

**UNIVERSITY OF BAYREUTH** 

**Department of Micrometeorology** 

# GaFiR: a gap-filling package for ecosystem-atmosphere carbon dioxide flux and evapotranspiration data

**Peng Zhao** 

**Johannes Lüers** 

**Thomas Foken** 

Arbeitsergebnisse Nr. 59 Bayreuth, June 2014

Arbeitsergebnisse, Universit ä Bayreuth, Abt. Mikrometeorologie Work Reports, University of Bayreuth, Dept. of Micrometeorology Print, ISSN 1614-8916; Internet, ISSN 1614-8924

 $http://www.bayceer.uni-bayreuth.de/mm/\\https://epub.uni-bayreuth.de/view/series/Arbeitsergebnisse_=2F_Universit=E4t_Bayreuth,_Abteilung_Mikrometeorologie.html$ 

Eigenverlag: Universit ä Bayreuth, Abt. Mikrometeorologie Vervielf ältigung: Druckerei der Universit ä Bayreuth Herausgeber: Prof. Dr. Thomas Foken

Universit ä Bayreuth, Abteilung Mikrometeorologie D-95440 Bayreuth

Die Verantwortung über den Inhalt liegt bei den jeweiligen Autoren.

# Contents

| 1. | Introduction                             |  |  |
|----|------------------------------------------|--|--|
|    | 1.1 History                              |  |  |
|    | 1.2 Features                             |  |  |
|    | 1.3 Copyright                            |  |  |
| 2. | Quick start                              |  |  |
| 3. | Overview of GaFiR                        |  |  |
|    | 3.1 Modules                              |  |  |
|    | 3.2 Evaluation of models                 |  |  |
|    | 3.3 Files and folders                    |  |  |
|    | 3.4 Required R packages                  |  |  |
| 4. | GaFiR-Evapotranspiration module7         |  |  |
|    | 4.1 GaFiR-ET-PM sub-module7              |  |  |
|    | 4.1.1 GaFiR-ET-PM-FAO sub-module7        |  |  |
|    | 4.1.2 GaFiR-ET-PM-KP sub-module          |  |  |
|    | 4.2 GaFiR-ET-PT sub-module               |  |  |
| 5. | GaFiR-Carbon module                      |  |  |
|    | 5.1 GaFiR-C-Reco sub-module              |  |  |
|    | 5.2 GaFiR-C-GPP sub-module               |  |  |
|    | 5.2.1 GaFiR-C-GPP-Time sub-module        |  |  |
|    | 5.2.2 GaFiR-C-GPP-Temperature sub-module |  |  |
|    | 5.2.3 GaFiR-C-Leaf sub-module            |  |  |
|    | 5.2.4 GaFiR-C-GPP-Time-VPD sub-module    |  |  |
| 6. | Data, files and folders                  |  |  |
|    | 6.1 Input data                           |  |  |
|    | 6.2 Starting/configuration file          |  |  |
|    | 6.3 Program scripts                      |  |  |
|    | 6.4 Output files                         |  |  |
| 7. | References                               |  |  |

## 1. Introduction

### 1.1 History

Eddy-covariance technique has widely been used as a useful and effective tool to continuously and directly quantify turbulent fluxes of heat, water vapour, and carbon dioxide between land surface and atmosphere. However, data gaps inevitably exist due to system breakdown, calibration, maintenance, human activities, and unfavourable atmosphere conditions when the assumptions required by the EC technique are not fulfilled (Foken and Wichura, 1996). Averagely 35% of flux observations are reported in the literature as missing or rejected (Falge et al., 2001). Data gap-filling methods are therefore necessary to provide complete data sets for the estimation of seasonal and annual sums of energy and matter (Papale, 2012).

This manual is a documentation of the <u>Gap-Filling R</u> package GaFiR (current version 1.0), which was developed to fill data gaps in turbulent flux observations of evapotranspiration and carbon dioxide. GaFiR was based on previous experience by the Department of Micrometeorology, University of Bayreuth. In April 2005 a Matlab script package (NEE-Param and NEE-Calc) was firstly written by Christoph Thomas to fill the data gaps in flux observation at the FLUXNET-Station Waldstein-Weidenbrunnen in a spruce forest near Bayreuth. Most of those ideas in that script was presented in Ruppert et al. (2006). That package, updated by Florian Wimmer in January 2006, by Christoph Thomas in July 2007, by Johannes Lüers in January 2011, has been internally used and provides satisfactory results for the forest site. In order to adapt different features of crops for the study carried out in rapid growing croplands, Zhao and Lüers (2012) brought in new ideas to and rewrote these ideas in an R (R Development Core Team, 2012) script. Later on this R script was updated and released as GaFiR 1.0, which can be applied to data gap-filling for turbulent fluxes at forest, crop, and meadow sites. GaFiR will continuously be supported and updated by the authors in the future with new releases, which could be found on the authors' webpage on http://www.bayceer.uni-bayreuth.de/mm.

### 1.2 Features

GaFiR has the following features:

• GaFiR is powerful and efficient. It is able to not only fill data gaps in carbon dioxide and evapotranspiration (latent heat) flux in a variety of conventional and up-to-date ways for different ground surfaces, but also output plenty of interesting related information such as distribution of data gaps, statistics of model parameterizations, and goodness-of-fit

measure of models. The outputs of GaFiR are fruitful in a variety of formats such as figures, explanatory texts, and data tables, which can be directly used in scientific publications. The processing only takes up to several minutes.

- GaFiR is an open source package. All scripts in GaFiR are written in R language, which is a free popular software environment for statistical computing and graphics. Users are free to download GaFiR and copy or modify any script in it as they like for non-business use.
- GaFiR is user-friendly. It runs on Windows, UNIX/Linux, and MacOS platforms. It requires users only some basic knowledge in R. Users only have to prepare the input data and modify in a text editor one single configuration file which is easily understood even by R beginners.
- Together with TK3 (Mauder and Foken, 2011) which calculates quality-controlled turbulent flux data, and MSEF package (Lüers et al., 2014) which checks outliers in flux data, GaFiR provides full time series of flux data and completes the software family of routine flux data processing procedure in the Department of Micrometeorology, University of Bayreuth.

### 1.3 Copyright

GaFiR is copyrighted by its authors and Department of Micrometeorology, University of Bayreuth. Permission is granted to copy, distribute and/or modify GaFiR's codes under the terms of the Creative Commons Attribution-Sharealike 3.0 Unported License (CC-BY-SA) and, unless otherwise noted, the GNU Free Documentation License (GFDL) (unversioned, with no invariant sections, front-cover texts, or back-cover texts).

