range of
∆t = ∆s · c−1

0 = 1000 ps and reproducible sub 70 fs resolution. Dependent on the
system under investigation, the pump photon energy can be doubled by a phase-
matched Beta-Bariumborat (BBO) crystal. Upcoming focus drifts, caused by the
delay line, are negligible for temporal scans up to ≈ 500 ps where the e�ect is in
the order of 3%. For larger scans, a normalization becomes necessary. In case of
frequency doubled pump pulses, the remaining fundamental light is removed by the
short pass �lter AHF BrightLine HC 390/18, with OD6 at 785 nm and above. In
order to apply the lock-in technique, we modulate the pump beam intensity with
22.5 kHz by collecting the �rst di�raction order behind an acousto optical modula-
tor (AOM).

The probe beam is guided into an optical parametric oscillator (OPO) with pe-
riodically poled lithium niobate crystal in a ring cavity con�guration (APE, OPO

PP Auto). It supports Fourier limited photon energy conversion into the visible
spectrum from 505 nm to 790 nm, by crystal temperature controlled phase match-
ing. The resulting pulse train passes a linear polarizer, followed by a Soleil Babinet
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Ultrashort laser pulses provided by a Ti:Sa oscillator are split into a pump and a
probe branch. The pump pulses are temporally shifted with a mechanical delay line
and afterwards frequency doubled (SHG) by a BBO crystal. An AOM modulates
the pump beam intensity. The probe pulses are frequency converted by an OPO
and cover the visible and NIR spectrum from 520 nm to 740 nm. Pump and
probe beam are superimposed with a dichroic beam splitter (DBS) before they
are focused through a microscope (NA 0.9) onto the sample. The transmitted
light is collected by a high NA oil immersion objective and �ltered afterwards to
suppress the modulated pump pulses. Additional noise reduction is achieved using
a balanced detection scheme. The implemented microscope (represented by the
NA 0.9 objective) together with the attached APD and monochromator allows dark-
�eld and time resolved photoluminescence measurements in re�ection.
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Compensator (SB) which allows an almost loss-less de�nition of the probe polariza-
tion. For the balanced detection we separate 50% of the probe beam intensity by a
beam splitter (BS) and collect a reference signal at the photo detector (PD1).

After their preparation, both pulse trains are superimposed by the dichroic beam
splitter (DBS). We use an AHF Beamsplitter 460 DCSPXR-UV, which e�ciently
re�ects the probe pulses in the range from 440 nm to 740 nm. The pump pulse
transmission strongly depends on the chosen wavelength. While the fundamental
Ti:Sa output shows transmission above 90%, the frequency doubled pulses in the
near UV have higher but still tolerable losses. The collinear pulse trains pass an
implemented dark-�eld microscope and are focused by a high NA objective (Olym-
pus MPlanFL (N) 100x/0.90 BD P) onto the sample. A closed loop 3D piezo scan-
ner (Piezosystem Jena) allow the accurate positioning of the desired nanoobject in
the Abbé limited foci. The transmitted light is collected by a cover glass corrected
1.3 NA oil immersion objective. To extinguish the modulated pump pulses, we
use the AHF - Edge Basic 488 LP long pass �lter for the frequency doubled, or
AHF - RazorEdge SP 785 RS short pass �lter for the pump pulses at 795 nm. The
transmitted probe intensity is measured by the photo detector PD2 of the balanced
detector (Femto - OE100 ). Its di�erential ouput PD2 - PD1, of the signal and ref-
erence path, compensates intensity �uctuations of the laser on low frequencies. An
internal low-noise ampli�er increases the signal by seven orders of magnitude which
is fed into lock-in ampli�er (Stanford Research SR830 ). This reduces the noise by
narrowband Fourier �ltering.

Noise limitations

Incoherent noise has various sources, for example laser intensity �uctuations or me-
chanical movement. In frequency domain, they appear on di�erent frequency scales
with characteristic distributions as for example the 1/f noise. The implemented
lock-in technique, operated at 22.5 kHz, eliminates highly e�cient the noise out-
side a narrow bandwidth that depends on the integration time. In advance, the
balanced detector reduces low frequency noise and supports the fourier �ltering by
signal preparation. However, shot-noise cannot be overcome and is the overall lim-
iting noise.

Shot-noise exists due to the quantized nature of detected photons and electrons.
The noise width σSN for a photodiode, which measures the overall energy of ab-
sorbed photons per second Pdet, is calculated by

σSN =

√
2∆νBW · Pdet ·

h c0

λ
(2.43)

with ∆νBW =
5

64 · τint
.

with h, c0 and λ being the Planck constant, the vacuum speed of light and the
measured wavelength. Further, ∆νBW is the noise equivalent bandwidth for a slope
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Figure 2.7

(a) Calculated relative noise of the lock-in ampli�er as function of the time-averaged
laser power for di�erent integration times. (b) Measured noise as a function of
wavelength, with 50 ms integration time and 2 µW power at the detector. We �nd
a shot noise limited behavior over the whole spectral range.

of 24 dB/oct as used in the experiment, and depends on the integration time τint of
the lock-in ampli�er [82]. Since σSN depends on the detector power Pdet, we write

σrelSN =
σSN
Pdet

(2.44)

∝
√
Pdet

−1

∝
√
τint
−1

and obtain the relative noise, limiting our experimental resolution. As shown by
equation 2.44, shot noise reduction at a �xed photon energy (h c0/λ) can be achieved
by either increasing the integration time or the laser power. Figure 2.7(a) shows
the theoretical shot noise limit of our experiment at 630 nm wavelength as function
of detected laser power and for the integration times of 1, 10, 100 ms and 1000 ms.
The light grey marked interval shows the probe power limitations in our experiment.
Here, the upper limit is given by the sample destruction or its ending linear behavior.
The lower value is open but actually limited by the expected signal to noise ratio.
Furthermore, integration times between ≈ 10 ms and 500 ms have to be applied
where setup and sample stability limits the overall measurement time and thus the
integration time of each pixel. As a consequence of these limitations, the typical
operating parameters of our experimental setup are indicated by the dark grey area.

In order to prove a shot-noise limited setup, we compare the theoretical limit with
experimental data presented in chapter 5. There we use a lock-in integration time
of 50 ms and measure a probe power at the detector of 2µW. The red circles in
�gure 2.7(b) show the determined relative noise as function of probe wavelength.
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The dashed black curve marks the theoretical shot noise limit at the di�erent wave-
lengths. We �nd an almost shot-noise limmitated experiment. The slightly higher
noise of the setup can be explained by the two diodes of the balanced detector.

Spectral and temporal performance

The �nite lengths of the pump and probe pulses blur the desired temporal informa-
tion in the experiment. Consequently, the time resolution of incoherent measure-
ments is limited by the width of the convolution

Iconv(t) =

∫
τ

Epump(τ)2 Eprobe(t− τ)2 dτ , (2.45)

of pump and probe pulse intensity. Under the assumption of Gaussian shaped
envelope intensities

E2
pulse(t) ∝ exp

(
−t2

2 · σ2
pulse

)2

, (2.46)

of Epump(t) and Eprobe(t), equation 2.45 is written to

Iconv(t) ∝ exp

(
−t2

2 · σ2
conv

)
with σconv =

√
σ2
pump + σ2

probe . (2.47)

For the excitation pulse we choose between the fundamental (794.4 nm) and fre-
quency doubled (397.4 nm) Ti:Sa output. Figure 2.3.1(a) shows the spectra of
both, measured in front of the focusing objective. We determine a bandwidth ∆ν

of 2.5 GHz for the fundamental output. From the time-bandwidth product

∆ν ·∆t ≥ 0.441 (2.48)

for Gaussian shaped pulses, with ∆t being the pulse duration, we calculate the
Fourier limited pulse duration to 176 fs at the fundamental wavelength. In addi-
tion, we directly measure the pulse duration Ipump(t) = Epump(t)

2 of the fundamen-
tal Ti:Sa output with an autocorrelator. The measured FWHM of the coherent
nonlinear autocorrelator function intensity

IACF (t) =

∫
τ

∣∣(Epump(τ) + Epump(t− τ))2
∣∣2 dτ (2.49)

is 200 fs. From equation 2.47, the deconvolution factor for Gaussian pulses is 1/
√

2,
resulting in a measured pump pulse duration of 141 fs. The comparison with the
Fourier limited pulse duration implies a small deviation from the assumed Gaussian
shape but can be neglected in our experiments. For the second harmonic pump
pulses we assume slightly shorter pulse durations due to the involved nonlinear pro-
cess.
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(a) Pump: Ti:Sa laser emission spectrum with sub 150 fs pulses (794.4 nm) and its
corresponding second harmonic spectrum (397.4 nm) on di�erent intensity scales.
(b) Probe: Wavelength dependent output power and pulse duration of the OPO,
pumped with the fundamental Ti:Sa output of a constant crystal temperature of
7◦C.

In analogy, we analyze the probe pulses as function of wavelength. Figure 2.3.1(b)
depicts the measurement results. The red circles show the pulse durations, the
black curve the average OPO output power. For wavelengths below 570 nm and
above 710 nm the weak autocorrelation signal prevents the extraction of accurate
durations. Within the measured range, we �nd an average probe pulse length of
165 fs. All measurements are performed at a constant crystal temperature of 7◦C
as used in the experiment. We resign on crystal temperature adaptation due to the
long stabilization time, leading to long term drifts of the setup or mode hopping
during a scan if the equilibrium state is not fully reached. Finally, to approximate
the temporal resolution of the experimental setup, we apply equation 2.47 to calcu-
late the FWHM of the integral of equation 2.45. Under the assumption of Gaussian
shaped laser pulses the temporal resolution is determined to ≈ 215 fs (NIR pump).

2.3.2 Dark-�eld spectroscopy

Dark-�eld microscopy and spectroscopy are powerful methods to investigate the
scattering properties of even smallest objects. Due to the characteristic sample illu-
mination we obtain a background free image where only scattered light is collected.
This o�ers the possibility of long integration times without saturating highly sensi-
tive detectors and allows the localization of objects of a few tens of nanometers in
size. In addition, the scattering spectrum contains information about the nanoob-
ject itself. Thus, dark-�eld spectroscopy in combination with numerical models
o�ers a fast method for the characterization, and optimization of plasmonic nanos-
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Figure 2.9

Sketch of the implemented dark-
�eld spectroscopy setup. It is sep-
arated from the pump-probe ex-
periment by a �ip mirror.
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tructures. A sketch of the implemented dark-�eld setup is depicted in �gure 2.9.
The microscope is a slightly modi�ed Olympus BXFM system-microscope. Both
beam splitters (BS) are mounted movably and can be removed from the optical
path of pump-probe or photoluminescence measurements. A halogen lamp serves
as unpolarized light source, emitting from the near-UV up to the near-IR. After
collimation, the beam pro�le is shaped by the typical dark-�eld aperture. The
light-beam is focused with the same high NA dark-�eld objective, which is used
in the other experiments. Due to the characteristic illumination, only backscat-
tered light is collected and transmitted through the �rst beam splitter. CCD 1 is
used to �nd the sample region of interest in dark-�eld or bright-�eld con�guration.
For more sensitive measurements, the second beam splitter is removed and the full
backscattered light is guided into the spectrometer (Princeton Instruments - Acton

SP-2150 ). An optional linear polarizer (LP) allows polarization resolved analysis.
The spectrometer (Spec) is equipped with a mirror for imaging and a grating (300
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Figure 2.10

(a) Dark �eld image of an array of gold disk pairs. The inset shows the SEM
image of the marked disk pair with a 50 nm and a 70 nm disk, separated by 15 nm.
Marker lines help to identify the individual pairs on the large glass substrate. (b)
Polarization dependent dark-�eld spectra of the marked disc pair. The black arrows
indicate the measured resonances of another single 50 nm and 70 nm disc.



2 Ultrafast nonlinear nanooptics 27

grooves/mm and 500 nm blaze) for spectral analyses. The attached liquid nitrogen
cooled backplane illuminated CCD (1340 px × 400 px) records the image or spec-
trum respectively. In the used con�guration, the setup covers a spectral range of
≈ 350 nm in a single exposure and a spectral resolution of ≈ 0.26 nm.

Figure 2.10 shows a measurement performed with the dark-�eld setup. The sam-
ple consists of periodic arrays of gold disk pairs as further discussed in chapter 4.
Markers help to identify the disk pair of interest as presented in the dark-�eld im-
age 2.10(a), measured with the nitrogen cooled CCD. The inset shows an SEM
image of the structure, highlighted by the white circle in the array. The larger disk
has a diameter of 70 nm, the smaller one of 50 nm. Both have a height of 30 nm
and are separated by 15 nm, promising strong near �eld coupling and polariza-
tion dependent plasmon hybridization. Graph 2.10(b) shows the scattered spectra
along the symmetry axis of the structure (red) and perpendicular to it (black). For
comparison, the plasmon resonances of a single 70 nm and 50 nm disc are marked
on the wavelength axis of the graph. We �nd the expected behavior of plasmon
hybridization (see section 4.5.2 for more details).

2.3.3 Photoluminescence lifetime and single photon counting

After a photon is absorbed by a material, its energy can dissipate via several non-
radiative (Γnrad) and radiative (Γrad) decay channels. Photoluminescence is the
spontaneous emission of a photon from a dipole allowed transition and carries in-
formation about the emitter system. Semiconductor nanostructures, as presented
in chapter 5, show emission around their excitonic ground state or band-gap energy.
Similar to dark-�eld microscopy, the spectrally resolved photoluminescence method
is an almost background free measurement technique with the opportunity of long
integration times without background noise or detector saturation. This allows the
localization and even characterization of single nanoobjects with small absorption
and scattering cross sections.

A sketch of the implemented photoluminescence setup is shown in �gure 2.11. We
use the frequency doubled Ti:Sa output as excitation pulses (λ ≈ 390 nm), shown in
�gure 2.3.1(a). In analogy to the pump-probe experiments, the pulse train is trans-
mitted through the dichroic beam splitter (DBS) and focused with the high NA ob-
jective. The redshifted photoluminescence photons are collected by the same objec-
tive and e�ciently re�ected by the DBS for wavelengths between 440 nm and 740 nm.
A �ip mirror re�ects the luminescence beam in direction of the monochromator
(Mono) and single photon counting avalanche photo diode (APD). The advantage
of the con�guration is a fast switching between pump-probe and photoluminescence
measurements by �ipping only one mirror. Before entering the detection hardware,
remaining pump photons are supressed by a bandpass. An optional linear polarizer
allows polarization dependent photoluminescence measurements. A motorized �ip
mount (MFM) directs the remaining photons into the avalanche photodiode with
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Figure 2.11

Sketch of the implemented pho-
toluminescence setup. A �ip
mirror (FM) directs the lumi-
nescence photons to the detec-
tion hardware. A motorized
�ip mirror (MFM) allows the
fast switching between a single
photon counting photodiode with
connected lifetime analyzer and a
monochromator.
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attached PicoHarp, which supports time-correlated single photon counting. The
spectrometer allows the measurement of photoluminescence spectra. The switching
between APD and spectrometer works fast and reproducible without the need of
readjustment.

In order to test the performance of the photoluminescence setup, we measure individ-
ual CdSe nanocrystals, randomly distributed on the glass substrate. The core-shell
quantum dots are spherically shaped and have a diameter of roughly 5 nm. Quan-
tum con�nement leads to discrete states with the ground state absorption peak
around 600 nm. Figure 2.12(a) shows a 10 µm × 10 µm scan over the sample sur-
face. The background count rate is on the order of ≈ 3.5 counts/ms and comes from
the substrate and leftovers of solvent (Toluene). For comparison, the dark-count
rate is ≈ 0.05 counts/ms, measured with an open optical path to the APD but with-
out pumping. The 2D luminescence map shows Abbé limited signals of di�erent
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Figure 2.12

(a) Photoluminescence map of a test sample with CdSe nanocrystals. (b) Photo-
luminescence counts of the marked nanocrystal over 5 s and 1 ms resolution. The
blinking behavior proves the ability of single nanocrystal photoluminescence mea-
surements.
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Figure 2.13

(a) Time-resolved photoluminescence measurement of the single nanocrystal pre-
sented in �gure 2.12. The �tting model including the APD response and a biexpo-
nential decay shows a very nice agreement. (b) Photoluminescence spectrum with
the center of mass at 614.4 nm and a width of 122 meV.

amplitudes. We �nd blinking for the signals with lower intensity, indicated by dark
lines crossing the spots. The photoluminescence emission of the marked signal is
measured over 5 seconds with a temporal resolution of 1 ms and plotted in 2.12( b).
We observe a clear blinking behavior between two excitonic states, a fast decaying
bright transition, and a long living trapped state which blocks the quantum-dot
emission. Furthermore, we measure the luminescence lifetime with 16 ps resolution
as shown in �gure 2.13(a). The high repetition rate of 76 MHz of the laser system
limits the measurable photolominescence time to 13.2 ns. Counts at negative times
arise from leftovers of the previous excitation. To model the actual temporal photoe-
mission function cQD(t) we consider a detector response function rdet(t), dark-counts
containing the substrate background cdark as well as pump pulse leakage cleak. For
the detector response we assume the normalized Gaussian distribution

rdet(t) = exp

(
−t2

2σ2
det

)
(2.50)

with σdet = 21.2 ps, corresponding to a FWHMdet = 50 ps. The laser leakage
has a temporal length of ≈ 150 fs and is described by a delta peak cleak at t = 0

ns. It is included in the overall decay function c(t) = cleak + cQD together with a
biexponential function cQD to describe the quantum dot photoluminescence response
from two uncorrelated emitting states. The �nal �tting function

cfit(t) = cdark + · · ·

· · ·
∫
τ

(cleak + cf exp (−τ Γf ) + cs exp (−τ Γs)) · rdet(t− τ) dτ (2.51)

is the convolution of the overall decay function c(t) and detector response function
rdet(t) on a constant background cdark. As �t result we obtain the background count
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rate cdark, cf and cs as the fast and slow decay amplitudes, and Γf and Γs the fast
and slow decay rates. For the presented quantum dot we �nd a fast decay compo-
nent with τf = Γ−1

f = 1.5 ns, observable within the �rst nanoseconds, and a slowly
decaying component with τs = Γ−1

s = 39.5 ns. The contribution of the slowly decay-
ing component (cs) is three times larger than the fast decaying one (cf ). Finally, we
measure the luminescence spectrum of the nanocrystal. Figure 2.13(b) shows the
spectrum for an exposure time of 240 seconds. The broad emission spectrum with
FWHM = 122 meV is characteristic for room temperature measurement, where the
emission linewidth is broadened by exciton-phonon scattering.



3
NUMERICAL S IMULATION METHODS AND MODELS

A single particle in a potential is described by the Schrödinger equation, and shows
quantized behavior for strong con�nement. Nanoobjects consisting of a few hundred
to a few hundred thousand atoms �ll the gap between atomistic and bulk behav-
ior and increase in complexity. Ab-initio calculations o�er an atomistic approach
to approximate the electronic and thus optical properties of nanostructures but
are limited by the number of considered atoms due to the enormous computation
e�ort [83]. Particle plasmons also show quantized behavior but as fully classical
phenomena described by Maxwell's equations. Only on lengthscales below ≈ 5 nm,
the quantum character must be taken into account to describe surface or tunneling
e�ects, for example by time dependent density functional theory (TDDFT) [84�86].
As a consequence of the di�erent behavior and physical descriptions, the theoret-
ical prediction of nanoscopic light-matter interaction is challenging if we consider
coupling of several di�erent sized nanoobjects or systems. However, all investigated
plasmonic nanoobjects in this work are above 10 nm in size with surface distances
larger than the quantum tunneling regime so that their interaction with light can
be computed by solving Maxwell's equations [87]. In cases of semiconductor nanos-
tructures the quantum character must be taken into account. In order to model
their interaction with plasmonic systems, we separately solve the Schrödinger equa-
tion for the subsystem and implement its quasi classical properties into the model.
Neglected e�ects will be discussed in the corresponding chapters.

Mie theory gives the full analytic solution of classical Maxwell's equations for a
plane wave scattered by a spherical object of arbitrary size and material [55]. This
contains the complex electromagnetic �eld in- and outside the scatterer as well as
spectral information of scattering, absorption, and extinction cross section. How-
ever, already the inclusion of an additional interface, for example the substrate un-
der a spherical nanoparticle, makes the solution no longer valid. E�ective medium
theory can partially approximate the spectral response but not the local electro-
magnetic �eld distribution [88]. At the latest when the quantitative calculation of
the optical response of arbitrarily shaped or coupled structures is necessary, numer-
ical techniques have to be applied. Computational electromagnetics o�er a wide
range of di�erent integral (DDA, MMP, ... ) and di�erential (FEM, FDTD, ...)
equation solvers to compute the desired electromagnetic �eld distribution [89�92].
However, not all ful�ll the requirements of non-periodic coupled nanoobjects and
complex geometries. Especially structures in close vicinity with di�erent size, shape
and rounded edges due to the fabrication technique demand a good discretisation
of space by �exible meshing. The �nite element method in frequency domain gives

31
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access to all relevant physical values and allows meshing based on tetrahedral, cu-
bic or combined building blocks [92]. In the following we brie�y introduce the
fundamentals of the Finite-Element-Method and the implementation of Maxwell's
equations. Di�erent models are discussed in order to compute the linearly scattered
�eld (sec. 3.2) or total �eld distribution (sec. 3.4) under various conditions. In sec-
tion 3.3 we introduce our model to predict the nonlinear optical response of complex
plasmonic structures. The constitutive relations of the electric displacement �eld
and magnetic �ux in their most general form are implemented and discussed in
section 3.5. The model allows the calculation of chiral and optically active behavior
without an approximation via the permittivity tensors.

3.1 finite element method (fem)

3.1.1 Fundamentals

The mathematical problem is described by a set of partial di�erential equa-
tions (PDE) in a given boundary value problem. The �nite element method is
a numerical technique to approximate the solution ΨGl(x) for the given system
with the degrees of freedom x [93]. After transformation into a minimization prob-
lem, for example known from the theory of Euler Lagrange, stationary solutions of
the system are given by the local extrema. In order to �nd them, the system is
disassembled into n subdomains

ΨGl(x) =
n⋃
i=1

ψi(x) , (3.1)

with ψi being the �nite elements. In contrast to the commonly used Finite-
Di�erence-Time-Domain method (FDTD), these elements are relatively �exible in
shape, orientation and size within the same model. In addition, FEM o�ers the
continuous solution in the whole simulation space and is not limited to discrete
meshpoints. The local solution of each element is composed by a linear superposi-
tion

ψi(x) =
m∑
k=1

ak,i · Φk,i(x) (3.2)

of m base functions Φk, being linearly independent, di�erentiable and ful�lling the
boundary conditions. In order to minimize the error function and approximate
ΨGl(x), di�erent variational methods for the coe�cients ak,i can be applied. For
example, if we consider the boundary value problem

∇2 ψ(x)− b(x0) = 0 (3.3)

with b(x0) being the boundary condition and plug in the discussed ansatz, we �nd
as error the so called residue

R = ∇2 ΨGl(x)− b(x0) . (3.4)
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The elements have to ful�ll the boundary conditions of its neighbors. In the Galerkin
method, the residue is multiplied with test functions θj and integrated over the
solution space∫

V

(
∇2 ΨGl(x)− b(x0)

)
· θj dV = 0 , (3.5)

leading to a linear equation system for the unknown coe�cients ak,i of the overall
solution. For a good set of testfunctions θj, a sparse matrix is obtained and reduces
the required computation power [93]. In this work we use the software package
Comsol Multiphysics as FEM solver, which contains a pre-processor, the FEM-solver
with implemented equation system, and a simple post-processor [89]. A Matlab
interface allows almost unrestricted data processing.

3.1.2 Formulation of Maxwell's equations

In 3-D vector notation, the time dependent Maxwell's equations in their di�erential
form are given by the equations 2.1- 2.4. By transforming them into a di�usion
equation, the required minimization formulation is achieved. The ansatz

E(r, t) = E(r) · exp (iωt) (3.6)

separates the spatial and temporal component and the di�usion equation in
Helmholtz representation can be written as [47, 94, 95]

∇× 1

µr(r)
(∇× E(r, ω))− ω2

c2
0

(
εr(r)−

i · σ(r)

ω · ε0

)
E(r, ω) = 0 (3.7)

with µr, εr, and σ being the relative permeability, permittivity and the conductivity
as functions of frequency ω and position r. As a consequence of the separation
ansatz, the complex electric vector �eld E(r, ω) has to be calculated separately
for each frequency ω. Furthermore it can be useful or even necessary to separate
the purely scattered �eld Escat(r, ω) and the excitation �eld Eback(r, ω). The total
�eld E(r, ω) is de�ned as the superposition

E(r, ω) = Escat(r, ω) + Eback(r, ω) (3.8)

of both �elds. Plugged into equation 3.7, the boundary value problem changes and
the scattered vector �eld components directly become the independent variables [96].
In addition, numerical errors are reduced since the known background �eld is not
part of the solution and does not su�er from its computation.
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3.2 scattered field components as independent variables

3.2.1 Isolated nanostructures

The wavefront in the focal plane of a high NA objective is approximated by a
plane wave with wavenumber k = n · 2π/λ0 = n · ω/c0. This is valid for structure
sizes much smaller than the applied wavelength, where the superposition of many
k components, symmetrically distributed around the optical axis, shows an almost
constant spatial phase over the whole nanoobject. Further we follow the ansatz of
equation 3.8 to calculate the scattered electric �eld Escat in frequency domain and
an e�ective medium (neff ) approach. The used background �eld Eback (r, ω) with
perpendicular incidence is given by the plane wave

Eback(r, ω) =

Ex,0Ey,0

0

 · exp

(
−i · neff ·

ω

c0

· z
)

, (3.9)

propagating in negative z-direction. Linearly, circularly and elliptically polarized
illumination is de�ned by the complex values of Ex and Ey with

E0 =

√
|Ex,0|2 + |Ey,0|2 (3.10)

being the excitation �eld amplitude and

α = arctan

(
Ey,0
Ex,0

)
with Ex, Ey ∈ R (3.11)

the polarization angle for linearly polarized light. In case of an e�ective medium
neff with spherical scatterer, the system allows the comparison with analytical Mie
theory. A more generalized background �eld including a substrate is discussed in
the following subsection 3.2.2. More complex systems where the separation of the
background �eld is almost impossible are discussed in the sections 3.4 and 3.5.

Figure 3.1 depicts a cut through the model geometry to compute the electromag-
netic scattering of an isolated nanostructure with arbitrary shape in an e�ective
medium. The spherical scatterer (SC) is located in the model center, surrounded
by various shells, forming the environment (light blue) and integration surface (IS).
Further, the model is closed by perfectly matched layers (PML) with spherical wave
scattering conditions kdir(r) = −n(r) at the outer PML surface. Consequently, re-
maining �elds are directed outwards, parallel to the surface normal n. For analysis,
we include a permeable integration sphere (IS), providing a well de�ned and meshed
surface outside the near-�eld. If possible, the model can be split along its symmetry
axis, to reduce computation time and increase the accuracy of the solution. Real
and imaginary part of the dielectric function of εr(ω) are given by the data of John-
son and Christy [49] or other databases [50], the one of the e�ective medium by
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Figure 3.1

Cross section through the geometric constitution of the Mie scattering model. The
spherical scatterer (SC) with 50 nm in radius is located in the center. It is sur-
rounded by a spherical shell and refractive index neff . The model is limited by
perfectly matched layers and scattering boundary conditions at the outer surface.
A meshed permeable integration sphere (IS) within the e�ective medium allows the
calculation of the scattering and absorption cross section.

equation 2.7. We use the parallel direct sparse solver interface method (PARDISO)
as direct solver or the generalized minimal residual method (GMRES ) as indirect
solver. Their accuracy and computation time, especially for the iterative solver,
strongly depend on the spatial discretisation. Here, we typically use free tetrahe-
dral meshing with an overall number of elements between 5 · 104 to 9 · 104.

In the following we consider a spherical gold nanoparticle with 50 nm radius in
an e�ective medium environment with neff = 1.4. The PML shell radius ranges
from 300 nm to 350 nm, the integration sphere (IS) is de�ned outside the near-
�eld at 250 nm. As background �eld we use equation 3.9 with Ex = 1 V/m and
Ey = 0 V/m. Figure 3.2 shows the imaginary part of the separated complex �eld
components for an excitation wavelength of 585 nm. The background wave shown
in �gure 3.2(a) propagates from left to right with a polarization in the plotted x-z-
symmetry plane. In the hot spots of the scattered near �eld (b) we observe a six
times higher �eld amplitude than in the excitation �eld. With equation 3.8 we ob-
tain the total �eld distribution Ex as superposition of the separated �elds as shown
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Figure 3.2

Electric �eld distribution of background (a), scattered (b) and total �eld (c), plot-
ted in an area of 600 × 600 nm in the x-z symmetry plane. All graphs show
the imaginary part of the x-component for an excitation wavelength of 585 nm.
The scattered near-�eld distribution (b) reveals high �eld amplitudes, known as
plasmonic hot spots.

in (c). In order to calculate Cabs, Cscat, and Cext (see subsection 2.1.2), we consider
the energy �ux density S(r, t) given by equation 3.12. The separation of spatial and
temporal components allows the transformation into a time independent and time
dependent term as shown in eq. 3.14 [47].

S(r, t) = E(r, t)×H(r, t) (3.12)

= Re
[
E(r, ω) · eiωt

]
× Re

[
H(r, ω) · eiωt

]
(3.13)

=
1

2
Re [E(r, ω)×H∗(r, ω)] +

1

2
· Re

[
E(r, ω)×H(r, ω) · e2iωt

]
(3.14)

The time averaged energy �ux density 〈S(r, ω)〉 is given by the integral 3.15 over a
whole period T . Due to periodicity, the second term of equation 3.14 vanishes and
we obtain eq. 3.16 as the time averaged energy �ux.

〈S(r, ω)〉 =

T∫
0

S(r, t) dt (3.15)

=
1

2
Re [E(r, ω)×H∗(r, ω)] . (3.16)
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We implement the Poynting vector components for the scattered �eld as follows.

