
Single-Particle Orbit Tracking
Setup, Characterisation and Application

Der Universität Bayreuth
zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Abhandlung

von

Dominique Ernst
geboren am 28. April 1982

in Tirschenreuth

1. Gutachter: Prof. Dr. J. Köhler
2. Gutachter: Prof. Dr. M. Weiss

Tag der Einreichung: 27.09.2012
Tag des Kolloquiums: 14.12.2012





Abstract

Tracking of single nanoobjects (e.g. beads, proteins or molecules) is of fundamental
interest in many research fields, particularly in the fields of biophysics and material
sciences. Information such as the local viscosity or the structure around the tracer
particle can be gathered on the nanometer scale. Further, the photophysical prop-
erties or conformational dynamics of the tracer can be studied without the need of
immobilising them. Moreover, fundamental research with respect to diffusion pro-
cesses like the normal Brownian motion or anomalous diffusion can be examined
with the acquisition of single-particle trajectories.
In this thesis, the development and experimental realisation of an optical setup
which records the 2-dimensional trajectories of single fluorescently labeled poly-
styrene beads, either 20 nm or 50 nm in diameter, with a high spatial and temporal
resolution is introduced. Combining single molecule fluorescence techniques with
a new method called single-particle orbit tracking the spatial position of the beads
could be determined with an accuracy of less than 10 nm at a time resolution of
4 ms. The idea is to manipulate the excitation light spatially and temporally to
locate a particle. In order to do so, special optics which deflect a laser beam and
guide it on a circular path were used. Subsequently, this rotating beam is pro-
jected by a microscope into the sample with the diffusing particles. Due to the
spatially and periodically modulated excitation light, the emission signal of the
bead is modulated with the frequency of the rotation of the laser focus. The ampli-
tude of the modulated emission signal depends on the position of the particle within
the excitation orbit. An ingeniously developed algorithm calculates the position of
the particle with respect to the centre of the orbit by demodulating the emission
signal and restores the particle back to the orbit centre. Applying this method
successively, the trajectory of the diffusing bead can be reconstructed. Besides the
experimental realisation, the characterisation of the setup in terms of the spatial
and temporal accuracy as well as the experimental shortcomings that influences
the measured trajectories and hence, the interpretation of the data, were also the
main topics of this work. For this purpose a reference sample of 20 nm sized beads
in glycerol was used. The accuracies were studied mainly by computer simulations
and the artifacts by experiments. The technical details of the setup and the char-
acterisation results were published (publication P1).
The recorded trajectories were analysed with various methods, among which the
commonly used mean squared displacement (MSD) yields the results with highest
information. The diffusion coefficient as well as the diffusion behaviour could be
quantified. With this method the obtainable accuracy in measuring the diffusion
coefficient by the acquisition of single-particle trajectories was studied as a function
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of the length of the trajectories and as a function of the number of fitting points
that were used for a linear fit to the experimentally determined MSD-curves. As
expected, the relative error of the determined diffusion coefficient gets better for
longer trajectories. Further, an optimal number of fitting points for the linear ap-
proximation to the MSD-curves was found, which yields the most exact values for
the diffusion coefficients and which is independent of the trajectory length. For
the first time, experimental results on that issue were compared with theoretical
predictions, where a good agreement was found. These findings were published
(publication P2). By the use of the Stokes-Einstein relation the diffusion coeffi-
cients could further be converted to particle radii. A closer examination of these
radii emphasises the influence of the afore mentioned number of fitting points. For
the optimal value, significantly precise radii could be determined.
Finally, an application of the new setup is presented. In cooperation with the
chair of experimental physics I (group of Prof. Dr. M. Weiss) of the University
of Bayreuth, the diffusion behaviour of single nanoparticles in a complex fluid was
studied. Background hereto is the investigation of biochemical reactions in a biolog-
ical cell, whose kinetic is given by the diffusion of the corresponding reaction part-
ners. Due to the high crowding of the cell compartments the diffusion is hindered.
The diffusion behaviour in these systems is called anomalous and more exactly
subdiffusive. Several theoretical models have been developed to explain this phe-
nomenon, but yet without experimental verifications. Here, the diffusion of 50 nm
sized polymer beads in the model system dextran (a highly branched biopolysac-
caride) is investigated experimentally with high spatial and temporal resolution.
The data were analysed in the group of the cooperation partner which yields a very
good agreement with the model of “fractional Brownian motion”. These results
were also published (publication P3).
A final outlook concerns possible technical advancements of the experimental setup,
in particular to measure 3-dimensional trajectories, and several applications at
which the tracking of single particles might be helpful for a better understanding
of the system of interest.
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Kurzdarstellung

Die räumliche Verfolgung einzelner Nanopartikel (z.B. Polystyrolkolloide, Protei-
ne oder Moleküle) ist für viele Forschungsgebiete, vor allem in der Biophysik und
den Materialwissenschaften, von großem Interesse. So können unter anderem In-
formationen über die lokale Viskosität oder über Strukturen in der Umgebung
des Teilchens auf einer Nanometerskala gewonnen werden. Weiterhin können die
photophysikalischen Eigenschaften oder die Konformationsdynamik der verfolgten
Teilchen selbst studiert werden, ohne sie zu immobilisieren. Auch die Grundlagen
von Diffusionsprozessen, wie zum Beispiel die Brownsche Bewegung oder anomales
Diffusionsverhalten, können durch die Messungen von Trajektorien einzelner Teil-
chen untersucht werden.
In dieser Dissertation wird die Entwicklung und experimentelle Umsetzung eines
optischen Aufbaus zur Messung von zweidimensionalen Trajektorien einzelner fluo-
reszenzmarkierter Polystyrolbeads mit einem Durchmesser von 20 nm bzw. 50 nm
mit hoher räumlicher und zeitlicher Auflösung vorgestellt. Durch die Kombination
von Einzelmolekülfluoreszenztechniken mit einer neuartigen Methode mit der engli-
schen Bezeichnung „single-particle orbit tracking“ konnte eine räumliche Auflösung
in der Positionsbestimmung der Beads von weniger als 10 nm bei einer Zeitauflösung
von 4 ms erzielt werden. Die Idee dabei ist, das Anregungslicht räumlich und zeit-
lich zu manipulieren, um die Position eines Teilchens zu bestimmen. Dazu werden
spezielle optische Bauelemente verwendet die einen Laserstrahl auf einen Kegel-
mantel ablenken. Nachfolgend wird dieser rotierende Laserstrahl mit Hilfe eines
Mikroskops in die Probe mit den diffundierenden Teilchen projiziert. Aufgrund der
räumlichen und periodischen Modulation des Anregungslichts ist auch das Emissi-
onssignal des Teilchens mit der Frequenz des rotierenden Laserfokus moduliert. Die
Amplitude des modulierten Emissionssignals ist von der Teilchenposition innerhalb
des Orbits abhängig, welcher durch das fokussierte Anregungslicht erzeugt wird. Ein
speziell entwickelter Algorithmus berechnet die Teilchenposition bezüglich des Mit-
telpunktes des Orbits indem das Emissionssignal demoduliert wird. Anschließend
wird das Teilchen um den berechneten Wert zurück in die Mitte des Orbits verscho-
ben. Sukzessive Anwendung dieser Berechnungsmethode liefert die rekonstruierte
Trajektorie des Teilchens. Schwerpunkt dieser Arbeit war neben der technischen
Realisierung, die Charakterisierung des Aufbaus in Bezug auf die räumliche und
zeitliche Auflösung der Trajektorien, sowie auf experimentelle Unzulänglichkeiten,
welche die gemessenen Trajektorien und damit auch die Interpretation der Messda-
ten, beeinflussen. Dazu wurde die Referenzprobe von 20 nm großen Teilchen in Gly-
cerin verwendet. Die erreichbaren Auflösungsgrenzen wurden hauptsächlich durch
den Einsatz computergestützter Simulationen verifiziert, wohingegen die Artefakte
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experimentell untersucht wurden. Die diesbezüglich erzielten Ergebnisse sowie die
technischen Details des Aufbaus wurden veröffentlicht (Publikation P1).
Die aufgenommenen Trajektorien wurden auf verschiedene Weise analysiert, wo-
bei die weitverbreitete Methode des mittleren Verschiebungsquadrats (engl.: mean
squared displacement, MSD), Ergebnisse mit dem höchsten Informationsgehalt lie-
ferte. Sowohl der Diffusionskoeffizient als auch das Diffusionsverhalten konnte quan-
tifiziert werden. Mit Hilfe dieser Analyse wurde die erreichbare Genauigkeit von
Diffusionskoeffizienten durch Messungen von Einzelteilchentrajektorien in Abhän-
gigkeit der Trajektorienlänge und der Anzahl an Fitpunkten, die für eine lineare
Kurvenanpassung an die experimentell bestimmten MSD-Kurven verwendet wurde,
untersucht. Die Analyse der Messdaten zeigte erwartungsgemäß, dass der relative
Fehler des Diffusionskoeffizienten für längere Trajektorien kleiner ist. Weiterhin
wurde eine optimale Anzahl an Fitpunkten für die MSD-Kurvenanpassung gefun-
den, die unabhängig von der Trajektorienlänge ist und die genauesten Werte für die
Diffusionskoeffizienten liefert. Die experimentellen Ergebnisse dieser Untersuchung
wurden erstmals mit theoretischen Vorhersagen verglichen, wobei eine gute Überein-
stimmung gefunden wurde. Die Resultate wurden veröffentlicht (Publikation P2).
Mit Hilfe der Stokes-Einstein Beziehung konnten weiterhin die Diffusionskoeffizien-
ten in Teilchenradien umgerechnet werden. Eine genaue Betrachtung der Radien
verdeutlicht den Einfluss der Anzahl an Fitpunkten. Für die optimale Anzahl an
Fitpunkten wurden wesentlich präzisere Werte ermittelt.
Als Anwendung des neuen Aufbaus wurde in Kooperation mit dem Lehrstuhl Expe-
rimentalphysik I (Arbeitsgruppe von Prof. Dr. M. Weiss) der Universität Bayreuth
das Diffusionsverhalten von einzelnen Polystyrolbeads in einer komplexen Flüssig-
keit studiert. Hintergrund hierbei ist die Untersuchung biochemischer Reaktionen
innerhalb einer biologischen Zelle, deren Kinetik durch die Diffusion der entspre-
chenden Reaktionspartner gegeben ist. Diese Diffusion ist durch die hohe Dichte an
Zellkompartimenten stark eingeschränkt. Man spricht deshalb von einem anoma-
lem Diffusionverhalten, genauer gesagt von Subdiffusion. Verschiedene theoretische
Modelle zur Beschreibung dieses Phänomens wurden entwickelt, wobei eine expe-
rimentelle Verifikation noch nicht möglich war. In dieser Arbeit wird die Diffusion
von 50 nm großen Polystyrolbeads in dem Modellsystem Dextran (hochverzweigtes
Biopolysaccharid) mit hoher räumlicher und zeitlicher Auflösung untersucht. Die
Messdaten wurden in der Arbeitsgruppe des Kooperationspartners analysiert und
zeigten eine sehr gute Übereinstimmung mit dem Modell „fractional Brownian mo-
tion“. Die Ergebnisse wurden ebenfalls veröffentlicht (Publikation P3).
Ein abschließender Ausblick befasst sich mit der technischen Weiterentwicklung
des experimentellen Aufbaus, speziell mit der Messung 3-dimensionaler Trajekto-
rien, und mit verschiedenen Anwendungsmöglichkeiten, bei denen die Bewegung
einzelner Teilchen aufschlussreiche Erkenntnisse liefern können.
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List of abbreviations

The following list of abbreviations summarizes all used parameters and gives an
explanation of the symbols.

R radius of the orbit
ν frequency of the rotating focus
ω angular velocity of the rotating focus (ω = 2πν)
w full width at half maximum of the focussed laser spot
I0 maximum emission of a fluorescent particle placed directly in the

focal spot
Ib background emission
S0 maximum number of emitted photons of a fluorescent particle

placed directly in the focal spot
Sb number of background photons
Sn theoretical number of emitted photons during the sampling

intervall δt
Sn,poiss simulated number of emitted photons by the use of a poisson

distribution
I mean emission intensity of the fluorescent tracer
xp, yp real x and y coordinates of the particle
xc, yc calculated x and y coordinates of the particle
xs, ys x and y coordinates of the piezo stage
a radius of the particle
D diffusion coefficient
kB Boltzmann constant
T temperature, at which the experiments were performed
η visosity of the used fluids
α anomaly parameter
n number of fitting points used for a linear fit to the MSD curves
t time
τ lag time
∆t time resolution of the experiments
∆r spatial resolution
δt sampling time of the experiments and the simulations
NS number of sampling data points
N total number of data points of a trajectory
Nseg number of data points of a cut segment
Nens number of trajectories an ensemble of segments consists of
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Rx, Ry radii of gyration
T gyration tensor
A asphericity
E ergodicity breaking parameter
β fraction of diffusion coefficients used for the analysis

with the cumulative distribution function
MSD mean squared displacement
CDF cumulative distribution function
CTRW continuous time random walk
OD obstructed diffusion
FBM fractional Brownian motion
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Part I

Introduction





I may not have gone where I intended to
go, but I think I have ended up where I
needed to be.

Douglas Adams

1 Motivation

Brownian motion is a well known phenomenon that refers to the random jitter-like
movement of microscopic particles in a homogenous fluid and is named after the
botanist Robert Brown [1] who is known to be the first person who discovered this
motion in the year 1827. Originally, the erratic movement of coal dust particles
moving in alcohol was found by Jan Ingenhousz in the year 1785. Since he was
not able to explain his finding properly, this issue was not pursued further until
Brown investigated pollen grains in water under a light microscope, where he saw
the random motion of the grains. The first systematic experiments were later per-
formed by Thomas Graham in 1831 [2]. Inspired by this work, the german physicist
Adolf Fick developed a continuum theory of diffusion processes in the year 1855 [3].
Finally, it took about 50 years (1906) until Albert Einstein and Marian von Smolu-
chowski introduced an atomistic theory for this phenomenon [4–6]. Nowadays these
groundbreaking findings are exploited to examine various transport processes on a
macroscopic as well as on a molecular length scale.
In many branches of research the investigation of diffusion processes is of great
interest. For example the mixing behaviour of fluids and gases [7], the processes at
the formation of new compounds in condensed matter physics [8] or the transport
of vesicles and other cell compartments in a living cell [9] have been studied exten-
sively. Typically, the determination of the involved transport coefficients like the
diffusion coefficient is a general approach for characterising such systems. To exam-
ine the diffusion in soft matter environments, mostly fluorescence techniques were
used. Prominent methods hereto were fluorescence recovery after photobleaching
(FRAP) [10] or fluorescence correlation spectroscopy (FCS) [11, 12]. Prerequisite
for this methods is the use of fluorescing or fluorescently labeled samples. For non-
fluorescing samples, the technique of dynamic light scattering (DLS) is the method
of choice to determine diffusional parameters. Nevertheless, all of the mentioned
techniques have in common, that they average over an ensemble of diffusing par-
ticles. Using FRAP, a subensemble of fluorescent molecules is photodamaged by
high excitation power. Due to the diffusion of the remaining intact particles the
fluorescence is recovered. This yields the diffusion behaviour, but averaged over
many diffusing particles. Using FCS the diffusion coefficient is provided by sequen-
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1 Motivation

tially averaging over the residence times in the detection volume of individually
registered particles. In both methods the detection volume is restricted to the clas-
sical diffraction limit of light and moreover, a uniform behaviour of the particles
is assumed, where possible size or shape dependencies of the particles were aver-
aged out. Therefore new methods have to be invented which can follow individual
nanoobjects and hence reporting their local diffusion properties.
Currently, the afore mentioned approaches were more and more replaced by single-
particle tracking (SPT) techniques [13–24]. This newly developed techniques allow
to follow the random movements of an individual particle with a high spatial res-
olution far beyond the diffraction limit of light microscopy together with a high
temporal resolution. The biggest advantage of the use of these methods is the
prevention of ensemble averaging effects. Local heterogeneities becomes accessible
which assists a better understanding of the transport mechanisms at the nanometer
scale which are hidden otherwise. Fascinating experiments have been performed,
among which the motion of lipids in a biological membrane [25, 26], the diffusion
of proteins and quantum dots in several media [27–29], the step like movement of
motor proteins along a filament [30], or the infection pathway of a single virus [31]
are prominent examples.
In this work, the aim is to study anomalous diffusion in a system that is comparable
with the diffusion of proteins in a cell plasma. Among several theoretical models
available to describe such a system, an experimental approach to figure out which
model fits best is still missing. In order to do so, a sophisticated single-particle
tracking setup has to be developed and also to be well characterised using standard
samples and simulations.
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Beauty is the first test: there is no
permanent place in the world for ugly
mathematics.

Godfrey Harold Hardy

2 Theoretical & experimental
background

In this chapter I will provide the theoretical framework to diffusion processes and
introduce experimental realisations for their investigation. The theoretical section
treats the diffusion equation and the Langevin equation. While the first one is
commonly used for continua, the second one provides a mathematical description
for the diffusion process of a single particle, also called Brownian motion or random
walk. Moreover, possible methods to analyse the trajectory of a single particle are
given. The experimental section is a brief overview about prominent approaches
to measure these trajectories. I will mainly focus on the orbit tracking technique,
because it is the core part of this thesis.

2.1 Theory

A diffusion process is a transport process, that describes the spatial and temporal
evolution of two or more substances with respect to each other. For example, if
the concentration of a substance e.g. a gas, a liquid or particles is distributed im-
balanced, a flow arises that equals the concentration throughout the whole system.
This process is called diffusion. The reason for the dynamic behaviour, seen on
a molecular length scale, is the thermal motion of the molecules, which leads to
countless collisions and therefore also to forces that push the molecules or particles
in a defined direction. Because this force is fluctuating constantly in magnitude and
direction, the trajectory of the particles describes a random walk. In this section
the basic equations to study diffusion processes and trajectories are introduced.

2.1.1 Diffusion equation

The substantial equation that is used to explain diffusion processes is the diffusion
equation [32]. The motion of particles due to diffusion is described by a particle
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2 Theoretical & experimental background

current density j, which arises due to a concentration gradient ∇c.

j = −D∇c (2.1)

This equation is called the first Fickian law. Beside the concentration gradient, the
particle current density depends further on the diffusion coefficient D. The latter
was developed in the works of Stokes and Einstein [4] and is defined as:

D =
kBT

6πηa
(2.2)

Here, kB is the Boltzmann constant, T the temperature of the system, η the vis-
cosity and a the hydrodynamic radius of the diffusing particles. With the use of
the continuity equation (2.3)

d

dt
c+ ∇j = 0, (2.3)

which has its origin in the law of conservation of particles, the diffusion equation is
obtained:

∂

∂t
c = D∇2c (2.4)

In this form the diffusion coefficient is regarded as constant. The diffusion equation
describes the dynamics of the concentration of particles or molecules. Strictly
speaking, this equation holds true for a continuum of particles in an infinite space.
To study single particle phenomena, the concentration has to be interpreted as a
probability density to find a particle in space. However, in this work the diffusion
of single particles is studied by measuring the trajectory of the particle. Hence, in
the following the theoretical description of this stochastic motion is introduced.

2.1.2 Brownian motion

At this point it is worth mentioning, that the following theoretical derivations
can be found in great detail in the book An introduction to Dynamics of Colloids
written by J. Dhont [33]. The diffusion of a particle in a static viscous fluid can
be understood as a random walk, also called Brownian motion. The mathematical
description of such a stochastic process is based on the Langevin equation (eq.
(2.5)).

mr̈(t) = −γṙ(t) + F s(t) (2.5)

Here, the vector r(t) represents the position of a particle with mass m at the time
t. The particle, that moves with respect to the liquid, experiences an accelerating
force F s(t) and a friction force −γṙ(t) where γ denotes the friction coefficient. For
spherical particles with radius a in a fluid with viscosity η the friction coefficient is
given by:

γ = 6πηa (2.6)
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2.1 Theory

The origin of the accelerating force are thermal fluctuations of the liquid molecules
and the concomitant collisions with the particle. The force F s(t) in equation (2.5)
can be separated in a strength parameter K, and a stochastic variable ε(t), repre-
senting the random orientation.

F s(t) = Kε(t) (2.7)

The stochastic variable ε(t), also known as white noise, fullfils two conditions.
First, it is isotropic in space and second, two consecutive values (forces) in time are
uncorrelated, i.e.

〈ε(t)〉 = 0 (2.8)
〈ε(t)ε(t′)〉 = δ(t− t′) (2.9)〈

ε(t)2
〉

= 1 (2.10)

where 〈·〉 denotes averaging over time or an ensemble. A distinct averaging method
will be written as 〈·〉T for time averaging and 〈·〉E for ensemble averaging, respec-
tively. The strength can be calculated from the fluctuation-dissipation-theorem:

〈F s(t)F s(t
′)〉 = K2 〈ε(t)ε(t′)〉 (2.11)

= 2nγkBTδ(t− t′) (2.12)

The fluctuation strength depends on the friction coefficient and the temperature.
n is the number of dimensions. Here a 2-dimensional random walk is analysed, i.e.
2n = 4. Combining equations (2.7) and (2.12) the stochastic force results to:

F s(t) =
√

4γkBTε(t) (2.13)

The total force (mr̈(t)) is rapidly fluctuating on time scales of 10−14 s. Due to the
normally relative large mass of the particle, the Brownian motion covers a typical
time scale of 10−9 s. The system is highly overdamped and we can neglect the
left-hand side of equation (2.5). The Langevin equation reduces to:

ṙ(t) =
1

γ
F s(t) (2.14)

Because of the random nature of the force, every realisation of equation 2.14 leads
to a new trajectory of the particle.
The Langevin equation provides discrete steps of the particle movement with ran-
dom orientation, that make up the trajectory. Such a trajectory can be simulated
with an iterative Euler method. For a small time step τ the position of the particle
at the time t+ τ can be calculated from its position r(t) at time t by

r(t+ τ) = r(t) + ṙ(t)τ. (2.15)
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2 Theoretical & experimental background

Using equations (2.13) and (2.14), this yields

r(t+ τ) = r(t) +

√
4kBT

γτ
ε(t)τ (2.16)

which incorporates an additional factor 1/
√
τ for a proper description of the move-

ment. This equation describes the Brownian motion of a particle and was applied
in this thesis to simulate trajectories using a home-written Matlab program.

2.1.3 Trajectory analysis

In the following I will give an overview on possible methods to analyse a single-
particle trajectory. In particular, these are i) the mean squared displacement as
a function of a lag time τ (MSD(τ)) [34], ii) the spatial extend and shape, also
termed asphericity [35, 36] and iii) the cumulative distribution function (CDF) of
squared displacements [37, 38]. All of these methods will be used in section 6 for
the analysis of experimental single-particle trajectories.

i) Mean squared displacement. The MSD can be calculated either time-
averaged or ensemble-averaged, i.e. 〈∆r(t)2〉T or 〈∆r(t)2〉E. The latter one requires
a statistical relevant ensemble of trajectories, while the first one is commonly used
for a few single trajectories with a high number of x,y-position pairs and is hence
more suited for single-particle tracking experiments. The MSD of a particle after
a time step τ is determined according to:

〈∆r(t)2〉T =
〈
(r(t+ τ)− r(t))2〉

T
=

4kBT

γ
τ (2.17)

Here the equations (2.16) and (2.10) were used to calculate the MSD. With the
Stokes-Einstein equation (2.2) and equation (2.6) the diffusion coefficient can be
determined.

〈∆r(t)2〉T = 4Dτ (2.18)

The linear dependence in time holds true for normal (Brownian) diffusion. But,
for systems showing anomalous diffusion, the linear dependence breaks down and
a power law with a scaling exponent α is introduced [39].

〈∆r(t)2〉T = 4D̃τα (2.19)

Here, the diffusion coefficient has to be interpreted as a generalized diffusion coeffi-
cient D̃, that explains the diffusion in the system under investigation. The anomaly
parameter α is regarded as a strength for the anomaly and can be used to group
the diffusion behaviour. Processes with an exponent α > 1 are called superdiffusive
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2.1 Theory

and those with α < 1 subdiffusive. Only if α = 1 Brownian motion is obtained.
This value can be determined easily with logarithmic calculus of equation (2.19).

log〈∆r(t)2〉T = α log τ + log 4D̃ (2.20)

The slope represents the scaling exponent, which is obtained by a linear fit to the
MSD data points, plotted in a logarithmic scale.

In an experiment only discrete positions are available, i.e. the time-averaged MSD of
a single trajectory r(t) constituting N position determinations, has to be calculated
for consecutive lag times τ = k∆t (k = 1..(N − 1)) according to

MSDT (τ) =
〈
∆r (k∆t)2〉

T
=

1

N − k
N−k∑

n=0

[r (n∆t)− r ((n+ k)∆t)]2 (2.21)

Here 〈·〉T symbolizes time-averaging over the respective lag time. The alternative
ensemble-average calculation is given as follows:

MSDE(τ) =
〈
∆r (k∆t)2〉

E
=

1

Nens

Nens∑

m=1

[rm (k∆t)− rm (0)]2 (2.22)

where Nens denotes the number of trajectories the ensemble consists of and rm(0)
represents the starting position of each trajectory m.

ii) Shape of a trajectory. The average spatial extend of a trajectory can be
estimated by the radii of gyration Rx and Ry. Hence, the gyration tensor T of a
2-dimensional trace has to be calculated [35, 36].

Tij =
1

N

N∑

n=1

(ri(n∆t)− 〈ri〉) (rj(n∆t)− 〈rj〉) (2.23)

Here, the indices i, j denote the x- and y-component of a position vector r(t) and
the brackets 〈ri〉 represent the corresponding centre of masses for the x-trace and
the y-trace.

〈ri,j〉 =
1

N

N∑

n=1

ri,j(n∆t) (2.24)

Diagonalisation of T yields the eigenvalues, i.e. the squared radii of gyration.

T =

(
R2
x 0

0 R2
y

)
(2.25)

The eigenvectors defines the orientation of the respective gyration ellipse. The spa-
tial extend of a trajectory changes with the number of data points and the mobility
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2 Theoretical & experimental background

of the tracer particle. An unambiguous criterion regarding the diffusion behaviour
remains elusive.
A more suitable value is the asphericity A, providing a single parameter that de-
termines the shape of a random walk [36].