GaFiR is free for non-business use. However, it is highly recommended and appreciated that users return their feedbacks to GaFiR authors in order to control the version, improve the codes, bring in new ideas and update the package. Users with valuable contributions have the potential to be co-authors in the future version of GaFiR.

## 2. Quick start

In order to get an impression on what GaFiR looks like and how to use GaFiR, users can follow a quick-start procedure as follows:

- 1. Download R from the Comprehensive R Archive Network (CRAN, http://cran.rproject.org/) and install it in the computer.
- 2. Download 'gafir.zip' from the website of the Department of Micrometeorology,

University of Bayreuth (http://www.bayceer.uni-bayreuth.de/mm).

- 3. Unzip gafir.zip and get a folder named 'GaFiR' with three sub-folders and a file named 'gafir-start.r'in it.
- 4. Open gafir-start.r with a text editor and find the following code line:

wd <- 'C:/GaFiR'

Change this path into the real path of GaFiR in user's computer and save the file.

5. Run gafir-start.r in R console. Data in an example file named 'demo.csv' located in the 'input' folder is then processed and the web browser will automatically open report files in several minutes. Users could see all results in the 'output' folder.

## 3. Overview of GaFiR

### 3.1 Modules

The general structure of GaFiR contains two modules (Fig. 1): the GaFiR-Evapotranspiration module, which is used for ecosystem evapotranspiration (ET) data, and the GaFiR-Carbon module, which is used for gap-filling of carbon dioxide flux data. These two modules are independent on each other. Users can easily switch either of them on or off according to their purposes. Details of these modules are described in Chapters 4 and 5. This section gives a brief introduction.

The GaFiR-Evapotranspiration module contains two independent sub-modules. The first is the GaFiR-ET-PM sub-module, which applies the Penman-Monteith model (Monteith, 1965) either with the approach abbreviated as PM-FAO suggested by the Food and Agriculture Organization (Allen et al., 1998) or with the approach abbreviated as PM-KP proposed by Katerji and Perrier (1983). The second is the GaFiR-ET-PT sub-module, which applies the Priestley-Taylor model (Priestley and Taylor, 1972).



Fig. 1. Modules in GaFiR

The GaFiR-Carbon module contains two steps in sequence. In the first step (abbreviated as GaFiR-C-Reco), measured carbon dioxide flux in night-time is ecosystem respiration (Reco), which is used for the parameterization of Lloyd-Taylor function (Lloyd and Taylor, 1994) and the fitted parameters are used not only to fill the gaps in night-time Reco data but also to extrapolate to daytime Reco estimation. In the second step (abbreviated as GaFiR-C-GPP), according to the partitioning strategy by Falge et al. (2001) and Reichstein et al. (2005), gross primary productivity (GPP) in the daytime is derived as:

$$GPP = NEE - R_{eco}$$
 1

where NEE is the net ecosystem exchange of carbon dioxide, i.e. the carbon dioxide flux measured by eddy-covariance technique. The signs follow the conventional meteorological definitions that the flux away from the surface is positive. This derived GPP is used for the parameterization of Michaelis-Menten function (Michaelis and Menten, 1913) and the fitted parameters are used to fill the gaps in daytime GPP data.

The GaFiR-C-GPP step contains four independent sub-modules: (1) GaFiR-C-GPP-Temperature sub-module, which groups GPP data into temperature classes to determine individual light response parameters in each class in order to test the influence of temperature on GPP (Falge et al., 2001; Ruppert et al., 2006), (2) GaFiR-C-GPP-Time sub-module, which segments the GPP data into sub-periods by a certain time window and determine individual light response parameters in each sub-period, (3) GaFiR-C-GPP-Time-VPD sub-module, which additionally introduces the influence of vapour pressure deficit (Lasslop et al., 2010) into the time window approach, and (4) GaFiR-C-GPP-Leaf sub-module, which applies a leaf-light response function proposed by Zhao (2014) for fast growing croplands.

### 3.2 Evaluation of models

GaFiR evaluates the performance of the gap-filling models by the comparison between field observation and model simulation in a variety of goodness-of-fit measures (Table 1). The evaluations are written in report files when GaFiR has been successfully run. Users are free to pick out those measures they need. For simplicity, the overall performances of the simulations can be evaluated by ranking either Nash-Sutcliffe model efficiency coefficient (NSE, Nash and Sutcliffe, 1970) or the index of agreement (*d*, Willmott, 1981). NSE varies between minus infinity to 1, and d varies between 0 to 1, both with larger values indicating better performance of the simulation. A value of NSE = 1 or d = 1 indicates a perfect agreement between observation and simulation. NSE = 0 means that the model is as good as the mean observation, while d = 0 means a complete disagreement. The best simulation is the one which has a NSE or *d* closest to unity and with the lowest RMSE.

| Goodness of fit                                                   | Calculation                                                                              |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Mean Error (ME)                                                   | $ME = \frac{1}{N} \sum_{i=1}^{N}  P_i - O_i $                                            |
| Mean Absolute Error (MAE)                                         | $MAE = \frac{1}{N} \sum_{i=1}^{N} (P_i - O_i)$                                           |
| Mean Squared Error (MSE)                                          | $MSE = \frac{1}{N} \sum_{i=1}^{N} (P_i - O_i)^2$                                         |
| Root Mean Square Error (RMSE)                                     | $RMSE = \sqrt{MSE}$                                                                      |
| Normalized Root Mean Square Error (NRMSE))                        | $NRMSE = 100 \frac{RMSE}{O_{max} - O_{min}}$                                             |
| Percent Bias (PBIAS)                                              | $PBIAS = 100 \frac{\sum_{i=1}^{n} (P_i - O_i)}{\sum_{i=1}^{n} O_i}$                      |
| Ratio of RMSE to the Standard Deviation of the Observations (RSR) | $RSR = \frac{RMSE}{\sigma_O}$                                                            |
| Ratio of Standard Deviations (rSD)                                | $rSD = \frac{\sigma_P}{\sigma_O}$                                                        |
| Nash-Sutcliffe Efficiency (NSE)                                   | NSE = $1 - \frac{\sum_{i=1}^{n} (O_i - P_i)^2}{\sum_{i=1}^{n} (O_i - \overline{O})^2}$   |
| Modified Nash-Sutcliffe Efficiency (mNSE)                         | mNSE = $1 - \frac{\sum_{i=1}^{n}  O_i - P_i  ^j}{\sum_{i=1}^{n}  O_i - \overline{O} ^j}$ |