〈Sx,scat(r, ω)〉 =
1

2
· Re

[
Ey,scat ·H∗z,scat − Ez,scat ·H∗y,scat

]
(3.17)

〈Sy,scat(r, ω)〉 =
1

2
· Re

[
Ez,scat ·H∗x,scat − Ex,scat ·H∗z,scat

]
(3.18)

〈Sz,scat(r, ω)〉 =
1

2
· Re

[
Ex,scat ·H∗y,scat − Ey,scat ·H∗x,scat

]
(3.19)

The normalized energy �ux density through an arbitrary surface with normal vector
n(r) is given by

〈Sscat(r, ω)〉 =
∑
i=x,y,z

ni(r) · 〈Si,scat(r, ω)〉 . (3.20)

Due to the de�nition of the normal vector for interior boundaries in Comsol, we
correct ni if necessary with a sign �ip, pointing always into the outward direction
on any boundary. In analogy, the Poynting vector 〈Stot(r, ω)〉 for the total electro-
magnetic �eld is de�ned. A special case is the time averaged energy �ux density of
the background plane wave, as de�ned in equation 3.9. It can be simpli�ed to

〈Sback〉 =
1

2
· E2

0 · neff · c0 · ε0 , (3.21)

being space and frequency independent [48]. With the equations for 〈Stot(r, ω)〉 and
〈Sscat(r, ω)〉 we calculate the total and scattered energy propagating through the
permeable integration sphere (IS) by integrating over their surface. The integral
normalization via the excitation �ux density 〈Sback〉 leads directly to the absorption
and scattering cross sections

Cabs(ω)
[
m2
]

=
1

〈Sback〉
·
∫∫
IS

〈Stot(r, ω)〉 dS (3.22)

Cscat(ω)
[
m2
]

=
1

〈Sback〉
·
∫∫
IS

〈Sscat(r, ω)〉 dS (3.23)

as function of the excitation wave frequency ω. An alternative way to determine
the absorption cross section is given by

Cabs,diss(ω) =
1

〈Sback〉
·

n∑
i=1

∫∫∫
Vi

Qdiss(r, ω) dV

︸ ︷︷ ︸
=Pi,diss(ω)

(3.24)

where the total dissipative loss density Qdiss(r, ω) is integrated over the volumes
Vi of all n domains within the integration sphere. The result is identical to the
surface integral 3.22 but allows to distinguish between the contributions Pn,diss(ω)

of various particles in more complex and coupled nanostructures.
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Figure 3.3

Results of the FEM simulation of scattering Cscat (blue) and absorption cross section
Cabs (red) as a function of the excitation wavelength (a). The red circles show the
result of the absorption cross section Cabs,diss on a 10 nm grid, computed by the
alternative method of equation 3.24. The extinction spectrum Cext, computed with
the presented model, is compared with a 50th order Mie calculation (b). The results
are in excellent agreement.
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Figure 3.3(a) shows Cabs(ω) and Cscat(ω) in the spectral range from 400 nm to 850

nm in 5 nm steps. For comparison, the red circles are the solutions of equation 3.24
with the gold sphere as only integration domain. They show excellent agreement
with the result of eq. 3.22 and energy dissipation in the gold sphere and not in the
environment with purely real refractive index. The extinction cross section Cext(ω)

is calculated as sum of both cross sections and plotted as black curve. Finally, the
result of the extinction cross section Cext calculated with Comsol is compared with
a 50th order Mie calculation, following equations 2.20 and 2.21. Both solutions
are plotted in �gure 3.3(b) and are in excellent agreement. The small deviation
around the plasmon resonance can be explained by the non-perfect spherical shape
of the gold scatterer, caused by the tetrahedral meshing in Comsol. Consequently
the model allows the calculation of the linear properties of arbitrarily shaped nanos-
tructures. However, it can be important to distinguish between the integration
over all directions and real experimental conditions, for example given by the nu-
merical aperture of the light harvesting objective. In case of small particles, the
scattered light contribution can be almost neglected and transmission experiments
are described without taking the objective into account. For larger particles, the
scattered �eld becomes more important and can be no longer neglected. Since the
light propagation direction destroys the symmetry at the x−y plane, re�ection and
transmission show di�erent behavior. This can be taken into account by splitting
the integration sphere into two half spheres. For integrating over a conic section
with an opening angle corresponding to the numerical aperture, even the collection
properties of certain objectives could be approximated. However, this was never
taken into account in the performed simulations.

3.2.2 In periodic boundary conditions

Metamaterials are arti�cial large area structures with engineered optical proper-
ties [97, 98]. The material usually consist of coupled or uncoupled nanostructures,
arranged in a periodic pattern. In addition to many applications, for example �lters
and polarizers [99, 100], sensors [101], and even cloaking [3, 102], metamaterials can
be considered as an ensemble of almost identical nanostructures. Inhomogeneous
broadening gives a smoothed or distorted response compared to the single parti-
cle, but their experimental investigation is less challenging. In order to simulate
the optical response, the structure periodicity must be taken into account. Here,
the interaction over several unit cells can lead to grating or far �eld coupling e�ects.

Figure 3.4 shows an SEM image of a periodically arranged dolmen type plasmonic
nanostructure, consisting of three rod-type elements in the unit cell. The labeling of
dipole and quadrupole is related to the plasmon modes and only reasonable for a far-
�eld excitation, polarized parallel to the long dipole axis. The near-�eld coupling
strength between dipole and quadrupole can be tuned by a symmetric change of the
gap distance. As already discussed, metamaterials as particle ensembles can help
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Figure 3.4

SEM image of a dolmen type plasmonic
nanostructure arranged in a periodic
pattern. The structure is decomposed
into two subdomains called dipole and
quadrupole. For the sketched polar-
isation of the excitation �eld Eback,
dipole and quadrupole form a cou-
pled bright and dark mode plasmonic
system. Their electromagnetic cou-
pling strength is de�ned by their gap
distance.
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to understand fundamental processes in complex nanostructures. Bernd Metzger
uses the shown geometry to investigate third harmonic generation and emission in
a coupled bright and dark plasmon system [103], known as the classical analogue
of electromagnetically induced transparency (EIT) [30, 104]. In section 3.3 we in-
troduce our theoretical model to compute the polarization resolved nonlinear third
harmonic generation, supporting the experimental �ndings. Here we focus on the
linear response of arbitrary nanostructures in periodic boundary conditions, includ-
ing a substrate interface.

Figure 3.5 depicts the geometric model with centered dolmen (EIT) structure. The
top view on the unit cell with 700 nm y-periodicity and 600 nm x-periodicity is
shown on the left. We use Floquet periodicity boundary conditions, de�ned by

Escat,source(r, ω) = Escat,destination(r, ω) (3.25)

where source and destination being opposite boundaries, marked red and blue. Thus,
each unit cell side-boundary has the �eld distribution of the opposite side, imitating
the neighbor cell. This kind of boundary condition is typical for the combination of
plane wave excitation and periodic structure [89]. To achieve continuous conditions,
opposite boundaries are identically discretized. The side view on the z-y plane is
shown in the right image, with only the structure and substrate being meshed. To
include the interface at z = 0 nm we de�ne the complex refractive index of the
environment by

n(r) =

nsup, if z > 0,

nsub, if z < 0.
(3.26)
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Figure 3.5

Unit cell of the periodic EIT structure in the �nite element model. The left �gure
shows the top view of the x-y-plane. The red and blue boundaries mark periodic
boundary conditions with copied mesh-surfaces to obtain a continuous meshing.
The structure is located in the center. A side view of the z-y-plane of the model
geometry is shown on the right. For visualization, only the scatterers and substrate
are meshed. The superstrate - substrate interface is clearly de�ned. The green
areas show scattering boundary conditions and the integration surfaces for injected,
re�ected, and transmitted energy.

as a function of space. The background �eld with continuous interface conditions
follows Fresnel's equations. For the special case of perpendicular incidence, the �eld
components Ex,back(r, ω) and Ey,back(r, ω) are written to

Ex∨y,back(r, ω) =



Ex∨y,0 ·

(
exp

(
−i · nsup · ωc0 · z

)
+ · · ·

· · ·+ nsub − nsup
nsub + nsup

· exp
(

+i · nsup · ωc0 · z
))

, if z > 0,

Ex∨y,0 ·
2nsub

nsub + nsup
· exp

(
−i · nsup · ωc0 · z

)
, if z < 0

(3.27)
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with Ex,0, Ey,0 being again the complex polarization components and the wave
propagating in negative z direction [47]. However, we choose

nsub − nsup
nsub + nsup

= 0 and
2 · nsup

nsub + nsup
= 1 (3.28)

and consider a fully transmitting background �eld. As the solver searches the correct
solution for the given system, the solution for the scattered �eld Escat contains the
re�ection from the interface. This simpli�es the calculation for re�ectivity. From
the ratio of backscattered power and injected power

R(ω) =

∫∫
S1

〈Sscat(r, ω)〉 dS∫∫
S1

〈Sback〉 dS
(3.29)

at the green colored surface S1, we obtain the experimentally easily accessible re-
�ectance R of interface and scatterer. In analogy we calculate the transmittance

T (ω) =

∫∫
S2

〈Stot(r, ω)〉 dS∫∫
S1

〈Sback〉 dS
(3.30)

as ratio of transmitted power through surface S2 and injected power at S1.

We discuss the linear response and di�erent plasmonic modes of the shown struc-
ture in more detail, since it is fundamental for the following section and chapter 6.
The geometric parameters for the model are slightly modi�ed within the accuracy
of the SEM measurement. As structure height we use 60 nm. The dipole size is
190 nm × 50 nm, the quadrupole arms are each 220 nm × 40 nm and displaced
by gaps of 20 nm. The structures have rounded edges (extruded half ellipses with
20 nm × width/2 as semi-axes) as shown in the model �gure 3.5. This renders the
geometry presented in the SEM image and further reduces numerical and unphysi-
cal errors at sharp corners. We assume a lossless substrate with �at dispersion and
purely real refractive index nsub = 1.5. For the other half space we use nsup = 1.
Figure 3.6 shows the comparison between measured and calculated linear transmit-
tance spectrum (a,b). Both are in very good agreement, showing the typical EIT
mode splitting into repulsive and attractive mode at λ1 and λ3 with a narrow-band
transparency window in between at λ2. For better insight, sub�gure (c) depicts the
z-component of the scattered near �eld at the three wavelengths, 20 nm above the
upper structure surface. Since the solution is phase dependent, we plot the �eld dis-
tribution at two orthogonal phases Φ = π/2 and Φ = 0. We �nd dipolar near �eld
pattern for all structure components, oscillating with di�erent phases. The bright
in-phase mode of the two quadrupole arms is symmetry forbidden. Furthermore,
the behavior of a driven harmonic oscillator is nicely reproduced, where the bright
plasmon drives the dark mode in the quadrupole. For wavelengths below 930 nm,
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Figure 3.6

(a) Measured spectrum of the EIT structure depicted in �gure 3.4. The fundamental
dipole resonance shows a splitting into a repulsive and attractive mode, with an
upcoming transparency window in between. The calculated transmittance spectrum
is in good agreement (b). The z-component of the scattered near-�eld for di�erent
phases is shown in (c), giving more insight into the di�erent modes and the phase
behavior of the coupled plasmons.
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the quadrupole-dipole oscillation is phase shifted by π, forming the repulsive mode.
The attractive mode is above (λ3) with in-phase oscillation. The transparency win-
dow is caused by plasmon hybridization that shifts the two modes to a higher and a
lower energy, respectively. Between the two modes, the oscillation is shifted by π/2
and the quadrupole resonantly driven. The narrowband transmission window is due
to the non-radiative damping of the quadrupole, shaping the coupled response.

3.3 nonlinear response of complex plasmonic structures

Linear light-matter interaction assumes the proportionality between material re-
sponse and incident electromagnetic �eld. In fact, this approximation holds true
for small electric �elds and intensities. Ultrashort laser pulses as used by Bernd
Metzger compress the time averaged intensity into very short temporal intervals,
leading to high pulse energies and �elds. Plasmons can resonantly enhance the non-
linear response of metal nanostructures [105]. However, the source and prediction
of the nonlinear emission in complex plasmonic structures is approached by vari-
ous theories and part of current research [106�109]. In the following we introduce
our numerical model to predict the polarization dependent nonlinear response of
arbitrarily shaped and coupled structures to support the experimental �ndings of
Metzger [103].

3.3.1 Numerical model for third harmonic generation

As already discussed in the fundamentals chapter 2.2.1, the polarization density can
be expanded to

P = ε0
∑
n

χ(n)En = ε0χ
(1)E︸ ︷︷ ︸

linear response

+ ε0χ
(2)E2 + ε0χ

(3)E3 + · · ·︸ ︷︷ ︸
nonlinear response

(3.31)

with χn being the n-th order susceptibility and E the incident �eld. However, the
direct implementation of equation 3.31 into our linear model (see subsection 3.2.2) is
not applicable. The solution for the nonlinear polarization density exists on several
frequencies, what is not covered by the di�usion equation in Helmholtz represen-
tation. Here, time domain solvers such as FDTD have a clear advantage. Several
groups use a hydrodynamical approach to describe the nonlinear current �ow and
nonlinear dielectric properties. However, we use an alternative model to describe
the nonlinear response. As illustrated in �gure 3.7(a), we follow the discrete dipole
approximation (DDA) where each material and structure is decomposed into single
dipolar scatterers. Each dipole with dipole moment d describes the local material
response in dependence of the incident electric �eld Eback and the scattered �eld
from other parts of the structure. A more detailed introduction to the method can
be found in chapter 6.
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as nonlinear oscillators

k

Eback
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Figure 3.7

Visualization of the Discrete Dipole Approximation (a). Each scatterer is decom-
posed into small discrete dipoles. The correlation to electromagnetics is given by
the polarization density. Sub�gure (b) shows the dipoles in the symmetry plane of
a rod type scatterer, calculated by FEM.

The correlation between DDA and electromagnetics is given by the linear polar-
ization density P(1) which is de�ned as the average electric dipole moment 〈d〉 in
the considered volume V , given by

P(1)(r, ω) =
〈d〉
V

. (3.32)

From previous work we know that a harmonic oscillator model expanded by a cubic
perturbation term can be used to describe the third harmonic behavior of simple
gold nanostructures [75, 110]. For materials with no second harmonic generation the
oscillator model gives a third harmonic generation that goes with the third power
of the linear dipole moment. However, the model needs to be �tted to experimental
data. Further its accuracy is limited since it uses the averaged dipole moment of the
whole plasmon mode, neglecting local properties and e�ects. At least if complex and
randomly shaped structures are investigated, the model fails. These limitations can
be overcome if we assume that each discrete dipole serves as nonlinear oscillator
and source for third harmonic generation. We follow equation 3.32 and consider
the local dipole moment via its correlation to the linear polarization density. The
spatial distribution in frequency domain is computed by

P(1)(r, ω) = D(r, ω)− ε0 · E(r, ω) (3.33)

= (D(r)− ε0E(r)) · exp (iωt) , (3.34)

withD(r, ω) being the displacement �eld and E(r, ω) the electric �eld. In analogy to
the illustration in �gure 3.7(a), the average dipole moment within identical volume
elements in a rod type structure is shown in (b). The integral of P(1)(r, ω) over the
particle volume leads to the average dipole moment that is used in the oscillator
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model. However, we follow the oscillator model on a microscopic scale and de�ne
the third harmonic generation density proportional to the third power of the linear
polarization density with

P(3)(r, ω) ∝
(
P(1)(r, ω)

)3
(3.35)

∝ (D(r)− ε0E(r))2 · (D(r)− ε0E(r)) · exp (i3ωt) . (3.36)

Here we assume a �at or normalized dispersion of the third order susceptibility.
Otherwise the proportionality changes to a function of frequency (N(ω), in equa-
tion 3.37), containing the nonlinear material properties. Furthermore, P(3)(r, ω)

is a complex vector which carries polarization, amplitude and phase information,
and oscillates with 3ω. The overall THG generation of a structure is computed, by
integrating the function for the third order polarization density over all n domains,
each with volume Vi. Fromd

(3)
x (ω)

d
(3)
y (ω)

d
(3)
z (ω)

 ∝ n∑
i=1

Ni(ω) ·
∫∫∫
Vi

(
P(1)(r, ω)

)2 ·

P
(1)
x (r, ω)

P
(1)
y (r, ω)

P
(1)
z (r, ω)

 dV (3.37)

we obtain the third order dipole moment d(3)
i , with Ni(ω) being the third harmonic

material parameter of the domain. Neglecting the directivity and re-absorption
processes of the generated radiation, we approximate the emission intensity by

ITHG,i(ω) ∝ d
(3)
i (ω) · d(3)

i

∗
(ω) , (3.38)

in analogy to the radiated power of a dipole [47].

3.3.2 Theoretical prediction for a dolmen-type structure

We apply the model to support the experimental �ndings of the dolmen-type struc-
ture, introduced in the previous subsection 3.2.2. Metzger uses ultrashort laser
pulses generated by a broad band laser source combined with a pulse shaping tech-
nique to measure polarization resolved third harmonic emission [75, 111]. As control
parameter for the coupling between bright and dark mode, we vary the gap distance
(see SEM image 3.4) in 10 nm equidistant steps between 30 nm and 100 nm. For the
simulation geometry we use the parameters determined by SEM measurements [103].
The experimental �ndings are normalized by the response of a gold �lm. Thus, ar-
tifacts of the experiment are canceled out and we obtain a spectrally �at material
parameter Ni(ω) = const. for the simulation.

Figure 3.8 summarizes the theoretical predictions for gap sizes between 30 nm and
100 nm. The linear and nonlinear spectral response in case of the 30 nm and 100 nm
gap distance is shown in (a) and (b). Here, the linear extinction spectra are plotted
as black curves, calculated by

E(λ) = − ln(T (λ)) , (3.39)
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Figure 3.8

Simulated extinction and polarization resolved THG emission spectra for a gap
distance of 30 nm (a) and 100 nm (b). The wavelength axis of the THG spectra
is projected on the fundamental wavelength for a better comparison. To visualize
the sweep parameter dependence, the maximum third harmonic generation for both
polarizations is plotted in (c), as a function of gap distance.

with T being the transmittance. In case of the 30 nm gap distance, the extinction
spectrum shows two clearly separated resonances. For the 100 nm gap, the mode
splitting is almost gone due to the weak coupling between bright and dark mode.
From equation 3.38 we obtain the nonlinear emission intensity at 3ω. For a better
comparison, the nonlinear response is plotted as a function of the excitation wave-
length ω and overlayed to the linear response. First, we consider the third harmonic
emission component Iy,THG parallel to the excitation �eld (red circles). The emis-
sion shows an unbalanced behavior at the two modes with strongest emission at
the lower energy mode. Futhermore, the THG emission is slightly displaced with
respect to the linear response. This is found for all gap distances and in agreement
with the oscillator model. Emission with a perpendicular polarization (blue) is con-
stantly zero. In sub�gure (c), the maximum THG emission for both polarizations is
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Figure 3.9

Polarization resolved third harmonic generation, plotted at the center height of the
structure. The parallel component is generated in the dipole particle (a,c). For
better visibility, the perpendicular polarized THG (b,d) is multiplied by a factor
of 3.

plotted as a function of gap distance. We �nd no third harmonic emission along the
perpendicular polarization, independent of the gap distance. The behavior of the
y-polarization, especially for smaller gap values is more complex and not directly
intuitive. Most responsible for the maximum nonlinear emission intensity seems the
combination of high oscillator strength and high quality factor (Q-factor), leading
to high polarization values. The �rst parameter can be increased by the particle
volume, while the Q-factor is increased by reducing the losses in the plasmon oscil-
lation. Here, intrinsic losses depend on the resonance position of the linear plasmon
mode and the corresponding dielectric function εr(ω). The complex interplay be-
tween shape, geometry, dielectric function and ensuing radiation damping makes
numerical simulations necessary to predict the nonlinear emission behavior of com-
plex nanostructures. This limits the validity of more simple models, where radiation
losses and geometry e�ects are neglected. However, a quantitative comparison of
experiment and simulation is almost impossible, since already small deviations in
the linear spectra lead to a distorted nonlinear response and eventually wrong in-
terpretations. In our case, experiment and model are in very good agreement and
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support the concept of the model with nonlinear local dipoles as source of third
harmonic emission. As a consequence, we can calculate and visualize the spatial
distribution of third harmonic generation in the nanostructure.

Given by the absolute value
∣∣∣P (3)

i

∣∣∣, the polarization resolved third harmonic gen-

eration along the x-y-plane is plotted in the �gures 3.8(a) - (d). For orientation,
the white contours mark the gold boundaries, showing the structures with 30 nm
(a,b), and 100 nm (c,d) gap distance. In all cases, the wavelength is chosen to
be at the maximum THG emission. Independent of the gap distance we �nd the
dipole element as the source of the nonlinear emission parallel (y-THG) to the ex-
citation polarization (a,c). Only the overall amplitude slightly changes. For the
perpendicular polarization (x-THG) we obtain the distributions shown in (b) and
(d), multiplied by a factor of 3 for better comparison. Here, the third harmonic
generation in the quadrupole strongly depends on the transferred energy, given by
the gap distance. Especially the 30 nm gap structure shows strong third harmonic
generation in both quadrupole branches. Nevertheless, experiment and model show
no emission for the x-polarization. This is due to the coherent nature of the nonlin-
ear process. While the absolute value of P (3)

i (r, ω) gives the local amount of third
harmonic generation, the radiation phase is de�ned by the angle. Consequently, the
integral 3.37 takes the out of phase oscillation of the quadrupole arms into account,
leading to interference e�ects in the far �eld. Angular dependent measurements
or a disturbance of the quadrupole properties allows further investigation of the
coherent behavior. The latter case requires no change of the experimental setup
and can be realized by in�uencing the counter phase oscillation of the quadrupole
arms, or by increasing the averaged dipole moment of one of the arms. Both is done
simultaneously by shifting the bright dipole out of the symmetry plane of the struc-
ture, leading to retardation e�ects as well as an unbalanced energy transfer to the
arms. Thus we expect third harmonic emission for the perpendicular polarization.
Figure 3.10 summarizes the theoretical predictions for a structure with an averaged
gap distance of 50 nm and shifted dipole (see lower right sketch). The results are
in good agreement with the experiment. The symmetric structure (a,b) shows the
previously discussed behavior and no third harmonic emission along the perpendic-
ular polarization. In (c) and (d) the case for the dipole shifted by 30 nm is shown.
We directly observe the unbalanced nonlinear generation in the two quadrupole
branches, leading to emission in x-polarization (c). Retardation plays a minor role.
The maximum emission is between the two EIT modes, slightly blue shifted with
respect to the low energy mode. With equation 3.24 we separate the absorption
spectra of quadrupole and dipole in the coupled system. The absorption maximum
of the quadrupole mode is marked in (c). We �nd the characteristic redshift of the
third harmonic emission in respect to the quadrupole absorption resonance. This
determines the detuned quadrupole as source of the perpendicular polarized third
harmonic emission.
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(a,c) Simulated extinction and polarization resolved THG emission spectra for the
symmetric and broken symmetry case with the corresponding THG generation plots
(b,d). The scale is identical to �gure 3.8. It can be seen that the increase of x-
polarized THG emission is directly correlated with the unbalanced generation in the
two quadrupole branches, leading to radiation losses. (g) Maximum third harmonic
generation for both polarizations as a function of gap distance. All graphs are
plotted in the x-y-plane at the center height of the gold structure.
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3.3.3 Conclusion

In this section we presented our numerical model for third harmonic generation. In
addition to the discussed structure, we �nd good agreement of our model and exper-
iments for other geometries, for example L-shaped structures and ITO �lled double
rod nanoantennas [112]. In summary we developed a simple model to compute the
nonlinear optical response of complex coupled nanostructures. However, further
experiments especially on random shaped particles have to be performed to con�rm
the validity of the model and its limits. As further optimization one could take
emission and reabsorption properties into account. Therefore we would calculate
the inverse behavior of the photoemission at 3ω by illuminating the structure from
the detector side and weight the previously calculated third harmonic emission with
the local �eld. This promises an even more precise model, including radiation ef-
fects. In order to enhance the nonlinear response of single nanoobjects, for example
the previously mentioned ITO spheres in a double rod antenna gap, high �elds can
help but the desired signal is superimposed by a huge antenna background. Here,
intelligent antenna designs or other materials showing less nonlinearity can help to
overcome this challenge and separate the desired signals. Finally the interpretation
of our model predicts a minor role of high gap �elds for the case of third harmonic
generation in purely plasmonic structures but rather a strong dependence on the
spectral resonance and the corresponding dielectric function and radiation damping,
as already discussed.

3.4 the total field components as independent variables

In the previously discussed models we are able to use the �eld separation ansatz of
equation 3.8. This approach breaks down when no simple analytical solution for the
background �eld can be found. An example is a particle separated by a spacer layer
from a non-perfect mirror with losses and penetration depth. In this con�guration,
the particle is in�uenced by its own backre�ected scattered �eld, leading to a com-
plex interplay and multiple re�ections between mirror and particle. In addition, the
overall scattered �eld Escat of the particle interferes with the re�ected excitation
�eld of the mirror Eref . In a far �eld re�ection measurement, the intensity on a
detector is given by

Idet = |Eref + Escat|2 (3.40)

= |Eref |2 + |Escat|2 + 2 · Re [Eref · Escat]︸ ︷︷ ︸
modulated components in homodyne detection

(3.41)

where both �eld contributions have to be described by their amplitude and phase.
In homodyne detection, the scattered �eld Escat is modulated. Thus the measured
signal is given by the last two terms of equation 3.41 and allows signal enhance-
ment by the multiplication of weak scattering component and strong reference �eld
in the interferometry term [113]. Figure 3.11(a) shows the simpli�ed sketch of a
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Figure 3.11

Sketch of an interferometric structure consisting of a nickel disc in front of a gold
mirror. (b) Real part of the x-component of the electric �eld Ex in the x-z-plane.
The complex �eld Eprobe outside the near-�eld can be used to calculate the amplitude
and relative phase for the interferometric model. (c) Calculated relative phase from
the �nite element model and Mie scattering. The black circles show a simpli�ed
arctangent model-�t to the experimental data.
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magneto-optical nanostructure in front of a gold mirror as used in the experiments
of Christian Dicken. He uses a Sagnac-Interferometer at 800 nm wavelength to
investigate the Kerr rotation of a single nickel nanostructure in re�ection, as a func-
tion of the applied magnetic DC-�eld [114]. He applies an analytical interferometric
model to describe the experimentally found signal amplitude. However, the critical
unknown parameter in the model is the scattered �eld Escat, where simple mod-
els fail to describe the varying amplitudes and phases in dependence of the nickel
particle's size. In addition, multiple re�ections with the non-perfect gold mirror po-
tentially change the spectral and scattering properties of the system and numerical
simulations have to be performed.

We solve the full electromagnetic �eld E(r, ω) in analogy to the model for periodic
boundary conditions, depicted in �gure 3.5. The scattering boundary condition at
the injection surface (S1) is de�ned to(

Ex,0

Ey,0

)
= Ex,0 ·

(
1

0

)
+ Ey,0 ·

(
0

1

)
︸ ︷︷ ︸

linear polarization

, (3.42)

=
E0√

2
·

(
i

1

)
or

E0√
2

(
−i
1

)
︸ ︷︷ ︸

circular polarization

(3.43)

leading to plane wave excitation in the given Floquet periodicity. Although the
Sagnac interferometer works with circularly polarized light, we can solve the sys-
tem for a single linear polarization (Ex,0 6= 0 ,Ey,0 = 0) due to the symmetry of
the structure. The side view of the model geometry containing vacuum superstrate,
nickel disc (height = 25 nm), spacer layer (n = 1.5) and gold mirror is depicted
in �gure 3.11(b). To approximate the �eld distribution around a single nickel disc
we choose a large unit cell size of 1.5 µm × 1.5 µm. The computed total electric
�eld distribution contains the unknown background and scattered �eld. Here, their
separation is done by solving the same structure without disc. For this purpose we
keep the particle volume but with the optical properties of vacuum, in order to use
the same meshing and reduce discretisation errors. The scattered �eld distribution
Escat(r) including multiple interactions between particle and mirror is calculated
from the di�erence of the two solutions.

Figure 3.11(b) shows the real part of Escat for an excitation wavelength of 800 nm.
In order to extract the desired scattered �eld amplitude and phase information we
use a local probe Eprobe, placed 800 nm above the spacer layer-vacuum surface in the
far �eld and on the optical axis. The result for the relative phase in units of π as a
function of the disc radius is plotted as red curve in (c). It changes from 0 to π/2 if
the radius is tuned from 10 nm to above 100 nm. Within this range, the fundamental
particle plasmon resonance is tuned over the 800 nm excitation wavelength. From
a simple driven oscillator model, we expect a phase change by π. The reason for



54 3 numerical simulation methods and models

the smaller shift in our calculation is the changing particle size, leading to increased
scattering and additional broadening of the plasmon resonance of nickel. Here, a
slow transition from scatterer to re�ector in�uences the scattered �eld, disturbing
the simple oscillator behavior. For other materials such as gold, a clear phase shift
from 0 to π is observed. For comparison, the Mie scattering solution for a spherical
particle in forward direction without mirror and spacer layer is plotted as blue curve.
We �nd a similar but stretched behavior, shifted to larger sphere radii. The reason
is the blue shifted plasmon resonance for spherical nanoparticles where larger radii
are required to pass the 800 nm. A phenomenological arc tangent model to �t the
experimental data by the analytical model is represented by the black circles. The
slight deviations are explained by fabrication errors. However, we �nd a very good
agreement of the complex �nite element model and the phenomenological �t.