A =

〈(
R2
y −R2

x

)2
〉

〈(
R2
y +R2

x

)2
〉 (2.26)

The calculation of A requires averaging over a sub-ensemble (〈·〉) that can be ob-
tained from cutting the trajectory into consecutive segments with an equal number
of positions Nseg. For each of the segments, the radii of gyration were calculated (cf.
eqn. 2.23 - 2.25) and the asphericity was determined according to equation (2.26).
Trivial values for the asphericity are given for a perfect rod-like shape, where one
of the radii of gyration is 0, leading to A = 1, and for a perfect spheric shape with
equal radii, i.e. A = 0. For a random walk one finds A = 4/7 [35].

iii) Cumulative distribution function. An alternative method to investigate
the diffusion process of a single particle is to calculate the (discrete) cumulative
distribution function of the squared displacements ∆r2 at a certain lag time τ , i.e.
CDF (∆r2, τ) [37, 38]. In order to do so, the number of squared displacements
smaller or equal to a given ∆r2 is counted according to

CDF
(
∆r2, τ

)
=

∑

∆r2(τ)≤∆r2

P
(
∆r2, τ

)
(2.27)

where P (∆r2, τ) denotes the empirical distribution of the squared displacements
for a lag time τ . This is done consecutively throughout a trajectory until the highest
∆r2 is reached.

2.2 Tracking techniques

Numerous kinds of setups have been invented to follow the 2- and even 3-dimen-
sional motion of single particles [13, 17, 18, 20, 21, 23, 24, 29, 40]. Mostly, fluorescent
techniques were used, which requires fluorescent particles. Therefore, either dye
molecules, polymer beads that are loaded with dyes, or labeled proteins are possible
tracers. For non-fluorescing particles, other microscopy techniques, e.g. dark field
microscopy is a possible method. In the early years, simple video microscopy [17]
was used to follow the 2-dimensional motion of single lipids and bigger molecules.
Further developments leads to high standard CCD-tracking techniques that record
the motion of a single particle with a high spatial and temporal resolution [18].
Besides the common CCD-tracking technique, other methods emerged, where the
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spatial and temporal resolution as well as the total observation time have been
improved further. In this section I will give a brief introduction to the widely
used CCD-tracking method, explain the technique of single-particle orbit tracking,
which was exploited in this thesis and give finally an overview to some alternative
experimental approaches.

2.2.1 CCD-Tracking

Tracking techniques, that use a charged coupled device (CCD) as a detection unit
are called CCD-tracking, which is the most wide-spread method for single-particle
tracking [13, 17, 18, 20, 23, 29]. The principle is to record successive images of
the sample with the moving particles. Each particle in a CCD-image is displayed
as a diffraction limited spot, which is typically spread over some 10 pixels on the
CCD-chip. A two-dimensional Gaussian fit to the spot is applied, where the cen-
tre of this fit gives the actual particle position with an accuracy of better than
the classical diffraction limit of light. By doing so successively with all recorded
frames, the trajectories of all the particles within the CCD-images are obtained.
The advantage of this technique is the relatively simple experimental setup and
the high position accuracy that can be obtained. Further, multiple single particles
can be tracked simultaneously. Yet, this experimental approach often lacks a high
temporal resolution, because the data storage of the images with a high information
density is time consuming. At least sophisticated improvements have to be applied
to avoid this shortcoming. Not only the time resolution is restricted, also the to-
tal observation time is, because the CCD-images need large computer memory. A
video of about ten minutes can easily exceed 100 Gigabyte of hard drive space. To
circumvent these limitations, other tracking techniques have been invented.

2.2.2 Orbit-Tracking

The basic idea of this method is to focus a laser beam in the focal plane of the
sample and let this focal point rotates around a fluorescent particle. By acquiring
the emission signal, which is modulated by the frequency of the rotating laser beam,
the position of the particle can be traced. By demodulation of this signal the
actual particle position can be calculated. Theoretically this approach was studied
by Enderlein [41, 42] and successfully implemented by the groups of Gratton [40],
Mabuchi [21] and Lamb [43]. In figure 2.1 the principle is shown schematically
for two different particle positions (left hand side) with the corresponding emission
signals (right hand side). For particles, that move between the centre and the rim
of the orbit, the emission signal is periodically modulated as it is depicted in figure
2.1 (right hand side). A high modulation occurs for particles that are apart from
the centre of the orbit (see fig. 2.1a), while it gets weak for particles that are close
to the centre (see fig. 2.1b). The amplitude of the modulation changes as a function
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2 Theoretical & experimental background

Figure 2.1: Schematic explanation of the orbit tracking technique. All necessary param-
eters, i.e. the radius of the orbit R, the angular velocity ω, the width of the focus w and
the position of the particle xp and yp, drawn as a red sphere, are displayed. This scheme is
not drawn to scale. In a) the particle is far off-centred, whereas it is close to the centre of
the orbit in b). On the right hand side of the figure the corresponding emission intensities
of the particle are sketched. Adapted from publication P1.

of the position. Hence, from the demodulation of the emission, the direction as well
as the absolute distance from the centre of the orbit can be calculated.
The emission signal I(t) depends on the relative position of the particle (xp and yp)
and the rotating laser focus and can be written as follows [41, 42]:

I(t) = I0 exp

(
− 2

w2
(xp −R cos(ωt))2

)
exp

(
− 2

w2
(yp −R sin(ωt))2

)
+ Ib (2.28)

Here, I0 is the maximum emission intensity, i.e. the particle is at the position of the
focal spot, R the radius of the orbit, w the 1/e2-width of the laser focus, ω = 2πν
the angular velocity of the rotating focus and Ib the background intensity. By using
lock-in techniques, the position of the particle can be calculated from this emission
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signal according to the equations

xp(t) =
w2

2R

∫ T
0
I(t) cos(ωt)dt
∫ T

0
I(t)dt

, yp(t) =
w2

2R

∫ T
0
I(t) sin(ωt)dt
∫ T

0
I(t)dt

. (2.29)

The integration boundaries are from 0 (begin of the position determination) to
T , which is a time that corresponds to a multiple of the cycling time. Once the
position of a particle with respect to the centre of the orbit is calculated, a feedback
mechanism has to be implemented, that restores the particle back in the centre of
the orbit. Generally, two possibilities exist to do so. On the one hand, this is beam
scanning, where the whole light orbit is moved according to the new positions of the
particle by applying the corresponding feedback signals to the optical elements that
are responsible for the generation of the orbit. This are typically scanning mirrors
or acousto optical deflectors. On the other hand, this is sample scanning, where
the feedback signals are applied to hardware elements, that move the whole sample,
which is mostly realised by a piezostage. The feedback loop is as follows: acquire
emission signal, calculate position, restore particle in the centre of the orbit, and so
on. Doing so successively, the whole trajectory of a particle can be reconstructed.
This new setup for the recording of single-particle trajectories is quite powerful as
it combines the spatial accuracy of a CCD camera with the temporal resolution of
a single photon detector.

2.2.3 Alternative approaches

In the following some alternative approaches and new developments in the research
field of single-particle tracking are introduced. All of them have in common, that
they want to push forward the temporal and spatial accuracy of the position de-
terminations.
In the research group of W. E. Moerner two ingenious methods have been invented.
The first one is called the ABEL (Anti-Brownian ELectrokinetic) trap [15, 44, 45].
Here, a particle is trapped between four electrodes. As soon as the particle moves
towards one of them a voltage to the corresponding electrode is applied that in-
duces a flow field in the medium where the particle is diffusing and which pushes
the particle back to the centre of the trap. The feedback mechanism is implemented
by recording the motion of the particle with a CCD-camera. In a newer version of
this setup, the afore explained orbit tracking is used to record the position of the
particle [46], which is faster.
The second setup, that was developed in the group of Moerner modulates the point
spread function (PSF) [24, 47]. By a spatial light modulator a double-helix PSF
is generated, where the particle of interest is located within that double helix. In
other words, a spatial cavity of light surrounds the particle. A movement in any
direction is detected by the emission signal of the fluorescent particle. Computer
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software is then able to reconstruct the position in three dimensions.
Another method was put forward by the group of H. Yang, in which the emitted
light of a particle was split four times by prism mirrors [22]. Each part of the emis-
sion was acquired by a separate avalanche photo diode (APD). From the intensity
ratios between the four detectors the position of the particle can be extracted. By
a 3-dimensional piezostage this motion is compensated. The feedback signal of the
piezo is used to determine the trajectory.
In principle all techniques have in common, that they probe the space around a
particle, either by trapping the particle, by modulation of the excitation light, or
by splitting the emission signal. From the acquired signal of the tracer particles,
feedback mechanisms restore the initial position. Successive calculations and the
use of sophisticated algorithms provide the reconstructed trajectory.
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The good thing about science is that it’s
true whether or not you believe in it.

Neil deGrasse Tyson

3 Materials

For the characterisation and tracking experiments, two sizes of beads (20 nm and
50 nm) loaded with two different fluorescent dye molecules (nile red and rhodamine)
and four kinds of sample substances (poly-vinyl-alcohol (PVA), glycerol, sucrose
and dextran) were used. Among these, the combination of 20 nm sized beads in
PVA is used for static experiments, where the beads are immobile. Further, another
five combinations of beads/samples were used for the characterisation of the setup
including the determination of the dynamic accuracies and for the investigation of
anomalous diffusion. In the following paragraphs I will describe the characteristics
of the beads as well as the preparation of the sample. The detailed preparation
of the bead/sample-mixtures for the respective experiments can be found in the
corresponding publications (publication P1: 20 nm beads in PVA and in glycerol,
publication P2: 20 nm beads in glycerol, publication P3: 50 nm beads in sucrose
and dextran).

3.1 Beads and samples

In order to characterise the tracking performance of the experimental setup and
to measure diffusion processes, two different sizes of dye labeled beads were used.
On the one hand these are 20 nm (diameter) sized polystyrene beads (Molecular
Probes) that are loaded with the dye nile red and are further stabilized with car-
boxylate groups attached to the surface to avoid aggregation. According to the
manufacturer, the beads are suspended in water at a concentration of 20 mg/ml.
On the other hand these are polystyrene-based latex microspheres (Polysciences)
with a diameter of 50 nm, that are labeled with the dye rhodamine. Here, the con-
centration of the stock solution is 200 mg/ml with no additional stabilizers. The
molecular structure as well as the normalized fluorescence excitation and emission
spectra of the two highly fluorescent molecules are displayed in fig. 3.1a,b. The
spectra have been recorded with a commercial fluorescence spectrometer (Cary
Eclipse, Varian). Therefore the respective beads were dissolved in millipore water
and this solution was then filled in cuvettes. The fluorescence excitation and emis-
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Figure 3.1: Samples. Normalized fluorescence excitation (green line) and emission (red
line) spectra of the 50 nm sized beads loaded with the dye rhodamine (a) and the 20 nm sized
beads loaded with the dye nile red (b). For the spectra, both kinds of beads were dissolved
in water. The green arrow marks the position of the laser excitation used in the tracking
experiments. The step-like grey dashed line symbolizes the transmission characteristic of
the detection filter. c) Chemical structures of the used samples for the static and dynamic
experiments. (The two spectra for the 20 nm sized beads were recorded by Daniel Zalami.)

sion spectra of the beads with the dye rhodamine (fig. 3.1a) and the excitation
spectrum of the beads with the dye nile red (fig. 3.1b) show the typical shape for
fluorescent molecules. But, the emission spectra of the beads with the dye nile red
exhibits a reduced maximum emission peak. This is attributed to the known effect
of reabsorption and occurs for strong absorbers, especially when the concentration
of the dyes is too high. Several possibilities have been tried to avoid the effect.
For example by using a volume reduced cuvette, which is very thin, or by diluting
the sample. But, due to a lack of suitable experimental equipment, it was not
possible to record a better emission spectrum. Because the spectra were only used
to define an appropriate detection filter that separates the absorption band from
the emission band, the recorded emission spectrum was acceptable. Nevertheless,
for a single bead, which is used in the measurements, the effect of reabsorption can
be neglected. Due to the spectra, a dielectric long pass detection filter (HQ545LP,
AHF) with a filter edge at 545 nm is used. Further, remaining excitation laser light
with a wavelength of 514 nm (green arrow in fig. 3.1a,b) that is reflected from the
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sample substrate, is suppressed. For details see publication P1. The transmission
characteristic is symbolized by the grey dashed line in fig. 3.1a,b.
For the experiments, the beads are mixed with various fluids. This results basically
in two kinds of samples. One where the particles are immobilised in a polymer
matrix and one where the particles are moving. In the following they are called
static sample and dynamic sample, respectively.
For the static sample, the polymer poly-vinyl-alcohol (PVA) is used, which is known
to form a rigid polymer network where particles and molecules can be immobilised
efficiently. For the dynamic samples, the widely known reference fluid glycerol, the
simple sugar sucrose, and the more complex polysaccaride dextran is used. The
chemical structures for all of the used fluids are shown in fig. 3.1c. For several
reasons, the fluid glycerol was chosen for the characterisation experiments. First,
in contrast to complex fluids like polymer solutions, liquid crystals or network form-
ing fluids, glycerol and glycerol-water mixtures are simple fluids and thus featuring
normal Brownian motion of an embedded tracer particle at room temperature.
Second, the dependence of the viscosity on the temperature and the concentration
is well documented [39]. For a given temperature and bead size this enables the
choice of a time scale on which a diffusion process takes place, just by using a
proper concentration. Moreover a comparison with theoretical values according to
the Stokes-Einstein relation (eq. 2.2) is possible. And finally, the very high viscos-
ity of pure glycerol of η = 1.2 Pa s [39] at a temperature of about 20 ◦C allows it to
follow the movement of very slow (normal) diffusing particles. For a first character-
isation of an unknown setup this favours the measurements regarding the tracking
performance.
The samples sucrose and dextran were used for the investigation of anomalous dif-
fusion processes. Due to its chemical similarity to dextran, sucrose was used as a
reference sample that shows normal diffusion behaviour, because no polymer-like
network is formed, while the highly branched bio-polymer dextran mimicks the net-
work structure of a cell membrane, where subdiffusive modes of motions of tracer
particles have been observed [48, 49]. For more details see publication P3 and sec-
tion 6.4. Furthermore, all the used samples are rather easy to handle and need
no highly developed safty precautions, as it is for example necessary for biological
samples like living cells or bacteria.

3.2 Sample preparation

In the following, the steps for preparing the static and dynamic sample are de-
scribed. Figure 3.2 depicts both types schematically.
For the static sample the beads have been dissolved in a 5% PVA/water mixture
resulting in a bead concentration of 50 pM. In a next step, which is mostly nec-
cessary when working with beads, the solution has to be ultrasonicated for about
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Figure 3.2: Schematic representation of the sample preparation. Both pictures show the
focussed laser beam and the orbit that circles around a bead. a) Static sample with the
beads fixed in a poly-vinyl-alcohol matrix b) Dynamic sample with a bead diffusing in
either glycerol, sucrose or dextran. The two coverslips are sealed on the edges with grease
to prevent a flow of the sample.

10-15 minutes, to break up possible aggregates. Finally, a drop of about 25µl was
spin coated onto an acetone cleaned glass coverslip. Fig. 3.2a shows schemati-
cally the thin polymer film on the glass substrate with the embedded beads. Also
the focussed laser beam and the light orbit, circling around a tracer particle are
displayed. The static sample is used for basic characterisations of the setup and
to determine the spatial accuracy of the position of the non-moving particle as a
function of the temporal resolution.
The dynamic sample is prepared by diluting the corresponding stock solutions of
the 20 nm and the 50 nm sized beads in water to a concentration of about 0.1 nM.
Subsequently this solution was mixed with either glycerol, sucrose or dextran, re-
sulting in a final bead concentration of about 2 pM. This very low concentration
ensures, that the beads are well separated from each other. Possible aggregates
are again destroyed by ultrasonication. Dependend on the experiment, a drop of
the respective sample is sandwiched between two acetone cleaned coverslips. To
prevent evaporation, which would induce a flow field in the sample, the edge of
this home-built cuvette was sealed with high viscous grease (high-vacuum grease,
Wacker). Fig. 3.2b displays schematically the cuvette with the moving beads (in-
dicated by the red line) and the circling laser focus. The dynamic samples are used
for an advanced characterisation of the tracking performance (publication P1), for
the investigation of the analysis of particle trajectories (section 6.1 and publication
P2), and to study anomalous diffusion processes (publication P3).
All experiments were carried out at a room temperature of T = (21.0 ± 0.5) ◦C.
At this point it is worth to note, that the concentration of the fluid in water and
the concomitant change of the viscosity is determined by the final preparation step.
The viscosity of the sample fluid changes slightly towards lower values when the
bead solution is added.
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I think nature’s imagination is so much
greater than man’s, she’s never going to
let us relax.

Richard P. Feynman

4 Simulations

The characterisation of a new setup and in particular the determination of spatial
and temporal accuracies, is quite hard, if no well defined and well designed refer-
ence system can be used. In these cases simulations are an effective tool to get a
better understanding of the influences of important parameters like the emission
intensity of the particle or the integration time during data acquisition. Further-
more, experimental results can be verified. Mostly, simulations are the first step to
test an experimental idea.
In this chapter, I introduce simulations regarding the tracking performance of the
planned setup. Therefore, in the first section the general procedure of the sim-
ulations are given, followed by a discussion about the achievable spatio-temporal
resolution of the tracking setup in the subsequent section. Finally some limiting
factors to track a particle are discussed. I want to mention, that similar simulations
were performed in the literature, e.g. in the group of H. Mabuchi by A. Berglund
[50] to characterise their setup.

4.1 General procedure

Based on Brownian dynamics, the motion of a fluorescent particle is simulated ac-
cording to the overdamped Langevin equation (2.14) and the iterative Euler method
(2.16) as already explained in the theory part (see section 2.1.2). The in such a
way generated trajectories are called “simulated real”, in contrast to the “simulated
reconstructed” trajectories, which are determined by the use of the derived position
calculation algorithm (see eq. (2.29)). At this point it is worth to note, that in
the experimental situation, the trajectories are called similarly “experimental real”,
which describes the real diffusion of the particles and “experimental reconstructed”,
which are the trajectories that are calculated from the emission signal of the tracer
bead. The following table 4.1 helps to understand the used notation, where the
entries stands for the origin of the corresponding trajectory. The trajectories with
the notation “real” (simulated and experimental) do not contain any setup induced
shortcomings and are only defined by the diffusion parameters a, η and T . (Mostly,
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simulated experimental
real Langevin equation real diffusion

reconstructed calculated by simulation
of emission signal

calculated by acquisition
of emission signal

Table 4.1: Summary of the explanation of the notation for the different types of trajec-
tories, that were used in this thesis. The entries are the origins of the trajectories.

for the experimental trajectories the prefix “experimental” was abandoned.)
The general procedure of the generation of a “simulated real” and a “simulated re-
constructed” trajectory is described in fig. 4.1. The first one is quite easy, where an
example for a typical random walk of a particle with a radius of a = 10 nm diffusing
in a medium with viscosity η = 1.2 Pa s at a temperature of T = 294 K is shown in
fig. 4.1a. The length of the trace is t = 20 s with a time resolution of ∆t = 4 ms,
resulting in N = 5000 data points. The here used parameter settings corresponds
to a real tracking experiment, which I explain later in this thesis. However, for the
description of the simulation procedure, these settings are just arbitrary numbers.
The second one, i.e. the simulation of a “simulated reconstructed” trajectory, is
more complicated. For a first approximation the following experimental properties
have to be taken into account: a) the particle moves during the acquisition time
∆t, b) the feedback mechanism has to be implemented and c) noise is superimposed
to the emission intensity. Basis of all these calculations, is the simulation of the
emission signal, i.e. equation 2.28. Because the emission signal in the experiment
is acquired in terms of discrete photon packages Sn during the time resolution ∆t,
the simulation was programmed accordingly to match the experimental situation as
good as possible. Therefore, a fast sampling time δt� ∆t is introduced. Further,
this ensures that the movement of the particle during the acquisition time of ∆t is
considered. With this, the experimental property (a) is implemented. During the
sampling time the emission signal I(t) is regarded as constant, and the number of
photons within one photon package results to

Sn =

∫ δt

0

I(t)dt
I(t)const.

= I(t)δt. (4.1)

Further, the time has to be transformed to discrete time steps t→ nδt. With this
modifications the theoretical number of emitted photons Sn results to

Sn = δtS0e(− 2
w2 (xp−xs−R cos(ωnδt))2)e(− 2

w2 (yp−ys−R sin(ωnδt))2) + Sbδt. (4.2)

Here, S0 denotes the maximum number of emitted photons, i.e. the particle is at
the position of the focal spot, Sb is the number of background photons, which is
used as a constant offset, xp and yp are the actual position of the particle, which
is unknown in the experiment, and xs and ys represents the implementation of
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Figure 4.1: Principle scheme of the simulation of a particle trajectory. a) Simulated
trajectory (black line), calculated with the use of the Langevin equation. This trace is
regarded as the real trajectory. b) Simulated number of photons Sn,poiss during one time
interval ∆t. c) Real (black line) and calculated (red line) trajectory according to the
equation 4.3. The parameters marked in red (bead radius a, viscosity η, temperature T ,
elapsed time t, emission intensity I, background signal Ib and the time resolution ∆t) can
be set in the simulation.

the feedback mechanism (piezo stage in the experimental setup). With this, the
second experimental property (b) is considered. The actual values for xs and ys
are the preceding calculated values xc and yc (equations (4.3)). This ensures, that
the particle is restored in the centre of the orbit. The values for the coordinates
xp and yp were taken from the “simulated real” trajectory (vide supra). The afore
mentioned modifications also have to be applied to the equations for the position
calculation, i.e. (2.29). This leads to:

xc(t) =
w2

2R

∑NS

n=1 Sn cos(ωnδt)∑NS

n=1 Sn
, yc(t) =

w2

2R

∑NS

n=1 Sn sin(ωnδt)∑NS

n=1 Sn
(4.3)

Here, the integrals have to be exchanged to sums. The upper bound of integration
changes to the upper bound of the sum, i.e. NS, which corresponds to the number
of sampling intervals that is used for one position determination and is given by
NS = ∆t/δt. In an experiment, this number is defined by the frequency of the
focus rotation ν and the number of cycles P (NS = P/νδt, see publication P1 for
details). One has to be aware, that Sn is only a theoretical number of photons. To
be as close as possible to an experimental situation, photon statistics, which is the
basis of the emission of fluorescent dyes, has to be taken into account by a Poisson
process (third experimental property (c)). Each “real” number of photons during
one time bin δt is determined by a Poisson distribution with an expectation value
of the theoretical number of photons Sn and is called Sn,poiss in the following. A
typical simulated number of photons during a time interval of ∆t = 4 ms is shown
in fig. 4.1b. Reasonable parameters were chosen, i.e. the width of the laser focus
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was set to w = 270 nm, the radius of the orbit to R = 190 nm, which is the optimal
value according to [50] where R = w/21/2 was determined, and the frequency of
the focus rotation was set to ν = ω/2π = 1 kHz. The sampling time was δt = 2µs,
which results to a number of sampling intervals of NS = ∆t/δt = 2000. This corre-
sponds to 4 periods of rotation of the focus. (Later in this thesis we will see, that
this parameters match the experimental conditions.) From the number of simulated
photons, the mean emission intensity of the tracer results to I = 57kcps and the
background intensity to Ib = 0.5 kcps (kcps: kilo counts per second).
To calculate the coordinates xc and yc according to the equations (4.3), the simu-
lated signal Sn,poiss as well as the values Sn,poiss cos(ωnδt) and Sn,poiss sin(ωnδt)
are accumulated during each 4 ms period (Sn in eqn. (4.3) was replaced by
Sn,poiss). By successively repeating this procedure, the trajectory of the parti-
cle, i.e. r(t) = (x(t), y(t)) can be reconstructed. Figure 4.1c displays both, the
trajectory generated with the Langevin equation (black) and the trajectory, that is
reconstructed. Beside some slight deviations according to the position uncertain-
ties (noise and movement during signal acquisition), the “simulated reconstructed”
trajectory matches the “simulated real” one.
To summarize, first a “fast” trajectory on a time scale of δt = 2µs is generated, that
corresponds to the movement of the particle during the integration time ∆t. Out
of the positions of this trajectory, the signal Sn,poiss is calculated, accumulated and
multiplied with a cosine and sin function, necessary for the calculation of the par-
ticle position. Finally, the positions xc and yc are calculated according to 4.3. All
simulations were performed using home-written Matlab programs. The source code
of the generation of the “simulated real” and “simulated reconstructed” trajectories
is given in the appendix A. This simulations are an effective tool

• to scan the parameter range (e.g. rotation frequency ν, time resolution ∆t,
orbit radius R, etc.), which is appropriate for the experiment to achieve the
best tracking performance,

• to compare the results of simulations and experiments,

• and to study the influences of several experimental artifacts (e.g. noise and
position averaging) or the influences of diffusion parameters (e.g. viscosity
η or bead size a) on the analysis of the mean squared displacement and the
concomitant interpretations.

4.2 Spatio-temporal accuracy

With the use of the afore described simulations of the reconstructed trajectories
the tracking performance by means of the spatial and temporal accuracy is studied

22



4.2 Spatio-temporal accuracy

as a function of the emission intensity and as a function of the diffusion coeffi-
cient. Starting point is the simulation of the number of photons Sn,poiss that is
used by the feedback algorithm to determine the position. The theoretical and
Poisson distributed number of photons, i.e. Sn and Sn,poiss, during a time inter-
val that corresponds to the time resolution of ∆t = 4 ms for a moving bead is
displayed in fig. 4.2a, represented in red and black, respectively. For a better vi-
sualization a low emission signal of I = 30 kcps was chosen, otherwise the Poisson
distributed number of photons are too crowded. The diffusion coefficient was set
to D = 43 × 10−3 µm2/s. The signal for the theoretical number of photons Sn
is periodic, but heavily fluctuating. The reason is the movement of the particle,
during the integration time ∆t. As already mentioned, the emitted photons depend
on the position of the particle within the orbit. As soon as the movement happens
on a faster time scale than the integration time, the periodic emission fluctuates
accordingly. Because the Poisson distributed number of photons is calculated from
the theoretical number of photons, the described behaviour (periodic and fluctuat-
ing emission) is carried forward to Sn,poiss. The density of photons (Sn,poiss) is high
when Sn is high.
However, despite the fluctuations of the emitted photons, the feedback algorithm
is still able to calculate the position of the particle, with an accuracy, that is deter-
mined by photon statistics (noise) and position averaging during data acquisition.
Figure 4.2b shows two 1-dimensional “simulated reconstructed” trajectories with
N = 5000 data points for the time resolutions ∆t = 0.5 ms (blue) and ∆t = 9.0 ms
(red), both with a mean emission intensity of I = 157 kcps and a diffusion coeffi-
cient of D = 400 × 10−3 µm2/s. It is trivial, that the particle simulated with the
higher time resolution of ∆t = 9.0 ms can move a larger distance, because the total
observation time for the movement is t = N∆t and hence, longer than for a par-
ticle simulated with ∆t = 0.5 ms. However, rather than the covered distance, the
position error in the trajectory is considered. Despite a larger number of photons,
which favours the position determination, the “simulated reconstructed” trajectory
determined with the time resolution of ∆t = 9.0 ms appears more noisy than the
trajectory determined with ∆t = 0.5 ms. Obviously, the motion during the acqui-
sition time is dominant. Dependent on the emission intensity and the mobility of
the particle (diffusion coefficient), both effects contribute to the spatial accuracy.
To determine this accuracy, the positional error of a trajectory has to be calculated.
In order to do so, the root-mean-square (rms) error between the positions of the
“simulated real” trajectory, xc, and the positions of the “simulated reconstructed”
trajectory, xp, has to be determined.