Table 1 Goodness of fit measures in GaFiR (P is model prediction Q is observation  $\sigma$  is standard deviation)

| Relative Nash-Sutcliffe Efficiency (rNSE)                                      | $\text{rNSE} = 1 - \frac{\sum_{i=1}^{n} (\frac{O_i - P_i}{\overline{O}})^2}{\sum_{i=1}^{n} (\frac{O_i - \overline{O}}{\overline{O}})^2}$                                                         |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Index of Agreement ( <i>d</i> )                                                | $d = 1 - \frac{\sum_{i=1}^{n} (P_i - O_i)^2}{\sum_{i=1}^{n} ( P_i - O_i  +  P_i + O_i )^2}$                                                                                                      |
| Modified Index of Agreement (md)                                               | $md = 1 - \frac{\sum_{i=1}^{n} (P_i - O_i)^j}{\sum_{i=1}^{n} ( P_i - O_i  +  P_i + O_i )^j}$                                                                                                     |
| Relative Index of Agreement (rd)                                               | $rd = 1 - \frac{\sum_{i=1}^{n} (\frac{P_i - O_i}{\overline{O}})^2}{\sum_{i=1}^{n} (\frac{ P_i - O_i  +  P_i + O_i }{\overline{O}})^2}$                                                           |
| Persistence Index (cp)                                                         | $cp = 1 - \frac{\sum_{i=2}^{n} (O_i - P_i)^2}{\sum_{i=1}^{n-1} (O_{i+1} - O_i)^2}$                                                                                                               |
| Pearson Correlation coefficient ( <i>R</i> )                                   | $R = \frac{\overline{\sum_{i=1}^{n} (O_i - \overline{O})(P_i - \overline{P})}}{\sqrt{\sum_{i=1}^{n} (O_i - \overline{O})^2} \sqrt{\sum_{i=1}^{n} (P_i - \overline{P})^2})}$                      |
| Coefficient of Determination $(R^2)$                                           | $R^{2} = \left(\frac{\sum_{i=1}^{n} (O_{i} - \overline{O})(P_{i} - \overline{P})}{\sqrt{\sum_{i=1}^{n} (O_{i} - \overline{O})^{2}} \sqrt{\sum_{i=1}^{n} (P_{i} - \overline{P})^{2}}}\right)^{2}$ |
| $R^2$ multiplied by the slope (b) of the regression line between P and O (bR2) | $bR2 = bR^2$                                                                                                                                                                                     |
|                                                                                |                                                                                                                                                                                                  |

### 3.3 Files and folders

GaFiR package is compressed as a .zip file named 'gafir.zip' for downloading. After unzip gafir.zip, users get a folder containing an R script file named 'gafir-start.r' and three sub-folders named 'program', 'input', and 'output'. Users should firstly in a text editor configure gafir-start.r, which will later read users' data (a .csv file with header) in the input folder, call those scripts in the program folder, and write the results into the output folder. Details of the files and folders are described in Chapter 6.

### 3.4 Required R packages

GaFiR requires some packages from CRAN besides basic R installation. GaFiR checks whether they have been installed in users' computer. If not, GaFiR will download, install, and load them automatically. The required R packages include:

- nls2 (Grothendieck, 2012), for non-linear regression with the brute-force method,
- R2HTML (Lecoutre, 2003), for producing .html report files,.
- hydroGOF (Zambrano-Bigiarini, 2014), for calculation of goodness-of-fit measures between simulation and observation, and
- lattice (Sarkar, 2008), for plotting 3D figures.

### 4. GaFiR-Evapotranspiration module

#### 4.1 GaFiR-ET-PM sub-module

Penman-Monteith (PM) model (Monteith, 1965) to estimate the latent heat flux ( $Q_E$ ) is written as:

$$Q_{\rm E}^{\rm PM} = \frac{s_{\rm c}(-R_{\rm n} - Q_{\rm G}) + \frac{\rho c_{\rm p}(e_{\rm s} - e_{\rm a})}{r_{\rm a}}}{s_{\rm c} + \gamma (1 + \frac{r_{\rm s}}{r_{\rm a}})}$$
2

where  $R_n$  is net radiation;  $Q_G$  is ground heat flux;  $e_s$  is the saturated vapour pressure in hPa, calculated as a function of air temperature t in  $\mathbb{C}$  as  $e_s = 6.112 \exp \frac{17.62t}{243.12+t}$  over water at -45 to 60  $\mathbb{C}$  (Sonntag, 1990);  $s_c$  is the slope of the saturation vapour-pressure curve,  $s_c = \frac{4284e_s}{(243.12+t)^2}$ ;  $e_a$  is the partial vapour pressure of the air, and thus  $e_s - e_a$  is VPD;  $\rho$  is the air density;  $\gamma$  is the psychometric constant, 0.667 hPa K<sup>-1</sup> for air pressure of 1000 hPa and temperature of 20  $\mathbb{C}$ ;  $r_s$  is the stomatal resistance of the entire "big leaf", or simply the canopy resistance;  $r_a$  is the aerodynamic resistance. The estimation of sensible heat flux by PM method is simply calculated as the difference between the available energy ( $Q_A$ , the sum of  $R_n$  and  $Q_G$ ) and modeled latent heat flux ( $Q_H^{PM} = -Q_A - Q_E^{PM}$ ).

The estimation of  $Q_{\rm E}$  by Eq. 2 requires the parameterization of  $r_{\rm a}$  and  $r_{\rm s}$ . The estimation of  $r_{\rm a}$  can be performed as

$$r_{\rm a} = \frac{\ln \frac{z-d}{z_{\rm om}} \ln \frac{z-d}{z_{\rm oh}}}{\kappa^2 u},$$
3

where z is height at which wind speed is measured; d is displacement height, estimated as  $\frac{2}{3}$  of the vegetation height (h);  $\kappa$  is Von-K árm án constant, equal to 0.40; and u is horizontal wind speed at sensor height z;  $z_{\text{om}}$  is roughness height for momentum, approximated as 0.1h;  $z_{\text{oh}}$  is roughness height for water vapour, approximated as 0.1 $z_{\text{om}}$ .