3.5 implementation of the constitutive equations

for optical chirality simulations

The most general form of the constitutive relations for a bi-anisotropic medium is
given by the equation(

D

B

)
=

ε ξ

ζ µ

 ·(E

H

)
(3.44)

with ε and µ being the permittivity and permeability tensors, ξ and ζ additional
magneto-electric coupling tensors, cross-linking the electric and magnetic re-
sponse [115]. For bi-isotropic media they can be reduced to the complex scalar
values

ξ = (χ− iκ) · √ε0µ0 (3.45)

ζ = (χ+ iκ) · √ε0µ0 (3.46)

where χ de�nes the degree of inherent reciprocity and κ the degree of chirality [115,
116]. The latter gives the di�erence of the refractive index for left (LCP) and right
circularly polarized light (RCP)

n± = n± κ (3.47)

of a chiral medium. Consequently, a linearly polarized plane wave, which can be
decomposed into the base-functions LCP and RCP, changes its polarization angle
while propagating through the material. The angle of polarization rotation can be
calculated analytically and is given by

Φrot = κ · 2π

λ0

· l (3.48)

with λ0 being the free space wavelength and l the propagation length in the chiral
medium [117]. However, the values for κ of organic and inorganic materials are
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typically on the order of 10−4 to 10−7 [118]. Thus, linearly polarized light with
λ0 = 700 nm has to propagate through ≈ 2 mm of the chiral medium to perform
a rotation by 1◦. This requires long propagation distances for qualitative analysis
and makes measurements with small volumes of molecules or even of a single one
almost impossible. However, in analogy to molecules, plasmonic nanostructures can
also show optical chirality and are prominent candidates for chiral sensitive optical
antennas [25, 119, 120]. Circular dichroism (CD), which refers to the di�erential
absorption ∆A of LCP and RCP light, is a common value to de�ne the chiral
response of such structures. Due to experimental circumstances we consider the
di�erential transmittance ∆T , given by

∆T (ω) = TLCP (ω)− TRCP (ω) . (3.49)

For the computation of ∆T , we can use the previously described model of sec-
tion 3.4. However, to study the interplay between plasmonic nanostructures and
chiral molecules or media, the constitutive equations 3.45 in the following form

D = εE + (χ− iκ) · √ε0µ0 H (3.50)

B = (χ+ iκ) · √ε0µ0 E + µH (3.51)

have to be implemented. As a consequence of the solver and the computation in
frequency domain, Maxwell's equations in their constitutive form must be expressed

vacuum,  vacuum, chiral med. 

1 µm 1 µm 1 µm
z

y

x

Einc

Eout

Figure 3.12

Control model to compute the plane-wave propagation through a chiral layer. The
system consists of three lined up sections, each 1 µm × 1 µm × 1 µm in size, all with
purely real refractive index 1. The middle layer is chiral with κ = 0.125. The rear
model boundary shows the y-, the lower the x-real part component of the electric
�eld. In addition, the black arrows point along electric �eld. The calculation shows
the expected π/2 rotation of a linearly polarized plane wave, propagating from right
to left.
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as a function of the electric �eld components without direct time derivatives. Thus
we write for the magnetic �eld

H = µ−1 · (B(E)− (χ+ iκ) · √ε0µ0 E) (3.52)

with µ−1 being the inverse permeability. B(E) is the magnetic �ux, derived from
the Maxwell-Faraday equation 2.1 and

∂H

∂t
= µ−1∂B

∂t
− µ−1 (χ+ iκ)

√
ε0µ0 · iω · E︸ ︷︷ ︸

=
∂E

∂t

(3.53)

where the temporal derivative of the electric �eld is directly derived from the separa-
tion ansatz eq. 3.6. With knowledge ofH, equation 3.50 can be directly implemented
and the model contains the constitutive equations for bi-isotropic media without ap-
proximation.

Figure 3.12 depicts the control model in order to check the implemented equations.
It consists of three 1 µm × 1 µm × 1 µm cubes, all with real refractive index n = 1.
A plane wave with wavelength 500 nm, polarized along the x-coordinate, propa-
gates from the right boundary into positive z-direction. We follow equation 3.48
to obtain a 90◦ polarization rotation, and choose a �ctive κ of 0.125 for the center
layer. The environment shows no chirality, leading to a plane wave propagation
in the �rst section, illustrated by the black arrows and the projection of the �eld
components (see �gure caption). After the plane wave reaches the chiral layer, a
signi�cant rotation sets in. Behind the center section, the polarization is rotated
by π/2 and agrees nicely with the prediction of the analytical solution. Further we
found the postulated rotation independence of the refractive index and the wave-
length dependence of equation 3.48. Furthermore, we performed �rst calculation to
investigate the interaction between a chiral medium and a planar chiral plasmonic
antenna. However, to observe a measureable signal in the di�erential transmittance
∆T we have to assume a κ which is approximately 3 to 4 orders of magnitude larger
than the typical values for chiral media. As a next step we suggest to investigate the
interaction with three dimensional plasmonic structures, showing a global chirality
and possibly larger signal enhancement [25].



4
ANTENNA ENHANCED
ULTRAFAST ACOUSTO -OPT ICAL RESPONSE
OF A S INGLE GOLD NANOPARTICLE

4.1 motivation and introduction

Nanostructures of a few ten nanometers in size can perform mechanical oscillations
and follow the laws of continuum mechanics, where the discretized nature of the ma-
terial is neglected [39, 122, 123]. Figure 4.1 shows an arbitrary selection of classical
mechanical modes of a disc-shaped gold nanoparticle lying on an inelastic substrate.
The computation is done using the structural mechanics module of Comsol Multi-
physics [121]. Similar to particle plasmons, the mechanical eigenmodes are de�ned
by the boundary conditions of the nanoparticle and are characterized by a mode
pro�le with corresponding eigenfrequency. However, the validity of the bulk mechan-
ical and classical properties are limited to structure sizes above ≈ 10 nm [124, 125].
A further decrease of the structure size reveals the discrete atomistic nature of
matter, which di�ers from the continuum approximation. The investigation of this
transition at mesoscopic systems promises deep insight into the involved physical
processes [124�128].

Metal nanoparticles with several ten nanometers in size have their fundamental
eigenfrequency above 10 GHz, dependent on material, size, and shape [39, 129�131].
This corresponds to an oscillation period of less than 100 ps. In order to resolve
these dynamics, a temporal resolution of a few picoseconds or better is required,
making optical pump-probe experiments necessary. However, the tiny interaction

extensional mode drum mode higher order
drum mode

Figure 4.1

Symmetric mechanical eigenmodes of a gold nanodisc with a radius of 35 nm and
height of 30 nm, in contact with an inelastic substrate. The computation is done
with the structural mechanics module of the �nite elements solver [121].
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58 4 Acousto-optical response of a single gold nanoparticle

(a)
without antenna with antenna

 

(b)

Figure 4.2

Illustration of an optical nanoantenna enhancing the nonlinear response of a single
nanoobject. On the left side, a gold nanodisc of few nanometers in size is probed by
an ultrashort laser pulse. The resulting nonlinear response is extremely weak but
carries information about the involved physical processes. Shown on the right side,
the response of the same nanoparticle is enhanced by the nanoantenna (represented
by the bow-tie structure).

cross section of the plasmonic nanostructure complicates single particle experiments.
Especially the nonlinear response, which is already weak for bulk material, becomes
di�cult if not impossible to detect. A resonant optical nanoantenna that concen-
trates the optical �eld on the individual nanoobject promises enhancement of the
weak nonlinear signal as illustrated in �gure 4.2 [11, 132, 133].

In the following we discuss how mechanical vibrations are launched by the energy
deposited by an ultrashort laser-pulse. The oscillation state is monitored by the
perturbation of the plasmon resonance, similar to the example introduced in sub-
section 2.2.2. We present a numerical model to compute the expected signal in-
tensity. Later in the chapter, the experimental results and data evaluation at the
example of single gold nanoparticles is discussed and compared with the theoretical
predictions. This proves the validity and limitations of our model and allows the
simulation and optimization of optical nanoantennas to enhance the signal of previ-
ously barely detectable particle sizes. Finally, the �rst experimental realization of
an optical nanoantenna for ultrafast spectroscopy is shown and discussed [80].

4.2 pump excitation of acoustical vibrations

We consider a noble metal nanoparticle with volume Vp in a highly focused laser
beam consisting of ultrashort laser pulses. The pulse duration is around a hundred
femtoseconds and the spot size in the focal plane has a radius of ≈ 400 nm. The
laser pulse is partly absorbed by the particle. From subsection 2.1.2, we assume
the maximum absorption cross section in the order of 104 nm2 for particles of a few
ten nanometers in size. As a consequence, approximately 2% of the pulse energy
is transferred to the electron-gas. The deposited energy is distributed over several
radiative and non-radiative processes, appearing on di�erent timescales [134�136].
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Figure 4.3 gives an overview about the relevant non-radiative processes and their
temporal appearance. After instantaneous excitation by the femtosecond laser pulse,
the coherent oscillation of the conduction electrons dephases on a 10−20 fs timescale
and an incoherent hot electron-gas remains [137, 138]. For an assumed pulse en-
ergy of Wp = 1 pJ, the energy stored in the electron-gas Wabs is approximately
20 fJ. In order to describe the energy transfer between the electron-gas and the
material lattice, a simple two-temperature model can be applied [139]. However,
we neglect the temporal evolution and focus on the quasi equilibrium state after
excitation. Therefore, the maximum electron-gas temperature is approximated via
the heat capacity parameter α = 65 Jm−3K−2, which gives the linear correlation of
heat capacity and electron-gas temperature by Ce,V = αT [134]. With Ti being the
initial (room temperature) and Tf,e the maximum electron-gas temperature without
energy transfer to the lattice, we write

Wabs = αVp

Tf,e∫
Ti

T dT (4.1)

=
1

2
αVp

(
T 2
f,e − T 2

i

)
(4.2)

and solve for

Tf,e =

√
2Wabs

αVp
+ T 2

i . (4.3)

As a consequence, we obtain the upper limit for the electron-gas temperature with
Tf,e ≈ 2300 K, assuming an initial gas temperature of Ti = 300 K. Simultaneously
to the gas heating, energy is transferred to the lattice, mediated by electron-phonon
scattering. This leads to a fast cooling of the electrons after passing their peak
temperature < 2300 K. The duration until electron-gas temperature and lattice
temperature are in thermal equilibrium at Teq depends on the scattering rate but

excitation of 
electron-gas

electron-phonon 
scattering

damping

laser pulse
[fs]

hot electron gas
thermal expansion

+ vibrations

heat dissipation

electron
gas

lattice

1 ps > 100 ps

energy 
loss

Figure 4.3

Nonradiative decay processes and their temporal behavior in a metal nanoparticle,
after partial absorption of an ultrafast laser pulse.
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is typically in the order of 1 ps. This is much faster than the period of the funda-
mental mechanical mode of the nanoparticle. As the lattice is not able to follow the
impulsive heating adiabatically, it overshoots its new equilibrium state and acoustic
vibrations are excited. As the energy loss ∆We of the electron-gas is equal to the
energy gain of the lattice ∆Wl, we write ∆Wl = −∆We and solve for the equilibrium
temperature Teq. We obtain

Teq = −Cl
α

+

√(
Cl
α

)2

+
2Cl
α
Ti + T 2

f,e (4.4)

with Cl = Cl,V Vp being the heat capacity, Ti the initial temperature of the lattice,
and Tf,e the electron-gas temperature, calculated from equation 4.3. For gold, with
Cl,V = 2.415 · 106 Jm−3K, we obtain an equilibrium temperature of Teq = 371 K
which is approximately 70 K above the initial room temperature. For comparison,
if we consider a 15× higher pulse energy, the equilibrium lattice temperature is
at 1350 K and exceeds the melting point of gold. As a consequence, the pump-
pulse excitation is limited by the deformation or the solid-liquid phase transition
and the destruction of the particle. The thermal background typically decays on
a timescale of several hundred picoseconds due to heat dissipation losses to the en-
vironment. The decay of the mechanical oscillations occurs on the same timescale
through intrinsic losses. For times > 1 ns, the excitation energy is dissipated in the
environment. This guarantees the full relaxation of the system into its initial state
for the repetition rate of 76 MHz of our pulse source.

The structures of investigation are gold nanodiscs with various radii but constant
height. Their fabrication and characterization is further discussed in section 4.4.
Here, we numerically investigate the pump excitation of mechanical oscillations for
disc shaped gold nanoparticles. We apply the T-Matrix method in order to com-
pute the absorption spectra for discs with a constant height of 30 nm and radii
ranging from 10 nm to 70 nm [140]. The e�ective medium for the structures at the
glass-air interface is chosen to neff = 1.4, showing best agreement for the experi-
mentally determined scattered spectra. The optical constant of gold is given by the
data of Johnson and Christy [49]. Figure 4.4(a) shows the calculated absorption
cross section as a function of the disc radius. We observe the expected redshift of
the fundamental plasmon mode with increasing disc size. Higher order modes are
extinct by the d-band absorption of gold. Most e�cient excitation is achieved for
pump wavelengths at the absorption maxima and thus dependent on the disc size.
However, in the experiment we use a constant wavelength of 800 nm as we have
enough pump power for o� resonant excitation. As a consequence, the absorbed
pulse energy Wabs, as a function of the disc radius r, is given by Cabs(r, 800 nm).
Furthermore, we assume a spot radius of 500 nm being ≈ 10% above the di�raction
limit of the 0.9 NA objective. The red curve in �gure 4.4(b) shows the absorbed
energy as a function of the disc radius. The absorbed energy varies over three or-
ders of magnitude, due to the large volume changes and the ine�cient pumping
of the smaller discs but almost resonant excitation for the bigger ones. However,
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Radius dependent absorption cross section Cabs of a single gold nanodisc with 30 nm
height, in the spectral range between 500 nm and 800 nm. In combination with
the pump spot size, the absorbed energy for an excitation wavelength of 800 nm
is calculated and plotted as red curve in (b). From this, the maximum lattice
temperature Teq (black) is approximated, utilizing a two-temperature model.

equation 4.4 is a function of the particle volume since more energy is required to
heat up a larger particle volume. Consequently, the equilibrium temperature Teq
is a�ected much less by the amount of absorbed energy. Furthermore we �nd an
excitation maximum for particle radii around 70 nm. Particles with larger radii
are again o�-resonant and less excited although they are larger in size. Finally, we
conclude that the excitation properties vary with disc size and must be taken into
account when the nonlinear response amplitude of di�erent disc sizes is compared,
as we discuss in the following section.

4.3 modeling of the ultrafast response

In subsection 2.2.2, we discussed how an ultrafast nonlinear process can be mapped
via the perturbation of a plasmon resonance. In contrast to the given example,
where the perturbation is caused by the emission of photoelectrons, the number
of conduction electrons N is constant during a mechanical oscillations. Here, the
perturbation is caused by a change of the electron-gas and lattice temperature as
well as the geometric extension from its equilibrium. The Drude model, given by

ε
′

r,D = 1−
ω2
p

ω2 + γ2
D

; ε
′′

r,D =
ω2
pγD

ω3 + ωγ2
D

, (4.5)

has two parameters ωp and γD which are related to the physical properties of the
material. While the damping parameter γD increases for larger temperatures due
to phonon scattering, the plasma frequency ωp is in�uenced by the variation of the
particle volume during the oscillation [141].
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Our model to describe the dielectric function variation during an oscillation is based
on linear thermal expansion and completely neglects the response of the hot electron
gas during the �rst picoseconds after excitation. For simpli�cation we assume that
the change of the damping parameter γD is negligible for temperatures below 800 K
(≈ 500◦C). The plasma frequency of the excited gold ω∗P =

√
n∗ee

2 · (meε0)−1 is com-
puted from the new equilibrium electron density n∗e = N/V ∗ via the linear thermal
expansion of the particle. A temperature increase of ∆T leads to a equilibrium
volume V ∗ of

V ∗ = (1 + αV ∆T ) · V0 (4.6)

with αV being the volumetric thermal coe�cient and V0 the initial volume of the
unpumped particle. Furthermore, the volume V0 of a disc with height h0 and radius
r0 can be calculated by V0 = h0πr

2
0. If we assume an isotropic expansion, the new

particle axes

h∗ = h0 · ξ r∗ = r0 · ξ (4.7)

are expanded by the parameter ξ. Combining equation 4.6, 4.7 and the volume
equation we obtain the modi�ed electron density

n∗e(∆T ) =
N

V ∗
=

N

(1 + αV ∆T )1/3 h0 · (1 + αV ∆T )2/3 r2
0

(4.8)

as a function of the induced temperature change ∆T = Teq − Ti and expansion
parameter ξ = (1 + αV ∆T )1/3. With this, the optical and geometric properties can
be modeled as function of the excitation process discussed previously. However, the
described model fully neglects the d-band absorption of gold and already fails to
compute the linear absorption and extinction spectra in or close to the band tran-
sition. This makes it impossible to predict the nonlinear response of the considered
discs.

In order to take the missing d-band beneath ≈ 600 nm (see subsec. 2.1.1) into
account, we de�ne the di�erence between experimental data εr,JC and unperturbed
Drude function εr,D as

∆εr =
(
ε
′

r,JC − ε
′

r,D

)
+ i ·

(
ε
′′

r,JC − ε
′′

r,D

)
, (4.9)

with ωp = 8.89 eV and γD = 7.088 · 10−2 eV. The dielectric function ε∗r as function
of ∆T can be written as

ε∗r(∆T ) = ε∗r,D(∆T ) + ∆εr (4.10)

where ε∗r,D is the Drude model with ω∗p and the unperturbed γD. In the following
we consider a gold particle with a height of 30 nm and a radius of 35 nm and the
excitation intensities discussed previously. The pump induced change of the lattice
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Figure 4.5

Model prediction of the nonlinear response by the perturbation of the fundamen-
tal plasmon resonance. The contributions of purely geometric (black), dielectric
(green), and the combined perturbation to the nonlinear extinction signal is shown
in (a). The linear extinction spectrum (dashed black curve) is plotted as reference in
arbitrary units. In case of the discussed 35 nm disc, the perturbation of scattering
and absorption cross section contribute equally to the overall nonlinear extinction
signal (b).

temperature is 40 K and extracted from �gure 4.4(b). The thermal expansion coef-
�cient for gold is αV = 42.6 · 10−6 K−1 [142]. Under the assumption of a constant
probe spot size of Aprobe = π4002 nm2, the nonlinear response is calculated from
∆T/T = ∆Cext/Aprobe. We follow equation 4.7 and obtain a change of the disc size
by ∆r = 0.2 Å and ∆h = 0.17 Å, for ∆T = 40 K. Corresponding to these values,
the new equilibrium plasma frequency ω∗p = (1 + αV ∆T )−1ωp is calculated and re-
duced by 0.085% with respect to the undisturbed gold. Figure 4.5(a) summarizes
the several contributions of the response. For comparison, the extinction spectrum
(dashed) is plotted in arbitrary units. The solid black curve shows the nonlinear
response caused by the change of the particle size by keeping the undisturbed di-
electric function of gold. The green curve shows the response of the electron-gas
without changing the particle size. The red curve gives the combined nonlinear
response by taking the change of the particle size and its dielectric properties into
account. Furthermore, the combined response di�ers from the sum of both partial
e�ects. However, we �nd that the dominant contribution of the response is given
by the perturbation of the dielectric function. The volume change increases the
asymmetry of the dispersive line shape. In addition, it must be mentioned that the
predicted response fails for wavelengths < 600 nm, due to the d-band absorption.
We assumed that the maximum oscillation signal is equal to the maximum ther-
mal signal. Under real conditions, the expected response signal is smaller than the
plotted one de�ning an upper limit. In �gure 4.5(b), the change of extinction, scat-
tering, and absorption cross section for the combined response is plotted. In case
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of the disc with 35 nm radius, both contribute equally, what changes for di�erent
particle sizes (see �gure 2.2(b)).

4.3.1 Theoretical prediction for the experimental results

In order to compute the expected signal for our pump-probe experiment as func-
tion of the particle size, we combine the models for size dependent excitation and
spectrally resolved nonlinear response. Therefore, the size dependent temperature
change ∆T = Teq− 300 K is used to modify the electron density and corresponding
optical properties, respectively. Figure 4.6(a) depicts the linear extinction cross sec-
tion Cext for the simulation parameters discussed previously. Higher order plasmon
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Figure 4.6

Linear extinction cross section Cext as a function of disc radius (a). The plasmon
resonance position of (a) is plotted as reference in the simulated nonlinear response
in (b). For better comparability, each nonlinear spectrum is normalized to its max-
imum. The maximum values are extracted separately and plotted in (c). As shown
in the previous section, we �nd an equal contribution of scattering and absorption
at a disc radius of ≈ 35 nm.
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modes are damped out due to the included d-band absorption. The corresponding
nonlinear response is plotted in (b), where each spectrum is normalized to its max-
imum value for better comparability. We �nd the dispersive response around the
fundamental plasmon resonance, independent of the particle size. Furthermore, the
asymmetry of the line shape for particle radii < 25 nm is more pronounced and
also an e�ect of the d-band. This is in contrast to a simple derivative of the extinc-
tion spectrum which suggests a more symmetric behavior. Figure 4.6(c) shows the
maximum signal contrast |Ci/Aspot|max in extinction, absorption, and scattering, by
taking the pump excitation at 800 nm into account. In the experiment we investi-
gate discs with radii between 20 nm and 45 nm.We expect relative signals between
7 · 10−5 and 10−3.

4.4 single particle response

4.4.1 Sample fabrication and characterization

Electron beam lithography allows the fabrication of extended two-dimensional struc-
tures of almost arbitrary shape and sizes down to a few nanometers in size [143, 144].
The ultra high resolution is slightly reduced as our substrate is non-conductive and
has to be transparent. For the given conditions and technology, we reach structure
sizes and distances down to 10− 20 nm with good reproducibility [26, 144].
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SEM images of single gold nanodiscs, fabricated by electron-beam lithography.
Their height is constant at 30 nm. The measured radii are given in the lower
right corners and have an error of ±2.5 nm. The corresponding dark-�eld spectra
are plotted on the right side, showing the expected blueshift and a rapid decrease
of the scattering amplitude when the disc radius is reduced.
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Figure 4.8

Scattered spectrum amplitudes as func-
tion of particle size. The measured data
with errorbars are represented by the
red circles, the theory-�t in arbitrary
units by the black curve.
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As substrate we use a cover glass of 200 µm thickness. The single gold discs are
designed in a two dimensional periodic pattern (5 × 20 discs) with 2.5 µm lattice
constant. This allows the optical far-�eld measurements of individual nanoparti-
cles. Furthermore, each structure can be clearly identi�ed by its column and row
number and characterized by SEM, AFM or dark-�eld spectroscopy. Large marker
structures help to locate the disc arrays on the glass substrate. The sample design
is written in a layer of PMMA photo resist. After developing the mask, a 3 nm
chromium layer is evaporated what guarantees a good adhesion of the gold on the
glass substrate. Its contribution to the optical response for structure heights of
30 nm and more is negligible [145]. Finally, the gold structure with the desired
height is evaporated and the remaining photoresist is removed. Here I want to
thank Mario Hentschel for his great support and contribution to the sample fab-
rication. The whole preparation process after the design with the eLine software
was performed by him. A more detailed description of the several fabrication steps
containing all chemical components can be found in his dissertation [146].

Scanning electron microscope images of the fabricated single gold nanodiscs are
shown on the left-hand side of �gure 4.7. All are on the same substrate and have a
constant height of 30 nm. The measured radii, with an assumed error of ±2.5 nm,
are in excellent agreement with the design values of 15, 20, 25 nm and 35, 40, 45 nm.
On the right side of �gure 4.7, the corresponding dark-�eld spectra are plotted.
The exposure time for each measurement is kept constant at 120 s. We �nd clearly
shaped plasmon resonances, redshifting and rising in intensity for increasing disc
radius. Furthermore, we obtain good agreement for the simulated scattered spectra
Cscat, calculated with an e�ective medium of neff = 1.4 (not shown). The com-
parison of dark-�eld spectra and the T-Matrix simulation reveals a slightly broader
linewidth in the experiment. We attribute this deviation to the di�erences between
our evaporated gold and the reference material, fabricated under optimal conditions.
However, the response amplitude behavior for di�erent disc radii is nicely predicted
and shown in �gure 4.8. The Lorentz amplitude of the dark-�eld spectra is plotted
as function of the disc radius (red circles). The black curve shows the theory curve
in arbitrary units, to �t the integration time of the measurement. Both datasets are
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in excellent agreement and verify the numerical model for the linear response and
support our predictions for the nonlinear signals. But, as the experimentally de-
termined linewidths are broadened with respect to simulation results, the expected
nonlinear responses of section 4.3 are further reduced.

4.4.2 Ultrafast nonlinear response and data evaluation

In the following we consider the sample area with single discs of 35 nm radius. The
pump pulses have 20 pJ at 800 nm wavelength and launch the acoustic vibrations.
From our theory, we expect the maximum nonlinear response at ≈ 635 nm and use
this as probe wavelength. As the measurements were performed in an earlier phase
of the experimental setup, the probe pulses were generated by a white light �ber
in combination with a pulse shaper instead of the OPO. The time delay between
excitation and interrogation is set to 20 ps. An 15 × 15 µm2 extinction map of
the sample surface with a lateral pixel size of 100 nm is plotted in �gure 4.9. The
measurement was performed with the confocal sample scanning microscope with
balanced detection and a pixel integration time of 20 ms. In the lower part of the
image we see part of a marker line which helps for the orientation on the sample.
In the upper right, a section of the di�raction limited disc array with 2.5 µm lattice
distance can be seen. The right image shows the corresponding nonlinear response
of a 2.5× 2.5 µm2 area around the marked particle (linear response map). We �nd
a background free signal with the nonlinear response of the particle located in the
center. The lateral size of the feature is smaller than the linear response, due to the
convolution of the two pulses. In order to obtain the temporal behavior, the particle
position is set and optimized to the maximum nonlinear response. Finally, the time
delay between pump and probe pulse is tuned. The measured relative transmission
change ∆T/T over 400 ps in 500 fs steps is shown as black curve in �gure 4.10(a).
For a time delay of 0 ps, pump and probe overlap temporally. At negative times,
the nonlinear response is zero and guarantees that the system fully decays between
the pump pulses. Within the �rst picosecond after excitation, a sharp dip is ob-
served, caused by the hot electron-gas as discussed in section 4.2. After 1 − 2 ps,
electron-gas and lattice are in thermal equilibrium, leading to the discussed thermal
response. Superimposed to the thermal background, the mechanical oscillations are
clearly observable. Both phenomena decay on di�erent timescales. While the oscil-
lation component disappears after ≈ 300 ps, the thermal background is still present
at the end of the measured trace.

The Fourier space of the mechanical oscillation signal contains information about the
vibration modes, their eigenfrequency, damping, and excitation strength (or more
precise, their excitation combined with the perturbation strength of the plasmon).
In order to extract the optomechanical information of the particle, several data
evaluation steps have to be performed. We already discussed the various features
in the temporal response, plotted in �gure 4.10(a). To extract the pure oscillation
feature, we separate the time interval of interest between the green marker lines. For



68 4 Acousto-optical response of a single gold nanoparticle

Figure 4.9

Two dimensional extinction
map (λ = 635 nm) of the
sample surface with disc ar-
ray and marker structure.
The nonlinear response in
arbitrary units around the
marked particle is zoomed
and shown at the right side.
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the comparison of di�erent measurements, we use the temporally invariant electron
response dip as reference to cut at a constant delay after excitation [122]. Here, we
typically use times between 10 ps and 20 ps, where the equilibrium state is guaran-
teed. Within the extracted time interval, we use a monoexponential �t to model the
thermal decay (red curve). After its subtraction, we obtain the separated mechan-
ical oscillation trace, plotted in (b). It shows the behavior of a damped oscillator.
The transformation into the frequency domain is performed numerically, using the
discrete (fast) Fourier transformation (FFT) [147, 148]. The result, consisting of real
and imaginary part, contains two mechanical mode properties. In polar coordinates,
this is the absolute value which gives the amplitude of a certain frequency, contribut-
ing to the overall signal, the other one is its phase. The mechanical spectrum, given
by the absolute values, is depicted in �gure 4.10(c). We observe one dominant me-
chanical mode at ≈ 22 GHz. From numerical simulations (see �gure 4.1) we assign
this frequency to the fundamental 'drum' mode, calculated to be at approximately
20 GHz. The higher frequency components are mainly attributed to noise, the lower
components to the leftovers of the thermal background separation. The resonance
linewidth of ≈ 5 GHz re�ects the oscillation damping time of ≈ 200 ps and can't be
improved by additional datapoints or higher integration times, which in best case
would lead to a background reduction in the mechanical spectrum. Furthermore,
we compare the oscillation amplitude (∆T/T ≈ 12.5 · 10−5) at a small delay time
in (b) with the FFT peak amplitude of ≈ 2.2 · 10−5 and �nd a strong deviation.
This is a result of the Fourier transformation, where the maximum amplitude in the
frequency domain is a function of the oscillation decay. For a given decay time of
200 ps, this corresponds to a factor of 5 between maximum oscillation amplitude and
FFT maximum and agrees well with our �ndings. However, due to the large error
in the resonance linewidth, we relinquish on this back scaling in our data evaluation.

In order to prove the reproducibility, all measurement are performed six times in
a row. In addition, it allows the calculation of a statistical error. The inset of
�gure 4.10(c) shows the complex solution of the Fourier transformation in polar co-
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Figure 4.10

Data evaluation of the measured mechanical oscillation signal (a), containing the
electron-gas response and a thermal background signal. The electron dip is used
as temporal reference to obtain a constant data cutout region. Within this section,
the thermal background is �tted by a monoexponential function and allows the
separation of the pure mechanical oscillation signal (b). The mechanical mode spec-
trum (c), showing one dominant mode, is given by the absolute value of the discrete
Fourier transformation. In addition, the complex solution allows the extraction of
the oscillation phase (at 22 GHz). Amplitude and phase are both con�rmed and
reproduced by 6 identical measurements as shown in the polar plot.
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ordinates for all six performed measurements, extracted at 22 GHz. We �nd a good
reproducibility of amplitude and phase, which is given relative to the electron-gas
dip. This allows the comparison of the oscillation excitation phase, in case of di�er-
ent probe wavelengths and particle sizes. Furthermore, we compare the measured
noise with the shot noise limit. While the average probe power at the sample is
≈ 4µW, the power at the detector is reduced by 50 % to 2 µW, due to optical ele-
ments in between. With a noise bandwidth of ∆νBW = 26 Hz and a pixel dwell time
of 50 ms, we calculate a shot noise per pixel of ∆T/T = 2.9 · 10−6. The measured
noise per pixel is slightly above the shot noise as ∆T/T = 6 ·10−6 and in agreement
with our noise analyses in subsection 2.3.1.

