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Abstract

In this dissertation we study 1-motives over number fields and their
application to questions dealing with reductions of points in semiabelian
varieties. We prove a version of the Néron-Ogg-Shafarevich criterion
for 1-motives and show how the image of the Frobenius in the `-adic
Galois representation associated to a 1-motive determines the `-part of
its reduction modulo the corresponding prime. We use this theory to
investigate a family of properties for points in tori which we call alge-
braic dependences. In particular, we study the rank of the reduction of a
group generated by two rational points in G2

m, modulo different primes.
Finally, we show how our algebraic dependences exhibit an analogy be-
tween problems in p-adic transcendence theory and problems concerning
reduction of points.

Kurzfassung

In dieser Doktorarbeit werden 1-Motive über Zahlkörpern und ihre
Anwendung auf Fragen über die Reduktion von Punkten in semiabelschen
Varietäten untersucht. Es wird eine Version des Néron-Ogg-Shafarevich-
Kriteriums für 1-Motive bewiesen und es wird beschrieben, wie das Bild
des Frobenius-Automorphismus in der dem 1-Motiv zugeordneten `-adisch-
en Galoisdarstellung die Reduktion modulo dem entsprechenden Prim-
ideal bestimmt. Wir wenden die von uns entwickelte Theorie an, um eine
Familie von Eigenschaften für Punkte auf Tori zu untersuchen, die wir
algebraische Abhängigkeiten nennen. Ins besondere wird der Rang der
Reduktion modulo verschiedenen Primidealen einer von zwei rationalen
Punkten in G2

m erzeugten Gruppe untersucht. Schließlich wird gezeigt,
dass unsere algebraischen Abhängigkeiten eine Analogie zwischen gewis-
sen Probleme der p-adischen Transzendenztheorie und Problemen bezüg-
lich Reduktion von Punkten vermitteln.





Introduction

The main topic of this dissertation is the study of the reduction of points
in semiabelian varieties defined over number fields. We develop a formalism
which allows us to easily reduce various problems of this type to problems
about `-adic Galois representations. We also apply this formalism to study a
certain interesting family of properties of points on algebraic tori which we call
algebraic dependences.

To be more specific let us give some examples of the type of problems
to which our results can be applied. Our first example is related to Artin’s
primitive root conjecture. A weak form of the conjecture is as follows:

A. Conjecture. Let a be an integer which is different from 0, 1, −1, and
which is not a perfect square. There exist infinitely many prime numbers p for
which a is a primitive root modulo p.

Let a and p be as in the conjecture and let n(a, p) denote the order of
a modulo p. Then it is trivial to see that a is a primitive root modulo p if
and only if the `-adic valuations of n(a, p) and p − 1 are equal for all prime
numbers `. We can therefore fix a and `, and ask for how many primes p the
`-adic valuation of n(a, p) is equal to the `-adic valuation of p− 1. To answer
this question one considers the Galois group of the extension Q(

√̀
a)/Q. This

group is isomorphic to a semidirect product Z/`o(Z/`)×. One can show that if
p 6= `, then the property stated above holds if and only if the prime p does not
split completely in Q(

√̀
a), or equivalently, it holds if and only if the Frobenius

element at p is not trivial. Hence we can apply Chebotarev’s density theorem
to deduce that the set of primes p, for which the `-adic valuations of n(a, p) and

p−1 are equal, has density
(

1− 1
`(`−1)

)
. This computation justifies the initial

(incorrect) guess by Artin of the density of primes for which a is a primitive
root: ∏

`

(
1− 1

`(`− 1)

)
.

We refer to [Mur88] for further details.
Let us now consider a different example. The following theorem is a question

asked by Erdős and answered by Corrales-Rodrigáñez and Schoof [CRS97].

B. Theorem. Let x and y be positive integers. Suppose that for all positive
integers n the set of prime numbers dividing xn− 1 is equal to the set of prime
numbers dividing yn − 1. Then x is equal to y.

The key observation which leads to the solution of this problem is the
following. Let ` be a prime number and let q be a power of `. Let a be any

v
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integer and let p be a prime number different from ` and coprime to a. Let ζq
be a primitive q-th root of unity. Suppose that p splits in the field extension
F = Q(ζq, q

√
a). Then the `-adic valuation of the order of a modulo p is no

greater than the `-adic valuation of p−1
q . So we can relate the `-part of the

order of the reduction of a number modulo p to the image of the Frobenius
element at p in the Galois group of certain Kummer field extensions.

This idea has been very fruitful in studying a number of generalizations
of the above theorem which are generally called “the support problem”. Most
generally one is interested in relations between the orders of reduction of several
points P1, . . . , Pn lying in a semiabelian variety G defined over a number field
K. The number field corresponding to F would in this case be the field of defini-
tion of all pre-images of the points Pi under the multiplication-by-q map. Some
results in this area are [Kow03], [Lar03], [Wes03], [KP04], [BGK05],[Per09].

Let us finally consider the problem which is the main motivation behind
this work. Let P1 and P2 be two rational points lying in the 2-dimensional
torus G2

m(Q) and let Γ be the subgroup spanned by them. For all but finitely
many primes p we can reduce P1 and P2 modulo p which gives us a group Γp
lying in G2

m(Fp) ∼= (F×p )2. Then we can ask the following question: When is
the reduction Γp a cyclic group?

There are a couple of cases for which the reduction is always cyclic. First
of all, the reduction will be cyclic if Γ is cyclic. We can take, for example,
P1 = (2, 3) and P2 = (4, 9). But also Γp will be cyclic if Γ is contained
in a one-dimensional algebraic subgroup of G2

m. An example for this case is
P1 = (2, 4) and P2 = (3, 9). As a result of our work we can prove the following:

C. Theorem. Assume that the group Γ is a free abelian group of rank 2 and
that it is not contained in a proper algebraic subgroup of G2

m. Then the set of
primes p for which Γp is cyclic has zero density.

Since the groups Γp are abelian, they decompose as a product Γp =
∏
` Γp,`,

where Γp,` is the `-primary part of Γp. Then the condition that Γp is cyclic
is equivalent to saying that the groups Γp,` are cyclic for all `. The main
ingredient of the proof is then to relate the condition that Γp,` is cyclic to the
image of the Frobenius at p in the Galois group of the field of definition of all
pre-images of Pi under multiplication by `n, for all n. This field is an infinite
extension of Q whose Galois group is, for all but finitely many `, isomorphic
to a semi-direct product Zu` o Z×` for some 0 ≤ u ≤ 4. To solve our problem
we describe explicitly a subset A of this group with the property that the
Frobenius element at p lies in A if and only if Γp,` is cyclic. We remark, that
although the statement of the theorem seems similar to problems of detecting
linear dependence which have been studied in relation to the support problem,
this similarity is mostly superficial. The set A turns out to be quite different in
nature from the analogous sets studied in relation with the support problem.

The common theme of all of the examples presented above is to take some
property of the `-part of the reduction of a finitely-generated group of points in
a semiabelian variety and to relate it to the image of the Frobenius automor-
phism by a certain `-adic Galois representation. In this dissertation we develop
a general framework which allows us to easily perform this correspondence. We
employ for this purpose the language of 1-motives. Those are objects first dis-
covered by Deligne [Del74] in relation to his study of mixed Hodge structures.
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A special case of a 1-motive is any group homomorphism Zn → G(Q), where
G is a semiabelian variety defined over the rational numbers. In particular, we
see that the data in the three examples above can be given as 1-motives (of
types [Z→ Gm], [Z2 → Gm] and [Z2 → G2

m] respectively).
To every 1-motive M defined over a field K and every prime number `,

one can associate a Tate module T̀M of M . This is a finitely-generated free
Z`-module which comes equipped with a continuous action of the absolute
Galois group ΓK of K. Thus to every 1-motive M we can attach an `-adic
representation ρ`(M) : ΓK → Aut(T̀M). We show that if K is a number field,
then the image of the Frobenius element at primes p, for which the 1-motive
M has good reduction, determines the `-part of the reduction of M modulo p.
Furthermore, we define a map, the Pink map, which gives this correspondence
explicitly. The precise statement of our result is given in Theorem 4.1.2. This
theorem is a generalization of a result of Pink [Pin04] concerning the special
case of 1-motives Z→ A, where A is an abelian variety.

We now give a description of the chapters. In Chapter 1 we introduce 1-
motives over general schemes S. We also give a characterization of a certain
subset of S-1-motives in terms of the action of the fundamental group of S.
This characterization (given in Theorem 1.6.2) is the only part of the chapter
which is somewhat new.

The main goal of Chapter 2 is to introduce a construction which is very
useful for the study of 1-motives. For any sufficiently nice scheme S, a free Z-
module Y equipped with the action of the fundamental group π1(S) of S and
a commutative S-group scheme G, we construct a twist Y ⊗G which satisfies
certain nice functoriality properties. This construction is a generalization of the
construction for the case when S is the spectrum of a field which was carried
out by Mazur, Rubin and Silverberg [MRS07].

In Chapter 3 we introduce the Tate module T̀M of a 1-motive M = [Y →
G] defined over a field and we study those properties which are a consequence
of the all-important exact sequence

0→ T̀G→ T̀M → Y ⊗ Z` → 0.

In particular, we define the Pink map εT̀ M whose domain is a certain subset of

the group Aut(T̀M) and whose image lies in the Barsotti-Tate group of Ŷ ⊗G,
that is, B`(Ŷ ⊗G) = HomZ`(Y ⊗ Z`, T̀G)⊗Q`/Z`.

Chapter 4 is concerned with studying good reduction of 1-motives defined
over local fields or number fields. We prove a generalization of the Néron-Ogg-
Shafarevich criterion to 1-motives and we state and prove Theorem 4.1.2 which
gives us the promised method to relate reduction to the image of the Frobenius
automorphism.

In Chapter 5 we look at Kummer theory. We derive results which allow us
to determine the unipotent part of the image of the `-adic Galois representation
ρ`(M) whenever M = [Y → G] is a 1-motive defined over a number field and
G is a split semiabelian variety. We also determine the image of the Pink map.
The method we use goes back to a result of Ribet [Rib79].

In Chapter 6 we give an application of the theory developed so far. We
define a certain family of properties of the reduction of 1-motives of the type
[Zn → Gm] which we call algebraic dependences. The question that we consid-
ered in the third example above is one such algebraic dependence defined for
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a motive of the type [Z4 → Gm]. The main result of this section is Theorem
6.1.6 which essentially states that for a generic 1-motive M = [Zr → Gm] the
set of primes, for which the reduction of M satisfies a given algebraic depen-
dence, has zero density. We also show how our main theorem implies Theorem
C. stated above. Finally, we consider a certain analogy between our results
and questions from p-adic transcendence theory. This peculiar similarity be-
tween Kummer theory and transcendence theory was first noticed by Bertrand
[Ber88]. The reason behind it seems to be that we can reduce problems from
Kummer theory as well as problems from transcendence theory to analogous
questions about the image of the decomposition groups under the `-adic repre-
sentation associated to a 1-motive. In the last section of Chapter 6 we present
some partial results in support of this claim.

The appendix contains some standard facts together with relevant refer-
ences which were used in the main part of the text.

Notation

We will denote the separable closure of a field K by Ks. The absolute Galois
group of K will be denoted by ΓK . If K ′/K is a Galois field extension we will
denote its Galois group by ΓK′/K .

There are two different ways to define the group structure on ΓK′/K . We
choose the convention that this set acts on the field K ′ on the left. Since the
standard convention for the automorphism group AutK(SpecK ′) is again to act
on the left this means that ΓK′/K is the opposite of the group AutK(SpecK ′).
Similarly, we choose that ΓK acts on Ks on the left which implies that ΓK is
equal to the opposite group AutK(SpecKs)op of the automorphism group of
SpecKs over SpecK.

If X is any abelian group and n is a positive integer we will write X[n] for
the subgroup of those elements whose order divides n. If ` is a prime number
we will denote by X[`∞] the subgroup of X consisting of all elements whose
order is finite and is a power of `. We will write X/n for the quotient group
X/nX.

If S is a scheme we will denote the multiplicative group over S by Gm,S or
by Gm whenever the base scheme is clear from the context.

If X is a scheme over S and SpecR′ → S is a morphism, we will denote
the base change of X to R′ by X ⊗S R′. If in addition S is affine, S = SpecR,
then we will denote the base change by X ⊗R R′.

If X and Y are two groups we will sometimes denote the set of group-
homomorphisms by Homgr(X,Y ) to differentiate it from the set of all maps
from X to Y . Similarly, if X and Y are S-group schemes we will some-
times denote the set of S-group scheme homomorphisms by HomS−gr(X,Y )
(or Homgr(X,Y ) if S is clear from the context) to differentiate it from the set
HomS(X,Y ) of all morphisms of S-schemes. However, we might drop those
subscripts whenever they are clear from the context.
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Chapter 1

The structure of a 1-motive

1-motives were introduced by Deligne [Del74] and were used to give an example
of a mixed Hodge structure. Deligne gave two definitions of a 1-motive. A
1-motive M over an algebraically closed field k is a group homomorphism
Y

u−→ G(k), where Y is a finitely-generated free abelian group and G is a
semiabelian variety. On the other hand, a 1-motive M over a general scheme S
is a morphism of S-group schemes Y

u−→ G, where Y is étale locally isomorphic
to Zr for some r and G is the extension of an abelian scheme by a torus. It is
not difficult to see that when S is the spectrum of an algebraically closed field
the two definitions coincide. The first definition however is much more explicit
and easier to work with.

We will be interested in using the language of 1-motives to study number-
theoretic properties of points in semiabelian varieties. To that purpose we
would like to study 1-motives over local fields and number fields, as well as
1-motives over Dedekind domains. Consequently it would be of great use to
have an explicit definition of a 1-motive in those cases, which is comparable to
Deligne’s first definition above.

The purpose of this chapter is twofold. We are first going to introduce the
building blocks of a 1-motive, that is tori, twisted constant groups, abelian
schemes and extensions of abelian schemes by tori. We are going to present all
properties of those objects that will be needed later on. We will also define a
1-motive and give its basic properties.

Our second purpose is to isolate a certain family of 1-motives, which we
call semi-isotrivial 1-motives, for which we can give a more explicit equivalent
description. This is the content of Theorem 1.6.2. As a corollary we can derive
the well-known fact that a 1-motive over an arbitrary field k is given by a group
homomorphism Y

u−→ G(ks), where G is a semiabelian variety as before, Y is
a finitely-generated free Z-module equipped with a continuous action of the
absolute Galois group of k, and u is Galois equivariant (see Corollary 1.6.3).
We also give a similar explicit description for 1-motives over Dedekind domains
(Corollary 1.6.5). The statement (and presumably the proof) of Theorem 1.6.2
must be well-known to the experts, however we are not aware of a written
presentation of it.

1



2 CHAPTER 1. THE STRUCTURE OF A 1-MOTIVE

1.1 Tori

The main reference for this section is [SGA3II, Exp. VIII,IX,X].
We recall that the multiplicative group scheme Gm,Z over SpecZ is the

scheme Gm,Z := SpecZ[x, x−1] together with its usual group scheme structure.
For any scheme S the multiplicative group over S is the group scheme Gm,S :=
Gm,Z ×SpecZ S.

1.1.1 Definition.

(i) Let S be a scheme and let G be a commutative S-group scheme. G
is called a torus if for every point s ∈ S there exists a Zariski open
neighborhood U of s and an fpqc-morphism S′ → U such that G′ =
G×U S′ is isomorphic to Grm,S′ for some integer r ≥ 0. If G is isomorphic
over S to Grm,S then G is called trivial.

(ii) A torus G is called quasi-isotrivial if in the above definition one can
choose the morphisms S′ → U to be étale and surjective. It is called
isotrivial, if there exists a surjective finite étale map S′ → S such that
G′ = G×S S′ is trivial.

It is clear that torus is a special case of a group of multiplicative type.
In the following we shall recall those properties of these groups which will be
needed in the sequel.

1.1.2 Lemma. Let S be a scheme and let T be an S-torus. T is affine,
faithfully flat and of finite presentation over S.

Proof. See [SGA3II, Exp. IX] Proposition 2.1.

1.1.3 Lemma. Let n be a positive integer. Let T be an S-torus.

(i) The multiplication-by-n map [n] : T → T is finite and faithfully flat. Its
kernel T [n] is a finite flat group scheme over S.

(ii) If n is coprime to the characteristics of all residue fields of S then T [n]
is étale over S.

Proof. The first statement follows from [SGA3II, Exp. IX] 2.1(a,c) and 2.2.
The second statement follows from [SGA3II, Exp. IX] 2.1(e) applied to the
group scheme T [n]/S.

The next proposition gives a characterization of isotrivial tori.

1.1.4 Proposition. Let S be a connected locally noetherian scheme, and let
ξ : Spec(Ω) → S be a geometric point of S, i.e. a homomorphism in S of the
spectrum of an algebraically closed field Ω. Let π1 = π1(S, ξ) be the correspond-
ing fundamental group. Then the functor

H 7→ HomΩ−gr(Hξ,Gm,Ω)

which maps H to the set of Ω-group scheme homomorphisms between Hξ =
H×SSpec(Ω) and Gm,Ω, is an antiequivalence between the category of isotrivial
tori and the category of free Z-modules of finite type equipped with a continuous
π1-action.
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Proof. This is a special case of [SGA3II, Exp X] Corollaire 1.2.

For tori over fields and henselian local rings we have the following charac-
terizations.

1.1.5 Proposition. Let k be a field, let ks be its separable closure and let Γk
be its absolute Galois group.

(i) Every k-torus is isotrivial;

(ii) The functor

T 7→ Homks(T,Gm,ks)

induces an antiequivalence between the category of k-tori and the category
of free finitely-generated Z-modules with continuous Γk-action.

Proof. This is a special case of [SGA3II, Exp. X] Proposition 1.4.

1.1.6 Proposition. Let R be a henselian local ring, let k be its residue field,
and let Γk be the absolute Galois group of k.

(i) Every R-torus is isotrivial;

(ii) The functor

T 7→ T ×R Spec k

is an equivalence between the categories of R-tori and k-tori. Hence,
the category of R-tori is antiequivalent to the category of free finitely-
generated Z-modules with continuous Γk-action.

Proof. See [SGA3II, Exp. X] Corollaire 4.6.

1.2 Galois S-modules

The main reference for this section is again [SGA3II, Exp. VIII,IX,X].
Let S be a scheme and Y be a group. We can construct an S-group scheme

YS associated to S as follows. Set YS := Y × S, where Y × S denotes the
disjoint union of copies of S indexed by Y . If Y and Z are two groups, using the
universal property of the fibered product, one sees that (Y ×Z)S ∼= YS ×S ZS .
Then we define the group operation morphism to be m : YS ×S YS → YS as
follows: if (y1, y2) ∈ Y × Y then m sends S(y1,y2) to Sy1y2 via the identity
morphism. The morphisms for the inversion and identity element, ι and ε, are
defined analogously. One easily sees that (YS ,m, ι, ε) is an S-group scheme.
Moreover, if Y is commutative then so is YS . This mapping is functorial:
group homomorphisms are sent to S-group scheme homomorphisms.

Thus we can consider any group as an S-group scheme over an arbitrary
scheme S. In particular, we can consider the group Zr as a commutative S-
group scheme ZrS . Take note that ZrS is not affine, even when S is! Indeed, all
affine schemes are quasi-compact, and ZrS isn’t.

1.2.1 Definition.
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(i) Let S be a scheme. An S-group scheme G is called a (trivial) constant
group scheme if it is isomorphic to YS for some ordinary group Y . It
is called a twisted constant group scheme if it is locally isomorphic
in the fpqc-topology to a constant group scheme.

(ii) A twisted constant S-group scheme G is called quasi-isotrivial if it is
locally isomorphic for the étale topology to a constant group scheme, i.e.
if for every point s ∈ S there exists a Zariski open neighborhood U of
s and an étale surjective morphism S′ → U such that G′ = G ×S S′ is
constant.

(iii) A twisted constant S-group scheme G is called isotrivial if there exists a
surjective finite étale morphism S′ → S such that the group G′ = G×SS′
is constant.

In order to simplify notation we are going to introduce the following termi-
nology.

1.2.2 Definition. Let S be a scheme. We will call a commutative S-group
scheme Y a quasi-Galois S-module if it is a quasi-isotrivial twisted constant
S-group scheme which at every point s ∈ S is étale locally isomorphic to Zr for
some r ≥ 0, r = r(s). We will call Y a Galois S-module if it is a quasi-Galois
S-module which is isotrivial as a twisted constant group. In other words, Y
is a Galois S-module if there exists a finite étale surjective map S′ → S such
that Y ′ = Y ×S S′ is isomorphic to ZrS′ for some r ≥ 0.

1.2.3 Proposition (Cartier Duality).

(i) Let S be a scheme and let G be either an S-torus or quasi-Galois S-
module. Then the functor

DS(G) : S′ 7→ HomS′−gr.(G,Gm,S′)

from the category of S-schemes to the category of commutative groups is
representable by a quasi-Galois S-module or an S-torus respectively and
we have DS(DS(G)) ∼= G.

(ii) The functor
G 7→ DS(G)

induces an antiequivalence between the categories of S-tori and quasi-
Galois S-modules. This restricts to an equivalence between the category
of isotrivial S-tori and Galois S-modules.

Proof. This is a special case of [SGA3II, Exp. X] Corollaire 5.7. (I owe this
reference to Scott Carnahan [Car].)

Combining Cartier duality with 1.1.4, 1.1.5 and 1.1.6 we arrive at the fol-
lowing corollaries:

1.2.4 Corollary. Let k be a field, let ks be its separable closure and let Γk be
its absolute Galois group.

(i) Every quasi-Galois k-module is Galois;
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(ii) The functor
Y 7→ Y (ks)

induces an equivalence between the category of Galois k-modules and the
category of finitely-generated free Z-modules with continuous Γk-action.
(This justifies the term Galois k-module.)

1.2.5 Corollary. Let R be a henselian local ring, let k be its residue field, and
let Γk be the absolute Galois group of k.

(i) Every quasi-Galois R-module is Galois;

(ii) The functor
Y 7→ Y ×R Spec k

is an equivalence between the categories of Galois R-modules and Galois
k-modules. Hence, the category of Galois R-modules is equivalent to the
category of finitely-generated free Z-modules with continuous Γk-action.

For more general base schemes S we have the following characterization of
Galois S-modules.

1.2.6 Proposition. Let S be a connected locally noetherian scheme and let
x : Spec(Ω) → S be a fixed geometric point. Let P = {Pi}i be its associated
universal covering (see A.2) and let π1 = π1(S, x) be the associated fundamental
group.

(i) Let Y be an isotrivial twisted constant S-group scheme. The natural map

Y (P ) = lim−→
i

HomS(Pi, Y )→ HomS(Spec(Ω), Y )

is an isomorphism.

(ii) The category of Galois S-modules is equivalent to the category of finitely-
generated free Z-modules equipped with continuous π1-action.

Proof. We shall only give a sketch of the proof. For the first statement note
that Y is a disjoint union of finite étale S-schemes. Since P pro-represents the
functor X 7→ HomS(Spec(Ω), X), where X is finite étale, it follows that the
map above is a bijection. One also shows that it is a group homomorphism,
whence the claim.

Next we turn to statement (ii). The functor giving the equivalence in ques-
tion is

FS : Y 7→ Y (P )

Since π1 is the opposite of the automorphism group of P we see that Y (P )
is equipped with an action of π1. Since Y is isotrivial, one shows, using base
change to a scheme S′/S which trivializes Y , that Y (P ) is a finitely-generated
free Z-module, and that the action of π1 factors through a finite group, which
implies its continuity.

To show that F is fully faithful the argument is as follows. Let Y1 and Y2

be two Galois S-modules. Pick a Galois covering S′ which trivializes both of
them and let Y ′j = Yj ×S S′ for j = 1, 2. Then the natural map

Hom(Y ′1 , Y
′
2)→ Hom(FS′(Y1), FS′(Y2))
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is a bijection which is π1-equivariant. We employ Galois descent A.3.2(i) to
show that the natural map

Hom(Y1, Y2)→ Hom(FS(Y1), FS(Y2))

is a bijection which implies that F is fully faithful.
Finally we show that FS is essentially surjective. Let Z be a finitely-

generated free Z-module with continuous π1-action. We fix a Galois covering
S′/S such that the subgroup π1(S′, x) acts trivially on Z. We then consider
the scheme Y ′ = Z × S′. One can associate to it a descent datum coming
from the action of π1 on Z. The descent datum is effective since Y ′ can be
represented as a disjoint union of finite étale S-schemes which are closed under
the π1-action. One shows that the S-scheme Y we have produced in this way
is a Galois S-module and that FS(Y ) = Z. This implies that FS is essentially
surjective and hence an equivalence of categories.

1.3 Abelian schemes

1.3.1 Definition. Let S be a scheme and let π : A→ S be an S-group scheme.
A is called an abelian S-scheme if π is proper and smooth, and has connected
fibers. One can show that this implies that A is commutative.

1.3.2 Lemma. Let n be a positive integer. Let A be an abelian S-scheme.

(i) The multiplication-by-n map [n] : A → A is finite and faithfully flat. Its
kernel A[n] is a finite flat group scheme over S.

(ii) If n is coprime to the characteristics of all residue fields of S then the
scheme A[n] is étale over S.

Proof. See [Mil86, §20.7]

1.4 Semiabelian group schemes

The exposition of the theory of exact sequences of group schemes in this section
is based on [SGA3I, Exp. IV].

1.4.1 Definition. Let S be a scheme. Let G,G′, G′′ be commutative S-group
schemes and let k : G′ → G and p : G → G′′ be homomorphisms of S-group
schemes. We will say that the sequence

0→ G′
k−→ G

p−→ G′′ → 0 (1.1)

is exact if the corresponding sequence of fpqc-sheaves of abelian groups

0→ G̃′
k̃−→ G̃

p̃−→ G̃′′ → 0

is exact. We recall that the sheaf of groups G̃ that we associate to an S-group
scheme G is given by the presheaf G̃ : X 7→ G(X) for every morphism X → S.
This becomes a sheaf in the fpqc-site associated to S.

1.4.2 Lemma. Let G,G′, G′′, k and p be as above. Let (M) be a family of
morphisms of schemes which satisfies the following properties:
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(a) (M) is stable under base extension;

(b) The composite of two morphisms in (M) is in (M);

(c) Every isomorphism is in (M);

(d) Every morphism in (M) is faithfully flat and quasi-compact;

(e) Let f : X → Y be a morphism of schemes. If there exists an fpqc-covering
{Yi → Y }i∈I of Y such that for each i ∈ I, X×Y Yi → Yi is in (M), then
f is in (M).

Then the following holds:

(i) Suppose that p is in (M) and that G′ is isomorphic to ker p as a G-scheme.
Then the sequence (1.1) is exact.

(ii) Conversely, suppose that the sequence (1.1) is exact and that G′ → S is
in (M). Then p is in (M).

Proof. Both statements follow from the theory in [SGA3I, Exp. IV]. To prove
statement (i) we use 3.4.7.1 and 4.6.5 applied to the fpqc-topology to show

that the quotient sheaf G̃/G̃′ is representable and represented by G′′. Hence,
by our definition, (1.1) is exact.

Statement (ii) follows from 3.3.4 and 4.6.5.

1.4.3 Corollary. Let 0→ G′ → G→ G′′ → 0 be an exact sequence of commu-
tative S-group schemes and let (M) be as in Lemma 1.4.2. If the morphisms
G′ → S and G′′ → S are in (M) then G→ S is in (M).

Proof. Indeed, by Lemma 1.4.2(ii) we have that G→ G′′ is in (M). Since (M)
is stable under composition the claim follows.

We are going to apply the previous lemma for the following two families:

• (Mfpf ) – the family of finite and faithfully flat morphisms

• (Méfg) – the family of finite etale surjective morphisms

1.4.4 Lemma. The families (Mfpf ) and (Méfg) satisfy the conditions of
Lemma 1.4.2.

Proof. That finite morphisms satisfy condition (e) follows from fpqc-descent on
morphisms (see e.g [EGA4II] Proposition 2.7.1(xv)) The rest of the statement
follows from [SGA3I, Exp. IV] Corollaire 6.3.2.

1.4.5 Definition. Let S be a scheme, let A be an abelian S-scheme and let
T be an S-torus. An extension of A by T is a commutative S-group scheme
G together with homomorphisms p : G → A and k : T → G such that the
following sequence is exact:

0→ T
k−→ G

p−→ A→ 0.
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When S is the spectrum of a field, G is called a semiabelian variety. If
X is an S-group scheme such that for every s ∈ S the fiber Xs = X ⊗S k(s) is
a semiabelian variety, then X is called a semiabelian scheme. It is easy to
see that every extension of an abelian scheme by a torus is also a semiabelian
scheme.

The following lemma gives us the properties of the multiplication-by-n map
on extensions of abelian schemes by tori. The proof is based on a MathOverflow
post due to user nosr [nos].

1.4.6 Lemma. Let n be a positive integer. Let G be a commutative S-group
scheme which is an extension of an abelian scheme A by a torus T .

(i) The multiplication-by-n map [n] : G → G is finite and faithfully flat. Its
kernel G[n] is a finite flat group scheme over S.

(ii) If n is coprime to the characteristics of all residue fields of S then G[n]
is étale over S and the map [n] : G→ G is étale.

Proof. By Lemmas 1.1.3, 1.3.2 and 1.4.2(i) it follows that the sequences

0→ T̃ [n]→ T̃
[n]−−→ T̃ → 0

and

0→ Ã[n]→ Ã
[n]−−→ Ã→ 0

are exact. Hence applying the Snake Lemma to the commutative diagram

0 // T̃ //

[n]
��

G̃ //

[n]
��

Ã //

[n]
��

0

0 // T̃ // G̃ // Ã // 0

it follows that the sequences

0→ T [n]→ G[n]→ A[n]→ 0 (1.2)

and

0→ G[n]→ G
[n]−−→ G→ 0 (1.3)

are exact. By 1.1.3, 1.3.2 and 1.4.3 applied to (1.2) it follows that G[n] is a
finite flat group scheme over S and that it is étale in case (ii) (more precisely it
follows that the map G[n] → S is in (Mfpf ) or (Méfg) respectively). Finally,
Lemma 1.4.2(ii) applied to (1.3) implies that the map [n] : G→ G is finite and
faithfully flat and that it is étale if n is coprime to the characteristics of the
residue fields of S.