σx = σrms =

√√√√ 1

N

N∑

i=1

(xci − xpi)2 (4.4)
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4 Simulations

Figure 4.2: Simulation of the dynamic position accuracy. a) theoretical (red) and Pois-
son distributed (black) number of emitted photons within one time bin of ∆t b) calculated
position as a function of the number of position determinations N for a time resolution
of ∆t = 0.5 ms (blue) and ∆t = 9.0 ms c),d) dynamic position accuracy for a high mean
emission intensity (c) and a low mean emission intensity (d) as a function of the time
resolution for various diffusion coefficients between the static case of D = 0 µm2/s and a
fast particle motion of D = 6.4 µm2/s. The two trajectories, simulated in b) are indicated
in d) by the numbers 1 and 2. More details see text.

In fig. 4.2c,d the 1-dimensional spatial accuracy σx as a function of the time resolu-
tion ∆t for diffusion coefficients between D = 0µm2/s (static) and D = 6.4µm2/s
are shown for a low (fig. 4.2c) and a high (fig. 4.2d) mean emission intensity of
I = 30 kcps and I = 157 kcps, respectively. The low emission signal corresponds
to a typical emission of a single molecule, while the high signal corresponds to the
typical emission of a fluorescent bead. Qualitatively, both graphs show the same
results. With an increasing value of the time resolution (in everyday language: the
time resolution gets worse) the spatial accuracy rapidly gets better until a mini-
mum value is reached, from which it grows slowly. To explain this behaviour let
us consider a given diffusion coefficient. For very low time resolutions the particle
can be regarded as static and the position accuracy is getting better according to
σx ∝ 1/

√
∆t. This is evident for the spatial accuracy of the static particle (black

data points in fig. 4.2c,d). For higher values of ∆t the position of the particle gets
blurred due to its movement during one time resolution step, i.e. the positional er-
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4.3 Loosing a particle

ror is growing. Hence, it exists a minimum, where the best spatial accuracy can be
achieved. For fast particles, i.e. high diffusion coefficients, the position averaging
effect is more pronounced than for slow particles. A common comparison is the dif-
fusion of a 20 nm bead in water, which has a diffusion coefficient of D = 21.5µm2/s.
According to the presented simulations, the particle can not be tracked or at least
a very high time resolution is required. For a successful tracking experiment, the
particle has to be larger and/or the viscosity of the surrounding fluid has to be
higher.
However, this two graphs (fig. 4.2c,d) serve as an orientation for setting suitable
experimental parameters and to know the theoretical limits of the tracking perfor-
mance. In advance, the experimentalist can check if the particles in the system
he wants to investigate can be tracked and if so, which spatial accuracy can be
expected. A problem occurs, if the simulated accuracies are compared with exper-
imental ones. In an experiment the “real” position, which was necessary for this
calculations, is not accessible and other methods for the determination of the spa-
tial accuracy has to be used. One possibility is discussed in detail in publication
P1, where the offset of the MSD-curve was used as an indicator for the spatial
accuracy.

4.3 Loosing a particle

As long as the particle can be tracked, it stays inside the light orbit, generated by
the rotating focus, and is restored to the centre of the orbit after every time period
∆t. Hence, this means, that the emission intensity of the particle is kept constant
during tracking. As soon as the particle gets lost, the emission intensity decreases
immediately to the background intensity. Possible reasons to loose a particle are a
weak emission signal or a high mobility.
The situations for a successful and a failed tracking were simulated for a bead with
radius a = 10 nm at a temperature of T = 294 K. The top graph of fig. 4.3a
displays the 1-dimensional “simulated real” (black) and “simulated reconstructed”
(red) trajectory of a slow diffusing bead with a high emission intensity. The param-
eters were set to I = 157 kcps and η = 1.2 Pa s, which corresponds to a diffusion
coefficient of D = 17.95 × 10−3 µm2/s. The reconstructed positions follow nicely
the real trace. A detailed view is shown in the inset of fig. 4.3. The corresponding
intensity trace (bottom graph of fig. 4.3a) yields the expected constant emission
intensity, i.e. the particle is tracked continuously.
To simulate a tracking experiment, where the particle gets lost, a fast bead with
a low emission intensity is used. The trajectories (real and reconstructed) are
shown in the upper part of fig. 4.3b. Here, I = 21 kcps and η = 0.1 Pa s, i.e.
D = 215.3× 10−3 µm2/s, were chosen. The diffusion is too fast and the emission is
too low, to follow the movement of the particle. At a time of about 2.5 s the posi-
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Figure 4.3: Results for the simulations of a fast and high emitting particle (a) and a slow
and low emitting particle (b). The top graphs display the time traces of the true (black) and
the calculated positions (red) and the bottom graphs of the intensity time trace. The inset
in (a) is an enlarged view of the two trajectories. The blue dashed line in (b) indicates the
time, where the particle is lost.

tion can not be calculated anymore and as mentioned above, the emission intensity
drops instantly to the background level (indicated by the blue dashed line in fig.
4.3b). This happens for example, if the bead moves that fast, that it exceeds the
rim of the orbit or if the emission is not high enough to calculate the position. This
example explains nicely the criterion for a termination of a tracking experiment.
As soon as the emission signal drops to the background level the measurement is
stopped.
With a rough estimation, a limiting case for the 2-dimensional tracking performance
can be determined for a high emission signal. The particle can definitely not be
tracked, if the mean displacement between two consecutive positions is larger than
the value for the radius of the orbit R, i.e. if

√
〈∆r(k∆t)2〉 ≥ R for k = 1 (4.5)
⇔ 4D∆t ≥ R2

⇒ D ≥ R2

4∆t

By chance it could happen, that the particle can be tracked partially, but with
a mean displacement larger than the radius of the orbit, a permanent tracking is
not possible. For the parameters ∆t = 4 ms and an orbit radius of R = 190 nm,
the limiting diffusion coefficient is determined to D = 2.26µm2/s. This can also
be compared with the values given in fig. 4.2d. Systems, that exhibits a larger
diffusion coefficient than the determined one, can not be tracked with this settings.
Coming back to the example of a 20 nm bead in water, successful tracking would
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4.3 Loosing a particle

require a time resolution of about ∆t = 0.4 ms, according to equation 4.6.
In the following section the parameter limitations for the experimental setup are
introduced. At this point I want to mention, that at the present stage of the setup
it is not possible to track a 20 nm bead in water. The temporal accuracy has to be
improved by a factor of 10.
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A learning experience is one of those things
that say, “You know that thing you just
did? Don’t do that.”

Douglas Adams

5 The tracking setup

The main work of this thesis was the development of a new experimental setup
that is capable of measuring single-particle trajectories with a high spatio-temporal
resolution. It started from an empty optical table and ended with the successful im-
plementation of single-particle tracking experiments. Among the afore mentioned
various techniques, the orbit tracking method with sample scanning was chosen.
This enabled the recording of successive positions of a particle for more than 10
minutes with a time resolution of 4 ms, resulting in trajectories with more than
1.5× 105 positions. A spatial resolution of better than 10 nm was achieved. How-
ever, prior to the acquisition of evaluable trajectories, numerous characterisation
experiments have to be performed, to identify possible shortcomings that disturb
the measurements. This work was substantial, so that it was suited for a publica-
tion in the Journal of the optical society of America A (JOSA A) with the titel
“Setup for single-particle orbit tracking: artifacts and corrections”, which can be
found in part II (publication P1) and which is the major publication of this thesis.
It includes the description of the experimental setup, its full characterisation and
the first successful tracking experiments with this setup. In the following sections
the content of this publication is summarized and additional results on the spatial
tracking accuracy of a static particle are given.

5.1 Optics & Hardware

In principle, the experimental setup consists of a home-build confocal fluorescence
microscope, a detection unit, and a laser beam deflection unit, which is the core part
of the setup. Two acousto-optical deflectors (AOD) guide the laser beam (514 nm)
on a circular path. This light orbit is projected into the microscope and is further
reflected towards a water-immersion objective, that focuses the orbit into the plane
of the sample, where the dye loaded particles are excited. The emission signal of
the particles is then collected by the same objective and directed to either a CCD
camera for widefield imaging or to an avalanche photo diode (APD) for tracking
with high time resolution. The optical pathway was calculated with the aid of ray
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5 The tracking setup

transfer matrix analysis, because the mutual distances between all optical elements
have to be as exact as possible. To operate the setup, an ingenious home-written
program was used to implement the tracking algorithm for the calculation of the
particle positions. This was done with a programmable measuring instrument,
that is also responsible for the generation of all output signals, e.g. the piezo and
AOD signals, and the acquisition of the emission signal, recorded by the APD. The
use of only one single communication instrument between the PC and the setup
made it possible to avoid hardware, like frequency generators, lock-in amplifiers or
counter cards for the PC, and to have a perfect time synchronisation between all
output and input signals, which is a prerequisite for this tracking method. Only if
the output signals for the generation of the light orbit are synchronized with the
data acquisition of the emission signal, a meaningful position of the particle can
be calculated. The presented orbit tracking technique is able to reconstruct the
2-dimensional motion of the particle as long as this motion takes place in the plane
of the orbit, which is also the xy-plane. The problem is now to keep the particle
in this plane, e.g. by compensating for the particle motion in the 3rd dimension (z-
axis). This was done by implementing a z-tracking algorithm, which was developed
together with the diploma student Stefan Hain. The piezo with the mounted sample
is wobbled up and down along the z-axis, i.e. also the particle is moved up and down
and penetrates the orbit once in each direction. For every up (down) movement the
z-position at which the particle features the highest emission is stored and serves as
the new origin for the subsequent down (up) movement. This enabled the tracking
over an extended period of time. Typically, tracking times of 10 minutes were
used to analyse the diffusion processes, but it is possible to follow the motion of
the tracer for more than 30 minutes. At the present stage of the setup the total
recording time depends only on bleaching of the tracer beads and on the maximum
scan range of the piezo (100µm per axis). The important parameters of the setup
are the orbit radius R, the frequency of the focus rotation ν and the number of
rotation periods P , that were used for setting the time resolution (∆t = P/ν) and
the parameters for the z-tracking algorithm. The latter ones are a number of steps
with a defined step size for the up and down movements of the piezo. These values
have to be optimized separately for every new sample. Combining simulations,
literature research and characterisation measurements allowed to define optimal
settings for the remaining parameters. The values were found to be R = 190 nm,
ν = 1 kHz and P = 4. Having a suitable set of parameters, a characterisation is
necessary to learn the capability of the setup.

5.2 A static particle

The most basic characterisation is the investigation of a static particle. It is useful
for studying the position accuracy without any disturbing effects due to the motion
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5.2 A static particle

of the particle. First this situation is again simulated to know the theoretical
predictions, which are then compared with experimental data. Therefore, in the
following two subsections I will explain the simulated as well as the experimental
determined position accuracy of a static particle, followed by a comparison.

5.2.1 Simulation

The procedure of the simulation is similar to the already described one in chapter
4, with the difference, that the “simulated real” trajectory is now a fixed position.
Here, it was set to (xp, yp) = (0, 0), which corresponds to the centre of the orbit.
With the feedback mechanism switched on, it does not matter at which starting
position within the orbit the particle is placed. Because after the first position
calculation, the feedback loop restores the particle back in the centre of the orbit
with an accuracy, that is determined by acquisition limits (noise and position aver-
aging during data acquisition). The simulation of the theoretical and the Poisson
distributed number of photons, i.e. Sn and Sn,poiss are shown in fig. 5.1a during
the acquisition time of ∆t = 4 ms. A particle at the (0, 0) position should result in
a constant value for the theoretical number of emitted photons, because in an ideal
case, also xs is zero and the expression xp − xs in equation (4.2) vanishes.

Sn = δtS0exp



−

2

w2
(−R cos(ωnδt))2 + (−R sin(ωnδt))2

︸ ︷︷ ︸
=R2



+ Sbδt (5.1)

= δtS0exp

{
−2R2

w2

}
+ Sbδt = const.

The reason for the periodic signal are the photon statistics and the feedback mecha-
nism. Due to the Poisson distributed emission, the calculated position is not exactly
zero. Via xs this non-zero position is fed back to the generation of the number of
photons. Hence, the expression xp − xs in equation 4.2 is non-zero, leading to a
weak periodic signal Sn. The emission of photons, i.e. Sn,poiss stays more or less
constant, because the absolute values of Sn itself as well as the amplitude are quite
small.
From the simulated number of photons, the position of the particle is reconstructed.
Figure 5.1b displays the x-position time-trace for N = 5000 position determina-
tions, for a time resolution of ∆t = 0.5 ms (blue) and ∆t = 9.0 ms (red). Both
simulations were performed for a mean emission intensity of I = 157 kcps. The
high fluctuations in the position at a time resolution of ∆t = 0.5 ms compared to
∆t = 9.0 ms are ascribed to the reduced number of photons, that can be acquired
during the time resolution of ∆t = 0.5 ms. A higher photon count rate leads to a
more accurate position determination. To quantify this positional noise, the error
in calculating a position in one dimension, which also defines the spatial accuracy,

31



5 The tracking setup

Figure 5.1: Simulation of the static position accuracy. a) simulated theoretical (red)
and Poisson distributed (black) number of photons during the time resolution of 4 ms b)
reconstructed positions for two different values of the time resolution, i.e. ∆t = 0.5 ms
(blue) and ∆t = 9.0 ms (red), both with a mean emission intensity of I = 157 kcps c)
shows the data points of the spatio-temporal accuracy for three different mean emission
intensities. (sx) is the empirical standard deviation of the histograms shown in b). The
two examples of subfigure b) are indicated by the numbers 1 and 2 in subfigure d). The
full lines are fits to the data points according to the fit function y = A/

√
x+B. For more

details see text.

is given by the empirical standard deviation sx of the distribution of positions (see
histograms in fig. 5.1b) according to

sx =

√√√√ 1

N − 1

N∑

i=1

(xc,i − x)2 with x =
1

N

N∑

i=1

xc,i. (5.2)

Figure 5.1c displays the accuracies sx for three different mean emission intensities,
I = 157 kcps, I = 93 kcps and I = 57 kcps, as a function of the time resolution ∆t.
The two highlighted points in blue and red corresponds to the time-traces shown
in fig. 5.1b. As expected, the accuracy in determining the position of a static bead
is getting better at higher mean emission intensities, due to the higher number of
photons, that are available for the feedback algorithm. The solid lines are fits to
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5.2 A static particle

Figure 5.2: a) Static position accuracy for the x direction sx versus time resolution ∆t
for varying emission intensities. b) Comparison between a simulation of the static position
accuracy and the corresponding experiment at an emission intensity of Iem = 57 kcps.

the data points according to the fit function y = A/
√
x + B, where A and B are

minor important parameters. The relevant point is the dependence sx ∝ 1/
√

∆t,
which is nicely described by the data points.
However, this simulations tells us, that a position accuracy far below the classical
diffraction limit of light can be achieved. For example, at a typical time resolution
used in the experiments of ∆t = 4 ms and a high mean intensity of I = 157 kcps
a position accuracy of sx = 5.3 nm is possible. In general, for a given emission
intensity the experimentalist has to find a trade off between a high spatial accuracy
and a high time resolution.

5.2.2 Experiment

The experimental verification of the static position accuracy as it was simulated
in the previous subsection gives the first results on the capability of the setup. In
order to do so, a fluorescing polymer bead (20 nm in diameter) was immobilised in
a polymer matrix (see chapter 3) and the position of the particle was calculated
according to the feedback algorithm (see eq. (4.3)), for different time resolutions.
This value is set by the number of rotation periods P of the laser focus that circles
with a frequency of ν = 1 kHz. For example, for P = 2 the time resolution results to
∆t = P/ν = 2 ms and so on. For each value of the time resolution a position time-
trace is recorded for about 30 seconds and the spatial accuracy was determined by
the empirical standard deviation of the distribution of positions, like it was done for
the simulations. In figure 5.2a the experimentally determined spatial accuracies are
displayed as a function of the time resolution for various mean emission intensities
between I = 5 kcps and I ≈ 200 kcps. The emission intensity could be varied
by changing the excitation intensity. The solid lines are fits to the data points
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according to the fit function y = A/
√
x + B and should only serve as guides for

the eye. However, the data points follow nicely the relation sx ∝ 1/
√

∆t, already
shown in the simulations. Position accuracies of less than 5 nm could be achieved
for the highest measured mean emission intensity and for time resolutions of ∆t >
5 ms. Even for very low emitting particles the accuracy is far beyond the classical
diffraction limit of light.
Additionally, for a mean emission intensity of I = 57 kcps a comparison between
the experiment and the simulation is shown in fig. 5.2b. The very first data points
(∆t < 5 ms) coincide perfectly, while at an increasing time resolution the values
for the spatial accuracy for the experiment levels off towards larger values. This is
addressed to a weak drift of the whole setup. The longer the integration time, the
more pronounced is a possible drift. Nevertheless, the experimental results agree
with the predictions made by the simulations.

5.3 Artifacts & Corrections

Next, the setup was characterised with respect to experimental shortcomings to
avoid misinterpretations of the measured trajectories. Four major artifacts could
be determined, which influences the position determination. This are i) a systematic
error in the tracking algorithm, ii) a (mis)alignment of the piezostage, iii) the finite
signal-to-noise ratio of the emission signal and iv) the position averaging during
data acquisition. In figure 5.3 each of this artifacts is depicted schematically and
in the following, all of them are explained briefly, together with possible solutions
to prevent them. The details can be found in publication P1.
The systematic error in the tracking algorithm (i) results from a mis-calculation of
the position of the particle when it approaches the rim of the light orbit. The upper
left image in figure 5.3 displays this behaviour schematically. For particle positions
close to the centre of the orbit, the emission signal is in a first approximation
modulated with a harmonic function (see appendix B). If the particle nears the
rim of the orbit, the modulation gets anharmonic. The problem is, that the higher
harmonics in the modulation of the emission signal, are neglected for the position
calculation, which leads erroneously to smaller values of the particle position. This
effect increases, the closer the particle is to the rim of the orbit. The graph in the
upper left image of fig. 5.3 shows this behaviour, where the “reconstructed” radial
position is plotted against the “real” one. To compensate for that error, a real-time
correction function was applied, that corrects the position. The second artifact (ii)
is the (mis)alignment of the piezostage (cf. fig. 5.3, upper right image). It is nearly
impossible to mechanically align the xy-plane of the piezostage perfectly parallel
with the plane of the orbit. It remains a slight tilt angle between the z-axis of the
piezo and the axis of the orbit (optical axis). Thus, according to the z-tracking
algorithm the periodic movement of the piezo provokes a periodic movement of
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Figure 5.3: Schematic overview of the experimental shortcomings. i) Systematic error
in the tracking algorithm. The blue and red sphere represent particle positions within
the light orbit (green ellipse) where the emission signal is regarded as harmonic (blue)
and anharmonic (red). This transition is not that strict, rather a continuous increase
of the anharmonic parts is observed. The corresponding mis-calculation of the positions
is depicted in the lower part of i). ii) (Mis)alignment of the piezostage. The red sphere
is a particle that moves along the z-axis of the piezo. This motion is projected to the
xy-plane and hence superimposed to the trajectory. iii) Finite signal-to-noise ratio. The
position time-trace as well as the corresponding histograms for a high s/n-ratio (black)
and a low s/n-ratio (grey) are shown. iv) Position averaging during data acquisition. The
grey trajectory has a length that corresponds to the time interval of the acquisition time.
The start, end and average position of the trajectory are shown. Adapted from publication
P1.

the particle along the z-axis of the piezo, which is projected to the xy-plane and
hence superimposed to the “real” 2-dimensional trajectory. Therefore, prior to the
evaluation of the trajectory, a lock-in analysis of the position time-trace is applied
to determine the phase and the amplitude of the periodic motion. Once these
parameters are known, the trajectory can be corrected for this oscillation. This
two artifacts are called “setup induced”, because components of the setup (piezo,
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tracking algorithm) are responsible for the errors, while the remaining two artifacts
rather stem from acquisition limits. Artifact iii) is the finite signal-to-noise ratio
(s/n-ratio), which is displayed schematically in the lower left part of figure 5.3. The
higher the noise, i.e. the lower the s/n-ratio for a given signal, the less precise a
position can be determined. The consequence of this artifact is noticed after the
MSD analysis of the trajectory and results in a positive offset to the MSD data
points. This can simply be corrected by subtracting this offset. The last artifact,
that was found is the position averaging during the acquisition of the emission
signal (iv), which leads to a blurring of the position. The lower right image in
figure 5.3 displays the trajectory of a particle during the acquisition time ∆t, with
the final “real” and the averaged “reconstructed” position of the particle. Here, the
consequence is a negative offset to the MSD data points. To correct this artifact,
the offset is determined and added to the MSD data points. Details about the
description of all the artifacts as well as the corresponding experimental results can
be found in publication P1. After a special hierarchy of corrections was defined, the
first successful experiment, that was measured with this setup could be analysed.
Therefore a sample of 20 nm sized beads diffusing in pure glycerol was used. At
a given time resolution of ∆t = 4 ms a spatial accuracy of ∆r = 7.5 nm could
be achieved. The diffusion process was also compared with theoretical predictions
according to the Stokes-Einstein relation, which showed a good agreement.
Additionally, an analysis of the setup drift (vdrift = 0.05 nm/s) and the effects of the
sample flow (vflow = 10 nm/s) were investigated. Both were negligible compared to
a typical mean displacement of the used tracer bead within one second (≈ 250 nm).
Moreover, estimations of the influences of optical forces, i.e. the radiation pressure
and optical trapping, are discussed. The results are, that the estimated forces are
5 orders of magnitude weaker than the forces that are responsible for the diffusion
process. Hence, optical forces can be neglected as well. For details see the appendix
of publication P1.
With this chapter and in particular with the content of publication P1, the basics
of the tracking principle and the characterisation of the whole setup is settled. It
includes the first tracking experiment that was measured with this setup and that
is analysed in terms of the mean squared displacements. The experimental results
were compared with theory and were in good agreement.

36



Nothing happens until something moves.

Albert Einstein

6 Single-particle tracking: results
& discussion

In this chapter I will present the results of the tracking experiments. Among these
the findings described in the sections Accuracy of diffusion coefficients and Crowded
Fluids were published. Hence, the content of this two sections is a summary of the
published work, that can be found in part II of this thesis. The sections of this
chapter are structured as follows.

• Analysis of the measured single-particle trajectories

Besides the commonly practiced mean squared displacement analysis, which
takes the major part of this section, some alternative approaches are dis-
cussed.

• Accuracy of measuring a diffusion coefficient (publication P2)

The accuracy is discussed as a function of the length of a trajectory and as a
function of the number of fitting points that were used for a linear fit to the
MSD curve.

• Particle sizes

Using the Stokes-Einstein equation the size of the measured particles can be
determined from the diffusion coefficients.

• Crowded fluids (publication P3)

The use of the new tracking setup and a new way of analysing and plotting
the data made it possible to clarify the theoretical model of subdiffusion in
a crowded fluid which was consistent with the model of fractional Brownian
motion.

37



6 Single-particle tracking: results & discussion

Figure 6.1: a) Example of a trajectory of a 20 nm sized bead in pure glycerol, recorded for
t = 608 s (N = 1.52× 105 data points). b) Extended view of a sequence with Nseg = 2000
positions (t = 8 s).

6.1 Analysing diffusion based on single-particle
trajectories

From seven different beads each with a nominal diameter of 20 nm diffusing in
pure glycerol, trajectories of about 1.5 × 105 positions were recorded. For every
run a particle was selected from the widefield image that was sufficiently separated
from other particles and from the surface of the coverslips. An example for a typical
trajectory is displayed in fig. 6.1a. It represents 1.52×105 data points recorded with
a time resolution of ∆t = 4 ms and corresponds to an elapsed time of 608 s which is
indicated by the colour code where blue corresponds to the begin of the trajectory
and red to its end. In the following the analysis of the mean squared displacements
and three alternative approaches were discussed on one representative trajectory.