4.4.3 Spectrally resolved response

We investigate the discs shown in the SEM images of �gure 4.7. The ultrafast
nonlinear responses are measured over a spectral range from 560 nm to 740 nm
in 15 nm steps. The pump excitation is linearly polarized and �xed at 800 nm.
The probe pulses are circularly polarized to average over all polarization angles, as
the actual shape di�ers from a perfectly symmetric disc. For the signal amplitude
we use the absolute value of the fundamental mechanical drum-mode, extracted at
their resonance position as depicted in �gure 4.10(c). Furthermore, the constant ex-
citation process allows us to use the mechanical oscillation phase from the complex
Fourier spectrum to de�ne the sign of the response. Consequently, we reconstruct
the predicted dispersive lineshape, caused by the sign �ip of the gradient around the
plasmon resonance. Figure 4.11(a) shows the spectrally resolved nonlinear response
amplitude for the disc with 21 nm radius. In order to partially compensate the
o�-resonant excitation, we use a higher pump intensity with a time average pump
power of 5 mW. For comparison we normalize the response to an average pump
power of 1.5 mW, afterwards. The polar plot contains all measured data points.
Crosses with the same color correspond to a certain probe wavelength. We �nd a
constant oscillation phase at the mechanical resonance at 37 GHz over the whole
measured spectrum which proves the origin of the signal. The red line represents the
average phase, including the phase shift of π. However, due to the very small signals,
slightly above the noise limit, only 5 datapoints are analyzed. The remaining probe
wavelengths show neither an oscillation trace, nor the typically strong electron peak.
Furthermore, all datapoints have the same phase and sign, respectively. As a con-
sequence, the measured transient transition spectrum, plotted as red curve on the
right, has only positive values. For comparison, the model response of section 4.3.1
is scaled by a factor of 8 · 10−3 and plotted as black curve. The spectral shift can
be explained by the rough approximation with the e�ective medium. In addition,
the response lies in the d-band absorption, leading to further deviations and signal
suppression. The scattered spectrum resonance ω0,scat is slightly redshifted with
respect to the simulated zero crossing. The response of the disc with 35 nm and
45 nm radius is depicted in (b) and (c). In both cases we see the negative sign
response on the blue side of the plasmon resonance. The theory �tting factors are
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Figure 4.11

Spectrally resolved nonlinear response of a single nanodisc with a radius of 20 nm
(a), 35 nm (b), and 45 nm (c). Each datapoint (red circle) in the spectra is calculated
from the average of 6 identical measurements. The polar plots contain the amplitude
and phase of the mechanical mode of all measurements. The constant phase proves
the measurement of a real mechanical signal, since the oscillation is independent of
the probe process. The black curves are theory �ts with di�erent scaling factors.
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Figure 4.12

Model prediction of the maximum non-
linear response with (black) and with-
out (gray) taking the varying excitation
conditions into account. The red circles
mark the experimental results and show
the importance of the excitation process.
The simulation fails to model the re-
sponse of the 20 nm and 25 nm discs, due
to the unmodeled d-band absorption.
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3 · 10−2 for the 35 nm and 4 · 10−2 for the 45 nm disc. While the deviation from
the missing d-band modeling is still visible for the 35 nm disc, the simulation and
measurement results of the 45 nm disc are in excellent agreement. We conclude
that the model allows the prediction of the optomechanical response of single gold
nanoobjects. However, due to the neglection of the d-band perturbation, the model
fails for wavelengths below 610 nm. In �gure 4.12 we compare the maximum non-
linear response of measurement (red circles) and simulation. Here, the �tting factor
for the theory, plotted as solid black curve and including the excitation process, is
4 · 10−2. The gray dashed curve shows the maximum response, neglecting the size
dependent pump-absorption and assuming a constant lattice heating (Teq = const.).
The comparison shows the necessity of taking the excitation process into account,
especially if coupled structures of di�erent size are investigated. Furthermore, we
assumed constant lifetimes for all modes, which would also in�uence the maximum
signal amplitudes due to the Fourier processing. This assumption is supported by
the almost constant linewidths of the mechanical oscillation resonances, shown in
the following subsection.

In addition to the presented acousto-optical signals of single gold nanodiscs, their
polarization dependence and corresponding asymmetry, as well as the statistical be-
havior and di�erent particle geometries and materials are investigated. Furthermore,
we �nd an approximately linear behavior of the pump power and even melting or
particle deformation processes are observed. The work was done together with Kai
Kratzer and Daniela Ullrich. Here, I want to thank them both for the great collab-
oration and refer to their diploma theses for a detailed discussion of the mentioned
investigations [149, 150].

4.4.4 Mechanical properties

Finally in this section, the mechanical spectra of the shown discs are discussed.
Figure 4.13(a) shows the mechanical oscillation spectra of the 20 nm, 35 nm, and
45 nm disc in the range of 0 GHz and 100 GHz, extracted at their maximum
nonlinear response wavelength. In analogy to the plasmon blueshift for the stronger
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Figure 4.13

Mechanical spectra of the presented discs of �gure 4.11, taken at their maximum
signal wavelength. The black arrow in the 20 nm disc plot marks the extensional
mode (b). In addition, the investigated higher frequency drum mode (c) can be
observed. A simple model, plotted as black curve in (d), contains the sound velocity
of gold and is in good agreement with our experimental results (linear �t in red).

con�ned electron-gas, the mechanical eigenmodes shift to higher frequencies. The
mode spectrum of the 20 nm disc reveals two clear resonances at ≈ 22.0 GHz (black
marker) and ≈ 37.5 GHz (red marker). While both modes are distinguishable
in the 20 and 25 nm disc spectra, the larger discs show one dominant resonance,
with a barely resolvable mode at the lower frequency tail. We assume that the
lower frequency mode corresponds to the 'extensional mode' shown in (b), as its
eigenfrequency is almost independent on the disc radius. The higher frequency
mode shifts to higher frequencies for decreasing radius and is thus attributed to the
'drum mode', sketched in (c). However, this is just an assumption and cannot be
exactly proven as too many unknown parameters, especially for the in�uence of the
substrate, are given in the simulation. However, in order to approximate the �rst
order drum mode eigenfrequency, we follow the sketch of �gure 4.13(c) and assume

λ/2 = 2rd (4.11)



74 4 Acousto-optical response of a single gold nanoparticle

with λ being the mechanical mode wavelength and rd the disc radius. With the
correlation λ/c = 1/ν we write

1

νdm
= Tdm = 4 · rd

c
(4.12)

where c = 3240 m/s is the speed of sound in gold, νdm the eigenfrequency, and
Tdm the period of the mode [151]. The black curve in �gure 4.13(d) gives the
predicted mode frequency as a function of the disc radius. The red circles are the
measured values and in good agreement with the simple model. Furthermore, we
�t the experimental data with a linear function and allow an o�set which considers
a constant wave re�ection behavior at the gold-air interface. We �nd a best �tting
result for cfit = 3891 m/s. The �t is plotted as dashed red curve. In contrast to
the size dependent mechanical eigenfrequencies, the linewidth stays approximately
constant within the spectrum resolution. As a consequence, a direct comparison of
the peak amplitudes is possible, as discussed in the previous subsection.

4.4.5 Conclusion of single particle experiments

We introduced ultrafast nonlinear spectroscopy of the mechanical oscillations of sin-
gle gold nanoparticles. After partial absorption of the pump pulse, the impulsive
heating of the lattice, mediated by electron-phonon scattering, launches acousti-
cal vibrations which can be detected via the perturbation of the particle plasmon
resonance. We discussed a spectrally and size dependent numerical model for the
excitation and probe process. The experimentally investigated sample, consisting
of gold nanodiscs of 30 nm height and di�erent radii, shows signi�cant mechanical
eigenmodes with di�erent size dependence. We apply a simple model, containing
the sound velocity of gold, to �t the measured frequency dependence of the higher
energy mode and �nd very good agreement. Furthermore, the data evaluation via
the complex Fourier components allows the detailed reconstruction of the spectrally
resolved nonlinear response of a single gold nanoparticle. The comparison of simula-
tion and experiment shows a good agreement if the excitation process is taken into
account and the nonlinear response is at wavelength > 610 nm, where the in�uence
of the d-band can be neglected. Additional studies such as the pump power depen-
dence and di�erent particle geometries are discussed in the diploma theses of Kai
Kratzer and Daniela Ullrich [149, 150]. However, the particles with 20 nm radius
are at the detection and shot noise limit. In order to reach particles of smaller sizes,
an optical antenna must be applied.

4.5 signal enhancement utilizing an optical nanoantenna

The near �eld of a plasmonic nanostructure, acting as optical nanoantenna, can
exceed the amplitude of the incident light �eld by orders of magnitude [152, 153].
Consequently, the light-matter interaction of a nanoobject which is placed in the
close vicinity of the nanoantenna, is enhanced but also correlated to the optical
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Figure 4.14

Illustration of simplifying the antenna geometry to avoid higher order mechanical
modes of the antenna which overlap with the desired nanoparticle signal.

properties of the antenna. Furthermore, the electromagnetic interaction leads to a
coupling of the two subsystems and results in a combined response with character-
istic new optical properties [27, 29, 30]. The coupling depends on geometric and
material properties, as well as the oscillator and coupling strength. This o�ers a
huge parameter space for the antenna design. In chapter 6, we introduce a point
dipole approximation approach to numerically optimize complex antenna geometries
and discuss the di�erent behavior with and without back coupling of the nanoob-
ject. In this section we demonstrate the �rst realization of an optical nanoantenna
to enhance the ultrafast nonlinear response of a gold nanodisc of 20 nm radius [80].

Di�erent antenna geometries are under development, ranging from simple dipoles
to complex Yagi-Uda antennas [45, 154�157]. However, in order to distinguish
between the nonlinear response of nanoparticle and antenna, we have to use the
signal identi�cation via their di�erent mechanical eigenmodes in the Fourier spec-
trum. For example a bow-tie geometry, known for a high electro-magnetic �eld
enhancement in the feed gap, shows several mechanical modes between 10 GHz and
100 GHz [150, 153]. As a consequence, we are limited in the antenna design and sim-
plify the geometry as illustrated in �gure 4.14. The concept of signal enhancement
is summarized in �gure 4.15. The electric near-�eld distribution of a disc-shaped
antenna, taken at its plasmon resonance, is plotted in the sub�gure (a). According
to the incident �eld polarization, two hot spots with high �eld amplitudes are ob-
served. These hot spots act similar to a nano-lens by concentrating the �eld in a
small volume. The nanoparticle of interest is placed into one of these nanofoci to
enhance its light matter interaction via the antenna. Here, the backscattering of
the nanoparticle cannot be neglected in the coupled response as the mode pattern
and eigenenergy of the coupled system changes signi�cantly as shown in sub�gure
(b). In analogy to orbital hybridization in molecular physics, the coupling of plas-
monic modes can be described by plasmon hybridization [27]. In the case of two
particles with one plasmonic mode, a symmetric and an antisymmetric eigenmode
with new corresponding eigenenergies is formed as sketched in sub�gure (d). In the
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Basic concept of an antenna for a plasmonic particle. Absolute value of the electric
�eld in the top plane of the structure of the bare antenna (a) and particle-antenna
pair system (b). The wavelength is in each case adjusted to the resonance. In the
latter case, plasmon hybridization leads to a symmetric ω+ and antisymmetric ω−

eigenmode with corresponding eigenenergies as shown in (d). A perturbation of the
optical properties of the nanoparticle modulates the hybrid modes, promising the
desired signal enhancement. For comparison, a polarization rotation by π/2 reduces
the near-�eld coupling (c), and an almost negligible antenna e�ect.

symmetric mode, the plasmon oscillations of antenna and nanoparticle are in phase
and attract each other, resulting in an energy reduction of the hybrid mode. Fur-
thermore the mode shows an increased e�ective dipole moment and couples strongly
with the external light �eld (b). In case of the antisymmetric mode, the energy is
blue shifted due to the repulsive near-�eld forces. The counter phase oscillation
leads to a weak e�ective dipole moment and an almost dark plasmon mode [158].

The perturbation by mechanical oscillations of the nanoparticle in�uences the hy-
brid modes of the antenna-nanoparticle pair. As a consequence, the weak oscillation
information of the nanoparticle is modulated on a much stronger carrier signal of
the antenna. Maximum signal enhancement is achieved for a compromise between
spectral overlap (modulation strength) and antenna oscillator strength. A theo-
retical and experimental study of various antenna geometries, concerning di�erent
materials and antenna-particle arrangements, can be found in the diploma thesis of
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Daniela Ullrich [150]. A more generalistic model to �nd optimum antenna geome-
tries and to understand the involved mechanisms is presented in chapter 6. Here,
we consider the excitation as well as response enhancement by a disc shaped gold
nanoantenna. We consider the excitation and detection polarization being parallel
to the long pair axis. This leads to a strong coupling with the bright symmetric
plasmon mode at ω+. For comparison, a polarization rotation of the probe pulses
by π/2 reduces the near-�eld coupling as depicted in sub�gure (c). Here, the strong
symmetric mode is shifted to slightly higher, the weak asymmetric mode to lower
energies. However, the less e�cient coupling decreases the desired antenna e�ect.

4.5.1 Antenna mediated excitation enhancement

In analogy to section 4.2, we investigate the excitation of mechanical oscillations in
the gold structure, consisting of the coupled antenna-nanoparticle pair. In order to
separate the energy absorbed by the two substructures, we use the numerical model
introduced in section 3.2 and integrate the dissipative loss density over the nanoan-
tenna and particle volumes, respectively. The excitation enhancement fNP,pump as
a function of the antenna radius ra and particle surface distance g is de�ned as

fNP,pump(λ, g, ra) =
P

′

NP,diss(λpump, g, ra)

PNP,diss(λpump)
(4.13)

with P
′

NP,diss being the absorbed power of the nanoparticle in the close vicinity of
the antenna, and PNP,diss the absorbed power of the single nanoparticle. In analogy,
the excitation of the optical nanoantenna is in�uenced as well by the presence of
the nanoparticle. In the following we consider a nanoparticle radius of 20 nm and a
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Excitation enhancement of nanoparticle and optical-antenna as function of antenna
radius (a) (gap = const.), and gap distance (b) (antenna radius = const.).
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constant structure height of 30 nm. The calculations are performed in an e�ective
medium of neff = 1.4 at the pump wavelength λ0 = 800 nm. Figure 4.16(a) shows
the excitation enhancement of nanoparticle and antenna for a constant gap distance
of g = 10 nm and antenna radii between 10 nm and 60 nm. We �nd a di�erent
behavior for the excitation enhancement. In case of two identical nanoparticles
with radii of 20 nm, the redshift of the hybrid mode resonance leads to an excita-
tion enhancement by a factor of ≈ 2 for each particle (left red arrow). A further
increase of the antenna sie, for example at ra = 35 nm (middle red arrow), leads to
stronger excitation enhancement for the nanoparticle but decreasing antenna exci-
tation. Here we �nd an excitation enhancement of the nanoparticle by ≈ 4.5 and
of the antenna by 1.8. The optimum excitation is found for an antenna radius of
64 nm where the absorption resonance of the coupled system exceeds the pump
pulse wavelength. The gap dependent excitation enhancement for a 35 nm antenna
is plotted in 4.16(b). We �nd stronger enhancement for decreasing distances.

4.5.2 Enhanced nonlinear response and antenna optimization

The nonlinear response is in�uenced by the coupling as well. We discussed how the
mechanical oscillation information of nanoparticle and antenna are both projected
on the combined hybrid modes. Experimentally, their contribution to the overall
signal can be separated by the Fourier decomposition, since both have di�erent me-
chanical eigenfrequencies. In our theory, the separation can be done directly. In
order to investigate the perturbation of the hybrid mode by the nanoparticle, we
change its dielectric properties and size as described in the single particle section
and keep the antenna properties undisturbed. In analogy, the contribution of the
antenna is calculated. The geometry is identical to the previous subsection. Further-
more we consider the pure probe response and neglect the excitation enhancement
under the assumption of a constant lattice temperature increase of 100 K. The
plots 4.17(a,b) show the linear extinction spectra of the coupled system for a probe
polarization along the symmetry axis (a) and perpendicular to it (b). For compar-
ison, the resonance position of the single antenna is plotted as dashed curve. The
deviations are due to the interaction with the nanoparticle and show the behavior
expected from the plasmon hybridization picture. The nonlinear response of the
nanoparticle and the antenna is shown in (c). For both, we �nd a similar spectral
behavior what supports the picture of a signal modulation on the hybrid mode.
The amplitudes are normalized to the maximum nonlinear response of the single
nanoparticle (∆T/T )NP,max or the single antenna, respectively. Hence we obtain
the probe enhancement by

fNP,probe(λ, g, ra, ) =
∆T/T

(∆T/T )NP,max
. (4.14)

Furthermore, we determine the optimum antenna radius to be at ≈ 32.5 nm where
the signal of the nanoparticle is enhanced by a factor of ≈ 2.5. The antenna signal
is increased by a factor of 1.4. Antennas with smaller radii show better spectral
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Figure 4.17

Linear response of the antenna-nanoparticle pair as function of the antenna radius
for parallel (a) and perpendicularly polarized light (b). Nanoparticle and antenna
signal show the same nonlinear spectral behavior (c). The predicted antenna radius
optimum for the 20 nm particle lies at≈ 32.5 nm. For the perpendicular polarization
(d), nanoparticle and antenna are almost decoupled and no signal enhancement is
achieved.
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Comparison between the theoretically predicted single nanoparticle response and
the antenna enhanced response, taking excitation and response enhancement into
account. The signal is redshifted to the hybrid mode and enhanced by a factor of
≈ 10.

overlap, but have less oscillator strength. For larger radii, the e�ects are vice versa.
Figure 4.18(d) shows the results for the perpendicular polarization. We �nd the
almost uncoupled behavior and thus no antenna e�ect.

Finally, we compare the single particle with the enhanced response in the case
of the antenna with a radius of 35 nm. The simulation results are summarized
in �gure 4.18. We �nd a characteristic redshift of the whole signal to the en-
ergy of the hybrid mode and furthermore the desired signal enhancement. For
the considered antenna size and gap the excitation enhancement fpump and probe
enhancementfprobe contribute almost equally to the overall signal increase by a fac-
tor of ≈ 11. The optimum antenna radius with maximum enhancement is found
at around 60 nm as the increase of excitation enhancement overcompensates the
decrease of the response enhancement. However, we have to keep in mind that
the simulation fully neglects the d-band absorption. In the experiment, we expect
a much weaker response for the single particle with 20 nm as predicted by our
model (see subsection 4.4.3). Consequently, we have to take into account that the
contribution of the probe enhancement is much higher than calculated because the
hybrid mode shifts the response away from the d-band where our model �ts. In
the experiment, we use the presented antenna with a radius of 35 nm, although the
theoretical optimum with excitation enhancement would be at larger antenna radii.
However, the 35 nm antenna gives the best compromise of maximum probe en-
hancement but weak background noise in the mechanical spectrum which strongly
increases for larger antennas and makes the separation of the nanoparticle mode
almost impossible.
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SEM image and measured dark-
�eld spectra for parallel and per-
pendicularly polarized light. For
comparison, the resonances of a
single nanoparticle and antenna
are marked by the black arrows.

4.5.3 Experimental investigation of the antenna-nanoparticle pair

In the following we verify the theoretical predictions by ultrafast pump-probe spec-
troscopy. Figure 4.19 shows the SEM image of the investigated structure. The
antenna has a radius of 35 ± 2.5 nm, the nanoparticle of 20 ± 2.5 nm. Both are
separated by a ≈ 12.5 ± 2.5 nm gap and have a height of 30 nm. The fabrication
was done in one step with the single discs, discussed in the previous chapter, to
guarantee the comparability. The polarization resolved dark-�eld spectra are plot-
ted next to the SEM image. For comparison, the resonance positions of the single
nanoparticle and antenna are marked by the arrows. We �nd a clear mode splitting
for the polarization along the long structure axis. The perpendicular polarization
shows almost the same response as the single antenna. The small blueshift proves
the hybridization model and a separation of the two particles.

The spectrally resolved nonlinear response of the antenna-nanoparticle pair is sum-
marized in �gure 4.20. The excitation is kept constant at 800 nm wavelength with
a time averaged power of 1.5 mW and polarization along the long structure axis.
In the left column of the �gure, the probe pulses are polarized along the symmetry
axis, leading to the strong antenna-nanoparticle coupling. In the right column the
polarization is perpendicular to it. The inset in (a) shows the measured temporal
response at a probe wavelength of 705 nm. The comparison with the single antenna
response of section 4.4.2 shows a clear deviation and implies additional mechanical
frequency components. The Fourier decomposition con�rms this assumption, show-
ing two clear mechanical modes at the fundamental drum mode resonances of the
single nanoparticle (red arrow at 36 GHz) and antenna (black arrow at 22 GHz).
Consequently, the mechanical mode spectrum allows us to distinguish between the
mechanical signals from antenna and nanoparticle. Sub�gure (b) shows the am-
plitude of both modes as function of the probe wavelength. As expected we �nd
the same spectral behavior of nanoparticle and antenna. Furthermore we compare
the mechanical phase for all probe wavelengths as the mechanical oscillations are
independent of the optical measurement. The polar plots (a) and (b) in �gure 4.21
summarize the results of antenna and nanoparticle, extracted at the correspond-
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Figure 4.20

The polarization of the probe light determines the coupling strength between an-
tenna and nanoparticle. The left column of plots (a,b,c) shows the strong coupling
case, the right column (d,e,f) the weak coupling control experiment. The response
of the nanoparticle and the antenna are drawn in red and black, respectively. The
insets in (a,d) give an example for transient transmission traces, monitoring the
mechanical oscillation of the nanoparticles at their maximum signals. The corre-
sponding mechanical spectra (a,d) show always the antenna mode (22 GHz), but
only in the strong coupling case (a) also the nanoparticle mode at 36 GHz. (b,e)
Oscillation amplitude of both mechanical modes as function of probe wavelength as
mean of six consecutive measurements. The error bars give the standard deviation.
The line is a guide to the eye. The plots in (c) and (f) show the predicted oscillation
amplitudes of the numerical model.
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Figure 4.21

Complex Fourier values at the mechanical resonances of antenna (a, 22 GHz) and
nanoparticle (b, 36 GHz) in the coupled system, both showing phase stability and a
good agreement with the single particle measurements. For comparison, the values
at 36 GHz of a single antenna are randomly distributed and at the noise limit.

ing mechanical eigenfrequencies. The phases show a constant behavior and are
in good agreement with the single particle results. For comparison, the complex
Fourier values of the single antenna, taken at the eigenfrequency of the nanoparti-
cle at 36 GHz, are plotted in (c). Finally we compare the experimental data with
the previously discussed numerical model. The calculation results are plotted in
�gure 4.20(c). All spectral features and signal amplitudes as well as the amplitude
ratio between antenna and nanoparticle signal are well reproduced. In order to
perform a control experiment, the probe polarization is rotated perpendicular to
the symmetry axis where we obtain the weak coupling case. Already the detected
mechanical oscillation signal, plotted for a probe wavelength of 605 nm in the inset
of �gure 4.20(d), shows a signi�cant change. The corresponding mechanical mode
spectrum shows only one peak, located at the mechanical eigenfrequency of the
nanoantenna at 22 GHz. Here, the 36 GHz signal of the small nanoparticle is not
recognizable, although the pump excitation process is identical for both probe polar-
ization measurements. This allows the conclusion that the excitation enhancement
by the antenna is small with respect to the probe enhancement. Furthermore, a
mechanical coupling of the two particles via the substrate would be independent of
the probe polarization so the e�ect is purely optical. The polarization dependent
response, based on di�erent plasmonic coupling, proves the concept of resonant an-
tenna enhancement. Again we plot the mechanical oscillation signal of antenna and
nanoparticle versus the probe wavelength (e). Here a clear change has taken place,
compared to the strong coupling polarization shown in (b). While the nonlinear
response of the antenna is still clearly observable over the whole spectral range and
located around the uncoupled antenna resonance, the oscillation signal of the small
nanoparticle vanishes almost completely. Again, our numerical model predicts the
spectral behavior (f) of the signal amplitudes. However, it fails regarding the signal
strength of the nanoparticle due to the neglected d-band absorption below 610 nm.
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However, the �gures (b) and (e) demonstrate clearly that the antenna enhancement
can be turned on and o� by switching the probe polarization appropriately.

4.5.4 Comparison of single and antenna enhanced particle

Finally we investigate the e�ciency and spectral behavior of our antenna. Unfortu-
nately the antenna cannot be removed from the coupled structure without harming
the nanoparticle or its close environment. Therefore we compare the response of
the presented antenna-enhanced nanoparticle with a single nanoparticle of the same
size and shape. However, the nonlinear response of nominally identical nanoparticles
varies due to slight variations in size, crystallinity, and environment. Necessarily
the statistical distribution of the signal strength must be used to determine the
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Figure 4.22

Histogram of the maximum signal strength of 27 single nanodiscs with 20 nm in
radius (black bars). The distribution of the single particles form a Gaussian pro�le
located around ∆T/T ≈ 0.5 · 10−6. The signal of the antenna-enhanced particle is
at ∆T/T ≈ 6.1 · 10−6 which is equivalent to an ampli�cation by a factor of about
10.
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antenna enhancement. A histogram of the maximum nonlinear signal response of
27 nanodiscs, normalized to a time averaged pump power of 1.5 mW, is shown in
�gure 4.22(a). We �nd a Gaussian distribution of the maximum single nanoparticle
response with its mean value at ∆T/T ≈ 0.5 · 10−6 and a width of ≈ 0.26 · 10−6.
The disc with 20 nm radius, presented in �gure 4.11(a), is in the center of the Gaus-
sian amplitude distribution. Its nonlinear response is plotted as black squares in
�gure 4.11(b). This reference signal is compared with the antenna-enhanced signal
(red dots), which was already shown in 4.20(b). The ampli�ed response is red-shifted
and located around the hybrid plasmon resonance ω+. Furthermore we obtain the
desired signal enhancement, which is about a factor of ten larger than the signal
from the nanoparticle without an antenna. This mechanical oscillation signal is
the strongest oscillation we have ever measured of such a small single nanoparticle.
For an assumed gap distance of 15 nm we estimate from our model an increase of
the excitation by a factor of about 3. The predicted response enhancement gives
an additional factor of 3, so that in our model pump and probe enhancement con-
tribute equally for the considered antenna-nanoparticle pair. However, as already
discussed in subsection 4.5.2, the prediction for the probe enhancement fails due to
the neglected d-band. Consequently, the probe contribution is much stronger with
respect to the excitation enhancement and dominates the overall enhancement in
the experiment. This is supported by the weak coupling measurements. If the exci-
tation enhancement would contribute equally, we would expect a signal response of
the small particle for the perpendicular probe polarization as the excitation process
is not changed. This is not the case and we conclude that the probe enhancement
plays the dominant role in our experiment as the coupled response is shifted away
from the d-band.

4.6 conclusion and outlook

In this chapter we presented the �rst realization of an optical nanoantenna for ultra-
fast nonlinear spectroscopy at the example of mechanically oscillating gold nanopar-
ticles with frequencies in the GHz region. After the theoretical introduction and
modeling of the optical excitation and interrogation of the acoustic vibrations in
gold nanostructures, we compared the experimentally determined with the numeri-
cally predicted response of single nanodiscs with radii between 20 and 50 nm and a
constant height of 30 nm. We found good agreement what allowed us to predict the
response of single and coupled nanoparticles with our model, as long as the d-band
absorption of gold can be neglected. Furthermore, the mechanical spectra of disc
shaped nanoparticles are dominated by the �rst order drum mode and another, in
general weaker extensional mode. In order to enhance the barely detectable 20 nm
disc to reach smaller particle sizes, we studied how the excitation and probe pro-
cesses are in�uenced by an optical nanoantenna which was realized by a second
disc with di�erent radius. A plasmon hybridization picture helps to understand
the antenna e�ect, where the weak nanoparticle signal is modulated on a much
stronger hybrid mode. Our model was used to theoretically optimize the antenna-
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probe
pump

Figure 4.23

Complex antenna structure, consisting of two separated antennas where one is op-
timized of for pump excitation of the nanoparticle, the other one for its response
enhancement.

nanoparticle structure. The experiment veri�ed the predictions and we achieved an
overall enhancement by a factor of ten, compared with the typical response of a
single nanoparticle.

Higher enhancement could be realized by resonant excitation with a spectrally tun-
able pump pulse. While the optimum probe antenna is at a radius of ≈ 35 nm, the
pump excitation at 800 nm is most e�cient for an antenna radius of ≈ 64 nm. A
complex antenna geometry, for example shown in �gure 4.23, can combine maxi-
mum pump and probe enhancement. The �eld distribution shows how a resonant
pump antenna (left) can enhance the oscillation amplitude of the nanoparticle by
resonant pump excitation, while keeping the other antenna excitation o� resonant.
The response antenna (right), couples strongly with the nanoobject and enhances its
nonlinear response, while the interaction with the pump antenna can be almost ne-
glected. This and several other antenna structures were studied by Daniela Ullrich
during her diploma thesis [150]. Even three dimensional structures and antennas
composed of di�erent materials are possible and show sharper resonances with re-
spect to the gold discs [159]. Daniela found silver as most promising material for
optical antennas. In theory, silver nanoparticles show narrow linewidths without ab-
sorption bands in the visible spectrum. Furthermore, it allows spectral overlap with
the small gold particles by simultaneously high oscillator strength. This opens a
huge parameter space for antenna optimization. However, di�erent antenna geome-
tries and matierials are limited by fabrication conditions and the required Fourier
decomposition in our analyses. In chapter 6 we present a fast numerical method
to approximate plasmon-plasmon interaction which allows, in combination with an
evolutionary algorithm, to �nd optimum parameter settings of many-particle anten-
nas. Furthermore it allows the study of relevant antenna values and their interaction
with the nanoparticles. However, an unavoidable circumstance is the Fourier decom-
position of the mechanical modes. Here the mechanical background and noise of the
antenna is superimposed to the desired nanoparticle signal what limits the capabil-
ities of antenna size and geometric design. A way to circumvent the contribution of
the gold antennas could be the usage of dielectric microcavities [160, 161].