The estimation of  $r_s$  can be performed either by FAO approach or by KP approach.

#### 4.1.1 GaFiR-ET-PM-FAO sub-module

FAO approach estimates  $r_s$  as

$$r_{\rm s} = \frac{r_{\rm si}}{\rm LAI_{\rm active}},$$
4

where  $r_{\rm si}$  is the stomatal resistance of a single well-illuminated leaf with a value between 70 to  $80 \,\mathrm{sm^{-1}}$  for estimation of hourly or shorter-time-based  $Q_{\rm E}$  for agricultural crops (Allen, 2005), and LAI<sub>active</sub> is the LAI of the active sunlit leaves, which is generally the upper part of

the canopy and can be estimated as  $LAI_{active} = 0.5LAI$ .

#### 4.1.2 GaFiR-ET-PM-KP sub-module

KP approach establishes a linear relationship between  $\frac{rs}{ra}$  and  $\frac{r*}{ra}$  as

$$\frac{r_{\rm s}}{r_{\rm a}} = a\frac{r^*}{r_{\rm a}} + b \tag{5}$$

where a and b are regression coefficients.  $r^*$  is determined as

$$r^* = \frac{(s_{\rm c} + \gamma)\rho c_{\rm p}(e_{\rm s} - e_{\rm a})}{s_{\rm c}\gamma(-R_{\rm n} - Q_{\rm G})} \tag{6}$$

and  $r_s$  determined from the observation by inverting the PM equation (Eq. 2):

$$r_{\rm s} = \frac{r_{\rm a}s_{\rm c}(-R_{\rm n}-Q_{\rm G}) + \rho c_{\rm p}(e_{\rm s}-e_{\rm a}) - r_{\rm a}Q_{\rm E}(s_{\rm c}+\gamma)}{\gamma Q_{\rm E}}$$
7

#### 4.2 GaFiR-ET-PT sub-module

Priestley-Taylor (PT) model to estimate potential evapotranspiration  $Q_{Ep}$  is written as

$$Q_{\rm Ep}^{\rm PT} = \alpha_{\rm PT} \frac{s_{\rm c}}{s_{\rm c} + \gamma} (-Q_{\rm A}), \qquad 8$$

where  $\alpha_{PT}$  is the PT coefficient, an empirically determined dimensionless correction. The mean value of  $\alpha_{PT}$  for several vegetated surfaces and large water bodies is suggested to be 1.26 with a range between 1.08 and 1.34 (Priestley and Taylor, 1972).

The original PT function is valid for conditions of potential ET. In the case of actual ET, a linear relationship is assumed as

$$Q_{\rm Ea} = aQ_{\rm Ep} + b.$$

### 5. GaFiR-Carbon module

#### 5.1 GaFiR-C-Reco sub-module

Night-time Reco was used for the parameterization of the temperature dependence of Reco in Lloyd-Taylor function (Lloyd and Taylor, 1994; Falge et al., 2001):

$$R_{\rm eco} = R_{\rm ref} e^{E_0 \left(\frac{1}{T_{\rm ref} - T_0} - \frac{1}{T - T_0}\right)},$$
 10

where  $R_{\rm ref}$  ( $\mu$ molm<sup>-2</sup>s<sup>-1</sup>) is the respiration at a reference temperature ( $T_{\rm ref}$ , set as 283.15K);

 $E_0$  (K) is the temperature sensitivity, assumed to be constant over the entire observation period;  $T_0$  (K) is a constant value of 227.13K.

#### 5.2 GaFiR-C-GPP sub-module

The relationship between GPP and solar radiation ( $R_g$ ) is expressed by the Michaelis-Menten function (Michaelis and Menten, 1913):

$$GPP = \frac{\alpha R_g \beta}{\alpha R_g + \beta},$$
11

where  $\alpha$  ( $\mu$ mols<sup>-1</sup>W<sup>-1</sup>) is the initial slope of the curve, and  $\beta$  ( $\mu$ molm<sup>-2</sup>s<sup>-1</sup>) is the saturated carbon dioxide uptake rate when  $R_g$  is close to infinity.

#### 5.2.1 GaFiR-C-GPP-Time sub-module

In GaFiR-C-GPP-Time sub-module, users can specify a width of the time window ( $t_w$ , in day). GaFiR segments the whole input dataset into data subsets according to  $t_w$ . The *i*-th subset contains the data from the day  $(i - 1)t_w + 1$  to the day  $it_w$ . Then the parameterization for Eq. 11 is applied individually for each subset and used for the estimation of GPP within the sub-period.

#### 5.2.2 GaFiR-C-GPP-Temperature sub-module

In GaFiR-C-GPP-Temperature sub-module, users can specify an interval of temperature ( $T_e$ , in K). GaFiR segments the whole input dataset into data subsets according to  $T_e$ . The *i*-th subset contains the data from  $T_{\min} + (i - 1)T_e$  to  $T_{\min} + iT_e$ , where  $T_{\min}$  is the minimal temperature in the dataset. Then the parameterization for Eq. 11 is applied individually for each subset and used for the estimation of GPP within the range of temperature.

#### 5.2.3 GaFiR-C-Leaf sub-module

The leaf-light response function is written as

$$GPP = LAI_{act} \frac{\alpha' R_{g} \beta'}{\alpha' R_{g} + \beta'},$$
12

where  $LAI_{act}$  is the mean LAI which is active in photosynthesis. The parameters  $\alpha'$  and  $\beta'$  can be defined as specific light use efficiency and specific saturated GPP.

#### 5.2.4 GaFiR-C-GPP-Time-VPD sub-module

A VPD factor is introduced to account for the stomatal response to dry air conditions. The saturated GPP in the light response function can be expressed by an exponential function of

VPD (Lasslop et al., 2010):

$$\beta = \begin{cases} \beta_0 e^{-k_\beta (\text{VPD} - \text{VPD}_0)} &, \text{VPD} > \text{VPD}_0 \\ \beta_0 &, \text{VPD} \le \text{VPD}_0 \end{cases}$$
13

where the threshold  $VPD_0$  (hPa) is set to 10hPa.

### 6. Data, files and folders

### 6.1 Input data

GaFiR reads input data from the input folder (Fig. 2). If there are multiple files in the input folder, GaFiR only reads the first one. In order not to be confused, users are recommended to put only one single file in the input folder. GaFiR assumes that the input data should be reliable and quality-controlled, thus all the input data could be used for model parameterization.