Let T be an S-torus and let A be an abelian S-scheme. We will use the
notation ExtS(A, T ) to denote the set of all extensions of A by T (up to iso-
morphism).

The following is a slight generalization, which we have taken from Jossen
[Jos09], of a theorem of Oort [Oor66, §III.18.1] which states that ExtS(A,Gm)
is parametrized by the S-points of the dual abelian scheme A∨.
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1.4.7 Proposition. Let S be a noetherian regular scheme. Let T be an S-
torus, and let A be an abelian S-scheme. Then there is a canonical isomorphism

ExtS(A, T )→ HomS(T∨, A∨)

which is compatible with base change. Here T∨ is the Cartier dual of T and
A∨ is the dual abelian scheme of A.

Proof. See [Jos09, Proposition 1.2.3].

1.5 1-Motives

1.5.1 Definition. Let S be a scheme. A 1-motive M over S consists of the
following data:

• A quasi-Galois S-module Y ;

• A semiabelian S-group scheme G, which is the extension of an abelian
S-scheme A by an S-torus T .

• An S-homomorphism u : Y → G.

See [Del74], [Ray94]. We shall use the notation M = [Y
u−→ G] to denote a

1-motive.

A morphism between 1-motives f : [Y1
u1−→ G1] → [Y2

u2−→ G2] is a pair of
S-homomorphisms f−1 : Y1 → Y2 and f0 : G1 → G2 which commute with u1

and u2.

We shall denote the category of S-1-motives by MotS . For fixed Y and G
we shall denote the set of S-1-motives [Y → G] by MotS(Y,G).

Let M = [Y
u−→ G] be a 1-motive over a scheme S, where G is an extension

of an abelian scheme A by a torus T . There is a standard increasing filtration
W , called the weight filtration, that we can associate to M . It is defined as
follows:

Wi(M) =


0 for i < −2,

M for i ≥ 0,

G for i = −1,

T for i = −2.

(1.4)

Here we interpret G and T as the 1-motives [{0} → G] and [{0} → T ] respec-
tively, where {0} denotes the trivial group scheme over S. We also interpret 0
as the 1-motive [{0} → {0}].

For any i we have natural morphisms Wi−1(M) → Wi(M). For example,
for i = 0 the corresponding morphism is given by the commutative diagram

{0} //

��

G

id

��

Y // G
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Taking quotients on each component of those morphisms we get the grading
GrW associated to W :

GrWi (M) =


0 for i < −2 or i ≥ 1,

Y for i = 0,

A for i = −1,

T for i = −2.

(1.5)

Then for each i we have the “exact” sequence:

0→Wi−1(M)→Wi(M)→ GrWi (M)→ 0

This sequence is exact in the sense that it induces exact sequences on the
group schemes underlying the given 1-motives. In particular, we have an exact
sequence

0→ G→M → Y → 0. (1.6)

We remark that we simply take equations (1.4) and (1.5) as the definitions
of the objects W (M) and GrW (M). In general, for any abelian category A one
can define the notion of a filtered object, which is a pair (A,F ), where A ∈ A,
and F = (Fn(A))n∈Z is a sequence of objects in A such that for any n ≤ m one
has Fn(A) ⊆ Fm(A). To any such filtered object one can associate a grading
GrF (A). The category of S-1-motives is not abelian, however one can regard
it as a subcategory of the category of complexes of sheaves of groups for the
small fppf-site over S. One can identify an S-1-motive M = [Y

u−→ G] with the

complex M̃ = [Ỹ
ũ−→ G̃], where Ỹ and G̃ have degrees -1 and 0 respectively.

After this identification the pair (M,W ) becomes a filtered object. We refer to
[Del71] for more on filtrations. Those considerations are not relevant for our
purposes.

1.6 The structure of semi-isotrivial 1-motives

Our next goal is to give a more explicit description of a 1-motive when the
group Y is trivial or isotrivial.

1.6.1 Definition. We will say that a motive M = [Y
u−→ G] is semi-trivial

(semi-isotrivial), if Y is trivial (isotrivial). We will denote the full subcate-
gory of semi-trivial (semi-isotrivial) 1-motives by MotstS ( MotsiS respectively).

Let S be a connected locally noetherian scheme and let x : Spec Ω → S
be a fixed geometric point. Let P = {Pi}i∈I be the corresponding universal
covering which satisfies the conditions in Lemma A.2.4 and let π1 = π1(S, x)
denote the fundamental group. Let C(S, x) denote the category whose objects
are triples (Y ∗, u∗, G), where:

• Y ∗ is a free Z-module of finite type equipped with a continuous left π1-
action;

• G is a commutative S-group scheme, which is an extension of an abelian
scheme by a torus;
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• u∗ is a π1-equivariant group homomorphism

u∗ : Y ∗ → G(P ),

A morphism f∗ : (Y ∗1 , u
∗
1, G1)→ (Y ∗2 , u

∗
2, G2) consists of a pair f∗ = (f∗−1, f0) of

homomorphisms f∗−1 : Y ∗1 → Y ∗2 and f0 : G1 → G2 such that f0u
∗
1 = u∗2f

∗
−1. We

will denote by C(S, x)st the full subcategory consisting of objects (Y ∗, u∗, G)
such that the action of π1 on Y ∗ is trivial.

1.6.2 Theorem. Let S be a connected locally noetherian scheme. There is a
canonical equivalence of categories FS : MotsiS → C(S, x).

Proof. The proof proceeds in the following steps.

a) We define the functor FS . Let M = [Y
u−→ G]. Let

Y ∗ := Y (P ) = lim−→
i

Y (Pi)

We can take the limit above only over those i ∈ I for which Pi is Galois. For
one such fixed i, the group Aut(Pi/P )op induces a left action on Y (Pi). Hence
the fundamental group π1 = lim←−i Aut(Pi/P )op (where the limit is taken over

the Galois Pi) acts on Y ∗ on the left.

Since Y is isotrivial, there exists j ∈ I such that Y ×Pj is trivial. Without
loss of generality we can pick j such that Pj is Galois. Then for every k ≥ j
we have Y (Pk) = Y (Pj), hence

Y ∗ = Y (Pj)

and the π1-action factors through the finite group Aut(Pi/P )op. This implies
that Y ∗ is a free Z-module of finite type on which π1 acts continuously.

Let u∗ : Y ∗ → G(P ) be the unique map which restricts to u(Pi) on Y (Pi)
for all i ∈ I. If we pick j such that Pj is Galois and Y × Pj is trivial we get
that for every k ≥ j u(Pk) = u(Pj). It follows that u∗ = u(Pj). The latter
map is π1-equivariant and its image lies in G(Pj), hence the map u∗ satisfies
those properties as well.

Finally we define FS(M) to be

FS(M) := (Y ∗, u∗, G)

It follows from the arguments above, that FS(M) is indeed an object in C(S, x).

Let M1 = [Y1
u1−→ G1] and M2 = [Y2

u2−→ G2] be two semi-trivial S-1-
motives and let f = (f−1, f0) ∈ Hom(M1,M2). Let f∗−1 : Y ∗1 → Y ∗2 be the
unique map which restricts to f−1(Pi) for all i ∈ I. There exists j ∈ I such
that Pj is Galois and such that Y1×Pj and Y2×Pj are trivial. Then similarly
as above f∗−1 = f−1(Pj). It is therefore a π1-equivariant homomorphism. We
set

FS(f) = (f∗−1, f0),

It is trivial to check that FS is a covariant functor.

Note that if M = [Y
u−→ G] is semi-trivial, then Y ∗ = Y (S) and u∗ = u(S).
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b) Let Y be a trivial Galois S-module. Then the map

MotS(Y,G)→ Homgr(Y (S), G(S)), [Y
u−→ G] 7→ u(S)

is an isomorphism.

Indeed, since Y consists of a set of copies of S indexed by Y (S),

Y ∼= {Sy}y∈Y (S),

it follows that HomS(Y,G) consists of sets {uy}y∈Y (S) with uy ∈ G(S) for all
y ∈ Y (S). Hence the map

f : HomS(Y,G) 3 u 7→ u(S) ∈ Homgr(Y (S), G(S))

is an isomorphism. If u is a group-scheme homomorphism, then u(S) ∈
Homgr(Y (S), G(S)). Conversely, if u(S) is a group homomorphism, then for
any S-scheme S′, u(S′) is the composition of u(S) with the isomorphism
Y (S′)

∼−→ Y (S), hence it is a group homomorphism as well. It follows that
u is a group-scheme homomorphism.

c) Let M1 and M2 be two semi-trivial 1-motives. Then the map

Hom(M1,M2)→ Hom(FS(M1), FS(M2))

is a bijection

Let Mj = [Yj
uj−→ Gj ] for j = 1, 2. Since the functor X 7→ XS which

associates an S-group scheme to a group is fully faithful, it follows that the map
Homgr(Y1, Y2) → Hom(Y ∗1 , Y

∗
2 ) is bijective. Hence we get the commutative

diagram

Hom(M1,M2) Hom(FS(M1), FS(M2))

Homgr(Y1, Y2)×Homgr(G1, G2) Hom(Y ∗1 , Y
∗
2 )×Homgr(G1, G2)

α

∼

One easily sees that α is injective.

To show surjectivity, let (f∗−1, f0) ∈ Hom(FS(M1), FS(M2)) and let (f−1, f0)
be the corresponding pair in Homgr(Y1, Y2) × Homgr(G1, G2). Recall from b)
that uj ∼= {u∗j (y)}y∈Y ∗j . Similarly we can identify f−1 with the indexed set

{f∗−1(y)}y∈Y ∗1 . Then

u2f−1
∼= {u∗2(f∗−1(y)}y∈Y ∗1 = {f0(u∗1(y))}y∈Y ∗1 ∼= f0u1,

hence (f−1, f0) ∈ Hom(M1,M2), which implies the claim.

d) The functor FS is an equivalence between MotstS and C(S, x)st.

That FS restricted to MotstS is fully faithful follows from c). To show that
it is essentially surjective, let M∗ = (Y ∗, u∗, G) ∈ C(S, x)st. Let Y = (Y ∗)S .

Then b) implies that there exists a 1-motive M = [Y
u−→ G] such that u(S) =

u∗. Clearly we have FS(M) = M∗, which proves the claim.
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e) Let M1 and M2 be two semi-isotrivial 1-motives. Then the map

Hom(M1,M2)→ Hom(FS(M1), FS(M2))

is a bijection. In other words, the functor FS is fully faithful.

Let S′/S be a Galois covering such that the base changes M ′1 = M1×S′ and
M ′2 = M2 × S′ are semi-trivial. We have the following commutative diagram:

Hom(M1,M2) Hom(FS(M1), FS(M2))

Hom(M ′1,M
′
2) Hom(FS′(M

′
1), FS′(M

′
2))

α

α′

The map α′ is a bijection by c), which implies that α is injective.

Let (f∗−1, f0) be an element of Hom(FS(M1), FS(M2)). This pair is an
element of the product Hom(Y ∗1 , Y

∗
2 )× Homgr(G1, G2). By 1.2.6(ii) it follows

that there is an isomorphism

Homgr(Y1, Y2)×Homgr(G1, G2)
∼−→ Hom(Y ∗1 , Y

∗
2 )×Homgr(G1, G2)

which restricts to α, and that there is a tuple (f−1, f0) which is the pre-image of
(f∗−1, f0) under this isomorphism. After changing basis to S′ and applying c) we
see that (f−1, f0) ∈ Hom(M ′1,M

′
2), i.e., that u′2f−1 = f0u

′
1. Then using Galois

descent A.3.2(i) it follows that u2f−1 = f0u1, hence (f−1, f0) ∈ Hom(M1,M2).
Thus the map α is bijective.

f ) The functor FS is essentially surjective.

Let M = (Y ∗, u∗, G) ∈ C(S, x). By 1.2.6(ii) there exists a Galois S-module
Y corresponding to Y ∗. Let S′/S be a Galois covering for which Y splits. By
b) the map u∗ induces a morphism

v : Y ×S S′ → G×S S′.

One checks that this morphism is compatible with the action of ΓS′/S hence

it descends to a morphism u : Y → G and we have that F ([Y
u−→ G]) =

(Y ∗, u∗, G).

Finally, the statement of the theorem follows from e) and f ), and Theorem
A.1.1.

Let K be a field. Since every quasi-Galois K-module is Galois (by 1.2.4(i))
it follows that every K-1-motive is semi-isotrivial. Let K be an algebraic
closure of K and let Ks be the separable closure of K in K. We can then
replace the universal covering of K induced by the embedding K ↪→ K by
Ks (as follows from Proposition A.2.5), and the fundamental group in this
case is simply the absolute Galois group ΓK . Hence Theorem 1.6.2 implies the
following characterization:

1.6.3 Corollary. The category MotK is isomorphic to the category of ΓK-
equivariant group homomorphisms u : Y → G(Ks), where Y is a free Z-module
of finite type equipped with a continuous ΓK-action and G is a semiabelian
variety over K.
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Next, let R be a henselian local ring and let k be its residue field. In this
case 1.2.5 implies that everyR-1-motive is semi-isotrivial. Fix a geometric point
x ∈ Spec k̄ → Spec k and let ks be the separable closure of k in k̄. Then (by
Remark A.4.5) the fundamental groups π1(R, x) and π1(k, x) are canonically
isomorphic and the universal covering of R at x has a limit which is the strict
henselization Rs of R. Hence we get

1.6.4 Corollary. The category MotR is isomorphic to the category of Γk-
equivariant group homomorphisms u : Y → G(Rs), where Y is a free Z-module
of finite type equipped with a continuous Γk-action and G is a commutative
R-group scheme which is an extension of an abelian scheme by a torus.

Finally, let R be a Dedekind domain and let K be its field of fractions.
Fix again a geometric point x : K → K. By Proposition A.2.6 the embedding
R ↪→ K induces a surjective map π1(K,x) → π1(R, x). We will denote its
kernel by IR, and we will use ΓR to denote the group π1(R, x). So we have an
exact sequence:

1→ IR → ΓK → ΓR → 1

Here the fixed field of IR is the limit of all finite separable field extensions of
K which are unramified at the primes in R. Let L denote this limit and let
Run be the integral closure of R in L. Then Run is the limit of the universal
covering of R at the point x. Hence, applying Theorem 1.6.2 we arrive at the
following characterization of 1-motives over Dedekind rings:

1.6.5 Corollary. Let R be a Dedekind domain. The category of semi-isotrivial
R-1-motives is equivalent to the category of ΓR-equivariant group homomor-
phisms u : Y → G(Run), where Y is a free Z-module of finite type equipped with
a continuous left ΓR-action and G is a commutative R-group scheme which is
an extension of an abelian scheme by a torus.



Chapter 2

Twisting

Let S be an affine scheme. We want to construct a mapping that associates to
every Galois S-module Y ∈Mod(S) and every commutative S-group scheme
G which is quasi-projective over S, a twist Y ⊗G with certain nice properties.
This is a generalization of the twist of a commutative algebraic group which was
studied by Mazur, Rubin and Silverberg in [MRS07]. Our construction, as well
as the one in [MRS07] is a special case of a tensor product of sheaves for the étale
topology, (see [SGA4I, Exp. IV, Proposition 12.7]), however the construction is
more explicit and it is clear from it that the twist is representable. We are going
to roughly follow the exposition given in [MRS07, Section 1], however we are
only going to consider twists over Z. Also we are going to use Galois descent
to construct the twist which is slightly different from the method employed in
[MRS07].

We will use twists throughout the rest of this work. At the end of this
chapter we will present one application of the construction. We show that for
certain schemes S the group of 1-motives MotS(Y,G) is isomorphic to the set
of S-points in the S-group scheme Ŷ ⊗ G. In other words, every S-1-motive
M = [Y → G] is essentially equivalent to a 1-motive [Z→ Ŷ ⊗G].

2.1 Twisting commutative group schemes

For this whole section S will be an affine, connected, locally noetherian scheme.

Let Y be a Galois S-module and let G be a quasi-projective commutative S-
group scheme. Our goal is to construct a certain commutative S-group scheme
Y ⊗G, and to present some of its properties.

In the following we will need to deal with both left and right group actions.
In order to reduce confusion we will fix the convention that the elements in Zr
will be regarded as column vectors. Then the group GLr(Z) has a natural left
action on Zr. Its opposite group, GLopr (Z) therefore has a right action on Zr.
If A ∈ GLr(Z) we will denote its corresponding element in the opposite group
GLopr (Z) by Aop. It is easy to see that for any vector y ∈ Zr we have the relation
(yAop)t = ytAt, where we use the superscript t to denote the transpose. Note
also that the map Aop 7→ A−1 is a group isomorphism between GLopr (Z) and
GLr(Z). This map induces a left action of GLopr (Z) on Zr.

Let S′/S be a Galois covering which makes Y trivial. Then Y (S′) ∼ Zr for

15
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some r ≥ 0. Fix an isomorphism

φ : Zr → Y (S′).

The group Aut(S′/S) acts on Y (S′) on the right. It induces a right action
Aopφ on Zr as follows:

Aopφ : Aut(S′/S)→ GLopr (Z), σ 7→
(
y 7→ φ−1(φ(y) ◦ σ))

)
.

Let Aφ(σ) be the corresponding matrix in GLr(Z) and let aij(σ) denote
the coordinate functions (that is Aφ(σ) = {aij(σ)}). Then the automorphism
A−1(σ) = A(σ−1) acts on Zr on the left. So if y = (y1, . . . , yr)

t is a column
vector in Zr, then we have the left action

Aφ(σ−1)y =

∑
j

aij(σ
−1)yj

t

1≤i≤r

.

Let G′ := G ×S S′ and let V ′ = (G′)r. Let ρG denote the descent da-
tum on G′ induced by base change. That is, ρG is a group homomorphism:
ρG : Aut(S′/S)→ Aut(G′/S) such that for every σ ∈ Aut(S′/S) the following
diagram commutes:

G′ G′

S′ S′

ρG(σ)

σ

This descent datum induces a descent datum on V ′, which we will denote
by ρGr .

We will now give a different descent datum φ∗ on V ′. Note that there is
a canonical embedding GLr(Z) ↪→ EndS(Gr), which means that for any σ,
Aφ(σ−1) acts on Gr, and consequently, on V ′. Then we set

φ∗(σ) = Aφ(σ−1)ρGr (σ).

(Note that Aφ(σ−1) and ρGr (σ) commute, since the first automorphism comes
from an automorphism on Gr.) One checks that this indeed is a descent datum
on V ′. Since G (and hence V ′) is quasi-projective, we can apply Theorem A.3.3
and Remark (iii) to deduce that the pair (V ′, φ∗) descends to a commutative
S-group scheme V = V (Y,G, S′, φ).

2.1.1 Lemma. The commutative group scheme V constructed above does not
depend on the choice of φ and S′/S.

Proof. The proof is relatively straightforward. To see that V does not depend
on φ pick any other isomorphism φ′ : Zr → Y (S′). Let B ∈ GLr(Z) be the
matrix B = φ−1φ′. B induces an automorphism of Gr, hence it also gives
an automorphism of V ′. One checks that Aφ′ = B−1AφB which implies that
Bφ′∗ = φ∗B. Hence B induces an isomorphism of descent data

(V ′, φ′∗)→ (V ′, φ∗),
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which descends to a canonical isomorphism

V (Y,G, S′/S, φ′) ∼= V (Y,G, S′/S, φ).

To see that V does not depend on S′ pick a Galois covering S′′/S which ex-
tends S′. We can check that the descent datum on V ′′ = (Gr)×SS′′ induced by
φ is the lift of the descent datum φ∗ on V ′. Hence V (G, Y, S′′) ∼= V (G, Y, S′).
The desired independence follows, since for every two coverings S′1/S and S′2/S
which trivialize Y one can find a Galois covering S′′/S which is both an exten-
sion of S′1 and S′2.

2.1.2 Definition. As a result of the previous lemma we are justified to denote
the commutative group scheme constructed above by Y ⊗G. It will be called
the twist of G by Y . Notice that for every Galois S′ which trivializes Y
and for every isomorphism φ : Zr → Y (S′) we can associate canonically an
S′-isomorphism φ[ : (G×S S′)r → (Y ⊗G)×S S′.

2.1.3 Lemma. The twist is compatible with base change, that is if f : S1 → S
is a morphism of affine schemes then

(Y ⊗G)×S S1
∼= (Y ×S S1)⊗ (G×S S1)

Proof. We only give a sketch of the proof, which is fairly standard. We take a
Galois covering S′/S which trivializes Y , and let S′1 := S1×S S′. To prove the
lemma one shows that after lifting to S′1 the two sides of the equation above
become canonically isomorphic and that this isomorphism is compatible with
the descent data on both sides.

Let X and Z be S-schemes and let S′/S be a Galois covering. Let X ′ =
X×S S′ and Z ′ = Z×S S′ and let ρX and ρZ denote the corresponding descent
data. The group Aut(S′/S) acts on X ′ on the left via ρX hence it induces a
right action on the set Z(X ′) = HomS(X ′, Z). It is easy to see that we have a
bijection α : HomS(X ′, Z)→ HomS′(X

′, Z ′). Then one can show that for any
σ ∈ Aut(S′/S) the following relation holds:

α(fσ) = ρ−1
Z (σ)α(f)ρX(σ)

One can see that by studying the following commutative diagram:

Z ′ V ′

S′ S′

X ′ X ′

Z

ρZ(σ)

σα(fσ)

fσ

ρX(σ)

α(f)

f
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We will apply the above considerations to the following situation. Let
S′/S be again a Galois covering which trivializes Y and let φ : Zr → Y (S′) be
any isomorphism. Let X be an S-scheme and let X ′ = X ×S S′. Let again
V ′ = (G′)r. Then we have the bijection

β : Zr ⊗Z HomS′(X
′, G′)

∼−→ HomS′(X
′, V ′)

By our considerations above the group Aut(S′/S) acts on HomS′(X
′, G′) by

the formula f 7→ ρG(σ−1)fρX(σ) and on HomS′(X
′, V ′) by the formula f 7→

φ∗(σ
−1)fρX(σ) = Aφ(σ)ρG(σ−1)fρX(σ). Also it acts on Zr by the formula

y 7→ A(σ)y. All actions are on the right. One can then check that the bijection
above is Aut(S′/S)-equivariant. Hence, composing with the maps φ and φ[ we
get an Aut(S′/S)-equivariant group isomorphism

Y (S′)⊗Z G(X ′)
∼−→ (Y ⊗G)(X ′)

We gather our conclusions so far in the statement of the following lemma:

2.1.4 Lemma. Let S′/S be any Galois covering which trivializes Y . For any
S-scheme X there exists a canonical Aut(S′/S)-equivariant isomorphism

γ : Y (S′)⊗Z G(X ×S S′)
∼−→ (Y ⊗G)(X ×S S′)

which is functorial in S′, X, G and Y .

Proof. It remains to show that the bijection we constructed does not depend
on the choice of φ and that it is functorial. We shall only give a sketch.

To show that this bijection does not depend on the choice of φ one computes
explicitly how change of basis affects the map β, similarly to the proof of Lemma
2.1.1. To show that the map γ is functorial in S′ we fix a further Galois covering
S′′/S′ for which we need to show that the diagram

Y (S′)⊗HomS(X ×S S′, G) HomS(X ×S S′, Y ⊗G)

Y (S′′)⊗HomS(X ×S S′′, G) HomS(X ×S S′′, Y ⊗G)

commutes. To do that we fix a basis φ : Zr → Y (S′). Note that in this case
the natural map Y (S′) → Y (S′′) is an isomorphism. Then we are reduced to
showing that the diagram

Zr ⊗HomS′(X ×S S′, G×S S′) HomS′(X ×S S′, (G×S S′)r)

Zr ⊗HomS′(X ×S S′′, G×S S′′) HomS′′(X ×S S′′, (G×S S′′)r)

commutes, which follows easily from the definitions.
To show that γ is functorial in X, let f : Z → X be a morphism. Also, let

Z ′ = Z ×S S′. Then, after fixing a basis for Y , we a reduced to showing that
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the natural diagram

Zr ⊗HomS′(X
′, G′) HomS′(X

′, (G′)r)

Zr ⊗HomS′(Y
′, G′) HomS′(Z

′, (G′)r)

commutes, which is trivial. By an analogous argument it is also easy to show
that γ is functorial in G.

Finally, to show that γ is functorial in Y fix a homomorphism of Galois
S-modules f : Y → Z. Let S′/S be a Galois covering which trivializes both
Y and Z. Fix bases φ : Zr → Y (S′) and ψ : Zs → Z(S′). The map f induces
morphisms Zr → Zs as well as a morphism (G′)r → (G′)s. Then we are
reduced to showing that the diagram

Zr ⊗HomS′(X
′, G′) HomS′(X

′, (G′)r)

Zs ⊗HomS′(X
′, G′) HomS′(X

′, (G′)s)

commutes, which is again trivial.

2.1.5 Theorem. Let Y be a Galois S-module and let G be a quasi-projective
commutative S-group scheme. Let S′/S be any Galois covering, which trivial-
izes Y . Then Y ⊗G represents the functor on S-schemes

X 7→ (Y ⊗Z G(XS′))
Aut(S′/S).

More precisely, for every S-scheme X the isomorphism from Lemma 2.1.4
restricts to a functorial group isomorphism

(Y ⊗G)(X) ∼= (Y ⊗Z G(X ×S S′))Aut(S′/S)

Proof. This follows from Lemma 2.1.4, since (Y ⊗ G)(X) ∼= ((Y ⊗ G)(X ×S
S′))Aut(S′/S).

2.1.6 Remark. Comparing the theorem above with Theorem 1.4 in [MRS07],
and by means of Yoneda’s Lemma, we see that when S is the spectrum of a
field our definition of the twist is the same as the one given in [MRS07].

We want to show in the following that the association (Y,G) 7→ Y ⊗G is a
covariant functor. Let Y, Z be Galois S-modules and let G and H be two quasi-
projective commutative S-group schemes. Fix a Galois covering S′/S which
trivializes Y and Z. Write Y ′ = Y×SS′, and define similarly Z ′, G′, H ′,(Y⊗G)′

and (Z⊗H)′. Fix isomorphisms φ : Zr → Y (S′) and ψ : Zs → Z(S′). Consider
the natural isomorphism

HomZ(Zr,Zs)⊗Z HomS′−gr(G
′, H ′)

∼−→ HomS′−gr((G
′)r, (H ′)s). (2.1)

Due to Proposition 1.2.6 the maps φ and ψ induce an isomorphism

HomS′−gr(Y
′, Z ′)→ HomZ(Zr,Zs),
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and similarly, we have an isomorphism

HomS′−gr((G
′)r, (H ′)s)→ HomS′−gr((Y ⊗G)′, (Z ⊗H)′).

Composing all three we get an isomorphism

HomS′−gr(Y
′, Z ′)⊗Z HomS′−gr(G

′, H ′)
∼−→ HomS′−gr((Y ⊗G)′, (Z ⊗H)′)

(2.2)
and one can check that it does not depend on the choice of φ and ψ.

We can equip the groups in (2.1) with a right Aut(S′/S)-action as be-
fore. If σ ∈ Aut(S′/S) and f ∈ Hom(Zr,Zs) set fσ = Aψ(σ−1)fAφ(σ).
If f ∈ HomS′−gr(G

′, H ′), then set fσ = ρH(σ−1)fρG(σ), where ρG and
ρH are the descent data coming from base change as before. And finally, if
f ∈ HomS′−gr((G

′)r, (H ′)s) set fσ = ψ∗(σ
−1)fφ∗(σ). One can check that

with this action the isomorphism (2.1) becomes Aut(S′/S)-equivariant and
moreover, that the isomorphism (2.2) becomes Aut(S′/S)-equivariant as well.

Since for any two commutative S-group schemes C and D we have the
isomorphism HomS−gr(C,D) ∼= HomS′−gr(C ×S S′, D ×S S′), it follows that
(2.2) induces an injection

HomS−gr(Y,Z)⊗HomS−gr(G,H) ↪→ HomS−gr(Y ⊗G,Z ⊗H).

Therefore to every pair of group homomorphisms (f, g) ∈ HomS−gr(Y, Z)×
HomS−gr(G,H) we can associate a homomorphism f ⊗ g ∈ HomS−gr(Y ⊗
G,Z ⊗ H). One can check that this association is indeed functorial, which
implies

2.1.7 Proposition. The association (Y,G) 7→ Y ⊗G is a covariant functor.

Finally, we give some properties of twists over fields.

2.1.8 Proposition. Let K be a field, let Y be a Galois K-module and let G be
a commutative algebraic group defined over K. Let n ∈ N and let ` be a prime
number. Let T̀G denote the `-adic Tate module of G, that is, the Z`-module
T̀G = lim←−nG(Ks)[`n] equipped with its natural action of ΓK . Then there are
ΓK-equivariant isomorphisms, functorial in Y and G,

(i) (Y ⊗G)(Ks) ∼= Y (Ks)⊗Z G(Ks);

(ii) (Y ⊗G)[n] ∼= Y (Ks)⊗Z G[n];

(iii) T̀ (Y ⊗G) ∼= Y (Ks)⊗Z T̀G.

Proof. This is Theorem 2.2 in [MRS07]. We give the proof for the reader’s
convenience. Note that ΓK = Aut(SpecKs/ SpecK)op, so it acts on Y (Ks),
G(Ks), etc. on the left.

The first statement follows from 2.1.4 taking X = SpecK and taking the
limit over all Galois extensions L/K which trivialize Y . Then (ii) follows from
(i), since Y is free, and (iii) follows from taking the inverse limit of (ii) with
n = `m.
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2.2 The group MotS(Y,G)

Let Y be a Galois S-module and let G be a semiabelian S-scheme. Recall that
MotS(Y,G) denotes the set of all S-1-motives of the form [Y → G]. (Of course
this is just equal to HomS−gr(Y,G) but we hope that our notation is better
suited to the topics of our study.)