5
QUANTUM CONFINED CARRIER DYNAMICS
IN A S INGLE CDSE NANOWIRE

5.1 introduction

Semiconductor nanowires bridge the gap between the quantum world and bulk be-
havior [162, 163]. When the radius of the wire comes into the range of the exciton
Bohr radius, the quantum con�nement of the electron and hole leads to discrete
exciton transition energies what shapes the optical response of the wire [164, 165].
As novel one-dimensional nanostructures, the wires allow the combination of con-
�nement tunability, connectivity to the environment, and polarization dependent
behavior. This makes them very appealing nanosystems for fundamental research,
next generation solar cells, photodetectors, and future telecommunication applica-
tions for example via the coupling to plasmonic nanostructures [19�22, 166, 167].
However, the quantum behavior of these complex systems are still topic of current
fundamental research. Spectral di�usion and photobleaching complicate the experi-
ments at room temperature. Furthermore, in the considered size range, the variation
of the optical response with the nanowire diameter makes single wire experiments
indispensable (see appendix A) [165, 168]. Fluorescence spectroscopy allows insight
into the photophysics and emission properties of the nanowires [165, 169, 170]. The
ground and higher state absorption of a single nanowire was determined by vari-
ous techniques [171�173]. However, optical techniques such as transient absorption
spectroscopy have to be applied, in order to trace the picosecond resolved quantum
con�ned carrier dynamics before photo-emission. Here, only single wavelength ap-
proaches with limited insight to the involved physical processes have been published
so far [174, 175].

In this chapter we investigate spectrally resolved ultrafast nonlinear quantum con-
�ned carrier dynamics in individual CdSe nanowires with about 10 nm diameter.
Figure 5.1 presents the essential idea of the performed experiment. The CdSe
nanowire has a diameter of a few nanometers and quantum con�ned energy states
of electrons and holes which are sketched in the inset ladder scheme. A highly fo-
cused near-UV pump pulse excites electrons from the valence band above the band
gap into the conduction band (blue arrow). On an ultrafast timescale, several of
these electron-hole pairs will populate lower energetic exciton states via radiative
and non-radiative processes. The probe pulse (red arrow) interrogates the transient
bleaching as a function of time delay and probe photon energy. The spectrally re-
solved bleaching response is correlated with the state population and gives access
to previously unattainable processes.
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Figure 5.1

Illustration of the performed pump-probe experiment of a single CdSe nanowire
with a few nanometers in radius. The strong spatial con�nement leads to discrete
energy states of electrons and holes and thus to discrete optical transitions. The
pump pulse in the near UV excites electrons, resulting in an electron and hole state
population. The probe pulse interrogates the transition bleaching as a function of
time and allows the investigation of ultrafast carrier dynamics in an individual wire.
In contrast to zero dimensional nanocrystals, the density of states (DOS) shows no
discrete behavior as illustrated, but is similar as known from textbooks.

In the �rst section we compute the quantized electron and hole states of a CdSe
nanowire by e�ective mass theory [52, 64]. From the solution of the single parti-
cle Schrödinger Equation of electron and hole we obtain the wave functions and
corresponding eigenenergies, respectively. This allows the calculation of the dipole
allowed transition energies and probabilities as a function of the wire radius. After
the theoretical overview and its predictions we discuss the sample preparation and
wire structure by high resolution transmission electron microscopy (TEM). We per-
form polarization resolved excitation measurements to characterize the anisotropic
properties of individual wires. The �ndings are supported by our numerical simu-
lations. Finally, we investigate the ultrafast carrier dynamics of quantum con�ned
states of two di�erent wires. We �nd and discuss characteristic short and long liv-
ing e�ects. The direct extraction of the lifetime of various transitions allows the
comparison to the corresponding photoluminescence response. We obtain hints on
re-absorption processes which can explain the low photoluminescence emission rate
of these wires. Finally, we couple a single wire to a plasmonic antenna. We intro-
duce a classical numerical model to predict the coupled response of semiconductor
nanostructure and optical antenna. First experimental results of the hybrid system
show an enormous increase of the exciton decay rates, what we attribute to the
additional decay channels of the plasmon [176, 177].
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5.2 quantized electron and hole states

We consider wire radii around or smaller than the exciton Bohr radius of 5.6 nm for
bulk CdSe where quantum con�nement of electrons and holes leads to discrete eigen-
states [171, 178]. The reason for the strong deviation from the bulk semiconductor
band structure is the reduced amount of atoms and density of states. Atomistic ab-
initio methods allow the precise calculation of the eigenstates of the wire by taking
each atom into account [179, 180]. However, the computational e�ort is huge so
that we use an alternative method.

E�ective mass approximation is a semiclassical approach to describe a quasi free
particle in a lattice environment [52, 181]. In analogy to Newton's second law of mo-
tion, the equation of motion of a crystal particle allows the de�nition of an e�ective
mass (

1

m∗

)
ij

=
1

~2

[
∂2ε

∂ki∂kj

]
(5.1)

which is correlated with its dispersion relation ε(k). For example, a particle in a
parabolic shaped band has a constant e�ective mass. In general the band struc-
ture of semiconductors are much more complex. Common methods to describe
the nonparabolicities were introduced by Luttinger and Kohn, and Kane [182, 183].
Shabaev et al. and Giblin et al. apply the theory to model excitonic transitions
in CdSe nanowires [171, 184]. We follow their detailed introductions to compute
the optical properties of our nanowire with radius a. In contrast to ab-initio cal-
culations, it is assumed that the electron and hole are spatially con�ned with the
bulk band structure properties. The system is reduced and approximated by a
two-dimensional model, perpendicular to the wire axis what results in a discrete
density of states. The deviations from the extended wire sytem are neglegtable
and show good agreement between experiment and theory [171]. Bessel functions
Jm(ρ) · exp (imφ) provide the function base, with ρ being the radial distance from
the wire axis and φ the angle in polar coordinates. The order of the Bessel func-
tion is indicated by m. In the following we discuss how the equation system with
the given boundary conditions is solved and refer to the original paper for more
details [184].

5.2.1 One band e�ective mass theory for electron states

The electron states can be found by simple one-band e�ective mass theory. The
complete electron wavefunction Ψ

(e)
n|m| is given by

Ψ
(e)
n|m| =

uc±1/2√
πaJ

′
|m|(an|m|)

J|m|

(an|m|
a

ρ
)

exp (imφ) (5.2)

including the conduction band Bloch function uc±1/2. Furthermore, an|m| is the
nth root of the mth order Bessel function and given by the boundary condition
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that the wavefunction Ψ(a, φ) = 0 has to vanish at the wire radius a. De�ned
by the argument of the Bessel function, the radial wavenumber of the electron is
ke = an|m|/a. The corresponding energies are derived to

En|m| =
~2k2

e

m
(
En|m|

) =
~2a2

n|m|

m
(
En|m|

)
2a2

(5.3)

with the e�ective mass

m
(
En|m|

)
= m0 ·

(
1 + 2f +

Ep
3

[
2

E + Eg
+

1

E + Eg + ∆

])−1

(5.4)

containing the elementary electron mass m0, the band-gap energy Eg = 1.74 eV,
spin-orbit coupling ∆ = 0.42 eV, and Kane model parameters Ep = 19 eV and
f = −1.035. As m

(
En|m|

)
is a function of the state energy, the combination of the

equations 5.3 and 5.4 leads to a recursive function and we have to determine En|m|
numerically. Therefor, we consider

En|m| − ~2k2
e ·
(
m
(
En|m|

))−1
= 0 (5.5)

and compute the �rst 10 solutions for m-values from 0 to 5. For our analysis, we
typically consider the 20 electron states with lowest energy.

5.2.2 Six band e�ective mass theory for hole states

For the hole states, six-band e�ective mass theory is applied. The ansatz for the
overall wavefunction Ψ±jz(ρ, φ) for positive (+) and negative parity (-), is given by
the linear combination

Ψ±jz(ρ, φ) = C±h Ψ±hjz + C±l Ψ±ljz + C±s Ψ±sjz (5.6)

of the wavefunctions of heavy hole Ψ±hjz , light hole Ψ±ljz , and split-o� Ψ±sjz with
the corresponding coe�cients C±h , C

±
l , and C±s . In vector notation, the envelope

wavefunctions are given by

Ψ±jz(ρ, φ) =

C
±
h

C±h
C±h



√

3J|jz∓1/2|(khρ)e[i(jz∓1/2)φ]

J|jz±3/2|(khρ)e[i(jz±3/2)φ]

0



+

C
±
l

C±l
C±l


 J|jz∓1/2|(klρ)e[i(jz∓1/2)φ]

−
√

3J|jz±3/2|(klρ)e[i(jz±3/2)φ]

−iξl(kl)J|jz∓1/2|(klρ)e[i(jz∓1/2)φ]



+

C±sC±s
C±s


 J|jz∓1/2|(ksρ)e[i(jz∓1/2)φ]

−
√

3J|jz±3/2|(ksρ)e[i(jz±3/2)φ]

−iξs(ks)J|jz∓1/2|(ksρ)e[i(jz∓1/2)φ]

 (5.7)
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with

ξl,s(kl,s) =
(γL1 + 2γL)ε(kl,s)− E(0)

l,s√
2γLε(kl,s)

(5.8)

being a subfunction for simplicity, and the radial wavenumbers

kh =
2m0E

~2(γL1 − 2γL)
(5.9)

kl,s =
2m0

~2

[
2E(γL1 + γL)−∆(γL1 + 2γL)

2(γL1 − 2γL(γL1 + 4γL))

±

√
(2E(γL1 + γL)−∆(γL1 + 2γL))

2 − 4E(E −∆)(γL1 − 2γL)(γL1 + 4γL)

2(γL1 − 2γL)(γL1 + 4γL)

]
(5.10)

for the di�erent bands. The included Luttinger parameters

γL1 = 2.1− Ep
3Eg

+
Ep

3(Eg − E)

γL = 0.55− Ep
6Eg

+
Ep

6(Eg − E)
. (5.11)

depend on the energy E and describe the eigenenergies

E
(0)
h = (γL1 − 2γL)

~2k2
h

2m0

(5.12)

E
(0)
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4
−∆γL
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l,s

2m0

+

(
3γL

~2k2
l,s

2m0

)2

(5.13)

of the heavy hole, light hole, and split o� bands. Finally, the eigenvalue problem of
the hole states and wavefunctions is solved in analogy to the states of the electron.
The hole wavefunctions Ψ±jz(ρ, φ), given by the linear combination in equation 5.6,
have to match the boundary conditions and vanish at the wire edge ρ = a. As a
consequence, the coe�cients Ch, Cl, and Cs can be determined via the transforma-
tion of the wavefunction (eq. 5.7 with ρ = a) into the homogenous linear equation
system U± (C±h C±l C±s )T = 0. The relations Ch(Cl) and Cs(Cl) are derived to

C±h = C±l

 k
2
s((γ

L
1 + 2γL)

~2k2
l

2m0

− El)

k2
l ((γ

L
1 + 2γL)

~2k2
s

2m0

− Es)
− 1

 Jjz∓1/2(kla)√
3Jjz∓1/2(kha)

(5.14)
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L
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~2k2
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2m0

− El)

k2
l ((γ

L
1 + 2γL)

~2k2
s

2m0

− Es)

Jjz∓1/2(kla)

Jjz∓1/2(kha)
. (5.15)
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Furthermore, the hole wavefunctions have to follow the normalization condition

a∫
0

2π∫
0

ρ
∣∣Ψ±jz(ρ, φ)

∣∣2 dρdφ = 1 (5.16)

which allows us to calculate the coe�cients and wavefunctions Ψ±n,jz for a known
eigenvalue E±n,jz of the linear equation system. Furthermore, the eigenenergies are
given by the solutions of

det
(
U±
)

= 0

= 3ξs,l(ks,l)J|jz∓1/2|(kha)J|jz∓1/2|(ks,la)J|jz±3/2|(kl,sa) (5.17)

− ξl,s(kl,s)J|jz∓1/2|(ks,la)J|jz∓1/2|(kl,sa)J|jz±3/2|(kha)

− 3ξl,s(kl,s)J|jz∓1/2|(kl,sa)J|jz∓1/2|(kha)J|jz±1/2|(ks,la)

+ ξs,l(ks,l)J|jz∓1/2|(ks,la)J|jz∓1/2|(kl,sa)J|jz±3/2|(kha)

and are computed numerically, in analogy to the recursive function of the electron
state energies. In our analysis, we typically consider jz from 1/2 to 7/2 and solve
for the �rst �ve energies per angular momentum and parity.

5.2.3 Overlap matrix elements and allowed transitions

In the previous subsections we introduced the equations to calculate the single
particle electron and hole states of a single wire by reducing the system into two
dimensions. However, an exciton as bound electron-hole pair requires an interaction
term in the Hamiltonian, as given by equation 2.24 in the fundamentals chapter 2.1.3.
Nevertheless, we neglect this binding energy which typically reduces the exciton
energy EX by a few tens of meV [171, 184]. The transition probability for an
exciton, when interacting with a photon, is calculated by equation 2.26 (by Fermi's
Golden Rule) and the transition dipole matrix element. After the separation of the
Bloch functions and the dipole operator, the transition probabilities are calculated
by the squared absolute values of the overlap matrix elements

K =

∣∣∣∣∣∣
a∫

0

2π∫
0

ρΨ
(e)∗
n|m|(ρ, φ)Ψ±n,jz(ρ, φ)dρdφ

∣∣∣∣∣∣
2

(5.18)

of the envelope wavefunctions. The corresponding eigenenergies are given by

En,m;n,jz = En|m| + E±n,jz + Eg (5.19)

with the neglection of the Coulomb binding energy.

Figure 5.2(a) shows an arbitrary selection of electron and hole wavefunctions (abso-
lute values). By equation 5.18 we compute the transition probability between each
electron and hole state and obtain the transition matrix. For simplicity, only a part
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Figure 5.2

Calculation of the overlap matrix elements between the computed hole and electron
states. The absolute values 〈Ψe

i |Ψe
i 〉 and

〈
Ψh
k

∣∣Ψh
k

〉
of a random selection of electron

(Ψe
i ) and hole wave functions (Ψh

i ) is plotted in (a). The transition probabilities are
given by the square of the overlap matrix elements Ki,k =

〈
Ψe
i

∣∣Ψh
k

〉
. A part of the

overlap matrix is plotted in (b), with 'lh', 'hh', and 'so' indicating the light hole,
heavy hole, and split o� bands. We �nd most transitions being dipole forbidden.
However, optically dark states can be populated via decay processes.

of the matrix is visualized in �gure 5.2 (b). We �nd most of the transitions be-
ing dipole forbidden and thus not contributing to the optical absorption spectrum.
However, although most of the states cannot be directly excited by a photon they
can be populated via decay from other states. This is important for our discussion
in subsection 5.4.1 where we observe a plasma feature in the ultrafast nonlinear
response of a single nanowire.

In order to visualize the optical transitions and approximate the transition spectra
as a function of the wire radius, we assume a phonon broadened linewidth (Gaussian
distribution) around each transition. Consequently, the absorption spectrum of a
wire with radius r is approximated by

σ(r, ω) ∝
∑
i,k

Ki,k · exp

(
−1

2

(
Ei,k − ω
kBT

)2
)

(5.20)

where we sum over all computed transitions, with Ki,k being the transition probabil-
ity between electron and hole state, Ei,k the transition energy, and kBT the approxi-
mation for the linewidth broadening by exciton-phonon scattering. Figure 5.3 shows
the computed absorption spectra as a function of wire radius. We use T = 80 K for
better visibility by thinner absorption linewidths. At room temperature the tran-
sitions are barely separable and merge, especially for larger wire radii (a > 6 nm).
However, we �nd the quantized excitonic behavior nicely represented in the spectra.
The ground state transition is from the ground state of the hole to the electron's
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Figure 5.3

Radius dependence of the dipole allowed transitions. For better visibility, the
linewidths are chosen to 7 meV (80 K).

ground state. Consequently, no lower energetic transitions are possible. Further-
more, the transition probability is large and we expect photon emission as inverse
process. We expect good tunability of the ground state absorption line, which red-
shifts from about 600 nm wavelength at a wire radius of 2.5 nm and approaches the
band gap at approximately 713 nm at larger wire radii.

5.3 sample characterization

The CdSe nanowires were synthesized by the groups of G.V. Hartland and M. Kuno,
using bismuth salts [185]. Their developed method allows easy control about the
wire radii combined with almost defect free lattice growth. Here, I want to thank
them for their support by providing the sample, containing di�erently sized wires
in a toluene solution.

Atomic resolution of individual wires is achieved by high resolution transmission
electron microscopy (TEM) and allows detailed insight into their lattice structure,
defects, and geometric properties. We �nd a constant radius for large parts of a
wire and an almost defect free lattice as shown in the TEM image of �gure 5.4(a).
However, some sections, as imaged in �gure 5.4(b), show �uctuations of the ra-
dius within an individual wire. Furthermore, wires can be attached to each other
and form clusters consisting of two up to a few hundred wires, as depicted in �g-
ure 5.4(c). TEM images of dense ensembles of nanowires allow the investigation of
the wire radii. Figure 5.4(d) shows the histogram of 40 analyzed wires. We �nd
radii between 2.5 nm and 7 nm, following a Gaussian distribution with a mean value
of 4.7 nm. On these lengthscales, we expect quantum con�ned carriers and discrete
exciton transitions as predicted by the discussed theory.
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Figure 5.4

High resolution transmission electron microscopy images of di�erent CdSe nanowires
(a,b). Beside lattice defects, radius �uctuations within a single wire are observed.
For better visibility we enhanced the contrast between the wire and carbon back-
ground in (b). Wire clusters (c) allow us to measure the radii of di�erent wires
with high accuracy. (d) The histogram of 40 measured wire radii follows a Gaussian
distribution with its mean value at ≈ 4.7 nm.

5.3.1 Polarization dependent absorption of wires

The sample of investigation consists of randomly dispersed single nanowires on a
cover glass substrate of 200 µm thickness. The fabrication steps are as follows.
First, the substrate is cleaned with HPLC grade toluene and ethanol. Afterwards,
a numbered grid of 2× 2 µm2 gold markers is written by electron beam lithography
in order to allow the localization and identi�cation of certain wires. A diluted
toluene-solution of the wires is prepared for 15 minutes in an ultrasonic bath. This
reduces the amount of clusters and leads to a higher number of separated wires.
Directly afterwards, the solution is slightly shaken and 20 µl of it are spin-coated
for 30 s at 3000 rpm onto the glass substrate. Figure 5.5 shows the overlay of
high resolution SEM and photoluminescence map, measured in our experimental
setup. The resolution and magni�cation of the SEM image is limited as carbon is
deposited for too long exposure times but high enough to identify single wires. The
photoluminescence map is resolved with the di�raction limit of the pump spotsize
and measured with a vertical excitation polarization with respect to the image.
The pump pulse energy is 15 fJ and we detect all polarizations of the emitted
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Figure 5.5

Overlap of far �eld photolumines-
cence measurement and high reso-
lution SEM image, to identify ran-
domly distributed wires via the
marker structure. The excita-
tion polarization is vertical to the
image, the emission detection is
unpolarized.

4 µm

photoluminescence. We �nd perfect overlap of both datasets and can identify several
single wires, wire clusters, and a gold marker in the lower right corner of the image.
Furthermore, for single wires as well as for clusters, we observe a strong orientation
dependence of the photoluminescence intensity. The arrows in �gure 5.5 show two
almost orthogonally oriented wire clusters and wires. The lower left shows almost no
photoluminescence, the upper one has a strong emission intensity. This is explained
by the polarization dependent absorption cross section of the pump pulses and
results from the cylindrical wire geometry [172, 186]. In order to compute this
behavior, we apply the numerical model described in subsection 3.2.1. We use
plane wave excitation at 390 nm wavelength and assume bulk optical properties
of CdSe (n = 2.72 + 0.67i). We neglect the glass substrate interface and use an
e�ective medium with an index of refraction of ne� = 1.4. The model wire has a
length of 400 nm corresponding to the pump spotsize and a radius of 6 nm. The
computed absorption cross section Cabs as a function of the plane wave polarization
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Figure 5.6

Theoretical study of the polarization dependent absorption cross section Cabs at
390 nm of the wire. The e�ect is caused by the cylinder geometry. The maximum
absorption of a plane wave is along the wire axis.
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α is plotted in �gure 5.6. For α being 0◦ or 180◦, the pump polarization is oriented
along the wire. We �nd an approximately �ve times stronger excitation for the
parallel polarization with respect to the orthogonal polarization. This behavior is
found for all wavelengths from the near-UV to the near-IR but with changing ratio
between the two polarization component. As a consequence, we align the sample
parallel to the pump polarization to achieve maximum excitation.

5.4 ultrafast carrier dynamics in quantum confined states

In the following we investigate the ultrafast carrier dynamics of quantum con�ned
states in a single CdSe nanowire by transient transmission spectroscopy. A high
resolution SEM image of the investigated wire was taken after the measurements
and is depicted on the left side of �gure 5.7. Its length is approximately 1.5 µm with
a radius of 5.8±0.75 nm as determined by AFM. Pump and probe pulse polarization
are aligned parallel to the wire axis, to achieve maximum excitation and probe signal
contrast. The pump pulses are at 390 nm wavelength, have 15 fJ pulse energy at the
sample, and are kept constant for all performed measurements. In order to obtain
the transition bleaching between several electron-hole states, the probe pulses are
tuned over the whole available spectrum from 520 nm to 750 nm in 10 nm steps.
Their pulse energies are kept constant at 130 fJ. For this con�guration of pump
and probe pulses, we �nd negligible photobleaching over the required measurement
time.

5.4.1 Nonlinear response of a single CdSe nanowire

The nonlinear response is measured as a function of probe wavelength and time
delay. The result is shown by the two dimensional dataset on the right side of
�gure 5.7. We observe relative transmission changes ∆T/T on the order of some
10−5. Positive transmittance changes are colored in yellow and correspond to a
decrease of the wire absorption or bleaching, respectively. Pump induced increase
of the absorption is given by negative transmittance changes, colored in black. We
compensate chirp for all wavelengths and adjusted the time axis to 0 ps delay, when
pump and probe pulse are temporally overlapped. At negative time delays, when
the system is probed before the pump excitation, we �nd no response over the whole
spectrum what proves the excitation of an undisturbed system and full relaxation
until the next pump pulse arrives after 13 ns. Directly after pump excitation, a
signi�cant signal with a dispersive lineshape can be observed (labeled 'plasma').
The feature ranges from 570 nm to 740 nm and disappears on a picosecond time
scale. It changes into a much slower varying signal, following an absorptive line
shape with its maximum at 685 nm wavelength. In the following we will discuss
both phenomena in detail and attribute the fast feature to an electron-hole plasma
and the slow feature to the bleaching of excitonic transitions.
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Figure 5.7

SEM image of the investigated single CdSe nanowire with a radius of 5.8 nm (left).
Spectrally and temporally resolved nonlinear response around the pump excitation.
We distinguish between a fast decaying electron-hole plasma response (0 − 4 ps),
leading to a dispersive lineshape, and a slower decaying transition bleaching (> 4 ps).
The zero delay position was corrected for the dispersion in the setup.

First, we consider the excitation process and approximate the number of photons
absorbed out of the pump pulse at 390 nm wavelength. We apply the previously
discussed model with the wire of 400 nm length and 6 nm radius to compute the
ratio of its absorption and geometric cross section Cgeo. For the excitation polar-
ization parallel to the wire axis, we obtain an absorption cross section of 6600 nm2

per µm and a conversion factor of(
σabs
σgeo

)
parallel

= 0.55 (5.21)

between the two cross sections. From the pump pulse energy of 15 fJ, we calculate
the corresponding photons per pulse to 30 · 103. We consider the Gaussian intensity
pro�le

Igauss(x, y) = I0 · exp

(
−1

2

r2

ρ2

)
, (5.22)

with ρ = 185 nm being the spot radius (≈ 436 nm FWHM). I0 is normalized
to match the number of photons in the laser pulse. We consider an in�nite wire
crossing the center of the beam and numerically calculate the number of photons
Ngeo impinging on the geometric cross section of the wire. With equation (5.21),
we obtain the number Nabs of absorbed photons

Nabs = Ngeo ·
(
σabs
σgeo

)
parallel

≈ 400 . (5.23)

This corresponds to an average electron-hole density of 1 · 1019 cm−3. The carrier
plasma leads to a density dependent renormalization of the band gap energy, causing
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a shift of the optical transitions of the wire. This e�ect is also observed in wires of
larger diameter, where the band gap change leads to a variation of the bulk complex
refractive index [187, 188]. In order to investigate the plasma e�ect of our wire in
greater detail, we plot the spectrally resolved time dependent nonlinear response in
500 fs steps in �gure 5.8(a). We observe a rising dispersive signal within the �rst
picosecond. In the following three picoseconds a transition from the dispersive to the
absorptive line shape takes place. This strongly di�ers from the behavior of wires of
larger diameter where the weak con�nement seems to cause a much slower plasma
decay and carrier recombination. However, for con�ned carriers we �nd no further
fast changes for times > 4 ps. Here, the remaining electron-hole pairs are relaxed
into con�ned states leading to a bleaching of dipole allowed transitions within the
wire. In order to guarantee a full relaxation of the plasma and the investigation of
the bare bleaching signal, we analyse the experimental data 10 ps after excitation.
The red datapoints in �gure 5.8(b) show the average over the time interval labeled
'bleaching' in �gure 5.7. We �nd the bleaching maximum at the lowest energy
feature, indicating that most electrons and holes populate the lowest excited state.
However, to interpret the complex behavior of the measured response, we use the
dipole allowed transition energies between electron and hole states, calculated by
the e�ective mass theory, discussed previously. For adjustment, we tune the wire
radius in our simulation to �t the position of the ground state peak. We �nd a
best �tting wire radius of 5.8 nm what is in excellent agreement with our AFM
measurements. Higher energy transitions occur between more complex electron
and hole states, bunching together into four e�ective states which we label α, β,γ
and δ (see �gure 5.8(c)). In order to �t the bleaching response with the calculated
e�ective transition energies, we assume a linewidth broadening by exciton-phonon
coupling following a Gaussian distribution. By only adjusting the amplitudes of the
four Gaussian lines of equal width (fwhm 43 meV), these four states nicely describe
our transient absorption signal. The model result is shown by the gray line in
�gure 5.8(b) and the �tting parameters are summarized in table 5.1. The determined
amplitudes re�ect the pump-induced population of the states, as depopulation of the
crystal ground state can be neglected and the overlap matrix elements are almost
identical. It further proves the origin of the detected signal being the expected
excitonic transition bleaching.

state α β γ δ

energy (eV) 1.81 1.90 2.01 2.33

wavelength (nm) 685 653 616 533

amplitude (10−5) 6.3 3.0 0.6 0.5

Table 5.1

Model parameters with the four calculated e�ective states energies and �tted bleach-
ing amplitudes.
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Figure 5.8

(a) Transient absorption spectra of the section labeled 'plasma' in �gure 5.7, showing
the build up and decay of the electron hole plasma. The color encodes the time of
the nonlinear response from 0 fs (black) in constant steps of 500 fs to 7 ps (red) after
excitation (b). The averaged transient transmission spectrum after 10 ps, labeled
'bleaching', shows several features. The gray curve is a �t with four Gaussians
at center energies ωα · · ·ωδ, calculated with the six-band e�ective mass model for a
wire radius of 5.8 nm. For comparison, the overlap matrix elements and the spectral
position of the calculated transitions together with their corresponding electron-hole
wavefunctions is shown in (c).
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5.4.2 Population of exciton states

The integral over an absorption line is connected with the transition dipole moment
and the number of dipoles involved. This results, e.g., in the Strickler-Berg formula
[189]. As a consequence, transient absorption spectroscopy gives direct insight to the
ultrafast carrier dynamics in various quantized states of the wire, at any time after
pump excitation. For comparison, photoluminescence measurements are related to
spontaneous radiative decay and allow no direct access to the internal processes as
the population of certain states. Furthermore, photoluminescence emission requires
a high quantum e�ciency which is de�ned as

ηQ =
Γrad

Γnrad + Γrad
(5.24)

with Γrad being the radiative and Γnrad the nonradiative decay rate. As a conse-
quence, a long living exciton state would appear dark, although it is populated and
nonradiatively decaying.

In the following, we estimate the pump induced population of excitonic states, ex-
tracted from the previously discussed data. We follow R. Loudon [71] and consider
the attenuation coe�cient

K(ω) = 2 ω κ(ω)/c (5.25)

which is connected to the the Einstein B coe�cient by∫ ∞
0

dω
K(ω) c

~ ω
=
N

V
B , (5.26)

with N being the number of emitters in the volume V. The Beer-Lamberts law

I(z)

I(0)
= exp (−K(ω) z) . (5.27)

describes the intensity decay of light when propagating the distance z through a
medium. Furthermore, the Einstein B coe�cient is related to the dipole moment
µsingle of a single emitter and given by

B =
π µ2

single

3 ε0 ~2
, (5.28)

where the factor 1/3 comes from averaging over all dipole orientations. From the
combination of equation 5.26 and 5.28 we derive

N µ2
single =

3 ε0 ~2

π
V

∫ ∞
0

dω
K(ω) c

~ ω
(5.29)

what gives a correlation between the number of emitters and the attenuation coef-
�cient.