6.1.1 Mean squared displacement analysis

From the recorded trajectory r(t) = (xp(t), yp(t)), consisting of N positions, the
time-averaged MSD after a time lag τ = k∆t is calculated according to equation
2.21 [34]. For the trajectory displayed in fig. 6.1a the inset in fig. 6.2a shows the
full MSD as a function of the lag time. For lag times τ < 50 s the MSD features
a linear increase followed by strong fluctuations at longer times that reflect the
progressively decreasing averaging. Therefore the analysis of the MSD curves is
usually limited to the first few data points. Having more than 105 data points at

38
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Figure 6.2: a) Time-averaged MSD of the full trajectory shown in fig. 6.1a. The inset
displays the full MSD, while the main figure shows the first 50 data points. The red
line corresponds to a linear fit to the data points. b) Double-logarithmic plot of the data
shown in a). The red line corresponds to a linear fit with a slope of 1.05 c) MSDs of 76
subtrajectories that result from cutting the full trajectory into pieces of 2000 data points
each. Similarly to part a) of the figure, the inset shows the full MSDs and the main figure
displays the first 50 data points of each MSD. The dotted green line corresponds to the
MSD curve shown in a). d) Distributions of the diffusion coefficient and the anomaly
parameter as obtained from the MSDs shown in c).

hand, the MSD shown in fig. 6.2a was restricted to the first 50 data points corre-
sponding to τ = 0.2 s. It is worth to note that even the 50th data point represents
an average over more than 150000 entries. The full line in fig. 6.2a corresponds
to a linear fit, which is in very good agreement with the data and from which a
diffusion coefficient of 〈D〉T = 17.19 × 10−3 µm2/s is extracted. For this analysis,
the first data point was neglected due to remaining experimental artifacts (oscil-
lations of the piezo, details see publication P1). The notation 〈D〉T was used to
indicate that this value stems from a time-averaged MSD according to equation
2.21. This number can be compared with the prediction from the Stokes-Einstein
relation DSE = kBT/6πηa [5]. For T = 294 K, η = 1.2 Pa · s [39], and a mean bead
radius of a = 10 nm as given by the manufacturer, DSE = 17.94× 10−3 µm2/s was
found. Although the agreement between 〈D〉T and DSE is better than 5%, one can
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argue that the discrepancy might reflect deviations of the radius of the bead from
the value of 10 nm. Changing the point of view and taking the theoretical (Stokes-
Einstein) diffusion coefficient as “real”, a = 10.4 nm for the actual size of the bead
is found. Figure 6.2b shows the same data on a double logarithmic plot that can be
fitted with a linear slope of 〈α〉T = 1.05, which is in line with the expected α = 1
for Brownian motion and justifies the linear fit to the MSD data as explained in
the theory part (section 2.1.3).
Often it is not possible to measure that long trajectories due to bleaching pro-
cesses of the tracer particle, due to weak emission signals or simply, because the
particle moves out of the detectable area. In order to mimic to have only shorter
trajectories with less data points the long trajectory was chopped into 76 subtra-
jectories, also called segments, of 2000 data points each (corresponding to a time
range of 8 s), see figure 6.1b. From these subtrajectories the time-averaged MSDs
were calculated. The result for all 76 data sets is shown in the inset of figure 6.2c
and reveals very large variations of the MSDs with respect to each other. For the
same reasons as detailed above, figure 6.2c displays only the first 50 data points of
the MSDs from all 76 subtrajectories. A bundle of linear MSDs that vary in slope
was found. Since these data have been recorded from the same individual polymer
bead it can be excluded that this spread reflects variations in the bead size. The
different slopes rather result from the reduction of the statistical weight for the
time-averaged MSDs of the subtrajectories. This is in line with the fact that the
time-averaged MSD from the total trajectory of 1.52× 105 data points runs nicely
through the centre of the bundle of partial MSDs, as shown in figure 6.2c by the
dotted green line for comparison. Analysing the slopes of the individual MSDs in
terms of a diffusion coefficient and an anomaly parameter yields the distributions
shown in figure 6.2d. The mean (empirical standard deviation) for the diffusion
coefficient is 〈〈D〉T 〉E = 17.15× 10−3 µm2/s (sD = 2.39× 10−3 µm2/s) and for the
anomaly parameter 〈〈α〉T 〉E = 1.01 (sα = 0.05). The notation 〈〈·〉T 〉E symbolizes
that the data have been evaluated from (short) time-averaged MSDs that have been
averaged over an ensemble (here 76 subtraces).
The histograms presented in fig. 6.2d can be interpreted as the empirical probability
density functions (PDFs) to measure a distinct range of values for these parameters.
Mathematical statistics tells us, that the best estimator for the “real” value of the
diffusion coefficient is provided from the first moment of this probability density
which corresponds to 〈〈D〉T 〉E. The good agreement between the numerical values
found for 〈D〉T , i.e. the result from the full trajectory of 1.5× 105 data points, and
〈〈D〉T 〉E confirms that the statistical shortcomings of the trajectories with only
2000 data points are averaged out in the long trajectory. However, it shows as
well that an accurate determination of the diffusion coefficient requires either a
very long trajectory or knowledge about the (empirical) PDF for the outcome of
an experiment on a shorter trajectory. A single experiment on a short trajectory is
not sufficient and the result for the diffusion coefficient can differ by up to a factor
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6.1 Analysing diffusion based on single-particle trajectories

Figure 6.3: Ensemble-averaged mean squared displacement of the cut sequences of the
single trajectory shown in fig. 6.1a. The inset displays the double-logarithmic plotted
data, whereas the main figure shows the linear ones. The red solid lines are linear fits to
the data points.

of 2.
Assuming that ergodicity is preserved, the cut sequences of the sub-ensemble can
also be used to calculate the ensemble-averaged MSD according to the equation
2.22. This method is an alternative way to investigate a diffusion process, but
is less suited for single trajectory experiments, because the number of traces for
a statistical relevant ensemble, recorded under identical experimental conditions
is mostly too small to yield proper results. However, for a comparison with the
presented results also D and α were determined with this method. From line
fits (red solid lines in fig. 6.3) to the linear as well as the double-logarithmic data
〈D〉E = 17.06×10−3 µm2/s and 〈α〉E = 0.97 was achieved (cf. fig. 6.3). Again both
values fit quite well with the values determined by the above mentioned analysing
methods. Slight differences stem from the rather weak ensemble. No violation of
the ergodic principle is observed.
The presented MSD analysis was finally performed for all the seven measured tra-
jectories. The results from the time-averaged MSDs (〈D〉T , 〈α〉T ), the mean values
of the ensemble of subtrajectories (〈〈D〉T 〉E, 〈〈α〉T 〉E) as well as the results from
the ensemble-averaged MSDs (〈D〉E, 〈α〉E) are summarized in table 6.1. Beside the
values obtained from the pure ensemble-average analysis, which are normally not
used because of its weak statistics, all the values from the time-averaged analysis
agree quite well with respect to each other. For all the following discussions regard-
ing this sample (20 nm bead in glycerol), the measured normal Brownian motion
with α = 1 is used.
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6 Single-particle tracking: results & discussion

Exp. nr. 〈D〉T / 〈〈D〉T 〉E / 〈D〉E / 〈α〉T 〈〈α〉T 〉E 〈α〉E
10−3 µm2/s

1 17.19 17.15 17.06 1.04 1.01 0.97
2 21.58 21.64 21.03 1.02 1.02 0.99
3 16.70 16.60 17.71 1.03 1.01 0.96
4 17.49 17.47 18.18 1.04 1.01 1.15
5 15.01 14.98 14.95 1.05 0.94 0.91
6 24.14 24.10 24.57 1.04 1.01 1.02
7 12.32 12.34 13.30 1.01 1.04 9.94

Table 6.1: Summary of the diffusion coefficients and the anomaly parameters obtained
from time-averaged as well as ensemble-averaged analysis. The entries are the time-
averaged diffusion coefficient (anomaly parameter) 〈D〉T (〈α〉T ), the mean value deter-
mined from the ensemble of subtrajectories 〈〈D〉T 〉E (〈〈α〉T 〉E) and the ensemble-averaged
diffusion coefficient (anomaly parameter) 〈D〉E (〈α〉E).

The analysis of single-particle trajectories with the use of the mean squared dis-
placements (MSD) is the most common method. Among the here presented tech-
niques of trajectory analysis, this is the only one, where the diffusion coefficient as
well as the anomaly parameter can be determined. The most informations regarding
a diffusion process can be extracted.

6.1.2 Alternative approaches

Cumulative distribution function
This method supplies an alternative approach to analyse a trajectory [37, 38]. Ac-
cording to the explanation in section 2.1.3 the empirical cumulative distribution
function (CDF) for the square displacements at the lag times τ = 4 ms − 0.2 s
(τ = (1−50)∆t) was determined consecutively for a single trajectory. An example,
calculated at a lag time of τ = 40 ms is shown in fig. 6.4a (black squares). The
data points can be modeled with a double-exponential function as given by

CDF
(
∆r2, τ

)
= 1−

(
βexp

(
−∆r2

∆r2
1

)
+ (1− β)exp

(
−∆r2

∆r2
2

))
(6.1)

Here, the ∆r2
i are related to a fast (1) and slow (2) component of the diffusion

coefficient, i.e. ∆r2
i = 4Diτ , weighted by a fraction β. For systems, where pure

Brownian motion is present, β equals 1 and the CDF reduces to a single-exponential
with a single diffusion coefficient D1 = Dcdf . Yet, for systems showing subdiffusive
behaviour β clearly differs from 1 and a double-exponential with a so called slow
component of the diffusion coefficient (∆r2

2) is better suited to describe the data.
Hence, this method is powerful in distinguishing normal from anomalous diffusion,
just by determining β. The afore mentioned fit function (eq. 6.1) was applied to
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6.1 Analysing diffusion based on single-particle trajectories

Figure 6.4: a) Example of a cumulative density function at a lag time of τ = 40 ms.
b) diffusion coefficient and fraction β taken from double-exponential fits to the empirical
CDF. The arrow marks the values that correspond to the CDF shown in a). Due to remain-
ing experimental shortcomings the first data point was neglected for the interpretation.

the data points (cf. fig. 6.4a, red solid line). The shown example (τ = 40 ms)
yields β = 1.002 which is in nearly perfect agreement with Brownian motion. The
value of the fraction as a function of the lag time can be seen in fig. 6.4b, upper
part. For this single trajectory on average a fraction of 〈β〉 = 0.99 was found, which
is close to unity and resembles Brownian motion with a single-exponential for the
CDF. Further, the mean diffusion coefficient was calculated with this method to
〈Dcdf〉 = 17.44 × 10−3 µm2/s, which is shown graphically in fig. 6.4b, lower part.
The calculated value for the example CDF, shown in fig. 6.4a are marked with an
arrow. Again, the first data points for τ = 4 ms was neglected due to experimental
shortcomings. Compared to the value obtained from the time-averaged MSD (cf.
table 6.1, exp. nr. 1), a good agreement is achieved. This procedure was done for
all the 7 recorded trajectories. The results can be found in table 6.2. From the
overall average of the seven trajectories of the fraction 〈β〉 = 0.96 one can conclude
that the here used system reflects Brownian motion. Additionally, the diffusion
coefficient fits quite well with the already determined ones from the mean squared
displacement analysis. The slight discrepancy to theoretical/expected values can
be addressed to the usage of partly uncorrected trajectory data (only the setup
induced artifacts were corrected, i.e. the systematic error in the tracking algorithm
and the (mis)alignment of the piezo stage) which was necessary for this evaluation.
The advantage of this technique is the capability to study multi-component diffu-
sion phenomena, e.g. a two-component diffusion can be interpreted as a slow and
a fast mobility of the tracked particle. The fraction between these two mobilities
can then be used to distinguish normal from anomalous diffusion. One has to be
careful, that this fraction is not related to the anomaly parameter α. Another big
advantage is, that this method can also be applied to relative short trajectories
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Exp. nr. 〈β〉 〈D〉cdf /
10−3 µm2/s

1 0.99 17.44
2 0.90 22.15
3 0.98 16.81
4 0.92 18.19
5 0.97 16.46
6 1.01 24.05
7 0.97 11.98

Table 6.2: Summary of the results from the analysis according to the cumulative distri-
bution function from 7 individual polymer beads. The entries denote the experiment nr.,
the fraction 〈β〉T , and the diffusion coefficients 〈D〉cdf .

with a few position determinations [37].

Spatial extend & shape
Another method to extract information from a tracking experiment is to determine
the spatial extend by means of a gyration ellipse around a trajectory and its shape,
i.e. the asphericity. The method, how to calculate this value is discussed in detail in
section 2.1.3. In fig. 6.5a the gyration ellipse with its radii of gyration is overlayed
to a representative trajectory with N = 1.52× 105 data points. The overall spatial
extend of the trajectory is rather elongated than circular. The latter one would be
expected for a perfect random walk and holds true for an ensemble of traces. But,
for a single trajectory the elongated version is found [35]. This behaviour is better
described by the shape of the trace instead of the spatial extend, which can vary
(mainly) due to the mobility of the particle and the length of the trajectory. The
shape is determined by the asphericity, which is a measure for the deviation from
a spheric (3D) or a circular (2D) shape. According to eqn. 2.26 the asphericity A
of an individual trajectory is calculated for a certain length (number of positions
Nseg) of cut segments. (As a reminder, the calculation of A requires averaging over
an ensemble of traces.) It is quite hard to decide, at which segment length the value
of A is reliable. Therefore the asphericity of a trace was calculated as a function
of the length Nseg, i.e. A (Nseg). The result of the 7 individual measured traces is
shown in fig. 6.5b. For a segment length of Nseg = 2 the shape of the trajectory
is perfect rod-like and leads a value of A(2) = 1. Within the first 15 data points
the asphericity converges towards a value of A = 4/7 (grey line in fig. 6.5b), that
is the analytical value for a 2-dimensional random walk [35, 36]. To verify this
behaviour for the here presented measurements in a more quantitative way, a sta-
tistical relevant window (grey shaded area in fig. 6.5b) for the calculation of a mean
asphericity 〈A〉 was chosen. This region was restricted to 20 ≤ Nseg ≤ 250 where
at the one end (Nseg > 20) A (Nseg) is regarded as fully converged and on the other
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6.1 Analysing diffusion based on single-particle trajectories

Figure 6.5: Asphericity of all trajectories plotted against the sequence length Nseg. The
grey shaded region is the window, where the asphericity is averaged. The grey solid line
represents the analytical value for a 2-dimensional random walk, i.e. A=4/7.

hand (Nseg < 250) the averaging in calculating the asphericity is high enough. The
values for the 7 experiments are summarized in table 6.3. On average, the mean
asphericity was determined to 〈A〉7 = 0.566 which is in very good agreement with
the analytical value of A = 4/7 ≈ 0.571 for a Brownian motion. The index 7 indi-
cates the average over all seven experiments. The nearly perfect coincidence reflects
furthermore, that no significant signs of drift or flow is overlayed to the trajectories
that would lead to a distortion and concomitantly influence the asphericity. For
the investigation of systems showing anomalous diffusion, this method can be used
to clarify the type of sub-diffusion, which is described in publication P3 (see part
II).
With this method, neither the diffusion coefficient nor the anomaly parameter can
be determined. Hence, it yields minimal informations about a diffusion process.
But, in addition to the time-dependent parameters (D, α) a structural parameter

Exp. nr. 〈A〉
1 0.555
2 0.575
3 0.564
4 0.563
5 0.540
6 0.569
7 0.595

Table 6.3: Summary of the determined mean asphericities 〈A〉 of the seven individual
trajectories.
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6 Single-particle tracking: results & discussion

is obtained, that describes the deviations from a circular shape (in case of a 2D
trajectory). In combination with the anomaly this technique is powerful in inves-
tigating subiffusive behaviour, e.g. of crowded fluids like it is discussed in section
6.4 of this thesis.

Ergodicity breaking parameter
Recently a technical parameter for determining the degree of ergodicity breaking
has been published [51, 52].

E(τ) =

〈
〈∆r(τ)2〉2T

〉
E
− 〈〈∆r(τ)2〉T 〉

2

E

〈〈∆r(τ)2〉T 〉
2
E

(6.2)

The calculation of this ergodicity breaking parameter E(τ) requires again an en-
semble of short trajectories, that can be obtained by splitting a long trace into short
segments with equal length. From these short segments the time-averaged MSDs
are calculated. According to equation 6.2 the time-averaged MSDs, i.e. 〈∆r(τ)2〉T ,
are on the one hand squared and then ensemble-averaged, symbolized by 〈·〉E, and
on the other hand first ensemble-averaged and then squared. For values of E close
to 0 the system is regarded as non ergodicity breaking [51, 52].
In an analog way to the determination of the asphericity the ergodicity breaking
parameter was calculated. For averaging E(τ) we used a time window that cor-
responds to the analysis of the diffusion coefficient and the anomaly parameter
(2-50 data points). The results for the averaged ergodicity breaking parameter 〈E〉
of every single trajectory is listed in table 6.4. All values are smaller than 0.020
which is interpreted as non-ergodicity breaking, compared to values found in the
literature for weak ergodicity breaking system. There, E = 0.57 [51] and hence a
factor of more than 20 times larger than the here obtained values. This additional
parameter reflects the expected Brownian motion, where ergodicity is preserved.

Exp. nr. 〈E〉
1 0.017
2 0.019
3 0.020
4 0.020
5 0.018
6 0.017
7 0.020

Table 6.4: Summary of the determined mean ergodicity breaking parameter 〈E〉 of the
seven individual trajectories.
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6.2 Accuracy of diffusion coefficients

How well a diffusion coefficient can be determined by a mean squared displacement
analysis of experimental single-particle trajectories is an important issue. In the
previous chapter it was explained, that long trajectories results in accurate diffusion
coefficients. However, one can imagine, that not only the length of the trajectory is
important, also uncertainties in the position determination or the number of fitting
points used in the MSD analysis have an effect on the accuracy of the measured
diffusion coefficient. To what extend these parameters influence the accuracy is
discussed in great detail in the literature on the basis of simulations and numerical
calculations [53–55]. First it was studied by Qian and Saxton and was further de-
veloped and subtilized by Michalet who took also experimental localisation errors
into account. Up to now a comparison with experimental data remained elusive.
In this section the problem is treated from the experimental point of view and the
results were compared with the predictions made in the afore mentioned literature.
The findings were published in Physical Chemistry Chemical Physics (see publica-
tion P2). In the following I will give a summary of this work.
Many studies that use single-particle tracking to investigate diffusion processes, es-
pecially in the field of biophysics, often lack of sufficiently long trajectories, either
because the particle diffuses out of the detectable area or due to photobleaching
of the fluorescent tracer particles. Hence, the MSD points of a trajectory are less
averaged which results in a less accurate diffusion coefficient. In order to investigate
this accuracy, many trajectories are required to perform a statistical analysis. Usu-
ally, it is not possible to acquire a statistically relevant number of trajectories with
identical experimental conditions. While it is rather simple to keep the viscosity
and temperature between several independent tracking experiments constant, the
bead size determined from each recorded trajectory can vary drastically. There-
fore, in the literature simulations with a high number of fictitious trajectories with
identical parameters (trajectory length N , temperature T , viscosity η, bead radius
a) were used to clarify this issue [53–55]. In this work an experimental approach to
measure the accuracy of a diffusion coefficient is presented.
Exploiting single-particle orbit tracking, very long trajectories comprising more
than N = 1.5×105 data points were recorded from individual 20 nm sized particles
in glycerol that undergo Brownian motion. Each of these large data sets can be
decomposed into an ensemble of segments with a various number of data points
Nseg, providing the same ensemble of mean squared displacement curves from the
same individual particle. By a linear fit to each MSD curve of an ensemble with
a given value of Nseg, the slopes D∗ as a function of the number of fitting points
n were determined (n starts from the MSD point 2 and ends at n + 1, details see
publication P2). Subsequently for each value of n, the relative error sD∗/D

∗ was
calculated from the histograms of the slopes and plotted against each other. Here,
the (empirical) mean D∗ and standard deviation sD∗ were determined. Figure 6.6
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Figure 6.6: Schematic explanation to determine the accuracy of the slope of MSD curves.
Left: A single MSD curve. The number of fitting points is highlighted in red. Middle:
Histogram of slopes D∗. Right: Representation of the relative error of slopes as a function
of the number of fitting points n. Adapted from publication P2.

displays this calculation procedure schematically. Instead of the diffusion coeffi-
cient, the slope was determined to be comparable with literature data (D∗ = 4D).
The calculation of the relative error of slopes was performed for a segment length of
Nseg = 100 and Nseg = 1000. The existence of an optimum number of fitting points,
i.e. n = 4, was found, where the relative error of the slopes features a minimum.
Interestingly, this minimum is independent on the segment length. A relative error
of about 25% for a segment length of Nseg = 100 data points was found, whereas
an accuracy of about 8% requires trajectories with a length of Nseg = 1000 data
points.
Moreover, the distributions of diffusion coefficients were studied as a function of the
length of the segments. For a length of Nseg = 10 data points the distributions are
very broad and an interpretation is useless. The diffusion coefficients determined
from trajectories with Nseg = 100 can still vary by more than a factor of 2.
This analysis shows that the accuracy of measuring a diffusion coefficient depends
on the length of a trajectory and on the number of fitting points that are used
for a linear fit to the MSD data points. All the findings yield qualitatively and
quantitatively a good agreement with theoretical and numerical predictions found
in the literature.

6.3 Particle sizes

In the previous section, the influence of the trajectory length and the number
of fitting points, that are used for a linear fit to the MSD curve, were discussed
regarding the accuracy of measuring a diffusion coefficient. Having the optimal
number of n = 4 fitting points for the here presented experiments, the MSD analysis
was applied to all seven trajectories, each comprising about 1.5×105 positions. The
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Figure 6.7: Time-averaged MSDs (first 50 data points) of the 7 individual trajectories
from 20 nm sized beads diffusing in pure glycerol. For each bead, trajectories were recorded
for 10 minutes with a time increment of ∆t = 4 ms. The inset displays the first 7 MSD
points and the linear fits (full lines) to the data with n = 4 fitting points, i.e. using the
points 2-5.

first 50 data points of the MSDs from each trajectory are shown in fig. 6.7. The
data are compatible with linear fits (n = 4), that vary in slope. The respective time-
averaged diffusion coefficients, 〈D〉T extracted from these data are summarized in
Table 6.5. The diffusion coefficients 〈D〉T show strong variations and cover the
range from 12×10−3 µm2/s to 24×10−3 µm2/s. Since all 7 MSDs represent highly
averaged data it is very unlikely that these variations result from a lack of statistics
(as for example the variations discussed in the context of fig. 6.2c). It is much more
probable that the variations reflect the differences in the size of the individual beads
that have been traced, hence the values for the diffusion coefficients are interpreted
as the “correct” values.
Using the diffusion coefficient 〈D〉T as input for the Stokes-Einstein relation, the
actual size of the polymer beads can be calculated according to

〈a〉T =
kBT

6πη 〈D〉T
. (6.3)

The results for the particle radii 〈a〉T are listed also in table 6.5, featuring an arith-
metic mean of 10.14 nm and a standard deviation of 2.47 nm as best estimators
to characterize the distribution of bead sizes. These numbers are in reasonable
agreement with the information provided by the manufacturer (a = (10± 2) nm).
To illustrate the importance of the previously discussed influence of the number of
fitting points used for the MSD curve to extract the diffusion coefficient, a com-
parison between n = 50, a putative good value which was chosen due to the highly
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Exp. 〈D〉T / 〈a〉T / 〈〈a〉T 〉E / sa / 〈〈a〉T 〉E / sa /
nr. 10−3 µm2/s nm nm nm nm nm

n = 50 n = 4

1 17.45 10.3 10.7 1.5 10.4 0.6
2 22.20 8.1 8.5 1.3 8.2 0.5
3 16.86 10.6 11.0 1.5 10.7 0.6
4 18.54 9.7 10.5 1.6 10.0 0.5
5 16.76 10.7 12.3 1.9 10.9 0.7
6 26.02 6.9 7.6 1.2 7.3 0.4
7 12.19 14.7 14.9 2.5 16.1 0.9

Table 6.5: Summary of the results from the MSDs from 7 individual polymer beads. The
entries denote the diffusion coefficient 〈D〉T from the time-averaged MSDs from the long
trajectories, the corresponding bead radius 〈a〉T as obtained from the Stokes-Einstein rela-
tion and the mean values 〈〈a〉T 〉E and empirical standard deviations sa of the distribution
of particle radii, calculated from the diffusion coefficients of the set of time-averaged MSDs
from the short trajectories. The latter two values are given for n = 50 and n = 4 fitting
points of the MSD curves.

averaged data, and the optimal value of n = 4, is discussed for the particle sizes
in the following. In order to do so, each of the 7 long trajectories were cut into
segments of Nseg = 2000 data points. Subsequently, the time-averaged diffusion
coefficient was determined from each subtrajectory which was used to calculate the
particle radius with equation 6.3. The distributions of particle radii are shown in
fig. 6.8 for the 7 tracking experiments, each carried out on a different particle. In
fig. 6.8a and b the results for a number of fitting points of n = 50 and of n = 4
are displayed, respectively. These histograms can be interpreted as empirical prob-
ability density functions for measuring a particle radius within a distinct range in
one of the experiments. The statistical parameters, i.e. the mean and the empirical
standard deviation, of these histograms are given in the figure and in table 6.5. It
can be seen directly, that the distributions for n = 4 fitting points are much nar-
rower than the one for n = 50 fitting points. Comparing the mean values 〈〈a〉T 〉E
obtained with n = 50 and n = 4 fitting points with the radii 〈a〉T that have been
determined from the long trajectories, the data set with n = 4 yields a much better
agreement with the radii 〈a〉T . Also the width of the histograms for n = 4 fitting
points is a factor of 2 smaller than the width of the data set extracted with n = 50
fitting points. However, this means that in a single tracking experiment that covers
about 2000 data points in 2/3 of the cases the radius of a particle can be deter-
mined with an accuracy of about sa/〈〈a〉T 〉E ≈ 15% for n = 50 fitting points and
of about sa/〈〈a〉T 〉E ≈ 6% for n = 4 fitting points. The chance of measuring the
“true” particle radius increases tremendously, just by choosing the optimum region
for fitting the MSD curves.
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Figure 6.8: Empirical probability density functions to find a distinct bead size from one
subtrajectory for n = 50 (a) and n = 4 (b) fitting points. Each histogram in a) and
b) corresponds to one of the 7 different beads that have been measured individually. The
means 〈〈a〉T 〉E and (empirical) standard deviations sa of these distributions are given in
the figure. c) and d) are the added histograms of a) and b), respectively.

Naively, one can combine all the measured particle radii from all experiments to one
single histogram. This is shown in figure 6.8 c) and d) for n = 50 and n = 4 fitting
points, respectively. While a clear structure for the case of n = 4 is found, the
distribution for n = 50 fitting points is broad and featureless. This reflects again
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the importance of the choice of the number of fitting points. The different particle
sizes can be distinguished if the optimal number of fitting points is considered.
Apparently, in particle tracking the experimentally determined sizes of the parti-
cles reflect the convolution of several distributions. The first contribution comes
from the real distribution of the particle size around a mean with a distinct width.
This distribution exists in the real world and would be ideally the result of an
experimental study. However, for each particle that is studied this distribution is
convoluted with the empirical probability density to measure a distinct size for this
particular bead. The latter distribution reflects the statistics of the experiment
and can be narrowed down by taking longer trajectories and a proper region for
fitting the MSD data points. Only if the widths of these empirical distributions
become sufficiently narrow their contributions to the experimental result can be
neglected. This is what is assumed above where the parameters obtained from the
long trajectories with an optimal number of fitting points (〈D〉T and 〈a〉T ) were
interpreted to characterize the real distribution function of the particle size. The
broadening of the distribution due to the statistical analysis is negligible.
These findings touch upon an important issue because commercial applications
have been developed that measure the size distributions of nanoparticles by parti-
cle tracking [56]. In those experiments typically a large number of short trajectories
(each in the order of some hundreds of data points [57]) are measured. Then from
each trace a diffusion coefficient and the corresponding size of the particle is deter-
mined. As demonstrated here, the problem with this approach is that the experi-
mental outcome of a single experiment can already vary significantly, represented
by the probability density functions as shown in fig. 6.8. Unfortunately, informa-
tion about these PDFs are usually not accessible. Since each trajectory stems from
a different particle, and since the particles can vary in size, ensemble averaging over
many trajectories will not be helpful either. The importance, however, of having
reliable information about size distributions of nanoparticles is an emerging field
in the context of health protection, in particular if one considers that up to now a
well characterised safety protocol regarding the toxicity for the use of nanoparticles
is still not in sight [58].