One can make MotS(Y,G) into an abelian group in a natural way: The

identity is the 1-motive, whose image in G is trivial, and if M1 = [Y
u1−→ G]

and M2 = [Y
u2−→ G] are two 1-motives we define their sum to be M1 +M2 :=

[Y
u1+u2−−−−→ G].
If Y and E are two Galois S-modules we can construct their tensor product

Y ⊗ E. One could do this along the lines of the construction in the previous
section, even though E is not quasi-projective, since in this case the descent
data that we construct is again effective. Alternatively, we can use Proposition
1.2.6, and say that Y ⊗ E is simply the scheme which corresponds to the Z-
module Y (S′)⊗ZE(S′), with its associated Aut(S′/S)-action, where S′/S is any
Galois covering which trivializes both Y and E. The second construction works
only when S is connected and locally noetherian, and for the first construction
we also need S to be affine. Those restrictions are unnecessary, but they do
not hinder us with respect to our intended applications.

2.2.1 Lemma. Let S be an affine, connected, locally noetherian scheme. Let
Y and E be two Galois S-modules and let G be a quasi-projective semiabelian
S-scheme, which is the extension of an abelian scheme by a torus. There is a
canonical group isomorphism

SE : MotS(Y ⊗ E,G)
∼−→ MotS(Y, Ê ⊗G)

In particular there is a canonical isomorphism

SY : MotS(Y,G)
∼−→ (Ŷ ⊗G)(S).

This map is functorial in S.

2.2.2 Remark. If S is the spectrum of a Dedekind domain, Proposition A.5.1
implies that G is automatically quasi-projective.

Proof. Since G is quasi-projective over S, we can construct the twist Ê ⊗G as
in the previous section.

Let S′/S be a Galois covering which trivializes Y and E. Then, by Theorem
1.6.2 the groups MotS(Y⊗E,G) and MotS(Y, Ê⊗G) are canonically isomorphic
to the subsets of Hom((Y ⊗E)(S′), G(S′)) and Hom(Y (S′), (Ê⊗G)(S′)) which
are fixed under the (right) action of the automorphism group Aut(S′/S). By
Lemma 2.1.4 there is a canonical isomorphism

(Ê ⊗G)(S′) ∼= Ê ⊗G(S′).

Then SE is induced by the canonical isomorphism

Hom((E ⊗ Y )(S′), G(S′))→ Hom(Y (S′), Ê ⊗G(S′))

u 7→ (y 7→ (e 7→ u(e⊗ y)))
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which is equivariant under the action of Aut(S′/S), as it is easy to verify.
The proof that the map SE is functorial is relatively straightforward, but

tedious. We only give a sketch. Let X be an S-scheme which is also affine,
connected and locally noetherian. Let YX , GX , ... denote the base change of
Y , G, ... to X. For any appropriate S-schemes Z and H there is an injective
map MotS(Z,H) → MotX(ZX , HX). So we need to show that the following
diagram is commutative:

MotX(YX ⊗ EX , G) MotX(YX , ÊX ⊗G)

MotS(Y ⊗ E,G) MotS(Y, Ê ⊗G)

(2.3)

To do that pick a Galois covering S′/S which trivializes Y and E, and let
X ′ = X ×S S′. Then one shows that the diagram

Hom((YX ⊗ EX)(X ′), GX(X ′)) Hom(YX(X ′), (EX ⊗GX)(X ′))

Hom((Y ⊗ E)(S′), G(S′)) Hom(Y (S′), (E ⊗G)(S′)

commutes and is equivariant under the natural right Aut(S′/S)-action. Since
the groups in (2.3) are precisely the subgroups of the second diagram which
are fixed under the action of Aut(S′/S), the claim follows.



Chapter 3

The Tate Module

In this chapter we will recall the theory of the Tate module of a K-1-motive
for a perfect field K. To any prime number ` and any such 1-motive M one
can associate a Z`-module T̀M which is called the Tate module of M . This
module comes with a natural action of the Galois group ΓK , which induces
an `-adic Galois representation. It also comes with additional structure: if
M = [Y → G] then the Tate module T̀M is a part of an exact sequence

α`(M) : 0→ T̀G→ T̀M → Y ⊗Z Z` → 0.

Our purpose is to construct the Tate module and study some implications
for the associated `-adic Galois representation which come from the extension
α`(M). We present a relatively standard explicit construction in the first sec-
tion. Next, in Section 3.2, we define and study the extension α`(M). The
mapping M 7→ α`(M) is called the Abel-Jacobi map. We define it and present
its basic properties.

In Section 3.3 we define a mapping which we call the Kummer map. It
is a group homomorphism from a certain subgroup U of ΓK to the group
HomZ`(Y ⊗Z Z`, T̀G). This map was essentially discovered and studied by
Kummer. Actually, studying the Tate modules of 1-motives [Y → Gm] over a
field K is just another way to look at Kummer extensions.

In the last section we define a certain map εT̀ M which we have named
the Pink map. Its domain is a certain open subset XT̀ M of the group of Z`-
automorphisms of a Tate module T̀M . Its image lies in the group Hom(Y ⊗Z
Z`, T̀G) ⊗Z` (Q`/Z`) which is also isomorphic to the Barsotti-Tate group of

the twist Ŷ ⊗G. This map was first studied by Pink (see [Pin04], particularly
Section 3) in the case of 1-motives of the type [Z→ A], where A is an abelian
variety. (We owe this reference to Antonella Perucca.) The main application
of the Pink map comes when we consider 1-motives M over local fields or
number fields. It will be shown in the next chapter that if p is a prime ideal
for which the `-adic representation associated to M is unramified, then we can
use the Pink map to relate the image of the Frobenius automorphism φp to the
reduction of M modulo p. In this chapter we will construct the Pink map and
present those properties which do not depend on the base field.

Throughout this chapter K will be a fixed perfect field. In view of Theorem
1.6.2 and Corollary 1.6.3, we will identify a Galois K-module Y with its set of

23
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points Y (Ks) equipped with a continuous left ΓK-action. For any K-1-motive

Y
u−→ G we will identify u with u(Ks).

3.1 Construction and basic properties

The module M[n]

Let M = [Y
u−→ G] be a K-1-motive and let n be a positive integer n. We

have a morphism [n] : M → M , consisting of the multiplication-by-n maps on
Y and G. Its associated commutative diagram

Y
u //

n

��

G

[n]

��

Y
u // G

induces a morphism of group schemes Y → Y ×GG, y 7→ (ny, u(y)). We define

M [n] := (Y ×G G)(K̄)/Y (K̄).

In other words, M [n] := KnM/QnM , where

KnM := {(y, P ) ∈ Y (K̄)×G(K̄) : u(y) = [n]P},

and
QnM := {(nz, u(z)) ∈ KnM : z ∈ Y }

It is easy to see that M [n] is a Z/n-module. Moreover, the Galois action on
Y (K̄) and G(K̄) induces a Galois action on KnM , setting σ : (y, P ) 7→ (σy, σP )
for every σ ∈ ΓK . This action fixes QnM and induces a well-defined Galois
action on M [n], which is compatible with the Z/n-module structure.

Let M = [Y
u−→ G] and M ′ = [Y ′

u′−→ G′] be two K-1-motives and let
f : M → M ′ be a morphism, f = (f−1, f0). We associate to it a morphism
f [n] : M [n]→M ′[n] of Z/n-modules as follows. The map f induces a morphism

Knf : KnM → KnM
′, (y, P ) 7→ (f−1(y), f0(P )).

This is a well-defined map which sends QnM in QnM
′, hence it induces a

well-defined map f [n] : M [n]→M ′[n]. One checks that this map is compatible
with the action of ΓK .

Thus the association M 7→ M [n] becomes a functor of the category of K-
1-motives into the category of (Z/n)[ΓK ]-modules. We show next that this
functor is “exact”.

3.1.1 Lemma. Let M ,M ′ and M ′′ be K-1-motives and let f : M ′ → M and
g : M →M ′′ be two morphisms. Assume that the sequence

0→M ′
f−→M

g−→M ′′ → 0

is exact. Then the following sequence is exact:

0→M ′[n]
f [n]−−→M [n]

g[n]−−→M ′′[n]→ 0
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By an exact sequence of 1-motives we mean, as in Section 1.5, that the
induced sequences on the underlying schemes are exact.

Proof. Let M = [Y
u−→ G], M ′ = [Y ′

u′−→ G′], M ′′ = [Y ′′
u′′−−→ G′′], f =

(f−1, f0), g = (g−1, g0). The proof of the lemma consists of simple diagram
chasing. The following commutative diagram with exact rows can be helpful
to follow the argument:

0 // Y ′
f−1
//

u′

��

Y
g−1
//

u

��

Y ′′ //

u′′

��

0

0 // G′
f0 // G

g0 // G′′ // 0

To show that f [n] is injective suppose that (y′, P ′) ∈ K`M
′ is such that

(f−1(y′), f0(P ′)) = (nz, u(z)) for some z ∈ Y . But since f−1 is injective and
the quotient Y/Y ′ is torsion-free, it follows that y′ = nz′ for some z′ ∈ Y ′,
such that f−1(z′) = z. But then u′(z′) − P ′ ∈ ker f0. Since f0 is injective, it
follows that P ′ = u(z′), hence (y′, P ′) ∈ Q`M ′. This proves the infectivity of
f [n].

Next we show that g[n] is surjective. Let (y′′, P ′′) ∈ KnM
′′. By the surjec-

tivity of g−1 and g0 it follows that there exist y ∈ Y and P ∈ G(K̄) such that
g−1(y) = y′′ and g0(P ) = P ′′. Then u(y)− nP ∈ ker g0 = Im f0, hence we can
pick Q ∈ ker g0 such that nQ = u(y) − nP . Then (y, P + Q) ∈ K`M and its
image in K`M

′′ is (y′′, P ′′). It follows that g[n] is surjective.

To prove that Im f [n] ⊆ ker g[n] is trivial. Let (y, P ) ∈ K`M be such
that (g−1(y), g0(P )) = (nz′′, u′′(z)). Since g−1 is surjective, there exists z ∈
Y such that g−1(z) = z′′. Then it follows that y − nz ∈ ker g−1 and that
P − u(Z) ∈ ker g0. Let y′ ∈ Y ′ and P ′ ∈ G(K̄) be such that f−1(y′) = y − nz
and f0(P ′) = P − u(z). Then u′(y′) − nP ′ ∈ ker f0, hence nP ′ = u(y′)
and (y′, P ′) ∈ KnM . Since (f−1(y′), f0(P ′)) − (y, P ) ∈ Q`M it follows that
Im f [n] ⊇ ker g[n]. This completes the proof.

Let G be a semiabelian variety and let Y be a Galois K-module. If we
interpret them as the 1-motives [{0} → G] and [Y → {0}] respectively, we see
that G[n] is the set of n-torsion points in G(K̄) and that Y [n] = Y/n.

The weight filtration on M[n]

The previous lemma implies that the weight filtration W which we associated
to a 1-motive M = [Y → G] in Section 1.5 induces a corresponding filtration
on M [n]. Namely, if G is an extension of an abelian variety A by a torus T we
have:

Wi(M [n]) =


0 for i < −2,

M [n] for i ≥ 0,

G[n] for i = −1,

T [n] for i = −2.

(3.1)
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The associated grading GrW is

GrWi (M [n]) =


0 for i < −2 or i ≥ 1,

Y [n] for i = 0,

A[n] for i = −1,

T [n] for i = −2,

(3.2)

and we have exact sequences

0→ T [n]→ G[n]→ A[n]→ 0 (3.3)

and

0→ G[n]→M [n]→ Y [n]→ 0. (3.4)

If we set r := rkY , a := dimA and t := dimT , it follows from the exact
sequences above that M [n] is isomorphic to (Z/n)r+t+2a as a Z/n-module.

Projection and inclusion maps

Let m and n be two positive integers with m dividing n and let M = [Y
u−→ G]

be a 1-motive. We have the maps

KnM → KmM, (y, P ) 7→ (y,
n

m
P )

and

KmM → KnM, (y, P ) 7→ (
n

m
y, P ),

which induce maps

πm|n : M [n]→M [m]

and

ιm|n : M [m]→M [n]

respectively. We gather their properties in the following lemma:

3.1.2 Lemma.

(i) The maps πm|n and ιm|n are well-defined, ΓK-equivariant morphisms of
Z/n-modules;

(ii) πm|n is surjective; ιm|n is injective;

(iii) Let f : M → M ′ be a morphism of 1-motives. Then the following dia-
grams commute:

M [n]
πm|n

//

f [n]

��

M [m]

f [m]

��

M ′[n]
πm|n

// M ′[m]

M [m]
ιm|n

//

f [m]

��

M [n]

f [n]

��

M ′[m]
ιm|n

// M ′[n]
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Proof. Statement (i) follows easily from the definitions. That πm|n is surjec-
tive follows from the fact that the map KnM → KmM , (y, P ) 7→ (y, nmP ) is
surjective. To show that ιm|n is injective note that if ( nmy, P ) ∈ QnM then
(y, P ) ∈ QmM . This shows statement (ii). The third statement follows from
the commutativity of the diagrams

KnM //

f

��

KmM

f

��

KnM
′ // KmM

′

KmM //

f

��

KnM

f

��

KmM
′ // KnM

′

It follows from the previous lemma that the maps πm|n and ιm|n are com-
patible with the weight filtration.

The `-adic Tate module

Let ` be a fixed prime number. Let M = [Y → G] be a K-1-motive. We write
πn := π`n−1|`n and ιn := ι`n−1|`n . Then the `-adic Tate module of M is the
projective limit

T̀M := lim←−
n

M [`n]

with respect to the maps πn : M [`n] → M [`n−1]. The `-adic Barsotti-Tate
group of M is the injective limit

B`M := lim−→
n

M [`n],

with respect to the maps ιn : M [`n−1] → M [`n]. We also define the Q`-vector
space

V̀M := T̀M ⊗Q`.

This space is equipped with a canonical embedding T̀M ↪→ V̀M . We can
define an `-adic norm ‖·‖` on V̀M by declaring the unit ball to be the image
of T̀M .

The following properties of the `-adic Tate module are a direct consequence
of the properties of the modules M [`n] studied above

3.1.3 Lemma. Let M = [Y → G] be a K-1-motive, where G is the extension
of an abelian variety A by a torus T . Denote r := rkY , a := dimA and
t := dimT .

(i) The `-adic Tate module T̀M is a free Z`-module of rank r + t+ 2a.

(ii) The Galois group ΓK acts continuously on T̀M .

(iii) The association M 7→ T̀M is a covariant functor from MotK into the
category of finitely-generated free Z`-modules with continuous ΓK-action.
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(iv) The weight filtration W on M induces a weight filtration on T̀M :

Wi(T̀M) =


0 for i < −2,

T̀M for i ≥ 0,

T̀G for i = −1,

T̀ T for i = −2.

(3.5)

The associated grading is

GrWi (T̀M) =


0 for i < −2 or i ≥ 1,

T̀ Y for i = 0,

T̀A for i = −1,

T̀ T for i = −2,

(3.6)

and we have exact sequences

0→ T̀ T → T̀G→ T̀A→ 0 (3.7)

and
0→ T̀G→ T̀M → T̀ Y → 0. (3.8)

(v) We have canonical isomorphisms

B`M ∼= T̀M ⊗Q`/Z`, T̀M ∼= Hom(Q`/Z`,B`M).

Proof. The first four statements follow from their respective finite equiva-
lents after taking limits. For the last statement note that T̀M ⊗ Q`/Z` ∼=
lim−→n

(T̀M ⊗ Z/`n) = lim−→n
M [`n] = B`M , and that Hom(Q`/Z`,B`M) ∼=

lim←−n Hom(Z/n,M [`n]) = T̀M .

We will use the notation Aut(T̀M) to denote those Z`-automorphisms of
the Tate module T̀M which respect the exact sequences (3.7) and (3.8). The
action of the Galois group then induces an `-adic Galois representation

ρ`(M) : ΓK → Aut(T̀M).

3.2 The Abel-Jacobi map

The Tate module T̀M of a 1-motive M = [Y → G] is an extension of the
Z`[ΓK ]-module T̀ Y by T̀G. Hence to every 1-motive we can associate an ele-
ment α`(M) in the group of such extensions ExtΓK (T̀ Y , T̀G). In this section
we will study some of the properties of this map, which we call the Abel-
Jacobi map, following Jannsen [Jan95] and Jossen [Jos09]. This map will be
needed to prove the results given in Chapter 5.

First we need to give some generalities about extensions. Let Γ be a profi-
nite group, n be a positive integer and let A and B be Z/n-modules with a
continuous Γ-action. We are interested in extensions of (Z/n)[Γ]-modules

0→ B → C → A→ 0

which split when considered as Z/n-extensions. We will denote the group of
those extensions by ExtsΓ(A,B).



3.2. THE ABEL-JACOBI MAP 29

3.2.1 Lemma. Let Γ be a profinite group and let A and B be two (Z/n)[Γ]-
modules which are free and finitely-generated as Z/n-modules. There is a
canonical isomorphism

βn : ExtsΓ(A,B)
∼−→ H1(Γ,HomZ/n(A,B))

Proof. We will describe βn explicitly. Let

ξ : 0→ B → C
p−→ A→ 0

be an element in ExtΓ(A,B). Fix a section s : A → C. The group Γ acts on
HomZ/n(A,C), by the rule σf := σ ◦ f ◦ σ−1. One can check that (σ− 1)s lies
in HomZ/n(A,B), so we can define βn(ξ) to be given by the 1-cocycle

βn(ξ) = [σ 7→ (σ − 1)s]

One checks that this definition does not depend on the choice of s hence βn(ξ)
is well-defined.

Next we show that β is a group homomorphism. Let

ξ : 0→ B → C
p−→ A→ 0

and

ξ′ : 0→ B → C ′
p′−→ A→ 0

be two extensions, and let

ξ + ξ′ : 0→ B → C ′′
p′′−→ A→ 0

C be their Baer sum. This means that C ′′ is the quotient of X = {(c, c′) : pc =
p′c′} by the subgroup {(b,−b) : b ∈ B}. Let s and s′ be sections of p and p′

respectively. Then we get a section t : A→ X, t : a 7→ (s(a), s′(a)). Composing
with the map X → C ′′ we get a section s′′ : A → C ′′. One then checks that
for every σ ∈ Γ we have (σ − 1)s + (σ − 1)s′ = (σ − 1)s′′, which implies that
βn(ξ) + βn(ξ′) = βn(ξ′′). This shows that βn is a group homomorphism.

To show that βn is injective, assume that for some extension ξ : 0→ B →
C

p−→ A→ 0, we have that βn(ξ) = 0. This means that if s : A→ C is a section
of p, then there exists a map f ∈ HomZ/n(A,B) such that for every σ ∈ Γ we
have (σ − 1)s = (σ − 1)f . But then s − f is a Γ-invariant section of p, which
implies that the extension ξ splits. Hence βn is injective.

Finally we show that βn(ξ) is surjective. Let f : Γ → HomZ/n(A,B) be a
1-cycle. Consider the extension

ξ : 0→ B → B ⊕A→ A→ 0,

where Γ acts on B ⊕A by the rule σ(b, a) := (σb+ f(σ)(σa), σa). It is easy to
check that ξ ∈ ExtsΓ(A,B) and that βn(ξ) = [f ].

Let ` be a prime number. If Γ is a profinite group and A and B are finitely-
generated free Z`-modules with continuous left Γ-action we will use the notation
ExtΓ(A,B) to denote the group of Z`[Γ]-extensions 0 → B → C → A → 0.
Note that every such extension is split when considered as an extension of
Z`-modules.
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3.2.2 Lemma. Let Γ be a profinite group, let ` be a prime number and let A
and B be two finitely-generated free Z`-modules with continuous left Γ-action.
There is a canonical isomorphism

β : ExtΓ(A,B)
∼−→ H1(Γ,HomZ`(A,B))

Proof. The proof is analogous to the proof of the previous lemma.

3.2.3 Lemma. Let A and B be finitely-generated free Z`-modules equipped
with a continuous action of a profinite group Γ. Then there is a canonical
isomorphism of Z`-modules

ExtΓ(A,B)
∼−→ lim←−

n

ExtsΓ(A/`n, B/`n)

Proof. One could prove this directly, or we can use the isomorphisms we have
constructed in the previous two lemmas. It is easy to show that we get a
commutative diagram

ExtΓ(A,B) lim←−n ExtsΓ(A/`n, B/`n)

H1(Γ,HomZ`(A,B)) lim←−nH
1(Γ,HomZ/`n(A/`n, B/`n))

β lim←−n β`n

The lower row is an isomorphism due to Lemma A.6.1, which then implies our
claim.

Let us fix a semiabelian variety G and a Galois K-module Y . Then the
correspondence M 7→M [n] induces a mapping

α[n] : MotK(Y,G)→ ExtsΓK (Y [n], G[n])

which associates to every 1-motive M the extension (3.4). Taking limits over
the powers of a prime number ` we get the Abel-Jacobi map

α` : MotK(Y,G)→ ExtΓK (T̀ Y , T̀G).

The image of α` is precisely the extension (3.8)

α`(M) : 0→ T̀ Y → T̀M → T̀G→ 0.

3.2.4 Lemma. The map α[n] is a group homomorphism. In particular, α` is
a group homomorphism.

Proof. Let M = [Y
u−→ G] ,M ′ = [Y

u′−→ G] be two 1-motives. We need to show
that α[n](M +M ′) = α[n](M) + α[n](M

′).

Consider the 1-motive M ′′ = [Y
(u,u′)−−−−→ G × G]. We have a morphism of

1-motives f : M ′′ →M +M ′ given by the commutative diagram

Y
(u,u′)
//

id

��

G×G

m

��

Y
u+u′

// G
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where the vertical map on the right is addition. This map induces a morphism
f [n] : M ′′[n] → (M + M ′)[n]. Consider the following commutative diagram
with exact rows:

0 // G[n]⊗Z/n G[n] //

��

M ′′[n] //

f [n]

��

Y/n

id

��

// 0

0 // G[n] // (M +M ′)[n] // Y/n // 0

By the snake lemma the map in the middle column is surjective, and its kernel
is the set {(τ,−τ) : τ ∈ G[n]}. Hence the extension (M + M ′)[n] is precisely
the Baer sum of M [n] and M ′[n].

Finally, we want to see how the Abel-Jacobi map relates to the map SY
defined in Lemma 2.2.1. Consider the semiabelian variety Ŷ ⊗ G. The short
exact sequence

0→ (Ŷ ⊗G)[n]→ (Ŷ ⊗G)(K̄)
[n]−−→ (Ŷ ⊗G)(K̄)→ 0

induces an injection

(Ŷ ⊗G)(K)/n ↪→ H1(ΓK , (Ŷ ⊗G)[n])

By 2.1.8 there is a canonical isomorphism (Ŷ ⊗G)[n] ∼= HomZ(Y,G[n]). Com-
posing with the map (Ŷ ⊗G)(K)→ (Ŷ ⊗G)(K)/n we get a map

γ[n] : (Ŷ ⊗G)(K)→ H1(ΓK ,Hom(Y,G[n]))

Taking limits over the `-powers we have the map

γ` : (Ŷ ⊗G)(K)→ H1(ΓK ,Hom(T̀ Y , T̀G))

3.2.5 Lemma. The following diagram commutes:

MotK(Y,G)
α[n]

//

SY
��

ExtsΓK (Y [n], G[n])

βn

��

(Ŷ ⊗G)(K)
γ[n]
// H1(ΓK ,Hom(Y,G[n]))

In particular, the diagram

MotK(Y,G)
α` //

SY
��

ExtΓK (T̀ Y , T̀G)

β

��

(Ŷ ⊗G)(K)
γ` // H1(ΓK ,Hom(T̀ Y , T̀G))

commutes.

Proof. Let N = [Y
uN−−→ G] be a K̄-1-motive such that nN = M . Then

γ[n](SYM) is generated by the class of the cocycle σ 7→ (σ − 1)uN .



32 CHAPTER 3. THE TATE MODULE

On the other hand, N induces a map

Y
AN−−→ KnM, y 7→ (y, uN (y))

which induces a section sN : Y [n]→M [n]. Then β(α[n](M)) is the class of the
cocycle σ 7→ (σ − 1)sN . But (σ − 1)sN = (σ − 1)AN , since the image of those
maps lies in G[n] which embeds in KnM . Then

(σ − 1)AN (y) = σAN (σ−1y)−AN (y)

= (0, σuN (σ−1y)− uN (y)) = (0, (σ − 1)uN (y)).

This implies that γ[n](SYM) = β(α[n](M)).

3.3 The Kummer map

Let Γ be a profinite group and let ` be a prime number. We fix for the moment
a Γ-invariant extension

ξ : 0→ B → C
p−→ A→ 0

of free Z`-modules with a continuous Γ-action. Let Aut(ξ) denote all Z`-
automorphisms of C (not necessarily Γ-invariant) which induce well-defined
automorphisms of B. We define a restriction map

p∗ : Aut(ξ)→ Aut(B)

and a projection map
p∗ : Aut(ξ)→ Aut(A)

in the obvious way. We also define the map

∆: Hom(A,B)→ Aut(A)

f 7→ (c 7→ c+ f(pc))

3.3.1 Lemma.

(i) The map ∆ is a well-defined group homomorphism.

(ii) The following sequence is exact:

0 −→ Hom(A,B)
∆−−→ Aut(ξ)

(p∗,p
∗)−−−−→ Aut(A)×Aut(B) −→ 1

Proof. The first statement is a trivial calculation following from the fact that
if f ∈ Hom(A,B) then pf = 0. It is also trivial to see that the image of ∆ lies
in ker(p∗, p

∗).
To prove the remainder of the second statement consider the map

δξ : ker(p∗, p
∗)→ Hom(A,B)

defined as follows. Let s : A→ C be a section of p. Then we set

δξ : σ 7→ (a 7→ (σ − 1)s(a))

One then checks that this definition of δξ does not depend on the choice of s
and that δξ is the inverse map of ∆. We omit those verifications.



3.3. THE KUMMER MAP 33

Let ρA, ρB and ρξ be the representations associated to A, B and C respec-
tively. Let UÂ⊗B(Γ) denote the kernel of the map (p∗, p

∗) ◦ ρξ. It does not
depend on ξ since UÂ⊗B(Γ) = ker ρB ∩ ker ρA.

Composing ρξ with the map δξ defined in the proof of the previous lemma
gives us a map

δ : ExtΓ(A,B)→Hom(UÂ⊗B(Γ),Hom(A,B))

ξ 7→δξ ◦ ρξ

3.3.2 Lemma. Let Q denote the quotient Γ/UÂ⊗B(Γ).

(i) The map δ is a group homomorphism whose kernel is canonically iso-
morphic to H1(Q,Hom(A,B)).

(ii) For any ξ, δ(ξ) is Q-equivariant.

(iii) If ϕ ∈ HomΓ(Hom(A,B),Hom(A′, B′)) then

δ(ϕξ) = ϕ ◦ δ(ξ).

Proof. The first two statements follow from noticing that δ is just the com-
position of the canonical isomorphism β : ExtΓ(A,B) → H1(Γ,Hom(A,B))
(described in Lemma 3.2.1) with the restriction map

H1(Γ,Hom(A,B))→ H1(UÂ⊗B(Γ),Hom(A,B)).

Then they are a corollary of the restriction-inflation sequence

0→ H1(Q,Hom(A,B))→ H1(Γ,Hom(A,B))→ H1(UÂ⊗B(Γ),Hom(A,B))Q

The third statement follows from the commutative diagram

H1(Γ,Hom(A,B)) //

ϕ

��

H1(UÂ⊗B(Γ),Hom(A,B))

ϕ

��

H1(Γ,Hom(A′, B′)) // H1(UÂ⊗B(Γ),Hom(A′, B′))

We apply this theory to the case of 1-motives. Let Y be a Galois K-module
and let G be a semiabelian variety. Then we construct the map

δ : ExtΓK (T̀ Y , T̀G)→ Hom(UT̀ (Ŷ⊗G)(ΓK), T̀ (Ŷ ⊗G))

To each 1-motive M it associates a map

δ`(M) : UT̀ (Ŷ⊗G)(ΓK)→ T̀ (Ŷ ⊗G) (3.9)

which we will call the Kummer map. This map is a composition of δ and
the Abel-Jacobi map α`. It has all the properties described in Lemma 3.3.2.
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3.4 The Pink map

We retain the notation of the previous section.
The group Aut(A) × Aut(B) acts on Hom(A,B) as follows: If (σ, τ) is a

tuple of automorphisms and f ∈ Hom(A,B) then (σ, τ)f = τ ◦ f ◦ σ−1. We
consider the following set in Aut(ξ):

Xξ := {σ ∈ Aut(ξ) : (p∗σ, p
∗σ)− 1 is invertible on Hom(A,B)⊗Q`}.

Equivalently, Xξ is the set of all automorphisms σ ∈ Aut(ξ) that have no non-
trivial fixed point on Hom(A,B). The group Aut(ξ) acts on Xξ by conjugation.

3.4.1 Construction. We will next define a map

εξ : Xξ → Hom(A,B)⊗Q`/Z`.

(Note that the Z`-module in the codomain of εξ is canonically isomorphic to
(Hom(A,B)⊗Q`)/Hom(A,B).) Pick a section s : A→ C of p. Then the map
(σ − 1)s = σ ◦ s ◦ p∗σ−1 − s is an element in Hom(A,B) ⊂ Hom(A,B) ⊗ Q`.
We set

εξ : σ 7→ (σ − 1)−1[(σ − 1)s] mod Hom(A,B) (3.10)

(We use the square brackets for sake of readability. The element inside
of them lies in Hom(A,B).) One checks easily that this definition does not
depend on the choice of the section s.