Fig. 2. Files and folders of GaFiR

Requirement of input variables depends on users' purpose. For instance, night-time respiration (equal to night-time NEE) and air temperature appear in Lloyd-Taylor function, therefore these two variables are required to parameterize Lloyd-Taylor function. Moreover,

time stamps are additionally required to indicate night-time. Required variables for different modules are listed in Table 2. Users can easily specify which modules to run. If some variable required by the chosen modules is missing, GaFiR will return error messages.

Table 2. Required variables in the input data file by parameterization in modules of GaFiR

| Modules                 | Required variables                                                                 |
|-------------------------|------------------------------------------------------------------------------------|
| GaFiR-C-Reco            | Time, temperature, NEE.                                                            |
| GaFiR-C-GPP-Temperature | Time, temperature, NEE, solar radiation                                            |
| GaFiR-C-GPP-Time        | Time, NEE, solar radiation                                                         |
| GaFiR-C-GPP-Time-VPD    | Time, NEE, solar radiation, VPD                                                    |
| GaFiR-C-GPP-Leaf        | Time, NEE, solar radiation, LAI                                                    |
| GaFiR-ET-PM-FAO         | Time, net radiation, ground heat flux, temperature, canopy height, wind speed, VPD |
| GaFiR-ET-PM-KP          | Time, net radiation, ground heat flux, temperature, canopy height, wind speed, VPD |
| GaFiR-ET-PT             | Time, net radiation, ground heat flux, temperature, evapotranspiration             |

The input file must be a .csv file (i.e. 'comma separated value' file) with the first line as the header (i.e. column names). Users must strictly name the columns and use the required formats or units following Table x, because GaFiR recognizes variables by column names, and process input data as default formats or units. Letters in column names must all be in lower-case. Missing values An example file (demo.csv) could be found in the input folder for users to easily understand.

| Variable                                     | column name | format or unit                          | Example             |
|----------------------------------------------|-------------|-----------------------------------------|---------------------|
| time                                         | time        | string, YYYY-mm-dd HH:MM:SS             | 2010-06-28 12:30:00 |
| air temperature                              | temperature | numeric, °C                             | 28                  |
| solar radiation                              | rg          | numeric, W m $^{-2}$                    | -300                |
| net ecosystem<br>exchange of CO <sub>2</sub> | nee         | numeric, any unit                       | 0.048               |
| net radiation                                | rn          | numeric, W m <sup>-2</sup>              | -200                |
| wind speed                                   | u           | numeric, m s <sup><math>-1</math></sup> | 0.9                 |
| vapour pressure deficit                      | vpd         | numeric, Pa                             | 1000                |
| canopy height                                | h           | numeric, m                              | 2.5                 |
| leaf area index                              | lai         | numeric, demensionless                  | 2                   |
| ground heat flux                             | g           | numeric, W m $^{-2}$                    | 50                  |
| evapotranspiration                           | qe          | numeric, W m <sup><math>-2</math></sup> | 50                  |

Table 3. Column names and formats or units of input variables.

### 6.2 Starting/configuration file

GaFiR starts running from gafir-start.r. Besides the input data, gafir-start.r is normally the only file that users have to edit. In gafir-start.r, users can do the following:

• Configure the working directory of GaFiR. It should be the path of the GaFiR folder.

- Specify the strings or numbers which indicate missing records in the input data.
- Specify how to separate daytime and night-time. GaFiR uses the value of solar radiation above which the relative records will be processed as daytime data.
- Specify which modules to be run.
- Specify gap distribution of which variables would be checked.
- Specify widths of time windows or temperature windows, initial estimation of model parameters for non-linear regression, and other related information.

The information mentioned above is required by subsequent parameterization and gap-filling. The script gafir-start.r is self-explanatory with adequate explanatory comments to guide users. At the end of gafir-start.r, a program file named 'gafir-main.r' is called as an entrance to all the program files.

### 6.3 Program scripts

All program scripts are located in the 'program' folder. The role that each script file plays is as follows.

- **gafir-main.r** is the main or 'trunk' script, which calls all other 'branch' scripts and shows the main structure of GaFiR package. This script
  - o creates a log file to record the processing procedure for future check and debugging,
  - o sets the style file for .html reports,
  - o installs and loads R packages and functions,
  - o reads input data,
  - o calls user-specified modules, and
  - $\circ$  saves the gap-filled data into a file named '\*\_gafir.csv' the 'output' folder.
- **gafir-funtions.r** is a file containing functions used in GaFiR.
- **gafir-report.css** is a Cascading Style Sheets (CSS) file, which define the style how to display HTML elements such as colours, fonts, and tables, in reports.
- gafir-read-data.r reads the input data into R and do some pre-calculations.
- gafir-gap-check.r counts the number of data gaps exits in user's required variables and

the length of each gap in the input data. It writes the result into a report file named 'report-gap-check.html'.

- **gafir-c-reco.r** calls GaFiR-C-Reco sub-module. It parameterizes Lloyd-Taylor function (written in **gafir-c-reco-lt.r**) and fill the data-gaps in Reco. It writes results into a report file named 'report-reco.html'.
- **gafir-c-gpp-temp.r**, **gafir-c-gpp-time.r**, and **gafir-c-gpp-time-vpd.r** call GaFiR-C-GPP-Temperature sub-module, GaFiR-C-GPP-Time sub-module, and GaFiR-C-GPP-Time-VPD sub-module, respectively. They parameterize Michaelis-Menten function (written in **gafir-c-gpp-mm.r**, and with VPD factor in **gafir-c-gpp-mm-vpd.r**) and fill the data-gaps in GPP. They write results into report files named 'report-gpp-temperature.html', 'report-gpp-time.html', and 'report-time-vpd.html' in the output folder.
- **gafir-c-gpp-leaf.r** calls GaFiR-C-GPP-Leaf sub-module, which parameterize the leaflight response function and fill data-gaps in GPP. It writes results into a report file named as 'report-gpp-leaf.html'.
- **gafir-et-pm-fao.r** calls GaFiR-ET-PM-FAO sub-module. It fills evapotranspiration data gaps by Penman-Monteith-FAO approach. It writes results into a report file named 'report-et-pm-fao.html'.
- **gafir-et-pm-kp.r** calls GaFiR-ET-PM-KP sub-module. It fills evapotranspiration data gaps by Penman-Monteith-KP approach. It writes results into a report file named 'report-et-pm-kp.html'.
- **gafir-et-pt.r** calls GaFiR-ET-PT sub-module. It fills evapotranspiration data gaps by Priestley-Taylor approach. It writes results into a report file named 'report-et-pm-kp.html'.