6.4 Crowded Fluids

All the previously presented results were obtained from measurements on a fluid
that exhibits normal Brownian motion. The intention was to characterize the setup
and to learn more about the statistical data analysis. In the following the results
on a more complex fluid are introduced, where non-Brownian motion is expected.
The cell membrane as well as intracellular fluids inhibit a variety of macromolecules,
that are responsible for the transport processes within a cell, among which (bio)-
chemical reactions play an important role. The high density of these molecules
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influences the diffusion of the reaction partners enormously. Hence, anomalous dif-
fusion due to macromolecular crowding is a non-neglectable process in describing
the reaction kinetics in cells. Due to the hindered motion of the diffusing particles,
a subdiffusive process is expected. Several theoretical models have been proposed,
that target this issue, where the three most prominent ones are i) obstructed diffu-
sion (OD) [59], ii) continuous time random walk (CTRW) [51, 60] and iii) fractional
Brownian motion (FBM) [61–63]. The model of obstructed diffusion is a very sim-
ple one and describes the motion of a particle on a grating with random positioned
obstacles. It can be compared with a blind ant on a percolation grating. The
CTRW model is the random walk of a tracer particle with power-law distributed
residence times. In other words it is regarded as a Lévy flight in the time domain.
And finally the theory of FBM considers viscoelastic forces that hinders the particle
on free diffusion. The motion is anti-correlated, i.e. a memory is present.
Until now it was impossible to decipher, which one of these models is best to
describe the process of crowding induced subdiffusion, because experimental ver-
ification was missing. In cooperation with the chair of experimental physics I of
the University of Bayreuth (group of Prof. Dr. M. Weiss), the type of the diffusion
in a crowded fluid was investigated experimentally. The results of this study were
published in the journal Soft Matter with the title “Fractional Brownian motion in
crowded fluids”, which can be found in part II of this thesis (publication P3). Here,
I will give a summary of this work and provide additional information with respect
to the used sample.
Measurements in a cell or a biological membrane needs high experimental require-
ments. Therefore, a simpler approach was chosen by mimicking the natural system
of a cell plasma by a fluid called dextran, which shows similar behaviour. Dextran
is forming a highly branched network structure and serves as a model system for
crowded fluids (see section 3). To clarify, that the results obtained with dextran
are not just an experimental artifact, a chemically similar sample (sucrose) that
shows normal Brownian motion, was investigated as a reference.
For all previously introduced experiments a bead size of 20 nm was used. By using
these beads also for the measurements in dextran, only a very weak subdiffusive
behaviour was observed. Subsequently, the tracking experiments were performed
on 20 nm and 50 nm beads to check if there exists a size dependence regarding the
subdiffusive behaviour. The results are shown in figure 6.9, where the full symbols
corresponds to the 20 nm sized beads and the open symbols to the 50 nm sized
beads, measured in sucrose (blue) and in dextran (red). About 20 trajectories for
each combination were measured. The anomaly parameter was determined via a
mean squared displacement analysis from the long trajectories. To calculate the
radii of the particles from the diffusion coefficient, the viscosity is required. Because
no suitable values were found in the literature, the anomaly parameter was plotted
against the inverse of the diffusion coefficient, which represents a proportionality
to the particle size, if the measurements are performed in the same sample fluid,
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Figure 6.9: Results of the anomaly parameter α as a function of the determined bead
radius a. The full blue (red) squares are the nominal 20 nm sized beads in the sample
sucrose (dextran), while the open blue (red) squares are the nominal 50 nm beads in sucrose
(dextran). The grey line serves as a guide for the eye.

i.e. the viscosity stays constant (see equation 6.4).

1

D
=

6πη

kbT
a = γa (6.4)

This presentation is suitable enough, because only the dependence in the particle
sizes and not the absolute values for the radii are important. The experiments were
performed in two fluids with different viscosities, i.e. for a proper visualization two
x-axis were introduced, where the bottom (blue) axis in figure 6.9 corresponds to
the measurements in sucrose and the top (red) axis to the measurements in dextran.
To compare the two data sets, the axis were further scaled according to the smallest
measured values of 1/D for the nominal 20 nm sized beads. Despite the nominal
values of 20 nm and 50 nm for the bead sizes a distribution was determined, which
was discussed in detail in section 6.3. For this measurement, a broad distribution
was helpful, because the size effect on the diffusion behaviour was studied. The
measurements in sucrose showed independent of the size of the beads an anomaly
value close to 1, while the measurements in dextran showed a clear dependence
on the size of the beads. However, all measurements for the 50 nm sized beads
in dextran showed an unambiguous subdiffusive behaviour. The mean anomaly
values for the 50 nm sized beads were determined to 〈αsuc〉 = 0.98 for sucrose and
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to 〈αdex〉 = 0.82 for the crowded dextran solution. The clear separation between
these two values is evident, i.e. the subdiffusion is not just an artifact. A plausible
explanation is the size ratio of the beads and the mesh size of the dextran network.
Small beads can diffuse nearly freely through the network structure, while larger
particles are hindered. Hence, in the following only the data obtained for the mea-
surements with bead sizes of 50 nm are discussed.
The experimentally determined trajectories of the 50 nm sized beads in dextran
were compared with simulated trajectories based on the three theoretical models
mentioned afore. These models have in common, that they can describe subdiffu-
sion. But, while the CTRW model shows slight ergodicity breaking according to
the recently developed ergodicity breaking parameter [51, 52] (see eq. (6.2), the
other two models do not. Also the analysis of the experimentally measured tra-
jectories do not show any signs of ergodicity breaking. This rules out the CTRW
model for a proper description of the crowding induced subdiffusion in dextran.
The remaining two models (OD and FBM) show ergodic behaviour and therefore
another criterium has to be found to decipher between those two theories.
The idea is to calculate the asphericity A and the anomaly α of experimentally
determined trajectories and compare those results with the results obtained from
simulated trajectories that repose on the theories of OD and FBM. For these sim-
ulations, trajectories with α values between 0.5 and 1.0 were generated and the
asphericity was calculated subsequently, yielding the asphericity as a function of
the anomaly, i.e. A(α). This analysis was performed in the group of the coopera-
tion partner. The details are described in the publication P3. The mean values of
the experimentally determined anomaly and asphericity are 〈α〉 = 0.82 (vide supra)
and 〈A〉 = 0.46, respectively. For the comparison, the α value from the experiment
(0.82) was inserted in both functions A(α), obtained by the simulations with OD
and FBM. This yields AOD = 0.56 and AFBM = 0.47. A nearly perfect agreement
between the experimental data and the model of fractional Brownian motion was
obtained.
With this work a clear statement regarding the theoretical description of a sub-
diffusive process in a complex fluid was made, which helps to better understand
the reaction kinetics in living cells. It is worth to note, that it is of crucial impor-
tance for the analysis of the experimental data to measure very long trajectories
with a high spatial and temporal accuracy. Having those data a comparison with
simulations was possible.
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The future belongs to those who believe in
the beauty of their dreams

Eleanor Roosevelt

7 Outlook

The described experimental setup for single-particle orbit tracking, the data anal-
ysis and the applications are on a level were fascinating experiments and investi-
gations can be performed. The setup is well characterised and first results showed
its capability. But some improvements in all of the mentioned fields are helpful to
push this research forward and to get a highly developed setup. In the following a
short outlook for possible applications and setup improvements are given.
Instead of concentrating on tracking experiments in the research sector of bio-
physics, where most of the groups are working, the field of material sciences can be
investigated, where tracking of single nanoobjects can help to better understand
processes on a nanometer length scale. For example the switching behaviour of a
liquid crystal is challenging when working on a submicrometer scale. If traceable
molecules or particles can be attached to the molecules of a liquid crystal, the time-
dependent motion of these molecules can be recorded with a high precision. This
would help to better understand the phase transition of liquid crystals. Further,
if molecules with a defined transition dipole moment are used, also the rotational
diffusion can be investigated.
Another possibility to use particle tracking in material sciences is the examination
of diffusion processes through nanoporous membranes. Recently successful experi-
ments were published, where the diffusion through switchable nanopores that vary
in size were measured [64]. With the single-particle tracking experiments, the struc-
ture of the pores can be determined, with a resolution far beyond the diffraction
limit of light. This helps to construct filter systems on a micro- and even nanometer
scale.
With the here presented setup, at the moment only 2-dimensional tracking experi-
ments can be performed with a high spatio-temporal resolution. But with a lower
time resolution also 3-dimensional trajectories can be recorded. The 3rd dimension
becomes accessible through the z-tracking algorithm. Here it was only used to keep
the particle of interest in the focal plane, but the algorithm stores the z-position
of the particle with a lower time resolution. In figure 7.1 the 3-dimensional trace
with a number of N = 15000 positions of a 20 nm sized bead, diffusing in glycerol
is shown for a time resolution of ∆t = 40 ms, which is a factor of 10 slower than
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Figure 7.1: 3-dimensional trajectory of a single particle with a size of 20 nm, that diffuses
in the fluid glycerol. The trace consists of N = 15000 data points with a time resolution
of ∆t = 40 ms. The green, blue and red trajectory corresponds to the projections to the xz,
yz, and xy plane, respectively.

the rest of the results. Regarding the position accuracies of the z-position, this has
to be investigated in a future work, the 2-dimensional accuracy (xy plane) is the
same like in the presented work (≈ 10 nm). To improve also the temporal reso-
lution for the z dimension, a fast scanning in this direction has to implemented.
One option is to install a third AOD, that is responsible for the generation of a
second light orbit. The optics has to be aligned in a manner, that one of the light
orbits is slightly above the particle and the other is slightly below. By switching
the excitation intensities of these two orbits periodically on and off with a different
frequency than the one used for the focus rotation, in an analog way the z-position
of the particle can be calculated be demodulating the emission signal.
The temporal resolution of all of the axis can be improved by implementing a beam
scanning technique, rather than sample scanning with the piezo. By moving the
laser beam with the AODs a much higher temporal resolution should be obtained,
because no mechanical elements restrict the scanning mechanism.
These were just some improvements that can be done to bring the setup to a new
level. Especially with the higher time resolution, diffusion processes on a faster
time scale becomes accessible.
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Appendix

A Program code

In the following the Matlab source code for the generation of the “simulated real”
and “simulated reconstructed” trajectories is displayed.
1

2 % Simulation of the "real" and the "reconstructed" trajectory
3 % ***********************************************************
4

5 clc;
6 clear;
7 format long
8 nr_trace =1;
9

10 %**** tracking parameter ************************************
11 dt=2E-6; %sampling time [s]
12 f=1000; %orbit frequency [Hz]
13 ro_x =190E-9; %orbit radius x [nm]
14 ro_y =190E-9; %orbit radius y [nm]
15 w=270E-9; %1/e^2 of focus [nm]
16 gb=500; %background emission [cps]
17 g0 =450000; %emission in the focus
18 omega =2*pi*f*dt; %orbit frequency
19 s=100; %samples (length of trajectory)
20

21

22 for i2=0: nr_trace -1
23

24 %***** diffusion parameter *****************************
25 eta =1.2; %viscosity [Pas]
26 r=10E-9; %radius of sphere [m]
27 kb =1.3806504E-23; %Boltzmann constant [J/K]
28 T=294; %Temperature [K]
29 g=6*pi*eta*r; %friction coefficient (Stokes)
30 fc=sqrt (2*kb*T/g/dt); %prefactor stochastic force
31 D=kb*T/g; %diffusion coefficient
32 P=4; %orbit periods
33 a=P/(f*dt); %sampling intervals
34 tr=P/f; %time resolution [s]
35

36

37 %***** initial values **********************************
38 x=0E-9; %x of "real" trace
39 y=0E-9; %y of "real" trace
40 dx=0; %x step of "real" trace
41 dy=0; %y step of "real" trace
42 xc=0; %x of "reconstructed" trace
43 yc=0; %y of "reconstructed" trace
44 dxc =0; %x step of "reconstructed" trace
45 dyc =0; %y step of "reconstructed" trace
46 xs=0; %x of piezostage
47 ys=0; %y of piezostage
48 x_a=zeros(1,s); %array for "real" x values
49 y_a=zeros(1,s); %array for "real" y values
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50 xc_a=zeros(1,s); %array for "reconstructed" x values
51 yc_a=zeros(1,s); %array for "reconstructed" y values
52 time=zeros(1,s); %array for time
53 int=zeros(1,s); %array for intensity
54 randn(’state’,sum (1000* clock));
55

56

57 %** generation of the "real" and "reconstructed" trace *
58 for i3=1:s
59

60 S=zeros(1,a); %theoretical nr. of photons
61 Sp=zeros(1,a); %poisson dist. nr. of photons
62 Scos=zeros(1,a);
63 Ssin=zeros(1,a);
64 cos_v=zeros(1,a);
65 sin_v=zeros(1,a);
66

67

68 for n=1:a
69 %********* "real" trajectory **********
70 fs_x=randn;
71 fs_y=randn;
72

73 dx=fs_x*fc*dt;
74 dy=fs_y*fc*dt;
75

76 x=x+dx;
77 y=y+dy;
78

79 %***** "reconstructed" trajectory *****
80

81 S(n)=dt*gb+dt*g0*exp(-2/w^2*((x-xs-ro_x*cos(omega*n))^2+
82 (y-ys-ro_y*sin(omega*n))^2));
83 cos_v(n)=cos(omega*n);
84 sin_v(n)=sin(omega*n);
85 end
86

87 x_a(i3)=x*1E9;
88 y_a(i3)=y*1E9;
89

90 Sp=poissrnd(S);
91 Scos=Sp.* cos_v;
92 Ssin=Sp.* sin_v;
93

94 %***** calculation of the position ********
95

96 if (sum(Sp)==0)
97 dxc =0;
98 dyc =0;
99 else

100 dxc=w^2/(2* ro_x)*sum(Scos)/sum(Sp);
101 dyc=w^2/(2* ro_x)*sum(Ssin)/sum(Sp);
102

103 xc=xc+dxc;
104 yc=yc+dyc;
105

106 xc_a(i3)=xc*1E9;
107 yc_a(i3)=yc*1E9;
108

109 %******** feedback mechanism **************
110 xs=xc;
111 ys=yc;
112
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113 %******** time and intensity **************
114

115 time(i3)=i3*tr;
116 int(i3)=sum(Sp)/tr;
117

118 end
119 end

B Harmonic approximation

In this section the derivation of the harmonic modulation of the emission signal for
particle positions close to the centre of the light orbit is shown. Therefore equation
(2.28) from the section 2.2.2 is used.

I(t) = I0 exp

(
− 2

w2
(xp −R cos(ωt))2

)
exp

(
− 2

w2
(yp −R sin(ωt))2

)
+ Ib (B.1)

A 2-dimensional Taylor series of this equation in the neighborhood of the position
(x0, y0) = (0, 0) gives:
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The emission signal is modulated with a cos- and a sin- function.
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We report on an experimental setup for single-particle orbit tracking, which allows following fluorescent
nanoparticles for more than 10 min with a temporal resolution of 4 ms and a dynamic position accuracy of better
than 10 nm. On a model sample—20 nm sized fluorescent polymer beads in glycerol—we will illustrate how
artifacts caused by unavoidable experimental shortcomings (might) obscure the experimental result and how
misinterpretations can be prevented. © 2012 Optical Society of America
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1. INTRODUCTION
The study of transport processes on molecular length scales is
of great importance in many fields of research [1–9]. In the life
sciences, reaction kinetics may depend crucially on the diffu-
sion of the reactants [10–12], or in material engineering the
flow of material through an interface is of great importance
for filtering and catalysis [6,13]. Many methods for studying
such processes rely on fluorescence microscopy. Initially, this
was largely restricted to fluorescence recovery after photo-
bleaching [14], which is an ensemble technique that prohibits
probing of transport processes beyond the classical diffrac-
tion limit of light microscopy. Moreover, due to ensemble
averaging, complex diffusion behavior might get masked in
photobleaching experiments.

The situation changed drastically with the advent of single-
molecule techniques. Confocal microscopy lies at the heart of
fluorescence-correlation spectroscopy (FCS) and its variants
[9,15]. The disadvantage of this method is that the average
transition time of a particle through the detection volume
of about 1 μm3 is very short. Hence, one is either limited to
short observation times or one averages sequentially over
many particles, making it difficult to extract information about
temporal or spatial inhomogeneities. Alternatively, wide-field
fluorescence microscopy has been employed to follow the
diffusion of individual nano-objects. The general idea of
single-particle tracking (SPT) is to determine the position
of an individual particle by fitting its diffraction-limited image
on a CCD camera to the known point-spread function of
the microscope or, more pragmatically, by fitting it to a two-
dimensional Gaussian. Associating the center of the fit with
the position of the particle allows determination of the spatial
position with an accuracy far beyond the classical diffraction
limit of light microscopy and to follow the diffusion of this
particle with high precision [1,3,16–21]. Fascinating experi-
ments have been reported using SPT in combination with
fluorescently labeled particles. Examples are the diffusion
of individual lipids in membranes [4,22], the movement of
proteins or quantum dots in cells [5,21,23], or the study of

biomolecular motors [24]. It even has become possible to
trace the infection pathways of individual viruses [25].

While SPT allows for determining the spatial position of the
tracer particle with exceptional accuracy, it provides only
limited temporal resolution, mainly given by the readout time
of the CCD camera. Instead of following the spatial position of
a particle by recording a sequence of images in epifluores-
cence microscopy, Enderlein proposed a method nowadays
termed single-particle orbit tracking in [26,27]. There, the
excitation light is focused into the plane of the sample and
rotates on a circle that encloses the particle of interest; see
Fig. 1. As long as the particle is located precisely at the center
of the orbit, it experiences a constant excitation intensity, de-
spite the variation of the position of the focus. Upon any
movement of the particle away from the center, this situation
changes drastically and the excitation intensity, and concomi-
tantly the intensity of the emitted fluorescence I�t� from the
particle, becomes modulated with the rotation frequency of
the light orbit, according to

I�t� � I0 exp
�
−

2

w2 �xp − R cos�ωt��2
�

· exp
�
−

2
w2 �yp − R sin�ωt��2

�
� IB: (1)

Here I0 corresponds to the maximum emission intensity, R to
the radius of the light orbit, w to the waist of the focused
excitation beam, xP and yP to the coordinates of the particle
in the plane of the light orbit, ω to the cycle frequency of the
light orbit, and IB to the background intensity. Demodulation
of the emission signal yields the coordinates of the particle

xp �
w2

2R

R
T
0 I�t�cos�ωt�dtR

T
0 I�t�dt ; yp �

w2

2R

R
T
0 I�t� sin�ωt�dtR

T
0 I�t�dt ; (2)

and a feedback loop can be implemented that follows the trajec-
tory of the particle r�t� � �xp�t�; yp�t�� as a function of time.
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Meanwhile, this technique has been applied successfully by
several groups to follow the position of proteins, quantum
dots, or dye-labeled polymer beads in various environments
[28–31]. Further progress in the field has made it possible to
combine this technique with FCS [32,33], and to optically mea-
sure relative distances with nanometer precision [34]. A very
ingenious experiment was developed in the Moerner group by
combining this technique with a trapping setup called the anti-
Brownian electrokinetic trap [35,36]. There, electrokinetic
forces are used to level out the Brownian motion of a particle
and keep it in the trap. The detection of the position, which is
the feedback signal fed into the trap, is done with the orbit
tracking technique.

However, the experimental realization of the here-presented
approach bears the potential for several artifacts that might
give rise to misinterpretations of the underlying diffusion pro-
cess. Typically, a measured trajectory is analyzed in terms of
the time-averaged mean square displacement (MSD) [37]. For
two-dimensional diffusion, theMSD is commonly expressed as
MSD�τ� � 4Dτα, where D is the diffusion coefficient, τ the lag
time, and α the anomaly parameter [38,39]. One distinguishes
between subdiffusive processes (α < 1), normal (Brownian)
diffusion (α � 1), and superdiffusive processes (α > 1). Yet,
experimental shortcomings, rather than an underlying anoma-
lous diffusion process, may give rise to the observation of an
anomaly parameter α ≠ 1 [40].

Here we will demonstrate the performance of our orbit
tracking setup for a reference sample (20 nm sized dye-labeled
polymer bead in glycerol) that is known to feature normal dif-
fusion. We will illustrate the influence of several experimental
shortcomings on the resulting MSD, provide correction me-
chanisms, and show that we can follow the Brownian motion
of the particle for more than 600 s with a temporal resolution
of 4 ms and a dynamic position accuracy of 7.5 nm. Applying
all corrections to remove the contributions from experimental
artifacts, we find α � 1.03 for the anomaly parameter, which is
in close agreement with the expected value of α � 1.

2. EXPERIMENTAL SECTION
A. Sample Preparation
For the characterization of the SPT setup, we purchased dye-
labeled polystyrene microspheres of 20 nm in diameter

(Molecular probes, 20 mg∕ml in H2O, dye: Nile Red). These
beads were further diluted in water by a factor of 10, corre-
sponding to a bead concentration of 0.1 nM. For the prepara-
tion of static samples, this solution is mixed (1∶1 vol.∕vol.)
with a 5% polyvinyl alcohol (PVA)/water mixture, resulting
in a final bead concentration of 50 pM. Subsequently, a drop
of this solution (about 25 μl) was spin coated onto a quartz
coverslip that was cleaned with acetone. For the preparation
of mobile beads, the solution with the microspheres is
dissolved in glycerol (1∶50 vol.∕vol.), which yields a bead
concentration of 2 pM. About 25 μl of this solution was sand-
wiched between two microscope coverslips that were cleaned
with acetone. The edges of this construct were sealed with
high viscosity grease (high-vacuum grease, Wacker) to pre-
vent a flow field due to evaporation or adhesion. The samples
were fixed on a piezostage that served as the sample holder in
the microscope. All experiments were carried out at room
temperature [�21� 0.5� °C].

B. Experimental Setup
The experimental setup consists of a laser source, a laser
beam deflection unit, a home-built fluorescence microscope
that can be operated either in wide-field or confocal mode,
a detection part, and a calculation unit. The setup is sketched
in Fig. 2(a), and in the following some of these components
will be explained in more detail.

Deflection unit. The output of an Ar/Kr-Ion laser
(Innova 70C Spectrum, Coherent) at 514 nm, which is linearly
polarized in a direction that is vertical with respect to the
optical table, is directed into two acousto-optical deflectors
(AODs, DTSX-400-532; driver, DRFA10Y-B-0; amplifier,
AMPA-B-30, Pegasus). The first AOD deflects the beam
horizontally, and the second one deflects the beam vertically
with respect to the optical table. Together with the four lenses
L1–L4, which feature all the same focal length of f 1;2;3;4 � f �
250 mm [see Fig. 2(b)], they constitute the deflection unit. All
lenses are separated with respect to each other by twice their
focal distance. The AODs are placed at one quarter of this dis-
tance, i.e., f ∕2, from L1 and from L3, respectively; see Fig. 2(b).
First we produce a vertically deflected beam that has a focus
in the focal plane of L1 and that propagates without diver-
gence between L2 and L3. Then the light is deflected by the
second AOD in a direction perpendicular to the initial direc-
tion, and focused in the focal plane of L3, which is a conju-
gated plane of the focal plane of L1; see dashed lines in
Fig. 2(b). This generates a light orbit that propagates without
divergence beyond L4. Yet the light is not propagating parallel
with respect to the optical axis, but, due to L4, it is merged at a
pivot point creating a collimated orbit of light; see Fig. 2(c).
Finally, a set of telecentric lenses, L5 and L6, serves for
(1) projecting the pivot point into the back focal plane of
an infinity-corrected objective and (2) expanding the beam
to ensure full illumination of the back aperture of the objec-
tive. This results in a focused laser beam with a waist of w �
270 nm that rotates in the focal plane of the objective; see
Figs. 2(b) and 1. The whole optical system was designed using
ray transfer matrix analysis (see Appendix A.1).

In order to achieve a circular orbit, the harmonic signals
that drive the AODs must have the same amplitude A, fre-
quency ν, and a relative phase difference of π∕2. In our setup,
the voltage for the amplitude can be varied between 0 and 5 V,

x

y

xP

yP

ω

w R

z

Fig. 1. (Color online) Schematic geometry (not drawn to scale) of a
focused laser beam with waist w (1∕e2-width) rotating at a frequency
ν � ω∕2π in the sample plane. The red dot indicates a fluorescent par-
ticle at the position (xp, yp) within the orbit. The radius of the orbit is
R. Inset top right, shows schematically the emission intensity of the
particle as a function of time.
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which corresponds to a maximum deflection angle of 20 mrad
or likewise to a maximum radius R of 5 μm for the light orbit in
the focal plane of the objective. The deflection frequency
can be as high as 20 kHz. The parameters used for this work
were as follows: R � 190 nm (A � 190 mV) and ν � 1 kHz.
The transmitted laser power is varied by changing the radio
frequency amplitude.

Microscope. The suitably shaped laser light passes a λ∕4
wave plate (Berek Polarization Compensator, New Focus)
to ensure circularly polarized light and is reflected via a di-
chroic beam splitter (z532RDC, AHF) toward an infinity-
corrected water-immersion objective (UPLSAPO, 60×,
NA � 1.2, Olympus); see Fig. 2(a). The sample is mounted
on a piezostage (Tritor 102, piezosystem Jena) that covers

Fig. 2. (Color online) (a) Schematic representation of the optical setup. In the lower part, the light path including all optical elements is shown
(L, lenses; F, filter; DBS, dichroic beam splitter; AOD, acousto-optical deflector; APD, avalanche photodiode; CCD, charge-coupled device). Inset
top left, sample (blue shaded area), the microscope objective, and the piezo on an expanded scale. The excitation light is indicated in green and
is reflected toward the sample by a dichroic beam splitter. Once the light orbit that is created in the sample plane hits a polymer bead (red dots),
red-shifted fluorescence is emitted that passes the dichroic and travels toward the detectors. (b) Detailed view of box I of part (a), which corre-
sponds to the deflection unit. The propagation of the laser under the most extreme deflection angles is indicated by the dark green and light green
colors, respectively. The AODs are depicted as the two red boxes. The four lenses have the same focal lengths of f � 250 mm. The two dashed
lines perpendicular to the optical axis indicate a set of conjugated planes. (c) Detailed view of box II in part (a), which represents a set of telecentric
lenses. Beyond L4, a collimated, rotating light beam propagates under an angle with respect to the optical axis. The pivot point is defined as the point
on the optical axis where the collimated beam crosses the optical axis. The set of telecentric lenses, L5 (f 5 � 50 mm) and L6 (f 6 � 300 mm), maps
the pivot point into the back focal plane of the objective, L7, creating a rotating focus for the excitation light, see inset.
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a scan volume of 100 μm × 100 μm × 100 μm. The minimum
step size along each of the three axis is 3.05 nm, which is de-
termined by the digitization accuracy of the voltages applied.
The emission from the dye-loaded beads is collected by the
same objective, passes the dichroic beam splitter, a dielectric
filter (HQ545LP, OD = 6 @ 514 nm, AHF), and it is then fo-
cused either onto the chip of a CCD (sensicam qe, PCO) or
an avalanche photodiode (SPCM-AQR-14, PerkinElmer) with
a sensitive area of 180 μm in diameter.