We can equip the set Hom(A,B)⊗Q`/Z` with the discrete topology. Then
we have

3.4.2 Lemma. The set Xξ is an open subset of Aut(ξ) and the map εξ is
continuous.

Proof. After fixing a basis, Xξ can be expressed as the complement of the zero
set of a non-trivial system of polynomial equations, which implies that Xξ is
open.

To show that εξ is continuous fix a section s. Then εξ is the composition
of the map

σ 7→ (σ − 1)−1[(σ − 1)s]

with the projection Hom(A,B) ⊗ Q` → Hom(A,B) ⊗ Q`/Z`. The latter map
is clearly continuous. After fixing a basis, we can express the former map via
rational functions with coefficients in Q`, which implies that it is continuous
as well. Hence their composition is a continuous map.

3.4.3 Lemma.

(i) The map εξ is Aut(ξ)-equivariant;

(ii) Let σ, σ′ ∈ Xξ and assume that σ′ lies in the closure of the subgroup of
Aut(ξ) generated by σ. Then

εξ(σ) = εξ(σ
′);
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(iii) If u ∈ ker(p∗, p
∗) then

εξ(uσ) = εξ(σ) + (σ − 1)−1δξ(u) mod Hom(A,B).

Proof. Pick a section s : A → C. To prove the first statement let σ ∈ Aut(ξ)
and let τ ∈ Xξ. Then modulo Hom(A,B) we have

εξ(στσ
−1)− σεξ(τ) ≡

(στσ−1 − 1)−1[(στσ−1 − 1)s]− σ(τ − 1)−1[(τ − 1)s] ≡
σ(τ − 1)−1[(τ − 1)σ−1s]− σ(τ − 1)−1[(τ − 1)s] ≡

σ(τ − 1)−1[(τ − 1)(σ−1 − 1)s] ≡ 0,

where the last equality is a consequence of the fact that (σ−1 − 1)s lies in
Hom(A,B). This proves statement (i).

Next we show statement (ii). Since Xξ is open, there exists a sequence
{σnk}k∈N ⊂ Xξ which converges to σ′. Then modulo Hom(A,B) we have

εξ(σ
nk) ≡

(σnk − 1)−1[(σnk − 1)s] ≡
(σnk − 1)−1(1 + σ + · · ·+ σnk−1)[(σ − 1)s] ≡

(σ − 1)−1[(σ − 1)s] ≡ εξ(σ).

Since the map εξ is continuous, it follows that εξ(σ
′) = εξ(σ).

To show statement (iii) one checks through analogous computations as
above, that

(uσ − 1)s = (σ − 1)s+ δξ(u).

Since uσ−1 acts as σ−1 on Hom(A,B), the statement follows immediately.

The map ε

Let XÂ⊗B(Γ) denote the subset of those elements σ ∈ Γ for which σ − 1 is an
automorphism of Hom(A,B)⊗Q`. We define the map

ε : ExtΓ(A,B)×XÂ⊗B(Γ)→Hom(A,B)⊗Q`/Z`
(ξ, σ) 7→εξ ◦ ρξ(σ)

This map has the following cohomological interpretation. Let T be a
finitely-generated free Z`-module, and let V := T ⊗ Q`. Let Γ be a profi-
nite group acting continuously on T . Let C ⊆ Γ be any monogenous subgroup
(i.e. C is the closure of a subgroup generated by a single element). Assume that
no non-trivial element of V is fixed by C. We have the following commutative
diagram whose middle row is exact:

H1(Γ, T )

res

��yy

V C // (V/T )C //

��

H1(C, T ) // H1(C, V )

V/T
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(Here the exact row in the middle comes from applying group cohomology to
the short exact sequence 0→ T → V → V/T → 0.)

In our case V C = {0}. It follows that there exists an element σ ∈ C such
that σ − 1 is an automorphism on V . By Sah’s Lemma A.6.3, it follows that
H1(C, V ) = {0}, hence (V/T )C

∼−→ H1(C, T ). Therefore the restriction map
H1(Γ, T )→ H1(C, T ) composed with the embedding (V/T )C ⊆ (V/T ) induces
a map

εC : H1(Γ, T )→ V/T.

It is easy to see that after setting T := Hom(A,B) we arrive at our previous
definition. That is, for any σ ∈ XÂ⊗B(Γ) we have

ε(ξ, σ) = ε〈σ〉(βξ),

where 〈σ〉 denote the closure of the subgroup generated by σ in Γ and β is the
canonical isomorphism β : ExtΓ(A,B)→ H1(Γ,Hom(A,B)) (see 3.2.1).

The Pink map

Let us apply the constructions given above to the Tate module of a K-1-motive
M = [Y

u−→ G]. We have a map

ε : Ext(T̀ Y , T̀G)×XT̀ (Ŷ⊗G)(ΓK)→ B`(Ŷ ⊗G),

(see 3.1.3(v)) which to every K-1-motive M associates a map

ε`(M) : XT̀ (Ŷ⊗G)(ΓK)→ B`(Ŷ ⊗G). (3.11)

This map is the composition of the restriction of ρ`(M) on XT̀ (Ŷ⊗G) and the
map

εT̀ M : XT̀ M → B`(Ŷ ⊗G), (3.12)

where XT̀ M is the set of all automorphisms σ ∈ Aut(T̀M) which have no

non-trivial fixed point in T̀ (Ŷ ⊗G). We will call latter map the Pink map.



Chapter 4

Good reduction of 1-motives

The purpose of this chapter is to study 1-motives over p-adic fields or number
fields at places of good reduction. So let us first define what good reduction
means. This definition is due to Raynaud [Ray94].

4.0.4 Definition.

(i) Let K be a finite extension of Qp and let R denote its ring of integers.
Let M be a K-1-motive. M has good reduction if it can be extended to
an R-1-motive, i.e. M has good reduction if there exists an R-1-motive
M whose generic fiber M⊗R K is isomorphic to M . In that case we will
call the 1-motive M := M⊗R k, the reduction of M .

(ii) Let K be a number field, R its ring of integers, and let p be a prime
ideal of R. Let Kp denote the completion of K at p. Then a K-1-motive
M has good reduction at p, if its lift M ⊗K Kp has good reduction.
If this condition holds we will call the 1-motive Mp := M ⊗K Kp, the
reduction of M at p.

In the first section we study good reduction over p-adic fields. We prove a
version of the Néron-Ogg-Shafarevich criterion for 1-motives (Theorem 4.1.1).
We also give the raison d’être for the Pink map: It is the means by which the
image of the Frobenius automorphism in the `-adic representation associated
to a K-1-motive determines the `-part of the reduction of the 1-motive. Thus,
the Pink map allows us to translate questions about reduction to questions
about Galois representations. This is the meaning of Theorem 4.1.2.

The results about good reduction for 1-motives over p-adic fields have some
straightforward corollaries for 1-motives over number fields. We present those
corollaries in the second section. In particular, we can combine Theorem 4.1.2
with a version of Chebotarev’s density theorem (due to Serre [Ser98]) to com-
pute the densities of prime ideals p of good reduction for which the `-part of
the reduction of a 1-motive satisfies a given property. The specific statement
is given in Theorem 4.2.12. We will present an application of this technique in
Chapter 6.

37
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4.1 The local case

In this section we fix a prime number p. We also fix a field K which is a finite
extension of Qp. We will denote its ring of integers by R, the unique maximal
ideal by p and the residue field by k. We will use ΓK to denote the absolute
Galois group of K and IK to denote the inertia subgroup. If K ′/K is a finite
field extension we will use the notation R′, p′, k′, ΓK′ and IK′ to denote the
corresponding objects associated to K ′.

An `-adic representation ρ : ΓK → Aut(V ) is called unramified if the
inertia subgroup group IK lies in the kernel of ρ. Then we have the following
generalization of of the criterion of Néron-Ogg-Shafarevich to 1-motives:

4.1.1 Theorem. Let M = [Y
u−→ G] be a K-1-motive. Let ` be a prime

number, different from p. Then M has good reduction if and only if the `-adic
Galois representation ρ`(M) associated to M is unramified.

Let Y be a Galois k-module and G be a semiabelian variety defined over k.
The group Motk(Y,G) is finite and abelian, hence it decomposes as a sum of
its `-primary parts over all primes `:

Motk(Y,G) =
⊕
`

Motk(Y,G)[`∞].

We will denote the projection of any 1-motive M ∈ Motk(Y,G) to the `-primary
part Motk(Y,G)[`∞] by pr`M and we will call it the `-part of M . Then we
have:

4.1.2 Theorem. Let M = [Y
u−→ G] be a K-1-motive which has good reduction.

Let φp ∈ Aut(T̀M) be the image of the Frobenius automorphism under ρ`(M).

(i) The element φp lies in the domain of the Pink map εT̀ M .

(ii) εT̀ M (φp) is an element of MotK(Y,G) which has good reduction.

(iii) The reduction of εT̀ M (φp) coincides with the `-part pr`M of the reduction
of M .

Note that εT̀ M (φp) is apriori an element of B`(Ŷ ⊗G) ∼= HomZ(Y,G[`∞]),
hence it can be regarded as a Ks-1-motive. Statement (ii) above claims it is
actually fixed under the action of ΓK which makes it into a K-1-motive.

This theorem generalizes Proposition 3.2 in [Pin04]. It can also be rephrased
as follows. Let Motgr(Y,G) denote the subset of thoseK-1-motives in Mot(Y,G)

which have good reduction. Then we have a map εp : Motgr(Y,G)→ B`(Ŷ ⊗G)
sending M to εT̀ M (φp). If Y and G are the reductions of Y and G over k,

then the map pr` defined above induces a map Mot(Y ,G)→ B`(Ŷ ⊗G), which
we will also denote by pr`. Then the theorem above implies that the following
diagram is commutative:

Motgr(Y,G) B`(Ŷ ⊗G)

Mot(Y ,G) B`(Ŷ ⊗G)

εp

∼

pr`
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The rest of this section is devoted to proving the two theorems stated above.

Semiabelian varieties

Let G be a semiabelian variety over K. The following definition is a special
case of Definition 4.0.4(i), after we identify G with the 1-motive [0→ G].

4.1.3 Definition. Let G be a semiabelian variety over K. We say that it has
good reduction if there exists a semiabelian R-scheme G which is an extension
of an abelian scheme by a torus, such that G ∼= G×R SpecK.

Let X be a K-scheme of finite type and let K ′/K be a finite field exten-
sion. The topology on K ′ induces a topology on the set X(K ′) as follows:
If X is affine then the topology is the one induced by the standard topology
on AnK(K ′) ∼= K ′n. If U is a Zariski open subset of X, Y is an affine K-
scheme and f : U → Y is any K-morphism, one shows that the induced map
f : U(K ′)→ Y (K ′) is continuous. This implies that one can introduce a topol-
ogy on an arbitrary K-scheme by taking the topology induced on Zariski open
affine subschemes. Any morphism of K-schemes induces thus a continuous
morphism on the set of K ′-points.

4.1.4 Lemma. Let X be a separated R-scheme of finite type. Let K ′/K be
a field extension and let R′ be the integral closure of R in K ′. Let XK be the
fiber of X at the generic point. Then the map X(R′) → XK(K ′) is injective
and its image is a compact open subset of XK(K ′).

Proof. Let P ∈ XK(K ′). Consider the diagram

SpecK ′
P //

��

XK
// X

��

SpecR′ //

Q

55

SpecR

Since X is separated over R we can apply the Valuative Criterion of Separat-
edness to conclude that there is at most one point Q ∈ X(R′) which makes the
diagram commutative. Hence the map X(R′)→ XK(K ′) is injective.

For the second part of the statement notice that the image of the map
AnR(R′)→ AnK(K ′) is a compact open set. We can therefore show the statement
whenever X is affine. The general case follows by gluing.

4.1.5 Corollary. Let G be a semiabelian variety that has good reduction G over
R. Let K ′/K be a finite field extension and let R′ be the integral closure of R
in K ′. Then the map G(R′) → G(K ′) is injective and its image is a compact
open subset of G(K ′).

Proof. The statement follows from the previous lemma and the fact that G is
separated and of finite type over R.

4.1.6 Remark. As a result of the previous corollary we can identify the set of
integral points G(R′) with its image in G(K ′).

We have borrowed the following definition from Jossen [Jos09, §3.3.2]
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4.1.7 Definition. Let p be a prime number. A commutative topological group
T will satisfy property FG(p) if it is topologically finitely generated (that is, it
contains a dense finitely-generated subgroup) and contains an open subgroup
isomorphic to Zrp for some non-negative integer r.

4.1.8 Lemma. Let G be a semiabelian variety defined over K. Then the group
G(K) satisfies property FG(p).

Proof. See [Jos09, Proposition 3.3.3]. If G is an abelian variety this is a result
of Mattuck [Mat55]. If G is the multiplicative group Gm over K the result
follows from the structure of K× and the theory of the p-adic logarithm. This
in turn implies the claim for a split torus. For a general torus G which splits
over a finite field extension K ′/K, we use the fact that G(K ′) has the required
property and that G(K) is a closed subgroup of it. Finally, it is easy to show
that if 0→ A→ B → C → 0 is an exact sequence of commutative topological
groups such that A and C satisfy property FG(p) then B satisfies it as well.
This proves the general case.

4.1.9 Lemma. Let T be a commutative topological group satisfying property
FG(p). There exists a unique maximal compact subgroup T ∗ ⊆ T . The points
P in T ∗ are characterized by the property that the identity element is contained
in the closure of the set {kP : k ∈ Z>0}.

Proof. Property FG(p) implies that there is an exact sequence of topological
groups

0 // Zrp
i // T

π // D // 0 (4.1)

where D is a finitely-generated abelian group equipped with the discrete topol-
ogy. Let D∗ be its torsion subgroup. Then set T ∗ := π−1D∗. The group D∗

is finite, hence T ∗ is compact. Since the image under π of any other compact
group must lie in D∗ we conclude that T ∗ is the unique maximal compact
subgroup of T .

If P ∈ T ∗ then there exists some k such that kP ∈ kerπ. Then the sequence
pnkP converges to the identity element e. Conversely, if P is a point such that
there exists an increasing sequence an with anP −→ e, then π(P ) must be a
torsion point, hence P ∈ T ∗.

4.1.10 Lemma. Let T be a commutative topological group satisfying property
FG(p) and let ` be any prime different from p. Then T ∗ is canonically isomor-
phic to T [`∞] × T`, where T` is the subgroup of infinitely `-divisible points in
T .

Proof. We will again use the exact sequence (4.1). Let D` denote the infinitely
`-divisible subgroup of D. Clearly since D∗ is finite we have D∗ = D[`∞]×D`.
One also easily sees that

π(T [`∞]) ⊆ D[`∞] and π(T`) ⊆ D`. (4.2)

This implies that T [`∞] ∩ T` ⊆ Zrp, hence this intersection is trivial and we
have an embedding T [`∞] × T` ⊆ T ∗. To finish the proof of the lemma it is
sufficient to show that the embeddings (4.2) are equalities.
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We show now that π(T [`∞]) = D[`∞]. Let x ∈ D[`∞]. Pick a point y ∈ T ∗
such that π(y) = x. Consider the points yn = pny. Since ` 6= p there exists
a subsequence {nk}∞k=1 such that y − ynk ∈ Zrp. The set y + Zrp is compact,
hence the sequence ynk has a convergent subsequence ynkr −→ x0. Let `s be
the order of x. Then `syn = pn`sy −→ 0. We then have that π(x0) = x and
`sx0 = 0. This implies that π(T [`∞]) = D[`∞].

To show that π(T`) = D` let x ∈ D` and let xn ∈ D` be a sequence such
that `nxn = x. Let y ∈ T be a pre-image of x and let yn be arbitrary pre-
images of xn. Then we have π(`nyn − y) = 0, hence `nyn − y = zn ∈ Zrp.
Since ` is invertible in Zp there exists z′n ∈ Zrp such that `nz′n = zn. Hence
y = `n(yn− z′n) for any n, which implies that y ∈ T`. This concludes the proof
of the lemma.

4.1.11 Proposition. Let G be a semiabelian variety over K which has good
reduction G over R. Let K ′/K be a finite field extension and let R′ be the
integral closure of R in K ′. Then G(R′) = G(K ′)∗.

Proof. Corollary 4.1.5 implies that G(R′) ⊆ G(K ′)∗. On the other hand,
Proposition 4.1.9 implies that for any point P ∈ G(K ′)∗ there exists n such
that nP ∈ G(R′). By 1.4.6 the multiplication-by-n map [n] : G → G is finite,
and hence proper. Then the Valuative Criterion of Properness implies that
P ∈ G(R′) .

4.1.12 Proposition. Let G be a semiabelian variety over K which has good
reduction, let G be the corresponding model for G over R and let G denote the
reduction of G.

(i) Let ` be a prime number different from p. The reduction map G(R) →
G(k) restricts to a bijection G(R)[`∞]→ G(k)[`∞].

(ii) All torsion points of G whose order is coprime to p are contained in
G(Run), where Run is the integral closure of R in the maximal unramified
extension Kun of K.

Proof. We prove first statement (i). It is sufficient to show that for any n ∈ N
the map G[`n](R)→ G[`n](k) is a bijection. But if ` is coprime to p we know by
1.4.6(ii) that G[`n] is a finite étale surjective group scheme over R. In particular
it is affine over R. Hence by A.4.4 the map

HomR(R,G[`n])→ Homk(k,G[`n]×R Spec k)

is a bijection. This proves statement (i).

Statement (ii) follows from the following lemma applied to G[n] for any n
which is coprime to p.

4.1.13 Lemma. Let X/R be a finite étale scheme. Let K ′/K be a finite field
extension and let K0/K be the maximal unramified field extension contained
in K ′. Then X(K ′) ∼= X(K0). In particular, if R′ and R0 are the integral
closures of R in K ′ and K0 respectively, then X(R′) ∼= X(R0).
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Proof. Indeed, since X/R is finite, it is proper, hence X(R′) ∼= X(K ′) and
X(R0) ∼= X(K0). On the other hand, let k′ be the residue field of R′. It is also
the residue field of R0. Then, by A.4.4, it follows that

X(R′) ∼= X(k′) ∼= X(R0),

which proves the lemma.

As a result of the previous two propositions it follows that for any n coprime
to p we have a group isomorphism

G(K̄)[n]→ G(k̄)[n]

In particular, if ` is a prime number different from p, after taking injective and
projective limits over the powers of ` we get isomorphisms

T̀G→ T̀G and B`G→ B`G.

4.1.14 Lemma. Let Y be a Galois R-module and let A be an abelian R-scheme.
Then the map

MotR(Y,A)→ MotK(YK , AK)

induced by base change R→ K is an isomorphism.

Proof. By 2.2.1, and 2.1.3 we have the isomorphisms

MotR(Y,A) ∼= (Ŷ ⊗A)(R)

and

MotK(YK , AK) ∼= (ŶK ⊗AK)(K) ∼= (Ŷ ⊗A)K(K)

Since Ŷ ⊗A is an abelian scheme, and in particular it is proper, we have that
(Ŷ ⊗A)(R) ∼= (Ŷ ⊗A)K(K). This shows the claim.

4.1.15 Lemma. Let G be a semiabelian variety over K which is the extension
of an abelian variety A by a torus T . Than G has good reduction if and only
if both A and T have good reduction.

Proof. One direction of the claim is clear. For the other direction, assume that
A and T have good reductions A and T over R. By the generalized Barsotti-
Weil formula 1.4.7 we have the commutative diagram

ExtR(A,T) ExtK(A, T )

MotR(DS(T), Â) MotK(DS(T ), Â)

∼ ∼

where the vertical arrows are isomorphisms. Our claim is equivalent to stating
that the first row of the diagram is an isomorphism. This follows after applying
4.1.14 to the second row.
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1-motives

We have the following necessary and sufficient condition for a K-1-motive to
have good reduction:

4.1.16 Proposition. Let M = [Y
u−→ G] be a K-1-motive, where G is an

extension of an abelian variety A by a torus T . M has good reduction over R
if and only if it has the following three properties:

G1. The group Y considered as a ΓK-module is unramified (i.e. the inertia
subgroup acts trivially on Y );

G2. A and T both have good reduction over R;

G3. u(Y ) is contained in G(K ′)∗ for some finite field extension K ′ of K.

4.1.17 Remark. Compare this criterion with the one given in [Ray94] at the
beginning of §4.

Proof. Let MR be an R-1-motive whose generic fiber is M . By 1.6.5 M is given
by a group homomorphism uR : Y → GR(R′), where Y is a finitely generated
free Z-module with a continuous ΓKun/K-action, GR is a semiabelian scheme
which is the extension of an abelian scheme by a torus, and R′ is the integral
closure of R in some finite unramified extension K ′ of K. This, together with
4.1.11 implies conditions G1., G2. and G3..

Conversely, assume that M satisfies G1., G2. and G3.. Lemma 4.1.15
implies that G has a good reduction GR and conditions G1. and G3. together
with 4.1.11 imply that the map u can be regarded as a group homomorphism
uR : Y → GR(R′). Then, by 1.6.5, the data (Y, u,GR) defines a R-1-motive
MR whose generic fiber is M . This implies that M has good reduction.

4.1.18 Lemma. Let M = [Y
u−→ G] be a K-1-motive which has good reduction.

Let ` be a prime number different from p. Then the Tate module T̀M is
unramified.

Proof. Since M has good reduction, condition G3. implies that there exists
a finite unramified field extension K ′/K such that u(Y ) ⊆ G(K ′)∗. Let P ∈
u(Y ). Lemma 4.1.10 implies that there is a unique representation P = P1 +P2

where P1 ∈ G(K ′)[`∞] and P2 ∈ G(K ′) is infinitely `-divisible in G(K ′). Hence
if Q ∈ G(K̄) is any point such that `nQ = P then Q can be represented as
Q = Q1 +Q2, where `nQ1 = P1, `nQ2 = P2, Q1 ∈ G(K)[`∞] and Q2 ∈ G(K ′).
Since Proposition 4.1.12 implies that Q1 lies in an unramified field extension,
it follows that the field of definition of Q is unramified as well. This, together
with condition G1., imply that the inertia group acts trivially on the groups
M [`n], hence the Tate module T̀M is unramified.

4.1.19 Lemma. Let M = [Y → G] be a K-1-motive. Let ` be a prime
number, different from p. Assume that the Tate module T̀M is unramified.
Let φ ∈ Aut(T̀M) be the image of the Frobenius automorphism under ρ`(M).
Then

(i) φ lies in the domain XT̀ M of the Pink map.
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(ii) Let n be any positive integer such that φn acts trivially on Y . Let K ′/K
be the unramified field extension of degree n. Then for any y ∈ Y ,
εT̀ M (φ)(y) ∈ G(K ′)[`∞] and u(y)− εT̀ M (φ)(y) ∈ G(K ′)`.

Proof. From the definition of XT̀ M in Section 3.4 it follows that φ ∈ XT̀ M

if and only if φ − 1 is an automorphism of V̀ (Ŷ ⊗G). But if φ − 1 is not
an automorphism, then it would follow that φ would have a non-trivial fixed
vector in T̀ (Ŷ ⊗G), which is not possible since the set of torsion points in
(Ŷ ⊗G)(K) is finite. This proves statement (i). Moreover, since (Ŷ ⊗G)(K ′)
contains finitely many torsion points for every finite unramified extension K ′

of K it follows by an analogous argument that φn ∈ XT̀ M for every n ≥ 1.
Next we show (ii). Let n and K ′ be as in the statement. By 3.4.3(ii) we

have
εT̀ M (φ) = εT̀ M (φn)

Fix a section s ∈ Hom(T̀ Y, T̀M) of the projection map π : T̀M → T̀ Y and
consider the vector t ∈ V`G,

t := (φn − 1)−1[(φn − 1)s(y)].

Since φn acts trivially on y we have

t =
(
(φn − 1)−1[(φn − 1)s]

)
(y) = εT̀ M (φn)(y) mod T̀ (Ŷ ⊗G)

There exists m ∈ N such that t = `−mt′ for some t′ ∈ T̀G. Then one easily
sees that

εT̀ M (φ)(y) = εT̀ M (φn)(y) = πm(t′),

where πm : T̀G→ G(K̄)[`m] is the standard projection map. The equation for
t implies that

(φn − 1)(`ms(y)− t′) = 0.

Pick a sequence of representatives s(y) = {(yk, Pk)}∞k=1 and t′ = {(0, tk)}∞k=1.
Then a sequence representing the element 0 = (φn − 1)(`ms(y) − t′) is given
by {(0, (φn − 1)(Pk−m − tk)} where we assume that Pk = 0 for k ≤ 0. This
implies that Pk−m−tk ∈ G(K ′). In particular tm = εT̀ M (φ)(y) ∈ G(K ′) hence
εT̀ M (φ)(y) ∈ G(K ′)[`∞].

Let Q = u(y)− tm. Then

Q− `k(Pk − tk+m) = u(y)− `kPk

and therefore is an element of u(`kY ) for any k ∈ N. Since Pk − tk+m lies in
G(K ′) this implies that Q is infinitely `-divisible in G(K ′), which concludes
the proof of the lemma.

Proof of Theorem 4.1.1. Lemma 4.1.18 implies one direction of the theorem.
Assume that the Tate module T̀M is unramified. Let G be the extension of
an abelian variety A by a torus T . Since T̀M is unramified it follows that
T̀ Y , T̀G, T̀ T and T̀A are unramified as well. Then the action of ΓK on Y
is unramified whence condition G1. follows. By the Néron-Ogg-Shafarevich
criterion (due to Serre and Tate [ST68]) A has good reduction. The action of
the Galois group on the character group of T is unramified, hence T has good
reduction as well. This shows condition G2..
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It remains to show condition G3.. Let n ∈ N be such that the n-th power
Frobenius φn acts trivially on T̀ Y and let K ′/K be the unramified field ex-
tension of degree n. It suffices to show that u(Y ) is contained in G(K ′)∗.
But Lemma 4.1.19 (ii) implies that for any y, u(y) = Qtors + Qdiv, where
Qtors ∈ G(K ′)[`∞] and Qdiv ∈ G(K ′)`. Lemmas 4.1.10 and 4.1.8 then imply
that u(y) ∈ G(K ′)∗.

Let M be a K-1-motive which has good reduction and let ` be a fixed prime
different from p. The motive M induces an element δM ∈ Hom(Y,G(Kun)[`∞])
as follows. Fix an unramified field extension K ′/K such that the action of the
Galois group ΓK′ on Y is trivial. Let R′ be the integral closure of R in K ′ and
let k′ be its residue field. Then δM is the composition of the maps

Y
u×k′
// G(k′)

pr` // G(k′)[`∞] // G(K ′)[`∞]

Note that we can consider δM as a K ′-1-motive which has good reduction and
that its reduction is precisely pr`M . To finish the proof of Theorem 4.1.2 it is
sufficient to show that εT̀ M (φ) = δM .

4.1.20 Lemma. Let M = [Y
u−→ G] be a K-1-motive which has good reduction

and let ` be a fixed prime different from p. Let K ′/K be a finite unramified
field extension such that the action of ΓK′ on Y becomes trivial. Then for any
y ∈ Y the point δM (y)− u(y) is infinitely `-divisible in G.

Proof. Let R′ be the integral closure of R in K ′ and let k′ be its residue
field. Let G be an appropriate R-model for G and let G be its special fiber.
Propositions 4.1.11, 4.1.12, Lemma 4.1.8 and Lemma 4.1.10 imply that the
kernel of the map

G(K ′)∗ → G(k′)[`∞]

which is constructed by composing the reduction map G(K ′)∗ ∼= G(R′)→ G(k′)
and the projection map pr` : G(k′) → G(k′)[`∞] is precisely G(K ′)`. The
definition of δM implies that u(y)−δM (y) lies in this kernel, hence it is infinitely
`-divisible in G(K ′).

Proof of Theorem 4.1.2. Lemma 4.1.19 (i) implies the first part of the theorem.
To finish the proof we need to show that

δM = εT̀ M (φ).

Let n ∈ N be such that the n-th power Frobenius φn acts trivially on T̀ Y
and let K ′/K be the unramified field extension of degree n. Condition G3.
implies that for any y ∈ Y , u(y) ∈ G(K ′)∗. By Lemma 4.1.10 there is a unique
representation u(y) = Qtors + Qdiv, where Qtors ∈ G(K ′)[`∞] and Qdiv ∈
G(K ′)`. But Lemmas 4.1.20 and 4.1.19 (ii) give two such representations:
u(y) = δM (y) + (u(y)− δM (y)) and u(y) = εT̀ M (φ)(y) + (u(y)− εT̀ M (φ)(y)).
It follows that δM = εT̀ M (φ).

4.2 The global case

Theorems 4.1.1 and 4.1.2 have several straightforward consequences regarding
1-motives over number fields which we are going to present here.
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Good reduction

A large portion of the text here has been inspired by Perucca’s thesis [Per08,
Chapter 1]. Let R be a Dedekind domain, whose ideal class group is finite (e.g.
the ring of integers of a number field) and let K denote its fraction field. Let
L(R) denote the set whose elements are finite sets of prime ideals in R. This
set is a partially ordered directed set under the inclusion relation.

To each λ ∈ L(R) we can associate the ring of λ-integers Rλ ⊂ K as follows.
Let λ = {p1, . . . , pk}. Since the ideal class group of R is finite, a certain power
of the ideals pi is principal. Let a1, . . . , ak ∈ R be generators of some power of
p1, . . . , pk. Then Rλ is the localization of R by the multiplicative set generated
by a1 . . . ak. It is easy to see that Uλ = SpecRλ is the open subscheme of
SpecR constructed by taking out the points in λ.

If λ, µ ∈ L(R), λ ≥ µ, then there is a canonical morphism Uλ → Uµ.
Thus, the schemes Uλ form a projective system. This system has a limit in the
category of R-schemes, and indeed we have

SpecK = lim←−
λ

Uλ.

4.2.1 Lemma. Let Y be a Galois K-module. Then Y is a Galois Rλ-module
for some λ ∈ L(R).

Proof. It follows from A.2.6 that for any λ, the fundamental group of Uλ is
precisely the Galois group of the maximal extension L/K which is unramified
outside the primes in λ. Since the action of ΓK on Y factors through the Galois
group of a finite field extension, it follows it is unramified at all but finitely
many primes. Hence, if λ is the set of ramified primes, the action of ΓK on Y
factors through the fundamental group of Uλ. This implies that Y is a Galois
Rλ-module.