102 5 Quantum con�ned carrier dynamics in a CdSe nanowire

We experimentally determine the pump induced relative change in transmission
∆T/T . From equation 5.27 we obtain the relation

z ∆K(ω) = − ln

(
1− ∆T

T

)
(5.30)

which, in the limit of small absorption, can be approximated as

z ∆K ≈ ∆T

T
. (5.31)

We use V = Aspot ·z for the focal volume of our probe pulses and assume an invariant
transition dipole moment, after pumping the wire. Consequently, we obtain

∆N µ2
single =

3 ε0 ~2

π
Aspot

∫ ∞
0

dω
∆T
T
c

~ ω
. (5.32)

by combining equations 5.29 and 5.31. The integral on the right hand side of
equation 5.32 is separately solved for each transition (α− δ), with ∆T/T from the
model �t discussed in the previous subsection. The computed values for ∆N ·µ2

single

are listed in table 5.2. In order to �nd the number ∆N of excited excitons we
calculate the single emitter dipole moment µsingle as introduced in subsection 2.1.3
in the fundamental chapter. Oscillator strength f and dipole moment of a single
emitter are given by

µsingle(D) = 9.37

√
f

~ω(eV )
(5.33)

with f = 45
λ2(µm2)

neff τrad(ns)
(5.34)

where λ is the emitter wavelength, τrad the purely radiative lifetime without non-
radiative decay of the exciton, and neff the e�ective medium refractive index. A
lower limit for the radiative lifetime is the measured luminescence lifetime τlumi =

800 ps of the wire. We assume a radiative lifetime of τrad = 3 ns, close to the lower
limit and compute the oscillator strengths and dipole moments at the transition
energies ωα - ωδ. We use a constant spot size area over the whole spectral range
of Aspot = πr2

spot with the radius r = λ
2NA

and a numerical aperture of NA=0.9.
The results are listed in table 5.2 and allow us to approximate the population
number of the several states. We �nd the listed state populations and an overall
number of ∆N ≈ 50 excitons, created by the pump pulse. Distributed over a wire
section within the probe focus of approximately 400 nm, this would lead to a volume
averaged exciton-exciton distance of 12 nm. This is in the order of the exciton Bohr
radius of 5.6 nm of bulk CdSe. Finally, we predict the photoluminescence intensity
by the calculated values. As a consequence of the equations 5.32 and 5.33, we obtain
with

∆N ∝ 1

µ2
single

∝ τrad (5.35)
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state α β γ δ

∆N · µ2
single (D

2) 606 840 4450 9834

λ (nm) 533 616 653 685

f 4.3 5.7 6.4 7.1

µsingle (D) 13 16 17 19

∆N 3.8 3.4 15.1 28.6

Nlumi 0.9 0.8 3.5 6.7

Table 5.2

Overview of the calculation results

the proportionality between excited excitons ∆N and their purely radiative lifetime.
However, the number Nlumi of emitted luminescence photons does not depend on
the choice of τrad, as it cancels out via the quantum e�ciency ηQ. This is shown by

Nlumi = ∆N ηQ = ∆N
τlumi

τrad
∝ τlumi (5.36)

and allows us to approximate the emitted photons, listed in table 5.2. However, our
photoluminescence measurements show a signi�cantly smaller amount of emission.
We attribute this phenomenon to reabsorption processes within the wire what will
be discussed in greater detail in subsection 5.4.4.

5.4.3 Investigation of transitions and photoemission lifetimes

In the following we investigate the lifetime of the carrier population. For this pur-
pose, we increase the measured time delay to above 400 ps and change the observed
wire. This allows us to prove the reproducibility of the measured data and its
agreement with e�ective mass theory. By AFM, we determine the wire radius to
3.7± 0.5 nm. The measured transient absorption spectra are shown in �gure 5.9(a).
As a consequence of the smaller radius and a stronger quantum con�nement, the
ground state and higher order transitions are blueshifted with respect to the wire
investigated previously. In analogy to subsection 5.4.1, we determine the dominant
optical transitions in the six-band e�ective mass model and �nd a best-�tting wire
radius of 4.1 nm. The upper graph of �gure 5.9(b) shows the computed transition
wavelengths with corresponding probabilities. Again, we can clearly identify the
blueshifted e�ective transitions. The δ transition is predicted outside our spectral
region around 500 nm. In order to describe the whole transient transmission spec-
tra labeled 'early', we slightly shift the peak positions with respect to the six-band
e�ective mass model. Again, we �nd a very good agreement between measurement
and theory. However, di�erent decay rates of the several transitions are found by
scaling the �tted curve to match the measured bleaching signal at a later time, ex-
tracted around 380 ps (labeled 'late'). Especially the β state shows a signi�cantly
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Figure 5.9

Nonlinear response of another wire with 4 nm in radius (a). We distinguish between
early (red crosses) and late response (black crosses) in (b). The early response is
�tted (4.1 nm) and scaled to �t the α transition of the late response, implying
di�erent decay rates for the di�erent transitions. The decay rates by averaging over
30 nm spectral width and �tting a single exponential decay are shown in (c). The
error bars give the interval over which χ2 increases by 10%. The dashed lines mark
the photoluminescence decay rates, using a biexponential �t in the model 2.51.
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Figure 5.10

Time resolved photoluminescence
(black) and overlaid the model �t (red),
using a biexponential �t for the decay
(see. equation 2.51). The �t yields
decay times of 180 ps and 790 ps with
integrated amplitudes of 4 and 2.5 when
the instantaneous response is normalized
to an integrated amplitude of 1.

shorter lifetime with respect to the α and γ states. This is further analyzed, by
�tting monoexponential functions to the delay traces as a function of wavelength.
Figure 5.9(c) shows the �tted decay rates and lifetimes, respectively. We �nd decay
rates between about 2 ns−1 around 700 nm and 5 ns−1 around 600 nm.

In the following we compare these �ndings with the photoluminescence properties
of this wire. The emission spectrum of the wire is plotted as gray shaded curve in
the graph 5.9(b). The emission peak is around 700 nm and approximately 40 nm
(100 meV) redshifted from the transient absorption peak. However, a closer look
to the bleaching response reveals a long wavelength tail spectrum that covers the
luminescence emission. Furthermore, the time resolved photoluminescence signal is
shown in �gure 5.10 and �tted with the biexponential decay model, described in
the fundamentals chapter in subsection 2.3.3. The extracted decay rates are plot-
ted as vertically dashed lines in �gure 5.9(c) and labeled Γhigh and Γlow, respectively.

As the Einstein coe�cients are identical for absorption and spontaneous emission,
we measure the same process by transient absorption and luminescence emission
spectroscopy. We �nd almost identical values for the emission decay rate Γlow and
the transition rate around the emitting states, determined by ultrafast pump-probe
spectroscopy. However, the decay rate of the strong α peak does not di�er much. As
a consequence, we assume only little population transfer from the α state into lower
lying emitting states, as this transfer would increase the decay rate. We conclude
that the strong signal of α and corresponding higher order transitions are de�ned
by largest parts of the wire. But, some low energy states, which are present in the
nanowire only at low density, cause the largest part of the emission. We attribute
these states to lattice defects, surface states or �uctuation in the wire radius as
shown in the TEM image 5.4(b). Here, short intervals of larger diameter lead to
less con�nement and thus a redshift of the ground and emission state.
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5.4.4 Re-absorption processes in an individual nanowire

The comparison of excitation and emission rate yields further insight. As discussed
previously, we excite approximately 400 electron-hole pairs by each pump-pulse.
After plasma recombination, around 50 excitons are created, of which about 30

populate the α transition. Concerning our calculations of subsection 5.4.2 and the
assumed purely radiative lifetime of 3 ns, we compute the luminescence quantum
e�ciency to about 25%. Consequently, we expect 8− 12 photons being emitted per
pump pulse, independent of the assumed radiative decay rate as shown by equa-
tion 5.36. However, by taking our detection e�ciency of 1.5% into account, we �nd
about 0.02 emitted photons in the optical far-�eld (1.5 × 106 per second). That
means only one out of 500 emitted photons reaches the far-�eld. The required
much lower quantum e�ciency would correspond to a very short excited state life-
time, which is in contrast to our measurements. We propose reabsorption e�ects as
reason for the low emission intensity of the nanowire.

We consider the recombination of an electron-hole pair. Directly after its emission,
the photon is reabsorbed by other parts of the nanowire. From single nanowire
extinction measurements, performed by Giblin et al., we estimate about 20000 ab-
sorbing dipole emitters per micrometer wire length for the α peak [171]. Excitonic
states in the near surroundings of the excited exciton are shifted out of resonance
due to the Coulomb interaction. Consequently, short distance Förster type energy
transfer is not possible and would also in�uence the decay rate what is not what
we �nd [190]. Reabsorption of the emitted photon increases the overall probability
of nonradiative recombination by the quantum e�ciency of the wire. In order to
support these assumptions, we apply a classical numerical model to calculate the
emission properties of the photoluminescence intensity.

The recombination of an electron-hole pair is approximated by a classical emit-
ting dipole. We estimate the ratio between emitted and reabsorbed photons by
considering a dipolar emitter, embedded in a CdSe nanowire of 400 nm length and
a radius of 6 nm. The essential components of the model are depicted in �gure 5.11
and in analogy to the model discussed in subsection 3.2.1. The emission wavelength
is chosen to 685 nm and we use the optical properties of bulk CdSe with vacuum
(neff = 1) as surrounding medium. Within the Bohr radius of 5.6 nm from the emit-
ter, the wire absorption is neglected due to the transition energy shift by Coulomb
interaction. The surface integral of the energy �ux through a virtual inner sphere
Pinner describes the power emitted by the dipole. The energy �ux through the outer
integration sphere gives the far-�eld emission strength. Corresponding to our model,
the reabsorption exceeds the far-�eld emission by about a factor of 400. By taking
into account that the exciton, excited by the reabsorbed photon, can emit another
photon which itself can be reabsorbed again and so on, we compute an e�ective
reabsorption coe�cient. We �nd that ≈ 0.33% of the �rst emitted photons �nally
reach the far �eld. For comparison, in our experiments we found a factor of ≈ 0.2%,
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Figure 5.11

The numerical model is similar to the one introduced in section 3.2.1 but solving for
the total �eld components, introduced in section 3.4. The CdSe nanowire together
with the dipolar emitter is centered. The white dashed line marks the radius of the
outer integration sphere where we extract the light emitted in the far-�eld. The
structure is surrounded by a spherical PML. (b) Zoom into the model with a part
of the wire, the dipolar emitter and the inner integration sphere.

what is in very good agreement with our model, although we fully neglect the quan-
tum character of the wire. In addition, we performed the same calculations for
di�erent inner sphere radii, corresponding to di�erent screening distances around
the emitter due to the Stark shift. The calculated values stay in the same order of
magnitude.

5.4.5 Conclusion and outlook of single wire experiments

We discussed the equation system, derived from single and six-band e�ective mass
theory, to compute the dipole allowed transition energies and probabilities of quan-
tum con�ned carriers in a single CdSe nanowire. We theoretically predicted the
absorption line energies as a function of the wire radius. Individual wires were char-
acterized by transmission electron microscopy and time resolved photoluminescence
measurements. The experimentally found polarization dependence of the excitation
process was well described by our model, based on classical Maxwell's equations.
After characterization, we presented the �rst time-resolved ultrafast nonlinear spec-
troscopy of the exciton dynamics in individual CdSe nanowires of radii well below
10 nm. We excite about 400 electron-hole pairs with our pump pulse, leading to a
dispersive line shape of the transient absorption signal. This plasma decays within
the �rst picoseconds after pump excitation. At time delays of more than 4 ps, we
found clear peaks in the transient absorption spectra. This indicated the bleaching
of excitonic states and is in very good agreement with the model predictions from
e�ective mass theory. Via the integral over the absorption line, we were able to
approximate the population of the di�erent states. We found an overall number of
about 50 excited excitons, of which about 30 populate the ground state. Further-
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more, the lifetime of the carrier population was investigated. We found decay rates
between 2 ns−1 and 5 ns−1. By comparing these �ndings with time resolved photo-
luminescence measurements, we observed a large mismatch between the number of
pump-induced excitations of the emitting state (about 10 per laser pulse) and the
luminescence photon rate (about 0.02 per laser pulse). We explain this phenomenon
by reabsorption of the emitted photons by other parts of the wire. This e�ect was
supported by our numerical model, based on an emitting dipole in a CdSe nanowire
with bulk optical properties. It further explained the strong redshift of the emis-
sion peak with respect to the ground state absorption line, determined by transient
absorption spectroscopy. Here, the emission from low energy defect states is much
less absorbed than emission from the nanowire itself and dominates the emission
spectrum.

5.5 interaction of an individual cdse nanowire and

a plasmonic nanoobject

Optical antennas can enhance the light matter interaction on a subwavelength scale
and give access to previously unattainable nanosystems [80]. From our measure-
ments of single CdSe nanowires, where we excite in the order of 30 excitons in the
α transition, we estimate a transient transition signal ∆T/T for a single exciton
being on the order of 1/30 · 6.3 · 10−5 ≈ 2 · 10−6. This corresponds to a change of
the absorption cross section of approximately 0.25 nm2, as discussed in section 2.1.3
of the fundamentals chapter. As a consequence, the expected signal amplitude is
identical to the measured noise and thus almost impossible to resolve. Larger probe
pulse intensities would destroy the nanocrystal while a longer integration time is
not applicable due to stability conditions. In analogy to section 4.5 we aim for
signal enhancement with a plasmonic antenna. However, the small dipole moment
of the exciton reduces the hybridization e�ect with respect to the plasmon-plasmon
interaction and we have to prove if the plasmon perturbation su�ces to increase the
nonlinear response of the nanocrystal. In the following we discuss our theoretical
predictions and show �rst experimental data of a single CdSe nanostructure coupled
to a plasmonic nanoantenna.

5.5.1 Theoretical prediction of the nonlinear response

In contrast to plasmons, excitons in nanocrystals show a much smaller dipole mo-
ment and highly nonlinear behavior due to saturation e�ects. As a consequence,
experiments and especially the modeling of the plasmon-exciton interaction is chal-
lenging but treatable as long as we stay in the power regime where the excitonic
response can be assumed as being linear. Furthermore in quantum theory, the gold
particle modi�es the environment of the nanocrystal [177]. This leads to changes
in the properties of the exciton state, due to the quantum character of the semicon-
ductor nanoparticle, and further complicates the modeling of the coupled system.
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(a) The CdSe nanocrystal is placed into the near-�eld hot spot of a gold antenna to
enhance the light matter interaction. Photons interact with the combined system,
consisting of nanocrystal and antenna. The coupling is mediated by electromagnetic
(em) �elds (b) and leads to a change of the properties of exciton state due to the
increased local density of states (LDOS).

For simplicity, we discuss the pump-probe experiment at the example of a single
spherical CdSe nanocrystal in the hot spot of a plasmonic antenna, as depicted in
�gure 5.12(a).

First, we consider the pump excitation. In the spectral region where the d-band
absorption of gold suppresses strong near-�eld amplitudes we expect negligible ab-
sorption or excitation enhancement of the nanocrystal. This changes for pump
wavelengths above ≈ 560 nm where the �eld strength at the nanocrystal is in-
creased and leads to a higher excitation e�ciency as shown by Pfei�er et al. [191].
However, this e�ect could be also achieved by increasing the pump pulse intensity
at the corresponding excitation wavelengths. Furthermore, the pump enhancement
is limited due to the nonlinearity and saturation of the nanocrystal. The antenna
e�ect we are looking for is given by the probe response of the two combined systems.
In order to describe the coupling between them we consider the two particle picture
sketched in 5.12(b). The energy level scheme of the nanocrystal is shown on the
left side and contains the crystal ground state |0〉 and the excited exciton state |X〉.
In case of the single nanocrystal, the probe absorption linewidth is broadened due
to exciton-phonon scattering and the DC-Stark e�ect of carrier dynamics in the
close environment [192, 193]. Furthermore, the exciton decay rate is given by the
radiative and nonradiative decay rates Γrad,0 and Γnrad,0, respectively. The energy
scheme of the particle plasmon is sketched on the right side of �gure 5.12(b). Its
density of states (DOS) and possible excitations |Pi〉 are visualized by the broad
band and contains radiative and nonradiative plasmon states [194]. The coupling
between semiconductor nanocrystal and gold nanoantenna is mediated by electro-
magnetic interaction. As a consequence, the two subsystems hybridize and photons
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no longer interact with the single nanoobjects, but with the coupled structure with
eigenstates |X〉 |P 〉. In analogy to the antenna introduced in chapter 4, the optical
properties, as for example the absorption cross-section and lifetime, di�ers from the
properties of the single nanoobjects. In the following we qualitatively discuss the
di�erent processes in the two particle picture by assuming purely electromagnetic
interaction and neglect carrier tunneling or other interactions.

Carrier dynamics in a hybrid system

We assume coupling between the exciton state |X〉 and the plasmonic nanoantenna,
both being resonant at around 690 nm. A near-UV pump photon at 390 nm wave-
length is absorbed by the o�-resonant coupled system where exciton-plasmon in-
teractions can be neglected. Supported by �nite element simulations we expect no
signi�cant excitation (dissipation energy) change in the nanocrystal as the d-band
absorption of the gold suppresses plasmonic and near-�eld e�ects. In analogy to
the investigated wires, the electron hole pair decays from a higher order state into
lower energetic eigenstates and populates the exciton state |X〉. While further non-
radiative decay into the exciton ground or nanocrystal defect states is almost not
in�uenced by the antenna, the radiative decay via photon emission requires the
population of a photon state. Consequently, Γrad,0 is a function of the photon mode
density at the position of the nanocrystal. The plasmonic nanostructure increases
the local density of states (LDOS) and gives further decay channels in addition
to the photon vacuum states [194]. The balance between additional radiative and
nonradiative decay channels is determined by the plasmon modes and correspond-
ing mode density. For example, a dominantly scattering antenna can increase the
emission intensity of the excitonic state, while an almost purely absorbing antenna
increases the nonradiative decay and the emission is quenched [194, 195]. A com-
mon value to describe the increase of the overall decay rate is given by the e�ective
Purcell factor

Peff =
Γrad,c
Γrad,0

=
Γtot,c/Γtot,0 − 1 + ηQ

ηQ
(5.37)

with Γrad,c being the radiative decay rate of the coupled system. Furthermore, Peff
can be expressed from the ratio of the absolute decay rates Γtot,c and Γtot,0 and
the quantum e�ciency ηQ of the nanocrystal. The time dependent population of
the exciton state is interrogated by the resonant probe pulse. Here, electromagnetic
interaction cannot be neglected and the coupled response has to be considered which
leads to the desired antenna e�ect.

Modeling the antenna e�ect

The nonlinear signal is given by the di�erence of pumped and unpumped optical
response of the coupled system. Our model is based on the optical properties of bulk
CdSe (nCdSe + ikCdSe) to compute the quasi linear response of the nanocrystal [50].
Furthermore, the pump induced change of absorption of a single CdSe nanowire,
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Figure 5.13

Linear and nonlinear response of a
spherical single CdSe nanocrystal with
a radius of 6 nm. The black and
green curve show the response of the
unpumped and pumped system. The
nonlinear response, marked by the red
circles, is multiplied by a factor of ten.
The gray curve indicates the �t func-
tion which was used to modify the bulk
optical properties.

as discussed in the previous section, allows us to estimate the perturbation of the
optical properties after pump excitation at 390 nm and 15 fJ pulse energy. We
use the attenuation coe�cient K(ω) as relation to model the optical properties
(n

′

CdSe + ik
′

CdSe) of the pumped CdSe nanowire. From equation 5.25 we derive

k
′

CdSe = kCdSe +
λ

4π
∆K(λ) (5.38)

with ∆K(λ) being negative due to the transition bleaching. The change is given
by the �tting function, determined in section 5.4.1. Furthermore, we correct the
real part n

′

CdSe to keep the optical properties consistent with the Kramers Kronig
relation. Figure 5.13 summarizes the �nite element simulation results for a single
CdSe nanosphere with 6 nm radius in an e�ective medium of neff = 1.4. The black
curve shows the absorption spectrum of the unpumped nanocrystal. It is identical
with the extinction spectrum as the scattering cross section is orders of magnitude
smaller. The green curve shows the response of the pumped system. Consequently,
we compute the nonlinear signal by the di�erence of pumped and unpumped re-
sponse. For better visibility, the result is multiplied by a factor of ten and shown
by the red circles. We obtain a maximum |∆Cabs| of ≈ 0.4 nm2 at the α transition
what is in very good agreement with the estimated 0.25 nm2 by dividing the wire
response by 30 excitons. For comparison, the �tted function we used to modify the
optical properties is overlayed as gray curve and in good agreement.

In the following we investigate the coupling to a plasmonic antenna. The disc
shaped gold antenna has a height of 15 nm and the optical constants are given
by the data of Johnson and Christy [49]. In order to tune the plasmon resonance
over the α transition of the nanocrystal, we perform a radius sweep of the antenna
from 20 nm to 60 nm. The surface distance of nanocrystal and antenna is kept
constant at 15 nm and the probe polarization is oriented along the long structure
axis (see. �gure 5.12). Figure 5.14(a) shows the absorption cross section of the
coupled system. The dashed curve marks the resonance position of the single an-
tenna, which is almost identical with the resonance of the coupled system. This is
a consequence of the extremely weak oscillator strength of the CdSe nanocrystal
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(a) Linear response of the hybrid system, for a polarization along the symmetry axis,
as a function of antenna radius. The corresponding nonlinear response, normalized
to the maximum response of the single nanocrystal, is shaped by the detuned plas-
mon resonance (b). The dashed vertical line shows the spectral position of the
α-transition. The other dashed curve marks the maximum extinction cross section
of the antenna. We �nd maximum signal enhancement when the plasmon resonance
matches the α-transition wavelength. The maximum enhancement as a function of
the antenna radius is shown in (c.) We �nd the optimum antenna radius at around
37.5 nm with an enhancement factor of ≈ 30. The nonlinear response in case of the
37.5 nm antenna, normalized to the single crystal, is plotted in (d). For comparison,
the linear response of the coupled system as well as the nonlinear response of the
single nanocrystal, multiplied by a factor of ten, are plotted as well. Near-�eld
distribution for the 37.5 nm antenna at its resonance position for parallel (e) and
perpendicular (f) polarized excitation.
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with respect to the plasmon. However, the computed nonlinear response, plotted in
�gure 5.14(b), shows that the transition bleaching of the nanocrystal and thus its
reduced dipole moment is modulated onto the plasmon resonance. For comparison,
the plasmon resonance and the α-transition are marked by dashed lines. Maximum
signal enhancement is achieved when the plasmon resonance matches the transition
wavelength of the nanocrystal. This di�ers from the antenna e�ect we observed in
the previous chapter and will be discussed in more detail in chapter 6. Furthermore,
the maximum signal enhancement is plotted as a function of the antenna radius and
shown in �gure 5.14(c). We �nd the optimum antenna radius at 37.5 nm with a
signal enhancement by a factor of ≈ 30. The corresponding nonlinear response
is shown in �gure 5.14(d). For comparison, the normalized nonlinear response of
the single nanocrystal, multiplied by a factor of ten, and the plasmon absorption
spectrum in arbitrary units is plotted as well. Again we �nd the spectral overlap
of the antenna and the α-transition wavelength. The dispersive lineshape is char-
acteristic for the perturbation of the plasmon and we expect a completely di�erent
response of the hybrid system, with respect to the single nanowire. Furthermore,
the maximum signal contrast is enhanced by the factor of approximately 30 and
thus similar to the response of the whole wire, analyzed previously. Consequently,
we conclude that it is theoretically possible to measure and resolve the population
of a single exciton state by coupling the nanocrystal to an optical antenna. How-
ever, the thermal decay of the electron-lattice temperature of the gold structure,
described in section 4.2, shows a similar response as the exciton decay. As a conse-
quence, the antenna response is superimposed on the desired signal, although the
excitation power is much smaller than in the measurements for the acoustooptical
properties of gold nanoparticles. As the antenna response cannot be separated from
the nanocrystal signal, we limit the antenna volume to values where we detect no
signal from the single antenna. In analogy to chapter 4, a rotation of the probe
polarization reduces the interaction strength. Figure 5.14(e,f) shows the near �eld
distribution of the resonant 37.5 nm antenna with the nanocrystal for parallel and
perpendicularly polarized light. In (e) we �nd a strong near-�eld interaction. In
(f), the interaction can be almost neglected and we �nd a drastic reduction of the
calculated enhancement factor.

5.5.2 Ultrafast spectroscopy of the hybrid system

The positioning of a CdSe nanowire into the near �eld of a plasmonic nanostructure
is done as follows. In the �rst step we prepare a single wire sample as described
in section 5.3. Afterwards, the whole sample is covered with a 5 nm layer of TiO2,
deposited by atomic layer deposition (ALD). This guarantees that the nanowire and
antenna are not in direct contact. Furthermore, the sample is analyzed by SEM
where we obtain high resolution images over large areas of the sample surface. The
marker structures, written in advance, help to calibrate a grid which allows the de-
sign and de�nition of the antennas coordinates. Finally, the antennas are fabricated
by electron beam lithography and gold evaporation. Here, I want to thank Daniela
Ullrich for her great work and her contribution to my work.
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Figure 5.15

A side view of the �nal structure
geometry is sketched in the up-
per part of the �gure. The wires
are covered with a 5 nm layer of
TiO2. The antennas are written
by electron beam lithography on
top of it. The lower plot shows
the AFM measurement of a sin-
gle CdSe nanowire with several
gold nanoantennas. The chosen
antenna design allows the compar-
ison between single wire and cou-
pled system.
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The upper sketch of �gure 5.15 visualizes the cross section through the �nal struc-
ture. The atomic force microscopy image, depicted below, shows a single CdSe
nanowire coupled to a plasmonic antenna. We use an antenna array to achieve the
discussed antenna e�ect over a large part of the wire. In order to compare the un-
coupled with the coupled system, the antenna is written over half the length of the
wire. The spot size of our laser pulse is sketched in the AFM image. Furthermore,
we estimate the gap distance between wire and antenna to ≈ 15 nm, by measuring
the center to center distance and subtracting a 6 nm wire radius (measured AFM
height) and 40 nm antenna radius (design radius). The antenna height is 15 nm.
From our simulations we expect an almost resonant antenna and good signal en-
hancement. All experimental parameters are identical to the measurements of the
single wires, discussed previously.

In comparison to the single wire results, we �nd a decreased photoluminescence
intensity but comparable spectral response and lifetime for the wire region without
neighboring antenna structure. We explain the decrease of intensity by the TiO2-
layer, slightly in�uencing the photophysical properties of the wire. Wire regions
which are coupled to the optical antenna appear dark in photoluminescence scans.
This is a consequence of the antenna design with its small volume to suppress the
nonlinear signals of the gold itself. As a consequence, the absorption dominates
over the scattering cross section of the antenna and thus almost all additional de-
cay channels are nonradiative. Furthermore, the system is investigated by transient
absorption spectroscopy. We limit ourselves to the α and β transition and measure
the response of the coupled and uncoupled wire between 660 nm and 740 nm over
400 ps, for a probe polarization parallel and perpendicular to the wire axis. In
addition, a single antenna array is investigated where we �nd no nonlinear response.
Figure 5.16 summarizes the results for the parallel polarization. The spectrally re-
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Figure 5.16

Normalized transient transmission spectra over 400 ps in the spectral region of
the α and β transition. In both cases, the pump and probe beam polarization
is along the wire axis. The response of the uncoupled part (a) is similar to the
�rst wire, discussed in subsection 5.4.1. The hybrid system (b) shows the same
spectral behavior but with a decreased signal intensity and state lifetimes. Plot (c)
depicts the decay rates of both wire sections as a function of probe wavelength. The
calculated e�ective Purcell factor is plotted in (d). For comparison, a Lorentzian �t
of the scattered plasmon resonance is plotted as black dashed curve.

solved response of the uncoupled wire and hybrid system is shown in the plots (a)
and (b), respectively. In both cases, the transition energy and linewidth of the
alpha state is in good agreement with the result of the wire investigated previ-
ously. The beta transition is merged with the ground state transition and cannot
be resolved. In case of the uncoupled wire, the maximum bleaching response is
∆T/T ≈ 6 · 10−6 and allows the conclusion that a similar amount of excitons is
excited with respect to single wire experiment. We �nd the maximum signal inten-
sity decreased to 1/3 when the wire is coupled to the antenna. This means that
the plasmonic nanoparticle reduces the overall signal modulation, if we assume no
excitation changes by the antenna. This can be explained by the weak coupling be-
tween antenna and nanocrystal for the parallel polarization. However, the data for
perpendicular probe polarization, where we expect strong signal enhancement, can-
not be evaluated. While the single wire part shows the expected (weak) response,
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the coupled part appears dark in the transient transmission measurement. This
di�ers from our theoretical prediction but was reproduced by other antenna-wire
pairs. We explain this by the compromise in our antenna design to suppress its own
nonlinear response. Furthermore, the position of the antenna on top of the wire
could be not optimal and lead to a decreased dipole-dipole interaction. However,
although the signal for the parallel polarization is not enhanced, we �nd interaction
between the nanowire and antenna due to the enormous increase of the decay rate.
Figure 5.16(c) shows the �tted decay rates of the single wire part and the antenna
coupled part. We obtain a wavelength dependent increase of the decay rates. By
equation 5.37, we calculate the corresponding e�ective Purcell factors which are
plotted in �gure 5.16(d). As the decay of each excitonic state depends on the local
density of states, the lifetimes and thus the Purcell factors di�er for the di�erent
transitions and wavelengths. For better comparability, a �t of the barely detectable
scattered spectrum of the antenna is plotted as black dashed curve. We �nd the
plasmon resonance mapped in the decay rate increase and Purcell factor, respec-
tively. It has to be mentioned that the absorption resonance is slightly blueshifted
with respect to the scattered response which o�ers the dominant amount of decay
channels. Consequently, the α transition, which is resonant with the antenna, shows
a Purcell factor of ≈ 8. The Purcell factor around the β transition is approximately
5. The one of the defect states, located at higher wavelength, is almost one and
thus the decay rate not in�uenced by the o� resonant antenna. This behavior proves
interaction between the CdSe nanowire and the antenna array and is a �rst step to-
wards ultrafast nonlinear optics of complex hybrid structures and tracking of carrier
dynamics. In order to achieve the desired response enhancement, especially the an-
tenna geometry and material gives space for improvement and further experiments
have to be performed.