### 6.4 Output files

GaFiR produces fruitful results in forms of explanatory text, data table, and figures. These results are well organized mainly in three types of files in the 'output' folder: some report files, a log file and a gap-filled data file. Although many .png figures appear in the output folder after GaFiR is successfully run, users do not have to click them one by one because they are all embedded in those .html report files.

Report files are created by related R scripts (see Chapter 6.3). With a filename extension as 'html', they can be opened by any web browser such as IE, Chrome, and Firefox. An example of a report file is shown in Fig. 3. Users can find in report files detailed information of the fitted parameters of models, the goodness-of-fig measures, and related figures. Data tables in

the report files can be easily copied and pasted into other spreadsheet software such as MS Excel and OpenOffice Calc.

| Report of gap-filling for GPP with time window approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Michaelis-Menten function with time window approach.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Time window: 16 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| GPPTimeWindow16 2011-06-01 to 2011-06-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Formula: GPP ~ ((a * Rg * Fcsat)/(a * Rg + Fcsat))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Parameters:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Estimate         Std. Error         t value         Pr(> t )           a         -3.40e-05         1.41e-05         -2.41         0.017         *           Fosat         -3.26e-03         4.14e-04         -7.86         5.3e-13         ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Signif. codes: 0 i@***;¯ 0.001 i@**;¯ 0.01 i@*;¯ 0.05 i@,;¯ 0.1 i@ ;¯ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Residual standard error: 0.00189 on 160 degrees of freedom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 2011-06-01 to 2011-06-17<br>$G_{0}^{0}$ $G_{0}^{0}$ $G_$ |  |  |  |
| Rg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| GPPTimeWindow16 2011-06-17 to 2011-07-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Formula: GPP ~ ((a * Rg * Fcsat)/(a * Rg + Fcsat))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |

Fig. 3. Screenshot of an example of GaFiR reports

The log file contains all screenshot output in R console (Fig. 4). The file name begins with 'log' followed by a time stamp. It can be opened by any text editor. It is helpful for users to track the behavior of GaFiR, finding errors, and debugging.



Fig. 4. Screenshot of an example of the log file

Gap-filled flux data are appended to the input data frame and saved in a .csv file with a filename beginning with the name of the input file followed by '\_gafir'. It can be opened by any text editor or spreadsheet software. Column names and meanings of variables in '\* gafir.csv' are listed in Table 4.

| column name                                  | example       | meaning                                     |
|----------------------------------------------|---------------|---------------------------------------------|
| 'reco-' followed by a number <i>n</i>        | reco-15       | Respiration simulated with a time window of |
|                                              |               | n days                                      |
| 'gpp'                                        | gpp           | Daytime GPP calculated using observed NEE   |
|                                              |               | and simulated Reco                          |
| 'gpp-te-' followed by a number <i>n</i>      | gpp-te-4      | Daytime GPP calculated with a temperature   |
|                                              |               | window of <i>n</i> K                        |
| 'gpp-tw-' followed by a number <i>n</i>      | gpp-tw-2      | Daytime GPP calculated with a time window   |
|                                              |               | of <i>n</i> days                            |
| 'gpp-tw-vpd-' followed by a number <i>n</i>  | gpp-tw-vpd-4  | Daytime GPP calculated with the VPD factor  |
|                                              |               | and a time window of <i>n</i> K             |
| 'gpp-leaf'                                   | gpp-leaf      | Daytime GPP calculated by leaf-light        |
|                                              |               | response function                           |
| 'qe-pm-fao'                                  | qe-pm-fao     | Evapotranspiration simulated by PM-FAO      |
|                                              |               | method                                      |
| 'qe-pm-kp-tw-' followed by a number <i>n</i> | qe-pm-kp-tw-4 | Evapotranspiration simulated by PM-KP       |
| •                                            |               | method with a time window of $n$ days       |
| ʻqe-pt'                                      | qe-pt         | Evapotranspiration simulated by PT method   |

Table 4. Column names and meanings of output variables.

### 7. References

- Allen, R., 2005. Penman-Monteith equation, in: Hillel, D. (Ed.), Encyclopedia SoilsEnvironment. Elsevier, Oxford, 180–188.
- Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and drainage Paper 56. FAO, Rome, 300 pp.
- Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross, P., Grünwald, T., Hollinger, D., Jensen, N.-O., Katul, G., Keronen, P., Kowalski, A., Lai, C.T., Law, B.E., Meyers, T., Moncrieff, J., Moors, E., Munger, J.W., Pilegaard, K., Rannik, Ü., Rebmann, C., Suyker, A., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., Wofsy, S., 2001. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology 107, 43–69.
- Foken, T., Wichura, B., 1996. Tools for quality assessment of surface-based flux measurements. Agricultural and Forest Meteorology 78, 83–105.
- Grothendieck, G., 2012. nls2: Non-linear regression with brute force. http://CRAN.R-project.org/package=nls2.
- Lasslop, G., Reichstein, M., Papale, D., Richardson, A.D., Arneth, A., Barr, A., Stoy, P., Wohlfahrt, G., 2010. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Global Change Biology 16, 187–208.
- Lecoutre, E., 2003. The R2HTML Package. R News 3, 33–36.
- Lloyd, J., Taylor, J., 1994. On the temperature dependence of soil respiration. Functional Ecology 315–323.
- Lüers, J., Detsch, F., Zhao, P., 2014. Application of a multi-step error filter for postprocessing atmospheric flux and meteorological basic data. Universit ä Bayreuth, Abt. Mikrometeorologie, in print, ISSN 1614-8916, Arbeitsergebnisse 58, 22 pp.
- Mauder, M., Foken, T., 2011. Documentation and instruction manual of the eddy covariance software package TK3. Universität Bayreuth, Abt. Mikrometeorologie, Print, ISSN 1614-8916, Arbeitsergebnisse 46. 58 pp.
- Michaelis, L., Menten, M.L., 1913. Die kinetik der invertinwirkung. Biochemische Zeitschrift 49, 352.
- Monteith, J., 1965. Evaporation and environment, in: Symposia SocietyExperimentalBiology. 205 pp.
- Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models. Part I A discussion of principles. Journal of Hydrology 10, 282–290.
- Papale, D., 2012. Data Gap Filling, in: Aubinet, M., Vesala, T., Papale, D. (Eds.), EddyCovariance, SpringerAtmosphericSciences. Springer, Dordrecht, 159-172.
- Priestley, C., Taylor, R., 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review 100, 81–92.
- R Development Core Team, 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
- Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., Valentini, R., 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11, 1424–1439.