4.2.2 Lemma. Let λ ∈ L(R), let Yλ be a Galois Rλ-module and let Aλ be an
abelian Rλ-scheme. Let Y = Yλ ⊗Rλ K, A = Aλ ⊗Rλ K. The map

MotRλ(Yλ, Aλ)→ MotK(Y,A)

induced by base change Rλ ↪→ K is bijective.

Proof. The proof is the same as the proof of 4.1.14, of which this lemma is a
generalization.

4.2.3 Lemma. Let G be a semiabelian variety over K. There exists λ ∈ L(R)
and a semiabelian Rλ-group scheme Gλ which is an extension of an abelian
scheme by a torus and such that Gλ ⊗Rλ K ∼= G.

Proof. This is a standard fact if G is either a torus or an abelian variety. Let
G be an extension of A by T . Choose a finite set λ such that both A and T
extend to Aλ and Tλ over Rλ. Consider the diagram

ExtRλ(Aλ, Tλ) ExtK(A, T )

MotRλ(DRλ(Tλ), Âλ) MotK(DK(T ), Â),

∼ ∼



4.2. THE GLOBAL CASE 47

The columns are isomorphisms by the generalized Barsotti-Weil formula 1.4.7.
The second row is a group isomorphism by the previous lemma. It follows that
the first row is a group isomorphism as well, which implies the existence of Gλ
with the requested properties.

In our setting [EGA4III, Th. 8.8.2(i)] implies the following:

4.2.4 Lemma. Let Xα, Gα be Rα-schemes, such that Xα is quasi-separated
and quasi-compact and Gα is locally of finite type. Let X = Xα ⊗Rα K, G =
Gα ⊗Rα K. Let f ∈ HomK(X,G). Then there exists λ ≥ α and a morphism
fλ ∈ HomRλ(Xα ⊗Rλ, Gα ⊗Rλ) such that

f = fλ ⊗Rλ K.

Proof. Let Gλ = Gα ⊗R Rλ, G = Gα ⊗R K. We have a natural map

lim−→
λ

HomRλ(Uλ, Gλ)→ HomK(SpecK,G)

By [EGA4III, Th 8.8.2(i)] this map is bijective, whence our claim follows.

4.2.5 Lemma. Let G be a semiabelian variety over K and let P ∈ G(K).
There exists λ ∈ L(R) such that G extends to a semiabelian Rλ-scheme Gλ
which is an extension of an abelian scheme by a torus and such that there
exists a point Pλ ∈ G(Rλ) which restricts to P over K.

Proof. By 4.2.3 there exists α ∈ L(R) such that G extends to an extension Gα
of an abelian scheme by a torus over Rα. Then the claim follows from 4.2.4
applied to Xα = SpecRα, Gα, and the morphism P ∈ Hom(SpecK,G).

4.2.6 Proposition. Let M be a K-1-motive. There exists λ ∈ L(R) and an
Rλ-1-motive Mλ such that Mλ ⊗Rλ K ∼= M .

Proof. Let M = [Y
u−→ G]. By 4.2.1 and 4.2.3 we can pick α ∈ L(R) such

that Y is a Galois Rα-module, Y = Yα ×Rα SpecK and such that G can be
extended to a commutative Rα-group scheme Gα which is the extension of an
abelian scheme by a torus.

For any λ ≥ α we have a commutative diagram

MotRλ(Yλ, Gλ) MotK(Y,G)

Ŷλ ⊗Gλ(Rλ) Ŷ ⊗G(K),

∼ ∼

where Gλ = Gα⊗Rλ, Yλ = Yα⊗Rλ and where the vertical group isomorphisms
are given by the map SY described in 2.2.1. Hence the claim follows trivially
from the previous lemma.

In particular, we have the following straightforward corollary:

4.2.7 Corollary. Let K be a number field and let M be a K-1-motive. M has
good reduction at all but finitely many primes p.
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If ρ : ΓK → Aut(V ) is a Galois representation, we will say that ρ is un-
ramified at p if Ip, the inertia subgroup at p, lies in its kernel. This definition
does not depend on the choice of the embedding Ks ↪→ Ks

p. Then the previous
corollary together with Theorem 4.1.1 imply

4.2.8 Theorem. Let K be a number field and let M be a K-1-motive. Let ` be
a prime number and let ρ`(M) be the `-adic Galois representation associated
to M . Then:

(i) The representation ρ`(M) is unramified at all but finitely many primes.

(ii) Let p be a prime ideal which is coprime to `. The representation ρ`(M)
is unramified at p if and only if M has good reduction at p.

Chebotarev’s density theorem

In the following K will be a fixed number field. We will denote the set of all
finite places of K by ΣK . Equivalently, ΣK is the set of all prime ideals in the
ring of integers OK of K.

4.2.9 Definition. Let P be a subset of ΣK . For any x ≥ 0, let ax(P ) denote
the number of places p ∈ P whose norm is ≤ x. Then we say that P has
density a if

lim
x→∞

ax(P )

ax(ΣK)
= a.

Equivalently, P has density a, if

ax(P ) = ax/ log x+ o(x/ log x)

as x goes to infinity.

The following version of Chebotarev’s density theorem is due to Serre [ST68,
I, §2.2].

4.2.10 Theorem. Let L/K be a (possibly infinite) Galois extension which is
unramified outside a finite set S. For any place v /∈ S let Fv ⊂ ΓL/K denote
the conjugacy class of the Frobenius at v. Then

(i) The Frobenius elements at the unramified places are dense in ΓL/K .

(ii) Let X be a subset of ΓL/K stable under conjugation. Assume that the
boundary of X has measure zero with respect to the probability Haar mea-
sure µ on ΓL/K (i.e. the Haar measure for which µ(ΓL/K) = 1). Then
the set of places v /∈ S such that Fv ⊂ X has density µ(X).

Let ` be a fixed prime number. Let p be a prime ideal, coprime to `, and
let Kp be the completion of K at p. Let G be a semiabelian variety which has
good reduction Gp at p.

We know from 4.1.12 that there is a canonical isomorphism

B`(G⊗K Kp)
∼−→ B`Gp



4.2. THE GLOBAL CASE 49

Fix an embedding φ : Ks ↪→ Ks
p. It induces an injection G(Ks) ↪→ G(Ks

p),
which restricts to a group isomorphism on the torsion points. Hence we have
an isomorphism

B`G
∼−→ B`(G⊗K Kp).

Composing the two maps we define the reduction map

redp : B`G→ B`Gp. (4.3)

This map is a Z`-module isomorphism. It is not canonically defined, it depends
on the choice of the embedding φ. However, since any two embeddings differ
by an element in ΓK , it follows that the image redp(X) of a set X which is
invariant under the natural action of ΓK on B`G, is independent of the choice
of embedding.

We recall that if kp is the residue field at p, we have a map

pr` : Motkp(Yp, Gp)→ B`(Ŷp ⊗Gp)

which sends a 1-motive to its `-part. Then Theorem 4.1.2 has the following
straightforward corollary:

4.2.11 Corollary. Let M = [Y
u−→ G] be a 1-motive over K. Let ` be a prime

number and let p be a place of good reduction for M which is coprime to `. Fix
an embedding Ks ↪→ Ks

p and let φp denote the image of the Frobenius element
under the `-adic representation ρ`(M). Then

(i) The element φp lies in the domain XT̀ M of the Pink map εT̀ M ;

(ii) redp(εT̀ M (φp)) = pr`Mp.

4.2.12 Theorem. Let M = [Y
u−→ G] be a K-1-motive. Let ` be a prime

number and let S ⊆ B`(Ŷ ⊗G) be any Galois invariant subset. The set of
primes p of good reduction of M for which pr`Mp ∈ redp(S) has density

µ
(
ε−1

T̀ M (S) ∩ Im ρ`(M)
)
,

where µ is the probability Haar measure on the image of the Galois represen-
tation ρ`(M).

Proof. This is an immediate consequence of Chebotarev’s theorem 4.2.10(ii)
and 4.2.11, as long as we show that the boundary of the set ε−1

T̀ M (S)∩Im ρ`(M)
has measure 0. By 3.4.2 the map εT̀ M is continuous. Since the topology on
Im ρ`(M) is the one induced by Aut(T̀M) it follows that the restriction of
εT̀ M on the set XT̀ M ∩ Im ρ`(M) is continuous as well. But since S is both
open and closed, it follows that the set ε−1

T̀ M (S) ∩ Im ρ`(M) is both open and
closed as well, whence it has no boundary. This proves the theorem.





Chapter 5

Kummer theory

In this chapter we study 1-motives over number fields. We are interested in
describing the images of the Kummer map δ`(M) and the Pink map ε`(M)
which we associated to a 1-motive M = [Y → G] in Chapter 3, whenever G
is a split semiabelian variety. We show that one can describe those images in
terms of the left ideal consisting of those endomorphisms of the variety Ŷ ⊗G
which kill M .

The description of the image of the Kummer map is not new. The method
goes back to Ribet [Rib79], who proves the result after assuming certain conjec-
tures about the `-adic representations of abelian varieties. Those conjectures
were later proved by Bogomolov [Bog81] and Faltings [Fal83]. Ribet’s result
concerns 1-motives of the type [Zr → G] and then only studies the image of
the Kummer map modulo `. Later Bertrand [Ber88, Theorem 2] states a de-
scription of the image in T̀G for 1-motives [Z → G]. The proof of Bertrand’s
theorem was worked out by Hindry [Hin88] in the case when G is an abelian
variety. See also [BGK05].

Our result (Theorem 5.2.1) determines the image of the Kummer map for
1-motives [Y → G] where Y is a general Galois K-module. It is, however, as
strong as Bertrand’s result. This is due to the twisting trick (Lemma 2.2.1)
which allows us to reduce the general case to the special case considered by
Bertrand. We do not, rely on Bertrand’s theorem in our proof.

Recently Jossen has published a result which is strictly stronger than ours
[Jos13, Theorem 6.2]. It can be used to determine the image of the Kummer
map even when the semiabelian variety G does not split.

The main idea behind Ribet’s method is essentially an abstract statement
about profinite group cohomology. It is presented in Section 5.1. One advan-
tage we gain from this abstraction is that in some cases we can also use it to
determine the image of the Kummer map for 1-motives over local fields, as is
shown in Proposition 6.5.1. In Section 5.2 we state and prove Theorem 5.2.1
which gives the image of the Kummer map. Once we know this image we can
easily describe the image of the Pink map. This is done in the final section,
specifically in Theorem 5.3.1.

51
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5.1 Ribet’s theorem

Let k be a field and let Γ be a group acting on a k-vector space V . Let ρ : Γ→
Autk(V ) be the corresponding representation, let Q := Im ρ and U := ker ρ.
Then we have the restriction-inflation sequence

0→ H1(Q,V )→ H1(Γ, V )
δ−→ H1(U, V ),

Since U acts trivially on V , for every element M ∈ H1(Γ, V ) the element
δ(M) is a homomorphism from U to V . We want to describe the image of this
homomorphism in certain cases. More specifically, k will be either F` or Q`
and Γ will be a profinite group. The vector space V will be finite-dimensional
and it will be equipped with the discrete or the `-adic topology respectively.
The representation ρ will be continuous and we will use continuous cochain
cohomology.

We are going to introduce the following notation. LetR be a (not necessarily
commutative) ring and let T be an abelian group equipped with an R-action
R→ End(T ). Let M ∈ T be any element. Then we define the annihilator of
M to be the left ideal

AnnRM := {φ ∈ R : φM = 0}.

For any left ideal I ⊆ R we define the zero set of I in T to be the set

Z(I, T ) := {x ∈ T : φx = 0 for every φ ∈ I}.

Let O denote the ring of Γ-equivariant endomorphisms of V . Every endo-
morphism φ ∈ O induces an endomorphism φ∗ ∈ End(H1(Γ, V )). Then we
have

5.1.1 Lemma. Let U ⊆ ker ρ be a normal subgroup and let Q := Γ/U . Assume
that the following conditions hold:

(i) The representation ρ is semisimple;

(ii) H1(Q,V ) = 0.

Then for every M ∈ H1(Γ, V ) the space Z(AnnOM,V ) is the smallest linear
subspace containing the image of δ(M).

Proof. Let X := Im δ(M). For every φ ∈ AnnOM , φ ◦ δ(M) = δ(φ∗M) = 0
hence φX = 0. It follows that X ⊆ Z(AnnOM,V ).

Assume that there is a vector subspace Z ′ ( Z(AnnOM,V ) such that
X ⊆ Z ′. Since X is Γ-invariant we can assume that Z ′ is Γ-invariant as well
(otherwise take

⋂
σ∈Γ σZ

′). Using the semisimplicity of ρ we can construct an
endomorphism φ ∈ O such that kerφ = Z ′. Namely, pick any decomposition
V = Z ′ ⊕W where W is a Γ-invariant subspace and take φ to be the map
which kills Z ′ and is the identity on W . Then, since φX = 0, it follows that

0 = φ ◦ δ(M) = δ(φ∗M).

Condition (ii) implies that φ∗M = 0, hence φ ∈ AnnOM . But since

Z(AnnOM,V ) 6⊆ kerφ

we reach a contradiction.
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Now assume that Γ is a profinite group acting continuously on a finitely-
generated free Z`-module T via an action ρ : ΓK → AutZ`(T ). Let O de-
note the set of Γ-invariant endomorphisms of T . As before let δ : H1(Γ, T ) →
H1(ker ρ, T ) denote the restriction map. Then:

5.1.2 Corollary. Assume that the following conditions hold

(i) The representation induced on T ⊗Q` is semisimple.

(ii) H1(Im ρ, T ⊗Q`) = 0.

Then for every M ∈ H1(Γ, T ) the image of δ(M) is a finite-index subgroup of
Z(AnnOM,T ).

Proof. Denote V = T ⊗Q`. Let β : H1(Γ, T )→ H1(Γ, V ) be the map induced
by the inclusion T ⊂ V . One easily sees that it induces a map

(AnnOM)⊗Q` → AnnO⊗Q`βM

(Notice that O ⊗ Q` is precisely the ring of Γ-equivariant endomorphisms of
V .) We claim that this map is a bijection. That it is an injection, follows from
the injection O ⊂ O⊗Q`. To show that it is surjective let φ ∈ O⊗Q` be any
endomorphism that annihilates βM . There is an endomorphism ψ ∈ O such
that φ = ψ⊗α for some α ∈ Q`. Then by A.6.2 it follows that ψ∗M is torsion.
If n ∈ N is such that nψ∗M = 0 then we can write φ as φ = (nψ)⊗ α/n. This
implies that φ ∈ (AnnOM)⊗Q`, which proves our claim.

Let X = Im δ(M). By Lemma 5.1.1 and the considerations above it follows
that Z(AnnO⊗Q`βM, V ) = Z(AnnOM,T ) ⊗ Q` is the smallest vector space
containing X. Since, by continuity X ⊂ T is a Z`-module, the statement
follows.

Let Γ, T and ρ and O be as before. Let O1 denote the ring of Γ-equivariant
endomorphisms of T/`. We have a map O/`→ O1 and it is easy to see that it
is an injection.

5.1.3 Theorem (Ribet). Let M ∈ H1(Γ, T ). Assume that the following con-
ditions hold:

(i) The map O/`→ O1 is an isomorphism;

(ii) The representations induced on T ⊗Q` and on T/` are semisimple;

(iii) H1(Im ρ, T/`) = 0.

(iv) The natural map

AnnOM → AnnO1M1

is surjective, where M1 is the image of M in H1(Γ, T/`).

Then the image of δ(M) is equal to Z(AnnOM,T ).

5.1.4 Remark. Conditions (i)-(iv) are analogous to Ribet’s axioms B1-B4 in
[Rib79]. We will later see that his axiom B4 implies our condition (iv).
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Proof. let X := Im δ(M), Q := Im ρ and U := ker ρ. Our first step is to show
that X is a finite-index subgroup of Z(AnnOM,T ).

Condition (iii) implies that the group H1(Q,T ) is trivial. Indeed, Q is a
closed subgroup of the `-adic Lie group AutZ`(T ), which implies that it is a
compact `-adic Lie group. Hence, by A.6.2, H1(Q,T ) is a finitely-generated
Z`-module. This implies that H1(Q,T ) is trivial if and only if H1(Q,T )/` is
trivial. From the short exact sequence

0→ T
`−→ T → T/`→ 0

we get the exact sequence

H1(Q,T )
`−→ H1(Q,T )→ H1(Q,T/`)

Therefore H1(Q,T )/` injects in H1(Q,T/`). Since the latter group is trivial,
it follows that H1(Q,T ) is trivial as well.

We can therefore apply 5.1.2 to conclude that X is a finite-index subgroup
of Z(AnnOM,T ). To conclude the proof of the theorem it is sufficient to show
that the images of the groups X and Z := Z(AnnOM,T ) in T/` are equal. We
will denote those images by X and Z respectively.

Let δ1 : H1(Γ, T/`) → H1(U, T/`) be the restriction map. Let X1 :=
Im δ1(M1). We can use Lemma 5.1.1 to conclude that the smallest F`-vector
space containing X1 is Z1 := Z(AnnO1

M1, T/`). Since X1 is a group, hence
an F`-vector space itself, it follows that X1 = Z1.

Since δ1(M1) is the image of δ(M) under the map

Homc(U, T )→ Homc(U, T/`)

it follows that X = X1. (The subscript “c” above indicates that those are
continuous group homomorphisms.) On the other hand, condition (iv) implies
that Z ⊆ Z1. We get the inclusions

X1 = X ⊆ Z ⊆ Z1 = X1

Clearly all inclusions are forced to be equalities. In particular, X = Z which
implies the statement of the theorem.

5.2 The image of the Kummer map

Let K be a number field, Y be a ΓK-module and let G be a semiabelian
variety over K. Recall that we have an isomorphism MotK(Y,G) ∼= (Ŷ ⊗G)(K)
(Lemma 2.2.1). Hence the ring EndK(Ŷ ⊗G) ∼= (EndK̄(Ŷ )⊗EndK̄(G))ΓK acts
on MotK(Y,G). We can describe this action explicitly. Let θ =

∑
i φi ⊗ ψi be

an element in EndKs(Ŷ )⊗EndKs(G). For any φi, let φti denote the transposed

endomorphism of Y . Let M = [Y
u−→ G] be a K-1-motive. Then θM is the

Ks-1-motive [Y
θu−→ G], where

θu : y 7→
∑
i

ψi(u(φti(y))).

One can easily check that if θ is fixed under the Galois action, then θM is a
K-1-motive.
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In order to simplify notation we shall denote by O the ring EndK(Ŷ ⊗G).
For any prime number ` we shall write O` instead of EndΓK (T̀ (Ŷ ⊗G)). We
have a natural map O⊗ Z` → O`, by which O acts on T̀ (Ŷ ⊗G) for any `.

5.2.1 Theorem. Let G be a split semiabelian variety over a number field K
and let M = [Y → G] be a K-1-motive.

(i) For every prime ` the image of the Kummer map δ`(M) is a finite-index
subgroup of Z(AnnOM, T̀ (Ŷ ⊗G)).

(ii) The image of the Kummer map is equal to Z(AnnOM, T̀ (Ŷ ⊗G)) for all
but finitely many primes `.

In order to prove Theorem 5.2.1 we are going to apply Ribet’s theorem 5.1.3
to ΓK and the Z`-module T̀ (Ŷ ⊗G). To do that we will have to verify its four
conditions. This is the purpose of the following lemmas.

5.2.2 Lemma. Let G be a split semiabelian variety defined over a number field
K. Then for every finitely-generated subgroup X of G(K) and every prime `,
the group

X ′` := {P ∈ G(K) : `nP ∈ X for some n ≥ 1}

is such that X ′`/X has finite exponent. Moreover, X ′` = X for all but finitely
many primes `.

Proof. This is essentially Proposition 2.2 in [Rib79]. We give the proof for the
reader’s convenience.

Let G = A× T , where A is an abelian variety and T is a torus. For A the
statement follows from the Mordell-Weil theorem. To prove it for T we first
pass to a finite extension K ′/K such that T ⊗KK ′ is split. and then we involve
Dirichlet’s S-unit theorem. It is clear that if the statement holds for T ⊗K K ′

then it holds for T as well.
Finally, it is also easy to see that if the statement holds for A and T then

it also holds for their product. Indeed, let XA and XT be the projections of
X to A and T . Then X ⊆ XA ×XT and X ′` ⊆ X ′A,` ×X ′T,`. Since all groups
involved are finitely-generated, and in particular have finite torsion, the result
follows.

5.2.3 Lemma. Let G be a split semiabelian variety defined over a number field
K and let ` be a prime number.

(i) The `-adic Galois representation associated to V̀G is semisimple. When `
is large enough the Galois representation associated to T̀G/` is semisim-
ple.

(ii) We have an isomorphism

EndK(G)⊗ Z` ∼= EndΓK (T̀G).

When ` is large enough we have an isomorphism

EndK(G)/` ∼= EndΓK (T̀G/`).
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In the case of abelian varieties this lemma is a famous result of Faltings
[Fal83]. To prove the general case we will first need to show the following claim

5.2.4 Claim. Let A be an abelian variety defined over a number field K and
let ` be a prime number. Then the groups

HomΓK (T̀A, T̀ Gm) and HomΓK (T̀ Gm, T̀A)

are trivial. When ` is large enough the groups

HomΓK (A[`],Gm[`]) and HomΓK (Gm[`], A[`])

are trivial.

Proof. Indeed, using the Weil pairing we have an isomorphism

HomΓK (T̀A, T̀ Gm) ∼= (T̀A∨)ΓK ,

where A∨ denotes the dual abelian variety. The latter group is trivial, since A∨

has only finitely many torsion points. By a similar argument, since A∨(K)[`]
is trivial when ` is large enough, it follows that for large enough ` the group
HomΓK (A[`],Gm[`]) is trivial as well.

To show that HomΓK (T̀ Gm, T̀A) is trivial note the isomorphism

HomΓK (T̀ Gm, T̀A) ∼= HomΓK (T̀A∨,Z`)

Since the representation V̀ A∨ is semisimple, in order for the latter group to
be non-trivial T̀A∨ must contain a copy of Z`, which contradicts the fact that
(T̀A∨)ΓK is trivial. The argument for the finite case is analogous.

Proof of Lemma 5.2.3. As we said above, when G is an abelian variety this
result is due to Faltings. We will show it in the case of a torus and then derive
the general case.

So let G = T be a torus. We can write T ∼= E ⊗ Gm for some Galois
K-module E. Then, by 2.1.8, T̀G ∼= E ⊗Z T̀ Gm. The Galois group ΓK
acts on E through a finite quotient, hence, by Maschke’s theorem, the Galois
representation E ⊗Z Q` is semisimple. Moreover, when ` is large enough it
does not divide the size of the quotient, hence, again by Maschke’s theorem
the representation E ⊗Z F` is semisimple.

Since T̀ Gm is one-dimensional, every invariant subspace of E⊗Z T̀ Gm⊗Q`
is of the form V ⊗Q` V̀ Gm, where V ⊆ E ⊗Z Q`. Since E ⊗Z Q` is semisimple
it follows that E ⊗Z T̀ Gm ⊗ Q` is semisimple. By an analogous argument
E ⊗Z T̀ Gm ⊗ F` is semisimple for large enough `. This proves statement (i) of
the lemma.

For statement (ii) we have the isomorphism

EndK(E ⊗Gm) ∼= EndK(E)

Also,
EndΓK (E ⊗Z T̀ Gm) ∼= EndΓK (E ⊗ Z`).

Then the equality of the endomorphism rings is reduced to showing that the
map

EndK(E)⊗Z Z` → EndΓK (E ⊗Z Z`)
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is an isomorphism, which is trivial.
To prove the last part of statement (ii) it is sufficient to show that for large

enough ` the map

EndΓK (E ⊗Z Z`)/`→ EndΓK (E/`)

is surjective. Indeed, let φ ∈ EndΓK (E/`) and let ψ ∈ EndZ`(E ⊗Z Z`) be
any endomorphism that reduces to φ. Let Q be the finite quotient group
through which ΓK acts on E. Then when ` does not divide the size q of Q, the
endomorphism

1

q

∑
σ∈Q

σ ◦ ψ

is ΓK-equivariant and reduces to φ. This concludes the proof when G is a
torus.

Let G = A× T be a product of an abelian variety and a torus. Statement
(i) follows trivially from the partial cases. As for the second statement, note
that EndK(G) ∼= EndK(A) × EndK(T ). On the other hand EndΓK (T̀G) =
EndΓK (T̀A) × EndK(T̀G). Indeed, otherwise, we could construct non-trivial
elements in the groups HomΓK′ (T̀A, T̀ Gm) and HomΓK′ (T̀ Gm, T̀A) for a fi-
nite field extension K ′/K over which T splits. But due to the claim above
there are no such non-trivial homomorphisms. Then the isomorphism

EndK(G)⊗ Z` ∼= EndΓK (T̀G)

follows from the partial cases. When ` is large enough the finite analog follows
by a similar argument.

5.2.5 Lemma. Let M = [Y → G] be a K-1-motive. Let M̃ = α`(M) denote

its image in H1(ΓK , T̀ (Ŷ ⊗G)) and let M̃1 denote its image in the group
H1(ΓK , T̀ (Ŷ ⊗G)/`). Then the natural map

AnnOM ⊗ Z` → AnnO`M̃

is an isomorphism. For all but finitely many ` the natural map

(AnnOM)/`→ AnnO/`M̃1

is an isomorphism.

Proof. We can use Lemma 3.2.5 to reduce this lemma to the case when Y = Z.
Then M is essentially a rational point in G. Let ιM denote the image of M in
lim←−nG(K)/`n. The injectivity of the map

lim←−
n

G(K)/`n → H1(Γ, T̀G)

together with Lemma 5.2.3(ii) imply that there is a canonical isomorphism

AnnO⊗Z`ιM
∼−→ AnnO`M̃.

It remains to show that the map AnnOM ⊗ Z` → AnnO⊗Z`ιM is an isomor-
phism.
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The injectivity of that map is trivial since both sets are subsets of O ⊗
Z`. To show that it is surjective, let ψ ∈ AnnO⊗Z`ιM . There is a limit of
endomorphisms φn ∈ O such that φnM = `nNn for some Nn ∈ G(K) and such
that φn converge to ψ in O ⊗ Z`. Consider the group X = OM . Since O is
finitely-generated it follows that X is finitely-generated as well. Then Lemma
5.2.2 implies that there is some k such that if n ≥ k, then `kNn ∈ X. Hence

φnM = `n−kθnM

for some θn ∈ O. The limit limn(φn − `n−kθn) converges to ψ and it lies in
AnnOM ⊗ Z`. This proves surjectivity.

The arguments for the second part of the lemma are analogous, however we
have to use the injection

G(K)/` ↪→ H1(Γ, T̀G/`)

instead.

5.2.6 Lemma. Let G be a split semiabelian variety defined over a field K and
let ` be a prime number. Let QK be the image of ΓK in the group Aut(T̀G).

(i) There exists a non-trivial element σ in the center of QK such that σk−1
is an automorphism of V̀G for all k ≥ 1.

(ii) For all but finitely many primes ` one can choose σ so that σ − 1 is an
automorphism of T̀G.

Proof. Let G = A× T , where A is an abelian variety and T is a torus. There
exists a Galois K-module E such that T ∼= E⊗Gm. Let QE denote the quotient
of ΓK by the subgroup of automorphisms which act trivially on E. This is a
finite group, we will denote its size by qE .

For any prime `, let ρ`(A) : ΓK → Aut(T̀A) denote the `-adic represen-
tation associated to A and let QA,` denote the image of ρ`(A). It is a result
of Bogomolov [Bog81] that QA,` contains an open subgroup of the homothe-
ties Z×` . Moreover, it is a result of Serre [Ser00, Th 2] that the index c(`) of
QA,` ∩ Z×` in Z×` is bounded from above for all `. It follows that we can pick
an element σ ∈ ΓK such that ρ`(A)(σqE ) is a non-trivial homothety λ ∈ Z×` of
T̀A, which is not a root of unity, and that for all but finitely many primes ` we
can pick σ so that λ2 6≡ 1 mod `. Then ρ`(A)(σqEk) − 1 is an automorphism
of V̀ A for all k ≥ 1 and ρ`(A)(σqE )− 1 is an automorphism of T̀A for all but
finitely many `.

The element σqE acts trivially on E. We will show next that it acts on
T̀ Gm via multiplication by λ2. It then follows that the image of σqE in QK
has the required properties.

Let A∨ be the dual abelian variety of A. Any isogeny A→ A∨ induces an
isomorphism V̀ A→ V̀ A∨. If follows that σqE acts via multiplication by λ on
T̀A∨. Since the Weil pairing

µ : T̀A⊗Z` T̀A∨ → T̀ Gm

is Galois-equivariant and surjective and since

σqEµ(a, a′) = µ(σqEa, σqEa′) = µ(λa, λa′) = λ2µ(a, a′),

the claim follows.
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5.2.7 Corollary. Let G be a split semiabelian variety defined over a num-
ber field K. Let ` be a prime and let Q`,G be the image of ΓK in the group
Aut(T̀G).

(i) H1(Q`,G, V̀G) = 0.

(ii) For all but finitely many primes `, H1(Q`,G, T̀G/`) = {0}.

Proof. Lemma 5.2.6(i) together with Sah’s lemma A.6.3 imply the first state-
ment. To prove statement (ii), notice that any automorphism of T̀G induces
an automorphism of T̀G/`. Then the statement follows from 5.2.6(ii), together
with Sah’s lemma.

Proof of Theorem 5.2.1. To simplify notation write T := T̀ (Ŷ ⊗G). Let M̃
denote the image of M in H1(ΓK , T ) under the Abel-Jacobi map α` and let

M̃1 denote its image in H1(ΓK , T/`). Then Lemma 5.2.5 implies that

AnnOM ⊗ Z` ∼= AnnO`M̃.