5.6 conclusion and outlook

In this chapter we investigated for the �rst time, ultrafast nonlinear carrier dynamics
in quantum con�ned states of a single CdSe nanowire. The wires were characterized
by transmission electron microscopy and time resolved photoluminescence measure-
ments. We found lattice and geometrical defects as well as anisotropic properties
which are supported by our classical model. Furthermore, transient transmission
spectroscopy gave us insight into previously unattainable processes and informa-
tion. We excite about 400 electron-hole pairs with our near-UV pump-pulse from
which about 50 survive the fast recombination of the carrier plasma and populate
the ground state or higher order excitonic states. The experimentally determined
bleaching signal is nicely supported by six-band e�ective mass theory. We investi-
gated several transitions and found decay rates between 2 ns−1 and 5 ns−1. The
comparison of the ground state population, determined by the integral over the ab-
sorption line, with photoluminescence measurements revealed a gigantic mismatch
between excited excitons and emitted photons and cannot be explained by the quan-
tum e�ciency of the wire. Furthermore, the emission is strongly redshifted with
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respect to the ground state absorption line. Our presented model covers the relevant
physical properties of the wire and is based on classical calculations, what allows us
to attribute these e�ects to re-absorption processes and the wire defects.

Furthermore, we discussed the interaction between a single CdSe nanoobject and
a plasmonic antenna. In the limit of small pulse energies where the response of
the nanocrystal can be assumed being linear, the electromagnetic interaction with
a plasmonic nanoantenna can be described by classical dipole-dipole interaction or
Maxwell's equations, respectively. In our model, the nonlinear response of the CdSe
nanoobject is described via the change of the attenuation coe�cient. In our sim-
ulations we showed that the response of a single exciton can be enhanced into an
experimentally accessible regime. Furthermore, we performed �rst measurements
of a hybrid system, where we couple a part of a single wire to an antenna array.
The elongated wire geometry in combination with the small spot sizes allows the
direct comparison between uncoupled and coupled quantum system. We �nd no
signal enhancement and explain this behavior by the compromise of a resonant
antenna geometry with negligible own nonlinear response. Furthermore, the lumi-
nescence intensity is almost zero at wire parts which are coupled to the antenna
what we attribute to the nonradaitive decay via the plasmon. The e�ective Pur-
cell factor, which quanti�es the modi�ed decay rates of the α,β, and defect state
transitions, maps the additional local density of states given by the plasmon ab-
sorption resonance. This proves the interaction between the quantum system and
the plasmon. In order to increase the signal, further measurements have to be
performed. Here, other antenna geometries and materials may help to obtain the
desired signal enhancement. An alternative could be also the usage of dielectric mi-
crocavities [160, 161]. They also in�uence the properties of the quantum system by
their mode density but show no own nonlinear response what simpli�es the develop-
ment of optimized systems. Furthermore, we hope that our work can be continued
and also applied at coherent low temperature experiments. The investigation of the
coherent interaction of coupled quantum dots is fundamental for future quantum
information and network applications [15, 196, 197].





6
A POINT DIPOLE APPROACH FOR THE FAST
COMPUTATION AND OPTIMIZAT ION
OF MANY-PARTICLE ANTENNAS

Several numerical methods such as FEM, FDTD, or multiple multipoles (MMP) are
available to compute the linear optical behavior of plasmonic nanostructures [90, 94].
The accuracy of the solution depends on the considered system and its boundary
conditions [92]. In general, all these methods require high computational e�ort but
predict the linear optical response of a system by solving Maxwell's equations. How-
ever, a deeper understanding of the coupling behavior is not obtained and gets lost
in the complexity of the algorithm. Furthermore, large parameter and optimization
studies require long computation times. In this chapter, we introduce a point-dipole
approximation method (PDA) which gives a very fast alternative to these methods
and helps to understand the fundamental processes in complex plasmonic structures.
Furthermore, it can be used in the development of optical nanoantennas for single
nanoparticle spectroscopy [11, 80].

In section 6.1 we discuss the implementation of our method and investigate the
limitations for complex structures consisting of various particles with di�erent opti-
cal properties. Our aim is to quantitatively predict the linear as well as the nonlinear
response of coupled nanostructures by a minimum of computational e�ort. We use
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Figure 6.1

Comparison of �nite element simulation and our discrete dipole approximation
which will be introduced in this chapter. As an example we show the z-component
of the scattered electric �eld, extracted 15 nm above the structure surface, of seven
coupled nanospheres and dipoles, respectively. (b) Sketch of an optical antenna
which consists of several particles. Intuitively, one expects a cascade e�ect in the
enhancement by adding optical antennas to the previous nanoparticle-antenna sys-
tems.
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the fundamentals of the discrete dipole approximation (DDA) [91, 198], but maxi-
mally reduce the number of considered dipoles as illustrated in �gure 6.1(a). As a
consequence, the in�uence and contribution of each particle to the overall response
can be separated and reveals deeper insight to the hybrid system. Furthermore,
the computation e�ort is drastically reduced with respect to common DDA calcu-
lations and allows the simulation of huge and previously unattainable parameter
spaces. We use our method to investigate the crucial properties for optimum and
most e�cient optical antennas as discussed in section 6.2. In addition, we answer
the question if more complex antenna designs with several antenna particles, as
sketched in �gure 6.1(b), may help to further increase the antenna e�ciency. In
section 6.3, we apply an evolutionary algorithm as optimization technique to �nd
optimum antenna geometries.

6.1 point dipole approximation

Our point dipole approximation method is based on the discrete dipole approxima-
tion with a maximum reduction of used dipoles. In the following we introduce the
fundamentals of DDA [198]. Furthermore, we discuss the modi�cations for our PDA
approach and the corresponding properties.

6.1.1 Fundamentals and the discrete dipole approximation

We consider the scattering of an arbitrary system of classical nanoobjects in the
incident electric �eld

Einc(r) = E0 exp (i(kr− ωt)) (6.1)

with E0 = (E0,x, E0,y, E0,z)
T and wavevector k. In the discrete dipole approxima-

tion, matter is replaced by a large number N of discrete dipoles as sketched in

k

E

p E

ph
h=1

N-1(b)

inc

i
scat

k

E

(a)

Figure 6.2

In the discrete dipole approximation, matter is represented by many small dipoles
with polarizability, dependent on the material (a). Each dipole is polarized by the
incident electric �eld and the scattered �eld of the surrounding dipoles (b).
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�gure 6.2(a). In analogy to other methods, the accuracy of the solution depends on
the discretization or number of considered dipoles, respectively [198, 199]. Typical
values for the overall number N of used dipoles are on the order of 103 to 105. Each
dipole i ∈ N has a speci�c isotropic polarizability

αi = 4πε0R
3 ε− εm
ε+ 2εm

(6.2)

dependent on the optical properties of the target material ε and the environment εm.
Furthermore, as depicted in �gure 6.2(b), each dipole is polarized by the incident
electric �eld Einc plus the contribution of the scattered �eld of the remaining N − 1

dipoles. Consequently, we write

pi = αiEinc(ri) +
N−1∑
h6=i

αiEscat,h(ri)︸ ︷︷ ︸
def
= Ai,hph

(6.3)

for the polarization pi of the dipole at ri, with Escat,h(ri) being the scattered �eld
of the dipole h at the position ri. Neglecting retardation e�ects, the scattered �eld
vector Enoret

scat,h(ri) of the dipole h with polarization ph is given by

Enoret
scat,h(ri) =

1

4πε0εr

1

∆r3
i,h

(
3

∆ri,hph
∆r2

i,h

∆ri,h − ph

)
(6.4)

with ∆ri,h = ri− rh being the distance vector between the dipoles h and i. The dis-
tance is its absolute value ∆ri,h = |∆ri,h|. However, the investigated systems reach
sizes which are comparable to the wavelength and we have to consider retardation
so that equation 6.4 changes to

Eret
scat,h(ri) =

1

4πε0εr
·

[
− exp (ik∆ri,h)

∆ri,h

(
k2∆ri,hph

∆r2
i,h

∆ri,h − ph

)
+ · · ·

· · ·+ exp (ik∆ri,h)

∆r3
i,h

(1− ik∆ri,h)

(
3

∆ri,hph
∆r2

i,h

∆ri,h − ph

)]
. (6.5)

As the scattered �eld depends on the dipole polarization, we de�ne a scattering ma-
trix A with elementsAi,h, containing the polarizability as introduced in equation 6.3.
This allows the transformation of equation 6.3 into the linear inhomogeneous equa-
tion system

N∑
i=1

N∑
h=1

(
E − A

)
i,h

pi =
N∑
i=1

αiEinc(ri) (6.6)
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with E being the identity matrix. In our calculations we de�ne the polarization
vector to p = (p1,x, p1,y, p1,z, p2,x, · · · , pN,z)T , containing the x, y, z-components of
the dipoles. This leads to

1 0 0

0 1 0

0 0 1


1,1

−A
3×3

1,2 · · · −A
3×3

1,N

−A
3×3

2,1

1 0 0

0 1 0

0 0 1


2,2

· · · −A
3×3

2,N

...
...

. . .
...

−A
3×3

N,1 −A
3×3

N,2 · · ·

1 0 0

0 1 0

0 0 1


N,N





p1,x

p1,y

p1,z

p2,x

p2,y

p2,z
...


= · · ·

· · · =



α1,xEinc,x(r1)

α1,yEinc,y(r1)

α1,zEinc,z(r1)

α2,xEinc,x(r2)

α2,yEinc,y(r2)

α2,zEinc,z(r2)
...


(6.7)

where the 3× 3 identity matrices ensure that di�erent components of each separate
dipole do not in�uence each other. The 3× 3 sub-matrices Ai,h de�ne the in�uence
of dipole h to the response of dipole i. The system is solved numerically via the
inversion of the system matrix

p = (E − A)−1b (6.8)

with b being the inhomogeneous part of equation 6.7. After computation of the
polarizations pi, the extinction cross section is calculated by the optical theorem,
given by

Cext =
4πk

|E0|2
N∑
i=1

Im
[
E∗inc,i · pi

]
(6.9)

with

E0 =

√
|E0,x|2 + |E0,y|2 + |E0,z|2 (6.10)

being the incident electric �eld amplitude [199]. As a consequence of the �exible
discretisation, the discrete dipole approximation allows to simulate the scattering
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The polarization dependent
linear plasmonic resonances,
concerning their resonances
and linewidths, are modeled by
an anisotropic polarizability
tensor and Lorentz oscillators.

properties of particles and structures with almost arbitrary shape and di�erent ma-
terial decompositions. However, the huge amount of used dipoles requires long
computation times.

We aim for the fast computation and insight to electromagnetically coupled nanoob-
jects and plasmonic structures. Both can be achieved by drastically reducing the
number of overall dipoles. The smaller equation system requires less computation
e�ort. Furthermore, if each particle is reproduced by one single dipole, the inter-
action between two objects is completely described by the coupling matrices Ai,h
and Ah,i and gives the desired insight into their roles in complex many particle
systems. However, in order to describe anisotropic particle shapes we have to intro-
duce polarizability tensors α

i
for each particle, as sketched in �gure 6.3. A rod-type

geometry for example can be expressed by

αi =

αi,xx 0 0

0 αi,yy 0

0 0 αi,zz

 (6.11)

with αi,kk being the polarizability along the k ∈ {x, y, z} axis. In the discrete dipole
approximation, the anisotropic response is determined by the geometry and the
huge amount of dipoles. In order to model plasmonic or optical transitions of the
particles along the di�erent orientations we apply harmonic oscillators

αi,kk =
Θi,k(

ω2
0,i,k − ω2

)
− iωγi,k

(6.12)

for the polarizability, with Θi,k, ω0,i,k, and γi,k being the oscillator strength, eigenfre-
quency, and damping, respectively. In our calculations we assume that the oscillator
strength is de�ned by the particle volume and the resonance position by its geome-
try [200]. For the damping we use constant phenomenological values, or if necessary
imitate the material properties via an intrinsic damping constant based on the at-
tenuation coe�cient K of the material. We argue that the dissipative losses, given
by the Beer-Lambert law, lead to the damping of the plasma oscillation. In this
case, we use γi = 2 ·K as phenomenological �t for which we �nd good agreement
with �nite element simulations as shown in �gure 6.4. In the FEM simulation we
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(a) Extinction spectra of a tiny gold ellipsoid with negligible scattering as a function
of deformation to shift its purely absorptive plasmon resonance. The d-band absorp-
tion damps resonances below ≈ 2 eV. The phenomenological model of the PDA is in
good agreement (b), where we directly shift the plasmon oscillator eigenfrequency.

computed the extinction spectrum of a gold nanoellipsoid in an e�ective medium of
neff = 1.4. The semiaxes are all in the sub-nanometer range to avoid in�uences by
radiation damping. In order to shift the plasmon resonance we tune the aspect ratio
between the two semiaxes, which are perpendicular to the incident light propagation
direction, while keeping the ellipsoid volume and height constant. Consequently, we
expect an almost constant oscillator strength. Figure 6.4(a) shows the simulated
purely absorptive extinction cross section as a function of the used deformation
parameter. For a deformation parameter of 0, both perpendicular semiaxes are
identical. An increase of the degree of deformation leads to an elongated shape of
the ellipsoid and results in a redshift of the plasmon resonance which is also found
for other geometries [201]. For comparison, �gure 6.4(b) shows the extinction spec-
tra, computed by the point dipole approximation, where we tune the resonance of a
single dipole with constant oscillator strength and the e�ective damping, discussed
previously. Both results are in good agreement and support our phenomenological
damping model.

6.1.2 Range of validity

The introduced point dipole model combines the discrete dipole approximation and
coupled harmonic oscillators. While the DDA supports the coupling properties me-
diated via dipole radiation, the harmonic oscillators de�ne the polarizability of the
dipoles and phenomenologically imitate plasmonic resonances or optical transitions.
The anisotropic polarizability of each dipole allows the investigation of di�erent
geometries without using many hundreds or thousands of dipoles and leads to a
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Figure 6.5

Sketch of the investigated structure.
We couple a dark plasmon mode
(quadrupole) to a bright one (dipole).

drastic reduction of required computation time. Of course, the applied approxima-
tion is not able to replace accurate simulation methods such as �nite elements, but
it helps to understand coupling behavior and allows the investigation of fundamen-
tal mechanisms within certain limits.

The time averaged radiated power Prad of a dipole with dipole moment p is given
by

Prad =
ω4 |p|2

12πεc3
(6.13)

with ω being the radiation frequency, ε and c the dielectric constant and velocity of
light, respectively [47]. Consequently, radiation damping is a function of the dipole
moment and thus not considered in a harmonic oscillator model with only linear
terms. In order to demonstrate the possibilities and limits of our model, we apply
the example of the plasmonic analogue of electromagnetically induced transparency,
similar to the one we discussed in subsection 3.2.2 of the numerics chapter [104].
Figure 6.5 depicts a sketch of the investigated structure. In our FEM model, we use
cylindrical shaped nanorods as substructures. The dipole has a length of 10 nm and
a diameter of 3.75 nm. The quadrupole arms have the same size but are rotated by
π/2 and are separated by 3.125 nm from the dipole. Furthermore we use an e�ective
medium of neff = 1.4 and plane wave excitation, polarized along the long axis of the
dipole. The upper graph of �gure 6.6(a) shows the computed normalized extinction
spectrum as black curve. We �nd the typical transparency window between the
two hybrid modes of the coupled bright and dark plasmon. For comparison, the
response of the single dipole is plotted as red dashed curve. The lower graph shows
the corresponding result, calculated with our point dipole approximation model. We
use the e�ective damping model of gold and set the resonance of the dipole to 1.7 eV
as extracted from the FEM data. The dipole resonances along the two short axes
are set to 2.5 eV. For both quadrupole arms we use slightly redshifted resonances
at 1.68 eV along the long axis and again 2.5 eV for the other short axes. The
dipole positions are placed into the center points of the particles and the excitation
is along the long axis of the dipole. The oscillator strengths of all dipoles are
identical and are used as �t parameter to achieve comparable coupling with respect
to the real plasmonic structure. As summarized in �gure 6.4(b), we �nd a very
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Comparison between the �nite element method and the PDA (a). We use the
example of EIT as discussed in subsection 3.2.2 of the numerics chapter. We tune the
oscillator strengths in the PDA model to �t the interaction strength and �nd a very
good agreement with respect to the �nite element method. The phase dependent
z-component of the electric �eld, taken at the three labeled energies, is plotted in
(b). The data is extracted 20 nm above the structure surface. For comparison, the
corresponding dipole orientations and amplitudes are superimposed and again in
good agreement. In (c) we plot the resonances and linewidths of the single dipole
and the EIT modes as a function of the structure size, determined by Lorentzian �ts.
For the considered geometry, we �nd negligible radiation e�ects below ≈ 30 nm.
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good agreement for the extinction spectra and the phase dependence of the dipole
polarizations. We obtain the frequency dependent modes and �nd the expected
behavior of the coupled dark-bright oscillator. However, the assumed tiny structure
size cannot be fabricated. In order to investigate the system behavior on di�erent
lengthscales we de�ne the structure size by the length of the dipole and scale the
whole geometry in our FEM calculation. Figure 6.4(c) shows the resonances and
linewidths of the EIT double-peak feature (yellow and red) and the single dipole as
a function of the structure size. We �nd an almost invariant response for structures
below ≈ 30 nm. For larger lengthscales, the linewidths broaden and the resonances
start to shift. This is a consequence of the increased scattering which can no longer
be neglected. Here, the point dipole model fails to predict the reduced linewidths
in the EIT geometry due to the reduced radiation losses of the quadrupole. We
conclude that the point dipole approximation neglects radiation e�ects and fails
to consider in�uences of higher order modes if a particle is modeled by one single
dipole. We expect large deviations if the particle surface shows artifacts or sharp
corners. Furthermore, only dipolar modes are considered. However, this is not what
we aim for. The model allows us to gain insight into many particle interactions and
the individual role of each particle. Furthermore, the computation time of the FEM
model with approximately 80 frequency steps is on the order of 60 minutes. For
comparison, the system with ten times more frequency points is solved by the point
dipole model within roughly 400 ms. This a factor of ≈ 104 faster. Of course it does
not replace the accurate calculation but gives a fast and detailed picture of dipole
coupled systems within the discussed limits.

6.2 signal enhancement via an optical antenna

In the chapters 4 and 5 we applied optical nanoantennas to enhance the light matter
interaction of tiny nanoobjects. Although both chapters consider di�erent nonlinear
systems, namely the acousto-optical response of a single gold nanoparticle and the
transition bleaching of quantum con�ned states of a semiconductor nanowire, the
electromagnetic coupling between antenna and nanoobject follows the same physics.
In general, the optical and geometric properties of the involved subsystems shape
the overall coupled response. As a consequence, nonlinear e�ects of the nanoparti-
cle and the antenna modulate the hybrid response and are not directly separable.
Antenna enhancement is achieved if the nonlinear response of the nanoobject is
ampli�ed by the perturbation of a much stronger carrier signal, provided by the
antenna. Intuitively, the question for the optimum antenna arises. In the previous
chapters we used numerical methods to answer this question for a single particle
antenna. However, the results for the optimum antenna sizes and resonances are
not well understood, phenomenologically di�er from each other, and their predic-
tion required long computation times.

In the following we use our point dipole approximation model to discuss and investi-
gate the crucial parameters which are required for an optimum antenna. In analogy
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to the chapters 4 and 5 we distinguish between two cases which we discuss separately.
The �rst one is the general 'strong perturbation case', where the backscattering of
the nanoobject noticeably in�uences the hybrid response. In subsection 6.2.2, we
investigate the 'weak perturbation case', where the oscillator strength of the nanoob-
ject is much smaller with respect to the antenna and its in�uence is not directly
observable in the hybrid response.

6.2.1 Strong perturbation case

An example for the strong perturbation case is given in chapter 4, where the nanopar-
ticle and the antenna have a comparable dipole moment [80]. Consequently, the
hybrid response strongly di�ers from the response of the individual subsystems. In
subsection 4.5.2 we performed numerical calculations to �nd the optimum radius for
a 30 nm high disc shaped antenna to enhance the nonlinear response of a smaller
gold disc with 20 nm radius and identical height. Figure 6.7(a) shows the predicted
nonlinear signal of the nanoparticle as a function of the antenna radius as already dis-
cussed in subsection 4.5.2. The black cross marks the maximum nonlinear response
at an antenna radius of ≈ 35 nm which was successfully used in the experiment.
In analogy, one could expect that an antenna radius of approximately 70 nm most
e�ciently enhances the nonlinear response of a disc with a radius of 40 nm. Fig-
ure 6.7(b) shows the corresponding simulation result and predicts maximum signal
enhancement for an antenna radius of approximately 30 nm. Consequently, the an-
tenna is smaller than the particle of interest and counterintuitively to the antenna
picture. In order to understand this behavior, additional parameters have to be
studied. However, as the computation time for each of the presented nanoparticles
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T-Matrix calculations to determine the optimum antenna sizes to enhance the non-
linear response of a 20 nm diameter (left) and a 40 nm radius particle (right). The
distance between nanoparticle and antenna is kept constant at 10 nm. The black
cross in the plots mark the maximum nonlinear response.
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Linear and nonlinear response of a small nanoparticle at 2.2 eV as a function of
antenna resonance (a,b). For orientation, the corresponding resonance positions
of the subsystems are marked by the lines. The enhancement as a function of
the antenna resonance is plotted as red curve in (c). The red arrows mark the
resonances of the nanoparticle (2.2 eV) and the optimum antenna, respectively. For
comparison, the black curve and arrows show the example for a bigger nanoparticle
at 1.94 eV. For better visibility, both curves are normalized to their maximum.

is on the order of 24 hours we apply our point dipole model and investigate the
large parameter space to obtain better insight into the involved processes. We use
a constant dipole-dipole distance of 20 nm and excite along the distance vector. We
isotropically tune the antenna resonance between 1.5 eV and 2.5 eV in 0.01 eV steps.
The oscillator strengths of nanoparticle and antenna ful�ll the strong coupling case.
In order to include the size and resonance dependent oscillator strength we assume
an inverse proportionality between the fundamental resonance energy ωa and the
disc diameter. As the oscillator strength A is proportional to its volume and thus
to its radius squared, we write

Ai ∝
1

ω2
i

(6.14)

for each dipole i. The small nanoparticle of interest has its isotropic resonance
at 2.2 eV (≈ 560 nm) which corresponds to the disc with a radius of 20 nm. Fig-
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ure 6.8(a) shows the linear response of the coupled system as a function of the
antenna resonance energy. For orientation, the resonances of the antenna and the
nanoparticle are given by the white lines. We �nd the strong coupling case where the
bright hybrid mode is signi�cantly shifted to lower energies. The weaker antisym-
metric mode at higher energies is suppressed by the d-band absorption what is in
very good agreement with our numerical simulations, discussed in subsection 4.5.2.
In order to compute the nonlinear response of the nanoparticle, we modify its eigen-
frequency with a phenomenological shift of 10 meV. The result for the nonlinear re-
sponse is shown in �gure 6.8(b). In analogy to our T-Matrix simulations we �nd the
perturbation of the hybrid mode for all considered antennas. The normalized max-
imum signal enhancement as a function of the antenna eigenfrequency is plotted as
red curve in �gure 6.8(c). The lower red arrow marks the resonance of the nanopar-
ticle, the upper red arrow gives the optimum antenna frequency at ≈ 1.94 eV. This
corresponds to an antenna with a radius of roughly 40 nm and is in good agreement
with our numerical predictions, discussed previously. We explain the slight devia-
tion by the assumed coupling strength and the neglection of radiation damping and
thus resonance broadening what reduces the sensitivity of antennas with larger radii.
We repeat the simulation for a nanoparticle with its eigenfrequency at 1.94 eV, cor-
responding to the nanodisc with a radius of 40 nm. The result is plotted as black
curve in �gure 6.8(c). Again, the upper and lower black arrow mark the optimum
antenna resonance and nanoparticle eigenfrequency, respectively. We observe the
same behavior with respect to our T-Matrix simulations, where the small antenna
enhances the nonlinear response of a larger nanoparticle.

In order to obtain more insight, we compute the maximum enhancement as a func-
tion of the antenna resonance and the nanoparticle resonance, by taking the size
dependent oscillator strengths into account. Figure 6.9(a) shows the result where
each datapoint corresponds to the absolute maximum of the nonlinear response of
a given nanoparticle-antenna pair. For comparison, the calculation took on the or-
der of one hour while the corresponding simulation with our �nite element model
would have taken roughly four years. The black curve marks the spectral overlap of
antenna and nanoparticle. The white curve follows the optimum antenna resonance.
We �nd no clear correlation between the two curves and a crossing behavior. Fur-
thermore we predict that the signal of a nanoparticle at 2.05 eV is most e�ciently
enhanced by an antenna with the same eigenfrequency. Larger nanoparticles require
smaller antennas and vise versa. This behavior seems chaotic but is a consequence
of the optical properties of gold. The dashed black curve marks the hybrid mode
resonance in the case of the optimum antenna. For particles with resonances above
2 eV we �nd an almost constant carrier mode frequency at approximately 1.85 eV.
For particles with lower energies, the response is parallel to the spectral overlap.
This is an outcome of the absorption band of gold at around 2 eV, which leads to
a strong damping of the plasmon resonance. Consequently, the nonlinear response
of a small gold nanoparticle is modulated on a broad and weak plasmon and thus
the desired signal is further reduced. The optimum antenna for these particles is a
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Figure 6.9

(a) Maximum enhancement for the strong coupling case as a function of the nanopar-
ticle resonance and the antenna resonance. For better comparability, the antenna
resonance dependent enhancement for each nanoparticle is normalized to the maxi-
mum hybrid response. The black curve marks the spectral overlap of antenna and
nanoparticle. The white curve shows the resonance of the optimum antenna with
highest signal enhancement. The coupling between the optimum antenna and the
nanoparticle shifts the coupled response resonance, marked by the dashed curve.
Sub�gure (b) shows the signal enhancement along the optimum antenna curve in
(a). For comparison, the black curve in (b) gives the maximum nonlinear response
of the single nanoparticles in arbitrary units.
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compromise of spectral overlap and oscillator strength to shift the hybrid response
outside the d-band and will be discussed in the following.

Independent on the nanoparticle energy, spectral overlap is required to achieve a
strong hybridization and thus modulation of the nonlinear response onto the hybrid
mode. The oscillator strengths de�ne the coupling strength, the spectral shift, and
the nonlinear response amplitude by the perturbation of the overall strong carrier
signal. If we consider larger nanoparticles below 2 eV, the antenna resonance is
blue shifted into the d-band to avoid strong resonance redshifts of the hybrid mode
into spectral regions with increasing losses due to the Drude damping and especially
radiation losses which we neglected in our calculations [49, 202]. As a consequence,
the symmetric hybrid mode is red-shifted but follows the nanoparticle resonance.
However, for particles with energies above approximately 2 eV, the hybrid mode
would enter the d-band absorption spectrum. The compromise to achieve signal
enhancement is to reduce the spectral overlap but overcompensate the detuning
by the larger oscillator strength and the reduced resonance broadening outside the
absorption band. This argumentation is supported by the red curve in �gure 6.9(b)
which shows the maximum enhancement as a function of the nanoparticle resonance.
While the signal of larger nanoparticles is slightly enhanced, the resonance shift out-
side the d-band leads to strong enhancement for the smaller nanoparticles.

In order to support the further discussed interpretations, we perform the identi-
cal calculation without the e�ective damping model of gold and assume a constant
resonance damping of γ = 0.1 eV for all particles. Figure 6.10 shows the computa-
tion result. For comparison, we plotted the optimum antenna resonance, spectral
overlap, and the optimum hybrid response energy as white, black, and dashed black
curve, respectively. We �nd a clear correlation between optimum antenna resonance
and the spectral overlap which underlines the importance of the spectral similarity
between nanoparticle and antenna. In analogy to the previous discussion for particle
resonances outside the absorption band of gold, we predict maximum enhancement
by a blueshifted antenna with smaller oscillator strength. However, the analyzed
systems without e�ective damping model are idealized and do not represent real-
istic material properties. A more reliable example was numerically investigated in
the work of Daniela Ullrich [150]. She discussed the optimum parameters for a disc
shaped silver antenna, without absorption band in the visible, to enhance the non-
linear response of a gold nanoparticle. The results show that the silver nanoantenna
with slightly higher plasmon resonance energy than the nanoparticle resonance, but
much larger oscillator strength leads to maximum signal enhancement. The cou-
pled nonlinear response is at the lower energetic symmetric mode and supports our
model although radiation losses cannot be fully neglected and the antenna oscillator
strength is much larger with respect to the smaller gold antenna, discussed previ-
ously. We conclude that in the strong perturbation case the strong in�uence and
backscattering of the nanoparticle to the hybrid response is important and has to
be taken into account in the antenna design. It can be a powerful method to shift
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Figure 6.10

In analogy to �gure 6.9 but
without phenomenological
damping coe�cient. We �nd a
clear correlation between the
spectral overlap of antenna
and nanoparticle and the
optimum antenna resonance.

the hybrid response into spectral regions with advantageous optical properties what
allows high e�cient enhancement of the nonlinear signal amplitude. This is of great
importance if the response is damped by absorption bands or other suppressing
mechanisms. Furthermore, the usage of di�erent antenna materials or geometries
can help to optimize the antenna properties by optimizing the spectral overlap by
simultaneously increasing the antenna's oscillator strength [150].

6.2.2 Weak perturbation case

In the following we consider the weak perturbation case where the small oscillator
strength of the nanoparticle is not able to signi�cantly in�uence the linear response
of the coupled system. An example for this is given in chapter 5 where we cou-
ple a single CdSe nanowire to a plasmonic antenna. As already mentioned, this is
only a special case of the strong perturbation case and cannot be strictly separated.
However, for the weak perturbation we �nd a more disentangled behavior of the
optimum antenna parameters as we discuss in the following.