- Ruppert, J., Mauder, M., Thomas, C., Lüers, J., 2006. Innovative gap-filling strategy for annual sums of  $CO_2$  net ecosystem exchange. Agricultural and Forest Meteorology 138, 5–18.
- Sarkar, D., 2008. Lattice: Multivariate Data Visualization with R. Springer, New York.
- Sonntag, D., 1990. Important new values of the physical constants of 1986, vapour pressure formulations based on the ITS-90, and psychrometer formulae. Zeitschrift für Meteorologie 70, 340–344.

Willmott, C.J., 1981. On the validation of models. Physical Geography 2, 184–194.

- Zambrano-Bigiarini, M., 2014. hydroGOF: Goodness-of-fit functions for comparison of simulated and observed hydrological time series.
- Zhao, P., Lüers, J., 2012. Improved determination of daytime net ecosystem exchange of carbon dioxide at croplands. Biogeosciences Discussions 9, 2883–2919.

# Work report list

| Nr | Author(s)                 | Title                                                                                                                                                             | Year    |
|----|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 01 | Foken                     | Der Bayreuther Turbulenzknecht                                                                                                                                    | 01/1999 |
| 02 | Foken                     | Methode zur Bestimmung der trockenen Deposition von Bor                                                                                                           | 02/1999 |
| 03 | Liu                       | Error analysis of the modified Bowen ratio method                                                                                                                 | 02/1999 |
| 04 | Foken et al.              | Nachfrostgefährdung des ÖBG                                                                                                                                       | 03/1999 |
| 05 | Hierteis                  | Dokumentation des Experimentes Dlouhá Louka                                                                                                                       | 03/1999 |
| 06 | Mangold                   | Dokumentation des Experimentes am Standort Weidenbrunnen, Juli/August 1998                                                                                        | 07/1999 |
| 07 | Heinz et al.              | Strukturanalyse der atmosphärischen Turbulenz mittels Wavelet-Verfahren zur<br>Bestimmung von Austauschprozessen über dem antarktischen Schelfeis                 | 07/1999 |
| 08 | Foken                     | Comparison of the sonic anemometer Young Model 81000 during VOITEX-99                                                                                             | 10/1999 |
| 09 | Foken et al.              | Lufthygienisch-bioklimatische Kennzeichnung des oberen Egertales, Zwischenbericht 1999                                                                            | 11/1999 |
| 10 | Sodemann                  | Stationsdatenbank zum BStMLU-Projekt Lufthygienisch-bioklimatische Kennzeichnung des oberen Egertales                                                             | 03/2000 |
| 11 | Neuner                    | Dokumentation zur Erstellung der meteorologischen Eingabedaten für das Modell<br>BEKLIMA                                                                          | 10/2000 |
| 12 | Foken et al.              | Dokumentation des Experimentes VOITEX-99                                                                                                                          | 10/2000 |
| 13 | Bruckmeier et al.         | Documentation of the experiment EBEX-2000, July 20 to August 24, 2000                                                                                             | 01/2001 |
| 14 | Foken et al.              | Lufthygienisch-bioklimatische Kennzeichnung des oberen Egertales                                                                                                  | 02/2001 |
| 15 | Göckede                   | Die Verwendung des Footprint-Modells nach Schmid (1997) zur stabilitätsabhängigen Bestimmung der Rauhigkeitslänge                                                 | 03/2001 |
| 16 | Neuner                    | Berechnung der Evaporation im ÖBG (Universität Bayreuth) mit dem SVAT-Modell BEKLIMA                                                                              | 05/2001 |
| 17 | Sodemann                  | Dokumentation der Software zur Bearbeitung der FINTUREX-Daten                                                                                                     | 08/2002 |
| 18 | Göckede et al.            | Dokumentation des Experiments STINHO-1                                                                                                                            | 08/2002 |
| 19 | Göckede et al.            | Dokumentation des Experiments STINHO-2                                                                                                                            | 12/2002 |
| 20 | Göckede et al             | Characterisation of a complex measuring site for flux measurements                                                                                                | 12/2002 |
| 21 | Liebethal                 | Strahlungsmessgerätevergleich während des Experiments STINHO-1                                                                                                    | 01/2003 |
| 22 | Mauder et al.             | Dokumentation des Experiments EVA_GRIPS                                                                                                                           | 03/2003 |
| 23 | Mauder et al.             | Dokumentation des Experimentes LITFASS-2003, Dokumentation des Experimentes GRASATEM-2003                                                                         | 12/2003 |
| 24 | Thomas et al.             | Documentation of the WALDATEM-2003 Experiment                                                                                                                     | 05/2004 |
| 25 | Göckede et al.            | Qualitätsbegutachtung komplexer mikrometeorologischer Messstationen im Rahmen des VERTIKO-Projekts                                                                | 11/2004 |
| 26 | Mauder & Foken            | Documentation and instruction manual of the eddy covariance software package TK2                                                                                  | 12/2004 |
| 27 | Herold et al.             | The OP-2 open path infrared gas analyser for $CO_2$ and $H_2O$                                                                                                    | 01/2005 |
| 28 | Ruppert                   | ATEM software for atmospheric turbulent exchange measurements using eddy covariance and relaxed eddy accumulation systems and Bayreuth whole-air REA system setup | 04/2005 |
| 29 | Foken (Ed.)               | Klimatologische und mikrometeorologische Forschungen im Rahmen des Bayreuther Institutes für Terrestrische Ökosystemforschung (BITÖK), 1989-2004                  | 06/2005 |
| 30 | Siebeke &<br>Serafimovich | Ultraschallanemometer-Überprüfung im Windkanal der TU Dresden 2007                                                                                                | 04/2007 |
| 31 | Lüers & Bareiss           | The Arctic Turbulence Experiment 2006 PART 1: Technical documentation of the ARCTEX 2006 campaign, May, 2nd to May, 20th 2006                                     | 07/2007 |
| 32 | Lüers & Bareiss           | The Arctic Turbulence Experiment 2006 PART 2: Visualization of near surface measurements during the ARCTEX 2006 campaign, May, 2nd to May, 20th 2006              | 07/2007 |
| 33 | Bareiss & Lüers           | The Arctic Turbulence Experiment 2006 PART 3: Aerological measurements during the ARCTEX 2006 campaign, May, 2nd to May, 20th 2006                                | 07/2007 |
| 34 | Metzger & Foken et al.    | COPS experiment, Convective and orographically induced precipitation study,<br>01 June 2007 – 31 August 2007, Documentation                                       | 09/2007 |