Hence Z(AnnOM,T ) = Z(AnnO`M̃, T ). Statement (i) of the theorem follows
from Corollary 5.1.2. The conditions (i) and (ii) in the corollary follow from
5.2.3(i) and 5.2.7 respectively.

To prove the statement (ii) of the theorem we employ Theorem 5.1.3. Con-
ditions (i)-(iv) follow from 5.2.3, 5.2.7 and 5.2.5.

5.3 The image of the Pink map

We retain the notation of the previous section. Our goal is to determine the
image of the map ε`(M) for K-1-motives M ∈ MotK(Y,G).

The ring EndZ Ŷ⊗ZEndK̄ G acts on the group B`(Ŷ ⊗G) ∼= Hom(Y,G[`∞]).
The action is given by the formula

(φt ⊗ ψ) : f 7→ ψ ◦ f ◦ φ.

for any φ ∈ EndZ Y and ψ ∈ EndK̄ G. In particular, O acts on B`(Ŷ ⊗G). One
can check that this action is compatible with the action of O on V̀ (Ŷ ⊗G).

5.3.1 Theorem. Let G be a split semiabelian variety over K. Let M ∈
MotK(Y,G) and let ` be a prime number. There exist positive integer con-
stants c = c(`, Y,G) and c′ = c′(`, Y,G) such that

Im cε`(M) ⊆ Z(AnnOM,B`(Ŷ ⊗G)) ⊆ Im c′ε`(M) (5.1)

For all but finitely many ` one can choose c = c′ = 1.

Proof. To shorten notation we denote T := Hom(T̀ Y, T̀G), V := T ⊗ Q`,
ZT := Z(AnnOM,T ) and ZV := Z(AnnOM,V ). Then (5.1) is equivalent to
showing

Im cε`(M) ⊆ ZV mod T ⊆ Im c′ε`(M) (5.2)

Let ρ : ΓK → Aut(T ) be the `-adic Galois representation associated to
Ŷ ⊗G. We will denote Q := Im ρ and U := ker ρ.
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Let c be the size of the group H1(Q,T ). By 5.2.7 and A.6.2 one can show
that this group is indeed finite for all ` and that it is trivial for all but finitely
many `. We will show that this constant satisfies the statement of the theorem.

Since V is semisimple (by 5.2.3), there exists a ΓK-invariant vector subspace
Z ′V of V such that V = ZV ⊕ Z ′V . Let Z ′T := Z ′V ∩ T . One can show that
ZT = ZV ∩ T . It follows that T = ZT ⊕ Z ′T . We then have the decomposition

H1(ΓK , T ) = H1(ΓK , ZT )⊕H1(ΓK , Z
′
T )

and we have a similar decomposition of the group H1(U, T ). One can easily see
that the restriction map δ sends H1(ΓK , ZT ) to H1(U,ZT ) and H1(ΓK , Z

′
T ) to

H1(U,Z ′T ).

Let M̃ be the image of M in H1(ΓK , T ) under the Abel-Jacobi map. The-

orem 5.2.1 tells us that δ(M̃) lies in H1(U,ZT ) ∼= Homc(U,ZT ). This implies

that the projection of M̃ to H1(ΓK , Z
′
T ) lies in the kernel H1(Q,T ). Hence

cM̃ is an element of H1(ΓK , ZT ).
Let s : T̀ Y → T̀M be a section for the exact sequence

0→ T̀G→ T̀M → T̀ Y → 0

The class M̃ is generated by the cocycle σ 7→ (σ−1)s. Since cM̃ ∈ H1(ΓK , ZT ),
there exists t ∈ Z ′T such that (σ− 1)(cs− t) lies in ZT for every σ ∈ ΓK . Then
we have

cε`(M)(σ) ≡ (σ − 1)−1(σ − 1)cs mod T

≡ (σ − 1)−1(σ − 1)(cs− t) mod T

Hence the map cε`(M) sends every element σ from its domain in the set
ZV mod T . This proves the first inclusion in (5.2).

To prove the second inclusion let σ ∈ ΓK be any element such that σk − 1
is an automorphism of V for all k ≥ 1. Such an element exists by Lemma
5.2.6(i). Let c′ be any positive integer such that c′ε`(M)(σ) ≡ 0 mod T . Note
that due to 5.2.6(ii) one can choose σ such that c′ = 1 for all but finitely many
`. Let ∆ be the image of the map δ`(M) in ZT . By Lemma 3.4.3 (ii) and (iii)
it follows that for every u ∈ U we have

c′ε`(M)(uσk) ≡ c′ε`(M)(σ) + (σk − 1)−1δ`(M)(u) mod T

≡ (σk − 1)−1δ`(M)(u) mod T,

hence the we have the inclusion⋃
k≥1

(σk − 1)−1∆

 mod T ⊆ c′ Im ε`(M)

By Theorem 5.2.1, ∆ is an open subset of ZT . Since the group generated
by σ is infinite (due to the fact that σk − 1 is an automorphism of V for all
k ≥ 1) it follows that there exist a sequence {kn}n such that the operator norm
of σkn − 1 acting on V converges to zero. Then for any vector v in ZV there
exists n such that (σkn − 1)v lies in ∆. This implies that

ZV =
⋃
k≥1

(σk − 1)−1∆,

whence the second inclusion in (5.2) follows.



Chapter 6

Algebraic dependences on Gm

The purpose of this chapter is to define and study a certain family of properties
that finitely-generated groups of rational points in tori may have. We give some
examples of such properties.

Let Γ ⊂ G2
m(Q) be a free abelian group of rational points of rank 2 and let

p and ` be two different prime numbers. Consider the following properties:
Cyc`p(Γ): The group Γ reduces modulo p and its reduction is a cyclic group
Cyc``p(Γ): Γ reduces modulo p and the `-part of its reduction is cyclic
Cyc`pp(Γ): Γ reduces modulo p and its p-adic closure in G2

m(Qp) is 1-
dimensional.

It is easy to see that Cyc`p(Γ) is equivalent to Cyc``p(Γ) for all ` 6= p. We
have the following result:

6.0.2 Theorem. The set of primes p for which property Cyc`p(Γ) holds is
either of density 0, or of density 1. In the second case, Γ is contained in a
proper algebraic subgroup of G2

m.

To see the relationship with the property Cyc`pp(Γ) consider the following
conjecture

6.0.3 Conjecture (p-adic Four Exponentials Conjecture). Assume that prop-
erty Cyc`pp(Γ) holds for some fixed prime p. Then Γ is contained in a proper
algebraic subgroup of G2

m.

Let P1, P2 ∈ G2
m(Q) be generators of Γ. To say that Γ reduces modulo

p is equivalent to saying that the p-adic valuation of the coordinates of P1

and P2 is zero, or in other words, it is the same as saying that P1 and P2

lie in the subset (Z×p )2 of G2
m(Qp) ∼= (Q×p )2. Let logp : Z×p → Zp denote the

p-adic logarithm, and let P1 = (P11, P12) and P2 = (P21, P22). The p-adic
closure of Γ is 1-dimensional if and only if the vectors (logp P11, logp P12) and
(logp P21, logp P22) are linearly dependent over Qp, which is equivalent to saying
that logp P11 logp P22 − logp P12 logp P21 = 0. Consider the following matrix:(

logp P11 logp P12

logp P21 logp P22

)
It is not difficult to see that if Γ has rank 1 then the two rows of the matrix
above are linearly dependent over Q. On the other hand, if Γ is contained in

61
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a proper algebraic subgroup then the two columns will be linearly dependent
over Q. So Conjecture 6.0.3 can be rewritten in the following more familiar
form:

6.0.4 Conjecture. Let P11, P12, P21 and P22 be rational numbers whose p-adic
valuation is 0. Assume that the equation

logp P11 logp P22 − logp P12 logp P21 = 0

holds. Then either the rows or the columns of the matrix(
logp P11 logp P12

logp P21 logp P22

)
are linearly dependent over Q.

The properties described in the examples are related to a certain homoge-
nous polynomial. In this case the polynomial is the determinant of a 2-by-2
matrix (i.e. y11y22 − y12y21). We will call such polynomials algebraic depen-
dences. More generally, if we are interested in a 1-motive M = [Y → Gm]
defined over a number field, then the associated algebraic dependences are the
homogenous ideals in the symmetric algebra of Y . We define those in Section
6.1 and show how to any such 1-motive M and any algebraic dependence one
can associate a certain family of properties concerning the `-part of the reduc-
tion of M modulo primes of good reduction. The main theorem 6.1.6 gives a
characterization of the primes for which those properties hold.

In Section 6.2 we derive Theorem 6.0.2 as a consequence of our main theo-
rem. Then we present the proof of the main theorem in Sections 6.3 and 6.4.
The proof is reduced to studying the image of the Frobenius element for primes
of good reduction into the `-adic Galois representation associated to M . Fi-
nally, in the last section, we introduce several conjectures concerning algebraic
dependences, of which Conjecture 6.0.3 is a special case. We also discuss the
analogy between our conjectures and the main theorem.

6.1 Algebraic dependences

We fix a number field K and a Galois K-module Y . We will denote by G the
Cartier dual of Y . It is equal to Ŷ ⊗ Gm. Recall that we have isomorphisms
T̀G ∼= Hom(T̀ Y, T̀ Gm) and B`G ∼= Hom(Y,Gm[`∞]).

We need to introduce the following notation. Let R be a commutative ring
and let X be an R-module. We will write R[X] to denote the symmetric algebra
generated by X. That is,

R[X] :=
⊕
n≥0

Sn(X),

where S0(X) = R and Sn(X) is the n-th symmetric power of X. If R→ R′ is
a ring homomorphism, we will write

R′[X] := R[X]⊗R R′.

Since base change commutes with taking symmetric power, we have a canonical
isomorphism

R′[X] ∼= R′[X ⊗R R′].
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6.1.1 Definition. The Galois action on Y induces a natural Galois action on
Z[Y ]. We will call an ideal I ⊂ Z[Y ] an algebraic dependence, if I is a
homogenous ideal which is invariant under the action of ΓK .

We can isolate a special class of algebraic dependences. Let Z ⊆ Y be a
ΓK-invariant submodule. We will denote by L(Z) the ideal in Z[Y ] generated
by Z. Every algebraic dependence which is of the form L(Z) for some Z will
be called a linear dependence.

If T̂̀G is the Z`-dual of T̀G, then Z`[T̂̀G] is precisely the ring of all polyno-
mial functions on T̀G with coefficients in Z`. One can check that the ΓK-action
is compatible with this interpretation: if σ ∈ ΓK and f ∈ Z`[T̂̀G] then we have

(σf) = f ◦ σ−1.

6.1.2 Lemma. Let ` be a prime number. There is a canonical isomorphism

c` : ProjZ`[Y ]
∼−→ ProjZ`[T̂̀G],

This morphism is compatible with the action of ΓK on both schemes induced
by the action on the underlying rings.

Proof. Let τ be any basis element of T̀ Gm (that is, |τ |` = 1). Then τ induces
an isomorphism

τ∗ : Ŷ ⊗Z Z` → T̀G, ŷ 7→ ŷ ⊗ τ,

The Z`-dual of τ∗, after taking symmetric powers, induces an isomorphism

τ ] : Z`[T̂̀G]
∼−→ Z`[Y ].

This isomorphism gives the isomorphism of projective schemes c` stated in the
lemma.

If we pick another basis element τ ′ ∈ T̀ Gm, it will follow that

(τ ′)] = ατ ]

for some α ∈ Z×` . But then (τ ′)] induces the same isomorphism of projective
schemes as τ ]. Hence the isomorphism c` does not depend on the choice of τ .

Let σ ∈ ΓK . An easy computation gives

σ(τ ]f) = (στ)]f.

Since τ ] and (στ)] induce the same isomorphism, it follows that c` is ΓK-
equivariant.

The lemma above implies that to every homogenous ideal I in Z[Y ] one can

associate an ideal I ⊗ Z` in Z`[T̂̀G].

6.1.3 Construction. Let J ⊆ Z`[T̂̀G] be a set. We will denote by Z(J, T̀G)
and Z(J, V̀G) the zero sets of J in T̀G and V̀ G respectively. We also want
to associate to it a set

Z(J,B`G) ⊆ B`G.

We proceed as follows.
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Let x ∈ B`G. We define v(x) to be the smallest positive integer n such that
`nx = 0 (in particular v(0) = 1). In other words, v(x) = min{n : x ∈ G[`n]}.

Every function f ∈ Z`[T̂̀G] satisfies the inequality

|f(x)− f(y)|` ≤ |x− y|`

for every x, y ∈ T̀G. Hence it induces well-defined functions fn : G[`n]→ Z/`n
which are characterized by the following commutative diagram:

T̀G Z`

G[`n] Z/`n

f

fn

Therefore we can define the set

Z(J,B`G) := {x ∈ B`G : fv(x)(x) = 0 for each f ∈ J}. (6.1)

Equivalently, x ∈ B`G lies in Z(J,B`G) if and only if for every f ∈ J we have

|f(x̃)|` ≤ `−v(x)

where x̃ ∈ T̀G is an arbitrary pre-image of x under the projection map T̀G→
G[`v(x)].

6.1.4 Lemma. Let J ⊂ Z`[T̀G] be a homogenous ideal.

(i) If {f1, . . . , fk} is a basis for J then

Z(J,B`G) = Z({f1, . . . , fk},B`G);

(ii) If J is Galois-invariant, then so is Z(J,B`G);

(iii) The pre-image of Z(J,B`G) under the quotient map V̀G → B`G is the
set Z∗(J, V̀G) consisting of those points x ∈ V̀G for which

|f(x)|` ≤ ‖x‖deg f−1
` (6.2)

for every homogenous f ∈ J .

Proof.

(i) Since {f1, . . . , fk} is a subset of J , it follows trivially that Z(J,B`G) ⊆
Z({f1, . . . , fk},B`G). On the other hand every element f ∈ J , can be

represented as f = g1f1 + · · ·+ gkfk, where g1, . . . , gk ∈ Z`[T̂̀G]. Hence
if x ∈ Z({f1, . . . , fk},B`G) and if x̃ is any pre-image of x in T̀G then

|f(x̃)|` ≤ max
i
{|gi(x̃)|`|fi(x̃)|`} ≤ `−v(x)

It follows that Z({f1, . . . , fk},B`G) ⊆ Z(J,B`G) which proves the claim.
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(ii) We need to show that if x ∈ Z(I,B`G) then σx ∈ Z(I,B`G) for all
σ ∈ ΓK . Indeed, if f ∈ J , then we have

fv(x)(σx) = (σ−1fv(x))(x) = (σ−1f)v(x)(x) = 0,

since σ−1f ∈ J for every f ∈ J . (The equality (σ−1f)v(x) = σ−1fv(x) is
an easy corollary of the definitions.) This proves the statement.

(iii) Let x ∈ V̀G and let x̄ denote its image in B`G ∼= V̀G/T̀G. If x ∈ T̀G
then x̄ = 0 and x̄ ∈ Z(J,B`G). On the other hand T̀G is contained in
Z∗(J, V̀G), since for every x in T̀G and every homogenous polynomial
f we have the inequality

|f(x)|` ≤ ‖x‖deg f
` ≤ ‖x‖deg f−1

` ,

due to the fact that ‖x‖` ≤ 1.

Next let x ∈ V̀G \ T̀G. If ‖x‖` = `n, set y := `nx. The element y lies
in T̀G and x̄ is precisely the image of y under the map T̀G → G[`n].
Let f ∈ J be a homogenous polynomial. Then fn(x̄) = 0 if and only
if |f(y)| ≤ `−n = ‖x‖−1

` . Since f(y) = `n deg ff(x), it follows that the
last inequality is equivalent to (6.2). Hence x̄ ∈ Z(J,B`G) if and only if
x ∈ Z∗(J, V̀G) for every x ∈ V̀G.

Let I be an algebraic dependence. We define

Z(I,B`G) := Z(I ⊗ Z`,B`G)

and
Z∗(I, V̀G) := Z∗(I ⊗ Z`, V̀G)

Let p be a prime of good reduction for G, let Kp be the p-adic completion
of K and let kp be the residue field. Let Gp denote the reduction of G at p.
Recall that any embedding Ks ↪→ Ks

p induces an isomorphism

redp : B`Gp
∼= B`G.

(see (4.3) in Section 4.2). We set

Z(I,B`Gp)

to be the image of Z(I,B`G) under this isomorphism. As the latter set is ΓK-
invariant, it follows that the image Z(I,B`Gp) is independent of the choice of
embedding Ks ↪→ Ks

p.

6.1.5 Definition. Let M = [Y
u−→ Gm] be a 1-motive over K and let I be

an algebraic dependence. Let p be a prime ideal of good reduction and let p
be the characteristic of its residue field kp. Let Mp denote the reduction of M
at p. We will say that the `-part of Mp satisfies I if the `-adic projection
pr`(Mp) of Mp lies in the set Z(I,B`Gp). We say that Mp satisfies I if the
`-part of Mp satisfies I for every prime number ` 6= p.

Every algebraic dependence I ⊆ Z[Y ] induces an ideal I ⊗ Q ⊆ Q[Y ]. We
will say that an algebraic dependence I is exceptional for M if I ⊗ Q is
contained in L(keru)⊗Q. Otherwise we will call I generic for M .
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We recall the following notation: if f(x) and g(x) are two real-valued func-
tions whose domain is the set X then we write f(x) = O(g(x)) if there ex-
ists a non-negative real constant c such that |f(x)| ≤ c|g(x)| for all x ∈ X.
We write f(x) = Θ(g(x)) if there exist non-negative constants c, c′ such that
cg(x) ≤ f(x) ≤ c′g(x) for all x ∈ X. Then we have the following result:

6.1.6 Theorem. Let Y be a trivial Galois K-module and let M = [Y
u−→ Gm]

be a K-1-motive. Let I be an algebraic dependence for Y .

(i) There exists a finite set of prime numbers S which depends only on M
but not on I and such that for every ` /∈ S the following holds: I is
exceptional for M if and only if the `-part of Mp satisfies I for all primes
p of good reduction;

(ii) If I is exceptional for M , then Mp satisfies I for all primes p of good
reduction;

(iii) If I is generic for M , then for every prime number ` the set of primes p
for which the `-part of Mp satisfies I has density 1 − Θ(`−1), where the
implicit constants depend on M and I.

(iv) If I is generic for M , then the set of primes p of good reduction for which
Mp satisfies I has zero density.

6.2 An example: The rank of reduction of Z2 → G2
m

We will now show how Theorem 6.1.6 implies Theorem 6.0.2 stated in the
introduction. We will prove the following slightly more general result:

6.2.1 Theorem. Let K be a number field and let Γ ⊂ G2
m(K) be a torsion-

free subgroup of rank 2. Assume that Γ is not contained in any proper algebraic
subgroup of G2

m. Then the set of places p for which the reduction of Γ modulo
p is well-defined and cyclic has zero density.

We fix points P1, P2 ∈ G2
m(K) which generate Γ. Each point Pi can be

represented as a tuple Pi = (Pi1, Pi2) where Pij ∈ Gm(K) for i, j ∈ {1, 2}.
Let Y be a free Z-module of rank 4, on which ΓK acts trivially. We will

fix a basis {y11, y12, y21, y22} on Y . Then we will be interested in studying the
algebraic dependence induced by the polynomial f = y11y22 − y12y21 and the
1-motive M = [Y

u−→ Gm] given by u(yij) = Pij . By the general theory (see
Corollary 4.2.7) M has good reduction for all but finitely many primes p, which
in turn implies that Γ has well-defined reduction modulo p for all but fintely
many primes p. We denote the reduction of M at p by Mp.

6.2.2 Proposition. Let ` be a prime number and let p be a place of good
reduction for M which is coprime to `. Let Γ denote the reduction of Γ modulo
p. The `-primary part of Γ is cyclic if and only if the `-part of Mp satisfies the
algebraic dependence f .

Proof. As before we will denote G = Ŷ ⊗Gm. The basis that we have fixed on
Y induces a basis ŷ11, . . . , ŷ22 on Ŷ . We will fix a basis element τ of T̀ Gm and
will denote its projection to Gm[`n] by τn. We will also denote the reduction
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of Gm and G modulo p by Gm and G respectively. We fix an embedding of Ks

into the algebraic closure Ks
p of the completion of K at p. It induces compatible

isomorphisms Gm[`n] ' Gm[`n] for every n. We will denote by τ̄n the images
of τn under those isomorphisms. Furthermore, we will denote by P i (resp. P ij)
the reduction of Pi (resp. Pij) modulo p. We have a unique decomposition

P i =
∑
`

pr`(P i),

where pr`(P i) has order a power of `. We have a similar decomposition of Pij .
Then the `-part of Γ is generated by the points pr`(P 1) and pr`(P 2).

As in the previous section we have an isomorphism

τ∗ : Ŷ ⊗Z Z`
∼−→ T̀G,

∑
ij

αij ŷij 7→
∑
ij

αij ŷij ⊗ τ,

which induces an isomorphism

τ[ = (τ ])−1 : Z`[Y ]→ Z`[T̂̀G]

In particular, we have

(τ[f)

∑
ij

αij ŷij ⊗ τ

 = α11α22 − α12α21.

Let m be the exponent of ` in the order of pr`(Mp). Then pr`(Mp) ∈ G[`m]
and there exist βij ∈ Z/`m such that

pr`(Mp) =
∑
ij

βij ŷij ⊗ τ̄m.

Equivalently, we have βij τ̄m = pr`(P ij). Then by the definitions in the previous
section it follows that the `-part of Mp satisfies f if and only if

β11β22 − β12β21 = 0

in Z/`m. Equivalently this holds if and only if

|β′11β
′
22 − β′12β

′
21|` ≤ `−m

for some arbitrary pre-images β′ij ∈ Z` of βij ∈ Z/`m.

6.2.3 Lemma. Let β11, . . . , β22 ∈ Z/`m be such that at least one βij is of
maximal order. Then the following are equivalent

(i) β11β22 − β12β21 = 0;

(ii) The linear system ∣∣∣∣ λ1β11 + λ2β21 = 0
λ1β12 + λ2β22 = 0

has a solution λ = (λ1, λ2) ∈ (Z/`m)2 whose order is `m.
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Proof. To show that (i) implies (ii) assume, without loss of generality, that the
tuple (β11, β21) has maximal order. Then the pair (λ1, λ2) = (β11,−β21) is a
solution of maximal order to the linear system in (ii).

Conversely to show that (ii) implies (i) one simply performs Gauss elimi-
nation on the linear system (i.e. if e.g. λ1 is of maximal order multiply the
first equation by λ−1

1 β22 and the second by −λ−1
1 β21 and add the two equa-

tions).

By the previous lemma it follows that the `-part of Mp satisfies f if and
only if the system ∣∣∣∣ λ1β11τ̄m + λ2β21τ̄m = 0

λ1β12τ̄m + λ2β22τ̄m = 0

has a solution (λ1, λ2) ∈ (Z/`m)2\(`Z/`m)2. (Here 0 denotes the trivial element
in Gm.) But since βij τ̄m = pr`(P ij) this is the same as saying that the `-part
of Mp satisfies f if and only if the equation

λ1pr`(P 1) + λ2pr`(P 2) = 0

has a solution (λ1, λ2) ∈ (Z/`m)2 \ (`Z/`m)2. The last condition is clearly
equivalent to saying that the `-part of the reduction of Γ modulo p is cyclic.
This proves the proposition.

Let (λ, µ) ∈ Z2 \ {(0, 0)}. Consider the following submodules of Y :

Rλ,µ = spanZ{λy11 + µy21, λy12 + µy22}
Sλ,µ = spanZ{λy11 + µy12, λy21 + µy22}.

6.2.4 Lemma. We have Rλ,µ 6⊆ keru and Sλ,µ 6⊆ keru for all pairs (λ, µ) 6=
(0, 0).

Proof. Recall that we assume that Γ is a free abelian group of rank 2 which is
not contained in any proper algebraic subgroup of G2

m.
If Rλ,µ ⊆ keru then it follows that λP11 + µP21 = 0 and λP12 + µP22 = 0

It would follow that λP1 + µP2 = 0. Since P1 and P2 are generators of Γ this
would contradict the assumption that Γ is a free abelian group of rank 2.

On the other hand, if Sλ,µ ⊆ keru a similar argument would imply that
Γ is contained in the algebraic subgroup H ⊆ G2

m described by the relation:
(Q1, Q2) ∈ H if and only if λQ1 + µQ2 = 0. This again contradicts our
assumptions for Γ.

Let L ⊆ Ŷ ⊗ Q denote the dual vector space of (keru) ⊗ Q. Let R̂λ,µ and

Ŝλ,µ denote the dual vector spaces to Rλ,µ⊗Q and Sλ,µ⊗Q respectively. Then
the previous lemma implies the following

6.2.5 Corollary. For all (λ, µ) ∈ Z2 \{(0, 0)} we have L 6⊆ R̂λ,µ and L 6⊆ Ŝλ,µ

Proof. Indeed, if L ⊆ R̂λ,µ then we will have that Rλ,µ ⊆ keru⊗Q. It is then
easy to see that there exists n ∈ N such that Rnλ,nµ ⊆ keru, which contradicts

Lemma 6.2.4. The argument for Ŝλ,µ is analogous.
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6.2.6 Proposition. Assume that f is an exceptional algebraic dependence for
M . Then there exists (λ, µ) ∈ Z2 \ {(0, 0)} such that either L ⊆ R̂λ,µ or

L ⊆ Ŝλ,µ.

Proof. The set Ŷ ⊗Q Q can be considered as the set of rational points of the
affine scheme A4

Q = SpecQ[y11, y12, y21, y22]. The ideal generated by keru then

induces an affine subscheme Vu ⊂ A4
Q such that Vu(Q) = L. Similarly f induces

the affine subscheme Vf ⊆ A4
Q:

Vf : y11y22 − y12y21 = 0

By our definitions, if f is exceptional for M , then (f) ⊆ (keru) ⊗ Q which
implies that L ⊆ Vf (Q). To prove the proposition we therefore need to under-
stand the linear spaces of 2-by-2 matrices with zero determinant.

The space R̂λ,µ has a basis {−µŷ11 + λŷ21,−µŷ12 + λŷ22}, or in matrix
notation {

(−µ 0
λ 0

)
,
(

0 −µ
0 λ

)
}. It is trivial to see that the column vectors of ev-

ery matrix in R̂λ,µ are linearly dependent, which implies that R̂λ,µ ⊆ Vf (Q).

Similarly Ŝλ,µ is spanned by the matrices {
(−µ λ

0 0

)
,
(

0 0
−µ λ

)
} and it is easy to

see that Ŝλ,µ ⊆ Vf (Q). We will show that any linear space contained in Vf (Q)

must lie in one of the spaces R̂λ,µ and Ŝλ,µ
Let F ⊆ Vf (Q) be a linear space. Since Vf is 3-dimensional, non-linear

and irreducible, it contains no 3-dimensional linear subspaces. Hence we can
assume that we have 4 column vectors v1, . . . , v4 ∈ Z2 such that F is spanned
by the matrices (v1, v2) and (v3, v4). We will use the following lemma:

6.2.7 Lemma. Let K be a field and let v1, . . . , v4 ∈ K2. Assume that the pairs
{v1, v2}, {v3, v4} and {v1 + v3, v2 + v4} are all linearly dependent. Then one
of the following holds:

(i) dim spanK{v1, v2, v3, v4} ≤ 1;

(ii) There exist α, β ∈ K, (α, β) 6= (0, 0) such that∣∣∣∣∣αv1 + βv2 = 0

αv3 + βv4 = 0

Proof. Assume that (i) doesn’t hold. Then at least one of the vectors v1 + v3

and v2 + v4 is non-zero. Assume without loss of generality that v1 + v3 6= 0.
Again, since the vectors v1, . . . , v4 span the whole space K2 it follows that
v1 6= 0 and v3 6= 0. Then there exist a, b, c ∈ K such that∣∣∣∣∣∣∣

av1 − v2 = 0

bv3 − v4 = 0

v2 + v4 = c(v1 + v3)

Solving the system and using the fact that v1 and v3 are linearly independent
we get a = b = c which implies (ii).

In our situation the matrices (v1, v2), (v3, v4) and (v1 + v2, v3 + v4) must lie
in Vf (Q) which implies that their rank must be at most 1. Hence the conditions
of the lemma are satisfied. To conclude the proof notice that if (i) is satisfied



70 CHAPTER 6. ALGEBRAIC DEPENDENCES ON GM

then F lies in R̂λ,µ for some (λ, µ), and if (ii) is satisfied then F lies in Ŝλ,µ for
some (λ, µ). We leave this last claim as an exercise for the reader. This proves
the proposition.

We can now finish the proof of Theorem 6.2.1. The algebraic dependence
f can either be generic or exceptional for M . But if f is exceptional, then the
conclusion of Proposition 6.2.6 would contradict Corollary 6.2.5. This implies
that f is generic. Let p be a prime of good reduction for M . Then Mp satisfies
f if and only if the `-part of Mp satisfies f for all prime numbers ` coprime to
p. By Proposition 6.2.2 this is equivalent to saying that the `-primary part of
the reduction of Γ modulo p is cyclic for all ` coprime to p. In other words,
Mp satisfies f if and only if the reduction of Γ modulo p is cyclic. We can now
apply Theorem 6.1.6(iv) to reach the desired conclusion.

6.3 The image of the Galois representation

The goal of this section is to describe the image of the Galois representations
associated to the 1-motive M = [Y

u−→ Gm] given in the statement of theorem
6.1.6.

Cyclotomic fields

Let K be a number field. We will denote by Kn the smallest field containing
K and a primitive n-th root of unity. In particular Qn will denote the n-th
cyclotomic field.

Let ΓKn/K be the Galois group of the field extension Kn/K. The action of
this group on the n-th roots of unity (equivalently on the group Gm[n], where
Gm is defined over K) induces an injection

ρn : ΓKn/K ↪→ (Z/n)×

Let ϕ(n) denote the Euler function. Then we have the following standard
result:

6.3.1 Lemma. For any n, the degree [Qn : Q] of the extension Qn/Q is equal
to ϕ(n). Equivalently, for every n the natural map ΓQn/Q → (Z/n)× is an
isomorphism.