The microscope can be operated in two different modes, a
wide-field mode for imaging and a confocal mode for tracking.
In wide-field mode, the deflection unit is set to a neutral state
where the laser beam is not deflected, and an optional lens
LWF with a focal length of fWF � 180 mm is flipped into the
optical path in front of the microscope objective. This defo-
cuses the excitation light to an area of about 80 μm ×
80 μm in the sample plane, and an image of the sample can
be registered with the CCD. In this mode, a particle is selected
and moved with the piezostage close to the center of the orbit.
Subsequently, the setup is switched to the confocal mode, i.e.,
the lens LWF is removed, the deflection unit is switched on,
generating a light orbit as described above, and the emission
is collected by the APD.

C. Tracking of a Particle, Data Acquisition, Trajectory
Analysis
The home-written tracking software consists of a feedback al-
gorithm that calculates the x and y positions of the particle
with respect to the center of the orbit at every time step
Δt. The time resolution of the experiment is determined by
the frequency ν of the rotating laser focus and the number
of periods (cycles) P; i.e., Δt � P∕ν for one time step. During
that interval, the fluorescence signal from the APD is acquired
at a sampling rate of δt−1 � 500 kHz, which is the highest rate
possible to run our tracking software without runtime errors.
The ratio between Δt∕δt � NS defines the number of data
points sampled for one position calculation. The position of
the particle �xp; yp� is calculated according to

xp � w2

2R

PNS
n�1 Sn cos�ωnδt�PNS

n�1 Sn

; yp � w2

2R

PNS
n�1 Sn sin�ωnδt�PNS

n�1 Sn

.(3)

Here Sn denotes the number of photons collected during the
nth sampling interval, and ω � 2πν. Next, the coordinates of
the particles are converted into suitable voltages and fed to
the piezostage with the reversed sign moving the particle back
to the center of the light orbit. This feedback loop is repeated
many times, and from the movement of the piezo, the corre-
sponding movement of the particle can be reconstructed pro-
viding its trajectory in the x, y plane, i.e., perpendicular to the
optical axis. With this method, the determination of one pair of
coordinates xp�Δt�, yp�Δt� requires at least one full period of
rotation of the light orbit.

In order to follow the diffusion of the particle also along the
direction of the optical axis (z axis), we moved the piezo per-
iodically up and down along this direction. This movement
corresponds to Nz steps of size s (s is a multiple of the mini-
mum step width of the piezo) in either direction. The temporal
resolution of one z cycle isΔtz � NzΔt, and hence a factor of
Nz slower than the temporal resolution of the x, y feed-
back loop. Therefore, the fluorescence signal of the bead

as a function of the z position is used only to keep the particle
in the plane of the light orbit rather than to register the three-
dimensional diffusion. All calculations are performed by a pro-
grammable I/O box (AdWin Gold II, Jäger Messtechnik). This
box is a versatile piece of equipment that acquires the APD
signal, controls the voltages for the three piezoaxes, and pro-
vides the voltages Ux�nδt� � A cos�ωnδt� and Uy�nδt� �
A sin�ωnδt� that are applied to the AODs for the x and y de-
flection of the light beam. Moreover, it can be programmed to
act as a lock-in amplifier to determine the position of the
particle; see Eq. (3). Employing this device avoids hardware
conflicts with computer interfaces, and it ensures a perfect
temporal synchronization between the generation of the dis-
crete positions within the orbit and the acquisition of the
signal.

In order to analyze individual trajectories r�t� �
�xp�t�; yp�t�� consisting of N positions, we determine the
time-averaged mean squared displacement (MSD) [3,37] after
a lag time τ � kΔt according to

MSD�τ��hΔr�kΔt�2iT �
1

N−k

XN−k

i�1

�r�iΔt�−r��i�k�Δt��2. (4)

Here, the brackets h·iT symbolize time averaging.

3. CHARACTERIZATION OF THE SETUP
Generally, the more photons that can be collected, the better
the achievable position accuracy. One way to achieve this is
by increasing the excitation intensity, which, however, has to
be limited to a range such that forces exerted on the particle
by the optical field can still be neglected; see Appendices A.2
and A.3. Alternatively, this can be accomplished by increasing
the time interval during which the photons are collected. As a
consequence of this, there is always an unavoidable conflict
between temporal and spatial resolution. This becomes even
more evident when diffusion processes are studied, because
the movement of the particle during the acquisition time tends
to smear out the spatial position. Accordingly, the experimen-
talist has the choice between poor localization accuracy due
to poor photon statistics or due to averaging the position of
the particle. This illustrates that the outcome of a tracking ex-
periment depends critically on the number of emitted photons
per unit time and the mobility of the emitter.

A. Choice of Experimental Parameters
Yet, besides these general restrictions the tracking perfor-
mance, i.e., the achievable temporal and spatial resolution,
is also determined by several experimental parameters such
as the frequency at which the light orbit rotates, the radius of
the orbit, and the parameters for the z axis tracking. The tem-
poral resolution is determined by the rotation frequency ν and
the number of rotation periods P that are accumulated for one
calculation step of the spatial position. In our setup, this limits
the temporal resolution principally to 0.05 ms (ν � 20 kHz,
P � 1). However, the time-limiting process in our current set-
up is the oscillation of the piezo when it approaches a preset
position and which takes about 2 ms. Therefore, we have
chosen an orbit frequency of 1 kHz and define the first
two periods as waiting time without any data acquisition.
Hence, the best time resolution that can be achieved with
our components corresponds to 3 ms. For the experiments
shown here, we used P � 4; i.e., the spatial position of the
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emitter is determined every 4 ms. Another parameter that has
to be chosen carefully is the radius of the orbit. According to
[41], the optimum radius depends only on the beam waist w
and is given by R � w∕21∕2. For these conditions, a particle at
the center of the orbit experiences the steepest gradient of the
excitation intensity, translating movements of the particle into
the largest possible changes of the emission intensity. Given
the diffraction-limited beam waist of w � 270 nm, we have
set R � 190 nm.

B. Experimental Artifacts
Nevertheless, even when carefully setting the experimental
parameters, it cannot be avoided that the calculation of the
spatial position of the particles is influenced by experimental
imperfections, leading to misinterpretations of the data. In
combination with simulation, we identified several perturba-
tions that affect the measured spatial position of the particle:
systematic errors of the tracking algorithm [41], mechanical
misalignments, the limited signal-to-noise ratio [40], and aver-
aging effects during data acquisition [5,7]. In the following we
will address these issues one by one and discuss how to avoid
or minimize their influence on the position accuracy and con-
comitantly on the MSD.

Systematic error in the tracking algorithm. A major
problem in calculating the absolute position of a particle from
the demodulation of the emission intensity is the neglection of
higher harmonics in the signal [41]. This approximation is jus-
tified as long as the particle is close to the center of the light
orbit and movements are small with respect to R. The more
the particle moves out of the center of the light orbit, the more
the signal is affected also by higher harmonics; see Fig. 3(a).
This leads to a putative shift of the spatial coordinates toward
smaller values.

In order to address this issue, we simulated the signal [see
Eq. (1)] for an immobile particle as a function of the distance
from the center of the light orbit and determined its position
with the algorithm [Fig. 3(b) red line]. Indeed, the calculated
positions level off at larger distance from the center. Though
in the simulations the “real” position of these particles is
known as well [Fig. 3(b) blue line], and the error introduced
by this effect corresponds to the difference between the two
full lines shown in Fig. 3(b). From this difference, we deter-
mined a correction function that is implemented as a fourth-
order polynomial into the algorithm, providing a real-time
correction for the calculation of the particle position during
data acquisition. Subsequently, we did an experiment without
the feedback algorithm on immobile particles that could be
placed at will with respect to the center of the light orbit.
The measured positions of the particle without correction
are shown in Fig. 3(b) by the red squares and are in good
agreement with the simulated curve. Repeating the experi-
ment with the real-time correction yields the blue circles in
Fig. 3(b), which are, as well, in very good agreement with
the reference line. It is worth noting that the correction func-
tion was calculated from simulated data, i.e., further experi-
mental shortcomings as will be discussed below, and which
affect the calculated positions of the particle as well, do
not play a role for this correction step.

(Mis)alignment of the piezostage. In order not to lose
the particle in the z direction, the piezo is wobbled along the z
axis, as detailed above. Ideally the direction of this movement

coincides perfectly with the optical axis. In a real situation,
there is always a slight mismatch between these two axes,
which leads to a periodic movement of the particle in the
plane perpendicular to the optical axis; see Fig. 4(a). This os-
cillation can be misinterpreted as a lateral movement of the
particle. In order to visualize this artifact more clearly, we per-
formed an experiment where we tilted the piezo on purpose
by more than 2° from the direction of the optical axis. The
parameters for the z tracking were set to a step size of s �
20 (≈60 nm), and the number of steps (in one direction)
wasNz � 4. The resulting MSD from this experiment is shown
in Fig. 4(b) by the black squares. As expected, it features a
modulation with a frequency proportional to 2Nz. Because
the frequency of this modulation is known, phase sensitive

Fig. 3. (Color online) (a) Excitation intensity experienced by fluor-
escent particles (blue, red dots) as a function of their position with
respect to the light orbit. The laser intensity is represented by a Gaus-
sian profile (thin green curve) the light orbit by the ellipse (thick green
line). A particle that resides close to the center of the light orbit (blue
dot) experiences linear changes of the excitation intensity (black line)
upon small movements. This yields a harmonic modulation of the
emission intensity of the particle (blue profile, top right). Particles that
reside close to the rim of the light orbit (red dot) experience strong
deviations from a linear variation of the excitation intensity upon
small movements, as is indicated by the red-shaded area. This intro-
duces higher harmonics into the temporal modulation of the emission
intensity (red profile, top right). (b) Simulation (red line) of the posi-
tion of the particle determined by the tracking algorithm, r, as a func-
tion of its real position rreal with respect to the center of the light orbit.
The radius of the light orbit is R � 190 nm and is indicated by the
arrow. The difference between the red line and the blue line, which
corresponds to the angle bisector, provides the correction function for
the position of the particle. In two consecutive experiments, an immo-
bilized particle was moved with the piezo in steps of 10 nm from the
center to the rim of the light orbit. In the first experiment, its position
was determined without the correction (red squares), whereas for the
second experiment, the correction was applied (blue circles).
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lock-in analysis of the measured time traces along the x and y
directions allow extraction of the amplitude and the relative
phase of this superimposed oscillation. Once these data are
known, the oscillation is subtracted from the experimental
data, as shown for the example in Fig. 4(b), where the effect
was purposely exaggerated. In a real experimental situation,
the tilting angle of the piezo with respect to the optical axis
was minimized to less than 1° and residual oscillations of
the lateral position of the particle were corrected as described
above.

Finite signal-to-noise ratio. There is no experiment
without noise. In SPT experiments, the limited signal-to-noise
ratio of the emission affects the accuracy of the calculated
position of the particle, which leads to an additive constant
in the MSD:

hΔr�τ�2iT � 4Dτ� 2σ2. (5)

Displaying the MSD on a double logarithmic scale yields
deviations from a linear relationship at short times that might
be misinterpreted as subdiffusive processes. This issue is dis-
cussed in detail in [40].

In Fig. 5 we show the MSD from a tracking experiment on a
single polymer bead of 20 nm size in glycerol as a function of
the number of detected photons from the emitter. The signal
from the bead was varied by 1 order of magnitude by changing
the excitation rate. The experiment was performed on exactly
one single bead for all excitation intensities to exclude varia-
tions of its diffusion behavior that depend on its actual size or
shape. Displaying the MSD on a linear scale yields a linear
time dependence for a Brownian motion. As expected, the
lines are offset with respect to each other, reflecting the dif-
ferent noise levels of the experiments [Fig. 5(a)]. However,
displaying the MSD on a double logarithmic scale [Fig. 5(b)]
yields at short times deviations from the normal diffusion be-
havior mimicking a deviation from Brownian motion. Correc-
tion of this artifact is trivial. From the linear relation, the offset
2σ2 can be determined and subtracted. More interesting is the
fact that the determination of the offset gives access to the
dynamical position accuracy σ, which varied between 11 nm
for the experiment with the highest count rate and 32 nm for
the experiment with the lowest signal.

Fig. 4. (Color online) (a) Illustration of the mismatch between the
optical axis and the z axis movement of the piezo. The green ellipse
represents the light orbit. The piezo is wobbled over a distance 2Nzs
along the piezo z axis. For a fluorescent bead (red dot) in the light
orbit, this appears as if the particle oscillates in the plane perpendi-
cular to the optical axis (red harmonic signal). (b) MSD of a trajectory
of a 20 nm sized bead in glycerol. For this experiment, the piezostage
was tilted on purpose by more than 2° with respect to the optical axis.
The raw data (black squares) stem from a trajectory that has been
followed for 5 min with a time resolution of Δt � 4 ms. The number
of steps for the movement of the piezo along the z axis was Nz � 4,
with a step size of s � 20 (≈60 nm). The modulation of the MSD with a
period of 2Nz is clearly revealed and highlighted by the blue data
points. The MSD calculated from the corrected coordinates (see text)
is given by the red dots. For both MSDs, the solid lines serve as a guide
for the eye.

Fig. 5. (Color online) MSD of 20 nm sized tracers in glycerol as a
function of the emission intensity of the particle, which increases from
top to bottom by about 1 order of magnitude. The variation in emis-
sion intensity was controlled by the excitation intensity. (a) Plot of the
data (symbols) on linear scales and linear fits (lines). (b) Plot of the
same data on double logarithmic scales. For comparison, the dashed
gray line represents the MSD that would have been obtained for σ � 0.
In both plots, the first data point has been skipped due to residual
influence of the oscillation of the piezo.
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Position averaging. A more serious problem is that the
particle is moving during the acquisition time Δt. Hence,
rather than an actual position of the particle one determines
the average position of the particle during the data acquisition
interval; see Fig. 6(a). This effect leads to an underestimation
of the MSD and shams a (nonexisting) superdiffusive motion
of the particle at short time scales; see Fig. 6(b). This problem
has been treated in detail in [5,7] and leads to a subtractive
term in the MSD, i.e., hΔr�τ�2iT � 4D�τ −Δt∕3�, which can
be experimentally verified; see the full symbols in Fig. 6(b).
This artifact can be corrected by (1) determination of the dif-
fusion coefficient from the data points of the linear plot (data
not shown) and then (2) adding 4∕3DΔt to the data points.

C. Stability: Drift and Flow
Next to artifacts that are introduced by experimental short-
comings, the long-term stability of the setup plays an impor-
tant role for tracking experiments. Drifts of the components
with respect to each other will be superimposed on the move-
ments of the particles and provide another source for misin-
terpretation. In order to investigate the mechanical stability of
the setup, we immobilized a fluorescent bead in PVA and mon-
itored its position without the feedback algorithm for 600 s,
corresponding to 150,000 position determinations. From that
we determined the initial (end) position by averaging the first

(last) 4000 data points. This experiment was repeated on three
different beads, and we found an average drift of the setup of
δνx � 0.06 nm∕s and δνy � 0.04 nm∕s for the x and y direc-
tions, respectively.

Another important issue concerns the flow of the medium
in the sample chamber. For polymer beads in glycerol, we ex-
pect a Brownian motion with the characteristic of a zero mean
displacement; i.e., hΔxi � hΔyi � 0. Any deviation from zero
can be identified as flow. In order to quantify this effect, we
interpreted a long trajectory of about 150,000 data points as a
sequence of 150 short trajectories of 1000 data points each.
For each of the short sequences, we determined the displace-
ment of the particle along the x and y directions between the
start and the end positions. A typical example with the result-
ing displacement vector is shown in Fig. 7(a). An ensemble of
1050 displacement vectors taken consecutively from trajec-
tories of seven different particles within the same sample is
shown in Fig. 7(b). The starting position of the displacement
vectors is normalized to the origin. The spherical shape of the
envelope of these vectors is already an indication that flow is
very weak. A quantitative measure is obtained from the histo-
grams [Figs. 7(c), 7(d)] which show the distributions of the
displacements along the x and y directions, respectively.
Gaussian fits of the histograms yield slight offsets from zero,
−47 nm (x offset) and −38 nm (y offset), which correspond to
a flow of νx � 12 nm∕s and νy � 10 nm∕s. However, typically
the 20 nm beads move, on average, about 250 nm during 1 s,
exceeding the movement that can be associated with flow by a
factor of 20. Therefore, we neglect influences of drift and flow
in the following.

D. Hierarchy of Corrections
In an experimental situation, the above-mentioned correc-
tions are applied according to the following hierarchy.
(1) The experimentally determined coordinates of the particle
are corrected for the systematic error in the tracking algo-
rithm due to neglection of higher harmonics; see Fig. 3.
(2) The supposed oscillation in x, y coordinates due to the
misalignment of the piezostage with respect to the optical axis
is removed from the data; see Fig. 4. The resulting corrected
coordinates are used to calculate the MSD. As discussed
above, the MSD is still affected by two systematic errors
and can be expressed as

hΔr�τ�2iT � 4D�τ −Δt∕3� � 2σ2. (6)

(3) The linear slope of the MSD provides the diffusion coeffi-
cient D, and in order to compensate for the error in position
averaging [see Fig. 6], the term 4∕3DΔt is added to the MSD.
However, for underlying anomalous diffusion processes, the
MSD follows a power law, i.e., MSD�τ� ∼ τα with α ≠ 1, and
the correction is slightly more tedious. Then the diffusion
coefficient is obtained either from a fit to the power law or
from an MSD that is approximated as a linear function within
distinct time intervals. (4) Finally, the offset 2σ2 that results
from the finite signal-to-noise ratio is determined and sub-
tracted, providing the dynamic position accuracy. Step
(1) is done in real time during data acquisition, whereas all
other steps are performed later in computer memory. We dis-
carded doing the corrections concerning step (2) in real time,
because this would be a time-limiting factor that impacts on
the temporal resolution of the experiment. It is worth to note

Fig. 6. (Color online) (a) Schematic representation of position aver-
aging during the acquisition time Δt. The green area corresponds to
the focal spot that rotates in the plane of the sample (green dotted
line). The gray line depicts the movement of the particle during the
acquisition time Δt. It starts at the center of the orbit indicated by
the open circle and ends at the position indicated by the gray dot.
The full black dot is the position that is measured and corresponds
to the averaged position of the particle duringΔt. (b) Double logarith-
mic plot of the MSD (symbols) of a 20 nm sized particle in glycerol as a
function of the duration of the acquisition time. For comparison, the
MSD that corresponds to the extrapolation towardΔt � 0 is shown by
the dashed gray line. All other lines serve as a guide for the eye.
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that the corrections (3) and (4) are significant only at short
time scales or small movements, respectively. As soon as τ ≫
Δt or MSD ≫ σ2 is fulfilled, the influence of these corrections
on the results is negligible.

4. EXAMPLE
As an example, we present an experiment where we studied
the diffusion of a 20 nm sized tracer particle in pure glycerol.
This sample was chosen, because glycerol does not form
network structures and normal, Brownian diffusion can be ex-
pected [42], i.e., a linear dependence of the MSD of the traces
as a function of the lag time. Or more formally MSD�τ� ∼ τα,
with α � 1.

We recorded trajectories with 150,000 positions, corre-
sponding to an experimental time of 10 min. In order to com-
pensate for the decrease of the emission signal in the course
of time, for example due to bleaching effects, the excitation
power was varied between 130 nW–1.5 μW, which ensured a
rather constant emission of about 1.5 × 105 cps (counts per
second) during the experiment. In most of the experiments,
the mean excitation power was about Pex � 560 nW, which
corresponds to an excitation intensity of Iex � 250 W∕cm2

in the focus of the microscope objective. The rotation
frequency of the light orbit was set to ν � 1 kHz with P � 4
periods of rotation, resulting in a bin time of Δt � 4 ms. The
parameters for the z tracking were Nz � 10 and s � 5

(≈15 nm). We recorded trajectories from seven different par-
ticles in order to compensate for the (slight) dispersion in the
diameters of the beads and for possible variations of their
shapes.

In Fig. 8 the first 50 data points of the “ensemble” average of
time-averaged MSDs are shown for different stages of the cor-
rections. The MSD that has been calculated after carrying out
corrections (1) and (2) of the coordinates is shown by the
black color code (squares), the one that results after step
(3) is given by the blue color code (circles), and finally the
fully corrected MSD [after step (4)], is indicated by the red
color code (triangles). In order to show the differences be-
tween the three MSDs more clearly, some data points are
shown on an expanded scale in the top right inset of Fig. 8(a).
The solid lines in Fig. 8(a) refer to linear fits, which differ only
by their offset; see inset, top left. From the slope we obtain
the diffusion coefficient Dexp � 0.0178 μm2∕s that can be
compared with the prediction according to the Stokes–
Einstein relation Dtheo � kBT∕6πηa. Here a refers to the ra-
dius of the particle, η to the viscosity of the medium, T to
the temperature, and kB to the Boltzmann constant. Using
T � 294 K, η � 1.2 Pa · s [42], and a � 10 nm, we obtain
Dtheo � 0.0179 μm2∕s in nearly perfect agreement with the ex-
perimental value. The differences in the offsets of the three
MSD curves become clear in the top left inset of Fig. 8(a),
which shows the extrapolation of the three fitted curves

start

end

x

y

-47 nm

-38 nm

Fig. 7. (Color online) Measuring the flow in the sample chamber. (a) Sequence of 1000 data points (4 s) taken from a long trajectory of 150,000 data
points. The gray arrow corresponds to the displacement vector of the particle during the 4 s. (b) Scatterplot of 1050 displacement vectors from
seven independent trajectories. The vectors have been shifted with their starting point to a common origin. (c) Histogram of the x component of the
displacement vectors. The full line corresponds to a Gaussian fit centered at a mean of −47 nm. (d) Histogram of the y component of the dis-
placement vectors. The full line corresponds to a Gaussian fit centered at a mean of −38 nm.

1284 J. Opt. Soc. Am. A / Vol. 29, No. 7 / July 2012 Ernst et al.



toward τ � 0. Once the diffusion coefficient is obtained, the
other two corrections, i.e., adding 4∕3DΔt and subtracting
the remaining offset are trivial. From the last correction,
we obtain 2σ2, which provides the dynamic position accuracy
of σ � 7.5 nm for the example shown here.

In order to enhance the visibility of any deviation from
α � 1, Fig. 8(b) displays the same data on a double logarith-
mic scale. The lines are linear fits with slopes α12 � 1.00
(black squares), α3 � 0.98 (blue circles), and α4 � 1.03 (red
triangles), which all agree very well with both the data and
the expectation. Here the indices refer to the level of correc-
tions. However, it should be noted that only the fully corrected
MSD obeys log MSD�τ� � α log τ� log 4D, which allows ex-
tracting the scaling exponent α by linear fitting. The other two
exponents (α12 and α3) should be regarded only as apparent
scaling parameters α� following the notation in [40]. Neverthe-
less, for any level of correction, the deviations of these param-
eters from α � 1 are within the experimental accuracy,
testifying that the expected Brownian motion is revealed,
and that the experiments were performed in a regime where
corrections (3) and (4) were of minor importance.

An alternative method to analyze single-particle trajectories
with respect to the diffusion behavior, relies on the cumula-
tive distribution function [CDF(r2 τ)] of the squared displace-

ments r2 for a certain lag time τ [43,44]. The analysis of
our data according to this protocol is given in detail in
Appendix A.4 and reproduces Brownian motion.

5. CONCLUSION
We have described the details of an experimental setup that
exploits orbit tracking to follow the movement of an indivi-
dual fluorescent particle with a position accuracy far beyond
the classical diffraction limit. The figures of merit depend on
the dynamics of the system and on the number of detected
photons per unit time. Typical values for diffusion in viscous
media that we achieved are a position accuracy better than
10 nm, a temporal resolution of 4 ms, and a total observation
time of more than 600 s. This allowed recording of trajectories
of the particle movement consisting of more than 105 data
points providing excellent statistics for data evaluation. How-
ever, the experimental realization of orbit tracking was hin-
dered by several shortcomings leading to artifacts in the
data that might misleadingly be interpreted as an underlying
anomalous diffusion process. We have presented a detailed
characterization of these problems, elucidated the origin of
several artifacts, and showed how to correct the data accord-
ingly. The operation of the setup and the influence of the ar-
tifacts on the data were illustrated for a model system from
which it is known that it features normal diffusion. We have
demonstrated that the normal diffusion can be revealed on all
experimentally accessible time scales, if the corrections of the
artifacts are properly taken into account. The agreement be-
tween the measured and calculated diffusion coefficient is
better than 1%.

APPENDIX A
1. Beam Path Calculation
The optical system for the excitation light was designed using
ray transfer matrix analysis [45], which has been proven to be
a powerful tool to trace a Gaussian beam through a complex
optical setup. The beam is represented by a two-component
vector b � �b;φ� where b corresponds to the distance of
the beam from the optical axis and φ to the angle between
the propagation direction of the beam and the optical axis.
Each optical element can be represented by a transfer matrix
that relates a given input vector bin to a distinct output vector
bout. The optical path of a series of optical elements is then
simply calculated by multiplying the respective transfer
matrices. For the setup described in the text, we find for
the transfer matrix of the full system

�
bout
φout

�
�

�
−

f 7f 5
f 6f

−
1
2
f 7f 5
f 6

2 f 6
f 7f 5

0

�
·
�
bin
φin

�
; (A1)

where the microscope objective has been approximated as a
single lens with f 7 � 3 mm. All other focal distances are given
in the text. This simple set of linear equations allows to cal-
culate the radius of the light orbit (Rout � bout) and its orien-
tation with respect to the optical axis (φout) as a function of
the incoming beam radius bin and deflection angle φin. Here
we used bin � �0; 0.76 mrad� starting at the center of the first
AOD and obtain bin � �190 nm; 0�, i.e., a focused laser beam
that rotates on a cylinder having the optical axis as symmetry
axis; see Fig. 9.