The simulation parameters are identical to the previous subsection. We apply the
e�ective gold damping for all particles but reduce the oscillator strength of the
nanoparticle by four orders of magnitude. Consequently, we couple a very weak
dipole moment of the nanocrystal to the strong dipole moment of the plasmonic
nanoantenna. Again, we assume a perturbation of 10 meV of the nanoparticle's res-
onance. This di�ers from the transition bleaching where we observe a reduced dipole
moment but it allows the direct comparison with the previous discussion. In order
to consider transition bleaching, we repeat the calculation with a pure perturbation
of the oscillator strength. We �nd no mentionable di�erences which would require
a separate discussion. Figure 6.11(a) shows the maximum nonlinear response as a
function of the antenna and the nanoparticle resonance. In contrast to the strong
perturbation case we �nd the optimum antenna being resonant to the nanoobject
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Figure 6.11

(a) Normalized maximum enhancement for the weak coupling case as a function
of the nanoparticle resonance and antenna resonance. The black and white curves
mark the spectral overlap of antenna and nanoparticle and the optimum antenna
resonance, respectively. The response energy is identical with the optimum antenna
resonance. The nonlinear response of the nanoparticle at 2.2 eV as a function
of antenna resonance is plotted in (b). The dashed lines show the corresponding
resonance energies. The markers highlight two di�erent areas of high nonlinear
response. The maximum nonlinear response of the nanoparticle at 1.9 eV is plotted
as red curve in (c). For orientation, the linear response is plotted as black curve.
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of interest. Furthermore, the hybrid response energy is identical with the optimum
antenna resonance and not plotted separately. This is a consequence of the weak
coupling where o�-resonant particles show neglectable interaction and thus no or
neglectable hybridization. In case of resonant particles, the nonlinear response of
the nanoparticle is modulated onto the much stronger antenna response and leads
to a much higher enhancement factor, compared to the strong perturbation case.
However, for nanoparticles with resonances above ≈ 2.2 eV, the optimum antenna
resonance jumps to lower energies. This is a consequence of the d-band absorption
of the gold antenna as shown in �gure 6.11(b). Here, we plot the spectrally resolved
nonlinear response for the nanoparticle at 2.2 eV, where we observe the resonance
jump of the optimum antenna, as a function of the antenna resonance. The two
markers highlight the regions with strongest enhancement, one for an antenna reso-
nance at around 1.8 eV and the other at 2.15 eV. The antenna at higher energy has
a smaller oscillator strength but good spectral overlap. For the antenna with lower
eigenenergy it is vice versa and the nonlinear response of the nanoparticle leads to
a tiny perturbation of the far o�-resonant antenna resonance with large oscillator
strength. For nanoparticles at higher eigenenergies, the increasing antenna plasmon
damping, caused by the absorption band, suppresses the desired enhancement ef-
fect and the o� resonant antennas become more e�cient. However, the design of
a gold antenna which operates within the d-band absorption spectrum should be
avoided and other materials such as silver or aluminum should be applied. Finally,
we consider the nonlinear response for a nanoobject outside the absorption band
of the gold antenna at 1.9 eV. The red curve in �gure 6.11(b) shows the spectrally
resolved nonlinear response of the hybrid system with the maximum achieved non-
linear signal amplitude. For comparison, the linear response of the antenna with
its resonance at 1.9 eV is plotted as black curve. The behavior of linear and nonlin-
ear response nicely reproduce the calculation results, discussed in subsection 5.5.1,
where we investigated the coupling of a CdSe nanocrystal with a gold nanoantenna.

6.2.3 Conclusion

In this section we investigate the crucial parameters for an optical nanoantenna in
the limits of our point dipole approximation method. In our discussions we dis-
tinguished between two cases. In the 'strong perturbation case', the backcoupling
of the nanoparticle of interest to the antenna cannot be neglected and leads to a
spectral shift of the hybrid response. For demonstration, we used the example of
chapter 4 where we enhanced the nonlinear response of a small gold nanoparticle
with a slightly larger gold antenna. However, our numerical simulations show that
in contrast to intuitive expectations, the signal of a larger nanoparticle is most ef-
�ciently enhanced by a nanoantenna of smaller size. This seems counterintuitive
but can be explained by the optical properties of gold and the harmonic oscillator
model polarizability. Furthermore, the d-band absorption of gold above approx-
imately 2 eV suppresses plasmon resonances of small nanoparticles and thus the
modulated nonlinear response. In this case, the optimum antenna is a compromise
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of spectral overlap and oscillator strength, leading to a shift of the hybrid mode
outside the absorption band. Here, larger antennas cannot overcompensate the o�-
resonance by their additional dipole moment. The hybrid response with smaller
antennas is damped by the d-band and thus ine�cient as carrier mode.

In the weak perturbation case, the dipole moment of the nanoparticle is much
smaller with respect to the antenna. Consequently the coupled response seems
almost una�ected by the nanoobject. We found the spectral overlap of nanopar-
ticle and antenna as most important condition for optimum signal enhancement.
Furthermore, we obtained good agreement with our predictions of subsection 5.5.1
where we consider a single CdSe nanocrystal with tiny dipole moment, coupled to
a gold nanoantenna.

We conclude that in the case where the nanoparticle shows neglectable in�uence
on the antenna resonance, spectral overlap seems to be the most important value.
Consequently, the antenna material and geometry should be chosen for the max-
imum oscillator strength but simultaneous spectral overlap. Just for cases where
an absorption band, for example of gold, suppresses the plasmon resonance of the
antenna, o�-resonant antennas can enhance the nonlinear response with poor e�-
ciency. Here, other materials such as silver or aluminum should be applied. In cases
where the nanoparticle has a strong dipole moment, its backscattering and in�uence
on the overall response cannot be neglected and an optical nanoantenna can help
to shift the hybrid response into spectral positions with better response properties.
This can be a powerful method to shift resonances outside an absorption band into
spectral regions with advantageous optical properties.

6.3 optimization of many-particle optical antennas

In the previous section we investigated the crucial conditions for maximum signal
enhancement of a nanoparticle coupled to a single particle nanoantenna. However,
optical nanoantennas can consist of more than one particle [110, 133, 159]. Further-
more, the several antenna particles can have individual optical properties. Plenty of
antenna con�gurations such as the Yagi-Uda or the bow tie geometry are suggested
to achieve high e�ciency by directivity or near-�eld enhancement [24, 203]. Even-
tually, one can ask for an optimum arrangement and optimum optical properties
of many particle antennas to achieve the maximum signal enhancement of a tiny
nanoparticle. However, the huge parameter space opens an unlimited amount of
possibilities to design optical antennas. In this section we give a short outlook for
the design of optimum antennas by using our point dipole method in combination
with evolutionary computation.
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Figure 6.12

Structure of the applied single population evolutionary algorithm.

6.3.1 Evolutionary computation as optimization routine

Our point dipole approximation allows the fast computation of the linear and non-
linear response of coupled nanostructures. This is an elementary property and
allows us to apply stochastic numerical optimization techniques such as evolution-
ary algorithms [204]. In order to approximate the solution of a complex problem,
evolutionary computation applies the principle of the survival of the �ttest. A cer-
tain population is iteratively analyzed, selected and developed to approximate and
reach the solution within a previously de�ned accuracy or optimization criteria. In
our case, the '�ttest' is the antenna with its optical and geometric properties which
leads to maximum signal enhancement of the nanoparticle's nonlinear response.

The several steps of the applied algorithm are sketched in �gure 6.12. In the �rst
step, an initial random population in the de�ned solution space is created. After-
wards, the �tness of each individual of the population is computed and gives quan-
titative values for the quality of the reached solutions. If the population reaches the
de�ned optimization criteria, the evolution ends and the survived individuals of the
population represent the computation results that ful�ll the de�ned optimization
condition. For the case that the population does not reach the desired accuracy,
the population is selected and developed by recombination. This means that the
'�ttest' individuals are used to breed new individuals to form a new generation of
individuals and population, respectively. The reproduction is realized by crossover
and mutation operations. Finally, the next generation is �nished and analyzed for
their �tness. The evolution continues until the population reaches the de�ned op-
timization criteria or the computation is aborted. In the following we discuss the
implementation of the algorithm in our point dipole approximation method and use
the example of an antenna which consists of one particle. In analogy, the optimiza-
tion of many-particle antennas is realized.

We optimize for the optimum antenna geometry which consists of a single parti-
cles with previously de�ned optical properties. Furthermore, we de�ne a closest
dipole-dipole distance which cannot be undershot and keep the z-component of the
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The initial population in case of a single particle antenna. The nanoparticle is
located in the center. The antenna population consists of six individuals, symmetri-
cally distributed around the nanoobject. The blue circles mark an example for the
o�spring positions, based on recombination and mutation.

position always zero to imitate particles with �nite sizes on a surface. The sys-
tem under optimization is sketched in �gure 6.13. The nanoparticle is centered
at r = (0 0 0)T . In analogy to the previous section, its resonance perturbation is
de�ned to 10 meV to imitate the nonlinear perturbation. Independent on the overall
number of antenna particles, we typically use populations with a number between 3

and 8 individuals. Each individual carries the properties of the whole system with
all antenna particles. In the �rst step, the initial population is created, either by
random positions of the antenna particles or by a symmetric distribution with a
small mutation around the nanoparticle as depicted in �gure 6.13. The random
initial population has the larger variety. Per de�nition, the symmetric one covers a
larger area around the nanoparticle and allows the antenna particle approximation
from all directions. The sketch shows one of the six individuals of the population
in the �rst generation and the symmetric distribution. The other individuals are
represented by the dashed circles and labeled 2 · · · 6. As �tness of each individual
we use the achieved maximum nonlinear response. We cannot clearly de�ne an opti-
mization criterion and use a previously de�ned number of overall generations. The
o�spring of individual '1' is either generated by crossbreed with other individuals
or just by mutation. Three examples for crossbreeds of di�erent parent individuals
are shown as blue circles in �gure 6.13. We apply a random mutation, based on a
normal distribution with scattering amplitude σ, on all o�spring positions which is
visualized by the black arrows. This avoids systematic iterations and increases the
variety of the population. The �tness of the o�spring is computed and compared
to the �tness of the parents. In case of a higher �tness, the parents are replaced
by the best o�spring. Otherwise, the old individuals survive and can recombine
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with eventually other replaced individuals or the next mutation helps to develop
the population. This evolution can be continued until the population shows no
further optimization. However, already the single particle antenna shows that re-
�nement steps of the mutation are required to �nd the optimum particle position
with high accuracy. Consequently, we split the algorithm into three parts. In the
�rst part we apply the development as described above with strong mutation am-
plitude σ to cover a large parameter space. After the rough positions are found,
we stop the development and separately mutate the particle positions within each
individual. This further optimized the overall antenna response in the case of many
particle antennas. Finally, we optimize the several individuals in analogy to the �rst
step, but just by random mutation which decrease with the number of generations.
All three steps are fully automatized and controlled by various parameters such
as rough scattering amplitude, re�nement steps of the scattering amplitude in the
�ne mutation, and the overall number of generations in the rough, �ne, and single
antenna particle optimization sections. Figure 6.14(a) shows the �tness of a pop-
ulation with 3 individuals as a function of the generation in the strong mutation
(left) and �ne mutation (right) section. For the strong mutation we �nd a large
scattering of the �tness what is a consequence of the strong mutation to cover a
huge parameter space and to escape local maxima. Afterwards, the position of the
individuals is slightly optimized and the �ne mutation algorithm further optimizes
the antenna particle positions, in analogy to the strong mutation. We obtain the
desired optimization trace. The three solutions are sketched in �gure 6.14(b). We
�nd two di�erent solution. The strongest enhancement is achieved for the antenna
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The rough mutation algorithm shows a strong scattering of the �tness over the whole
evolution (left section of (a)). After the rough positions are found, the �ne mutation
algorithm optimized the antenna structure until the �tness saturates (right section
of (a)). In the shown case, the mutation amplitude is two times re�ned at the
marked generations. The optimum geometries which were found for the antenna
are shown in (b). One of the two degenerated solutions is slightly detuned, what
results to the smaller signal enhancement, as shown by the �nal �tness.
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which is displaced parallel to the excitation �eld. The other antenna with smaller
enhancement is perpendicular to it. This is in agreement with what we found in
our simulation in subsection 4.5.2 of the nanomechanics chapter. Of course there
is much room for optimization of the applied algorithm, especially in the recombi-
nation and crossbreed operations, but we risk a �rst try to �nd optimum antenna
geometries.

6.3.2 Optimum antenna geometries

We consider the case of the strong perturbation of subsection 6.2.1 where the
nanoparticle in�uences the hybrid response. Consequently, the computation covers
a broad spectrum, with 1 meV resolution, to achieve a high accuracy and maximum
enhancement, independent on the frequency of the carrier mode. Furthermore, we
use the e�ective damping model of gold and search for an optimum nanoantenna for
a nanoparticle with its resonance at 2.3 eV. All antenna particles are identical and
have a plasmon resonance at 2.0 eV. The smallest allowed dipole-dipole distance
is 20 nm. Figure 6.15(a) shows the results for one and two particle antennas and
the most e�cient three and four particle antennas. The e�ciency decreases from
left to right. While the one and two particle antennas are intuitive solutions, one
would expect a stronger enhancement e�ciency if the third antenna particle would
be closer to the remaining nanostructure. However, this is not what we �nd. Fur-
thermore, for the antenna which consists of 4 discs we �nd the highest e�ciency
for the shortest distances between the antenna particles. This phenomenon is a
consequence of the unbalanced eigenresonances of the left antenna particle and the
hybrid response of the antenna particle pair on the right side. The decreased cou-
pling between the several subsystems leads to a reduction of the nonlinear signal
enhancement. We conclude that symmetry plays an important role in the design of
plasmonic nanoantennas and implement symmetry conditions around the nanopar-
ticle of interest. Consequently, a particle at ri has always its mirrored particle at
rk = −ri. Finally, we apply this additional condition and use the example of a
tiny nanoparticle with its resonance at 2.3 eV and an antenna which consists of
nanodiscs with their resonance at 2 eV. Furthermore, the smallest allowed dipole-
dipole distance is 30 nm. We search for the antenna geometry with highest signal
enhancement at a frequency of 1.8 eV. This can be interesting, if the nonlinear
response must be maximized at a certain laser energy. Figure 6.15(b) shows the
result of our algorithm for an antenna geometry which consists of 14 antenna par-
ticles. The found compromise between the overall oscillator strength and spectral
overlap with the nanoparticle is not directly intuitive what supports our method
and the necessarity of e�cient optimization algorithms. Furthermore, the overall
antenna geometry reaches sizes where retardation e�ects can no longer be neglected
what leads to further complications. Additional antenna particles can further am-
plify the response as the best compromize of overall oscillator strength and spectral
overlap is not jet reached. Finally, we demonstrated that the huge parameter space
of many particle antennas complicates the design of e�cient antenna geometries.
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Figure 6.15

Solutions for optimum antenna geometries found by the evolutionary algorithm in
combination with our point dipole approximation model (a). The excitation �eld is
horizontally aligned and the antennas are placed by their e�ciency from left to right.
The small sphere represents the static nanoparticle. The larger particles mark the
positions of the antenna dipoles. All graphs were directly generated by a raytracing
script (POV-Ray) and represent with the result of the strongest individual. (b) An
example for a complex antenna, which consists of 14 identical antenna particles, to
achieve maximum signal enhancement at a certain frequency.
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An approach is done by combining an evolutionary algorithm with our introduced
point dipole approximation which helps to �nd complex nanoantennas, consisting
of many coupled particles.

6.4 conclusion

In this chapter we introduced a point dipole approximation method, based on the
discrete dipole approximation, for the fast computation and optimization of complex
plasmonic structures. In contrast to DDA, each particle is replaced by one dipole.
We apply harmonic oscillators and anisotropic polarizability tensors to imitate dif-
ferent geometries and particle sizes. While all parameters for the optical properties
are given by the particle size and orientation dependent plasmon resonances, the
only free �tting parameter is the overall oscillator strength. We �nd good agreement
of our model with FEM and T-Matrix simulations. However, radiation damping is
fully neglected in our method as we discussed at the example of the plasmonic ana-
logue of EIT [202]. Consequently, the point dipole approximation model allows a
very good prediction of the linear and nonlinear response and access to all relevant
properties of complex many particle nanosystems as long as radiation damping can
be neglected.

In section 6.2 we discussed the crucial parameters for optimum antenna enhance-
ment. We distinguished between the 'strong perturbation' and the 'weak pertur-
bation' case. In the �rst one, the oscillator strength of the nanoobject is on the
same order of magnitude with respect to the antenna. As a consequence, its con-
tribution and in�uence to the overall system response cannot be neglected. We
discussed the complex behavior and partially counterintuitive parameters for the
optimum antenna. Furthermore we demonstrated that the hybridization of nanopar-
ticle and antenna mode can shift the nonlinear response into spectral regions with
better optical properties. An example for this is given in chapter 4 where the opti-
mum antenna, a compromise of spectral overlap with the nanoparticle and oscillator
strength, shifts the nonlinear response of a tiny nanoparticle outside the absorption
band of gold. In the 'weak perturbation case' we found a clear correlation between
spectral overlap and the optimum antenna resonance. This is in good agreement
with our calculation results, discussed in chapter 5. We conclude that the optimum
antenna is resonant with the nanoobject of interest with simultaneous maximum os-
cillator strength, as long as the antenna does not operate within an absorption band.

The last section of the chapter shows our work on combining an evolutionary com-
putation method with our point dipole approximation method to �nd optimum
antenna geometries of many particle antennas. We gave a brief introduction into
the applied algorithm and presented �rst results for optimum antenna geometries
which consist between one and four antenna particles. While the one, two, and four
particle antennas show intuitive results, the optimum three particle antenna geome-
try surprises and is a consequence of the broken symmetry. Furthermore, we showed
an example for a 14 nanoparticle antenna, optimized for a certain laser wavelength.
This can be important, if the nonlinear response of a nanosystem has to be e�ciently
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transferred to a certain carrier frequency. The complex and not intuitive solution
supports our fast computation method and the necessity of advanced computation
techniques.





7
CONCLUS ION AND OUTLOOK

Nanoobjects with a few nanometers in size show fascinating optical properties which
make them to promising candidates for future applications and attractive for fun-
damental research. Nonlinear spectroscopy investigates the small deviations from
linear light-matter interaction and reveals physical processes on ultrafast timescales.
The weak nonlinear response is reduced further when single nanoobjects such as
quantum dots or nanoparticles are investigated. Resonant optical nanoantennas
concentrate their near-�eld in subwavelength volumes and promise signal enhance-
ment by increasing the light-matter interaction in their feed gap. This study aimed
at the investigation of various ultrafast nonlinear processes in single metallic and
semiconductor nanostructures as well as the development and realization of optical
nanoantennas to enhance the otherwise barely detectable nonlinear response.

The fundamentals of linear and nonlinear light-matter interaction on the nanoscale
have been introduced in chapter 2. We characterized and discussed the applied ex-
perimental techniques of transient transmission spectroscopy, time resolved photo-
luminescence, and dark-�eld spectroscopy. We demonstrated the ability to perform
shot-noise limited experiments with sub-picosecond temporal resolution and single
particle photoluminescence and dark-�eld spectroscopy. Finite element models, as
discussed in chapter 3, allowed us to compute the scattering of electromagnetic
waves by arbitrary nanostructures and provided the basis of our theoretical work in
the several chapters. In particular, we developed a theoretical model for the polar-
ization resolved higher harmonic generation in complex plasmonic nanostructures
and supported the work of Bernd Metzger [103, 112]. In future, the model could be
further optimized by taking re-absorption and radiation properties of the structures
into account. Furthermore, we supported Christian Dicken in his work about mag-
netoplasmonics and provided the numerical model to compute the scattering phase
of nanostructures in complex multilayer structures [205]. This plays an important
role in common path interferometry and allows the design and investigation of op-
tical antennas to tweak the phase response into optimum conditions. Finally, we
implemented the constitutive equations for optical chirality what allows the theo-
retical investigation and optimization of optical antennas for chiral sensing. This
was done to support the work of Daniel Dregely and coworker about glucose and
fructose sensing with planar gold nanostructures. First calculations showed that
these planar antennas can slightly enhance the response amplitude of thin chiral
layers. However, the interaction between chiral media and three dimensional chiral
antennas is still under investigation and the next step in future work.

145
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In chapter 4, the acousto-plasmonic properties of single gold nanodiscs with radii
ranging from 20 nm to 45 nm and heights of 30 nm have been studied. The samples
were fabricated by electron beam lithography. We computed the absorption cross
section, shaped by the plasmon resonance, and applied a two-temperature model to
describe the pump wavelength and particle size dependent excitation process. We
found that for the experimentally used parameters, the particle lattice temperatures
are increased by a few hundreds of Kelvin and impulsively launch mechanical vi-
brations. The caused perturbation of the particle plasmon resonance was modeled
via the modi�cation of the dielectric properties of gold, based on a combination of
the Drude model and linear thermal expansion. The predicted nonlinear response
showed a dispersive lineshape and signal intensities between 10−6 and 10−3. We
veri�ed the theoretical predictions by ultrafast nonlinear spectroscopy where we
excited in the near infrared at 800 nm wavelength and recorded the spectrally re-
solved temporal evolution of the mechanical oscillations. Fourier analyses allowed
us to investigate the mechanical mode spectra of the disc shaped particles where we
observed two eigenmodes, corresponding to an extensional mode and a drum mode.
The size dependent mechanical eigenfrequency of the dominating drum mode was
nicely reproduced by a simple model based on the sound velocity of gold. Fur-
thermore, we investigated the probe wavelength dependent signal strength of the
oscillation and found good agreement with our theoretical predictions, as long as the
spectral response is outside the absorption band of gold which is not taken into ac-
count in our model. Outgoing from this preparatory work, we were able to perform
theoretical studies about the nonlinear response of a single gold nanoparticle cou-
pled to an optical antenna. We used the example of a nanodisc with 20 nm diameter,
which is at the limit of our detection range, and theoretically predicted the optimum
enhancement with a disc shaped nanoantenna with a radius of approximately 35 nm.
We found the antenna e�ect being a consequence of plasmon hybridization of the
nanoparticle and the antenna, where the desired nonlinear response modulates a
very strong carrier mode of the hybrid system. The experimentally investigated
nanoparticle-antenna pair was separated by 12.5 nm. Fourier decomposition al-
lowed us to distinguish between the response contributions of the antenna and the
nanoparticle under investigation. We found the nonlinear response of the nanoparti-
cle redshifted to the symmetric hybrid mode resonance and enhanced by one order
of magnitude [80]. Our method provides a powerful tool in linear and nonlinear
spectroscopy of single nanoobjects, especially in simplifying such challenging exper-
iments as transient absorption or multiphoton excitation. However, more complex
antenna geometries which could further increase the e�ciency are mostly not ap-
plicable due to their multiple mechanical resonances and strong background signal,
both limiting the Fourier decomposition. For future work, we suggest the combina-
tion of plasmonic nanoantenna and simple dielectric cavity structures to increase the
light matter interaction of small nanoparticles and to reach particle sizes of 10 nm
and below where the atomistic character of the mechanical oscillations should be-
come observable.
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In chapter 5 we presented for the �rst time ultrafast nonlinear spectroscopy of exci-
ton dynamics in quantum con�ned states of individual CdSe nanowires with radii
well below 10 nm. The small wire radii on the order of the Bohr radius (5.6 nm)
lead to quantum con�nement and discrete energy levels of the electron and hole
states. Consequently the absorption line is shaped by the dipole allowed discrete
transitions which we computed as a function of the radius by applying six-band
e�ective mass theory. Our samples were synthesized by the groups of G.V.Hartland
and M.Kuno and afterwards spin-coated onto a glass substrate. We used near-UV
pump pulses to excite higher order transitions and performed time resolved photo-
luminescence spectroscopy measurements. The absorption cross section showed a
strong polarization dependence which is a consequence of the wire geometry and
well described by our �nite element model. Ultrafast nonlinear spectroscopy re-
vealed short and long living e�ects, distributed over the visible and near infrared
spectrum. The �rst picoseconds after excitation are dominated by an electron-hole
plasma, leading to a dispersive line shape of the transient signal. At later times,
we found clear peaks in the transient absorption spectra, indicating the bleaching
of di�erent excitonic states which are in excellent spectral agreement with the pre-
dictions from e�ective mass theory. The population of these states decays with
spectrally rather independent rates between 2 and 5 ns−1. Furthermore, we used
the integral over the absorption line to estimate the pump induced population of sev-
eral states. We found approximately 50 excitons being created by each pump pulse.
Furthermore, we perceived a large mismatch between the number of pump-induced
excitations of the emitting state (about 10 per laser pulse) and the luminescence
photon rate (about 0.02 per laser pulse). Numerical simulations of the power �ow
of an emitting dipole in a CdSe nanowire revealed that the mismatch is caused by
re-absorption of emitted photons by other parts of the nanowire. Emission from
low energy defect states is much less absorbed than emission from the nanowire it-
self. The former thus dominates the emission spectrum. The combination of single
wire transient absorption spectroscopy with luminescence spectroscopy allowed us
to track the excitation and emission dynamics [81]. Finally, we presented our work
on the coupling between an individual CdSe nanowire and a plasmonic antenna.
We provided a classical model and described the interaction at the example of a
single nanocrystal and a disc shaped gold nanoantenna. From theory, we predicted
the desired signal enhancement to be in an experimentally accessible regime. First
experimental results showed interaction between wire and antenna, indicated by
the increase of the transition decay rates which follow the absorption line of the
antenna plasmon due to additional (nonradiative) decay channels. This was further
supported by the measured reduction of the photoluminescence intensity. However,
in contrast to our predictions concerning a single CdSe dot, the nonlinear response
amplitude of the wire-antenna system is decreased with respect to the single wire.
We explained this by the compromise in the antenna design, which was chosen to
avoid a strong superimposed nonlinear response of the antenna itself. To overcome
this background signal, we suggest dielectric microcavities which also increase the
light matter interaction without an own nonlinear response. However, both meth-
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ods distort the properties of the quantum system and complicate its investigation
by the increased local density of states.

Finally, in chapter 6 we generally discussed the antenna nanoparticle interaction
based on our point dipole approximation model where each scatterer is replaced by
a single dipole. We combined the fundamentals of the discrete dipole approximation
and anisotropic polarizability for the nanoobjects, based on harmonic oscillators.
The dramatic reduction of computational e�ort allowed the fast computation of
complex many particle nanostructures and the investigation of previously unattain-
able, large parameter spaces. At the example of the electromagnetic analogue of
EIT, where a dark plasmon is coupled to a bright one, we discussed the limitations
due to the neglection of radiation losses and broadening. For the general discussion
about maximum antenna e�ciency and enhancement, we distinguished between
two cases with di�erent oscillator strengths of the nanoobject under investigation,
in analogy to the systems discussed in the chapters 4 and 5, respectively. In the
strong perturbation case, the in�uence of the nanoobject cannot be neglected in
the hybrid response of the nanoparticle-antenna pair. Consequently, the hybrid
mode resonance energies strongly depend on the properties of the nanoparticle as
discussed in chapter 4 where the coupled response in case of the optimum antenna is
redshifted with respect to the resonances of nanoparticle and antenna. In addition,
we found that in this case the optimum antenna is a compromise of spectral overlap
with the nanoparticle and high oscillator strength which shifts the spectral response
of the nanoparticle outside the absorption band of gold. Consequently, the larger
antenna structure with respect to the nanoparticle is not a general constellation but
more a result of the optical properties of the used material. In contrast, the weak
perturbation case, where the in�uence of the nanoobject can be almost neglected in
the hybrid response, shows a more disentangled behavior with spectral overlap being
the most crucial parameter for an e�cient antenna. An example was discussed in
chapter 5, where we computed the optimum antenna for a single CdSe nanocrystal.
At the end of the chapter, we presented �rst results about the implementation of
an evolutionary algorithm to �nd optimum many particle antenna geometries and
found symmetry as an important condition.

In conclusion, we investigated the acousto-optical response of single gold nanopar-
ticles and applied for the �rst time an optical nanoantenna for ultrafast nonlinear
spectroscopy of a single nanoobject. Furthermore, we tracked the ultrafast carrier
dynamics in quantum con�ned exciton states of a single CdSe nanowire and in-
vestigated a hybrid system, consisting of semiconductor nanowire and plasmonic
nanoantenna. Our point dipole approximation approach allows the fast compu-
tation of complex response of many particle antennas and is a �rst step towards
optimum antenna geometries. Optical nanoantennas can enhance the nonlinear re-
sponse of individual nanoobjects but may in�uence the object under investigation.
We expect this dissertation to give detailed insight into ultrafast processes in metal-
lic and semiconductor nanostructures. We envision that the provided numerical



7 conclusion and outlook 149

models and methods help to study and optimize antenna structures for higher har-
monic phenomena and optical chirality and that our antenna-technique provides a
powerful tool for linear and nonlinear spectroscopy on the nanoscale.
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A
APPENDIX

comparison between the ultrafast response of single wire

and wire aggregate

As written in the supplemental material of [81]. We performe transient absorption
measurements of wire clusters and compare them with our single wire experiments.
Figure A.1(a) shows the ultrafast response of a small cluster, consisting of ≈ 5

touching wires. On the left side, the high temporal resolution data in the range
from −20 to +20 ps is shown. Similar to the single wire response, we �nd a fast
plasmae�ect, as well as decaying excitonic state bleaching, shown in the scans from
20 to 400 ps on the right side of �gure A.1(a). The maximum transient absorption
signal is increased by a factor of 3 to 5, indicating the number of wires over which we
average. Figure A.1(b) shows the comparison between the transient absorption spec-
trum of single wire and wire aggregate, both extracted 10 ps after excitation. We
�nd signi�cant changes of the line shape. While the single wire signal is dominated
by a broad bleaching signal, the cluster shows a di�erent behavior. We attribute
these changes mainly to wire-wire connections or crossings, reducing the quantum
con�nement, leading to the observed transition redshifts. The extracted lifetimes
are longer compared to the single wire results. In addition, we observe pump in-
duced absorbance, indicated by spectral regions with negative ∆T/T . This can
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Figure A.1

(a) Transient absorption spectrum as a function of time delay of a wire aggregate.
Both parts have di�erent linear time scales. While the left part covers the fast
features when pump and probe pulse overlap, the right part shows the decay of the
states. For comparison, the transition bleaching, 10 ps after excitation, of the wire
aggregate and the single wire of subsection 5.4.1 is shown in (b).
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be explained by higher order excitations, or by an overlapp of partially single wire
and plasma response, coming from broad cluster areas. In conclusion, single wire
measurements are necessary to resolve their unaveraged character and to minimize
e�ects due to connections between wires, in addition to inhomogeneous broadening.
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