Proof. See [Lan02, VI, Thm. 3.1].

6.3.2 Corollary. Let m,n ∈ N. Let d = (m,n) be the greatest common divisor
of m and n. Then Qm ∩Qn = Qd.

Proof. Let k = [m,n] denote the least common multiple. It is easy to see that
the compositum QnQm contains a primitive k-th root of unity, which implies
that Qk = QnQm. It is also clear that Qd ⊆ Qn ∩Qm. On the other hand we
get

[Qn ∩Qm : Q] =
[Qn : Q][Qm : Q]

[QmQn : Q]
=
ϕ(n)ϕ(m)

ϕ(k)
= ϕ(d) = [Qd : Q].

This implies our claim.
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6.3.3 Proposition. Let K be a number field. There exists a finite set of prime
numbers S such that if n is coprime to all elements in S then [Kn : K] = ϕ(n)
and the map ρn : ΓKn/K → (Z/n)× is an isomorphism.

Proof. For any abelian Q-extension A contained in K let Cyc`(A) denote the
smallest cyclotomic extension containing A (due to the Kronecker-Weber theo-
rem and 6.3.2 such an extension exists). We define c(A) to be the smallest num-
ber such that Cyc`(A) = Qc(A). If Qn contains A, then, since Qn ∩Cyc`(A) =
Cyc`(A), it follows that c(A) divides n. Let S denote the set of prime numbers
` which divide c(A) for some A. Since there are only finitely many such A, the
set S is finite.

Let n be any natural number, coprime to all primes in S. It follows that
K ∩Qn = Q, hence

[Kn : K] = [KQn : K] = [Qn : Q] = ϕ(n),

which is what we wanted to prove.

Applying the proposition above to the prime powers of a fixed prime ` and
taking limits we get:

6.3.4 Corollary. Let K be a number field and let Gm denote the multiplicative
group defined over K. For all but finitely many primes ` the image of the
associated `-adic Galois representation ρ`(Gm) is equal to Aut(T̀ Gm) ∼= Z×` .

Next, let S be a set of primes. To any 1-motive M over K we can associate
the Galois representation:

ρS̄(M) : ΓK →
∏
`/∈S

Aut`(T̀M).

This is the product of the representations ρ`(M) for all primes ` not lying in
S. Then, after taking limits, Proposition 6.3.3 implies

6.3.5 Corollary. There exists a finite set of prime numbers S such that the
map

ρS̄(Gm) : ΓK →
∏
`/∈S

Aut`(T̀ Gm) ∼= lim←−
n

(Z/n)×

is surjective. The limit above is taken over all natural numbers n which are
coprime to the primes in S.

The image of ρ`(M)

Next, we want to describe the image of the `-adic Galois representation ρ`(M)

associated to the 1-motive M = [Y
u−→ Gm]. We will need the following nota-

tion: We will denote the kernel of u in Y by N , and we will let Q denote the
quotient module Y/N . We will write q = dimQ⊗Z Q, that is, q is the rank of
the torsion-free part of Q.

We have isomorphisms T̀G ∼= HomZ(Y, T̀ Gm) and B`G ∼= HomZ(Y,B`Gm).
Hence we can consider the groups HomZ(Q, T̀ Gm) and HomZ(Q,B`Gm) as
subgroups of T̀G and B`G respectively. Then we have the lemma:
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6.3.6 Lemma. Let O denote the ring EndK(G) = EndK(Ŷ ⊗Gm). Then

Z(AnnOM, T̀G) = Hom(Q, T̀ Gm)

and

Z(AnnOM,B`G) = Hom(Q,B`Gm).

Proof. Let d denote the rank of Y . We have the canonical isomorphism

O ∼= EndK(Ŷ ).

Since Y is assumed to be a trivial ΓK-module, the latter ring is (non-canonically)
isomorphic to the ring of d-by-d integer matrices. For any φ ∈ EndK(Ŷ ) we
will denote the dual endomorphism by φt. Then, by the definition of AnnOM
in Section 5.1, it follows that

AnnOM = {φ ∈ EndK(Ŷ ) : Imφt ⊆ N}.

Similarly, we have

Z(AnnOM, T̀G) = {f ∈ T̀G : Imφt ⊆ ker f for every φ ∈ AnnOM}

and

Z(AnnOM,B`G) = {f ∈ B`G : Imφt ⊆ ker f for every φ ∈ AnnOM}.

For any element f ∈ T̀G which lies in Hom(Q, T̀ Gm) we have that N ⊆ ker f .
This implies that f is an element of Z(AnnOM, T̀G). Conversely, let f ∈
Z(AnnOM, T̀G). Let y ∈ N . We can construct an endomorphism φ such that

y ∈ Imφt ⊆ N.

Since such an automorphism is an element of AnnOM it follows that y lies in
the kernel of f . Hence N ⊆ ker f which implies that f lies in Hom(Q, T̀ Gm).
This gives us the desired equality

Z(AnnOM, T̀G) = Hom(Q, T̀ Gm).

The argument for the second equality is analogous.

6.3.7 Corollary.

(i) For all but finitely many primes ` the image of the Kummer map δ`(M)
is equal to Hom(Q, T̀ Gm).

(ii) For all but finitely many primes ` the image of the Pink map ε`(M) is
equal to Hom(Q,B`Gm).

Proof. This follows directly from Theorems 5.2.1, 5.3.1 and the previous lemma.
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We will let U` ⊆ T̀G denote the group Hom(Q, T̀ Gm). Also, let T̀N
denote the Z`-module induced by the image of N in T̀ Y and let T̀Q denote
their quotient. There is a canonical isomorphism

HomZ`(T̀Q, T̀ Gm) ∼= HomZ(Q, T̀ Gm) = U`.

If we consider N and Y as 1-motives, we have a commutative diagram

N M

Y

which induces a diagram of Tate modules

T̀N T̀M

T̀ Y

κ

π
(6.3)

Since T̀N embeds in T̀ Y it follows that the map κ is an injection.
We will denote by H` the group

H` := {σ ∈ Aut(T̀M) : (σ − 1) ◦ κ = 0}

If we write C` := Aut(T̀ Gm), then H` is a part of an exact sequence:

0→ U` → H` → C` → 1 (6.4)

6.3.8 Proposition. The image of the Galois representation ρ`(M) is contained
in H`. It is equal to H` for all but finitely many primes `.

Proof. We will write ρ instead of ρ`(M). Also we will write χ for the cyclotomic
character ρ`(Gm). Let ΓUK denote the kernel of χ.

Requiring that ρ(ΓK) lies in H` is equivalent to saying that the commuta-
tive diagram (6.3) is equivariant under the ΓK-action. This holds, due to the
properties of the functor T̀ , whence the first claim of the proposition follows.

As for the second claim, note that from the exact sequence (6.4) we get the
commutative diagram

1 ΓUK ΓK χ(ΓK) 1

0 U` H` C` 1

δ ρ

χ

where δ denotes the Kummer map δ`(M). By 6.3.4 and 6.3.7(i) it follows
that for all but finitely many primes ` the maps in the left and right column
are surjective. It follows then by diagram chasing that the map ρ is also
surjective.
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The global image

6.3.9 Lemma. The group H` is isomorphic to Z×` n Zq` .

Proof. Fix a section s : T̀ Y → T̀M of the projection map π which extends the
canonical embedding κ : T̀N → T̀M . Then the map

Aut(T̀M)→ C` n Hom(T̀ Y , T̀ Gm), σ 7→ (π∗σ, (σ − 1)s)

is a group isomorphism. An element (α, a) lies in the image of H` if and only
if N ⊆ ker a, or in other words, if and only if a ∈ U`. Hence H` ' C` n U` '
Z×` n Zq` .

Let n be a positive integer. Let En = K(M [n]) denote the smallest field
extension of K over which all points in M [n] are defined. We will write Gn for
the Galois group of the extension En/K. Then the previous lemma implies the
following corollary:

6.3.10 Corollary. For all but finitely many primes ` and for all positive in-
tegers n we have

G`n ' (Z/`n)× n (Z/`n)q.

Proof. Since G`n is precisely the image of ΓK under the composition

ΓK
ρ`−→ Aut(T̀M)→ Aut(M [`n])

it follows that G`n is isomorphic to the quotient of ρ`(ΓK) by the subgroup of
elements which leave the submodule `nT̀M invariant.

Let s be as in Lemma 6.3.9 and consider again the isomorphism Aut(T̀M) '
C` n T̀G induced by it. An element (α, a) acts on T̀M ' T̀ Gm ⊕ T̀ Y by the
formula

(α, a)

(
g

y

)
=

(
αg + ay

y

)
.

Hence the subgroup that leaves `nT̀M ' `nT̀ Gm ⊕ `nT̀ Y invariant is the
subgroup of elements {(α, a) : α ∈ 1 + `nZ`, a ∈ `nT̀G}. On the other hand,
by Proposition 6.3.8, for all but finitely many `, ρ`(ΓK) = H`. Hence G` ∼=
H`/Q`n , where Q`n is the subgroup

Q`n = (1 + `nZ`) n `nU`,

which implies the claim.

Let S be a fixed finite set of prime numbers satisfying the following condi-
tions:

S1. 2 ∈ S;

S2. the map ρS̄(Gm) : ΓK →
∏
`/∈S C` is surjective;

S3. For any ` /∈ S the image of ρ`(M) is equal to H`.

Due to 6.3.5 and 6.3.8 such a set S exists. We will say that an integer m is
good if it is coprime to all primes in S.
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6.3.11 Lemma. Let m be a good positive integer. The maximal abelian quo-
tient of the group (Z/m)× n (Z/m)q is (Z/m)×.

Proof. Let G denote the group (Z/m)× n (Z/m)q and let U denote the sub-
group {(1, a) ∈ G : a ∈ (Z/m)q}. We need to show that the U is equal to the
commutator [G,G] of G.

The group operation in G is given by the formula

(α, a)(β, b) = (αβ, a+ αb)

and the inverse is
(α, a)−1 = (α−1,−α−1a).

Hence if x = (α, a) and y = (β, b) are two elements of G, we have

[x, y] = xyx−1y−1 = (1, (α− 1)b− (β − 1)a)

which is an element of U . Conversely if (1, b) ∈ U then we have

(1, b) = [(2, 0), (1, b)],

hence (1, b) ∈ [G,G]. (Note that 2 is invertible in Z/m since by S1 m is odd.)
It follows that U = [G,G] which implies the claim.

6.3.12 Proposition. Let m be a good integer, m = `α1
1 . . . `αss . Then

Gm '
s∏
i=1

G`αii
' (Z/m)× n (Z/m)q

Proof. We are going to prove this statement by induction on the number of
distinct prime factors of m. If m is a prime power m = `α, then the proposition
was proved in 6.3.10, since by condition S3 the image of ρ`(M) is the whole
group H`.

Let now m = `αm′, for some good prime ` and some good integer m′ which
is coprime to `. Assume that Gm′ ∼= (Z/m′)× n (Z/m′)q. It is sufficient to
show that |Gm| = [Em : K] = ϕ(m)mq, where ϕ denotes the Euler function.
We have the following diagram of field extensions:

Em

KmE`α KmEm′

E`α Km Em′

K`α Km′

K

`αq

m′q

ϕ(`α)

ϕ(m′)
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We have Km ∩ Em′ = Km′ . Indeed, let X = Km ∩ Em′ Since X is a
subfield of Km it is an abelian extension of K. But by 6.3.11 and our inductive
assumption it follows that the maximal abelian sub-extension of Em′ is Km′ .
Hence X = Km′ . It follows that [KmEm′ : Km] = [Em′ : Km′ ] = m′q. By an
analogous argument we also have [KmE`α : Km] = [E`α : K`α ] = `αq.

By S2 we have that [Km : K] = [K`α : K][Km′ : K] = ϕ(m). Also, since the
degrees of the extensions KmE`α/Km and KmEm′/Km are coprime, and since
Em is the compositum of KmE`α and KmEm′ , it follows that [Em : Km] =
[KmE`α : Km][KmEm′ : Km] = mq. Hence [Em : K] = [Em : Km][Km : K] =
ϕ(m)mq, which concludes the proof.

Taking limits we arrive at the following corollary:

6.3.13 Corollary. There exists a finite set of primes S such that the image
of the Galois representation ρS̄(M) is the product

∏
`/∈S H`. In particular for

any finite set of primes P which does not contain any primes in S, the image
of the Galois group ΓK in

∏
`∈P Aut(T`M) is the group

∏
`∈P H`.

6.4 Proof of the main theorem

As a first step we will do the following simplification

6.4.1 Lemma. In order to prove Theorem 6.1.6 it is sufficient to prove it
when the algebraic dependence I is principal, i.e. I = (f) for some homogenous
polynomial f .

Proof. Let I = (f1, . . . , fk). It is a simple corollary of the definitions that I is
exceptional if and only if fi are exceptional for all i = 1 . . . k. Similarly, (the
`-part of) Mp satisfies I if and only if it satisfies fi for i = 1 . . . k. It follows
that the general cases of 6.1.6(i) and 6.1.6(ii) follow from the special case where
I is principal.

Next we show 6.1.6(iv). Indeed, if I is generic then there must exist i such
that fi is generic. But the set of primes p for which Mp satisfies I is a subset
of the set of primes p for which Mp satisfies (fi). It follows that if the latter
set has zero density, then the former must have zero density as well.

Finally we show 6.1.6(iii). Let DI
` denote the density of primes of good

reduction p for which the `-part of Mp satisfies I (it follows from 4.2.12 that
this density exists). We are going to prove the statement by induction on the
number of generators of I. If I has one generator then it is principal and the
claim is trivial. Let I = I ′ + (f). If I is generic then either I ′ of (f) must also
be generic. Hence we have

DI
` ≤ min{DI′

` , D
f
` } = 1−Θ(`−1)

by the inductive hypothesis. On the other hand we have the inequality

DI
` + 1 ≥ DI′

` +Df
` = 2−Θ(`−1)

The two inequalities imply the desired asymptotic DI
` = 1−Θ(`−1).
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As a consequence of the previous lemma we will assume from now on that
I is principal and we will fix a generator f ∈ I. We set d to denote the degree
of f . We also fix a basis {y1, . . . , yn} of Y , which allows us to identify f with
a homogenous polynomial in Z[y1, . . . , yn].

Let ` be a prime number. We want to associate to the polynomial f a set
Af` ⊆ Aut(T̀M). We proceed as follows. Let s : T̀ Y → T̀M be a section of
the standard projection map π : T̀M → T̀ Y . Let τ ∈ T̀ Gm be a fixed basis
element. The section s, together with the bases τ and y1, . . . , yn, allow us to
identify Aut(T̀M) with the set of matrices

Aut(T`M) =

{(
α b
0 In

)
: α ∈ Z×` , b ∈ Zn`

}
,

where In is the identity matrix. Then we let Af` denote the set

Af` :=

{(
α b
0 In

)
: |f(b)|` ≤ |α− 1|`‖b‖deg f−1

`

}
,

where ‖b‖` denotes the maximum norm of the vector b, i.e. if b = (b1, . . . , bn),
then ‖b‖` := max{|b1|`, . . . , |bn|`}.

6.4.2 Lemma. The set Af` is the closure of the pre-image of Z(I,B`G) under
the Pink map εT̀ M .

Proof. After fixing the bases τ and {y1, . . . , yn} the vector space V̀G is canoni-
cally identified with Qn` . Then it is easy to see from the construction in Section
3.4 that the Pink map is the composition of the map

ε′ : Aut(T̀M)→ V̀G,

(
α b
0 In

)
7→ (α− 1)−1b

with the canonical projection V̀ G→ B`G. The pre-image of the set Z(I,B`G)
under the latter is the set

Z∗(I, V̀G) = {x : |f(x)|` ≤ ‖x‖d−1
` }

(as follows from Lemma 6.1.4(iii)). Substituting (α − 1)−1b for x and using
the fact that f is homogenous of degree d, it follows that the pre-image of
Z(I,B`G) under the Pink map is precisely the set{(

α b
0 In

)
: α 6= 1 and |f(b)|` ≤ |α− 1|`‖b‖d−1

`

}
.

Clearly, Af` is the closure of this set.

Notice that this lemma implies that the set Af` does not depend on the
choice of basis.

6.4.3 Lemma. Let ` be a fixed prime number. The following properties are
equivalent:

(i) H` ⊆ Af` ;

(ii) The restriction of f on U` is zero;
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(iii) The algebraic dependence f is exceptional for M .

Proof. As in Lemma 6.3.9 we can choose a section s : T̀ Y → T̀M such that
the subgroup H` becomes isomorphic to the group of matrices{(

α b
0 In

)
: b ∈ U`

}
.

Then clearly if f(b) = 0 for all b ∈ U` we have that 0 = |f(b)|` ≤ |α−1|`‖b‖d−1
`

for any α ∈ C`, hence (ii) implies (i). Conversely, when we consider U` as a

subgroup of H` the condition H` ⊆ Af` implies that for any b ∈ U` we have

|f(b)|` ≤ |1− 1|`‖b‖d−1
` = 0. Hence (i) implies (ii).

To show that (ii) and (iii) are equivalent notice that U` is precisely the set
of common zeros for the linear dependence L(keru) in T̀G, or in other words,
that U` = Z(L(keru), T̀G). Hence the restriction of f on U` is zero if and
only if Z(f, T̀G) ⊇ Z(L(keru), T̀G). Then we are reduced to the following
problem:

6.4.4 Claim. Let f ∈ Q`[x1, . . . xn] be a homogenous polynomial and let L ⊆
Q`[x1, . . . xn] be an ideal generated by linear polynomials. Let Vf and VL be the
affine Q`-schemes induced by f and L. Then f ∈ L if and only if Vf (Z`) ⊇
VL(Z`).

Proof. One direction of the claim is clear. To prove the other direction, we
proceed by induction on n. If n = 1 then L is one of the ideals (0) or (x1). In
both cases the claim follows easily.

Next we prove the statement for n, having assumed that it holds for n− 1.
Note that VL(Z`) ⊆ Vf (Z`) if and only if VL(Q`) ⊆ Vf (Q`). If L = (0)
then f vanishes on every point in Qn` , which implies f = 0. Otherwise, let
L = (g1, . . . , gk). Without loss of generality we can assume that g1 = xn −
g′(x1, . . . , xn−1) for some linear form g′, and that g2, . . . , gk ∈ Q`[x1, . . . , xn−1].
(One can always find such generators of L using Gauss elimination, and possibly
relabeling of the variables.) Let L′ = (g2, . . . , gk) and let f ′(x1, . . . , xn−1) =
f(x1, . . . , xn−1, g

′(x1, . . . , xn−1)). Notice that every point in VL′(Q`) lies also
in Vf ′(Q`). Hence by the inductive hypothesis it follows that f ′ ∈ L′ ⊆ L. But
if we write

f =
∑
i

fix
i
n

for some polynomials fi ∈ Q`[x1, . . . xn−1] we see that

f − f ′ =
∑
i

fi(x
i
n − g′i)

is divisible by g1. Hence f ∈ L.

In our case our claim implies that the restriction of f on U` is zero if and
only if f ∈ L(keru)⊗Q`. Since f has integer coefficients the last condition is
equivalent to saying that f is exceptional for M .

Proof of Theorem 6.1.6(i,ii). Let f be an exceptional algebraic dependence for

M . Fix an arbitrary prime number `. Lemma 6.4.3 then implies that H` ⊆ Af` .
By Proposition 6.3.8 we have that the image of the Galois representation ρ`(M)
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is contained in H` and by Lemma 6.4.2 it follows that after applying the Pink
map, the image of every Frobenius element corresponding to an unramified
prime will lie in Z(f,B`G). This implies that for every prime of good reduction
p, the `-part of Mp satisfies f . Since this claim holds for all prime numbers `,
it follows that Mp satisfies f for every prime ideal p of good reduction. This
proves Theorem 6.1.6(ii) and one implication of Theorem 6.1.6(i).

Let S be a finite set of prime numbers such that for every prime ` outside
of S the image of ρ`(M) is equal to H`. By Proposition 6.3.8 such a set exists.
Let ` be a fixed prime lying outside of S. If the `-part of Mp satisfies f for every
prime of good reduction, then every Frobenius element in the image of ρ`(M)

must lie in Af` . By the Chebotarev density theorem (or more precisely by the

Frobenius density theorem) and by our assumption it follows that H` ⊆ Af` .
Then Lemma 6.4.3 implies that the algebraic dependence f is exceptional for
M . This proves the second part of Theorem 6.1.6(i).

Let µ` denote the probability Haar measure on H` and let Df
` := µ(Af` ∩H`).

For all but finitely many prime numbers `, Df
` is precisely the density of the

primes p for which the `-part of Mp satisfies f . The proof of rest of the theorem
is based on the following key estimate:

6.4.5 Proposition. If H` ⊆ Af` then Df = 1. Otherwise,

Df = 1− 1

`− 1

(
1 +O(`−1)

)
.

(Here the constant in the O-term does not depend on `.)

The first claim of the proposition is trivial. So from now on we will assume
that H` 6⊆ Af` .

Let χf denote the characteristic function of Af` . Then

Df =

∫
H`

χf (h) dh

We will fix an isomorphism H` ' C` n U` and will simply identify H` with
the corresponding semidirect product. Consider the map

ψ : C` × U` → C` n U`, (α, a) 7→ (α, a)

This map is not a group homomorphism. However, if we introduce the proba-
bility Haar measures on U`, C` and their product U` × C` it turns out that ψ
is an isometry. More precisely:

6.4.6 Lemma. Let f ∈ Cc(H`). Then if µ′ denotes the probability Haar
measure on C` × U`, we have∫

H`

f dµ =

∫
H`

ψ∗(f) dµ′.

Proof. To avoid confusion we will denote the group operation in H` by “?” and
the one in C` × U` by “∗”. Let g ∈ Cc(C`) be the function

g(α) =

∫
U`

f((1, u) ? (α, 0)) du
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Since (1, u) ? (α, 0) = (1, u) ∗ (α, 0) we also have

g(α) =

∫
U`

ψ∗(f)((1, u) ∗ (α, 0)) du.

Then ∫
H`

f dµ =

∫
C`

g(α) dα =

∫
C`×U`

ψ∗(f) dµ′,

where we have used [Fol95, Theorem 2.49] to relate an integral over a locally
compact group to an integral over a quotient group.

It follows from the previous lemma that∫
H`

χdµ =

∫
U`×C`

ψ∗(χ) dµ′ =

∫
U`

g du, (6.5)

where

g(u) =

∫
C`

χ((α, u)) dα = µC`
(
{α ∈ C` : |f(u)|` ≤ |α− 1|`‖u‖d−1}

)
. (6.6)

Recall that C` = Z×` .

6.4.7 Lemma. We have

µ
(
{α ∈ Z×` : |α− 1|` ≥ `−n}

)
= 1− 1

`− 1
`−n.

Proof. Let Fn := {α ∈ Z×` : |α − 1|` ≤ `−1}. One easily sees that µ(F0) = 1
and µ(Fn) = 1

`−1`
1−n for n ≥ 1. Then

µ
(
{α ∈ Z×` : |α− 1|` ≥ `−n}

)
= 1− µ(Fn+1) = 1− 1

`− 1
`−n.

Applying this lemma to (6.6) we get

Df =

∫
U`

g(u) du = 1− 1

`− 1

∫
U`

|f(u)|`
‖u‖d−1

`

du (6.7)

6.4.8 Lemma. We have∫
U`

|f(u)|
‖u‖d−1

`

du =
(
1 +O(`−q−1)

) ∫
U`

|f(u)|` du.

Proof. Denote by I the integral on the left-hand side in the expression above.
We have

I =

∫
`U`

|f(u)|
‖u‖d−1

`

du+

∫
U`\`U`

|f(u)|
‖u‖d−1

`

du. (6.8)

After changing variables u 7→ `u and using the fact that f is homogenous of
degree d we get for the first integral the relation∫

`U`

|f(u)|
‖u‖d−1

`

du = `q+1I (6.9)
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For the second integral we have∫
U`\`U`

|f(u)|
‖u‖d−1

`

du =

∫
U`\`U`

|f(u)|` du.

Again, using the fact that f is homogenous, we get∫
`U`

|f(u)|` du = `−q−d
∫
U`

|f(u)|` du

which allows us to conclude that∫
U`\`U`

|f(u)|
‖u‖d−1

`

du = (1− `−q−d)
∫
U`

|f(u)|` du. (6.10)

Combining (6.8), (6.9) and (6.10) and solving for I we get

I =
1− `−q−d

1− `−q−1

∫
U`

|f(u)|` du.

Since 1−`−q−d
1−`−q−1 = 1 +O(`−q−1) the claim follows.

Applying this lemma to (6.7) we get the estimate

Df = 1− 1

`− 1

(
1 +O(`−q−d)

) ∫
U`

|f(u)|` du (6.11)

6.4.9 Lemma. Let f ∈ F`[x1, . . . , xn] be a non-zero polynomial of total degree
d. Then f has at most nd`n−1 zeros in Fn` .

Proof. We will prove this statement by induction on n. If n = 1 the statement
is standard. Assume that the statement is true for n. Let f ∈ F`[x1, . . . , xn+1]
be a non-zero polynomial. Write

f =

dn+1∑
i=0

gix
i
n+1

for some polynomials gi ∈ Z[x1, . . . , xn]. Since at least one of the polynomials
gi is non-zero we can conclude by the inductive hypothesis that the set of
common zeros of g0, . . . , gdn+1 has size at most nd`n−1. Each of those zeros
induces ` zeros of f . On the other hand, each element of Fn` which is not a
common zero of the polynomials gi induces at most dn+1 ≤ d zeros of f . Hence
the total number of zeros is bounded from above by

(nd`n−1)`+ `nd = (n+ 1)d`n.

Notice that for all but finitely many primes ` the restriction of f to U` has
non-zero reduction modulo `. Indeed we can assume, without loss of generality
that N = keru is contained in the submodule generated by the basis elements
{yq+1, . . . , yn} (otherwise just change the basis). This implies that for all but
finitely many ` the images of {y1, . . . , yq} in Q form a basis of T̀Q. Then the
restriction of f to U` is given by the polynomial f(y1, . . . , yq, 0, . . . , 0). Since
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this is a non-zero polynomial with integer coefficients it follows that for all but
finitely many ` its reduction modulo ` is not zero.

Therefore, if N` denotes the number of zeros of the restriction of f to U`
reduced modulo `, we can apply Lemma 6.4.9 to conclude that

N` = O(`q−1) (6.12)

(Since there are only finitely many primes for which Lemma 6.4.9 does not
apply we can we can include them in the above estimate by increasing the
implicit constant. This constant still depends only on M and f .)

Let S` ⊆ U` denote the set S` = {u ∈ U` : |f(u)|` < 1}. Clearly µ(S`) =
`−qN` = O(`−1). Then equation (6.11) gives us

Df = 1− 1

`− 1

(
1 +O(`−`−d)

)(
µ(U` \ S`) +

∫
S`

|f(u)|` du
)

= 1− 1

`− 1

(
1 +O(`−`−d)

) (
1 +O(`−1) +O(`−1)

)
= 1− 1

`− 1

(
1 +O(`−1)

)
.

This completes the proof of Proposition 6.4.5.

Proof of Theorem 6.1.6(iii). If f is generic then by Lemma 6.4.3 it follows that

for every ` we have H` 6⊆ Af` . Hence by Proposition 6.4.5 we have

Df
` = 1− 1

`− 1

(
1 +O(`−1)

)
= 1−Θ(`−1)

For all but finitely many primes ` the image of the Galois representation ρ`(M)
is equal to H`. Hence for all but finitely many primes ` the density of prime
ideals p of good reduction for which the `-part of Mp satisfies f is equal to

Df
` = 1−Θ(`−1). To include all primes ` one just needs to modify the implicit

constants.

Proof of Theorem 6.1.6(iv). By Corollary 6.3.13 there exists a finite set of
prime numbers S such that for any finite set of primes P outside of S the image
of the Galois group ΓK in

∏
`∈P Aut(T̀M) is the group HP :=

∏
`∈P H`.

Let P be such a finite set of primes and let ρP denote the representation
ρP : ΓK → HP induced by M .

Let p be a prime ideal of good reduction for M and assume furthermore
that it is coprime to all elements in P . If Mp satisfies f then, by definition,
the `-part of Mp satisfies f for all prime numbers ` ∈ P . Equivalently, for
every ` ∈ P the image of the Frobenius φp at p under the Pink map εT̀ M is
contained in Z(f,B`G). By Lemma 6.4.2 it follows that the Frobenius lies in∏
`∈P A

f
` ∩ ρP (ΓK) =

∏
`∈P (Af` ∩ H`). We can therefore apply Chebotarev’s

density theorem 4.2.10 to conclude that the density of all prime ideals p such
that Mp satisfies f , if it exists, is bounded from above by

µ(
∏
`∈P

Af` ∩H`) =
∏
`∈P

Df
` .
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Since f is generic, Theorem 6.1.6(iii) implies that∏
`∈P

Df
` ≤

∏
`∈P

(
1− c

`

)
for some positive constant c which depends on M and f . But since∏

` prime

(
1− c

`

)
= 0

(which one can show by taking logarithms for example) it follows that as we
vary P we can get an arbitrarily small upper bound for the density of primes
p for which Mp satisfies f . It therefore follows that this density exists and is
equal to 0.

6.5 Relations to transcendence theory

The local image of the Kummer map

Let K be a finite Qp-extension and let M = [Y
u−→ Gm] be a trivial K-1-motive

of good reduction. We would like to determine the image of the Kummer map
δp(M). Denote the ring of integers of K by R, the maximal ideal by m and the
residue field by k. Furthermore, we fix a uniformizing element π ∈ R.