Volumes in the series, University of Bayreuth, Department of Micrometeorology

| 35 | Staudt & Foken              | Documentation of reference data for the experimental areas of the Bayreuth Centre for Ecology and Environmental Research (BayCEER) at the Waldstein site                                                                                                                                          | 11/2007 |
|----|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 36 | Serafimovich et al.         | ExchanGE processes in mountainous Regions (EGER) - Documentation of the Intensive Observation Period (IOP1), September, 6th to October, 7th 2007                                                                                                                                                  | 01/2008 |
| 37 | Serafimovich et al.         | ExchanGE processes in mountainous Regions (EGER) - Documentation of the Intensive Observation Period (IOP2), June, 1st to July, 15th 2008                                                                                                                                                         | 10/2008 |
| 38 | Siebicke                    | Footprint synthesis for the FLUXNET site Waldstein/Weidenbrunnen (DE-Bay) during the EGER experiment.                                                                                                                                                                                             | 12/2008 |
| 39 | Lüers & Foken               | Jahresbericht 2008 zum Förderprojekt 01879 - Untersuchung der Veränderung der Konzentration von Luftbeimengungen und Treibhausgasen im hohen Fichtelgebirge 2007 – 2013                                                                                                                           | 01/2009 |
| 40 | Lüers & Foken<br>(Eds.)     | Proceedings of the International Conference of "Atmospheric Transport and Chemistry in Forest Ecosystems" Castle of Thurnau, Germany, Oct 5 to Oct 8, 2009                                                                                                                                        | 10/2009 |
| 41 | Biermann et al.             | Mesoscale circulations and energy and gas exchange over the Tibetan Plateau – Documentation of the micrometeorological experiment, Nam Tso, Tibet , 25 June 2009 – 08 August 2009                                                                                                                 | 12/2009 |
| 42 | Foken & Falke               | Documentation and Instruction Manual<br>for the Krypton Hygrometer Calibration Instrument                                                                                                                                                                                                         | 01/2010 |
| 43 | Lüers & Foken               | Jahresbericht 2009 zum Förderprojekt 01879 - Untersuchung der Veränderung der Konzentration von Luftbeimengungen und Treibhausgasen im hohen Fichtelgebirge 2007 – 2013                                                                                                                           | 07/2010 |
| 44 | Biermann &<br>Leipold (Ed.) | Tibet Plateau Atmosphere-Ecology-Glaciology Cluster Joint <i>Kobresia</i> Ecosystem<br>Experiment: Documentation of the first Intensive Observation Period (IOP 1) summer<br>2010 in Kema, Tibet                                                                                                  | 01/2011 |
| 45 | Zhao et al.                 | Complex TERRain and ECOlogical Heterogeneity (TERRECO) WP 1-02: Spatial assessment of atmosphere-ecosystem exchanges via micrometeorological measurements, footprint modeling and mesoscale simulations - Documentation of the Observation Period, May 12th to Nov. 8th, 2010, Haean, South Korea | 03/2011 |
| 46 | Mauder et al.               | Documentation and Instruction Manual of the Eddy-Covariance Software Package TK3 2011                                                                                                                                                                                                             | 05/2011 |
| 47 | Serafimovich et al.         | ExchanGE processes in mountainous Regions (EGER)- Documentation of the Intensive Observation Period (IOP3) June, 13th to July, 26th 2011 2011                                                                                                                                                     | 11/2011 |
| 48 | Hübner et al.               | Documentation and Instruction Manual for the Horizontal Mobile Measuring System (HMMS) 2011                                                                                                                                                                                                       | 12/2011 |
| 49 | Lüers et al.                | The Arctic Turbulence Experiment 2009: Long-term measurements of near-surface turbulent fluxes in the Arctic environment - Documentation of the additional laser Scintillometer measurement campaign 2009 at Bayelva on Svalbard, August 2009                                                     | 02/2012 |
| 50 | Foken                       | Klimawanderweg auf der Landesgartenschau in Bamberg 2012                                                                                                                                                                                                                                          | 04/2012 |
| 51 | Ruppert et al.              | Whole-air relaxed eddy accumulation for the measurement of isotope and trace-gas fluxes                                                                                                                                                                                                           | 05/2012 |
| 52 | Foken                       | Jahresbericht 2010-11 zum Förderprojekt 01879 -Untersuchung der Veränderung der Konzentration von Luftbeimengungen und Treibhausgasen im hohen Fichtelgebirge 2007 – 2013                                                                                                                         | 12/2012 |
| 53 | Gerken et al.               | Documentation of the Atmospheric Boundary Layer Experiment, Nam Tso, Tibet, 08th of July - 08th of August 2012                                                                                                                                                                                    | 03/2013 |
| 54 | Biermann (Ed.)              | Tibet Plateau Atmosphere-Ecology-Glaciology Cluster Joint Kobresia Ecosystem<br>Experiment: Documentation of the 2nd Intensive Observation Period (IOP 2) summer<br>2012 in KEMA, Tibet                                                                                                           | 05/2013 |
| 55 | Babel et al.                | Documentation of the EVENT-HMMS Experiment 2012 - Microclimatological effects of rain-out shelters within EVENT II                                                                                                                                                                                | 06/2013 |
| 56 | Lüers et al.                | 160 Jahre Bayreuther Klimazeitreihe - Homogenisierung der Bayreuther Lufttemperatur-<br>und Niederschlagsdaten                                                                                                                                                                                    | 06/2014 |
| 57 | Babel                       | An R routine for the simplified application of a footprint-based characterisation of a complex measuring site for flux measurements                                                                                                                                                               | 06/2014 |
| 58 | Lüers et al.                | Application of a multi-step error filter for post-processing atmospheric flux and meteorological basic data.                                                                                                                                                                                      | 06/2014 |
| 59 | Zhao et al.                 | GaFiR: a gap-filling package for ecosystem-atmosphere carbon dioxide flux and evapotranspiration data                                                                                                                                                                                             | 06/2014 |