Fig. 8. (Color online) Ensemble average of time-averaged MSDs
from seven trajectories taken from different 20 nm sized beads in gly-
cerol at different stages of the correction. (a) Linear plot: raw data
(black squares), data corrected for position averaging (blue circles),
and fully corrected data (red triangles). All lines correspond to linear
fits. The top right inset shows the same data at a scale that has been
expanded by a factor of 100. The top left inset shows the extrapolation
of the fits toward τ � 0 and the respective intercepts with the MSD
axis. For this example, we obtain D and σ as given in the figure.
(b) Same data on double logarithmic axis. The lines are linear fits
to the data with slopes of 1.00 (black squares), 0.98 (blue circles),
and 1.03 (red triangles). For more details, see the text.
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2. Radiation Pressure
The force exerted on a fluorescent particle due to the incident
photons is given by FP � Pex∕c, where Pex denotes the exci-
tation power and c the speed of light. For Pex ≈ 1 μW, which is
typical for our experiments, and the extreme assumption that
all photons would be absorbed, this yields a force of about
10−15 N. This figure has to be compared with the force exerted
on the particle (radius a) due to friction in a medium (viscosity
η), which is given by FStokes � 6πηa. Even for a low-viscosity
medium like water (η � 10−3 Pa · s), this yields for a particle
with a radius of 10 nm a force of FStokes ≈ 10−10 N, exceeding
the force induced by the radiation pressure by several orders
of magnitude.

3. Optical Trapping
The potential of an optical trap is given by

U trap � 4Pexn4
ma3

w2c

�
m2

− 1

m2 � 2

�
; (A2)

where Pex refers to the excitation power, nm to the index of
refraction of the medium, a to the radius of the particle, w to
the beam waist, and m � np∕nm to the ratio of the indices of
refraction of the particle and the medium, respectively
[46, 47]. Using the numerical values from our experiments,
i.e., Pex � 1 μW, nm � 1.33, np � 1.65, a � 10 nm, and w �
270 nm, we obtain a trapping potential of about U trap ≈

10−26 J, which is orders of magnitude smaller than the thermal
energy at room temperature, which amounts to U therm �
kBT ≈ 10−21 J.

4. Cumulative Distribution Function
The empirical CDF (r2, τ) for a certain lag time τ (data not
shown) is determined by counting the number of squared
displacements smaller or equal to r2. For normal diffusion
a single-exponential curve is expected, while in systems with
anomalous diffusion deviations from this function are taken
into account by a double-exponential curve given as

CDF�r2; τ� � 1 −
�
β exp

�
−
r2

r21

�
� �1 − β� exp

�
−
r2

r22

��
: (A3)

Here, the r2i are fit parameters that are related to the diffusion
coefficients, commonly interpreted as a fast and a slow com-
ponent, weighted with a parameter β. For Brownian motion,
this reduces to the single-exponential; i.e., β � 1 [43, 44].

From our data we calculated the CDFs for lag times
τ � �2–50�Δt, and we determined β accordingly. Figure 10 dis-
plays the CDF for τ � 40 ms as a typical example, which
shows a nearly perfect agreement between the data and
the fit. Averaging over all lag times τ � �2–50�Δt and seven
trajectories yields β � 0.96. It should be noted that the
CDF analysis does not include the corrections of the position
averaging and the finite signal-to-noise ratio [correction steps

(3) and (4)]. This analyzing method gives only limited
information about the degree of subdiffusion, but is suited
to distinguish normal from anomalous diffusion.
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Dominique Ernst and Jürgen Köhler*

We provide experimental results on the accuracy of diffusion coefficients obtained by a mean squared

displacement (MSD) analysis of single-particle trajectories. We have recorded very long trajectories

comprising more than 1.5 � 105 data points and decomposed these long trajectories into shorter

segments providing us with ensembles of trajectories of variable lengths. This enabled a statistical

analysis of the resulting MSD curves as a function of the lengths of the segments. We find that the

relative error of the diffusion coefficient can be minimized by taking an optimum number of points into

account for fitting the MSD curves, and that this optimum does not depend on the segment length.

Yet, the magnitude of the relative error for the diffusion coefficient does, and achieving an accuracy in

the order of 10% requires the recording of trajectories with about 1000 data points. Finally, we

compare our results with theoretical predictions and find very good qualitative and quantitative

agreement between experiment and theory.

1 Introduction

Diffusion is often exploited to examine interactions and move-
ments of individual nanoscopic objects in soft matter and/or
biological environments on a molecular length scale.1–10 Early
experimental work was carried out using fluorescence recovery
after photobleaching (FRAP)11 which yields the ensemble average
of the diffusing particles and which is, dictated by the diffraction
of light, restricted in spatial resolution to length scales of about
200–300 nm. Alternatively, researchers employed fluorescence
correlation spectroscopy (FCS),12,13 which provides the average
over a number of individual objects that are registered sequen-
tially and from which it is assumed that they behave uniformly.
Since about two decades single-particle tracking (SPT) became a
valuable tool to map out the movement of an individual particle
with high spatial and temporal resolution.1–4,14–21 The developed
methodology covers techniques where the movement of an
individual particle can be followed by recording its diffraction-
limited image on a sequence of CCD frames,1 sophisticated
approaches that compensate the Brownian motion using

electrokinetic forces,14 techniques that use structured illumina-
tion by actively designing the point-spread function of the
microscope,21,22 as well as methods that rely on a spatial modula-
tion of the light that travels to or comes from the particle.19

Fascinating results have been obtained, for example in biophysics
the movement of molecules, viruses, or motor proteins could be
made visible,4–6 and in the materials science transport processes
through nanoporous structures7,8 or the manifestation of diffusion
anomalies in liquid crystals and mesoporous structures could be
followed.9,23,24

Typically the fluorescence of a particle is monitored as a
function of time and the position of the particle is extracted
from the data with sub-diffraction limited accuracy. This provides
the trajectory r(t) of the particle that is commonly analysed in
terms of the mean squared displacement (MSD). For a 2-dimen-
sional diffusion process the MSD generally scales with a power law
according to MSD(t) = 4D̃ta, where D̃ is the generalized diffusion
coefficient, and a the anomaly parameter. For a = 1 the underlying
process corresponds to normal diffusion (Brownian motion)25 and
D̃ reduces to the diffusion coefficient D known from Einstein.26

Otherwise the process is called subdiffusive (a o 1) or super-
diffusive (a > 1).

For obvious reasons an experimental trajectory can only be
recorded with a distinct temporal resolution, it suffers from
localisation errors due to the movement of the particle during
data acquisition,27 it is affected by unavoidable signal-to-noise
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limitations28 and last but not least it is inherently of finite
length. Hence, it is of crucial importance to understand how
accurate the diffusion coefficient can be extracted from a real
experimental MSD curve.25,29,30 Although the mathematical
framework for the MSD analysis is known for many years, the
implications of the experimental limitations on the accuracy of
the measured parameters have been considered in detail only
recently.29,31 These studies address the achievable precision for
the diffusion coefficient that can be obtained from a given MSD
curve as a function of the experimental parameters mentioned
above. In order to test their theoretical results the authors had
to rely on fictitious tracking experiments based on simulations
rather than on experimental data. The reason is that a sophis-
ticated statistical analysis of the tracking data requires a very
large data set which is difficult to obtain, because the particle
might get lost for tracking due to diffusion out of the focal
volume or due to photobleaching. Often it is already a great
challenge to register trajectories consisting of some hundred
data points. Naively speaking, a trajectory of arbitrary length
could be acquired by repeating a tracking experiment under
exactly the same experimental conditions on several nano-
particles. However, since even nominally identical nanoparticles
are slightly different in shape and size, the statistics of the
(unknown) size distribution of the nanoparticles will be super-
imposed on the statistics of the diffusion coefficient. Moreover,
the precision with which the diffusion coefficient can be deter-
mined from a MSD curve depends on the accuracy of the MSD
data points and on the number of fitting points that are taken
into account.29,30 Therefore, the numerous theoretical and
numerical developments that allow assessment of the experi-
mental shortcomings still await experimental verification.

In this work we use single-particle orbit tracking, which allows
us to obtain single-particle trajectories that consist of more than
1.5 � 105 data points with a temporal resolution of 4 ms and a
spatial accuracy of better than 10 nm.32 Such a long trajectory can
be divided into a sequence of segments, where each segment can
be considered as an individual trajectory that, by definition, has
been recorded on exactly the same particle under identical experi-
mental conditions. This enables us to evaluate the statistics of the
diffusion coefficient extracted from the segments as a function of
the length of the segments and to compare the results with the
theoretical predictions made in the literature.25,29

2 Experimental section
2.1 Sample preparation

For the single-particle tracking experiments we use fluorescent
beads with a diameter of 20 nm that are loaded with nile red
(Molecular Probes, 20 mg ml�1 dissolved in water). This
solution is further diluted in water to a concentration of 0.1 nM
and subsequently mixed with pure glycerol (Sigma) resulting in a
concentration of 2 pM for the tracers. From that solution a drop of
about 25 ml is sandwiched between two microscope coverslips that
are cleaned with acetone. In order to prevent evaporation of the
solvent (and the resulting flow field in the sample) the edges of the
coverslips are sealed with grease (High-Vacuum Grease, Wacker).

This construct is mounted on top of a 3-axis piezo stage (Tritor
102, piezosystem Jena) providing a scan range of 100 mm for
each axis. All experiments are performed at room temperature,
i.e. (21 � 0.5) 1C.

2.2 Experimental setup

The home-built setup for single-particle orbit tracking has been
described in great detail in a separate paper.32 Briefly, the
output from an Ar/Kr-ion laser (Innova 70C Spectrum, Coherent)
operated at 514 nm is guided through a deflection unit consisting
of two mutually perpendicular arranged acousto optical deflectors
(AOD, DTSX-400-532, Pegasus) that generate a rotating light orbit.
This orbit is projected via a dichroic beam splitter (z532RDC, AHF)
towards an infinity-corrected water-immersion objective
(UPLSAPO, 60�, NA = 1.2, Olympus). This results in a focussed
laser beam with a waist of w = 270 nm that rotates on an orbit with
a radius of R = 190 nm in the focal plane of the objective. The
frequency of the rotation can be adjusted by the AODs and is set
to 1 kHz.

The emission of the fluorescent nanoparticles is collected
with the same objective, passes the dichroic and is focussed
either onto the chip of a CCD (sensicam qe, PCO) or an
avalanche photo diode (SPCM-AQR-14, Perkin Elmer). Residual
laser light that passes the dichroic is suppressed by a dielectric
optical filter (HQ545LP, OD = 6 at 514 nm, AHF). To spot the
location of the tracers we operate the setup in widefield mode.
Therefore the deflection unit is switched off and an additional
lens in the excitation path defocusses the laser light to an area
of 80 � 80 mm2. With the aid of the piezo stage an appropriate
particle is moved close to the position where the light orbit will
appear (centre of the field of view). Subsequently, the optics are
switched to confocal mode, the light orbit is generated and the
algorithm for automated tracking is started.

We record the emission intensity of the fluorescent particle
which is modulated by the frequency of the rotating laser focus.
By demodulating this emission signal we are able to calculate
the x-, y-position of the particle with respect to the centre of the
orbit. The position provides a feedback signal for the piezo and
the particle is moved (together with the sample) back to the
centre of the orbit. These steps (collect emission – calculate
position – move piezo) are repeated continuously, which allows
us to reconstruct the movement of a fluorescent tracer particle
for more than 10 minutes with a spatial resolution of better
than 10 nm. The temporal resolution of the experiments is
Dt = 4 ms which results in trajectories of N = 1.5 � 105 x-,
y-position pairs.

3 Results and discussion

An example for a typical trajectory measured with our setup is
displayed in Fig. 1. It represents 1.52 � 105 data points and
corresponds to an elapsed time of 608 s which is indicated by
the colour code, where blue corresponds to the start of the
trajectory and red to its end. In order to mimic to have only
shorter trajectories with less data points we cut the long
trajectory into segments that were treated as independent
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trajectories of shorter length. In the following we denote the
length of the full trajectory as NT (here NT = 1.52 � 105) and the
length of a segment as Nseg. For our study we choose Nseg = 10,
20, 40, 60, 80, 100, 200, 400, 600, 800, and 1000, which yields
ensembles of NT/Nseg short trajectories of equal length. The
idea is now to determine the diffusion coefficient D from the
slope of the time-averaged MSDs of each segment and to
examine the statistical variation of D within each ensemble of
trajectories. Yet, according to ref. 29 there exists an optimum
number of data points of the MSD that should be considered to
obtain the best result for the diffusion coefficient. This can be
understood as follows. For increasing lag times the accuracy of
the data points in the MSD decreases due to the progressively
decreasing averaging of the available data. For example, the
first data point of the MSD represents an average over (Nseg � 1)
positions of the particle whereas the last data point has not
been averaged at all. Hence, fitting the slope of the MSD curve
by taking too many data points into account leads to a
deterioration rather than an improvement of the result. On
the other hand, the very first points of the MSD are stronger
subjected to localisation errors, either due to noise (static error)
or due to blurring of the position of the particle during data
acquisition (dynamic error). Both effects average out for MSD
points at longer lag times.

As a consequence of this, we first have to find out the
optimum number of data points that should be considered
for fitting the slope of the MSD. In the following, the protocol
for doing so will be explained on the example of Nseg = 1000
which yields an ensemble of 152 trajectories of equal length
and the same number of MSD curves. For this ensemble we
fitted the slope, D*, of each MSD curve by an unweighted linear
fit to the first n data points. More precisely, we have skipped the
very first data point of the MSDs, because it turned out that it is
strongly affected by residual oscillations of the piezo. These

oscillations affect the position determination and reduce the
accuracy of the first point of the MSD curve, whereas the
influence of these oscillations on the accuracy of the succeeding
MSD points level off (for details see Experimental section and
ref. 32). Therefore the fit was applied to the data points from 2 to
(n + 1) and the slope D* of the MSD curves was determined as a
function of n. In order to be compatible with the existing
literature we prefer the slope D* of the MSD curves rather than
the diffusion coefficient D = D*/4.29 An example for the distribu-
tion of D* is shown in the top right inset of Fig. 2 for n = 4, i.e.
taking only the data points 2–5 for fitting the MSDs into account
as indicated schematically in the top left inset of Fig. 2. Sub-
sequently, we determined from each histogram the first and the

second moment providing the empirical mean D� and the

empirical standard deviation sD* for this parameter, and plotted

the ratio sD�=D� as a function of the number of fitting points n.
The result of this procedure is shown in Fig. 2 for the examples
of Nseg = 100 and Nseg = 1000. For both samples, the relative error

sD�=D� first decreases for growing n and then rapidly increases if
more fitting points are taken into account. Here we find an
optimum for the accuracy of the slope of the MSDs for n = 4.
While the relative accuracy that can be achieved for D* (about 8%
for Nseg = 1000, and about 25% for Nseg = 100) clearly depends on
the lengths of the segments, it is interesting to note that the
number of fitting points n that yield the optimum result
does not.

In order to facilitate a quantitative comparison of the
data shown in Fig. 2 with the theoretical predictions in the
literature29 we have to resort to the reduced localisation error
x = s2/DDt, where s is the localisation error, D the diffusion

Fig. 1 Example of a trajectory of a 20 nm sized bead in pure glycerol. The colour
code refers to the elapsed time of 608 s (N = 1.52 � 105 data points; blue
corresponds to the start and red corresponds to the end).

Fig. 2 Relative error of the slope D* obtained from unweighted linear fits to the
MSD curve as a function of the number of fitting points n for the segment length
Nseg = 100 (open symbols) and Nseg = 1000 (full symbols). The inset top left
displays schematically a MSD curve as a function of the lag time t and the data
points that are considered for the linear fit (red) to obtain D*. For all fits the first
data point of the MSD (brackets) is ignored (for details see text). The inset top
right shows as an example for the distribution of the slopes within the ensemble
of NT/Nseg trajectories for n = 4 and Nseg = 100, from which D� (first moment;
empirical mean value) and sD* (second moment; empirical standard deviation)
can be calculated.
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coefficient, and Dt the temporal resolution. A good estimate for
the diffusion coefficient is obtained from a linear fit to the data
points 2–5 of the time-averaged MSD from the total trajectory of
1.52 � 105 data points, which yields DT = 17.45 � 10�3 mm2 s�1.
Using s = 7.5 nm32 and Dt = 4 ms we obtain x E 0.8 and find a
good agreement between experiment and theory (see Fig. 6 for
x = 1 in ref. 29).

Next we investigated the influence of the length of the
segments on the outcome of the experimentally determined
diffusion coefficient. Therefore we analysed the MSDs from
15 200 segments with a length of Nseg = 10, from 7600 segments
with a length of Nseg = 20 and so on until 152 segments with a
length of Nseg = 1000, by applying a linear fit to the data points
2–5 of the respective MSD curves. The resulting distributions
for the diffusion coefficients D = D*/4 are shown in Fig. 3 as a
function of Nseg. For better comparison the histograms were
scaled with the number of sub-trajectories in each ensemble,
NT/Nseg. For the short segments the distributions were asymmetric
and extremely broad with a long tail toward larger values of the
diffusion coefficient testifying that diffusion coefficients obtained
from trajectories consisting only of a few data points are not very
meaningful. As Nseg increases the distributions narrow down and
become more symmetric. The shape and profile of the experimental
distributions presented here are consistent with theory.30

The distributions presented in Fig. 3 can be interpreted as
the empirical probability density functions (PDFs) to measure a
distinct range of values for the diffusion coefficient for a given
length Nseg of the trajectory. This tells us that for trajectories
with a length in the order of 100 data points (black bold line in
Fig. 3), which would be very reasonable for experiments in
biological environments, the actual outcome of an experiment
for the diffusion coefficient can vary by more than a factor of 2.
For each of these empirical probability densities, the best

estimate for the actual diffusion coefficient corresponds to

the mean value D (first moment) which is displayed in Fig. 4
(open squares) together with the corresponding empirical
standard deviations (second moment, black error bars) as a
function of Nseg. Interestingly the mean values show only little
variation as a function of Nseg which is shown in the inset of
Fig. 4 on an expanded scale.

In addition to the distribution of the diffusion coefficients as
a function of the length of segments Qian et al.25 derived an
analytical expression for the standard deviation of these

distributions which is given by s ¼ �D½2n=3ðNseg � nÞ1=2� and
which allows for comparison with the empirical standard
deviation obtained experimentally. The calculated standard
deviation is displayed in Fig. 4 by the red error bars. For better
visualization both the experimental (black) and calculated (red)
error bars are connected by the dashed and dotted lines,
respectively. The systematically larger widths of the experimental
error bars can be explained to result from errors in the position
determination that were not considered in the theoretical calcu-
lation by Qian et al. Besides this minor discrepancy both
characteristics are in good agreement. For Nseg > 200 the mean

values of the distributions, D, show only very little variation and
are close to the value DT obtained from the time-averaged MSD
of the full trajectory (inset in Fig. 4, grey line).

However, it should be kept in mind that D can only be
determined if the distribution of D for the respective length of
the trajectory is known. A single tracking experiment, for example
with Nseg = 100, provides the diffusion coefficient only with an
accuracy of about �25%. Achieving an accuracy of better than
�10% requires trajectories of Nseg = 1000 as testified in Fig. 2 and 3.

Fig. 3 Distributions of diffusion coefficients as a function of the segment length
Nseg. For comparison, the distributions were scaled with the number of
trajectories NT/Nseg within the corresponding ensemble. The diffusion coefficients
were obtained from linear fits to the MSD curves using n = 4 fitting points. The
arrow on top of the distributions indicates the diffusion coefficient DT

determined from the time-averaged MSD of the full trajectory with a length of
NT = 1.52 � 105 data points. The distributions for Nseg = 100, 1000 are
highlighted by the bold lines.

Fig. 4 Means of the diffusion coefficient, D (open squares), and empirical
standard deviations, sD (black error bars), taken from the distributions shown in
Fig. 3 as a function of the segment length Nseg. Theoretical values for the
standard deviations (red error bars) have been calculated according to Qian

et al.25 using s ¼ �D½2n=3ðNseg � nÞ�1=2 and n = 4. As a guide for the eye the error

bars are connected by the dashed (experimental data) and dotted (calculated
data) lines. The inset displays the means of the diffusion coefficients on an
enlarged scale. The grey line corresponds to the diffusion coefficient that is
determined from the full time-averaged MSD curve of the full trajectory of
1.52 � 105 data points.
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4 Conclusions

We analysed how the accuracy of the diffusion coefficient that
is determined by fitting MSD curves depends on experimental
parameters such as the length of the underlying trajectory and
the number of fitting points of the MSD. This became possible
by recording extremely long trajectories that could be cut into a
large number of segments of variable lengths, thereby providing
sufficiently large ensembles of (sub)trajectories that served for a
statistical analysis. Our results were compared with theoretical
predictions and we found good quantitative and qualitative
agreement between experiment and theory.

The analysis presented was based on data from a single very
long trajectory. In total we measured 7 very long trajectories
from different tracers and found similar results. These are
summarized in the ESI.†
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17 M. Speidel, A. Jonáš and E.-L. Florin, Opt. Lett., 2003, 28, 69.
18 A. J. Berglund and H. Mabuchi, Appl. Phys. B: Lasers Opt., 2004,

78, 653.
19 H. Cang, C. S. Xu, D. Montiel and H. Yang, Opt. Lett., 2007, 32,

2729–2731.
20 J. G. Ritter, R. Veith, J.-P. Siebrasse and U. Kubitscheck, Opt. Express,

2008, 16, 7142.
21 S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu,

R. J. Twieg, R. Piestun and W. E. Moerner, Proc. Natl. Acad. Sci. U. S. A.,
2009, 106, 2995.

22 M. A. Thompson, M. D. Lew, M. Badieirostami and W. E. Moerner,
Nano Lett., 2010, 10, 211.
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Measuring a diffusion coefficient by single-particle tracking: Statisti-
cal analysis of experimental mean squared displacement curves

Dominique Ernst, and Jürgen Köhler∗

1 Analysis of all trajectories

In the following, the results for all seven measured trajectories
are summarized. Trajectory 1 corresponds to the one used to
illustrate the analysis in the main paper.

1.1 Relative error of the slope of the MSD curves

Fig. 1 shows the relative errors of the slopes of the MSD
curves as a function of the number of fitting points for the
segment lengthsNseg = 100 andNseg = 1000, respectively.
The data sets from the different trajectories feature qualita-
tively the same behaviour, and the best relative accuracy for
the slope is obtained for 3 or 4 fitting points. The slight dis-
crepancies between the data sets might reflect variations in the
localisation errors. For the following evaluation of the data the
number of fitting points that was taken into account was set to
n = 4.

1.2 Distribution of diffusion coefficients

The distributions of the determined diffusion coefficients from
all seven data sets have been determined as a function of the
lengths of the segmentsNseg, and are shown in fig. 2. The
results for trajectory 1 are discussed in length in the body of
the paper and are not reproduced here. The setup of fig. 2 is
similar to that of fig. 3 (left) and fig. 4 (right) in the main text.
For all trajectories the distributions and accuracies are qualita-
tively similar. Discrepancies with respect to the absolute value
of the diffusion coefficient are ascribed to size variations of the
tracked particles.
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Fig. 1 (Color online) Relative error of the slopesD∗, obtained from
unweighted linear fits to the MSD curve as a function of the number
of fitting pointsn for the segment lengthNseg = 100 and
Nseg = 1000 for all measured trajectories. More details are given in
the text and the main paper.
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Trajectory 6
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Fig. 2 (Color online) Summary of the distributions of the diffusion coefficients for all measured trajectories. Left: Distributions of the
diffusion coefficients as a function of the segment lengthsNseg. All the diffusion coefficients were obtained from linear fits to the MSD curve
using the optimal number of fitting points ofn = 4. The arrow on top of the distributions indicates the diffusion coefficient of the
corresponding full trajectory. Right: Mean values of the distributions of the diffusion coefficientsD (open squares) and empirical standard
deviations (black error bars) as a function of the segment lengthNseg. Theoretical values for the standard deviations (red error bars) have been

calculated according to1 usingσ = ±D
[
2n/3(Nseg −n)

]1/2 andn = 4. As a guide for the eye the error bars are connected by the dashed
(experimental data) and dotted (calculated data) lines. The grey line corresponds to the diffusion coefficient that is determined from a linear fit
to the MSD curve of the corresponding full trajectory.
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Diffusion in crowded fluids, e.g. in the cytoplasm of living cells, has

frequently been reported to show anomalous characteristics (so-

called ‘subdiffusion’). Several random walk models have been

proposed to explain these observations, yet so far an experimentally

supported decision in favor of one of these models has been lacking.

Here, we show that experimentally obtained trajectories in a proto-

typical crowded fluid show an asphericity that is most consistent

with the predictions of fractional Brownian motion, i.e. an anti-

correlated, anti-persistent generalization of normal Brownian

motion that is related to the fluid’s viscoelasticity.

Macromolecular crowding, i.e. a total concentration of a variety of

macromolecules up to 400 mg ml�1, is a common phenomenon in

intracellular fluids.1 Crowding can have a considerable impact on

(bio)chemical reactions,2 hence challenging insights derived from

biochemical assays in dilute aqueous solutions. The phosphorylation

pattern of the mitogen-activated protein kinase (MAPK), for

example, has been shown to vary greatly with the degree of cyto-

plasmic crowding:3 In dilute solutions, MAPK was twice phosphor-

ylated by its kinase in a distributive manner, whereas adding artificial

crowding agents resulted in a processive phosphorylation and hence

a more efficient activation of MAPK. Recently, a theoretical expla-

nation of these results has been given in terms of crowding-induced

anomalous diffusion.4 Indeed, crowding is known to strongly alter

the diffusional mobility of macromolecules.5 Apart from a mere

reduction of the diffusion coefficient, i.e. an increased viscosity of the

fluid, anomalous diffusion has also been frequently observed in

crowded fluids in vivo6–10 and in vitro.11–15 Here, the mean square

displacement (MSD) of a diffusing particle was shown to scale over

several decades as hr(t)2i � ta with a < 1 (‘subdiffusion’).