Since M is of good reduction it follows that u(Y ) ⊆ R×. The map u induces
maps

un : Y/pn → R×/pn

for every n ≥ 1. The group R× has a canonical decomposition as a product
R× ∼= U×k×, where U is the subgroup of all points which reduce to the identity
modulo m. Since the order of k× is coprime to p it follows that R/pn ∼= U/pn

for all n ≥ 1. U is a pro-p group hence

lim←−
n

U/pn ∼= U

Therefore after taking projective limits we get a map

u′ : TpY → U

This map is a continuous homomorphism of Z`-modules.
Let tGm denote the tangent space of Gm. One has a well-defined logarithm

map
log : Gm(R)→ tGm(K)

which we can extend to the whole group Gm(K) by fixing log π = 0. This map
is defined via the usual analytic series

log(1 + x) =

∞∑
n=1

(−1)n−1xn

n

whenever the p-adic absolute value of x is sufficiently small, and is extended to
all points in R× by homomorphism. Its kernel in R× is precisely the torsion
subgroup.

Let us then define the map L : TpY → tGm(K), L = log ◦u′. Then we have
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6.5.1 Proposition. The image of the Kummer map δp(M) in the Tate module
TpG = Hom(TpY,TpGm) is a finite index subgroup of the submodule

Hom(TpY/ kerL,TpGm).

Proof. Let T denote the module Hom(TpY,TpGm), and let M̃ be the image of
M in H1(ΓK , T ) under the Abel-Jacobi map αp. Recall that the Abel-Jacobi
map is a limit of maps

α[n] : MotK(Y,Gm)→ H1(ΓK , T/p
n)

It follows from the definitions that a 1-motive X = [Y
v−→ Gm] lies in the kernel

of α[n] if and only if the induced map un : Y/pn → K×/pn is trivial.
Let O denote the ring of ΓK-equivariant endomorphisms of T . Since Y is

a trivial ΓK-module, T ⊗ Q` can be represented as a sum of 1-dimensional
ΓK-representations, which implies that it is semi-simple. Let Q be the image
of the representation

ρp(Ŷ ⊗Gm) : ΓK → End(T ).

Since the image of the cyclotomic character ΓK → Z×p is an open subgroup
of Z×p one can show, using arguments similar to those in Lemma 5.2.6, that
H1(Q,T⊗Q`) = 0. It follows that the conditions of Corollary 5.1.2 are satisfied,
hence we can conclude that the image of δ`(M) is a finite index subgroup of

the Zp-submodule Z(AnnOM̃, T ). To conclude the proof we have to show the
equality

Z(AnnOM̃, T ) = Hom(TpY/ kerL,TpGm). (6.13)

Let Nn denote the kernel of the map un, and let N be the inverse limit of
Nn. This is also the kernel of the map u′, and since the kernel of log is finite,
it follows that N is a finite index subgroup of kerL. This implies

Hom(TpY/N,TpGm) = Hom(TpY/ kerL,TpGm) (6.14)

Since ΓK acts trivially on Y it is easy to show that O ∼= EndK(Ŷ ⊗Gm)⊗
Zp ∼= EndK(Ŷ )⊗Zp. The latter ring is non-canonically isomorphic to the ring
of m×m-matrices with coefficients in Zp, where m is the rank of Y .

Let φ ∈ AnnOM̃ . Let φn ∈ EndK(Ŷ ) be a sequence of homomorphisms

such that φ ≡ φn mod pn. φM̃ = 0 if and only if α[n](φnM) = 0 for all n. This
holds if and only if u ◦ φtn is trivial, where φt denotes the homomorphism dual
to φ. The last statement is equivalent to saying that the image of φtn lies in
Nn.

Let An = {φ ∈ End(Ŷ ) : Imφ ⊆ Nn}/pn. The arguments above imply that

AnnOM̃ = lim←−nAn. The sets An are left ideals of the rings O/pn, which act

on T/pn. One can show that

Z(AnnOM̃, T ) = lim←−
n

Z(An, T/p
n)

Using arguments similar to the ones in Lemma 6.3.6 it is easy to show that
Z(An, T/p

n) = HomZ/pn(Y/Nn,TpGm/pn). Taking limits on both sides of this
equation and using (6.14), one derives the equality in (6.13).
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Conjectures

We restrict ourselves to the case of trivial 1-motives over Q. Let M = [Y
u−→

Gm] be such a trivial Q-1-motive and let p be a fixed prime of good reduction.
Further, we fix a basis y1, . . . , yn of Y . Let Pi := u(yi) for i = 1, . . . , n.
Let f ∈ Z[y1, . . . , yn] be a fixed homogenous polynomial. Let logp : Z×p → Zp
denote the p-adic logarithm map. Note that since p is a prime of good reduction
for M , it follows that u(Y ) is contained in Z×p . Then we have the following
conjecture:

6.5.2 Conjecture. Suppose that f(logp P1, . . . , logp Pn) = 0. Then the p-adic
numbers logp Pi, . . . logp Pi are linearly dependent over Q.

This is a standard conjecture from p-adic transcendence theory. It is a
special case of the p-adic version of Schanuel’s conjecture. We will show that
this conjecture can be reinterpreted as a conjecture about the p-adic Galois
representation associated to the 1-motive M . A related result due to Bertolin
[Ber02] (see also [And04, §23]) shows that in the complex case Schanuel’s con-
jecture is equivalent to a generalization of Grothendieck’s period conjecture
applied to 1-motives of the type [Zr → Gsm].

We can state Conjecture 6.5.2 in a slightly stronger form by describing what
the conjectural linear relation between the p-adic logarithms looks like. Using
the language we have introduced above we have

6.5.3 Conjecture. The following statements are equivalent:

(i) f(logp P1, . . . , logp Pn) = 0.

(ii) The algebraic dependence (f) is exceptional for M .

It is easy to see that Conjecture 6.5.3 implies Conjecture 6.5.2.
We would like next to state a conjecture, which is equivalent to Conjecture

6.5.3. To do so we fix an embedding of Qs into Qsp which allows us to regard the

absolute Galois group ΓQp as a subgroup of ΓQ. Let again G = Ŷ ⊗Gm be the
Cartier dual of Y . Recall that we have a well-defined zero-set Z(f,TpG) ⊆ TpG
due to the fact that f is homogenous. Recall also that there is an exact sequence

0→ TpG→ Aut(TpM)→ Aut(TpGm)→ 1

6.5.4 Conjecture. The following two statements are equivalent:

(i) The intersection of ρp(M)(ΓQp) with TpG is contained in Z(f,TpG);

(ii) The algebraic dependence (f) is exceptional for M .

One easily sees that (ii) implies (i). The conjectural part is that the converse
implication also holds.

6.5.5 Proposition. Conjectures 6.5.3 and 6.5.4 are equivalent.

Proof. Let Mp = M ⊗Q Qp denote the base change of M to Qp. Then the
intersection of ρp(M)(ΓQp) with TpG is precisely the image of the Kummer
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map δp(Mp). Let τ ∈ TpGm be a fixed basis element. Let v ∈ VpG be the
vector

v =

n∑
i=1

(logp Pi)ŷi ⊗ τ

Proposition 6.5.1 in this case implies that the image of the Kummer map
δp(Mp) is a finite-index subgroup of the intersection of the vector space Qpv
with TpG. Since a vector w =

∑n
i=1 αiŷi ⊗ τ lies in Z(f,TpG) if and only if

f(α1, . . . , αn) = 0, it is clear that f(logp P1, . . . , logp Pn) = 0 if and only if
the image of δp(Mp) is contained in Z(f,TpG). Hence statement (i) of Conjec-
ture 6.5.3 is equivalent to statement (i) of Conjecture 6.5.4, which proves the
proposition.

Finally, we would like to show that there exists a certain analogy between
our conjectures and Theorem 6.1.6. Recall the set Afp of automorphisms of
Aut(TpM), which, after picking a section TpY → TpM , can be identified with
the set of matrices

Afp :=

{(
α b
0 In

)
: |f(b)|p ≤ |α− 1|p‖b‖deg f−1

p

}
,

In the proof of Theorem 6.1.6 we showed that the `-part of the reduction of
a 1-motive M modulo p satisfies the algebraic relation (f) if and only if the

decomposition group at p is contained in Af` . For the case ` = p we have the
following analogous situation:

6.5.6 Proposition. Suppose that p ≥ 3. Statement (i) of Conjectures 6.5.3
and 6.5.4 holds if and only if the image of ΓQp under the p-adic Galois repre-
sentation ρp(M) is contained in Afp .

Proof. Compare with the proof of Lemma 6.4.3. Let Wp denote the image of
the decomposition subgroup ΓQp under the Galois representation ρp(M), let
Xp denote the image of the cyclotomic character and let Yp denote the kernel
of the map Wp → Xp, or in other words, the image of the Kummer map
δp(M ⊗Q Qp). After we identify Aut(TpM) with a group of matrices as in the
previous section, the map Wp → Xp is given by

Wp 3
(
α b
0 In

)
7→ α ∈ Xp,

and the map Yp →Wp is given by

Yp 3 b 7→
(

1 b
0 In

)
∈Wp.

It is then clear that if Wp is contained in Afp , then f(b) = 0 for all b ∈ Yp
which implies that Yp lies in Z(f,TpG).

Next assume that Yp lies in Z(f,TpG). By the theory of cyclotomic exten-
sions, Xp is equal to Z×p . Let α ∈ Xp be any topological generator of Xp and
let w ∈Wp be a pre-image. Then w can be represented by a matrix

w =

(
α a
0 In

)
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One can show that any element of the form(
β β−1

α−1a

0 In

)
is contained in the closure of the group generated by w. Indeed, if β = αm for
some integer m then the element above is simply wm. The general case follows
by continuity.

Let

σ =

(
β b
0 In

)
be an arbitrary element in Wp. We can represent σ as the following product
of elements in Wp:

σ =

(
1 1−β

α−1a+ b

0 In

)(
β β−1

α−1a

0 In

)
By our assumption it follows that f(b+ 1−β

α−1a) = 0. Let d denote the degree of
f . Since f is homogenous with integer coefficients and since ‖a‖p ≤ 1, we have

f(b+
1− β
α− 1

a) = f(b) + C,

where

|C|p ≤ max
0≤j≤d−1

{
‖b‖jp

∣∣∣∣β − 1

α− 1

∣∣∣∣d−j
p

}
Note that |α − 1|p = 1 due to the fact that α generates Z×p and p ≥ 3. There
are two cases. If ‖b‖p ≤ |β − 1|p then

|f(b)|p ≤ ‖b‖dp ≤ |β − 1|p‖b‖d−1
p

implying that σ lies in Afp . On the other hand, if |β − 1|p < ‖b‖p then

|f(b)|p = |C|p ≤ |β − 1|p‖b‖d−1
p

which brings us to the same conclusion.
We have thus proved that Yp lies in Z(f,TpG) if and only if Wp lies in Afp .

This proves the proposition.

As a consequence of the considerations above we see that there exists a
certain correspondence between the question of whether the reduction of a 1-
motive satisfies a given algebraic dependence and certain problems of p-adic
transcendence theory. In particular the problem corresponding to the example
given in Section 6.2 is the p-adic four exponentials conjecture stated in the
introduction of this chapter.
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Appendix

A.1 Equivalence of categories

The main reference for this section is MacLane [ML98] (or any other book on
category theory).

Let C and D be two categories. A (covariant) functor F : C → D is called
full if for every pair of objects a, b ∈ C the map Hom(a, b) → Hom(Fa, Fb)

sending every arrow a
f−→ b to its corresponding arrow Fa

Ff−−→ Fb is surjective.
The functor F is faithful if for every pair of objects a, b ∈ C the map described
above is injective. It is fully faithful if it is both full and faithful. If F : C→ D

is a contravariant functor we say that it is full, faithful or fully faithful if the
corresponding functor F op : C → Dop from C to the opposite category Dop of
D has any of the stated properties above.

A functor F : C → D is called essentially surjective if for every object
d ∈ D there exists an object c ∈ C such that Fc is isomorphic to d.

The functor F : C → D is called an equivalence of categories if there
exists a functor G : D→ C and natural isomorphisms G◦F ∼= IdC and F ◦G ∼=
IdD, where IdC : C → C and IdD : D → D are the identity functors of C and
D respectively. In this case we will also say that the categories C and D are
equivalent.

We have the following criterion (see [ML98, IV, Theorem 4.1]):

A.1.1 Theorem. The following properties of a functor F : C→ D are logically
equivalent:

(i) F is an equivalence of categories;

(ii) F is fully faithful and essentially surjective.

A.2 Galois theory

We recall the main results of Galois theory as presented by Grothendieck. This
section is based on the exposition in [SGA1, Exp V], we have simply translated
all facts which are relevant to us. We refer to the original source for proofs.

A.2.1 Definition. A category C is called a Galois category if it is equivalent
to the category C(π) of finite sets with continuous π-action, where π is some
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profinite topological group. The group π is called the fundamental group of
C.

A.2.2 Theorem. Let S be a connected, locally noetherian scheme. The cat-
egory FET(S), consisting of finite étale surjective morphisms X → S (also
called étale coverings), is a Galois category.

Proof. See [SGA1, Exp V, 7].

We can give a more explicit description of the equivalence C → C(π) in
the definition above. A pro-object in C is any covariant functor P : I → C,
where I is a small cofiltered category. The pro-objects of a category C form a
category Pro− C.

A.2.3 Theorem. Let C be a Galois category with fundamental group π. There
exists a pro-object P of C such that π is isomorphic to the opposite group of
Aut(P ). In this case the functor

FP : X 7→ Hom(P,X) = lim−→
i∈I

Hom(Pi, X)

is an equivalence between C and C(π). Moreover, every equivalence F : C →
C(π) is isomorphic to FP for some pro-object P .

The pro-objects P having the property described in the previous theorem
are called fundamental pro-objects, and their associated functors FP are
called fundamental functors. One can show that every two fundamental
pro-objects are isomorphic. Note that if a pro-object P has a limit in some
category C′ of which C is a subcategory, then one can replace P by its limit in
the definition of the functor FP above.

For any fundamental functor F there is a certain maximal fundamental
pro-object P for which F = FP . More precisely we have

A.2.4 Lemma. Let C be a Galois category with fundamental group π and let F
be a fundamental functor. There exists a fundamental pro-object P = {Pi}i∈I
such that F = FP and such that the following two conditions are satisfied:

(i) Every morphism Pi → Pj, for j ≤ i is an epimorphism;

(ii) Every epimorphism Pi → P ′ is equivalent to some morphism Pi → Pj
for some j ≤ i.

Furthermore, this fundamental pro-object P is uniquely determined.

Let C be a Galois category, let P = {Pi}i∈I be a fundamental pro-object
and FP be its associated fundamental functor. We say that Pi is Galois if the
group Aut(Pi) acts transitively on the set FP (Pi). One can then show that if
the conditions in the lemma above are satisfied then Aut(P ) is the limit of the
groups Aut(Pi) for all Galois Pi. For every j ∈ I there exists i ≥ j such that
Pi is Galois.

Let S be a connected locally noetherian scheme. We can associate a funda-
mental functor and a fundamental pro-object to the category FET(S) as fol-
lows: Pick an algebraically closed field Ω and a geometric point x : Spec(Ω)→
S and let Fx be the functor from the category FET(S) to the category of finite
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sets which associates to every object X ∈ FET(S) the set Fx(X) of all geo-
metric points lying above x. The proof of Theorem A.2.2 consists essentially
in showing that there exists a group π = π1(S, x) such that Fx induces an
equivalence of categories FET(S) → C(π). The group π1(S, x) is called the
fundamental group of S at x and the pro-object associated to Fx is called
the universal covering of S at x. Picking a different point x′ induces a
group π1(S, x′) which is non-canonically isomorphic to π1(S, x).

If f : S′ → S is a morphism of connected locally noetherian schemes, x′ is a
geometric point in S′ and x = f(x′), we get a functor f• : FET(S)→ FET(S′)
and one has an isomorphism of fundamental functors Fx ∼= Fx′ ◦ f•. Moreover
we have a canonical group homomoprhism

π1(f, x′) : π1(S′, x′)→ π1(S, x).

The following proposition relates Grothendieck’s Galois theory to its tradi-
tional form

A.2.5 Proposition. Let S be the spectrum of a field k and let Ω be an algebraic
closure of k which defines a geometric point x : Spec Ω → S. Let ks be the
separable closure of k in Ω. Then the spectrum of ks is the limit (in the category
of S-schemes) of the universal covering for S at x. The group π1(S, x) is
canonically isomorphic to the topological Galois group of the extension ks/k.

Proof. See [SGA1, Exp. V,8.1]

A.2.6 Proposition. Let S be the spectrum of a Dedekind domain R, and let
S be the spectrum of its fraction field K. Let Ω be an algebraic closure of K,
defining corresponding geometric points x′ ∈ S′(Ω) and x ∈ S(Ω). Then the
homomorphism

π1(S′, x′)→ π1(S, x)

is surjective. If we identify the first group with the Galois group of Ks/K,
then the kernel of the homomorphism above is the absolute Galois group of the
maximal field extension of K which is unramified over R.

Proof. This is a special case of [SGA1, Exp. V,8.2]

A.3 Galois descent

In the following we are going to recall the basic theory of Galois descent
which we need in the first two chapters. The main reference we use is Bosch-
Lütkebohmert-Raynaud [BLR90], Sections 6.1 and 6.2.

A morphism p : S′ → S of schemes is called faithfully flat if it is flat and
surjective.

A scheme X is called quasi-affine if it is isomorphic to a quasi-compact
open subscheme of an affine scheme (see [EGA2, §5.1.1]).

A morphism f : X → Y of schemes is quasi-separated if the diagonal
morphism ∆: X → X ×Y X is quasi-compact (see [EGA4I, §1.2.1]).

Let p : S′ → S be a finite and faithfully flat morphism of schemes. We say
that p is a Galois covering if there exists a finite group Γ of S-automorphisms
of S′ such that the morphism

Γ× S′ → S′ ×S S′, (σ, x) 7→ (σx, x),



92 APPENDIX A. APPENDIX

is an isomorphism. Here, Γ × S′ is the disjoint union of copies of S′ indexed
by Γ.

We give the standard instance of a Galois covering. Let S be a connected,
locally noetherian scheme, let x : Spec Ω → S be a geometric point and let
P = {Pi}i∈I be its associated universal covering. Then an element Pi is Galois
in the sense of the previous section if and only if the morphism Pi → S is a
Galois covering. The group Γ in this case is simply the automorphism group
AutS(Pi). It is a quotient of the automorphism group of the universal covering
AutS(P ), which is the opposite of the fundamental group π1(S, x).

We will fix in the following a Galois covering p : S′ → S with Galois group Γ.
Let X ′ be an S′-scheme. A descent datum φ on X ′ is an action φ : Γ×X ′ →
X ′ compatible with the action of Γ on S′. In other words, we require that for
every σ ∈ Γ the following diagram is commutative:

X ′

��

σ // X ′

��

S′
σ // S′

Let X ′ and Y ′ be two S′-schemes with descent data. An S′-scheme morphism
f : X ′ → Y ′ is compatible with the descent data if for every σ ∈ Γ we
have f ◦ σ = σ ◦ f . Thus, the S′-schemes with associated descent data form a
category.

A.3.1 Remark. The definition of descent data given above is equivalent to the
standard definition of descent data associated to S′-schemes X ′ where p : S′ →
S is a faithfully flat and quasi-compact morphism (see [BLR90], 6.2/Example
B).

To every S-scheme X we can associate an S′-scheme with descent datum.
Namely, take X ′ = p∗X = X ×S S′. Then every automorphism σ : S′ → S′

lifts to an automorphism σ : X ′ → X ′ and thus, we have an action of Γ on
the S′-scheme X ′ which is compatible with the action on S′. Moreover, every
morphism f : X → Y of S-schemes lifts to a morphism p∗f : X ′ → Y ′ which is
compatible with the descent data. Thus we have a functor p∗ from the category
of S-schemes to the category of S′-schemes with descent datum.

We say that the descent datum of an S′-scheme X ′ is effective if there
exists an S-scheme X such that X ′ ∼= p∗X and such that the descent datum
on X ′ is isomorphic to the one induced by p∗.

A.3.2 Theorem. Let p : S′ → S be a Galois covering.

(i) The functor X 7→ p∗X from S-schemes to S′-schemes with descent data
is fully faithful

(ii) Assume that S and S′ are affine and let X ′ be a quasi-separated S′-
scheme. Then a descent datum φ on X ′ is effective if and only if the
Galois orbit of every x ∈ X ′ is contained in a quasi-affine open subscheme
of X ′.

See [BLR90], Theorem 6.1/6 and Example 6.2/B.

A.3.3 Remark.
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(i) The first statement of the theorem implies that if the descent datum on
X ′ is effective then the S-scheme X to which it “descends” is uniquely
determined up to isomorphism.

(ii) A second corollary of the first statement is that commutative diagrams of
morphisms of S′-schemes with effective descent data “descend” canoni-
cally to commutative diagrams of morphisms of S-schemes. In particular,
this means that an S′-group scheme with effective descent datum, which
is compatible with the group structure, descends to an S-group scheme.

(iii) The second condition is satisfied if X ′ → S′ is quasi-projective (see
[BLR90, Example 6.2/B]).

A.4 Henselian rings

We give here a quick review of those properties of henselian rings which we
have used. For further reference see [EGA4IV, §18], [Ray70a] [Mil80, I.§4] or
[BLR90, §2.3].

A.4.1 Definition. Let R be a local ring. It is called henselian if every
finite R-algebra decomposes into a product of local rings. It is called strictly
henselian if it is henselian and its residue field is separably closed.

This is one of several equivalent definitions for henselian local rings. An
alternative definition is: R is henselian if Hensel’s lemma holds for the ring
R[T ]. See any of the references given above for further details.

A.4.2 Proposition. Any complete local ring is henselian. In particular, any
field is henselian.

Proof. See [Mil80, Proposition I.4.5] or [EGA4IV, §18.5.14].

A.4.3 Definition. Let R be a ring and let A be an R-algebra. A is called an
étale R-algebra if the corresponding map SpecA→ SpecR is étale.

A.4.4 Proposition. Let R be a henselian local ring and let k be its residue
field. The functor A 7→ A⊗R k induces an equivalence between the category of
finite étale R-algebras and the category of finite étale k-algebras.

Proof. See [Mil80, Proposition I.4.4], [EGA4IV, §18.5.15]. [Ray70a, p. 84, Corol-
laire].

A.4.5 Remark. The proposition above induces an equivalence of categories
F : FET(R) → FET(k). Hence if x′ : Spec Ω → Spec k is a geometric point
and x : Spec Ω → SpecR is the corresponding image of x, then we have an
isomorphism

π1(SpecK,x′)
∼−→ π1(SpecR, x).

If (Pi)i∈I is the universal covering of Spec k over x′, then (F−1(Pi))i∈I is the
universal covering of SpecR over x. This covering has a limit Rs which is
called a strict henselisation of R. Rs is a strictly henselian local ring and
its residue field is ks, the separable closure of k in Ω. See any of the references
above for further details.
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A.5 Group schemes

We recall briefly the definition of a group scheme. Let S be a scheme. A group
scheme over S (or an S-group scheme) consists of the data (X,m, ι, ε), where
p : X → S is an S-scheme, and m : X ×S X → X, ι : X → X and ε : S → X
are S-morphisms for which the following diagrams are commutative:

GS1. associativity

X ×X ×X

idX ×m
��

m×idX // X ×X

m

��

X ×X m // X

GS2. existence of left-identity

X
(p,idX)

//

idX
))

S ×X ε×idX // X × x

m

��

X

GS3. existence of a left-inverse

X
(ι,idX)

//

p

��

X ×X

m

��

S
ε // X

Moreover, the S-group scheme is commutative if the structure morphisms
satisfy the following commutative diagram:

GS4. commutativity

X ×X τ //

m

((

X ×X

m

��

X

where τ commutes the factors.

(All products above are fibered products in the category of S-schemes.)
Furthermore, we define morphisms of S-group schemes to be morphisms

of schemes which are compatible with the group structures (see e.g. [BLR90,
§4.1] for details).

We need the following result

A.5.1 Proposition. Let S be a noetherian integral regular scheme whose irre-
ducible components all have dimension 1. Every smooth S-group scheme which
is quasi-compact and separated over S is quasi-projective.

Proof. This is a special case of a result of Raynaud [Ray70b, Théorème VIII.2]
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A.6 Homological algebra

Profinite group cohomology

We will give a quick review of those results on profinite group cohomology,
which we have used in Chapters 3 and 5. Our main reference is [Ser64].

A topological group is called profinite if it is a projective limit of finite
groups, or equivalently, if it is compact and totally disconnected. Let Γ be
such a group and let A be a topological left Γ-module, which is separated as a
topological space. An n-cochain of Γ with values in A is a continuous function
f from the product Γ×· · ·×Γ, where Γ is taken n times, to A. The coboundary
df of f is defined by the formula

df(σ1, . . . , σn+1) = σ1f(σ2, . . . , σn+1)+
n∑
i=1

(−1)if(σ1, . . . , σiσi+1, . . . , σn+1) + (−1)n+1f(σ1, . . . , σn).

This gives us a complex C•(Γ, A), whose cohomology groups we denote by
Hn(Γ, A).

The set H0(Γ, A) is identified with the subset AΓ of elements fixed under
the action of Γ. As for the first cohomology H1(Γ, A), it is the quotient of
1-cocycles by 1-coboundaries Z1(Γ, A)/B1(Γ, A). Here Z1(Γ, B) consists of all
function s f from Γ to A, which satisfy the 1-cocycle condition

f(στ) = σf(τ) + f(σ)

The set of 1-coboundaries consists of all functions f such that f(σ) = (σ− 1)a
for some a in A.

If 0→ A→ B → C → 0 is an exact sequence of topological Γ-modules we
get the usual long exact sequence

· · · → Hn(Γ, A)→ Hn(Γ, B)→ Hn(Γ, C)
d−→ Hn+1(Γ, A)→ · · ·

A.6.1 Lemma. Let Γ be a profinite group and let M = lim←−nMn be a projective
limit of compact Γ-modules . We have

H1(Γ,M) = lim←−
n

H1(Γ,Mn).

Proof. See Proposition 7 in [Ser64].

A.6.2 Lemma. Let Γ be a compact `-adic Lie group acting continuously on
a finitely-generated free Z`-module T . Then H1(Γ, T ) is a fintely-generated
Z`-module and we have that

H1(Γ, T )⊗Q` ∼= H1(Γ, T ⊗Q`)

Proof. See Proposition 9 in [Ser64].

A.6.3 Lemma (Sah). Let Γ be a profinite group and let A be a topological
Γ-module. Let σ be an element in the center of Γ. Then σ − 1 kills H1(Γ, A).
In particular, if σ − 1 is an automorphism of A then H1(Γ, A) = 0.

Proof. This is proved in the case of standard group cohomology in [Lan02, VI,
Lemma 10.2]. For profinite group cohomology the proof is the same.
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par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la col-
laboration de N. Bourbaki, P. Deligne et B. Saint-Donat. Berlin:
Springer-Verlag, 1972, pp. xix+525.

http://projecteuclid.org/getRecord?id=euclid.dmj/1077313720
http://projecteuclid.org/getRecord?id=euclid.dmj/1077313720


BIBLIOGRAPHY 101

[ST68] Jean-Pierre Serre and John Tate. “Good reduction of abelian va-
rieties”. In: Ann. of Math. (2) 88 (1968), pp. 492–517. issn: 0003-
486X.

[Wes03] Tom Weston. “Kummer theory of abelian varieties and reductions
of Mordell-Weil groups”. In: Acta Arith. 110.1 (2003), pp. 77–88.
issn: 0065-1036. doi: 10.4064/aa110-1-6. url: http://dx.doi.
org/10.4064/aa110-1-6.

http://dx.doi.org/10.4064/aa110-1-6
http://dx.doi.org/10.4064/aa110-1-6
http://dx.doi.org/10.4064/aa110-1-6




Index

`-part, 38
1-motive, 9

Abel-Jacobi map, 28, 30
abelian scheme, 6
algebraic dependence, 63
annihilator, 52

Barsotti-Tate group, 27

commutative group scheme, 94

density, 48
descent datum, 92

effective, 92

equivalent categories, 89
exact sequence of group schemes, 6
exceptional algebraic dependence, 65
extension of an abelian variety by a

torus, 7

functor
essentially surjective, 89
faithful, 89
full, 89
fully faithful, 89

fundamental group, 90, 91

Galois S-module, 4
Galois covering, 90, 91
generic algebraic dependence, 65
good reduction, 37, 39

henselian ring, 93

isotrivial torus, 2
isotrivial twisted constant group scheme,

4

Kummer map, 33

linear dependence, 63

morphism compatible with descent
data, 92

Pink map, 36

quasi-Galois S-module, 4

reduction, 37

semi-isotrivial 1-motive, 10
semi-trivial 1-motive, 10
semiabelian scheme, 8
semiabelian variety, 8
strict henselisation, 93

Tate module, 27
torus, 2
trivial constant group scheme, 4
trivial torus, 2
twist, 17

universal covering, 91
unramified Galois representation, 38,

48

weight filtration, 9

zero set, 52

103


	Contents
	Introduction
	Notation
	Acknowledgements

	The structure of a 1-motive
	Tori
	Galois S-modules
	Abelian schemes
	Semiabelian group schemes
	1-Motives
	The structure of semi-isotrivial 1-motives

	Twisting
	Twisting commutative group schemes
	The group `39`42`"613A``45`47`"603AMotS(Y,G)

	The Tate Module
	Construction and basic properties
	The Abel-Jacobi map
	The Kummer map
	The Pink map

	Good reduction of 1-motives
	The local case
	The global case

	Kummer theory
	Ribet's theorem
	The image of the Kummer map
	The image of the Pink map

	Algebraic dependences on Gm
	Algebraic dependences
	An example: The rank of reduction of Z2Gm2
	The image of the Galois representation
	Proof of the main theorem
	Relations to transcendence theory

	Appendix
	Equivalence of categories
	Galois theory
	Galois descent
	Henselian rings
	Group schemes
	Homological algebra

	Bibliography
	Index