In spite of the frequent observation of subdiffusion, even in fairly

unstructured fluids in vitro, an experimentally supported and unam-

biguous explanation of the effect in terms of a random walk model

has remained elusive. So far, three types of random walks have been

considered as an explanation of crowding-induced subdiffusion: (1)

Obstructed diffusion (OD), i.e. the motion of a tracer particle in

a maze of immobile obstacles,16 (2) fractional Brownian motion

(FBM) due to the viscoelasticity of the crowded fluid,15 and (3)

a continuous time random walk (CTRW) in which the diffusing

tracer takes power-law distributed rests between periods of free

diffusion. The CTRWmodel is special since it shows weak ergodicity

breaking17,18 whereas OD and FBM are ergodic random processes

with stationary increments. Recent experimental data have indicated

that CTRW may be less well suited to explain crowding-induced

subdiffusion15,19 at least on short and intermediate time scales.20

The main problem in relating experimental data to the above

models is a lack of detailed information on the diffusion process:

several techniques, e.g. fluorescence correlation spectroscopy, only

report the MSD and leave all higher moments of the diffusion

propagator undetermined. Single-particle tracking (SPT) techniques

allow one to record individual trajectories and hence can overcome

this limitation.21,22 However, precise position determination in SPT

requires the collection of many photons of the moving tracer which

sets limitations to the temporal resolution and the overall length of

the recorded trajectory (due to bleaching of the dye). Yet, an

unambiguous deciphering of the random walk model from fairly

short SPT trajectories, often accompanied by an unfavorable spatial

and temporal resolution, is challenging.

Here, we have utilized a fast and precise single-particle tracking

technique to record particle trajectories with a length of 105 positions

and a spatio-temporal resolution of 10nm and 4ms. From trajectories

in prototypical crowded and purely viscous fluids, we have deter-

mined the time- and ensemble-averagedMSDof the diffusing particle

as well as the random walk’s asphericity. As a result, we have found

that a transient, yet long-lasting subdiffusion emerged in a crowded

but not in a purely viscous fluid. The anomaly was associated with an

ergodic mode of motion as evidenced by a recently introduced

ergodicty breaking parameter. Comparing the random walks’

asphericity with those predicted by computer simulations of normal

Brownian motion, FBM, CTRW, and OD, we have found that our

experimental data in crowded fluids are best described by the FBM

model. Since FBM is closely related to viscoelasticity, we put forward

the hypothesis that macromolecular crowding equips fluids with

viscoelastic properties that enforce a fractional Brownian motion of

diffusing tracer particles.

Single-particle tracking (SPT) is frequently limited by a poor

temporal and/or spatial resolution as well as fairly short trajectories.

These limitations can be overcome using a tracking technique that

has been developed within the last few years:23–26 A Gaussian focus

circles at high speed around a fluorescent particle with the particle
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located at the position of the steepest gradient of the excitation

intensity. Taking a diffusion step to escape this position is compen-

sated by moving the sample stage via a negative feedback loop.

Hence, the two-dimensional center-of-mass motion can be tracked

with a high spatial and temporal resolution.

Using this approach (see the ESI† for the schematic setup and

technical details), we were able to track fluorescent beads (diameter

50nm) for up to ten minutes with a temporal resolution of Dt¼ 4 ms

and a spatial accuracy of Dr ¼ 10 nm. We have tracked particles in

two prototypical fluids: (i) in a purely viscous solution obtained by

mixing 60% sucrose (per weight) into water, and (ii) in a crowded

fluid, where 30% dextran (500 kDa) was dissolved in water. For the

latter, anomalous diffusion has already been reported previously.6,12

From a slightly higher number of acquired trajectories, we have

retained for each fluid only those 21 SPT trajectories for further

analysis that contained 4.5� 104–1.5� 105 positions without blanks,

i.e. we discarded those few trajectories in which a weak emission

signal lead to a transient loss of the tracked bead. The chosen

trajectories did not show any signs of drift. Representative trajectories

for both fluids are shown in the ESI.†

As a first step in the analysis, we calculated for each of the selected

time traces ri h r(t ¼ iDt) the time-averaged MSD,

D
rðtÞ2

E
T
¼ 1

N � k

XN�k

i¼1

ðri � riþkÞ2: (1)

Representative time-averaged MSDs for sucrose and dextran

solutions are shown in Fig. 1a. To highlight the emergence of

a diffusion anomaly, we have divided out the leading order of the

MSD, i.e. we have plotted D(t) ¼ hr(t)2iT/t as a function of t. While

the purely viscous sucrose solution yielded a horizontal line, D(t) ¼
const., a transient power-law decay emerged for the crowded fluid.

From the transient scaling D(t) � 1/t0.2 (obtained within the grey

shaded region), we inferred hr(t)2iT � t0.8 for small and intermediate

time scales. This observation is in quantitative agreement with

previous reports15 on similar probes. Beyond t z 1 s a crossover

towards normal diffusion emerges, i.e. D(t) tends towards a hori-

zontal line. Indeed, this behavior is expected for all of the above

mentioned randomwalkmodels for subdiffusion since adapting them

to a physical sample requires specification of a minimum and

maximum length/time scale.

To determine the anomaly for each trajectory, we restricted the

fitting process to the temporal range 50ms# t# 500ms which is not

affected by some remaining inertia traces of the setup (t < 50 ms; see

discussion in the ESI†) but also does not suffer from the emerging

crossover to normal diffusion at large time scales. The resulting

anomaly values, a, for all trajectories are summarized in Fig. 1b. A

clear separation of the data for the purely viscous sucrose solution

(average: hai ¼ 0.98) and the results for a crowded dextran solution

(average: hai ¼ 0.82) can be seen.

From the observation hr(t)2iT � ta we can already infer that the

CTRW model with its distinct weak ergodicity breaking cannot

describe the experimental data since it predicts17,18 hr(t)2iT� t. Indeed,

even for a truncated CTRWmodel with only a transient scaling p(s)
� s �(1 + a) of the distribution of waiting times one observes hr(t)2iT� t

(cf. ESI†). Hence, even a more realistic adaptation of the CTRW

model appears incompatible with our experimental data.

Next, we calculated for all trajectories an ergodicity parameter17

that vanishes if ergodicity is preserved:

EðtÞ ¼

D
rðtÞ2

E2

T

� �
E

�
�D

rðtÞ2
E
T

�2

E�D
rðtÞ2

E
T

�2

E

(2)

To this end, we have cut each trajectory into segments ofN¼ 3000

time steps and used these segments for the ensemble averaging h.iE.
As a result, we observed that for all trajectories hEi # 0.03 (Fig. 1c).

Here, the average of E(t) was taken in the same temporal window in

which awas also determined. This result strongly supports the notion

that all trajectories were ergodic. In particular, our data separates well

from the predictions of a non-truncated CTRW model that yields

a lower bound E(a # 0.9) $ 0.1.17 However, for the truncated

CTRW model (cf. ESI†) we also obtained E z 0.03 on the experi-

mentally relevant time scale.We attribute this effect to the truncation

of p(s) which narrows the distribution of apparent diffusion constants
in hr(t)2iT.17,18 Hence, based only on E, a clear-cut decision that our

experimental data is inconsistent with a truncated CTRW model is

not possible.

We next inspected the trajectories’ shape to gain deeper insights

into the underlying type of random walk. The asphericity provides

a simple yet powerful parameter to quantify the shape of fractal

objects like random walks.27 Diagonalizing the random walk’s

gyration tensor Tij (cf. ESI†) yields the principal axes of gyration and

Fig. 1 (a) Representative time-averagedMSD, shown asD(t)¼ hr(t)2iT/t
to highlight the asymptotic scaling. Data for sucrose solutions (blue

circles) follows the anticipated scaling for normal diffusion (D(t) ¼
const.). In contrast, data for dextran solutions (red squares) shows

a transient subdiffusion (dashed line,D(t)� 1/t0.2). For t > 1 s a crossover

to the asymptotic scaling (a¼ 1,D(t)¼ const.) is visible. The grey shaded

region indicates the temporal window in which the curves were fitted to

extract the anomaly a. (b) Anomaly values a for each trajectory as

obtained from fitting the time-averaged MSD in the indicated time

window. A clear separation between a sucrose solution (blue circles,

hai ¼ 0.98) and a crowded dextran solution (red squares, hai ¼ 0.82) is

evident. (c) The ergodicity breaking parameter hEi [eqn (2)] of all

trajectories was very small, indicating ergodicity.

This journal is ª The Royal Society of Chemistry 2012 Soft Matter, 2012, 8, 4886–4889 | 4887
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the corresponding eigenvalues, i.e. the squared principal radii of

gyration, R2
i. Restricting ourselves to two dimensions (the experi-

mental trajectories are two-dimensional objects), the asphericity is

defined as

A ¼ h(R2
1 � R2

2)
2i/h(R2

1 + R2
2)

2i. (3)

We note that A involves an averaging over the ensemble of walks

(indicated by h.i). The limiting cases A ¼ 0 and A ¼ 1 resemble

a perfect sphere and a simple rod, respectively. For Brownianmotion

in two dimensions an exact value is available:27 A¼ 4/7. Hence, even

an individual trajectory of a two-dimensional Brownian random

walk differs drastically from a circular shape at each instant of time.

The time-averaged orientation of the longest principal axis of gyra-

tion, however, is isotropic. Moreover, the isotropy of diffusion is also

recovered in an ensemble of particles due to the uncorrelated random

orientations of the gyration axes.

We have determined via simulations the values ofA for FBM,OD,

and a truncated CTRW at varying anomaly values a (see ESI† for

details). Our simulation results revealed that for 0.5# a# 1, which is

the experimentally relevant regime, the asphericity changes almost

linearly with a, i.e. A ¼ m1a + b1. For OD we found m1 ¼ 0.120 �
0.006, b1 ¼ 0.458 � 0.004 whereas for FBM we obtained m1 ¼
0.638� 0.009,b1¼�0.057� 0.006. For the truncated CTRWmodel

we found A z 4/7 irrespective of a (cf. ESI†). This result can be

rationalized by bearing in mind that a CTRW trajectory at any

instance of time looks similar to the pathof normalBrownianmotion.

To compare our experimental trajectories to these predictions, we

assigned the previously determined anomaly a to each trajectory (cf.

Fig. 1b). Then, we calculated the accompanying asphericity: Since the

anomaly reflects a scaling for short and intermediate times, a consis-

tent estimate of the randomwalk’s asphericitymust relate to the same

time scale. Therefore, each trajectory was cut into sequences of N ¼
3000 time steps of length Dt, and the average over these sub-trajec-

tories yielded the (mean) asphericity [eqn (3)] of the entire trajectory

on the length and time scales during which anomalous diffusion was

observed. As can be seen from Fig. 2a, the cloud of data points for

sucrose solutions overlaps well with the anticipated result for normal

Brownian motion, i.e. the mean of all 21 data points (hai ¼ 0.98 and

hAi ¼ 0.58) agrees quantitatively with the expectation a¼ 1 andA¼
4/7z 0.57.Hence, sucrose solutions indeed feature normal Brownian

trajectories also from the geometric perspective. In dextran solutions,

however, we obtained hai ¼ 0.82 and hAi ¼ 0.46 which is most

consistent with the simulation results for the FBM model that

predicts locally a more spherical shape of the trajectory due to the

anti-persistence of the random walk.

Given that FBM is closely related to the viscoelasticity of non-

Newtonian and crowded fluids,13,28 the emergence of subdiffusion

may be traced back to transient restoring forces on short length and

time scales. It is hence meaningful to translate the SPT trajectories

into the fluid’s complex shear modulus,28 G(u) ¼ G0(u) + iG0 0(u).
Here, the real (imaginary) part ofG(u) represents the elastic (viscous)

modulus of the fluid. Employing a semi-analytical approach, we have

fitted the time-averaged MSD of each trajectory by an empirical

expression w(t)¼ a0t
a + a1t to capture the transient anomaly and the

asymptotic normal diffusion. The resulting fit parameters were then

used to determine the complex shear modulus as described earlier.13

From the ensemble of complex shear moduli for each fluid, we have

determined the minimum and maximum values of G0 and G0 0. As

expected, sucrose showed a vanishing elastic contributionwhereas the

crowded dextran solution showed a significant viscoelasticity for large

frequencies (Fig. 2b). Since high frequencies are related to small times,

this viscoelastic behavior is intimately linked to the transient sub-

diffusion observed for small and intermediate times. A similar

viscoelastic behavior (related to subdiffusion) has been observed for

the cytoplasm and nucleoplasm of living cells.13,29

In conclusion, we have shown with an advanced SPT approach

that a purely viscous sucrose solution features normal Brownian

motion of tracer particles with an asphericity of the randomwalk that

agrees very well with analytical predictions. In contrast, diffusion in

a crowded dextran solution was anomalous (‘subdiffusion’). Trajec-

tories showed no signs of ergodicity breaking and their asphericity

was in quantitative agreement with predictions of the FBMmodel. In

contrast, obstructed diffusion (i.e., a standard random site percola-

tion model) and CTRW were incompatible with the experimental

data. This result is corroborated by the associated complex shear

modulus: A strong viscoelastic behavior of the crowded dextran

solution was seen at high frequencies as expected due to the relation

of FBM with viscoelastic media.

It is tempting to speculate about the reasons and consequences of

our finding in the context of living matter. Since the degree of

Fig. 2 (a) Asphericity A as a function of the anomaly a (data for sucrose

and dextran shown as blue circles and red squares, respectively). Mean

values (� standard deviation) are indicated by cross hairs. Dashed lines

indicate simulation results for OD and FBM. Data for sucrose solutions

are in very good agreement with the asymptotic value A ¼ 4/7 for a ¼ 1

(dash-dotted mark), whereas data for dextran compare favorably to the

predictions of FBM. (b) Elastic (red) and viscous (grey) moduli, G0 and
G0 0, as obtained from the ensemble of trajectories in a crowded dextran

solution. Shown are the minimum and maximum values for G0 and G0 0 at
each frequency u, i.e. all trajectories lie within the indicated bands. For

low frequencies the fluid is almost completely viscous whereas for u >

100 s�1, a clear viscoelastic behavior emerges.
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cytoplasmic crowding appears to be conserved,29 cells might have

adapted to highly crowded conditions and aim at maintaining this

state (cf. also discussion in ref. 2 and 29). Indeed, a potential benefit of

FBM-like subdiffusion in cells is the increased return probability to

a position in three-dimensional space. In particular, FBMwith a< 2/

3 yields a bulk-filling random walk that can massively increase the

capture probability to a target as compared to normal diffusion.30

Moreover, an enhanced rebinding due to FBM most likely is the

explanation for the recently observed phosphorylation enhancement

ofMAPKunder crowded conditions.3,4As an enhanced recurrence is

a generic feature of FBM-like subdiffusion, we expect that the

behavior of a multitude of biochemical pathways in cells will have to

be revisited and interpreted in light of our findings.
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Dominique Ernst 1, Marcel Hellmann 2, Jürgen Köhler 1, and Matthias Weiss 2
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I. EXPERIMENTAL APPROACH

Fluids for SPT experiments were obtained by dissolv-
ing dextran (500 kDa, Sigma) and sucrose (342 Da, Roth)
in millipore water at concentrations of about 430 mg/ml
(30% w/w) and 1500 mg/ml (60% w/w), respectively.
Rhodamine-tagged tracer beads (50 nm, Polysciences)
were added from a predissolved solution, resulting in a
typical concentration of about 2 pM. Hence, 3-5 beads
were observed in the focal plane of the microscope’s wide-
field image (80 × 80 µm2).

About 35 µl of each sample was placed between
acetone-cleaned coverslips and sealed on the edges with
highly viscous grease to prevent evaporation or adhesion
forces that would induce a flow field.

Tracking experiments were performed with a home-
built single-particle tracking setup (Fig. 1) using a novel
tracking technique [1–5]. Here we only describe the basic
concept, technical details will be presented elsewhere.

The output of an Ar/Kr-Ion laser (Innova 70C Spec-
trum, Coherent) at a wavelength of 514nm with a cir-
cular polarisation (due to a λ/4-waveplate) was used as
an excitation light source. The laser beam was directed
through a series of two perpendicularly arranged acousto
optical deflectors (AOD, DTSX-400-532, Pegasus), re-
sponsible for the generation of an orbiting laser beam
with rotation frequency f . The rotating laser beam was
then passed through a telecentric lens system and di-
rected into a home-built confocal microscope. The laser
light was reflected by a dichroic beamsplitter (z532RDC,
AHF) towards an infinity corrected water-immersion ob-
jective (UPLSAPO, 60x, NA=1.2, Olympus). The sam-
ple with the diffusing tracer particles was mounted on top
of a three-dimensional piezo stage. This setup allowed us
to create an orbit radius R in the range of 0 to 5µm
in the focal plane of the objective. Suitable dye-labeled
particles in the vicinity of the rotating focal spot were
excited. The emitted light was collected by the same
objective, passed the dicroic beamsplitter and a further
dielectric filter (HQ525LP, OD=6 @ 514nm, AHF) to
suppress remaining laser light. Finally it was focussed
either onto the chip of a CCD (sensicam qe, PCO) or
an avalanche photodiode (APD, SPCM-AQR-14, Perkin
Elmer) with a sensitive area of 180 µm in diameter.

The setup was capable of working in a widefield and
a confocal operation mode. For the widefield mode an
optional lens in front of the microscope was flipped into
the optical path to defocus the excitation to an area of
about 80 × 80µm2 in the plane of the sample. In this
mode the deflection unit is set to a neutral state (no de-
flection). The diffusing particles are located within the
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FIG. 1: (a) Sketch of the experimental setup with lenses for
beam profile optimization (Lp), a widefield lense (LWF), a di-
electric filter (F), and an acousto optical deflector (AOD). Sig-
nals were collected either with a CCD camera or an avalanche
photodiode (APD). The calculation unit provided the drive
signals for the AODs, gathered the emission intensity, cal-
culated the positions x and y, and fed the negated position
to a piezo stage. (b) Representative trajectories in a purely
viscous sucrose solution (left) and a crowded dextran fluid
(right); color-coding blue to red highlights the temporal di-
rection of the trajectory. The gyration ellipsoids which reflect
the random walks’ asphericity are superimposed in grey. Due
to a higher mobility in the sucrose solution, the ellipsoids dif-
fer in size.

CCD image and are moved by the piezo stage to a proper
position near the centre of the laser orbit. The confocal
mode is subsequently used to perform the measurements.
By flipping the optional lens back, the emission is now de-
tected with the APD and the deflection unit is switched
on. The emission intensity of the moving particle is mod-
ulated with the known frequency of the laser orbit.

Using a tracking software based on a lock-in technique
[1, 3] we were able to reconstruct the two-dimensional
motion of particles from the frequency-modulated fluo-
rescence signal: From the detected photons the position
with respect to the orbit center was calculated, and the
piezo stage was fed with a signal corresponding to the
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negated position. The whole trajectory of the tracer can
be reconstructed by monitoring the feedback signal of the
piezo.

Experiments were done with an orbit frequency of f =
1 kHz. Every four periods of rotation the position was
calculated resulting in a time resolution of ∆t = 4 ms.
The radius for best tracking perfomance depends on the
beam waist w of the focal spot and was found to be R =
w/

√
2 [6]. A typical width of w = 270 nm lead to a radius

of R = 190 nm.

II. EVALUATION WINDOW OF
EXPERIMENTAL DATA

We have chosen to evaluate the scaling properties of
the experimental data in the temporal range 50-500ms,
e.g. when inspecting the MSD. Enlarging the window in
which the anomaly α and the corresponding asphericty A
were determined will alter the stated numbers. Extend-
ing the fit range to larger times will include more of the
crossover towards the asymptotic normal diffusion and
hence α → 1 and A → 4/7. This underlines the transient
nature of the anomaly. In better words, significant elas-
tic restoring forces are only present in crowded fluids for
large frequencies, i.e. for rapid motion on short length
and time scales.

Extending the fit range to smaller times will include
particular features of the measurement process. The ac-
curacy of the position measurement in SPT depends on
the number of photons acquired. If too few photons are
detected, small diffusion steps are masked by noise and
the MSD appears to converge to a constant for t → 0
[7, 8]. This behavior may mimic a subdiffusive charac-
teristics at small times (’false positives’). In our experi-
ments photon statistics was sufficiently high to make this
effect negligible, i.e. the scaling exponent of a purely vis-
cous fluid deviated from unity only by less than 2%. But
even when having enough photon statistics and normal
diffusion, an apparently anomalous characteristics may
emerge: Since diffusion does not stop during the acquisi-
tion process (given by the acquisition time ∆t), the MSD
will take on a form ⟨r(t)2⟩ = 4D(t − ∆t/3) [9]. Due
to the subtraction of a constant, the MSD hence may
mimic a superdiffusive scaling for short times. To avoid
all these contributions, we have restricted ourselves to
the indicated fit window which is least affected by the
above mentioned processes.

From the two-dimensional trajectory with N position
and a time resolution of ∆t, we obtained the gyration
tensor via

Tij =
1

N

N∑

n=1

(ri(n∆t) − ⟨ri⟩) (rj(n∆t) − ⟨rj⟩) . (1)

Here, ⟨ri⟩ denotes the i-th component of the center of
mass. Diagonalizing Tij yields the principal axes of gyra-
tion and the corresponding eigenvalues, i.e. the squared
principal radii of gyration, R2

i .

III. SIMULATIONS

We have considered two different models for anomalous
diffusion, namely diffusion in a percolation system (ob-
structed diffusion, OD) and fractional Brownian motion
(FBM). Computer simulations of the respective process
provide numerical values for the shape parameters that
can be compared to experimental data.

Obstructed diffusion was simulated on a square lattice
(350 × 350 sites) with periodic boundary conditions. A
fixed fraction f of randomly chosen sites were occupied
by static obstacles and tracer particles were allowed to
move on the remaining free sites according to the blind
ant algorithm (see, e.g. [10]). Depending on the occupied
volume fraction f , the support becomes a fractal [11], and
diffusion can become (transiently) anomalous. For a crit-
ical concentration of obstacles fp = 0.40726 [12], the per-
colation threshold in two dimensions, subdiffusion with
α ≈ 0.69 is observed on all time scales whereas for f < fp

a transient, yet long-lasting subdiffusion with a finite-size
corrected anomaly α emerges. Indeed, for f < fp normal
diffusion is asymptotically restored. For f > fp, tracers
are confined to finite domains, i.e. an initial subdiffusion
is observed but asymptotically the particle is bound to a
certain region in space. In our simulations, we varied the
occupied volume fraction in the range 0.33 ≤ f ≤ 0.42
which resulted in straight power laws of the particles’
MSD within the simulation period. For every value of
f , we simulated 1.5 × 106 random walks, where for every
1000th run a new environment was created. Each ran-
dom walk was started at a randomly chosen vacant site.
Occasionally, particles were trapped in a small subvolume
of the lattice due to the random placement of obstacles.
We identified such situations and removed trapped tra-
jectories from the analysis.

For the simulation of FBM we used the circulant
method [13] which is in principle exact, i.e. the devia-
tions between ’true’and simulated FBM are due to com-
putational limitations like finite numerical accuracy. The
method relies on the embedding of the covariance matrix
of FBM into a circulant matrix that is diagonalized by
a discrete Fourier transform. Using a fast Fourier trans-
form (FFT), the simulation time for a trajectory of length
N scales as N log N . We generated 106 independent tra-
jectories, each having N = 213 positions. The anomaly
was varied in the range 0.5 ≤ α ≤ 0.9. For normal dif-
fusion (α = 1), we relied on Brownian Dynamics simu-
lations [14] that are based on the overdamped Langevin
equation, r(t+∆t) = r(t)+ξ(∆t) with ξ being a random
variable with white noise characteristics.

IV. RESULTS ON A TRUNCATED CTRW
MODEL

To overcome the somewhat artificial features of the
CTRW model due to its asymptotic scaling of the dis-
tribution of waiting times, p(τ) ∼ 1/τ1+α, we have con-
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FIG. 2: (a) Representative time-averaged MSD of truncated
CTRW model (α = 0.8), shown as D(t) = ⟨r(t)2⟩/t to
highlight the asymptotic scaling. Data for the time- and
ensemble-averaged MSD are shown in blue and red, respec-
tively. For the ensemble-averaged quantity a transient scal-
ing D(t) ∼ 1/t0.2 in the experimentally relevant interval is
observed before asymptotically reaching the normal diffusion
limit (D → const.). Hence, the truncated CTRW model only
shows transiently a weak ergodicity breaking. (b) The proba-
bility distribution function of waiting times, p(τ) used for the
truncated CTRW model. After a transient power-law scaling,
the distribution displays an exponential tail that enforces an
asymtotic convergence of the MSD to normal diffusion. (c)
The asphericity of the truncated CTRW model for α = 0.8
(red dot) deviates considerably from the predictions of the OD
and FBM models (dashed lines). It is most consistent with
the limiting value A = 4/7 for normal diffusion and hence
incompatible with the experimental data found for a crowded
dextran solution.

structed a truncated CTRW model. In particular, we
followed previous reports that had implied exponentially
truncated power-law distributions [15]. A truncated p(τ)
is expected to yield a long-lasting transient subdiffusion
which asymptotically converges to normal diffusion.

We therefore have simulated a two-dimensional CTRW
with α = 0.8 and a truncated distribution of waiting
times with parameters that yielded a close match with
the experimental MSD data. The chosen waiting time
distribution and the resulting behavior of the MSD (again
shown as D(t) = ⟨r(t)2⟩/t) are reported in Fig. 2. As
can be seen in Fig. 2a, the time-averaged D(t) is approxi-
mately constant whereas the ensemble-averaged quantity
shows a transient scaling ∼ 1/t0.2 (i.e. ⟨r(t)2⟩E ∼ t0.8)
before converging to the asymptotic limit of normal dif-
fusion. Hence, the CTRW’s feature of a linear scaling of
the time-averaged MSD persists even for the truncated
model. The associated wating time distribution (Fig. 2b)
shows a power-law decay over several orders of magnitude
before being exponentially truncated.

We next determined the asphericity for the truncated
CTRW model. Since the trajectory of a CTRW at any
instance of time geometrically looks like the path of nor-
mal Brownian motion, we expected a value A ≈ 4/7
for the truncated CTRW model. Indeed, our expecta-
tion turned out to be correct (Fig. 2c). Furthermore, A
did not change significantly with the imposed anomaly
α (data not shown). Shifting the truncation to larger
and larger times resulted in a slight increase of A rather
than reducing the value. Therefore, based on the scal-
ing of ⟨r(t)2⟩T and the asphericity, we can not only rule
out OD and the full CTRW model but also a (truncated)
CTRW model as an explanation of the experimentally
observed anomalous diffusion.
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